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Preface

This book can be considered as the result of a ten-year cooperation (starting in
2000) of the four authors within the so-called Stochastic Optimization Working
Group (SOWG), a research team of the CERMICS (Applied Mathematics
Laboratory) of École Nationale des Ponts et Chaussées (ENPC-ParisTech). Among
the topics addressed in this working group, a major concern was to devise
numerical methods to effectively solve stochastic optimization problems, particu-
larly in a dynamic context, as this was the context of most real-life applications also
tackled by the group.

The background of the four authors is system theory and control but the 2000s
have seen the emergence of the Stochastic Programming stream, a stochastic
expansion of Mathematical Programming, so the group was interested in bridging
the gap between these two communities.

Of course, several Ph.D. students took part in the activities of this group, and
among them were Kengy Barty, Laetitia Andrieu, Babacar Seck, Cyrille Strugarek,
Anes Dallagi, Pierre Girardeau. Their contributions are gratefully acknowledged.
We hope this book can help future students to get familiar with the field.

The book comprises five parts and two appendices. The first part provides an
introduction to the main issues discussed later in the book, plus a chapter on the
stochastic gradient algorithm which addresses the so-called open-loop optimization
problems in which on-line information is absent. Part Two introduces the theo-
retical tools and notions needed to mathematically formalize and handle the topic of
information which plays a major part in stochastic dynamic problems. It also dis-
cusses optimality conditions for such problems, such as the dynamic programming
equation, and a variational approach which will lead to numerical methods in the
next part. Part Three is precisely about discretization and numerical approaches. A
simple benchmark illustrates the contribution of the particle method proposed in
Chap. 7. Convergence issues of all those techniques are discussed in Part Four. Part
Five is devoted to more advanced topics that are more or less out of reach of the
numerical methods previously discussed, namely multi-agent problems and the
presence of the so-called dual effect. Appendix A recalls some basic facts on
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Optimization, while Appendix B provides a brief description of essential tools of
Probability theory.

Although the four authors share the responsibility of the whole book contents,
the reader may be interested in knowing who was the primary writer of each
chapter. Here is the list:

Pierre Carpentier: Chapter 2, Appendix A;
Jean-Philippe Chancelier: Chapter 8, Appendix B;
Guy Cohen: Notation (in preliminary pages), Chapters 1, 5, 6, 7;
Michel De Lara: Chapters 3, 4, 9, 10.
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Notation

Here we explain some notation and typographical conventions that we have used
throughout this book. We conclude with a short list of symbols, abbreviations and
acronyms to which the reader may refer. In this discussion about notation, we raise
a tricky point that stems from some divergence between conventional mathematical
concepts on the one hand, and a long-standing practice and terminology used in
Probability Theory on the other. Most of the time, this divergence causes no
problem in understanding what is meant, but we point out a few circumstances
when some confusion may arise.

Some General Principles

This book is about stochastic optimization. As such, random variables are among
the main mathematical notions involved. Unless specific reasons prevent us from
doing so, we denote random variables by capital bold letters, e.g. U. As taught in
any elementary course in Probability Theory (see Appendix B in this book), random
variables are indeed functions or mappings from a set generally called Ω to some
other set, say U.1

The space in which random variables, and more generally functions, take their
values are denoted with theBLACKBOARD font. However, as is expected, symbols
such as R and N have a special meaning, namely the set of real and integer numbers,
respectively (they are included in the list below with additional variations such asR).
Also, P denotes a probability measure and E denotes mathematical expectation (or
conditional mathematical expectation). Functional spaces are generally denoted with
the calligraphic font; for example, a mapping U : Ω ! U belongs to the set U.

1Additional ingredients are also required (σ-fields over Ω and U, a measurability requirement
about the mapping, probability measure P, etc.) but it is not our purpose to dwell on that here.
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The script font is generally used to denote σ-fields (e.g. F ). We now refer the reader
to the list of symbols and abbreviations at the end of this introduction.

A Tricky Point

Here we make a few remarks about the effects of calling (random) “variables”
objects which are indeed “functions”, and the consequences of this abuse of lan-
guage on notation. This abuse of language is customary in the world of Probability
Theory but may cause substantial confusion for less aware readers. We discuss this
issue by referring to several puzzling situations that arise in this book.

For example, consider the expression Eðf ðUÞÞ. With no hesitation, one under-
stands that f is a mapping from U to some other set (say R to fix ideas), that f ðUÞ
must be interpreted as a new random variable, namely f �U : Ω ! R, and that its
expectation—that is, the integral of this function over Ω against the probability
measure P—is then evaluated. Hence, while in f ðUÞ, U seems to play the part of a
“variable”, namely an argument of function f according to its position within
parentheses, it must indeed be remembered that this is a mapping to be composed
with f in order to produce a new mapping of the argument ω 2 Ω whose integral is
then to be evaluated. Thus, there is no real difficulty.

The evaluation of the considered expression would change if U was replaced by
another random variable V. Because of the dependence of this expression upon this
random variable, one would naturally consider the result as a function of the
dummy argument U. If g denotes this function, we may write

gðUÞ ¼ Eðf ðUÞÞ ¼
Z
Ω

f �UðωÞPðdωÞ ;

and we may even replace the first sign ¼ by :¼ (which means that the left-hand side
is defined by the expression on the right-hand side). Observe that the parts played
by U in gðUÞ and in f ðUÞ are quite different, despite the similarity in notation.
Strictly speaking, gðUÞ is a correct mathematical expression since g is indeed a
function of the random variable U, whereas f ðUÞ is an ambiguous shortcut that
experienced readers are able to interpret. However, a problem may arise when both
expressions appear on both sides of an equality as in the first of the two equalities
above. Notice that if the intermediate expression in these two equalities is cancelled
and only the two extreme members of the equalities are kept, no question arises
since, now, everywhere U is interpreted as a function (and g is generally called a
“functional” as a function of a function).

Therefore, the correct notation would be gðUÞ, whereas f ðUÞ is a shortcut that
requires some appropriate interpretation, but in order to conform with a long-
standing tradition in Probability Theory, we sometimes change gðUÞ to gð½U�Þ in
order to emphasize the fact that the “argument” U must rigorously be interpreted as
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the “global function” object and not only be used for the collection of its values
UðωÞ as in f ðUÞ.

Let us give other instances when such a distinction is necessary. In this book,
stochastic optimization problems of the following generic form are considered:

min
U

EðjðU;WÞÞ ;

in which

• U is a random variable taking values in U and plays the part of the decision
variable;

• W is another random variable taking values in W and plays the part of the
“noise”;

• j is a real-valued mapping defined over U�W playing the part of the cost
function.

A decision U is thus a random variable possibly subject to various constraints
that are described in this book, and whose performance is evaluated by computing
the expectation of the cost function which also involves an exogenous disturbance
W. The expression behind the min operator in the above formulation must be
interpreted as we did for f ðUÞ in the previous discussion. Namely, a real-valued
random variable jðUð�Þ;Wð�ÞÞ must be considered and its expectation must be
evaluated. On the contrary, the minimization operation involves the random vari-
able U “as a whole”; in particular, as we shall see later in this book, some con-
straints (so-called informational or measurability constraints) may prevent
independent consideration of the individual values UðωÞ and force us to globally
consider the whole function U in this minimization operation. Thus, according to
our notational convention, we should instead write the previous stochastic opti-
mization problem as

min
U½ �

EðjðU;WÞÞ :

Nevertheless, for the sake of simplicity, we keep the former notation since the
particular position of the decision in the min should prevent any ambiguity.

Finally, a third instance when this notation X½ � proves useful is the following.
The reader may refer to Appendix B to find definitions of conditional expectations
EðXjYÞ) where X and Y are two random variables with values in X and Y,
respectively. This conditional expectation is also a random variable with values in
X. Sometimes, we are also led to manipulate the function Ψ : Y ! X which,
whenever the event fY ¼ yg (that is the subset Y�1ðyÞ ¼ ω YðωÞ ¼ yjf g) has a
positive probability for a given value y 2 Y, may be interpreted as the “expectation
of X conditioned by the event fY ¼ yg”. It is explained in the appendix that Ψ is a
function of y 2 Y, that is, of the values taken by the random variable Y, but that this
function also depends on the “whole” function Y (and of course also on the function
X as does the expectation EðXÞ itself). To emphasize this fact, we could write
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Ψ Y½ �ðyÞ instead of merely ΨðyÞ. In the former expression, both the values y taken by
Y and the “global” random variable Y appear to play a part.

We will occasionally refer back to this discussion in the rest of this book.

Symbols and Abbreviations

N Set of integer (natural) numbers
R Set of real numbers
R R [ f�1g [ fþ1g
E Mathematical expectation
P Probability measure
Var Variance (of a random variable)
IA Identity function over set A
χ

A
Characteristic function of subset A

1A Indicator function of subset A
j � j Absolute value
� ; �h i Scalar product
k � k Norm
r Gradient
rx Partial gradient (with respect to x)
o Subdifferential
o � =ox Partial derivative (with respect to x)
projA Projection onto subset A
U�V Random variable U measurable with respect to V (same as V�U; used

also with functions, σ-fields, partitions, etc.)
xT Transposition of vector x
dom Domain (of a function)
coA Convex hull of subset A
coA Closed convex hull of subset A

!D Convergence in distribution

!P Convergence in probability

!a:s: Almost sure convergence

l.s.c. Lower semicontinuous
u.s.c. Upper semicontinuous
i.i.d. Independently identically distributed
iff If and only if
w.r.t. With respect to
s.t. Subject to
a.s. Almost surely (or almost sure)
P-a.s. Almost surely (or almost sure) w.r.t. to the probability measure P
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Acronyms

ADP Approximate Dynamic Programming
APP Auxiliary Problem Principle
DIS Dynamic Information Structure
DP Dynamic Programming
LBG Linearly Bounded Gradient
LQG Linear-Quadratic-Gaussian
MASIOS Multi-Agent Stochastic Input–Output System
MQE Mean Quadratic Error
NOLDE No Open-Loop Dual Effect
SA Stochastic Approximation
SAA Sample Average Approximation
SDDP Stochastic Dual Dynamic Programming
SIS Static Information Structure
SOC Stochastic Optimal Control
SP Stochastic Programming
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Chapter 1
Issues and Problems in Decision Making
Under Uncertainty

1.1 Introduction

The future cannot be predicted exactly, but one may learn from past observations. Past
decisions can also improve future predictability. This is the context in which decisions
are generally made. Herein, we discuss some mathematical issues pertaining to this
topic.

1.1.1 Decision Making as Constrained Optimization Problems

Making decisions in a rational way is a problem which can be mathematically formu-
lated as an optimization problem. Generally, several conflicting goals must be taken
into account simultaneously. A choice must be made about which goals are formu-
lated as constraints to be satisfied at a certain “level” (apart from constraints which
are imposed by physical limitations), and which goals are reflected by (and aggre-
gated within) a cost function.1 Duality theory for constrained optimization problems
provides a way to analyze, afterwards, the sensitivity of the best achievable cost as
a function of constraint levels which were fixed a priori, and, possibly, to tune those
levels to achieve a better trade-off between conflicting goals.

Problems that involve systems evolving in time enter the realm of Optimal Control.
In a deterministic setting, Optimal Control has a long history dating back to the fifties
with famous names such as Pontryagin [124] and Bellman [15]. The former, with
his Maximum Principle, was more in the line of a variational approach of such
problems, whereas the latter introduced the Dynamic Programming (DP) technique
in connection with the state space approach.

1Throughout this book, without loss of generality, optimization problems are formulated as mini-
mization problems, hence the objective function to be minimized is called a cost.

© Springer International Publishing Switzerland 2015
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4 1 Issues and Problems in Decision Making Under Uncertainty

1.1.2 Facing Uncertainty

In general, when making decisions, one is faced with uncertainties which affect
the cost function and, generally, the constraints. There are several possible attitudes
associated with uncertainties, and consequently, several possible mathematical for-
mulations of decision making problems under uncertainty. Let us mention two main
possibilities.

Worst Case Design
The assumption here is that uncertainties lie in particular bounded subsets and, that
one must consider the worst situation to be faced and try to make it as good as
possible. In more mathematical terms, and considering the cost only for the time
being (see hereafter for constraints), since one would like to minimize that cost, one
must minimize the maximal possible value Nature can give to that cost by playing
with uncertainties within the assumed bounded subsets. That is, a min-max (game
like) problem is formulated and a guaranteed performance can be evaluated (as long
as assumptions on uncertainties hold true).

The treatment of constraints in such an approach should normally follow the same
lines of thought (one must fight against the worst possible uncertainty outcomes from
the point of view of constraint satisfaction). Sometimes the terminology of robust
decision making (or control) is used for approaches along those lines [16].

Stochastic Programming or Stochastic Control
Here, uncertainties are viewed as random variables following a priori probability
laws. We shall call them “primitive” random variables as opposed to other “sec-
ondary” random variables involved in the problem and which are derived from the
primitive ones by applying functions such as dynamic equations, feedback laws (see
hereafter), etc. Then the cost to be minimized is the mathematical expectation of
some performance index depending on those random variables and on decisions.

For this mathematical expectation to make sense, the decisions must also become
random variables defined on the same underlying probability space. A trivial case is
when those decisions are indeed deterministic: we shall call them open-loop decisions
or “controls” later on. But they may also be true random variables because they are
produced by applying functions to either primitive or secondary random variables.
Here, we enter the domain of feedback or closed-loop control which plays a prominent
part in decision making under uncertainty.

Let us now say a few words about constraint satisfaction. Constraints may be
imposed as almost sure (a.s.) constraints. This is generally the case of equality or
inequality constraints expressing physical laws or limitations. Other constraints may
be formulated with mathematical expectations, although it is generally difficult to
give a sound practical meaning to this approach. If a.s. requirements may sometimes
be either unfeasible or not economically viable, one may appeal to “constraints in
probability”: the satisfaction of those constraints is required only “sufficiently often”,
that is, with a certain prescribed probability. We do not pursue this discussion here,
as we mostly consider a.s. constraints in this book.
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In the title of this section, we have used the words “Stochastic Programming”
and “Stochastic Control”. Stochastic Control, or rather Stochastic Optimal Control
(SOC), is the extension of the theory of Deterministic Optimal Control to the situa-
tion when uncertainties are present and modeled by random variables, or stochastic
processes since control theory mostly addresses dynamic problems. SOC problems
were introduced not long after their deterministic counterparts, and the DP approach
has been readily extended (under specific assumptions) to the stochastic framework.
“Pontryagin like” or “variational” approaches appeared much later in the literature
[25] and we shall come back to explanations for this fact. SOC is used to deal
with dynamic problems. The notion of feedback, as naturally delivered by the DP
approach, plays a central part in this area.

Stochastic Programming (SP), which can be traced back to such early contribu-
tors as Dantzig [50], is the extension of Mathematical Programming to the stochastic
framework. As such, the initial emphasis is on optimization, possibly in a static
setting, and numerical resolution methods are based on variational techniques; ran-
domness is generally addressed by appealing to the Monte Carlo technique which,
roughly speaking, amounts to representing this uncertainty through the consideration
of several “samples” or “scenarios”. This is why, historically, the notions of feedback
and information were less present in SP than they were in SOC.

However, the SP community2 has progressively considered two-stage, and then
multi-stage problems. Inevitably, the question of information structures popped up
in the field, at least to handle the elementary constraint of nonanticipativeness: one
should not assume that the exact realizations of random variables at and after stage
t + 1 are known when making decisions at stage t ; only a probabilistic description
of future occurrences can be taken into account.

It is therefore natural that the two communities of SOC and SP tend to merge and
borrow ideas from each other. The concepts of information and feedback are more
developed in the former, and the variational and Monte Carlo approaches are more
widespread in the latter. Getting closer to each other for the two communities should
perhaps begin with unifying the terminology: as far as we understand, recourse in the
SP community is used as a substitute for feedback. This book is an attempt to close
the gap. The comparison between SOC and SP approaches is already addressed by
Varaiya and Wets in this interesting paper [148].

1.1.3 The Role of Information in the Presence of Uncertainty

In Deterministic Optimal Control, as mentioned previously, there are two main
approaches in connection with Pontryagin’s and Bellman’s contributions. The former

2The official web page of the SP community http://www.stoprog.org/ offers links to several tutorials
and examples of applications of SP.

http://www.stoprog.org/


6 1 Issues and Problems in Decision Making Under Uncertainty

focuses on open-loop controls, whereas the latter provides closed-loop solutions. By
open-loop controls, we mean that the decisions are given as a function of time only,
whereas closed-loop strategies compute the control to be implemented at each time
instant as a function of both time and observations; the observations may be the state
itself.

In fact, there are no discrepancies in the performance achieved by both approaches
because, in a deterministic situation, everything is uniquely determined by the deci-
sion maker. Therefore, if closed-loop strategies are implemented, one can simulate
the closed-loop dynamic system, record the trajectories of state, control and obser-
vations variables, substitute those trajectories in the control strategy, and compute
an open-loop control history that would generate exactly the same trajectories.

The situation is quite different in an uncertain environment, since trajectories are
not predictable in advance (off-line) because they depend on on-line realizations
of random variables. Available observations reveal some information about those
realizations, at least on past realizations (because of causality). By using this on-line
information, one can do better than simply apply a blind open-loop control which
has been determined only on the basis of a priori probability laws followed by the
random “noises”.

This means that the achievable performance is dependent on what we call the
information pattern or information structure of the problem: a decision making
problem under uncertainty is not well-posed until the exact amount of information
available prior to making every decision has been defined. Open-loop problems
are problems in which no actual realization can be observed, and thus, the optimal
decisions solely depend on a priori probability laws. In dynamic situations, every
decision may depend on certain on-line observations that must be specified. Of
course, the optimal decisions also depend on a priori probability laws since, generally,
not all random realizations can be observed prior to making decisions, if only because
of causality or nonanticipativeness.

Because of these considerations, one must keep in mind that solving stochastic
optimization problems, especially in dynamic situations when on-line observations
are made available, is not just a matter of optimization, of dealing with conventional
constraints, or even of computing or evaluating mathematical expectations (which
is generally a difficult task by itself); it is also the question of properly handling
specific constraints that we shall call informational constraints. Indeed, as this book
illustrates, there are essentially two ways of dealing with such constraints. That used
by the DP approach is a functional way: decisions are searched for as functions
of observations (feedback laws). But another way, which is more adapted to varia-
tional approaches in stochastic optimization, may also be considered: all variables
of the problem, including decisions, are considered as random variables or stochas-
tic processes; then the dependency of decisions upon observations must go through
notions of measurability as used by Measure Theory. We shall call this alternative
approach an algebraic handling of informational constraints (this terminology stems
from the fact that information may be mathematically captured by σ-algebras, also
called σ-fields, another important notion introduced by Measure Theory). A difficult
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aspect of numerical resolution schemes is precisely the practical translation of those
measurability or algebraic constraints into the numerical problem.

An even more difficult aspect of dynamic information patterns is that future
information may be affected by past decisions. Such situations are called situations
with dual effect, a terminology which tries to convey the idea that present decisions
have two, very often conflicting, effects or objectives: directly contributing to opti-
mizing the cost function on the one hand, modifying the informational constraints
to which future decisions are subject, on the other. Problems with dual effect are
generally among the most difficult decision making problems (see again [148] about
this topic).

1.2 Problem Formulations and Information Structures

In this section, two formulations of stochastic optimization problems are proposed:
they pertain to the two schools of SOC and SP alluded to above. The important issue
of information structures is also discussed.

1.2.1 Stochastic Optimal Control (SOC)

General Formulation
We consider the following formulation of a stochastic optimal control (SOC) problem
in discrete time: for every time instant t , Xt (“state”3), Ut (control) and Wt (noise)
are all random variables over a probability space (Ω,A,P). They are related to each
other by the dynamics

Xt+1 = ft (Xt , Ut , Wt+1) (1.1a)

which is satisfiedP-almost surely for t = 0, ..., T −1. Here, to keep things simple, T ,
the time horizon, should be a given deterministic integer value, but it may be a random
variable in more general formulations. The variable X0 is a given random variable.
It is convenient to view X0 as a given function of some other random variable called
W0, in such a way that all primitive random variables are denoted Ws, s = 0, . . . , T ,
whereas W denotes the corresponding stochastic process {Ws}s=0,...,T . The purpose
is to minimize a cost function

E

( T −1∑
t=0

Lt (Xt , Ut , Wt+1) + K (XT )

)
(1.1b)

3Those quotes around the word state become clearer when discussing the Markovian case by the
end of this subsection.
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in which K is the final cost whereas Lt is called the instantaneous cost. The symbol
E(·) denotes expectation w.r.t. P (assuming of course that the functions involved are
measurable and integrable). The minimization is achieved by choosing the control
variable Ut at each time instant t , but as previously mentioned, this is done after
some on-line information has been collected (in addition to the off-line informa-
tion composed of the model—dynamics and cost—and the a priori distribution of
{Ws}s=0,...,T ). This on-line information is supposed to be at least causal or nonantic-
ipative, that is, the largest possible amount of information available at time instant t
is equivalent to the observation of the realizations of the random variables Ws for
s = 0, . . . , t (but not beyond t ). In the language of Probability Theory, this amounts
to saying that Ut , as a random variable, is measurable w.r.t. the σ-field generated by
{Ws}s=0,...,t which is denoted Ft :

Ft = σ
({Ws}s=0,...,t

)
(1.1c)

(the reader may refer to Appendix B for all those standard notions.) Of course, this
σ-field increases as time passes, that is, Ft ⊂ Ft+1: it is then called a filtration.

Remark 1.1 Observe that in the right-hand side of (1.1a), Ut must be chosen before
Wt+1 is observed: this is called the decision-hazard framework, as opposed to
the hazard-decision framework in which the decision maker plays after “nature”
at each time stage. This is why we put Wt+1 rather than Wt in the right-hand
side of (1.1a). ♦

It may be that Ut is constrained to be measurable w.r.t. some σ-field Gt smaller
than Ft :

U t is Gt -measurable, Gt ⊂ Ft , t = 0, . . . , T − 1. (1.1d)

Unlike Ft , the σ-field Gt is not necessarily increasing with t (see hereafter).

Information Structure
Very often,Gt itself is a σ-field generated by some random variable Yt called observa-
tion. Actually, Yt should be considered as the collection of all observations available
at t . That is, if Zt denotes a new observation made available at t , but if the decision
maker has perfect memory of all observations made so far, then Yt = {Zs}s=0,...,t .
In this case, as for Ft , the σ-field Gt is increasing with t , but this is not necessarily
always true.

The σ-fields Ft , generated by {Ws}s=0,...,t , are of course only dependent upon the
data of the problem, and this is also the case of the Gt if the observations Yt are solely
dependent on the primitive random variables Ws . But if the observations depend also
on the controls Us (for example, if Zt is a function of the “state” Xt , possibly a
function corrupted by noise), it is likely that the σ-field Gt depends on controls
too, and therefore, the measurability constraint (1.1d) is an implicit constraint in
that control is subject to constraints depending on controls! Fortunately, thanks to
causality, this implicit character is only apparent, that is, the constraint on Ut depends
on controls Us with s strictly less than t .



1.2 Problem Formulations and Information Structures 9

Nevertheless, this is generally a source of huge complexity in SOC problems
which is known under the name of the dual effect of control. This terminology tries
to convey the fact that when making decisions at every time instant s, the decision
maker has to take care of the following double effect: on the one hand, his decision
affects cost (directly, at the same time instant, and in the future time instants, through
the “state” variables); but, on the other hand, it makes the next decisions Ut , t > s
more or less constrained through (1.1d).

Example 1.2 Let us give an example of this double or dual effect in the real life: the
decision of investing in research in any industrial activity. On the one hand, investing
in research costs money. On the other hand, an improved knowledge of the field of
activity may help save money in the future by allowing better decisions to be made.
This example shows that this future effect is very often contradictory with immediate
cost considerations and thus the matter of a trade-off to be achieved. �

We now return to our general discussion of information structure in SOC problems.
Even if the observations Yt depend on past controls, it may happen than the σ-fieldsGt

they generate do not depend on those controls. This tricky phenomenon is discussed in
Chap. 10. Apart from this rather exceptional situation, there are other circumstances
when things turn out to be less complex than it may have seemed a priori.

The most classical such case is the Markovian case. Suppose the stochastic process
W is a “white noise”, that is, the random variables {Ws}s=0,...,T , are all mutually
independent. Then, Xt truly deserves the name of the state variable at time t (this is
why, until now, we put the word “state” between quotes—see Footnote 3). Indeed,
because of this assumption of white noise, the past realizations of the noise process W
provide no additional information about the likelihood of future realizations. Hence,
remembering Xt is sufficient information to keep to predict the future evolution of
the system after t . That is, Xt “summarizes” the past and additional observations
are therefore useless. The Markovian case is defined as the situation when W is a
white noise stochastic process and Gt is generated at each time t by the variable Xt .
Otherwise stated, the available observation Yt at time t is simply Xt . This is a perfect
(noiseless) and full size observation of the state vector. If the observation is partial
(a non injective function of Xt ) and/or a noisy such function, then the Markovian
situation is broken.

In the Markovian case, Gt does depend, in general, upon past controls Us, s < t ,
but we would not do better with Ft replacing Gt . This is why the Markovian case,
although potentially falling into the most difficult category of problems with a dual
effect, is not so complex as more general problems in this category. The Markovian
feature is exploited by the Dynamic Programming (DP) approach (see Sect. 4.4)
which is conceptually simple, but quickly becomes numerically difficult, and, indeed,
impossible when the dimension of the state vector Xt becomes large.

http://dx.doi.org/10.1007/978-3-319-18138-7_10
http://dx.doi.org/10.1007/978-3-319-18138-7_4


10 1 Issues and Problems in Decision Making Under Uncertainty

1.2.2 Stochastic Programming (SP)

Formulation
Here we consider another formulation of stochastic optimization problems which
ignores “intermediate” variables (such as the “state” X in the previous SOC formu-
lation) and which concentrates on the essential items, namely, the

control or decision U : a random variable over a probability space (Ω,A,P) with
values in a measurable space (U,U);

noise W : another random variable with values in a measurable space (W,W);
cost function: a measurable mapping j : U × W → R;
σ-fields: F denotes the σ-field generated by W whereas G denotes the one

w.r.t. which U is constrained to be measurable; generally, G is generated by an
observation Y : another random variable with values in a measurable space (Y,Y);

in this case, we use the notation
U � Y (1.2)

to mean that U is measurable w.r.t. (the σ-field generated by) Y . As we see in
Chap. 3, this relation between random variables corresponds to an order relation.
We also use this notation in constraints as U � G to mean that the random variable
U is measurable w.r.t. the σ-field G.

With these ingredients at hand, the problem under consideration is set as follows:

min
U �G

E
(

j (U , W )
)

or min
U �Y

E
(

j (U , W )
)
. (1.3)

Without going into detailed technical assumptions, we assume that expectations do
exist, and that infima are reached (hence the use of the min symbol).

Typology of Information Structures
According to the nature of G or Y , we distinguish the following three cases.

Open-loop optimization: this is the case when G is the trivial σ-field {∅,Ω}, or
equivalently, Y is any deterministic variable (that is, a constant map over Ω). In
this case, an optimal decision is based solely on the a priori (off-line) knowledge
of the model, and not on any on-line observation. Therefore, the decision itself
is a deterministic variable u ∈ U which must minimize a cost function J (u)

defined as an expectation of j (u, W ). The numerical resolution of such problems
is considered in Chap. 2.

Static Information Structure (SIS): this is the case when G or Y are non trivial
but fixed, that is, a priori given, independently of the decision U . The terminology
“static” does not imply that no dynamics such as (1.1a) are involved in the problem
formulation. It just expresses that the σ-field G constraining the decision is a priori
given at the problem formulation stage. If time t is involved, one must rewrite the
measurability constraint as prescribed at each time stage t as “Ut isGt -measurable”

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_2
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as in (1.1d), and this does leave room for information made available on-line as
time evolves. “Static” just says that this on-line information cannot be manipulated
by past controls.

Remark 1.3 When the collection {Us}s=0,...,T −1 of random variables is interpreted
as a random vector over the probability space (Ω,A,P), then its measurability
is characterized by the σ-field σ({Us}s=0,...,T −1) on (Ω,A). However, with this
interpretation, the collection of constraints (1.1d) cannot in general be reduced to a
single “vector” constraint U � G where U would be the “vector” {Us}s=0,...,T −1
and G a σ-field on (Ω,A), like σ({Us}s=0,...,T −1) is. For example, over a probability
space (Ω,A,P), with T = 2, G0 = {∅,Ω} and G1 = A, consider a random variable
U1 such that σ(U1) = A. Writing U � G implies thatGwould be the σ-fieldA, which
does not translate that U0 must be a constant (deterministic) variable as implied by
U0 � G0. ♦

Remark 1.4 If G is generated by an observation Y , either Y does not depend on U ,
or the σ-field it generates is fixed despite Y does depend on U (as already mentioned,
this may also happen in some special situations addressed in Chap. 10). One may
also wonder whether Y has any relation with W , for example, whether Y is given as
a function h(W ), in which case G would be a sub-σ-field of F, the σ-field generated
by W . For example, in the SOC problem (1.1), Yt may be the complete or partial
observation of past noises Ws, s = 0, . . . , t , so thatGt ⊆ Ft ⊂ FT . Nevertheless, the
fact that Y does or does not have a connection with W is not fundamental. Indeed, by
manipulating notation, one can consider that this connection does exist. As a matter
of fact, one can redefine the noise variable as the couple W ′ = (W , Y ) so that Y is
a function of W ′. That the cost function j does not depend on the “full” W ′ does not
matter. ♦

Dynamic Information Structure (DIS): this is the situation whenGor Y depends
on U , which yields a seemingly implicit measurability constraint. Actually, it is
difficult to imagine such problems without explicitly introducing several stages
at which decisions must be taken based on observations which may depend on
decisions at other stages.
Those stages may be a priori ordered, and the order may be a total order. This is the
case of SOC problems (1.1); but other examples are considered hereafter in which
those stages are not directly interpreted as “time instants” but rather as “agents”
acting one after the other. As soon as such a total order of stages can be defined
a priori, the notion of causality (who is “upstream” and who is “downstream”) is
natural and helps untangling the implicit character of the measurability constraint.
Nevertheless, the difficulty of such problems with DIS still remains sometimes
tremendous as it is shown with help of an example in Sect. 1.3.3.
More general problems may arise in which the order of stages or agent actions
is only partial, and the situation may be even worse if this order itself depend on
outcomes of the decisions and/or of hazard. At least in the case of a fixed but
partial order, it turns out that two notions are paramount for the level of difficulty
of the problem resolution:

http://dx.doi.org/10.1007/978-3-319-18138-7_10
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• Who influences the available observations of whom?
• Who knows more than whom?

We shall not pursue the discussion of this difficult topic here. It is more thoroughly
examined in Chap. 9. The forthcoming examples help us scratch the surface.

1.3 Examples

This section introduces a few simple examples in order to illustrate the impact of
information structures on the formulation of stochastic optimization problems. The
stress is more on this aspect than on being fussy about mathematical details (in
particular, we assume that all expectations make sense without going into more
precise assumptions).

1.3.1 A Basic Example in Static Information

Consider two given scalar random variables, W and Y , plus the decision U , and
finally the following problem of type (1.3):

min
U �Y

E
(
(W − U )2). (1.4)

It is well known that the solution of this problem, which consists in finding the best
approximation of W which is Y -measurable (that is, the projection of W onto the
subspace of Y -measurable random variables), is given by U � = E(W | Y ), that is,
the conditional expectation of W knowing Y (see Sect. 3.5.3 and Definition B.5).

Generally speaking, as we see it later on in Sects. 3.5.2 and 8.3.5, Problem (1.3)
can be reformulated as follows:

E

(
min
u∈U

E
(

j (u, W )
∣∣ Y

))
. (1.5)

In this form, since the conditional expectation subject to minimization is indeed
a Y -measurable random variable, it should be understood that the minimization
operates parametrically for every realization driven by ω and this yields an arg min
also parametrized by ω, that is, in fact, a random variable which is also Y -measurable.
When using this new formulation for Problem (1.4), the solution is readily derived
(Hint: expand the square in the cost function and observe that Y -measurable random
variables “get out” of the inner conditional expectation).

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_8
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1.3.2 The Communication Channel

Description of the Problem
This is the story of two agents trying to communicate through a noisy channel. This
story is depicted in Fig. 1.1. The first agent (called the “encoder”) gets a “message”,
here simply a random variable W0 supposed to be centered (E(W0) = 0), and he
wants to communicate it to the other agent. We may consider that the encoder’s
observation Y0 is precisely this W0. He knows that the channel adds a noise, say
a centered random variable W1, to the message he sends, and so he must choose
which “best” message to send. He has to “encode” the original signal Y0 into another
variable U0 (what he decides to send through the channel), but the other agent (the
“decoder”) receives a noisy message U0 + W1. Finally, the decoder has to make
his decision U1 about what was the original message W0, based on his observation,
namely Y1 = U0 + W1, the message he received. That is, he has to “decode”, in an
“optimal” manner, the signal Y1 which is his observation.

This game is cooperative in that the encoder and the decoder try to help each
other so as to reduce the error of communication as much as possible (a problem in
“team theory” [104], which deals with decision problems involving several agents
or decision makers with a common objective function but possibly different obser-
vations). Mathematically, this can be expressed by saying that they seek to minimize
the expected square error E

(
(U1 − W0)

2
)
. However, without any other limitation or

penalty, such a problem turns out to be rather trivial. For example, if the encoder
sends an amplified signal U0 = kY0 where k is an arbitrarily large constant, then the
noise W1 added by the channel is negligible in front of this very large signal, and
the decoder can then decode it by dividing it by the same constant k. For the game
to be interesting and realistic, one must put a penalty on the “power” E(U2

0 ) sent
over the channel, either with help of a constraint limiting this power to a maximum
level, or by introducing an additional term proportional to this power into the cost.
To stay closer to the generic formulation (1.3), we choose the latter option. Finally,
the problem under consideration is the following:

min
U0,U1

E
(
αU2

0 + (U1 − W0)
2) (1.6a)

s.t. U0 � Y0 , U1 � Y1. (1.6b)

transmitted
channel

received restoredsignal

en
co

din
g decodingW 0

W 1

U0 = γ0 W 0 U1 = γ1 Y 1Y 1 = U0 + W 1

Fig. 1.1 Communication through a noisy channel
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The positive parameter α is the unit cost for the power transmitted over the channel.
The measurability constraints (1.6b) reflect what each agent knows before making
his decision.

Discussion
There are a few remarks to make at this point:

• there is no time index t explicitly involved in this formulation, but still there is a
natural order of the agents: the encoder acts first in that his action has an influence
on what the decoder observes;

• there is no inclusion (in either direction) between the information available to the
encoder and to the decoder although, as just highlighted, the decoder is “down-
stream” the encoder; if we interpret agents as time stages, it means that, at the
second time stage, not all the information available at the first time stage has been
retained, a fact referred to as “no perfect memory”.

The fact that the encoder can influence what the decoder observes, whereas the
decoder does not know as much as the encoder knows, is a source of tremendous
difficulties. We are actually here in the heart of what we called “dual effect” earlier:
the encoder, when making his decision, should not spend too much money according
to the cost function (in particular, he should limit the power send over the channel)
but, at the same time, he should be aware of the fact that his encoding impacts the
information revealed to the decoder. To make this consideration more concrete, we
discuss it further in a simplified setting in the next paragraph.

At this stage, let us say what is known about the resolution of Problem (1.6) [84,
154].

• The exact solution is yet unknown in the general case (see hereafter).
• There are particular cases when the solution is known, namely when the dimen-

sion of the message to be transmitted is exactly the same as the dimension of
the encoded message, that is, when dim W0 = dim U0 (with certain additional
assumptions, in particular Gaussian noises). Then, the encoder simply sends the
original message (U0 = W0) and the decoder computes the conditional expec-
tation U1 = E(W0 | Y1), which is a linear function of the observation Y1 when
assuming that all primitive random variables are Gaussian. But what is important
to notice is that the solution is proved to be optimal not because it satisfies some
optimality condition (that, at present, nobody knows how to write), but because it
achieves the lower bound of the expected square error provided by the Information
Theory of Shannon [11].

• When dim W0 < dim U0 (redundancy in coding) or dim W0 > dim U0 (compres-
sion in coding), the exact solution is not known yet, but it is known to be a nonlinear
function of observations. Indeed, on the one hand, the best linear feedback strategy
satisfying (1.6b) can easily be obtained, and, on the other hand, clever nonlinear
feedback strategies have been proposed which outperform the best linear strategy
(although they are not claimed to be optimal). This appearance of nonlinear strate-
gies in a Linear-Quadratic-Gaussian (LQG) stochastic optimization problem is an
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illustration of what is known under the name of signaling: by using tricky nonlinear
strategies, the encoder tries to provide to the decoder as much information about
his observation as possible (here, the message to communicate) at the cheapest
cost, using the system “dynamics” itself as the medium of this information trans-
mission. Note that these signaling strategies would be impossible if the encoder
could not influence the decoder’s observation. In addition, it would be useless if
the decoder knew at least as much information as the encoder knows (this would
be the case of “perfect memory” in SOC problem (1.1)).

How Signaling Works?
We try to give the feeling of how signaling works, assuming that the encoder uses
only linear strategies. Thus, let U0 = kW0. Of course, the decoder knows k because
the strategy is elaborated (off line) jointly by the two decision makers. On line, the
decoder observes the value of Y1 = kW0 + W1 from which he must guess the value
realized by W0.

The primitive random variables of the problem are the couple (W0, W1). For the
purpose of graphical representation, we assume that this couple lies in the square
[0, 1] × [0, 1]. Figure 1.2 represents this square and the parallel lines corresponding
to equations w1 = −kw0 + y1 (with slope −k and value-at-zero y1). Therefore, after
the realized value of Y1 has been observed, the decoder knows on which particular
line the true realization of the noises is located. Given that his purpose is to determine
the realization of W0, it is graphically intuitive that the uncertainty about this value
decreases as |k| (that is, the slope, be it negative or positive) increases. In terms
of Communication Theory, this means that the ratio signal/noise improves as |k|
increases. This shows how the encoder can make the problem of the decoder more

Fig. 1.2 Partition generated
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or less tractable by choosing his own strategy. But remember that large values of |k|,
and hence of E

(
(U0)

2
)
, cause a large cost (see (1.6a)).

1.3.3 Witsenhausen’s Celebrated Counterexample

The following problem was proposed by Hans Witsenhausen in 1968 [155] as evi-
dence that LQG problems may lead to nonlinear feedback solutions whenever the
information structure is not “classical” (say, here, when it does not reflect per-
fect memory). This information feature is similar to that of the previous problem
(Sect. 1.3.2) and several other features are similar (linear dynamics, dimensions,
etc.). The main difference lies in the fact that Witsenhausen’s problem belongs to
the SOC class (1.1); therefore its cost function is additive in time as (1.1b), whereas
(1.6a) is not so because of the cross-product U1W0. The statement of this problem
is as follows:

min
U0,U1

E
(
k2U2

0 + X2
2

)
(1.7a)

s.t. U0 � Y0, U1 � Y1, (1.7b)

X1 = X0 + U0, (1.7c)

X2 = X1 − U1, (1.7d)

Y0 = X0, (1.7e)

Y1 = X1 + W . (1.7f)

We have kept Witsenhausen’s original notation, but to enhance the parallelism with
the previous problem, we could have changed k2 into α and X0 (resp. W ) into W0
(resp. W1).

This problem is discussed at length later on in this book (see Sect. 4.2), so we
just mention it here as another celebrated, yet simple, example of all the difficulties
encountered when the assumption of perfect memory is dropped (here again, the
observation Y1 is not “richer” than Y0). Bansal and Basar [11] discuss the fact that
Problem (1.6) (sometimes) admits linear feedback solutions whereas Problem (1.7)
has a nonlinear solution. See also a review of this problem by Y.C. Ho [80] and
references therein.

1.4 Discretization Issues

So far, several formulations of stochastic optimization problems have been con-
sidered, and the role and importance of their information structure have been dis-
cussed. Those problems involve random variables and measurability or informational

http://dx.doi.org/10.1007/978-3-319-18138-7_4
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constraints, and they are infinite-dimensional problems for which closed-form solu-
tions are scarcely obtainable. Therefore, a numerical resolution goes through some
discretization process to make them amenable to a finite-dimensional approximation.
However, due to the particular nature of informational constraints, this discretization
process requires special care.

1.4.1 Problems with Static Information Structure (SIS)

Most problems with DIS are presently out of reach from the numerical point of view,
sometimes even at the early stage of writing down optimality conditions. An excep-
tion is provided by problems which are amenable to a Markovian formulation with
a very moderate state space dimension. This book mainly concentrates on problems
with SIS (nevertheless, problems with no dual effect are also in principle amenable
to a SIS formulation).

Accordingly, we may consider problems under the SOC formulation (1.1) or under
the more compact SP formulation (1.3).

The subclass of open-loop problems are simpler in that their solution is deter-
ministic (the solution is an element of the control space U and not an application
from Ω to U). However, the cost function involves computing an expectation, a task
that cannot generally be achieved analytically. Thus, one must appeal to some sort
of Monte Carlo sampling one way or another. Chapter 2 considers different ways of
exploiting this idea and combining it with numerical optimization itself.

The more general SP or SOC problems with SIS involve the same issue of com-
puting expectations, if not even conditional expectations, but their solution, unlike
in open-loop problems, are random variables. In addition, this solution is subject to
informational or measurability constraints. Such constraints must be reflected, one
way or another, in a discretized version of the problem, since, in general, some dis-
cretization technique must be used to come up with a numerical problem that can be
solved with a computer. It turns out that this twofold aspect of discretization, namely,

• Monte Carlo like sampling for estimating expectations or conditional expectations;
• finite dimensional representation of random variables with mutual measurability

constraints;

is a rather subtle issue that must be handled very carefully for, otherwise, a completely
irrelevant discrete problem may result. An example is given hereafter.

As already mentioned at the end of Sect. 1.1.3, there are two different ways of
translating informational constraints: one called functional (essentially, some random
variables are represented as functions of other random variables), and the other one
called algebraic (some random variables must be measurable with respect to other
random variables). This translates into different numerical requirements, but in any

http://dx.doi.org/10.1007/978-3-319-18138-7_2
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case the interaction of the informational constraint representation with the Monte
Carlo sampling in order to come up with a meaningful discrete problem is a tricky
point as illustrated now by an example.

1.4.2 Working Out an Example

The Problem
Consider two independent random variables W0 and W1, each with a uniform proba-
bility distribution over [−1, 1] (zero mean, variance 1/3). The unique decision vari-
able U may only use the observation of W0 (which we view as the initial state X0).
The final state X1 is equal to W0 + U + W1. The goal is to minimize E(εU2 + X2

1),
where ε is a given “small” positive number (“cheap control”). The statement is thus

min
U �W0

E
(
εU2 + (W0 + U + W1)

2). (1.8)

Exact Solution
We have that

E
(
εU2 + (W0 + U + W1)

2) = E
(
W2

0 + W2
1 + (1 + ε)U2

+ 2U W0 + 2U W1 + 2W0W1

)
.

The last two terms on the right-hand side yield zero in expectation since W0 and W1
are centered independent random variables and since U is measurable with respect
to W0. The first two terms yield twice the variance 1/3 of the noises. Therefore, we
remain with the problem of minimizing

2

3
+ E

(
(1 + ε)U2 + 2U W0

)
(1.9)

by choosing U as a measurable function of W0. Using (1.5), one can prove that the
solution is given by the feedback rule

U = − W0

1 + ε
,

and the corresponding optimal cost is readily calculated to be

1

3

1 + 2ε

1 + ε
≈ 1

3
. (1.10)



1.4 Discretization Issues 19

Monte Carlo Discretization
We now proceed to some discretization of this problem. To that purpose, we first
consider N noise trajectories (wi

0, w
i
1), i = 1, . . . , N , which are N sample realiza-

tions of a two-dimensional vector (W0, W1) with uniform probability distribution
over [−1, 1]2. Those samples serve to approximate the cost expectation by a usual
Monte Carlo averaging.4

However, in this process, we must also consider N corresponding realiza-
tions {ui }i=1,...,N of the random decision variable U . But, we must keep in mind
that this random variable should be measurable with respect to the first component
W0 of the previous vector.

To that purpose, we impose the constraint

∀i, j, ui = u j whenever wi
0 = w

j
0 , (1.11)

which prevents U from taking different values whenever W0 assumes the same value
in any two sample trajectories. For each sample i , the cost is

ε(ui )2 + (wi
0 + ui + wi

1)
2 = (ε + 1)(ui )2 + 2(wi

0 + wi
1)u

i + (wi
0 + wi

1)
2. (1.12)

This expression must be minimized in ui for every i = 1, . . . , N , under the constraint
(1.11). Indeed, if the N sample trajectories are produced by a random drawing with
the uniform probability distribution over the square [−1, 1]2, then, with probability 1,
wi

0 is different from w
j
0 for any couple (i, j) with i �= j . Therefore, with probability 1,

the constraint (1.11) is not binding, that is, (1.12) can be minimized for each value
of i independently. This yields the optimal value

ui = −wi
0 + wi

1

1 + ε
(1.13)

and the corresponding contribution to the cost ε(wi
0 +wi

1)
2/(1 + ε). This is of order

ε, and so is the average over N samples

1

N (1 + ε)

N∑
i=1

ε(wi
0 + wi

1)
2 (1.14)

even when N goes to infinity. This is far from the actual optimal cost given by (1.10).

What Is the Real Value of this “Solution”?
However, any admissible solution (any U such that U � W0) cannot achieve a cost
better than the optimal cost (1.10). The value (1.14) is just a “fake” cost estimation.
The resolution of the discretized problem derived from the previous Monte Carlo

4What we call here “N samples or sample realizations” may be referred elsewhere in this book as
a N -sample, whereas N is referred to as the number of samples or as the size of the N -sample.



20 1 Issues and Problems in Decision Making Under Uncertainty

procedure yielded an optimal value ui (see (1.13)) associated with each sample
noise trajectory represented by a point (wi

0, w
i
1) in the square [−1, 1]2. Hence, before

trying to evaluate the cost associated with this “solution”, we must first derive from
it an admissible solution for the original problem, that is, a random variable U over
Ω = [−1, 1]2, but with constant value along every vertical line of this square (since
the abscissa represents the first component W0 of the 2-dimensional noise (W0, W1)).

A natural choice is as follows:

• we first renumber the N sample points so that the first component wi
0 is increasing

with i ;
• then, we divide the square into N vertical strips by drawing vertical lines in the

middle of segments [wi
0, w

i+1
0 ] (see Fig. 1.3), that is, the i-th strip is [ai−1, ai ] ×

[−1, 1] with ai = (wi
0 + wi+1

0 )/2 for i = 2, . . . , N − 1, a0 = −1, and aN = 1;5

• then, we define the solution U as the function of (w0, w1) which is piecewise
constant over the square divided into those N strips, using of course the optimal
value ui given by (1.13) in strip i ; that is, we consider

U (w) =
N∑

i=1

ui 1[ai−1,ai ]×[−1,1](w), (1.15)

where w ranges in the square [−1, 1]2 and 1A(·) is the indicator function which
takes the value 1 in A and 0 elsewhere.

Since this is an admissible solution for the original (continuous) problem, the
corresponding cost value E(εU2 + X2

1) can be evaluated. Here, the expectation is

Fig. 1.3 Building an
admissible solution for
problem (1.8)

W 0

W 1

wi
0

wi
1

5Later on in this book (see Sect. 6.1), we discuss the concept of Voronoi cells: here we are defining
the N Voronoi cells of the segment [−1, 1] which are based on the “centroids” wi

0.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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over the argument w considered as a random variable over the square with uniform
distribution.

According to (1.9), this expected cost is easily evaluated analytically as

2

3
+

N∑
i=1

(
(1 + ε)(ui )2

∫ ai

ai−1

1

2
dw0 + 2ui

∫ ai

ai−1

w0

2
dw0

)

= 2

3
+

N∑
i=1

(
(1 + ε)(ui )2 ai − ai−1

2
+ ui (a

i )2 − (ai−1)2

2

)
. (1.16)

Although this is an “expected” cost, it is still a random variable since ui and ai are
functions of the wi

0’s which result from random drawings (ui also depends upon

the w
j
1 ’s). Indeed, (1.16) should be considered as an estimation of the optimal cost

resulting from the (random) estimation (1.15) of the true solution.
In order to assess the value of this estimate, and first of all of its possible bias

(not to speak of its variance), we must compute the expectation of (1.16) when
considering that the wi

0’s are realizations of N independent random variables W i
0,

each uniformly distributed over [−1, 1]. This calculation is not straightforward. The
expression of the ai ’s as functions of the wi

0’s is meaningful as long as the wi
0’s have

been reordered into an increasing sequence. Therefore, although those N random
numbers are the result of independent drawings, the calculation of expectations is
made somewhat tricky by this reordering. We therefore skip it here. But, we have used
a simple computer program using a pseudo-random number generator to evaluate the
mean and standard deviation of this estimated cost as functions of the number N of
used samples (for each value of N , the program uses 1,000 series of N drawings in
order to evaluate those statistics). Figure 1.4 shows the results: the averaged cost ±
the standard deviation are depicted as functions of N (here ε is taken equal to 1/100).

By observing Fig. 1.4, as N goes to infinity, the expected value of (1.16) goes to
2/3. Remember that the true optimal cost (see (1.10)) was close to 1/3! Moreover, it
is readily checked that the optimal open-loop solution, that is the optimal U which
is measurable w.r.t. the trivial σ-field {∅,Ω}, is equal to 0 and that the corresponding
cost is also 2/3. Hence the solution we have produced with our naive Monte-Carlo
approach (and especially the naive way (1.11) of handling the information structure
of the problem) is not better than the open-loop solution!

How to Improve the Monte Carlo Approach? The Idea of Scenario Trees
Reviewing the previous procedure to provide an estimate of the solution of the orig-
inal problem, one realizes that a crucial step, after the somewhat classical one of
Monte Carlo sampling, is to translate the informational constraint U � W0 into
the discretized version of the problem. The constraint (1.11) is rather ineffective,
and it leads to the fact that the optimal value ui (see (1.13)) found for sample i is
“anticipative”: ui depends on wi

1, which should not be the case. This explains why
the apparent cost (that evaluated by averaging over the N samples) is very optimistic
(of order ε whereas the true optimal cost is 1/3).
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0.6
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1.2 cost

N

Fig. 1.4 Cost provided by the naive Monte Carlo method as a function of the number N of samples

On the other hand, when one is required to propose an admissible solution for the
continuous problem, (namely (1.15) which satisfies the measurability constraint), this
avoids the drawback of anticipativity, but then we have seen that the corresponding
cost is as bad as that of the open-loop solution.

The question is thus: how to make another constraint translating the informational
constraint in the discretized problem more effective than (1.11)? An obvious answer
is that, in our collection of sample trajectories used in the discrete optimization
problem, there should really be distinct samples with the same value of component
w0. This can be viewed as the origin of the idea of “scenario trees”. Here “scenario” is
another terminology for “sample” and “tree”6 refers to the shape depicted in Fig. 1.5.
In this figure, one must imagine that a certain sample value w

j
0 is attached to each

node j of the first stage in the tree and that sample values wk
1 are likewise attached

to nodes k at the second stage. Therefore, since distinct scenarios correspond to
distinct “leaves” of the tree (they are still numbered with i ranging from 1 to N ), the
tree shape implies that several scenarios (couples (wi

0, w
i
1)) share common values

wi
0. For ease of notation, we assume that all nodes of the first level (numbered with

j = 1, . . . , N0) have the same number N1 of “sons” (successors at the second stage,
numbered with k = 1, . . . , N1 for each j). Hence N = N0 × N1.

Admittedly, if the scenarios are produced randomly (according to the joint uniform
probability law of (W0, W1) over the square [−1, 1]× [−1, 1]), or if they have been
recorded from real life observations, there is a probability zero that a tree shape
pops up spontaneously, for any arbitrary large, but finite, N . The question of how a
scenario tree can be derived from real recorded data is considered in Chap. 6. The

6Actually, in Fig. 1.5, a “forest”, that is, a collection of trees, rather than a “tree”, is depicted since
there are several “root nodes” which are the nodes at the first level. But we keep on speaking of
“trees” to match the traditional terminology of “scenario tree”.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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Fig. 1.5 A scenario tree on
two stages

W0 W1

.

.

.

.

.

.

.

.

.

situation is easier if one knows the underlying probability law. In our example, since
W0 and W1 are known to be independent (the white noise case), any element in a
set of N0 samples of W0 can be combined with the same, or N0 distinct, sets of N1
samples of W1 to produce such a tree. Even if W0 and W1 were not independent,
one could first generate N0 samples of W0 using the marginal probability law of

this variable, and then, using each sample w
j
0 and the conditional probability law

of W1 knowing that W0 assumes the value w
j
0 , one could generate N1 associated

samples wk
1 of W1 (“sons” of that w

j
0 ).

It is not our purpose now to discuss the production of “good” scenario trees. We
just assume that such a scenario tree has been obtained, and that it reflects good
statistical properties w.r.t. the underlying probability law of the noises when N0 and
N1 go to infinity, in a sense that we leave to the reader’s intuition at this stage. Our
purpose is to revisit the resolution of the discretized problem formulated with this
scenario tree and to examine its asymptotic behavior when the number of samples
becomes very large. To fix notations, we consider scenarios {(w j

0 , w
jk
1 )}k=1,...,N1

j=1,...,N0
and

we introduce the following additional symbols:

w
j
1 = 1

N1

N1∑
k=1

w
jk
1 , (σ

j
1)

2 = 1

N1

N1∑
k=1

(w
jk
1 )2. (1.17)

Notice that w
j
1 can be interpreted as an estimate of the conditional expectation of

W1 knowing that W0 = w
j
0 . Likewise, (σ j

1)
2 can be interpreted as an estimate of the

conditional second order moment.
To each node of the first level of the tree is attached a control variable u j . The

cost of the discretized problem is

1

N0

N0∑
j=1

(
ε(u j )2 + 1

N1

N1∑
k=1

(u j + w
j
0 + w

jk
1 )2

)
.
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The arg min is

u j = −w
j
0 + w

j
1

1 + ε
, j = 1, . . . , N0, (1.18)

to be compared with (1.13). This yields the optimal cost

1

N0(1 + ε)

N0∑
j=1

(
ε(w

j
0)2 + 2εw

j
0w

j
1 − (w

j
1)

2 + (1 + ε)(σ
j
1)

2), (1.19)

to be compared with (1.14) and (1.10). If we assume that the estimates (1.17) converge
towards their right values (respectively, 0 and 1/3) as N1 goes to infinity, then (1.19)
gets close to

1

N0(1 + ε)

N0∑
j=1

(
ε(w

j
0)2 + 1 + ε

3

)
.

Now, the expression (1/N0)
∑N0

j=1(w
j
0)2 can also be viewed as an estimate of the

second order moment of W0 and, if we assume that it converges to the true value 1/3
when N0 goes to infinity, then we recover, in the limit, the true optimal cost (1.10).
Therefore, unlike with the previous naive Monte Carlo method (see (1.14)), here the
optimal cost obtained in the discrete problem appears to converge to the right value.

As seen earlier (see (1.16)), it is also interesting to evaluate the real cost associated
with an admissible solution derived from the collection of “optimal” values (1.18)
by plugging those values into the formula (1.15) (with N replaced by N0). Again,
we have appealed to a computer program using 1,000 experiments, each consisting
in:

• drawing N0 values w
j
0 at random;

• associated with each of those values, drawing a set of N1 values w
jk
1 at random;

• computing the w
j
1’s (see (1.17)), the u j ’s (see (1.18)) and forming the admissible

solution (1.15) (N replaced by N0) with those values after reordering the indices
j so that w

j
0 is increasing with j ;

• evaluating the true cost E(εU2 + X2
1) by analytic integration w.r.t. the couple

w = (w0, w1) with uniform probability distribution over the square [−1, 1]2.

Remember that this integral w.r.t. argument w appearing in (1.15) is done for random
values u j depending on the random drawings w

j
0 and w

jk
1 . The 1,000 experiments

are used to evaluate the mean and standard deviation of the random cost so obtained.
In those experiments, we took N0 = N1, that is, N0 = √

N .
Figure 1.6 depicts the mean ± the standard deviation of the cost as a function

of N0 = √
N (still with ε = 1/100). The limit as N goes to infinity seems to

be the correct value of the optimal cost given by (1.10), namely 0.3366, but the
convergence appears to be asymptotically very slow, a fact on which we comment
further in Chap. 6.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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Fig. 1.6 Cost provided by the use of a stochastic tree as a function of the number N0 of pieces of
the piecewise constant U (·) (N 2

0 scenarios)

Observe that in the comparison with Fig. 1.4, while the abscissa does represent
the number of pieces uses to approximate the random variable U (·) in both plots,
in Fig. 1.4, this abscissa represents also the number of samples used to achieve the
Monte Carlo approximation whereas in Fig. 1.6, this number of samples is the square
of the number of pieces.

By the way, an interesting question is how to choose N0 and N1, for a given N
with N = N0 × N1, so as to get the minimum standard deviation of the cost estimate
(or of the estimate of the true solution U ). This is a question that can be generalized
to the question of choosing the best tree topology in a multi-stage problem (here the
problem was 2-stage), given the number N of leaves of the tree.

1.5 Conclusion

When moving from deterministic to stochastic optimization, one must handle
the evaluation of mathematical expectations, which typically involves the use of
Monte Carlo sampling. However, when considering dynamic stochastic optimization,
another important aspect of the formulation is the specification of the information
structure, which amounts to defining what one knows each time a decision has to be
made.

In this introductory chapter, we described various information structures and the
difficulties—which are sometimes tremendous even for seemingly rather simple
problems (see Witsenhausen’s counterexample at Sect. 1.3.3)—that may result from
those informational constraints.
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Even if we restrict ourselves to problems with SIS (see Sect. 1.2.2), obtaining
a sound discretized version of the problem with a consistent formulation of the
informational constraint is not as trivial a task as we tried to illustrate it in Sect. 1.4.

In the rest of this book, the most complex phenomena of DIS and the associated
dual effect are discussed (see Chaps. 4 and 10). However, the attempt to give sys-
tematic methodologies to obtain sound discrete versions of stochastic optimization
problems is restricted to problems with SIS (Chap. 6).

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_10
http://dx.doi.org/10.1007/978-3-319-18138-7_6


Chapter 2
Open-Loop Control: The Stochastic
Gradient Method

2.1 Introduction

The stochastic gradient method has a rather long history. The method foundations
were given by Robbins and Monro [129] on the one hand, and by Kiefer and
Wolfowitz [93] on the other. Later on, Polyak [120, 123] gave results about the
convergence rate. Based on this work, Dodu et al. [57] studied the optimality of
the stochastic gradient algorithm, that is, the asymptotic efficiency of the associ-
ated estimator. An important contribution by Polyak [121, 122] has been to combine
stochastic gradient method and averaging techniques in order to reach the optimal
efficiency.

Such methods have also been developed in the framework of Stochastic Approxi-
mation (SA) (see [98] for a review paper). The reference book by Kushner and Clark
[96] presents the Ordinary Differential Equation method (ODE) in the nonconvex
case, which makes it possible to perform a local convergence analysis for general
stochastic algorithms. Other reference books are those of Duflo [59, 60] and again
Kushner and Yin [97], including important topics as asymptotic normality or ways
to deal with constraints. The reader is also referred to lecture notes by Delyon [54]
giving a clear and detailed presentation of the subject.

The aim of this chapter is to detail the main methods available in order to analyze
the behavior of stochastic gradient algorithms. After a brief discussion about open-
loop optimization problems in Sect. 2.2, we present

• the general idea of stochastic gradient methods, the associated probabilistic frame-
work, as well as “classical” theorems about almost-sure convergence (Robbins-
Monro) and rate of convergence (Central Limit Theorem) in Sect. 2.3,

• a convergence result of the stochastic gradient algorithm in the framework of the
Auxiliary Problem Principle in Sect. 2.4,

• the optimality analysis of the rate of convergence, that is, the optimal efficiency pro-
vided by the use of a matrix gain, and also by the averaging technique in Sect. 2.5,

• practical considerations about the numerical implementation of stochastic gradient
algorithms in Sect. 2.6.

© Springer International Publishing Switzerland 2015
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27



28 2 Open-Loop Control: The Stochastic Gradient Method

In this chapter, we often make use of several notions and terms specific to the
optimization framework (proper function, lower semicontinuity, Lipschitz conti-
nuity, differentiability, gradient, strong convexity, strong monotonicity, coercivity,
optimality conditions…). The reader is referred to Appendix A for the associated
definitions and related properties.

2.2 Open-Loop Optimization Problems

We first discuss the notion of open-loop optimization, that is, the situation in which
the decision maker is only aware of the a priori probability distribution of the random
variables involved in the problem as mentioned in Sect. 1.2.2.

2.2.1 Problem Statement

Let (Ω,A,P) be a probability space and let W be a random variable defined on Ω and
taking its values in a measurable space (W,W). The probability distributionP ◦ W−1

of W is denoted by μ. Let U be a Hilbert space (with scalar product 〈· , ·〉 and
norm ‖·‖), and let U ad be a non empty closed convex subset of U. We consider
a real-valued measurable function j defined on U × W. We denote by J (u) the
expectation of the random variable j (u, W ) (we assume that the expectation exists
for all u ∈ U ad):

J (u) = E
(

j (u, W )
) =

∫
Ω

j
(
u, W (ω)

)
dP(ω) =

∫
W

j (u, w) dμ(w).

We assume that j is differentiable w.r.t. u, and that conditions for differentiating under
the integral sign hold true. This classical issue is addressed by Integration Theory
and can be found in [137, Sect. 3, Théorème 6.3.5] (see also [134] for a similar result
about subdifferentiation). Then J is differentiable, its gradient is denoted by ∇ J (u)

and we have that
∇ J (u) = E

(∇u j (u, W )
)
, (2.1)

where ∇u j is the gradient of j w.r.t. u. We are interested in the following optimization
problem:

min
u∈U ad

J (u). (2.2)

We consider here open-loop optimization problems, that is, problems in which the
decision variable u is chosen without further information about W than its probability
distribution.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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Under standard convexity and differentiability assumptions, provided that we are
able to compute the gradient of J for each u ∈ U ad, we may use a gradient-like
algorithm (such as steepest descent, conjugate gradient, quasi-Newton, etc.) in order
to compute the solution of Problem (2.2). The simplest is the projected gradient
algorithm which reads

u(k+1) = projU ad

(
u(k) − ε∇ J (u(k))

)
,

where ε is the gradient step size. Actually, this algorithm directly tackles the determin-
istic optimization problem (2.2) whereas the stochastic aspect is fully handled by the
computation of the expectation involved in the expression (2.1) of ∇ J (u(k)). How-
ever, this operation may be exceedingly costly if not impossible when the dimension
of the space W is large.

Consider Problem (2.2), and replace J (u) by its expression:

min
u∈U ad

E
(

j (u, W )
)
. (2.3)

A standard way to get around the difficulty of computing an expectation is to use the
Monte Carlo approach (see Sect. B.7). Using this idea in our optimization framework
leads to replace Problem (2.3) by the following approximation

min
u∈U ad

1

k

k∑
l=1

j (u, wl), (2.4)

where (w1, . . . , wk) is a realization of a k-sample of W .1 Note that the gradient of
the cost function of Problem (2.4), namely

1

k

k∑
l=1

∇u j (u, wl),

corresponds to a Monte Carlo approximation of the “true” gradient ∇ J (u). This
approach is known as the Sample Average Approximation (SAA), which is briefly
presented in Sect. 2.5.3 (see [141, Chap. 5] for a detailed presentation). A drawback
of the formulation (2.4) is that the sample size k is fixed prior to the resolution: one
needs to solve a new optimization problem when enriching the initial sample with
new realizations.

The stochastic gradient method aims to overcome the two difficulties mentioned
above (that is, computing the true expectation or choosing the size of the sample
prior to the resolution). In the manner of Sample Average Approximation, it uses an
“easily computable” approximation of the gradient ∇ J based on a sampling of W .

1Recall that a k-sample of W is a sequence (W1, . . . , W k) of independent random variables with
the same probability distribution as W . See Sect. B.7.2 for further details.
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Moreover, the samples are incorporated successively into the algorithm in order to
produce a sequence of estimators converging towards the solution of Problem (2.3).
In a sense, iterations of the gradient algorithm are also used to refine the Monte Carlo
sampling process. Because of this sequential point of view in the introduction of new
samples, the superscript l is now denoted (l) as an iteration index. The stochastic
gradient method is presented in Sect. 2.3.

2.2.2 Sample Approximation in Stochastic Optimization

Suppose that we have built an approximation of Problem (2.3) using a k-tuple
(w(1), . . . , w(k)) of elements of W related to the random variable W (see (2.4)
for an example). The solution u(k) of the approximated problem can be viewed as a
(measurable) function of that sequence:

u(k) = ϕ(k)(w(1), . . . , w(k)).

The performance E
(

j (ϕ(k)(w(1), . . . , w(k)), W )
)

of the approximated solution u(k)

can also be viewed as a (measurable) function ψ(k) of the sequence (w(1), . . . , w(k)).
To alleviate the notation, we set:

J (k) = ψ(k)(w(1), . . . , w(k)) = E
(

j (ϕ(k)(w(1), . . . , w(k)), W )
)
. (2.5)

In the computation of J (k), it should be clear that the expectation operates on the
random variable W whereas the w(k)’s are considered as parameters (and therefore,
the result of this calculation is also a function of those parameters). Suppose that those
parameters are the result of random drawings: then J (k) is the realization of a random
variable defined on another probability space that we are going to introduce now.

To be more specific about the approximation, suppose that the k-tuple
(w(1), . . . , w(k)) is a realization of a k-sample (W (1), . . . , W (k)) of W . As explained
in Sect. B.7.2, we have to deal with two different probability spaces: the random vari-
able W is defined on the canonical probability space (Ω,A,P) whereas the k-tuple
(W (1), . . . , W (k)) is defined on (Ω̃, Ã, P̃), the infinite-dimensional product of the
probability spaces (W,W,μ):

(Ω̃, Ã, P̃) = (WN,W⊗N,μ⊗N).

Of course, (W , W (1), . . . , W (k)) can be identified with a (k + 1)-sample, so that all
random variables can be considered as living in the same probability space (Ω̃, Ã, P̃).
In such a setting, u(k) and J (k) are realizations of the two random variables U (k) =
ϕ(k)(W (1), . . . , W (k)) and J (k) = ψ(k)(W (1), . . . , W (k)). Using Theorem B.22, we
deduce from (2.5) that the random variable J (k) may be written as a conditional
expectation:



2.2 Open-Loop Optimization Problems 31

J (k) = E

(
j
(
ϕ(k)(W (1), . . . , W (k)), W

) ∣∣∣ W (1), . . . , W (k)
)
.

In this text, we simplify our notation and denote the space (Ω̃, Ã, P̃) by (Ω,A,P).
Remember that such a space has to be sufficiently big to contain an infinite-
dimensional sample of W .

In order to assess the quality of the approximated problem, we need to study the
statistical properties of the estimators U (k) and J (k). For example, the bias of the
approximated optimal cost is evaluated by computing E(J (k)) and comparing it to
the true optimal cost J � of Problem (2.3). It is important to realize that the point
we are interested in is the dependency of the solution w.r.t. the sampling. In this
chapter, we mainly focus on the asymptotic properties of the sequence {U (k)}k∈N
(convergence and convergence rate).

2.3 Stochastic Gradient Method Overview

We now present the general method of the stochastic gradient algorithm, as well as
convergence results related to the method.

2.3.1 Stochastic Gradient Algorithm

Algorithm
The stochastic gradient algorithm applies to Problem (2.3) and consists in devising
a method where the optimization variable u evolves over the iterations using the
gradient of j evaluated at successive realizations of the random variable W , rather
than using the gradient of J . Otherwise stated, one uses gradient iterations to perform
the optimization task and, in the same process, to visit successive realizations of W
with the purpose of evaluating the expectation as in a Monte Carlo technique.

Algorithm 2.1 (Stochastic Gradient Algorithm).

1. Pick up some u(0) ∈ U ad and choose a positive real sequence {ε(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .

3. Compute the gradient of j w.r.t. u at point (u(k), w(k+1)) and update u(k+1) by

the formula: u(k+1) = projU ad

(
u(k) − ε(k)∇u j (u(k), w(k+1))

)
.

4. Set k = k + 1 and go to step 2.

Algorithm 2.1 corresponds to the numerical implementation of the stochastic gradient
method with a computer. The values w(k) involved in Algorithm 2.1 are drawn in such
a way that the sequence (w(1), . . . , w(k)) is a realization of a k–sample of W (the
reader is referred to Sect. B.7.4 for further details). This assumption is of paramount
importance in order to ensure that Algorithm 2.1 converges towards the solution of
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Problem (2.3). Note that we did not set a stopping test in the previous algorithm.
This point is discussed in Sect. 2.6.

In order to study the convergence properties of such an algorithm, it is nec-
essary to cast it in the adequate probabilistic framework. We thus consider a
infinite-dimensional sample {W (k)}k∈N of W (as defined in Sect. B.7.2). Step 3 of
Algorithm 2.1 can be interpreted as an iterative relation involving random variables,
namely

U (k+1) = projU ad

(
U (k) − ε(k)∇u j (U (k), W (k+1))

)
. (2.6)

Each value u(k) computed by Algorithm 2.1 corresponds to a realization of the random
variable U (k). The projection in (2.6) is to be understood ω per ω.

Example: Estimation of an Expectation
Let us illustrate Algorithm 2.1 in the framework of statistical estimation, more pre-
cisely as an application of the Monte Carlo method. Let W be a real-valued integrable
random variable defined on (Ω,A,P), and suppose we want to compute an estimate
of its expectation

E(W ) =
∫

Ω

W (ω) dP(ω).

A way to do that is to draw a realization of a k-sample (W (1), . . . , W (k)) of W and to
compute the associated arithmetic mean. In terms of random variables, the estimator
of the expectation associated with the k-sample is

U (k) = 1

k

k∑
l=1

W (l). (2.7)

By the strong law of large numbers (Sect. B.7, Theorem B.27), the sequence of ran-
dom variables {U (k)}k∈N almost surely converges to E(W ). From (2.7), we have that

U (k+1) = 1

k + 1

k∑
l=1

W (l) + W (k+1)

k + 1

= 1

k

k∑
l=1

W (l) − 1

k + 1

(
1

k

k∑
l=1

W (l) − W (k+1)

)

= U (k) − 1

k + 1

(
U (k) − W (k+1)

)
.

Using the notations ε(k) = 1/(k + 1) and j (u, w) = (
u − w

)2
/2, the last expression

of U (k+1) writes
U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)). (2.8)
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Recalling that the expectation of W may be interpreted as the value which minimizes
the dispersion of the random variable, namely

E(W ) = arg min
u∈R

1

2
E

(
(u − W )2), (2.9)

we conclude that the recursive form (2.8) of the Monte Carlo method exactly
matches the stochastic gradient algorithm applied to the optimization problem (2.9).
In the present case, U ad is the whole space R so that projU ad (·) is the identity
function on R.

This basic example makes it possible to enlighten some salient features of the
stochastic gradient method.

• The step size ε(k) = 1/(k + 1) goes to zero as k goes to infinity, whereas the step
size may be constant for deterministic optimization algorithms. Note however that
ε(k) goes to zero “not too fast”, that is,

∑
k∈N

ε(k) = +∞.

Of c ourse, it would be awkward for the series {ε(k)}k∈N to be convergent, because
it should be clear that the algorithm would converge to a limit which depends on
the initial point u(0) and on the sequence {ε(k)}k∈N itself. For example, consider
the case U ad = R and j (u, w) = |u| (hence ∇u j (u, w) = −1 for u < 0). Starting
from u(0) < −1 with step sizes ε(k) = 1/2k+1, Algorithm 2.1 leads to

u(k+1) = u(0) +
k+1∑
l=1

1

2l
, so that lim

k→+∞ u(k) = u(0) + 1 < 0,

whereas the solution of the optimization problem minu∈R |u| is u� = 0.
• The underlying convergence notion in this example is the one of the strong law

of large numbers, that is, almost sure convergence. It is thus reasonable to expect
such a convergence for the stochastic gradient algorithm (rather than a weaker
notion as convergence in distribution or convergence in probability).

• As the central limit theorem applies to this example (Theorem B.28), we can expect
a similar result for the rate of convergence of the sequence {U (k)}k∈N generated
by the stochastic gradient algorithm.

Probabilistic Considerations
Iteration k of the stochastic gradient method (2.6) can be represented by the general
relation

U (k+1) = R(k)
(
U (k), W (k+1)

)
. (2.10)

We assume that the random variable U (0) is constant, equal to u(0) ∈ U ad, and that
the mappings R(k) are measurable.
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• Let F(k) be the subfield generated by the k-sample (W (1), . . . , W (k)):

F(0) = {∅,Ω} , F(k) = σ
(
W (1), . . . , W (k)

)
.

The sequence {F(k)}k∈N is a filtration, that is, F(k) ⊂ F(k+1).
• By induction on (2.10), U (k) is driven by (W (1), . . . , W (k)). The random vari-

able U (k) is thus F(k)-measurable for all k.
• Defining the function ϕ(k) as

ϕ(k)(u) = E
(R(k)(u, W )

)
,

using the fact that the random variables W (k) are independent and that U (k) isF(k)-
measurable, one obtains from Theorem B.22 that

E
(
U (k+1)

∣∣ F(k)
) = E

(R(k)(U (k), W (k+1))
∣∣ F(k)

)
= ϕ(k)

(
U (k)

)
,

that is, for almost every ω ∈ Ω ,

E
(
U (k+1)

∣∣ F(k)
)
(ω) =

∫
Ω

R(k)
(
U (k)(ω), W (ω′)

)
dP(ω′).

The conditional expectation of U (k+1) givenF(k) thus consists merely of a standard
expectation.

• As observed in the previous example, the candidate convergence notion for study-
ing (2.10) is the almost sure convergence. Note that the almost sure convergence
of the sequence {U (k)}k∈N towards a constant u� has the following intuitive mean-
ing: almost every run of Algorithm 2.1 produces a sequence {u(k)}k∈N converging
to u�.

2.3.2 Connection with Stochastic Approximation

A classical problem considered in the Stochastic Approximation (SA) framework is
to determine the zero of a function h using noisy evaluations of this function. Let U
be the finite-dimensional Hilbert space Rn . We consider a mapping h : U → U, and
we assume that the observation of h(u) is perturbed by an additive random variable ξ.

The standard Stochastic Approximation algorithm consists in determining the zero
of h by the following recursive formula:2

2The positive sign in front of ε(k) in the update formula (2.11) is explained later on.
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U (k+1) = U (k) + ε(k)
(

h(U (k)) + ξ(k+1)
)
. (2.11)

This algorithm is strongly related to the stochastic gradient algorithm. Indeed, con-
sider the minimization problem (2.3) and assume that the admissible set U ad is equal
to U. The projection onto U ad is, accordingly, the identity operator, and the k-th
iteration of the stochastic gradient algorithm writes

U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)). (2.12)

Defining the mapping h and the random variables ξ(k+1) as

h(u) = −∇ J (u) , (2.13a)

ξ(k+1) = ∇ J (U (k)) − ∇u j (U (k), W (k+1)), (2.13b)

the stochastic gradient recursion (2.12) is identical to (2.11). Note that the problem
of finding a point u� ∈ U such that h(u�) = 0 is equivalent to solving ∇ J (u�) = 0,
a necessary condition for u� to be a solution of Problem (2.2).

In the next two paragraphs, we deal with the Stochastic Approximation formu-
lation and we present two important results about the sequence {U (k)}k∈N gener-
ated by (2.11). In such a setting, a filtration {F(k)}k∈N is given, and {ξ(k)}k∈N is a
sequence of U-valued random variables. The random variable U (0) is used to initiate
the recursion (2.11).

Robbins-Monro Theorem
Here we focus on the convergence of the sequence {U (k)}k∈N of random variables
generated by (2.11). According to the observations made about the example consid-
ered in Sect. 2.3.1, the step sizes ε(k) should be positive and should go to zero “not
too fast”. We first specify such a behavior.

Definition 2.2 A positive real sequence {ε(k)}k∈N is a σ-sequence if it satisfies the
two properties ∑

k∈N
ε(k) = +∞,

∑
k∈N

(
ε(k)

)2
< +∞.

We make the following assumptions on the different components involved in (2.11).

Assumptions 2.3

1. The random variable U (0) is F(0)-measurable.
2. The mapping h : U −→ U is continuous, such that

• ∃ u� ∈ R
n, h(u�) = 0 and

〈
h(u) , u − u�

〉
< 0, ∀u �= u�;

• ∃ a > 0, ∀u ∈ R
n, ‖h(u)‖2 ≤ a

(
1 + ‖u‖2 )

.

3. The random variable ξ(k) is F(k)-measurable for all k, and
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• E
(
ξ(k+1)

∣∣ F (k)
) = 0,

• ∃ d > 0, E
(‖ξ(k+1)‖2

∣∣ F (k)
) ≤ d

(
1 + ‖U (k)‖2

)
.

4. The sequence {ε(k)}k∈N is a σ-sequence.

Remark 2.4 Assumption 2.3-2 implies that u� is the unique zero of h. ♦

Remark 2.5 The stepsize ε(k) could be considered as the realization of a random
variable ε(k) satisfying Definition 2.2 P-a.s.. It would then be necessary to add the
assumption that ε(k) is measurable with respect to F(k). ♦

Theorem 2.6 below is a particular case of the standard Robbins-Monro theorem pre-
sented in [129] or in [60].

Theorem 2.6 Under Assumptions2.3, the sequence {U (k)}k∈N of random variables
generated by (2.11) almost surely converges to u�.

For a proof, see [60, Sect. 1.4].
Let us detail the connection between the assumptions we may formulate about

the initial problem (2.3) and the assumptions of Theorem 2.6. We assume that the σ-
field F(k) is generated by

(
W (0), . . . , W (k)

)
, so that we deduce from (2.13) that ξ(k)

is F(k)-measurable. We assume that the function j is strictly convex, coercive, con-
tinuously differentiable w.r.t. u and measurable w.r.t. w. Then J is strictly convex,
coercive and continuously differentiable. The first part of Assumption 2.3-2 is related
to these assumptions which ensure the existence and uniqueness of the solution of
Problem (2.3), whereas the first part of Assumption 2.3-3 is an immediate conse-
quence of (2.13). As for the second parts of Assumptions 2.3-2 and 2.3-3, they may
be connected with a linearly bounded gradient (LBG) assumption on j , that is,

∃c1 > 0, c2 > 0, ∀u ∈ R
n, ∀w ∈ W, ‖∇u j (u, w)‖ ≤ c1 ‖u‖ + c2,

which implies that (hint: use (a + b)2 ≤ 2(a2 + b2))

∃ c3 > 0, c4 > 0, ∀u ∈ R
n, ∀w ∈ W, ‖∇u j (u, w)‖2 ≤ c3 ‖u‖2 + c4,

‖∇ J (u)‖2 ≤ c3 ‖u‖2 + c4.

These assumptions about the cost function j are natural in the convex optimiza-
tion context. In Sect. 2.4, we give a more general convergence result concerning the
stochastic gradient algorithm.

Remark 2.7 Theorem 2.6 can be extended to more general situations.

• As in Algorithm 2.1, a projection operator can be added to (2.11):

U (k+1) = projU ad

(
U (k) + ε(k)

(
h(U (k)) + ξ(k+1)

))
.

Here U ad is a non empty closed convex subset of U.
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• A “small” additional term R(k+1) can be added to (2.11):

U (k+1) = U (k) + ε(k)
(
h(U (k)) + ξ(k+1) + R(k+1)

)
.

Such a term may be interpreted as a bias on h(u) which vanishes asymptotically,
as considered in the Kiefer-Wolfowitz algorithm [93].

The reader is referred to [54, 59] for further details. ♦

Rate of Convergence
We now recall a central limit type theorem for the stochastic approximation method,
that is, a result about the asymptotic normality of the random variables U (k) generated
by (2.11), together with an estimation of the rate of convergence of such an algorithm.
Here we need to be more specific about the notion of σ-sequence and we give the
following definition.

Definition 2.8 A positive real sequence {ε(k)}k∈N is a σ(α,β, γ)-sequence if it is
such that

ε(k) = α

kγ + β
,

with α > 0, β ≥ 0 and 1/2 < γ ≤ 1.

An immediate consequence of this definition is that a σ(α,β, γ)-sequence is also a
σ-sequence.

We retain Assumptions 2.3 to ensure that the sequence {U (k)}k∈N almost surely
converges to u�, and we make the following additional assumptions.

Assumptions 2.9

1. The mapping h is continuously differentiable and has the following expression
in a neighborhood of u�

h(u) = −H(u − u�) + O(
∥∥u − u�

∥∥2
),

where H is a symmetric positive-definite matrix.3

2. The sequence
{
E

(
ξ(k+1)(ξ(k+1))�

∣∣F(k)
)}

k∈N of conditional covariance matrices
almost surely converges to a symmetric positive-definite matrix Γ .

3. There exists δ > 0 such that sup
k∈N

E
(‖ξ(k+1)‖2+δ

∣∣ F(k)
)

< +∞.

4. The sequence {ε(k)}k∈N is a σ(α,β, γ)-sequence.
5. The square matrix (H − λI ) is positive-definite, λ being defined as

λ =
{

0 if γ < 1,
1

2α
if γ = 1.

3The symbol O corresponds to the “Big-O” notation: f (x) = O
(
g(x)

)
as x → x0 if and only if

there exist a positive constant α and a neighborhood V of x0 such that | f (x)| ≤ α |g(x)|, ∀x ∈ V .
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Remark 2.10 If we refer back to the initial problem (2.3) where h = −∇ J , we
notice that H is the Hessian matrix of J at u�

H = ∇2 J (u�).

Moreover, since E
(∇u j (u�, W )

) = 0, the matrix Γ introduced in Assumption 2.9-2
is equal to the covariance matrix of ∇u j evaluated at u�

Γ = E

(
∇u j (u�, W )

(∇u j (u�, W )
)�)

. ♦

The rate of convergence of the random variables U (k) generated by (2.11) is given
by Theorem 2.11. This theorem is a particular case of the one presented in [59].

Theorem 2.11 Under Assumptions2.3 and 2.9, the sequence of random variables{
(1/

√
ε(k))(U (k) − u�)

}
k∈N converges in law4 to a centered gaussian distribution

with covariance matrix Σ , that is,

1√
ε(k)

(
U (k) − u�

)
D−→ N (

0,Σ
)
, (2.14)

in which Σ is the solution of the so-called Lyapunov equation

(
H − λI

)
Σ + Σ

(
H − λI

) = Γ. (2.15)

For a proof, see [59, Chap. 4]; see also [54] for a detailed step-by-step proof.

Remark 2.12 As already mentioned in Remark 2.7, the Robbins-Monro Theorem 2.6
remains valid when one adds a projection operator to (2.11). This is not true for
Theorem 2.11 which only deals with unconstrained problems (U ad = U), or at least
with problems such that u� belongs to the interior of the set U ad. ♦

For the sake of completeness, we recall the characterization of solutions of Lya-
punov equations. The following theorem can be found in [92, Theorem 4.6].

Proposition 2.13 Let H be a positive-definite matrix and Γ be a symmetric positive-
definite matrix. Then, the Lyapunov equation

HΣ + Σ H� = Γ (2.16)

admits a unique symmetric positive-definite solution Σ given by:

Σ =
∫ +∞

0
e−t H Γ e−t H�

dt. (2.17)

4See Sect. B.3.4 for this convergence notion and for the associated notation
D−→.
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Remark 2.14 This result remains true if Γ is a nonnegative-definite matrix: then,
the matrix Σ given by (2.17) is a nonnegative-definite matrix, and is the solution
of Eq. (2.16). ♦

In order to be more accurate about the convergence rate given by Theorem 2.11,
let us examine the respective influence of the coefficients α, β and γ entering the
expression of step sizes ε(k) defined in Assumption 2.9-4.

• The convergence result of Theorem 2.11 can be rephrased as

k
γ
2

(
U (k) − u�

)
D−→ N (

0,αΣ
)
, (2.18)

so that the coefficient β has in fact no influence on the convergence rate. The way
in which β alters the transient behavior of the algorithm is explained in Sect. 2.6.2.

• It follows from (2.18) that the optimal choice for γ, that is, the value achieving the
greatest convergence rate in (2.14), is γ = 1. We recover the “classical” rate 1/

√
k

provided by a Monte Carlo estimator.

The next question is: which choice of α induces a covariance matrix αΣ in (2.18)
as small as possible (in the cone of positive-definite matrices)? This problem is
addressed in Sect. 2.5. Observe, for the time being, that the simplistic reasoning
which consists in taking α as small as possible in order to minimize the covariance
in (2.18) does not hold. Indeed, using the optimal value γ = 1, the solution Σ of
the Lyapunov equation (2.15) depends on λ and hence on α, so that the covariance
matrix αΣ is not a linear nor a monotonic function of α. For example, in the scalar
case (n = 1), H and Γ are real numbers and the solution of (2.15) is

Σ = αΓ

2αH − 1
.

Minimizing αΣ w.r.t. α leads to the optimal value α� = 1/H , which is compatible
with the condition α > 1/2H imposed by Assumption 2.9-5.

2.4 Convergence Analysis

We now consider a generalization of the stochastic gradient Algorithm 2.1 derived
from the so-called Auxiliary Problem Principle, and we give a convergence result
for this generalized algorithm.
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2.4.1 Auxiliary Problem Principle

Consider the following optimization problem

min
u∈U ad

J (u). (2.19)

Let u� ∈ U ad be a solution of this problem. We recall (see Theorem A.10) that the
associated optimality condition writes

〈∇ J (u�) , u − u�
〉 ≥ 0, ∀u ∈ U ad. (2.20)

In the deterministic framework, the Auxiliary Problem Principle5 (APP) consists in
replacing Problem (2.19) by a sequence of auxiliary problems indexed by k ∈ N.
Let K be a real-valued differentiable function defined on U and let ε be a positive
constant. At iteration k, knowing u(k) ∈ U ad, consider the auxiliary problem

min
u∈U ad

K (u) +
〈
ε∇ J (u(k)) − ∇K (u(k)) , u

〉
. (2.21)

Its solution u(k+1) is used to formulate the (k + 1)-th auxiliary problem.
The interest of such a principle lies in the fact that the resolution of the auxiliary

problem (2.21) may be much easier to obtain than the solution of the initial problem
(2.19). Namely, the function K appearing in (2.21) is part of the algorithm design
(K is called a core). The choice of K being subject to rather mild conditions, one can
take advantage of a proper choice in order to obtain many special features for Prob-
lem (2.21). The main properties of the Auxiliary Principle Problem are examined
hereafter.

• APP is consistent. Assuming that the sequence of solutions {u(k)}k∈N converges
to some u� and taking the limit in the optimality condition of Problem (2.21)

〈
∇K (u(k+1)) + ε∇ J (u(k)) − ∇K (u(k)) , u − u(k+1)

〉
≥ 0, ∀u ∈ U ad,

we obtain the optimality conditions (2.20), up to a factor ε, by cancellation of the
gradients of K (we assume that ∇K is continuous at u�). This shows that u� is a
solution of Problem (2.19) at least in the convex case.

• APP encompasses numerous classical optimization algorithms. For example,
using a quadratic core K (u) = (1/2) ‖u‖2, Problem (2.21) writes

min
u∈U ad

1

2
‖u‖2 +

〈
ε∇ J (u(k)) − u(k) , u

〉
,

5See [39] for a reference about the Auxiliary Problem Principle.
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and its solution has the following closed-form expression

u(k+1) = projU ad

(
u(k) − ε∇ J (u(k))

)
.

We thus obtain the well-known projected gradient algorithm.
• APP allows for decomposition. Assume that the space U is the Cartesian product

of N spaces:

U =
N∏

i=1

Ui .

Assume, moreover, that the admissible set U ad is the Cartesian product of N
sets (U ad

1 , . . . , U ad
N ), with U ad

i ⊂ Ui . That is, the constraint u ∈ U ad is equivalent
to the set of N independent constraints ui ∈ U ad

i for the components ui of u. If we
choose a core function K additive according to that decomposition of u, namely
K (u) = ∑N

i=1 Ki (ui ), Problem (2.21) becomes

min
(u1,...,uN )∈U ad

1 ×···×U ad
N

N∑
i=1

(
Ki (ui ) +

〈
ε∇ui J (u(k)) − ∇Ki (u

(k)
i ) , ui

〉)
.

This problem splits up into N independent optimization subproblems, the i th
subproblem being

min
ui ∈U ad

i

Ki (ui ) +
〈
ε∇ui J (u(k)) − ∇Ki (u

(k)
i ) , ui

〉
.

The reader is referred to [39–41] for a detailed description of the APP (see also the
more recent lecture notes [38]).

2.4.2 Stochastic Auxiliary Problem Principle Algorithm

Let us consider the optimization problem (2.3), that we repeat here for convenience

min
u∈U ad

J (u), (2.22)

with J (u) = E
(

j (u, W )
)
. In order to mix the ideas of the Auxiliary Problem Prin-

ciple and of the Stochastic Gradient Method, we first replace Problem (2.22) by the
associated sequence of auxiliary problems, namely

min
u∈U ad

K (u) +
〈
ε∇ J (u(k)) − ∇K (u(k)) , u

〉
.
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Then, in each auxiliary problem, we replace the gradient of J by the gradient of j
evaluated at sampled realizations of W ; moreover, the “large” (constant) step size ε
must be replaced by “small” (going to zero as index k goes to infinity) step sizes ε(k).
The k-th instance of the stochastic auxiliary problem is thus

min
u∈U ad

K (u) +
〈
ε(k)∇u j (u(k), w(k+1)) − ∇K (u(k)) , u

〉
, (2.23)

w(k+1) being a realization of the random variable W . This results in the following
algorithm.

Algorithm 2.15 (Stochastic APP Algorithm).

1. Pick up some u(0) ∈ U ad and choose a positive real sequence {ε(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .

3. Update u(k+1) by solving the auxiliary problem (2.23):

u(k+1) ∈ arg min
u∈U ad

K (u) +
〈
ε(k)∇u j (u(k), w(k+1)) − ∇K (u(k)) , u

〉
.

4. Set k = k + 1 and go to step 2.

As already pointed out when devising Algorithm 2.1, the values w(k) involved in
Algorithm 2.15 are drawn in such a way that the sequence (w(1), . . . , w(k)) is a
realization of a k–sample of W .

Remark 2.16 With the choice K (u) = ‖u‖2 /2, the auxiliary problem (2.23)
becomes

min
u∈U ad

1

2
‖u‖2 +

〈
ε(k)∇u j (u(k), w(k+1)) − u(k) , u

〉
.

Its unique solution u(k+1) is given by

u(k+1) = projU ad

(
u(k) − ε(k)∇u j (u(k), w(k+1))

)
.

This relation precisely corresponds to the stochastic gradient iteration of
Algorithm 2.1. ♦

We now focus on the convergence analysis of the stochastic APP Algorithm 2.15.
We restrict ourselves to the differentiable case, but everything remains valid for
subdifferentiable functions (see [45, 47] for further details).

2.4.3 Convergence Theorem

As in Sect. 2.3, we consider the stochastic APP Algorithm 2.15 in terms of random
variables. Let {W (k)}k∈N be an infinite dimensional sample of W . The auxiliary
problem at iteration k is
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min
u∈U ad

K (u) +
〈
ε(k)∇u j (U (k), W (k+1)) − ∇K (U (k)) , u

〉
, (2.24)

and the minimization in (2.24) is to be understood ω per ω. Assume that the set-
valued random mapping corresponding to the arg min of Problem (2.24) admits a
measurable selection U (k+1) (this is justified in the proof of the following theorem).
The convergence properties of the sequence of random variables {U (k)}k∈N generated
by (2.24) and the connection with the initial problem (2.22) are stated in the following
theorem.

Theorem 2.17 We make the following assumptions.

1. U ad is a non empty closed convex subset of a Hilbert space U.
2. The function j : U×W → R is a normal integrand,6 and E

(
j (u, W )

)
exists for

all u ∈ U ad.
3. The function j (·, w) : U → R is proper, convex, lower semi-continuous and

differentiable on an open subset containing U ad, for all w ∈ W.7

4. The function j (·, w) has linearly bounded gradients (LBG), uniformly in w:

∃c1 > 0, ∃c2 > 0, ∀w ∈ W, ∀u ∈ U ad, ‖∇u j (u, w)‖ ≤ c1 ‖u‖ + c2.

5. The function J is coercive on U ad.8

6. The core function K is proper, strongly convex with modulus b, lower semi-
continuous and differentiable on an open subset containing U ad.

7. The sequence {ε(k)}k∈N is a σ-sequence.

Then the following conclusions hold true.

1. Problem (2.22) has a non empty set of solutions U �.
2. Problem (2.24) has a unique solution U (k+1).

3. The sequence of random variables {J (U (k))}k∈N almost surely converges to
min

u∈U ad
J (u).

4. The sequence of random variables {U (k)}k∈N is almost surely bounded, and every
cluster point of a realization of this sequence belongs to the optimal set U �.

At last, if J is strongly convex, U � is a singleton {u�} and the sequence {U (k)}k∈N
almost surely converges to the unique solution u� of Problem (2.22).

Proof The proof of Theorem 2.4.3 is rather long and technical. This is the reason
why it has been postponed to the end of the present chapter, and we just give here
a sketch of the proof. The proof of the first two statements is based on classical
theorems in the field of convex optimization. The property that the solution U (k+1)

of Problem (2.24) is a random variable (hence, measurable) is a consequence of the

6See Definition 8.22. This implies that j (u, W ) : Ω → R is measurable ∀u ∈ U ad.
7Note that the semi-continuity of j (·, w) stems from the fact that j is a normal integrand.
8See (A.5) for the meaning of this term.

http://dx.doi.org/10.1007/978-3-319-18138-7_8
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fact that the criterion j is a normal integrand. The proof of the last two statements
involves four steps.

1. Select a Lyapunov function Λ. Let u� ∈ U � be a solution of (2.22) and consider
the function

Λ(u) = K (u�) − K (u) − 〈∇K (u) , u� − u
〉
.

From the strong convexity of K , we have that

∥∥U − u�
∥∥2 ≤ 2

b
Λ(U ), P-a.s.. (2.25)

2. Bound from above the variation of Λ. The optimality conditions for the aux-
iliary problem (2.24) evaluated at U = U (k) together with the strong convexity
of K imply that

∥∥U (k+1) − U (k)
∥∥ ≤ ε(k)

b

∥∥∇u j (U (k), W (k+1))
∥∥, P-a.s.. (2.26)

From the LBG assumption and using (2.25), we obtain that there exist positive
constants α and β such that

∥∥∇u j (U (k), W (k+1))
∥∥2 ≤ αΛ(U (k)) + β, P-a.s.. (2.27)

All these inequalities are combined to obtain the following inequality:

E
(
Λ(U (k+1))

∣∣ F(k)
) ≤ (1+α(k))Λ(U (k)) + β(k)−

ε(k)
(
J (U (k)) − J (u�)

)
, P-a.s.. (2.28)

with α(k) = (α/b)(ε(k))2 and β(k) = (β/b)(ε(k))2.
3. Prove the convergence. A straightforward application of the Robbins-Siegmund

Theorem 2.27 shows that the sequence
{
Λ(U (k))

}
k∈N almost surely converges to

a finite random variable Λ∞, and that the series
∑

ε(k)
(
J (U (k))− J (u�)

)
almost

surely converges.
4. Characterize the sequence limits. The convergence of

{
Λ(U (k))

}
k∈N together

with (2.27) imply that the sequence
{∇u j (U (k), W (k+1))

}
k∈N is almost surely

finite. Thank to (2.26), Lemma 2.28 applies, so that the sequence {J (U (k))}k∈N
almost surely converges to J (u�). From (2.25), we obtain that the sequence
{U (k)}k∈N is also almost surely finite: by a compactness argument, there exist
subsequences converging to elements belonging to the set U �. �
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2.4.4 Conclusions

We have given a general convergence theorem for the stochastic Auxiliary Problem
Principle method. This theorem encompasses the standard stochastic gradient algo-
rithm (obtained using the core function K (u) = ‖u‖2/2), as well as the so-called
matrix-gain algorithm (the core function being in this case K (u) = 〈u , Au〉 /2, A
being a positive definite matrix).

From a theoretical point of view, Theorem 2.17 has been proved under natural
assumptions. As a matter of fact, the convexity and differentiability assumptions
are standard in the framework of convex optimization. Note moreover that, even if
an explicit convexity property is not required in the Robbins-Monro Theorem 2.6,
Assumption 2.3-2 plays in fact a very similar role.

As far as decomposition is concerned, the Auxiliary Problem Principle opens this
possibility as a way to solve large stochastic optimization problems of the type (2.3).

2.5 Efficiency and Averaging

In this section we focus on the convergence rate of the stochastic gradient method. We
use the setting considered in Sect. 2.3.2 for a non constrained stochastic optimization
problem, that is,

min
u∈Rn

J (u), (2.29)

with J (u) = E
(

j (u, W )
)
. Using a σ(α,β, γ)-sequence {ε(k)}k∈N, that is, step

sizes ε(k) of the form α/(kγ + β), we know from Theorem 2.11 that

k
γ
2

(
U (k) − u�

)
D−→ N (

0,αΣ
)
.

It has already been noted that the choice γ = 1 leads to the largest convergence
rate. We want now to improve the convergence speed by minimizing the covariance
matrix αΣ w.r.t. the symmetric positive-definite matrix cone.

2.5.1 Stochastic Newton Algorithm

In deterministic optimization, it is well-known that pre-multiplying the gradient of
the function to be optimized by a (cleverly chosen) matrix can significantly improve
the algorithm behavior. For example, using the inverse of the Hessian matrix leads
to the Newton algorithm, which yields a (local) quadratic convergence rate whereas
the convergence rate of the gradient method is only linear. It is of course unrealistic
to expect such a nice result in the field of stochastic approximation because the step
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size ε(k) goes to zero as k goes to infinity, but we can expect some improvement of
the method by a proper preconditioning of the gradient.

In order to apply this idea to the stochastic gradient method, we choose a sym-
metric positive-definite matrix A of dimension n. The step sizes ε(k) are then built
using the optimal choice γ = 1 and replacing the scalar gain α by the matrix gain A.
Using these choices, the stochastic gradient iteration (2.12) becomes

U (k+1) = U (k) − 1

k + β
A∇u j (U (k), W (k+1)),

which in the Stochastic Approximation setting (2.11)—(2.13) writes

U (k+1) = U (k) + 1

k + β

(
Ah(U (k)) + Aξ(k+1)

)
. (2.30)

The results stated in Sect. 2.3.2 are thus available, provided that we make use of
modified data, namely a mapping Ah, noises Aξ(k) and step sizes 1/(k + β). In the
context of (2.30), Assumption 2.9-5 reads: AH − I/2 is a positive-definite matrix.
Theorem 2.11 applies, so that the sequence {U (k)}k∈N generated by (2.30) is such that

√
k
(

U (k) − u�
)

D−→ N (
0,ΣA

)
. (2.31)

The asymptotic covariance matrix ΣA is the unique solution of

(
AH − I

2

)
ΣA + ΣA

(
H A − I

2

)
= AΓ A, (2.32)

H and Γ being respectively the Hessian matrix of J and the covariance matrix of j ,
both evaluated at u�. Let CH be the set of symmetric positive-definite matrices A,
such that AH − I/2 is a positive-definite matrix. The next theorem characterizes the
optimal choice for the gain matrix A over the set CH .

Theorem 2.18 The choice A� = H−1 for the matrix gain A in (2.30) minimizes
the asymptotic covariance matrix ΣA defined by (2.32) over the set CH , that is,
(ΣA − ΣA� ) is a nonnegative-definite matrix for all A ∈ CH . The expression of the
minimal asymptotic covariance matrix is

ΣA� = H−1Γ H−1.

Proof We look for the asymptotic covariance matrix ΣA appearing in the Lyapunov
equation (2.32) in the equivalent form

ΣA = H−1Γ H−1 + ΔA.
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Plugging this expression in (2.32) yields

(
AH − I

2

)
ΔA + ΔA

(
H A − I

2

)
= (

A − H−1)Γ (
A − H−1).

The matrix ΔA thus satisfies another Lyapunov equation, the right-hand side of
which is a nonnegative-definite matrix whatever the choice of A. According to
Proposition 2.13 and Remark 2.14, the solution ΔA is a nonnegative-definite matrix,
with ΔA = 0 if A = H−1. We deduce that the inequality ΣA ≥ H−1Γ H−1 (in the
sense of symmetric nonnegative-definite matrices) is valid for any matrix A ∈ CH ,
the equality being obtained for the optimal value A� = H−1 ∈ CH . �
Remark 2.19 The gain H−1 corresponds to the inverse of the Hessian matrix of J
evaluated at u�, hence the name “Stochastic Newton Algorithm” given to (2.30)
with the optimal gain choice. Note, however, that the step sizes associated with
the stochastic algorithm have a length 1/k, whereas the length is equal to 1 in the
deterministic Newton algorithm. This is the reason why the convergence speeds are
essentially different:

• in the deterministic case, the use of the Newton algorithm leads to a quadratic
convergence speed (that is a2k , with |a| < 1),

• whereas in the stochastic case, the convergence speed of both the scalar and the
matrix gain algorithms is a/

√
k.

In the stochastic case, the improvement provided by using a matrix gain arises from
a better multiplicative constant9 and not from the speed

√
k. ♦

We give the following definition, characterizing algorithms providing the same
asymptotic convergence rate as the stochastic Newton algorithm.

Definition 2.20 A stochastic gradient algorithm is Newton-efficient if the sequence
{U (k)}k∈N it generates has the same asymptotic convergence rate as the stochastic
Newton algorithm, namely

√
k
(

U (k) − u�
)

D−→ N (
0, H−1Γ H−1).

According to this terminology, the iterates U (k) generated by such an algorithm are
asymptotically unbiased Newton-efficient estimators of u�.

We have seen that Newton-efficient algorithms are in some sense optimal in the
stochastic gradient algorithms class. A natural question then arises. How to imple-
ment a Newton-efficient stochastic algorithm? The problem we have to tackle is the
following: the implementation of the stochastic Newton algorithm requires the prior
knowledge of the optimal gain H−1, that is, the Hessian matrix of J at the solution u�

we are looking for! Rather than approximating H−1 as the algorithm runs, we now
introduce an averaging method leading to a Newton-efficient algorithm.

9In fact a better covariance matrix.
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2.5.2 Stochastic Gradient Algorithm with Averaging

In order to overcome the difficulty of implementing a Newton-efficient stochastic
algorithm, in [121, 122], Polyak proposed a modification of the standard stochastic
gradient method which consists in adding an averaging stage in the algorithm. More
precisely, assuming that the admissible set U ad is equal to the whole space U, the
standard stochastic iteration

U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)), (2.33)

is replaced by

U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)), (2.34a)

U (k+1)
M = 1

k + 1

k+1∑
l=1

U (l). (2.34b)

The first stage (2.34a) is identical to (2.33), whereas the aim of the second stage
(2.34b) is to compute the arithmetic mean of the iterates U (k) obtained at the first
stage. An equivalent recursive form for stage (2.34b) is

U (k+1)
M = U (k)

M + 1

k + 1

(
U (k+1) − U (k)

M

)
. (2.34c)

The algorithm associated with this averaging idea is summarized as follows.

Algorithm 2.21 (Stochastic Gradient Algorithm with Averaging).

1. Select some u(0) ∈ U ad and choose a positive real sequence {ε(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .

3. Compute the gradient of j w.r.t. u at point (u(k), w(k+1)), and update u(k+1) by
formula: u(k+1) = u(k) − ε(k)∇u j (u(k), w(k+1)).

4. Update u(k+1)
M by formula: u(k+1)

M = u(k)
M + 1

k+1

(
u(k+1) − u(k)

M

)
.

5. Set k = k + 1 and go to step 2.

As before, the value w(k) involved in Algorithm 2.21 is such that the sequence
(w(1), . . . , w(k)) is a realization of a k-sample of W .

Remark 2.22 Observe that u(k)
M is not recycled in the algorithm, that is, the stochastic

gradient is evaluated at u(k) and not at u(k)
M . This u(k)

M is just an additional output of
the algorithm which does not influence its dynamics. ♦

By Cesàro’s lemma, the almost sure convergence of the sequence {U (k)}k∈N
implies the almost sure convergence of the averaged sequence {U (k)

M }k∈N. But the
salient feature of the averaged recurrence (2.34) is its asymptotic convergence speed.
We use here similar assumptions as those made for Theorem 2.11, but we now sup-
pose that the exponent γ is strictly smaller that 1, replacing Assumption 2.9-4 by
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Assumption 2.23 The sequence {ε(k)}k∈N is a σ(α,β, γ)-sequence, with
1/2 < γ < 1.

According to Theorem 2.11, with γ < 1, the convergence speed achieved by the
sequence {U (k)}k∈N is strictly smaller than 1/

√
k, so that the associated convergence

rate is not optimal. Better convergence properties are, however, obtained regarding
the averaged sequence {U (k)

M }k∈N, as shown by the following theorem.

Theorem 2.24 Under Assumptions2.3 and 2.9, where Item 2.9-4 is replaced by
Assumption2.23, the averaged stochastic gradient algorithm is Newton-efficient:

√
k
(

U (k)
M − u�

)
D−→ N (

0, H−1Γ H−1).
For a proof, see [59, Chap. 4].

We are thus able to easily implement a Newton-efficient stochastic gradient algo-
rithm. The averaged stochastic gradient algorithm is also referred to as the robust
approach in Stochastic Approximation. Such a terminology is justified in Sect. 2.6.

2.5.3 Sample Average Approximation

As illustrated by Eqs. (2.33) or (2.34a), the random variables W (k) are incorporated
one at a time in the different versions of the stochastic gradient algorithm. Such
iterative methods belong to the Stochastic Approximation approach (SA). There is
another method, called the Sample Average Approximation (SAA), which makes
use of all the W (k) at once. As already mentioned in Sect. 2.2.1, the Sample Aver-
age Approximation method consists of replacing the expectation to be minimized
by a Monte Carlo approximation. This approach is widely used in stochastic opti-
mization for large classes of one-stage and multi-stage problems, and there is an
extensive literature on Sample Average Approximation. For references on the issue
of convergence10 treated in the framework of epi-convergence, see, for example, [5,
62]. The issue of epi-convergence of the Sample Average Approximation method
is also discussed in Sect. 8.4 of this book. Central Limit Theorem-like results under
regularity conditions are also available ([62] and [138]), as well as results based on
large deviations theory [140]. See also [141, Chap. 5] for an overview of the method,
and [108] for a comparison between the Sample Average Approximation method
and the Stochastic Approximation approach.

Consider Problem (2.2), and replace J (u) by its Monte Carlo approxima-
tion J (k)(u) obtained using a k-sample (W (1), . . . , W (k)) of W :

J (k)(u) = 1

k

k∑
l=1

j (u, W (l)).

10Consistency in the terminology of Statistics.

http://dx.doi.org/10.1007/978-3-319-18138-7_8
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The Sample Average Approximation method consists of minimizing J (k)(u) for
some ω ∈ Ω:

min
u∈U ad

1

k

k∑
l=1

j
(
u, W (l)(ω)

)
. (2.35)

The set of minimizers of Problem (2.35) is denoted by

Υ (k)(ω) = arg min
u∈U ad

1

k

k∑
l=1

j
(
u, W (l)(ω)

)
.

The properties of measurability, convergence and convergence rate of sequences
{U (k)}k∈N such that U (k)(ω) ∈ Υ (k)(ω) are given in [62]. Here, we just recall the
main result concerning the convergence rate of such sequences [62, Theorem 4.8].
Among various technical assumptions,11 it is assumed that

• the solution u� of Problem (2.2) is unique and belongs to the interior of U ad,
• the function J is twice continuously differentiable with nonsingular Hessian H

at u�,
• the sequence of random variables

{√
k ∇u J (k)(u�)

}
k∈N converges in law to a

centered gaussian distribution with covariance matrix Γ .

Then, there exists a sequence
{
U (k)

}
k∈N of minimizers of (2.35) such that

√
k
(

U (k) − u�
)

D−→ N (
0, H−1Γ H−1).

Under mild technical assumptions, the matrix Γ is the covariance matrix of j
evaluated at u� (recall that E

(∇u j (u�, W )
) = 0) :

Γ = E

(
∇u j (u�, W )

(∇u j (u�, W )
)�)

.

The asymptotic covariance matrix obtained in that case is thus equal to the optimal
covariance matrix obtained when using the stochastic Newton algorithm described
in Sect. 2.5.1: the sequence {U (k)}k∈N generated by the Sample Average Approxi-
mation (2.35) is Newton-efficient.

2.6 Practical Considerations

In order to successfully implement a stochastic gradient algorithm, one has to keep
in mind some typical difficulties that we comment upon now.

11See [62, Sect. 4] for further details.
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2.6.1 Stopping Criterion

A first question is related to the convergence assessment of the stochastic gradient
algorithm. Of course, a stopping test based on the difference norm ‖u(k+1) − u(k)‖
cannot be used, since this difference is forced to zero because of the assumptions on
the step sizes ε(k). Moreover, the norm of the “descent” direction ‖∇u j (u(k), w(k+1))‖
does not give any information about convergence since what is minimized is J .

However, the expectation of the random variable ∇u j (U (k), W (k+1)) converges
towards the true gradient ∇ J (u�) at the optimum, and is accordingly usable to test
the convergence. An estimation of ∇ J (u�) being given by

(
k∑

l=1

ε(l)

)−1 (
k∑

l=1

ε(l)∇u j (u(l), w(l+1))

)

it would be possible to test whether a certain degree of convergence has been reached.
A common practice consists of fixing a given—sufficiently large—number of

iterations, and to check (through plots representing the evolution of quantities related
to the problem: components or norm of the variables, of the gradient…) whether
convergence is achieved. This is a major difference with the deterministic case for
which stopping criteria are usually available.

2.6.2 Tuning the Standard Algorithm

A fundamental issue pertains to the choice of the step sizes ε(k). In order to satisfy the
assumptions of the convergence Theorem 2.6, it seems reasonable to take ε(k) shaped
as 1/kγ , with 1/2 < γ ≤ 1. This is why taking a σ(α,β, γ)-sequence is quite
natural. The three coefficients α, β and γ, entering the choice of ε(k) are determined
according to the following guidelines.

• From Theorem 2.11, the optimal convergence rate is reached for γ = 1, leading
to the well-known 1/

√
k rate of the Monte Carlo approximation.

• According to (2.18), the multiplicative coefficient α also plays a role in the asymp-
totic behavior. From Eq. (2.15), with λ = 1/(2α), it is easy to figure out that the
covariance matrix αΣ asymptotically grows as α goes to infinity. On the other
hand, using a too small value of α generates small gradient steps, which may
exceedingly slow down the convergence.12 The choice of α thus corresponds to a
trade-off between stability and precision.

• Ultimately, the coefficient β makes it possible to regulate the transient behavior
of the algorithm. During the first iterations, the term kγ may be ignored w.r.t. β

12From Assumption 2.9-5, the condition α > 1/(2c) is required, c being the strong convexity
modulus of J . It is easy to produce a simple problem with extremely slow convergence in the
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if this is chosen large enough. The coefficient ε(k) is approximately equal to α/β,
which thus corresponds to the initial gradient step size. If α/β is too small, the
transient phase may be slow. On the contrary, taking a too large ratio may lead to a
numerical burst during the first iterations. Note that a first guess for the ratio α/β is
given by the step size to be used by the gradient method applied to the underlying
deterministic problem.

Let us illustrate the influence of parameter α with the help of a quadratic Gaussian
example. The optimization problem under consideration is

min
u∈R10

E

(1

2
u� Au + W �u

)
,

where A is a symmetric positive definite matrix, W being a R
10-valued Gaussian

random variable with expectation m and covariance matrix Γ . The solution of this
problem is obviously u� = −A−1m. The classical Monte Carlo estimator Û (k) of u�,
namely

Û
(k) = −1

k

k∑
l=1

A−1W (l), (2.36)

is an efficient estimator of u�, that is, its normalized variance reaches the Cramer-Rao
lower bound (see e.g. [90] for details):

kVar
(
Û

(k)) = A−1Γ A−1. (2.37)

Using step sizes ε(k) = α/(k + β), the stochastic gradient iteration writes

U (k+1) = U (k) − α

k + β

(
AU (k) + W (k+1)

)
. (2.38)

Figure 2.1 displays four runs of the algorithm for different values of α (namely α =
0.3, 1.0, 5.0 and 10.0), the ratio α/β being constant and equal to 0.1. For each run,
we have plotted the Monte Carlo estimator (k �→ ∥∥û (k) − u�

∥∥—black curve) and
the stochastic gradient algorithm estimator (k �→ ∥∥u(k) − u�

∥∥—light gray curve),
where û (k) and u(k) correspond to realizations of the random variables Û (k) and U (k)

respectively. Obviously, a “small” value of α = 0.3 (upper left-hand side plot)
prevents the algorithm from converging in a reasonable time, whereas “large” val-
ues α = 5.0 and 10.0 (lower plots) lead to excessive oscillations. In this particular
example, the choice α = 1 (upper right-hand side plot) may be considered as optimal.

(Footnote 12 continued)
case when this condition is not satisfied. For example, with j (u, w) = (1/2)u2 (deterministic cost
function such that c = 1), with ε(k) = 1/(5k) and starting from u(0) = 1, the solution obtained
after one billion iterations is about 0.015, hence relatively far from the optimal solution u� = 0
(see [108] for details).
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Fig. 2.1 Standard stochastic gradient runs for α = 0.3, 1.0, 5.0 and 10.0

In order to go further into the asymptotic analysis, let us compute the covariance
matrix of the iterates U (k). From Eq. (2.38), denoting the identity matrix by I , we
obtain that

Var
(
U (k+1)

) = Var
((

I − ε(k) A
)
U (k) − ε(k)W (k+1)

)

= (
I − ε(k) A

)
Var

(
U (k)

)(
I − ε(k) A

) + (
ε(k)

)2
Γ.

The limit of the sequence of the normalized covariance matrices kVar
(
U (k)

)
induced

by this relation is then compared to the Cramer-Rao bound (2.37). The lowest and
greatest eigenvalues λmin and λmax of these matrices are reported in Table 2.1 for
different values of (α,β). We notice that the greatest eigenvalue of the Cramer-
Rao bound and of the “best” covariance matrix (obtained using α = 1) are nearly
identical.

This remark enlightens a result given in [57], asserting that the greatest eigenvalue
of the “optimal” covariance matrix is about (M/c)2, c being the strong convexity
modulus of j and M being an upper bound of the norm of the gradient of j .

As a conclusion, the implementation of the stochastic gradient algorithm is not
straightforward and often requires several experiments. A common error is to con-
sider that convergence has occurred when in fact the sequence {ε(k)}k∈N is just badly
scaled.
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Table 2.1 Extreme eigenvalues of the covariance matrix for different values of (α,β)

Standard stochastic gradient algorithm λmin λmax

Cramer-Rao bound 0.108 11.258

α = 0.3—β = 3.0 0.192 6170.542

α = 0.6—β = 6.0 0.347 24.523

α = 1.0—β = 10.0 0.556 11.286

α = 2.0—β = 20.0 1.083 15.244

α = 5.0—β = 50.0 2.664 32.056

α = 10.0—β = 100.0 5.299 60.936

Remark 2.25 Many other adaptation rules have been developed in order to improve
the efficiency of the stochastic gradient algorithm. For example, Chen’s projection
method [35]—a theoretical tool which alleviates the assumptions required for con-
vergence in Stochastic Approximation (see [54] for further details)—also makes it
possible to prevent numerical bursts in the transient phase of the algorithm. The
idea is to project the iterates U (k) on compact subsets of U forming an increasing
sequence. Another approach, namely Kesten’s algorithm [91], is precisely described
in [55]. There, the underlying idea is to decrease the step size ε(k) only when the
directions of two consecutive gradients are opposite. More precisely, we define a
(random) sequence of integers Nk by

N(k+1) = N(k) + 1{〈
∇u j (U(k−1),W(k)) ,∇u j (U(k),W(k+1))

〉
<0

},

1Ω0 being the indicator function of the set Ω0 ⊂ Ω . The step size is then given by

ε(k) = α(
N(k)

)γ + β
.

Let us mention that there exist multiplicative rules [119] for the adaptation of the
step size, which allow for a faster convergence towards an approximate solution of
the original problem, and that numerous references deal with stochastic algorithms
using constant step sizes (see e.g. [17]). ♦

2.6.3 Robustness of the Averaged Algorithm

From a theoretical point of view, the averaged stochastic gradient is, in some sense,
optimal because it has the same asymptotic convergence rate as the stochastic Newton
algorithm (see Theorem 2.24). From the practical point of view, the implementation
of the averaged algorithm is feasible because it does not require the knowledge
of the optimal matrix gain H−1. The step sizes ε(k) form a σ(α,β, γ)-sequence,
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with 1/2 < k < 1. The following considerations are relevant when choosing the
parameters α, β and γ.

• The value γ = 2/3 is considered as a good choice by some authors (see [54] for
further details).

• The tuning of parameters α and β is much easier than for the standard algorithm.
Indeed, the problem of “too small” step sizes arising from a bad choice of α is not
so critical because the term kγ goes down more slowly towards zero. Of course,
the ratio α/β must always be chosen in such a way that numerical bursts do not
occur during the first iterations of the algorithm.

Remark 2.26 It seems wise not to start the averaging process from the very first
iteration, because the whole transient phase of the algorithm is then taken into account
in the averaged values U (k)

M . It would be preferable to start the averaging process once
the iterates U (k) given by (2.34a) are oscillating near the convergence zone, but it
is usually difficult to detect such a starting point. Another possibility is to average
the stochastic gradient algorithm iterates U (k) on a sliding window, with leads to the
same asymptotic properties (see [99] for details). ♦

We now apply the averaged stochastic gradient algorithm to the example used
in Sect. 2.6.2, namely

U (k+1) = U (k) − α

kγ + β

(
AU (k) + W (k+1)

)
,

U (k+1)
M = 1

k + 1

k+1∑
l=1

U (l).

We use the same values of α and β as for the standard stochastic algorithm, γ being
now equal to 2/3. The four runs of the averaged algorithm are plotted in Fig. 2.2.
For each run, we have again plotted the Monte Carlo estimator given by (2.36)
(k �→ ‖û (k) − u�‖—black curve), the stochastic gradient algorithm estimator
(k �→ ‖u(k) − u�‖—light gray curve), and finally the averaged stochastic gradient
algorithm estimator (k �→ ∥∥u(k)

M − u�
∥∥—dark gray curve). The changes of para-

meter α (from 0.3 to 10.0) affect the behavior of the stochastic gradient algorithm
estimator, the oscillations of which increase with α. Nevertheless, the behavior of the
averaged stochastic gradient algorithm estimator remains remarkably stable, hence
the term “robust” given to the averaged algorithm.

It is again possible to iteratively compute the covariance matrices of the iter-
ates U (k)

M . The lowest and greatest eigenvalues of these matrices are given in Table 2.2
for the different values of α. We observe that the full spectrum of the Cramer-Rao
bound is obtained whatever the value of α.
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Fig. 2.2 Averaged stochastic gradient runs for α = 0.3, 1.0, 5.0 and 10.0

Table 2.2 Extreme eigenvalues of the covariance matrix for different values of (α,β)

Averaged stochastic gradient algorithm λmin λmax

Cramer-Rao bound 0.108 11.258

α = 0.3—β = 3.0 0.108 11.360

α = 0.5—β = 5.0 0.108 11.318

α = 1.0—β = 10.0 0.108 11.288

α = 2.0—β = 20.0 0.108 11.273

α = 5.0—β = 50.0 0.108 11.264

α = 10.0—β = 100.0 0.108 11.262

2.7 Conclusion

In this chapter, we have tried to give a broad (of course non exhaustive) overview
of the stochastic gradient method. After recalling some classical results from Sto-
chastic Approximation, we have presented an algorithm based on both the Stochastic
Gradient Method and on the Auxiliary Problem Principle, for which we provided
a detailed convergence analysis. We then presented some issues related to the effi-
ciency of the stochastic gradient algorithm. Finally, we have made some practical
considerations about the algorithm implementation. Note that this domain is still very
active, as demonstrated by the recent paper [162] providing new adaptive step length
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schemes in order to improve the performance of stochastic gradient algorithms, and
by the paper [108] comparing the Sample Average Approximation method with a
properly modified Stochastic Approximation approach. About the last paper, it is
interesting to remark the strong connections between the Mirror Descent Stochastic
Approximation method and the Auxiliary Problem Principle. Although restricted to
the computation of open-loop solutions,13 the stochastic gradient method is a basic
component of stochastic optimization which can be embedded in many dynamic
situations, when some control variables have to be decided upon once and for all or
some static parameters have to be tuned. It is the case for two-stage stochastic opti-
mization problems, for which the first time step decisions are open-loop decisions. It
is also the case for multistage stochastic optimization problems when it is possible to
restrict the admissible feedback laws to a particular class of functions which can be
characterized in terms of a finite number of parameters, e.g., (s, S)-policies, impulse
control, etc. See [148], and also [145] for a more recent application.

Throughout this book, in addition to the challenge of dealing with expectations
(which was the main purpose of this chapter), we will deal with the additional diffi-
culty related to the issue of information, that is, the measurability constraints.

2.8 Appendix

This last section is devoted to the proof of the main convergence Theorem 2.17. The
proof is based on two results, namely the Robbins-Siegmund theorem and a technical
lemma, that are beforehand recalled.

2.8.1 Robbins-Siegmund Theorem

The following theorem is one of the keys to Stochastic Approximation.

Theorem 2.27 Let {Λ(k)}k∈N, {α(k)}k∈N, {β(k)}k∈N and {η(k)}k∈N be four posi-
tive sequences of real-valued random variables adapted to the filtration {F(k)}k∈N.
Assume that

E
(
Λ(k+1)

∣∣ F(k)
) ≤ (

1 + α(k)
)
Λ(k) + β(k) − η(k), ∀k ∈ N,

and that ∑
k∈N

α(k) < +∞ and
∑
k∈N

β(k) < +∞, P-a.s..

13There however exist extensions of the stochastic gradient method to closed-loop optimization
problem: see [14] for further details.
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Then, the sequence {Λ(k)}k∈N almost surely converges to a finite14 random vari-
able Λ∞, and

∑
k∈N η(k) < +∞, P-a.s..

A proof can be found e.g. in [60, Theorem 1.3.12].

2.8.2 A Technical Lemma

The following lemma is also used in order to prove the convergence of the stochastic
APP algorithm.

Lemma 2.28 Let J be a real-valued function defined on a Hilbert space U. We
assume that J is Lipschitz continuous with constant L. Let {u(k)}k∈N be a sequence
of elements of U and let {ε(k)}k∈N be a sequence of positive real numbers such that

(a)
∑
k∈N

ε(k) = +∞,

(b) ∃ μ ∈ R,
∑
k∈N

ε(k)
∣∣J (u(k)) − μ

∣∣ < +∞,

(c) ∃ δ > 0, ∀k ∈ N,
∥∥u(k+1) − u(k)

∥∥ ≤ δε(k).

Then the sequence
{

J (u(k))
}

k∈N converges to μ.

Proof Let α be a given positive real number. We define the subset Nα of N and its
complementary N c

α as follows:

Nα = {
k ∈ N,

∣∣J (u(k)) − μ
∣∣ ≤ α

}
and N c

α = N \ Nα.

From the definition of N c
α, we have that

∑
k∈N c

α

ε(k)
∣∣J (u(k)) − μ

∣∣ ≥ α
∑

k∈N c
α

ε(k),

and Property (b) implies that

∑
k∈N c

α

ε(k)
∣∣J (u(k)) − μ

∣∣ ≤
∑
k∈N

ε(k)
∣∣J (u(k)) − μ

∣∣ < +∞.

We thus deduce that the series
∑

k∈N c
α
ε(k) converges, that is,

∀β > 0, ∃nβ ∈ N,
∑

k∈N c
α , k≥nβ

ε(k) ≤ β. (2.39)

14A random variable X is finite if P
( {

ω ∈ Ω
∣∣ X (ω) = +∞} ) = 0.
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Then, from (2.39) and Property (a), we obtain that Nα is not a finite set.
For each ε > 0, we choose α = ε/2 and β = ε/(2Lδ). Let nβ be the integer

defined by (2.39). For any k ≥ nβ ,

• either k ∈ Nα and, we have, by definition

∣∣J (u(k)) − μ
∣∣ ≤ α < ε,

• or k ∈ N c
α; then let m be the smallest element of Nα such that m > k (such an

element exists because Nα is not a finite set); using the Lipschitz assumption on J
and Property (c), we obtain

∣∣J (u(k)) − μ
∣∣ ≤ ∣∣J (u(k)) − J (u(m))

∣∣ + ∣∣J (u(m)) − μ
∣∣ ≤ L

∥∥∥u(k) − u(m)
∥∥∥ + α

≤ Lδ

(
m−1∑
l=k

ε(l)

)
+ α ≤ Lδ

⎛
⎝ ∑

l≥nβ ,l∈N c
α

ε(l)

⎞
⎠ + α ≤ ε,

hence the result. �

2.8.3 Proof of Theorem 2.17

Here we give the complete proof of the main convergence theorem.

Proof The proof of the first statement is based on classical theorems in the field of
convex optimization (see Theorem A.8). The existence of a random variable U (k+1)

solution of Problem (2.24) is a consequence of the fact that the criterion to be min-
imized in (2.24) is a normal integrand, so that the arg min is closed-valued and
measurable, and thus admits measurable selections (see [135, Theorem 14.37] for
further details). The solution U (k+1) is unique because K is strongly convex.

The proof of the last two statements involves four steps.

Select a Lyapunov function Λ. Let u� ∈ U � be a solution of (2.22). We consider
the so-called Lyapunov function Λ : U → R, defined by

Λ(u) = K (u�) − K (u) − 〈∇K (u) , u� − u
〉
.

From the strong convexity of K , we have that

b

2

∥∥u − u�
∥∥2 ≤ Λ(u). (2.40)

The Lyapunov function Λ is thus bounded from below and coercive.

Bound from above the variation of Λ. We consider the difference

Δ(k) = Λ(u(k+1)) − Λ(u(k)),
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{u(k)}k∈N being the sequence of solutions generated by Algorithm 2.15 for a realiza-
tion (w(1), . . . , w(k), . . . ) of the infinite-dimensional sample of W :

Δ(k) = K (u(k)) − K (u(k+1)) − 〈∇K (u(k)) , u(k) − u(k+1)
〉

︸ ︷︷ ︸
T1

+ 〈∇K (u(k)) − ∇K (u(k+1)) , u� − u(k+1)
〉

︸ ︷︷ ︸
T2

.

• From the convexity of K , we have that

T1 ≤ 0.

• Let r (k) = ∇u j (u(k), w(k+1)). The optimality condition of Problem (2.23) writes

〈∇K (u(k+1)) + ε(k)r (k) − ∇K (u(k)) , u − u(k+1)
〉 ≥ 0, ∀u ∈ U ad. (2.41)

Evaluating (2.41) at u = u� leads to

T2 ≤ ε(k)
〈
r (k) , u� − u(k+1)

〉
≤ ε(k)

〈
r (k) , u� − u(k)

〉
︸ ︷︷ ︸

T3

+ε(k)
〈
r (k) , u(k) − u(k+1)

〉
︸ ︷︷ ︸

T4

.

– From the convexity of j (·, w(k+1)), we have that

T3 ≤ j (u�, w(k+1)) − j (u(k), w(k+1)).

– The evaluation of (2.41) at u = u(k) and the strong monotonicity of ∇K imply
that

b
∥∥u(k+1) − u(k)

∥∥2 ≤ ε(k)
〈
r (k) , u(k) − u(k+1)

〉
.

Using the Schwartz inequality, we obtain

∥∥u(k+1) − u(k)
∥∥ ≤ ε(k)

b

∥∥r (k)
∥∥. (2.42)

Applying also the Schwartz inequality to the term T4 and using (2.42) yield

T4 ≤ ε(k)

b

∥∥r (k)
∥∥2

.

An equivalent form for the LBG assumption is that there exist positive con-
stants c3 and c4 such that

∥∥r (k)
∥∥ ≤ c3

∥∥u(k) − u�
∥∥ + c4. Taking the square of
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the last inequality, using (a +b)2 ≤ 2(a2 +b2) as well as (2.40), we obtain that

∃α > 0, ∃β > 0, ∀k ∈ N,
∥∥r (k)

∥∥2 ≤ αΛ(u(k)) + β,

and, consequently,

T4 ≤ ε(k)

b

(
αΛ(u(k)) + β

)
.

Collecting the upper bounds obtained for T1, T3 and T4, we deduce that

Δ(k) ≤ ε(k)
(

j (u�, w(k+1)) − j (u(k), w(k+1))
)

+
(
ε(k)

)2

b

(
αΛ(u(k)) + β

)
.

Consider this inequality in terms of random variables. Taking the conditional expec-
tation w.r.t. the σ-field F(k) generated by (W (1), . . . , W (k)) on both sides, recalling
that W (k+1) is independent of the previous W (l) and that U (k) is F(k)-measurable,
we obtain that

E
(
Λ(U (k+1)) − Λ(U (k))

∣∣ F(k)
) ≤ α(k)

E
(
Λ(U (k))

∣∣ F(k)
) + β(k)

+ ε(k)
(

J (u�) − J (U (k))
)

, (2.43)

α(k) = (α/b)(ε(k))2 and β(k) = (β/b)(ε(k))2 being the terms of two convergent
series. Thanks to the optimality of u�, we have that J (u�) − J (U (k)) ≤ 0.

Convergence. A straightforward application of the Robbins-Siegmund Theorem 2.27
shows that the sequence

{
Λ(U (k))

}
k∈N almost surely converges to a finite random

variable Λ∞, and that

+∞∑
k=0

ε(k)
(
J (U (k)) − J (u�)

)
< +∞, P-a.s.. (2.44)

Sequence Limit. As proved in the previous step, the sequence
{
Λ(U (k))

}
k∈N

almost surely converges to a finite random variable, and hence is almost surely
bounded. According to (2.40) and the LBG assumption, we deduce that both
sequences {U (k)}k∈N and

{∇u j (U (k), W (k+1))
}

k∈N are almost surely bounded.
Thanks to (2.42), the same holds true for the sequence

{‖U (k+1) − U (k)‖/ε(k)
}

k∈N.

This last fact together with (2.44) make it possible to use Lemma 2.28 to claim that
the sequence {J (U (k))}k∈N almost surely converges to J (u�).

Let Ω0 denote the subset of Ω such that
{
Λ(U (k))

}
k∈N is not bounded, and

let Ω1 denote the subset of Ω for which (2.44) does not hold: P(Ω0 ∪ Ω1) = 0.
Pick some ω /∈ Ω0 ∪ Ω1. The sequence of realizations {u(k)}k∈N of {U (k)}k∈N
associated with ω is bounded, and each u(k) belongs to the closed subset U ad. By a
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compactness argument,15 there exists a convergent subsequence {u(Φ(k))}k∈N (note
that the subsequence itself depends on ω); let ū be the limit of this subsequence. By
the lower semi-continuity of function J , we have that

J (ū) ≤ lim inf
k→+∞ J (u(Φ(k))) = J (u�).

We thus deduce that ū ∈ U �.
We ultimately consider the case when J is strongly convex with modulus a. Then

Problem (2.22) has a unique solution u�. Thanks to the optimality condition (2.20),
the strong convexity property of J writes

J (U (k)) − J (u�) ≥ 〈∇ J (u�) , U (k) − u�
〉 + a

2

∥∥U (k) − u�
∥∥2

≥ a

2

∥∥U (k) − u�
∥∥2

.

Since J (U (k)) converges almost surely to J (u�), we deduce that
∥∥U (k) −u�

∥∥ almost
surely converges to zero. The proof is complete. �

15A subset of U is compact if it is closed and bounded, provided that U is a finite-dimensional
space. If U is an infinite-dimensional Hilbert space, such a property remains true only in the weak
topology, and the lower semi-continuity property of J is preserved in that topology because J is
convex. See [64] for further details.
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Chapter 3
Tools for Information Handling

This chapter covers technical tools, that will be used throughout the book, on how
to handle information in the mathematical formulations of stochastic optimization
problems.

3.1 Introduction

A phenomenon is governed by an issue ω0 belonging to a set Ω , representing
uncertainties, or states of Nature, and called the universe. However, the issue ω0
is unknown. In this chapter, we discuss how we can represent information about ω0.

We review on binary relations and lattices in Sect. 3.2. Then, we shed light onto
two complementary ways to grasp and tackle information, namely: “partitions and
fields” and “mapping measurability”.

In Sect. 3.3, we consider the “partitions and fields approach” to information han-
dling. For this purpose, we recall the notions of partitions—and the associated
undistinguishability equivalence relations. We introduce partition fields, or π-fields,
as well as the more famous σ-fields. We highlight the property that the sets of par-
titions, of π-fields and of σ-fields, can be equipped with order relations and with
lattice structures. This is how we can speak of more or less information, and how we
can merge information from two sources (greatest lower bound) or extract common
information (least upper bound). In the partitions and fields approach, information is
handled by a collection G of subsets of the universe Ω satisfying specific axioms, and
information about the uncertainty ω0 in Ω is as follows. For any subset G in G, one
can answer “yes” or “no” to the question: “Does ω0 belong to G?”. The richer G, the
more information. Partition fields are closed under arbitrary union and intersection,
countable or not, hence are special case of σ-fields, closed under countable union and
intersection. Partition fields and σ-fields coincide when the underlying universe Ω

is finite. Both notions have pros and cons. On the one hand, partition fields can raise
difficulties in the stochastic case. As an illustration, the partition field generated by
the singletons of the universe Ω is the complete field made of all subsets of Ω (being

© Springer International Publishing Switzerland 2015
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made of all arbitrary union and intersection, countable or not, of singletons). Unfor-
tunately, the complete field is too large to support a probability measure when Ω is
not finite. On the other hand—in contrast to a widely accepted idea, and as noted
by [58]—the use of σ-fields as the informational content of a signal is not without
problems (a simple example is given in [58], and summarized in Remark 3.29, where
the use of σ-fields as a model of information leads to a paradoxical conclusion: a
decision maker prefers less information to more).

In Sect. 3.4, we turn the spotlight onto the “mapping measurability” approach
to information handling. For this purpose, we recall the notion of measurability of
mappings, in relation with either π-fields or σ-fields. In the mapping measurability
approach, information is handled by mappings over the universe Ω (also called
signals). We provide tools to pass from an algebraic aspect of measurability—where
a mapping is measurable w.r.t. another one—to a functional one, where a mapping
is a function of another one. The measurability framework developed will be widely
used in the book.

In the stochastic case, when a probability P is given on Ω (equipped with a
σ-field A), information may be captured by conditional expectations, conditional
probabilities, or stochastic kernels. In Sect. 3.5, we present the conditional expecta-
tion, leaving more elaborate definitions for Appendix B.

3.2 Basic Facts on Binary Relations and on Lattices

We review binary relations and lattices, both of which are useful to manipulate
information structures.

3.2.1 Binary Relations

We follow here [85, 100]. A binary relation on the set A is a subsetR of A2 = A× A.
As is traditional, we denote from now on

∀(α,β) ∈ A2, αRβ ⇐⇒ (α,β) ∈ R. (3.1)

When αRβ, we say that β is related to α. Well known binary relations are the empty
relation ∅, the universal relation A2, and the equality or diagonal relation

ΔA := {(α,α) | α ∈ A } . (3.2)

For each α ∈ A, all the related elements define a subset αR of A by

αR := {β ∈ A | αRβ}. (3.3)
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Thus, we have that

∀(α,β) ∈ A2, αRβ ⇐⇒ β ∈ αR. (3.4)

If B is a subset of A, we define the subset of all elements related to B by

B R :=
⋃
β∈B

β R. (3.5)

We also define symmetrically Rβ and R B.
The set BA of all binary relations on A is equipped with the inclusion relation ⊂:

R� ⊂ R� ⇐⇒
(
∀(α,β) ∈ A2, αR� β ⇒ αR� β

)
(3.6)

⇐⇒ (∀α ∈ A, αR� ⊂ αR�

)
. (3.7)

We define a relation � on the set BA of all binary relations by

R� � R� ⇐⇒ R� ⊂ R�, (3.8)

and we say that the relation R� is finer than R�.
The converse R−1 of a binary relation is

∀(α,β) ∈ A2, αR−1 β ⇐⇒ β Rα. (3.9)

We have that R� ⊂ R� ⇒ R−1
� ⊂ R−1

� .
The directed graph G(R) built from R is (A,R), where elements of A are called

vertices and those of R edges. Thus, notions attached to graphs are easily transfered
to relations.

A chain in a binary relation R is a sequence (α1, . . . ,αn) for some n ≥ 1 such
that αi Rαi+1 for i = 1, . . . , n − 1; this chain is said to be from α1 to αn , and its
length is n − 1. We also say that α1 and αn are joined by a chain of length n − 1. A
chain in a relation is the equivalent of a path in a graph. A chain is simple if the αi ’s
are all distinct.

The chain (α1, . . . ,αn) is a cycle if αn Rα1. A cycle is trivial if n = 1 (length
0 and α1 Rα1), otherwise it is nontrivial. A binary relation R is said to be acyclic
if there is no cycle in R. This corresponds to acyclicity of the directed graph G(R)

built from R.
The composition R ◦ R′ of two binary relations is defined by

∀(α,β) ∈ A2, α(R ◦ R′)β ⇐⇒ ∃δ ∈ A, αR δ and δR′ β. (3.10)

For the sake of simplicity, we abbreviate R ◦ R′ into RR′. In the composition
R2 := RR, β is related to α if there is a chain of length 2 from α to β. We define
as well Rn := R · · ·R︸ ︷︷ ︸

n times

for all n ≥ 1 and the so-called transitive closure of the
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relation R as 1

R∞ :=
⋃
n≥1

Rn . (3.11)

Two elements are related by R∞ if, and only if, they can be connected by a chain of
any length:

∀(α,β) ∈ A2, αR∞β ⇐⇒ there exists a chain in R from α to β. (3.12)

A binary relation R is said to be

• reflexive if ΔA ⊂ R, that is,
αRα, ∀α ∈ A, (3.13)

• symmetric if R ⊂ R−1, that is,

∀(α,β) ∈ A2, (αRβ ⇒ β Rα) , (3.14)

and we immediately have that R = R−1,
• antisymmetric if R ∩ R−1 ⊂ ΔA, that is,

∀(α,β) ∈ A2, (αRβ and β Rα ⇒ α = β) , (3.15)

• transitive if R2 ⊂ R, that is,

∀(α,β, γ) ∈ A3, (αRβ and β R γ ⇒ αR γ) . (3.16)

The transitive closure of a binary relation is the smallest transitive binary relation
which contains R. It is well defined because the intersection of transitive binary
relations is transitive, and it coincides with R∞ in (3.11).

The reflexive and transitive closure R∗ of a binary relation R is the smallest
reflexive and transitive binary relation which contains R. It is well defined because
the intersection of reflexive and transitive binary relations is reflexive and transitive,
and we have that

R∗ = ΔA ∪ R∞. (3.17)

An equivalence relation is a reflexive, symmetric and transitive binary relation.
It is generally denoted by the symbol ≡. For an equivalence relation R, the subsets
αR for α ∈ A are called equivalence classes, and are denoted

A/R := {αR | α ∈ A } . (3.18)

Anticipating Definition 3.2, the equivalence classes form a partition of A.

1Notice that R∞ is not the “limit” of Rn when n goes to infinity.
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A pre-order is a reflexive and transitive binary relation. An order is a reflexive,
antisymmetric and transitive binary relation. A pre-order is generally denoted by the
symbol �. Any preorder � induces an order on the quotient set w.r.t. the equivalence
relation α ≡ β ⇐⇒ α � β or β � α. An order is said to be a total order when all
pairs of elements can be compared, else it is a partial order. A set equipped with a
total order relation consists of a single chain, whereas, equipped with a partial order
relation, it may be represented by an acyclic graph.

The complementary relation Rc of a binary relation R is

Rc := A2\R, (3.19)

or, equivalently,2

αRc β ⇐⇒ ¬ (αRβ) ⇐⇒ (α,β) �∈ R. (3.20)

An ordering of A is a bijection from {1, . . . , n} to A. The ordering (α1, . . . ,αn) is
said to be strictly compatible (resp. compatible) with a binary relationR if αi Rα j ⇒
i < j (resp. i ≤ j).

Proposition 3.1 The following assertions are equivalent for a binary relation R.

1. There exists an ordering of A strictly compatible with R.
2. The complementary relation Rc is reflexive, and the reflexive and transitive clo-

sure R∗ is an order.
3. The relation R is acyclic.
4. The complementary relation (R∞)c of the transitive closure R∞ is reflexive.

Proof (1) ⇒ (2). Consider an ordering (α1, . . . ,αn) of A that is supposed to be
strictly compatible with R, that is, αi Rα j ⇒ i < j . Let O be the order relation
on A defined by αi Oα j ⇐⇒ i ≤ j . By construction, the order relation O is
such that R ⊂ O\ΔA = O ∩ Δc

A.
Thus, on the one hand, we have that R ⊂ O∩Δc

A ⇒ ΔA ⊂ Rc, and we conclude
that Rc is reflexive. On the other hand, R ⊂ O ⇒ R∗ ⊂ O∗, where O∗ = O
since O is reflexive and transitive. We deduce that R∗ ∩ (R∗)−1 ⊂ O ∩ O−1.
Now,O∩O−1 ⊂ ΔA sinceO is antisymmetric. We conclude thatR∗∩(R∗)−1 ⊂
O ∩ O−1 ⊂ ΔA. Thus, R∗ ∩ (R∗)−1 ⊂ ΔA and R∗ is antisymmetric.

(2) ⇒ (3). Assume that R is not acyclic, and let (α1, . . . ,αk) denote a cycle.
Notice that, for any i = 1, . . . , k and j = 1, . . . , k, we have that αi R

∞ α j , and
thus αi R

∗ α j because R∞ ⊂ R∗ = ΔA ∪ R∞ by (3.17). Since R∗ is an order
by assumption, this implies that αi = α j . Thus, the cycle is necessarily reduced
to a single element α1 which satisfies α1 Rα1: this contradicts the assumption
that Rc is reflexive, because we have that both (α1,α1) ∈ R and (α1,α1) �∈ R.
Thus, the relation R is acyclic.

2The symbol ¬ denotes the negation operator.
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(3) ⇒ (1). We know from graph theory that, when the directed graph G(R) =
(A,R) is acyclic, it is possible to perform a topological sort of the nodes [42,
p. 485], in other words, a strictly compatible ordering.

(3) ⇐⇒ (4). The relation R is not acyclic if, and only if, there exists an α ∈ A
and a chain from α to α, if and only if there exists an α ∈ A such that αR∞α, if,
and only if, (R∞)c is not reflexive.
This ends the proof. �

3.2.2 Lattices

Hereafter, we list a few basic notions from lattice theory [8, 144].
An ordered set is a set endowed with an order relation, denoted by �.
Please note that the following elements do not necessarily exist. They are illus-

trated in Fig. 3.1, extracted from [8].
The top element (of an ordered set) is an element which is greater than any other

element of the set; the top is denoted by �. The bottom element ⊥ (of an ordered
set) has a similar definition.

A maximum element (of a subset) is an element of the subset which is greater than
any other element of the subset. If it exists, it is unique, and it coincides with the top
element if the subset is equal to the whole set. A minimum element (of a subset) has
a similar definition.

A maximal element (of a subset) is an element of the subset which is not less than
any other element of the subset.

A majorant (of a subset), also called upper bound, is an element not necessarily
belonging to the subset, which is greater than any other element of the subset. If a
majorant belongs to the subset, it is the maximum element. A minorant (of a subset),
also called lower bound, has a similar definition.

Maximal
elements of
subset

Majorants of subsets
and

Top element
Maximum
element of
subset

Fig. 3.1 Elements in an ordered set
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A least upper bound (of a subset) is the least majorant, that is, the minimum
element of the subset of majorants. A greatest lower bound has a similar definition.

A sup-semilattice is an ordered set such that there exists an upper bound for each
pair of elements. An inf-semilattice has a similar definition. A lattice is an ordered
set which is both a sup- and an inf-semilattice. A complete sup-semilattice is an
ordered set such that there exists an upper bound for each finite or infinite subset. A
complete inf-semilattice has a similar definition. A complete lattice has an obvious
definition. A fundamental result asserts that a complete sup-semilattice which has a
bottom element is a complete lattice.

If A is a lattice, and (α,β) ∈ A2, the greatest lower bound is denoted α ∧ β and
the least upper bound α ∨ β.

3.3 Partitions and Fields Approach

In Sect. 3.3.1, we represent information by a partition or, equivalently, by an undis-
tinguishability equivalence relation: two elements of the universe Ω are equivalent
if they cannot be distinguished because they belong to the same subset of the par-
tition. Then, we give a formal definition of information as a collection of subsets
of the universe Ω satisfying the celebrated σ-field axioms in Sect. 3.3.3, or the less
common partition field ones in Sect. 3.3.2. We highlight the property that the sets
of partitions, π-fields and of σ-fields can be equipped with order relations and with
lattice structures. This allows us to speak of more or less information and is how we
can merge information from two sources (greatest lower bound) or extract common
information (least upper bound). We show that partitions, equivalence relations and
π-fields, are in one-to-one correspondence with mappings; these correspondences
are both monotone (w.r.t. the orders) and preserve the lattice structures.

3.3.1 The Lattice of Partitions/Equivalence Relations

Partitions
We recall the definition of a partition.

Definition 3.2 A collection P of subsets of Ω is a partition if it consists of mutually
disjoint nonempty subsets whose union is Ω:

P = {Ωi }i∈I with

⎧⎪⎨
⎪⎩

Ω = ∪i∈I Ωi ,

Ωi ∩ Ω j = ∅, ∀i �= j,

Ωi �= ∅, ∀i ∈ I.

(3.21)
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Subsets of Ω whose union is Ω are also said to cover Ω , or to form a covering
of Ω . Thus, a partition of Ω is a covering consisting of mutually disjoint nonempty
subsets of Ω .

The complete partition (also said universal or discrete partition) {{ω}}ω∈Ω consists
of all singletons, while the trivial partition contains only Ω .

Undistinguishability Equivalence Relations
Any element in the universe Ω belongs to only one subset in a given partition P.

Definition 3.3 Consider a partition P = {Ωi }i∈I . Two elements of the universe Ω

are said to be undistinguishable w.r.t. P if they belong to the same subset of the parti-
tion P. We define an equivalence relation on Ω , the undistinguishability equivalence
relation RP, by

ωRPω′ ⇐⇒ ∃i ∈ I, ω ∈ Ωi and ω′ ∈ Ωi . (3.22)

It is easily seen that the equivalence classes (3.18) of the undistinguishability equiv-
alence relation RP are the elements of the partition P:

Ω/RP = P. (3.23)

On the other hand, the classes of any equivalence relation on Ω form a partition.
Hence, partitions on Ω are in one-to-one correspondence with equivalence relations
on Ω by the mappings

P �→ RP and R �→ Ω/R. (3.24)

A Partial Order and a Lattice Structure on Partitions
We define and characterize a partial order between partitions, and then we introduce
a lattice structure.

Definition 3.4 We say that a partition P� is finer than a partition P� if every element
of P� is included in an element of P�. We denote this by P� � P�.

In the following proposition, we recall that a partition P� is finer than a partition
P� if, and only if, every element of P� is the union of elements of P�. The proof can
be found in [144].

Proposition 3.5 Consider two partitions P� = {Ω�
i }i∈I � and P� = {Ω�

j } j∈I � . The
following assertions are equivalent:

1. P� � P�;
2. ∀ j ∈ I �, ∃i ∈ I �, Ω

�
j ⊂ Ω

�
i ;

3. ∀i ∈ I �, ∃J ⊂ I �, Ω
�
i = ⋃

j∈J Ω
�
j .
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From the equivalence between item 1 and item 2, and from (3.22), we deduce that
the order relations “finer” for the relations as defined in (3.8) and for the partitions
in Definition 3.4 are compatible and coherent in the sense that

P� � P� ⇐⇒ RP� � RP� . (3.25)

The relation � on the set of all partitions on the universe Ω is a partial order. We
leave the proof of the following proposition to the reader.

Proposition 3.6 The relation � between partitions is a partial order on the set of
all partitions on Ω .

Equipped with the relation �, the set of all partitions on the universe Ω is a lattice.
We let the proof of the following proposition to the reader (see Fig. 3.2). A reference
book is [144].

Proposition 3.7 The set of all partitions on Ω is a lattice, with the operators ∧ and
∨ as below. Let P = {Ωi }i∈I and P′ = {Ω ′

j } j∈I ′ be two partitions on Ω .

• The greatest lower bound of the two partitions P and P′ is the partition P ∧ P′
made of subsets of Ω which are both union of elements of P and union of elements
of P′: G ∈ P∧P′ if, and only if, ∃J ⊂ I and ∃J ′ ⊂ I ′ such that G = ⋃

i∈J Ωi =⋃
j∈J ′ Ω ′

j .
• The least upper bound P∨P′ of the two partitions P and P′ is the partition made of

all nonempty intersections between elements of P and elements of P′: G ∈ P∨P′
if, and only if, ∃i ∈ I and ∃ j ∈ I ′ such that G = Ωi ∩ Ω ′

j and G �= ∅.

The bottom ⊥ of the lattice is the trivial partition Ω , whereas the complete partition
{{ω}}ω∈Ω is the top �.

Recall that partitions on Ω are in one-to-one correspondence with equivalence
relations on Ω (see Definition 3.3). The following proposition details how the lattice
operations upon partitions translate into operations upon equivalence relations. The
proof can be found in [144].

P∨P PP ∧ PP

Fig. 3.2 Least upper and greatest lower bounds of partitions
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Proposition 3.8 Consider two partitions P and P′ on Ω .

• The equivalence relation RP∧P′ attached to the greatest lower bound P ∧ P′ is
the transitive closure (RP∪RP′)∞ of the union of the equivalence relations RP

and RP′
RP∧P′ = (RP ∪ RP′)∞. (3.26)

• The equivalence relation RP∨P′ attached to the least upper bound P ∨ P′ is the
intersection RP ∩ RP′ of the equivalence relations RP and RP′ :

RP∨P′ = RP ∩ RP′ . (3.27)

3.3.2 The Lattice of π-Fields (Partition Fields)

We define a partition field, or a π-field, as a collection of subsets of the universe Ω

which is stable under arbitrary union and intersection (countable or not). In accor-
dance with [58], we claim that partition fields are adequate to represent information.
We show their specific connection to partitions. As for partitions, we refer to [148]
for the proofs.

π-Fields or Partition Fields
The following definition is taken from [160].

Definition 3.9 A partition field (or π-field) on Ω is a nonempty collection G of sub-
sets of Ω (identified with a subset G ⊂ 2Ω ) which is stable under complementation
and unlimited union (hence, under unlimited intersection).

Notice that a partition field, being nonempty, necessarily contains Ω and ∅. The trivial
partition field is {∅,Ω}, whereas the complete partition field (also called universal
or discrete) is 2Ω , the partition field consisting of all subsets of the universe Ω .

Definition 3.10 Let G′ and G′′ be two collections of subsets of Ω: G′ ⊂ 2Ω and
G′′ ⊂ 2Ω . Their union G′ ∪ G′′ is the subset of 2Ω made of subsets G ⊂ Ω such
that either G ∈ G′ or G ∈ G′′. Their intersection G′ ∩G′′ is the subset of 2Ω made of
subsets G ⊂ Ω such that both G ∈ G′ and G ∈ G′′.

It is easily seen that the intersection of partition fields is a partition field. This justifies
the following definition.

Definition 3.11 The partition field π(C) generated by a collection C of subsets of Ω

is the smallest partition field containing C. It is also the intersection of all partition
fields containing C.

Remark 3.12 As an application, consider two sets Ω1 and Ω2, each equipped with
a partition field Gi , i = 1, 2. By definition, the product partition field G1 ⊗ G2
on Ω1 × Ω2 is the one generated by the rectangles, that is by the set
{G1 × G2 | Gi ∈ Gi , i = 1, 2 }. ♦
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The partition field π(C) may be a large collection of subsets, as illustrated by
the following examples. This is the main reason why partition fields are not used in
probability theory. Given “primitive events” inC, the partition field that they generate
is generally too large to support a probability measure.

Example 3.13 If the collection C contains all singletons, then π(C) = 2Ω . Indeed,
any subset of Ω may be written as the union (countable or uncountable) of its
singletons. As an application, the partition field π(T) generated by the Borelian
topology T of R

d is the complete partition field. Indeed, π(T) contains the closed
sets (by complementing the open sets), hence the singletons. We deduce that π(T) =
π(Bo

Rd ) = 2R
d
. �

A Partial Order and a Lattice Structure on Partition Fields
We highlight the property that the set of π-fields can be equipped with order relation
and with lattice structure. This allows us to speak of more or less information and is
how we can merge information from two sources (greatest lower bound) or extract
common information (least upper bound).

Definition 3.14 Consider two partition fields G� and G� on Ω . When G� ⊂ G� (that
is, G ∈ G� ⇒ G ∈ G�), G� is said to be finer than G�, and this is denoted by G� � G�.

We let the proof of the following proposition to the reader.

Proposition 3.15 The relation � between partition fields on Ω is a partial order
relation.

The set of all partition fields on Ω is a lattice, with the operators ∧ and ∨ as
below. Consider G and G′′ two partition fields on Ω .

• The greatest lower bound of the partition fields G′ and G′′ is G′ ∧ G′′ = G′ ∩ G′′,
made of subsets of Ω which belong both to G′ and to G′′.

• The least upper bound of the partition fields G′ and G′′ is G′ ∨ G′′ = π(G′ ∪ G′′),
the partition field generated by the subsets of Ω which belong either to G′ or to
G′′.

• The bottom ⊥ of the lattice of all partitions fields on Ω is ⊥= {∅,Ω} the trivial
partition field, whereas the complete partition field is the top � = 2Ω .

Partition of Atoms and Undistinguishability Equivalence Relation
We now shed light on the property that partition fields have non trivial atoms, which
form a partition, and that partition fields are in one-to-one correspondence with
partitions and with equivalence relations on Ω .

Definition 3.16 Consider a collectionG of subsets of Ω . An atom of G, or aG-atom,
is a nonempty subset G ∈ G such that K ∈ G and K ⊂ G imply that K = ∅ or
K = G.
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Proposition 3.17 Consider a collection G of subsets of Ω which is closed under
intersection. Then, the atoms of G are mutually disjoint. If the union of the G-atoms
is equal to Ω , then the G-atoms form a partition of Ω . As a consequence, if a
collection of G-atoms covers Ω , there are no G-atoms apart from this collection.

Proof Consider two distinct atoms G ′ ∈ G and G ′′ ∈ G. Since, by assumption,
G = G ′ ∩ G ′′ ∈ G and G ⊂ G ′, we deduce that G = G ′ or G = ∅ since G ′ is
a G-atom. In the same way, we have that G = G ′′ or G = ∅. We conclude that
G = G ′ ∩ G ′′ = ∅, since G ′ and G ′′ are distinct. The last assertions follow easily. �

Proposition 3.18 Consider G a partition field of Ω . The atoms of G form a partition
of Ω , denoted by part(G). The partition field generated by the atoms of G is G:

π
(

part(G)
) = G. (3.28)

Proof For any ω ∈ Ω , let us denote by Gω the intersection of all sets in G which
contain ω (notice that Gω is not empty since it contains ω). Since G is a partition
field, this intersection Gω belongs to G: therefore, it is the smallest set in G which
contains ω. We now prove that any Gω is an atom.

Let K ∈ G be such that K ⊂ Gω . If ω ∈ K , then Gω ⊂ K by definition of Gω

since K ∈ G, and thus K = Gω . If ω �∈ K , then Gω ⊂ K c by definition of Gω , since
K c ∈ G. Thus, we have that K ⊂ Gω ⊂ K c. This implies that K = ∅, so that Gω is
an atom.

By construction, sets of the form Gω cover Ω because their union contains Ω .
We conclude with Proposition 3.17 that the atoms of G form a partition. �

Corollary 3.19 The partition part(G) is the finest partition P such that P ⊂ G.

Proof Denote by PG the least upper bound of the partitions P such that P ⊂ G. By
construction,PG is the finest partitionP such thatP ⊂ G. We have that part(G) � PG.
Take any K ∈ PG. By Proposition 3.5, there exists G ∈ part(G) such that K ⊂ G.
Now, we know that G is a G-atom. Therefore, K = G since K ∈ G and K �= ∅
because K ∈ PG, and we have proven that part(G) = PG. �

As a consequence of Proposition 3.18, partition fields on Ω are in one-to-one
correspondence with partitions of Ω (hence with equivalence relations on Ω as
discussed in Sect. 3.3.1), by the mappings

G �→ part(G) and P �→ π(P). (3.29)

Definition 3.20 A partition field G of Ω is said to be a finite partition field if the
number of atoms in the partition part(G) is finite. It is said to be an atomic partition
field if the number of atoms in the partition part(G) is countable (in bijection with a
subset of N, so that a finite partition field is an atomic partition field).

The following proposition expresses the property that the mapping G �→ part(G)

is monotone w.r.t. the orders and preserves the lattice structures.
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Proposition 3.21 Let G′ and G′′ be π-fields.

1. The partition field G′ is finer than G′′ if, and only if, every atom of G′′ is the union
of G′-atoms:

G′ � G′′ ⇐⇒ part(G′) � part(G′′). (3.30)

2. The partition part(G′ ∧ G′′) is made of subsets of Ω which are both union of G′-
atoms and union of G′′-atoms:

part(G′ ∧ G′′) = part(G′) ∧ part(G′′). (3.31)

3. The partition part(G′ ∨ G′′) is made of all nonempty intersections between G′-
atoms and G′′-atoms:

part(G′ ∨ G′′) = part(G′) ∨ part(G′′). (3.32)

Proof Notice that every element in a partition field can be written as a union of atoms
of the partition field. Indeed, with the notations of the proof of Proposition 3.18, any
K ∈ G can be written as K = ∪ω∈K Gω , where we recall that Gω is the intersection
of all sets in G which contain ω and is a G-atom.

1. By Definition 3.14, G′ is finer than G′′ if, and only if, every element of G′′ belongs
to G′. On the one hand, suppose that G′ is finer than G′′. Therefore, every element
of G′′ belongs to G′ and, in particular, every atom of G′′ belongs toG′, so that it can
be expressed as a union of G′-atoms. Since any element of G′′ is a union of G′′-
atoms, we deduce that it is therefore a union of G′-atoms. By Proposition 3.5, we
conclude that part(G′) � part(G′′).
On the other hand, if any atom of G′′ can be expressed as a union of G′-atoms,
then so can be any element of G′′ by Proposition 3.18: hence G′′ ⊂ G′, that is,
G′′ � G′.

2. By Proposition 3.15, the greatest lower bound of partition fields G′ and G′′ is
G′ ∧ G′′ = G′ ∩ G′′. Therefore, it contains the subsets of Ω which are both in G′
and in G′′, hence which are both union of G′-atoms and union of G′′-atoms.

3. By Proposition 3.15, the least upper bound G′ ∨ G′′ = π(G′ ∪ G′′).

• First, we prove that any nonempty intersection G = G ′ ∩ G ′′ between a
G′-atom G ′ and a G′′-atom G ′′ is an atom of G′ ∨ G′′. Notice that the parti-
tion field G′ ∨ G′′ = π(G′ ∪ G′′) is made of subsets of Ω which are arbitrary
union and intersection of elements of G′ and G′′, and therefore arbitrary union
and intersection of G′-atoms and G′′-atoms. With obvious notations, consider
K ∈ π(G′ ∪ G′′) written as K = ∪i∈I ∩ j∈Ji Gi j where Gi j is either a G′-
atom or a G′′-atom. In fact, by Proposition 3.17, the set Ji may be reduced to
two elements since two distinct G′-atoms are necessarily disjoint, and the same
forG′′-atoms. Therefore, we can write K = ∪i∈I G ′

i ∩G ′′
i where G ′

i is aG′-atom
and G ′′

i a G′′-atom. If K ⊂ G = G ′ ∩ G ′′, then necessarily G ′
i ∩ G ′′

i ⊂ G ′ ∩ G ′′
for all i ∈ I . As a consequence, G ′

i ∩ G ′′
i ⊂ (G ′ ∩ G ′

i ) ∩ (G ′′
i ∩ G ′′) where,
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again by Proposition 3.17, G ′ ∩ G ′
i = ∅ or G ′ ∩ G ′

i = G ′, and G ′′ ∩ G ′′
i = ∅

or G ′′ ∩ G ′′
i = G ′′. Therefore, either K = ∅ or K = ∪i∈I G ′ ∩ G ′′ = G. We

conclude that G is an atom of G′ ∨ G′′.
• Second, we prove that all nonempty intersections between G′-atoms and G′′-

atoms form a partition. Indeed, on the one hand, two such distinct nonempty
intersections are necessarily disjoint by Proposition 3.17. On the other hand,
the union of all nonempty intersections between G′-atoms and G′′-atoms is the
union of all G′-atoms (and also, of all G′′-atoms). Now, by Proposition 3.18,
we know that the atoms of G′ form a partition. Therefore, the union of all
nonempty intersections betweenG′-atoms andG′′-atoms is Ω . We conclude that
all nonempty intersections between G′-atoms and G′′-atoms form a partition.
As a consequence, there can be no other atoms.

This ends the proof. �

3.3.3 The Lattice of σ-Fields

Less is required from σ-fields compared to π-fields, only stability by countable union
and intersection. In contrast to a widely accepted idea, and as noted by [58], the use
of σ-fields to handle information raises some problems. Indeed, in Remark 3.29, we
discuss the fact that the inclusion order on σ-fields is not necessarily compatible with
the order on partitions: this is why the use of σ-fields as the mathematical expression
of information may be tricky. However, using π-fields can raise difficulties in the
stochastic case. As an illustration, the π-field generated by the singletons of the
universe Ω is the complete field made of all subsets of Ω (being made of all arbitrary
union and intersection, countable or not, of singletons). Unfortunately, the complete
field is too large to support a probability measure when Ω is not finite.

σ-Fields

Definition 3.22 A σ-field on Ω is a collection G of subsets of Ω (identified with
a subset G ⊂ 2Ω ), containing Ω , and which is stable under complementation and
countable union (hence under countable intersection).

Notice that a σ-field necessarily contains Ω and ∅. When Ω is finite, σ-fields and
partition fields coincide. Every partition field is a σ-field, but the converse is generally
false as illustrated by the examples below.

Example 3.23 Any σ-field which contains all singletons and which is not the com-
plete σ-field 2Ω cannot be a π-field (indeed, a π-field which contains all singletons
is necessarily 2Ω as seen in Example 3.13). Thus, the σ-field Bo

R
of Borel sets on R

is not a π-field. The set made of all countable subsets of an uncountable set Ω and
of all their complements is a σ-field, but is not a π-field. �
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It is easy to see that the intersection of σ-fields (see Definition 3.10) is a σ-field.
This justifies the following definition.

Definition 3.24 The σ-field σ(C) generated by a collection C of subsets of Ω is the
smallest σ-field containing C. It is also the intersection of all σ-fields containing C.

Remark 3.25 As an application (see also Sect. B.1.4), consider two sets Ω1
and Ω2, each equipped with a σ-field Gi , i = 1, 2. By definition, the product
σ-field G1 ⊗ G2 on Ω1 × Ω2 is the one generated by the rectangles
{G1 × G2 | Gi ∈ Gi , i = 1, 2 }. ♦

Definition 3.26 A σ-fieldG of Ω is said to be an atomic σ-field if it is generated by a
countable partition {Ωn}n∈N where N is countable (in bijection with a subset of N):
G = σ({Ωn}n∈N ). In that case, the σ-field G is also a partition field (and an atomic
one, as in Definition 3.20), and we have that G = σ({Ωn}n∈N ) = π({Ωn}n∈N ) (see
Definition 3.11). In the special case where the countable partition {Ωn}n∈N is finite,
the σ-field G of Ω is said to be a finite σ-field.

π-Fields and σ-Fields
From the Definitions 3.9 of partition fields and 3.22 of σ-fields, we deduce the
following inclusion.

Proposition 3.27 For any collection C of subsets of Ω , we have that

σ(C) ⊂ π(C). (3.33)

Example 3.28 As an example, consider R with closed subsets C as “primitive
events”: σ(C) is the set Bo

R
of Borelians, whereas, as seen in Example 3.13,

π(C) = 2R since C contains all singletons. Therefore, any non Borelian subset
belongs to π(C) but not to σ(C). �
Remark 3.29 In [58], the following example is analyzed to show that the use of σ-
fields as information raises delicate issues. On Ω = [0, 1], consider the two par-
titions C� = {[0, 1/2], ]1/2, 1]} and the complete partition C� = {{ω}}ω∈[0,1]. By
Definition 3.4, C� is finer than C�. The π-fields generated are π(C�) = {∅, [0, 1],
[0, 1/2], ]1/2, 1]} and π(C�) = 2[0,1]. Since C� is a finite partition, the σ-field gen-
erated by C� is σ(C�) = π(C�). It can be seen that the σ-field σ(C�) generated by
C� is made of subsets of [0, 1] which are either countable or whose complement is
countable. Hence, to summarize, we have that C� � C� and π(C�) � π(C�), whereas
σ(C�) = {∅, [0, 1], [0, 1/2], ]1/2, 1]} and σ(C�) are not comparable. Indeed, neither
of the sets ∅, [0, 1], [0, 1/2], ]1/2, 1] is countable or has a countable complement. ♦

It can easily be proven that, in all generality,

C� � C� ⇒ π(C�) � π(C�). (3.34)
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However, this property is not true for σ-fields as the above example illustrates it. The
inclusion order on σ-fields is not compatible with the order on partitions: this is why
the use of σ-fields as the mathematical expression of information may be tricky.

A Partial Order and a Lattice Structure on σ-Fields
The set of all σ-fields on Ω is a lattice, with the operators ∧ and ∨ defined as for
partition fields in Proposition 3.15.

3.4 Mapping Measurability Approach

After having discussed the partitions and fields approach, we turn the spotlight onto
the mapping measurability approach to information handling. For this purpose, we
recall the notion of measurability of mappings, in relation with either partitions
in Sect. 3.4.1, π-fields in Sect. 3.4.2 or σ-fields in Sect. 3.4.3. In the mapping mea-
surability approach, information is handled by mappings over the universe Ω , also
called signals. We provide tools to pass from an algebraic aspect of measurability—
where a mapping is measurable w.r.t. another one—to a functional one, where a
mapping is a function of another one. The measurability framework developed will
be widely used in the book.

3.4.1 Measurability of Mappings w.r.t. Partitions

Any mapping defined over the universe Ω , whatever its image set, defines an equiv-
alence relation on Ω as follows.

Definition 3.30 Le H be a mapping defined over the universe Ω . Two elements
of Ω are equivalent or undistinguishable w.r.t. the mapping H when they share the
same image. This defines the following equivalence relation RH on Ω:

ωRH ω′ ⇐⇒ H(ω) = H(ω′). (3.35)

This equivalence relation on Ω induces a partition of Ω into H -classes, in one-to-one
correspondence with the image im H of the mapping H . We say that this partition
is the partition generated by the mapping H . We denote it by part(H), or by Ω/H
when we want to emphasize the dependence upon the domain Ω:

part(H) := Ω/H :=
{

H−1(y) | y ∈ im H
}

= H−1({{y}}y∈im H ). (3.36)

Recall that H−1(y) is the subset {ω ∈ Ω | H(ω) = y } of Ω .
We say that the mapping H is measurable w.r.t. a partition P, or is P-measurable,

if P is finer than the partition part(H) generated by the mapping H : part(H) � P.
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The following proposition is a straightforward consequence of the above
definition.

Proposition 3.31 A mapping defined over the domain Ω is measurable w.r.t. a par-
tition if, and only if, it is constant on every element of this partition.

Proof The mapping H is measurable w.r.t. the partitionP if and only if part(H) � P,
that is, every element of part(H) is included in a element of P or, equivalently, is
the union of elements of P by Proposition 3.5.

Since any element of part(H) is of the form H−1(y) for some y ∈ im H by (3.36),
the mapping H is constant on every element of part(H), hence constant on every
element of the partition P.

On the other hand, if the mapping H is constant on every element of the partitionP,
with any G ∈ P we associate y ∈ im H such that G ⊂ H−1(y). This means exactly
that part(H) � P. �

3.4.2 Measurability of Mappings w.r.t. π-Fields

In Definition 3.30, we introduced the notions of partition generated by a mapping,
and of measurability of a mapping w.r.t. a partition. We now define the notions of
partition field generated by a mapping, and of measurability of a mapping w.r.t. a
partition field. Then, we relate both approaches.

Let Y be a set equipped with a partition field Y. For any mapping H : Ω → Y,
the pre-image H−1(Y) of the partition field Y is easily seen to be a partition field
of Ω . This property motivates the following definition.

Definition 3.32 Let Ω be equipped with a partition field G, and let Y be another
set equipped with a partition field Y. For any mapping H : Ω → Y, H−1(Y) is a
partition field of Ω called the partition field generated by H , denoted by

π(H) := H−1(Y) =
{

H−1(Y ) | Y ∈ Y
}

. (3.37)

The mapping H is said to be measurable w.r.t. the partition field G, or G-measurable,
denoted by H � G, if G is finer than π(H):

H � G ⇐⇒ π(H) � G ⇐⇒ π(H) ⊂ G. (3.38)

Remark 3.33 When not explicitely specified, the partition field Y on the image set Y
is supposed to be the complete partition field {{y}}y∈Y, identified with 2Y. ♦

In Definition 3.30, we introduced the partition part(H)generated by a mapping H .
Partition and partition field generated by H are related by the following proposition.
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Proposition 3.34 Consider a mapping H : Ω → Y. The atoms of the partition field
π(H) are the elements of the partition part(H):

part
(
π(H)

) = part(H). (3.39)

The partition field π(H) is generated by the partition part(H):

π(H) = π
(

part(H)
)
. (3.40)

Proof As specified in Remark 3.33, the partition field Y on the image set Y is sup-
posed to be the complete partition field {{y}}y∈Y.

By Definition 3.30, the elements of the partition part(H) are the subsets of Ω of
the form G = H−1(y) for y ∈ im H .

Now, a subset of Ω of the form G = H−1(y) for y ∈ im H is an atom of π(H).
Indeed, if K ⊂ G and K ∈ π(H), then we must have both K = H−1(J ) for some
J ⊂ im H by (3.37), and K = H−1(J ) ⊂ H−1(y) = G. Therefore, J ⊂ {y} and
either J = {y} and K = G, or J = ∅ and K = ∅.

By construction, sets of the form G = H−1(y) for y ∈ im H cover Ω , and we
conclude with Proposition 3.17 that they form a partition of Ω , and that there are no
other nonempty π(H)-atoms. Therefore, the atoms of the partition field π(H) are the
elements of the partition part(H). By Proposition 3.18, this is equivalent to (3.39).

Then, (3.40) is a consequence of Proposition 3.18 and of (3.28). Indeed, we obtain

π
(

part
(
π(H)

)) = π(H) = π
(

part(H)
)
. �

The counterpart of Proposition 3.31 is the following proposition.

Proposition 3.35 Consider a mapping H : Ω → Y and a partition field G with
associated partition part(G). The following assertions are equivalent.

1. The mapping H is measurable w.r.t. the partition field G.
2. The mapping H is constant on every atom of the partition field G.
3. The mapping H is constant on every element of the partition part(G).
4. The mapping H is measurable w.r.t. the partition part(G).

Proof That item 2 is equivalent to item 3 results from Proposition 3.18. That item 3
is equivalent to item 4 results from Proposition 3.31.

Item 1 means that π(H) ⊂ G. We deduce that part(H) ⊂ π(H) ⊂ G and, by the
last assertion of Proposition 3.18, we conclude that part(H) � part(G). Thus, we
have proved item 4.

Item 4 means that part(H) � part(G). Therefore, there follows an inclusion
between the partition fields generated: π

(
part(H)

) ⊂ π
(

part(G)
)
. By Proposi-

tion 3.18, we conclude that π(H) = π
(

part(H)
) ⊂ G = π

(
part(G)

)
by Proposi-

tion 3.34 and (3.40), and by Proposition 3.18. Thus, we have proved item 1. �

A Partial Order and a Lattice Structure on Mappings
The following definitions and propositions are taken from [33].
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Definition 3.36 Let Hi : Ω → Yi , i = 1, 2. The mapping H1 is said to be measur-
able w.r.t. the mapping H2 if π(H1) ⊂ π(H2). We denote this by H1 � H2, or by
H2 � H1.

Remark 3.37 In Definition 3.44, we also find another notion of measurability of
mappings w.r.t. a σ-field. In the book, the context will indicate which of both defin-
itions is relevant. ♦

The following Proposition 3.38 is a tool to pass from an algebraic aspect of
measurability—where a mapping is measurable w.r.t. another one—to a functional
one, where a mapping is a function of another one (see item 4). An illustration is
given in Fig. 3.3.

Proposition 3.38 Consider two mappings Hi : Ω → Yi , i = 1, 2. The follow-
ing conditions are equivalent characterizations of the fact that H1 is measurable
w.r.t. H2:

1. H1 � H2;
2. ∀(ω,ω′) ∈ Ω2, H2(ω) = H2(ω

′) ⇒ H1(ω) = H1(ω
′);

3. ∀y2 ∈ im H2, ∃y1 ∈ im H1 : H−1
2 (y2) ⊂ H−1

1 (y1);
4. there exists a unique mapping f : im H2 → im H1 such that H1 = f ◦ H2;
5. π(H1) ⊂ π(H2);
6. every π(H2)-atom is included in a π(H1)-atom;
7. every π(H1)-atom is the union of π(H2)-atoms;
8. Ω/H1 � Ω/H2

Proof The equivalence of item 1 and item 5 is a consequence of Definition 3.36. Let
us define the multi-application f as:

∀y2 ∈ im H2, f(y2) =
⋃

ω∈H−1
2 (y2)

{H1(ω)}.

From item 2, we deduce that f is in fact a mapping (f(y2) contains a single element)
satisfying item 4. The reverse implication is immediate.

The remaining items are equivalent by Definition 3.4 and by Proposition 3.18. �

Fig. 3.3 Measurability
relation between mappings

H1

H−1
2

Ω

H1= ◦H2
−1
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A consequence of Definition 3.36 is that the relation � between mappings is stable
by right composition as follows.

Proposition 3.39 Let Hi : Ω → Yi , i = 1, 2. Then,

H1 � H2 ⇒ ∀h : Ω ′ → Ω, H1 ◦ h � H2 ◦ h. (3.41)

As stressed in Sect. 3.2.1, any preorder � induces an order on the quotient set w.r.t.
the equivalence relation H1 ≡ H2 ⇐⇒ H1 � H2 or H2 � H1. This motivates the
following definition.

Definition 3.40 Let Hi : Ω → Yi , i = 1, 2. The mappings H1 and H2 are said to
be equivalent if π(H1) = π(H2). This is denoted by H1 ≡ H2.

Proposition 3.41 Let Hi : Ω → Yi , i = 1, 2. The following conditions are equiv-
alent characterizations of the fact that H1 is equivalent to H2:

1. H1 ≡ H2;
2. ∀(ω,ω′) ∈ Ω2, H2(ω) = H2(ω

′) ⇐⇒ H1(ω) = H1(ω
′);

3. Ω/H1 = Ω/H2;
4. there exists an injection f : im H2 → Y1 such that H1 = f ◦ H2;
5. there exists a bijection f : im H2 → im H1 such that H1 = f ◦ H2.

Proof We have that

H1 ≡ H2 ⇐⇒ H1 � H2 and H2 � H1 ⇐⇒ part(H1) = part(H2)

if, and only if, by Proposition 3.38, there exist a mapping f : im H2 → im H1 such
that H1 = f ◦ H2 and a mapping f′ : im H1 → im H2 such that H2 = f′ ◦ H1.

This ends the proof since f : im H2 → im H1 is a bijection if, and only if, there
exist f′ : im H1 → im H2 such that f ◦ f′ = Iim H1 and f′ ◦ f = Iim H2 . �

As stressed above, the relation � defines a preorder for functions over Ω . There-
fore, we deduce an order relation for the equivalence classes of functions over Ω .
We leave the proof of the following proposition to the reader.

Proposition 3.42 Over the equivalence classes of functions over Ω , the relation �
of Definition 3.36 induces a partial order relation.

With any mapping H defined on Ω , we associate the partition Ω/H of Ω . The
mapping H �→ Ω/H is monotone w.r.t. the relations � of Definitions 3.4 and 3.36.
Moreover, equivalence classes of mappings over Ω w.r.t. the relation ≡ of Defini-
tion 3.40 give the same image. The equivalence classes of mappings over Ω are in
one-to-one monotone correspondence with partitions on Ω by the mapping induced
by H �→ Ω/H. Therefore, the equivalence classes of functions inherit a lattice
structure with the following properties:
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• bottom element: the class of constant functions on Ω;
• top element: the class of injective functions on Ω;
• least upper bound: the least upper bound H1 ∨ H2 (class) can be represented by

the couple mapping (H1, H2).

There exists a greatest lower bound H1 ∧ H2, but there is no straightforward way
of displaying a mapping which would represent the equivalence class of this lower
bound.

In Fig. 3.2, one can visualize in the third drawing how the atoms of the partition
associated with the least upper bound H1 ∨ H2, represented by the couple of func-
tions (H1, H2), are built as intersections of the atoms of the partitions associated
with the functions H1 and H2. The fourth picture displays the partition associated
with the greatest lower bound H1 ∧ H2. The associated undistinguishability equiva-
lence relation (see Definition 3.3) is the transitive closure of the undistinguishability
equivalence relations with the functions H1 and H2.

A Summary Table
We give in Table 3.1 correspondences between different ways of representing infor-
mation.

Notice in Table 3.1 that the least upper bound of two partitions is easy to calculate
by intersecting atoms, whereas computing the greatest lower bound is much harder

Table 3.1 Correspondences between partitions and fields and mapping measurability approaches
to information

Description Partitions and fields Measurability

Information Equivalence
relation on Ω

Partition of Ω Partition field
on Ω

Mapping with
domain Ω

Notation R⊂ Ω × Ω {Ωi }i∈I ⊂ 2Ω G⊂ 2Ω H : Ω → Y

Example Ω × Ω complete {Ω} trivial {∅,Ω} trivial H : Ω → Y

constant

Example ΔΩ diagonal {{ω}}ω∈Ω discrete 2Ω discrete H = IΩ identity

Classes ω R Elements {Ωi }i∈I Atoms G ∈ G Pre-images
H−1({y})

Undistinguishable elements Belong to Same image

ω′ Rω ∃i, {ω,ω′} ⊂ Ωi same atom H(ω) = H(ω′)
Compare R� � R� classes

inclusion
Ω

�
i ∩ Ω

�
j ∈

{∅,Ω
�
i }

G� ⊂ G� ∃f : Y� → Y
�

H � = f(H �)

Least upper
bound

R1 ∩ R2 Ω1
i ∩ Ω2

j G1 ∨ G2
generated by
G1 ∪ G2

(H1, H2) :
Ω → Y1 × Y2

Intersection of classes

Greatest lower
bound

(R1 ∪ R2)
∞

transitive closure
G1 ∧ G2 =
G1 ∩ G2
intersection
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(it requires a transitive closure, once the identification with equivalence relations is
made). The reverse holds true for partition fields: the greatest lower bound is easy
to calculate by intersecting partition fields (taking the common elements), whereas
this is not the case for the least upper bound.

The multiple equivalences seen above—between equivalence relations, partitions,
partition fields, equivalence classes of mappings—reflect different ways of represent-
ing and handling information. However, when the universe Ω is not countable and is
equipped with a probability distribution, the notion of partition field is not adapted.
This is why we now turn to σ-fields, less easy to handle than partition fields, but
tailored for probability theory.

3.4.3 Measurability of Mappings w.r.t. σ-Fields

Let Ω be equipped with a σ-field G, and Y with a σ-field Y.3 The following notions
of measurability for mappings from Ω to Y is classical.

Remark 3.43 Notice however that, in Definition 3.36, we use the same notation to
define another notion of measurability of mappings (w.r.t. a π-field). In this book,
the context will indicate which of both definitions is relevant. ♦

Definition 3.44 For any mapping H : Ω → Y, H−1(Y) is a σ-field on Ω called
the σ-field generated by H , denoted by σ(H) := H−1(Y).

The mapping H is said to be measurable w.r.t. the σ-field G, or G-measurable,
denoted by H � G, if σ(H) ⊂ G. In Probability Theory, a measurable mapping from
(Ω,G) to (Y,Y) is called a random variable.

Definition 3.45 Let Hi : Ω → Yi , i = 1, 2. The mapping H1 is said to be measur-
able w.r.t. the mapping H2 if σ(H1) ⊂ σ(H2). We denote this by H1 � H2.

The following Proposition 3.46, due to Doob (see [53, Chap. 1, p. 18]), is a tool
to pass from an algebraic aspect of measurability to a functional one.

Proposition 3.46 Let Hi : Ω → Yi , i = 1, 2. Assume that Y1 is a separable
complete metric space.

The mapping H1 is measurable w.r.t. H2 if, and only if, there exists a measurable
mapping f : im H2 → im H1 such that H1 = f ◦ H2.

Notice the difference between Propositions 3.38 and 3.46: the unique mapping
f : im H2 → im H1 such that H1 = f ◦ H2 in Proposition 3.38 has to be measur-
able for Proposition 3.46 to hold true.

Remark 3.47 In the book, when we make use of Proposition 3.46, we implicitely
assume that all spaces are separable complete and metric. ♦

3When Y is a Borel space (see Sect. B.6), it is implicitely assumed that Y is the σ-field Bo
Y

of Borel
subsets.
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We end up with a result that we will often use in the text.

Proposition 3.48 Consider a random variable H : Ω → Y, and a measurable
one-to-one mapping ϕ : Y → Z with measurable inverse ϕ−1 : Z → Y. Then,
ϕ ◦ H is a random variable and σ(H) = σ(ϕ ◦ H).

Proof It is implicit in the proposition that Ω is equipped with a σ-field G, Y with a
σ-field Y, and Z with a σ-field Z.

The random variable H is a measurable mapping H : Ω → Y. Therefore, the
composition ϕ ◦ H : Ω → Z is a measurable mapping, hence is a random variable.
We have that

σ(ϕ ◦ H) = (ϕ ◦ H)−1(Z) = H−1
(
ϕ−1(Z)

)
⊂ H−1(Y) = σ(H),

where we have used the measurability of ϕ, namely ϕ−1(Z) ⊂ Y. Now, since the
mapping ϕ is one-to-one, we can write H = ϕ−1 ◦ ϕ ◦ H . Because the inverse ϕ−1

is measurable, we conclude from what we have just established that

σ(H) = σ(ϕ−1 ◦ ϕ ◦ H) ⊂ σ(ϕ ◦ H).

This completes the proof. �

3.5 Conditional Expectation and Optimization

In what follows, our aim is to give an elementary and intuitive definition of the
conditional expectation of a random variable w.r.t. information. When the universe Ω

is finite, we have seen that the different ways to describe information—equivalence
relations, partitions, partition fields, σ-fields, equivalence classes of mappings—are
equivalent.

We assume in the next paragraphs that the set Ω is finite and that it carries a
probability P (see Sect. B.1). We define the conditional expectation of a random
variable w.r.t. a partition. Then, we provide a formula connecting optimization under
measurability constraints and conditional expectation.

3.5.1 Conditional Expectation w.r.t. a Partition

Consider a function X : Ω → R. Because the set Ω is finite, the function X is
measurable (where R is equipped with the Borelian σ-field Bo

R
), hence is a random

variable. Taking a finite number of values, X is integrable, and its mathematical
expectation is the scalar given by
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E(X ) =
∑
ω∈Ω

P(ω)X (ω). (3.42)

Consider a partition P = {Ωi }i∈I of Ω , where we assume, for the sake of simplicity,
that each Ωi is such that P(Ωi ) > 0.

We define the conditional probability P|Ωi knowing Ωi by

P|Ωi (G) = P(G | Ωi ) = P(G ∩ Ωi )

P (Ωi )
, ∀G ⊂ Ω. (3.43)

It can be proven that P|Ωi satisfies the axioms of a probability (see Sect. B.1).
Let X|Ωi

denote the restriction of the random variable X to Ωi .

Definition 3.49 The conditional expectation of the random variable X w.r.t. the
partition P is the P-measurable random variable, denoted by E

(
X | P)

and having
constant value EP|Ωi

(X|Ωi
) on Ωi , namely

E
(
X | P)

(ω) = E
(
1Ωi X

)
P (Ωi )

, ∀ω ∈ Ωi , ∀i ∈ I. (3.44)

In case there would exist some Ωi such that P(Ωi ) = 0, we can give any value
to E

(
X | P)

on Ωi , such as zero for instance. Hence, the random variable E
(
X | G)

is constant on every element Ωi of the partition P. Its value is the mean value of X
restricted to Ωi whenever P(Ωi ) > 0. Using indicator functions, the general formula
is:

E
(
X | P) =

∑
i∈I,P(Ωi )>0

E
(
1Ωi X

)
P(Ωi )

1Ωi . (3.45)

By Proposition 3.35, the conditional expectation w.r.t. the partition P is measurable
w.r.t. P.

This elementary definition of conditional expectation w.r.t. a partition displays
all the basic properties shared by the more general conditional expectations (see
Sect. B.4). Let X and Y be two random variables on Ω , and λ be a real number. We
have that

E
(
λX + Y | P) = λE

(
X | P) + E

(
Y | P)

, (3.46a)

X ≥ 0 ⇒ E
(
X | P) ≥ 0, (3.46b)

E
(
E

(
X | P)) = E

(
X

)
. (3.46c)
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If Y is measurable w.r.t. P, we have that

E
(
Y X | P) = YE

(
X | P)

. (3.46d)

If P�, P� are two partitions of Ω , we have that

P� � P� ⇒ E
(
E

(
X | P�

) | P�
) = E

(
X | P�

)
. (3.46e)

Definition 3.50 When Y is a random variable, we define the conditional expectation
of X w.r.t. Y by

E
(
X | Y

) := E
(
X | part(Y )

)
. (3.47)

By Proposition 3.38, the random variable E
(
X | Y

)
is measurable w.r.t. the ran-

dom variable Y . Therefore, by Proposition 3.46, there exists a measurable mapping
f : im Y → R such that

E
(
X | Y

) = f ◦ Y . (3.48)

Let us now give an explicit expression of the mapping f.
Since part(Y ) = {

Y−1(y)
∣∣ y ∈ im Y

}
by (3.36), the random variable E

(
X | Y

)
takes the value

E
(
X | Y

)
(ω) = E

(
1Y =y X

)
P

(
Y = y

) ,

∀ω such that Y (ω) = y,∀y ∈ im Y . (3.49)

One traditionally denotes

E
(
X | Y = y

) := E
(
1Y =y X

)
P

(
Y = y

) , ∀y ∈ im Y . (3.50)

Putting f(y) := E
(
X | Y = y

)
, we obtain (3.48). Notice however that the mapping f

depends on the couple of random variables (X , Y ) by (3.50). Therefore, the equal-
ity (3.48) may be misleading, in letting one think that the dependence w.r.t. Y is
only through the values Y (ω) in E

(
X | Y

)
(ω) = f

(
Y (ω)

)
, whereas the dependence

is also functional through the mapping f in (3.50). We refer the reader back to the
discussion at p. xv of the preamble on notations. To be very explicit, let us define

f[X,Y ](y) := E
(
X | Y = y

)
, ∀y ∈ im Y . (3.51)

Now, (3.48) writes E
(
X | Y

) = f[X,Y ] ◦ Y , that is,

E
(
X | Y

)
(ω) = f[X,Y ]

(
Y (ω)

)
, ∀ω ∈ Ω. (3.52)
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The issue raised here goes beyond notation problems, and is discussed in Sects. 4.2
and 9.6.

3.5.2 Interchanging Minimization and Conditional
Expectation

Now, we provide a formula connecting optimization under measurability constraints
and conditional expectation. To keep things simple, we suppose that the universe Ω

and the control set U are both finite. Consider a criterion j : U × Ω → R.
Let a partition P = {Ωi }i=1,...,n of Ω be given. Since the universe Ω is finite, any

mapping with domain Ω is a random variable. We define

Uad := {
U : Ω → U

∣∣ U � P
}
, (3.53)

the set of random variables which are measurable w.r.t. the partition P. By Proposi-
tion 3.35, any U ∈ Uad is constant on every Ωi , i = 1, . . . , n.

Now, we consider the following optimization problem under the measurability
constraint U � P:

min
U ∈Uad

E
(

j (U (·), ·)) = min
U �P

E
(

j (U (·), ·)). (3.54)

To identify a solution, we introduce the following definition. Since U is finite,
minu∈U E(1Ωi j (u, ·))/P(Ωi ) is well defined for all i ∈= 1, . . . , n. Let us denote by
minu∈U E( j (u, ·) | P) the random variable defined by

min
u∈U

E( j (u, ·) | P)(ω) = min
u∈U

E(1Ωi j (u, ·))
P(Ωi )

,

∀ω ∈ Ωi , ∀i = 1, . . . , n. (3.55)

Proposition 3.51 Let U � be a P-measurable random variable such that

U �(ω) = u�
i ∈ arg min

u∈U
E(1Ωi j (u, ·))

P(Ωi )
, ∀ω ∈ Ωi , ∀i = 1, . . . , n. (3.56)

Then, we have that

min
U �P

E
(

j (U (·), ·)) = E
(

min
u∈U

E( j (u, ·) | P)
)
,

and the minimum is achieved for U �.

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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Proof By Proposition 3.35, any random variable U ∈ Uad is characterized by a
n-uple {ui }i=1,...,n , ui ∈ U such that

U|Ωi
≡ ui , ∀i = 1, . . . , n. (3.57)

We can assume that P(Ωi ) > 0 for all i = 1, . . . , n.4 By the definition (3.55) of
minu∈U E( j (u, ·) | P), we can write

min
u∈U

E( j (u, ·) | P)(ω) =
n∑

i=1

min
u∈U

E(1Ωi (·) j (u, ·))
P(Ωi )

1Ωi (ω), ∀ω ∈ Ω.

Thus, for all {ui }i=1,...,n , ui ∈ U, we have that

min
u∈U

E( j (u, ·) | P)(ω) ≤
n∑

i=1

1Ωi (ω)
E(1Ωi (·) j (ui , ·))

P(Ωi )
, ∀ω ∈ Ω.

With the random variable U such that U|Ωi
≡ ui , ∀i = 1, . . . , n, we get

min
u∈U

E( j (u, ·) | P) ≤
n∑

i=1

1Ωi

E(1Ωi j (U (·), ·))
P(Ωi )

,

and, using again (3.45), we obtain

min
u∈U

E( j (u, ·) | P) ≤ E( j (U (·), ·) | P). (3.58)

By (3.46c), taking expectation on both sides of Inequality (3.58) we obtain

E
(

min
u∈U

E( j (u, ·) | P)
) ≤ E

(
j (U (·), ·)), ∀U � P. (3.59)

Now, if U is replaced by U � defined in (3.56), then inequalities are replaced by
equalities in Eqs. (3.58) and (3.59). Thus, we conclude that

E
(

min
u∈U

E( j (u, ·) | P)
) = min

U �P
E

(
j (U (·), ·)) = E

(
j (U �(·), ·)). �

Let us consider the special case of the complete partition P = {{ω}}ω∈Ω , which
is a finite partition since Ω is supposed finite. Then, we have that E( j (u, ·) | P)

(ω) = j (u,ω) and the previous result gives, as a special case, an interchange theorem
for minimization and expectation:

4Indeed, if P(Ω j ) = 0, then the constant value u j taken by the random variable U on P(Ω j ) has
no effect on the cost of the optimization problem (3.54).
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E
(

min
u∈U

j (u, ·)) = min
U

E
(

j (U (·), ·)). (3.60)

Here, the notation minU means that we consider any random variable U , without
measurability constraint.

3.5.3 Conditional Expectation as an Optimal Value of a
Minimization Problem

The following basic example has already been examined in Sect. 1.3.1.
Consider a partition P = {Ωi }i=1,...,n and a random variable X . We use the

interchange properties to characterize the conditional expectation w.r.t. the partitionP
as the minimizer of a minimization problem with measurability constraints. We
consider Problem (3.54) with j (u,ω) = (u − X (ω))2, that is:

min
U �P

E
(
(U − X )2). (3.61)

Using Formula (3.51), we have to solve

min
u

E((u − X )2 | P). (3.62)

By (3.46a), we easily check that

E
(
(u − X )2

∣∣ P) = u2 − 2uE(X | P) + E(X2 | P).

For each Ωi , the minimum of (3.62) is achieved at

u�
i = E(1Ωi X )

P(Ωi )
= arg min

ui ∈U

{
u2

i − 2ui
E(1Ωi X )

P(Ωi )
+ E(1Ωi X2)

P(Ωi )

}
.

By (3.44), we observe that u�
i = E

(
X | P)

(ω), ∀ω ∈ Ωi . Therefore, the minimum
of Problem (3.62) is equal to the conditional variance

E
(
(E(X | P) − X )2

∣∣ P)
, (3.63)

and is achieved by the P-measurable random variable E(X | P).

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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3.6 Conclusion

We have begun our exploration of tools for information handling by the partitions
and fields approach. A partition splits the universe Ω in subsets of indistinguishable
states of Nature. The set of all partitions is a lattice: the least upper bound of two
partitions is made of all nonempty intersections between their respective elements;
the definition of the greatest lower bound is more abstruse. Partitions are equivalent
to partition fields, for which the greatest lower bound is easier to compute than the
least upper bound. The axiomatics of partition fields is quite close to that of the
well-known σ-fields. Partition fields are easier to handle than σ-fields, but σ-fields
are tailored for Probability Theory.

In the mapping measurability approach, information is handled by mappings over
the universe Ω . We have provided tools to pass from an algebraic aspect of mea-
surability to a functional one. The measurability framework developed here will be
widely used in the book. Table 3.1 sums up some correspondences between partitions
and fields and mapping measurability approaches to information.

We have concluded with a non technical introduction of conditional expectation
w.r.t. a partition. In this case, we easily obtain a formula connecting optimization
under measurability constraints and conditional expectation. The possibility of inter-
changing minimization and conditional expectation will prove very useful.

In the rest of the book, we will consider either π-fields (partition fields) or σ-
fields, depending on the context. In any case, once a π (or σ) field A is given on the
universe Ω , we call subfield any π (or σ) field included in A.



Chapter 4
Information and Stochastic Optimization
Problems

4.1 Introduction

In Chap.2, we presented static stochastic optimization problems with open-loop
control solutions. In Chap.3, we introduced various tools to handle information.
Now, we examine dynamic stochastic decision issues characterized by the sequence:
information → decision → information → decision → etc. This chapter focuses on
the interplay between information and decision. First, we provide a “guided tour” of
stochastic dynamic optimization issues by examining a simple one-dimensional, two-
period linear dynamical systemwith a quadratic criterion.We examine the celebrated
Witsenhausen counterexample, then describe how different information patterns
deeply modify the optimal solutions. Second, we present the classical state con-
trol dynamical model. Within this formalism, when an optimal solution is searched
for among functions of the state, optimization problems with time-additive criterion
can be solved by Dynamic Programming (DP), by means of the well-known Bell-
man equation. This equation connects the value functions between two successive
times by means of a static optimization problem over the control set and parame-
terized by the state. This provides an optimal feedback. We conclude this chapter
with more advanced material. We present a more general form of optimal stochastic
control problems relative to the state model. Following Witsenhausen, we recall that
a Dynamic Programming equation also holds in such a context, due to sequentiality.
This equation also connects the value functions between two successive times by
means of a static optimization problem. However, the optimization is over a set of
feedbacks, and it is parameterized by an information state, the dimension of which
is much larger than that of the original state.

© Springer International Publishing Switzerland 2015
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4.2 The Witsenhausen Counterexample

TheWitsenhausen counterexamplewas already considered inSect. 1.3.3.Weexamine
it in more detail here.

4.2.1 A Simple Linear Quadratic Control Problem

Consider (Ω,A,P) a probability space, and five (real) random variables related by
the equations

X1 = X0 + U0, (4.1a)

X2 = X1 − U1. (4.1b)

Here U0 and U1 are called control, or decision, random variables, whereas X0 is
a primitive random variable (also called noise) called the initial state. The random
variables X1, X2 are constructed by the dynamical system (4.1), and are called states.

Consider the optimization problem

min
U0,U1

E

(
k2U2

0 + X2
2

)
. (4.2)

Since k2U2
0 + X2

2 is a nonnegative random variable, the expectation is well defined.
As in Sect. 1.3.3, we interpret the optimization problem (4.1) and (4.2) as one where
the first decision U0 is costly, with quadratic cost k2U2

0 , whereas the penalty for the
second decision U1 to be far from X1 is measured by the cost X2

2 = (X1 − U1)
2. Of

course, without restrictions on U0 and U1 (information pattern), the optimal solution
is U0 = 0 and U1 = X1, since this yields the best possible cost, namely 0.

Since we are tackling a stochastic optimization problem over a a probability
space (Ω,A,P), we represent information by means of σ-fields (see Sect. 3.3.3)
or of random variables (see Sect. 3.4.3). In [155], Witsenhausen introduces the two
observation random variables

Y0 = X0, (4.3a)

Y1 = X1 + W1, (4.3b)

where W1 is a primitive random variable (noise). We assume that1 E
(
X2
0

)
< +∞

and that
σ(X0 + W1) �= σ(X0, W1). (4.4)

1In [155], the random vector (X0, W1) is supposed to be Gaussian under the probability P, but we
do not need this assumption in what follows.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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This measurability condition is satisfied if Ω is rich enough, for instance if Ω = R
2

and X0, W1 are the coordinates mappings.
Then, the so-called Witsenhausen counterexample is the optimization problem

min
U0�Y0,U1�Y1

E

(
k2U2

0 + X2
2

)
. (4.5)

The measurability constraints

U0 � Y0 and U1 � Y1 (4.6)

have to be understood in the sense of Definition3.44, that is, as σ(U0) ⊂ σ(Y0)

and σ(U1) ⊂ σ(Y1). By Proposition3.46, it means that the first decision U0 is a
measurable function of Y0, and U1 of Y1:

U0 = υ0(Y0) = υ0(X0) and U1 = υ1(Y1) = υ1(X1 + W1). (4.7)

To alleviate notations, Witsenhausen proposes to replace the control U0 = υ0(X0)

by the control
U ′
0 = X0 + υ0(X0), (4.8)

so that the system becomes

Y0 = X0, (4.9a)

Y1 = X1 + W1, (4.9b)

X1 = U ′
0, U ′

0 � Y0, (4.9c)

X2 = X1 − U1, U1 � Y1. (4.9d)

These measurability constraints U ′
0 � Y0 and U1 � Y1 form an information pattern

where two decision makers jointly work as a team to minimize the expected cost
in (4.5): the first one only observes the initial state Y0 = X0, whereas the second one
observes a corrupted version Y1 = X1 + W1 of the state X1. Rewriting the expected
cost in (4.5) as

E

(
k2U2

0 + X2
2

)
= E

(
k2(X0 − U ′

0)
2 + (X1 − U1)

2
)

, (4.10)

we see that the first decision maker tries to cancel X0 with the control U ′
0, whereas

the second one tries to cancel X1 with the control U1. The interaction comes from
the dynamical and measurability constraints in (4.9).

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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4.2.2 Problem Transformation Exploiting Sequentiality

In Sect. 4.5, we present and study sequential systems. Anticipating on a formal
definition, let us point out that the system (4.9) is sequential because the first obser-
vation Y0 = X0 does not depend on either of the two decisions U ′

0 and U1 (but only
on the primitive random variable X0), whereas the second observation

Y1 = X1 + W1 = U ′
0 + W1 (4.11)

does not depend onU1, but does depend onU ′
0 (and on the primitive randomvariables

X0 and W1).
This sequentiality property, and also time-additivity of the criterion in (4.5), make

it possible to decompose the optimization problem (4.5)–(4.9) in two steps as follows.

Proposition 4.1 We have that

min
U0�Y0,U1�Y1

E

(
k2U2

0 + X2
2

)

= min
U ′
0�Y0

E
(
k2(X0 − U ′

0)
2 + Var

(
W1 | U ′

0 + W1

) )
, (4.12)

where the conditional variance is given by

Var
(
W1 | U ′

0 + W1

) = E

(
W2

1 | U ′
0 + W1

)
−

(
E

(
W1 | U ′

0 + W1

))2

.

Proof Since X2 = X1 − U1, we have that

min
U0�Y0,U1�Y1

E

(
k2U2

0 + X2
2

)

= min
U ′
0�Y0,U1�Y1

E

(
k2(X0 − U ′

0)
2 + (X1 − U1)

2
)

,

where, by sequentiality (Y0 does not depend upon U1),

= min
U ′
0�Y0

min
U1�Y1

E

(
k2(X0 − U ′

0)
2 + (X1 − U1)

2
)

,

and, since U ′
0 does not depend on U1,

= min
U ′
0�Y0

(
k2E

(
(X0 − U ′

0)
2
)

+ min
U1�Y1

E

(
(X1 − U1)

2
))

.
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Thus, by an interchange of minimization and expectation (see (3.51) in the finite
case, and Sect. 8.3.5 in the general case), we are led to consider the problem

min
U1�Y1

E

(
(X1 − U1)

2
)

= E

(
min

u1
E

(
(X1 − u1)

2 | Y1

))
. (4.13)

The argmin of the inner optimization problem is E
(
X1 | Y1

)
, and the associated

optimal cost is, by definition (see (3.63)), the conditional variance

Var
(
X1 | Y1

) := E

(
X2
1 | Y1

)
−

(
E

(
X1 | Y1

))2

. (4.14)

Therefore, we have that

min
U ′
0�Y0,U1�Y1

E

(
k2(X0 − U ′

0)
2 + (X1 − U1)

2
)

= min
U ′
0�Y0

(
k2E

(
(X0 − U ′

0)
2
)

+ E
(
Var

(
X1 | Y1

)))

= min
U ′
0�Y0

E

(
k2(X0 − U ′

0)
2 + Var

(
X1 | Y1

))

= min
U ′
0�Y0

E

(
k2(X0 − U ′

0)
2 + Var

(
X1 | U ′

0 + W1

))
by (4.11)

= min
U ′
0�Y0

E

(
k2(X0 − U ′

0)
2 + Var

(
U ′
0 | U ′

0 + W1

))

because X1 = U ′
0 in (4.9)

= min
U ′
0�Y0

E

(
k2(X0 − U ′

0)
2 + Var

(
U ′
0 − (U ′

0 + W1) | U ′
0 + W1

))
,

because U ′
0 + W1 is a “constant”, once conditioned on U ′

0 + W1 (and the addition
of a constant to a random variable does not change the variance)

= min
U ′
0�Y0

E

(
k2(X0 − U ′

0)
2 + Var

(−W1 | U ′
0 + W1

))
,

= min
U ′
0�Y0

E

(
k2(X0 − U ′

0)
2 + Var

(
W1 | U ′

0 + W1

))
, (4.15)

because a random variable and its opposite have the same variance. �

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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4.2.3 The Dual Effect of the Initial Decision

As seen in (4.12), the control variable U ′
0 enters a conditioning term

Var
(
X1 | Y1

) = Var
(
W1 | U ′

0 + W1

)
. (4.16)

This is an example of the so called dual effect (see Chaps. 1 and 10) where the initial
control U ′

0 has an impact on future decisions by providing more or less information
inside the conditioning term in (4.16), in addition to contributing to the cost min-
imization directly through the term k2(X0 − U ′

0)
2 in (4.12). This dependence of a

conditional expectation upon the control variableU ′
0 makes the resolution of the opti-

mization problem (4.5) very delicate (see also the discussion on policy independence
of conditional expectations in Sect. 9.6).

Remark 4.2 Let us materialize the dependence of (4.16) upon U ′
0 by considering

the special case where

• the probability space is Ω = R
2, equipped with the Borel σ-field and the proba-

bility P Gaussian with zero mean and identity variance-covariance matrix,
• the random variables (X0, W1) are the coordinates mappings on Ω .

In this setting, (X0, W1) are independent Gaussian random variables (with zeromean
and unit variance) under the probability P. For (y0, y1) ∈ R

2, let us set

A[U0
′ ](y0, y1) = exp

(
− (y21 + U ′

0(y0)2 − 2y1U ′
0(y0))/2

)
,

B[U0
′ ](y0, y1) = A[U0

′ ](y0, y1)∫ +∞

−∞
A[U0

′ ](y′
0, y1) dy′

0

,

C[U0
′ ](y1) =

∫ +∞

−∞
U ′
0(y′

0)
2B[U0

′ ](y′
0, y1) dy′

0

−
(∫ +∞

−∞
U ′
0(y′

0)B[U0
′ ](y′

0, y1) dy′
0

)2

,

where we refer the reader back to the discussion at p. xv of the preamble on notations,
regarding the notation

[
U0

′]. The calculus gives
Var

(
W1 | U ′

0 + W1

) = C[U0
′ ](U

′
0 + W1). (4.17)

This equation has to be understood in the sense that

Var
(
W1 | U ′

0 + W1

)
(ω) = C[U0

′ ]
(
U ′
0(ω) + W1(ω)

)
, P-a.s. (4.18)

as already stressed at the end of Sect. 3.5.1. ♦

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_10
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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4.3 Other Information Patterns

We take the basic one-dimensional two-period linear dynamical system with a
quadratic criterion considered above as an opportunity to present how different infor-
mation patterns deeply modify the optimal solutions.

In the Witsenhausen counterexample, we interpreted the information pattern as
two decision makers working jointly as a team to minimize the expected cost. From
now on, we interpret information patterns from the point of view of a single agent
with different pieces of information at time t = 0 and t = 1.

LetG0 = σ(Y0) = σ(X0) andG1 be two subfields ofA, and consider the following
optimization problem, where X1 = X0 + U0 as in (4.1a) and Y0 = X0 as in (4.3a),

min
U0�G0,U1�G1

E

(
k2U2

0 + (X1 − U1)
2
)

. (4.19)

In doing so, we restrict the class of decisions to those such that U0 is measurable
w.r.t. the random variable Y0 (U0 � Y0), and U1 is measurable w.r.t. the subfield G1
(U1 � G1).

We now highlight that information patterns are important components of sto-
chastic decision problems. Changing information pattern can turn an easy problem
(Sect. 4.3.1) into an open problem (Sect. 4.3.5).

For all the information patterns (especially the subfield G1) below, we can show
easily (mimicking the proof of Proposition4.1) that

min
U0�Y0,U1�G1

E

(
k2U2

0 + X2
2

)

= min
U ′
0�Y0

E
(
k2(X0 − U ′

0)
2 + Var

(
X1 | G1

) )
. (4.20)

4.3.1 Full Noise Observation

Suppose that noises X0 and W1 are sequentially observed in the sense that

G0 = σ(X0) and G1 = σ(X0, W1). (4.21)

We claim that the couple

U �
0 = 0 and U �

1 = X0 = X0 + U �
0 = X �

1 (4.22)
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is optimal. Indeed, on the one hand, the cost in (4.19) is zero when U0 = U �
0 = 0

and U1 = U �
1 = X �

1. On the other hand, the measurability constraints are satisfied

since U �
0 = 0 � G0 and U �

1 = X0 � G1 = σ(X0, W1).
Notice that the last term in (4.20) is now

Var
(
X1 | G1

) = Var
(
X1 | X0, W1

) = 0, (4.23)

since X1—given by (4.1a) where U0 � X0—is measurable w.r.t. (X0, W1), hence
is a “constant”, once conditioned by (X0, W1).

4.3.2 Classical Information Pattern

The classical pattern is defined as

G0 = σ(Y0) = σ(X0) and G1 = σ(Y0, Y1), (4.24)

where Y1 = X1 + W1 as in (4.3b). In the classical pattern, there is perfect memory
in the sense that the observation Y0 at time t = 0 still is available at time t = 1. By
explicitly writing

G1 = σ(Y0, Y1) = σ(X0, X0 + U0 + W1), (4.25)

we see how the subfield G1 depends upon U0. However, we show now that G1 does
not depend upon U0 when the control is restricted to U0 � G0. Indeed, by Proposi-
tion3.46, this last conditionmeans that the first decisionU0 = υ0(Y0) is ameasurable
function of Y0 = X0. Therefore, when U0 = υ0(X0), and using Proposition3.48
with the mapping ϕ(x0, w1) = (x0, x0 + υ0(w0) + w1), we obtain:

G1 = σ(X0, X0 + υ0(X0) + W1) = σ(X0, W1). (4.26)

Therefore, the optimal solution is given by (4.22), being the same as in the full noise
observation pattern case of Sect. 4.3.1. Notice that the subfield G1 does not depend on
the control U0 (more generally, linear dynamical systems with linear observations
and perfect memory also display observation fields that are independent of past
controls [128]).

Notice that the last term in (4.20) is zero since the subfield G1 = σ(X0, W1) is
the same as in Sect. 4.3.1.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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4.3.3 Markovian Information Pattern

The Markovian pattern is the case where the state is sequentially and perfectly
observed (that is, without noise):

G0 = σ(X0) and G1 = σ(X1) . (4.27)

In contrast to the full noise observation pattern, the subfield

G1 = σ(X1) = σ(X0 + U0) (4.28)

depends upon the initial decisionU0, and the dual effect holds true.However, the opti-
mal solution is given by (4.22). Indeed, the cost in (4.19) is zero and themeasurability
constraints are satisfied sinceU �

0 = 0 � G0 = σ(X0) andU �
1 = X �

1 � G1 = σ(X �
1).

The Markovian pattern is examined in more detail in Sect. 4.4.
Notice that the last term in (4.20) is now

Var
(
X1 | G1

) = Var
(
X1 | X1

) = 0, (4.29)

since X1 is measurable w.r.t. σ(X1). Therefore, although the dual effect holds true,
and the conditioning is w.r.t. X1 = X0 + U0 which depends on the control U0, the
resulting conditional expectation Var

(
X1 | X1

)
does not depend on the control U0.

The question of the policy independence of conditional expectations is discussed in
more detail in Sect. 9.6.

4.3.4 Past Control Observation

In this nonclassical pattern defined by

G0 = σ(Y0) and G1 = σ(U0, Y1), (4.30)

the second decision maker observes a corrupted version Y1 = X1 + W1 of the
state X1 and the decision U0 taken by the first decision maker. We have that

G1 = σ(U0, Y1) = σ(U0, X0 + U0 + W1) = σ(U0, X0 + W1). (4.31)

By Proposition3.46, we know that the first decision U0 = υ0(Y0) is a measurable
function of Y0 = X0. We have a dual effect, because

• if υ0 is a one-to-onemeasurablemappingwithmeasurable inverse υ−1
0 , then, using

Proposition3.48, we obtain

G1 = σ(υ0(X0), X0 + W1) = σ(X0, X0 + W1) = σ(X0, W1), (4.32)

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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• if υ0 is a constant mapping, we have that

G1 = σ(υ0(X0), X0 + W1) = σ(X0 + W1) �= σ(X0, W1), (4.33)

as we have assumed in (4.4).

In [24], it is shown that the optimization problem (4.19) with the information
pattern (4.30) admits only ε-optimal decisions. Indeed, for ε > 0, take

U0 = εY0 = εX0 and U1 = U0

ε
= X0,

which yields the cost

k2U2
0 + (X0 + U0 − U1)

2 = ε2(k2 + 1)X2
0,

whose expectation is of order ε2 (we have assumed that E
(
X2
0

)
< +∞). The only

solution with zero cost is given by (4.22). However, the measurability constraints are
not satisfied since U �

0 = 0 � G0 = σ(X0), but U �
1 = X0 �� G1 = σ(U �

0, Y1
�) =

σ(X0 + W1).
Notice that the last term in (4.20) is now

Var
(
X1 | G1

) = Var
(
X0 + U0 | U0, X0 + W1

)
, (4.34)

which cannot be computed easily.

4.3.5 The Witsenhausen Counterexample

The Witsenhausen counterexample, discussed in Sect. 4.2, is characterized by

G0 = σ(Y0) = σ(X0) and G1 = σ(Y1) = σ(X0 + U0 + W1). (4.35)

An optimal solution exists [155], but its expression is unknown.

4.4 State Model and Dynamic Programming (DP)

Here, we present the classical state control dynamical model. Within this formal-
ism, optimization problems with time-additive criterion2 can be solved by Dynamic
Programming [15, 20, 127, 152, 153].

2In fact, although time-additive criteria are widely used, other criteria are also adapted to Dynamic
Programming [20, 51, 152, 153].
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In Sects. 4.2 and 4.3 above, the informational constraints were handled
algebraically (some random variables must be measurable w.r.t. other random vari-
ables), whereas, in what follows, they are treated functionally (essentially, some
random variables are represented as functions of other random variables, called feed-
backs, decision rules, policies, or strategies).

4.4.1 State Model

We consider the control state system or state model:

xt+1 = ft (xt , ut , wt+1
)
, t = 0, . . . , T − 1. (4.36)

We denote by

• the variable t , the time index, belonging to the subset {0, . . . , T } of the set N of
integers; 0 is the initial time and T > 0 stands for the time horizon, that we suppose
finite (T < +∞);

• the variable ut , the control or decision, chosen by the decisionmaker in the decision
space denoted by Ut ; we consider a finite dimensional space, namely Ut = R

pt ;
• the variable wt , the uncertainty, taking its values in a given set Wt = R

qt ;
• the variable xt , the “state”,3 embodying a set of variables which sum up the
information needed together with the control and uncertainty to proceed from
time t to the following time t + 1; this state is an element of the state space
denoted by Xt = R

nt ;
• themappings ft : Xt ×Ut ×Wt+1 → Xt+1, the dynamics, which represent the sys-
tem evolution; in the sequel, we call dynamics the sequence f := { ft }t=0,...,T −1;
in many cases, the dynamics ft does not depend on time t and is said to be
autonomous or stationary;

• the variable x0, the initial state or initial condition.

From now on, we suppose that all the spaces considered here—the decision spaces
Ut = R

pt , the state spaces Xt = R
nt , and the uncertainty spaces Wt = R

qt—
are equipped with their corresponding Borel σ-fields (see Definition B.1), denoted,
respectively, by Ut = Bo

Ut
, Xt = Bo

Xt
and Wt = Bo

Wt
. Proceeding along, we

suppose that the dynamics ft are measurable mappings. All the product sets below,∏T −1
t=0 Ut ,

∏T
t=0 Xt , and

∏T
t=1Wt are equippedwith their respective product σ-fields⊗T −1

t=0 Ut ,
⊗T

t=0 Xt , and
⊗T

t=1Wt .
A state trajectory is a sequence

x(·) := (
x0, x1, . . . , xT −1, xT

) ∈
T∏

t=0

Xt . (4.37)

3See footnote 3 in Sect. 1.2.1.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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A control history is a sequence

u(·) := (
u0, u1, . . . , uT −1

) ∈
T −1∏
t=0

Ut . (4.38)

A scenario is a sequence

w(·) := (
w1, w2, . . . , wT

) ∈
T∏

t=1

Wt , (4.39)

or it may also be a sequence

(
x0, w(·)) := (

x0, w1, w2, . . . , wT
) ∈ X0 ×

T∏
t=1

Wt , (4.40)

when the initial state x0 is supposed to be uncertain.

Remark 4.3 In practice, one often considers stationary spaces: Ut = U, Xt = X,
Wt = W. In particular, the vocable “state” is usually related to a variable taking
values in a space independent of t (see the discussion in Sect. 4.5.3). ♦

4.4.2 State Feedbacks, Decisions, State and Control Maps

When dealing with state models as in Sect. 4.4.1, it is customary to consider state
feedbacks. In Sect. 4.5.4, we will see that, under the assumptions for which sto-
chastic dynamic programming applies, there is no loss of optimality to restrict the
search among state feedbacks instead of a larger class of strategies depending also
on past noises.

Definition 4.4 A state feedback γ = {γt }t=0,...,T −1 is a sequence of measurable
mappings γt : (Xt ,Xt ) → (Ut ,Ut ). Accordingly, we set

Γ
Xt

t :=
{
γt : (Xt ,Xt ) → (Ut ,Ut )

∣∣∣ γ−1
t (Ut ) ⊂ Xt

}
, (4.41)

for t = 0, . . . , T − 1, and the set of all state feedbacks is denoted by

ΓX :=
T −1∏
t=0

Γ
Xt

t . (4.42)

Remark 4.5 Selecting the class of state feedbacks reveals an implicit information
structure: at time t , it is supposed that only the state xt is available to produce a
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decision ut = γt (xt ). In Sect. 4.5.2, we consider another class of feedbacks, allowing
for more or less information (than the state hereabove) to be handled at each time.
For instance, we could have feedbacks γt (x0, . . . , xt ) closed on the past states, or
feedbacks γt (x0, w1, . . . , wt ) closed on the initial state and on past uncertainties.♦

At this level of generality, no measurability assumptions are made. However, in
the probabilistic setting that we consider in Sect. 4.4.4, we will introduce σ-fields
with respect to which feedbacks will be supposed measurable.

For the sake of clarity, hereafter, we reserve the notation ut for a control variable
belonging toUt , ut ∈ Ut , whereas we denote by γ = {γt }t=0,...,T −1 ∈ ΓX a feedback
mapping, with γt (x) ∈ Ut .

The terminology unconstrained case covers the situation where the feedbacks γt

can take any value inUt . The control constraint case restricts feedbacks to admissible
feedbacks as follows

Γ ad
X := {γ ∈ ΓX | γt (x) ∈ Ct (x), ∀t = 0, . . . , T − 1, ∀x ∈ Xt } , (4.43)

where Ct (x) is a subset of the control set Ut .
The following definitions are extensions of the notion of flow as solution of a

differential equation.

Definition 4.6 For any given feedback γ = {γt }t=0,...,T −1 ∈ ΓX, scenario w(·) ∈∏T
s=1Ws , time t ∈ {0, . . . , T } and state x ∈ Xt , we define the state map X f by

X f [t, x, γ, w(·)] = (xt , xt+1, . . . , xT ), the state trajectory solution of the dynami-
cal equation

xs+1 = fs
(
xs, γs

(
xs

)
, ws+1

)
, s = t, . . . , T − 1 with xt = x .

The control map U f is defined in the same way by means of U f [t, x, γ, w(·)],
the associated decision path (ut , ut+1, . . . , uT −1), where us = γs

(
xs

)
for s =

t, . . . , T − 1.

Remark 4.7 Consider two scenarios w(·) and w′(·) in ∏T
s=1Ws . If they coincide

after time t , that is, if (wt+1, . . . , wT ) = (w′
t+1, . . . , w

′
T ), we can notice that

X f [t, x, γ, w(·)]t = X f [t, x, γ, w′(·)]t = x,

X f [t, x, γ, w(·)]s = X f [t, x, γ, w′(·)]s for s = t + 1, . . . , T .

This expresses a causality property: for t > s, the state X f [t, x, γ, w(·)]s depends
upon the uncertainties (wt+1, . . . , ws) and not upon all w(·). The same property
holds true for the control map U f . ♦
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4.4.3 Criterion

A criterion j is a measurable function

j :
T∏

t=0

Xt ×
T −1∏
t=0

Ut ×
T∏

t=1

Wt → R, (4.44)

which assigns a real number j
(
x(·), u(·), w(·)) to a state trajectory x(·) = (

x0,
x1, . . . , xT −1, xT

)
, to a control history u(·) = (

u0, u1, . . . , uT −1
)
, and to a scenario

w(·) = (
w1, w2, . . . , wT

)
.

For any feedback γ in (4.42) and scenario w(·) in (4.39), we evaluate the crite-
rion (4.44) along the flow by

jγ0
(
x0, w(·)) := j

(
X f [0, x0, γ, w(·)](·), U f [0, x0, γ, w(·)](·), w(·)), (4.45)

where X f , U f are the state and control maps introduced in Definition4.6. Thus,
the evaluation of the criterion along the flow jγ0

(
x0, w(·)) is the evaluation of

the criterion j along the unique trajectory x(·) = X f [0, x0, γ, w(·)](·), u(·) =
U f [0, x0, γ, w(·)](·), starting from the initial state x0, and generated by the dynamic
(4.36), driven by the feedback control ut = γt

(
xt

)
and by the scenario w(·).

A traditional form of criterion is the additive and time-separable intertemporal
criterion.

Definition 4.8 The criterion j in (4.44) is said to be additive and time-separable if
it takes the form:

j
(
x(·), u(·), w(·)) =

T −1∑
t=0

Lt
(
xt , ut , wt+1

) + K
(
xT

)
. (4.46)

The function Lt is called the integral cost (or instantaneous cost), and K thefinal cost.

Remark 4.9 A criterion j in (4.44) is said to be in Bolza form if it is an additive and
time-separable criterion with zero integral costs:

j
(
x(·), u(·), w(·)) = K

(
xT

)
. (4.47)

A state model as in Sect. 4.4.1 together with an additive and time-separable criterion
as in (4.46) can be turned into an extended state model with new state

(xt , ct ) ∈ Xt × R, (4.48)

new dynamics

(
(xt , ct ), ut , wt+1

) 
→ (
ft (xt , ut , wt+1), ct + Lt (xt , ut , wt+1)

)
, (4.49)
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and new criterion in Bolza form as follows

(xT , cT ) 
→ cT + K (xT ). (4.50)

This is why, sometimes, one only considers criterion in Bolza form. ♦

4.4.4 Stochastic Optimization Problem

Consider (Ω,A,P) a probability space, and a random variable

W (·) : Ω →
T∏

t=1

Wt . (4.51)

Therefore, the evaluation jγ0
(
x0, W (·)) of the criterion along the flow in (4.45) is a

random variable, since both the criterion j in (4.44) and the feedback γ in (4.42)
are measurable. When this random variable is integrable, we define the expected
criterion by:

E

(
jγ0

(
x0, W (·))

)
. (4.52)

The expected criterion optimization problem is

min
γ∈Γ ad

X

E

(
jγ0

(
x0, W (·))

)
, (4.53)

and any γ� ∈ Γ ad
X which achieves the minimum is called an optimal feedback. Recall

that feedbacks in (4.43) satisfy control constraints of the form ut ∈ Ct (xt ).

4.4.5 Stochastic Dynamic Programming

Let us suppose that the criterion j in (4.44) is additive and time-separable (see
Definition4.8, and also Footnote 2 in p. 104) and has the form (4.46). For any time
t = 0, . . . , T , we define

jt
(
xt , xt+1, . . . , xT , ut , ut+1, . . . , uT −1, wt+1, . . . , wT

) :=
T −1∑
s=t

Ls
(
xs, us, ws+1

) + K
(
xT

)
, (4.54)
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and also, for any feedback γ in (4.42),

jγt
(
x, w(·)) := jt

(
X f [t, x, γ, w(·)](·), U f [t, x, γ, w(·)](·), w(·)), (4.55)

where X f , U f are the state and control maps introduced in Definition4.6. Notice
that jγt

(
x, w(·)) depends only upon the tail (wt+1, . . . , wT

)
of the scenariow(·) (see

Remark4.7).
In this Sect. 4.4.5, we make the following white noise assumption.

Assumption 4.10 (White noise) The random variables W1, …, WT are independent
under the probability P.

When the initial state x0 is supposed to be random, as in (4.40), wemake the assump-
tion that x0, W1, …, WT are independent under the probability P.

Definition 4.11 The value function or Bellman function associated with the addi-
tive and time-separable criterion (4.46), the dynamics (4.36), and the control con-
straints (4.43), is defined by the cost-to-go

Vt (x) := min
γ∈Γ ad

X

E

(
jγt

(
x, W (·))

)
, ∀t = 0, . . . , T − 1, ∀x ∈ Xt . (4.56)

Notice that, by (4.54) and (4.55), the expectation E(·) is taken w.r.t. the distribution
of

(
Wt+1, . . . , WT

)
under the probability P.

We now present a discrete-time stochastic version of the famousBellman equation
[15]. This equation connects the value functions between time t and time t + 1.

Proposition 4.12 Under proper technical assumptions,4 the value function intro-
duced in Definition4.11 satisfies the following backward induction, called Dynamic
Programming equation or Bellman equation

VT (x) = K (x), ∀x ∈ XT , (4.57a)

Vt (x) = min
u∈Ct (x)

E

(
Lt

(
x, u, Wt+1

) + Vt+1
(

ft (x, u, Wt+1)
))

, ∀x ∈ Xt , (4.57b)

where t runs from T − 1 down to 0.

Notice that, in (4.57b), the expectation E(·) is taken w.r.t. the distribution of Wt+1
under the probability P.

4To take the expectation in (4.57b), we need that the expression Vt+1
(

ft (x, u, Wt+1)
)
be mea-

surable. For that, it suffices that the value function Vt+1 be measurable. However, the proof that
induction (4.57) preservesmeasurability is quite delicate, and requires proper technical assumptions.
We refer the reader to [21, 63] for an in-depth analysis.
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Proof In Sect. 4.5.4, we present results of Witsenhausen that establish a gen-
eral Dynamic Programming equation for sequential systems. Then, the proof of
this Proposition4.12 is a consequence of Proposition4.20, Eq. (4.105) and
Proposition4.22.

Else, more direct proofs may be found in many textbooks [15, 20, 51, 127, 152,
153]. We simply sketch the idea of the proof as follows. Suppose one starts at time
t in state x , and picks up the decision u ∈ Ct (x). For this, one pays the integral
cost Lt

(
x, ut , Wt+1

)
, and this leads to the new state ft (x, u, Wt+1), from which the

cost-to-go is, by definition, Vt+1
(

ft (x, u, Wt+1)
)
. Indeed, the expectation w.r.t. the

future noises Wt+2,…WT is legitimate in (4.56) because they are independent of the
noise Wt+1. Since the criterion (4.46) is additive, the total cost is Lt

(
x, ut , Wt+1

)+
Vt+1

(
ft (x, u, Wt+1)

)
. Now, one has to consider the expectation w.r.t. the noise Wt+1

to obtain the expected cost starting at time t in state x , and using the decision u ∈
Ct (x). There remains to minimize w.r.t. u ∈ Ct (x) to obtain the cost-to-go starting
at time t in state x , namely the value function Vt (x). �

Moreover, the Dynamic Programming induction (4.57b) reveals optimal feed-
backs. Indeed, with the additional assumption that the infimum is achieved in (4.57)
for at least one decision, and that a measurable selection (see Sect. 8.3.1) exists, we
obtain an optimal feedback for the stochastic optimal control problem (4.53). Here
again, we warn the reader that the issue of measurability in dynamic programming
is quite delicate, and we refer her or him to [21, 63] for an in-depth analysis.

Proposition 4.13 Suppose that, for any time t ∈ {0, . . . , T − 1} and state x ∈ Xt ,
there exists a control γ

�
t (x) ∈ Ct (x) which achieves the minimum in (4.57b):

γ
�
t (x) ∈ argmin

u∈Ct (x)

E

(
Lt

(
x, u, Wt+1

) + Vt+1
(

ft (x, u, Wt+1)
))

. (4.58)

If, for each t ∈ {0, . . . , T −1}, the mapping γ
�
t : (Xt ,Xt ) → (Ut ,Ut ) is measurable,

then γ� = {γ�
t }t=0,...,T −1 is an optimal feedback for the optimization problem (4.53),

where the additive and time-separable criterion j is given by (4.46).

It should be noticed that γ� is also an optimal feedback for all the optimization prob-
lems (4.54), that is, for every initial time t ∈ {0, . . . , T − 1} and initial state x ∈ Xt .

4.5 Sequential Optimization Problems

We conclude this chapter with more advanced material. We present a more gen-
eral form of optimal stochastic control problems than the state model considered
in Sect. 4.4. We highlight the fact that a Dynamic Programming (DP) equation also
holds true in such a context, due to sequentiality. This equation also connects the value
functions between two successive times by means of a static optimization problem;

http://dx.doi.org/10.1007/978-3-319-18138-7_8
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however, the optimization is over a set of feedbacks, and it is parameterized by an
information state belonging to a set of measures, the dimension of which is much
larger than that of the original finite dimensional state. We follow the exposition
in [158].

4.5.1 Sequential Optimal Stochastic Control Problem

Anoptimal stochastic control problem is said to be sequential when it can be reduced,
by elimination of intermediate variables, to the following form:

1. (Ω,A,P) a probability space (randomness);
2. (U0,U0), . . . , (UT −1,UT −1) measurable spaces (decision spaces);
3. It a subfield of U0 ⊗ · · · ⊗ Ut−1 ⊗ A, for t = 0, . . . , T − 1 (information);
4. j̃ : U0 × · · · × UT −1 × Ω → R a measurable function (criterion).

In the above model, we have stochasticity with the triplet (Ω,A,P), decisions with
the control spaces (U0,U0), . . . , (UT −1,UT −1), and information with the subfields
I0, . . . , IT −1. However, we have no explicit state, contrary to what was exposed
in Sect. 4.4.1. Nevertheless, we have a kind of “state equation” as follows. Define a
decision rule, or a policy, or a strategy, as a sequence

λ = {λt }t=0,...,T −1 (4.59)

of measurable mappings

λ0 : (Ω,A) → (U0,U0),

λ1 : (U0 × Ω,U0 ⊗ A) → (U1,U1),

...

λT −1 : (U0 × · · · × UT −2 × Ω,U0 ⊗ · · · ⊗ UT −2 ⊗ A) → (UT −1,UT −1).

With a policy λ, we associate the mapping Mλ : Ω → U0 × · · · ×UT −1 defined by

(u0, . . . , uT −1) = Mλ(ω) ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0 = λ0(ω),

u1 = λ1(u0,ω),
...

...

uT −1 = λT −1(u0, · · · , uT −2,ω).

(4.60)

Notice that those recursive equations form a strictly lower-triangular system out
of which a unique well-defined solution (u0, . . . , uT −1) is entirely determined by
the choice of ω. For nonsequential systems, the situation is more delicate, and is
discussed in Sect. 9.3.

http://dx.doi.org/10.1007/978-3-319-18138-7_9
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Let us introduce the mapping (solution map)

Sλ : Ω → U0 × · · · × UT −1 × Ω (4.61)

defined by

Sλ(ω) := (
Mλ(ω),ω

)
. (4.62)

The element Sλ(ω) ∈ U0 × · · · × UT −1 × Ω may be seen as the “state trajectory”
yielded by the policy λ (consider the analogy with the state map introduced in
Definition4.6, and with the solution map of Definition9.11 to be seen later).

The optimization problem

min
λ0�I0,...,λT −1�IT −1

E

(
j̃
(
Sλ(·))) (4.63)

consists of finding λ = {λt }t=0,...,T −1—with the informational restriction that λt is
It -measurable for t = 0, . . . , T − 1—to minimize E

(
j̃
(
Sλ(·))). The measurability

of Mλ is established step by step, so that j̃ ◦ Sλ is also proved to be measurable (see
[158] for the details).

Example 4.14 Consider the following generic form of a 2-stage stochastic program-
ming problem as exposed in [141, Chap.3]:

min
u0

L0
(
u0

) + E

(
min

u1
L1

(
u1, w1

))
, (4.64)

where

u0 ∈ C0, u1 ∈ C1(u0, w1). (4.65)

Notice that the formulation (4.64) and (4.65) does not make explicit reference to
information constraints, but makes explicit reference to (set-membership) decision
constraints in (4.65).5 The form (4.64) corresponds to the decision spaces

(U0,U0) = (Rp0 ,Bo
Rp0 ) and (U1,U1) = (Rp1 ,Bo

Rp1 ), (4.66)

and to the probability space
Ω = W1 = R

q1 , (4.67)

equipped with its Borel σ-field

A = Bo
W1

= Bo
Rq1 , (4.68)

5We do not treat the case with decision constraints in this section, but the extension is rather straight-
forward (for instance, decision constraints can be incorporated in the criterion with characteristic
functions).

http://dx.doi.org/10.1007/978-3-319-18138-7_9
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and with a probability P. The following information fields

I0 = {∅,Ω} and I1 = U0 ⊗ A (4.69)

make explicit the implicit information pattern in 2-stage stochastic programming
problems: at the first stage, there is no informationwhatsoever, whereas, at the second
stage, the first decision and the state of Nature are available for decision-making.�
Example 4.15 We now consider the following generic form of a T -stage stochas-
tic programming problem, with T > 2 (which displays more variety in possible
information patterns than the 2-stage problem), written as in [141, Chap.3]:

min
u0

L0
(
u0

)+
E

(
min

u1
L1

(
u1, w1

) + E

(
· · · + E

(
min
uT −1

LT −1
(
uT −1, wT −1

))))
, (4.70)

where

u0 ∈ C0, u1 ∈ C1(u0, w1), . . . , uT −1 ∈ CT −1(uT −2, wT −1). (4.71)

The form (4.70) corresponds to the decision spaces

(U0,U0) = (Rp0 ,Bo
Rp0 ), . . . , (UT −1,UT −1) = (RpT −1 ,Bo

R
pT −1 ), (4.72)

and to the probability space

Ω =
T −1∏
t=1

Wt with Wt = R
qt , (4.73)

equipped with its Borel σ-field

A =
T −1⊗
t=1

Wt with Wt = Bo
Wt

, (4.74)

and with a probability P.
For t = 1, . . . , T − 1, let us define the past uncertainties σ-field

At = W1 ⊗ · · · ⊗ Wt ⊗ {∅,Wt+1} ⊗ · · · ⊗ {∅,WT −1}, (4.75)

and the last uncertainty σ-field

Wt = {∅,W1} ⊗ · · · {∅,Wt−1} ⊗ Wt ⊗ {∅,Wt+1} ⊗ · · · ⊗ {∅,WT −1}. (4.76)
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As for the 2-stage stochastic programming problem example, the formulation
(4.70) and (4.71), taken from [141, Chap.3], makes explicit reference to (set-
membership) decision constraints (see Footnote 5 in p. 113), but does not make
explicit reference to information constraints. We now propose three possible infor-
mation patterns, compatible with the notation ut ∈ Ct (ut−1, wt ) in (4.71), which
express the fact that, at time t , at least the last control ut−1 and the last uncertaintywt

are available before making a decision.

• The last control and the last uncertainty are available for decision-making in the
case where

I0 = {∅,Ω} and It = {∅,U0} ⊗ · · · ⊗ {∅,Ut−2} ⊗ Ut−1 ⊗ Wt . (4.77)

• The last control and the past uncertainties are available for decision-making in the
case where

I0 = {∅,Ω} and It = {∅,U0} ⊗ · · · ⊗ {∅,Ut−2} ⊗ Ut−1 ⊗ At . (4.78)

• The past controls and the past uncertainties are available for decision-making in
the case where

I0 = {∅,Ω} and It = U0 ⊗ · · · ⊗ Ut−1 ⊗ At . (4.79)

The authors of [141] call implementable policy what we call decision rule, or policy,
or strategy in (4.59). �

4.5.2 Optimal Stochastic Control Problem in Standard Form

Now, we consider a formulation where state and dynamics are explicit.
An optimal stochastic control problem is said to be in standard form when it can

be reduced, by a change of variables, to the following form:

1. (X0,X0), . . . , (XT ,XT ) are measurable spaces (“state” spaces)6;
2. (U0,U0), . . . , (UT −1,UT −1) are measurable spaces (decision spaces);
3. It is a subfield of Xt , for t = 0, . . . , T − 1 (information);
4. ft : (Xt × Ut ,Xt ⊗ Ut ) → (Xt+1,Xt+1) is measurable, for t = 0, . . . , T − 1

(dynamics);
5. π0 is a probability on (X0,X0) (randomness);
6. j : (XT ,XT ) → R is a measurable function (criterion).

6See footnote 3 in Sect. 1.2.1.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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A feedback γ = {γt }t=0,...,T −1 is a sequence of measurable mappings γt :
(Xt ,Xt ) → (Ut ,Ut ). For t = 0, . . . , T − 1, we set

Γ
It

t :=
{
γt : (Xt ,Xt ) → (Ut ,Ut )

∣∣∣ γ−1
t (Ut ) ⊂ It

}
, (4.80)

the set of feedbacks measurable w.r.t. the information It . The set of admissible
feedbacks is

ΓI :=
T −1∏
t=0

Γ
It

t . (4.81)

Admissible feedbacks are the feedbacks measurable w.r.t. the information for
all times.

For any feedback γ = {γt }t=0,...,T −1 ∈ ΓI and t = 0, . . . , T − 1, the closed-loop
dynamics f γt

t : (Xt ,Xt ) → (Xt+1,Xt+1) is defined by

f γt
t (x) := ft

(
x, γt (x)

)
, ∀x ∈ Xt . (4.82)

The optimization problem

min
γ∈ΓI

∫
X0

j (Xγ
T (x0)) dπ0(x0) (4.83)

consists in finding a feedback γ ∈ ΓI to minimize
∫
X0

j (Xγ
T (x0)) dπ0(x0), where

the final state xγ
T : (X0,X0) → (XT ,XT ) is defined by induction by

Xγ
0 (x0) = x0 and Xγ

t+1(x0) = ft

(
Xγ

t (x0), γt
(
Xγ

t (x0)
))

. (4.84)

Example 4.16 Though rather abstract, the above formulation includes, after trans-
formation and change of notations, the state model exposed in Sects. 4.4.1–4.4.4.
However, the same notations do not denote the same objects. To avoid confusion, we
denote, in this example, by xt , Xt , Xt , the generic “state”, the “state” space and the
“state” field of the optimal stochastic control problem in standard form,7 as well as
information fields It and dynamics f t .

For simplicity, and without loosing generality (see Remark4.9), we suppose that
the additive and time-separable criterion in (4.44) is in Bolza form, to be consistent
with item 6 in the standard form Sect. 4.5.2. A possible standard form (among many)
for the optimal stochastic control problem exposed in Sects. 4.4.1–4.4.4 is given by
the following elements.

7Concerning those quotes around the word state, we refer the reader to Footnote 3 of Chap.1 and
to Sect. 4.5.3.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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1. The “state” spaces and fields

xt =(xt , wt+1, . . . , wT ), (4.85a)

Xt =Xt ×
T∏

s=t+1

Ws, (4.85b)

Xt =Xt ⊗
T⊗

s=t+1

Ws, (4.85c)

for t = 0, . . . , T , built from the spaces introduced in Sect. 4.4.1. It may seem
weird to have future uncertainties wt+1, . . . , wT in the “state” xt at time t . How-
ever, recall that, for an optimal stochastic control problem in standard form, the
“state” is not necessarily perfectly observed. Only the part xt of xt may be avail-
able for feedback. We will come back to this point in item 4.

2. The same decision spaces and fields (U0,U0), . . . , (UT −1,UT −1) as those intro-
duced in Sect. 4.4.1.

3. The information fields

It = Xt ⊗
T⊗

s=t+1

{∅,Ws} ⊂ Xt = Xt ⊗
T⊗

s=t+1

Ws, (4.86)

for t = 0, . . . , T − 1, corresponding to the information structure revealed by the
choice of feedbacks in Sect. 4.4.2. Indeed, we thus express that feedbacks can
only depend on the (original) state xt . More formally, for t = 0, . . . , T − 1, we
set, following (4.80),

Γ
It

t :=
{
γt : (Xt ,Xt ) → (Ut ,Ut )

∣∣∣ γ−1
t (Ut ) ⊂ It

}
, (4.87)

the set of feedbacks measurable w.r.t. the information It . Following (4.81), the
set of admissible feedbacks is

ΓI :=
T −1∏
t=0

Γ
It

t . (4.88)

4. The measurable dynamics f t : (Xt × Ut ,Xt ⊗ Ut ) → (Xt+1,Xt+1) given by

f t (xt , ut ) = f t (xt , wt+1, . . . , wT , ut )

= ( ft (xt , ut , wt+1)︸ ︷︷ ︸
xt+1

, wt+2, . . . , wT ), (4.89)
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for t = 0, . . . , T − 1, built from the original dynamics introduced in Sect. 4.4.1.
The fact that the original dynamics ft (xt , ut , wt+1) explicitly depends on wt+1
makes that wt+1 must be part of the new state xt in (4.85). We deduce that wt+2
must be part of the new state xt+1 But then, since the new dynamics f t (xt , ut )

arrives in the state space Xt+1 with state xt+1 which includes wt+2, then wt+2
has also to be part of the new state xt in (4.85). This is how we arrive at the new
state (xt , wt+1, . . . , wT ).

5. The probability π0 = δx0 ⊗ PW (·) on (X0,X0) = (X0 × ∏T
s=1Ws,X0 ⊗⊗T

s=1Ws), product of a Dirac measure on X0 with the probability image
(see (B.8)) of P on

∏T
t=1Wt by the random variable W (·) : Ω → ∏T

t=1Wt

in (4.51), as exposed in Sect. 4.4.4. We can also take π0 = π0 ⊗ PW (·) when the
initial state x0 is supposed to be uncertain, as in (4.40).

6. The same criterion j = K : (XT ,XT ) → R as the one introduced in Sect. 4.4.3
(notice indeed that XT = XT , and recall that we supposed the criterion in (4.44)
to be in Bolza form (see Remark4.9)).

Notice that the formulation discussed here is more general than the state model
formulation in Sect. 4.4 regarding information patterns. Indeed, in Sect. 4.4.2, the
feedbacks in (4.42) are state feedbacks, which corresponds here to the information

It = Xt ⊗
T⊗

s=t+1

{∅,Ws}, (4.90)

whereas item 3 in p. 115 only assumes that

It ⊂ Xt ⊗
T⊗

s=t+1

Ws, (4.91)

in the definition of an optimal stochastic control problem in standard form at the
beginning of 4.5.2. �

AsWitsenhausen points it out in [158], “standard problems appear to form a very
special class since the only source of randomness is the initial state, the controller
has no memory and the cost depends only upon the last state”. However, he shows
the generality of standard problems.

Proposition 4.17 ([158]) Any sequential control problem may be reduced to stan-
dard form.

With the notations of Sect. 4.5.1, the proof consists in taking

• (X0,X0) = (Ω,A), π0 = P,
• (Xt ,Xt ) = (U0 × · · · ×Ut−1 × Ω,U0 ⊗ · · · ⊗Ut−1 ⊗A), with generic element

xt = (u0, . . . , ut−1,ω),
• ft (xt , ut ) = (u0, . . . , ut−1, ut ,ω),
• j (xT ) = j̃ (u0, . . . , uT −1,ω).
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The proof introduces the “state” xt = (u0, . . . , ut−1,ω). We now discuss what is
generally covered by the term “state”.

4.5.3 What Is a State?

An informal definition of a state may be found in [152] as a sufficient statistic for the
uncertainty ω and past controls. Define a history as a sequence (u0, . . . , ut−1,ω).
Quoting Whittle, suppose there is a variable xt which summarizes the past history in
that, given time t and the value of xt , one can calculate the optimal ut and also xt+1
without knowledge of the whole history (u0, . . . , ut−1,ω), for all t . Such a variable
is termed sufficient. While history takes value in an increasing space as t increases, a
sufficient variable taking values in a space independent of t is called a state variable.

In Sect. 9.3.3, we briefly discuss the abstract notion of state for nonsequential
systems, as suggested by Witsenhausen. We also refer the reader to Sect. 9.6.2.

4.5.4 Dynamic Programming Equations

Here, we follow the exposition in [158]. Witsenhausen points out how a very gen-
eral Dynamic Programming equation holds true for sequential systems. Specific
forms of this Dynamic Programming equation, like the Bellman equation (4.57),
appear as special cases under specific information patterns. We follow the notations
of Sect. 4.5.2.

Equivalent Deterministic Optimization Problem from the Standard Form
Witsenhausen asserts that, froma problem in the standard form exposed in Sect. 4.5.2,
“one can obtain an equivalent deterministic problem by considering the (uncondi-
tional) distribution πt of the state xt as the new state”.

Let us define a pairing 〈· , ·〉 between the Banach space Πt of signed measures
on (Xt ,Xt ) (with the total variation norm) and the Banach space Φt of bounded
measurable functions on (Xt ,Xt ) (with the supremum norm) as follows. For any
signed measure π ∈ Πt and any bounded measurable function ϕ ∈ Φt , we set

〈π ,ϕ〉 :=
∫
Xt

ϕ(x) dπ(x). (4.92)

For a given feedback γ = {γt }t=0,...,T −1 in (4.81), the (nonlinear) closed-loop
dynamics (4.82) induces two linear operators as follows. The linear operator

(
f γt
t

)
�

from Πt to Πt+1, defined by

(
f γt
t

)
�
π := π ◦( f γt

t )−1, (4.93)

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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maps any signed measure π ∈ Πt onto its image measure by the closed-loop
dynamics f γt

t defined in (4.82) (the notation (4.93) is coherent with the notation (B.9)
for the probability image). The dual operator

(
f γt
t

)� from Φt+1 to Φt , given by

(
f γt
t

)�
ϕ := ϕ ◦ f γt

t , (4.94)

maps functions ϕ over Xt+1 onto functions over Xt .
From (B.10), we have the duality relation

〈(
f γt
t

)
�
π ,ϕ

〉 = 〈
π ,

(
f γt
t

)�
ϕ
〉
, (4.95)

for any signed measure π ∈ Πt and function ϕ ∈ Φt+1.

Proposition 4.18 ([158]) Consider an optimal stochastic control problem in stan-

dard form as in Sect.4.5.2. If the feedback γ� =
{
γ

�
t

}
t=0,...,T −1

is optimal for (4.83),

then one has that (with Xγ
T (x0) given by (4.84))

min
γ∈ΓI

∫
X0

j
(
Xγ

T (x0)
)
dπ0(x0) =

〈
π

�
t ,ϕ

�
t

〉
(4.96a)

= min
γt ∈Γ

It
t

〈
π

�
t ,

(
f γt
t

)�
ϕ

�
t+1

〉
(4.96b)

= min
γt ∈Γ

It
t

〈(
f γt
t

)
�
π

�
t ,ϕ

�
t+1

〉
, (4.96c)

for all t = 0, . . . , T − 1, and where the (new) state sequence
{
π

�
t

}
t=0,...,T −1

solves

the forward state linear equation (Fokker-Planck equation)

π
�
t+1 =

(
f
γ

�
t

t

)
�

π
�
t , t = 0, . . . , T − 1, π

�
0 = π0, (4.97)

and the co-state sequence
{
ϕ

�
t

}
t=0,...,T −1

solves the backward co-state linear

equation

ϕ
�
t =

(
f
γ

�
t

t

)�

ϕ
�
t+1, t = T − 1, . . . , 0, ϕ

�
T = j. (4.98)

The structure of these equations evokes the two-point boundary equations in deter-
ministic optimal control “à la Pontryagin” (Hamilton equations). The analogy of
structure between the Fokker-Planck equation in stochastic process and the Dynamic
Programming equation in optimal control has been raised in [52]. The (new) state
πt ∈ Πt is also called the information state.
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Dynamic Programming Equation in Standard Form
We conclude by exposing how Witsenhausen provides a general dynamic
programming equation in the framework of Sect. 4.5.2. For all t = 0, . . . , T − 1,
let rt (π0) ⊂ Πt denote the set of all states πt reachable at time t from any initial
state π0 ∈ Π0:

rt (π0) :=
{(

f γt
t

)
�
· · · ( f γ0

0

)
�
π0

∣∣∣ γ0 ∈ Γ
I0
0 , . . . , γt ∈ Γ

It
t

}
. (4.99)

Dually, for any final co-state ϕT ∈ ΦT , let us define the co-reachable set ρt (ϕT )

in Φt as

ρt (ϕT ) :=
{(

f γt
t

)� · · · ( f γT −1
T −1

)�
ϕT

∣∣∣ γT −1 ∈ Γ
IT −1
T −1 , . . . , γt ∈ Γ

It
t

}
. (4.100)

Definition 4.19 The “support function”8 of the co-reachable set ρt (ϕT ) yields the
value function

Ṽt (πt ;ϕT ) := inf
ϕt ∈ρt (ϕT )

〈πt ,ϕt 〉 , ∀πt ∈ Πt . (4.101)

Proposition 4.20 ([158]) The value functions (4.101) are related by the backward
Dynamic Programming equation

ṼT (πT ;ϕT ) = 〈πT ,ϕT 〉 , ∀πT ∈ ΠT , (4.102a)

Ṽt (πt ;ϕT ) = min
γt ∈Γ

It
t

Ṽt+1
( (

f γt
t

)
�
πt ;ϕT

)
, ∀πt ∈ Πt . (4.102b)

Dually, Witsenhausen introduces the support function W̃t of the reachable set
rt (π0) ⊂ Πt

W̃t (ϕt ;π0) := inf
πt ∈rt (π0)

〈πt ,ϕt 〉 , ∀ϕt ∈ Φt , (4.103)

and shows a forward Dynamic Programming equation

W̃0(ϕ0;π0) = 〈π0 ,ϕ0〉 , (4.104a)

W̃t+1(ϕt+1;π0) = min
γt ∈Γ

It
t

W̃t (
(

f γt
t

)�
ϕt+1;π0), ∀ϕt+1 ∈ Φt+1. (4.104b)

8We use the terminology “support function” despite, traditionally, the support function of a subset
is a supremum of linear functions over this subset, whereas we consider here an infimum. Indeed,
our optimization problem (4.96a) is one of minimization, and not of maximization.
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Witsenhausen claims that the optimal cost (4.83) for an optimal stochastic control
problem in standard form as in Sect. 4.5.2 is given by

min
γ∈ΓI

∫
X0

j
(
Xγ

T (x0)
)
dπ0(x0) = W̃T ( j;π0) = Ṽ0(π0; j). (4.105)

The Classical Bellman Dynamic Programming Equation
In Example4.16, we realized a conversion of the optimal stochastic control prob-
lem in state form discussed in Sects. 4.4.1–4.4.4 into an optimal stochastic control
problem in standard form as in Sect. 4.5.2.

For a problem in standard form, we just saw how Witsenhausen obtains a gen-
eral Dynamic Programming equation (4.102). We now discuss how the (classical)
Bellman Dynamic Programming equation (4.57) matches with the Witsenhausen
Dynamic Programming equation (4.102).

We make the white noise Assumption4.10 (crucial in establishing the Bellman
equation (4.57)). Since the random variables W1, . . . , WT are independent under

the probability P, then the probability image of P on
∏T

t=1Wt by the random vari-
able W (·) : Ω → ∏T

t=1Wt in (4.51) can be written as (see Sect.B.1.4 for product
probabilities)

PW (·) =
T⊗

t=1

PWt
. (4.106)

Definition 4.21 Wedefine, bybackward induction, the classical Bellman value func-
tion

VT (x) = K (x) = ϕT (x), ∀x ∈ XT (4.107a)

Vt (x) = min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)
, ∀x ∈ Xt . (4.107b)

Notice that the above equation is the classical Bellman Dynamic Programming
equation (4.57), with zero integral costs since the criterion in (4.44) is in Bolza form
(see Remark4.9), and with final cost ϕT = K .

We adopt the notations of Example4.16: to avoid confusion, recall that we denote
by xt ,Xt ,Xt , the generic “state”, the “state” space and the “state” field of the optimal
stochastic control problem in standard form, as well as dynamics f t , information
fields It , feedbacks γt , measures πt and reachable sets r t .

Proposition 4.22 Assume that, for all t ∈ {0, . . . , T − 1}, there exists a control
γ

�
t (x) ∈ Ut which achieves the minimum in (4.107b) and is such that the mapping

γ
�
t : (Xt ,Xt ) → (Ut ,Ut ) is measurable. Then, for all probability πt of the form
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πt ( dxt ) = πt ( dxt ) ⊗
T⊗

s=t+1

PWs , (4.108)

we have that

Ṽt (πt ;ϕT ) = 〈πt , Vt 〉 , (4.109)

where the Witsenhausen value function Ṽt is defined in (4.101) and the Bellman value
function Vt is given by (4.107).

Proof The proof is by induction. But we need preliminary results. This is why we
break the proof in several steps.

1. First, we show that the feedbacks sets Γ
Xt

t in (4.41) and Γ
It

t in (4.87) are in
one-to-one correspondence, for any t = 0, . . . , T − 1.
Anymeasurable γt : (Xt ,Xt ) → (Ut ,Ut ) inΓ

Xt
t can be extended into a feedback

γ̂t : (Xt ,Xt ) → (Ut ,Ut ) by setting

γ̂t (xt ) = γ̂t (xt , wt+1, . . . , wT ) = γt (xt ), (4.110)

where we recall that xt = (xt , wt+1, . . . , wT ), by (4.85).
Since, by (4.41), we have that γ−1

t (Ut ) ⊂ Xt , we deduce that γ̂−1
t (Ut ) ⊂ It =

Xt ⊗ ⊗T
s=t+1{∅,Ws} by (4.86). In other words, γ̂t is an admissible feedback,

measurable w.r.t. the information It given by (4.86).

Now, take an admissible feedback ηt ∈ Γ
It

t .9 Since η−1
t (Ut ) ⊂ It = Xt ⊗⊗T

s=t+1{∅,Ws}, we deduce (by Proposition3.46 with projection mapping) that
there exists a measurable γt : (Xt ,Xt ) → (Ut ,Ut ) such that

ηt (xt ) = ηt (xt , wt+1, . . . , wT ) = γt (xt ), (4.111)

and therefore ηt = γ̂t .
2. Second, we show that, when γ̂t is given by (4.110), the closed-loop dynam-

ics (4.82) is given by, for any t = 0, . . . , T − 1,

f
γ̂t
t (xt ) = ( f γt

t (xt , wt+1), wt+2, . . . , wT ). (4.112)

Indeed, we have that

f
γ̂t
t (xt ) = f t

(
xt , γ̂t (xt )

)
,

9To avoid confusion, we temporarily adopt the notation ηt for a generic feedback in Γ
It

t , instead
of γt .

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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by definition (4.82) of f
γ̂t
t ,

= f t
(
(xt , wt+1, . . . , wT ), γt (xt )

)
,

by definition (4.85) of xt and by definition (4.110) of γ̂t ,

=
(

ft
(
xt , γt (xt ), wt+1

)
, wt+1, . . . , wT

)
,

by definition (4.89) of f t ,

=(
f γt
t (xt , wt+1), wt+2, . . . , wT

)
,

by definition (4.82) of f γt
t .

3. Third, we deduce from the closed-loop dynamics expression (4.112) that, for any
t = 0, . . . , T − 1,

(
f
γ̂t
t

)
�

(
πt ( dxt ) ⊗

T⊗
s=t+1

PWs

)

= (
f γt
t

)
�
(πt ( dxt ) ⊗ PWt+1

)︸ ︷︷ ︸
πt+1( dxt+1)

⊗
T⊗

s=t+2

PWs . (4.113)

Notice that this formula is made possible because of the white noise Assump-
tion4.10.

4. Fourth, we show that, for any t = 0, . . . , T − 1,

min
γt ∈Γ

Xt
t

∫
Xt

πt ( dx)

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γt (x), wt+1

))

=
∫
Xt

πt ( dx) min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)
. (4.114)

Recall that, by assumption, the control γ
�
t (x) ∈ Ut achieves the minimum

in (4.107b), that is,

min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)

=
∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γ

�
t (x), wt+1

))
.
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Therefore, for any γt ∈ Γ
Xt

t , we have that
∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γt (x), wt+1

))

≥ min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)

=
∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γ

�
t (x), wt+1

))
.

Integrating these inequalities with respect to πt ( dx) and then taking theminimum
over γt ∈ Γ

Xt
t , we deduce that

min
γt ∈Γ

Xt
t

∫
Xt

πt ( dx)

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γt (x), wt+1

))

≥
∫
Xt

πt ( dx) min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)

=
∫
Xt

πt ( dx)

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γ

�
t (x), wt+1

))
.

Since γ
�
t ∈ Γ

Xt
t by assumption, we obtain (4.114).

Notice that, to interchange minimization and expectation, we could also have
used (3.51) in the finite case, and Sect. 8.3.5 in the general case, under proper
assumptions.

5. Fifth, we prove (4.109) by backward induction. We have that Ṽt (πT ;ϕT ) =
〈πT , VT 〉, by (4.107a). Then, assume that (4.109) holds true for t + 1. We have

Ṽt (πt ;ϕT ) = min
γt ∈Γ

It
t

Ṽt+1

((
f
γt
t

)
�
πt ;ϕT

)
,

by the general DP equation (4.102b),

= min
γt ∈Γ

Xt
t

Ṽt+1

((
f γt
t

)
�
(πt ( dxt ) ⊗ PWt+1

) ⊗
T⊗

s=t+2

PWs ;ϕT

)
,

by (4.113), because πt = πt ( dxt ) ⊗ ⊗T
s=t+1 PWs , and by the correspondence

between Γ
It

t and Γ
Xt

t induced by (4.110),

= min
γt ∈Γ

Xt
t

〈(
f γt
t

)
�
(πt ( dxt ) ⊗ PWt+1

)︸ ︷︷ ︸
πt+1( dxt+1)

, Vt+1

〉
,

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_8
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by the induction assumption (4.109), because of the property (4.113),

= min
γt ∈Γ

Xt
t

〈
πt ( dxt ) ⊗ PWt+1

, Vt+1 ◦ f γt
t

〉
,

by the duality relation (4.95),

= min
γt ∈Γ

Xt
t

∫
Xt

πt ( dx)

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γt (x), wt+1

))
,

=
∫
Xt

πt ( dx) min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)
,

by (4.114),

=
∫
Xt

πt ( dx)Vt (x),

by the classical Bellman Dynamic Programming equation (4.107b),

= 〈πt , Vt 〉 .

Therefore, we have finally proven (4.109) by backward induction. �

Notice that the classical Bellman value function Vt in (4.107) and the
Witsenhausen value function Ṽt in (4.102) are related by

Vt (x) = Ṽt

(
δx ⊗

T⊗
s=t+1

PWs

)
. (4.115)

Another form of DP equation (9.68) is discussed in Sect. 9.6.2

Why Can We Restrict the Search to Optimal State Feedbacks?
In Sect. 4.4.2, we only considered state feedbacks as information pattern. In other
words, we restricted our available information to the current state, neglecting the
richer information provided by past noises. Supposing again that we make the white
noise Assumption4.10, we will now sketch why there is no loss of optimality in
restricting the search to state feedbacks.

We define

ht = (
x0, w1, w2, . . . , wt , xt

)
, (4.116)

the collection of initial state, past noises and current state, which belongs to the set

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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Ht = X0 ×
t∏

s=1

Ws × Xt , (4.117)

equipped with the product σ-field

Ht = X0 ⊗
t⊗

t=1

Ws ⊗ Xt . (4.118)

Definition 4.23 A closed-loop strategy υ = {υt }t=0,...,T −1 is a sequence of mea-
surable mappings υt : (Ht ,Ht ) → (Ut ,Ut ). Accordingly, we set

Υ
Ht
t :=

{
υt : (Ht ,Ht ) → (Ut ,Ut )

∣∣∣ υ−1
t (Ut ) ⊂ Ht

}
, (4.119)

for t = 0, . . . , T − 1, and the set of all closed-loop strategies is denoted by

ΥH :=
T −1∏
t=0

Υ
Ht
t . (4.120)

Obviously, the class of closed-loop strategies (4.120) is larger than that of state
feedbacks (4.42):

ΓX ⊂ ΥH. (4.121)

In Proposition4.22, we will prove that optimizing over closed-loop strategies pro-
vides the same value as optimizing over state feedbacks.

For simplicity, and without loosing generality (see Remark4.9), we suppose that
the additive and time-separable criterion in (4.44) is in Bolza form, to be consistent
with item 6 in the standard form p. 115.

To account for closed-loop strategies in the definition of an optimal stochastic
control problem in standard form (see the beginning of 4.5.2), we introduce—as in
Example4.16—new “state” xt , new “state” space Xt , new “state” field Xt , as well
as information fields It and dynamics f t . We propose the following standard form,
only stressing the differences with Example4.16.

1. The “state” spaces and fields

xt =(x0, w1, . . . , wT , xt ), (4.122a)

Xt =X0 ×
T∏

s=1

Ws × Xt , (4.122b)



128 4 Information and Stochastic Optimization Problems

Xt =X0 ⊗
T⊗

s=1

Ws ⊗ Xt , (4.122c)

for t = 0, . . . , T , built from the spaces introduced in Sect. 4.4.1.
2. As in Example4.16.
3. The information fields

It = X0 ⊗
t⊗

s=1

Ws ⊗
T⊗

s=t+1

{∅,Ws} ⊗ Xt

⊂ Xt = X0 ⊗
t⊗

s=1

Ws ⊗
T⊗

s=t+1

Ws ⊗ Xt , (4.123)

for t = 0, . . . , T − 1, corresponding to the information structure revealed by
the choice of feedbacks in Definition4.23. Indeed, we thus express that feed-
backs can only depend on ht = (

x0, w1, w2, . . . , wt , xt
)
and not on future noises

wt+1, . . . , wT .
4. The measurable dynamics f t : (Xt × Ut ,Xt ⊗ Ut ) → (Xt+1,Xt+1) given by

f t (xt , ut ) = f t (x0, w1, . . . , wT , xt , ut )

= (
x0, w1, . . . , wT , ft (xt , ut , wt+1)︸ ︷︷ ︸

xt+1

)
, (4.124)

for t = 0, . . . , T − 1, built from the original dynamics introduced in Sect. 4.4.1.
5. As in Example4.16.
6. As in Example4.16.

To Proposition4.22 now corresponds the following Proposition4.24. We only
sketch the proof, stressing the differences between the two Propositions.

Proposition 4.24 Assume that, for all t ∈ {0, . . . , T − 1}, there exists a control
γ

�
t (x) ∈ Ut which achieves the minimum in (4.107b) and is such that the mapping

γ
�
t : (Xt ,Xt ) → (Ut ,Ut ) is measurable. Then, for all probability πt of the form

πt ( dxt ) = π0( dx0) ⊗
T⊗

s=1

PWs ⊗ πt ( dxt ) (4.125)

we have that
Ṽt (πt ;ϕT ) = 〈πt , Vt 〉 , (4.126)

where the Witsenhausen value function Ṽt is defined in (4.101) and the Bellman value
function Vt is given by (4.107).



4.5 Sequential Optimization Problems 129

As a consequence, optimizing over closed-loop strategies provides the same value
as optimizing over state feedbacks. In the course of the proof, we see that the state
feedback γ� achieves the optimum among closed-loop strategies.

Proof The proof is by induction. But we need preliminary results. This is why we
break the proof in several steps.

1. First, we show that the closed-loop strategies setΥ Ht
t in (4.119) and the feedbacks

set Γ It
t —in (4.41) with information field (4.123)—are in one-to-one correspon-

dence.
For this, we map any υt : (Ht ,Ht ) → (Ut ,Ut ) into a feedback υ̂t : (Xt ,Xt ) →
(Ut ,Ut ) by setting

υ̂t (xt ) = υ̂t (x0, w1, . . . , wT , xt ) = υt (x0, w1, . . . , wt , xt ). (4.127)

2. Second, for any υt : (Ht ,Ht ) → (Ut ,Ut ), we define

f υt
t (x0, w1, . . . , wt , wt+1, xt ))

= ft
(
xt , υt (x0, w1, . . . , wt , xt )︸ ︷︷ ︸

ut

, wt+1
)
. (4.128)

Then we show that, when υ̂t is given by (4.127), the closed-loop dynamics (4.82)
is expressed by

f
υ̂t
t (xt ) = (

x0, w1, . . . , wT , f υt
t (x0, w1, . . . , wt , wt+1, xt )︸ ︷︷ ︸

xt+1

)
. (4.129)

3. Third, we deduce from the closed-loop dynamics expression (4.129) that

(
f
υ̂t
t

)
�

(
π0( dx0) ⊗

T⊗
s=1

PWs ⊗ πt ( dxt )
)

= π0( dx0) ⊗
T⊗

s=1

PWs ⊗ (
f υt
t

)
�

(
π0( dx0) ⊗

t+1⊗
s=1

PWs ⊗ πt ( dxt )
)

︸ ︷︷ ︸
πt+1( dxt+1)

.

(4.130)

4. Fourth, we show that, for any t = 0, . . . , T − 1,

min
υt ∈Υ

Ht
t

∫
Xt

πt ( dx)

∫
∏t+1

s=1 Ws

π0( dx0) ⊗
t+1⊗
s=1

PWs ( dws)

Vt+1

(
ft
(
x, υt (x0, w1, . . . , wt , x), wt+1

))
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=
∫
Xt

πt ( dx) min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)
. (4.131)

Recall that, by assumption, the control γ
�
t (x) ∈ Ut achieves the minimum

in (4.107b), that is,

min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)

=
∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γ

�
t (x), wt+1

))
.

Therefore, for any υt ∈ Υ
Ht
t , we have that

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, υt (x0, w1, . . . , wt , x), wt+1

))

≥ min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)

=
∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γ

�
t (x), wt+1

))
.

Integrating these inequalities with respect to πt ( dx) ⊗ π0( dx0) ⊗ ⊗t
s=1 PWs

( dws) and then taking the minimum over υt ∈ Υ
Ht
t , we deduce that

min
υt ∈Υ

Ht
t

∫
Xt

πt ( dx)

∫
∏t+1

s=1 Ws

π0( dx0) ⊗
t+1⊗
s=1

PWs ( dws)

Vt+1

(
ft
(
x, υt (x0, w1, . . . , wt , x), wt+1

))

≥
∫
Xt

πt ( dx) min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)

=
∫
Xt

πt ( dx)

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft
(
x, γ

�
t (x), wt+1

))
.

Since γ
�
t ∈ Γ

Xt
t by assumption, and since Γ

Xt
t ⊂ Υ

Ht
t by (4.121), we

obtain (4.131). In other words, the state feedback γ� achieves the optimum among
closed-loop strategies.

5. Fifth, we prove (4.109) by backward induction.
We have that Ṽt (πT ;ϕT ) = 〈πT , VT 〉, by (4.107a). Then, assume that (4.109)
holds true for t + 1. We have

Ṽt (πt ;ϕT ) = min
γt ∈Γ

It
t

Ṽt+1

((
f
υt
t

)
�
πt ;ϕT

)
,
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by the general DP equation (4.102b),

= min
υt ∈Υ

Ht
t

Ṽt+1

(
π0( dx0) ⊗

T⊗
s=1

PWs ⊗

(
f υt
t

)
�

(
π0( dx0) ⊗

t+1⊗
s=1

PWs ⊗ πt ( dxt )
);ϕT

)
,

by (4.130), because πt ( dxt ) = π0( dx0) ⊗ ⊗T
s=1 PWs ⊗ πt ( dxt ), and by the

correspondence induced by (4.127),

= min
υt ∈Υ

Ht
t

〈(
f υt
t

)
�

(
π0( dx0) ⊗

t+1⊗
s=1

PWs ⊗ πt ( dxt )
)

︸ ︷︷ ︸
πt+1( dxt+1)

, Vt+1

〉
,

by the induction assumption (4.109), because of the property (4.130),

= min
υt ∈Υ

Ht
t

〈
π0( dx0) ⊗

t+1⊗
s=1

PWs ⊗ πt ( dxt ) , Vt+1 ◦ f υt
t

〉
,

by the duality relation (4.95),

= min
υt ∈Υ

Ht
t

∫
Xt

πt ( dx)

∫
∏t+1

s=1 Ws

π0( dx0) ⊗
t+1⊗
s=1

PWs ( dws)

Vt+1

(
ft
(
x, υt (x0, w1, . . . , wt , x), wt+1

))

by (4.128)

=
∫
Xt

πt ( dx) min
u∈Ut

∫
Wt+1

PWt+1
( dwt+1)Vt+1

(
ft (x, u, wt+1)

)

by (4.131),

=
∫
Xt

πt ( dx)Vt (x)

by the classical Bellman Dynamic Programming equation (4.107b)

= 〈πt , Vt 〉 .

Therefore, we have finally proven (4.126) by backward induction. �
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4.6 Conclusion

This chapter introduced dynamical stochastic optimization issues, with an emphasis
upon the interplay between information and decision.We have highlighted how infor-
mation patterns are important components of stochastic decision problems: changing
information patterns can turn an easy problem (like the classical linear-quadratic opti-
mization one) into an open problem (like the Witsenhausen Counterexample). We
have seen how stochastic optimization problems formulated within the framework
of state models can be solved by Dynamic Programming when an optimal solu-
tion is searched among functions of the state. The celebrated Bellman equation for
time-additive criterion and independent noises has been given. At last, following
Witsenhausen, we have shown that a Dynamic Programming equation is a general
feature of sequential systems. However, the value function is defined over an infinite
dimensional space of signed measures, and the DP equation involves a minimum
over feedbacks. Specific forms of this Dynamic Programming equation, like the
Bellman equation, appear as special cases under specific information patterns. Inter-
estingly, theBellman value function is defined over a finite dimensional space, and the
Bellman equation involves a minimum over controls and not over feedbacks. A guid-
ing thread throughout this chapter is the notion of state. A state summarizes the past
history, being a sufficient statistic for the uncertainty and past controls. Whereas his-
tory takes value in an increasing space as time t increases, a state variable remains in
a space independent of t . A state is a way of compressing information for calculating
optimal controls.



Chapter 5
Optimality Conditions for Stochastic
Optimal Control (SOC) Problems

5.1 Introduction

In this chapter, we consider Stochastic Optimal Control (SOC) problems anew, as
introduced in Sect. 1.2.1 (see (1.1)) and discussed in Chap. 4. In that chapter, opti-
mality conditions were derived by using the Dynamic Programming (DP) approach.
This approach is based on a functional point of view upon informational constraints,
as opposed to the algebraic point of view: see the discussions at the end of Sect. 1.1.3
and in Chap. 3 which led to Table 3.1. Essentially, as long as informational constraints
are initially formulated as measurability conditions between decision variables and
available observations (this is basically the algebraic viewpoint), Proposition 3.46
showed that there exists a translation of those constraints in terms of looking for the
decision variables as (measurable) functions of the observations.

Another important ingredient of the DP approach is the notion of state that has
been discussed in Sects. 4.4 and 4.5. When available, this notion eliminates the need
to use functions of the whole set of past observations because, then, the state variables
represent a sufficient summary.

In the following, we come back to the algebraic viewpoint because it is well suited
to a variational approach of the optimization problem. By “variational approach”,
we refer to the attempt to characterize the optimal solution by a set of “stationarity
conditions à la Kuhn-Tucker”, that is, essentially, to express the orthogonality of
the gradient of the cost function to the admissible set at the optimal point. When
applied to optimal control problems, this approach leads to some kind of Pontryagin’s
optimality conditions [124]. Indeed, in deterministic and continuous time optimal
control problems, Pontryagin’s Maximum (or Minimum) Principle is a powerful
necessary condition. Here, we consider stochastic and discrete time control problems,
and we aim at obtaining a set of stationarity conditions that are used in Chap. 7 to
derive numerical resolution methods.

To that purpose, we must express the gradient of the cost function w.r.t. control
variables, but since the cost function also involves intermediate “state” variables
through the dynamic equations, we must use a well known technique to differentiate
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this composition of functions (cost and dynamics): this goes through the use of
“adjoint state (or co-state)” variables. However, all those variables (controls, states,
co-states) are indeed discrete time stochastic processes (that, mathematically, are
considered as members of L2 Hilbert spaces) and there are measurability constraints
between them to be taken into account when deriving those optimality conditions.
Fundamentally, measurability constraints define linear subspaces, and projection
operators onto those linear subspaces are conditional expectations (see Sects. 1.3.1
and 3.5). Therefore, one may expect to finally come up with an adequate combination
of state and co-state equations, and orthogonality conditions for the gradient of the
cost functions w.r.t. controls, all involving conditional expectations.

As we shall see, conditional expectations can be embedded more or less deeply
into those equations. This yields several forms of the optimality conditions (which
in turn provide different numerical schemes). The derivation of those conditions can,
however, only be achieved in the situation of Static Information Structure (SIS): refer
to Sect. 1.2.2 for this notion. The main reason is that, with SIS, conditional expec-
tations are w.r.t. a “static conditioning”, that is, w.r.t. exogenous random variables
or processes (noises) which do not depend on the decision variables. Indeed, if that
were not the case, we would have to differentiate w.r.t. the conditioning since this
conditioning would change with the decisions (see Sect. 4.2.3). But we do not know
of a technique to perform this operation, nor of a theory to provide a background to
this notion of differentiation.

Nevertheless, despite this difficulty of differentiating expressions involving con-
ditional expectations when the conditioning is w.r.t. variables instead of exogenous
data, we present, under appropriate assumptions, optimality conditions which do
involve conditional expectations w.r.t. state variables (the assumptions are the same
as those required by the DP approach in order to allow for finite dimensional state
variables, that is, the so-called “Markovian case”). Indeed, this is not contradictory
since those optimality conditions are first obtained by using only “static” condition-
ing, and then, afterwards, by using the appropriate assumptions, it is shown that
some proved measurability properties make their transformation into the final form
with conditioning w.r.t. state variables possible.

Consequently, some connection with the functional point of view, and in particular
with the DP approach, becomes possible. But, as we will discuss in Chap. 7, the
differences may provide some numerical advantages to the variational approach over
the DP technique in certain circumstances.

5.2 SOC Problems, Formulation and Assumptions

We consider again problems as (1.1) over a fixed time horizon T with, here, some
additional constraints upon the control variables. All random variables are defined
over a probability space (Ω,A,P) and they are assumed to be square integrable.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_7
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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5.2.1 Dynamics

The system dynamics follows the equations (which must be understood P-a.s.):

X0 = W0, (5.1a)

Xt+1 = ft (Xt , Ut , Wt+1), ∀t = 0, . . . , T − 1. (5.1b)

In these equations,

• the variable Wt ∈ Wt is the noise variable at time t , a random variable with values
in Wt := R

dwt ; Wt = L2 (Ω,A,P;Wt ) and we set W := W0 × · · · × WT ;
although this is not of a major importance, for simplicity we assume that all
dimensions dwt are equal to the same dw, except perhaps for dw0 which must
match the dimension of X0 (because of (5.1a)); we make the same simplifying
assumption for the other variables hereafter;

• the variable Ut ∈ Ut is the control variable at time t , a random variable with values
in Ut := R

du ; Ut = L2 (Ω,A,P;Ut ) and we set U := U0 × · · · × UT −1;
• the variable Xt ∈ Xt is the “state” variable at time t , a random variable with values

in Xt := R
dx ; Xt = L2 (Ω,A,P;Xt ) and we set X := X0 × · · · × XT .

Of course, due to (5.1a), X0 is the same as W0.
Whenever we refer to W without subscript t (and likewise for U and X ), we refer

to an element of W , that is, the stochastic process (W0, . . . , WT ).
Functions ft are assumed to be continuously differentiable with respect to

their first two arguments (state and control) and to be normal integrands (see
Definition 8.22).

Remark 5.1 As in footnote 3 of Chap. 1, here we use the term “state” in a rather
loose sense. The definition of this term will be sharpened (as is the case in Sect. 4.4)
when moving to the Markovian case later on in Sect. 5.5. ♦

5.2.2 Cost Function

The performance of the system is measured by the expectation of a cost function
involving an integral and a final costs:

j̃(u, x,w) :=
T −1∑
t=0

Lt (xt , ut , wt+1) + K (xT ), (5.2a)

J̃ (U , X ) := E
(

j̃(U , X , W )
)
. (5.2b)

We delay to Remark 5.4 comments that this latter equation deserves in connection
with the discussion in p. xv of the preamble on notations.

http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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Functions Lt are assumed to be continuously differentiable with respect to their
first two arguments (state and control) and to be normal integrands. Function K is
also assumed to be continuously differentiable.

5.2.3 Constraints

The control variables Ut , in the hand of the decision maker whose purpose is to
minimize the cost function (5.2), are subject to two kinds of constraints.1 On the one
hand, each Ut is subject to almost-sure constraints described hereafter. On the other
hand, decisions are based on information progressively available on line, and these
constraints are expressed by measurability constraints upon the control process.

More precisely, for every t , consider a set-valued mapping Ct : Ω ⇒ Ut . Then,
Ut is subject to the almost sure constraint:

Ut (ω) ∈ Ct (ω) P-a.s.. (5.3)

The subsets Ct (ω) are assumed to be P-a.s. closed and convex subsets. Then, the
subset Ua

t ⊂ Ut of controls satisfying (5.3) is also closed and convex. We set Ua :=
Ua

0 × · · · × Ua
T −1.

As discussed in Sect. 1.2.1, the control process must at least be causal (or nonan-
ticipative). In order to express this property mathematically, we introduce the σ-field
Ft generated by the Ws from s = 0 to t (see (1.1c)—as mentioned there, the collec-
tion F of subfields Ft of A which is such that Ft ⊂ Ft+1 is a filtration). Then, Ut
must at least be measurable w.r.t. Ft , which we write Ut � Ft (see Definition 3.44).
This is the case when the decision maker has a complete observation and a perfect
memory of past noises.

However, it may be that the information available to the decision maker at time t
is smaller than Ft . We thus introduce another subfield Gt ⊂ Ft and we require that

Ut � Gt . (5.4)

This constraint defines a linear subspace of Ut denoted Ub
t and we set Ub = Ub

0 ×
· · · × Ub

T −1. We set G := {Gt }t=0,...,T −1.

Remark 5.2 Stochastic processes belonging to Ub are called “G-adapted” even
though we do not necessarily assume that G is a filtration, that is, that memory
is perfect (some information may be “forgotten” when time passes). ♦

As mentioned in Sect. 1.2.1, the subfield Gt may be generated by an observation
variable Yt , representing the collection of all observations available to the decision

1Other types of constraints advocated in Sect 1.1.2 might also be considered but we limit ourselves
to those introduced hereafter.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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maker at time t . What is important to stress here is that Yt or Gt should not depend
upon past decisions. This is a restriction, but an essential one to stay in the realm of
SIS as opposed to DIS (see Chap. 1).

Finally, the control process is constrained to belong to Ua ∩ Ub defined as the
combination of (5.3) and (5.4) for t = 0, . . . , T −1. However, an additional assump-
tion has to be made in order to prevent this feasible set from being empty. From the
intuitive point of view, one cannot reasonably impose constraints like (5.3), in which
the right-hand side is a random set, if this random set is not fully determined by the
information available to the decision maker at time t . Otherwise stated, it is wise to
require the following.

Assumption 5.3 The set-valued random mapping Ct assumes nonempty, closed,
convex values P-a.s. and is Gt -measurable for all t .

About such multivalued mappings and their measurability, refer to Sect. 8.3.1.
From the mathematical point of view, assuming for example that Gt is generated

by an observation Yt , for any pair (ω,ω′) such that Yt (ω) = Yt (ω
′), then Ut (ω) must

be equal to Ut (ω
′) according to (5.4). But at the same time, if Ct (ω) ∩ Ct (ω

′) = ∅,
and if this situation happens with a positive probability, then constraints (5.3) and
(5.4) are incompatible. This is prevented by the above assumption which implies that
Ct (ω) = Ct (ω

′) for any such pair (ω,ω′).
We refer the reader back to Remark 1.1 regarding the decision-hazard scheme

adopted here.

5.2.4 The Stochastic Programming (SP) Version

The problem of minimizing the cost function (5.2) under (5.1), (5.3) and (5.4) is
amenable to an SP formulation (see Sect. 1.2.2 and Problem (1.3)) by considering
that X is just an intermediate stochastic process which is completely determined by U
and W through (5.1) (this is related to the notion of “state map”—see Definition 4.6—
except that, here, the state trajectory is generated by a sequence of controls Ut rather
than by a sequence of feedbacks γt ). Following this path, we define j (U , W ) as the

value of j̃(U , X , W ) (see (5.2a)) once X has been expressed as a function of U and
W , and

J (U ) := E
(

j (U , W )
)
. (5.5)

Then, the SOC problem boils down to

min
U ∈U

J (U ) s.t. U ∈ Ua ∩ Ub. (5.6)

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_4


138 5 Optimality Conditions for Stochastic Optimal Control (SOC) Problems

Remark 5.4 We refer the reader back to the discussion in p. xv of the preamble on
notations: according to that discussion, instead of (5.6), we should write

min
[U ]∈U

J
( [

U
] )

s.t.
[
U

] ∈ Ua ∩ Ub,

and J
( [

U
] )

in (5.5) too, in order to stress the difference between the meaning the
symbol U has there (which refers to the stochastic process as a whole) and the
meaning it has in j (U , W ) in which U and W are shortcuts for the values U (ω)

and W (ω), ω being the variable w.r.t. which the mathematical expectation (that is,
an integral) is computed. Without this subtle difference in mind, an equation such as
(5.5) is hardly intelligible. As stated earlier, we nevertheless keep notations simple
as in (5.5) and (5.6). ♦

Necessary optimality conditions for this problem essentially express that the gra-
dient of J at a solution U �, denoted ∇ J (U �), must belong to the cone orthogonal to
the constraints at the point U �, which can also be expressed with help of the orthog-
onal projector onto the feasible set at this point. Therefore, we need two kinds of
results:

• how to compute the gradient of J which has been defined rather implicitly;
• how to operate a projection onto the intersection of subsets

Uad := Ua ∩ Ub.

The next section is devoted to the latter issue, and the former is addressed in Sect. 5.4.1.

5.3 Optimality Conditions for the SP Formulation

We first examine a specific property of the projection operation onto the feasible set
involved in Problem (5.6), and then use it to express optimality conditions for this
problem.

5.3.1 Projection on the Feasible Set

Projection on Constraints (5.4)
Recall that U is considered to be the Hilbert space which is the Cartesian product
of Ut = L2 (Ω,A,P;Ut ) for t = 0, . . . , T − 1. Constraints (5.4) define a closed
linear subspace Ub of U , namely the stochastic processes which are G-adapted. This
subspace Ub may also be considered as the Cartesian product of subspaces Ub

t . The
projection on Ub

t , that is, on the subspace of Gt -measurable random variables, is
well-known: it is the conditional expectation E(· | Gt ) (see Definition B.5).
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Projection on Constraints (5.3)
Constraints (5.3) define another closed convex subset Ua of U which can also be
considered as the Cartesian product of subsets Ua

t , namely the subsets of random
variables taking their values in Ct , P-a.s., for which the projection also operates
separately for each value of t . This projection is denoted projU a

t
.

The next lemma shows that projU a
t

operates “ω per ω” (pointwise). In this lemma,
we drop the subscript t to alleviate notation.

Lemma 5.5 For any random variable U , projU a

(
U

)
is the random variable ω 
→

projC (ω)

(
U (ω)

)
.

Proof By definition, projU a

(
U

)
is the random variable V which minimizes the

distance to U and such that V (ω) ∈ C (ω), P-a.s.. For any subset A, we introduce
the characteristic function χA(x) (see (A.2)). Then projU a

(
U

)
is the arg min of the

minimization problem:

min
V ∈U

1

2

∥∥V − U
∥∥2
U + χUa (V ).

According to Remark 8.28, this problem can also be formulated as:

min
V ∈U

∫ (1

2

∥∥V (ω) − U (ω)
∥∥2
U

+ χC (ω)

(
V (ω)

))
dP(ω).

Using the interchange of minimization and integration (see Sect. 8.3.5), the minimiza-
tion can be done in a pointwise manner under the integral sign, which completes the
proof. �

Projection on the Intersection Ua ∩ Ub

The projection on Ua ∩ Ub is composed of the projections on Ua
t ∩ Ub

t for t =
0, . . . T − 1. We are going to show that these projections on intersections of two
subsets can be expressed in a simple way using the projectors on the two subsets
separately, which is not generally true. This particular property arises from a special
feature established by the next lemma.

Suppose that, in Lemma 5.5, U ∈ Ub, that is, Ut is Gt -measurable for all t .
Then the following lemma shows that projU a

t

(
Ut

)
also belongs to Ub

t . Again, in this
lemma, we drop the subscript t .

Lemma 5.6 Under Assumption 5.3, projU a

(Ub
) ⊂ Ub.

Proof Consider any U ∈ Ub. From Lemma 5.5, we know that

(
projU a

(
U

) )
(ω) = arg min

v∈C (ω)

1

2

∥∥v − U (ω)
∥∥2
U

, P-a.s..

In the right-hand side, all random elements, namely U and C , are G-measurable.
From [7, Theorem 8.2.11] (measurability of marginal functions), we conclude

http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_8
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that the arg min projU a

(
U

)
is also a G-measurable function, which means that

projU a

(
U

) ∈ Ub. �

We can now state the main proposition about the structure of the projection on
Ua ∩ Ub (subscript t is once again dropped).

Proposition 5.7 Consider a closed linear subspace Ub of a Hilbert space U and a
closed convex subset Ua of U . Assume that projU a

(Ub
) ⊂ Ub. Then

projU a∩Ub = projU a ◦ projUb . (5.7)

Proof Let x ∈ U , y ∈ Ua ∩ Ub, z = projUb (x) and v = projU a (z). The following
variational inequality characterizes the projection v of z (see Example A.11):

〈z − v, s − v〉 ≤ 0, ∀s ∈ Ua. (5.8)

Therefore,

〈x − v, y − v〉 = 〈x − z, y − v〉 + 〈z − v, y − v〉
≤ 〈x − z, y − v〉

since the second scalar product in the right-hand side of the former line above is
non positive (see (5.8) with y, which does belong to Ua, instead of s). Now, since
z ∈ Ub and thanks to the assumption that projU a

(Ub
) ⊂ Ub, then v ∈ Ub; moreover,

y − v ∈ Ub too, since y ∈ Ub and this is a linear subspace. On the other hand, since
z = projUb (x), then x − z is orthogonal to the subspace Ub, hence 〈x − z, y − v〉 =
0. Finally,

〈x − v, y − v〉 ≤ 0, ∀x ∈ U , ∀y ∈ Ua ∩ Ub,

an inequality which characterizes v = projU a ◦ projUb (x) as the projection of x on
Ua ∩ Ub. �

5.3.2 Stationary Conditions

Consider the minimization of a convex differentiable function G : U → R over
a closed convex subset Uad of a Hilbert space U . We consider the characteristic
function χUad as defined by (A.2). Its subdifferential ∂χUad (u) is the normal cone to

Uad at u (see Example A.6).
The following statements are three equivalent, necessary, and sufficient condi-

tions for u� ∈ Uad to be optimal (see Eq. (A.7) for those optimality conditions and
Sect. A.1.4 for the notation ∇ and the gradient notion):
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∀u ∈ Uad,
〈∇G(u�) , u − u�

〉 ≥ 0, (5.9a)

∇G(u�) ∈ −∂χUad (u�), (5.9b)

∀ε ≥ 0, u� = projU ad

(
u� − ε∇G(u�)

)
. (5.9c)

Coming back to (5.6) and using (5.7) in (5.9c), we get

∀ε ≥ 0, U � = projU a∩Ub

(
U � − ε∇ J (U �)

)
= projU a ◦ projUb

(
U � − ε∇ J (U �)

)
= projU a

(
U � − ε projUb

(∇ J (U �)
))

(5.10a)

using the linearity of projUb . By (5.9), the last equality is equivalent to

projUb

(∇ J (U �)
) ∈ −∂χUa (U �). (5.10b)

We now reintroduce the subscript t . As mentioned earlier, projUb
t
(·) = E(· | Gt ).

Hence (5.10) can more explicitly be written: for t = 0, . . . , T − 1,

Ut
� = projU a

t

(
Ut

� − εE
(∇ut J (U �)

∣∣ Gt
))

, (5.11a)

E
(∇ut J (U �)

∣∣ Gt
) ∈ −∂χUa

t
(Ut

�). (5.11b)

These formulas can indeed be applied not only for each value of t but also for
almost all ω (see Lemma 5.5).

5.4 Optimality Conditions for the SOC Formulation

In this section, we come back to SOC problems described in Sect. 5.2 and we use the
results obtained so far for the SP formulation in order to derive optimality conditions
for those problems. To that purpose, we must first examine how cost gradients can
be computed in SOC problems. Then, optimality conditions in two different forms
are derived.

5.4.1 Computation of the Cost Gradient

The SP formulation (5.6) has been obtained by conceptually substituting X into the
cost function (5.2) as a function of U and W defined by the recursive dynamic
Eq. (5.1), and by taking the expectation to obtain the cost J (U ). This implicit

http://dx.doi.org/10.1007/978-3-319-18138-7_5
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definition of the cost function requires a special technique in order to compute the
gradient w.r.t. the decision variable.

Indeed, the random context can be momentarily forgotten in that gradients are first
calculated for each sample path ω. In addition, the “noise” W plays no particular role
in this matter and can also be provisionally omitted. Therefore, let u denote a whole
control history

{
Ut (ω)

}
t=0,...,T −1 for a sample ω and x denote the corresponding

state trajectory. The dynamics (5.1) defines a pseudo-implicit vector equation:

f (u, x) = 0. (5.12)

We say “pseudo-implicit” in that those recursive equations form a strictly lower-
triangular system out of which a unique well-defined solution x is entirely deter-
mined by the choice of u (and indeed also by w that we omitted—see the notion of
state map in Sect. 4.4.2). Let now g(u, x) be the corresponding cost (more precisely,
the value of j̃(u, x, w) (see (5.2a)) for a given sample ω and the corresponding noise
history). Since x is uniquely, but implicitly, defined by (5.12) as a function of u only,
then g(u, x) can also be considered as a function of u, say G(u). The following
lemma shows how one can compute the gradient ∇G(u) (assuming, of course, all
differentiability properties required for this gradient to exist).2

Lemma 5.8 We assume that the implicit Eq. (5.12) admits a unique solution in x
for any given u. Let G(u) be the value of g(u, x) when x is so determined by u.
Assuming the existence of all derivatives involved, the gradient ∇G(u) is given by
the following rule:

∇G(u) = ∇ug(u, x) + ∇u f (u, x)λ (5.13a)

in which x is drawn from (5.12) and λ is in the same space as x and such that

∇xg(u, x) + ∇x f (u, x)λ = 0. (5.13b)

Proof Since x follows from u out of (5.12), an infinitesimal variation δu causes a
variation δx such that

(∇u f (u, x)
)�

δu + (∇x f (u, x)
)�

δx = 0, (5.14)

and a variation of the cost

(∇G(u)
)�

δu = (∇ug(u, x)
)�

δu + (∇xg(u, x)
)�

δx . (5.15)

Consider any vector λ of the same dimension as f (u, x) or x . We may combine the
right-hand side of (5.15) with the scalar product of λ by the left-hand side of (5.14)

2The reader may refer to Sect. A.1.4 for notations such as ∇ug, ∇xg, ∇u f and ∇x f , and especially
to Remark A.4 regarding the last two ones.

http://dx.doi.org/10.1007/978-3-319-18138-7_4
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since the latter is identically zero. This yields:

(∇G(u)
)�

δu = (∇ug(u, x) + ∇u f (u, x)λ
)�

δu

+ (∇xg(u, x) + ∇x f (u, x)λ
)�

δx . (5.16)

If λ is chosen in such a way that (5.13b) is satisfied, then (5.13a) is derived by
identifying both sides of (5.16) which holds true for any infinitesimal δu.3 This
completes the proof. �

The result of Lemma 5.8 can be summarized as the following “recipe”:

• form the “pseudo-Lagrangian” �(u, x;λ) = g(u, x) + λ� f (u, x);
• draw x from ∇λ�(u, x;λ) = 0 (which does not depend on λ);
• draw λ from ∇x�(u, x;λ) = 0;
• with those values, compute the gradient ∇u�(u, x;λ) to obtain ∇G(u).

This is reminiscent of some sort of Kuhn-Tucker stationary conditions but the gradient
is valid here for any u, not only for the arg min of some optimization problem.

We now apply this recipe to the expression of the cost j̃(u, x, w) (see (5.2a))
(which plays the role of g(u, x) in the lemma) when x is derived from (5.1) playing
the role of (5.12). Thus, we consider:

�(u, x;λ) = K (xT )

+
T −1∑
t=0

(
Lt (xt , ut , wt+1) + λ�

t+1

(
ft (xt , ut , wt+1) − xt+1

))

+ λ0(w0 − x0). (5.17)

Of course, ∇λ� = 0 yields (5.1) again whereas ∇x� = 0 yields the well-known
co-state backward dynamic equations:

λT = ∇K (xT ), (5.18a)

and for t = 1, . . . , T − 1,

λt = ∇x ft (xt , ut , wt+1)λt+1 + ∇x Lt (xt , ut , wt+1). (5.18b)

The equation for λ0 has been skipped since λ0 is not involved in the following cost
gradient expression:

∇ut j (u, w) = ∇u Lt (xt , ut , wt+1)

+ ∇u ft (xt , ut , wt+1)λt+1, t = 0, . . . , T − 1. (5.19)

3Observe that this holds true even if λ out of (5.13b) is non unique, that is, even if ∇x f (u, x) is
singular.
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5.4.2 Optimality Conditions with Non-adapted Co-States

Now that we have an explicit expression of the cost gradient for the SOC formulation,
we can specialize the optimality conditions (5.11b). Recall that those conditions are
necessary and also sufficient in the convex case (see Theorem A.10). We drop the
superscript � but of course all variables are supposed here to assume their optimal
values:

X0 = W0, (5.20a)

Xt+1 = ft (Xt , Ut , Wt+1), t = 0, . . . , T − 1, (5.20b)

λT = ∇K (XT ), (5.20c)

λt = ∇x ft (Xt , Ut , Wt+1)λt+1 + ∇x Lt (Xt , Ut , Wt+1),

t = 1, . . . , T − 1, (5.20d)

E
(∇u Lt (Xt , Ut , Wt+1) + ∇u ft (Xt , Ut , Wt+1)λt+1

∣∣ Gt
)

∈ −∂χUa
t
(Ut ), t = 0, . . . , T − 1. (5.20e)

These conditions involve a co-state stochastic process λ which is not F-adapted
since the dynamics (5.20c) and (5.20d) propagate backwards and therefore λt is
not in general Ft -measurable. The next section shows that it is possible to obtain
optimality conditions involving another F-adapted co-state process. Let us explain
why this is natural.

Indeed, the conditions (5.20) may be viewed as Kuhn-Tucker stationary conditions
in which the dynamics (5.1) have been dualized using the λt as multipliers to form
a Lagrangian similar to (5.17) but with random variables as arguments. Let us focus
on the particular duality term

〈
ft (Xt , Ut , Wt+1) − Xt+1 ,λt+1

〉
Xt+1

=
∫ 〈

ft
(
Xt (ω), Ut (ω), Wt+1(ω)

) − Xt+1(ω) ,λt+1(ω)
〉
Rdx

dP(ω).

The left-hand side factor of scalar products is Ft+1-measurable; therefore, consider-
ing a decomposition of λt+1 into its Ft+1-measurable component, namely

Λt+1 := E(λt+1 | Ft+1), (5.21)

on the one hand, and its orthogonal complement λt+1 −Λt+1on the other hand, only
the former component contributes to the scalar product. Hence it should be possible
to get optimality conditions involving only that Λt+1. This is what we show now.
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5.4.3 Optimality Conditions with Adapted Co-States

Recall that Gt ⊂ Ft ⊂ Ft+1. Therefore E(· | Gt ) = E
(
E(· | Ft+1)

∣∣ Gt
)
. We make

use of this property in the left-hand side member of (5.20e)

E

(
E

(∇u Lt (Xt , Ut , Wt+1) + ∇u ft (Xt , Ut , Wt+1)λt+1

∣∣ Ft+1
) ∣∣∣ Gt

)

and we notice that, except for λt+1, the other terms involved in the conditional
expectation are Ft+1-measurable and thus, they “get out” of E(· | Ft+1) (see Propo-
sition B.22) which yields

E

(
∇u Lt (Xt , Ut , Wt+1) + ∇u ft (Xt , Ut , Wt+1)E(λt+1 | Ft+1)

∣∣∣ Gt

)
,

that is, only λt+1 is affected by this operator and this makes precisely Λt+1, defined
by (5.21), pop up in this expression. Hence, the orthogonality condition (5.20e) can
equivalently be written:

E
(∇u Lt (Xt , Ut , Wt+1) + ∇u ft (Xt , Ut , Wt+1)Λt+1

∣∣ Gt
)

∈ −∂χUa
t
(Ut ), t = 0, . . . , T − 1. (5.22a)

It remains to show that Λ can equally replace λ wherever the latter appears in the
remaining of the optimality conditions (5.20). There is nothing to say about (5.20a)
and (5.20b), nor really about (5.20c) since the right-hand side is obviously FT -
measurable, hence λT = ΛT , and (5.20c) may as well be written:

ΛT = ∇K (XT ). (5.22b)

Therefore, we consider applying the operator E(· | Ft ) to both sides of (5.20d)
in order to see how Λt can be expressed. Again, since Ft ⊂ Ft+1, we use the rule
E(· | Ft ) = E

(
E(· | Ft+1)

∣∣ Ft
)
. Except for λt+1, all other terms in this right-

hand side are Ft+1-measurable, hence those terms get out of the inner conditional
expectation and Λt+1 appears, which yields:

Λt = E
(∇x ft (Xt , Ut , Wt+1)Λt+1 + ∇x Lt (Xt , Ut , Wt+1)

∣∣ Ft
)
,

t = 1, . . . , T − 1. (5.22c)

To summarize, Eqs. (5.20a), (5.20b) and (5.22) are an alternative set of optimality
conditions which involve a co-state process Λ which is F-adapted. Note that (5.22a)
involves a conditional expectation w.r.t. Gt whereas, in (5.22c), the conditioning is
w.r.t. Ft .
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5.5 The Markovian Case

In this section, we specialize the optimality conditions obtained so far to the so-called
Markovian problems which are described in the following subsection.

5.5.1 Markovian Setting and Assumptions

In this section, additional assumptions are introduced in order to fit in the situation
considered in Sect. 4.4 in which the terminology “state” gets its full meaning. So
far, we have seen that stochastic processes such as X and Λ are F-adapted (whereas
U was constrained to be G-adapted). By Proposition 3.46, this implies that there
exists, for example, a measurable function Ξt such that Xt = Ξt (W0, . . . , Wt ) (and
likewise for Λt ). An important drawback from the practical point of view of such
a situation is that the number of arguments of those functions keeps on increasing
with t .

The proper notion of “state” (see Sect. 4.5.3) aims precisely at introducing a
stochastic process, generally denoted X , such that, at every time instant t , knowing
Xt is “enough”, that is, this information summarizes the whole past information
that is useful for the decision problem at hand. Of course, for this notion to be non
trivial, this “state variable” Xt should be of a dimension which is stable (contrary
to (W0, . . . , Wt ) the dimension of which steadily increases) and also as small as
possible.

As announced in Remark 5.1 and illustrated by the previous observations, the
process X manipulated so far in this chapter did not deserve the terminology of
“state” in this more precise meaning. We now introduce the assumptions which
endow X with its full role of state variable. Those assumptions are of two kinds:

• on the one hand, the exogenous noise process W should, in some sense, “forget
the past”, which translates into an independence assumption between successive
realizations, known as a “white noise” assumption;

• on the other hand, constraints on the decision process U should not reintroduce
past observations.

Assumption 5.9 (White noise) The random variables W0, . . . , WT are independent.

This assumption may be alleviated but at the price of increasing the state vector
dimension. For example, W may be an ARMA4 process but the additional memory
introduced by this process must be incorporated into the state vector [20].

4Auto-Regressive Moving Average.

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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Assumption 5.10 (Decision constraints) For t = 0, . . . , T − 1,

1. Gt = Ft .
2. the set-valued mappings Ct involved in constraints (5.3) are constant, that is,

deterministic, and are thus denoted Ct .

The former part of this assumption refers to the information available to the decision
maker at t : she has full observation of past noise realizations and complete memory
of those observations. Under this assumption and the “white noise” Assumption 5.9,
it is possible to prove that all past observations can potentially be summarized by Xt
only. The additional instantaneous constraints (5.3) on decision values should not
reintroduce the past noises, hence the Assumption 5.10-2.

Assumption 5.10-2 may have been less restrictive by assuming that Ct is Xt -
measurable (as it is allowable in the DP approach [20]). However, such a more general
assumption would have reintroduced some dynamics through the constraints as long
as the feasible set for Ut would have been dependent on past decisions Us, s < t ,
through Xt . In order to avoid this additional source of complexity, we limit ourselves
to the present Assumption 5.10-2 (this may be considered a restriction brought by
the variational approach followed here).

With the previous assumptions at hand, we revisit the optimality conditions
obtained in Sect. 5.4 and show additional measurability properties of the stochas-
tic processes involved.

5.5.2 Optimality Conditions with Non-adapted Co-States

We consider here the optimality conditions (5.20) obtained in Sect. 5.4.2.

Theorem 5.11 Under the foregoing Assumptions 5.9 and 5.10, considering the sto-
chastic processes involved in (5.20),

1. for t = 1, . . . , T , λt is measurable w.r.t. the subfield generated by (Xt ,

Wt+1, . . . , WT );
2. for t = 1, . . . , T − 1, Ut is measurable w.r.t. the subfield generated by Xt ;
3. as a consequence, Condition (5.20e) (in which Gt = Ft according to Assump-

tion 5.10-1) can be replaced by:

E
(∇u Lt (Xt , Ut , Wt+1) + ∇u ft (Xt , Ut , Wt+1)λt+1

∣∣ Xt

)
∈ −∂χUa

t
(Ut ), t = 0, . . . , T − 1. (5.23)

Proof The proof is by induction. Observe first that the first statement is true for t = T
since (5.20c) shows that λT is a deterministic function of XT . We now carry the
induction backwards by assuming that, for some t , λt+1 is (Xt+1, Wt+2, . . . , WT )-
measurable, and we prove that the same property holds true one step backward. We
also prove that Ut is Xt -measurable.
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The induction assumption is equivalent to saying that there exist measurable
functions μt+1 and νt+1 such that

λt+1 = μt+1(Xt+1, Wt+2, . . . , WT )

= μt+1
(

ft (Xt , Ut , Wt+1), Wt+2, . . . , WT

)
= νt+1(Xt , Ut , Wt+1, . . . , WT ).

We use this equation in (5.20e) (with Gt = Ft ). This yields an equation of the form:

E
(
ht (Xt , Ut , Wt+1, . . . , WT )

∣∣ Ft
) ∈ −∂χUa

t
(Ut ). (5.24)

At the left-hand side of this equation, Xt and Ut are Ft -measurable, so that they are
“conditionally deterministic” whereas the random variables Ws, s = t + 1, . . . , T,

are independent ofFt according to Assumption 5.9; therefore, the conditional expec-
tation amounts to an expectation (or integral) operating on those variables Ws while
Xt and Ut are provisionally “frozen” at parametric values x and u (see Proposi-
tion B.22).

On the other hand, the multi-valued function present at the right-hand side of
(5.24) is entirely determined by the parametric value u according to Assumption
5.10-2. Therefore, this equation may be considered as an implicit equation in u
parametrized by x . Hence there should exist a measurable selection of the solution Ut
w.r.t. Xt .

5

In order to complete the proof by induction, we refer back to (5.20d) to see
that, in the right-hand side of this equation, the whole expression is a function of
Xt , Wt+1, . . . , WT .

Finally, going back to (5.24) which was a sketchy representation of (5.20e), one
realizes that the expression subject to the conditional expectation E(· | Ft ) involves
variables which are either Xt -measurable or independent of Ft (and thus of Xt too):
hence, by Proposition B.22, E(· | Ft ) can be replaced by E(· | Xt ), which leads
to (5.23). �

Remark 5.12 Conditions (5.20) were established by starting from the general opti-
mality conditions (5.9) and by using

• on the one hand, the special property of the projection on the feasible set defined
by constraints (5.3) and (5.4) (see (5.7)), which led us to (5.11);

• and, on the other hand, the more explicit definition of the cost function (5.5) in the
SOC formulation and of its gradient computation as described in Sect. 5.4.1.

Condition (5.23) has been further derived from (5.20e) in Theorem 5.11 thanks
to the measurability properties established in this theorem for λ and U by using
Assumptions 5.9 and 5.10. In particular, the weaker property Ut � Xt instead of the
initial constraint Ut � Ft is a valuable result.

5When Ω is finite, this claim is straightforward; otherwise it is rather technical to prove [149].
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However, we may have started with the constraint Ut � Xt replacing (5.4) in the
definition of Ub, and with Assumption 5.10-2 in constraint (5.3) for the definition of
Ua, and we may have attempted to establish the corresponding optimality conditions
for this problem directly. This would have been a difficult challenge because, through
Xt , the feasible set Ua

t ∩Ub
t now itself depends on the solution U . The indirect path

we have followed to derive those optimality conditions has been a way to circumvent
this difficulty. The fact that the seemingly implicit definition of the feasible set is
only “pseudo-implicit” was probably helpful: indeed, the feasible set for Ut depends
upon past decision variables Us, s < t, through Xt , but not on Ut itself. ♦

5.5.3 Optimality Conditions with Adapted Co-States

The co-state λ involved in Theorem 5.11 is again a noncausal stochastic process
since λt depends on future noises Wt+1, . . . , WT . However, for the same reason
already given at the end of Sect. 5.4.2, and as shown in Sect. 5.4.3, it is possible to
derive optimality conditions in which this process is replaced by a causal one, namely
Λ, such that Λt = E(λt | Xt ). Then, of course Λt is Xt -measurable, as was already
Ut in Theorem 5.11.

We start again from (5.22) with Gt = Ft in (5.22a). Those conditions, which
are of course still valid in the Markovian case, involve a co-state process Λ

defined by Λt = E(λt | Ft ). However, in the Markovian case, we know that
λt � (Xt , Wt+1, . . . , WT ) and that (Wt+1, . . . , WT ) are independent of Ft (and
a fortiori of Xt ). Hence E(λt | Ft ) boils down to E(λt | Xt ) and is of course
Xt -measurable.

Similar arguments as those used in the proof of Theorem 5.11 can also be used
to replace E(· | Ft ) by E(· | Xt ) in the right-hand side of (5.22a)–(5.22c), which
finally yields the following conditions:

E
(∇u Lt (Xt , Ut , Wt+1) + ∇u ft (Xt , Ut , Wt+1)Λt+1

∣∣ Xt

)
∈ −∂χUa

t
(Ut ), t = 0, . . . , T − 1, (5.25a)

ΛT = ∇K (XT ), (5.25b)

Λt = E
(∇x ft (Xt , Ut , Wt+1)Λt+1 + ∇x Lt (Xt , Ut , Wt+1)

∣∣ Xt

)
,

t = 1, . . . , T − 1. (5.25c)

As we shall see later on, the fact that all processes involved in the optimality
conditions (5.25) are Xt -measurable provides a connection with Dynamic Program-
ming. Still, those optimality conditions involve conditional expectations. When one
comes to the stage of numerical resolution, a topic that is addressed in Chap. 7, the
presence of those conditional expectations sounds as a drawback since the literature
on conditional expectation approximation only offers biased estimators with asymp-
totic convergence rates that do depend on the dimension of the conditioning term,

http://dx.doi.org/10.1007/978-3-319-18138-7_7
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namely X [86]. On the contrary, the approximation of expectations through Monte-
Carlo techniques involves unbiased estimates, the variance of which converges to
zero at a rate which is better and does not involve a consideration of dimension.

In the next section, in the Markovian case, we move to another approach of the SOC
problem which ultimately gets rid of conditional expectations and which involves
only expectations. This approach may be termed a “functional point of view”.

5.5.4 Optimality Conditions from a Functional Point of View

Since Ut and Λt involved in (5.25) are Xt -measurable, under proper assumptions (see
Proposition 3.46), there exist measurable mappings φt : Xt → Ut and Λt : Xt → Xt

such that Ut = φt (Xt ) and Λt = Λt (Xt ). In particular, ΛT = ∇K according to
(5.25b).

Using those expressions of Ut and Λt in (5.25a) and (5.25c), we get:

E

(
∇u Lt

(
Xt ,φt (Xt ), Wt+1

) + ∇u ft
(
Xt ,φt (Xt ), Wt+1

)

Λt+1

(
ft
(
Xt ,φt (Xt ), Wt+1

)) ∣∣∣∣ Xt

)
∈ −∂χUa

t

(
φt (Xt )

)
,

Λt (Xt ) = E

(
∇x ft

(
Xt ,φt (Xt ), Wt+1

)
Λt+1

(
ft
(
Xt ,φt (Xt ), Wt+1

))

+ ∇x Lt
(
Xt ,φt (Xt ), Wt+1

) ∣∣∣∣ Xt

)
.

Observe that, in both equations, the expressions subject to the conditional expectation
E(· | Xt ) involve random variables which are either entirely determined by the
values x assumed by Xt or which are independent from this variable. Therefore,
the conditional expectation reduces to a simple expectation (over the distribution
of Wt+1) for every given x . We may thus rewrite (5.20a), (5.20b) and (5.25) as
functional equations as follows:

X0 = W0, (5.26a)

Xt+1 = ft
(
Xt ,φt (Xt ), Wt+1

)
, t = 0, . . . , T − 1, (5.26b)

E

(
∇u Lt

(·,φt (·), Wt+1

) + ∇u ft
(·,φt (·), Wt+1

)
Λt+1

(
ft
(·,φt (·), Wt+1

)))

∈ −∂χUa
t

(
φt (·)

)
, t = 0, . . . , T − 1, (5.26c)

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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ΛT (·) = ∇K (·), (5.26d)

Λt (·) = E

(
∇x ft

(·,φt (·), Wt+1

)
Λt+1

(
ft
(·,φt (·), Wt+1

))

+ ∇x Lt
(·,φt (·), Wt+1

))
, t = 1, . . . , T − 1. (5.26e)

In the present Markovian case, the Dynamic Programming equation (4.57) is
another characterization of the optimal feedback solution. We repeat it hereafter
for convenience:

VT (·) = K (·), (5.27a)

Vt (·) = min
ut ∈Ct

E

(
Lt

(·, ut , Wt+1

) + Vt+1
(

ft (·, ut , Wt+1)
))

,

t = 0, . . . , T − 1. (5.27b)

Observe that, according to (5.27a) and (5.26d), ΛT is nothing but ∇VT , that is,
the gradient of the cost-to-go or Bellman function. This interpretation which is valid
at time T carries over at other time stages as long as Vt remains differentiable:
differentiability is assumed here for simplicity although more sophisticated notions
of derivatives (subgradient in the convex case, Clarke’s derivative, etc.) could be used
to cover more general cases.

The argument is by induction backwards in time. The statement is true at T . We
assume it is true from T to t + 1. At t , we consider (5.27b) as a so-called “marginal
function” of the form:

Vt (x) = min
ut ∈Ct

Ft+1(x, ut )

with an obvious definition of Ft+1. Since Danskin [49] and his seminal result on
sensitivity of marginal functions, a result further extended and generalized by many
subsequent authors, we know that, if the marginal function above is differentiable,
its gradient is given by the following formula:

∇Vt (x) = ∇x Ft+1(x, u�
t ),

where u�
t is any element of the arg min. Then, comparing this formula with (5.26e),

given the definition of Ft+1 resulting from (5.27b), the argument is complete.

5.6 Conclusions

In this chapter, several sets of optimality conditions with a Lagrange-Kuhn-Tucker
(or variational) flavor have been presented for SOC problems in discrete time. The
first group of conditions presented in Sects. 5.4.2 and 5.4.3 does not require the white

http://dx.doi.org/10.1007/978-3-319-18138-7_4
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noise Assumption 5.9 and allows for more general information patterns than those
imposed by Assumption 5.10. Conditions (5.20) involve an anticipative co-state
process whereas (5.22) provides alternative conditions with an adapted co-state. But
both involve conditional expectation operations with respect to σ-fields generated by
random variables with dimensions increasing over time, which makes their numerical
implementation, considered in Chap. 7, a difficult problem.

With the more restrictive assumptions of the so-called Markovian case discussed
in Sect. 5.5.1, the conditional expectations involved in either (5.23) or (5.25) are now
with respect to a σ-field generated by the state variable which remains of constant
dimension over time. This alleviates the problem of their numerical implementation,
but still conditional expectation approximation remains a more difficult problem than
simple expectation numerical implementation.

By exploiting their measurability property, we thus introduced an additional
step which consists in replacing the stochastic processes of control and co-state by
sequences of deterministic functions operating upon the state process. This enabled
us to obtain conditions (5.26) which involved only expectations. At the same time,
this point of view brings us closer to the Dynamic Programming (DP) approach with
its potential drawback of the “curse of dimensionality” [15]. We discuss the differ-
ences in numerical implementation between the resolution of (5.26) versus DP in
Chap. 7.

http://dx.doi.org/10.1007/978-3-319-18138-7_7
http://dx.doi.org/10.1007/978-3-319-18138-7_7
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Discretization and Numerical Methods



Chapter 6
Discretization Methodology for Problems
with Static Information Structure (SIS)

In this chapter, we consider problems formulated as in (1.3), which we repeat here
for convenience

min
U �G

E
(

j (U , W )
)

(6.1a)

where G is a σ-field, or

min
U �Y

E
(

j (U , W )
)
, (6.1b)

where Y is a random variable (called observation). Both G and Y are static, that is,
they do not depend on the control U (in Sect. 1.2.2, we used the acronym SIS for this
situation). Recall that problems with DIS (see again Sect. 1.2.2), but no dual effect,
are also amenable to this formulation (such situations are considered in Sect. 10.3).

We are mainly interested in devising systematic approaches to the discretization
of such problems in order to solve them numerically with the help of a computer.
Essentially, in the discretized problem, any random variable, be it part of the data as
W , or of the unknowns as U , is represented by a finite set of values (e.g. {wi }i=1,...,N ),
and its associated probability law is represented by a sum of atomic measures (Dirac
measures δwi located at wi ) with positive weights pi summing up to 1. Consequently,
in the discrete problem, expectations reduce to finite sums, and optimization is w.r.t. a
finite set {ui } of variables.

Before we can address this main topic, the next section briefly discusses the
theory of quantization which is essentially a tool to derive approximate, but finite,
representations of random variables, and which provides a framework in which to
discuss the quality of those approximations.
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6.1 Quantization

When trying to solve stochastic optimization problems numerically, one may have to
manipulate approximate, but finite, representations of random variables. The quanti-
zation technique reduces the amount of information necessary to represent a random
variable while trying to preserve as much as possible of the original random variable.
It has its origin in Communication Theory [68], in which random signals must be sent
through a channel with limited bandwidth. By reducing the amount of information
necessary to describe, and thus transmit, the signal, one hopes to increase the flow
of signals sent through the channel. At the same time, the signals should be distorted
as little as possible. There is clearly a trade-off here.

In this text, we do not address this trade-off directly; we rather assume that the
amount of information retained to represent a random variable is given,1 and we try
to minimize the distortion in the representation of the random variable under this
constraint.

Indeed, we first start with set-theoretic notions that are limited to algebraic aspects
of quantization. Then, we move to the more quantitative notion of optimal quantiza-
tion, where the set over which quantization is considered must be a normed vector
space.

6.1.1 Set-Theoretic Quantization

A random variable W is a measurable mapping from a probability space (Ω,A,P)

to a measurable space (W,W). In this subsection, the probability law plays no role,
but it is used in the next subsection.

Consider a projection Q : W → W, that is, a measurable mapping such that
Q ◦ Q = Q. Assume, moreover, that its image im Q has a finite cardinality. That is,
it contains a finite number N of distinct values. We call Q a quantization and Q ◦ W
a quantized approximation of W .

We may consider Q as factorized into two mappings,

Q = d ◦ e,

where

1. e : W → {1, . . . , N } is called the encoding;
2. d : {1, . . . , N } → im Q ⊂ W is a bijection, which is called the decoding.

In a communication context, instead of sending values w ∈ W over the communi-
cation channel, only the code i = e(w) ∈ {1, . . . , N } is sent; at the other end of the

1This is likely to determine the complexity of the discretized optimization problem we seek to
formulate.
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e d

→ {1, . . . , N}
im Q

Q

⊂

Fig. 6.1 Quantization Q, encoding e, decoding d

channel, the message i is decoded by using d(i) ∈ im Q; for this reason, im Q ⊂ W

is called the codebook: this is a collection of N values in W.
Of course, Ω/(Q ◦ W ) is a partition2 of Ω with N elements. Observe that this

partition which defines the information carried by the quantized random variable is
independent of the decoding d (as long as this is a bijection), it only depends on the
encoding e. Otherwise stated, Ω/(Q ◦ W ) = Ω/(e ◦ W ).

Similarly,
W/Q = W/e, (6.2)

and this defines a partition of W, the N elements of which are called quantization
cells. All elements in cell i are represented by the same representative d(i) in the
codebook. In summary, while the encoding e defines the cells (and thus the infor-
mation carried by the quantized variable), the decoding d defines the representative
in each cell (called the centroid of the cell), which has an importance as long as the
values w are physical quantities (for example, consumption of energy, prices, etc.).
The whole situation is illustrated by Fig. 6.1.

6.1.2 Optimal Quantization in Normed Vector Spaces

We assume now that W is a normed vector space (the norm is denoted ‖·‖). Given
a value of N , the idea is to choose the least distorted quantized variable. Distortion
may be defined by the L2-distance between the original and the quantized random
variable, which is equal to the square root of the Mean Quadratic Error (MQE):

MQE := E
( ∥∥W − Q ◦ W

∥∥2 )
. (6.3)

2The notation Ω/(Q ◦ W ) was introduced in Definition 3.30.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Optimizing the quantization amounts to reducing this distortion measure to the
minimum. This task can be split up into two parts: choosing the best encoding e,
or equivalently defining the best partition W/e; and specifying the best decoding d,
which consists of choosing the best representative (centroid) wi in each cell Ci of
this partition. The next lemma provides two necessary conditions related to those
two optimal choices.

Lemma 6.1 An optimal quantization must satisfy the following two conditions:

1. given the centroids {wi }i=1,...,N , the cells Ci must be such that,PW -almost surely,
if w ∈ Ci , then

∥∥w − wi
∥∥ ≤ ∥∥w − w j

∥∥ ,∀ j 
= i ;
2. given the cells Ci , the centroid wi is equal to E

(
W

∣∣ W−1(Ci )
)
.

Proof The MQE can be written as follows

E
( ∥∥W − Q ◦ W

∥∥2 ) = E

( N∑
i=1

E

( ∥∥∥W − wi
∥∥∥2 ∣∣∣ W−1(Ci )

))
.

Suppose the first condition of the lemma is not satisfied. Then, since N is finite, it
means that there exist a subset ofWwith positive probability forPW and two indices i
and j such that every w in that subset belongs to Ci whereas

∥∥w − w j
∥∥ <

∥∥w − wi
∥∥.

Then, by changing the definition of cells so that this whole subset is moved from Ci

to C j , the above performance index is improved, which contradicts optimality.
Now, considering the i th conditional expectation in the right-hand side above,

it is well known that wi = E
(
W

∣∣ W−1(Ci )
)

is the value which minimizes that
expression (see Definition B.5). �

The first condition in this lemma defines what is known as a Voronoi diagram
or tessellation (see Fig. 6.2). This condition may be called “the nearest neighbor”
condition in that any w should be represented by its nearest neighbor in the codebook.

Using (6.2), observe that

E
(
Q(W )

) =
N∑

i=1

PW (Ci )wi = E

(
E

(
W

∣∣ W−1(W/e)
)) = E(W ), (6.4)

that is, an optimal quantized variable is respectful of the first moment of the original
random variable. However, the next lemma shows that the second order moment or
the variance is underestimated when replacing the original variable by its optimal
quantized version.

Lemma 6.2 For an optimal quantization Q, with MQE defined by (6.3), one has
that:

E(W ) = E
(
Q(W )

)
, (6.5a)
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Fig. 6.2 Voronoi tessellation

Var
(
W

) = Var
(
Q(W )

) + MQE. (6.5b)

Proof The former claim is a repetition of (6.4). We concentrate on the latter.

Var
(
W

) = E
( ∥∥W − E(W )

∥∥2 )
= E

( ∥∥W − Q(W ) + Q(W ) − E(W )
∥∥2 )

= E
( ∥∥W − Q(W )

∥∥2 ) + E
( ∥∥Q(W ) − E(W )

∥∥2 )

+ 2E
( N∑

i=1

E(〈W − wi , wi − E(W )〉 | W−1(Ci ))
)
.

The first term is precisely the MQE; the second term is the variance of Q(W ) thanks
to (6.5a); the third term is zero since, in the scalar product, the second factor is
constant over Ci whereas, the first factor has a zero conditional expectation given
the value of wi (see Lemma 6.1). �

The two necessary optimality conditions in Lemma 6.1 may be used to build up
an iterative (Lloyd’s) algorithm to find an optimal quantization of a given random
variable. This algorithm proceeds by alternating the following two stages:

1. given a collection of N centroids wi , the Voronoi cells are (re)drawn using the
first conditon in Lemma 6.1; this amounts to defining all the half spaces delimited
by the medians (hyperplanes) of all segments (wi , w j ) (it involves manipulating
affine inequalities);

2. given the cells, the centroids are (re)defined by using the second optimality con-
dition in the lemma (it involves computing integrals over the cells).
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Unfortunately, such an algorithm sometimes tends to stop on local minima which
are not true minima (see [68]).

6.2 A Systematic Approach to Discretization

We come to the main topic of this chapter, namely the reformulation of problems as
(6.1) as finite dimensional problems in order to solve them numerically. The language
of quantization briefly developed previously is used throughout this section, and the
contribution by Pennanen [110] is “translated” in this language in order to make
easier its comparison with other solutions proposed hereafter.

6.2.1 The Problematics of Discretization

As we have seen in Sect. 1.4, the resolution of the discrete problem does not directly
provide an acceptable answer in that what is expected as a “solution” to (6.1) is
a random variable over the original probability space, satisfying, in addition, the
measurability conditions imposed in the formulation (6.1). Therefore, some “recon-
struction” is needed after the discrete problem has been solved, and examples of this
reconstruction were given in Sect. 1.4 (see (1.15) and Fig. 1.3).

Notice that, even if the formulation of the discrete problem seemingly only
requires the consideration of random variables assuming finitely many distinct val-
ues, these random variables must be embedded into the original space by defining
“cells” around the atomic support of the discrete probability distribution defined
by the weights {pi }i=1,...,N . Then, a reasonable requirement for convergence of the
reconstructed solution towards the optimal original problem solution is that each pi

gets arbitrarily close to the true probability mass of the cell around atom i as the
number N of cells goes to infinity.

However, as shown by the discussion around examples in Sect. 1.4, it is not enough
to handle the approximation of mathematical expectations in a sound manner: some
caution is also required to properly represent the essential contraints of information
structure in the discrete problem. Here again, cells around atoms, or as otherwise
stated, partitions of the original spaces, play a part. This section concentrates on this
particular issue.

Pennanen [110] was probably the first author to envisage this topic in a system-
atic way. Regarding the approximation techniques for expectations, he considered not
only usual Monte Carlo sampling but also Quasi-Monte Carlo and other sophisticated
quadrature techniques. In order to be able to give an asymptotic epi-convergence the-
orem as the number of samples goes to infinity, he imposed a rather strong condition
which tightly coordinates the samples used to approximate expectations with the way

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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informational constraints3 are translated in the discretized problem. This condition
naturally leads to the construction of scenario trees that were introduced in the end of
Chap. 1 (see Fig. 1.5) and that are very popular in the SP community. However, as we
shall see by the end of this chapter, the technique of scenario trees is hindered by the
poor convergence rate of the underlying Monte Carlo approximation technique (see
Sect. 6.3.2), and therefore it is important to show that other more flexible conditions
can also be used that still enable a convergence proof to be given.

In this chapter, the focus is on the links between the sampling technique and the
translation of informational constraints in the discrete problem; convergence issues
are discussed in Chap. 8. We also consider more general informational constraints
beyond non anticipativity constraints. Finally, we use the language of lattice of par-
tition fields introduced in Chap. 3, which provides a formalism making clearer the
comparison of Pennanen’s work with alternative methods we propose in Sect. 6.2.3.

Remark 6.3 Although the issue of convergence is deferred to Chap. 8, the following
observation may be kept in mind as a safeguard against unreasonable discretization
schemes. Remember that, according to Sect. 3.5.2, Problem (6.1) can be reformulated
as

E

(
min

u
E

(
j (u, W )

∣∣ G))
or E

(
min

u
E

(
j (u, W )

∣∣ Y
))

. (6.6)

Therefore, in any discretized version derived for the original problem, one should try
to identify an expression which serves as an approximation of the conditional expec-
tation of the cost and check that this approximation is sound enough. An application
of this observation is encountered, for example, in Remark 6.13. ♦

6.2.2 The Approach Inspired by Pennanen’s Work

In [110], sequential stochastic optimization problems are considered with non antic-
ipativity constraints: in the framework (6.1b), this amounts to considering that Y =
h(W ) with Y = {Yt }t=1,2,..., W = {Wt }t=1,2,... and Yt = ht (W ) = (W1, . . . , Wt ).

In what follows, we forget about the time index t which plays no particular part
as long as Y does not depend on U (the SIS assumption) and we just retain that
Y = h(W ) where h is a function (generally non injective) from Y to W.

Remark 6.4 In (6.1b), the cost function j depends on the two random variables U
and W . The observation Y is another random variable which may, or may not, be
in relation with W . In the present framework, since we assume that Y = h(W ), we
may consider all involved random variables (including U ) as measurable mappings
from W to another space, that is, we may consider that Ω = W. Then W is the
identity mapping from W to itself and Y is identical to the mapping h. This is what
is assumed hereafter unless otherwise explicitly stated. ♦

3Actually, Pennanen considers non anticipativity constraints only.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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First Stage
The formulation of a discretized problem involves the definition of finite sets to
approximate the spaces Y and W. This is formalized by defining quantizations as
defined in Sect. 6.1. We first consider WN , a quantized version of W . More precisely,
we consider the following applications and properties:

• qW : W → WN where WN is a finite subset of cardinality N of W; we require
that qW(w) = w whenever w ∈ WN ;4

• ιW, the canonical injection of WN into W; then,

– qW ◦ ιW is the identity IWN in WN ;
– QW = ιW ◦ qW is then a projection in W: this is indeed a quantization as

defined in Sect. 6.1, and WN = QW ◦ W = QW (according to Remark 6.4) is
the quantized random variable we were looking for;

– W/qW = W/QW is a partition of W into N cells.

Next, in order to obtain a quantized version of Y , Pennanen proceeds in the following
way. He first considers the discrete random variable YN defined as h ◦ WN . Notice
that since h is not injective in general, it may happen that the set of values YN =
h ◦ QW(W) has a cardinality smaller than N (despite the subscript N in this notation).
Then, consider:

• ιY, the canonical injection of YN into Y;
• hN : WN → YN such that ιY ◦ hN = h ◦ ιW.

Remark 6.5 This hN can be obtained as

hN = ι−1
Y

◦ h ◦ ιW, (6.7)

where ι−1
Y

is any mapping such that ιY ◦ ι−1
Y

= IYN , the identity over YN . This ι−1
Y

is

not uniquely defined: any mapping from Y to YN can play the role of ι−1
Y

, as long as
its restriction to YN behaves as the identity. Nevertheless, hN is well defined since
precisely, in (6.7), only the restriction of ι−1

Y
to YN is involved. ♦

Therefore, YN is well defined:

YN = h(WN ) = h ◦ QW = ιY ◦ hN ◦ qW. (6.8)

The expression h ◦ QW is also well defined once QW has been chosen (while h is
given). The situation is summarized in Fig. 6.3.

Obviously, YN � WN . However, YN is not necessarily a quantized version of Y
and, in particular, one cannot claim that YN � Y . Here is a counterexample.

4The finite set WN generally results from some sampling of the noise W or alternative quadrature
methods. But, as recognized by Pennanen himself, in order to define a consistent discretization
scheme, it is not enough to introduce the finite set WN , but it is also necessary to define how the
whole original set W is mapped onto that finite set: this is why qW must be defined.
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Y

Y

N

ι

hN

q

= h

ι

N

N

Fig. 6.3 Discretization according to Pennanen, stage 1

Example 6.6 Consider

W = [−2, 2] × [−2, 2], qW(w1, w2) =
(

sign(w1)

sign(w2)

)
, WN = {(±1,±1)},

h(w1, w2) = w1 + w2, YN = {−2, 0, 2}.

Observe that h(−1, 2) = h(1/2, 1/2) = 1 whereas YN (−1, 2) = sign(−1) +
sign(2) = 0 is different from YN (1/2, 1/2) = sign(1/2)+sign(1/2) = 2. According
to Proposition 3.38 (item 2), YN is not measurable with respect to Y . The two dots
with coordinates (−1, 2) and (1/2, 1/2) are represented in Fig. 6.4. This figure also
displays three partitions of W = [−2, 2]×[−2, 2]. The first partition corresponds to
W/h, and it has infinitely many elements (only a few are represented in the figure).
The second partition corresponds to W/QW and it has four elements (the values
of QW belonging to WN are indicated). The third partition, namely W/(h ◦ QW),
has only three elements corresponding to the three elements of YN indicated in the
figure. 


+1 +1

+1 −1

−1 +1
0

0

2

−1 −1

−2

Fig. 6.4 Representations of the partitions corresponding to W/h, W/QW and W/(h ◦ QW) in
Example 6.6

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Second Stage
The discretized problem may be considered to “live” on a discrete probability space:

• ΩN is WN ;
• the associated σ-algebra is the complete partition field of this set;
• the discrete probability law PN is the original probability law P transported from
W to WN by qW.

The decision variable in this discretized problem is denoted UN : this is a mapping
from WN to U, and this mapping can assume at most N distinct values; these values
result from a numerical optimization. However, the expected answer is a random
variable, that is, a mapping from W to U. As it is natural, UN is extended to the
whole W by considering U = UN ◦ qW, which amounts to building up a piecewise
constant function using the cells of W/qW (but again, although there are N cells,
there might be less than N distinct values of the control).

The searched solution U should also satisfy some measurability requirements in
order to reflect the information structure of the original problem. As a straightfor-
ward translation of the informational constraint in (6.1b), in the discrete problem
T. Pennanen requires that

UN � hN . (6.9)

Lemma 6.7 The condition (6.9) implies that U � YN .

Proof Indeed, UN � hN implies that UN ◦ qW � hN ◦ qW (see (3.41)), and
hN ◦ qW ≡ ιY ◦ hN ◦ qW since ιY is injective (see Proposition 3.41). The latter is
just YN (see (6.8)). �

Condition (6.9) implies that there exists a mapping γN : YN → U such that
UN = γN ◦ hN . However, since YN is not necessarily measurable w.r.t. Y (as shown
by Example 6.6), the proposed U is not necessarily measurable w.r.t. Y either, and,
in this case, it would not be an admissible solution for problem (6.1b). Therefore,
Pennanen finally requires the following additional condition:

YN � Y (6.10a)

which is equivalent (see Proposition 3.46) to

∃QY : im Y → Y such that YN = QY ◦ Y = QY ◦ h. (6.10b)

With this condition, one then has that U � YN � Y , that is, U is now an admissible
solution for (6.1b).

Put together, conditions (6.8) and (6.10b) imply that

h ◦ QW = QY ◦ h. (6.11)

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Lemma 6.8 Equation (6.11) implies that QY (with domain im h) is a projection;
hence, YN = QY ◦ Y is a quantization of Y . Therefore, QY can be factorized as
ιY ◦ qY where qY : Y → YN and ιY is again the canonical injection of YN into Y.
Then, (6.11) is equivalent to

hN = qY ◦ h ◦ ιW. (6.12)

Proof We must show that QY ◦ QY ◦ h = QY ◦ h. Indeed, with (6.11) used repeat-
edly, and the fact that QW itself is a projection, one has that

QY ◦ QY ◦ h = QY ◦ h ◦ QW = h ◦ QW ◦ QW = h ◦ QW = QY ◦ h.

Now, with reference to the right-hand side of (6.8), (6.11) can be written as

ιY ◦ hN ◦ qW = ιY ◦ qY ◦ h, (6.13)

which is equivalent to

hN ◦ qW = qY ◦ h,

since ιY is injective, and this is again equivalent to (6.12) when composing both sides
of the above equation with ιW (which is injective) to the right hand and remembering
that qW ◦ ιW is nothing but the identity in WN . �

The situation is summarized as follows, and it is illustrated by Fig. 6.5. Given the
noise W and the observation Y = h(W ),

Fig. 6.5 Discretization
according to Pennanen,
stage 2

Y

U

Y

N

ι

hN

γN

q
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UN

q

N
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• a quantized noise WN = QW ◦ W is first defined;
• a discrete random variable YN = h ◦ WN is next introduced;
• this discrete random variable is given the status of a quantized observation by

imposing Condition (6.10);
• the last two steps finally result in Condition (6.11).

Discussion
Equation (6.11) says that the quantized observation must be the observation of the
quantized noise. This condition is intuitively appealing. However, it is unclear how
one can ensure it in a systematic construction of a discretization scheme in this
general setting. In the particular case of non anticipativity constraints, Pennanen
[111] proposed a procedure that we briefly discuss in Sect. 6.3. What makes things
rather locked in general is the initial requirement (6.8) that the observation function
hN in the discrete model should be intimately related to the original observation
function h. This is precisely the condition we relax later on.

Equation (6.12) should be compared with Eq. (6.7): this shows that the choice of
the mapping ι−1

Y
in the latter equation is nothing but the choice of the quantization

map qY which defines the cells in Y (as long as the set of centroids YN is already
defined).

Observe that (6.8) implies that YN � WN whereas, by (6.10a), YN � Y , hence
YN � WN ∧ Y (see Chap. 3). Then, consider the following example.

Example 6.9 To stay close to the sequential situation considered by Pennanen and
still maintain simplicity, we consider (1.8) again. All sample trajectories (wi

0, w
i
1) of

the noise W = (W0, W1) are represented as dots in the squareW = [−1, 1]×[−1, 1]
with coordinates (wi

0, w
i
1).

A quantization based on such a sampling may be obtained by drawing the Voronoi
tessellation corresponding to this set of dots (Fig. 6.2 illustrates the partition Ω/WN ).
On the other hand, h(w0, w1) = w0 ∈ Y = [−1, 1]. The partition Ω/Y corresponds
to a decomposition of the square into all vertical segments it contains. According
to the way the greatest lower bound of partitions is obtained (see Sect. 3.3.1), it
is realized that Ω/(WN ∧ Y ) is likely to consist of the whole square as the sin-
gle element, and this remains true even when N goes to infinity. Otherwise stated,
WN ∧ Y remains stuck to the class of bottom elements in the lattice of functions
over Ω , namely the class of constant functions. Since the “solution” U produced is
constrained to be measurable w.r.t. YN � WN ∧ Y (see Lemma 6.7), it cannot be
better than the solution in the class of open-loop controls. 


This example shows that some necessary conditions derived from Pennanen’s
conditions (6.8)–(6.10) are not sufficient to ensure convergence of the discrete prob-
lem solution towards that of the original problem as N goes to infinity (convergence
that Pennanen could prove however). Therefore, Pennanen’s conditions are strong
enough to avoid the pitfall described in the previous example. The main practical
difficulty is that the quantized observation YN is not mastered directly (that is, a

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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priori and directly derived from Y by quantization, which would make things a lot
easier to design).

Let us explain why condition (6.8), in fact, reflects a stochastic tree structure as
depicted by Fig. 1.5. To show this, one must imagine that in our previous model, W
represents a stochastic process {Ws}s=1,2, whereas Y represents the same stochastic
process truncated at the first stage, that is, Y = W1.5 The finite setWN is represented
by N nodes: each such node carries a pair of values (wi

1, w
i
2) for i = 1, . . . , N . The

finite set YN corresponds to the discrete representation of the truncated process W1.
It is also represented by a finite set of nodes corresponding to the distinct values
found in YN : the cardinality of this set is M , which is less than or equal to N ; each
node carries a value y j for j = 1, . . . , M . Now, condition (6.8) says two things:

1. the set of N nodes at the second stage is partitioned into M disjoint subsets,
each subset being in relation with a node at the first stage: this is the translation
of YN � WN ; otherwise stated, there exists a mapping f from {1, . . . , N } to
{1, . . . , M} which defines the preceding node of each leaf in the tree;

2. moreover, yf(i) = wi
1 for i = 1, . . . , N according to (6.8); as a consequence, it is

not necessary to attach a pair of values (wi
1, w

i
2) to leaf i but attaching wi

2 only
is enough since wi

1 can already be read on the preceding node f(i) of leaf i as the
value yf(i).

It should be noticed that while the former item above involves only the encoding parts
of the quantizations QW and QY (see Sect. 6.1.1) which determine the topology of
the tree, the latter also involves the decoding parts of those quantizations, that is the
numerical values of samples attached to nodes.

Equation (6.11) claims that h ◦ QW � h. In a representation such as Figs. 1.2
or 1.3, in which realizations of W are represented as dots in a square, whereas
Y = h(W ) is the corresponding abscissas of those dots, the previous measurability
condition says that if two dots are aligned vertically (h(w) = h(w′)), then their
quantized representations are also aligned vertically (h ◦ QW(w) = h ◦ QW(w′)).
This only leaves room for quantizations of W which look like that of the left-hand
side of Fig. 6.6, with groups of samples aligned vertically and corresponding cells
also lined up vertically. The right-hand side of the figure depicts the corresponding
stochastic tree. Figure 6.7 shows the Voronoi tessellation that would correspond to
the same sample set WN , but this is not permitted in Pennanen’s approach.

5The following explanation can then be easily extended by considering W = {Ws}s=1,...,T and
Y = {Ws}s=1,...,t for any intermediate t < T . The truncation operator (which retains only the
prefix of the process up to t) stands for the observation function h of the general theory.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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Fig. 6.6 Noise quantization that leads to a stochastic tree

Fig. 6.7 Voronoi
tessellation corresponding to
the samples of Fig. 6.6
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6.2.3 A Constructive Proposal

In this subsection, the formulation (6.1b) is considered anew, but Y may or may not
be a function h of W . In the latter case, a possible choice of Ω is W × Y; in the
former case, one can again choose Ω = W.

Remark 6.10 The following observation was already mentioned in Remark 1.4.
There is no fundamental difference between the situation when Y is a function of
W and the situation when it is not. Indeed, in the latter case, one can redefine the
exogeneous noise as the pair (Y , W ) (this is the new W ) and then, h is just the linear
operator which extracts the first component of this vector (whereas the cost function
depends only on the second component of this new W ).

It is more fundamental to realize that an optimal quantization of a pair of ran-
dom variables (Y , W ) is generally not the Cartesian product of the two optimal

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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quantizations of W and Y obtained separately (using their marginal probability
laws), even if they are independent random variables.6 ♦

First Version
The main departure from Pennanen’s approach is that, now, irrespective of the fact
that Y is, or is not, a function h of W , these two random variables are quantized
independently. Therefore, we introduce:

• qW : W → WN where WN is a finite subset of cardinality N of W; we require
that qW(w) = w whenever w ∈ WN ;

• ιW, the canonical injection of WN into W; then,

– qW ◦ ιW is the identity IWN in WN ;
– QW = ιW ◦ qW is a quantization and QW ◦ W is the quantized noise WN ;
– W/qW = W/QW is a partition of W into N cells;

• qY : Y → YM where YM is a finite subset of cardinality M of Y; we require that
qY(y) = y whenever y ∈ YM ;

• ιY, the canonical injection of YM into Y; then,

– qY ◦ ιY is the identity IYM in YM ;
– QY = ιY ◦ qY is a quantization and QY ◦ Y is the quantized observation YM ;
– Y/qY = Y/QY is a partition of Y into M cells.

Then, in the discretized problem, the decision variable U is subject to the con-
straint U � YM , that is, there exists a feedback γM : YM → U such that
U = γM (YM ) = γM ◦ qY ◦ Y . Of course, this constraint automatically produces an
admissible solution for the original problem. The situation is illustrated by Fig. 6.8
(compare with Fig. 6.5).

Fig. 6.8 Independent
quantization of W and Y

ιq
qY

ι

N

Y

M

γM

γ

6Considering two scalar random variables with uniform distributions over bounded intervals, it
can be checked that for the same number of cells, a pavement of a large surface in the plane with
hexagons is more efficient in terms of the criterion (6.3) than a pavement with squares. The former
cannot obviously be obtained as the Cartesian product of two one-dimensional quantizations.
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At this stage, since there is no connection between WN and YM (even if there is
one between W and Y ), the appropriate Ω to consider in the discretized problem is
YM × WN —this finite set has a maximum of M N elements—with the probability
law transported from the original Ω to Y × W by the mapping (qY, qW).

To make things more concrete, we consider an example.

Example 6.11 We remain in the context of Example 6.9, with a two-dimension-
al W and with Y being the first coordinate W1; we use the same representation
as in Fig. 6.6. The left-hand part of Fig. 6.9 represents the quantization of W (with
N = 8). The middle part of that figure represents the quantization of Y on the x-
axis (with M = 5). Since W and Y are not independent variables here, all the M N
combinations of wi with yk are not possible, that is, the probability law transported
from W×Y to WN ×YM by (qW, qY) has only 21 non-zero atoms (out of 40): these
are the probability masses of the cells depicted in the right-hand side of Fig. 6.9.
An alternative representation is that of Fig. 6.10 which depicts all possible pairs of
realizations of (YM , WN ) in the discrete model: contrary to the situation of Fig. 6.6,
there is no longer a tree structure involved now. The formulation of the discretized
problem is as follows:

min
{uk }

∑
k∈{a,...,e}

8∑
i=1

pik j (uk, wi ) (6.14)

in which pik is the probability weight of the cell ik (i = 1, . . . , 8 and k ∈ {a, . . . , e})
in the right-hand side of Fig. 6.9. Again, only 21 of those pik are not zero, but any
approximation of the probability masses of the cells that would converge asymptot-
ically to the true values as N and M go to infinity would also be acceptable. 


Remark 6.12 Contrary to the scheme inspired by Pennanen’s work described in
Sect. 6.2.2, it should be clear that only the encoding part of QY matters here. That
is, only the cells on the horizontal axis in the middle part of Fig. 6.9 are important,
not the precise values taken by yk for k ∈ {a, …, e}. ♦
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Fig. 6.9 Independent quantizations of W and Y : an example
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Fig. 6.10 Possible pairs of
observations and noises
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Remark 6.13 In application of Remark 6.3 to (6.14), for k ∈ {a, …, e}, the approx-
imation of E( j (U , W ) | Y = yk) in the discrete problem is given by the expression

1∑
i∈I (k)

pik

( ∑
i∈I (k)

pik j (uk, wi )
)
, (6.15)

where I (k) is the subset of {1, . . . , 8} such that pik 
= 0. Therefore, not only each
subset I (k) must be non empty, but its cardinality should asymptotically go to infinity.
That is, each vertical strip in Fig. 6.9 should intersect asymptotically an infinite
number of Voronoi cells: generically, this should be the case when the yk’s and wi ’s
are sampled independently and when their numbers go to infinity. But this is not the
case in the situation illustrated by Fig. 1.3 where the cardinality of each I (k) remains
equal to 1 asymptotically, even when the number of samples went to infinity (see
also Sect. 8.5.4 for a related discussion). ♦

Second Version
In Example 6.11, there exists a mapping h such that Y = h(W ) (namely Y = W1),
but there is none which relates the quantized observation YM to the quantized noise.
Whenever Y = h(W ), there is a way to recover such a mapping at the price of
redefining the quantized noise.

As shown in Example 6.11 (see also the right-hand side of Fig. 6.9), as long as
U � YM , the minimal partition of Ω generating a partition field with respect to
which the random variable (U , WN ), hence also j (U , WN ), becomes measurable
is that associated with WN ∨ YM = QW ◦ W ∨ QY ◦ Y . Under the assumption
that Y = h(W ), this may be considered a partition of W (that is, WN � W and
YM � Y � W ; according to Proposition 3.7 and Fig. 3.2, the partition on W is
obtained by superposing the previous partition defined by QW and that brought back

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Fig. 6.11 A refined noise
quantization

ιq

M

h

NM

hNM

ιq

from Y to W by the generally multi-valued mapping h−1—see the space W in the
lower left-hand side corner of Fig. 6.11).

So, we introduce a new quantized noise Q′
W

(W ), such that Q′
W

(W ) ≡ QW ◦ W ∨
QY ◦ Y (the symbol ≡ is to be taken in the sense of Proposition 3.41). Since the
encoding part is already defined, in order to complete the definition of Q′

W
, it remains

to define the decoding part, which amounts to choosing centroids in the cells depicted
in the right-hand side of Fig. 6.9. The new quantized noise Q′

W
(W ) is denoted WN M ,

but N × M is just an upper bound of the cardinality of the new discrete noise set.
Notice that

• WN � WN M ≡ WN ∨ YM (the new quantized noise is “finer” that the previous
one);

• YM = QY ◦ Y � QW ◦ W ∨ QY ◦ Y ≡ Q′
W

◦ W , that is, YM � WN M , hence, by
Proposition 3.46, there exists hN M : YM → WN M such that YM = hN M (WN M ).

Therefore, we are able to express the quantized observation YM as a function hN M

of this finer quantized noise WN M . In Fig. 6.11, Q′
W

is the composition ι′
W

◦ q ′
W

,
where q ′

W
: W → WN M is such that q ′

W
≡ Q′

W
and ι′

W
is the canonical injection

of WN M into W. By definition of hN M , we have that

QY ◦ h = ιY ◦ hN M ◦ q ′
W

. (6.16)

This is similar to (6.13) and, as in Lemma 6.8, it can be proved that (6.16) is equivalent
to

hN M = qY ◦ h ◦ ι′
W

. (6.17)

Discussion
The connection between the original observation function h and that of the discrete
model hN M is weaker than it was in Pennanen’s approach: essentially, we have
nothing similar to (6.8) here.

Returning to Example 6.11, in order to completely define Q′
W

, we must draw a dot
in each cell of the right-hand side part of Fig. 6.9. Those dots represent 2-dimensional

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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vectors wik (namely, the dots with coordinates (wik
1 , wik

2 )) with i ∈ {1, . . . , 8} and
k ∈ {a, . . . , e}, but not all pairs out of this cartesian product are present (only 21
out of 40). This collection of vectors {wik} is the set WN M . According to (6.17),
hN M : WN M → YM is such that hN M (wik) = yk with k ∈ {a, . . . , e}. But
obviously, the precise values of those yk play no particular role: what matters is the
partition of Y generated by YM (the encoding part), the codebook {yk}k∈{a,...,e} is not
relevant (the only constraint being that each dot belongs to its corresponding cell).

Therefore, since the codebooks of quantized noises and observations are some-
what flexible, we may use this flexibility to try to get closer to Pennanen’s scheme.
Graphically, we may try to move the dots yk within their cells in Y, and simultane-
ously choose dots w1, . . . , w21 within the cells 1a, . . . , 8e in the right-hand side of
Fig. 6.9 so that each dot representing a quantized observation be vertically aligned
with a subset of the dots representing quantized noises as shown in Fig. 6.6. Observe
that this is not necessarily possible: if we restrict our attention to the vertical strip
labelled a, there is no vertical line in this strip that crosses simultaneously the cells
1a and 6a.

Mathematically, the issue is that of choosing QY and QW (in which only the
encoding parts are important), so that it becomes possible, a posteriori, to choose the
decoding parts of QY and of Q′

W
(with the constraint that Q′

W
≡ QW ∨ QY ◦ h) in

such a way that (compare to (6.8))

h ◦ Q′
W

= ιY ◦ hN M ◦ q ′
W

(6.18a)

= QY ◦ h, (6.18b)

the latter equation using (6.16).
At this moment, we do have that

QY ◦ h ◦ Q′
W

= QY ◦ h, (6.19)

which is a weaker property than (6.18): indeed, by composing (6.16) with Q′
W

=
ι′
W

◦ q ′
W

to the right, (6.19) is derived. But we do not know of a constructive method
to ensure (6.18) itself.

In the next section, we briefly sketch the procedure proposed by Pennanen [111]
in the particular case when informational constraints reduce to non anticipativity
constraints. This procedure can be related to a special Monte Carlo technique for
approximating the expectation of a function of several independent random variables.
However, we are going to show that this special scheme has a rather bad rate of
convergence when compared with the usual Monte Carlo scheme. This is why it is
important to be able to get rid of the scenario tree structure as a way to translate
informational constraints in the discrete problem.
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6.3 A Handicap of the Scenario Tree Approach

In this section, we explain Pennanen’s technique [111] to sample noise processes (in
the simplest case of two-stage white noise processes—see Assumption 5.9) in order to
obtain scenario trees,7 and we make the connection of this technique to a particular
way of numerically estimating the expectation of a function of two independent
random variables. We then show that this particular (unbiased) estimation technique
is not efficient, in terms of the variance of its error, w.r.t. the classical Monte Carlo
estimation technique.

6.3.1 How to Sample Noises to Get Scenario Trees

As illustrated by Fig. 6.6, scenario trees for two-stage stochastic processes are related
to the fact that dots in a two-dimensional space, which represent sample trajectories,
are grouped in vertical clusters. That is, there are several trajectories which share com-
mon first-stage values. As discussed earlier, the probability that this occurs naturally
for continuous-valued stochastic processes is zero when trajectories are generated
by pseudo-random Monte Carlo sampling using the probability law of the process.
Therefore, the scenario tree structure can be obtained

• either by manipulating a bunch of Monte Carlo samples (or scenarios recorded in
the real life) in order to force the tree structure,8—but, then, the original sample
set must be altered in a way which is not necessarily respectful of the underlying
probability law;

• or by making use of special sampling procedures (assuming the underlying prob-
ability distribution is known). The latter option is proposed by Pennanen in [111].
We now give a sketch of this idea.

If the stochastic process W is a “white noise”, that is, the random variables Wt ,
Wt+1, …, are all independent, then the procedure amounts to

• drawing N0 sample values wi
0, i = 1, . . . , N0, of W0 according to the probability

distribution of this random variable;
• for each such wi

0, obtaining N1 sample values w
i j
1 , j = 1, . . . , N1, by Monte Carlo

sampling according to the distribution of W1, and associating them with that value

wi
0 to form two-stage sample trajectories (wi

0, w
i j
1 ) (thus, there are N0 × N1 such

trajectories);
• repeating this process over the whole time horizon.

7Other references dealing with scenario tree generation will be mentioned at Sect. 7.4.1.
8Optimal quantization (see Sect. 6.1.2) may be used to that purpose and many authors proposed
various techniques to build up such trees—see e.g. [12, 61, 71, 114].

http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_7
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Observe that the clusters of N1 values w
i j
1 associated with the wi

0’s may be all

identical (in which case, the notation w
i j
1 can be reduced to w

j
1 ) or different. We

examine later on what is the impact of either choice.
If the stochastic process W is not a white noise, Pennanen assumes that it can be

modelled by a recurrent dynamic equation driven by a white noise. Then, the above
procedure is used for the driving white noise, and the sample noise trajectories are
then obtained by propagating these trajectories through the dynamic equation.

In the rest of this section, to keep things simple, we limit ourselves to the discussion
of white noise processes.

6.3.2 Variance Analysis

As discussed throughout this chapter, the discretization of stochastic optimization
problems with SIS involves some sort of noise sampling as well as the sound trans-
lation of informational constraints in the discrete problem formulation. So far in this
chapter, we have given attention to the latter aspect. But it should be clear that the
quality of approximation of the mathematical expectations (and conditional mathe-
matical expectations, as underlined in Remark 6.3) involved in the problem is also
important. If the cost function is badly approximated, one cannot expect that a good
approximation of the optimal solution can be derived from the discrete problem solu-
tion, whatever care is exercised about the other aspects (in particular, informational
constraints) of the problem.

In this subsection, we concentrate on this aspect of the approximation: more
precisely, we consider any real-valued function f of two scalar variables, such that
the mathematical expectation E

(
f (X , Y )

)
, where X and Y are independent random

variables, makes sense. In relation with the previous discussion, f should be thought
of as the cost function. Respectively, X and Y , should be interpreted as W0 and
W1, the two first stages of a white noise stochastic process. No decision variable
appears here since we forget about optimization to pay attention to the quality of
approximation of the expectation. The discussion is limited to two-time stages only,
but the generalization to several time stages should be straightforward.

In a standard Monte Carlo procedure, N sample values (xi , yi ) of the pair of ran-
dom variables (X , Y ) are generated according to their joint probability distribution,
or they have been recorded from real data. An unbiased estimate of E

(
f (X , Y )

)
(which is denoted simply E f for short) is provided by the arithmetic mean

1

N

N∑
i=1

f (xi , yi ). (6.20)

It is well known that the variance of this estimate is an O(1/N ) when N is the number
of samples.9

9For the notation O, see footnote 3 in Chap. 2.

http://dx.doi.org/10.1007/978-3-319-18138-7_2
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Fig. 6.12 Two ways of sampling to get scenario trees (option a left-hand side and option b right-
hand side)

In Pennanen’s procedure described in Sect. 6.3.1, Nx samples are generated for X .
With each such sample value xi , a group of samples y j with j ∈ J (i), is associated:
these samples are also generated by Monte Carlo sampling according to the proba-
bility distribution of Y . To make things simpler (but this is not essential), we assume
that all such index sets J (i) have the same cardinality Ny . Moreover, as suggested
earlier, there are two options to consider:

option (a): Nx sample groups of cardinality Ny are generated independently;
option (b): the same group {y j } j∈J is associated with all samples xi .

Pictorially, those options are illustrated by Fig. 6.12 (with Nx = Ny = 3).
In both cases, overall, Nx ×Ny samples are used to produce the following estimate

of E f :

1

Nx × Ny

Nx∑
i=1

∑
j∈J (i)

f (xi , y j ), (6.21)

where J (i) is indeed independent of i in option (b) (that is, J (i) = {1, . . . , Ny} for
all i), whereas, in option (a), the J (i)’s should be viewed as disjoint subsets of indices
to translate the fact that the Nx groups {y j } j∈J (i) have been sampled independently.

Clearly, the estimate (6.21) of E f is also unbiased, and if we want to compare it
with (6.20) from the point of view of its variance, we must assume that N = Nx ×Ny .
We first study option (b). Recall that, in this option, all subsets J (i) involved in (6.21)
coincide with {1, . . . , Ny}.

Proposition 6.14 Given the value of N = Nx × Ny, with option (b), the variance
of estimate (6.21) is minimal when Ny = Nx and this variance is of order O(1/Nx );
therefore the variance is of order O(1/

√
N ).10

10The authors are indebted to Prof. Benjamin Jourdain for preliminary results in this direction.
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Proof Let J (i) = {1, . . . , Ny} for all i . The variance of the estimate (6.21) is

σ2 = E

((
1

Nx Ny

Nx∑
i=1

Ny∑
j=1

(
f (X i , Y j ) − E f

)))

×
(

1

Nx Ny

Nx∑
k=1

Ny∑
l=1

(
f (Xk, Y l) − E f

))
. (6.22)

In this expression, the outer expectation is with respect to the probability distributions
of independent random variables {X i }i=1,...,Nx , {Xk}k=1,...,Nx , {Y j } j=1,...,Ny and
{Y l}l=1,...,Ny (replicating X and Y ), the realizations of which are the samples xi , xk ,
y j and yl used in the estimate.

If the expression (6.21) is expanded, this yields N 2
x N 2

y products of random vari-
ables (with zero mean) of the type

1

N 2
x N 2

y
E

((
f (X i , Y j ) − E f

)(
f (Xk, Y l) − E f

))
. (6.23)

We split up this set of products into four subsets:

1. the subset for which i = k and j = l, of cardinality Nx Ny ; for this subset, all
products of the type (6.23) are squares and their sum contributes to σ2 (in (6.22))
for a term of order O(1/Nx Ny);

2. the subset for which i 
= k and j 
= l: the cardinality of this subset is Nx (Nx −
1)Ny(Ny −1); since this subset contains only products of random variables of the
type (6.23) which have zero mean and are mutually independent, it contributes
for 0 to (6.22);

3. the subset for which i = k but j 
= l, of cardinality Nx Ny(Ny − 1) that we study
later on;

4. symmetrically, the subset for which i 
= k but j = l of cardinality Nx (Nx −1)Ny .

It can be checked that the sum of cardinalities of the four subsets is equal to N 2
x N 2

y ,
as it must be.

It remains to study the contribution of products in the third and fourth subsets.
Those products involve either the same X i but different Y j and Y l , or symmetri-
cally, the same Y j , but different X i and Xk . We only study the former subset since
conclusions also apply to the latter by symmetry. We first prove that all terms of the
type (6.23) such that X i is the same but Y j is independent of Y l have nonnegative
expectations. Indeed, with the short-hand notation

E
X f := E

(
f (X , Y )

∣∣ X
)
,
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one has that

E

((
f (X i , Y j ) − E f

)(
f (X i , Y l) − E f

)) =

E

(
E

Xi ((
f (X i , Y j ) − E

Xi
f︸ ︷︷ ︸

B j

+E
Xi

f − E f︸ ︷︷ ︸
C

)

× (
f (X i , Y l) − E

Xi
f︸ ︷︷ ︸

Bl

+E
Xi

f − E f︸ ︷︷ ︸
C

)))
.

The independence of Y j and Y l , and therefore of B j and Bl , and the fact that the

latter variables have zero conditional means, imply that EXi (
B j Bl

) = 0. Moreover,
since C is X i -measurable,

E
Xi

(B j C ) = E
Xi

(B j ) × C = 0.

The same applies to E
Xi

(C Bl). The only nonzero term is thus the nonnegative term

E(C2), which is the variance of EXi
f (generically of order O(1)).

Finally, the terms in the third and fourth subsets above contribute all together for

a nonnegative term of order O
((

(Nx −1)+ (Ny −1)
)
/Nx Ny

)
∼ O(1/Nx +1/Ny).

This contribution is added to that of the first subset which was O(1/Nx Ny). For
the comparison of (6.20) and (6.21), we assume that N = Nx Ny : for N given, the
variance of the estimate (6.21) is minimal when Nx = Ny = √

N , and this variance
is of order O(1/

√
N ), to be compared with O(1/N ) of the standard Monte Carlo

estimate (6.20). �

It is easy to figure out how this result extends to the case of T stages instead of 2:
the variance of the “tree” estimate (6.21) is of order O(1/

T
√

N ) instead of O(1/N )

for (6.20). Needless to say, this quickly becomes a dramatic loss of quality of the
tree estimate as T keeps growing.

Consider now option (a). The calculations in the proof of Proposition 6.14 must
be adapted in the following way. First, (6.21) is now valid with subsets J (i) which
must be considered as disjoint subsets (that is, the corresponding subsets of random
variables {Y j } j∈J (i) are independent). Consequently, (6.22) must be replaced by

σ2 = E

((
1

Nx Ny

Nx∑
i=1

∑
j∈J (i)

(
f (X i , Y j ) − E f

)))

×
(

1

Nx Ny

Nx∑
k=1

∑
l∈J (k)

(
f (Xk, Y l) − E f

))
. (6.24)
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Among the four subsets considered in the previous proof, the first and the third ones
have the same cardinalities as earlier and contribute to σ2 for the same amounts
as in that proof, namely, O(1/Nx Ny) and O

(
(Ny − 1)/Nx Ny

)
respectively. Since

i 
= k implies that j 
= l (because J (i) ∩ J (k) should be considered as empty),
then the fourth subset (which earlier contained Nx (Nx − 1)Ny elements) is now
empty whereas the cardinality of the second subset increases to Nx (Nx − 1)N 2

y (that
is, the elements of the fourth subset which previously contributed for nonnegative
terms are transferred to the second subset whose terms contribute for 0). Finally, with
option (a), the variance of (6.21) is of order O(1/Nx Ny) + O

(
(Ny − 1)/Nx Ny

)
.

Under the constraint that N = Nx Ny (to make the comparison with (6.20) pos-
sible), we reach the conclusion that the best (minimal) variance is obtained when
Ny = 1 and Nx = N . Notice that this is no longer a tree, but indeed N independent
scenarios, that is (6.20) and (6.21) actually coincide. This just says that, from only
the point of view of minimizing the variance of the estimate of the cost function over
the whole time horizon, the structure of N independent scenarios is far better than
a tree structure. But of course, one should again recall Remark (6.3): if Ny = 1,
the conditional expectation of the cost (knowing W0) which serves as the objective
function in the minimization problem when choosing U0 is approximated with help
of a single sample of W1, which is very bad. To avoid this, we should have put a lower
bound on Ny in order to bound the variance of this conditional expectation, and in
this simple case, it is clear that, with the constraint N = Nx Ny , the best trade-off
between the variance of the estimate of the expected cost over the two-stage hori-
zon and the variance of the estimate of the conditional expectation restrained to the
second stage only is again to take Nx = Ny = √

N .
The conclusion of this rough variance analysis is that the tree structure, which

is one way to represent informational (or simply, non anticipativity) constraints, is
not very efficient from the point of view of the variance of estimates it provides.
Therefore, we should avoid the tree structure and find another way to translate the
informational constraints in the discrete problem. The methodology presented in
Sect. 6.2.3 suggested that this is indeed possible. A more concrete technique in the
context of stochastic optimal control problems is presented in Chap. 7.

6.4 Conclusion

In this chapter, we have proposed a methodology to derive approximate finite-
dimensional versions of the generic stochastic optimization problem (6.1) which
involves static informational constraints (the so-called SIS—see Sect. 1.4). This dis-
cretization stage should not only limit the computations to finite-dimensional objects
(probability measures, decision variables, etc.) but it should also translate the origi-
nal informational constraints in a way which makes it possible to build up a feasible
solution for the original problem after the discrete finite-dimensional problem has
been solved. In addition, one expects that the performance of this feasible solution
approaches the true optimal performance when the dimension of the approximate

http://dx.doi.org/10.1007/978-3-319-18138-7_7
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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optimization problem goes to infinity. This convergence issue has not been explicitly
considered in this chapter and is deferred to Chap. 8.

A popular technique to formulate discrete optimization problems taking care at
least of non anticipativity constraints (the minimal form of informational constraints
in multi-stage problems) is the so-called scenario tree technique. Pennanen [110] pro-
posed a complete study of this technique, including the reconstruction of a feasible
solution for the original problem and its asymptotic convergence to the optimal solu-
tion. We have given a description of his approach using the language of quantization
presented in the first part of this chapter. We then have proposed other approaches
which attempt to relax some of the constraints imposed by Pennanen’s approach,
and more generally by the scenario tree technique. Indeed, as explained in the end
of the chapter, the convergence speed of this technique is seriously handicapped by
the variance of the expectation estimates it produces, which is typically in O(

T
√

N )

when using N sample trajectories for a problem with T time stages. This result is
also mentioned by Shapiro [139] who uses large deviation techniques to establish it.

The argument above provides motivation to eliminate the scenario tree structure
and to find alternative ways to account for informational constraints. The approach
described in this chapter is a first proposal in this new direction, and it must be
confirmed by the convergence study presented in Chap. 8. Chapter 7 presents another
approach, however, that is not directly comparable with the one introduced here
because they proceed along two different paths. In this chapter, we have formulated
a discretized optimization problem which attempts to mimic the original problem
and we have derived the proposed solution from the resolution of this problem. In
the next chapter, we consider the optimality conditions of the infinite-dimensional
original problem (established in Chap. 5), and we propose discretization schemes in
order to approximately solve those conditions.

http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_7
http://dx.doi.org/10.1007/978-3-319-18138-7_5


Chapter 7
Numerical Algorithms

7.1 Introduction

In this chapter, we consider the issue of numerical approximation of the solution
of stochastic optimal control (SOC) problems for which optimality conditions were
studied in Chap. 5. In a more abstract setting of stochastic optimization problems,
this issue was already addressed in Chap. 6. Already in that chapter, we faced the
question of combining two types of concerns:

• on the one hand, expectations or conditional expectations must be evaluated using
finite computational procedures, which appeals to some sort of Monte Carlo or
quasi-Monte Carlo sampling;

• on the other hand, informational constraints must be correctly translated into the
discrete problem.

We have seen that those two concerns may interact with each other. For example,
with the goal of properly handling these two aspects of the problem, we described in
Chap. 6 the systematic approach proposed by Pennanen [110, 111], and we showed
that this approach leads to the “scenario tree technology”. This technology has
been very popular in the Stochastic Programming community as a way to trans-
late non anticipativity constraints (see e.g. [61, 71, 114]). Unfortunately, regarding
the other goal of approximating (conditional) expectations, as explained in Sect. 6.3,
this approach turns out to be rather inefficient. We come back to this observation
once again in this chapter.

In Sect. 6.2.3, we outlined discretization procedures which do not necessarily
result in the use of scenario trees. However, those descriptions may have remained
rather conceptual and abstract. By starting from the optimality conditions obtained in
Chap. 5, we end up here with more concrete numerical schemes. Indeed, there have
always been two main paths towards numerical resolution of infinite dimensional
optimization problems:

• either one starts with a discretization of the problem itself, that is, by giving finite
dimensional approximate expressions of variables, cost function, constraints, etc.,
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and then by solving the optimality conditions of this finite dimensional optimiza-
tion problem;

• or, one first starts by obtaining the optimality conditions in the original infinite
dimensional setting, and then devises a numerical scheme to solve them by nec-
essarily using finite dimensional calculations.

Obviously, the scenario tree technology proceeds from the former point of view,
whereas what is discussed in this chapter stems from the latter. The advantage of the
former is that a clear optimization problem is solved, namely the discretized one.
Hence, the concern is on how well this discretized problem is representative of the
original one. In the latter approach, the goal remains to solve the optimality conditions
of the “true” problem but this is done only approximately. Ideally, one would like
to be in the situation of following either of the two paths of a commutative diagram,
namely “discretize then optimize” or “optimize then discretize” and of reaching the
same final point, but this is rarely the case. That is, the optimality conditions of the
discretized problem can hardly be interpreted as the discretization of the optimality
conditions of an infinite dimensional optimization problem.

Indeed, what is important to check is the performance of the final “solution”
obtained, once this solution is implemented upon the “real” system (as illustrated in
Sect. 1.4.2). But this statement presumes that the so-called solution is implementable
on the real system, which requires that it is at least feasible, that is respectful of the
constraints (in particular the informational constraints). We insisted in Chap. 6 that
it is not enough to obtain optimal decisions at the nodes of a scenario tree because
an implementable and feasible solution of a SOC problem, for example, consists
of a feedback strategy that delivers decisions as a function of any observation one
can and may obtain in a real-life situation. Hence, the numerical resolution of the
optimization problem formulated on the scenario tree should be followed by a post-
processing of the “results”, a phase that we call “feedback synthesis”. We illustrate
why this stage is ill-posed in the scenario tree approach.

As previously discussed, taking care of the informational constraints may be done
using two points of view:

• in the algebraic point of view, those constraints are translated by measurability
constraints between random variables, and the problem is thus to find an adequate
transposition of these kind of constraints in the discrete problem;

• in the functional point of view, as long as measurability of a variable Y w.r.t. another
variable X is equivalent to the existence of a measurable function f such that
Y = f (X ) (according to Proposition 3.46), the solution is searched for directly
as a function of observations.

In the scenario tree approach, the tree structure is supposed to approximately translate
the former algebraic point of view by its discrete structure (each node, corresponding
to a single path upstream, carries a decision which is thus indexed by this past history
but which may face several possible paths in the future, in fact those conditionally
possible given the past history). The Dynamic Programming (DP) approach is clearly
using the latter functional point of view by manipulating a cost-to-go (Bellman)

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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function and a feedback function, both depending on a state variable (in the context
of the Markovian framework—see Sects. 4.4 and 5.5.1—in which this state variable
is an appropriate summary of the useful information to be used to make decisions).

In the present chapter, we start from the optimality conditions obtained in Chap. 5
and derive a numerical resolution method. In so doing, the situation is less clear-
cut regarding the previous two algebraic versus functional options. In the initial
formulation of the problem, informational constraints are dealt with algebraically
as measurability restrictions. Then, in the process of deriving the corresponding
optimality conditions, those constraints are expressed with the help of projection
operators, that is, here, conditional expectations. Finally, approximating those con-
ditional expectations amounts to obtaining discrete representations of functions of
the conditioning variables. Therefore, following this path, we end up with a mix of
Monte Carlo sampling techniques and functional approximations.

As we shall see, the main departure from the DP-based approach, which proceeds
from the discretization of the state space directly, is that the proposed technique builds
up an adaptive mesh in the state space which takes care of the actual probability
distribution at the optimum. Such a feature may be quite beneficial when it happens
that this optimal distribution concentrates in a narrow region of the space. This
feature is similar to that proposed by Broadie and Glasserman [31], although we
consider here more general SOC problems in which the state probability distribution
is solution dependent. In American option problems, the optimal decision, namely
the optimal stopping time, does not affect this distribution prior to this terminal time.

In the rest of this chapter, we briefly recall how SOC problems are discretized and
solved by DP and by the scenario tree approach before presenting numerical methods
based on the optimality conditions obtained in Chap. 5. In order to illustrate and com-
pare those various approaches, we start with a simple benchmark problem, namely
a SOC problem (reservoir management) with a one-dimensional state variable.

7.2 A Simple Benchmark Problem

We consider the production management of a hydro-electric dam formulated as a
SOC problem over a probability space (Ω,A,P) as follows.

7.2.1 Formulation

The horizon is 24 h long with time steps of one hour each. Therefore, the time index
t ranges from 0 to T with T = 24.

The water volume stored in the dam at t is denoted Xt . This and all other random
variables introduced hereafter, are considered to be elements of L2 (Ω,A,P;R)

(according to the framework already adopted in Sect. 5.2.1). This storage Xt is phys-
ically constrained to remain between a lower bound x (a minimal volume—possibly

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5


184 7 Numerical Algorithms

zero—kept in the dam) and an upper bound x (maximal water volume the dam can
contain; beyond that volume, any additional inflow causes an overflow and a loss of
water).

Let Ut denote the desired volume of water one would like to turbinate at stage t
in order to produce electricity. Due to the physical bounds on the water storage, the
actual volume which can effectively be turbinated, denoted Et+1, may be different
from the desired one: when the water storage hits its lower bound, Et+1 may be
less than Ut in order to satisfy this lower bound. Let At+1 denote the random water
inflow into the dam during stage t brought by a river flow and/or rainfall (the shift
in index t reflects the decision-hazard framework already adopted in Sect. 1.2.1—
see also Remark 1.1). The sequence {At }t=1,...,T is a stochastic process with known
distribution. Then, setting

Et+1 = min(Ut , Xt + At+1 − x), (7.1)

prevents Xt+1 from falling below x . Indeed, the dynamics (5.1) of the dam read

Xt+1 = min(Xt − Et+1 + At+1, x),

since Xt+1 cannot exceed the upper bound x due to the possible overflow. Finally,
the intermediate variable Et+1 can be eliminated using (7.1) and the dynamics can
be written as

Xt+1 = min
(

max(Xt − Ut + At+1, x), x
)
. (7.2)

Observe that this equation prevents the storage to take values outside the interval
[x, x].

The control variables Ut are subject to the following bound constraints: for all
t = 0, . . . , T − 1,

u ≤ Ut ≤ u. (7.3)

The effectively turbinated water volume Et+1 (see (7.1)) produces a certain
amount of electric power denoted Pt+1 which also depends on the water storage
(indeed, on the water level in the dam, due to the fall height effect):

Pt+1 = g(Xt , Et+1). (7.4)

Let {Dt }t=1,...,T denote the electricity demand, another stochastic process with
known distribution. In our decision-hazard framework, the production Pt+1 has to
meet demand Dt+1: either Pt+1 ≥ Dt+1 and the production excess is sold on the
electricity market, or Pt+1 ≤ Dt+1 and the gap must be compensated for, either by
buying power on the market or by paying a penalty. The associated cost is given by
the function ct applied to the gap Dt+1 − Pt+1:

ct (Dt+1 − Pt+1). (7.5)

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_5


7.2 A Simple Benchmark Problem 185

The final stock XT is given a value −K (XT ), which is subtracted from the cost
function.

The initial condition X0 is a random variable with known distribution, and we
define the noise random process {Wt }t=0,...,T by

W0 = X0,

Wt = (At , Dt ), t = 1, . . . , T . (7.6)

We assume that this noise process is fully observed and that the control variables are
measurable with respect to the past noises. The dam management problem is finally
formulated as follows:

minE

( T −1∑
t=0

ct

(
Dt+1 − g

(
Xt , min(Ut , Xt + At+1 − x)

)) + K (XT )

)
, (7.7)

subject to the constraints (7.2) and (7.3) and to the measurability constraints

Ut � (W0, . . . , Wt ), t = 0, . . . , T − 1. (7.8)

Remark 7.1 Several functional expressions above involve the max and/or the min
operator(s), which are not everywhere differentiable. We approximate the nonsmooth
operator min by the following operator depending on a smoothing parameter s:

min(x, y) ≈

⎧⎪⎨
⎪⎩

y if y ≤ x − s,

(x + y)/2 − (x − y)2/(4s) − s/4 if x − s ≤ y ≤ x + s,

x if y ≥ x + s.

(and likewise for max since max(a, b) = − min(−a,−b)) in order to recover a
differentiable problem. Figure 7.1 shows plots of the function y �→ min(1 − y, y)

for y ∈ [0, 1] and of the smoothed min with s = 0.2. ♦

Fig. 7.1 min(1 − y, y) for
y ∈ [0, 1] and its smoothed
counterpart with s = 0.2
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7.2.2 Numerical and Functional Data

Both electricity demand and water inflows are supposed to be white noise processes
(see Assumption 4.10). A discrete valued stationary disturbance is added around
a deterministic mean trajectory which evolves throughout the 24 h. Two hundred
(N = 200) sample trajectories, denoted {Ak

t }k=1,...,N
t=1,...,T and {Dk

t }k=1,...,N
t=1,...,T , are randomly

generated for those inflow and demand processes: they are depicted in Fig. 7.2. They
are referred to as “scenarios” in that they are the basis for a discrete representation
of probability distributions.

The initial state X0 follows a uniform distribution over [x, x] = [0, 2]. We also
generate N “particles” {Xk

0}k=1,...,N for the initial state, each one being associated
with one of the previous noise trajectories with the same index k to form a scenario
{W k

t }t=0,...,T . The control variables Ut are subject to the bounds [u, u] = [0, 1] for
t = 0, . . . , T − 1.

Function g involved in (7.4) is given by:

g(x, y) = y
x + x − 2x

2(x − x)
.

It is proportional to y and affine in x , and it ranges from y/2 to y when x varies from
x to x .

The cost function ct involved in (7.5) is given by:

ct (y) = τt (e
y − 1),

where τt is the market price of electricity at stage t . The variation of this price is
depicted in Fig. 7.3.
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Fig. 7.2 Water inflow and electricity demand trajectories
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Fig. 7.3 Electricity price τt
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The final cost K in (7.7) reflects an incentive to fill up the dam at the end of the
day:

K (x) = 12(x − x)2.

7.3 Manipulating Functions with a Computer and
Implementation in Dynamic Programming (DP)

In this section, we discuss how functions can be represented and manipulated with
a computer, and we illustrate these options by considering the numerical resolution
of the Dynamic Programming equation. Several other techniques to attempt to com-
pute approximate solutions to this equation (Stochastic Dual Dynamic Programming
(SDDP) or Approximate Dynamic Programming (ADP) to name but a few) are pro-
posed in the literature. We will briefly come back on them in the conclusion of this
chapter.

7.3.1 The DP Equation

The problem described in Sect. 7.2 is a simple instance of a generic SOC problem
in discrete time, with fixed and final horizon, as introduced earlier in this book (see
Sect. 4.4 and Chap. 5, in particular Eqs. (5.1) and (5.2)). We recall this formulation
once again here for convenience:

X0 = W0, (7.9a)

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
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and P-a.s., for t = 0, . . . , T − 1,

Xt+1 = ft (Xt , Ut , Wt+1), (7.9b)

Ut � (W0, . . . , Wt ), (7.9c)

Ut ∈ Ct , (7.9d)

minE

( T −1∑
t=0

Lt (Xt , Ut , Wt+1) + K (XT )

)
. (7.9e)

In the Markovian setting (see Sect. 5.5), W is supposed to be a white noise process,
and the DP equation provides the solution (see (4.57)):

VT (x) = K (x), ∀x ∈ X, (7.10a)

for t = 0, . . . , T − 1,

Vt (x) = min
u∈Ct

E

(
Lt (x, u, Wt+1) + Vt+1

(
ft (x, u, Wt+1)

))
, ∀x ∈ X. (7.10b)

The optimal feedback law γt (·) is obtained as the arg min in the latter equation and is
a function of x which ranges in X for all t . Hence, solving the DP equation amounts
to computing two sequences of functions, the optimal feedback laws {γt }t=0,...,T −1
and the Bellman functions {Vt }t=0,...,T , both over their whole domain X.

For example, in the case of the benchmark problem in Sect. 7.2, this domain is
one-dimensional and can be reduced to the simple segment [0, 2]. Nevertheless, such
functions are infinite dimensional objects, and the next subsection briefly describes
how they can be manipulated with a computer.

7.3.2 Discrete Representation of a Function

The problem of approximately describing functions of continuous-valued arguments
by a finite amount of information may receive several answers. Of course, functions
having a closed-form mathematical expression, as polynomial or trigonometric func-
tions for example, do not raise a difficulty, at least from the user point of view, since
computers have built-in high precision representations of most basic mathematical
functions. So, one way to extend the catalog of functions that can be manipulated
“exactly”, at least seemingly form the user point of view, is to consider various com-
binations of functions already present in the basic catalog. Let us limit ourselves
to the simplest kind of combinations, namely linear combinations. Then, apart from
knowing the catalog itself, one has to store and manipulate the weights or coefficients
of those linear combinations. Numerical algorithms should be described in terms of
operations to be performed on those coefficients.

http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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There is however a major drawback in such an approach: given a necessarily finite
and limited catalog of basic functions, with linear combinations, one cannot get out of
the linear subspace generated by this subset of functions. Hence, if the solution one is
looking for lies in this subspace, or at least can be closely approximated by an element
of this subspace, the approach is going to be successful. But this generally requires a
sharp a priori knowledge of the shape of this solution, or one must manipulate a very
large catalog of functions, which means a large dimensional problem in terms of
unknown coefficients, in order to reduce the risk of grossly missing the target. This
risk is entirely taken at the initial stage of choosing the catalog of basic functions
with no subsequent recourse.

The previous approach is often referred to as the “parametric” point of view in that
the unknowns of the problem are parameters or coefficients. At the opposite side, the
non parametric approach does not presume a shape or subspace to which the solution
should belong. In order to represent a function on some domain, it proceeds rather
by collecting pointwise values of the function (necessarily a finite number of such
values) and by interpolating the values elsewhere when needed. In fact, there is no
clear cut between this point of view and the previous one in that one may consider
that functions are now approximated by combinations of “local” functions, that is,
functions with a narrow support around each particular point. The supports may, or
may not, overlap (at least they should make it possible to represent functions which
can take nonzero values anywhere in the appropriate domain).

Grid, Particle
We refer the set of points at which solutions are explicitly evaluated as the grid.
This grid is denoted x = {xi }i=1,...,N ∈ X

N and any point xi is called a particle.
Obviously, the denser the grid, the more accurate is the approximation of the solution,
but also the higher is the dimension of the numerical problem to solve (the larger N
is). The relation between how dense the grid is and how large N is depends on two
factors: the dimension of the embedding space X and also the region of this space it
is a priori useful to cover for a specific problem. We come back to the latter point in
Sect. 7.5.2.

Trace, Trace Operator
Given a grid {xi }i=1,...,N and a function γ : X → U, we define the trace of γ on
the grid as the trace u = {γ(xi )}i=1,...,N ∈ U

N . The trace operator is the operator
which associates with a function γ : X → U its finite dimensional representation
(x, u) = {xi , γ(xi )}i=1,...,N . We denote this trace operator byTU : UX → X

N ×U
N .

Interpolation-Regression
In addition to the grid, one must define an interpolation or regression method in
order to evaluate the function at points which do not belong to the grid. This is
generally needed even to compute an approximation of the solution at a particle.
This is a reciprocal operator of the trace operator, called interpolation-regression
operator and denoted RU : XN × U

N → U
X. But this is not in general the inverse

operator of the trace operator, that is, RU ◦TU is not in general the identity over UX.
Even TU ◦RU may not be the identity over XN ×U

N . That is, starting with the trace
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(x, u) = {xi , γ(xi )}i=1,...,N and obtaining an approximation γ̃(·) = RU(x, u)(·) of
γ(·), it may be that

γ̃(xi ) �= γ(xi ). (7.11)

There are various ways of defining the interpolation-regression operator:

polynomial and spline interpolation which consists of approximating the function
in the vicinity of some particle by finding a polynomial of a certain degree which
minimizes some distance taking into account the values of the trace at a certain
number of neighboring particles; this is the topic of an abundant literature (see
e.g. [125]);

kernel regression which amounts to representing the function as a weighted sum
of its trace values; the relative weights are provided by a kernel function which
plays the role of a distance from the point where the function must be evaluated
to the various particles; seminal references are Nadaraya [107] and Watson [151]
going back to 1964, followed here again by an abundant literature (see for example
Wand and Jones [150]);

nearest neighbor which yields a piecewise constant approximation of a function
based on the values collected at the particles; each particle is the centroid of a
Voronoi cell (see Sect. 6.1.2) and the interpolated function is considered constant
over each cell, taking the value the trace assumes at the corresponding particle;
indeed, one may consider that this technique falls into both previous categories,
that is, it uses polynomials of degree 0 or kernels which are piecewise constant
with 0–1 values (indeed membership functions of cells); more general smoother
kernels may thus be viewed as “fuzzy set” membership functions.

7.3.3 The Discrete DP Equation

With the trace and interpolation-regression operators at hand, we can now revisit the
DP equation (7.10) and examine how it can be approximately solved with a computer.
At each time stage t , two functions must essentially be obtained, namely the Bellman
function Vt and the feedback function γt , both with a domain lying in X.

Hence, a grid xt must be first defined at each time stage to cover this domain. With
no a priori knowledge of the solution, a regular grid with particles evenly distributed
over that domain is a natural choice. However the grid must have a finite number of
particles, but this is generally possible only if the domain can be a priori bounded.
This is, for example, the case with the problem of Sect. 7.2 since the dynamics (7.2)
cannot produce a state out of the segment [x, x] ⊂ R. But otherwise, this may be
difficult since no subsets of the domain the state vector may visit can be ignored or
left unexplored.

If X = R
d , the regular grid (covering a bounded subset as we assume it from now

on) is generally obtained as the Cartesian product of d one-dimensional grids, say,
with Mt particles in each dimension, which results in Nt = Md

t particles overall at

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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each stage. This is the source of the “curse of dimensionality”, which refers to the
exponential growth rate of the number of particles with the state vector dimension d
for a given and fixed precision.

Once the grids {xt }t=0,...,T are defined, the basis of the approximation of the
Bellman functions Vt , and of the feedback functions γt , are the traces {vt }t=0,...,T

and {ut }t=0,...,T −1 with vi
t as an estimation of Vt (xi

t ) and ui
t as an estimation of

γt (xi
t ) for i = 1, . . . , Nt . But the DP equation (7.10) also involves an expectation

operation which cannot generally be performed analytically. We assume that this
expectation is approximated by the Monte Carlo method. We thus consider N sce-
narios {w j

t } j=1,...,N
t=0,...,T of the random noise process which are supposed to have been

drawn independently according to the probability distribution of this process.
Finally, the discrete DP equation reads:

for i = 1 . . . , NT ,

vi
T = K (xi

T ), (7.12a)

for t = 0, . . . , T − 1, and i = 1, . . . , Nt ,

Ṽt+1 = RR(xt+1, vt+1), (7.12b)

vi
t = min

u∈Ct

1

N

N∑
j=1

(
Lt

(
xi

t , u, w
j
t+1

) + Ṽt+1
(

ft (xi
t , u, w

j
t+1)

))
, (7.12c)

ui
t = arg min

u∈Ct

1

N

N∑
j=1

(
Lt

(
xi

t , u, w
j
t+1

) + Ṽt+1
(

ft (xi
t , u, w

j
t+1)

))
, (7.12d)

γ̃t = RUt (xt , ut ). (7.12e)

Remark 7.2 Observe that the interpolated feedback functions provided by (7.12e)
are not used in the backward recursion in time, but they are required as the expected
practical solution of the problem. On the contrary, the interpolated Bellman func-
tions provided by (7.12b) are needed to proceed with (7.12c) since the arguments
ft (xi

t , u, w
j
t+1) at which those functions are evaluated do not, in general, coincide

with grid points xi
t+1. The only exception is about VT which is identical to the final

cost function K supposed to be known analytically as part of the problem data. The
interpolated function Ṽ0 is only needed if one is willing to estimate the optimal cost
value, namely E

(
Ṽ0(X0)

) = E
(
Ṽ0(W0)

)
. ♦
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Fig. 7.4 Optimal feedback evaluated by DP for three time instants

7.3.4 Application to the Benchmark Problem

In the problem of Sect. 7.2, the state vector is of dimension 1, and, in fact, it is
confined to the segment [0, 2]: this makes it quite easy to solve numerically using
Eq. (7.12), whatever interpolation-regression is used, since one can afford a grid with
a rather high number of particles (200 points are used and the interpolation-regression
operators are piecewise linear: the value of a function outside the grid is obtained as
the weighted mean of the two surrounding grid points).

For later reference, Fig. 7.4 shows the shape of the optimal feedback γ̃t obtained
for three particular values of t , namely t ∈ {0, 12, 23}.

7.4 Resolution by the Scenario Tree Technique

In this section, we consider the resolution of SOC problems formulated as finite-
dimensional optimization problems over a scenario tree. Actually, we skip the post-
processing of the results derived for this finite-dimensional optimization problem,
post-processing which should lead to a feedback law that would be implementable
in the real system. Instead, for the benchmark problem of Sect. 7.2, we evaluate the
quality of the results so obtained by means of a more visual graphical representation,
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and we draw some interesting conclusions about the drawbacks of the scenario tree
approach.

7.4.1 General Considerations

Unlike other methods presented in this chapter, which proceed by first obtaining
optimality conditions and then solving those conditions numerically, the scenario tree
approach first derives a finite dimensional optimization problem which is supposed
to represent a sound approximation of Problem (7.9) and then obtains a solution of
this finite dimensional problem by standard mathematical programming methods.
Recall, however, that a final stage is required to provide feedback functions that can
be implemented on the original system.

The tree architecture is characterized by the fact that each node of the tree corre-
sponds to a unique past noise history but is generally followed by several possible
future histories. Therefore, the decision attached to each node may be considered
as indexed by this unique past history but still faces some uncertainties in future
outcomes, these possible outcomes being “conditioned” by the past observed so far.
This feature is supposed to translate the information constraint (7.9c) in the finite
dimensional problem. As discussed in Sect. 6.2.2, Pennanen [110] was the first to give
a theoretical justification to this idea by providing an asymptotic convergence result
when the discrete tree structure gets closer and closer to the actual noise stochastic
process.

In this section, we first briefly recall the formulation of the approximate problem
over a scenario tree, which is substituted for the original problem (7.9). We then con-
sider the optimality conditions of this approximate problem and give brief indications
on how to solve them. Finally, we come back to our benchmark problem and show
some of the corresponding results. The main purpose is here to illustrate the diffi-
culty in achieving the last step recalled hereabove, namely to obtain implementable
feedback functions.

The initial step of the whole methodology is to obtain a scenario tree, a topic
already broached in Sect. 6.3.1. The starting point may be a collection of scenarios
such as those depicted in Fig. 7.2, from which one must construct a tree as illustrated
by Fig. 7.5. This approach is followed e.g. in [61, 71, 72]. Alternatively, one may
use various techniques to derive scenario trees directly by appropriate sampling or
quantization techniques (see [12, 111, 114, 115]) or by further reducing an already
given scenario tree [73]. We do not thoroughly investigate this issue here because
our main concern is to illustrate the difficulties already discussed in Sect. 6.3.2.
Some indications are, however, provided in the context of our benchmark problem
in Sect. 7.4.5 hereafter.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_6
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Fig. 7.5 From scenarios to a scenario tree

7.4.2 Formulation of the Problem over a Scenario Tree

Notations
We follow the main stream of [33] with some differences. Although a tree is a two-
dimensional structure, it is more convenient to number nodes with a single index ν,
e.g. starting at time stage 0 from top to bottom, and then proceed with increasing
values of t , still from top to bottom. This index set is denoted N .

We need to recover the value of t for a given value of ν. To that purpose, we
introduce the mapping θ : N → {0, . . . , T } which plays the part of the “clock”
function. Therefore, θ−1(t) is the subset of nodes located at stage t . Observe that
θ−1(0) is not necessarily reduced to a singleton (see the right-hand side of Fig. 7.5):
it represents the samples of X0 = W0. Hence, since the root of the tree is not unique,
we should rather speak of a “forest” rather than of a “tree” but we still keep on using
the terminology “tree” which is more common.

The topology of the tree is described by the “father” function f : N → N : f(ν) is
the unique node which precedes node ν at stage θ(ν)−1. Hence θ

(
f(ν)

) = θ(ν)−1.
In fact, f is undefined over the subset θ−1(0) of roots, and it ranges in N \ θ−1(T )

since the “leaves” θ−1(T ) have no “sons”. “Sons” of a given node ν are the nodes
that follow this node ν at stage θ(ν) + 1, namely f−1(ν). Of course, this subset is
empty for nodes which are leaves of the tree (nodes at stage T ).

The knowledge of the set N of nodes, and of the father function f, completely
characterizes the topology of the tree. For example, the whole past history of a node
is obtained by iterating function f. Similarly, the subtree hanging at a node is obtained
by iterating the set-valued mapping f−1.
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In addition to the topology, other data and variables are required, and they are
attached to the nodes of the tree. Every node ν of the tree carries a sampled noise value
wν of the random vector Wθ(ν)

. Depending on how the tree has been derived from
the underlying noise stochastic process, nodes at any time stage t (those belonging
to θ−1(t)) may be equiprobable, or they may have different probability weights. We
introduce a probability function π : N → (0, 1] satisfying the following conditions:

π(ν) =
∑

μ∈f−1(ν)

π(μ), ∀ν ∈ N \ θ−1(T ), (7.13a)

∑
ν∈θ−1(T )

π(ν) = 1. (7.13b)

Observe that the combination of both conditions above implies that property (7.13b)
holds true for all t = 0, . . . , T, and not only for T . Moreover, according to (7.13a), the
numbers {π(μ)/π(ν)}μ∈f−1(ν) form also a discrete probability distribution, which is
indeed a conditional probability distribution (of next outcomes) knowing that node ν
has been reached.

Remark 7.3 The technique of scenario trees does not require a priori that the noise
process be a white noise. Hence, the above mentioned conditional probability distri-
bution may differ when jumping from one node to another at the same time stage t
(and a fortiori when t differs). ♦

Finally, attached to every node ν ∈ N \ θ−1(T ) is a control variable uν , and for
ν ∈ N is a “state” variable xν . Those variables are the unknowns of the following
problem.

Formulation
The following optimization problem is a transposition of Problem (7.9) over the tree.
Indeed, if one assumes that the noise process exactly follows the discrete probability
distribution depicted by the scenario tree, then Problem (7.9) boils down to

xν = wν, ∀ν ∈ θ−1(0), (7.14a)

xν = fθ(f(ν))

(
xf(ν), uf(ν), wν

)
, ∀ν ∈ N \ θ−1(0), (7.14b)

uν ∈ Cθ(ν), ∀ν ∈ N \ θ−1(T ), (7.14c)

min

( ∑
ν∈N \θ−1(0)

π(ν)Lθ(f(ν))

(
xf(ν), uf(ν), wν

)

+
∑

ν∈θ−1(T )

π(ν)K (xν)

)
. (7.14d)

In this transposition, there is no explicit equivalent to the non anticipativity constraint
(7.9c), since this constraint is now encoded in the tree structure.
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7.4.3 Optimality Conditions and Resolution

To obtain the optimality conditions for Problem (7.14), we follow the methodology
already used in Sect. 5.4, which consists in forming a Lagrangian associated with
the problem and using its derivatives w.r.t. the primal and dual variables to derive
the stationary conditions, or the gradient w.r.t. the control variables according to the
technique explained in Sect. 5.4.1.

In dualizing Eq. (7.14a) and (7.14b) to form the Lagrangian, we introduce the
weights π(ν): this trick amounts to scaling the corresponding dual variables λν ,
which corresponds to a mere change of variables aimed at making their probabilistic
interpretation smarter:

�(u, x;λ) =
∑

ν∈θ−1(T )

π(ν)K (xν) +

∑
ν∈N \θ−1(0)

π(ν)

(
Lθ(f(ν))

(
xf(ν), uf(ν), wν

) + λ

ν

(
fθ(f(ν))

(
xf(ν), uf(ν), wν

) − xν

))

+
∑

ν∈θ−1(0)

π(ν)λ

ν (wν − xν). (7.15)

The stationarity of this Lagrangian gradients w.r.t. the λν leads back to (7.14a) and
(7.14b) (up to the weighting factor π(ν)). The stationarity of the gradients w.r.t. the
xν’s provides, as usual, backward co-state equations (analogous to (5.18)):

λν = ∇K (xν), ν ∈ θ−1(T ), (7.16a)

λν = 1

π(ν)

∑
μ∈f−1(ν)

π(μ)
(
∇x fθ(ν)

(
xν, uν, wμ

)
λμ

+ ∇x Lθ(ν)

(
xν, uν , wμ

))
, ν ∈ N \ θ−1(T ). (7.16b)

Finally, the gradients w.r.t. the uν’s yield the gradients of the cost (7.14d) (denoted
J (u)) w.r.t. the controls:

∇uν J (u) =
∑

μ∈f−1(ν)

π(μ)
(
∇u fθ(ν)

(
xν, uν, wμ

)
λμ

+ ∇u Lθ(ν)

(
xν, uν, wμ

))
. (7.17)

Remark 7.4 The expression (7.17) is somewhat different by nature from (5.19):
the latter corresponds to the cost gradient w.r.t. control evaluated along a particular
noise scenario (hence the notation ∇ut j (u, w)); the former corresponds to the gradi-
ent of the cost function (7.14d) which already contains an operation of expectation
w.r.t. noise (hence the notation ∇uν J (u)). However, since the derivative is w.r.t. uν

http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
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which is the control variable acting at stage θ(ν) along scenarios which go through
node ν, only the subtree hanging at this node is involved in this expectation operation
(which is thus rather akin to a conditional expectation). Indeed, in formula (7.17),
one may observe the weights π(μ) for the nodes μ ∈ f−1(ν) following immediately
node ν in the tree; those weights “shape” a conditional probability up to the normal-
izing factor π(ν) (see (7.13a) and the comments below that formula); as for the other
nodes at the next stages in the future, they are indirectly present in (7.17) through
the co-state variables.

As a matter of fact, if we now observe the “geometry” of the co-state equa-
tions (7.16), they start at the leaves of the tree (see (7.16a)) and then progress back-
wards by successive conditional expectations which are apparent in the right-hand
side of (7.16b). Therefore, these co-state equations are comparable to the adapted
co-state equations encountered in (5.22c) or (5.25c) rather than to the non adapted
version (5.20d). ♦

The gradient expressions (7.17) may serve to write optimality conditions accord-
ing to (5.9), or to solve the optimization problem (7.14) using a projected gradient
algorithm by iterating the following steps:

• guess initial control values {u(0)
ν }ν∈N \θ−1(T ) with u(0)

ν ∈ Cθ(ν);

• at iteration k, knowing the u(k)
ν , integrate the state equations (7.14a) and (7.14b)

forwards along the tree from roots to leaves, which yields the x (k)
ν ;

• then, integrate the co-state equations (7.16) backwards from leaves to roots, which
yields the λ

(k)
ν ;

• with all those values, form the gradient expressions (7.17) and perform a gradient
step projected onto the feasible subsets Cθ(ν) to update the u(k)

ν into u(k+1)
ν .

7.4.4 About Feedback Synthesis

Once Problem (7.14) has been solved, three variable values are attached to each
node ν of the tree, namely uν , xν and λν . Recall that our final goal is to obtain a
feedback function γt at each time stage t which tells us which control value must
be used as a function of observations available at time t . In the formulation (7.9),
according to (7.9c), the observations available at time t are the whole past history of
the noise process. As we noticed already, the scenario tree technique does not require
particular assumptions about the noise process, except that it is observed in a causal
manner.

Only a few noise past histories are considered at every time stage t (as many as the
number of elements in θ−1(t)): they are the elements of a grid which must then serve
for the final phase of interpolation-regression of the feedback functions. However,
this operation must be achieved in a space of increasing dimension as t grows, which
makes it rather difficult. A possibility is to attempt to reduce this dimension, at the
price, possibly, of some loss in performance, by trying to limit the arguments of the

http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
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feedback functions to the most significant observations (which may be determined
for example by data analysis techniques).

This difficulty is alleviated in the Markovian case since we know from theory
that the optimal performance can be achieved by using only state feedback instead
of the whole past noise history. This is, in particular, the case for our benchmark
problem of Sect. 7.2. Therefore, in the Markovian case, one may examine the clouds
of dots {(xν, uν)}ν∈θ−1(t) for each value of t and use those clouds of dots as the grids
to derive the feedback functions γt by interpolation-regression. For our benchmark
problem, we skip this last stage of interpolation and limit ourselves to the observation
of the clouds at some time stages. This is enough to draw interesting conclusions.

7.4.5 Results Obtained for the Benchmark Problem

In order to formulate Problem (7.14) for our benchmark problem, we must first
obtain a scenario tree from the initial data described in Sect. 7.2.2. As indicated
there, 200 noise scenarios are available: each one is made up of an initial storage
value xi

0, i = 1, . . . , 200, followed, at the next time stages t = 1, . . . , 24, by a pair
of values (ai

t , di
t ) for water inflows and electricity demands as depicted in Fig. 7.2.

Out of those 200 scenarios, Barty [12] derived a scenario tree by following these
steps:

• for t = 0, by considering the collection of values {xi
0}i=1,...,200, and by using

Lloyd’s algorithm described at the end of Sect. 6.1.2, a quantization of this sample
set into two cells (subsets) and two corresponding centroids is obtained;

• for t = 1, the same procedure is applied separately to the two previous subsets of
scenarios: for each one, the two-dimensional vector values (ai

1, di
1) are taken into

account and each subset is divided again into two subsets by optimal quantization
with help of Lloyd’s algorithm; therefore, 4 subsets are now obtained, which are
issued from 2 “fathers”, namely the two subsets of stage t = 0;

• this process is repeated at the next time stages by dividing each of the previously
obtained subsets into two subsets, based on the current two-dimensional vector
values (ai

t , di
t );

• so doing, one builds up a binary1 “tree” (indeed, two such trees with two distinct
roots at level t = 0), but since 28 = 256, already at t = 7, the 200 distinct scenarios
are exhausted, and the tree cannot keep on its branching rate of 2; therefore, beyond
that time stage, each node is followed by a single “son”, that is, the future becomes
conditionally deterministic.

Once this scenario tree has been defined, Problem 7.14 can be numerically solved
based on the other numerical data described in Sect. 7.2.2 by using the algorithm
described at the end of Sect. 7.4.3. As explained earlier, we examine the clouds of

1“Binary” means that each node is followed by two sons, or, otherwise stated, the branching rate is
equal to 2.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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dots (xν, uν) for ν ∈ θ−1(t) and for certain values of t . Figure 7.6 shows these results
for t ∈ {0, 12, 23} together with the optimal curves estimated by DP and already
depicted in Fig. 7.4.

Several comments are in order here. First of all, the number of nodes at every
time stage t (the cardinality of θ−1(t)) determines the number of available dots in
the cloud at the corresponding time stage t . The tree starts with 2 nodes at t = 0,
hence the two dots in the first plot of Fig. 7.6; the next two plots shown in this
figure have 200 dots each. Unfortunately, and this is our second comment, a larger
number of particles available as t increases does not mean better conditions for
feedback synthesis. Indeed, each particle (xν, uν) provides (through the value uν) an
estimation of the value of the feedback function at xν . Hence, as for any stochastic
estimation, the quality of this estimation is characterized by its potential bias and
also by its variance. This is summarized by the Mean Quadratic Error (MQE—see
(6.3)), which is equal to the square of the bias plus the variance.

If we observe the first plot of Fig. 7.6 corresponding to t = 0, the two dots of this
plot are rather close to the actual feedback curve. This is an indication that the MQE
is rather small at this time stage. This may be explained by the fact that, for each
particle, the pending future in the tree is rich enough to provide an adequate sample
of the noise process. Therefore, at the early stages of the tree, the problem is not so
much with the quality of estimation but rather with the small number of particles
available: with two dots in dimension 1, one can hardly obtain anything else than a
linear feedback function guess, whereas the true function is obviously nonlinear.
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Fig. 7.6 Scenario tree: optimal pairs (x, u) at three time instants

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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The other two plots show 200 dots, but the task of estimating the feedback function
is nevertheless not made easier: now the problem is with the average deviation from
the true curve. Remember that when the number of particles reaches 200, which was
the initial number of noise scenarios available, necessarily, the future of each such
particle is deterministic, that is, it consists of a single scenario. Therefore, we are in
the situation of producing a stochastic estimation based on a single sample, which
obviously leads to a very high variance. We also refer the reader back to Sect. 6.3.2
in which variance issues have been discussed in connection with the construction of
scenario trees for white noise processes.

In this section on the scenario tree technique, we have illustrated the factors
that make this technique not well suited for the numerical estimation of optimal
feedback functions for SOC problems, especially when the time horizon exceeds a
few stages. Indeed, even with a minimal (binary) rate of branching, the number of
scenarios grows exponentially with the time horizon, unless those scenarios become
deterministic after a few stages (that is, if they stop branching), which, however,
has a disastrous effect on the quality of the results. Using large deviation techniques,
Shapiro [139] showed that the size of the scenario tree required to achieve a specified
accuracy in terms of the optimal cost value grows exponentially with the time horizon.
Girardeau [70] obtained similar results by numerical experiments while studying the
MQE between the optimal feedback function and that derived by a piecewise constant
interpolation-regression technique from the particles computed by the scenario tree
technique.

The rest of this chapter is devoted to the study of another numerical method that
overcomes these drawbacks.

7.5 The Particle Method

In this section, we begin with the optimality conditions obtained in Chap. 5 for
SOC problems, and we derive from them numerical methods of resolution. Here,
we limit ourselves to the Markovian situation of Sect. 5.5 and, more precisely, to
the optimality conditions obtained in Sect. 5.5.4, which used a functional point of
view. These optimality conditions are, among all the variants examined in Chap. 5,
those which are the closest to the DP approach. In particular, in contrast to the other
sets of conditions, they do not involve conditional expectations, but only simple
expectations which are classically approximated by straightforward Monte Carlo
arithmetic means. For this reason, the sophisticated techniques for the approximation
of conditional expectations, which provide only biased estimates (see [86]), are
avoided. But this comes at the expense of using a functional representation of co-
state variables, as explained in Sect. 5.5.4, and this technique requires tools similar to
those used for the approximation of conditional expectations (e.g. Nadaraya-Watson
kernel regression [107, 151] mentioned in Sect. 7.3.2). This is not surprising since
conditional expectations are, in fact, functions of the conditioning variables.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
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The reader interested in numerical methods derived from the other sets of opti-
mality conditions developed in Chap. 5 may refer to Dallagi’s PhD thesis [48]. In
this section, we rather try to illustrate the similarities and differences of the method
proposed, referred to as the “particle method”, with the DP technique. The most sig-
nificant difference lies in the fact that the particle method automatically constructs a
discretization grid in the state space which reflects the optimal state probability dis-
tribution. This happens precisely because “state particles” are repeatedly simulated
while the algorithm iteratively improves the feedback control. This may be a deci-
sive advantage over the DP approach in the case when the optimal state distribution
does not fill up the whole state space domain but tends to concentrate in particular
narrow regions at some time stages, as happens with our benchmark problem (this is
apparent in Fig. 7.6 especially in the second and third plots). As a matter of fact, the
DP technique requires a systematic a priori discretization of the whole state domain
which cannot take the final optimal distribution into account.

7.5.1 Algorithm

Our purpose is to solve the optimality conditions (5.26) numerically, using N inde-
pendent and identically distributed noise processes {W i

t }i=1,...,N
t=0,...,T which are supposed

to be samples of the noise process W . A realization of W i
t is denoted wi

t .
Unlike the scenario tree technique, there is no need to derive a tree structure here.

That is, those initial scenarios are used as they are. As for the comparison with the DP
numerical approach described in Sect. 7.3.3, there is a common ingredient, namely,
the need to appeal to some numerical representation of certain functions of the state
variable; but there is also a noticeable difference, namely that the discretization of
the state space is, here, “self-constructive” and adapted to the optimal solution of the
problem.

The algorithm considered here is iterative and it is akin to a projected gradient
algorithm. Let (k) be the superscript indexing all manipulated entities at the current
iteration k. For reasons on which we come back later on (see Remark 7.7 hereafter),
as iterations proceed, feedback laws appearing in (5.26) need to be represented only
by particles {ui,(k)

t }i=1,...,N
t=0,...,T −1 corresponding to the N noise scenarios; these control

particles are improved up to their final values ui,(∞)
t and the “solution” delivered by

the algorithm, namely the feedback laws {γ(∞)
t }t=0,...,T −1, are synthesized using the

final values of the control particles.

Building Adaptive Grids in the State Space
At iteration k, knowing the control particles, the state particles {xi,(k)

t }i=1,...,N
t=0,...,T are

generated by integration of (5.26a) and (5.26b) along the N noise scenarios: for
i = 1, . . . , N ,

xi,(k)
0 = wi

0, (7.18a)

http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
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and for t = 0, . . . , T − 1,

xi,(k)
t+1 = ft

(
xi,(k)

t , ui,(k)
t , wi

t+1

)
, (7.18b)

which yields the grids

x(k)
t = {

xi,(k)
t

}
i=1,...,N . (7.18c)

Functional Co-State Backward Recursion
Consider now stage t of the backward recursion (5.26e). In the right-hand side of
this equation, expectations of functions w.r.t. Wt+1 are classically approximated by
the arithmetic average of these functions evaluated at the samples {wi

t+1}i=1,...,N . So
doing, even if we want only evaluate an approximation of the trace of the function
Λt at the points of the grid x(k)

t , we need an approximation Λ
(k)
t+1 of the whole

function Λt+1, and not only its evaluations on the grid x(k)
t+1. The right-hand side of

(5.26e) is approximated by

1

N

N∑
j=1

(
∇x Lt

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)

+ ∇x ft

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)
Λ

(k)
t+1

(
ft

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)))
.

This expression shows that Λ
(k)
t+1 must be evaluated at

ft

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)
(7.19)

which, for j �= i , is not a point of the grid x(k)
t+1. This is where an interpolation-

regression operation is needed to produce an approximation Λ
(k)
t+1 of Λt+1.

To that purpose, for every t , we need an estimation {li,(k)
t }i=1,...,N of the trace of Λt

on the grid x(k)
t . It is constructed in a backward recursion, together with interpolated

functions Λ
(k)
t as follows:

Λ
(k)
T = ∇K , (7.20a)

for t = 1, . . . , T − 1 and i = 1, . . . , N ,

http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
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li,(k)
t = 1

N

N∑
j=1

(
∇x Lt

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)

+ ∇x ft

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)
Λ

(k)
t+1

(
ft

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)))
, (7.20b)

l(k)
t = {

li,(k)
t

}
i=1,...,N , (7.20c)

Λ
(k)
t = RXt

(
x(k)

t , l(k)
t

)
. (7.20d)

Updating the Control Particles
We now examine how the control particles can be improved for the next iteration of
the algorithm. The left-hand side member of (5.26c) represents the gradient of the
cost function w.r.t. the control used at stage t when the system is in state x . Therefore,
using the grid x(k)

t , the control particle ui,(k)
t is updated using a gradient step (with

stepsize ε(k)) projected on the feasible set Ct : for t = 0, . . . , T −1 and i = 1, . . . , N ,

ui,(k+1)
t = projCt

(
ui,(k)

t − ε(k) 1

N

N∑
j=1

(
∇u Lt

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)

+ ∇u ft

(
xi,(k)

t , ui,(k)
t , w

j
t+1

)
Λ

(k)
t+1

(
ft

(
xi,(k), ui,(k)

t , w
j
t+1

))))
. (7.21)

Termination
Assuming the convergence of the iterations driven by index k and the stabilization
of state and control particle values at

x(∞)
t = {

xi,(∞)
t

}i=1,...,N
t=0,...,T and u(∞)

t = {
ui,(∞)

t
}i=1,...,N

t=0,...,T −1

respectively, one uses those values as an approximate trace of the feedback function
optimal solution to build up an approximation of this solution by interpolation-
regression: for t = 0, . . . , T − 1,

γ(∞)
t = RUt

(
x(∞)

t , u(∞)
t

)
. (7.22)

Remark 7.5 The fact that the particles ui,(∞)
t belong to Ct does not guarantee that

the interpolated functions γ
(∞)
t assume values that are confined to Ct . This depends

on the technique used for interpolation-regression. This is ensured for example if
only convex combinations of the particles are used to interpolate (yielding piecewise
linear feedback functions) and if Ct is a convex subset. Observe that, in this particular
case, the values of the particles ui,(∞)

t remain those of the interpolated feedback
functions γ(∞)

t at the particles xi,(∞)
t (refer back to the discussion leading to (7.11)

in Sect. 7.3.2). ♦

http://dx.doi.org/10.1007/978-3-319-18138-7_5
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Summarizing
We summarize the whole algorithm.

Algorithm 7.6

Initialization: Set k = 0 and guess initial control particles ui,(0)
t for t =

0, . . . , T − 1 and i = 1, . . . , N .
Iteration k:

1. Compute the state grids x(k)
t using the forward recursion (7.18).

2. Compute the co-state functions Λ
(k)
t using the backward recursion (7.20).

3. Update the control particles to ui,(k+1)
t for t = 0, . . . , T − 1 and i =

1, . . . , N using (7.21).
4. Iterate with k + 1 ← k or stop if stationarity is (almost) achieved.

Termination: With the limit values x(∞)
t and u(∞)

t , build up feedback func-
tions φ

(∞)
t for t = 0, . . . , T − 1, according to (7.22).

7.5.2 Results Obtained for the Benchmark Problem and
Comments

We return to the problem of Sect. 7.2 and show the results obtained for this problem
using Algorithm 7.6. To make the comparison of these results with those obtained
with the scenario tree technique (see Sect. 7.4.5) easier, in Fig. 7.7 we provide the
same type of plots as those shown in Fig. 7.6. That is, we limit ourselves to showing the
clouds of dots with coordinates

(
xi,(∞)

t , ui,(∞)
t

)
for i = 1, . . . , 200 and t = 0, 12, 23.

In particular, we did not achieve the termination step of Algorithm 7.6, namely the
feedback synthesis, and we also show, as in Fig. 7.6, the “exact” solution curves
provided by the DP approach (see Fig. 7.4).

When comparing Figs. 7.6 and 7.7, several observations can be pointed out. First
of all, there are now 200 dots for every plot corresponding to any time instant for
t = 0 to 24, unlike the scenario tree technique which yields max(2t+1, 200) dots at
time t . This is, of course, a first advantage of the particle method, especially for the
earlier values of t .

Moreover, even when both approaches provide 200 particles on which to base
the reconstruction of a feedback function, which is the case for t = 12 and 23, it is
clear that those particles are much closer to the true curves (provided by DP) with
the particle method than with the scenario tree technique. We already explained why
the latter approach is handicapped, since, when t increases, the pending subtree at
any node of level t tends to be reduced to a single scenario. Obviously, the particle
method does not suffer the same drawback and the three plots shown in Fig. 7.7 sug-
gest that the MQE (Mean Quadratic Error) is more or less the same (and here rather
moderate with 200 scenarios) from the beginning to the end of the time horizon. At
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Fig. 7.7 Scenario tree: optimal pairs (x, u) at three time instants

this moment, there are no theoretical results to support this claim, but more experi-
mental results available in Girardeau’s PhD thesis [70] lead to the same impression
which is also intuitively reasonable when examining the type of computations done
in Algorithm 7.6.

However, one may object that even if the average error in the locations of particles
seems rather moderate, this does not mean that the whole feedback functions can be
accurately estimated because the particles are not evenly distributed over the whole
state domain, namely the segment [0, 2] here. This is the case for t = 0 since X0
has a uniform distribution over this segment which is thus also reflected by the
sample distribution. But for t = 12 and t = 23, only parts of the state domain are
covered by the particles. Indeed, remember that those parts of the state domain are
the ones visited by the final grids x(∞)

t . Those grids are not designed a priori by the
user, as in the case of the DP resolution, but they are automatically produced by the
algorithm itself. They, in fact, reflect the optimal state distribution of the problem
under consideration.

This feature, which may sound like a drawback of the method, may also be con-
sidered an advantage. Indeed, in the DP approach, in which one has no a priori idea
of the optimal state distribution, the natural way to proceed is to attempt to cover the
whole possible state domain as evenly as possible with the discretization grid. But
as we have discussed already, this approach is the source of the “curse of dimension-
ality” because it requires a number of particles which increases exponentially with
the state vector dimension. In the present example, it turns out that, in the optimal
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behavior of the system, the state concentrates at some time stages in a very narrow
part of the state space, so that it seems useless to attempt to compute optimal feedback
functions in regions which are mostly ignored by the possible state trajectories. If we
knew that a priori, we would have used our given amount of grid points (200 here) to
more finely discretize the region which is really visited by the flow of optimal state
trajectories. In some sense, this is what is progressively achieved by the proposed
iterative algorithm.

Remark 7.7 In Remark 7.2, we noticed that, in the backward recursion to numeri-
cally solve the DP equation, an approximation of the Bellman function Vt is only
needed to perform this recursion because this function has to be evaluated outside
the discretization grid. On the contrary, the feedback function γt is used only at the
grid points so that its reconstruction by interpolation-regression is necessary only to
deliver a final answer.

In some sense, we have benefited in Algorithm 7.6 of the same kind of observation
in which Λt plays the role of Vt (the relation between those two functions was
commented at the end of Sect. 5.5.4). Since the feedback function is used only at the
points of the grid, we have only been able to handle its trace of the grid all along
the iterations of the algorithm and defer the feedback synthesis operation only when
convergence has been achieved. ♦

7.6 Conclusion

This chapter was devoted to translate the optimality conditions (5.26) into a numerical
algorithm. We obtained some results for our benchmark problem of Sect. 7.2 and
compared them with those obtained by the scenario tree technique and by DP. The
optimality conditions (5.26) concern SOC problems that fit in the Markovian setting
(see Sect. 5.5.1) as does also the DP approach, whereas the scenario tree technique
can potentially address more general SOC problems. We refer the reader to [48] for
the description of numerical algorithms exploiting the other optimality conditions
studied in Chap. 5 which concern those more general problems.

The philosophy of the approach leading to Algorithm 7.6 follows the path “opti-
mize then discretize”, a feature also shared by the DP approach, whereas the scenario
tree technique follows the alternative path “discretize then optimize”. In the latter, the
crucial informational constraint must find a translation at the first discretization step,
hence the tree structure that must be given to scenarios. As we have discussed, this
tree structure has important negative consequences regarding the quality of Monte
Carlo estimators it can produce, and this has been illustrated by the results shown in
Fig. 7.6.

In the alternative path “optimize then discretize”, the informational constraint is
handled at the first stage of writing down optimality conditions. This may practi-
cally translate into using a functional point of view (which is the case in DP) or by
using conditional expectations as shown in Chap. 5. However, in the Markovian case,

http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
http://dx.doi.org/10.1007/978-3-319-18138-7_5
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those conditional expectations boil down to simple expectations, which makes their
numerical approximation by the standard Monte Carlo approach far easier.

The DP approach is recursive in time, whereas, the particle method is also iterative
and closer to the spirit of a variational (gradient-like) algorithm. In both methods,
some functional approximation must be used and the arguments of the manipulated
functions belong to the state space. However, one distinctive feature is that DP must
a priori explore the whole state space, which leads to the exponential growth of
the number of discretization points needed in that space with the dimension of this
space (the “curse of dimensionality”), whereas the particle method incorporates an
automatic construction of the discretization grid in this space whose cardinality is
connected with the size of the Monte Carlo sample set considered (i.e. the number N
of particles). This does not mean that the dimension of the state space plays no
role, and it is likely to have an influence on the interpolation-regression operations
required by the method. Theoretical results about the rate of convergence of the
method with the parameter N are still missing, but the reader may consult [70]
for some experimental results. However, the fact that the particle method is able to
construct a grid in the state space which is adapted to the optimal state distribution,
as illustrated by our benchmark problem, should be considered as an advantage, if
not a definite answer, to the curse of dimensionality.

As mentioned earlier, in front of this challenging issue of the curse of dimen-
sionality, several other methods have been proposed in the literature to tackle the
DP equation numerical resolution. A comparison of all these methods with the par-
ticle method proposed in this chapter is out of the scope of this book and still to be
done. Some referees claimed strong relations between the particle method and either
the so-called Stochastic Dual Dynamic Programming (SDDP) technique [113, 116]
or the Approximate Dynamic Programming (ADP) [126]. Inevitably, as long as all
those methods address the same problem resolution, namely the SOC problem, there
are obviously possible connections and some common features between them. But
as far as we understand SDDP and ADP, we do not see very tight relations with
the particle method. Both SDDP and ADP focus on approximations of the Bellman
function whereas the starting point of the particle method is more on the side of
Pontryagin like optimality conditions. In addition, SDDP assumes convexity of the
Bellman function in order to build outer approximations by supporting hyperplanes
whereas ADP is often based on an initial guess of a parametric class of functions
to which, hopefully, the exact Bellman function “almost” belongs. No such a priori
assumption or guess is needed with the particle method.
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Chapter 8
Convergence Issues in Stochastic
Optimization

8.1 Introduction

In stochastic programming, the decision maker makes decisions which are subject
to partial observations. A typical example is in multi-stage decision problems when
the decision maker is constrained to use non-anticipative strategies, i.e. admissible
strategies are constrained to be adapted to the filtration generated by the observa-
tions. This leads to constraints on admissible controls which are called measurability
constraints (see Sect. 1.2.1). Investigating the dependence of optimal strategies and
optimal values on measurability constraints is of deep importance for both theory and
applications. Moreover, if we are concerned with numerical solutions of stochastic
problems, approximations of random variables and subfields involved in the problem
are also considered. We are thus led to examine optimal strategies and optimal values
when both random variable approximation and measurability constraints approxima-
tion are considered. For some concepts used in the text without definitions, the reader
is referred to classical Analysis textbooks such as [2] and Appendix A for basics in
optimization.

More precisely, let
(
Ω,A, P) be a probability space, and consider problems for-

mulated as in (1.3),
min
U �G

E
(

j (U , W )
)
, (8.1)

with a measurability constraint specified by a fixed subfield G ⊂ A. As exposed
in Sect. 1.2.2, we are in a case of static information structure. Moreover, we will
consider problems with admissible controls in subspaces of L p spaces with 1 ≤ p <

+∞.
Using a sequence {W (n)}n∈N of approximations of the random variable W and a

sequence {G(n)}n∈N of subfields of A as approximations of the subfield G, we are led
to solve a sequence of approximated problems:

min
U �G(n)

E
(

j (U , W (n))
)
.
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Using the sequence of functions

F (n)(U ) := E
(

j (U , W (n))
) + χ

L0(Ω,G(n),P;U)
(U ),

where L0(Ω,G(n), P; U) is the space of G(n)-measurable functions and where χA is
the characteristic function of the set A (see Eq. A.2), we can rewrite the sequence of
optimization problems as:

min
U ∈L p(Ω,A,P;U)

F (n)(U ).

In the following, we give sufficient conditions under which the sequence {F (n)}n∈N
Mosco converges to F in L p(Ω,A, P; U) where the function F is defined by:

F(U ) := E
(

j (U , W )
) + χ

L0(Ω,G,P;U)
(U ).

Mosco convergence ensures epi-convergence of the sequence of functions F (n) in
both the strong and weak topologies. As developed in [6], epi-convergence of a
sequence of functions { f (n)}n∈N, together with compactness assumptions, makes it
possible to approximate the infimal value and the set of minimizers of the epi-limit
of the sequence { f (n)}n∈N [6, Theorems 1.10 and 2.11]. Related results can be found
in [4, 163] where the dependence of the optimal strategies and optimal values upon
subfield variation is examined. An additional constraint on the control U under the
form E(U ) ∈ C, where C is a convex subset of U, is also considered in both papers.
In the context of open-loop stochastic optimization, approximations of optimiza-
tion problems through random variables approximation have been widely studied
[23, 62, 101, 112, 130]. Note also that mixing random variable approximations and
measurability constraint approximations are considered in [12, 110], with specific
assumptions which link the random variable approximations to the measurability
constraint approximations.

This chapter is organized as follows. In Sect. 8.2, we introduce convergence
notions. First, for sequences of functions taking values in the extended real num-
bers, we introduce epi- and Mosco convergence; then, we introduce the strong con-
vergence of sequences of subfields. In Sect. 8.3, we recall a set of definitions and
theorems on multifunctions, integrands and upper integrals. These are the theoreti-
cal tools for manipulating cost functions given by expectations. A definition of the
conditional expectation of normal integrands is also presented, and the section ends
up with a general theorem on interchange of minimization and integration. We state
the mathematical framework for the precise statement of problem (8.1) and justify
the interchange operation (6.6). In Sect. 8.4 we recall some classical applications
of epi-convergence to the solution of open-loop optimization problems. Section 8.5
is devoted to a convergence theorem accompanied with examples and discussions
about related works.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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8.2 Convergence Notions

We present epi-convergence and Mosco convergence of sequences of functions, as
well as convergence of sequences of subfields.

8.2.1 Epi-Convergence and Mosco Convergence

We now define and give some properties of epi-convergence for functions taking
values in R ∪ {+∞}, or more generally in the extended real numbers R := R ∪
{+∞} ∪ {−∞}. Its main importance comes from the fact that epi-convergence of a
sequence of functions { f (n)}n∈N to f is what is needed to ensure the convergence
of the minimizers of { f (n)}n∈N to the minimizers of f . For a precise and complete
study of the properties of epi-convergence, we refer the reader to [6, 135].

Definition 8.1 Let (S, ρ) be a topological space whose topology is denoted here by
ρ and { f (n)}n∈N be a sequence of functions f (n) : S → R. We denote by V (z) the
family of neighborhoods of z ∈ S relative to topology ρ. The following functions
taking values in R are said to be, respectively, the ρ-epigraphical lower limit and the
ρ-epigraphical upper limit of the sequence { f (n)}n∈N:

(ρ-lie f (n))(z) := sup
V∈V (z)

lim inf
n

inf
z∈V

f (n)(z),

(ρ-lse f (n))(z) := sup
V∈V (z)

lim sup
n

inf
z∈V

f (n)(z).

It follows from the definitions that we have (ρ-lie f (n))(z) ≤ (ρ-lse f (n))(z). More-
over, using [6, Theorem 2.1], we note that both functions ρ-lie f (n) and ρ-lse f (n) are
ρ-lower semicontinuous.

Definition 8.2 Let (S, ρ) be a topological space. A sequence of functions { f (n)}n∈N
defined on S is said to be ρ-epi-convergent at point z ∈ S when the upper and lower
epigraphical limits are equal:

(ρ-lie f (n))(z) = (ρ-lse f (n))(z).

The common value is called the ρ-epigraphical limit of the sequence { f (n)}n∈N at
point z and is denoted by ρ-lime f (n)(z). When the sequence is epi-convergent for
all z ∈ S, it is said to be epi-convergent.

Moreover, let us notice that if S is a first countable topological space (which means
that each point in S has a countable neighbourhood basis), we have the following
easier sequential characterizations of the ρ-epigraphical lower and upper limits [6,
Theorem 1.13]. This sequential characterization of epi-convergence can be used in
metric spaces which are first countable topological spaces.
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Proposition 8.3 Let S be a metric space whose topology is denoted by ρ and
{ f (n)}n∈N be a sequence of functions f (n) : S → R. For every z ∈ S, the following
holds true:

(ρ-lie f (n))(z)

= min
{

lim inf
n

f (n)(z(n))

∣∣∣ {z(n)} is such that z = ρ-lim z(n)
}
, (8.2)

(ρ-lse f (n))(z)

= min
{

lim sup
n

f (n)(z(n))

∣∣∣ {z(n)} is such that z = ρ-lim z(n)
}
. (8.3)

The right-hand side of (8.2) (resp. of (8.3)) is also called the sequential ρ-epi-
lower limit (resp. -upper limit). For a fixed z ∈ S, Eqs. (8.2) and (8.3) can be used to
check ρ-epi-convergence at point z as follows (see [6, Proposition 1.14]).

Proposition 8.4 Let S be a metric space whose topology is denoted by ρ and
{ f (n)}n∈N a sequence of functions f (n) : S → R. For every z ∈ S, the statement
f (z) = ρ-lime f (n)(z) is equivalent to the following two conditions:

(i) there exists a sequence {z(n)}n∈N in S with z = ρ-limn z(n) such that

lim sup
n

f (n)(z(n)) ≤ f (z),

(ii) for any sequence {z(n)}n∈N in S such that z = ρ-limn z(n), then

lim inf
n

f (n)(z(n)) ≥ f (z).

Remark 8.5 Epi-convergence of functions is related to the Painlevé-Kuratowski con-
vergence of sets as explained now. For a sequence {S(n)}n∈N of closed nonempty sub-
sets of S, we define the ρ-lower limit denoted by ρ-li and the ρ-upper limit denoted
by ρ-ls as follows

ρ-li S(n) := {
z ∈ S

∣∣ z = ρ-lim z(n), z(n) ∈ S(n)
}
, (8.4)

ρ-ls S(n) := {
z ∈ S

∣∣ ∃{n(k)}k∈N, z = ρ-lim z(k), z(k) ∈ S(n(k))
}
, (8.5)

where {S(n(k))}k∈N is a subsequence of {S(k)}k∈N. This means that ρ-li S(n) is the
set composed of limit values of converging sequences {z(n)}n∈N with z(n) ∈ S(n),
whereas ρ-ls S(n) is the set composed of cluster points of sequences {z(n)}n∈N with
z(n) ∈ S(n). Indeed we have ρ-li S(n) ⊂ ρ-ls S(n) and, when the two sets are
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identical, the sequence {S(n)}n∈N is said to converge in the Painlevé-Kuratowski
sense to S = ρ-li S(n) = ρ-ls S(n). The Painlevé-Kuratowski limit of the sequence
{S(n)}n∈N is denoted by PK-lim S(n). The epi-convergence of a sequence of l.s.c.
proper functions { f (n)}n∈N is equivalent to the convergence of their epigraphs in the
Painlevé-Kuratowski sense [6, Theorem 1.39]. ♦

When the topological S is equipped with two topologies ρ and σ, a new conver-
gence notion known as Mosco convergence is defined as follows.

Definition 8.6 Let S be a topological space with two topologies ρ and σ and
{ f (n)}n∈N be a sequence of functions f (n) : S → R. The sequence { f (n)}n∈N Mosco
converges at point z when the sequence epi-converges for both topologies and the
two limits are the same:

ρ-lime f (n)(z) = σ-lime f (n)(z).

The common value is denoted by M(ρ,σ)-lim f (n)(z).

We recall that the family of all topologies on S is partially ordered by set inclusion.
That is, if every ρ-open set is also σ-open, then we say that σ is stronger than ρ which
is denoted by ρ � σ (or ρ ⊂ σ). When S is a metric space with two topologies ρ and
σ, such that the σ topology is stronger than the ρ topology, the characterization of
Mosco convergence by Proposition 8.4 applied to both topologies can be simplified
as follows.

Proposition 8.7 Let S be a topological space with two first countable topologies
ρ � σ, and { f (n)}n∈N be a sequence of functions f (n) : S → R. For every z ∈ S, the
statement f (z) = M(ρ,σ)-lim f (n)(z) is equivalent to the following two conditions:

(i) there exists a sequence {z(n)}n∈N in S with z = σ-limz(n) such that

lim sup
n

f (n)(z(n)) ≤ f (z);

(ii) for any sequence {z(n)}n∈N such that z = ρ-limz(n), then

lim inf
n

f (n)(z(n)) ≥ f (z).

Note that Condition 8.7-(i) implies Condition 8.4-(i) for both topologies ρ and
σ since the sequence {z(n)}n∈N converging for topology σ is also converging for
topology ρ with the same limit. The same argument shows that Condition 8.7-(ii)
also implies Condition 8.4-(ii) for both topologies ρ and σ. We use this criteria
when σ and ρ are, respectively, the strong (s-) and weak (w-) topologies of function
spaces [2, Chap. 2]. In that case, the weak topology is not first countable, but the
notion which turns out to be more interesting for the weak topology is the sequential
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epi-convergence. Thus, Mosco convergence proved using Proposition 8.7 gives epi-
convergence for the strong topology and sequential epi-convergence for the weak
topology.

The link between epi-convergence of a sequence of functions and the convergence
of sequence of minimizers is described now. We first need to extend the notion of
minimizer of a function by introducing the ε-minimizer notion as follows:

ε- arg min f :=
{

z ∈ S

∣∣∣ f (z) ≤ sup
(

− 1

ε
; inf

z∈S
f (z) + ε

)}
.

This definition is valid even when the expression inf z∈S f (z) is equal to −∞.
For a given sequence of positive numbers {ε(n)}n∈N converging to zero, when a

sequence of functions { f (n)}n∈N epi-converges to the function f , then any cluster
point of sequences {z(n)}n∈N, with z(n) ∈ ε(n)- arg min f (n) is element of arg min f
[6, Proposition 2.9, Corollary 2.10, Theorem 2.11].

Theorem 8.8 Suppose that the sequence of extended real-valued functions { f (n)}n∈N
epi-converges to the function f . Then, the following relation holds true:

lim sup
n

(
inf
z∈S

f (n)(z)
)

≤ inf
z∈S

f (z), (8.6)

and, for every sequence {ε(n)}n∈N, ε(n) > 0 converging to zero,

ρ-ls
(
ε(n)- arg min f (n)

) ⊂ arg min f. (8.7)

Moreover, if the set ρ-ls(ε(n)- arg min f (n)) is not empty for a given sequence
{ε(n)}n∈N, then inequality (8.6) turns out to be an equality with a standard limit:

lim
n→+∞

(
inf
z∈S

f (n)(z)
)

= inf
z∈S

f (z). (8.8)

The property that the set ρ-ls(ε(n)- arg min f (n)) is nonempty is called an inf-
compactness property. This is the minimal assertion that is needed in order to derive,
from epi-convergence of a sequence { f (n)}n∈N, the convergence of the infimum
sequence {inf z∈S f (n)(z)}n∈N and the existence of a minimum for the limit problem
(note that under the inf-compactness property, arg min f is not empty since it contains
a nonempty subset using Eq. (8.7)). These results are rephrased in the next theorem
[6, Theorem 2.11].

Theorem 8.9 Let S be a metric space whose topology is denoted by ρ and { f (n)}n∈N
be a sequence of functions f (n) : S → R assumed to ρ-epi-converge to the function
f . Then, the following three statements are equivalent:

(i) lim
n→∞

(
inf
z∈S

f (n)(z)
)

= inf
z∈S

f (z) and arg min f �= ∅;
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(ii) there exist a sequence {ε(n)}n∈N which converges to zero and a ρ-relatively
compact sequence {z(n)}n∈N in S for which z(n) ∈ ε(n)- arg min f (n), for all
n ∈ N;

(iii) there exist a sequence {ε(n)}n∈N which converges to zero and a nonempty
ρ-relatively compact set K in the space S such that:

inf
z∈K

f (n)(z) ≤ sup
{

− 1

ε(n)
; inf

z∈S
f (n)(z) + ε(n)

}
, ∀n ∈ N.

Epi-convergence proofs frequently use the Fenchel transform (see Sect. A.1.3)
because it is bicontinuous for the Mosco convergence on the set of closed convex
proper functions taking values in R∪{+∞} (see Sect. A.1.1 for convex proper defin-
ition). This comes from the fact that, by Fenchel duality, sequential weak and strong
topologies are exchanged and upper and lower limit are exchanged. The bicontinuity
is shown by the following theorem [6, Theorem 3.18] (see reflexive Banach space in
[2, p. 232]).

Theorem 8.10 Let U be a reflexive Banach space, f be a closed convex proper
function taking values in R ∪ {+∞} and { f (n)}n∈N be a sequence of closed convex
proper functions taking values in R ∪ {+∞}. Then the following two statements are
equivalent:

(i) the sequence { f (n)}n∈N Mosco converges to f on U (M(w, s));
(ii) the sequence { f (n)�}n∈N Mosco converges to f � on U

∗ (M(w, s)),

where the star superscript denotes Fenchel transform for functions and dual topo-
logical space for spaces.

8.2.2 Convergence of Subfields

This paragraph is devoted to information discretization and convergence of sub-
fields. This viewpoint is not so common in Probability Theory as compared to the
noise discretization—related to the convergence of measures and random variables—
which is somewhat conventional.

Let (Ω,A, P) be a given probability space, we recall some results about the setA♦
of subfields of A (see [43, 95] for further details).

We draw the following definition from Neveu [109].

Definition 8.11 The sequence {G(n)}n∈N of subfields of A is said to converge to G

strongly if E
(
1A

∣∣ G(n)
)

converges to E
(
1A

∣∣ G)
in probability (see Sect. B.3.3) for

any A ∈ A.

Recalling the definition ‖g‖1 = ∫ |g(ω)| dP(ω) of the L1 norm, Kudo proves
in [95, Theorem 2.1] that it is equivalent to the convergence of

∥∥E( f | G(n))
∥∥

1 to
‖E( f | G)‖1 for any bounded A-measurable function f .
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Moreover, in [95] Kudo introduces the notions of upper and lower limits of the
sequence {G(n)}n∈N, that we recall here.

Definition 8.12 Let a sequence {G(n)}n∈N of subfields of A be given. A subfield is
called the upper limit (resp. lower limit) of {G(n)}n∈N, and is denoted by G� (resp.
G�) if it is the minimal (resp. maximal) subfield among subfields G of A such that,

lim sup
n→+∞

‖E( f | G(n))‖1 ≤ ‖E( f | G)‖1,

(
resp. lim inf

n→+∞ ‖E( f | G(n))‖1 ≥ ‖E( f | G)‖1

)
,

for every bounded A-measurable function f .

In this definition, the order relation between subfields of a given σ-field A is induced
by the inclusion relation. The existence of minimal and maximal subfields stated in
the previous definition is proved in [95].

Definition 8.13 Let a sequence {G(n)}n∈N of subfields ofA be given. When the upper
limit G� and the lower limit G� of the sequence of subfields {G(n)}n∈N are equal, the
sequence {G(n)}n∈N is said to Kudo converge to the subfield G∞ (G(n) → G∞) where
G∞ denotes the common value of the upper and lower limits.

Kudo convergence is equivalent to the strong convergence, as defined in Defini-
tion 8.11 and as proved in [95, Theorem 3.4]. Following the terminology given by
Neveu and Kudo [95], this convergence is known as the strong convergence topology
on A♦. But, although being termed as “strong”, this topology actually corresponds
to a pointwise convergence notion. There exist “stronger” convergence notions for
subfields, such as the uniform convergence defined by Boylan [29]. Note that the
strong convergence topology on A♦ is also proved to be a metrizable topology [43].

Another important characterization of the strong convergence on A♦ is the fact
that it is the coarsest topology such that the conditional expectation is continuous in
L1(Ω,A, P; R) (see Sect. B.2.1) w.r.t. the conditioning subfield. And, as stated in
Proposition 8.14, the property remains true when considering L p(Ω,A, P; U) spaces
for p ∈ [1,+∞) endowed with the strong or weak topology [118, Theorem 2.2].

Proposition 8.14 With 1 ≤ p < +∞, we have that G(n) → G∞ if, and only
if, E( f | G(n)) converges to E( f | G∞) for every f ∈ L p(Ω,A, P; R), where
L p(Ω,A, P; R) is endowed with the strong or weak topology.

Note that the case p = +∞ cannot be treated with the strong topology [117].
When concerned with discretization or numerical approximations, we may have to
manipulate random variables taking a finite number of possible values. The subfields
generated by such variables are generated by finite partitions and are called atomic
σ-fields (see Definition 3.26). Thus, we need to have a topology for which the limit
of a sequence of subfields generated by a finite partition is large enough to cover any
possible subfield of A. Such a requirement is fulfilled by the strong convergence as
shown by the next proposition [43].

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Proposition 8.15 The set of subfields of A generated by finite partitions of Ω is
dense in A♦ equipped with the strong convergence topology.

In Chap. 6, quantization was introduced and a measurability constraint given by
the subfield σ

(
Y

)
generated by the random variable Y , was replaced through quan-

tization by the sequence of subfields {σ(
Y (n)

)}n∈N with Y (n) = Q(n) ◦ Y . The next
proposition shows that sufficient conditions for strong convergence of the sequence
of such subfields are the convergence in probability of the sequence {Y (n)}n∈N to Y
and the fact that all the σ-fields generated by the sequence of random variables are
included in the limit σ-field σ

(
Y

)
[12].

Proposition 8.16 Let {Y (n)}n∈N be a sequence of random variables converging in
probability to a random variable Y . If σ

(
Y (n)

) ⊂ σ
(
Y

)
for all n ∈ N, then the

sequence of σ-fields {σ(
Y (n)

)}n∈N strongly converges to σ
(
Y

)
.

8.3 Operations on Integrands

This section is devoted to multifunctions and integrands and, more precisely, to
normal integrands. Normal integrands are used as cost functions in stochastic opti-
mization. In Sects. 8.3.4 and 8.3.5, we present the assumptions which have to be
made in order to define the conditional expectation of normal integrands w.r.t. a
given subfield and to interchange expectation and minimization.

In the next sections, we use the following notations. Let (Ω,A, P) be a complete
probability space (see Sect. B.1.2) and U be a topological space with its Borel σ-
field Bo

U
(see Sect. B.6.1). We recall that L0(Ω,A, P; U) is the space of measurable

functions on (Ω,A) taking values in the measurable space (U,Bo
U
). If U is a normed

space, we denote by L p(Ω,A, P; U) (for 1 ≤ p ≤ +∞) the subspace of L0 of
functions f such that ω �→ ‖ f (ω)‖U belongs to L p(Ω,A, P; R) (see Sect. B.2.1 for
further details).

8.3.1 Multifunctions

A multifunction, or set-valued mapping, F denoted by F : Ω ⇒ U is a map from Ω

to the space 2U of all subsets of U. The domain of F is the subset of Ω defined by

dom F := {
ω ∈ Ω

∣∣ F(ω) �= ∅}
.

A selection of a multifunction F is a function s : Ω → U such that for all
ω ∈ dom F , s(ω) ∈ F(ω). We denote by Sel(F) the set of all the selections of F .

Definition 8.17 A multifunction F is said to be measurable if, for every open set
O in U, we have F−(O) ∈ A, where F−(O) := {

ω ∈ Ω
∣∣ F(ω) ∩ O �= ∅}

.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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A measurable selection of F is a selection of F which isA-measurable. We denote
by L0

F (Ω,A, P; U) the set of A-measurable selections of F ,

L0
F (Ω,A, P; U) := L0(Ω,A, P; U) ∩ Sel(F),

and by L p
F (Ω,A, P; U) (for 1 ≤ p ≤ +∞) the set of all theA-measurable selections

of F which belong to the space L p(Ω,A, P; U):

L p
F (Ω,A, P; U) := L p(Ω,A, P; U) ∩ Sel(F).

Definition 8.18 A nonempty, closed-valued and measurable multifunction is called
a random closed set.

The importance of random closed sets defined in [76, 77] arises from the following
theorem.

Theorem 8.19 Let F be a random closed set. Then, the set of measurable selections
L0

F (Ω,A, P; U) is not empty.

The proof is, in fact, valid for a closed-valued and measurable multifunction as
proved in [132, Corollary 1, p. 221].

Note, also, that the graph of a random closed set F : Ω ⇒ U,

Gr(F) := {(ω, u) ∈ Ω × U | u ∈ F(ω)}, (8.9)

is A ⊗ Bo
U

-measurable.

Remark 8.20 We have made the assumption that the σ-field A is complete w.r.t. the
underlying probability space. Under this assumption, and when the space U is a
separable and complete metric space, all the reasonable definitions of measurability
for multifunctions are equivalent. More precise interrelations can be found in [34],
[132, Theorem 1, p. 219] and [133]. ♦

8.3.2 Integrands

Integrands and associated multifunctions are defined in [135, p. 661] as follows.

Definition 8.21 A function f : U×Ω → R such that f (u,ω) is measurable w.r.t. ω
for every u ∈ U is called an integrand.1

Note that it is important to consider maps which may possibly assume infinite
values because it enables efficient representation of constraints. In the optimization
framework, two natural multifunctions are associated with an integrand f :

1In order to maintain consistency with all previous chapters, we have interverted the traditional
order f (ω, u) of arguments of an integrand.
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• the epigraphical multifunction associated with an integrand f is the multifunction

S f : ω �→ epi f (·,ω) = {
(u,α) ∈ U × R

∣∣ f (u,ω) ≤ α
};

• the domain mapping D f associated with an integrand f is the multifunction

D f : ω �→ dom f (·,ω) = {
u ∈ U

∣∣ f (u,ω) < +∞}
.

We define now normal integrands as in [135, Definition 14.27, p. 661].

Definition 8.22 A normal integrand f is an integrand with an associated epigraph-
ical multifunction S f which is measurable and closed-valued.

We also speak of A-normal integrands when the σ-field used for measurability
needs to be specified. Moreover, if, for almost every ω ∈ Ω , the function f (·,ω)

satisfies a property P , then the integrand f is said to be a P-integrand. For example,
f is a convex integrand if it is an integrand and f (·,ω) is convex for almost every
ω ∈ Ω . With the previous conventions, the epigraphical multifunction epi f (·,ω)

associated with a proper (see Sect. A.1.1) normal integrand f is a random closed set,
so that a normal integrand is lower semicontinuous (l.s.c., see Definition A.2). If an
integrand f : U × Ω → R is normal, then it is (Bo

U
⊗ A)-measurable. A lower

semicontinuous and (Bo
U

⊗A)-measurable function is a normal integrand when the
σ-field A is complete [132].

As already mentioned, normal integrands are (Bo
U

⊗ A)-measurable and thus,
when composed with a measurable control, they yield measurable functions. Nor-
mal integrands take their importance from that property [132, p. 221] and [135,
Proposition 14.28].

Proposition 8.23 Consider f : U × Ω → R a normal integrand and U : Ω → U

a random variable in L0(Ω,A, P; U). Then, the mapping ω �→ f (U (ω),ω) is
measurable.

Fenchel transform is extended naturally to A-normal integrands by considering
the Fenchel transform for each value of ω as defined now.

Definition 8.24 Denote by U
� the topological dual space of U, and by 〈· , ·〉 the

pairing product. Let f : U × Ω → R be an A-normal integrand. The Fenchel
transform of f is the mapping f � : U

� × Ω → R defined by

∀(u�,ω) ∈ U
� × Ω, f �(u�,ω) = sup

u∈U
( 〈

u , u�
〉 − f (u,ω)

)
. (8.10)

This extension is shown to be consistent with the notion of A-normal integrand
by the next proposition.

Proposition 8.25 Let f : U × Ω → R be an A-normal integrand. Then, its conju-
gate f � : U

� × Ω → R is an A-normal integrand.
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Proposition 8.25 can be found in [135, Theorem 14.50] when U := R
n and in

[34, 132] or [74, 75] (without the completeness assumption on the probability space)
when U is a separable Banach space.

8.3.3 Upper Integral

As normal integrands take values in R, we want to define integrals of measurable
functions in such a way that they are adapted to functions that may possibly assume
infinite values on measurable sets with non null measure. For that purpose, the upper
integral is introduced [135].

Definition 8.26 Given ϕ ∈ L0(Ω,A, P; R), we denote by Iϕ or
∫ �

U
ϕ(ω) dP(ω) the

upper integral of ϕ defined by

Iϕ := inf

{ ∫
Ω

U (ω) dP(ω)

∣∣∣∣ U ∈ L1(Ω,A, P; R) and ϕ ≤ U P-a.s.
}
.

Note that the previous definition conforms to the formula

Iϕ =
∫

Ω

max
{
ϕ(ω), 0

}
dP(ω) +

∫
Ω

min
{
ϕ(ω), 0

}
dP(ω),

if the conventions ∞ + (−∞) = (−∞) + ∞ = +∞ and 0.∞ = ∞.0 = 0 are
adopted [135, p. 675].

Definition 8.27 The integral function associated with a normal integrand f : U ×
Ω → R is the functional I f : L0(Ω,A, P; U) → R defined by

I f (U ) := I f (U ) =
∫ �

Ω

f (U (ω),ω) dP(ω), (8.11)

where f (U ) is a shorthand notation for the random variable ω �→ f
(
U (ω),ω

)
.

The integral function is well defined for any normal integrand f and measurable
random variable U [135, Proposition 14.56]. Furthermore, we have that

I f (U ) < +∞ ⇒ U (ω) ∈ D f (ω) P-a.s..

Remark 8.28 Suppose that F is a random closed set used to define a.s. constraints
on random variables through the admissible set Uad := {

U
∣∣ U ∈ L0

F (Ω,A, P; U)
}
.

Then, it is proved in [18, p. 144] that the characteristic function of the graph of the
random closed set F defined by f (u,ω) = χF(ω)

(u), where χA is the characteristic
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function of the set A (see Eq. A.2), is a normal integrand. Moreover, for all random
variables U : Ω → U we have that:

I f (U ) = χUad (U ). ♦

8.3.4 Conditional Expectation of a Normal Integrand

To define the conditional expectation of a normal integrand with respect to G, a
P-complete subfield of A (see Sect. B.1), we introduce the notion of A-quasi inte-
grable integrand [146, Proposition 12].

Definition 8.29 An integrand f : U × Ω → R is said to be A-quasi integrable if
there exists a sequence {α(n)}n∈N with α(n) ∈ L1(Ω,A, P; R) and such that

inf‖u‖≤n
f (u,ω) ≥ α(n)(ω) , ∀n ∈ N P-a.s..

Assuming quasi integrability, it is possible to define the conditional expectation
of an A-normal integrand (see [146, Proposition 12]).

Theorem 8.30 Let G be a P-complete subfield of A and f : U × Ω → R be
an A-normal integrand which is A-quasi integrable. Then, there exists a Bo

U
⊗ G-

measurable mapping gG : U × Ω → R such that

(i) for all B ∈ G and all G-measurable random variable U , we have that

∫
B

f
(
U (ω),ω

)
dP(ω) =

∫
B

gG
(
U (ω),ω)

)
dP(ω);

(ii) the mapping gG is unique P-a.s. , is a G-normal integrand and is G-quasi inte-
grable;

(iii) moreover, if f is a convex integrand then gG is also a convex integrand.

The G-normal integrand gG is called the conditional expectation of f w.r.t. the σ-field
G and is denoted by E( f | G).

The proof of (i) and (ii) can be found in [146, Proposition 12] and the proof of (iii)
in [146, Proposition 15]. A proof of (i) and (ii) under weaker assumptions is given
in [36] and a survey can be found in [143].

Remark 8.31 The Fenchel transform of a normal integrand f can be used to check
the A-quasi integrability of f using the fact that, for all (u, u�) ∈ U × U

�, we
have that f (u,ω) ≥ 〈u� , u〉 − f �(u�,ω). As an example, if there exists U � ∈
L0(Ω,A, P; U

�) such that ‖U �‖ and f �
(
U �(·), ·) are A-integrable, then f is A-

quasi integrable [146, Proposition 4]. The previous condition is satisfied if there
exists U � ∈ L p(Ω,A, P; U

�) with 1 ≤ p < +∞ such that ω �→ f �(U �(ω),ω) is
integrable. ♦
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8.3.5 Interchange of Minimization and Integration

In Sect. 3.5.2, the interchange of minimization and integration in a problem with
measurability constraints has already been stated in a finite context. Our aim here is
to extend this result to a more general setting.

Let (Ω,A, P) be a probability space or more generally a measurable space with
a σ-finite positive measure P—see Sect. B.1.2—and (U,Bo

U
) be a separable Banach

space with its Borel σ-field.
We first introduce two technical definitions which are used for defining the con-

straint set of a minimization problem. The second one is only relevant when consid-
ering a σ-finite positive measure. We recall that Ω is said to have a σ-finite measure
when it is a countable union of measurable sets with finite measure. The countable
set of measurable sets covering Ω is called a σ-finite covering of Ω .

Definition 8.32 A subset G of L0(Ω,A, P; U) is said to be decomposable if, for all
A ∈ A and all f and g in G, the function f 1A + g1Ac is in G.

Definition 8.33 Let G and H be two decomposable sets in L0(Ω,A, P; U). The set
G is said to be rich in H if G ⊂ H and if, for each f ∈ H, there exists a σ-finite
covering {Ω(n)}n∈N of Ω and a sequence {h(n)}n∈N of elements of G such that, for
all n ∈ N, f = h(n) on Ω(n).

The interchange of minimization and integration is stated in [28, Corollary 3.9]
and in [135, Theorem 14.60, p. 677].

Theorem 8.34 Suppose that the σ-field A is complete. Let C be a multifunction
with nonempty values and with an A ⊗ Bo

U
-measurable graph and let f be a

Bo
U

⊗ A-measurable integrand. If GC is a decomposable subset which is rich in
L0

C (Ω,A, P; U), we have that

inf
U ∈GC

I f (U ) =
∫ �

Ω

inf
u∈C(ω)

f (u,ω) dP(ω), (8.12)

provided that the left-hand side be not equal to +∞.

Example 8.35 Suppose that GC = L p(Ω,A, P; U) (p ≥ 1) and consider the con-
stant multifunction C : Ω ⇒ U such that C(ω) = U. The set GC is decomposable
and rich in L0

C (Ω,A, P; U) = L0(Ω,A, P; U). Indeed, given Y ∈ L p(Ω,A, P; U)

and using a σ-finite covering {Ω(n)}n∈N, we can build a new σ-finite covering

{Ω(n)}n∈N by

Ω
(n) := Ω(n) ∩ {

ω ∈ Ω
∣∣ ∥∥Y (ω)

∥∥ ≤ n
}
,

and a sequence {G(n)}n∈N of elements of GC defined by G(n) = Y 1
Ω

(n) such that

for all n ∈ N, Y = G(n) on Ω
(n)

. Thus, we obtain

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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inf
U ∈L p(Ω,A,P;U)

I f (U ) =
∫ �

Ω

inf
u∈U

f (u,ω) dP(ω), (8.13)

provided that the left-hand side be not equal to +∞.
The minimization of I f over L p(Ω,A, P; U) is therefore reduced to a pointwise

minimization over U. �
Note that if the multifunction C is a random closed set, then C has a mea-

surable graph in Ω × U, and if the integrand f is a normal integrand, it is
Bo
U

⊗A-measurable. Moreover, the right-hand side of Eq. (8.12) is properly defined
since, when f is a normal integrand and C is a multifunction with a measur-
able graph, the function infu∈C(ω) f (u,ω) is A-measurable. Indeed, the integrand
g(u,ω) = f (u,ω)+χC(ω)

(u) is an A-normal integrand given the assumptions made
about f and C by [135, Example 14.32]. Then, theA-measurability of infu∈U g(u,ω)

follows from [135, Theorem 14.37] when U = R
n and from [34, III.39] in a more

general setting.
Theorem 8.34 is useful to take into account pointwise constraints on the decision

variable U . We now propose an extension of the interchange Theorem 8.34 to take
into account measurability constraints. More precisely, letting G be a subfield of A,
we consider the interchange Theorem 8.34 with the additional constraint U � G,

also denoted by U ∈ L0(Ω,G, P; U).

Corollary 8.36 Suppose that the subfield G is P-complete. Let C : Ω ⇒ U be
a multifunction with nonempty values and with a G ⊗ Bo

U
-measurable graph, and

f : U × Ω → R be a normal integrand which is A-quasi integrable. If GC is a
decomposable subset which is rich in L0

C (Ω,A, P; U), then we have that

inf
U ∈GC ∩L0(Ω,G,P;U)

I f (U ) =
∫ �

Ω

inf
u∈C(ω)

E( f | G)(u,ω) dP(ω), (8.14)

provided that the left-hand side be not equal to +∞.

Proof When the random variable U is G-measurable, we can use property (i) of
Theorem 8.30, to obtain that

IE( f |G)(U ) = I f (U ). (8.15)

Thus, replacing f by its conditional expectation w.r.t. the subfield G in the left-hand
side of Eq. (8.14) does not change the optimization problem defined by (8.14).

If the multifunction C with nonempty values has a G ⊗ Bo
U

-measurable graph
and GC is A-decomposable and rich in L0

C (Ω,A, P; U), then it is straightforward to
see that GC ∩ L0(Ω,G, P; U) is G-decomposable. Moreover GC ∩ L0(Ω,G, P; U)

is rich in L0
C (Ω,A, P; U) ∩ L0(Ω,G, P; U) and remains rich in L0

C (Ω,G, P; U).
Thus, we can use Theorem 8.34 applied to the probability space (Ω,G, P) to derive
the result. �
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In Corollary 8.36, the multifunction C is assumed to have a G ⊗ Bo
U

-measurable
graph (see Eq. (8.9)). Note, however, that instead of using the multifunction C as a
pointwise constraint, we could add to the objective function f the integrand χC(ω)

(u)

where χA is the characteristic function of the set A.
Thus, when the multifunction C has a A ⊗ Bo

U
-measurable graph, using

Remark 8.28, Corollary 8.36 can be applied to the new integrand f̃ (u,ω) :=
f (u,ω) + χC(ω)

(u) and no explicit GC constraints, yielding the following equal-
ity:

inf
U ∈L0(Ω,G,P;U)

I f̃ (U ) =
∫ �

Ω

(
inf
u∈U

E( f | G)(u,ω) + E(χC | G)(u,ω)
)

dP(ω).

Now, if we add the assumption that the multifunction C has a G⊗Bo
U

-measurable
graph, we have that E(χC | G)(u,ω) = χC (u,ω) and we recover Eq. (8.14).

Remark 8.37 As developed in [147], it is possible to define the conditional expec-
tation of the multifunction C denoted by E(C | G) which can be character-
ized as the unique closed-valued multifunction with G ⊗ Bo

U
-measurable graph

such that χ
E(C |G)

= E(χC | G). Using this conditional expectation, the integrand
E(χC | G)(u,ω) can be turned into the constraint u ∈ χ

E(C |G)
and we obtain that

inf
U ∈L0(Ω,G,P;U)

I f̃ (U ) =
∫ �

Ω

(
inf

u∈E(C|G)
E( f | G)(u,ω)

)
dP(ω). ♦

Using Theorem 8.34, we see that the optimization problem (8.12) can be reduced
at least formally to a pointwise problem. The optimization problem is to be solved for
each value of ω ∈ Ω . Recovering a A-measurable minimizer for problem (8.12) is
done via measurable selection theorems [135, Theorem 14.37 and Example 14.32].
When considering Corollary 8.36, the situation is the same except that the measurable
selection theorem is applied to the minimization problem

min
u∈C(ω)

E( f | G)(u,ω),

where the integrand E( f | G) is a G-normal integrand and C is a multifunction with
a G ⊗ Bo

U
-measurable graph. Selection theorems give G-measurable minimizers in

that case.
When the integrand f is aG-measurable convex integrand, it is worth noting that if

there exists a minimizer for problem (8.13), then there also exists aG-measurable min-
imizer for the same problem. Thus, imposing that the constraint set be G-measurable
in order to obtain a G-measurable minimizer is not necessary when the involved inte-
grand f is a G-measurable convex integrand. A G-measurable minimizer is obtained
thanks to the following proposition.

Proposition 8.38 Let G be a subfield ofA and g(u,ω) be a convex normal integrand
which is G-measurable. For U ∈ L p(Ω,A, P; U) (p ≥ 1), we have that
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Ig(U ) ≥ Ig(E(U | G)).

The proof consists in noting that U is also in L1(Ω,A, P; U) and in applying
[4, Proposition 3.2] which is reminiscent of Jensen’s inequality.

8.4 Application to Open-Loop Optimization Problems

We give here a classical example of epi-convergence [94] which relies on the previous
bicontinuity Theorem 8.10. The stochastic program to solve is an open-loop problem

min
u∈U

E
(

j (u, ·)) = min
u∈U

∫ �

Ω

j (u,ω) dP(ω) (8.16)

where U = R
n is equipped with its Borel σ-field Bo

U
and j is a convex random

l.s.c. function j : U × Ω → R defined on the P-complete probability space(
Ω,A, P).

This problem was described in detail in Chap. 2. One possible approach to numer-
ically solve problem (8.16) consists in replacing the expectation to be minimized by
a Monte Carlo approximation. This method, presented in Sect. 2.5.3 is called sam-
ple average approximation (SAA). Issues of convergence in the SAA framework
involves epi-convergence or, more precisely, epi-consistency to be defined below.
We briefly recall here epi-convergence formulation of SAA and give a convergence
theorem.

We approximate the probability measure P by empirical measures derived from
independent random variables {Wn}n∈N. Thus, a family of approximations of prob-
lem (8.16) indexed by the number of random observations can be considered:

min
u∈U

J (n)(u) := min
u∈U

1

n

n∑
i=1

j (u, W i ). (8.17)

Note that, now, each approximated problem is a random problem where random-
ness arises from the sample space carrying an infinite number of i.i.d. random vari-
ables (see Sect. B.7). We have to study almost sure epi-convergence of the sequence
of random functions {J (n)}n∈N to the initial objective function

J : u ∈ U �→ E
(

j (u, ·)). (8.18)

This is known as epi-consistency [94] and is defined as follows.

Definition 8.39 A sequence {h(n)}n∈N of random l.s.c. functions is epi-consistent if
there is a (necessarily) l.s.c. function h such that {h(n)}n∈N epi-converges to h with
probability one.

http://dx.doi.org/10.1007/978-3-319-18138-7_2
http://dx.doi.org/10.1007/978-3-319-18138-7_2
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Following [94, Theorem 2.3], we give here assumptions for epi-consistence
involving convex normal integrands given (see also [5, 62]).

Theorem 8.40 Let j : U × Ω → R be a convex normal integrand. We assume
that there exists a point u ∈ U for which we have that j (u, ·) ∈ L1(Ω,A, P; R)

and a random variable U
� : Ω → U

� in L1(Ω,A, P; U
�) for which we have that

j�
(
U

�
(·), ·) ∈ L1(Ω,A, P; R) where j� is the Fenchel transform of the normal

integrand j . Then, the function J defined by Eq. (8.18) is proper, convex and l.s.c.
and the sequence {J (n)}n∈N is epi-consistent with limit J .

8.5 Application to Closed-Loop Optimization Problems

The previous Sects. 8.2 and 8.3 have provided the main notions which make it possible
now to prove a convergence theorem for approximations of closed-loop optimization
problems such as those studied throughout this book.

Let
(
Ω,A, P

)
be a complete probability space, and let

(
W,Bo

W

)
and

(
U,Bo

U

)
be

R
n and R

m with their associated Borel σ-fields. Given a random variable W with
values in W and a subfield G of A, which, respectively, represent the noise and the
observation, we are concerned with the stochastic optimization problem (8.1) which
is written again here as follows:

min
U ∈L p(Ω,G,P;U)

E
(

j (U , W )
)
. (8.19)

We now study approximate versions of problem (8.19), where the noise W is
discretized using a sequence of random variables {W (n)}n∈N and where the subfield
G is approximated by a sequence of subfields {G(n)}n∈N. Thanks to the material
introduced in Sects. 8.2 and 8.3, we are able to formulate and prove a convergence
theorem when both the noise and the measurability constraint converge. We compare
and discuss our result with other related works in the literature. Finally, we apply
our convergence result to the examples analyzed in Sects. 1.3.1 and 1.4.2.

8.5.1 Main Convergence Theorem

Using a sequence of random variables {W (n)}n∈N taking values in
(
W,Bo

W

)
which

approximates (technical assumptions given later) the given random variable W , we
define a sequence of integrands { f (n)}n∈N by:

f (n)(u,ω) = j (u, W (n)(ω)). (8.20)

Now, the measurability constraint imposed by the subfield G ofA is approximated by
means of a sequence of subfields {G(n)}n∈N. Using the sequence f (n) : U × Ω → R

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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of integrands defined for n ∈ N by Eq. (8.20) and the sequence {G(n)}n∈N of subfields
of A, we define a sequence of functions F (n) : L0(Ω,A, P; U) → R as follows:

F (n)(U ) :=
⎧⎨
⎩

∫ �

Ω

f (n)
(
U (ω),ω

)
dP(ω) if U is G(n)-measurable,

+∞ otherwise.
(8.21)

In the same way, we define a function F : L0(Ω,A, P; U) → R associated with the
integrand f as follows:

F(U ) :=
⎧⎨
⎩

∫ �

Ω

f
(
U (ω),ω

)
dP(ω) if U is G-measurable,

+∞ otherwise.
(8.22)

We therefore have two discretization schemes. One scheme is used for noise dis-
cretization ({W (n)}n∈N), and it gives rise to a sequence of integrands ({ f (n)}n∈N).
The second discretization scheme is applied to the measurability constraint, and it
gives rise to a sequence of subfields ({G(n)}n∈N). When the sequence { f (n)}n∈N of
integrands defined by Eq. (8.20) are normal integrands which are A-quasi integrable,
we consider also the sequence of normal integrands g(n) : U × Ω → R for n ∈ N

defined as follows:
g(n)(u,ω) = E

(
f (n)(u, ·) ∣∣ G(n)

)
(ω), (8.23)

as well as the normal integrand g defined by:

g(u,ω) = E
(

f (u, ·) ∣∣ G)
(ω). (8.24)

To completely define the optimization problems that we consider, we have to
choose a functional space for the controls. In the following, p is a fixed real number
1 ≤ p < +∞ and control variables are restricted to belong to the functional space
L p(Ω,A, P; U).

With all these notations, we consider the sequence of optimization problems

min
U ∈L p(Ω,A,P;U)

F (n)(U ), ∀n ∈ N, (8.25)

and the original problem (8.1) restated as follows:

min
U ∈L p(Ω,A,P;U)

F(U ). (8.26)

When considering problems reformulated as (8.25) and (8.26), convergence of
the discretization scheme can be investigated through the Mosco convergence of the
sequence {F (n)}n∈N as seen in Sect. 8.2. We first gather some technical assumptions.
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Assumption 8.41

(i) The function j : U × W → R is l.s.c. as a function of (u, w) and proper;
(ii) j (·, w) is a convex function for all w ∈ W;

(iii) j (u, w) ≥ 0 for all (u, w) ∈ U × W;
(iv) there exists a sequence {U (n)}n∈N with U (n) ∈ L p(Ω,A, P; U) and functions

k and k0 in L p(Ω,A, P; R) such that ‖U (n)(ω)‖
U

≤ k(ω) P-a.s. and

j (U (n), W (n)) ≤ k0;

(v) the random variable k0 given by Assumption 8.41-(iv) is such that there exists
k1 in L p(Ω,A, P; R) such that we have that E(k0 | G(n)) ≤ k1 for all n ∈ N.

The main convergence theorem is stated now, with a short proof depending on a
set of propositions which are postponed to Sect. 8.5.5.

Theorem 8.42 Let the function j : U × W → R be given together with a random
variable W and a subfield G ofA. We consider the function f : U×Ω → R given by
f (u,ω) = j

(
u, W (ω)

)
and the function g : U × Ω → R given by Eq. (8.24). For a

sequence {W (n)}n∈N of random variables and a sequence {G(n)}n∈N of subfields ofA,
we define two sequences of integrands { f (n)}n∈N by (8.20) and {g(n)}n∈N by (8.23).
Suppose that Assumptions 8.41 are satisfied together with the following assumptions:

(i) the sequence of subfields {G(n)}n∈N Kudo converges to G;
(ii) the sequence {W (n)}n∈N converges to W in probability;

(iii) for almost every ω ∈ Ω and each u ∈ dom g(·,ω), we have that

g(u,ω) ≥ (
s-lseg

(n)
)
(u,ω);

(iv) the probability P is non-atomic.

Then, the sequence {F (n)}n∈N given by (8.21) Mosco converges to F given by (8.22)
in L p(Ω,A, P; U).

Proof First, we use the fact that Assumption 8.41-(iii) ensures Assumption (iii) of
Proposition 8.56. Invoking Assumptions 8.42-(iii) and 8.41-(i), (iv), (v), we can
use Proposition 8.56 to conclude that, for every function U in L p(Ω,A, P; U), we
have that Ig(U ) ≥ (

s-lse Ig(n)

)
(U ). Second, by Assumption 8.41-(iv) there exists

U ∈ L p(Ω,A, P; U) such that I f (U ) is finite. This fact, together with Assump-
tions 8.41-(i), (ii), (iii) and 8.42-(ii), yields, by Proposition 8.60, that for every func-
tion U in L p(Ω,A, P; U), we have that I f (U ) ≤ (

w-lie I f (n)

)
(U ). It is also noted

that Assumption 8.41-(i), which is stronger than requiring that the integrand j is nor-
mal integrand, is requested in Proposition 8.60. The conclusion then follows from
Proposition 8.51. �
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8.5.2 Revisiting a Basic Example in Static Information

We illustrate Theorem 8.42 with the help of a specialized version of the example
presented in Sect. 1.3.1. Our aim here is to illustrate the fact that σ-field discretization
and random variable discretization can be done independently, thus avoiding pitfalls
described in Sect. 6.2.2. Here Ω = [−1, 1] with its Borel σ-field and P is the uniform
distribution on Ω . The random variable W is the identity function on Ω and thus
W is a uniformly distributed random variable. We consider the random variable
Y : Ω → Ω defined by Y (ω) = |ω| and the subfield G = σ(Y ) generated by the
random variable Y .Thus,G-measurable functions are even functions. We consider the
stochastic optimization problem (8.19) where the integrand j is defined by j (u, w) =
(u − w)2:

min
U ∈L p(Ω,G,P;R)

E

((
U − W

)2
)
. (8.27)

This problem is a specialized version of problem 1.4 for which Y = h(W ) and
h(w) = |w|.

Checking the technical assumptions 8.41 is left to the reader. We pay attention to
the last three assumptions of Theorem 8.42 related to the discretization process.

Optimal Value and Optimal Solution
It was reviewed in Sect. 1.3.1 that the optimal solution of Problem (8.27) is given by
the conditional expectation of W w.r.t. G. Moreover, we can here explicitely compute
conditional expectations w.r.t. the subfield G using [12, Lemma IV.32]. For a given
random variable H , we have that:

E(H | G) = H + H
2

with H (ω) := H (−ω). (8.28)

The optimal solution is thus given by U � = (W + W )/2 ≡ 0 (since W = IΩ ) and
the optimal cost is 1/3.

Approximation Schemes
We approximate the subfield G = σ(Y ) by the sequence {G(n)}n∈N where

G(n) = σ
(
Q(n)(Y )

)
, (8.29)

and where {Q(n)}n∈N is a sequence of piecewise constant functions Q(n) : [0, 1] →
[0, 1] defined as follows:

Q(n)(y) =
n∑

k=1

k

n
1I k,(n) (y) and I k,(n) =

(
k − 1

n
,

k

n

]
. (8.30)

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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The function Q(n) is a piecewise approximation of the identity function on [0, 1].
We approximate the noises using a sequence of random variables {W (n)}n∈N and we
suppose that {W (n)}n∈N converges in L2 to the random variable W (see Sect. 6.1 for
the theory of quantization). We will also suppose that the discretizations of the noise
and of the subfield are asymptotically linked by

E
(
(W (n))k

∣∣ G(n)
) a.s.−→ E

(
(W )k

∣∣ G)
for k ∈ {1, 2} (8.31)

The approximation scheme consists of replacing G and W by their discretized ver-
sions in problem (8.27):

min
U �G(n)

E
(

j (U , W (n))
)
. (8.32)

Using the definition (8.29) of the σ-field G(n), it is easy to check that admissible
solutions for the discretized problem (8.32) are piecewise constant functions of the
absolute value of the noise (see Proposition 3.46):

{
U

∣∣ U � G(n)
} =

{
U

∣∣∣ U =
n∑

k=1

uk1I k,(n)

(|W |),
(u1, . . . , un) ∈ R

n
}
. (8.33)

For a given random variable H , the conditional expectation w.r.t. the σ-field G(n)

can be explicitely computed. Using Definition B.5, we compute the argmin of

E

(∥∥H − U
∥∥2

)
for U given by Eq. 8.33, and we get:

E(H | G(n)) = n
n∑

k=1

1I k,(n)

(|W |)
∫

I k,(n)

H (ω) + H (ω)

2
dω, (8.34)

where the factor n comes from 1/n = ∫
I k,(n) dω. We therefore obtain an explicit

optimal solution U�,(n) of the discretized problem (8.32) given by:

U�,(n) = E(W (n) | G(n)) (8.35a)

= n
n∑

k=1

1I k,(n)

(|W |)
∫

I k,(n)

W (n)(ω) + W (n)(ω)

2
dω. (8.35b)

Kudo Convergence (Assumption (i) of Theorem 8.42)
We prove that {G(n)}n∈N Kudo converges toG. Consider {Y (n)}n∈N a sequence of ran-
dom variables defined by Y (n) = Q(n)◦Y . It is easy to check that the sequence of ran-
dom variables {Y (n)}n∈N converges almost surely to the random variable Y and thus
also converges in probability (see Sect. B.3.3). Moreover, a G(n)-measurable function

http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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is even and is therefore σ(G)-measurable. Thus, we have that σ(G(n)) ⊂ σ(G). We
obtain strong convergence of the sequence of subfields {G(n)}n∈N by Proposition 8.16,
ensuring Assumption 8.42-(i).

Noise Convergence (Assumption (ii) of Theorem 8.42)
If the sequence of approximated noises {W (n)}n∈N converges in L2, then it also
converges in probability to W (see Sects. B.3.3 and B.3.5).

Assumption (iii) of Theorem 8.42
Using Eq. (8.3) with a constant sequence {u(n)}n∈N having value u ∈ R, we obtain that
(
(
s-lseg

(n)
)
)(u,ω) ≤ lim supng(n)(u,ω) P-a.s.. Thus, in order to ensure Assumption

8.42-(iii), it is sufficient to prove that, for each fixed value of u ∈ R, we have that:

lim
n �→∞ E

(
(u − W (n))2

∣∣ G(n)
) = E

(
(u − W )2

∣∣ G)
P-a.s..

This is indeed the case under the assumption given by Eq. (8.31).

Remark 8.43 Note that, using very similar lines, we can give a direct proof of the
almost sure convergence of the optimal control U�,(n) in (8.35) to the optimal control
U � = 0 of problem (8.27). ♦

8.5.3 Discussion About Related Works

In Theorem 8.42, we have proposed an approximation scheme in which the dis-
cretization of the noise and the discretization of the informational constraint are done
separately and which converges towards the optimal cost of the original problem, and
so does the argmin. It is interesting to compare this approach with other approaches
also taking into account the whole discretization process (noise and information) for
stochastic optimal control problems.

Barty’s Approach
In his PhD thesis [12], Barty proves the convergence of a discretization scheme
for problem (8.1). The result he provides [12, Theorem IV.28] makes use of the
strong convergence of σ-fields as in Theorem 8.42 and makes use of the convergence
in distribution for the noise approximation. His approach involves two consecutive
steps.

(i) The σ-field G is approximated by a sequence {G(k)}k∈N of σ-fields. It is assumed
that, for all k ∈ N, we have that G(k) ⊂ G and each σ-field G(k) is generated by
a finite partition. Note that each σ-field G(k) is a partition field (see Sect. 3.3.2)
and the finite partition which generates G(k) is the partition part(G(k)) composed

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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of the atoms of the partition field G(k) (see Proposition 3.18). The problem (8.1)
is approximated by the following sequence of optimization problems:

V (k) = min
U �G(k)

E
(

j (U , W )
)
. (8.36)

The optimal value V (k) of problem (8.36) converges with k towards the optimal
value of problem (8.1) as G(k) strongly converges to G [12, Theorem IV.21]. In
practical examples, Barty considers the case when the σ-field G is generated by
the random variable h(W ), for a given function h, and a σ-field discretization is
obtained by considering quantization approximationG(k) = σ

(
Q(k)◦h(W )

)
(we

thus have that G(k) ⊂ G). The sequence {Q(k) ◦h(W )}k∈N of random variables is
assumed to converge in probability to the random variable h(W ) (which ensures
the strong convergence of σ-fields by Proposition 8.16), and the mappings Q(k)

are assumed to take values in a finite set to provide σ-field generated by partitions.
Note also that a G(k)-measurable random variable U is constant over each subset
building up part(G(k)): such a random variable U is characterized by a nk-uple
(where nk ∈ N is the number of subset building up part(G(k)))

(
u1, . . . , unk

) ∈
U

nk , and the minimization in (8.36) is thus performed over the finite dimensional
space U

nk .
(ii) For a given index k, the random variable W is approximated by a finitely valued

random variable W (n) and problem (8.36) is replaced by:

V (n,k) = min
U �G(k)

E
(

j (U , W (n))
)
. (8.37)

The optimal value V (n,k) of problem (8.37) converges with n towards the optimal
value V (k) of problem (8.36) as W (n) converges in distribution toward W [12,
Theorem IV.26]. Note that this step only involves open-loop problems, which
are approximated using the traditional Monte Carlo approach (see Sects. 8.4 and
2.5.3) and, as pointed out later in Remark 8.46, the convergence in distribution
of the noises proves insufficient for closed-loop problems.

In this approach, the global discretization error
∣∣V − V (n,k)

∣∣ is bounded from
above by the sum of the term

∣∣V − V (k)
∣∣, which accounts for an information struc-

ture discretization error, and the term
∣∣V (k) − V (k,n)

∣∣, which accounts for a mean
computation discretization error.

Combining the two steps, we can find an increasing function k : N → N such
that V (n,k(n)) converges to V as n goes to infinity [12, Corollary IV.29]. In addition
to the fact that the assumptions on the cost function were more stringent in Barty’s
approach than in Theorem 8.42, the provided results are convergence results of the
value function and not convergence results of the control through epi-convergence.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_2
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Pennanen’s Approach
An approach inspired by Pennanen’s work [110] was described in Sect. 6.2.2. In this
approach, the observation Y was assumed to be given as a function of the noise W :

Y = h
(
W

)
.

The discretization process is then mainly driven by noise approximations. The ran-
dom variable W is approximated by a sequence of finitely valued random vari-
ables {W (n)}n∈N.

Then the σ-field G = σ
(
h(W )

)
is approximated by a sequence {G(n)}n∈N of

σ-fields given by G(n) = σ
(
h(W (n))

)
(see (6.8) and (6.9)). The σ-field discretization

is thus derived from the noise approximation. An additional requirement is, however,
necessary: it is expressed as h(W (n)) � h(W ) (see (6.10)), and it can be equivalently
stated as G(n) ⊂ G for all n ∈ N. As discussed in Sect. 6.2.2, this last requirement is
important since an admissible solution of the discretized problem is also an admissible
solution for the initial problem (8.1). Moreover, as far as convergence is concerned,
this requirement has an implication in terms of σ-field convergence as shown by
Proposition 8.16. Problem (8.1) is thus approximated by the following sequence of
optimization problems:

V (n) := min
U �G(n)

E
(

j (U , W (n))
)
. (8.38)

The approximation of the σ-field is intimately related to the approximation of the
random variable in Pennanen’s approach, requiring the additional Assumption (6.10),
whereas these two approximations are designed separately in our approach in
Sect. 8.5.1. An epi-convergence theorem when following Pennanen’s approach is
given in [110].

8.5.4 Revisiting the Example of Sect. 1.4.2

In this section, we revisit the example presented in Sect. 1.4.2. The optimization
problem (1.8) can be reformulated as

min
U �G

E
(

j (U , W )
)

with G = σ
(
h(W )

)
, (8.39)

with j
(
u, (w0, w1)

) = εu2 + (w0 + u + w1)
2 and h

(
(w0, w1)

) = w0. It was shown
that the optimal cost of problem (8.39) is given by Eq. (1.10), that we recall here

min
U �G

E
(

j (U , W )
) = 1

3

1 + 2ε

1 + ε
≈ 1

3
, (8.40)

http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_6
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and the optimal control is given by:

U = − W0

(1 + ε)
. (8.41)

Monte Carlo Sampling Fails
It was also shown in Sect. 1.4.2 that, with a naive Monte Carlo discretization method,
one may end up with an admissible control for Problem (1.10) giving a cost of
about 2/3! This was demonstrated by numerical simulations since it was difficult
to mathematically study the admissible control defined by Eq. (1.15) because of the
randomness of the ai ’s, which delimit the strips in Fig. 1.3. We now propose another
discretization method, which is also based on Monte Carlo discretization, leading to
the same cost of about 2/3, but for which we are able to prove that the discretized
noise converges in distribution, but not in probability, to the original noise as required
in Theorem 8.42. A noticeable difference with the previous scheme is that, now, the
boundaries of the strips (see Fig. 8.1) are deterministic.

W

1−1

−1

11

W0

1

w
k,(n)
0 , w

k,(n)
1

Gk,(n)

Fig. 8.1 Partition of [−1, 1]2 and associated sample

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
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Noise Discretization
A possible probability space associated with problem (8.39) is

(
Ω,Bo

Ω, P
)
, with

Ω = [−1, 1]2 and where Bo
Ω is the Borel σ-field on [−1, 1]2 and P is the product of

two uniform probability distributions on [−1, 1]. The random variables W0 and W1
are the two components of the identity application I[−1,1]2 on [−1, 1]2, the real valued
control variable U being defined on [−1, 1]2.

Let {ζn}n∈N be a sequence of elements in [−1, 1]2, with ζn = (
ζn

1 , ζn
2

)
, and let μn

be the empirical probability distribution function associated with (ζ1, . . . , ζn)

μn := 1

n

n∑
k=1

δζk ,

where δ denotes the Dirac measure. We assume that the sequence {μn}n∈N∗ of empir-
ical probability distributions narrowly converges to the probability measure P (see
Sect. B.3.4).

Remark 8.44 Such a sequence {ζn}n∈N∗ is usually obtained as the realization of an
infinite Monte carlo sample {ζn}n∈N∗ of i.i.d. random variables on [−1, 1]2 with
distribution P. The narrow convergence assumption is then, almost surely, a conse-
quence of the Glivenko-Cantelli Theorem [22]. ♦

For n ∈ N
� and for any k ∈ {1, . . . , n}, we define

(
w

k,(n)
0 , w

k,(n)
1

) =
(

2k − 1

n
− 1 + ζk

1

n
, ζk

2

)
(8.42)

and

G
k,(n) =

(
2k − 2

n
− 1,

2k

n
− 1

]
, Gk,(n) = G

k,(n) × [−1, 1]. (8.43)

By construction,
(
G1,(n), . . . , Gn,(n)

)
is a partition of [−1, 1]2, made of vertical strips

as displayed in Fig. 8.1, and
(
w

k,(n)
0 , w

k,(n)
1

) ∈ Gk,(n) for all k ∈ {1, . . . , n}.
We now derive a noise discretization scheme following the quantization approach

of Chap. 6. Let Q(n) : [−1, 1]2 → [−1, 1]2 be the piecewise constant function taking
value

(
w

k,(n)
0 , w

k,(n)
1

)
on the vertical strip Gk,(n) for k ∈ {1, . . . , n}, that is:

Q(n)
(
w0, w1

) =
n∑

k=1

(
w

k,(n)
0 , w

k,(n)
1

)
1Gk,(n)

(
w0, w1

)
.

We define the sequence
{(

W (n)
0 , W (n)

1

)}
n∈N∗ of random variables by

(
W (n)

0 , W (n)
1

) = Q(n)
(
W0, W1

)
. (8.44)

http://dx.doi.org/10.1007/978-3-319-18138-7_6
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According to this definition, the discretized random variable
(
W (n)

0 , W (n)
1

)
is constant

over each subset Gk,(n).

Lemma 8.45 The sequence
{(

W (n)
0 , W (n)

1

)}
n∈N∗ converges in distribution to(

W0, W1

)
as n → +∞.

Proof Consider the joint cumulative distribution function D(n) of
(
W (n)

0 , W (n)
1

)
:

D(n)
(
w0, w1

) = P

(
W (n)

0 ≤ w0, W (n)
1 ≤ w1

)

= 1

n

n∑
k=1

1[−1,w0]×[−1,w1]
(
w

k,(n)
0 , w

k,(n)
1

)
.

For a given w0 ∈ [−1, 1] and n ∈ N
∗, let k0 be the index such that w0 ∈ G

k0,(n)
(see

(8.43)) and let ν0 be equal to 0 if w0 ≤ w
k0,(n)
0 and equal to 1 otherwise. Then, we

have that

D(n)
(
w0, w1

) = 1

n

k0−1∑
k=1

1[−1,w1]
(
w

k,(n)
1

) + ν0

n
1[−1,w1]

(
w

k0,(n)
1

)

= k0 − 1

n

(
1

k0 − 1

k0−1∑
k=1

1[−1,w1]
(
w

k,(n)
1

))

+ ν0

n
1[−1,w1]

(
w

k0,(n)
1

)
. (8.45)

Using the definition (8.43) of G
k0,(n)

, we have that

k0 − 1

n
<

w0 + 1

2
≤ k0

n
.

Thus, the index k0 goes to infinity as n goes to infinity (for any w0 > −1) and
(k0 − 1)/n converges to (w0 + 1)/2. The last term of Eq. (8.45) converges to zero
since ν0 is bounded by the constant 1 and, noting that w

k,(n)
1 = ζk

2 , the term
inside parentheses converges to the cumulative distribution of the uniform prob-
ability distribution on [−1, 1]. We thus conclude that D(n)

(
w0, w1

)
converges to

D
(
w0, w1

) = (1 + w0) (1 + w1)/4, the distribution function of P, the uniform prob-
ability on the square [−1, 1]2. �

Remark 8.46 Carrying on Remark 8.44, the sequence
{(

W (n)
0 , W (n)

1

)}
n∈N∗ is usually

a sequence of random variables based on the realization {ζn}n∈N∗ of an i.i.d. sample.
From Lemma 8.45, the sequence of associated probability distributions converges
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in distribution to P. Note that this is precisely the condition required in [62] in
order to ensure convergence when discretizing an open-loop stochastic optimization
problem. However, the convergence in distribution proves insufficient for closed-loop
problems as it was stated in Theorem 8.42. ♦

Information
Since W0 is the first component of I[−1,1]2 , the subfield σ(W0) of Bo

[−1,1]2 generated
by the random variable W0 is the product

G = Bo[−1,1] ⊗ {∅, [−1, 1]} .

For a given n ∈ N
�, we approximate G by the σ-field G(n) generated by the parti-

tion
(
G1,(n), . . . , Gn,(n)

)
:

G(n) = σ
(
G1,(n), . . . , Gn,(n)

)
. (8.46)

From the definition of the subsets Gk,(n), the inclusion G(n) ⊂ G holds true. As
was already pointed out in Sect. 8.5.4, we note that the approximated information
constraint “U is G(n)-measurable” is equivalent to “U is constant over each sub-
set Gk,(n)”, that is constant on each vertical strip of Fig. 8.1. Such a control variable U
is thus parameterized by the values uk,(n) taken on each subset Gk,(n):

U
(
w0, w1

) =
n∑

k=1

uk,(n)1Gk,(n)

(
w0, w1

)
. (8.47)

Notice that 1Gk,(n)

(
w0, w1

)
does not depend actually upon w1, and, therefore,

U
(
w0, w1

)
depends only upon w0.

Lemma 8.47 The sequence
{
G(n)

}
n∈N∗ of σ-fields strongly converges to G as n →

+∞.

Proof Using Eq. (8.44), we obtain that the random variable W (n)
0 is constant over

each subset Gk,(n) with value w
k,(n)
0 . Moreover, since the values w

k,(n)
0 , k = 1, . . . , n,

defined by (8.42) are all different, we obtain that G(n) = σ
(
W (n)

0

)
. Following Propo-

sition 8.16, it is sufficient to show that W (n)
0 −→ W0 in probability. This last claim

follows from the definition of w
k,(n)
0 in Eq. (8.42). �

Approximated Solution
Approximating problem (8.39) consists of replacing G and

(
W0, W1

)
by their dis-

cretized versions G(n) and
(
W (n)

0 , W (n)
1

)
:
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min
U �G(n)

E
(

j (U , W (n))
)
. (8.48)

The resulting function to be minimized is constant over each Gk,(n), so that the
approximated problem specializes as follows

min(
u1,(n),...,un,(n)

)
∈Rn

n∑
k=1

P
(
Gk,(n)

) (
ε
(
uk,(n)

)2 + (
w

k,(n)
0 + uk,(n) + w

k,(n)
1

)2
)

.

(8.49)

This optimization problem is deterministic, and we can get an explicit solution.
Indeed, since P

(
Gk,(n)

)
> 0 (equal to 1/n), problem (8.49) splits up into n indepen-

dent subproblems, namely

min
uk,(n)∈R

ε
(
uk,(n)

)2 + (
w

k,(n)
0 + uk,(n) + w

k,(n)
1

)2
. (8.50)

The optimal solution of this quadratic minimization problem is

ûk,(n) = −w
k,(n)
0 + w

k,(n)
1

1 + ε
, (8.51)

and the associated implementable control variable Û
(n)

is, according to (8.47),

Û
(n)(

w0, w1
) = −

n∑
k=1

w
k,(n)
0 + w

k,(n)
1

1 + ε
1Gk,(n)

(
w0, w1

)
. (8.52)

By construction, the approximated feedback Û
(n)

is G(n)-measurable. Since G(n) ⊂
G, we conclude that Û

(n)
satisfies the measurability constraint of problem (8.39)

as, of course, also does U � given by Eq. (8.41). We compare the cost Ĵ (n) induced

by Û
(n)

, namely

Ĵ (n) = E
(
εÛ

(n),2 + (W0 + Û
(n) + W1)

2), (8.53)

to the true optimal cost J � (see (8.40)) in order to evaluate the quality of the approx-

imation, that is the optimality loss induced by Û
(n)

w.r.t. U �.

Lemma 8.48 The sequence
{

Ĵ (n)
}

n∈N in (8.53) is such that Ĵ (n) a.s.−→ 2

3
as n goes

to infinity.
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Proof We have that

Ĵ (n) =
∫

[−1,1]2

(
ε
(
Û

(n)
(w0, w1)

)2 + (
w0 + Û

(n)
(w0, w1) + w1

)2
)

P
(
dw0 dw1

)

=
n∑

k=1

∫
Gk,(n)

⎛
⎝ε

(
w

k,(n)
0 + w

k,(n)
1

1 + ε

)2

+
(

w0 + w1 − w
k,(n)
0 + w

k,(n)
1

1 + ε

)2
⎞
⎠ P

(
dw0 dw1

)
.

Remembering that P
(
Gk,(n)

) = 1/n and expanding the last quadratic term in the
previous expression leads to

Ĵ (n) = 2

3
+ 1

n

n∑
k=1

(
w

k,(n)
0 + w

k,(n)
1

)2

1 + ε

− 2
n∑

k=1

(
w

k,(n)
0 + w

k,(n)
1

1 + ε

)∫
Gk,(n)

(
w0 + w1

)
P
(
dw0 dw1

)

= 2

3
+ 1

n

n∑
k=1

(
w

k,(n)
0 + w

k,(n)
1

)2

1 + ε

− 2

n

n∑
k=1

(
2k − 1

n
− 1

) (
w

k,(n)
0 + w

k,(n)
1

1 + ε

)
.

Using the convergence in distribution of
(
W (n)

0 , W (n)
1

)
n∈N∗ to

(
W0, W1

)
as n → +∞

(see Lemma 8.45), and the inequalities
∣∣∣wk,(n)

0 − ( 2k−1
n − 1

)∣∣∣ ≤ 1
n for every k, we

obtain that the sum of the last two terms in the previous equality goes to zero as n
goes to infinity, hence the result. �

From the expression (8.40) of the optimal cost J � of problem (8.39), we deduce that
the following inequality holds true for any ε > 0:

lim
n→+∞ Ĵ (n) > J �.

Remark 8.49 It is easy to prove that the optimal cost J̃ (n) of problem (8.49) is such
that:

lim
n→+∞ J̃ (n) = 2

3

(
ε

1 + ε

)
.

Once again, this limit is different from J � and goes to zero as ε goes to zero. Hence,
this “apparent” cost is very optimistic, whereas the real cost induced by the solution



242 8 Convergence Issues in Stochastic Optimization

of the approximated problem (which is respectful of the information constraint)
is indeed very bad. This is another illustration that problem (8.49) is not a valid
approximation of problem (8.39). Although the criterion in (8.49) looks like a good
approximation of the one in (8.39), the two corresponding optimization problems are
definitely different. The minimization in problem (8.49) yields a solution ûk,(n) =
−(w

k,(n)
0 + w

k,(n)
1 )/(1 + ε) depending on both w

k,(n)
0 and w

k,(n)
1 . The computation

of J̃ (n) therefore corresponds to the numerical integration of (8.39) using the feedback
law Ũ (w0, w1) = −(w0 + w1)/(1 + ε), which is not σ(W0)-measurable, hence the
gap with J �. ♦

As in Sect. 1.4.2, we thus conclude that the discretization scheme (8.48)—with
G(n) defined by Eq. (8.46) and W (n) defined by Eq. (8.44)—fails to asymptotically
provide the optimal solution of problem (8.39).

What Has Gone Wrong
Using Proposition 8.36, we obtain the following equivalent form of problem (8.39)

E

(
min
u∈R

E
(
εu2 + (W0 + u + W1)

2
∣∣ W0

))
. (8.54)

Equation (8.50) should have been interpreted as a discretized version of the inner
conditional expectation appearing in Eq. (8.54) when W0 is equal to w

k,(n)
0 . But, it

appears that, in the discretization scheme we have devised in (8.44)–(8.47) and (8.48)
and leading to Eq. (8.50), the conditional expectation is approximated using a sample
of W1 of length one (this fact remains true, even when n goes to infinity) which is
namely a really poor way of evaluating this conditional expectation.

The discretization scheme defined by (8.44)–(8.47) and (8.48) is such that each
subproblem derived from (8.49) is optimized using a unique sample of the noise
random variable.

If we revisit the assumptions of Theorem 8.42, we realize that Assumption 8.42-(ii)
is not satisfied: the noise convergence notion provided by the example is significantly
weaker that the one required by the theorem. Let us show that the convergence of
the sequence {(W (n)

0 , W (n)
1 )}n∈N towards

(
W0, W1

)
does not hold in probability.

Indeed, consider some number τ > 0, consider the norm ‖(w0, w1)‖ =
max {|w0| , |w1|} on [−1, 1]2, and let A(n) be the subset of [−1, 1]2 defined by:

A(n) = {
w ∈ [−1, 1]2

∣∣ ∥∥∥(
W (n)

0 , W (n)
1

)
(w) − (

W0, W1

)
(w)

∥∥∥ ≤ τ
}
.

Since
(
W0, W1

) = I[−1,1]2 and since
(
W (n)

0 , W (n)
1

)
is constant over each Gk,(n), the

subset A(n) can be expressed as the disjoint union of n subsets Ak,(n), with

Ak,(n) = A(n) ∩ Gk,(n)

= {
w ∈ Gk,(n)

∣∣ max
{∣∣∣wk,(n)

0 − w0

∣∣∣ , ∣∣∣wk,(n)
1 − w1

∣∣∣} ≤ τ
}
.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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From the definitions of Gk,(n) and of A(n), the subset Ak,(n) is included in a 2
n × 2τ

rectangle. We thus obtain P
(

Ak,(n)
) ≤ τ

n , and then P
(

A(n)
) ≤ τ by summation. This

proves that

P

(∥∥∥(
W (n)

0 , W (n)
1

) − (
W0, W1

)∥∥∥ > τ
)

≥ 1 − τ ∀n ∈ N.

Therefore, this prevents convergence in probability.
As in Sect. 1.4.2, we thus conclude that the discretization scheme (8.48)—with

G(n) defined by Eq. (8.46) and W (n) defined by Eq. (8.44)—fails to asymptotically
provide the optimal solution of problem (8.39).

What has gone wrong in our discretization example (8.48) is now clear: although
the discretizations of the noise and the information are a priori unrelated, we have
chosen to bind them in a very specific way; however, with this particular binding,
one of the assumptions of Theorem 8.42, namely the convergence in distribution of
the noise discretization is not fulfilled.

A Convergent Discretization Scheme
We ultimately illustrate how a direct application of Theorem 8.42, and thus the use
of a stronger convergence notion for the noise, leads to a positive convergence result
for the optimization problem (8.39). We do not change the information discretiza-
tion defined by Eq. (8.46) since it satisfies strong convergence. The information
discretization leads to the vertical strips Gk,(n). In order to discretize the noise W ,

we appeal now to the theory of quantization developed in Chap. 6, and introduce
the Voronoi cells Ck,(n) around the centroids (w

k,(n)
0 , w

k,(n)
1 ) (see Fig. 8.2). The

discretized random variable
(
W (n)

0 , W (n)
1

)
is, accordingly, defined by

(
W (n)

0 , W (n)
1

)
(w0, w1) =

n∑
k=1

(
w

k,(n)
0 , w

k,(n)
1

)
1Ck,(n) (w0, w1). (8.55)

The optimal Voronoi tessellation is based on the L2 norm. We suppose that the
diameters of the cells go to zero as n goes to infinity, so that the discretized noise
{(W (n)

0 , W (n)
1 )}n∈N converges in L2

([−1, 1]2,Bo
[−1,1]2 , P; [−1, 1]2

)
norm and there-

fore converges in probability (see Sect. B.3.5).
The problem to be solved as an approximation of Problem (8.39) is given by

(8.55), (8.47) and (8.48), and it again splits into n open-loop subproblems. Denoting
by πk,l = P(Gk,(n) ∩ Cl,(n)) the probability weight of the subset Gk,(n) ∩ Cl,(n), the
k-th subproblem writes

min
uk,(n)∈R

n∑
l=1

πk,l

(
ε
(
uk,(n)

)2 + (
w

l,(n)
0 + uk,(n) + w

l,(n)
1

)2
)

. (8.56)

Note that the discretization scheme proposed here is similar to the first one used in
Sect. 6.2.3.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_6
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W

1−1

−1

1

W0

1

Gk,(n)

Ck,(n)

w
k,(n)
0 , w

k,(n)
1

Fig. 8.2 Noise discretization induced by Voronoi tessellation

As n goes to infinity for a fixed value of k the width of any strip Gk,(n) goes
to zero whereas its height remains equal to 1, and the diameter of any cell Cl,(n)

goes to zero. Thus, we intuitively expect that for any k, the number of nonempty
subsets {Gk,(n) ∩ Cl,(n)}l=1,...,n goes to infinity as n goes to infinity. Therefore,
each optimal value ûk,(n) is computed using a large (in fact, asymptotically infinite)
number of samples (w

l,(n)
0 , w

l,(n)
1 ). This drastic difference with the approximation

scheme illustrated by Fig. 8.1, where each optimal value ûk,(n) is computed using
one sample, explains the success of the approximation (8.56).

Remark 8.50 A distinctive feature of the discretization scheme (8.56) is that the same
sample (w

l,(n)
0 , w

l,(n)
1 ) may enter in the computation of several control values ûk,(n).

This observation shows that such a discretization scheme cannot be represented by
a scenario tree. In fact, in a tree, a control value is attached to a node and the subtree
hanging at that node is not shared by any other node at the same level (time instant)
of the tree. ♦

We end up this section with remarks on the information discretization. In problem
(8.39), the information σ-field of the original problem is generated by a function of
the noise G = σ

(
h(W )

)
. We have used an information discretization based on the

strips Gk,(n), that is,
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G(n) = σ(G1,(n), . . . , Gn,(n)
)
.

We first come back to the naive Monte Carlo non convergent scheme used for
solving problem (8.39). In this scheme, defined by Eqs. (8.44), (8.47) and (8.48),
we have that G(n) = σ(h(W (n))) and we have that G(n) ⊂ G. Thus, Pennanen’s
Assumption (6.10) is satisfied by the naive Monte Carlo non convergent discretization
scheme.

We now consider the convergent discretization scheme (8.55), (8.47) and (8.48)
which leads to Eq. (8.56). Since the random variable h(W (n)

0 , W (n)
1 ) is constant over

the cells {Ck,(n)}k∈1,...,n , we note that the subfield G̃(n) = σ
(
h(W (n)

0 , W (n)
1 )

)
gener-

ated by the noise discretization is such that

G̃(n) ⊂ σ
(
C1,(n), . . . , Cn,(n)

)
. (8.57)

Moreover, if we assume that the first coordinates of the centroids (w
k,(n)
0 , w

k,(n)
1 )

are all distinct, which is likely to be the case in practice, then the previous inclusion
turns out to be an equality. Using Eq. (8.57), it is clear that G̃(n)

� G. Moreover,
the sequence of σ-fields {̃G(n)}n∈N Kudo converges to the σ-field A rather than to
the σ-field G. Thus, the subfield G̃(n) deduced from the noise discretization is not
a good candidate for approximating problem (8.39). As it was already discussed in
Sect. 6.2.3, we cannot obtain a quantization of the observation using h(W (n)

0 , W (n)
1 );

we need to use more involved schemes as described in Sect. 6.2.3.

8.5.5 Companion Propositions to Theorem 8.42

Here, we give a set of propositions and theorems used in the proof of Theorem 8.42.
We recall that the notation F (n)(U ) (see (8.21)) stands for:

F (n)(U ) :=
⎧⎨
⎩

∫ �

Ω

f (n)
(

U (ω),ω
)

dP(ω) if U is G(n)-measurable,

+∞ otherwise.
(8.58)

For a sequence { f (n)}n∈N of A-quasi integrable integrands, the sequence
{g(n)}n∈N defined by Eq. (8.23) is well defined and each g(n) is a G(n)-normal inte-
grand by Theorem 8.30.

In order to prove that the sequence {F (n)}n∈N Mosco converges to F in L p(Ω,A,

P; U), we use Proposition 8.7. We first start by proving that the Assumption 8.7-(i) for
the sequence {F (n)}n∈N can be deduced from a similar assumption on the sequence
{Ig(n)}n∈N and, similarly, the Assumption 8.7-(ii) for the sequence {F (n)}n∈N can be
deduced from a similar assumption on the sequence {I f (n)}n∈N. More precisely, we
have the following proposition, the proof of which relies on two postponed Proposi-
tions 8.53 and 8.54.

http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_6
http://dx.doi.org/10.1007/978-3-319-18138-7_6
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Proposition 8.51 Let { f (n)}n∈N be a sequence of convex normal integrands and
f be a convex normal integrand. Suppose that the sequence of σ-fields {G(n)}n∈N
converges in the Kudo sense to G. For any random variable U ∈ L p(Ω,A, P; U)

with 1 ≤ p < +∞, if

(
s-lse Ig(n)

)
(U ) ≤ Ig(U ) and I f (U ) ≤ (

w-lie I f (n)

)
(U ), (8.59)

then the sequence {F (n)}n∈N Mosco converges to F in L p(Ω,A, P; U).

Proof The proof easily follows from Propositions 8.53 and 8.54. �

We now introduce a lemma that states that, when restricted to G(n)-measurable
arguments, the three functions Ig(n) , I f (n) and F (n) are identical.

Lemma 8.52 Let { f (n)}n∈N be a sequence of A-normal integrands fulfilling condi-
tions of Theorem 8.30. We consider the sequence {I f (n)}n∈N of integral functions. If

U ∈ L0(Ω,A, P; U) is G(n)-measurable, then we have that I f (n) (U ) = Ig(n) (U ) =
F (n)(U ), where g(n) and F (n) are defined by (8.23) and (8.21).

Proof If U is G(n)-measurable, then I f (n) (U ) = F (n)(U ) by definition of F (n).
Using Theorem 8.30, we obtain that I f (n) (U ) = Ig(n) (U ). �

Proposition 8.53, given now, links Assumption 8.7-(ii) for the sequence of
extended functions {F (n)}n∈N to Assumption 8.7-(ii) for the sequence of integrands
{ f (n)}n∈N.

Proposition 8.53 Let { f (n)}n∈N be a sequence of normal integrands and let
{G(n)}n∈N be a sequence of subfields which converges in the Kudo sense to G. For
a given random variable U ∈ L p(Ω,A, P; U), we consider the sequence of inte-
gral functions

{
I f (n) (U )

}
n∈N. Let f be a normal integrand such that I f (U ) ≤(

τ -lie I f (n)

)
(U ). Then we have that F(U ) ≤ (

τ -lie F (n)
)
(U ) where the functions

{F (n)}n∈N and F are defined by Eqs. (8.58) and (8.22) and τ can be the strong or
weak topology in L p(Ω,A, P; U) with 1 ≤ p < +∞.

Proof The result is obvious if
(
τ -lie F (n)

)
(U ) = +∞. Consider a fixed real number

ε > 0. If
(
τ -lie F (n)

)
(U ) < +∞, we can find a sequence of random variables

{U (n)}n∈N which τ -converges to U and a subsequence ν(n) for which the sequence
{F (ν(n))(U (ν(n)))}n∈N has a limit when n converges to +∞ satisfying:

lim
n→∞ F (ν(n))(U (ν(n))) ≤ (

τ -lie F (n)
)
(U ) + ε.

We start by proving that we can assume that U (ν(n)) is G(ν(n))-measurable. Indeed, if
there is a subsequence {β(n)} of {ν(n)} for which U (β(n)) is not G(β(n))-measurable,
the result is obvious since we would have for all n ∈ N that F (β(n))(U (β(n))) = +∞
(see (8.58)). Assuming that U (ν(n)) is G(ν(n))-measurable, we have that
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F (ν(n))(U (ν(n))) = I f (ν(n)) (U (ν(n))) and consequently I f (U ) ≤ (
τ -lie F (n)

)
(U ) +

ε. Using [118, Theorem 2.3], the conditional expectation E
(
U (ν(n))

∣∣ G(ν(n))
)
τ -

converges to E(U | G), the result being true for the strong or weak topology of
L p(Ω,A, P; U) when 1 ≤ p < +∞. Since U (ν(n)) is G(ν(n))-measurable, we have
that U (ν(n)) = E

(
U (ν(n))

∣∣ G(ν(n))
)

and we obtain that U is G-measurable. Using this
last assertion we obtain that I f (U ) = F(U ). �

The Proposition 8.54, given now, links Assumption 8.7-(i) for the sequence of
extended functions {F (n)}n∈N to Assumption 8.7-(i) for the sequence of integrands
{g(n)}n∈N.

Proposition 8.54 Let { f (n)}n∈N be a sequence of convex normal integrands and
f be a convex normal integrand. Suppose that the sequence of σ-fields {G(n)}n∈N
converges in the Kudo sense toG. For any random variable U ∈ L p(Ω,A, P; U) with
1 ≤ p < +∞, if the random variable U satisfies the inequality

(
τ -lse Ig(n)

)
(U ) ≤

Ig(U ), then we have that
(
τ -lse F (n)

)
(U ) ≤ F(U ).

Proof The only case to consider is when U is G-measurable. Since the random
variable U satisfies (

τ -lse Ig(n)

)
(U ) ≤ Ig(U ),

we can find a sequence {U (n)}n∈N of random variables in L p(Ω,A, P; U) such
that lim supn→∞ Ig(n) (U (n)) ≤ Ig(U ). Since U is G-measurable, we have, by

Lemma 8.52, that Ig(U ) = I f (U ) = F(U ). Let V (n) = E(U (n) | G(n)); the
sequence {V (n)}n∈N converges to E(U | G) = U in L p(Ω,A, P; U). Using
again Lemma 8.52 and Proposition 8.38, we have that F (n)(V (n)) = Ig(n) (V (n)) ≤
Ig(n) (U (n)) and thus:

lim sup
n �→∞

F (n)(V (n)) ≤ lim sup
n �→∞

Ig(n) (U (n)) ≤ Ig(U ) = F(U ). (8.60)

This ends the proof. �

Inequality for the s-Epigraphical Upper Limit
We have established in Proposition 8.51 that sufficient conditions for the Mosco
convergence of the sequence {F (n)}n∈N to F are given by Eq. (8.59). In this para-
graph, we provide results in order to derive the first inequality of Eq. (8.59), that
is,

(
s-lse Ig(n)

)
(U ) ≤ Ig(U ) where the sequence of integrands {g(n)}n∈N is given

by (8.23). The proof is based on [44, Theorem 4.1] in which the space U may be
assumed to be a separable Banach space. In the special case when U = R

n , similar
results were proved in [88]. We first recall a key result [44, Theorem 4.1].

Theorem 8.55 Let U be a separable Banach space and {ζ(n)}n∈N be a sequence
of proper normal integrands (ζ(n) : U × Ω → (−∞,+∞]) and ζ : U × Ω →
(−∞,+∞] be a proper integrand and let p, q be numbers with 1 ≤ p < +∞, and
p−1 + q−1 = 1, satisfying the following assumptions:
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(i) for almost every ω ∈ Ω and each u ∈ dom ζ(·,ω), we have that

ζ(u,ω) ≥ (
s-lseζ

(n)
)
(u,ω);

(ii) there exist a sequence {U (n)}n∈N in L p(Ω,A, P; U) and functions k and k0 in
L p(Ω,A, P; R) such that for each n, ‖U (n)(ω)‖ ≤ k(ω) and

ζ(n)(U (n)(ω),ω) ≤ k0(ω) a.s.;

(iii) for almost every ω ∈ Ω , each u ∈ U and each n ≥ 1, ζ(n)(u,ω) ≥ −h(ω)‖u‖−
h0(ω), where h and h0 belong to Lq(Ω,A, P; R) with h(ω) > 0 a.s.

Then, for every function U in L p(Ω,A, P; U), we have that
(
s-lse Iζ(n)

)
(U ) ≤ Iζ(U ).

We now relate general results of Theorem 8.55 to the problem formulation used in
Theorem 8.42 in which the integrands f (n) are given by f (n)(u,ω) = j

(
u, W (n)(ω)

)
.

In the next proposition, {G(n)}n∈N is a given sequence of σ-fields which are used to
define a sequence {g(n)}n∈N of functions from a sequence { f (n)}n∈N by Eq. (8.23).
In a similar way, G is a given σ-field used to define integrand g from integrand f .

Proposition 8.56 For a sequence {W (n)}n∈N of random variables, we define a
sequence { f (n)}n∈N by f (n)(u,ω) = j (u, W (n)(ω)) for all n ∈ N. In a similar way,
for a given random variable W , we define the integrand f (u,ω) = j

(
u, W (ω)

)
.

Let {g(n)}n∈N be the sequence of integrands defined by (8.23) and g be the integrand
g(u,ω) = E

(
f (u, ·) ∣∣ G)

(ω). Suppose that

(i) for almost every ω ∈ Ω and each u ∈ dom g(·,ω), we have that

g(u,ω) ≥ (
s-lseg

(n)
)
(u,ω);

(ii) j : U × W → R is l.s.c. as a function of (u, w) and proper;
(iii) there exists a measurable function h(w) such that j (u, w) ≥ h(w) and

such that h(W (n)) ∈ Lq(Ω,A, P; R) and E
(
h(W (n))

∣∣ G(n)
) ≥ G with

G ∈ Lq(Ω,A, P; R);
(iv) there exists a sequence {U (n)}n∈N with U (n) ∈ L p(Ω,A, P; U) and functions

k and k0 in L p(Ω,A, P; R) such that ‖U (n)‖
U

≤ k and

j (U (n), W (n)) ≤ k0;

(v) k0 given by (iv) is such that E(k0 | G(n)) ≤ k1 with k1 in L p(Ω,A, P; R).

Then for every random variable U in L p(Ω,A, P; U), we have that Ig(U ) ≥(
s-lse Ig(n)

)
(U ).
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Proof The proof consists of applying Theorem 8.55 to the sequence {g(n)}n∈N and the
integrand g. The first step is to check that the sequence {g(n)}n∈N and the integrand
g are proper normal integrands. Using [135, Proposition 14.45], the sequence of
integrands { f (n)}n∈N is a sequence of normal integrands if j is a normal integrand
and the W (n) are measurable functions. The function j is a normal integrand since it
does not explicitely depend on the noise ω and it is is l.s.c. as a function of (u, w) [135,
Example 14.31]. The sequence { f (n)}n∈N is also proper using Assumption 8.56-(ii).
Consequently, the sequence {g(n)}n∈N is well defined. Using the same lines, we also
obtain that the integrand g is well defined.

Using Assumption 8.56-(iii) and Theorem 8.30, the integrands g and {g(n)}n∈N
are normal integrands, which are also proper using again Assumption 8.56-(ii). Now,

8.55-(i) is just given by 8.56-(i);
8.55-(ii) is easily deduced from Assumption 8.56-(iv) and (v) with k0 replaced by

k1 in (b);
8.55-(iii) follows from the property that, using Assumption 8.56-(iii) we have

that f (n)(u,ω) ≥ −‖u‖U + h(W (n)) and with h1 = 1 and h(n),2 =
E

(
h(W (n))

∣∣ G(n)
)
, we obtain that

g(n)(u,ω) ≥ −h1(ω)‖u‖ + h(n),2(ω) ≥ −h1(ω)‖u‖ + G(ω),

where h1 and h(n),2 belong to Lq(Ω,A, P; U) with h1(ω) > 0 a.s.; this
gives 8.55-(iii) for the {g(n)}n∈N sequence. �

Remark 8.57 Under the following additional assumption to Proposition 8.56

(ii)′ j (., w) is a convex function for all w ∈ W,

we obtain that { f (n)}n∈N is a sequence of convex normal integrands and, using
Assumption 8.56-(iii) and [146, Proposition 15], g(n) is also convex. ♦

Remark 8.58 The key condition to satisfy in Proposition 8.56 is 8.56-(i) and we list
here some sufficient conditions on the sequence {W (n)}n∈N, and on the subfields
{G(n)}n∈N to fulfill it.

• We suppose that the sequence of σ-fields {G(n)}n∈N is increasing and Kudo con-
verges to the σ-field G (G(n) ↑ G). The sequence of noises is assumed to be a
constant sequence (W (n) = W for all n ∈ N). If for each fixed u ∈ dom g(·,ω)

and any n ∈ N the random variable f (n)(u, ·) = j (u, W (·)) is in L1(Ω,A, P; R),
then the sequence {g(n)(u, ·)}n∈N is a martingale for each fixed value of u which
converges a.s. (supn E

(|g(n)(u,ω)|) = E
(| f (u,ω)|) < +∞) to g(u,ω). Then we

easily get, using u(n) = u, that g(u,ω) ≥ (
s-lseg

(n)
)
(u,ω).

• We suppose that the sequence of σ-fields {G(n)}n∈N is increasing and Kudo con-
verges to the σ-field G (G(n) ↑ G). For all n ∈ N, we assume that f (n)(u,ω) ≤
f (u,ω) and, for each fixed u ∈ dom g(·,ω), the random variable f (u, ·) is
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in L1(Ω,A, P; R) and E
(

f (n)(u,ω)
∣∣ G(n)

) ≤ E
(

f (u,ω)
∣∣ G(n)

)
. Then, for

u ∈ dom g(·,ω), the sequence of random variables {E(
f (u,ω)

∣∣ G(n)
)}n∈N con-

verges a.s. to g(u,ω) = E
(

f (u,ω)
∣∣ G)

. Thus, we obtain that

lim sup
n �→∞

g(n)(u,ω) ≤ g(u,ω) P-a.s. .

• We suppose that the sequence of σ-fields {G(n)}n∈N is increasing and Kudo
converges to the σ-field G and, for each fixed u, j (u, W (n)) converges to j (u, W )

in L1(Ω,A, P; R). Then, for each fixed u, the sequence {g(n)}n∈N is a {G(n)}n∈N-
adapted sequence of random variables which converges in L1(Ω,A, P; R) by
Proposition 8.14. It is thus uniformly integrable (see Sect. B.2.5). Suppose now
that the sequence of random variables {g(n)}n∈N is a martingale in the limit, namely,
for all m ∈ N,

lim
n→∞ E(g(n) | G(m)) − g(m) = 0 P-a.s..

Then, by [106, Theorem 2], {g(n)}n∈N converges P-a.s. to

g(u,ω) = E
(

f (u,ω)
∣∣ G)

.

This proves Assumption 8.56-(i), namely g(u,ω) ≥ (
s-lseg

(n)
)
(u,ω). ♦

Inequality for the w-Epigraphical Lower Limit
In this paragraph, we provide sufficient conditions in order to derive the second
inequality of Eq. (8.59), that is, I f (U ) ≤ (

w-lie I f (n)

)
(U ). We show that convergence

in probability is sufficient to obtain this inequality. The proof is based on [87, Theo-
rem 1]. We assume that P is a finite positive non-atomic (see Definition B.2) complete
measure on the space Ω . The Ioffe theorem applies to extended-real-valued functions
ζ : Ω × W × U → R such that ζ(ω, W (ω), U (ω)) is measurable for any measur-
able mappings W ∈ L0(Ω,A; W) and U ∈ L0(Ω,A; U). It gives necessary and
sufficient conditions for the integral function (see Definition 8.27) Iζ : L×M → R,
defined by

Iζ(W , U ) =
∫ �

Ω

ζ
(
ω, W (ω), U (ω)

)
dP(ω), (8.61)

to be sequentially lower semicontinuous on L × M, where L and M are two linear
topological subspaces of L0(Ω,A, P; W) and L0(Ω,A, P; U). The two subspaces
L and M must satisfy two technical assumptions denoted by (H1) and (H2) in
the original paper. We do not review here these two assumptions, but recall that
assumptions (H1) and (H2) are fulfilled when L and M are L p(Ω,A, P) spaces
(with 1 ≤ p ≤ +∞) with strong or weak topologies and if we assume that the
topology in L is not weaker than the topology of convergence in measure.

Before recalling [87, Theorem 1], we need the following definition. A function ζ
satisfies the lower compactness property on L×M if any sequence {ζ−(ω, W (k)(ω),
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U (k)(ω))}k∈N (here f − = min( f, 0)) is weakly precompact in L1 whenever the
sequence {W (k)}k∈N converges in L, the sequence {U (k)}k∈N converges in M and
there exists a real number a such that Iζ(W (k), U (k)) ≤ a < +∞ for all k. Note that,
when the integrand ζ is a positive function, then it satisfies the lower compactness
property [87, Theorem 3].

Theorem 8.59 Let
(
Ω,A, P) be a probability space and suppose that P is

non-atomic. Let L and M be two linear topological subspaces of L0(Ω,A, P; W) and
L0(Ω,A, P; U) satisfying Ioffe assumptions (H1) and (H2). Assume that ζ(ω, w, u)

is A×Bo
W×U

-measurable, l.s.c. in (w, u) and convex in u. In order that Iζ be lower
semicontinuous on L×M and everywhere on L×M greater than −∞, it is necessary
and (if Iζ is finite for at least one point in L × M) sufficient that ζ satisfies the lower
compactness property.

We propose now sufficient conditions to ensure that I f (U ) ≤ (
w-lie I f (n)

)
(U ).

The proof mainly consists in showing that we can use Theorem 8.59.

Proposition 8.60 For a given random variable W and a sequence of random vari-
ables {W (n)}n∈N, we define a sequence { f (n)}n∈N of integrands as in (8.20) by
f (n)(u,ω) = j

(
u, W (n)(ω)

)
for all n ∈ N and an integrand f (u,ω) = j

(
u, W (ω)

)
.

Suppose that, for 1 ≤ p < +∞, we have the following properties

(i) the function j : U × W → R is l.s.c. as a function of (u, w) and proper;
(ii) j (·, w) is a convex function for all w ∈ W;

(iii) j (u, w) ≥ 0 for all (u, w) ∈ U × W;
(iv) there exists U ∈ L p(Ω,A, P; U) such that I f (U ) is finite;
(v) the sequence {W (n)}n∈N of random variables converges in probability to the

random variable W .

Then, for every function U in L p(Ω,A, P; U), I f (U ) ≤ (
w-lie I f (n)

)
(U ).

Proof As in the proof of Proposition 8.56, the sequence { f (n)}n∈N is composed of
normal integrands and thus has the requested measurability property. The result then
follows directly from Theorem 8.59 [87, Theorem 1] applied to the homogeneous
integrands f (ω, w, u) = j (u, w). �

Remark 8.61 It is possible to weaken Assumption 8.60-(iii), but it restricts the val-
ues of p for which the conclusion of Proposition 8.60 is valid. For example, replac-
ing Assumption 8.60-(iii) by using the following assumption in the homogeneous
case [87, Theorem 5]

j (u, w) ≥ −c(‖w‖ + ‖u‖) + b,

with (c, b) ∈ R
2 and assuming that {W (n)} converges in L1(Ω,A, P; R

l), we obtain
that

I f (U ) ≤ (
w-lie I f (n)

)
(U )

for U in L1(Ω,A, P; U) only. ♦
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8.6 Conclusion

In Chap. 1, we presented case studies and puzzles around discretization of closed
loop stochastic optimization problems. In Chap. 3, we introduced basic ways to han-
dle information, and we examined its impact on stochastic optimization problems in
Chap. 4. Approximation schemes respecting information constraints were presented
in Chap. 6. In the present chapter, we are finally able to prove a convergence theorem
for appropriate notions of noise and information convergence in closed-loop sto-
chastic optimization problems. The main Theorem 8.42 is based on epi-convergence
results, which take into account constraints defined by characteristic functions of sets.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_6
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Chapter 9
Multi-Agent Decision Problems

9.1 Introduction

The notion of a system carries the idea of interconnected parts that have interactions.
In this chapter, we present some methods for analyzing systems comprised of several
agents, making decisions in an order that is not fixed in advance.

In Sect. 9.2, we expose the so-called Witsenhausen intrinsic model, with its high
level of generality on how information is taken into account, and we examine the
notions of solvability and of causality in Sect. 9.3. With these notions, we can
pursue the discussion about the concept of “state”, already approached in Sects. 1.2.1
and 4.4.

In Sect. 9.4, we provide a unified framework to define and study four binary
relations between agents: (1) precedence, (2) subsystem, (3) information-memory
relations (these three relations are scattered in the literature), and we add (4) the
decision-memory relation.

Equipped with the four binary relations between agents, we display a typology
of systems in Sect. 9.5, among which we distinguish the sequential and the partially
nested ones. In a sequential system, agents are ordered in advance, and each agent
is influenced, at most, by the “previous” agents. Such systems have been discussed
in Sect. 4.4. In a partially nested system, whenever an agent is a predecessor of
another agent, all information available to the former is available to the latter. We
return to the notion of “signaling”, previously discussed in Sect. 1.3.2. Whenever an
agent is a predecessor of another agent, the former can, by means of her decisions,
send a “signal” (information transmission) to the latter. However, this potential for
signaling is useless for partially nested systems, for which the latter already knows
what the former knows. This is why Linear-Quadratic-Gaussian (LQG) stochastic
optimization problems display optimal linear strategies under partially nested infor-
mation patterns [81, 83], whereas they display optimal tricky nonlinear strategies
under non-nested patterns [155], as this is the case in the Witsenhausen counterex-
ample, considered in Sect. 1.3.3 and discussed in Sect. 4.2. We also provide examples
of systems composed of two agents and a summary table of systems.

© Springer International Publishing Switzerland 2015
P. Carpentier et al., Stochastic Multi-Stage Optimization, Probability Theory
and Stochastic Modelling 75, DOI 10.1007/978-3-319-18138-7_9
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In Sect. 9.6, we examine stochastic control issues. In the typology of systems
discussed above, classical ones are those for which agents are ordered in advance,
each agent is influenced at most by the “previous” agents and passes on her infor-
mation to the “next” agent (in particular, classical systems are both sequential and
partially nested). The application of Dynamic Programming to classical stochastic
control problems is made possible by the following property, quoted from Witsen-
hausen in [160] (and whose essential role was pointed out by Chernoff in his unpub-
lished 1963 memo Backward induction in dynamic programming and by Striebel in
[142]): “If an observer of a stochastic control system observes both the decision taken
by an agent in the system and the data that was available for this decision, then the con-
clusions that the observer can draw do not depend on the functional relation (policy,
control law) used by this agent to reach his decision.” In [160], Witsenhausen con-
siders the case of general information structures. We recall Witsenhausen’s notion of
policy independence of conditional expectations and the prominent conditions under
which it holds true. Thanks to the precedence, subsystem, information-memory and
decision-memory relations, we discuss the Witsenhausen’s conditions making it pos-
sible to decompose an optimization problem into subproblems.

This chapter heavily relies on notions presented at Chap. 3.

9.2 Witsenhausen Intrinsic Model

The so-called Witsenhausen intrinsic model is introduced in [159]. The model con-
sists of a finite set of agents, of a collection of decision (or control) sets, with a
corresponding collection of σ-fields, and of a single sample set (universe) equipped
with a σ-field, and representing uncertainties, or states of Nature. This model does
not suppose any temporal ordering of decisions.

9.2.1 The Extensive Space of Decisions and States of Nature

Let A be a finite set, whose elements are called agents.

Definitions
Each agent α ∈ A is supposed to make one decision uα ∈ Uα, where Uα is the
control set for agent α, equipped with a σ-field Uα.

Example 9.1 When A = {0, . . . , T − 1}, this framework includes the (discrete
time) dynamic case by considering that a decision maker making one decision
at each period t = 0, . . . , T − 1 is in fact made up of several agents, one for
each period. �

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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We define the decision space as the product set

UA :=
∏
β∈A

Uβ, (9.1)

equipped with the product decision field (see Remark 3.25)

UA :=
⊗
β∈A

Uβ . (9.2)

Let Ω be a measurable set, equipped with σ-field F,1 which represents all uncer-
tainties: any ω ∈ Ω is called a state of Nature, or a sample path.

The history space is the product space

H := UA × Ω =
∏
β∈A

Uβ × Ω, (9.3)

equipped with the product history field

H := UA ⊗ F =
⊗
β∈A

Uβ ⊗ F. (9.4)

Example 9.2 Let us illustrate the above definitions in the simple case of two agents,
each of them having two possible decision values, and of states of Nature reduced to
two elements. Thus, we consider the case A = {a, b}, Ua = {a1, a2}, Ub = {b1, b2},
together with Ua = 2Ua and Ub = 2Ub the complete σ-fields (see Sect. 3.3.2),
and with Ω = {ω−,ω+} and F = 2Ω . We have that H = Ua × Ub × Ω =
{a1, a2} × {b1, b2} × {ω−,ω+} and H = Ua ⊗ Ub ⊗ F = 2H. This is illustrated
in Fig. 9.1, where the σ-field H is the complete partition generated by the singletons
(see Sect. 3.3.2). �

Cylindric Extensions and Decision Subfields
Consider now a subset B of A. Let us define the cylindric extension of

⊗
β∈B Uβ to

the decision field UA defined in (9.2) by:

UB :=
⊗
β∈B

Uβ ⊗
⊗
β �∈B

{∅,Uβ} ⊂ UA. (9.5)

1We avoid the notation A for the state of Nature σ-field, because there might be a visual confusion
with the set A of agents.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Ua

(a2, b 1, ω+)

b

(a2, b2, ω+)

(a2, b1, ω−)

(a1, b1, ω+)

(a2, b2, ω−)

(a1, b1, ω−)

(a1, b2, ω−)

(a1, b2, ω+)

Ω

1, b1, ω

1, b2, ω 2, b2

1, b2, ω 2, b2, ωω

2, b1, ω

2, b1, ω1, b1, ω

( ,H)

Fig. 9.1 The extensive space H and its finest partition H= 2H

Any element in UB is of the form K × ∏
β �∈B Uβ , where K ∈ ⊗

β∈B Uβ . For all
subsets B ⊂ A and C ⊂ A, the following properties hold true

UB∩C = UB ∧ UC and UB∪C = UB ∨ UC , (9.6)

where the operators ∧ and ∨ between σ-fields have been introduced in
Proposition 3.15 for π-fields, and extended to σ-Fields in Sect. 3.3.3.

The fieldUB in (9.5) is a subfield of the decision fieldUA defined in (9.2). We now
consider and define another cylindric extension of

⊗
β∈B Uβ to the history field H

defined in (9.4) by:

DB := UB ⊗ {∅,Ω} =
⊗
β∈B

Uβ ⊗
⊗
β �∈B

{∅,Uβ} ⊗ {∅,Ω} ⊂ UA ⊗ F = H. (9.7)

The subfield DB of H represents the information provided by the decisions of the
agents in B. When B is reduced to a singleton {α}, we set

Dα := D{α}, (9.8)

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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to alleviate the notations, and we call Dα the decision subfield of agent α. Any
element in DB is of the form K × ∏

β �∈B Uβ × Ω , where K ∈ ⊗
β∈B Uβ . The

relations (9.6) also hold true with U replaced by D.

9.2.2 Information Fields and Policies

Information Fields
The information field of agent α ∈ A is a σ-field

Iα ⊂ H. (9.9)

In this way, the information of agent α may depend upon the states of Nature and all
agents decisions (including herself in case of “self-information”, see Definition 9.5
right below). An example is given in Fig. 9.2 where the information field is described
by the associated partition.

Definition 9.3 A stochastic control system (shortly system) is a collection consisting
of a finite set A of agents, states of Nature (Ω,F), control sets, fields and information
fields {Uα,Uα, Iα}α∈A.

a

(a2, b 1, ω+)

b

(a2, b2, ω+)

(a2, b1, ω−)

(a1, b1, ω+)

(a2, b2, ω−)

(a1, b1, ω−)

(a1, b2, ω−)

(a1, b2, ω+)

Ω

Ia

(a2, b2, ω )(a1, b2, ω−)

(a1, b2, ωω (a2, b2, ω

a1, b1,

1, b1, ω 2, b1, ω

2, b1, ω

Fig. 9.2 An example of information field given by a partition
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Example 9.4 For instance, in the description of a sequential optimal stochastic
control problem as exposed in Sect. 4.5.1, we recognize a system with agents
A = {0, . . . , T − 1}. �

To illustrate the use of information fields, consider two agents α and β. The
condition Iβ ⊂ Iα mathematically expresses that what agent β knows is passed on
to agent α. The condition Dβ ⊂ Iα expresses that what does agent β is passed on to
agent α.

Define the information IB ⊂ H of the subset B ⊂ A of agents by

IB :=
∨
β∈B

Iβ . (9.10)

With the above notations, we can express the property that an agent information
cannot depend on her own decision.

Definition 9.5 The absence of self-information is the property that

Iα ⊂ UA\{α} ⊗ F, (9.11)

for all agent α ∈ A.

In practice, we either impose such a restriction or it is the consequence of stronger
assumptions (causality, solvability or sequentiality) to be discussed in Sect. 9.3.

Policies and Admissible Policies
A decision rule, or a policy, or a strategy, for agent α is a measurable mapping
λα : (H,H) → (Uα,Uα), from histories to decisions. Among policies, of paramount
importance are those which satisfy information constraints (see Definition 3.44 for
measurability of mappings).

Definition 9.6 An admissible decision rule, or an admissible policy, or an admissible
strategy, for agent α is a mapping λα : (H,H) → (Uα,Uα) which is measurable
w.r.t. the information field Iα of agent α:

λ−1
α (Uα) ⊂ Iα. (9.12)

The mathematical condition (9.12) expresses the property that the admissible policy
of agent α may only depend upon the information Iα available to her. Of course, con-
stant mappings H → Uα, also called open-loop policies, satisfy the above property.
We denote the set of admissible policies of agent α by

Λad
α :=

{
λα : (H,H) → (Uα,Uα)

∣∣∣ λ−1
α (Uα) ⊂ Iα

}
, (9.13)

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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and the set of admissible policies of all agents is

Λad
A :=

∏
α∈A

Λad
α . (9.14)

Remark 9.7 Assume that Uα contains singletons. In the absence of self-information
(see Definition 9.5), any admissible policy λ has the property that, for any agent α,
the domain H of λα can, in fact, be restricted to UA\{α} ×Ω . Indeed, on the one hand,
we have that Iα ⊂ UA\{α} ⊗ F. On the other hand, we have that λ−1

α (Uα) ⊂ Iα
since λ is an admissible policy. Hence, λ−1

α (Uα) ⊂ UA\{α} ⊗ F, and we conclude
that the value of λα(uα,

{
uβ

}
β �=α

,ω) does not depend on uα (we assumed that Uα

contains singletons). ♦

Remark 9.8 Notice that information may be given by mappings: agent α learns about
the history h ∈ H through a mapping (a signal) Yα : H → Yα, where (Yα,Yα) is
some measurable space. Assuming that Yα is measurable from (H,H) to (Yα,Yα),
the connection with the “field” approach is given by the σ-field generated by the
mapping:

Iα = Y−1
α (Yα) = σ(Yα).

Though not all σ-fields are given by signals, as discussed in [9, 10], the sig-
nal/mapping approach to information is widespread; the Witsenhausen counterex-
ample presented in Sect. 4.2 is an example. ♦

Example 9.9 Let us formulate the classical information pattern of Sect. 4.3.2 and
the Witsenhausen counterexample information pattern of Sect. 4.2 in the above Wit-
senhausen intrinsic model framework. Following the notations of Sect. 4.2, we set
A = {0, 1}, Ω = X0 × W1 = R

2 with typical element ω = (x0, w1) and σ-
field F = X0 ⊗ W1 = Bo

R2 , and (U0,U0) = (R,Bo
R
) = (U1,U1). We introduce

the history space H = U0 × U1 × Ω and, following (4.3), the coordinate map-
pings U0(u0, u1, x0, w1) = u0, X0(u0, u1, x0, w1) = x0, W1(u0, u1, x0, w1) = w1,
and two signals Y0 = X0 and Y1 = X0 + U0 + W1. The classical pattern
of Sect. 4.3.2 corresponds to I0 = σ(Y0) = {∅,U0} ⊗ {∅,U1} ⊗ X0 ⊗ {∅,W1}
and I1 = σ(Y0, U0, Y1) = σ(X0, U0, W1) = U0 ⊗ {∅,U1} ⊗ X0 ⊗ W1. The Wit-
senhausen counterexample measurability constraints (4.6) correspond to I0 = σ(Y0)

and I1 = σ(Y1) = σ(X0 + U0 + W1). �

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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9.3 Causality and Solvability for Stochastic
Control Systems

In the Witsenhausen intrinsic model, agents make decisions in an order which is
not fixed in advance. Once the agents have selected their policies, Witsenhausen
wonders whether it is possible for the agents to play. Briefly speaking, solvability is
the property that, for each state of Nature, their decisions are uniquely determined
by their policies. In a causal system, agents are ordered, one playing after the other
with available information depending only on agents acting earlier, but the order may
depend upon the history.

9.3.1 Solvability and Solvability/Measurability

Consider a collection λ = {λα}α∈A ∈ Λad
A of admissible policies: by (9.13) and

(9.14), the policy λα : UA ×Ω → Uα of agent α is measurable w.r.t. the information
field Iα. Thus, agent α makes a decision according to the information she has on
the state of Nature ω and on all the decisions

{
uβ

}
β∈A (including, a priori, her own

decision!). The problem is:

Is it possible for the agents to play? And will their decisions be uniquely
determined by the rules?

Mathematically, the problem is to find, for any ω ∈ Ω , solutions u ∈ UA (depend-
ing upon ω) satisfying the implicit equations

u = λ(u,ω) (9.15)

or, equivalently,
uα = λα(

{
uβ

}
β∈A ,ω), ∀α ∈ A. (9.16)

For example, for a collection of open-loop policies defined in Sect. 9.2.2, Eq. (9.15)
has a unique solution uα = λα, by identifying the mapping λα with its constant
value.

Existence and uniqueness of the solutions of (9.15) is related to information
patterns. For instance, consider an information structure with two agents α and β,
and displaying the absence of self-information (see Definition 9.5). Assuming that
Uα and Uβ contain singletons, by Remark 9.7 and by (9.12), policies have the form
λα(u,ω) = λ̃α(uβ,ω) and λβ(u,ω) = λ̃β(uα,ω). Equation (9.15) is now uα =
λ̃α(uβ,ω) and uβ = λ̃β(uα,ω), which may display zero solutions (deadlock), one
solution (solvability) or multiple solutions (undeterminacy). For sequential optimal
stochastic control problem as exposed in Sect. 4.5.1, existence and uniqueness of the
solutions of (9.15) is automatically ensured by an explicit inductive procedure (4.60).

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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Definition 9.10 The solvability property holds true when, for any collection λ ∈ Λad
A

of admissible policies, and any state of Nature ω ∈ Ω , there exists one, and only one,
decision u ∈ UA satisfying (9.15). Denoting Mλ(ω) this unique u ∈ UA, we obtain
a mapping Mλ : Ω → UA. The solvability/measurability property holds true when,
in addition, the mapping Mλ : Ω → UA is measurable from (Ω,F) to (UA,UA).

Equation (9.15) defines a multifunction or set-valued mapping Ω ⇒ UA (see
definition in Sect. 8.3.1) that associates with every ω ∈ Ω the (possibly empty) set
of solutions u ∈ UA. The solvability property is equivalent to the property that this
multifunction is a function with domain Ω .

Definition 9.11 Suppose that the solvability property holds true. Thanks to the map-
ping Mλ, we define the solution map Sλ : Ω → H by

Sλ(ω) := (
Mλ(ω),ω

)
, ∀ω ∈ Ω, (9.17)

that is,
(u,ω) = Sλ(ω) ⇐⇒ u = λ(u,ω), ∀(u,ω) ∈ UA × Ω. (9.18)

We include ω in the image of Sλ(ω) to map the universe Ω towards the history
space H and to interpret Sλ(ω) as a “state trajectory”. Indeed, the mapping Sλ yields
all the history generated by the state of Nature ω and by the admissible policy λ. It is
a generalization of the state trajectory mapping for discrete time dynamical control
systems (see the state map in Definition 4.6 for state models, and the solution map
defined in Sect. 4.5.1 for sequential optimal stochastic control problems).

Remark 9.12 Given a collection λ ∈ Λad
A of admissible policies, we introduce:

Fλ
α := S−1

λ (Iα) ⊂ F. (9.19)

Let us insist upon the fact that Fλ
α is a subfield of F, the σ-field attached to the

universe Ω , whereas Iα is a subfield of the history field H. Moreover, Fλ
α depends

upon the whole policy λ: the policies of other agents, and not only the policy of
agent α, can reveal more or less information as to the state of Nature. We come back
to this issue in Sect. 9.6. ♦

Witsenhausen highlights a connection between solvability and absence of self-
information. We refer the reader to [159] for a proof of the following proposition.

Proposition 9.13 Assume that Uα contains singletons, for all agent α in A. Solv-
ability implies absence of self-information.

http://dx.doi.org/10.1007/978-3-319-18138-7_8
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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9.3.2 Causality

The subtle notion of causality is treated with care in [156] (see also [3, 83, 159]).
The idea is that, in a causal system, agents are ordered, one playing after the other
with available information depending only on agents acting earlier, but the order
may depend upon the history. As Witsenhausen says, the “main difficulty is one of
notation”.

Let S denote the set of total orderings of agents in A, that is, injective mappings
from {1, . . . , n} to A, where n = cardA. For k ∈ {1, . . . , n}, let Sk denote the set of
k-orderings, that is, injective mappings from {1, . . . , k} to A (thus S = Sn). There is
a natural mapping ψk from S to Sk , the restriction of any ordering of A to the domain
set {1, . . . , k}.

Define a history-ordering as a mapping ϕ : H → S from histories towards
orderings: along each history h ∈ H, the agents are ordered by σ = ϕ(h) ∈ S,
so that agent σ(1) is the first, σ(2) is the second, etc. With any k ∈ {1, . . . , n}
and k-ordering σ ∈ Sk , associate the set

Hk,σ = {h ∈ H | ψk(ϕ(h)) = σ} (9.20)

of histories along which ϕ(h) begins with (α1, . . . ,αk) = (σ(1), . . . ,σ(k)): along
any history h ∈ Hk,σ , the first k agents are known and given by (σ(1), . . . ,σ(k)).

Formally, a system is causal if there exists (at least one) history-ordering ϕ from
H towards S, with the property that for any k ∈ {1, . . . , n} and σ ∈ Sk , the set Hk,σ

satisfies
Hk,σ ∩ G ∈ U{σ(1),...,σ(k−1)} ⊗ F, ∀G ∈ Iσ(k). (9.21)

In other words, when the first k agents are known and given by (σ(1), . . . ,σ(k)), the
information Iσ(k) of the agent σ(k) with rank k depends at most on the decisions of
agents σ(1), …, σ(k) with rank stricly less than k.

In Sect. 9.5.1, so-called sequential systems are defined as those for which the
causality condition holds true with a constant history-ordering mapping ϕ : H → S.
In Sect. 9.5.2, we detail the analysis of a non causal system (deadlock).

9.3.3 Solvability, Causality and “State”

We refer the reader to [156] for the proof of the following proposition.

Proposition 9.14 Causality implies (recursive) solvability with a measurable solu-
tion map.

In [156], to prove that causality implies recursive solvability, Witsenhausen defines
a sequence of subfields H(k) of the history field H and interprets this sequence as the
information available to an umpire after she has seen k agents make their decisions.
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He proves that the umpire fields H(k) are nested (H(k) ⊂ H(k+1)), meaning that the
umpire enjoys perfect recall. Witsenhausen also introduces maps corresponding to
the idea of state transition equations, with the σ-field H(k) representing the state of
knowledge of the umpire.

9.4 Four Binary Relations Between Agents

We provide a unified framework to define and study three binary relations between
agents, which are found in the literature. The precedence and information-memory
relations were introduced by Ho and Chu in [81, 83] for the multi-agent LQG prob-
lem. Their representation as graphs forms the information structure diagram. Wit-
senhausen in [159] presented a fairly general theory, introducing, in particular, the
subsystem relation (additional results can be found in [13] and other references are
[82, 161]). We add a fourth relation: the decision-memory relation. We make use of
notions on binary relations reviewed in Sect. 3.2.1.

9.4.1 The Precedence Relation P

The precedence2 binary relation identifies the agents whose decisions indeed
influence the observations of a given agent.

For a given agent α, let us consider the set Pα ⊂ 2A of subsets B ⊂ A such
that Iα ⊂ UB ⊗ F. Any B ∈ Pα contains agents whose decisions affect the infor-
mation Iα available to agent α. We have that A ∈ Pα because Iα ⊂ UA ⊗ F. By (9.6),
the set Pα is stable under intersection. This motivates the following definition.

Definition 9.15 ([13]) Let 〈α〉P ⊂ A be the intersection of subsets B ⊂ A such
that Iα ⊂ UB ⊗ F. We define a precedence binary relation P on A by

β Pα ⇐⇒ β ∈ 〈α〉P , (9.22)

and we say that β is a predecessor of α.

In other words, the decisions of any predecessor of an agent affect the information
of this agent: any agent is influenced by his predecessors (when they exist, because
〈α〉P might be empty).

Remark 9.16 Assume that Uβ contains singletons, for all β ∈ A. Being inspired by
Remark 9.7, we can notice that any admissible policy λ has the property that, for any
agent α, the domain H of λα can, in fact, be restricted to Uβ∈〈α〉P × Ω . ♦

2Our definition of precedence is directly inspired by the one that Ho and Chu give in their 1974
paper [83], and not by the one they provide in their 1972 paper [81] (which rather relates to the
subsystem relation to be discussed in Sect. 9.4.2).

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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By construction, the subset of agents 〈α〉P is the smallest subset B ⊂ A such that
Iα ⊂ UB ⊗ F. In other words, 〈α〉P is characterized by:

Iα ⊂ U〈α〉P ⊗ F and
(
Iα ⊂ UB ⊗ F ⇒ 〈α〉P ⊂ B

)
. (9.23)

Example 9.17 In Example 9.9, we have that 〈0〉P = ∅ and 〈1〉P = {0}, both
for the classical pattern of Sect. 4.3.2 and for the Witsenhausen counterexample
information pattern. �
Remark 9.18 Whenever 〈α〉P �= ∅, there is a potential for signaling, that is for
information transmission. Indeed, any agent β in 〈α〉P influences the information Iα
upon which agent α bases her decisions. Therefore, whenever agent β is a predecessor
of agent α, the former can, by means of her decisions, send a “signal” to the latter.
In case 〈α〉P = ∅, the decisions of agent α depend, at most, on the state of Nature,
and there is no room for signaling. ♦

We use the following definitions.

Definition 9.19 For any B ⊂ A, we introduce the following subset of agents:

〈B〉P :=
⋃
β∈B

〈β〉P, 〈B〉0
P := B and 〈B〉n+1

P := 〈〈B〉n
P〉P, ∀n ∈ N. (9.24)

When B is a singleton {α}, we denote 〈α〉n
P for 〈{α}〉n

P.

The proof of the following proposition is a straightforward application of Defin-
itions 9.15 and 9.19. We leave it to the reader.

Proposition 9.20 Let B and C be two subsets of the set A of agents. We have that

IC ⊂ UB ⊗ F ⇐⇒ 〈C〉P ⊂ B, (9.25)

and that, if agents in C pass on their information to agents in B, then those agents
who influence C also influence B:

IC ⊂ IB ⇒ 〈C〉P ⊂ 〈B〉P. (9.26)

With the precedence relation P, and especially with the complementary relation
Pc defined in (3.20), we can easily express that a system displays absence of self-
information (see Definition 9.5).

Proposition 9.21 The following assertions are equivalent.

1. A system is without self-information.
2. No agent can be a predecessor of herself: α �∈ 〈α〉P, ∀α ∈ A.
3. The diagonal ΔA of P is not in P: (α,α) �∈ P, ∀α ∈ A.
4. The complementary relation Pc is reflexive: αPc α, ∀α ∈ A.

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Proof

1 ⇐⇒ 2. By Definition 9.5, a system is without self-information if, and only if,
Iα ⊂ UA\{α} ⊗ F, for all α ∈ A. By (9.25) with C = {α} and B = A\{α}, this
is equivalent to 〈α〉P ⊂ A\{α}, hence to α �∈ 〈α〉P.

2 ⇐⇒ 3. By Definition 9.15 of the precedence relationP, and especially by (9.22),
α �∈ 〈α〉P is equivalent to (α,α) �∈ P, that is, ΔA ∩ P = ∅ by definition (3.2) of
the diagonal relation.

3 ⇐⇒ 4. By the definition (3.20) of the complementary relation Pc, we have that
αPc α ⇐⇒ α �∈ 〈α〉P. Therefore, item 3 is equivalent to the property that Pc

is reflexive. �

9.4.2 The Subsystem Relation S

Witsenhausen defines and studies subsystems in [159].

Definition 9.22 ([159]) A nonempty subset B of agents in A is a subsystem if the
information field IB defined in (9.10) at most depends on the decisions of the agents
in B:

IB ⊂ UB ⊗ F.

Thus, the information received by agents in B depends upon states of Nature and
decisions of members of B only.

Example 9.23 In Example 9.9, {0} and {0, 1} are the only subsystems. �
As a consequence of (9.6), Witsenhausen notices that subsystems form the closed

sets of a topology (after considering the empty set ∅ as a subsystem).
Recall that a topology of A is a setT ⊂ 2A of subsets of A, containing ∅ and A, and

which is stable (closed) under union and under finite intersection. The elements of T
are called open sets, whereas the complementary of an open set in A is a closed set.
A subset B is said to be connected if it cannot be written as the union of two disjoint
nonempty open sets. The maximal connected subsets (for the inclusion relation order)
are called the connected components of the space; they form a partition of A.

Remark 9.24 Here, since A is a finite set, a topology of A is a setT ⊂ 2A containing ∅
and A, and which is stable under finite union and under finite intersection. Therefore,
if T is a topology, so is Tc = {Bc, B ∈ T}, where Bc is the complement of the subset
B in A. This is why, closed and open sets satisfy the same axioms. ♦

In the proposition that follows, Witsenhausen emphasizes the role of closed sets.

Proposition 9.25 ([159]) The subsystems are stable under the intersection and
union operations, and thus form the closed sets of a topology T on A.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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As Witsenhausen says, connected components of the topological space (A,T) are
dynamically decoupled subsystems; a static coupling remains through the common
dependence upon the states of Nature.

Definition 9.26 ([159]) The closure B, for the topology T, of a subset B ⊂ A is
the smallest subsystem containing B; it is called the subsystem generated by B.
The subsystem generated by agent α is the closure {α} of the singleton {α}. The
corresponding subsystem binary relation S between agents is defined by:

β Sα ⇐⇒ β ∈ {α}, ∀(α,β) ∈ A2. (9.27)

In other words, β Sα means that agent β belongs to the subsystem generated
by agent α or, equivalently, that the subsystem generated by agent α contains that
generated by agent β. Indeed, by the properties of a topological closure, we have that

β Sα ⇐⇒ {β} ⊂ {α}, ∀(α,β) ∈ A2. (9.28)

Notice also that a subset B ⊂ A is a subsystem if, and only if, it coincides with the
generated subsystem:

B is a subsytem ⇐⇒ B = B. (9.29)

Proposition 9.27 ([159]) The subsystem relationS is a pre-order, namely it is reflex-
ive and transitive.

Proof The subsystem relation S is reflexive since, in a topology, any element α ∈ A
belongs to the closure {α} (see also (9.28) with β = α).

The relation S is also transitive. Indeed, let agents α, β and δ be such that αSβ
and βSδ, that is α ∈ {β} and β ∈ {δ}. From β ∈ {δ}, we deduce that {β} ⊂ {δ} and
thus α ∈ {δ}, that is, αS δ by (9.27). �

Remark 9.28 The relation S is not necessarily anti-symmetric since {β} = {α} may
occur with α �= β. In Sect. 9.5.2, the reader can find an example of non causal system
(deadlock) such that S is not anti-symmetric. ♦

The following Proposition 9.29 and Theorem 9.30 describe connections between
the subsystem relation S and the precedence binary relation P.

Proposition 9.29 Let B be a subset of the set A of agents, and α be an agent in A.

1. A subset B ⊂ A is a subsystem iff 〈B〉P ⊂ B, that is, iff the predecessors of
agents in B belong to B:

B is a subsytem ⇐⇒ B = B ⇐⇒ 〈B〉P ⊂ B. (9.30)
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2. For any α ∈ A, the subsystem generated by agent α is the union of α and of all
her iterated predecessors (see Definition 9.19):

{α} =
⋃
n∈N

〈α〉n
P. (9.31)

Proof

1. We have already noticed in (9.29) that B is a subsytem iff B = B. For the rest,
by Definition 9.22, a subset B ⊂ A is a subsystem iff IB ⊂ UB ⊗ F, and thus
iff 〈B〉P ⊂ B by (9.25).

2. First, we prove by induction that 〈α〉n
P ⊂ {α} for n ∈ N. This holds true for n = 0

since α ∈ {α}. Assuming 〈α〉n
P ⊂ {α}, we deduce that 〈α〉n+1

P ⊂ 〈{α}〉P by

definition (see (9.24)). Now, since {α} is a subsystem, we have that 〈{α}〉P ⊂ {α}
by (9.30). Thus 〈α〉n+1

P ⊂ {α} and the induction is proven. We deduce that⋃
n∈N〈α〉n

P ⊂ {α}.
Second,

⋃
n∈N〈α〉n

P is a subsystem since 〈⋃n∈N〈α〉n
P〉P = ⋃

n∈N〈α〉n+1
P ⊂⋃

n∈N〈α〉n
P. To sum up,

⋃
n∈N〈α〉n

P is a subsystem containing α and contained

in {α}: it is thus equal to {α}.
This ends the proof. �

We now show that the precedence relation P is included in the subsystem rela-
tion S, and the subsystem relation S is the reflexive and transitive closure P∗ of the
precedence relation P, as defined in (3.17). Recall that P∞ is the transitive closure
of the relation P, as in (3.11).

Theorem 9.30 The following sequence of inclusions and equalities holds true:

P ⊂ P∞ ⊂ S = P∗ = P∞ ∪ ΔA. (9.32)

Proof We have that P ⊂ S, since β ∈ 〈α〉P ⇒ β ∈ {α} by (9.31).
By Proposition 9.27, S is transitive and thus it is equal to its transitive clo-

sure S∞. Thus, P ⊂ S ⇒ P∞ ⊂ S∞ = S. Now, by the definition (3.11)
of P∞, the identity (9.31) means that P∞ ∪ ΔA = S. We conclude with the
equality (3.17). �

Here is a proposition which proves important for partially nested systems to be
discussed in Sect. 9.5.3.

Proposition 9.31 If the precedence binary relation P is transitive, then

1. the following inclusions and equalities hold true

P = P∞ ⊂ S = P ∪ ΔA;

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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2. for any subset B of agents in A, the set 〈B〉P of her predecessors is a subsystem;
3. for any agent α ∈ A, the subsystem {α} generated by agent α is the union of α

and of her predecessors: {α} = 〈α〉P ∪ {α};
4. if the system is without self-information, the subset {α}\{α} = 〈α〉P of agents is

a subsystem for any agent α ∈ A.

Proof

1. Since P is transitive, then P = P∞. The inclusion P∞ ⊂ S = P ∪ ΔA is a
straightforward consequence of (9.32).

2. SinceP is transitive, we have thatP2 ⊂ P, and thus 〈B〉2
P ⊂ 〈B〉P. We conclude

by (9.30).
3. The equality S = P ∪ ΔA is equivalent to saying that, for any α ∈ A, {α} =

〈α〉P ∪ {α}.
4. The subset {α}\{α} = 〈α〉P\{α} is a subsystem by item 2, and 〈α〉P = 〈α〉P\{α}

when the system is without self-information (see item 4 in
Proposition 9.21). �

9.4.3 The Information-Memory Relation M

The following definition of information-memory is inspired by [81] and is generalized
in [13].

Definition 9.32 ([13]) With any agent α ∈ A, we associate the subset 〈α〉M of
agents who pass on their information to α:

〈α〉M := {
β ∈ A

∣∣ Iβ ⊂ Iα
}
. (9.33)

We define an information-memory binary relation M on A by

β Mα ⇐⇒ β ∈ 〈α〉M ⇐⇒ Iβ ⊂ Iα, ∀(α,β) ∈ A2. (9.34)

When β Mα, we say that agent β information is remembered by or passed on to
agent α, or that the information of agent β is embedded in the information of agent α.
When agent β belongs to 〈α〉M, the information available to β is also available to
agent α.

By construction, the subset of agents 〈α〉M is the largest subset B ⊂ A such that
IB ⊂ Iα. Therefore, we have that

B ⊂ 〈α〉M ⇐⇒ IB ⊂ Iα, (9.35)

and, in particular, that
α ∈ 〈α〉M and I〈α〉M = Iα. (9.36)
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Example 9.33 In Example 9.9, we have that 〈0〉M = {0} and 〈1〉M = {0, 1} in the
classical pattern, whereas 〈1〉M = {1} in the Witsenhausen counterexample. �
Proposition 9.34 ([13]) The information-memory relationM is a pre-order, namely
M is reflexive and transitive.

Proof The relation M is reflexive since α ∈ 〈α〉M by construction. It is transitive
by (9.34). �

The following Proposition 9.35 and Corollary 9.36 describe connections between
the information-memory relation M and the precedence binary relation P. For any
B ⊂ A, let us introduce the set of agents

〈B〉M :=
⋃
β∈B

〈β〉M, (9.37)

who pass on their information to at least one agent in B.

Proposition 9.35 ([13]) Let B and C be two subsets of the set A of agents. We have
that

PM ⊂ P, (9.38)

and that, if a set C of agents pass on their information to at least one agent in B,
then the predecessors of C are predecessors of B:

C ⊂ 〈B〉M ⇒ 〈C〉P ⊂ 〈B〉P. (9.39)

Proof We first show that I〈B〉M = IB . Indeed, we have that

I〈B〉M =
∨

γ∈〈B〉M
Iγ by (9.10)

=
∨
β∈B

∨
γ∈〈β〉M

Iγ by (9.37)

=
∨
β∈B

I〈β〉M by (9.10)

=
∨
β∈B

Iβ by (9.36)

= IB by (9.10).

By (9.26), we deduce that
〈〈B〉M〉P = 〈B〉P. (9.40)
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Then, (9.39) follows from the monotonocity of 〈 〉P for the inclusion (see
Definition 9.19):

C ⊂ 〈B〉M ⇒ 〈C〉P ⊂ 〈〈B〉M〉P = 〈B〉P.

Regarding (9.38), consider three agents α, β and γ such that β P γ and γ Mα.
By (9.22) and (9.34), we have that β ∈ 〈γ〉P and γ ∈ 〈α〉M. By (9.39) with C = {γ}
and B = {α}, we deduce that 〈γ〉P ⊂ 〈α〉P. As a consequence, β ∈ 〈α〉P, that
is, β Pα by (9.22). Thus, by the definition of the composition relation introduced
in Sect. 3.2.1, we conclude that PM ⊂ P. �

The converse (3.9) of the precedence relation P is the successor relation P−1,
characterized by

β P−1 α ⇐⇒ αPβ. (9.41)

Quite naturally, β is a successor of α iff α is a predecessor of β. The following
corollary states that, in absence of self-information, information-memory and suc-
cessor are mutually exclusive relations in the sense that if β succeeds α, then the
information of agent β cannot be passed on to agent α. In other words, if the infor-
mation of agent β is passed on to agent α and that α influences β, then agent α is
auto-influenced (that is, self-information holds true).

Corollary 9.36 In absence of self-information, we have that M ∩ P−1 = ∅ or,
equivalently, that

β P−1 α ⇒ ¬(β Mα) ⇐⇒ β Mc α, (9.42)

where the complementary operator c is defined in (3.20),

Proof By Proposition 9.21, a system without self-information is one for which α �∈
〈α〉P, whatever the agent α ∈ A. Consider two agents α and β in A. We have that

β Mα ⇒ β ∈ 〈α〉M by Definition 9.32

⇒ 〈α〉P ⊃ 〈β〉P by Proposition 9.35

⇒ α �∈ 〈β〉P since α �∈ 〈α〉P
⇒ ¬(αPβ) by (9.22), which defines P

⇒ ¬(β P−1 α) by (9.41).

This completes the proof, because β Mα ⇒ ¬(β P−1 α) is equivalent to (9.42),
and to M ∩ P−1 = ∅. �

9.4.4 The Decision-Memory Relation D

The following decision-memory relation is not, to our knowledge, found in the liter-
ature. It proves useful to express strictly classical and strictly quasiclassical systems

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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in Sect. 9.5.1, and to formulate appropriate assumptions for policy independence of
conditional expectations in Sect. 9.6.

Definition 9.37 With any agent α ∈ A, we associate

〈α〉D = {
β ∈ A

∣∣ Dβ ⊂ Iα
}
, (9.43)

the subset of agents β whose decision is passed on to α, where the decision subfield
Dβ is defined in (9.7).

We define a decision-memory binary relation D on A by

β Dα ⇐⇒ β ∈ 〈α〉D ⇐⇒ Dβ ⊂ Iα, ∀(α,β) ∈ A2. (9.44)

When β Dα, we say that agent β decision is remembered by or passed on to agent α,
or that the decision of agent β is embedded in the information of agent α. By (9.43)
and (9.7), we have that

D〈α〉D ⊂ Iα. (9.45)

By comparing the definition of the decision-memory relation D with that of the
precedence relation P in Definition 9.15, and by the definition (9.7) of DB , we see
that

D〈α〉D = U〈α〉D ⊗ {∅,Ω} ⊂ Iα ⊂ U〈α〉P ⊗ F. (9.46)

Therefore, we conclude that

〈α〉D ⊂ 〈α〉P, ∀α ∈ A, (9.47)

or, equivalently, that
D ⊂ P. (9.48)

Remark 9.38 If β Dα, the decision made by agent β decision is passed on to agent α
and, by the fact that D ⊂ P, β is a predecessor of α. However, the agent β can be a
predecessor of α, but his influence may happen without passing on his decision to α.
For instance, in the Witsenhausen counterexample discussed in Sect. 4.2, agent t = 1
is influenced by agent t = 0, but this is made through the observation X0 +U0 +W1,
and not by passing the first control U0. The following example is another illustration,
where 〈α〉D �= 〈α〉P for at least one agent α. ♦

Example 9.39 In Example 9.9, we have that 〈0〉P = ∅, 〈1〉P = {0}, 〈0〉D = ∅ and
〈1〉D = {0} in the classical pattern. In the Witsenhausen counterexample, we have
that 〈0〉P = ∅, 〈1〉P = {0}, 〈0〉D = ∅ and 〈1〉D = ∅. �

http://dx.doi.org/10.1007/978-3-319-18138-7_4
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9.5 A Typology of Stochastic Control Systems

Equipped with the four binary relations between agents, exposed in Sect. 9.4, we
display a typology of systems in Sect. 9.5.1. Then, we provide examples of systems
composed of two agents in Sect. 9.5.2. We focus on partially nested and on sequential
systems in Sect. 9.5.3, and end with a summary table of systems in Sect. 9.5.4.

9.5.1 A Typology of Systems

We gather here definitions found in the literature.
A station [157] is a subset of agents such that the set of information fields of

these agents is totally ordered under inclusion (i.e., nested). In other words, a subset
B of agents in A is a station iff the information-memory relation M induces a total
order on B (i.e. consists of a chain of length m = cardB) iff there exists an ordering
(α1, . . . ,αm) of B such that

Iα1 ⊂ · · · ⊂ Iαk ⊂ Iαk+1 ⊂ · · · ⊂ Iαm , (9.49)

or, equivalently, that αk ∈ 〈αk+1〉M, for k = 1, . . . , m.
An agent, or a subset of agents, enjoys perfect recall when the subsystem generated

(see Definition 9.26) forms a station.
A static team [159] is a subset B of A such that 〈B〉P = ∅ or, equivalently, that

agents in B have no predecessors (see (9.25)). When the whole set A of agents is a
static team, any agent α ∈ A has no predecessor: 〈α〉P = ∅, ∀α ∈ A. Equivalently,
the precedence relation P is empty or, equivalently, the subsystem relation S is
reduced to the equality relation ΔA: the system exhibits no dynamic relations between
agents (see Fig. 9.3 for an illustration). A system is static if the set A of agents is a
static team.

A system is monic [159] iff it is reduced to a singleton that is a static team: A = {α}
and Iα ⊂ {∅,Uα} ⊗ F.

A system is said to be sequential [159] iff there exists an ordering (α1, . . . ,αn)

of A such that each agent αk is influenced at most by the “previous” agents
α1, . . . ,αk−1 that is,

〈α1〉P = ∅ and 〈αk〉P ⊂ {α1, . . . ,αk−1}, ∀k = 2, . . . , n. (9.50)

Equivalently, there exists an ordering (α1, . . . ,αn) of A such that αi Pα j ⇒ i < j
that is, an ordering strictly compatible with P (see Sect. 3.2.1).

A system is partially nested [81, 83] iff the precedence relation P is included in
the information-memory relation M that is, P ⊂ M, namely 〈α〉P ⊂ 〈α〉M for any
agent α ∈ A. In a partially nested system, any agent knows what her predecessors
know or, in other words, any predecessor of a given agent passes her information to

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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that agent. In Sect. 9.5.3, we discuss equivalent characterizations of partially nested
systems.

A system is quasiclassical [159] iff it is sequential and partially nested.
Equivalently, there exists an ordering (α1, . . . ,αn) of A such that 〈α1〉P = ∅ and,
for k = 2, . . . , n,

〈αk〉P ⊂ {α1, . . . ,αk−1} and 〈αk〉P ⊂ 〈αk〉M. (9.51)

In a quasiclassical system, there exists an ordering such that any agent is influenced
at most by the previous agents and knows what his predecessors know.

A system is classical [159] iff there exists an ordering (α1, . . . ,αn) of A for which
it is both sequential and such that Iαk ⊂ Iαk+1 for k = 1, . . . , n−1 (station property).
Equivalently, there exists an ordering (α1, . . . ,αn) of A such that 〈α1〉P = ∅ and,
for k = 2, . . . , n,

〈αk〉P ⊂ {α1, . . . ,αk−1} ⊂ {α1, . . . ,αk−1,αk} ⊂ 〈αk〉M. (9.52)

A classical system is necessarily partially nested, because 〈αk〉P ⊂ 〈αk〉M for
k = 1, . . . , n; hence, a classical system is quasiclassical. In a classical system, there
exists an ordering such that any agent is influenced at most by the previous agents
and knows what they know.

A system is strictly classical [159] iff it is classical for an ordering (α1, . . . ,αn)

satisfying Dαk ⊂ Iαk+1 (see (9.8)), that is,

αk ∈ 〈αk+1〉D, ∀k = 1, . . . , n − 1. (9.53)

In a strictly classical system, there exists an ordering such that any agent is influenced
at most by the previous agents, and knows what they know and the previous agent’s
decision.

A system is strictly quasiclassical [159] iff it is quasiclassical and such that β Sα,
β �= α implies β Mα and β Dα or, equivalently, Iβ ∨ Dβ ⊂ Iα. In other words,
agent α knows what know and what do all the other agents which form the subsystem
she generates:

β ∈ {α}\{α} ⇒ β ∈ 〈α〉M ∩ 〈α〉D. (9.54)

The strict expansion of a quasiclassical system is the system obtained by replacing
Iα by Iα ∨ ∨

β∈{α}\{α} Dβ . This corresponds to adding the decisions of those agents
in the subsystem generated by agent α, except α.

Theorem 9.40 ([159]) Any of the following properties of a system—monic, static
team, strictly classical, classical, strictly quasiclassical, quasiclassical, sequential,
causal, solvable, without self-information—is shared by all its subsystems.
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9.5.2 Examples of Systems with Two Agents

We now illustrate the typology in Sect. 9.5.1, and also causal and non causal sys-
tems as in Sect. 9.3, with systems composed of two agents (see Example 9.2 for the
notations).

Static Team
The set of agents A = {a, b} forms a static team iff

Ia ⊂ {∅,Ua} ⊗ {∅,Ub} ⊗ F, Ib ⊂ {∅,Ua} ⊗ {∅,Ub} ⊗ F.

There are no interdecisions between agents, just a dependence upon states of Nature.
Figure 9.3 is an illustration where agent b knows nothing, whereas agent a knows
only the state of Nature, corresponding to Ib = {∅,H}, Ia = {∅,Ua}⊗{∅,Ub} ⊗ F.
The precedence relation is P = ∅ (〈a〉P = 〈b〉P = ∅); the subsystem relation
is S = {(a, a), (b, b)} ({a} = {a}, {b} = {b}); in the specific case correspond-
ing to Fig. 9.3, the information-memory relation is M = {(a, a), (b, b), (b, a)}
(〈a〉M = {a}, 〈b〉M = {a, b}); the decision-memory relation is D = ∅ (〈a〉D =
〈b〉D = ∅).

Station
The set of agents A = {a, b} forms a station iff

Ia ⊂ Ib or Ib ⊂ Ia .

Example of Classical System
The set of agents A = {a, b} with information fields given by

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F, Ib = Ua ⊗ {∅,Ub} ⊗ F,

corresponding to Fig. 9.4, forms a classical system. Indeed, first, the system is sequen-
tial where a precedes b (〈a〉P = ∅ and a ∈ 〈b〉P): agent a observes the state of Nature
and makes her decision accordingly; agent b observes both agent a’s decision and
the state of Nature and makes her decision based on that information. Second, one
has that Ia ⊂ Ib (a ∈ 〈b〉M), which may be interpreted in different ways. One
may say that agent a communicates her own information to agent b. If agent a is an
individual at time t = 0, whereas agent b is the same individual at time t = 1, one
may say that the information is not forgotten with time (memory of past knowledge).
The precedence relation is P = {(a, b)} (〈a〉P = ∅, 〈b〉P = {a}); the subsystem
relation is S = {(a, a), (b, b), (a, b)} ({a} = {a}, {b} = {a, b}); the information-
memory relation is M = {(a, a), (b, b), (a, b)} (〈a〉M = {a}, 〈b〉M = {a, b}); the
decision-memory relation is D = {(a, b)} (〈a〉D = ∅, 〈b〉D = {a}).
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Fig. 9.4 A classical system
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Example of Sequential but Not Classical System
The set of agents A = {a, b} with information fields given by

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F, Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω}

forms a sequential system which is not classical (see Fig. 9.5). Indeed, agent a pre-
cedes agent b (〈a〉P = ∅ and a ∈ 〈b〉P), but Ia and Ib are not comparable: agent a
observes only the state of Nature, whereas agent b observes only agent a’s decision.
The precedence relation is P = {(a, b)} (〈a〉P = ∅, 〈b〉P = {a}); the subsystem
relation is S = {(a, a), (b, b), (a, b)} ({a} = {a}, {b} = {a, b}); the information-
memory relation is M = {(a, a), (b, b)} (〈a〉M = {a}, 〈b〉M = {b}); the decision-
memory relation is D = {(a, b)} (〈a〉D = ∅, 〈b〉D = {a}).
Example of Non Causal System (Deadlock)
The set of agents A = {a, b} with information fields given by

Ia = {∅,Ua} ⊗ Ub ⊗ {∅,Ω}, Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω}

corresponds to Fig. 9.6. Such a system displays a deadlock situation [3] where the
decision process in (9.15) may have no solution, one solution, or multiple solutions.
Agent a observes agent b’s decision, whereas agent b observes agent a’s decision.
Thus, agent a precedes agent b (a ∈ 〈b〉P) and agent b precedes agent a (b ∈ 〈a〉P).

This system is not causal (hence, not sequential). Indeed, following the definition
of causality given in Sect. 9.3.2, consider a history-ordering mapping ϕ from H

towards {(a, b), (b, a)} and denote by Ha = ϕ−1
(
(a, b)

)
those histories for which

agent a is the first, and similarly for Hb. For causality to hold true, the trace of
the information field Ia of agent a on Ha must belong to {∅,Ua} ⊗ {∅,Ub} ⊗ F.
Now, the atoms of the partition field Ia are cylinders with base in Ub (facing vertical
disks in Fig. 9.6). Hence, the intersection of Ha with facing vertical disks must be
composed of the atoms of {∅,Ua} ⊗ {∅,Ub} ⊗ F, which are horizontal disks. This
is impossible. The same reasoning applies to Hb. No history-ordering mapping ϕ
satisfying the conditions exposed in Sect. 9.3.2 exists: the system is not causal.

The precedence relation is P = {(a, b), (b, a)} (〈a〉P = {b}, 〈b〉P = {a}); the
subsystem relation is S = {(a, a), (b, b), (a, b), (b, a)} ({a} = {b} = {a, b}); the
information-memory relation is M = {(a, a), (b, b)} (〈a〉M = {a}, 〈b〉M = {b});
the decision-memory relation is D = {(a, b), (b, a)} (〈a〉D = {b}, 〈b〉D = {a}).
Remark 9.41 Notice that the system is non sequential but that, however, the prece-
dence relation P is not empty. ♦

Example of Causal but Non Sequential System
The set of agents A = {a, b} with information fields given by

Ia = σ({a1, a2} × {b1, b2} × {ω+}, {a1, a2} × {b1} × {ω−}),
Ib = σ({a1, a2} × {b1, b2} × {ω−}, {a1} × {b1, b2} × {ω+})
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Fig. 9.5 A sequential but not classical system
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Fig. 9.6 An information structure with deadlock
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corresponds to Fig. 9.7. When the state of Nature is ω+, agent a only sees ω+, whereas
agent b sees ω+ and the decision of a: thus a acts first, then b. The reverse holds
true when the state of Nature is ω−. Thus, there are history-ordering mappings ϕ
from H towards {(a, b), (b, a)} (see Sect. 9.3.2), but they differ according to history
(ϕ((ua, ub,ω+)) = (a, b) and ϕ((ua, ub,ω−)) = (b, a)): the system is causal but
not sequential.

The precedence relation is P = {∅} (〈a〉P = 〈b〉P = ∅), the subsystem relation
is S = {(a, a), (b, b)} ({a} = {a}, {b} = {b}); the information-memory relation is
M = {(a, a), (b, b)} (〈a〉M = {a}, 〈b〉M = {b}); the decision-memory relation is
D = ∅ (〈a〉D = 〈b〉D = ∅).

9.5.3 Partially Nested and Sequential Systems

Here, we first provide a characterization of sequential systems. Then, we return to
the so-called partially nested systems. We conclude with a result connecting partially
nested and sequential systems.

Sequential Systems
We provide a characterization of sequential systems that relies upon notions on binary
relations recalled in Sect. 3.2.1.

The equivalence of the first two assertions in the following Theorem 9.42 is due
to Witsenhausen in [159]. The others are new. They prove useful for characterizing
partially nested systems without self-information.

Theorem 9.42 The following assertions are equivalent:

1. the system is sequential;
2. the system is without self-information and the subsystem pre-orderS is an order3;
3. the precedence relation P is acyclic4;
4. the complementary relation (P∞)c of the transitive closureP∞ of the precedence

relation P is reflexive.

Proof The proof is a straightforward transcription of Proposition 3.1 with R = P.
For this, recall from Sect. 9.5.1 that a system is sequential iff there exists an

ordering of A strictly compatible with P. Also, a system is without self-information
iff Pc is reflexive (see Proposition 9.21). At last, the pre-order S is an order iff S =
P∗ is an order. �

3That is, S is antisymmetric: ∀(α,β) ∈ A2, {α} = {β} ⇒ α = β or, in other words, if two agents
generate the same subsystem, they must be equal.
4That is, α �∈ 〈α〉k

P , ∀α ∈ A, ∀k ≥ 1.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Fig. 9.7 A causal but not sequential system
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Partially Nested Systems
In their study of Linear Quadratic Gaussian (LQG) team decision problems, Ho and
Chu define in [81, 83] a partially nested information structure as one in which any
agent always know what her predecessors know or, in other words, in which any
predecessor of a given agent passes her information to that agent. In that case, they
prove the optimality of linear controls.

In Sect. 9.5.1, we have given a more general definition of partially nested systems,
not depending on the linear structure of LQG systems. We now provide mathematical
characterizations.

Proposition 9.43 The following conditions are equivalent.

1. The system is partially nested (the precedence relation P is included in the
information-memory relationM, that is,P ⊂ M or, equivalently, 〈α〉P ⊂ 〈α〉M,
∀α ∈ A).

2. The subsystem relation S is included in the information-memory relation M, that
is, S ⊂ M or, equivalently, {α} ⊂ 〈α〉M, ∀α ∈ A.

3. The transitive closure P∞ of P is included in the information-memory relation
M, that is, P∞ ⊂ M or, equivalently, 〈α〉k

P ⊂ 〈α〉M, ∀α ∈ A, ∀k ≥ 1.

Proof 2 ⇒ 1. The inclusion S ⊂ M implies P ⊂ M, since P ⊂ S by Theo-
rem 9.30.

1 ⇒ 3. The inclusion P ⊂ M implies that transitive closures satisfy P∞ ⊂ M∞;
therefore, P∞ ⊂ M since M∞ = M because M is transitive, by Proposi-
tion 9.34.

3 ⇒ 2. The inclusion P∞ ⊂ M implies S ⊂ M since S is the reflexive closure
of P∞ by Theorem 9.30 and since M is reflexive by Proposition 9.34.

This ends the proof. �

The following proposition, proved in [13], provides a curious property of the
precedence binary relation. As a consequence, the assertions of Proposition 9.31
hold true for a partially nested system.

Proposition 9.44 ([13]) For a partially nested system, the precedence relation P is
transitive.

Proof On the one hand, we have thatP ⊂ M by Proposition 9.43. On the other hand,
we have that PM ⊂ P by (9.38). We deduce that P2 ⊂ PM ⊂ P: the precedence
relation P is transitive. �

As a consequence of Theorem 9.30, a partially nested system satisfies the
following inclusions and equalities:

P = P∞ ⊂ S = P ∪ ΔA ⊂ M. (9.55)

We conclude with a result connecting partially nested and sequential systems.



9.5 A Typology of Stochastic Control Systems 285

Theorem 9.45 A partially nested system without self-information is sequential. As a
consequence, a causal partially nested system is sequential (hence is quasiclassical).

Proof On the one hand, by Proposition 9.44, a partially nested system satisfies P =
P∞. On the other hand, by Proposition 9.21, a system without self-information is
such that Pc is reflexive. Thus, (P∞)c is reflexive and we conclude by Theorem 9.42
that the system is sequential. Hence, by the definition introduced in Sect. 9.5.1, a
partially nested system without self-information is necessarily quasiclassical. �

9.5.4 Summary Table

We have presented four binary relations between agents, namely the precedence,
subsystem, information-memory and decision-memory relations. They provide a
way to classify systems, be they sequential or not.

Now, we summarize prominent properties of the precedence, subsystem,
information-memory and decision-memory binary relations in Table 9.1. For instance,

Table 9.1 Summary of properties of the precedence, subsystem, information-memory and decision-
memory binary relations between agents

Relations between agents

Precedence Subsystem Information- Decision-
memory memory

P S M D

Properties P∗ = S Pre-order Pre-order D⊂ P

No
self-information

⇐⇒ Pc reflexive

No
self-information

⇒ M∩ P−1 = ∅

Station ⇐⇒ Total pre-order

Static team ⇐⇒ P= ∅
Static team ⇐⇒ S= ΔA

Sequential ⇐⇒ Acyclic

Sequential ⇐⇒ (P∞)c reflexive

Sequential ⇐⇒ Pc reflexive and Order

Sequential ⇐⇒ Pc reflexive and Antisym.

Quasiclassical ⇐⇒ Acyclic and M⊃ S⊃ P

Quasiclassical ⇐⇒ (P∞)c reflexive and M⊃ S⊃ P

Classical ⇒ Acyclic Total pre-order

Partially nested ⇐⇒ M⊃ S⊃ P

Partially nested ⇒ P= P∞
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a system is quasiclassical iff S is a pre-order and M ⊃ S ⊃ P; a system without
self-information is such that M ∩ P−1 = ∅.

9.6 Policy Independence of Conditional Expectations
and Dynamic Programming

We now examine optimization issues. In the Witsenhausen intrinsic model introduced
in Sect. 9.2, we suppose that the universe Ω (with the σ-field F) is equipped with a
probability P. Supposing that the solvability/measurability property holds true (see
Definition 9.10), the solution map Sλ : Ω → H, from the universe Ω to the history
space H, can be defined (see Definition 9.11) and is measurable, for any collection
λ ∈ Λad

A of admissible policies (see (9.13)). Given a measurable and bounded5

criterion j̃ : H → R, the optimization problem we consider is

min
λ∈Λad

A

E(j̃ ◦ Sλ), (9.56)

where the expectation E is taken w.r.t. P on (Ω,F).
In Sect. 9.6.1, we recall Witsenhausen’s notion of policy independence of condi-

tional expectations and the prominent conditions under which it holds true. Thanks
to the precedence, subsystem, information-memory and decision-memory relations
exposed in Sect. 9.4, we discuss in Sect. 9.6.2 the Witsenhausen’s conditions making
it possible to decompose an optimization problem into subproblems.

9.6.1 Policy Independence of Conditional Expectations

In [160], Witsenhausen considers an observer whose information is characterized by
a subfield G of the history field H. Once the agents play according to a collection
λ of admissible policies, the solution map Sλ : Ω → H (supposed to exist) gen-
erates a subfield S−1

λ (G) of the σ-field F on the universe Ω (see Remark 9.12). In
general, conditional expectations w.r.t. S−1

λ (G) indeed depend on the collection λ of
admissible policies. The opposite situation when it does not is of particular inter-
est. Following [160], we define policy independence of conditional expectations as
follows.

Definition 9.46 Suppose that the solvability/measurability property holds true (see
Definition 9.10), and recall that Sλ : Ω → H denotes the solution map introduced
in Definition 9.11.

5Bounded is for the sake of simplicity, so that integrability with respect to the probability P is easily
established. A nonnegative criterion would also do.
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Consider a bounded6 measurable function j̃ : (H,H) → R, and a subfield G of
the history field H. The policy independence of conditional expectations property
(PICE) holds true if there exists a G-measurable function J : H → R such that, for
any collection λ ∈ Λad

A of admissible policies, one has that

E
(
j̃ ◦ Sλ

∣∣ S−1
λ (G)

) = J ◦ Sλ, P-a.s.. (9.57)

The crucial requirement in PICE is that the function J : H → R does not depend on
the collection λ ∈ Λad

A of policies.
In [160], Witsenhausen provides conditions—in particular, that the observer

knows what the agents know and do—which ensure policy independence of con-
ditional expectations.

Theorem 9.47 ([160]) Assume that

• either the decision sets {Uα}α∈A are countable or the probability P has countable
support;

• for all α ∈ A, the diagonal of Uα × Uα belongs to Uα ⊗ Uα;
• for all α ∈ A, Iα ⊂ G (the observer knows what the agents know) and Dα ⊂ G

(the observer knows what the agents do).

Then, policy independence of conditional expectations holds true.

Proof We just give a sketch of the proof in the case where the decision sets {Uα}α∈A
are countable. In this case, one can display a probability on UA assigning positive
measure to each singleton. By product with the probability P on (Ω,F), we obtain
a product probability Q on (H,H), independent of the collection λ of admissible
policies. Witsenhausen shows that the image P ◦ S−1

λ of the probability P on H by
the solution map Sλ : Ω → H has a density Tλ w.r.t. Q: P ◦ S−1

λ = TλQ (see
Sect. B.2.4).

We now show that, if the density Tλ : H → R+ is G-measurable, the function
J = EQ

(
j̃

∣∣ G)
satisfies (9.57). Indeed, by (B.23), one has

EP

(
j̃ ◦ Sλ

∣∣ S−1
λ (G)

) = E
P◦S−1

λ

(
j̃

∣∣ G) ◦ Sλ P-a.s..

Then, by (B.22), one obtains

E
P◦S−1

λ
(j̃ | G) = ET

λ
Q(j̃ | G) = EQ

(
Tλj̃ | G)

EQ

(
Tλ | G) = EQ (j̃ | G) Q-a.s., (9.58)

since the term Tλ factors out, being G-measurable.
Now, when is the density Tλ G-measurable? It happens that the support of the

density Tλ is the graph Gλ ⊂ H of the solution map Sλ. Since, for each α ∈
A, the diagonal of Uα × Uα belongs to Uα ⊗ Uα, then the graph Gλ belongs to

6See Footnote 5 in p. 286.
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∨
α∈A (Iα ∨ Dα). Therefore, by assumption Gλ belongs to G. In the same way,

Witsenhausen proves that Tλ is G-measurable.
Notice that the ingredients of the proof are that the imageP◦S−1

λ of the probability
P on H by the solution map Sλ : Ω → H has a density Tλ w.r.t. a fixed probability
Q on H, and that this density Tλ is G-measurable. �

Remark 9.48 In the Witsenhausen counterexample, discussed in Sect. 4.2 and
in Sect. 4.3.5, consider that the decision maker (DM) at time t = 1 is the observer
of the agent identified with the DM at time t = 0. By (4.35), we see that the
observer does not know what the agent t = 0 knows (neither does he know what
agent t = 0 does). Policy independence of conditional expectations does not hold
true, as can be illustrated in Remark 4.2. Indeed, in Eq. 4.18, the policy U0

′ explic-
itly appears in the term C[U0

′ ] in the expression of the conditional expectation

Var
(
W1 | U0

′ + W1

)
(ω) = C[U0

′ ]
(
U0

′(ω) + W1(ω)
)
, P-a.s.. We refer the reader

back to the discussion at p. xv of the preamble on notations, regarding the nota-
tion

[
U0

′]. ♦

9.6.2 Application to Decomposition by Dynamic Programming

In the introduction of this chapter, we discussed the importance of precedence and
information-memory relations to enlighten the phenomena of “signaling”. Now, we
are going to see that precedence, subsystem, information-memory and decision-
memory relations are useful tools to delineate conditions under which an optimization
problem can be decomposed into subproblems. In the last part of [160], Witsenhausen
sketches a decomposition procedure that we try to detail below.

We still consider the optimization problem (9.56) introduced at the beginning
of Sect. 9.6. We assume that Uα contains singletons, for all agents α ∈ A.

Application of PICE
We consider a causal stochastic control system (see Sect. 9.3.2), with a focal agentα ∈
A such that

• A\{α} is a subsystem (see Definition 9.22),
• policy independence of conditional expectations property holds true for G = Iα

(see Definition 9.46).

Under technical assumptions to be found in Theorem 9.47, the above assumptions
are the consequence of the following ones:

• A\{α} is a subsystem: 〈A\{α}〉P ⊂ A\{α},
• the agent α knows what the other agents know: A\{α} ⊂ 〈α〉M,
• the agent α knows what the agents do: A\{α} ⊂ 〈α〉D.

Then, we hint at how these assumptions are building blocks for a decomposition
procedure.

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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By Definition 9.46, since policy independence of conditional expectations prop-
erty holds true for G = Iα, there exists an Iα-measurable function j̃α such that, for
any collection λ ∈ Λad

A of admissible policies:

E
(
j̃ ◦ Sλ

∣∣ S−1
λ (Iα)

) = j̃α ◦ Sλ, P-a.s.. (9.59)

Therefore, since E(j̃ ◦ Sλ) = E

(
E

(
j̃ ◦ Sλ

∣∣ S−1
λ (Iα)

))
by elementary properties

of the conditional expectation recalled in Sect. B.4, the optimization problem (9.56)
now becomes

min
λ∈Λad

A

E(j̃α ◦ Sλ). (9.60)

We need the following lemma that relates subsystems and decomposition of the
solution map.

Lemma 9.49 Suppose that causality, hence the solvability property, holds true (see
Definition 9.10). Let α ∈ A be such that A\{α} is a subsystem. Consider a collection
λ ∈ Λad

A of admissible policies. Then,

1. when restricted to A\{α}, the Eq. (9.16) define a mapping SλA\{α} : Ω → UA\{α}×
Ω , which is the solution map on A\{α};

2. the policy λα may be restricted to the domain UA\{α} × Ω , instead of UA × Ω;
3. the solution map Sλ may be written as

Sλ = (λα ◦ SλA\{α} , SλA\{α}). (9.61)

Proof

1. Among Equations (9.16), consider the subset of equalities

uδ = λδ(
{
uβ

}
β∈A ,ω), ∀δ ∈ A\{α}. (9.62)

Since A\{α} is a subsystem, the policies λδ are U(A\{α})-measurable for δ ∈
A\{α}, hence they do depend only upon the decisions uβ for β ∈ A\{α} (by
the same reasoning as in Remark 9.7, using that Uα contains singletons, for all
agents α ∈ A). Therefore, since the solvability property hold true, this subset of
equalities has, for each ω ∈ Ω , a unique solution which belongs to UA\{α}. This
defines a mapping SλA\{α} : Ω → UA\{α} × Ω , which is the solution map on
A\{α}.

2. Since causality implies absence of self-information, we apply the observation of
Remark 9.7.
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3. To solve (9.16) and obtain thus the solution map Sλ, we first solve the subset of
equalities bearing only on ω and on the decisions uβ for β ∈ A\{α}, since A\{α}
is a subsystem, as proved by item 1. The solution is

{
uβ

}
β �=α

= SλA\{α}(ω). Then,
in (9.16), there only remains the equation

uα = λα(uα,
{
uβ

}
β �=α

,ω) = λα(
{
uβ

}
β �=α

,ω),

where the last equality comes from the property, seen at the previous item, that
the domain of the policy λα may be restricted to UA\{α} × Ω . Equation (9.61) is
derived.

This ends the proof. �

As a consequence of Lemma 9.49, by (9.59) and (9.61), one obtains that

j̃α ◦ Sλ = j̃α(λα ◦ SλA\{α} , SλA\{α}) = (
j̃α(λα(·), ·)

) ◦ SλA\{α} . (9.63)

Now, suppose that there exists λ
�
α : ∏

β �=α Uβ × Ω → Uα such that

j̃α(λ�
α(

{
uβ

}
β �=α

,ω),
{
uβ

}
β �=α

,ω) ≤ j̃α(uα,
{
uβ

}
β �=α

,ω),

∀(uα,ω) ∈ Uα × Ω. (9.64)

This amounts to saying that infuα∈Uα j̃α(uα,
{
uβ

}
β �=α

,ω) is achieved at

λ
�
α(

{
uβ

}
β �=α

,ω) for each (
{
uβ

}
β �=α

,ω). The mapping λ
�
α : ∏

β �=αUβ × Ω → Uα

is extended to a policy λ
�
α : H → Uα by

λ�
α(uα,

{
uβ

}
β �=α

,ω) = λ�
α(

{
uβ

}
β �=α

,ω).

Since the function j̃α is Iα-measurable, it is likely (but technical assumptions may
be required) that the policy λ

�
α : H → Uα is also Iα-measurable, as the arg min of

a Iα-measurable function (though this is a delicate issue, discussed in particular in
[21], and related to measurable selections as discussed in Sect. 8.3).

By combining (9.63) and (9.64), we obtain that

(
j̃α(λ�

α(·), ·)
) ◦ SλA\{α} ≤ (

j̃α(λα(·), ·)
) ◦ SλA\{α} = j̃α ◦ Sλ. (9.65)

Therefore, by elementary properties of the conditional expectation recalled at
Sect. B.4, we have that

E

((
j̃α(λ�

α(·), ·)
) ◦ SλA\{α}

)
≤ E(j̃α ◦ Sλ). (9.66)

http://dx.doi.org/10.1007/978-3-319-18138-7_8
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By the policy independence of conditional expectations property, the function j̃α

does not depend upon any collection λ ∈ Λad
A\{α} of policies. Thus, the optimization

problem (9.60) can be replaced by

min
λ∈Λad

A\{α}
E

((
j̃α(λ�

α(·), ·)
) ◦ SλA\{α}

)
. (9.67)

Hence, at the end of the process, the original optimization problem (9.56) has been
transformed into the optimization problem (9.67): the set A of agents is reduced
to A\{α} and the criterion j̃ is replaced by j̃α

(
λ

�
α(·), ·). Equation (9.64) relating

j̃α

(
λ

�
α(·), ·) to j̃ can be rewritten as

j̃α(λ�
α(

{
uβ

}
β �=α

,ω),
{
uβ

}
β �=α

,ω) = min
uα∈Uα

j̃α(uα,
{
uβ

}
β �=α

,ω). (9.68)

It is the analogue of the Dynamic Programming (DP) equation (4.57) between
value functions (see Sects. 4.4.5 and 4.5.4): In the comparison with the classical DP
equation, the variable (

{
uβ

}
β �=α

,ω) plays the role of the state (see the discussion
in Sect. 4.5.3).

A Decomposition Principle
In the last part of [160], Witsenhausen sketches a decomposition procedure related
to dynamic programming (see Sect. 4.4) as follows.

1. Suppose that the set A of agents is the disjoint union of {α}, B and C .
2. Suppose the policies

{
λγ

}
γ∈C of the agents in C are fixed and known. Then the

system reduces to A′ = {α} ∪ B with an information structure and cost function
obtainable using

{
λγ

}
γ∈C .7

3. Suppose that, in the reduced system, the agents in B form a subsystem of A′
(〈B〉′P ⊂ B), and that agent α knows everything that the agents in B know

(B ⊂ 〈α〉′M) and make (B ⊂ 〈α〉′D).

Remark 9.50 In the state model of Sect. 4.4, the set A of agents is the set of times
{0, . . . , T }. We consider the information structure given by

It = σ
(
u0, u1, . . . , ut−1, x0, w1, w2, . . . , wt

)
, (9.69)

where
(
u0, u1, . . . , ut−1, x0, w1, w2, . . . , wt

)
are here identified with the corre-

sponding coordinate mappings on
∏T −1

s=0 Us × X0 × ∏T
s=1 Ws . We suppose that

7For this, map the reduced history space UA′ ×Ω into the full history space UA ×Ω by associating
with each reduced history (u A′ ,ω) ∈ UA′ × Ω the image Sλ̄(ω) of the solution map, where the
policy λ̄ is given by the constant mapping λ̄β ≡ uβ for β ∈ A′, and by the policies λ̄β = λβ for
β ∈ C . Then, the reciprocal images of the information fields Iβ for β ∈ A′ provide information
fields I′

β over the reduced history space UA′ × Ω .

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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∏T
s=1 Ws is equipped with a product probability (see Sect. B.1.4), so that the coor-

dinate mappings are independent random variables. We set

xt = (
u0, u1, . . . , ut−1, x0, w1, w2, . . . , wt

)
, (9.70)

so that we have a trivial dynamical equation

xt+1 = (
u0, u1, . . . , ut−1, ut , x0, w1, w2, . . . , wt , wt+1

)
= ft (xt , ut , wt+1

)
. (9.71)

The set C of agents corresponds to the times {t +1, . . . , T } and the fixed and known
policies

{
λγ

}
γ∈C correspond to the feedbacks already computed backward from the

horizon T to time t + 1 thanks to the Dynamic Programming (DP) equation (4.57b).
Agent α corresponds to time t . The agents in B correspond to the previous times
{0, . . . , t −1}. By the DP equation, the system indeed reduces to the times {0, . . . , t},
corresponding to A′ = {α} ∪ B, with a cost function obtainable using the optimal
feedbacks yet computed, that is, the cost-to-go (4.54) or value function (4.56) at
time t + 1. In the reduced system, the times {0, . . . , t − 1} form a subsystem of
{0, . . . , t} by (9.69), which expresses sequential causality. The times {0, . . . , t − 1}
are remembered at time t (the information fields in (9.69) are nested). The actions
made at times {0, . . . , t − 1} are known at time t by (9.69). The system is stricly
quasiclassical as defined in Sect. 9.5.1. ♦

The main result in [160] is that if an optimal λ
�
α can be found that solves (9.68),

it is optimal for any fixed choice of the policies of the agents in B by Theorem 9.47.
Witsenhausen concludes that, “adopting λ

�
α, agent α moves into set C , leaving the

smaller set B for further optimization”. He points out that no special relationship is
required between the information subfields Iβ and the decision subfields Dβ . Thus,
the conditions

〈B〉P ⊂ B, B ⊂ 〈α〉M and B ⊂ 〈α〉D (9.72)

are the appropriate ingredients to break a multi-agent optimization problem on
{α} ∪ B into smaller problems on {α} and on B.

9.7 Conclusion

In this chapter, we have examined general systems comprising several agents, mak-
ing decisions in an order which is not fixed in advance. We have presented the
Witsenhausen intrinsic model and four binary relations between agents, which make
it possible to define a typology of systems. When optimization is the issue, Witsen-
hausen’s notion of policy independence of conditional expectations is a key to obtain
a Dynamic Programming-like decomposition of a stochastic optimization problem
into subproblems.

http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4


Chapter 10
Dual Effect for Multi-Agent Stochastic
Input-Output Systems

10.1 Introduction

In stochastic optimal control, a key issue is that “solutions” are searched for in terms
of “closed-loop control laws” over available information and, as a consequence, a
major potential difficulty is the fact that present control may affect future available
information. This is known as the “dual effect” of control, and has been discussed
in Sects. 1.1.3, 1.2.1, 1.3.2 and 4.2.3. Following [13], we will characterize the max-
imal set of closed-loop control laws containing open-loop laws and for which the
information provided by observations closed with such a feedback remains fixed.

For this purpose, we consider in Sect. 10.2 the following variant of the Witsen-
hausen intrinsic model in Sect. 9.2. A multi-agent stochastic input-output system, in
short MASIOS, is a multi-agent stochastic control system as in Sect. 9.2 where the
information of an agent is described by an observation mapping (a signal), and where
measurability is w.r.t. (complete) partition fields and not to σ-fields (see Sects. 3.3.2
and 3.4.2). In parallel to the discussion on the precedence and information-memory
relations for multi-agent stochastic control systems in Sect. 9.4, we introduce their
counterparts for MASIOS, as well as a typology of MASIOS.

The counterpart of a policy in the Witsenhausen intrinsic model in Sect. 9.2 is
a control law, that is, a random variable defined on the universe Ω . An admissible
control law for a focal agent is one that is measurable w.r.t. the agent closed-loop
observation after control (of all agents). A collection of control laws (indexed by the
set of agents) induces a partition of the universe Ω . No open-loop dual effect holds
true when all constant control laws induce the same fixed partition. This is the object
of Sect. 10.3.

Thanks to the typology of MASIOS introduced in Sect. 10.2, we characterize
in Sect. 10.3.3 classes of control laws for which the induced partition coincides with
this fixed partition. Therefore, if we restrict a stochastic optimization problem to
such no dual effect control laws, the discretization of the control laws domain can
be made in advance.

© Springer International Publishing Switzerland 2015
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10.2 Multi-Agent Stochastic Input-Output Systems
(MASIOS)

We introduce a multi-agent stochastic input-output system, which is a multi-agent
stochastic control system as in Sect. 9.2, but where the information of an agent is
described by an observation mapping (a signal), and where measurability is w.r.t.
(complete) partition fields and not to σ-fields. We provide state models, especially
linear ones, as examples inducingMASIOS. In parallel to the discussion on the prece-
dence and information-memory relations for multi-agent stochastic control systems
in Sect. 9.4, we introduce their counterparts for MASIOS, as well as a typology
of MASIOS.

10.2.1 Definition of Multi-Agent Stochastic Input-Output
Systems

Let A be a finite set representing agents. Each agent α ∈ A is supposed to make only
one decision uα ∈ Uα, where Uα is the control set for agent α, equipped with the
complete π-field Uα = 2Uα . Let Ω (universe or sample space) be a measurable set,
with the complete π-field F = 2Ω , which represents all uncertainties: any ω ∈ Ω is
called a state of Nature.

Remark 10.1 We adopt the same formalism as in Chap.9, but for measurability
which, here, is w.r.t. (complete) partition fields and not to σ-fields. We refer the
reader to Sect. 3.3.2 for details. This option makes statements more compact and
proofs more intuitive as compared to measurability w.r.t. σ-fields. ♦

As in (9.1) and (9.2), we define the decision set UA, and we equip it with the
complete product π-field UA (see Remark 3.12), called decision field:

UA :=
∏
α∈A

Uα, UA :=
⊗
α∈A

Uα. (10.1)

The history space H and its associated complete product π-field H, called history
field, are:

H := UA × Ω, H := UA ⊗ F. (10.2)

To each agent α ∈ A is attached an observation function

oα : H → Yα. (10.3)

Remark 10.2 Here, the information of agent α is described by a mapping oα : H →
Yα defined over the history spaceH = UA×Ω , whereas, in Sect. 9.2.2, it is described

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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by an information σ-field Iα ⊂ H. When this σ-field is a π-field (for instance, when
H is finite), the connection between both approaches is given by

Iα = π(oα), (10.4)

where the π-field generated by a mapping has been introduced in Definition 3.32.
♦

Definition 10.3 A multi-agent stochastic input-output system (MASIOS) is a col-
lection consisting of agents A, states of Nature Ω and complete π-field F, control
sets and complete π-fields {Uα,Uα}α∈A, and observation functions {Uα, oα}α∈A.

Example 10.4 For instance, if, in the description of a sequential optimal stochastic
control problem as revealed in Sect. 4.5.1, informations fields It are given by signals
Yt : H → Yt , where (Yt ,Yt ) is some measurable space (see Remark 9.8 and
Eq. (10.4)), we obtain a MASIOS with agents A = {0, . . . , T − 1}. �
Example 10.5 As another example of MASIOS, consider a state model as defined
in Sect. 4.4.1. We set

A = {0, . . . , T }, Ω = X0 ×
T∏

t=1

Wt , (10.5)

so that states of Nature are scenarios

ω = (
x0, w(·)) = (

x0, w1, w2, . . . , wT
)
. (10.6)

Identifying any u ∈ U{0,...,T } with an open-loop feedback γ ≡ u, we now define
different observation functions as follows, with the help of the state map X f (see
Definition 4.6).

When the state xt is observed at time t , this corresponds to

ot (u,ω) = X f [0, x0, u, w(·)]t . (10.7)

The case when past states x0, . . . , xt are observed at time t is given by

ot (u,ω) = (
X f [0, x0, u, w(·)]0, . . . , X f [0, x0, u, w(·)]t

)
. (10.8)

�

10.2.2 Control Laws

Wedefine the counterpart of a policy in theWitsenhausen intrinsicmodel in Sect. 9.2:
it is a control law, that is, a random variable defined on the universeΩ . An admissible

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_4
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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control law for a focal agent is one that is measurable w.r.t. the agent closed-loop
observation after control (of all agents).

Definition 10.6 A control law for agent α is a random variable Uα : Ω → Uα, and
a collection of control laws is a collection {Uβ}β∈A where Uβ : Ω → Uβ . We define
the set of collections of control laws by:

UA :=
∏
β∈A

U
Ω
β =

{
U = {Uβ}β∈A

∣∣∣ Uβ : Ω → Uβ, ∀β ∈ A
}
. (10.9)

We warn the reader that, though typographically close, the notations UA for the
set of collections of control laws in (10.9) and UA for the decision field in (10.1) are
distinct. In what follows, except in Remark 10.10, we do not use the decision field
notation.

Remark 10.7 Both Uα and Ω being equipped with complete π-fields, control laws
are necessarilymeasurable. Notice that a control law for agentα is amapping defined
over the universe Ω , whereas in Sect. 9.2.2 a policy for agent α was represented by a
mapping λα : H → Uα. A parallel can be established between a collection {Uβ}β∈A

of control laws and the mapping Mλ : Ω → UA attached to a collection λ ∈ Λad
A of

admissible policies, when the solvability property holds true (see Definition 9.10).
In this chapter, control laws are random variables (see Definition 3.44). ♦

Definition 10.8 For any collectionU ∈ UA of control laws and for any agentα ∈ A,

the observation of agent α after control is the randomvariable η
U
α : Ω → Yα defined

by

η
U
α (ω) := oα

(
U (ω),ω

)
, ∀ω ∈ Ω. (10.10)

The collection {ηU
β }β∈A of random variables is called closed-loop observations.

In general, the observation available to agent α depends, through the collection U =
{Uβ}β∈A of control laws, upon the control laws of other agents by expanding (10.10)
into

η
U
α (ω) = oα

({Uβ(ω)}β∈A,ω
)
. (10.11)

A control law is said to be admissible for an agent if she makes her decision with
no more than her observation after control.

Definition 10.9 An admissible control law for agent α is a control law Uα : Ω →
Uα such that

Uα 	 η
U
α . (10.12)

The set of admissible (collections of) control laws is defined by:

Uad
A :=

{
U = {Uα}α∈A ∈ UA

∣∣∣ Uα 	 η
U
α , ∀α ∈ A

}
. (10.13)

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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The measurability constraint Uα 	 η
U
α is taken in the sense of measurability with

respect to partition fields as in Definition 3.32 (see also Proposition 3.35).

Remark 10.10 Here, admissible control laws and the measurability constraint Uα 	
η

U
α are the counterparts of admissible policies λα : H → Uα measurable w.r.t. Iα,
that is, satisfying λ−1

α (Uα) ⊂ Iα as in Definition 9.6. ♦
Remark 10.11 When not specified, the notation	 is relative to mappings with com-
mon domain Ω (see Sect. 3.4.2). ♦

A special class of admissible control laws is the one made of open-loop or deter-
ministic or constant control laws.

Definition 10.12 The set ⊥A of open-loop control laws, or deterministic control
laws, consists of the constant control laws, namely control laws measurable w.r.t. the
trivial π-field {∅,Ω} on Ω:

⊥A := {
U = {Uα}α∈A ∈ UA

∣∣ Uα 	 {∅,Ω}, ∀α ∈ A
}
. (10.14)

Each Uα : Ω → Uα in U = {Uα}α∈A ∈ ⊥A takes a constant value in Uα. The
notation ⊥A refers to the fact that the class of constant mappings is the bottom of
the lattice of equivalence classes of mappings (see Proposition 3.42).

10.2.3 Precedence and Memory-Communication Relations

Thanks to the connection (10.4) between information fields and observations, we can
characterize, in the MASIOS framework of Sect. 10.2, the precedence and memory-
communication binary relations already introduced in Sect. 9.4.

For this purpose,wemake use of the following notations. Consider B ⊂ A a subset
of agents. We set

u B := {uβ}β∈B, (10.15)

and, for any collection {Hα}α∈A of mappings defined over Ω ,

HB := {Hβ}β∈B . (10.16)

The precedence binary relationP of Definition 9.15 identifies couples of agents,
where the decision of the first agent indeed influences the observation of the second.
By the correspondence (10.4), the subset 〈α〉P of predecessors of α is (the smallest
subset) such that there exist a mapping õα satisfying

oα(u,ω) = õα(u〈α〉P ,ω), (10.17)

expressing that oα(u,ω) depends only on the components u〈α〉P = {uβ}β∈〈α〉P of
the decision u.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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The memory-communication binary relationM of Definition 9.32 identifies cou-
ples of agents, where the observation of the first one is passed on to the second
one. By the correspondence (10.4), the subset 〈α〉M of agents whose information is
embedded within the information of agent α is (the largest subset) such that:

o〈α〉M (·, ·) 	UA×Ω oα(·, ·), ∀α ∈ A. (10.18)

Here, we specify that measurability is w.r.t. to mappings with domain UA × Ω (see
Remark 10.11).

10.2.4 A Typology of MASIOS

Thanks to the precedence and information-memory relations, we now introduce a
typology of MASIOS, inspired from the discussion in Sect. 9.5.1.

Partially Nested MASIOS
We say that aMASIOS is partially nested when the precedence relationP is included
in the memory-communication relationM, that is, when

〈α〉P ⊂ 〈α〉M, ∀α ∈ A, (10.19)

or, by (10.18), when

o〈α〉P (·, ·) 	UA×Ω oα(·, ·), ∀α ∈ A. (10.20)

Remark 10.13 A consequence of Proposition 3.39 and of (10.20) is that, for all U ∈
UA, we have that o〈α〉P

(
U (·), ·

) 	 oα

(
U (·), ·

)
for all U ∈ UA. This property is taken

as the definition of a partially nested information structure in [81, 83]: it imposes
conditions on the closed-loop observations (10.10), so that measurability is w.r.t. to
mappings with domain Ω (see Remark 10.11). On the contrary, assumption (10.20)
is an “open-loop” assumption, which does not require assumptions w.r.t. the closed-
loop observations, and which makes use of measurability w.r.t. to mappings with
domain UA × Ω . ♦

Sequential MASIOS
Consider the case where each agent in A is supposed to represent a time period t :

A = {0, . . . , T } where T ∈ N
∗. (10.21)

With the notations of Sect. 10.2.3, and especially Eq. (10.1), we have that

T∏
t=0

Ut = U{0,...,T }. (10.22)

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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Following Sect. 9.5.1, the MASIOS given by the family {ot }t=0,...,T of observation
functions

ot : U{0,...,T } × Ω → Yt (10.23)

is said to be a sequential MASIOS if it is sequential with the ordering 0, . . . , T .
By (9.50) and with the notations of Sect. 10.2.3, this is equivalent to

〈0〉P = ∅ and 〈t〉P ⊂ {0, . . . , t − 1}, ∀t ∈ {1, . . . , T }. (10.24)

In other words, the observation at time t depends at most upon the past decisions
u0, . . . , ut−1 (and the state of Nature ω). Indeed, by (10.17) and Proposition 3.38,
there exist mappings õt , for t = 0, . . . , T , such that

ot (u0, . . . , uT ,ω) = õt (u0, . . . , ut−1,ω), ∀t = 1, . . . , T, (10.25)

with the special case o0(u0, . . . , uT ,ω) = õ0(ω).

Example 10.14 Following Example 10.5, consider the MASIOS induced by a state
model as defined in Sect. 4.4.1. It can be checked that any expression of the form
(with X f the state map of Definition 4.6)

ot (u,ω) = õt
(
X f [0, x0, u, w(·)]0, . . . , X f [0, x0, u, w(·)]t , w(·)) (10.26)

defines a sequential MASIOS. This includes imperfect and corrupted observations
of the past states.

An important class of sequentialMASIOS is given by linear state models with lin-
ear observations.More precisely, linear statemodels are those forwhich the dynamics
ft : Xt ×Ut ×Wt+1 → Xt+1 are linear mappings. Linear observations correspond
to ot (u,ω) being a linear expression in w(·), X f [0, x0, u, w(·)]0, . . . , X f [0, x0, u,

w(·)]t . �

Quasiclassical MASIOS
As in Sect. 9.5.1, we say that a MASIOS is quasiclassical if it is sequential (with the
ordering 0, . . . , T ) and partially nested, that is,

〈0〉P = ∅ and 〈t〉P ⊂ {0, . . . , t − 1} ∩ 〈t〉M, ∀t ∈ {1, . . . , T }. (10.27)

In other words, if decisions made at time s affect the observation ot (s ∈ 〈t〉P),
then s ≤ t − 1 and the observation os is embedded in the observation ot . Indeed,
by s ∈ 〈t〉M, (10.18) and Proposition 3.38, there exists a mapping fs,t such that
os = fs,t (ot ).

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_4
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Classical MASIOS
We say that a sequential MASIOS (with the ordering 0, . . . , T ) displays perfect
memory if

{0, . . . , t} ⊂ 〈t〉M, ∀t ∈ {0, . . . , T }. (10.28)

Information accumulates with time, that is, the π-fields It = π(ot ) form a filtration:

I0 ⊂ · · · ⊂ It−1 ⊂ It ⊂ · · · ⊂ IT . (10.29)

As a consequence of (9.52), a sequential MASIOS displaying perfect memory is
classical (see Sect. 9.5.1), hence quasiclassical, with the ordering 0, . . . , T .

Remark 10.15 Define closed-loop perfect memory as the property that, for all t =
0,…, T ,

ot
(
U (·), ·

) 	Ω ot+1
(
U (·), ·

)
, ∀U ∈ Uad

A . (10.30)

As in Remark 10.13, this definition imposes conditions on the closed-loop obser-
vations (10.10), so that measurability is w.r.t. to mappings with domain Ω (see
Remark 10.11). In contrast, Assumption (10.28) for the definition of perfect mem-
ory is an “open-loop” assumption, which does not require assumptions w.r.t. the
closed-loop observations, and which makes use of measurability w.r.t. to mappings
with domain U{0,...,T } × Ω . Open-loop perfect memory (10.28) implies closed-loop
perfect memory (10.30). Notice that a weaker form of open-loop perfect memory,
namely

ot (u, ·) 	Ω ot+1(u, ·), ∀u ∈ U{0,...,T },

does not imply closed-loop perfect memory (10.30). This can directly be seen with
the following example: let o0(ω) = ω and o1(u,ω) = u − ω; then o0(·) 	 o1(u, ·)
for all u; whereas, for U (ω) = ω, this U is admissible since U 	 o0, but obviously
o0(·) �	 o1

(
U (·), ·

)
since the latter is the zero mapping. ♦

10.3 No Open-Loop Dual Effect and No Dual Effect
Control Laws

A collection of control laws induces a partition of the universe Ω . We say that no
open-loop dual effect holds true when all constant control laws induce the same fixed
partition.

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
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10.3.1 No Open-Loop Dual Effect (NOLDE)

We now introduce the notion of no open-loop dual effect. For this purpose, we use
the measurability equivalence ≡ between mappings of Definition 3.40.

Definition 10.16 The property of no open-loop dual effect (NOLDE) holds true for
the MASIOS discussed in Sect. 10.2 if we have that:

η
U
α ≡ η

U ′
α , ∀(U , U ′) ∈ ⊥A × ⊥A, ∀α ∈ A. (10.31)

In the case of NOLDE, for any agent α ∈ A, all observations after open-loop con-
trol are equivalent, in the sense of measurability equivalence between mappings of
Definition 3.40. Therefore, all observations after open-loop control are equivalent to
a fixed mapping1 ζα with domain Ω:

η
U
α ≡ ζα, ∀U ∈ ⊥A. (10.32)

Example 10.17 It is shown in [128] that linear state models with linear observations,
as defined in Example 10.14, possess the NOLDE property if they display perfect
memory as defined in Sect. 10.2.4. �
Remark 10.18 In [82], Eq. (5) expresses a similar property. ♦

The following proposition, adapted from [13], is a straightforward consequence
of Proposition 3.41.

Proposition 10.19 The property of no open-loop dual effect (NOLDE) holds true if,
and only if, there exist a collection of mappings {fα}α∈A where fα : UA ×Zα → Yα

and a collection {ζα}α∈A of random variables where ζα : Ω → Zα such that

• the partial mapping fα(u, ·) : Zα → Yα is injective, for all u ∈ UA;
• the observations satisfy oα(u,ω) = fα

(
u, ζα(ω)

)
, for all (u,ω) ∈ UA × Ω .

10.3.2 No Dual Effect Control Laws

No dual effect control laws are those control laws for which, in case of NOLDE, the
closed-loop observations induce the same partitions as the constant control laws.

Definition 10.20 Assume that the NOLDE property holds true, with the fixed obser-
vations ζ as in (10.32). The no dual effect control laws set is made of all admissi-
ble control laws such that the closed-loop observations are equivalent to the fixed
mapping ζα:

1For instance, take for ζα any mapping of the class of η
U
α for U ∈ ⊥A.

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Unde
A :=

{
U = {Uα}α∈A ∈ UA

∣∣∣ η
U
α ≡ ζα, ∀α ∈ A

}
∩ Uad

A . (10.33)

Thus, “closing” the system with any control law belonging to the no dual effect
control law set produces the same fixed closed-loop observations.

Definition 10.21 Assume that the NOLDE property holds true, with the fixed obser-
vations ζ as in (10.32). The set of control laws measurable w.r.t. the fixed observations
ζ = {ζα}α∈A is defined by:

Uζ
A := {

U = {Uα}α∈A ∈ UA
∣∣ Uα 	 ζα, ∀α ∈ A

}
. (10.34)

We have the following relation between the no dual effect control laws set Unde
A

in (10.33) and the set Uζ
A in (10.34).

Proposition 10.22 Assume that the NOLDE property holds true, with the fixed
observations ζ as in (10.32). Then, no dual effect control laws are necessarily mea-
surable w.r.t. the fixed observation ζ, that is,

Unde
A ⊂ Uζ

A. (10.35)

Proof Let U = {Uα}α∈A ∈ Unde
A . On the one hand, we have that Uα 	 η

U
α , for all

agent α ∈ A, since U ∈ Uad
A by (10.33) and (10.13). On the other hand, we have

that η
U
α ≡ ζα by (10.33) and (10.32). Thus, Uα 	 η

U
α ≡ ζα. Since this holds true

for any agent α, we conclude that U ∈ Uζ
A. �

10.3.3 Characterization of No Dual Effect Control Laws

We now characterize the no dual effect control laws according to the typology dis-
cussed in Sect. 10.2.4. We use the following two lemmas.

Lemma 10.23 Consider three mappings Hi : Ω → Yi , i = 1, 2 and f : Y1×Ω →
Y3. Assume that, for all y1 ∈ Y1, f (y1, ·) 	 H2(·) and that H1(·) 	 H2(·). Then
f
(
H1(·), ·

) 	 H2(·).

Proof Let (ω,ω′) ∈ Ω2 be such that H2(ω) = H2(ω
′). Since H1(·) 	 H2(·), we

have that H1(ω) = H1(ω
′) by Proposition 3.38. Putting y1 = H1(ω) = H1(ω

′), we
thus get f (y1,ω) = f (y1,ω′) since f (y1, ·) 	 H2(·). We conclude that

f
(
H1(ω),ω

) = f (y1,ω) = f (y1,ω
′) = f

(
H1(ω

′),ω′).
The proof is complete by Proposition 3.38. �

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Lemma 10.24 Let Hi : Ω → Yi , i = 1, 2 and f : Y1 × Ω → Y3. Assume that,
for all y1 ∈ Y1, H2(·) 	 f (y1, ·), and that H1(·) 	 f

(
H1(·), ·

)
. Then H2(·) 	

f
(
H1(·), ·

)
.

Proof Let (ω,ω′) ∈ Ω2 be such that f
(
H1(ω),ω

) = f
(
H1(ω

′),ω′). Since H1(·) 	
f
(
H1(·), ·

)
, we have that H1(ω) = H1(ω

′). Putting y1 = H1(ω) = H1(ω
′), we thus

get
f (y1,ω) = f

(
H1(ω),ω

) = f
(
H1(ω

′),ω′) = f (y1,ω
′).

On the other hand, we have that H2(·) 	 f (y1, ·), so that H2(ω) = H2(ω
′). The

proof is complete by Proposition 3.38. �

Partially Nested MASIOS
The following main result, established in [13], provides a description of the set of
no dual effect control laws for MASIOS displaying the NOLDE property.

Theorem 10.25 ([13]) Assume that the NOLDE property holds true, with the fixed
observations ζ as in (10.32). Assume that the MASIOS is partially nested as in (10.20).
Then, the no dual effect control laws in (10.33) are exactly the admissible control laws
which are measurable w.r.t. the fixed observation ζ:

Unde
A = Uad

A ∩ Uζ
A. (10.36)

Proof By Proposition 10.22, it suffices to show that Uad
A ∩ Uζ

A ⊂ Unde
A .

Let U = {Uβ}β∈A ∈ Uad
A ∩ Uζ

A, that is,

Uβ 	 ζβ and Uβ 	 η
U
β , ∀β ∈ A. (10.37)

Let α ∈ A be fixed: we now prove that both η
U
α 	 ζα and ζα 	 η

U
α hold true. We

use the property that, by Eq. (10.17) and by abuse of notation (see (10.16)),

η
U
α = η

U〈α〉P
α , ∀α ∈ A. (10.38)

First, we show that η
U
α 	 ζα. For any u ∈ UA (identified with a constant control

law), we have that:

U〈α〉P = {Uβ}β∈〈α〉P by (10.16)

≡
∨

β∈〈α〉P
Uβ by Proposition 3.42

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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∨

β∈〈α〉P
ζβ because Uβ 	 ζβ by (10.37)

≡
∨

β∈〈α〉P
oβ(u, ·), ∀u ∈ UA by (10.31), (10.32) and (10.10)

≡ {oβ(u, ·)}β∈〈α〉P by Proposition 3.42

≡ o〈α〉P (u, ·) by (10.16)

	 oα(u, ·) by (10.20)

≡ ζα(·) by (10.32).

Therefore, we have that, on the one hand, U〈α〉P (·) 	 oα(u, ·) ≡ ζα(·) and, on the

other hand, oα(u, ·) = õα(u〈α〉P , ·) ≡ ζα(·), for all u ∈ UA by (10.17) and (10.32).
By Lemma 10.23, we deduce that:

η
U〈α〉P
α (·) = õα

(
U〈α〉P (·), ·

) 	 ζα(·).

By (10.38), we conclude that

η
U
α 	 ζα.

Second, we prove that ζα 	 η
U
α . We have that

U〈α〉P = {Uβ}β∈〈α〉P by (10.16)

≡
∨

β∈〈α〉P
Uβ by Proposition 3.42

	
∨

β∈〈α〉P
η

U
β because Uβ 	 η

U
β by (10.37)

≡ η
U
〈α〉P by (10.16) and Proposition 3.42

= o〈α〉P
(
U (·), ·

)
by (10.10)

	 oα

(
U (·), ·

)
by the partially nested property (10.20)

= õα

(
U〈α〉P (·), ·

)
by (10.17).

Therefore, on the one hand, we have just proven that

U〈α〉P (·) 	 õα

(
U〈α〉P (·), ·

)
.

On the other hand, for all u ∈ UA, we have that
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ζα(·) ≡ ηu
α(·) by (10.32)

= oα(u, ·) by (10.10)

= õα(u〈α〉P , ·) by (10.17).

By Lemma 10.24, we deduce that

ζα(·) 	 õα

(
U〈α〉P (·), ·

)
.

By (10.38), we conclude that

ζα 	 η
U〈α〉P
α = η

U
α .

This completes the proof. �

Quasiclassical MASIOS
For sequential MASIOS, where each agent is supposed to represent a time period,
we are able to obtain a result that is more precise than Theorem 10.25. Indeed, we
now show that, for quasiclassical MASIOS displaying the NOLDE property, the no
dual effect control laws are the control laws which are measurable w.r.t. the fixed
observations.

Proposition 10.26 Assume that the NOLDE property holds true, with the fixed
observations ζ as in (10.32). Assume that the MASIOS is quasiclassical, as in
Sect.10.2.4 with the ordering 0, . . . , T of agents. Then, the no dual effect control laws
in (10.33) are the control laws which are measurable w.r.t. the fixed observation ζ,
that is,

Unde{0,...,T } = Uζ
{0,...,T }. (10.39)

Proof By Proposition 10.22, it suffices to show that Uζ
{0,...,T } ⊂ Unde{0,...,T }. Let U =

{Ut }t=0,...,T ∈ Uζ
{0,...,T }, that is,

Ut 	 ζt , ∀t = 0, . . . , T . (10.40)

We prove by induction that

(
∀t = 0, . . . , T, Ut 	 ζt

)
⇒

(
∀t = 0, . . . , T, Ut (·) 	 ot

(
U (·), ·

))
.

Let the induction assumption H(t) be

(
∀s = 0, . . . , t, Us 	 ζs

)
⇒

(
∀s = 0, . . . , t, Us(·) 	 os

(
U (·), ·

))
.

Suppose that U0(·) 	 ζ0(·). By (10.31), we know that ζ0(·) ≡ o0(u, ·), for all
u ∈ U. However, o0 is independent of u, since agent 0 has no predecessor ([0] = ∅).
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Thus, we conclude that

U0(·) 	 o0(u, ·) = o0
(
U (·), ·

)

and the induction assumption H(0) holds true.
Assume that the induction assumption H(t − 1) holds true, and suppose that

Us 	 ζs, ∀s = 0, . . . , t. (10.41)

We have that

U〈t〉P (·) =
∨

s∈〈t〉P
Us(·) by (10.16)

	
∨

s∈〈t〉P
os

(
U (·), ·

)
by assumption H(t − 1)

and since 〈t〉P ⊂ {0, . . . , t − 1} by (10.27)

	
∨

s∈〈t〉M
os

(
U (·), ·

)
by the partially nested property (10.19)

≡ o〈t〉M
(
U (·), ·

)
by (10.16)

	 ot
(
U (·), ·

)
by (10.18)

= õt
(
U〈t〉P (·), ·

)
by (10.17).

Therefore, we have proved that

U〈t〉P (·) 	 õt
(
U〈t〉P (·), ·

) = ot
(
U (·), ·

)
.

Now, on the other hand, we have that

Ut (·) 	 ζt (·) ≡ ot (u〈t〉P , ·), ∀{us}s∈{0,...,T } ∈ U{0,...,T },

by (10.41), (10.31) and (10.17). We now use Lemma 10.24 with H1 = Ut and
f (u,ω) = ot (u,ω) to obtain that2

Ut (·) 	 ot
(
U (·), ·

)
. (10.42)

Thus, assumption H(t) holds true. This completes the induction. �

2In fact, we use a slight variation of Lemma 10.24. Indeed U〈t〉P (·) 	 ot
(
U〈t〉P (·), ·

)
is a weaker

assumption than U (·) 	 ot
(
U (·), ·

)
However, thanks to (10.17), the proof of Lemma 10.24 can

easily be adapted to obtain the same conclusion.
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Proposition 10.26 applies to sequential MASIOS displaying perfect memory
because, as a consequence of (9.52), they are classical (see Sect. 9.5.1), hence qua-
siclassical, with the ordering 0, . . . , T .

10.4 Conclusion

In this chapter, we have more deeply analyzed the “dual effect” of control previously
discussed in Sects. 1.1.3, 1.2.1, 1.3.2 and 4.2.3. The specificity of sequential systems
with perfect memory has been emphasized.When they display the NOLDE property,
the nodual effect control lawshave a simple characterization: they are the control laws
which are measurable w.r.t. the fixed observations. Therefore, this chapter brings to
light another element possibly explaining the importance of sequential systems with
perfect memory in stochastic control.

http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_1
http://dx.doi.org/10.1007/978-3-319-18138-7_4


Appendix A
Basics in Analysis and Optimization

The purpose of this appendix is to briefly review basic notions and results in Analysis
and Optimization Theory. We refer the reader to the numerous textbooks on the topic
(e.g. [19, 27, 46, 69, 78, 79, 102, 103, 105]) for a deeper andmore rigorous treatment.
Only deterministic problems are considered here.

A.1 Convexity, Continuity and Differentiability

We are dealing in this appendix with Hilbert spaces. A Hilbert space U is a vector
space endowed with a topology deriving from a norm, denoted ‖·‖, which itself
derives from a scalar product, denoted 〈·, ·〉—that is, ‖u‖2 = 〈u, u〉—and such
that U is complete for this topology. The topological dual of U, denoted U

�, is the
set of continuous linear forms (linear mappings from U to R) over U. By Riesz
representation theorem (see [136, Theorem 4.12]), every element � of U� can be
represented as a mapping u �→ 〈l, u〉 for some l in U. Thus, U� is identifiable to U

by � �→ l, and we allow the notation 〈�, u〉 instead of �(u) (in this case, 〈·, ·〉 may
be viewed as the duality product rather than as the scalar product). In addition to
the strong topology of U, the weak topology is also useful to consider for infinite
dimensional spaces (for finite dimensional Hilbert spaces they coincide): u converges
weakly towards v in the weak topology (this is denoted u ⇀ v) if, for all � ∈ U

�,
〈�, u〉 → 〈�, v〉.

Consider a Hilbert space U. A cone (with vertex at 0) is a subset of U such that
if u belongs to it, then αu also belongs to it for all α ∈ R

+. Let U be a subset of U.
The normal cone to U at the point u0 in U is defined by

NU (u0) := {r ∈ U | 〈r, u − u0〉 ≤ 0, ∀u ∈ U
}
. (A.1)

Note that NU (u0) is actually a cone with vertex at 0 (and not at u0).

© Springer International Publishing Switzerland 2015
P. Carpentier et al., Stochastic Multi-Stage Optimization, Probability Theory
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Let J be a real-valued function overU. The graph of J is the set of all points of the
form

(
u, J (u)

)
, and the epigraph epi J of J is defined as the subset of points (u, y)

of U × (R ∪ {+∞}) such that y ≥ J (u).

A.1.1 Convex Functions and Subsets

Convexity theory plays a crucial role in optimization. Classical references are [64,
131]. A real-valued function J over a Hilbert space U is convex if

∀u, v ∈ U, ∀α ∈ [0, 1], J
(
αu + (1 − α)v

) ≤ αJ (u) + (1 − α)J (v).

It is strictly convex if the inequality is strict whenever α ∈ (0, 1) and u 
= v; it is
strongly convex with modulus a if there exists a > 0 such that, for all u and v in U

and all α in [0, 1],

J
(
αu + (1 − α)v

) ≤ αJ (u) + (1 − α)J (v) − a

2
α(1 − α)‖u − v‖2.

A function J is concave if −J is convex (similar definition for strict and strong
concavity).

As seen later on, it is useful to allow convex functions to assume the value +∞.
Let denote R = R ∪ {−∞} ∪ {+∞}. The domain dom J of a convex function
J : U → R is defined as

dom J = {u ∈ U | J (u) < +∞} .

A convex function is proper if its domain is nonempty and if it nowhere assumes the
value −∞.

The notion of convexity is also relevant for subsets U of a vector space U: U is
convex if

∀(u, v) ∈ U 2, ∀α ∈ [0, 1], αu + (1 − α)v ∈ U.

Indeed, the notion of convexity of functions is intimately related to that of subsets.
If the former is introduced first, then the latter can be derived by means of the
characteristic function χU of a subset U defined as

χU (u) =
{
0 if u ∈ U,

+∞ otherwise.
(A.2)

Then, the subset U is convex iff χU is a convex function. Conversely, if convex
subsets have been defined first, a function J is convex iff epi J is a convex subset.
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Convexity of functions is preserved by the following operations:

• if J : U → R is convex and K : R → R is convex and nondecreasing, then K ◦ J
is convex;

• if Ji , i = 1, . . . , n, is a collection of convex functions and αi are nonnegative
numbers, then

∑n
i=1 αi Ji is a convex function;

• also the upper hull supi Ji is convex (in terms of epigraphs, this operation corre-
sponds to the intersection of epigraphs);

• if J : U × V → R is convex jointly in u and v, then the function

u �→ inf
v

J (u, v)

is convex in u (but, in general, the lower hull of a family of convex functions is
not convex).

If a subset U is not convex, there exists a smallest convex subset containing U :
namely, this set is generated by all convex combinations of pairs of points belonging
to U , that is, points of the form αu + (1 − α)v, where α ranges in [0, 1] and (u, v)

range in U × U ; it is called the convex hull of U and is denoted coU . An even more
useful notion is that of closed convex hull coU which is the (topological) closure
of coU .

These notions transfer to functions by making use of their associated epigraphs.
The convex hull co J of a function J is the largest convex function the graph of
which lies below that of J , and the closed convex hull co J of J is the largest convex
function the graph of which lies below that of J and which has a closed epigraph: as
seen below, this corresponds to the lower semicontinuity of J (Fig.A.1).

A.1.2 Continuity and Lower Semicontinuity

Let U and V be two Hilbert spaces.

Definition A.1 A function J : U → V is continuous at u0 ∈ U if

‖u − u0‖ → 0 ⇒ ‖J (u) − J (u0)‖ → 0.

A function is Lipschitz continuous with modulus L if

Fig. A.1 Discontinuities of
l.s.c. function
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∃L > 0, ∀u, v ∈ U, ‖J (u) − J (v)‖ ≤ L ‖u − v‖ .

Of course, Lipschitz continuity is stronger than continuity. For example, the real
function u �→ √

u over the domain u ≥ 0 is continuous but not Lipschitz continuous.
Essentially, convex functions are continuous in the interior of their domain (see

Theorem A.3 below). For convex functions, discontinuities may thus arise at the
boundary of their domain (refer to the characteristic function of a convex subset as
an example). In this case, lower semicontinuity is desirable if the function is going
to be minimized (see Fig.A.2).

Definition A.2 (lower semicontinuity) A real-valued function J over aHilbert space
U is lower semicontinuous (abbreviated as l.s.c.) at u0 if

lim inf
u→u0

J (u) ≥ J (u0).

An alternative definition is that the function has a closed epigraph. A characteristic
function is l.s.c. iff the corresponding subset is closed.

Theorem A.3 A proper convex function J : U → R is continuous in every point
in the interior of dom J in the neighborhood of which J is bounded from above. A
proper l.s.c. convex function J is continuous in the interior of its domain.

It is important to remark that an l.s.c. function is not necessarily l.s.c. when the
domain space is equipped with the weak topology (instead of the strong one). But
this is true for convex functions. Indeed, closed convex subsets are still closed when
the space is equipped with the weak topology instead of the strong one, hence the
result for convex functions when considering their epigraphs.

A.1.3 Fenchel-Legendre Transformation

Let U be a Hilbert space and J : U → R ∪ {+∞} be a function taking values in
the extended real line. The Fenchel conjugate (also called convex conjugate) is the
function J � : U → R ∪ {+∞} defined by:

J �(p) := sup
u∈U

(
〈p , u〉 − J (u)

)
.

Fig. A.2 A non l.s.c.
function may not reach its
minimum
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The Fenchel conjugate of a function J is always convex and lower semi-continuous.
Let J �� be the biconjugate of J , that is, the Fenchel conjugate of J �:

J �� = (J �
)�

.

The biconjugate J �� is the largest convex lower semi-continuous function less than
or equal to J . By definition of the closed convex hull of J , one has that J �� = co J ,
and J �� ≤ J . For a proper function J , one has that J �� = J iff J is convex and
lower semi-continuous (Fenchel-Moreau theorem).

For any function J and its Fenchel conjugate J �, Fenchel’s inequality (also known
as the Fenchel-Young inequality) holds:

∀u ∈ U, ∀p ∈ U, 〈p , u〉 ≤ J (u) + J �(p).

A.1.4 Differentiability and Subdifferentiability

A function J : U → R is Fréchet-differentiable at u0 if there exists an element of
U

�, denoted J ′(u0) and called the derivative of J at u0, such that

lim
u→u0

J (u) − J (u0) − 〈J ′(u0), u − u0
〉

‖u − u0‖ = 0.

A directional derivative of J at u0 in the direction v, denoted D J (u0; v), is defined
as the following limit, if this limit exists,

D J (u0; v) = lim
ε→0+

J (u0 + εv) − J (u0)

ε
.

If J is Fréchet-differentiable, then D J (u0; v) = 〈J ′(u0), v
〉
. More generally, if the

directional derivative is a continuous linear function of the direction v, the function J
is said Gâteaux-differentiable. Note that Fréchet differentiability is stronger than
Gâteaux differentiability in that limits must exist when points u move to u0 along
any path and not only radially. However, the latter notion is generally sufficient in the
context of optimization theory, and “differentiability” generally refers to Gâteaux-
differentiability in this book.

The gradient of J at u0 is the element ofU to which J ′(u0) can be identified by the
Riesz theorem (see Sect.A.1), and it is denoted ∇ J (u0). If U is finite-dimensional,
J ′(u) should be considered as a row vector whereas∇ J (u), its transpose, is a column
vector of the same dimension as u. Likewise, in general, for a real-valued function G
of two variables u and v, ∇uG(u, v) denotes the primal counterpart of the partial
derivative∂G(u, v)/∂u, that is, the derivative of the function u �→ G(u, v) at point u.
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Remark A.4 Consider now a mapping Θ from U to another Hilbert space V. The
derivativeΘ ′(u) is a continuous linear mapping fromU toV. If both spaces are finite
dimensional, Θ ′(u) may be represented by a matrix whose column number is the
dimension ofU and row number is the dimension ofV: this is known as the Jacobian
matrix. Its transpose1 is consistently denoted∇Θ(u). In infinite dimensions,∇Θ(u)

is the dual or adjoint linear operator, from V to U, of Θ ′(u). ♦

The second-order derivative, denoted J ′′, is of course defined as the derivative of
the first-order derivative u �→ J ′(u), provided this first-order derivative exists and is
differentiable. Since J ′ maps U to U�, J ′′(u) (the second-order derivative evaluated
at u) is a linear mapping from U to U

� which is represented by a symmetric matrix
if U is finite dimensional.2 If J ′′ exists, we also say that J is “twice differentiable”.

Even if they are continuous, convex functions are not necessarily differentiable:
an example is the mapping on R: u �→ |u|, the graph of which has a corner at 0. The
notion of subgradient of a convex function is based on the fact that “a differentiable
convex function is above all its tangents”, namely,

∀(u0, u) ∈ U
2, J (u) − J (u0) ≥ 〈∇ J (u0), u − u0〉 .

Definition A.5 The subdifferential of a convex function J : U → R at u0 is denoted
∂ J (u0), if nonempty. It is the subset of U defined as

∂ J (u0) := {r ∈ U
∣
∣ ∀u ∈ U, J (u) − J (u0) ≥ 〈r, u − u0〉

}
.

An element of ∂ J (u0) is called a subgradient of J at u0, and J is subdifferentiable
at u0 if it admits at least one subgradient at this point.

At every point of subdifferentiability, the subdifferential is closed and convex. It is
the set of slopes of supporting hyperplanes of the epigraph of the function at this
point (see Fig.A.3).

One has the following interesting formula

D J (u0; v) = max
r∈∂ J (u0)

〈r, v〉 , (A.3)

Fig. A.3 Supporting
hyperplanes of the epigraph

1Transposition is denoted by the superscript �.
2In infinite dimension, it is “self-adjoint”.
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which shows that J is Gâteaux-differentiable iff its subdifferential is reduced to a
singleton.

Example A.6 An interesting example of a subdifferential is that of the characteristic
function χU of a closed convex subset U . If u0 lies in the boundary3 of U , and if u
ranges in U , one has that

r ∈ ∂χU (u0) ⇒ χU (u)
︸ ︷︷ ︸

0

−χU (u0)︸ ︷︷ ︸
0

≥ 〈r, u − u0〉 .

This inequality and Eq. (A.1) show that any r belonging to the normal cone to U at
u0 is an element of ∂χU (u0) (this normal cone reduces to a half line at points where
the boundary is smooth—see Fig.A.4). �
Example A.7 Another interesting example of a subdifferential is that of the upper
hull of a family of convex functions

J (u) = sup
v

G(u, v),

where G is convex in u for all v. Denoting V̂ (u) = argmaxv G(u, v), and under
technical assumptions (see [49]), we have that

∂ J (u) = co ∂uG
(
u, V̂ (u)

) = co
⋃

v∈V̂ (u)

∂uG(u, v). �

A (possibly set-valued) mapping A : U → 2U, u �→ A(u) is monotone if

∀(u, v) ∈ U
2, ∀r ∈ A(u), ∀s ∈ A(v), 〈r − s, u − v〉 ≥ 0.

uu
U

r0

u1

Fig. A.4 Normal cones at u0 and u1

3Otherwise, either ∂χU (u0) = {0} if u0 belongs to the interior of U , or no subgradients exist
outside U .
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It is strongly monotone with modulus a if

∃a > 0, ∀(u, v) ∈ U
2, ∀r ∈ A(u), ∀s ∈ A(v), 〈r − s, u − v〉 ≥ a ‖u − v‖2 .

For the (finite dimensional) linear operator associated with a matrix, monotonicity
amounts to nonnegative definiteness whereas strong monotonicity is equivalent to
positive definiteness.4

For a subdifferentiable convex function J , the set-valuedmapping∂ J ismonotone;
it is strongly convex with modulus a iff ∂ J is strongly monotone with modulus a.
The latter property is also equivalent to the following property

∀(u, v) ∈ U
2, ∀r ∈ ∂ J (u), J (v) − J (u) ≥ 〈r, v − u〉 + a

2
‖v − u‖2 ,

which means that a strongly convex function is bounded from below at any point
by a parabola. In relation with this inequality, it is interesting to mention that a
differentiable convex function J withLipschitz continuous derivativewithmodulus L
obeys the inequality

∀(u, v) ∈ U
2, J (v) − J (u) ≤ 〈∇ J (u), v − u〉 + L

2
‖v − u‖2 .

If J is twice differentiable, then it is (strongly) convex iff J ′′(u) is (strongly)
monotone at any u.

A.2 Optimization Over a Space or an Admissible Subset

We first consider optimization problems where all the constraints are defined by
means of an admissible set U ad.

A.2.1 Existence of Solutions

Optimization theory deals with the problem of finding points belonging to an admis-
sible subset U ad of (say) a Hilbert spaceU at which a real-valued function J reaches
its minimal (or maximal) value:

min
u∈U ad

J (u). (A.4)

4For linear operators in finite dimension, strict and strong monotonicity cannot be distinguished.
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Function J is called the cost or objective function or criterion. The set of points u� at
which this happens is denoted argminU ad J (or argmaxU ad J ), and each such point
is called an argument of the minimum (or maximum) of J . To prevent such points
from being “located at infinity”, the following property of J is generally assumed:
J is coercive over U ad if

(
u ∈ U ad, ‖u‖ → +∞)⇒ J (u) → +∞, (A.5)

which may be considered to hold trivially if U ad is bounded.

Theorem A.8 If J is l.s.c. and if U ad is compact, then (A.4) admits solutions. The
same holds true if J is convex, l.s.c. and coercive over U ad, and if U ad is closed and
convex.

In the latter statement, the existence of a solution of (A.4) is proved in the weak
topology of U.5 As already explained in Sect.A.1.2, J (resp. U ad) remains l.s.c.
(resp. closed) when U is equipped with the weak topology thanks to convexity.
Moreover, the coercivity of J makes it possible to reduce the admissible set to a
closed and bounded one (for example U ad ∩ {u ∈ U | J (u) ≤ J (u0) } for any given
u0 ∈ U ad), hence compact in the weak topology. Then the former statement applies,
in the weak topology.

Convexity has another important consequence in optimization: local minima are
also global minima. A global minimum6 is a solution of (A.4), whereas a local
minimum is a point u� for which there exists a neighborhood in which the function J
takes values which are not smaller than J (u�). Moreover, if J is strictly convex, the
argmin is a singleton if it exists.

A.2.2 Optimality Conditions

For smooth (not necessarily convex) functions, the following theorem can be stated.

Theorem A.9 If U ad is open and if J is (Gâteaux-)differentiable, a necessary con-
dition for u� in U ad to be a local minimum is that ∇ J (u�) = 0 (one says that J
is stationary at u�). If, moreover, J is twice differentiable, another necessary con-
dition is that J ′′(u�) be a monotone linear operator. A sufficient condition is that
∇ J (u�) = 0 and J ′′(u�) is strongly monotone.

The conditions involving first-order (resp. second-order) derivatives are called first-
order (resp. second-order) optimality conditions. The second-order optimality con-
ditions express that J is locally convex (or strongly convex) around its minimum.

For subdifferentiable convex functions, the following condition is available.

5Recall that the notion of minimum does not depend on the topology.
6We should say “an argument of a global minimum”.
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Theorem A.10 If U ad is open and if J is convex and subdifferentiable, it achieves
its minimum in u� ∈ U ad iff 0 ∈ ∂ J (u�).

With this result at hand, the case when U ad is closed and convex can be handled by
transforming (A.4) as a minimization problem over the whole space. By making use
of the characteristic function of U ad, (A.4) is equivalent to

min
u∈U
(
J (u) + χ

Uad (u)
)
, (A.6)

and the condition stated at Theorem A.10 is equivalent to any of the following three
conditions:

u� ∈ U ad and ∃ r � ∈ ∂ J (u�), r � ∈ −∂χ
Uad (u

�), (A.7a)

u� ∈ U ad and ∃ r � ∈ ∂ J (u�), ∀u ∈ U ad,
〈
r �, u − u�

〉 ≥ 0, (A.7b)

u� ∈ U ad and ∃ r � ∈ ∂ J (u�), ∀ε ≥ 0, u� = projU ad

(
u� − εr �

)
. (A.7c)

Condition (A.7a) is a direct consequence of Theorem A.10 (with an additional
assumption ensuring that ∂

(
J +χ

Uad

)
(·) = ∂ J (·)+∂χ

Uad (·): see e.g. [64, Chapter I,
Proposition 5.6]), Condition (A.7b) arises from the expression of ∂χ

Uad (u) obtained
at Example A.6, and the optimality condition of the projection problem in (A.7c)
is precisely (A.7b) (see Example A.11). Condition (A.7b) is called a variational
inequality. It expresses the fact that there exists a subgradient r� of J at u� such that
−r � belongs to the normal cone of U ad at u� (see Fig.A.5 in which J is represented
by its curves of constant values).

Example A.11 The projection projU ad (v) of v over a closed convex setU ad is defined
as the point of U ad which is the closest to v. This translates into the optimization
problem

min
u∈U ad

1

2
‖u − v‖2 ,

Uad

Uad

∂χ
Uad (u )

∂J(u ) r−
r

r−

r

Fig. A.5 Geometric interpretation of (A.7): cases of a nondifferentiable J (left) and of a nonsmooth
U ad (right)
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and thus by the variational inequality

∀u ∈ U ad,
〈
projU ad (v) − v, u − projU ad (v)

〉 ≥ 0,

which expresses that the angle of the projection direction projU ad (v) − v with any
direction u−projU ad (v) pointing towards a point ofU ad is acute. In the particular case
when U ad is a cone, since one can take the values u = 0 and u = 2projU ad (v) in the
variational inequality above, it turns out that this variational inequality decomposes
into the following two:

〈
projU ad (v) − v, projU ad (v)

〉 = 0; ∀u ∈ U ad,
〈
projU ad (v) − v, u

〉 ≥ 0. �

A.3 Optimization Under Explicit Constraints

We now consider optimization problems where the constraints are expressed using
equalities and inequalities.

A.3.1 First and Second-Order Stationarity Conditions

So far, constraints have been implicitly introduced by means of an admissible sub-
set U ad. This subset can be defined more explicitly via equality or inequality con-
straints. Therefore, we now consider (A.4) with the following definition of U ad and
we limit ourselves to finite dimensional problems, that is,U = R

n . In addition to the
cost function, we are given two sets of functions from R

n to R, namely, {Gi }i=1,...,l
and {Hj } j=1,...,m . Then,

U ad = {u ∈ U
∣
∣ Gi (u) ≤ 0, i = 1, . . . , l and Hj (u) = 0, j = 1, . . . , m

}
.

Assume that all functions J, Gi , Hj are differentiable: a fundamental result in
optimization theory states that, ifu� is a localminimum, andunder a qualification con-
straint condition (see below), then there must exist real values of so-called Lagrange
or Kuhn-Tucker multipliers p�

i , i = 1, . . . , l, and q�
j , j = 1, . . . , m, such that

∇ J (u�) +
l∑

i=1

p�
i ∇Gi (u

�) +
m∑

j=1

q�
j∇Hj (u

�) = 0, (A.8a)

Hj (u
�) = 0, j = 1, . . . , m, (A.8b)

Gi (u
�) ≤ 0, p�

i ≥ 0, i = 1, . . . , l, (A.8c)
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l∑

i=1

p�
i Gi (u

�) = 0. (A.8d)

The last equation, known as the complementary slackness condition, is equivalent to
requiring that p�

i Gi (u�) = 0 for all i , due to (A.8c). Therefore, Gi (u�) < 0 implies

that p�
i = 0. Another way of stating (A.8a) is to say that the Lagrangian

L(u, p, q) = J (u) +
l∑

i=1

pi Gi (u) +
m∑

j=1

q j Hj (u), (A.9)

is stationary at u� for some “optimal” values of the multipliers. However, one must
not conclude that this Lagrangian ought to be minimal, even if u� is a true solution.

Example A.12 Consider U = R, J (u) = −u3 and a single inequality constraint
u ≤ 1. Then, conditions (A.8) are satisfied for u� = 1 (which is the true solution)
and p� = 3, but u� = 1 is a maximum (!) of L(·, 3). �

Let I � = {i ∈ {1, . . . , l} ∣∣ Gi (u�) = 0
}
be the set of active inequality constraints.

Then, since p�
i = 0 when i 
∈ I �, (A.8a) can also be written as

−∇ J (u�) =
∑

i∈I �

p�
i ∇Gi (u

�) +
m∑

j=1

q�
j∇Hj (u

�).

This expresses that (minus) the gradient −∇ J (u�) belongs to the cone generated by
the gradients of active inequality constraints, namely {∇Gi }i∈I � ∪ {∇Hj } j=1,...,m ∪
{−∇Hj } j=1,...,m , as long as equality constraints can be written as pairs of opposite
inequality constraints. Since gradients of active constraints are orthogonal to the
admissible set boundary at u�, (A.8a) should remind us of the situation illustrated by
Fig.A.5.

However, there is a tricky point here, essentially because there might be situations
where the appropriate normal cone toU ad is not generated by those gradients of active
constraints. Therefore, the necessary conditions (A.8) can be stated only under a
sufficient condition of constraint qualification. We refer the reader to specialized
books for understanding the fine points of this constraint qualification condition. Let
us just quote two (nonequivalent) forms of this condition (among several others).

1. In the convex case (i.e. when all involved functions are convex and the Hj are
affine), there exists some u such that

Gi (u) < 0, i = 1, . . . , l and Hj (u) = 0, j = 1, . . . , m.
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This is known as the Slater condition.
2. The gradients of G j , j ∈ I �, and Hj , j = 1, . . . , m, at u� are linearly indepen-

dent.

Moreover, the conditions (A.8) are not sufficient, even for u� to be a local mini-
mum.Additional necessary and sufficient second-order conditions for u� to be a local
minimum can also be stated when the functions involved are twice differentiable.

Necessary conditions:

〈∇Gi (u�), v
〉 = 0, i ∈ I �

〈∇Hj (u�), v
〉 = 0, j = 1, . . . , m

}

⇒ 〈
v,L′′

u,u(u�, p�, q�).v
〉 ≥ 0. (A.10)

Sufficient conditions: the symbol ≥ is replaced by > in the right-hand side above.

A.3.2 Marginal Interpretation of Multipliers

Optimalmultipliers provide some information about how the optimal value of the cost
function varies in the casewhen the right-hand side of constraints is slightly perturbed
(which may be interpreted as the small change in available resources). Suppose that,
for e.g. some i0 ∈ {1, . . . , l} (the same may be done for equality constraints), the
problem is solved againwith the slightly perturbed constraintGi0(u) ≤ ε (ε is a small
number), whereas the other constraints remain unchanged. Let δu� be the variation of
the new solution w.r.t. the previous solution. Under the assumption that there exists
an ε sufficiently small for the set of active constraints I � not to change, δu� is likely
to be nonzero only if i0 was a member of I �. Then, to the first-order, one has that

〈∇Gi0(u
�), δu�

〉 = ε,
〈∇Gi (u

�), δu�
〉 = 0, i ∈ I � \ {i0},

〈∇Hj (u
�), δu�

〉 = 0, j = 1, . . . , m.

From this and (A.8a), it can be concluded that the first-order variation of the optimal
cost function is

〈∇ J (u�), δu�
〉 = −p�

i0
ε.

Hence, −p�
i0

is the sensitivity of the optimal cost function w.r.t. a change of the

right-hand side of the corresponding constraint. By the way, the fact that p�
i = 0

for nonactive constraints illustrates the fact that the solution is not affected by small
changes in those constraints.
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A.4 Optimal Control

Optimal control problems may be regarded as particular instances of general opti-
mization problems considered in previous sections of this appendix. However, they
have a special structure and, for this reason, they deserve a special attention. The
global idea is to set a control problem of a dynamic system—that is, one in which
the evolution in time is of interest—with the purpose of minimizing a cost func-
tion which measures the system performance over a certain time horizon, subject to
certain constraints.

One distinguishes control variables—those practically controlled by the user—
from the state variables—those which carry the memory of the dynamic system
over time. Mathematically speaking, they may be considered as independent vari-
ables possibly involved in various equality or inequality constraints, but among these
constraints, the dynamics of the system is typical of such problems. The dynamics
may assume different forms according to whether time is continuous or discrete. In
continuous time, state variable trajectories are generally related to control variable
histories through (ordinary) differential equations. In discrete time, these differential
equations are replaced by finite recurrent relationships.

As for the cost or objective function, it generally assumes the form of an integral—
in continuous time—or of a sum—in discrete time—over the time horizon, plus
possibly a final cost.

There are indeed two notions of “solution” for optimal control problems: open-
loop and closed-loop or feedback optimal control.

• The former corresponds to expressing the optimal control variables as functions
of time solely (the so-called “control history”). It means that these control values
are implemented as time elapses whatever the evolution of state variables may be.

• The latter involves an observation function of the system state, and the optimal
control—indeed the optimal strategy or feedback law—is given as a function
of time and of past and present (but not future!) observations (for the sake of
causality).

The reader should realize that there are no practical differences between these two
implementations as long as the system is deterministic, that is, as long as there are
no external factors influencing the evolution of the system state, out of the control
itself. Indeed, in this case, for any given feedback law, one can perfectly predict
the future evolution of the state, and thus of the observation and control variables,
and this control history—an open-loop control solution—would obviously produce
exactly the same overall behavior and lead to the same performance. Conversely, the
performance that is achievable with open-loop controls can also be obtained with
feedback laws since observations can simply be ignored, and time only can drive the
control values implemented.

The situation is quite different in a stochastic environment in which unmastered
external factors can cause deviations of the system state from its expected evolution—
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that corresponding to zero perturbations, a fact that can be taken into account7 through
observations if closed-loop controls are used, but notwith “blind” open-loop controls.

Solving deterministic optimal control problems in open-loop form essentially
amounts to handling variational problems involving time functions, which leads to
infinite dimensional problems if time is continuous. There are many books dealing
with this subject (see e.g. [1, 32, 67, 124]), the most important result being Pon-
tryagin’s maximum principle.8 In the following, we try to show how the results of
previous sections can be exploited in the framework of discrete time problems in
finite horizon.

For feedback optimal control, there exists a special technique called dynamic
programming based on Bellman’s optimality principle (see [15]). This technique can
solve problems in deterministic and stochastic settings when the system state is fully
and perfectly observed.9 We only discuss the deterministic situation.

A.4.1 First-Order Optimality Conditions in Discrete Time

Consider the problem

min
T −1∑

t=0

Lt (xt , ut ) + K (xT ), (A.11a)

s.t. xt+1 = ft (xt , ut ), t = 0, . . . , T − 1, (A.11b)

x0 given,

where:

• t is time, {0, . . . , T } is the time span horizon,10

• xt ∈ R
n is the state vector at time t ,

• ut ∈ R
m is the control vector at time t ,

• ft (·, ·) is a Rn-valued function representing the dynamics at time t ,
• Lt (·, ·) is a R-valued function representing the cost at time t ,
• K (·) is the final cost.
Theremight be other constraints on state and control variables along the trajectory and
at thefinal time.Theywould define “admissible” sets.Alternatively, these constraints,
in the explicit form of equalities or inequalities, might be handled by duality in a

7Not only past deviations can be taken into account, but future possible deviations can also, in a
way, be anticipated if some statistical knowledge of those perturbations is available.
8However, in this book, we prefer minimization to maximization.
9Indeed, more general—but not all—observation patterns can also be handled.
10Here, the final time T is assumed to be given, but additional constraints may define a final target
in the (space × time) domain and the final time is then defined as the first time at which this target
is reached; then, T becomes one of the unknowns of the problem.
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way similar to what follows. For the sake of illustration, we add to the previous
formulation the additional constraint

C(xT ) = 0, (A.11c)

where C is a map from R
n to some Rl .

Let x = (x0, . . . , xT ) and u = (u0, . . . , uT −1). Consider the Lagrangian

L(x, u, p, q) =
T −1∑

t=0

Lt (xt , ut ) + K (xT ) + 〈q, C(xT )〉

+
T −1∑

t=0

〈pt+1, ft (xt , ut ) − xt+1〉 ,

where q ∈ R
l is the multiplier associated with (A.11c); the multiplier p =

(p1, . . . , pT ) associated with (A.11b) is called the co-state or adjoint state. The
first-order stationary conditions (see Sect.A.3.1) read

∂L
∂xT

= 0 ⇒ pT =
(

∂K

∂x
(xT )

)�
+
(

∂C

∂x
(xT )

)�
q, (A.12a)

and, for t = 1, . . . , T − 1,

∂L
∂xt

= 0 ⇒ pt =
(

∂ ft

∂x
(xt , ut )

)�
pt+1 +

(
∂Lt

∂x
(xt , ut )

)�
, (A.12b)

∂L
∂ut

= 0 ⇒ 0 =
(

∂ ft

∂u
(xt , ut )

)�
pt+1 +

(
∂Lt

∂u
(xt , ut )

)�
, (A.12c)

plus equations (A.11b) and (A.11c) as the result of the derivation with w.r.t. p and q.
Note that the co-state equations (A.12b) proceed backwards in time, starting from the
final condition (A.12a), whereas the state equations (A.11b) proceed forward from
a given initial condition. This is known as a two-point boundary value problem.

Consider now a control history u that is not necessarily optimal and the corre-
sponding state trajectory x derived from (A.11b). The final constraint (A.11c) does
not need to be satisfied and is ignored in what follows. A small variation δu from the
nominal u causes a deviation δx of the state trajectory and a corresponding varia-
tion δJ of the cost function J defined by (A.11a). One can express δJ in the following
way. First, compute the co-state trajectory p corresponding to u and x through the
backward equations (A.12b) starting from (A.12a) with q = 0. Then, introduce the
so-called Hamiltonian defined by

Ht (xt , ut , pt+1) = Lt (xt , ut ) + 〈pt+1, ft (xt , ut )
〉
. (A.13)
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Finally, one has that

δJ =
T −1∑

t=0

∂Ht

∂u

(
xt , ut , pt+1

)
δut .

Note that (A.12c) can also be written as ∂Ht/∂u = 0; in particular, if Ht is convex
in u, (A.12c) expresses that the optimal ut minimizes Ht for the optimal values of
xt and pt+1.

A.4.2 Dynamic Programming

Bellman’s optimality principle states that if an optimal trajectory goes from x0 to xT ,
then necessarily the subtrajectory from xt to xT for any intermediate t ∈ {0, . . . , T }
is an optimal trajectory to go from xt to xT . It follows that optimal trajectories
reaching xT can be computed backwards provided that at each stage t between 0
and T , all possible intermediate values xt be considered. This necessity of solving
all subproblems issued from all “initial” states xt at each time t explains why the
method is so computationally demanding, even if the recursivity of the procedure
as t moves backwards saves as much computation as possible. On the other hand,
optimal controls at time t can be considered as indexed by all these intermediate
states xt , which indeed provides an optimal state feedback law.

In the sameway, the optimal cost function at time t is indexed by all initial states xt :
this is the so-called cost-to-go or Bellman function Vt (xt ). More precisely, Vt (xt )

is the optimal cost function for the optimal control problem (A.11), but starting at
t ≤ T with the initial state value xt . Applying Bellman’s optimality principle, the
following (Hamilton-Jacobi-)Bellman equation is established:

Vt (xt ) = min
ut

(
Lt (xt , ut ) + Vt+1

(
ft (xt , ut )

))
(A.14a)

with VT (xT ) =
{

K (xT ) if C(xT ) = 0;
+∞ otherwise.

(A.14b)

The argmin in (A.14a) provides the optimal feedback law ut (xt ).

Remark A.13 Assuming enough smoothness, one can relate the Bellman function
to the optimal co-state p as follows

(
pt
)� = ∂Vt

∂x

(
xt
)
,

where xt stands for the optimal value of the state at time t . This means that pt

provides the sensitivity of the cost-to-go w.r.t. a change of the state xt at t . This
interpretation could have been anticipated from the fact that pt was introduced as the
multiplier of the dynamics (remember the marginal interpretation of multipliers in
Sect.A.3.2). ♦



Appendix B
Basics in Probability

The results belowmaybe found in classical books such as [30, 65, 66, 89].Weprovide
recalls on probability spaces, random variables, convergence of random variables,
then on conditional expectation, conditional probability and stochastic kernels. We
conclude with the Monte Carlo method.

B.1 Probability Space

We give the definition of a probability space, after having recalled the notions of
measurable space and of measure.

B.1.1 Measurable Space

A σ-field on a set Ω is a collection A of subsets of Ω such that:

• ∅ ∈ A,
• if the sequence {Bn}n∈N is such that Bn ∈ A, for n ∈ N where N is countable,
then

⋃
n∈N Bn ∈ A,

• if B ∈ A, then the complementary set Bc = Ω\B ∈ A.

Given any collection C of subsets ofΩ , the σ-field σ(C) generated by C is defined
to be the smallest σ-field in Ω such that C ⊂ σ(C). It is called the σ-field generated
by C.

A measurable space is a set Ω together with a σ-fieldA on Ω , and is denoted by
(Ω,A). The elements of A are called measurable sets.

Let (Ω,A) and (Y,Y) be two measurable spaces. A mapping Y : Ω → Y is said
to be measurable if Y−1(Y) ⊂ A. The collection Y−1(Y) of subsets ofA is a σ-field,
denoted by σ(Y ) and called the σ-field generated by Y .

© Springer International Publishing Switzerland 2015
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Definition B.1 For any topological space Y, the Borel σ-field of Ω is the σ-field
Bo
Y
generated by the open sets of Y. Elements of Bo

Y
are called Borel sets. When

we use measurable mappings with values in a topological space (as metric or Hilbert
spaces), measurability implicitly refers to the Borel σ-field. A continuous mapping
between topological spaces is measurable.

B.1.2 Measure

Let (Ω,A) be a measurable space. A measure on (Ω,A) is a function μ : A →
R ∪ {+∞} with values in the extended real numbers, such that:

1. μ(B) ≥ 0 for B ∈ A, with equality if B = ∅;
2. if the sequence {Bn}n∈N is such that Bn ∈ A, for n ∈ N where N is countable,

and the Bn are mutually disjoints, then μ(
⋃

n∈N Bn) =∑n∈N μ(Bn).

The second property is called σ-additivity, or countable additivity. The triple
(Ω,A,μ) is called a measure space.

A measure μ is said to be finite if μ(Ω) < +∞. A measure μ is said to be σ-finite
(or a measure μ is a σ-finite measure) if there exists a countable sequence {Bn}n∈N

in A such that
⋃

n∈N Bn = Ω and μ(Bn) < +∞ for all n ∈ N .
Say that a subset C ⊂ Ω is μ-negligible in the measure space (Ω,A,μ) if there

exists B ∈ A such that C ⊂ B and μ(B) = 0. The measure space (Ω,A,μ) is
called μ-complete [26, p. 2] if every μ-negligible subset is in A. Given a measure
space (Ω,A,μ), we define a new σ-field Aμ which consists of all the sets B ⊂ Ω

for which there exists B+, B− ∈ A such that B− ⊂ B ⊂ B+ and μ(B+ − B−) = 0.
The extension of μ on Aμ is unique and the measure space (Ω,A,μ) is complete
if Aμ = A. On a measurable space (Ω,A) without explicit reference to a measure,
it is possible to define a σ-field called the σ-field of universally measurable sets
over (Ω,A) [21, Definition 7.18]. It is the σ-field Â := ⋂μ A

μ obtained when the
intersection is over the finite measures μ on A. A σ-fieldA is said to be complete or
universally complete if A = Â. As an example, suppose that μ is a σ-finite measure
on A and A is μ-complete. Since A ⊂ Â = ⋂μ′ Aμ′ ⊂ Aμ = A we have that

A = Â, so that the σ-field A is universally complete.

B.1.3 Probability Space

Ifμ(Ω) = 1, then (Ω,A,μ) is called a probability space, and themeasureμ is called
a probability measure, generally denoted by P and called a probability. Elements of
A are called events
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Let (Ω,A,P) be a probability space. A condition holds almost surely on Ω if it
holds onΩ\N , where N is a subset ofΩ of measure 0, and abbreviated a.s. or P-a.s..

Definition B.2 We say that a probability space (Ω,A,μ) is non-atomic, or alterna-
tively call μ non-atomic, if μ(A) > 0 implies the existence of B ∈ A, B ⊂ A with
0 < μ(B) < μ(A).

B.1.4 Product Probability Space

Let (Ωi ,Ai ,Pi ), i = 1, 2 be two probability spaces. The product probability
space is defined as (Ω1 × Ω2,A1 ⊗ A2,P1 ⊗ P2), where the product σ-field
A1 ⊗ A2 has been introduced at Remark 3.25 as the one generated by the rec-
tangles {G1 × G2 | Gi ∈ Ai , i = 1, 2 }, and where the product probability P1⊗P2
is characterized on the rectangles by

P1 ⊗ P2(G1 × G2) = P1(G1) × P2(G2). (B.1)

It can be shown that P1 ⊗ P2 can be extended into a probability on the product
σ-field A1 ⊗ A2. By associativity, one can define the product of a finite number of
probability spaces. The case of an infinite product of probability spaces is discussed
at Sect.B.7.1.

B.2 Random Variables

After having recalled the definition of a random variable, we turn to integration,
with L p-spaces andmathematical expectation. Recalls on probability image, Radon-
Nikodym derivative and uniform integrability are also provided.

Definition B.3 Let (Ω,A,P) be a probability space and (Y,Y) be a measurable
space. A measurable mapping Y : Ω → Y is called a random variable.

Remark B.4 When the measurable mapping Y takes values in (R,Bo
R
) it is called a

real-valued random variable. When it takes values in (Rn,Bo
Rn ) it is called a random

element. ♦

Two random variables Y and Z are said to be equal almost surely, or P-almost
surely, or P-a.s., when P({Y = Z}) = 1. Recall that, in Probability Theory, it is
customary to omit the variable ω and to write

{Y = Z} := {ω ∈ Ω
∣
∣ Y (ω) = Z(ω)

}
. (B.2)

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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B.2.1 L p-Spaces

Let 0 < p ≤ +∞. The L p-norm of a random variable Y with values in a Banach
space is defined for p < +∞ as

∥
∥Y
∥
∥

p :=
(∫

Ω

∥
∥Y
∥
∥p dP

) 1
p

, (B.3)

when the integral exists, and for p = +∞ as

∥
∥Y
∥
∥∞ = ess sup

∥
∥Y
∥
∥ := inf

{
y ∈ R

∣
∣ P
{
ω
∣
∣
∥
∥Y (ω)

∥
∥ > y

} = 0
}
. (B.4)

The L∞-norm
∥
∥Y
∥
∥∞ of Y is called the essential supremum of

∥
∥Y
∥
∥.

The set of random variables with finite L p-norm forms a vector space V with
the usual pointwise addition and scalar multiplication of functions. Two random
variables are said to be equivalent when their difference has zero L p-norm: the
L p-space on Ω is the quotient space of V by this equivalence relation. Thus, ran-
dom variables in L p-space are defined up to equivalence almost surely. We use the
notation L p(Ω,A,P;Y) to specify the domain and images spaces, and the nota-
tion L p(Ω,A,P) for real-valued random variables. For 1 ≤ p ≤ +∞ the space
L p(Ω,A,P) is a Banach space.

B.2.2 Mathematical Expectation

A real-valued random variable Y is said to be integrable when Y ∈ L1(Ω,A,P) or,
equivalently, when

∫
Ω

∣
∣Y
∣
∣ dP < +∞. The mathematical expectation of Y is

E(Y ) :=
∫

Ω

Y dP. (B.5)

With this notation, Y ∈ L1(Ω,A,P) ⇐⇒ E(
∣
∣Y
∣
∣) < +∞.

When the dependence w.r.t. the probability P has to be stressed, one uses the
notation EP(Y ):

EP(Y ) :=
∫

Ω

Y dP. (B.6)

The space L2(Ω,A,P) is a Hilbert space, equipped with the scalar product

〈
Y , Z

〉 :=
∫

Ω

Y (ω)Z(ω) dP(ω). (B.7)

Random variables in L2(Ω,A,P) are said to be square integrable.
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B.2.3 Probability Image

Let Y be a random variable. The image measure

PY := P ◦ Y−1 (B.8)

is a probability on (Y,Y), called the probability law of Y or probability distribution
of Y . It is also denoted by

Y �(P) := P ◦ Y−1. (B.9)

For anymeasurable bounded real-valued functionϕ, themappingϕ(Y ) : Ω → R

is a random variable, and one has that

EP(ϕ(Y )) = EPY (ϕ). (B.10)

B.2.4 Radon-Nikodym Derivative

Let P and Q be two probabilities on (Ω,A). The probability Q is said to have
a density w.r.t. P if there exists a nonnegative (R ≥ 0, P-a.s.) integrable random
variable R ∈ L1(Ω,A,P) such that

EQ(Z) = EP(R Z), ∀Z ∈ L1(Ω,A,Q). (B.11)

The random variable R is uniquely defined P-a.s., is called a density, and is denoted
by R = dQ/ dP.

The probabilities P and Q are said to be equivalent if Q is absolutely continuous
w.r.t. P and P is absolutely continuous w.r.t. Q. This is denoted by P ∼ Q. In that
case, R = dQ/ dP is uniquely defined P-a.s. and Q-a.s., and we have that R > 0
and dP/ dQ = 1/R:

P ∼ Q and
dQ

dP
= R ∈ L1(Ω,A,P), R > 0, P-a.s. or Q-a.s.. (B.12)

B.2.5 Uniform Integrability

Consider {Yi }i∈I a collection of random variables with values in a Banach space.
The collection {Yi }i∈I is said to be uniformly continuous if

∀ε > 0, ∃α > 0 such that P(A) ≤ α ⇒ sup
i∈I

∫

A

∥
∥Yi

∥
∥ dP ≤ ε,
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and uniformly integrable if

∀ε > 0, ∃α > 0 such that sup
i∈I

∫
∥
∥
∥Yi

∥
∥
∥>α

∥
∥Yi

∥
∥ dP ≤ ε. (B.13)

B.3 Convergence of Random Variables

Let (Ω,A,P) be a probability space. We present different notions of convergence
of random variables.

B.3.1 Almost Sure Convergence

Let Y be a random variable and {Yn}n∈N be a sequence of random variables with
values in the same topological space. We say that {Yn}n∈N converges almost surely

towards Y , denoted by Yn
a.s.−→ Y , if

P
(
Yn −→

n→+∞ Y
) = 1.

This is denoted by Yn
a.s.−→ Y .

B.3.2 Convergence in L p Norm

Let 1 ≤ p ≤ +∞. Let Y be a random variable and {Yn}n∈N be a sequence of random
variables with values in the same Banach space. The sequence {Yn}n∈N converges in
L p norm towards Y if

∥
∥Yn − Y

∥
∥

p −→
n→+∞ 0.

This is denoted by Yn
L p−→ Y . The L2 convergence is called mean square conver-

gence.

B.3.3 Convergence in Probability

Let {Yn}n∈N be a sequence of random variables, taking values in a metric space
(Y, d). The sequence {Yn}n∈N converges in probability towards a random variable
Y if, for every ε > 0,
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lim
n→∞P(d(Yn, Y ) ≥ ε) = 0.

This is denoted by Yn
P−→ Y .

B.3.4 Convergence in Law

Let Y be a random variable and {Yn}n∈N be a sequence of random variables with
values in the same topological space. The sequence {Yn}n∈N converges in law or
converges in distribution towards a random variable Y if the sequence {PYn }n∈N of
image probabilities (see Sect.B.8) narrowly converges towards PY, that is, if

lim
n→+∞E(ϕ(Yn)) = E(ϕ(Y )), (B.14)

for all bounded continuous function ϕ. This is denoted by Yn
D−→ Y .

B.3.5 Relations Between Convergences

We have the following properties.

• Convergence almost surely implies convergence in probability.
• If a sequence converges in probability, there exists a sub-sequencewhich converges
almost surely.

• If a sequence of random variables converges in L2 norm, the sequence converges
in probability.

• If the sequence {Yn}n∈N converges in probability to Y then {Yn}n∈N converges in
law to Y .

• When {Yn}n∈N converges in law to a constant random variable Y , then {Yn}n∈N
converges in probability to the constant Y .

B.4 Conditional Expectation

Let (Ω,A,P) be a probability space. In what follows, G denotes a subfield ofA, that
is, G ⊂ A and G is a σ-field. In this section, when not specified, a random variable
is a real-valued random variable.

Let L2(Ω,G,P) be the closed vector subspace of square integrable G-measurable
functions in the Hilbert space L2(Ω,A,P). We can thus define the orthogonal pro-
jection on L2(Ω,G,P).
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Definition B.5 IfY is a square integrable randomvariable, we define the conditional
expectation of Y knowing (the σ-field)G, andwe denote byE

(
Y | G), the orthogonal

projection of Y on L2(Ω,G,P):

Z = E
(
Y | G) ⇐⇒ Z = argmin

T ∈L2(Ω,G,P)

E

(∥
∥Y − T

∥
∥2
)

. (B.15)

Thus, the conditional expectation solves an optimization problem under measur-
ability constraints (among G-measurable random variables). This was discussed
in Sect. 3.5 in the case of a finite probability space.

The conditional expectation may be extended to L1 random variables. If Y is an
integrable random variable, E

(
Y | G) is the unique Z ∈ L1(Ω,G,P) such that

E
(
Y T
) = E

(
ZT
)
, ∀T ∈ L∞(Ω,G,P). (B.16)

In fact, the above result holds true under the weaker assumptions that Y is bounded
either below or above by an integrable random variable.

The conditional expectation may be extended componentwise to L1 random vari-
ables with values in Rd .

Elementary Properties
Let X and Y be two integrable random variables, λ a real number. Then

E
(
λX + Y | G) = λE

(
X | G)+ E

(
Y | G) , (B.17)

X ≥ 0 ⇒ E
(
X | G) ≥ 0, (B.18)

E
(
E
(
X | G)) = E

(
X
)
, (B.19)

Y ∈ L∞(Ω,G,P) ⇒ E
(
Y X | G) = YE

(
X | G) . (B.20)

If G�, G� are two subfields of A, we have that

G� ⊂ G� ⇒ E

(
E
(
X | G�

) ∣∣
∣ G�
)

= E
(
X
∣
∣ G�
)
. (B.21)

Dependence Upon the Probability Law

Proposition B.6 Let P and Q be two equivalent probabilities on (Ω,A), with pos-
itive Radon-Nikodym derivative R (see Sect.B.2.4). We have that

EQ

(
X | G) = EP

(
R X | G)

EP

(
R | G) , P-a.s. or Q-a.s., (B.22)

for all bounded random variable X .

http://dx.doi.org/10.1007/978-3-319-18138-7_3
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Proof Let X ∈ L∞(Ω,A,P). We first note that the right hand side of Eq. (B.22) is
well defined because X is bounded and R ∈ L1(Ω,A,P). For any G ∈ G, we have
that

EQ

(
X 1G

) = EP

(
R X 1G

)
by (B.11)

= EP

(
EP

(
R X | G) 1G

)
by (B.16)

= EP

(

EP

(
R | G) EP

(
R X | G)

EP

(
R | G) 1G

)

since R > 0

= EP

(

R
EP

(
R X | G)

EP

(
R | G) 1G

)

by (B.16)

= EQ

(
EP

(
R X | G)

EP

(
R | G) 1G

)

by (B.11).

The proof is complete by Eq. (B.16). �

Remark B.7 If dQ/ dP is G-measurable, then the conditional expectation operators
EQ (· | G) and EP (· | G) coincide (Q-a.s. or P-a.s.). In other words, the conditional
expectation operator EP (· | G) depends upon G and the equivalence class of P for
the relation P ∼G Q ⇐⇒ P ∼ Q and dQ/ dP is G-measurable. ♦

Proposition B.8 Let Φ : (X,X) → (Ω,A) be measurable, and letQ be a probabil-
ity on (X,X). Let Φ�(Q) the probability on (Ω,A), image of Q by Φ (see Sect.B.8).
For any random variable Y on Ω such that EΦ�(Q)

(∣∣Y
∣
∣)< + ∞, we have that

EΦ�(Q)

(
Y | G) ◦ Φ = EQ

(
Y ◦ Φ | Φ−1(G)

)
, P-a.s.. (B.23)

Proof For any G ∈ G, we have that

EQ

(
1Φ−1(G) × (Y ◦ Φ)

) = EQ

(
(1G ◦ Φ) × (Y ◦ Φ)

)

= EΦ�(Q)

(
1G × Y

)
by (B.10)

= EΦ�(Q)

(
1G × EΦ�(Q)

(
Y | G)) by (B.16)

= EQ

(
1G ◦ Φ × EΦ�(Q)

(
Y | G) ◦ Φ

)
by (B.10)

= EQ

(
1Φ−1(G) × EΦ�(Q)

(
Y | G) ◦ Φ

)
.

We conclude that (B.23) holds true since Φ−1(G) is equal to
{
Φ−1(G) | G ∈ G

}

and since the function EΦ�(Q)

(
Y | G) ◦ Φ is Φ−1(G)-measurable and is in

L1(X,X,Q). �
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Conditional Expectation w.r.t. an Atomic σ-Field
AsubfieldG ofA is called atomic (seeDefinition 3.26) if it is generated by a countable
partition {Ωn}n∈N : G = σ(Ωn, n ∈ N ), where N is countable (in bijection with a
subset of N).

Proposition B.9 If G is an atomic σ-field, generated by the countable partition
{Ωn}n∈N , and if Y is an integrable random variable, then

E
(
Y | G) =

∑

n,P(Ωn)>0

E
(
1Ωn Y

)

P(Ωn)
1Ωn . (B.24)

Conditional Expectation Knowing a Random Variable

Definition B.10 If Y is an integrable random variable and Z is a random variable,
we define the conditional expectation of Y knowing (the random variable) Z as the
random variable

E
(
Y | Z

) := E
(
Y | σ(Z)

)
, (B.25)

where σ(Z) is the σ-field generated by the random variable Z .

The following proposition results from Proposition 3.46.

Proposition B.11 Let Y be an integrable random variable. For any random vari-
able Z , there exists a unique measurable function Ψ (unique PZ -a.s.) such that
E
(
Y | Z

) = Ψ (Z). Therefore, we can define

E
(
Y | Z = z

) := Ψ (z), ∀z such that P(Z = z) > 0. (B.26)

Notice that Ψ depends functionally upon the random variable (Y , Z), hence, in
particular, upon Z . To insist upon this dependence, we rephrase the above result
as follows. For any random variable Z , there exists a unique measurable function
Ψ[Y,Z] (unique PZ -a.s.) and Ω ′ ⊂ Ω such that P(Ω ′) = 1 and

E
(
Y | Z

)
(ω) = Ψ[Y,Z]

(
Z(ω)

)
, ∀ω ∈ Ω ′. (B.27)

If Y and Z are discrete random variables, by (B.24), we have that

Ψ[Y,Z](z) =
∑

y∈Y (Ω),z′∈Z(Ω)

y
P(Y = y, Z = z′)

P(Z = z′)
1{z′}(z), (B.28)

which indeed depends functionally upon Y and Z , by the terms P(Y = y, Z = z′)
and P(Z = z′).

http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3


Appendix B: Basics in Probability 337

B.5 Conditional Probability

Let (Ω,A,P) be a probability space. In what follows, G denotes a subfield of A.

B.5.1 Conditional Probability w.r.t. an Event

Let B ∈ A such that P(B) > 0, and F ∈ A. We define the conditional probability
of (the event) F knowing (the event)B as the real number

P(F | B) := P(F ∩ B)

P(B)
. (B.29)

Let B ∈ A such that P(B) > 0. The conditional probability P|B : A → [0, 1]
defined by

P|B(F) := P(F | B), ∀F ∈ A (B.30)

is a probability over (Ω,A). The probability P|B has the density 1B/P(B) w.r.t. P:

dP|B
dP

= 1B

P(B)
. (B.31)

B.5.2 Conditional Expectation w.r.t. an Event

Let B ∈ A with P(B) > 0. As (Ω,A,P|B) is a probability space, we can define the
expectation under this probability, denoted E (· | B). Let Y be an integrable random
variable. Then the conditional expectation of Y knowing the event B is the real
number

E
(
Y | B

) := EP|B (Y ). (B.32)

For any integrable random variable Y , we have that

E
(
Y | B

) = E
(
Y 1B

)

P(B)
. (B.33)

Notice that, with the above notation, Eq. (B.24) can be written as:

E
(
Y | σ({Ωn}n∈N )

) =
∑

n∈N ,P(Ωn)>0

E
(
Y | Ωn

)
1Ωn . (B.34)
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B.5.3 Conditional Probability w.r.t. a σ-Field

Let B ∈ A. The conditional probability of (the event) B knowing (the subfield) G is
the random variable:

P(B | G) := E (1B | G) . (B.35)

If G is an atomic σ-field, generated by the countable partition {Ωn}n∈N , we obtain
using (B.24):

P(B | σ({Ωn}n∈N )) =
∑

n∈N ,P(Ωn)>0

P(B | Ωn)1Ωn . (B.36)

If Z is a random variable, we define the conditional probability of the event B
knowing (the random variable) Z as the random variable

P(B | Z) := E
(
1B | σ(Z)

)
, (B.37)

where σ(Z) is the σ-field generated by the random variable Z .

B.6 Stochastic Kernels

The main objective of this section is to formulate Proposition B.22, which states the
following, widely used property. When computing a conditional expectation with
respect to a σ-field G, all the G-measurable variables can be “frozen” during the
conditional expectation evaluation. For this purpose, we review results on Borel
spaces and on regular conditional laws.

B.6.1 Borel Spaces

Here we follow [21, Chap.7].

Definition B.12 LetXbe a topological space.Wedenote byBo
X
theσ-field generated

by the open subsets of X. The elements of Bo
X
are called the Borel subsets of X. A

mapping ϕ between topological spaces X and X
′ is said to be Borel-measurable if

ϕ−1(Bo
X′) ⊂ Bo

X
.

Definition B.13 A topological space X is a Borel space if there exists a separa-
ble11 complete metric space X

′ as well as a Borel subset B ∈ Bo
X′ such that X is

11A metrizable topological space is separable if it contains a countable dense set.
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homeomorphic12 to B. A Borel isomorphism ϕ between Borel spaces X and X′ is a
one-to-one Borel-measurable mapping such that ϕ−1 is Borel-measurable on ϕ(X).

The spaces Rn , as well as their Borel subsets, are Borel spaces. Every Borel space
is metrizable and separable, and any complete separable metric space is a Borel
space. Every uncountable Borel space is Borel isomorphic to [0, 1], metrizable and
separable. IfX is a Borel space, then the spaceP(X) of probability distributions over
X is a Borel space.

B.6.2 Stochastic Kernels

Stochastic Kernels and Parametric Disintegration

Definition B.14 ([89]) Let (X,X) and (Y,Y) be two measurable spaces. A stochas-
tic kernel from (X,X) to (Y,Y) is a mapping p : X × Y → [0, 1] such that

• for any F ∈ Y, p(·, F) is X-measurable;
• for any x ∈ X, p(x, ·) is a probability on Y.

A random measure is a stochastic kernel from (Ω,A) to (Ω,A).

A stochastic kernel may equivalently be seen as a measurable mapping from (X,X)

toP(Y). Thus, as for notation and terminology, we shall speak of a stochastic kernel
p(x, dy) from X to Y or of a stochastic kernel p( dy | x) on Y given X.

Here is a composition operation on stochastic kernels.

Definition B.15 ([89]) Let (X,X), (Y,Y) and (Z,Z) be three measurable spaces.
Consider two stochastic kernels, p( dy | x) on Y given X and q( dz | y) on Z given
Y. Then, the following expression defines a stochastic kernel p ⊗ q on Z given X:

(p ⊗ q)(F | x) :=
∫

Y

p( dy | x)

∫

F
q( dz | y), ∀F ∈ Z. (B.38)

The following proposition establishes that one can decompose a probability mea-
sure on a product Y × Z of Borel spaces as a marginal on Y and a stochastic kernel
on Z givenY. Moreover, this property remains valid when a measurable dependence
w.r.t. a parameter is admitted.

Proposition B.16 (Parametric disintegration [21]) Let (X,X) be a measurable
space, Y and Z be Borel spaces and q( dy dz | x) be a stochastic kernel on Y × Z

given X. Then, there exists a stochastic kernel r( dz | x, y) on Z given X × Y and a
stochastic kernel s( dy | x) on Y given X such that q = r ⊗ s, i.e.:

12A homeomorphism ϕ between topological spaces (X,T) and (X′,T′) is one-to-one and continu-
ous, and ϕ−1 is continuous on ϕ(X) with the relative topology.
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q( dy dz | x) = r( dz | x, y)s( dy | x). (B.39)

The stochastic kernel s( dy | x) is given by

∫

F
s( dy | x) =

∫

F×Z

q( dy dz | x), ∀F ∈ Z. (B.40)

Corollary B.17 Let X, Y and Z be Borel spaces and q( dy dz | x) be a stochastic
kernel over Y × Z knowing X. Then, there exists a stochastic kernel r( dz | x, y)

over Z knowing X × Y and a stochastic kernel s( dy | x) over Y knowing X such
that q = r ⊗ s as in (B.39).

Corollary B.18 ([21]) Let Y and Z be Borel spaces and q ∈ P(Y×Z). Then, there
exists a stochastic kernel r( dz | y) over Z knowing Y such that q = r ⊗ s:

q( dy dz) = r( dz | y)s( dy) where s( dy) =
∫

Z

q( dy dz). (B.41)

Regular Conditional Laws and Disintegration

Definition B.19 ([30, 89]) Let (Ω,A,P) be a probability space. Let X be a random
variable taking values in a measurable space (X,X).

1. Let G be a subfield of A. A regular conditional law of the random variable X
knowing G is a stochastic kernel p from (Ω,A) to (X,X), such that, for any
F ∈ X, p(·, F) is a version13 of P(X ∈ F | G).

2. Let Y : (Ω,A) → (Y,Y) be a random variable taking values in a measurable
space (Y,Y). A regular conditional law of the random variable X knowing the
random variable Y is a stochastic kernel p from (Y,Y) to (X,X), such that, for
any F ∈ X, p(Y (·), F) is a version of P(X ∈ F | Y ).

When (X,X) = (Ω,A) and X = IΩ : (Ω,A) → (Ω,A) is the identity mapping,
we obtain the following particular cases. A regular conditional law of P knowing G

is a random measure P such that, for any F ∈ A, P(·, F) is a version of P(F | G).
A regular conditional law of P knowing Y is a stochastic kernel p such that, for any
F ∈ A, p(Y (·), F) is a version of P(F | Y ).

As a special case, when X is G-measurable, we may take p(ω, F) = 1F (X (ω)) as
a version of P(X ∈ F | G). This gives p(ω, dω′) = δX (ω)( dω′)

When a regular conditional law of X knowing G exists, we say that it is unique
P-a.s. if any two candidates P and Q are almost surely equal, in the sense that
P({ω ∈ Ω | P(ω, ·) = Q(ω, ·) }) = 1. In that case, we denote it by PGX (ω, dx) or by

P
G(ω, X ∈ dx). The regular conditional distribution of X knowing G is such that,

13This means that p(·, F) and P(X ∈ F | G) are almost surely equal w.r.t. P.
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for any measurable function ϕ : X → R satisfying E
(∣∣ϕ(X )

∣
∣) < +∞, we have

that:

E
(
ϕ(X ) | G) (·) =

∫

X

ϕ(x)P
G
X (·, dx) P -a.s. . (B.42)

In the same way, the regular conditional distribution of P knowing G is denoted by
P
G(ω, dω′). It is such that, for any integrable random variable X : Ω → R,

E
(
X | G) (·) =

∫

Ω

X (ω′)PG(·, dω′), P-a.s.. (B.43)

In the same vein, the regular conditional distribution of X knowing Y is denoted by

P
Y
X (y, dx), by P

Y (y, X ∈ dx) or by P(X ∈ dx | Y = y). It is such that, for any

measurable function ϕ : X → R satisfying E
(∣∣ϕ(X )

∣
∣) < +∞, we have that:

E
(
ϕ(X ) | Y

)
(·) =

∫

X

ϕ(x)P
Y
X (Y (·), dx), P-a.s.. (B.44)

Example B.20 The following expressions arewell known andmay be easily verified.
If G is an atomic σ-field generated by a countable partition {Ωn}n∈N , we have that:

P
G(ω, dω′) =

∑

n,P(Ωn)>0

1Ωn (ω)P|Ωn ( dω
′). (B.45)

If Y is a discrete random variable, we have that (see (B.29) and (B.30)):

P
Y (y, dω′) = P|{Y =y}( dω′). (B.46)

If X and Y are discrete random variables, we have that:

P
Y
X (y, dx) =

∑

x ′∈X (Ω)

P(X = x ′ | Y = y)δx ′( dx). (B.47)

If the couple (X , Y ) has a density f(X ,Y ) > 0 w.r.t. the Lebesgue measure on R
2,

we have that:

P
Y
X (y, dx) = f(X ,Y )(x, y)

∫
X

f(X ,Y )(x ′, y) dx ′ dx . (B.48)

�
Proposition B.21 ([30, 89]) Let X be a random variable taking values in a Borel
space. If Y is another random variable, there exists a regular conditional distribution
of X knowing Y , and it is unique PY -a.s..
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Using the previous proposition with X = IΩ and when (Ω,A) is a Borel space
we obtain as a corollary that there exists a regular conditional distribution of P
knowing Y .

The following disintegration formula is widely used.

Proposition B.22 (Disintegration [89]) Let X : (Ω,A) → (X,X) be a random
variable taking values in a measurable space (X,X), G be a subfield of A, and Y :
(Ω,A) → (Y,Y) be a G-measurable random variable. Let also f be a measurable
function on X × Y such that E

(∣∣ f (X , Y )
∣
∣) < +∞. If X has a regular conditional

distribution P
G
X (ω, dx) knowing G, we have that:

E
(

f (X , Y ) | G) =
∫

X

P
G
X (·, dx) f (x, Y (·)), P-a.s.. (B.49)

If X has a regular conditional distribution P
Y
X (Y (·), dx) knowing Y , we have that:

E
(

f (X , Y ) | Y
) =
∫

X

P
Y
X (Y (·), dx) f (x, Y (·)), P-a.s.. (B.50)

Equation (B.50) is usually written under the form

E
(

f (X , Y ) | G) (ω) = E
(

f (X , y) | G) (ω)|y=Y (ω), P-a.s. (B.51)

whenever Y is G-measurable. As a corollary, we have that

E
(

f (X , Y )
) =
∫

Ω

P( dω)

∫

X

P
G
X (ω, dx) f (x, Y (ω)). (B.52)

B.7 Monte Carlo Method

The knowledge of a random phenomenon arises from experiments, which often
consist of a set of independent observations. In this section, we analyze this intuitive
idea. We first recall what is the product of probability spaces. We then introduce
the notion of sample, and we recall the construction of the underlying probability
space. We present the celebrated “Strong Law of Large Numbers” and the “Central
Limit Theorem”. We conclude this section by presenting numerical experiments and
practical considerations.

B.7.1 Infinite-Dimensional Product of Probability Spaces

Let {(Xn,Xn,μn)}n∈N be a sequence of probability spaces. We denote by X∞ the
product space, that is the Cartesian product of Xn
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X∞ =
∏

n∈N
Xn,

and we define the sequence {Xn}n∈N of coordinate mappings, namely

Xn : X∞ → Xn

(x0, . . . , xn, . . . ) �→ xn .

Our first objective is to equip the product space with a σ-field.

Definition B.23 The σ-field σ
({Xn}n∈N

)
generated by the sequence of coordinate

mappings is defined to be the smallestσ-field relative towhich all Xn aremeasurable.
It is also called the product σ-field with components Xn , and is denoted

X∞ =
⊗

n∈N
Xn .

In the product spaceX∞, sets of the form
∏

n∈N An with An ∈ Xn are called cylinders
with finite dimensional basis if An = Xn for all but a finite number of indices n. For
such a cylinder A, the (finite) subset of N for which An 
= Xn is denoted BA.

Proposition B.24 The product σ-field X∞ is the smallest σ-field containing all
cylinders with finite dimensional bases of X∞ .

For a proof, see [37, Sect. 1.3].

We are now able to define a probability measure on (X∞,X∞).

Theorem B.25 There exists a unique probability distribution μ∞ defined on the
product σ-field X∞ such that for every cylinder A with finite basis BA,

μ∞(A) =
∏

i∈BA

μi (Ai ).

For a proof, see [37, Sect. 6.4].

The following notation is usual for the product distribution:

μ∞ =
⊗

n∈N
μn .

Theprobability space (X∞,X∞,μ∞) is called the infinite-dimensional product prob-
ability space associatedwith the sequence {(Xn,Xn,μn)}n∈N.When (Xn,Xn,μn) =
(X,X,μ) for all n ∈ N, the following notation is used:

(X∞,X∞,μ∞) = (XN,X⊗N,μ⊗N
)
.
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B.7.2 Samples and Realizations

Let (Ω,A,P) be a probability space and let X be a random variable, that is a
measurable mapping, defined on Ω taking its values in a space X equipped with
a σ-field X:

X : (Ω,A) −→ (X,X).

For the sake of simplicity, we restrict ourselves to the finite-dimensional case X =
R

p,X = Bo
Rp being the associated Borel σ-field. We use the term “random variable”

for X whatever the dimension p is (see Sect.B.2). We denote by μ the probability
distribution of X , that is the probability distribution induced by X :

μ(A) = P(X−1(A)), ∀A ∈ X.

Here we study problems which involve carrying out a sequence of observations
of a random phenomenon. More precisely, we are interested in (possibly infinite-
dimensional) sequences of independent observations of X , that is, sequences of
independent random variables which have the same probability distribution as X .
We first define the notion of sample and realization.

Definition B.26 A n-sample from the probability distribution μ is a sequence
(X1, . . . , Xn) of independent random variables with the same probability distrib-
ution μ.

This definition easily extends to infinite-dimensional samples, namely sequences
{Xk}k∈N of independent identically distributed (i.i.d.) random variables.

Before using samples, we have to know if it is always possible to get a (possibly
infinite-dimensional) sample from the random variable X defined on the probability
space (Ω,A,P). The answer is usually negative, the original probability space being
not “big enough” to support independent random variables.14 There is, however, a
canonical way to define samples. Let the infinite product of the probability spaces
(X,X,μ) become the probability space under consideration

(Ω̃, Ã, P̃) = (XN,X⊗N,μ⊗N
)
,

and consider the coordinate mappings

Xn : X
N → X

(x1, . . . , xn, . . . ) �→ xn .

14Consider for example a coin toss, and let Ω = {H, T } and A = {∅, {H}, {T },Ω}. If the game
is modeled using a real-valued random variable defined on Ω , every potential random variable
representing the game can be obtained (by composition with a deterministic function) from the
unique random variable (H �→ 0, T �→ 1).
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They aremeasurable (by definition ofX⊗N), independent by construction (sinceμ⊗N

is a product probability), and their common probability distribution is μ. They thus
constitute an infinite-dimensional sample of X . Owing to a change of the proba-
bility space, (Ω̃, Ã, P̃) replacing (Ω,A,P), it is possible to generate samples of
arbitrary size.

Consider now the products of n probability spaces (X,X,μ), namely
(
X

n,X⊗n,

μ⊗n
)
. The projection mappings

�n : X
N → X

n

(x1, . . . , xn, . . .) �→ (x1, . . . , xn),

are measurable. Let F̃n be the σ-field generated by �n :

F̃n = σ(�n) = σ(X1, . . . , Xn).

Then {F̃n}n∈N is the filtration associated with the sample (X1, . . . , Xn, . . . ). Other-
wise stated, considering Xn as the observation of X delivered at stage n, F̃n is the
σ-field generated by all observations prior to n.

B.7.3 Monte Carlo Simulation

Let (Ω,A,P) be a probability space and let X be a random variable defined on Ω

taking its values in the Borel space
(
R

p,Bo
Rp

)
.We denote the probability distribution

of X by μ, and we consider an infinite-dimensional sample (X1, . . . , Xn, . . . ) of
X . According to the previous paragraph, such a sequence exists up to a change of
probability space. We suppose from now that (Ω,A,P) is “big enough” for such a
sequence to exist.

We first recall a classical convergence theorem (Strong Law of Large Numbers).

Theorem B.27 Let (X1, . . . , Xn, . . . ) be a sequence of i.i.d. random variables, and
let Mn = (1/n)(X1+· · ·+Xn). We suppose thatE (‖X1‖) < +∞. Then, the random
variable Mn almost surely converges to E

(
X1

)
as n goes to infinity:

Mn
a.s.−→ E

(
X1

)
.

A second classical theorem (Central Limit Theorem) gives some indication about
the convergence rate of the estimator Mn .

Theorem B.28 Let (X1, . . . , Xn, . . . ) be a sequence of i.i.d. random variables and

let Mn = (1/n)(X1+· · ·+Xn). We suppose thatE
(∥
∥X1

∥
∥2
)

< +∞, and we denote

M = E
(
X1

)
and Σ = Var

(
X1

)
the mean and the covariance matrix of X1. Then, the
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sequence of probability distributions of the random variables
√

n
(
Mn −M

)
narrowly

converges towards the centered normal distribution with covariance matrix Σ:

√
n
(

Mn − M
)

D−→ Np(0,Σ).

Otherwise stated, it means that the covariance matrix of Mn is asymptotically equal
to Σ/n: the convergence rate is 1/n, and it does not depend on the dimension of the
space R

p.
The proof of these two celebrated theorems can be found in any textbook on

Probability (e.g. [37]). Other results for the rate of convergence are available, e.g.
from Large Deviations Theory [56].

B.7.4 Numerical Considerations

We are now interested in the computational point of view, that is the manipulation of
random variables on a computer. As a matter of fact, if the convergence analysis of
algorithms involving samples has to be carried out on random variables, their imple-
mentation on a computer is done using numerical values. The following definition
is useful for numerical considerations.

Definition B.29 A realization (x1, . . . , xn) of the n-sample (X1, . . . , Xn) is a value
taken by the sample at some ω ∈ Ω:

(x1, . . . , xn) = (X1(ω), . . . , Xn(ω)
)
.

This definition is extendedwithout difficulty to infinite-dimensional sample (X1, . . . ,

Xn, . . . ). Such realizations are obtained using a pseudo-random number generator,
that is a computational device designed to generate numbers that approximate the
properties of random numbers.15 Such a generator usually delivers the components
of the realization (x1, . . . , xn) one by one: given a realization (x1, . . . , xn−1) of
a (n − 1)-sample of X , a further call to the generator produces a value xn such
that (x1, . . . , xn) is a realization of a n-sample of X .

Let us illustrate the previous notions with help of a basic example, namely the
numerical computation of the expectation of a random variable X . Using a infinite
dimensional sample (X1, . . . , Xn, . . . ) of X , we know from Theorem B.27 that
Mn = (1/n)(X1 + · · · + Xn) almost surely converges to M = E

(
X
)
. Moreover,

the last summation can be written recursively, namely

Mn = Mn−1 − 1

n

(
Mn−1 − Xn

)
.

15Sequence of numbers that lacks any pattern, in the computer science terminology.
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From a realization (x1, . . . , xn, . . . ) of the sample, we deduce the realization mn of
the estimator Mn :

mn = 1

n
(x1 + · · · + xn).

Note that the strong law of large numbers asserts that, except on some Ω0 ⊂ Ω such
that P(Ω0) = 0, each realization (x1, . . . , xn, . . . ) of the sample satisfies

lim
n→+∞ mn = M.

Using the recursive formulation, the sequence {mn}n∈N is obtained by a computer
as follows.

Algorithm B.30 (Recursive Monte Carlo Estimation)
1. Set m0 = 0 and n = 1.
2. Draw a realization xn of X .
3. Compute mn = mn−1 − (1/n)(mn−1 − xn).
4. Set n = n + 1 and go to step 2.

As already explained, the value xn is obtained in such a way that (x1, . . . , xn) is a
realization of a n-sample of the random variable X . The algorithm is stopped after
a given number N of iterations (say a few thousands). Outputs of the algorithm are
shown at Fig.B.1, in the specific case M = 0. We have represented the variation
of ‖mn‖ over the iterations, for different values p of the dimension of the space X.
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Fig. B.1 Estimation by the Monte Carlo method
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Let us conclude with two remarks about this algorithm.

1. The output m N of Algorithm B.30 is a single realization of the random variable
MN . We have to perform multiple runs of the code in order to obtain statistical
conclusions on the output.

2. It is clear from the experiments presented at Fig.B.1 that, at least asymptotically,
the rate of convergence does not depend on the dimension p of the space X.
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Index

Symbols
⊗, 74, 79, 329
∇, 313

A
�, 10
Adapted (to a filtration or to a sequence of

subfields), 136
ADP, see Approximate Dynamic Program-

ming
Agent, 256
APP, see auxiliary problem principle
Approximate Dynamic Programming, 207
argmax, 317
argmin, 317
Atom, 75
Auxiliary problem principle, 40
Averaging, 48

B
Bellman

function, 110, 188
Bellman equation, 110
Bellman (Richard), 3

equation, 325
function, 325
optimality principle, 323, 325

Big-O notation, 37
Borel

σ-field, 328
set, 328

Bottom element, 70
Bound

greatest lower, 71
least upper, 71

lower, 70
upper, 70

C
Causal, 8, 136, 264
Causality, 6, 11, 107, 264, 322
Cell, see quantization or Voronoi cell
Central limit theorem, 37, 345
Centroid, 157
Characteristic function, 310, 318

subdifferential, 315
Chen’s projection method, 54
Closed-loop

control, 322
observation, 296

Closed-loop strategy, 127
Codebook, 157, 173
Coercive, 317
Complementary slackness, 320
Concave, 310
Conditional

expectation, 334
probability, 337

Cone, 309
normal, 309

Constraint
a.s., 4, 136
active, 320
control, 107
equality, 319
explicit, 319
implicit, 319
inequality, 319
in expectation, 4
informational, 6, 22, 161, 164, 206
in probability, 4
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measurability, 136
qualification, 320
satisfaction, 4
unconstrained case, 107

Continuity, 311
Lipschitz, 311, 316

Control, 105, 322
closed-loop, 4, 6, 322
constraint, 107
feedback, 322
history, 106
law, 296

admissible, 296
open-loop, 297

map, 107
open-loop, 4, 6, 322
optimal, 3

deterministic, 5
stochastic, 5, 7, 134, 183

Convergence
almost sure, 332
epi-convergence, 213
in distribution, 333
in law, 333
in probability, 332
Kudo convergence, 218
L p , 332
mean square, 332
Mosco convergence, 215
strong, 218
uniform convergence, 218

Convergence rate
sample average approximation, 50
stochastic approximation, 38
stochastic gradient, 45

Convex, 310
hull, 311

closed, 311
strictly, 310
strongly, 310

Convex conjugate, see Fenchel conjugate
Core function, 40
Cost

final, 108, 135, 322
function, 317, 322
instantaneous, 108
integral, 108, 135

Cost function, 3
Cost-to-go, 110, 325
Co-state, 143, 196, 324

adapted, 145, 149
non-adapted, 144, 147

Cramer-Rao lower bound, 52

Criterion, 108, 317
additive, 108
Bolza, 108
evaluation, 108
expected, 109

Curse of dimensionality, 152, 191, 205
Cylindric extension, 257, 258

D
Dantzig (George), 5
Deadlock, 279
Decision, 105

field, 257, 294
making, 3

robust, 4
open-loop, 4
rule, 112, 260

admissible, 260
space, 105, 257, 294
subfield, 259

Decision-hazard, 8, 137, 184
Decision-memory, 273
Decoding, 156, 167, 172
Decomposable set, 224
Decomposition, 41
Density, 331
Derivative, 313

directional, 313
first-order, 314
partial, 313
second-order, 314

Differentiable
Fréchet, 313
Gâteaux, 313
twice, 314

Discretization, 160
adaptive, 183

DIS, see dynamic information structure
Domain, 310
Doob (Joseph), 86
DP, see dynamic programming
Dual

effect, 7, 9, 14
topological, 309

Duality
product, 309
theory, 3

Dynamic programming, 3, 110, 121, 323
equation, 187

Dynamics, 105, 135, 322
autonomous, 105
closed-loop, 116
stationary, 105
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E
Encoding, 156, 167, 170, 173
Epigraph, 310
Equivalence

classes, 68
mappings, 84
probabilities, 331
relation, 68, 69

Essential supremum, 330
Estimate

biased, 149
unbiased, 150
variance, 176

Expectation
approximation, 175
conditional, xv, 12, 138, 197, 334

w.r.t. a partition, 88
w.r.t. a random variable, 89

mathematical, 87, 330

F
Father, 194
Feedback, 4, 106, 116

admissible, 107, 116
control, 322
law, 188, 322, 325
optimal, 109
synthesis, 182, 197, 204

Fenchel conjugate, 312
biconjugate, 313

Field
π-field, 74
σ-field, 78, 327

atomic, 79
finite, 79
generated, 79, 327
product, 79

decision, 257, 294
history, 257, 294
information, 259
partition, 74

atomic, 76
complete, 74
finer, 75
finite, 76
generated, 74, 81
product, 74
trivial, 74

subfield, 93, 333
decision, 259

Filtration, 8, 300
Finer, 72

relation, 67
Fréchet, see differentiable

G
Gâteaux, see differentiable
Gradient, 313

in SOC problem, 143, 196
Graph, 310
Grid, 189

adaptive, 201, 207

H
Hamiltonian, 324
Hazard-decision, 8
Hilbert space, 309
History, 119

field, 257, 294
space, 257, 294

History-ordering, 264
Horizon, 105, 322
Hull

convex, 311
closed, 311

lower, 311
upper, 311, 315

I
i.i.d., see independent identically distributed
Independent identically distributed, 344
Indicator function, 20
Inf-compactness, 216
Infinite dimensional product, 342

probability measure, 343
probability space, 343
σ-field, 343
space, 342

Information, 260
field, 259
handling

algebraic, 6, 17, 182
functional, 6, 17, 182, 206

pattern, 6
state, 120
structure, 5, 6

dynamic, 11
static, 10, 137

structure diagram, 265
Information-memory, 270, 271
Initial

condition, 105
state, 105
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Integrable random variable, 330
Interpolation-regression, 189, 203

kernel, 190
operator, 189
polynomial, 190
spline, 190

Intrinsic model, 256

J
Jacobian, 314

K
Kesten’s algorithm, 54
Kiefer-Wolfowitz algorithm, 37
Kuhn-Tucker, see multiplier

L
L p

convergence, 332
norm, 330
space, 330

Lagrange, see multiplier
Lagrangian, 144, 196, 320, 324
Lattice, 71

complete, 71
inf-semilattice, 71

complete, 71
sup-semilattice, 71

complete, 71
LBG, see linearly bounded gradient
Linearly bounded gradient, 36, 43
Linear-quadratic-Gaussian, 14
Lipschitz, see continuity
Lloyd’s algorithm, 159, 198
LQG, see linear-quadratic-Gaussian
Lyapunov equation, 38

M
Majorant, 70
Marginal interpretation, see multiplier
Markovian, 9, 146
MASIOS, 293, 295
Maximal element, 70
Maximum element, 70
Maximum principle, 3
Mean quadratic error, 157, 200
Measurable

mapping, 80, 81, 86, 327
space, 327

Measure, 328

space, 328
Memory-communication, 298
Minimum

global, 317
local, 317

Minimum element, 70
Minorant, 70
Monic, 274
Monotone mapping, 315

strongly, 316
Monte Carlo, 5, 19, 160, 174
MQE, see mean quadratic error
μ-complete, 328
Multiplier

Kuhn-Tucker, 319
Lagrange, 319
marginal interpretation, 321

Multi-stage, 5

N
Nearest neighbor, 158, 190
Negation operator, 69
Newton

algorithm, 47
efficiency, 47

NOLDE, see no open-loop dual effect
Nonanticipative, 5, 6, 8, 136, 161
No open-loop dual effect, 301
Norm, 157, 309

L p , 330

O
Objective function, 317, 322
Observation, 8, 10, 136, 322

closed-loop, 296
function, 294

Off-line, 6
On-line, 6
Open-loop, 260

control, 322
law, 297

optimization, 28
Optimal feedback, 109
Optimality conditions

first-order, 317
second-order, 317, 321

Optimization
constrained, 3
open-loop, 10, 28

Order, 69
ordered set, 70
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ordering, 69
partial, 69
pre-order, 69
total, 69

P
Parametric, 189

non, 189
part, 80
Particle, 186, 189

method, 201
Partition, 71, 157

bottom, 75
bound

greatest lower, 75
least upper, 75

complete, 72
generated

by mapping, 80
top, 75
trivial, 72

Perfect memory, 8, 102, 136, 300
no, 14, 16

Perfect recall, 274
Policy, 112, 260

admissible, 260
Pontryagin (Lev), 3, 5

maximum principle, 323
Precedence, 265, 297
Predecessor, 265
Probability, 328

conditional, 88, 337
distribution, 331
equivalence, 331
law, 331
measure, 328
product, 329
space, 328

Probability space
product, 329

Product
duality, 309
scalar, 309

Programming
dynamic, 5
mathematical, 5
stochastic, 5, 10

Projection, 318
Proper, 310

Q
Qualification, see constraint

Quantization, 162, 198
cell, 157, 162
optimal, 158
set-theoretic, 156

Quasi-Monte Carlo, 160

R
Random closed set, 220
Random variable, xiii, 86, 329

primitive, 4
secondary, 4

Realization, see sample
Regression, see interpolation-regression
Relation, 66

antisymmetric, 68
complementary, 69
converse, 67
diagonal, 66
equality, 66
finer, 67
reflexive, 68
reflexive and transitive closure, 68
symmetric, 68
transitive, 68
transitive closure, 67

Representative, see centroid
Rich set, 224
Riesz representation theorem, 309, 313
Robbins-Monro theorem, 36
Robbins-Siegmund theorem, 57

S
SA, see stochastic approximation
SAA, see sample average approximation
Sample, 5, 344

path, 257
realization, 346
space, 294

Sample average approximation, 29, 49
epi-convergence, 49

Scenario, 5, 106, 186
tree, 22, 167, 174, 193

binary, 198
SDDP, see Stochastic Dual Dynamic Pro-

gramming
Self-information, 260
Semicontinuity

lower, 312
Sequence

epi-convergent, 213
σ-sequence, 35
σ(α,β, γ)-sequence, 37



362 Index

Shannon (Claude), 14
Signal, 66, 80
Signaling, 15, 266
SIS, see static information structure
Slater condition, 321
SOC, see stochastic optimal control
Solution map, 113, 263
Solvability

measurability property, 263
property, 263

Son, 194
SP, see stochastic programming
Square integrable, 330
State, 105, 119, 146, 322

adjoint, 324
initial, 105
map, 107
model, 105
of Nature, 257, 294
system, 105
trajectory, 105

Static
system, 274
team, 274, 277

Station, 274, 277
Stationarity, 317
Stochastic APP algorithm, 42
Stochastic approximation, 27, 34

algorithm, 34
convergence, 36
convergence rate, 38

Stochastic Dual Dynamic Programming,
207

Stochastic gradient, 27, 29
algorithm, 31
APP algorithm, 42
asymptotic behavior, 51
averaging, 48
convergence, 43
robust approach, 55
transient behavior, 51

Strategy, 112, 260, 322
admissible, 260

Strong law of large number, 345
Subdifferential, 314
Subgradient, 314
Successor, 272
System, 259

classical, 276
strictly, 276

multi-agent, 295

partially nested, 274, 298
quasiclassical, 276

strictly, 276
sequential, 274

MASIOS, 299
static, 274
stochastic input-output, 293
subsystem, 267, 268

T
Team theory, 13
Tessellation, see Voronoi tessellation
Time-separable, 108
Top element, 70
Topology, 267

norm, 309
strong, 309
weak, 309

Trace, 189
operator, 189

Two-point boundary value problem, 324
Two-stage, 5

U
Uncertainty, 105
Undistinguishability relation, 72, 80
Uniformly

continuous, 331
integrable, 332

Universe, 65, 294
Upper integral, 222

V
Value

function, 110
Variance

conditional, 92, 98, 99
Variational approach, 3, 5, 133, 207
Variational inequality, 318
Voronoi diagram (or tessellation or cells),

158, 166, 167, 170, 190

W
White noise, 9, 146, 174
Witsenhausen (Hans), 16

counterexample, 16, 96, 97
Worst case design, 4
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