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Preface

It was the quest for a meaning, the praise of doubt,

the wonderful fascination exerted by research in one
of my diaries that seized me. The author was

a mathematician from the school of Renato

Cacciopoli. He spent his entire life among numbers,
haunted by the febrile disquietude caused by the discovery
of infinities. Astronomers rub shoulders with them, they
seek them, they study them. Philosophers dream about
them, talk about them, invent them. Mathematicians
bring them to life, draw closer and closer

and eventually touch them.

Walter Veltroni, The discovery of dawn'

This monograph aims at getting the reader acquainted with theories that play a
central role in modern mathematics such as integration and functional analysis.
Ultimately, these theories generalize notions that are treated in basic undergraduate
courses—and even earlier, in high school—such as orthogonal vectors, linear
transformations between Euclidean spaces, and the area delimited by the graph of a
function of one real variable. Then, what is this generalization all about? It is about
the more and more general nature of the environment in which these notions
become meaningful: orthogonality in Hilbert spaces, linear transformations in
Banach spaces, integration in measure spaces. These abstract structures are no
longer restricted to a specific model like the real line or the Cartesian plane, but
possess the least necessary properties to perform the operations we are interested in.

The reader should be warned that the above generalizations are not driven by
mere search of abstraction or aesthetic pleasure. Indeed, on the one hand, this kind
of procedure—typical in mathematics—allows to subsume a large body of results
under few general theorems, the proof of which goes to the essence of the matter.
On the other hand, in this way one discovers new phenomena and applications that

'Translated from Veltroni W., La scoperta dell’alba, p. 19. RCS Libri S.p.A., Milano (2006).
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viii Preface

would be completely out of reach otherwise. In what follows, we have tried to share
with the reader our interest for such an approach providing numerous examples,
exercises, and some shortcuts to classical results, like our convolution-based proof
of the Weierstrass approximation theorem for continuous functions.

We hope this textbook will be useful to graduate students in mathematics, who
will find the basic material they will need in their future careers, no matter what
they choose to specialize in, as well as researchers in other disciplines, who will be
able to read this book without having to know a long list of preliminaries, such as
Lebesgue integration in R" or compactness criteria for families of continuous
functions. The appendices at the end of the book cover a variety of topics ranging
from the distance function to Ekeland’s variational principle. This material is
intended to render the exposition completely self-contained for whoever masters
basic linear algebra and mathematical analysis.

Another aspect we would like to point out is that the two main subjects of this
monograph, namely integration and functional analysis, are not treated as inde-
pendent topics but as deeply intertwined theories. This feature is particularly evi-
dent in the large choice of problems we propose, the solution of which is often
assisted with generous hints. Chapters 1-6 allow to cover both integration and
functional analysis in a single course requiring a certain effort on the students’ part.

If the material is split into two courses, then one can pick additional topics from
the third part of the book, such as functions of bounded variation, absolutely
continuous functions, signed measures, the Radon-Nikodym theorem, the charac-
terization of the duals of Lebesgue spaces, and an introduction to set-valued maps.
However, the two topics can be treated independently, as one is sometimes forced
to do. In this case, Chaps. 1-4 provide the base for a course on integration theory
for a broad range of students, not only for those with an interest in analysis. For
instance, we have chosen an abstract approach to measure theory in order to quickly
derive the extension theorem for countably additive set functions, which is a fun-
damental result of frequent use in probability. Chapters 5 and 6 are an essential
introduction to functional analysis which highlights geometrical aspects of infinite-
dimensional spaces. This part of the exposition is appropriate even for under-
graduates once all examples requiring measure theory have been filtered out.
Indeed, the new phenomena that occur in infinite-dimensional spaces are well
exemplified in # spaces, without need of any advanced measure-theoretical tools.

To conclude this preface, we would like to express our gratitude to all the people
who made this work possible. In particular, we are deeply grateful to Giuseppe Da
Prato who originated this monograph providing inspiration for both contents and
methods. We would also like to thank our friend Ciro Ciliberto for encouraging us
to turn our lecture notes into a book, getting us in touch with Francesca Bonadei
who gave us all her valuable professional help and support. Many thanks are due to
our students at the University of Rome “Tor Vergata”, who read preliminary ver-
sions of our notes and solved most of the problems we propose in this textbook. We
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http://dx.doi.org/10.1007/978-3-319-17019-0_6
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http://dx.doi.org/10.1007/978-3-319-17019-0_4
http://dx.doi.org/10.1007/978-3-319-17019-0_5
http://dx.doi.org/10.1007/978-3-319-17019-0_6

Preface ix

wish to send special thanks, directly from our hearts, to Carlo Sinestrari and
Francesca Tovena for standing by with their precious advice and invaluable
patience. Finally, we would like to share with the reader our happiness for the
increased set of names to whom this volume is dedicated, compared to the Italian
edition. It is true that time does not go by in vain.

Rome, Italy Piermarco Cannarsa
October 2014 Teresa D’Aprile
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Measure and Integration



Chapter 1
Measure Spaces

The concept of measure of a set originates from the classical notion of volume of
an interval in RV, Starting from such an intuitive idea, by a covering process one
can assign to any set a nonnegative number which “quantifies its extent”. Such an
association leads to the introduction of a set function called exterior measure, which
is defined for all subsets of R". The exterior measure is monotone but fails to be
additive. Following Carathéodory’s construction, it is possible to select a family
of sets for which the exterior measure enjoys further properties such as countable
additivity. By restricting the exterior measure to such a family one obtains a complete
measure. This is the procedure that allows to define the Lebesgue measure in R . The
family of all Lebesgue measurable sets is very large: sets that fail to be measurable
can only be constructed by using the Axiom of Choice.

Although the Lebesgue measure was initially developed in euclidean spaces, this
theory is independent of the geometry of the background space and applies to abstract
spaces as well. This fact is essential for applications: indeed measure theory has been
successfully applied to functional analysis, probability, dynamical systems, and other
domains of mathematics.

In this chapter, we will develop measure theory from an abstract viewpoint, extend-
ing the procedure that leads to the Lebesgue measure in order to construct a large
variety of measures on a generic space X . In the particular case of X = R, a special
role is played by Radon measures (of which the Lebesgue measure is an example)
that have important regularity properties.

1.1 Algebras and o-Algebras of Sets

1.1.1 Notation and Preliminaries

We shall denote by X a nonempty set, by &7 (X) the set of all parts (i.e., subsets) of
X, and by & the empty set.
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4 1 Measure Spaces
For any subset A of X we shall denote by A€ its complement, i.e.,
A°={xeX| x¢A}

Forany A, B € Z(X)weset A\ B= AN B°.
Let (A,,), be a sequence in & (X). The following De Morgan identity holds:

o0 < o0
(U An) = ﬂ AC.
n=1 n=1
We define!
o0 o0 o0 o
hlfll)s;pAn = ﬂ U Ax, 11nr2101<13fAn = U ﬂ Ag.
n=1 k=n n=1 k=n

If L := limsup,_, o, Ay = liminf,_, . A, then we set L = lim,_, A,, and we
say that (A,), converges to L (in this sense we shall write A, — L).

Remark 1.1 (a) Asis easily checked, lim sup,,_, o, A, (resp., liminf, _, ~ A,) con-
sists of those elements of X that belong to infinitely many subsets A,, (resp., that
belong to all but a finite number of subsets A,). Therefore

liminf A, C limsup A,.

n—o0 n—00

(b) Itis also immediate to check that if (A,), is increasing (A, C A,+1, n € N),
then

(@

lim A, =
n—oo

Ap,

3
I
—_

whereas, if (A,), is decreasing (A, D A,+1, n € N), then

D}

lim A, =
n— 00

Ap.

3
I
-

In the first case we shall write A,, 1 L, and in the second A, | L.

1Observe the similarity with lim inf and lim sup for a sequence (ay), of real numbers. We have:
lim sup,,_, o, a, = inf, ey supy, ax and liminf,,_, o @, = sup, ¢y infy>, ax.
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1.1.2 Algebras and o-Algebras

Definition 1.2 A nonempty subset .o/ of &2 (X) is called an algebra in X if

(a) 9, X ed.
(b) A,Bes/ — AUBEcJ.
© Acod — A‘cd.

Remark 1.3 Tt is easy to see that if o7 is an algebra and A, B € <7, then AN B and
A\ B belong to <. Therefore the symmetric difference

AAB :=(A\B)U(B\ A)

also belongs to /. Moreover, <7 is stable under finite unions and intersections,
that is,

AlU---UA, € &,
Ao Aned = [AMW-..OAH €.
Definition 1.4 An algebra & in X is called a o-algebra if, for any sequence (A,),
of elements of &, we have that | J7-; A, € &.1If & is a o-algebra in X, the elements
of & are called measurable sets and the pair (X, &) is called a measurable space.

Exercise 1.5 Show that an algebra & in X is a o-algebra if and only if, for any
sequence (A;), of mutually disjoint elements of &, we have Uzo: | Ay eé.

Hint. Given a sequence (A,), of elements of &, set By = Ay and B, = A, \ (B1 U
...UBy_1) forn > 2. Show that (B,,), is a sequence of disjoint elements of & and
UX A, =Ux B, €é.

We note that if & is a o-algebra in X and (A,), C &, then ﬂ;’lozl A, € & owing
to the De Morgan identity. Moreover,

liminf A, € &, limsupA, € &.

n—00 n—00

Example 1.6 The following examples explain the difference between algebras and
o-algebras.

1. Obviously, Z(X) and & = {@, X} are o-algebras in X. Moreover, & (X) is the
largest o-algebra in X, and & the smallest.
2. In X = [0, 1), the class <7 consisting of & and of all finite unions

n
A= Jlai, bi) with0 < a; < b; < a1 < 1 (1.1)
i=1

is an algebra in [0, 1). Indeed, for A as in (1.1), we have
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A= [0701)U[b1,f12)u"‘u[bn7 1) €.

Moreover, in order to show that &7 is stable under finite unions it suffices to
observe that the union of two (not necessarily disjoint) intervals [a, b), [c,d) C
[0, 1) belongs to 7.

3. Inan infinite set X consider the class

o ={A e P(X)| Ais finite, or A®is finite}.

Then <7 is an algebra in X. Indeed, the only point that needs to be checked is
that <7 is stable under finite unions. Let A, B € . If A and B are both finite,
then so is A U B. In all other cases, (A U B) is finite.

4. Tn an uncountable set X consider the class?

& ={A € 2(X) | Ais countable, or A is countable}.

Then & is a o-algebra in X. Indeed, & is stable under countable unions: let (4,,),
be a sequence in &’; if all A, are countable, then so is U, A, ; otherwise, (U, A,)¢
is countable.

Exercise 1.7 1. Show that the algebra </ in Example 1.6(2) fails to be a o-algebra.

2. Show that the algebra <7 in Example 1.6(3) fails to be a o-algebra.

3. Give an example to show that the o-algebra & in Example 1.6(4) is, in general,
strictly smaller than &2 (X).

4. Let # be a subset of Z(X). Show that the intersection of all o-algebras in X
including %" is a o-algebra in X (the minimal o-algebra including %").

Definition 1.8 Given a subset .Z~ of &?(X), the intersection of all o-algebras in X
including % is called the o-algebra generated by 2%, and will be denoted by o (7).

Exercise 1.9 1. Show that if & is a o-algebra in X, then o(&) = &.
2. Find o(%) for # = {@} and # = {X}.
3. Given .#, #' Cc P(X) with & C "' C o(*), show that

o(H) =o(X).

Example 1.10 1. Let X be ametric space. The o-algebra generated by all open sets
of X is called the Borel o-algebra and is denoted by #(X). Obviously, Z(X)
coincides with the o-algebra generated by all closed sets of X. The elements of
P (X) are called Borel sets.

2. Let X = R, and let .# be the class of all half-closed intervals [a, b) with a < b.

Then o(¥) coincides with Z(R). Indeed, let us observe that every half-closed
interval [a, b) belongs to Z(RR) since

2In the following ‘countable’ stands for “finite or countable’.
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o0

a.0) = (a— %,b).

n=1

So o(F) C HA(R). Conversely, let V be an open set in R. Then, as is well
known, V is the countable union of some family of open intervals.? Since any
open interval (a, b) can be represented as

]

@b = [a+;l,b),

n=1

we conclude that V € o(#). Thus, Z(R) C o(.%).
Exercise 1.11 Show that o(.¥) = A(R), where .7 is one of the following classes:

7 ={(a,b)|a, beR, a<b},
S ={(a,0) |a € R},
S ={(—o0,al|a € R}.

Exercise 1.12 Let & be a o-algebra in X, and Xo C X.

1. Show that & = {AN Xy | A € &} is a o-algebra in X.
2. Show that if & = o (%), then &y = o (%)), where

H={ANXo|Ae.x}

Hint. The inclusion &y D o () follows from point 1. To prove the converse,
show that
F:={Ae&|ANXo € o(H)}

is a o-algebra in X including % .

1.2 Measures

1.2.1 Additive and o-Additive Functions

Definition 1.13 Let .o/ be an algebra in X and let u : &/ — [0, co] be a function
such that u(@) = 0.

3Indeed, each point x € V has an open interval (py,qy) C V withx € (py, gx) and py, g« € Q.
Therefore V is contained in the union of all elements of the family {(p, ¢) | p, ¢ € Q, (p,q) C V},
and this family is countable.
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e We say that y is additive if, for any finite family Ay, ..., A, € < of mutually

disjoint sets, we have
n n
u(U Ak) =D A
k=1 k=1

e We say that y is o-additive or countably additive if, for any sequence (A,), C &

of mutually disjoint sets such that | J72, A, € <, we have

M(U An) =D n(An).
n=1 n=1

e We say that u is o-subadditive (or countably subadditive) if, for any sequence
(Ap)n C o suchthat | J,2, A, € </, we have

M(U An) < D (A
n=1 n=1

Remark 1.14 Let o/ be an algebra in X.

1. Any o-additive function on &7 is also additive.

2. Any additive function p on <7 is monotone. Indeed, if A, B € o/ and A D B,
then p(A) = p(B) + p(A \ B). Therefore (1(A) > p(B).

3. Let u be an additive function on o7, and let (4,,), C <7 be a sequence of mutually
disjoint sets such that | J;—; A, € <. Then

o0 m
,u(U An) > Z,u(An) for all m € N.
n=1

n=1

Therefore

u(U An) = u(An).
n=1

n=1

4. Any o-additive function p on &7 is also o-subadditive. Indeed, let (A,,), C </ be
a sequence such that U:O=1 A, € &/, and define By = Ajand B, = A, \ (B1 U
...UBy_1) forn > 2. Then (B,), is a sequence of mutually disjoint sets of .<7,
UpA, = U, B, € & and u(By) < u(A,) by the monotonicity of u. Therefore
w(UpAp) = p(U,By) = Zn w(By) < Zn (Ap).

5. In view of point 3 and 4, an additive function on .27 is o-additive if and only if it
is o-subadditive.
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Definition 1.15 An additive function p on an algebra &/ C & (X) is said to be:

e finite if u(X) < oo.
e o-finite if there exists a sequence (A,), C . such that Uzozl A, = X and
Ww(A,) < ooforalln € N.

Exercise 1.16 In X = N, consider the algebra
A = {A € Z(X) | A is finite, or A€ is ﬁnite}

of Example 1.6. Show that:
e The function i : &/ — [0, co] defined as

(A) = #A if A is finite,
VY= Voo if AC s finite

(where the symbol #A stands for the number of elements of A) is o-additive.
e The function v : & — [0, oo] defined as

1

Z — if A s finite,
211

neA

00 if A€ is finite

V(A) =

is additive but not o-additive.

For an additive function, o-additivity is equivalent to continuity in the sense of the
following proposition.

Proposition 1.17 Let i1 be an additive function on an algebra <7. Then (i) < (ii),
where:

(i) pis o-additive.
(ii) (A, CH, A, Ayt A = u(Ay) 1 p(A).

Proof Let us first consider the implication (i) = (ii). Let (A,), C &, A € &,
A, 1 A. Then

o
A=A U@\ A,

n=1
the above union being disjoint. Since u is o-additive, we deduce that
(0.¢]
pP(A) = p(AD) + D (A1) — p(Ay) = lim pu(Ay),
— n—o0

and (ii) follows.
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Let us pass to prove that (ii) = (i). Let (A,), C & be a sequence of mutually
disjoint sets such that A = [ J72, A, € <. Define

n
B, = U Ay.
k=1

Then B, 1 A. So, in view of (i), u(B,) = >j_; p1(Ak) 1 p(A). This implies
@). (I

Proposition 1.18 Let u be a o-additive function on an algebra <. If (Ay), C <,
Aed, n(Ay) <ocoand A, | A, then 1(A,) | pu(A).

Proof We have

o
Ar= [ (A \ Aur) U A,

n=1

the above union being disjoint. Consequently,
o)
p(AD = D ((An) = p(Ang1) + p(A) = p(Ap) = lim ji(Ay) + ((A).
n=1

Since 1(A1) < 0o, the conclusion follows. O

Example 1.19 The conclusion of Proposition 1.18 may be false without assuming
(A1) < oo. This is easily checked taking 7 and p as in Exercise 1.16 and A, =
{meN|m=>n}.

Exercise 1.20 Let p be a finite additive function on an algebra .<7. Show that if for
any sequence (A,), C </ suchthat A, | A € o/ we have

1(An) | p(A),

then p is o-additive.

1.2.2 Measure Spaces

Definition 1.21 Let & be a o-algebra in X.

e A o-additive function p : & — [0, oo] is called a measure on &.
e The triplet (X, &, 1), where p is a measure on &, is called a measure space.
e A measure y on & is called a probability measure if p(X) = 1.
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Definition 1.22 A measure p on a g-algebra & C £ (X) is said to be

e finite if u(X) < oo.
e o-finiteif there exists a sequence (A,), C & suchthat Uiil A, = Xand u(A,) <
oo foralln € N.
e complete if
Aeé, BCA, n(A)=0 = Beé&

(and so u(B) = 0).
e concentrated on a set A € & if u(A°) = 0. In this case we say that A is a support
of .

Example 1.23 Let x € X. Define, for every A € Z(X),

I ifxeA,
0:(A) = [0 ifx ¢ A.

Then 6, is a measure on Z(X), called the Dirac measure at x. Such a measure is
concentrated on the singleton {x}.

Example 1.24 Let us define, for every A € Z(X),

#A  if A is finite

# —

wA) = [ 0o if Ais infinite

(see Exercise 1.16). Then i is a measure on 22 (X), called the counting measure. It
is easy to see that i/* is finite if and only if X is finite, and that ;¥ is o-finite if and
only if X is countable.

Exercise 1.25 Given a measure space (X, &, i), a set A € & of measure zero is
called a null set or zero-measure set. Show that a countable union of zero-measure
sets is also a zero-measure set.

Definition 1.26 Given (X, &, i) a measure space and A € &, the restriction of p
to A (or p restricted to A), written as uL A, is the set function®

(uLA)(B) = w(ANB) VBeé&.

Exercise 1.27 Inthe same hypotheses of Definition 1.26, show that ui. A is a measure
on &.

Remark 1.28 Letus observe that, given ameasure space (X, &, (1), any subset A € &
can be naturally endowed with a measure space frame: more precisely, the new
o-algebra will be & N A, namely the class of all measurable subsets of X which

4 A set function is a function @ — [—00, +00], where 2 C 2(X) is a family including the empty
set.
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are contained in A, and the new measure, which we will continue to denote by i, is
identical to p except for the restriction of its domain. The measure space (A, & N
A, ) is called a measure subspace of (X, &, ).

As a corollary of Proposition 1.18 we have the following result.

Proposition 1.29 Let yi be afinite measure on a o-algebra &. Then, for any sequence
(A))n C &, we have

u(liminf An) < liminf j(A,) < limsup p(A,) < u(lim sup An). (1.2)
n— 00

n—o0 n— o0 n—od
In particular, A, - A = u(A,) — u(A).

Proof Set L = limsup,_, o, An. Then we can write L = ﬂzozl B,, where B, =
Ur, Ak 4 L. Now, by Proposition 1.18 it follows that

w(L) = lim wu(B,) = inf pu(B,) > inf sup pu(Ax) = lim sup pu(A,).
n—00 neN neN >y

n—o00

We have thus proved that

lim sup p(A,) < u( lim sup A,,).

n—o0 n— 00

The remaining part of (1.2) can be proved similarly. (]

1.2.3 Borel-Cantelli Lemma

The following result states a simple but useful property of measures.

Lemma 1.30 Let i be a measure on a o-algebra &. Then, for any sequence (A,), C
& satisfying > o | u(Ap) < 00, we have

u(lim sup An) =0.

n—oQ

Proof Set L = limsup,_, o, A,. Then L = (2, By, where B, = o, Ax | L.
Consequently, since p is o-subadditive, we have

(L) < p(By) < D ju(Ar)
k=n

for any n € N. As n — oo, we obtain (L) = 0. U



1.3 The Basic Extension Theorem 13

1.3 The Basic Extension Theorem

A natural question arising both in theory and applications is the following.

Problem 1.31 Let .o/ be an algebra in X, and let i be an additive function on <7
Does there exist a o-algebra & including <7, and a measure 7 on & that extends
I, 1.e.,

H(A) = u(A) VA e g?

Should the above problem have a solution, one could assume & = o(&7) since
o(</) would be contained in & anyways. Moreover, for any sequence (A,), C <
of mutually disjoint sets such that | J02, A, € <7, we would have

u(U An) = ﬁ(U An) =D A =D j(An).
n=1 n=1 n=1 n=1

Thus, for Problem 1.31 to have a positive answer, ;4 must be o-additive. The following
remarkable result shows that such a property is also sufficient for the existence of
an extension, and more. We shall see an important application of this result to the
construction of the Lebesgue measure later on in this chapter.

Theorem 1.32 Let 7 be an algebra in X, and ji: of — [0, 00] be a o-additive
function. Then i can be extended to a measure on o(</). Moreover, such an extension
is unique if | is o-finite.

To prove the above theorem we need to develop suitable tools, namely Halmos’
Monotone Class Theorem for uniqueness, and the concept of outer measure and
additive set for existence.

1.3.1 Monotone Classes

Definition 1.33 A nonempty class .# C Z2(X) is called a monotone class if, for
any sequence (A,), C .4,

o A A = Acu.
e A lA = Aecu.

Remark 1.34 Clearly, any o-algebra is a monotone class; the converse, however,
may fail, as can be checked by considering the trivial example .# = {@}. On the
other hand, if a monotone class .7 is also an algebra in X, then .# is a o-algebra
in X. Indeed, given a sequence (A,), C .#, we have B, := U;_ Ay € .# and
B, 1 A := U2 Ay. Therefore A € ./ .

Let us now prove the following result.
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Theorem 1.35 (Halmos) Let o7 be an algebra in X, and let .# be a monotone class
including <f. Then o (/) C M .

Proof Let ./, be the minimal monotone class® in X including 7. We are going
to show that . is an algebra in X, and this will prove the theorem in view of
Remark 1.34.

To begin with, we note that @ and X belong to .#. Define, for any A € .,

My={B e Moy|AUB, A\ B, B\ A€ M}

We claim that .#4 is a monotone class. Indeed, let (B,,), C .#4 be an increasing
sequence such that B,, 1 B. Then

AUB,* AUB, A\B,| A\B, B,\A1 B\A.
Since . is a monotone class, we deduce that
B, AUB, A\ B, B\ A € ..
Therefore B € .4 4. By a similar argument one can check that
(Bn)n C Ma, Byl B = Be .l

So .# 4 is a monotone class as claimed.
Next, let A € &7. Then &7 C .# since any B € </ belongs to .#y and satisfies

AUB, A\ B, B\ A € /. (1.3)

But . is the minimal monotone class including 7, so .#y C .# 4. Therefore
Moy = M4 or, equivalently, (1.3) holds true for any A € o7 and B € .#).

Finally, let A € .#). Since (1.3) is satisfied by any B € .o/, we deduce that
o C My. Then M = . This implies that .# is an algebra. O

Proof of Theorem 1.32: uniqueness Let & = (<), and let i1, 1o be two measures
extending p to &. We shall assume, first, that p is finite and set

M ={Ae&|mA) = mA).

We claim that . is a monotone class including .27 Indeed, for any sequence (A,), C
A , by Propositions 1.17 and 1.18 we have that

Ap P A = (A) =limp(Ay) = p2(4) (@ =1,2),
Ay b A, (X)), (X)) <00 = pi(A) = li’gnui(An) =mw(A) (=12).

31t is easy to see that the intersection of all monotone classes in X including <7 is also a monotone
class.
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Therefore, by Halmos’” Theorem, .# = & and this implies that p| = ps.

In the general case of a o-finite function g, we have that X = (J72 | X, for some
(Xn)n C & such that u(X,) < oo for all n € N. It is not restrictive to assume
that the sequence (X,,), is increasing. Now, define 1, = pXp, pin = pir X, for
i = 1,2 (see Definition 1.26). Then, as is easily checked, (i, is a finite o-additive
function on &7, and p1 ,, pt2,, are measures extending i, to &. So, by the conclusion
of the first part of this proof, p1 , = pan. If A € &,then AN X,, + A, and therefore,
again by Proposition 1.17, we obtain

p1(A) = lim (AN X,) = lim py ,(A)
n—oo n—o0
= lim p ,(A) = lim p(ANX,) = pa(A).
n—0o0o n—oo

The proof is thus complete. U

Example 1.36 The above extension may fail to be unique, in general, if the function
(4 is not o-finite. Indeed, let us consider the algebra .7 of Example 1.6(2) and the
o-additive function y on <7 defined by

0 ifA=g,
pia) = [oo ifA + o 14

By reasoning as in Example 1.10(2), it is easy to show that o (<) = ([0, 1)). A
trivial extension of u to ([0, 1)) is given by (1.4) itself. To construct a second one,
let us consider an enumeration (g,),en of Q N[0, 1) and set

fi(A) = D" 6,,(A) VA € (0, 1)),

where ¢y is the Dirac measure in x. Then 7 = p on 7, but i({g1}) = 1 and
1({q1}) = oo. To prove that 1 is o-additive, let us first observe that 71 is additive.
Now, for any sequence (Ay)r C Z([0, 1)), the o-subadditivity of J,, yields

ﬁ(g Ak) ;6,,” (U Ak) < ZZ% (40)

n=1 k=1
= hm ZZéqn(Ak)_ 11m ZZéqn(Ak)
n 1 k=1 k 1 n=1
o o0 o
< DD 80 (AW = D i(AY.
k=1 n=1 k=1

Therefore [z is o-subadditive, and then 1 is also o-additive in view of Remark 1.14(5).
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1.3.2 Outer Measures

Definition 1.37 A function pu* : Z2(X) — [0, oo] is called an outer measure on X
if ©*(@) = 0, and p* is monotone and o-subadditive, i.e.,

E\CE, = p"(Ey) < p*(Ep),

u*(U E) < D WH(E) Y (Ep), C P(X).
n=1

n=1

The following proposition studies an example of outer measure that will be essential
for the proof of Theorem 1.32.

Proposition 1.38 Ler u be a o-additive function on an algebra o C & (X). Define,
forany E € Z(X),

p*(E) = inf [Zu(An) ‘ (Aonc . Ec| An} : (1.5)

n=1 n=1

Then

1. u* is finite whenever i is finite.
2. p* is an extension of u, that is,

(A = p(A), VAe . (1.6)

3. p* is an outer measure on X.

Proof The first assertion being obvious, let us proceed to check (1.6). Observe that
the inequality 1*(A) < u(A) is immediate for any A € 7. To prove the converse,
let (A,), C <7 be a countable covering of a set A € «/. Then (A, N A),, C &
is also a countable covering of A satisfying U™ (A, N A) = A € /. Since p is
o-subadditive, we get

A < D" (A N A)Y < > u(Ay).

n=l1 n=1

Thus, taking the infimum as in (1.5), we conclude that ©*(A) > p(A).

The monotonicity of p* follows from the definition (1.5) since, if E; C E,, every
countable covering of E; is also a countable covering of E.

It remains to show that p* is o-subadditive. Let (E,), C £(X), and set E =
Uney En. The inequality p*(E) < > 02, p*(Ey) is trivial if the right hand side is
infinite. Therefore assume that all ;*(E},)’s are finite. Then for any n € N and any
€ > 0 there exists (A, x)x C <7 such that
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00 c 00
ZM(An,k) < ,U*(En) + 2_ns En C U An,k'
k=1 k=1

Consequently,

DD Ak = D it (E) e

n=1 k=1 n=l1
Since E C U, 4 Ank» we have®
o0 o0 o0
PHE) < D0 p(An) = D D iuAn) £ D u*(En) + e

(n,k)eN? n=1 k=1 n=1
The conclusion follows from the arbitrariness of . O
Exercise 1.39 1. Let * be an outer measure on X, and Z € &(X). Show that

V*(E) = M*(Z NE) VE € Z(X)

is an outer measure on X.
2. Let (1)), be a sequence of outer measures on X. Show that

oo
pHE) =D in(E) and ul,(E) = sup i (E)  VE € P(X)
n=1 neN
are outer measures on X.

Definition 1.40 Given an outer measure p* on X, a set A € Z(X) is said to be
additive (or p*-measurable) if

wW(E)=p"(ENA)+u" (ENAY) VE € Z(X). (1.7)

We denote by ¢ the family of all additive sets.

Remark 1.41 (a) Notice that, since p* is o-subadditive, (1.7) is equivalent to

P (E) > p*(ENA) + p*(E N A) VE € 2(X). (1.8)

6Let us observe that if (an,k)n.k 1s a sequence of real numbers such that a,x > 0, then

PIFHED 39 IIES 3p 3t

(n,k)eN? n=1 k=1 k=1 n=1
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(b) Since identity (1.7) is symmetric with respect to the exchange A < A€, we
deduce that A° € 4 forany A € 9.

Theorem 1.42 (Carathéodory) Let p* be an outer measure on X. Then 4 is a
o-algebra in X, and p* is a measure on 9.

Before proving Carathéodory’s Theorem, let us use it to complete the proof of
Theorem 1.32.

Proof of Theorem 1.32: existence Given a o-additive function y on an algebra o7,
define the outer measure p* as in Proposition 1.38. Then p*(A) = p(A) for any
A € o/. Moreover, in light of Theorem 1.42, 14* is a measure on the o-algebra ¢ of
additive sets. So the proof will be complete if we show that o C ¢. Indeed, in this
case, o (/) turns out to be contained in ¢, and it suffices to take the restriction of
¥ to o (/) to obtain the required extension.

Now, let A € & and E € Z(X). Assume p*(E) < oo (otherwise (1.8) trivially
holds), and fix € > 0. Then there exists (A4,), C «/ such that E C || A, and

PEE) e > D uAn) = D (A N A) + D Ay N AY)

n=1 n=1 n=1

> W (ENA) + p*(ENA°).

Since ¢ is arbitrary, we have p*(E) > p*(E N A) + p*(E N A°). Thus, by
Remark 1.41(a) we deduce that A € ¢4. [
We now proceed with the proof of Carathéodory’s Theorem.

Proof of Theorem 1.42 We will split the proof into four steps.
1. ¢ is an algebra.
We note that @ and X belong to ¢. In view of Remark 1.41(b) we already know
that A € ¢4 implies A € 4. Let us now prove thatif A, B € 4,then AUB € 4.
For any E € £2(X) we have
pH(E) = p*(E N A) + p*(E N A°)
=p*(ENA)+ p*(ENA°NB) 4+ p*(E N A°N BY) (1.9)
= (W (ENA) + p*(ENA°N B)) + p*(E N (AU B)°).

Since
(ENAUENA“NB)=EN(AUB),

the subadditivity of * implies that

wW(ENA) +p*(ENA°NB) > u*(EN (AU B)).
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So, by (1.9),
p*(E) = pi*(E N (AU B)) + u*(E N (AU B)),

and AU B € ¢ as required.
2. w* is additive on ¢.
Let us prove that if A, B € ¢4 and A N B = &, then

wW(ENAUB) =pu (ENA)+u*(ENB) VE € Z(X). (1.10)
Indeed, replacing E with £ N (A U B) in (1.7) we obtain
WENAUB) = (EN(AUB)NA)+ p*(EN(AUB) N AS),

which is equivalent to (1.10) since A N B = &. In particular, taking £ = X, it
follows that p* is additive on ¥.

3. ¢ is a o-algebra.
Let (Ap)x C ¥ be a sequence of mutually disjoint sets. We will show that S :=
Uiz Ak € 9. To this aim, set S, := [J;_,; Ak, n € N. By the o-subadditivity
of p*, for any n € N we have

o0
PHENS) + p*(ENSY) < D> p*(EN Ap) + p*(ENS°)

k=1
n
= lim (Z PHE N A + W (E N SC))
n—oQ P

= lim (u*(ENS,) + p*(ENSY))
n—oo

in view of (1.10). Since §¢ C S¢, it follows that

n’

wW(ENS)+ p*(ENS < limsup (u*(E NS, + p*(EN S,‘,')) = u*(E).
n—oo
Therefore S € ¢, and then, since ¢ is an algebra, we deduce that ¢ is a o-algebra
(see Exercise 1.5).
4. p* is o-additive on ¢.
Since p* is o-subadditive and additive by Step 2, then Remark 1.14(5) gives the
conclusion. O

Remark 1.43 Letus observe that any set with outer measure zero is additive. Indeed,
for any Z € & (X) with *(Z) =0, and any E € & (X), we have

PW(ENZ)+p (ENZY) =p (ENZ) < p*(E)

by the monotonicity of *. Thus, Z € ¢. We deduce that the measure p* is complete
on the o-algebra ¢ (see Definition 1.22).
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Remark 1.44 Given a o-additive function 1 on an algebra o7, the o-algebra ¢ of all
additive sets with respect to the outer measure p* defined in Proposition 1.38 satisfies
the inclusions

o(d) CY C P(X). (1.11)

We shall see later that the above inclusions are both strict, in general.

1.4 Borel Measures on RV

Definition 1.45 Let (X, d) be a metric space. A measure ;. on ZA(X) is called a
Borel measure. A Borel measure y is called a Radon measure if (K) < oo for
every compact set K C X.

In this section we will study specific properties of Borel measures on R . We begin
by introducing the Lebesgue measure on the unit interval.

1.4.1 Lebesgue Measure on [0, 1)

Let .# be the class of all half-closed intervals [a, b) with0 < a < b < 1, and let .2
be the algebra of all finite disjoint unions of elements of .# (see Example 1.6(2)).
Then o(.%) = o() = A([0, 1)).

On .#, consider the set function

m(la,b)) :==b—a, 0<a<b<]l. (1.12)

If a = b, then [a, b) reduces to the empty set, and we have m([a, b)) = 0.

Exercise 1.46 Let [a, b) be contained in [a, by) U ---U[ay,, by), with —o0 < a <
b < ooand —00 < a; < b; < o0o. Prove that

n
b—a=< (bi—a.
i=1

Proposition 1.47 The set function m defined in (1.12) is o-additive on .Z, i.e., for
any sequence (Ii)y of mutually disjoint sets in .9 such that U7 | Iy € ., we have:

m (U Ik) = Zm(lk).
k=1 k=1

Proof Let (Iy); be a disjoint sequence in &, with Iy = [ag, by), and suppose I =
lao, bo) = U2 Ik € .#. Then, for any n € N, we have
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n n
> mh) =D (b —ar) < by —ag =m(l).
k=1 k=1
Therefore
o0
> mI) < m(I).
k=1
To prove the reverse inequality, assume ag < bg. For any € < by — ap we have
o0
[ag, bp — €] C U (ak — 6271{, bk) .
k=1
Then the Heine—Borel Theorem implies that, for some ko € N,
ko
la0, bo = 2) C lao, bo — =1 < | (a — 27, ).
k=1
Consequently, thanks to the result in Exercise 1.46,
ko 00
m) —e = (b —a0) — = = > (bx —ax +227%) = D m(li) +=.
k=1 k=1
The arbitrariness of £ gives
o0
m(I) < D" m(Ip).
k=1
O
We now proceed to extend m to <%. For any set A € .« such that A = U{.‘zl 1,
where Iy, ..., I are disjoint sets in .#, let us define
k
m(A) =D m(I;). (1.13)

i=1

It is easy to see that the above definition is independent of the representation of A as

a finite disjoint union of elements of .#.

Exercise 1.48 Show that if Jy, ..., Jj is another family of disjoint sets in .# such

—_h .
that A = szlfj, then

k h
> ml) =Y m(J).
i=1 j=1
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Theorem 1.49 m is o-additive on .

Proof Let (A,), C o be a sequence of disjoint sets such that

oo
= U Ay, € 9.
n=1
Then
kll
A:UI,- A, = Uln,j (Vn € N)
i=1 j=
for some disjoint sets Iy, ..., I, and I, 1, ..., I, in .#. Now, observe that, for any
i=1,...,k,

00 oo ky
L=hmnA=Junay=J U,

n=1 n=1 j=1

and, since (I; N I, j),,; is a countable family of disjoint sets in .#, by applying
Proposition 1.47 we obtain

oo ky

m(l;) = sz(n N1y ).

n=1 j=I

Hence,

m(A) = Zm(l)_ZZZm(I N1 ) —ZZZm(I NI ).

i=1n=1 j=1 n=1i=1 j=1

Since disjoint union Ule Ul;"zl I; N I, j equals A,, by definition (1.13) we get
kn
m(Ay) = X Xm0 1)) O

Summing up, thanks to Theorem 1.32, we conclude that m can be uniquely
extended to a measure on the g-algebra Z([0, 1)). Such an extension is called the
Lebesgue measure on [0, 1).

1.4.2 Lebesgue Measure on R

We now turn to the construction of the Lebesgue measure on R. Usually, this is done
by an intrinsic procedure, applying an extension result for o-additive set functions
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on half-rings. In this book, we will follow a shortcut, based on the following simple
observations; for a different approach we refer to [Br83, KF75, Ru74, Ru64, Wi62,
WZ77], for instance.

Proceeding as in the previous section, one can define the Lebesgue measure on
[a, b) for any interval [a, b) C R. Such a measure will be denoted by m[4 ). Let
us begin by characterizing the associated Borel sets in [a, b). The following general
result holds.

Proposition 1.50 Given A € BRN), then
B(A) =B e BRY)|B C A}.

Proof Consider the class & := %(A)NZ(RN). It is immediate that & is a o-algebra
in A. Since & contains all the subsets of A which are open in the relative topology,
we conclude that Z(A) C &. This proves the inclusion Z(A) c BRN).

Next, to prove the opposite inclusion, let .# = {B € ZRY) | BN A € #(A)).
Let us check that .% is a o-algebra in RY.

1. @, RN € .Z by definition.

2. Let B e #.Since BNA € #(A), wehave BENA = A\ (BN A) € Z(A).
Therefore B¢ € ..

3. Let (Bp)y C #. Then (U2 B,) NA = U (B, N A) € B(A). Therefore
Ux B, e Z.

Since .% contains all open sets in RY, we conclude that Z(R") c .%. The proof is
thus complete. (]

Thus, for any pair of nested intervals [a,b) C [c,d) C R, we have that
AB(la, b)) C A([c,d)). Moreover, a unique extension argument yields

mia,p)(A) = mpc.q)(A) VA € B(la,b)). (1.14)
Now, since R = U,fozl [—k, k), it is natural to define the Lebesgue measure on R as

m(A) = lim m_(AN[—k.k) VA€ Z®R). (1.15)

Let us observe that, in view of (1.14), we have

m— (AN [=k, k) =m_x—1k+1)(AN[=k, k))
Smj1prn(AN[=k—1,k+ 1)),

by which we deduce that the function k — m[_¢ x)(A N [k, k)) is nondecreasing;
therefore for any A € Z(R) the limit in (1.15) is well defined (possibly infinite).

Our next exercise is intended to show that the definition of m would be the same
if we took any other sequence of intervals covering R.
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Exercise 1.51 Let (ay); and (b) be real sequences satisfying
ar < bk, ag \L —0Q, bk T Q.

Show that
m(A) = kli)rgom[“k’bk)(A N[ak, b)) VA € BR).

In order to show that m is a measure on A(R), we still have to check o-additivity.

Proposition 1.52 The set function defined in (1.15) is o-additive on B(R).

Proof Let us first show that m is additive on Z(R). Indeed, let Ay, ..., A, € B([R)
be disjoint sets and let A = U?_, A;. Then, by the additivity of m[_ 1),

n
m(A) = lim mp_4 (AN [—k.k) = lim Dm0 (A; N [—k, k)

k— 00 k—o00 01
n n

=> 1 _ N[ = ).

2 Jim mim (A 0 [=k, ) = 3 m(4)
i=1 i=1

Now, let (B,), C A(R) be a sequence of sets and let B = UZ’;I B,,. Then, using the

o-subadditivity of m[_ k),

00
m(B) = lim Mk k) (BN [—k,k)) < lim Zm[—k,k)(Bn N[—k, k))
k—o00 k—o00 P

< D m(By,
n=1

since m_g k) (B, N [—k,k)) < m(By,) for every n, k. This proves that m is
o-subadditive, and, consequently, o-additive in view of Remark 1.14(5). O

Since m is bounded on bounded sets, the Lebesgue measure on R is a Radon measure.
Another interesting property is translation invariance.

Proposition 1.53 Let A € B(R). Then, for every x € R,

A+x:={a+x|aec A} e B®), (1.16)
m(A + x) = m(A). (1.17)

Proof Define, for any x € R,
E={AecPR)|A+x e BR)}.

Let us check that & is a o-algebra in R.
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1. 9, R € & by direct inspection.
2. Let A € &. Since A° +x = (A + x)¢ € B(R), we deduce that A€ € &.
3. Let(A,), C &.Then (U2 | Ap)+x = U2 (Ap+x) € B(R).SoUL | A, € &

Since & contains all open subsets in R, Z(R) C & for any x € R. This proves
(1.16).
Let us prove (1.17). Fix x € R, and define

my(A) =m(A+x) VAe BR).
It is straightforward to check that m, and m agree on the class
IR = {(—oo,a)| —oo<a§oo}U{[a,b)| —oo<a§b§oo}.

Therefore m, and m also agree on the algebra <z of all finite disjoint unions of
elements of k. Since o(2R) = ZA(R), by the uniqueness result of Theorem 1.32
we conclude that m,(A) = m(A) for any A € B(R). [

Exercise 1.54 Show that the set QQ of all rational points in R is a Borel set, with
Lebesgue measure zero.

1.4.3 Lebesgue Measure on RN

In Sects.1.4.1 and 1.4.2 we constructed Lebesgue measure on R, starting from a
o-additive function defined on the algebra of all finite disjoint unions of half-closed
intervals [a, b) C [0, 1). The same construction can be carried out, with few changes,
in the case of a generic euclidean space RN (N > 1), leading to the definition of the
Lebesgue measure m on RY . More precisely, the half-closed intervals we used in the
case N = 1 are now replaced by half-closed N-dimensional rectangles of the form

N
R=H[ai,bi)={(xl,...,xN)|al- < X <bi,i=1,...,N}

i=1

where a; < b;,i =1, ..., N.If the edge lengths b; — a; are all equal, R is called a
N-dimensional half-closed cube. Cubes will usually be denoted by the letter Q. By
definition, the Lebesgue measure of a rectangle R = HZN= lai, bi) is

N
m(R) = [ (b —ap).
i=1

Proceeding as in the previous sections, starting from the set function m defined on the
class of all N-dimensional half-closed rectangles contained in the cube [0, I)N =
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[0, 1) x ---x [0, 1), we can extend m by additivity to the algebra of all finite disjoint
unions of such rectangles. Finally, using Theorem 1.32, we extend m to a measure on
B0, DN, called the Lebesgue measure on [0, DV, Analogously one can define
the Lebesgue measure on R for any rectangle R C RY. Such a measure will be
denoted by m g. Then the Lebesgue measure m on RY is defined as

m(A) = lim mp_y jox (A N[k, V) VA e BRY).

As for the case of N = 1, the Lebesgue measure on R is a Radon measure and
is translation invariant, as stated in the following reformulation of Proposition 1.53.

Proposition 1.55 Let A € BRYN). Then, for any x € RV,

A+x:
m(A + x)

{a~|—x|a € A} e%(RN),
m(A).

Definition 1.56 The elements of the o-algebra & of all additive sets in RY (with
respect to the outer measure m* defined in Proposition 1.38) are called Lebesgue
measurable sets in RV

Remark 1.57 The Lebesgue measure, which was defined only for Borel sets, can be
extended to the o-algebra ¢ of all Lebesgue measurable sets. Such an extension is
given by m*(A) for any A € ¢. This new measure is complete (see Remark 1.43)
and continues to be called the Lebesgue measure on RN .

In what follows we shall use the notion of cube to obtain a basic decomposition
of open sets in R . For every n € N let 2, be the collection of cubes

N
a; ai +1
,@nzll—[[z—n, n )al‘EZ].

i=1
In other words, 2y is the collection of cubes with edge length 1 and vertices at points
with integer coordinates. Bisecting each edge of a cube in 2, we obtain from it 2V
subcubes of edge length % The total collection of these subcubes forms the collection
2, of cubes. If we continue bisecting, we obtain finer and finer collections .2, of
cubes such that each cube in 2, has edge length 27" and is the union of 2% disjoint
cubes in 2, 1.

Definition 1.58 The cubes of the collection
{o]oe 2, n=012,.}

are called dyadic cubes.
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Remark 1.59 Dyadic cubes have the following properties:

(a) RN = Upcg, Q with disjoint union for every n.
) IfQ e Z,and P € 2 withk <n,then Q C PorPNQ =0.
(c) If Q € 2,, then m(Q) = 27"V

Lemma 1.60 Every open set in RN can be written as a countable union of disjoint
dyadic cubes.

Proof Let V be an open nonempty set in RY. Let .# be the collection of all cubes
in 2y which lie entirely in V. Let .#] be those cubes in 2| which lie in V but which
are not subcubes of any cube in .#. More generally, for n > 1, let ., be the cubes
in 2Z,, which lie in V but which are not subcubes of any cube in %, 71, ..., S_1.
If . is the total collection of cubes from all .%,, then .¥ is countable since each
2, is countable, and the cubes in .¥ are nonoverlapping by construction. Moreover,
since V is open and the cubes in 2, become arbitrarily small as n — oo, then by
Remark 1.59(a) each point of V will eventually be caught in a cube of some ..
Hence, V = Uge o Q and the proof is complete. (I

Remark 1.61 Owing to Lemma 1.60 the collection of all open sets in RV has the
cardinality of the continuum. We claim that Z(R") has also the cardinality of the
continuum. This follows by observing that each set in Z(R") can be constructed by
a countable number of operations, starting from the family of all open sets, each of
these operations consisting of countable union, countable intersection or taking the
complement.

1.4.4 Examples

In this section we shall construct three examples of sets that are hard to visualize but
possess very interesting properties.

Example 1.62 (Two unusual Borel sets) Let (r,),, be an enumeration of Q N [0, 1].

Given € > 0, set
o0 e c
V=U (gt 3)

n=1

Then V N[0, 1] is open (with respect to the relative topology of [0, 1]) and dense in
[0, 1]. By o-subadditivity, we have 0 < m(V N[0, 1]) < 2e. Moreover, the compact
set K := [0, 1]\ V has no interior and measure nearly 1.

Example 1.63 (Cantor triadic set) To begin with, let us note that any x € [0, 1] has
a triadic expansion of the form

oo
x=2
i=1

| Q

i
i

a;=0,1,2. (1.18)

w
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Such a representation is not unique due to the presence of periodic expansions.
We can, however, choose a unique representation of the form (1.18) by picking the
expansion’ with fewer digits equal to 1. Now, observe that the set

oo
ai .
x=z3—; with a; ;ﬁl]

i=1

C = [x € [0, 1]

is obtained from [0, 1] by removing the ‘middle third’ (%, %). Therefore C; is the
union of two closed disjoint intervals, each of which has measure % More generally,
for any n € N the set

C, = [x e [0, 1]

o0
a; .
x:Zs—; w1tha1,...,a,1751]

i=1

is the union of 2" closed disjoint intervals, each of which has measure (%)" So

o
Cnic:z{xe[o,l] x:Z%Withai#IViEN],

i=1

where C is the so-called Cantor set. C is a closed set by construction, with measure
Zero since

m(C) < m(Cy) < (%) Vi € N.

Nevertheless, C is uncountable. Indeed, the function

f(z %)= ;aiz_(i_H) (1.19)

i=1
maps C onto [0, 1].
Exercise 1.64 Show that f : C — [0, 1] defined by (1.19) is onto.

Remark 1.65 Since the Cantor set has measure zero, and recalling that the Lebesgue
measure m on the o-algebra & (constituted by all Lebesgue measurable sets in R) is
complete (see Remark 1.57), any subset of C is Lebesgue measurable:

Z(C)CY.

7For instance, we choose the second of the following two triadic expansions for x = %:

1 1.0 0 0 10 2 2 2 2
3=3tmEtatuto 3=3tEtatat

333 3 c3T3tE ittt
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Therefore
#P2(C) < #9.

Since C in uncountable, we deduce that the power of ¢ is strictly greater than
the power of the continuum. Using Remark 1.61 we conclude that the inclusion
BR) C 9 is strict.

Example 1.66 (A non-measurable set) We shall now show that ¢ is also strictly
contained in Z(R). In [0, 1), we define x and y to be equivalent if x —y € Q. By the
Axiom of Choice, there exists a set P C [0, 1) such that P consists of exactly one
representative point from each equivalent class. We claim that P provides the required
example of a set which fails to be measurable. Indeed, consider the countable family
(P, € Z([R), where P, = P + ry, and (ry,), is an enumeration of Q N (—1, 1).
Observe the following.

1. (Py,), is a disjoint family. Indeed, suppose that p, g € P are such that p +r, =
q+ry withn #= m; wehave p —q € Qand p —g = r, —r, # 0. Then P
contains two distinct equivalent points, in contradiction with the definition of P.

2. [0,1) U2, P, C[—1,2). Indeed, let x € [0, 1). Since x is equivalent to some
element of P, we have x — p = r for some p € P and some r € Q satisfying
|[r|] < 1. Then r = r, for some n € N, whence x € P,. The other inclusion is
immediate.

If P were Lebesgue measurable, by monotonicity and o-additivity of m it would
follow that 1 = m([0, 1)) < Z;’lil m(P,) < m([—1,2)) = 3. But this is impossible
since m(P,) = m(P) for every n, and therefore the sum 230:1 m(P,) is either 0
or o0.

Exercise 1.67 Let us consider the following subset of [0, 1] constructed by a recur-
sive argument. As first step, we divide the interval [0, 1] into five identical subinter-
vals and we remove the ‘middle fifth’. For each of the remaining four intervals, we
repeat the same procedure, namely we divide it into five identical subintervals and
we remove the middle fifth. After iterating the procedure infinitely many times, the
remaining set is of Cantor type. Show that such a set has measure zero.

Exercise 1.68 Given «,, € (0, 1), let us construct the following Cantor type set.
First, we remove from [0, 1] an open interval of length 1. Next, from each of the
two remaining intervals, we remove an open interval of relative length a;. Next,
from each of the four remaining intervals, we remove an open interval of relative
length 3, and so on. The remaining set is of Cantor type. Show that such a set has
measure zero if and only if > 7 | o, = 00.

1.4.5 Regularity of Radon Measures

The aim of this section is to prove regularity properties of a Radon measure on R" .
We begin by studying finite measures.
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Proposition 1.69 Let 1 be a finite Borel measure on RN . Then for any A € B(RN)
w(A) =sup{u(F)|F C A, Fclosed} =inf{u(V)|V D A, Vopen}. (1.20)

Proof Let us first observe that, since x finite, an equivalent formulation of (1.20) is
the following:

Ve >0 IVopen, Fclosed st. FCACV and w(V\F) <e. (1.21)
Let us consider the set
& ={A e BRY) | A verifies (1.21)}.

It is enough to show that & is a o-algebra in R" including all open sets. Obviously,
& contains RN and @. Moreover, it is immediate that if A € &, then its complement
A€ belongs to &.

Let us now prove the implication (A4,), C & = UZO=1 A, € &. Since A, € &,
for any n € N there exist an open set V;, and a closed set F;, such that

F, CA, CVy, N(Vn\Fn)f ot

Now, define V = |J72, Vyand S = |02, F,; we have S € 2 A, C V and, by
o-subadditivity,

VNS = D Vo =) = D Ve = F) < 5.

n=1 n=1

However, V is open but S is not necessarily closed. To overcome this problem, let
us approximate S by the sequence S, = (J;_, Fx. For any n € N, S, is obviously
closed; moreover S,, 1 S and so, by Proposition 1.17, u(S,,) 1 1(S). Therefore there
existsn. € Nsuchthat;i(S\S,.) < 5.Theset F := §,_satisfies F C U, A, CV
and u(V \ F) = pu(V \ S) + (S \ F) < &, by which |2, A, € &. We have thus
proved that & is a o-algebra.

There remains to show that & contains all the open sets in R" . For this, let V be
open, and set

1
Fp=[verY \ dye) = = |,
n

where dyc(x) is the distance of x from V¢. Since dy« is a continuous function, F,
is a closed set in RY (see Appendix A). Moreover F,, 1 V. So, recalling that y is
finite, by applying Proposition 1.18 we conclude that (V' \ F;;) | 0. O

The following result is a straightforward consequence of Proposition 1.69.
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Corollary 1.70 Let ju and v be finite Borel measures on RN such that p(F) = v(F)
for any closed set F in RN. Then ji = v.

Now we will extend Proposition 1.69 to Radon measures.

Theorem 1.71 Let p be a Radon measure on RY, and let A be a Borel set. Then

u(A) =inf{u(V) |V D A, V open}, (1.22)
w(A) = sup{u(K) | K C A, K compact}. (1.23)

Proof Since (1.22) is trivial if p(A) = oo, we shall first assume that p(A) < oo.
For any n € N, denote by Q,, the cube (—n, n)N, and consider the finite measures®
uLQy. Fix € > 0 and apply Proposition 1.69 to deduce that, for any n € N, there
exists an open set V,, D A such that

(1) (Va\ 4) < .

Now, set V := U | (V, N Q,) D A. V is obviously an open set and
o0 o0
PV NA) < D7 (VN Q) \A) = D (e Q) (Vo \ A) <&,
n=1 n=1

which in turn implies (1.22).
Next, let us prove (1.23) for ;1(A) < oo. Fix € > 0 and apply Proposition 1.69 to
the finite measures pL Q,, to obtain, for any n € N, a closed set F,, C A satisfying

(1-Q,)(A\ Fy) <e.

Consider the sequence of compact sets K, = F, N Q,,. Since

(AN Q) 1t (A,

for some n. € N we have (A N Eng) > 1(A) — €. Therefore

(AN Kn) = p(A) — (Ko,
< AN Q,) —pu(F.NQ,)+e
= (0, )(A\ Fp) ¢ < 2e.

If n(A) = oo, then A, := AN Q, 1 A, and so u(A,) — oo. Since u(A,) < oo,
for any n there exists a compact set K, such that K,, C A, and u(K,) > u(A,) —1,
by which K, C A and u(K,) — 0o = u(A). O

8See Definition 1.26.
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Remark 1.72 Properties (1.22) and (1.23) are called external and internal regularity
of Radon measures on RY, respectively.

Exercise 1.73 Any Radon measure ;2 on RY is clearly o-finite. Conversely, is a
o-finite Borel measure on RY necessarily Radon?
Hint. Consider p = Zflozl 01/n on B(R), where d1, is the Dirac measure at 1/7.

Exercise 1.74 Let 1, be a Radon measure on RV .

e Show that if K ¢ R is a compact set, then the function f : x € RN >
w(K + x) € R is upper semicontinuous (see Appendix B). Give an example to
show that f fails to be continuous, in general.

e Show that if V. C R is an open set, then the function f : x € RY — u(V +
x) € [0, oo] is lower semicontinuous. Give an example to show that f fails to be
continuous, in general.

Next proposition characterizes all Radon measures having the property of trans-
lation invariance.

Proposition 1.75 Let 11 be a Radon measure on RN such that yu is translation invari-
ant, that is,
(A +x) = u(A) VA € BRY), vx e RV,

Then there exists ¢ > 0 such that (A) = cm(A) forany A € BRM).

Proof Givenn € N, by construction we have that [0, 1)V is the union of 2"V disjoint
dyadic cubes belonging to the collection 2,,, and these cubes are identical up to a
translation. Setting ¢ = x([0, 1)), and using the translation invariance of x and m,
for every Q € 2,, we have

2"V (@) = (10, DY) = cm([0, DY) = 2"V em(Q).

Then p and ¢ m coincide on the dyadic cubes. In view of Lemma 1.60, by o-additivity
we have that 1 and ¢ m coincide on all open sets; finally, by (1.22), it follows that
1(A) = cm(A) for any A € B(RN). O

Next theorem shows how the Lebesgue measure changes under nonsingular linear
transformations.

Theorem 1.76 Let T : RN — RY be a linear nonsingular transformation. Then

(i) T(A) € BRN) forany A € BRN).
(ii) m(T(A)) = |detT|m(A) forany A € BRN).

Proof Consider the family

& =1{Aec BRY)|TA) e BRY)).
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Since T is nonsingular, then T(#) = @, T(RY) = RN, T(ES) = (T(E))",
T(U2 Ey) = Uyl [ T(Ey,) forall E,E, C RV. Hence & is a o-algebra. Fur-
thermore 7" maps open sets into open sets; so & = % (RN and (i) follows.
Next define
w(A) = m(T(A) VA € BRN).

Since T maps compact sets into compact sets, we deduce that 1 is a Radon measure.
Moreover, if A € %(RN )and x € R since m is translation invariant, we have

A +x) = m(T (A +x) = m(T(A) + T(x)) = m(T(A) = u(A),

and so p is also translation invariant. Proposition 1.75 implies that there exists
A(T) > 0 such that

1w(A) = A(T)m(A) VA € BRY). (1.24)

It remains to show that A(T") = | det T'|. To prove this, let {ey, ..., ey} denote the
standard basis in R", i.e., e; has the jth coordinate equal to 1 if j = i and equal to
0if j # i. We first consider the following elementary transformations:

(a) Thereexisti # jsuchthatT (e;) =e;,T(e;) =e;and T (ex) = e fork #1, j.
In this case 7([0, 1)) = [0, 1)V and det T = —1. By taking A = [0, )" in
(1.24), we deduce A(T) =1 = |det T|.

(b) There exist a # 0 and i such that T'(e;) = «e; and T (ex) = ey for k # i.
Assumei = 1. Then 7' ([0, DHV) = [0, a) x[0, DV ifa > 0and T ([0, DHV) =
(a,0] x [0, D¥~1if o < 0. Therefore, by taking A = [0, )V in (1.24), we
obtain A(T) = m(T ([0, D)) = |a| = |det T|.

(c) Thereexisti # j and o # O such that T'(e;) = e; + e, T (ex) = e fork #i.
Assume i = 1 and j = 2 and set R, = {(x1, ax2,x3,...,xn) |0 < x; < 1}.
Then we have

T(Ry) = {(x1, (x1 +x2), x3, ..., xn) |0 < x; < 1}

= {06, &, .. &[G =& <& +1,0<& < Lfori #2)
=FEUE,

with disjoint union, where

Er={(&.06.86,....60 & =& <1,0<& < Lfori #2},
Ey={(.06.&,....éM |1 <& <& +1,0=<& < Lfori #2}.

Observe that E1 C R, and E; — aey; = R, \ Eq; then

m(T (Ry)) = m(E1) + m(E2) = m(Ey) + m(Ey — cez) = m(R,).
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By taking A = R, in (1.24), we deduce A(T) = 1 = |det T|.

IfT =Ti-... T} with T; elementary transformations of type (a)—(c), since A(T) =
A(Ty) - ... A(Ty) by (1.24), we have
A(T) =|detTy| -...-|detTy| = |detT]|.

Therefore the thesis will follow once we have proved the following claim: any non-
singular linear transformation is the product of elementary transformations of type
(a)—(c). We proceed by induction on the dimension N. The claim is trivially true for
N = 1; assume that the claim holds for N — 1 and we pass to prove it for N. Set
T = (ai,j)i j=1,.,N, 1€,

N
T(e) = zaijej i=1,...,N.

j=1

For k = 1,..., N, consider Ty = (a; j)j=1,..N—1,i=1,..,N,i%k- Since detT =
Z,]CVZ 1(—1)"+N ayy det Ty, possibly exchanging two variables by a transformation

of type (a), we may assume det Ty # 0. Then, by induction, the transformation
Si : RY = RY defined as

N-1

Si(e)) = Tn(er) = D aijej i =1,....N—1, Si(ey) =ey
J=1

is the product of elementary transformations. By applying N — 1 transformations
of type (c) with triplets (i, j, @) equal to (1, N, ain),..., (N =1, N,an—1,n) we
arrive at S, : RNV — R defined by

N
Sae) =D ajjej i=1,....N—1, Syen) =ey.
j=1

Next we compose S with a transformation of type (b) to obtain
N
Si(e) = > ajjej i=1,....N—1, Si(en) = bey.
j=1

where b will be chosen later. Now set Tl\jl = (mi)ki=1...N—1. By applying
again N — 1 transformations of type (c) with the triplets (7, j, o) equal to (N, 1,
Z]}(V:_ll animi1), ..., (N, N — 1, Z;cvz_ll ankmg N—1), we obtain
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N N—1 N
Sq(e;) = Zai.,‘ej i=1,...,N—1, Ssley) =bey + Z aNkmg; Zai./ej.
= ik=1 j=1
. N-1 N-1 N—1 .
Since Zi,k:laNkmki ijl ajjej = Y., anke, by choosing b = ayy —
vak;ll ankmyia; y we conclude that 7 = Sy. O

Remark 1.77 As a corollary of Theorem 1.76 we obtain that the Lebesgue measure
is rotation invariant.
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Chapter 2
Integration

The class of measurable, or Borel, functions f : X — R U {£o00} on a measurable
space (X, &, ) can be defined in natural way using the notion of measurable sets.
Such a class is stable under linear operations, product, and pointwise convergence.
Moreover, if X is a topological space and & is the Borel o-algebra, then every
continuous function is Borel. In particular, for a Radon measure p on R¥ all Borel
functions f : R¥Y — R U {00} preserve the regularity properties of . A very
useful consequence of this is the fact that measurable function can be approximated
with continuous functions.

The class of Borel functions plays a crucial role in Lebesgue integration theory,
which will be the object of the second part of this chapter. Lebesgue integral can be
defined in several ways: our definition will be based on the notion of archimedean
integral for the repartition function

20 p((f > 1)

The central idea of all this theory is to make finer and finer partitions of the
range of the function to integrate. Clearly, this approach relies on the definition of
the integral of simple functions, that is, functions with a finite range. Since such a
definition takes in no account the regularity of the function to integrate, the notion
of integral can be given for quite a very large class of functions. The importance of
Lebesgue integration is also revealed by the flexibility of limiting operations under
the integral sign. Another advantage of Lebesgue’s approach is that the construction
of the integral is exactly the same for functions on a measure space as it is for
functions on the real line.
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2.1 Measurable Functions

2.1.1 Inverse Image of a Function

Let X, Y be nonempty sets. For any map f: X — Y and any A € Z(Y) we set
A ={xeX|fx)e Ak

F~Y(A) is called the inverse image of A.
Let us recall some elementary properties of f~!. The easy proofs are left to the
reader as an exercise.

1) 1A = (f71(A)) forevery A € (V).
(i) If A, B € Z(Y), then f~'(ANB) = f~1(A) N f~1(B). In particular, if
ANB =@, then f~1(A)N f~1(B)=2.
(iii) If (Ay)y C P(Y), then

o (0.¢]
r! (U An) =J 5.
n=1 n=1
Consequently, if (Y, .%) is a measurable space, then the family of parts of X
AP ={'|ae7}
is a o-algebra in X.

Exercise 2.1 Let f: X — Y and A € Z(X). Set

fA) ={f|xeA}

Show that properties like (i), (ii) fail, in general, for f(A).

2.1.2 Measurable Maps and Borel Functions

In what follows (X, &) and (Y, %) are given measurable spaces.

Definition 2.2 Amap f: X — Y issaid to be &-measurable or simply measurable
if f~1(F) c & 1fY is a metric space and .# = HA(Y), f is called a Borel function.

Proposition 2.3 Let & C % be such that o( %) = F. Then f: X — Y is mea-
surable if and only if f~1(F) C &.
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Proof Clearly, if f is measurable, then f~'(.#) C &. Conversely, suppose f~!(.#)
C &, and consider the family

G.={AeF|f (A e}

Using properties (i), (ii), and (iii) of f ~1 from the previous section, one can easily
show that ¢ is a o-algebra in Y including .#. So ¢ coincides with .% and the proof
is complete. (]

Proposition 2.4 Let X, Y be metric spaces and 8 = B(X), .F = B(Y). Then any
continuous map f: X — Y is measurable.

Proof Let . be the family of all open sets Y. Then o(.#) = #Z(Y) and f~1(.#) C
AB(X). So the conclusion follows from Proposition 2.3. [l

Proposition 2.5 Let f: X — Y be a measurable map, (Z,9) a measurable space
and g : Y — Z another measurable map. Then g o f is measurable.

Exercise 2.6 Given a measurable map f : X — Y and a measure p on &, let fyu
be defined by
fen(A) = p(f71(A)  VAeZ.

Show that fi is a measure on .# (called the push-forward of 1, under f).

Exercise 2.7 Let f : X — Y be such that f(X) is countable. Show that f is
measurable if, forevery y € Y, f~1(y) € &.

Example 2.8 Let f : X — R . Weregard RV as a measurable space with the Borel
o-algebra %’(RN). Denoting by f; the components of f, thatis, f = (f1,..., fn),
let us show that

f isBorel <= f; isBorel Vi e {l,..., N}. 2.1

Indeed, let .# be the family of all rectangles of the form
N
R=[]vi.v) =lz=(G1.....2x) e RN |y <z < 3] Vil
i=1

where y; < ylf, i = 1,...,N. Observe that Z(RY) = o(.#) to deduce, from
Proposition2.3, that f is Borel if and only if f~!(.#) C &. The following identity
is easy to verify:

N

N
TR =xeX |y < fit)<yy=()f" Uiy

i=1 i=1
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This shows the ‘<=’ part of (2.1). To complete the argument, assume that f is Borel
andleti € {1,..., N} be fixed. Then for every a € R we have

T (=00 ah) = FH({1s .o zw) € RY |z < a}),

which implies fl._l((—oo, al) € &, and so, using Exercise 1.11, f; is Borel.

Exercise 2.9 Let f, g: X — RbeBorel. Then f +g, fg, min{f, g} and max{ f, g}
are Borel.

Hint. Define F(x) = (f(x), g(x)) and ¢(y1, y2) = y1 + y2. Then F : X — R2 is
a Borel map owing to Example 2.8, and ¢ : R?> — R is a Borel function, since it is
continuous. Thus, by Proposition2.5, f + g = ¢ o F is also Borel. The remaining
assertions can be proved similarly.

Exercise 2.10 Let f: X — R be Borel. Prove that the function

1
— if 0,
GiX SR gm=] f@ 7
0 iff(x)=0

is also Borel.

Hint. Show, first, by a direct argument, that ¢ : R — R defined by

1

— ifx #0,
px) =1 x
0 ifx=0

is Borel.

When dealing with real valued functions defined on X, it is often convenient to
allow for values in the extended space R = RU{o0, —00}. These are called extended
functions. If | f(x)| < oo for all x € X, f is said to be finite (or finite valued). We
say that a mapping f: X — R is Borel if

i (=00), fHo)eé&

and f~1(A) € & for every A € Z(R). In what follows, for any a, b € R, we shall
often use the notation { f > a}, {f = a}, {a < f < b} etc. for the sets f~'((a, oc]),
=1 dah, 71 (a, b)) ete.

Proposition 2.11 A function f : X — R is Borel if and only if any of the following
statements holds:

(i) {f <a}e & foralla eR.
(ii) {f <a} e & foralla e R
(iii) {f >a} e & foralla e R.


http://dx.doi.org/10.1007/978-3-319-17019-0_1

2.1 Measurable Functions 41

(iv) {f >a} e & foralla e R.

Proof Since {f <a} ={—00 < f <a}lU{f = —o0}, and since (—o0, a] € B(R),
the measurability of f implies (i). Conversely, assume {f < a} € & foralla € R.
Since {f > a} is the complement of {f < a}, we have {f > a} € & foralla € R.
Since {f = oo} = N2 {f > k}and {f = —oo} = N2, {f < —k}, we see that
{f = oo}, {f = —o0} € & Consequently, {a < f < oo} ={f >a}\{f =00} €
& for all a € R. Next consider the family

g .={AecB® | (A ).

Then ¢ is a o-algebra including all semi—infinite intervals (a, co). Exercise 1.11
implies that ¢ coincides with Z(RR) and this proves that f is Borel if (i) holds. The
proof of the other statements is similar. (I

Proposition 2.12 Let f, : X — R be a sequence of Borel functions. Then the
functions

sup fu, ;Iellf\l fn, limsup f,, linrr_l)icgf fn

neN n—o0

are Borel. In particular, if lim,,_, o f,,(x) exists for every x € X, then the function
lim,,— o fy is itself Borel.

Proof Letus set ¢: = sup,y fu. For any a € R we have

Dk

{p=al=|( |{fn=aled.

n=1

The conclusion follows from Proposition2.11. In a similar way one can prove the
other assertions. ([

Exercise 2.13 Let f, g: X — R be Borel. Show that {x € X | f = g} € &.

Exercise 2.14 Let f, : X — R be a sequence of Borel functions. Show that {x €
X | lim, f,(x)} € &.

Exercise 2.15 Let f : RY — Rbe Borel. If T : RY — R is a nonsingular linear
transformation, show that f o 7 : RN — R is Borel.

Hint. f Ay ={f <a}land A, = {f o T < a}, show that A, = T—1(A}). Then the
conclusion follows from Theorem 1.76.

Exercise 2.16 Let f: X — R be Borel and A € &. Show that the function f4 :
X — R defined by

fx) ifxeA,
fa =1, ifx ¢ A

is Borel.
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Exercise 2.17 1. Any monotone function f : R — R is Borel.
2. Let X be a metric space and & = Z(X). Then any lower semicontinuous

function f : X — R U {oo} is Borel (see Appendix B).

Exercise 2.18 Let ¢ be a o-algebra in R. Show that ¢ > ZA(R) if and only if any
continuous function f : R — R is ¢-measurable, that is, f -1 (A) € ¢ for every
A € BR).

Exercise 2.19 Show that Borel functions f : R — R are the smallest class of
functions which includes all continuous functions and is stable under pointwise
convergence.

We note that the sum of two extended functions f, g : X — R is well defined
wherever it is not of the form oo + (—o0) or —o0 + 00; thus we need to assume that
at least one of the two functions is finite valued. As regards the product of extended
functions, in addition to familiar conventions about the product of infinities, we adopt
the convention 0 - 00 = 00 -0 = 0.

Exercise 2.20 Let f, g : X — R be Borel. Show that f¢, min{f, g} and max{f, g}
are Borel. Furthermore, if ¢ is finite valued, then f 4+ ¢ is Borel.

Definition 2.21 A Borel function f: X — R is said to be simple if its range f(X)
is a finite set. The class of all simple functions f: X — R is denoted by . (X).

It is immediate that the class . (X) is closed under the operations of sum (if well
defined), product and latticel (A, V).
Given A C X, the function x4 : X — R defined by

() = lifx € A,
XA =10ifx ¢ A

is called the characteristic function of the set A. Clearly, x4 € ./(X) if and only if
Aeéd.

Remark 2.22 1. We note that f: X — R is simple if and only if there exist
ai,...,a, € Rand disjoint sets Ay, ..., A, € & such that

n

Xx=JA and f(x)= ZaiXA[ (x) Vx e X. (2.2)

i=1 i=1

Indeed, any function of the form (2.2) is simple. Conversely, if f is simple, then
fX)={ay,...,a,} with a; #a; if i#j.

So, taking A; := f~'(a;), i € {1,...,n}, we obtain a representation of f of

type (2.2). Obviously, the choice of sets Ay, ..., A, € & and values ay, ..., a,
is far from being unique.

1By definition, f Vv g = max{f, g} and f A g = min{f, g}.
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2. Given two simple functions f and g, they can always be represented as linear
combinations of the characteristic functions of the same family of sets. To see
this, let f be given by (2.2), and let

m m
X = UBj and g(x):ijXBj(x), Vx € X.
j=1 j=1

Since A; = U;-":l(Ai N Bj), we have that
m
Xa;(¥) =D xanp(¥) i €{l,...n}
j=1

So

n m
f(x)zzzaiXAiﬂBj(x)s xeX.
i=1 j=1
Similarly,

m n

g(x) = ZzijAimBj(x)’ x € X.

j=1i=1
Now, we show that any positive Borel function can be approximated by simple finite
functions.
Proposition 2.23 Ler f : X — [0, oo] be a Borel function. Define for any n € N

L R
foy=] 2 T =T =on

n if f(x)=n.

i=1,2,...,n2",

(2.3)

Then (fy)p C L (X), 0 < fi < fuy1 and f(x) 1 f(x) for every x € X. If, in
addition, f is bounded, then the convergence is uniform.

Proof Foreveryn e Nandi =1, ...,n2" set

i—1 i

Am=[2nsf<§r By ={f = n).
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Since f is Borel, we have A, ;, B, € & and

n2" .

i—1
fﬂ = Z XAn,i + nXBn'

2}’1
i=1

Then, by Remark2.22, f, € .(X). Let x € X be such that iz_,,l

2i-2 2i
St = f(x) < 5547 and we get

< f(x) < 3. So

2i — 2i — 1
o1 (x) = o+l or fut1(x) = ot

In any case, f,(x) < fu+1(x). Now let x € X be such that f(x) > n; we have
f(x)>=n+1lorn < f(x) <n—+1.Inthefirstcase, f,+1(x) =n+1>n= fn(gc).

In the second case, consideri = 1, ..., (n + 1)2"*! such that 2;";11 < flx) < 2,,%

Since f(x) > n, we deduce z,fﬁ > n, by which i = (n + 1)2"*!; therefore

far1 () =n+ 1= 5k >n = f,(x). This proves that f,, < fu11.
To prove convergence, fix x € X such that f(x) € [0,00) and let n > f(x).
Then

1
0=</f(x)— fulx) < o 24

So f,(x) = f(x)asn — oo.On the other hand, if f(x) = oo then f,,(x) =n —
oo. Finally, if 0 < f(x) < M for all x € X and some constant M > 0, then (2.4)
holds for every x € X provided that n > M. Thus, f, — f uniformly. O

2.2 Convergence Almost Everywhere

In this section we introduce a generalization of the ordinary notion of convergence
for a sequence of functions. In the following (X, &, 1) is a given measure space.

Definition 2.24 We say that a sequence of functions f, : X — R converges to a
function f : X - R

e almost everywhere ([, L4 f) if there exists a set E € & of measure zero such
that

JQim fu(x) = f(x)  VYxe X\E.

e almost uniformly (f, 25 f)if f is finite and, for any € > 0, there exists E; € &
such that u(E;) < € and f, — f uniformly in X \ E..
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Exercise 2.25 Let f, : X — R be a sequence of Borel functions.

1. Show that the pointwise limit of f,,, when it exists, is a Borel function.
2. Show thatif f, =5 f,then f, —5 f.

3. Show that if f, 2% f and f; 8 g, then f = g except on a set of measure
zero.

4. We say that f,, — f uniformly almost everywhere if there exists E € & of
measure zero such that f, — f uniformly in X \ E. Show that almost uniform
convergence does not imply uniform convergence almost everywhere, in general.
Hint. Consider the sequence f,(x) = x" defined on [0, 1] with the Lebesgue
measure.

Example 2.26 In contrast to Exercise 2.25(1), observe that the a.e. limit of Borel
functions may fail to be Borel. Indeed, the trivial sequence f, = 0 defined on
(R, B(R), m) (m denoting the Lebesgue measure) converges a.e. to x ¢, where C is
the Cantor set (see Example 1.63), and also to x g where E is any subset of C which
is not a Borel set. This is a consequence of the fact that the Lebesgue measure on
AB(R) is not complete. On the other hand, if the domain (X, &, 1) of (f,,), is such
that p is a complete measure on &, then the a.e. limit of Borel functions is also a
Borel function.

The following result establishes a surprising consequence of a.e. convergence on sets
of finite measure.

Theorem 2.27 (Severini—Egorov) Let f, : X — R be a sequence of Borel
functions. If u(X) < oo and f, converges a.e. to a finite Borel function f, then

fo = S
Proof For any k, n € N define

o]

A= Ui -s> )

i=n

Observe that Aﬁ € & since f,, and f are Borel functions. Moreover
k . 1 k
Ak hmsup{|f— ful > %} = A% (n - o0).
n— oo

So A¥ € &. For any x € AX we have | f(x) — fu(x)] > % for infinitely many indices
n; thus, ;1(A%) = 0 by our hypotheses. Recalling that 4 is finite, by Proposition 1.18
we conclude that, for every k € N, j(AX) | 0 as n — oo. Therefore, for any given
€ > 0, there exists an increasing sequence of integers (ny)x such that u(Af;k) < 2%
for all k € N. Let us set -
E. = U Aﬁk.
k=1
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Then p(E:) < D02, u(Aﬁk) < e. Moreover, for every x € X \ E., we have that

1
izne = |f(x)— filx)] = Z

for all integers k > 1, namely f, — f uniformly in X \ E.. (]

Example 2.28 Theorem 2.27 is false, in general, if ;41(X) = oo. Forinstance, consider
Jfn = X[n,o0) defined on R with the Lebesgue measure m. Then f, — 0 pointwise,
but m({ f, = 1}) = oo.

2.3 Approximation by Continuous Functions

The aim of this section is to prove that a Borel function f : R¥Y — R can be
approximated in a measure theoretical sense by a continuous function, as shown by
the following result known as Lusin’s theorem.

Theorem 2.29 (Lusin) Let ;1 be a Radon measure on RN, f : RN — R a Borel
function and A € BRN) such that

WA <oo and f(x)=0 Vx & A.

Then for any € > 0 there exists a continuous function f. : RN — R with compact
support* such that

w({f # f}) <e. (2.5)
sup | f-(x)| < sup |f(x)]. (2.6)
xeRN xeRN

Proof We split the proof into five steps.

1. Assume that A is compact and 0 < f < 1. Let V be a bounded open set such
that A C V. Consider the sequence (f,), C - (X) defined in the statement of
Proposition2.23. We have

1 1
f1=5XA1, A1=|fZ§], 2.7)
1 1
Jo— fo1 = 2—nXA,,, A, = [f — fa—1> ﬁ] Vn > 2. (2.8)

2Given a continuous function f : RN — R, the closure of the set {x € RV | f(x) # 0} is called
the support of f, and is denoted by supp(f).



2.3 Approximation by Continuous Functions 47

2. 7) is obvious; to prove (2.8), con51der x eRNandi =1,...,2" ! such that
< fo) < 2,1 5—1- Then f,_1(x) = 2n =1 Moreover

omn—

2i —2 2i — 1 2i — 1 2i

T <flx) < o or T <flx) < o
In the first case, x ¢ A, and f,(x) = 22 = fu—1(x); in the second case,
x € Ay and f(x) = &L = £ (x) + 5. Therefore (2.8) follows. Since

fo=HA+20 (i — fl 1) for every n > 2, we deduce

e¢]

1
fe) = lim fu(x) =D —oxa, () (2.9)

n=1

where the series converges uniformly in RY. We observe that A,, € Z(R") and
A, C Aforeveryn > 1.

Let us fix ¢ > 0. Owing to Theorem 1.71, for any n there exist a compact set K,
and an open set V,, such that

€
K, CA,CV, and (Vn\K)<2—n

Possibly replacing V,, by V,, NV, we may assume V,, C V. Define?

dye (x) .
n(x):—n Vx € R"Y.
g di, () + dye (x)

It is immediate to check that g, is continuous and

1 in K,;,

0< <1 VxeRY and =
< gn(x) < X In IO in Ve,

So, in some sense, g, approximates x4,. Now, let us set

9]

fy =" zingn (x)  VxeRY, (2.10)

n=1

Since the series > o zi,, gn is totally convergent, we deduce that f; is continuous.
Moreover,

(20 cJlm#0cJwcv,
n=1 n=1

3 As usual, ds (x) denotes the distance between the set S and the point x (see Appendix A).
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and so supp(f.) C V. Consequently, supp(f.) is compact. By (2.9) and (2.10)
we have

{f- # 1} U{gn;éxA c Jwa\ K

n=1

which implies, in turn,

Wl =X 5 ==

n=1

Thus, conclusion (2.5) holds when A is compactand 0 < f < 1.

Obviously, (2.5) also holds when A is compact and 0 < f < M for some
constant M > 0 (it suffices to replace f by f/M). Moreover, if A is compact
and f is bounded, then | f| < M for some M > 0. So, in order to derive (2.5)
in this case, it suffices to decompose f = f+ — f~, where f+ = max{f, 0},
f~ = max{— f, 0}, and observe that 0 < fT, f~ < M.

. We will now remove the compactness assumption for A. By Theorem 1.71, there

exists a compact set K C A such that (A \ K) < €. Let us set
f=xx/f

Since f vanishes outside K, from the previous steps we can approximate f by a
continuous function with compact support, say f.. Then

{f-# ryc{f: # FU@A\K).

Hence,

u({ £ # ) < 2.
In order to remove the boundedness assumption for f, define Borel sets (B,,), by
B,={fI=n} neN.

Clearly,
Byy1i CB, and (| B,=2
neN

Since p(A) < oo, Proposition1.18 yields u(B,) — 0. Therefore, for some
n € N, we have u(Bj;) < €. We define

f=0-x5)f.
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Since f is bounded (by 7), from the previous steps we can approximate f by a
continuous function with compact support, that we again label f.. Then

{fE?éf}C{fé?éfT}UBr‘u

by which
u({f: # 1)) <22

The proof of (2.5) is thus complete.
5. Finally, in order to prove (2.6), suppose M := suppn | f| < 0o. Define

¢ if 1] < M,
Oy - R—R Oyt = t
MR () Moo il = M

and f. = 6 M © f= to obtain | f-| < M. Since 0 is continuous, so is f.. Further-
more, supp( f:) = supp(f:) and

{fe=rc{f=r}
This completes the proof. O

It is useful to point out the following corollary of Lusin’s Theorem.

Corollary 2.30 Let i1 be a Radon measure on RN, A c RY a Borel set such that
w(A) < oo and f : A — R a Borel function. Then for any € > 0 there exists a
compact set K. C A such that f|K: : K. — R is continuous and j1(A \ K:) < €.

Proof Let us apply Lusin’s Theorem to the function f obtained by extending f to

zero outside A: there exists a continuous function f: : RN — R such that, if we

set A. = {x € A| f(x) = f-(x)}, we have (A \ A.) < 5. By Theorem 1.71 there
g

exists a compact set K. C A. such that u(Ac \ K¢) < 5. Therefore

AN K2) = p(A\ Ao + (A \ K2) <e.

2.4 Integral of Borel Functions

Let (X, &, 1) be a given measure space. In this section we will define the integral of
a Borel function f: X — R with respect to the measure . We will first consider the
special case of positive functions, and then the case of functions with variable sign.
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2.4.1 Integral of Positive Simple Functions

We begin with the definition of the integral in the class ., (X) of positive simple
functions, i.e.,
Fe(X)={f: X > [0,00]| f € (X}

Definition 2.31 Let f € ., (X). According to Remark 2.22(1) f has a representa-
tion of the form

fE) =D aixa(x)  xeX,

where ay, ..., a, € [0,00]and Ay, ..., A, are mutually disjoint sets in & such that
AjU---UA, = X. Then, using the convention 0 - co = 0, the (Lebesgue) integral
of f over X with respect to the measure p is defined by

/f(x)du(x)=/ fdu=2" aip(Ay).
X X i—=1

Remark 2.32 1t is easy to see that the above definition is independent of the repre-
sentation of f. Indeed, given disjoint sets By, ..., By, € & with BjU---UB,, = X
and numbers by, ..., b, € [0, oo] such that

fx) = Zb,xB (x) xeX,

we have
m n
Ai=JAinBy) Bj=J@Aing)
j=1 i=1
and
AiﬂBj;éQ — aiij.
Therefore

Za,u(A )= ZZa,u(A N B;)

11]1

m

Ziju(A N B; )_Zb,u(B ).
j=li=l1 j=1
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Proposition 2.33 Let f, g € ./ (X) and o, 8 € [0, o0]. Then

/X(af+ﬁg)du=a/xfdu+ﬁ/xgdu~

Proof Owing to Remark2.22(2), f and g can be represented using the same family
of mutually disjoint sets Ay, ..., A, € & as

n n
f=2aixa, 9= bixa.
i=1 i=1
Then

/X (f +Bgydp =3 (aa; + Bbp(A) = a > aipn(A) + B> bip(A)
i=1

= i=1 i=1
=a/fdu+ﬂ/ gdp
X X

as required. (I

We now proceed with what can rightfully be considered the central notion of
Lebesgue integration.

2.4.2 Repartition Function

Let f: X — [0, oo] be a Borel function. The repartition function M 7 of f is defined
by
Mp(t): =p((f > 1) =p(f >0, 1=0.

By definition, My : [0, 00) — [0, o0]isa decreasing4 function; then My has a limit
at 0o. Moreover, since

o
{f =o0}=[{f >n},
n=1
we have
lim My(t) = lim My(n) = lim pu(f >n) = pu(f = o0)
—00 n— 00 n—oo
4That is,

1, n €[0,00), 11 <th = My(t1) = My(t2).
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whenever 4 is finite. Other important properties of M ¢ are provided by the following
result.

Proposition 2.34 Let f: X — [0, 0o] be a Borel function and let My be its repar-
tition function. Then the following properties hold:

(i) Foreveryty >0
Lim M ¢ (t) = M (to)
tlto

(that is, M 7 is right continuous).
(i) If w(X) < oo, then for every to > 0
lim My (1) = ji(f = 10)
1o
(that is, My possesses left limit).

Proof First observe that, since M ¢ is a decreasing function, then My has a left limit
at any ¢ > 0 and a right limit at any # > 0. Let us prove (i). We have

1 1
lim My (1) = lim M (10 + ) = lim u(f > 10+ ~) = u(f > 10) = M (o).

tltoy
since

1
|f>f0+;]T{f>fo}~

Now, to prove (ii), we note that

[f>ro—1]¢{fzro}.
n

Thus, recalling that p is finite, we obtain

. . 1 ) 1
lim My (1) = lim My (10— ) = lim u(f > 10— —) = u(f = n0).

1o n—oo
and (ii) follows. O

By Proposition 2.34 it follows that, when p is finite, M s is continuous at fy if and
only if u(f = t9) = 0.

Example 2.35 Let f € .74+ (X) and choose a representation of f of the form

n
f(x):Za,-XA, x e X,
i=0
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withO =ag < a; <ap <+ - < a, = a < oo anddisjoint sets Ag, Ay, ..., A, €
such that X = U!_, A;. Then the repartition function My of f is given by

N(Al)+N(A2)+"'+,U(An) =Mf(0) if 0 <t <ai,
My = | PAD T A F A = M) a5t <an
u(Ay) = Mf(an—]) ifa,—1 <t <a,

Thus we have

n
My(t) = > My(@i-DXar.a)®) ¥t =0

i=1

and p(A;) = My(aj—1) — My (a;). Therefore My is a simple function itself and a
direct computation shows that

/ fdu= ZaiM(Ai) = Zai (My(ai—1) — My(a;))
. =l =l @.11)

n
=> My(ai-1)(aj —ai_1) = M (t)dm
i=1 [0,00)

where m stands for the Lebesgue measure on [0, 00).

2.4.3 The Archimedean Integral

In order to be able to define the integral of f when f is a positive Borel function, we
need to develop, first, the notion of archimedean integral of any decreasing function
F : [0, 00) — [0, oo]. For any ¢ € (0, co) let us denote by F (¢ ™) the left limit of F
atr:
F(t7) :=1lim F(s).
st

We observe that F(t7) > F(t) and 11 < 1tp = F(11) > F(t,).
Let X be the family of all finite sets {tg, ..., #,}, wheren e Nand0 =1y < 1| <
L <1, < 00.

Definition 2.36 For any decreasing function F': [0, c0) — [0, oc] the archimedean
integral of F is defined by

/oo F(t)dt == sup{lr(o): 0 € X} € [0, o]
0
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where, for any o = {9, t1, ..., 1} € X, we set

n
Ip(o) = D FU7 )t — ti1).
i=1
Exercise 2.37 Let F, G: [0, c0) — [0, co] be decreasing functions. Show that:

1. fo,( € Y and o C (, then Ir(o) < Ir(().
2. If F(t) < G(¢t) forevery t > 0, then fooo F(t)dt < fooo G(t)dt.
3. If F(r) = 0 forevery t > 0, then [;~ F(t)dt = 0.

Now we want to derive a crucial property of passage to the limit under the
archimedean integral sign.

Proposition 2.38 Ler F),: [0, 0c0) — [0, o0] be a sequence of decreasing functions
such that

F,(t) 2 F(t) (n—>o00) Vt>0.

/OOFn(t)dt T /OOF(t)dt.
0 0

Proof According to Exercise 2.37(2), since F,, < F,41; < F, we obtain
o0 o0 o0
/ Fo(t)d < / Fo1 (0 dt < / F(t)d
0 0 0

for every n. Then the inequality lim,— oo [5~ Fa(t)dt < [;° F(1)dt is clear.
To prove the opposite inequality, let L be any number less than fooo F(t)dt. Then
there exists o = {tg, ..., tn} € X such that

Then

N
D F)G —tim) > L.

i=1

ForO <e<min{t; —ti_;|i=1,..., N}, letus set
t5=10=0, t;=t; —¢ Vi=1,...,N.
Thus, o = {1, ..., 15} € X.Sinces{ 1 f; and F(1) — F(t;) fore — 0%, choose

e sufficiently small such that

N
S Fu); — 1) > L.

i=1
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Therefore, for n sufficiently large, say n > ny,

00 N N
/ Fu(t)ydt = " (U)W —17) = D Fa() (5 —15) > L,
0 i=1

i=1
by which lim,,—, fooo F,(t)dt > L. The arbitrariness of L gives

o]

o0
lim F,(t)dt > / F(t)dt.
0

n—oo 0

This concludes the proof. O

Exercise 2.39 Given a decreasing function F': [0, co) — [0, co], show that for any
a>0

/oo F(t)dt > aF(a).
0

Remark 2.40 Let F : [0, 00) — [0, co] be a simple decreasing function. Then F

is a ‘step function’: more precisely, there exist ag, ay, .. ., a, and ¢y, ¢3, . . . ¢, such
that

O=ay<a < <a, =00, co>cr>cp>-->cp >0
and

(@_r.a) = Ci Vi=1,...,n.
So F € ¥, ([0, 00)) and therefore it makes sense to inquire whether the archimedean
integral of F coincides with the integral of Definition2.31 with respect to the
Lebesgue measure on [0, 00), i.e.,

00 n
/ F()dt = Zc,»(a,» —ai_). (2.12)

0 i=1
Let us first assume ¢, = 0. Giveno € X, seto’ = o U{ag, ..., a,_1} € X. Then, if
o ={to,t,...,ty}withO =1y <t; <--- < ty, thereexistk;, i =0,...,n— 1,
such that #;, = a;, and we have 0 = ko < -+ < ky—1 < m and F(tj_) = ¢; for

ki—1 < j < k;. Since ¢’ is finer than o, using Exercise2.37(1), we deduce that
Ir(0) < Ip(c'); moreover

m n—1 ki
IF@) =D Fu) —ti-0 =2 >, F)t—1j-1)
Jj=1 i=1 j=ki—1+1
n—1 ki n—1
=Zci Z (tj_tjfl)zzci(ai_aifl),
i=1 Jj=ki_1+1 i=1

and (2.12) is thus proved in the case ¢, = 0.
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If ¢, > 0, then, using Exercise2.39, for every k > a,_1 we have fooo F(t)dt >
kcy, and consequently fooo F(t)dt = oo, by which (2.12) follows.

Remark 2.41 Recalling Exercise2.35, if f € %4 (X), then its repartition func-
tion My : [0,00) — [0, 00] is a simple decreasing function. Therefore, owing
to Remark 2.40,

9]
/ Myg(t)dt = Mygdm,
0 [0,00)

where m stands for the Lebesgue measure on [0, co). Moreover, using (2.11), we
deduce

/fdu: Mfdmz/ooMf(t)dtz/oo,u(f>t)dt. (2.13)
X [0,00) 0 0

2.4.4 Integral of Positive Borel Functions

Using identity (2.13) obtained for simple functions, we can now extend the definition
of the Lebesgue integral to positive Borel functions.

Definition 2.42 Given f : X — [0, oo] a Borel function, the (Lebesgue) integral
of f over X with respect to the measure i is defined by

/ fdu= / F@dp): = / u(f > v,
X X 0

where the integral in the right-hand side is the archimedean integral of the repartition
function of f. If the integral of f is finite, f is said to be p-summable.

Next result gives an estimate of the ‘size’ of f in terms of the integral of f.

Proposition 2.43 (Markov) Let f : X — [0, oo] be a Borel function. Then, for any
a € (0, 00),

1
u(f>a)5—/fdu~
a Jx

Proof Recalling Exercise2.39, for any a € (0, oo) we have

/deu=/0 p(f >ty dt > ap(f > a).

The conclusion follows. O

Markov’s inequality has important consequences. Generalizing the notion of a.e.
convergence (see Definition2.24), we say that a property concerning the points of X
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holds almost everywhere, or, in abbreviated form, a.e., if it holds for all points of X
except for a set £ € & with u(E) = 0.

Proposition 2.44 Let f : X — [0, oo] be a Borel function.

(i) If f is pu-summable, then the set { f = oo} has measure zero, that is, f is a.e.
finite.
(ii) The integral of f over X is zero if and only if f is a.e. equal to 0.

Proof (i) From Markov’s inequality it follows that u(f > a) < oo foreverya > 0

and

Jim p(f > a) = 0.
Since

{f >n} ] {f = o0},
we have

p(f =00) = lim u(f > n) =0.

(i) If f = 0 a.e., we obtain u(f > t) = 0 for every ¢+ > 0. Then fodu =
w(f > t)dt = 0 (see Exercise 2. . Conversely, let = 0. Then
0°° (f > t)dt = 0 (see Exercise2.37(3). C ly, let |, fd 0. Th

Markov’s inequality implies pu(f > a) = 0 for all @ > 0. Since {f > %} 0
{f > 0}, we deduce

p(f >0 = Jim p(f> ) =0,

The proof is thus complete. ]

The following theorem, usually referred to as the Monotone Convergence Theorem
or Beppo Levi’s Theorem, is the first result that justifies passing to the limit under
the integral sign.

Theorem 2.45 (Beppo Levi) Let f, : X — [0, 0o] be a sequence of Borel functions
such that f, < fuy1, and set

f@) = lim fu(x) VxeX.

[ uan 1 [ ran

Proof Observe that, in consequence of the assumptions, we have

Then

{(fu>tIt{f>1t} Vt>0.

Therefore pu(f, > t) t w(f > t) for any + > 0. The conclusion follows from
Proposition?2.38. ]
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Combining Proposition2.23 and Theorem2.45 we deduce the following result.

Proposition 2.46 Let f : X — [0, 00] be a Borel function. Then there exists a
sequence f, : X — [0, 00) such that (f,), C S+(X), fu(x) 1+ f(x) for every

x € X and
[ wan 1 [ ran.

Let us state some basic properties of the integral.

Proposition 2.47 Let f,g : X — [0, oo] be Borel functions. Then the following
properties hold:

(i) Ifa, B €0, 00, then [y(af +B9)du=c [y fdu+3 [y gdp.
(ii) If f = g, then [y fdu > [y gdp.

Proof The conclusion of point (i) holds for f,g € ., (X), thanks to Proposi-
tion2.33. To obtain it for Borel functions it suffices to apply Proposition 2.46.

To justify (ii), observe that the trivial inclusion {g > ¢t} C {f > t} implies
w(g > t) < u(f > t). The conclusion easily follows (see Exercise 2.37(2)). [

Proposition 2.48 Ler f,, : X — [0, oo] be a sequence of Borel functions and let

F@) =2 falo) VxeX.

n=1
Then

g/}(fnd/t:/xfdu-

Proof For every n set
n
9n = Z Jie.
k=1
Then g,(x) 1 f(x) for every x € X. By applying the Monotone Convergence

Theorem we get
/ Gndpp — / fdp.
X X

On the other hand (i) of Proposition2.47 implies

/Xgnd/i=:§/xfkdu—>§/xfkdu-

The thesis follows. O
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The following basic result, known as Fatou’s Lemma, provides a semicontinuity
property of the integral.

Lemma 2.49 (Fatou) Let f, : X — [0, oo] be a sequence of Borel functions and
let f =liminf,— ~ fu. Then

/ fdu < liminf / m (2.14)
X n—oo X

Proof Setting g,(x) = infy>, fi(x), we have g,(x) 1 f(x) for every x € X.
Consequently, by the Monotone Convergence Theorem,

/fd;u: lim/g,ld,uzsup/gndu.
X n—oo [y neNJx

On the other hand, since g, < f; for every k > n, we get

[ onan<int [ sean
X kzn Jx
So
fdp < sup inf/ frdp = liminf/ fndp.
X neN k=n Jx n—oo [y
The proof is thus complete. O

Corollary 2.50 Let f, : X — [0, o0] be a sequence of Borel functions converging
to f pointwise. If there exists M > 0 such that

/fndufM Vn e N,
X

then [y fdp < M.

Remark 2.51 We can give a version of Theorem 2.45 and Corollary 2.50 that applies
to a.e. convergence. In this case, the fact that the limit f is a Borel function is no
longer guaranteed (see Example2.26). This difficulty can be easily overcome by
adding the assumption that f is Borel or, else, that the measure is complete.

Exercise 2.52 Taking into account of Remark 2.51, state and prove the analogue of
Theorem2.45 and Corollary 2.50 for a.e. convergence.

Exercise 2.53 Consider the measurable space (X, Z(X), dx,), Where dy, denotes
the Dirac measure concentrated at xo € X. Show that, for any function f : X —
[0, oc],

/fﬁmzﬂm)
X
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Example 2.54 Consider the measurable space (N, Z(N), ii*), where ;* denotes
the counting measure. Then any sequence (a,), C R provides a Borel function
f:neNra, € R. Assume (an)n C [0, o<]. Since f(n) = Z,fil arxky(n) for
every n € N, by applying Propositions2.47 and 2.48 we have

o0 o0 o0
/Nﬁ=2@/wwﬁ=2%ﬂmh§yk
N =1 VN k=1 k=1

Exercise 2.55 Let (aux), keN be a sequence in [0, co]. Show that’

oo o0 [ ole o}

PIPITEDIPILLE

n=1 k=1 k=1 n=1
Hint. Consider the measure space (N, Z(N), u#) and set fy : n +— auk. Then (fi)k
is a sequence of positive Borel functions. Use Proposition2.48 to conclude.

Exercise 2.56 Let (a,x), kenN be a sequence in [0, oo] such that, for every n € N,

h<k = au <au. (2.15)
Set, forany n € N,
lim a,; =: o, € [0, o0]. (2.16)
k—00

Show that

o o
lim Zank = Zan.
n=1 n=l1

k— 00

Hint. Set fi : n — ay; and use Monotone Convergence Theorem.

Example 2.57 Theresult of Exercise 2.56 can be proved directly by elementary com-
putations. Suppose, first, ZZOZI o, < 00, and fix € > 0. Then there exists n. € N

such that
o0
> an<e
n=n:+1

Using (2.16), for k sufficiently large, say k > k., we have a,, — ni < ayy for

n=1,...,n.. Soforevery k > k.

o0 ne o0
Eankz Ean—5> Ean—Za.
n=I1 n=1 n=I1

Since > 07| ank < Do Qn, the thesis follows.

3See footnote 6 on page 17.
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A similar argument applies to the case of > - | a, = 00. The thesis is immediate
if one of the values «, is infinite. Thus, assume «;, < oo for all n. Given M > 0, let

ny € N be such that
ny
Zan >2M.
n=1

For k large enough, say k > kjs, we have o, — % <apr forn=1,...,np.Then
for every k > ky

o ny nm

Za”k > Za”k > Zan - M > M.

n=1 n=1 n=1

Example 2.58 The monotonicity assumption in Exercise2.56 is essential. Indeed,
(2.15) fails for the sequence

1 ifn =k,

ank = Opi = [O ifn £ k [Kronecker delta]

since

00 00

lim ae=1#0= Iim apg.

k—»oozz; nk ¢: :E;k—xm nk
n= n=

Exercise 2.59 Let f, g : X — [0, oo] be Borel functions. Show that:

1. If f <gae.,then [y fdu< [ygdp.
2. If f=gae.,then [, fdu= [y, gdp.

Exercise 2.60 Show that the monotonicity of the sequence (f;), is an essential
hypothesis for Beppo Levi’s Theorem.

Hint. Consider f,, = X[n,n+1) in R with the Lebesgue measure.

Exercise 2.61 Give an example to show that the inequality in Fatou’s Lemma can

be strict.
Hint. Consider f2, = X[o0,1) and f2,41(x) = X[1,2) in R with the Lebesgue measure.

Exercise 2.62 Let (X, &, 1) be a measure space. Show that the following two state-

ments are equivalent:

1. pis o-finite.

2. There exists a y-summable function f : X — [0, oo] such that f(x) > O for all
x € X.

Exercise 2.63 Show that if m denotes the Lebesgue measure on [0, co) and F :
[0, 0c0) — [0, o] is a decreasing function, then

o0
/F(t)dt:/ Fdm.
0 [0,00)
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Hint. The result holds for simple functions (see Remark 2.40). For the general case
use Proposition2.23.

2.4.5 Integral of Functions with Variable Sign

Definition 2.64 A Borel function f: X — Ris said to be y-summable if there exist
two p-summable Borel functions ¢, ¥ : X — [0, oo] such that

f&x) =) —x) VxeX. (2.17)

/fdu :=/ sodu—/wdu 2.18)
X X X

is called the (Lebesgue) integral of f over X with respect to .

In this case, the number

Remark 2.65 The integral of f is independent of the choice of the functions ¢, ¥
used to represent f as in (2.17). Indeed, let ¢, Y1 : X — [0, oo] be p-summable
Borel functions such that

fx)=p1(x) —¥1(x) VxeX.

Then, according to Proposition2.44, ¢, ¥, ¢ and ¢ are a.e. finite, and

ex) +Y1(x) =pr1(x) +(x)  ae.

Therefore, owing to Exercise 2.59(2) and Proposition2.47, we have

/wdu+/w1du=/wldu+/wdﬂ-
X X X X

Since the above integrals are all finite, we deduce

/Xsadu—/xwdu=/xs01du—/xw1du

Remark 2.66 Let f: X — R be a u-summable function.

as claimed.

1. The positive and negative parts of f

) =max{f(x),0}, f~(x)=max{~f(x),0}
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are Borel functions such that f = f* — f~. Let ¢,% : X — [0, 00] be
p-summable functions verifying (2.17). If x € X is such that f(x) > 0, then
fr(x) = f(x) < k). So fH(x) < @(x) for every x € X and, recalling
Exercise2.59(1), we deduce that 7 is p-summable. Similarly, one can show
that f~ is u-summable. Therefore

/deu=/xf+du—/xf—du.

2. From the above remark we deduce that f is g-summable if and only if f+ and
f~ are pu-summable. Since | f| = f+ + £, itis also true that f is y-summable
if and only if | f| is p-summable. Moreover,

/fdu
X

frof-lf - frs
E/}(f+du+/xf_du=/xlf|du-

Remark 2.67 The notion of integral can be further extended allowing infinite values.
More precisely, the definition (2.18) does make sense if at least one of the two
integrals |, xwdpu, J x ¥ dpis finite, but not necessarily both of them. A Borel function
f: X — Ris said to be p-integrable if at least one of the two functions f+ and f~
is p-summable. In this case, we define

/deu=/xf+du—/xf—du.

Notice that | x fdp € R, in general. It follows at once that any Borel function
f X — [0, oo] is u—integrable.

S/ | fldu. (2.19)
X
Indeed,

=<

In order to state the analogue of Proposition 2.47 for functions with variable sign, we
recall that the sum of two functions taking values in the extended space R may fail
to be well defined; thus, we need to assume that at least one of the two functions is
finite.

Proposition 2.68 Let f, g : X — R be p-summable functions. Then the following
properties hold:

(i) If f is finite, then, for any o, 8 € R, af + (g is p-summable and

/X(Oéf‘i‘ﬁg)d,u:a/xfd,u‘f‘ﬁ/xgdﬂ.
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(ii) If f < gae.,then [, fdu < [, gdpu.
Proof (i) Assume first o, 3 > 0. Since f is finite, so are f* and f~. Then we

have af + Bg = (aft + BgT) — (af ™ + Bg™) and so, by Definition 2.64,

/(af+ﬂg)du=/(af++ﬁg+)du—/(af*+6g’)du-
X X X

The conclusion follows from Proposition 2.47(i). The case when «, (3 have dif-
ferent signs can be handled similarly.

(ii) Let f < g a.e. It is immediate that f* < g and g~ < f~ ae. Then, by
Exercise 2.59, we obtain

/ngu=/xg+du—/xg*duz/){f*du—/xf*duz/xfdu.

The proof is thus complete. (]

We now proceed to define the integral on a measurable set.

Definition 2.69 Let f: X — R be py-summable and let A € &. The (Lebesgue)
integral of f over A with respect to p is defined by

/Afdu ::/Xfodu.

Remark 2.70 Observe that if f: X — R is y-summable, so is x4 f since |4 f| <
| f1. Taking into account that f = x4 f + xac f, from Proposition2.68(i). we obtain

/fdu+/ fduz/fdu. (2.20)
A A¢ X

Remark 2.71 Recalling that any measurable set A isitself, in a natural way, a measure
space with the o-algebra & N A (see Remark 1.28), we deduce that it suffices to
define the integral over the whole space X to have it automatically defined over any
measurable subset A.

Exercise 2.72 Show that, for any y-summable function f : X — R,

/Afduz/xfd,uLA

where (A is the restriction of 1 to A (see Definition 1.26).
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If A € Z(RY), in the following we will denote by m the Lebesgue measure on
A and we will write f 4 f(x)dm(x) simply as

/ f(x)dx
A

or, equivalently, [, f(y)dy, [, f(t)dt etc. in terms of the new dummy variable of
integration y, ¢ etc. If N = 1 and [ is one of the sets (a, b), (a, b], [a, b), [a, D], we
will usually write [, f(x)dm(x) as

b
/ f(x)dx.

Since the Lebesgue measure of a single point is zero, there is no need to specify
which of the four sets the integral refers to. Owing to Exercise 2.63, this notation is
consistent with the one of the archimedean integral.

Proposition 2.73 Let f : X — R be a p-summable function. Then the following
properties hold:

(i) fisa.e. finite, i.e., the set {| f| = oo} has measure zero.
(ii) If f =0a.e., then [y fdu=0.
(iii) If E € & has measure zero, then fE fdp=0.
(iv) If [, fdp=0forevery A € &, then f =0 a.e.

Proof Parts (i), (1) and (iii) follow immediately from Proposition 2.44. Let us prove
(iv). Set A = {f* > 0}. Then we have

O:/Afdu:/xf+du.

Proposition 2.44(ii) implies f = 0 a.e. In a similar way we obtain f~ = 0 a.e. [J

Remark 2.74 1In view of the last proposition, the sets of measure zero are negligible
in integration. Therefore it is natural to extend the definitions of measurability and
summability to include functions f taking values in R which are defined a.e. in X,
by saying that such f is Borel if so is f , letting f denote the extension of f to zero
outside the subset where it is defined; similarly, we say that f is u-summable if so
is f. The (Lebesgue) integral of f over X with respect to y is defined by

/deu:/xfdu-
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For instance, one can give the following version of Proposition2.68(i) that applies
to a.e. defined functions: if f and g are p-summable functions, defined a.e. in X, so
is the sum® o f + B¢ for any o, 3 € R; furthermore

/X(ozf+ﬁg)du=a/xfdu+ﬁ/xgdu.

The key result provided by the next proposition is referred to as the absolute
continuity property of the integral.

Proposition 2.75 Let f: X — R be pi-summable. Then for any € > 0 there exists
0 > 0 such that

Acé & wA) <6. = /|f|d/¢§€. 2.21)
A

Proof Without loss of generality, f may be assumed to be positive. Then

fu(x) :=min{f(x),n} 1+ f(x) VxeX.

Therefore, by Beppo Levi’s Theorem, [y fudp 1 [y f dp. So for any e > 0 there
exists n. € N such that

0= [ (= fodu<3 vozn.
; 2

Hence, if u(A) < ﬁ, for all n > n. we get

/AfdMS/AfngduvL/X(f—fng)du<5-

We have thus obtained the thesis with §. =

&
2n: "

Exercise 2.76 Let f: X — R be y-summable. Show that

lim |fldp = 0.

eI f1=n)

Exercise 2.77 Let (X, &) and (Y, %) be measurable spaces. Given a measurable
function f : X — Y and a measure p on &, let f;p be the measure on .# defined in
Exercise2.6. Show thatif ¢ : ¥ — R is fzp-summable, then ¢ o f is u-summable

and
/ pd(fups) = / (9o f)d.
Y X

50Observe that f and g are a.e. finite owing to Proposition2.73(i); so the sum «a f + (g is well
defined a.e. in X.
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2.5 Convergence of Integrals

‘We have already obtained two results that allow to take limits under the integral sign,
namely Beppo Levi’s Theorem and Fatou’s Lemma. In this section, we will further
analyze the problem. In the following (X, &, u) denotes a generic measure space.

2.5.1 Dominated Convergence

We begin with the following classical result, also known as the Dominated Conver-
gence Theorem or Lebesgue’s Theorem.

Proposition 2.78 (Lebesgue) Let f, : X — R be a sequence of Borel functions
converging to f pointwise. Assume that there exists a pi-summable function g : X —
[0, o] such that

[fn(x)] <gx) VxeX, VnelN. (2.22)

Then f,, f are p-summable and

lim | fodu= / fdpu. (2.23)
X X

n— o0

Proof We note that f,, f are u-summable since they are Borel and, in view of
(2.22), | f(x)] < g(x) forall x € X. Assume, first, g : X — [0, 00). Since g + f;, is
positive, Fatou’s Lemma yields

/(g—f-f)d,ufliminf/(g+fn)du:/gdu+liminf/ fadp.
X n—oo [y X n—oo [y

Consequently, since |, x g du is finite, we deduce

/ fdp < liminf / fudp. (2.24)
X n— oo X

Similarly,

/(g—f)duSliminf/(g—fn)du=/gdu—limsup/ fudn.
X n—0o0 Jx X n—oo JX

Hence,
fdp>1lim sup/ fodp. (2.25)
X X

n—o0

The conclusion follows from (2.24) and (2.25).
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In the general case g : X — [0, oo], consider E = {g = oo}. Then (2.23) holds
over E€ and, by Proposition 2.44(i), we have ;(E) = 0. Hence, using identity (2.20),

we deduce
/fndu=/ fnd;H/ fdu=/fdu.
X E¢ E¢ X

Exercise 2.79 Derive (2.23) when (2.22) is satisfied a.e. and f, —= f, with the
additional restriction that f is Borel or else that y is complete.

O

Exercise 2.80 Let f, g : X — R be Borel functions such that f is y-summable and
g is p-integrable (see Remark 2.67). Assume that f or g is finite. Show that f + g is
p-integrable and

/(f+g)du=/ fdu+/gdu.
X X X

Exercise 2.81 Let f, : X — R be Borel functions satisfying, for some z-summable
function g : X — R and some (Borel) function f,

Jn(x) = g(x)

fulr) 1 f(X)] vreX.

Show that f,, f are u-integrable and

lim f,,duz/fdu.
X

n—o00 X

Exercise 2.82 Let f, : X — R be Borel functions satisfying, for some zi-summable
function g and some (Borel) function f,

Jn(x) = g(x)

fulx) — f(x)] vxeX.

Show that f,, f are u-integrable and

/fd,ugliminf/ fadp.
X n— 00 X

Exercise 2.83 Let f,, : X — R be Borel functions. Show that if y is finite and, for
some constant M and some (Borel) function f,

| fn()] =M

fulx) — f(x)] Vx € X,
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then f,, f are u-summable and

lim fnduz/ fdp.
X

n—o00 X

Exercise 2.84 Let f : X — R be a u-summable function. Show that
lim [ |f""dp = p(f #0).
n—0o0 X

Exercise 2.85 Let f : X — R be a y-summable function such that | f| < 1. Show
that

lim [ [f["dx = p(fl=1D.
n— oo X
Exercise 2.86 Let f,, : R — R be defined by

0 x <0;
fo) = (x(logx| + 1) 7 0 <x<I;
(x(logx +1))™" x > 1.

Show that:

(i) f, is summable’ for every n > 2.
(i) limy— oo [p fu(x)dx = 1.

Exercise 2.87 Let f, : (0, 1) — R be defined by

Fulx) = x%log (1 + %)

Show that:

(1) fn is summable for every n > 1.
(i) iMoo fi) f(x) dx = 2.

Exercise 2.88 Let f, : (0, 00) — R be defined by

Fulx) = x%log (1 + %)

Show that:

(1) fn is summable for every n > 1.
(i) limy—oo fo° fu(x)dx = 0.

7For simplicity, we often say ‘summable’ instead of ‘m-summable’, omitting explicit reference to
the Lebesgue measure.
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Exercise 2.89 Let f; : (0, 00) — R be defined by
fu(x) = — arctan * 0
X) = —— arctan —, x > 0.
" x3/2 n

Show that:

(1) fn is summable for every n > 1.
(i) limy—oo fo° fu(x)dx = 0.

Exercise 2.90 Let f, : (0, 1) — R be defined by

fu(x) = %
Show that:

1 fulx) < \/L; foreveryn > 1.

(i) limy—soo fiy fu(x)dx = 0.

Exercise 2.91 Let f, : (0, c0) — R be defined by

1 . x
fan(x) = msm;

Show that:

(1) fn is summable for every n > 1.
(i) limy—oo fy° fu(x)dx = 0.

Exercise 2.92 Compute the limit
o

i n (sinx)n
im _— x.
n—oo Jo 14+n/x\ x

Exercise 2.93 Given a Borel measure 1 on R and a y-summable function f : R —
R, set

v:R— R, cp(x):/ fdu.

(x,00)
(1) Show that if the measure p is such that
u({x) =0 Vx e R, (2.26)
then ¢ is continuous.

(i1) Give an example to show that ¢ may fail to be continuous without the assumption
(2.26), in general.



2.5 Convergence of Integrals 71

Exercise 2.94 Given a Borel measure ¢ on R and a Borel function f : R — [0, oo],
show that the function

o R - RU (00}, <p(X)=/ £y

(xx,00)

is lower semicontinuous.

2.5.2 Uniform Summability

Definition 2.95 A sequence of ji-summable functions f, : X — R is said to be
uniformly p-summable if it satisfies the following:

(a) For any ¢ > 0 there exists J. > 0 such that

/ |fuldy <e VneN, VA e & with u(A) < .. (2.27)
A

(b) For any € > 0 there exists B € & such that

w(B:) <oo  and / | fuldu <€ VYn e N. (2.28)
B¢

Remark 2.96 A sequence ( fy,), satisfies (a) of Definition 2.95 if and only if

lim / | fuldp = 0 uniformly with respect to n.
wWA)—=0 )4

Remark 2.97 Properties (a) and (b) of Definition 2.95 hold for a single y-summable
function f.Indeed, (a) follows directly from Proposition2.75. To prove (b), observe
that, by Markov’s inequality, the sets {|f| > %} have finite measure and, by
Lebesgue’s Theorem,

/ |f|d,u=/X{‘f|<l}|f|d,u—>0asn—>oo.
{If1=3 x o

The following theorem, due to Vitali, uses the notion of uniform summability to
provide another sufficient condition to take limits under the integral sign.

Theorem 2.98 (Vitali) Let f, : X — R be a sequence of uniformly j-summable
Sfunctions. If ( f)n converges pointwise to an a.e. finite limit f, then f is u-summable
and

lim [ fodp= / fdp. (2.29)
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Proof Assume first that f and f; are finite. Givene > 0, let 6. > 0, B. € & be such

that (2.27) and (2.28) hold. Since, by Theorem2.27, f, had f in B, there exists a
measurable set A C B: such that u(A:) < 6- and

fn — f uniformly in B; \ A.. (2.30)

So

/Ifn—fldu=/ Ifn—fldu+/ fu = fldp
B A B:\Ac
5/ |fn|du+/ \fldu+ u(B2) sup |fa — £1.
Ac A B-\Ac

Notice that [, |fuldp < e, [z | fuldp < € by (2.27) and (2.28). Also, owing to
Corollary 2.50, fAe | fldu < e, fBE |fldu < €. Thus,

/Ifn—flduf/ Ifldu+/ Ifnldu+/ o — fldp
X Be Be B.
<4e+ u(B:) sup |fn — fl.
BA\A.

Since p(B:) < 0o, by (2.30) we deduce

/XIfn—fldu—>0. (2.31)

Then f,, — f is p-summable; consequently, since f = (f — f,) + fu, by Proposi-
tion2.68(i) we deduce that f is u-summable. The conclusion follows by (2.19) and
(2.31).

In the general case when f is a.e. finite and f,, : X — R, we consider the sets

Eo={lfl=00} Ep={lful =00} Vn=1

Then ©(Ep) = 0 by hypothesis and pu(E,) = 0 for all n > 1 owing to Proposi-
tion2.73. Therefore E = U,>oE, is also a zero-measure set and (2.29) holds on

E°. So
/andu=/chndu—>/chd/i:/xfdu,

and this proves the theorem in the general case. O

Exercise 2.99 Derive (2.29) when f, —% f with the additional restriction that f
is Borel or else that x4 is complete.
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Exercise 2.100 Give an example to show that the thesis of Theorem?2.98 may fail
without the assumption that ‘ f is a.e. finite’.

Hint. In N with the counting measure z* consider the sequence of functions f,, :
N — R, f, = nxqy — nxj2. Show that ( f;,), is uniformly 1 -summable, however
its pointwise limit fails to be z#-summable.

For finite measures, (b) of Definition2.95 is always satisfied by taking B, = X;
hence we obtain the following corollary.

Corollary 2.101 Assume ((X) < oo and let f, : X — R be a sequence of
u-summable functions satisfying (a) of Definition2.95 and converging pointwise
to an a.e. finite function f. Then f is p-summable and

lim fnduz/ fdp.

Exercise 2.102 Give an example to show that when 1(X) = oo the condition (b) of
Definition 2.95 is essential to derive Vitali’s Theorem.

Hint. Consider f,, = X[n,n+1) in R with the Lebesgue measure.

Remark 2.103 'We point out that Vitali’s Theorem can be regarded as a generalization
of Lebesgue’s Dominated Convergence Theorem. Indeed, let f, : X — R be a
sequence of Borel functions satisfying (2.22) for some ;.-summable function g. Since,
by Remark 2.97, properties (a) and (b) of Definition 2.95 hold for a single function
g, it immediately follows that (f;,), is uniformly p-summable. The converse is not
true, in general, i.e., a uniformly p-summable sequence may fail to be dominated.
To see this, consider the sequence

Jo=nxpn 1y

5)

defined in R with the Lebesgue measure. Since fR fndx = % then the sequence
(fn)n 1s uniformly summable. On the other hand

oo
SUp fn =g = Z”X[ﬁ,ﬁ%)
n n=1 n

and

1
dx = — = 0.
fooae=2

Consequently, (f;;), cannot be dominated by any summable function.
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2.5.3 Integrals Depending on a Parameter

Let (X, &, 11) be a measure space. In this section we shall see how to differentiate
the integral over X of a function f(x, y) depending on the extra variable y, which
is called a parameter. We begin with a continuity result.

Proposition 2.104 Let (Y, d) be a metric space, yo € Y, U a neighborhood of yo
and
f:XxY—->R

a function such that

(a) The map x — f(x,y) is Borel for everyy € Y.
(b) The map y — f(x,y) is continuous at yg for every x € X.
(c) For some p-summable function g : X — [0, oo] we have

[f(x, V)| <gx) VxeX, Vyel.

Then ®@(y) := fX f(x,y)du(x) is continuous at yy.

Proof Let (y,), be a sequence in Y that converges to yo. Suppose, further, y, € U
for every n € N. Then

f(x,yn) = f(x,y9) as n— o0

Vx e X
[ |f(x, ya)l < g(x) VneN.

Therefore, by Lebesgue’s Theorem,

/Xf(x,yn)du(x) —>/Xf(x,y0)du(x) as n — oo,

and the conclusion follows from the arbitrariness of (y;,)- O

Exercise 2.105 Let p > 0 be fixed. For # > 0 define
|
filx) = ;x”e r xe€[0,1].

For which values of p does each of the following statement hold true?

@ fi <5 0ast— 0.
(®) f; = Ouniformly in [0, 1Tas ¢ — O.
© Jof fi(x)dx — Oast — 0.

For differentiability, we shall restrict the analysis to a real parameter.
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Proposition 2.106 Letr f : X X (a, b) — R be a function such that

(a) The map x — f(x,y) is summable for every y € (a, b).
(b) The map y — f(x, ) is differentiable in (a, b) for every x € X.
(c) For some p-summable function g : X — [0, oo] we have

a—f(x,y)’ <glkx) VxelX.
dy

sup
a<y<b

Then @ (y) := fX f(x,y)du(x) is differentiable in (a, b) and
/ of
D(y) =/ 8—(x, y)du(x) Vy € (a,b).
x 0y

Proof We note, first, that the function x g—f(x, y) is Borel for every y € (a, b)
because

%(x,y)zngrr;on[f(x ) - Fen] Ve € X x @b,

Now, fix yg € (a, b) and let (y,), be a sequence in (a, b) converging to yo. Then

¢(yn) — @ (y0) / fx, yn) = f(x, y0) i)
- Yo - Yo
”‘”‘ny (x.30)

and

f(x’ yn) - f(x’ )’0)
Yn — Y0

<gx) VxeX, VneN

thanks to the mean value theorem. Therefore Lebesgue’s Theorem yields

@ (yn) — P (yo)

/ a—f()c,yo)d,u(x) as n — oo.
Yn = Y0 x Oy

Since (yy,), is arbitrary, the conclusion follows. U

Remark 2.107 Note that assumption (b) of Proposition2.106 must be satisfied on
the whole interval (a, b) (not just a.e.) in order to be able to differentiate under the
integral sign. Indeed, for X = (a, b) = (0, 1), consider

if y > x,
if y < x.

f(x,y)=[(l)
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Then ?,—fy‘(x, y) = 0 forall y # x, but

1
o (y) :/0 Fleoy)dx =y,

by which ®'(y) = 1.

Example 2.108 Let us compute the integral
o] —xz—ﬁ
D(y) ::/ e 2dx, yeR.
0

Observe that

D ]2y et
dy x2
2e7x2 y2 2 2efx2
= Se 2 < fory>r >0, Vx > 0.
y X r
[ —
<l/e

So, for any y > 0,

2y _2
qﬁ/(y):—/ 2 7
0 X
= S R
’é/x—z/ yo e :ztlzdz:—qu(y).
0

Since

solving the Cauchy problem

D'(y) = =20&(y), y >0,

N

lim &(y) = ~—,
yinog ) 5

and recalling that @ is an even function, we obtain

N

Q(y) = Te_2|y|~
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Example 2.109 Applying Lebesgue’s Theorem to the counting measure on N, we

shall compute

oo o—i
nli)ngonZsin( . ): 1.

i=1
Indeed, observe that

—i

)

satisfies | f,,(i)| < 27¢. Then by Lebesgue’s Theorem we have

o0 o0 o )
im > = lim fi)=> 27 =1.
n—o0 n—oo

i=1 i=1 i=1

fa() i=n sin( 2

Exercise 2.110 Let us compute the limit

R ginx

lim dx

R—o0 Jo X

proceeding as follows.
(i) Show that the above limit exists.

Hint. Observe that for every R > 7 we have

R ginx /2 §in x cos R R cosx
dx = dx — — 3 dx
0 X X R /2 X
i

0
/2 00
nx cos X
dx—/ 5—dx
0 X n/2 X

S
—

as R — oo, where the last convergence follows by Lebesgue’s Theorem.

(i) Show that

> sin x
D(1) :=/ e * dx
0 X

is differentiable for all r > 0.

Hint. Use that
e <e™™ Vi>r>0, Vx > 0.

(iii) Compute @’ (¢) for ¢ €]0, oo[.
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Hint. Proceed as in Example 2.108 using the following indefinite integral

P tsinx +cosx _
/e ’xsmxdx=——ze i ceR.
1+t

(iv) Compute @ (t) for all ¢ €]0, oo.
(V) Settlng 1 = hmR*)OO fOR sin x
that

dx, show that lim,_, o+ @ (¢) = I and conclude
™

I =—.

2

Hint. Observe that

w/2 : 1 ¢
<1§(t)=/ e_’xsmxdx—/ + Y e~ cos x dx
T

0 X /2 x2
/2 §in x ® cosx
— dx — 3 dx
0 X 2 X

as t — 0T, where the last convergence follows by Lebesgue’s Theorem.

2.6 Miscellaneous Exercises

Exercise 2.111 Given a Borel function f : R — R, show that the functiong : R —
R defined by

log(f(x)) if f(x) >0
g(x) = 0 .
if f(x) <0

is also Borel.

Exercise 2.112 Show that the following functions f : R — R are Borel:

T
Fox) = ex ?fx#Oy
0 ifx=0
1
ifxe@Q

fx) =1 142 ,
0 ifxeR\Q
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= —

fx) =

79

o0
ifxe Y [n,n—i—%]

n=1

0 otherwise

Exercise 2.113 Let (X, &, 1) be a measure space and let f :

p-summable function. Set

E,={xeX|n<|f(X)|<n4+1} VYn=>0.

Show that:

() i Jg, 1fldp < (En) < [p 1 fldp.

(1) lim,—eon pu(E,) = 0.

Exercise 2.114 Let f : R — R be a continuous and bijective function.

(i) Show that f(E) € Z(R) for every E € B(R).
(Hint. First prove that f(K) € A(R) for every compact set K C R).
(ii) Setting u(E) = m(f(E)) forany E € Z(R), show that y is a o-finite measure

on A(R).

(iii) Show that if ¢ : R — R is a u-summable function, then ¢ o f~! is summable

/s@du=/(<p0f“)dx.
R R

Exercise 2.115 Compute the following limits:

and

oo )

. sin“x _
lim n e dx,
n—oo [q X
im [ —L 4
im e ndx,
n—oo o x4+ ﬁ

lim — ——dx,
n—oo J 1+x"1 +x2

00 an

lim e ™ dx,
n—oo Jo 1 +nx

*° 1
lim —————dx,
n—>00/0 Jx (1 + n2xm) *

. % arctan(nx)
lim z—dx,
n—o0 Jq n<x + x"

* sin" x

x3+x4dx

lim
n—0oo 0

I /OO L
im ——dx,
n—oo J ﬁl—}—nxz

1
. arctan(nx
hm/ —( )dx,
n—o0 J X

®  ploghx

—dx,
n 4+ nx + x2

lim
n—oo O

. * n X
lim / ————— sin —dx,
n—oo [ ox(14+x%) n

o0 x" X
lim —le_ﬁdx,
n—oo [o 1 + xnt
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oo oo

X
lim log3x sine ™ dx, lim —dx,
n—oo Jq & n—oo J 1 +x3n
. o0 1 <2 . © n n
lim e n dx, lim ———~=arctan — dx.
n—oo [_ 14 e n—oo g 1+ I’lﬁ X

Exercise 2.116 Let (X, &, ) be a measure space and let f,g : X — R be
p-summable functions. Show that

lim/ ”|f|"+|g|”du=/max{lfl,lgl}du-
n—oo [y X

Exercise 2.117 Compute the following limit depending on the parameter o > 0:

o0 1
lim sin
n—00 Jq n -+ x«

dx.

Exercise 2.118 Let o > 0 and let f;, : (0, o0) — R be the sequence defined by

Vx> 0.

fa(x) = (sin L)nx
Jx
Show that:

(a) Ifa € (0, %), then f,, is summable for n large enough.

(b) Ifa e (0, 1), then lim, o0 [5° fu(x) dx = 0.

(c) fy fails to be summable if o > %

Exercise 2.119 Compute the following limit depending on the parameter o € R:
2r n2

t
lim 7(1 — cos —) dr.

n—o0 J 1€ n

Exercise 2.120 Compute the following limit depending on the parameter o > 0:

o0
lim
n—oo Jy  x® 4 x"




Chapter 3
L? Spaces

As we observed in Chap.2, the family of all y-summable functions on a measure
space (X, &, ) can be given the structure of a linear space. In this chapter, we study
the so-called Lebesgue spaces, that are spaces of Borel functions f : X — R in
which

d(f.g) = /X \f — gl” du 3.1)

defines a distance, completeness being the crucial property we are interested in.

In the previous chapter, we defined several kinds of convergence for function
sequences. We now complete the picture introducing convergence in measure and in
the metric (3.1), and study the connections between different notions of convergence.

Among all L? spaces, L? is the only one such that the product of any two of its
elements is a summable function. Such a property makes of L2 a Hilbert space—a
functional analytic structure that will be studied in Chap. 5.

A more detailed analysis of L” is possible when X = R and p is a Radon
measure. In this case, the special role played by continuous functions yields useful
density results.

3.1 The Spaces .7 (X, pu) and L? (X, )

Let (X, &, 1) be a measure space. For any p € [1, 00) and any Borel function

f: X — R we define
1/p
||f||p=(/ Ifl”du) .
X

Let ZP(X, p) = £ P (X, &, ) denote the class of all Borel functions f for which
I fllp < oo.
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Remark 3.1 Tt is easy to check that £P(X, u) is closed under the following
operations: the sum of two functions (provided that at least one is finite valued)
and multiplication of a function by a real number. Indeed,

aelR fel?X,p) = aofeLPX,p) & llafly=Ilallflp-
Moreover, if f, g € £P(X, p) and f : X — R, then we have!
£ + g7 <277 f@IP +1g()1P) - Vx € X,

andso f + g € ZP(X, p).

Example 3.2 Consider the measure space (N, Z(N), ;*), where 1* denotes the
counting measure. Then we will use the notation £7 for space .2 (N, ;*). Recalling
Example 2.54, we have

00
x, € R, Z|xn|p < OO],

n=1

= ’(xn)n

and, for any sequence (x,), € €7,

o0 1/p
ICenlly = ( > |xn|f’) :

n=1

Observe that
l<p<qg = €’ cCi.

Indeed, let (x,,), € £”. Since Z,‘ii] |xn|? < oo, we get that (x,), is bounded, say
|x,| < M forall n € N. Then |x,|? < M97P|x,|P. So > o2 | |x,]9 < co.

Example 3.3 Consider the Lebesgue measure m on (0, 1]. Let us set, for any o € R,
fa(x) =x%  Vx e (0,1].

Then f, € Z7((0, 1], m) ifand only if ap 4+ 1 > 0. Thus, £ ((0, 1], m) fails to be

an algebra. For instance, f_1» € Z'((0, 1], m) but f_| = f}m ¢ 210, 11, m).

We have already observed that || - ||, is positively homogeneous of degree one.
However, || - ||, is not a norm? on ZP (X, 1), in general.

In order to construct a vector space on which || - ||, is a norm, let us consider the
following equivalence relation in .£7 (X, p):

f~g < f(x)=gx)ae. inX. 3.2)

I'Since ¢(r) = |¢|? is convex on R, we have that |“2ih|p < M foralla, b € R.
2See Definition 6.1.
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We denote by L (X, u) = LP(X, &, ) the quotient space £ (X, u)/ ~. Thus
the elements of L” (X, ) are equivalence classes of Borel functions. For any f €
ZLP(X, p) let f be the equivalence class associated to f. It follows at once that
LP(X, ) is a vector space. Indeed, the precise definition of the sum of two elements
fl, fz € LP(X, p) is the following: let g1, g» be two ‘representatives’ of f1 and fz,
respectively (thatis, g1 € f1, ¢ € f2) such that g1, ¢ are everywhere finite (such
representatives exist by Proposition 2.73(i)). Then ﬂ + fz is the equivalence class
of g1 + g2.
To introduce a norm on L? (X, w), we set

Ifll,=1fl, VfeLPX,p.

It is immediate to realize that the above definition is independent of the element f
which is chosen in the class f Then, since the zero element of L” (X, ) is the class
consisting of all functions vanishing almost everywhere, it is clear that || f l, =0
if and only if f = 0. To simplify notation, we will hereafter identify f with f and
and we will talk about ‘functions in L? (X, 11)” when there is no danger of confusion,
with the understanding that we regard equivalent functions (i.e., functions differing
only on a zero-measure set) as identical elements of the space L” (X, ).

In order to check that || - ||, is a norm on L?(X, ), we need only to verify that
| - Il  is sublinear. First we derive two classical inequalities (Holder’s inequality and
Minkowski’s inequality) that play an essential role in real analysis.

Definition 3.4 Two numbers p, p’ € (1, co) are called conjugate exponents if

1 1

—+—==1

p P
Note that p’ -5 and that 2 is self-conjugate.

Proposition 3.5 _(Hijlder’s inequality) Let p, p’ € (1, 00) be conjugate exponents
and f, g : X — R Borel functions. Then’

Ifgle < 1flpllgllp -

Moreover, equality holds if and only if | f|P = a|g|p/ a.e. for some o > 0.

Proof The inequality is obvious if || f||, = 0 or ||g|l,» = 0; indeed in such a case
fg = 0a.e. by Proposition 2.44, and so || fg|l1 = 0. The inequality is also obvious
if the right hand side is infinite. Thus, we may assume that || f||, and ||g|| ,» are both
finite and different from zero. Set

O Gy = )

= € X.
£ p lgll pr

F(x) =

3 As usual, in the following we will adopt the convention 0 - +00 = 400 -0 = 0.
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Then, by Young’s inequality (F.3),

F(x))’ G(x r
F(x)G(x) < (F() + (G« /)) Vx € X. (3.3)
p p
Integrating over X with respect to y yields
d 1 1 /
M:/FGduf—/F”du—l——//G”du:l. 3.4
Iflp gl Jx P Jx P Jx
Equality holds in (3.4) if and only if equality holds in (3.3) for almost every x € X,
i.e., recalling Example F.2, if F? = G”' almost everywhere. (]

Corollary 3.6 Let 1(X) < o0. If 1 < p < g < 00, then
LY(X, ) C LP(X, p)

and

1Fllp < (WX)DF Al flly  Vf € LIX, ). (3.5)

Proof Let f € L4(X, 11). Then | f|? € L7 (X, 11). Applying Holder’s inequality to
| f17 and g(x) = 1 with exponents % and (1 — g)_l, respectively, we obtain

/ 1P du < (u(X»“?(/ ).
X X

The conclusion follows. O

Next exercise provides a generalization of Holder’s inequality.

Exercise 3.7 Let fi, f2,..., fr : X — R be Borel functions and Ps Pl ---s Dk €
(1, 00) such that f; € LPi(X, u) and

1 1 1 1

—_—=—f — 44—

14 P1 P2 Pk

Then f1f>... fir € LP(X, p) and
If1fa-- fillp = Wfillp L f2llpy - frll g -

Hint. Consider the functions | f;|? € LPi/P(X, 1) and proceed by induction on k
using Holder’s inequality.
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Exercise 3.8 (interpolation inequality*) Let1 < p <r < g < ocoand f €
LP(X, )N LY(X, p). Then f € L™ (X, ) and

Il < e ey
1_ 6, 1-6
Where y = F =+ T
Hint. Apply the result of Exercise 3.7 to the functions | f 1? and | fl 10 with exponents
£ and 1Ly, respectively.

Exercise 3.9 Let ;1(X) < oo and I < p < 0o. Show thatif f : X — R is a Borel
function such that fg € L'(X, w) for every g € LP(X, ), then f € L9(X, ) for
all ¢ € [1, p'), where p’ is the conjugate exponent® of p.

Hint. Observe that f € L' (X, j1) (why?). So, by taking g = | f|!/7, we deduce that
| fI'FV/P e LY(X, p). Iterate the argument.

Proposition 3.10 (Minkowski’s inequality) Let 1 < p < coand f, g € LP(X, p).
Then f + g € LP(X, u) and

If+gllp = Ifllp+lgllp- (3.6)

Proof The thesis is immediate if p = 1. Assume p > 1. We have
[svarans [ 17 +arisians [ 15+ 9 gldn
X X X

Since |f +g|P~! e LP (X, 1), with p’ = ﬁ, using Holder’s inequality we find

(p=D/p
/X|f+9|pdﬂ =< (/X |f+g|pdu) LA 4 llgllp),

and the conclusion follows. |

From Minkowski’s inequality it follows that || - || , is anorm on L” (X, ) for any
1 <p< oo

We will often use the following notation: given a sequence (f,), C L (X, )
and f € LP(X, ), we write

sy

to mean that ( f;,),, converges to f in L” (X, p), thatis, || f, — f1l, — 0(asn — 00).
Our next result shows that L? (X, 1) is a Banach space.®

“For a more extended treatment of interpolation theory see [SW71].
SIf p =1, we set p’ = o0.
6See Definition 6.5.
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Proposition 3.11 (Riesz—Fischer) Let 1 < p < oo and let (f,), be a Cauchy
sequence in the normed space LP (X, 11). Then there exist a subsequence ( fy, )k and
a function f € LP (X, ) such that:

(D) fu =T
.. LP
(it)  fo— [
Proof Since (f,), is a Cauchy sequence in L” (X, ), for any i € N there exists
n; € N such that '
Il fu — fm”p <27 Vn,m > n;. (3.7)
Consequently, we can construct an increasing sequence of indices (n;); such that
| foro = facllp <27 VieN.
Next, let us define
0 k
90) =D 1 fai ) = fu L @) = D 1y (6 = fu, (), k= 1.
i=1 i=1

Minkowski’s inequality implies that || gk ||, < 1 for every k; since gi(x) 1 g(x) for
every x € X, the Monotone Convergence Theorem ensures that

/Igl”du= lim / P dyi < 1.
X k—o00 X

Then, owing to Proposition 2.44, g is finite a.e.; therefore the series

D (Fuer = Fad) + fn (3.8)
i=1

converges a.e. in X; since

k
D i = ) + fin = Faar
i=1

we deduce that (fy, )x converges a.e. in X. Let us set f(x) = limg— oo fn, (x) when
such limit exists and f(x) = 0 in the remaining zero-measure set. Then f is a Borel
function (see Exercise 2.14) and

fx) = klim Su(x) ae.in X.

Moreover, | f(x)| < g(x)+]fy, (x)| a.e.,s0 f € LP(X, p). This concludes the proof
of point (i).
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Next, to derive (ii), fix ¢ > 0; there exists N € N such that
||fn_fm||p§5 Vn,m > N.

Taking m = ny and passing to the limit as k — oo, Fatou’s Lemma yields

/Ifn—fl”dufliminf/ o= fulPdu<e?  ¥nzN.
X k*)OO X

The proof is thus complete. O

Example 3.12 The conclusion of point (i) in Proposition 3.11 only holds for a sub-
sequence, in general. Indeed, given k € N, for 1 < i < k consider the function

i .
f.k(x)z 1 1f’T§x<%,
! 0 otherwise,

defined on the interval [0, 1). The sequence

1 2 2 k k k
flaf]sf25-~-7f]vf29~-~afka-~-

converges to 0 in? L? (0,1) forall 1 < p < oo, but it does not converge at any point
whatsoever. Observe that the subsequence flk = Xip, 1) converges a 0ae.

Exercise 3.13 Let | < p < oo and f € LP(R) (with respect to the Lebesgue
measure). Set

fx) ifxelnn+1],
0 otherwise.

Su(x) = {

Show that:
e f, € L1(R) foreveryn € Nand g € [1, p].
o fu =5 0forallg e [1, pl.
Exercise 3.14 Generalize Exercise 2.76 showing that if f,, f € L'(X, u) and
fa Ll) f, then
lim sup/ | fuldp =0.
{1 ful =k}

k—00 ;N

71f I denotes one of the sets (a,b), (a,bl, [a, b), [a, b], and m is the Lebesgue measure on /, we
usually write L? (1, m) as L?(a, b). Since the Lebesgue measure of a single point is zero, there is
no need to specify which of the four sets we refer to.


http://dx.doi.org/10.1007/978-3-319-17019-0_2

88 3 LP Spaces

Hint. Observe that®

/ IntdMSZ/ o = FIV 1 f]du
{I fnl=>2k} {lfu—=fIVIfI=k}

52/ Ifn—fldu+2/ \fld.
(| fu—fI=k} {IfI=k}

Example 3.15 Consider the Lebesgue measure m on [0, 1) and set
o0
u=m+§)m
n=1

where 01/, denotes the Dirac measure concentrated on % Then f(x) := x is in
L*([0, 1), ) \ L' ([0, 1), ) because

On the other hand

L .
g(x)::[ﬁ it xel0,1)\Q,
0 if xe[0,HNQ

belongs to L0, 1), W\ L2([0, 1), ), since

/ 0 d /ldx 5
g_x ’[,Lz —_— =L,
[0,1) 0 VX

1

dx
/ gz(X)du=/ — =oo0.
[0.1) 0 X

Exercise 3.16 Show that L” (0, co) ¢ L9(0,00) for p #q (1 < p, g < 00).

Hint. Consider !

lx(log? x| + 1)[1/P

fx) =

and show that f € L?(0, oo) but f ¢ L4(0, oo) for g # p.

$By definition, | f, — f| V | f| = max{| fu = f1, |f]}.
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Exercise 3.17 Let (f;,), be a sequence in LY(X, 1) such that

o0
Z/ | fuldp < o0.
n=1 X

1. Show that 220:1 | fu(x)| < oo for almost every x € X.

2. Show that there exists a function f € L'(X, 1) such that Z;‘;l fa(x) = f(x)
for almost every x € X and

g/xfndu=/xfdu~

Exercise 3.18 Let 1 < p < oo. Show that if f € LP(R") (with respect to the
Lebesgue measure) and f is uniformly continuous, then

lim f(x)=0.

llxfl—o0

Hint. If, by contradiction, there exists (x,), C R such that |x,|| — oo and
| f(x,)] = € > Oforevery n, then the uniform continuity of f implies the existence of
7n > Osuchthat|f(x)| > %if||x,1—x|| < 7. Show that this yields fRN | f1? dx = oo.

Exercise 3.19 Show that the result of Exercise 3.18 may fail if one assumes that f
is just continuous.

Hint. Consider
min{n®x + 1,1 —n2x} if — & <x <

f"(x):{o if x éﬂ(—%,i’;),

defined on R and set f(x) = > oo fu(x — n).

3.2 The Space L*° (X, u)

Let (X, &, ju) be a measure space and f: X — R a Borel function. We define the
essential supremum || f||oo Oof f as follows: if u(| f| > M) > 0 forall M € R, let
Il flloo = 00; otherwise, let

I flloo = inf{M > 0| pu(|f| > M) = 0}. (3.9)
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We say that f is essentially bounded if || f||oc < 00 and we denote by £*°(X, &,
1) = ZL>(X, p) the class of all essentially bounded functions.

Example 3.20 Consider the Lebesgue measure on [0, 1) and define f : [0,1) —

R by
1 ifx £ 1,
ﬂm=i s
n 1fx=;.

Then f is essentially bounded and || f]|oo = 1.

Example 3.21 Let 1i* be the counting measure on N. In the following we will use
the notation £*° for space .Z*°(N, 1*). We have

€ ={(xp)n | xn € R, sup |x,| < o0},
n>1

and, for every (x,), € £°°,

[1(xn)nlloo = sup |x,| < o0.
n>1

Observe that
P C L™ Vpell,o0).

Remark 3.22 Recalling that the function t — u(|f| > t) is right continuous (see
Proposition 2.34), we conclude that

M, | My & p(lfl> M) =0 = upllfl> Mo =0.
So the infimum in (3.9) is actually a minimum. In particular, forany f € Z*°(X, ),

IfOI = Ifllc ae.in X

and
[ flloo=min{M >0]|f(x)] < M ae.}. (3.10)

In order to construct a vector space on which || - || 5 1S @a norm, we proceed as in the
previous section defining L>°(X, ) as the quotient space of .-Z"°°(X, 1) modulo the
equivalence relation introduced in (3.2). So L*°(X, &, u) = L®(X, p) is obtained
by identifying functions in .Z*°(X, 1) that coincide almost everywhere.

Exercise 3.23 Show that L°°(X, p) is a vector space and || - || iS @ norm on
L(X, ).
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Hint. Use (3.10). For instance, for any o # 0, we have |af(x)| < |a| || flleo for
almost every x € X. So |[af|lc < || || flloo.- On the other hand, we also have

170 = [af | = o fl.

Thus, floflleo = |] | f llco-

Like in the case of p < oo, given a sequence (f,), in L°°(X, p) and a function
f € L*°(X, p), in the following we will write

fo > f
to mean that ( f,), converges to f in L(X, ), or lim, . || f — flloo = 0.
Exercise 3.24 Let f,, f € L(X, 1). Show that if f, ——> f, then f, <% f.
Proposition 3.25 L°°(X, u) is a Banach space.

Proof For a given Cauchy sequence ( f;,),, in L>°(X, 1), letus set, forany n, m € N,

An = {Ifal > I falloo}
B = {fu = Sl > I1fn = finlloo} -

Observe that, in view of (3.10),
wA,) =0 & p(Bun) =0 Vm,neN.

Therefore

e (G O o

n=1 m,n=1

has measure zero and (fy,), is a Cauchy sequence for uniform convergence in X§.
Thus, setting f(x) = lim,, oo fu(x) for x € X{ and f(x) = 0 for x € X, we have
that f is a bounded Borel function. So f € L*(X, p1) and f,, — f uniformly in X§.
The conclusion follows because convergence in L°° (X, p) is equivalent to uniform
convergence outside a zero-measure set. ]

Exercise 3.26 Show that for any 1 < p < co we have
fel?PX,w, ge L®X,p) = fgelLP(X, )

and
Ifglly <1 Flp llglloo-
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Example 3.27 1t is easy to realize that the spaces’ L°°(0, 1) and £ fail to be
separable.!?

1. Set
fix) =x0.nx) Vi, x €(0,1).

We have that
t#s = |fi — fsllo =1

Let .# be a dense set in L°°(0, 1). Then .# has the property that for every
t € (0, 1) there exists g; € A4 with || f; — gillco < % For t # s we have

l9: = gslloo = I1fe = filloo = I1fe = gelloo = I1fs = slloo > 0.

Hence, g; # gs. Therefore .# contains an uncountable number of functions.
2. Let (x™),, be a countable set in £°. Let x™ = (x,i"))k for every n and define
the sequence

) 0 if x> 1,
X = (X Xk =
EET I 40 i) < 1

We have that x € £°° and ||x|| oo < 2. Furthermore, for every n € N,

Ix — x™ oo = sup [xx — x| =[xy — x| > 1.
k>1

Consequently, (x™),, is not dense in £>°.

Proposition 3.28 Letr1 < p <ooand f € LP(X, p) N L>®(X, ). Then

q i —
! erPL KXo & dim 1 fllg =1l

Proof For p < g < oo we have
LF I < IFIEP1f (0P ae inX.

So, by integrating,

VA 1-2
Ifllg < I If Nl © -

9 As for the case p < oo (see footnote 7), if I is one of the intervals (a, b), (a, b], [a, b), [a, b],
and m is the Lebesgue measure on I, we usually write L°°(1, m) as L*°(a, b).

10A metric space is said to be separable if it has a countable dense subset.
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Consequently, f € Ny>,L9(X, 1) and

limsup | fllg < 1/ llco-

q— 00

93

@3.11)

Conversely, let 0 < a < || flleo (for || fllec = O the conclusion is trivial). By

Markov’s inequality we get

p(f1>a) = p(f19 > a’) <a | fllg Vq € lp, o).

Therefore
I fllg = ap(fl > a)'/? Yq e[p,o0)

and so
liminf || fll; > a
q—> 00

because p(] f| > a) > 0. Since a is any number less than || f||cc,
liminf || fllg = I flloo-
q—>00

By (3.11) and (3.12) the conclusion follows.

Corollary 3.29 Let i be a finite measure and let f € L*(X, p). Then

fe ﬂ LP(X,p) & pli_ggo 1Ny =11 flloo-
p=1

Proof For 1 < p < oo we have

/X P dp < p(OLFIL.

So f € Np>1LP (X, p). The conclusion follows from Proposition 3.28.

It is noteworthy that in general

[ L7 ) # LYK, ).

1<p<oo

Exercise 3.30 Show that
f(x):=logx Vx e (0,]1]

belongs to LP(0, 1) for 1 < p < oo, but f ¢ L°°(0, 1).

(3.12)

(3.13)
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3.3 Convergence in Measure

We now discuss a kind of convergence for sequences of Borel functions which is of
considerable importance in probability theory (see [Ha50]).

Definition 3.31 Let f,, f : X — R be Borel functions. Then (f,), is said to
converge in measure to f if for any € > 0:

w(fu— fl=¢€)— 0 asn — oo.

Let us compare convergence in measure with other kinds of convergence.
Proposition 3.32 Let f,,, f : X — R be Borel functions. The following statements
hold:

1. If f, 24 f and pu(X) < oo, then f, — f in measure.
2. If fu — [ in measure, then there exists a subsequence (fy )k such that

fo =5 f.

3. If1<p<oo fu, feLP(X,p)and fy L—p> f, then f, — f in measure.

Proof 1. Fix g, 7 > 0. According to Theorem 2.27 there exists £ € & such that
w(E) < nand f, — f uniformly in X \ E. Then, for n sufficiently large,

{Ifa—flze}CE.

So
plfo— fl=e) < u(E) <.

2. For every k € N we have that

1

M(|fn—f|iz)—>0 asn — oo.

Consequently, we can construct an increasing sequence (ny )y of positive integers
such that

1 1
M(|fnk_f|2_)<2_k Vk € N.

k
Now, set
o0 1 o0
Ay = { . >-}, A=) A
k ,Uk [ fn; f"i 191 k

Observe that p1(Ag) < > 72, zil for every k € N. Since Ay | A, Proposition 1.18
yields
p(A) = lim p(Ag) = 0.
k— 00
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For any x € A there exists k € N such that x € Ay, that is,

1
| fn; (X) = f(O)] < 7 Vi > k.

This shows that f,, (x) — f(x) for every x € A€,

3. Fix e > 0. Assume first | < p < oco. Then Markov’s inequality implies that

1
,u(|fn—f|>6)§—/Ifn—flpdu—>0 asn — 0o.
eb X

Letnow p = oo. For n large enough, we have that | f;, — f| < € a.e. in X, yielding
plfo — f1>€)=0. U

Exercise 3.33 Show that almost everywhere convergence does not imply conver-
gence in measure if u(X) = oo.

Hint. Consider f; = X[x,00) in R with the Lebesgue measure.

Example 3.34 The sequence constructed in Example 3.12 converges to zero in
L'(0, 1) and, consequently, in measure, but it does not converge at any point what-
soever. This shows that part 2 of Proposition 3.32 and part (i) of Proposition 3.11
only hold for a subsequence, in general.

Exercise 3.35 Give an example to show that convergence in measure does not imply
convergence in L? (X, w).
Hint. Consider the sequence f;,, = nX (.1 in Ll(O, 1).

3.4 Convergence and Approximation in L?

In this section we will exhibit techniques to derive convergence in L? from almost
everywhere convergence. Next, we will show that, if £2 is an open set in RV and
1 is a Radon measure on 2, then all elements of L?(§2) can be approximated by
continuous functions.

3.4.1 Convergence Results

In what follows, (X, &, 1) denotes a given measure space.
Our next result is a direct consequence of Fatou’s Lemma and Lebesgue’s Dom-
inated Convergence Theorem.

Proposition 3.36 Ler 1 < p < oo, (f,)n a sequence in L (X, u) and let f : X —
R be a Borel function such that f,, 45 f.
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(i) If (f)n is bounded"' in LP(X, ), then f € LP(X, ju) and
I 1lp < liminf || £l p-

(ii) If there exists g € LP(X, ) such that | f,(x)| < g(x) for all n € N and for
almost every x € X, then f € LP(X, p) and f, L—p> f.

Exercise 3.37 Show that, for p = 0o, point (i) of Proposition 3.36 is still true, while
(ii) fails in general.

Hint. Consider the sequence f;,, = x (1 1) in L0, 1).

Exercise 3.38 Let (f;,), be the sequence defined by

Su(x) = 1 ﬁ

——F—, x€(0,1).
T Jnx 0. D

Show that:

e (fn)n converges in L?(0, 1) for every p € [1,2).
e (fu)n is not bounded in L7 (0, 1) for every p € [2, co].

Now, observe that, since | || full, — Il fllp | < I fu — fllp, the following holds:

fES = 1l = 111,

So a necessary condition for convergence in L” (X, p) is convergence of L”-norms.
Our next result shows that if f;, £ f, such a condition is also sufficient.

Proposition 3.39 Given 1 < p < oo, let f,,, f € L? (X, p) be such that f, 2 f.
LP

Il fullp = W fllp, then fr —> f.

Proof '? Consider the function g, € L' (X, ;1) defined by

p

AP+ IfIP
9n = B -

fn_f
2

1A subset .2 of a normed linear space Y is said to be bounded if there exists a constant M such
that ||y|| < M forally e .#.

12This proof is due to Novinger [No72].



3.4 Convergence and Approximation in L” 97

. . . a.e
Since p > 1, a simple convexity argument shows that g, > 0. Moreover, g, —>
| f17. Therefore Fatou’s Lemma yields

/Iflpdufliminf/gndu
X —

/ |f|pdu—hmsup/
n—o0

Solimsup, | fy — fll, < O, thatis, f, —> £. 0

fn_
2

P
du.

The results below generalize Vitali’s uniform summability property and give suf-
ficient conditions for convergence in L? (X, p) for 1 < p < oo.

Corollary 3.40 Let 1 < p < oo, let (f)n C LP(X, ), and let f : X — R bea
Borel function such that:

(i) fo 5.

(ii) For any € > 0 there exists § > 0 such that
Aed8 & wA) <é = /|f,,|”du<s Vn € N.
A
(iii) For any € > O there exists B: € & such that

wB) <0 & /|fn|pd,u<5 Vn € N.
B¢

Then f € LP(X, p) and f, > f.

Proof Let us set g, = | fu|?. Then, by hypotheses (ii)—(iii), (gn), is uniformly u-
summable and converges to | f|” a.e. in X. Therefore Vitali’s Theorem (Theorem
2.98) implies that f € LP(X, ) and

IIfn||§=/Xgndu — I flp-

The conclusion now follows from Proposition 3.39. ]

Remark 3.41 1If p is finite, then, by taking B. = X, we deduce that (iii) of Corol-
lary 3.40 is always satisfied.

Corollary 3.42 Assume p(X) < o0o. Let 1 < p < oo and let (f,), be a bounded
sequence in LP (X, u) converging a.e. to a Borel function f. Then f € LP(X, )
and

S Ygellp).
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Proof Let M > 0 be such that || f,|l, < M for every n € N. Part (i) of
Proposition 3.36 implies that f € LP(X, u). Consequently, by Corollary 3.6,
Jus f € Ni<g<pLl9(X, p). Let now 1 < g < p: by Holder’s inequality, for any
A&,

/A|fn|q dp < (/A Ifnl”du) " (AT < M9 (u(A)) T

The conclusion follows from Corollary 3.40. ([

Corollary 3.43 Assume p(X) < oo. Let (f;)n be a sequence in LY(X, |4) converg-
ing a.e. to a Borel function f and suppose that'

/ | fullog™ (1 ful) dp <M VneN
X

1
for some constant M > 0. Then f € L' (X, ) and f, L, f.

Proof Fixe € (0, 1), t € X, and apply inequality (F.4) withx = é andy = ¢| f,,(1)]
to obtain

2] < el fullog(el fu D) + €5 < el fu®] log (| fu()]) + €.

Consequently, for any A € &,

/ |fuldp < Me + pu(A)e: Vn e N,
A

This implies that (f;), is uniformly p-summable. The thesis follows from Corol-
lary 3.40. (]

Exercise 3.44 Show how Corollary 3.43 can be adapted to the case of 1 (X) = oo
adding the assumption that ( f;,),, satisfies (b) of Definition2.95.

3.4.2 Dense Subsets in LP

Let 2 C RY be an open set. The support of a continuous function f : 2 — R,
written as supp(f), is defined as the closure in RY of the set {x € 2| f(x) # 0}.
If supp(f) is a compact subset of §2, then f is said to be of compact support. The
class of all continuous functions f : 2 — R with compact support is a linear space
which will be denoted by %, (£2).

3By definition, log™ (x) = max{log x, 0} for any x > 0.
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Clearly, if 1 is a Radon measure on £2, then
G ($2) C LP (2, ) for 1 < p < o0.

Theorem 3.45 Let 1 be a Radon measure on 2. If 1 < p < oo, then 6.(82) is
dense in LP (82, ).

Proof First consider the case £2 = R". We begin by proving the thesis under addi-
tional assumptions and split the argument into several steps, each of which will
achieve a higher degree of generality.

1. Let us show how to approximate, by functions in €.(R"), any function f €
LP (RN, ;1) that satisfies, for some M, r > 0,4

0< f(x<M VxeRV, (3.14)
f(x)=0 VxeRY\B,. (3.15)

Let € > 0. Since p is Radon, we have u(B;) < oo. Then, by Lusin’s Theorem
(Theorem 2.29), there exists a function f: € %,.(R"N) such that

9
@M)»p

p(fe # f) < & fello = M.

Then
[ 1F = £ dp = @M £ ) <

2. We now proceed to remove assumption (3.15). Let f € L?(RY, ;1) be a function

satisfying (3.14) and fix ¢ > 0. Owing to Lebesgue’s Theorem fx 3, L f.

Then there exists n. € N such that

If = fxB,. llp <e.

In view of step 1, there exists g- € %.(R") such that | fxB,. —9:llp <e.Then
we conclude that

If=9gellp < I f = FxB.Mp + 1 XB,. = gellp < 2e.

“Hereafter, B, = B, (0) = {x ¢ RV : |x| < r}.
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3. Next, let us dispense with the upper bound in (3.14). Let f € L?(R", 1) be such
that f > 0 and set

0< fu(x) :=min{f(x),n} Vx e RV;

by Lebesgue’s Theorem we have that f, L—p> f. Therefore there exists n. € N
such that

INf - fngnp <E&.

In view of step 2, there exists g- € %.(RN) such that || Jne — gellp < €. Then
lf - ga”p <If- fnsnp + ||fn5 _gsnp < 2e.

Finally, the extra assumption that f > 0 can be disposed of applying step 3 to fT
and f~. The proof is thus complete in the case of 2 = RV,

Next, consider an open set £2 C RY and let f € LP(£2, j1). The function

.S ifxe 2,
f(x)_Io ifx e RN\ @

belongs to LP (RN, f1), where ji(A) = (A N £2) for any Borel set A € RY. Since
[i is a Radon measure on RY, then there exists f. € €.(RY) such that

/ \F = P di <e.
RN

Let (V,,),, be a sequence of open sets in RY such that
o0
Vy iscompact, V, C Va1, |JVa=2 (3.16)
n=1
(for instance, we can choose!® V,, = B, N {x € 2 |dpc(x) > }l}) and set

@) = for)— e Q
gn(x _fgxdvnql(XH-dvn(X)’ x € 2.

We have g, = 0 outside Vn+1, S0 g, € %.(82). Furthermore, g, = f- in V, and
Vu 1 £2, which implies that g, (x) — f:(x) for every x € £2. Since |g,| < fz,
Lebesgue’s Theorem yields g, — f: in LP (2, pu). Therefore there exists n. € N
such that

/ \fe— gu. P dpp < .
2

15dge (x) denotes the distance of the point x from the set £2¢ (see Appendix A).
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Then

1

(/Qlf o] du) 5(/Q|f £l du) +(/Q|f5 .| du)
(/ If—felpd/l)er(/ Ifg—gnglpdu)p<2€.
RN 2

The proof is thus complete. U

Exercise 3.46 Explain why %.(£2) is not dense in L% (§2) (with respect to the
Lebesgue measure), and characterize the closure of 6, (£2) in L°°($2).

Hint. Show that the closure of G, (£2) in L°°(£2) coincides with the set %((£2) of all
continuous functions f : 2 — R satisfying

Ve > 0 3K C £2 compact such that sup |f(x)| <e.
xef2\K

In particular, if 2 = R", we have
Go(RY) = {f RV SR ’ f continuous & | 1H1m fx) = 0} ,
X||— 00
whereas, if £2 is bounded,

%o(82) = [f Q> R‘fcontinuous & lm f() = 0}.

dQC (x)—>

Proposition 3.47 Let A C RN be a Borel set and let ;i be a Radon measure on A.
Then L? (A, u) is separable for all 1 < p < oo.

Proof Assume first A = RV and consider the class of the dyadic cubes in RY (see
Definition 1.58). Let .# be the set of all (finite) linear combinations with rational
coefficients of characteristic functions of these cubes. Then .# is countable. We
claim that .# is dense in LP(RN, w) for 1 < p < oo. Indeed, given f € LP(RN, )
and e > 0, according to Theorem 3.45 there exists f- € €, (RN) with || f — f-|| p < E.

Setting
€

T (I pl—k M) TP

Ne

where k € N is such that supp(f) C [—k, k)", by the uniform continuity of f. we
get the existence of 6 > 0 such that

X, yeRY & |x -yl <6 = [f-(x) = £ <.
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Next, let j be sufficiently large such that the cubes in 2; have diameter less than §
and cover the cube [k, k)N by a finite number of cubes Q1, ..., O, € Qj. Choose
c1,...,cp € Qin such a way that

iIQl,-ffE <¢ < iIQliff€+7]5

and define .

ge = ZCiXQ[-

i=1

It follows that g. € .# and || f- — g:lloo < 7. SO
Il f2 —gellﬁ :/[ o |fe = geIPdp < M([_k,k)N)”fe _gengo <eb,

yielding
If=gellp < Wf = fellp + 1 fe = gellp < 2e.

This completes the proof in the case A = RV,

To obtain the conclusion for an arbitrary Borel set A, let .#” denote the restriction
to A of the functions in .. To see that .#" is dense in L? (A, 1), 1 < p < 00, given
feLP(A, p),set f = finAand f = 0outside A. Then f € L?(RN, i), where
(B) = (B N A) for any Borel set B C R¥. Since [t is a Radon measure on RN,
given € > 0 there exists f: € .# such that

/ \f — folPdii<e.
RN

Therefore [, |f — f-|Pdpu = Jgn |f — f-IP dfi < e. This shows that .#" is dense
in LP(A, i) and completes the proof. (I

Exercise 3.48 (7 is separable for 1 < p < oo.
Hint. Show that the set

= |

x, € Q, supn<oo]
X 70

is countable and dense in £7.

Our next result shows that the integral over RV with respect to the Lebesgue
measure is translation continuous.
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Proposition 3.49 (translation continuity in L”) Let 1 < p < oo and let €
LP(RN) (with respect to the Lebesgue measure). Then

H%rgo/w |f (x +h) = f()IP dx =0

Proof Assume first f € €.(R") and let K = supp(f). Setting
K:={xeR" |dg(x) <1}

we have that supp(f(x + h)) C K if |h|| < 1. Hence, for ||k]| < 1, we get

IfCe+h) = FOlp =/k|f(X+h)—f(x)|pdx

<m(K) sup [f(x) = fOIP
llx=ylI=lAll
Since f is uniformly continuous, SUP |y <|lh| [f(x)— f(y)| > 0as h — 0. The

conclusion is thus proved when f € %, (RM).

In the general case, fix f € LP(RY) and £ > 0. Theorem 3.45 implies the
existence of f. € €.(RV) such that || f. — f|| p < €. By the first part of the proof,
we have that there exists § > 0 such that

[ fe(x +h) = fe(O)llp < & for [|A]| < 6.

Then, using Minkowski’s inequality and the translation invariance of the Lebesgue
measure, if ||| < 6 we deduce that

Ifx+h) = Flp <l fx+h) = fex + Ml + 11 fex +h) = f2(0)lp
+ I fe(x) = f(x)”p
=20 f:(x) = fFOllp + I fe(x +h) = f20)lp < 3e.

The proof is thus complete. (]

3.5 Miscellaneous Exercises

Exercise 3.50 For each of the following sequences (x;,), find the values | < p < co
for which (x,), € £7:

1 14+n+n 1 n> 1
tan

) , sin ,
n+./n n Jn J1+n n@2+n)
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1
cos —, 0s —,

1 ,3( 1 )
——c sin’ ( ————— ),
n 1 +n n 1 +1log’n

n+1 1 n+logn
- n?2+1+Ilognsin—, tan ———.
n(l + logn) n 1+ n2

Exercise 3.51 For each of the following functions f find the values 1 < p < oo
for which f € L”(0, 00):

sin x 1 arctan x

x(I+x)"  IT4+[logx]”  /x3+x%

1+ log2 X arctan(x + x2) . 1
v/ ) , an ———.
2+x x +eX 1+ |logx|

Exercise 3.52 Let f, : (1, 00) — R be the sequence defined by

n —nx
fan(x) = ﬁe , x> 1.

Show that:

1. f, € LP(1,00) forevery 1 < p < oo.
2. fu = 0in LP(1, 00) forevery 1 < p < oco.

Exercise 3.53 Let f, : (0, 1) — R be the sequence defined by

o) =~ xe O,

Show that:

1. fyis convergentin L”(0, 1) forevery 1 < p < 2.
2. fa g LP(0,1)if2 < p < o0.

Exercise 3.54 Let f, : (0, 1) — R be the sequence defined by

n4/x sin x

o 1@,

Sux) =

Show that:

1. f, € LP(0,1) forevery 1 < p < oo.
2. fuis convergentin L”(0, 1) forevery 1 < p < 2.
3. fu isnot convergentin L”(0, 1) if 2 < p < oo.
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Exercise 3.55 Let f,, : R — R be the sequence defined by

sin x
14+x
0 otherwise

Fi) = ifxe[n,n—i—l]'

Show that:

1. fu e LP(R) forevery 1 < p < oo.
2. fpn— 0in LP(R) forevery 1 < p < oo.

Exercise 3.56 Let f, : (0, c0) — R be the sequence defined by

1 4+ cos
fulx) = — 2 E x50,

Jx
Show that:

1. f, is convergent in L? (0, co) forevery 1 < p < 2.
2. fn € LP(0,00)if2 < p < 0.

Exercise 3.57 Let f, : (0, 1) — R be the sequence defined by

sin J/x
Jx

Ja(x) = cos%, x € (0, 1).

Show that:

1. f,is convergentin L”(0, 1) forevery 1 < p < 6.

2. [, € LP0,1)if6 < p < oo.

Exercise 3.58 Let f, : (0, c0) — R be the sequence defined by

1 . 1
sin ,
JT+x 1+ ]logx|"

1. Show that f;, € L?(0, oo) forevery 2 < p < oo.
2. Show that f, & L?(0,00)if p < 2.
3. Find the values 2 < p < oo for which f;, is convergent in L? (0, 00).

Sa(x) = x > 0.

Exercise 3.59 Let1 < p < ocoand f € L?(R). Consider the sets
Ap ={x e R[|fu(x)| = n}.

Show that:

1. m(A,) — 0.
2. fxa, € L1(R) forevery g < p.
3. fxa, — 0in LY(R) for every ¢ < p.
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Exercise 3.60 Let 1 < p < ocoand f € L?(R). Consider the sets

1
an[xeﬂ%(v(xns;].

Show that:

1. fxs, € L1(R) forevery p < q < oo.
2. fxB, = 0in LY(R) for every p < g < oo.

Exercise 3.61 Find the values 1 < p < oo for which the following sequence is
convergent in L? (1, co)

n
Sux) = m,

Exercise 3.62 Find the values 1 < p < oo for which the following sequence is
convergent in L? (0, co)

log x

fulx) = i V2
0

ifn<x<2n

otherwise

Exercise 3.63 Find the values 1 < p < oo for which the following sequence is
convergent in L? (0, co)

fulx) = - x > 0.

x + e2nx’

Exercise 3.64 Find the values 1 < p < oo for which the following sequence is

convergent in L? (R)

arctan nx

o) = S xeR

Exercise 3.65 Find the values 1 < p < oo for which the following sequence is
convergent in L? (1, co)

x > 1.

n
fu(x) = m,
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Chapter 4
Product Measures

On the Cartesian product of two measure spaces one can construct a measure—hence,
an integral—which is directly connected with the measure on each factor. Then, the
natural problem that arises is how to reduce a double (or multiple) integral to the
computation of two (or more) simple integrals. Such a question plays a crucial role
in Lebesgue integration.

The key results of the theory are Tonelli’s Theorem and Fubini’s Theorem, which
provide sufficient conditions to compute a double integral by iterated integrations on
the factors.

Such theorems have important consequences when applied to the product space
RZ¥ = RN x RN . First, one can characterize the families of functions in L? (R")
with compact closure, thus obtaining an L”-version of the Ascoli-Arzela Theorem.
Another important application of multiple integration is the study of the convolution
product f x g of two Lebesgue functions. Such an operation commutes with transla-
tion and derivation, and is a powerful tool to approximate the elements of L” (R")
by smooth functions.

4.1 Product Spaces

4.1.1 Product Measures

Let (X, .%) and (Y, %) be measurable spaces. We will turn the Cartesian product
X x Y into a measurable space in a canonical way. A set of the form A x B, where
A € .Z and B € ¥, is called a measurable rectangle. Let us denote by Z the family
of all elementary sets, where by an elementary set we mean any finite disjoint union
of measurable rectangles.

Proposition 4.1 Z is an algebra.
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Proof Clearly, @ and X x Y are measurable rectangles. It is also obvious that the
intersection of any two measurable rectangles is again a measurable rectangle. More-
over, the intersection of any two elements of & stays in Z. Indeed, let! U; (A; x B;)
and U;(C; x D;) be finite disjoint unions of measurable rectangles. Then

(U,-(A,- x Bl-)) N (oj(cj x D,-)) - o,-,j((Ai x B) N (C; x D,-)) c%.

Let us show that the complement of any set £ € % is again in %. This is true if
E = A x B is a measurable rectangle since

E¢ = (A° x B)U(A x B)U(AC x BY).

Now, proceeding by induction, let

b= (M)U(‘An+l X Bpi1) € Z

F

and suppose F¢ € Z. Then E€ = F N (Ay+1 X Bp41)¢ € Z because (A4 X
Bn+1)¢ € Z and we have already proved that Z is closed under finite intersection.
This completes the proof. (]

Definition 4.2 The o-algebra generated by Z is called the product o-algebra of .7
and ¢ and is denoted by .% x ¥.

Exercise 4.3 Prove that:

o #B(la.b) x [c,d)) = B(la. b)) x B([c.d)).
e If N, N' € N, then ZRNTN') = BRN) x BRN).

For any E € % x ¢, we define the sections of E as follows:
Ex={yeY: x,y) €E}, EVY={xeX: (x,y) €eE} VxeX, VyeY.

Proposition 4.4 Let (X, %, 1) and (Y, ¥4, v) be o-finite measure spaces. If E €
F X 94, then the following statements hold:

(a) Ex €9 and EY € F forany (x,y) € X x Y.
(b) The functions
Yy >R

X —-R
y = u(EY)

x = v(Ey) and {

are Borel. Moreover,
/V(Ex)du=/u(Ey)dV-
X Y

I'The symbol U denotes a disjoint union.
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Proof Suppose, first, that E = U;_, (A; x B;) belongs to %. Then for (x,y) € X x Y
we have E, = L'J;l:](A,- X B;)y and EY = U?ZI(A,- X B;)Y, where

B,’ ifxeA,-,
o ifx ¢ A,

A,‘ inyB,',

(A; x B)Y = {

Consequently,

n

V(Ey) = > v((Ai x Bi)y) = D v(B)xa, (x),

i=1 i=1

n n

P(EY) =" n((Ai x B))Y) = > u(A)xs, 1)

i=1 i=1

The conclusion follows and can be easily extended to elementary sets.
Now, let & be the family of all sets E € F x ¥ satisfying (a). Clearly,
@, X x Y € &. Furthermore, for any E,, E € & and (x,y) € X X Y we have
(E9)x = (Ex)°, (E9)Y = (EY)",

oo o] o] 00 Y
U (En)x = (U En) > U (En)y = (U En) .
n=1 n=1 n=1 n=1

X

Hence, & is a o-algebra including & and, consequently, & = . x 4.
We now prove (b). Assume first that iz and v are finite and define

M = {E €EF xY | E satisfies (b)}.

We claim that .# is a monotone class. Indeed, consider (E,), C .# such that
E, 1 E.Then, forany (x,y) € X x Y,

(Ey)x T Ex and (En)y 0 EY.

Thus,
V((En)x) 1T v(Ey) and M((En)y) 0 M(Ey)~

Since the function x V((E,,)x) isBorel foralln € N,sois x — v(E). Similarly,
y +— p(EY) is Borel. Furthermore, by the Monotone Convergence Theorem,

/V(Ex)d,uz lim / V((En)x)d,ll,z lim /u((E,,)y)duz/,u(Ey)du.
X n—0oo X n—oo Y Y
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So E € .. Next, consider (E,), C .# suchthat E, | E.Then a similar argument
as above shows that, for every (x,y) € X x Y,

V((En)y) L v(Ey) and p((Ep)Y) 4 p(EY).
Consequently the functions x — v(E,) and y — u(EY) are Borel. Furthermore,
V((Eny) <v(Y) VxeX,  p((En)Y) <p(X) Vyev,

and, since p and v are finite, all constant functions are summable. Then Lebesgue’s
Theorem yields

/V(Ex)dﬂz lim / V((En)x)d,uz lim /,LL((En)y)dl/:/,u(Ey)dV,
X n—oo [y n—oo |y Y

which implies E € .# . Therefore .# is a monotone class as claimed. By the first part
of the proof, we deduce that # C .# . So Halmos’ Theorem yields .# = .% x ¥,
which proves the conclusion when w and v are finite.

Now, suppose j and v are o-finite, so that X = U2° | X, Y = U>2 | Y, for some
increasing sequences (X)), C .-% and (¥;), C ¢ with

w(Xy,) <oo, v¥,) <oo VneN. 4.1)
Define u,, = pX,, v, = vLY, (see Definition 1.26) and fix E € .# x ¢. For any
(x,y) e X xY
ExNY, 1t E, and EYNX, t EY.
Thus
Uy(Ey) = V(Ex N Y,,) + v(Ey) and p,(EY) = ,u(Ey N Xn) 1 u(EY).
Since p,, and v, are finite measures, for all n € N the function x — 1, (Ey) is Borel,

therefore x +— v/(E,) is also Borel. A similar argument proves that y — u(EY) is
Borel. Furthermore, by the Monotone Convergence Theorem and Exercise2.72,

/Z/(Ex)d/,é= lim Vn(Eyx)dp = lim v (Ex) dpy.
X Xn X

n—o00 n—o00

n—oo

/M(Ey)dyz lim n(E¥Ydv = lim [ p,(EY)dv,.
Y Yy ©Jy

Since f1,, vy are finite measures, then [y v, (Ey) dpn = [, pn(EY) duy, for every n,
and so [y v(Ex)dp = [, w(EY)dv. O
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Theorem 4.5 Let (X, %, ) and (Y, ¥, v) be o-finite measure spaces. The set
Sfunction i X v defined by

(u x v)(E) =/ v(Ey)dp = / wWEYYdv VEe % x¥9 4.2)
X Y

is a o-finite measure on ¥ x 94, called the product measure of u and v. Moreover,
if X is any measure on ¥ X 9 satisfying

MA x B) = n(A)v(B) VAe F,VBe9, 4.3)

then A\ = (1 X v.

Proof First, to check that ;1 x v is o-additive, let (E,), be a sequence of disjoint
sets in .F x &. Then, for any (x,y) € X x Y, (En)x)n and ((E,)Y), are disjoint
families in ¢ and .%, respectively. Therefore, by Proposition2.48,

(Iu X y)(U En) = /XI/ ((U,C,:ilEn)x) d/JJ = /X ZV((EII)X) dﬂ
n=1 n=1
= [ vlEDDdi =3 x (E.
n=1 n=1

To prove that ;1 x v is o-finite, observe that if (X,), C % and (Y,), C ¢ are two
increasing sequences such that X = U2 | X,, ¥ = U |V, and

w(Xy,) <oo, v(¥y) <oo VneN,
then, setting Z, = X,, x Y,,, we have that Z,, € ¥ x ¥,
(nx v)(Zy) = p(Xpv(Y,) < oo,

and X x Y = Up2, Z,. Finally, if \ is a measure on .7 x ¢ satisfying (4.3), then
A and p x v coincide on Z. So Theorem 1.32 ensures that A and p x v coincide
on o(%). O

The following result is a straightforward consequence of (4.2).

Corollary 4.6 Under the same assumptions of Theorem4.5, let E € % x 4 be such
that (u X v)(E) = 0. Then u(EY) = 0 for almost everyy € Y, and v(Ey) = 0 for
almost every x € X.

Example 4.7 We note that 14 x v may fail to be a complete measure even when both
1 and v are complete. Indeed, let m denote the Lebesgue measure on R and ¢ the
o-algebra of all Lebesgue measurable sets in R (see Definition 1.56). Let A € ¥
be a nonempty zero-measure set and let B C R be a set which is not Lebesgue
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measurable (see Example 1.66). Then A x B C A x Rand (m x m)(A x R) = 0.
On the other hand, A x B ¢ ¢ x ¢, otherwise one would get a contradiction with
Proposition 4.4(a).

4.1.2 Fubini-Tonelli Theorem

In this section we will reduce the computation of a double integral with respect to
the product measure ;1 x v to the computation of two simple integrals. The next two
results are fundamental in multiple integration.

Theorem 4.8 (Tonelli) Let (X, .7, u) and (Y, 9, v) be o-finite measure spaces and
let F : X x Y — [0, oo] be a Borel function. Then:

(a) (i) Forevery x € X the function F(x,-) : y — F(x,y) is Borel.
(ii) For every y € Y the function F(-,y) : x — F(x,y) is Borel.

(b) (i) The function x fY F(x,y)dv(y) is Borel.
(ii) The function y +— fX F(x,y)du(x) is Borel.
(c) The following identities hold:

/ F(x,y)d(MXV)(xvy)Z/ [/ F(x,y)dl/(y)}du(X) 4.4)
XxY x Ly

=/ [/ F(x,y)du(x)}dV(y)- 4.5)
Y X

Proof Assume, first, that F = xg with E € . x 4. Then

F(x,:) = XE, Vx € X,
F(,y)=xgx VYyevt.

So properties (a) and (b) follow from Proposition4.4, while (c) reduces to formula
(4.2) used to define the product measure. Consequently, the thesis holds true when F
is a simple function. In the general case, owing to Proposition2.46 we can approxi-
mate F pointwise by an increasing sequence of simple functions

F,: X xY — [0, 00).
For every x € X, F,(x, -) is a sequence of Borel functions on Y such that
F,(x,-) 1 F(x,-) pointwise as n — 00.
So the function F(x, ) is Borel and (a)-(i) is proven. Moreover, by the first part

of the proof, x +— fy F,(x,y)dv(y) is an increasing sequence of Borel functions
satisfying, thanks to Monotone Convergence Theorem,
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/Y Faroy)dv(y) 1 /Y Feo.y)duy)  Vx e X.

Hence, (b)-(i) holds true and, again by monotone convergence,

/ [ / Fn<x,y)du(y)} dux) 1 / [ / F(x,y)du<y>] du).  (46)
X Y X Y

We also have

/ Fo(e,yd(p xv)y(x,y) 1 F(x,y)d(px v)(x,y). 4.7)
XxY XxY

Since each F;, is a simple function, the left-hand sides of (4.6) and (4.7) are equal.
Therefore the right-hand sides also coincide and this proves (4.4). By a similar
argument one can show (a)-(ii), (b)-(ii), and (4.5). O

Theorem 4.9 (Fubini) Let (X, 7, p), (Y, ¥, v) be o-finite measure spaces and let
F : XxY — Rbea (uxv)-summable function. The the following statements hold:

(a) (i) Foralmostevery x € X the function F(x, ) : y — F(x,y) is v-summable.
(ii) For almost every y € Y the function F(-,y) : x — F(x,y) is p-summable.
(b) (i) The function* x — fY F(x,y) dv(y) is p-summable.
(ii) The function y — fX F(x,y)du(x) is v-summable.
(c) Identities (4.4) and (4.5) are valid.

Proof Let F* and F~ be the positive and negative parts of F. Then Theorem 4.8
appliesto F ™ and F~.In particular, since [y, FEd(uxv) < [y, |Fld(uxv) <
00, identity (4.4) implies

/ [ / Fi(x,y)dl/(y)} dp(x) < oo,
X Y

X > / FE(x, y)dv(y) (4.8)
Y

So the functions

are p-summable and, owing to Proposition 2.44(i), a.e. finite, that is,
/ Fi(x, y)dv(y) < oo for almost every x € X.
Y

It follows that F*(x, -) is v-summable for almost every x € X. Since

20Observe that the function x +— jY F(x,y)dv(y)isdefined a.e. in X, the exceptional zero-measure
set consisting of those points where F(x, -) fails to be v-summable. Similarly, the function y —
Jx F(x,y) dpu(x) is defined a.e. in Y. See Remark 2.74.
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F+(x,-)—F_(x,-)=F(x,~) Vx € X, 4.9)
we deduce (a)-(i).

We observe that, for every x such that F(x, -) is v-summable, we can integrate
identity (4.9) to obtain

/YF+(x,y)dV(y)—/YF_(x,y)dV(y)=/YF(x,y)dV(y)- (4.10)

(b)-(i) holds true for F+ and F~, hence for F by (4.10). By interchanging the role
of X and Y, one can prove (a)-(ii) and (b)-(ii).

Finally, identities (4.4) and (4.5) hold for F*; by subtraction, we obtain the
analogous identities for F. O

Example 4.10 Let X = Y = [—1, 1) with Lebesgue measure and consider the
function

fx,y) =

# for (x, ) % (0, 0).

By completing the definition of f arbitrarily in (0, 0), it follows at once that f is
Borel. The iterated integrals exist and are equal; indeed

1 1 1 1
/1|:/1f(x’y)dxi|dy:/1 [/lf(x,y)dy]dxzo.

On the other hand the double integral fails to exist, since

1 2T | i 0 0 1d
/ If(x,y)ldxdyz/ [/ Md@]drzz/ ar_ o
[-1.1)2 o LJo r T

This example shows that the existence of the iterated integrals does not imply the
existence of the double integral, in general.

Example 4.11 Consider the spaces
([0, 11, 2(10, 1), x*) and ([0, 11, ([0, 11), m),

where ;* and m denote the counting measure and Lebesgue measure on [0, 1].
respectively. Let A be the diagonal of [0, 1]2, that is,

A={(x,x)|x €[0,1]}.

For every n € N, set

w=[olTolL 2T
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R, is a finite union of measurable rectangles and A = N> | R,. So A belongs to
Z([0, 1]) x A([0, 1]) and x 4 is measurable. Moreover,

1 1
/ [/ XA(x,y)du#(x)]dyz/ ldy =1,
0 [0,1] 0
1 1
/ [/ xa(x,y) dy} dp (x) :/ 0du* =0,
0 0 [0,1]

which shows that the conclusion of Tonelli’s Theorem may be false if 4 is not o-finite.

4.2 Compactness in L?

We shall derive important results by using of Fubini’s and Tonelli’s Theorems. The
first one is the characterization of all relatively compact subsets® of L?(R") for
any 1 < - p < 00, that is, all families of functions .#Z C LP (RN ) with compact

closure /.
First, we need the following lemma.

Lemma 4.12 If f : RN — R is Borel, then the functions
@) eRY > fe—y) and (x.y) e R > flx+y)

are also Borel.

Proof Let Fy : (x,1) € R?N > f(x). Since f is Borel, it follows that F is
Borel. Indeed, the set {(x, )| Fi(x,t) > a} coincides with the measurable rectan-
gle {x| f(x) > a} x RN. Given (£,7) € R?M, consider the nonsingular linear
transformation of R?V: x = & — 1, y = £ + 1. Owing to Exercise 2.15, the func-
tion F>(&,m) = Fi(€ —n, & + n) is Borel on R?V. Since F2(€,1) = f(€ — 1),
the first part of the conclusion follows. The second one can be proved by a similar
argument. (]

Definition 4.13 Let 1 < p < oo. For every r > 0 and f € LP(RY) define
S, f : RN — R by the Steklov formula

Sy fx) =

N/ fa+ydy  VxeRY,
WNT Syl <r

where wy is the volume of the unit ball RV .

3LP(RN) = LP(RN, m) where m denotes the Lebesgue measure.
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Proposition4.14 Let 1 < p < oo and f € LP(RN). Then for every r > 0
S, f is a continuous function. Furthermore S, f € LP(RN) and, using the notation
T f(x) = f(x 4+ h), we have:

1
ISrf(X)ISWIIfII,, vx e RY; (4.11)

1
1S-f(x) =S, fx+h)| < Wllf —mflp Vx, h e RY; (4.12)

1S-fllp = I1f1lp:
If =S fllp= sup |f =7ufllp. (4.13)

0<|lhl=r

Proof (4.11) can be derived using Holder’s inequality:

1 1/p
- p
157001 = =1 (/MG e+l dy) R P

(4.12) follows from (4.11) applied to f — 75, f. Thus, (4.12) and Proposition 3.49
imply that S f is a continuous function. By (4.14), using Lemma4.12 and Tonelli’s
Theorem, we get

1
/ IS fI7 dx < N/ [/ If(x—f-y)lpdx]dy
RN WNTT Jlyl<r LJRN

p
=m/l dy=|flp.

N
WNT yll<r

To obtain (4.13), observe that (f — S, )(x) = uﬁv Sy <r(f ) = f(x 4+ y)dy.
So

1 1/p
[((f =S ) (x)] SW(/ﬂyl<r|f(x)—f(x+y)|pd)’) .

Therefore Tonelli’s Theorem yields

1
[or=saras— | [/ |f(x)—f(x+y)|”dy}dx
RN WNTT JRN L |lyll<r

1
-— [/ @ —f(x+y)|”dx} dy
WNT lyll<r LYRN

Sigh=r &

pJllyli<r P

= sup |f=mfllp——x—= sup IIf —7uflp.
0<|lnl<r WNT 0<|lnll<r

Inequality (4.13) is thus proved. (]
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The role played by the following theorem in the study of L”-spaces is similar to the
one played by the Ascoli—Arzela Theorem (Theorem E.2) for continuous functions.

Theorem 4.15 (M. Riesz—Frechét—Kolmogorov) Let 1 < p < oo and let .# be a
bounded set in LP(RN). Then .4 is relatively compact if and only if

SUP re g [fIPdx— 0 as R — oo, (4.15)
lxl>R

Supfe////RN |lf(x+h)— f(x)Pdx— 0 as h— 0. (4.16)

Proof To begin with, observe that (4.15) and (4.16) hold for a single element of
L?(RN) ((4.15) follows from Lebesgue’s Theorem; see Proposition 3.49 for (4.16)).
Let us consider the balls in L? (RY):

By(f):={9 e LP®R") [IIf —gll, <r} r>0, feLP@®").
If ./ is relatively compact, then for any € > O there exist functions fi, ..., f, € A

such that .#Z C B.(f1) U---U B:(f,). As we have just recalled, each f; satisfies
(4.15) and (4.16). So there exist R., 6. > 0 such that, foreveryi =1, ..., n,

/ [filPdx <e? & |fi —mfillp <eif ] <d¢, 4.17)
llx]I>R.

where 75, f(x) = f(x + h) forany x,h € R¥. Let f € .#. Then f € B.(f;) for
somei = 1,...,n. By (4.17), using Minkowski’s inequality, we have

I/p I/p l/p
(/ Ifl”dx) < (/ If—fiI”dX) +(/ |fl~|l’dx)
[lx]|> R [lx)I> R [lx||> R

1/p
5||f—ﬁ||p+(/| . |ﬁ|de) <2¢

and, if ||a| < 0,

W =mnfllp =W = fillp = Wfi = fillp + M fi = T fllp < 3e.

The implication ‘=’ is thus proved.
To prove the converse it suffices to show that . is totally bounded.* Let ¢ > 0
be fixed. On account of assumption (4.15), we have that

4Given a metric space (X, d) and a subset . C X, we say that .# is totally bounded if for any
€ > 0 there exist finitely many balls of radius € covering .#. A subset .# of a complete metric
space X is relatively compact if and only if it is totally bounded.
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3JR. > 0 such that / | fI1Pde<el Vfe . (4.18)
[lxll>Re

Also, recalling (4.13), assumption (4.16) implies
30. > 0 suchthat ||f =S5 fll, <e Vfed, (4.19)

where S5, is the Steklov operator of Definition4.13. Moreover, properties (4.11) and
(4.12) ensure that { Ss. f } fet is a pointwise bounded and equicontinuous family

on the compact set K. := {x € RN : |x|| < R.} and, consequently, is relatively
compact in the space % (K;) thanks to Ascoli-Arzela Theorem. Thus, there exists
a finite number of continuous functions gi, ..., g» : K- — R such that for each
f € . the function Ss, f satisfies, for some j,

|S5. f(x) — gj(0)] < W Vx € K-. (4.20)
Set
e ifixl < R,
fite) = {o if |x|| > R..

Then fj € LP(RV) and, by (4.18)~(4.20),

1/p 1/p
If = fill, = (/lxM Ifl”dx) +(/K |f—gj|f’dx)
1/p 1/p
<€+</ |f—565f|pdx) +(/ |S§Ef—gj|pdx) < 3e.
K. K-

This shows that .# is totally bounded and completes the proof. O

4.3 Convolution and Approximation

In this section we will develop a systematic procedure for approximating a L? func-
tion by smooth functions. The operation of convolution® provides the tool to build
such smooth approximations. In what follows, the measure space of interest is always
RY with the Lebesgue measure.

5The notion of convolution, extended to distributions (see [Ru73]), plays a fundamental role in the
applications to differential equations.
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4.3.1 Convolution Product

Definition 4.16 Let f, g : RY — R be Borel functions and x € R such that the
function
yeRY > fx =g @.21)

is integrable.6 The convolution product (f * g)(x) is defined by
(0w = [ = ey

Remark 4.17 If f, g : RY — [0, oo] are Borel, then the function (4.21) is positive
and Borel for every x € R It follows that the product (f * g)(x) is well defined
for every x € RY; moreover f % g : RV — [0, oo] is Borel by Tonelli’s Theorem
and Lemma4.12.

Remark 4.18 By the change of variable z = x — y and the translation invariance of
the Lebesgue measure, we deduce that the function (4.21) is integrable if and only
if the function z € RN +— f(z)g(x — z) is integrable and (f * ¢)(x) = (g * f)(x).
This proves that convolution is commutative.

Our next result gives a sufficient condition to guarantee that the product f * g is
defined a.e. in RV,

Theorem 4.19 (Young) Let 1 < p, q,r < oo be such that’
1
=41, (4.22)
r

and let f € LP(RN), g € LY(RN). Then for almost every x € RN the function
(4.21) is summable. Moreover® fxgel” RNY and

If = gllr < 1fllp lgly- (4.23)

Finally, if r = oo, then the function (4.21) is summable for every x € RN and f % g
is continuous on RV,

Proof Assume first 7 = co. Then 1/p 4+ 1/g = 1. By the translation invariance of
the Lebesgue measure, for every x € RV the function y € RN — f(x — y) belongs
to L”(R") and has the same L”-norm as f. Holder’s inequality and Exercise 3.26
imply that for every x € R¥ the function (4.21) is summable and

6See Remark 2.67 for the definition of integrability.
"Hereafter we will adopt the convention é =0.
80bserve that, in general, f g is defined a.e. in RV (see Remark 2.74).
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[(f @< 1flplgly Vx e RY. (4.24)

Since at least one between p and ¢ is finite and convolution is commutative we may
assume, without loss of generality, p < oo. Then, for any x, h € RN, inequality
(4.24) yields

I(f 9 +h) = (fx=((Tnf = x| < lmnf = Flpllgllg .

where 75, f(x) = f(x + h). Proposition 3.49 applies to f and implies that |75, f —
fllp, — Oash — 0;the continuity of f*gfollows. (4.23) canbe derived immediately
from (4.24).

Now, assume r < oo (so that p,q < 00). We will get the conclusion in three
steps.

1. Suppose p = 1 = g (hence, r = 1). Then | f]| *x |g| € L'(RV) and we have
AT gl = 11N gl

Indeed, according to Remark4.17, | f| * |g| is a Borel function and Tonelli’s
Theorem implies

/Ifl*lgldx=/ [/ If(x—y)g(y)ldy}dx
RN RN RN

=/ l9(y)] [/ If(x—y)ldX} dy = |1fl1 ligll-
RN RN

Therefore the conclusion of step 1 follows.

2. We claim that, for every f € L?(RV) and g € LY(RY),

(f1%1gD" @) < IR P gl AF17 * 191D (x)  Vx e RV, (4.25)

Assume, first, 1 < p, g < oo and let p’ and ¢’ be the conjugate exponents of p
and ¢, respectively. Then

1 1 1 1 1 1
r o q

1 1
1P p(i=2)=2 1l (1-2)=4,
r q q’ r P P

Using the above relations, for every x, y € RY we obtain

and

£ =gl = (£ —I12)" (1919 (1 = 1P lgaa) "
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Hence, applying the result of Exercise 3.7 with the exponents ¢’, p’, r,

(1% 1ghe) < IFIEE 1gl9 P (£17 # 191DV (x)  ¥x e RV.

Raising the previous inequality to the rth power, (4.25) follows.
Inequality (4.25) is immediate for p = 1 = ¢g. Soletp = land 1 < g < o0
(consequently, r = ¢). For every x, y € RY we have

1f =gl = 1f&x =V (1 x = pllgald) e .

Thus, by Holder’s inequality we get

(F1%1gD) < IFIVT (f1 %191 Y9x)  Vx e RV,

Raising the previous inequality to the gth power we obtain (4.25).
The last case to study, namely ¢ = 1 and 1 < p < oo, follows from the previous
one since convolution is commutative.

3. Conclusion.

Owing to Remark4.17, | f| * |g| is a Borel function and

/RN(IfI gD dx < 1 f 1 7 Mgl TN IAIP 19l = 1L £11, Nglly -

by (4.25) by step 1

(4.26)
Then | f| * |g| € L™ (RN), that is,

/ (/ f (e — y)g(y)ldy) dr < oo,
RV \JRV

So the function x — ( f]RN |f(x —y)gy)l dy)r is summable and, owing to Propo-
sition2.73(i), a.e. finite. It follows that y — f(x —y)g(y) is summable for almost
every x € RY. Hence, f # g is defined a.e. Using Remark 4.17 again, we obtain
that f*xg*, f~xg~, fT xg~, f~ x g7 are Borel functions; moreover, for
every x such that (4.21) is integrable, we have

F*@) =T g+ fxg)@) = (fTxg™ + f xgH).

We deduce that f * g is Borel and

/ Lf *glrdxf/ (f1*lgh™dx < 11 gliy
RN RN —_—
by (4.26)

which completes the proof.
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Remark 4.20 Ifr = ocoand 1 < p, g < oo in (4.22), then

lim (f *g)(x) = 0.

[lx[|—o00

Indeed, for given € > 0 let R, > 0 be such that

/ f@IPdy <P & / gl dy < 4.
lyll=R- [lyll=R<

By Holder’s inequality we get

|(f * 9)(x)] < ‘ flx —y)g(y)dy‘ + ‘/

fx—yagy) dy‘
lyll= R lyll<R<

1/q
< ||f||p(/|y|ZR€ gl dy) " + ||g||q(/|

x—z|| <R

1/
F@rd) "

Therefore, for all ||x|| > 2R., we have

I(f ) < el fllp+ llgllg)-

Remark 4.21 Observe that, when ¢ = 1, Young’s Theorem states that the convolu-
tion f % g with a fixed g € L' (R") determines a transformation f — f % g which
maps functions in L? (R") into the same L”(R"), and further

If*gllp = IIflpllgll- (4.27)
Remark 4.22 Taking p = 1 in Remark4.21, we deduce that the operation of convo-
lution
x: L'RY) x L'(RY) - LYRY)
provides a multiplication structure for L' (RY). This operation is commutative (see

Remark 4.18) and associative. Indeed, if f, g, h € L! (RN ), then, by the change of
variable z = t — y and Fubini’s Theorem, we obtain

(o s = [ (Frat—phod

=/ h(y) [/ fx—y— z)g(z)dz} dy
RN RN

=/ flx—1) [/ g(t —y)h(y)dy] dt
RN RN

=/RN Jx=0)(gxh)(®)dt = (f * (g% h)(x),
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which proves associativity. Finally, it is clear that convolution obeys the distributive
laws. However, there is no unit in L!(RY) under this multiplication. To see this,
suppose there exists g € L'(RY) such that g x f = f for every f € L'(R"). By
the absolute continuity of the Lebesgue integral, there exists § > 0 such that

Ae BRY) & m(A)§5:>/|g|dx<1.
A

Let p > 0 be such that m({[lyll < p}) < & and take f = x{jy<p} € L' (R"). Then
for every x € R we have

lf )= 1(g* )] S/RN lg(x — )l If(y)ldy=/ lg(x —y)ldy

lyll<p
=/ l9(2)ldz < 1,
le=xli<p

which contradicts the definition of f.

Exercise 4.23 Compute f * g for f(x) = x[—1.1;(x) and g(x) = e~ ¥,

4.3.2 Approximation by Smooth Functions

Definition 4.24 A family (p.). in L' (R") is called an approximate identity if it
satisfies the following:

e >0, /RN ps(x)dx=1 Ve >0, (4.28)

V6 >0: / we(x)dx — 0 ase — 0T, (4.29)
x>0

Remark 4.25 Properties (4.28) and (4.29) mean that taking smaller and smaller val-
ues of € produces functions . with successively higher peaks concentrated in a
smaller neighborhood of the origin.

Remark 4.26 A common way to produce approximate identities in L' (R") is to
take a function ¢ € L' (RV) such that @ > 0and fRN @(x) dx = 1 and to define
fore >0

pe(x) = e_Ngo(e_lx).

Conditions (4.28) and (4.29) are satisfied since, introducing the change of variable

Y= e~ 1x, we obtain
/ pe(x) dx = / p(y)dy =1
RN RN
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and, owing to Lebesgue’s Dominated Convergence Theorem,

/ SOs(X)dXZ/ oy)dy — 0 ase — 0.
lxl=6 lyll>e=16

From property (4.29) one can guess that the effect of letting € — 0 in the formula
(f %) (x) = [ f(x —y)p:(y) dy will be to emphasize the values f(x — y) corre-
sponding to small ||y||. Indeed, our next proposition shows that f * . converges to
f in various senses, if f is suitably chosen.

Proposition 4.27 Let (p.). C L' (RN) be an approximate identity. Then the fol-
lowing holds:

1. If f € L®(RN) is continuous in xo, then (f * @) (x0) = f(xg) ase — 0T
2. If f € L®(RY) is uniformly continuous, then f * p. L fase— 0T,
3. Ifl<p<ocand f € LP(RN), then f x . L4 fase— 0T,

Proof 1. By Young’s Theorem we get that f * (. is continuous and f * ¢, €
L®@RN). If f is continuous in xg, then, given 17 > 0, there exists § > 0 such that

|f(xo —y) — fxo)l =n if [yl < 0. (4.30)

Since [py @-(y)dy = 1, we have

(0 x 90 = Fool =] [ (FG0 =9 = Fon) ety

s/ £ (o — ) — o)) dy
llyll<é
+/| - | f(xo —v) — f(x0) |- () dy
yll=
5n/ sog<y>dy+2||f||oo/ e (y) dy
RN [lyll=6

:77+2||f||oo/ @e(y) dy.

llyll=o
The conclusion follows from (4.29).

2. The proof is the same as in part 1, taking into account that now estimate (4.30)
holds uniformly for xog € RV.

3. According to Remark 4.21, we have f % p. € LP(R") for all ¢ > 0. Since
fRN @-(y)dy = 1, for every x € RV we get

[(f *pe)(x) — f(x)] = /RN If (x =) = fOlp=(y) dy. (4.31)
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We claim that, for every x € RV,

I(f * @) (x) = fF0)IP = /RN |f(x =) = I e=(y) dy. (4.32)

(4.32) reduces to (4.31) when p = 1. If | < p < o0, by (4.31) we obtain

|(f # pe) () = f0)] = /}R =) = F@I )P (o) 7 dy.

where 1/p + 1/p’ = 1. Applying Holder’s inequality and then raising both sides to
the pth power, we conclude that

1204
I(f *@)(x) = f(0)|P < (/RN lf(x =) — fFOIP e (y) dY) (/RN (1Y) dy)

_ /R 1f(x—y) — £ (y) dy.

Hence, (4.32) holds for 1 < p < oc. Then, taking the integral over RV and changing
the order of integration thanks to Tonelli’s Theorem, we have

If * e = flip < /RN lT—y f = flip () dy

where 7_, f(x) = f(x —y). Letus set A(y) = [[7—y f — f||ﬁ; the above inequality
becomes

I % e = [l < (A% ) (0).

By Proposition3.49, A is continuous. Since A(y) < 27| f|| I’;, we have that A €
L% (RM). The desired convergence follows noting that, by the first part of the proof,
(A *p)(0) —> A0) =0. O

Before stating our next result, let us introduce some notation.

Let 2 C RY bean open set. €0(2) = €(2) is the space of continuous functions
f: 2 — R.Fork e N, €%(£2) denotes the space of all functions f : 2 — R
which are k times continuously differentiable. Moreover, we set?

EX(2) = N6 (82),

CHR2) = CX(R2)NC(R2), EX(R) = C®(R2)NECA(RQ).

9See Sect. 3.4.2 for the definition of %.(£2).
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If fe €k(2)and a = (ay, . .., ay) is a multi-index such that o i= g + -+ +
an < k, then we set
ol g

aq an ap *
Ox|'0xy” ... O0xy

Do f =

fa=(0,...,0),weset D' f = f.

Proposition 4.28 Let f € L' (RN) and let g € €*(RN) be such that D®g belongs
to L°(RY) for all || < k. Then f % g € €*(RN) and

D(fxg)=f*D% if la| <k.

Proof The continuity of f * g follows from Young’s Theorem. Let us show the
conclusion when k = 1; the proof can easily be completed by an induction argu-
ment. Setting

Fx,y) = fgx —y),

we have

Lf @)l

e e

Since (f * g)(x) = fRN F (x, y)dy, Proposition 2.106 implies that f * g is differen-
tiable and

0
WD = [ rwrgle == (155w,

By hypothesis g_)i e C@RN)NL®RY) and so f * g—xg; € € (R") again by Young’s
Theorem. Hence, f * g € €' (RV). ]

Thus, convolution with a smooth function produces a smooth function. This fact
offers a powerful technique to prove a variety of density theorems.

Definition 4.29 For every € > 0 let p. : RV — R be defined by
N e?
Ce " exp (—) if |x|| < e,
pe(x) = lx)|? — &2
0 if [lx]| > e,

where 1 c= fo”<1 exp ( |x||2 l)dx The family (p;). is called the standard mollifier.
Lemma 4.30 The standard mollifier (p:) satisfies

pe € € RY), supp(p.) = {lx|| <&} Ve > 0;

(ps)e is an approximate identity.
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Proof Let f : R — R be defined by:

1
exp (—) ift <1,
f= t—1
0 ift > 1.

Then f is a ¥ function. Indeed we only need to check the smoothness at t = 1.
As t | 1 all the derivatives are zero. As t 1 1 the derivatives are finite linear
combinations of terms of the form ﬁ exp (ﬁ) [ being an integer greater than

or equal to zero, and these terms tend to zero as ¢ 1 1.
Observe that, for every € > 0,

Then p. € CKCOO(RN ) and supp(p:) = {|lx]| < €}. The definition of C implies
fRN p1(x)dx = 1. Remark4.26 allows us to conclude. O

Lemma 4.31 Let f, g € €.(RN). Then f % g € €.(RN) and

supp(f * g) C supp(f) + supp(g),

where the sum of two sets A and B in RV is defined by:
A+B={x+ylx €A, ye B}.

Proof By Proposition4.28 we get f x g € €(RY). Let A = supp(f) and B =
supp(g). For every x € RY we have

(f % 9)(x) = / £ = g(y) d.

(x—supp(f))Nsupp(g)

If x € RY is such that (f % ¢)(x) # 0, then (x — supp(f)) N supp(g) # 9, that is,
x € supp(f) + supp(g). U

Proposition 4.32 Let 2 C RY be an open set. Then'”

o 6°(82) is dense in 6o(82).
o 6°(82) is dense in LP(82) for every 1 < p < oo.

10See Exercise 3.46 for the definition of €y (£2).
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Proof In view of Theorem 3.45 and Exercise 3.46 it is sufficient to prove that, given
f € 6:(£2), there exists a sequence (f,), C €. °(£2) such that f, LN f and

L? ..
fn —> f. To this aim, set

- fx) ifxe $2,
f= 0 iftx e RV \ Q.

Then f € 6.(RN). Let (pz)e be the standard mollifier and, for every n, define
fa = f * p1/n. By Proposition4.28 and Lemma4.31 f, € CKCOO(RN). Next, let
K = supp(f) and!! n = infycg dyo (x) > 0. Then

K :={x eR" |dx(x) < g}

is a compact subset of £2. By Lemma4.31, if n is such that 1/n < 7/2, we have

1 1
supp(f) © K + [nxn < ;} =[x erVjaxm =~} c K.
So f, € €°(£2) for n sufficiently large. Since f is uniformly continuous,
Proposition4.27(2) ensures that f,, — f in L>°(R"M), by which
fo — fin L®(2). (4.33)

Finally, for n large enough,

/ o — f1P dx = / o = fIP dx < m(B) L fo — £I1%.
2 K

The conclusion follows recalling (4.33). U

An interesting consequence of smoothing properties of convolution is the follow-
ing Weierstrass Approximation Theorem.'?

Theorem 4.33 (Weierstrass) Let f € €.(RN). Then there exists a sequence of
polynomials (Py), such that P, — f uniformly on all compact subsets of RN .

Proof For every € > 0 define

p-(x) = (/M) Nexp(—lle x|H), x eRM.

1 d50 (x) denotes the distance between the set 952 and the point x (see Appendix A).

12Weierstrass’ Theorem is a particular case of a more general approximation result known as Stone-
Weierstrass Theorem (see [Fo99]).
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The well-known Poisson formula

/ exp(—lx[?)dx = 7/
]RN

and Remark 4.26 imply that (¢, ). is an approximate identity. Proposition4.27 yields

ook fES Fase 0. (4.34)

Thus it is sufficient to show that, given € > 0, there exists a sequence of polynomials
(Py), such that
P, — @ * f uniformly on all compact sets. (4.35)

To see this, observe that ¢, is an analytic function, and so it can be approximated
uniformly on any compact set by the partial sums (Q,), of its Taylor series which
are, of course, polynomials. Next, set

Polx) = / 0ulx — 1) f () dy. 436)
RN

Since f is compactly supported, then the integrand in (4.36) is bounded by | f|
SUPy eupp( /) |Qn(x — y)|, which is summable for every x € RY. Then P, is well
defined on RY. Moreover Q, (x — y) is a polynomial in the variables (x, y) and
can be represented by a sum of the form Z,ﬁl sk (X))t (y) with sg, tx polynomials
in RV, Substituting in (4.36), we deduce that each P, is also a polynomial. Let
now K C RY be a compact set. Then K := K — supp(f) is also compact, and so
0, — - uniformly in K. Hence, for every x € K,

| Pa(x) = (0= * )] = / [0n(x —y) — @ (x = I f (W)ldy

supp(f)

< 5up 104 (@) — 9-(2)| / \f ()ldy
~ RN

zeK
and (4.35) follows. O

Corollary 4.34 Let A € B(RY) be a bounded set and let 1 < p < oo. Then the
set P4 of all polynomials defined on A is dense in LP (A).

Proof Consider f € LP(A) and let f be the extension of f by zero outside A. Then
f € LP(RV); given € > 0, Proposition4.32 implies the existence of g € €. (RV)
such that

/If—gl”dxs/ \F — glPdx < &P
A RN
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Since A is a compact set, by Theorem4.33 there exists a polynomial P such that
sup,c 19(x) — P(x)| < €. Then

lg — P|” dx < sup|g(x) — P(x)|” m(A) < ’m(A).
N )

xXeA
So
1/p 1/p 1/p
(/ lf—PI”dx) 5(/ If—gl”dx) +(/ |g—P|"dx)
A A A
<e+em(A)'?
and the proof is complete. ([

Remark 4.35 By Corollary 4.34 we deduce thatif A € ZB(RN) is bounded, then the
set of all polynomials defined on A with rational coefficients is a countable dense
subset of L?(A) forall 1 < p < oo (see Proposition 3.47).
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Chapter 5
Hilbert Spaces

With this chapter we begin the study of functional analysis, which represents the
second main topic of this book. Just like in the first part of the book we have shown
how to extend to an abstract environment fundamental analytical notions such as the
integral of a real function, we now intend to explain how to generalize basic concepts
from geometry and linear algebra to vector spaces with certain additional structures.
We shall first examine Hilbert spaces, where the notion of orthogonal vectors can be
defined thanks to the presence of a scalar product. In the next chapter, our analysis
will move to the more general class of Banach spaces, where orthogonality no longer
makes sense. One could go even further and consider topological vector spaces, but
such a level of generality would exceed the scopes of this monograph.

Soon after giving the first definitions, we will set and solve the problem of finding
the orthogonal projection of a point onto a closed convex set and, in particular, a
closed subspace. Then, we shall study the space of all continuous linear functionals
on a Hilbert space. Finally, we will investigate the possibility of representing any
element of the space by its Fourier series, that is, as a linear combination of a countable
set of orthogonal vectors. All these classical topics are treated in most introductory
textbooks such as [Br83, Co90, Ko02, Ru73, Ru74, Yo65]. The reader is also referred
to the above references for further developments of the theory of Hilbert spaces, such
as the spectral theorem for compact self-adjoint operators, as well as other topics we
will not even be able to mention.

Throughout this chapter, we will denote by H a real vector space. The theory
of complex spaces is similar but requires adjustments that make notation somewhat
heavier. In some of the above references, the reader will find adaptations of the results
of this chapter to complex Hilbert spaces.
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5.1 Definitions and Examples

Let H be a vector space over R.
Definition 5.1 A scalar product (-, -) on H is a mapping
(n):HxH—>R

with the following properties:

1. {(x,x) > O0forevery x € H and (x, x) = 0 if and only if x = 0.
2. {(x,y)={(y,x) foreveryx,y € H.
3. {ax + By, z) = alx,z) + B(y, z) forevery x, y,z € H and o, § € R.

A linear space H endowed with a scalar product is called a pre-Hilbert space.
Remark 5.2 Since, forany y € H,0y = 0, we have
(x,0) =0(x,y) =0 VxeH.

In a pre-Hilbert space (H, (-, -)), let us consider the function | - || : H — R
defined by
x| =+ {x,x) VxeH. (5.1)

The following fundamental inequality holds.

Proposition 5.3 (Cauchy-Schwarz) Let (H, -, -)) be a pre-Hilbert space. Then
e, ) < lxl iyl Vx,y € H. (5.2)

Moreover, equality holds if and only if x and y are linearly dependent.

Proof The conclusion is trivial if y = 0. So suppose y # 0. Then

(x, y)?
Iyl

< H _ ey (5.3)

2

2
y|o=Ixl" =
Iyl H

which implies (5.2). If x and y are linearly dependent, then it is clear that |(x, y)| =
[lx|| Iyll. Conversely, if (x, y) = £||x]|| ||y]l and y # 0O, then (5.3) yields

X, y)
= ”y”yz y| =o.

which implies x and y are linearly dependent. (]
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Exercise 5.4 Define
— 2 2 2 2
F) = llx + 2117 = A lIyll7 42X x, y) + 1|7 VA e R

Observing that F(\) > 0 for every A € R, give an alternative proof of (5.2).

Corollary 5.5 Let (H, (-, -)) be a pre-Hilbert space. Then H is a normed linear
space" with the norm defined by (5.1).

Norm (5.1) is called the norm induced by the scalar product (-, -).

Proof 1t is sufficient to prove the triangle inequality, since all other properties easily
follow from Definition 5.1. For any x, y € H, we have

Ix 4+ yI> = (x +y, x +y) = x> + Iy I* +2(x, y)
< Qx4 1yl + 20x ] Iyl = Al + Iy ID?

by the Cauchy—Schwarz inequality. The conclusion follows. (]
Remark 5.6 In a pre-Hilbert space (H, (-, -)) the function
dix,y)=lx—yl Vx,yeH (54

is a metric, called the metric associated with the scalar product of H.

From now on we will often use the following notation: given H a pre-Hilbert space
and (x,), C H, x € H, we will write

H
Xp —> X

to mean that (x,), converges to x in the metric (5.4), that is, ||x, — x| — 0 (as
n — 00).

Definition 5.7 A pre-Hilbert space (H, (-, -)) is called a Hilbert space if it is com-
plete with respect to the metric defined in (5.4).

Example 5.8 RY is a Hilbert space with the scalar product

N
(X, ) = D v,
k=1

where x = (x1,...,xn), Y= O1,---, YN) e RV,

I'See Definition 6.1.
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Example 5.9 Let (X, &, 11) be a measure space. Then L?(X, 1), endowed with the
scalar product

<f,g>=/xfgdu, f. g€ L*(X, p),

is a Hilbert space (completeness follows from Proposition 3.11).

Example 5.10 Let £2 be the space of all sequences of real numbers x = (x;) such
that?

[e )

Z |xk|2 < 00.

k=1

£? is a linear space with the usual operations

a(ik = (ax e, ok + Gk = Gk + vk, a € R, ()k, ik € €.

The space ¢2, endowed with the scalar product

o]

(X, y) =D xiyk, x =k, vy = (uk € £,
k=1

is a Hilbert space. This is a special case of the above example, by taking X = N with
the counting measure p*.

Exercise 5.11 Show that £ is complete arguing as follows. Take a Cauchy sequence
x"n=1,2,...,in¢2, and set x" = (x,’j)k for every n € N.

1. Show that, for every k € N, (x,’j)n is a Cauchy sequence in R, and deduce that
the limit x; := lim,,, oo X} does exist.
2. Show that x = (xg)x € €2.

ZZ
3. Show that x* — x asn — o0.

Exercise 5.12 Let H = ¢ ([—1, 1]) be the linear space of all continuous functions
f :[—1,1] — R. Show that:

1. H is a pre-Hilbert space with the scalar product

1
(f. g) =/1f(t)g(t)dt.

2. H is not a Hilbert space.
Hint. Consider

2See Example 3.2.
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fu@)=1{nt if te(-1

and show that (f;), is a Cauchy sequence in H. Observe that if f, i> f, then

|1 if reqo, 11,
f(t)_{—l if te[—1,0).

Remark 5.13 Let (H, (-, -)) be a pre-Hilbert space. Then the scalar product (-, -) is
itself expressible in terms of its associated norm:

(Ix +yI* = llx = yI*)  Vx,y € H.

Bl —=

(x,y) =

This is known as the polarization identity. Its validity is readily verified by direct
simplification of the expression on the right hand side, using the properties of the
scalar product. Similarly, one can prove the following parallelogram identity:

lx + yI? + Ilx — yI* =2(x1I> + lyl*)  Vx,y € H. (5.5)

It can be shown that the parallelogram identity characterizes the norms associated
with a scalar product. More precisely, one can prove that any norm satisfying (5.5)
must be induced by a scalar product, as stated by the result of the following exercise
(see also [Da73]).

Exercise 5.14 Let | - || be a norm on a linear space H verifying (5.5) and set

1

(o) = = (Ilx + yI> = x> = Iyl?)  Vx,y € H.

N3

Show that (-, -) is a scalar product on H inducing the norm || - ||.
Hint. Properties 1 and 2 of Definition 5.1 are clearly satisfied. Prove the validity of
property 3 by arguing as follows. By using (5.5), show that

1. (—x,y) =—(x,y) foreveryx,y € H.
2. (x+y,z2)=(x,2) + (y,z) forevery x,y,z € H.

By step 2 deduce that
3. (nx,y) =n(x,y) foreveryx,y € Handn € N,
and, consequently, using also step 1.

4. (px,y) = p(x,y)forevery x,y € H and p € Q.
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Fig. 5.1 Uniform convexity y

’I

Finally, observe that, by (5.5),

1
(Ix —x"+ 1> = lIyl?) — Sl = K|

| =

(X’Y>_<x/aY> = (x_x/vy> =

and derive the continuity of the map x € H — (x, y) € R from the continuity of
x € H +— ||x|| € R(whichisaconsequence of the inequality |||x [|—[|¥]|| < [[x—y]D).
So, approximating o € R by p, € Q, by step 4 conclude that (ax, y) = a(x, y) for
every x,y € Hand a € R.

Exercise 5.15 Show that® L?(0, 1) fails to be a Hilbert space for p # 2.

Hint. In view of the result of the previous exercise, it is sufficient to prove that identity
(5.5) is not satisfied by taking the pair f = X0.1) and g = X1y

Exercise 5.16 Let H be apre-Hilbertspace andletx, y € H be linearly independent
vectors such that ||x|| = ||y|| = 1. Show that

IAx+0 =Nyl <1  VYAe(,1).

Hint. Observe that

A + (1= Ny 12 = 14200 =2 ((x, y) — 1) (5.6)
—_—
X\

and use Cauchy—Schwarz inequality (see Fig. 5.1). Identity (5.6), written in the form
[Ax + (1 = X)yl|> =1 = A1 — N)|x — y||?, implies that any pre-Hilbert space is
uniformly convex, see [Ko02].

5.2 Orthogonal Projection

Definition 5.17 Two vectors x and y of a pre-Hilbert space H are said to be orthog-
onal if {x, y) = 0. In this case, we write x 1 y. Two subsets A, B of H are said to
be orthogonal (A L B)if x L yforeveryx € Aandy € B.

3120, 1) = L2([0, 1], m) where m is the Lebesgue measure on [0, 1]. See footnote 7, p. 87.
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The following is the Pythagorean Theorem in pre-Hilbert spaces.

Proposition 5.18 If x1, ..., x, are pairwise orthogonal vectors in a pre-Hilbert
space H, then

1 4+ 22 + -+ 17 = g 1% + 2l 4 -+ llxa

Exercise 5.19 Prove Proposition 5.18.

Exercise 5.20 Show that if xp, ..., x, are pairwise orthogonal vectors in a pre-
Hilbert space H, then x1, ..., x, are linearly independent.

5.2.1 Projection onto a Closed Convex Set

Definition 5.21 Given a pre-Hilbert space H, a set K C H is said to be convex if,
forany x,y € K,

[x,y]:={Ax+ A —=Ny|Ae][0,1]} C K.

Any subspace of H is convex, for instance. Similarly, for any xo € H and r > 0
the ball
B (x0) = {x € H | |lx — xol| <7} (57)

is a convex set.

Exercise 5.22 Show that, if (K;);e; is a family of convex subsets of a pre-Hilbert
space H, then N;¢; K; is also convex.

It is well known that, in a finite-dimensional space, a point x has a nonempty projec-
tion onto a nonempty closed set (see Proposition A.2). The following result extends
such a property to convex subsets of a Hilbert space.

Theorem 5.23 Let H be a Hilbert space and let K C H be a nonempty closed
convex set. Then for any x € H there is a unique element y, = pg(x) in K, called
the orthogonal projection of x onto K, such that

lx = yxll = inf [lx — yl|. (5.8)
yek

Moreover, v, is the unique solution of the problem (see Fig.5.2)

yeKk,

(x—y,z—y) <0 VzeKk. (5.9)
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Fig. 5.2 Inequality (5.9) has
a simple geometric meaning

Proof Letd = infyck ||x — y||. We shall split the proof into 4 steps.

1. Let (y,)» C K be a minimizing sequence, that is,
lx —yull > d as n — oo.

Then (y,), is a Cauchy sequence. Indeed, for any m,n € N, parallelogram
identity (5.5) yields

16— ) + (= v IIP 4+ 1 = 30) — (¢ =y I = 201 — I +201x =y 1.

Since K is convex, we have that V”J“TV’” € K, and so

_)’n+)’m 2
2

130 = Yl = 20x = 3l + 20lx — yull? — 4 Hx
< 20lx = yall* + 2llx — ym|l* — 4d”.

Hence ||y, — ymll — 0 asm,n — o0, as claimed.

2. Since H is complete and K is closed, (y,), converges to a point y, € K satisfying
lx — yx|l = d. The existence of y, is thus proved.

3. We now proceed to show that (5.9) holds for any point y € K at which the
infimum (5.8) is attained. Let z € K andlet A € (0, 1]. Since A\z+(1—M\)y € K,
we have that ||[x — y|| < [[x —y — A(z — y)|l. So

1
0= [Ix =y = lx =y =AG=»I?] =20r=y. 2=y = Allz = yI.

Taking the limit as A | 0 we deduce (5.9).

4. We will complete the proof showing that problem (5.9) has at most one solution.
Let y be another solution of problem (5.9). Then

(x =y, y—y) <0 and (x —y,yx—y) <0.
|12

The above inequalities imply that ||y — y,||* <0, and so y = y,.

Exercise 5.24 In the Hilbert space H = Lz(O, 1), consider the set

Hy={feH|f>0ael}.
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1. Show that H is a closed convex subset of H.
2. Given f € H, show that py, (f) = f*, where f = max{f, 0} is the positive
part of f.

Example 5.25 In an infinite-dimensional Hilbert space the projection of a point onto
a nonempty closed set may be empty (in absence of convexity). To see this, let O be
the set consisting of all sequences x" = (x}!), € £ defined by

| 0 it k#n
k 1+ if k=n.

1
n
Then Q is closed. Indeed, since

nEm = " —x" > V2,

0 has no limit points in £2. On the other hand, QO has no element of minimal norm
(i.e., 0 has no projection onto Q), since

1
inf [|x"|| = inf (1 n _) _ 1
n>1 n>1 n

but ||x"| > 1 for every n > 1.

Exercise 5.26 Let H be a Hilbert space and K C H a nonempty closed convex set.
Show that

(x =y, pr(¥) — pr (M) = Ipx(x) — prWI>  Vx,y € H.

Hint. Apply (5.9)to z = px(x) and z = pg(y).

5.2.2 Projection onto a Closed Subspace

Theorem 5.23 applies, in particular, to subspaces of H. In this case, however, the
variational inequality in (5.9) takes a special form.

Corollary 5.27 Let M be a nonempty closed subspace of a Hilbert space H. Then,
forevery x € H, ppy(x) is the unique solution of problem

[yeM,

(x—y,v) =0 VYveM. (5.10)
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Proof 1t suffices to show that problems (5.9) and (5.10) are equivalent when M is a
subspace. If y is a solution of (5.10), then (5.9) follows taking v = z —y. Conversely,
suppose that y satisfies (5.9). Then, taking z = y + Av with A € Rand v € M,

we obtain
AMx—y,v) <0 VieR

Since A is any real number, necessarily (x — y, v) = 0. O

Exercise 5.28 Let H be a Hilbert space.

1. Itis well known that any finite-dimensional subspace of H is closed (see Appendix
C). Give an example to show that this fails, in general, for infinite-dimensional
subspaces.

Hint. Consider the set of all sequences x = (xx)x € £2 such that x; = 0 except
for a finite number of indices k, and show that this is a dense subspace of 02,

2. Show that, if M is a closed subspace of H and M # H, then there exists xop €
H \ {0} such that (xg, y) = 0 forevery y € M.

3. Let L be a subspace of H. Show that L is also a subspace of H.
4. Forany A C H letus set

At ={x e H|xLlA}. (5.11)

Show thatif A, B C H, then

a. Al isaclosed subspace of H and A+ = AL,
b. ACB = BtcAt
c. (AUB)t=AatnBt

At is called the orthogonal complement of A in H.

Proposition 5.29 Let M be a nonempty closed subspace of a Hilbert space H. Then
the following statements hold (see Fig.5.3):

(i) Forevery x € H there exists a unique pair (yy, zx) € M x M~ such that

X = Yy + 2x (5.12)

Fig. 5.3 Riesz orthogonal ML
iti H
decomposition

pML(m)

Py ()
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(equality (5.12) is called the Riesz orthogonal decomposition of the vector x).
Moreover,
yr=pu(x) and zyx = pyL(x).

(ii) pm: H — H islinear and ||py(x)|| < ||x|| forall x € H.

(iii) (a) pmopm = pum.
(b) ker pyyr = M+
(c) pu(H) =M.

Proof Letx € H.
(i) Define y, = py(x) and zx = x — yy; then by (5.10) it follows that z, L M and

(x —zx,v) = (yx,v) =0 VUEMJ'.

So zx = pjys1(x) in view of Corollary 5.27. Suppose x = y+z forsomey € M
and z € M+, Then

Ye—y=z—2 € MN M ={0}.
(i) For any x1,x2 € H, a1, a0 € Rand y € M, we have

((1x1 + azx2) — (a1 py(x1) + 2 pu(x2)), y)
= ai{x; — pm(x1), y) + a2{x2 — pu(x2), y) = 0.

Then, by Corollary 5.27, py (a1 x1 4+ aox2) = ap ppm(x1) + a2 pyr(x2). More-
over, since (x — py(x), pm(x)) = 0 for every x € H, we obtain

P I = (x, py(0)) < Il par (O)1]-

(iii) Statement (a) follows from the fact that py;(x) = x for any x € M. Statements
(b) and (c) are consequences of (i). [l

Exercise 5.30 In the Hilbert space H = L2(0, 1) consider the sets

M = {u € H | uis constant a.e. in (0, 1)}

1
NZ[MGH‘/ u(x)dx:O}.
0

1. Show that M and N are closed subspaces of H.
2. Showthat N = M.

and
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3. Does the function f(x) :=1/Jx, 0 < x < 1, belong to H? If so, find the Riesz
orthogonal decomposition of f with respect to M and N.

Exercise 5.31 Given a Hilbert space H and A C H, show that the intersection of
all closed subspaces including A is a closed subspace of H. Such a subspace, called
the closed subspace generated by A, will be denoted by Sp(A).

Given a Hilbert space H and A C H, we will denote by sp(A) the linear subspace
generated by A, that is,

n

sp(A) = [ Z CrXk

k=1

nzl,ckeR,xkeA].

Exercise 5.32 Show that Sp(A) is the closure of sp(A), i.e., Sp(A) = sp(A).

Hint. Since sp(A) is a closed subspace including A, we have that Sp(A) C sp(A).
Conversely, sp(A) C sp(A) yields sp(A) C sp(A).

Corollary 5.33 In a Hilbert space H the following properties hold:
(i) If M is a closed subspace of H, then (M)+ = M.

(ii) Forany A C H, (AY)T =5p(A).

(iii) If L is a subspace of H, then L is dense if and only if L = {0}.

Proof We will prove each step of the statement in sequence.

(i) By point (i) of Proposition 5.29 we deduce that

pyr=1—pu.

Similarly, p1yt = I — py = pu. Thus, owing to (iii) of the same propo-
sition,
(MM)F = pyoy(H) = py(H) = M.

(ii) Let M = 3p(A). Since A C M, we have A+ > M~ (recall Exercise 5.28(4)).
Then (A1) ¢ (M1Y)L = M. Conversely, observe that A is contained in the
closed subspace (A+)L. So M c (AL)L.

(iii) Observe that, since L is a closed subspace, L= Sp(L). So, in view of part (ii)
above,

L=H < LYHY'=H < L'={0.

The proof is thus complete. (]
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Exercise 5.34 Using Corollary 5.33 show that

o0
x, €R, Z|xn| <oo]

n=1

= {(xn)n

is a dense subspace of £2.

Exercise 5.35 Compute

1
min / |x3 —a—bx — cx2|2dx.
a,b,ceR J_1

Exercise 5.36 Let H be the set of Borel functions f : (0, co) — R such that

/00 Frx)e F dx < oo.
0

Show that H is a Hilbert space with the scalar product

(f.9) =/0 fx)glx)e " dx.

Compute
o
min / x> —a — bx|*e ™ dx.
a,beR Jo

Exercise 5.37 Let H be a Hilbert space, xo € H and M C H a closed subspace.
Show that

min [lx — xol| = max{|(xo. y)| |y € M, |y = 1}.

xeM

5.3 Riesz Representation Theorem

5.3.1 Bounded Linear Functionals

Let H be a linear space over R.

Definition 5.38 A linear map F : H — R is called a linear functional on H.

Definition 5.39 A linear functional F on a pre-Hilbert space H is said to be bounded
if there exists C > 0 such that

|[F(x)| < Cllx|l Vx e H.
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Proposition 5.40 Let H be a pre-Hilbert space and F a linear functional on H.
Then the following statements are equivalent:

(a) F is continuous.

(b) F is continuous at 0.

(c) F is continuous at some point of H.
(d) F is bounded.

Proof The implications (a) = (b) = (c¢) and (d) = (b) are trivial. So it suffices to
show that (c) = (a) and (b) = (d).

(c) = (a) Let F be continuous at xo and let yo € H. For any sequence (y,), in H
converging to yp, we have

Xn = Yn — Yo + X0 — Xo.

Then F(x,) = F(y,) — F(y) + F(x9) — F(x0). Therefore F(y,) — F(y9). So
F is continuous at yy.

(b) = (d) By hypothesis, there exists § > 0 such that |F(x)| < 1 forevery x € H
satisfying ||x|| < 6. Then for any ¢ > 0 and x € H we have

(i+)
F
lxll +¢

So |F(x)| < %(Hx || + ). Since ¢ is arbitrary, the conclusion follows. O

Definition 5.41 The family of all bounded linear functionals on a pre-Hilbert space
H is called the (topological) dual of H and is denoted by H*. Forany F € H* we set

[Fll+ = sup [F(x)].

=1

Exercise 5.42 Let H be a pre-Hilbert space.

1. Show that H* is a linear space and || - ||, is @a norm on H*.
2. Show that for any F € H* we have

I Fllx =min {C >0 | |F(x)| < C|x|| ¥x € X}

[F(x)]

= sup |[F(x)| =sup = sup |[F(x)].
Ixl=1 xz0 Xl Ixll<1
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5.3.2 Riesz Theorem

Example 5.43 Given H a pre-Hilbert space, for any y € H consider Fy, the linear
functional on H defined by

Fy(x) =(x,y) VxeH.

By the Cauchy—Schwarz inequality we get |Fy(x)| < [|y|| [|x] for any x € H. So
Fy € H* and || Fy ||« < |ly|l. We have thus defined a map

j:H— H*, (5.13)
Jjy) =F
It is easy to check that j is linear. Moreover, since | Fy(y)| = [yl forany y € H,

we deduce that || Fy ||« = [|y||. Therefore j is a linear isometry.

Our next result will show that the map j is also onto. So j is an isometric isomor-
phism,’ called the Riesz isomorphism.

Theorem 5.44 (Riesz) Let H be a Hilbert space and let F be a bounded linear
Sfunctional on H. Then there exists a unique yr € H such that

F(x)=(x,yr), Yx € H. (5.14)

Moreover, |F|lx = |yrll.

Proof Suppose F # 0 (otherwise the conclusion is trivial by taking yz = 0) and
set M = ker F. Since M is a closed proper® subspace of H by Corollary 5.33(iii)
there exists yo € M L \ {0}. Possibly substituting yg by F(yo) e M+ \ {0}, we can
assume, without loss of generality, F'(yp) = 1. Thus, for any x € H we have that
F(x—F(x)yo) = 0,thatis,x — F(x)yy € M (seeFig.5.4). So (x — F(x)yo, yo) = 0,
ie.,

F@)lyol® = {x.y0) ~ V¥x € H.

This implies that yr := Tl satisfies (5.14). The uniqueness of yr, as well as the

|
equality ||F|l« = llyrll, follows from the fact that j in Example 5.43 is a linear

isometry. (]

4Given two linear normed spaces X, Y, amap T : X — Y is called an isometry if it satisfies
|17 (x)|| = ||x]|| for every x € X.

5Given two linear normed spaces X, Y, a(topological) isomorphism of X onto Y is a linear bijective
mapping T : X — Y such that 7 and 7~! are continuous. If T is also an isometry, that is,
17 (x)|| = ||x]|| for every x € X, then T is called an isometric isomorphism of X onto Y.

SThat is, M # H.
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Fig. 5.4 Proof of Riesz ML
Theorem H

yO [ ]

z— F(z)yo

Example 5.45 If H = L2(X , 1), where (X, &, 1) is a measure space, from the above
theorem we deduce that for every bounded linear functional F : L>(X, ;1) — R there
exists a unique g € L?(X, ) such that

F(f) = /X fodu Vf e L*(X. .

Moreover, || Fll. = [|gll2.
Exercise 5.46 Let F : L2(0,2) — R be the linear functional defined by

1 2
F(f)=/0 f(x)dx+/1 (x =D f(x)dx.

Show that F is bounded and compute || F'||.

Definition 5.47 Given a linear space H, a subset [T C H is called an affine mani-
fold if
IT =xo+ Mo :={xo+ y|y € Ilo}

where xq is a fixed vector and [Ty is a subspace of H. If I1y has codimension’ 1,
then the affine manifold I7 is called a hyperplane in H.

Given a Hilbert space H and a linear functional F € H*, F # 0, forevery ¢ € R
let us set
I, ={x e H| F(x) =c}.

By the Riesz Theorem we deduce that ker F = ITy = {yr}*. So, owing to Corol-
lary 5.33(ii), Hd‘ = {Ayr | A € R}. Then from the Riesz orthogonal decomposition
it follows that [Ty is a closed subspace of codimension 1. Moreover, for any x,. € I1.,
we have that I1, = x. + ITy. Therefore I1, is a closed hyperplane in H.

The following result provides a sufficient condition for two convex sets to be
‘strictly separated’ by a closed hyperplane.

7We say that a subspace ITg of a linear space H has codimension n if there exist n linearly indepen-
dent vectors xi, ..., X, € H such that xq, ..., xn &€ Ilpand H = [Ty ® Rx| & - - - & Rx,,, where
the symbol ‘@’ denotes the direct sum.
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o\ L

Fig. 5.5 Separation of convex sets

Proposition 5.48 Let A and B be nonempty disjoint convex sets in a Hilbert space
H. Suppose that A is compact and B is closed. Then there exist a functional F € H*
and two constants c1, ¢ such that

F(x)<ci<ca<F(y) VxeA,VyeB

(see Fig.5.5).

Proof LetC = B — A := {y —x|xeA, ye B}.ItiseasytoverifythatCisa
nonempty convex set such that 0 ¢ C. We claim that C is closed. Let (y, —x,), C C
be a sequence such that y, — x, — z. Since A is compact, there exists a subsequence
(xk,)n such that x;, — x € A. Therefore

Yy = Yky — Xk + Xk, — X +X —> 2+ X
——

—0

and so, since B is closed, z + x € B. It follows that C is closed, as claimed. Then,
thanks to Theorem 5.23, zg := p¢(0) satisfies zg % 0 and

(0—z0,y—x—20) <0 VxeA, VyeB,
or, equivalently,

(x.20) + llzol® < (v.20) Vx €A, VyeB.
The conclusion follows taking

F=F,, c=sup{x,z0), c¢2=inf{(y,z0). O
X€EA Yy€EB
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Exercise 5.49 1. Given N > 1, define
F:0® >R, F((x)r) = xn.

Show that F € (¢2)* and find y € ¢2 such that F = Fy.

2. Show that, for any x = (xp)x € 22, the power series Z,fil X%z has radius of
convergence at least 1.

3. Foragivenz € (—1, 1), set

o
F: >R, F(Gr) =Y xzk.
k=1
2 2 . .
Show that F' € (£)* and find y € £° satisfying F = F,.

4. 1In €2 consider the sets®
A= {(xk)k e? | k|xg —k_2/3| <x; Vk> 2}

and
B:={(x)r el |x =0 Vk=>2}

a. Show that A and B are disjoint closed convex sets in £2.
b. Show that

A=B={(xrel?13C >0 : ki —k??| < C Vk=2}

c. Deduce that A — B is dense in £2.
Hint. Given x = (xg)x € £2, let (x"), be the sequence in A — B defined by

B Xk ifk <n,
X, =
k k=23 ifk>n+1.

g2
Then x" —x.
d. Show that A and B cannot be separated by a functional F € (£%)* as in
Proposition 5.48. (This example shows that the compactness assumption on
A cannot be dropped in Proposition 5.48.)
Hint. Otherwise A — B would be contained in the half-space {F < 0}.

8See [Ko02, p. 14].
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Example 5.50 (An unbounded functional) In 02, choose vectors eg = (%)n and

Observe that the sequence {ex | k > 0} is a family of linearly independent vectors.
So let
E={ex|k=01U{fili el}

be a Hamel basis® of £2. Define the linear functional @ : £> — R as follows: given

x € £, then x has a unique representation as a finite linear combination of vectors
from the set E, say x = Z,]CV:O ek + 2 ey i fi with N > 0 and J C [ finite.

We set N
Q§(Z/\kek + Zuifi) = \o.
k=0 iel

Then {ex |k > 1} C ker(¢), so that ker(®) is dense in £2. On the other hand,
eo & ker(®), hence ker(®) is not closed. This shows that @ fails to be continuous.

Definition 5.51 Let H be a pre-Hilbert space. Amapa : H x H — Riscalled a
bilinear form if it is linear in each argument separately:

a(Aix1 + Aix2, y) = Aa(xy, y) + axa, y) YA, A eR, Vxi,x,y € H,
a(x, \iy1 +A1y2) = Aa(x, y1) + a(x, y2) YA, A €R, Vx,y,y € H.

A bilinear forma : H x H — R is said to be

e Bounded if there exists M > 0 such that
a(x,y) <M|x|llyll Vx,ye€ H.
e Positive (or coercive) if there exists m > 0 such that

a(x,x) > mlx|®> Vx € H.

9Given X a linear space, a maximal subset of X constituted by linearly independent vectors is
called a Hamel basis. We recall that, by applying Zorn’s Lemma, one can prove that every set of
linearly independent vectors is contained in a Hamel basis. Moreover, if (e;);e; is a Hamel basis
in X, then the linear subspace generated by (e;);c; coincides with X, i.e., X = {Zjej Ajej | J C
I finite, \; € R}.
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Theorem 5.52 (Lax-Milgram) Let H be a Hilbert space and leta : H x H — R
be a positive bounded bilinear form. In addition, let F : H — R be a bounded linear
functional. Then there exists a unique yr € H such that

F(x)=a(x,yr) Vx € H.

Proof For each fixed element y € H, the mapping x € H — a(x, y) is a bounded
linear functional on H. By the Riesz Representation Theorem we deduce that for
every y € H there exists a unique element Ay € H such that

a(x,y) = (x,Ay) Vx € H.

We claim that the map A : H — H is a bounded linear operator (see Sect.6.2).
Indeed, linearity can be easily checked. Furthermore

IAx|I> = (Ax, Ax) = a(Ax, x) < M| Ax]||x],

by which ||Ax|| < M||x||. Owing to Proposition 6.10, A is a bounded linear operator.
Hence, A is continuous. Moreover,

Ix[lAx]| > (x, Ax) = a(x, x) = m|x||* Vx € H.

Thus,
[[Ax|| = m|x| Vx e H. (5.15)

Consequently, A is also injective and R(A) is closed, where R(A) stands for the
range of A. Indeed, if (Ax,), C R(A) is such that Ax,, — y for some y € Y, then
by (5.15) we deduce that m||x;, — x| < ||Ax, — Axp||. So, being (x,), a Cauchy
sequence in H, it converges to some x € X; by continuity, Ax, — Ax =y € R(A).

We are going to prove that
R(A)=H. (5.16)

If not, since R(A) is closed, by Corollary 5.33(iii) there would exist a nonzero
vector w € R(A)™. But this leads to a contradiction since it implies that m ||w|*> <
a(w,w) = (w, Aw) = 0.
Next, we observe that once more from Riesz Representation Theorem there exists
zF € H such that
F(x)={(x,zr) Vx € H.

Then by (5.16) we find yr € H satisfying Ayr = zr. Thus

F(x) = (x,zF) = (x, Ayr) = a(x, yr) Vx € H.


http://dx.doi.org/10.1007/978-3-319-17019-0_6
http://dx.doi.org/10.1007/978-3-319-17019-0_6
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To prove the uniqueness of yz, observe thatif y and y" are such that F (x) = a(x, y) =
a(x,y’)forallx € H,thena(x,y — y') =0forall x € H. Settingx = y — y’ we
getO=a(y —y,y—y)=mly -y

O

Remark 5.53 1If the bilinear form a is also symmetric, that is,
a(x,y)=a(y,x) Vx,y € H,

then a much easier proof of Lax—Milgram Theorem can be provided by noting that
(x,y) = a(x,y) is a new scalar product on H which induces an equivalent norm,
hence Riesz Representation Theorem directly applies.

5.4 Orthonormal Sequences and Bases

Definition 5.54 Let H be a pre-Hilbert space. A sequence (ex)x C H is said to be
orthonormal if
1 if h=k,
(en, ex) =

0 if h#k.

Example 5.55 The sequence of vectors

is orthonormal in ¢2.

Example 5.56 Let {¢x |k = 0,1, ...} be the sequence of functions in L3(—m, )
defined by

1
wo(t) = E,
) = sin(kt) ) = cos(kt) *=1
P2k—1 = ﬁ ,  pull) = ﬁ = 1).

Since for any /1, k > 1 we have

1 s
—/ cos(ht) sin(kt) dt = 0,

™ J—m

1 [ if
_/ sin(ht) sin(kt) dt = 0 ' hEk
. 1 ifh =k,

—T

1 [7 if
—/ cos(ht) cos(kt) dt = 0 ] h#k,
1 ifh=k,

T™J—m
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it is easy to check that {¢x |k = 0, 1, ...} is an orthonormal sequence in L>(—, ).
Such a sequence is called the trigonometric system.

5.4.1 Bessel’s Inequality

Proposition 5.57 Let H be a Hilbert space and let (ex)x be an orthonormal
sequence.

1. Forevery N € N, Bessel’s identity holds:

2 N
= IxI2 =D [tx.e)]? VaeH. (5.17)

N
=i e

2. Bessel’s inequality holds:
o0
Z|x ek <||)c||2 Vx € H.
k=1

In particular, the series in the left-hand side is convergent.
3. For any sequence (cx)r C R we have'0:

oo o
chek eH +— Z|Ck|2 < 00.
k=1 k=1

Proof Let x € H. Bessel’s identity can be easily checked by induction on N. For
N =1, (5.17) is true.!! Suppose it holds for some N > 1. Then

N+1

X — Z(x, ex)ex

k=1

N
Zx ex)ex
k=

2

=

2

+ ’(x, eN+1)|2 — 2<x — Z(x, ex)ek, (x, eN+1)eN+1>
k=1

= [lx|? Z|xek — |t e[

10The statement <332 | ckex € H’ means that the sequence of partial sums > }_, cxey is convergent
in the metric of H as n — oo.

Indeed (5.17) for N = 1 has been used to prove Cauchy—Schwarz inequality (5.2).
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So (5.17) holds forany N > 1. Moreover, Bessel’s identity implies that all the partial
sums of the series Z,fil |(x, ex)|* are bounded above by || x||2, thus yielding Bessel’s
inequality. Finally, for every n € N we have

n+p 2 ntp
2
ZCkek = Z lckl”, p=12,....
k=n+1 k=n+1

Therefore the partial sums of the series > - | cxex is a Cauchy sequence in H if and
only if the number series > - | c,% is convergent. Since the space H is complete, the
conclusion of point 3 follows. (I

Definition 5.58 Under the same assumptions of Proposition 5.57, for every x €
H the numbers (x, ex) are called the Fourier coefficients of x and the series
Z,fil (x, ex)ex is called the Fourier series of x.

Remark 5.59 Under the same assumptions of Proposition 5.57, fixed n € N let us
set My :=sp(fer,....en}) =sp(ei, ..., e,). Then

n

pm,(x) =D (x,exdex  Vx € H.
k=1

Indeed, forevery x € H and ¢y, c2, ..., ¢, € R, we have

n 2 n n

2 2

x = cer| =IxIP =2 crlx,en) + D lexl
k=1 k=1 k=1

= (uxn2 - > |, ek>|2) + D ek — tx. e
k=1 k=1

2

n

X — Z(x, ex)ek

k=1

z 2
= + D ex — (x, )]
k=1

owing to Bessel’s identity (5.17).

5.4.2 Orthonormal Bases

Let us characterize situations where a vector x € H is given by the sum of its Fourier
series.

Theorem 5.60 Let (ex)r be an orthonormal sequence in a Hilbert space H. Then
the following properties are equivalent:

(a) splex |k € N) is dense in H.
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(b) Every x € H is given by the sum of its Fourier series'?:

o0
x =D (x,ex)ex.
k=1

(c) Every x € H satisfies Parseval’s identity:
- 2
el =" [(x, ex) | (5.18)
k=1

(d) If x € H is such that (x, e) = 0 for every k € N, then x = 0.
Proof We will prove that (a) = (b) = (¢) = (d) = (a).

e (2) = (b)
For any n € Nlet M, :=sp(ey, ..., e,). Then by hypothesis for every x € H we
have dy, (x) — 0 as n — oo, where dy, (x) denotes the distance of x from M,.
Thus, owing to Remark 5.59,

n 2
x = (xeer| = lx— pu, 0> =dy, (x) >0 (n — 00).
k=1
This yields (b).

e (b) = (c) This part follows from Bessel’s identity.
e (c) = (d) Obvious.

e (d)=(a)
Let L := sp(ex | k € N). Then by hypothesis L = {0}. So L is dense thanks to
point (iii) of Corollary 5.33. (]

Definition 5.61 An orthonormal sequence (ex)x in a Hilbert space H is said to be
complete if sp(ex | k € N) is dense H (or if any of the four equivalent conditions of
Theorem 5.60 holds). In this case, (ex) is called an orthonormal basis of H.

Exercise 5.62 Show that if a Hilbert space H possesses an orthonormal basis (e )k,
then H is separable, that is, H contains a dense countable set.

Hint. Consider the set of all finite linear combinations of the vectors e; with rational
coefficients.

2More exactly, the statement ‘x = 2130:1 (x, ex)ex’ means that the sequence of partial sums corre-
sponding to the Fourier series of x converges to x in the metric of H, i.e., D j_, (x, ex)ex — x in
H asn — oo.
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Exercise 5.63 Let (y;)r be a sequence in a Hilbert space H. Show that there exists
an at most countable set of linearly independent vectors {x; | j € J}in H such that

sp(yk [k € N) = sp(x; | j € J).
Hint. For every j € Nletk; be the first index k € N such that
dimsp(y1, ..., yx) = J.
Setx; := yx;. Then sp(xi, ..., x;) =sp(y1, ..., Yk;)-

Exercise 5.64 Let (ex); be an orthonormal basis in a Hilbert space H. Show that

(x, ) =D (x,ex)(y.er) Vx,y€H.
k=1

Hint. Observe that ) 5 )
Al A+ yllE = Alx s =iyl

(x,y) >

and use Parseval’s identity (5.18).
Next result shows the converse of the property described in Exercise 5.62.

Proposition 5.65 Let H be an infinite-dimensional separable Hilbert space. Then
H possesses an orthonormal basis.

Proof Let (yr)x be a dense sequence in H and let A be the set of at most countable
linearly independent vectors constructed in Exercise 5.63. Then sp(A) =sp(yk |k €
N) is dense in H. We claim that A is infinite. Indeed, if not, then sp(A) would have
finite dimension and, consequently, it would be a closed subspace of H (see Corollary
C.4), which in turn implies sp(A) = H, in contradiction with the assumption that H
is infinite-dimensional. So we deduce that A is infinite and countable. Set A = (x)x
and define'3

X1 X — 2 k(XK €j)e;
1=—— and e =
llcell

(k > 2).
=t e

Then (ex ) is an orthonormal sequence by construction. Moreover, we have

sp(et,...,ex) =sp(xy,...,xx) Vk>1. (5.19)
Indeed, by induction it is easy to verify that {ej,...,ex} C sp(xy,...,xx), by
which sp(ey, ..., ex) C sp(xy, ..., xr). On the other hand, the vectors ey, ..., e

13This procedure is known as Gram—Schmidt orthonormalization.
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are linearly independent because they are orthogonal (see Exercise 5.20). Thus
dimsp(er,...,ex) = k = dimsp(xy,...,xx), and (5.19) follows. Therefore
sp(ex | k € N) is dense in H. O

Example 5.66 In H = ¢? it is immediate to verify that the orthonormal sequence
(ex)r of Example 5.55 is complete.

Remark 5.67 1f H is not separable, we can also establish (using the Axiom of Choice)
the existence of an uncountable orthonormal basis {e; | i € I}. Theorem 5.60 is still
valid provided we substitute convergent series by summable families (see [Sh61]).
For instance, let us consider an uncountable set A and, for every function f : A —
[0, 00), let us set

Z f(a) :=sup [ Z f(a): F C A, F finite or countable].

a€cA aeF

Observe that, since

[e.¢]

1
{aeA:f(a)#O}:U{aeA:f(a)z;},

n=1

we deduce that

Z fla) <oo= Ay :={a € A: f(a) # 0} is finite or countable.
acA
Next define
2(A) = Ix AR x| = Z Ix()]? < oo].

acA

In other words, EZ(A) = L2(A, /L#), where u# denotes the counting measure on A.
It follows that £2(A) is a Banach space. Set, moreover,

()= D x(@yla) Vx,ye 3 (A),
acAyUAy

where Ay U A, is finite or countable. Then (-, -) is the scalar product associated with
the norm || - ||2. So £2(A) is a Hilbert space. Finally, if we define

1 ifB=a,

x“(ﬂ):[o if 8+ a,

then {x,}nec4 is an orthonormal family.
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Proposition 1.75 guarantees that the Lebesgue measure on R¥ is the unique Radon
measure, up to multiplicative constants, which is translation invariant. The following
exercise shows that in an infinite-dimensional Hilbert space there is no nontrivial
measure with analogous properties.

Exercise 5.68 Let H be an infinite-dimensional separable Hilbert space. Show that
if 1 is a Borel measure on H, which is translation invariant and finite on all bounded
subsets of H, then p = 0.

Hint. Let 1 be a Borel measure on H which is translation invariant and finite on
bounded sets of H. Assume p # 0. By using the balls (5.7), (B, (0)) > 0 for some
radius » > 0. Given an orthonormal complete sequence (e )i, fix R > r+/2. Then
fori # j we have B, (Re;) N B, (Rej) = @.

Exercise 5.69 Let (e;); and (e,/{)k be two orthonormal sequences in a Hilbert space

H such that
o0
D ek — ell* < 1.
k=1
Show that:
o
e Forevery x € {¢; |k € N}t \ {0} we have Z [(x, ex) > < |lx)?.
k=1

e (ex)i is complete if and only if (e,/{)k is complete.

5.4.3 Completeness of the Trigonometric System

In this section we will show that the orthonormal sequence {¢x | k = 0, 1, .. .} defined
in Example 5.56 is an orthonormal basis in L2(—7, 7).

To this aim we begin by constructing a sequence of trigonometric polynomials
with special properties. We recall that a trigonometric polynomial g(t) is a sum of
the form

q(t) =ao+ Z (ay cos(kt) + by sin(kt))  (n € N)
k=1

with coefficients ay, by € R, i.e., an element of sp(¢x | k =0, 1, ...). Any trigono-
metric polynomial ¢ is a continuous 27-periodic function.

Lemma 5.70 There exists a sequence of trigonometric polynomials (gq,), (see
Fig.5.6) such that

(a) qn(t) =0 foreveryt € Randn € N.
(b) %T J7 _qn(t)dt =1 for everyn € N.


http://dx.doi.org/10.1007/978-3-319-17019-0_1
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08
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Fig. 5.6 The sequence g,

(c¢) Foranyd >0
lim sup g¢,(r) =0.

N0 s<t<m

Proof For every n € N, define

1+ cost

n
Vi GIR,
2 )

an(t) = e
where ¢, is chosen in such a way that property (b) is satisfied. Recalling that
1
cos(kt) cost = E[COS ((k + D) + cos ((k — l)t)],

it is easy to check that each ¢, is a finite linear combination of elements cos(k?),
k > 0. So g, is a trigonometric polynomial.

Since property (a) is immediate, there only remains to check (c). Observe that,
since g, is even,

1:c_n ’T(l+cost)ndtzc_n ”(1+cost)ﬂsintdt
™ Jo 2 ™ Jo
o 2(l—i—cost)nﬂ’r_ 2¢,
T a4+ 1) 2 o T+’
by which we deduce
1
C"S@ Vn € N.

Now, fix 0 < § < . Since g, is even in [—7, 7] and decreasing in [0, 7], using the
above estimate for ¢,,, we obtain

1 1 O\" n—
sup gn(t) = gn(9) < rox D ( = ) = 0,
s<lt|<m 2 2
which completes the proof. ([

The next step is to derive the classical uniform approximation theorem by trigono-
metric polynomials.
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Theorem 5.71 (Weierstrass) Let f : R — R be a continuous 2m-periodic function.
Then there exists a sequence of trigonometric polynomials (py), such that || f —
Pnllooc = 0asn — oo.

Proof '* Let (g,) be the sequence of trigonometric polynomials constructed in
Lemma 5.70. For any n € N and ¢+ € R, a simple periodicity argument shows
that

1 s
Pn(t) =z / [t —5)qu(s)ds
U —T

1 t+m 1 s
= 2—/ F(Mgn(t —T)dr = — F(T)gn(t —T1)dT.
T Ji—r 2

—T
This implies that p,, is a trigonometric polynomial. Indeed, since

k

gn(t) = ao + Zak cos(kt),
k=1

we have that

k
s 1 n ™
palt) — ;—7‘1 | fmdr=o é [ Fmacos (k(t — 7)) dr

kll

= % Zak[cos(kt) /7r f(7)cos(kT) dt + sin(kt) ’ f(7) sin(kT) dT}_
k=1 -7

For any § € (0, 7] let
wr(d) = sup [f(x) = fD)I-

[x—yl<o

Using properties (a) and (b) of Lemma 5.70, for every t € R we have

1 ™
| £(6) = pa(0)] = ‘Z / [£®) = ft = 9)]an(s)ds
1 s
<5 |f(0) = f(t = 5)|qn(s)ds
T J—m
<i/5 (5)n(s) ds + 21 £ lloodn(s) d
=27 ) wWrl0)gnls) ds o 5<ls|<r ooqn(s)ds

Swr(0) + 20 fllc sup  gnls).

o<|s|=m

4This proof, based on a convolution method, is due to de la Vallée Poussin.
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Since f is uniformly continuous, we deduce that w(6) — Oasd — 0. Givene > 0,
let 9. € (0, 7] be such that w¢(d;) < e. Owing to point (c) of Lemma 5.70, there
exists ne € N such that sups _sj< gn(s) < € for every n > n.. Then

If = Palloc < 1+ 2] fll)e  Yn = ne,

thus completing the proof. O

Remark 5.72 Weierstrass’ Theorem can be reformulated as follows: any continuous
function f : [a, b] — R suchthat f(a) = f(b) is the uniform limit of a sequence of
trigonometric polynomials in [a, b], where by a trigonometric polynomial in [a, b]
we mean a finite linear combination of elements of the system

2kt . 2wkt

1, cos , sin (k>1).
b—a b—a

Since the functions cos(k?) and sin(kt) are analytic, we deduce that any continuous
function f : [a, b] — R is the uniform limit of a sequence of algebraic polynomi-
als.!3 For a direct proof see, for instance, [Ro68].

We are now ready to deduce the announced completeness of the trigonometric system.
We recall that €.(a, b) = 6, ((a, b)) denotes the space of all continuous functions
f : (a, b) — R with compact support (see Sect.3.4.2).

Theorem 5.73 {¢i |k =0, 1, ...} is an orthonormal basis of L*(—m, ).

Proof We will show that trigonometric polynomials are dense in L*(—, 7) and
then the conclusion will follow from Theorem 5.60. Let f € L?(—m, 7) and fix
e > 0. Since .(—mn, ) is dense in L2(—m, 7) on account of Theorem 3.45, there
exists f: € €.(—m, m) such that | f — f:|l2 < e. Clearly, we can extend f:, by
periodicity, to a periodic continuous function on the whole real line. Moreover, by
the Weierstrass Theorem (Theorem 5.71) there exists a trigonometric polynomial p.
such that || f- — pcllco < €. Then

If = pellz = IIf = fellz+ I1fe = pellz < e +ev2m

and the conclusion follows. |

Remark 5.74 Let f € L*(—x, 7). According to Definition 5.58 the Fourier coeffi-
cients of f with respect to the trigonometric system are given by

(f,ox) = FOer(t)dt == fk), k=0,1,2....

—T

51t suffices to write f as f = (f — g) + ¢, where g = (x — a)%, and apply Weierstrass
Theorem to the function f — g which satisfies (f — g)(a) = (f — ¢)(b) = f(a).
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Thus, the associated Fourier series is

fO 1 $rs : .
E + ﬁ ; [f(Qk) cos(kt) + f(2k — 1) s1n(kt)], (5.20)
whose partial sums are the following trigonometric polynomials
B ORI A .
Sp(f) =S, (f, 1) = E + ﬁ ; [f(Zk) cos(kt) + f(2k — 1) sm(kt)].

Since the trigonometric system is an orthonormal basis of L?(—, 7), then by The-
orem 5.60 we have that:

e f is given by the sum of its Fourier series with respect to the trigonometric system,
that is,

Su(f) i fasn — oo.

e Parseval’s identity holds:

LF15 =D 1f K1 (5.21)

k=0

We note that we have no information on the pointwise convergence of the Fourier
series (5.20), except that there exists a subsequence (S, )x converging a.e. in (—, )
(see Theorem 3.11). Actually, one can prove that the Fourier series itself is convergent
a.e. (see [Ka76, Mo71]).

Exercise 5.75 Applying (5.21) to the function

derive Euler’s identity
2

i 1 T
Z= e
= k 6
5.5 Miscellaneous Exercises

Exercise 5.76 Determine the projection in £2 of the sequence (%)nzl onto the sub-
space M defined by:

1 1
M= <a(2_n)nzl - 6(3_")n21

a, ﬁeR].
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Exercise 5.77 Let M be the subspace of ¢> defined by

M= {(’%)‘ (Xn)n € zz}.

Show that M is dense in ¢> but M # ¢

Exercise 5.78 Consider the subspace of L?(—, 7) defined by:

M:{a+bsinx+cx2|a,b,ceR}.

1. Find an orthonormal basis of M.
2. Compute
s
min/ Ix — f>dx.

feM J_.

Exercise 5.79 Compute

: ®1 a b2
min ‘—3————2‘ dx.
a,beR J1 X X X

5 Hilbert Spaces

Exercise 5.80 Let F : L2(—1, 1) — R be the linear functional defined by

1
F(f)=/0 (f(x) = f(x = D)dx.

Show that F is bounded and compute || F'||.

Exercise 5.81 In the Hilbert space L%(R) consider the set

M={feH : f(x)=f(—x)ael}.

1. Show that M is a closed subspace of L?(R).
2. Show that the orthogonal projection onto M is given by

SO+ f=0)

pu(f)x) = 5

Exercise 5.82 Let (e,), be an orthonormal basis in a Hilbert space H.

1. Find all the functionals F € H* such that

D |Fen) < oo

n=1

(5.22)
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2. Let F € H* satisfy (5.22). Find a sufficient assumption on (e,),, to ensure that
o0
IFIZ =D 1F(en)l*.
n=1

Exercise 5.83 In the Hilbert space L2(0, co) consider the sequence

ifxe[n—1,n]

|
Pnlx) = [0 ifxe0o0\n—1n "7

1. Show that (¢,), is an orthonormal sequence.
2. Is (¢,), an orthonormal basis?

Exercise 5.84 Let (K,), be a sequence of closed convex sets in a Hilbert space H
such that K11 C K, and

K:=()Ki#9.

n=1

Letx € H.

1. Show that the sequence (dg, (x)), is convergent.
2. Show that (pg,(x)), is a Cauchy sequence, and therefore it converges to some
xeH.

Hint. Adapt the proof of Theorem 5.23.
3. Show that dg, (x) — dk (x) and X = pg(x).

Exercise 5.85 Let H be a Hilbert space.

1. Aset K C X is called a cone if for all x € K and A > 0 we have that \x € K.
Show that a cone K is convex if and only if

x,yeK and \,u>0 =— AIx+puyek.

2. Let K # @ be a closed convex cone. Show that, for every x € X,

xekK
pk(x) =X <= ({x—Xx,x)=0
(x—x,y)<0 Vyek

Exercise 5.86 Write the Fourier series of

T — |x]| 2
f(x)=( . ) v elomal.
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Deduce that
o0
1
25 =

Exercise 5.87 Let f, g € L?>(—, ) and let f (n), g(n) be their Fourier coefficients,
respectively.

1. Show that f(n) — 0asn — 4o0.
2. Show that the following series are convergent

Z . D fmim).
n=0 n=0
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Chapter 6
Banach Spaces

In the previous chapter, we have seen how to associate a norm || - || with a scalar
product (-, -) on a pre-Hilbert space H. We are now going to take a closer look at those
vector spaces X that possess a norm || - ||, hence a metric, which is not necessarily
associated with a scalar product. Such an extension is extremely useful because it
allows for application to numerous examples of great relevance, such as L” (X, i)
spaces with p # 2 or spaces of continuous functions.

Soon after the first definitions we shall introduce the notion of Banach space, that
is, a normed space which is complete with respect to the associated metric. Then,
we will study the space of all bounded linear maps between Banach spaces. Such a
space enjoys important metric and topological properties, mostly discovered in the
first half of the nineteenth century, that can ultimately be regarded as consequences
of Baire’s Lemma. Then, we will investigate the possibility of extending a bounded
linear functional on a subspace to the whole space X via the Hahn-Banach Theorem,
which has interesting geometric applications to the separation of convex sets. Finally,
we will analyse the Bolzano-Weierstrass property in infinite dimension, which will
lead us to introduce the notions of weak convergence and reflexive space.

Most of the examples in this chapter require the use of spaces of summable
functions. On the other hand, all these examples make sense in the special case of £
spaces which can be treated without any knowledge of integration theory. In order
to simplify the exposition, we shall often prove technical results in the latter special
case. For instance, in this chapter we characterize the dual space of £7. The proof
of the analogous characterization for L? (X, 1) spaces needs a refined methodology
and will be discussed in Sect. 8.4.

Once again, here we consider real Banach spaces only, even though most of the
results of this chapter hold true for vector spaces over C.
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6.1 Definitions and Examples

Let X be a linear space over R.

Definition 6.1 A norm | - || on X is a map
-1l X — [0, 00)

with the following properties:

I. |Ix]l = 0if and only if x = 0.
2. |lax|| = |al|lx]|| for every x € X and a € R.
3. llx+yll = lixll + llyll for every x, y € X.

The pair (X, || - ||) is called a normed linear space.

A function X — [0, co) satisfying the above properties except for 1 is called a
seminorm on X.
As we already observed in Chap. 5, in a normed linear space (X, || - ||) the function

dix,y) =lx—yll Vx,yeX (6.1)

is a metric.

Definition 6.2 Twonorms ||-||; and ||-||2 on alinear space X are said to be equivalent
if there exist two constants C > ¢ > 0 such that

clixlly = llxll2 = Cllxllt -~ Vx € X.

Exercise 6.3 Given a linear space X, show that two norms on X are equivalent if
and only if they induce the same topology in X.

Exercise 6.4 In R", show that the following norms are equivalent

N 1/p
x|, = z xi|? and ||x|lcoc = max |xg|,
llx1l p (k_l| k| ) llx 1l oo 1§k§N| k|

where x = (x1,...,xnN) e RN and p > 1.

Definition 6.5 A normed linear space (X, || - ||) is called a Banach space if it is
complete with respect to the metric defined in (6.1).

Example 6.6 1. Any Hilbert space is a Banach space.

2. Given a set S # @, the family B(S) of all bounded functions f : S — Risa
linear space with the usual operations of sum and product defined by
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vees [0 =F0+g00,
(@) = af ().

forany f, g € B(S) and a € R. Moreover, B(S), equipped with the uniform norm
[ flloo =sup|f(x)]  Vf e B(S),

xeS

is a Banach space (see, for instance, [F177, Proposition 2.13]).

3. Let (X, d) be a metric space. The family %} (X) of all bounded continuous func-
tions f : X — R is a closed subspace of B(X). So (Cgb(X), | - ||oo) is a Banach
space.

4. Let (X, &, u) be a measure space. The spaces L? (X, u), with 1 < p < oo,
introduced in Chap.3 are some of the main examples of Banach spaces with
the norm

1/p
IIfIIp=(/X|f|”du) VfelLl(X,p), 1<p<o0

and
[ fllo =inf{m > 0| pu(|f| >m) =0} VfeL®X,p).

We recall that, if ;* is the counting measure on N, we will use the symbol £7 to
denote the space L7 (N, M#)- In this case we have

S 1/p
”x||p=(2|xn|p) Vx=(xp)p€ll, 1<p<oo
n=1
and
lx|loo = sup |x,], Vx = (xp)n € £,
n>1

The case p = 2 was studied in Chap. 5.

Exercise 6.7 1. Let (X, d) be a locally compact metric space. Show that the set
%0(X), consisting of all functions f € %3 (X) such that for any € > 0O the set
{x € X | |f(x)| = €} is compact, is a closed subspace of €}(X) (so it is a
Banach space).
Hint. Observe that, if f,, € 6p(X) and f,, — f in €, (X), for large n we have

[reX|If@l=e} c{xeX|Ifu0)]=e/2}.

2. Show that the set
cp = {(xn)n € £ lim x, = 0} (6.2)
n—0oo

is a closed subspace of £°° (so it is a Banach space).
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3. Show that the uniform norm || - ||s (in B(S), €, (M) or £°°) is not induced by a
scalar product.
Hint. Use parallelogram identity (5.5).

From now on we will often use the following notation: given a normed linear
space X and (x,), C X, x € X, we will write

X
X, — X,

or, simply, x, — x, to mean that (x,), converges to x with respect to the metric
(6.1), that is, ||x, — x|| — 0 (as n — 00). Observe that, thanks to the well-known
inequality | [|x]| — llyll | < |lx — y||—which is a consequence of the triangle property
of the norm—it follows that

X
Xp —>x = [lxll — [lx]l.

Exercise 6.8 In a Banach space X, let (x,), be a sequence such that Z;’O: Xl <
0o. Show that the series ZZO:] Xp is convergent in X, that is, there exists x € X
such that

n

X
E Xk —> X as n — OQ.
k=1

Moreover,

o0
Ixll < D l1xall-
n=1

Hint. By property 3 of Definition 6.1 we deduce that

n—+p n+p
Do < > Il p=12...,
k=n+1 k=n-+1

by which it follows that the sequence of partial sums (3 }_, xx), is a Cauchy
sequence.

6.2 Bounded Linear Operators

Let X, Y be two linear spaces. A linear operator from X to Y is a linear map
A: X —> Y. IfY =R, Aisalso called a linear functional.

In the following we will always consider normed linear spaces with their respec-
tive norms. To simplify notation, when there is no danger of confusion, we will
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denote each norm with the same symbol || - ||, by dropping the reference to the
associated space.

Definition 6.9 Given two normed linear spaces X and Y, a linear operator A : X —
Y is said to be bounded if there exists C > 0 such that

[Ax]| < Cllx[| Vx € X.

The space of bounded linear operators from X to Y isdenoted by £ (X, Y).If X =Y,
we will write Z(X, X) = Z(X).If Y = R, as in the Hilbert space case, .Z (X, R)
is called the topological dual of X and is denoted by X*. The elements of X* are
called bounded linear functionals.

Arguing exactly as in the proof of Proposition 5.40, one can prove the following
result.

Proposition 6.10 Given two normed linear spaces X, Y and a linear operator A :
X — Y, then the following properties are equivalent:

(a) A is continuous.

(b) A is continuous at 0.

(c) A is continuous at some point.
(d) A is bounded.

As in Definition 5.41, let us set

IAll = sup [|[Ax]] VA e Z(X,Y). (6.3)

lxll=<1
Then for any A € £ (X, Y), we have
JAll = min {C > 0| | Ax]| < Cllx|| Vx € X}

| Ax|l
= sup [|Ax|| = sup [[Ax]| = sup
flx)=1 lxl<1 xz0 Xl

(6.4)

(see also Exercise 5.42). If Y = R, (6.3) is called the dual norm and is also denoted
by Il - Il

Exercise 6.11 Show that (6.3) is a norm on .Z (X, Y).

Proposition 6.12 Ler X, Y be two normed linear spaces. If Y is a Banach space,
then £ (X, Y) is also a Banach space. In particular, the topological dual X* is a
Banach space.

Proof Let (Ay), be a Cauchy sequence in £ (X, Y). Forevery x € X, since || A,x —
Apx|l < | Ay — Apll llx ], we deduce that (A, x), is a Cauchy sequence in Y. Since
Y is complete, then (A, x), converges to a pointin Y that we label Ax. We have thus
defined a mapping A : X — Y. Itis immediate to check that A is linear. Moreover,
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since (A,), is a bounded sequence in Z (X, Y), say ||A,| < M foreveryn € N,
then
[Anx|l < M|ix|| Vn eN, Vx € X,

by which, taking the limit as n — 0o, we have that || Ax|| < M|x|| forevery x € X.
So A e Z(X,Y)and |A|| < M. Finally, to show that A, — A in Z(X,7Y), fix
€ > 0 and choose n. € N such that | A, — A, || < € for all n,m > n.. Then
[Apx — Apx|| < €||lx|| for every x € X. Taking the limit as m — oo, we obtain
| Anx — Ax|| < ¢|x|| for every x € X. Hence, ||A, — A| < € forall n > n. and
the proof is complete. (]

Exercise 6.13 1. Given a continuous function f : [a,b] — R, define! A :
L'(a,b) — L'(a, b) by setting

Ag() = f()g@®), t€la,b].

Show that A is a bounded linear operator and || Al = || f || co-

Hint. By Exercise 3.26 it follows that || A < || fllco; to prove the equality,
suppose | f(x)| > || flloc —e forall x € [xg, x1] C [a, b] and let g(x) = X[xp.x1]
be the characteristic function of the interval [xo, x1]; then estimate || Ag].

2. Let A: € ([—1, 1]) — R be the linear functional defined by

1
Af:/ f(x)signx dx.
~1

Show that A is bounded and || A« = 2.
Hint. Consider the sequence (f,), of Exercise 5.12(2) and estimate Af, as
n— oo.

Exercise 6.14 Let X be a Banach space.

1. Show that if A, A’ € £ (X), then AA" ;= Ao A" € Z(X) and ||[AA'|| <
[AlIA].

2. Show that if A € Z(X) satisfies ||A]| < 1, then I — A is invertible and
(I-A)"1e2(X).
Hint. Show that (I — A)~! = 3% / A" (forn = 0 set A® = 1I).

3. Show that the set of invertible operators A € .#(X) such that A~! is continuous
is open in .Z(X).
Hint. Observe that if A ' ¢ £(X), then for every A € Z(X) such that
A — Aol < 1/ A5 || we have that A=! = [I + A5 (A — Ap) 1~ A5

If X is a normed linear space and x¢ € X, in the following we will denote by B, (xo)
the open ball with center xg and radius r > 0, i.e.,

'LP(a, b) = L?([a, b), m) where m is the Lebesgue measure on [a, b]. See footnote 7, p. 87.
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By (x0) = {x € X[ [lx —xoll <},

whereas we will denote by B, (xp) the closed ball
By(x0) = (x € X | [lx = xoll < 7).

If xg = 0, we will write B, = B,(0) and B, = B, (0).

Exercise 6.15 Show that, in a normed linear space X, we have B,(x) = B,(x) for

every r > 0 and x € X (in contrast to what happens in a generic metric space, see
Remark D.2).

Exercise 6.16 Let X be a normed linear space and ¥ C X a subspace. Denote by
X /Y the quotient space of X relative to ¥ and by Q the quotient map

0:X—> X/Y,
Ox=x+Y.
Show that the map || - || : X/Y — R defined by
Qx| =dy(x) = inf |x + y|l (6.5)
yeyY

is a seminorm on X/ Y, where dy (x) is the distance of xo from Y (see Appendix A).
Under the additional assumption that Y is also closed, show that:

(6.5)isanormon X/Y.

|Ox] < |lx|| for all x € X (so Q is continuous).
W C X/Y open => Q~'W open in X.

U C X open = QU openin X/Y.

X Banach = X/Y Banach.

A S

Finally, show that (6.5) fails to be a norm if Y is not closed.

Hint. To prove part 5, let (Qx,), be a Cauchy sequence in X /Y, that is, for any
€ > 0 there exists n. € N such that

nom z ne = | Qxn = Qxm|l = inf [lxy —xm +yll <.
Y

Construct a subsequence (x,, )x and a sequence (yx)x C Y verifying

1
%0, + Yk — Xngy — Ykt ll < > Vk € N.

So (x,, + yr)k is a Cauchy sequence in X, hence it converges to some x € X. By
part 2 we get Ox,, = Q(x,, +y) — Oxin X/Y.
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Exercise 6.17 Let H be a Hilbert space and M a closed subspace of H. Show
that the quotient map Q : H — H/M, restricted to M=, becomes an isometric
isomorphism.?

Example 6.18 (Volterra operator) Let | < p < oo and T > 0 and for any [ €
LP(0,T) set

t
fo(t)z/ f(s)ds te0,T).
0

1. Consider I < p < oco. Denoting by p’ the conjugate exponent of p, we have

P

, t 1/
|V, f()] < tV/P (/0 f(s)ds)

with the convention é = 0. Thus,

p P ! /P re p
IVpflp < ”f”p/o PP dt = 7||f||p-

So
T
Vp, e Z(LP(0,T)) and ||V, < m. (6.6)

2. Consider p = 1. We claim that | V|| = T.
Indeed, for any n € N set f,, = nX 0.1y which satisfies || f,]l1 = 1. Then

Vi fu(t) = min{nz, 1},

which implies

1
Vil = IWVifuli =T — — —> T.
2n

Combining this with (6.6) we get || V1] = T as claimed.
3. Consider p = oo. Then

t
Voo O] 5/0 F5)lds < 1]l flloo-

Therefore
Voo € Z(LP(0,T)) and || Vool < T.

Moreover, taking f = 1 yields || flloc = 1 and || Vol = Voo flloo = T'. So

[Vooll = T.

2See footnote 5 at p. 147.
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4. Consider p =2andsetV =V, € Z(L%*(0, T)). Then we have

IV =

IVrI3 I1£13 )71_ 67)

2 —( mn 2
ozferzo.r) 1S3 0£feL20.7) [|V£ll3

Let R(V) be the range of V, which is given by the following subset of the space
AC(0, T) of absolutely continuous functions (see Chap.7):

R(V)={ue AC(0,T)|u(0) =0, u' € L*(0, T)}.

Hence s ‘s
in ”f”22 = in lu ”22. (6.8)

0#£,eL20,7) [[VfIl;  0FAueRV) [lull3
Suppose T = 7 and for any u € R(V) consider the extension to [0, 7] by

symmetry (i.e., u(t) = u(m —t) fort € [%, 7]) and then the odd extension to

[—m, 7]. If we label by i the resulting extension to [—, 7], then u satisfies u(0) =
it(—m) = ia(w) = 0 and, denoting by (ax)x and (a’);. the Fourier coefficients of &
and i/, respectively, with respect to the trigonometric system (see Example 5.56),
a direct computation gives

ap=ap=0

aék = kayi_1, aé,ﬁl =ay =0 Vk=>1.

So Parseval’s identity yields
/2 2 i 2 . 2 . 2.2
4/ () |*dt _/ i) Pdt =" az < > Kay_,
0 -
k=1 k=1

m /2
/ i’ (1)|>dt = 4/ lu'(1)|%dt.
-7 0

We deduce that ||u/||% > ||u||% for any u € R(V); on the other hand, by taking
u(t) =sint € R(V), we obtain ||u||% = ||u’||%, and so

2
13

m D
0£ueR(Y) |lull3

Using (6.7) and (6.8), we conclude

V=1 ifT =—.
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In the general case T > 0, by an easy rescaling argument we get

2
13w

m 5 = —2T 3
0#ueR(V) |lulls  (2T)

whence ||V = 27T < %

6.2.1 The Principle of Uniform Boundedness

Our next result, usually ascribed to Banach and Steinhaus even though it was obtained
by various authors in different formulations, is also known as Principle of Uniform
Boundedness. Indeed, it allows to deduce uniform estimates for a family of bounded
linear operators starting from pointwise estimates.

Theorem 6.19 (Banach-Steinhaus) Let X be a Banach space, let Y be a normed
linear space, and let (A;)ie; C L (X, Y). Then

either there exists M > 0 such that
A/l <M Viel, (6.9)
or there exists a dense set D C X such that
su? |Aix|| =00 Vx € D. (6.10)
le

Proof Define
a(x) :=sup|Aix|| VxeX.
iel
Since a : X — [0, oo] is a lower semicontinuous function (see Corollary B.6), for

anyn € N
V,:={x € X|alx) > n} (6.11)

is an open set in X (see Theorem B.4). If all sets V;, are dense, then (6.10) holds
on D = ﬂ,‘io:IVn and D is, in turn, a dense set owing to Baire’s Lemma (see
Proposition D.1). Now, suppose that one of these sets, say Vy, fails to be dense in
X. Then there exists a closed ball B, (x0) C X \VN. Therefore

x| <r = xo+x¢Vy = alxo+x)=<N.

Consequently, [|A;x|| < || Ajxoll + | Ai(x + x0)|| < 2N foralli € [ and ||x|| <r.
So, foreveryi € I,
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rx

— || = —Ilxll Vx e X\{0},
llxl r

[lxl
[Aix]l = — | Ai
.

which yields (6.9) with M = 2N /r. O

Exercise 6.20 Give a direct proof (that is, a proof based only on the definition of
the function «) of the fact that the sets V,, in (6.11) are open.

Corollary 6.21 Let X be a Banach space, let Y be a normed linear space and let
(Ap)n C ZL(X,Y) be such that, for every x € X, the sequence (A, x), is convergent.
Then, setting Ax := lim,_, oo Ay x foreveryx € X, we have that A € £ (X,Y) and

Al < liminf |A,| < co.
n—o00

Proof The Banach-Steinhaus Theorem ensures that

sup | Al =M < o0,
neN

So liminf,_, o || A,|| < 0o. Moreover, for any n € N we have that
[Anx|l < M| x| Vx € X.

Thus, taking the limit as n — oo, we obtain
|Ax|| < M|x] VxeX.

Therefore, since it is immediate to verify that A is linear, we get A € Z(X,7Y).
Finally, taking the lim inf in the inequality || A, x| < || A,] |lx]|, we deduce that

[Ax| < liminf [A,] [lx]| Vx € X,
n—oo

which completes the proof. ([

Exercise 6.22 Letx = (x,), C Randlet1 < p, p’ < oo be conjugate exponents.3
Show that if the series 23;1 XnYn is convergent for every y = (y,), € P, then
x € LP.

Hint. Set

n
Ay oF S R, Ay = Zxkyk.
k=1

Show that A, € (€7)*, [Axlle = (Ch_y 1xklP)VP and Ay — 302, xpye for
every y € 7', Then use Corollary 6.21.

3Two numbers 1 < p, p’ < oo are said to be conjugate if % + % = 1, with the convention é =0.
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Exercise 6.23 4 Given a o-finite measure space (X, &, p),letl < p,p < oo be
conjugate exponents and let f : X — R be a Borel functionsuchthat fg € L(X, )
forevery g € L? (X, p). Show that f € L? (X, w).

Hint. Let (X,),, C & be an increasing sequence such that u(X,) < oo and X,, 1 X,
and set

Ay LP’(X, w =R, Apg =/ Ixuri=mgdp.
X,

Show that A, € (LP/(X’ H))*, Al = ||fXX,,ﬂ{|f|§n}||p and A,g — fX fgdu
forevery g € LY (X, (). Then use Corollary 6.21.

6.2.2 The Open Mapping Theorem

Bounded linear operators between two Banach spaces enjoy topological properties—
closely related one another—that are very useful for applications, for instance, to
differential equations. The first and most relevant of these results is the so-called
Open Mapping Theorem.

Theorem 6.24 (Schauder) Let X, Y be Banach spaces and let A € £ (X,Y) be
onto. Then A is an open mapping.5

Proof We split the argument into four steps.

1. Let us show that there exists a radius r > 0 such that
By, C A(By). (6.12)

Observe that, since A is onto, we have

Y = AB.
k=1

Therefore, by Proposition D.1 (Baire’s Lemma), at least one of the closed sets
{A(B)}x has a nonempty interior, and therefore it contains a ball, say Bs(y) C
A(By). Since A(By) is a symmetric set with respect to the origin 0, we deduce that

Bs(=y) C —A(By) = A(By)

4Compare with Exercise 3.9.
SThat is, A maps open sets of X into open sets of Y.
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Fig. 6.1 The Open Mapping
Theorem

(see Fig.6.1). Consequently, for every ¢y € By, we have 3y +y € By(+y) C A(By).
Since A(By) is a convex set, we conclude

y =Y+ -y

> € A(By).

Thus, By C A(By). Equation (6.12) follows by taking » = s/2k and then rescaling.
The argument goes as follows: let z € By, = By/i; then kz € B, and a sequence
(xn)n C By exists such that Ax, — kz.So x,/k € By and A(x,/k) — z, by which
z € A(By).

2. Observe that, by linearity, (6.12) yields the family of inclusions
Byi—n, C A(By-n) VneN. (6.13)

3. We now proceed to show that
B, C A(By). (6.14)

Let y € B,. Applying (6.13) with n = 1, we can find a point
;
X1 € By—1 such that ||y — Ax || < 7
Thus, y — Ax; € B,-1,.. Then, applying (6.13) with n = 2 we find a second point
r
X2 € By—2 such that Hy — A(x1 + x2) H < 7k
Iterating the above procedure gives a sequence (x;), in X such that

Xy € By and |y — AGe 4+ x| < 2r—n (6.15)

Since
o

o 1
Dl <D o =1,
n=1

n=1
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recalling Exercise 6.8 we conclude that the series > o~ | x,, converges to some point
x € X, thatis, >} _; xx X x. Moreover, || x| < Z,?il x|l < 1.By the continuity
of A we have >}_ | Axg L, Ax. On the other hand, by (6.15), Sy Axk AP
then we get y = Ax € ABy, and this proves (6.14).

4. Let U C X be an open set and let x € U. Then there exists p > 0 such that
B,(x) C U, whence Ax + A(B),) C A(U). Therefore

B,,(Ax) = Ax + B,, C Ax + A(B,) C A(U).

by (6.14)

This implies that A(U) is an open setin Y.
The proof is thus complete. (]

A first consequence of the above result is the following corollary, known as Inverse
Mapping Theorem.

Corollary 6.25 (Banach) Let X, Y be Banach spaces and let A € £ (X,Y) be
bijective. Then A™' € Z(Y, X). Consequently, the Banach spaces X and Y are
isomorphic.

Proof Tt is immediate that A~! is linear. Moreover, for any open set U C X, we
have that (A~!)~!(U) = A(U) is an open set in Y owing to the Open Mapping
Theorem. It follows that A~ is a continuous map, and so Ale Y, X). O

Exercise 6.26 Let X, Y be Banach spaces and let A € Z (X, Y) be bijective. Show
that there exists a constant A > 0 such that

lAx|| = Mx|| Vx e X.

Hint. Use Corollary 6.25 and apply Proposition 6.10 to A~

Exercise 6.27 Let | - |; and || - |2 be two norms on a linear space X. Suppose that
X is a Banach space with respect to both || - || and | - ||2. If there exists a constant
¢ > Osuchthat ||x|l2 < c|lx]||; forany x € X, then there also exists another constant
C > O such that ||x||; < C|x]||; forany x € X (i.e,, || - ||; and || - || are equivalent
norms).

Hint. Tt is sufficient to apply the result of Exercise 6.26 to the identity map
X - 1) = X 2)-

Example 6.28 (Konig-Witstock norm) Let X be a Banach space with norm || - || and
let f : X — R be a linear functional which is not bounded (see Example 5.50). We
now exhibit a second norm || - ||  on X such that X is complete with respect to || - || s
but || - || ¢ is not equivalent to || - ||. Indeed, fix p € X such that f(p) = 1 and set
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M=Rp={\p|\eR).

Let us define
lxllr =1f)+dux) Vx e X,

where djs(x) is the distance of x from M.

1. Letus show that || - || r is a norm on X, which is known as Konig-Witstock norm
([KW92]). Indeed

®
fx)=0

””f:0¢$I@Am=o'

Since M is closed, we get x € M, and so x = Ap for some A € R. Hence,
f(x)=0=Xandx =0.
(i) Letx € X and o € R\ {0}. Then

lax|lr = lal|f(x)| + inf lax — Apl|
AeR

= lal(If ol + inf llx = ppll) = lad Il
neR
(iii) Letx,y € X. Given € > 0, let us choose A., u- € R such that

lx = Aepll <dm(x) +e, |y — pepll < du(y) +e.

Then
lx +ylly =1f(x+|+dux +y)

S+ fWI+ llx = Aepll + lly — pepll
< llxlls 4 llyll r + 2.

Sollx +ylly < lxlly+ Nyl

2. Let us show that X is complete with respect to the norm || - || 7. Indeed, let
(x4)n C X be a Cauchy sequence with respect to the norm || - || s. Then for every
€ > 0 there exists n. such that

n,m>ne = |f(xy) — fm) +dy(xy —xm) <e.
It follows that

(f (xn))n is a Cauchy sequence in R,
(x, + M),, is a Cauchy sequence in X/M,
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where X /M is the quotient space of X relative to M. Recalling that X/M is a
Banach space owing to Exercise 6.16, we deduce that there exist L € R and

X € X such that
f(x,) — L inR,

x;1+M—>)E~|—M IHX/M
Setting A = L — f(x) we have L = f(x + Ap). So
xn — (X + Ap)llg = 1f(xn) — LI + dp (xp — X) — 0.

3. Finally, let us show that || - || and || - ||y are not equivalent. Indeed, assume by
contradiction that there exists a constant C > 0 such that

Lf Ol +du(x) = lixllf = Clix]l.

Then | f(x)| < C||x||, and this implies that f is continuous—a contradiction.

To introduce our next result, let us observe that the Cartesian product X x Y of two
normed linear spaces X, Y is naturally equipped with the product norm

Gl = lxll + 1yl Yx,y) e X xT.

Exercise 6.29 Show that if X, Y are Banach spaces, then (X x Y, () ||) is also a
Banach space.

We conclude with the so-called Closed Graph Theorem.

Corollary 6.30 (Banach) Let X, Y be Banach spaces and let A : X — Y be a
linear mapping. Then A € £ (X, Y) if and only if the graph of A, that is, the set

Graph(A) := {(x,y) € X x Y | y = Ax},
is closedin X x Y.
Proof Suppose, first, that A € Z(X, Y). Then it is easy to see that
A:XxY—=>Y Ax,y)=y— Ax
is a continuous mapping. Therefore Graph(A) = A~1(0) is a closed set.
Conversely, suppose that Graph(A) is a closed set in X x Y. Then Graph(A) is
in turn a Banach space with the product norm, since it is a closed subspace of the

Banach space X x Y. Moreover, the linear map

IT5 : Graph(A) = X ITp(x, Ax) :=x
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is bounded and bijective. Therefore, owing to Corollary 6.25, the map
' : X — Graph(A)  IT;'x = (x, Ax)
is continuous; since A = [Ty o HZI, where
Iy : X xY—=Y Iyx,y =y,

we conclude that A is also continuous. O

Example 6.31 Consider the spaces
Y =%(0,1]) ={f : [0,1] = R| fcontinuous}
and
X = %1([0, 1)) = {f : [0, 1] — R| f differentiable and f' € € ([0, 1])}
both equipped with the norm || - || . Define
Af(t)=f't)y VfeX, Vtel0,1].

Then Graph(A) is a closed setin X x Y since

LOC
Jo— f
;LY
Jn )

= fe?'(0,1) & f =g

On the other hand A fails to be a bounded operator. Indeed, taking
o) =1" Vi el0,1],

we have
meX, lfilo=1, lAfiloo=n Vn=>1.

This shows the necessity of X being a Banach space in Corollary 6.30.

Exercise 6.32 Let X, Y be Banach spaces and let A € Z(X,Y). Show that the
following properties are equivalent:

(a) There exists ¢ > 0 such that || Ax| > c|x|| for every x € X.
(b) ker A = {0} and A(X) is aclosed setin Y.
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Hint. For the implication (b) = (a) apply the result of Exercise 6.26 to the bijective
operator x € X — Ax € A(X).

Exercise 6.33 Let H be a Hilbert space with scalar product (-, -) and let A, B :
H — H be two linear operators such that

(Ax,y) = (x,By) Vx,yeH. (6.16)

Show that® A, B € Z(H).
Hint. Use (6.16) to deduce that Graph(A) and Graph(B) are closed sets in H x H;
then apply Corollary 6.30.

Exercise 6.34 Let X be an infinite-dimensional separable Banach space and let
(ei)ier be a Hamel basis’ of X such that ||e;|| = 1 forevery i € I.

1. Show that [ is uncountable.
Hint. Suppose, by contradiction, / = N and use Baire’s Lemma D.1 taking the
closed sets F, = Rej + -+ Re, = {D1_, Niei |\ € R}

2. Show that the map || - ||; defined by

Ixlls =D I\l if x = Ae;, J C 1 finite
iel ieJ

isanormin X and ||x|| < ||x]||; for every x € X.

3. Show that X is not complete with respect to the norm || - ||1.
Hint. If (X, || - ||1) were a Banach space, then || - || and || - ||; would be equivalent
norms by Exercise 6.27, but, for any i # j, we have |le; — e;|l1 = 2, and this
yields that (X, || - ||1) fails to be separable (as in Example 3.27).

6.3 Bounded Linear Functionals

In this section, we shall study a special class of bounded linear operators, namely R-
valued operators or—as we usually say—>bounded linear functionals. We shall see,
first, that functionals enjoy an important extension property described by the Hahn-
Banach Theorem. Then we will derive useful analytic and geometric consequences
of such a property. These results will be essential for the analysis of dual spaces that
we shall develop in the next section. Finally, we will characterize the duals of the
Banach spaces £7.

6This result dates from 1910 (see [Ko02, p-67)).
7See footnote 9 at p. 151.
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6.3.1 Hahn-Banach Theorem

Consider the following extension problem: given a normed linear space X, a subspace
M C X (not necessarily closed) and a bounded linear functional f : M — R,

ﬂM=ﬁ
1 ENs = 11 f Il

find F € X* such that [ (6.17)

(here we have used the same symbol to denote the dual norm of f, which is an
element of M*, and the dual norm of F', which is an element of X*).

Remark 6.35 Observe that a bounded linear functional f defined on a subspace M
can be uniquely extended to the closure M by a standard completeness argument.
Indeed, let x € M and let (x,), C M be such that x,, — Xx. Since

Lf Gen) = f )| < N f Ml — X

(f (xp))n is a Cauchy sequence in R. So (f(x,)), is convergent. Then it is easy to
verify that F(X) := lim, f(x,) is the required extension of f and || F|l« = || fl«.
Therefore the problem (6.17) has a unique solution when M is dense in X.

Remark 6.36 Problem (6.17) has a unique solution also when X is a Hilbert space.
Indeed, let us still denote by f the extension of the given functional to the closure
M, obtained by the procedure described in Remark 6.35. Note that M is a Hilbert
space. So, by the Riesz Theorem, there exists a unique vector y ¢ € M such that

lyrll = I1fll« and B
f&)={xyr) VYxeM.

Define
Fx)=(x,yr) VxeX.

Then F € X*, F|M = fand | Fl|l« = llysll = || fll+. We claim that F' is the unique
extension of f with these properties. Indeed, let G be another solution of the problem
(6.17) and let yg be the vector in X associated with G in the Riesz representation.
Consider the Riesz orthogonal decomposition of ¥, that is,

Y6 =Yg +ys where y; e M and yl L M.

Then .
(x,y5) =G(x) = f(x) = (x,yy) VxeM.

So y; = yf. Moreover

Iy = llyeI? = lygI> = IGIZ = llyslI* = 1 £12 = llyslI* = 0.
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In general, the following classical result ensures the existence of a solution for the
problem (6.17) even though the uniqueness of the extension is no longer guaranteed.

Theorem 6.37 (Hahn-Banach) Let X be a normed linear space, M a subspace of
X, and f : M — R a bounded linear functional. Then there exists F € X* such
that F|,, = f and | F|l; = || f|s.

Proof To begin with, let us suppose || f|l« # O (otherwise one can take F = 0
and the thesis immediately follows). We can also assume, without loss of generality,
that || f|l« = 1. We will show, first, how to extend f to a subspace of X which
strictly contains M. The general case will be treated later—in steps 2 and 3—using
a maximality argument.

1. Suppose M # X and let xo € X \ M. Let us construct an extension of f to the
subspace
Moy:=M+Rxg={x+XIxo | x € M, X\ € R}.

Define
fo(x +Axp) == f(x)+ X a  Vxe M, VAeR, (6.18)

where « is a real number to be chosen later. Clearly, fj is a linear functional
on My that extends f. We must find o € R such that the extended functional is
bounded and has norm 1. This will occur if
[folx +Ax0)| < llx + X xoll VxeM, YAeR.
A simple rescaling argument allows to recast the above inequality as
[foxo =l < llxo—yll  VyeM.

Therefore, replacing fo by its definition in (6.18), we deduce that v must satisfy
la — f(y)| < |lxo — y|l for every y € M, or, equivalently,

JF@ —llxo—yll == fy+lxo—yl VYyeM.
Now, such a choice of « is possible since
- f@=fy—a=ly—zI = lxo—yl+lxo—zl Yy zeM,
and so
sup {f (4) = llxo —yll} = inf {f() +llxo —z}.

yeM

2. Denote by & the family of all pairs (M, f), where M isa subspace of X including
M and f is a bounded linear functional extending f to M such that || f||x = 1.
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&P # & since it contains (M, f). Moreover, &2 is a partially ordered set with
respect to the following order relation: for any (M1, f1), (M3, f2) € £,

M subspace of M»,

(6.19)
fa=fi on M.

My, f1) < (M2, ) {

We claim that &7 is an inductive set, i.e., every totally ordered subset of &7 admits
a supremum. To see this, let 2 = {(M;, fi)ics} be atotally ordered subset of &,
Then it is easy to check that, setting

M = UM[,

iel

fo) = fix) if xeM;,

the pair (M, f ) € & is an upper bound (actually, the supremum) of 2.

3. By Zorn’s Lemma, & has a maximal element, which we label (.#, F). The thesis
will follow if we prove that .# = X, because F = f on M and ||F|, = 1 by
construction. On the other hand, if .# were a proper subspace of X, then the first
step of the proof would imply the existence of a proper extension of (.#, F),
contradicting its maximality.

The theorem is thus proved. O

Example 6.38 In general, the extension provided by Hahn-Banach Theorem is not
unique. For instance, consider the spaces

¢:= {x = (x,), € £ ‘ 3 lim x,,},
n—oo

&= {x — (Xp)n € £ ‘ 3 lim xon & 3 lim x2n+1}.
n—oo n—oo

It is easy to see that ¢, ¢’ are closed subspaces of £*°. Clearly ¢ C ¢. Let f € (¢)*,
f1, f2 € (¢")* be the continuous linear functionals defined by:

f(x):= lim x, Vx=(x,), €¢,
n—0o0o
fi(x) == lim xp,, fo(x):= lim x2,41  Vx = (x,), €&
n—o00 n—oo

Then || fll« = Il fille = I f2llk = 1, fi = fo = fonc, but fi # f> onc’. Other
examples of multiple extensions of continuous linear functionals are provided in

Exercises 6.39 and 6.40.
Exercise 6.39 Let M be the closed subspace of £!:

M={x=r el |xx=0 Vk >2}
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and define the functionals

fx)=x1 VYx=(@k €M,

n

F(x) = Zxk, Fo(x) = Zxk Vx = (k€ £
k=1 k

=1

Show that, for every n > 1, f € M*, F, F, € (£)*, Fn‘M = F|M = f and
1ENe = 1 Falle =11 f Nl = 1.
Exercise 6.40 In R? with the norm

Ixlls = lx1] + lx2] - Vx = (x1,x2) € R?,

consider the closed subspace
M ={(x1,0)|x; € R}

and the functionals:
f)=x1 Vx=(x1,0)e M,

Fix) =x1, Fx)=x1+x Vx=(x,x)ecR>

Show that f € M*, Fi, F> € R*)*, |Fillx = |F2lls = | fllx = 1, and Fy|, =
F2|M = f.
We shall now discuss some consequences of the Hahn-Banach Theorem.

Corollary 6.41 Let X be a normed linear space, M a closed subspace of X and
xo &€ M. Then there exists F € X* such that:

(a) F(xo) =L
(b) F(x) =0 foreveryx € M.
(c) |Fll« = 1/dp(x0), where dp(xo) is the distance of xo from M (see Appendix
A).
Proof Let My = M + Rxo = {x + Axo | x € M, X € R}. Define f : My — R,
fx+Xdxp) =X VxeM, YAeR.

So f(xo) =1and fiM = 0. Moreover, since

X
llx + Axoll = [Al ”X +xo|| = [AMdm(x0) Vx € M, VA #0,
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we have that || f||« < 1/dp(x0). Let (x,,), C M be a sequence such that

1
X — xoll < (1 n ;)dM(xo) Vi > 1.

Then

nlxe — xoll

—_— n>1.
n+1 dy(xg)

If 1l = xoll = f(x0 —xn) =1 >

Therefore || f|l. = 1/dy(x0). The existence of an extension F € X* satisfying
properties (a), (b), (c) follows from the Hahn-Banach Theorem. U

Corollary 6.42 Let X be a normed linear space and xo € X \ {0}. Then there exists
F € X* such that
F(xo) = llxoll and [F|s=1.

Proof Let M = {0} and, given xo # 0, let f € X* be the functional constructed
in Corollary 6.41. Then, observing that dy;(xg) = ||xol|, taking F(x) = ||xo] f(x)

yields the thesis. 0
Exercise 6.43 Let x1, ..., x, be linearly independent vectors in a normed linear
space X and let Ay, ..., A\, be real numbers. Show that there exists f € X™ such that

fx)y=XN Vi=1,...,n.

Exercise 6.44 Let M be a subspace of a normed linear space X.

1. Show that a point x € X belongs to M if and only if f(x) = 0 for every f € X*
such that f’M = 0.

2. Show that M is dense in X if and only if the unique functional f € X* vanishing
onMis f=0.

Exercise 6.45 Given a normed linear space X, show that X* separates the points
of X, i.e., for every x1,x; € X with x; # xj there exists f € X™ such that

fx1) # f(x2).

Exercise 6.46 Given a normed linear space X and x € X, show that

Ixll = max {£(x) | f € X*, [Ifll« =<1}

Exercise 6.47 Let X, Y be two normed linear spaces and let 7 : X — Y be a
bounded linear operator. The transpose 7* : Y* — X* is defined by T*¢ = ¢po T
for all ¢ € Y*. Show that T* € Z(Y*, X*) and | T*|| = ||T|. Moreover, if T
is invertible and T-! € .Z(¥, X), show that T* is also invertible and (7*)~! =
(T~H* e L(X*,Y™).
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6.3.2 Separation of Convex Sets

Hahn-Banach Theorem has relevant geometric applications. Let us begin by extend-
ing our analysis to linear spaces.

Definition 6.48 A sublinear functional on a linear space X is a function p : X — R
such that:

(a) p(Ax) = Ap(x) forevery x € X and A > 0.
(®) plx+y) = plx)+ p(y) forevery x, y € X.

The Hahn-Banach Theorem can be generalized as follows.

Theorem 6.49 (Hahn-Banach: second analytic form) Let p be a sublinear functional
onalinear space X and let M be a subspace of X. If f : M — Risalinear functional
such that

fx)<pkx) VxeM, (6.20)

then there exists a linear functional F : X — R such that

F. =1
[ = 6.21)
F(x) < px) Vx € X.

Omitting the proof, we invite the reader to verify that the proof of Theorem 6.37 can
be easily adapted to the above framework.

Theorem 6.50 (Hahn-Banach: first geometric form) Let A, B be nonempty disjoint
convex sets of a normed linear space X. If A is open, then there exists a functional
f € X* and a real number « such that

fx)<a<f(y VxeA, VyeB. (6.22)

Remark 6.51 Observe that (6.22) implies, in particular, f # 0. Given a functional
f € X*\{0}, for every o € R the set

Oy=fNa)y=xeX| f(x) =a) (6.23)

is a closed hyperplane in X (see Definition 5.47). Indeed, since f is continuous, IT,
is a closed set. To show that I7,, is a hyperplane, let yo € X be such that f(yp) = 1.
Then for every x € X, we have

x=x— f(x)yo+f(xX)yo-
—_———
eker f

So X = ker f + Ryp, by which we deduce that ker f has codimension 1. It follows
that I1, = ker f + ayo is a closed hyperplane in X. Therefore the conclusion of
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Theorem 6.50 can by reformulated by stating that A and B can be separated by a
closed hyperplane.

The proof of Theorem 6.50 is based on the following two lemmas.

Lemma 6.52 Let C be an open convex set of a normed linear space X such that
0 e C. Then

pcx):=inf{r>0|xe7C} VxeX (6.24)

is a sublinear functional on X called the Minkowski functional or gauge of C.
Moreover,

(i) Jc > 0suchthat 0 < pc(x) < c|x|| for every x € X.
(ii) C={xeX|pclx) <1}

Proof Let us observe, first, that C contains a ball Bg.

1. We begin by proving (i). For any € > 0 and x € X we have

Rx

———— e BrpCC.
Ixl+e ¢

From the arbitrariness of ¢, it follows that 0 < pc(x) < ||x||/R.

2. We now proceed with showing that pc is a sublinear functional. Fix A > 0,x € X
ande > 0.Let 0 < 7= < pc(x) + € be such that x € 7.C. Then Ax € A7-C. So
pc(Ax) < Atz < A(pc(x) + €). The arbitrariness of ¢ gives

pc(Ax) < Apc(x) VA>0, Vx € X. (6.25)

To obtain the opposite inequality, observe that, thanks to (6.25),

1 1
pc(x) = pc (X AX) =3 pc(Ax).
Finally, let us check that pc satisfy property (b) of Definition 6.48. Fix x, y € X
ande > 0.Let0 < 7= < pc(x) +eand 0 < 0. < pc(y) + € be such that
x € 7:C andy € 0-.C. Then x = 7.x. and y = 0.y, for some points x., y- € C.
Since C is convex, we deduce that

Te Oe
x+y=Tex€+Uey»5:(Te+Ua)( Xe + ye)'
Te + 0¢ Te + 0c

eC

Therefore
pc(x +y) <7 +0-. < pcx)+ pc(y) +2¢  Ve>0.

So pc(x +y) < pc(x) + pc(y).
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3. Set C = {x € X | pc(x) < 1}. Since C is convex and 0 € C, we have that
7C C C for every 7 € [0, 1], and so C cC. Conversely, since C is open, each
x € C belongs to some ball B,(x) C C. So, ifx # 0, (1 + ||lx]|"'r)x € C,
whence pc(x) < 1/(1+ ||x]|7'r) < 1.

The lemma is thus completely proved. O
Lemma 6.53 Let C # & be an open convex set in a normed linear space X and let

xo € X\C. Then there exists a functional f € X* such that

f(x) < f(xo) VxeC.

Proof We may assume, up to translation, 0 € C. Define M := Rxp = {Axo | A € R}
andg: M — Rby
g(Axo) = Apc(xg) VA €ER,

where pc is the Minkowski functional of C. Observe that g satisfies condition (6.20)
with respect to the sublinear functional pc: for every x = Axg € M, the inequality

g(x) = Apc(x0) < pc(x),

which is obvious if A < 0, follows from property (a) of Definition 6.48 if A > 0.
Then Theorem 6.49 guarantees the existence of a linear extension of g, which we
label f, such that f(x) < pc(x) for every x € X. Moreover, by property (i) of
Lemma 6.52,

f&) =clxll and f(—x) <clx] VxeX,

so f € X*. Finally, once again thanks to Lemma 6.52,

fx) < pcx) <1 = pcxp) =gxo) = flxo) VxeC,

and this concludes the proof. ]

Proof of Theorem 6.50. 1t is easy to check that
C=A-B={x-y|xeA, ye B}

is a nonempty open convex set in X such that 0 ¢ C. Then by Lemma 6.53 there
exists a linear functional f € X* such that f(z) < 0 = f(0) for every z € C, that
is, f(x) < f(y) foreveryx € Aandy € B. So

a:=sup f(x) < f(y) VyeB.

xX€A

Let us show that f(x) < « forevery x € A reasoning by contradiction: suppose that
glere exists xo € A such that f(xo) = a. Then the open set A contains a closed ball
B, (x0) for some r > 0. So
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fxo+rx) <a Vx € B).

If we choose x| € B satisfying f(x1) > || f|l+/2, we obtain the contradiction

fxo+rx) = fxo) +rf(x) > a+ r||£||*_

The conclusion follows. U
Next result deals with the separation in a ‘strict sense’ of two convex sets and
generalizes to Banach spaces the analogous Proposition 5.48 for Hilbert spaces.

Theorem 6.54 (Hahn-Banach: second geometric form) Let C and K be nonempty
disjoint convex sets in a normed linear space X. If C is closed and K is compact,
then there exists a functional f € X* such that

sup f(x) < inf f(). (6.26)
yekK

xeC

Proof Let us denote by d¢ the distance function from C. Since C is closed and K is
compact, the continuity of the function d¢ implies that

6 :=mindc(y) > 0. (6.27)
yek

Set
Cs:=C+Bspp={x+z|x€C, z € Bspl,
Ks:=K+Bsp={y+zlyeKk,zeBsp}

It can be easily checked that Cs and K 5 are nonempty open convex sets. They are also
disjoint since, if x + z = y + w for some choice of x € C,y € K and z, w € B2,
then we would have

de() < llx —yll = llw—z|l <4,

in contradiction with (6.27). By Theorem 6.50, there exist f € X* and « € R such
that

) )
f(x+ 5z)<a§f(y+ Ew) VxeC, VyeK, Vz,we B

Recalling that || f]l« > 0 (see Remark 6.51) and || f [l« = sup,<; [/ (x)| by (6.4),
let z € By be such that f(z) > || f|«/2. Then

Ol £ Il
4

OlLf Nl

J&x)+ 4

<f(x+gz)§a§f(y— gz)<f(y)—

for every x € C and y € K. The conclusion follows. g
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Corollary 6.55 Let C # @ be a closed convex set in a normed linear space X, and
let xo € X\C. Then there exists a functional f € X* such that

sup f(x) < f(xo).

xeC

Exercise 6.56 Let C be an open convex set in a normed linear space X such that
0 € C, and let pc(-) be its Minkowski functional.

1. Show that if C does not contain any half-line of the form
Rixo={Axo | A >0} xo € X\{0},

then pc(x) # 0 for every x # 0.

2. Give an example to show that, in general, pc(-) may vanish on vectors x # 0.

3. Show that if C is symmetric with respect to O (i.e., x € C & —x € C), then
pc(+) is a seminorm on X (see Sect.6.1).

4. Deduce that if C is symmetric with respect to 0 and does not contain any half-line
of the form R x¢ with xg # 0, then pc(-) is a norm on X.

5. If C is bounded, it is obvious that C does not contain any half-line. Conversely,
is it true that if C does not contain any half-line of the form R xg with xg # 0,
then C is bounded?

6.3.3 The Dual of £?

In this section we will study the dual of the Banach spaces®

o
E”:{xz(xk)k‘||x||g:=Z|xk|'”<oo} I<p<ox
k=1
and
o= {x:(xk)k ‘ Tim xk=0}.
k—o00

These spaces, together with the Banach space

0 = {x = on | Ixlloe 1= sup ] < 0 |,
k>1

are of frequent use in this chapter because they provide simple examples of relevant
new phenomena arising in infinite-dimensional settings in contrast with Euclidean
spaces.

8See Example 6.6 and Exercise 6.7.
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For 1 < p < o0, let us denote by p’ the conjugate exponent of p, i.e.,

1 1
— + — =1 with the usual convention — =0.
p P 00

With any y = (yx)k € £7" we can associate the linear map f, : £ — R defined by

Sfy(x) = Zxkyk Vx = (xp)x € £P.
k=1

Holder’s inequality and Exercise 3.26 ensure that, for 1 < p < oo,
£yl < Nyl llxll,  Vx e eP. (6.28)

Hence, f, € (¢/)* and || fy I+ < llyll ;. Therefore the map

jp s 0P — (eP)*
firis

jp(y) = fy

is a bounded linear operator such that || j,|| < 1. Moreover, fory € 2',(6.28) implies
that f;, is a continuous linear functional on £%°, and, consequently, on ¢, since ¢ is a
closed subspace of £*°. In the following, we will adopt this convention, considering
Joo(y) = f, as an operator from 2" to (co)*. Our next result contains the announced
characterization of dual spaces.

Proposition 6.57 For 1 < p < oo, set

P if 1<p<oo,
e if p=oo.

Then the operator j, : LN (Xp)* is an isometric isomorphism.’

Let us first prove the following lemma.
Lemma 6.58 Let1 < p < oo and let e € X, be the vectors

ex=10(0,...,0,1,0,...) k=1,2.... (6.29)

Then for every x € X, we have

n Xp
Zxkek—>x (n — 00).
k=1

9See footnote 5 at p. 147.
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Proof For 1 < p < oo we have, for any x = (x;)x € €7,

n
X — E Xieg
k=1

p o
= z IX¢|P = 0 (n — 00).
p k=n+1

Similarly, for any x = (xx)x € co,

n
X — Zxké’k
k=1

=max{|xx| |k >n} >0 (n— 00)
o0

since x;x — 0 by definition. The thesis follows. ]

Remark 6.59 By Lemma 6.58 it follows that {> ;_; Mex | n € N, Ay € Q}is a
dense countable set in X, for every 1 < p < oo. Consequently, ¢y and £7, for
1 < p < o0, are separable spaces.

Remark 6.60 Observe that the conclusion of Lemma 6.58 is false for £°°: taking
x = (xp)x with x; = 1 for every n € N, we have

n
X — Zxkek
k=1

=154 0.

o0

Indeed it is well-known that £°° is not separable (see Example 3.27).

Proof of Proposition 6.57. Suppose, first, | < p < 0o, whence 1 < p’ < oco. Given
f € (£P)*, set

= k>1,
yk = flek) k= (6.30)
Y= UKk,
where ¢y is defined in (6.29). It suffices to show that
ye e lyllpr < I1f 1l f=1r (6.31)

To this aim observe that, setting10
n
2=l e V=1,
k=1

we have that z" e ¢7, since all its components vanish except for a finite number,
and

10Note that [y|” ~2yx = 0 if y = 0 since p’ > 1.
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n n 1/p
Dl = ") < Il 1271 = IIfII*(Z |yk|”’) :

k=1 k=1

It follows that

n l/P/
(Zwul’) <Ifls Vn=x1.
k=1

This yields the first two assertions in (6.31). To obtain the third one, given x =
(xp)i € €7, set
n
x™ .= Zxkek
k=1

and observe that

FEY = e fler) = D ek

k=1 k=1

Since x™ — x in £7 thanks to Lemma 6.58, by the continuity of f we have that
f(x(")) — f(x). On the other hand, the series Z,fil XYk converges to f,(x). By
uniqueness of limits, we conclude that f = f,. This completes the analysis of the
case | < p < oco. A similar argument applies to the cases p = 1 and p = oo, see
Exercise 6.61. (]

Exercise 6.61 1. Prove Proposition 6.57 for p = 1.
Hint. Define y as in (6.30); the inequality [|y]lco < || f ||« is immediate. To show

that f = f, proceed as in the case 1 < p < oo.
2. Prove Proposition 6.57 for p = oo.

Hint. Define y as in (6.30) and set

Zif k<n and y # 0,
2 =@ V=T o
0 if y4 =0 or k>n.

Then [z |loo < 1and 37_; [kl = (™) < || £+, by which it follows that
Yy € ¢'and lylli < |l fll+. Toshowthat f = f, proceedasinthecasel < p < oo.

Let (X, &, 1) be a measure space and let 1 < p < oo. Itis natural to ask whether
the above analysis of the dual of £7 can be generalized to the case L? (X, u). For
every g € L¥ (X, ) let us define the linear functional F, : L (X, u) — R

Fg(f)=/xf9du Vf e LP(X, ).
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By Holder’s inequality and Exercise 3.26 it follows that

[Fg(DI = Mgl fllp  Vf e LP(X, .

So Fy € (LP(X, p))* and || Fgll« < llgll ,- We have thus defined the bounded linear

operator
{LP (X, 1) = (LP(X, p)*, (6.32)

g Fy.

Proposition 6.62 Ler (X, &, 11) be a measure space. If the following hypothesis
holds
l<p<oo or p=1& uo-finite, (6.33)

then the bounded linear operator (6.32) is an isometric isomorphism.

For the proof we refer to Chap. 8 (Sect. 8.4).

Proposition 6.62 shows that, under assumption (6.33), any bounded linear func-
tional on L” (X, p) can be represented as the integral with respect to a measure with
density in L7 (X, ). The isometric isomorphism (6.32) allows to identify the dual
of LP(X, p) with L? ' (X, ). With this isometric isomorphism in mind, from now on
it will be natural to make the identifications

(LP(X, p)* = LY (X, p) if1 < p < o0, (6.34)

(LY (X, p)* = L®(X, p) if p is o-finite. (6.35)

In the particular case X = N with the counting measure ;¢ = z*, Proposition 6.57
allows to identify the spaces

@y = ifl <p<oo, (co)=¢. (6.36)

Example 6.63 For p = oo the operator (6.32) is not onto, in general, as the following
two examples show.

1. For instance, consider L°°(—1, 1). Among the functionals of (L*°(—1, 1))*, we
find the extension—provided by Hahn-Banach Theorem—of the Dirac delta in
the origin, which is a continuous linear functional on € ([—1, 1]):

do(f) = f(O) Vfe?(-11D.

Let us label such an extension by 7'. Suppose by contradiction that there exists a
function g € L'(—1, 1) such that
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1
T(f):/ fgdx VfeL®(—1,1).
—1

Set ,
fn(t)Ze_”t s te[_]‘71]

An easy application of Dominated Convergence Theorem gives that

1
/ fagdx — 0;
—1

on the other hand T'(f;;) = f,,(0) = 1, and the contradiction follows. For a more
extended treatment of the dual of L (a, b) see [Yo65].
2. A similar example can be constructed in £°°. Indeed, let ¢ be the subspace defined
in Example 6.38:
¢i={x= () e€t>]|3 li]?lxk},

and let f be the bounded linear functional on ¢ defined by

(xx)r € ¢ — lim xg.
k—o00

According to the Hahn-Banach Theorem there exists an extension F € (£°°)*
to the whole space £°°. Suppose by contradiction that there exists a sequence
y = (yi)x € £' such that

o0
F(r) = D xige Yo € £,
k=1
Set for every n € N

x™ =0,0,...,0,1,1,1...) €é. (6.37)
R
n—1

We get

o0 o
Zx,in)yk = Z yr — 0 asn — oo.
k=1 k=n+1

On the other hand, F'(x (")) = limg_ o x,ﬁn) = 1, which gives a contradiction.

Example 6.64 If p = 1 and p is not o-finite, then the operator (6.32) may fail to be
onto, as the following example shows. Indeed, consider the measure space

([0, 11, Z(10, 11), 1i*)
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where Z([0, 1]) is the Borel o-algebra on the interval [0, 1] and ,u# is the counting
measure. Now, let E C [0, 1] be a set which is not Borel (see Example 1.66). Observe
that

fe L'(0, 11, M#) = Ay :={x €[0,1]: f(x) # 0} is finite or countable.

Consider the map 7 : L'([o0, 1], /L#) — R defined by

fel' o, - Y f.

xeAfﬁE
Then
ITHI< D 1f@I< D IF@I= £,

xX€AfNE X€EAy

whence T € (L'([0, 1], i#))*. Suppose by contradiction that there exists a function
g € L>=([0, 1], pi*) such that

T(f) = /[0 [ Fodnt 45 € L0110,

Then for any x € [0, 1], denoting by () the characteristic function of the singleton
{x}, we have x(y} € L' ([0, 1], z*) and

T (x(xy) = xE ().
On the other hand
/ Ximgdp® = g(x).
[0,1]

Thus g actually coincides with the characteristic function of the set E: so g fails to
be a Borel function, in contrast with the assumption.

6.4 Weak Convergence and Reflexivity

Given a normed linear space X, an equivalent notation of frequent use to denote the
action of a functional on X is

(fix):= f(x) VfeX* VxelX.
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Definition 6.65 The space X** = (X™)* is called the bidual of X.

Let Jx : X — X™** be the linear operator defined by
(UJx(x), fY:=(fix) VxeX, VfeX" (6.38)

Then [(Jx(x), f)I =< lIfll«llx]l by definition. So [[Jx(x)]l+ < [xI|. Moreover,
by Corollary 6.42, for every x € X there exists a functional fy € X* such that
fe(x) = llx|l and || fell« = 1. Thus, |Ix]| = [(Jx (), fo)| < [Jx 0]l It follows
that || Jx (x)]|x = ||x]|| for every x € X, thatis, Jx is a linear isometry.

6.4.1 Reflexive Spaces

Since Jy is a linear operator, then Jx (X) is a subspace of X**. It is useful to single
out the case where such a subspace coincides with the bidual.

Definition 6.66 A normed linear space X is said to be reflexive if the linear operator
Jx : X — X™* defined by (6.38) is onto.

Recalling that Jx is a linear isometry, we deduce that any reflexive space X is
isometrically isomorphic!! to its bidual X**. Since X** is complete, like every dual
space (Proposition 6.12), it follows that every reflexive space must also be complete.

Example 6.67 1. If H is a Hilbert space, then the Riesz isomorphism allows to
identify H with H*. Moreover, H* is also a Hilbert space: indeed, the dual
norm || - || is associated to the scalar product

(f.9)=(yr.yy) Vf geH, (6.39)

where v, y, are the vectors in H related to f and g, respectively, according
to Riesz representation. So H*, as a Hilbert space, can be identified with its
dual H**. Furthermore, it is not difficult to check that the composition of the
two Riesz isomorphisms coincides with the canonical embedding Jy defined in
(6.38). So H is reflexive.

2. Let1 < p < oo. Then, according to (6.36), (¢”)* can be identified by ¢7" under
the isometric isomorphism j, of Proposition 6.57, where p’ is the conjugate
exponent of p. Since 1 < p’ < oo, then (£7"y* = £7 under the isomorphism j,.
Consider the map £ — (£7)**, obtained by composing j,» with the transpose
(see Exercise 6.47) of the inverse of j,:

. f—1y\%
o 22 'y ) (grye,

See footnote 5 at p. 147.
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This map coincides with the canonical embedding Jy» defined in (6.38) of £7
into its bidual. Moreover, the map Jy» is onto, as composition of two onto maps,
and this proves that the space ¢7 is reflexive.

. Let (X, &, i1) be a measure space and let 1 < p < oo. Then, by (6.34), we

have (L? (X, w))* = LP'(X, 1) where p’ is the conjugate exponent of p. Then,
proceeding as for spaces £”, we deduce that L? (X, ) is reflexive.

Theorem 6.68 Let X be a normed linear space. Then the following statements hold:

(a)
(b)

If X* is separable, then X is separable.
If X is complete and X* is reflexive, then X is reflexive.

Proof (a) Let (f,), be a dense sequence in X*. Then there exists a sequence (x,),

(b)

in X such that

Il fon Il
2

[xall =1 and |{fn,xa)| = Vn > 1.

Let M be the closed subspace generated by (x,),, i.e., the closure of the set
of all finite linear combinations of vectors x,. By construction, M is separable
(the finite linear combinations of vectors x, with rational coefficients form a
countable dense set in M). We claim that M = X. Indeed, suppose that there
exists xp € X\M. Then, applying Corollary 6.41, we can find a functional
f € X* such that

(fixo) =1, f|M=0, ”f”*:dM(XO)'

So
Il fon Nl

2

< x) | = 1(fo = o)l = W fu = fllss

whence

Gy = 1 e < UF = falbe A 1 falle <31 = fals.

in contradiction with the hypothesis that (f,), is dense in X*.

Observe that the linear operator x € X +— Jyx(x) € Jx(X) is an isometric
isomorphism of X onto Jx (X). Therefore, if X is a Banach space, then Jx (X)
is also a Banach space and, consequently, a closed subspace of X**. Suppose
that there exists ¢g € X*™* \ Jx(X). Then, by Corollary 6.41 applied to the
bidual, there exists a bounded linear functional on X** valued 1 at ¢¢ and 0
on Jx(X). Since X* is reflexive, such a functional belongs to Jx=(X*). So, for
some f € X*,
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(G0, f) =1 and 0= (Jx(x), f)=(f,x) VxeX,

which yields a contradiction.
O

Remark 6.69 1t is well-known that spaces £°° and L°°(a, b) are not separable (see
Example 3.27), whereas ¢! and L'(a, b) are separable (by Proposition 3.47 and
Remark 6.59). Thanks to part (a) of Theorem 6.68, we deduce that (£°°)* and
(L% (a, b))* are not separable. So (£1)** = (£°°)* is not isomorphic to ¢! and
(L'(a, b))** = (L*®(a, b))* is not isomorphic to L' (a, b). So £' and L!(a, b) fail
to be reflexive. It follows that £°° and L°°(a, b) also fail to be reflexive, otherwise
¢! and L'(a, b) would be reflexive by part (b) of Theorem 6.68.

Remark 6.70 The result of part (b) of Theorem 6.68 is an equivalence since the
implication
X reflexive = X" reflexive

is trivial. On the contrary, the implication of part (a) cannot be reversed. Indeed, ¢!
is separable, whereas (¢H* is not separable since it is isomorphic to £°°.

Corollary 6.71 A Banach space X is reflexive and separable if and only if X™* is
reflexive and separable.

Proof The only part of the conclusion that needs to be justified is the fact that if
X is reflexive and separable, then X* is separable. But this follows by observing
that X** is separable, since it is isomorphic to X. So, by Theorem 6.68(a), X* is
separable. (|

We conclude this section with the following result on the reflexivity of subspaces.

Proposition 6.72 Let M be a closed subspace of a reflexive Banach space X. Then
M is reflexive.

Proof Let ¢ € M**. Define a functional ¢ on X* by setting

@.1)=(6. 1)) VS eX".

Since ¢ € X**, by hypothesis we have that ¢ = Jx (¥) for some X € X. We split the
remaining part of the proof into two steps.

1. We claim that X € M. Indeed, if x € X\ M, then by Corollary 6.41 there exists
f € X* such that _ _
(f,x)=1 and f|M=0.

This yields a contradiction since
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2. We claim that ¢ = Jy;(X). Indeed, for any f € M*, let f € X* be an extension
of f to X provided by the Hahn-Banach Theorem. Then

(6, f) = (b, [) = (f. %) = (£, X) VfeM"

So Jy; is onto and M is reflexive. U

6.4.2 Weak Convergence and Bolzano-Weierstrass Property

Itis well known that all closed bounded subsets of a finite-dimensional normed linear
space are compact. Such a property is usually referred to as the Bolzano-Weierstrass
property. One of the most interesting phenomena that occur in infinite dimensions
is that the Bolzano-Weierstrass property is no longer true (see Appendix C). To
surrogate such a property in infinite-dimensional spaces it is convenient to introduce
a weaker notion of convergence in addition to the natural convergence associated
with the norm.

Definition 6.73 Let X be a normed linear space. A sequence (x,), C X is said to
converge weakly to a point x € X if

lim (f, ) = (fox)  VfeX"

. . X .
In this case we write x, — x, or, simply, x,, — x.

Example 6.74 1In the case of Hilbert spaces or spaces L” (X, i) we have constructed
an isometric isomorphism which allows to characterize the abstract space X*, and so
to represent ‘practically’ the continuous linear functionals. Then the notion of weak
convergence can be reformulated as follows:

e Let H be a Hilbert space with scalar product (-, -) and let (x,,), C H,x € H.Then
Xp =X <= (x,y) = (x,y) Vye H.

e Forl < p < o0, set
_ Pif 1< p < oo,
P e if p = o0.

Let x, x € X,,n = 1,2,.... Then, setting x"" = (x,E"))k and x = (xp)k,
we have
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o oo
AWy = lein)yk - ZXkyk Yy = (yik € €7,
k=1 k=1

where p’ is the conjugate exponent of p.
e Given a o-finite measure space (X, &, ) and 1 < p < oo, consider functions
(fw)n C LP(X, p) and f € LP(X, p). Then

fh—~f = /angdu—>/xfgdu Vg e LP (X, p),

where p’ is the conjugate exponent of p.

A sequence (x,), that converges in norm to x, namely x, — x, is also said to
converge strongly to x. Since |(f, x,) — (f, x)| < [ fllx lx, — x|, it is immediate
that

Xp —> X == X — X.

The converse is not true, in general, as the following example shows.

Example 6.75 Let (e,), be an orthonormal sequence in an infinite-dimensional
Hilbert space H. Then, owing to Bessel’s inequality, (x, e,) — 0 as n — oo for
every x € H. Therefore, recalling Example 6.74, ¢, — 0 asn — oo. But |le,|| = 1
for every n. So (e;), does not converge strongly to 0.

Proposition 6.76 Let (x,),, (Yn)n be sequences in a normed linear space X, and
letx,y € X.

(a) If x, — x and x, — y, then x = .

(b) If xp — x and y, — vy, then x, + vy, — x + v.

(c) If xp = x, M\)n CR,and Ny = X\ € R, then \yx,, — Ax.
(d) Ifxn > x and A € L(X,Y), then Axy —~ Ax.

(e) If x, — x, then (xy), is bounded.

() 1fxn — x, then ||| < liminf |,

Proof (a) By hypothesis we have (f,x — y) = O for every f € X*. Then the
conclusion follows recalling Exercise 6.45.

(b) For every f € X* we have (f, x,) — (f,x) and (f,y,) — (f,y), and so
(fsxn +uyn) = (s 20) + (foyn) = (fix) +{fiy) =[x+ ).

(c) Since (\,), is bounded, say |\,| < C, for any f € X* we have

>

[An (fs Xn) = AL ) < Al 1S X0 = X) T4 | A = AL (S )1

———— ——
—0 —0

'A{

(d) Let g € Y*. Then (g, Ax,) = (go A,x,) = {(go A, x) = (g, Ax) since
go A e X*
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(e) Consider the sequence (Jx (x,)), in X**. Since
(Jx(xn), f) =(fixa) = (frx) VfeX",

we have sup,, [(Jx(x,), f)| < oo for all f € X*. So the Banach-Steinhaus
Theorem implies that

sup [lx, || = sup [[Jx (xn) [l < 00.
n>1 n>1

(f) Let f € X* be such that || f||x+ < 1. Then

(S xn)| < llxnll = [(f, x)| < liminf |lx,]|.
—— n—oo
—[(f.x)]

The conclusion follows from Exercise 6.46.
O

Example 6.77 Let (e,), be an orthonormal sequence in an infinite-dimensional
Hilbert space H. Since e, — 0in H (see Example 6.75), (e;,), provides an example
for which the inequality in Proposition 6.76(f) is strict.

Theorem 6.78 (Banach-Saks) Let (x,), be a sequence in a Hilbert space H that
converges weakly to x € H. Then there exists a subsequence (x,, ) such that the

arithmetic means
| X
~ 2
k=1

converge strongly to x.

Proof Observe that, without loss of generality, we may assume x = 0. Setn; = 1.
Next, given x,,, ..., Xy, since {x,,,x,) — Oasn — oo forevery h = 1,...,k,
we define ny 1 as the first index n > ny such that

Vh=1,...,n. (6.40)

| =

|<xnh,xn>| <

Recalling that (x,), is bounded, say ||x,|| < M for all n € N, by (6.40) we deduce

that
| N 5 | N > N k-1
Hﬁzxnk = mZIIxnkHz%- WZZKxnh’xnk”
k=1 k=1 k=2 h=1
M*> N-1
<—+4+2 — 0
- N + N2

as N — oo.
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Exercise 6.79 Let f,, : R — R be the sequence defined by

if x e [27, 2T,

1
f w(x) = 2n
0 otherwise.
Show that:

e f, > 0in LP(R) forall 1 < p < o0.
e (fn)n does not converge weakly in L'(R).
Hint. Consider g := >/ | (—=1)" x[on on+1) and estimate [ frgdx.

Exercise 6.80 Given 1 < p < oo, let (a,), be a sequence of real numbers and let

fn : R — R be defined by

a, ifx € [nn + 1],
0 otherwise.

San(x) = [

Show that (a,), is bounded if and only if f,, — 0in L?(R).

Exercise 6.81 Let f € L”(R) and let f,,(x) = f(x —n), n > 1. Show that:

e /, ~0in LP(R)if 1 < p < o0.
Hint. Show, first, that flR fagdx — 0 for any function'? g € €,.(R).

e If f € L'(R), then (f;,), does not converge weakly in L' (R), in general.
Hint. Consider f = xj0,1]-

Exercise 6.82 Let f € L'(R") be such that [y f(x)dx = 1 and set

fu(x) =nf(nx), n=>1.

Show that:

o Jxv fagdx — g(0) forany g € C.(RN).
e (fn)n does not converge weakly in L'(RN).

Exercise 6.83 Let x", x € ¢2 (n € N) be such that
x™ — xin £2.

Set x™ = (xlgn)) x = (xr)k. Show that:

k’

(a) limn_moxlgn) = xi forevery k € N.

12We refer to p- 98 for the definition of the space 4, (RM).
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)
(b) setting y™ = (*-), , then
y™ — yin £2

where y = (F)x.

Hint. Suppose x = 0 and observe that, if x|, < C for all n, given K € N
we have

Zw(’” <Z|y(">| +3 > L

k=K+1
—0by (a) <C?

Exercise 6.84 Given a Hilbert space H with scalar product (-, -), let (x,), C H be
a bounded sequence, A C H adense set and x € H. Show that

xn_\x — <xn7y>_)(x7y> VyeA

Exercise 6.85 Given 1 < p < oo, let x® x e ¢P (n € N) and suppose that
1™, < C for all n. Then, setting x™ = (x"), and x = (x¢), show that

Wy = x,ﬁ")—>xk Vk e N (asn — 00).

Hint. Concerning the implication ‘=", suppose x = 0 and let C > 0 be such that
||x(")||p < C forall n. Givene > 0 and y = (yx)r € €7, where p’ € (1, 00) is the
conjugate exponent of p, choose k. > 1 and n. > 1 such that

1 ’
o /p

> wl” <e,

k=ke+1

ke 1/p
(Z |x]£n)|p) <& Vn > n..
k=1

Then, for every n > n,

00
(n) Z X]En)yk

k=k-+1

1
ke ; ke U 00 P 00 P
s(ZIx,ﬁ”)l”) (Zwm") S B I D 73 I
k=1 k=1

k=ke+1 k=ke+1

IA
™

< <lylly -C
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Exercise 6.86 Give an example to show that the results of Exercises 6.84 and 6.85
are false, in general, without the assumption that the sequence is bounded.

Hint. In €2 consider the sequence x® = n2¢,. where e, is the vector defined in
(6.29). Then, for every k > 1, x,i") — 0 as n — 00. On the other hand, taking
y = (1/k)x we have

o
yel? and Zykx,g’) =n — 00.

k=1

Observe that if (-, -) denotes the scalar product in £2, then (x, z) — 0 for every
z € A, where A is the set of all finite linear combinations of the vectors ¢,. Recall
that A is dense in £ (see Remark 6.59).

Exercise 6.87 Let x™ | x € ¢o (n € N) and suppose that ||x™ |, < C for every n.
Then, setting xm = (x,in)) r and x = (xz), show that

Wy = x,f")—>xk Vk e N (asn — o0).

Hint. Proceed as in Exercise 6.85.

Exercise 6.88 Let 1 < p < oo and let x™, x € £7 (n € N). Show that

x(”) — X,
A= x e o)
¥ = lxllp-

Hint. Concerning the implication ‘=" observe that, setting x" = (x,i") ), and

x = (xx ), thanks to Exercise 6.85, for every k > 1 we have x,ﬁ") — X asn — oQ.

Then use Proposition 3.39 by taking X = N with the counting measure.

Exercise 6.89 Show that the result of Exercise 6.88 is false in c¢g.
Hint. Consider the sequence x® = ¢| + ¢, where e, e, are the vectors defined in
(6.29).

Exercise 6.90 Let H be a Hilbert space and let x,,, x € H (n € N). Show that

Xp — X,

Xp —> X < i (6.41)

lxnll = llxll-

Hint. Observe that ||x, — x||2 = %, 1% + [Ix]1? = 2(x,, x).

Remark 6.91 1. We say that a Banach space X has the property of Radon-Riesz
if the equivalence (6.41) holds for every sequence (x,), in X. By the results
of Exercises 6.88 and 6.90 we deduce that such a property holds in Hilbert
spaces, in spaces £ for 1 < p < oo, whereas it fails in ¢ (Exercise 6.89).
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The Radon-Riesz property is actually valid in a large variety of normed linear
spaces, the so-called uniformly convex spaces, which include spaces L” (X, 1)
with 1 < p < oo and (X, &, 1) a generic measure space (see [Br83], [HS65],
[Mo69]).

2. A surprising result, known as Schur’s Theorem,!? ensures that in £! weak con-
vergence entails strong convergence, that is, for any x™, x € ¢! (n € N) we
have

13

x5y = xM

Then, owing to Schur’s Theorem, ¢! has the Radon-Riesz property. On the other
hand, Schur’s Theorem itself shows that the property described in Exercise 6.85
failsin £!. Indeed, the sequence (e,), defined in (6.29) does not converge strongly
to 0 and, consequently, neither does weakly.

Exercise 6.92 Let M be a closed subspace of a normed linear space X and let
(xp)n C M, x € X. Show that if x, — x,thenx € M.
Hint. Use Corollary 6.41.

Exercise 6.93 Let C be a nonempty closed convex subset of a normed linear space
X, and let (x,), C C, x € X. Show thatif x,, — x,thenx € C.
Hint. Use Corollary 6.55.

Besides strong and weak convergence, on a dual space X* we can define another
notion of convergence.

Definition 6.94 Given a normed linear space X, a sequence (f,), C X* is said to
converge weakly—x to a functional f € X* if

(fusx) = {f,x) as n—>o00 VxeX. (6.42)

In this case we write .
fo— f (as n— o0).

Remark 6.95 1t is interesting to compare weak and weak—x convergence on a dual
space X*. By definition, a sequence (f,,), C X* converges weakly to f € X* if and
only if

(D, fu) = (@, f) as n— 00 (6.43)

for all ¢ € X**, whereas f, A f if and only if (6.43) holds for all ¢ € Jx(X).
Therefore

fo=f = fu>f

Weak convergence is equivalent to weak—= convergence if X is reflexive but, in
general, weak convergence is stronger than weak—* convergence, as we will show
later.

138ee, for instance, Proposition 2.19 in [Ko02].



6.4 Weak Convergence and Reflexivity 211

Example 6.96 Using the identification (6.35) and (6.36), the notion of weak—x* con-
vergence can be reformulated as follows for the dual spaces £*° = (£1)*, £! = (co)*
and L®(X, 1) = (L'(X, ju))* (if p is a o-finite measure).

o Letx™, x € ¢, n=1,2,.... Then, setting x® = (x,E"))k and x = (xp)i, we
have

o0 o0
*
xS x = D o D Yy =@k e
k=1 k=1
o Letx®, x € ¢',n = 1,2,.... Then, setting x® = (x\"), and x = (xi )z, we
have
o o
*
xSk = > M= D e Yy = ok € co.
k=1 k=1

o Let (X, &, ) be a o-finite measure space, and let (f,), C L®(X,u), f €
L*>°(X, u). Then

fnif — /angd,u*/xfgdu VgGLl(X,u).

Example 6.97 In L®(—1,1) = (L'(—1, 1))* consider the sequence of functions

o) =e " te[=1,1].

The Dominated Convergence Theorem ensures that
1
/ fagdx — 0 Yge L'(~1, 1),
-1

and this, thanks to Example 6.96, is equivalent to f;, X 0. But Jn 7 0. Indeed,
proceeding as in Example 6.63(1), among the functionals of (L*°(—1, 1))* we find
the extension of the Dirac delta at the origin, which is a bounded linear functional
on 6 ([—1, 1]):

do(f) = f(0) Vfe?(-11D.

If we label such an extension by 7', we have (T, f,) = f,(0) = 1.

Example 6.98 In £>® = (¢£!)* consider the sequence (x™),, C £ defined in (6.37).
For every y = (yx )k € 0!

oo oo
in”)yk =D w0 (n—>o0),
k=1 k=n-+1
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and this, thanks to Example 6.96, is equivalent to x® X 0. On the other hand
x™ A 0. To see this, we proceed as in Example 6.63(2): let F € (£*°)* be an
extension of the following bounded linear functional

f(x):= lim x; Vx= ()i €¢
k—o00

where ¢ := {x = (xz)x € £*° | 3limy x}. So we have

(F,x(")) = lim x}gn) =1 Vn>1.

k—o00

Exercise 6.99 Show that if X is a Banach space, then every sequence (f;,), C X*
which converges weakly —x is bounded.
Hint. Use the Banach-Steinhaus Theorem.

Exercise 6.100 Given a Banach space X, let f,, f € X*and x,, x € X (n € N).

1. Show thatif x, — x and f, — f, then (f,;, x,) — (f, x) asn — oo.
2. Show thatif x,, — x and f, A f,then (fy,, x,) = (f, x) asn — oo.

Exercise 6.101 Let (a,), be a sequence of real numbers and let f,, : R — R be
defined by

fax) = {an ifx € [n,n+%],

0 otherwise.

Show that:

o If (Ia’ni)n is bounded and 1 < p < oo, then f;, — 0 in L (R).
e If a, = n, then (f,), does not converge weakly in L'(R).
e If (a,), is bounded, then f, 2 0in L*®(R).

The following result yields a sort of weak—sx Bolzano-Weierstrass property in
dual spaces.

Theorem 6.102 (Banach-Alaoglu) Let X be a separable normed linear space. Then
every bounded sequence (f,), C X* has a weakly—* convergent subsequence.

Proof Let (x,), be a dense sequence in X and let C > 0 be such that || f, ||« < C
for every n € N. Then |(f,, x1)| < C]x1]||. So, since the sequence ({f;, x1))n is
bounded in R, there exists a subsequence of (f,)n, say (f1,.)n, such that ( f1 ,, x1)
is convergent. Since [(f1 n, x2)| < C|x2||, there exists a subsequence (f2,), C
(f1,n)n, such that ( f2 ,, x2) is convergent. Iterating this process, for any k > 1 we
can construct nested subsequences

(fk,n)n C (fk—l,n)n c---C (fl,n)n C (fn)n
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such that (f; ,, xk) is convergent as n — oo for every k > 1. Define, for every
n>1,9, = fun. Then (g4)n C (fu)n and ({gn, xk))n 1s convergent for every k > 1
since, for n > k, it is a subsequence of ({ fi.n, Xk))n-

Let us complete the proof by showing that ({(g,, x)), is convergent for every
x € X.Fix x € X and ¢ > 0. Then there exist k-, n. > 1 such that

[nx —xl <e,

{gn> Xk.) — (Gm,> Xk )| <€ Vm,n > ne.
Therefore, for all m, n > n.,

[(gn> ) = {gm> X} = gn> %) = {Gn» Xk + [{Gms Xk} = (G X))
<2C||lx—x |l

+|<gn7‘xkg> - <gm» xkg>| = (2C + 1)8

Thus, ({gn, x)), is a Cauchy sequence satisfying |(g,, x)| < C|lx]|| for all x € X.
This implies that f(x) := lim, (g, x) is an element of X*. O

The following result ensures that reflexive Banach spaces have the weak Bolzano-
Weierstrass property.

Theorem 6.103 Let X be a reflexive Banach space. Then every bounded sequence
has a weakly convergent subsequence.

Proof Let (x;), C X be a bounded sequence and let M be the closed subspace
generated by x,, that is, the closure of the set of all finite linear combinations of
vectors x,. By construction, M is separable (the finite linear combinations of vectors
x, with rational coefficients are a countable dense set in M). Moreover, in view of
Proposition 6.72, M is reflexive. Therefore, by Corollary 6.71, M* is also separable
and reflexive. Consider the sequence (Jys(x,)), C M™**. Since Jy; is an isometry,
we have ||Jpr(x,) ]« = |lxx|l, and so the sequence (Jps(xy)), is bounded in M**.
Applying the Banach-Alaoglu Theorem, there exists a subsequence (x, ), such that

Im (xk,) A ¢ € M** as n — o0o. The reflexivity of M ensures that ¢ = Jy; (X) for
some X € M. Therefore, for every f € M*,

(fs Xky) = (U ()5 f) = (In @), f) = (f. %) as n — oo.

Finally, for any F € X™* we have F}M € M*. Then
(F, xx,) = <F’vakn> — (F|M,)_c) = (F,X) as n — oo.

So xi, — X. U
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Example 6.104 1f the space X is not reflexive, then the result of Theorem 6.103
is false, in general, as shown by the following two examples in X = L'(0, 1) and
X = ¢!, respectively.

1. Consider the sequence f, = nX .1 in L1(0, 1). (fi)n 1s bounded since || f,, 1|1 =

1. We are going to show that f, does not converge weakly in L!(0, 1). Indeed,
assume, by contradiction, that f,, — f for some f € L'(0, 1). Then, recalling
Example 6.74,

1/n 1
n/ gdt — / fgdt Yge L*®(0,1)
0 0

as n — o0. Observe that if we take g € % ([0, 1]), then n fol/" g(t) — ¢(0), and
SO

1
/o fgdt = g(0) Vg e Z([0,1]).

In particular fol fe=’dx = 1foralln > 1. On the other hand the Dominated
Convergence Theorem implies

1 2
/ f®)e ™ dx — 0
0

and the contradiction follows. Since the above argument can be repeated for
any subsequence, we conclude that (f,,), does not admit a weakly convergent
subsequence.

2. In ¢! consider the sequence (ey); C ¢! defined in (6.29), which is bounded since
lenlli = 1. Assume, by contradiction, that e, — x for some x = (x;)x € £'.
Then, recalling Example 6.74,

oo
Yo = D%k Yy = @k € £
k=1

asn — oo. If y = (yx)x is a convergent sequence, then y € £°° and y, —
limg— o Yk, and so

o0
D e = lim y Wy €@, (6.44)
=1 k—o00

where ¢ = {y = (yx) € €°°|3limg_  yr}. In particular, if we consider the
vectors x™ e ¢ defined in (6.37) we obtain

lim x” =1 VneN.

k— 00
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On the other hand

o o0
Zxkx,gn) = Z xx — 0
k=1

k=n+1

as n — oo in contradiction with (6.44) applied to y = x™. Since the above
argument can be repeated for any subsequence, we conclude that (e, ), does not
admit a weakly convergent subsequence in £!.

We are now in a position to prove a fundamental theorem in the calculus of variations
on the existence of minimum points, which is the infinite-dimensional version of the
classical Weierstrass Theorem.

Theorem 6.105 Let X be a reflexive Banach space and let ¢ : X — R be a
coercive'® lower semicontinuous" convex function. Then ¢ has a minimum point
in X.

Proof Let (x,), C X be such that
o(xn) — ir)l(f ©.

The coecivity of ¢ implies that (x,), is bounded. Since X is a reflexive Banach
space, Theorem 6.103 yields the existence of a subsequence (xy,), which converges
weakly to a point xg € X. Let o be any real number larger than infx ¢ and set
Aq = {x : p(x) < a}. Then the set A, is convex (since ¢ is convex), closed (since
¢ is lower semicontinuous) and nonempty. We claim that xo € A,.'® Otherwise, by
Corollary 6.55, there exists f € X™* such that Supyeqa, (S x) < (f, x0); so, since
Xk, € A, for large n, we have limsup, (f, x¢,) < (f, xo), in contraddiction with
(f, xx,) — (f, x0). Therefore xo € A,,1i.e., o(xp) < . The arbitrariness of v yields
infy ¢ > —o0 and p(xp) = infx . (Il

6.5 Miscellaneous Exercises

Exercise 6.106 For any f € L*(0, 1) let T f be the following function:

Tf:xel0, 1] /x f(0dt.
0

1. Show that T'f is a continuous function on [0, 1].

YThat is, limjx |- oo ©(x) = 0.
15See Appendix B.

16This fact is also a direct consequence of Exercise 6.93: A,, is weakly closed and so, since x,, € Ay
for large n, we have xg € A,.
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2. Show that the linear operator T : L%(0,1) — %([0, 1]) is bounded, where
% ([0, 1]) is equipped with the uniform norm.
3. Compute the norm of 7.

Exercise 6.107 Let (X, &, u) be a finite measure space, (a,), a sequence of real
numbers, (E,), C &.Let1 < p < oo and set

fn(x) = apxg,(x), x €X.

1. Show thatif f;, — O and f, /4 0in LP(X, u), then u(E,) — 0.
2. Give an example to show that the conclusion of part 1 is false, in general, without
the assumption p(X) < oo.

Exercise 6.108 Let 7 : L'(1, 00) — L'(1, 00) be the linear operator defined by

1
Tf()=f()——f(x) Vfe L'(1, 00).

Show that T is bounded and compute || T'||.

Exercise 6.109 Let f, : R — R be the sequence defined by

. 1 1
nx if ——<x< -,
n n
1
fnx)=1 -1 ifx <——,
n
1
1 ifx > —
n

Show that f,, does not converge strongly in L°>°(R) whereas f;, A sign x in L*°(R).
Exercise 6.110 1. Let (a, b) be a subinterval of (—, 7). Show that

b

lim cosnxdx = 0.
n—oo a

2. Deduce by part 1 that, if E C (—, 7) is a Borel set, then

lim cosnx dx = 0.
n—o0 E
3. Conclude that cos nx converges weakly to zero in L?(—m, ) forevery 1 < p <

00 and cos nx —~ 0 in L*®(R).
4. Show that cos nx does not converge weakly in L°°(—m, 7).
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Exercise 6.111 Forany f € L'(R) set

Tf(x):/x f(t)arctant dt, x € R.
0

Show that:

1. Tf € €(R) N L®(R) forevery f € L' (R).
2. The linear operator T : L'(R) — L*®(R) is bounded.
30T = 3.

Exercise 6.112 Let (X, &, u) be a finite measure space, (a,), a sequence of real

numbers and (E,), C &. Set f, = a,xE,. Show that

fo 2 0inL®X, ) = fo o

Give an example to show that the above equivalence is false, in general, without
assuming p(X) < oo.

Exercise 6.113 Let X be a normed linear space.

1. Giveny € X and f € X* show that, setting
Ax =(f,x)y VxelX,

then A is a bounded linear operator from X into itself and || A|| = || f 1« |yl -
2. Let xo € X be a nonzero vector. Show that for every y € X there exists A, €
Z(X) such that

Iyl
Ayxo=y and |4yl = —.
llxoll

3. Show that if £ (X) is complete, then X is also complete.

Exercise 6.114 Forany f € L'(0, 1) set

Tf(x):/oxtzf(t)dt, x € [0, 1].

Show that:

1. Tf € €([0, 1]) forevery f € L'(0, 1).

2. The linear operator T : L'(0,1) — %([0, 1]) is continuous, where %'([0, 1]) is
equipped with the uniform norm.

3. IT| =1.
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Exercise 6.115 Let x = (x)x € £° and, for any n > 1, define y™ = (y")); by

k Xi—pn ifk > n.

Show that:

(1) y™ ee>®foralln > 1.
(i) y™ X 0in €.
(iii) 3" does not converge weakly in £>°, in general.

Exercise 6.116 Let 7 : ¢! — ¢! be the linear operator defined by

2

T () = (5r) Yo € €',

Show that 7" is bounded and compute ||T'||.

Exercise 6.117 Let 1 < p < oo and let f, : RN — R be a bounded sequence in
L?(RY) such that

f» = 0 uniformly on compact sets of R .
1. Show that f, — 0in LP?(RY)if 1 < p < oo.

2. Show that f, — 0in L(RN) if p = oo.
3. Give an example to show that f,, does not converge weakly if p = 1, in general.

Exercise 6.118 Let 7 : ¢! — ¢! be the linear operator defined by

T((xn)n) = (xn cos %)n V() € €.

Show that T is bounded and compute || T'||.
Exercise 6.119 Let ( f;,), be a bounded sequence in L2(0, 1) such that

X
/ fadt - 0 Vx € (0, 1).
0

Show that
fu— 0in L(0, 1).

Exercise 6.120 Let f,, f € L*(0, 1), gu, g € L>(0, 1) be such that
fo— finL*0,1), gy — gin L™(0, 1).

Show that f; g, converges weakly to fg in L2(0, 1).
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Exercise 6.121 Let f € L'(a, b).
1. Show that there exists a sequence ( f;,),, C € ([a, b]) such that

[ful <1, m(fn #* |.7f|x{f7é0}) — 0,

where m denotes the Lebesgue measure on (a, b).
2. Let € (la, b]) be equipped with the uniform norm. Deduce that the linear func-
tional defined by

b
A:C(a,b]) - R, A(g) =/ fgdx Vg € €(la, b))

is bounded and ||Allx = || fl1.

Exercise 6.122 Let 1 < p < oo and let f, be a bounded sequence in L? (RV).

1. Show that m(| f,| = n) — 0.

2. Show that f,, Xy f,|=n) — Oin LP(RN)if 1 < p < oo.

3. Give an example to show thatif p = 1, then f; x{| 7,,|=n} does not converge weakly
in L'(RY), in general.

Exercise 6.123 For any f € L°°(0, 00) set

Tf(x) = /Ox e flydy x=0.

Show that Tf € L°°(0, co) forall f € L°°(0, 00).

Show that the linear operator 7' : L°°(0, co) — L°°(0, co) is bounded.
Compute || T||.

Is T injective and/or onto?

Ll e

Exercise 6.124 Let % ([0, 1]) be equipped with the uniform norm and let 7 :
% ([0, 1]) — R be the linear functional defined by

1
T(f) = /0 fG&Hdx  Vf e ?(o, 1]).

1. Show that T is bounded.

2. Compute ||T]|.

3. Now consider ([0, 1]) as a subspace of L*(0, 1) with the integral norm || - ||4.
Show that T has a unique extension to a bounded linear functional on L4, 1).
Find the element g7 € L4/3 (0, 1), the dual of L* (0, 1), which represents such an
extension.

Hint. Make the substitution x> = y.
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Exercise 6.125 Let 7 > 0. Consider the linear operator V : L' (0, T) — L'(0, T)
defined by

t
Vf(t):/ f(s)ds te€(0,T), YfeL0,T).
0

1. Show that V is bounded and compute | V||.
2. Show that V maps weak convergence into strong convergence, i.e., forany f;,, f €
LY0,T)
h—=f = Vih—>Vf.

Hint. Prove, first, that
= f = Vi@ —> Vi@ Vrel0,T].
Exercise 6.126 Let 1 < p < co. Forany f € L?(0, 1) set
Apf(x)y=xf(x) xe(0,1).

1. Show that A, f € L?(0, 1) forevery f € L?(0, 1).
2. Show that A, € X(LP(O, 1)).
3. Compute ||Ap]|.

Exercise 6.127 Let 1 < p < oo. Forany f € L?(0, co) set

VD)

1+—xZ’ x>0.

Apf(x) =

1. Show that A, f € L?(0, oo) for every f € L?(0, 00).
2. Show that A, € Z(L"(0, 00)).
3. Compute || A,|l.

Exercise 6.128 Let (¢;), be an orthonormal basis of a separable Hilbert space H.

1. Let x be a point of the unit sphere S| = {x € H : ||x|| = 1} and X € [0, 1]. For
any n > 1 set
Xn(A) = Ax 4+ (1 — Ney,.

Compute the weak limit of x,,(\) in H and the limit of the sequence (of real
numbers) |lx, (N)].
2. Analyse the weak convergence of the sequence % in H.

3. Deduce that the weak closure of Sj is given by the closed ball
Bi={xeH: |x|<1}.

Exercise 6.129 Let X be a Banach space. A set S C X is said to be (strongly)
bounded if sup, g [|x|| < oco. Similarly, § is said to be weakly bounded if
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sup‘((b,x)] <o VoeX*.

xes

1. Show that S is bounded if and only if S is weakly bounded.
Hint. Consider the set Jx (S) where Jx : X — X™** is the linear isometry defined
in (6.38).

2. Does the above property hold in general for a normed linear space?

Exercise 6.130 Let X be a reflexive Banach space and let A : X — X be a linear
operator which maps weak convergence into strong convergence, that is, for any
Xp, X € X

X, — x = Ax, — Ax.

Show that
Al = max [[Ax].
[lxll=1

Exercise 6.131 Let K be a nonempty convex closed set of a reflexive Banach space.
Show that K has an element of minimum norm, that is, there exists x € K such that

xll < llyll Yy € K.

Exercise 6.132 Let H be a Hilbert space and let A € .Z(H). Show that A maps
weak convergence into strong convergence (in the sense of Exercise 6.130) if and
only if

xp—=x = |Axl — [Ax].

Exercise 6.133 Let €([0, 1]) be equipped with the uniform norm and for any u €
%' ([0, 1]) set

t
Au(t) :/ e Su(s)ds (1 €[0,1]).
0

Show that Au € € ([0, 1]) for every u € € ([0, 1]).

Show that A : ([0, 1]) — € ([0, 1]) is a bounded linear operator.
Compute ||A]l.

Show that A is a compact operator.!”

Is A injective and/or onto?

DNk =

Exercise 6.134 Let M be a closed subspace of L' (0, 1) with the property that

VfeM Ip>1 suchthat f e LP(0,1).

17A linear operator A : X — Y is said to be compact if it maps any bounded subset of X into a
relatively compact subset of Y. Clearly, any compact operator is also bounded.
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1. Show that for every n > 1 the set
Fo={feF: ”f”1+,%<”}

is closed in L'(0, 1).
2. Using Baire’s Lemma, show that F C L”(0, 1) for some p > 1.

Exercise 6.135 Let ([0, 1]) be equipped with the uniform norm and set

A={xe?(0,1]) : x(1) >0 Vi €[0, 1]}
B={xe?(0,1]) : x(t) <0 Vi €[0,1]}.

1. Show that there exists a functional f € X* and a number o € R such that
(fix)y>a>=(f,y) Vxe A, Vye B. (6.45)

2. Give an example of f € X* and o € R satisfying (6.45).
3. Show that (6.45) fails in its stronger form

(fix)za>p=2(fiy) VxeA VyeB,

where a, 3 € R.

Exercise 6.136 Let X and Y be Banach spaces and let A : X — Y be a compact
operator. '8

1. Show that if
inf ||Ax] > 0,
lx=1

then the unit sphere § = {x e X : |x|| = 1} is compact. Deduce that if
dim X = oo, then

inf ||Ax] =0.

flxl=1

2. Give an example where the above infimum in (6.136) is not a minimum.

Exercise 6.137 Let (e,), be an orthonormal basis of a Hilbert space H and let
A= (M), € £%°.
1. Show that

oo
Zx\n(x,en)en e H VxeH.

n=1

18See footnote 17.



6.5 Miscellaneous Exercises 223

2. Setting

o0
Ax:Z)\n(x,en)en € H VxeH,

n=1

show that A € .Z(H) and compute || A]|.
3. Show that if A € ¢ (i.e., \, = 0 asn — 00), then A maps weak convergence
into strong convergence (in the sense of Exercise 6.130).

Exercise 6.138 Let H be an infinite-dimensional separable Hilbert space. Given an
orthonormal basis (e,), of H, for any A = (\;), € £* let F\, € Z(H) be the
operator defined in the previous exercise:

o
F\x ::Z)\n(x,en)en VxeH.
n=1

1. Show that the map A — F) is a linear isometry from ¢*° to £ (H).
2. Deduce that Z(H) is not separable.

Exercise 6.139 Let (¢,), be an orthonormal basis of a Hilbert space H and (o),
a bounded sequence of real numbers. Setting

Xn = — Qéer,
k=1
show that:
1. x,—0.
2. Jnx, — 0.
Hint. To prove part (b), observe that, given n real numbers ay, . . ., a, and an integer
no € {1, ...,n}, we have

n

S

1 n 1
a,%)2 +«/n—no( Z af)z.

k=1 k=no+1

n
| 2] < vin(
k=1
Exercise 6.140 Let H be a Hilbert space and let K C H be a nonempty convex
closed bounded set. Given a sequence (x,), C H, set
Xp = pk(xn) (neN),

where pg denotes the orthogonal projection on K.
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1. Show that (x,), has a subsequence (x,,)r which converges weakly to a point
x eK.

2. Show that if (x,, )x converges strongly to x, then X = pg (x).
Hint. Recall the variational inequality which characterizes the projection.

3. Isidentity X = pg (x) still true if (x,, )x converges weakly to x?
Hint. Consider H = L?>(—m, m) and take K = {f € L?>(—m, 7) | f = O a.e.} and
fn (x) COS nx

Exercise 6.141 Letl < p < ocandlet F : LP(0, c0) — R be the linear functional
defined by

F(f) :/00 f(xX)xe “dx
0

1. Show that F' is bounded.
2. Compute the norm of F for p = 1 and p = oco.

Exercise 6.142 Letl < p < ooandlet F : L?(0, co) — R be the linear functional
defined by
< fx)
F = d
) /0 [0 4

Show that F is bounded and compute || F'|| .

Exercise 6.143 Letl < p <ooandlet F : L?(0, co) — R be the linear functional
defined by

e’} 1
F(f) = / e Fx)dx + / F)dx.
1 0

Show that F is bounded and compute || F'||.

Exercise 6.144 Let F : L' (0, c0) — R be the linear functional defined by

1 00
F(f) :/ xf(x)dx —/ arctan x f(x)dx.
0 2

Show that F is bounded and compute || F'|| .

Exercise 6.145 Let2 < p <ooandlet F : L”(0, c0) — R be the linear functional

defined by
_ J(x) fx)
F(f)—/o (fx(om )

1. Show that F is bounded.
2. Compute || F'||« for p = oco.
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Exercise 6.146 Let 1 < p < oo and let F : £7 — R be the linear functional
defined by
F(x) =x1 —2x2 +6x4 VYx = (x,), € £P.

Show that F is bounded and compute || F'|| .

Exercise 6.147 Letl < p <ooandlet F : L?(0, 1) — R be the linear functional
defined by

1
F(f):/ f(x)logxdx Yf e LP(0,1).
0

1. Show that F is bounded.
2. Compute || F ||, for p = oo.
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Part II1
Selected Topics



Chapter 7
Absolutely Continuous Functions

Let f : [a, b] — R be a continuous function and let F : [a, b] — R be continuously
differentiable. Then the connection between derivation and integration is expressed
by the well-known formulas

d X
d_/ f@yde = f(x), (7.1)
X Ja

/x F'(t)dt = F(x) — F(a). (7.2)

a

Thus, in Lebesgue’s integration theory, it is natural to consider the following
questions:

1. Is formula (7.1) still true almost everywhere for any function' f € L'(a, b)?
2. Can one characterize the largest class of functions verifying (7.2)?

In this chapter, we will answer the above questions. Let us observe thatif f is positive,
then Lebesgue’s integral

/x f@dt, x¢€la,b], (7.3)

is an increasing function of the right end-point x. Moreover, since any summable
function f is the difference of two positive summable functions, f and f~, the
integral (7.3) is in turn the difference of two increasing functions. Therefore the study
of (7.3) is strictly related to the study of monotone functions. Monotone functions
enjoy several important properties that we now proceed to discuss.

11.a, b) = L'([a, b], m) where m stands for the Lebesgue measure on [a, b]. See footnote 7 at
p. 87.
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7.1 Monotone Functions

Definition 7.1 A function f : [a, b] — Ris said to be increasing ifa < x; < xp <
bimplies f(x1) < f(x2) anddecreasingifa < x; < xo < bimplies f(x1) > f(x2).
By a monotone function we mean a function which is either increasing or decreasing.

Definition 7.2 Given a monotone function f : [a,b] — R and x¢ € [a, b), the
limit
+ .
= 1 h
f(XO ) h—>(1)1,1}1>0 f(XO +h)

is called the right-hand limit of f at the point xo. Similarly, if xg € (a, b], the limit?
)= 1 —h
feg) = dim g —h)

is called the left-hand limit of f at xp.

Remark 7.3 Let f : [a, b] — R be an increasing function. If a < x < y < b, then
f&h) < fy).

Similarly, if f is decreasing on [a, b] anda < x < y < b, then

faH = fo).

‘We now establish the basic properties of monotone functions.

Theorem 7.4 Any monotone function f : [a,b] — R is Borel and bounded, and
hence summable.

Proof Assume that f is increasing. Since f(a) < f(x) < f(b) forall x € [a, b],
f is clearly bounded. For any ¢ € R consider the set

E.={x €la,b]| f(x) <c}.
If E. is empty, then E. is (trivially) a Borel set. If E. is nonempty, let y be the
supremum of E.. Then E, is either the closed interval [a, y], if y € E,, or the half-

closed interval [a, y), if y € E.. In both cases, E. is a Borel set; this proves that f
is Borel. Finally, we have

b
/ |f)ldx < max{| f(a)|, | f D)} — a),

by which it follows that f is summable. (]

2Qbserve that such limits always exist and are finite.
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Theorem 7.5 Let f : [a, b] — R be a monotone function. Then the set of all points
of discontinuity of f is at most countable (i.e., countable or finite).

Proof Suppose that f is increasing and let E be the set of points of discontinuity of
fin (a,b). For x € E we have f(x~) < f(x™); then to any point x of E we may
associate a rational number r (x) such that

fGT) <r() < f&xh).

Since by Remark 7.3 x| < x2, x1, x2 € E, implies f(xfr) < f(x;), we deduce that
r(x1) # r(x2). We have thus established a bijective map between the set E and a
subset of rational numbers. O

7.1.1 Differentiation of Monotone Functions

The aim of this section will be to show that a monotone function f : [a, b] —
R is differentiable almost everywhere on [a, b]. Before proving this result, due to
Lebesgue, let us introduce some notation. For any x € (a, b) the following four
quantities (which may take infinite values) always exist:

/ . S+ h) = fx) p . fx+h)— fx)
D} £ = Jimint, S = DY) = fimsup S

D;ef(x) hm nf w’ D}éf(x) = lim sup M
T h h—0, h>0 h

These four quantities are called the generalized derivatives of f at x. It is clear that
the following inequalities always hold

Dy f(x) = D} f(x), Drf(x) < Dyf(x). (7.4)

If D/ 1 f(x) and D 1 f(x) are equal and finite, their common value is the left-hand
derlvatlve of f at x. Similarly, if D f(x) and D/ f(x) are equal and finite, their
common value is just the right-hand derivative of f at x. Moreover, f is differentiable
at x if and only if all four generalized derivatives D} f(x), D] f(x), D f(x) and
DY f (x) are equal and finite.

Theorem 7.6 (Lebesgue) Let f : [a, b] — R be a monotone function. Then f is
differentiable a.e. in [a, b]. Moreover? fle L! (a, b) and

b
/ Ol < 1B — F@)- (1.5)

30Observe that, in general, f’ is defined a.e. in [a, b] (see Remark 2.74).
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Proof We may assume, without loss of generality, that f is increasing, for, if f is
decreasing, it suffices to apply the result to — f which is obviously increasing. We
begin by proving that the generalized derivatives of f are equal (possibly infinite)
a.e. in [a, b]. It will be sufficient to show that the inequality

Dy f(x) = D f(x) (7.6)

holds a.e. in [a, b]. Indeed, setting f*(x) = — f(—x), we get that f* is increasing
on [—b, —a]; moreover, it is easy to verify that

Dy f*(x) = D f(=x), D] f*(x) = Dif(=x).
So, applying (7.6) to f*, we deduce
Dy f*(x) = D f*(x)

or, equivalently,
Dy f(x) = D f(x).

Combining this inequality with (7.6), and using (7.4), we obtain
Dpf = Dif < D[ f < Dpf < Dgf.

and the a.e. equality of the four generalized derivatives is thus proved.

To show that (7.6) holds a.e., observe that, since the generalized derivatives are
nonnegative, the set of points where D} f < D’ f can be represented as the union
over u, v € Q with v > u > 0 of the sets

E,,={xe (a,b)lD;éf(x) >V > U > D’Lf(x)}.

So if we show that m(E, ,) = 0 (where m denotes the Lebesgue measure on [a, b]),
then it will follow that (7.6) is true a.e. Let s = m(E, ). Then, given ¢ > 0,
thanks to Theorem 1.71 there exists an open set V C (a, b) such that E,, C V
and m(V) < s +¢. Forevery x € E, , and § > 0, since D/Lf(x) < u, there exists
hys € (0,0) such that [x — hy 5,x] C V and

f(x) - f(x - hx,(i) < th,é-

Since the family of closed intervals ([x — &y s, X])xeE, ,, §>0 is a fine cover of E,, 4,
by Vitali’s Covering Theorem* there exists a finite number of disjoint intervals of
such a family, say

4See Appendix G.
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I i=[x1 —h1,x1], ..., In :=[xy — hn, xN],

such that, setting A = E,, , N vazl(x,- — h;, x;), we have that

N
m(A) = m(EM nlJ Il-) >5—e.

i=1
Summing over all these intervals we obtain
N N
(fe) = fei—h)) <uD hi <um(V) <u(s+e).  (17)

1 i=1

1

Let us argue as above using the inequality D f (x) > v: foreveryy € Aandn > 0,
since D f(y) > v, there exists ky,,, € (0, 7) such that [y, y + k] C I; for some
ief{l,...,N}and

fly+ ky,n) - fy) > Uky,n~

Since the family of closed intervals ([y, ¥ + ky.;])yea, n>0 is a fine cover of A, by
Vitali’s Covering Theorem there exists a finite number of disjoint intervals of such a
family, say

Ji=ynL, kil Iv = Tyms ym + ks

such that
M
m(Am U J,-) >m(A) —e > s — 2e.

j=1

Summing over all these intervals we deduce

M M M
D (Fwi+kp) = fwp)>vD k= vm( U J,-) >u(s —2¢). (7.8

j=1 j=1 j=1

For every i € {1,..., N}, summing over all intervals J; such that J; C I;, and,
using the assumption that f is increasing, we obtain

D (fwi+k) = fp) < foa) = fxi = hy).

JsJicCli
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Hence, summing over i and taking into account that every interval J; is contained
in some interval [;,

N
D) = flai—h) =] (i +kp)— fw))

N
i=1 i=1j,J;Cl;
M
=D (fli+kp) = f)).
j=1

Owing to (7.7) and (7.8),
u(s +¢) > v(s — 2¢).

The arbitrariness of ¢ implies us > vs; since u < v, then s = 0. This proves that

m(E, ) =0, as claimed.
We have thus proved that the function

& (x) = f}i%w

is defined almost everywhere in [a, b]. Therefore f is differentiable at x if and only

if @ (x) is finite. Let
Pp(x) =n (f (x + %) - f(X))

where, to define @, for every x € [a, b], we have set f(x) = f(b) for x > b. Since
f is summable on [a, b], @, is also summable. By integrating ®,, we have

b b 1 b+,
/ ®, (x)dx n/ (f(x + ;) — f(x))dx = n( f(x)dx / f(x)dx)

1 1

b+ a+% aty
n(/ f(x)dx —/ f(X)dX) = f) —n/ fx)dx
b a a

= f) - f(a),

where, in the last inequality, we have used the fact that f is increasing. By Fatou’s
Lemma it follows that

/ Qx)dx < f(b) = f(a).

a

In particular, @ is summable, and, consequently, almost everywhere finite. Then f is
differentiable almost everywhere and f’(x) = @(x) for almost every
x € [a, b]. U



7.1 Monotone Functions 235

Example 7.7 Itis easy to exhibit examples of monotone functions f for which (7.5)
becomes a strict inequality. For instance, given n + 1 pointsa = xp < x1 < --- <
X, = b and n numbers i1, hs, ..., h,, consider the function

h ifa <x < xp,
hy ifx] <x < xp,
h, ifx,_1<x<bh.

A function of such a form is called a step function. If hy < hy < --- < hy,, then f
is obviously increasing and

b
/ f'(x)dx =0 < hy —h1 = f(b) - f(a).

Example 7.8 (Cantor-Vitali function) The function considered in the previous
example is discontinuous. However, it is also possible to construct continuous
increasing functions satisfying the strict inequality (7.5).

Consider the closed interval [0, 1] and delete the middle third

@b = (3.3)

From the two remaining intervals [0, ] [3 , 1] delete the middle thirds

@b =(55) @eh=(53)

from the four remaining intervals delete the middle thirds
2 3 3 7 8
B = ) b = \55' ~5 ]
(af, b) = (27 27) (@, b) (27 27)

19 20 25 26
3,3 3 4,3

a,b _(_’_)’ ab _(_’_)
(3 3) 27" 27 (4 4) 7’ 27

and so on. Observe that the complement of the union of all intervals (a,i‘, b,i’) is the
Cantor set constructed in Example 1.63.

Let fo(x) = x. Forany n > 1let f, : [0, 1] — R be the continuous function
which satisfies

fn(o) =0, fn(l) =1,

k 1
fut) = "—— ifre(@, b, k=1,....2"  h=1,...,n
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and f;, increases linearly otherwise. For instance,

1 1 2
= - if-<1t< -,
fi(@®) 5 ifg<t<3
and f] increases linearly from O to % in [0, %] and from % to 1in [%, 1]. For f> we
have

1 1 2

- if-<t<-,

4 9 9

1 1 2

1) = — f— _
fa(t) 5 Hfg<t<g,
3 .7 8

- if-<t< -,

4 9 9

and f; increases linearly from O to % in [O, é], from }1 to % in [%, %], from % to % in
[%, %], from % to 11in [g, 1], and so on.

By construction, f;, is monotone, continuous, f,(0) = 0, f,(1) = 1 and | f,, —
fat1] < 57 (see Fig. 7.1). So, if m > n,

m—1 00

1
o = fal < 20 Vit = fol < D oy

k=n k=n

Hence (f},), converges uniformly in [0, 1]. Let f = lim, f,. Then f is continuous,
monotone, and f (1) = % ifr € (a,’(’, b,}j). Such a function is the Cantor-Vitali
function, also known as Devil’s staircase. The derivative f’ vanishes on every interval

(a,i’, b,}j), and so f/(x) = 0 for almost every x € [0, 1], since the Cantor set has

Fig. 7.1 Graph of foy, fi, f>

f

fi

172 —

fo

173 2/3
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measure zero. It follows that

1
/0 flx)dx=0<1= f(1)— f(0).

7.2 Functions of Bounded Variation

Definition 7.9 A function f : [a, b] — Ris said to be of bounded variation if there
exists a constant C > 0 such that

n—1

D f ) = fa)l < C (7.9)
k=0
for any partition
a=xg<xi<---<x,=>b (7.10)

of [a, b]. The total variation of f on [a, b], denoted by Vab (f), is the quantity:

n—1

V2(f) =sup D1 f k1) — ()] (7.11)

k=0
where the supremum is taken over all partitions (7.10) of the interval [a, b].

Remark 7.10 By definition we have that, if « € Rand f : [a, b] — R is a function
of bounded variation, then « f is also of bounded variation and

VE(af) = alVE().

Example 7.11 1. If f : [a, b] — R is amonotone function, then the left-hand side
of (7.9) actually coincides with | f (b) — f(a)| for any choice of partition. Then
f is of bounded variation and Vub(f) =|fb)— f(a)l.
2. If f is a step function of the type considered in Example 7.7, then, for any
hi,...,h, € R, f is of bounded variation and the total variation amounts to the
sum of the sizes of the jumps, namely

n—1
VI =D lhiesr — hl.
k=1
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3. Let f : [a, b] — R be a Lipschitz continuous function with Lipschitz constant
K ; then for any partition (7.10) of [a, b] we have

n—1 n—1
D) = FEOl < KD Ixipr — xil = K(b—a).
k=0 k=0

So f is of bounded variation and Vf(f) < Kb —a).

Example 7.12 1t is easy to exhibit examples of continuous functions which are not
of bounded variation. Indeed, consider the function

)csinl if0<x <1,
fx) = x
0 ifx =20
and, fixed n € N, take the following partition of [0, 1] associated to points x; =
(5 + k)L
0, xu, Xp—1,...,X1, X0, 1.

The sum on the left-hand side of (7.9) for such a partition is given by
4 Z": 1 N 2 N ‘ 2 ‘
— — 1+ — sinl — —|.
= 2k+1  w T

Taking into account that > oo ﬁ = 00, we deduce that the supremum on the
right-hand side of (7.11) taken over all partitions of [0, 1] is infinite.

Proposition 7.13 If f, g : [a,b] — R are functions of bounded variation, then
f + g is also of bounded variation and

VE(f+9) = VD + VE).

Proof For any partition of the interval [a, b], we have

n—1
D1 @) + garn) — f o) — g
k=0
n—1 n—1
< D) = @D+ D gGagn) — 9| < V() + Vi)
k=0 k=0

Taking the supremum of the left-hand side over all partitions of [a, b] we immediately
get the conclusion. O
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By Remark 7.10 and by Proposition 7.13 it follows that any finite linear
combination of functions of bounded variation is itself a function of bounded varia-
tion. In other words, the set BV ([a, b]) of all functions of bounded variation on the
interval [a, b] is a linear space (unlike the set of all monotone functions).

Proposition 7.14 If f : [a,b] — R is a function of bounded variation and a <
¢ < b, then

VE(F) = VE) + VE.

Proof First we consider a partition of the interval [a, b] such that ¢ is one of the
points of subdivision, say x, = c. Then

n—1
D Crs) = o))
k=0
r—1 n—1
=D 1f ) = FOON+ D1 Garn) = F ()

k=0 k=r
< VE(H) + VE.

(7.12)

Now let us consider an arbitrary partition of [a, b]. It is clear that the sum ZZ;(I)
| f (xk+1) — f(xx)| can never decrease by adding an extra point of subdivision to the
partition. Therefore (7.12) holds for any partition of [a, b], and so

V() < VECH) + VP,

On the other hand, fixed ¢ > 0, there exist partitions of the intervals [a, c] and [c, b],
respectively, such that

DIl = FODI> Vi) =5
DG = D> VA =5
J

Combining all points of subdivision x/, x }/ , we obtain a partition of the interval [a, D],
with points of subdivision x, such that

VI =D 1 Gagn) = £l =D 1O y) = FODI+ D] 1F () = FGD]
k i Jj
> VI + VI —e.

Since € > 0 is arbitrary, it follows that Vab(f) > V() + Vf(f). O
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Corollary 7.15 If f : [a,b] — R is a function of bounded variation, then the
Sfunction
x — VI(f)

is increasing.

Proof Proposition 7.14 implies that
Vi) =Va () + VI = Vi ()
for all x, y satisfyinga < x <y <b. (I

Proposition 7.16 A function f : [a, b] — R is of bounded variation if and only if
f can be represented as the difference of two increasing functions.

Proof Since any monotone function is of bounded variation thanks to Example 7.11,
and since the set BV ([a, b]) is a linear space, we deduce that the difference between
two increasing functions is of bounded variation. To prove the converse, set

g1(x) = VI(f), g) =V — fx).

By Corollary 7.15 ¢ is an increasing function. We claim that g is also increasing.
Indeed, if x < y, then, using Proposition 7.14, we obtain

0y — g2(0) = VI() = (fy) = fx)). (7.13)

By Definition 7.9 we have

) = fl = VIS

and so by (7.13) it follows g2(y) — g2(x) > 0. Writing f = g1 — g2, we get the
desired representation of f as the difference between two increasing functions. [

Theorem 7.17 Let f : [a, b] — R be a function of bounded variation. Then the set
of all points of discontinuity of f is at most countable. Moreover, f is differentiable
a.e. inla,bl, f' € L'(a,b) and

b
/ |f' () dx < VE(f). (7.14)

Proof Invoking Theorems 7.5, 7.6 and Proposition 7.16 we conclude that f has at
most countably many points of discontinuity, f is differentiable a.e. in [a, b], and
f' € L'(a, b). Since, foralla < x <y < b,

|f) — fOl = VI = VI = Vi),
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we deduce that

If'0)l = (Vi)' ae.in[a,b].

Finally, by (7.5) we obtain

b b
/ | f'(o)ldx S/ V()'dx < V),

thus completing the proof. (]

Remark 7.18 Step functions (Example7.7) and the Cantor-Vitali function
(Example 7.8) provide examples of functions of bounded variation verifying the
strict inequality in (7.14).

Proposition 7.19 A function f : [a, b] — R is of bounded variation if and only if
the cartesian curve

y=fx), a<x=<b,
is rectifiable.’

Proof For any partition of [a, b] we have

n—1 n—1
ST G = FEO1 = 3 Gt = 507 + () — (002

k=0 k=0
n—1
<(b—a)+ D 1ftrs) — L.
k=0
By taking the supremum over all partitions we obtain the conclusion. (]

Exercise 7.20 Show that if f : [a, b] — R is a function of bounded variation, then
SUPyepq.p) |1/ (*)| < oo. Show that, if f, g : [a, b] — R are functions of bounded
variation, then f g is also of bounded variation and

VE(fg) < VE(F) sup g0+ VE(g) sup |f(x)l

x€la,b] x€la,b]

SWe recall that the length of a curve y = f(x) (@ < x < b) is the supremum of the lengths of all
inscribed polygonals, that is, the quantity

n—1
SuPZ\/(XkH = x0)% + (f Coxe) — f ()2,

k=0

where the supremum is taken over all partitions of [a, b]. A curve is said to be rectifiable if it has
finite length.
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Exercise 7.21 Let (a,), be a sequence of positive numbers and let

a, ifx:%,nzl,
fx) =

0  otherwise.

Show that f is of bounded variation on [0, 1] if and only if 220:1 a, < oo.

Exercise 7.22 Let f : [a, b] — R be a function of bounded variation such that
f(x)>c>0 Vx€la,b].

Show that - 1s of bounded variation and

1 1
b b

Exercise 7.23 Show that the function

xzsin% 0<x<l1,

fx) =
x=0

is not of bounded variation on [0, 1].
Exercise 7.24 Let f : [a, b] — R be a function of bounded variation such that

f(x) >0 Vx € la,b].

(i) Show that if
f(x)>c>0 Vx€la,b],

then /f is also of bounded variation and

b b
v (f)szfmf).

(ii) Give an example to show that 4/ f is not of bounded variation, in general.

7.3 Absolutely Continuous Functions

In order to address the problems we posed at the beginning of this chapter, we begin to
study the largest class of functions for which formula (7.2) holds.
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Definition 7.25 A function f : [a, b] — R is said to be absolutely continuous if,
given € > 0, there exists & > 0 such that

D) — flap)] <« (7.15)
k=1

for any finite family of disjoint subintervals
(ag,by) Cla,b] k=1,....n

of total length >} _, (bx — ax) less than 6.

Example 7.26 Let f : [a, b] — R be aLipschitz continuous function with Lipschitz
constant K; then, choosing § = &, we immediately obtain that f is absolutely
continuous.

Remark 7.27 Any absolutely continuous function is uniformly continuous, as one
can easily check by choosing a single subinterval (aj, b)) C [a, b]. However, a
uniformly continuous function need not be absolutely continuous. For instance, the
Cantor-Vitali function f constructed in Example 7.8 is continuous (hence, uniformly
continuous) on [0, 1], but not absolutely continuous. Indeed, for any n consider the
set

n 21171
Co =10, 11\ {J | @, b
h=1 k=1

then C, is the union of 2" disjoint subintervals /; of length 3%, (hence, the total
length is (%)”). Since, by construction, the Cantor-Vitali function is constant on each
subinterval (a,il, b,il), then the sum (7.15) associated to such a family /; is equal to 1.
So it is possible to find a finite disjoint family of subintervals of [0, 1] of arbitrarily
small total length for which the sum (7.15) is equal to 1. The same example shows
that a function of bounded variation needs not be absolutely continuous. On the other
hand, any absolutely continuous function is necessarily of bounded variation owing
to Proposition 7.28 below.

Proposition 7.28 If f : [a, b] — R is absolutely continuous, then f is of bounded
variation.

Proof Fixed ¢ > 0, there exists 6 > 0 such that

DSl — fla] <e
k=1
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for any finite family of disjoint subintervals (ax, by) C [a, b] such that

Z(bk —ay) < 0.
k=1

Therefore, if [«, 5] is any subinterval of length less than d, then

V) <e.
Leta = xop < x1 < --- < xy = b be a partition of [a, b] into N subintervals
[xk, xk+1] of length less than §. Then, by Proposition 7.14, Vab(f) < Ne. O

An immediate consequence of Definition 7.25 is the following proposition.

Proposition 7.29 If f : [a, b] — Ris an absolutely continuous function, then o.f is
also absolutely continuous, where o is any constant. Moreover, if f, g : [a, b] — R
are absolutely continuous, f + g is also absolutely continuous.

Remark 7.30 By Proposition 7.29 and Remark 7.27 it follows that the set AC([a, b])
of all absolutely continuous functions on [a, b] is a proper subspace of the linear space
BV ([a, b)) of all functions of bounded variation on [a, b].

‘We now study the close connection between absolute continuity and the indefinite
Lebesgue integral. We begin with the following result.

Lemma 7.31 Let g € LY(a, b) be such that f, g(t)dt = 0 for any subinterval
I Cla,b]. Then g =0 a.e. in [a, b].

Proof Using Lemma 1.60, any set V which is open in the relative topology of [a, b]
is a countable disjoint union of subintervals I C [a, b]. So fv g(t)dt = 0. Arguing
by contradiction, suppose there is a Borel set £ C [a, b] such that m(E) > 0 and
g(x) > 01in E. By Theorem 1.71 there exists a compact set K C E such that
m(K) > 0. Then V := [a, b] \ K is an open set in [a, b]. Hence,

b
0:/ g(t)dt:/g(t)dt+/ g(t)dt:/g(t)dt>0.
a \%4 K K

We have reached a contradiction thus completing the proof. (]

As for the differentiation of an indefinite Lebesgue integral, in our next theorem
we will compute the derivative (7.1), providing a positive answer to the first of the
two questions posed at the beginning of the chapter.

Theorem 7.32 Let f € LY(a, b) and set

F(x) =/x f@®)dt, x €la,b].
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Then F is absolutely continuous on [a, b] and
F'(x) = f(x) for almost every x € [a, b]. (7.16)

Proof Given a finite family of disjoint subintervals (ai, bx), we have

n n bk n bi
Z|F<bk)—F(ak)|=Z/ f(r)dr]sZ/ If(t)ldtz/ |f@)ldz.
k=1 k=1 Y% k=1" Uk (ax,br)

By the absolute continuity of the Lebesgue integral, the last integral on the right-
hand side tends to zero as the total length of the intervals (ay, by) approaches zero.
This proves that F is absolutely continuous on [a, b]. By Proposition 7.28 F is of
bounded variation; consequently, thanks to Theorem 7.17, F is differentiable a.e. in
la,b) and F’ € L'(a, b). To prove (7.16) assume, first, that | f (x)| < K for every
x € [a, b] and some K > 0. Let

1
() =n| F(x+ ) = F() |,
n
where, to define g, for every x € [a, b], we have set
F(x)=F®b) for b<x <b+ 1.

Clearly,
lim g,(x) = F/'(x) ae.in[a, b].
n—oo

Moreover,

x+%
n/ f(@)dt

Leta < c¢ < d < b. By Lebesgue’s Theorem we obtain

d d d+} d
/ F'(x)dx = lim / gn(x)dx = lim n|:/ F(x)dx —/ F(x)dx:|
¢ n—o0o ¢ n—oo ¢ 1 ¢

+a

lgn (x)| = <K Vx €la,b].

n—o00o

d+}1 c+i
= lim n|:/ F(x)dx—/ F(x)dx:|=F(d)—F(c),
d c

where last equality follows from the mean value theorem. So we deduce that

d d
/ F'(x)dx = F(d) — F(c) :/ f(t)dt.

Hence, appealing to Lemma 7.31, we conclude F'(x) = f(x) a.e. in [a, b].
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We now remove the boundedness hypothesis on f. Without loss of generality, we
may assume f > 0 (otherwise, we can argue separately for the positive part f* and
the negative part /). Then F is an increasing function on [a, b]. Let us define f,
by:

< <
= I @) 0= () <m,
if f(x) > n.

Since f — f, > 0, the function

Hy(x) = / (F () — fu(O)dt

is increasing. So by Theorem 7.6 H,, is differentiable a.e. and H, (x) > 0. Since
0 < fu < n, using what we have shown in the first part of the proof we deduce that
[% fax fu(®)dt = f,,(x) a.e.; therefore, for every n € N,

d X
F'(x) = Hr’l(x) + d_/ fa()dt > fu(x) a.e.in|a,b].
X a
This yields that F'(x) > f(x) a.e., and so, after integration,

b b
/F’(x)dxz/ f(x)dx = F(b) — F(a).

On the other hand, since F is increasing on [a, b], (7.5) yields

b
/ F'(x)dx < F(b) — F(a).

Consequently,
b b
/ F'(x)dx = F(b) — F(a) :/ f(x)dx.
Hence, ,
| @@= rendx =o.
Since F'(x) > f(x) a.e., we conclude F'(x) = f(x) a.e. in [a, b]. |

Lemma 7.33 Let f : [a, b] — R be an absolutely continuous function such that
f'(x) = 0 for almost every x € [a, b]. Then f is constant on [a, D).

Proof Fixed ¢ € (a,b), we want to show that f(c) = f(a). Let E = {x €
(a,c)| f'(x) = 0}. Then E is a Borel set and m(E) = ¢ — a. Given € > 0, there
exists > 0 such that
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n
DIf) — fla) < e
k=1
for any finite family of disjoint subintervals (ax, by) C [a, b] such that
n
> bk —ar) < 6.

k=1

Let us fix n > 0. For every x € E and v > 0, since limy, % = 0, there
€xists gy » > x such that [x, yy ,] C (a, ¢), |yx,y — x| < v and

|f(yx,'y) - f(x)| =< (yx,'y - x)77- (7.17)
The intervals ([x, yxy])xeE >0 are a fine cover of E; so, by Vitali’s Covering
Theorem, there exists a finite number of such disjoint intervals, which we label
Iy = [x1, 1], ..., In = [xn, yn], where xx < xx41, such that

m(E\Uj_ ) < 6.

Thus, we have

n
Yoi=a<X| <Y <Xy < <Yy <CI=Xppl, D (g1 — %) <O

k=0
By the absolute continuity of f it follows that
n
D) = fuw)l <& (7.18)
k=0
whereas, by (7.17),
n n
S — Fal <0 (e — xe) < n(b — a). (7.19)
k=1 k=1

Combining (7.18) and (7.19) we deduce that

D (F @) = Fw) + D (f ) — £ x)

k=0 k=1

|f(c) = fla)| = <e+nb—a).

Since € and 7 are arbitrary, we conclude that f(c) = f(a). O
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Theorem 7.34 If f : [a, b] — R is absolutely continuous, then f is differentiable
a.e.inla,b), f' € L'(a,b), and

F) = f@)+ / Fi)di Vx € [a,bl. (7.20)

Proof Thanks to Proposition 7.28, f is of bounded variation. By Theorem 7.17, f
is differentiable a.e. and f’/ € L'(a, b). To prove (7.20), consider

g(x) =/ f(t)dr.

Owing to Theorem 7.32, g is absolutely continuous and ¢'(x) = f/(x) a.e. in [a, b].
Setting @ = f — g, @ is absolutely continuous, since it is the difference between
two absolutely continuous functions, and @’(x) = 0 a.e. in [a, b]. From the previous
lemma it follows that @ is constant. So

D(x) =P(a) = f(a) —gla) = f(a),

which yields in turn

f(X)=¢(X)+g(X)=f(a)+/ fl(ydt Vx €la,b]

thus completing the proof. (I

Remark 7.35 Using Theorems7.32 and 7.34 we are now in a position to give a
definite answer to the second question posed at the beginning of the chapter: formula

/X F'(t)dt = F(x) — F(a) Vx € [a, b]

holds if and only if F is absolutely continuous on [a, b].

Proposition 7.36 Ler f : [a, b] — R. The following properties are equivalent:

(1) f is absolutely continuous.
(ii) f is of bounded variation and

b
/ 1 ©Oldt = VP (f).

Proof We begin by proving the implication ‘(i) = (ii)’. For any partition a = x¢ <
X1 < --+- < x, = bof[a, b], Theorem 7.34 ensures that
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n—1 Xkt
> /k f/(t)dt‘
Xg

0
[ b
< / umw=/me

k

n—1

D Crs) = f)] =
k=0

3 >
Il

>~
(=)

Therefore
b
ﬁms/mww

Now, by Theorem 7.17, fab | f/(t)|dt < Vab(f), and so Vab(f) = fab | f/()|dt.
Let us proceed to prove the implication ‘(ii) = (i)’. For every x € [a, b], by (7.14)
we have

x b b b
»mﬁz/mem=/ﬂfmw—/|ﬂmm=wuwjﬂfmm
> VI = VI = VI

where the last equality follows from Proposition 7.14. Then we obtain
X
Va () = / |f'(0)]dt.
a

Since f’ € L'(a, b), Theorem 7.32 ensures that the function x > VI(f) is
absolutely continuous. Given a family of disjoint subintervals (ax, by) C [a, b],
we have

n n

D) = flal < D VI = D (V) = V).
k=1

k=1 k=1

By the absolute continuity of the map x — V' (f), the last sum on the right-hand
side tends to zero as the total length of the intervals (ag, bx) approaches zero. This
proves that f is absolutely continuous. (]

Applying the above proposition to the particular case of monotone functions, we
obtain the following result.

Corollary 7.37 Let f : [a,b] — R be a monotone function. The following
properties are equivalent:

(1) f is absolutely continuous.

Gi) [P1f/()1dt = 1fb) - f(a)l.
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Remark 7.38 Let f, g : [a,b] — R be absolutely continuous functions. Then the
following formula of integration by parts holds:

b b
/ f0)g' (x)dx = f(b)gb) — f(a)g(a) —/ flgx) dx.

Indeed, by Tonelli’s Theorem,

b b
//[ b]zlf’(x)g’(y)ldxdyz/ |f’(x)|dx/ lg'(y)| dy < oo,

which yields f/(x)¢'(y) € L'([a, b]?). Then consider the set
A={(x,y) ela,b’|la<x <y<b}

and compute the integral

1 =//A f'(x0)g () dxdy

in two ways using Fubini’s Theorem and formula (7.20). On the one hand,

b Y b b
1= / g’(y)( / f’(x)dx)dy= / J W@ dy — @) / J(y) dy

b
=/ g fWdy— f@(g®b) — ga)).

a

On the other hand, we have

b b b b
1= / f’(x)( / g’(y)dy)dx=g(b) / £l dy - / Fi()g(r) dx

b
— &) (f ) — f(@) — / Fi)g(r) dox.

Exercise 7.39 Show that if f, g : [a, b] — R are absolutely continuous functions,
then fg is also absolutely continuous.

Exercise 7.40 Let (f;), be a sequence of absolutely continuous functions on [0, 1]
converging pointwise to a function f : [0, 1] — R and such that

1
/ If,;(x)|dx <M VneN,
0

for some constant M > 0.
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(i) Show that lim, oo i fu(x)dx = [i f(x)dx.
(i) Show that f is of bounded variation on [0, 1].
(iii) Give an example to show that, in general, f fails to be absolutely continuous
on [0, 1].

Exercise 7.41 Let f, : [a, b] — Rbeasequence of absolutely continuous functions
converging pointwise to a function f : [a, b] — R. Suppose that there exists g €
L'(a, b) such that

|fil <g ae.inla,b] VneN.

Show that f is absolutely continuous.

7.4 Miscellaneous Exercises

Exercise 7.42 Let f, : [a, b] — Rbe asequence of absolutely continuous functions
converging pointwise to a function f : [a, b] — R. Suppose that there exists g €
LY(a, b) such that

fi—g inLYa,b).

Show that f is absolutely continuous.

Exercise 7.43 Let f € BV ([a, b]), f > 0. Show that

log f € BV (la, b]) <— [in[f]f > 0.
a,

Exercise 7.44 Let f € AC([a, b]) and let xo € (a, b). Show that

5£r51+ VI (f) =0. (7.21)

Give an example to show that (7.21) may fail if f € BV ([a, b]).

Exercise 7.45 Let f € AC([a, b]) be such that f(a) = 0 and

f eLP@a,b), 1<p<oo. (7.22)

-1
1. Show that [ f(x)| < || f'll plx — alpT for every x € [a, b].
2. Show that £ € L!(a, b).
3. Give an example to show that, in general
(7.22).
Hint. Consider the function

L&)

g & L'(a, b) if one drops assumption



252 7 Absolutely Continuous Functions

1 . 1
ifx € (O, —]
f(x) =1 logx 21
0 ifx=0

Exercise 7.46 Let f € AC([a, b)).

1. Show that x%sin? 1 € AC([0, 1]) and x|sin 1| & AC([0, 1]).
2. Deduce that if inf[, p) | f| = 0, then /| f| € AC(la, b]), in general.
3. Ifinfg ) | f| > O, show that /[f] € AC([a, b]).



Chapter 8
Signed Measures

Given a measure space (X, &, u) and a function p € L'(X, ), the so-called
Lebesgue indefinite integral

V(E):/ pdu  (E € &) (8.1)
E

defines a o-additive set function, that is, if
E = U E,,
n

with E, € & a family of disjoint sets, then

V(E) = v(Ey).

n

Therefore, when p > 0, v is a finite measure on & satisfying
Eecf & wW(E)=0 = v(E)=0. (8.2)

This raises the question whether all finite measures v on & satisfying (8.2) can be
represented as an indefinite integral of the form (8.1). Under suitable assumptions,
a positive answer to this question is given by the Radon-Nikodym Theorem that
we will prove using the so-called Lebesgue decomposition. Such a technique allows
to represent a given measure v as the sum of other two measures, one of which is
absolutely continuous with respect to p while the other one is singular, in the sense
of Definition 8.1.

The properties of the indefinite integral, in turn, motivate the introduction of inter-
esting generalizations. We will define and study signed measures, which subsume
the familiar notion of positive measures considered in the first part of this monograph
leading to further decomposition formulas.
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In the last section of this chapter, we will apply the above results to the charac-
terization of the dual of L? (X, p).

8.1 Comparison Between Measures

Let (X, &) be a measurable space. We recall that a measure p on & is said to be
concentrated on a set A € & if ;1(A€) = 0 or, equivalently, if

WE)=u(ANE) VEeé&.

Definition 8.1 Let ;2 and v be two measures on &'.

e 4 and v are said to be singular if they are concentrated on disjoint sets. In this case
we write p L v.
e v is said to be absolutely continuous with respect to u, and we write v << p, if

Ecé&, wE) =0 = u(E)=0.

e ;1 and v are said to be equivalent, and we write p ~ v, if v << pand g << v.

Example 8.2 Let p € L' (X, ;1) be such that p > 0 and set

V(E) = / p(x)du(x) VE €é&.
E

It is easy to verify that v is an additive function on &. Moreover, if (E,), C & is an
increasing sequence converging to E € &, then by Monotone Convergence Theorem
we have

V(En)Z/Xp(x)XE,,(x)dﬂ(x) 1 /XP(X)XE(X)d,U(x)ZV(E)-

So v is a (finite) measure on & thanks to Proposition 1.17. Since the integral vanishes
on sets of measure zero, it follows that v << p.

Exercise 8.3 Let m denote the Lebesgue measure on R and let p : R — [0, oo] be
a Borel function, summable on all bounded subsets of R. Define

v(E) =/ p(x)dx VE € BR).
E

Show that v is a measure on Z(R) and v << m.

Example 8.4 Let m denote the Lebesgue measure on R and let dy, be the Dirac
measure at xo € R. Then m is concentrated on A := R\ {x¢}, whereas dy, is
concentrated on B := {xo}. Therefore m and d, are singular.


http://dx.doi.org/10.1007/978-3-319-17019-0_1

8.1 Comparison Between Measures 255

Exercise 8.5 Show that the measures
W(E) = / e dx  VE € BR)
E

and
V(E) = / ’dx  VE € BR)
E

are equivalent.

Exercise 8.6 Let ;1 and v be two measures on &.

1. Show that if
Ve>0 30>0: Ee€é& & wE)<d — v(E) <ce, (8.3)

then v << p.
2. Show that if v is finite, then v << p implies property (8.3).
Hint. Suppose, by contradiction, that there exist ¢ > 0 and (A,), C & such that

1
w(Ay,) < o and v(A,)>¢ VnelN.

Then
B, = U A; | B=IlimsupA,.
i=n n— 00
So, using Proposition 1.18, u(By,) | u(B) = 0, whereas v(B,,) | v(B) > €.
3. Give an example to show that property (8.3) is false, in general, when v << i but
v is o-finite.
Hint. On A((0, 1]) consider the o-finite measure

dx

E X

v(E) =

Then v << m (denoting m the Lebesgue measure on (0, 1]), but (8.3) is false.
Indeed, for every 0 € (0, 1], we have v((0, §]) = (;) dx — oo,

X =
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8.2 Lebesgue Decomposition

In this section we will prove two relevant results in measure theory, known as the
Lebesgue decomposition and the Radon-Nikodym derivative. We will begin by ana-
lyzing the case of finite measures. In the following, (X, &) denotes a generic mea-
surable space.

8.2.1 The Case of Finite Measures

Theorem 8.7 Let 11 and v be finite measures on &. Then the following statements
hold.

(a) There exist two finite measures on &, v, and vy, such that
V=V, + Vs, Vg << l4, v L p. (8.4)

Moreover, such a decomposition is unique.
(b) There exists a unique function p € L' (X, j1) such that p > 0 and

v, (E) =/ p(x)du(x) VE €&. (8.5)
E

Equation (8.4) si called the Lebesgue decomposition of v with respect to . The
Sfunction p in (8.5) is called the density or the Radon-Nikodym derivative of v, with
respect to (i, and is denoted by the symbol

_dl/a
=0

p

Proof We split the proof into 6 steps.
1. Construction of a bounded linear functional.
Set
A=p+v

and observe that 4 << \, v << ) and

LYX(X,)\) C L*(X,v) C L' (X, v).

(v(X)<o0)

Therefore the following linear functional is well defined

F(p) :=/ o) dv(x) Ve e L*(X,\).
X
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By Holder’s inequality we have

12
IF(@)] < v/o(X) ( /X |go<x)|2du<x>) — o) ligla.

So F is bounded. Thanks to the Riesz Theorem, there exists a unique element f of
L%(X, )\) such that

F(p) z/ch(x)dV(x) Z/Xf(X)sﬁ(X)dA(X) Vo € L*(X, \). (8.6)

2. Two estimates for f.

Observe that, since \ is finite, x£ belongs to L?(X, \) for any E € &. Taking
@ = Xk in (8.6) we obtain

v(E) :/ F()d\x) >0 VE e é&.
E

Therefore f > 0 A-a.e. and we may assume
f(x)>=0 Vx e X.

Moreover, since [y, fod\ = [y fodu+ [y fedv, (8.6) can be rewritten in the
form

/XSO(X)(l — f(x)dv(x) = /x () du(x) Y € LA(X, \). (8.7)

Then, choosing ¢ = x £ as before, we have

/(1 — f(x))dv(x) =/ f(x)dpu(x) >0 VEeé&,
E E

by which it follows that f < 1 v-a.e.
3. Construction of v, and vy.

Define the two Borel sets
A=xeX|0<sf(x)<1l} B=X\A={xeX| f(x)=>1},

and define!
Vg :=VvLA  vg:=vLB.

I'See Definition 1.26.
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Then v, and v; are finite measures satisfying v = v, + vs. Taking ¢ = xp in (8.7),
we deduce p(B) = 0. So p is concentrated on A. Since vs is concentrated on B, it
follows that 1 L v;.

4. Density of v,.
Givenn € Nand E € &, let us take

o) = (14 fx)+-+ f"(x)XEna(x)

in (8.7), obtaining

/ (1— @) dvix) = / [fCO)+ £200) + -+ )] dux).
ENA ENA

Set

Tim [£00)+ £200 4 1] = 20 S (}sz)

0 if x € B.

ifx € A,
p(x) ==

The Monotone Convergence Theorem implies that

va(E)y=v(ENA) = /

EN

p(x) du(x) = / p(x) dp(x).
A E

This proves (8.5). Moreover, taking £ = X in the above identity, we conclude that
p is p-summable. The fact that v, << p follows from Example 8.2.

5. Uniqueness of the density.

Let p1, p2 > 0 be two p-summable functions satisfying (8.5). Then p = p; — py is
a pu-summable function such that

/ px)du(x) =0 VE €é&.
E

Therefore p = 0 ji-a.e., so p; and p, are two identical elements of the space L' (X, p).
6. Uniqueness of the Lebesgue decomposition.
Let Vfl and 1/;, i =1, 2, be finite measures satisfying

1/:1/;+1/£ with VZ << v and 1{5 L .

Let A be a support of p such that usl (A) =0= z/sz(A). Then, for any E € &, we
have
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vIE) = v ENA) + v (EN A%
—
=0 (l/(}<<,u)

=v2(ENA)+v2(ENA)—vI(ENnA)=12(E).

=0 (IJSZJ_;L) =0 (l/sl L)

O
The next result follows immediately from Theorem 8.7.

Theorem 8.8 (Radon-Nikodym) Let i and v be finite measures on & such that
v << 1. Then there exists a unique function p > 0 in L' (X, j1) such that

V(E) =/ p(x)du(x) VEe€é&.
E

8.2.2 The General Case

We now extend Lebesgue’s decomposition to more general measures.

Theorem 8.9 Let 1 and v be measures on &. If 1 is o-finite and v is finite, then the
conclusions of Theorem 8.7 hold.

Proof Let (X,), C & be a sequence of disjoint sets such that 11(X,) < oo for every
n € Nand X = U,>1X,. Apply Theorem 8.7 to the finite measures

Pn = pr X, vy = vLXy,
and consider, for any n € N, the Lebesgue decomposition of 1, with respect to pi,,
namely

Up = Wn)a + (Wn)s Wwith ()g << iy and  (vy)s L p.

Thanks to (8.5) and Exercise 2.72,
(n)a(E) =/ Pn(x) d pin (x) =/ pn(x)dp(x) VE €&
E ENX,

for some j1,-summable functions p, > 0. Define

Vg i= Z(Vn)a Vs 1= Z(Vn)s
n=1 n=1

and

p(x) =D pa(x)xx,(x) Vxe€X.

n=1
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Then v, and vy are finite measures such that

00 00 00
v = Zl/n = Z(Vn)a + Z(Vn)s = Vg + Vs.
n=1 n=1

n=1

Moreover, for any E € &, Proposition 2.48 implies

va(E) = /E pn(x) dpa(x)
n=1

NXp
= / > XK, () dpx) = / p) dp(x).
E n=1 E

Taking E = X in the above identity we deduce che p is p-summable. Therefore
vy, << p. To complete the proof, let A,, B, C X, be disjoint supports of y, and
(vn)s, respectively. Then A := U, A, and B := U, B, are disjoint supports of x
and v;. It follows that v L u. The uniqueness of p and decomposition (8.4) can be
recovered reasoning as in the proof of Theorem 8.7. (I

Example 8.10 If measure y is not o-finite, then the conclusion of Theorem 8.7 is
false, in general, even when v is finite. For instance, on the Borel o-algebra ([0, 1])
consider the counting measure ;*. Let m be the Lebesgue measure on [0, 1]. Then
m << ¥, but m does not admit any representation of the form

m(E) =/ fdu*  VE e 2(0,1))
E

with f : [0, 1] — [0, oo] ,u#—summable. Indeed, should such f exist, then we would
obtainm({x}) =0 = f(x)foreveryx € [0, 1],andso f(x) = Oforeveryx € [0, 1].
Taking E = [0, 1], it would follow m ([0, 1]) = 0.

Exercise 8.11 Let X be an uncountable set and let & be the o-algebra which consists
of all countable subsets of X and their complements. Show that if ;* is the counting

measure on X and
0 if E is countable,

1 if E€ is countable,

MNE) = I
then A\ << p/* but there is no x#-summable function f such that

)\(E)z/fdu# VE € &.
E

Exercise 8.12 Adapting the proof of Theorem 8.9, show that if i and v are both
o-finite, then the conclusions of Theorem 8.7 are still true, with the difference that
p is not necessarily p-summable but only locally p-summable, that is, there exists a
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sequence (X,), C & such that X, 1 X and

w(Xy) < oo, / pdpu <oo  VnelN.
X

8.3 Signed Measures

Let (X, &) be a measurable space.

Definition 8.13 A signed measure pon & isamap i : & — R such that (@) =0
and, for any sequence (E,), C & of disjoint sets,

u(U E) =D uEn). (8:8)
n=1

n=1

Example 8.14 Let pu; and pp be finite measures on &. Then the difference p :=
1 — pp is a signed measure on &.

Remark 8.15 Let us observe that the series on the right-hand side of (8.8) must con-
verge independently of the order of its terms (since the left-hand side is independent
of such an order), so it must converge absolutely.

Remark 8.16 Definition 8.13 can be generalized including extended functions: more
precisely, a function i1 : & — Riscalled asigned measure if ;1(2) = 0and p satisfies
(8.8). In such a case, however, p cannot assume both the values oo and —oo.

Exercise 8.17 Let i : & — R be an additive function such that (&) = 0.
e Given a sequence (E,), C &, show that the following properties are equivalent:

@ E,tE = u(Ey) — p(E).
b) En\ E = p(En) —> p(E).
© E,l o = u(E,) —0.

e Show that p is a signed measure on & if and only if one of the above properties
holds.

Hint. Adapt the proof of Propositions 1.17 and 1.18.

8.3.1 Total Variation

Definition 8.18 Given E € &, a sequence (E,), C & of disjoint sets such that
Uy Ex = E is called a partition of E.
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Definition 8.19 Let i be a signed measure on &. The total variation of p is the map
|u] : & — [0, oo] defined by

o0
|u|(E) = sup {Z [u(Ep)| = (E,), partition of E} VE € &.

n=1

Proposition 8.20 Let 11 be a signed measure on &. Then || is a finite measure
on é&.

Proof We split the proof into 3 steps.
1. Additivity.

We claim that if A, B € & are disjoint sets, then
|ul(A U B) = |ul(A) + |ul(B). (8.9)
Indeed, consider (E,), a partition of £ := A U B and set
A, =ANE,, B,=BNE, VnelN.

Then (A,), is a partition of A and (B,,), is a partition of B. Moreover, since E, =
A, U B, with disjoint union, we have u(E,) = u(A,) + w(B,) forevery n € N. So

SUED] < D A+ D 1B < [1l(A) + ul(B),
n=1 n=1

n=1

which in turn implies that ||(A U B) < |u|(A) + |u|(B).

In order to prove the opposite inequality, let L and M be real numbers satisfying
L < |p|(A) and M < |u|(B). Then there exist partitions (A,), of A and (B,), of
B such that

DA = L, D (B = M.

n=1 n=1

Moreover, (A,), U (By), is a partition of A U B. Therefore

[ul(AUB) = D>~ (Iu(An)| + (B = L+ M.

n=1
Since L, M are arbitrary, we get |u|(A U B) > |u|(A) + || (B).
2. o-additivity.

Since | u| is additive, it is sufficient to show that || is o-subadditive (see Remark 1.14).
Consider a disjoint sequence (E,), C & and set E = U7 E,. Let (F;); be a
partition of E. Then, for any given n, (F; N E,); is a partition of E, and, for any
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given i, (F; N Ey), is a partition of F;. Therefore p(F;) = z;ozl w(F; N Ey), which
yields

D) < D D IuE N ED = DD [u(Fi NVE)| < D pl(Ey) .
i=1 n=1

i=1 n=1 n=1i=1

So, by the arbitrariness of the partition (F;);,

[l(E) <D |ul(En).

n=1
3. |ul(X) < oo.

Assuming |u|(X) = oo, we will construct disjoint sets A, B € & such that X =
AU B and
lw(A) > 1 & [ul[(B) = oo. (8.10)

Later, we will show that (8.10) yields a contradiction.
Suppose |u|(X) = oo. Then there exists a partition (X, ), of X such that

D X)) > 201 + (X)),
n=1

Therefore one of the two sums

D176 ¢ TR S 1710 Y

n>1, u(X,)>0 n>1, u(X,)<0

is greater than 1 4 |p(X)|. To fix ideas, assume we are in the first case: for some
subsequence (X, )x, we have

> (X)) > 1+ (X)),
k=1
Set A = U;2 | Xp, and B = A°. Then |u(A)| > 1 and
[(B)| = |p(X) — p(A)| = [u(A)] — [(X)] > 1.

Since
[](X) = [pl(A) + |ul(B) = oo,

either |pu|(B) = oo or |u|(A) = oo. In both cases we obtain (8.10) exchanging, if
necessary, the roles of A and B.
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Finally, we claim (8.10) leads to a contradiction. Indeed, (replacing X by B and
doing the same at each step) we construct a sequence (A,), of disjoint measurable
sets such that |p(A,)| > 1. Then, for some subsequence (A, )k of (A,),, either
w(Ay) > lLor u(A,) < —1 for every k € N. Therefore D, ;1(A,,) = oo in the
first case and Zk (A, ) = —oo in the second case, in contradiction with (Uy
Ay) e R O

Let us observe that if 1 is a signed measure on &, then

lu(E)| < |ul(E) VEed. (8.11)

Therefore, thanks to Proposition 8.20,

1 1
pt o= 5 Unl+ @) and p= == (lul = (8.12)

are finite measures on &, called the positive part and the negative part of p, respec-
tively. Moreover, the identity
p=pt—p (8.13)

is called the Jordan decomposition of .

8.3.2 Radon-Nikodym Theorem

Let (X, &, 1t) be a measure space.

Definition 8.21 We say that a signed measure v on & is absolutely continuous with
respect to i, and we write v << p, if

Ee& & WE)=0 = |v|(E)=0.

Remark 8.22 Let us note that, since |v| = v + v,

v<p = vi<pu & v <.

Exercise 8.23 Given a signed measure v on &, show that v << p if and only if
Ecé& & p(E)y=0 = v(E)=0.

The following generalization of Radon-Nikodym Theorem holds.

Theorem 8.24 (Radon-Nikodym) Let p be a o-finite measure on & and let v be
a signed measure on & such that v << pu. Then there exists a unique function
p e LY (X, ) such that
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V(E) =/ p(x)du(x) VEe€&. (8.14)
E

Proof By hypothesis T and v~ are finite measures. They are also absolutely con-
tinuous with respect to y thanks to Remark 8.22. Therefore Theorem 8.9 ensures that
v and v~ have derivatives

_ dvt & _ dv~
P+ = du pP—= du

Set p := py — p_. Then p € L' (X, ;1) and (8.14) holds. The uniqueness property
of p follows arguing as in the proof of Theorem 8.7. (I

8.3.3 Hahn Decomposition

Our next result describes the structure of a signed measure. More precisely, it states
that X is the union of two disjoint sets which are the supports of its positive and
negative parts.

Theorem 8.25 Let 11 be a signed measure on & and let i+ and ™~ be its positive
and negative parts, respectively. Then there exist disjoint sets A, B € & such that
X =AUBand

ut(E) = W((ANE), pw(E)=—-w(BNE) VEEcé&. (8.15)

The pair (A, B) is called the Hahn decomposition of X with respect to p.

Proof Observe, first, that ;1 << |u]. So, applying Theorem 8.24, there exists a func-
tion p € L' (X, |p|) such that

u(E) =/ pdlul  VYE €é&. (8.16)
E

We now pass to show that |p(x)| = 1 |u|-a.e.
I lpl <1 |ul-ae.
Set
Ei={xeX|pkx) > 1}, E,={xeX|pk) <—1}.

It suffices to show that |u|(E1) = |u|(E2) = 0. Suppose |p|(E1) > 0. Then

J(ED) = [u(ED)| =/ pdlul > IHl(E),

E|
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in contradiction with (8.11). Therefore |p|(E1) = 0. Similarly we can prove that
|l (E2) = 0.

2. |pl =1 |u| —a.e.
Set, for any r € (0, 1),

G ={xeX|0=<pkx)<r}, H ={xeX| —r <pkx) <0}.

As before, we will show that |u|(G,) = |u|(H,) = 0. Let (G,,), be a partition of
G,. Then

w(Grp) = (Gl :/ pdlpl < r|pl(Grp).

So
o
D Gl < rlpl(G).

n=1

Since (G, ), is an arbitrary partition, we conclude that

|nl(Gr) < r|pl(Gr).

Since r € (0, 1), necessarily |u|(G,) = 0. Similarly, |u|(H,) = 0.
3. Conclusion.

Thanks to the previous step we may assume |p(x)| = 1 for every x € X. Let
A={xeX|pm) =1}, B={xeX|px) =-1}.

Then for any E € & we have

1 1
pHE) = 5 (W) + p(E)) = 3 /(1 + Pl =/ pdlul = p(E N A)
E ENA
14+p(x)=0 Vxe ENB
and
_ 1 1
po(E) =3 (ILl(E) — (E)) = 5 [ U= p)dlpl = pdlpl = —p(E N B).
E ENB
1-p(x)=0VxeENA
The proof is thus complete. (]

Remark 8.26 A signed measure may admit more than one Hahn decomposition.

Exercise 8.27 Show that the positive part and the negative part of a signed measure
v are singular measures.
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Exercise 8.28 Show that if ;. is a signed measure on & and \|, \; are two measures
on & such that
=X — A2,

then
pt <AL owT <N\

8.4 Dual of L? (X, p)

Let (X, &, i) be a measure space. In this section we will characterize the dual of
LP(X,p). Let 1 < p < oo and let p’ be the conjugate exponent of p, namely
1/p + 1/p’ = 1 with the usual convention é = 0. For any g € Lp/(X, ) let us
define F; : LP(X, u) — R by setting

Ff) = [ fadn vf el . (8.17)
Observe that, by Holder’s inequality,
|Fg(OI = 1flIplglly  Vf e LP(X, p).
Therefore F, € (L”(X, 41))" and
1 Fglls < Ngllp- (8.18)

Then the map g — Fj is a linear contraction L”/(X , ) — (LP (X, p))* It is natural
to ask whether all the bounded linear functionals on L” (X, p) have this form and if
such a representation is unique. We will restrict our analysis to the case of o-finite
measures.

Theorem 8.29 Let i be a o-finite measure on & and let 1 < p < oo. Then the
map g — Fy defined by (8.17) is an isometric isomorphism? between LP (X, ) and

(LP (X, )"

Proof Let F e (LP(X, 11))*. We will construct a function g € L?' (X, ) such that
F = Fyand ||gll,y < ||Fyll«. Consider, first, the case of ;1(X) < oo. We split the
proof into three steps.

1. 3g € LY (X, 1) such that F(f) = fX fygduforevery f € L¥(X, ).
Observe that, since y is finite, yg € LP (X, ) for every E € &. Define

v(E)=F(xg) VEEe€&.

2See footnote 5 at p. 147.
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Since F is linear and xaup = x4 + X if A and B are disjoint, we deduce that v
is additive and v (@) = F(0) = 0. Moreover, for any sequence (E,), C & such

that E,, 1 E, using Proposition 3.36, we have g, L—P> X E; the continuity of F
implies that v(E,) — v(E). So v is a signed measure thanks to Exercise 8.17. It is
easy to see that if ;1 (E) = 0, then g = 0 in L”(X, ). Hence, v(E) = 0 and, by
Exercise 8.23, we get v << . Then the Radon-Nikodym Theorem (Theorem 8.24)
ensures the existence of g € L' (X, j1) such that

F(XE)=/gdu VE € &.
E

By linearity, we have F(f) = |, x JSgdu for any simple function f : X — R.
Let now f € L°(X, ). Applying Proposition 2.23 to f* and f~, we construct a

sequence of simple functions f,, : X — R such that | f,| < | f]| and f, LA f. By
the Dominated Convergence Theorem we deduce that

F(fn)=/angdu—>/ngdu.

On the other hand, since p is finite, thanks to Proposition 3.36 we conclude that
L?

Jn — f.So F(fa) = F(f).

2. g€ L7 (X, wyand ||glly < || Flls.

We distinguish two cases.

(2a) 1 < p <oo(hencel < p’ < 00).Givenk € N,let Yy ={x € X | |g(x)| <
k} and define

SO it £0

fiey = 1

We have f, € L>®(X, pn); so fr € LP(X, u). Moreover | fx|P = |g|1’/ in Yg;

then

/ |9|p/d,u=/ Jegdp = F(fi) < 1F sl fell p
Y X

1
’ 14
=||F||*(/ 1917 du) ,
Y
, 1/p'
(/XxmgV’ du) <|IFl..

which yields
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Passing to the limit as k — oo and applying the Monotone Convergence
Theorem we obtain [|g|,» < [ F|l+.
(2b) p = 1. For any € > 0 set

Ac={x e X |gl) = Fll«+¢}

and define f; = xa. |§7|. Then f. € Ll(X, ) N L(X, p) and || fzll; =
w(Ag), and so

(1Pl + (AL < /

lgldu =/ fegdp = F(fe) < | Fllep(Ae).
A. X

This implies p(Az) = 0 for any € > 0, hence ||g|lco < || F||x-

3. Conclusion.

For every p € [1, 00) we have that g € Lp/(X, w) and ||gll,; < [[F|lx. Then F
and F; are bounded linear functionals coinciding on L® (X, u) which is dense in
LP(X, ), so F = F,. Moreover, recalling inequality (8.18),

lgllpr < I1Fllx = 1Fgllx < gl pr-
This complete the analysis of the case u(X) < oco.

In the o-finite case, consider a sequence (Xy)x C & of disjoint sets such that
X = U,fi 1 Xk It is immediate that, for any E € &, the map

feLP(E,p)— F(f)

(f denotes the extension of f equal to zero outside E) is a continuous linear functional
of norm less than or equal to || F'||. Since, as we have just shown, the result holds
true for the finite measure spaces (Xx, & N Xi, 1) (see Remark 1.28), there exist
functions gy € L”/(Xk, ) such that

F(f) =/X gefdp Vf € LP (X, .
k
For every x € X set g(x) = gr(x) if x € Xy and let Z,, = U}/_, Xj. Since
FiP = [ afdu vf e L@,
by the first part of the proof, g € L”/(Zn, 1) and

/ l91?” xz, dp =/ lgl” dp < ||F|% .
X

Zn
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Therefore, since xz, 1 1, by Fatou’s Lemma g € Lf’,(X, ) and [lgll,r < [ F |l
Finally, for any f € LP(X, p),

F(Xan)=/Z gfdu=/xg><znfdu=Fg(Xan)-

Since fxz, L—p> f» we conclude that F(f) = F,(f) forevery f € LP(X, ). O

Remark 8.30 Theorem 8.29 actually holds for a generic measure space in the case
1 < p < 0o, whereas it may fail for p = 1 when p is not o-finite (see Example 6.64).
On the other hand, Theorem 8.29 is false, in general, for p = o0 : LI(X , ) does
not provide all the bounded linear functionals on L*° (X, u) (see Remark 6.63). The
special case p = p’ = 2 is already covered by the Riesz Representation Theorem,
since L2(X, 1) is a Hilbert space. Necessary and sufficient conditions on the space
(X, &, p) to guarantee a characterization as in Theorem 8.29 are discussed in [Za67].
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Chapter 9
Set-Valued Functions

Motivated by applications to optimization and control theory, modern analysis has
shown an increasing interest in set-valued maps, to which most of the known results
for single-valued maps can be adapted. In this chapter, we provide a quick introduc-
tion to set-valued analysis aiming to deduce a classical theorem which guarantees
the existence of a measurable selection.

9.1 Definitions and Examples

Given two integers N, M > 1, a set-valued map I : RN ~» RM is a map which
associates to any x € RV aset I'(x) ¢ RM (possibly empty). The set

D(I') = {x eRY | I'(x) # ¥
is called the domain of I'.
Example 9.1 1. Let f : [a, b] — R be a lower semicontinuous function. Then
e :={xela,bl| fx)<t}, teR,

is a set-valued map I" : R ~» R such that D(I") = [min f, 00).

2. Given an integer k > 1, let f : RN x R* — RM be a continuous function and
let F be a closed nonempty subset of RF. Then

I'(x):= f(x,F), xeR",

is a set-valued map I : RY ~s RM guch that D(I") = RY.
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Definition 9.2 Let I" : RY ~» RM be a set-valued map. We say that I” is:

(1) closed (convex, compact, respectively) if I"(x) is a closed (convex, compact,
respectively) set for every x € RV,
(ii) Borel if, for any open set V C R the inverse image

r'wy=@xeRV | rxnv o)

is a Borel subset of RV
(iii) upper semicontinuous at a point x € RN if for any ¢ > 0 there exists § > 0
such that!
lx —x'|| <6 = I'(x)cTI'(x)+B..

(iv) upper semicontinuous in a set E C RY if it is upper semicontinuous at every
point of E.

Similarly, one can give a sense to lower semicontinuity and many other continuity
properties for set-valued maps. In this chapter, however, we will confine ourselves
to consider upper semicontinuous set-valued maps. For a more extended treatment
of set-valued maps we refer to the monograph [AF90].

Exercise 9.3 Is the set-valued map I" : R ~~ R of Example 9.1(1):

1. closed?
2. upper semicontinuous in D(17)?

Exercise 9.4 Let I' : RY ~» RM be a closed set-valued map and let xo € R". The
Kuratowski upper limit of I" as x — xp is defined by

. dx, € D(I')\{x0} = xn — x0o

_ M n .
Limsup, _, . ["(x) = [y eR ‘ Iy, € I'(xy) oy |
1. Show that if xo € D(I"), then?

lim inf )dp(x)(y) = 0] .

x—xp, xeD(I"

Limsup,_, ., I"(x) = I y e RM

2. Show that if I" is upper semicontinuous at xg, then

Limsup,_, . I"(x) C I"(xo). 9.1)

'Fx)+B.:={y+zlye '), lzll <e}
24 rx)(y) denotes the distance of the point y from the set " (x).
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3. Show that if

3r,R>0 suchthat |ly| <R Vye []J I, (9.2)

lx—=xoll<r

then by (9.1) it follows that " is upper semicontinuous at x.
4. Does the above property hold without assuming (9.2)?

Hint. Consider I : R ~~ R defined by

{n} if x=1 n>1
] otherwise

I'x)= |

(I" fails to be upper semicontinuous at 0 but Limsup, _, 1" (x) = ¥).

Given a set-valued map I" : RY ~» RM  the graph of I' is defined by

Graph(I') = {(x, y) e RN x RM | y € I'(x)}.

Proposition 9.5 Given a set-valued map I' : RN ~ RM if Graph(I") is closed
then I' is closed and Borel.

Proof The fact that I is closed is a direct consequence of the closure of Graph(/™).
We are going to prove that I" is Borel.

First of all let us show that if K  RM is compact, then I"~!(K) is closed. Let
(x)n € I'"1(K) be a sequence converging to a point ¥ € RY. Then there exists a
sequence y, € I'(x;) N K and, by compactness, a subsequence yy, converging to
apoint y € K. Since Graph([") is closed, the pair (x, y) := lim, (xg,, y,) belongs
to Graph(I"). So y € I'(x) and, consequently, x € I'Y(K). Therefore ' "1 (K) is
closed, as claimed.

Letnow V C RM be open. Then V = U™ , K, for some family (K, ), of compact
sets. So I'! V) = U;’zozl r! (K,) is a countable union of closed sets. Hence, it is
a Borel set. (I

9.2 Existence of a Summable Selection

Definition 9.6 Given a set-valued map I" : RY s RM | a selection of I on a
nonempty set S C D(I") is a functiony : § — RM such that v(x) € I'(x) for every
x €S.

The fact that any set-valued map admits at least one selection on D(I”) is a conse-
quence of the Axiom of Choice. However, one is usually interested to know if there
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exist selections with suitable properties. In the sequel of the chapter we will provide
sufficient conditions to guarantee the existence of a summable selection (with respect
to the Lebesgue measure m) of a given set-valued map.
We say that I" : RN ~s RM is dominated by a summable function on a Borel set
A C RV if there exists a function g : A — [0, o) such that®> g € L'(A) and, for
every x € A,
pelx) = lpll =gW). 9.3)

Theorem 9.7 Let I' : RN ~» RM be closed, upper semicontinuous and dominated
by a summable function on a nonempty Borel set A C D(I") of finite measure. Then
there exists” v € (L1 (ADM such that v(x) € I'(x) for almost every x € A.

Proof For the proof we need two technical steps.

1. Let us prove, first, that for every f € (L'(A))™ there exists a Borel function
#(f) : A — [0, 00) such that

O(f)(x) =dru(f(x)) ae.inA

and

A()(xX) #droo(f(x) = ¢(f)(x) =0.

To this aim, apply Corollary 2.30 of Lusin’s Theorem to construct an increasing
sequence of compact sets K, C A such that

[(a) f|1< : K, > RM, g|1< : K, — R, arecontinuous Vn € N,
) m(A\ Upz1 Ky) =0,
and set

dron(f(x)) ifx € Up=1 Ky

. 9.4)
0 ifx € A\ Up>1 Kj.

o(f) = o(f)(x) := {
Let us show that, for every n > 1, the restriction
¢(f)|K,, K, - R

is lower semicontinuous: givenn € Nand xg € K, letx; € K, and p; € I'(x;)
be sequences such that

3In what follows L' (A) = L' (A, #(A), m) where Z(A) is the Borel o-algebra and m denotes the
Lebesgue measure on A.

LY AWM = {(f1,..., fw) | fie LY (A), Yi=1,...,M}.
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limint o(/)(x) = lim o(N)0) = lim [1f(c)) = psl.

xeK;, x—>xo

Observe that, owing to (9.3), |Ip;|| < maxg, g for every j € N; so (p;); is
bounded and we may suppose, up to a subsequence, that p; — pg as j — oo.
Moreover, by part 2 of Exercise 9.4, we have pg € I"(xg). Therefore

(f)(x0) = I1f (x0) = poll = jlggo ILf(xj) = pjll = xelli(m)icrl_fm(b(f)(X)-

Finally, setting

¢(f)|Kn(x) if xeK,

on:A—> R, ¢i1(x)=[ (n € N),
0

if xeA\K,

we get that ¢,, is Borel in A and ¢, (x) — ¢(f)(x) for every x € A. So ¢(f) is
Borel.
2. Consider now the functional

J(f) = /A o(frdx  fe @ (AnM.

By the first step, J is well defined since the function ¢( f) is positive and Borel.
Moreover, thanks to hypothesis (9.3) and the Lipschitz continuity of the distance
function, given f € (L' (A)M, for almost every x € A we have

P(f)x) =dru(f(x) = [f ) +dr0) = [1f (0l + g(x),

and so J(f) < oo forevery f € (L'(A))M. Moreover, if f, g € (L'(A))M, for
almost every x € A

o) (x) =A@ X)) = ldr (f () —dre) (g = [f(x) — g
it follows that J is Lipschitz continuous with Lipschitz constant 1, hence continu-
ous. We are going to show that J vanishes for at least an element of (LY (A)M . To

begin with, apply Ekeland’s Variational Principle (see Appendix H) to construct
f € (L'(A)M such that

1 _ i,
TH=IH) =3If = fl Vfe (L' (ANM\{F). 9.5)

Arguing by contradiction, suppose J(f) > 0. Then

Ap={xeAlo(f) >0}
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is a Borel set and
o(frax = [ dri(Fndx >0, 9.6)
Ay Ay
Given a dense sequence (g;) jeN in RM  set

- 2 2 -
Ap={r e A |15 =gl < 30N, oan@) < So(H )]

_ 2 - 2 =
=[x e 44 [ 17@ = )1l < Sdre(F@). 6@ < Sdre(Fen).

Owing to the previous step, A; is a Borel set for every j € N. Moreover, it is
easy to prove that® A, = U jeNAj. Therefore by (9.6) it follows that, for at least
an index jo,

/ dr(f(x)dx > 0.

Aj,
Then, setting
qjo ifx € Aj,,

Fe = { F) ifx e A\A,

we have

/A 100 = f@)lldx =/ llgjo = FOol dx

J0

2 _
<3 / dreo (Fo) dx. (O.7)

Jo
Moreover, by the definition of A j, we deduce

I =1 () - / droo (F () dx + /A 6(q) dx
| i

AJO

_ 1 _ _
<I(f) -5 / dre(Fnde < (D,

Jo

SIndeed, let x € Ay and let y € I'(x) be such that Hf(x) -y = dp(x)(f_(x)). Then, setting

¢ = 3(f(0)+y), 2 verifies || f(x) —zll = 3dreo (F(0) anddr () < 2=yl = dreo (F(0)).
Soif g,; — z, by the continuity of the distance function we have that x € A,; for large n.
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Hence f # f, and by (9.7) we conclude

. S
T = I =S =l

in contrast with (9.5).

To conclude the proof it suffices to observe that the function f constructed in the
previous step satisfies dr ) (f(x)) = 0 for almost every x € A. Thus,

f(x) € I'(x) for almost every x € A.

O

Remark 9.8 If we modify the function v of Theorem9.7 on a set of measure zero,
then, using the Axiom of Choice, the thesis of Theorem 9.7 can be reformulated as
follows: there exists a selection v of I" on A which coincides almost everywhere
with a function in L!(A). Observe that this does not imply that 7y belongs to L'(A),
since 4 may fail to be a Borel function. However, 7 is measurable with respect to the
o-algebra ¢ of all Lebesgue measurable sets (Definition 1.56), since m is a complete
measure on ¢. Therefore, under the assumptions of Theorem 9.7, we deduce that I”
admits a selection 7 on A such that ¥ € L' (A, 4, m).
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Appendix A
Distance Function

In this Appendix we will recall the basic properties of the distance function from a
nonempty set S ¢ RV,

Definition A.1 The distance function from S is the function dg : RY — R
defined by
ds(x) = inf |[x —y|| Vx eRN.
yes

The projection of x onto S is the set consisting of those points (if any) at which the
infimum defining dg(x) is attained. Such a set will be denoted by proj¢(x).

Proposition A.2 Let S be a nonempty subset of RN . Then the following properties
hold:

1. dg is Lipschitz continuous of rank 1, i.e., |ds(x) — ds(x")| < ||x — x'|| for any
x,x eRN,
2. Forany x € RN we have
ds(x) =0 <= x €s.

3. Sis closed <= projg(x) # & for every x € RV,

Proof 1. Letx,x' € RN and & > 0 be fixed. Then there exists Y= € S such that
[lx = yell < ds(x) + €. Thus, by the triangle inequality for the Euclidean norm,

ds(x') —ds(x) < X" —yell = Ix =yl + e < & = x|l +=.

Since ¢ is arbitrary, ds(x’) — dg(x) < ||x’ — x||. Exchanging the role of x and
x" we conclude that |dg(x") — dg(x)| < ||x’ — x| as desired.

2. For any x € RY we have that ds(x) = 0 if and only if there exists a sequence
(Yn)n C S such that ||x — y,|| — 0asn — oo, hence if and only if x € S.
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3. Let S be a closed set and let x € RY be fixed. Then
K:={yeS|lx—yl=<dstx)+1}
is a nonempty compact set. Therefore any point X € K such that

llx = X1 = min [lx — y]
yek

lies in projg(x). B
Conversely, assume projg(y) # @ forevery y € RY and let x € S. Observe that,
by part 2, ds(x) = 0. Take X € projg(x). Then ||[x —X|| =0and x € S. a

Proposition A.3 Given a nonempty closed set S C RN, let x € RN and y € S.
Then y € projg(x) if and only if

1
G-y -y =5y —yl? vy es. (A1)
Proof By definition, we have that y € projg(x) if and only if
e =yl < llx=y1> vy es.

Since |[x —¥/|I> = lx =yl + ly — ¥'II> + 2(x — y) - (y — v/'), the above inequality
reduces to (A.1). O

Remark A.4 Let S C RY be a nonempty closed set.

1. By applying (A.1) we easily get
y € projg(x) <<= wyeprojsitx+ (1 -1y Vrell1], (A.2)
and so
y €projg(x) <= dstx+ 1 —-t)y) =tllx—yll Vtel0,1]. (A3)

To justify the implication ‘=" in (A.2) (the <=-part is immediate), let us fix
y € projg(x). By (A.1) it follows that, for every ¢ € [0, 1],

’ 4 / 2 1 ’ 2 /
tx—y) -y —y = Elly —yl” = Elly -yl Yy €S. (A4)

Thus, y € projg(tx + (1 — t)y) by (A.1) applied to the point tx + (1 — #)y.
2. Another interesting remark is the following:

y € projg(x) = projs(tx + (1 —Dy) =1{y} Veel[0,1). (A5)



Appendix A: Distance Function 281

Indeed, by (A.4) it follows that, for every ¢ € [0, 1),
1
=y =y < Sly —yl> VY e S\ {yh

So, since [[(tx + (1 — 0)y) —ylI* = [tx + (1 =)y — /12 — lly — v/ |* + 2t
x—y- W -y,
[tx+ (1 —0y) —yl> < tx+ (1 —0y) =y 1> Yy €S\ {y).

The thesis (A.5) follows.
3. It is useful to observe that the set-valued map projg : RN — ZRN) is upper
semicontinuous, i.e., for every x € RN,

lim sup projg(x") C projg(x),

x'—=x
where the meaning of the above limit is the following:
Ve>030>0: [|x'—x|]| <d = projg(x’) Cprojg(x) + Bz, (A.6)

setting! B, = {x € RY | ||x|| < €}. To see this, it will be sufficient to prove that,
given any two sequences (xX,)., (Yn)n in RY, we have

Xp —> X, Yn € projs(xn)» Yo >y =— YE€ prOjS(x)'
Indeed, y € S since S is closed, and ||x;, — ¥, || = ds(x,,). Then the continuity of
dg implies that ||[x — || = ds(x), and so y € projg(x).

4. We point out, in particular, the fact that projg is continuous at all points x € R
for which proj¢(x) reduces to a singleton, that is,

lim projs(x") = projs(x)
x'—x
where the above limit means that proj ¢ satisfies (A.6) and also
Ve>030>0: |x'—x||<d = projg(x) C projg(x’) + B-.

This is an immediate consequence of upper semicontinuity and the fact that
projg(x) is a singleton.

A general principle is that geometric properties of the set S correspond to analytic
properties of the function dg. The following differentiability theorem is a case in
point.

I'The sum of two sets A and A’ in RV is definedby A + A’ := {x +y|x € A, y € A'}.
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Theorem A.5 Let S C RY be closed and nonempty. Then ds is Fréchet differen-
tiable at a point x € RN \ S if and only if projs(x) reduces to a singleton {y).
Moreover, in such a case,

-y

Ddsy ==y

(A7)

Proof Suppose, first, that dg is Fréchet differentiable at x ¢ S. Then, fixed y €
projg(x), the function ¢ — dg(tx + (1 —t)y) has left-hand derivative at t = 1 which
satisfies, by (A.5),

d
Dds(x) - (x —y) = = =ds(tx + (1 =0y, = lIx = yll.
Moreover, since dg is Lipschitz continuous of rank 1 owing to Proposition A.2, we
get || Dds(x)|| < 1. So, by the Cauchy-Schwarz inequality,

X —y <1

llx =yl

1 = Dds(x) -

(A.7) follows by recalling the cases when equality holds in Proposition 5.3. Further-
more, y is uniquely determined by (A.7) since

y = x —ds(x) Dds(x).

Vice versa, suppose that projg(x) = {y}. Then according to Remark A.4(4) because
this condition.

lim projs(x') = {y}.
X' —X
Consequently, the differentiability of dg (hence, of dg) will follow once we have

proved that, for every x’ € RV and 3/ € projg(x’),

Ix — x'II* = 2l1x" — x|l Iy — yll
<di(x) —di(x) = 2(x —y) - (x' —x) < [lx — x|I%.

To this aim observe that, in view of (A.1),

d3(x') —d3(x) = 2(x —y) - (x" — x)

= = xIP+ 1y —ylI* +20 —x) - (=) +2x — ) - (¥ —y)

> ' = x 2+ 2" —x) - (y — o)

> Jlx — |17 = 2l1x" — x|l Iy — . (A.8)

Moreover,
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2 —y) - (=) + Iy —yl?

=200—y +y -y - y—y)+ Iy —yl?
=2(x—y) - (y—y) —lly —yl?

=20 —x)-(—y)+2:" =y =) — Iy —yl?
<2(x—x")-(y—y) (A.9)

again by (A.1) applied to x’. The desired inequalities are then immediate
consequences of (A.8) and (A.9). O

Exercise A.6 Let 2 C R" be a nonempty bounded open set with boundary I.
Show that there exists at least one point in §2 where d fails to be differentiable.
Hint. Letx € §2.1f dr is differentiable at x, then consider x + # Dd(x) fort > 0. ..

Exercise A.7 Let S C R" be closed and nonempty.

1. Given x € RV \ S and y € proj s(x), show that dg is Fréchet differentiable at
every point of the open segment

{tx+ (1 =0y |t e D}

2. Show that if S is convex, then ds is a convex function on R .
3. Prove the (semiconcavity) inequality

tdi(x) + (1 = 0da(x") —d2(tx + (1 —0)x') <t(1 = 0)[x —x'|?
for every x, x’ € RN and € [0, 1]. Deduce that the function
ps(x) = |x|* —d5(x), xeRY

is convex.
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Semicontinuous Functions

Let (X,d) be a metric space. We now introduce the notion of semicontinuous
function, which arises as a natural generalization of the concept of continuous
function.

Definition B.1 A function f : X — R U {00} is said to be lower semicontinuous
(Isc) at a point xo € X if
f(xp) < liminf f(x).
X—>X0

Similarly, a function f : X — R U {—o0} is said to be upper semicontinuous (usc)
at xq if
f(x0) > limsup f(x).

X— X0

Remark B.2 1. f islsc at xq if and only if — f is usc at xg.
2. If f1, f> are Isc (respectively, usc) at xg, then f1 + f> is Isc (respectively, usc)

at xq.

3. If a > 0 and f is Isc (respectively, usc) at xg, then « f is Isc (respectively, usc)
at xq.

4. A function f : X — R is continuous at xq if and only if f is both Isc and usc at
X0-

Example B.3 As simple examples of functions which are lsc everywhere in R but
discontinuous at some xp, we have

) 0 ifx < xg, ) 1 if x # xo,
X) = un(x) =
“ 1 ifx > xg, 2 0 ifx = xo.
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Hence, —u1 and —u; are usc everywhere in R. The Dirichlet function

{1 ifx €Q,
u(x) = )
0 ifxeR\Q

is Isc at all irrational numbers and usc at all rational ones.
The next theorem characterizes Isc and usc functions.

Theorem B.4 (i) A function f : X — R U {oo} is Isc? if and only if the sets
{f < a} are closed (equivalently, the sets { f > a} are open) for every a € R.

(ii) A function f : X — RU {—oo} is usc if and only if the sets { f > a} are closed
(equivalently, the sets { f < a} are open) for every a € R.

Proof Statements (i) and (ii) are equivalent since f is Isc if and only if — f is usc. Itis
therefore enough to prove (i). Suppose, first, that f islscin X.Givena € R, letxg € X
be a limit point of the set { f < a}. Then there exists a sequence (x,), C X such that
X, — xo and f(x,) < a. Since f is Isc at xg, we have f(xg) < liminf,_ o f(x,).
Therefore f(xp) < a, sothat xg € {f < a}. This shows that { f < a} is closed.
Vice versa, let xg € X. If f is notIsc at xg, then there exist M € R and (x,), C X
such that f(xg) > M, x, — xo and f(x,) < M. Hence, the set { f < M} is not
closed since it does not include all its limit points. (]

Corollary B.5 If f is Isc (respectively, usc) in X, then f is Borel.

Proof Let f belscin X. {f < a}isaBorel set, since it is closed, and the conclusion
follows from Exercise 2.11. O

Corollary B.6 If (fi)ics is a family of lsc functions in X, then sup;; f; is Isc in X.
If (fi)ier is a family of usc functions in X, then inf;c; f; is usc in X.

Proof Since f is Isc if and only if — f is usc and inf;¢; fi = —sup;¢;(—fi), itis
sufficient to prove the result for Isc functions. But this easily follows from Theorem
B.4 and the fact that {sup;.; fi < a} = Nic/{fi < al. O

The next theorem generalizes to semicontinuous functions the analogous well-
known result for continuous functions.

Theorem B.7 Let X be a compact metric space.

o If f: X — RU {00} is alsc function, then f has a minimum point in X.
e If f: X - RU{—o0} is ausc function, then f has a maximum point in X.

Proof Let f : X — RU{o0} beIsc. First of all, we will show that f is bounded from
below. Indeed, suppose infx f = —o0o. Then there exists a sequence (y,), C X such

2That is, Isc at every point of X.
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that f(y,) < —n for every n. Recalling that X is compact, we get the existence of a
subsequence (y;, )x converging to a point y € X. Since f is Isc at y, it follows that

—00 < f(y) = liminf f(y,,) = —oo0,
k— 00
which is a contradiction. So f is bounded from below and
A= inf f(x) > —oo0.
xeX
A sequence (x;), C X exists such that

1
fxp) <A+ - VnelN
n

The compactness of X implies the existence of a subsequence (x;, )x which converges
to a point xo € X. The fact that f is Isc at xp gives

A= f(xo) < liminf f(r,).

On the other hand, by construction we have liminfy_, o f(x,,) < A. Thus,
Sfxo) = A
The second statement follows by applying the first part to — f'. (]



Appendix C
Finite-Dimensional Linear Spaces

In the Euclidean space R” let us consider the norm

2

N
gl = (Z |£,-|2) VE = (&1, ..., En) € RY.
i=1

We will prove in this appendix that any normed linear space X of finite dimension N
can be identified with RY ; more precisely, X and R" are topologically isomorphic
in the sense of the following definition.

Definition C.1 Two normed linear spaces X and Y are said to be topologically
isomorphic if there exists a bijective linear map 7 : X — Y such that 7 and 7!
are continuous.

Theorem C.2 Let X and Y be two normed linear spaces such that dim X = dim
Y = N. Then X and Y are topologically isomorphic.

Proof Since the topological isomorphism is a transitive relation, it is sufficient to
prove that X is topologically isomorphic to RV . Let x, ..., xy be a basis of X and
define

T:RY = X, T(&,....én) =&x1 + -+ Envxn.

Then T is a bijective linear map and, by Cauchy—Schwarz inequality,

172 1/2

(é ||xi||2) = Mi€]

172 . .
where we have set M = (ZlNzl Il ||2) /2 So T is a bounded linear operator, hence

it is continuous. There remains to show that 7! is also continuous. Denote by S
the unit sphere in RV, ie., § = {¢ € RV |||£]| = 1}. Then T'(S) is compact, and,
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consequently, closed in X. Since T is bijective, we deduce that 0 & T (S), therefore
there exists m > 0 such that the ball ||x|| < m is disjoint from 7 (), that is,

ITEN=m VEeS.

We have
IT©l = m|él V¢ eRY,

or, equivalently,
IT7 ol <m™'ix|| Vx € X,
which implies that 7~! is continuous. |

It is apparent that if X and Y are topologically isomorphic and if X is complete,
then Y is also complete. Since R" is complete, we get the following result.

Theorem C.3 Every finite-dimensional normed linear space is complete.

Corollary C.4 If X is a normed linear space, then any finite-dimensional subspace
of X is closed.

Corollary C.5 Let X be a finite-dimensional normed linear space and let || - |1 and
| - 2 be two norms on X. Then || - ||1 and || - ||2 are equivalent, i.e., there exist
constants m, M > 0 such that

milxlly < llxll2 = Mlix]p Vx € X.

Proof Let us proceed like in the proof of Theorem C.2, denoting by x1,...,xy a
basis X. For suitable constants m, ma, My, M> > 0, we have that

N
mllEl < D &xi| < Mgl VEeRY,
i=1

N
mall€ll < | D &xi| < Maligll VE RN
i=1 2

Hence

my M,
—lxllt < llxll2 < —llxlli Vx € X.
M, mi

O

It is well-known that a subset of R" is compact if and only if it is closed and
bounded (Bolzano—Weierstrass Theorem). Taking into account that the property of
being closed, bounded, or compact is invariant under topological isomorphism, ow-
ing to Theorem C.2 such a characterization of compact sets holds also in finite-
dimensional spaces.
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Corollary C.6 If X is a finite-dimensional normed linear space, then a subset of X
is compact if and only if it is closed and bounded.

The above property actually holds only in finite-dimensional spaces, as shown by
the following result.

Theorem C.7 (F. Riesz) Let X be a normed linear space such that the unit sphere
S={xeX|lxll=1}

is compact. Then X is finite-dimensional.

Proof Let us consider the open cover of S constituted by all the open balls having

centers in S and radius % Since § is compact, there exists a finite set {x, ..., xy} C S
such that S is covered by the union of the open balls having centers in x1, ..., xy and
radius % Let M be the N—dimensional (closed) subspace generated by xi, ..., xy.

We claim that M = X. Otherwise, let xo € X \ M and d = infy¢ps ||xo — x]|. Since
M is closed, we have that d > 0. There exists y € M such that ||xg — y|| < 2d.

Setting x = ng:gu € S, for every x € M we have

1 d 1
—X=— —ylx+y) = x| = T—7 = o
I =1 = T (o = yllx + ) =0 = T = 5

So x does not belong to any of the balls covering S. Then M = X and X has finite
dimension. O



Appendix D
Baire’s Lemma

The following result is classical in topology and is usually referred to as Baire’s
Lemma.

Proposition D.1 (Baire) Let (X, d) be a complete metric space. Then the following
properties hold:

(a) Any countable intersection of dense open sets V, is dense.
(b) If X is the countable union of closed sets Fy, then at least one of the F,,’s has
nonempty interior.

Proof We shall use the closed balls
By (x) := {y€X|d(x,y)§r} r>0, xeX. (D.1)

(a) Letus fix any ball Em (xp). We shall prove that (ﬂ;’l‘;l Vn) DE,O (xp) # @. Since
V1 is dense, there exists a point x1 € Vi N B, (xp). Since Vj is an open set, there
also exists 0 < r; < 1 such that

By, (x1) C Vi N By (x0).

Since V> is dense, we can find a point x, € V> N B, (x1) and (since V> is open)
aradius 0 < rp < 1/2 such that

B, (x2) C VaN By, (x1).

Iterating the above procedure, we can construct a decreasing sequence of closed
balls B, (x,) such that

_ 1
B, (xp,) CVyNB,,_(x4—1) and 0 <r, < —. (D.2)
n
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We claim that (x;), is a Cauchy sequence in X. Indeed, for any 7,k > n we
have x;, xx € By, (x,) by construction. So d(x, xp) < 2r, < 2/n. Therefore,
X being complete, (x,), converges toapointx € X. Since x; belongs to E,n (xn)
for k > n, we conclude that x € Ern (xp) for every n and, by (D.2), x € V,, for
every n.

(b) Suppose, by contradiction, that all F;,’s have empty interior. Applying part (a) to
the opensets V,, := X\ F,,, wecanfindapointx € N7 V,,. Thenx € X\U>2 | F,
in contrast with the fact that the F},’s cover X.

Remark D.2 Recalling the closed balls (D.1) used in the above proof, we observe
that, for such a family of closed sets,

B, (x) C B (x).

The fact that, in general, the inclusion is strict can be verified by considering, in a
set X # o, the discrete metric

1 if
d(x,y)=[0 ;if; Vx,y € X.

Then we have, for every x € X, B1(x) = {x} = Bj(x) while Bi(x) = X.



Appendix E

Relatively Compact Families
of Continuous Functions

Let K be a compact topological space. We denote by 4’(K) the Banach space of all
continuous functions f : K — R endowed with the uniform norm

[ flloo =max|f(x)] Vfe%EK).
xekK
In what follows, we shall use the open balls

B/(f):={9e C&K)IIf —glw<r} r>0, feCK).

Definition E.1 A family .# C % (K) is said to be:

(1) equicontinuous if, for any € > 0 and x € K, there exists a neighbourhood V of
x in K such that

lf(x)— f(y) <e VyeV,Vfe .

(ii) pointwise bounded if, for any x € X, {f(x) | f € .#} is a bounded subset of
R.

Theorem E.2 (Ascoli-Arzeld) A family .# C € (K) is relatively compact® if and
only if M is equicontinuous and pointwise bounded.

Proof Since .# be relatively compact, .# is totally bounded in ¢’ (K)—hence,
pointwise bounded. So it suffices to show that ./ is equicontinuous. Fix ¢ > 0 and

let fi,---, fu € .# be such that # C B:-(f1)U---U B:(f,). Let x € K. Since
each function f; is continuous at x, x possesses neighbourhoods Vi, ..., V, C K
such that

lfix)— fity)l <e VyeV,, i=1,...,n.

3That is, the closure . is compact.
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SetV:=ViN---NV,andfix f € #.Leti € {1,...,n}besuchthat f € B-(f;).
Thus, forany y € V,

If @) = fI<1f @) = il + /i) = fi)l+ 1fi(x) = f(x)] < 3e.

This shows that .# is equicontinuous.

Conversely, given a pointwise bounded equicontinuous family .#, since K is
compact, for any € > 0 there exist points xg, ..., X, € K and corresponding neigh-
bourhoods Vi, ..., V,, suchthat K =V, U-.-UV, and

lf(x)— f(xi))l<e Vfed, YxeV;, i=1,...,m. (E.1)

Since {(f(x1), ..., f(xm)) | f € #} is abounded set, hence relatively compact in
R™, there exist functions fi, ..., f;, € .# such that
n
(f@), o )| f ety C | Q) (E.2)
j=1

where {Q ;?:1 denotes the family of open cubes in R” defined as

Q= (fitx) —e, fi(x)+e) x - x (fjGxm) —&, fj(xm) +¢).

‘We claim that
M C B3 (fi)U---UBs(fp), (E.3)

which implies that ./ is totally bounded,* hence relatively compact. To obtain (E.3),
let f € .# andlet j € {1, ..., n} be such that

(S oovs fxm)) € Q).
Now, fix x € K and leti € {1, ..., m} be such that x € V;. Then, by (E.1),
[f(xX) = fiOI =1 fx) = fCl+ 1) — fiGl+1fjGi) — fi(x)] < 3e.

This proves (E.3) and completes the proof. (]

Remark E.3 The compactness of K is essential in the Ascoli—Arzela Theorem. In-
deed, the sequence

fux) = e (x eR, neN)

4See footnote 4 of Chap.4 at p. 117.
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is a pointwise bounded equicontinuous family in %’ (R). On the other hand,

1
n#FEm = ”fn_fm”oozl_z-

So (f)n fails to be relatively compact.

Exercise E.4 With reference to the proof of Theorem E.2, show how to construct
fls ..., fu € A satisfying (E.2).



Appendix F
Legendre Transform

Let f : RV — R be a convex function. The function f* : R¥Y — R U {oo} defined
by’
ff=suwplx-y—f))  vyeRY

xeR

is called the Legendre transform® (and, sometimes, Fenchel transform or convex
conjugate) of f. By the definition of f* it follows that

Xy < fO+ @ Vr.yeRY. (E1)

We say that f has superlinear growth at oo if

f)

lell—oo [lx]l

(F2)

The following proposition describes some of the main properties of the Legendre
transform.

Proposition F.1 Ler f : RN — R be a differentiable convex function with
superlinear growth at co. Then the following properties hold:

(a) Foreveryy € RN there exists Xy € RN such that f*(y) = xyy — f(xy).
(b) f*is finite valued, that is, f* : RV — R.
(c) Foreveryx, y e RV,

y=Df(x) = ffW+fx)=x-y.

Sx -y denotes the scalar product between the vectors x, y € RY.
SLegendre transform is a classical tool in convex analysis, see [R070].
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(d) f*is convex.
(e) f[* has superlinear growth at co.

o f==r
Proof (a) Lety € RN . Observe that the function Fy(x) = x-y— f(x) is continuous
and verifies lim ;| £ (x) = —o0 thanks to (F.2); consequently, F, attains

its maximum value at some point x,,.

(b) The conclusion follows immediately from (a).

(c) Observe that, since the function F (x) = x-y— f(x) is concave, then D F,(x) =
0 if and only if x is a maximum point for F;,. So, given x, y € RY, we have

y=Df(x) <= DF,(x) =0 <= Fy(x) = sup Fy(2) = f*().
zeR

(d) Lety,ys € RY and ¢ € [0, 1], and let x; be a point such that
[Py + (L =0y) = (ty1 + A = Dy2) - x0 — fx).
Since f*(y;) > y; - x; — f(x;) fori = 1, 2, we conclude that
Jrayr+ A= 0Dy) < tf*(yn) + 4 = 1) f* (),

which says that f* is convex.
(e) Forevery M > 0 and y € RV we have

@y = M- y—f (Mi) > M|yl — max f(x).
lyll lyll llxll=M
So

*
timint £ = a
lyl—oo [yl

The arbitrariness of M implies that f* is superlinear.

(f) By (F.1), we obtain that f(x) > x -y — f*(y) for every x, y € RV . Therefore
f = f**.Toprove the opposite inequality, letus fix x € RV andlety, = Df (x).
Then, owing to step (c) and (F.1),

f)=x-ye — fHyo) < 0.

The conclusion follows.

Example F.2 (Young’s inequality) Let us define, for p > 1,

f(x)=w Vx € R.
p



Appendix F: Legendre Transform 301
Then f is a superlinear function of class €1 (R). Moreover,
f'00) = x| sign(x)

where
|;—‘ if x #0,
sign(x) =
0 ifx=0.

Thus, f” is an increasing function, and so f is convex.

On account of step (c) of Proposition F.1, in order to compute f*(y) itis sufficient
to solve y = Df(x), i.e., y = |x|? !sign(x). Now, since the solution is given by
Xy = ly|'/P~Dsign(y), we obtain

e _yl”
W) =xyy — fxy) = p, Vy € R,

where % + # = 1. Then, thanks to (F.1), we obtain the following estimate:

<"+l wryso (F3)
PP

By using again step (c) of Proposition F.1, we conclude that equality holds in (F.3)
if and only if y = Df (x), thatis, y” = x?.

Exercise F.3 Let f(x) = ¢*, x € R. Show that

00 if y <0,
[*(y) = sup{xy —e'} = 1 0 if y=0,
xeR ylogy —y if y > 0.

Deduce the following estimate

xy<e +ylogy—y Vx,y>0. (F4)



Appendix G
Vitali’s Covering Theorem

In this appendix, we prove a fundamental covering lemma due to Vitali. We refer the
reader to [EG92] for generalizations and related results.

Definition G.1 A collection .% of closed balls’ in R" is called a fine cover of a set

E C RN if
EC U B
Be
and, for every x € E,
inf { diam(B) | B € #, x € B} =0, (G.1)

where diam(B) denotes the diameter of the ball B.

Lemma G.2 (Vitali) Let E C RN be a Borel set such that® m(E) < oo and let F
be a fine cover of E. Then for any € > 0 there exists a finite collection of disjoint
balls® By, ..., B,. € .F such that

m(E \ O Bn) <e. (G.2)
i=1

Proof To begin with, observe that, without loss of generality, we can assume that all
the balls of .% are included in some open set V, containing E, such that m(V) < oo

7A closed ball in RV is a set of type {x € RV | |x — xo|| < r} with xg € RY and r > 0.
8m denotes the Lebesgue measure on RV .
Observe that the whole collection of balls depends on &, not just their total number.
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304 Appendix G: Vitali’s Covering Theorem

(such an open set exists by Proposition 1.69). Indeed, it suffices to replace .% with
the subfamily ~
F:={BeZ|BCV}, (G.3)

which, owing to (G.1), is again a fine cover of E.
Consequently, it is not restrictive to assume that

pi= sup{diam(B)|B € 7} < .

Given € > 0, we now proceed to construct By, By, ..., B,. by an inductive
method. Let By be such that diam(B;) > p/2. Next, let n > 1 and suppose
Bi, ..., B, are disjoint balls of .7 satisfying the following for n > 1: for every
i=1,....,n—1,

d.
0< Et < diam(B; 1) < d;, (G.4)

where
d,'=sup{diam(B)|Beﬁ,BﬂszffJ Vj:l,...,i}. (G.5)

Then there are two possibilities: either

(@) ECU!_ B, or
(b) there exists x € E \ U/_, B;.

In case (a), the conclusion (G.2) follows taking n. = n. Let us consider case (b) and
denote by 0 the (positive) distance of X from U?_, B;. Since .% is a fine cover of E,
there exists a ball B € .# such that x € B and diam(B) < %. Consequently, B is
disjoint from By, ..., B, and there exists B,y € % such that B, 11 is disjoint from
By, ..., B, and diam(B,+1) > d,/2 > 0. If the above process does not terminate,

we get a sequence By, By, ..., By, ... of disjoint balls in .% such that

n

d,
5 < diam(B,41) <d, Vn>1.

Since U2 | B, C V, we have that z,‘f’:l m(B,;) < m(V) < oo. Then there exists

n. € N such that
o

> mB,) < 5iN

n=nc+1

We claim that
ne o0
E\x|JB.c |J B (G.6)
n=1

n=n:+1
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where B, denotes the ball having the same center as B,, but with radius five times
as large. Indeed, let x € E \ Uﬁ; 1 B By reasoning as in case (b), one realizes that
there exists a ball B € .% such that x € B and B is disjoint from By, ..., B,_. Then
B must intersect at least one of the B,,’s with n > n.. Otherwise, for every n > n.,
we would deduce from (G.4) and (G.5) that

diam(B) < d, < 2diam(B,41) (G.7)

in contrast with the fact that ZZO: m(B,) < oo. Let j be the first index such that
BN B; #{.Then j > n. and

diam(B) < dj_1 < 2diam(B)).

Hence, B is contained in the ball which has the same center as B and five times the
diameter of Bj,i.e., B C B;’.‘. Then (G.6) holds true and so

ne o0 00
m(ENUB) = X m@H=5" 3 mbB)=<e,
n=1 n=nc+1 n=nc+1

which completes the proof. (]



Appendix H
Ekeland’s Variational Principle

The following result, which is surprising for its generality, has become a basic tool
in analysis. It arises in different applications and has been generalized to various
situations (see [AE84]).

Theorem H.1 (Ekeland) Let (X, d) be a complete metric space and let
f:X —> RU/{o0}
be a lower semicontinuous function satisfying

inf —00.
1r)1(f> o0

Let xg € X be such that f(xg) < oo and let o > 0. Then there exists X € X such
that

(@) fX)+ ad(x,xp) < f(xo),
(b) f&) < f(x)+ad(x,5) Vxe X\ {7}

Proof Given o > 0, set

Fx)={yeX|fy+adx,y) < f(x)} xeX.

Observe that, clearly, every x € X belongs to F(x) and, since f is lower semicon-
tinuous, F'(x) is closed. We are going to prove the thesis by showing that

dx e F(xg) : F(x) = {x}. (H.1)
1. Let us prove that, for every x, y € X,

ye F(x) = F(y) C F(x). (H.2)
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Lety € F(x) and z € F(y). Then

f@+ad(x,z) < f(2) +ad(y,z) +ad(x,y) < fy) +adx,y) < f(x),

which in turn yields (H.2).
2. Starting from the given point xg € X, let us construct the sequence (x,), C X as
follows. Given x,, € X for any n € N, set

\, = inf f,
" F(xn>f

and let x,, 11 € F(x,) besuchthat f(x,4+1) < A\, +27". Since \y < f(x9) < o0,
by induction it is easy to verify that \, < oo and, consequently, f(x,) < oo for
every n € N. Moreover, observe that, in view of (H.2), (F(x,)), is decreasing.
So (\,), is an increasing sequence and we have, by construction,

fOny) = A= M1 Vn> 1 (H.3)

3. Let us show that (x,), is a Cauchy sequence: thanks to (H.3) we get, for every
n,p>1,

n+p—1 n+p—1

1
dCin, Xp) = D Ao xip) < — > [fG) = fxinn)]

i=n i=n

| n+p—1 | n+p—1 » |
<= > [fay—xa]== > 2o
[0 [0
I=n

i=n

Therefore, since X is complete, (x,), is convergent. Setting x = lim, x,, we
obtain that x € F(xg) by the fact that x, € F(xg), which is closed.

4. In order to complete the proof of (H.1), there remains to show that F(x) = {x}.
Since ¥ € F(X), it will be sufficient to check that'® diam F(X) = 0. To this aim
we observe that, by construction, x € F(x,) for every n € N. So, according to
(H.2), we also have F(x) C F(x,), by which

diam F(x) < diam F(x,) Vn € N.
Moreover, for every n > 1 we deduce
ad(x, x,) < f(x) = f(x) <2'™" Vx € F(xy).

Since f(x) > A,—1. It follows that diam F'(x,) < 22(—;" — 0 asn — oo.

The proof of (H.1) is thus complete. ]

10We recall that the diameter of a nonempty subset S C X is defined by diam § = Sup, yes d(x,y).
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