
London Mathematical Society Lecture Note Series. 8

Integration and
Harmonic Analysis on
Compact Groups

R.E.EDWARDS

Department of Mathematics, I. A. S.
Australian National University
Canberra

Cambridge At the University Press 1972



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge C132 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521097178

© Cambridge University Press 1972

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published and Manufactured in Australia by
The Australian National University, Canberra 1970
Reprinted with corrections 1971
First Cambridge University Press edition 1972
Re-issued in this digitally printed version 2007

A catalogue record for this publication is available from the British Library

Library of Congress Catalogue Card Number: 77-190412

ISBN 978-0-521-09717-8 paperback



Contents

Page
General Introduction
Acknowledgements

v

vi

Part 1 Integration and the Riesz representation theorem 1

1. 0 Introduction to Part 1 1

1. 1 Preliminaries regarding measures and integrals 2

1. 2 Statement and discussion of Riesz's theorem 9

1. 3 Method of proof of RRT: preliminaries 12

1. 4 First stage of extension of I 15

1. 5 Second stage of extension of I 17

1. 6 The space of integrable functions 19

1. 7 The v-measure associated with I; proof of
the RRT 24

1. 8 Lebesgue's convergence theorem 30

1. 9 Concerning the necessity of the hypotheses in
the RRT 31

1.10 Historical remarks 36

1. 11 Complex-valued functions 40

Part 2 Harmonic analysis on compact groups 42

2. 0 Introduction to Part 2 42

2. 1 Invariant integration 46

2. 2 Group representations 59

2. 3 The Fourier transform 72

2. 4 The completeness and uniqueness theorems 75

2. 5 Schur's lemma and its consequences 83

2. 6 The orthogonality relations 86

2. 7 Fourier series in L2(G) 91

2. 8 Positive definite functions 102

iii



2. 9 Summability and convergence of Fourier series 111

2.10 Closed spans of translates 121

2. 11 Structural building bricks and spectra 125

2. 12 Closed ideals and closed invariant subspaces 129

2. 13 Spectral synthesis problems 137

2. 14 The Hausdorff-Young theorem 143

2.15 Lacunarity 152

Concluding remarks 161

Appendix A 163

Appendix B 175

Bibliography 179

iv



General Introduction

This set of notes is the result of fusing two sets of skeletal notes,
one headed 'The Riesz representation theorem' and the other 'Harmonic
analysis on compact groups', the aim being to end up with a reasonably
self-contained introduction to portions of analysis on compact spaces
and, more especially, on compact groups.

The term 'introduction' requires emphasis. These notes are not
(and cannot be) expected to do much more than convey a general picture,
even though a few aspects are treated in some detail. In particular, a
good many proofs easily accessible in standard texts have been omitted;
and many of the proofs included are presented in a somewhat condensed
form and may require further attention from readers who decide to study
in more detail the areas under discussion. These features arise from a
deliberate attempt to avoid too much detail; they are also to some extent
inevitable consequences of an attempt to survey rapidly a fairly large body
of material.

The substructure of Part 2 has (I am told) been found useful as a
lead-in by research students whose subsequent interest has been in
specialised topics in harmonic analysis. Part 1 has, I think, filled a
similar role in relation to abstract integration theory. If the readers have
been attracted by the topics presented, they have pressed on to study some
of the more detailed items listed in the bibliography. (In respect of Part 2,
there is little doubt that the second volume of Hewitt and Ross [1] is the
main follow-up to these notes.) It is hoped that the present fusion will
be more helpful than either of the original sets of notes could have been
when taken singly.

There are reasonable grounds for this hope, insofar as little depth
in problems of harmonic analysis can be achieved without a suitable inte-
gration theory. This is the case, notwithstanding what is written in
Edwards [4] to suggest that a grasp of some of the fundamental problems
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demands no more than a relatively primitive concept of integration; for,
as was pointed out there, further pursuit of these problems usually
demands a fully-fledged Lebesgue-type integration theory. Thus Part 1
goes some way to furnishing the needs of Part 2, as well as constituting
the foundation for numerous other topics in abstract analysis.

To mark the end of subsections of the text, in cases where it is
perhaps not otherwise obvious that the end has been reached, the 'box'
symbol o has been used.

Acknowledgements
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sition. (Most of the modifications made to Part 1 are such as to make it
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Part 2, the major component, amounts to a considerably modified
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Part 1 Integration and the
Riesz Representation Theorem

1. 0. Introduction to Part 1

A hint of the flavour of abstract harmonic analysis can (as is indi-
cated in Edwards [4]) be transmitted as soon as a relatively primitive
concept of invariant integration on groups is available; for the hint to get
across, it suffices that one can integrate (say) continuous functions with
compact supports. In order to make a more serious study, it is necessary
(as was indicated loc. cit.) to have a more highly developed integration
theory of the Lebesgue type. The major aim of Part 1 is to provide a
brief account of one way of extending a primitive integration theory into
such a Lebesgue-type theory.

This aim might be attained in any one of several ways. The chosen
method might be said to be that which fulfils most expeditiously the secon-
dary aim of exhibiting some aspects of the general role of integration theory
in functional analysis and abstract analysis in general. Since this role is
to a large extent crystallised in the so-called Riesz representation theorem
(RRT, for short), the selected approach to integration theory is accordingly
the one which is dominated by the idea of viewing integration as a linear
functional defined on a space of continuous functions. This approach is in
opposition to accounts which (cf. 1. 1 below) base integration on a given
measure function: instead, the measure function is made to appear as a
derivative concept.

No attempt will be made to present this approach in the most
general setting possible; in fact, we shall assume (except in various
'asides') that the underlying space is compact and Hausdorff. This re-
striction brings with it a number of technical simplifications, while yet
preserving enough generality to bring out most of the important features
and to ensure general utility. (Extensions and historical remarks will
appear in 1. 9 and 1. 10, respectively. )
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To come closer to particularities, the representation problem we
intend to tackle is the following. Suppose X is a set. Denote by B(X)
the linear space of bounded real-valued functions on X. Let L denote
a linear subspace of B(X). Consider linear functionals F on L which
are continuous in the sense that

I F(f) 1 < const. Ili II = const. supxEX I f(x) I

for every f e L. If L is finite dimensional, this continuity requirement
is fulfilled by every linear functional F on L, and F is expressible as
a weighted sum:

F(f) = 1 cjf(xj)

for suitably chosen xj e X and real numbers c.. If L is not finite di-
mensional, it is too much to expect that such a representation is always
possible. However, one might hope that every continuous linear F will
be expressible as some sort of integral.

In 1. 1 we shall show quite rapidly and painlessly that this hope is
justified in the shape of the Hildebrandt-Fichtenholz-Kantorovich theorem,
at least for suitable choices of L. (The required concept of integration
will be defined on the way.) However, for reasons which will be pinpointed
in 1. 1. 10, this solution is not as helpful as one might wish.

It turns out that, in certain special and very important cases, it is
possible to adopt a more painstaking and more constructive approach leading
to a result (the Riesz representation theorem) of the desired type which is
free from shortcomings of the earlier solution. The remainder of Part 1
is concerned with this more profitable approach.

1. 1. Preliminaries regarding measures and integrals

Throughout 1. 1, X denotes an arbitrarily given nonvoid set. The

term 'set', without further qualification, means 'subset of X'. 9' (X)

is a convenient symbol for denoting the set of all subsets of X. Through-

out 1. 1-1. 10 only real-valued functions will be considered. The extension
to complex-valued functions is a routine matter; see 1. 11 below.
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1. 1. 1. By an algebra of sets is meant a set of subsets of X
containing X itself as a member and stable under (finite) unions and
under complementation. If in addition contains as a member the
union of any denumerable sequence of its members, is termed a
a-algebra.

A set-function on means simply a real-valued function whose
domain is Jf . (Complex-valued set-functions appear later; see 1. 11. )
Such a set-function p is said to be (finitely) additive if is an algebra
and if

p(A U B) = p(A) + µ(B)

whenever A and B are disjoint members of . If moreover

00
00

p(UAn)=Fn lp(An)

whenever (An) is a disjoint sequence of members of whose union

belongs to , then p is said to be a-additive (= countably additive,
or completely additive) on .

A set-function p on is said to have bounded variation (BV
for short) on if

V(µ) =sup Fk_1 Jµ(Ak)

is finite, the supremum being taken with respect to all finite disjoint
families (--k)1<k-n of members of J1. This is certainly the case
if p is non-negative and additive. (Non-negative set-functions are some-
times allowed to take the value °o, but if they do they are no longer of By.
They are barred from further discussion here. )

For brevity an additive (resp. a-additive) set-function of BV on
an algebra (resp. a-algebra) will be termed a measure (resp. a-
measure) on.

1. 1. 2. Examples. Since it turns out that the great virtue of the
Riesz representation theorem, when compared with the results of 1. 1. 9
below, hinges upon the difference between additivity and a-additivity (see
2. 1. 1 below), some examples exhibiting the difference are in order.
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(i) If X is a finite set, it is evident that any additive set-
function on any algebra j1 of subsets of x is also v-additive. This
is false for every infinite set X, however. Counter-examples can be
produced by using transfinite methods, such as the Hahn-Banach theorem
(if I is as in the proof of 1. 9. 8 below, and if cA denotes the character-
istic function of A, then p: A'- I(cA) is additive and not a-additive) or
the use of ultrafilters (see Edwards [2], Exercises 1. 23 and 1. 26).

All examples of this sort may seem somewhat artificial. The next

one is somewhat more natural.

(ii) For X take the real interval [0, 1]. Let consist of
all subsets of X which are finite unions of subintervals of X. (The

intervals may be void and may contain neither, either one, or both ex-
tremities.) J( is an algebra of subsets of X, but not a a-algebra.

Let g be any real-valued function on X. If J is a subinterval
of X with left and right extremities a and b respectively, write
og(J) = g(b) - g(a). Each member A of can be written as a finite
union of disjoint subintervals of X, say A = J1 U ... U Jn. The sum

n
k-1 Ag(Jk) can be shown to be independent of the chosen decomposition

of A. A set-function µ is accordingly unambiguously defined on J1
by putting p(A) _ k-1 Og(Jk). It can be verified that p, so defined, is
additive on _

However, if g be suitably chosen, p will not be a-additive.
Thus, suppose either that lim g(n) does not exist, or that it exists and
is different from g(0). The subinterval J = (0, 1] is the union of the

1disjoint subintervals Jn = (n+1' n] (n = 1, 2, ... ). Were µ to be a-
additive, the relation

µ(J) = Yn1 µ(Jn)

would follow. Now p(J) = g(1) - g(0), p(Jn) = g(n) - g(-+1), so that the
series Yn 1 µ(Jn) either does not converge or, if it does, converges to
the sum g(l) - lim g(n), which is different from g(1) - g(0). Thus p is
not a-additive.

Notice that p will have BV if and only if g has bounded variation
on [0, 1].
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That ._S /itself is not a a-algebra is of no ultimate significance,
for the Hahn-Banach theorem could be used to show that µ can be exten-
ded into a positive, additive set-function on the cr-algebra ,G' (X).

1. 1. 3. The s p a c e B (X). Let _W be an algebra of sets.
By an JV-function (or ._S-simple function) will be meant a function
on X which is representable as a finite linear combination (with real
coefficients) of characteristic functions cA, where A c -W. Herein
cA is that function on X which takes the value 1 at points belonging to
A and the value zero at all remaining points of X.

The set B(X) of all bounded real-valued functions on X is a
Banach space, addition of functions and multiplication of a function by a
real scalar being defined as usual ('pointwise operations'), and the norm
being defined by

IIfII = supxEX If(x)I . (1.1.1)

It is evident that B(X) contains each function.

B (X) will denote the closure in B(X) of the set of all
.V-functions.

It can be shown that if JV is a a-algebra, then Bjf (X) con-

tains precisely those f E B(X) which are measurable in the sense
that

{xEX:f(x)> rI EJ7

for each real number r. In particular, if _ (X), Bj( (X) = B(X).

1. 1. 5. Exercise. Prove the last two statements.
The next step is to consider the definition of the integral f fdp

for f E Bj'(X) , µ being any measure on the algebra JV.

1. 1. 6. Definition of f fdp. Take first the case in which f is an
function. It then admits at least one (and actually many) expressions

as a finite sum

nf = Ik=1 ak. cAk ,
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the ak being real numbers and the Ak members of S1. The additivity
of p on is easily seen to ensure that the associated sums

,k=1
akp(Ak)

are independent of the selected expression of f. The common value of

these sums is, by definition, the meaning of the symbol f fdp.

With this convention it is evident that the functional

f I- f fdp

is linear on the vector space of functions, and that

f fdp 1 < V(p) 11f Il (1. 1.2)

for all J1 -functions f.
Take next any f e B' (X). Choose any sequence (fn) of

functions converging uniformly to f, i. e. , such that lim IIf-fn II = 0.
Such sequences do exist by virtue of the definition of Bci (X). From
(1. 1. 2) it follows that the sequence (f fndp) is convergent (to a finite
limit), and moreover that this limit is independent of the chosen sequence
(f n) converging uniformly to f. Accordingly, f fdp may and will be
unambiguously defined to be this common limit.

1. 1. 7. Exercise. Verify in detail the statements made in the
penultimate sentence. Check also that (1. 1. 2) continues to hold for any
f e

1. 1. 8. Exercise. Show that f I- f fdp is a continuous linear
functional on Bjf (X) , the latter regarded as a Banach space with the
norm induced on it by (1. 1. 1).

1. 1. 9. The space dual to B '(X) . The result stated in
Exercise 1. 1. 8 has a valid converse, namely: any continuous linear
functional F on B jf (X) is expressible by integration with respect to
some measure p on J/.
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Indeed, if this is to be the case, only one choice of the set-
function p is possible, namely

p(A) = F(cA) . (1.1. 3)

It remains to be shown that p, so defined, is a measure on J"and that

F(f) = J fdp (1. 1. 4)

for f E B4/-(X).
It is evident from (1. 1. 3) and the linearity of F, that p is

additive on `V. To prove it has BY, suppose that (p ) is a--k
finite disjoint family of members of -V. Define the numbers
ak = sgn p(Ak). Then

IIEk=1 akcAkll <_ 1

and so

k=I IP(Ak) I = F(,k=1 akcAk) IIFII

by linearity of F and the standard definition

IIFII=sup (IF(f)I:f Bj/(X), IIfII:5 1}.

It appears thence that V(p) < II F II , so that p has By. p is therefore a
measure on J .

Now (1. 1. 3), combined with the linearity of F and the linearity
of the integration process, shows that (1. 1. 4) holds when f is any ._S -

function. Then, by continuity of F and by continuity of the integration
process (Exercise 1. 1. 8), (1. 1. 4) must continue to hold for any

f E B (X).

This establishes the opening statement of this section.
A simple argument shows further that

IIFII = V(p) .
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To sum up, one may say that formula (1. 1. 4) establishes a
linear isometry F - p between the dual (= conjugate, or adjoint) space
of B'(X) and the space of all measures on --Q/, the latter space of
measures carrying the norm defined by

IIµ1I=V(µ).

This result is sometimes referred to as the Hildebrandt-Fichtenholz-
Kantorovich theorem.

1.1.10. Some notation We shall agree on the following notation

for subsequent use.
If X is any set and k any 'object', the constant function with

domain X and range {k) will be denoted by kX, or simply by k if X
is clear from the context. As a set of ordered pairs, kX is thus Xx {k

If f and g are real-valued functions on X, we write f < g (or
g ? f) if and only if f(x) g(x) for every x E X. Thus, if X is a compact
space, a linear functional F on C (X) is non-negative (as defined immedi-
ately following 1. 2. 2 below) if and only if F(f) ? 0 for every f E C(X)
satisfying f - 0X.

1. 1. 11. Exercise. Let p be a non-negative measure on (X)

which is not a-additive (see 1. 1. 2). Exhibit a monotone sequence (fj)

extracted from B(X) such that 0 5 fj <_ 1, f = limj_.. j = 0 (the constant

function zero),

infj EN f fjdp > 0 ,

and therefore

limjy.o f fjdp # f fdp

Remark. This example shows that passage to the limit under the
integral sign is not generally permissible with integrals with respect to
finitely additive measures, even though the integrands are quite well be-
haved and forma monotone sequence. This disagreeable situation is much
improved when integrals with respect to a-additive measures are con-
sidered; cf. Theorem 1. 5. 3 below.
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1.2. Statement and discussion of Riesz's theorem.

1.2.1. Statement of the problem. A functional analytic approach
to problems related to classical analysis often focuses attention on the
situation in which X is a fairly simple type of topological space (rather
than a structureless set) and B(X) is replaced by its subspace C(X)
comprising all bounded continuous real-valued functions on X. (Notice

that B(X) = C(X), if the set X is endowed with its discrete topology. )
It is often of importance, and is in any case of considerable intrinsic
interest, to know what the continuous linear functionals on C(X) look like.

One answer to this problem flows immediately from the substance
of 1. 1. 9, if one applies the Hahn-Banach theorem. If F is a CLF (= con-
tinuous linear functional) on C(X), it has an extension into a CLF on the
whole of B(X). So, by 1. 1. 9, there exists a measure p on (X)

such that (1. 1. 4) holds for all f e C(X). See also Edwards [4], R.
This reply is unsatisfactory from several points of view. To begin

with, p is very far from being uniquely determined by F, i. e. , there
will exist in general many measures p which represent, via (1. 1. 4), that
CLF F which is identically zero on C(X). (If X is normal, this defect
can be removed by restricting p to be 'regular', as defined below. )

A second and more important criticism stems from the preference
for a representation which will be useful. As Exercise 1. 1. 11 indicates,
integrals f . .. dp with respect to arbitrary finitely-additive measures µ
can behave very oddly, most of the nice theorems (like 1. 5. 3, 1. 5. 4 and
1. 8. 1 below) for Lebesgue-type integrals suffering spectacular breakdowns.
For this reason it is natural to consider the possibility of a representation
(1. 1. 4) in which p is a v-measure on some a-algebra, J' , such that
C(X) S Bci (X) . This inclusion relation will obtain if (and, for the
simpler examples of X, only if) contains all the so-called Borel sub-
sets of X; see 1. 9. The Borel subsets of X are, by definition, precisely
the elements of the smallest a-algebra of subsets of X which contains all
open (or all closed) subsets of X.

The suggestion is therefore that we define the term Borel measure
(on X) to mean a o-measure with domain the set of all Borel sets in X,
and then ask whether formula (1. 1. 4) holds with µ a suitably chosen Borel
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measure. [Note - The term 'Borel measure' is often applied, even when
p is not of By, but this extended meaning will not be used here. ]

Granted such a representation, the uniqueness of p for a given
F would not be ensured unless one imposed the extra condition that p
be regular in the sense that, for any Borel set A C X and any E > 0,
there exists an open set U ? A such that I µ(B) - µ(A) I E for every
Borel set B satisfying A S B S U.

The statement of what has come to be known briefly as the Riesz
representation theorem (hereinafter referred to even more briefly as
the RRT) is just a summary of the desiderata outlined above, together
with hypotheses on X which suffice to render the goal attainable.

1. 2. 2. Theorem. Let X be a Hausdorff compact space and F
any CLF on C(X). Then there exists a regular Borel measure p on X
such that (1. 1 . 4) holds for f e C(X). Moreover, p is uniquely deter-
mined by F, and V(p) = 1 1F1 1 .

If the existence of p be assumed, it is not difficult to show that p
is non-negative whenever F is non-negative in the sense that F(f) > 0
for every f E C(X) satisfying f > 0X. (Incidentally, many writers use
the term 'positive' in place of 'non-negative' in this connection. For
obvious reasons, either choice is regrettable, the second slightly less
so than the first. A better term would be '(monotone) nondecreasing',
but this is non-standard.) The converse is trivial. Since it may be shown

(see Exercise 1. 2. 6 (b) below) that any CLF F on C(X) is expressible
as the difference of two (necessarily continuous) non-negative linear
functionals on C(X), an equivalent formulation of the existence part of
the RRT appears in

1. 2. 3. Theorem. If X is any Hausdorff compact space, any
non-negative linear functional F on C(X) is representable in the form
(1. 1. 4), where p is a non-negative regular Borel measure on X. (As

before, p is uniquely determined by F, etc. )
In Theorem 1. 2. 3 it is unnecessary to postulate continuity of F

since, as is easily seen, this is a consequence of non-negativity; see
Exercise 1. 2. 6 (b).

The ensuing programme is confined to providing a proof of the
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existence statement in Theorem 1. 2. 3. The missing discussion of
uniqueness is quite simple in the case of Theorem 1. 2. 3, but less so in
the case of Theorem 1. 2. 2; for details, see Hewitt and Stromberg [1],
(20. 45).

Discussion of the necessity of the hypotheses placed upon X in
Theorem 1. 2. 3 and of its rich background, is deferred until 1. 9. In

spite of all that has been said thus far, it will appear in 1. 9. 2 that the
use of or-measures and their integrals is neither necessary to, nor always
maximally convenient for, the formulation of a desirable representation
theorem.

1. 2. 4. Exercise. Formulate and prove the RRT for the case in
which X is a finite set, regarded as a compact space with the discrete
topology.

1. 2. 5. Exercise. Let X be an infinite set. Denote by B0(X)
the subspace of B(X) comprising those functions f E B(X) which 'tend
to zero at infinity', i. e. , have the property that, for each e > 0, the
set {x E X : If(x) I > e ) is finite; this property is often expressed
by the formula XEX, x-- f(x) = 0. Use the RRT to deduce that to each
CLF F on B0(X) corresponds a function a on X such that

xEX
I a(x) I = sup 41

XES I a(x) S C X, S finite }

is finite, and

F(f) = xEX a(x)f(x)

for f E B0(X). The sum appearing here is defined to be the unique real
number s with the following property - Given e > 0, there exists a
finite subset S( e) of X such that

IFxES a(x)f(x) - sI < e

for all finite subsets S of X which contain S(E ).
Hints: Form a topological space X' as follows. As a set X' is ob-

tained by adjoining to X one more point, say oo. The topology on X'
is specified by assigning to each x E X a neighbourhood base formed of
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the one set {x }, and to - a neighbourhood base formed of sets X'\S,
where S ranges over the finite subsets of X. Verify that X' is
Hausdorff and compact, and that all subsets of X' are Borel subsets.
Show that B0(X) may be identified with the set of g E C(X') which
vanish at the point oo. Apply the RRT to C(X'). ]

1. 2. 6. Exercise. (a) Show that any NNLF (= non-negative

linear functional) F on C(X) is continuous.
(b) Let F be a CLF on C(X), as in 1. 2. 2. For f E C(X)

satisfying f > 0 write

F+(f) = sup { F(g) : g E C(X), 0 < g - f }

Prove that F+ is additive and positive-homogeneous and can be extended
into NNLF on C(X). Show that F = F+ - F is also a NNLF on C(X),
so that the formula F = F+ - F expresses F as the difference of two
NNLFs on C(X). (This is the minimal decomposition of F of this sort:
if F = I - J, where I and J are NNLFs on C(X), then I - F+ and
J - F are both NNLFs on C(X).)

1. 2. 7. Remark. The result of Exercise 1. 2. 5 may quite easily
be obtained without using the RRT, but it is instructive to see that it is
subsumed as a corollary thereof. The reader may like to reverse the
procedure and thus give a proof of the RRT for the special case in
question.

1. 3. Method of proof of RRT; preliminaries

1. 3.1. One starts with a definite NNLF on C(X). The aim being

to express this functional as an integral, it will be denoted by I. The

process is a constructive extension of I to a certain set of functions on
X, to be termed those which are 'integrable' (for, or relative to, I). It

is crucial that this set of integrable functions shall possess certain struc-
tural properties and, at the same time, shall include the characteristic
functions of all sets belonging to some a-algebra SVfor which
C(X) S B' (X) . The a-algebra of Borel sets certainly satisfies this
demand, but is in some cases unnecessarily large; see 1. 9. It is also
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crucial that the extension of I shall satisfy certain important 'conver-
gence theorems'. Assuming that I has been suitably extended, the
associated a-measure µ will be obtained by defining µ(A) = I(cA).

The procedure to be followed is by no means the shortest possible.
Granted some familiarity with standard measure- cum- integration theory,
one of the speediest approaches is sketched by Hewitt [4]. Here, however,
no such prior knowledge is assumed, and the approach will furnish en
route some of the most important properties of the integrals involved. It
is in fact suitable for a self-contained theory of integration (see Bourbaki
[1]).

Before embarking on the construction, which will be broken into
four main stages, a few facts from general topology will be recalled.

1.3.2. If X is any topological space, 4i = 4;(X) will denote the
set of all non-negative lower semicontinuous functions on X. (0 is lower
semicontinuous on X if and only if for each real number r, the set
{x E X : O(x) > r I is open in X.)

1.3.3. It will be convenient to permit functions in 4i to take the
value - at some or all points. This will not lead to trouble, since the
symbol (-) - (oo) will never appear. But it is necessary to agree upon
the following conventions:

0. = 0, c. 00 = 00 if c > 0,
if c is real,

c< ° if c is real,

together with commutativity in the above operations.

1. 3.4. If H is a nonvoid set of functions on X, its upper
envelope is the function f defined by

f (x) = sup { h(x) : h E H ) ,

which may be - at some or all points of X. This upper envelope is

denoted by sup{h : h E H I or suphEHh.
If H S 4i, the upper envelope of H belongs to 4?.
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1. 3. 5. Exercise. Prove the last statement. o
If 0 and 0' belong to 4), and if c is a positive number, then

0 + 0' and co belong to 4). If A S X, then cA E 4) if and only if A
is open in X.

Use will be made of the fact that any compact Hausdorff space X
is completely regular: this means that, given x e X and any neighbour-
hood N of x, there exists a continuous function f mapping X into
[0, 1] such that f(x) = 1 and f(X\N) S 10 }. For this see Kelley [1],
p. 117 and p. 147. (A completely regular compact space need not be
Hausdorff.)

An important corollary of complete regularity is incorporated in

1. 3. 6. Exercise. If X is compact and Hausdorff, each 0 e 4)
is the upper envelope of the set of non-negative functions f e C(X)
satisfying f < 0. o

Another necessary fact is embodied in the following theorem.

1. 3. 7. Dini's theorem. Suppose that X is a compact space,
that f c C(X), and that H 9 C(X). Suppose also that

(a) sup { h(x) : h e H } ? f (x) for each x EX;

and (b) given h', h" a H, there exists h e H such that
h > sup(h', h").

Then, given E > 0, there exists h E H such that h ? f - e .

1. 3. 8. Exercise. Prove Dini's theorem by considering the open
sets

Ah
= {x EX : h(x)> f(x) - s} .o

The first stage of the construction can now begin. From this
point until the end of 1. 8, the notation is fixed as follows:

X is a Hausdorff compact space;
C = C(X), 4) = 4)(X);

I is a given NNLF on C(X).

14



1.4. First stage of extension of I

In this section the domain of I is stretched to include 4:.

1. 4. 1. Definition. If 0 E 4i one defines

1* (0) = sup {I(f) : f E C, f s 0}

According to this definition, I*(0) may be °0, but it is certainly finite
if 0 is bounded. (Why?)

The non-negativity of I ensures the truth of the following state-
ments -

(1) I*(f) = I(f) if f E C, f > 0 .

(2) 0 < I*(0) <_ 1* (0') if $, $' E 4' and 0 0'.

It is also very simple to show that

(3) I*(c4)) = cI*(4)) if ¢ E 4; and c - 0.

The next property is much less evident.

1. 4. 2. Proposition. Suppose 0 E 4' is the upper envelope of a
subset H of 4' with the property that H contains a common majorant
of any two of its elements. Then

NO) = suphEHl*(h) .

Proof. That sup I*(h) <_ I*(0) follows from 1. 4.1(2) above. It
remains to show that

I*(0) < sup I*(h) ,

for which it suffices to show that, if f E C and f <_ 0, then

1(f) <_ sup I*(h) .

To prove this, consider the set H' of all g E C such that g < h
for some h c H (h may depend on g). It is then easy to check that H'
contains a common majorant of any two of its members, and that its
upper envelope is > f. By Dini's theorem 1. 3. 7, therefore, given

15



e > 0, one can find go E H' such that g
0

? f - e . Hence

I(go) ? I(f) - e I(1) .

Since go <_ ho for some ho E H, I(g0) < I*(ho) < sup I*(h). So

I(f) <_ sup I*(h) + e I(1) .

Since E > 0 is arbitrarily small, the proof is finished.

Remark. The proposition applies if H comprises the terms of
a monotone increasing sequence (0n) of elements of 4;. But it is re-
markable that no countability restriction is placed on H. The proposition
is hopelessly false for more general functions, unless one is tied down to
sequences; cf. 1. 5. 3 below.

1. 4. 3. Corollary. I* is additive on 4), i_e. , if 01, 02 E 4) then

1*(01 + $2) = 1*(01) + 1*(02)

Proof. Let H. (i = 1, 2) be the set of non-negative functions
in C which minorise (i. e. , which are majorised by) Oi, and let H be
the set of sums f1 + f2, where fi E Hi H satisfies the hypotheses of
the above proposition, and by 1. 3. 6 its upper envelope is 01 +0 2' Thus

Proposition 1. 4. 2 gives

I*($1 + 02) = suphEHI*(h)
= sup {I*(f1 + f2) : f1 E H1, f2 E H2 I .

Since f1, f2 are non-negative and continuous, the same is true of
fl + f2, so that

I*(f1 + f2) = I(f1 + f2) = I(f1) + I(f2) .

Hence

1*(01 + 02) = sup II(f1 + I(f2) : f1 E H1, f2 E H2 }

= sup I(f1) + sup I(f2)

= I*($1) + 1*(02) ,

the last step by very definition of I*.
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1.4. 4. Exercise. Take points x
n

EX and numbers c
n

>_ 0

(n = 1, 2, ... ). Show that the formula

GO

I(f)_ E cn
f(x

n
) (f EC)

n=1
Go

defines a NNLF on C if Z c > -. This I is then denoted by
00 n=1

n

F cn e x , x being the 'Dirac measure at x'. Prove that
n=1 n

00

I*W = F cn$(xn)
n=1

for each 0 E 4.

1. 5. Second stage of extension of I

Here we define an extension I** of I* whose domain includes
all non-negative functions on X. Since in general there will exist func-
tions which are finite-valued and which admit no finite-valued lower semi-
continuous majorant, one now sees why it is convenient to allow functions
in to take the value -0. However, having done this, one may as well
admit into the discussion non-negative functions taking the value o.

1.5.1. Definition. Let f be any non-negative function on X,
finite-valued or not. One defines

I**(f)=inf{I*(4)) : 0 E(k, 0-f) .

As in the case of I*, a number of properties are evident.
(1) I**(0) = I*(0) if 0 E .

(2) 0 s I**(f) < I**(f') if 0 <_ f- f'
(3) I**(cf) = cI**(f) if c is a number > 0.

1. 5.2. Exercise. By using Corollary 1. 4. 3, show that

I**(f1 + f2) <_ I**(f1 + I**(f2) ,

i. e. , I** is subadditive. (It is not additive, except in certain trivial
cases.) o
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One of the most fundamental results concerning Lebesgue-type
integrals with respect to or-additive measures now appears in the following

disguise.

1. 5. 3. Theorem (Monotone Convergence). Suppose f is the limit
of a monotone increasing sequence (fn) of non-negative functions. Then

I**(f) = lim I**(fn)

Proof. From 1. 5.1(2) above it is evident that

I**(f) ? lim I**(fn) .

In proving the reverse one may clearly assume that I**(fn) < - for each n.
It will be shown that for any E > 0 one may choose an increasing

sequence n
from c such that f

n
<

n
and I*(0n

) < I**(f
n
) + e .

If this be done, 0 = lim 0n will belong to 4), it will majorise f, and
Corollary 1. 4. 3 will show that

I* (0) = lim I* (0n) <_ lim I** (fn) + e .

Accordingly I**(f) < I*(0) < lim I**(fn) + E. Since c is arbitrarily
small, the proof will be complete.

To construct the 0 one begins by choosing $n in majorising

fn and such that I**(fn) < I*(01) < I**(fn + /2n, and then shows that
the 0n = supl<m:5n0m satisfy the demands. Evidently, 0n E i and
On > fn. The final step is to prove by induction on n that

I*($n) < I**(fn) + e (1 - 2-n) . (a)

Now this is true for n = 1. Assume it true for n = k. One has

Ok+1 = sup($k' $k+l) .

Since Ok ? fk and $k+1 > fk+1 fk, so

inf($k' $k+1) - fk

(b)

(c)
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Also

inf($k' $k+l) + sup(Ok'
0k,

+l) = $k + Ok+l (d)

Using the additivity of I* (Corollary 1. 4. 3), it follows from (b), (c) and
(d) that

I*($k) + I*(Ok+l) '- **(fk) + I*($k+l) .

So, by inductive hypothesis,

I*($k+l) I*(Ok) + I*($k+l) - **(fk)

I**(fk) + e (1 - 2-k) + I**(fk+1) + e 2-k-1-I**(fk)

= I**(fk+l) + e (1 - 2-k-1) I

which is (a) for n = k + 1. The proof ends by appeal to the induction
principle.

1.5.4. Exercise (Fatou's lemma). Let (fn) be an arbitrary
sequence of non-negative functions. Show that

I**(lim inf fn) s lim inf I**(fn) .

[Hint: Consider the functions

Fm f not be needed for the
proof of Theorem 1. 2. 3, but it is relevant to the discussion in 1. 9 and
to Part 2. ]

1.6. The space of integrable functions

The so-called integrable functions are distinguished in a fashion
which is somewhat similar to the process which leads to real numbers by
completing the metric space of rationals.

First one defines the appropriate metric - or, rather, semi-
metric ... space.
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1. 6. 1. Definition. < will denote the set of all f e RX
(= the set of all real-valued functions on X) for which

N(f)=I**(IfI)< °°

By 1. 5. 2 and 1. 5. 1(3), 9' is a linear subspace of RX. Also,
N is a seminorm on (i. e. , has all the properties of a norm save
that N(f) = 0 does not in general imply that f = 0). The corresponding
semimetric on (f, g) - N(f - g). Evidently, C C .

Instead of talking about an abstract completion of C, we may and
will remain within the set of real-valued functions on X by taking the
closure of C in and verify that this is a completion of C. This

motivates the following definition.

1.6.2. Definition.

to the seminorm N, of C.
functions.

will denote the closure in relative
The members of are termed integrable

Since is the closure of
a linear subspace of RX.

If f, g e C we have

a linear subspace of RX it is itself

II(f)-I(g)I = II(f-g) I :5 I(If-gI)=I**(If-g1)=N(f-g)

This shows that f '- I(f) is a uniformly continuous linear functional on
the dense subspace C of . It therefore has a unique continuous
extension into a continuous linear functional on . This extension is

denoted by I. In more concrete terms, if f c , I(f) is the common

limit of (I(fn)) for all sequences (fn) extracted from C and satisfying
N(fn - f) - 0 (n - 00).

1. 6. 3. Exercise. Show that if f and g are non-negative ele-
ments of then

II**(f) - I**(g) I N(f - g)

Deduce that

I**(f) = I(f)
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whenever f E' and f ? 0.
[Hint: Note that f s g+ If - g I.]

1. 6. 4. Exercise. Show that if 0 E 4), then 0 E if and only

if 0 is finite-valued and I*(0) < -. In particular, any bounded 0 E 4)
belongs to . (Concerning the restriction that 0 be finite-valued,
see the final paragraph of 1. 6. 7. )

1. 6. 5. Exercise. Show that if f E ' , then If I E .

Deduce that if f and g are integrable, so too are sup (f, g),

and inf (f, g).

[Hints: Note that

IfI - IgI

that

sIf - gI,

sup (f, g)=(f+g+ If-g1)

and that

inf (f, g) _ -sup (-f, -g). ] 0

The basic convergence theorem can now be established.

1. 6. 6. Theorem. Let (f n) be a monotone increasing sequence
of non-negative integrable functions which converges to a limit f E RX.

Then f is integrable if and only if limnl(fn) < -, in which case

I(f) = limnI(fn) .

Proof. In any case fns f for every n; if f is integrable,
1. 5.1(2) and 1. 6. 3 give I(fn) s I(f) for all n, hence limnI(fn) < 00.

Suppose on the other hand that limnl(fn) < oo. By Theorem 1. 5. 3,

I**(f) = lim I(f) < -,

i. e. , f E Moreover, by the same theorem,

N(f-fn) = I**(f-fn) = limml**(fm-fn) .
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But Exercise 1. 6. 3 shows that, if m ? n, then

I**(fm-fn) = I(fm fn) = I(fm) - I(fn)

which tends to zero as m, n - -o. It follows that, given e > 0,
N(f - fn) a for all sufficiently large n. Accordingly, f belongs to
the closure in " of . , and so, since is closed infe.o

Remarks. It is easy to relax the hypothesis of non-negativity of
the fn to the demand that at least one of the fn majorises an integrable
function. (If fn > u E apply Theorem 1. 6. 6 to the sequence

+n+ lul.)
0

1.6.7. The spaces - p and Lp. Mainly to cater for the
needs of Part 2, it is necessary to define these spaces for every
p E [1, 00]. The form of the definition depends upon whether p is or is
not finite.

Suppose first that p # 00. In this case we mimic 1. 6. 1 and 1. 6. 2

by first replacing N by Np, where

Np(f) = (I**(If Ip))1/p

and then following the recipe in 1. 6. 2.This leads to _97- p and thence

to p. Elements of _ p are the so-called pth power integrable
_ 1 =functions on X. (Notice that N1 = N, 9' 1 = and

In case p = -, the procedure has to be varied. First we agree
to say that an f E -9 (resp. a set E S X) is negligible (or null, or
of measure zero) if and only if N(f) = 0 (resp. N(cE) = 0); the term
'of measure zero' becomes more appropriate in appearance in 1. 7. 6
below. For the moment, the sole use of the concept is in the definition
of N.,, namely: N00(f) is the infimum of m E [0, -) u { - } having the

property that {x E X : If(x) I > m I is negligible. We then define

- 00 {f E N00(f) < o0}oo
If E : N00(f) < oo}
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(In 1. 7. 10 it will appear that, in the above definition of ©, the con-

dition expressed by If E ' could be replaced by If is measurable'. )
Only in degenerate cases is 00 the same as the N closure in
_9T_ 00 of C.

True (but not so obvious as in the case p = 1) is the claim that,
for any p, Np is a seminorm on p; this is the substance of
Minkowski's inequality. It is in general not a norm; in fact, Np(f) = 0

if and only if f is negligible, which in general does not imply that f
vanishes everywhere, but merely outside a set which is negligible. It is
also the case that p S q whenever p > q.

P is complete relative to the seminorm N
p

; the case
p = is easy, and the case p < - is discussed in Exercise 1. 7. 13.
This is one of the most important general properties of the space p.

(The preceding facts will be found established in almost any book
on Lebesgue-type integration; see, for example, Edwards [2], Chapter 4. )

If we denote by M the set of negligible functions, then M is a
linear subspace of p for every p. The quotient space _9' p/M is
denoted by Lp and the norm on Lp obtained from the seminorm Np on

P is usually denoted by
II II

P*
The completeness of p then

ensures the cardinal fact that LP is complete relative to the norm just
defined; it is therefore a Banach space. Moreover, Lp S Lq whenever

p q.
A customary caution has to be issued here. The distinction between

P and LP is very often ignored (or regarded as being covered by
an automatic mental adjustment on the reader's part); we shall in fact be
guilty of this confusion in due course. The difference which is being
glossed over is that between an individual function (element of P)

and the equivalence class of functions (element of Lp) corresponding to
it. While the abuse is rife, it is perhaps best for the reader to become
accustomed to it; all one may ask is that he be on his guard and be pre-
pared to guarantee its harmlessness in each instance in which he lets it
pass. (In particular, he should be ready to do precisely this at various
places in Part 2 to follow. )

There is yet another occasional abuse which should be mentioned,
namely, the common practice of including in p (and into ) those

extended real-valued functions which agree, except perhaps at the points
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of a negligible set, with an element of 2 p (or -97-) as defined above.
This, too, is usually harmless and often very convenient. However, if
this practice is adopted, there is a price to pay: the enlarged sets of
functions are in general no longer linear spaces in any natural way. With-

out wishing to expand upon this, our advice to the reader must be much
as before.

1. 7. The a-measure associated with I; proof of the RRT

1. 7. 1. Measurable sets. A set A S X is said to be measurable
(though 'integrable' would be a more sensible term) if and only if cA is
integrable, in which case one writes µ(A) = I(cA). (This concept of

measurability naturally depends on the NNLF I with which one starts,
and is more fully termed I- measurability.)

1. 7.2. What has already been established concerning the be-
haviour of I on renders it possible to verify the following assertions:

(1) The measurable sets form a a-algebra which contains all
open sets, and therefore all Borel sets too.

(2) The set-function p is non-negative (and therefore has BV)
on the or-algebra of measurable sets, and p is there or-additive. Thus µ
(or, rather, its restriction to the set of Borel sets) is a Borel measure.

1. 7. 3. Exercise. Verify the above statements.
[Hints: Notice that cAuB = inf(cA + cB, 1), that cAuB = cA + cB if
A and B are disjoint, and that cX A = 1 - cA. So check that the set
Pi//of measurable sets is an algebra and that p is additive on 94/.

For the rest notice that

c 0 = lim c m
(UA) m (IU A)
n=1 n n=1 n

and use Theorem 1. 6. 6. ]

1. 7.4. To these statements may be added a third, namely:

(3) p is regular (see 1. 2. 1).
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To prove this, it suffices (since p is non-negative) to show that
if A is a measurable subset of X and if E > 0, an open set B ? A
exists for which p(B) < p(A) + E . Now cA is integrable and so
there exists for any E' > 0 a function 0 E (D such that 0 > cA and
I(0) < I(cA) + E'. It may be assumed that 0 <_ 1 (otherwise replace
0 by inf (0, 1)). The set B = {x E X : 4)(x) > 1 is then open
and contains A, and cB < (1 - E')-10. Hence

p(B) = I(cB) (1 - E')-1($) < (1 - E')-1[I(cA) + el
_ (1 - E')-1[µ(A) + Ell

p(A) + E'(1 - E)-1[1 + µ(X)]

which in turn is majorised by p(A) + E provided c' is chosen
small enough (depending on a and p). Regularity is thereby established.

1. 7. 5. To complete the proof of the RRT, it remains only to show
that I(f) = f fdp for f E C. In doing this, it may be assumed that f ? 0.
Suppose the range of f is contained in the bounded half-open interval
J = [0, c). Partition J into a finite number of similar such intervals,
say the intervals Jk. For each k, let sk = inf Jk. Each set f-1(Jk) is
measurable, being the intersection of a closed set with an open set. The

function Fksk. CA , where A k = f-1(Jk), is integrable and a member of

BIZ, (X). Taking now a sequence of such partitions of J, each finer
than its predecessor, and such that also the maximum length of the sub-
intervals converges to zero, one obtains a sequence (fn), wherein each
f
n

is non-negative, integrable and belongs to B (X), and such that,
fn t f and fn - f uniformly on X.

For each n, I(fn) = f fndµ as a consequence of the way in which
p is defined in terms of I. As n - o, f fndµ -+ f fdµ (see Exercise
1. 1. 8). At the same time, I(fn) - I(f), as one sees by appeal to Theorem
1. 6. 6 (for example). Thus I(f) = f fdp, and the proof is complete.

1. 7. 6. Exercise. Prove that:
(1) a subset E of X is negligible if and only if E is measur-

able and µ(E) = 0;
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(2) a countable union of negligible sets is negligible;
(3) an arbitrary union of open, negligible sets is negligible.

As a consequence of (3), there exists a largest open set of measure zero:
its complement is termed the support of I (or of µ).

Take X = [0, 1] with its usual topology and

1(f) = f' f(x)dx ,

the Riemann integral, for f E C(X). What is the support of I? What if
X = [0, 1] and

I(f) = f(0) + 2f(1) + f1/4 f(x)dx ?

1. 7. 7. Exercise. Prove that if two non-negative functions f and
g (finite-valued or not) satisfy f <_ g save perhaps at the points of a
negligible set, then I**(f) < I**(g).

Deduce that if f, g E RX, and if f = g save perhaps at the points
of a negligible set, then g is integrable if and only if f is integrable, in
which case I(g) = I(f).
[Hint: Note that f s limn(g + ncE), if f < g save perhaps at the points
of E. ]

oo

1. 7. 8. Exercise. Let I = I cn ex ; see Exercise 1. 4. 4.
n=1 n

Put Sk = { xn : 1 <_ n s k } and S= Ixn
: n ? 1 } . Prove the following

statements:
k

(i) I**(cs) _ I cn
k n=1

00

(ii) I**(cs) = E cn
n=1

(iii) X\S is negligible;

(iv) µ({xn})=cn;
(v) for any non-negative function f on X,

00

I**(f) = I cnf(xn)
n=1
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00

(vi) f E RX is integrable if and only if Y cn If(xn) I < in

which case n=1

00

I(f) = F cn
f (x n)

n=1

(vii) any subset A C X is measurable, and

µ(A)=FnEA'cn'

.where A' = In : xn A}

1. 7.9. Concerning terminology. Having established the existence
part of 1. 2. 3 in detail, we may take the existence part of 1. 2. 2 as proven.
For reasons which will appear in 1. 10. 4 below, some writers (especially
the French) attach the name Radon measure on X to any CLF F on C(X),
and to the corresponding v-measure p. (The context usually makes it
plain whether the functional or the measure-function is in question.) We
will follow this practice and denote by M(X) the linear space of all Radon
measures on X. It is important precisely because it is the dual of C(X).

In addition, we shall sometimes use the term 'integral' to mean
'non-negative Radon measure'.

In relation to a given Radon measure p on X, it is standard to
say that a property of points of X holds p - almost everywhere (a. e. ,
for short) if and only if the set of points of X which do not possess the
said property is negligible (in the sense explained in 1. 6. 7 above). For
example, two functions are said to agree a. e. if and only if the set of
points at which they disagree is negligible (i. e. , if and only if their differ-
ence is a negligible function; see 1. 6. 7 above). Again, any extended

real-valued function which is integrable is real- (i. e. , finite-) valued
a. e. ; and a function is negligible if and only if it is zero a. e.

1. 7. 10. Measurable functions. A real-valued function f on X
is said to be measurable if and only if, for every r E R, the set
{x E X : f(x) > r } is measurable. (The same criterion is applied to
extended real-valued functions on X.) As in the case of sets (see 1. 7. 1)
this concept of measurability depends on the particular non-negative Radon
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measure I (or p) from which one starts. It can happen (cf. Exercise
1. 7. 8) that all functions are measurable; in general, this is not the case.
(However, it is in every case true that the production of nonmeasurable
sets or functions involves a highly nonconstructive procedure; see Halmos
[1], pp. 69-70; Exercise 2. 2. 14 below.and Edwards [3], Exercise 3. 19. )

The routine properties of measurable functions (which in the main
derive from analogous properties of measurable sets... see 1. 7. 2-1. 7. 4
above) may be found in any text on Lebesgue-type measure and integration
theory. In summary, the set of measurable functions is closed under the
elementary algebraic operations (insofar as these lead to functions at all)
and under all the normal countable limiting processes (taking sups, infs,
lim sup and lim inf of sequences, for example); see also Exercise 1. 7.12.
Every continuous and every semicontinuous function is measurable; cf.
the argument in 1. 7. 5 above.

Concerning the connections between measurability and integrability
of functions (with respect to measures and integrals of the type considered
here), the principal results are as follows:

(i) every integrable function is measurable;
(ii) a bounded function is integrable if and only if it is measur-

able (cf. 1. 6. 4);

(iii) f E .. p (1 <_ p < 00) if and only if f is measurable and
either If Ip E or Np(f) < 0 .

The proofs are not trivial.

1. 7. 11. Exercise. Let (f n) be a sequence of real-valued
measurable functions on X, and let E be the set of points x E X for
which the sequence (fn(x)) is convergent in R. Show that E is measur-
able.

1. 7. 12. Exercise. Suppose that f: X -R is measurable and
that g: R - R is continuous. Prove that gof is measurable.

Remark. A little surprisingly; perhaps, fog need not be measur-
able, see Halmos [1], p. 83.
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1. 7.13. Exercise. Let p E [1, -] and let (m, n) E N X N -am n
be a double sequence of positive numbers such that

limm.ao,
n- oo am,n

= 0 .

Select any strictly increasing sequence k 1- nk of positive integers such
that

k00

(k2ank' nk+1)p
00

Let (fn)nEN be any sequence of elements of p such that

p(fm - fn) am,n

for every m, n E N. Show that the subsequence (fnk)k=1 has the property00

that, for some negligible set E S X, limk... fn (x) exists in R for
k

every x E X\E. Show also that, if f is any real-valued function on X
such that f(x) = limkyoo fn (x) for almost every x E X\E, then
f E p and k

limn-+oo Np(f - fn) = 0 .

Deduce that p is complete for the seminorm Np.
Hints: Consider the sets

Ej ' = {xEX: Ifnk (x)-fnk+1 (x)I>_k 2},

00

Ek EkUEk+1U..., E= A Ek.
k=1

Use the properties cited in 1. 7. 10 and Fatou's lemma 1. 5. 4. ]

1. 7. 14. Exercise. Suppose that X, I and p are such that p
is continuous (= diffuse in Bourbaki's language), i. e. , p( Ix 1) = 0 for
every x E X. Show how to construct a sequence (fn)nEN of non-negative
continuous functions on X such that

(i) limn I(fn) = 0 for every p E (0, oo)
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and

(ii) the sequence (f n(x))nEN is convergent for no x E X.

Compare this with Exercise 1. 7. 13 immediately above.

Remark. The hypotheses are fulfilled whenever X is a compact
Hausdorff topological group G and I is the normalised Haar integral
on G (see 2. 1 below). In this case it follows from 2. 9. 6 below that the
fn can be taken to be non-negative trigonometric polynomials on G.

1. 8. Lebesgue's convergence theorem

The discussion in 1. 9 relies in part on establishing what is perhaps
the central convergence theorem for Lebesgue-type integrals. This result
is now within easy reach.

1. 8. 1. Theorem. Suppose that (fn) is a sequence of integrable
functions which is 'dominated', in the sense that an integrable function
exists for which Ifn I < g almost everywhere for each n. Then

lim supn fn and lim inf fn are integrable, and

I(lim inf fn) lim inf I(fn) lim sup I(fn) <_ I(lim sup fn) .

g

In particular, if f = lim fn exists, then f is integrable and

I(f) = lim I(fn) .

Proof. By Exercise 1. 7. 7, we may and will suppose that Ifn I < g
everywhere for each n. Putting Fm = sup {fn : n ? m } and

Fmp= sup{fn : m+p > n? m} ,

one has Fmp f Fm as p - -. Furthermore, -g < Fmp < g.

On combining Exercise 1. 6. 5 and the remark following Theorem

1. 6. 6, it appears that Fm is integrable. On the other hand,
Fm 4 lim sup fn as m -n and -g < Fm < g. Using again the remark
following Theorem 1. 6. 6, this time applied to the functions -Fm, it
appears that lim sup fn is integrable. Since lim inf fn = -lim sup (-fn),
it too is integrable.
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The relation

I(lim inf fn) < lim inf I(fn)

now appears by applying Exercises 1. 5. 4 and 1. 6. 3 to the functions
fn + g > 0 and using linearity of I. Replacing fn by -fn, it follows that

I(-lim sup fn) s lim inf I(-f n) ,

L e. ,

I(lim sup fn) > lim sup I(fn) .

The chain of inequalities stated in the theorem is thereby established.

1.9. Concerning the necessity of the hypotheses in the RRT

There are two questions which are now almost unavoidable, namely

What happens if X is compact but not Hausdorff ?
What happens if X is non-compact?

These will be discussed in turn. It will appear that the Hausdorff axiom
is scarcely worth regarding as essential, but that compactness is nearly
SO.

1. 9. 1. X compact non-Hausdorff. Suppose that X is compact
but not Hausdorff. It will then in general fail to be c. r. (= completely
regular), so that no longer will it be necessarily true that every non-
negative lower semicontinuous function on X is the upper envelope of
functions in C(X). In fact, there exist infinite compact spaces X on
which the only continuous functions are constants, and yet on which there
exist non-constant non-negative lower semicontinuous functions, and of
which all subsets are Borel sets. As a consequence of this, the concept
of Borel measure is not always ideally suited to the statement of the RRT.

Nonetheless, one may define 4) to consist of just those non-negative
functions on X which are upper envelopes of subsets of C(X) and then
repeat 1. 4, 1. 5 and 1. 6 verbatim.
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As in 1. 7. 2, the set (9'of all measurable subsets of X is
still a a-algebra. It may fail to contain all Borel subsets of X. However,

in order that a a-measure p on 4"be suitable for the representation
of linear functionals on C (X), it is enough that C (X) S (X). Now

the smallest a-algebra 2 with the property that C(X) S B g- (X) can

be shown (see Exercise 1. 9. 10) to be that generated by the zero-sets
({ 0 }) of functions f E C(X). It may be verified (see Exercise 1. 9. 11)f 1

that in all cases %'contains 2 , so that an integral representation
is again possible. If X is c. r. , - is identical with the a-algebra of
so-called Baire sets, i. e. , the a-algebra generated by the compact G6-
sets (see Halmos [1], pp. 216 et seq. ).

Lebesgue's theorem 1. 8. 1 demands no modification whatsoever.

1.9.2. It is some comfort to recognise that the RRT can be re-
formulated in a way which avoids the rather bewildering complexity of
diverse a-algebras and a-measures upon them, and this without losing
any of the essential value of the theorem.

Given a NNLF I on C(X), a procedure has been laid out which
leads to a non-negative linear extension of I having as domain an entity

with the following properties:

(i) is a linear subspace of RX which contains C(X);
(ii) if a sequence (f n) of elements of converges boundedly

to f E RX, then f E ;

(iii) if the sequence (fn) is as in (ii), then

lim I(fn) = I(f) .

The linear space depends upon I.
Amongst those linear subspaces L of B(X) which contain C(X),

and which are stable under the formation of limits of boundedly conver-
gent sequences of members of L, there is a smallest. Denote this sub-
space of B(X) by L(X). Then ? L(X), and the extension of I

enjoys the property

(P) If fn E L(X) (n = 1, 2, ... ), and if the sequence (f n) con-

verges boundedly to a function f E RX, then f E L(X) and

lim I(fn) = I(f) .
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It is easily verified that, for a given NNLF I on C(X), there
exists only one linear extension of I to L(X) for which (P) is true.
It has been seen that this unique extension is non-negative on L(X).

The promised reformulation of the RRT is as follows:

1. 9. 3. Theorem. Let X be a compact space (Hausdorff or not),
and let I be a NNLF on C(X). Then I admits a unique linear extension
to L(X) which satisfies (P); this extension is non-negative on L(X).

1. 9. 4. Exercise. Prove the statement made above concerning
the uniqueness of the linear extension of I to L(X), the extension being
assumed to satisfy (P).
{Hint: Suppose I' and I" are extensions of the stated type. Consider
the set L of f E L(X) for which I'(f) = I"(f). Verify that L is a linear
subspace of B(X) which contains C(X) and which is stable under the
formation of limits of boundedly convergent sequences of its members. ] o

By way of preface to the next corollary it is necessary to recall
that a sequence (f n) extracted from a normed linear space H is defined
to be weakly convergent in H to an element f of H, if and only if

lim F(fn) = F(f)

for each CLF F on H.

1. 9. 5. Corollary. Let X be a compact space. In order that a
sequence (f n) extracted from C(X) be weakly convergent in C(X) to
f E C(X), it is sufficient that lim fn = f boundedly on X.

Proof. Inasmuch as each CLF on C(X) is expressible as the
difference of two NNLFs, this follows directly from Theorem 1. 9. 3.

1.9.6. Remark. The stated conditions in 1. 9. 5 are also

necessary. That the pointwise convergence of (fn) to f is necessary,
follows from the fact that, for each x E X, f is a NNLF on C(X).
The necessity of the boundedness restriction (i. e. , the demand that

supn 11 fn 11 < °), is a special case of the Banach-Steinhaus theorem

(Edwards (2], 7. 1. 1 or 7. 1. 3). It will not be proved here.

33



1. 9. 7. X non-compact. It will now be shown that there is a
much more genuine breakdown of the RRT when the hypothesis of com-

pactness is relaxed.

1. 9. 8. Theorem. Suppose X is a topological space satisfying
the following condition:

(i) There exists a sequence (xn) of points of X, and a sequence
(fn) of elements of C(X), such that lim fn = 1 boundedly
on X and limm,yco fn(xm) = 0 for each n.

Then there exists on C(X) a NNLF I which admits no linear extension
to L(X) satisfying condition (P).

The condition (i) implies that X is non-compact. On the other
hand, (i) is satisfied whenever X is non-compact, c. r. , and expressible
as the union of a sequence (Wn) of relatively compact, open subsets of X.

Proof. Assuming that (i) is fulfilled, define for f E C(X) the
number

p(f) = lim supn...00f (X n) .

Evidently,

p(f + g) <_ p(f) + p(g)
p(cf) = c. p(f) ,

if f, g E C(X) and c is a non-negative real number. According to the
Hahn-Banach theorem (Exwards [2], 1. 7. 1), there exists a linear functional

I on C(X) such that

I(f) <_ p(f) .

This is easily seen to entail that

lim infnf(xn) <_ I(f)s lim supnf(xn) (1. 9. 1)

for each f E C(X); in particular, I is a NNLF on C(X).
Suppose that this I were extendable to L(X), subject to (P). On

the one hand, from (1. 9. 1), I(1) = 1. From (P), I(1) = limml(fm). From

34



(1. 9. 1) again, I(fm) = 0 for each m. Thus there appears the absurdity:

1 = I(1) = limmI(fm) = limm0 = 0 .

The conclusion is that I is indeed not extendable. This completes the
proof of the first assertion.

It will next be shown that (i) entails that X is non-compact. As
before, one infers the existence of a linear functional I on C(X) satis-
fying (1. 9. 1). This I is evidently positive and continuous. As has been
seen, I(1) = 1 and I(fn) = 1 for each n. Were X compact, Corollary
1. 9. 5 would show that lim fn = 1 weakly in C(X), and therefore that
1 = I(1) would equal lim I(fn), which is 0. This contradiction forces the
conclusion that X is non-compact.

Finally assume that X is non-compact, c. r. , and expressible
as the union of a sequence (Wn) of relatively compact open sets. It may
be assumed that the Wn increase with n. Moreover, by dropping terms
of the sequence (Wn), if necessary, it may be arranged that Wn is a
proper subset of Wn+l. Choose arbitrarily xn from Wn+1\Wri On
the other hand, since X is c. r. , there exists for each n a continuous
function fn from X into [0, 1] such that

fn(n) = {1 ), fn(X\Wn+1) = 10 } ;

for this, see Kelley [1], p. 142. It is plain that the sequences (xn) and
(fn) satisfy the demands imposed by (i).

1. 9.9. Remark. The problem of characterising completely those
c. r. spaces X for which each NNLF on C(X) is representable by inte-
gration with respect to a a-measure, was solved by Glicksberg [1]. He

showed that it is necessary and sufficient for this that X
of the following four (equivalent) conditions:

(1)

(cf. Dini's theorem 1. 3. 7).
Each continuous function on

Each continuous function on

If fn E C (X) and fn f f E C(X), then fn - f

X is bounded.

satisfy any one

uniformly on X

X assumes a maximum.
Each bounded equicontinuous subset of C(X) is relatively
compact therein.
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For other work on the representation of linear functionals by
integrals, see Hewitt[1], [3].

1. 9. 10. Exercise. Suppose that X is as in 1. 9. 1. Verify that
the smallest a-algebra of subsets of X such that C(X) C B- (X)
is the a-algebra 2 generated by

{f-1({0}) : f EC(X)} .

1. 9. 11. Exercise. Suppose that X, 4) and P4/are as in 1. 9. 1,
that f EC(X) and that E =f- 1

( 10 1). Show that cE = 1 - 0 for some
0 e 4), and deduce that E E G-//; cf. 1. 6. 4 and 1. 7. 1.

1. 10. Historical remarks

The first of the C(X) spaces to receive attention was, as would
be expected, that in which X is a compact interval on the real axis. The

interval [0, 1] is typical, the corresponding space being denoted by
C[0, 1], rather than C([0, 1]).

1. 10. 1. It would appear that Hadamard ([1], [2]) was the first to
consider the representation of CLFs on C[0, 1], though this particular
problem was only a small part of his concern. A resume of some of this
early work is to be found in Volterra [1].

Hadamard's result asserts that, if F is a CLF on C[0, 1], then
there exists a sequence (Kn) extracted from C[0, 1] such that

F(f) = limn f
o

fKn (1. 10.1)

each integral being a Riemann integral. This result appeared in 1903.
Frechet ([1], [2], [3], covering the years 1904-1907) re-proved the result,
noted certain restrictions which may be imposed on the Kn, and remarked
further that F can be represented in a different way, namely,

n
F(f) = limn F knrf(r/n)

r=1
(1. 10.2)

for a suitably chosen double sequence (knr). Both Hadamard and Frechet
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gave applications of these representation formulae.

1.10.2. Both formulae (1. 10. 1) and (1. 10. 2) exhibit the defect

of non-uniqueness. Perhaps the most satisfying way of seeing this is to
consider briefly a proof of (1. 10. 1). Let Q denote the square
[0, 1] x [0, 1] and take a sequence (un) of non-negative continuous

functions on Q such that

fo un(x, y)dy = 1 (0 < x - 1)

and such that, for each t > 0,

limn un (x, y) = 0

uniformly for (x, y) e Q and Ix-y I > t. As examples one might take

un(x, y) = sup (0, n-n2Ix-YI)

or

u(x, Y) =
e-n2 (x-y)2 / f1 e-n2 (x-t)2dt

n .

Routine analysis then confirms that, if f E C[0, 1], and if the sequence
(fn) is defined by

fn (x) = fo f(Y)un(x, y)dy

then (f n) converges in C[0, 1] to f, as n - °°. On the other hand, by
uniform continuity of un on Q, fn is the limit in C[0, 1] of sums

p
fnp(x) = Y f(r/p)un(x, r/p) 1/p

r=1

Let F be a CLF on C[0, 1]. For 0 < y < 1, denote by Un(y) that
element of C[0, 1] which is the function x I-' un(x, y). Uniform con-

tinuity of un entails that y -+ Un(y) is continuous from [0, 1] into
C[0, 1]. Hence

Kn : y '"' F(Un(Y))
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is a member of C[0, 1]. Now linearity of F yields

p
F(fnp) = F f(r/p)Kn(r/p) 1/p

r=1

As p - °o, the left-hand member of this equality converges to F(fn)
(since F is continuous); the right-hand member converges to f0 fKn.

As n - -, F(fn) - F(f), and (1. 10. 1) ensues.
Notice that, when F is given, the sequence (Kn) can be chosen

in many ways inasmuch as many sequences (un) are available. Whence
the non-uniqueness referred to above. The un may be chosen to be poly-
nomials, in which case the Kn are polynomials. If F is non-negative,
the Kn are non-negative too.

Fr4chet considered in a rather similar way functionals on C[0, 1]
which are not linear, but which are analytic in a suitable sense. These
ideas were neglected for quite a while thereafter but were ultimately
developed considerably.

1.10. 3. Riesz's contributions to the representation theorem began
in 1909 with his paper [1]. Here appears the first representation formula
of the type

F(f) = J fdm, (1. 10. 3)

the right-hand member of (1. 10. 3) being a Riemann-Stieltjes integral with
respect to the function m having bounded variation on [0, 1]. An easily-
accessible proof of this formula is found in Banach [1], pp. 59-61. Since

that time, Riesz has given several other proofs of (1. 10. 3), his papers
[2], [3] and [4] covering the period 1911-52. Helly [1] also contributed a
proof of (1. 10. 3).

Until the theory of Riemann-Stieltjes integrals has been developed
to a considerable extent (which is certainly no easier than studying the
corresponding Lebesgue-Stieltjes integrals), result (1. 10. 3) is on a par
with (1. 1. 4) with p a (finitely additive) measure. Moreover, a formula-
tion involving Riemann-Stieltjes integrals is not convenient for extensions
from [0, 1] to more general spaces.
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1. 10. 4. In 1913 Radon [1] extended Riesz's formula from [0, 1]
to a general compact subset of Rn and, at the same time, introduced
Lebesgue-type integrals with respect to Borel measures. Banach, in
Note II to Saks [1] (published in 1937), and Saks himself in the following
year (Saks [2]), carried Radon's version over to a general compact metric
space. Contemporary with this was Markov's paper [1], which examined
integral representations in terms of finitely additive measures, the space
X being assumed to be normal but not necessarily Hausdorff.

1. 10. 5. The version of the RRT appearing as Theorems 1. 2. 2
and 1. 2. 3 arrived in 1941 in Kakutani's paper [1]. It would therefore be
more accurate to speak of this as the Riesz-Radon-Banach-Saks-Kakutani
theorem! A novel approach to this version of the theorem is due to
Varadarajan [1].

1.10.6. In all these developments the customary approach to
Lebesgue-type integrals had been to the fore: by this is meant the view-
point which derives an integral from a given measure. In the meantime,
however, a novel approach to integration theory had been suggested in 1918
by Daniell [1]. In brief, his idea was to treat an integral as a type of linear
functional. A consequence of this would be a formulation of the RRT rather
close to that suggested in 1. 9. 2 and 1. 9. 3. Daniell's work was largely
neglected for some twenty years, at the end of which period interest was
revived by Bourbaki (c. 1937), presumably when plans were being laid for
the relevant sections of his future work [1] in this field. Publication of

this work began in 1952, since when further volumes have appeared.
Between 1937 and 1952, some of the ideas filtered through to the mathe-
matical world at large (in the guise mainly of books and research papers
authored by individual members of the Bourbaki group, such as Weil and

H. Cartan). Other writers, notably Stone [1], [2], [3], [4], also found
inspiration in Daniell's ideas. As a result, the method was discussed in
various papers and books from 1950 onwards: Loomis [1]; Naimark [1];
Hewitt [2]; Edwards [1] and [2], Chapter 4, to mention a few. Bourbaki

introduced the term 'Radon measure on X' to describe a CLF on C(X),
X being a Hausdorff compact space (see 1. 7. 9 above); the term 'pre-
integral' is perhaps more suggestive (but not standard).
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It is characteristic of the work issuing from Daniell's approach
that a fully-fledged integration theory (and not merely a study of the RRT)
is the principal aim; and that the concept of measure is subordinated to
that of integral, a reversal of the traditional relationship. Of course, the
RRT can be made to appear as a by-product of the conventional approach,
as in Halmos [1]. The Daniell-based approach to the RRT amounts to a
constructive extension of the given CLF F from C(X) to a larger space
of functions, as is witnessed by the substance of 1. 9.

1. 11. Complex-valued functions

We shall leave to the reader the task (mainly a routine one) of
modifying the preceding material so as to cover complex-valued (rather
than real-valued) functions on X.

In the sequel we shall use C(X) to denote the complex-linear space
of continuous complex-valued functions on X, C(X) being equipped with
the norm 11f II = sup,E X I f (x) 1. What was hitherto denoted by C (X) will
now be denoted by CR(X), and a similar notational change will be made in
relation to the other function-spaces involved ( ,`- p, p

and LP). Thus CR(X) is a real-linear subspace of C(X).
As to integrals and Radon measures, every element of what has

hitherto been denoted by M(X), henceforth to be denoted by MR(X), can
be extended uniquely and in an obvious way into a continuous complex-
linear and complex-valued functional on C(X); this extension will be
denoted by the same symbol. These are the real Radon measures on X.
The symbol M(X) will henceforth denote the set of all continuous complex-
valued complex-linear functionals on C(X), each such functional being
termed a (complex) Radon measure on X.

The expected connections hold between the pairs and R,
P -5 7 - P and R, Lp and LR, et cetera.

1. 11. 1. Exercise. Let A denote a non-negative Radon measure
on X, i. e. , real-valued real-linear functional on CR(X) such that
A(f) > 0 for every f E CR(X) satisfying f > 0. Suppose A to be extended
into a complex-valued complex-linear functional on C(X). Show that
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IA(f)I <N(1)IIf11

for every f e C(X).
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Part 2 - Harmonic Analysis on
Compact Groups

2. 0. Introduction to Part 2

2. 0.1. Harmonic analysis might be said to comprise the study
of functions and function spaces defined over a topological group G,
special reference being paid to the functional operators of translation
arising from the group structure of G; see the discussion in Edwards [3],
Chapter 2. This description is correct as far as it goes, but it is un-
likely to convey much except to those who are already acquainted with the
subject (and who therefore have no great need of a description anyway).
The only effective way to discover what harmonic analysis is about, is
to dip into it, taking stock of just enough (but not too much) detail. Our

treatment attempts to present in such a style something from which the
taster may choose.

As seems entirely natural, the display offered refers to one of
the technically simpler cases: that in which the underlying group G is
compact and Hausdorff. (The case in which G is also Abelian is even
simpler, and some readers may wish to concentrate on this situation,
which still offers many challenging problems. )

2.0.2. Even with the restrictions mentioned in 2. 0. 1, there
remain a number of approaches to abstract harmonic analysis. Their
relative merits depend in part on how much is assumed about the under-
lying group G (always assumed locally compact and Hausdorff), though
there are no sharp dividing lines. For compact groups, the various
approaches are much on a par with each other and the choice is largely
a matter of taste. We mention a few of the possible approaches.

(i) For compact G there is the traditional approach based from
the outset on finite dimensional representations of G (suggested by the
classical algebraic study of finite groups). This is broadly the method
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used in Pontryagin [1], Weil [1] and Hewitt and Ross [1] (though the last
reference features other methods as well).

(ii) For compact G there is an approach based upon the study
of H*-algebras (a special type of non-commutative Banach algebra). This
method is featured in Loomis [1], §§27. 39. 40 and Naimark [1], pp. 330,
431 ff.

(iii) For locally compact Abelian groups there is an approach
based on the Gelfand theory of commutative Banach algebras. See Hewitt
and Ross [1]; Loomis [1], Chapters VI and VII; Naimark [1], §31;

Katznelson [1], Chapter VIII; Bourbaki [3].

(iv) For locally compact groups there is an approach due to
Godement, Gelfand and Raikov which swings back to representations as
a key tool, though now one has to handle infinite dimensional ones. Mixed

in with this in an essential way is the study of positive definite functions.
Some aspects of this approach are covered in Hewitt and Ross [1], §§21, 22

and Naimark [1], §30.

A little of most of these treatments intrudes into the account to
follow, though in the main the approach is that described in (i).

Readers who are completely new to the subject may find that
portions of Edwards [3] provide a useful bridge.

In view of Part 1, our natural lead-in is to begin by settling the
existence and essential uniqueness of an invariant integral on every com-
pact Hausdorff group. The subsequent development of harmonic analysis

makes constant and essential use of this distinguished integration process;
see again Chapter 2 of Edwards [3].

2. 0. 3. Prerequisites. It is assumed that the reader has a basic
acquaintance with set-theoretic topology and group theory (very few pro-
perties of any depth in either discipline will be explicitly used). Granted

this, we recall that a topological group is defined (perhaps a little loosely)
as a group G and a topology t on G such that the function (x, y) '- xy-1
is continuous from G X G (with the product topology) into G. One usually
(and slightly improperly) refers to the 'topological group G', omitting
explicit reference to t. Some examples appear in 2. 0. 4 below. Only a

few very basic properties of topological groups will be needed for a general
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understanding of what follows; acquaintance with Hewitt and Ross [1],
(4. 1)-(4. 9) is adequate to sanction a start to be made. (References to
other portions of Hewitt and Ross [1] will be made very frequently as we
go along; for most things covered in Part 2 of these notes it is, indeed,
the standard reference. )

A standing convention from here on is to the effect that (unless the
contrary is explicitly mentioned) all topological groups are assumed to be
Hausdorff.

2. 0.4. Some examples
(i) Any group in the purely algebraic sense can be regarded as a

topological group by endowing it with its discrete topology (in which all
subsets are open). The resulting topological group is compact if and only
if the group is finite.

(ii) The circle group T: this is the multiplicative group of uni-
modular complex numbers taken with its usual topology (induced on it as
a subspace of the complex plane).

T is isomorphic as a topological group to, and is often identified
with, the quotient R/277Z, where R is the additive group of real numbers
with its usual topology and Z is the discrete additive group of rational
integers; the algebraic quotient group R/2i Z is taken with the quotient
topology. The mapping t + 27rZ - eit is a topological group isomorphism
of R/2vvZ onto T. Functions on T become identified with functions on
R which have period 27r.

Although T and R are the most familiar underlying groups for
harmonic analysis, they are not entirely typical. In the first place, they
are Abelian. In the second place, even among Abelian groups, they are
not in all respects fully, typical (or even the simplest); cf. 2. 9. 7 below.

(iii) Among the most important and most familiar non-Abelian
groups are the various linear groups, obtained in the following way. Let
V be any finite-dimensional real or complex linear space. (Algebraists
often start with a linear space over an arbitrary field, but there will be
no call for this degree of generality in these notes.) The set End(V) of
all endomorphisms of V is finite-dimensional algebra over the same field.
The subset GL(V) of End (V), comprising all invertible endomorphisms
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of V, forms a group under the operation of multiplication (i. e. compo-
sition) of endomorphisms. GL(V) is usually termed the general (or full)
linear group associated with V.

Choose any norm
of T E End(V) by

on V and define the usual operator norm11- 11

IITII =supIIITy1I :y EV, IIy1I <-1} . (2. 0. 1)

Use this norm to define a topology on End(V). (The apparent dependence

of this topology upon the choice of the norm on V is illusory; see
Edwards [5], 1. 1 and 1. 2.) With the induced topology, GL(V) becomes
a locally compact group.

Essentially, GL(V) depends only on the field F (= R or C) over
which V is regarded as a linear space and the corresponding dimension
n of V. So, one often writes GL(n, F) in place of GL(V). On choosing
a base for V, GL(n, F) is frequently realised as the group of invertible
n x n matrices with entries in F, the topology being simply that of con-
vergence (in F) of the entries.

There are numerous important subgroups of GL(V); the following
are examples (Hewitt and Ross [1], (2. 7) and (4.18)):

SL(V), the special linear group comprising those T E GL(V) with
det T = 1;

if V is a real (resp. complex) Hilbert space, one has O(V) (resp.
U(V)), the group of orthogonal (resp. unitary) endomorphisms of V; and

SO(V) (resp. SU(V)), the group of special orthogonal (resp.

special unitary) endomorphisms of V.
Each of O(V), SO(V), U(V) and SU(V) is a compact group, non-

Abelian if n = dim V > 1.
It is not difficult to show that a subgroup G of GL(V) is compact

if and only if (a) G is closed in GL(V), and (b) G is bounded in the
sense that

sup{IITII : T EG} < -.

Representation theory is largely concerned with homomorphisms
of given groups into various linear groups.
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(iv) If (Gi)iEI is an arbitrary family of compact groups, the
product group G = HiEI G. is a compact group when taken with its
product topology.

One of the principal consequences of the theory to be described
below is that every compact group G is isomorphic to a closed subgroup
of a suitable product 11

iEI
U(di), where I is some (generally infinite)

index set, each di is a positive integer, and U(di) is the unitary group
(see (iii) above) associated with a complex Hilbert space of dimension di.

See also 2. 2. 13 below.

2. 1. Invariant integration

In what follows G will, except in the relatively few places devoted
to 'asides' (at which points explicit notice will be given), denote a compact
(Hausdorff) group.

2. 1. 1. On G, as on any compact Hausdorff space, there are many
non-zero integrals (i. e. , non-zero non-negative linear functionals on
C(G) or non-zero non-negative Radon measures on G; cf. 1. 2 and 1. 7. 9
above). The group structure of G induces certain translation operators
on C(G), namely, the left translation operators f '- Laf and the right
translation operators f '- Raf, where, for each a E G and each f E C(G),

Laf : x 1x), Raf : x 1) . (2.1.1)

Each La and each Ra is a continuous endomorphism of C(G) and one
may ask whether there exist any non-zero integrals I which are either

(i). left invariant in the sense that I o La = I for every a e G,
or (ii) right invariant in the sense that I o Ra = I for every a E G,
or perhaps both left and right invariant... bi-invariant is the term to be
used to describe this third state of affairs. If a non-zero left (or right)
invariant integral I exists, it may be normalised, i. e. , multiplied by a
positive number so chosen as to yield a left (or right) invariant integral I
such that I(1) = 1.

The problem is thus that of the existence of normalised left (or
right, or bi-) invariant integrals on G; and, if such exist, the problem
of classifying them.
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2.1.2. The complete answer to these problems is as follows:
for a given compact group G,

(i) there exists precisely one normalised left invariant integral
I and every left invariant integral is of the form cI, where
c is a non-negative number;

(ii) I is also the unique normalised right invariant integral
(hence also the unique normalised bi-invariant integral);

(iii) I is reflection invariant, i. e. I(f) = I(f) for every f E C(G),
where f : x '- f(x 1);

(iv) I(f) > 0 whenever f c CR(G) f ? 0, f * 0.

The reader should pause to derive (iii) and (iv) from (i) and (ii).
In establishing (i)- (iv), it is plainly enough to consider the behaviour

of I on CR(G). With this restriction made, a lucid and easy-to-read
proof of (i)-(iv) appears in Pontryagin [1], pp. 91-8; see also Exercise
2. 1. 18. (Although this proof is not in the very latest spirit, it has the
advantage of being less sophisticated than others intended to cover the
wider fields mentioned in 2. 1. 3, for example.) This proof is partially
constructive, insofar as it produces I(f) for any given f E CR(G) as the
unique number c such that c belongs to the closed convex envelope in
C(G) of I Laf : a E G I (or of IRaf : a E G 1). This same characterisa-
tion of I(f) remains valid for arbitrary f E C(G), but no use will be made
of it in the sequel.

2.1. 3. Remarks. (i) Pontryagin's proof mentioned in 2. 1. 2

suffices to produce the mean value for uniformly almost periodic functions
on an arbitrary group (concerning which see especially Maak [1]).

(ii) For locally compact groups G, it is still true that there
exist non-zero left invariant (resp. right invariant) integrals (whose initial
domain of definition is the space Cc(G) of continuous complex-valued
functions f on G for which the support Ix E G : f(x) # 0 } is compact).
These invariant integrals are often termed Haar integrals, incidentally.
It is also still true that any two such non-zero left (resp. right) invariant
integrals are each a non-zero constant multiple of the other. However,

unless G is compact, there is no natural way of normalising such integrals
and so picking out a distinguished one; nor, in general, is a left invariant
integral also either right invariant or reflection invariant. For details,
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see Hewitt and Ross [1], Chapter 4; Weil [1]; Edwards [2], Chapter 4;
Bourbaki [2], Chapter 7; to mention only a few of the possible references.

Exercise 2. 1. 17 indicates what may happen for groups G which
are not locally compact.

2. 1. 4. Concerning notation
(i) In what follows, the a-measure derived in the manner des-

cribed in 1. 7 above from the normalised invariant integral on a (compact)
group G will be denoted by p or µG; µG is usually termed the norma-
lised Haar measure on G. The number I(f) is accordingly (cf. 1. 7. 5

above) often denoted by

fGfdp or fGfdpG ,

or by the expressions resulting from these by suppression of explicit
reference to G (when the latter is understood from the context). The

'bound variable' expressions

f f(x)dp(x) and f f(x)dx

will also appear frequently.
In terms of p, the invariance properties of the integral are equi-

valent to those expressed in the formulae

p(aE) = p(Ea) = µ(E-1)

valid for every p-measurable subset E of G and every a E G; and 2. 1. 2
(iv) is equivalent to the property that p(U) > 0 for every non-void open
subset U of G, as a result of which 0 is the only continuous function

which is negligible.

(ii) Integrability and measurability (without further qualification
must be understood to mean these concepts in relation to the normalised
invariant integral and the corresponding Haar measure p. Likewise,

and LP(G) will denote the Lebesgue spaces formed in relation
to the normalised invariant integral; cf. 1. 6. 7 above.

In accordance with the penultimate paragraph of 1. 6. 7, we shall
almost always fail to make the proper distinction between real- or com-
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plex-valued functions on G and the corresponding equivalence classes
(modulo equality a. e. ). For instance, in the second paragraph of 2. 1. 5
below, it would be more correct to begin by saying that, if f, g E - 1(G)

(rather than L1(G)), then the stated procedure leads to a function h
defined and equal a. e. to an element of ..1(G); and to note then that
the equivalence class of h depends solely on, and is uniquely determined
by, the classes of f and g; at which point one may pass to the quotient
space L1(G), and so on. From now on such licence will be taken without
special comment (but it is hoped that the reader will make the mental
digression where it is necessary).

(iii) There is one trick which should be mentioned in passing,
namely, that of injecting L1(G) into M(G), so that one may think of
integrable functions as special cases of Radon measures. This is done by
associating with each f E L1 (G) the Radon measure pf = fp E M(G) defined
by

symbolically, dpf (x) = f(x)dp(x). This injection is obviously linear, and it
is not difficult to show that it is an isometry. The image of L1 (G) is not
the whole of M(G), unless G is discrete; the detailed characterisation
of elements of the image is relatively complicated and will not be needed
in the sequel. (See Hewitt and Ross [1], (12.17); Edwards [2], Section
4. 15. )

(iv) At this point account has to be taken of the fact that the trans-
lation operators may be regarded as acting on each LP(G) and M(G) as
well as on C(G) (see 2. 1. 1). In the case of LP(G), the required definition
is made in the manner suggested by (2. 1. 1), noting that Laf and Raf
(defined as in (2. 1. 1) for any complex-valued function f) are negligible
whenever f is negligible. How Lap and Rap are to be defined when
p E M(G) is suggested by (iii) immediately above, namely:

Lap g - p(L _1g) ,
a

Rap : g - p(R _19)
a

for every g c C(G).
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In all cases, the translation operators are isometries (as they
were when regarded as endomorphisms of C(G)).

As will be discussed in 2. 1. 10, a semi-qualitative approach to the
behaviour of these function spaces under the action of the translation opera-
tors can provide a useful key to what in broad outline harmonic analysis
is all about. Meanwhile, a few more technical matters arising from and
related to invariant integrals demand attention.

2.1. 5. Convolutions. This topic may be treated much as in
Edwards [3], Chapter 3, though careful attention has to be paid to non-
commutativity. More general accounts will be found in Hewitt and Ross [1],
§§ 19, 20 and Bourbaki [2], Chapter 8.

If f, g E L1(G), it may be shown that for almost every x E G the
function

y '... f (Y)g(Y lx)

is integrable, and that the function defined almost everywhere on G by
the formula

x '-
ff(Y)g(Y-lx)dy

is in L1(G); this function is denoted by f * g and is termed the convolu-
tion of f and g (in that order):

f * g(x) = f f (Y)g(Y-1x)dy a. e.

Moreover,

Ilf* g111 < Ilf1l1 llg111

(2.1.2)

(2.1. 3)

for f, g E L1(G).
The mapping (f, g) .-+ f * g is bilinear from L1 (G) x L1 (G) into

L1(G); (2. 1. 3) expresses the continuity of this bilinear map.
Except when G is Abelian, convolution is not commutative. How-

ever, it is true that

V V V
f * g = (g * f) (2.1.4)
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for every f, g E L1(G); see Exercise 2. 1. 15.
Convolution is associative: a direct proof is possible, using the

Fubini-Tonelli theorem; alternatively, see Exercise 2. 4. 10.
If f E LP(G) and g E LP (G), where 1 <_ p <_ - and 1/p + 1/p' = 1

(interpreted so that 1' = - and -' = 1), f * g is (equal a. e. to) a con-
tinuous function (which is uniquely determined; see the end of 2. 1. 4(i)),
and

IIf* g1I,,, :5 IIf1IPIIgi'pI (2.1. 5)

In these circumstances it is usual to agree that f * g denotes the said
continuous function.

If both f and g are integrable and at least one is (equal a. e. to
a function which is) continuous, f * g is (equal a. e. to a function which
is) continuous. Here again f * g is usually understood to denote this
continuous function.

If f E L1(G) and g e LP(G), then f * g e LP(G) and

if * gllp < IIf II1 IIgIIp ; (2.1. 6)

in view of (2. 1. 4), there is a similar assertion applying when the order
of the convolution factors is reversed.

It thus appears that each of C(G) and LP(G) is an algebra over
the complex field when products are taken to mean convolution: this struc-
ture comes to the fore when ideals are discussed in 2. 12. [C(G) is also
an algebra under pointwise multiplication; the same is not true of LP(G)
when p * -, unless G is discrete; see Exercise 2. 1. 16. ]

There are close connections between translation and convolution.
To begin with,

f * Rag = Ra(f * g), Laf * g = La(f * g) (2.1. 7)

whenever f, g E LI(G) and a E G. Also, if f E L1(G) and g E LP(G) or
C(G)), f * g is the limit in LP(G) (or in C(G)) of linear combinations of
left translates Lag of g; there is an analogous assertion about f * g
and right translates Raf of f, whenever f E LP(G) (or C(G)) and
g E L1(G). See Edwards [3], 3. 1. 8-3. 1. 9.
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Finally, convolution may be extended so as to appear as a bilinear
mapping of M(G) X M(G) into M(G); space precludes further discussion
here, but see e. g. Edwards [2], Section 4. 19; Edwards [3], Section 12. 6;
Hewitt and Ross [1], §19. In particular, if f E C(G) and v E M(G), then

v * f and f * v are the elements of C(G) defined by

v * f(x) = f f(y-1x)dv(y)

and

f * v(x) = f f(xy-1)dv(y) ,

respectively, for every x E G. If v = pg in the sense explained in
2. 1. 4(iii), then v * f and f * v agree with the functions g * f and
f * g, respectively, defined a little earlier via (2. 1. 2).

2. 1. 6. Central functions. By a central function is meant a
function k E L1(G) such that

k* f=f* k (2.1.8)

for every f e L1 (G) (or, equivalently, for every f c C(G)). A continuous
function k proves to be central if and only if

k(x) = k(y-lxy) for every x, y E G , (2.1.9)

i. e. , if and only if k is invariant under every inner automorphism of G.
For example, if f E C(G), then

k(x) = f f(y
lxy)dy

is a continuous central function.
As will appear in 2. 2. 6, the character of any continuous finite-

dimensional representation of G is a continuous central function. Later
(see 2. 6. 7, 2. 9. 2 and 2. 9. 3) it will emerge that every central function
can be built up as a limit of finite sums of such characters.

Evidently, if G is Abelian, every integrable function is central.
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2. 1. 7. Approximate identities. It has been noted in 2. 1. 5 that
each of C(G) and Lp(G) is a convolution algebra. Unless G is dis-
crete, non of these algebras contains an identity, i. e., an element u
such that u * f = f * u = f for every f in the algebra. (On the contrary,
M(G) does possess an identity for convolution, namely, the Dirac measure
placed at the identity element of G.) However, so-called approximate
identities exist in abundance and prove to be very useful.

By an approximate identity (in L1(G)) is meant a sequence or
net (k.) of integrable functions on G such that

supjIlkjlll < oO,

limj f kjdp = 1

limj fG\N Ik.Id,1 = 0 for every neighbourhood' N
of e in G.

(2. 1.10)

If G is metrisable (i. e. , first countable), only sequences need be con-
sidered; otherwise nets will be needed.

The existence of approximate identities is settled by the following
result, which will find use in 2. 9. 2 and 2. 9. 6.

2.1.8. Let (N.) be a base of neighbourhoods of the identity
element e in G, the index set being directed in such a way that j > j

0

implies N. S N. . There exists an approximate identity (kj) in which
0

each kj is continuous, non-negative, centra, kj vanishes on G\Nj and
(see 2. 8. 1) kj is positive definite.

Proof. First choose for each j an open symmetric neighbourhood
of e, say satisfying C N.. Then (see Hewitt and Ross [1],
(4. 9)) choose an open symmetric neighbourhood N
y

such that
c N for every y E G. (Here, as elsewhere, if A, B, ..., C

denote subsets of a group G, AB ... C denotes the set of all group
elements of the form ab ... c, where a E A, b E B, ... C E C.) By a
well-known result in general topology, there exists for each j a con-
tinuous function hj > 0 on G, hj # 0, hj zero on G\N!. Since N! is
symmetric, one may suppose that hj h.. Furthermore, in view of
2. 1. 2(iv), one may suppose that f hjdp = 1. Put
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u. : x :- J hj(y-lxy)dy ;

then uj E C(G), uj ? 0, uj is central (see 2. 1. 6), uj = uj, f u.dµ = 1,
and u. vanishes on Finally, define k. = u. * I. = uj * u.. It is
simple to check that kj E C(G), kj ? 0, kj vanishes on G\Nj and
,( kjdp = 1; in particular, (k.) is an approximate identity. That kj is
also positive definite appears (see 2. 8. 1) from the fact that it is of the
form uj * uj = uj * U .

2.1.9. The utility of approximate identities, as well as the
reason for the name, hinges on the following facts (see also Exercise
2.3.5).

Let (Njy and (k.) be as in 2. 1. 8. Then

(i) limjkj * f(x) = limjf * kj(x) = f(x) for every f E L1(G) and
every point of continuity x of f; the convergence is uniform
with respect to x E E, whenever E is a closed subset of G
containing only points of continuity of f.

Moreover, if E denotes any one of C(G) and LP(G), where
1 _p<-, then

(ii) if (k is any approximate identity,

lim.k. * f = lim.f * k. = fii I J

in the sense of the norm on E for every f E E.
The proofs given in Edwards [3], 3. 2. 2 are easily adapted to cover the
present case.

Note that (ii) is false when E = L°°(G) or M(G). Also, in case
(i), kj * f = f * k

i
E C(G) for every j and every f E L1(G).

2. 1. 10. Closed invariant subspaces. Denote by E any one of
C(G) or LP(G). As remarked in 2. 1. 4(iv), each La and each Ra may
be viewed as a linear isometry of E onto itself. The type of question

which leads into what has come to be lumped together as harmonic analysis
is that which asks about the existence and structure of closed subspaces
of E which are left (or right, of bi-) invariant, and about the possibility
of synthesising E as some sort of direct sum of minimal closed invariant
subspaces. What is placed under the heading of harmonic analysis is thus
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in part really a question of harmonic synthesis; see 2. 13 below and
Edwards [3], 2. 2. 1.

It turns out that, thanks to compactness of G, fairly definitive
answers to this type of question are available. The problems are not
trivial by any means (provision of some of the answers will occupy the
remainder of these notes); on the other hand, analogous problems for
locally compact non-compact groups are very much more difficult and
the answers are to date much less complete.

These considerations, coupled with the easily-verified formulae

LaLb Lab' RbRa Rab (a, b E G) , (2. 1. 11)

also serve to suggest the approach to be adopted in these notes. Thus,

(2. 1. 2) indicates that each of a '- La and a '- R are instances of
a

(generally infinite dimensional) representations of G with representation
space E (see 2. 2 below). There is therefore a vague suggestion that
the discussion of representations may be a useful tool. More specifically,
one may hope to be able to break up these representations of G into more
manageable components by restricting the La and Ra to subspaces M
of E which are left- and right-invariant and as small as possible (without
being collapsed to { 0 1 of course! ). It does indeed turn out (see 2. 12. 14)
that the only representations one has need to consider are in fact equiva-
lent to components of this sort.

In this way, the traditional approach mentioned in 2. 0. 2(i) is
suggested, and it is time to consider representations in a little more
detail.

2. 1. 11. Exercise. (a) Describe the invariant integral of a
general finite group.

(b) Verify in detail that the normalised invariant integral of
the circle group T (see 2. 0. 4(ii)) is given by

f E C(T) - (27r)-1 f 2077 f(eit)dt ,

where the integral on the right is an ordinary Riemann integral.
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2. 1. 12. Exercise. Suppose that G1 and G2 are compact
groups with normalised invariant integrals I1 and I2. Show that the

normalised invariant integral I of the product group G = G1 X G2 is
I = I1 ® I2, defined by

I(f) = f (f f(x1, x2)dpG (x2))dµG (xl)
2 1

= f (f f(x1, x2)diG (x1))djG (x2)
1 2

for every f E C(G).
Generalise to the product of any finite family of compact groups.

2.1.13. Exercise. Let G and G' be compact groups and h
a continuous group homomorphism of G onto G'. Prove that

(i) f(f o h)dpG = f fdpG,

for every f E C(G').

Remark. In Bourbaki's language, (i) signifies that µG, is the
h-image of µG. More generally, if X and Y are compact Hausdorff
spaces, p a Radon measure on X (see 1. 10. 6) and h a suitable (e. g. ,
continuous) function from X into Y, one obtains a Radon measure v on
Y, termed the h-image of p, by defining

(ii) f gdv = f (g o h)dp

for every g E C(Y). It is natural to expect that (ii) continues to hold for
certain discontinuous complex-valued functions g on Y, and the study of
this question is important; an exhaustive discussion appears in Bourbaki
[2], Chapter 5.

2.1.14. Exercise. Let (G.)iEI be a family of compact groups,

G = HiEIGi the product group (see 2. 0. 4(iv)). For each finite subset F
of I, let GF 11 iEFGi; and let pF: G - GF be defined by (pFx)i = xi
for i E F, where x = (x1)11 E G. Similarly, if F S F', let pF'F:GF'' 1GF
be defined by (pF'Fy)i = yi for i E F, where y = (yi)iEF' E GF,. Let
IF denote the normalised invariant integral on GF (see Exercise 2. 1. 12).
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Write E for the linear subspace of C(G) formed of those
f E C(G) such that f = fF ° pF for some finite f-dependent set F c I
and some fF E C(GF). Verify (by using the preceding exercise, for
example) that IF(fF depends only upon f (and not upon F) and that
I:f -I OF ) is a positive linear functional on E.

Verify that E is everywhere dense in C(G). (This may be done
by judicious use of (2. 1. 7), 2. 1. 8 and 2. 1. 9; or by appeal to the Stone-
Weierstrass theorem, for which see Edwards [2], p. 210. )

Deduce that I has a unique continuous extension to C(G) which
is the normalised invariant integral of G.

2.1.15. Exercise. Let G be a compact group. For f E C(G),
let f: x - f(x ) and f = (f) _ (f )y, where the bar denotes complex
conjugation. Verify that

f*g(e)=g*f(e), (f * g) =g*f
g ) _ (f *g)-=g* f

whenever f, g E C(G).
Formulate and prove generalisations of these formulae applying

to more general functions f and g.

2. 1. 16. Exercise. Suppose that G is an infinite compact group
with identity element e. Show that there exist open sets
such that e c Wn+1 C Wn and

Wn (n = 1, 2, ... )

0 < AGM n+1) <
2 PG(Wn)

for every n. Deduce that LP(G) is infinite dimensional for every
p E [1, °°].

Let F: [0, co) - [0, -) be such that t 'F(t) - - as t - -,
F(0) = 0. Show how to construct non-negative lower semicontinuous

functions f on G such that f is integrable while F o f is non-negative

lower semicontinuous and non-integrable.

2.1.17. Exercise. Let Q denote the subgroup of the circle
group T (see 2. 0. 4(ii)) composed of the 'rational points' e2wlt, where

t ranges over all rational real numbers. Take Q with the topology
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induced by that of T. Verify that Q is a (Hausdorff) Abelian topological
group which is not locally compact (i. e. , in which there exists no com-
pact neighbourhood of the identity in Q).

Do there exist any nonzero invariant Borel measures p on Q?
(Invariance of p means that p(aA) = p(A) for every a E Q and every
Borel subset A of Q; cf. 2. 1. 4(i).) Justify your answer.

Remark. Although Q is not locally compact, a fortiori not
compact, it is in a sense not outrageously far removed from compactness:
it is precompact (= totally bounded) in the sense that, for any neighbour-
hood U of the identity in Q, a finite number of translates of U suffice
to cover Q (equivalently, the completion of Q ... which is none other
than T ... is compact).

If one allows - as a possible value of a measure, there are non-
zero invariant Borel measures p on Q, but these are pretty useless
because p(U) = - for every non-void open subset U of Q, and so 0
is the only continuous real or complex-valued function which is integrable.

2. 1. 18. Exercise. Suppose that G is a compact group and that
f E C(G). Write r(f) for the convex envelope in C(G) of {Laf :a EG }

and T(f) for the closure in C(G) of F(f). Assuming the existence
portions of statements 2. 1. 2(i)-(iii) and writing c = I(f), show that
c E I'(f). More precisely, let a be a given positive number; choose
a neighbourhood W of e in G such that x lx' E W implies
If (x) - f(x') I < c . Then choose (Hewitt and Ross [1], (4. 9)) a neigh-

bourhood V of e in G such that x 1VV 1x S W for every x E G.
Express G as the union of measurable sets Mi (i = 1, 2, ..., n) which
are pairwise disjoint and such that Mi C- Vsi for each i and some
Si E G. Select ai E Mi for each i and, by considering

fGf(y lx)dp(y)

show that the supremum norm of

c - In 1 p(M.)La f
1

is at most e .
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Remark, Define the oscillation of any complex-valued function
g on G to be sup { I z - z' I : z, z' c Ran g 1. The above shows that
r(f) contains functions having arbitrarily small oscillation, and that
T(f) contains a function whose oscillation is zero, such a function being
c, where c = I(f). Pontryagin's proof of the existence of I, mentioned
in 2. 1. 2, hinges on using Ascoli's theorem (Edwards [2], Corollary
0. 4. 12) to show that r(f) is compact; deducing from this the existence
of f o e T(f) which minimises the oscillation; and showing that f0 is
necessarily unique and a constant function. (It suffices to do this for
f E CR(G). )

2. 2. Group representations

These notes will not satisfy any interest in representations per se,
being concerned solely with the way in which representations of compact
groups enter into and act as tools in the study of harmonic analysis on
such groups. In this section it is hoped to say almost all that need be
said for the limited aims of what follows.

2. 2. 1. Basic definitions. If G is a group (not necessarily
topologised for the moment), by a (finite-dimensional linear) representa-
tion of G is meant a homomorphism

U:x'-U(x) (2.2.1)

of G into the group GL (,WU) of invertible endomorphisms of some
finite-dimensional nonzero linear spaceU onto itself;U is

ctermed the representation space of (2. 2. 1), and the dimension of M U
is spoken of as the dimension or degree of (2. 2. 1).

Henceforth the phrases 'finite dimensional' or 'finite dimension'
will be abbreviated to 'f. d. '.

A shade more precision should perhaps be offered at this point by
remarking that algebraists often find it desirable to work with representa-
tions in which the representation space is a linear space over a general
field F. In these notes, however, there will be no call to consider cases
other than those in which F is either R (the real field) or C (the com-
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plex field), in which case one speaks of real or complex representations
respectively. Moreover, once this restriction is made, there is no real
loss in dealing only with complex representations. If a real representation
U is given, having as representation space the real linear space V, one
may always (see Halmos [2], p. 150) form a 'complexification' V+ of V,
which is a complex linear space into which V may be injected as a real-
linear subspace so that V+ is the direct sum of V and iV, and so that
each U(x) is extendible into an invertible endomorphism
U+ (x) : u + iv '- U(x)u + iU(x)v of V+ which leaves V and V+ in-
variant. What is more, if V is a real Hilbert space, its scalar product
may be extended to V+ so as to make the latter into a complex Hilbert
space; one simply defines for u1, u2, v1, v2 E V

(ul+iv Iu1+iy2) _ (ul lug) + (y1 Iv2) - i(U1 Iv2 + i(vl lug)

where, on the right, (I) denotes the given inner (or scalar) product on
V. If the original U(x) are unitary on V, the U+(x) are unitary on V

In view of this, the term 'representation' will henceforth be taken
to mean 'complex representation', unless the contrary is explicitly
indicated.

It should also be pointed out that infinite dimensional representa-
tions are defined in a similar fashion, though in this case it is usual to
assume in (2. 2. 1) that 1WU is (at least) a topological linear space and
that each U(x) is (at least) a linear homeomorphism of 11r°U onto
itself. In the f. d. case, these extra topological conditions are auto-
matically fulfilled whenU is endowed with its unique Hausdorff
linear space topology; see Edwards [5], Sections 1. 1 and 1. 2.

2.2.2. Continuity, measurability and boundedness of representa-
tions. When G is a topological group, the representation (2. 2. 1) is
said to be continuous if and only if every coordinate function

x P-+ f (U(x)II) , (2. 2.2)

where u EU and f is a continuous linear functional on MU, is
continuous. If G is compact (or locally compact), so that a good in-
variant integral exists, the representation is termed measurable if and
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only if every one of these coordinate functions is measurable. There are
similar definitions of continuity and integrability of representations.
Whether or not G is topologised, the representation is said to be bounded
if and only if every coordinate function is bounded. Cf. Hewitt and Ross
[1], (22. 2) and (22. 8); Weil [1], Section 18.

These definitions apply whether or not the representation is f. d.

2. 2. 3. Unitary representations. In both the finite and infinite
dimensional cases, the most tractable type of representation is that said
to be unitary: by this it is meant that the representation spaceU is
a Hilbert space and that every U(x) is a unitary endomorphism of NK.
For example, the representation a '- La (a -1) is unitary when

a
considered as acting on any closed left (right) invariant subspace of LZ(G).

For the case of compact groups G, it turns out that f. d. continuous
unitary representations suffice for all that is required; see 2. 2. 8 below.
(Continuous unitary representations, though usually infinite dimensional
ones, are enough for locally compact groups... though these notes will
neither prove nor utilise this fact. )

For a unitary U, the coordinate functions (2. 2. 2) are precisely
the functions of the form x '- (U(x)u l v), where u, v EU; cf. Halmos
[2], §67. (The infinite dimensional analogue is true for continuous linear
functions; see e. g. Edwards [2], 1. 12. 6.) However, it is slightly more
convenient (and makes no ultimate difference - see 2. 7. 5) to take the co-
ordinate functions in the form x '- (ulU(x)v).

The reader must at this stage familiarise himself with some of the
basic facts about f. d. Hilbert spaces and their endomorphisms. A good
and very readable reference is Halmos [2], especially Chapter III. Note

that the f. d. complex Hilbert spaces, which are especially relevant in what
follows, are termed 'unitary spaces' in Halmos [2]. Additional points of

detail are handled in Appendix A.

In what follows, inner (or scalar) products will be written (l),
and A* will always denote the adjoint of the Hilbert space endomorphism
A.

2.2.4. Equivalence of representations. No one representation
of G, say U, can be expected to tell us much about the structure of G...
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save, that is, in the exceptional case where the representation is faith-
ful (i. e. , where the homomorphism U is actually an isomorphism). A
worthwhile advance takes place when one knows of a whole family of
representations which, taken together, provides a faithful picture.

It is evident that the contribution to the total picture made by any
one representation U is no more and no less than that made by any other
representation, say V, which is equivalent to U in the sense that there
is a linear homeomorphism A ofU onto- such that

AU(x) = V(x)A for every x e G G. (2. 2. 3)

In the f. d. case, it is enough to demand merely that A is a linear space
isomorphism of U onto

V
and that (2. 2. 3) holds.

If U and V are unitary representations of G, they are said to
be unitarily equivalent if and only if (2. 2. 3) holds for some choice of A
which is a linear isometry of U onto cV (in which case A may
itself be termed unitary, since it preserves scalar products as well as
norms).

2. 2. 5. Reducibility of representations. The representation
(2. 2. 1) is termed irreducible if and only if there exist no closed linear
subspaces of U other than {0 1 andU itself, which are in-
variant (i. e. , stable) under every U(x); otherwise, the representation
is said to be reducible. (This definition is framed so as to apply to
infinite dimensional representations; in the f. d. case, the adjective
'closed' is superfluous and may be dropped. )

It is evident that two equivalent representations are together re-
ducible or not.

For general (even general f. d.) representations U, this concept
is not immediately very helpful. The reason is that, even if U is redu-
cible, so that there is a nontrivial closed subspace M of MU which
is left invariant by every U(x), it does not follow that M has a supple-
mentary closed subspace N (such thatU is the direct sum M e N)
which also is invariant under every U(x). For unitary representations,
however, the situation is very agreeable: the orthogonal complement
M1 does the trick: U is the direct sum of M and M1, and M1
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is automatically invariant whenever M is (because every U(x) is

unitary). Accordingly, U': x'- U(x) I M and U": x F-* U(x) I M1 are

unitary representations and U decomposes in an obvious fashion into
the 'sum' U' ®U". Either or both of U' and U" may be reducible
and the procedure repeatable. In the f. d. case, each of U' and U" has
dimension less than that of U, and a simple inductive argument on the
dimension of U now shows that U may be decomposed into a finite
direct sum of pairwise orthogonal minimal invariant subspaces Mk, and U is
correspondingly decomposed into a finite sum of f. d. irreducible unitary
representations Uk: x -U(x)lm

k*

The preceding argument extends to continuous f. d. representations
of compact groups, thanks to 2. 2. 8(b) below.

2.2.6. Traces and characters. Let denote any f. d. com-
plex linear space. The reader is referred to Appendix A. 2 for the defi-
nition and essential properties of the trace function with domain End(
It suffices for the moment to depend on the following way of evaluating

this trace function, denoted by Tr: take any base (ai) forte and let
(fi) denote the dual base for the space of linear forms
(determined by the conditions fi(at) = Sid); then

Tr T = F ifi(Tai) (2. 2. 4)

for every T E End (').
From (2. 2. 4) it is evident that Tr is a linear functional on

End (,W). Furthermore (see Exercise 2. 2. 10)

Tr TT = Tr TT1 2 Z 1 (2.2.5)

whenever T1, T2 E End (6W); and, if is also a f. d. complex
linear space and A a linear space isomorphism of onto LW', then

Tr ATA 1 = TrT . (2.2.6)

In case is a Hilbert space, it is usual to specialise (2. 2. 4)
into

Tr T = E i (Tei I ei) '
(2. 2. 4')
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where (ei) is any selected orthonormal base in. In this case,

Tr T* = Tr T. (2.2.7)

Reverting to the main theme, let U be a f. d. representation of
the group G. The complex-valued function

XU : x F- Tr U(x) (2.2.8)

is termed the character of U. It is more usual to term XU the character
of U, but the definition (2. 2. 8) is slightly more convenient for the purposes
of these notes.

From (2. 2. 4) it appears that XU is a finite sum of coordinate
functions; hence XU is bounded (or measurable, or continuous, or
integrable) whenever U has the same property. As a consequence of
(2. 2. 6),

XU(axa 1) = XU(x) (2. 2. 9)

for every a, x e G; hence, if U is integrable, XU is a central function
(see 2. 1. 6).

If U is unitary, (2. 2. 7) shows that

XU(x 1) = Xxo)

for every x E G, i. e. , that XU = XU and
2. 1. 15). Furthermore, (2. 2. 4') leads to

(2. 2.10)

XU = XU (see Exercise

XU(x) I XU(e) = d(U) (2. 2. 11)

for every x E G.
It is a consequence of (2. 2. 6) that equivalent representations have

the same character. Much less obvious (but a corollary of 2. 2. 8(b) and
the results mentioned in 2. 6. 5) is the fact that, if two continuous repre-
sentations of a compact group G have the same character, then they are
equivalent. This circumstance is partly responsible for the choice of the
term 'character'.
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2. 2. 7. One dimensional representations. The case of a one-
dimensional representation is especially noteworthy. Here one has
U(x) = 5)IU, where IU denotes the identity endomorphism ofU
and where x is a complex-valued function on G such that

x(x) * 0, X(xyy) = x(x)x(y) (2.2.12)

for every x, y E G. Evidently, XU is now none other than X. If the
representation is bounded (in particular if it is unitary), (2. 2. 12) implies
that

x(x) l = 1 (x E G) ; (2. 2. 13)

in other words, X is a homomorphism of G into T. Conversely, if
(2. 2. 12) holds, then x - X(x)IU yields a representation on any space

U
on which IU denotes the identity endomorphism; this represen-

tation is irreducible if and only if dimU = 1; and, if (2. 2. 13) holds,
this representation is unitary on any Hilbert space MU on which IU
denotes the identity endomorphism.

A complex-valued function X on a group G which satisfies
(2. 2. 12) is termed a multiplicative character of G; as has been seen,
multiplicative characters of G may be identified with the characters of
one-dimensional representations of G. A bounded multiplicative charac-
ter of G satisfies (2. 2. 13) and may be thought of as the character of
some one-dimensional unitary representation of G.

Multiplicative characters prove to be especially important in the
case of Abelian groups, the principal reason being that (as will appear in
2. 5. 4) every f. d. irreducible representation of an Abelian group is one-
dimensional and may be identified with its (multiplicative) character. (This

is valid too for continuous irreducible unitary representations of arbitrary
dimension of locally compact Abelian groups, but this will not be estab-
lished in these notes.) When this fact is combined with the completeness
theorem (CTii) in 2. 4. 1, it will appear that every compact Abelian group
G has 'sufficiently many' continuous multiplicative characters (of unitary
representations), i. e , if x and y denote distinct elements of G, there
is a continuous multiplicative character x of G satisfying (2. 2. 13) and
such that X (x) * x (y).
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On the other hand, there are compact non-Abelian groups having
no non-trivial multiplicative characters at all; see Exercise 2. 2. 12.

In view of 2. 2. 8(a), discontinuous characters are extremely ill-
behaved. They do exist, in general; see Exercise 2. 2. 14.

2. 2. 8. Recital of basic facts. The following summary of some
basic facts is included as an aid to the reader in evaluating the situation,
and by way of explanation of the adequacy for our purposes of looking only
at continuous f. d. unitary representations of compact groups. No explicit
use of (a) or (d) will be made in the sequel; (e) will be used but twice
(in 2. 7. 5); (b) will be, and (c) has been, dealt with; and (f), which is
absolutely vital to us, will be discussed in detail in 2. 4 and 2. 8. 8 below.

(a) Every f. d. measurable representation is continuous (Hewitt
and Ross [1], (22. 19; Weil [1], §18).

(b) Every continuous f. d. representation is equivalent to a con-
tinuous f. d. unitary representation (Exercise 2. 2. 11 below;
Weil [1]), §19; Pontryagin [1], p. 110; Naimark [1], p. 431).

(c) Every f. d. unitary representation can be decomposed into
a finite sum of irreducible f. d. unitary representations, each
summand being continuous if the given representation is con-
tinuous (see 2. 2. 5 above).

(d) Every continuous irreducible unitary representation is f. d.
(Hewitt and Ross [1], (22. 13); Naimark [1], p. 434).

(e) Any two equivalent f. d. irreducible unitary representations
are unitarily equivalent (Hewitt and Ross [1], (27. 13)).

(f) The completeness theorem: the coordinate functions
x - (u lU(x)v) corresponding to all continuous f. d. irredu-
cible unitary representations of G form a complete subset
of L2(G) (see 2. 4 below).

In (b), (d) and (f) it is essential that G be compact (see, for
example, Hewitt and Ross [1], (22. 20. c) and (22. 22)). There are infinite
dimensional versions of (c), but they are relatively tricky and complicated;
see, for example Hewitt and Ross [1], (27. 44) and the remarks on p. 354
of Volume I referring to (22. 13). (e) is valid for any group.

We might add here that a detailed discussion of the invariant inte-
gral and representations of specific non-Abelian compact groups (such
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as SU(n) and SO(n) is a complex and decidedly non-trivial task; see
2. 2. 17 below.

2.2. 9. Notation; the set G. The following notation will be used

from this point onward, unless the contrary is explicitly indicated for
each temporary digression.

G will denote a Hausdorff compact group with elements x, y, .. .
and identity element e. In general, G will be multiplicatively written.
The normalised bi-invariant integral on G will (see 2. 1. 4) be indicated
in bound variable notation by

fG ... dx or f ... dx ;

LP(G) will denote the usual Lebesgue space formed with respect to the
chosen bi-invariant measure on G, the norm on LP(G) being denoted

by II. II p C(G) will denote the Banach space of continuous complex-
valued functions on G, and M(G) the space of complex Radon measures
on G (see 1. 7. 9 and 1. 11).

It will be necessary to introduce an object which is in some sense
'dual' to G: a possible contender is the set G constructed in the follow-
ing manner. Given G, form the set of all f. d. continuous irreducible
unitary representations of G. (In order to skirt any set-theoretical
difficulties here, it may be noted that each of the f. d. representation
spaces involved could be replaced by a subspace of the fixed Hilbert space
1

2 of square-summable complex sequences; when this is done, each
corresponding representation is replaced by an equivalent one.) Partition
this set modulo the relation of equivalence between representations, and
suppose selected precisely one member of each equivalence class to obtain
a set G of representations. This choice will be supposed made once for
all.

The arbitrariness of this choice is one of the mildly dissatisfying
features of this approach. A rather less abstract picture of G may be
formed by indexing it by the set of continuous characters of G (which,
unlike G, is intrinsically related to G); but the possibility of doing this
is not clear at the outset (see 2. 6. 5 below).
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If U E G, the corresponding representation space will be denoted
by U its dimension (a positive integer) by d(U), and the identity
endomorphism of *L by I. The same conventions will apply to any
f. d. continuous unitary representation U of G, whether or not U E G.

2.2.10. Exercise. Prove equations (2. 2. 5)-(2. 2. 7). (Regarding

(2. 2. 6), note that if (ai) and (fi) are dual bases for M 'and
then (a!) _ (Aai) and (ft) = (fi o A are dual bases for ' and

2.2.11. Exercise. Let G be a compact group and S: x '- S(x)
a continuous f. d. representation of G. Show that S is equivalent to a
continuous unitary representation U of G.
[Hint: Let denote the representation space of S. Show that one can

define a scalar product (I) o making into a Hilbert space
Then consider the new scalar product defined by

( 21Y )= f (S(x)u I S(x)v) 0dx . ]

2.2.12. (i) Exercise. It is known (see Macdonald [1], pp. 114,

220) that there exist non-trivial finite groups G which are simple, i. e. ,

which have no normal subgroups other than { e I and G. Show that any

such group has no non-trivial multiplicative characters.
(ii) Let Gi (i = 1, 2, ...) be a non-trivial finite group having

no non-trivial multiplicative characters. Regard each G. as a compact
group with its discrete topology, and let G be the produce of the Gi ; G
is an infinite compact group. Show that G has no non-trivial continuous
multiplicative characters. (Note that G has many closed normal sub-
groups different from { e I and G. )

002.2.13. Remark Groups G = IIi_1 Gi, in which each G. is
finite and discrete, have a number of rather unfamiliar properties stem-
ming from the fact that there is a base of neighbourhoods of e in G
composed of closed subgroups Hi (j = 1, 2, ...) of G. (Compare

Hewitt and Ross [1], (4. 21) and (10. 2).) When this is the case, each Hj
is also open in G. As a result, G is totally disconnected (i. e. , every
non-void connected subset of G is a singleton) and zero-dimensional
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(loc. cit. (3. 5)). If X is a continuous multiplicative character of G,
X(Hj) _ {1 } for some j and so X(G) is a finite subgroup of T and
therefore Xn = 1 for some n (cf. Hewitt and Ross [1], (24. 26)).
Similarly, if U is any f. d. continuous representation of G, U(G) is a
finite subgroup of GL ( U). It turns out that groups G of this sort
behave, in respect to convergence properties of Fourier series, quite
differently from the familiar groups (such as T and its finite products);
see the end of 2. 9. 7 below.

2. 2. 14. Exercise. Consider R as a linear space over the
rational field Q. Show that one can choose an E R (n c N = 11, 2, ... } )
such that a1 = 2ir, limn , an = 0 and the family (an)nEN is linearly
independent over Q. Extend this family into a base (am)mEM for R
over Q, M being a suitable superset of N. Then every x E R has a
unique expression x = YmEM vm(x)am' where vm(x) E Q and
{m EM : vm(x) * 0) is finite. Let (bm)mEM be an arbitrary family of

complex numbers and define X: by x (x) = HmEM exp (bmvm(x)).
Show that X is a multiplicative character of R such that X (am) = exp bm
for every m c M. If b1 = 0, x has period 2v and so defines a multi-
plicative character x 1 of T via the formula X 1(elt) = X (t) for every
t E R. Thus X 1(e

ian
) = exp bn for every n E N. Show how to arrange

for X1 to be discontinuous.

2.2.15. Exercise. Show that the continuous multiplicative charac-
ters of the circle group T are the functions

it int
x n

: e ' .' e

where n E Z.

2.2.16. Exercise. Let i)iEI be a family of Hilbert spaces
and denote by 6W the subset of Hi cI formed of families (at) such
that

ziEI Ilai1I2 < _.

Verify that is a Hilbert space relative to the scalar product
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((ai) I%)) = FiEI (aiIbi) .

Show also that, if the are pairwise orthogonal closed linear
subspaces of a fixed Hilbert space , then '(as defined above) is
isomorphic to the closed linear subspace of generated by UiEl ('i'
this last subspace being taken with the structure induced by that of

Note. is usually termed the Hilbertian direct sum of the
family (i)iEI and denoted by In case the are
pairwise orthogonal closed linear subspaces of a Hilbert space we

speak of an internal Hilbertian direct sum.

2.2.17. An example. Nowhere in these notes do we attend to
the problem of finding sufficiently many continuous irreducible unitary
representations of any specific non-Abelian compact group. As far as
the writer is aware, there is indeed no general method for doing this, or
for tackling many of the sub-problems involved. The interested reader
should consult Hewitt and Ross [1], Volume II, pp. 152-6 for general com-
ments and references. In order to give some idea of the techniques in-
volved, we shall here describe briefly the procedure in one specific case;
for all the details see loc. cit. (29. 13)-(29. 27).

The special case to be considered is the group G = SU(2) = SU(V),
where V is a complex Hilbert space of dimension 2; see 2. 0. 4(iii)
above. Choosing a fixed orthonormal base in V, we regard elements x
of G as 2 X 2 complex matrices,

X.=
a /3

-Q a

satisfying det x = I a 12 + 11312 = 1. For typographical reasons, we
denote this element x by a0,6. The aim is to obtain continuous irredu-
cible unitary representations of G, perhaps enough of them to be sure
that every such representation is equivalent to one of those obtained.

To this end, let M denote the set of non-negative integers and
half-integers: M = 10, 1/2, 1, 3/2, 2, ... }. For each m E M, denote
by the complex linear space of all polynomials f over the com-
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plex field in one indeterminate z and having degree at most 2m. Make
into a complex Hilbert space by requiring that the monomials

((m - J)! (m + J)!)
2zm-i (i E {-m, -m+1, ... , m-1 m))

form an orthonormal base in .m
For each m E M and x = aV/3 E G define the endomorphism

U(m)(x) of to be such that

U(m)()zs
= (az + a)2m-s(az - 0)s

for every s E JO, 1, 2, ..., 2m).
verify that then

A rather elaborate calculation will

U(m) : x I- U(m)(x)

is a continuous unitary representation of G.
To show that each U(m) is irreducible, we introduce the following

continuous homomorphisms w1 and w2 of R into G:

w1(t) = cos(2t)visin(2' t), w2(t) = cos(?t) V -sin(12t)

and then the associated so-called infinitesimal operators of the representa-
tion U(m):

A(M) _ (U(m) ° wk)'(0)

H(m) = iA(m) - A(m) H(m) = iA(m) + A(m)+ 1 2 1 2

It is possible to verify that

H(m)f = -f' , H(m)f = -2mzf + z2f' . (2. 2. 14)

Now, if S is a linear subspace of which is invariant under U('n)

then S is also invariant under the and hence under the H+m) and

H(m) and their iterates. Then, if S # {0 1, (2. 2. 14) shows that S con-
tains every monomial zs with s c { 0, 1, 2, ..., 2m 1, and hence that
S = . This shows that U(m) is irreducible.

m
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A further argument, too long to detail here, will show that every
continuous irreducible unitary representation of G is equivalent to U(m)
for some m c M. Thus we might in this case take G to be {U(m):m EM}.

Regarding the corresponding characters, note first that the spec-
tral theorem (Appendix A. 1. 2) implies that to every x E G correspond
a E G and t E R such that

a 1xa = w3(t) = exp(2it) V 0 .

So, by (2. 2. 9), every continuous character of G is fully determined by
its restriction to the subgroup w3 (R) of G. It turns out that X m, the

character of U(m), is determined by the formula

c
w (t) = 1 2mXm 3

sin(m + 2)t/sin(2t) if exp(2it) # ±1

(2m + 1)(exp(z It)) otherwise

2. 3. The Fourier transform

2.3.1. For f E L1(G) and U E G, write

f (U) = 1G f(x)U(x)dx , (2. 3. 1)

so that f(U) E End (U). The function f is termed the Fourier trans-
form of f.

It is evident that f i- f is linear and that

111(u) II < 11f Ili (2.3.2)

the norm on the left being the standard operator norm on End ( U);

see (2. 0. 1).

In addition, if : x '- (f(x 1)) , then

arm = f(U)* (2.3.3)

for every U E G.
Introducing the convolution

f * g(x) = f f (Y)g(Y-1x)dY
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as in 2. 1. 6, a direct calculation gives

(f * g)-(U) = f(U)g(U) (2. 3. 4)

for every U E G. (Some use of the Fubini-Tonelli theorem is usually
involved here. )

Furthermore,

(Laf)"(U) = U(a)f(U), (Raf)"(U) = f(U)U(a) (2. 3. 5)

for every a E G and every U E G.
In terms of characters one has

f * XU(x) = XU * f(x) = Trrf(U)U(x)*]

= Tr[U(x)*f(U)] . (2. 3. 6)

Definition (2. 3. 1) extends in an obvious way to the case in which
f is replaced by a measure v E M(G), and there are corresponding
extensions of (2. 3. 2)-(2. 3. 6) which need not be written out explicitly.

This same definition obviously makes sense whenever U is any
continuous f. d. representation of G (and even for suitably restricted
infinite dimensional representations too). This possibility is used in the
course of 2. 4. 2 below, and there only.

It is important to indicate that (2. 3. 1) differs slightly from the
corresponding definition in Hewitt and Ross [1], (28. 34). However, the
difference is purely formal in nature and is of no real significance.

2. 3. 2. The Abelian case. If G is Abelian then, as will be
seen in detail in 2. 5. 4 below, every U E G is one-dimensional and may
be identified with its character, which is a continuous multiplicative
character X of G in the sense described in 2. 2. 7, i. e. , a continuous
homomorphism of G into T. So, if we introduce the set r of all such
continuous multiplicative characters of G, f appears the complex-
valued function f on r:

x r.. f(X) = fG f(x)x)dx . (2. 3.7)

Henceforth, whenever G is Abelian we shall assume that this change
in stance is made.
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By way of an 'aside' we might point out here that the compactness
of G simplifies matters by arranging that the definition (2. 3. 6) or
(2. 3. 7) makes good sense for every function f for which it is natural
at the outset to expect a Fourier transform to be defined. If one passes
to a noncompact Abelian group G, this is no longer true: the definition
works perfectly well for functions f E L1(G), but one soon finds the need
for a definition of f applicable to certain non-integrable functions f.
The customary first steps in easing the situation is to frame a good defi-
nition for functions f E L2(G), and then to utilise a version of the Haus-
dorff-Young theorem discussed in 2. 14 below to cope with functions f
belonging to LP(G) for some p E (1, 2). (None of this is at all trivial:
to go further still, something akin to distributional methods are needed. )

Starting, as we have done, from a compact G, this sort of prob-
lem arises only when one seeks to reconstitute f from f, i. e. , when
one comes to study the convergence and summability of Fourier series
of functions on G, as in 2. 7 and 2. 9. When it does so arise, the under-
lying group is r rather than G (r as a group is discussed in 2. 5. 4
below). As will be seen, these problems are quite delicate, and this
despite the fact that compactness of G ensures yet another simplifying
feature, namely, that r is discrete. The problems mentioned in the
last paragraph are at their worst when the group (G or r) involved is
neither compact nor discrete.

2. 3. 3. Remark. The formulae (2. 3. 2)-(2. 3. 4) assert that, for
a fixed U E G, the mapping f is a certain sort of representation
of the convolution algebra L1 (G) into the algebra End ('U). In
some approaches to harmonic analysis, use is made of the fact that this
passage from representations of G to representations of L1 (G) is in
some measure reversible. The details are fairly lengthy; see Hewitt
and Ross [1], §§21 and 22, especially (22. 7). The advantage gained by
this device is due mainly to the fact that the algebra L1 (G) is in some
ways structurally 'richer' than the underlying group, and this extra rich-
ness can sometimes be exploited with effect (as it is in the Gelfand-Raikov
approach mentioned in 2. 0. 2(iv)). The connection between Fourier trans-
forms and representations of L1 (G) is one reason for the basic impor-
tance of the former; the Abelian case is especially simple and striking
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(see Edwards [3], Chapter 4 and Edwards [4], §6).

Show that, for every U e G,

limb ki (U) = IU

in the sense of the operator norm on End (U (defined as in equation
(2. 0. 1), with

U
in place of V).

2.3.6. Exercise. Discuss r and the Fourier transform in case
G is a finite cyclic group.

2.4. The completeness and uniqueness theorems

2.4.1. What has come to be known as the completeness theorem
may be understood to mean either of two assertions, namely:

(CTi) the set of coordinate functions
x I- (u IU(x)v) ,

where U E G and u, v E 'U, is complete in (i. e.,
generates a dense linear subspace of) L2(G);

(CTii) there exist sufficiently many continuous irreducible unitary
representations of G, i. e. , if x, y E G and x * y, then
U(x) * U(y) for at least one U E G.

Quite different in appearance from the completeness theorem (or
theorems) are the following uniqueness theorems, one corresponding to
each p E [1, 00]:

(UTp) f E LP(G), f(U) = 0 (V U E G) f = 0 a. e.

In spite of appearances, however, the two types of theorem are essentially
equivalent. The Hahn-Banach theorem coupled with known facts about the
representation of continuous linear functionals on L2 (G) (see, for exam-
ple, Edwards [3], Appendices B. 5 and C), shows that (CTi) and (UT2)
are equivalent. On the other hand, it is evident that (UT1) implies

2.3.4. Exercise. Write out detailed proofs of (2. 3. 2)-(2. 3. 5).

2.3.5. Exercise. Let (k1) be an approximate identity in L1(G).
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(UTp) for every p E [1, 00]; and the use of approximate identities will
show that the converse is also true (see Exercise 2. 4. 11). Since in fact

(UT1) is the assertion for which the need is most urgent, its proof will
be the aim of this section (and will form perhaps the most substantial
piece of analysis to be tackled in detail in these notes). The truth of
(CTii) will be inferred later by showing it to be equivalent to (CTi); see
2. 8. 8 and 2. 9. 6.

2.4.2. Proof of (UT1). The substance of 2. 1. 8 and 2. 1. 9 com-

bines with (2. 3. 4) to show that all the statements (UTp), obtained when
p varies over [1, 00], are equivalent to the statement which results
when C(G) replaces LP(G) in the hypothesis. Moreover, since (2. 3. 3)
and (2. 3. 4) combine to show that (f * f)" = ff *, it will suffice to show that

f EC(G), f=T, f(U)=0 ( VU EG)=> f=0. (2.4.1)

The ensuing argument in fact shows that, if f c C(G) satisfies
f = f # 0, then f(U) #0 for some U E&. In doing this, use will be
made of elementary Hilbert space theory applied to L2 (G) and the endo-
morphism T of L2(G) defined by

T:g (2.4.2)

The following two properties of T are relevant and fairly simple
to establish (see Exercise 2. 4. 6):

(i) T # 0 and T is self-adjoint, i. e. (see Appendix A. 0),

(Tglh) = (glTh)

for every g, h E L 2 (G)

(ii) T commutes with every left translation La (a E G).
A vital but less evident property is

(iii) T is compact (= completely continuous), i. e. , if (g.) is

any bounded sequence in L2(G), there is a subsequence of
(Tgj) which converges in L2(G);

this will be established in 2. 4. 3. In 2. 4. 4 it will be shown that (i) and

(iii) entail
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(iv) T admits at least one non-zero eigenvalue A, and the
corresponding eigenmanifold

M= {g a L2(G) : Tg = Ag }

has finite positive dimension.
Actually, (iv) is a special case of a well-known general result stated in
2. 4. 4 as a lemma.

The proof of the uniqueness theorem will now proceed on the ass-
umption that (i)-(iv) have been established.

Since A is non-zero and M ;6 10 ), one may choose g
0

* 0 in M
and infer that g o = 7 1(g o * f) e C (G) and

go*f=xgo#0.

Now (see Exercise 2. 4. 7) f * Lago(e) = g
0

* f(a 1) for every a e G, and
so a may be chosen so that

f * Lag
0

* 0 .

By (ii), M is invariant under all the La Thus g1 = Lag0 E M and
therefore

f* g1 # 0 for some g1 e M . (2. 4. 3)

Look now at the f. d. representation V: x "' V(x) of G with repre-
sentation space M and defined by

V(x)g = Lxg .

It is simple to verify that V is continuous and unitary. Moreover, its
Fourier transform

f(V) = JG f(x)V(x)dx

turns out to be given by

f(V) : g -f * g . (2.4.4)

Thus (2. 4. 3) shows that

77



f(V) # 0 (2. 4. 5)

On the other hand, by 2. 8. 8(b) and the process indicated in 2. 2. 5,
V may be decomposed into a finite sum of f. d. continuous irreducible
representations of G. It is therefore equivalent to a sum U1 ®... ®Uk,
where U1, ... , Uk E G. Accordingly, f(V) is equivalent to

f(U1) + ... + f(Uk) ,

and (2. 4. 5) plainly entails that f(Uj) # 0 for some j E { 1, 2, ... , k),
as had to be established; cf. (2. 4. 1).

2. 4. 3. Proof of 2. 4. 2(iii). Sticking to the notation used in

2. 4. 2(iii), it suffices (by Ascoli's theorem; see for example, Edwards [2],
0. 4. 12) to show that the sequence (Tgj) is equicontinuous and such that

supj II Tgj (I
oo

< -. (The compactness of G ensures that the injection map
of C(G) into L2(G) is continuous.) However, by (2. 1. 5),

II TgjII,,, :!s IIf1I2IIgj1I2

and m = supj II gj II 2 < - by hypothesis. Also,

Tg.(a) - Tg.(b) = g. * (Ra-1f - R1f)(e) ;

by (2. 1. 5) again this is in absolute value at most

mIIR_1f-R b_1f1I2 = mIIR a-1 b
f-fII2

a

the last step by invariance of the integral. Since f is continuous and G is
compact, f is uniformly continuous. Hence, given s > 0, there is a
neighbourhood N of e in G such that IIRsf - f II 2 < m-1 E whenever

s E N. So a. 1b E N implies

I Tgj(a) - Tgj(b) I s

for every j, whence equicontinuity of (Tgj).

2.4. 4. Proof of 2. 4. 2(iv). This will be derived by specialisation
from the following lemma about Hilbert spaces (see, for example, Edwards
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[2], 9. 11. 2).

Lemma. Let Wbe a Hilbert space (of arbitrary dimension) and
T a compact self-adjoint endomorphism of T : 0. Then

(a) T admits at least one non-zero eigenvalue A;
(b) for any non-zero eigenvalue A of T, the associated eigen-

manif old

M= ju E W: Tu= Xu}

has positive finite dimension.

Proof. Since T is compact, the sequence (Tuj) is certainly
bounded whenever (uj) is a bounded sequence of elements of From
this it follows that T is continuous, i. e. , that

m = sup { ll Tu Il : u E it 211 < 1 } < 00 . (2.4. 6)

Since T is self-adjoint, (Tulu) is real for every
(2. 4. 6) it follows that each of

A = sup {(Tutu) : 112 11 -1 }

and

µ=inf{(Tuju): llull -1}

u E . From

is finite. Since T * 0, at least one of x or p is non-zero; see Appendix
A. 0. 6, A. 0. 8. By changing T into -T if need be, it may and will be
assumed that

A = sup { (Tu. J U) : l u l l l <_ 1 } > 0 . (2.4.7)

The aim now is to show that )i is an eigenvalue of T, and the
first step toward this is to show that A is an assumed maximum, i. e. ,
that

A = (Tuo lu0)

for some uo c satisfying

(2.4.8)
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IIuoII=1. (2.4.9)

To this end, note first that (2. 4. 7) guarantees the existence of a sequence
(U.) of elements of such that

IIuj II < 1, limj(Tu. juj ) = A . (2. 4.10)

Since T is compact, passage to a suitable subsequence will arrange that
(Tub) is convergent, say

v = limb Tub . (2. 4. 11)

In addition to this, however, a subsequence (uj ) and uo E exist
such that p

limp (u) I u) = (110 I H)
P

(2. 4. 12)

for every u E see Exercise 2. 4. 8. The fact that (2. 4. 12) holds

for every u E is expressed by saying that limpu
jp
. = u

o
weakly in

It follows easily from (2. 4. 10) and (2. 4. 12) that

IIu0II - 1. (2. 4. 13)

Also, for every u E Ae"', (2. 4. 11) and (2. 4. 12) show that

(v I u) = limb (Tub u) = lim)(ui I T*u)

= limp(uj IT*u) = (Tu0Iu) .

Hence

Y= Tu0 . (2.4.14)

Again,

(Tu.
I . ) _ (vv I u. ) + (Tu. - v I u. )

Ip _,p
1p

-1p -lp

wherein the second summand on the right has an absolute value which, by
(2. 4. 10), does not exceed II Tub - X11. Reference to (2. 4. 10), (2. 4. 11)

and (2. 4. 12) thus shows that
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A = limp(Tu) I u) ) = limp(v I u) ) = (v I u o)p _p
p

which, by (2. 4. 14), is equivalent to (2. 4. 8). Also, since A > 0 ensures
via (2. 4. 8) that uo * 0, the definition of A shows that

X > (T(Ilua II-luo)1 Iluo I1-luo) = Iluo II-2(Tuo luo) = Iluo II-2X ,

which implies that Iluo II ? 1. This together with (2. 4. 13), yields (2. 4. 9).

To complete the proof of (a), choose any v E which is ortho-
gonal to u0 and has norm one. Then, for every complex a

II10+aV1I2=1+ Ia12,

and so the definition of a shows that

(T(uo + av) I (uo + av)) <_ A(1 + I a 2) ,

that is

i(Tuo l y) + a(Tv I uo) <_ (A - 1) I a 12 . (2.4.15)

Choose t real so that k = e-1t(Tu0 I v) is real and put a = rest where
r is real and non-zero. Then (2. 4.15) yields

2rk <_ (A - 1)r2 . (2. 4. 16)

Assuming r to be positive, dividing by r and letting r tend to zero,
(2. 4. 16) yields k s 0; similarly, assuming r to be negative and follow-
ing the same procedure, it appears from (2. 4. 16) that k > 0. Hence

k = 0 and so (Tu0 Iv) = 0. Thus Tu0 is orthogonal to every v which
is orthogonal to uo. Hence (see Exercise 2. 4. 9) Tu0 is a scalar mul-
tiple of u0. Then (2. 4. 8) shows that this scalar multiple can be none

other than Xu0 and the proof of (a) is complete.
As to (b), it is trivial that dim M > 0. On the other hand, com-

pactness of T ensures that every bounded sequence extracted from M
contains a convergent subsequence. This circumstance rules out the
possibility that dim M = -, for otherwise M would contain an infinite
orthonormal sequence (ej) 1, in which case Ilei - e II = 22 for every
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i j and the bounded sequence (2j) .=1 of elements of M would contain00

no convergent subsequence.

2.4.5. Suppose the set of all coordinate functions specified in
(CTi) of 2. 4. 1 to be indexed as a family (ua)aEA. Then (CTi) asserts
that to every f E L2(G) and every e > 0 corresponds a complex-
valued function a - ca on A such that { a E A : ca * 0) is finite and

Ilf - I caua all 2 < e ,

the range of summation being (formally) A but in reality a certain finite
subset of A. This is very far from asserting that to every f E L2(G)
corresponds a complex-valued function a '- ca on A such that the
series ' caua converges in some sense and has sum f. In spite of the
gap, however, it turns out that there is a very reasonable sense in which
the second assertion is true and implies the first assertion: this will
appear in 2. 7. A vital step in establishing this nice conclusion amounts
to showing that there is subfamily (u1)REB, where B is a suitable subset
of A, such that (i) every ua (a E A) is a linear combination of u1's
with 6 E B; and (ii) the family (u1)REB is orthogonal in L2(G). If this
can be done, suitable choice of positive 'normalising factors' v0 will
arrange that (v0u13 )13EB is an orthonormal base in the Hilbert space

L2(G) and elementary general theory will lead right to an expansion of
the desired sort.

The next step is thus to prove orthogonality of a suitably large
family of coordinate functions. This will be done in 2. 6, the intermediary
being a famous lemma about irreducible sets of endomorphisms (applying
in particular to irreducible representations).

2. 4. 6. Exercise. Construct detailed proofs of 2. 4. 2(i) and (ii).

2. 4. 7. Exercise. Given that f, g E L 2 (G) and a E G, show that

f * Lag(e) = g * f(a 1)

2.4. 8. Exercise. Let OG be a Hilbert space and (uj) a bounded
sequence extracted from . Show that there exist a subsequence
(u. ) and uo E such that (2. 4.12) holds for every u E . (Com-p
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pare Edwards [3], Appendix B. 4.)
[Hint: Let H denote the closed subspace of generated by the uj and
choose an orthonormal base (er)r

1
for H. Use the diagonal process

00

to prove the existence of a subsequence (U. ) such that a = limp (U. er)
p p

exists for every r. Verify that

F
CO

00

r=1 I ar <

and that u0 = Yr-1 arer satisfies all demands. This sketch deals with
the case in which dim H if dim H < -, a more elementary type of
argument suffices. ]

2.4.9. Let be a Hilbert space, a and b elements of
Given that b is orthogonal to every element of which is orthogonal
to a, show that b is a scalar multiple of a.

2. 4. 10. Exercise. Use (2. 3. 4) and the uniqueness theorem to
prove the associativity of convolution.

2. 4. 11. Exercise. Show that (UT1) of 2. 4. 1 is a consequence

of the following uniqueness assertion:

f E C (G), ?(U) = 0 for every U E G => f = 0.

2. 5. Schur's lemma and its consequences

Recall that, if V is a linear space, End(V) denotes the set of
all endomorphisms of V.

A subset Z of End(V) is said to be irreducible if there exists
no linear subspace of V, other than {0 ) and V, which is invariant
under Z. (A subset M of V is invariant under Z, if and only if
T(M) C M for every T c Z.)

If E S End(V) and T E End(V), we shall write TE (resp. ET)
for ITS: SE E) (resp. {ST :SEE )).

2. 5.1. Schur's lemma. Let V and V' be linear spaces and
Z and E' irreducible subsets of End(V) and End(V') respectively.
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Suppose that T is a linear mapping of V into V' such that

E'T = TE . (2.5.1)

Then either (i) T = 0, or (ii) T is an isomorphism of V onto V'.

Proof. Consider M' = T(V), which is a linear subspace of W.
Thanks to (2. 5. 1), M' is invariant under E' and so irreducibility of
E' implies that M' is either {0 } or V'. Thus, either T = 0 or
T(V) = W.

By looking at M = ker T = {v E V : Tv = 0 }, one sees similarly
that either T is 0 or T is 1-1.

Hence, if T * 0, then T is both 1-1 and onto.

2. 5.2. Corollary. Let V be a f. d. complex linear space and
Z an irreducible subset of End(V). If T E End(V) is a commutator of
E, i. e. , if TE = ET, then T is a scalar multiple of the identity endo-
morphism of V.

Proof. Since V is f. d. and complex, there is a complex number
A such that T1 = T - Al is not an isomorphism of V onto itself (I

denoting the identity endomorphism of V). Now apply Schur's lemma,
taking V' = V, E' = Z and replacing T by T1. Since alternative (ii)
is excluded by choice of A, (i) must hold.

2. 5. 3. Corollary. Let V be a f. d. complex linear space. If

End(V) contains a commutative irreducible subset, then dim V = 1. In

particular, any f. d. (complex) irreducible representation of an Abelian
group is one-dimensional.

Proof. By 2. 5. 2, every element of the said subset is a scalar
multiple of the identity; and then irreducibility implies that dim V = 1.

2. 5. 4. The Abelian case. If G is Abelian, 2. 5. 3 shows that
(as was heralded in 2. 2. 7 and 2. 3. 2) every U E G is one-dimensional so
that every character XU is a continuous multiplicative character of G.
One may thus identify G with the set r of continuous multiplicative
characters of G (i. e. , the set of continuous homomorphisms of G into
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T), the Fourier transform of f c L'(G) being accordingly identified with
the complex-valued function.

X -'(X) = 1G f(x)-xTx)dx

on r. (When Abelian groups alone are being studied, r is usually
introduced directly and without any overt mention of representations. )

Under pointwise products, r becomes an Abelian group (infinite
unless G is finite; see Exercise 2. 6. 9). If r is taken with the dis-
crete topology, its bounded (automatically continuous) multiplicative
characters turn out to be precisely those of the form X - X(a) with
a e G. This statement is part of the famous Pontryagin duality theorem,
a statement of which is worth including here.

The said duality theorem falls roughly into two parts:
(a) Start from any locally compact Abelian group G and form

the group r of all bounded continuous multiplicative characters X of
G, the group operation in r being pointwise multiplication. (Having

for the moment dropped the assumption that G be compact, the term
'bounded' must appear in the immediately preceding definition of r,
boundedness being no longer a consequence of continuity. We might
alternatively define r as the set of continuous homomorphisms of G
into T, wherein the wording remains exactly as it did in the compact
case.) r is then evidently an Abelian group. Topologise r by assign-
ing to its neutral element a base of neighbourhoods comprising exactly
the sets

W(K,E)= {XeIF : I X(x)-11 e for every xEK},

where K ranges over compact subsets of G and c over all positive
numbers. Then r proves to be a locally compact Abelian group termed
the dual (or character) group of G.

(b) Now go through the same process, beginning with r instead
of G. It is simple to check that each a e G generates a bounded con-
tinuous multiplicative character

a : x '"' x (a)
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of r, i. e. an element of the dual of r. The crux of the duality law says
that the mapping a F- a is an isomorphism of the topological group G
onto the dual of r.

It also turns out that IF is discrete if and only if G is compact.
For all of this, see Edwards [3], 2. 2. 1 and Hewitt and Ross [1],

Chapter VI. Concerning duality for compact non-Abelian groups, see
2. 7. 7. below.

2. 5. 5. Exercise. Let denote a 2-dimensional Hilbert space
in which (e1, e2) is an orthonormal base. Consider the representation
U of the circle group T with representation space defined by

el I- cos t. el + sin t. e2

e2 '- -sin t. el + cos t. e2

By 2. 5. 3, U is reducible. Show how to reduce U into the sum of two
irreducible representations of T.

2. 5. 7. Exercise. Show that G is Abelian if and only if
d(U) = 1 for every U E G. (Assume (CTii) of 2. 4. 1. )

2. 6. The orthogonality relations

2. 6. 1. Let U e b and let T be any endomorphism of
The endomorphism

T' = J U(x)TU(x)*dx

then commutes with every U(y). Since U is irreducible, Corollary 2. 5. 2
implies that T' is a scalar multiple of IU. The value of this scalar is
found immediately by taking the trace of both sides, remembering that
Tr U(x)TU(x)* = Tr T since U(x) is unitary. Thus

-l.1 U(x)TU(x)*dx = d(U) . Tr T. IU . (2.6.1)

A similar argument shows that

I U(x)TV(x)*dx = 0 (2. 6. 2)
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if U, V e G, U : V and T is any linear map:

2. 6. 2. If orthonormal bases (ui) in and (vj) inV
are introduced, and if one writes

uij(x) = (ui I U(x)uj), vhk(x) _ (vh I V(x)!k)

suitable choice of T in (2. 6. 1) and (2. 6. 2) lead to the orthogonality
relations

f uij(x)uhk x dx = bih. 6jk. d(U)-1

(1 < i, j, k < d(U))

f uij(x)vhk x dx = 0

(1 < i, j < d(U), 1 <_ h, k < d(V)) .

(2.6.3)

(2.6.4)

2.6.3. If in (2. 6. 3) one puts j = i and h = k and sums over
i and k, it appears that

f XU(x)Xx)dx = 1 . (2. 6. 5)

Likewise, from (2. 6. 4) there appears

f XU(x). Xv(x)dx = 0 (U, V E G, U # V) . (2. 6.6)

2.6.4. Actually (2. 6. 2) yields more than this: if one replaces
T by FTG*, where F and G are arbitrary endomorphisms ofU
andV respectively, there results the formula

f U(x)FTG*V(x)*dx = 0 ;

and from this may be deduced by rather tedious calculation the equivalent
formulae

f Tr[U(x)F]. Tr GV x dx = 0

f Tr[FU(x)*]. Tr GV x *]dx = 0

and in particular (see (2. 3. 6))

(2.6.7)
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Jf *XU(x).g* XVxdx=0.

Similarly, (2. 6. 1) gives

f U(x)FTG*U(x)*dx = d(U)-1. Tr[FTG*]. IU

and thence

f Tr[U(x)F]. Tr[U(x)G]dx = d(U)-1. Tr[FG*]

f Tr[FU(x)*]. Tr[GU(x)*]dx = d(U)-1. Tr[FG*]

(2.6.8)

(2. 6. 9)

and in particular (see (2. 3. 6))

f f XU(x) g * XU x dx = d(U)-1. Tr[f(U)g(U)*] . (2. 6. 10)

Some indications of the intermediate calculations are given in Appendix
B. 1, where it is shown too that the Fourier transform of the function

h(x) = d(U). Tr[HU(x)*] , (2. 6. 11)

H being any endomorphism of U is given by

H if V=U
h(V) = (2.6.12)

0 if V#U, VEG

2. 6. 5. Remarks. The preceding arguments really show that, if
U and V are arbitrary continuous irreducible unitary representations
of G (not necessarily elements of the chosen set G of representatives),
then f XUXV dµ is 1 or 0 according as U and V are or are not
equivalent.

This means in particular that one could very well use the set F
of all characters of elements of G to index G, i. e. , that there is a
bijection X '- UX of r onto G, UX denoting the unique element of G
whose character is X. This procedure will not be adopted in these notes,
though it is used by some authors.

The advantages of this procedure are not fully apparent until one
has picked out or adequately described the elements of r in a fashion
making no explicit reference to representations. In case G is Abelian,
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this is easy: the elements of r are precisely the continuous homomor-
phisms of G into the circle group T, i. e. , precisely the continuous
multiplicative characters of G (see 2. 5. 4). If G is not assumed to be
Abelian, the desired sort of description is not so obvious. However,

there are various ways of solving the problem, two of which follow by way
of illustration.

(i) r consists of those f E C(G) which satisfy If 11
2

= 1 and
which, for some (f-dependent) complex number c # 0, are
such that

J f(xax 1b)dx = c-lf(a)f(b)

for every a, b E G.
A proof of this appears in Loomis [1], 39C; see also Hewitt and Ross [1],
(27.53). (Loomis' proof is expressed in terms rather different from those
used in these notes; all the same, an interested reader should not ex-
perience much difficulty in translation. )

(ii) Denote by K the set of non-zero central functions k E C(G)
such that k * k = ck for some (k-dependent) positive number
c. Say that k c K is indecomposable if and only if it is not
expressible in the form k1 + k2 with k1, k2 E K, unless
k1 is a constant multiple of k. Then r comprises pre-
cisely those elements k of K which are indecomposable
and satisfy Ilk j1 2 = 1.

For a proof of this, see Exercise 2. 6. 8.
In spite of these possibilities, the procedure will not be adopted

in these notes. We shall make systematic use of F only in case G
Abelian, and then r is to be understood in the manner described in
2. 3. 3 and 2. 5. 4, i. e. , r is to denote the dual group of continuous mul-
tiplicative characters of G. In other cases we continue to use the set
G of representations.

2. 6. 6. The Abelian case. In view of 2. 5. 4, the orthogonality

relations now take the form of the assertion: if X1, X2 E r, then
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_ 1 = z
J X1X2dµ

1 if X x
=

0 otherwise .
(2. 6. 13)

What is more, this can be proved very simply indeed and without any
dealings with representations in general. Thus, if x E IF and a E G,
then Lax = Fa) x and so invariance of the integral gives

! xdp = .1 Laxdp = x(a) l Xdp

If x * 1, a can be chosen so that x(a) 1, in which case the last for-
mula shows that f xdp = 0. This, combined with normalisation of the
invariant integral, leads to (2. 6. 13) when x is taken to be x 1 2 = x 1 x21.

2. 6. 7. Fourier characterisation of central functions. Let
k EL 1

(G). In order that k be central (see 2. 1. 6), it is necessary and
sufficient that, for every U E G, k(U) be a scalar multiple of IU.

Proof. As for necessity, if k is central, (2. 1. 8) and (2. 3. 4)
show that, for every U E G, k(U)f(U) = f(U)k(U) for every f E L1(G).
By (2. 6. 11) and (2. 6. 12), this implies that, for every U E G, k(U)
commutes with every element of End (,;KU) and so, by 2. 5. 2, is a
scalar multiple of IU.

Turning to sufficiency, if k(U) is, for every U E G, a scalar
multiple of IU, (2. 3. 4) shows that for every f c L1(G) the functions
f * k and k * f have the same Fourier transform. That k is central,
now follows from the uniqueness theorem (UT1) of 2. 4. 1.

2. 6. 8. Exercise. Prove 2. 6. 5(ii).

finite.
2. 6. 9. Exercise. Show that G is finite if and only if G is

2. 6. 10. Exercise. Let G be a compact group. For f E C(G)
and n a positive integer, define C nf by recurrence so that C1f = f and
Cn+1f = f * Cnf. Prove that G is Abelian if and only if 0 (= 0G) is
the only element f of C(G) satisfying Cn

f = 0 for some positive integer
n.
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2.6. 11. Exercise. Let G be a compact Abelian group with
dual group IF. Assume (what will be established in 2. 8. 8) that the linear
combinations of elements of r' are dense in C(G). Use the orthogonality
relations to verify the following two statements.

(i) If (Gn)n--1 is an increasing sequence of closed subgroups
of G whose union is dense in G, then

f fdµG = lime f fdµG (2. 6. 14)
n

for every f E C(G).
(ii) If a E G generates a dense subgroup of G, then

f fdµG = limnyoo (2n)-1F I m I ,of(am) (2. 6. 15)

for every f E C(G).
Illustrate by examples.

Remarks. Both formulae (2. 6. 14) and (2. 6. 15) continue to hold

for certain discontinuous complex-valued functions f on G; cf.
Exwards [ 3], Exercise 2. 15.

2. 7. Fourier series in L 2 (G)

2. 7. 1. Fourier series. The orthogonality relations (2. 6. 3) and
(2. 6. 4) show that the family

(d(U)2uij)1<_i,j<_d(U), UEG

is orthonormal in L2(G), and the completeness theorem (CTi) in 2. 4. 1
shows that it is an orthonormal base in L2(G). The associated ortho-
gonal expansion of f E L2(G) is the Fourier series of f, namely

Ed(U)EE { f f(y)u7)dy }ui.
ij

Herein the term arising from the representation U is, apart from the
factor d(U),
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EE J f(Y) i )dy. uij(x)
ij

which is none other than

f * XU(x) = Tr[f(U)U(x)*] = XU * f(x) .

The Parseval formula will read

J If(x) 12dx = Ed(U)EE I J 12

ij
and the 'U-term' in this is precisely

d(U). Tr[f(U)f(U)*] .

For more details, see Appendix B. 2.

2. 7.2. Convergence in L2(G). A rigorous argument proceeds
along customary lines, using the orthogonality relations. Thus, suppose
f E L2(G). If P denotes a finite subset of G and

fP(x) = E d(U). Tr[f(U)U(x)*] ,
UEP

(2. 6. 7) and (2. 6. 9) give

f If(x) - fP(x) I2dx = f lf(x) I2dx - E d(U)Tr[f(U)f(U)*]
UEP

whence follows Bessel's inequality:

Ed(U). Tr[f(U)f(U)*] < f If(x) I2dx (2. 7. 1)

On the other hand, if the function 4) assigns to each U E G an
endomorphism of 66r°U in such a way that Ed(U). Tr[(D(U)c(U)*] < oo,

and if

OP(x) = E d(U). Tr[,,b(U)U(x)*]
U EP

for every finite subset P of G, then the orthogonality relations show that

f I$Q(x)-$p(x) I2dx = E d(U). Tr[4(U)4(U)*]
UEQ\P
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for finite sets Q J P. Hence the family (0P) is Cauchy, when the P's
are directed by inclusion. Since L2(G) is complete, 0 = lim,gP exists
in the L2-sense. Since the Fourier transformation is linear and continuous

(111(u) II IIf II 1 <_ IIf II 2), (2. 6. 11) and (2. 6. 12) show that $ = - and

f I $(x) I Zdx = lime f I $P(x) 12dx = Ed(U). Tr[$(U)$(U)*] ,

the sum extending over all U E G.

2. 7. 3. The Parseval formulae. We are at liberty to take = f,
whenever f e L2(G). Then the completeness theorem (UT2) of 2. 4. 1
tells us that the 0 obtained in 2. 7. 2 is equal a. e. to f. Thus, writing
E... in place of EU cG....

f(x) = Ed(U). Tr[f(U)U(x)*] = Ed(U). f * XU(x) , (2. 7. 2)

the series being the strong limit in L2(G) of its finite partial sums;
moreover (2. 7. 1) is sharpened into the Parseval formula

f If(x) 12dx = Ed(U). Tr[f(U)f(U)*] . (2. 7. 3)

More generally, if f and g are in L2(G), then

f f(x)g E)dx = Ed(U). Tr[f(U)g(U)*] , (2. 7. 4)

the series on the right converging absolutely; this is the so-called
polarised (form of the) Parseval formula.

Note that (2. 7. 4) can also be written

f * g(e) = Ed(U). Tr[f(U)g(U)*] (2. 7. 5)

for f, g in L2(G). Consequently, if 0 e L1(G), then

f * 0 * g(e) = Zd(U). Tr[f(U)3(U)g(U)*] , (2. 7. 6)

as follows from (2. 3. 3), (2. 3. 4) and (2. 7. 5). Equation (2. 7. 6) holds for

all f, g in L2(G) and the series converges absolutely.
We shall return in 2. 9 to consideration of the pointwise conver-

gence of the Fourier series (2. 7. 2) for restricted classes of functions f.
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Remark. The substance of 2. 7. 2 and 2. 7. 3 might be summarised
by saying that L2(G) is the internal Hilbertian direct sum (see Exercise
2. 2. 16) of its f. d. subspaces XU * L2(G), one for each U E G. Similar
and more general results of this sort will be studied in 2. 12 below.

2. 7. 4. The Riemann-Lebesgue lemma. If f e L1(G), then

limo EG, U...... II f(U) II = 0 . (2. 7. 7)

(The interpretation of (2. 7. 7) is explained in Exercise 1. 2. 5. )

Proof. From Appendix A, formula (A. 2. 8) one has the estimate

IIAII < (Tr AA*) 2 < d2 IIAII (2.7.8)

for any A E End (U), where IIAII denotes the usual operator norm
of A and d denotes the dimension d(U) of U The conclusion

(2. 7. 7) follows at once from (2. 7. 3) and (2. 7. 8), provided f e L2(G).
Now suppose that f E L1(G) and e > 0. Choose fl E L2(G)

so that IIf - f1 II1 s 2 e . By what has just been established,

F= {uEG:

is finite. On the other hand, in view of (2. 3. 2) and the choice of

{U EG: IIf(U)II >-e} SF,

which implies (2. 7. 7).

fl,

Remark. Even if G is Abelian, there are senses in which
(2. 7. 7) is the most one can say... and that even for continuous f. For
example, supposing G to be infinite Abelian and X '- e (X) to be any
preassigned non-negative function on r such that limX Er X-°o e (X)=0,
there exist functions f E C(G) such that the formula f(X) = 0(e (X)) is

false. To see this, note that one may choose Xn E r (n = 1, 2, ...) so
that En n e (Xn) < -; then

f = En n e (Xn)Xn E C(G)
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and yet f(Xn) = n e (Xn) for every n (as a consequence of the ortho-
gonality relations (2. 6. 13)).

For a discussion of the (necessarily more complicated) non-Abelian
case, see Mayer [1].

2. 7. 5. Trigonometric polynomials. The substance of 2. 7. 2

suggests that considerable importance be attached to the set of continuous
functions f such that

is finite. Such functions are termed trigonometric polynomials (t. p. s
for short) on G. (The name is a take-over from the special case in
which G = T: see 2. 1.15, 2. 5. 4 and 2. 7. 6.) The symbol T(G) will
denote the set of all t. p. s on G.

As follows from the completeness theorem and the orthogonality
relations, the t. p. s on G are just the functions of the form

x "Yn c Tr[A.U.(x)*]
J=1 J J J

where the c. are complex numbers, the U. E G and Aj E End (OG U )
J

for each j. In other words, T(G) is just the linear subspace of C(G)
generated by all coordinate functions associated with elements of G.

Statement 2. 4. 1(i) says exactly that T(G) is dense in L2(G). As
will appear in 2. 8. 8 and 2.9.3, T(G) is dense in C(G) and in LP(G)
whenever 1:5p< -: in fact, anyone statement of this type might be
thought of as a variant of the completeness theorem.

Independently of the characterisation of T(G) in terms of co-
ordinate functions, the results of 2. 3. 1 show at once that T(G) is bi-
invariant (under translations), that T(G)- C T(G), and that
M(G) * T(G) * M(G) C T(G). The last formula (which, of course, signifies
that a * t * (3 is a t. p. whenever t is a t. p. and a and 6 are Radon
measures on G) implies that LP(G) * T(G), TO * LP(G) and
LP(G) * T(G) * LP(G) are all subsets of T(G). Thus, if one regards
LP(G) as an algebra in which the product is convolution (see Edwards [3],
3. 1. 7), then TO is at once a left ideal, a right ideal and a two-sided
ideal in LP(G); see 2. 12. 1 below.
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There remain two other crucial properties of T(G) which are
not so evident, namely:

(i) T(G) S T(G) ;
(ii) T(G). T(G) C T(G) .

The first says that T(G) is invariant under complex conjugation; the
second that the pointwise product of two t. p. s is a t. p. (i. e. , that T(G),
as well as being a linear subspace of C(G), is also a subalgebra thereof
relative to pointwise operations).

Sketch proof of (i). It suffices to prove this: if U E G and
t : x '- (u I U(x)v) is a coordinate function associated with U, then t is
a coordinate function associated with some V E G. To this end, choose
a conjugate linear map C ofU onto itself such that (Ca I Cb) = (b I a_)
for every a_, b E 4G U and CZ = IU ... for example, choose any ortho-
normal base (ei) for -and define C : E.c .ei H Eiaie.. It is easy1 1--1
to see that V0 : x I- CU(x)C is a representation of G which is continuous,
unitary and irreducible (since U has those properties). Also, for every
x E G,

t(x) = (u I U(x)v) = (CU (x)v I Cu) = Cu V o W CV)

=sx , say,

s being a coordinate function associated with V0. By 2. 2..8(e), V0 is
unitarily equivalent to some V E G, say V0(x) = W 1V(x)W for every
x E G and some fixed unitary W. Then

s(x) = (CuIV0(x)Cv) = (CuIW 'V(x)WCv)

= (u' I V(x)v') ,

where u' = WCu, v' = WCv belong to V showing that s is a co-
ordinate function associated with V E G. Since t = s, (i) is established.

Sketch proof of (ii). It suffices to show that, if U' and U" are
elements of G, and if

t' : X '"'' (u' I U' (X)v') and t" : x H (u" I U"(X)v)
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are associated coordinate functions, then t = t't" is a t. p. To this end,
let s and W" be the representation spaces of U' and U" res-
pectively. Form (see Halmos [2], Sections 25 and 52) the tensor product

_® sr" and U :x --U(x) = U'(x) ®U"(x). Then U is a
continuous unitary representation of G and

t(x) = (ujU(x)v)

for every x E G, where u = u' ® u" and v = v' ® v". In general, U is
not irreducible. However, it may (see 2. 2. 5) be decomposed into a finite
sum of irreducible continuous unitary representations Vi, so that t
appears as a finite sum Eiti, where ti is a coordinate function associated
with Vi. By 2. 2. 8(e) once again, each Vi is unitarily equivalent to
some U. E G and then (as in (i) above) ti is seen to be a coordinate
function associated with U..

1

2. 7. 6. The Abelian case. Here the Fourier series of f reduces
to the form

Excr f(X)X (2.7.9)

a sum extended over the elements of the dual group r described in 2. 5. 4.
The Parseval formulae read

.G1f(x) I2dx = ZxErlf(x) I2
(2. 7.10)

JG f(x)(i)dx = Ex Er f(x)g(x)

for f, g E L2(G). The series on the right in (2. 7. 10) are absolutely con-
vergent whenever f, g E L2(G); but the convergence of the series on the
right in (2. 7. 9) is much more delicate (even if f is continuous); see
2. 9. 7 below.

The Riemann-Lebesgue lemma asserts that f(x) - 0 as x -
for every f E L1(G).

T(G) now consists exactly of all finite sums
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where the cj are complex numbers and the xj are elements of r. In

particular, if G = T is the circle group, the t. p. s on G are just the
functions

eit F- E. c.eijt (finite sum) :

see 2. 2. 15. The properties of T(G) proved in 2. 7. 5(i) and (ii) are much
more evident in the present (Abelian) case.

2. 7. 7. Non-Abelian duality: Tannaka's theorem. In 2. 5. 4 there

appears a brief description of the Pontryagin duality theorem according
to which, if G is compact (or even merely locally compact) and Abelian,
G is recoverable from the dual group r, the group structure of the
latter being expressible in terms of pointwise products and complex con-
jugation. (If X and X' are elements of I', their group product X x' is
just their pointwise product qua complex-valued functions on G, and the
group inverse X is just the complex conjugate function X.) It is
natural to ask what analogue, if any, of all this is applicable when G is
compact non-Abelian? What is to be used as a suitable 'dual object' in
place of r ?

The fact, noted in 2. 2. 9, that G (unlike t in the Abelian case)
is not intrinsically related to G, suggests that it is perhaps not the sought-
for dual object. That it certainly is not, can be shown by examples
(Hewitt and Ross [1], (27. 62. f)) of non-isomorphic G's having isomorphic
G's.

A clue to the right course is obtainable by looking again at the
compact Abelian case, where it is known that G is recoverable from r,
and viewing r in a fresh way. Specifically, the trick is to view r as
a subset of T(G) and to recall that the group structure of r is inherited
from pointwise product and complex conjugation applied to T(G). Since,

furthermore, G is realisable as the set of bounded multiplicative charac-
ters of r (see 2. 5. 4(b)), it seems that one should look for the
functions on T(G) which are, in some sense, the extensions to T(G) of
the 's on t S T(G). Now it is easy to check that each can be ex-
tended into a function M on T(G) in the following rather natural way:
each t e T(G) can be expressed uniquely as a finite sum
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t = Ejcjxj ,

where j '-+ x
J
. is an injection into r and the c

J
are complex numbers;

M(t) is accordingly defined to be Ej cj (x.). This definition of M
evidently makes it a non-zero multiplicative linear functional on T(G)
such that

M(t) = Mf) (2. 7.11)

for every t E T(G). Denote by ' the set of all such functionals on
T(G). It is equally evident that, if M E W- , then = M I r is a
bounded multiplicative character of r. Moreover, if a E G, the asso-
ciated 'evaluation functional'

Ea : t

is plainly an element of '. The essence of the Pontryagin duality
theorem stated in 2. 5. 4 may (in the compact Abelian case at any rate)
now be expressed in the form

W= Ma :a E G) . (2. 7.12)

(It is important to indicate here that, although the Pontryagin duality
theorem applies to all locally compact Abelian G, that theorem is not
properly rendered by the assertion (2. 7. 12) unless G is compact. The
reason is that, if G is non-compact, r is non-discrete and one has
then to distinguish between those bounded multiplicative characters of r
which are continuous and those which are not. See 2. 7. 8 below. )

Now suppose that G is compact but not necessarily Abelian. Then
can be defined exactly as above, but the assertion (2. 7. 12) is no

longer part of the Pontryagin duality theorem: instead it is part of a new
duality theorem due to Tannaka. The proof of (2. 7. 12), although it is by
no means the end of the road (one has thereafter to form W into a com-
pact group and prove this to be isomorphic to G), is a vital step in estab-
lishing the Tannaka duality theorem. For details concerning all this, see
Hewitt and Ross [1], Section 30.
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2. 7. 8. As has been said, (2. 7. 12) does not faithfully render the
Pontryagin duality theorem when G is locally compact Abelian and non-
compact: in fact, (2. 7. 12) is generally false for such groups G. This

is because r is non-discrete and in general there will exist discontinuous
bounded multiplicative characters of r, i. e. , bounded multiplicative
characters of t which are not of the form 4(X) = X(a) with a E G.
The case G = R (see Exercise 2. 2. 14) illustrates the possibilities.

2. 7.9. Exercise. Let f e L2(G). Show that there exists a
central function k c L 2 (G) such that 11 f - k 11 2 is a minimum, and that
this

k = ZUEG (Tr i (U))XU

the series converging in L2(G). Deduce that

Zv EG
J Tr f (U)12 11 f 112

equality holding if and only if f is central.

2. 7. 10. Exercise. Let G be a compact Abelian group with dual
group F. Write Hom(R, G) for the set of all continuous group homo-
morphisms of R into G. It is known (Riss [1], p. 52, Proposition 3;
Hewitt and Ross [1], (25. 20)) that, if G is connected, then
G0 = {h(1) : h E Hom(R, G)) is everywhere dense in G; assume this
throughout the present exercise.

Show that there exists a function i : t X Hom(R, G) -R such
that

X.(h(r)) = exp { it (X, h)r) (2.7.13)

for every (X, h, r) E t X Hom(R, G) X R.
Denote by SV(G) the set of f E C(G) with the property: to

every h E Hom(R, G) corresponds a number s = s (f, h) > 0 such
that

E XErexpIsI I(X, h)I ). 1f(X)I < oO. (2.7.14)

Prove that, if G is connected, and if f E J1(G) vanishes on
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some non-void open subset W of G, then f = 0.
[Hints: Show that one may assume without loss of generality that W is
a neighbourhood of the identity element e of G. Consider functions of
the form f o h, where h E Hom(R, G), showing that each of these is the
restriction to R of a function analytic in a strip { r E C : IIm r I < e
see (2. 7.13) and (2. 7. 14). ]

Remarks. (i) It is easy to verify that .1(G) is an algebra
under pointwise operations, and that .I(G) * M(G) C .V(G). The
above results show that _Q/ (G) behaves in at least one important res-
pect like an algebra of analytic functions (even though G will bear little
resemblance to an analytic manifold; see Edwards [5], 2. 5). In pushing

these ideas further, it would be convenient to use the fact that connected-
ness of G is necessary and sufficient that r may be ordered (see
Hewitt and Ross [1], (24. 25) and Rudin [1], 8. 1. 2). This feature is the
basis for the usual approach to the study of functions on G having Fourier
series of so-called 'analytic type', which forms an important section of
commutative harmonic analysis; see Rudin [1], Chapter 8.

(ii) Conditions similar to, but weaker than, (2. 7. 14) lead to
quasi-analyticity, and thence to similar conclusions; see Edwards [3],
Exercise 2. 8 and the references cited there.

(iii) The arguments can be extended to the case in which G is
merely locally compact Abelian and connected. However, in this case
it is more natural to start with a locally compact Abelian group r which
is torsion-free, and regard r as the dual of a suitable locally compact
connected Abelian group G (recall the Pontryagin duality law mentioned
in 2. 5. 4 above and Hewitt and Ross [1], (25. 24) once more). The result
then takes the following form. Suppose m is a complex Radon measure
on r with the property that to each h E Hom(R, G) corresponds a num-
ber c = s (m, h) > 0 such that

jr exp { s 11 (X, h) I } d I m I (X) < , (2. 7.15)

which is the 'continuous' analogue of (2. 7. 14). (In (2. 7. 15), I m I denotes

the non-negative Radon measure on r equal to m1 + m2 + m3 + m4,
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where m = m' + im", m' and m" being real Radon measures on r,
and m' = m1 - m2, m" = m3 -m

4
are the minimal decompositions of

m' and m" into differences of two non-negative Radon measures on r,
as in Exercise 1. 2. 6.) Consider the transform

m* : x E G '- fr X(x)dm(X)

The conclusion is that, if m is not the zero measure, then m* is non-
vanishing at some point of every non-void open subset W of G.

2. 8. Positive definite functions

2. 8. 0. Introductory remarks. A section devoted to positive
definite functions seems justifiable for at least two reasons.

Firstly, as was mentioned in 2. 0. 2(iv), it is possible to make
positive definite functions, rather than unitary representations, the
basic tools; this procedure, due to Godement, Gelfand and Raikov, is
at least partially successful for general locally compact groups. What
follows in this section helps to clarify the close connections between
unitary representations and positive definite functions, thereby rendering
plausible the possibility of using the latter as the fundamental objects;
see 2. 8. 10(ii).

Secondly, as Bochner showed in the case of G = R, the use from
the outset of positive definite functions provides an effective approach to
relatively concrete problems concerning Fourier integrals (there being
no necessary overt reference to representations or to abstract versions
of harmonic analysis). This sort of application will be illustrated in 2. 9.

2. 8. 1. Definition. A complex-valued function 0 on G is said
to be positive definite (PD for short) if and only if 0 E L1 (G) and

f * 0 * f(e) = f fO(y_ix)f(x)f(Y)dxdy ? 0 (2. 8. 1)

for every f E C(G).
The formula (2. 8. 1) serves equally well to define positive definite

measures, but little or no use will be made of this concept.
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The reader should verify that, whenever t,ti E L1(G), both iP *
and tJ, * Ji are PD. (A quick proof of this will follow from 2. 8. 2(i),

(2. 3. 3) and (2. 3. 4). )

On using the extended versions of the formulae appearing in
Exercise 2. 1. 15, it may be shown that and $ (and hence also 0, for
which case see alternatively (2. 3. 3) and 2. 8. 2(i)) are PD whenever 0
is PD.

As the next result shows, PD functions may be characterised
quite simply in terms of their Fourier transforms.

2. 8. 2. Theorem. (i) A function 0 E L1 (G) is PD if and only
if ¢(U) is p. s. a. (= positive self-adjoint; see Appendix A. 0. 1) for
every U E G.

(ii) If 0 is PD, then _ 0 as elements of L'(G), i. e. ,

O(x) = i(x) (2. 8.2)

for almost all x E G.

Proof. (i) According to (2. 7. 6), (2. 8. 1) is equivalent to

E d(U). 0 (2. 8. 3)

for every f c C(G).
If each O(U) is p. s. a., one may (see Appendix A. 1. 4) write

O(U) = T(U)T(U)* for a suitable T(U) E End U in which case

f(U)Q(U)f(U)* _ (f(U)T(U))(f(U)T(U))*

has a non-negative trace (see Appendix A. 2. 2) and (2. 8. 3) follows.

Reciprocally, if 0 is PD, a suitable choice of f E C(G) in (2. 8. 3)
leads to the conclusion that 0 for every S E End (U);
in this connection, recall (2. 2. 5), (2. 6. 11) and (2. 6. 12). It then follows
(Appendix A. 3. 1) that (U) must be p. s. a.

(ii) This follows from (i), thanks to the uniqueness theorem
(UT1) in 2. 4. 1 combined with (2. 3. 3).
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2. B. 3. Continuous PD functions. It is not difficult to show (see
Exercise 2. 8. 11) that a continuous complex-valued function 0 on G is
PD if and only if

n -i

i, ]=1
$(ai a.)c.C. > 0 (2. 8. 4)

for every finite sequence (ai)i_1 of elements of G and every finite
sequence (ci)i=1 of complex numbers. (The passage between the double
integral in (2. 8. 1) and the double sum in (2. 8. 4) rests upon the approxi-
mation of integrals by sums in standard fashion; cf. Exercise 2. 1. 18. )

The set of continuous positive definite functions on G will be
denoted by P(G). It is evident that P(G) is a positive cone in C(G),
i. e. , the sum of two elements of P(G) lies in P(G), and the product by
a non-negative real number of an element of P(G) lies in P(G).

The case n = 2 of (2. 8. 4) combines with a simple argument
about Hermitian quadratic forms (see Exercise 2. 8. 11) to show that
(2. 8. 2) holds for every x E G, and that

O(x) I <_ $(e) (2. 8. 5)

for every x E G, whenever 0 e P(G). (As usual, e denotes the identity
element of G. )

Remarks. (i) It follows from 2. 8. 2, (2. 6. 11) and (2. 6. 12) that

for every U E G, the character XU is an element of P(G); as will be
seen in 2. 8. 4(iii), they are the building bricks from which every central
element of P(G) may be obtained in the form of a series; see also
2. 11. 1(b).

(ii) Except in the trivial case where G is finite, (2. 8. 5) does

not hold, even merely for almost all x E G, for every PD 0; in fact,

if G is infinite, there exist many PD functions 0 on G such that

110 11 = -. (For a construction of such functions, see Edwards [6].) o
For suitably restricted positive definite functions 0, including

all those which are essentially bounded, it is possible to use formula
(2. 7. 6) in such a way as to infer something about the pointwise conver-

gence of the Fourier series of 0. As will appear in 2. 9, this will form
a useful step forward in handling the summability or convergence of
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Fourier series of more general functions. The extra restriction on 0
is the existence of a number m = m0 and a heighbourhood N = N0 of
e such that

f*0*1(e)sm1ff11'

for every f e C(G) with support

suppf= {xEG:f(x)*0}

contained in N.
In 2. 8. 4 to follow, E... denotes EU eG ' ' '

(2. 8. 6)

2. 8. 4. Theorem. (i) Suppose that 0 is PD and satisfies (2. 8. 6).
Then

Z d(U). Tr (U) < - (2. 8. 7)

and

O(x) = Z d(U). Tr[3(U)U(x)*] (2. 8. 8)

for almost all x e G, the series being absolutely and uniformly conver-
gent for every x e G.

(ii) If 0 e P(G) it satisfies (2. 8. 6) and (2. 8. 7), and (2. 8. 8)
holds for every x e G.

(iii) The central functions in P(G) are precisely the functions
of the form

$=EcUXU (2.8.9)

where the numbers CU are real and non-negative and such that

E d(U)cU < CO , (2. 8. 10)

which condition ensures the absolute and uniform convergence of the
series appearing in (2. 8. 9).

Proof. (i) Take (see 2. 1. 8) an approximate identity (k}) in
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which every kj E C(G) and vanishes on G\N. By Exercise 2. 3. 5,

limjkj(U) = IU for every U E G. Also, by (2. 7. 6),

kj * 0 *k
i
(e) = Z d(U). Tr[k.(U)O(U)kj(U)*]

every term of this series being non-negative by virtue of 2. 8. 2(i) and
basic properties of Tr (see Appendix A. 2). On letting j increase and
using (2. 8. 6), (2. 8. 7) follows without trouble. Then (see Appendix

A. 1. 4, A. 1. 5 and (A. 2. 11)) the series on the right of (2. 8. 8) is seen to

converge absolutely and uniformly; cf. the calculations in 2. 9. 2 and
2. 9. 4. Its sum-function 01 is therefore continuous and (by uniform
convergence and the orthogonality relations; see especially (2. 6. 11) and
(2. 6. 12)) 1 agrees with . Equality a. e. in (2. 8. 8) thus follows from
the uniqueness theorem (UT1) of 2. 4. 1.

(ii) It is evident that any 0 E P(G)... indeed, any PD 0 which
is essentially bounded on some neighbourhood of satisfies (2. 8. 6).
By (i), 0 and the sum-function 01 agree a. e. ; since both are continu-
ous, they agree everywhere on G (see 2. 1. 4(i)).

(iii) Combine 2. 6. 7, 2. 8. 2 and (2. 2. 11) with (ii) immediately

above.

Remarks. (i) As has been mentioned, (2. 8. 6) is satisfied by any
0 which is essentially bounded on some neighbourhood of e. It is inter-
esting to note that 2. 8. 4 implies that, conversely, if 0 satisfies (2. 8. 6),
then 0 is essentially bounded.

(ii) Both 2. 8. 2 and 2. 8. 4 can be formulated so as to apply also
to positive definite measures, the extension of 2. 8. 4 being interpreted
by means of the alias described in 2. 1. 4(iii). However, little or no use
will be made of these extensions.

(iii) It is quite simple to derive the Parseval formula (2. 7. 3)
directly from 2. 8. 4; see Exercise 2. 8. 14. In this way, 2. 8. 4 could be
made the basis of almost everything.

2. 8.5. Elementary positive definite functions. Although it is

evident that P(G) + P(G) C-P(G), it is equally evident that
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P(G) - P(G) 4 P(G). This feature, coupled with 2. 8. 2(i) and the usual
partial ordering of s. a. endomorphisms of a Hilbert space (see Appendix
A. 0. 2), suggests the consideration of a partial order << on P(G)
defined as follows: << 0 if and only if 0, lp E P(G) and 0 - E P(G).

Once this is done, it seems natural to seek the elements 0 of P(G)
which are minimal with respect to this partial order, i. e. , which are
non-zero and for which

ViEP(G), iV< $ i=c$

for some number c > 0. It is for some reason more usual to apply the
term elementary positive definite function (briefly EPD function) to such
minimal elements 0 of P(G).

In addition to this, an element 0 of P(G) is said to be normalised
if and only if 4>(e) = 1. Notice that, by (2. 8. 5), every non-zero 0 EP(G)

satisfies 4>(e) > 0, and 4>(e)-10 is normalised.
In the sequel, NEPD will often be written as an abbreviation for

'normalised elementary positive definite'.
It has been hinted in 2. 0. 2 that there are close and fundamental

connections between unitary representations and PD functions. Although

there is no room in these notes for a systematic development of this theme,
at least some of the connections will now begin to emerge, and this in such
a way as to add further point to the concept of EPD functions.

As a beginning, it is simple to check that, if U is any continuous
unitary representation of G (not necessarily an element of G), if
e EU satisfies 1, and if P is the orthogonal projection of

MU onto the subspace generated by e, then the function 0 defined
by the formula

4>(x) = (eIU(x)e) = Tr[PU(x)*] , (2. 8. 11)

often termed a characteristic function of U, is a normalised element of
P(G). (The converse of this is discussed in 2. 8. 10(ii).) Also, unitarily
equivalent representations give rise in this fashion to the same set of
characteristic functions. As the next result shows, the NEPD functions
are just those which arise as characteristic functions of continuous irre-
ducible unitary representations of G.
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2.8.6. Theorem. The NEPD functions on G are precisely
those of the form (2. 8. 11), where U E G and P is a one-dimensional
(orthogonal) projector on 6WU.

Proof. Suppose 0 is given by (2. 8. 11) for some U E G. Then

O(U) = d(U)-1P and (V) = 0 for V E G, V * U; see (2. 6. 11) and
(2. 6. 12). So, if ji and 0 - belong to P(G), 2. 8. 2 shows that
(V) = 0 for V E G, V * U, and that d(U)-1P - (U) is positive self-
adjoint. Since P is a one-dimensional projector, the last condition
entails that iy (U) = cP for some non-negative number c. Hence, by
the uniqueness theorem of 2. 4. 1, 41 is a non-negative multiple of 0,

showing that the latter is elementary.
On the other hand, if 0 is a NEPD function, it is easy to infer

from 2. 8. 2 and the uniqueness theorem that there is precisely one U E G
such that (U) * 0. Furthermore, the spectral theorem (see Appendix
A. 1) shows that (U) must be a non-negative multiple of some one-
dimensional projector. Normalisation and the uniqueness theorem then
combine with (2. 6. 11) and (2. 6. 12) to establish (2. 8. 11).

Remarks. (i) It is a corollary of 2. 8. 6 that every elementary
PD function 0 belongs to T(G), and that T(G) could be (and sometimes
is) defined to be the linear subspace of C(G) generated by all NEPD
functions on G.

(ii) By using 2. 8. 6 and the argument appearing in the proof of
2. 7. 5(ii), it can be seen that the product of two EPD functions is a finite
sum of such functions. This remark will be useful a little later. o

At this point it is possible to derive what is in fact the exact
analogue of a theorem proved first by Bochner for certain PD functions
on the group R.

2. B. 7. Theorem (Bochner). The elements of P(G) are precisely
the functions of the form

(2. 8. 12)

where the 0i are NEPD functions on G and the ci are non-negative
numbers such that Ei 1 ci < - (which ensures that the series in (2. 8. 12)
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converges absolutely and uniformly on G).

Proof. If the 0i and ci are as stated, it is evident that (2. 8. 12)
defines an element 0 of P(G). Conversely, suppose that 0 E P(G). In

order to establish a representation of the type (2. 8. 12), it suffices in
view of (2. 8. 8) to show that each function x - is expres-
sible in the form (2. 8. 12). But, by 2. 8. 2(i), ;(U) is positive self-
adjoint, and the desired result follows at once from the spectral theorem
(see Appendix A. 1. 2).

Remarks. (i) It is one of the less savoury aspects of non-Abelian
existence that the expression (2. 8. 12) of a given 0 E P(G) is far from
unique; see 2. 11. 1(c) below. Uniqueness obtains when G is Abelian;
see 2. 8. 9 below.

(ii) In view of Remark (ii) following 2. 8. 6, 2. 8. 7 shows that

P(G). P(G) C P(G) . (2. 8. 13)

This, combined with 2. S. 1 and Remark (i) following 2. 8. 6, could be used
to recover 2. 7. 5(i) and (ii).

(iii) Note also that 2. 8. 4 alone, or 2. 8. 6 and 2. 8. 7 in combina-
tion, are enough to yield the completeness theorem (CTii) of 2. 4. 1.

2. 8. B. Return to the completeness theorem. It is now possible
to give the promised proof of the equivalence of (CTi) and (CTii) in 2. 4. 1.

Proof that (CTi) implies (CTii). It suffices to show that, if
a E G and a * e (the identity element of G), then U(a) * IU for some
U E G. Now, one may easily construct a continuous PD function 0 on
G such that O(e) = 1 and $(a) = 0. For example, choose a symmetric
neighbourhood N of e in G such that a N2, and define 0 = g * g,
where g is a suitable scalar multiple of the characteristic function of N.
It then follows from 2. 8. 4 that U(a) must differ from U(e) = IU for at
least one U E G.

Proof that (CTii) implies (CTi). It is known from 2. 7. 5 that

T(G) is a sub-algebra of C(G) which is stable under complex conjugation.
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(CTii) asserts exactly that T(G) separates the points of G. So, by the
Stone-Weierstrass theorem (see, for example, Edwards [2], Section
4. 10), T(G) is dense in C(G). Since C(G) is dense in L2(G), (CTi)
follows.

Remark. Given that T(G) is dense in C(G), it follows that
T(G) is dense in LP(G) for any p E [1, -); this, too, might be referred
to as the (or a) completeness theorem. More refined and constructive
versions of this result stem from 2. 9. 2 and 2. 9. 3 below.

2. 8.9. The Abelian case. In this case 2. 8. 2(i) says that an
integrable function 0 on G is positive definite if and only if the scalar-
valued Fourier transform of 0 is non-negative, i. e. , 3(x) ? 0 for
every x E r; and 2. 8. 4 asserts that, if 0 is positive definite and satis-
fies (2. 8. 6), then

ExcrO(x)< (2. 8. 14)

and

$(x) = ExEr $(x)x(x) (2. 8. 15)

for almost every x E G, with equality holding for every x E G whenever
0 is continuous.

According to 2. 8. 6, the NEPD functions on G are none other than
the continuous multiplicative characters of G (i. e. , the elements of r),
so that 2. 8. 7 in this case comes back to the validity of (2. 8. 15) for every
x E G and every 0 E P(G).

2. 8.10. General comments. (i) From 2. 8. 4 one may show (by
arguments very similar to those used in 2. 9. 8 below) that the elements
of P(G) are precisely the functions f * f with f E L2(G). (Incidentally,

this may be combined with Remark (i) following 2. 8. 6 in such a way as to

provide a proof of 2. 9. 8(iv). )

(ii) From 2. 8. 4 (or from 2. 8. 6 and 2. 8. 7 together) it is possible
(see Exercise 2. 8. 13) to show that every 0 E P(G) is expressible in the
form
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0(x) = (a I U(x)a) , (2. 8. 16)

where U is some continuous unitary representation of G and a E
the representation U is in general infinite dimensional and reducible.
In the Godement-Gelfand-Raikov theory mentioned in 2. 0. 2(iv), this

connection between PD functions and unitary representations is estab-
lished at the outset and is fundamental in all subsequent developments.
The elementary PD functions then appear as those which correspond to
irreducible representations; and the decomposition of 0 described in
2. 8. 7 corresponds to the decomposition of a reducible representation
into its irreducible components (much as in 2. 2. 5, except that the Gode-
ment-Gelfand-Raikov theory has to handle cases in which infinitely many
components are present). In this theory, 2. 8. 7 is derived by a procedure
quite different from that used in these notes... a procedure based on one
of the big theorems of functional analysis (the Krein-Milman theorem;
see, e. g., Edwards [2], Chapter 10).

2. 8. 11. Exercise. Write out detailed proofs of (2. 8. 4) and
(2.8.5).

2.8.12. Let A'e"be a f. d. Hilbert space with dimension d.
Show that End (r) is a Hilbert space relative to the scalar product
(A I B) =-d. Tr AB*.

2.8.13. Exercise. Prove that every $ c P(G) is expressible in
the form (2. 8. 16)

(a) by using 2. 8. 4;

and (b) by using 2. 8. 6 and 2. 8. 7 in combination.

(Exercises 2. 2. 16 and 2. 8. 12 should suggest a possible course of action. )

2.8.14. Exercise. Show how to derive the Parseval formula
from 2. 8. 4.

2. 9. Summability and convergence of Fourier series

2.9. 0. Preliminary remarks. The Fourier series to be con-
sidered from the point of view of convergence and summability are such
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as to make a few preliminary comments desirable.
Suppose given a set I and a complex-valued function i - ai

with domain I. For any finite subset 0 of I, write s0 = E1E0ai. If I

is infinite, it is natural to suppose that the convergence of the series
Eielai, and its sum when it is convergent, are both to be defined in terms

of the limiting behaviour of s0 as 0 expands so as to ultimately em-
brace every element of I. In other words, the said series will be said
to be convergent and to have a sum s, if and only if to every e > 0
corresponds a finite subset AO = A0(e , (ai)) of I such that

Is, - s I e for every finite subset o of I such that 0 D A0. This

definition is modified in the usual way, if i '- ai is real-valued and s
is - - or -; it also generalises to the case in which i '- ai takes its
values in any Abelian topological group.

Although this definition is logically up to scratch, it proves to be
too coarse to be of very much lasting value. This is because, in the
complex-valued case, the series converges to a finite sum in the above
sense, if and only if EiEI Ia,I < co, i. e. , if and only if it converges
absolutely (see, for example, Bourbaki, Topologie Generale, Chapter IV,
§7, no. 2, p. 120). To get more refined concepts of convergence, one has
to rely on some structural properties of I to select a suitable net (oj)
of finite subsets of I and consider the limiting behaviour of (s as j

increases. For example, if I is the set of positive integers, one takes
the sequence (oj) in which of = 11, 2, . .. , j 1; and if I is the set
Z of all integers, one usually takes the sequence (aj) in which

A ={ In E Z : In I- j}.

2. 9. 1. The case of Fourier series. Here one is confronted with
the case in which I = G, the corresponding finite partial sums being of
the type

s
A

f EUED d(U)xU * f = DQ * f ,

where 0 denotes a finite subset of G, f E L1 (G) and

(2.9.1)

Da = EUEO d(U)xU (2.9. 2)
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is a sort of 'Dirichlet kernel' for G. [Actually, to take the Fourier
series in the form (2. 9. 1) means that one is already grouping terms in
a particular way: one has grouped together all the terms arising from
one representation U; cf. 2. 7. 1. ] The associated convergence problem
(or problems) is therefore that (or those) concerned with the validity of
the limiting relations

lim s
A

f = f (2. 9. 3)

in the sense of various topologies [for example, in the sense of any one
of the normed spaces C(G) and LP(G)] and of the 'pointwise' relation

lim sAf(x) = f(x) (2. 9. 4)

for one or more elements x of G.
It has been seen in 2. 7. 2 and 2. 7. 3 that (2. 9. 3) holds in the sense

of L 2 (G) for every f e L 2 (G). As experience with the most familiar
case G = T (see Edwards [3], Chapter 10) would lead one to expect, this
is in general about the only simple, sweeping convergence theorem avail-
able. (Strange as it may at first seem, this familiar case is not the most
favourable one; see 2. 9. 7 below. )

Within the context of Fourier theory, summability almost always
amounts to replacing s

A
f = DA * f by kj * f, where (kj) is an approxi-

mate identity characteristic of the particular summability method in
question. Experience with the case G = T (see Edwards [3], Chapter 6)
leads one to hope that summability will work more successfully than does
convergence, a hope that shows every sign of being justified. For this
reason, summability will be considered first. It provides one reasonably
successful way of recapturing a function from its Fourier transform.

2. 9.2. Take (see 2. 1. 8) an approximate identity (k.) in which

each kj is non-negative, continuous, central, such that f kj(x)dx = 1,

and such that k. ultimately vanishes outside any preassigned neighbour-
hood of e. The same properties are shared by the functions kj * kj,
which are continuous and positive definite. So it may and will be assumed
that each kj is continuous and positive definite. By 2. 6. 7 and 2. 8. 2,

ki(U) = cj(U)IU, the number cj(U) being real and non-negative.
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According to (2. 8. 8),

k.(e) = Z d(U). Tr k j(U) = E d(U)2c.(U) < - .

If f E L1(G), the Fourier series of kj * f = f * kj becomes

E d(U)c.(U). Tr[f(U)U(x)*] .

Herein we have (Appendix A, formulae (A. 2. 7) and (A. 2. 8)):

ITrrf(U)U(x)*]I :5d(U) 2 (Tr f(U)f(U)*)2

< d(U) IIf (U) II < d(U) If II 1 , (2.9.5)

so that the Fourier series in question converges absolutely and uniformly.
Therefore

f * k.(x) = k. * f(x) = E d(U)cj(U)Trrf(U)U(x)*] (2. 9. 6)

holds everywhere, the series converging absolutely and uniformly.
If we now let j vary, 2. 1. 9 affirms that the left-hand side of

(2. 9. 6) converges to f(x) at each point x of continuity of f. In particular,
one has a process of summing uniformly the Fourier series of a continuous
function; see also 2. 9. 6.

2.9.3. From 2. 1. 9 it follows that also kj * f converges to f
in LP(G) for any f E LY(G), if 1 < p < °, and weakly to f if f c LA(G).

2.9.4. If k. is replaced by any continuous positive definite
J

function 0 (not necessarily central), and if f E LZ(G), we can still show
that the Fourier series of f * 0 and of 0 * f converge absolutely and
uniformly. Take the latter, for example: we have (Appendix A, formulae
(A. 2. 6) and (A. 2. 9))

Tr $(U)f(U)U(x)* I = I Tr $(U) 2.
$(U) 21 (U)U(x)*

(Tr (U))2. (Tr

(Tr $(U)) 2 . { Tr $(U) 2 f(U) (O(U) 2 f (U))*) 2

(Tr $(U)) 2 . (Tr $(U)) 2 . (Tr f (U)f (U)*) 2

= Tr O(U). (Tr f(U)f(U)*)2 ;
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and, by the Parseval formula (2. 7. 3),

d(U) 2 { Tr f (U)f (U)* } 2 < jjf j1
2

.

Since d(U) > 1, the asserted absolute and uniform convergence follows
from 2. 8. 4.

2. 9. 5. Remark. The argument given in 2. 9. 4 breaks down if

one knows merely that f e L 1(G), in which case all that is evidently true
is (see Appendix A, formula (A. 2. 8) that

{Tr f(U)f(U) 2 s d(U) 2 11f 111

and there is presumably no reason to suppose that

Ed(U)3/ Trk)< -.

More generally, it is natural to ask whether f * g and g * f have Fourier
series which converge absolutely (or absolutely and uniformly) whenever
the Fourier series of g has that property and f E L1(G). When G is
Abelian, the answer is (trivially) 'Yes'; otherwise the answer is unknown
to the writer. Cf. 2. 9. 8 below.

2.9.6. The results of 2. 9. 2 and 2. 9. 3 show how to construct

summability methods which are effective in the pointwise sense at points
of continuity and in the Lp-sense for p finite.

In 2. 9. 2, instead of supposing that each kj vanishes outside a
small neighbourhood of e, one may assume that each is a t. p. (simply
replace kj by a suitable partial sum of its Fourier series, which is
absolutely and uniformly convergent by 2. 8. 4). Then kj * f is a t. p.
which, as j increases, converges uniformly to f if f E C(G) and

converges in norm (or weakly, if p = -) in LP(G) to f if f E LP(G).

This includes a strong and fairly explicit version of the completeness
theorem (C Ti) in 2. 4. 1.

There remains the subtler question of the possibility of finding
summability processes which are effective in the pointwise sense at
almost all points of G for any given f c L1(G). For a discussion of this,
see Edwards and Hewitt [1]; see also Mayer [1].
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2.9.7. Concerning convergence of Fourier series. As was

remarked in 2. 9. 1, experience with the most familiar case G = T, the
circle group, leads one to expect that convergence presents more deli-
cate problems than does summability. On top of this comes the fact that
complications tend to gather thick and fast when one passes to general
Abelian and then to non-Abelian groups. For one thing, neither r nor
G can in general be ordered, and there is in general no obvious way in
which terms of the Fourier series should be grouped so as to form a
sequence or net of partial sums; cf. 2. 9. 0.

Notice that, even when G is countable (which is so if and only if
G is first countable), being therefore the union of various sequences
(Oj) of finite subsets Oj such that A1 S Aj+1, there is a priori no good
reason for selecting any one such sequence rather than any other; nor is
there any reason to suppose that the behaviour of the sequence (s0 f) for

J

a selected sequence (O is anything like that of the corresponding
sequence of partial sums stemming from another choice of the sequence
(Gj). One can hope that a judicious choice of (z .) will lead to nice
answers; but again the cast G = T prevents one from expecting too
much... except for sufficiently regular functions f.

As was seen in 2. 7. 2 and 2. 7. 3, (2. 9. 3) holds in the L2(G) sense
whenever f e L2(G). From 2. 8. 4 it follows that (2. 9. 3) holds in the
sense of C(G) (i. e. , the sense of uniform convergence), whenever f is
continuous and positive definite. It is natural to ask whether the formula
(2. 9. 3) is valid for every f E LP(G) for some p E [1, °°], p # 2, or for
f E C(G) and p = -. This may be considered in two stages according as
G is or is not Abelian.

(i) If G is infinite and Abelian, the answer is 'No'. This may

be established in various ways. For example, if the answer were 'Yes',
it would (see 2. 9. 0) be the case that

EX Erlf(X)g(X) I < - (2.9.7)

for every f E LP(G) and every g E LP'(G), where 1/p + 1/p' = 1. This

condition is symmetric in p and p' and so one may assume that
1 s p < 2. Then (2. 9. 7) could be shown to entail that, for every
f c LP(G) and every function w : r : T, wf is the Fourier transform
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of some element of LP(G). However (see Edwards [3], 14. 3. 5... a
result which can be extended without trouble to any infinite compact
Abelian G), it would then ensue that LP(G) C L2(G), which is false since
G is infinite compact (see Exercise 2. 1. 16 above).

(ii) If G is non-Abelian, the answer is still generally 'No',
though the writer is not sure whether this is the case for every infinite
compact G.

In spite of this rebuff, it can happen that, for suitably chosen
sequences or nets (off) of finite subsets of G which expand to cover G,
one has

limsf=f

in LP(G) for every f E LP(G) when 1 < p < oo. For the case G = T,
see Edwards [3], 12. 10. 1. Nothing like this can happen for G = T when
p = 1 or when p = - (even if, in the latter case, one handles only con-
tinuous functions f); in this connection the situation which is nicest
(apart from the trivial case when G is finite) is that in which G is zero-
dimensional (as described in 2. 2. 13, for example); for details see
Edwards and Price [1], §9.

Lack of space forbids further pursuit of what by now is fairly
evidently a complicated business.

2. 9. 8. Absolute convergence of Fourier series; the algebra A(G).
It has emerged in 2. 8. 4 that the Fourier series of f is absolutely and
uniformly convergent whenever f is continuous and positive definite.
Beside this, it is obvious that, if G is Abelian, the Fourier series of f
is absolutely convergent if and only if

EXErlf(X)l < o0, (2.9. 8)

in which case the series is obviously uniformly convergent as well (but
see Exercises 2. 9. 13 and 2. 14. 9).

In the non-Abelian case, it is not clear at the outset that there is
any condition which (like (2. 9. 8)) is simply expressible in terms of f
and which is necessary and sufficient to ensure the absolute (or absolute
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and uniform) convergence of the Fourier series of f. There are however,
two useful pointers in the shape of (a) and (b) immediately below.

(a) One may revert to the Abelian case and note that (2. 9. 8) is
equivalent to the condition that f be the pointwise product of two functions
in 12(r); and that (by the Parseval formulae) this is equivalent to the
condition that f be equal almost everywhere to a function of the type
g * h (or g * h), where g and h belong to L2(G) (cf. Edwards [3],
p. 168, Remark (4)).

(b) One may try to mimic the condition (2. 9. 8) itself. To do

this it is necessary to bear in mind that, if Ae"denotes any f. d. Hilbert
space and A E End ( ), then there is (see Appendix A. 1. 5) a unique

p. s. a. endomorphism I A I E End () such that IA12 = AA*, and
that (as one would expect) A '- I A I has at least some of the properties
of the absolute value function defined for complex numbers. It is, for
example, true that A '- Tr I A I is a norm on End (OG ): this is not
trivial, but it is a consequence of the important formula

Tr IAI = sup{ I Tr AX I :X E End (,W), II X II < i) , (2.9.9)

valid for every A E End ('); see Appendix A, formula (A. 2. 10).
It is not very surprising that a plausible analogue of (2. 9. 8) is

expressed by the condition

IIfIIA<

where

IIf IIA = EUEG d(U). Tr If(U) I (:5 -) (2.9.10)

for every f E L1(G). The function f '- IIf IIA satisfies the conditions

IlfI + f2IIA < Ilfl IIA + IIf2 IIA ,

IlaflIA= I a I IIfIIA,

for fl, f2, f EL 1 (G) and a a complex number, provided one adopts the
conventions described in 1. 3. 3 above. It follows that If EL1(G) : 11f IIA<-)

is a linear subspace of L1(G), the restriction of II IIA to which is a norm
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(One might have defined JAI to be the positive square root of
A*A, rather than that of AA*; however the two positive square roots
can be shown to have the same trace, so that II. IIA remains unaffected;
see Appendix A, formula (A. 2. 12).

With these comments in mind, one may now (whether or not G is
Abelian) consider the following statements:

(i) f = g * h a. e. for suitably chosen g, h E L2(G);
(ii) f E L1(G) and IIf II A < °° ;

(iii) the Fourier series of f converges absolutely and uniformly.

On the basis of what has already been covered in these notes it is possible
to show that (i) and (ii) are equivalent; see Exercise 2. 9. 9. Moreover,
reference to (2. 9. 9) makes it easy to verify that (ii) implies (iii); and it
is not difficult to show (without reference to (ii)) that (i) implies (iii); see
Exercise 2. 9. 10.

However, although in the Abelian case (i), (ii) and (iii) are equi-
valent, there is an example (Mayer [1], Theorem 4. 1) to show that in
general (iii) does not imply the other two. (The notation used in Mayer's
paper, although apparently like that used in these notes, differs materially
from the latter. )

At all events, any f satisfying (i) or (ii) (and hence (iii)) is equal
a. e. to a continuous function. The set of f E C(G) satisfying (i) or (ii)
is usually denoted by A(G). In the Abelian case, A(G) is precisely the
set of continuous functions on G having absolutely convergent Fourier
series; in general, A(G) is a proper subset of the set of continuous
functions having absolutely and uniformly convergent Fourier series.

It is not difficult to verify that A(G) is the linear subspace of
C(G) generated by P(G). As a result, A(G) is in fact a subalgebra of
C(G) closed under complex conjugation; cf. 2. 8. 1 and (2. 8. 13). Also,

A(G) is a Banach space when equipped with the norm II .IIA; see Exercise
2.9.11.

The inequality

IIfgIIA < IIfIIAIIgIIA (2. 9. 11)

which is very simple to prove when G is Abelian, remains valid in the
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non-Abelian case as well. In this case, perhaps the simplest proof is
based upon the following characterisation of A(G) [which is closely
analogous to that of P(G) mentioned in 2. 8. 10(ii)]:

(iv) A(G) consists precisely of those functions f of the form

f(x) = (aIU(x)b) , (2.9. 12)

where U denotes a continuous enitary representation of
G and a, b EU; moreover

IIf1IA= min IIaII.IIbil , (2.9.13)

the minimum being taken with respect to all possible repre-
sentations (2. 9. 12) of f.

[The representations referred to in (iv) may be infinite-dimensional; they
are not necessarily elements of, or equivalent to elements of, G; see
Exercise 2. 9. 12. ] Granted (iv), the proof of (2. 9. 11) is quite simple
[one uses tensor products, as in the proof of 2. 7. 5(ii)].

A(G) is thus a commutative Banach algebra with an identity (unit)
element 1, the study of which is an important component of harmonic
analysis. For further remarks on the Abelian case, see Edwards [3],
Chapter 10; for the non-Abelian (compact) case, see Hewitt and Ross [1],
§34. A lengthy and detailed study of A(G) applying to the case of general
locally compact groups is to be found in Eymard M.

2. 9. 9. Exercise. Prove that 2. 9. 8(i) is equivalent to 2. 9. 8(ii).

2.9.10. Exercise. Verify that 2. 9. 8(ii) implies 2. 9. 8(iii). Also,

without reference to 2. 9. 8(ii), prove that 2. 9. 8(i) implies 2. 9. 8(iii).

2.9.11. Exercise. Write out a detailed proof of the fact that
A(G) is a Banach space relative to the norm II. J.

2.9.12. Exercise. Prove 2. 9. 8(iv).

2.9.13. Exercise. Find an example (or examples) of functions
f E C(T) whose Fourier series converge uniformly but not absolutely.
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Remark This shows in particular that A(T) * C(T). In fact
A(G) * C(G) for every infinite compact G; for the Abelian case, see
Exercise 2. 14. 9 below; otherwise, see Hewitt and Ross [1], (37. 4).

2.9.14. Exercise. Let G be a compact Abelian group with dual
group r (see 2. 5. 4). Define r., to be the set

{ 1 } U IX E r : x is of infinite order } ,

where 1 stands for 1G, the identity element of r. Let f and g be
trigonometric polynomials on G and suppose that

{x Er:g(x)*o} c: r...

Prove that

limnEZ, In I-- f f(x)g(xn)dx=f(1)g(1) . (2.9.14)

Discuss the validity of (2. 9. 14) for more general functions f and g.

Remarks. For G = T, one extended version of (2. 9. 14) is
usually known as Fejer's lemma; see Edwards [3], Exercise 2. 16. It
is known (see Hewitt and Ross [1], (24. 25)) that r., = r if and only if
G is connected.

2. 10. Closed spans of translates

2. 10. 0. It was asserted in 2. 1. 10 that harmonic analysis on G
would be found to be intimately connected with the study of the structure
of closed (translation-) invariant subspaces of such standard function spaces
as C(G) and Lp(G). In this and the next two sections, some detailed
support for this statement will be exhibited.

The final aim is the complete characterisation of closed invariant
subspaces and closed ideals in the above function spaces in terms of the
Fourier transforms of members of the subspaces. In this section and
the next, attention will be focused on closed invariant subspaces with a
single generator: more could be achieved with little further effort but,
for reasons mentioned in 2. 10. 7, it seems more convenient and economical
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in the long run to proceed somewhat differently and to defer until 2. 12 a
common treatment of closed invariant subspaces and closed ideals.

2.10.1. Let E be any one of the usual spaces C(G) and
LP(G) (1 p < -) with the customary normed topology, or L°°(G) with
its weak topology as the dual of L1(G). If f e E, we denote by LE(f)
(resp. RE(f)) the closed linear subspace of E generated by the left
(resp. right) translates Laf (resp. Raf) as a varies over G; these
subspaces are often termed the closed spans (in E) of the left (or right)
translates of f. The immediate objective is to examine these subspaces
by using the Hahn- Banach theorem. In what follows, E' denotes the
topological dual of E and the pairing between E and E'.

2.10.2. It is known that any continuous linear functional on E
can be written as

g '- (g, v) = J g(x 1')dv(x) , (2.10.1)

where: v E M(G) if E = C(G), and v = h (see 2. 1. 4(iii)) for some
h E LP'(G) if E = LP(G), p' being defined as usual by 1/p + 1/p' = 1;
when E = C(G) this is the substance of 1. 2. 2; when E = LP(G), see
Edwards [3], Appendix C. Accordingly the topological dual E' is identi-
fied with M(G) or LP'(G) in such a way that

(L _If, v)=f*v(a)
a

(2.10.2)

(R -If, v) = v * f(a) , (2.10.3)
a

each of f * v and v * f being a continuous function on G whenever
f E E and v E E'; see 2. 1. 5. These equations combine with the com-
pleteness theorem, (2. 3. 4) and (2. 3. 5) to inform us that if f E E and
v E E', then v annihilates LE(f) (resp. RE(f)) if and only if

f(U) v(U) = 0 (resp. v(U)f(U) = 0) for every U E G.

2.10.3. On the other hand, it is clear that if f, g E E, then
g E LE(f) (resp. RE(f)) if and only if LE(g) S LE(f) (resp. RE(g) CRE(f))

Putting all these facts together, the Hahn-Banach theorem (Edward:
[3], Appendix B. 5) leads via the substance of 2. 3 and 2. 4 to
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2. 10. 4. Theorem. The notation being as above, let f E E. In

order that g E E shall belong to LE(f) (resp. RE(f)), it is necessary
and sufficient that the following condition be fulfilled:

If v E E' and f(U)v(U) = 0 (r esp. v(U)f(U) = 0)
for all U in G, then g(U)v(U) = 0 (resp.
v(U)g(U) = 0) for all U in G.

(2.10. 4)

It is useful to supplement 2. 10. 4 by other necessary and sufficient
conditions.

2. 10. 5. Theorem. In order that g E E shall belong to LE(f)
(resp. RE(f)), f being a given element of E, it is necessary and
sufficient that, for each U E G, g(U) shall be a left (resp. right) mul-
tiple of 1(U):

g(U) = M?(U) (resp. g(U) = f(U)M) , (2.10. 5)

where M is an endomorphism ofU.

Prod. The sufficiency follows from 2. 10. 4 itself. As for
necessity, consider the 'left' case as typical. For any h which is a
finite linear combination of left-translates of f, say

h = EpXpLa f ,
P

we have

h = EpApU(ap)f(U) _ (EpXpU(ap))f(U) ,

which is a left multiple of 1(U). On the other hand, if h tends to g in
E, then 1(U) - g(U) for each U. Whence the necessity of the condition,

in view of Lemma A. 3. 4 of Appendix A.

2.10.6. The Abelian case. Here there is no distinction between
LE(f) and RE(f) and they will be denoted indifferently by TE(f) (the
'T' to remind one of 'translates').

From 2. 10. 5 it follows that, if f E E, a given g E E belongs to
TE(f) if and only if
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x E r, f(x) = o g(x) = 0 (2. 10. 6)

It is also just as simple to prove (see Edwards [3], Section 11. 2) some-
thing more general, namely: suppose S is any non-void subset E and
denote by TE(S) the closed invariant subspace of E generated by S;
then TE(S) comprises exactly those g E E such that

x Er, f(x)=o (V fES)=> g(x)=0. (2.10.7)

2.10.7. As was stated in 2. 10. 0, it would be feasible at this
point to use 2. 10. 4 and 2. 10. 5 as the basis for discussing the structure
of general closed invariant subspaces of E; cf. the assertion of which
(2. 10. 7) forms part. However, it turns out that these closed invariant
subspaces are the same as the closed ideals relative to convolution (see
2. 12. 1 below). Since the 'ideal' point of view is basic in several app-
roaches, it seems more economical to cover both topics under the latter
heading in 2. 12.

Before coming to the details of this programme, it may be worth-
while to consider some such structural questions in a more concrete guise.
This will be done in 2. 11.

2.10. 8. Exercise. Let G be compact Abelian, and let E be
as in 2. 10. 1. Given f E E and A S G, denote by TE(f, A) the closed
linear subspace of E generated by { Laf : a E A). The translates of f
are said to be independent in E (see Edwards [7]) if and only if
f TE(f, A) for every closed subset A of G not containing e (the
identity element of G).

Assume that G is first countable (i. e. , that there exists a coun-
table base of neighbourhoods of e in G). Show how to construct elements
f of E such that

and

(i) TE(f) = TE(f, G) = E

(ii) the translates of f are independent in E.
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Note. The above concept of independence of translates of f
in E implies, but is generally stronger than, that of linear independence
in the algebraic sense (this last is equivalent to saying that f ¢ TE(f, A)
for every finite subset A of G not containing e). As defined above,

independence is in fact a sort of topological linear independence.

2.10.9. Exercise. Let G be a connected compact Abelian group.
Let f E --Q/(G), where .1(G) is as defined in Exercise 2. 7. 10. Prove
that TE(f, U) = TE(f) for every non-void open subset W of G.

Remark. The translates of f are about as far removed as
possible from being independent in the sense of the preceding exercise:
they are, one might say, 'madly intertwined'.
[Hints: Use Exercise 2. 7. 10, coupled with an appeal to the Hahn-Banach
theorem (Edwards [3], Appendix B. 5) and the substance of 2. 10. 2. ]

2. 11. Structural building bricks and spectra

2.11.1. Before embarking on the description of closed invariant
subspaces and closed ideals, it may be worthwhile to glance rapidly at
structural problems from a more concrete point of view.

Classical analysis may suggest consideration of the following sort
of question. Is there any set 62 of reasonably simple and well-behaved
functions w on G, the elements of which may be termed 'base functions'
and which act as natural 'building bricks' for the synthesis of all sufficient-
ly well-behaved functions f on G? One might hope, too, that the elements
of Q are to be in some way distinguished from the point of view of har-
monic analysis; and that likewise those base functions which figure in the
synthesis of a given f shall be in some way related to the 'harmonic
properties' of f.

The preceding description is very vague, and it will be left so.
We add merely that the type of synthesis referred to is to be taken to be
accomplished by the systematic formation of linear combinations of base
functions, followed by taking limits of these combinations. (Illustrations
(a) and (b) below exemplify what we have in mind.)

As a beginning, we review some relevant facts already established.
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(a) If G is Abelian, everything works out nicely. It suffices
to take a = T (the set of continuous multiplicative characters of G).
The substance of 2. 9 confirms that every well-behaved f is represented
by its Fourier series

ZXEr f(X)X

and the orthogonality relations ensure that there are various senses in
which this Fourier series of f is the proper series of multiples of charac-
ters to be used (see the discussion in Edwards [3], Chapter 1). Moreover,
it appears from 2. 10. 6 that those X which actually appear in the Fourier
series of f (i. e. , those for which f(X) is non-zero) are precisely those
which are limits of linear combinations of translates of f.

(b) If one drops the assumption that G be Abelian, the sub-
stance of (a) remains valid on taking Sl to comprise all the characters
XU (U E G), provided only central functions f are contemplated; see
2. 6. 7, 2. 8. 4(iii) and the substance of 2. 9 and 2. 10. However, it is plain
that only central functions f can result from the synthesis (by limits of
linear combinations) of characters XU, so that this choice of 42 is not
a great success.

(c) If we persist in taking G non-Abelian and hope to handle
non-central functions f, a different choice of 1 is essential. In view

of (a) and (b), together with the fact that linear combinations of NEPD
functions suffice to yield all trigonometric polynomials (see Remark (i)
following Theorem 2. 8. 6), a reasonable choice for f would seem to be

the set 4 of all NEPD functions on G. This choice is also suggested by
Theorem 2. 8. 7, and yet again by recalling from 2. 8. 9 that 4 = r in case
G is Abelian.

Now the results of 2. 9 do indeed show that to every well-behaved
function f on G corresponds at least one complex-valued function c
on 4) such that

f-ZOE4i c($)OI (2. 11.1)

which is a promising start. But now difficulties arise in at least two
forms, namely:
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(i) there is in general no uniqueness in (2. 11. 1), i. e. , the
function c is in general not uniquely determined by f (cf.

Remark (i) following 2. 8. 7);

(ii) it is generally impossible to find a representation (2. 11. 1)
in which c has the property that c(O) * 0 implies 0 ELE(f)
[or RE(f)]; in fact, the set of 0 E 4i such that c(O) # 0
does not seem to be related in any intrinsic fashion to f.

These points are illustrated in Exercises 2. 11. 6 and 2. 11. 7. Of these

two shortcomings, (i) is perhaps the more serious. At all events, the
elements of 4? have only limited success in the role of base functions.
Nor does there seem to be any choice which works well in all directions.

In spite of this setback, it will appear in 2. 12 that the elements
of 4i do suffice as building bricks, though in a way less direct and ex-
plicit than has been contemplated in the above discussion. Thus, 2. 12. 4

will affirm that every f is the limit of linear combinations of left (resp.
right) translates of those 0 which belong to 4i n LE(f) [resp. 4) nRE(f)].

Reverting to (ii) above, it is possible to prove a partial substitute
for restricted functions f, and this partial result will prove useful in
2. 12.

2.11. 2. Let E be as in 2. 10. 1 and let f E E be normal, i. e. ,

f* f=f* f (2. 11.2)

Then f is the limit in E of trigonometric polynomials

0 = E c 0
(2 11 3)

i i
. .

in which 0i E 4) n LE(f) n RE(f); moreover the 0i may be chosen to be
two-by-two orthogonal:

j = Oi * j = 0 whenever i * j (2.11.4)

and to be such that

0i * f = f * 0i = C!Oi (2.11. 5)

for certain non-zero numbers ci. (Any normal trigonometric polynomial
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is in fact identical with some 8 of the type just specified. )

Proof. In view of the results of 2. 9, it is enough to consider the
case in which f has the form x '- Tr [AU(x)*], where U E G and
A E End ( U) is normal, i. e., AA* = A*A. In this case the desired
result follows from Lemma A. 3. 2 of Appendix A in conjunction with
Theorems 2. 8. 6 and 2. 10. 4.

2.11.3. Remarks. Every element of P(G) is normal. Also,

every function of the form f * g with f, g E L2(G) (in particular, every
element of A(G)) is a linear combination of normal functions of the type
h * h (take h in turn to be f ± g and f ± ig).

From 2. 11. 2 it follows that if f c E is normal and different from
0, each of n LE(f) and + n RE(f) is non-void. In addition, if f * 0
(normal or not), then g = f * f is normal and different from 0; more-
over, by the statement following (2. 1. 7), g e LE(f), hence LE(g) S LE(f),
and so 4) n LE(f) is non-void. Similarly, by considering the function
g' = f * f, one sees that 4) n RE(f) is non-void. So we derive

2. 11. 4. Theorem (Beurling). If f E E and f * 0, each of
n LE(f) and 4) n RE(f) is non-void.

Beurling's original theorem applied to the case in which G is the
additive group R of real numbers and E = L°°(G) with its weak topology
as the dual of L1(G), though he also considered the case in which E is
a space of uniformly continuous functions with a certain so-called 'narrow

00topology'. The L -case was afterwards extended to arbitrary locally
compact Abelian G.

All the results of §18 of Godement [1] for the compact case are
implied by Theorems 2. 11. 2 and 2. 11. 4.

Some writers (Godement [1] for example) speak of 4' n LE(f) and
4) n RE(f) as the left E-spectrum and the right E-spectrum of f, respec-
tively. Thus 2. 11. 4 asserts that every non-zero f E E has non-void
spectra. It is quite easy to show that the E-spectra of ¢ c 4) are each
identical with {0 1. However, except when G is Abelian, the E-spectra
of a normal trigonometric polynomial (2. 11. 3) do not coincide with the

set of 0i for which ci * 0.
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2.11. 5. The Abelian case. Here there is no distinction between
left and right spectra of f, which will be referred to simply as the E-
spectrum of f.

In this case, 2. 11. 4 says that, for any non-zero f e E, the E-
spectrum of f contains at least one continuous multiplicative character
X E I'. If f E E, its E-spectrum is (by the substance of 2. 10. 6) the set

{X Er:f(X)#0} ,

which is independent of E (assumed to be as in 2. 10. 1).

2.11.6. Exercise. Illustrate 2. 11. 1(i) by taking f = XU, where
U E G and d(U) > 1.

2.11. 7. Exercise. Let f be a trigonometric polynomial such
that (2. 11. 1) holds for at least one c : 4; » C having a finite support
and such that c(q) * 0 implies 0 E LE(f). Show that

f E f * T(G) and f E T(G) * f. (2. 11. 6)

Assuming that G is non-Abelian, give an example of a trigono-
metric polynomial f on G which does not satisfy (2. 11. 6).

2.12. Closed ideals and closed invariant subspaces

2.12. 0. Once again, E is to be as described in 2. 10. 1. How-

ever, more emphasis will now be placed on the structure of E as an
algebra with respect to convolution and on the expression of the basic
features of harmonic analysis in terms of the ideal structure of the algebra
E: this is the viewpoint adopted in Loomis [1], Sections 27, 39, 40; see
also Hewitt and Ross [1], §38.

In view of the remarks in 2. 10. 0 and 2. 10. 7, it is important that
at the same time the relationship between closed ideals and closed in-
variant subspaces be cleared up. This will be done at the outset.

2.12.1. Preliminaries concerning ideals. By a left (resp. right)
ideal in E is meant a linear subspace I of E with the property that
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E * I C I (resp. I*ESI),

where, if A, B, ... , C are subsets of E, A * B * ... * C denotes the
set of functions a * b * ... * c obtained as a, b, ... , c range indepen-
dently over A, B, ... , C, respectively. A (two-sided) ideal in E is a
linear subspace I which is both a left ideal and a right ideal, i. e. , which
is such that

(E*I)U(I*E)SI.

An ideal of a given type (left, right or two-sided) need not be an
invariant subspace of the same type; and vice versa. However, it is not
difficult to show that a closed subset I of E is an ideal of given type,
if and only if it is an invariant subspace of the same type. (The proof can
be effected much as in Edwards [3], Section 11. 1; the details will be left
as Exercise 2. 12. 16 for the reader.)

In particular, then, LE(f) (resp. RE(f)) is the smallest closed
left (resp. right) ideal in E containing f; and this proves to be none
other than the closure in E of the left (resp. right) ideal E * f (resp.
f * E); see Exercise 2. 12.17.

Part of the aim is to decompose E and its ideal into direct sums
of minimal ideals, a left (resp. right, two-sided) ideal I being termed
minimal if and only if I * { 0 } and I properly contains no left (resp.
right, two-sided) ideal other than 10 I. The first step in this direction
is to track down the minimal ideals in E, in doing which the following
remarks may be found to be suggestive.

Consider left ideals for definiteness. If I is any such ideal, it
contains E * f for every f E I. For any f E E, E * f is a left ideal
in E; it contains f if and only if f is a t. p. ; but in any case the closure
of E * f contains f and (see Exercise 2. 12.17) is indeed the smallest
closed left ideal containing f. [As is shown in the same exercise, the
smallest left ideal containing f is the set of elements g * f + of obtained
when g ranges over E and A over complex numbers; this is usually
spoken of as the left ideal generated by f. ] In view of this, it seems
reasonable to conjecture that any minimal left ideal will be of the form
E * f, where f is a suitable t. p. # 0. As will appear in 2. 12. 3, this is
indeed the case.
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It will turn out to be convenient to denote by OU P the NEPD
function x '- Tr [PU(x)*] (cf. 2. 8. 5 above) and to write LU P =E* OU P
and ARU P = 0U P * E. (Herein U is understood to denote an element
of G and P a one-dimensional orthogonal projector on U.) Each of
LU P and RU P is finite dimensional and therefore closed, so that
LU P (resp. RU P) is the smallest left (resp. right) ideal containing

OU, P.
Since OU, p is idempotent (i. e. , $U, P * OU, p = OU, p)' LU, p

is the set of f E E such that f * 0U P = f; and similarly for RU P,
with ¢U P * f in place o f f * $U P.

2.12.2. Lemma Let I* f 0 } be a left (resp. right) ideal in E.
Then I ? LU P (resp. RU P) for some U e G and some one-dimensional
orthogonal projector P one IVU.

Proof. Take the 'left' case. Choose f * 0 in I and consider
g = f * f (in the right-handed case, take g = f * f). Then g E I and
g # 0; and, by Exercise 2. 1. 15, g = g. From 2. 11. 2 it follows that U
and P exist such that 0U, P = const. g * 0U, P = const. 0U, P * g, ,whence
it appears that OU p E I. But then I must contain LU p (the smallest
left ideal containing ¢U P). The proof in the 'right' case is exactly
analogous.

2.12. 3. Theorem. A left (resp. right) ideal I is minimal if and
only if it is of the form LU P (resp. RU P).

Proof. By 2.12. 2, I contains some OU P. But then I contains
LU P (resp. RU P). Since this last is a left (resp. right) ideal 0

minimality shows that I = LU p (resp. I = RU P).
Conversely, let I = LU p (resp. I= RU P). It is clear that I

is a left (resp. right) ideal # { 0) . Let I' be any left (resp. right) ideal
contained properly in I: it has to be shown that I' 0 1. Now if f E I',
then f(V) = 0 for V * U and f(U) = AP (resp. f(U) = PA) for some
endomorphism A of U. If I' were # { 0 1, one could choose f * 0,
so that AP * 0 (resp. PA # 0). But then Lemma A. 3. 6 of Appendix A

would show that 19 I', contrary to hypothesis.
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2.12. 4. Theorem. Let I be a left (resp. right) ideal in E.
Then I is contained in the closure in E of the direct sum of mutually
orthogonal minimal left (resp. right) ideals LUG p (resp. RU, p) con-

tained in I. (Note that, in view of 2. 12. 3, minimal left and right ideals
are composed of functions which are equal a. e. to t. p. s. ; orthogonality

of two such functions is to be interpreted in the sense of the scalar product
on LZ(G). )

Proof. It suffices to deal with the left-handed case. Further, one

may and will assume that I * {0 } . By 2. 9. 2 and 2. 9. 3, any f E I is the

limit of finite sums of mutually orthogonal t. p. s.

fU : x F- d(U). Tr[f(U)U(x)*] = d(U)XU * f(x) ,

each of which belongs to I (since I is a left ideal). It is thus enough to
show that each fU is a linear combination of functions gi E LU p9

' 1

where the Pi are mutually orthogonal one-dimensional projectors on

U
such that LU p S E * fU S I. However, writing

' 1

A= f(U) = fU(U), LU P S E fU if and only if P = XA for some
X E End U). On the other hand, Lemma A. 3. 7 of Appendix A affirms
that A is a sum Ei APi, where the Pi are mutually orthogonal one
dimensional projectors onU, each of the form P. = XiA for some
X. E End U). It then suffices to take gi = f U * $U, Pi f * 0U, Pi

2.12.5. Turning to consider (two-sided) ideals, denote by EU
the set of f E E such that ?(V) = 0 for every V E G different from U.
It is almost evident that EU * { 0 } is an ideal; that EU is stable under
the mapping f - f; and that

EU = XU * E = E * XU = XU * E * XU =E* XU * E .

Moreover, if U and V are distinct elements of G,

EU nEV= {0}

f *g=0 if f EEU, gEEV
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the second of which says that the EU are mutually orthogonal in the
L (G) sense.

2. 12. 6. Theorem. A two-sided ideal in E is minimal if and
only if it is of the form EU.

Proof. Let I be minimal two-sided. If f e I and U E G be
chosen so that f(U) * 0, Lemma A. 3. 5 of Appendix A shows that I ? EU.
Minimality of I implies that I = EU.

On the other hand, to show that every EU is minimal two-sided,
note that if I is two-sided and S EU, the hypothesis that I # { 0 } leads
(Lemma A. 3. 5 of Appendix A again) to the conclusion that I = EU. So
EU is indeed minimal two-sided.

2.12.7. Theorem. Any (two-sided) ideal I in E is contained
in the closure in E of the direct sum of those EU contained in I.

Prod. Let f c I. Using the notation introduced in the proof of
2. 12. 4, 2. 9. 2 and 2. 9. 3 show that f is the limit in E of finite sums
Z fU involving only those U E G for which 1(U) # 0. On the other hand,

Lemma A. 3. 5 of Appendix A shows that the subspace of E generated by
E * f * E, which is contained in I, contains EU if (and only if)
f(U)#0.

On combining 2. 12. 4 and 2. 12. 7 there appears

2. 12. 8. Theorem. Every closed left (resp. right, two-sided)
ideal I in E is the closure in E of the direct sum of certain mutually
orthogonal minimal left (resp. right, two-sided) ideals LU P (resp.

RU P) E
U

) contained in I.

2.12.9. The main point about 2. 12. 8 is that it contains an assur-
ance that a closed ideal I in E (left, right or two-sided) is completely
determined by its 'components' I n EU, one for each U E G, each
I n EU being an ideal (of the same type) in the f. d. algebra EU. If this

be coupled with the fact that the Fourier transform sets up an isomorphism
between EU and End (U), one sees that in the end everything is
reduced to describing the ideals in End (U ... an almost purely
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algebraic problem. In this way, 2. 12. 8 leads to the following more con-

crete descriptions.
(i) To every closed left (resp. right) ideal I in E corresponds

a family (PU)UE&, where PU is an orthogonal projector
on U, such that

I= If E E f(U)PU = 0 for every U E
(resp. I = If e E PUf(U) = 0 for every U e G }) ;

and conversely.

(Compare this with 2. 10. 4 and 2. 10. 5; see also Hewitt and Ross [1],
(38. 13). )

The case of closed two-sided ideals is especially simple, being
covered by the following.

(ii) To every closed two-sided ideal I in E corresponds a
subset S of G such that

I= {fcE:f(U)=0 for every UES}.

The proof of (i) is reduced to that of the appropriate assertion
about left (resp. right) ideals in End ( ), where denotes a f. d.

Hilbert space.
For the case of left ideals in End ("), one has merely to

prove the existence of a linear subspace P-11 of such that

X E End (c2) : X (P-//,) z {0 }} ;

for this is equivalent to saying that

{X E End (V) : XP0 = 0

where P0 is the orthogonal projection of 'W onto P-11. A detailed
proof of this appears in Hewitt and Ross [1], (38. 11).

The case of right ideals is easily derived from this by passage to
the adjoint. If .-fil- is a right ideal in End then * is a left
ideal therein; s o, by what has just been indicated f * _ { X : XP 0 = 0 }

for a suitable P0; hence Y= ( Y*)* = {Y E End( OG ):Y*P0= 0
l y : P 0Y = 0 } , which is the desired conclusion. (Recall that
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(P0Y)* = Y*P0 since PO is s. a. ; and that A = 0 if and only if

A*=0.)
The two-sided case can be derived by combining the left- and

right-cases, or more directly from Appendix A. 3. 5 (which goes to show
that the only two-sided ideals in End () are {0 } and End (')
itself.

2. 12. 10 Maximal closed ideals. Results like those in 2. 12 8
and 2. 12. 9 are often reformulated and complemented by statements in-
volving maximal, rather than minimal, ideals. We describe briefly some
such results, seeking simplicity by considering only closed (two-sided)
ideals in E.

A closed ideal M is termed maximal if it is proper (i. e. , differ-
ent from E) and is contained properly in no closed ideal different from E.

It is then possible to prove the following:
(i) The maximal closed ideals in E are precisely the sets

MU = If E E : f(U) = 0 } , (2. 12. 3)

one corresponding to each U E G.
(ii) Every closed ideal I in E is the intersection of those

maximal closed ideals which contain it:

I=n{MU:U EG, MUDI} . (2.12.4)

These assertions may be inferred from 2. 12. 9(ii), or proved directly by
using the Hahn-Banach theorem combined with the substance of 2. 9. 3 and

2. 9. 6. In (ii) one has effectively the extension of (2. 10. 7) to the non-

Abelian case.
For some similar results applying to one-sided ideals, see

Hewitt and Ross [1], §38.

2.12. 11. Closed invariant subspaces. Turning to closed invariant
subspaces, it is first of all almost evident that LU P (resp. RU P, EU)
is a closed left (resp. right, two-sided) invariant subspace of E. It is
true, but not nearly so obvious, that the following analogue of 2. 12. 3 and
2. 12. 6 obtains: the minimal left (resp. right, two-sided) invariant sub-
spaces of E are precisely the LU P (resp. RU P, EU).
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2.12. 12. Theorem. Every closed left (resp. right, two-sided)
invariant subspace in E is the closure in E of the direct sum of certain
mutually orthogonal minimal left (resp. right, two-sided) invariant sub-
spaces LU P (resp. R.U p, EU), each of which is contained in the given
subspace.

Proof. This is a direct consequence of 2. 12. 1, 2. 12. 8 and
2.12.11.

2.12.13. There is no analogue of 2. 12. 4 or 2. 12. 7 applying to

not-necessarily-closed invariant subspaces. There are in general non-
closed invariant subspaces, which are 'large' in the sense of being every-
where dense in E, and which nonetheless contain no non-zero t. p. s.
(and therefore contain no minimal invariant subspace, and no closed in-
variant subspace other than {0 }); see Exercise 2. 12. 18.

2.12.14. It is now possible to verify a statement made toward
the end of 2. 1. 10, namely: every U E G is unitarily equivalent to a
representation of G of the form x '- LxIM, where M is some minimal
left invariant subspace of L2(G).

In fact, take any e E °
U

satisfying II e II = 1 and let P be
the orthogonal projector ofU onto the subspace generated by e. Let

$(x) = ou, p(x) _ (e IU(x)e)

and take M to be the minimal left invariant subspace LU, P of L2(G).
M consists precisely of all linear combinations of left translates of 0,

i. e. , of functions

fv : x '-+ (vIU(x)e)

where v_ EU. Since U is irreducible, the U()2 generate the whole
Of U, and so fv determines v uniquely. There is therefore a
linear map J : v I- d(U) z fv of U onto M. On using (2. 6. 3), one
sees that J preserves scalar products. Moreover, LxJ = JU(x) for
every x E G, and so

Lx I M = JU(x)J 1
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which exhibits the alleged unitary equivalence of U and x '-+ Lx IM.

2.12.15. The Abelian case. There is now no distinction between
LU P, RU P and E

U
: all three are identical with the one-dimensional

, ,

subspace of E generated by the (bounded continuous multiplicative) charac-
ter X of U. The maximal closed ideals in E are precisely the sets

MX = if E E : f(X) = 0 1 ,

where X E I'. Every closed ideal I in E (alternatively: every closed
invariant subspace I of E) consists precisely of those f E E such that
f(X) = 0 for every X E Z1, where ZI S r is the set of common zeros of
Fourier transforms of elements of I. (This is virtually a reformulation
of (2. 10. 7). )

2.12.16. Exercise. Prove that a subset I of E is a closed
ideal in E of a given type (i. e. , left, right or two-sided) if and only if
it is a closed invariant subspace of E of the same type.

2.12.17. Exercise. Prove that the smallest left ideal in E
containing f c E is

{ AI+ g * f : A E C, g E E I,

and that the smallest closed left ideal in E containing f is the closure
of E * f.

2.12.18. Exercise. Take G = T and f E C(T) defined by

f(elt) = Z
nEZ

cneint

where ZneZ I cn I < - and cn * 0 for n > no. Show that the invariant

subspace of C(T) generated by f contains no non-zero t. p.

2.13. Spectral synthesis problems

A stage has now been reached at which the reader should experience
no difficulty in appreciating a class of problems of current interest in
abstract harmonic analysis, namely, the so-called spectral synthesis
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problems. This section undertakes to explain briefly the nature of these
problems and the connections between them and the results already
covered in earlier sections of these notes.

2.13.1. The original spectral synthesis problem, which was
introduced by Beurling a little more than thirty years ago, concerned the
approximation of any given f E L (R) by linear combinations of those00

(bounded continuous multiplicative) characters of R which belong to the
closed span of translates of f. The topology envisaged by Beurling was the

' narrow' topology mentioned in 2. 11. 4, but most subsequent work uses
the weak topology on LOO(R) as the dual of L1(R).

When approximation is understood in the latter sense, Beurling's
problem can (by general duality theory) be formulated as that of expressing
a general closed ideal I in the convolution algebra L1(R) as the inter-
section of maximal ideals in L1(R).

This original problem has since given rise to the discussion of a
wide variety of somewhat similar problems, all described (at times a
little bewilderingly) as spectral (or harmonic) synthesis problems. The
name is suggested by the fact that some problems of this type (including
the original one) are indeed concerned with synthesising a given function
from its harmonic constituents, though other problems to which the same
description is applied do not naturally conform to this type (and might
equally well be referred to as problems of analysis rather than synthesis).
The appropriate concepts and language vary from problem to problem:
sometimes minimal ideals are appropriate, sometimes maximal ideals,
and sometimes invariant subspaces. (Broadly speaking, minimal ideals
are rather rare birds and the concept of maximal ideal is more generally
useful in this context. The convolution algebras E discussed in 2. 10 and
2. 12 above offer an unusually wide freedom of choice, this being mainly
due to the fact that the group in question is assumed to be compact. )

A substantial variety (but by no means all) of the interesting spectral
synthesis problems can be formulated in the following way, at least if one
allows for the interchange of isomorphic algebras.

2. 13. 2. Suppose given a set S, a family (As)s
ES

of complex

algebras, and a subalgebra A of the product algebra IIsESAs. The
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elements of A are thus functions f with domain S such that f(s) EAs
for every s E S, and the algebraic operations in A are 'pointwise' or
'coordinatewise'. We assume that each As is topologised in such a way
that 10

S
1 is a closed subset of As, where 0s denotes the zero element

of As; and that A is topologised in such a way that f '-+ f(s) is continu-
ous from A into As for every s E S.

There are various species of ideals in A (left ideals, closed left
ideals, right ideals, and so on), together with maximal ideals of each
species, but this is no place to attempt even a sketch of the associated
questions. Suffice it to mention that in the commutative case one usually
attempts to work with those maximal ideals which are modular (or regular),
these being the maximal ideals most closely linked with kernels of non-
zero homomorphisms of A into the complex field; see Exercise 2. 13. 4.
[A left (resp. right) ideal I in A is said to be modular if there exists
in A an element u which is a right (resp. left) identity modulo I, i. e. ,

an element u which satisfies fu - f E I (resp. of - f E I) for every
f E A; a (two-sided) ideal is modular if there exists in A an element
which is both a right and a left identity modulo I. ]

In this situation, the so-called spectral synthesis problem for A
amounts to determining which ideals in A are intersections of maximal
ideals of various species.

The most obvious ideals in A are the closed ideals

I(X) = If E A : f(s) = Os for every SEX) , (2.13. 1)

where X denotes a subset of S. Reciprocally, to every ideal I in A
corresponds the subset

Z(I) = is E S : f(s) = 0s for every f E 11 (2.13.2)

of S. It is simple to verify the relations

X c Z(I(X)), I C I(z(I))
I(X) cI(Y) if YcXCS (2. 13. 3)

A moment's thought makes it very plausible that the maximal
closed ideals in A will be the sets
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Ms = I({s }) = If E A : f(s) = 0s } , (2.13. 4)

one corresponding to each point s of S. In many cases of interest,
this conjecture proves to be true. Usually, each Ms is modular; they
may also be maximal ideals. Irrespective of the precise properties of
the Ms, the spectral synthesis problem is often interpreted to be that
of determining which closed ideals I in A are of the form

I(X) = n { M(s) : s E X I

for a suitable subset X of S. Now, if I = I(X) holds for any subset X
of S, (2. 13. 3) shows that X = Z(I) is one such set. Thus the problem
boils down to deciding which closed ideals I in A satisfy

I = I(Z(I)) . (2.13.5)

It turns out that in some cases (2. 13. 5) holds for every closed
ideal I in A. In certain other cases it will be evident from the outset
that there are closed ideals I in A for which (2. 13. 5) is false. In still
other cases, considerable effort and ingenuity may be needed to produce
(or even merely prove the existence of) closed ideals I in A for which
(2. 13. 5) is false. In this last case, various interesting problems may
present themselves. For example:

(i) Can one specify conditions upon Z(I) sufficient (or perhaps
even necessary and sufficient) to ensure the truth of (2. 13. 5)

(ii) Given an element f of A such that f E I(Z(I)), can one
specify additional conditions on f sufficient (or maybe
necessary and sufficient) to ensure that f c I?

Many problems of this sort are very delicate; while numerous sufficient
conditions are known, the question of necessary and sufficient conditions
is almost always unsolved.

Some specific examples are worth looking at briefly.

2.13. 3. Some examples
(i) Here S is a compact Hausdorff space, As is the complex

field for every s E S, and A is a subalgebra of the algebra C(S) of
continuous complex-valued functions on S. It is always possible to endow
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A with the sup norm ( I I f I I = sup { I f(s) I : s E S } ), though other norms
may be used for certain A's.

Suppose first that A = C(S) itself. It can then be shown without
much trouble that the maximal ideals in A are exactly those given by
(2. 13. 4). (All ideals in A are modular because A has an identity ele-
ment, the constant function 1.) It can also be shown that (2. 13. 5) is true
for every closed ideal I in A. Problems (i) and (ii) in 2. 13. 2 do not
arise.

However, the situation may be otherwise if one takes for A a
proper subalgebra of C(S); see (iii) below.

(ii) Let G be a compact group, S = G, AU = End( U) for
U E G, and let E be as specified in 2. 12. 10 above. This situation can
be fitted into the scheme described in 2. 13. 2 by taking for A the set of
Fourier transforms f with f E E.

In this case 2. 12. 10(ii) affirms that once again (2. 13. 5) is valid
for every closed ideal I in A. (It was seen in 2. 12. 10(i) that the maximal
closed ideals follow the pattern described in (2. 13. 4). )

An equivalent version of the result appears in 2. 12. 8, which is
genuinely a spectral synthesis assertion.

Once again, the relatively subtle problems (i) and (ii) in 2. 13. 2
do not arise.

(iii) Turning to what will prove to be a more interesting example,
refer back to (i) above and take therein S = G, a compact group, and
A = A(G) as defined in 2. 9. 8. The maximal ideals in A can be shown
to be given by (2. 13. 4). (The proof is relatively easy when G is Abelian
(see Exercise 2. 13. 4 below); the contrary case is more difficult and is
dealt with in Eymard [1].) However, even for familiar choices of G (the
circle group T, for example), (2. 13. 5) is not true for every closed ideal
I in A(G); questions (i) and (ii) of 2. 13. 2 arise and have received a
great deal of attention.

Concerning (i) of 2. 13. 2, it is known that (2. 13. 5) holds for every
closed ideal I in A(G) such that the frontier of Z(I) contains no non-
void perfect subset. (For Abelian G, see Edwards [3], 12. 11. 4-12. 11. 6
and Exercise 12. 52; for general G, the result is a consequence of
Theorem (4.19) of Eymard [1]; see also Hewitt and Ross [1], (39. 24).
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As regards (ii) of 2. 13. 2, if G = T, it is the case that any closed
ideal I in A(G) contains every f E A(G) which vanishes 'sufficiently
strongly' on Z(I) (see Edwards [3], 12. 11. 4 and 13. 5. 5)... but no inter-
pretation of 'sufficiently strongly' is known which is necessary and
sufficient. To this extent, the problem remains open (and presumably
very difficult).

(iv) To get back to a case which covers instances 'isomorphic'
to Beurling's original problem (see 2. 13. 1), let G be a locally compact
Abelian group; G = Rn is pretty typical. Let r denote the group dual
to G; see 2. 5. 4. Take S = I' and AX = the complex field for every
X E r. Finally, take for A the set of Fourier transforms f where
f EL 1 (G); for good reasons, this A is usually denoted by A(I').

The state of affairs here turns out to be much as is described in
(iii) immediately above for the case of A(G) with G an infinite compact
group; see Edwards [3], 11. 2. 3, 12. 11. 4 and Exercise 12. 53 for a few
more details. (There is, however, the difference that T is in general
neither discrete nor compact. )

A(t) is, by its definition, isomorphic with L1(G) and the problem
is that of expressing a general closed ideal in L1(G) as an intersection
of modular maximal ideals in L1 (G) (cf. the second paragraph in 2. 13. 1).

This is one of those cases in which it took time and effort to
decide whether or not (2. 13. 5) holds for every closed ideal I. The first
examples showing that (2. 13. 5) need not hold were produced by Schwartz

in 1948 and applied only to the cases G = Rn with n > 3. By this time,

the problem had been 'in the air' for about a decade; and a further decade
was to elapse before Rudin, Kahane and Malliavin coped with the case of
a general non-compact locally compact Abelian group G. Schwartz's
work actually produces closed ideals I for which (2. 13. 5) false, but
the Rudin-Kahane-Malliavin technique suffices only to prove the existence
of such ideals I (the situation being analogous to that described in
Remark (iii) in 2. 15. 6).

For many more details concerning these examples of the failure
of spectral synthesis, see Hewitt and Ross [1], Chapter X. Most especially
we refer the reader to the account given loc. cit. §42 of a novel approach

devised by Varopoulos, which amounts to a strikingly original importation
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into harmonic analysis of ideas relating to tensor products of Banach
spaces and algebras. (The functional analytic theory of tensor products
goes back for 20 years or more; in the context of topological linear spaces
it underwent very broad development by Grothendieck (c. 1955), but its
use in harmonic analysis appears to have been an especially happy and
fruitful turn in events (c. 1964) relating to the Rudin-Kahane-Malliavin
technique. )

2.13.4. Exercise. Assume the following two basic facts:
(i) If A is a commutative complex Banach algebra, every

modular maximal ideal in A is the kernel of a continuous
homomorphism T of A onto C. (See Hewitt and Ross [1],
Appendix (C. 17). )

(ii) The Pontryagin duality law, as stated in 2. 5. 4(b) above.
Let G be a compact Abelian group. Show that every maximal

ideal in A(G) conforms to the formula (2. 13. 4) for some s E G.

2.14. The Hausdorff-Young theorem

In this section we return to some more concrete aspects of Fourier
transforms, the topic being one which might be made to follow on from the
substance of 2. 7. In brief, we shall consider some important partial ex-
tensions of the Parseval formula.

In order to explain what we are up to, it is undoubtedly best to
begin by looking at the Abelian case.

2.14. 1. Preliminary discussion of the Abelian case. Throughout

this subsection, G will denote a compact Abelian group with dual group
r; see 2. 5. 4.

If tti is a complex-valued function on r and p E [1, -] it is
standard practice to write

II'IIp= {EXErIoX)Ip}1/p if p * -

and

II II"= supXErl(X)I ,
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allowing - as a possible value of
II II

P*
It is also standard to write

lP(r) for the linear space of complex-valued functions 4i on r for
which o . Then the restriction of iIi - 114, 11p to lP(r) is a
norm on 1P(r) relative to which 1P(r) is a Banach space. In addition,

we shall write 1c (r) for the set of complex-valued functions j on r
having finite supports, noting that lc(r) is a linear subspace of 1P(r)
for every p. To complete the range on display, c0(r) is defined to be
the closure in 1 00(r) of 1 c(r). It is easy to check that a complex-valued
function a/i on r belongs to c

0
(r) if and only if

limXEr, 0 ,

the limit being interpreted in the fashion explained in 1. 2. 5 above. It is
worth noting that

lc(r) c iP(r) c c0(r) c l °°(r) if p E [1, 00) ,

the inclusions being strict whenever r is infinite; and that

IIkIIIq < II4I1 if q >_ p .

(With the obvious conventions, this last holds even in cases where either
or both of II P II q and II P II are 00. )

If f E LI(G) (or even to M(G)), f is a complex-valued function
on r. The inequality (2. 3. 2) is equivalent to the formula

IIfII"--5 IIfIII

and 2. 7. 4 asserts exactly that

f Ec0(r).

The substance of 2. 7 affirms that f '-' 1 maps L2(G) onto 12 (r) and
the Parseval formula says that this mapping is an isometry:

IIfIII= IIf1I2.

The original Hausdorff-Young theorem applied to the case G = T
and asserts that then if p E [1, 2], f -- i maps LP(G) into lP'(r),
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where 1/p + 1/p' = 1 (conventionally p' = - when p = 1), and that

IIf IIp, < If 11p

For a discussion of this result (by methods which extend without trouble
to any compact Abelian G), see Edwards [3], Section 13. 5.

The cases p = 1 and p = 2 tell us nothing new; but for 1 < p < 2,
the fact that f E lP'(I') whenever f E LP(G), is a definite advance.

When compared with the case p = 2, the Hausdorff-Young theorem
constitutes only a partial replacement (albeit a very useful one): only in

trivial cases does f F- f map L'(G) onto c
o
(t); and, if 1 < p < 2,

,

only in trivial cases is it true that f '- f maps LP(G) onto R m or
that one has equality in (2. 14. 1). See 2. 14. 3 and 2. 14. 6 below.

We now wish to pass on to the description of the Hausdorff-Young
theorem as it applies to general compact groups.

The first step is the introduction of suitable analogues of the
spaces 1P(IF) and their norms II . Iip, bearing in mind that now complex-
valued functions on r will have to be replaced by functions 4, on a
such that 4>(U) E End ( U) for every U E G. This is by no means a
trivial matter, and we must assume that the reader will at this point refer
to Appendix A. 4. Subsections 2. 14. 2 and 2. 14. 3 are concerned with this

topic.

The other major preliminary is a convexity theorem about bilinear
functionals; this will be described in 2. 14. 4.

2.14. 2. The spaces EP (6). In terms of the norms
11 . 11

0p
described in Appendix A. 4. 2, we can define certain linear subspaces of

E(G) IIU End (U)

which are easily seen to be generalisations, to the non-Abelian case, of
the spaces 1P(r) figuring in 2. 14. 1, and which prove to be just right
for the statement of the Hausdorff-Young theorem valid for all compact
groups.

Thus, for 4< E E(G), we define
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11+11P = 11i U d(U) II'(U) II P }lip if P E [1, 00) ,

P

Ii 11= S1IPUEG II *(U) II00

either or both of which may be °. We then write EP(G) for the linear
space of 41 E E(G) for which II i lIp < -; Ec(G) for the linear space of

EE(G) for which the set {U E G : 4'(U) * 01 is finite; and E0(G) for
the closure in E 00(G) of Ec(G). This last is also the set of 4< E E(G)

such that

II *(U) II 00 = 0 ,limUEG, (2. 14. 3)

where the limit is interpreted as explained in Exercise 1. 2. 5.
It can be verified that EP(G) is a Banach space when taken with

the norm equal to the restriction to EP(G) of 4, '-' II 4< IIp; and that

II ** IIp = II 4<IIp for every 41 E E(G), where, of course, 4,* : U » (4<(U))*.

2.14.3. The results of 2. 3 and the orthogonality relations show
that the Fourier transformation FT : f '- f maps M(G) into E00(&) and
T(G) into Ec(G). On the other hand, 2. 7. 4 asserts precisely that FT
maps L1(G) into E0(G).

It can be shown that the image under FT of L1 (G) is a dense
subspace of E0(G); and that this image is the whole of E0(G) if and only

if G is finite. (See Hewitt and Ross [1], (28. 40) and (37. 4); for the
Abelian case see also Edwards [3], 2. 3. 9 and Exercise 2. 14. 10 below.)

E2(G) is rather special. To begin with, it is a Hilbert space
relative to the scalar product

(4,1 I4'2) = FUEGG d(U). Tr[F1(U)F2(U)*] ,

the associated norm being II II 2, as defined in (2. 14. 2). Moreover the

Parseval formula shows that FT is an isometric linear map of L2(G)
onto the whole of E 2 (G).

It is also worth noting that the space A(G) defined in 2. 9. 8 is
precisely the set of f E C(G) such that III II1 < -, and that

11f IIA(G) = IIf II1 for every f E A(G). In other words, FT is a linear
isometry of A(G) onto E 1(G).
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2.14. 4. The convexity theorem. A discussion of some theorems
of this type, applying to the case of linear operators acting on suitable
space of complex-valued functions on some measure space, will be found
in Edwards [3], Chapter 13. These theorems are admirably suited to the
proof of the Hausdorff-Young theorem for Abelian groups G; see loc. cit.
Section 13. 5. For the non-Abelian case, however, it is necessary to
modify the convexity theorems so as to apply to operators acting on suit-
able spaces of vector-valued functions. A modification of this sort is
established in Hewitt and Ross [1], (E. 18), to which we must refer the
reader for details. In either case it is largely a matter of convenience
whether one chooses to talk about linear operators or about bilinear
functionals (one may, indeed, increase the generality and talk about multi-
linear operators). We will here merely cite a special version of the con-
vexity theorem, expressed in terms of bilinear functionals and including
enough generality to satisfy our immediate needs (with a little, but not
much, to spare). The statement follows.

Let B be a complex-valued bilinear functional on T(G) X Ec(G)
such that, for certain pi, qi E [1, 00] and Mi E (0, -) (i = 1, 2), one has

IB(f, ')I M1IIfIIp II*Iip , (2.14.4)
1 2

IB(f, *)I :!E:- M2IIfIIq IIFIIq (2.14.5)
1 2

for every (f, 'F) c T(G) X Ec(G). Suppose that t E [0, 1] and that

1/r1 = (1-t)/p1 + t/q1, 1/r2 = (1-t)/p2 + t/q2 . (2. 14. 6)

Then

IB(f,'F)I MIIfIIr II+IIr (2.14.7)
2

for every (f, 41) E T(G) X Ec(G), where M s Mi tM
.

In the terminology used by Hewitt and Ross, loc. cit. , the hypo-
theses (2. 14. 4) and (2. 14. 5) assert precisely that B is of type (p1, p2; 1)
and of type (qi, q2; 1), respectively; and the conclusion (2. 14. 7) is that
it is then of type (r1, r2; 1), whenever the is are convex combinations
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of the p's and q's of the sort prescribed in (2. 14. 6). (This is the
genesis of the term 'convexity theorem'. )

All the necessary armament has now been assembled.

2. 14. 5. Theorem (Hausdorff-Young). If 1 <_ p <_ 2 and

f E LP(G), then f c Ep'(G) and

I I I f < IIf IIp (2.14.1)

Proof. We shall apply the convexity theorem to the bilinear
functional B defined by

B(f, 41) = rUEG d(U). Tr f(U)T(U) ;

note that the summand is non-zero for at most a finite set of U E G
(depending upon (f,)). We proceed to verify that B satisfies certain
'type inequalities'.

By equation (A. 4. 7) of the Appendix and (2. 3. 2) above,

I Tr f(U)*(U) I < 111(U) II 0." II '(U) it 0l
(2.14.8)

11f IIIII'(U)II0 ;

and, by (A. 4. 7) again,

I Tr f (U)'(U) I IIf(U) II
02

11 +(U) II 0(2.14.9)
2

By (2. 14. 8),

I B(f, P)I < IIf1I1EUEGd(U)I1 IF(U) If =IIf IIIII*III; (2.14. 10)
1

and, by (2. 14. 9) and the Parseval formula,

B(f, 41) 1 < Z
UE G d(U) 111(U) II

02
11 *(U) II

02

{ E UEGd(U) IIf (U) II )
z

{ ZUEG
'[(U) 11

*(U) II 2 )
z

2 2

= IIfII2II*II2 (2.14.11)
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Of these, (2. 14. 10) says that B is of type (1, 1; 1), and (2. 14. 11) that
it is of type (2, 2; 1). The convexity theorem of 2. 14. 4 accordingly
affirms that B is also of type (p, p; 1) whenever 1 <_ p s 2, and that

IB(f, 1P)I < IIfIIpIIi1Ip (2. 14.12)

for such values of p. The rest of the proof consists of deriving (2. 14. 1)
from (2. 14. 12).

To do this, we call upon (A. 4. 6) of the Appendix: this shows that,
for given f and given U, &2(U) E End U) may be selected so that

II O(U) II0 = 1 and R(U) II0 = Tr f(U)62(U) ; (2. 14.13)
P p

plainly, if f(U) = 0, one may take 52(U) = 0. So, given f E T(G), SZ

may be selected from Ec(G) so that (2. 14. 13) holds for every U E G.
Now apply (2. 14. 12), taking

4<: U - IIf(U)IIp'1&I(U)
p

,

noting that ' E Ec(G), that

II+(U)IIp = R(U)IIp'
P

,

p

and so that

II"'IIp = IliIIp:

It then appears that

Ililip' < IIfIIPII? Iip,/p

which, since p' - p'/p = 1, is equivalent to (2. 14. 1).
Thus, (2. 14. 1) is established for every f E T(G). We leave to the

reader the task of deriving (2. 14. 1) for every f E LP(G); see Exercise
2.14.7.

2.14. 6. There are various ways in which one might hope to im-
prove the Hausdorff-Young theorem... by replacing the inequality by an
equality, for example, or by enlarging the allowed set of values of p.
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However, most hopes of this sort prove to be ill-founded. For the
Abelian case, see Exercise 2.14.9 below and Edwards [3], 13.5.3,
13. 5. 4, 14. 4 and 15. 4; for the general case, see Hewitt and Ross [1],
(37. 19). It would seem that the stated version is about the best one can
hope for in general.

There is, however, a 'dual' version of Hausdorff-Young's in-
equality which applies to functions on G. In 2. 14. 3 we have noted that

FT maps L2(G) isometrically onto E2(G); let FT-1 denote the inverse
map. If 1 <_ p <_ 2, EP(G) S E 2 (G), so that FT-1 If is defined for every
4< E EP(G). The Hausdorff-Young inequality for G asserts that in fact
FT-14- belongs to LP'(G) (not merely to L2(G)) and that

IIFT-141IIp? < IIHIIp

for every 41 e EP(G); see Hewitt and Ross [1], (31. 24).
There are also versions of the Hausdorff-Young inequality applying

to any locally compact Abelian group; see loc. cit. , (31. 20).

2.14.7. Exercise. Assume that (2. 14.1) has been established
for every p e [1, 2] and every f e T(G). Write out a detailed proof of
the fact that (2. 14. 1) continues to hold for every p E [1, 2] and every
f E LP(G).

[Hint: Use an approximate identity (k whose elements belong to T(G);
cf. 2. 9. 6 above. ]

2.14. 8. Exercise. Let G be an infinite Abelian compact group
with dual group r, r an infinite subset of such that 1 = 1 E ro.

Define f0 = go = 1. Show how to choose by recurrence elements

X 1, X2, ... of r o such that, on writing

fn+1 = fn + Xn+lgn' gn+1 = fn - Xn+lgn

one obtains t. p. s fn such that IIfnII..<_

22n+Z, Ran fn c 1-1, 0, 11,
and Ifn I is the characteristic function of a subset an of the subsemi-
group ro of r generated by r0, On having precisely 2n elements.

Remark. The fn are analogues of the Rudin-Shapiro trigono-
metric polynomials on the circle group T; see Katznelson [1], p. 33,
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Exercise 6; Hewitt and Ross [1], (37. 19. b). They have many interesting
and useful properties, some of which are exhibited in the next two exer-
cises.

2.14.9. Exercise. The notation is as in the preceding exercise.
Show that one can choose by recurrence elements a1, a2, ... of r0
so as to arrange that, if

i
wn = 2 nanfn

then Ran wn C {-2- 2 n, 0, 2 2
n

} and 2 2 n Iwn I is the characteristic
function of a set On C r0 having precisely 2n elements, and

0

Am non =0 whenever m * n.
Exhibit functions g e C(G) of the form

g
n00

=0 cnwn , (2. 14. 14)

where

00
ln=0 cn < '

(2. 14.15)

such that

2; Xer jg(X)Iq=

for every q < 2.

2. 14. 10. Exercise. The notations are as in the last two exer-
cises. In addition, 0 denotes any function on r such that Ran 0 C { -1, 1 }
and wn agrees on An with 2 n0 for every n.

(i) Let (an) be any sequence of complex numbers such that

lim 2 n I an i

Prove that there exists no function f E L1(G) such that f agrees on An
with a

n
0 for every n.

(ii) Let 7) ? 0r belong to ca(r). Show how to construct complex-

valued functions L' on r such that
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F, xEr 77 (x)I0x)I, <

and yet is not the Fourier transform of any integrable function on G.
Hints: For (i), consider functions g * f, where (2. 14. 14) and (2. 14. 15)

hold, and make use of 2. 8. 2 and 2. 8. 4. For (ii), make judicious use
of (i). ]

Remark. It is not difficult to modify the arguments to cover the
case in which L1(G) is replaced throughout by M(G); cf. Remark (ii)
following 2. 8. 4.

2.15. Lacunarity

2.15.0. With the possible exception of a few topics mentioned

briefly in 2. 13, we have so far dealt only with some of the very basic
and relatively stabilised aspects of harmonic analysis on compact groups.
There is no space to tackle, even in sketchiest outline, a representative
collection of more specialised topics, in most of which there is as yet
little sign of finality. We may, however, attempt to indicate the state of
affairs in one such specialised topic, namely, lacunarity. This is one of
the current foci of interest and may serve as an illustration.

We shall frequently confine our remarks to the Abelian case, for
which a convenient reference is Chapter 15 of Edwards [3]. This case is
certainly adequate to present many of the essential features. On the other
hand, it is by no means always easy to extend results from the Abelian
case to the non-Abelian one (indeed, such an extension is not always
possible... see 2. 15. 4 below). All the same, when the going would be-

come extra-difficult, or when complications look like mounting, we shall
refer the reader to Hewitt and Ross [1], §37 for details of the non-Abelian
case. It is in any case fair to say that, when it comes down to specific
examples, available knowledge on the non-Abelian case is very sparse
(almost lacunary, in fact). The Abelian case is already enough to handle!

2. 15. 1. Spectral subspaces. If f c L1(G) (or M(G)), we shall
here term spectrum of f, written sp(f), the set of U E G such that
f(U) * 0. (When G is Abelian, we shall always write r in place of G;
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see 2. 5. 4 above.) When G is non-Abelian, this concept of spectrum is
not the same as any of the left- or right-E-spectra defined in 2. 11. 4
above; there is complete accord when G is Abelian, however, as is
indicated in 2. 11. 5.

A function f E L1(G) (or measure c M(G)) is said to be S-spectral,
where S is a subset of G (or of r), if and only if sp(f) c S. If E
denotes (cf. 2.10.1) C(G), LP(G) or M(G), ES will denote the set of
f E E which are S-spectral. Plainly, ES is a closed linear subspace of
E (actually a closed ideal in E). These subspaces ES may be referred
to as spectral subspaces of E.

By a trigonometric series on G is meant a series

ZUEG
d(U). Tr[F(U)U(x)*]

where 41 E IIUEG End (6i°U); if G is Abelian, this boils down to the
form

EXEF c(X)X ;

where c is a complex-valued function on r. (In either case the series
are at present purely formal: convergence or summability are notions
to be defined with care.) If S c G, the series is termed S-spectral if
and only if 'IC(U) = 0 for every U E G\S.

It turns out that, if S is suitably sparse... lacunary (in the sense
of being broken by large gaps) appears to be the hallowed term... individual
elements of ES, and ES itself, exhibit properties strikingly different
from those of general elements of E, or of E itself; and S-spectral
trigonometric series behave quite differently from trigonometric series
in general. This is the phenomenon of lacunarity.

2.15. 2. Hadamard sets. The earliest instance of lacunarity with
some semblance of generality was probably that linked with the odd pro-
perties of power series in one complex variable which exhibited so-called
Hadamard gaps, i. e., series

00 nk
k=1 ckz
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in which the positive integers nk are such that

q = infknk+l ink > 1 . (2. 15. 1)

(Weierstrass' famous continuous nowhere differentiable function is, how-
ever, an even earlier instance of a trigonometric series exhibiting gaps
of the same sort.) Since the peculiar behaviour of such power series
centres around their behaviour on or near their circle of convergence
(which may without loss of generality be taken to be the unit circle), it
was entirely natural to pass from the power series to the trigonometric
series which formally represents its boundary values, and thence to two-
way infinite lacunary trigonometric series on the circle group T. Such

a series, say

E
n
eint

'
(2. 15. 2)

is said to exhibit Hadamard gaps, or to be a Hadamard series, if cn = 0
for every n E Z save perhaps for those of the form n = ±nk or 0,

where the positive integers nk satisfy (2. 15. 1). Likewise, a subset
S of Z which is contained in a set of the form 10 1 u l±nk:k=1, 2, ... }
where the nk are positive and satisfy (2. 15. 1), is usually termed a
Hadamard set.

Quite a number of special properties of S-spectral functions and
trigonometric series on T, valid whenever S is a Hadamard set of
integers, were discovered (by Sidon, F. Riesz and others) before there
was any attempt (mainly due to Banach) to try to characterise species
of lacunary subsets of Z directly in terms of the odd behaviour of S-
spectral functions or S-spectral subspaces (rather than in terms involving
arithmetical operations and concepts applying to integers, as in the case
of Hadamard sets). Once this was attempted, however, the ideas inevi-
tably extended to general orthogonal expansions and to Fourier series on
compact groups in particular. What is one of the best-known and strong-
est species of lacunarity specified in this way has come to be linked with
the name of Sidon. We will describe this concept in the general group
setting, bearing in mind that in this context Z is always to be identified
with the dual of T (recall Exercise 2. 2. 15).
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2. 15. 3. Sidon sets. A subset S of G is said to be a Sidon set
if and only if either of the following two equivalent conditions is fulfilled:

(s1) LS (G) (or CS(G)) S A(G), i. e. , f E E1(tl) whenever

f E LS (G) (or whenever f E CS(G));

(s2) there exists a number K = K(S) such that

Ilflll < K11fD

for every f e TS(G) (or CS(G), or LS (G)).
It turns out that S is Sidon if and only if it satisfies either of the following
further two conditions:

(s3) if ' E E°°(G), there exists X E M(G) such that

*(U) = i(U) for every U E S;

(s4) if ' E E0(G), there exists f E L1(G) such that 'Y(U) = f(U)
for every U E S.

For proofs of the equivalence of all these conditions, see Hewitt and Ross
[1], (37. 2); for the Abelian case, see also Edwards [3], 15. 1. 4.

In case G = T, all Hadamard subsets of Z are Sidon sets (see,
for example, Edwards [3], 15. 2. 4); the converse is false (loc. cit. ,
Exercise 15. 3).

Evidently, (s1) and (s2) express special properties of certain
S-spectral functions and S-spectral subspaces; they assert that certain
familiar norms assume unexpected properties, when they are restricted
to S-spectral functions (or S-spectral subspaces). On the other hand,
(s3) and (s4) are of a superficially quite different sort; they may be said
to express 'covering' or 'matching' properties. (Compare them with the
substance of 2. 14. 3.) The connections between these two apparently
different sorts of properties were first displayed by Banach, whose argu-
ments indicated a very general sort of 'principle of duality'; see the
discussion on pp. 525- 32 of Edwards [2].

Several other strange properties of Sidon sets may as well be
stated here:

(s') there exists a number K1 = K1(S) such that
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i

IIf IIp K1p2 IIf1I1

for every f c L 1(G) and every p E [1, co) ;

see Hewitt and Ross [1], (37. 25) and Edwards [3], 15. 3. 1 for the Abelian
case. A consequence of (s') is that, if S is a Sidon set, then every
S-spectral measure X is of the form X = µf for some f which belongs
to LP (G) for every finite p. (The formula X = µf means that
X(g) = f gfdp for every g E C(G); see 2. 1. 4(iii). This may be shown

to signify that X is absolutely continuous with respect to Haar measure
p and the Radon-Nikodym derivative of X with respect to µ is f. )

Further, taking G to be Abelian for simplicity,

(s") if E 12(S), there exists f E C(G) such that f(X) = (X)
for every X E S;

(sthere exists a number K1 = K1(S) such that, if f E LP(G)

and p > 1, then

XESIf(X)I2)2 K1pi2IIfIIp;

for proofs, see Edwards [3], 15. 3. 2 and 15. 3. 3.

2.15.4. General comments
(i) As has been said, each of the statements (s'), (s") and

(s"') is true of every Sidon set S. Presumably, no one of them implies
that S is Sidon, though the writer knows of no proof of this.

A set S S G such that (s') is true for a given p E (1, 00), the

number K1p2 being replaced by an unspecified number K' = K'(S, p),
is termed a set of type AP, or a A

P_
set; see Hewitt and Ross [1], (37. 6)

and Edwards [3], 15. 5. (In the latter reference, AP is defined for every
p E (0, 00).) There are matching properties (analogous to (s3) and (s4))
which serve to characterise Ap-sets; see the references just cited.
These Ap-sets form another recognised species of lacunary sets. A set
which is of type AP is also of type Aq for every q E (0, p).

In view of (s'), every Sidon set is a Ap-set for every finite p.
Examples are known (Edwards, Hewitt and Ross [1], [2]) of sets which are
Ap-sets for every finite p and which are not Sidon sets. However, it is
apparently unknown whether any such set satisfies (s'), inasmuch as the
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variation of !C'(S, p) with p may not be in accord with that specified
in (s').

(ii) If G is Abelian, every infinite subset of r contains an
infinite Sidon set. (The proof for G = T in Edwards [3], 15. 2. 5 can be
modified so as to apply to a general Abelian G; see Hewitt and Ross [1],
(37.18). ) This assertion is, however, not true for a general non-Abelian
compact G: in this case, indeed, it may happen that no infinite subset
of G is of type A4 (Hewitt and Ross [1], 37. 21. b)).

(iii) Using the positive part of (ii), one can show that, if G is
Abelian, the statements (s') and (s"') cannot be too much strengthened
without forcing S to be finite. More specifically, for no infinite set
S c t is it true either that

n p< 00 LS (G) C L°°(G)

or that

?IS EUq< lq(S) for every f E L1(G) ;

the first assertion is a special case of Edwards [3], Exercise 15. 15, and
the second is dealt with in Exercise 2. 15. 5 below.

On the other hand, (s') is enough to show that, if S is a Sidon
set, then

fG exp(c IfI2)dp < -

for every f E LS (G) and every real number c (Edwards [3], Exercise
15. 4; cf. Exercise 2. 15. 6 below). An S-spectral L1-function can there-
fore be but 'mildly unbounded', if S is Sidon.

(iv) The criteria (s1)-(s4) for Sidon sets (and the analogous
criteria for Ap-sets), although satisfactory in some respects, are very
difficult to apply in practice. If G is non-Abelian, examples of Sidon
or Ap-sets are very hard to come by. Greater variety exists when G is
Abelian, but in this case virtually every claim that a specified set is or
is not Sidon (or of type A

p
) is, if justifiable at all, justified by reference

to certain arithmetical or group-theoretical properties; cf. Edwards [3],
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15. 2. 2, 15. 2. 8, 15. 5. 5, Exercises 15. 7-15. 9 and Hewitt and Ross [1],
(37. 14) and (37. 27).

Looking a little more closely at the Abelian case, it turns out that
most properties of this type presently available are expressed in terms
of a function aS : N - N defined by

aS(n) = sup #(S n { X k : k = 0, 1, 2, ... , n-1 }) ,

where, for any finite set F, #F denotes the cardinal of F, and where
the supremum is taken with respect to all X E F and to all 4 E r,

* 1G. If G = T, aS(n) is the largest integer a such that some arith-
metic progression of n terms contains a elements of S. Sticking to

this special choice of G (though a good deal of what is to be said can be
extended to cover cases in which G is compact Abelian), one has (see
Edwards [3], loc. cit.) the following facts:

aS(n) = O(log n) if s is a Sidon set,

and one can have aS(n) > c. log n for some c > 0, every n and suitable
Sidon sets S;

aS(n) = 0(np/2) if S is a Ap-set and p > 2 ;

aS(n) < n for all sufficiently large n if S is of type Al

Moreover, if a : N I- N is such that a(n) = O(ne) for every
E > 0, one can construct sets S S Z which are of type A

p
for every

p E (0, -) and for which a9(n) > a(n) for an infinite of n E N. (The

writer does not know whether this last property is valid when G is any
compact Abelian group.) In this way one can obtain many sets S which
are of type Ap for every finite p and which are not Sidon sets.

Specialising yet more, consider the case in which G = T and S
has the form 101 U {fnk : k = 1, 2, ... }, where O< nl < n2 < ... .

The results cited in the last paragraph show, for example, that
nk - nh ? exp(c(k-h)) for some c = c(S) > 0 and every k > h, whenever
S is Sidon. In particular, the differences nk+1 - nk must be 'large on
the average' (though they may be no larger than 1 for an infinity of k). A
similar inference is valid when S is of type Ap and p > 2.
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There is some evidence that partition-type (or representation-
type) problems familiar in additive number theory would have some
bearing upon lacunarity; yet, as far as the writer is aware, nothing very
specific has been achieved in this direction (cf. Edwards [3], 15. 5. 5).

Thus, notwithstanding the very useful facts recited above, there
remains a great need for lots of well-chosen examples of Sidon sets and
of Ap-sets. (In this connection, see the relevant sections of Meyer [1]. )
The need is especially acute in case G is non-Abelian.

(v) The situation regarding convergence properties of S-spectral
trigonometric series is also unsatisfactory. On the one hand, there are
numerous results known which state strange convergence properties of
Hadamard series on the circle group (see, for example, Edwards [3],
Exercise 15. 17 and the references cited there); and also some extensions
of these to various species of lacunary trigonometric series on general
compact Abelian groups (though the writer thinks that few of these have
ever been published). On the other hand, there seem to be no really
satisfactory results of the converse type, i. e. , ones which assert that,
if every S-spectral series behaves in this or that strange fashion in rela-
tion to convergence, then S must be lacunary in some preassigned sense.

(vi) That there remain large gaps in the existing knowledge about
various species of lacunarity, is already quite plain. It is easy to make
this even plainer by means of one or two further questions which are still
unanswered.

Taking a fixed G, how does the set of Sidon sets (or the set of
sets for given p) behave in relation to finite unions? Drury [1] has

recently shown that the union of two Sidon sets is again a Sidon set; see
also Edwards [3], Exercise 15. 10 and Hewitt and Ross [1], (37. 21. a). It
is evident that the set of A-sets does not become enlarged when p
increases; does it decrease strictly when p increases?

Assuming G to be Abelian, how does the set of Sidon sets (or of
Ap-sets for given p) behave in relation to the group-theoretical product
of subsets of r? If G = T, it is known that on the one hand the sum of
two Hadamard sets of non-negative integers is of type AP for every
p < - (Meyer [1], p. 558); and on the other hand that the sum of two
infinite sets is never a Sidon set (Kahane [1], p. 61, Exercise 4).
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Any interested reader will be able to extend the list.

2. 15. 5. Exercise. Suppose that G is compact Abelian and that
S is a subset of r such that to every f E L1(G) corresponds a real
number q = q(f) > 1 for which

EXES If(X)I < ao

Prove that S is finite.
Hints: For q = 1, 2, ... define Pq : L1 (G) - [0, -] by

Pq(f) = (EX If(X) Iq)l/q. Apply the uniform boundedness principle
(Edwards [3], Appendix B. 2. 1) to the Pq to conclude that there exists
a positive integer q and a number m E (0, -) such that Pq(f) m II f II 1

for every f c L1(G). Using Appendix C. 1 loc. cit. , conclude that to
every I/ E 1q (r) which vanishes on I'\S corresponds g E L ..(G) such
that k= 1. Now use 2.15.3(s

1
) and 2. 15. 4(ii). ]

Note. The final exercise to follow provides the interested reader
with a lead-in to the study of so-called random series. It involves an
analogue of Sections 14. 2 and 14. 3 of Edwards [3], the differences being
that the role played there by the Rademacher functions is here taken over
by a lacunary set of characters of a suitable compact Abelian group K,
and the essential features of 14. 2. 1 and 14. 2. 2 being replaced by 2. 15. 3(s')

above.

For a deep and general study of random series, see Kahane [1].
Some aspects of the theory for general compact groups, due largely to
Helgason, Figa-Talamanca and Rider, appear in §36 of Hewitt and Ross [1].

2.15. 6. Exercise. Let G = {x } and K = {t } be infinite com-
pact Abelian groups with duals IF = { X } and S2 = { w } respectively.
Take c El 2(r) and choose elements Xn (n = 1, 2, ...) of r such that
c(X) = 0 for every X E IF different from every Xn; write cn for
c(Xn). Let n - wn be an injection of 11, 2, ... } into 62 such that
S= 1(0

n
: n = 1, 2, ... } is a Sidon subset of 1 (see 2. 15. 4(ii)). Write

sn(x, t) = r=1 crwr(t)Xr() .
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For each t E K, let ft denote an element of 2 (G) which is the

limit, in 2(G) and as n - -, of the sequence of functions
x "s

n
(x, t). Starting from 2. 15. 3(s'), applied with K in place of G,

and following the argument in Section 14. 3 of Edwards [3], show that
there is a µK negligible set E C T such that, for every t c K\E,

f exp(k aft 12)dpG < 00 (2.15.3)

for every k e (0, 00); a fortiori, ft c p(G) for every t E K\E and
every finite p.

Remarks. (i) By choosing K to be a denumerably infinite power
of the two-element multiplicative group {-1, 11, it can be arranged that
Ran w S { -1, 11 for every w E St; cf. Remark 2. 2.13 above.

(ii) Starting from an f E 2(G) such that f Us>2 S(G)

(see Exercise 2. 1. 16), and taking c = f, one obtains a function g (= ft
for any chosen t E K\E) such that g E .. P(G) for every finite p and
yet, for some choice of the ± signs, the trigonometric series

ExEr tg(x)x

fails to be the Fourier series of any function belonging to U s> 2 S(G).

(Other results of a similar type are to be found in Edwards [3], Chapter 14
and in the references cited there.) This has bearing upon another central
specialised topic in harmonic analysis, namely, the study of multipliers;
see loc. cit. Chapter 16.

(iii) Assume merely that c E 12(r) is given. Then, although

(2. 15. 3) is proven for every t E K\E for some E S K satisfying
AK (E) = 0 (and hence surely for uncountably many t E K), it is both
salutary and curious that (as far as the writer is aware) E remains
completely unspecified in all other respects. As a consequence, there
is no known procedure applicable when c is an arbitrarily given element
of 1 2(r) which will lead to a single specific t E K for which (2.15. 3)
may be guaranteed.

Concluding remarks. Readers who wish to pursue harmonic
analysis may find Edwards [3] a useful guide to topics not mentioned in
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these notes and to some books and research papers. To the books about

harmonic analysis listed in the bibliography of Edwards [3] should be
added Hewitt and Ross [1], Volume II (used throughout these notes time
and again), Bourbaki [2], [3], Reiter [1], Katznelson [1], Kahane [1]
and [2], Benedetto [1], Donoghue [1], Ehrenpreis [1]. As for research
papers, we can only suggest to the reader that he makes frequent use of
reviewing journals!

For historical remarks, see the notes at the ends of sections in
Hewitt and Ross [1], and the historical note attached to Bourbaki [2].
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Appendix A

Notation. a Hilbert space of f. d. d, scalar product
norm II. II ;

u, v: vectors (elements of
~ = End I the identity endomorphism of
A, B, ... , X: elements of a-;

s 1 )IIAII = sup I IIAa1I : 11 a11

a, (3, ... , A: scalars.

A. 0. Adjoints

A. 0. 1. If A E Ocf its (Hilbert) adjoint is the element A* of
defined by

(Aalb) = (aIA*b) (A. 0. 1)

for every a, b E.
A - A* is a conjugate-linear isometry of a2 onto itself such

that A** _ (A*)* = A and (AB)* = B*A*.

A. 0. 2. A is said to be self-adjoint (s. a. for short) if and only
if A* = A (the terms Hermitian and symmetric are sometimes used in
place of self-adjoint). When A is s. a. , (Aala) is real for every
a E ; if further (Aa I a) ? 0 for every a E , A is said to be
positive self-adjoint (p. s. a. ). This concept of positivity leads to a partial
order on the set of s. a. endomorphisms.

For every A E , AA* and A*A are p. s. a; and A= Al + iAZ,
where Al = i (A + A*) and AZ = Zi(A* - A) are s. a.
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A. 0. 3. An element U of e is termed unitary if and only if
it is invertible in &'and U-1 = U*. U (. ) denotes the set of unitary
U E Ci .

A. 0. 4. An element A of e is termed normal if and only if
AA* = A*A.

A. 0. 5. An (orthogonal) projector on (or in) is an element P
of e such that P is s. a. and indempotent (P2 = P). For any a E I
Pa is then the (orthogonal) projection of a onto the subspace
P~(J) = Ran P, i. e. , Pa is the unique u E cWsuch that a - u is
orthogonal to Ran P. The dimension of P is that of Ran P. Projectors
P and P' are said to be orthogonal if and only if Ran P and Ran P'
are orthogonal subspaces of , which is so if and only if PP' = 0 (in

which case P'P = 0 as well).

A.0.6. If A is s. a.,

11AII = sup { I(AaIa) I : IIaII < 11

Proof. Denote the sup on the right by m. Plainly m <_ 11 All. To

prove the reverse inequality, note that, since A is s. a. ,

Re (Aa I b) _ (Ac I c) - (Ad I d) ,

where c = z (a+b), d = i (a-b). Hence

IRe (Aalb)I <m(IIcII2 + IId1I2)

=Zm(IIa112+1IbII2)

Take non-zero vectors u and v and replace a and b in the above by

IIvII II u II -' eu and II u 1I IIvII - ly respectively, where 101 = 1 is chosen
so that 0(Au I v) = I (Au I v) I . It then appears that

I(Auly)I < Zm(IIvfI2 + IIuI12)

The same is evidently true if either or both of u, v is zero. Hence

(Au I v) I < m whenever u, v E have norms not greater than unity.
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Homogeneity then shows that I (Au I v) < m II M II II y II whenever
Taking v = Au, it follows that II Au II 2 <_ m 11 u II II All 11, and s o

II Au II <_ m JIM II for every u E , showing that II All s m.

A 0. 7. If A E e and A is a scalar, write

u, vE

M(A, a) = { a E Aa = Xa } .

Then M(A, N) is a linear subspace of dt termed the eigenmanifold or
spectral manifold of A associated with X. A is said to be an eigenvalue
of A if and only if M(A, A) # { 0 } ; and then every a E M(A, A) \ { 0 } is
termed an eigenvector of A associated with X. The set

Q(A)= { A E C : M(A, A) * { 0 }}

of eigenvalues of A is termed the spectrum of A.
If A is s. a. (resp. p. s. a. ), its spectrum is real (resp. real and

non-negative) and M(A, A) and M(A, A') are orthogonal whenever A # A'.
If U is unitary, every element of a(U) is unimodular.

A. 0. B. All the preceding definitions and results carry over when
is infinite dimensional, provided 'endomorphism of ' is replaced

throughout by 'continuous endomorphism ofand e is the set of
such continuous endomorphisms of rfe.

A. 1. The spectral theorem

A.1.1. By a spectral family is meant a family A E C I-' PA of
projectors on such that

(i) PPa=O if a*J3;
(ii) I; AECPA = I .

(It is a consequence of (i) that P # 0 for but a finite set of A, so that

the sum in (ii) is a finite one. )
If A E ' , such a spectral family is said to belong to A, or

to form a spectral resolution of A, if and only if

A = zAEC APA . (A. 1. 1)
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In view of (i), (A. 1. 1) can hold only if A is normal. Furthermore,
(A. 1. 1) determines the spectral family (Px) uniquely (whenever it
exists): Px must be the orthogonal projector of onto the eigen-

manifold M(A, A).

A. 1. 2. Spectral theorem. If A E O(if is normal, there exists
a (necessarily unique) spectral resolution (Px) of A.

For a proof, see Halmos [2], Sections 79, 80.
Note that the sum in (iii) can be restricted to Q(A) or to a(A) \ { 0 }

(since APx = 0 for every other x E C).

A. 1. 3. If A is normal and (PA) its spectral resolution, and if
f is any complex-valued function defined on Q(A), f(A) E Oci is defined
by

f (A) = ZAEa(A) f(x)Px ; (A. 1. 2)

properties (i)-(ii) in A. 1. 1 and (A. 1. 1) guarantee that this is a sensible
definition (inasmuch as it gives the right answer when f is a polynomial
function with complex coefficients). Since Q(A) is finite, it is easy to
see that f(A) is always a polynomial in A with complex coefficients
(even though f may not be a polynomial function). In particular, f (A)

is normal and commutes with A.

A. 1. 4. An important special case of A. 1. 3 is the definition of
A2 for every p. s. a. A: here a(A) S [0, -) and one takes f(x) = x2
for A real and non-negative, where xz is again real and non-negative.
Then A2 is p. s. a. and its square is A; these properties characterise
A2 (see Halmos [2], p. 166).

A. 1.5. For any A c , AA* is p. s. a. and I A I is under-
stood to be (AA*)'.

A. 1. 6. If A E , it is possible to write A = I AIU, where
U E U ( ). For a proof, see Halmos [2], Section 83, remark following
the proof of Theorem 1.
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A. 2. The trace function

A. 2. 1. There exists precisely one complex-valued linear
function Tr on e with the following properties:

(i) Tr is unitarily invariant, i. e. , Tr(U-1AU) = Tr A for
U E U ( ) and A E

(ii) Tr I = d .

Prod. As for uniqueness, (i) and (ii) show that Tr P = 1 for
every one-dimensional projector P. On the other hand, by A. 3. 3 below,
every A E is a linear combination of such projectors.

As for existence, there are various ways of exhibiting a function
Tr with the desired properties. One possibility appears as (2. 4. 4') of
the main text (i. e. , (A. 2. 1) below), though this is not very satisfying
because of its use of an arbitrary choice of ONB in 6 . Another way,

singularly appropriate for these notes, rests on the observation that
U () is a compact group: let m denote normalised invariant
measure on U (?) and note that invariance of m ensures that

fU (UAU-1 e l e)dm(U)

is the same for every choice of e E satisfying
invariance of m ensures that

e II = 1. This same

(iii) Tr : A '- dfU () (UAU-1e I e)dm(U)

has all the desired properties.
Whatever definition is used, the validity of the formula

Tr A= d 1 (Aei IQ (A. 2. 1)

d (5

1
in is a consequence offor every A E e and every ONB (ei)i-

uniqueness. (It can also be derived from (iii) above by using the ortho-
gonality relations for the group U (Y ). )

Remark Cf. Hewitt and Ross [1], (D. 16).

A. 2.2. From A. 2. 1(iii) and reflection-invariance of m (or
from (A. 2. 1)) it follows that Tr A* = (Tr A) (cf. (2. 2. 7)).
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Since Tr P = dim P (') for every projector P, the spectral
theorem A. 1. 2 shows that

TrA=EA.dimPA(') (A. 2. 1')

for every normal A, (PA) being the spectral resolution of A. Thence

(or otherwise) it follows that Tr A is real whenever A is s. a. , and that
Tr A > 0 whenever A is p. s. a. (with strict inequality unless A = 0).

From (A. 2. 1),

Tr AB = Tr BA (A. 2. 2)

and hence

Tr A 1 BA = Tr B ; (A. 2. 3)

cf. (2. 2. 5) and (2. 2. 6).

Applying (A. 2. 1) with AB in place of A and writing
Be. = E J . (Be 1 . I e

J
)e

J
., it follows that

Tr AB = E 1.,
j

(Ae l. I e.J)(BeJ. I e l.) . (A. 2. 4)

Changing B into B* and using (A. 0. 1):

Tr AB* = Ei, j (Aei 12j) (Bei ej) . (A. 2. 5)

An application of the Cauchy-Schwarz inequality leads from (A. 2. 5) to

Tr AB* I s (Tr AA*) 2 (Tr BB*) 2 . (A. 2. 6)

In particular,

Tr AU I < d2 (Tr AA*) 2 (A. 2. 7)

if U E U (M).
By (A. 2. 1) and (A. 2. 5) and the Cauchy-Schwarz inequality,

II A II (Tr AA*) 2 d 2 II A II . (A. 2.8)

Next,
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Tr ABB*A* II B II 2Tr AA* ,

Tr ABB*A* II A II 2Tr BB* ,

Tr ABB*A* Tr AA*. Tr BB* .

(A. 2. 9)

For L = II B II 2I - BB* is p. s. a. ; hence so also is ALA*; hence
Tr ALA* > 0, which leads at once to the first inequality. Also,

Tr BAA*B* = Tr BA(BA)* = Tr (BA)*BA = Tr A*B*BA < II B* II 2Tr A*A

(by what has just been proved), and the second inequality follows by
(A. 2. 2), the formula II B* II = II B II and an interchange of A and B. The

third ensues by appeal to (A. 2. 8).
It can be shown (see Hewitt and Ross [1], (D. 32)) that

Tr IA!=sup(ITrAXI:XE , IIXII :!:-: 1). (A. 2.10)

In particular,

I Tr AU I < Tr J A I (A. 2. 11)

when U E U(' It is a consequence of (A. 2. 10) that

Tr(AA*) 2 = Tr(A*A) 2 ; (A. 2. 12)

recall that I A I was defined in A. 1. 4 to be (AA*) 2, so that

(A*A) 2 = I A* I

A. 3. Some lemmas

A. 3. 1. Lemma.. (i) Let A E e be normal and suppose that
Tr Af(A) ? 0 (resp. = 0) for every polynomial function f such that
f(A) is p. s. a. Then A is p. s. a. (resp. =0).

(ii) If A E e and Tr(T*TA) > 0 for every T E , then
A is p. s. a.

Proof. (i) In terms of the spectral decomposition (A. 1. 1),

Af(A) = EM(A). PX

and so
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Tr Af(A) = EAf(A). dim PA ; (A. 3. 1)

the sum may be taken over those eigenvalues A * 0 of A. Then

dim PA (') > 0 for every X. The requirement that f(A) be p. s. a.
is equivalent to f(X) ? 0 for all A * 0 in the spectrum of A. If (A. 3. 1)

is > 0 (resp. 0) for all such f, it is clear that i ? 0 (resp. 0) for all
A in the spectrum of A, so that A is p. s. a. (resp. 0).

(ii) The given condition is equivalent to Tr(S*AS) ? 0 for every
s E . Using (A. 2. 1) with S and the ei suitably chosen, this entails
that (Aa I a) ? 0 for every a E . Replacing a by a_ + xb and
letting A vary, one concludes that (Aa I b) = (Ab I = (A*a I b) for every

a, b E Hence A = A* and A is seen to be p. s. a.

A. 3.2. Lemma. Let A E be normal. Then A is a finite
linear combination of one-dimensional projectors P, each of which is of
the form P = c. PA = c. AP (c a non-zero scalar); these projectors may
be chosen to be orthogonal in pairs.

Proof. Use the spectral resolution (A. 1. 1) of A, noting that the
sum may be confined to those A * 0 in the spectrum of A, and that

PAA = APA = APR .

Each P is a sum of finitely many 1-dimensional projectors P (corres-
ponding to a choice of orthonormal base for PA (sr)) and then the P1
are mutually orthogonal and PiP = PPi = PI. Hence

PEA = P. APx = XPX

and likewise AP1 = AP'. Since A * 0, each PI has the stated properties.
There is a weakened form of A. 3. 2 which applies to arbitrary

endomorphisms, namely

A-3.3. Lemma. Every endomorphism is a finite linear combina-
tion of projectors.

Proof. This is true for any normal endomorphism (Lemma A. 3. 2)

170



hence in particular of any s. a. endomorphism. On the other hand, every
A E is a linear combination of s. a. endomorphisms (see A. 0. 2).

A. 3.4. Lemma. Let A E . The set of right (resp. left)
multiples of A in is closed in

Proof. Finite-dimensional (linear) subspaces are closed.

A. 3.5. Lemma. If T E X , T # 0, every endomorphism of

'can be expressed in the form Ed A TB with A., B. E ; in
j=1 j j- J J

other words, the only two-sided ideals in are { 0 } and

Proof. We can choose an orthonormal base (ei) for such

that a= Tel # 0. Then choose A. E such that A.a = e. for
1 <_ j <_ d. Finally choose Bj Ee so that

B
J
e

1
=b

1J
..e

1
(1-i,j _ d).'--

Then

(EATB)ei = (AT)oATel =A
i i i J i ij2l = i - ia = ei

for 1 s i s d. Accordingly EJAJTBJ = I, and the result follows. (As is

seen, one can even assume that the Aj - or the Bi - shall be fixed in
advance in a fashion depending only on T, not on the endomorphism to be
represented.)

A. 3.6. Lemma. Let P be a 1-dimensional projector on
and let A E ' be such that PA * 0 (resp. AP # 0). For every
B E e there exists T E such that PB = PAT (resp. BP = TAP).

Proof. The second part follows from the first by taking adjoints
(AP * 0 signifies that PA* * 0), so we deal with the former only. Now P
has the form Px = (x a)a where 11 = 1, and PA * 0 shows that
A*a # 0. Accordingly, T* can be chosen to satisfy T*A*a = B*a. Then

PATx = (ATx l a)a = (x I T*A*a)a = (x J B*a)a = (Bx a)a = PBx for all x,

i. e. PB = PAT.
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A. 3. 7. Lemma. If A E Ocf2 , then A = EiAPi, where the P.
are mutually orthogonal one-dimensional projectors of the form
P. = X.A for some X. e

1 1 1

Proof. Let Z = Ker A and take an ONB (ei) for such
that (e.). is a base for Z and (ei)i s a base for the orthogonalccomplement Z of Z. Let Pi be the projection of f onto the sub-
space generated by ei. If i > s, Z S Ker P. and so Pi = X

i
A for

some Xi e e . (For example, define X. as follows: if u E Ran A,
u = Av for some v, and P.v depends only on u; put X.u = P1.v; define

1^

X. on the orthogonal complement (Ran A)1
1 ^

in any way so as to be linear.)
For any u,

Al! = I ei)Aei = Zi> s(u I ei)Aei

Ei> sAPiu

and so A = E. sAPi

A. 4. Certain norms on

For all the details connected with the following summary, see
Hewitt and Ross [1], Appendix (D. 35) ff.

A. 4. 1. Symmetric norms on Rd. A norm 0 on Rd is termed
symmetric if and only if it satisfies the following two conditions:

$( 61x1, ... , 6dxd) _ $(x1, ... xd)
(A. 4. 1)

$(xIT(1), ... xiT(d)) = $(x1, ..., xd)

for every (x1, ... , x
d

) ERd' every choice of the 6 i E 1-1, 11, and
every permutation a of 11, 2, ... , d 1.

If 0 is such a norm, the conjugate norm is defined by

Oyl, ... , yd) = sup yd
i=1 xiyi (A. 4.2)

for every (y1, ... , yd) c Rd, the supremum being taken with respect to

all (x1, ..., xd) ERd satisfying ¢(x1, ..., xd) s 1.
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$p

The conjugate of the conjugate of 0 is 0 itself.
To each p E [1, -] corresponds an important symmetric norm

on Rd, defined as follows

p
1

Ixilp)1/p if p # 00(Yd
$(x)

maxl<i<d Ixi I if p =
(A. 4. 3)

The conjugate of 0p is 0p where 1/p + 1/p' = 1. (The usual conven-

tion, that p = - if and only if p' = 1 and vice versa, is adopted here. )

A. 4. 2. Norms on e . Corresponding to each symmetric norm
on Rd is a norm

II II 0 on , defined by the formula

I X II _ $p,i
, ... , xd) , (A. 4.4)

for every X E e , where A1, ... , Xd denote the eigenvalues of XX*,
repeated each according to its multiplicity. More precisely, suppose
that C E C I-' PC is the spectral resolution of XX* (cf. A. 1. 1 and
A. 1. 2 above), that i -Ci is an injection of 11, 2, ..., r) onto

u(XX*), and that di is the dimension of P
Ci

( Y"); then

d1+... +dr=d and we may take for 1<i<d1,
for d1 < i < d1 + d2' ... , Ai = C for d1 + ... + dr-1 < i <_ d.

It then turns out that for every X E F

IXII
0

= Tr IXI ,

IXII 02 = (Tr XX*) 2 ,

(A. 4.5)
IIXII ,

IIUII0 = dl/p if U EU
p

Of the many properties of the norms II . II 0
on e we shall need

only the following, valid for every A, B E e

IIAII0=sup{ITrABI : IIBII1P<1} , (A.4.6)

where 4' is the conjugate of 0. In particular,
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ITr ABI < IIAII0IIBII ;

when 0 = O1, this generalises (A. 2. 11), and when
(A. 2. 6). Furthermore

(A. 4. 7)

0 = 02 it generalises

IIAII0.= sup{ IIABII0 : IIBII0 < 11 . (A.4.8)
p p

For proofs of these results, see Hewitt and Ross [1], (D. 39) and (D. 54).
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Appendix B

B. 1. Supplement to 2. 6. 1-2. 6. 4

The proof of (2. 6. 1) is indicated in the text.
To obtain (2. 6. 3) from (2. 6. 1), we change x into x 1, so getting

f U(x)*TU(x)dx = IU. Tr T/d(U) .

If (ui) is an orthonormal base for U, this means that

f (U(x)*TU(x)ui Iuj)dx = b..Tr T/d(U)

or

f (TU(x)uilU(x)uj)dx= O..Tr T/d(U)

U(x)ui = Ea(U(x)ui I ua)ua = Ea uai(x)ua

TU(x)ui -Eau«i(x)Tua ,

U(x)uj = E0 u0iWx 1a

we obtain

EaEa f uaiuR.dx. (Tualua) = O../d(U). Ey(Tuylu)

Since T is arbitrary, so are the numbers (Tua I uR), and it follows that

f uai uP.dx = 6ij 6aa/d(U)

which is equivalent to (2. 6. 3).
The derivation of (2. 6. 4) from (2. 6. 2) is similar.

To derive (2. 6. 9) we proceed as follows. (The proof of (2. 6. 7) is

similar and somewhat easier.) Replacing T by FTG* in (2. 6. 1) we get

175



f U(x)FTG*U(x)*dx = IU. Tr(FTG*)/d(U) = y(T)IU, say.

Write F(x) = U(x)F, G(x) = U(x)G, so that

f (F(x)TG(x)*ui luj)dx = 6ijy(T) .

Make expansions of G(x)*ui and F(x)*uj in terms of the ua

EE f (F(x)uQ Iuj)(G(x)ua ui)dx. (Tua lua) = Sijy(T) . (B. 1. 1)
a13

On the other hand

y(T) = d(U)- 1 Tr(FTG*) = d(U)-1 E (FTG*u Iu_) ;

Y

~'Y

if we make expansions of G*u
Y

, TG*u
Y

and F*uy in terms of the u's,
substitution leads to

a 0)
Y

d(U)-1(Fua I uy) (Gua I uy). (B. 1. 2)y(T) = as (TI u

Since T is arbitrary, (B. 1. 1) and (B. 1. 2) lead to

f (F(x)u0Iu.)(G(x)ua I ui)dx = 6ijd(U)-1 E (Fun Iu(Gua u_) .
Y Y

In this we take a = i and /3 = j and then sum over both: the result is

f Tr F (x). TrG x dx = d(U) EE (Fuk u_)(Guk u_) .
ky y y

By making expansions, it is verified that the sum on the right is precisely
Tr(FG*) - see Appendix A, formula (A. 2. 5). Thus we get

f Tr F (x). TrG(x)dx = d(U)-1Tr(FG*) ,

which is equivalent to (2. 6.9).
Finally, the proof of (2. 6.12) comes at once from the expansion

h(x) = d(U) EE (Hui Iuj)uij(x)
ij

and (2. 6. 3) and (2. 6. 4): these show that

(h(V)vh I vk) = d(U) EE f uji. vkhdx. (hui I u.) = 0
ij
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and hence h(V) = 0 for V *U; and also, using (2. 6. 3),

(h(U)uh I V = d(U) EE (Hui I u)) J u) - dx
ij

= (Huh I uk) ,

so that h(U) = H.

B. 2. Supplement to 2. 7. 1.

Note that

u..() = (uiIU(x)uj) = (U (x- 1)u.Iu,) = uJi(x'1)

so that u.. = l... Also
1j Jl

uii(xy) = (ui I U(xY)ui) = (U(x
1)ui

U(Y)%)

= E(U(X 1)uiImi) (ujIU(Y)ui)
i

and so

uii(xY) = Ei uij(Y)uji(x) .

Hence

iE) f f(Y)ui y)dY = Ei JZ Y

= Ei JET f(Y-1)uij(x)uji(Y)dY = Ei Jf(y 1)uii(Yx)dy

= J f(Y-1) XU(Yx)dY = J f(Y)XU(Y 1x)dy

= f * XU (x) .

Again (Appendix A, formula (A. 2. 5)):

Tr f(U)f(U)* = EiE)I(f (U)u.Iu))IZ

and

(f (U)ui Iu,) = f f(x). (U(x)uiIuj )dx

= J f(x). u x)dx ,
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so that

E iE i
( f f(x)u..(x)dx I z = Tr f(U)f(U)* .
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