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Preface

This book evolved from a series of lectures at the University of Sussex and is
designed to provide an integrated course in real and complex analysis for under-
graduates who have taken first steps in real analysis; the intention is to exhibit
something of the interplay between these and other areas of mathematical study.
The prerequisites are modest: it would be completely sufficient to have followed
preliminary courses in real analysis (involving e, d ideas) and algebraic structures.
There are many exercises, ranging from the elementary to the quite demanding.
To establish notation and terminology, some prerequisites are reviewed in the
appendices.

A persistent theme in the text is the search for a primitive. In the case of real
analysis, the Riemann integral offers one route in this quest and, with an eye to
complex analysis, the improper Riemann integral is an extension consonant with
the demands of contour integrals.

Chapter 1 deals with the Riemann theory of integration on the real line using
the simple and elegant approach due to Darboux that quickly leads to the basic
properties of the integral together with means of evaluation and estimation. It also
enables direct, elementary proofs to be given of the results that if f is
Riemann-integrable, then (i) the set of its points of continuity is dense in the
domain of f, and (ii) g � f is Riemann-integrable if g is continuous. A character-
ization of the class of Riemann-integrable functions, from which these last two
assertions follow, is postponed to the next chapter as it is technically more chal-
lenging. The Riemann integral is confined to bounded functions defined on closed
bounded intervals and requires extension to cope with the demands of later
chapters. To allow for some relaxation of these constraints, the improper Riemann
integral is introduced. We indicate the limitations of the Riemann integral which
led to the development of Lebesgue’s integral (which itself would require slight
extension for use in the later chapters), of which the former is a special case.

Metric spaces form the theme of Chap. 2; the earlier one provides a wealth of
examples of such objects. Detailed coverage is given of the core properties of
completeness, compactness, connectedness and simple connectedness: this last
property is highlighted. While it has become more common in recent times to
present such matters in the context of normed linear spaces, we believe it is
important for the student to realize that linear structure is irrelevant to many of the
results. Regarding completeness, Cantor’s characterization is established as are
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Banach’s contraction mapping theorem and the Baire category theorem, the last
leading to a proof of existence of a continuous, nowhere-differentiable function
and also to the fact that the pointwise limit of a sequence of continuous real-valued
functions on a complete metric space is continuous on a dense subset of that space.
Compactness and connectedness are motivated in a variety of ways, the definitions
chosen being intrinsic and applicable in more general contexts. Among the appli-
cations of compactness are differentiation under the integral sign, Peano’s theorem
on the existence of solutions of initial-value problems for certain nonlinear ordinary
differential equations, and the characterization of Riemann-integrable functions as
functions that are bounded and continuous almost everywhere. With the next
chapter in mind, we conclude with the consideration of simply connected spaces.
Various forms of homotopy are given especially detailed coverage, strenuous
efforts being made to give complete proofs. We show that a metric space is simply
connected if and only if it is path-connected and its fundamental group at any (and
hence every) point of the space has only one element.

In Chap. 3, we reach our main goal, the theory of complex analysis, surely one
of the most wonderful and fertile parts of mathematics. After some basic defini-
tions and results, we deal with power series, branches of the argument and loga-
rithm, continuous logarithms of continuous zero-free functions, the winding
number for arbitrary paths in the plane and its invariance under free homotopy, and
integrals over contours. Ample justification for the introduction of the winding
number is provided by the demands of the proof of the Jordan curve theorem given
later (for which the winding number is essential and the index is inadequate as it is
undefined for general paths having no smoothness), but in addition we believe that
there is a computational and pedagogical advantage in having this concept
available. The homology version of Cauchy’s theorem is derived by means of the
elegant approach of Dixon [6]. Rudin [15] was one of the first to draw attention to
the importance of Dixon’s contribution and the organisation of complex analysis
consequent upon it. Rather than appeal to an interchange of the order of inte-
gration, as Rudin does, we follow Dixon’s original treatment and use differenti-
ation under the integral sign. This leads to the residue theorem, from which flow
such major theoretical results as Rouché’s theorem and the open mapping and
inverse function theorems; further, at a practical and technical level it is valuable
in the evaluation of definite integrals. The penultimate section contains a result
of exceptional aesthetic appeal which establishes, for connected open sets G , C
(the space of all complex numbers) the equivalence of various statements of
an analytic, algebraic and topological character. In particular, it shows that every
function analytic on G has a primitive if and only if G is simply connected.
In the course of the proof, such famous results as Montel’s theorem and the
Riemann mapping theorem are obtained. The final section reinforces the links
between analysis and topology. Further study of topics introduced earlier, namely
continuous logarithms of continuous zero-free functions and the winding number
of a path, leads in a very natural way to a proof of the celebrated Jordan curve
theorem. For this development of the theory, we acknowledge a major debt to the
book [3] by Burckel. A beautiful result due to Borsuk concerning any compact set
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K , C emerges in the course of the proof of the Jordan curve theorem: CnK is
connected if and only if every continuous function f : K ! Cn 0f g has a
continuous logarithm.

Our exposition covers aspects of classical analysis due to the efforts of
generations of mathematicians. There is no claim to originality save for the
selection and presentation of material. We have been greatly influenced by the
scholarly and inspirational books by Burckel [3], Remmert [13] and Rudin [15],
and hope readers of the present book will go on to consult these more advanced
and wider-ranging works.

It is a pleasure to acknowledge our great indebtedness to Dorothee Haroske for
her immense help and patience. Finally, we express our appreciation to Joerg Sixt
and his staff at the London Office of Springer-Verlag for constant encouragement
and advice.

Preface vii
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Chapter 1
The Riemann Integral

In this chapter we give an account of the Riemann integral for real-valued functions
defined on intervals of the real line. This integral is of historic interest, has consider-
able intuitive appeal and possesses great practical value. For economy of presentation
we use the approach of Darboux rather than that originally employed by Riemann.

Hidden from immediate view but at the heart of the chapter lies the sense in which
integration is the inverse of differentiation. For the class of continuous functions the
Riemann integral provides an affirmative answer to the question “Given f : [a, b] →
R, where a and b are real and a < b, does there exist F : [a, b] → R such that
F ′ = f ?” With somewhat greater effort, development of the Lebesgue integral
would allow us to enlarge this class. However, for the topics covered in this text the
answer provided suffices; in particular, it is entirely adequate in the resolution of an
analogous question asked in the context of complex analysis, a question which is the
focus of our final chapter.

1.1 Basic Definitions and Results

Definition 1.1.1 Let a and b be real numbers, with a < b. Any finite set of points
x0, x1, . . . , xn with a = x0 < x1 < ... < xn = b is called a partition of [a, b]
and will often be denoted by P; we put Δx j = x j − x j−1 ( j = 1, . . . , n) and call
w(P) := max

{
Δx j : j = 1, . . . , n

}
the width of P . The family of all partitions

of [a, b] is denoted by P[a, b], or simply by P if no ambiguity is possible. Let
B[a, b] (or simplyB) be the family of all bounded functions f : [a, b] → R; given
any f ∈ B and any P ∈ P , put

M j = sup
{

f (x) : x j−1 ≤ x ≤ x j
}
, m j = inf

{
f (x) : x j−1 ≤ x ≤ x j

}

for j = 1, . . . , n and call

R. H. Dyer and D. E. Edmunds, From Real to Complex Analysis, 1
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2 1 The Riemann Integral

U (P, f ) :=
n∑

j=1

M jΔx j , L(P, f ) :=
n∑

j=1

m jΔx j

the upper and lower sums of f with respect to P , respectively.

Note that U (P, f ) is the sum of the signed areas of n rectangles, the j th of which
has base Δx j and height M j ; L(P, f ) is the same except that the j th rectangle has
height m j . These quantities are familiar to anyone who has tried to estimate the area
of the set of points lying between the curve y = f (x) and the lines x = a, x = b and
y = 0 by drawing the graph of f on squared paper: U (P, f ) arises from consistent
over-estimation of the area by rectangles above the graph, while L(P, f ) comes from
a corresponding lower estimation by rectangles below the graph.

Example 1.1.2

(i) Let f : [a, b] → R be monotonic increasing and let

P = {a = x0, x1, . . . , xn = b} be a partition of [a, b]. Then

U (P, f ) :=
n∑

j=1

f (x j )Δx j , L(P, f ) :=
n∑

j=1

f (x j−1)Δx j .

(ii) Let f : [a, b] → R be defined by

f (x) =
{
1, x rational,

−1, x irrational.

Then given any partition P of [a, b], M j = 1 and m j = −1 ( j = 1, . . . , n)

since each interval [x j−1, x j ] contains both rational and irrational points. Hence

U (P, f ) = b − a, L(P, f ) = −(b − a).

Now let f ∈ B[a, b]; that is, let f be a bounded, real-valued function on [a, b].
Since f is bounded, there are numbers m, M ∈ R such that for all x ∈ [a, b],
m ≤ f (x) ≤ M . Hence for all P ∈ P[a, b],

m(b − a) =
n∑

j=1

mΔx j ≤
n∑

j=1

m jΔx j ≤
n∑

j=1

M jΔx j ≤
n∑

j=1

MΔx j = M(b − a);

that is,
m(b − a) ≤ L(P, f ) ≤ U (P, f ) ≤ M(b − a).



1.1 Basic Definitions and Results 3

Thus {U (P, f ) : P ∈ P} and {L(P, f ) : P ∈ P} are bounded sets of real numbers;
consequently they have a finite infimum and supremum.

Definition 1.1.3 Let f ∈ B[a, b]. The upper and lower integrals of f over [a, b]
are

∫ b

a
f := inf {U (P, f ) : P ∈ P} ,

∫ b

a
f := sup {L(P, f ) : P ∈ P} ,

respectively. If these upper and lower integrals are equal, we say that f is Riemann-
integrable over [a, b] and write

∫ b

a
f =

∫ b

a
f (=

∫ b

a
f );

∫ b
a f , often written

∫ b
a f (x)dx , is called the Riemann integral of f over [a, b].

The family of all functions which are Riemann-integrable over [a, b] is denoted by
R[a, b], or simply by R.

Example 1.1.4

(i) Let c ∈ R and let f : [a, b] → R be defined by f (x) = c for all x ∈ [a, b].
Then for all P ∈ P[a, b], U (P, f ) = L(P, f ) = c(b − a); hence ∫ b

a f =
∫ b

a f = c(b − a) and so f ∈ R[a, b] with ∫ b
a f = c(b − a).

(ii) For the function f of Example 1.1.2 (ii), evidently
∫ b

a f = b − a and
∫ b

a f :=
−(b − a), so that f /∈ R[a, b]. However, example (i) above shows that despite
this, | f | ∈ R[a, b].

We now proceed to investigate the familyR[a, b] and to develop various proper-
ties of the integral.

Definition 1.1.5 Given any two partitions P, Q of [a, b], Q is called a refinement
of P if P ⊂ Q; that is, if every point of P is a point of Q. If P1, P2 ∈ P[a, b], then
Q := P1 ∪ P2 is called the common refinement of P1 and P2.

Lemma 1.1.6 Let f ∈ B[a, b], let K ∈ R be such that | f (x)| ≤ K whenever
x ∈ [a, b], and let P ∈ P[a, b]. If Q ∈ P[a, b] and Q is a refinement of P with
exactly k points in addition to those of P, then

(i) 0 ≤ U (P, f ) − U (Q, f ) ≤ 2kK w(P)

and

(ii) 0 ≤ L(Q, f ) − L(P, f ) ≤ 2kK w(P).
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Proof It suffices to prove (i), since (ii) follows on the observation that

U (P,− f ) = −L(P, f )

(see Exercise 1.1.10/3).
The proof of (i) when k = 1 is almost trivial. Let P = {x0, x1, . . . , xn}, let

x∗ ∈ (x j−1, x j ) for some j ∈ {1, 2, . . . , n} and let Q = P ∪ {x∗}. Let

M∗
j = sup

{
f (x) : x j−1 ≤ x ≤ x∗

}
, M∗∗

j = sup
{

f (x) : x∗ ≤ x ≤ x j
} ;

evidently M∗
j , M∗∗

j ≤ M j . Now

U (P, f ) − U (Q, f ) = (M j − M∗
j )(x∗ − x j−1) + (M j − M∗∗

j )(x j − x∗),

since the other terms of the upper sums cancel. Hence

0 ≤ U (P, f ) − U (Q, f ) ≤ 2K w(P).

Now suppose (i) is false for some k ∈ N. Then there is a least k0 ∈ N, necessarily
greater than 1, and an associated Q0 ∈ P[a, b] with precisely k0 points in addition
to those of P , such that

U (P, f ) − U (Q0, f ) /∈ [0, 2k0K w(P)]. (1.1.1)

Delete one point from Q0 which does not lie in P and let Q1 be the resulting partition
of [a, b]. By what has already been proved,

0 ≤ U (Q1, f ) − U (Q0, f ) ≤ 2K w(Q1) ≤ 2K w(P).

Further, since (i) holds for k = k0 − 1,

0 ≤ U (P, f ) − U (Q1, f ) ≤ 2(k0 − 1)K w(P).

Addition shows that

0 ≤ U (P, f ) − U (Q0, f ) ≤ 2k0K w(P),

which contradicts (1.1.1) and proves that (i) is true for all k. ⇐

Lemma 1.1.6 is very useful: it shows that the upper and lower sums are decreasing

and increasing respectively on refinement of a partition, and enables the changes in
these sums on refinement to be estimated. It plays a key rôle in the proof of the
following theorem due to Darboux, a theorem which is a cornerstone of the theory
as we shall develop it.
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Theorem 1.1.7 Let f ∈ B[a, b] and let (Pn) be a sequence in P[a, b] such that
limn→∞ w(Pn) = 0. Then

lim
n→∞ U (Pn, f ) =

∫ b

a
f, lim

n→∞ L(Pn, f ) =
∫ b

a
f.

In particular, f ∈ R[a, b] if, and only if, limn→∞ {U (Pn, f ) − L(Pn, f )} = 0.

Proof Let K ∈ R be such that | f (x)| < K for all x ∈ [a, b], and let ε > 0. By
definition of the upper integral, there exists Q ∈ P[a, b] such that

U (Q, f ) <

∫ b

a
f + ε/2.

Let Q have exactly k points. For each n ∈ N, Pn ∪ Q is a refinement of Pn with at
most k additional points; thus by Lemma 1.1.6,

U (Pn, f ) ≤ 2kK w(Pn) + U (Pn ∪ Q, f )

≤ 2kK w(Pn) + U (Q, f )

≤ 2kK w(Pn) +
∫ b

a
f + ε/2.

Now, by hypothesis, there exists N ∈ N such that w(Pn) < ε/(4kK ) whenever
n ≥ N . It follows that, for n ≥ N , we have

0 ≤ U (Pn, f ) −
∫ b

a
f < ε.

Hence limn→∞ U (Pn, f ) = ∫ b
a f . Since

∫ b
a (− f ) = −∫ b

a f , the rest follows
directly. ⇐


Corollary 1.1.8 For all f ∈ B[a, b], ∫ b
a f ≤ ∫ b

a f .

Proof Let (Pn) be a sequence inP[a, b] such that w(Pn) → 0. By Theorem 1.1.7,

∫ b

a
f = lim

n→∞ L(Pn, f ) ≤ lim
n→∞ U (Pn, f ) =

∫ b

a
f.

⇐

The power of Theorem 1.1.7 is considerable. We use it in the next three sections

to exhibit large classes of integrable functions, to give a rapid exposition of the
basic properties of the integrals defined above, and to provide, at least in principle, a
technique for their evaluation. Before engaging in such matters, however, we prove
an equivalent version of it.
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Theorem 1.1.9 Let f ∈ B[a, b]. Then

lim
w(P)→0

U (P, f ) =
∫ b

a
f ;

that is, given any ε > 0, there exists δ > 0 such that 0 ≤ U (P, f ) − ∫ b
a f < ε

if P ∈ P[a, b] and w(P) < δ. Moreover,

lim
w(P)→0

L(P, f ) =
∫ b

a
f.

Proof To obtain a contradiction suppose that, for some f ∈ B[a, b],

lim
w(P)→0

U (P, f ) 
=
∫ b

a
f.

Then an ε > 0 exists such that, for each n ∈ N, there is a Pn ∈ P[a, b] with the
properties

(i) w(Pn) < 1/n, and (ii) U (Pn, f ) >

∫ b

a
f + ε.

The first property shows that the sequence (w(Pn)) converges to zero; the second, in
conjunction with Theorem 1.1.7, that

∫ b

a
f = lim

n→∞ U (Pn, f ) ≥
∫ b

a
f + ε,

which is impossible for a positive ε. ⇐

Exercise 1.1.10

1. Let A and B be non-empty, bounded subsets of R and let λ ∈ R. Put

A + B = {a + b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A} .

Show that

(i) sup(A + B) = sup A + sup B,

(ii) inf(A + B) = inf A + inf B,

(iii) sup(λA) =
{

λ sup A if λ ≥ 0,
λ inf A if λ < 0,

(iv) inf(λA) =
{

λ inf A if λ ≥ 0,
λ sup A if λ < 0.
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2. Let A be a non-empty subset of a set X and let f : X → R be bounded. The
oscillation of f over A, osc( f ; A), is defined to be

sup {| f (x) − f (y)| : x, y ∈ A} .

Prove that

osc( f ; A) = sup { f (x) : x ∈ A} − inf { f (x) : x ∈ A} .

3. Let f : [a, b] → R be bounded and let P ∈ P[a, b]. Prove that

U (P,− f ) = −L(P, f ) and L(P,− f ) = −U (P, f ).

4. Using merely the definition of integrability, show that the function f from [0, 1]
to R defined by f (t) = t2 (0 ≤ t ≤ 1) is Riemann-integrable over [0, 1] and that

∫ 1

0
f = 1/3.

[Show that (i) if P ∈ P[0, 1] then U (P, f ) ≥ 1/3 ≥ L(P, f ); (ii) if Pn is that
partition of [0, 1] which divides it into n subintervals of equal length, then

U (Pn, f ) = (n + 1)(2n + 1)/6n2 and L(Pn, f ) = (n − 1)(2n − 1)/6n2.]

5. Suppose a < b and let f : [a, b] → R be bounded and such that f (t) > 0 for

all t ∈ [a, b]. Prove that ∫ b
a f > 0.

[A subinterval [c, d] of [a, b], with c < d, and an ε > 0 exist such that sup
{

f (t) :
α ≤ t ≤ β

} ≥ ε whenever c ≤ α < β ≤ d.]
6. (Riemann’s criterion for integrability.) Let f ∈ B[a, b]. Then f ∈ R[a, b] if,

and only if, given any ε > 0, there exists P ∈ P[a, b] such that

U (P, f ) − L(P, f ) < ε.

7. Let f : [a, b] → R. Prove that f ∈ R[a, b] if, and only if, there exists a real

number A
(
= ∫ b

a f
)
with the following property: for each ε > 0, there exists

δ > 0 such that
∣
∣
∣
∣
∣
∣
A −

n∑

j=1

f (ξ j )Δx j

∣
∣
∣
∣
∣
∣
< ε

whenever P = {x0, x1, . . . , xn} ∈ P[a, b], w(P) < δ and ξ j ∈ [x j−1, x j ] for
each j ∈ {1, 2, . . . , n}.

8. Let f : [0, 1] → R be defined by f (x) = √
x (0 ≤ x ≤ 1). Let
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Pn =
{

0,

(
1

n

)2

,

(
2

n

)2

, . . . ,

(
n − 1

n

)2

, 1

}

.

Calculate w(Pn) and show that limn→∞ w(Pn) = 0. Determine L( f, Pn) and
U ( f, Pn), and show that f is Riemann-integrable over [0, 1] and that

∫ 1

0

√
xdx = 2/3.

1.2 Classes of Integrable Functions

Clearly, the utility of any theory of integration depends on commonly encountered
types of function having an integral under that theory. Continuous real-valued func-
tions defined on closed bounded intervals are of such a type. Beginning with some
preliminary discussion of continuity, we show that if f : [a, b] → R is continuous
then f ∈ R[a, b].
Definition 1.2.1 Let I be a non-empty interval inR and let f : I → R.The function
f is said to be continuous at x0 ∈ I if, given any ε > 0, there exists δ > 0 such that
if x ∈ I and |x0 − x | < δ, then | f (x) − f (x0)| < ε; it is said to be continuous on
I if it is continuous at each point of I . We say that f is uniformly continuous on
I if given any ε > 0, there exists δ > 0 such that if x, y ∈ I and |x − y| < δ, then
| f (x) − f (y)| < ε.

Note that the essential difference between continuity and uniform continuity on
I is that while for uniform continuity the number δ depends only on ε, in the case of
continuity δ depends on ε and on x0: there may be no single δ which will achieve
the desired smallness of | f (x) − f (x0)| for all x0 ∈ I . Although uniform conti-
nuity on I evidently implies continuity on I , in general the converse is false. The
following examples may help to understand the distinction between these two forms
of continuity.

Example 1.2.2

(i) Let I = [0, 1] and suppose that f (x) = x2 for all x ∈ I . Then f is uniformly
continuous on I , for if ε > 0 then

| f (x) − f (y)| = |(x + y)(x − y)| ≤ 2 |x − y| < ε

if x, y ∈ I and |x − y| < ε/2. Hence we may take δ = ε/2.
(ii) Let I = [0,∞) and again suppose that f (x) = x2 for all x ∈ I . Then f is

continuous on I : to see this let x0 ∈ I and ε > 0. Given any δ > 0 and any
x ∈ I such that |x − x0| < δ it follows that x + x0 < 2x0 + δ, and hence
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| f (x) − f (x0)| = |(x − x0)(x + x0)| < δ(2x0 + δ).

The choice of any positive number δ less than η := (x20 + ε)1/2 − x0, say δ =
η/2, now shows that | f (x) − f (x0)| < ε if |x − x0| < δ, and the continuity
of f on I is established. Note the dependence of δ on x0. However, f is not
uniformly continuous on I : for if it were, then given any ε > 0, there would
exist δ > 0 such that if x, y ∈ I and |x − y| < δ, then

∣
∣x2 − y2

∣
∣ < ε. But

given any δ > 0, if we choose n ∈ N, x = n and y = n + 1
2δ, then |x − y| < δ

but
∣
∣x2 − y2

∣
∣ = ∣

∣(n + 1
2δ)

2 − n2
∣
∣ = δn + 1

4δ
2, which can be made arbitrarily

large by choosing n large enough.
(iii) Let I = (0, 1) and suppose that f (x) = 1/x for all x ∈ I . This function is

continuous on I : for given any x0 ∈ I and any ε > 0, we see that if x ∈ I and
|x − x0| < δ < x0,

| f (x) − f (x0)| < δ/{x0(x − x0 + x0)} < δ/{x0(x0 − δ)};

thus to obtain | f (x) − f (x0)| < εwe simply choose δ < εx20/(1+εx0). It is not
possible to choose δ independent of x0; that is, f is not uniformly continuous on
I . To see this, it is merely necessary to observe that 1

n − 1
n + 1 → 0 as n → ∞,

while
∣
∣
∣ f ( 1n ) − f ( 1

n + 1 )

∣
∣
∣ = 1 for all n ∈ N.

If I is a closed, bounded interval [a, b] the distinction between continuity and uni-
form continuity on I disappears. To establish this it is convenient to appeal to the
famous Bolzano-Weierstrass theorem: every bounded sequence of real numbers has
a convergent subsequence. A proof of this theorem is given in Theorem A.4.13 of
the Appendix.

Theorem 1.2.3 Let a, b ∈ R, with a < b. A function f : [a, b] → R is continuous
on [a, b] if, and only if, it is uniformly continuous on [a, b].
Proof Suppose first that f is continuous, but not uniformly continuous on [a, b].
Then there exists ε > 0 such that given any n ∈ N, there are points xn, yn ∈ [a, b]
with |xn − yn| < 1/n and | f (xn) − f (yn)| ≥ ε. The sequence (xn) is bounded and
so, by the Bolzano-Weierstrass theorem, has a convergent subsequence (xm(n)) with
limn→∞ xm(n) = x , say; clearly limn→∞ ym(n) = x . In view of the continuity of f ,

lim
n→∞

{
f (xm(n)) − f (ym(n))

} = f (x) − f (x) = 0.

But, for all n,
∣
∣ f (xm(n)) − f (ym(n)

∣
∣ ≥ ε. Thus

lim
n→∞

∣
∣ f (xm(n)) − f (ym(n))

∣
∣ ≥ ε,

which gives a contradiction. Hence f is uniformly continuous on [a, b]. The converse
is obvious. ⇐
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An important result, given next, is an immediate consequence of Theorem 1.2.3.
(The reader should also know a direct proof of it, one which bypasses the notion of
uniform continuity. See Exercise 1.2.14/1.)

Theorem 1.2.4 Let a, b ∈ R, with a < b, and let f : [a, b] → R be continuous on
[a, b]. Then f is bounded.

Proof Since f is uniformly continuous on [a, b], there exists δ > 0 such that
| f (x) − f (y)| < 1 if x, y ∈ [a, b] and |x − y| < δ. Choose P = {x0, x1, . . . , xn} ∈
P[a, b] such that w(P) < δ. Then

sup
x∈[a,b]

| f (x)| ≤ 1 + max
1≤i≤n

| f (xi )| .

The proof is complete. ⇐

Armed with this equipment we now return to integration.

Theorem 1.2.5 Let a, b ∈ R with a < b, and let f : [a, b] → R. Then:

(i) if f is monotone, f ∈ R[a, b];
(ii) if f is continuous on [a, b], f ∈ R[a, b].
Proof For n ∈ N, let Pn = {x0, x1, . . . , xn} ∈ P[a, b] be such that Δx j =
(b − a)/n ( j = 1, 2, . . . , n); plainly the sequence (Pn) has the property that
limn→∞ w(Pn) = 0.
(i) Suppose f is increasing on [a, b] (otherwise consider − f ). Then M j =
f (x j ), m j = f (x j−1) ( j = 1, 2, . . . , n) and

U (Pn, f ) − L(Pn, f ) = (b − a)n−1
n∑

j=1

{
f (x j ) − f (x j−1)

}

= (b − a)n−1 { f (b) − f (a)} → 0

as n → ∞. Thus by Theorem 1.1.7, f ∈ R[a, b].
(ii) By Theorem 1.2.4, f ∈ B[a, b]. Let ε > 0. By Theorem 1.2.3, f is uniformly
continuous on [a, b]; hence there exists δ > 0 such that if s, t ∈ [a, b] and |s − t | <

δ, then we have | f (s) − f (t)| < ε. Suppose n ∈ N is such that w(Pn) < δ. Then for
each j ∈ {1, 2, . . . , n},

M j − m j = sup
{| f (s) − f (t)| : s, t ∈ [x j−1, x j ]

}

(see Exercise 1.1.10/2), and hence

U (Pn, f ) − L(Pn, f ) =
n∑

j=1

(M j − m j )Δx j ≤ ε(b − a).
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Since w(Pn) < δ for all save finitely many n, Theorem 1.1.7 and passage to the limit
as n → ∞ show that

0 ≤
∫ b

a
f −

∫ b

a
f ≤ ε(b − a).

The final inequality being valid for all positive ε, it follows that
∫ b

a f = ∫ b
a f , that

is, f ∈ R[a, b]. ⇐

Note that there areRiemann-integrable functionswhich are neither continuous nor

monotone: see Exercise 1.2.14/4 for one such example. This fact notwithstanding,
although a Riemann-integrable function need not be continuous, it must have a point
of continuity, indeed, infinitely many such. The next two lemmas are a preparation
to prove this assertion.

Lemma 1.2.6 Let f ∈ R[a, b] and let a < c < d < b. Then f ∈ R[c, d]; more
precisely, the restriction of f to [c, d] belongs to R[c, d].
Proof Let (Pn) be a sequence of partitions of [a, b] such that {c, d} ⊂ Pn (n ∈ N)

and w(Pn) → 0. Let Qn = Pn ∩ [c, d] (n ∈ N). Then each Qn ∈ P[c, d] and
w(Qn) → 0. Since

U (Qn, f ) − L(Qn, f ) ≤ U (Pn, f ) − L(Pn, f ) (n ∈ N)

and f ∈ R[a, b], it follows that

0 ≤
∫ d

c
f −

∫ d

c
f ≤

∫ b

a
f −

∫ b

a
f = 0.

Thus f ∈ R[c, d]. ⇐

Lemma 1.2.7 Let f ∈ R[a, b] and v > 0. Then there exists a closed interval
[c, d] ⊂ [a, b] such that

(i) a < c < d < b,
(ii) d − c < v,
(iii) osc( f ; [c, d]) < v.

Proof Since f ∈ R[a, b], by Exercise 1.1.10/6, there is a partition P = {x0, x1,
. . . , xn} of [a, b] such that

U (P, f ) − L(P, f ) =
n∑

j=1

(M j − m j )Δx j < v(b − a).

Appealing to Exercise 1.1.10/2, it follows that, for some i (1 ≤ i ≤ n),
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osc( f ; [xi−1, xi ]) = Mi − mi = min
1≤ j≤n

(M j − m j ) < v.

Finally, any choice of closed interval [c, d] such that xi−1 < c < d < xi and
d − c < v has the properties required. ⇐

Theorem 1.2.8 Let f ∈ R[a, b]. Then there is a real number c such that a < c < b
and f is continuous at c.

Proof Since f ∈ R[a, b], byLemma1.2.7, there is a closed interval [a1, b1] ⊂ [a, b]
such that

a < a1 < b1 < b, b1 − a1 < 1 and osc( f ; [a1, b1]) < 1.

In view of Lemma 1.2.6, f ∈ R[a1, b1].. Hence a further appeal to Lemma 1.2.7
shows that there is a closed interval [a2, b2] ⊂ [a1, b1] such that

a1 < a2 < b2 < b1, b2 − a2 < 2−1 and osc( f ; [a2, b2]) < 2−1.

Continuing in this way, and allowing a0 := a, b0 := b, we see that there is a nested
sequence ([an, bn]) of bounded, closed intervals such that, for each n ∈ N,

(i) an−1 < an < bn < bn−1,

(ii) bn − an < n−1, and

(iii) osc( f ; [an, bn]) < n−1.

Applying the Nested Intervals Principle (see the Appendix, Theorem A.4.15), we
see that there exists c ∈ R such that {c} = ∩∞

n=1[an, bn]. It remains to show that f
is continuous at c. Let ε > 0. There exists m ∈ N such that mε > 1 and, evidently,
for all x ∈ [am, bm],

| f (x) − f (c)| ≤ osc( f ; [am, bm]) < m−1 < ε.

With δ = min{c−am, bm −c}, it follows that | f (x) − f (c)| < εwhenever |x − c| <

δ. Thus f is continuous at c. ⇐

Definition 1.2.9 Let I be a non-empty interval in R. A function φ : I → R is
said to satisfy a Lipschitz condition (on I ) if there exists c > 0 such that for all
s, t ∈ I ,

|φ(s) − φ(t)| ≤ c |s − t | .

With this property, φ is also described as a Lipschitz-continuous function (on I );
the number c is said to be a Lipschitz constant for φ.

Theorem 1.2.10 Suppose that f ∈ R[a, b] and that f ([a, b]) ⊂ [α, β]; let φ :
[α, β] → R be a Lipschitz-continuous function on [α, β], and let h = φ ◦ f . Then
h ∈ R[a, b].
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Proof Let c be a Lipschitz constant for φ. By Exercise 1.2.14/6, φ is continuous
(uniformly continuous) on [α, β]. Hence h is bounded. Let P = {x0, x1, . . . , xn} ∈
P[a, b] and write I j = [x j−1, x j ] ( j = 1, 2, . . . , n). By Exercise 1.1.10/2,

U (P, h) − L(P, h) =
∑n

j=1
osc(h; I j )Δx j ≤ c

∑n

j=1
osc( f ; I j )Δx j

= c (U (P, f ) − L(P, f )) .

Application of this inequality to themembers of a sequence (Pn) of partitions of [a, b]
with w(Pn) → 0 now shows, with the help of Theorem 1.1.7, that h ∈ R[a, b]. ⇐

Corollary 1.2.11 If f is in R[a, b], so are | f | and f 2.

Proof Put K = sup {| f (x)| : a ≤ x ≤ b} and let I = [−K , K ]. Then, for all
s, t ∈ I ,

||s| − |t || ≤ |s − t | ,
∣
∣
∣s2 − t2

∣
∣
∣ ≤ 2K |s − t | .

The maps t �−→ |t | and t �−→ t2 each satisfy a Lipschitz condition on I and so
appeal to Theorem 1.2.10 gives the result. ⇐


Theorem 1.2.10 enables us to generate new Riemann-integrable functions from
functions known already to be Riemann-integrable. The next theorem goes further
along this particular line and includes Theorem1.2.10 as a special case. The condition
that φ is a Lipschitz-continuous function is relaxed, simply requiring it to be contin-
uous. The following lemma which, loosely speaking, asserts that every continuous
real-valued function on a bounded, closed interval is ‘almost’ Lipschitz-continuous,
paves the way for the relaxation.

Lemma 1.2.12 Let φ : [α, β] → R be continuous and let ε > 0. Then there exists
c > 0 such that, for all s, t ∈ [α, β],

|φ(s) − φ(t)| < ε + c |s − t | .

Proof To obtain a contradiction, we suppose the conclusion false. Then there exist
ε > 0 and sequences (sn), (tn) in [α, β] such that for all n ∈ N,

|φ(sn) − φ(tn)| ≥ ε + n |sn − tn| .

By the Bolzano-Weierstrass theorem, there are points s, t ∈ [α, β] and subsequences
(sk(n)), (tk(n)) of (sn), (tn) such that limn→∞ sk(n) = s, limn→∞ tk(n) = t . Evidently∣
∣φ(sk(n)) − φ(tk(n))

∣
∣ ≥ ε; and since φ is continuous, we may let n → ∞ and obtain

|φ(s) − φ(t)| ≥ ε, which implies that s 
= t . However, we then have

|φ(s) − φ(t)| = lim
n→∞

∣
∣φ(sk(n)) − φ(tk(n))

∣
∣ ≥ lim

n→∞ k(n)
∣
∣sk(n) − tk(n)

∣
∣

= lim
n→∞ k(n) lim

n→∞
∣
∣sk(n) − tk(n)

∣
∣ = ∞,
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which is impossible. The result claimed thus holds. ⇐

Theorem 1.2.13 Suppose that f ∈ R[a, b] and that f ([a, b]) ⊂ [α, β]; let φ :
[α, β] → R be continuous and set h = φ ◦ f . Then h ∈ R[a, b].
Proof Since φ is continuous, h is bounded. Let ε > 0. By Lemma 1.2.12, there exists
c > 0 such that, for all s, t ∈ [α, β],

|φ(s) − φ(t)| < ε + c |s − t | .

Let (Pn) be a sequence of partitions of [a, b] with w(Pn) → 0. Then for all n ∈ N,

U (Pn, h) − L(Pn, h) ≤ ε(b − a) + c {U (Pn, f ) − L(Pn, f )} ,

and by letting n → ∞ we obtain, since f ∈ R[a, b],
∫ b

a
h −

∫ b

a
h ≤ ε(b − a).

As this holds for all ε > 0, it follows that
∫ b

a h = ∫ b
a h, and the proof is complete. ⇐


Note that Corollary 1.2.11 can be obtained from Theorem 1.2.13 even more
directly than before.

Exercise 1.2.14

1. Let f : [a, b] → R be continuous on [a, b]. Use the Bolzano-Weierstrass
theorem to show directly that
(i) f is bounded.
(ii) f attains its bounds; that is, there exist c, d ∈ [a, b] such that

f (c) = inf
x∈[a,b] f (x), f (d) = sup

x∈[a,b]
f (x).

2. Let f : (0, 1] → R be defined by f (x) = cos(π/x) (0 < x ≤ 1). Prove that f
is continuous but not uniformly continuous on (0, 1].

3. Let f : (0, 1] → R be uniformly continuous on (0, 1]. Through either a proof or
exhibition of a counterexample, decide whether or not f is necessarily bounded.

4. Let f : [0, 1] → R be defined by f (x) = x if x = 1/n for some n ∈ N,
f (x) = 0 otherwise. Show that f ∈ R[0, 1] and that ∫ 1

0 f = 0. [Hint: partition
the interval [0, 1] into n2 subintervals of equal length.]

5. Let I be a non-empty interval in R and let f : I → R be defined by

f (x) = x2.

Show that f satisfies a Lipschitz condition onI if, and only if,I is bounded.



1.2 Classes of Integrable Functions 15

6. Let I be a non-empty interval in R and let f : I → R be a Lipschitz-
continuous function on I . Show that f is uniformly continuous on I .

7. Let f : [a, b] → R be differentiable. Show that f is Lipschitz-continuous on
[a, b] if, and only if, its derivative, f ′, is bounded on [a, b].

8. (a) Give an example of a Lipschitz-continuous function on [0, 1] which is not
differentiable on [0, 1].
(b) Let f : [0, 1] → R be defined by f (x) = x2 sin(x−2) if 0 < x ≤ 1;
f (0) = 0. Show that f does not satisfy a Lipschitz condition on [0, 1].

9. Give an example of a function f ∈ B[0, 1]\R[0, 1] which has a point of
continuity in the open interval (0, 1).

10. Let f ∈ R[a, b] and let x ∈ [a, b]. Prove that there is a sequence (xn) of distinct
points in [a, b] such that
(i) limn→∞ xn = x , and
(ii) each xn is a point of continuity of f .

1.3 Properties of the Integral

In this section we establish numerous useful properties of the Riemann integral. We
begin with upper and lower integrals.

Theorem 1.3.1 Let f, g ∈ B[a, b] and let λ ∈ R. Then:

(i)
∫ b

a f + ∫ b
a g ≥ ∫ b

a ( f + g) ≥ ∫ b
a ( f + g) ≥ ∫ b

a f + ∫ b
a g ;

(ii) if λ ≥ 0, then
∫ b

a λ f = λ
∫ b

a f and
∫ b

a λ f = λ
∫ b

a f ;

(iii) if λ < 0, then
∫ b

a λ f = λ
∫ b

a f and
∫ b

a λ f = λ
∫ b

a f ;

(iv) if f (t) ≥ g(t) for all t ∈ [a, b], then

∫ b

a
f ≥

∫ b

a
g and

∫ b

a
f ≥

∫ b

a
g;

(v) if f (t) = g(t) at all but a finite number of points of [a, b], then

∫ b

a
f =

∫ b

a
g and

∫ b

a
f =

∫ b

a
g ;

(vi) if f (t) ≥ 0 for all t ∈ [a, b] and f (c) > 0 at some point c ∈ [a, b] at which f
is continuous, then

∫ b
a f > 0.
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Proof Let (Pn) be a sequence inP[a, b] with w(Pn) → 0.

(i) By Theorem 1.1.7,

∫ b

a
f +

∫ b

a
g = lim

n→∞ U (Pn, f ) + lim
n→∞ U (Pn, g) ≥ lim

n→∞ U (Pn, f + g)

=
∫ b

a
( f + g) ≥

∫ b

a
( f + g) = lim

n→∞ L(Pn, f + g)

≥ lim
n→∞ L(Pn, f ) + lim

n→∞ L(Pn, g) =
∫ b

a
f +

∫ b

a
g.

(ii)
∫ b

a λ f = limn→∞ U (Pn, λ f ) = λ limn→∞ U (Pn, f ) = λ
∫ b

a f ;
∫ b

a f is handled
similarly.

(iii)
∫ b

a λ f = limn→∞ U (Pn, λ f ) = λ limn→∞ L(Pn, f ) = λ
∫ b

a f ; ∫ b
a λ f responds

to similar treatment.

(iv)
∫ b

a f = limn→∞ U (Pn, f ) ≥ limn→∞ U (Pn, g) = ∫ b
a g ; we proceed similarly

with
∫ b

a f .

(v) Let K ∈ R be such that sup {| f (t)| : a ≤ t ≤ b} , sup {|g(t)| : a ≤ t ≤ b} ≤ K ,
and suppose there are exactly k points of [a, b] at which f (t) 
= g(t). Each
such point can lie in at most two of the intervals [x j−1, x j ] associated with the
partition Pn = {x0, x1, . . . , xn}. Let ∑̃ denote summation over those j such
that f (t) 
= g(t) for some t ∈ [x j−1, x j ]; there are at most 2k such j . Then

|U (Pn, f ) − U (Pn, g)| =
∣
∣
∣
∣
∣

∑̃ {
M j ( f ) − M j (g)

}
Δx j

∣
∣
∣
∣
∣
≤ 2K .2kw(Pn)

→ 0 as n → ∞.

Hence
∫ b

a f = ∫ b
a g. That

∫ b
a f = ∫ b

a g follows from a similar argument.

(vi) Since f is continuous at c, there is a closed interval I , with c ∈ I ⊂ [a, b]
and the length l(I ) of I positive, such that f (t) ≥ 1

2 f (c) for all t ∈ I . Define
g : [a, b] → R by g(t) = 1

2 f (c) if t ∈ I , g(t) = 0 otherwise. Then f ≥ g and

so, by (iv),
∫ b

a f ≥ ∫ b
a g = 1

2 f (c)l(I ) > 0. ⇐

We can now establish certain fundamental properties of the integral.

Theorem 1.3.2 Let f, g ∈ R[a, b] and let λ ∈ R. Then:

(a) f + g, λ f, f g ∈ R[a, b]; ∫ b
a ( f + g) = ∫ b

a f + ∫ b
a g,

∫ b
a λ f = λ

∫ b
a f ;

(b) if f (t) ≥ g(t) for all t ∈ [a, b], then
∫ b

a f ≥ ∫ b
a g;
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(c) | f | ∈ R[a, b] and ∣
∣
∣
∣

∫ b

a
f

∣
∣
∣
∣ ≤

∫ b

a
| f | ;

(d) if f (t) ≥ 0 for all t ∈ [a, b], f is continuous on [a, b] and
∫ b

a f = 0, then
f = 0.

Proof (a) In view of Theorem 1.3.1, all that we have to do is to show that f g ∈
R[a, b]; note that by f g is meant the product function t �−→ f (t)g(t). By the
first parts of (a), f ± g ∈ R[a, b]; by Corollary 1.2.11, ( f ± g)2 ∈ R[a, b].
Since f g = 1

4

{
( f + g)2 − ( f − g)2

}
, it follows from the first parts of (a) that

f g ∈ R[a, b].
(b) This follows immediately from Theorem 1.3.1 (iv).
(c) By Corollary 1.2.11, | f | ∈ R[a, b]. Let λ = sgn

∫ b
a f . Then, since λ f ≤ | f | ,

∣
∣
∣
∣

∫ b

a
f

∣
∣
∣
∣ = λ

∫ b

a
f =

∫ b

a
λ f ≤

∫ b

a
| f | .

[Note that sgn x := x/ |x | if x ∈ R{0}, sgn 0 = 0.]
(d) If f were not the zero function, then there would be a point c ∈ [a, b] such
that f (c) > 0; and then, by Theorem 1.3.1(vi),

∫ b
a f would be positive, giving a

contradiction. ⇐

Theorem 1.3.2 is particularly important: (a) shows that the family of all Riemann-

integrable functions on a given interval [a, b] is a real vector space when addition
and multiplication by real numbers are defined in the obvious way; (b) is useful in
the estimation of integrals of functions by integrals of simpler functions; and (c) will
be so often used that recourse to it should become virtually automatic when faced
with the problem of estimation of an integral.

Another most useful inequality is that of H. A. Schwarz:

Theorem 1.3.3 (Schwarz’s inequality) Let f, g ∈ R[a, b]. Then

(∫ b

a
f g

)2

≤
(∫ b

a
f 2

)(∫ b

a
g2

)
.

Proof For all λ ∈ R, ( f + λg)2 ≥ 0; since f 2, g2, f g, ( f + λg)2 ∈ R[a, b] (by
Theorem 1.3.2(a)) it follows from Theorem 1.3.2(b) that

∫ b
a ( f +λg)2 ≥ 0 and hence

∫ b

a
f 2 + λ2

∫ b

a
g2 + 2λ

∫ b

a
f g ≥ 0. (1.3.1)

If
∫ b

a g2 
= 0, the choice of λ = − ∫ b
a f g/

∫ b
a g2 in (1.3.1) gives the result; if

∫ b
a g2 = 0, the choice of |λ| sufficiently large shows that

∫ b
a f g = 0 and the result

again follows. ⇐
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It is next desirable to establish various results concerning the integrability of a
function f : [a, b] → R over subintervals [c, d] of [a, b].When dealing with objects
such as the integral of f over [c, d], for simplicity we shall use the notation

∫ d
c f

rather than the more precise
∫ d

c g, where g is the restriction of f to [c, d].
Theorem 1.3.4 Let a < c < b and suppose that f ∈ B[a, b]. Then

∫ b

a
f =

∫ c

a
f +

∫ b

c
f,

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proof Let (P ′
n), (P ′′

n ) be sequences in P[a, c],P[c, b] respectively such that
w(P ′

n), w(P ′′
n ) → 0; let Pn = P ′

n∪P ′′
n for all n ∈ N. Then Pn ∈ P[a, b],w(Pn) → 0

and

∫ b

a
f = lim

n→∞ U (Pn, f ) = lim
n→∞ U (P ′

n, f ) + lim
n→∞ U (P ′′

n , f ) =
∫ c

a
f +

∫ b

c
f.

The lower integrals are handled in a similar manner. ⇐

Corollary 1.3.5 Suppose that a = c0 < c1 < ... < cm = b and let f ∈ B[a, b].
Then

∫ b

a
f =

m∑

j=1

∫ c j

c j−1

f and
∫ b

a
f =

m∑

j=1

∫ c j

c j−1

f.

Proof Induction reduces the proof to that of the case m = 2, which is just
Theorem 1.3.4. ⇐

Theorem 1.3.6 Let a < c < b and suppose that f ∈ B[a, b]. Then f ∈ R[a, b]
if, and only if, f ∈ R[a, c] and f ∈ R[c, b]. Moreover,

∫ b

a
f =

∫ c

a
f +

∫ b

c
f

whenever one side of the equality exists.

Proof By Theorem 1.3.4,

∫ b

a
f −

∫ b

a
f =

(∫ c

a
f −

∫ c

a
f

)

+
(∫ b

c
f −

∫ b

c
f

)

;

thus by Corollary 1.1.8,
∫ b

a f = ∫ b
a f if, and only if,

∫ c
a f = ∫ c

a f and
∫ b

c f = ∫ b
c f .

The rest follows from Theorem 1.3.4. ⇐




1.3 Properties of the Integral 19

Corollary 1.3.7 Let a ≤ c < d ≤ b and suppose that f ∈ R[a, b]. Then f ∈
R[c, d].
Proof Although this result has already been established in Lemma 1.2.6, we give
the following alternative proof. By Theorem 1.3.6, f ∈ R[a, b] implies that f ∈
R[a, d], which in turn implies that f ∈ R[c, d]. ⇐

Theorem 1.3.8 Let f ∈ B[a, b] and suppose that f ∈ R[c, d] whenever a < c <

d < b. Then f ∈ R[a, b].
Proof Let K be such that | f (x)| ≤ K for all x ∈ [a, b], and let c, d ∈ (a, b), c < d.
Then since f ∈ R[c, d],

∣
∣
∣
∣
∣

∫ b

a
f −

∫ b

a
f

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ c

a
f −

∫ c

a
f

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ d

c
f −

∫ d

c
f

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ b

d
f −

∫ b

d
f

∣
∣
∣
∣
∣

≤ 2K (c − a) + 0 + 2K (b − d).

As this is true for all c, d ∈ (a, b) with c < d, we may let c → a, b → d to obtain

∫ b

a
f =

∫ b

a
f,

which means that f ∈ R[a, b]. ⇐

This last Theorem is a most useful test for integrability: the following examples

give some idea of how it may be used.

Example 1.3.9

(i) Let f : [0, 1] → R be defined by f (x) = sin(1/x) (0 < x ≤ 1), f (0) =
1067. Despite the discontinuity at 0, f ∈ R[0, 1] : for f is continuous on
every subinterval [c, d] of [0, 1] with c, d ∈ (0, 1) and c < d, and hence, by
Theorem 1.2.5, f ∈ R[c, d] for all such c and d; f is also bounded on [0, 1].
By Theorem 1.3.8, f ∈ R[0, 1].

(ii) Let f ∈ B[a, b] be continuous at all points of [a, b] save for a finite num-
ber. Then f ∈ R[a, b]. To prove this, let the points of discontinuity of f lie
among the points a = c0, c1, . . . , cm = b, where c0 < c1 < ... < cm . By Theo-
rem 1.3.8, f ∈ R[c j−1, c j ] for j = 1, . . . , m; by Corollary 1.3.5, f ∈ R[a, b].

Exercise 1.3.10

1. Let α1, . . . , αk ∈ R, suppose that a = c0 < c1 < ... < ck = b and let
f : [a, b] → R be such that f (t) = α j if t ∈ (c j−1, c j ) ( j = 1, . . . , k). Prove
that f ∈ R[a, b] and that

∫ b

a
f =

k∑

j=1

α j (c j − c j−1)



20 1 The Riemann Integral

irrespective of the values of f at the points c0, c1, . . . , ck .
2. Let f : [0, 1] → R be defined by f (x) = x−1/2 sin x if 0 < x ≤ 1, f (0) = 1.

Prove that f ∈ R[0, 1].
3. Let ε > 0 and suppose that f ∈ R[a, b] and | f (t)| ≥ ε for all t ∈ [a, b]. Prove

that 1/ f ∈ R[a, b].
4. Let f, g : [a, b] → R be increasing and decreasing respectively, and define

φ(x) = f (x) − (b − a)−1
∫ b

a
f (t)dt (x ∈ [a, b]).

Show that there is a point c in [a, b] such that φ(x) ≤ 0 if a ≤ x < c, φ(x) ≥ 0
if c < x ≤ b. By consideration of the identity

∫ b

a
g(x)φ(x)dx =

∫ c

a
g(x)φ(x)dx +

∫ b

c
g(x)φ(x)dx,

prove that
∫ b

a g(x)φ(x)dx ≤ 0 and deduce that

∫ b

a
f (x)g(x)dx ≤ (b − a)−1

(∫ b

a
f (x)dx

)∫ b

a
g(x)dx .

5. Let c, θ ∈ R and suppose that θ > 0; let f ∈ B[a, b]. Show that

∫ b

a
f (t)dt = θ

∫ (b−c)/θ

(a−c)/θ
f (θ t + c)dt,

∫ b

a
f (t)dt = θ

∫ (b−c)/θ

(a−c)/θ
f (θ t + c)dt.

State and prove the corresponding result for θ < 0.
6. Let f : [0, 1] → R be defined as follows: f (t) = 0 if t is irrational, f (t) = 1/q

if t = p/q, where p and q are integers with no common factor greater than 1,
and q > 0. Prove that f is continuous at irrational points but discontinuous at
rational points. Show that f ∈ R[0, 1] and that

∫ 1

0
f = 0.

1.4 Evaluation of Integrals: Integration and Differentiation

So far we have established that various types of functions have Riemann integrals
and that the Riemann integral has properties which seem both natural and desirable.
We now turn to the task of evaluation. Darboux’s theorem suggests a direct approach,
one that translates the problem into the evaluation of limits of sequences. Unfortu-
nately, however, while this approach leads to systematic procedures for obtaining
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approximations to integrals, in practice it is seldom that these procedures facilitate
the exact determination of a given integral. We present one such procedure below,
together with an application.

Theorem 1.4.1 (The trapezium rule) Let f ∈ R[a, b] and, for each n ∈ N, let
{x0, x1, . . . , xn} be that partition which divides [a, b] into n sub-intervals of equal
length and let

τn = 1

2n

n∑

r=1

{ f (xr−1) + f (xr )} .

Then

lim
n→∞ τn = 1

b − a

∫ b

a
f.

Proof For each r ∈ {1, . . . , n} put mr = inf { f (x) : xr−1 ≤ x ≤ xr } and Mr =
sup

{
f (x) : xr−1 ≤ x ≤ xr

}
. Then since

mr ≤ 1

2
{ f (xr−1) + f (xr )} ≤ Mr

it follows that

b − a

n

n∑

r=1

mr ≤ b − a

2n

n∑

r=1

{ f (xr−1) + f (xr )} ≤ b − a

n

n∑

r=1

Mr ,

and so

b − a

n

n∑

r=1

mr ≤ (b − a)τn ≤ b − a

n

n∑

r=1

Mr .

The result now follows immediately from Theorem 1.1.7. ⇐

This is called the trapezium rule because 1

2 { f (xr−1) + f (xr )} (b−a)
n is the area

of the trapezium with vertices (xr−1, 0), (xr , 0), (xr , f (xr )), (xr−1, f (xr−1)) and
(b − a)τn is the total area of these trapezia.

Example 1.4.2 Let a ∈ R and |a| 
= 1. We show that

∫ π

0
log(1 − 2a cos x + a2)dx =

{
0 if |a| < 1,
2π log |a| if |a| > 1.

Proof The mapping x �−→ log(1 − 2a cos x + a2) is continuous and hence inte-
grable over [0, π ]. The trapezium rule and the identity
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1 − a2n = (1 − a2)

n−1∏

r=1

(
1 − 2a cos

rπ

n
+ a2

)

show that the desired integral equals

π lim
n→∞

1

2n

{

log(1 − a)2 + 2
n−1∑

r=1

log
(
1 − 2a cos

rπ

n
+ a2

)
+ log(1 + a)2

}

= π lim
n→∞

1

2n
log

{

(1 − a2)

n−1∏

r=1

(
1 − 2a cos

rπ

n
+ a2

)
}2

= π lim
n→∞

1

n
log

∣
∣
∣1 − a2n

∣
∣
∣ .

The stated result follows. ⇐

The ease with which the trapezium rule copes with the above example should not

beguile the reader. For the evaluation of

∫ 1

0

√
x(1 − x)dx = lim

n→∞
1

n

n−1∑

r=1

√
r

n
(1 − r

n
)

the rule is unhelpful, and commonly one finds exact evaluation through such rules
impossible. A partial amelioration of this state of affairs comes about via the observa-
tion that given an integrable function, then rapid evaluation of its integral is possible
if the function is recognisable as the derivative of another.

Definition 1.4.3 Let I be a non-degenerate interval in R , let f : I → R and
suppose that F : I → R is differentiable, with F ′(t) = f (t) for all t ∈ I . Then F
is said to be a primitive of f ( on I ).

Theorem 1.4.4 (The first fundamental theorem of calculus) Let f ∈ R[a, b] and
suppose that F is a primitive of f . Then

∫ b

a
f = F(b) − F(a).

Proof Let P = {x0, x1, . . . , xn} ∈ P[a, b].By themean-value theorem, there exists
t j ∈ (x j−1, x j ) such that F(x j ) − F(x j−1) = f (t j )Δx j ( j = 1, . . . , n); hence

L(P, f ) ≤
n∑

j=1

f (t j )Δx j =
n∑

j=1

{
F(x j ) − F(x j−1)

}

= F(b) − F(a) ≤ U (P, f ).
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Thus

∫ b

a
f ≤ F(b) − F(a) ≤

∫ b

a
f,

and as f ∈ R[a, b], the result follows. ⇐

Example 1.4.5

(i) To evaluate
∫ b

a x2dx ,we note that a primitive of the continuous (hence integrable)
function f , where f (x) = x2, is F , where F(x) = x3/3. Thus byTheorem1.4.4,

∫ b

a
x2dx = (b3 − a3)/3.

(ii) The function f : [−1, 1] → R defined by

f (x) =
⎧
⎨

⎩

1 if 0 < x ≤ 1,
0 if x = 0,
−1 if −1 ≤ x < 0

is inR[−1, 1] as it is continuous on [−1, 1] except at 0; but it has no primitive
on [−1, 1] as it does not have the intermediate-value property enjoyed by con-
tinuous functions and functions which are derivatives (see Exercise 1.4.15/11).

(iii) The function F : [0, 1] → R defined by

F(x) =
{

x2 sin(1/x2) if 0 < x ≤ 1,
0 if x = 0

has derivative f : [0, 1] → R given by f (x) = 2x sin(1/x2)−2x−1 cos(1/x2)
(0 < x ≤ 1), f (0) = 0. As f is unbounded on [0, 1], it is not inR[0, 1]. This
gives an example of a function which has a primitive but is not Riemann-
integrable. It is possible to construct a function which is bounded on [0, 1], has
a primitive but is not in R[0, 1]; this task is much harder. The first published
example is believed to be that of Volterra [18]; see also [7, p. 107], [8, p. 210],
[12, pp. 37–39] and the discussion in [9], 9.3.

Examples (ii) and (iii) exhibit the force of the hypotheses in Theorem 1.4.4.
We can now give the familiar integration-by-parts method for the evaluation of

integrals.

Theorem 1.4.6 Let f, g ∈ R[a, b] and suppose there are differentiable functions
F, G : [a, b] → R such that F ′ = f and G ′ = g. Then

∫ b

a
Fg = F(b)G(b) − F(a)G(a) −

∫ b

a
G f.
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Proof Let H = FG (the product function). Then H ′ = Fg + G f ; by
Theorem 1.3.2(a), H ′ ∈ R[a, b]; and by Theorem 1.4.4,

∫ b

a
(Fg + G f ) = F(b)G(b) − F(a)G(a),

which gives the result. ⇐

Example 1.4.7

(i) To evaluate
∫ 1
0 xex dx , take F(x) = x, G(x) = ex ; then

∫ 1

0
xex dx = e −

∫ 1

0
ex dx = 1.

(ii) The evaluation of
∫ 2
1 log xdx proceeds by taking F(x) = log x , G(x) = x; then

∫ 2

1
log xdx = 2 log 2 −

∫ 2

1
dx = 2 log 2 − 1.

Remark 1.4.8 Theorems 1.4.4 and 1.4.6 may be slightly varied to give useful results.
For example, Theorem 1.4.4 may be revised as follows: suppose that f ∈ R[a, b]
and that there is a continuous function F : [a, b] → R such that F is differentiable
on (a, b) and F ′(t) = f (t) for all t ∈ (a, b). Then

∫ b
a f = F(b) − F(a).

The proof is the same as that of Theorem 1.4.4. Theorem 1.4.6 may be similarly
revised.

Associated with Theorem 1.4.4 is a natural question of existence: which functions
in R[a, b] have a primitive? The second fundamental theorem of calculus, given
below, provides a partial result in this connection. Bearing upon the question, note
that Theorems 1.3.6 and 1.4.4 show that f ∈ R[a, b] has a primitive if, and only if,
the mapping x �−→ ∫ x

a f is differentiable and has derivative f .

Theorem 1.4.9 (The second fundamental theorem of calculus) Let J be a non-
degenerate interval in R, let a ∈ J and suppose that f : J → R belongs to R(I )
for every closed, bounded, non-degenerate interval I ⊂ J . Define F : J → R by

F(x) =

⎧
⎪⎨

⎪⎩

∫ x
a f if x > a, x ∈ J,

0 if x = a,

− ∫ a
x f if x < a, x ∈ J.

Then F is continuous. If f is right- (left-) continuous at x0 ∈ J , then F is right-
(left-) differentiable at x0 and

F
′
+(x0) = f (x0) (F

′
−(x0) = f (x0)).
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In particular, if f is continuous at x0, then F is differentiable at x0 and F ′(x0) =
f (x0).

Proof Suppose that b ∈ J , b > a. Then f ∈ R[a, b] and there exists a real number
M , depending on b, such that | f (t)| < M if a ≤ t ≤ b. Let ε > 0. ByTheorems 1.3.2
and 1.3.6, if a ≤ x < y ≤ b, then

|F(y) − F(x)| =
∣
∣
∣
∣

∫ y

x
f

∣
∣
∣
∣ ≤

∫ y

x
| f | ≤ M(y − x) < ε

if |y − x | < ε/M . Hence F is continuous at each point of (a, b), is right-continuous
at a and left-continuous at b. A similar discussion shows that F is continuous at
points to the left of a.

Now suppose that f is right-continuous at x0 ∈ J and let ε > 0. Then there exists
δ > 0 such that | f (x) − f (x0)| < ε if 0 ≤ x − x0 < δ. Thus if x0 < x < x0 + δ,

∣
∣
∣
∣

F(x) − F(x0)

x − x0
− f (x0)

∣
∣
∣
∣ =

∣
∣
∣
∣(x − x0)

−1
∫ x

x0
( f (t) − f (x0))dt

∣
∣
∣
∣

≤ (x − x0)
−1

∫ x

x0
εdt = ε.

Hence F
′
+(x0) = f (x0). The rest is now clear. ⇐


Remark 1.4.10

(i) It is convenient to extend the use of the symbol
∫ x

a f . So far defined for x > a
and f ∈ R[a, x], we define it to be zero if x = a, and to be− ∫ a

x f if x < a and
f ∈ R[x, a]. Given this extension, it is immediate from Theorem 1.4.9 that, if
f : J → R is continuous, then

d

dx

(∫ x

a
f

)
= f (x) (x ∈ J ). (1.4.1)

(ii) Suppose the hypothesis concerning f in Theorem 1.4.9 is relaxed, simply to
require that f ∈ B(I ) for every closed, bounded, non-degenerate interval
I ⊂ J . Then, adopting an extension of symbols analogous to that of (i), the
maps

x �−→
∫ x

a
f and x �−→

∫ x

a
f

are easily proved to have properties identical to those derived for the function
F of the theorem.

Next we give an application of Theorem 1.4.9 which yields the valuable tech-
nique of integration known as ‘integration by change of variable’ or ‘integration by
substitution’.



26 1 The Riemann Integral

Theorem 1.4.11 (The change of variable theorem ) Let φ : [a, b] → R be continu-
ously differentiable, let J be a non-degenerate interval in R such that φ([a, b]) ⊂ J ,
and suppose that f : J → R is continuous. Then

∫ b

a
f (φ(t))φ′(t)dt =

∫ φ(b)

φ(a)

f (x)dx .

(Note that φ(a) need not be less than φ(b); the convention introduced in Remark
1.4.10 is to be used in such cases.)

Proof Let F(x) = ∫ x
φ(a)

f (x ∈ J ). By Theorem 1.4.9, F is continuously differen-
tiable on J and F ′ = f . Hence by the chain rule F ◦φ is continuously differentiable
on [a, b] and

(F ◦ φ)′(t) = f (φ(t))φ′(t) for a ≤ t ≤ b.

Since (F ◦ φ)′ is continuous on [a, b] it is inR[a, b], and so by Theorem 1.4.4,

∫ b

a
f (φ(t))φ′(t)dt = F(φ(b)) − F(φ(a))

=
∫ φ(b)

φ(a)

f (x)dx,

as required. ⇐

Note that if φ is differentiable but φ′ is not continuous, then the same proof shows

that the result still holds under the additional hypothesis that
∫ b

a f (φ(t))φ′(t)dt
exists.

Example 1.4.12

(i) To evaluate
∫ 1
0

√
x(1 − x)dx , note that f : x �−→ √

x(1 − x) is continuous on
[0, 1]; also φ : t �−→ 1

2 (1+sin t) is continuously differentiable on [−π/2, π/2]
and φ ([−π/2, π/2]) = [0, 1]. Hence by Theorem 1.4.11,

∫ 1

0

√
x(1 − x)dx =

∫ π/2

−π/2

1

4
cos2 tdt = π

8
.

(ii) Suppose 0 < u < 1. The map f : x �−→ (1+ x2)−1 is continuous on [u, 1] and
φ : t �−→ t−1 is continuously differentiable on [1, u−1]. By Theorem 1.4.11,

u−1∫

1

(1 + t2)−1dt =
1∫

u

(1 + x2)−1dx;
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by Theorem 1.4.9,

lim
u→0+

1∫

u

(1 + x2)−1dx =
1∫

0

(1 + x2)−1dx = π

4
.

Hence, as v → ∞,

tan−1 v =
v∫

0

(1 + x2)−1dx → 2

1∫

0

(1 + x2)−1dx = π

2
.

We conclude this section by giving two ‘mean-value’ theorems for integrals of
products of functions; these are useful in the estimation of integralswhich are difficult
to evaluate directly.

Theorem 1.4.13 (The first mean-value theorem for integrals ) Let f : [a, b] → R
be continuous, and suppose that g ∈ R[a, b] and g(t) ≥ 0 for a ≤ t ≤ b. Then
there exists ξ ∈ [a, b] such that

∫ b

a
f g = f (ξ)

∫ b

a
g.

Proof Letm and M be respectively theminimum andmaximum value of f on [a, b].
Then for all t ∈ [a, b], mg(t) ≤ f (t)g(t) ≤ Mg(t), and so m

∫ b
a g ≤ ∫ b

a f g ≤
M

∫ b
a g. Hence by the intermediate-value theorem, the result follows. ⇐

Note that the special case in which g = 1 shows that

∫ b

a
f = (b − a) f (ξ).

Theorem 1.4.14 (The second mean-value theorem for integrals ) Suppose that f :
[a, b] → R is monotone, differentiable and such that f ′ ∈ R[a, b]; let g : [a, b] →
R be continuous. Then there exists ξ ∈ [a, b] such that

∫ b

a
f g = f (a)

∫ ξ

a
g + f (b)

∫ b

ξ

g.

If in addition f is decreasing and f (t) ≥ 0 for all t ∈ [a, b], then there exists
ζ ∈ [a, b] such that

∫ b

a
f g = f (a)

∫ ζ

a
g.
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Proof Let G(x) = ∫ x
a g for a ≤ x ≤ b; by Theorem 1.4.9, G ′(x) = g(x) on [a, b].

Integration by parts (Theorem 1.4.6) now shows that

∫ b

a
f g = f (b)G(b) −

∫ b

a
G f ′.

As G is continuous and either f ′(t) ≥ 0 for all t ∈ [a, b] or f ′(t) ≤ 0 for all
t ∈ [a, b], it follows from Theorem 1.4.13 that there exists ξ ∈ [a, b] such that

∫ b

a
f g = f (b)G(b) − G(ξ)

∫ b

a
f ′ = f (b)G(b) + { f (a) − f (b)} G(ξ)

= f (a)

∫ ξ

a
g + f (b)

∫ b

ξ

g.

For the second part, note that either G(b) ≥ G(ξ), in which case

f (a)G(b) ≥ f (b)G(b) + { f (a) − f (b)} G(ξ) ≥ f (a)G(ξ);

or G(b) ≤ G(ξ), so that

f (a)G(ξ) ≥ f (b)G(b) + { f (a) − f (b)} G(ξ) ≥ f (a)G(b).

Whichever is the case, the intermediate-value theorem shows that there exists ζ ∈
[a, b] such that

f (a)

∫ ζ

a
g = f (a)G(ζ ) = f (b)G(b) + { f (a) − f (b)} G(ξ) =

∫ b

a
f g.

⇐

Exercise 1.4.15

1. Let f ∈ R[a, b] and suppose that for each n ∈ N and each r ∈ {1, . . . , n}, real
numbers ξ

(n)
r are chosen so that

a + (r − 1)(b − a)/n ≤ ξ (n)
r ≤ a + r(b − a)/n.

Prove that

lim
n→∞

1

n

n∑

r=1

f (ξ (n)
r ) = (b − a)−1

∫ b

a
f.

2. Using the result of the preceding exercise, show that

(i)
∫ π

0
sin xdx = 2, (i i)

∫ 1

0
e−x dx = 1 − e−1.
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3. Prove that

π

4
=

∫ 1

0

1

1 + t2
dt = lim

n→∞ n
n∑

r=1

1

n2 + r2
.

4. (Simpson’s rule) Let f ∈ R[a, b] and, for each n ∈ N, let {x0, x1, . . . , x2n} be
that partition which divides [a, b] into 2n sub-intervals of equal length and let

θn = 1

6n

n∑

r=1

{ f (x2r−2) + 4 f (x2r−1) + f (x2r )} .

Show that

lim
n→∞ θn = 1

(b − a)

∫ b

a
f.

5. Let f : [a, b] → R be differentiable and suppose that f ′ ∈ R[a, b]. Using
integration by parts, show that

lim
λ→∞

∫ b

a
f (t) cos(λt)dt = 0, lim

λ→∞

∫ b

a
f (t) sin(λt)dt = 0.

(This is a special case of the Riemann-Lebesgue lemma: see Exercise
1.7.17/16.)

6. Let f : R → R be continuous and define G : R → R by

G(x) =
∫ sin x

0
f (t)dt (x ∈ R).

Show that G is differentiable on R and compute G ′.
7. For each λ > 0 let Iλ(x) be defined by

Iλ(x) =
∫ π

x

1

2
sin(λt)cosec(t/2)dt (0 < x < 2π).

Prove that

lim
λ→∞ Iλ(x) = 0 (0 < x < 2π).

By considering In+ 1
2
(x) − In− 1

2
(x), show that the series

∑∞
n=1

sin nx
n converges

for 0 < x < 2π and find its sum. Deduce that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ ... .
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8. Let a > 0 and suppose that f ∈ R[0, a]. Prove that
∫ a

0
f (x)dx =

∫ a

0
f (a − x)dx = 1

2

∫ a

0
( f (x) + f (a − x))dx .

Show that
∫ a

0
log(1 + tan a tan x)dx = a log(sec a) (0 < a < π/2).

9. For all real α > 0 and all integers n ≥ 0, let

In = In(α) =
∫ 1

−1
(1 − x2)n cos(αx)dx .

Show that if n ≥ 2,

α2 In = 2n(2n − 1)In−1 − 4n(n − 1)In−2,

and deduce that for all n ≥ 1,

α2n+1 In(α) = n! {Pn(α) cosα + Qn(α) sin α} ,

where Pn and Qn are polynomials of degree less than 2n + 1 with integer
coefficients.
Show that if α = π/2 and if π/2 were equal to b/a for some positive integers
a and b, then

Jn = b2n+1 In(π/2)/n!

would be an integer. By considering what happens to Jn as n → ∞, prove that
π is irrational.

10. Let J (n) = ∫ π/2
0 sinn θdθ (n = 0, 1, 2, ...). Prove that

J (2n) = (2n)!π
(n!)222n+1 , J (2n + 1) = (n!)222n

(2n + 1)!
and that, for n ≥ 1,

J (2n)J (2n + 1) < J 2(2n) < J (2n)J (2n − 1).

Deduce Wallis’s inequality:

1
(
n + 1

2

⎛
π

<
((2n)!)2
(n!)4 24n

<
1

nπ
(n ∈ N)



1.4 Evaluation of Integrals: Integration and Differentiation 31

and hence obtain Wallis’s product:

π = lim
n→∞

24n(n!)4
n((2n)!)2 .

11. Let f : [a, b] → R be differentiable and let f ′(a) < γ < f ′(b). Prove that
there exists c ∈ (a, b) such that f ′(c) = γ . (A similar result holds, of course, if
f ′(a) > f ′(b).) [Hint: consider g(x) = f (x) − γ x .]

12. Give an example of a function f : [0, 1] → R which has a primitive, is in
R[0, 1] and is not continuous.

13. Using Theorem 1.4.14, or otherwise, show that if 0 < a < b, then

∣
∣
∣
∣

∫ b

a

sin x

x
dx

∣
∣
∣
∣ ≤ 2

a
.

14. Let I = [0, 1] and let g : I × I → R be defined by

g(x, y) =
{
1 − y if x is rational,
y if x is irrational.

Show that

∫ 1

0

(∫ 1

0
g(x, y)dx

)

dy 
=
∫ 1

0

(∫ 1

0
g(x, y)dy

)

dx .

15. Let a ∈ R, |a| 
= 1, and let

I (a) =
∫ π

0
log(1 − 2a cos x + a2)dx

(see Example 1.4.2). By splitting the domain of integration into [0, π/2] and
[π/2, π ], and then making the substitution x = π − y in the integral over
[π/2, π ], show that I (a) = 1

2 I (a2). Hence calculate I (a).
16. (Van der Corput’s theorem) Let k ∈ N, λ > 0 and suppose that f : [a, b] → R

has derivatives of all orders and
∣
∣ f (k)(x)

∣
∣ ≥ 1 for all x ∈ [a, b]. Show that there

is a constant ck , independent of f and λ, such that

∣
∣
∣
∣

∫ b

a
cos(λ f (x))dx

∣
∣
∣
∣ ≤ ckλ

−1/k

provided that either (i) k ≥ 2, or (ii) k = 1 and f ′ is monotone (increasing or
decreasing).
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[Hint: For (ii), write

∫ b

a
cos(λ f (x))dx =

∫ b

a

1

λ f ′(x)

d

dx
(sin(λ f (x))) dx

and use integration by parts. For (i), use induction: Let P(k) be the proposition
that the desired inequality holds for some k, assume that P(k) holds, suppose
that f (k+1)(x) ≥ 1 for all x ∈ [a, b], and let c be the unique point in [a, b]
at which

∣
∣ f (k)

∣
∣ assumes its minimum. If f (k)(c) = 0, consider the intervals

[a, c − δ], [c − δ, c + δ], [c + δ, b] for suitable δ > 0; if f (k)(c) 
= 0, note that
c is either a or b.]

1.5 Applications

Here we give a variety of results to illustrate the use of integrals in different parts of
elementary analysis.

1.5.1 The Integral Formula for the Logarithmic Function

To begin, recall that the exponential function exp : R → R+ defined by exp x =∑∞
n=0

xn

n! (x ∈ R) has various pleasant properties: it is differentiable and (exp x)′ =
exp x for all x ∈ R; exp(x). exp(−x) = 1 for all x ∈ R; exp x > 0 for all x ∈ R
and exp is strictly increasing; exp(x + y) = exp(x). exp(y) for all x, y ∈ R; for all
n ∈ Z, xn exp x → ∞ as x → ∞.

Since the exponential function is strictly increasing and has everywhere a non-zero
derivative, its inverse, log : R+ → R is also strictly increasing and differentiable.
This inverse, the logarithmic function, is defined by

log(exp x) = x for all x ∈ R;

or, equivalently, by

exp(log y) = y for all y ∈ R+.

From the properties of exp mentioned above it follows directly that for all u, v > 0,

log(uv) = log u + log v, (log u)′ = 1/u;

and that
lim

u→∞ log u = ∞, lim
u→0+ log u = −∞.
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Since

1 = (log u)′ |u=1 = lim
h→0

log(1 + h) − log 1

h
= lim

h→0

1

h
log(1 + h)

= lim
n→∞ n log

(
1 + 1

n

)
= lim

n→∞ log

(
1 + 1

n

)n

,

use of the continuity of exp shows that

exp(1) = exp

(
lim

n→∞ log

(
1 + 1

n

)n)
= lim

n→∞ exp

(
log

(
1 + 1

n

)n)

= lim
n→∞

(
1 + 1

n

)n

= e.

Hence

e = exp(1) =
∞∑

n=0

1

n! and log e = 1.

As for powers, induction shows that for all n ∈ Z and all t > 0,

tn = (exp (log t))n = exp (n log t) .

Since

(
exp

(
1

m
log t

))m

= exp(log t) = t,

it follows that

t1/m = exp

(
1

m
log t

)

for all m ∈ N and all t > 0. Consideration of these results shows that for all r ∈ Q
and all t > 0,

tr = exp(r log t).

This makes it natural to define tα , for any real number α and any t > 0, by

tα = exp(α log t).
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It is now easy to verify that the usual laws of indices hold, that the function t �−→ tα

is differentiable on (0,∞) and that (tα)′ = αtα−1. Thus a primitive of the function
t �−→ tα on (0,∞) is the function with values (1 + α)−1t1+α (α 
= −1) and
log t (α = −1). The function t �−→ tα is continuous and is therefore in R[x, y] if
0 < x < y < ∞; by Theorem 1.4.4,

∫ y

x
tαdt =

⎧
⎨

⎩

(1 + α)−1
(
y1+α − x1+α

⎛
if α 
= −1,

log y − log x if α = −1.

Evidently
∫ x
1 t−1dt = log x (1 < x < ∞),

∫ 1
x t−1dt = − log x (0 < x < 1); hence

log x =
∫ x

1
t−1dt if 0 < x < ∞.

This integral representation of the logarithmic function is often taken as the def-
inition of log x; various properties of the function follow in a simple way from it.
Thus if x, y > 0, then

∫ xy

1
t−1dt =

∫ x

1
t−1dt +

∫ xy

x
t−1dt,

and use of the substitution s = t/x in the second integral on the right-hand side gives

∫ xy

1
t−1dt =

∫ x

1
t−1dt +

∫ y

1
s−1ds,

so that

log(xy) = log x + log y.

Information about the growth of log x with x can be obtained very easily from the
integral formula. For if 0 < ε < α and x > 1, then

x−α log x = x−α

∫ x

1
t−1dt < x−α

∫ x

1
tε−1dt = x−α

(
xε − 1

ε

)

< xε−α/ε;

hence x−α log x → 0 as x → ∞, provided that α > 0.
Series expansions can also be obtained by use of the integral representation. The

identity

(1 + t)−1 −
n∑

r=1

(−t)r−1 = (1 + t)−1(−t)n (t 
= −1)



1.5 Applications 35

(obtained by summation of the geometric series
∑n

r=1(−t)r−1) shows that if −1 <

x ≤ 1, then

∣
∣
∣
∣
∣

∫ x

0
(1 + t)−1dt −

n∑

r=1

∫ x

0
(−t)r−1dt

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫ x

0
(1 + t)−1(−t)ndt

∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1

(n + 1)
, if 0 ≤ x ≤ 1,

∣
∣xn+1

∣
∣

(n + 1)(1 + x)
, if − 1 < x < 0

→ 0 as n → ∞.

We thus have

log(1 + x) =
∞∑

r=1

(−1)r−1

r
xr if − 1 < x ≤ 1.

In particular, this gives

log 2 =
∞∑

r=1

(−1)r−1

r
.

Lastly, yet another use of the integral representation of the logarithm leads to a
very simple proof of the famous arithmetic-geometric mean inequality: this asserts
that given any natural number n, any positive numbers a1, . . . , an and any positive
numbers p1, . . . , pn such that p1 + ... + pn = 1, then

Gn :=
n∏

r=1

a pr
r ≤

n∑

r=1

pr ar := An,

with equality if, and only if, the ar are all equal. To prove this, note that for all x > 0,

x − 1 − log x =
∫ x

1

(
1 − t−1

)
dt ≥ 0;

moreover, equality holds if, and only if, x = 1. If the ak are all equal, then plainly
Gn = An; and if they are not all equal, then Gn < An since

AnG−1
n − 1 =

n∑

k=1

pk

(
ak G−1

n − 1
)

>

n∑

k=1

pk log
(

ak G−1
n

)
= 0.
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1.5.2 The Integral Test for Convergence of Series

Theorem 1.5.1 Let r ∈ N, let φ : [r,∞) → [0,∞) be decreasing and put

an =
n∑

k=r

φ(k) −
∫ n+1

r
φ (n ∈ N, n ≥ r).

Then there exists a ∈ R such that an ↑ a as n ↑ ∞, and 0 ≤ a ≤ φ(r). Moreover,
the series

∑∞
n=r φ(n) converges if, and only if, the sequence

(∫ n
r φ

⎛
n≥r converges.

Proof Since φ is monotone, it is Riemann-integrable over every closed, bounded
interval contained in [r,∞). For k ≥ r, k ∈ N,

φ(k + 1) ≤ φ(t) ≤ φ(k) if k ≤ t ≤ k + 1,

and hence

φ(k + 1) ≤
∫ k+1

k
φ ≤ φ(k).

Thus

n∑

k=r

φ(k + 1) ≤
∫ n+1

r
φ ≤

n∑

k=r

φ(k),

which implies that

0 ≤
n∑

k=r

φ(k) −
∫ n+1

r
φ ≤ φ(r) − φ(n + 1) ≤ φ(r).

It follows that (an) is an increasing sequence bounded above by φ(r), and so there is
a real number a with an ↑ a as n ↑ ∞. The rest follows directly from the definition
of an . ⇐

Example 1.5.2 Suppose that α ≥ 0 and let φ(t) = t−α (1 ≤ t < ∞). Then

∫ m

1
t−αdt =

{
(1 − α)−1(m1−α − 1) if α 
= 1,
logm if α = 1.

By Theorem 1.5.1, there is a real number Aα such that as m → ∞,

m−1∑

n=1

n−α −
∫ m

1
t−αdt → Aα.
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Moreover, since

lim
m→∞

∫ m

1
t−αdt =

{∞ if α ≤ 1,
(α − 1)−1 if α > 1,

we see that
∑∞

n=1 n−α converges if α > 1 and diverges if α ≤ 1. (When α ≤ 0
the series diverges as the nth term fails to converge to 0 as n → ∞.) The choice of
α = 1 shows that

A1 = lim
m→∞

(
1 + 1

2
+ ... + 1

m − 1
− logm

)
< ∞;

this constant A1 is known as Euler’s constant, is usually denoted by γ , and is approx-
imately equal to 0.5772.

1.5.3 Taylor’s Theorem and the Binomial Series

Decidedly the most useful version of Taylor’s theorem, from the point of view of
estimation of the remainder, is that which expresses the remainder as an integral. We
present this version here, and then illustrate its use in obtaining the binomial theorem
for an arbitrary real exponent.

Theorem 1.5.3 (Taylor’s theorem ) Let J be an interval in R, let α and β be distinct
points of J , let f and its first n derivatives (for some n ∈ N) be real-valued
functions defined on J , and suppose that f (n) ∈ R(I ) for each non-degenerate,
closed, bounded interval I ⊂ J . Then

f (β) =
n−1∑

k=0

f (k)(α)

k! (β − α)k + 1

(n − 1)!
∫ β

α

(β − t)n−1 f (n)(t)dt.

Proof When n = 1, the result follows directly from the fundamental theorem of
calculus (Theorem 1.4.4). When n > 1, put

Ek(β) = 1

(k − 1)!
∫ β

α

(β − t)k−1 f (k)(t)dt (1 ≤ k ≤ n).

By Theorem 1.4.4, E1(β) = f (β) − f (α); and by Theorem 1.4.6,

Ek(β) − Ek+1(β) = (β − α)k

k! f (k)(α) (1 ≤ k ≤ n − 1).
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Summation of this over k from 1 to n − 1 then gives

f (β) − f (α) −
n−1∑

k=1

(β − α)k

k! f (k)(α) = En(β),

as required. ⇐

Theorem 1.5.4 (The binomial series theorem) Let a ∈ R. Then

(1 + x)a = 1 +
∞∑

n=1

(
a

n

)
xn (−1 < x < 1),

where
(

a

n

)
= a(a − 1)...(a − n + 1)

n! (n ∈ N).

Proof Let x ∈ R, |x | < 1. Application of Theorem 1.5.3 with α = 0, β = x and
f (t) = (1 + t)a gives

(1 + x)a = 1 +
n∑

k=1

(
a

k

)
xk + En+1(x),

where

En+1(x) =
∫ x

0

(x − t)n

n! a(a − 1)...(a − n)(1 + t)a−n−1dt.

It remains to prove that limn→∞ En+1(x) = 0. Put

Ca(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + x)a−1 if a ≥ 1, x ≥ 0,
1 if a ≥ 1, x ≤ 0,
1 if a ≤ 1, x ≥ 0,
(1 + x)a−1 if a ≤ 1, x ≤ 0.

Note that (1 + t)a−1 ≤ Ca(x) for all t between 0 and x , and hence

|En+1(x)| ≤ Ca(x)
|a(a − 1)...(a − n)|

n!
∣
∣
∣
∣

∫ x

0

∣
∣
∣
∣
x − t

1 + t

∣
∣
∣
∣

n

dt

∣
∣
∣
∣ .

Since
∣
∣
∣ x − t
1+ t

∣
∣
∣ ≤ |x | for all t between 0 and x ,

|En+1(x)| ≤ un(x),
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where

un(x) = Ca(x)
|a(a − 1)...(a − n)|

n! |x |n+1 .

The ratio test now shows that
∑

un(x) converges if |x | < 1 : hence limn→∞ un(x) =
0, and so limn→∞ En+1(x) = 0. ⇐


1.5.4 Approximations to Integrals

To conclude this section we return to the topic of evaluation. At the beginning of
Sect. 1.4 we noted the relative failure of procedures, such as the trapezium rule,
to effect exact evaluation of the integral of a given function. Nevertheless, these
procedures do have merit from the point of view of approximation. Provided that a
given function is sufficiently regular, in principle its integral may be computed to
any pre-assigned degree of accuracy. Theorem 1.5.6 below substantiates this remark
for the trapezium rule; the following lemma prepares the ground.

Lemma 1.5.5 Let h > 0, let f : [−h, h] → R be twice differentiable and suppose
that f (2) ∈ R[−h, h]. Then

∣
∣
∣
∣

∫ h

−h
f (x)dx − h { f (−h) + f (h)}

∣
∣
∣
∣ ≤ 2

3
h3 sup

−h≤t≤h

∣
∣
∣ f (2)(t)

∣
∣
∣ .

Proof Let L : R[−h, h] → R be defined by

L(u) =
∫ h

−h
u(x)dx − h {u(−h) + u(h)} .

Whenever u is continuously differentiable,

L(u) = −
∫ h

−h
xu(1)(x)dx = −

∫ h

−h
x
⎝

u(1)(x) − u(1)(0)
⎞

dx .

Plainly the mapping L is linear; moreover, L(p) = 0 whenever p is a polynomial of
degree at most 1.

Let M := sup−h≤t≤h

∣
∣ f (2)(t)

∣
∣. Evidently

L( f ) = −
∫ h

−h
x

(∫ x

0
f (2)(t)dt

)
dx,
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and hence

|L( f )| ≤
∫ h

−h

∣
∣
∣
∣x

∫ x

0
f (2)(t)dt

∣
∣
∣
∣ dx ≤ M

∫ h

−h
x2dx = 2

3
Mh3.

⇐

Theorem 1.5.6 (Error estimates for the trapezium rule) Let f : [a, b] → R be twice
differentiable and suppose that f (2) ∈ R[a, b]. Let {x0, x1, . . . , xn} be that partition
of [a, b] which divides it into n intervals of equal length and let

τn = 1

2n

n∑

r=1

{ f (xr−1) + f (xr )} .

Then

∣
∣
∣
∣(b − a)−1

∫ b

a
f (x)dx − τn

∣
∣
∣
∣ ≤ 1

12

(
b − a

n

)2

sup
a≤t≤b

∣
∣
∣ f (2)(t)

∣
∣
∣ .

Proof Put M = supa≤t≤b

∣
∣ f (2)(t)

∣
∣ and h = (b − a)/2n. For 1 ≤ r ≤ n, let

gr : [−h, h] → R be given by

gr (t) = f (t + (xr−1 + xr ) /2) .

Then gr is twice differentiable, g(2)
r ∈ R[−h, h] and

∣
∣
∣
∣

∫ h

−h
gr (t)dt − h{gr (−h) + gr (h)}

∣
∣
∣
∣ ≤ 2

3
Mh3.

It follows that, for 1 ≤ r ≤ n,

∣
∣
∣
∣

∫ xr

xr−1

f (t)dt − (b − a)

2n
{ f (xr−1) + f (xr )}

∣
∣
∣
∣ ≤ 1

12
M

(
b − a

n

)3

.

⇐

Exercise 1.5.7

1. Let φ : [a, b] → R be continuous and such that φ(t) > 0 for all t ∈ [a, b].
Prove that

1

b − a

∫ b

a
logφ(t)dt ≤ log

{
1

b − a

∫ b

a
φ(t)dt

⎠
.

2. Prove that
∑∞

n=2
1

n(log n)α
converges if α > 1 and diverges if α ≤ 1; and that

∑∞
n=3

1
n log n log log n diverges.
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3. Prove that as n → ∞,
∑n

r=1

( s
r − 1

rs

⎛ − s log n (s > 1) tends to a limit ψ(s),
where 0 ≤ ψ(s) + 1

s−1 ≤ s − 1.

4. Let n ∈ N and let f : [a, b] → R be such that f (n) is continuous on [a, b]. Show
that if α and β are distinct points of [a, b], then

f (β) −
n−1∑

k=0

f (k)(α)

k! (β − α)k = Rn(β),

where

Rn(β) = f (n)(γ )

n! (β − α)n = f (n)(λ)

(n − 1)! (β − λ)n−1(β − α)

for suitable γ and λ between α and β.
5. Let J be a non-degenerate interval in R, and let a ∈ J . Let f : J → R be

a function possessing a primitive, and suppose that f ∈ R(I ) for each non-
degenerate, closed, bounded interval I ⊂ J . For n ∈ N, let fn : J → R be
defined by

f1(x) =
∫ x

a
f (t)dt; fn(x) =

∫ x

a
fn−1(t)dt (n ≥ 2).

Prove that

fn(x) =
∫ x

a

(x − t)n−1

(n − 1)! f (t)dt (x ∈ J, n ∈ N).

6. (i) Let dn = log n! − (
n + 1

2

⎛
log n + n (n ∈ N). Prove that

dn − dn+1 =
(

n + 1

2

)
log

(
1 + 1

n

)
− 1

= 1

3(2n + 1)2
+ 1

5(2n + 1)4
+ ...

<
1

3
{
(2n + 1)2 − 1

} = 1

12n
− 1

12(n + 1)
.

Let cn = dn − 1
12n (n ∈ N). Show that the sequences (cn) and (dn) are

increasing and decreasing, respectively, and that each is convergent. Let
limn→∞ dn = λ.

(ii) Let an = n!enn−(n+ 1
2 ) (n ∈ N). Show that limn→∞ an = eλ and that

eλ = limn→∞
(
a2

n/a2n
⎛ = √

2π . Deduce Stirling’s formula:
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n! ∼ (2πn)1/2(n/e)n as n → ∞;

that is,
lim

n→∞ n!(2πn)−1/2(n/e)−n = 1.

7. (Error-estimates for Simpson’s rule-see Exercise 1.4.15/4.)

(i) Let h > 0. Let L : R[−h, h] → R be defined by

L(u) =
∫ h

−h
u − h

3
{u(−h) + 4u(0) + u(h)} .

Prove that L is a linear mapping and that its kernel contains the class of
polynomials of degree at most 3.
Let f : [−h, h] → R be four times differentiable and suppose that f (4) ∈
R[−h, h]. Prove that

|L( f )| ≤ h5

90
sup

−h≤t≤h

∣
∣
∣ f (4)(t)

∣
∣
∣ .

(ii) Let f : [a, b] → R be four times differentiable and suppose that f (4) ∈
R[a, b]. Let {x0, x1, . . . , x2n} be that partition of [a, b]which divides it into
2n intervals of equal length, and let

θn = 1

6n

n∑

r=1

{ f (x2r−2) + 4 f (x2r−1) + f (x2r )} .

Prove that

∣
∣
∣
∣(b − a)−1

∫ b

a
f − θn

∣
∣
∣
∣ ≤ (b − a)4

2880n4 sup
a≤t≤b

∣
∣
∣ f (4)(t)

∣
∣
∣ .

[Hint for part (i): Taylor’s theorem shows that

L( f ) = L

(
x �−→

∫ x

0

(x − t)3

3! f (4)(t)dt

)
;

exercise 5 above shows that

d

dx

(∫ x

0

(x − t)4

4! f (4)(t)dt

)
=

∫ x

0

(x − t)3

3! f (4)(t)dt.]
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1.6 The Improper Riemann Integral

The theory so far developed requires that the functions to be integrated should be
bounded and that the integration should take place over a closed, bounded interval.
These conditions mean that we are unable to attach a meaning to symbols such as∫ 1
0 x−1/2dx ,

∫ ∞
0 e−x dx or

∫ ∞
1 (x − 1)−1/2e−x2dx; and our object here is to relax

these constraints so that the notion of an integral is more widely available, and in
particular may be able to deal with problems to be encountered in Complex Analysis:
see Chap. 3.

Definition 1.6.1 Let J be an interval inR. ByRloc(J )wemean the family of all real-
valued functions f , with domain containing J (and depending upon the particular
function f ), such that for every closed, bounded, non-degenerate interval I ⊂ J ,
f |I ∈ R(I ). For simplicity we shall writeRloc(a, b) forRloc((a, b)),Rloc[a, b) for
Rloc([a, b)), etc.

Note thatRloc(J1) ⊂ Rloc(J2) if J1 ⊃ J2. Corollary 1.3.7 shows that if J is non-
degenerate, closed and bounded, thenR(J ) = Rloc(J ); otherwise this equality fails
to hold since R(J ) is not defined. As an example of the kind of functions we have
in mind consider the function f : (0, 1] → R defined by f (x) = x−1 (0 < x ≤ 1) :
this is continuous on (0,1] and so is Riemann-integrable over every closed interval
[a, b] ⊂ (0, 1]; hence it is inRloc(0, 1].
Definition 1.6.2 Let a ∈ R ∪ {−∞}, b ∈ R ∪ {∞}, a < b, and suppose that
f ∈ Rloc(a, b); assume also that there exists c ∈ (a, b) such that

lim
u→a+

∫ c

u
f and lim

v→b−

∫ v

c
f exist in R. (1.6.1)

Then f is said to be improperly Riemann-integrable over (a, b), and the improper
Riemann integral of f over (a, b), denoted by (I R)

∫ b
a f or

∫ b
a f , is defined to be

lim
u→a+

∫ c

u
f + lim

v→b−

∫ v

c
f. (1.6.2)

Remark 1.6.3

(i) If a = −∞, by limu→a+ we mean limu→−∞; similarly if b = ∞, limv→b−
means limv→∞.

(ii) The definition of the improper Riemann integral is independent of the choice of
c in (a, b), for given that the limits in (1.6.1) hold for some particular c ∈ (a, b),
then for all d ∈ (a, b),

http://dx.doi.org/10.1007/978-3-319-06209-9_3
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lim
u→a+

∫ c

u
f + lim

v→b−

∫ v

c
f = lim

u→a+

∫ d

u
f +

∫ c

d
f + lim

v→b−

∫ v

c
f

= lim
u→a+

∫ d

u
f + lim

v→b−

∫ v

d
f.

Example 1.6.4 Let a = −∞, b = ∞, f : R → R where f (x) = (1 + x2)−1

(x ∈ R). As f is continuous, f ∈ Rloc(R). Moreover, taking c = 0 we see that

∫ v

0
(1 + x2)−1dx = tan−1 v → π

2
as v → ∞,

and

∫ 0

u
(1 + x2)−1dx = − tan−1 u → π

2
as u → −∞,

so that

(I R)

∫ ∞

−∞
(1 + x2)−1dx = π.

Lemma 1.6.5 Let a, b ∈ R, a < b, and suppose that f ∈ R[a, b]. Then f is
improperly Riemann-integrable over (a, b) and

(I R)

∫ b

a
f =

∫ b

a
f.

Proof By Corollary 1.3.7, f ∈ Rloc[a, b]. By Theorem 1.4.9, given any c ∈ (a, b),
the function u �−→ ∫ u

c f is continuous on [a, b]. Hence

lim
v→b−

∫ v

c
f =

∫ b

c
f, lim

u→a+

∫ c

u
f =

∫ c

a
f,

and so

(I R)

∫ b

a
f =

∫ c

a
f +

∫ b

c
f =

∫ b

a
f.

⇐

This result shows that the improper Riemann integral is an extension of the Rie-

mann integral. It also means that there will be no confusion if we denote the improper
Riemann integral by

∫ b
a f , and we shall do this from time to time.

We now give a number of results which make it easier to determine whether or
not a given function is improperly Riemann-integrable over a given interval.
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Lemma 1.6.6 Suppose that −∞ < a < b ≤ ∞ and that f ∈ Rloc[a, b). Then f
is improperly Riemann-integrable over (a, b) if, and only if,

lim
v→b−

∫ v

a
f exists in R, (1.6.3)

where the integral in (1.6.3) is a Riemann integral. If this limit exists, then

(I R)

∫ b

a
f = lim

v→b−

∫ v

a
f.

Proof Suppose that f is improperly Riemann-integrable over (a, b). Then there exist
c ∈ (a, b) and α ∈ R such that limv→b−

∫ v
c f = α. Since

∫ v

a
f =

∫ c

a
f +

∫ v

c
f

for all v ∈ [a, b), it follows that

lim
v→b−

∫ v

a
f = α +

∫ c

a
f.

Conversely, let β = limv→b−
∫ v

a f (note that β is finite) and let c ∈ (a, b).
Then limv→b−

∫ v
c f = β − ∫ c

a f and as in the proof of Lemma 1.6.5 we see that
limu→a+

∫ c
u f = ∫ c

a f . Hence f is improperly Riemann-integrable over (a, b) and

(I R)

∫ b

a
f =

∫ c

a
f + β −

∫ c

a
f = β.

⇐

Remark 1.6.7 The same style of proof shows that if −∞ ≤ a < b < ∞ and
f ∈ Rloc(a, b], then f is improperly Riemann-integrable over (a, b) if, and only if,
limu→a+

∫ b
u f exists in R; if this limit exists, then

(I R)

∫ b

a
f = lim

u→a+

∫ b

u
f.

Example 1.6.8 Let α ∈ R, a > 0, f (x) = xα . Then:

(i) f is improperly Riemann-integrable over (a,∞) if, and only if, α < −1; and
if α < −1, then

∫ ∞
a f = −a1+α/(1 + α);

(ii) f is improperly Riemann-integrable over (0, a) if, and only if, α > −1; and if
α > −1, then

∫ a
0 f = a1+α/(1 + α);

(iii) f is not improperly Riemann-integrable over (0,∞).
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To establish these results, note first that as f is continuous on (0,∞), the function
f is inRloc(0,∞) no matter what α is. Moreover, if v, c ∈ (0,∞), then

∫ v

c
f =

⎧
⎨

⎩

(1 + α)−1(v1+α − c1+α) if α 
= −1,

log v − log c if α = −1.
(1.6.4)

Since limv→∞
∫ v

c f exists in R if, and only if, α < −1; and limu→0+
∫ c

u f exists in
R if, and only if, α > −1, (iii) follows immediately. From (1.6.4), with c = a, and
Lemma 1.6.6 we obtain (i); (ii) follows similarly with the aid of Remark 1.6.7.

Lemma 1.6.9 Let a, b ∈ R, a < b; let f : (a, b) → R be bounded and in
Rloc(a, b); suppose that g : [a, b] → R is such that g |(a,b)= f . Then g ∈ R[a, b],
f is improperly Riemann-integrable over (a, b) and

(I R)

∫ b

a
f =

∫ b

a
g.

Proof By Theorem 1.3.8, g ∈ R[a, b]. The rest follows from Lemma 1.6.5. ⇐

Example 1.6.10 Let f : (0, 1) → R be given by f (x) = (log x) log(1 − x) for
0 < x < 1. We claim that f is improperly Riemann-integrable over (0, 1). For since

lim
x→0+ f (x) = lim

x→0+

{
x log x · log(1 − x)

x

⎠
= lim

x→0+(x log x) lim
x→0+

{
log(1 − x)

x

⎠

= 0

and

lim
x→1− f (x) = lim

x→1−

{
log x

1 − x
· (1 − x) log(1 − x)

⎠
= 0,

it follows that f is bounded. Thus by Lemma 1.6.9, f is improperly Riemann-
integrable over (0, 1).

Theorem 1.6.11 Let −∞ < a < b ≤ ∞ and let f : [a, b) → R be non-negative
and in Rloc[a, b). Then

∫ b
a f exists if, and only if, there is a constant K ∈ R such

that
∫ v

a f ≤ K for all v ∈ (a, b).

Proof If
∫ b

a f exists, the result is immediate. For the converse, let ε > 0 and observe
that F(v) := ∫ v

a f ≤ K if v ∈ (a, b); put F = sup {F(v) : v ∈ (a, b)}. There exists
v1 ∈ (a, b) such that F − ε < F(v1) ≤ F , and since F is increasing,

∣
∣F(v) − F

∣
∣ < ε

whenever v1 < v < b. Hence F = limv→∞ F(v) = ∫ b
a f . ⇐


This theorem is a particularly useful one, for it enables a comparison test for
integrals to be obtained, similar to that for series with non-negative terms. For exam-
ple, to show that the improper Riemann integral

∫ ∞
0

|cos x |
1+x2

dx exists, it is enough to
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observe that for all v ∈ (0,∞),

∫ v

0

|cos x |
1 + x2

dx ≤
∫ v

0

1

1 + x2
dx ≤ π

2
,

for then Theorem 1.6.11 does the trick. However, it applies only to non-negative
functions. Nevertheless, Theorem 1.6.11 coupled with the following result enables
us to cope with a wide variety of situations.

Theorem 1.6.12 Let −∞ < a < b ≤ ∞ and suppose that f ∈ Rloc[a, b). Then if∫ b
a | f | exists, so does

∫ b
a f .

Proof Let v ∈ (a, b). Then as f ∈ R[a, v], so do f +, f − and | f | (recall that
f + = 1

2 ( f + | f |), f − = 1
2 (| f | − f )). Also

0 ≤
∫ v

a
f −,

∫ v

a
f + ≤

∫ v

a
| f | ≤

∫ b

a
| f | .

By Lemma 1.6.6, f + and f − are improperly Riemann-integrable over (a, b); hence

lim
v→b−

∫ v

a
f = lim

v→b−

∫ v

a
( f + − f −) = lim

v→b−

∫ v

a
f + − lim

v→b−

∫ v

a
f −,

and the result follows. ⇐

As an illustration of the usefulness of this result, note that it shows directly that

the function f : (0,∞) → R given by f (x) = cos x
1+x2

(0 < x < ∞) is improperly

Riemann-integrable over (0,∞), since we know that
∫ ∞
0

|cos x |
1+x2

dx exists.

Remark 1.6.13 The converse ofTheorem1.6.12 is false: if f is improperlyRiemann-
integrable over (a, b) it does not follow that (I R)

∫ b
a | f | dx exists. To illustrate this

let f : [0,∞) → R be defined by f (x) = sin x
x (x > 0), f (0) = 1. We claim that

f is improperly Riemann-integrable over (0,∞) but that | f | is not. To justify this,
note that for each m ∈ N, m > 2,

∫ mπ

π

|sin x |
x

dx =
m−1∑

n=1

∫ (n+1)π

nπ

|sin x |
x

dx ≥
m−1∑

n=1

1

(n + 1)π

∫ (n+1)π

nπ

|sin x | dx

=
m−1∑

n=1

1

(n + 1)π

∫ π

0
sin xdx = 2

π

m−1∑

n=1

1

(n + 1)

= 2

π

m∑

k=2

1

k
.

Since
∑∞

2
1
k diverges, limv→∞

∫ v
π

|sin x |
x dx = ∞, and hence | f | is not improperly

Riemann-integrable over (0,∞). However, for each v ∈ (π,∞),
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∫ v

0
f =

∫ π

0
f +

∫ v

π

f.

Integration by parts gives

∫ v

π

f = − 1

π
− v−1 cos v −

∫ v

π

cos x

x2
dx;

and since x �−→ x−2 |cos x | is inRloc[π,∞) and

∫ v

π

|cos x |
x2

dx ≤
∫ v

π

1

x2
dx ≤ 1/π,

it follows from Theorem 1.6.11 that x �−→ x−2 |cos x | is improperly Riemann-
integrable over (π,∞); by Theorem 1.6.12, so is x �−→ x−2 cos x . Accordingly, as
limv→∞

∫ v
0 f exists in R, it follows that f is improperly Riemann-integrable over

(0,∞).

Various results for improper Riemann integrals, companion to those developed in
Sects. 1.3 and 1.4 for theRiemann integral,may nowbe establishedwithout difficulty.
However, a technical matter worth noting arises in the course of this procedure: this
relates to the additivity of the integral. Generalisation of Theorem 1.3.6 requires
a modification of Definition 1.6.2 to enlarge the class of improperly Riemann-
integrable functions.

Definition 1.6.14 Let f be a real-valued function defined on (a, b) save perhaps
at a finite number of points of this interval, and suppose there are finitely many
points a1, . . . , ap ∈ (a, b), with a1 < a2 < ... < ap, such that f is improperly
Riemann-integrable over each subinterval (ai−1, ai ) (i = 1, . . . , p +1), where a0 =
a, ap+1 = b. Then f is said to be improperly Riemann-integrable over (a, b), and

we define the improper Riemann integral of f over (a, b) to be
∑p+1

i=1

∫ ai
ai−1

f ,

denoted by
∫ b

a f .

Note that while the choice of points ai in this definition is not unique, nevertheless
it may easily be shown that if

∫ b
a f exists, then it does not depend upon the particular

ai chosen.

Exercise 1.6.15

1. Let a ∈ R and suppose that f ∈ Rloc[a,∞). Show that f is improperly
Riemann-integrable over (a,∞) if, and only if, given any ε > 0 there exists
x0 ∈ R such that ∣

∣
∣
∣

∫ y

x
f

∣
∣
∣
∣ < ε whenever y > x ≥ x0.

2. Let a ∈ R, g ∈ Rloc[a,∞), g(x) ≥ 0 for all x ∈ [a,∞) and suppose that g is
improperly Riemann-integrable over (a,∞). Let K ∈ R, f ∈ Rloc[a,∞) and
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suppose that
| f (x)| ≤ K g(x) when a ≤ x < ∞.

Prove that f is improperly Riemann-integrable over (a,∞).
3. Show that the following improper integral exists:

Γ (p) =
∫ ∞

0
x p−1e−x dx (p > 0).

Prove that Γ (p + 1) = pΓ (p) (p > 0). Deduce that Γ (n + 1) = n! (n ∈ N).
4. Determine those values of α ∈ R for which the following integrals exist as

improper Riemann integrals:

(a)
∫ ∞

0

xα−1

1 + x
dx, (b)

∫ 1

0

1

xα(1 − log x)
dx,

(c)
∫ π

0
x−α sin xdx, (d)

∫ π

0

sinα x

log(1 + x)
dx .

5. Let f ∈ Rloc(R) and let f be periodic with period τ > 0 : f (t + τ) = f (t)
(t ∈ R). Prove that

∫ x+τ

x
f =

∫ τ

0
f (x ∈ R).

6. Prove that ifun = ∫ π/2
0 sin 2nx cot xdx and vn = ∫ π/2

0
sin 2nx

x dx , thenun = π/2
and limn→∞ vn = ∫ ∞

0
sin x

x dx . Further, show that limn→∞(un − vn) = 0, and
deduce that

∫ ∞

0

sin x

x
dx = π

2
.

7. Show that if θ > 1, then the improper Riemann integral

∫ 1/e

0
x−1 (log(1/x))−θ dx

exists, and evaluate it.
8. Let λ ∈ R. Show that the improper Riemann integral

∫ ∞
0 e−x sin(λx)dx exists

and equals λ/(1 + λ2).
9. Show that both

∫ ∞
1

cos x
x dx and

∫ ∞
2

cos x
log x dx exist as improper Riemann integrals.

10. Show that
∫ ∞
−∞ sin(ex )dx exists as an improper Riemann integral, and evaluate

it.
11. Noting that
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1 + x4 = (1 − √
2x + x2)(1 + √

2x + x2),

express (1 + x4)−1 in terms of partial fractions and show that the improper
Riemann integral

∫ ∞
0 (1 + x4)−1dx exists and equals π/2

√
2.

1.7 Uniform Convergence

Let ( fn) be a sequence of Riemann-integrable functions on an interval [a, b], and
suppose that there is a function f : [a, b] → R such that for each x ∈ [a, b],
limn→∞ fn(x) = f (x). A natural question to ask is whether f ∈ R[a, b], and if so,
whether

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f (x)dx .

In general the answer is ‘no’: if a = 0, b = 1, fn(x) = n2xe−nx then f (x) = 0,
limn→∞

∫ 1
0 fn(x)dx = limn→∞(−ne−n − e−n + 1) = 1, while

∫ 1
0 f (x)dx = 0. In

this example, the limit function f is Riemann-integrable, but even this need not be
so, as is evident from the case a = 0, b = 1 and

fn(x) =
{
1 if x = k2−n for some k ∈ Z with 0 ≤ k ≤ 2n,

0 otherwise.

Here

f (x) =
{
1 if x = k2−n for some n ∈ N, k ∈ Z with 0 ≤ k ≤ 2n,

0 otherwise,

and f /∈ R[0, 1]. However, when a = 0, b = 1, fn(x) = xn/n, we have f (x) = 0
and

lim
n→∞

∫ 1

0
fn(x)dx = lim

n→∞
1

n(n + 1)
= 0 =

∫ 1

0
f (x)dx,

and all is well.
The concept of uniform convergence which we now introduce enables us to dis-

tinguish between these cases.

Definition 1.7.1 Let S be a non-empty set, and for each n ∈ N let fn : S → R. If
there is a function f : S → R such that limn→∞ fn(s) = f (s) for all s ∈ S, the
sequence ( fn) is said to converge pointwise on S to f ; if there is a function f : S →
R such that given any ε > 0, there exists N ∈ N such that sups∈S | fn(s) − f (s)| < ε

if n ≥ N , it is said to converge uniformly on S to f .
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Equivalently, ( fn) converges uniformly on S if there is a function f : S → R such
that given any ε > 0, there exists N ∈ N such that for all s ∈ S, | fn(s) − f (s)| < ε

if n ≥ N ; while for pointwise convergence on S we require that given any s ∈ S and
any ε > 0, there exists N ∈ N such that | fn(s) − f (s)| < ε if n ≥ N . This trivial
reformulation of the definition helps to underline the basic difference between these
two forms of convergence: for uniform convergence on S, the integer N depends on
ε and does not depend upon the particular s ∈ S; while for pointwise convergence
N may well depend on the particular s chosen as well as on ε. Evidently uniform
convergence on S implies pointwise convergence on S. The converse is false, as we
see from consideration of the sequence ( fn), where fn : R → R and

fn(s) =
⎧
⎨

⎩

ns, if 0 ≤ s ≤ n−1,

2 − ns, if n−1 < s ≤ 2n−1,

0, otherwise.

Then fn(s) → 0 for each s ∈ R, but since fn(n−1) = 1 for all n ∈ N, the
convergence cannot be uniform on R, for there can be no N ∈ N such that for all
n > N , supx∈R | fn(x)| < 1/2.

Example 1.7.2

(i) Let fn(x) = (1 + nx)−1 for 0 < x ≤ 1 and n ∈ N. For all x ∈ (0, 1],
limn→∞ fn(x) = 0. However, the convergence is not uniform on (0, 1], as for
all n ∈ N, fn(n−1) = 1/2.

(ii) Let gn(x) = x(1 + nx)−1 for 0 < x ≤ 1 and n ∈ N. Given any x ∈ (0, 1] and
any ε > 0, 0 < gn(x) < 1/n if n > 1/ε: hence (gn) converges uniformly on
(0, 1] to 0.

Cauchy’s general principle of convergence (Appendix, Theorem A.4.14) has a
natural analogue for uniform convergence which we give next.

Theorem 1.7.3 (Cauchy’s general principle of uniform convergence ) Let ( fn) be a
sequence of real-valued functions defined on a non-empty set S. Then ( fn) converges
uniformly on S if, and only if, given any ε > 0, there exists N ∈ N such that
sups∈S | fn(s) − fm(s)| < ε if m, n ≥ N.

Proof Suppose that ( fn) converges uniformly on S to a function f , and let ε > 0.
Then there exists N ∈ N such that for all n ≥ N and all s ∈ S, | fn(s) − f (s)| < ε/2.
Hence for all s ∈ S and all m, n ≥ N ,

| fn(s) − fm(s)| ≤ | fn(s) − f (s)| + | f (s) − fm(s)| < ε,

which gives the desired result.
Conversely, suppose that Cauchy’s criterion holds. Then for each s ∈ S, ( fn(s)) is

a Cauchy sequence of real numbers, and hence converges, to f (s), say; this defines a
function f : S → R. Let ε > 0. Then there exists N ∈ N such that for all m, n ≥ N
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and for all s ∈ S we have | fn(s) − fm(s)| < ε/2. Let m → ∞ : then for all n ≥ N ,
sups∈S | fn(s) − f (s)| ≤ ε/2 < ε. The proof is complete. ⇐


Now that uniform convergence of sequences has been treatedwemay passwithout
difficulty to the uniform convergence of series by the natural consideration of partial
sums.

Definition 1.7.4 Let ( fn) be a sequence of real-valued functions on a non-empty
set S and put un(s) = ∑n

k=1 fk(s) for all s ∈ S and all n ∈ N. The symbol∑∞
k=1 fk , referred to as the series generated by ( fn), is used to denote the sequence

(un). If the sequence (un) converges pointwise on S to f , we say that the series∑∞
k=1 fk converges pointwise on S to f and write f = ∑∞

k=1 fk . By context one
understands whether

∑∞
k=1 fk represents the series itself or the limit function f . If

(un) is uniformly convergent on S we say that
∑∞

k=1 fk converges uniformly on S.
The function un is called the nth partial sum of the series

∑∞
k=1 fk .

There are various tests for detecting uniform convergence of series, but the sim-
plest, and perhaps the most useful, is the following, due to Weierstrass.

Theorem 1.7.5 (The Weierstrass M-test ) Let ( fn) be a sequence of real-valued
functions defined on a non-empty set S, and suppose that (Mn) is a sequence of
non-negative real numbers, with

∑∞
n=1 Mn convergent, such that for all n ∈ N,

sups∈S | fn(s)| ≤ Mn. Then
∑∞

n=1 fn is uniformly convergent on S.

Proof Let ε > 0. Since
∑∞

1 Mn is convergent, there exists N ∈ N such that for all
m, n ∈ N with m > n ≥ N , we have

∑m
r=n+1 Mr < ε. Thus for all s ∈ S and all

m, n > N ,

∣
∣
∣
∣
∣

m∑

r=n+1

fr (s)

∣
∣
∣
∣
∣
≤

m∑

r=n+1

| fr (s)| ≤
m∑

r=n+1

Mr < ε.

The result now follows from Theorem 1.7.3. ⇐

Example 1.7.6 The series

∑∞
1

1
(n+x2)(n+1+x2)

converges uniformly on R, since for

all x ∈ R and all n ∈ N,

1
(
n + x2

⎛
(n + 1 + x2)

≤ 1

n2 ,

and
∑∞

1
1

n2
is convergent; Theorem 1.7.5 can then be applied with Mn = 1

n2
.

We now turn to continuous functions. Let S be a non-empty subset of the real line
and, replacing I by S in Definition 1.2.1, let C(S) be the family of all real-valued
continuous functions on S. If ( fn) is a sequence in C(S) which converges pointwise
on S to f : S → R, then f need not be continuous. To illustrate this, let S = R and
define fn by



1.7 Uniform Convergence 53

fn(t) =
⎧
⎨

⎩

1, t ≥ n−1,

nt, |t | < n−1,

−1, t ≤ −n−1.

Clearly ( fn) converges pointwise on R to f , where

f (t) =
⎧
⎨

⎩

1, t > 0,
0, t = 0,
1, t < 0.

Evidently each fn is continuous on R, but f /∈ C(R). If the convergence is uniform
on S this behaviour is impossible, as the following theorem shows: continuity is
preserved by uniform convergence.

Theorem 1.7.7 Let S ⊂ R, S 
= ∅ and suppose ( fn) is a sequence of real-valued
functions on S which converges uniformly on S to f : S → R. If s ∈ S is a point of
continuity of each fn, then f is continuous at s. In particular, if each fn belongs to
C(S), then f ∈ C(S).

Proof Let ε > 0. Since ( fn) converges uniformly on S to f , there exists N ∈ N
such that for all n ≥ N and all t ∈ S, | fn(t) − f (t)| < ε/3. Since fN is continuous
at s, there exists δ > 0 such that | fN (t) − fN (s)| < ε/3 if t ∈ S and |s − t | < δ.
Thus if t ∈ S and |s − t | < δ, then

| f (t) − f (s)| ≤ | f (t) − fN (t)| + | fN (t) − fN (s)| + | fN (s) − f (s)| < ε.

Hence f is continuous at s. ⇐

As an immediate Corollary we have

Corollary 1.7.8 Let ( fn) be a sequence in C(S) and suppose
∑∞

n=1 fn converges
uniformly on S to f . Then f ∈ C(S).

Proof Simply consider the partial sums un = ∑n
k=1 fk and use Theorem 1.7.7. ⇐


Example 1.7.9 To determine whether or not the series
∑∞

n=0
x2

(1+x2)n converges uni-

formly on R, note that f (x) := ∑∞
n=0

x2

(1+x2)n is given by f (x) = 1 + x2 if x 
= 0,

f (0) = 0 : thus f is not continuous on R. Since x �−→ x2

(1+x2)n is continuous
on R, for all n, it follows from Corollary 1.7.8 that the series cannot be uniformly
convergent on R.

One of the most useful and interesting results concerning uniform convergence is
the Weierstrass approximation theorem, which asserts that any real-valued function
which is continuous on a closed, bounded interval can be uniformly approximated on
that interval, as closely as we please, by a polynomial. We give a short direct proof of
this important result, a proof which has the virtue that it may be refined, for suitably
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differentiable functions, to yield simultaneous approximation of these functions and
their derivatives: see [4, pp. 112–114]. Another proof, using integration theory, will
be found in Exercise 1.7.17/14.

Theorem 1.7.10 (The Weierstrass approximation theorem ) Let a, b ∈ R, with
a < b, and let f ∈ C(I ), where I = [a, b]. Then there is a sequence (pn) of
polynomials which converges uniformly on I to f .

Proof We may, without loss of generality, suppose that a = 0, b = 1. For if the
theorem has been proved in this special case, then if we let g : [0, 1] → [a, b]
be given by g(x) = a + x(b − a), it will follow that there is a sequence (pn) of
polynomials which converges uniformly on [0, 1] to f ◦ g : thus (

pn ◦ g−1
⎛
is a

sequence of polynomials which converges uniformly on [a, b] to f .
To prove the theorem when a = 0 and b = 1, consider the identity

(x + y)n =
n∑

k=0

(
n

k

)
xk yn−k, (1.7.1)

differentiate both sides with respect to x and then multiply by x :

nx(x + y)n−1 =
n∑

k=0

k

(
n

k

)
xk yn−k . (1.7.2)

Now differentiate (1.7.1) twice with respect to x and multiply the result by x2 :

n(n − 1)x2(x + y)n−2 =
n∑

k=0

k(k − 1)

(
n

k

)
xk yn−k . (1.7.3)

Put rk(x) = (n
k

⎛
xk (1 − x)n−k and set y = 1 − x : (1.7.1)–(1.7.3) then become

n∑

k=0

rk(x) = 1,
n∑

k=0

krk(x) = nx,

n∑

k=0

k(k − 1)rk(x) = n(n − 1)x2. (1.7.4)

Thus

n∑

k=0

(k − nx)2rk(x) = n2x2 − 2n2x2 + n(n − 1)x2 + nx (1.7.5)

= nx(1 − x).

Since f is continuous on [0, 1], it is bounded: there exists M ∈ R such that for all
x ∈ [0, 1], | f (x)| ≤ M . Moreover, by Theorem 1.2.3, f is uniformly continuous on
[0, 1]. Let ε > 0 : then there exists δ > 0 such that | f (x) − f (y)| < ε whenever
x, y ∈ [0, 1] and |x − y| < δ. Hence for all x ∈ [0, 1], use of (1.7.4) shows that



1.7 Uniform Convergence 55

∣
∣
∣
∣
∣

f (x) −
n∑

k=0

f

(
k

n

)
rk(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∑

k=0

(
f (x) − f

(
k

n

))
rk(x)

∣
∣
∣
∣
∣

≤ |S1| + |S2| ,

where S1 denotes the sum of
(

f (x) − f
( k

n

⎛⎛
rk(x) over those k in [0, n] ∩ N0 such

that |k − nx | < nδ, and S2 is the same except that the summation is over those k
such that |k − nx | ≥ nδ. The uniform continuity of f now shows that, noting that
rk(x) ≥ 0,

|S1| ≤ ε

n∑

k=0

rk(x) = ε;

while (1.7.5) gives

|S2| ≤ 2M
∑

|k−nx |≥nδ

rk(x) ≤ 2M

(nδ)2

n∑

k=0

(k − nx)2rk(x)

= 2Mx(1 − x)

nδ2
≤ M

2nδ2
.

Thus there exists N ∈ N such that for all x ∈ [0, 1] and all n ≥ N , |S2| < ε. It
follows that

∣
∣
∣
∣
∣

f (x) −
n∑

k=0

f

(
k

n

)
rk(x)

∣
∣
∣
∣
∣
≤ 2ε

for all x ∈ [0, 1] and all n ≥ N ; and since pn := ∑n
k=0 f

( k
n

⎛
rk is a polynomial the

theorem follows. ⇐

As an immediate application of Weierstrass’s theorem we give the following.

Theorem 1.7.11 Suppose f : [0, 1] → R is continuous and such that for all
n ∈ N0,

∫ 1

0
tn f (t)dt = 0.

Then f = 0.

Proof Let ε > 0. By Theorem 1.7.10, there is a polynomial p, with p(t) = a0 +
a1t + ... + antn say, such that for all t ∈ [0, 1], | f (t) − p(t)| < ε. Hence
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∫ 1

0
| f (t)|2 dt =

∫ 1

0
f (t) ( f (t) − p(t)) dt +

∫ 1

0
f (t)p(t)dt

≤ ε

∫ 1

0
| f (t)| dt

since
∫ 1
0 f (t)p(t)dt = ∑n

k=0 ak
∫ 1
0 tk f (t)dt = 0. As this is true for all ε > 0,

∫ 1
0 | f (t)|2 dt = 0. Since | f |2 is continuous, Theorem 1.3.2(d) now shows that f
must be the zero function. ⇐


To conclude this section, we return to the topic with which we began it, namely
uniform convergence and integration. From nowon, we suppose that a, b ∈ R, a < b
and I = [a, b].
Theorem 1.7.12 Let (un) be a sequence of functions in R(I ) which converges
uniformly on I to a function u. Then u ∈ R(I ) and

∫ b

a
u = lim

n→∞

∫ b

a
un .

Proof Since (un) converges uniformly on I to u,

εn := sup {|u(t) − un(t)| : t ∈ I } → 0 as n → ∞;

and as

sup
I

|u(t)| ≤ εn + sup
I

|un(t)| < ∞,

u is bounded on I . Moreover,

−εn + un(t) ≤ u(t) ≤ un(t) + εn

for all t ∈ I and all n ∈ N; hence

−εn(b − a) +
∫ b

a
un ≤

∫ b

a
u ≤

∫ b

a
u ≤ εn(b − a) +

∫ b

a
un,

and thus
∣
∣
∣
∣
∣

∫ b

a
u −

∫ b

a
u

∣
∣
∣
∣
∣
≤ 2εn(b − a) → 0 as n → ∞.

It follows that ∫ b

a
u =

∫ b

a
u;
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that is, u ∈ R(I ).
Finally,

∣
∣
∣
∣

∫ b

a
u −

∫ b

a
un

∣
∣
∣
∣ ≤

∫ b

a
|u − un| ≤

∫ b

a
εn = εn(b − a) → 0 as n → ∞.

⇐

Corollary 1.7.13 Let ( fn) be a sequence in R(I ) and suppose the series

f (t) =
∞∑

n=1

fn(t)

converges uniformly on I . Then f ∈ R(I ) and

∫ b

a
f =

∞∑

n=1

∫ b

a
fn .

Proof Put un = ∑n
k=1 fk (n ∈ N); (un) converges uniformly on I to f . Thus by

Theorem 1.7.12,

∫ b

a
f = lim

n→∞

∫ b

a
un = lim

n→∞

n∑

k=1

∫ b

a
fk =

∞∑

k=1

∫ b

a
fk .

⇐

Theorem 1.7.14 Suppose that

∑∞
n=0 an xn has non-zero radius of convergence R,

and define f : (−R, R) → R by f (x) = ∑∞
n=0 an xn. Then

∑∞
n=0

an
n+1 xn+1

has radius of convergence R, f is continuous on (−R, R) and given any a, b with
−R < a < b < R,

∫ b

a
f =

∞∑

n=0

an

n + 1

(
bn+1 − an+1

)
.

Proof Let
∑∞

n=0
an

n+1 xn+1 have radius of convergence R1. If |x | < R, then there
exists x0 ∈ R, with |x | < |x0| < R, such that

∑∞
n=0 an xn

0 is convergent; hence there
exists M ∈ R such that for all n ∈ N0 := N ∪ {0}, ∣∣an xn

0

∣
∣ ≤ M . Thus

∣
∣
∣
∣

an

n + 1
xn+1

∣
∣
∣
∣ ≤ M |x | |x/x0|n

and so comparison with
∑ |x/x0|n shows that

∑∞
0

an
n+1 xn+1 is convergent. Hence

R1 ≥ R.
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Now suppose that |y| < R1. Then there exists y0 ∈ R such that |y| < |y0| < R1

and
∑∞

0
an

n+1 yn+1
0 is convergent. Hence there exists K ∈ R with

∣
∣
∣ an

n+1 yn+1
0

∣
∣
∣ ≤ K

for all n ∈ N0, which implies that

∣
∣an yn

∣
∣ ≤ K

(
n + 1

|y0|
) ∣

∣
∣
∣

y

y0

∣
∣
∣
∣

n

:

thus comparison with
∑

(n + 1) |y/y0|n shows that
∑

an yn is convergent, so that
R ≥ R1. Thus R1 = R.

Let −R < a < b < R and put c = max(|a| , |b|). Since c < R,
∑

ancn is
absolutely convergent. As |an xn| ≤ |ancn| for all x ∈ [a, b] and all n ∈ N0, Weier-
strass’sM-test shows that

∑
an xn converges uniformly on [a, b]. By Corollary 1.7.8,

f is continuous on [a, b], and as a and b may be chosen arbitrarily close to −R and
R respectively, f is continuous on (−R, R). The proof is now completed by appeal
to Corollary 1.7.13. ⇐


To conclude this section we observe that in Theorem 1.7.12, the strong hypothesis
of uniform convergence of the sequence (un) on the interval I is used to show that
the limit function u ∈ R(I ) and that

∫ b

a
u = lim

n→∞

∫ b

a
un .

The same conclusion as regards the convergence of the integrals can be reached
under conditions weaker than that of uniform convergence, provided that the limit
function is known to belong toR(I ). We present such a result below, beginning with
a theorem that implies the desired conclusion for monotone sequences.

Theorem 1.7.15 Let ( fn) be a decreasing sequence of functions in B(I ) that con-
verges pointwise on I to 0. Then

lim
n→∞

∫ b

a
fn = 0.

Proof Let ε > 0. By Exercise 1.7.17/17, given any n ∈ N, there is a continuous
function gn on I such that 0 ≤ gn ≤ fn and

∫ b

a
fn <

∫ b

a
gn + 2−nε.

Put hn = min(g1, . . . , gn) : thus 0 ≤ hn ≤ gn ≤ fn and (hn) is a sequence
of continuous functions on I that decreases to zero everywhere on I . By Dini’s
theorem (Exercise 1.7.17/18), (hn) converges uniformly to zero on I , and hence, by
Theorem 1.7.12,
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lim
n→∞

∫ b

a
hn = 0.

We claim that for all n ∈ N,

0 ≤
∫ b

a
fn ≤

∫ b

a
hn + ε(1 − 2−n);

granted this, it is clear that the theorem holds. To justify the claim, note that if
i ∈ {1, . . . , n},

0 ≤ gn = gi + (gn − gi ) ≤ gi + max(gi , . . . , gn) − gi

≤ gi +
n−1∑

j=1

(max(g j , . . . , gn) − g j ),

and hence

0 ≤ gn ≤ hn +
n−1∑

j=1

(max(g j , . . . , gn) − g j ).

Moreover, since max(g j , . . . , gn) ≤ max( f j , . . . , fn) = f j , we have

∫ b

a
f j ≥

∫ b

a
(max(g j , . . . , gn) − g j ) +

∫ b

a
g j ,

which gives

∫ b

a
(max(g j , . . . , gn) − g j ) ≤

∫ b

a
f j −

∫ b

a
g j ≤ 2− jε.

Thus

∫ b

a
gn ≤

∫ b

a
hn +

n−1∑

j=1

2− jε =
∫ b

a
hn + ε(1 − 2−(n−1)),

and so

∫ b

a
fn <

∫ b

a
gn + 2−nε ≤

∫ b

a
hn + ε(1 − 2−(n−1) + 2−n).

The claim follows immediately. ⇐
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Theorem 1.7.16 (Arzelà’s theorem ) Let ( fn) be a sequence in R(I ) that converges
pointwise on I to f ∈ R(I ); assume also that there exists M > 0 such that for all
x ∈ I and all n ∈ N, | fn(x)| ≤ M. Then

∫ b

a
f = lim

n→∞

∫ b

a
fn .

Proof First suppose that f = 0 and 0 ≤ fn(x) ≤ M for all x ∈ I and all n ∈ N.
Put gn(x) = sup{ fn+k(x) : k ∈ N0} (x ∈ I, n ∈ N). Then 0 ≤ fn ≤ gn , (gn) is
decreasing and

0 = lim
n→∞ fn(x) = lim sup

n→∞
fn(x) = lim

n→∞ gn(x) (x ∈ I ).

By Theorem 1.7.15,

lim
n→∞

∫ b

a
gn = 0,

and hence

0 ≤ lim
n→∞

∫ b

a
fn ≤ lim

n→∞

∫ b

a
gn = 0,

as required. In the general case, application of what has been proved to the functions
| fn − f |, which have pointwise limit 0 and are bounded above by 2M , shows that

lim
n→∞

∫ b

a
| fn − f | = 0.

Since

∣
∣
∣
∣

∫ b

a
fn −

∫ b

a
f

∣
∣
∣
∣ ≤

∫ b

a
| fn − f | ,

the result is immediate. ⇐

The proof follows that given in [11].Note thatArzelà [1] proved this result in 1885,

well before the creation of the theory of the Lebesgue integral. That the hypothesis
f ∈ R(I ) cannot be removed is shown by the following example. Let {rn : n ∈ N}
be the set of all rationals in I := [0, 1] and for each n ∈ N define fn : I → R by

fn(x) =
{

1, x ∈ {ri : i = 1, . . . , n},
0, otherwise.
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As each fn is bounded and has only finitely many discontinuities in I , it belongs to
R(I ). The sequence ( fn) is monotonic increasing and has limit f , where f (x) = 1
(x ∈ Q ∩ [0, 1]), f (x) = 0 otherwise. Thus f /∈ R(I ).

From this and Example 1.4.5 (iii) we see two deficiencies of the Riemann integral:
(i) it does not behave particularly well with respect to limit processes;
(ii) a function f may have a bounded derivative on a bounded interval I yet that
derivative may not itself be inR(I ); Riemann integration and differentiation are not
completely reversible.

The Lebesgue integral, developed in 1902, is not only more general than that
of Riemann but is also superior to it in these respects. For example, the Lebesgue
analogue of Theorem1.7.16 holdswithout the assumption that the limit function f be
integrable: this property follows from theother hypotheses.Moreover, if f : [a, b] →
R has a bounded derivative f ′, then f ′ is Lebesgue integrable and

∫ b
a f ′ = f (b) −

f (a) : integration and differentiation are reversible if the derivative is bounded.
Nevertheless, there are functions that are improperly Riemann-integrable but not
Lebesgue integrable: one such is the function f : (0,∞) → R given by f (x) =
(sin x)/x .

Exercise 1.7.17

1. Determine whether or not the sequence ( fn) converges uniformly on [0, 1],
where

(a) fn(x) = n3x/(1 + n4x2), (b) fn(x) = xn(1 − xn),

(c) fn(x) = xn/(1 + xn), (d) fn(x) = xn/n.

2. Let p ∈ R and for each n ∈ N let fn : [0, 1] → R be defined by

fn(x) = n px(1 − x)n (0 ≤ x ≤ 1).

Prove that limn→∞ fn(x) = 0 (0 ≤ x ≤ 1). Prove also that the sequence ( fn)

converges uniformly on [0, 1] to the zero function if, and only if, p < 1; and
that limn→∞

∫ 1
0 fn = 0 if, and only if, p < 2.

3. Show that
∑∞

n=1
xn

1+xn converges for all x ∈ [0, 1) and that it converges uni-
formly on [0, a] for each a ∈ (0, 1). Does it converge uniformly on [0, 1]?

4. Prove that

∫ π/2

0

log
(
1 − 1

4 sin
2 θ

⎛

sin θ
dθ = −1

2

∞∑

n=0

(n!)2
(2n + 2)! .

5. By expanding (1 + cos θ cos x)−1 in ascending powers of cos θ cos x and then
integrating with respect to x , prove that if 0 < θ < π , then

cosec θ = 1 +
∞∑

k=1

(2k)!
22k(k!)2 (cos θ)2k .
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6. (i) Prove that
∑∞

n=1
cos nx

n2
is uniformly convergent on R.

(ii) Let 0 < ε < π . Prove that
∑∞

n=1
sin nx

n is uniformly convergent on
[ε, 2π − ε].

(iii) From Exercise 1.4.15/7 it is known that

1

2
(π − x) =

∞∑

n=1

sin nx

n
(0 < x < 2π).

Prove that

1

4
(π − x)2 =

∞∑

n=1

cos nx − cos nπ

n2 (0 ≤ x ≤ 2π).

By integrating this last equality over [0, 2π ], deduce that

1

4
(π − x)2 − π2

12
=

∞∑

n=1

cos nx

n2 (0 ≤ x ≤ 2π).

In particular, show that

∞∑

n=1

1

n2 = π2

6
.

[Hints for part (ii): Let An(x) = ∑n
k=1 sin kx , Pn(x) = ∑n

k=1
sin kx

k .

(a) There exists K = K (ε) ∈ R such that

|An(x)| ≤ K if ε ≤ x ≤ 2π − ε and n ∈ N.

(b) Pn(x) = ∑n
k=1

(
k−1 − (k + 1)−1⎛ Ak(x) + (n + 1)−1An(x).

(c) |Pm(x) − Pn(x)| ≤ 2K (n + 1)−1 if ε ≤ x ≤ 2π − ε and m > n.]
7. For each x ∈ R let [x] denote the integer such that x − 1 < [x] ≤ x and let

{x} = x − [x] denote the fractional part of x . What discontinuities does the
mapping x �−→ {x} have?

Let f : R → R be defined by

f (x) =
∞∑

n=1

{nx}
n3 (x ∈ R).
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Prove that

(i) the series defining f converges uniformly on R;
(ii) {x ∈ R : f is discontinuous at x} = Q, the set of all rationals;
(iii) f is Riemann-integrable over every non-degenerate, closed, bounded inter-

val in R.

8. Let g : R → R be defined by g(x) = |x | if |x | ≤ 2, g(x +4m) = g(x) if x ∈ R
and m ∈ Z; define fn : R → R by fn(x) = 4−ng(4n x) (x ∈ R, n ∈ N) and
put f (x) = ∑∞

n=1 fn(x) (x ∈ R). Show that the series defining f is uniformly
convergent on R, and deduce that f is continuous on R. Prove that f is not
differentiable at any point of R.

9. Let f : [0, 1] → R be defined by f (x) = ∑∞
n=1

xn(1− x)√
n

(0 ≤ x ≤ 1). Prove
that f is continuous on [0, 1].

10. Show that the function f : R → R defined by f (x) = ∑∞
n=1(2n)! sin3(x/n!)

(x ∈ R) is continuous on R.
11. Prove that if −1 ≤ t ≤ 1, then

∫ 1

0

(1 − x)

(1 − t x3)
dx =

∞∑

n=0

tn

(3n + 1)(3n + 2)
.

Deduce that

π

3
√
3

= 1

1.2
+ 1

4.5
+ 1

7.8
+ 1

10.11
+ ... .

12. For each n ∈ N, define gn : R → R by gn(x) = (1 + x2n)1/2n . Prove that
as n → ∞, gn converges uniformly on R to g, where g(x) = 1 if |x | < 1,
g(x) = |x | if |x | ≥ 1.

13. For each n ∈ N the function fn : [0, 1] → R is defined by fn(x) =
−n−1xn log x if 0 < x ≤ 1, fn(0) = 0. Prove that

∑∞
n=1 fn converges uni-

formly on [0, 1] and deduce that

∫ 1

0
(log x) log(1 − x)dx =

∞∑

n=1

1

n(n + 1)2
.

14. Let f : R → R be continuous and such that f (t) = 0 if t ≤ 0 or t ≥ 1. For
each n ∈ N define qn : R → R by qn(t) = cn(1 − t2)n (t ∈ R), where cn is so
chosen that

∫ 1

−1
qn(t)dt = 1.
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Show that for all n ∈ N, cn < n, and deduce that qn → 0 uniformly on
[−1,−δ] ∪ [δ, 1] for any δ ∈ (0, 1]. Put

pn(s) =
∫ 1

0
f (t)qn(t − s)dt (n ∈ N, s ∈ R).

Noting the conditions on f , prove that

pn(s) =
∫ 1

−1
f (u + s)qn(u)du (n ∈ N, s ∈ [0, 1])

and deduce that the sequence (pn) of polynomials converges uniformly on [0, 1]
to f . Hence obtain Weierstrass’s polynomial approximation theorem.

15. Let f ∈ R[a, b] and ε > 0. Prove that there is a functionψ which is continuous
on [a, b] and is such that

∫ b

a
| f − ψ | < ε.

Deduce that there is a polynomial p such that

∫ b

a
| f − p| < ε.

[Hint: Let {x0, x1, . . . , xn} be a partition of [a, b]. Consider the continuous
function ψ defined by

ψ(t) = (xr − xr−1)
−1 { f (xr )(t − xr−1) + f (xr−1)(xr − t)}

whenever xr−1 ≤ t ≤ xr and r ∈ {1, 2, . . . , n}.]
16. Use the above in conjunction with Exercise 1.4.15/5 to establish the Riemann-

Lebesgue lemma for Riemann-integrable functions: if f ∈ R[a, b], then for all
θ ∈ R,

lim
λ→∞

∫ b

a
f (t) cos(λt + θ)dt = 0.

17. Let f ∈ B[a, b], f ≥ 0 and ε > 0. Show that there are a partition P =
{x0, x1, . . . , xn} ∈ P[a, b] and non-negative numbers m1, ...mn such that the
function

s :=
n−1∑

r=1

mrχ[xr−1,xr ) + mnχ[xn−1,xn ]
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in terms of characteristic functions of intervals satisfies

0 ≤ s ≤ f and
∫ b

a
f ≤

∫ b

a
s + ε/2.

Hence show that there is a function g that is continuous on [a, b] and satisfies

0 ≤ g ≤ f,
∫ b

a
f ≤

∫ b

a
g + ε.

[Hint: remove any discontinuities of s bymeans of line segments.More formally,
with 0 < δ < 1

3 min{xr − xr−1 : 1 ≤ r ≤ n}, define g : [a, b] → R in each of
the intervals [xr−1, xr ] (r = 1, 2, . . . , n) as follows:

g(x) =
⎧
⎨

⎩

δ−1mr (x − xr−1), xr−1 ≤ x ≤ xr−1 + δ,

mr , xr−1 + δ ≤ x ≤ xr − δ,

δ−1mr (xr − x), xr − δ ≤ x ≤ xr .

Then g is continuous, 0 ≤ g ≤ s and
∫ b

a (s − g) < ε/2, so that 0 ≤ g ≤ f and
∫ b

a f ≤ ∫ b
a g + ε.]

18. (Dini’s theorem) Let ( fn) be a monotone sequence of continuous functions on
[a, b] that converges to f pointwise on [a, b], where f is a continuous function
on [a, b]. Prove that ( fn) converges uniformly on [a, b] to f . [Hint: if not, and
( fn(x)) is decreasing, there exist ε > 0 and a sequence (xn) in [a, b] such that
fn(xn) − f (xn) ≥ ε for all n ∈ N.]



Chapter 2
Metric Spaces

Here we give the elements of the theory of metric spaces: the ideas developed in this
chapter will be extensively used in the rest of the book.

A metric space is simply a non-empty set X such that to each x, y → X there
corresponds a non-negative number called the distance between x and y. To make
the theory sufficiently rich this distance is supposed to have certain properties, such
as symmetry and the triangle inequality, that are familiar from Euclidean geometry.
As we shall see, the previous chapter offers many examples of such spaces. The
idea of a metric space was introduced in 1906 by Fréchet and was significantly
developed further in 1914 by Hausdorff, who introduced the term ‘metric space’.
Further impetus was provided from 1920 onwards by the fundamental work of the
Polish school led by Banach: this was largely concerned with the case in which X
was a linear space and was of great significance in the establishment of functional
analysis as an important part ofmathematics. Herewe shall not assume thatX has any
linear structure as neither the results given nor the applications to complex analysis
made in the next chapter need this property.

In this chapter we introduce some basic terminology and discuss in detail the
fundamental properties of completeness, compactness and connectednesswhich such
spaces may possess; further, special attention is paid to various forms of homotopy
and to simple-connectedness. These properties not only have intrinsic interest but
also are essential for later work surrounding such central results of complex analysis
as, for example, the general version of the famous theorem due to Cauchy. Quite
apart from the elegance of metric space theory, it is remarkably useful in that often a
single theoremmay be applied to handle seemingly different problems. Applications
include a proof of the existence of a continuous, nowhere differentiable function,
justification of differentiation under the integral sign, and establishment of a solution
of an initial-value problem for a certain type of differential equation.

R. H. Dyer and D. E. Edmunds, From Real to Complex Analysis, 67
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-3-319-06209-9_2,
© Springer International Publishing Switzerland 2014
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2.1 Basic Definitions

First we recall certain fundamental properties of real numbers: for all x, y, z → R,

(i) |x − y| ≥ 0; |x − y| = 0 if, and only if, x = y;
(ii) |x − y| = |y − x|;
(iii) |x − y| ∈ |x − z| + |z − y|.

The quantity |x − y| is naturally thought of as the distance between the real num-
bers x and y. We seek to generalise all this, replacing R by an arbitrary non-empty
set and |x − y| by a function of x and y which satisfies axioms based on (i), (ii) and
(iii). This is done, not simply as an exercise in the axiomatic approach, but because
the structure obtained will enable us to solve many apparently different problems
with the same technique.

Definition 2.1.1 Let X be a non-empty set and let d : X × X ≤ R be such that for
all x, y, z → X,

(i) d(x, y) ≥ 0; d(x, y) = 0 if, and only if, x = y;
(ii) d(x, y) = d(y, x) (the symmetry property);
(iii) d(x, y) ∈ d(x, z) + d(z, y) (the triangle inequality).

The function d is called a metric or distance function on X; the pair (X, d) is called
a metric space; when no ambiguity is possible we shall, for simplicity, often refer
to X, rather than (X, d), as a metric space.

To illustrate this definition we give a variety of examples.

Example 2.1.2

(i) X = R, d(x, y) = |x − y| : this was our prototype; d is called the usual metric
on R.

(ii) X = R, d(x, y) = |x − y| / (1 + |x − y|). To check that the triangle inequality
holds, we observe that for all x, y, z → R,

d(x, y) = 1 − 1

1 + |x − y| ∈ 1 − 1

1 + |x − z| + |z − y|

= |x − z| + |z − y|
1 + |x − z| + |z − y| ∈ d(x, z) + d(z, y).

As the other properties required of a metric obviously hold, d is a metric.
(iii) Let n → N and take

X = Rn = {x = (x1, ..., xn) = (xi) : xi → R for i = 1, ..., n} .
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Various metrics can be defined on this set in a natural way: some of the most
common are dp(1 ∈ p < ⊂) and d⊂, where

dp(x, y) =
(

n∑

i=1

|xi − yi|p
)1/p

, 1 ∈ p < ⊂,

d⊂(x, y) = max {|xi − yi| : i = 1, ..., n} .

Themetric d2 is usually referred to as the Euclidean metric onRn; when n = 1,
all these metrics coincide. That each makes Rn into a metric space is clear, save
perhaps for the proof of the triangle inequality for dp, 1 ∈ p < ⊂. This follows
from the Minkowski inequality (see Exercise 2.1.45 /1), in view of which we
see that for all x, y, z → Rn,

dp (x, y) =
(

n∑

i=1

|(xi − zi) + (zi − yi)|p
)1/p

∈
(

n∑

i=1

|xi − zi|p
)1/p

+
(

n∑

i=1

|zi − yi|p
)1/p

= dp(x, z) + dp(z, y).

We repeat that these examples illustrate the important fact that the same set
may be endowed with different metrics. Note that for all x, y → Rn, d⊂ (x, y) =
limp≤⊂ dp (x, y) : this follows from the obvious inequalities

d⊂ (x, y) ∈ dp (x, y) ∈ n1/pd⊂ (x, y) , 1 ∈ p < ⊂.

(iv) Let X be any non-empty set and define d : X × X ≤ R by the rule that

d(x, y) =
{
1, x ∪= y,
0, x = y.

It is easy to check that d is a metric: (X, d) is called the discrete metric space
associated with X, d being the discrete metric on X. This example is not only
simple and a little surprising (going against our intuition about distances), but
is also most useful as a source of counterexamples to rash conjectures about
metric spaces.



70 2 Metric Spaces

In what follows, if Rn is referred to as a metric space without any metric being
specified, then the Euclidean metric is to be assumed. When n = 1, identifying R1

and R, this is the usual or standard metric.

(v) Let a, b → R, a < b, I = [a, b], and let X = C(I), the set of all continuous
real-valued functions on I; for each f , g → C(I) define

Δ1(f , g) =
b∫

a

| f (t) − g(t)| dt,

Δ⊂(f , g) = max {| f (t) − g(t)| : t → [a, b]}.

First note that since | f − g| is a continuous, real-valued function on the closed,
bounded interval I , both Δ1(f , g) and Δ⊂(f , g) are well-defined real numbers.
It is now routine to check that both Δ1 and Δ⊂ satisfy all the axioms (i), (ii)
and (iii) of Definition 2.1.1: note in particular that in view of Theorem 1.3.2
(d), Δ1(f , g) = 0 implies that f = g. Hence Δ1 and Δ⊂ are metrics on C(I).
For details of a whole scale of metrics Δp (1 ∈ p < ⊂) on C(I) see Exer-
cise 2.1.45 /2.

(vi) Next we give an example similar to (Rn, dp) but in which the elements of the
space are certain infinite sequences. That is, we let

X =
{

x = (xi)i→N : xi → R for all i → N,

⊂∑

1

|xi|p < ⊂
}

, 1 ∈ p < ⊂,

and define d by

d(x, y) =
( ⊂∑

1

|xi − yi|p
)1/p

for all x, y → X.

To show that (X, d) is ametric space, it is first necessary to verify that d is well-
defined; that is, that d(x, y) < ⊂ for all x, y → X : in previous examples this
has been rather obvious. For each n → N we have, by Minkowski’s inequality,

(
n∑

1

|xi − yi|p
)1/p

∈
(

n∑

1

|xi|p
)1/p

+
(

n∑

1

|yi|p
)1/p

∈
( ⊂∑

1

|xi|p
)1/p

+
( ⊂∑

1

|yi|p
)1/p

.
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Hence d(x, y) < ⊂ and

( ⊂∑

1

|xi − yi|p
)1/p

∈
( ⊂∑

1

|xi|p
)1/p

+
( ⊂∑

1

|yi|p
)1/p

.

The triangle inequality now follows from this generalised version of Min-
kowski’s inequality. To verify the remaining axioms is trivial.
This particular set X is usually referred to as εp.

(vii) Let a, b → R, a < b, I = [a, b] and let X = B(I), the set of all bounded,
real-valued functions on I , with d defined by

d(f , g) = sup {|f (t) − g(t)| : t → I} when f , g → B(I).

It is easy to verify that d is a metric on B(I): axioms (i) and (ii) obviously
hold, and if f , g, h → B(I), then

d(f , g) = sup {|f (t) − h(t) + h(t) − g(t)| : t → I}
∈ sup {|f (t) − h(t)| + |h(t) − g(t)| : t → I}
∈ sup {|f (t) − h(t)| : t → I} + sup {|h(t) − g(t)| : t → I}
= d(f , h) + d(h, g),

so that axiom (iii) also holds.
Since C(I) ∗ R(I) ∗ B(I), we may regard C(I) and R(I) as metric spaces,
each with the metric inherited fromB(I), that is, with the metrics d |C(I)×C(I)

and d |R(I)×R(I) respectively.
(viii) Let (X, d) be a metric space and let Y be any non-empty subset of X; let dY be

the restriction of d to Y × Y . Then (Y , dY ) is a metric space. Example 2.1.2
(vii) illustrates this most useful principle. In the case of any subset Y of Rn,
we shall for simplicity adopt the convention that if no metric is specified, Y is
assumed to be endowed with the Euclidean metric inherited from Rn.

(ix) Let (X1, d1), ..., (Xn, dn) be metric spaces. The product space

X1 × ... × Xn =
n∏

i=1

Xi = {(x1, ..., xn) : xi → Xi for i = 1, ..., n}

may be made into a metric space by endowing it with the metric d, where

d(x, y) =
{

n∑

i=1

d2
i (xi, yi)

}1/2

if x = (xi), y = (yi).
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Thismay be established just as it was shown in Example 2.1.2 (iii) that (Rn, d2)
is a metric space.

(x) Let X be a vector space over R. Let ⇐·⇐ : X ≤ R be a map such that

(a) ⇐x⇐ = 0 if, and only if, x = 0;

(b) ⇐δx⇐ = |δ| ⇐x⇐ for all x → X and all δ → R;

(c) ⇐x + y⇐ ∈ ⇐x⇐ + ⇐y⇐ for all x, y → X.

Such a map is said to be a norm on X. Any such norm generates a metric d
on X given by

d(x, y) = ⇐x − y⇐ .

In several of the examples of metric spaces given above, namely (i), (iii), (v),
(vi) and (vii), the underlying set X may be viewed as a real linear space and
the metric is generated by a norm given by

⇐x⇐ = d(x, 0).

We now introduce some particularly important subsets of a metric space.

Definition 2.1.3 Let (X, d) be a metric space. Given any x → X and any r > 0, let
B(x, r) = {y → X : d(x, y) < r} : B(x, r) is called the open ball in X with centre x
and radius r. A subset G of X is called open if given any x → G, there exists r > 0
(depending upon x) such that B(x, r) ∗ G.

Example 2.1.4

(i) Take X = R and let d be the usual metric given by d(x, y) = |x − y|
(x, y → R), so that B(x, r) = (x − r, x + r). Then (0, 1) is open, for given
any x → (0, 1), B(x,min {x, 1 − x}) ∗ (0, 1); similarly, (a, b) is open for all
a → {−⊂} ∪ R and all b → R ∪ {+⊂} with a < b. However, if a, b → R and
a < b, then [a, b] is not open, for no matter what r > 0 we choose, B(a, r) is
not contained in [a, b]; similarly, [a, b) and (a, b] are not open.

(ii) In any metric space (X, d), X is plainly open; so is ∞, for since ∞ has no points,
the statement ‘for all x → ∞, B(x, r) ∗ ∞ for all r > 0’ is true!

(iii) Let (X, d) be any metric space, let x → X and r > 0. Then B(x, r) is open: this
justifies our description of B(x, r) as the open ball with centre x and radius r. To
prove this, let y → B(x, r) and put λ = r − d(x, y) > 0. Then B(y, λ) ∗ B(x, r),
for if z → B(y, λ), then

d(z, x) ∈ d(z, y) + d(y, x) < λ + d(x, y) = r.

(iv) Let X = R2 and let d be the metric d2 of Example 2.1.2 (iii); that is,

d((x1, x2), (y1, y2)) =
{
(x1 − y1)

2 + (x2 − y2)
2
}1/2

.
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The set
S = {(x1, x2) : x2 > x1}

is open in (R2, d), for given any (x1, x2) → S, B((x1, x2), (x2 − x1)/
≥
2) ∗ S.

(v) Let X = R2 and consider the metrics d1, d2, d⊂ of Example 2.1.2 (iii) on R2.
In (R2, d⊂), the open ball with centre (0, 0) and radius 1 is

{(x1, x2) : max {|x1| , |x2|} < 1} .

In
(
R2, d1

)
the same open ball is {(x1, x2) : |x1| + |x2| < 1}, while in (

R2, d2
)

this open ball has the more familiar specification
{
(x1, x2) : x21 + x22 < 1

}
. The

reader is invited to sketch these three open balls.
(vi) In

(
R2, d2

)
the set Q × Q = {(q1, q2) : q1, q2 rational} is not open, for given

any r > 0,
(≥

2/n, 0
)

→ B ((0, 0) , r) for all sufficiently large n → N.

Some basic properties of open sets are given by the following Lemma.

Lemma 2.1.5 Let (X, d) be a metric space.

(i) Every union of open subsets of X is open.
(ii) The intersection of every finite family of open subsets of X is open.
(iii) Let Y be a non-empty subset of X and let dY be the restriction of d to Y × Y.

Then U is an open subset of (Y , dY ) if, and only if, there is an open subset V of
(X, d) such that U = V ∩ Y.

Proof

(i) Let U be any family of open subsets of X and put G = ⋃
U . If G = ∞ there

is nothing to prove. Suppose G ∪= ∞ and let x → G. Then x → U for some U → U ,
and as U is open, there exists r > 0 such that B(x, r) ∗ U ∗ G. Hence G is open.
(ii) LetU be a finite family of open sets and put F = ⋂

U . IfU = ∞, then F = X
and there is nothing to prove; again there is nothing to prove if F = ∞. Suppose
U ∪= ∞, F ∪= ∞ and let x → F. Then x → U for all U → U ; hence there exists
rU > 0 such that B(x, rU) ∗ U for all U → U . Put r = min {rU : U → U } : r > 0
asU is a finite family, and so B(x, r) ∗ U for all U → U . Thus B(x, r) ∗ F, and
hence F is open.
(iii) If U is open in (Y , dY ) then given any u → U, there exists ru > 0 such that
{x → Y : d(u, x) < ru} ∗ U; thus

U =
⋃

u→U {x → Y : d(u, x) < ru} = V ∩ Y ,

where
V =

⋃
u→U {x → X : d(u, x) < ru}

is open in (X, d).
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Conversely, supposeU = V ∩Y , whereV is open in (X, d). Then given any u → U,
there exists ru > 0 such that

{x → Y : d(x, u) < ru} = Y ∩ {x → X : d(x, u) < ru} ∗ Y ∩ V ,

and so U is open in (Y , dY ). �

Note that the intersection of infinitely many open sets need not be open. For if
X = R and d is the usual metric on R (so that d(x, y) = |x − y| for all x, y → R),
then ∩⊂

n=1 (−1/n, 1/n) = {0}, which is not open in (R, d).

In general, not all subsets of a metric space are open: see Example 2.1.4 (i). We
can, however, associate with each set a largest open subset: (0, 1) is the largest open
subset of [0, 1) in R, endowed with the usual metric, for instance.

Definition 2.1.6 Let (X, d) be a metric space and let A ∗ X. The interior of A is
defined to be the set

o
A =

⋃
{G : G ∗ A and G is open in X} .

A point is said to be an interior point of A if it belongs to
o
A.

Note that
o
A is the union of all the open sets contained inA; in view of Lemma 2.1.5 (i),

it is plainly the largest open subset of A.

Example 2.1.7 Let X = R and let d be the usual metric on R. The interior of
[0, 1] ∪ {67} is (0, 1); that of N is ∞.

Lemma 2.1.8 A subset A of a metric space (X, d) is open if, and only if , A = o
A.

Proof If A is open, then A ∗ o
A ∗ A, and so A = o

A. Conversely, if A = o
A, then

since
o
A is open so is A. �

Dual to the notion of an open set is that of a closed set.

Definition 2.1.9 A subset A of a metric space X is closed if X\A is open.

Example 2.1.10

(i) In anymetric space (X, d), bothX and∞ are closed (and open!).Moreover, given
any a → X , {a} is closed, for given any b → X\ {a}, B

(
b, 1

2d (a, b)
) ∗ X\ {a},

so that X\ {a} is open.
(ii) In R, with the usual metric, [a, b] is closed, for

R\ [a, b] = (−⊂, a) ∪ (b,⊂)

is open, as it is the union of two open sets.



2.1 Basic Definitions 75

(iii) The set A = {y → X : d(x, y) ∈ r} (x being a given point of X and r being a
given positive number) is called the closed ball with centre x and radius r.
This set is closed, for if z → X\A, then B (z, d (z, x) − r) ∗ X\A, which shows
that X\A is open.

Lemma 2.1.11 In any metric space, arbitrary intersections and finite unions of
closed sets are closed.

Proof Let √ be a collection of closed sets. Then by De Morgan’s rules and
Lemma 2.1.5,

c( ∩
F→√F) = ∪

F→√
cF

is open; hence ∩
F→√F is closed. Let F1, . . . , Fn be closed sets. Then

c (F1 ∪ · · · ∪ Fn) = cF1 ∩ · · · ∩ cFn,

a finite intersection of open sets. Thus c (F1 ∪ · · · ∪ Fn) is open, by Lemma 2.1.5;
hence (F1 ∪ · · · ∪ Fn) is closed. �

Dual to the notion of the interior is that of the closure of a set.

Definition 2.1.12 The closure A of a subset A of a metric space X is the intersection
of all closed sets in X which contain A.

In view of Lemma 2.1.11, A is the smallest closed set which contains A. Two simple,
but useful, lemmas now follow.

Lemma 2.1.13 Let A be a subset of a metric space. Then A is closed if, and only if,

A = A. Moreover, A = A.

Proof If A = A, then since A is closed, so is A. Conversely, if A is closed then it is
the smallest closed set which contains A, and hence A = A. Since A is closed, it now
follows that A = A. �

Lemma 2.1.14 Let A be a subset of a metric space X. Then

Proof A point x belongs to c(
o
A) if, and only if, x fails to belong to any open set

G ∗ A; and this is so if, and only if, x → F for all closed F ∩c A, which is equivalent
to the statement that x → cA.

The second identity follows from the first on replacing A by cA. Alternatively,
note that

�

For economy of expression we need the following definition.
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Definition 2.1.15 Let X be a metric space and let a → X. Any open set containing a
will be called a neighbourhood of a.

A simple example of a neighbourhood of a is given by the open ball B(a, r) centred
at a and with radius r; every neighbourhood of a contains such a ball. In terms of
neighbourhoods we can give a useful characterisation of the points of the closure of
a set.

Lemma 2.1.16 Let A be a subset of a metric space X. Then x → A if, and only if,
every neighbourhood V of x has non-empty intersection with A.

Proof The statement that for all neighbourhoods V of x we have V ∩ A ∪= ∞ is

. �

Definition 2.1.17 Let A be a subset of a metric space X. The boundary αA of A is

defined to be A\ o
A.

Note that by Lemma 2.1.14,

Example 2.1.18

(i) Let X = R, endowed with the usual metric. The boundary of [0, 1] is {0, 1}, that
of Q and R\Q is R.

(ii) Let X be a discrete metric space and let x → X. Then αB(x, r) = ∞ for all r > 0.
This contrasts sharply with the situation in Rn, equipped with the Euclidean

metric: in this setting αB(x, r) =
{

y → Rn :
n∑

i=1
(xi − yi)

2 = r2
}
.

Now that we have introduced the basic ideas concerning subsets of a metric space
we turn to the convergence of sequences.

Definition 2.1.19 A sequence (xn) in a metric space (X, d) is said to converge to a
point x → X if, and only if, given any λ > 0, there existsN → N such that d(x, xn) < λ

if n ≥ N ; we write this as xn ≤ x, limn≤⊂ xn = x or d(x, xn) ≤ 0 as n ≤ ⊂. A
sequence (xn) in X is said to be convergent if, and only if, there exists x → X such
that xn ≤ x; we also say in this case that (xn) has limit x.

Note that xn ≤ x if, and only if, given any neighbourhood V of x, there exists N → N
such that xn → V for all n ≥ N .

Lemma 2.1.20 Let (xn) be a sequence in a metric space (X, d). Then (xn) converges
to at most one point.

Proof Suppose that xn ≤ x and xn ≤ y. Then

d(x, y) ∈ d(x, xn) + d(xn, y) ≤ 0 as n ≤ ⊂.

Hence d(x, y) = 0, and so x = y. �



2.1 Basic Definitions 77

Of course, a sequence may well not converge to any point.

Example 2.1.21

(i) Let X = Rn and let d be the Euclidean metric on Rn (see Example 2.1.2 (iii));
let (x(m))m→N be a sequence in Rn, with x(m) = (x(m)

1 , . . . , x(m)
n ). The sequence

(x(m)) converges to x = (xi) in Rn if, and only if,

n∑

i=1

(xi − x(m)
i )2 ≤ 0 as m ≤ ⊂;

from this it is clear that (x(m)) converges to x in Rn if, and only if, (x(m)
i )

converges to xi as m ≤ ⊂, for each i → {1, . . . , n}.
(ii) Let (X, d) be a discrete metric space. Then a sequence (xn) in X is convergent

if, and only if, it is eventually constant; that is if, and only if, there exists N → N
such that xn = xN for all n ≥ N . For if (xn) is convergent in X, there exists
x → X and N → N such that d(x, xn) < 1 for all n ≥ N , so that xn = x for all
n ≥ N . The converse is obvious.

Convergent sequences of real numbers are bounded. Given an appropriate extension
of the definition of boundedness, the same is true in a general metric space.

Definition 2.1.22 Let (X, d) be a metric space. A non-empty set A ∗ X is said to
be bounded if there is a real number M such that

d(x, y) ∈ M (x, y → A);

otherwise, A is said to be unbounded. The extended real number

diam(A) := sup{d(x, y) : x, y → A}

is called the diameter of A.

Note that the set A is bounded if, and only if, diam(A) < ⊂.

Lemma 2.1.23 Let (xn) be a convergent sequence in a metric space (X, d). Then
{xn : n → N} is bounded.

Proof Suppose that limn≤⊂ xn = x. Then there existsN → N such that for all n ≥ N ,
d(x, xn) < 1. Put r = max{1, d(x, x1), . . . , d(x, xN−1)}. Then d(x, xn) ∈ r for all
n → N; further,

d(xm, xn) ∈ d(xm, x) + d(x, xn) ∈ 2r (m, n → N).

Thus {xn : n → N} is bounded. �

We can now give a most useful characterisation of the closure of a subset of a metric
space.
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Lemma 2.1.24 Let A be any subset of a metric space X. Then x → A if, and only if,
there is a sequence (xn) of points of A such that limn≤⊂ xn = x.

Proof Suppose there is a sequence (xn) in A such that xn ≤ x as n ≤ ⊂. Then for
all r > 0, A ∩ B(x, r) ∪= ∞; and so by Lemma 2.1.16, x → A.

Conversely, suppose that x → A. Then by Lemma 2.1.16, for all n → N we have
B(x, 1

n ) ∩ A ∪= ∞. Appeal to the countable axiom of choice (Axiom A.5.2) gives
the existence of a sequence (xn) with xn → B(x, 1

n ) ∩ A for all n → N; plainly
xn ≤ x. �

To conclude this rapid discussion of sequences we introduce the notion of a point of
accumulation of a set.

Definition 2.1.25 Let A be a subset of a metric space X. A point x → X is called an
accumulation point of A, or a limit point of A, if given any neighbourhood V of x,
there exists a → A ∩ V with a ∪= x.

Note the difference between a point of accumulation of A and a point in A: every
point of accumulation of A is evidently in A, but the converse is false. For example,
with X = R endowed with the usual metric and A = (0, 1)∪{2}, the point 2 belongs
to A but is not a point of accumulation of A as B(2, 1) contains no point of A distinct
from 2.

Lemma 2.1.26 Let A ∗ X. Then x is a point of accumulation of A if, and only if,
there is a sequence (xn) of distinct points of A with xn ≤ x as n ≤ ⊂.

Proof Let x be a point of accumulation of A. Then given any n → N, there exists
xn → A ∩ B(x, 1

n ), xn ∪= x; this gives a sequence (xn) of points of A which converges
to x, with each xn ∪= x. The difficulty is that the points of this sequence may not
be distinct, and to overcome this we proceed as follows, noting that there must be
infinitely many distinct points in the sequence, for otherwise the sequence could not
converge to x. Define m : N ≤ N by m(1) = 1, m(k + 1) = least integer p such
that xp /→ {

xm(1), xm(2), . . . , xm(k)

}
(k ≥ 1); thus m(2) = least p such that xp ∪= x1.

Then (xm(n))n→N is a subsequence of (xn) consisting of distinct points of A, and
limn≤⊂ xm(n) = x. The converse is obvious. �

2.1.1 Continuous Functions

Definition 2.1.27 Let (X1, d1), (X2, d2) be metric spaces. A map f : X1 ≤ X2
is said to be continuous at x → X1 if given any λ > 0, there exists β > 0 such
that d2(f (y), f (x)) < λ if d1(x, y) < β. (In general, β depends upon x and λ.) If
f is continuous at each point of X1, it is said to be continuous (on X1). If given
any λ > 0, there exists β > 0 (depending only on λ) such that d2(f (y), f (x)) < λ

whenever d1(x, y) < β, then f is called uniformly continuous on X1.
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This definition is the obvious extension of the λ, β definition of continuity and
uniform continuity for maps from subsets of R to R given in Chap. 1. However, in
the wider context of metric spaces it is desirable to have other characterisations of
continuity, and we now deal with this, beginning with the local property (that is,
continuity at a point) and then turning to the global position (continuity on the whole
space).

Lemma 2.1.28 Let (X1, d1) and (X2, d2) be metric spaces, let f : X1 ≤ X2 and let
x → X1. Then the following three statements are equivalent:

(i) f is continuous at x;
(ii) given any neighbourhood V of f(x), there is a neighbourhood U of x such that

f(U) ∗V;
(iii) limn≤⊂ f (xn) = f (x) if xn ≤ x.

Proof To prove that (i) implies (ii), let V be a neighbourhood of f (x) and let λ > 0
be such that B(f (x), λ) ∗ V . Since f is continuous at x, there exists β > 0 such that
f (y) → B(f (x), λ) if y → B(x, β); thus f (B(x, β)) ∗ B(f (x), λ) and (ii) holds with
U = B(x, β). Next we show that (ii) implies (iii). Suppose that xn ≤ x in X1 and let
V be a neighbourhood of f (x). As (ii) holds, there is a neighbourhood U of x such
that f (U) ∗ V ; and there exists N → N such that xn → U if n ≥ N . Hence f (xn) → V
for all n ≥ N , which means that f (xn) ≤ f (x) as n ≤ ⊂.

Finally, to prove that (iii) implies (i), suppose that (iii) holds but (i) is not true.
Then there is an λ > 0 such that given any n → N, there exists xn → X1 such that
d1(x, xn) < 1/n while d2(f (x), f (xn)) ≥ λ; and so xn ≤ x but f (xn) � f (x), which
contradicts (iii). �

Lemma 2.1.29 Let X1, X2 and X3 be metric spaces, let x → X1, let f : X1 ≤ X2
be continuous at x and let g : X2 ≤ X3 be continuous at f (x). Then h := g ◦ f
is continuous at x. If f and g are continuous on X1 and X2 respectively, then h is
continuous on X1.

Proof Suppose xn ≤ x as n ≤ ⊂. Then as f is continuous at x, f (xn) ≤ f (x); and
as g is continuous at f (x), g(f (xn)) ≤ g(f (x)). By Lemma 2.1.28, h is continuous
at x. The rest is obvious. �

Example 2.1.30

(i) Let f : Rm ≤ Rn, and suppose that Rm and Rn are endowed with the appropri-
ate Euclidean metric. For each x → Rm write f (x) = (f1(x),
. . . , fn(x)); we thus have defined functions fi : Rm ≤ R (i = 1, . . . , n),
called the coordinate functions of f . It is now clear that f is continuous at
x0 → Rm if, and only if, each fi is continuous at x0.

(ii) Just as in the case of maps from R to R it follows that if X is a metric space
then sums and products of continuous maps from X to R are continuous; that
is, if x0 → X and f1, f2 : X ≤ R are continuous at x0, then the maps f1 + f2
and f1f2 (defined by x �−≤ f1(x) + f2(x) and x �−≤ f1(x)f2(x) respectively)

http://dx.doi.org/10.1007/978-3-319-06209-9_1
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are continuous at x0. Similarly, the map ξf1 (defined by x �−≤ ξf1(x)) is con-
tinuous at x0, for all ξ → R; and if f2(x0) ∪= 0, then the map f1/f2 (defined by
x �−≤ f1(x)/f2(x)) is continuous at x0. The proofs of all these assertions are
identical to those of the corresponding assertions when X = R and which are
familiar in elementary analysis.

It follows that every polynomial p on R2, where

p(x, y) =
N∑

m,n=0

amnxmyn(amn → R),

is continuous on R2; and any rational function f on R2, where f (x, y) =
p(x, y)/q(x, y) and p, q are polynomials with q never zero, is also continuous
on R2.

(iii) Let f : R2 ≤ R be defined by

f (x, y) =
{

x2−y2

x2+y2
if (x, y) ∪= (0, 0),

0 if (x, y) = (0, 0).

Reasoning as in (ii), f is continuous on R2\ {0, 0}; it is not continuous at (0, 0),
for if x ∪= 0, f (x, 0) = 1 � 0 = f (0, 0) as x ≤ 0.

Functions between metric spaces commonly have points of discontinuity. As a
tool for the investigation of discontinuity we introduce the concept of the oscillation
of a function at a point.

Definition 2.1.31 Let X1 and X2 be metric spaces and let f be a map from X1 to X2.
For each x → X1, let η(x) be the extended real number defined by

η(x) = inf{diam(f (U)) : Uis a neighbourhood of x};

η(x) is called the oscillation of f at x. The corresponding function η is called the
oscillation function for f .

Lemma 2.1.32 Let X1 and X2 be metric spaces, f be a map from X1 to X2, and η

be the oscillation function for f . Then

(a) f is continuous at x → X1 if, and only if, η(x) = 0;
(b) for each real number δ, the set {x → X1 : η(x) < δ} is open in X1.

Proof (a) Let f be continuous at x and λ > 0. Then there exists β > 0 such that

f (B(x, β)) ∗ B(f (x), λ).

Hence
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η(x) ∈ diam(f (B(x, β))) ∈ 2λ,

and it follows that η(x) = 0.
Conversely, let η(x) = 0 and λ > 0. There is a neighbourhood U of x such

that diam(f (U)) < λ; further, there exists β > 0 such that B(x, β) ∗ U. Hence
f (B(x, β)) ∗ B(f (x), λ) and f is continuous at x.
(b) Suppose δ > 0; the result is obvious otherwise. Let

E = {x → X1 : η(x) < δ}

and y → E. Then there is a neighbourhood U of y such that diam(f (U)) < δ. Now

U is a neighbourhood of each of its points and thus U ∗ E. It follows that y → o
E,

that E ∗ o
E and so E is open. �

Lemma 2.1.33 Let X1 and X2 be metric spaces and let f : X1 ≤ X2. The following
three statements are equivalent:

(i) f is continuous (on X1);
(ii) if V is an open subset of X2, f −1(V) is open in X1;
(iii) if F is a closed subset of X2, f −1(F) is closed in X1.

Proof To prove that (i) implies (ii), assume that (i) holds, let V be open in X2 and let
x → f −1(V). As f is continuous at x, there is a neighbourhood U(x) of x such that
f (U(x)) ∗ V ; that is, U(x) ∗ f −1(V). Thus f −1(V) contains a neighbourhood of
each of its points and hence is open.

Next suppose that (ii) holds, let x → X1 and let V be a neighbourhood of f (x). Then
by (ii), f −1(V) is open; and x → f −1(V). Thus f −1(V) is a neighbourhood of x and
f (f −1(V)) ∗ V , which by Lemma 2.1.28 means that f is continuous at x. Since x is
an arbitrary point of X1, f must be continuous on X1. Hence (i) and (ii) are equivalent.

Finally, (ii) and (iii) are equivalent, in view of the identity X1\ f −1(F) = f −1(X2\F)

for all F ∗ X2. �

Remark 2.1.34

(i) In view of Lemma 2.1.33 it is easy to see that f : X1 ≤ X2 is continuous if,
and only if, f −1(B) is open for all open balls B ∗ X2.

(ii) Suppose that f : X1 ≤ X2 is continuous and that U is an open subset of X1. It
does not follow that f (U) is open in X2. To illustrate this important point, let
X1 = X2 = R, endowed with the usual metric, define f : R ≤ R by f (x) =
(1 + x2)−1 (x → R) and let U = (−1, 1). Then f is continuous, U is open but
f (U) =

( 1
2 , 1

⎧
, which is not open. Similarly, it does not follow that the image

of a closed set under a continuous map is closed.

Lemma 2.1.33 enables us to prove a simple andmost useful result, often called the
glueing lemma because it shows that under appropriate conditions, two continuous
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functions defined on subsets of a metric space may be ‘glued together’ to form a
continuous function on the union of those subsets. Frequent reference to this lemma
will bemade in Sect. 2.5 and in our treatment of the Jordan curve theorem in Sect. 3.9.

Lemma 2.1.35 Let X and Y be metric spaces and suppose that X = A ∪ B, where
A and B are non-empty and either both open or both closed. Let f : A ≤ Y and
g : B ≤ Y be continuous (A and B are assumed equipped with the metric inherited
from X), suppose that f (x) = g(x) for all x → A ∩ B, and define h : X ≤ Y by

h(x) =
{

f (x), x → A,

g(x), x → B.

Then h is continuous.

Proof (i) Suppose A and B are both open in X. Let O be an open set in Y . By
Lemma 2.1.33, f −1(O) and g−1(O) are open in A and B, respectively. Thus, by
Lemma 2.1.5, there exist sets U, V open in X such that

f −1(O) = U ∩ A, g−1(O) = V ∩ B;

the sets f −1(O) and g−1(O) are open in X; and since h−1(O) = f −1(O) ∪ g−1(O),
h−1(O) is open in X. The continuity of h follows by further appeal to Lemma 2.1.33.

(ii) Suppose A and B are both closed in X and let F be a closed set in Y .
By Lemma 2.1.33, f −1(F) and g−1(F) are closed in A and B, respectively. By
Lemma 2.1.5, since A\f −1(F) is open in A, there exists a set U open in X such
that A\f −1(F) = A ∩ U; also,

X\f −1(F) = (X\A) ∪ (A\f −1(F)) = (X\A) ∪ U,

a set open in X. Thus f −1(F) is closed in X as, by similar reasoning, is g−1(F). Now
h−1(F) = f −1(F)∪g−1(F) and so, by Lemma 2.1.11, h−1(F) is closed in X. Finally,
by Lemma 2.1.33, the continuity of h is proved.

Note that use of Exercise 2.1.45/17 yields a simpler proof of (ii), one identical in
form with that given in case (i). �

2.1.2 Homeomorphisms

We now introduce the idea of homeomorphism, which enables a sensible classifica-
tion of spaces to be made.

Definition 2.1.36 Let X1, X2 be metric spaces. A map f : X1 ≤ X2 is said to be a
homeomorphism if it is a continuous bijection and f −1 is continuous. If such a map
exists, X1 and X2 are said to be homeomorphic.

http://dx.doi.org/10.1007/978-3-319-06209-9_3
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Remark 2.1.37

(i) Not every bijective continuous map is a homeomorphism; that is, the condition
that f −1 be continuous is an essential part of the definition. For take X1 = R
endowed with the discrete metric, let X2 = R endowed with the usual metric
and let f be the identity map from X1 to X2; that is f (x) = x for all x → R. Then
f is not a homeomorphism: it is continuous, as f −1(O) is open in X1 whenever
O is open in X2 (every subset of X1 is open!); but f −1 is not continuous, for
(f −1)−1([0, 1)) = [0, 1) is open in X1 but not in X2.

(ii) Let f : X1 ≤ X2 be a bijection. Then if f is a homeomorphism, a subsetU of X1
is open if, and only if, f (U) is open in X2: note that U = (f −1)−1(U). It follows
that the open sets in a metric space may be put in one-to-one correspondence
with the open sets in any metric space homeomorphic to it.

(iii) In general, homeomorphisms do not preserve distances. Thus let X1 = (0, 1),
X2 = (1,⊂) and endow each set with the usual metric inherited from R;
let f : X1 ≤ X2 be defined by f (x) = x−1 (x → X1). Then f is plainly a
homeomorphism, but if x, y → X1 and x ∪= y, then

⎨
⎨x−1 − y−1

⎨
⎨ ∪= |x − y|;

that is, the distance between f (x) and f (y) differs from that between x and
y. Homeomorphisms which do preserve distances are called isometries. We
formalise this in the following definition.

Definition 2.1.38 Let (X1, d1) and (X2, d2) be metric spaces. A map f : X1 ≤ X2
is said to be an isometry if it is bijective and for all x, y → X1,

d2(f (x), f (y)) = d1(x, y).

If such a map exists, X1 and X2 are said to be isometric.

Example 2.1.39

(i) ConsiderRn, with theEuclideanmetric, and the unit ballB(0, 1) inRn, given the
metric inherited from Rn. Then Rn and B(0, 1) are homeomorphic. To see this,

let f : Rn ≤ B(0, 1) be defined by f (x) = x/(1+|x|), where |x| =
⎩

n∑

i=1
x2i

⎪ 1
2

.

Since |f (x)| = |x| /(1+|x|) < 1 for all x → Rn, it follows that f (Rn) ∗ B(0, 1).
Moreover, given any y → B(0, 1), the point x := y/(1− |y|) is the unique point
mapped by f to y : thus f is a bijection and f −1(y) = y/(1− |y|). It is clear that
f and f −1 are continuous, and hence f is a homeomorphism.

(ii) For any n → N, let Sn be the unit sphere in Rn+1 (endowed with the Euclidean
metric); that is,

Sn =
{

(xi) → Rn+1 :
n+1∑

i=1

x2i = 1

}

.

Then S2\ {(0, 0, 1)} is homeomorphic toR2, each set being given the Euclidean
metric. This follows by consideration of the stereographic projection P, where
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P(x1, x2, x3) =
⎩

x1
1 − x3

,
x2

1 − x3

⎪
.

First note that P is obviously a continuous map of S2\ {(0, 0, 1)} to R2. More-
over, P is bijective, for given any (y1, y2) → R2, the equation Px = (y1, y2)
has the unique solution x1 = 2y1/(y21 + y22 + 1), x2 = 2y2/(y21 + y22 + 1),
x3 = (y21 + y22 − 1)/(y21 + y22 + 1), since any possible solution x = (x1, x2, x3)
must satisfy

(x21 + x22)/(1 − x3)
2 = y21 + y22, (1 − x23)/(1 − x3)

2 = y21 + y22,

so that (1 + x3)/(1 − x3) = y21 + y22 and hence

x3 = (y21 + y22 − 1)/(y21 + y22 + 1), x1 = y1(1 − x3) = 2y1/(y
2
1 + y22 + 1),

x2 = y2(1 − x3) = 2y2/(y
2
1 + y22 + 1).

The continuity of P−1 is now clear, and so P is a homeomorphism.
(iii) Let S, Q ∗ R2 be a circle and a square, respectively, each given the Euclidean

metric inherited from R2. Then S and Q are homeomorphic. To prove this it
is enough to consider the case in which S = S1 (see (ii) above) and Q is the
square with centre O, of side 2 and with sides parallel to the coordinate axes.
Define φ : Q ≤ S by φ(x, y) = (x, y)/

√
(x2 + y2); φ is plainly continuous.

It is bijective, for given (u, v) → S, there is a unique (x, y) in Q such that
φ(x, y) = (u, v). In fact, x/

√
(x2 + y2) = u, y/

√
(x2 + y2) = v, so that if we

put x = r cos π , y = r sin π , then u = cos π , v = sin π ; moreover, (x, y) → Q
if, and only if, max{|x| , |y|} = 1, and so max{r |u|, r |v|} = 1, which gives
r = 1/max{|u|, |v|}. Hence

x = u/max{|u|, |v|}, y = v/max{|u|, |v|},

which shows that φ−1(u, v) = (u, v)/max{|u| , |v|}. Since φ−1 is plainly con-
tinuous, it follows that φ is a homeomorphism.

(iv) Let Rn be given the Euclidean metric. Then a map g : Rn ≤ Rn is an isometry
if, and only if, it is of the form

g(t) = x0 + f (t) (t → Rn)

where x0 → Rn and f : Rn ≤ Rn is linear, and orthogonal in the sense that for

all s, t → Rn, ↑ f (s), f (t)∼ = ↑s, t∼, where ↑x, y∼ =
n∑

i=1
xiyi.

To prove this, first suppose that g is an isometry and let d be the Euclid-
ean metric on Rn. Put f (t) = g(t) − g(0) (t → Rn); then f (0) = 0, d(f (s),
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f (t)) = d(g(s), g(t)) = d(s, t) and d(f (t), 0) = d(g(t), g(0)) = d(t, 0). For
all s, t → Rn, it follows that since d2(f (s), f (t)) = d2(s, t) we have

d2(f (t), 0) − 2 ↑f (t), f (s)∼ + d2(f (s), 0) = d2(s, 0) − 2 ↑s, t∼ + d2(t, 0),

and hence ↑f (t), f (s)∼ = ↑s, t∼.
Thus f is orthogonal. To show that f is linear, let s, t → Rn and δ, θ → R. Then
d2(f (δs + θt), δf (s) + θf (t)) is given by

↑f (δs + θt) − δf (s) − θf (t), f (δs + θt) − δf (s) − θf (t)∼

= ↑f (δs + θt), f (δs + θt)∼ + δ2 ↑f (s), f (s)∼ + θ2 ↑f (t), f (t)∼

+ 2δθ ↑f (s), f (t)∼ − 2δ ↑f (δs + θt), f (s)∼ − 2θ ↑f (δs + θt), f (t)∼

= ↑δs + θt, δs + θt∼ + δ2 ↑s, s∼ + θ2 ↑t, t∼ + 2δθ ↑s, t∼

− 2δ ↑δs + θt, s∼ − 2θ ↑δs + θt, t∼

= 2 ↑δs + θt, δs + θt∼ − 2 ↑δs + θt, δs + θt∼ = 0.

Hence f is linear.

Conversely, suppose that g = x0 + f , where f is linear and orthogonal. Then
for all s, t → Rn,

d2(g(s), g(t)) = d2(f (s), f (t)) = ↑f (s) − f (t), f (s) − f (t)∼

= ↑f (s − t), f (s − t)∼ = ↑s − t, s − t∼ = d2(s, t),

which shows that g is an isometry.

2.1.3 An Extension Theorem

Let A be a subspace of a metric space X and let f : A ≤ R be continuous. A
natural question to ask is whether or not f has a continuous real-valued extension
defined on all of X. That is to say, does there exist a continuous map g : X ≤ R
such that for all x → A, g(x) = f (x)? In general, the answer is negative: the map
x �−≤ 1/x : (0, 1) ≤ R is continuous, but it has no continuous extension even
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to [0, 1] because such an extension would have to be bounded. However, for an
affirmative answer it turns out that a sufficient condition on A is that it is a closed
subspace of X. We establish this below, beginning with a few preliminaries.

Lemma 2.1.40 Let A and B be non-empty subsets of a metric space (X, d). For each
x → X, let the distance from x to A, denoted by d(x, A) or by dist(x, A) when the
metric d is understood, be defined by

d(x, A) = inf {d(x, a) : a → A} (x → X),

and the distance from A to B be

d(A, B) = inf {d(a, b) : a → A, b → B} .

Then

(i) d(A, B) = inf {d(a, B) : a → A};
(ii) d(x, A) = 0 if, and only if, x → A;
(iii) the map x �−≤ d(x, A) : X ≤ R is continuous; in fact, for all x, y → X,

|d(x, A) − d(y, A)| ∈ d(x, y).

Proof (i) For all a → A and all b → B, d(A, B) ∈ d(a, b); hence, for all a → A,
d(A, B) ∈ d(a, B) and so d(A, B) ∈ inf {d(a, B) : a → A}. Now let λ > 0. There
exist a → A and b → B such that d(a, B) ∈ d(a, b) < d(A, B) + λ; thus

inf {d(x, B) : x → A} < d(A, B) + λ.

As this is true for all λ > 0, (i) follows.
(ii) d(x, A) = 0 if, and only if, for all λ > 0, A∩B(x, λ) ∪= ∞; and, by Lemma 2.1.16,
this is true if, and only if, x → A.
(iii) Let x, y → X. Then for all a → A,

d(x, A) − d(x, y) ∈ d(x, a) − d(x, y) ∈ d(y, a).

Hence d(x, A) − d(x, y) ∈ d(y, A). Interchange of x and y shows that d(y, A) −
d(y, x) ∈ d(x, A), and (iii) follows. �

The notion of uniform convergence for sequences of real-valued functions, intro-
duced in Sect. 1.7, may be developed further to include functions with range in a
general metric space.

Definition 2.1.41 Let S be a non-empty set, let (X, d) be a metric space and, for
each n → N, let fn : S ≤ X. The sequence (fn) is said to converge pointwise on S if
there is a function f : S ≤ X such that for each s → S,

lim
n≤⊂ d(fn(s), f (s)) = 0;

http://dx.doi.org/10.1007/978-3-319-06209-9_1
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it is said to converge uniformly on S if there is a function f : S ≤ X such that

lim
n≤⊂ sup

S
d(fn(s), f (s)) = 0.

Evidently uniform convergence on S implies pointwise convergence on S; apart
from special cases, the converse is false. In Sect. 1.7 it was observed that the limit
of a uniformly convergent sequence of continuous real-valued functions defined on
a subspace of R is itself a continuous function. This observation carries over to the
setting of a general metric space: loosely speaking, uniform convergence preserves
continuity. Henceforth, it will be convenient to use the symbol C(X, Y) to denote
the family of all continuous functions from a metric space X to a metric space Y ;
C(X, R) (R being given the usual metric) may be abbreviated to C(X).

Theorem 2.1.42 Let X and Y be metric spaces and let a → X. For each n → N
let fn : X ≤ Y be continuous at a, and suppose that the sequence (fn) converges
uniformly on X to f : X ≤ Y. Then f is continuous at a. In particular, if each
fn → C(X, Y), then f → C(X, Y).

Proof This is an obvious modification of that of Theorem 1.7.7. �

Our goal in this subsection is to prove that a continuous real-valued function on a
closed subspace of a metric space X has a continuous real-valued extension to all of
X. The lemma which follows, usually referred to as Urysohn’s lemma , is a special
case of this result. Framed in the metric space context adequate for our purposes, it
has an elementary proof: Urysohn established it in a more general setting.

Lemma 2.1.43 Let A and B be disjoint closed subsets of a metric space (X, d). Then
there exists a continuous map f : X ≤ R such that f (x) = 1 (x → A), f (x) = −1
(x → B) and |f (x)| ∈ 1 on X.

Proof If either A or B is empty, then a suitable constant map may be chosen for f .
Suppose that neither A nor B is empty and, adopting the notation of Lemma 2.1.40,
define f : X ≤ R by f (x) = {d(x, B) − d(x, A)}/{d(x, B) + d(x, A)}. Part (ii)
of Lemma 2.1.40 shows that, for all x → X, d(x, B) + d(x, A) > 0 and so f is
well-defined; part (iii) shows that the maps x �−≤ d(x, A) and x �−≤ d(x, B) are
continuous and therefore (see also Example 2.1.30 (ii)) f is continuous. That f has
the remaining properties is clear; indeed, on X\(A ∪ B), |f | < 1. �

With this lemma at our disposal we give the promised extension theorem, which is
due to Tietze.

Theorem 2.1.44 (Tietze’s extension theorem) Let A be a non-empty closed subset
of a metric space X and let f : A ≤ R be continuous. Then there exists a continuous
map g : X ≤ R such that g(x) = f (x) for all x → A.

Proof Let φ : R ≤ (−1, 1) be defined by

φ(x) = (1 + |x|)−1x.

http://dx.doi.org/10.1007/978-3-319-06209-9_1
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Let h = φ ◦ f ; plainly, |h| < 1 on A. We begin by proving that the bounded map h
has a continuous extension to X. Let E, F be the disjoint closed sets given by

E = {x → A : h(x) ∈ −1/3}, F = {x → A : h(x) ≥ 1/3}.

By the Urysohn Lemma, there exists a continuous map u1 : X ≤ R such that

u1(x) = −1/3 (x → E), u1(x) = 1/3 (x → F)

and |u1(x)| ∈ 1/3 (x → X). Note that

|h(x) − u1(x)| < 2/3 (x → A).

With h replaced by 3
2 (h − u1), repetition of the above argument shows that there

exists a continuous map u2 : X ≤ R such that

|u2(x)| ∈ 2

32
(x → X)

and
|h(x) − u1(x) − u2(x)| < (2/3)2 (x → A).

Inductively, it follows that there is a sequence (un)of continuous real-valued functions
on X such that

|un(x)| ∈ 2n−1

3n
(x → X; n → N) (2.1.1)

and ⎨
⎨
⎨
⎨
⎨
h(x) −

n∑

k=1

uk(x)

⎨
⎨
⎨
⎨
⎨
< (2/3)n (x → A; n → N). (2.1.2)

Use of (2.1.1), Theorem 1.7.5 (the Weierstrass M−test) and Theorem 2.1.42 shows
that

∑
un converges to a continuous function on X, say u. Then, for all x → X,

|u(x)| ∈
⊂∑

n=1

|un(x)| ∈
⊂∑

n=1

2n−1

3n
= 1;

also, from (2.1.2), u |A= h.
The map u is a continuous extension of h to X, but this extension may assume the

values −1 or 1. A continuous extension eliminating this possibility is constructed
next. Let

B = {x → X : u(x) → {−1, 1}}.
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Plainly, B is closed and A ∩ B = ∞. By Urysohn’s Lemma, there exists a continuous
map τ : X ≤ R such that

τ(x) = 1 (x → A), τ(x) = 0 (x → B)

and 0 ∈ τ ∈ 1 on X\(A ∪ B). Let v : X ≤ R be defined by

v(x) = τ(x)u(x) (x → X).

Evidently, v |A= u |A= h, and v is a continuous extension of hwith values in (−1, 1).
Lastly, the conclusion of the theorem is immediate on setting g = φ−1 ◦ v.

Incidentally, it can be shown (see [5], (4.5.1)) that there is an extension g with the
property that

sup
x→X

g(x) = sup
y→A

f (y), inf
x→X

g(x) = inf
y→A

f (y).

�

Exercise 2.1.45

1. Let 1 < p < ⊂ and define p
⊃
by 1

p + 1
p⊃ = 1. Let f : [0,⊂) ≤ R be given by

f (t) = tp

p + 1
p⊃ − t. Show that the minimum of f on [0,⊂) is attained only at

t = 1 and that the minimum value is 0. Hence show that for all a, b → [0,⊂),

ab ∈ ap

p
+ bp⊃

p⊃ ,

with equality if, and only if, a = b1/(p−1).
Deduce Hölder’s inequality: for every x = (x1, . . . xn), y = (y1, . . . , yn) → Rn,

n∑

k=1

|xkyk | ∈
(

n∑

k=1

|xk|p
)1/p (

n∑

k=1

|yk |p⊃
)1/p⊃

.

(The casep = 2 is Schwarz’s inequality.)Use this to proveMinkowski’s inequal-
ity: (

n∑

k=1

|xk + yk |p
)1/p

∈
(

n∑

k=1

|xk |p
)1/p

+
(

n∑

k=1

|yk |p
)1/p

.

Hence show that (Rn, dp) is a metric space, where

dp(x, y) =
(

n∑

k=1

|xk − yk |p
)1/p

.
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2. Let a, b → R, suppose that a < b and put I = [a, b]; let 1 ∈ p < ⊂. Prove that
(C(I), d) is a metric space, where

d(f , g) =
⎛

⎝
b∫

a

|f (t) − g(t)|p dt

⎞

⎠

1/p

(f , g → C(I)).

3. Let p → [1,⊂) and set

εp =
{

x = (xi)i→N : xi → R for all i → N,
⊂∑

1

|xi|p < ⊂
}

,

dp(x, y) =
( ⊂∑

i=1

|xi − yi|p
)1/p

(x, y → εp).

Prove that (εp, dp) is a metric space.
4. Let S be the set of all sequences of real numbers and define d by

d(x, y) =
⊂∑

n=1

|xn − yn|
2n

[
1 + |xn − yn|

⎧ (x = (xn), y = (yn) → S).

Show that (S, d) is a metric space.[
Hint: t �−≤ t/(1 + t) is an increasing function on [0,⊂) .

⎧

5. Let p be a prime number. Given any distinct integers m, n, let t = t(m, n) be the
unique integer such that

m − n = kpt

for some integer k not divisible by p. Define d : Z × Z ≤ R by

d(m, n) =
{
1/pt if m ∪= n,

0 if m = n.

Prove that for all distinct a, b, c → Z,

t(a, c) ≥ min {t(a, b), t(b, c)} ,

and hence show that (Z, d) is a metric space.
6. Determine whether the following subsets of R (endowed with the usual metric)

are open, closed or neither open nor closed:

(i) N, (ii)

{
1

n
: n → N

}
, (iii) Q, (iv)

{
(−1)n

⎩
1 + 1

n

⎪
: n → N

}
.
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7. Show that each of the following sets is an open subset of R2, endowed with the
Euclidean metric:

(i)
{
(x, y) : x2 + y2 < 1, x > 0, y > 0

}
,

(ii) {(x, y) : x + y ∪= 0},
(iii) {(x, y) : xy ∪= 1}.

Is {(x, 0) : 0 < x < 1} an open subset of R2?
8. Show that each subset of a discrete metric space is open and closed.
9. Let S be the set of all sequences of real numbers; given any x = (xn) and y = (yn)

in S, with x ∪= y, let k(x, y) be the smallest integer n such that xn ∪= yn. Define
d : S × S ≤ R by

d(x, y) =
{
1/k(x, y) if x ∪= y,
0 if x = y.

Prove that for all x, y, z → S,

d(x, y) ∈ max {d(x, z), d(z, y)} ,

and hence show that (S, d) is a metric space.
10. Let (X, d) be a metric space and suppose that for all x, y, z → X,

d(x, y) ∈ max {d(x, z), d(y, z)} .

Prove that if d(x, z) ∪= d(y, z), then d(x, y) = max {d(x, z), d(y, z)}. Show also
that if x → X and r > 0, then B(x, r) = B(y, r) for all y → B(x, r). Prove that if
two open balls in (X, d) intersect, then one is contained in the other. Show that
for all x → X and all r > 0, B(x, r) is closed and {y → X : d(x, y) ∈ r} is open.

11. Let X be a non-empty set and d : X × X ≤ R a mapping such that

(i) d(x, y) = 0 if, and only if, x = y;
(ii) d(x, z) ∈ d(x, y) + d(z, y) for all x, y, z → X.

Prove that (X, d) is a metric space.
12. Let d1, d2 be two metrics on a non-empty set X, and suppose that there are

positive constants δ, θ such that for all x, y → X,

δd1(x, y) ∈ d2(x, y) ∈ θd1(x, y).

Prove that the metric spaces (X, d1) and (X, d2) have the same open sets.
Deduce that each of the metrics dp of Example 2.1.2 (iii) generates the same
family of open subsets of Rn.



92 2 Metric Spaces

13. Show that for all subsets A and B of a metric space X,

Show by means of examples that, in general,

Find the closure and interior of the subset D of R3 (with the Euclidean metric)
defined by

D =
{
(x, y, z) → R3 : cosh(x + yz) ≥ 2

}
.

14. Determine the interiors and closures of the following subsets of R2 (with the
Euclidean metric):
(i) {(x, y) : 0 < x ∈ y < 1}, (ii) {(x, 0) : 0 < x < 1}, (iii) {(x, y) : x, y → Q}.

15. Let S be the subset of [0, 1] (with the usual metric) consisting of all those real
numbers which have a decimal representation of the form

⊂∑

n=1

an

10n
,

where an → {0, 1} for all n → N. By consideration of any y → [0, 1]\S and the
first digit in the decimal representation of y which is not 0 or 1, find the closure
of S.

16. By consideration of a discrete metric space, show that a closed ball in a metric
space need not be the closure of the open ball with the same centre and the same
radius.

17. Let (X, d) be a metric space, let Y be a non-empty subset of X and let dY be the
restriction of d to Y × Y .

(i) Show that A is a closed subset of (Y , dY ) if and only if there is a closed
subset B of (X, d) such that A = B ∩ Y .

(ii) Let Y be a closed subset of (X, d) and S ∗ Y ; let clY (S) (clX(S)) denote
the closure of S in (Y , dY ) ((X, d)). Show that clY (S) = clX(S).

18. Let f : R2 ≤ R be defined by

f (x, y) =
{

xy/(x2 + y2) if (x, y) ∪= (0, 0),
0 if (x, y) = (0, 0);

R2 and R are each supposed to be equipped with the appropriate Euclidean
metric. Show that f is continuous at each point of R2\{(0, 0)}, and that it is not
continuous at (0, 0).



2.1 Basic Definitions 93

19. Let X be a metric space, let f , g : X ≤ R be continuous and define h : X ≤ R2

by h(x) = (f (x), g(x)) (x → X). Given that R2 is endowed with the Euclidean
metric, show that h is continuous on X.

20. Discuss the continuity of the map f : R2 ≤ R2 (R2 is equipped with the
Euclidean metric) defined by

f (x, y) =





⎩
x2 − y2

x2 + y2
,
(x2 − y2)2

x2 + y2

⎪
if (x, y) ∪= (0, 0),

(0, 0) if (x, y) = (0, 0).

21. Show that S : = {
(x, y) : x2 − y2 + 2xy < 0

}
is an open subset of R2 (equipped

with the Euclidean metric).
22. Let A and B be non-empty subsets of a metric space (X, d). Prove that

(i) A is bounded if, and only if, there exist x → X and r > 0 such that A ∗
B(x, r);

(ii) A ∗ B implies that diam(A) ∈ diam(B);
(iii) diam(A) = 0 if, and only if, for some x → X, A = {x};
(iv) if a → A and b → B, then

diam(A ∪ B) ∈ diam(A) + diam(B) + d(a, b);

(v) if A and B are bounded, then A ∪ B is bounded; further, a finite union of
bounded subsets of X is bounded.

23. Let A be a non-empty set of real numbers which is bounded above and let
a = supA. Prove that a → A.

24. Let A and B be closed, disjoint subsets of a metric space X. Show that there
are open, disjoint subsets U and V (of X) such that A ∗ U and B ∗ V . [Hint:
Urysohn’s lemma.]

2.2 Complete Metric Spaces

An important property of real numbers is that every Cauchy sequence inR converges
to a point of R. We distinguish a class of metric spaces in which the same kind of
property holds. These spaces, the complete spaces, are of the utmost theoretical and
practical importance.

Definition 2.2.1 Let (X, d) be a metric space. A sequence (xn) in X is called a
Cauchy sequence if given any λ > 0, there exists N → N such that d(xm, xn) < λ

whenever m, n ≥ N ; equivalently, diam{xm : m ≥ n} ≤ 0 as n ≤ ⊂. Loosely,
these conditions may be written d(xm, xn) ≤ 0 as m, n ≤ ⊂. The space X is said
to be complete if given any Cauchy sequence (xn) in X , there exists x → X such that
xn ≤ x as n ≤ ⊂.
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Example 2.2.2

(i) R, with the usual metric, is complete: this was our prototype.
(ii) Rn, with the usual (Euclidean) metric d2, is complete. To prove this, let (x(m))

be a Cauchy sequence in Rn, with x(m) = (x(m)
1 , . . . , x(m)

n ). For each j →
{1, . . . , n},

⎨
⎨
⎨x(m)

j − x(p)

j

⎨
⎨
⎨ ∈

(
n∑

k=1

⎨
⎨
⎨x(m)

k − x(p)

k

⎨
⎨
⎨
2
)1/2

= d2(x
(m), x(p)) ≤ 0

as m, p ≤ ⊂; that is, (x(m)
j )m→N is a Cauchy sequence in R and hence con-

verges, to xj → R, say. Put x = (x1, . . . , xn) → Rn. Then d2(x(m), x) =
⎩

n∑

k=1

⎨
⎨
⎨x(m)

k − xk

⎨
⎨
⎨
2
⎪1/2

≤ 0 as m ≤ ⊂ : Rn is complete.

(iii) Q, the set of all rationals,with the usualmetric inherited fromR, is not complete:((
1 + 1

n

)n
)

n→N
is a Cauchy sequence in Q which does not converge to an

element of Q.
(iv) The open interval (0, 2), with the usualmetric inherited fromR, is not complete:( 1

n

)
n→N is a Cauchy sequence in (0, 2) which fails to converge to an element of

(0, 2).
(v) Let I = [0, 1], take X = C(I) (the set of all continuous, real-valued functions

on I) and define a metric d on C(I) by

d(f , g) =
∫ 1

0
|f (t) − g(t)| dt.

Then (C(I), d) is not complete. To establish this, consider the sequence (fn)n≥2,
where

fn(t) =





0, if 0 ∈ t ∈ 1
2 ,

n(t − 1
2 ), if 1

2 < t ∈ 1
2 + 1

n ,

1, if 1
2 + 1

n ∈ t ∈ 1.

Since d(fn, fm) = 1
2

⎨
⎨m−1 − n−1

⎨
⎨ ≤ 0 as m, n ≤ ⊂, (fn) is a Cauchy

sequence. Suppose that there is a function f → C(I) such that d(fn, f ) ≤ 0
as n ≤ ⊂. Then

∫ 1/2
0 |fn(t) − f (t)| dt ∈ d(fn, f ) ≤ 0 as n ≤ ⊂; thus

∫ 1/2
0 |f (t)| dt = 0, and hence f (t) = 0 for all t → [

0, 1
2

⎧
. Now let λ → (

0, 1
2

)
.

Since
1∫

1
2+λ

|fn(t) − f (t)| dt ∈ d(f , fn) ≤ 0 as n ≤ ⊂,

and for all large enough n, fn(t) = 1 on
[ 1
2 + λ, 1

⎧
, we see that
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1∫

1
2+λ

|f (t) − 1| dt = 0,

so that f (t) = 1 for all t → [ 1
2 + λ, 1

⎧
. As this holds for all λ → (0, 1

2 ), it follows
that f (t) = 1 for all t → ( 1

2 , 1
⎧
, which implies that f is discontinuous at t = 1

2 .
This contradiction shows that (C(I), d) is not complete.

(vi) Let p → [1,⊂), let

εp =
{

x = (xi)i→N : xi → R for all i → N,
⊂∑

1

|xi|p < ⊂
}

,

and let

dp(x, y) =
( ⊂∑

1

|xi − yi|p
)1/p

,

where x = (xi), y = (yi) → εp. Then (εp, dp) is complete. To prove this, let
(xn)n→N be a Cauchy sequence in εp, where xn = (

xn
i

)
i→N. For each i → N,

⎨
⎨xm

i − xn
i

⎨
⎨ ∈ dp(x

m, xn)

and hence
(
xn

i

)
n→N is a Cauchy sequence in R. Using the completeness of R,

let xi = limn≤⊂ xn
i and put x = (xi)i→N. It remains to show that x → εp and

that xn ≤ x in εp.
Let λ > 0. There exists N → N such that dp(xm, xn) < λ if m, n ≥ N . Thus for
each k → N,

k∑

i=1

⎨
⎨xm

i − xn
i

⎨
⎨p < λp if m, n ≥ N;

thus (letting m ≤ ⊂),

k∑

i=1

⎨
⎨xi − xn

i

⎨
⎨p ∈ λp if n ≥ N . (2.2.1)

Use of (2.2.1) in conjunction with Minkowski’s inequality shows that, for each
k → N,
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(
k∑

i=1

|xi|p
)1/p

∈
(

k∑

i=1

⎨
⎨
⎨xi − xN

i

⎨
⎨
⎨
p
)1/p

+
(

k∑

i=1

⎨
⎨
⎨xN

i

⎨
⎨
⎨
p
)1/p

∈ λ +
( ⊂∑

i=1

⎨
⎨
⎨xN

i

⎨
⎨
⎨
p
)1/p

.

Hence x → εp. Further use of (2.2.1) shows that

dp(x
n, x) =

( ⊂∑

i=1

⎨
⎨xi − xn

i

⎨
⎨p
)1/p

∈ λ.

Hence xn ≤ x.

To make the interval (0, 2) of Example 2.2.2 (iv) above into a complete space all
we have to do is to adjoin the two points 0 and 2; the space Q of Example 2.2.2 (iii)
may be ‘completed’ by adjoining all irrationals. These two examples illustrate the
general principle, examined later, that any incomplete space may be enlarged so as
to make it into a complete space.

The following result gives a useful characterisation of complete spaces; it uses
the so-called Cantor intersection property: a metric space (X, d) is said to have this
property if whenever (An) is a sequence of non-empty, closed, bounded subsets of
X such that An+1 ∗ An for all n → N and limn≤⊂ diam An = 0, then

⋂⊂
n=1 An has

exactly one point.

Theorem 2.2.3 (Cantor’s characterisation of completeness) A metric space (X, d)

is complete if, and only if, X has the Cantor intersection property.

Proof First suppose that X is complete, and let (An) be a sequence of non-
empty, closed bounded subsets of X such that An+1 ∗ An for all n → N and
limn≤⊂ diam An = 0; let (xn) be a sequence such that for all n → N, xn → An.
If m ≥ n, then xm → An and diam{xm : m ≥ n} ∈ diam An ≤ 0 as n ≤ ⊂.
Hence (xn) is a Cauchy sequence and x := limn≤⊂ xn → Ak = Ak for all k → N;

so x →
⊂⋂
1

Ak . If y → ⋂⊂
1 Ak , then d(x, y) ∈ diam An ≤ 0 as n ≤ ⊂; hence y = x.

It follows that
⋂⊂

1 An = {x}.
Conversely, suppose that X has the Cantor intersection property and let (xn) be

a Cauchy sequence in X. Let An be the closure of {xm : m ≥ n} (n → N); then
An+1 ∗ An and diam An ≤ 0 as n ≤ ⊂. Thus there exists a unique x → X such that

x →
⊂⋂
1

An; and d(x, xm) ∈ diam Am ≤ 0 as m ≤ ⊂, that is, xm ≤ x. Hence X is

complete. �

Augmenting the complete metric spaces already described, we now introduce
further examples each of which provides a suitable context for specific problems.
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Definition 2.2.4 Let S be a non-empty set and letB(S) be the family of all bounded,
real-valued functions on S. The uniform metric d⊂ on B(S) is given by

d⊂(f , g) = sup {|f (s) − g(s)| : s → S} (f , g → B(S)).

If S is a metric space, C (S) stands for the family of all continuous, bounded, real-
valued functions on S; the restriction of d⊂ to C (S) is again denoted by d⊂.

Note that d⊂(fn, f ) ≤ 0 if, and only if, (fn) converges to f uniformly on S.

The arguments needed for the proofs of the next two theorems are essentially
those given in Sect. 1.7, but we give the details for the convenience of the reader.

Theorem 2.2.5 The metric space (B(S), d⊂) is complete.

Proof Let (fn) be a Cauchy sequence in B(S). Then given any λ > 0, there exists
N → N such that d⊂(fn, fm) < λ if m, n ≥ N ; and so for each s → S, |fn(s) − fm(s)| <

λ if m, n ≥ N . Thus for each s → S, (fn(s)) is a Cauchy sequence in R and hence
converges, to f (s), say. We thus have a map f : S ≤ R, where f (s) = limn≤⊂ fn(s)
for all s → S. To complete the proof we must show that f → B(S) and d(fn, f ) ≤ 0
as n ≤ ⊂. As above, we see that for all s → S, |fn(s) − fm(s)| < λ if m, n ≥ N . Let
m ≤ ⊂ : then for all s → S, |fn(s) − f (s)| ∈ λ if n ≥ N . Since |f (s)| ∈ |fN (s)| + λ,
it follows that f → B(S); also we have d⊂(f , fn) ∈ λ if n ≥ N . Hence fn ≤ f in
B(S). �

Theorem 2.2.6 Let (S, d) be a metric space. Then (C (S), d⊂) is complete.

Proof Let (fn) be a Cauchy sequence in C (S). Then (fn) is a Cauchy sequence in
B(S), and so by Theorem 2.2.5, there exists f → B(S) such that d⊂(f , fn) ≤ 0 as
n ≤ ⊂. Let λ > 0. Then there exists N → N such that for all n ≥ N and all s → S,
|fn(s) − f (s)| < λ/3. Let s0 → S. Since fN is continuous at s0, there exists β > 0 such
that |fN (s) − fN (s0)| < λ/3 if d(s, s0) < β. Thus if d(s, s0) < β, then

|f (s) − f (s0)| ∈ |f (s) − fN (s)| + |fN (s) − fN (s0)| + |fN (s0) − f (s0)| < λ.

Hence f → C (S), and the theorem follows. �

Corollary 2.2.7 Let I = [a, b] ∗ R. Then C(I) = C (I) and (C(I), d⊂) is complete.

Proof That C(I) = C (I) follows immediately from the fact that every continuous
real-valued function on the closed, bounded interval I is bounded. The rest is now
clear from Theorem 2.2.6. �

We take up in the next section the question of under what conditions on a metric
space S can it be shown that C (S) = C (S).

Theorem 2.2.8 Let a, b → R and a < b. Then (R [a, b] , d⊂) is complete.

http://dx.doi.org/10.1007/978-3-319-06209-9_1
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Proof Let (fn) be a Cauchy sequence in R [a, b]; it is also a Cauchy sequence in
B [a, b] and so there is an f → B [a, b] such that d⊂(f , fn) ≤ 0 as n ≤ ⊂.
Evidently (fn) converges uniformly to f on [a, b]. By Theorem 1.7.12 it follows that
f →R [a, b]. �

Theorem 2.2.9 Let a, b → R, a < b, let I = [a, b] and let C1(I) denote the family of
all continuously differentiable real-valued functions on I. Let ζ : C(I) × C(I) ≤ R
be defined by

ζ(f , g) = sup {|f (x) − g(x)| : x → I} + sup
{⎨⎨f ⊃(x) − g⊃(x)

⎨
⎨ : x → I

}

(that is, ζ(f , g) = d⊂(f , g) + d⊂(f ⊃, g⊃)). Then (C1(I), ζ) is a complete metric
space.

Proof Routine arguments show that ζ is a metric on C1(I). To prove completeness,
let (fn) be aCauchy sequence inC1(I). Then (fn) and (f ⊃

n) are Cauchy sequences in the
complete space (C(I), d⊂), and so there exist f , g → C(I) such that d⊂(fn, f ) ≤ 0
and d⊂(f ⊃

n, g) ≤ 0 as n ≤ ⊂. The result is immediate if we can prove that f ⊃ = g.
However, by Theorem 1.4.4,

fn(x) − fn(a) =
x∫

a

f ⊃
n (x → I, n → N);

and since
⎨
⎨∫ x

a (f ⊃
n − g)

⎨
⎨ ∈ (x − a)d⊂(f

⊃
n, g) ≤ 0 as n ≤ ⊂, we have that

f (x) − f (a) = lim
n≤⊂(fn(x) − fn(a)) = lim

n≤⊂

x∫

a

f
⊃
n =

x∫

a

g (x → I).

Thus by Theorem 1.4.9, f is differentiable and f
⊃ = g. �

Corollary 2.2.10 Let (fn) be a sequence in C1(I) (I = [a, b]) such that (f ⊃
n) con-

verges uniformly on I and for some x0 → I, (fn(x0)) is convergent. Then there exists
f → C1(I) such that (fn) converges uniformly on I to f and

f ⊃(x) = lim
n≤⊂ f ⊃

n(x) (x → I).

Proof It is enough to show that (fn) is a Cauchy sequence in (C(I), d⊂)), for then
(fn) will be a Cauchy sequence in (C1(I), ζ) and the result will follow immediately
from Theorem 2.2.9. To do this, let λ > 0 and let N → N be such that

|fm(x0) − fn(x0)| < λ/2 and d⊂(f ⊃
m, f ⊃

n) < λ/2(b − a) if m, n > N .

Since for all x → I we have, by Theorem 1.4.4,
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|fm(x) − fn(x)| ∈ |fm(x0) − fn(x0)| +
⎨
⎨
⎨
⎨
⎨
⎨

x∫

x0

(f ⊃
m − f ⊃

n)

⎨
⎨
⎨
⎨
⎨
⎨

∈ |fm(x0) − fn(x0)| + (b − a)d⊂(f ⊃
m, f ⊃

n) < λ

if m, n > N . The result follows. �
Returning to the observations concerning the completion of an incomplete metric

space following Example 2.2.2, we see that Theorem 2.2.6 leads to the following
result.

Theorem 2.2.11 Let (S, d) be a metric space. Then there is a complete metric space
(̂S, d̂) such that S is isometric to a dense subset S0 of Ŝ; that is, a subset S0 such that
S0 = Ŝ.

Proof Fix a → S and for every p → S, define fp : S ≤ R by

fp(x) = d(x, p) − d(x, a).

Use of the triangle inequality shows that, for all x, y → S,

⎨
⎨fp(x) − fp(y)

⎨
⎨ ∈ 2d(x, y),

⎨
⎨fp(x)

⎨
⎨ ∈ d(a, p).

Hence fp → C (S). Let S0 = {fp : p → S}. Since, for all p, q → S,

d⊂(fp, fq) = sup
x→S

|d(x, p) − d(x, q)| = d(p, q),

the map p �−≤ fp : S ≤ S0 ∗ C (S) is an isometry of S onto S0. Let Ŝ be the closure

of S0 in (C (S), d⊂) and d̂ be the restriction of d⊂ to Ŝ × Ŝ. Since Ŝ is closed in

(C (S), d⊂), use of Lemma 2.1.24 shows that
(̂
S, d̂

)
is complete. Let S0 denote the

closure of S0 in
(̂
S, d̂

)
. As S0 = Ŝ, S0 is dense in

(̂
S, d̂

)
and S is isometric to it. �

Even though X̂ is not unique in having the property of being complete and having
X isometric to a dense subset of X̂—it is only unique up to an isometry—we shall
refer to it as the completion of X.

Two of the most celebrated results associated with complete metric spaces are
the Contraction Mapping Theorem and the Baire Category Theorem. The rest of this
section is devoted to establishing these and illustrating their application.

2.2.1 The Contraction Mapping Theorem

This is one of the most useful, yet simple, theorems in mathematics.
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Definition 2.2.12 Let (X, d) be a metric space. A map f : X ≤ X is called a
contraction if there is a number ξ → [0, 1) such that for all x, y → X,

d(f (x), f (y)) ∈ ξd(x, y).

Theorem 2.2.13 (Banach’s contractionmapping theorem ) Let (X, d) be a complete
metric space and let f : X ≤ X be a contraction. Then there is exactly one point
x → X such that f (x) = x; that is, f has exactly one fixed point.

Proof As f is a contraction, there exists ξ → [0, 1) such that d(f (x), f (y)) ∈ ξd(x, y)
for all x, y → X. Let x0 → X and define a sequence (xn) by xn = f (xn−1) (n → N).
Then for each n → N,

d(xn+1, xn) = d(f (xn), f (xn−1)) ∈ ξd(xn, xn−1) ∈ ξnd(x1, x0).

If m > n,

d(xm, xn) ∈ d(xm, xm−1) + d(xm−1, xm−2) + . . . + d(xn+1, xn)

∈ (ξm−1 + ξm−2 + . . . + ξn)d(x1, x0)

= (ξn − ξm)

1 − ξ
d(x1, x0).

It follows that (xn) is a Cauchy sequence in X and, as X is complete, there exists
x → X such that xn ≤ x. Thus

d(x, f (x)) ∈ d(x, xn+1) + d(xn+1, f (x)) ∈ d(x, xn+1) + ξd(xn, x)

≤ 0 as n ≤ ⊂.

Hence f (x) = x; that is, x is a fixed point of f .
If there exists y → X such that f (y) = y, then

d(x, y) = d(f (x), f (y)) ∈ ξd(x, y);

and as ξ < 1, d(x, y) = 0. Hence x = y, and the proof is complete. �

Note the constructive nature of this proof: no matter what point x0 of X is chosen,
the fixed point x of f is given by the formula

x = lim
n≤⊂ f n(x0).
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In practical circumstances, approximations to the fixed point may be derived by
choosing a convenient point x0 and determining f n(x0) for various values of n.

Corollary 2.2.14 Let X be a complete metric space and let f : X ≤ X be such that,
for some k → N, f k is a contraction. Then f has a unique fixed point.

Proof By Theorem 2.2.13, there is a unique x → X such that f k(x) = x. But
f k(f (x)) = f (f k(x)) = f (x), and so f (x) is a fixed point of f k . Hence f (x) = x.
That f has a unique fixed point now follows since evidently any fixed point of f must
be a fixed point of f k , and so must coincide with x. �

We can now give an application of the contraction mapping theorem to the theory of
ordinary differential equations.

Theorem 2.2.15 Let a, b → R, a < b, put I = [a, b], let f : I × R ≤ R be
continuous and suppose there exists M > 0 such that for all x → I and all y1, y2 → R,

|f (x, y1) − f (x, y2)| ∈ M |y1 − y2| .

Let c → R. Then there is a unique function u → C1(I) such that

u⊃(x) = f (x, u(x)) (x → I), u(a) = c. (2.2.2)

Proof First observe that if u → C(I), then t �−≤ f (t, u(t)): I ≤ R is continuous,
for if t → I and (tn) is a sequence in I with tn ≤ t, then (tn, u(tn)) ≤ (t, u(t))
in I × R and so f (tn, u(tn)) ≤ f (t, u(t)). Further, by the Fundamental Theorem of
Integral Calculus, there is a unique u → C1(I) such that (2.2.2) holds if, and only if,
the integral equation

u(x) = c +
x∫

a

f (t, u(t))dt (x → I) (2.2.3)

has a unique solution u → C(I). Define a map T : C(I) ≤ C(I) by

(Tu)(x) = c +
x∫

a

f (t, u(t))dt (x → I; u → C(I)).

For each n → N0, let P(n) be the proposition

⎨
⎨(Tnu)(x) − (Tnv)(x)

⎨
⎨ ∈ (M |x − a|)nd⊂(u, v)/n!

for all u, v → C(I) and all x → I . (Here T0 is the identity map of C(I) to itself.)
Plainly P(0) is true; moreover, if P(n) holds for some n → N0, then
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⎨
⎨
⎨(Tn+1u)(x) − (Tn+1v)(x)

⎨
⎨
⎨ =

⎨
⎨
⎨
⎨
⎨
⎨

x∫

a

{
f (t, (Tnu)(t)) − f (t, (Tnv)(t))

}
dt

⎨
⎨
⎨
⎨
⎨
⎨

∈ M

⎨
⎨
⎨
⎨
⎨
⎨

x∫

a

{(M |t − a|)nd⊂(u, v)/n!}dt

⎨
⎨
⎨
⎨
⎨
⎨

∈ (M |x − a|)n+1d⊂(u, v)/(n + 1)!

for all u, v → C(I) and all x → I , and so P(n + 1) is true. Hence P(n) is true for all
n → N. It follows that

d⊂(Tnu, Tnv) ∈ (M(b − a))nd⊂(u, v)/n!

for all u, v → C(I) and all n → N. Choose k → N so large that (M(b − a))k/k! < 1:
then Tk is a contraction on the complete space (C(I), d⊂). By Corollary 2.2.14, there
is a unique u → C(I) such that Tu = u; that is, such that

u(x) = c +
∫ x

a
f (t, u(t))dt (x → I).

The result follows. �

2.2.2 The Baire Category Theorem

Several formulations of this theorem exist. One of the most accessible is as follows.

Theorem 2.2.16 Let X be a complete metric space and let (On) be a sequence of
dense open subsets of X. Then ∩⊂

n=1On is dense in X; that is, ∩⊂
n=1On = X.

Proof Suppose that the conclusion is false. Let U := X\ ∩⊂
n=1On : U is open and

non-empty. Since O1 = X, U ∩ O1 ∪= ∞. Hence there exists a non-empty open set
U1 such that

U1 ∗ U1 ∗ U ∩ O1 and diam U1 < 1.

(U1 may be taken to be an open ball of suitable radius). SinceO2 = X, U1 ∩O2 ∪= ∞
and so there is a non-empty open set U2 such that

U2 ∗ U2 ∗ U1 ∩ O2 and diam U2 < 2−1.
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Continuing in this way we see that there exists a sequence (Un) of non-empty open
subsets of X such that, for all n → N,

Un ∗ Un ∗ Un−1 ∩ On and diam Un < n−1.

(Here U0 := U.) Thus Cantor’s characterisation of completeness (Theorem 2.2.3)
shows that for some x → X,

{x} = ∩⊂
n=1Un.

Since U1 ∗ U and, for all n → N, Un ∗ On, it follows that x → U ∩ (∩⊂
n=1On), a

contradiction. �

Taking complements, and recalling that c(
o
A) = cA whenever A ∗ X, we imme-

diately obtain the equivalent result:

Theorem 2.2.17 Let X be a complete metric space and let (Fn) be a sequence of
closed subsets of X, each with empty interior. Then ∪⊂

n=1Fn has empty interior.

Breaking the theoretical development for a moment, we use this last result to give
a striking demonstration of the existence of a continuous nowhere-differentiable
function.

Theorem 2.2.18 Let I be the closed interval [0, 1]. Then there exists an element of
C(I) which is not differentiable at any point of I.

Proof For each n → N put

Mn =
{

f → C([0, 2]) : for some x0 → I, sup
0<h<1

|f (x0 + h) − f (x0)|
h

∈ n

}
.

We claim that each Mn is closed in C([0, 2]). To prove this, let f → Mn and let (fk)
be a sequence in Mn that converges to f . For each k → N, there exists xk → I with

|fk(xk + h) − fk(xk)| ∈ nh if 0 < h < 1.

As the bounded sequence (xk) contains a convergent subsequence, we may and shall
assume, without loss of generality, that xk ≤ x0 → I . For all k → N,

|f (x0 + h) − f (x0)| ∈ |f (x0 + h) − f (xk + h)| + |f (xk + h) − fk(xk + h)|

+ |fk(xk + h) − fk(xk)| + |fk(xk) − f (xk)|

+ |f (xk) − f (x0)| ,

and using the fact that |fk(xk + h) − fk(xk)| ∈ nh we see, on letting k ≤ ⊂, that
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|f (x0 + h) − f (x0)| ∈ nh if 0 < h < 1.

It follows that f → Mn and our claim is justified.
Next we claim that each Mn has empty interior. For let g be a piecewise-linear

continuous function on [0, 2], so that the graph of g consists of a finite number of
straight-line segments; letM be themaximum absolute value of the gradients of these
segments. Given λ > 0, choose m → N so that mλ > n + M, define φ : R ≤ I by

φ(x) = min {x − [x], [x] + 1 − x} , x → R

(here [x] denotes the integer part of x; φ(x) is simply the distance of x from the
nearest integer), and put

F(x) = g(x) + λφ(mx), x → I.

Then if x → I and 0 < h < 1,

|F(x + h) − F(x)| = |g(x + h) − g(x) + λ{φ(m(x + h)) − φ(mx)}|

≥ λmh − |g(x + h) − g(x)|

≥ λmh − Mh > nh.

Hence F → C([0, 2])\Mn. Moreover, d⊂(g, F) = λ. Assuming for the moment that
the set of all piecewise-linear continuous functions is dense in C([0, 2]), our analysis
shows that any f → C([0, 2]) may be approximated arbitrarily closely in C([0, 2])
by an element of C([0, 2])\Mn, so that the interior of Mn must be empty, as claimed.
Since C([0, 2]) is complete, it follows from Theorem 2.2.17 that C([0, 2])\∪⊂

n=1 Mn

is non-empty; and as every function in C([0, 2]) that is differentiable at some point
of I must lie in some Mn, the theorem follows.

All that remains is to establish the density of the piecewise-linear continuous
functions in C([0, 2]). Let f → C([0, 2]) and let λ > 0. Since f is uniformly con-
tinuous on [0, 2], there is a partition P = {0, 2/m, 4/m, . . . , 2} of [0, 2] such that
for j = 1, . . . , m we have osc(f , [(2j − 1)/m, 2j/m]) < λ (see Exercise 1.1.10 /2).
Define τ on [0, 2] by

τ(x) = m

2

{⎩
x − 2(j − 1)

m

⎪
f (2j/m) +

⎩
2j

m
− x

⎪
f (2(j − 1)/m)

}

if 2(j − 1)/m ∈ x ∈ 2j/m, j = 1, . . . , m,

so that τ is piecewise linear and coincides with f at the points of the partition.
Evidently d⊂(f , τ) < λ, and the density follows. �

Alternative formulations of the Baire theorem demand a little preparation.
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Definition 2.2.19 Let A and B be subsets of a metric space X. Then A is said to be
dense in B if B ∗ A; it is everywhere dense (or simply dense) if it is dense in X;
and it is nowhere dense (or rare) if it is not dense in any non-empty open subset of
X, or equivalently, if its closure contains no interior points.

Remark 2.2.20

(i) Plainly, a subset of a nowhere dense set is nowhere dense; also, the closure of
a nowhere dense set is itself nowhere dense.

(ii) A closed set is nowhere dense if, and only if, it coincides with its own boundary.

That is, if A ∗ X and A = A, then
o
A = ∞ if, and only if, αA = A\ o

A = A.
(iii) To say that a set is everywhere dense is not the antithesis of saying that it is

nowhere dense.

Example 2.2.21

1. Let x → X. Then {x} is nowhere dense if, and only if, x is not an isolated point of
X : an isolated point y is one having a neighbourhood containing no point of X

except y. Note that {x} is closed. Thus if, and only if, every neighbourhood
U of x is such that U ∩c {x} ∪= ∞; and this is so if, and only if, x is not an isolated
point of X.

2. The boundary of an open (or closed) set in X is always nowhere dense. For let U
be an open set in X and let V be an open set in X such that V ∗ αU = U ∩ cU =
U ∩ cU. Then cV is closed and contains U, so that cV ∩ U ∩ V , which is
possible only if V = ∞. Note that the boundary of an arbitrary set A in X need
not be nowhere dense: for example, A and cA might both be dense, in which case
αA = X.

Lemma 2.2.22 Let A be a subset of a metric space X. The following three statements
are equivalent:

(i) A is nowhere dense in X.
(ii) cA contains an everywhere dense open subset of X.
(iii) Each non-empty open set U in X contains a non-empty open set V such that

V ∩ A = ∞.

Proof (i)∅(ii) Suppose
o

A = ∞. Then c(A) = c
o

(A) = X and so the open set c(A),
which is contained in cA, is everywhere dense.
(ii)∅(iii) Let O be a dense open subset of X contained in cA and let U be a non-
empty open subset of X. Note that U ∩ O ∪= ∞ : otherwise, O is contained in the
closed set cU, so that X = O ∗ cU which implies that U = ∞. Let V = U ∩ O .
Then V is non-empty and open, V ∗ U and V ∩ A = ∞, since V ∗ O ∗ cA.

(iii)∅ (i) To obtain a contradiction, supposeU :=
o

A ∪= ∞. Then there is a non-empty
open set V ∗ U such that A ∩ V = ∞. Since cV is closed and A∗ cV , it follows that
U ∗ A ∗ cV and so ∞ = U ∩ V = V ∪= ∞, a contradiction. �
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Lemma 2.2.23 Let X be a metric space.

(i) If U and V are each dense open subsets of X, then U ∩ V is a dense open subset
of X.

(ii) If A and B are each nowhere dense subsets of X, then A ∪ B is nowhere dense.

Proof (i) To obtain a contradiction, suppose U ∩ V ∪= X. Then G :=c
(
U ∩ V

)
is

open and non-empty. SinceU = X,G∩U is open and non-empty: otherwise, cG ∩ U
and, since cG is closed, cG ∩ U = X, implying that G = ∞. Since V = X, similar
reasoning shows that G ∩ U ∩ V is open and non-empty. But this contradicts the fact
that U ∩ V ∗ cG. Hence U ∩ V is dense in X.
(ii) Since A and B are nowhere dense, each of the sets c(A), c(B) is open and dense
in X. Thus, using (i), it follows that c(A) ∩ c(B) = c(A ∪ B) = c(A ∪ B) is dense in
X. Since

c

(
0

A ∪ B

)

= c(A ∪ B) = X,

the set A ∪ B is nowhere dense. �
Note that (i) and (ii) can obviously be extended to arbitrary finite intersections

and finite unions.
Taken together, Theorems 2.2.16 and 2.2.17 extend the last Lemma to countably

infinite families of sets. But the extension comes at a price. Recall that a countable
intersection of open sets need not be open, and a countable union of closed sets need
not be closed. The theorems demand a stronger hypothesis, namely the completeness
of X, and support a weaker conclusion than that of the Lemma. To illustrate by
example, let X = R and An = {xn}, where the sequence (xn)n→N is an enumeration of
the rationals. Then Q = ∪⊂

n=1An is a countably infinite union of nowhere dense sets
and its interior is empty. However, it is not nowhere dense; indeed, it is everywhere
dense.

Definition 2.2.24 A subset A of a metric space X is said to be of first category (or
meagre) in X if it can be represented as a countable union of nowhere dense subsets
of X. Otherwise, it is said to be of second category (or nonmeagre) in X. A set
B ∗ X is said to be residual in X if cB is of first category in X.

To give an example of a set of first category arising naturally in a non-trivial
context, we establish the following result.

Theorem 2.2.25 Let X be a metric space, let (fn) be a sequence of continuous real-
valued functions on X which is pointwise convergent, and let the function f : X ≤ R
be defined by

f (x) = lim
n≤⊂ fn(x) (x → X).

Then
D := {x → X : f is not continuous at x}

is of first category in X.
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Proof Let η be the oscillation function of f (see Definition 2.1.31). The identity

D = ∪⊂
n=1{x → X : η(x) ≥ n−1}

exhibits D as a countable union of closed sets each of which will be shown to be of
first category (in X). Plainly, a countable union of sets of first category is itself of
first category. Thus D is of first category (in X).

Let λ > 0 and let
F = {x → X : η(x) ≥ λ}.

It is enough to establish that F is of first category. To do this, for n → N let

En := ∩i,j≥n{x → X : ⎨⎨fi(x) − fj(x)
⎨
⎨ ∈ λ/8} :

each En is closed, En ∗ En+1 and X = ∪⊂
n=1En. Evidently

F = ∪⊂
n=1(F ∩ En),

and the matter of category is settled provided that, for each n,
o

F ∩ En = ∞. To obtain
a contradiction, suppose that for some n, F ∩ En is not nowhere dense. Then there
exists an open set U such that

U ∪= ∞, U ∗ F ∩ En = F ∩ En;

moreover, for each x → U,

⎨
⎨fi(x) − fj(x)

⎨
⎨ ∈ λ/8 if i, j ≥ n.

Setting i = n and letting j ≤ ⊂, it follows that

|fn(x) − f (x)| ∈ λ/8 (x → U).

Let y → U. Since fn is continuous at y, there is a neighbourhood Uy of y such that
Uy ∗ U and

|fn(x) − fn(y)| ∈ λ/8 (x → Uy).

It follows that
|f (x) − fn(y)| ∈ λ/4 (x → Uy);

that ⎨
⎨f (x) − f (x⊃)

⎨
⎨ ∈ λ/2 (x, x⊃ → Uy);

and that
η(y) ∈ λ/2.
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But the last inequality, valid for all y → U, implies that U ∩ F = ∞, a conclusion
incompatible with U ∪= ∞, U ∗ F. Thus, for all n → N, F ∩ En is nowhere dense, as
required. �

Paraphrasing, Theorem 2.2.25 shows that, for an arbitrary metric space X, the
set D of points of discontinuity of a function f generated as a pointwise limit of a
sequence of continuous real-valued functions is of first category. Naturally, isolation
of those metric spaces in which more can be said aboutD is of interest. If as an ideal
one might wish to have D = ∞, cD = X, then as a step towards this, generally, for

complete metric spaces it turns out that
o
D = ∞, cD = X. This is a consequence of

the following theorem.

Theorem 2.2.26 Let X be a metric space. If X has one of the following properties,
then it has all of them.

(i) Every countable intersection of dense open subsets of X is dense in X.
(ii) The complement of every set of first category in X is dense in X.
(iii) Every set of first category in X has empty interior in X.
(iv) Every non-empty open set in X is of second category in X.

A metric space with one, and hence all, of the above properties is said to be a Baire
space.

Proof (i)=∅ (ii) Let A be a set of first category in X : A = ∪⊂
n=1Hn, where

o

Hn = ∞
(n → N). Let B = ∪⊂

n=1Hn. Then B is of first category in X and A ∗ B. Now

cB = ∩⊂
n=1

c(Hn) and c(Hn) = c
⎩ o

Hn

⎪
= X (n → N).

Hence, given that (i) holds and that cB ∗ cA, it follows that X = cB ∗ cA ∗ X and
that cA is dense in X.
(ii) =∅ (iii) Let A be of first category in X. Using (ii) we see that cA = X. Thus ∞ =
c(cA) = o

A.
(iii) =∅ (iv) To obtain a contradiction, suppose that U is a non-empty open subset

of X which is of first category in X. Then, since (iii) holds, ∞ = o
U = U.

(iv) =∅ (i) Let (On) be a sequence of dense open subsets of X and let E = ∩⊂
n=1On.

Then cE = ∪⊂
n=1

cOn and

Hence cE is of first category in X and consequently so is Since (iv) holds, it

follows that and X = E. �
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In view of the above result it is obvious that our first version of Baire’s theorem
may now be recast in a final one as follows.

Theorem 2.2.27 Every complete metric space is a Baire space.

The reader should note that there exist incomplete metric spaces which are Baire
spaces (see [2], Sect. 5, Exercise14).

We conclude this sectionwith the observation that, in the context of completemet-
ric spaces, Baire’s theorem immediately permits the following strengthened version
of Theorem 2.2.25.

Theorem 2.2.28 Let X be a complete metric space and let f : X ≤ R be the
pointwise limit of a sequence of continuous real-valued functions on X. Then the set
of points of continuity of f is residual and dense in X.

Exercise 2.2.29

1. Let (X1, d1) and (X2, d2) be complete metric spaces, let X = X1 × X2 and define
d : X × X ≤ R by

d(x, y) =
{

d2
1(x1, y1) + d2

2(x2, y2)
}1/2

(x = (x1, x2), y = (y1, y2) → X).

Prove that (X, d) is complete.
2. Let (X, d) be a metric space and let F be a non-empty subset of X. Prove that

(i) if (X, d) is complete and F is closed relative to (X, d), then (F, d) is complete;
(ii) if (F, d) is complete, then F is closed relative to (X, d).[
By convention, (F, d) stands in place of (F, d |F×F).

⎧

3. Let I = [0, 1] and define T : C(I) ≤ C(I) by

(Tf )(x) = x +
x∫

0

(x − t)f (t)dt (x → I, f → C(I)).

Show that T is a contraction on C(I) (assumed to be endowed with the uniform
metric) and deduce that the only element f of C(I) such that

f (x) = x +
x∫

0

(x − t)f (t)dt (x → I)

is the restriction to [0, 1] of the hyperbolic sine function.
4. Use the contractionmapping theorem to show that for each k → (0, 1) the equation

f (x) = 1 +
x∫

0

f (t2)dt (0 ∈ x ∈ k)
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has exactly one solution f → C([0, k]). Hence show that this result is also true
when k = 1.

5. (i) Give an example of a contraction mapping of an incomplete metric space
into itself which has no fixed point.

(ii) Give an example of a mapping T of a complete metric space (X, d) into
itself with the property

d(Tx, Ty) < d(x, y) for all x, y → X, x ∪= y,

but which has no fixed point.
(iii) Give an example of a mapping T of a complete metric space into itself such

that Tm is a contraction mapping for some m → N, but T is not a contraction.
6. Let X = {x → R : 0 < x ∈ 1} and let d1 and d2 be metrics on X defined by

d1(x, y) = |x − y| , d2(x, y) =
⎨
⎨
⎨
⎨
1

x
− 1

y

⎨
⎨
⎨
⎨ (x, y → X).

Prove that the two metric spaces (X, d1) and (X, d2) have the same convergent
sequences, but that (X, d2) is complete while (X, d1) is not complete.

7. Let S be the set of all real sequences x = (xn) and let d : S×S ≤ R be defined by

d(x, y) =
⊂∑

n=1

|xn − yn|
2n

[
1 + |xn − yn|

⎧ (x = (xn), y = (yn) → S).

Prove that (S, d) is a complete metric space.
8. Let (X, d) be a metric space.

(i) Show that if (xn) and (yn) are Cauchy sequences in X, then (d(xn, yn)) is a
Cauchy sequence in R and is therefore convergent.

(ii) Let X be the set of all Cauchy sequences in X. Call elements (xn), (yn) of
X equivalent, and write (xn) ∼ (yn), if limn≤⊂ d(xn, yn) = 0. Show that
∼ is an equivalence relation on X .

(iii) Let (xn), (x⊃
n), (yn) and (y⊃

n) → X and suppose that (xn) ∼ (x⊃
n) and (yn) ∼

(y⊃
n). Show that

lim
n≤⊂ d(xn, yn) = lim

n≤⊂ d(x⊃
n, y⊃

n).

(iv) For (xn) → X , let [(xn)]denote the equivalence class ofwhich it is amember:

[(xn)] = {(yn) → X : (yn) ∼ (xn)}.

Let X̂ be the set of all equivalence classes and define d̂ : X̂ × X̂ ≤ R by

d̂ ([(xn)], [(yn)]) = lim
n≤⊂ d(xn, yn).
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Show that d̂ is a metric on X̂ (it is well-defined by virtue of (iii)),
(v) For each x → X, let φ(x) = [(xn)], where xn = x for all n → N. Let

X0 = {φ(x) : x → X}. Show that, if X0 is equipped with the metric inherited
from X̂, then x �≤ φ(x) : X ≤ X0 is an isometry.

(vi) Prove that X0 is dense in
(
X̂, d̂

)
, i.e., X0 = X̂.

(vii) Prove that
(
X̂, d̂

)
is a complete metric space.

2.3 Compactness

We focus here on those metric spaces X with the following property: if a map f :
X ≤ R is continuous then it is bounded, that is, its range, f (X), is bounded. Spaces
with this property are precisely those for which the sets C(X) and C (X) coincide,
a coincidence already noted in the case of each non-degenerate, closed, bounded
interval in R. In seeking to ensure the property three main strategies have emerged.
These we now examine in turn.

Strategy I Let f : X ≤ R be continuous. Then each x → X has a neighbourhood Ux

such that, for all u → Ux ,
|f (u)| < 1 + |f (x)| .

Evidently X = ⋃
x→X Ux. Hence if a finite set {x1, x2, . . . , xm} ∗ X exists such that

X = ⋃m
k=1 Uxk , then f (X) is bounded, since for all u → X,

|f (u)| < 1 + max
1∈k∈m

|f (xk)| .

This observation motivates the next definition and establishes the theorem that
follows.

Definition 2.3.1 A metric space X is said to be compact if every familyU of open
subsets of X such that X = ∪U contains a finite subfamily V such that X = ∪V .

Theorem 2.3.2 If X is a compact metric space, then every continuous map f : X ≤
R is bounded.

Byway of illustration, let a, b → R and a < b.We claim that, viewed as a subspace
of R, the interval [a, b] is compact. For if this were not so, then there would be a
family U of open subsets of [a, b], with union [a, b], such that no finite collection
of sets in U has union [a, b]. Bisect [a, b] : then at least one of the sub-intervals
[a, 1

2 (a + b)], [ 12 (a + b), b] is not contained in the union of any finite collection of
members of U . Repetition of this process gives a sequence of nested, closed sub-
intervals of [a, b], (In) say, with the length of In equal to 2−n(b − a). By Cantor’s
intersection theorem (Theorem 2.2.3) these intervals In have intersection consisting
of a single-point set in [a, b], {x} say. Obviously, there existsU → U such that x → U;
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since U is open, In ∗ U for all large enough n. This contradicts the fact that no In is
contained in the union of a finite number of members ofU , and our claim is justified.

Strategy II Suppose that X does not have the required property and that f : X ≤ R
is a continuous but unbounded map. Then, for each n → N, there exists xn → X such
that |f (xn)| ≥ n. The sequence (xn) does not have a convergent subsequence. To
see this, suppose that (xn) has a subsequence (xm(n)) which converges to an element
x → X. Since f is continuous at x,

⎨
⎨f (xm(n))

⎨
⎨ ≤ |f (x)| ;

however, for all n → N,
⎨
⎨f (xm(n))

⎨
⎨ ≥ m(n) ≥ n, and so

⎨
⎨f (xm(n))

⎨
⎨ ≤ ⊂.

We have shown that any metric space X without the required property has a
sequence with no convergent subsequence. Put equivalently, if each sequence in X
has a convergent subsequence, then each continuous, real-valued function on X is
bounded. These matters are summarised below.

Definition 2.3.3 A metric space X is said to be sequentially compact if each
sequence in X has a subsequence which converges to a point of X.

Theorem 2.3.4 If X is a sequentially compact metric space, then every continuous
map f : X ≤ R is bounded.

That each closed, bounded interval in R is sequentially compact is immediate
from the Bolzano-Weierstrass theorem.

We preface the final strategy with a definition.

Definition 2.3.5 A metric space X is said to be totally bounded if to each λ > 0
there corresponds a finite familyF of subsets of X such that X = ∪F and, for each
F → F , diam F < λ.

Plainly, the interval [0, 1], inheriting the usual metric from R, is totally bounded.
Indeed, every bounded subspace of R is totally bounded.

Strategy III Let X be complete and totally bounded. To obtain a contradiction,
suppose that it carries a continuous but unbounded map f : X ≤ R. Since X is
totally bounded it is a union of finitely many closed sets each with diameter ∈ 1.
(Observe that, if A ∗ X, then diam A = diam A.) The restriction of f to one of
these, X1 say, is unbounded. A further appeal to the total boundedness of X shows
that it, and therefore X1, is a union of finitely many sets each of which is closed in X
and of diameter ∈ 1/2. The restriction of f to one of these subsets of X1, X2 say, is
unbounded. Proceeding in this way, the result is a sequence (Xn) of sets closed in X
such that, for all n → N, (i) Xn+1 ∗ Xn, (ii) diam Xn ∈ 1/n, (iii) f (Xn) is unbounded.
By the Cantor intersection theorem, there exists x → X such that {x} = ∩⊂

n=1Xn. Since
f is continuous at x, there is a neighbourhood Ux of x on which f is bounded. But,
for sufficiently large n, Xn ∗ Ux and therefore f (Xn) is bounded. This contradicts
(iii), and we have proved the following theorem.
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Theorem 2.3.6 If X is a complete and totally bounded metric space, then every
continuous map f : X ≤ R is bounded.

Conditions sufficient to ensure our property of interest are offered by each of
Theorems 2.3.2, 2.3.4 and 2.3.6. Remarkably, they are also necessary conditions
and hence equivalent. The position is formalised in our next result, the definition
preceding which concerns terminology useful in its proof.

Definition 2.3.7 Let S be a subset of a set X and let F be a family of subsets of X
such that S ∗ ∪F . ThenF is called a covering ofS : ifF has only a finite number
of members then it is called a finite covering of S. If X is a metric space and the
members ofF are open sets,F is called an open covering ofS.

Theorem 2.3.8 Let X be a metric space. The following are equivalent statements:

(a) X is compact.
(b) C(X) = C (X), i.e. each continuous map f : X ≤ R is bounded.
(c) X has the Bolzano-Weierstrass property : every infinite subset of X has a limit

point in X.
(d) X is sequentially compact.
(e) X is complete and totally bounded.

Proof (a)=∅(b): this has already been established in Theorem 2.3.2.
(b)=∅(c): let (b) hold and suppose that X has an infinite subset with no limit point

in X. Then there is a sequence (xn) of distinct points of X such that S := {xn : n → N}
also has no limit point in X (the countable axiom of choice A.5.2 is used here). Thus,
for each n → N, there exists rn → (0, 1/n) such that B(xn, rn) ∩ S = {xn}. Letting d
denote the metric on X, for each n → N define fn : X ≤ R by

fn(x) = max
{

n
(
1 − 2r−1

n d(x, xn)
)

, 0
}

.

Evidently, each fn is continuous.
Now, each element of X has a neighbourhood of itself restricted to which all save

finitely many fn are identically zero. To see this, let x → X and let Δ > 0 be such
that B(x, Δ) ∩ S ∗ {x}. Further, let N → N be such that N > Δ−1 and, for all n ≥ N ,
xn ∪= x. Then

B(x, Δ/2) ∩
⊂⋃

n=N

B(xn, rn/2) = ∞;

for otherwise an n ≥ N would exist such that

Δ ∈ d(x, xn) < (Δ + rn)/2 < (Δ + 1/n)/2 < Δ,

which is impossible. Hence, for all n ≥ N and all y → B(x, Δ/2), fn(y) = 0.
Define f : X ≤ R by
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f (x) =
⊂∑

n=1

fn(x).

The existence for each x → X of an N and a Δ, both depending on x, such that

f (y) =
N∑

n=1

fn(y) (y → B(x, Δ/2)) ,

shows that f is continuous: the fact that, for each n → N, f (xn) = n, shows that it is
unbounded. Such an f is incompatible with (b) and so X has the Bolzano-Weierstrass
property.

(c)=∅(d): Suppose that (c) holds and let (xn) be a sequence in X. If there is a
point x → X such that xn = x for infinitely many values of n, then evidently there is
a subsequence of (xn) which is constant (has all its terms equal to x) and converges
to x. If no such x exists then S := {xn : n → N} is infinite and has a limit point y → X.
We now choose m(1) to be the least positive integer n such that 0 < d(y, xn) < 1,
and define inductively a subsequence

(
xm(n)

)
of (xn) which converges to y. Suppose

that m(1) < m(2) < . . . < m(n) have been chosen so that 0 < d(y, xm(j)) < 1/j for
j = 1, 2, . . . , n. Choose m(n + 1) to be the least integer exceeding m(n) such that
0 < d(y, xm(n+1)) < 1/(n + 1). This establishes (d).

(d)=∅(e): Suppose that (d) holds, let λ > 0 and select x1 → X. Suppose that
x1, . . . , xn have been chosen in X so that d(xi, xj) ≥ λ/3 if i ∪= j. If possible, choose
xn+1 → X such that d(xi, xn+1) ≥ λ/3 for all i, 1 ∈ i ∈ n. This process must stop
after a finite number of steps because of our assumption that (d) holds. It follows
that X = ⋃N

j=1 B(xj, λ/3) for some N → N. Since B(xj, λ/3) has diameter < λ, X is
totally bounded.

To prove X complete, let (xn) be a Cauchy sequence in X. By (d), there is a
subsequence (xk(n)) of (xn)which converges to a point inX. Suppose limn≤⊂ xk(n) =
x and let γ > 0. There exists N → N such that d(xm, xn) < γ/2 and d(x, xk(n)) < γ/2
if m, n ≥ N . Thus, for all n ≥ N ,

d(x, xn) ∈ d(x, xk(n)) + d(xk(n), xn) < γ;

hence limn≤⊂ xn = x; X is complete; and (e) holds.
(e)=∅(a): Let U be an open covering of X and suppose that no finite subfamily

of U is a covering of X. By (e), X is a union of finitely many closed sets each with
diameter ∈ 1. One of these, say X1, cannot be covered by finitely many members of
U . Repeat this argument with X1 in place of X and continue indefinitely: there is a
sequence (Xn) of closed sets such that, for all n → N, (i) Xn+1 ∗ Xn, (ii) diam (Xn) <

1/n, (iii) Xn is not covered by a finite subfamily of U . By the Cantor intersection
theorem there is a point x → X such that {x} = ∩⊂

n=1Xn. Hence x → U for some
U → U . By (ii), Xn ∗ U for all large enough n and this contradicts (iii). Hence X is
compact and the proof of the theorem is complete. �
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Corollary 2.3.9 If X is compact then C(X), equipped with the uniform metric

d⊂(f , g) = sup
x→X

|f (x) − g(x)| ,

is complete.

Proof The result is immediate from Theorems 2.2.6 and 2.3.8. �

A standard method generates new compact spaces from old. Proceeding through
a reformulation of total boundedness we show that a finite Cartesian product of
compact spaces equipped with the standard metric is compact.

Lemma 2.3.10 Let (X, d) be a metric space. The following three statements are
equivalent.

(a) X is totally bounded.
(b) Given any λ > 0, there exists a finite set F ∗ X such that, for each x → X,

d(x, F) := inf {d(x, f ) : f → F} < λ.

(c) Given any λ > 0, there exists a finite set F ∗ X such that X ∗ ⋃
f →FB(f , λ).

Proof Suppose that (a) holds, that λ > 0 and that x → X. There exist finitely many
non-empty sets A1, A2, . . . , Ak ∗ X, whose union covers X, and each of which has
diameter less than λ. Select aj → Aj for 1 ∈ j ∈ k; put F = {a1, a2, . . . , ak}. Then,
for some j, x → Aj and d(x, aj) < λ. Hence d(x, F) < λ and (b) holds.

Next, suppose that (b) holds and that λ > 0. Let F be a finite set in X such that,
for each x → X, d(x, F) < λ. Plainly X = ∪f →FB(f , λ), since, for each x → X there
is an f → F with d(x, f ) < λ. Thus (b) implies (c).

Finally, suppose that (c) holds and that λ > 0. Evidently X = ∪f →FB(f , λ/3) for
some finite set F ∗ X, and so X is covered by finitely many sets each with diameter
< λ. Hence (a) holds. �

Corollary 2.3.11 If X is totally bounded, then it is bounded.

Proof Let X be totally bounded. There exists a finite set F ∗ X such that for all
x → X, d(x, F) < 1. Hence diam X ∈ 2 + diam F. �

Theorem 2.3.12 Let (X1, d1), . . . , (Xn, dn) be compact metric spaces. Let X =∏n
k=1 Xk and let d be defined for all x = (x1, . . . , xn), y = (y1, . . . , yn) → X by

d(x, y) =
{

n∑

k=1

d2
k (xk, yk)

}1/2

.

Then (X, d) is a compact metric space.
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Proof The obvious extension of Exercise 2.2.29 /1 shows that (X, d) is complete. It
remains to prove that it is totally bounded.

Let λ > 0. Use of Lemma 2.3.10 shows that for each k → {1, . . . , n}, there is a
finite set Fk ∗ Xk such that, for all u → Xk , dk(u, Fk) < λ/

≥
n. Let F = ∏n

k=1 Fk : F
is finite. Let x = (x1, . . . , xn) → X. For each k, there exists fk → Fk such that
dk(xk, fk) < λ/

≥
n. Let f = (f1, . . . , fn) : f → F and d(x, f ) < λ. Hence (X, d) is

totally bounded. �

Metric spaces are often encountered as subspaces of others. Language for the
situation in which the embedded space is compact is introduced in the next definition.
The two lemmas which follow it describe attributes of a compact subspace relative
to its host.

Definition 2.3.13 A subset of a metric space X is said to be a compact set in X
if either it is empty or it is compact as a subspace of X. The obvious substitutions
respectively define (a) a sequentially compact set in X, (b) a totally bounded set
in X.

Lemma 2.3.14 Let E be a subset of a metric space X. Then E is a compact set in X
if, and only if, every covering of E by sets open in X contains a finite covering of E.

Proof If E = ∞ the result is obvious.
LetE be a non-empty compact set inX and letU be a covering ofE by sets open in

X. The family Ũ ={E ∩ U : U → U } is a covering ofE by sets open in the subspaceE
and, therefore, there exist setsU1, . . . , Un → U such thatE = ∪n

j=1E∩Uj ∗ ∪n
j=1Uj.

Thus U contains a finite covering of E.
Conversely, let E be non-empty and let V be a covering of E by sets open in the

subspace E. Then there exists a covering U of E, whose elements are open in the
metric space X, such that V = {E ∩ U : U → U }. Since there are sets U1, . . . , Un →
U such that E ∗ ∪n

j=1Uj, V contains a finite covering of E. Hence E is a compact
set in X. �

Lemma 2.3.15 Let X be a metric space.

(i) If E is a compact set in X then it is closed and bounded in X.
(ii) If X is a compact space and E is a closed set in X, then E is a compact set in X.

Proof (i) If E = ∞ then the matter is clear.
Suppose E ∪= ∞. The subspace E is complete and totally bounded. Hence the set

E is closed in the space X (Exercise 2.2.29/2(ii)) and bounded in the space X, since
it is bounded in the subspace E (Corollary 2.3.11).

(ii) Suppose E ∪= ∞; otherwise the result holds trivially. Since E is closed in X,
E is a complete subspace of X (Exercise 2.2.29/2(i)). Since X is a totally bounded
space, so also is the subspace E. Hence E is a compact set in X. �

For general spaces X, the converse of Lemma 2.3.15 (i) is false. However, in the
important special case when X = Rn, it is true.
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Theorem 2.3.16 (Heine-Borel) Let K be a subset of Rn. Then K is a compact set in
Rn if, and only if, it is closed and bounded.

Proof If K is compact in Rn then by Lemma 2.3.15 (i), it is a closed and bounded
set in Rn.

Conversely, suppose that K is a non-empty, closed and bounded set in Rn; if
K = ∞ then the result holds trivially. Observe that K is contained in a cube In ∗ Rn,
where I is a closed and bounded interval in R. Since K is closed in Rn it is closed in
the subspace In. Hence, by Lemma 2.3.15 (ii), if In is compact then K is a compact
set in In and also in Rn. It remains to prove that In is compact.

Note that I regarded as a subspace of R is complete and totally bounded and
therefore compact. By Theorem 2.3.12, In is compact, as required. �

The example to follow reinforces the fact that the converse of Lemma 2.3.15 (i)
is false. It is sited in ε2, and is complemented by a characterisation of the compact
sets therein.

Example 2.3.17 From Examples 2.1.2 (vi) and 2.2.2 (vi),

ε2 =
{

x = (xn)n→N : xn → R for all n → N,

⊂∑

n=1

x2n < ⊂
}

is a complete metric space when equipped with the metric

d(x, y) =
{ ⊂∑

n=1

(xn − yn)
2

}1/2

,

where x = (xn), y = (yn) → ε2.
Let K = {x → ε2 : d(0, x) ∈ 1}: K is the closed ball with centre 0 and radius 1.

Although closed and bounded, K is not compact. For let en = (βn
j )j→N → ε2, where

βn
j is the Kronecker delta, equal to 1 when j = n and zero otherwise. As the sequence

(en) in ε2 is such that d(em, en) = ≥
2 if m ∪= n, it has no convergent subsequence.

Theorem 2.3.18 Let A be a non-empty subset of ε2. Then A is compact if, and only
if, it is closed, bounded and such that

sup
x=(xk)→A

⊂∑

k=n

x2k ≤ 0 as n ≤ ⊂. (2.3.1)

Proof Let A be compact. By Lemma 2.3.15 (i), A is closed and bounded. Let λ > 0.
There exists a finite setF = {

a1, . . . , a p
} ∗ A such that, for all x → A,d(x, F) < λ/2.

Choose m → N such that

max
1∈q∈p

{ ⊂∑

k=m

⎨
⎨aq

k

⎨
⎨2
}1/2

< λ/2.
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Let x = (xk) → A. There exists r, 1 ∈ r ∈ p, such that d(x, ar) < λ/2. Thus, by the
Minkowski inequality,

{ ⊂∑

k=m

|xk|2
}1/2

∈
{ ⊂∑

k=m

⎨
⎨xk − ar

k

⎨
⎨2
}1/2

+
{ ⊂∑

k=m

⎨
⎨ar

k

⎨
⎨2
}1/2

∈ d(x, ar) +
{ ⊂∑

k=m

⎨
⎨ar

k

⎨
⎨2
}1/2

< λ,

and so

sup
x=(xk)→A

{ ⊂∑

k=m

x2k

}1/2

∈ λ.

Conversely, suppose that A is closed and bounded and has the property (2.3.1).
Then A is closed in the complete space ε2 and hence is a complete subspace of ε2. It
remains to show that it is totally bounded. Given λ > 0, choose n → N such that

sup
x=(xk)→A






⊂∑

k=n+1

x2k

⎫
⎬

⎭

1/2

< λ/2.

SinceA is bounded, there exists a real numberψ such that, for all x → A, d(0, x) ∈ ψ.
Let ξ = {∑⊂

k=1 k−2
}1/2

and choosem → N so thatmλ > 4ξψ. For each j, 1 ∈ j ∈ n,
let

Fj =
{⎩

−1 + 2r

jm

⎪
ψ : r = 0, 1, . . . , jm

}
.

Put
F = {x = (xk) → ε2 : xk → Fk if 1 ∈ k ∈ n, and xk = 0 if k > n} :

F is a finite set in ε2. Let x = (xk) → A. There exists f = (fk) → F such that, if
1 ∈ k ∈ n, then |xk − fk| ∈ k−1(2ψ/m). Hence

d2(x, f ) =
n∑

k=1

|xk − fk|2 +
n∑

k=n+1

|xk |2

< (2ξψ/m)2 + (λ/2)2 < λ2.

As it is covered by finitely many balls of radius λ, it follows that A is totally
bounded. �
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Corollary 2.3.19 The Hilbert cube

H =
{

x = (xk) → ε2 : for each k → N, |xk | ∈ k−1
}

is compact in ε2.

Proof It is routine to check that H is closed and bounded in ε2 and that (2.3.1)
holds. �

Pursuing the characterisation of compact sets in special spaces a little further, we
consider next the position in spaces kindred to C[0, 1]. The best known character-
isation in such spaces is the Arzelà-Ascoli theorem, which involves the concept of
equicontinuity explained below.

Definition 2.3.20 Let (X, d) be a metric space. A set F ∗ C(X) is said to be
equicontinuous at a point x → X if, given any λ > 0, there exists β > 0 such
that for all y → X with d(x, y) < β, we have supf →F |f (y) − f (x)| < λ; if F is
equicontinuous at every point of X we say that F is equicontinuous on X.

Lemma 2.3.21 Let (X, d) be a compact metric space and let F ∗ C(X). Then F is
equicontinuous on X if, and only if, it is uniformly equicontinuous on X in the sense
that given any λ > 0, there exists β > 0 such that for all x, y → X with d(x, y) < β,
we have supf →F |f (y) − f (x)| < λ.

Proof Suppose thatF is equicontinuous on X and let λ > 0. Then given any x → X,
there exists βx > 0 such that supf →F |f (y) − f (x)| < λ/3 if d(x, y) < βx . By the
compactness of X, there exist x1, . . . , xn → X such that X = ∪n

j=1B(xj, βxj/2); let

β = 1
2 min

{
βx1, . . . , βxn

}
. Let x, y → X, d(x, y) < β and f → F . For some j,

x → B(xj, βxj/2). Thus x and y belong to B(xj, βxj ) and

|f (x) − f (y)| ∈ ⎨
⎨f (x) − f (xj)

⎨
⎨ + ⎨

⎨f (xj) − f (y)
⎨
⎨ < 2λ/3.

It follows that supf →F |f (y) − f (x)| < λ whenever d(x, y) < β : F is uniformly
equicontinuous on X.

The converse is obvious. �

Theorem 2.3.22 (Arzelà-Ascoli)Let (X, d) be a compact metric space and letK ∗
C(X). Then K is compact if, and only if, it is closed, bounded and equicontinuous
on X.

Proof Suppose K is compact. Then it is certainly closed and bounded. To estab-
lish equicontinuity, let λ > 0 and let f1, . . . , fn → K be such that K ∗
∪n

k=1BC(X)(fk, λ/3). Since each fk is uniformly continuous on X, there exists β > 0
such that |fk(x) − fk(y)| < λ/3 if d(x, y) < β and k → {1, 2, . . . , n}. Now let f → K
and d(x, y) < β : then f → BC(X)(fk, λ/3) for some k and

|f (x) − f (y)| ∈ |f (x) − fk(x)| + |fk(x) − fk(y)| + |fk(y) − f (y)| < λ;
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that is,K is equicontinuous on X.
Conversely, suppose that K is equicontinuous on X, closed and bounded. It is

enough to prove thatK is totally bounded. To do so, let λ > 0. Since X is compact,
K is uniformly equicontinuous on X and thus there is a β > 0 such that, whenever
x, y → X and d(x, y) < β,

sup
f →K

|f (x) − f (y)| < λ/4;

also, there exist x1, . . . , xn → X such that

X = ∪n
i=1Ui,

where Ui = BX(xi, β) (1 ∈ i ∈ n). Moreover, each x → X is such that, for some
i → {1, 2, . . . , n}, x → Ui and

sup
f →K

|f (x) − f (xi)| < λ/4.

Let ψ = supf →K d⊂(f , 0), I = {ξ → R : |ξ| ∈ ψ} and define π : K ≤ In ∗ Rn

by
π(f ) = (f (x1), . . . , f (xn)) .

Since In is totally bounded, so also is π(K ). Thus there exist f1, . . . , fm → K such
that

π(K ) ∗ ∪m
j=1BRn(π(fj), λ/4)

and, to conclude the proof, we show that

K ∗ ∪m
j=1BC(X)(fj, λ).

Let f → K . For some j → {1, 2, . . . , m},

dRn

(
π(f ), π(fj)

) =
{

n∑

i=1

⎨
⎨f (xi) − fj(xi)

⎨
⎨2
}1/2

< λ/4,

and therefore
max
1∈i∈n

⎨
⎨f (xi) − fj(xi)

⎨
⎨ < λ/4.

Let x → X. Then, for some i → {1, 2, . . . , n}, x → Ui and

max
{⎨⎨f (x) − f (xi)

⎨
⎨,

⎨
⎨fj(x) − fj(xi)

⎨
⎨} < λ/4.
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Hence

⎨
⎨f (x) − fj(x)

⎨
⎨ ∈ ⎨

⎨f (x) − f (xi)
⎨
⎨ + ⎨

⎨f (xi) − fj(xi)
⎨
⎨ + ⎨

⎨fj(xi) − fj(x)
⎨
⎨ < 3λ/4.

It follows that d⊂(f , fj) < λ and f → BC(X)(fj, λ). The proof is complete. �

Corollary 2.3.23 Let X be a compact metric space and let K ∗ C(X). Then K
is relatively compact (that is, K is compact) if, and only if, it is bounded and
equicontinuous.

Proof It is easy to prove that if K is equicontinuous on X, then so is K . The rest
is obvious. �

We next turn to continuous maps on compact spaces.

Theorem 2.3.24 Let X1 and X2 be metric spaces and let f : X1 ≤ X2 be continuous.

(i) If E is a compact set in X1, then f (E) is a compact set in X2.
(ii) If X1 is compact and f is bijective, then f is a homeomorphism.

Proof

(i) Suppose E ∪= ∞; otherwise the result holds trivially. LetV be an open covering of
f (E). ThenU = {

f −1(V) : V → V
}
is an open covering ofE. SinceE is compact

in X1, by Lemma 2.3.14,U contains a finite covering,
{
f −1(V1), . . . , f −1(Vn)

}

say, of E. But this implies that {V1, . . . , Vn} ∗ V is a finite covering of f (E).
Using Lemma 2.3.14 again, we see that f (E) is a compact set in X2.

(ii) Let U be an open set in X1. Since X1\U is closed and therefore compact in X1
(Lemma 2.3.15 (ii)), by the first part of the theorem, f (X1\U) is compact and
therefore closed in X2 (Lemma 2.3.15 (i)). Further, since f (X1\U) = X2\f (U),
it follows that f (U) is open in X2. Now, appeal to Remark 2.1.37 (ii) completes
the proof. �

Corollary 2.3.25 Let X be a metric space, let f : X ≤ R be continuous, and let
E be a non-empty compact set in X. Then f (E) is bounded and both inf f (E) and
sup f (E) belong to f (E). In particular, there exist points u and v in E such that

f (u) = inf f (E) and f (v) = sup f (E).

Proof By Theorem 2.3.24, f (E) is compact in R; by Theorem 2.3.16, it is closed
and bounded. The result now follows easily. �

The novelty of Corollary 2.3.25 is in the attainment of bounds. It is utilised in
proving the next result, about the distance of a point from a set and the distance
between two sets.
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Theorem 2.3.26 Let A and B be non-empty subsets of a metric space (X, d), and
let d(x, A), d(A, B) be defined as in Lemma 2.1.40. Then

(i) if A is compact, B is closed and A ∩ B = ∞, then there exists a → A such that
d(a, B) = d(A, B) > 0;

(ii) if X = Rn, d is the Euclidean metric on Rn, A is compact, B is closed and
A ∩ B = ∞, then there exist a → A and b → B such that d(a, b) = d(A, B).

Proof

(i) By Lemma 2.1.40 (iii), the map x �−≤ d(x, B) : X ≤ R is continuous. Since A
is compact, by Corollary 2.3.25 there exists a → A such that

d(a, B) = inf {d(x, B) : x → A} .

Using Lemma 2.1.40 (i), we therefore see that d(a, B) = d(A, B). Now, if
d(a, B) = 0 then a → B (by Lemma 2.1.40 (ii)). Given that B is closed, it would
follow that a → A ∩ B, which contradicts A ∩ B = ∞.

(ii) By (i), there exists a → A such that d(a, B) = d(A, B). Choose any b̃ → B.
Let B̃ = {

y → B : d(a, y) ∈ d(a, b̃)
}
; note that d(a, B̃) = d(a, B). Since B̃ is

closed and bounded, by Theorem 2.3.16 it is compact. Thus, using (i), there
exists b → B̃ ∗ B such that d(a, b) = d(b, {a}) = d( B̃, {a}) = d(a, B̃)

= d(a, B). �

Note that the conclusion of (i) is false if the set A is merely required to be
closed, rather than compact. To illustrate this take X = R, with the usual metric, let
A = N, B = {n − 1/n : n → N}. Plainly A and B are closed, and A ∩ B = ∞; but, for
all n → N, d(A, B) ∈ d(n − 1/n, n) = 1/n ≤ 0 as n ≤ ⊂, and hence d(A, B) = 0.

Corollary 2.3.25 has many uses, and it is worthwhile to note that key aspects of
it apply to functions with properties similar to continuity but of weaker regularity.
Looking back at Definition 2.1.27 it is clear that for a real-valued function f on a
metric space X to be continuous at x → X, it is necessary and sufficient that, given
any λ > 0, there exists a neighbourhood U of x such that
(i) f (x) − λ < f (u) whenever u → U,
and
(ii) f (u) < f (x) + λ whenever u → U.
Taken separately, conditions (i) and (ii) define classes of functions of importance in
their own right.

Definition 2.3.27 Let (X, d) be ametric space, x → X and f be a real-valued function
on X. Then f is said to be lower semi-continuous at x if, given any λ > 0, there
exists β > 0 such that

f (x) − λ < f (y) if d(x, y) < β.

The function f is said to be lower semi-continuous on X if it is lower semi-continuous
at each point of X. Similarly, f is called upper semi-continuous at x if, given any
λ > 0, there exists β > 0 such that
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f (y) < f (x) + λ if d(x, y) < β;

upper semi-continuity on X is defined in the obvious way.

Plainly, given x → X, a necessary and sufficient condition for f to be continuous at
x is that it should be both lower semi-continuous at x and upper semi-
continuous at x. Note that if f is lower semi-continuous at x, then −f is upper
semi-continuous at x.

Example 2.3.28

(1) LetX be ametric space and x → X.A function f : X ≤ R is said to have a relative
minimum (respectively, relative maximum) at x if there exists a neighbourhood
U of x such that f (x) ∈ f (u) (respectively, f (x) ≥ f (u)) whenever u → U. It is
clear that if f has a relative minimum (maximum) at x then it is lower (upper)
semi-continuous at x.

(2) Let X be a metric space and A ∗ X. Then A is open in X if, and only if,
the characteristic function ΓA of A is lower semi-continuous on X. To see this,
suppose thatA is open. Then ΓA has a relative minimum at each point ofX and so
is lower semi-continuous on X. Conversely, let ΓA be lower semi-continuous on
X. Omitting the trivial case of A = ∞, let a → A. Then there is a neighbourhood
V of a such that

1

2
= ΓA(a) − 1

2
< ΓA(x) if x → V .

But this shows that V ∗ A, that A ∗ o
A and that A is open.

(3) Let f : [0, 1] ≤ R be defined by f (t) = 0 if t is irrational, f (t) = 1/q if
t = p/q, where p and q are integers with no common factor greater than 1, and
q > 0. Then f is upper semi-continuous on [0, 1]. Note that f is continuous
and therefore upper semi-continuous at all irrational points of [0, 1] (refer to
Exercise 1.3.10/6). Further, it has a relative maximum at every rational point of
[0, 1].

Lemma 2.3.29 Let X be a compact metric space and f : X ≤ R be lower semi-
continuous on X. Then f has an absolute minimum on X : there exists u → X such
that, for all x → X, f (u) ∈ f (x).

Proof We begin by showing that f is bounded below. Suppose otherwise. Then for
each n → N, there exists xn → X such that f (xn) ∈ −n. Hence

lim
n≤⊂ f (xn) = −⊂. (2.3.2)

Since X is compact, the sequence (xn) has a convergent subsequence, (xm(n)) say.
Suppose limn≤⊂ xm(n) = x. As f is lower semi-continuous at x, a neighbourhood V
of x exists such that
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f (x) − 1 < f (v) (v → V).

Hence, for sufficiently large n,

f (x) − 1 < f (xm(n)),

a conclusion incompatible with (2.3.2).
Now let

K = inf{f (x) : x → X};

it remains to show that K → f (X). For each n → N, there exists un → X such
that f (un) < K + n−1. Since X is compact, the sequence (un) has a convergent
subsequence, (uk(n)) say. Suppose uk(n) ≤ u. Clearly

K ∈ f (uk(n)) < K + k(n)−1 (n → N)

and so
K = lim

n≤⊂ f (uk(n)).

Further, as f is lower semi-continuous at u, for each λ > 0 there exists a neighbour-
hood U of u such that

f (u) − λ < f (x) whenever x → U.

Thus for all λ > 0,
f (u) − λ ∈ lim

n≤⊂ f (uk(n)) = K,

and so f (u) ∈ K . But by definition of K , f (u) ≥ K . Thus K = f (u) → f (X). �

Theorem 2.3.30 Let (X1, d1), (X2, d2) be metric spaces, let (X1, d1) be compact
and let f : X1 ≤ X2 be continuous. Then f is uniformly continuous.

Proof When (X2, d2) is R equipped with the standard metric, this result follows
from Lemma 2.3.21. To illustrate the ways in which compactness can be used we
give here a proof by contradiction that is not so readily available for Lemma 2.3.21.
Suppose f is not uniformly continuous. Then there exists λ > 0 such that, given any
β > 0, there exist x, y → X1 with

d1(x, y) < β and d2(f (x), f (y)) ≥ λ.

Hence, for all n → N there exist xn, yn → X1 such that

d1(xn, yn) < 1/n and d2(f (xn), f (yn)) ≥ λ.



2.3 Compactness 125

Since X1 is compact, there exist x → X1 and a subsequence (xm(n)) of (xn) such
that d1(xm(n), x) ≤ 0. As d1(xm(n), ym(n)) < 1/m(n) ∈ 1/n ≤ 0, it follows that
d1(ym(n), x) ≤ 0. But given that f is continuous,

λ ∈ d2(f (xm(n)), f (ym(n))) ∈ d2(f (xm(n)), f (x)) + d2(f (x), f (ym(n))) ≤ 0,

a contradiction. Hence f is uniformly continuous. �
Corollary 2.3.31 Let f : R2 ≤ R be continuous and have a continuous first partial
derivative α2f with respect to the second coordinate. For each t → R put

F(t) =
∫ 1

0
f (s, t)ds.

Then F : R ≤ R is differentiable and, for all t → R,

F ⊃(t) =
∫ 1

0
α2f (s, t)ds.

Proof Let t0, t → R, t ∪= t0. Then

⎨
⎨
⎨
⎨
F(t) − F(t0)

t − t0
−

∫ 1

0
α2f (s, t0)ds

⎨
⎨
⎨
⎨ ∈

∫ 1

0

⎨
⎨
⎨
⎨
f (s, t) − f (s, t0)

t − t0
− α2f (s, t0)

⎨
⎨
⎨
⎨ ds.

Let λ > 0. By Theorem 2.3.16, [0, 1]×[t0−1, t0+1] is a compact subset ofR2; thus
the continuousmap α2f is uniformly continuous on this rectangle, byTheorem2.3.30.
Hence there exists β → (0, 1) such that, for all s → [0, 1] and all v → [t0 − β, t0 + β],

|α2f (s, v) − α2f (s, t0)| < λ.

It follows that, if s → [0, 1] and 0 < |t − t0| < β, then (by the mean-value theorem)
for some v strictly between t and t0,

⎨
⎨
⎨
⎨
f (s, t) − f (s, t0)

t − t0
− α2f (s, t0)

⎨
⎨
⎨
⎨ = |α2f (s, v) − α2f (s, t0)| < λ.

Thus ⎨
⎨
⎨
⎨
F(t) − F(t0)

t − t0
−

∫ 1

0
α2f (s, t0)ds

⎨
⎨
⎨
⎨ < λ

if 0 < |t − t0| < β, and the result follows. �
This Corollary is particularly useful. To illustrate, we give the following example.

Example 2.3.32 For each t → R, put g(t) =
(∫ t

0 e−s2ds
)2
. By the fundamental

theorem of integral calculus,
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g⊃(t) = 2e−t2
∫ t

0
e−s2ds.

Put h(t) = ∫ 1
0 (1 + s2)−1e−t2(1+s2)ds (t → R). By Corollary 2.3.31,

h⊃(t) = −2t
∫ 1

0
e−t2(1+s2)ds = −2te−t2

∫ 1

0
e−t2s2ds.

If t ∪= 0, the substitution u = st reduces this to

h⊃(t) = −2e−t2
∫ t

0
e−u2du (t ∪= 0);

plainly h⊃(t) = 0 if t = 0. Thus, for all t → R, g⊃(t) + h⊃(t) = 0 and so

g(t) + h(t) = constant = g(0) + h(0) =
∫ 1

0
(1 + s2)−1ds = χ/4.

Hence ⎨
⎨
⎨
χ

4
− g(t)

⎨
⎨
⎨ = h(t) = e−t2

∫ 1

0
(1 + s2)−1e−t2s2ds ∈ e−t2 ≤ 0

as t ≤ ⊂. It follows that

lim
t≤⊂

⎩∫ t

0
e−s2ds

⎪2

= χ

4
,

which gives the famous result that

∫ ⊂

0
e−s2ds = 1

2

≥
χ.

We conclude this section by giving two applications of the ideas of completeness
and compactness.

2.3.1 Application 1

This is to the theory of ordinary differential equations. Let I be a non-degenerate
interval in R; given any n → N, let f (n) be the nth derivative of f and put

Cn(I) =
{

f → C(I) : f (n) exists and is continuous on I
}

.
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By a linear ordinary differential equation of order n on I we shall mean a
problem, denoted by

x(n) + a1(t)x
(n−1) + . . . + an(t)x = h(t), (2.3.3)

of the following type:
Given a1, . . . , an, h → C(I), does there exist a function x → Cn(I) such that for

all t → I ,
x(n)(t) + a1(t)x

(n−1)(t) + . . . + an(t)x(t) = h(t) ?

If there is such a function, it is called a solution of (2.3.3). Equation (2.3.3) is called
homogeneous or non-homogeneous according to whether h = 0 or h ∪= 0. Given
t0 → I , an initial-value problem set at t0, associated with (2.3.3), is the problem
of whether given (γ1, . . . , γn) → Rn, there is a solution φ of (2.3.3) such that

(
φ(t0), φ

(1)(t0), . . . , φ
(n−1)(t0)

)
= (γ1, . . . , γn).

This problem is symbolised by

x(n) + a1(t)x(n−1) + . . . + an(t)x = h(t),

x(t0) = γ1, x(1)(t0) = γ2, . . . , x(n−1)(t0) = γn.

⎫
⎬

⎭
(2.3.4)

Example 2.3.33

(i) Let I = R. The problem
ẍ − x = 0 (2.3.5)

is a homogeneous ordinary differential equation of order 2. The function t �−≤
et is a solution. The problem

ẍ − x = 0, x(0) = 1, ẋ(0) = 0

is an initial-value problem set at 0, associated with (2.3.5). Its unique solution
is t �−≤ cosh t.

(ii) Let I = (0,⊂). The problem

ẍ + t−1ẋ − t−2x = log t, (2.3.6)

is an inhomogeneous equation of order 2, with t �−≤ (3 log t − 4)t2/9 as a
solution. The problem

ẍ + t−1ẋ − t−2x = log t, x(1) = 1, ẋ(1) = 0
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is an initial-value problem set at 1 associated with (2.3.6), and has the unique
solution

t �−≤ t + 4

9
t−1 + 1

9
(3 log t − 4)t2.

We shall now prove the existence and uniqueness of solutions of initial-value
problems, when n = 2 and I is closed and bounded.

Consider the initial-value problem

ẍ + a1(t)ẋ + a2(t)x = h(t),

x(t0) = γ0, ẋ(t0) = γ1,

⎫
⎬

⎭
(2.3.7)

where a1, a2, h → C(I) and t0 → I . Suppose φ → C2(I) is a solution of (2.3.7) and
let u = φ̈. By Taylor’s theorem with the integral form of the remainder,

φ(t) = γ0 + (t − t0)γ1 +
∫ t

t0
(t − s)u(s)ds, φ̇(t) = γ1 +

∫ t

t0
u(s)ds.

Substitution in (2.3.7) now shows that

u(t) = h(t) − γ1a1(t) − {γ0 + (t − t0)γ1} a2(t) −
∫ t

t0
{a1(t) + (t − s)a2(t)} u(s)ds,

and so u satisfies the integral equation (of Volterra type)

u(t) = g(t) +
∫ t

t0
k(t, s)u(s)ds, (2.3.8)

where

g(t) = h(t) − γ1a1(t) − {γ0 + (t − t0)γ1} a2(t),

k(t, s) = −{a1(t) + (t − s)a2(t)} .

Thus the second derivative of any solution of (2.3.7) is a solution of (2.3.8).
On the other hand, if the integral equation (2.3.8) has a unique solution w → C(I),

let

τ(t) = γ0 + (t − t0)γ1 +
∫ t

t0
(t − s)w(s)ds (t → I)

so that

τ̇(t) = γ1 +
∫ t

t0
w(s)ds, τ̈(t) = w(t)(t → I).
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Plainly τ satisfies (2.3.7). Moreover, it is the unique such solution, for if τ1 were
another, then τ̈1 = w = τ̈ and so, by Taylor’s theorem, τ1 = τ .

It follows that the problem of the existence of a unique solution of (2.3.7) can be
reduced to that of the existence of a unique solution of the integral equation (2.3.8).
We now prove, with the aid of the contraction mapping theorem, that (2.3.8) does
indeed have a unique solution.

Theorem 2.3.34 Let I be closed and bounded, let g → C(I), t0 → I, put D = I × I
and let k : D ≤ R be continuous. Then there is a unique φ → C(I) satisfying the
Volterra equation

φ(t) = g(t) +
∫ t

t0
k(t, s)φ(s)ds (t → I).

Proof Let I = [a, b], u → C(I) and define τ by

τ(t) = g(t) +
∫ t

t0
k(t, s)u(s)ds (t → I).

We claim that τ → C(I). To prove this, first note that for fixed t → I , the map
s �−≤ k(t, s)u(s) belongs to C(I) ∗ R(I). Now let t1 → I and λ > 0. For each t → I ,

|τ(t) − τ(t1)| ∈ |g(t) − g(t1)| +
⎨
⎨
⎨
⎨

∫ t

t0
k(t, s)u(s)ds −

∫ t1

t0
k(t1, s)u(s)ds

⎨
⎨
⎨
⎨

∈ |g(t) − g(t1)| +
⎨
⎨
⎨
⎨

∫ t

t1
k(t, s)u(s)ds

⎨
⎨
⎨
⎨

+
⎨
⎨
⎨
⎨

∫ t1

t0
{k(t, s) − k(t1, s)} u(s)ds

⎨
⎨
⎨
⎨ .

Let
m = sup {|u(s)| : s → I} , M = sup {|k(t, s)| : (t, s) → D} .

In view of Theorem 2.3.16 and Corollary 2.3.25, both m and M are finite. The
continuity of g at t1 and the uniform continuity of k on the compact set D (see
Theorem 2.3.30) imply that there exists β > 0 such that

|g(t) − g(t1)| < λ/3, Mm |t − t1| < λ/3 and m |k(t, s) − k(t1, s)| (b − a) < λ/3

if s, t → I = [a, b] and |t − t1| < β. It follows that

|τ(t) − τ(t1)| < λ if t → I and |t − t1| < β,

and so τ is continuous on I .
Next, define T : C(I) ≤ C(I) by
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Tu(t) = g(t) +
∫ t

t0
k(t, s)u(s)ds (t → I, u → C(I)).

Since C(I) is a complete metric space when equipped with the uniform metric d⊂,
we claim that for some k → N, Tk is a contraction mapping and so propose to use
Corollary 2.2.14 to show that T has a unique fixed point. For each n → N0, let P(n)

be the proposition

⎨
⎨Tnu(t) − Tnv(t)

⎨
⎨ ∈ (M |t − t0|)n d⊂(u, v)/n! for all u, v → C(I) and all t → I.

Evidently P(0) is true; and if P(n) is true for some n → N0, then

⎨
⎨
⎨Tn+1u(t) − Tn+1v(t)

⎨
⎨
⎨ =

⎨
⎨
⎨
⎨

∫ t

t0
k(t, s)

{
Tnu(s) − Tnv(s)

}
ds

⎨
⎨
⎨
⎨

∈ M

⎨
⎨
⎨
⎨

∫ t

t0
(M |s − t0|)n /n!ds

⎨
⎨
⎨
⎨ d⊂(u, v)

∈ (M |t − t0|)n+1 d⊂(u, v)/(n + 1)!

for all u, v → C(I) and all t → I , so that P(n + 1) is true. Hence P(n) is true for all
n → N. Thus

d⊂(Tnu, Tnv) ∈ (M(b − a))n

n! d⊂(u, v)

for all u, v → C(I) and all n → N. Choose k → N so large that (M(b − a))k /k! < 1;
Tk is a contraction. Hence by Corollary 2.2.14, T has a unique fixed point, φ say,
and

φ(t) = Tφ(t) = g(t) +
∫ t

t0
k(t, s)φ(s)ds(t → I).

The proof is complete. �

As an immediate consequence of this theorem we have

Corollary 2.3.35 Let I be closed and bounded. Then the initial-value problem
(2.3.7) has a unique solution.

Next we show how the Arzelà-Ascoli theorem may be used to prove a famous
theorem, due to Peano , which establishes the existence of a solution of the initial-
value problem for a non-linear differential equation.

Theorem 2.3.36 Let t0, x0 → R and a, b > 0, put I = [t0, t0+a], J = [x0−b, x0+b]
and suppose that f : I × J ≤ R is continuous, with

M = max
(t,x)→I×J

|f (t, x)| > 0;

put c = min(a, b/M). Then there is a function x → C1([t0, t0 + c]) such that
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·
x(t) = f (t, x(t)) for t → [t0, t0 + c], x(t0) = x0. (2.3.9)

Proof Plainly x is a solution of (2.3.9) if, and only if,

x(t) = x0 +
∫ t

t0
f (s, x(s))ds, t → [t0, t0 + c]. (2.3.10)

For simplicity of exposition, suppose that t0 = 0; the general case is handled simi-
larly. Put I1 = [0, c] and for each n → N define xn : I1 ≤ R by

xn(t) =
{

x0, 0 ∈ t ∈ c/n,

x0 + ∫ t−c/n
0 f (s, xn(s))ds, c/n < t ∈ c.

The function xn is well-defined: it is given by

xn(t) = xj,n(t) for jc/n ∈ t ∈ (j + 1)c/n and j = 0, 1, . . . , n − 1,

where

x0,n(t) = x0 (0 ∈ t ∈ c/n),

x1,n(t) = x0 +
∫ t−c/n

0
f (s, x0)ds (c/n < t ∈ 2c/n)

and, for j = 2, . . . , n − 1 and jc/n < t ∈ (j + 1)c/n,

xj,n(t) = x0 +
j−1∑

k=1

∫ kc/n

(k−1)c/n
f (s, xk−1,n(s))ds

+
∫ t−c/n

(j−1)c/n
f (s, xj−1,n(s))ds.

It is clear that xn → C(I1). Moreover, for all t → I1 and all n → N,

|xn(t) − x0| ∈ cM ∈ b and |xn(t)| ∈ |x0| + b.

Hence the sequence (xn) is uniformly bounded. In fact, it is equicontinuous, for given
any n → N and any t1, t2 → I1,

|xn(t1) − xn(t2)| ∈
⎨
⎨
⎨
⎨

∫ t2−c/n

t1−c/n
f (s, xn(s))ds

⎨
⎨
⎨
⎨ ∈ M |t2 − t1| .

Hence by theArzelà-Ascoli theorem (Theorem 2.3.22), there is a subsequence (xk(n))

of (xn) which is uniformly convergent on I1, to x say. For all t → I1, as k(n) ≤ ⊂,
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⎨
⎨
⎨
⎨xk(n)(t) − x0 −

∫ t

0
f (s, xk(n)(s))ds

⎨
⎨
⎨
⎨ =

⎨
⎨
⎨
⎨

∫ t

t−c/k(n)

f (s, xk(n)(s))ds

⎨
⎨
⎨
⎨

∈ Mc/k(n) ≤ 0.

Since f is uniformly continuous on the compact set I1 × J , f (s, xk(n)(s)) converges
uniformly on I1 × J to f (s, x(s)), and

∫ t

0
f (s, xk(n)(s))ds ≤

∫ t

0
f (s, x(s))ds

as k(n) ≤ ⊂. Thus

x(t) = x0 +
∫ t

0
f (s, x(s))ds, t → I1,

and the proof is complete. �

Note that there may well be more than one solution of the initial-value problem
(2.3.9). For example, the initial-value problem

·
x(t) = |x(t)|1/2 for t → [0, 1], x(0) = 0,

has, apart from the zero function, a whole family of solutions given by

x(t) =
{

0, 0 ∈ t ∈ c,
(t − c)2/4, c < t ∈ 1,

for any c → (0, 1). Sufficient conditions on the function f for uniqueness to be
restored are given in Exercise 2.3.38/14 below.

2.3.2 Application 2

Here we revisit the Riemann integral and give a celebrated criterion for functions to
be Riemann-integrable. To do this, we need the concept of a null set. A subset E of
R is said to be a null set if, given any λ > 0, there is a sequence (In) of intervals In

of length l(In) such that E ∗ ∪nIn and
∑⊂

n=1 l(In) < λ. It is clear that every finite
set is a null set, as is every subset of a null set. Somewhat less obviously, if (En) is a
sequence of null sets, then ∪⊂

n=1En is a null set. To establish this, let λ > 0 and note

that given any n → N, there is a sequence (I(n)
m ) of intervals such that En ∗ ∪⊂

m=1I(n)
m ,

∑⊂
m=1 l(I(n)

m ) < λ/2n. The sequence (I(n)
m )m,n→N is countable and somay be arranged

as a sequence (Jk) k→N, with ∪⊂
n=1En ∗ ∪⊂

k=1Jk , and
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⊂∑

k=1

l(Jk) ∈
⊂∑

n=1

λ/2n = λ.

This justifies our claim.

The criterion mentioned above is as follows.

Theorem 2.3.37 Let a, b → R, with a < b, let f → B[a, b] and set

Df = {x → [a, b] : f is not continuous at x}.

Then f → R[a, b] if, and only if, Df is a null set.

Proof We may clearly suppose that f is not the zero function. Let M = sup {|f (x)| :
x → [a, b]} and for each n → N put

En = {x → [a, b] : for all β > 0 there exist s, t → (x − β, x + β) ∩ [a, b] such
that |f (s) − f (t)| > 1/n}.

Plainly f is not continuous at x if x → En for some n. On the other hand, if x → Df ,
then there is a sequence (xk) in [a, b], with xk ≤ x, such that f (xk) � f (x). This
implies that there exist n → N and a subsequence of (xk), still denoted by (xk) for
convenience, such that |f (xk) − f (x)| > 1/n for all k → N. Thus x → En. It follows
that

Df =
⋃

n→N
En.

We claim that each En is compact. Since En is obviously bounded, it is sufficient
to prove that it is closed. To do this, let x → En. Given β > 0, there exists y → En

with |x − y| < β/2; and since (y − β/2, y + β/2) ∗ (x − β, x + β) and there are
s, t → (y − β/2, y + β/2) with |f (s) − f (t)| > 1/n, it follows that x → En, which
establishes our claim.

Now suppose that f → R[a, b]. By Exercise 1.1.10/7, given n → N and λ > 0,
there is a partition P = {a = x0, x1, . . . , xm = b} → P[a, b] such that

⎨
⎨
⎨
∑m

r=1
{f (ξr) − f (γr)}(xr − xr−1)

⎨
⎨
⎨ < λ/n

whenever ξr, γr → [xr−1, xr], for r → {1, . . . , m}. For each r → {1, . . . , m} we may
plainly choose ξr, γr so that f (ξr) ≥ f (γr); moreover, if (xr−1, xr)∩En ∪= ∞, we may
ensure that f (ξr) > f (γr) + 1/n. It now follows that the sum of the lengths of those
intervals (xr−1, xr) with non-empty intersection with En is less than λ. Hence, since
the length of degenerate intervals is zero, En is a null set; and as Df is the countable
union of the En, it also is a null set.

For the converse, suppose that Df is a null set. Let λ > 0 and choose n → N so
that n > 1/λ. Since En is obviously null, there is a sequence (Ir) of open subintervals
of the metric space [a, b] which covers En, with

∑⊂
r=1 l(Ir) < λ. As En is compact,
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it is covered by a finite number of these intervals, say J1, . . . , Jp; and of course∑p
r=1 l(Jr) < λ. An inductive argument shows that the set

[a, b]\
⋃

p
r=1Jr

consists of a finite collection of closed intervals, say K1, . . . , Kq; for each j →
{1, . . . , q}, there exists Pj → P(Kj) such that |f (x) − f (y)| ∈ 1/n for all x, y in
the same subinterval of Pj. Finally, let P → P[a, b] consist of the points of

⋃ q
j=1Pj

together with the endpoints of the intervals J1, . . . , Jp. Then, using Exercise 1.1.10/2,
we see that the contribution to U(P, f ) − L(P, f ) from the points of P1, . . . , Pq can
be estimated from above by

1

n
(b − a) < λ(b − a).

The rest ofU(P, f )−L(P, f ) arises from the endpoints of the Jr andmay be estimated
from above by

2M
∑p

r=1
l(Jr) < 2Mλ.

Hence
U(P, f ) − L(P, f ) < λ(2M + b − a),

and so f → R[a, b]. �

Note that this theorem gives an immediate proof of the fact, established earlier,
that Riemann-integrability is preserved by taking sums and products.

Exercise 2.3.38

1. Let I = [0, 1]. Exhibit a subset of the metric space C(I), endowed with the
uniform metric, that is unbounded. Show that the mapping f �−≤ ∫ 1

0 f of C(I)
to R is uniformly continuous on C(I).

2. Let (X, d) be a compact metric space and let (Fi)i→I be a family of non-empty
closed subsets ofX with empty intersection. Prove that there is a positive number
c such that for each x → X, d(x, Fi) ≥ c for some i → I .

3. Let (X, d) be a compact metric space such that for all x, y, z → X, d(x, y) ∈
max {d(x, z), d(y, z)}, and let x0 → X; let x → X be such that d(x0, x) = r > 0.
By assuming the contrary show that

sup{d(x0, y) : y → B(x0, r)} < r and inf {d(x0, y) : y → X, d(x0, y) > r} > r.

Hence prove that {d(x0, z) : z → X} is finite or countably infinite.
4. Let (X, d) be a compact metric space, let T : X ≤ X be such that for all

x, y → X, d(x, y) ∈ d(T(x), T(y)), and let a, b be any points ofX. By considering
appropriate subsequences of (Tn(a)) and (Tn(b)), show that given any λ > 0,
there is an integer k such that d(a, Tk(a)) < λ and d(b, Tk(b)) < λ. Deduce that
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d(T(a), T(b)) = d(a, b) and that T(X) is dense in X. Hence show that T maps
X isometrically onto itself.

5. Let (X, d) be a compact metric space and suppose that T : X ≤ X is such that
d(T(x), T(y)) < d(x, y) for all x, y → X with x ∪= y. Prove that T has a unique
fixed point.

6. (Dini’s theorem: see also Exercise 1.7.17/18) Let (X, d) be a compact metric
space and let (fn) be amonotone sequence inC(X)which is pointwise convergent
to f → C(X). Prove that fn ≤ f in the uniform metric on C(X).

7. Let δ → (0, 1]. A real-valued function f on [0, 1] is said to be Hölder-continuous
with exponent δ if there is a constant C such that for all x, y → [0, 1],
|f (x) − f (y)| ∈ C |x − y|δ . Define

⇐f ⇐δ = max
x→[0,1] |f (x)| + sup

|f (x) − f (y)|
|x − y|δ ,

where the supremum is taken over all x, y → [0, 1] with x ∪= y. Prove that the set
of all functions f with ⇐f ⇐δ ∈ 1 is a compact subset of C[0, 1].

8. LetK = {f → C[0, 1] : d⊂(f , 0) ∈ 1}. Show thatK is not compact in C[0, 1].
9. Let (X, d) be a compact metric space and let (fn) be a sequence in C(X). Prove

that if the set {fn : n → N} is equicontinuous, and for each x → X the sequence
(fn(x)) converges, then (fn) is convergent in C(X).

10. Let fn(t) = sin
≥

t + 4n2χ2 for t ≥ 0, n → N. Prove that {fn : n → N} is a
bounded and uniformly equicontinuous subset of C [0,⊂), but that it is not
relatively compact. Prove also that the sequence (fn) converges pointwise to 0
on [0,⊂). [This shows that the Arzelà-Ascoli theorem and Exercise 9 may fail
when X is not compact.]

11. Let K ∗ C[0, 1]. Suppose that each f → K is differentiable on (0, 1) and that
there exists M > 0 such that

⎨
⎨f ⊃(t)

⎨
⎨ ∈ M for all t → (0, 1) and all f → K . Prove

that K is equicontinuous.
12. Let X be a metric space, x → X, and f be a real-valued function on X. Prove that

f is lower semi-continuous at x → X if, and only if,

f (x) ∈ lim inf
n≤⊂ f (xn) whenever xn ≤ x.

13. Let (X, d) be a metric space and let f : X ≤ R be bounded and lower semi-
continuous. For each n → N, let gn : X ≤ R be defined by

gn(x) = inf
y→X

{f (y) + nd(x, y)} (x → X).

(i) Prove that (gn) is an increasing sequence of continuous functions that con-
verges pointwise to f .

(ii) Show that the set of points of continuity of f is residual in X and deduce
that, if X is complete, then this set is dense in X.
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14. Let a, b, c → R with a < b and c ≥ 0, let u, v be non-negative continuous
functions on [a, b] and suppose that

v(t) ∈ c +
∫ t

a
v(s)u(s)ds for a ∈ t ∈ b.

Establish Gronwall’s inequality:

v(t) ∈ c exp

⎩∫ t

a
u(s)ds

⎪
for a ∈ t ∈ b,

so that if c = 0, then v is the zero function. Deduce that the initial-value problem
(2.3.9) has a unique solution if the function f is Lipschitz-continuous in the sense
that there is a constant K such that

|f (t, w1) − f (t, w2)| ∈ K |w1 − w2| for all t → [t0, t0 + c] and all w1, w2 → J.

15. Let U be an open covering of a compact metric space X. Show that there is a
positive number λ (called a Lebesgue number of U ) such that if A ∗ X and
diam A < λ, then there exists U → U that contains A.

16. Let (X, d) be a complete metric space and letK be the family of all non-empty
compact subsets of X. The Hausdorff metric β on K is defined by

β(A, B) = max{sup
a→A

d(a, B), sup
b→B

d(b, A)} (A, B → K ),

in the notation of Lemma 2.1.40. Show that

β(A, B) = inf{r > 0 : A ∗ Vr(B), B ∗ Vr(A)},

where Vr(A) = {x → X : d(x, A) < r}. Prove that β is a metric on K and that
(K , β) is complete. Show further that if X is compact, then so is (K , β). Prove
that if for each i → {1, . . . , n}, Ai and Bi belong toK , then

β
(∪n

i=1Ai,∪n
i=1Bi

) ∈ max
1∈i∈n

β(Ai, Bi).

Let F : X ≤ X be a contraction; that is, there exists r → (0, 1) such that for all
x, y → X, d(F(x), F(y)) ∈ rd(x, y). Prove that for all A, B → K ,

β(F(A), F(B)) ∈ rβ(A, B).

Now suppose that for each i → {1, . . . , n}, Fi : X ≤ X is a contraction. Define
F : K ≤ K byF (A) = ∪n

i=1Fi(A) (A → K ), show thatF is a contraction
on (K , β) and hence prove that there is a unique K → K such that
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K = ∪n
i=1Fi(K).

By taking X = [0, 1] (with the metric inherited from R), n = 2, F1(x) = x/3
and F2(x) = (2 + x)/3 (x → [0, 1]), deduce that limn≤⊂ F n([0, 1]) exists in
(K , β) and so defines a compact non-empty subset of [0, 1]. This is the Cantor
set.

2.4 Connectedness

In this section we isolate those metric spaces with the following property: if a map
f : X ≤ R is continuous, then its range, f (X), is an interval. The motivation for this
stems from the well-known intermediate-value theorem.

We begin with a characterisation of those subsets of R which are intervals.

Lemma 2.4.1 A subset S of R is an interval if, and only if, it has the following
intermediate-value property (abbreviated as ivp):

if x, y → S and x < z < y, then z → S.

Proof If S has at most one element, it is a degenerate interval and the result holds
by default.

Suppose that S has at least two elements. If it is an interval then it clearly has the
ivp. To establish the converse we distinguish four cases:

(i) inf S = a > −⊂, sup S = b < ⊂. Evidently S ∗ [a, b]; we claim that
(a, b) ∗ S. For suppose that x → (a, b). Then there exist c, d → S such that
a ∈ c < x < d ∈ b and hence, by the ivp, x → S. Thus (a, b) ∗ S ∗ [a, b] and
S is an interval.

(ii) inf S = a > −⊂, sup S = ⊂. Here S ∗ [a,⊂). If x → (a,⊂), then there
are c, d → S such that a ∈ c < x < d < ⊂ and, as before, x → S. Thus
(a,⊂) ∗ S ∗ [a,⊂) and S is an interval.

(iii) inf S = −⊂, sup S = b < ⊂.
(iv) inf S = −⊂, sup S = ⊂.

We omit the proofs in cases (iii) and (iv) as they are similar to that of case (ii).�

We can now give equivalent forms of the property with which we began this section.

Theorem 2.4.2 Let X be a metric space. The following three statements are equiv-
alent:

(i) The only subsets of X which are both open and closed are ∞ and X.
(ii) There do not exist two non-empty disjoint open subsets of X whose union is X.
(iii) The range of each continuous map f : X ≤ R is an interval.
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Proof Suppose that (i) holds and that (ii) does not. Then there are non-empty open
subsets U, V of X such that U ∩ V = ∞ and U ∪ V = X. This implies that U = cV
and so U is closed. Thus ∞ ∪= U ∪= X and U is both open and closed, contradicting
(i).

Now suppose that (ii) holds and (iii) does not. Then there is a continuous map
f : X ≤ R such that f (X) is not an interval. Hence, in view of Lemma 2.4.1, there
exist x, y → X and ξ → R such that f (x) < ξ < f (y) and, for all z → X, f (z) ∪= ξ.
Let U = f −1((−⊂, ξ)) and V = f −1((ξ,⊂)). These sets are non-empty, disjoint,
open and their union is X, contradicting (ii).

Finally, suppose (iii) holds and (i) does not. Then there is a set U which is both
open and closed in X and ∞ ∪= U ∪= X. Define f : X ≤ R by f (x) = 1 if x → U,
f (x) = 0 otherwise. Since f −1(W) → {∞, U, cU, X} ifW ∗ R, it follows that f −1(W)

is open in X whenever W is open in R. Hence f is continuous, but its range is not an
interval and (iii) is contradicted. �

This leads us to formulate the following definition.

Definition 2.4.3 Ametric space X is said to be connected if it is not expressible as a
union of two non-empty, disjoint open subsets of itself; it is said to be disconnected
if it is not connected.

Of course, any of the equivalences of Theorem 2.4.2 could have been used to
define a connected space. There is some loss of motivation in not choosing (iii), but
the compensation is that we have an intrinsic and functional definition.

We now turn to subsets of a metric space.

Definition 2.4.4 A subset of a metric space X is said to be a connected set in X if it
is either empty or it is connected as a subspace of X; it is said to be a disconnected
set in X if it is not a connected set in X.

Let E be a subspace of a metric space X. By definition, E is a disconnected
space if, and only if, there are non-empty sets O1 and O2, each open in E, such that
O1 ∩ O2 = ∞ and O1 ∪ O2 = E. If U denotes the family of all the sets open in X,
then {U ∩ E : U → U } is the family of all the sets open in the metric space E. It
follows that E is a disconnected space if, and only if, there are sets U and V , each
open in X, such that

U ∩ E ∪= ∞, V ∩ E ∪= ∞

and
(U ∩ E) ∩ (V ∩ E) = ∞, (U ∩ E) ∪ (V ∩ E) = E.

With the observation that
(a) (U ∩ E) ∩ (V ∩ E) = ∞ if, and only if, U ∩ V ∩ E = ∞ ,
and
(b) (U ∩ E) ∪ (V ∩ E) = E if, and only if, E ∗ U ∪ V ,

this means that we have established the following theorem.
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Theorem 2.4.5 Let E be a subset of a metric space X. Then E is a disconnected set
in X if, and only if, there are sets U and V, each open in X, such that

U ∩ E ∪= ∞, V ∩ E ∪= ∞,

U ∩ V ∩ E = ∞, E ∗ U ∪ V .

In practice, given a set E in a metric space X, Theorem 2.4.5 provides a basic
test for its disconnectedness. In the event that the set E is known to be disconnected,
a condition stronger in form than the test-condition of Theorem 2.4.5 holds. This
appears next.

Theorem 2.4.6 Let E be a subset of a metric space X. Then E is a disconnected set
in X if, and only if, there are disjoint open sets U and V in X such that U ∩ E ∪= ∞,
V ∩ E ∪= ∞ and E ∗ U ∪ V.

Proof Let E be disconnected in X. Then there are sets U1 and V1, each open in X,
such that E ∩ U1 ∪= ∞, E ∩ V1 ∪= ∞, E ∩ U1 ∩ V1 = ∞ and E ∗ U1 ∪ V1. Moreover,
given any u → E ∩ U1, there exists r(u) > 0 such that B(u, r(u)) ∗ U1; also, given
any v → E ∩ V1, there exists r(v) > 0 such that B(v, r(v)) ∗ V1. Put

U =
⋃

u→E∩U1

B(u, r(u)/2), V =
⋃

v→E∩V1

B(v, r(v)/2).

It is clear that U and V are open, that E ∩U = E ∩U1 ∪= ∞ and E ∩V = E ∩V1 ∪= ∞,
and that E = (E ∩ U1) ∪ (E ∩ V1) ∗ U ∪ V . It remains to prove that U ∩ V = ∞.
To obtain a contradiction, suppose that U ∩ V ∪= ∞. Let w → U ∩ V . Then there are
points u → E ∩ U1, v → E ∩ V1 such that d(u, w) < 1

2 r(u), d(v, w) < 1
2 r(v), where

d is the metric on X. Thus

d(u, v) ∈ d(u, w) + d(w, v) ∈ 1

2
{r(u) + r(v)} ∈ max {r(u), r(v)} .

It follows that either v → U1 or u → V1. Whichever is the case, U1 ∩ V1 ∩ E ∪= ∞, and
we have a contradiction.

The converse is obvious. �

Example 2.4.7

(i) In every metric space (X, d) any set containing only one point is obviously
connected; any finite set with at least two points is disconnected. Thus if S =
{a, b} ∗ X and a ∪= b, for example, we may take U = B(a, r), V = B(b, r),
where r = 1

2d(a, b), and note that U and V are open, U ∩ V = ∞, U ∩ S ∪= ∞,
V ∩ S ∪= ∞ and S ∗ U ∪ V .

(ii) In any discrete metric space every subset with more than one point is discon-
nected, as every subset of the space is both open and closed.
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(iii) Let X be a metric space, let A, B be non-empty, disjoint, closed sets in X and let
E = A ∪ B. Then E is disconnected. To see this, put U = cA, V = cB so that
U and V are open in X. Then U ∩ E = B ∪= ∞, V ∩ E = A ∪= ∞, U ∩ V ∩ E =
cA∩ cB∩(A∪B) = (A∪B)c ∩( A∪B) = ∞ and E = A∪B ∗ cB∪ cA = U ∪V .
To illustrate this, let X = R2, A = {(x, y) → R2 : x ≥ 0, xy = 1}, B = {(x, y) →
R2 : y = 0}. Then A ∪ B is disconnected in R2.

(iv) Let X be a metric space and let A, B be non-empty, open, disjoint sets in X with
union X. Then if C is a connected subset of X, either C ∗ A or C ∗ B. For
otherwise C ∩ A ∪= ∞, C ∩ B ∪= ∞, C ∩ A ∩ B = ∞ and C ∗ A ∪ B, and the
connectedness of C is contradicted.

(v) A metric space X is connected if, and only if, given any x, y → X, there is a
connected subset A of X such that x, y → A. To prove this, suppose first that
given any x, y → X, there is a connected subset A of X such that x, y → A. If X
were not connected, there would be disjoint, open, non-empty sets U, V with
union X. By (iv), either A ∗ U or A ∗ V , and we have a contradiction. The
converse is obvious.

The connected subsets of R, equipped with the usual metric, can be classified
completely.

Theorem 2.4.8 Let S ∗ R. The following three statements are equivalent.

(i) S is connected.
(ii) S has the intermediate-value property.
(iii) S is an interval.

Proof Suppose that S is connected yet fails to have the intermediate-value property.
Then there are real numbers x, y and z with x, y → S, x < z < y and z /→ S. Put
U = {t → R : t < z} and V = {t → R : t > z}. Then U and V are open, S ∩ U ∪= ∞,
S ∩ V ∪= ∞, U ∩ V = ∞ and S ∗ U ∪ V . Thus S is disconnected and we have a
contradiction. Hence (i) implies (ii).

Conversely, suppose that S has the intermediate-value property and is discon-
nected. Then there are disjoint open setsU, V inR and points x, y → S with x < y such
that x → S ∩ U, y → S ∩ V and S ∗ U ∪ V . Let z := sup{U ∩[x, y]}. Plainly z → U
and, as U is contained in the closed set R\V , z /→ V . Since z → [x, y] ∗ S ∗ U ∪ V ,
it follows that z → U. Since U is open and z ∪= y, there exists z1 > z such that
[z, z1] ∗ U ∩ [x, y]. But this contradicts the definition of z. Hence (ii) implies (i).

The rest of the proof follows from Lemma 2.4.1. �

Corollary 2.4.9 Let S ∗ R, S ∪= ∞. Then S is an interval if, and only if, f (S) has
the ivp whenever f : S ≤ R is continuous. [ The ‘only if’ part of this result is called
the intermediate-value theorem.]

Proof By Theorem 2.4.8, S is an interval if, and only if, S is connected; by The-
orem 2.4.2, this is so if, and only if, f (S) is an interval whenever f : S ≤ R is
continuous; and now the result follows from Lemma 2.4.1. �
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Corollary 2.4.10 Let a, b → R , with a < b, and let f : [a, b] ≤ [a, b] be continu-
ous. Then f has a fixed point; that is, there exists c → [a, b] such that f (c) = c.

Proof If f (a) = a or f (b) = b there is nothing to prove. We shall therefore assume
that f (a) > a and f (b) < b. Define g : [a, b] ≤ R by g(x) = x − f (x), x → [a, b].
Then g is continuous, g(a) < 0 and g(b) > 0. By Corollary 2.4.9, there exists
c → [a, b] such that g(c) = 0; that is, f (c) = c. �

This elementary fixed-point result may be extended to higher dimensions with
considerably greater effort: see Chap. 3 for the two-dimensional version.

Under a continuous map connectedness is preserved. Amongst other uses this fact
allows new connected sets to be generated from old.

Theorem 2.4.11 Let X and Y be metric spaces and let f : X ≤ Y be continuous.
Then f (E) is a connected subset of Y whenever E is a connected subset of X.

Proof Suppose that E is connected and yet f (E) is not. Then there are disjoint open
sets U, V in Y such that U ∩ f (E) ∪= ∞, V ∩ f (E) ∪= ∞ and f (E) ∗ U ∪ V . It follows
that f −1(U)∩E ∪= ∞, f −1(V)∩E ∪= ∞, E ∗ f −1(U)∪ f −1(V) and, since U ∩V = ∞,
f −1(U) ∩ f −1(V) = ∞. As f is continuous, f −1(U) and f −1(V) are also open in X.
Thus E is disconnected and we have a contradiction. �

Corollary 2.4.12 Let S = {(x, y) → R2 : x2 + y2 = r2}, where r > 0. Let f :
S ≤ R be continuous (S inherits the Euclidean metric from R2). Then there exists
u = (u, v) → S such that f (u) = f (−u).

Proof Note that S is connected: it is the image of the interval [0, 2χ ] under the
continuous map t �−≤ (r cos t, r sin t).

Let g : S ≤ R be defined by

g(p) = f (p) − f (−p).

Then g is continuous: if pn → S (n → N) and pn ≤ p → S, then f (pn) ≤ f (p)

and f (−pn) ≤ f (−p), so that g(pn) ≤ g(p). Since S is connected, it follows from
Theorem 2.4.2 that g(S) is an interval. This interval is symmetric about the origin: if
π → g(S), then g(s) = π for some s →S and so −π = −g(s) = g(−s) → g(S). Hence
0 → g(S) and there exists u → S with g(u) = 0; that is, f (u) = f (−u). �

The use of the term connected in the context of metric spaces may seem remote
from the everyday sense inwhich the term is employed. That sense, inwhich elements
are linked or joined, does have a specialised counterpart for which the technical
expression is path-connected. Three definitions introduce this.

Definition 2.4.13 LetX be ametric space and let a, b → R,with a < b. A continuous
map γ : [a, b] ≤ X is called a path in X with parameter interval [a, b]. The points
γ (a), γ (b) are called the initial and terminal points, respectively, of γ ; γ is said to
join its initial and terminal points; γ is a closed path if γ (a) = γ (b); γ is a simple

http://dx.doi.org/10.1007/978-3-319-06209-9_3
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path if γ (s) ∪= γ (t) whenever s, t → [a, b], s ∪= t and {s, t} ∪= {a, b}. The range
γ ∗ = γ ([a, b]) of γ is called the track of γ . If γ ∗ ∗ E ∗ X we refer to γ as a path
in E.

Without loss of generality, any path may be chosen to have parameter interval
[0, 1] : make the obvious change of variable t �≤ (1 − t)a + tb : [0, 1] ≤ [a, b].
Example 2.4.14 The function γ : [0, 1] ≤ R2 defined by γ (t) = (cosχ t, sin χ t) is
a path in R2 which joins its initial point (1, 0) to its terminal point (−1, 0) and has
track

γ ∗ = {(x, y) → R2 : x2 + y2 = 1, y ≥ 0}.

Observe that different paths may have the same track: the path ζ : [0, 1] ≤ R2 given
by ζ(t) = (cosχ t2, sin χ t2) has the same track as γ , though ζ ∪= γ .

Paths in Rn of a particular character are singled out.

Definition 2.4.15 Given a, b → R with a < b, a map γ : [a, b] ≤ Rn is
said to be a polygonal path if points x(0), x(1), . . . , x(k) → Rn and a partition
{a = t0, t1, . . . , tk = b} of [a, b] exist such that

γ (t) = (tj − tj−1)
−1

{
(tj − t)x(j−1) + (t − tj−1)x

(j)
}

whenever tj−1 ∈ t ∈ tj and j → {1, 2, . . . , k}; if, in addition, γ is such that for each
j → {1, 2, . . . , k} there is a line passing through x(j−1) and x(j) parallel to a coordinate
axis, then it is said to be a p-path. In the elementary case of k = 1, when

γ (t) = (b − a)−1{(b − t)x(0) + (t − a)x(1)} (a ∈ t ∈ b),

the path γ is referred to as a line segment and may be denoted by [x(0), x(1)]. This
terminology and symbolism is used also for γ ∗, the track of γ , and the intended
meaning has to be understood by context.

Elementary reasoning shows that a polygonal path is continuous and therefore a
path in the sense of Definition 2.4.13. Also, the track of a polygonal path (or p-path)
γ is a union of line segments: γ ∗ = ∪k

j=1[x(j−1), x(j)].
Definition 2.4.16 A subset E of a metric space X is called path-connected if, given
any x, y → E, there is a path in E with initial point x and terminal point y. If X = Rn,
E is said to be polygonally connected if, given any x, y → E, there is a polygonal
path in E which joins x to y.

Example 2.4.17

(i) Let a → R.ThenR\{a},with themetric inherited fromR, is not path-connected.
For let x, y → R,with x < a < y, and suppose there is a path γ : [0, 1] ≤ R\{a}
joining x to y. By the intermediate-value theorem, γ (t) = a for some t → [0, 1],
and we have a contradiction.
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(ii) Let a → R2. ThenR2\{a},with themetric inherited fromR2, is path-connected.
For let x, y → R2\{a}, x ∪= y. Then, if x, y and a are not collinear, the line
segment joining x to y is a path inR2\{a}; and if these three points are collinear,
x may be joined to y by a p−path in R2\{a} whose track is a union of at most
three line segments, each parallel to one of the coordinate axes. The same
argument shows that when n > 2, removal of one point from Rn leaves the set
path-connected.

Proposition 2.4.18 Let X and Y be homeomorphic metric spaces. Then X is path-
connected if, and only if, Y is path-connected.

Proof Let φ : X ≤ Y be a homeomorphism, suppose that X is path-connected and
let y1, y2 → Y . Then y1 = φ(x1), y2 = φ(x2) for some x1, x2 → X; let γ : [0, 1] ≤ X
be a path joining x1 to x2. Then φ ◦ γ is a path in Y joining y1 to y2, and so Y is
path-connected. The result is now clear. �

Corollary 2.4.19 If n > 1, R and Rn are not homeomorphic.

Proof Suppose the result is false Then for some n > 1, there is a homeomorphism
φ : R ≤ Rn. Let a → R : then the restriction of φ to R\{a} is a homeomorphism
of R\{a} onto Rn\{φ(a)}. But by Example 2.4.17 (i) and (ii), R\{a} is not path-
connected while Rn\{φ(a)} is path-connected. This contradicts Proposition 2.4.18
and completes the proof. �

We remark that it is also true that if m, n → N and m ∪= n, then Rm and Rn are not
homeomorphic. However, this is much harder to prove.

Next we relate the notions of connectedness and path-connectedness.

Theorem 2.4.20 Let E be a path-connected subset of a metric space X. Then E is a
connected set in X.

Proof Suppose E is not connected. Then there are disjoint open sets U, V in X such
that

U ∩ E ∪= ∞, V ∩ E ∪= ∞ and E ∗ U ∪ V .

Let x → U ∩ E, y → V ∩ E; as E is path-connected, there is a path γ : [0, 1] ≤ E
with initial point x and terminal point y. Since γ is continuous, γ −1(U) and γ −1(V)

are open sets in [0, 1]; also γ −1(U) ∪ γ −1(V) = [0, 1] and γ −1(U) ∩ γ −1(V) = ∞.
Thus [0, 1] is not connected, contradicting Theorem 2.4.8. �

Example 2.4.21

(i) Every open ball in Rn (n ≥ 1) is connected, as is Rn itself.
To see this, let a → Rn and r > 0. We show that B(a, r) is path-connected and
therefore connected. Let d denote theEuclideanmetric onRn. Let x, y → B(a, r)
and let γ : [0, 1] ≤ Rn be given by γ (t) = (1− t)x + ty. We claim that γ is a
path in B(a, r) joining x to y. Evidently γ is continuous: if tn → [0, 1] (n → N)
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and tn ≤ t → [0, 1], then d(γ (tn), γ (t)) = |tn − t| d(x, y) ≤ 0. Moreover,
γ ∗ ∗ B(a, r) : for all t → [0, 1],

γ (t) − a = (1 − t)(x − a) + t(y − a)

and

d(γ (t), a) =
⎛

⎝
n∑

j=1

{
(1 − t)(xj − aj) + t(yj − aj)

}2
⎞

⎠

1/2

∈ (1 − t)d(x, a) + td(y, a) < r.

The rest is clear.
(ii) The converse of Theorem 2.4.20 is false: not every connected set is path-

connected. To illustrate this, take X = R2 and

E = {(0, y) : −1 ∈ y ∈ 1} ∪
{(

x, sin
χ

x

)
: 0 < x ∈ 1

}
= A ∪ B, say.

The set B is the image of (0, 1] under the continuous map t �−≤ (
t, sin χ

t

)
and

so is connected. We claim that B ∗ A ∪ B ∗ B : granted this, it follows from
Exercise 2.4.33/1 that E is connected. To establish our claim, let (0, y) → A and
let λ > 0; let n → N be so large that 1/n < λ. Since sin

(
2n ± 1

2

)
χ = ±1, there

exists t →
[

2
4n+1 ,

2
4n−1

]
such that sin χ

t = y. The point
(
t, sin χ

t

)
belongs to

B and its distance from (0, y) is less than λ; thus A ∪ B ∗ B and the claim is
justified.
However, E is not path-connected. For suppose γ : [0, 1] ≤ E is a path in
E with initial and terminal points (0, 0) and (1, 0), respectively; write γ (t) =
(γ1(t), γ2(t)), t → [0, 1]. Then γ −1(A) is a closed set contained in [0, 1] and
containing 0; thus b := sup γ −1(A) → γ −1(A) and 0 ∈ b < 1. Suppose that
γ2(b) ∈ 0. Then given any β > 0 with b + β ∈ 1, we have γ1(b + β) > 0, and
there exists n → N such that

0 = γ1(b) < 2/(4n + 1) < γ1(b + β);

also, by the intermediate-value theorem, there exists t such that b < t < b + β

and γ1(t) = 2/(4n + 1). Hence γ2(t) = 1 and γ2(t) − γ2(b) ≥ 1. The same
kind of argument may be used if γ2(b) ≥ 0, and we conclude that γ2 is not
continuous at b. This contradiction shows that E is not path-connected.

(iii) The closure of a path-connected set need not be path-connected. For with the
notation of (ii), B is plainly path-connected but E, and hence B, are not.
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(iv) For any n → N, the unit sphere Sn in Rn+1 is a connected subset of Rn+1.
To see this, note that by Example 2.4.17 (ii), Rn+1\{0} is path-connected; by
Theorem 2.4.20 it is connected. Define f : Rn+1\{0} ≤ Sn by

f (x1, . . . , xn) = (x1, . . . , xn)/(x
2
1 + . . . + x2n)1/2.

Since f is clearly continuous and surjective, it follows from Theorem 2.4.11
that Sn is connected.

In view of Example 2.4.21 (ii) above, it is a relief to know that provided that
we restrict ourselves to open subsets of Rn, the notions of connectedness and path-
connectedness coincide. The next lemma prepares for this result.

Lemma 2.4.22 Let x = (x1, . . . , xn), y = (y1, . . . , yn) → Rn. Then there is a map
γ : [0, 1] ≤ Rn which is a p-path in Rn joining x to y such that

d(γ (s), γ (t)) ∈ d(x, y) (s, t → [0, 1])

where d is the Euclidean metric on Rn.

Proof Let e(1), . . . , e(n) be the vectors of the natural basis for Rn. Let p(0) = x and

p(j) = x +
j∑

k=1

(yk − xk)e
(k) (j = 1, . . . , n).

Define γ : [0, 1] ≤ Rn by

γ (s) = (j − ns)p(j−1) + (ns − j + 1)p(j)

if j − 1 ∈ ns ∈ j and j is a positive integer not exceeding n. It is routine to verify
that, for all s → [0, 1],

γ (s) = x +
n∑

k=1

Ψk(s)(yk − xk)e
(k),

where
Ψk(s) = min {max{ns − k + 1, 0}, 1} .

Hence γ is a p-path in Rn joining x to y; moreover, since 0 ∈ Ψk(s), Ψk(t) ∈ 1 and
therefore |Ψk(s) − Ψk(t)| ∈ 1, we have for all s, t → [0, 1],

d(γ (s), γ (t)) =
{

n∑

k=1

|Ψk(s) − Ψk(t)|2 |yk − xk |2
}1/2

∈ d(x, y).

�
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Theorem 2.4.22 Let G be an open set in Rn. Then the following statements are
equivalent.

(i) G is connected.
(ii) G is polygonally connected; further, given any x, y → G there is a p-path in G

joining them.
(iii) G is path-connected.

Proof Suppose that G ∪= ∞; otherwise, the result holds trivially. It is obvious that
(ii) implies (iii); also, Theorem 2.4.20 shows that (iii) implies (i). It remains to prove
that (i) implies (ii).

Suppose that G is connected, let a → G and let

A := {x → G : there is a p-path in G joining a to x}.

To show that G is polygonally connected it is enough to prove that A = G. First we
prove that A is open. Let x → A and let μ : [0, 1] ≤ Rn be a p-path in G joining a to
x. Since x → G, there exists r > 0 such that B(x, r) ∗ G. Let y → B(x, r). By Lemma
2.4.22, there is a map ζ : [0, 1] ≤ Rn which is a p-path in B(x, r), and hence in G,
joining x to y. Let γ : [0, 1] ≤ Rn be defined by

γ (t) =
{

μ(2t) if 0 ∈ t ∈ 1
2 ,

ζ(2t − 1) if 1
2 ∈ t ∈ 1.

Evidently γ is a p-path in G joining a to y. Hence y → A. It follows that B(x, r) ∗ A
and that A is open.

Next we show that G\A is open. Let z → G\A and let r⊃ > 0 be such that
B(z, r⊃) ∗ G. It is enough to prove that B(z, r⊃) ∗ G\A. To obtain a contradiction,
suppose that this is not the case. Then there exist w → B(z, r⊃) ∩ A and a p-path in
G joining a to w. Further, this path may be extended, by means of a construction
similar to that of the previous paragraph, to a p-path in G joining a to z. It follows
that z → A ∩ (G\A), an impossibility.

Finally, note that a → A, G = A ∪ (G\A) and A ∩ (G\A) = ∞. Thus, since G is
connected, G\A = ∞ and A = G. �

Next we turn to components: the idea is that even if a set is not connected, it is
made up of connected subsets; components are the largest such subsets.

Definition 2.4.24 Let E be a non-empty subset of a metric space X. A subset D of
E is called a component of E if it is a maximal connected subset of E, that is, if (i)
D is connected, and (ii) whenever D1 is connected and D ∗ D1 ∗ E, it follows that
D = D1.

To prove the basic theorem about components, the following lemma will be very
useful.
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Lemma 2.4.25 Let E be a non-empty subset of a metric space X and let F be a
non-empty family of connected subsets of E with one point in common; that is, there
exists a → ∩ F . Then A := ∪F is a connected subset of E.

Proof In view of Lemma 2.1.5 (iii) it is enough to show that A is a connected subset
of X. Suppose that this is not so. Then there are disjoint open sets U, V in X such
that A ∩ U ∪= ∞, A ∩ V ∪= ∞ and A ∗ U ∪ V . Since each F → F is connected
and F ∗ U ∪ V , either F ∩ U = ∞ or F ∩ V = ∞. As A ∩ U ∪= ∞, there exists
F1 → F such that F1 ∩ U ∪= ∞ and so F1 ∩ V = ∞. Since A ∩ V ∪= ∞, there
exists F2 → F such that F2 ∩ V ∪= ∞ and so F2 ∩ U = ∞. Hence a → F1 ∩ F2 =
F1 ∩ F2 ∩ (U ∪ V) ∗ (F2 ∩ U) ∪ (F1 ∩ V) = ∞, and we have a contradiction. �

Theorem 2.4.26 Let E be a non-empty subset of a metric space X. Then

(i) each a → E lies in a component of E (so that E is the union of its components);
(ii) distinct components of E are disjoint.

Proof Let a → E and letF be the family of all connected subsets of E which contain
a. Plainly F ∪= ∞, since {a} → F . By Lemma 2.4.25, A := ∪F is connected and
contains a. Now A is a component of E : for, if A ∗ A1 ∗ E and A1 is connected,
then A1 → F and so A1 = A. This proves (i).

Regarding (ii), let A1 and A2 be components of E, suppose that A1 ∪= A2 and that
a → A1 ∩ A2. By Lemma 2.4.25 , A1 ∪ A2 is connected. But in that event, since A1
and A2 are components, it follows that A1 = A1 ∪ A2 = A2, a contradiction. �

Theorem 2.4.27 Let G be a non-empty open subset of Rn. Then G has countably
many components, each of which is open.

Proof Let A be a component of G and let a → A. Since G is open, there exists λ > 0
such that B(a, λ) ∗ G. Now B(a, λ) is path-connected and thus connected: hence,
by Lemma 2.4.25, A ∪ B(a, λ) is connected. As A is a component this implies that
A ∪ B(a, λ) = A. Hence B(a, λ) ∗ A and A is open.

The set Qn is a countable subset of Rn and may be written as {pk : k → N}.
Given any component A of G, there exists a least k → N such that pk → A. By
Theorem 2.4.26, to distinct components there correspond distinct k, and so the com-
ponents may be put in one-to-one correspondence with a subset of N. The proof is
complete. �

Corollary 2.4.28 Let G ∗ R be open. Then G = ⋃⊂
n=1 In, where the In are pairwise

disjoint open intervals.

Companion to the notion of a component of a set there is that of a path-component.

Definition 2.4.29 A path-component of a subsetA of ametric spaceX is amaximal
path-connected subset of A.

This idea has useful consequences, given below. Note that, plainly, distinct path-
components are disjoint.
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Theorem 2.4.30 Each path-component of a metric space X is open (and therefore
also closed) if, and only if, each point of X has a path-connected neighbourhood.
The space X is path-connected if, and only if, it is connected and each x → X has a
path-connected neighbourhood.

Proof Suppose that each path-component of X is open, and let x → X. Let C be the
path-component containing x : C is a neighbourhood of x and is path-connected.
Conversely, suppose that each point of X has a path-connected neighbourhood, let C
be a path-component and let x → C. Then there is a path-connected neighbourhood
U(x) of x, and since C is a maximal path-connected set containing x, U(x) ∗ C.
Thus C = ⋃

x→C U(x) is open. Since X\C is the union of the remaining open path-
components, it is open: thus C is closed.

If X is path-connected it is connected, by Theorem 2.4.20, and, of course, X is
a path-connected neighbourhood of its points. Conversely, suppose that X is con-
nected and that each x → X has a path-connected neighbourhood. Then each path-
component is both open and closed; and since X is connected, this path-component
must be X. �

To conclude this section we show that connectedness and path-connectedness are
preserved on taking products.

Theorem 2.4.31 Let X1, X2 be connected (respectively, path-connected) metric
spaces. Then the metric space X1×X2 (see Example 2.1.2 (ix)) is connected (respec-
tively, path-connected).

Proof First suppose that X1 and X2 are connected and let (a1, a2), (b1, b2) → X1 ×
X2. Then {a1} × X2 and X1 × {b2} are connected subsets of X1 × X2 as they are
homeomorphic (even isometric) to X2 and X1 respectively; moreover, they have a
common point, (a1, b2). By Lemma 2.4.25 their union is connected: thus there is a
connected set containing (a1, a2) and (b1, b2). The connectedness of X1 × X2 now
follows from Example 2.4.7 (v).

Now suppose that X1 and X2 are path-connected and again let (a1, a2), (b1, b2) →
X1 × X2. There is a path γ1 : [0, 1] ≤ X1 joining a1 to b1, and hence there is a
path γ̃1 : [0, 1] ≤ X1 × X2 joining (a1, b2) to (b1, b2), given by γ̃1(t) = (γ1(t), b2).
Similarly, there is a path γ̃2 : [0, 1] ≤ X1 × X2 joining (a1, a2) to (a1, b2). The path
γ̃ : [0, 1] ≤ X1 × X2 defined by

γ̃ (t) =
{

γ̃2(2t) if 0 ∈ t ∈ 1
2 ,

γ̃1(2t − 1) if 1
2 ∈ t ∈ 1

joins (a1, a2) to (b1, b2), and so X1 × X2 is path-connected. �

Corollary 2.4.32 The torus T := S1 × S1 is connected.

Proof From Example 2.4.21 (iv) we see that S1 is connected. The corollary now
follows from Theorem 2.4.31. �
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Of course, the torus as defined here is a subset of R4 and is endowed with the
inherited metric. In fact, T is homeomorphic to the subset T̃ of R3 obtained by
revolution of the circle {(0, y, z) : (y − 1)2 + z2 = 1/4} about the z-axis. For T̃ is
given parametrically by

x =
⎩
1 + cos π

2

⎪
cosφ, y =

⎩
1 + cos π

2

⎪
sin φ,

z = sin π

2
(0 ∈ π < 2χ, 0 ∈ φ < 2χ),

and the map

((cos π, sin π) , (cosφ, sin φ)) �−≤
⎩⎩

1 + cos π

2

⎪
cosφ,

⎩
1 + cos π

2

⎪
sin φ,

sin π

2

⎪

is a homeomorphism of T onto T̃ . This map, f , is given by

f ((a, b), (c, d)) =
⎩⎩

1 + 1

2
a

⎪
c,

⎩
1 + 1

2
a

⎪
d,

1

2
b

⎪

and is evidently continuous. It is bijective, with

f −1(p, q, r) =
(

2

⎩
−1 +

√
p2 + q2

⎪
, 2r,

p
√

p2 + q2
,

q
√

p2 + q2

)

since p = (
1 + 1

2a
)

c, q = (
1 + 1

2a
)

d, r = 1
2b, and so

p2 + q2 =
⎩
1 + 1

2
a

⎪2

,
1

2
a = −1 +

√
p2 + q2

since 1 + 1
2a ≥ 1

2 . Plainly f −1 is continuous, and so f is a homeomorphism.

Exercise 2.4.33

1. Let A be a connected subset of a metric space and suppose that A ∗ B ∗ A. Prove
that B is connected. Deduce that the components of a closed set are closed.

2. Let R2 be endowed with the Euclidean metric and let S be a subset of R2 which
is both open and closed. Prove that either S = ∞ or S = R2.

3. Let E and F be subsets of R2 ( endowed with the Euclidean metric) defined by

E = {(x, y) : x2 + y2 ∈ 1} ∪ {(x, y) : (x − 2)2 + y2 < 1},
F = {(x, y) : x2 + y2 < 1} ∪ {(1 + 1/n, 0) : n → N}.
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Determine whether E or F is connected. What are the components of these sets?
4. Let n → N and let GL(n, R) be the set of all non-singular n × n matrices; identify

GL(n, R) with a subset of Rn2 in an obvious way and give it the inherited metric.
Prove that GL(n, R) is not connected.

5. Let A and B be path-connected subsets of a metric space such that A ∩ B ∪= ∞.
Prove that A ∪ B is path-connected.

6. Let E and F be metric spaces, with E path-connected, and let f : E ≤ F be
continuous. Prove that f (E) is path-connected.

7. Let K be the subset of [0, 1] consisting of all numbers of the form
∑⊂

n=0 3
−ncn,

with cn → {0, 2} for all n → N0. This set is called the Cantor set (see
Exercise 2.3.38/16). Show that K is compact, that [0, 1]\K is a countable union
of disjoint intervals, and that the sum of the lengths of these intervals is 1. Show
that given any x → K , the connected component of K which contains x is {x}.

8. Let S = [0, 1] × [0, 1], let K be as in the question above and let f : K ≤ S
be the map which to each x → K , with x = ∑⊂

n=0 3
−ncn, assigns the element(∑⊂

n=0 2
−nb2n+1,

∑⊂
n=0 2

−nb2n
)
, where bm = cm/2 (m → N0). Show that f

is well-defined, and that it is surjective and continuous. Deduce that there is a
continuous surjective map g : [0, 1] ≤ S. (This is Peano’s space-filling curve.)

2.5 Simple-Connectedness

Our interest here is in those path-connected metric spaces which, loosely speaking,
may be viewed as without holes. To bring precision to this, the notion of homotopy
is introduced. Throughout this section the closed interval [0, 1] will be denoted by I;
and if X is a metric space the product X × I is assumed to be equipped with the metric
of Example 2.1.2 (ix).

Definition 2.5.1 Let X and Y be metric spaces and let f0, f1 : X ≤ Y be continuous.
We say that the maps f0 and f1 are homotopic, and write f0 � f1, if there is a
continuous map F : X × I ≤ Y such that, for all x → X,

F(x, 0) = f0(x) and F(x, 1) = f1(x).

Such a map F is called a homotopy between f0 and f1.

Example 2.5.2 Let X be a metric space and let f0, f1 : X ≤ Rn be continuous.
Define F : X × I ≤ Rn by

F(x, t) = (1 − t)f0(x) + tf1(x), (x, t) → X × I.

Then it is easy to verify that F is a homotopy between f0 and f1.

With regard to the homotopy F in Definition 2.5.1, if we set ft(x) = F(x, t), then
{ft : t → I} is a one-parameter family of continuous maps from X to Y , and we may
think of the homotopy as a continuous deformation of f0 into f1.
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Definition 2.5.3 Let X and Y be metric spaces and let A be a subset of X. Let
f0, f1 : X ≤ Y be continuous maps such that f0(a) = f1(a) for all a → A, that is,
f0 |A= f1 |A. If there is a homotopy F between f0 and f1 such that, for all a → A and
all t → I ,

F(a, t) = f0(a) = f1(a),

or equivalently ft |A= f1 |A for all t → I , then we say that f0 and f1 are homotopic
relative to A and write f0 � f1 rel A. [Note: if A is empty, then � rel A and �
coincide.]
Example 2.5.4 Let A = {0, 1}. Let f0, f1 : I ≤ Rn be paths in Rn such that f0(0) =
f1(0) and f0(1) = f1(1) : the paths have a common initial point and a common
terminal point so that f0 |A= f1 |A. Consideration of F : I × I ≤ Rn given by

F(s, t) = (1 − t)f0(s) + tf1(s)

shows that f0 � f1 rel {0, 1}.
Theorem 2.5.5 Let X and Y be metric spaces and A be a subset of X. Then � rel A
is an equivalence relation in C(X, Y), the family of continuous maps from X to Y.

Proof The stepswhich follow show that� relA is reflexive, symmetric and transitive.

(1) If f → C(X, Y), then f � f rel A.
The continuous map F : X × I ≤ Y given by F(x, t) = f (x) verifies this claim.
(2) If f , g → C(X, Y) and f � g rel A, then g � f rel A.

By hypothesis, there exists a homotopy F relative to A between f and g. Let
G : X × I ≤ Y be defined by

G(x, t) = F(x, 1 − t).

As it is a composition of continuous maps, G is continuous. Moreover, for all x → X,

G(x, 0) = g(x), G(x, 1) = f (x);

also, for all a → A and t → I ,

G(a, t) = g(a) = f (a).

Hence g � f rel A.
(3) If f , g, h → C(X, Y), f � g rel A and g � h rel A, then f � h rel A.

Given that there are homotopies F and G relative to A between f and g, and g and
h, respectively, let H : X × I ≤ Y be defined by

H(x, t) =
{

F(x, 2t), 0 ∈ t ∈ 1/2,
G(x, 2t − 1), 1/2 ∈ t ∈ 1.
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Since F(x, 1) = g(x) = G(x, 0) for all x → X, there is consistency of definition on
X × {1/2} and, by appeal to the glueing lemma (Lemma 2.1.35), it follows that H is
continuous. Further, for all x → X,

H(x, 0) = f (x), H(x, 1) = h(x);

also, for all a → A and t → I ,

H(a, t) = f (a) = h(a).

Hence f � h rel A. �

Corollary 2.5.6 Let f → C(X, Y) and denote by ↑f ∼ the equivalence class associated
with f :

↑f ∼ = {g → C(X, Y) : g � f rel A}.

The family of equivalence classes {↑f ∼ : f → C(X, Y)} constitutes a partition of
C(X, Y), by which we mean that no equivalence class is empty, their union exhausts
C(X, Y) and, for all f , g → C(X, Y), the classes ↑f ∼ and ↑g∼ are either disjoint or
identical.

Proof We leave this to the reader, noting that it is a special case of a general result
concerning equivalence classes: see, for example, [19], p. 50. �

We now show that relative to the composition of functions, homotopy is well-
behaved.

Theorem 2.5.7 Let X, Y and Z be metric spaces and A be a subset of X. Let f0,
f1 : X ≤ Y and g0, g1 : Y ≤ Z be continuous maps such that f0 � f1 rel A and
g0 � g1 rel f0(A). Then

g0 ◦ f0 � g1 ◦ f1 rel A.

Proof Let F : X × I ≤ Y and G : Y × I ≤ Z be homotopies establishing that
f0 � f1 rel A and g0 � g1 rel f0(A), respectively. The map g0 ◦ F : X × I ≤ Z is
continuous; also, for all x → X,

(g0 ◦ F)(x, 0) = (g0 ◦ f0)(x), (g0 ◦ F)(x, 1) = (g0 ◦ f1)(x),

and, for all a → A and t → I ,

(g0 ◦ F)(a, t) = (g0 ◦ f0)(a) = (g0 ◦ f1)(a).

Hence g0 ◦ f0 � g0 ◦ f1 rel A. Next, consider the map H : X × I ≤ Z defined by
H(x, t) = G(f1(x), t). It is continuous; moreover, for all x → X,

H(x, 0) = (g0 ◦ f1)(x), H(x, 1) = (g1 ◦ f1)(x),



2.5 Simple-Connectedness 153

and for all a → A and t → I ,

H(a, t) = (g0 ◦ f1)(a) = (g1 ◦ f1)(a).

Thus g0 ◦ f1 � g1 ◦ f1 rel A. Finally, by Theorem 2.5.5, g0 ◦ f0 � g1 ◦ f1 rel A. �
In the next section we appeal to the simplest aspect of this theorem, when g0 = g1.

2.5.1 Homotopies Between Paths

Let X be a metric space. For present purposes we shall think of C(I, X) as the set of
all paths in X, each path being assumed to have I = [0, 1] as its parameter interval.
For brevity, the symbol∼will be used for the relation� rel {0, 1} on C(I, X). Hence
f0 ∼ f1, to be read f0 is equivalent to f1, is understood to mean that f0(0) = f1(0),
f0(1) = f1(1) and that a continuous map F : I × I ≤ X exists such that

F(s, 0) = f0(s), F(s, 1) = f1(s) (s → I)

and
F(0, t) = f0(0), F(1, t) = f0(1) (t → I).

The homotopy F may be viewed as continuously deforming f0 into f1 through a
family of paths with prescribed endpoints.

Definition 2.5.8 Let f and g be paths in a metric space X such that f (1) = g(0).
The product path f ∗ g : I ≤ X is defined by

(f ∗ g)(s) =
{

f (2s), 0 ∈ s ∈ 1/2,
g(2s − 1), 1/2 ∈ s ∈ 1.

Similarly, if f1, f2, . . . , fn : I ≤ X are paths in X such that, for 1 ∈ j ∈ n − 1,
fj(1) = fj+1(0), then the product path f1 ∗ f2 ∗ . . . ∗ fn : I ≤ X is defined by

(f1 ∗ f2 ∗ . . . ∗ fn)(s) =






f1(ns), 0 ∈ s ∈ 1/n,

f2(ns − 1), 1/n ∈ s ∈ 2/n,

· · · · · ·
fj(ns − j + 1), (j − 1)/n ∈ s ∈ j/n,

· · · · · ·
fn(ns − n + 1), (n − 1)/n ∈ s ∈ 1.

Evidently f ∗ g is a path joining f (0) to g(1); likewise, f1 ∗ f2 ∗ . . . ∗ fn is a path
joining f1(0) to fn(1).

Theorem 2.5.9 Let f , f ⊃, g and g⊃ be paths in a metric space X; suppose that f ∼
f ⊃, g ∼ g⊃ and f ∗ g is defined. Then f ∗ g ∼ f ⊃ ∗ g⊃.
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Proof Let f , f ⊃ join x to y and g, g⊃ join y to z : since f ∗g is defined, f (1) = y = g(0).
As f ∼ f ⊃, there exists a continuous map F : I × I ≤ X such that

F(s, 0) = f (s), F(s, 1) = f ⊃(s) (s → I)

and
F(0, t) = x, F(1, t) = y (t → I).

Similarly, since g ∼ g⊃, there is a continuous map G : I × I ≤ X such that

G(s, 0) = g(s), G(s, 1) = g⊃(s) (s → I)

and
G(0, t) = y, G(1, t) = z (t → I).

Let H : I × I ≤ X be defined by

H(s, t) =
{

F(2s, t), 0 ∈ s ∈ 1/2, 0 ∈ t ∈ 1,
G(2s − 1, t), 1/2 ∈ s ∈ 1, 0 ∈ t ∈ 1.

Since F(1, t) = y = G(0, t) for all t → I , there is consistency of definition on the
line segment {1/2}× I . The glueing lemma ensures that H is continuous; further, for
all s → I ,

H(s, 0) = (f ∗ g)(s), H(s, 1) = (f ⊃ ∗ g⊃)(s)

and, for all t → I ,
H(0, t) = x, H(1, t) = z.

Hence f ∗ g ∼ f ⊃ ∗ g⊃. �

By dividing the unit square I × I into n vertical strips rather than 2, the following
generalisation of the last theorem may be established: details are left to the reader.

Theorem 2.5.10 Let f1, f2, . . . , fn and f ⊃
1, f ⊃

2, . . . , f ⊃
n be paths in a metric space X;

suppose that, for 1 ∈ j ∈ n, fj ∼ f ⊃
j and that the product path f1 ∗ f2 ∗ . . . ∗ fn is

defined. Then
f1 ∗ f2 ∗ . . . ∗ fn ∼ f ⊃

1 ∗ f ⊃
2 ∗ . . . ∗ f ⊃

n.

Theorem 2.5.11 Let f1, f2, . . . , fn (n ≥ 3) be paths in a metric space X such that
the product f1 ∗ f2 ∗ . . . ∗ fn is defined. Suppose 1 ∈ k ∈ n − 1 and let the map
φ : I ≤ I be given by

φ(s) =
{
2sk/n, 0 ∈ s ∈ 1/2,
(n − k)(2s − 1)/n + k/n, 1/2 ∈ s ∈ 1.
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Then

(i) (f1 ∗ f2 ∗ . . . ∗ fn) ◦ φ = (f1 ∗ f2 ∗ . . . ∗ fk) ∗ (fk+1 ∗ . . . ∗ fn);
(ii) (f1 ∗ f2 ∗ . . . ∗ fk) ∗ (fk+1 ∗ . . . ∗ fn) ∼ f1 ∗ f2 ∗ . . . ∗ fn;

and

(iii) setting n = 3, (f1 ∗ f2) ∗ f3 ∼ f1 ∗ (f2 ∗ f3).

Proof

(i) Illustrated below, the map φ is continuous and strictly increasing; φ(s) ∈ k/n if
0 ∈ s ∈ 1/2, φ(s) > k/n if 1/2 < s ∈ 1.

(0, 0)

(0, 1)

(1, 0)( 12 , 0)

(1, 1)

( 12 ,
k
n )

ϕ

idI
t

s

Hence, for all s → I ,

((f1∗f2 ∗ . . . ∗ fn) ◦ φ)(s)

= fj(nφ(s) − j + 1) if (j − 1)/n ∈ φ(s) ∈ j/n and 1 ∈ j ∈ n

=






fj(2ks − j + 1), j − 1 ∈ 2sk ∈ j, 1 ∈ j ∈ k,

fj((n − k)(2s − 1) + k − j + 1), j − k − 1 ∈ (2s − 1)(n − k) ∈ j − k,

k + 1 ∈ j ∈ n,

=






fj(2ks − j + 1), j − 1 ∈ 2sk ∈ j, 1 ∈ j ∈ k,

fk+j⊃((n − k)(2s − 1) − j⊃ + 1), j⊃ − 1 ∈ (2s − 1)(n − k) ∈ j⊃,
1 ∈ j⊃ ∈ n − k,

= ((f1 ∗ f2 ∗ . . . ∗ fk) ∗ (fk+1 ∗ . . . ∗ fn))(s).

(ii) Consideration of the map H : I × I ≤ I given by

H(s, t) = (1 − t)φ(s) + ts
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shows that φ and idI (the identity map on I) are homotopic relative to {0, 1}.
Hence, using Theorem 2.5.7,

(f1 ∗ f2 ∗ . . . ∗ fk) ∗ (fk+1 ∗ . . . ∗ fn) = (f1 ∗ f2 ∗ . . . ∗ fn) ◦ φ

∼ (f1 ∗ f2 ∗ . . . ∗ fn) ◦ idI

= f1 ∗ f2 ∗ . . . ∗ fn.

(ii) By (ii), both the product paths f1∗(f2∗f3) and (f1∗f2)∗f3 are equivalent to f1∗f2∗f3.
Since the relation ∼ is transitive, it follows that f1 ∗ (f2 ∗ f3) ∼ (f1 ∗ f2) ∗ f3. �

Theorem 2.5.12 Let X be a metric space, let x, y → X and let ex, ey be the constant
paths in X defined by ex(s) = x and ey(s) = y (s → I). Let f be a path in X such that
f (0) = x and f (1) = y. Then ex ∗ f ∼ f and f ∗ ey ∼ f .

Proof As each equivalence has a similar proof we give only that which involves
ex ∗ f . Let τ : I ≤ I be given by

τ(s) =
{
0, 0 ∈ s ∈ 1/2,
2s − 1, 1/2 ∈ s ∈ 1.

The continuous map H : I × I ≤ I defined by H(s, t) = (1− t)τ(s)+ ts enables us
to see that τ and idI (the identity map on I) are homotopic relative to {0, 1}. Hence,
noting that for all s → I ,

(f ◦ τ)(s) =
{

x, 0 ∈ s ∈ 1/2,
f (2s − 1), 1/2 ∈ s ∈ 1,

= (ex ∗ f )(s),

application of Theorem 2.5.7 shows that

ex ∗ f = f ◦ τ ∼ f ◦ idI = f ,

as required. �

Theorem 2.5.13 Let X be a metric space, f be a path in X and f̂ be the path defined
by f̂ (s) = f (1 − s) (s → I); f̂ is termed the reverse of f . Let f (0) = x and f (1) = y.
Then

f ∗ f̂ ∼ ex , f̂ ∗ f ∼ ey,

where ex, ey are the constant paths given by ex(s) = x, ey(s) = y (s → I), respectively.

Proof Since the rôles of f and f̂ can be interchanged, it is sufficient to prove that
f ∗ f̂ ∼ ex . Let τ, π : I ≤ I be given by

τ(s) =
{
2s, 0 ∈ s ∈ 1/2,
2(1 − s), 1/2 ∈ s ∈ 1,
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and π(s) = 0 (s → I). The map

(s, t) �≤ (1 − t)τ (s) : I × I ≤ I

shows that τ � π rel {0, 1}. Since

(f ∗ f̂ )(s) =
{

f (2s), 0 ∈ s ∈ 1/2,
f̂ (2s − 1), 1/2 ∈ s ∈ 1

=
{

f (2s), 0 ∈ s ∈ 1/2,
f (2(1 − s)), 1/2 ∈ s ∈ 1,

= (f ◦ τ)(s),

so that f ∗ f̂ = f ◦ τ , application of Theorem 2.5.7 shows that f ∗ f̂ = f ◦ τ ∼ f ◦ π

= ex . �

Definition 2.5.14 A closed path (or loop ) in ametric spaceX is a path whose initial
and terminal points coincide: this common point is called its base point . Thus, if
x → X and f is a path in X such that f (0) = f (1) = x, then f is a closed path in X
with base point x.

Remark 2.5.15

(i) Each x → X is a base point for at least one closed path in X, namely ex , given
by ex(s) = x (s → I), the path constant at x.

(ii) If x, y → X and there is a path f joining x to y then, with f̂ denoting the path
given by f̂ (s) = f (1 − s), f ∗ f̂ is a closed path with base point x and f̂ ∗ f is a
closed path with base point y.

The definition to follow introduces a new type of homotopy, specific to closed
paths, called free homotopy. For closed paths f , g in a metric space X recall that the
statement f � g rel {0, 1}, more simply denoted f ∼ g, means that f and g have a
common base point and that a continuous map H : I × I ≤ X exists such that

(1) H(s, 0) = f (s), H(s, 1) = g(s) (s → I)
and
(2) H(0, t) = f (0) = H(1, t) (t → I).
Note that the one-parameter family {ht} of paths determined by H is made up

of closed paths with a common base point. The notion of free homotopy relaxes
condition (2).

Definition 2.5.16 Let f and g be closed paths in a metric space X. Then f is said to
be freely homotopic to g if there is a continuous map H : I × I ≤ X such that

(i) H(s, 0) = f (s), H(s, 1) = g(s) (s → I)

and

(ii) H(0, t) = H(1, t) (t → I).
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Note that the paths ht , where ht(s) = H(s, t), are closed but are not required to
have the same base point; the path t �−≤ ht(0) : I ≤ X is not required to be a
constant map. A simple example of a free homotopy occurs when the base point of
a closed path is ‘shifted’ to another point on its track: see Exercise 2.5.30/4.

Theorem 2.5.17 Let f and g be closed paths in a metric space X such that f is freely
homotopic to g under a homotopy F : I × I ≤ X. Let ζ be the path in X from f (0)
to g(0) defined by ζ(s) = F(0, s) (s → I). Then, with ζ̂ given by ζ̂(s) = ζ(1 − s)
(s → I),

f ∼ ζ ∗ g ∗ ζ̂.

Proof Let x = f (0), y = g(0) so that ζ is a path joining x to y and ζ̂ is its reverse:
the figure below is a guide.

y

g

ν
x

f

ν(t)ft

Recall that

(ζ ∗ g ∗ ζ̂)(s) =





ζ(3s), 0 ∈ s ∈ 1/3,
g(3s − 1), 1/3 ∈ s ∈ 2/3,
ζ(3(1 − s)), 2/3 ∈ s ∈ 1.

For fixed t → I , consider the path γt given by

γt(s) =





ζ(3s), 0 ∈ s ∈ t/3,
ft((3 − 2t)−1(3s − t)), t/3 ∈ s ∈ 1 − t/3,
ζ(3(1 − s)), 1 − t/3 ∈ s ∈ 1,

where ft is that path such that ft(s) = F(s, t). Loosely speaking, γt proceeds from
x to ζ(t), circuits the track of ft and then retraces its steps back from ζ(t) to x. We
show that {γt : t → I} determines a suitable homotopy. Define G : I × I ≤ X by

G(s, t) =





F(0, 3s), 0 ∈ s ∈ t/3,
F

(
(3 − 2t)−1(3s − t), t

)
, t/3 ∈ s ∈ 1 − t/3,

F(0, 3(1 − s)), 1 − t/3 ∈ s ∈ 1.
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Let K1, K2, K3 be the subsets of I × I defined by the inequalities 0 ∈ s ∈ t/3,
t/3 ∈ s ∈ 1 − t/3 and 1 − t/3 ∈ s ∈ 1 respectively and indicated below.

(0, 1)

(1, 0)

(1, 1)

(0, 0)

t = 3s

( 13 , 1) ( 23 , 1)

K1 K3K2

t = 3(1− s )

s

t

It is plain that each of the following maps is continuous:
(s, t) �−≤ (0, 3s) �−≤ F(0, 3s) : K1 ≤ I × I ≤ X,
(s, t) �−≤ (

(3 − 2t)−1(3s − t), t
) �−≤ F

(
(3 − 2t)−1(3s − t), t

) : K2 ≤
I × I ≤ X
and
(s, t) �−≤ (0, 3(1 − s)) �−≤ F(0, 3(1 − s)) : K3 ≤ I × I ≤ X.
Thus each G |Ki is continuous. Since G is consistently defined on the line segments
K1 ∩ K2 and K2 ∩ K3, and each Ki is closed, it follows from the glueing lemma that
G is continuous. Now

G(s, 0) = F(s, 0) = f (s) (s → I),

G(s, 1) =





F(0, 3s) = ζ(3s), 0 ∈ s ∈ 1/3,
F(3s − 1, 1) = g(3s − 1), 1/3 ∈ s ∈ 2/3,
F(0, 3(1 − s)) = ζ(3(1 − s)), 2/3 ∈ s ∈ 1,

= (ζ ∗ g ∗ ζ̂)(s) (s → I)

and
G(0, t) = x = G(1, t) (t → I).

Thus f ∼ ζ ∗ (g ∗ ζ̂), as required. �

Theorem 2.5.18 Let X be a metric space and let f be a closed path in X with base
point x. Then f ∼ ex if, and only if, f is freely homotopic to a constant path in X.

Proof If f ∼ ex the result is obvious. Conversely, suppose that for some y → X, f is
freely homotopic, under a homotopy F : I × I ≤ X, to the constant path ey. Let ζ
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be the path in X from x to y given by ζ(s) = F(0, s) (s → I). Then

f ∼ ζ ∗ ey ∗ ζ̂ (by Theorem 2.5.17)

∼ ζ ∗ (ey ∗ ζ̂) (by Theorem 2.5.11)

∼ ζ ∗ ζ̂ (by Theorems 2.5.12 and 2.5.9)

∼ ex (by Theorem 2.5.13).

Hence by Theorem 2.5.5, f ∼ ex . �
Definition 2.5.19 A closed path in a metric space X is said to be null-homotopic
in X if it is freely homotopic to a constant path in X. A metric space X is said to be
simply-connected if it is path-connected and each closed path inX is null-homotopic
in X.

Remark 2.5.20 By Theorem 2.5.18, X is simply-connected if it is path-connected
and f ∼ ef (0) for each closed path f in X. Intuitively, a simply-connected space may
be viewed as one within which each pair of points can be joined by a path and each
closed path is continuously shrinkable to a point. No closed path can ‘encompass a
hole’ in the space.

Example 2.5.21

(i) Let K be a subset of a metric space X. Suppose that X is also a linear space
and that K is convex, so that tx + (1 − t)y → K whenever x, y → K and t → I .
Then K is simply-connected: its convexity implies that it is path-connected;
moreover, if γ0 is any closed path in K and z → K , then γ0 is freely homotopic
to the constant path γ1, where γ1(s) = z for all s → I , under the homotopy
H : I × I ≤ K defined by H(s, t) = (1 − t)γ0(s) + tz. Hence each ball in Rn

is simply-connected.
(ii) We shall see in Chap. 3, once the notion of winding number has been developed,

that neither a circle nor an annulus in R2 is simply-connected.

The next two theorems reinforce the definition above and have application in the
chapter to follow.

Theorem 2.5.22 Let x and y be points in a simply-connected metric space X and
let f , g be paths in X which join x to y. Then f ∼ g.

Proof Let paths ex , ey and ĝ be given by ex(s) = x, ey(s) = y and ĝ(s) = g(1 − s).
Note that ĝ ∗ f is a closed path with base point y and, since X is simply connected,
ĝ ∗ f ∼ ey. Since the relation ∼ is transitive, the steps below yield the result:

f ∼ ex ∗ f (by Theorem 2.5.12)

∼ (g ∗ ĝ) ∗ f (by Theorems 2.5.9 and 2.5.13)

∼ g ∗ (̂g ∗ f ) (by Theorem 2.5.11)

∼ g ∗ ey (by Theorem 2.5.9)

∼ g (by Theorem 2.5.12).
�

http://dx.doi.org/10.1007/978-3-319-06209-9_3
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Theorem 2.5.23 Let X, Y be metric spaces and let X ×Y be endowed with the usual
metric (see Example 2.1.2 (ix)). Then X × Y is simply-connected if, and only if, both
X and Y are simply-connected.

Proof Suppose that X and Y are simply-connected and let γ = (γ1, γ2) be a closed
path in X × Y . Then γ1 and γ2 are closed paths which are null-homotopic in X and Y
respectively. LetmapsF1 : I×I ≤ X andF2 : I×I ≤ Y establish these homotopies.
Then the map F : I × I ≤ X × Y given by F(s, t) = (F1(s, t), F2(s, t)) shows that
γ is null-homotopic in X × Y . Since, by Theorem 2.4.31, X × Y is path-connected
it follows that X × Y is simply-connected.

Conversely, suppose that X × Y is simply-connected. Elementary considerations
show that X and Y are path-connected. Let γ1 and γ2 be closed paths in X and Y
respectively and define γ : I ≤ X × Y by γ (t) = (γ1(t), γ2(t)). Then γ is a closed
path which is null-homotopic in X × Y under a homotopy H = (H1, H2), say. Since
the maps H1 and H2 are themselves homotopies which, respectively, establish that
γ1 is null-homotopic in X and γ2 is null-homotopic in Y , the spaces X and Y are
simply-connected. �

2.5.2 The Fundamental Group

Definition 2.5.24 Let X be a metric space and x → X. Let L (x) denote the family
of all closed paths in X with base point x :

L (x) = {f → C(I, X) : f (0) = f (1) = x}.

By Theorem 2.5.5, the relation ∼ is an equivalence relation in C(I, X) and therefore
inL (x). For f → L (x), let ↑f ∼ denote the equivalence class associated with f :

↑f ∼ = {g → L (x) : g ∼ f }.

The set
χ(X, x) = {↑f ∼ : f → L (x)}

equipped with the product defined by

↑f ∼ ↑g∼ = ↑f ∗ g∼

is called the fundamental group of X at the base point x.

We must justify this terminology by showing that χ(X, x) is indeed a group.
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(i) Theorem 2.5.9 shows that the product of equivalence classes is well-defined:

↑f ∼ = 〈
f ⊃〉 , ↑g∼ = 〈

g⊃〉 ∅ f ∼ f ⊃, g ∼ g⊃ ∅ f ∗ g ∼ f ⊃ ∗ g⊃ ∅ ↑f ∗ g∼
= 〈

f ⊃ ∗ g⊃〉 .

(ii) By Theorem 2.5.11, the product of equivalence classes is associative:

(↑f ∼ ↑g∼) ↑h∼ = ↑f ∗ g∼ ↑h∼ = ↑(f ∗ g) ∗ h∼ = ↑f ∗ (g ∗ h)∼ = ↑f ∼ ↑g ∗ h∼
= ↑f ∼ (↑g∼ ↑h∼).

(iii) Theorem 2.5.12 confirms that ↑ex∼ is the identity:

↑ex∼ ↑f ∼ = ↑ex ∗ f ∼ = ↑f ∼ = ↑f ∗ ex∼ = ↑f ∼ ↑ex∼ .

(iv) Theorem 2.5.13 shows that given ↑f ∼ in χ(X, x), its inverse ↑f ∼−1 = 〈̂
f
〉
:

↑f ∼ 〈̂f 〉 = 〈
f ∗ f̂

〉 = ↑ex∼ = 〈̂
f ∗ f

〉 = 〈̂
f
〉 ↑f ∼ .

Given distinct points x and y in X, it is natural to ask whether there is any rela-
tionship between χ(X, x) and χ(X, y). It turns out that one exists if x and y can be
joined by a path in X.

Theorem 2.5.25 Let x and y be points in a metric space X and let δ be a path in X
such that δ(0) = x, δ(1) = y. Then χ(X, x) and χ(X, y) are isomorphic.

Proof As usual, let δ̂(s) = δ(1− s) (s → I). Using the notation of Definition 2.5.24,
note that if f → L (x), then δ̂ ∗ f ∗ δ → L (y). Consider the map

φδ : χ(X, x) ≤ χ(X, y)

defined (see (i), below) by
φδ(↑f ∼) = ↑̂δ ∗ f ∗ δ∼ .

Routine use of Theorems 2.5.9 to 2.5.13 shows that
(i) for all f , g → L (x),

↑f ∼ = ↑g∼ ⇔ φδ(↑f ∼) = φδ(↑g∼);

(ii) for all u → L (y),
φδ (↑δ ∗ u ∗ δ̂∼) = ↑u∼ ;

(iii) for all f , g → L (x),

φδ(↑f ∼)φδ(↑g∼) = φδ(↑f ∼ ↑g∼).
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Detailed proof of (i) to (iii) is left to the reader, but by way of illustration of the
procedures to be adopted we indicate how to deal with (iii). For all f , g → L (x),

φδ(↑f ∼)φδ(↑g∼) = ↑(̂δ ∗ f ∗ δ) ∗ (̂δ ∗ g ∗ δ)∼ = ↑̂δ ∗ f ∗ δ ∗ δ̂ ∗ g ∗ δ∼
= ↑(̂δ ∗ f ) ∗ (δ ∗ δ̂ ∗ g ∗ δ)∼
= ↑(̂δ ∗ f ) ∗ ((δ ∗ δ̂) ∗ (g ∗ δ))∼
= ↑(̂δ ∗ f ) ∗ (ex ∗ (g ∗ δ))∼ = ↑(̂δ ∗ f ) ∗ (g ∗ δ)∼
= ↑̂δ ∗ ((f ∗ g) ∗ δ)∼ = ↑̂δ ∗ (f ∗ g) ∗ δ∼ = φδ(↑f ∼ ↑g∼).

Statements (i) and (ii) show that φδ is well-defined and bijective; (iii) shows that it
is a homomorphism. Hence χ(X, x) and χ(X, y) are isomorphic groups. �

This theorem has immediate corollaries.

Corollary 2.5.26 Let x and y belong to a path-connected metric space X. Then
χ(X, x) and χ(X, y) are isomorphic.

Note that different paths between x and y may generate different isomorphisms.

Corollary 2.5.27 A metric space X is simply-connected if, and only if, it is path-
connected and χ(X, x) = {↑ex∼} for some (and thus each) x → X.

To conclude this section, we show that fundamental groups at two points, one from
each of two homeomorphic, path-connected metric spaces, are isomorphic. The next
result is key in this: it does not require the hypothesis of path-connectedness.

Theorem 2.5.28 Let X and Y be homeomorphic metric spaces. Let x → X and
suppose that τ : X ≤ Y is a homeomorphism. Then χ(X, x) and χ(Y , τ(x)) are
isomorphic groups.

Proof With the notation of Definition 2.5.24, if f , g → L (x), then evidently τ ◦ f ,
τ ◦ g → L (τ(x)). Further, use of Theorem 2.5.7 shows that

f ∼ g inL (x) ⇔ τ ◦ f ∼ τ ◦ g inL (τ(x)). (2.5.1)

Consider the map Ψ : χ(X, x) ≤ χ(Y , τ(x)) given by

Ψ (↑f ∼) = ↑τ ◦ f ∼ (f → L (x)).

Because of (2.5.1), the map Ψ is well-defined and injective; it is surjective since
Ψ

(〈
τ−1 ◦ u

〉) = ↑u∼ for each u → L (τ(x)); moreover, it is a homomorphism as

Ψ (↑f ∼)Ψ (↑g∼) = ↑(τ ◦ f ) ∗ (τ ◦ g)∼ = ↑τ ◦ (f ∗ g)∼ = Ψ (↑f ∗ g∼) = Ψ (↑f ∼ ↑g∼)

whenever f , g → L (x). ThusΨ is a group isomorphism and χ(X, x) and χ(Y , τ(x))
are isomorphic groups. �
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Corollary 2.5.29 Let X and Y be homeomorphic metric spaces, each of which is
path-connected. Then, for arbitrary choice of x → X and y → Y, the groups χ(X, x)
and χ(Y , y) are isomorphic.

Proof The result follows from Theorem 2.5.28 and Corollary 2.5.26. �

The message of the corollary is that homeomorphic, path-connected spaces give
rise to isomorphic fundamental groups.

Exercise 2.5.30

1. Let Sn be the unit sphere in Rn+1 (see Example 2.4.21 (iv)), let f : Sn ≤ Sn be
continuous, and suppose that, for all x → Sn, f (x) ∪= −x. Show that f � idSn ,
where idSn is the identity map on Sn. [Consider the map H : Sn × I ≤ Sn defined
by

H(x, t) = (1 − t)f (x) + tx

⇐(1 − t)f (x) + tx⇐ ,

where ⇐u⇐ =
(∑n+1

j=1 u2j

)1/2
for u = (u1, . . . , un+1) → Rn+1.]

2. Let x and y be points in a metric space X, and let μ, ζ : I ≤ X be paths in X
from x to y. Show that μ ∼ ζ if, and only if, μ ∗ ζ̂ ∼ ex .

3. Give examples of closed paths f , g in R2 such that (f ∗ f ) ∗ f ∪= f ∗ (f ∗ f ) and
(g ∗ g) ∗ g = g ∗ (g ∗ g).

4. Let f be a closed path in a metric space X; let a → I and define g : I ≤ X by

g(s) =
{

f (s + a) if 0 ∈ s ∈ 1 − a,

f (a + s − 1) if 1 − a ∈ s ∈ 1.

Show that g is a closed path in X, that g∗ = f ∗ and that H : I × I ≤ X defined by

H(s, t) =
{

f (s + ta) if 0 ∈ s ∈ 1 − ta,

f (ta + s − 1) if 1 − ta ∈ s ∈ 1

establishes a free homotopy between f and g.
5. Generalise Example 2.5.2: let X be a metric space, Y be a subspace of Rn (a

non-empty subset of Rn endowed with the metric inherited from Rn, not to be
confused with a linear subspace) and f0, f1 : X ≤ Y be continuous maps such
that, for all (x, t) → X × I , (1 − t)f0(x) + tf1(x) → Y . Show that f0 � f1.

6. Two metric spaces X and Y are said to be homotopy-equivalent (written X � Y)

if there exist continuous maps f : X ≤ Y and g : Y ≤ X such that g ◦ f � idX

and f ◦ g � idY , where idX : X ≤ X and idY : Y ≤ Y are the identity maps.
Prove that homotopy-equivalence is an equivalence relation on the family of all
metric spaces. Note that homeomorphic spaces are homotopy-equivalent; also, as
illustrated below, the converse need not hold.

7. (i) Let X and Y be the subspaces of R2 given by X = S1 and Y = S1 ∪ {(x, 0) :
1 ∈ x ∈ 2}. Prove that X and Y are homotopy-equivalent but not homeomorphic.
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[Hint: consider maps f : X ≤ Y , g : Y ≤ X defined respectively by f (x) = x if
x → X, g(y) = y if y → S1, g(y) = (1, 0) if y → Y\S1.]
(ii) Let X and Y be subspaces of R2 given by X = S1 and Y = R2\{0}. Show
that X and Y are homotopy-equivalent but not homeomorphic. [Hint: consider
the map f : X ≤ Y given by f (x) = x, and the map g : Y ≤ X defined by

g(y) = |y|−1 y, where |y| = (
y21 + y22

)1/2
for y = (y1, y2) → R2.]

8. A metric space X is called contractible if the identity map id : X ≤ X is
homotopic to a constant map. Prove that X is contractible if, and only if, X is
homotopy-equivalent to a space consisting of a single point. Show that every
convex, non-empty subset of Rn is contractible.



Chapter 3
Complex Analysis

The theory of complex analysis, which is based on the fundamental work of Cauchy,
forms a most attractive, beautiful and useful part of elementary analysis. Quite apart
from its structural beauty, it also has the quality of unexpectedness which distin-
guishes outstanding pieces of mathematics from the rest and which is responsible for
a good deal of the charm of the subject. Reverting to Chap. 1, it is surely delightful
that the theory of complex analysis gives rise to diverse real-variable results such as

∫ →

0

x

1 + x5
dx = Δ

5 sin 2Δ
5

and
→∑

n=0

(−1)n

(2n + 1)3
= Δ3

32
.

We develop the cornerstones of this theory quite rapidly in this chapter.
To begin with, we introduce basic concepts, including power series, branches of

the argument and the logarithm, the winding number for arbitrary paths in the plane
and integrals over contours. Some of these topics are discussed in more detail than is
common in books at this level: indeed the notion of the winding number is often not
introduced at all! This groundwork enables a global (homology) form of Cauchy’s
theorem to be established, a result that is central to the determination of necessary
and sufficient conditions under which an analytic function has a primitive. Moreover,
it leads to the residue theorem with applications not only to the evaluation of definite
integrals but also to Rouché’s theorem, the open mapping theorem and the inverse
function theorem. Further reward for the early preparation comes in Sects. 3.8 and
3.9 in which the Riemann mapping theorem and the Jordan curve theorem are shown
to arise in an aesthetically pleasing way from these foundations. In particular, the
work on the winding number is necessary for the straightforward and natural proof of
the Jordan curve theorem that is given: the related concept of the index is inadequate
for this purpose as it is not defined for general paths with no smoothness.

R. H. Dyer and D. E. Edmunds, From Real to Complex Analysis, 167
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3.1 Complex Numbers

Definition 3.1.1 A complex number is an ordered pair (a, b) of real numbers. If
z1 = (a1, b1) and z2 = (a2, b2) are complex numbers, we write z1 = z2 if, and only
if, a1 = a2 and b1 = b2. The set of all complex numbers is denoted by C. Addition
and multiplication of elements of C are defined by the rules

z1 + z2 = (a1 + a2, b1 + b2), z1z2 = (a1a2 − b1b2, a1b2 + a2b1);

if a2 + b2 �= 0 the inverse of z = (a, b) is defined by z−1 =
(

a
a2 + b2

,− b
a2 + b2

)
.

Plainly, addition and multiplication of complex numbers are both commutative
and associative; the definition of z−1 is so chosen that zz−1 = (1, 0) if z �= (0, 0).
Note that the adjective ‘ordered’ in the definition simply means that (a, b) and (b, a)

are regarded as distinct objects if a �= b. Moreover, the definition evidently implies
that for all a1, a2 ∈ R,

(a1, 0) + (a2, 0) = (a1 + a2, 0) and (a1, 0)(a2, 0) = (a1a2, 0).

This indicates that complex numbers of the form (a, 0) have the same arithmetical
properties as the corresponding real numbers a; we therefore shall identify (a, 0)
with a, so that R may be identified with a subset of C. In fact, it is plain that C is a
field and that R may be identified with a subfield of C.

Definition 3.1.2 The complex number (0, 1) will be denoted by i .

Proposition 3.1.3 Let ii be denoted by i2. Then i2 = (−1, 0); with the identification
made above, i2 = −1.

Proof By Definition 3.1.1, i2 = (0, 1)(0, 1) = (−1, 0). �

Proposition 3.1.4 Given any a, b ∈ R, (a, b) = a + ib.

Proof We have

(a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0) = a + ib. �

Because of this result we shall usually write the complex number (a, b) in the
form a + ib.

Definition 3.1.5 Given any complex number z = x + iy (x, y ∈ R), the complex
number x − iy is called the conjugate of z and is written z; x is called the real part
of z and is denoted by re z; y is the imaginary part of z and is denoted by im z.
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Proposition 3.1.6 Let w, z ∈ C. Then

(i) w + z = w + z;
(ii) wz = w z;
(iii) z + z = 2 re z, z − z = 2i im z;
(iv) zz is real, and positive save when z = 0.

Proof (i) Put w = u + iv, z = x + iy, where u, v, x, y ∈ R. Then

w + z = (u + x) + i(v + y) = u + x − i(v + y) = (u − iv) + (x − iy) = w + z.

(ii) wz = (ux − vy) + i(uy + vx) = (ux −vy)− i(uy +vx) = (u − iv)(x − iy) =
wz.
(iii) z + z = x + iy + x − iy = 2x = 2 re z and z − z = x + iy − (x − iy) = 2iy =
2i im z.
(iv) zz = (x + iy)(x − iy) = x2 + y2 ≤ 0; zz = 0 if, and only if, x = y = 0. �

Definition 3.1.7 Let z ∈ C. The absolute value, |z|, of z is the non-negative square
root of zz.

Thus |z| = ( zz)1/2, so that if z = x + iy (x, y ∈ R), |z| = (x2 + y2)1/2. When
z is real, z = x , say,

|x | = (x2)1/2 =
{

x, x ≤ 0,
−x, x < 0.

Proposition 3.1.8 Let w, z ∈ C. Then

(i) |z| > 0 unless z = 0, |0| = 0;
(ii) |z| = |z| ;
(iii) |wz| = |w| |z|;
(iv) |re z| ⊂ |z|, |im z| ⊂ |z|;
(v) |w + z| ⊂ |w| + |z|.

Proof The proofs of (i)–(iv) are elementary, and are left to the reader. As for (v),
with w = u + iv, z = x + iy as usual, we have

|w + z|2 = (u + x)2 + (v + y)2 = (u2 + v2) + (x2 + y2) + 2(ux + vy)

⊂ |w|2 + |z|2 + 2(u2 + v2)1/2(x2 + y2)1/2

= (|w| + |z|)2. �
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x

Q

P

y

0

R

Property (v) is the triangle inequality and has a familiar geometrical interpreta-
tion. Represent complex numbers by points in the plane in the natural way, so that
z = x + iy is represented by the point P with coordinates (x, y), and w = u + iv by
the point Q with coordinates (u, v). Completion of the parallelogram OPRQ gives
the point R which corresponds to w + z, and the triangle inequality amounts to the
familiar result that OR ⊂ OP + OQ, pictured above.

We now define powers of complex numbers.

Definition 3.1.9 Let z ∈ C and n ∈ Z. Define

z0 = 1, zn+1 = znz(n ≤ 0),

z−1 = (x − iy)/(x2 + y2) (z = x + iy �= 0), z−n = (z−1)n (z �= 0, n > 0).

The usual laws of exponents hold.

Proposition 3.1.10 Let m, n ∈ Z. Then zm zn = zm+n (z �= 0), zn
1zn

2 = (z1z2)n

(z1, z2 �= 0).

The proof is by induction.

The set of all complex numbers may be furnished with a natural metric.

Proposition 3.1.11 Define d: C×C ∪ R by d(w, z) = |w − z|. Then d is a metric
on C.

Proof The result is clear, in view of Proposition 3.1.8. �

As sets, R2 and C are identical. They are distinguished by the algebraic structures
they carry: R2 is a vector space over the reals and C is a field. Of course, the metric
space (C, d) is identical with (R2, d̃), where d̃ is the Euclidean metric on R2. In
view of this, we may take over all the properties of (R2, d̃) established in Chap. 2
to (C, d). Thus a sequence (zn) of complex numbers is said to converge to z ∈ C
if, and only if, d(zn, z) = |zn − z| ∪ 0 as n ∪ →; and (zn) converges to z if,

http://dx.doi.org/10.1007/978-3-319-06209-9_2
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and only if, re zn ∪ re z and im zn ∪ im z as n ∪ →; a sequence (zn) in C is
a Cauchy sequence if, and only if, d(zn, zm) = |zn − zm | ∪ 0 as m, n ∪ →;
(C, d) is a complete metric space. Henceforth we shall assume that C is endowed
with the metric d, so that matters of convergence, continuity, openness etc. are to be
understood in this sense.

Proposition 3.1.12 Let (zn) and (z∗
n) be sequences in C such that zn ∪ z ∈ C and

z∗
n ∪ z∗ ∈ C. Then zn + z∗

n ∪ z + z∗ and znz∗
n ∪ zz∗; and if, in addition, z �= 0

and for all n ∈ N, zn �= 0, we have z−1
n ∪ z−1.

Proof Use of the triangle inequality shows that

∣
∣zn + z∗

n − (z + z∗)
∣
∣ ⊂ |zn − z| + ∣

∣z∗
n − z∗∣∣ ∪ 0;

moreover, that

∣
∣znz∗

n − zz∗∣∣ = ∣
∣zn(z∗

n − z∗) + z∗(zn − z)
∣
∣

= ∣
∣(zn − z)(z∗

n − z∗) + z(z∗
n − z∗) + z∗(zn − z)

∣
∣

⊂ ∣
∣(zn − z)(z∗

n − z∗)
∣
∣ + |z| ∣∣z∗

n − z∗∣∣ + ∣
∣z∗∣∣ |zn − z| ∪ 0.

Hence zn +z∗
n ∪ z+z∗ and znz∗

n ∪ zz∗. Regarding the inverses we have |zn| ≤ 1
2 |z|

for all n ≤ K , say. Hence

∣
∣
∣z−1

n − z−1
∣
∣
∣ = |z − zn| / |znz| ⊂ 2 |z − zn| / |z|2

for all n ≤ K , and the proof is complete. �

Convergence of series of complex numbers is dealt with just as in the real case.

Definition 3.1.13 Let (zn) be a sequence of complex numbers and put wn =∑n
r=1 zr (n ∈ N). If (wn) converges to a limit w ∈ C, we say that w is the sum of

the series
∑→

1 zn and that the series
∑→

1 zn converges; wn is called the nth partial
sum of the series and we write w = ∑→

1 zn . If
∑→

1 |zn| converges, ∑→
1 zn is said

to converge absolutely.

Proposition 3.1.14 If
∑→

1 |zn| converges, so does
∑→

1 zn.

Proof Put Wn = ∑n
r=1 |zr |, wn = ∑n

r=1 zr (n ∈ N). If m > n, then

|wm − wn| =
∣
∣
∣
∣
∣

m∑

r=n+1

zr

∣
∣
∣
∣
∣
⊂

m∑

r=n+1

|zr | = Wm − Wn ∪ 0

as m, n ∪ →. Thus (wn) is a Cauchy sequence, which converges as (C, d) is
complete. �
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The ratio and root tests for convergence hold for series of complex numbers just
as for the real situation.

Theorem 3.1.15 (The ratio test) Let (an) be a sequence of non-zero complex num-
bers and let

r = lim inf
n∪→

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ , R = lim sup

n∪→

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ ,

where 0 ⊂ r ⊂ R ⊂ →. Then
∑

an converges absolutely if R < 1, and diverges if
r > 1. No information is given if r ⊂ 1 ⊂ R.

Proof First suppose that R < 1 and let ε be such that R < ε < 1. From the definition
of R we know that there exists N ∈ N with |an+1/an| < ε for all n ≤ N . Hence
|an+1| < ε |an| ⊂ εn+1−N |aN | if n ≤ N , and so comparison with the convergent
series ε−N |aN |∑→

n=N εn shows that
∑

an is absolutely convergent.
Next, suppose that r > 1. Then there exists M ∈ N such that |an+1| > |an| for

all n ≤ M , and so an � 0 as n ∪ → : ∑
an must be divergent.

Finally, the series
∑

n−1 and
∑

n−2 both have r = R = 1, but the first is
divergent while the second converges. �

As an immediate consequence of this theorem we have

Corollary 3.1.16 Let (an) be a sequence of non-zero complex numbers and sup-
pose that limn∪→ |an+1/an| exists and equals l, where 0 ⊂ l ⊂ →. Then

∑
an is

absolutely convergent if l < 1, and diverges if l > 1.

Theorem 3.1.17 (The root test) Let (an) be a sequence of complex numbers and let
r = lim supn∪→ |an|1/n. Then

∑
an is absolutely convergent if r < 1, and diverges

if r > 1. No information is given if r = 1.

Proof Suppose that r < 1 and let ε ∈ (r, 1). Then there exists N ∈ N such that
|an| < εn for all n ≤ N . Comparison with

∑
εn now shows that

∑
an is absolutely

convergent. On the other hand, if r > 1, then |an| > 1 for infinitely many n and so
an � 0 as n ∪ →; thus

∑
an is divergent.

The last part follows from consideration of
∑

n−1 and
∑

n−2, both of which
have r = 1. �

Having dealt with sequences and series of complex numbers, we now turn to
complex-valued functions. The definitions of pointwise and uniform convergence,
and the principal results associated with these concepts, are exactly the same as
for real-valued functions, which were dealt with in 1.7. For convenience we shall,
however, give the basic definitions and results here.

Definition 3.1.18 Let S be a non-empty set and let ( fn) be a sequence of functions
fn : S ∪ C. The sequence ( fn) is said to converge pointwise on S if there is
a function f : S ∪ C such that for all s ∈ S, fn(s) ∪ f (s); ( fn) converges
uniformly on S if there is a function f : S ∪ C such that given any δ > 0, there
exists N ∈ N with | fn(s) − f (s)| < δ for all s ∈ S and all n ≤ N .

http://dx.doi.org/10.1007/978-3-319-06209-9_1
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Theorem 3.1.19 (Cauchy’s general principle of uniform convergence) Let S be a
non-empty set and let ( fn) be a sequence of functions fn : S ∪ C. Then ( fn)

converges uniformly on S if, and only if, for all δ > 0, there exists N ∈ N with
| fn(s) − fm(s)| < δ for all s ∈ S, all m ≤ N and all n ≤ N.

The proof is exactly the same as that of Theorem 1.7.3.

Theorem 3.1.20 Let X be a metric space and let ( fn) be a sequence of continuous
functions fn : X ∪ C which converges uniformly on X to f : X ∪ C. Then f is
continuous on X.

This is a special case of Theorem 2.1.42.

Corollary 3.1.21 If X is a compact metric space, then C(X, C) is complete.

Given that every element of C(X, C) is bounded, the proof mimics that of
Theorem 2.2.6 and Corollary 2.2.7.

Definition 3.1.22 Let S be a non-empty set, let ( fn) be a sequence of functions
fn : S ∪ C and put un(s) = ∑n

r=1 fr (s) (s ∈ S, n ∈ N); un is the nth partial sum
of the series

∑
fr . If the sequence (un) converges pointwise (uniformly) on S, the

series
∑

fr is said to converge pointwise (uniformly) on S.

Theorem 3.1.23 (The Weierstrass M-test) Let S be a non-empty set, let ( fn) be a
sequence of functions fn : S ∪ C and suppose there are constants Mn such that
for all s ∈ S and all n ∈ N, | fn(s)| ⊂ Mn; suppose also that

∑
Mn converges. Then∑

fn converges uniformly on S.

The proof is precisely the same as that of Theorem 1.7.5.

Exercise 3.1.24

1. State the axioms for a field and check that, when endowed with the usual oper-
ations of addition and multiplication, the set C of all complex numbers forms a
field. Show that it is not an ordered field.

2. Prove that for all z1, z2 ∈ C, ||z1| − |z2|| ⊂ |z1 − z2|.
3. Show that for any n ∈ N and any z1, . . . , zn ∈ C,

|z1 + · · · + zn| ⊂ |z1| + · · · + |zn| ,

and show that the conditions z j zk = ∣
∣z j

∣
∣ |zk | ( j, k = 1, 2, . . . , n) are necessary

and sufficient for equality.
4. Let a, b ∈ C. Show that im(ab) = 0 if, and only if, there exist real numbers ε

and μ, not both zero, such that εa = μb.
5. Let a1, . . . , an and b1, . . . , bn be complex numbers. Prove that

∣
∣
∣

n∑

1

akbk

∣
∣
∣
2 ⊂

( n∑

1

|ak |2
)( n∑

1

|bk |2
)
.
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6. Let p be a polynomial of degree n, with p(z) = ∑n
0 ak zk (z ∈ C), and suppose

that a0 > a1 > . . . > an > 0. Prove that if p(z) = 0, then |z| > 1. (Consider
(1 − z)p(z).)

3.2 Analytic Functions: The Cauchy-Riemann Equations

We remind the reader that words such as open, closed, connected as applied to
subsets of C are to be interpreted in the sense of the metric space (C, d), where
d(w, z) = |w − z| (w, z ∈ C). Sets which are open and connected are of sufficient
importance to warrant special terminology.

Definition 3.2.1 A subset of C which is non-empty, open and connected is called a
region.

Our main concern in this section is with differentiable functions, and we begin
with the definition.

Definition 3.2.2 Let G be an open subset of C and let z0 ∈ G. A function f :
G ∪ C is said to be differentiable at z0 if there is a complex number ε such that
limz∪z0

f (z)− f (z0)
z−z0

= ε; that is, if given any δ > 0, there exists λ > 0 such that

∣
∣
∣
∣

f (z) − f (z0)

z − z0
− ε

∣
∣
∣
∣ < δ if 0 < |z − z0| < λ.

If this limit exists it is unique, is denoted by f ∗(z0) and is called the derivative of
f at z0. If f ∗(z) exists at each point z in some neighbourhood of z0, f is said to be
analytic at z0. If f is differentiable at each point of an open subsetU of G, then f is
said to be analytic (or holomorphic) in U . The family of all functions f : G ∪ C
which are analytic in G is denoted by H(G); a function that belongs to H(C) is said
to be entire.

Just as in the case of real-valued functions of a real variable, natural properties of
differentiable functions can be established.

Lemma 3.2.3 Let G be an open, non-empty subset of C, let c ∈ C and define
functions f, g : G ∪ C by f (z) = z, g(z) = c for all z ∈ G. Then f ∗(z) = 1 and
g∗(z) = 0 for all z ∈ G.

The simple proof is left to the reader.

Theorem 3.2.4 Let G be an open subset of C, let z0 ∈ G and let f, g : G ∪ C be
differentiable at z0. Then

(i) f is continuous at z0;
(ii) ( f + g)∗(z0) = f ∗(z0) + g∗(z0);
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(iii) ( f g)∗(z0) = f ∗(z0)g(z0) + f (z0)g∗(z0);
(iv) if g(z0) �= 0, then ( f/g)∗(z0) = {

f ∗(z0)g(z0) − f (z0)g∗(z0)
}
/g2(z0);

(v) if f, g ∈ H(G), then f + g and f g belong to H(G).

The proof is omitted as it is exactly the same as the proof of these assertions for
real-valued functions of a real variable.

The chain rule for the differentiation of composite functions holds just as in the
real case.

Theorem 3.2.5 Let G,α be open subsets of C, let f ∈ H(G), g ∈ H(α) and
suppose that f (G) ⇐ α. Then g ◦ f ∈ H(G) and

(g ◦ f )∗(w) = g∗( f (w)) f ∗(w) for all w ∈ G.

Proof Let w ∈ G. For z ∈ G, z �= w,

g( f (z)) − g( f (w))

z − w
= β(z)ξ (z),

where β,ξ : G ∪ C are defined by

β(z) =
{

g( f (z))−g( f (w))
f (z)− f (w)

if f (z) �= f (w),

g∗( f (w)) if f (z) = f (w),

and

ξ (z) =
{ f (z)− f (w)

z−w
if z �= w,

f ∗(w) if z = w.

Evidently ξ is continuous at w; so is β, but this needs proof. Given δ > 0, there
exists λ > 0 such that

∣
∣
∣
∣
g(η ) − g( f (w))

η − f (w)
− g∗( f (w))

∣
∣
∣
∣ < δ

if 0 < |η − f (w)| < λ. Since f is continuous at w, there exists μ > 0 such that
| f (z) − f (w)| < λ if |z − w| < μ. Hence

∣
∣β(z) − g∗( f (w))

∣
∣ < δ if |z − w| < μ,

and so β is continuous at w, with limz∪w β(z) = g∗( f (w)). Since β and ξ are
continuous at w,

(g ◦ f )∗(w) = lim
z∪w

g( f (z)) − g( f (w))

z − w
= β(w)ξ (w) = g∗( f (w)) f ∗(w).

�

Theorem 3.2.6 Let G and α be open subsets of C. Let f : G ∪ C and g : α ∪ C
be continuous functions such that f (G) ⇐ α and g( f (z)) = z for all z ∈ G.
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Then if g ∈ H(α) and for all w ∈ α, g∗(w) �= 0, the function f is in H(G) and
f ∗(z) = 1/g∗( f (z)) for all z ∈ G.

Proof Let a ∈ G. Then if z ∈ G and z �= a, it follows that f (z) �= f (a), for
otherwise g( f (z)) = g( f (a)) and so z = a. Thus for z ∈ G, with z �= a,

1 = g( f (z)) − g( f (a))

z − a
= g( f (z)) − g( f (a))

f (z) − f (a)
· f (z) − f (a)

z − a
,

so that
f (z) − f (a)

z − a
= 1

ξ (z)
,

where

ξ (z) = g( f (z)) − g( f (a))

f (z) − f (a)
if z �= a, ξ (a) = g∗( f (a)).

We claim that ξ : G ∪ C is continuous at a. Accepting this for the moment, and
noting that ξ (a) �= 0, it follows that

lim
z∪a

f (z) − f (a)

z − a
= 1

ξ (a)
,

so that f is differentiable at a and f ∗(a) = 1/g∗( f (a)). That f ∈ H(G) is now
plain.

It remains to show that limz∪a ξ (z) = g∗( f (a)). Let δ > 0. Then there exists
φ > 0 such that

∣
∣
∣
∣
g(w) − g( f (a))

w − f (a)
− g∗( f (a))

∣
∣
∣
∣ < δ if 0 < |w − f (a)| < φ.

Moreover, there exists λ > 0 such that 0 < | f (z) − f (a)| < φ if 0 < |z − a| < λ.
Hence

∣
∣
∣
∣
g( f (z)) − g( f (a))

f (z) − f (a)
− g∗( f (a))

∣
∣
∣
∣ < δ if 0 < |z − a| < λ,

and our claim is justified. �

This result will be used later to show that branches of the logarithm are analytic.
Next, the notion of partial derivatives of real-valued functions is needed.

Definition 3.2.7 Let G be an open subset of C, let x0 + iy0 ∈ G and let u : G ∪ R;
denote the value of u at x + iy ∈ G by u(x, y) (identifying x + iy with (x, y) ∈ R2 in
the usual way). If the function x ∞−∪ u(x, y0) is differentiable at x0 we say that the
first partial derivative of u with respect to x at (x0, y0) exists, and that its value
is the derivative of x ∞−∪ u(x, y0) at x0, denoted by u1(x0, y0) (or by ux (x0, y0) or



3.2 Analytic Functions: The Cauchy-Riemann Equations 177

πu
πx (x0, y0)). The first partial derivative of u with respect to y at (x0, y0) is defined
analogously, and is denoted by u2(x0, y0), uy(x0, y0) or πu

πy (x0, y0).

In other words,

u1(x0, y0) = lim
x∪x0

u(x, y0) − u(x0, y0)

x − x0

and

u2(x0, y0) = lim
y∪y0

u(x0, y) − u(x0, y0)

y − y0
.

For example, if G = C and u(x, y) = ex cos y, then for all (x0, y0) ∈ C,
u1(x0, y0) = ex0 cos y0 and u2(x0, y0) = −ex0 sin y0.

Theorem 3.2.8 Let G be an open subset of C, let z0 = (x0, y0) ∈ G and let
f : G ∪ C be differentiable at z0; define maps u, v : G ∪ R by u(x, y) = re f (z),
v(x, y) = im f (z) (z = x + iy ∈ G). Then the partial derivatives u1, u2, v1, v2 all
exist at (x0, y0) and

f ∗(z0) = u1(x0, y0) + iv1(x0, y0) = v2(x0, y0) − iu2(x0, y0).

In particular, we have the so-called Cauchy-Riemann equations

u1(x0, y0) = v2(x0, y0), u2(x0, y0) = −v1(x0, y0).

Proof For any h = h1 + ih2 �= 0 such that z0 + h ∈ G we have

f (z0 + h) − f (z0) = {u(x0 + h1, y0 + h2) − u(x0, y0)}
+ i {v(x0 + h1, y0 + h2) − v(x0, y0)} .

Since f is differentiable at z0, it follows that given any δ > 0, there exists λ > 0
such that ∣

∣
∣
∣

f (z0 + h) − f (z0)

h
− f ∗(z0)

∣
∣
∣
∣ < δ if 0 < |h| < λ.

Thus if h2 = 0 and 0 < |h1| < λ, we have, writing U = u(x0+h1,y0)−u(x0,y0)
h1

and

V = v(x0+h1,y0)−v(x0,y0)
h1

, ∣
∣U + iV − f ∗(z0)

∣
∣ < δ.

Hence

lim
h1∪0

u(x0 + h1, y0) − u(x0, y0)

h1
= re f ∗(z0)
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and

lim
h1∪0

v(x0 + h1, y0) − v(x0, y0)

h1
= im f ∗(z0).

Thus u1 and v1 exist at (x0, y0) and f ∗(z0) = u1(x0, y0) + iv1(x0, y0). In a similar
way, putting h1 = 0 this time, we see that v2 and u2 exist at (x0, y0) and that
f ∗(z0) = v2(x0, y0) − iu2(x0, y0). Comparison of these two forms of f ∗(z0) gives
the Cauchy-Riemann equations. �

We remark that it may happen that the Cauchy-Riemann equations hold at a point
but that the function concerned is not differentiable at that point: consider the function
f : C ∪ C defined by f (z) = ≥|xy| (z = x + iy ∈ C) and the point 0.

Corollary 3.2.9 If f ∈ H(G), then the functions u1, u2, v1 and v2 are continuous
in G and satisfy the Cauchy-Riemann equations in G.

Proof That the Cauchy-Riemann equations hold throughout G is clear from
Theorem 3.2.8; that the functions u1, u2, v1 and v2 are continuous in G follows
from a remarkable result (to be proved later: Theorem 3.6.10) that f ∗ is analytic and
thus continuous in G. �

It is here that we first begin to see howmuch stronger the notion of differentiability
is for complex-valued functions than for real-valued ones.

The converse of Corollary 3.2.9 also holds, as we now prove.

Theorem 3.2.10 Let G be an open subset of C and let u : G ∪ R and v : G ∪ R
have first-order partial derivatives u1, u2, v1 and v2 which are continuous in G and
satisfy the Cauchy-Riemann equations at each point of G:

u1(x, y) = v2(x, y), u2(x, y) = −v1(x, y) for all points (x, y) in G.

Then the function f : G ∪ C defined by f (z) = u(x, y)+v(x, y) (z = (x, y) ∈ G)

is analytic in G.

Proof Let z = (x, y) ∈ G and let r > 0 be so small that z + h ∈ G if |h| < r . Then
if h = (h1, h2) and 0 < |h| < r,

f (z + h) − f (z) = {u(x + h1, y + h2) − u(x, y + h2)} + {u(x, y + h2) − u(x, y)}
+ i {v(x + h1, y + h2) − v(x, y + h2)} + i{v(x, y + h2) − v(x, y)}

= h1u1(x + h∗
1, y + h2) + h2u2(x, y + h∗

2)

+ i{h1v1(x + h∗∗
1, y + h2) + h2v2(x, y + h∗∗

2)}

for some h∗
1, h∗∗

1, h∗
2, h∗∗

2 with
∣
∣h∗

1

∣
∣ ,

∣
∣h∗∗

1

∣
∣ ⊂ |h1| and

∣
∣h∗

2

∣
∣ ,

∣
∣h∗∗

2

∣
∣ ⊂ |h2|, the final step

following from themean-value theorem.Use of theCauchy-Riemann equations gives
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∣
∣ f (z + h) − f (z) − h{u1(x, y) + iv1(x, y)}∣∣

⊂ ∣
∣h1{u1(x + h∗

1, y + h2) − u1(x, y)}∣∣ + ∣
∣h2{u2(x, y + h∗

2) − u2(x, y)}∣∣
+ ∣

∣h1{v1(x + h∗∗
1, y + h2) − v1(x, y)}∣∣

+ ∣
∣h2{v2(x, y + h∗∗

2) − v2(x, y)}∣∣ , (3.2.1)

and in view of the continuity of u1, u2, v1 and v2 at (x, y), given any δ > 0, there
exists λ > 0 such that the right-hand side of (3.2.1) is less than or equal to

1

2
δ(|h1| + |h2|) ⊂ δ(|h1|2 + |h2|2)1/2 = δ |h| if |h| < λ.

Hence
∣
∣
∣
∣

f (z + h) − f (z)

h
− u1(x, y) − iv1(x, y)

∣
∣
∣
∣ ⊂ δ if 0 < |h| < λ,

and so f ∗(z) = u1(x, y) + iv1(x, y) and f is analytic in G. �

To conclude this section we prove that an analytic function with zero derivative
everywhere in an open set is constant, provided that the open set is connected: the
connectedness is essential, as it rules out the situation in which the function takes
different constant values on disjoint open sets.

Theorem 3.2.11 Let G be a region in C, let f ∈ H(G) and suppose that for all
z ∈ G, f ∗(z) = 0. Then f is constant in G.

Proof By Theorem 3.2.8, the functions u1, u2, v1 and v2 all vanish identically in G.
Since G is open and connected, by Theorem 2.4.23 it follows that given any a, b ∈ G,
there is a polygonal path θ in G joining a to b and with line segments parallel to the
coordinate axes, so that the track of θ is θ ∗ = ⋃n

k=1[zk−1, zk], say, where z0 = a,

zn = b and [zk−1, zk] denotes the line segment joining zk−1 to zk . We prove that
f (a) = f (b) (and hence that f is constant, since a and b are arbitrary points in G)

by showing that f (z0) = f (z1) = · · · = f (zn). Put zk = xk + iyk (0 ⊂ k ⊂ n).
Either xk = xk−1 or yk = yk−1 (k = 1, . . . , n) as the segments are parallel to the
axes. Suppose that for a particular k, yk = yk−1 (the other case is handled similarly).
Then by the mean-value theorem, for some x ∗, x ∗∗ between xk and xk−1 we have

f (zk) − f (zk−1) = u(xk, yk) − u(xk−1, yk) + i{v(xk, yk) − v(xk−1, yk)}
= {u1(x ∗, yk) + iv1(x ∗∗, xk)}(xk − xk−1)

= 0.

The result follows. �

Exercise 3.2.12

1. Let f : C ∪ C be continuous and such that for all w, z ∈ C,
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f (w + z) = f (w) + f (z).

Show that there are complex numbers a and b such that for all z ∈ C,

f (z) = az + bz.

If in addition, f ∈ H(C), prove that b = 0.
2. Investigate the continuity at z = 0 of the functions f and g defined by

f (z) = re(z2)/ |z|2 (z �= 0), f (0) = 0;
g(z) = (re(z2))2/ |z|2 (z �= 0), g(0) = 0.

3. Let f : C\{0} ∪ C be defined by

f (z) = x3y(y − i x)/(x6 + y2) (z = x + iy �= 0).

Prove that for all τ ∈ R,

lim
r∪0

f (r cosτ + ir sin τ)/r = 0,

but that limz∪0 f (z)/z does not exist.
4. Prove that, regarded as functions from C to itself,

(i) z ∞−∪ |z| is continuous but nowhere differentiable;
(ii) z ∞−∪ |z|2 is differentiable at 0, but at no other point of C.

5. Let G be a region in C and let f ∈ H(G). Prove that if re f (im f or | f |) is
constant, then f is constant.

6. Find a function f ∈ H(C) such that for all z = x + iy ∈ C,

re f (z) = ex cos y + xy.

7. Let G be a region inCwith 0 /∈ G; letF be the family of all functions f ∈ H(G)

such that for all z = x + iy ∈ G,

| f (z)| = ey/|z|2 .

Find one function f0 ∈ F , and by consideration of | f (z)| /| f0(z)|, where f is
any member of F , show that F = {ε f0 : ε ∈ C, |ε| = 1}.

3.3 Power Series

A central goal, achieved in Sect. 3.6, is to show that analytic functions are precisely
those which can be represented by power series. We begin with some results which
will have a familiar appearance in view of their similarity to real-variable statements.
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Let z0 ∈ C.A power series centred at z0 is a series of functions
∑

fn withwhich
is associated a sequence (an)n∈N0 of complex numbers such that fn(z) = an(z−z0)n

(z ∈ C, n ∈ N0). To be understood by context, althoughwith some abuse of notation,
the series is usually denoted by

∑→
n=0 an(z − z0)n . Initially we set z0 = 0 and deal

with power series centred at 0, termed simply power series. Frequently the symbol∑
will be used in place of

∑→
n=0.

Given a power series
∑

anzn , a matter of first interest is the nature of its conver-
gence set, that is, the set

S := {z ∈ C :
∑

anzn is convergent}.

Since 0 ∈ S, S �= √; if S is bounded, it is contained in a closed ball centred at the
origin. Let

R :=
{
sup{|z| : z ∈ S} if S is bounded,
→ if S is unbounded;

R is called the radius of convergence of
∑

anzn . It will be shown that if R = 0
then S = {0}; if 0 < R < → then

{z ∈ C : |z| < R} ⇐ S ⇐ {z ∈ C : |z| ⊂ R};

and if R = → then S = C. The set {z ∈ C : |z| < R} is referred to as the
disc of convergence of

∑
anzn . Note that nothing is said about the convergence or

divergence of
∑

anzn when |z| = R.
In preparation for the next lemma, observe that if z0 ∈ S then, since

limn∪→
∣
∣anzn

0

∣
∣ = 0, the set {anzn

0 : n ∈ N0} is bounded.
Lemma 3.3.1 (Weierstrass) Let (an)n∈N0 be a sequence of complex numbers and
suppose there is a complex number z0 �= 0 such that

{
anzn

0 : n ∈ N0
}

is bounded.
Then for all z ∈ C with |z| < |z0|, the series

∑→
n=0 anzn is convergent, indeed is

absolutely convergent. Further, if r < |z0| then the series is uniformly convergent on
{z ∈ C : |z| ⊂ r}.
Proof By hypothesis, there exists a positive real number M such that for all n ∈ N0,∣
∣anzn

0

∣
∣ ⊂ M . Thus for all n ∈ N0 and all z ∈ C with |z| < |z0| ,

∣
∣anzn

∣
∣ = ∣

∣anzn
0

∣
∣ |z/z0|n ⊂ M |z/z0|n .

Hence, by comparison with the geometric series
∑ |z/z0|n , the series

∑
anzn is

absolutely convergent if |z| < |z0|. If |z| ⊂ r < |z0|, then |anzn| ⊂ M |r/z0|n , and
use of the Weierstrass M-test gives the desired uniform convergence. �

Theorem 3.3.2 Let (an)n∈N0 be a sequence of complex numbers. Let R be the radius
of convergence of the power series

∑
anzn and let S be its convergence set. Then

(i) R = 0 implies that S = {0};
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(ii) 0 < R < → implies that

{z ∈ C : |z| < R} ⇐ S ⇐ {z ∈ C : |z| ⊂ R};

(iii) R = → implies that S = C.

Moreover, if |z| < R then
∑

anzn converges absolutely; also, if 0 < r < R, then∑
anzn converges uniformly on {z ∈ C : |z| ⊂ r}.

Proof (i) Suppose that R = 0. Since |z| ⊂ R whenever z ∈ S, it follows that S = {0}.
(ii) Suppose that 0 < R < →. Plainly, S ⇐ {z ∈ C : |z| ⊂ R}. To obtain the other
inclusion, suppose z ∈ C and |z| < R. Then there exists w ∈ S such that |z| <

|w| < R and so, in consequence of Lemma 3.3.1
∑

anzn is absolutely convergent.
Hence {z ∈ C : |z| < R} ⇐ S.
(iii) Suppose R = →. Reasoning similar to that used to establish (ii) shows that
S = C. This is left to the reader.

Lastly, the absolute convergence of
∑

anzn if |z| < R was noted in the treatment
of case (ii) and a parallel argument establishes it in case (iii). Further, if 0 < r < R,
then there exists z0 ∈ S such that r < |z0| < R and appeal to Lemma 3.3.1 shows
that

∑
anzn converges uniformly on {z ∈ C : |z| ⊂ r}. �

Theorem 3.3.3 Let (an)n∈N0 be a sequence of complex numbers, let R denote the
radius of convergence of

∑
anzn and let S denote its convergence set.

(i) Suppose 0 ⊂ R < →. Then the sequence (anzn)n∈N0 is unbounded if |z| > R:
symbolically,

sup
{∣∣anzn

∣
∣ : n ∈ N0

} = → (|z| > R).

(ii) Let
T := {z ∈ C : the sequence (anzn)n∈N0 is bounded}.

Then S ⇐ T ⇐ {z ∈ C : |z| ⊂ R} if 0 ⊂ R < →; and S = T = C if R = →. Also,

R =
{
sup{|z| : z ∈ T } if T is bounded,
→ if T is unbounded.

Proof (i) To obtain a contradiction, suppose that z0 ∈ C, |z0| > R and that the
sequence (anzn

0)n∈N0 is bounded. Since R ≤ 0, z0 �= 0 and so, by Lemma 3.3.1, the
set {z ∈ C : |z| < |z0|} ⇐ S. It follows that |z0| ⊂ R, contradicting our assumption.
(ii) Obviously S ⇐ T . By (i), if 0 ⊂ R < → then T ⇐ {z ∈ C : |z| ⊂ R}; also, if
R = → then S = T = C. Hence S is bounded if, and only if, T is bounded. The
formula for R follows immediately. �

Formulae for the evaluation of the radius of convergence are evidently desirable
and we now give some.
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Theorem 3.3.4 Let (an) be a sequence of non-zero complex numbers such that

lim
n∪→

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ exists (possibly equal to →).

Then the radius of convergence R of
∑

anzn is given by the formula

1

R
= lim

n∪→

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ ,

provided that we interpret 1/→ as 0 and 1/0 as →.

Proof By Theorem 3.1.15,
∑

anzn converges absolutely or diverges according to

whether limn∪→ |z|
∣
∣
∣ an+1

an

∣
∣
∣ is less than or greater than 1. Thus

R = sup
{
|z| :

∑
anzn is convergent

}
= 1/ lim

n∪→

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ . �

Useful though this formula is, it relies on the existence of limn∪→
∣
∣
∣ an+1

an

∣
∣
∣ and so

cannot cope with, for example,
∑

zn! where, for n > 1, an+1/an is either 1/0, 0/0
or 0/1. To remedy this, the nth root formula given below can be used.

Theorem 3.3.5 (Cauchy-Hadamard) Let (an) be a sequence of complex numbers.
Then the radius of convergence R of

∑
anzn is given by

1

R
= lim sup

n∪→
|an|1/n ,

with the understanding that 1/→ is 0 and 1/0 is →.

Proof First suppose that R = →, so that
∑

anzn is convergent for all z ∈ C: thus
given any particular z ∈ C, certainly |anzn| ⊂ 1 for all large enough n. Hence

lim sup
n∪→

∣
∣anzn

∣
∣1/n = |z| lim sup

n∪→
|an|1/n ⊂ 1,

and as this must hold for all z ∈ C, lim supn∪→ |an|1/n = 0.
Next, suppose that R = 0, so that

∑
anzn is divergent for all z ∈ C, z �= 0. Then

lim sup
n∪→

∣
∣anzn

∣
∣1/n = |z| lim sup

n∪→
|an|1/n ≤ 1 for all z �= 0,

by Theorem 3.1.17. Thus lim supn∪→ |an|1/n = →.
Finally, suppose that 0 < R < →. Since

∑
anzn is convergent if |z| < R and

divergent if |z| > R, we see that
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lim sup
n∪→

∣
∣anzn

∣
∣1/n ⊂ 1 if |z| < R, lim sup

n∪→
∣
∣anzn

∣
∣1/n ≤ 1 if |z| > R,

(by Theorem 3.1.17 again). Hence |z| lim supn∪→ |an|1/n is⊂ 1 if |z| < R, and≤ 1
if |z| > R. Thus 1/R = lim supn∪→ |an|1/n . �

Example 3.3.6

(i) Use of Theorem 3.3.4 shows immediately that the radius of convergence of∑ zn

n! is →, for limn∪→ n!
(n+1)! = 0.

(ii) The series
∑

zn! defies Theorem 3.3.4, as has already been remarked. However,
since for this series an is either 0 or 1, it is plain that lim supn∪→ |an|1/n = 1,
and so R = 1.

Now we begin to establish the connection between power series and analyticity.

Definition 3.3.7 Let G be an open subset of C. A function f : G ∪ C is said to be
representable by power series in G if, for each z0 ∈ G and each r > 0 such that
B(z0, r) ⇐ G, there is a sequence (an)n≤0 in C such that for all z ∈ B(z0, r),

f (z) =
→∑

0

an(z − z0)
n .

In fact, (an)n≤0 depends on z0 but not on r , as the following theorem shows.

Theorem 3.3.8 If f is representable by power series in G, then f ∈ H(G) and f ∗
is also representable by power series in G; in fact, if

f (z) =
→∑

0

an(z − z0)
n for all z ∈ B(z0, r),

then

f ∗(z) =
→∑

1

nan(z − z0)
n−1 for all z ∈ B(z0, r).

Proof Let z0 ∈ G, let B(z0, r) ⇐ G and suppose that f (z) = ∑→
0 an(z − z0)n for

all z ∈ B(z0, r). With the obvious change of variable we may suppose that z0 = 0.
Let R be the radius of convergence of

∑→
0 anzn ; plainly 0 < r ⊂ R. For each

z ∈ B(0, r) put g(z) = ∑→
n=1 nanzn−1. The radius of convergence of this series is

1/lim sup
n∪→

|nan|1/n = 1/lim sup
n∪→

|an|1/n = R,

since limn∪→ n1/n = 1. Fixw ∈ B(0, r) and choose ζ such that |w| < ζ < r . Then
if z �= w and |z| < ζ,
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f (z) − f (w)

z − w
− g(w) =

→∑

n=1

an

{
zn − wn

z − w
− nwn−1

}
. (3.3.1)

Note that (zn − wn)/(z − w) − nwn−1 equals 0 if n = 1, while if n ≤ 2 it equals

zn−1 + zn−2w + · · · + wn−1 − nwn−1 = (z − w)

n−1∑

k=1

kwk−1zn−k−1.

Moreover, if |z| < ζ,

∣
∣
∣
∣
∣

n−1∑

k=1

kwk−1zn−k−1

∣
∣
∣
∣
∣
⊂

n−1∑

k=1

kζk−1ζn−k−1 =
n−1∑

k=1

kζn−2 = 1

2
n(n−1)ζn−2 < n2ζn−2.

Hence if z �= w and |z| < ζ,

∣
∣
∣
∣

f (z) − f (w)

z − w
− g(w)

∣
∣
∣
∣ ⊂ |z − w|

→∑

n=2

n2ζn−2 |an| . (3.3.2)

Since ζ < R,

lim sup
n∪→

∣
∣
∣n2ζn−2an

∣
∣
∣
1/n = lim

n∪→
(

n2/nζ1−2/n
)
lim sup

n∪→
|an|1/n = ζ/R < 1,

and so the series on the right-hand side of (3.3.2) converges. Thus the left-hand side
of (3.3.2) tends to 0 as z ∪ w. It follows that f ∗(w) = g(w), and the proof is
complete. �

Remark 3.3.9 Since f ∗ satisfies the samehypotheses as f , the theoremcanbe applied
to f ∗. It follows that f has derivatives of all orders, that each derivative is repre-
sentable by power series in G and is thus analytic in G, and that for each k ∈ N,

f (k)(z) =
→∑

n=k

n(n − 1) . . . (n − k + 1)an(z − z0)
n−k for all z ∈ B(z0, r),

so that f (k)(z0) = k! ak . Thus given any z0 ∈ G, there is a unique sequence (an)

such that f (z) = ∑→
0 an(z − z0)n in B(z0, r) ⇐ G: it is given by

an = f (n)(z0)/n!

We emphasise that this depends on z0 but not on the particular r . The converse of
Theorem 3.3.8, namely that if f ∈ H(G) then f is representable by power series in
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G, is true and as mentioned earlier, is one of our main objectives and will be proved
in Theorem 3.6.10 to follow.

We now turn to special functions represented by power series, beginning with the
exponential function.

Theorem 3.3.10 The series E(z) := ∑→
0

zn

n! converges absolutely for all z ∈ C,
E ∗(z) = E(z) for all z ∈ C and E(0) = 1. [The function E : C ∪ C is called the
(complex) exponential function. It is more frequently written as exp : C ∪ C, but
in this and much of Sect.3.4, an economy of notation is obtained by using E in place
of exp].
Proof We have already seen in Example 3.3.6 (i) that the radius of convergence of
the series for E(z) is →. Now use Theorem 3.3.8. �

Theorem 3.3.11 For all w, z ∈ C we have

E(z)E(−z) = 1, E(z) �= 0 and E(z + w) = E(z)E(w).

Proof By Theorems 3.2.5 and 3.3.10, (E(−z))∗ = −E(−z) and so

(E(z)E(−z))∗ = E(z)E(−z) − E(z)E(−z) = 0 for all z ∈ C.

Hence by Theorem 3.2.11, E(z)E(−z) is constant. Since E(0) = 1, E(z)E(−z) =
1; thus for all z ∈ C, E(z) �= 0. Finally, if we fix w ∈ C, take any z ∈ C and
differentiate with respect to z, we find that

{E(z + w)/E(z)}∗ = {E(z)E(z + w) − E(z + w)E(z)} /E(z)2 = 0.

Thus E(z + w)/E(z) remains constant as z varies; taking z = 0 we see that
E(z + w)/E(z) = E(w). �

Remark 3.3.12 From Theorem 3.3.11 it is easy to show, by inductive arguments,
that

E(

n∑

1

zk) =
n∏

1

E(zk) for all n ∈ N and all z1, . . . , zn ∈ C,

and that
E(pz) = (E(z))p for all z ∈ C and all p ∈ Z.

Note also that

e = E(1) =
→∑

0

1

n! .

Moreover, Theorem 3.3.11 shows that for all z, z0 ∈ C,
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E(z) = E(z0)E(z − z0) = E(z0)
→∑

n=0

(z − z0)n

n! ,

which proves that E is representable by power series in C. Finally, we recall
that the function x ∞−∪ E(x) : R ∪ (0,→) is injective and has inverse
x ∞−∪ log x : (0,→) ∪ R.

Next we deal with the trigonometric functions.

Definition 3.3.13 The functions sin : C ∪ C and cos : C ∪ C are defined by

sin z =
→∑

0

(−1)nz2n+1/(2n + 1)!, cos z =
→∑

0

(−1)nz2n/(2n)! (z ∈ C).

Use of Theorem 3.3.4 shows that both these series have infinite radius of conver-
gence. Obviously cos 0 = 1 and sin 0 = 0; by Theorem 3.3.8,

(cos z)∗ = − sin z and (sin z)∗ = cos z for all z ∈ C.

Before establishing further properties of these functions we recall some elementary
facts about x ∞−∪ sin x , x ∞−∪ cos x : R ∪ R. First, cos 2 < 0: for

cos 2 = 1 − 22

2
+ 24

4! −
→∑

n=2

(
24n−2

(4n − 2)! − 24n

(4n)!
)

,

and
24n−2

(4n − 2)! − 24n

(4n)! = 24n

(4n)! {n(4n − 1) − 1} > 0 for all n ∈ N.

Next, sin x > 0 if 0 < x < 2, since

sin x =
→∑

n=1

(
x4n−3

(4n − 3)! − x4n−1

(4n − 1)!
)

,

and
x4n−3

(4n − 3)! − x4n−1

(4n − 1)! = x4n−3

(4n − 3)!
{
1 − x2

(4n − 1)(4n − 2)

}
> 0

if 0 < x < 2 and n ∈ N. Moreover, since (cos x)∗ = − sin x , x ∞−∪ cos x is strictly
decreasing in [0, 2] and so has exactly one zero in [0, 2]. We denote this real number
by Δ/2: cos Δ

2 = 0, sin Δ
2 > 0 and 3 < Δ < 4, since with x = 3/2 the expansion

cos x = 1 − x2

2
+ x4

4! − x6

6! +
→∑

n=2

(
x4n

(4n)! − x4n+2

(4n + 2)!
)
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shows that cos(3/2) > 0. From the definitions of sin and cos we see directly that

cos z = cos(−z), sin(−z) = − sin z, cos z + i sin z = E(i z), cos z − i sin z = E(−i z);

hence
cos z = (E(i z) + E(−i z))/2, sin z = (E(i z) − E(−i z))/(2i).

Also, if w, z ∈ C, then

2 cos z cosw = 1

2
(E(i z)+ E(−i z))(E(iw)+ E(−iw)) = cos(z +w)+cos(z −w)

and

−2 sin z sinw = 1

2
(E(i z)−E(−i z))(E(iw)−E(−iw)) = cos(z+w)−cos(z−w);

thus
cos(z + w) = cos z cosw − sin z sinw. (3.3.3)

Setting w = −z in this, we see that

cos2 z + sin2 z = 1, (3.3.4)

and so cos2 Δ
2 + sin2 Δ

2 = 1, which shows that sin Δ
2 = 1. Since E

( iΔ
2

) = i ,
E(2Δ i) = E(4 · Δ i

2 ) = i4 = 1; thus

E(z + 2Δ i) = E(z) for all z ∈ C. (3.3.5)

Now differentiate (3.3.3) with respect to z, holding w fixed; we obtain

sin(z + w) = sin z cosw + cos z sinw. (3.3.6)

From (3.3.3) and (3.3.6) it follows that cos and sin are representable by power series:
thus in the case of cos, given any a ∈ C,

cos z = cos(z − a) cos a − sin(z − a) sin a

= cos a
→∑

0

(−1)n(z − a)2n

(2n)! − sin a
→∑

0

(−1)n(z − a)2n+1

(2n + 1)! .

Other trigonometric functions can be defined as in the real case: thus

tan z = sin z/cos z, cot z = cos z/sin z, sec z = 1/cos z, cosec z = 1/sin z

whenever the denominators are non-zero.
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Notice how power series can be used to handle limits. For example, if z �= 0,
then sin z

z = 1 − z2
3! + z4

5! − . . .. This power series converges for all z ∈ C and so
determines a continuous function: hence

lim
z∪0

sin z

z
= 1.

The hyperbolic functions are defined by

sinh z = 1

2
(E(z) − E(−z)), cosh z = 1

2
(E(z) + E(−z)),

tanh z = sinh z/cosh z, coth z = cosh z/sinh z, cosechz = 1/sinh z,

sechz = 1/cosh z;

sinh and cosh are defined for all z ∈ C, the others whenever the denominator is non-
zero. Naturally there are relationships between these functions and the trigonometric
functions. For example, it is plain that

sinh z = −i sin(i z) and cosh z = cos(i z) for all z ∈ C.

Note that if z = x + iy, with x, y real, then

E(z) = E(x + iy) = E(x)E(iy) = E(x)(cos y + i sin y), |E(z)| = E(x),

and

cos z = cos(x + iy) = cos x cos(iy) − sin x sin(iy) = cos x cosh y − i sin x sinh y,

sin z = sin x cosh y + i cos x sinh y.

Exercise 3.3.14

1. Let (an) and (bn) be sequences of non-negative real numbers and suppose that
limn∪→ an = a, where 0 < a < →. Prove that

lim sup
n∪→

anbn = a lim sup
n∪→

bn .

2. Find the radius of convergence of each of the following power series:

∑
n pzn (p ∈ N),

∑
n!zn ,

∑
εn2 zn (|ε| < 1),

∑{2 + (−1)n}−nzn .

3. Given that
∑

anzn has radius of convergence R, find the radius of convergence
of each of the following power series:

∑
n3anzn ,

∑
anz3n ,

∑
a3

n zn .
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4. Let (an)n≤0 and (bn)n≤0 be sequences of complex numbers such that
∑→

0 an and∑→
0 bn are absolutely convergent, and put cn = ∑n

r=0 ar bn−r (n ∈ N0). Prove
that

∑→
0 cn is absolutely convergent and that

→∑

0

cn =
( →∑

0

an

⎧( →∑

0

bn

⎧

.

(∑
cn is called the Cauchy product of

∑
an and

∑
bn .

)

Use this result to show that:

(i)
∑→

n=0
(z+w)n

n! =
(∑→

n=0
zn

n!
) (∑→

n=0
wn

n!
)
for all w, z ∈ C;

(ii)
∑→

n=1 nzn−1 = (1 − z)−2 if |z| < 1.

5. Let f (z) = ∑→
n=1 anzn (|z| ⊂ 1); suppose that a1 = 1 and

∑→
n=2 n |an| < 1.

Prove that f is continuous and injective on {z ∈ C : |z| ⊂ 1}.
6. Prove that for all x, y ∈ R,

|cos(x + iy)|2 = sinh2 y + cos2 x, |sin(x + iy)|2 = sinh2 y + sin2 x .

3.4 Arguments, Logarithms and the Winding Number

We have already observed that in the real case, the inverse of the exponential function
is the logarithmic function. This makes it natural to study the corresponding situation
in the complex case, but to do this it is essential to consider the argument function,
and we now set about this.

Lemma 3.4.1 Given any z ∈ C\{0}, there are unique r > 0 and w ∈ C, with
|w| = 1, such that z = rw.

Proof Plainly we may write z = |z| (z/|z|), so that r := |z| and w := z/|z| have the
required properties. As for uniqueness, if z = r1w1 and z = r2w2, with r1, r2 > 0
and |w1| = |w2| = 1, then |r1w1| = |r2w2| and so r1 = r2. Thus w1 = w2. �

Theorem 3.4.2 Let w ∈ C be such that |w| = 1. Then there exists γ ∈ R such that
−Δ < γ ⊂ Δ and w = E(iγ).

Proof Put w = u + iv, with u, v ∈ R : u2 + v2 = 1. First suppose that u, v ≤ 0.
Since x ∞−∪ cos x is continuous and strictly decreasing on [0, Δ/2] and cos 0 = 1,
cos(Δ/2) = 0, there exists γ ∈ [0, Δ/2] such that cos γ = u; and evidently v =
± sin γ . In fact, v = sin γ since v ≤ 0 and sin γ ≤ 0. Hence w = cos γ + i sin γ =
E(iγ).

If u ⊂ 0 and v ≤ 0, then u + iv = i(v − iu) = i E(iγ ∗) for some γ ∗ in [0, Δ/2],
by the argument just given. But i E(iγ ∗) = E(iΔ/2)E(iγ ∗) = E(i(γ ∗ + Δ/2)). If
u ⊂ 0 and v < 0, then u + iv = −(−u − iv) = −E(iγ1) = E(i(−Δ + γ1)), where
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γ1 ∈ (0, Δ/2] since v < 0. Finally, if u ≤ 0 and v ⊂ 0, then u+iv = −i(−v+iu) =
−i E(iγ2) = E(i(γ2 − Δ/2)), where γ2 ∈ [0, Δ/2]. �

The next result is of considerable importance.

Theorem 3.4.3 E(z) = 1 if, and only if, z = 2kΔ i for some k ∈ Z.

Proof Since E(2Δ i) = 1, E(2kΔ i) = (E(2Δ i))k = 1 for all k ∈ Z. Con-
versely, suppose that 1 = E(z) = E(re z)E(i im z). Then since E(re z) ≤ 0
and |E(i im z)| = 1, we must have re z = 0 and E(iy) = 1, where y = im z.
There is a unique integer n such that n ⊂ 2y/Δ < n + 1; that is, such that
0 ⊂ y − 1

2nΔ < 1
2Δ . Put t = y − 1

2nΔ ; we claim that t = 0. For suppose not. Then
0 < t < 1

2Δ and E(i t) = E(iy)E(−inΔ/2) = i−n , so that E(4i t) = i−4n = 1.
However, E(i t) = l + im, where l > 0, m > 0, l2 + m2 = 1, and thus
E(4i t) = (l + im)4 = l4 − 6l2m2 + m4 + 4ilm(l2 − m2), which is real if, and
only if, l2 = m2 = 1

2 . But then E(4i t) = −1 and we have a contradiction. Thus
t = 0; that is, y = 1

2nΔ , and so E(iy) = in = 1. Hence n = 4k for some integer k,
and thus y = 2kΔ , so that z = 2kΔ i . �

Corollary 3.4.4 Let z ∈ C\{0}. Then there exist a unique r > 0 and a unique
γ ∈ (−Δ, Δ ] such that z = r E(iγ). In fact, r = |z|; γ is called the principal
argument of z and is written as arg z.

Proof By Lemma 3.4.1, there are unique numbers r > 0 and w ∈ C, with |w| = 1,
such that z = rw; and r = |z|. By Theorem 3.4.2, w = E(iγ) for some γ ∈
(−Δ, Δ ]. If w = E(iγ ∗) for another γ ∗ ∈ (−Δ, Δ ], then E(iγ) = E(iγ ∗) and hence
E(i(γ − γ ∗)) = 1. By Theorem 3.4.3, γ − γ ∗ is a multiple of 2kΔ ; and since both γ

and γ ∗ belong to (−Δ, Δ ], γ = γ ∗. �

The argument and modulus functions are very important; we give their continuity
properties next.

Theorem 3.4.5 (a) The map z ∞−∪ |z| of C to R is continuous.
(b) The map z ∞−∪ arg z of C\{0} to (−Δ, Δ ] is continuous at each point of

D(Δ) := {z ∈ C : z �= |z| E(iΔ)} = {z ∈ C : z �= − |z|}

and at no point of C\D(Δ).

Proof (a) This follows directly from the triangle inequality ||w| − |z|| ⊂ |w − z|.
(b) Let z ∈ D(Δ) and suppose that arg is not continuous at z. Then there is a sequence
(zn) in D(Δ) such that zn ∪ z but tn := arg zn � arg z := t . Hence there exist
δ > 0 and a subsequence (tm(n)) of (tn) such that

∣
∣tm(n) − t

∣
∣ > δ for all n. Let

sn = tm(n), wn = zm(n); wn ∪ z and no subsequence of (sn) converges to t . Since
(sn) is bounded (in fact, sn ∈ (−Δ, Δ ]), it has a convergent subsequence (sp(n)),
with sp(n) ∪ s �= t , s ∈ [−Δ, Δ ]. As both the exponential map and z ∞−∪ |z| are
continuous,
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∣
∣wp(n)

∣
∣ E(isp(n)) ∪ |z| E(is),

so that |z| E(is) = z = |z| E(i t), and hence E(i(s − t)) = 1. Since |s − t | < 2Δ ,
it follows from Theorem 3.4.3 that s = t . This contradiction proves that arg is
continuous at z.

Finally, suppose that z �= 0 and z ∈ C\D(Δ). For each n ∈ N put zn =
|z| E(iΔ(1 − n−1)), wn = |z| E(−iΔ(1 − n−1)). Then zn ∪ z, wn ∪ z,
arg zn ∪ Δ and arg wn ∪ −Δ , from which it follows that arg is not continu-
ous at z. �

Since C\D(Δ) = {z ∈ C : im z = 0, re z ⊂ 0}, we see that arg is continuous
everywhere on C except along the non-positive real axis: at 0, arg is not defined; and
at points on the negative real axis its oscillation is 2Δ . Corresponding to the principal
argument we define the principal logarithm, which also behaves well except on the
non-positive real axis.

Theorem 3.4.6 Given any z ∈ C\{0}, there is a unique w ∈ C with imw ∈ (−Δ, Δ ]
such that E(w) = z: explicitly,

w = log |z| + i arg z.

This w is called the principal logarithm of z. It is denoted by log z, the same symbol
being used for the principal logarithm, i.e. the map z ∞−∪ w, as for the real logarithm,
given their natural identification when z is real and positive.

Proof Let z ∈ C\{0} and put w = log |z| + i arg z. Then

E(w) = E(log |z|)E(i arg z) = |z| E(i arg z) = z.

If w∗ is such that E(w∗) = z and imw∗ ∈ (−Δ, Δ ], then E(w) = E(w∗) and so
E(w − w∗) = 1. By Theorem 3.4.3, w = w∗ since both imw and imw∗ belong to
(−Δ, Δ ]. �

This Theorem implies that the exponential function maps {z ∈ C : im z ∈
(−Δ, Δ ]} injectively onto C\{0}. The principal logarithm is the inverse of this map
and the analyticity of its restriction to D(Δ) is established next.

Theorem 3.4.7 The function z ∞−∪ log z : D(Δ) ∪ C is in H(D(Δ)) and has
derivative z ∞−∪ 1/z : D(Δ) ∪ C.

Proof Put f (z) = log z (z ∈ D(Δ)). By Theorem 3.4.5, since f (z) = log |z| +
i arg z, it follows that f is continuous. Since E( f (z)) = z for all z ∈ D(Δ), E ∈
H(C) and for all w ∈ C, E ∗(w) = E(w) �= 0, we see from Theorem 3.2.6 that
f ∈ H(D(Δ)) and f ∗(z) = 1/z for all z ∈ D(Δ). �

Now we can define arbitrary powers of z.
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Definition 3.4.8 Given any z ∈ C\{0} and any a ∈ C, we define za , the principal
ath power of z, by za = E(a log z).

Remark 3.4.9 If we take z = e we have ea = E(a).

Theorem 3.4.10 Let a ∈ C. The function z ∞−∪ za : D(Δ) ∪ C belongs to
H(D(Δ)) and has derivative z ∞−∪ aza−1 : D(Δ) ∪ C.

Proof By Theorem 3.2.5, z ∞−∪ za is in H(D(Δ)). Also,

(E(a log z))∗ = a · 1
z

E(a log z) = aE(− log z)E(a log z)

= aE((a − 1) log z) = aza−1. �

We recall that the principal argument arg z of z �= 0 is required to belong to
(−Δ, Δ ]. There is no particularly good reason for this other than definiteness, and in
various circumstances it becomes inconvenient to have to put up with the associated
discontinuity on the negative real axis. Evidently any real number which differs from
arg z by a multiple of 2Δ is just as good a candidate for the position of the argument
of z as arg z, and we now recognise this fact by defining the argument of z to be the
set of all such candidates; we make the corresponding definitions of the logarithm
and powers of z.

Definition 3.4.11 Let z ∈ C\{0}. The argument of z, Arg z, and the logarithm of
z, Log z, are defined by

Arg z = {γ ∈ R : z = |z| E(iγ)},Log z = {w ∈ C : E(w) = z}.

By Theorems 3.4.2 and 3.4.3,

Arg z = {2kΔ + arg z : k ∈ Z},Log z = {log z + 2kΔ i : k ∈ Z}.

Out of the infinitely many members of Arg z and Log z we need a procedure for
selecting desired members, just as the principal argument and principal logarithm
were chosen, and we now give this procedure.

Definition 3.4.12 Let τ ∈ R, z ∈ C\{0}. The unique element of Arg z∩(τ−2Δ, τ]
is called the τ—branch of the argument of z and is denoted by (τ − arg)(z).
Similarly, the τ—branch of the logarithm of z is defined to be the unique element
w of Log z with imw ∈ (τ − 2Δ, τ], and is written (τ − log)(z).

Evidently (Δ − arg)(z) and (Δ − log)(z) are the principal argument and the prin-
cipal logarithm of z respectively. The τ−branches of the argument and the logarithm
behave well everywhere in C except on {z ∈ C : z = |z| E(iτ)}, the ray from the
origin at an angle τ with the positive real axis: we summarise the position below.
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Theorem 3.4.13 Let τ ∈ R. Then (τ− arg) : C\{0} ∪ (τ − 2Δ, τ] is continuous
at each point of

D(τ) := {z ∈ C : z �= |z| E(iτ)}

and at no point of C\D(τ). Moreover, the exponential function E maps {w ∈ C :
imw ∈ (τ − 2Δ, τ]} onto C\{0} injectively; also z ∞−∪ (τ − log)(z) : D(τ) ∪ C
is analytic and has derivative z ∞−∪ 1/z.

Proof All these assertions follow from obvious modifications of the proofs of The-
orems 3.4.5 and 3.4.7. �

Definition 3.4.14 Let a ∈ C and z ∈ C\{0}. The set {E(a(log z + 2kΔ i)) : k ∈ Z}
is called the ath power of z. Given any τ ∈ R, the τ−branch of the ath power of z,
written (za)τ , is defined to be E(a(τ − log)(z)).

Plainly the Δ—branch of the ath power of z is the principal ath power of z, za .
By proceeding along lines similar to the proof of Theorem 3.4.10 we obtain:

Theorem 3.4.15 Let a ∈ C and τ ∈ R. The function z ∞−∪ (za)τ : D(τ) ∪ C is
in H(D(τ)) and has derivative z ∞−∪ a(za−1)τ : D(τ) ∪ C.

Example 3.4.16

(i) If a ∈ Z, E(a(log(z + 2kΔ i)) = E(a log z) for all k ∈ Z, and so all branches
of the ath power of z coincide with the principal branch, za .

(ii) Suppose we wish to find the 3Δ/2—branch of the argument , logarithm and i th
power of (−1 − i). Then applying the definitions we see that

(
3Δ

2
− arg

)
(−1 − i) = 5Δ

4
,

(
3Δ

2
− log

)
(−1 − i) = log

≥
2 + 5Δ i

4
,

((−1 − i)i )3Δ/2 = E

(
i

(
3Δ

2
− log

)
(−1 − i)

)

= E

(
−5Δ

4

){
cos(log

≥
2) + i sin(log

≥
2)
}

.

By way of contrast, the principal argument, logarithm and i th power are

arg(−1 − i) = −3Δ

4
, log(−1 − i) = log

≥
2 − 3Δ i

4
,

(−1 − i)i = E(i log(−1 − i)) = E

(
3Δ

4

){
cos(log

≥
2) + i sin(log

≥
2)
}

.

It is convenient to be able to use different branches of the argument, logarithm and
powers because of the desirability of keeping discontinuities or lack of analyticity
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away from particular parts of the complex plane. We shall see how useful this is once
integration theorems have been developed in Sects. 3.5 and 3.6.

To conclude the present section we turn to the notion of the winding number,
which provides a measure of the number of times a closed path in the plane winds
about a given point. This is achieved by means of continuous arguments, which we
give in a metric space setting for greater flexibility.

Definition 3.4.17 Let X be a metric space and let f : X ∪ C\{0} be continuous.
A continuous map g : X ∪ C is called a continuous logarithm of f (on X ) if
exp(g(x)) = f (x) for all x ∈ X (or, equivalently, if g(x) ∈ Log f (x) for all x ∈ X ).
A continuous map γ : X ∪ R is called a continuous argument of f (on X ) if
f (x) = | f (x)| exp(iγ(x)) for all x ∈ X (or, equivalently, if γ(x) ∈ Arg f (x) for
all x ∈ X ). In the special case in which X is a region in C such that 0 /∈ X , and
f : X ∪ X is the identity map ( f (x) = x for all x ∈ X), a continuous logarithm
of the identity is called a branch of the logarithm (it is analytic by Theorem 3.2.6),
and a continuous argument of the identity is called a branch of the argument.

Various relationships of interest are given in the following:

Theorem 3.4.18 Let X be a metric space and let f : X ∪ C\{0} be continuous.
Then:

(a) if g is a continuous logarithm of f , im g is a continuous argument of f ;
(b) if γ is a continuous argument of f , log | f | + iγ is a continuous logarithm of f ;
(c) if X is connected and g1, g2 are continuous logarithms of f , then g2−g1 = 2Δ in

for some n ∈ Z; if γ1, γ2 are continuous arguments of f (and X is connected),
then γ2 − γ1 = 2Δm for some m ∈ Z;

(d) if X is connected and x, y ∈ X, then g(x) − g(y) = log | f (x)| − log | f (y)|
+i{γ(x) − γ(y)} for all continuous logarithms g and all continuous arguments
γ of f .

Proof (a) For all x ∈ X,

f (x) = exp(g(x)) = exp(re g(x)) exp(i im g(x)) = | f (x)| exp(i im g(x)),

and so im g is a continuous argument of f .
(b) For all x ∈ X,

f (x) = | f (x)| exp(iγ(x)) = exp(log | f (x)| + iγ(x)),

which proves the result.
(c) Since f (x) = exp(g1(x)) = exp(g2(x)) for all x ∈ X , it follows that
(g1 − g2)/(2Δ i) is a continuous integer-valued function on the connected set X
(by Theorem 3.4.3). Thus by Theorems 2.4.11 and 2.4.8, (g1 − g2)/(2Δ i) is con-
stant, so that g1 − g2 = 2Δ in for some n ∈ Z. From this and (b) we see that
γ2 − γ1 = 2Δm for some m ∈ Z.
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(d) Let g, γ be respectively a continuous logarithm and a continuous argument of f .
Then by (b), log | f |+iγ is a continuous logarithm of f ; and by (c), g−log | f |−iγ =
2Δ in for some n ∈ Z. The result follows. �

At the level of generality we have used so far, continuous arguments need not
exist. For example, let X = {z ∈ C : |z| = 1} and define f : X ∪ C\{0} by
f (z) = z for all z ∈ X . Suppose that f has a continuous argument γ , and define
θ : [0, 2Δ ] ∪ X by θ (t) = eit ; since z = |z| exp(iγ(z)) = exp(iγ(z))when z ∈ X ,
we see that eit = exp(iγ(eit )) for all t ∈ [0, 2Δ ]. Hence t ∞−∪ t and t ∞−∪ γ(eit )

are continuous arguments of θ , and so by Theorem 3.4.18 (c), γ(eit ) = t + 2Δk
for some k ∈ Z. With t = 0 this gives γ(1) = 2Δk, but with t = 2Δ we have
γ(1) = 2Δ(1+ k). This contradiction shows that no continuous argument can exist.

This difficulty vanishes if X is a closed, bounded interval [a, b] in R, as we now
show.

Theorem 3.4.19 Let θ : [a, b] ∪ C\{0} be continuous. Then θ has a continuous
logarithm.

Proof Let D be any open ball in C which does not contain 0. We claim that there
is an analytic branch of the logarithm on D: that is, there is a function g which
is analytic on D and is such that exp(g(z)) = z for all z ∈ D. Evidently D ⇐
{z ∈ C : z �= |z| eiτ} = D(τ) for some τ ∈ R. Since, by Theorem 3.4.13,
the map z ∞∪ (τ − log)(z) belongs to H(D(τ)), it suffices to choose g to be its
restriction to D.

Since [a, b] is compact, |θ | attains its minimum, m say, on [a, b]; clearly
m > 0. As θ is uniformly continuous on [a, b] (by Theorem 2.3.30), there is
a partition {t0, t1, . . . , tn} of [a, b], with a = t0 < t1 < · · · < tn = b, such
that

∣
∣θ (t) − θ (t j )

∣
∣ < m whenever t ∈ [t j , t j+1] and j = 0, 1, . . . , n − 1.

Hence for all j ∈ {0, 1, . . . , n − 1}, there is a g j ∈ H(B(θ (t j ), m)) such that
exp(g j (θ (t))) = θ (t) for all t ∈ [t j , t j+1], as we saw in the first part of the proof.
Thus the restriction of θ to each sub-interval [t j , t j+1] has a continuous logarithm,
h j say, defined by h j (t) = g j (θ (t)) for each t ∈ [t j , t j+1].

Since θ (t) = exp(h0(t)) on [t0, t1] and θ (t) = exp(h1(t)) on [t1, t2], it follows
that exp(h0(t1)) = exp(h1(t1)), so that by Theorem 3.4.3, h0(t1) = h1(t1) + 2Δ ik
for some k ∈ Z. Since h1 + 2Δ ik is also a continuous logarithm of θ on [t1, t2],
the function h : [t0, t2] ∪ C defined by h(t) = h0(t) for t0 ⊂ t ⊂ t1, h(t) =
h1(t) + 2Δ ik for t1 ⊂ t ⊂ t2, is thus a continuous logarithm of θ on [t0, t2].
Repetition of this process a further n − 2 times gives a continuous logarithm of θ on
[a, b]. �

Theorem 3.4.20 Let θ : [a, b] ∪ C be a path and suppose that 0 /∈ θ ∗
(= θ ([a, b])). Let γ and ψ be continuous arguments of θ . Then γ(b) − γ(a) =
ψ(b) − ψ(a); if θ is closed, (γ(b) − γ(a)) /(2Δ) ∈ Z.

Proof By Theorem 3.4.18 (c), γ −ψ = 2Δm for somem ∈ Z, whence γ(b)−γ(a) =
ψ(b) − ψ(a). For each t ∈ [a, b], exp(iγ(t)) = θ (t)/ |θ (t)|; thus if θ is closed,
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exp(iγ(b) − iγ(a)) = θ (b) |θ (a)| /(θ (a) |θ (b)|) = 1.

By Theorem 3.4.3, (γ(b) − γ(a)) /(2Δ) ∈ Z. �
We are now in a position to define the winding number.

Definition 3.4.21 Let θ : [a, b] ∪ C be a path and, for anyw ∈ C, denote by θ +w

the path t ∞−∪ θ (t) + w : [a, b] ∪ C. Let z0 ∈ C\θ ∗ and let γ be a continuous
argument of θ − z0. The winding number of θ with respect to z0 is defined to be
{γ(b) − γ(a)}/(2Δ), written n(θ, z0).

Note that for allw ∈ C, n(θ, z0) = n(θ +w, z0+w); note also that if θ is closed,
n(θ, z0) is an integer (by Theorem 3.4.20).

Example 3.4.22

(i) Let p, q ∈ N, θ : [0, 2Δp] ∪ C, θ (t) = reit for some r > 0, f : C ∪ C,
f (z) = zq and η = f ◦θ . Then θ ∗, a circle of centre 0 and radius r , is traversed
p times, the sense of that traverse being with the bounded component of C\θ ∗
on the left. Since η(t) = f (θ (t)) = rqeiqt , the function γ : [0, 2Δp] ∪ R
defined by γ(t) = qt is a continuous argument of η , and hence n(η, 0) =
{γ(2Δp) − γ(0)}/(2Δ) = pq. In particular, if q = 1 this shows that n(θ, 0) =
p: the winding number gives a measure of the number of times the circle is
traversed; the path θ winds p times around 0.

(ii) Let

θ1(t) = 3 + 2t − i (−2 ⊂ t ⊂ −1), θ2(t) = 1 + i (1 + 2t) (−1 ⊂ t ⊂ 0),

θ3(t) = 1 − 2t + i (0 ⊂ t ⊂ 1), θ4(t) = −1 + i (3 − 2t) (1 ⊂ t ⊂ 2),

and let θ : [−2, 2] ∪ C be the simple, closed polygonal path defined by

θ (t) = θk(t) for k − 3 ⊂ t ⊂ k − 2, k = 1, 2, 3, 4.

The rectangle which is the track of θ and the sense of its traverse which, as in
(i), has the bounded component of C\θ ∗ on the left, is illustrated below.

x

y

0

γ4

γ2

γ3

γ1
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Evidently, θ winds once around the origin and intuitively one might expect that
n(θ, 0) = 1. To verify this, let γ be a continuous argument of θ . Then

n(θ, 0) = γ(2) − γ(−2)

2Δ
=

4∑

k=1

γ(k − 2) − γ(k − 3)

2Δ
=

4∑

k=1

n(θk, 0).

We claim that for each k, n(θk, 0) = 1/4, and prove this for the case k = 1
only, as the other cases are similar. Since θ ∗

1 ⇐ D(Δ), the principal argument
of θ1, that is arg ◦θ1, is a continuous argument of θ1, and

γ(−1) − γ(−2) = arg(θ1(−1)) − arg(θ1(−2)) = arg(1 − i) − arg(−1 − i)

= −Δ

4
−

(
−3Δ

4

)
= Δ

2
.

Hence n(θ1, 0) = {γ(−1) − γ(−2)}/(2Δ) = 1/4.
On the other hand, the path θ does not wind at all around the point −2i and
so we would expect that n(θ,−2i) = 0. To check that this is so, note that
(θ + 2i)∗ ⇐ D(3Δ/2) and so

( 3Δ
2 − arg

) ◦ (θ + 2i) is a continuous argument
of θ + 2i . Hence

2Δn(θ,−2i) =
(
3Δ

2
− arg

)
(−1 + i) −

(
3Δ

2
− arg

)
(−1 + i) = 0.

(iii) Generalising (ii) somewhat, we consider now a simple closed polygonal path
whose track is a rectangle with vertices ±a ± ib (a, b > 0). Specifically, let

θ1(t) = 2t + a + 2b − ib (−a − b ⊂ t ⊂ −b),

θ2(t) = a + i(2t + b) (−b ⊂ t ⊂ 0),

θ3(t) = a − 2t + ib (0 ⊂ t ⊂ a),

θ4(t) = −a + i(2a + b − 2t) (a ⊂ t ⊂ a + b),

and let θ : [−a − b, a + b] ∪ C be defined by θ (t) = θ1(t) for −a − b ⊂ t ⊂
−b, etc. As in (ii), one might expect that n(θ, 0) = 1. Let γ be a continuous
argument of θ . Since θ ∗

1 ◦ θ ∗
2 ⇐ D(Δ), the principal arguments of θ1 and θ2

are continuous arguments of θ1 and θ2 respectively, and

γ(0) − γ(−a − b) = arg(θ2(0)) − arg(θ1(−a − b))

= arg(a + ib) − arg(−a − ib)

= arg(a + ib) − (arg(a + ib) − Δ) = Δ.

Similarly, γ(a + b) − γ(0) = Δ and so n(θ, 0) = (Δ + Δ)/(2Δ) = 1.
(iv) Let R > 1 and let θ : [−R, R + Δ ] ∪ C be the simple closed path defined by
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γ2

R− R

iR

xγ1

y

0

θ (t) = t if − R ⊂ t ⊂ R, θ (t) = Rei(t−R) if R ⊂ t ⊂ R + Δ.

Then θ ∗ has the semicircular form shown above and the bounded component
of C\θ ∗ is on the left as it is traversed.
We claim that n(θ, i) = 1. To prove this, let θ1, θ2 be the restrictions of θ

to [−R, R], [R, R + Δ ] respectively. Since ψ := ( 3Δ
2 − arg

) ◦ (θ2 − i) is a
continuous argument of θ2 − i,

n(θ2, i) = (ψ(R + Δ) − ψ(R))/(2Δ),

and since −Δ
2 < ψ(R) < ψ(R + Δ) < 3Δ

2 , we see that 0 < n(θ2, i) < 1.
Similarly, Γ := (

Δ
2 − arg

) ◦ (θ1 − i) is a continuous argument of θ1 − i , and

n(θ1, i) = (Γ(R) − Γ(−R))/(2Δ);

hence, since − 3Δ
2 < Γ(−R) < Γ(R) < Δ

2 , we obtain the inequality 0 <

n(θ1, i) < 1. It follows thatn(θ, i) = 1, sincen(θ, i) = n(θ1, i)+n(θ2, i) ∈ Z.
Alternatively, appeal to the proof of Theorem 3.4.2 shows that ψ(R) = Γ(R)

and ψ(R + Δ) = 2Δ + Γ(−R), equalities which establish the claim directly.

Our next result establishes the invariance of n(θ,w) under translation, rotation
and magnification.

Theorem 3.4.23 Let τ, χ ∈ C, τ �= 0, f (z) = τz + χ (for all z ∈ C); let θ :
[a, b] ∪ C be continuous and suppose that w ∈ C\θ ∗. Then n( f ◦ θ, f (w)) =
n(θ,w).

Proof Let γ0 ∈ Arg τ and let γ : [a, b] ∪ R be a continuous argument of θ − w.
Since f (θ (t)) − f (w) = τ(θ (t) − w) for all t ∈ [a, b], the map t ∞−∪ γ(t) + γ0 :
[a, b] ∪ R is a continuous argument of f ◦ θ − f (w), and thus

n( f ◦ θ, f (w)) = {γ(b) + γ0 − γ(a) − γ0}/(2Δ) = n(θ,w). �
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As might be expected, constant paths have zero winding number.

Proposition 3.4.24 Let z ∈ C and let θ : [a, b] ∪ C be such that θ (t) = z for all
t ∈ [a, b]. Then n(θ,w) = 0 for all w ∈ C\{z}.
Proof Let γ ∈ Arg (z − w). Since t ∪ γ : [a, b] ∪ R is a continuous argument of
θ − w, 2Δn(θ,w) = γ − γ = 0. �

Our principal object now is to establish the invariance of the winding number
under homotopies, and we begin with a few subsidiary results, some of independent
interest.

Proposition 3.4.25 Let w ∈ C and for j = 1, . . . , k let θ j : [a, b] ∪ C be a path
such that 0 /∈ θ ∗

j . For each t ∈ [a, b] let θ (t) = w + θ1(t)θ2(t) . . . θk(t). Then

n(θ,w) =
k∑

j=1

n(θ j , 0).

Proof For each j let γ j be a continuous argument of θ j . Then
∑k

j=1 γ j is continuous
and for each t ∈ [a, b],

θ (t) − w = |θ (t) − w| exp
⎨
⎩

⎪
i

k∑

j=1

γ j (t)


⎛

⎝
.

Hence

2Δn(θ,w) =
k∑

j=1

(γ j (b) − γ j (a)) =
k∑

j=1

2Δn(θ j , 0). �

Theorem 3.4.26 Let θ, η : [a, b] ∪ C be closed paths, let w ∈ C and suppose
that for all t ∈ [a, b],

|θ (t) − η(t)| < |w − θ (t)| .

Then n(θ,w) = n(η,w).

Proof Evidently w /∈ θ ∗ ◦ η ∗. Define μ : [a, b] ∪ C by μ(t) = (η (t) − w)/

(θ (t) − w), and note that |1 − μ(t)| = |θ (t) − η(t)| / |θ (t) − w| < 1 for all
t ∈ [a, b] and μ∗ ⇐ {z ∈ C : z �= − |z|}. Hence arg μ is a continuous argument of
μ and

2Δn(μ, 0) = arg(μ(b)) − arg(μ(a)) = 0.

Since η − w = μ(θ − w), it follows from Proposition 3.4.25 that

n(η,w) = n(μ, 0) + n(θ,w) = n(θ,w).
�
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Theorem 3.4.27 Let θ : [a, b] ∪ C be a closed path and suppose that w and z are
points in the same component of C\θ ∗. Then n(θ, z) = n(θ,w). If w belongs to the
unbounded component of C\θ ∗, n(θ,w) = 0.

Proof For the first part we merely have to prove that n(θ, ·) is continuous on C\θ ∗,
since it is integer-valued. Let z ∈ C\θ ∗ and put φ = dist(z, θ ∗) > 0. Let w ∈
B(z, φ), w �= z, and set η = θ − w + z. Then for all t ∈ [a, b],

|θ (t) − η(t)| = |w − z| < |θ (t) − z| ,

and thus by Theorem 3.4.26,

n(θ, z) = n(η, z) = n(θ − w + z, z) = n(θ,w).

This shows that n(θ, ·) is continuous on C\θ ∗ and the first part follows.
Since θ ∗ is compact, there exists r > 0 such that θ ∗ ⇐ B(0, r). As c B(0, r) is

evidently connected, there is only one unbounded component of C\θ ∗. Moreover,
(θ + 2r)∗ ⇐ {z ∈ C : rez > 0}, and so arg (θ + 2r) is a continuous argument of
θ + 2r and n(θ,−2r) = 0. Since −2r lies in the unbounded component of C\θ ∗,
the result follows from the first part of the Theorem. �

We are now in a position to establish the homotopy-invariance of the winding
number.

Theorem 3.4.28 Let G be an open set in C and let θ, η : [0, 1] ∪ G be closed
paths in G which are freely homotopic. Then n(θ,w) = n(η,w) for all w ∈ C\G.

Proof Let w ∈ C\G. There is a continuous map H : I × I ∪ G (where I =
[0, 1]) such that for all s, t ∈ I , H(s, 0) = θ (s), H(s, 1) = η(s) and H(0, t) =
H(1, t). Since H(I × I ) is compact, there exists δ > 0 such that for all s, t ∈ I ,
|w − H(s, t)| > δ. As H is uniformly continuous on I × I , there exists k ∈ N such
that ∣

∣H(s, t) − H(s∗, t ∗)
∣
∣ < δ if

∣
∣s − s∗∣∣ + ∣

∣t − t ∗
∣
∣ ⊂ 1/k.

Define closed paths μ j : I ∪ G ( j = 0, 1, . . . , k) by μ j (s) = H(s, j/k); μ0 = θ ,
μk = η . For j = 1, 2, . . . , k and all s ∈ I,

∣
∣μ j (s) − μ j−1(s)

∣
∣ = |H(s, j/k) − H(s, ( j − 1)/k)| < δ. (3.4.1)

Clearly
∣
∣w − μ j (s)

∣
∣ > δ for j = 0, 1, . . . , k and for all s ∈ I . From this, (3.4.1) and

k applications of Theorem 3.4.26, it follows that w has the same winding number
with respect to each of the closed paths θ = μ0, μ1, . . . , μk = η . Hence n(θ,w) =
n(η,w). �

Theorem 3.4.29 Let (θk) be a sequence of closed paths in C, each with parameter
interval [a, b], and suppose that (θk) converges uniformly on [a, b] to a path θ :
[a, b] ∪ C. If w ∈ C\θ ∗, then for all large enough k,
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n(θk, w) = n(θ,w).

Proof Let w ∈ C\θ ∗. There exists δ > 0 such that |θ (t) − w| > δ for all t ∈ [a, b].
Since (θk) converges uniformly on [a, b] to θ , there exists k0 ∈ N such that for all
k ≤ k0 and all t ∈ [a, b], |θk(t) − θ (t)| < δ. From this and Theorem 3.4.26, it
follows that n(θk, w) = n(θ,w) for all k ≤ k0. �

The winding number can be used to clarify our ideas about the ‘inside’ and
‘outside’ of a closed path θ .

Definition 3.4.30 Let θ be a closed path in C. We say that a point z ∈ C is inside
θ if z /∈ θ ∗ and n(θ, z) �= 0; and that z is outside θ if z /∈ θ ∗ and n(θ, z) = 0.

Remark 3.4.31 For simple closed paths this fits in well with our intuition. For exam-
ple, suppose that θ : [0, 2Δ ] ∪ C is given by θ (t) = eit , so that θ ∗ is the unit circle.
Then C\θ ∗ has exactly two components, one bounded and the other unbounded. If
|z| > 1, z is in the unbounded component and we know from Theorem 3.4.27
that n(θ, z) = 0; further, if |z| < 1, using Theorem 3.4.27 again, we see that
n(θ, z) = n(θ, 0) = 1, the final equality following from Example 3.4.22 (i). Hence,
the points inside θ correspond to those in the bounded component of C\θ ∗, while
those outside correspond to those in the unbounded component. Evidently, Theo-
rem 3.4.23 extends this result to a larger class of circular paths, allowing tracks with
arbitrary centre and radius. Although θ is so special a simple closed path, in a sense
it is typical of simple closed paths: we shall see later that the Jordan curve theorem
shows that given any simple closed path θ , C\θ ∗ has exactly two connected com-
ponents, one bounded, the other unbounded, and that n(θ, z) = 0 for all z in the
unbounded component, while n(θ, z) = ±1 for all z in the bounded component.

To conclude this section we show how the winding number may be used to prove
the two-dimensional version of a famous fixed-point theorem, due to Brouwer.

Theorem 3.4.32 Let D = {z ∈ C : |z − a| ⊂ r}, r > 0, so that the boundary π D
is the track of the closed path θ : [0, 1] ∪ C, θ (t) = a + re2Δ i t . Let f : D ∪ C
be continuous, let w ∈ C\ f (π D) and suppose that n( f ◦ θ,w) �= 0. Then there is
a point z in D such that f (z) = w.

Proof Suppose that no such point z exists, so that w /∈ f (D). Let I = [0, 1], let θ0 :
I ∪ C be the constant path defined by θ0(t) = a (t ∈ I ) and define h : I × I ∪ C by
h(s, t) = (1− t)θ (s)+ tθ0(s) (s, t ∈ I ). Plainly h is continuous and h(I × I ) ⇐ D.
Let H : I × I ∪ C\{w} be defined by H(s, t) = f (h(s, t)). Then H establishes
that, regarded as closed paths in C\{w}, f ◦θ and the constant path f ◦θ0 are freely
homotopic.The homotopy invariance of the winding number (Theorem 3.4.28) now
shows that n( f ◦ θ,w) = n( f ◦ θ0, w); further, since f ◦ θ0 is a constant path,
Proposition 3.4.24 tells us that n( f ◦ θ0, w) = 0. Hence n( f ◦ θ,w) = 0, contrary
to hypothesis. The proof is complete. �

Theorem 3.4.33 Let D be a closed ball in C and let f : D ∪ C be continuous and
such that f (z) = z for all z ∈ π D. Then D ⇐ f (D).
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Proof Let D = {z ∈ C : |z − a| ⊂ r} and let π D be represented as the track of

θ : [0, 1] ∪ C, θ (t) = a + re2Δ i t . Let w ∈ o
D. Then n( f ◦ θ,w) = n(θ,w) = 1,

by Remark 3.4.31. Application of Theorem 3.4.32 now shows that there is a point
z ∈ D such that f (z) = w, and hence D ⇐ f (D). �

Corollary 3.4.34 Let D be a closed ball in C. Then there is no continuous map
f : D ∪ π D which leaves fixed every point of π D.

In other words, π D is not a retract of D: a subset A of a metric space X is called
a retract of X if there is a continuous map r : X ∪ A, called a retraction, such
that r(x) = x for all x ∈ A.

We can now prove the Brouwer fixed-point theorem in a two-dimensional form.

Theorem 3.4.35 Let D = {z ∈ C : |z − a| ⊂ r} and let f : D ∪ D be continuous.
Then there is a point z0 ∈ D such that f (z0) = z0.

Proof Suppose that f does not have a fixed point in D. Given any z ∈ D, let g(z) be
the point on π D nearer to z than to f (z) on the line through z and f (z). This gives
a map g : D ∪ π D, the restriction of which to π D is the identity map. If we can
prove that g is continuous, we shall have a contradiction, by Corollary 3.4.34. To do
this, note that g(z) = z + tu, where u = (z − f (z))/ |z − f (z)| and t ≤ 0 is so
chosen that |g(z) − a| = r . Since |u| = 1,

t2 + 2t re((z − a)u) − (r2 − |z − a|2) = 0,

and thus

t = − re((z − a)u) +
⎞
(re((z − a)u))2 + (r2 − |z − a|2)

⎠1/2
.

The continuity of g is now clear, and the Theorem follows. �

Note that by identification of C with R2 we have Brouwer’s theorem in the fol-
lowing form: any continuous map of a closed ball in R2 into itself has a fixed point.

Exercise 3.4.36

1. Let τ ∈ C and define

f (z) = 1 +
→∑

n=1

τ(τ − 1) · · · (τ − n + 1)

n! zn .

Prove that if τ is not a non-negative integer, then this power series has unit radius
of convergence. Deduce that f ∗(z) = τ f (z)/(1 + z) if |z| < 1. By considering
ψ∗, where ψ(z) = f (z)/(1 + z)τ , show that f (z) = (1 + z)τ if |z| < 1.

2. Let S1 = {z ∈ C : |z| = 1}. Show that the map t ∞−∪ E(i t) : (−Δ, Δ ] ∪ S1 is
bijective and continuous, but that its inverse is not continuous at −1 ∈ S1. [This
exercise highlights the hypothesis of a compact domain in Theorem 2.3.24 (ii).]
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3. Find the τ—branch of the argument, logarithm and i th power of −1 − i in the
cases τ = Δ and τ = 3Δ/2.

4. Let τ be an irrational real number. Prove that:
(i) {m + nτ : m, n ∈ Z} is a countable dense subset of R; (ii) the τth power of
1 is dense in {z ∈ C : |z| = 1}.

5. (i) Prove that there exists ε ∈ C such that |ε| = 1 and for all n ∈ N, εn �= 1.
(ii) Let ε be as in (i), let f (z) = ∑→

0 anzn have radius of convergence R > 0,
let An(z) = 1

n+1

∑n
k=0 f (εk z) (0 < |z| < R, n ∈ N0), and let

M(r) = sup{| f (z)| : |z| = r} for 0 < r < R.

Prove that:
(a) if 0 < |z| < R, then limn∪→ An(z) = a0;
(b) if 0 < r < R, then |a0| ⊂ M(r).

(iii) By considering f (z)/z j , show that
∣
∣a j

∣
∣ ⊂ M(r)/r j for all j ∈ N0

(Cauchy’s inequalities).
(iv) Deduce that if R = → and there exists M ∈ R such that | f (z)| ⊂ M for all

z ∈ C, then f is constant (Liouville’s theorem).
6. Let θ : [0, 2Δ ] ∪ C be given by

θ (t) = cos t + cos 2t − 1 + i(sin t + sin 2t) (0 ⊂ t ⊂ 2Δ).

Find n(θ, 0).
7. Let θ : [a, b] ∪ C be a path such that 0 /∈ θ ∗. Suppose c, d ∈ R, c < d, and

Γ : [c, d] ∪ [a, b] is a continuous map such that Γ(c) = a, Γ(d) = b. Show
that

n(θ ◦ Γ, 0) = n(θ, 0).

Show also that, if the hypotheses are varied to require instead that Γ(c) = b,
Γ(d) = a, then

n(θ ◦ Γ, 0) = −n(θ, 0).

8. Use the homotopy invariance of the winding number to show that the circle S1

is not simply connected.

3.5 Integration

We begin with a review of differentiation of complex-valued functions defined on an
interval in R and an extension of the Riemann integral to cover continuous functions
of this nature.

The notion of differentiability of a function f : I ∪ C, where I is an interval in
R, has the expected definition: if f (s) = u(s) + iv(s) (s ∈ I ), where u(s) and v(s)
are real, then f is differentiable if, and only if, u and v are differentiable; also, in
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the event of differentiability, f ∗ = u∗ + iv∗. The usual rules for derivatives of sums,
products and quotients of such functions apply, as do those relating to composition.
Given the differentiability of f , if J is an interval inR andψ : J ∪ I is differentiable,
then f ◦ ψ is differentiable and

( f ◦ ψ)∗(t) = f ∗(ψ(t))ψ∗(t) (t ∈ J );

also, if G is an open set in C, f (I ) ⇐ G and g : G ∪ C is analytic, then g ◦ f is
differentiable and

(g ◦ f )∗(s) = g∗( f (s)) f ∗(s) (s ∈ I ).

Proof of these assertions is elementary and is left to the reader.

Definition 3.5.1 Let f : [a, b] ∪ C be continuous. We define the integral of f
over [a, b] by

∫ b

a
f =

∫ b

a
re f + i

∫ b

a
im f.

Note that re f and im f are continuous, real-valued functions on [a, b] and hence
are Riemann-integrable over [a, b]; thus the definition makes sense. For example,

∫ Δ

0
eit dt =

∫ Δ

0
cos tdt + i

∫ Δ

0
sin tdt = 2i.

Certain standard facts about Riemann integrals of real functions go over, with
obvious proofs, to the complex case. For convenience, we collect these in the fol-
lowing theorem.

Theorem 3.5.2 Let f, f1, f2 : [a, b] ∪ C be continuous and let τ1, τ2 ∈ C. Then

(i)
∫ b

a (τ1 f1 + τ2 f2) = τ1
∫ b

a f1 + τ2
∫ b

a f2;
(ii) if a ⊂ c ⊂ b, then ∫ b

a
f =

∫ c

a
f +

∫ b

c
f ;

(iii) if F(t) = ∫ t
a f for a ⊂ t ⊂ b, then F is differentiable and F ∗(t) = f (t) for all

t ∈ [a, b];
(iv) if F : [a, b] ∪ C is differentiable and F ∗(t) = f (t) for all t ∈ [a, b], then

∫ b

a
f = F(b) − F(a);

(v) if ψ : [c, d] ∪ R is continuously differentiable and ψ([c, d]) ⇐ [a, b], then



206 3 Complex Analysis

∫ ψ(d)

ψ(c)
f =

∫ d

c
f (ψ(t))ψ∗(t)dt;

(vi) if (gn) is a sequence of continuous, complex-valued functions on [a, b] which
converges uniformly on [a, b] to g, then g is continuous on [a, b] and

∫ b

a
gn ∪

∫ b

a
g as n ∪ →.

Extended to the complex case, we require an important, but standard, inequality.

Theorem 3.5.3 Let f : [a, b] ∪ C be continuous. Then | f | : [a, b] ∪ R is
continuous and ∣

∣
∣
∣

∫ b

a
f

∣
∣
∣
∣ ⊂

∫ b

a
| f | .

Proof Continuity of | f | is immediate: given any c ∈ [a, b], by the triangle inequality,

|| f (t)| − | f (c)|| ⊂ | f (t) − f (c)| ∪ 0 as t ∪ c.

As for the integral inequality, put τ = ∫ b
a f = τ1 + iτ2, with τ1, τ2 real. Then

|τ|2 = τ2
1 + τ2

2 = τ1

∫ b

a
re f + τ2

∫ b

a
im f =

∫ b

a
(τ1 re f + τ2 im f )

⊂
∫ b

a
(τ2

1 + τ2
2)

1/2[(re f )2 + (im f )2]1/2 = |τ|
∫ b

a
| f | ,

using Cauchy’s inequality. If τ �= 0, this gives |τ| ⊂ ∫ b
a | f |, as required; if τ = 0,

the result is obvious. �

3.5.1 Integrals Along Contours

We next introduce the special kind of path along which we shall be integrating.

Definition 3.5.4 (i) A continuously differentiable path in C is called an arc: thus
a path θ : [a, b] ∪ C is an arc if it has a derivative θ ∗ that is defined and
continuous on [a, b], the derivatives at a and b being one-sided.

(ii) A piecewise continuously differentiable path in C is termed a contour : a path
θ : [a, b] ∪ C is a contour if there is a partition {t0, t1, . . . , tn} of [a, b]
such that, for each j ∈ {1, 2, . . . , n}, the restriction of θ to [t j−1, t j ] has a
continuous derivative on [t j−1, t j ], so permitting the left and right derivatives
at t1, . . . , tn−1 to differ. Plainly, each arc is a contour, but a contour need not
be an arc.
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(iii) A closed path which is a contour is called a circuit; further, a simple path which
is a contour (circuit) is called a simple contour (simple circuit).

The path θ : [0, 1] ∪ C defined by θ (t) = eiΔ t (0 ⊂ t ⊂ 1) is an example
of an arc; each polygonal path in C (see Definition 2.4.15) is a contour; the path
ν : [0, 1] ∪ C defined by ν(t) = e2Δ i t (0 ⊂ t ⊂ 1/2), ν(t) = 4t − 3 (1/2 ⊂ t ⊂ 1)
is a simple circuit.

Definition 3.5.5 Let θ : [a, b] ∪ C be a contour. The length of θ , written l(θ ), is
defined by

l(θ ) =
∫ b

a

∣
∣θ ∗(t)

∣
∣ dt =

∫ b

a
{(re θ ∗)2 + (im θ ∗)2}1/2

=
n∑

j=1

∫ t j

t j−1

{(re θ ∗)2 + (im θ ∗)2}1/2,

where {t0, t1, . . . , tn} is a partition of [a, b] such that the restriction of θ to each
subinterval [t j−1, t j ] has a continuous derivative on [t j−1, t j ].

We leave it to the reader to show that the length of θ is independent of the choice
of partition used to define θ .

To illustrate with examples, if θ : [0, 1] ∪ C is defined by θ (t) = e2Δ i t (0 ⊂
t ⊂ 1), so that θ ∗ is the unit circle, then

l(θ ) =
∫ 1

0
2Δ(sin2 2Δ t + cos2 2Δ t)1/2dt = 2Δ,

as expected; also, if μ : [a, b] ∪ C is a polygonal path in C, so that there exist
z0, z1, . . . zn ∈ C and a partition {t0, t1, . . . tn} of [a, b] such that

μ(t) = (t j − t j−1)
−1{(t j − t)z j−1 + (t − t j−1)z j }

whenever t j−1 ⊂ t ⊂ t j , then

l(μ) =
n∑

j=1

∫ t j

t j−1

∣
∣μ∗(t)

∣
∣ dt

=
n∑

j=1

∫ t j

t j−1

(t j − t j−1)
−1

∣
∣z j − z j−1

∣
∣ dt

=
n∑

j=1

∣
∣z j − z j−1

∣
∣ .

Definition 3.5.6 Let θ : [a, b] ∪ C be a contour. The contour opposite to θ ,
written −θ , is defined by (−θ )(t) = θ (a + b − t) (a ⊂ t ⊂ b).
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Clearly the track of −θ is the same as that of θ , but it is traversed in the opposite
sense. Naturally l(−θ ) = l(θ ): to prove this formally, let {a = t0, t1, . . . , tn =
b} be a partition of [a, b] which contains all the discontinuities of θ ∗, so that
{u j = a + b − t j : j = 0, 1, . . . , n} contains all those of (−θ )∗, and a = un <

un−1 < · · · < u0 = b; then, appealing to Theorem 3.5.2 (v),

l(−θ ) =
n∑

1

∫ u j−1

u j

∣
∣(−θ )∗(s)

∣
∣ ds =

n∑

1

∫ u j−1

u j

∣
∣θ ∗(a + b − s)

∣
∣ ds

=
n∑

1

∫ t j

t j−1

∣
∣θ ∗(t)

∣
∣ dt = l(θ ). (3.5.1)

Now we can define the integral of a continuous complex-valued function along a
contour.

Definition 3.5.7 Let θ : [a, b] ∪ C be a contour and let f : θ ∗ ∪ C be con-
tinuous. The integral of f over θ , written

∫
θ

f or
∫
θ

f (z)dz, is defined to be
∫ b

a f (θ (t))θ ∗(t)dt . [The range [a, b] of t is subdivided into subintervals correspond-
ing to the discontinuities of θ ∗ if θ ∗ is not continuous on the whole of [a, b].]
Example 3.5.8

(i) Let w1, w2 ∈ C and define θ : [0, 1] ∪ C by θ (t) = (1 − t)w1 + tw2; θ is a
line segment joining w1 to w2. Then

∫

θ

zdz =
∫ 1

0
{(1 − t)w1 + tw2}(w2 − w1)dt = 1

2
(w2

2 − w2
1).

(ii) Let a ∈ C and let r, γ be positive real numbers. Define θ : [0, γ ] ∪ C by
θ (t) = a + reit and put f (z) = (z − a)−1 (z �= a). Then

∫

θ

(z − a)−1dz =
∫ γ

0
ireit/(reit )dt = iγ.

The particular case of this when γ = 2Δ is important: the contour θ is then
called the positively oriented circle with centre a and radius r , and

∫

θ

(z − a)−1dz = 2Δ i. (3.5.2)

Lemma 3.5.9 Let θ : [a, b]∪ C be a contour and let f, g : θ ∗ ∪ C be continuous.
Then for all τ, χ ∈ C,

∫

θ

(τ f + χg) = τ

∫

θ

f + χ

∫

θ

g;
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and ∫

θ

f = −
∫

−θ

f.

Proof The first part is obvious from the definition of the integral over a contour allied
with Theorem 3.5.2 (i). For the second part, with the same notation as in the proof
of (3.5.1), we have

∫

−θ

f =
n∑

1

∫ u j−1

u j

f (−θ (s))(−θ )∗(s)ds

= −
n∑

1

∫ u j−1

u j

f (θ (a + b − s))θ ∗(a + b − s)ds

=
n∑

1

∫ t j−1

t j

f (θ (t))θ ∗(t)dt

= −
n∑

1

∫ t j

t j−1

f (θ (t))θ ∗(t)dt = −
∫

θ

f.
�

A simple and frequently applied inequality, an outcome of Theorem 3.5.3, is given
next.

Theorem 3.5.10 Let θ : [a, b] ∪ C be a contour, let f : θ ∗ ∪ C be continuous
and suppose that M is a constant such that for all z ∈ θ ∗, | f (z)| ⊂ M. Then

∣
∣
∣
∣

∫

θ

f

∣
∣
∣
∣ ⊂ Ml(θ ). (3.5.3)

More generally, ∣
∣
∣
∣

∫

θ

f

∣
∣
∣
∣ ⊂

∫ b

a
| f (θ (t))| ∣∣θ ∗(t)

∣
∣ dt. (3.5.4)

[The integral on the right-hand side of (3.5.4) is often written as
∫
θ

| f | |dz| .]
Proof It is sufficient to assume that θ is an arc, as the general case proceeds by
similar arguments on appropriate subintervals of [a, b]. Then

∣
∣
∣
∣

∫

θ

f

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ b

a
f (θ (t))θ ∗(t)dt

∣
∣
∣
∣ ⊂

∫ b

a
| f (θ (t))| ∣∣θ ∗(t)

∣
∣ dt

⊂ M
∫ b

a

∣
∣θ ∗(t)

∣
∣ dt = Ml(θ ). �

Definition 3.5.11 Let θ : [a, b] ∪ C, θ1 : [a1, b1] ∪ C be arcs. We say that
θ1 is a reparametrisation of θ if there is a continuously differentiable bijection ψ
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of [a1, b1] onto [a, b] with an everywhere strictly positive derivative ψ∗, such that
θ1 = θ ◦ ψ.

It is clear that θ and θ1 have the same track, and we would expect them to have
the same length. To give a formal proof: use of Theorem 3.5.2 (v) shows that

l(θ1) =
∫ b1

a1

∣
∣θ ∗

1

∣
∣ =

∫ b1

a1

∣
∣θ ∗ ◦ ψ

∣
∣
∣
∣ψ∗∣∣ =

∫ b

a

∣
∣θ ∗∣∣ = l(θ ).

The commonest reparametrisation occurs when ψ is defined by

ψ(t) = {a(b1 − t) + b(t − a1)}/(b1 − a1).

Thus, if θ (t) = eit (0 ⊂ t ⊂ 1) and we want the parameter interval to be [2, 8], then
ψ(t) = (t − 2)/6 does the trick.

Lemma 3.5.12 Let θ1 : [a1, b1] ∪ C be a reparametrisation of an arc θ :
[a, b] ∪ C. Then for all continuous maps f : θ ∗ ∪ C,

∫

θ1

f =
∫

θ

f.

[Note that θ ∗
1 = θ ∗.]

Proof Let θ1 = θ ◦ ψ, where ψ is a continuously differentiable bijection of [a1, b1]
onto [a, b] and ψ∗(t) > 0 whenever a1 ⊂ t ⊂ b1. Then

∫

θ1

f =
∫ b1

a1
f (θ1(t))θ

∗
1(t)dt

=
∫ b1

a1
f (θ (ψ(t)))θ ∗(ψ(t))ψ∗(t)dt

=
∫ b

a
f (θ (s))θ ∗(s)ds =

∫

θ

f. �

Remark 3.5.13 Let μ : [a, b] ∪ C, ν : [c, d] ∪ C be contours and suppose
that there are partitions {s0 = a, s1, . . . , sm = b} and {t0 = c, t1, . . . , tm = d} of
[a, b] and [c, d] respectively such that, for 1 ⊂ j ⊂ m, the restrictions μ j,ν j of
μ, ν to [s j−1, s j ], [t j−1, t j ], respectively, are arcs. Then the contour ν is said to be a
reparametrisation of μ if, for 1 ⊂ j ⊂ m, the arc ν j is a reparametrisation of μ j .
In this event ν∗ = μ∗; also, using Lemma 3.5.12, for all continuous f : μ∗ ∪ C,

∫

μ

f =
m∑

j=1

∫

μ j

f =
m∑

j=1

∫

ν j

f =
∫

ν

f.
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As an illustration, let μ : [a, b] ∪ C be a contour. It is elementary to check that
μ ◦ ψ : [c, d] ∪ C, where c < d and

ψ(t) = {(t − c)b + (d − t)a}/(d − c),

is a reparametrisation ofμ. It is called the standard reparametrisation of μ relative
to the interval [c, d].
Exercise 3.5.14

1. Sketch the tracks of the following contours:

(i) θ1 : [−1, 1] ∪ C, θ1(t) = i t (−1 ⊂ t ⊂ 1);

(ii) θ2 : [−Δ
2 , Δ

2

] ∪ C, θ2(t) = eit
(−Δ

2 ⊂ t ⊂ Δ
2

)
;

(iii) θ3 : [−Δ
2 , Δ

2

] ∪ C, θ3(t) = e−i(Δ+t)
(−Δ

2 ⊂ t ⊂ Δ
2

)
.

For k = 1, 2, 3 evaluate
∫
θk

|z| dz.

2. Let a and b be positive real numbers. Let μ : [−1, 1] ∪ C and ν : [0, Δ ] ∪ C
be contours defined by

μ(s) =
{−sa + ib(1 + s) if − 1 ⊂ s ⊂ 0,

−sa + ib(1 − s) if 0 ⊂ s ⊂ 1,

and
ν(s) = a cos s + ib sin s if 0 ⊂ s ⊂ Δ.

Evaluate
∫
μ

f (z)dz and
∫
ν

f (z)dz in each of the following cases:
(i) f (z) = re z, (ii) f (z) = z.

3. Show that
∫
θ

z−1dz = 2Δ i in each of the following cases:

(i) θ : [−Δ, Δ ] ∪ C is the circuit defined by

θ (t) = a cos t + ib sin t,−Δ ⊂ t ⊂ Δ,

where a and b are positive real constants.
(ii) θ : [−1, 1] ∪ C is the circuit defined by

θ (t) =

⎨
⎩

⎪

3 + 4t − i, −1 ⊂ t ⊂ −1/2,
1 + i(1 + 4t), −1/2 ⊂ t ⊂ 0,
1 − 4t + i, 0 ⊂ t ⊂ 1/2,
−1 + i(3 − 4t), 1/2 ⊂ t ⊂ 1.

4. Let θ : [0, 2Δ ] ∪ C be defined by θ (t) = 2 exp(i t). Evaluate
∫
θ

1
z(z−1)dz.
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3.6 Cauchy’s Theorem

In this section we present basic integration theorems due to Cauchy upon which
many important future developments rest.

Definition 3.6.1 Let G be an open subset of C and let f : G ∪ C. A function
F : G ∪ C is called a primitive for f on G if F ∗ = f .

Our immediate concern is with the existence of a primitive for a given continuous
function, and we begin with a reformulation of the problem.

Theorem 3.6.2 (The fundamental theorem of contour integration) Let G be an open
subset of C and let f : G ∪ C be continuous. Then the following three statements
are equivalent:

(i) f has a primitive on G;
(ii) for every circuit θ in G,

∫
θ

f = 0;
(iii) for all contours θ1, θ2 in G with the same initial and terminal points,

∫

θ1

f =
∫

θ2

f.

Moreover, if f has a primitive F on G and θ is a contour in G with initial point
z1 and terminal point z2, then

∫

θ

f = F(z2) − F(z1).

Proof Suppose that (i) holds and let F be a primitive for f on G. Let θ : [a, b] ∪ C
be a contour in G with θ (a) = z1, θ (b) = z2. An application of the fundamental
theorem of integral calculus (Theorem 1.4.4) to the subintervals [t j−1, t j ] on which
θ ∗ is continuous shows that

∫

θ

f =
n∑

1

∫ t j

t j−1

F ∗(θ (t))θ ∗(t)dt =
n∑

1

{
F(θ (t j )) − F(θ (t j−1))

}

= F(θ (b)) − F(θ (a)) = F(z2) − F(z1).

This establishes the last part of the Theorem. Further, if θ is a circuit, so that z1 = z2,
then

∫
θ

f = 0 and it follows that (i) implies (ii).
Next, suppose that (ii) holds and that θ1, θ2 are contours in G with the same initial

and terminal points. Referring to Remark 3.5.13, let φ1, φ2 be the standard repara-
metrisations of θ1, θ2 relative to the intervals [0, 1/2] and [1/2, 1], respectively: then∫
φk

f = ∫
θk

f (k = 1, 2). Define θ : [0, 1] ∪ C by
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θ (t) =
{

φ1(t), 0 ⊂ t ⊂ 1
2 ,

(−φ2)(t) = φ2
( 3
2 − t

)
, 1
2 < t ⊂ 1.

Evidently θ is a circuit in G and, because assumption (ii) holds,

0 =
∫

θ

f =
∫

φ1

f −
∫

φ2

f =
∫

θ1

f −
∫

θ2

f.

Thus (ii) implies (iii).
Finally, suppose that (iii) holds and, for the moment, that G is connected. Fix

z0 ∈ G and for any z ∈ G define

F(z) =
∫

θ

f,

where θ is any contour in G joining z0 to z. Note that such a contour exists because G
is open and connected, and hence polygonally-connected (Theorem 2.4.23); more-
over, since (iii) holds, F(z) is independent of the particular contour θ . Let φ be the
standard reparametrisation of θ relative to the interval [−1, 0]: then F(z) = ∫

φ
f .

For h ∈ C\{0}, let μ : [0, 1] ∪ C be defined by μ(t) = z + th. Since G is open,
μ∗ ⇐ G whenever |h| is small enough. Let ν : [−1, 1] ∪ C be given by

ν(t) =
{

φ(t), −1 ⊂ t ⊂ 0,
μ(t), 0 ⊂ t ⊂ 1.

Then, with |h| small enough, ν is a contour in G joining z0 to z + h and

F(z + h) =
∫

ν

f =
∫

φ

f +
∫

μ

f = F(z) +
∫

μ

f.

Moreover, using Theorem 3.5.10,

∣
∣
∣
∣

F(z + h) − F(z)

h
− f (z)

∣
∣
∣
∣ =

∣
∣
∣
∣
1

h

∫

μ

f (w)dw − f (z)

∣
∣
∣
∣

=
∣
∣
∣
∣
1

h

∫

μ

{ f (w) − f (z)}dw

∣
∣
∣
∣

⊂ sup{| f (w) − f (z)| : w ∈ μ∗}.

Now, f being continuous, this supremum tends to 0 as |h| ∪ 0. Hence F ∗(z) =
f (z), and F is a primitive for f on G.
If G is not connected, the argument given may be applied to each component of

G since, by Theorem 2.4.27, every such component is open. Thus (iii) implies (i),
and the proof is complete. �
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Corollary 3.6.3 Let a ∈ C. Then

∫

θ

(z − a)ndz = 0

for every circuit θ if n = 0, 1, 2, . . . , and for those circuits θ such that a /∈ θ ∗
if n = −2,−3,−4, . . . .

Proof Since z ∞−∪ (z − a)n has z ∞−∪ (z − a)n+1/(n + 1) as a primitive on C if
n = 0, 1, 2, . . ., and on C\{a} if n = −2,−3,−4, . . ., the result follows directly
from Theorem 3.6.2. �

Corollary 3.6.3 cannot be extended to include the case n = −1, as we see from
(3.5.2).

Theorem 3.6.2 answers a natural question negatively. It is not the case that, if G is
an arbitrary open set inC, then every continuous function f : G ∪ C has a primitive.
To see this, let G = C, define f by f (z) = z (z ∈ C) and let θ : [0, 1] ∪ C be the
circuit given by θ (t) = e2Δ i t . Then

∫

θ

f =
∫ 1

0
e−2Δ i t · 2Δ ie2Δ i t dt = 2Δ i �= 0.

More than this, replacing the requirement of continuity of f by analyticity does not
help. This time, let G = {

z ∈ C : 1
2 < |z| < 2

}
, f (z) = 1/z and let θ be as before.

Then by (3.5.2),
∫

θ

f = 2Δ i.

It turns out that determination of those conditions on G which ensure that all f ∈
H(G) have a primitive involves some subtlety. This delicate matter we approach
slowly, beginning with the supposition that G is convex. Recall that a subset S of C
is called convex if εz1 + (1−ε)z2 ∈ S whenever z1, z2 ∈ S and 0 ⊂ ε ⊂ 1. Plainly,
every open ball in C is convex; also, no annulus {z ∈ C : 0 < a ⊂ |z − z0| ⊂ b} is
convex. The convex hull of a set S ⇐ C is the intersection of all convex sets which
contain S; we denote this set by co S. An inductive argument (left to the reader)
shows that co S consists of all points which can be expressed in the form

∑n
k=1 εk zk

for some n ∈ N, some z1, z2, . . . , zn ∈ S and some non-negative real numbers
ε1, ε2, . . . , εn with

∑n
k=1 εk = 1.

Definition 3.6.4 Aclosed polygonal path� : [u, v] ∪ C such that a finite sequence
z0, z1, z2, z3 = z0 of complex numbers (its vertices) and a partition u = t0 < t1 <

t2 < t3 = v exist, and

�(t) = (t j − t j−1)
−1 {(t − t j−1)z j + (t j − t)z j−1

}
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whenever t j−1 ⊂ t ⊂ t j ( j = 1, 2, 3), is described as a triangular circuit. It is said
to be degenerate if the points z0, z1, z2 are collinear.

Remark 3.6.5

(i) The vertices and sense of description of � are determined by the ordered triple
(z0, z1, z2) ∈ C3. Note that each ordered triple (w0, w1, w2) determines the
vertices and sense of description of some triangular circuit: for example Ψ :
[0, 1] ∪ C defined by

Ψ (t) =
⎨
⎩

⎪

w0 + 3t (w1 − w0), 0 ⊂ t ⊂ 1/3,
w1 + (3t − 1)(w2 − w1), 1/3 ⊂ t ⊂ 2/3,
w2 + (3t − 2)(w0 − w2), 2/3 ⊂ t ⊂ 1.

(ii) Let f : �∗ ∪ C be continuous and, for j = 1, 2, 3, let ν j be the restriction of
� to the interval [t j−1, t j ]. Since the canonical line segment from z j−1 to z j ,

that is, the map
t ∞−∪ (1 − t)z j−1 + t z j : [0, 1] ∪ C

denoted by [z j−1, z j ] (as is its track), is the standard reparametrisation of ν j

relative to the unit interval [0, 1], using Remark 3.5.13 it follows that

∫

�

f =
3∑

j=1

∫

ν j

f =
3∑

j=1

∫

[z j−1,z j ]
f.

(iii) The boundary of co{z0, z1, z2} is the track of �.

Theorem 3.6.6 (Fundamental theorem of contour integration in a convex set) Let G
be a convex, open subset of C and let f : G ∪ C be continuous. Then the statement

(iv)
∫

�

f = 0 for all triangular circuits � in G

is equivalent to statements (i), (ii) and (iii) of Theorem 3.6.2.

Proof We use the convention that, for w1, w2 ∈ C, the symbol [w1, w2] may stand
for the canonical line segment fromw1 tow2 or its track, themeaning to be understood
by context.

Since (ii) implies (iv), all we have to prove is that (iv) implies (i). Suppose that
(iv) holds. Fix z0 ∈ G and define F : G ∪ C by

F(z) =
∫

[z0,z]
f ;

as G is convex, [z0, z] ⇐ G. Let h �= 0 be such that z + h ∈ G and let � be a
triangular circuit in G whose vertices and sense of description are determined by the
triple (z0, z, z + h). Then, using Remark 3.6.5 (ii) and Lemma 3.5.9,
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0 =
∫

�

f =
∫

[z0,z]
f +

∫

[z,z+h]
f +

∫

[z+h,z0]
f = F(z) +

∫

[z,z+h]
f − F(z + h),

and thus

F(z + h) − F(z) =
∫

[z,z+h]
f.

From this last equality one may proceed, just as in the proof that (iii) implies (i) in
Theorem 3.6.2, to show that (i) holds. �

Using this result it will be shown that, if G is a convex open set of C, then every
f ∈ H(G) has a primitive or, equivalently,

∫
�

f = 0 whenever f ∈ H(G) and � is
a triangular circuit in G. First we give a preliminary lemma.

Lemma 3.6.7 Let a, b, c be collinear complex numbers and let � be a degenerate
triangular circuit in C whose vertices and sense of description are determined by
the ordered triple (a, b, c). Let f : �∗ ∪ C be continuous. Then

∫

�

f =
∫

[a,b]
f +

∫

[b,c]
f +

∫

[c,a]
f = 0.

(Here [a, b] denotes the canonical line segment from a to b, etc.)

Proof Let a, b, c be distinct: otherwise the result is obvious. Plainly, the track of one
of the line segments exhausts that of �. Three cases occur: a ∈ [b, c], b ∈ [c, a],
c ∈ [a, b]. Cyclic interchange of a, b and c leads to the same result: for definiteness,
suppose that c ∈ [a, b] = �∗ and that γ ∈ (0, 1) is such that c = a + γ(b − a). Note
that b − a = γ−1(c − a) = (1 − γ)−1(b − c). Use of Theorem 3.5.2 (v) shows that

∫

[a,b]
f =

∫ 1

0
f (a + t (b − a))(b − a)dt

= (b − a)

∫ γ

0
f (a + t (b − a))dt + (b − a)

∫ 1

γ

f (a + t (b − a))dt

= γ−1(c − a)

∫ γ

0
f (a + γ−1t (c − a))dt

+ (1 − γ)−1(b − c)
∫ 1

γ

f (c + (1 − γ)−1(t − γ)(b − c))dt

= (c − a)

∫ 1

0
f (a + s(c − a))ds + (b − c)

∫ 1

0
f (c + s(b − c))ds

=
∫

[a,c]
f +

∫

[c,b]
f.

Hence, using Lemma 3.5.9 and Remark 3.6.5 (ii),
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∫

�

f =
∫

[a,b]
f +

∫

[b,c]
f +

∫

[c,a]
f = 0. �

Theorem 3.6.8 (Cauchy’s theorem for a triangle) Let G be an open subset of C,
let f ∈ C(G, C), let p ∈ G and suppose that f is analytic on G\{p}. Let � be a
triangular circuit such that co �∗, the convex hull of �∗, is contained in G. Then

∫

�

f = 0.

Proof Let the vertices and sense of description of � be determined by the ordered
triple (a, b, c) ∈ C3. Lemma 3.6.7 establishes the result when a, b, c are collinear:
henceforth, we assume that this is not the case.

As a first step in the proof, suppose that p /∈ co �∗. Let a1 = (b + c)/2, b1 =
(c+a)/2 and c1 = (a+b)/2, and let�1,�2,�3 and�4 be triangular circuits whose
vertices and sense of description are determined by the ordered triples (a, c1, b1),
(b, a1, c1), (c, b1, a1) and (a1, b1, c1), respectively. Note that l(� j ) = l(�)/2 ( j =
1, 2, 3, 4), where l denotes length. The configuration envisaged is illustrated below.

a

b1

c1 b

c

a1

Adopting notation as for Lemma 3.6.7, from Remark 3.6.5 (ii), Lemma 3.6.7 and
Lemma 3.5.9 it follows that
∫

�
f =

∫

[a,b]
f +

∫

[b,c]
f +

∫

[c,a]
f

=
∫

[a,c1]
f +

∫

[c1,b]
f +

∫

[b,a1]
f +

∫

[a1,c]
f +

∫

[c,b1]
f +

∫

[b1,a]
f

=
(∫

[a,c1]
f +

∫

[c1,b1]
f +

∫

[b1,a]
f

)
+

(∫

[b,a1]
f +

∫

[a1,c1]
f +

∫

[c1,b]
f

)

+
(∫

[c,b1]
f +

∫

[b1,a1]
f +

∫

[a1,c]
f

)
+

(∫

[a1,b1]
f +

∫

[b1,c1]
f +

∫

[c1,a1]
f

)

=
4∑

j=1

∫

� j
f.
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Plainly,
∣
∣∫

� j f
∣
∣ ≤ ∣

∣∫
�

f
∣
∣ /4 for some j . For definiteness, choose the least j for

which this is true and relabel the corresponding triangular circuit as �1: note that

co�∗ ⊃ co �∗
1,

∣
∣
∣
∣

∫

�

f

∣
∣
∣
∣ ⊂ 4

∣
∣
∣
∣

∫

�1

f

∣
∣
∣
∣ and l(�1) = 2−1l(�).

Evidently, with �1 in place of �, the same process may be repeated to produce a
further triangular circuit �2,and so on. The procedure generates a sequence (�n) of
triangular circuits such that co �∗ ⊃ co �∗

1 ⊃ co �∗
2 ⊃ . . ., with l(�n) = 2−nl(�)

and
∣
∣∫

�
f
∣
∣ ⊂ 4n

∣
∣
∣
∫
�n

f
∣
∣
∣ for all n ∈ N. Now ∩→

n=1co �∗
n = {z0} for some z0 ∈ G;

moreover, since z0 �= p, f is differentiable at z0. Let δ > 0. There exists r > 0
such that

∣
∣ f (z) − f (z0) − (z − z0) f ∗(z0)

∣
∣ ⊂ δ |z − z0| if |z − z0| < r;

also there exists n ∈ N such that |z − z0| < r if z ∈ co �∗
n . By Corollary 3.6.3,

∫

�n

f =
∫

�n

{ f (z) − f (z0) − (z − z0) f ∗(z0)}dz,

and so, by Theorem 3.5.10,

∣
∣
∣
∣

∫

�n

f

∣
∣
∣
∣ ⊂ δ

(

sup
z∈�∗

n

|z − z0|
⎧

l(�n) ⊂ δ (l(�n))2 = δ(2−nl(�))2.

Hence
∣
∣∫

�
f
∣
∣ ⊂ δ(l(�))2. As this holds for all δ > 0, it follows that

∫
�

f = 0.
Next, suppose that p is a vertex of �∗, say p = a. Choose points x ∈ [a, b],

y ∈ [a, c], both close to a, and note that
∫
�

f is the sum of the integrals of f over the
triangles with vertices and sense of description determined by the triples (a, x, y),

(y, x, b) and (y, b, c). Refer to the figure below.

p = a

b

c

x

y

Using that part of the result already proved, it follows that each of the last two of
these integrals is zero. Thus
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∫

�

f =
∫

[a,x]
f +

∫

[x,y]
f +

∫

[y,a]
f,

and, since the lengths of the line segments [a, x], [x, y] and [y, a] can be made
arbitrarily small and f is bounded, it again follows that

∫
�

f = 0.
Lastly, let p be an arbitrary point of co �∗ and consider triangular circuits deter-

mined by the triples (a, b, p), (b, c, p) and (c, a, p), as portrayed in the figure below.

b

c

a

p

Application of the preceding result to the non-degenerate triangular circuits, and
Lemma 3.6.7 to any that are degenerate, completes the proof. �

As an immediate consequence of Theorems 3.6.6 and 3.6.8 we have the following
important form of Cauchy’s theorem:

Theorem 3.6.9 (Cauchy’s theorem in a convex set ) Let G be a convex open subset
of C, let f ∈ C(G, C), let p ∈ G and suppose that f is analytic on G\{p}. Then
there is a function F ∈ H(G) such that F ∗ = f and (equivalently)

∫
θ

f = 0 for all
circuits θ in G.

Used in conjunction with Theorem 3.3.8 the next theorem shows that in fact,
f ∈ H(G); that is, the point p is not really exceptional. This follows from

Theorem 3.6.10 Let G be an open subset of C and let f ∈ H(G). Then f is
representable by power series in G.

Proof Let a ∈ G, let R > 0 be such that B(a, R) ⇐ G, let 0 < r < R and let μ

be the positively oriented circle with centre a and radius r . Let z0 ∈ G and define
g : G ∪ C by

g(w) = f (w) − f (z0)

w − z0
(w �= z0), g(z0) = f ∗(z0).

Plainly, g is continuous on G and analytic on G\{z0}. Since B(a, R) is convex, we
see from Theorem 3.6.9 that

∫
μ

g = 0; thus, for all z0 ∈ G\μ∗,



220 3 Complex Analysis

f (z0)
∫

μ

(w − z0)
−1dw =

∫

μ

(w − z0)
−1 f (w)dw.

We now use the fact, to be established by the lemma which follows, that∫
μ
(w − z0)−1 dw = 2Δ i if z0 ∈ B(a, r). Accepting this for the moment, we have

that

f (z0) = 1

2Δ i

∫

μ

(w − z0)
−1 f (w)dw if z0 ∈ B(a, r). (3.6.1)

Let z0 ∈ B(a, r) and s = r − |z0 − a|; evidently B(z0, s) ⇐ B(a, r). For all
z ∈ B(z0, s),

f (z) = 1

2Δ i

∫

μ

(w − z0)
−1

{
1 −

(
z − z0
w − z0

)}−1

f (w)dw

= 1

2Δ i

∫

μ

(w − z0)
−1 f (w)

→∑

n=0

(
z − z0
w − z0

)n

dw.

Since ∣
∣
∣ f (w)(z − z0)

n(w − z0)
−n−1

∣
∣
∣ ⊂ Ms−1(|z − z0| /s)n,

where M = sup{| f (w)| : w ∈ μ∗}, the series ∑→
n=0(z − z0)n(w − z0)−n−1 f (w)

converges uniformly on μ∗ (by the Weierstrass M-test) and thus can be integrated
term by term (Theorem 3.5.2 (vi)) to give

f (z) =
→∑

n=0

an(z − z0)
n for all z ∈ B(z0, s),

where, for all n ∈ N0,

an = 1

2Δ i

∫

μ

(w − z0)
−n−1 f (w)dw.

Appeal to Remark 3.3.9 shows that

an = f (n)(z0)/n! for all n ∈ N0.

Thus, for all z0 ∈ B(a, r) and all n ∈ N0,

f (n)(z0) = n!
2Δ i

∫

μ

(w − z0)
−n−1 f (w)dw, (3.6.2)

a formula which includes (3.6.1) as a special case.
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Setting z0 = a, we see that for each r ∈ (0, R),

f (z) =
→∑

n=0

cn(z − a)n for all z ∈ B(a, r),

where the sequence (cn)n∈N0 is independent of r . Hence, for all z ∈ B(a, R),

f (z) =
→∑

n=0

cn(z − a)n

where, for all n ∈ N0 and all r ∈ (0, R),

cn = f (n)(a)

n! = 1

2Δ i

∫

μ

(w − a)−n−1 f (w)dw.

To complete the proof we need to justify our claim that
∫
μ
(w − z)−1dw = 2Δ i

if z ∈ B(a, r). �

Lemma 3.6.11 Let a ∈ C, r > 0 and define μ : [0, 2Δ ] ∪ C by μ(t) = a + reit

(0 ⊂ t ⊂ 2Δ). Then

∫

μ

(w − z)−1dw =
{
2Δ i, |z − a| < r,
0, |z − a| > r.

Proof Suppose first that |z − a| > r . Then w ∞−∪ (w − z)−1 is analytic on an open
ball B containing μ∗ but not z. Since B is convex, we conclude from Theorem 3.6.9
that

∫
μ
(w − z)−1dw = 0. On the other hand, if |z − a| < r , then

∫

μ

(w − z)−1dw =
∫

μ

(w − a)−1
{
1 −

(
z − a

w − a

)}−1

dw

=
∫

μ

(w − a)−1
→∑

n=0

(
z − a

w − a

)n

dw.

Since
∣
∣
∣ z−a
w−a

∣
∣
∣ = |z−a|

r < 1, the series is uniformly convergent on μ∗ and thus, by

Theorem 3.5.2 (vi), (3.5.2) and Corollary 3.6.3,

∫

μ

(w − z)−1dw =
→∑

n=0

(z − a)n
∫

μ

(w − a)−n−1dw = 2Δ i.

�
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Remark 3.6.12 In view of Theorem 3.3.8, Theorem 3.6.10 shows that a function f
is analytic on an open set G if, and only if, it is representable by power series in G.

Let us now take stock of the position. Suppose that G is an open subset of C,
a ∈ G, r0 = dist(a, C\G) (= → if G = C), μ is a positively oriented circle with
centre a and radius r ∈ (0, r0), and f ∈ H(G). Our results show that under these
conditions,

f (z) =
→∑

n=0

f (n)(a)

n! (z − a)n for all z ∈ B(a, r) (3.6.3)

and that

f (n)(a) = n!
2Δ i

∫

μ

(w − a)−n−1 f (w)dw for all n ∈ N0. (3.6.4)

The series in (3.6.3) is called the Taylor expansion of f about a; it converges
absolutely on B(a, r0) and uniformly on compact subsets of B(a, r0). The formulae
(3.6.4) are well worth committing to memory; they are, however, special cases of an
important andmore general result to which we now proceed, namely Theorem 3.6.15
below.

Theorem 3.6.13 Let θ be a contour in C, let G be an open subset of C, let ψ :
θ ∗ × G ∪ C be continuous and suppose that for all ζ ∈ θ ∗, ψ(ζ, ·) ∈ H(G); put
f (z) = ∫

θ
ψ(ζ, z)dζ (z ∈ G). Then f ∈ H(G) and for all k ∈ N,

f (k)(z) =
∫

θ

πk

πzk
ψ(ζ, z)dζ (z ∈ G).

Proof Let a ∈ G, let r ∈ (0, 1) be so small that B(a, r) ⇐ G and putμ(t) = a+reit

(0 ⊂ t ⊂ 2Δ). Use of (3.6.2) shows that for all (ζ, z) ∈ θ ∗ × B(a, r),

ψ(ζ, z) = 1

2Δ i

∫

μ

(w − z)−1ψ(ζ,w)dw

and
πk

πzk
ψ(ζ, z) = k!

2Δ i

∫

μ

(w − z)−k−1ψ(ζ,w)dw (k ∈ N).

For simplicity, let ψ2 denote the first derivative of ψ with respect to its second argu-
ment (so that ψ2(ζ, z) = πψ(ζ, z)/πz). We show that ψ2 is continuous. Let τ ∈ θ ∗.
It suffices to show that ψ2 is continuous at (τ, a) ∈ θ ∗ × G. Let δ > 0. Since the
map (ζ, w, z) ∞−∪ (w − z)−2ψ(ζ,w) is uniformly continuous on the compact set

θ ∗ × μ∗ × B(a, r/2), there exists λ ∈ (0, r/2) such that

∣
∣
∣(w − z)−2ψ(ζ,w) − (w − a)−2ψ(τ,w)

∣
∣
∣ < δ
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whenever (ζ, w, z) ∈ θ ∗ × μ∗ × B(a, r/2) and
{|ζ − τ|2 + |z − a|2}1/2 < λ. Use

of this inequality in conjunction with the integral expression for ψ2 derived from
(3.6.2) shows that

|ψ2(ζ, z) − ψ2(τ, a)| ⊂ 1

2Δ
· 2Δr · δ < δ

whenever (ζ, z) ∈ θ ∗ × B(a, r/2) and
{|ζ − τ|2 + |z − a|2}1/2 < λ. Thus ψ2 is

continuous at (τ, a) and hence on θ ∗ × G.
We now establish the result when k = 1. It is clearly enough to prove that

∫

θ

(z − a)−1 {ψ(ζ, z) − ψ(ζ, a) − (z − a)ψ2(ζ, a)} dζ ∪ 0 as z ∪ a.

We use the identity

(1 − t)−1 = 1 + t + (1 − t)−1t2(t �= 1)

with t = (z − a)/(w − a); that is, 1 − t = (w − z)/(w − a). This shows that

2Δ iψ(ζ, z) =
∫

μ

(w − a)−1
{
1 + z − a

w − a
+ (z − a)2

(w − a)(w − z)

}
ψ(ζ,w)dw

=
∫

μ

(w − a)−1ψ(ζ,w)dw + (z − a)

∫

μ

(w − a)−2ψ(ζ,w)dw

+ (z − a)2
∫

μ

(w − a)−2(w − z)−1ψ(ζ,w)dw.

With the aid of the formulae from (3.6.2) quoted earlier, this gives

ψ(ζ, z)− ψ(ζ, a) − (z − a)ψ2(ζ, a) = (z − a)2

2Δ i

∫

μ

(w − a)−2(w − z)−1ψ(ζ,w)dw

(3.6.5)

whenever z ∈ B(a, r), ζ ∈ θ ∗. Put M = sup{|ψ(ζ,w)| : ζ ∈ θ ∗, w ∈ μ∗};
M < → since θ ∗ × μ∗ is compact. Thus from (3.6.5) and (3.5.3) we have that for
all z ∈ B(a, r) and all ζ ∈ θ ∗,

|ψ(ζ, z) − ψ(ζ, a) − (z − a)ψ2(ζ, a)| ⊂ M |z − a|2 /{r(r − |z − a|)},

which shows, by (3.5.3) again, that

∣
∣
∣
∣

∫

θ

{
ψ(ζ, z) − ψ(ζ, a)

z − a
− ψ2(ζ, a)

}
dζ

∣
∣
∣
∣ ⊂ M |z − a|

r(r − |z − a|) l(θ ) ∪ 0 as z ∪ a.

Hence f ∗(a) exists and
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f ∗(a) =
∫

θ

ψ2(ζ, a)dζ,

which proves the case k = 1.
Finally, for k ∈ N, let ψ2,k denote the kth derivative of ψ with respect to its

second argument (ψ2,1 ↑ ψ2). Let Ψ be the set of natural numbers k such that ψ2,k
is continuous and

f (k)(z) =
∫

θ

ψ2,k(ζ, z)dζ (z ∈ G).

We have shown that 1 ∈ Ψ ; moreover, since ψ2,k satisfies the same hypotheses as ψ

if k ∈ Ψ , induction shows that Ψ = N. �
It is now convenient to introduce the index of a point with respect to a circuit; as

we shall soon see, this is nothing more than the winding number.

Definition 3.6.14 Let θ be a circuit in C and let z ∈ C\θ ∗. The index of z with
respect to θ is defined to be indθ (z), where

indθ (z) = 1

2Δ i

∫

θ

(ζ − z)−1dζ.

Before discussion of the meaning of indθ (z), we give the following important
result.

Theorem 3.6.15 (Cauchy’s integral formula in a convex open set ) Let θ be a circuit
in a convex, open set G ⇐ C and let f ∈ H(G); suppose that z ∈ G\θ ∗. Then

f (z) indθ (z) = 1

2Δ i

∫

θ

(ζ − z)−1 f (ζ )dζ (3.6.6)

and

f (n)(z) indθ (z) = n!
2Δ i

∫

θ

(ζ − z)−n−1 f (ζ )dζ (n ∈ N). (3.6.7)

Proof Fix z ∈ G\θ ∗ and define g : G ∪ C by

g(ζ ) = { f (ζ ) − f (z)}/(ζ − z) for ζ �= z, g(z) = f ∗(z).

By Theorem 3.6.9,
∫
θ

g = 0; (3.6.6) follows immediately. Next, define ψ by

ψ(ζ, z) = f (ζ )/(ζ − z) for (ζ, z) ∈ θ ∗ × (G\θ ∗),

and apply Theorem 3.6.13 with G replaced by G\θ ∗. We see that the map

z ∞−∪
∫

θ

(ζ − z)−1 f (ζ )dζ = 2Δ i f (z) indθ (z)
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is in H(G\θ ∗) and has derivatives of all orders:

2Δ i( f · indθ )(k)(z) = k!
∫

θ

(ζ − z)−k−1 f (ζ )dζ(k ∈ N). (3.6.8)

Put Γ(ζ, z) = (ζ − z)−1 for (ζ, z) ∈ θ ∗ × (C\θ ∗); by Theorem 3.6.13, indθ ∈
H(C\θ ∗) and

2Δ i(indθ )(k)(z) = k!
∫

θ

(ζ − z)−k−1dζ = 0(k ∈ N),

the final step following from Theorem 3.6.2 since ζ ∞∪ (ζ − z)−k−1 has primitive
ζ ∞∪ −(ζ − z)−k/k on C\{z}. Thus (3.6.8) reduces to

2Δ i f (k)(z) indθ (z) = k!
∫

θ

(ζ − z)−k−1 f (ζ )dζ,

�

which gives (3.6.7).
Note that formula (3.6.4), in which θ is the positively oriented circle with centre

a and radius r , follows from (3.6.6) and (3.6.7) since in this case

indθ (z) = 1 if |z − a| < r, indθ (z) = 0 if |z − a| > r,

as we know from Lemma 3.6.11.
As mentioned earlier, if θ is a circuit and z ∈ C\θ ∗, then indθ (z) coincides with

the winding number n(θ, z) of θ with respect to z. To prove this it is convenient
to introduce the idea of an analytic logarithm, which is companion to that of a
continuous logarithm mentioned in Sect. 3.4.

Definition 3.6.16 Let G be an open subset of C and let f : G ∪ C\{0} be analytic.
An analyticmap g : G ∪ C is called an analytic logarithm of f on G if g ∈ H(G)

and exp(g(z)) = f (z) for all z ∈ G.

Theorem 3.6.17 Let G be an open subset of C, let f ∈ H(G) and suppose that
0 /∈ f (G). Then f has an analytic logarithm on G if, and only if, f ∗/ f has a primitive
on G.

Proof Suppose f has an analytic logarithm g on G. Then f = exp g, so that f ∗ =
g∗ exp g; that is, g∗ = f ∗/ f , and g is a primitive of f ∗/ f . Conversely, if g ∈ H(G)

is such that g∗ = f ∗/ f , then [(exp g)/ f ]∗ = 0 on G. Hence (exp g)/ f is constant,
say equal to k j , on each component G j of G (by Theorem 3.2.11). Let c j be so
chosen that exp c j = k j . Then exp(g(z) − c j ) = f (z) for all z ∈ G j . Suppose the
components G j of G are indexed by a set J : then the function g̃ : G ∪ C defined
by g̃(z) = g(z) − c j for all z ∈ G j ( j ∈ J ), is an analytic logarithm of f on G. �
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Theorem 3.6.18 Let G be a convex, open subset of C and let f ∈ H(G) be such
that 0 /∈ f (G). Then f has an analytic logarithm on G.

Proof Since f ∗/ f ∈ H(G), it follows from Theorem 3.6.9 that f ∗/ f has a primitive
in G. The result now follows from Theorem 3.6.17. �

The final result preparatory to the identification of the index and the winding
number for circuits is the following:

Theorem 3.6.19 Let g be an analytic logarithm of f on an open set G ⇐ C, and let
θ : [a, b] ∪ C be a contour in G. Then

∫

θ

f ∗/ f = g(θ (b)) − g(θ (a)).

Proof As in the proof of Theorem 3.6.17 we see that g∗ = f ∗/ f . Thus

∫

θ

f ∗/ f =
∫ b

a
g∗(θ (t))θ ∗(t)dt = g(θ (b)) − g(θ (a)).

�

The promised identification now follows.

Theorem 3.6.20 Let θ : [a, b] ∪ C be a circuit and let z0 ∈ C\θ ∗. Then

n(θ, z0) = indθ (z0).

More generally, if f ∈ H(G) for some open set G ⊃ θ ∗ and z0 ∈ C\( f ◦ θ )∗, then

n( f ◦ θ, z0) = ind f ◦θ (z0) = 1

2Δ i

∫

θ

f ∗(z)
f (z) − z0

dz.

Proof By ‘shrinking’ G if necessary, we may and shall suppose that f − z0 is never
zero on G. For example, with r = dist(θ ∗, f −1{z0}) > 0, let G ∗ = ◦z∈θ ∗ B(z, r/2)
and note that G ∗ is open, θ ∗ ⇐ G ∗ and f − z0 �= 0 on G ∗; G may now be replaced by
G ∗. We claim that there is a partition {t0, t1, . . . , tk} of [a, b] such that there are open
balls B1, . . . , Bk , each contained in G, with θ (t) ∈ B j whenever t ∈ [t j−1, t j ] ( j =
1, 2, . . . , k). To establish this, let δ = dist(θ ∗, C\G) > 0. Since θ is continuous, and
hence uniformly continuous on [a, b], there exists λ > 0 such that

∣
∣θ (t) − θ (t ∗)

∣
∣ < δ

if
∣
∣t − t ∗

∣
∣ < λ and t, t ∗ ∈ [a, b]. Let {t0, t1, . . . , tk} be a partition of [a, b] with∣

∣t j − t j−1
∣
∣ < λ for each j ∈ {1, 2, . . . , k}, and put B j = B(θ (t j ), δ) (⇐ G) for

j = 1, 2, . . . , k. If t ∈ [t j−1, t j ], then
∣
∣t − t j

∣
∣ < λ and hence

∣
∣θ (t) − θ (t j )

∣
∣ < δ;

thus θ (t) ∈ B j , and our claim is justified.
ByTheorem3.6.18, f −z0 has an analytic logarithm g j on B j ; byTheorem3.6.19,

∫

θ j

f ∗(z)
f (z) − z0

dz = g j (θ (t j )) − g j (θ (t j−1)),
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where θ j is the restriction of θ to [t j−1, t j ]. Let γ be a continuous argument of
f ◦θ −z0, and note that g j ◦θ is a continuous logarithmof f ◦θ −z0 : [t j−1, t j ] ∪ C.
Then

1

2Δ i

∫

θ

f ∗(z)
f (z) − z0

dz = 1

2Δ i

k∑

j=1

{g j (θ (t j )) − g j (θ (t j−1))},

and by Theorem 3.4.18 (d) this equals

1

2Δ i

k∑

j=1

{log ∣∣ f (θ (t j )) − z0
∣
∣ − log

∣
∣ f (θ (t j−1)) − z0

∣
∣ + iγ(t j ) − iγ(t j−1)}

= 1

2Δ
{γ(b) − γ(a)} = n( f ◦ θ, z0).

�

Now that the identity between the winding number and the index has been estab-
lished for circuits, the properties of the winding number derived in Sect. 3.4 also
hold for the index. For convenience we summarise these properties in the following:

Theorem 3.6.21 (i) Let θ be a circuit and let G = C\θ ∗. Then indθ is an integer-
valued function on G which is constant on each component of G and is zero on
the unbounded component of G.

(ii) Let τ, χ ∈ C, τ �= 0, let f : C ∪ C be given by f (z) = τz + χ (z ∈ C), let θ

be a circuit and suppose that w ∈ C\θ ∗. Then

indθ (w) = ind f ◦θ ( f (w)).

(iii) Let G̃ be an open set in C and let θ, η : [0, 1] ∪ G̃ be circuits in G̃ which are
freely homotopic. Then for all w ∈ C\G̃, indθ (w) = indη (w).

Proof Part (i) is just Theorems 3.4.27 and 3.4.20; (ii) is Theorem 3.4.23; and
(iii) simply Theorem 3.4.28, all applied to circuits rather than to closed paths. With-
out reference to these earlier results, it should be noted that Definition 3.6.14 permits
direct derivation of parts (i) and (ii). �

Remark 3.6.22 (i) Use of Theorems 3.6.20 and 3.6.21 shows that if θ is either the
rectangular circuit of Example 3.4.22, part (iii), or the semicircular circuit of part
(iv), then indθ (z) =1 for all z in the bounded component of C\θ ∗. In the remainder
of this Remark, for use in another context, we show that the same result holds for
variants of these circuits. For these variants, the result may be proved either by
methods developed in Example 3.4.22 (a task left to the reader), by direct appeal to
Definition 3.6.14, or via a choice of an appropriate homotopy.
(ii) Suppose 0 < δ < 1 < R < → and let η : [−R, R + Δ ] ∪ C be the simple
circuit defined by
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η(s) =

⎨
⎩

⎪

s, −R ⊂ s ⊂ −δ,

δ exp (iΔ(1 − s/δ)/2) , −δ ⊂ s ⊂ δ,

s, δ ⊂ s ⊂ R,

R exp(i(s − R)), R ⊂ s ⊂ R + Δ.

The figure below portrays η ∗.

− ε ε− R 0 R

σ

We seek to show that indη (z) = 1 for all z in the bounded component of C\η ∗
and, because of Theorem 3.6.21 (i), it suffices to prove that indη (i) = 1.

Loosely speaking, replacement of the smaller semicircle about the origin in the
figure above by a line segment along the real axis transforms it into the track of
the semicircular circuit of Example 3.4.22 (iv), a circuit θ : [−R, R + Δ ] ∪ C
defined by

θ (s) =
{

s, −R ⊂ s ⊂ R,

R exp(i(s − R)), R ⊂ s ⊂ R + Δ.

Evidently, the map H : [−R, R + Δ ] × [0, 1] ∪ C\{i} given by

H(s, t) = (1 − t)η (s) + tθ (s)

establishes that θ and η are homotopic and thus freely homotopic in C\{i}. Hence,
by Theorem 3.6.21 (iii) and part (i) of this Remark, indη (i) = indθ (i) = 1.
(iii) Let r > 0. Consider the map

H : [−1/2 − r, 1/2 + r ] × [0, 1] ∪ C\{0}

defined for the intervals specified and 0 ⊂ t ⊂ 1 by

H(s, t) =

⎨
⎩

⎪

2s + 1

2
+ 2r − ire−i tΔ/4, −1

2
− r ⊂ s ⊂ −r,

1

2
+ i(2s + r)e−i tΔ/4, −r ⊂ s ⊂ 0,

1

2
− 2s + ire−i tΔ/4, 0 ⊂ s ⊂ 1

2
,

−1

2
+ i(1 + r − 2s)e−i tΔ/4,

1

2
⊂ s ⊂ 1

2
+ r.
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The gluing lemma shows that H is continuous. Let θ, η : [−1/2− r, 1/2+ r ] ∪ C
be circuits defined by

θ (s) = H(s, 0), η (s) = H(s, 1).

Evidently, θ ∗ is a rectangle with vertices ± 1
2 ± ir and η ∗ is a parallelogram with

vertices ± 1
2 ± reiΔ/4. The map H establishes that θ and η are freely homotopic in

C\{0} and thus use of Theorems 3.6.20, 3.6.21 and Example 3.4.22 (iii) shows that

indη (0) = indθ (0) = 1.

We shall now illustrate the significance of Theorem 3.6.15 by obtaining from it
several results of great importance.

Theorem 3.6.23 Let f ∈ H(B(a, R)) and put

M f (a, r) = sup{| f (z)| : |z − a| = r}

for 0 < r < R. Then for all n ∈ N0,

∣
∣
∣ f (n)(a)

∣
∣
∣ ⊂ n!M f (a, r)r−n;

and if f (z) = ∑→
0 an(z − a)n (z ∈ B(a, R)), then for all n ∈ N0,

|an| ⊂ M f (a, r)r−n .

Proof Let θ : [0, 2Δ ] ∪ C be defined by θ (t) = a + reit . By Theorem 3.6.15,
since indθ (a) = 1 we have

∣
∣
∣ f (n)(a)

∣
∣
∣ =

∣
∣
∣
∣

n!
2Δ i

∫

θ

(ζ − a)−n−1 f (ζ )dζ

∣
∣
∣
∣ ⊂ n!M f (a, r)r−n,

by (3.5.3). The rest is now clear. �

That these inequalities for
∣
∣ f (n)(a)

∣
∣ are best possible we see by considering the

function f given by f (z) = (z − a)m for some m ∈ N.
From these inequalities the famous theorem due to Liouville follows.

Theorem 3.6.24 (Liouville’s theorem) Every bounded function which is entire (that
is, in H(C)) is constant.

Proof Let f ∈ H(C) and suppose there is a number M such that for all z ∈ C,
| f (z)| ⊂ M . By Theorem 3.6.10, there are constants an (n ∈ N0) such that for all
z ∈ C, f (z) = ∑→

n=0 anzn . If n ≤ 1, Theorem 3.6.23 shows that for all r > 0,
|an| ⊂ Mr−n ; and as Mr−n ∪ 0 as r ∪ →, an = 0. Hence f (z) = a0 for all
z ∈ C. �



230 3 Complex Analysis

Theorem 3.6.25 Let p be a polynomial of degree at least 1, with complex coeffi-
cients. Then there exists z ∈ C such that p(z) = 0.

Proof Suppose p is never zero. Then 1/p ∈ H(C). Moreover, since p(z) = a0 +
a1z + · · · + anzn , where an �= 0,

|p(z)| = ∣
∣anzn

∣
∣
∣
∣
∣
∣1 + an−1

an
z−1 + · · · + a0

an
z−n

∣
∣
∣
∣ ∪ → as |z| ∪ →;

thus 1/ |p(z)| ∪ 0 as |z| ∪ →, and so there exists N > 0 such that 1/ |p(z)| ⊂ 1
if |z| > N . As 1/ |p| is continuous on the compact set B(0, N ), there exists M > 0
such that 1/ |p(z)| ⊂ M for all z with |z| ⊂ N . Hence 1/ |p(z)| ⊂ max(M, 1) for all
z ∈ C : 1/p is bounded on C. Thus by Theorem 3.6.24, 1/p is constant, and so p is
constant. Since |p(z)| ∪ → as |z| ∪ → we have a contradiction and the theorem
is proved. �

We now turn our attention to another remarkable property of analytic functions:
two functions which are analytic in a region G and coincide in an open, non-empty
subset of G (no matter how small!) must coincide throughout G. We lead up to this
by means of the following theorem involving the zeros of an analytic function.

Theorem 3.6.26 Let G be a region in C, let f ∈ H(G) and put Z( f ) = {a ∈ G :
f (a) = 0}. Then either Z( f ) = G or Z( f ) has no limit point in G; in the latter
case, to each a ∈ Z( f ) there corresponds a unique positive integer m such that
f (z) = (z − a)m g(z) for all z ∈ G, where g ∈ H(G) and g(a) �= 0. (The integer m
is called the order or multiplicity of the zero which f has at a.)

Proof Let L be the set of all limit points of Z( f ) in G : L ⇐ Z( f ) since f is
continuous. Let a ∈ Z( f ) and let r > 0 be such that B(a, r) ⇐ G. Then f (z) =∑→

0 an(z − a)n for all z ∈ B(a, r). One of the following two possibilities must
occur:

(i) an = 0 for all n ∈ N0; thus B(a, r) ⇐ L , a ∈ o
L;

(ii) there is a smallest integer m such that am �= 0; m ≤ 1 since f (a) = a0 = 0.
In case (ii), put g(z) = (z − a)−m f (z) if z ∈ G\{a}, g(a) = am . Then f (z) =

(z − a)m g(z) for all z ∈ G and g is analytic in G\{a}. Moreover, for all z ∈ B(a, r)

we have g(z) = ∑→
k=0 am+k(z − a)k and so g is also analytic at a; thus g ∈ H(G).

Since g(a) = am �= 0, there is a neighbourhood of a in which g has no zero, and it
follows that f has an isolated zero at a.

If a ∈ L , case (i) must occur and so L must be open. Put M = G\L . If b ∈ M ,
then there is a neighbourhood V (⇐ G) of b such that Z( f ) ∩ (V \{b}) = √, and so

V ⇐ M ; thus b ∈ o
M . Hence M is open and, since G is connected, either L = G, in

which case Z( f ) = G, or L = √. �

Theorem 3.6.27 Let G be a region in C and let f, g ∈ H(G). If f (z) = g(z) for
all z in some set which has a limit point in G, then f (z) = g(z) for all z ∈ G.
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Proof Simply apply Theorem 3.6.26 to f − g. �

As an immediate consequence of this we see that if f and g coincide on some
open, non-empty subset of G, then they are identical on G.

Theorem 3.6.28 (The maximum modulus theorem) Let G be a region in C, let
f ∈ H(G) and suppose that f is non-constant on G. Then no point of G is a local
maximum of the function | f |.
Proof To obtain a contradiction, suppose that there exist a ∈ G and r ∗ > 0 such that

| f (z)| ⊂ | f (a)| whenever z ∈ B(a, r ∗).

Let 0 < r < r ∗ and θ (t) = a + reit (0 ⊂ t ⊂ 2Δ). Since B(a, r ∗) is open and
convex, and θ ∗ ⇐ B(a, r ∗), application of Theorem 3.6.15 gives

f (a) indθ (a) = 1

2Δ i

∫

θ

(z − a)−1 f (z)dz.

Use of Lemma 3.6.11 thus gives

f (a) = 1

2Δ

∫ 2Δ

0
f (a + reit )dt,

and so

| f (a)| ⊂ 1

2Δ

∫ 2Δ

0

∣
∣
∣ f (a + reit )

∣
∣
∣ dt ⊂ 1

2Δ

∫ 2Δ

0
| f (a)| dt = | f (a)| .

It follows that ∫ 2Δ

0

⎞
| f (a)| −

∣
∣
∣ f (a + reit )

∣
∣
∣
⎠

dt = 0,

and that, since the integrand is continuous and non-negative,

| f (a)| =
∣
∣
∣ f (a + reit )

∣
∣
∣ (0 ⊂ t ⊂ 2Δ; 0 < r < r ∗).

Hence | f (z)| = | f (a)| for all z ∈ B(a, r ∗). By Exercise 3.2.12/5, the constancy of
| f | on B(a, r ∗) implies that of f on B(a, r ∗). In turn, through Theorem 3.6.27, this
implies the constancy of f on G, contrary to hypothesis. �

After these diversions we return to Cauchy’s theorem, and attempt to answer the
question as to whether, given a region G, we can determine those circuits θ in G
such that

∫
θ

f = 0 for all f ∈ H(G). To handle this we need a lemma and a new
idea, that of a ‘cycle’.
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Lemma 3.6.29 Let G be an open subset of C and let f ∈ H(G). Define g : G×G ∪
C by

g(ζ, z) =
⎨
⎩

⎪

f (ζ )− f (z)
ζ−z , ζ �= z,

f ∗(z), ζ = z.

Then g is continuous.

Proof Continuity of g is clear at all points (ζ, z) ∈ G × G with ζ �= z. To discuss
the ‘diagonal’ points, fix a ∈ G. Given any δ > 0, there exists r > 0 such that
B(a, r) ⇐ G and

∣
∣ f ∗(w) − f ∗(a)

∣
∣ < δ for all w ∈ B(a, r). If ζ, z ∈ B(a, r) and

θ : [0, 1] ∪ C is defined by θ (t) = (1 − t)z + tζ , then θ ∗ ⇐ B(a, r) and since

f (ζ ) − f (z) =
∫ 1

0
f ∗(θ (t))θ ∗(t)dt = (ζ − z)

∫ 1

0
f ∗(θ (t))dt,

it follows that

g(ζ, z) − g(a, a) =
∫ 1

0
{ f ∗(θ (t)) − f ∗(a)}dt.

Thus |g(ζ, z) − g(a, a)| < δ for all (ζ, z) ∈ B((a, a), r) ⇐ B(a, r) × B(a, r),
which gives the required continuity. �

Not only does this lemmaplay a key rôle in our proof of a general formofCauchy’s
theorem, but it also leads to the following useful result.

Corollary 3.6.30 Let G be an open subset of C, a ∈ G, f ∈ H(G) and f ∗(a) �= 0.
Then there is a neighbourhood U of a in G such that the restriction of f to U is
injective; that is, f is locally injective at a.

Proof The proof of Lemma 3.6.29 and the choice δ = 1
2

∣
∣ f ∗(a)

∣
∣ show that there is

a neighbourhood U of a such that, if ζ, z ∈ U and ζ �= z, then

∣
∣
∣
∣

f (ζ ) − f (z)

ζ − z
− f ∗(a)

∣
∣
∣
∣ <

1

2

∣
∣ f ∗(a)

∣
∣ .

Thus

| f (ζ ) − f (z)| >
1

2

∣
∣ f ∗(a)

∣
∣ |ζ − z| ,

and so f is injective on U . �

Definition 3.6.31 A finite sequence Ψ = (θ j )
m
j=1 of circuits is called a cycle; the

track of the cycle Ψ , denoted by Ψ ∗, is defined by Ψ ∗ := ⋃m
k=1 θ ∗

k ; the cycle
opposite to Ψ , written −Ψ , is given by −Ψ = (−θ j )

m
j=1. Let f : Ψ ∗ ∪ C be

continuous. The integral of f over Ψ , denoted by
∫
Ψ

f , is defined by
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∫

Ψ

f =
m∑

j=1

∫

θ j

f.

Plainly
∫
Ψ

f = − ∫
−Ψ

f . Cycles Ψ1 and Ψ2 are said to be equivalent if

∫

Ψ1

f =
∫

Ψ2

f ( f ∈ C(Ψ ∗
1 ◦ Ψ ∗

2 , C));

a cycle Ψ is said to be equivalent to zero if

∫

Ψ

f = 0 ( f ∈ C(Ψ ∗, C)).

Evidently, ifΨ = (θ j )
m
j=1 is a cycle andη is a bijectivemappingof {1, 2, . . . , m}onto

itself (a rearrangement or permutation), then Ψ and Ψ̃ := (θη( j))
m
j=1 are equivalent;

rearrangement generates an equivalent cycle. Given a cycle Ψ = (θ j )
m
j=1 and a point

z ∈ C\Ψ ∗, the index of z relative to Ψ is defined by

indΨ (z) = 1

2Δ i

∫

Ψ

(ζ − z)−1dζ =
m∑

j=1

indθ j (z).

Note that if Ψ1 and Ψ2 are equivalent cycles and z ∈ C\(Ψ ∗
1 ◦ Ψ ∗

2 ), then

indΨ1(z) = indΨ2(z).

We can now give a very general form of Cauchy’s theorem.

Theorem 3.6.32 (The global version of Cauchy’s theorem) Let G be an open subset
of C, let f ∈ H(G) and let Ψ be a cycle such that Ψ ∗ ⇐ G and indΨ (a) = 0 for all
a ∈ C\G. Then

indΨ (z) f (z) = 1

2Δ i

∫

Ψ

(ζ − z)−1 f (ζ )dζ for all z ∈ G\Ψ ∗, (3.6.9)

and ∫

Ψ

f = 0. (3.6.10)

If � and ξ are cycles in G (that is, �∗ ⇐ G and ξ ∗ ⇐ G) such that ind�(a) =
indξ (a) for all a ∈ C\G, then ∫

�

f =
∫

ξ

f. (3.6.11)

Proof Define g : G × G ∪ C by
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g(ζ, z) = { f (ζ ) − f (z)}/(ζ − z) (ζ �= z), g(z, z) = f ∗(z).

By Lemma 3.6.29, g is continuous. Now define h : G ∪ C by

h(z) = 1

2Δ i

∫

Ψ

g(ζ, z)dζ

and note that since for z ∈ G\Ψ ∗ we have

h(z) = 1

2Δ i

∫

Ψ

{ f (ζ ) − f (z)}(ζ − z)−1dζ,

(3.6.9) is equivalent to the statement that h(z) = 0. To prove this statement, first
observe that since g(ζ, ·) is continuous on G and analytic on G\{ζ }, Theorems 3.6.9
and 3.6.10 show that g(ζ, ·) is analytic on G. By Theorem 3.6.13, extended in the
obvious way to cycles rather than contours, h is analytic on G.

Put G1 = {z ∈ C : indΨ (z) = 0} and define h1 : G1 ∪ C by

h1(z) = 1

2Δ i

∫

Ψ

(ζ − z)−1 f (ζ )dζ.

By Theorem 3.6.13 again, h1 is analytic on G1 (note that by Theorems 2.4.27 and
3.6.21 (i), G1 is open). If z ∈ G ∩ G1, evidently h(z) = h1(z). Thus the function
ψ : G1 ◦ G ∪ C defined by ψ(z) = h(z) (z ∈ G), ψ(z) = h1(z) (z ∈ G1) is
analytic in G1 ◦ G.

By hypothesis, C\G ⇐ G1, and so G1 ◦ G = C and ψ is an entire function.
Since indΨ (z) = 0 on the unbounded component U of C\Ψ ∗, U ⇐ G1; thus
lim|z|∪→ ψ(z) = lim|z|∪→ h1(z) = 0. Thus ψ is bounded, and hence constant,
by Liouville’s theorem: the constant is clearly zero, and so h(z) = 0 for all z ∈ G,
which proves (3.6.9).

To obtain (3.6.10), let z0 ∈ G\Ψ ∗ and define F(z) = (z − z0) f (z) (z ∈ G) : F
is analytic in G. Thus by (3.6.9),

∫

Ψ

f =
∫

Ψ

F(ζ )(ζ − z0)
−1dζ = 2Δ i F(z0) indΨ (z0) = 0.

Finally, suppose � = (ε j )
r
j=1 and ξ = (Γ j )

s
j=1, the ε j and Γ j being circuits, and

let Ψ = (θ j )
r+s
j=1 be the cycle defined by

θ j = ε j (1 ⊂ j ⊂ r), θ j = −Γ j−r (r + 1 ⊂ j ⊂ r + s).

Then
indΨ (a) = ind�(a) − indξ (a) = 0 (a ∈ C\G);

further, application of (3.6.10) to f shows that
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0 =
∫

Ψ

f =
∫

�

f −
∫

ξ

f,

and therefore ∫

�

f =
∫

ξ

f.
�

Remark 3.6.33 (i) Suppose that G is a convex, open subset ofC and let θ be a circuit
in G. If a ∈ C\G, Theorem 3.6.9 shows that indθ (a) = 0; thus indΨ (a) = 0 for all
cycles Ψ with Ψ ∗ ⇐ G. Thus the basic hypothesis of Theorem 3.6.32 holds if G is
convex.
(ii) Let G be an open subset of C and let θ be a circuit in G. Theorem 3.6.32 shows
that if indθ (a) = 0 for all a ∈ C\G then

∫
θ

f = 0 for all f ∈ H(G). The converse

also holds: if a ∈ C\G and indθ (a) �= 0, put f (z) = (z − a)−1 (z ∈ G), so that
f ∈ H(G) and

∫
θ

f = 2Δ i indθ (a) �= 0. Thus the circuits θ in G such that
∫
θ

f = 0
for all f ∈ H(G) are exactly those for which indθ (z) = 0 for all z ∈ C\G.
(iii)Wehave shown that for a givenopen subsetG ofC, the following three statements
are equivalent:

(1) indθ (z) = 0 for all z ∈ C\G and all circuits θ in G;
(2)

∫
θ

f = 0 for all f ∈ H(G) and all circuits θ in G;
(3) every f ∈ H(G) has a primitive on G.

It is desirable to formalise some of the ideas which appear in the above discussion.

Definition 3.6.34 Let G be an open subset ofC. A cycleΨ in G such that indΨ (z) =
0 for all z ∈ C\G is said to be homologous to 0 (in G). Cycles Ψ1 and Ψ2 in G such
that

indΨ1(z) = indΨ2(z) for all z ∈ C\G,

are said to be homologous (in G).

This definition enables us to present the conclusions (3.6.10) and (3.6.11) of
Theorem 3.6.32 in the following form: if f ∈ H(G), then

∫

Ψ

f = 0

for all cycles Ψ in G which are homologous to 0; and

∫

Ψ1

f =
∫

Ψ2

f

for all homologous cycles Ψ1 and Ψ2 in G.
The global version of Cauchy’s theorem is thus called the homology version of

the theorem. There is another version, the homotopy version, which is easy to prove
from Theorem 3.6.32.
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Theorem 3.6.35 (The homotopy version of Cauchy’s theorem) Let G be an open
subset of C and let θ0, θ1 : [0, 1] ∪ C be circuits in G which are freely homotopic.
Then

∫

θ0

f =
∫

θ1

f

for all f ∈ H(G). In particular, if θ0 is freely homotopic to a constant path in G,
then

∫
θ0

f = 0 for all f ∈ H(G).

Proof Sinceθ0 andθ1 are freely homotopic, they are homologous, byTheorem3.6.21
(iii). Thus by Theorem 3.6.32,

∫
θ0

f = ∫
θ1

f for all f ∈ H(G). The rest is now
clear. �

Corollary 3.6.36 Let G be an open, simply-connected subset of C. Then for all
circuits θ in G and all f ∈ H(G),

∫
θ

f = 0.

Proof Since every circuit in a simply-connected subset is null-homotopic, the result
follows immediately from Theorem 3.6.35. �

We shall see later that if G is a region in C such that
∫
θ

f = 0 for every f ∈
H(G) and every circuit θ in G, then G is simply-connected. In view of this, and
Corollary 3.6.36, it follows that for a given region G ⇐ C, statements 1, 2 and 3 of
Remark 3.6.33 (iii) are each equivalent to the following statement:
4) G is simply-connected.

Exercise 3.6.37

1. (i) Sketch the track of the contour μ : [−Δ
2 , Δ

2

] ∪ C defined by μ(t) =
−t + i

(
Δ2

4 − t2
)
. Evaluate

∫
μ
cos zdz.

(ii) Let ν : [0, 1] ∪ C be defined by ν(0) = 0, ν(t) = t3 exp(−2Δ i/t) if
0 < t ⊂ 1. Show that ν is a contour and sketch its track. Evaluate

∫
ν

z2ezdz.
2. Let θ : [0, 1] ∪ C be defined by θ (0) = 0, θ (1) = 0, θ (t) = t + i t3 sin(Δ/t)

if 0 < t ⊂ 1/2 and θ (t) = (1 − t) − i(1 − t)3 sin(Δ/(1 − t)) if 1/2 ⊂ t < 1.
Show that θ is a circuit and sketch its track. Evaluate
(i)

∫
θ
cos3(z2)dz, (ii)

∫
θ
log(1 + z)dz.

3. Let � : [u, v] ∪ C be a triangular circuit with vertices z1, z2, z3. Let

K =
⎨
⎩

⎪

3∑

j=1

τ j z j : τ j ≤ 0 ( j = 1, 2, 3),
3∑

j=1

τ j = 1


⎛

⎝
.

Show that K is a compact, convex subset of C and that
co {z1, z2, z3} = co �∗ = K .
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4. Let a > 1 and define θ : [0, 2Δ ] ∪ C by θ (t) = eit. Using Cauchy’s integral
formula evaluate ∫

θ

(z2 − 2az + 1)−1dz,

and deduce that

∫ 2Δ

0
(a − cos t)−1dt = 2Δ(a2 − 1)−1/2.

5. Let f ∈ H(C) be defined by

f (z) =
→∑

k=1

(i z)k−1

k! =
{

(i z)−1(exp(i z) − 1) if z �= 0,
1 if z = 0.

Let R > 0 and let θ : [−R, R + Δ ] ∪ C be the circuit given by

θ (s) =
{

s, −R ⊂ s ⊂ R,

exp(i(s − R)), R ⊂ s ⊂ R + Δ.

ByCauchy’s theorem in a convex set, plainly
∫
θ

f = 0. Exploit this fact to prove
that

∣
∣
∣
∣

∫ R

0

sin x

x
dx − Δ

2

∣
∣
∣
∣ ⊂

∫ Δ/2

0
exp(−R sin γ)dγ

⊂
∫ Δ/2

0
exp(−2Rγ/Δ)dγ ⊂ Δ

R
,

and deduce that ∫ →

0

sin x

x
dx = Δ

2
.

[Hint: if 0 ⊂ γ ⊂ Δ/2, then 2γ/Δ ⊂ sin γ ⊂ γ.]
6. Let ζ > 0. Show that if f ∈ H(C) and | f (z)| ⊂ A |z|m for all z ∈ C with

|z| > ζ, where A and m are non-negative real constants, then f is a polynomial
of degree at most m.

7. Let G be an open subset of C, let f : G ∪ C be continuous and suppose that
for every triangular circuit � such that co �∗ ⇐ G,

∫
�

f = 0. Prove that f is
analytic in G. (This is Morera’s theorem .)

8. Let R > 0, z0 ∈ C and suppose f : B(z0, R) ∪ C is defined by

f (z) =
→∑

n=0

an(z − z0)
n .
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Prove that if 0 < r < R, then

∫ Δ

−Δ

∣
∣
∣ f (z0 + reiγ )

∣
∣
∣
2

dγ = 2Δ
→∑

n=0

|an|2 r2n .

Hence show that:
(a) Every bounded entire function is constant.
(b) If G is a region in C, g ∈ H(G) and B(z0, r) ⇐ G, then

|g(z0)| ⊂ sup
{∣∣
∣g(z0 + reiγ )

∣
∣
∣ : 0 ⊂ γ ⊂ 2Δ

}
,

with equality if, and only if, g is constant. [Thus |g| has no local maximum at
any point of G unless g is constant: this gives another proof of the Maximum
Modulus Theorem (Theorem 3.6.28).]

9. Prove that

(1 − z − z2)−1 =
→∑

n=0

anzn
(

z ∈ B(0, (
≥
5 − 1)/2

)
,

where the an are the Fibonacci numbers defined by

a0 = a1 = 1, an+1 = an + an−1(n ≤ 1).

Further, show that

an = 1≥
5

⎨
⎩

⎪

(
1 + ≥

5

2

⎧n+1

−
(
1 − ≥

5

2

⎧n+1

⎛

⎝
(n ≤ 0).

10. Compute the coefficients in the Taylor expansion of f about z = 0 as far as the
term in z7, in each of the following cases:
(a) f (z) = log(1 + z); (b) f (z) = sec z.
What is the radius of convergence of each power series?

11. If each of the following functions were expanded as a Taylor series about the
indicated points, what would be the radius of convergence? (Do not find the
Taylor series.)
(a) sin z

z2+4
, z = 0; (b) z

ez+1 , z = 0; (c) ez

z(z−1) , z = 4i .

12. Find the first four terms and the radius of convergence of the Taylor series about
z = 0 for
(a) f (z) = ez

(1−z)2
; (b) f (z) = 1

1+log(1+z) .
13. Let G be a region in C, let f, g ∈ H(G) and suppose that f g = 0 (that is,

f (z)g(z) = 0 for all z ∈ G). Prove that either f = 0 or g = 0 : H(G) is an
integral domain.
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14. Let θ : [a, b] ∪ C be a circuit and z ∈ C\θ ∗. Let F : [a, b] ∪ C be defined
by

F(t) =
t∫

a

θ ∗(s)
θ (s) − z

ds;

note that θ ∗ is defined save possibly at a finite number of points of [a, b]. Show
that, for all t ∈ [a, b],

(θ (a) − z) exp(F(t)) = (θ (t) − z) ,

and that therefore indθ (z) = (2Δ i)−1 F(b) ∈ Z.
15. Let z0, z1 ∈ C, z0 �= z1 and

S = S(z0, z1) = {(1 − t)z0 + t z1 : 0 ⊂ t ⊂ 1} .

Let θ : [a, b] ∪ C be a circuit such that θ ∗ ∩ S = √. Show that, for all
w ∈ C\S, (w − z1)(w − z0)−1 ∈ D(Δ); that w ∞−∪ log

{
(w − z1)(w − z0)−1

}

is a primitive of w ∞−∪ (w − z1)−1 − (w − z0)−1 on C\S; and that

indθ (z1) = indθ (z0).

Deduce that indθ (·) is constant on components of C\θ ∗ (hint: use Theorem
2.4.23). Further, observing that if |z| > r > supw∈θ ∗ |w| , thenw ∞−∪ (w−z)−1

is analytic in B(0, r), show that indθ (z) = 0 if z lies in the unbounded component
of C\θ ∗.

16. Let a ∈ C, r > 0 and θ : [0, 2Δ ] ∪ C be defined by θ (t) = a + r exp(i t). Use
the preceding exercise to show that

indθ (z) =
{
1 if |z − a| < r,
0 if |z − a| > r.

17. Let 0 < R < →, 0 < ψ ⊂ Δ . Sketch the circuits μ, ν defined by

μ(s) =
⎨
⎩

⎪

−s exp(iψ) if −R ⊂ s ⊂ 0,
s if 0 ⊂ s ⊂ R,

R exp(i(s − R)) if R ⊂ s ⊂ R + ψ;

and

ν(s) =
⎨
⎩

⎪

−s if −R ⊂ s ⊂ 0,
s exp(iψ) if 0 ⊂ s ⊂ R,

R exp(i(ψ + s − R)) if R ⊂ s ⊂ R + 2Δ − ψ.

Using Definition 3.6.14 directly, establish a cancellation of integrals over line
segments common to μ and ν and show that, if θ (t) = R exp(i t) (0 ⊂ t ⊂ 2Δ),
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then
indθ (z) = indμ(z) + indν(z) (z ∈ C\ {μ∗ ◦ ν∗} .

Deduce that

indμ(z) =
{
1 if |z| < R and arg z ∈ (0, ψ),

0 if |z| > R or arg z ∈ (−Δ, 0) ◦ (ψ, Δ ].

[If ψ = Δ, then μ coincides with the semi-circular circuit of Example 3.4.22
(iv).]

3.7 Singularities

Let G be an open subset of C, let z0 ∈ G and suppose that f ∈ H(G\{z0}). Our
immediate aim is to describe the behaviour of f near z0.

Lemma 3.7.1 Let G be an open subset of C such that

G ⊃ {z ∈ C : r1 ⊂ |z − z0| ⊂ r2}

for some r1, r2 with 0 < r1 < r2 < →. For k = 1, 2 define νk : [0, 2Δ ] ∪ C by
νk(t) = z0 + rkeit . Then for all f ∈ H(G) and all z such that r1 < |z − z0| < r2,

f (z) = 1

2Δ i

∫

ν2

f (w)

w − z
dw − 1

2Δ i

∫

ν1

f (w)

w − z
dw.

Proof LetΨ be the cycle (ν2,−ν1). Appeal to Lemma 3.6.11 shows that if a ∈ C\G,
then

indΨ (a) = indν2(a) − indν1(a) = 0.

Hence by Theorem 3.6.32, if z ∈ G\Ψ ∗, then

indΨ (z) f (z) = 1

2Δ i

∫

Ψ

f (w)

w − z
dw

= 1

2Δ i

∫

ν2

f (w)

w − z
dw − 1

2Δ i

∫

ν1

f (w)

w − z
dw.

Since, with r1 < |z − z0| < r2, we have

indΨ (z) = indν2(z) − indν1(z) = 1 − 0 = 1,

the result follows. �
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Armed with this lemma we can now prove a result of first-rate importance.

Theorem 3.7.2 (Laurent’s theorem) Let G be an open subset of C such that G ⊃
A = {z ∈ C : s1 < |z − z0| < s2}, where 0 ⊂ s1 < s2 ⊂ →, and let f ∈ H(G).
Then there is a unique sequence (an)n∈Z of complex numbers such that the series∑→

n=0 anzn is convergent when |z| < s2, the series
∑→

n=1 a−nzn is convergent when
|z| < s−1

1 (for all z ∈ C when s1 = 0), and for all z ∈ A,

f (z) =
→∑

n=0

an(z − z0)
n +

→∑

n=1

a−n(z − z0)
−n . (3.7.1)

Moreover, for all n ∈ Z and all s ∈ (s1, s2),

an = 1

2Δ i

∫

θs

f (w)

(w − z0)n+1 dw,

where θs is the positively oriented circle with centre z0 and radius s. The series in
(3.7.1) converge absolutely in A and uniformly on every compact subset of A. The
identity (3.7.1), commonly written

f (z) =
→∑

−→
an(z − z0)

n,

is called the Laurent expansion of f in A and the an are the coefficients associated
with that expansion. If s1 = 0, so that f is analytic in a deleted neighbourhood of
z0 (sets of the form U\{z0}, where U is a neighbourhood of z0, are described as
deleted neighbourhoods of z0), then a−1 is called the residue of f at z0, written
res( f, z0):

res( f, z0) = 1

2Δ i

∫

θs

f (w) dw (0 < s < s2).

Proof Let K be a compact subset of A, so that K ⇐ {z ∈ C : r ∗ ⊂ |z − z0| ⊂ r ∗∗}
for some r ∗, r ∗∗ such that s1 < r ∗ ⊂ r ∗∗ < s2. Fix ζ ∈ A and choose r1, r2 so that
s1 < r1 < r ∗, r ∗∗ < r2 < s2, r1 < |ζ − z0| < r2; let ν1, ν2 be the positively oriented
circles centred at z0 with radii r1, r2 respectively. By Lemma 3.7.1,

f (ζ ) = 1

2Δ i

∫

ν2

f (w)

w − ζ
dw − 1

2Δ i

∫

ν1

f (w)

w − ζ
dw = g(ζ ) + h(ζ ), say,

where

g(z) = 1

2Δ i

∫

ν2

f (w)

w − z
dw (z ∈ C\ν∗

2 )

and
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h(z) = − 1

2Δ i

∫

ν1

f (w)

w − z
dw (z ∈ C\ν∗

1 ).

By Theorem 3.6.13, g is analytic in B(z0, r2) and so g(z) = ∑→
n=0 an(z − z0)n for

|z − z0| < r2, where an = g(n)(z0)/n!; also, further appeal to Theorem 3.6.13 shows
that

an = 1

2Δ i

∫

ν2

f (w)

(w − z0)n+1 dw.

Since w ∞−∪ (w − z0)−(n+1) f (w) : A ∪ C is analytic, equality (3.6.11) of
Theorem 3.6.32 shows that ν2 may be replaced by θs for any s ∈ (s1, s2). By
Lemma 3.3.1 the series for g converges uniformly on {z ∈ C : |z − z0| ⊂ r ∗∗ < r2}
and is therefore uniformly convergent on K .

In view of Theorem 3.6.13, h is analytic in {z ∈ C : |z − z0| > r1}. Write

h(z) = 1

2Δ i

∫

ν1

(z − z0)
−1 f (w)

→∑

n=0

(
w − z0
z − z0

)n

dw

and note that if z ∈ C\B(z0, r1),

∣
∣
∣
∣
w − z0
z − z0

∣
∣
∣
∣ = r1

|z − z0| < 1.

The series in the integrand thus converges uniformly on ν∗
1 and term-by-term inte-

gration is permissible, giving

h(z) =
→∑

n=1

a−n(z − z0)
−n (|z − z0| > r1),

where

a−n = 1

2Δ i

∫

ν1

(w − z0)
n−1 f (w)dw (n ∈ N).

By Theorem 3.6.32 again, ν1 may be replaced by θs for any s ∈ (s1, s2). The series∑→
1 a−nun is absolutely convergent for |u| < r−1

1 and is thus uniformly convergent
on {u ∈ C : |u| ⊂ (r ∗)−1}. Hence the series for h is uniformly convergent on
{z ∈ C : |z − z0| ≤ r ∗}, and so is uniformly convergent on K .

All that remains is to prove that the sequence (an)n∈Z is unique. Suppose that for
all z ∈ A,

f (z) =
→∑

n=0

bn(z − z0)
n +

→∑

n=1

b−n(z − z0)
−n,
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that
∑→

n=0 bnun is convergent if |u| < s2 and that
∑→

n=1 b−nun is convergent if
|u| < s−1

1 . Let r ∈ (s1, s2). Then for each k ∈ Z,

ak = 1

2Δ i

∫

θr

(w − z0)
−k−1 f (w)dw = 1

2Δrk

∫ 2Δ

0
e−ikγ f (z0 + reiγ )dγ

= 1

2Δrk

∫ 2Δ

0
e−ikγ

→∑

n=0

bn

(
reiγ

)n
dγ + 1

2Δrk

∫ 2Δ

0
e−ikγ

→∑

n=1

b−n

(
reiγ

)−n
dγ.

The series here converge absolutely for |z − z0| = r, and so are uniformly convergent
(in γ) on [0, 2Δ ]; thus

ak = 1

2Δ

→∑

n=0

bnrn−k
∫ 2Δ

0
ei(n−k)γ dγ + 1

2Δ

→∑

n=1

b−nr−n−k
∫ 2Δ

0
e−i(n+k)γ dγ = bk .

�

Corollary 3.7.3 Let A = {z ∈ C : s1 < |z − z0| < s2}, where 0 ⊂ s1 < s2 ⊂ →,
and let f ∈ H(A). Then there are functions g ∈ H({z ∈ C : |z − z0| < s2}) and
h ∈ H({z ∈ C : |z − z0| > s1}) such that, for all z ∈ A,

f (z) = g(z) + h(z).

This decomposition is unique if we require that h(z) ∪ 0 as |z| ∪ →.

Proof Let f (z) = ∑→
−→ an(z − z0)n be the Laurent expansion of f in the annulus

A. Put g(z) = ∑→
0 an(z − z0)n, h(z) = ∑→

1 a−n(z − z0)−n ; in A, f = g + h,
g ∈ H({z ∈ C : |z − z0| < s2}), h ∈ H({z ∈ C : |z − z0| > s1}) and h(z) ∪ 0 as
|z| ∪ →. Let f = g1 + h1 be another such decomposition and let ψ be the function
equal to g − g1 when |z − z0| < s2 and to h1 − h when |z − z0| > s1: note that
g − g1 = h1 − h in A. Then ψ ∈ H(C) and lim|z|∪→ ψ(z) = 0. By Liouville’s
theorem, ψ = 0. �

Definition 3.7.4 Let G be an open subset of C and z0 ∈ G. If f ∈ H(G\{z0}), then
z0 is said to be an isolated singularity of f .

Suppose G, z0 and f are as in Definition 3.7.4. By Laurent’s theorem, there is
a unique sequence (an)n∈Z such that if 0 < r ⊂ → and the annulus {z ∈ C : 0 <

|z − z0| < r} ⇐ G, then the Laurent expansion of f in the annulus is

f (z) =
→∑

−→
an(z − z0)

n .

Define h : C\{z0} ∪ C by h(z) = ∑→
n=1 a−n(z − z0)−n ; h is called the principal

part of f at z0. Evidently h ∈ H(C\{z0}) and h(z) ∪ 0 as |z| ∪ →. Further, if Ψ
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is a cycle and z0 ∈ C\Ψ ∗, then the series determining h converges uniformly on the
compact set {(z − z0)−1 : z ∈ Ψ ∗} and, therefore,

1

2Δ i

∫

Ψ

h = 1

2Δ i

∫

Ψ

→∑

n=1

a−n(z − z0)
−ndz = 1

2Δ i

→∑

n=1

a−n

∫

Ψ

(z − z0)
−ndz

= a−1 indΨ (z0) = res( f, z0) indΨ (z0),

since those terms in the principal part of order greater than one have primitives on
C\{z0} and Corollary 3.6.3 applies. The sequence (a−n)n∈N is used to classify the
singularity of f at z0 as one of three types:

(i) f has a removable singularity at z0 if a−n = 0 for all n ∈ N; that is, if h = 0;
(ii) f has a pole of order m ≤ 1 at z0 if a−m �= 0 and a−n = 0 for all n > m;
(iii) f has an essential singularity at z0 if for infinitely many n ∈ N, a−n �= 0.

Example 3.7.5

(a) Let f (z) = sin z
z (z �= 0). Plainly f ∈ H(C\{0}). Since

f (z) = 1 − z2

3! + z4

5! − · · · (z �= 0)

and no negative powers of z appear, we see from the uniqueness of the Laurent
expansion that f has a removable singularity at 0. Since a0 = 1, the singularity
can be removed by defining f (0) = 1; the extended f is thus in H(C). This
process of extension can be followed whenever a given function has a removable
singularity.

(b) Let f (z) = sin z
z2

(z �= 0). Here f has an isolated singularity at 0; and since

f (z) = z−1 − z

3! + z3

5! − · · · (z �= 0),

f has a pole of order 1 at 0.
(c) Suppose f (z) = e1/z (z �= 0). Since e1/z = ∑→

n=0
z−n

n! , there is an essential
singularity at z = 0.

(d) When f (z) = 1/ sin(z−1) (z �= 0, z �= 1/kΔ for all k ∈ Z\{0}), the function
f cannot be classified at 0 in any of the three ways given above, for it does not
have an isolated singularity at 0: it has singularities at 1/kΔ for all k ∈ Z\{0}.

How can we tell the nature of an isolated singularity without going to the bother
of determining the Laurent expansion? The next two lemmas help a great deal in this
connection.

Lemma 3.7.6 Let G be an open subset of C, z0 ∈ G and f ∈ H(G\{z0}). Then the
following statements are equivalent:



3.7 Singularities 245

(i) f has a removable singularity at z0;
(ii) limz∪z0 f (z) exists in C;
(iii) f is bounded on B(z0, r)\{z0} for some open ball B(z0, r) ⇐ G;
(iv) limz∪z0(z − z0) f (z) = 0.

Proof Evidently (i) ∼ (ii) =∼ (iii) =∼ (iv). To prove that (iv) implies (i), put
h(z) = (z − z0)2 f (z) if z ∈ G\{z0}, and put h(z0) = 0. Then

h∗(z0) = lim
z∪z0

(z − z0) f (z) = 0,

by hypothesis; also, h is differentiable at each point of G\{z0}. Hence h ∈ H(G)

and, being representable by power series in G, there is a unique sequence (an)n∈N0

such that for any positive real number r such that B(z0, r) ⇐ G,

h(z) =
→∑

n=0

an(z − z0)
n

whenever z ∈ B(z0, r). By Remark 3.3.9, a0 = a1 = 0. Define f (z0) = a2; then
f (z) = ∑→

0 an+2(z − z0)n for all z ∈ B(z0, r). �
Lemma 3.7.6 enables us to detect the presence of a removable singularity; the

next Lemma does the same for poles.

Lemma 3.7.7 Let G be an open subset of C, z0 ∈ G and f ∈ H(G\{z0}). Then
f has a pole of order m at z0 if, and only if, limz∪z0(z − z0)m f (z) = ε for some
non-zero ε ∈ C. In this case, limz∪z0 | f (z)| = →.

Proof Suppose that f has a pole of order m at z0, that r ∈ (0,→) is such that
A = {z ∈ C : 0 < |z − z0| < r} ⇐ G, and that the Laurent expansion of f in A is

f (z) =
→∑

n=0

an(z − z0)
n +

m∑

n=1

a−n(z − z0)
−n, a−m �= 0.

Then (z − z0)m f (z) = ∑→
0 bn(z − z0)n for all z ∈ A, where bm+p = ap for

p ≤ −m. By Lemma 3.7.6, (z − z0)m f (z) has a removable singularity at z0; also
limz∪z0(z − z0)m f (z) = b0 = a−m �= 0, and so there exists r ∗ ∈ (0, r) such that
|(z − z0)m f (z)| ≤ 1

2 |a−m | if 0 < |z − z0| < r ∗. Thus limz∪z0 | f (z)| = →.
Conversely, if limz∪z0(z − z0)m f (z) = ε for some ε ∈ C\{0}, then by Lemma

3.7.6, (z − z0)m f (z) has a removable singularity at z0 and, in a punctured open ball
centred at z0 and contained in G, is given by

∑→
0 bn(z − z0)n with b0 �= 0. Division

by (z − z0)m shows that f has a pole of order m at z. �
The last two lemmas show that if f has an isolated singularity at z0, then

limz∪z0 f (z) exists in C if the singularity is removable, while if it is a pole of
order m, then limz∪z0 | f (z)| = →. The behaviour near z0 is much more exotic if
the singularity is an essential one, as the next result shows.
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Theorem 3.7.8 (The Casorati-Weierstrass theorem) Let G be an open subset of C,
let z0 ∈ G and suppose that f ∈ H(G\{z0}). Then f has an essential singularity at
z0 if, and only if, for all r > 0 such that B(z0, r) ⇐ G, f (B(z0, r)\{z0}) is dense in
C.

Proof Lemmas 3.7.6 and 3.7.7 establish ‘if’. Regarding ‘only if’, suppose that f
has an essential singularity at z0 and that the conclusion is false. Then there exist
w ∈ C, ζ > 0 and r > 0 such that B(w, ζ) ∩ f (B(z0, r)\{z0}) = ∅, that is,
| f (z) − w| ≤ ζ whenever 0 < |z − z0| < r . Let A = {z ∈ C : 0 < |z − z0| < r}
and define g ∈ H(A) by g(z) = ( f (z)−w)−1.Evidently g has an isolated singularity
at z0, g is zero-free in A and is bounded by ζ−1. Hence, by Lemma 3.7.6, it has a
removable singularity at z0. Setting g(z0) = limz∪z0 g(z), the extended function,
also denoted by g, lies in H(B(z0, r)). Note that, for all z ∈ A,

f (z) = w + 1

g(z)
,

and therefore if g(z0) �= 0 then 1/g ∈ H(B(z0, r)) and f has a removable singularity
at z0, contrary to hypothesis. Thus g(z0) = 0. It follows, using Theorem 3.6.26, that
there is a positive integer m such that g(z) = (z − z0)mh(z) for all z ∈ B(z0, r),

where h ∈ H(B(z0, r)) and h(z0) �= 0. Clearly, h is zero-free in B(z0, r): put
k = 1/h. Then k ∈ H(B(z0, r)) and

f (z) − w = (z − z0)
−mk(z) for all z ∈ A.

But k(z) = ∑→
0 bn(z − z0)n for all z ∈ B(z0, r), and b0 �= 0. Hence f has a pole of

order m at z0, again contrary to hypothesis. The result follows. �

This result can be strengthened: in fact, f (B(z0, r)\{z0}) is either all of C or all
of C except for one point. This is Picard’s theorem (see [16]).

We now turn our attention to the so-called residue calculus, which has far-
reaching implications. The next lemma prepares the way for a significant extension
of Cauchy’s theorem.

Lemma 3.7.9 Let G be an open subset of C and S be a subset of G which has no limit
point in G. Then G\S is open and S is at most countable. Further, if f ∈ H(G\S),
then f has an isolated singularity at each point of S.

Proof Let z ∈ G\S. Then there exists r > 0 such that B(z, r) ⇐ G and B(z, r)∩S =
√; otherwise, z is a limit point of S in G, contradicting the hypothesis. Hence G\S
is open. That S is at most countable is clear from the fact that each compact subset
of G contains only finitely many points of S (otherwise S would have a limit point
in G) and G has a compact exhaustion: specifically, setting aside the trivial case in
which G = C, if n ∈ N and

Kn = {z ∈ C : |z| ⊂ n} ∩ {z ∈ G : dist(z, C\G) ≤ n−1},
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then each Kn is compact, Kn ⇐ o
K n+1 and ◦→

n=1Kn = G.
Lastly, let f ∈ H(G\S) and z0 ∈ S. Put U = (G\S) ◦ {z0}. Then U is open and

U\{z0} = G\S, so that f has an isolated singularity at z0. �

Theorem 3.7.10 (The residue theorem) Let G be an open set of C, S be a subset
of G with no limit point in G, f ∈ H(G\S) and Ψ be a cycle in G\S which is
homologous to zero in G. Then {w ∈ S : indΨ (w) �= 0} is finite and

∫

Ψ

f (z)dz = 2Δ i
∑

w∈S

res( f, w) indΨ (w). (3.7.2)

Proof Let U = {z ∈ C : indΨ (z) = 0}. The set U is open, since it is a union
of components of C\Ψ ∗; it contains the unbounded component of C\Ψ ∗; and, by
hypothesis, C\G ⇐ U . Put K = C\U and T = {z ∈ S : indΨ (z) �= 0}. Then K is a
bounded, closed and therefore compact subset of G and T ⇐ K . If T had infinitely
many points, then it would have a limit point in K and so S would have a limit point
in G. It follows that T is finite and that the right-hand side of (3.7.2) is a finite sum.

Considering the simplest case first, suppose T = √ so that indΨ (w) = 0 for all
w ∈ S. Then, since G\S is open,Ψ is homologous to zero in G\S and f ∈ H(G\S),

appeal to Theorem 3.6.32 shows that

∫

Ψ

f = 0 = 2Δ i
∑

w∈S

res( f, w) indΨ (w),

and so (3.7.2) holds.
Now suppose that T �= √ and that w1, . . . , wk are its distinct elements. For

1 ⊂ j ⊂ k, let h j be the principal part of f at w j : observations immediately
following Definition 3.7.4 show that h j ∈ H

(
C\{w j }

)
and

∫

Ψ

h j = 2Δ i res( f, w j ) indΨ (w j ).

Let G̃ = G\(S\T ); by Lemma 3.7.9, G̃ is open. The function f −∑k
j=1 h j defined

on G\S has a removable singularity at each point of T and hence has an analytic
extension, g say, defined on G̃. Since Ψ is homologous to zero in G̃ and g ∈ H(G̃),
further appeal to Theorem 3.6.32 establishes that

0 =
∫

Ψ

g =
∫

Ψ

f −
k∑

j=1

∫

Ψ

h j .

Hence
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∫

Ψ

f =
k∑

j=1

∫

Ψ

h j =
k∑

j=1

2Δ ires( f, w j ) indΨ (w j )

= 2Δ i
∑

w∈S

res( f, w) indΨ (w),

as required. �

In the rest of this section we concentrate on applications of the residue theo-
rem. Naturally, routine procedures for the determination of the residue at an isolated
singularity will be sought. Generally speaking, at poles such procedures are avail-
able; at essential singularities they are not. This accounts for the predominance of
applications of the residue theorem exclusively involving poles.

An instance inwhich the hypotheses of the residue theorem arise naturally appears
in Theorem 3.6.26 in connection with the zeros of an analytic function. Recapitu-
lating, if G is a region in C, f ∈ H(G) and f is not identically zero in G, then
Z( f ) := {z ∈ G : f (z) = 0} has no limit point in G. Further, if a ∈ Z( f ) and m(a)

denotes the multiplicity of this zero of f , then there is a neighbourhood V of a and
a zero-free map h ∈ H(V ) such that, for all z ∈ V , f (z) = (z − a)m(a)h(z). Hence,
for all z ∈ V \{a},

f ∗(z)
f (z)

= m(a)

z − a
+ h∗(z)

h(z)
.

For z ∈ G\Z( f ), put Γ(z) = f ∗(z)/ f (z). Then Γ ∈ H(G\Z( f )), Γ has a pole of
order 1 at a, and res(Γ, a) = m(a). It follows from the residue theorem that, if θ is a
circuit in G\Z( f )which is homologous to zero in G, then {a ∈ Z( f ) : indθ (a) �= 0}
is finite and

1

2Δ i

∫

θ

f ∗(z)
f (z)

dz =
∑

a∈Z( f )

res(Γ, a) indθ (a) =
∑

a∈Z( f )

m(a) indθ (a);

moreover, use of Theorem 3.6.20 shows that

1

2Δ i

∫

θ

f ∗(z)
f (z)

dz = ind f ◦θ (0) = n( f ◦ θ, 0).

Hence
ind f ◦θ (0) =

∑

a∈Z( f )

m(a) indθ (a),

an equalitywhichmay be used in conjunctionwith a suitable choice of θ to determine
the number of zeros of f , counted according to multiplicity, in certain subsets of G.
Assume θ chosen so that indθ (z) ∈ {0, 1} for all z ∈ C\θ ∗, and let α = {z ∈ C :
indθ (z) = 1} so that, in the terminology of Definition 3.4.30, α is the set of points
“inside” θ . Then, since θ is homologous to zero in G, α ⇐ G; also N f , the number
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of zeros of f in α, is given by

N f =
∑

a∈Z( f )∩α

m(a) =
∑

a∈Z( f )

m(a) indθ (a) = ind f ◦θ (0).

These remarks establish parts (i) and (ii) of the following theorem.

Theorem 3.7.11 Let G be a region in C, f ∈ H(G) and Z( f ) �= G. Let θ be a
circuit in G\Z( f ) which is homologous to zero in G. Then

(i) the set {a ∈ Z( f ) : indθ (a) �= 0} is finite and

ind f ◦θ (0) = 1

2Δ i

∫

θ

f ∗(z)
f (z)

dz =
∑

a∈Z( f )

m(a) indθ (0),

where m(a) is the multiplicity of the zero of f at a;
(ii) if indθ (z) ∈ {0, 1} for all z /∈ θ ∗, α := {z ∈ C : indθ (z) = 1} and N f denotes

the number of zeros of f in α, counted according to multiplicity, then α ⇐ G
and N f = ind f ◦θ (0); and

(iii) (Rouché’s theorem) if in addition g ∈ H(G) and | f (z) − g(z)| <

| f (z)| for all z ∈ θ ∗, then Ng = N f .

Proof Given earlier remarks, it remains to prove Rouché’s theorem. Since | f (z) −
g(z)| < | f (z)| for all z ∈ θ ∗, evidently Z(g) ∩ θ ∗ = √. Hence (i) and (ii) hold with
g in place of f . It follows from Theorems 3.4.26 and 3.6.20 that

Ng = indg◦θ (0) = n(g ◦ θ, 0) = n( f ◦ θ, 0) = ind f ◦θ (0) = N f . �

Example 3.7.12 Weshall useRouché’s theorem toprove that one root of the equation
z4 + z3 + 1 = 0 lies in the first quadrant.

x

y

iR

γR

0 R

The idea is to apply Theorem 3.7.11 with G = C, θR a simple, positively oriented
circuit with the track indicated above, f (z) = z4 +1, g(z) = z4 + z3 +1; the choice
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of f is dictated by the need to have a function known to have a zero in the first
quadrant and easy to compare with g. Evidently, f has a single zero at eiΔ/4 in the
first quadrant and has no zeros on θ ∗

R if R > 1. Moreover, routine arguments similar
to those of Example 3.4.22 (iv) show that indθR (a) = 1 for all a in the bounded
component B of C\θ ∗

R : thus α = B, as indθR (a) = 0 for all a in the unbounded
component of C\θ ∗

R .
Finally, consider f (z) − g(z) = −z3. On the non-negative real axis, where

z = x ≤ 0, ∣
∣
∣−z3

∣
∣
∣ = x3 < 1 + x4;

on the non-negative imaginary axis, where z = iy, y ≤ 0,

∣
∣
∣−z3

∣
∣
∣ = y3 < y4 + 1;

and on |z| = R,
∣
∣−z3

∣
∣ < | f (z)| for large enough R. Thus all the conditions of

Rouché’s theorem hold, and so Ng = N f .

Theorem 3.7.13 (The fundamental theorem of algebra) Let p(z) = a0+a1z+· · ·+
anzn, where each ak is in C, n ≤ 1 and an �= 0. Then p has exactly n roots, allowing
for multiplicities.

Proof Put f (z) = anzn and let θ be a positively oriented circle with centre 0 and
radius r so large that |p(z) − f (z)| < | f (z)| for all z ∈ θ ∗. Apply Theorem 3.7.11
(iii) with G = C: then Np = N f = n. �

Theorem 3.7.14 (The openmapping theorem)Let G be a region in C, let f ∈ H(G)

and suppose that f is not constant on G. Then f (U ) is open in C whenever U is an
open subset of G (that is, f is an open mapping), and f (G) is a region.

Proof Let U be an open subset of G and let a ∈ U . To show that f (U ) is open, it is
enough to establish that f (a) is an interior point of f (U ). This is achieved below by
proving that there exists ε > 0 such that B( f (a), ε) ⇐ f (U ). By Theorem 3.6.26,
there are a unique m ∈ N and a function g ∈ H(G), with g(a) �= 0, such that

f (z) − f (a) = (z − a)m g(z), z ∈ G.

Choose r > 0 so that B(a, r) ⇐ U and g(z) �= 0 if z ∈ B(a, r). Define θ :
[0, 2Δ ] ∪ C by θ (t) = a + reit . If z ∈ θ ∗, then plainly f (z) �= f (a). Put

ε = inf{| f (z) − f (a)| : z ∈ θ ∗};

since θ ∗ is compact, ε > 0. Let w ∈ B( f (a), ε). If z ∈ θ ∗, then

|( f (z) − f (a)) − ( f (z) − w)| = | f (a) − w| < ε ⊂ | f (z) − f (a)| .



3.7 Singularities 251

Rouché’s theorem, Theorem 3.7.11 (iii), is now applicable and shows that, counting
according to multiplicity, f −w has exactly m zeros in B(a, r). Thus w is the image
under f of at least one point in B(a, r):

B( f (a), ε) ⇐ f (B(a, r)) ⇐ f (U ).

Hence f (U ) is open.
Finally, by the above, f (G) is open; by Theorem 2.4.11, it is connected. It follows

that f (G) is a region. �

Corollary 3.7.15 (The inverse function theorem) Let G be a region in C, let f ∈
H(G) and suppose that f is injective. Then

(i) f ∗ is never zero in G;
(ii) f −1 ∈ H( f (G)) and

( f −1)∗( f (a)) = ( f ∗(a))−1, a ∈ G.

Proof (i) To obtain a contradiction, suppose that a ∈ G and that f ∗(a) = 0.Retracing
the steps in the proof of the last theorem and adopting the same notation, let U be
any neighbourhood of a in G and observe that m > 1, since f ∗(a) = 0. Choose
r > 0 so that it satisfies the following additional condition:

f ∗(z) �= 0 if z ∈ B(a, r)\{a}.

Such a choice of r is possible because a cannot be a limit point of zeros of f ∗: for if
a was such a limit point then, by Theorem 3.6.26, f ∗ would be identically zero in G
and f could not be injective. Let w ∈ B( f (a), ε)\{ f (a)}. The revised choice of r
ensures that them zeros of f −w in B(a, r) are distinct: if z were such a zero of order
at least 2, then f ∗(z) = 0, which contradicts our choice of r . It follows that m > 1
is incompatible with the hypothesis that f is injective. Hence (i) is established.

(ii) Theorem 3.7.14 and Lemma 2.1.33 together establish the continuity of f −1:
if V is open in G, then ( f −1)−1(V ) = f (V ) is open in f (G). Theorem 3.2.6 then
deals with its analyticity and provides the formula for its derivative. �

Corollary 3.7.15 gives a necessary condition for an analytic map to be injective,
namely, that its derivative is never zero. This condition is not sufficient, as the example
of the exponential function shows:

z ∞−∪ exp(z) : C ∪ C\{0}

is not injective.
These facts notwithstanding, if at a point z a map f is analytic and its deriva-

tive is non-zero, then f is locally injective at z in the sense of being injective in a
neighbourhood of z. Although this result was proved earlier (see Corollary 3.6.30),
because of its interest we restate it below and establish it as an outcome of the proof
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of the open mapping theorem. Note that the exponential function is an example of
an analytic non-injective map which is nevertheless locally injective at each point of
its domain of definition.

Corollary 3.7.16 Let V be an open set in C, a ∈ V, f ∈ H(V ) and f ∗(a) �= 0.
Then there exists a neighbourhood O of a such that the restriction of f to O is
injective.

Proof We again adopt the notation and retrace the steps of the proof of Theo-
rem 3.7.14, taking G to be that component of V containing a. Using the hypothesis
f ∗(a) �= 0, it follows that m = 1. Thus each w ∈ B( f (a), ε) is the image under f
of precisely one point in B(a, r). Let

O = B(a, r) ∩ f −1(B( f (a), ε)).

It is plain that O is a neighbourhood of a and f is injective on O . �

Definition 3.7.17 Let G be an open set in C and let f and fn (n ∈ N) be complex-
valued mappings defined on G. The sequence ( fn) is said to converge uniformly to
f on compact subsets of G if, for each compact set K ⇐ G and each δ > 0, there
exists N ∈ N (depending on K and δ) such that, for all z ∈ K and all n ≤ N ,

| fn(z) − f (z)| < δ.

Equivalently, we require that for each compact set K ⇐ G,

lim
n∪→

(
sup
z∈K

| fn(z) − f (z)|
)

= 0.

Theorem 3.7.18 Let G be an open set in C and let ( fn) be a sequence in H(G)

which converges uniformly to a mapping f : G ∪ C on compact subsets of G. Then

f ∈ H(G) and, for each k ∈ N, the sequence
(

f (k)
n

)

n∈N
converges uniformly to

f (k) on compact subsets of G.

Proof Plainly f is continuous on G, since convergence is uniform on each closed
ball in G. Let � be a triangular circuit in G such that co �∗ ⇐ G. Using Cauchy’s
theorem 3.6.8 and the compactness of �∗, we see that

∫

�

f (z)dz = lim
n∪→

∫

�

fn(z)dz = 0.

Thus, by Morera’s theorem (Exercise 3.6.37/7), f ∈ H(G).
Let K be a compact subset of G,
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ν = 1

2
dist(K ,c G) and L = {z ∈ C : dist(z, K ) ⊂ ν}.

Then ν > 0, L is compact and K ⇐ L ⇐ G. Fix k ∈ N and r , 0 < r < ν. Then, by
Theorem 3.6.23, for each n ∈ N and each a ∈ K ,

∣
∣
∣ f (k)

n (a) − f (k)(a)

∣
∣
∣ ⊂ k!

rk
sup
z∈L

| fn(z) − f (z)| .

Hence, for all n ∈ N,

sup
a∈K

∣
∣
∣ f (k)

n (a) − f (k)(a)

∣
∣
∣ ⊂ k!

rk
sup
z∈L

| fn(z) − f (z)| .

Since ( fn) converges uniformly to f on L , it follows that
(

f (k)
n

)
converges uniformly

to f (k) on K . �

Theorem 3.7.19 (Hurwitz’s theorem) Let G be an open set in C, let fn ∈ H(G)

(n ∈ N) and suppose that ( fn) converges uniformly to f on compact subsets of G.
Suppose also that B(z0, r) ⇐ G and that f is never zero on π B(z0, r). Then there
exists N ∈ N such that if n ≤ N, then fn and f have the same number of zeros in
B(z0, r).

Proof Let min{| f (z)| : |z − z0| = r} = μ; μ > 0 since | f | is continuous and never
zero on the compact set π B(z0, r). For large enough n ∈ N,

| f (z) − fn(z)| < μ ⊂ | f (z)| if |z − z0| = r.

Now use Rouché’s theorem. �

Theorem 3.7.20 Let G be a region in C, let fn ∈ H(G) (n ∈ N) and suppose that
( fn) converges uniformly to f on compact subsets of G. Suppose that for all n ∈ N,
0 /∈ fn(G). Then either f is the zero function on G, or 0 /∈ f (G).

Proof Suppose that f (z0) = 0 for some z0 ∈ G and that f is not the zero function
on G. By Theorem 3.6.26, there exists r > 0 such that B(z0, r) ⇐ G and f is never
zero on π B(z0, r). By Theorem 3.7.19, for all large enough n ∈ N, fn must have a
zero in B(z0, r), contrary to hypothesis. �

Theorem 3.7.21 Let G be a region in C, let fn ∈ H(G) (n ∈ N) and suppose that
( fn) converges uniformly to f on compact subsets of G. If each fn is injective, then
f is either injective or constant on G.
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Proof Let z0 ∈ G and put gn(z) = fn(z) − fn(z0) (n ∈ N, z ∈ G). Then gn is
analytic in G\{z0} and (gn) converges uniformly to f − f (z0) on compact subsets
of the connected set G\{z0}. Since gn is never zero on G\{z0}, Theorem 3.7.20
implies that f − f (z0) is either the zero function or never zero on G\{z0}. As z0 is
an arbitrary point of G, the result follows. �

A particularly striking use of the residue theorem is to evaluate definite integrals.
To help with this it is desirable to be able to calculate residues easily; the following
lemma gives a procedure for doing this.

Lemma 3.7.22 Let f ∈ H(B(z0, ζ)\{z0}) have a pole of order m at z0. Then

res( f, z0) = 1

(m − 1)! lim
z∪z0

[
dm−1

dzm−1

{
(z − z0)

m f (z)
}
]

.

In particular, if there is a pole of order 1 at z0 (a simple pole), then

res( f, z0) = lim
z∪z0

{(z − z0) f (z)}.

Proof The Laurent expansion of f about z0 is

f (z) = a−m(z−z0)
−m +· · ·+a−1(z−z0)

−1+
→∑

n=0

an(z−z0)
n (0 < |z − z0| < ζ).

Thus

(z − z0)
m f (z) = a−m + · · · + a−1(z − z0)

m−1 +
→∑

n=0

an(z − z0)
m+n,

and hence

dm−1

dzm−1

{
(z − z0)

m f (z)
} = (m − 1)!a−1 + (z − z0)h(z),

where h is analytic in B(z0, ζ). The result follows if we let z ∪ z0. �
The first definite integrals we consider are those of the type

I =
∫ 2Δ

0
R(cos γ, sin γ)dγ,

where (x, y) ∞∪ R(x, y) is a rational function bounded on the circle x2 + y2 = 1.
The idea is to let θ : [0, 2Δ ] ∪ C be the circle θ (γ) = eiγ and to note that

I =
∫

θ

R

(
1

2
(z + z−1),

1

2i
(z − z−1)

)
(i z)−1dz.
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This integral can now be evaluated using the residue theorem. The procedure is
illustrated by the following example.

Example 3.7.23 Evaluate

I =
∫ 2Δ

0

1

1 − 2p cos γ + p2
dγ, where 0 < p < 1.

Proceeding as suggested above we see that

I =
∫

θ

1

i(1 − pz)(z − p)
dz.

By Remark 3.4.31, the only pole of the integrand inside θ is the simple pole at z = p
and n(θ, p) = 1; by Lemma 3.7.22, the residue at p is

lim
z∪p

1

i(1 − pz)
= 1

i(1 − p2)
.

Thus, since indθ (p) = n(θ, p), use of the residue theorem shows that

I = 2Δ i · 1

i(1 − p2)
= 2Δ

1 − p2
.

Of course, this integral may be evaluated by traditional real-variable methods, but
the above treatment is admirably short and simple.

More complicated examples, typically involving an infinite interval of integration,
require limiting processes.

Example 3.7.24

(i) Evaluate

I =
∫ →

0

1

1 + x6
dx .

Let R > 1 and θ : [−R, R + Δ ] ∪ C be the circuit defined by

θ (s) =
{

s, −R ⊂ s ⊂ R,

R exp(i(s − R)), R ⊂ s ⊂ R + Δ.

This circuit was introduced and its track illustrated in Example 3.4.22 (iv);
experience shows that it is suited to the evaluation of a number of improper
Riemann integrals. The sets

G1 := {z ∈ C : |z| < R, im z > 0}



256 3 Complex Analysis

and
G2 := {z ∈ C : |z| > R or im z < 0}

are the components of C\θ ∗, G2 being the unbounded component. By Theo-
rem 3.6.21, indθ (z) = 0 for all z ∈ G2; by Remark 3.6.22 (i), indθ (z) = 1 for
all z ∈ G1. Evidently, θ is formed of a pair of arcs, its restrictions to [−R, R]
and [R, R + Δ ], respectively. Let μ denote the first of these, and let ν denote
the standard reparametrisation of the second relative to the interval [0, Δ ]:

μ(s) = s(−R ⊂ s ⊂ R); ν(γ) = Reiγ (0 ⊂ γ ⊂ Δ).

Then ∫

θ

f =
∫

μ

f +
∫

ν

f

whenever f : θ ∗ ∪ C is continuous.
Let f (z) = (

1 + z6
)−1

(z6 �= −1). The function f has six simple poles, all
roots of −1; those in G1 are z1 = eiΔ/6, z2 = eiΔ/2, z3 = e5Δ i/6; application
of Lemma 3.7.22 shows that

res( f, zk) = lim
z∪zk

z − zk

1 + z6
= lim

z∪zk

{
1 + z6 − (1 + z6k)

z − zk

}−1

= 1/(6z5k) = −zk/6.

Hence by the residue theorem,

J :=
∫

θ

f = 2Δ i
6∑

k=1

indθ (zk)res( f, zk) = −2Δ i

6

3∑

k=1

zk

= Δ

3

(
1 + 2 sin

Δ

6

)
= 2Δ

3
.

However,

J =
∫

μ

f +
∫

ν

f,

and ∫

μ

f =
∫ R

−R

1

1 + x6
dx = 2

∫ R

0

1

1 + x6
dx,

while ∣
∣
∣
∣

∫

ν

f

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ Δ

0

Rieiγ

1 + R6e6iγ
dγ

∣
∣
∣
∣ ⊂

∫ Δ

0

R

R6 − 1
dγ ∪ 0

as R ∪ →. Hence
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lim
R∪→

∫ R

0

1

1 + x6
dx = Δ

3
, and so I = Δ

3
.

(ii) Evaluate

I =
∫ →

0

cosmx

x2 + a2 dz (m > 0, a > 0).

With R > max{1, a}, take θ to be the circuit of (i) above. For z �= {−ia, ia} let
f (z) = eimz/(z2 + a2); this choice is to be preferred when compared with the
more obvious one of (cosmz)/(z2+a2). At each of the points±ia the function
f has a simple pole; ia lies inside θ , −ia lies outside and, by Lemma 3.7.22 ,

res( f, ia) = e−ima

2ia
.

Thus by the residue theorem,

J :=
∫

θ

f = Δ

a
e−ma .

Also J = ∫
μ

f + ∫
ν

f , and

∫

μ

f =
∫ R

−R

exp(imx)

x2 + a2 dx = 2
∫ R

0

cosmx

x2 + a2 dx,

while

∣
∣
∣
∣

∫

ν

f

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ Δ

0

exp(im Reiγ )

R2e2iγ + a2 i Reiγ dγ

∣
∣
∣
∣

⊂
∫ Δ

0

R

R2 − a2 e−m R sin γ dγ

⊂
∫ Δ

0

R

R2 − a2 dγ ∪ 0 as R ∪ →.

Hence
Δ

a
e−ma = J = 2 lim

R∪→

∫ R

0

cosmx

x2 + a2 dx,

so that ∫ →

0

cosmx

x2 + a2 dx = Δ

2a
e−ma .
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(iii) Evaluate

I =
∫ →

0

x sinmx

x2 + a2 dx (a > 0, m > 0).

This looks very similar to the last example, but the inequality work needed is a
little more tricky.
Put f (z) = zeimz/(z2 + a2) (z �= ±ia) and take θ to be as in (ii) above. The
function f has a simple pole at ia inside θ and res( f, ia) = 1

2e−ma ; the other
pole at −ia is outside θ . Thus by the residue theorem,

J :=
∫

θ

f = Δ ie−ma .

As before,

J =
∫

μ

f +
∫

ν

f,

and ∫

μ

f =
∫ R

−R

xeimx

x2 + a2 dx = 2i
∫ R

0

x sinmx

x2 + a2 dx,

while

∣
∣
∣
∣

∫

ν

f

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ Δ

0

i R2e2iγ exp(im Reiγ )

R2e2iγ + a2 dγ

∣
∣
∣
∣ ⊂

∫ Δ

0

R2

R2 − a2 e−m R sin γ dγ.

This time it is not enough to estimate e−m R sin γ from above by 1; instead, we
observe that ∫ Δ

0
e−m R sin γ dγ = 2

∫ Δ/2

0
e−m R sin γ dγ

and make use of the inequality

2

Δ
⊂ sin γ

γ
⊂ 1 if 0 < γ ⊂ Δ

2
.

This shows that

∣
∣
∣
∣

∫

ν

f

∣
∣
∣
∣ ⊂ 2R2

R2 − a2

∫ Δ/2

0
exp

(−2m R

Δ
γ

)
dγ = Δ R

m(R2 − a2)
(1 − e−m R) ∪ 0

as R ∪ →. Hence

lim
R∪→

∫ R

0

x sinmx

x2 + a2 dx = Δ

2
e−ma;
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that is, I = Δ
2 e−ma .

This result leads easily to the evaluation of
∫→
0

sin x
x dx : by Remark 1.6.13, this

exists as an improper Riemann integral. Use of the inequality |(sin x)/x | ⊂ 1
(x > 0) shows that, for any R > 0,

∣
∣
∣
∣
∣

∫ R

0

x sin x

x2 + a2
dx −

∫ R

0

sin x

x
dx

∣
∣
∣
∣
∣
= a2

∣
∣
∣
∣
∣

∫ R

0

sin x

x(x2 + a2)
dx

∣
∣
∣
∣
∣
⊂ a2

∫ R

0

1

x2 + a2
dx

= a tan−1(R/a) ⊂ Δa/2.

Hence ∣
∣
∣
∣
Δ

2
e−a −

∫ →

0

sin x

x
dx

∣
∣
∣
∣ ⊂ Δa/2

for each a > 0, from which it follows, on letting a ∪ 0, that

∫ →

0

sin x

x
dx = Δ

2
.

(iv) Evaluate

I =
∫ →

0

sinmx

x(x2 + a2)
dx(a > 0, m > 0).

This problem admits a choice of method. One such is to use the function z ∞−∪(
eimz − 1

)
/{z(z2+a2)}, which has a removable singularity at 0, in conjunction

with the circuit θ adopted in parts (i), (ii) and (iii). Another is to use the slightly
simpler function z ∞−∪ eimz/{z(z2+a2)}, with a pole at 0, in combination with
a slightly more complicated circuit. For variety, we choose the latter method.
For z �= 0, z �= ±ia let f (z) = eimz/{z(z2 +a2)}. Since θ cannot be used with
f because 0 ∈ θ ∗ and f has a pole at this point, a semicircular detour about
the origin is introduced: in place of θ we use the circuit η : [−R, R +Δ ] ∪ C
defined by

η(s) =

⎨
⎩

⎪

s, −R ⊂ s ⊂ −δ,

δ exp
( iΔ
2 (1 − s/δ)

)
, −δ ⊂ s ⊂ δ,

s, δ ⊂ s ⊂ R,

R exp(i(s − R)), R ⊂ s ⊂ R + Δ,

where 0 < δ < r := 1
2 min{1, a} and max{1, a} < R < →. This circuit was

introduced in Remark 3.6.22 (ii) where its track is portrayed. By Remark 3.6.22
(ii), ia lies inside η and indη (ia) = 1; evidently,−ia and 0 lie outside η . Since
f has a simple pole at each of the points ±ia and 0, and since res( f, ia) =
−e−ma/(2a2), appeal to the residue theorem shows that
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∫

η

f = −iΔe−ma/a2.

Suppose that η1, η2, η3, η4 are the restrictions of η to [−R,−δ], [−δ, δ], [δ, R],
[R, R + Δ ] respectively. Then

∫

η

f =
4∑

k=1

∫

ηk

f.

Proceeding as in earlier parts of this example it follows easily that

∫

η1

f +
∫

η3

f = 2i
∫ R

δ

sinmx

x(x2 + a2)
dx .

Since f has a simple pole at z = 0 and res( f, 0) = a−2, use of Corollary 3.7.3
shows that f (z) = a−2z−1 + g(z) (0 < |z| < a), where g ∈ H(B(0, a)). Let
M = sup{|g(z)| : |z| ⊂ r}. Then

∫

η2

f = a−2
∫

η2

z−1dz +
∫

η2

g

= − iΔ

2a2δ

∫ δ

−δ

ds +
∫

η2

g

= − iΔ

a2 +
∫

η2

g

and ∣
∣
∣
∣

∫

η2

g

∣
∣
∣
∣ ⊂ MΔδ ∪ 0 as δ ∪ 0.

Hence ∫

η2

f ∪ −iΔ/a2 as δ ∪ 0,

and so

2i
∫ R

0

sinmx

x(x2 + a2)
dx − iΔ

a2 +
∫

η4

f = − iΔ

a2 e−ma

for all R > max{1, a}. But
∣
∣
∣
∣

∫

η4

f

∣
∣
∣
∣ ⊂

∫ Δ

0

e−m R sin γ

R2 − a2 dγ ⊂ Δ(R2 − a2)−1

∪ 0 as R ∪ →.
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We conclude that

I = Δ

2a2

(
1 − e−ma) .

(v) Evaluate

I =
∫ →

0

xε−1

1 + x
dx, where 0 < ε < 1.

The existence of I as an improper Riemann integral follows from Exer-
cise 1.6.15/4(a), based on Example 1.6.8. However, its evaluation presents dif-
ficulties not previously encountered: no branch of zε−1/(1 + z) is analytic in
any neighbourhood of the origin and there is a pole on the negative real axis.
To resolve these difficulties, the method adopted here involves the use of a pair
of circuits whose tracks have line-segment overlap; the circuits are a trifle more
complicated than those used earlier.

μ4

μ1

μ2 μ3

Let 0 < δ < 1 < R < →. Let μk (k = 1, 2, 3, 4) be arcs defined by

μ1(s) = R exp(3sΔ i/4), μ2(s) = {R(1 − s) + δs} exp(3Δ i/4),

μ3(s) = δ exp {3(1 − s)Δ i/4} , μ4(s) = δ(1 − s) + Rs

for each s ∈ [0, 1], and let μ : [0, 4] ∪ C be the simple circuit given by

μ(s) = μk(s − k + 1), k − 1 ⊂ s ⊂ k, k ∈ {1, 2, 3, 4}.

Clearly, C\μ∗ has a single bounded component; μ∗ is illustrated above.
Let f (z) = (zε−1)Δ/(1 + z) (z ∈ D(Δ)). Since f ∈ H(D(Δ)) and μ is
homologous to 0 in D(Δ), change of variable and appeal to the global version
of Cauchy’s theorem shows that

4∑

k=1

∫

μk

f =
∫

μ

f = 0.
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ν4

ν2

ν1

ν3

For each s ∈ [0, 1] let

ν1(s) = R exp {(3 + 5s)Δ i/4} , ν2(s) = R(1 − s) + δs,

ν3(s) = δ exp {(8 − 5s)Δ i/4} , ν4(s) = {δ(1 − s) + Rs} exp(3Δ i/4),

and let ν : [0, 4] ∪ C be defined by

ν(s) = νk(s − k + 1), k − 1 ⊂ s ⊂ k, k ∈ {1, 2, 3, 4}.

Evidently, ν is a simple circuit; the figure above depicts ν∗, its track. The
sense of traverse of ν∗ is such that the bounded component of C\ν∗ is on its
left. We show that, whenever z lies in this bounded component, indν(z) = 1.
Identifying index and winding number, the method used is modelled on that
given in Example 3.4.22 (iv).
Let ζ be the restriction of ν to [1, 4], let w1 = R + i and
w2 = 2−1/2R(−1 + i) + i. Since ψ := ( 3Δ

2 − arg
) ◦ (ζ + i) and Γ :=(

Δ
2 − arg

)◦ (ν1 + i) are continuous arguments of ζ + i and ν1 + i respectively,

n(ν,−i) = n(ζ,−i) + n(ν1,−i)

= 1

2Δ
{ψ(4) − ψ(1) + Γ(1) − Γ(0)} = 1,

because

ψ(1) =
(
3Δ

2
− arg

)
(w1) =

(Δ

2
− arg

)
(w1) = Γ(1)

and

ψ(4) =
(
3Δ

2
− arg

)
(w2) = 2Δ +

(Δ

2
− arg

)
(w2) = 2Δ + Γ(0).
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Use of Theorems 3.6.20 and 3.4.27 shows that, for all z in the bounded com-
ponent of C\ν∗,

indν(z) = n(ν, z) = 1.

Let g(z) = (zε−1)5Δ/2/(1+ z) (z ∈ D(5Δ/2)\{−1}). Since indν(−1) = 1 and
res(g,−1) = eiΔ(ε−1), use of Theorem 3.5.2 (v) and the residue theorem shows
that

4∑

k=1

∫

νk

g =
∫

ν

g = 2Δ ieiΔ(ε−1).

Note that μ2 and ν4 are opposite arcs and that, for all z ∈ μ∗
2 = ν∗

4 ,

(Δ − arg)(z) = 3Δ/4 =
(
5Δ
2 − arg

)
(z) and f (z) = g(z). In defining g,

the choice of the 5Δ
2 −branch of zε−1 is motivated by the fact that it coincides

with the Δ−branch on μ∗
2 = ν∗

4 and that therefore
∫
ν4

g = − ∫
μ2

f . It follows,
adding

∫
μ

f to
∫
ν

g, that

(∫

μ1

f +
∫

ν1

g

⎧

+
(∫

μ4

f +
∫

ν2

g

⎧

+
(∫

μ3

f +
∫

ν3

g

⎧

= 2Δ ieiΔ(ε−1).

Now, elementary manipulation shows that

∫

μ4

f +
∫

ν2

g =
(
1 − e2εΔ i

) ∫ R

δ

xε−1

1 + x
dx,

and that a positive real number M exists such that for 0 < δ < 1/2 and R > 2,

∣
∣
∣
∣
∣

∫

μ1

f

∣
∣
∣
∣
∣
+

∣
∣
∣
∣

∫

ν1

g

∣
∣
∣
∣ ⊂ M Rε−1,

∣
∣
∣
∣
∣

∫

μ3

f

∣
∣
∣
∣
∣
+

∣
∣
∣
∣

∫

ν3

g

∣
∣
∣
∣ ⊂ Mδε.

Hence, letting δ ∪ 0 and R ∪ →, we see that

(1 − e2εΔ i )

∫ →

0

xε−1

1 + x
dx = −2Δ ieiΔε,

and conclude that
I = Δ

sin εΔ
.
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3.7.1 Partial Fraction Decompositions

To conclude this section we indicate how the residue calculus may be used to derive
expansions for various functions, expansions which enable us to determine the sums
of certain celebrated series. We begin with the standard partial fraction expansion
for a rational function.

Let r(z) = p(z)/q(z) be a rational function (the quotient of two polynomials
without a common zero). Without loss of generality we may assume that the degree
of p is less than that of q, for the general case may be reduced to this by long division.
This implies that lim|z|∪→ r(z) = 0. Let

q(z) = c0(z − τ1)
m1 . . . (z − τs)

ms ,

where τ1, . . . , τs are the distinct poles of r . Suppose that the principal part of r at
τk is

hk(z) =
mk∑

l=1

b(k)
l (z − τk)

−l (k = 1, . . . , s).

Then

(mk − l)!b(k)
l = lim

z∪τk

dmk−l

dzmk−l

{
(z − τk)

mk r(z)
}

(l = 1, . . . , mk).

The function r − hk has a removable singularity at τk ; clearly hk is analytic at each
τ j with j �= k. Hence g := r − ∑s

k=1 hk may be extended to be analytic in C. We
claim that g is bounded. For since r(z) ∪ 0 and hk(z) ∪ 0 as |z| ∪ →, g(z) ∪ 0
as |z| ∪ →. Thus by Liouville’s theorem, g is constant, the constant being 0 as
g(z) ∪ 0 as |z| ∪ →. Hence

r(z) =
s∑

k=1

mk∑

l=1

b(k)
l /(z − τk)

l ,

an equality which exhibits the rational function r as a sum of its principal parts, the
usual partial fraction expansion for r in C.

It is natural to ask whether similar expansions can be obtained for non-rational
functions, functions with possibly an infinite number of isolated singularities. There
are general theorems to this effect: see the treatment of Mittag-Leffler expansions
given in [16]. Here we merely give a specific example to illustrate what may be
achieved.

Let S = Z\{0} and let f : C\S ∪ C be defined by

f (z) = z−2(Δ z cot Δ z − 1) if z ∈ C\Z, f (0) = −Δ2/3.
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Then f ∈ H(C\S); also, S is the set of isolated singularities of f and each of these
is a simple pole.

Let θ : [−2, 2] ∪ C be the circuit defined by

θ (s) =

⎨
⎩

⎪

3 + 2s − i, −2 ⊂ s ⊂ −1,
1 + i(1 + 2s), −1 ⊂ s ⊂ 0,
1 − 2s + i, 0 ⊂ s ⊂ 1,
−1 + i(3 − 2s), 1 ⊂ s ⊂ 2,

and, for k ∈ N, let θk = (k + 1/2)θ . The track of θk is the square whose vertices
are the points (k + 1/2)(±1 ± i). Example 3.4.22 (ii) shows that n(θ, 0) = 1 and
n(θ, 2i) = 0, and from Theorems 3.4.23, 3.4.27 and 3.6.20 it follows that

indθk (z) = n(θk, z) =
{
1 if max{|re z| , |im z|} < k + 1/2,
0 if max{|re z| , |im z|} > k + 1/2.

If z ∈ θ ∗
k and |re z| = k + 1/2 then, for some t ∈ R, z = ±(k + 1/2) + it and

|cot Δ z|2 = cos2(k + 1/2)Δ + sinh2 Δ t

sin2(k + 1/2)Δ + sinh2 Δ t
= tanh2 Δ t ⊂ 1;

moreover, if z ∈ θ ∗
k and |im z| = k + 1/2 then, for some t ∈ R, z = t ± (k + 1/2)i

and

|cot Δ z|2 = cos2 Δ t + sinh2(k + 1/2)Δ

sin2 Δ t + sinh2(k + 1/2)Δ
⊂ 1 + sinh2(k + 1/2)Δ

sinh2(k + 1/2)Δ
= coth2(k + 1/2)Δ

⊂ coth2(Δ/2)

(coth is a decreasing function on (0,→) bounded below by 1). Thus for all z ∈ θ ∗
k

and all k ∈ N,

| f (z)| ⊂ k−1
(
Δ coth

Δ

2
+ 1

)
.

Now let K be a non-empty, bounded subset of C\S and choose M ∈ N so large
that K ⇐ B(0, M). Let z ∈ K and put F(w) = (w − z)−1 f (w) (w ∈ C\S, w �= z).
At the point z and at each point of S, F has a simple pole; moreover

res(F, z) = lim
w∪z

f (w) = f (z),

and for each k ∈ S,

res(F, k) = lim
w∪k

(w − k)F(w) = lim
w∪k

(w − k)

w2(w − z)

(Δw cosΔw

sin Δw
− 1

)
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= lim
w∪k

(w − k)

w2(w − z)

(
Δw cosΔk cosΔw

sin Δ(w − k)
− 1

)

= lim
w∪k

Δ(w − k)

sin Δ(w − k)
· cosΔk cosΔw

w(w − z)
= 1

k(k − z)
.

By the residue theorem, for all m > M,

∣
∣
∣
∣
∣

f (z) +
m∑

k=1

1

k(k − z)
+

−1∑

k=−m

1

k(k − z)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
1

2Δ i

∫

θm

F

∣
∣
∣
∣ =

∣
∣
∣
∣
1

2Δ i

∫

θm

f (w)

w − z
dw

∣
∣
∣
∣

⊂
(
Δ coth Δ

2 + 1
)
(8m + 4)

2Δm(m − M)
.

Thus, given any δ > 0, there exists m0 ∈ N such that for all z ∈ K ,

∣
∣
∣
∣
∣

f (z) +
m∑

k=1

2

k2 − z2

∣
∣
∣
∣
∣
< δ if m ≤ m0.

It follows that the sequence
(
−2

∑m
k=1

1
k2−z2

)
converges uniformly to f on any

bounded subset of C which does not contain a pole of f . In particular,

f (z) = Δ cot Δ z

z
− 1

z2
=

→∑

k=1

2

z2 − k2
for all z ∈ C\Z,

and

f (0) = −Δ2

3
= −

→∑

k=1

2

k2

so that →∑

k=1

1

k2
= Δ2

6
.

Exercise 3.7.25

1. Describe the kind of singularity at 0 for each of the following functions:
(a) z−3 sin2 z, (b) z−2 − cosec2z, (c) sin(z) sin(1/z).

2. Find res( f ;τ) in the following cases:
(a) f (z) = (z4 + z2 + 1)−1, τ = eiΔ/3; (b) f (z) = z−2 cot z, τ = 0;
(c) f (z) = (z2 + 1)−2 exp(i z), τ = i ; (d) f (z) = z3 exp(1/z), τ = 0.

3. Find the Laurent expansions which represent the function
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f (z) = (1 + z2)−2(z ∈ C\{−i, i})

in the following annuli:
(a) {z ∈ C : 0 < |z| < 1}, (b) {z ∈ C : |z| > 1}, (c) {z ∈ C : 0 < |z − i | < 2}.
What kind of singularity does f have at i?

Find res( f ; i) and use contour integration to evaluate

∫ →

0
(1 + t2)−2dt.

4. Use the method of residues to show that

(i)
∫ 2Δ

0

1

5 + 3 cos γ
dγ = Δ

2
,

(ii)
∫ 2Δ

0

1

(a + b cos γ)2
dγ = 2Δa

(a2 − b2)3/2
(0 < b < a),

(iii)
∫ 2Δ

0

cos 4γ

1 − 2p cos γ + p2
dγ = 2Δp4

1 − p2
(0 < p < 1),

(iv)
∫ Δ

0

1

p2 + sin2 γ
dγ = Δ

p(1 + p2)1/2
(p > 0).

5. Show that

(i)
∫ →

0

1

x2 + a2 dx = Δ

2a
(a > 0),

(ii)
∫ →

0

1

x4 + a4 dx = Δ

2
≥
2a3

(a > 0),

(iii)
∫ →

0

cosmx

(x2 + a2)2
dx = Δ(1 + ma)e−ma

4a3 (a > 0, m > 0),

(iv)
∫ →

0

x3 sinmx

(x2 + a2)2
dx = Δ(2 − ma)e−ma

4
(a > 0, m > 0).

[The circuit introduced for Example 3.7.24 (i) may be used in each case.]
6. Show that

(i)
∫ →

0

log x

x2 + a2 dx = Δ

2a
log a (a > 0),

(ii)
∫ →

0

log x

(x2 + 1)2
dx = −Δ

4
,

(iii)
∫ →

0

(log x)2

x2 + 1
dx = Δ3

8
.

[The circuit introduced for Example 3.7.24 (iv) may be used in each case.]
7. Show that ∫ →

0

(
sin x

x

)2

dx = Δ

2
.
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[Hint: consider the integral of z−2(1 − exp(2i z)) over the circuit introduced in
Example 3.7.24 (iv).]

8. Prove that

∫ →

0

x2ε−1

1 + x2
dx = Δ

2
cosec(εΔ) (0 < ε < 1),

and deduce that

∫ →

0

xε−1

1 + x
dx = Δcosec(εΔ) (0 < ε < 1).

[Cf. Example 3.7.24 (v).]
9. Suppose that 1 < R < → and let θk : [0, 1] ∪ C (k = 1, 2, 3) be arcs defined

by

θ1(s) = Rs, θ2(s) = R exp(2Δsi/5), θ3(s) = R(1 − s) exp(2Δ i/5).

By integrating z/(1 + z5) over a simple circuit formed from the θk , suitably
reparametrised, show that

∫ →

0

x

1 + x5
dx = Δ

5 sin(2Δ/5)
.

10. Suppose that 0 < R < → and ε = exp(iΔ/4). Let η1, . . . , η4 be arcs defined by

η1(s) = s − εR(−1/2 ⊂ s ⊂ 1/2), η2(s) = 1/2 + εs(−R ⊂ s ⊂ R),

η3(s) = −s + εR(−1/2 ⊂ s ⊂ 1/2), η4(s) = −1/2 − εs(−R ⊂ s ⊂ R),

and let f ∈ H(C\Z) be given by

f (z) = exp(iΔ z2)cosec(Δ z).

Prove that if k ∈ {1, 3} then
∣
∣
∣
∣

∫

ηk

f

∣
∣
∣
∣ ⊂

≥
2

Δ R
exp(−Δ R2),

while if k ∈ {2, 4} then
∫

ηk

f = 2i
∫ R

0
exp(−Δs2)ds.

Further, by integrating f over a simple circuit whose track is a parallelogram
with vertices ± 1

2 ± εR, deduce that
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∫ →

0
exp(−s2)ds =

≥
Δ

2
.

[Cf. Example 2.3.32.]
11. Suppose that 0 < R < →, let f (z) = exp(i z2) (z ∈ C) and let η : [0, 3] ∪ C

be the simple circuit given by

η(s) =
⎨
⎩

⎪

Rs, 0 ⊂ s ⊂ 1,
R exp(iΔ(s − 1)/4), 1 ⊂ s ⊂ 2,
R(3 − s) exp(iΔ/4), 2 ⊂ s ⊂ 3.

Show that
∫
η

f = 0 and, given that
∫→
0 exp(−x2)dx = ≥

Δ/2, deduce that

∫ →

0
cos(x2)dx =

∫ →

0
sin(x2)dx = 1

2

√
Δ

2
.

12. Suppose that 0 < R < → and 0 < ψ ⊂ Δ . Let θk : [0, 1] ∪ C (k = 1, 2, 3) be
arcs defined by

θ1(s) = Rs, θ2(s) = R exp(iψs), θ3(s) = R(1 − s) exp(iψ).

Let f (z) = (i z)−1(exp(i z) − 1) (z �= 0), f (0) = 1. By integrating f over a
simple circuit formed from the θk suitably reparametrised, show that

∫ →

0
t−1 exp(−t sin ψ) sin(t cosψ)dt = 1

2
Δ − ψ.

Deduce that if a and b are real and positive,

∫ →

0
e−ax sin bx

x
dx = 1

2
Δ − tan−1

(a

b

)

13. Leta, ε and R bepositive real numbers.By integrating the function eiεz/(cosh z+
cosh a) over a circuit whose track is composed of the segments [−R, R],
[R, R + 2Δ i], [R + 2Δ i,−R + 2Δ i] and [−R + 2Δ i,−R], show that

∫ →

0

cos εt

cosh t + cosh a
dt = Δ sin εa

sinh Δε sinh a
.

14. Let n ∈ N and 0 < τ < Δ . Prove that the residue of the function (z2−2z cosτ+
1)−2 exp(inz) at the pole which lies in the upper half plane is−iε exp(in cosτ),
where

ε = (1 + n sin τ) exp(−n sin τ)

4 sin3 τ
.
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Hence show that, if τ �= Δ/2, then

∫ →

0

x(x2 + 1) sin nx

(x4 − 2x2 cos 2τ + 1)2
dx = Δε sin(n cosτ)

4 cosτ
.

Find the value of the integral in the excluded case.
15. Let τ ∈ C\{0}. Prove that

exp(τ(z + z−1)) = a0 +
→∑

n=1

an(zn + z−n) (z ∈ C\{0}),

where the an are given by

an = 1

Δ

∫ Δ

0
exp(2τ cos γ) cos nγdγ = τn

→∑

j=0

τ2 j

(n + j)! j ! .

Show also that

exp(τ(z − z−1)) = b0 +
→∑

n=1

bn(zn + (−z)−n) (z ∈ C\{0}),

where the bn are given by

bn = 1

Δ

∫ Δ

0
cos(nγ − 2τ sin γ)dγ = τn

→∑

j=0

(−1) jτ2 j

(n + j)! j ! .

16. Prove that all the solutions of z5+(1+i)z−16 = 0 lie in the annulus 1 < |z| < 2.
17. Use Rouché’s theorem to show that, if n ∈ N and |τ| > e, then τzn = ez has,

counted according to multiplicity, exactly n zeros in the disk |z| < 1.
18. Let ε > 1. Show that the equation ε − z − e−z = 0 has exactly one solution in

the right half-plane, and that this solution lies in B(ε, 1) and is real.
19. Prove that

ΔcosecΔ z = 1

z
+

→∑

k=1

(−1)k 2z

z2 − k2
(z ∈ C\Z),

and show also that
Δ2

12
=

→∑

k=1

(−1)k+1

k2
.
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3.8 Simply-Connected Regions: The Riemann Mapping Theorem

Throughout this section we shall assume that G is a region inC. FromRemark 3.6.33
(iii) and Corollary 3.6.36, it is known that, if G is simply-connected, then every
f ∈ H(G) has a primitive in G. The objective of this section is to establish the
converse; namely, if every f ∈ H(G) has a primitive in G, then G is simply-
connected. In pursuit of that objective, celebrated results, notably Montel’s theorem
and the Riemann mapping theorem, are obtained as intermediate steps.

Definition 3.8.1 A family of functions F ⇐ H(G) is said to be bounded in a
subset S of G if there exists a real number M > 0 such that, for all f ∈ F ,

| f |S := sup
z∈S

| f (z)| ⊂ M.

The family F is said to be locally bounded in G if, given any point in G, F is
bounded in a neighbourhood of that point.

Remark 3.8.2 LetF ⇐ H(G). It is elementary, and left to the reader, to verify that
the three statements which follow are equivalent:

(a)F is locally bounded in G.
(b)F is bounded in every compact subset of G.
(c)F is bounded in every open ball with closure contained in G.

A useful variant of (c) is based on the observation that, given any ball B(a, r)

such that B(a, r) ⇐ G, there exists a ball B(c, s) with centre c having rational real
and imaginary parts and rational radius s, such that

B(a, r) ⇐ B(c, s) ⇐ B(c, s) ⇐ G.

It follows that (a), (b) and (c) above are equivalent to
(d)F is bounded in every open ball B(z, R) with B(z, R) ⇐ G and re(z), im(z) and
R all rational.

Evidently, the family of balls described in statement (d) is countable.

Lemma 3.8.3 Let F ⇐ H(G) be locally bounded in G. Then F is equicontinuous
at each point of G: given any a ∈ G and any δ > 0, there exists λ > 0 such that, for
all z ∈ B(a, λ),

sup
f ∈F

| f (z) − f (a)| < δ.

Proof Let r > 0 be chosen so that B(a, 2r) ⇐ G, and let θ (t) = a + 2reit

(0 ⊂ t ⊂ 2Δ). Use of the Cauchy integral formula (Theorem 3.6.15) shows that, for
all f ∈ F and all z ∈ B(a, r),
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f (z)− f (a) = 1

2Δ i

∫

θ

{
1

ζ − z
− 1

ζ − a

}
f (ζ )dζ = (z − a)

2Δ i

∫

θ

f (ζ )

(ζ − z)(ζ − a)
dζ.

Thus, appealing to Theorem 3.5.10, for all such f and z,

| f (z) − f (a)| ⊂ |z − a|
r

| f |B(a,2r) ,

since |(ζ − z)(ζ − a)| ≤ 2r2 whenever ζ ∈ θ ∗. AsF is locally bounded,

M := 1 + sup
f ∈F

| f |B(a,2r) < →.

Hence, for all z ∈ B(a, r),

sup
f ∈F

| f (z) − f (a)| ⊂ M |z − a| /r,

from which the result follows immediately: put λ = r min{1, δ/M}. �

Definition 3.8.4 A family F ⇐ H(G) is called normal if every sequence of
functions in F has a subsequence which converges uniformly on each compact
subset of G.

Note that it is not required that the limit function of the subsequence belongs
to F . Nevertheless, in view of Theorem 3.7.18, this limit function does belong to
H(G).

Theorem 3.8.5 (Montel’s theorem ) A family F ⇐ H(G) is normal if and only if it
is locally bounded.

Proof To obtain a contradiction, suppose thatF ⇐ H(G) is normal and not locally
bounded. Then there is a compact set K ⇐ G such that sup f ∈F | f |K = → and, in
consequence, a sequence ( fn) inF such that

| fn|K ≤ n(n ∈ N).

SinceF is normal, there exists f ∈ H(G) and a subsequence ( fm(n)) of ( fn) which
converges uniformly to f on K :

lim
n∪→

∣
∣ fm(n) − f

∣
∣
K = 0.

But for all n ∈ N,

n ⊂ m(n) ⊂ ∣
∣ fm(n)

∣
∣
K ⊂ | f |K + ∣

∣ fm(n) − f
∣
∣
K ,

and so | f |K = →, which is impossible.
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It remains to show that if F is locally bounded, then it is normal. Let ( fn) be a
sequence of functions inF and let

{
B j : j ∈ N

}
be the family of all open balls with

closures contained in G, with centres having rational real and imaginary parts, and
with rational radii. By Lemma 3.8.3,F is equicontinuous at each point of G and is
therefore equicontinuous on each B j . As ( fn) is uniformly bounded on B1, it follows
from the Arzelà-Ascoli theorem (Theorem 2.3.22) that ( fn) has a subsequence that is
uniformly convergent on B1. (We note that while Lemma 2.3.21 and Theorem 2.3.22
are stated and proved for real-valued functions only, extension to the complex case is
elementary since the proofs are formally identical.)We now apply the same argument
to this subsequence, considered this time on B2. Proceeding in this way, we see from
the Cantor diagonalisation technique that ( fn) has a subsequence that is uniformly
convergent on each B j . Since every compact subset K of G can be covered by a
finite collection of the B j , it follows that this subsequence is uniformly convergent
on each such K . Hence F is normal. �

Theorem 3.8.6 (Schwarz’s lemma) Let B = B(0, 1) and ε ∈ C. Let f ∈ H(B) be
such that f (B) ⇐ B, f (0) = 0 and f ∗(0) = ε. Then

(i) |ε| ⊂ 1 and
| f (z)| ⊂ |z| (z ∈ B).

(ii) |ε| = 1 if and only if there exists z0 ∈ B\{0} such that | f (z0)| = |z0|; further,
in either event,

f (z) = εz (z ∈ B).

Proof (i) Let g : B ∪ C be given by

g(z) = z−1 f (z) if z �= 0; g(0) = ε.

Evidently g is continuous; moreover, it is analytic in B\{0}. Hence, using Theo-
rem 3.6.9 and the remarks following it, g ∈ H(B). Let 0 < r < 1. Since f (B) ⇐ B,
application of Theorem 3.6.28 (the maximum modulus theorem) shows that, for all
z ∈ B(0, r),

|g(z)| ⊂ sup
|w|=r

|g(w)| ⊂ r−1.

Letting r ∪ 1−, it follows that

|g(z)| ⊂ 1(z ∈ B).

Hence |ε| ⊂ 1 and
| f (z)| ⊂ |z| (z ∈ B).

(ii) Suppose that |g(w)| = 1 for some w ∈ B. Then |g| has a local maximum in B
and, since Theorem 3.6.28 applies, g is a constant mapping. Hence |ε| = |g(0)| = 1
implies that, for all z ∈ B, |g(z)| = 1 and therefore | f (z)| = |z|; alternatively,
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| f (z0)| = |z0| for some z0 ∈ B\{0} implies that 1 = |g(z0)| = |g(0)| = |ε|. In
either event, g(z) = g(0) = ε (z ∈ B) and so

f (z) = εz (z ∈ B).
�

Definition 3.8.7 Let G be a region in C. An analytic bijective map f : G ∪ G is
called an automorphism of G.

Note that by Corollary 3.7.15, the inverse f −1 of such a map f belongs to H(G).

Lemma 3.8.8 Let τ ∈ C, |τ| < 1, and let ψτ : B = B(0, 1) ∪ B be given by

ψτ(z) = (z − τ)(τz − 1)−1.

Then ψτ is an automorphism of B.

Proof Evidently ψτ ∈ H(B). If z ∈ B, then

|τz − 1|2 − |z − τ|2 = (1 − |τ|2)(1 − |z|2) > 0,

and so |ψτ(z)| < 1. Hence ψτ(B) ⇐ B. Routine calculation shows that ψτ(ψτ(z)) =
z (z ∈ B), which means that ψτ is its own inverse. �

We now show that up to rotations, the maps ψτ are the sole automorphisms of B:
by a rotation is meant a map of the form z ∞−∪ eit z, where t ∈ R.

Theorem 3.8.9 Let f : B ∪ B be an automorphism of B and let τ = f −1(0).
Then there is a real number t such that

f (z) = eitψτ(z) (z ∈ B),

where ψτ is defined as in the last lemma.

Proof Let h := f ◦ ψτ; h is an automorphism of B and h(0) = 0. The first part of
the Schwarz lemma applies to both h and h−1. Thus, for all z ∈ B,

|h(z)| ⊂ |z| and
∣
∣
∣h−1(z)

∣
∣
∣ ⊂ |z| ,

so that
|h(z)| = |z| (z ∈ B).

By the second part of Schwarz’s lemma, there is a real number t such that h(z) = eit z
(z ∈ B). Hence

f (z) = h(ψτ(z)) = eitψτ(z) (z ∈ B). �
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Lemma 3.8.10 Let τ, χ ∈ C, |τ| < 1, |χ| < 1 and let ψτ, ψχ be automorphisms of
B defined as in Lemma 3.8.8. Let j : B ∪ B be given by j (z) = z2, and let ξ be
defined on B by ξ = ψτ ◦ j ◦ ψχ . Then

∣
∣ξ ∗(0)

∣
∣ < 1.

Proof Clearly ξ ∈ H(B) and ξ (B) ⇐ B; also, since j is not injective, neither
is ξ . Put θ = ξ (0) and let ψθ be the automorphism of B given by ψθ (z) =
(z − θ )(θ z − 1)−1 (z ∈ B). Set f = ψθ ◦ ξ . Then f ∈ H(B), f (B) ⇐ B and
f (0) = 0. Application of the Schwarz lemma to f gives

∣
∣
∣ψ

∗
θ (θ )ξ ∗(0)

∣
∣
∣ ⊂ 1,

and routine calculation shows that
∣
∣
∣ψ

∗
θ (θ )

∣
∣
∣ = (1 − |θ |2)−1.

Hence ∣
∣ξ ∗(0)

∣
∣ ⊂ 1 − |θ |2 ⊂ 1.

If
∣
∣ξ ∗(0)

∣
∣ = 1, then ξ (0) = θ = 0 and, by the Schwarz lemma, ξ has the form

ξ (z) = εz, where |ε| = 1. Butξ is not injective and so cannot have this form. Thus∣
∣ξ ∗(0)

∣
∣ < 1. �

Definition 3.8.11 A region G in C is said to have the square root property if each
zero-free f ∈ H(G) has a square root; that is, there exists g ∈ H(G) such that
g2 = f .

Lemma 3.8.12 Let G have the square root property and suppose that G �= C. Then
there is an injective map g ∈ H(G) such that g(G) ⇐ B.

Proof Let a ∈ C\G. By hypothesis, there exists h ∈ H(G) such that h2(z) = z − a
(z ∈ G); plainly, h is injective. By the open mapping theorem, h(G) contains an
open ball B(c, r). Since h is zero-free, evidently 0 /∈ B(c, r).

Let w ∈ B(−c, r). We show that w /∈ h(G). To obtain a contradiction, suppose
that z ∈ G and h(z) = w. Since −w ∈ B(c, r) ⇐ h(G), there exists z1 ∈ G
such that −w = h(z1). The equality h2(z) = h2(z1) shows that z = z1, that
w = h(z) = h(z1) = −w, and that w = 0. But 0 /∈ B(c, r) and we have a
contradiction. It follows that B(−c, r) ∩ h(G) = √: for all z ∈ G, |h(z) + c| ≤ r .

For 0 < |ν| < 1, define gν : G ∪ C by

gν(z) = νr(h(z) + c)−1.

Then gν ∈ H(G), gν is injective and gν(G) ⇐ B. Evidently, any gν has the properties
desired of g. �
Lemma 3.8.13 Let G have the square root property and suppose that G �= C. Let
U = { f ∈ H(G) : f is injective and f (G) ⇐ B}. Suppose that z0 ∈ G, g ∈ U
and g(G) �= B. Then there exists f ∈ U such that

∣
∣g∗(z0)

∣
∣ <

∣
∣ f ∗(z0)

∣
∣.
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Proof Let τ ∈ B\g(G) and let ψτ be the automorphism of B given by

ψτ(z) = (τz − 1)−1(z − τ) (z ∈ B).

Evidently ψτ ◦ g ∈ H(G) and, since g(z) �= τ (z ∈ G), ψτ ◦ g is zero-free. Hence
there exists h ∈ H(G) such that

h2 = ψτ ◦ g.

As both ψτ and g are injective, so also is h; further, h(G) ⇐ B, since h2(G) ⇐ B.
It follows that h ∈ U .

Put χ = h(z0). With ψχ defined in the obvious way, let f = ψχ ◦ h: note that
f ∈ U and f (z0) = 0. With j : B ∪ B given by j (z) = z2 (z ∈ B),

g = ψτ ◦ h2 = ψτ ◦ (ψχ ◦ f )2 = (ψτ ◦ j ◦ ψχ) ◦ f = ξ ◦ f,

where ξ = ψτ ◦ j ◦ ψχ . It follows that

g∗(z0) = ξ ∗( f (z0)) f ∗(z0) = ξ ∗(0) f ∗(z0).

Now, by Lemma 3.8.10,
∣
∣ξ ∗(0)

∣
∣ < 1. Thus, since g is injective and therefore, by

Corollary 3.7.15, g∗(z0) �= 0,

∣
∣g∗(z0)

∣
∣ <

∣
∣ f ∗(z0)

∣
∣ . �

Theorem 3.8.14 (The Riemannmapping theorem) Let G have the square root prop-
erty and suppose that G �= C. Then G is analytically isomorphic to B in the sense
that there exists an analytic injective map g of G onto B (Corollary 3.7.15, the inverse
function theorem, shows that g−1 ∈ H(B)).

Proof Lemma 3.8.12 ensures the existence of an analytic injective map of G into B.
Let v be such a map. Let z0 ∈ G and put τ = ∣

∣v∗(z0)
∣
∣; by Corollary 3.7.15, τ > 0.

Let
V = { f ∈ H(G) : f is injective, f (G) ⇐ B and

∣
∣ f ∗(z0)

∣
∣ ≤ τ};

V �= √, since v ∈ V . We establish below that there exists g ∈ V such that

∣
∣g∗(z0)

∣
∣ = sup

f ∈V

∣
∣ f ∗(z0)

∣
∣ . (3.8.1)

This fact accepted, then g(G) = B. For otherwise, by Lemma 3.8.13, there exists an
analytic injective map h of G into B such that

∣
∣h∗(z0)

∣
∣ >

∣
∣g∗(z0)

∣
∣ ≤ τ.
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But this implies that h ∈ V , in which event

∣
∣g∗(z0)

∣
∣ ≤ ∣

∣h∗(z0)
∣
∣ ,

a contradiction. It follows that G and B are analytically isomorphic, as required.
It remains to prove (3.8.1). Since the family V is bounded and therefore locally

bounded in G, by Montel’s theorem, V is normal. Hence the set {∣∣ f ∗(z0)
∣
∣ : f ∈ V }

is bounded: otherwise, there exists a sequence ( fn) in V such that
∣
∣ f ∗

n(z0)
∣
∣ ≤ n

(n ∈ N) and so, using Theorem 3.7.18, no subsequence of either ( f ∗
n) or ( fn)

converges uniformly on compact subsets of G. Let � = sup f ∈V
∣
∣ f ∗(z0)

∣
∣ and let

(gn) be a sequence in V such that

∣
∣g∗

n(z0)
∣
∣ ∪ �.

The sequence (gn) has a subsequence, itself labelled (gn) for convenience, which
converges uniformly on compact subsets of G. Let g be its limit function. By The-
orem 3.7.18, g ∈ H(G) and (g∗

n) converges uniformly to g∗ on compact subsets of
G. Hence ∣

∣g∗
n(z0)

∣
∣ ∪ ∣

∣g∗(z0)
∣
∣

and so � = ∣
∣g∗(z0)

∣
∣. Further, since |gn(z)| < 1 (z ∈ G, n ∈ N) and

∣
∣g∗

n(z0)
∣
∣ ≤ τ

(n ∈ N), it follows that g(G) ⇐ B and
∣
∣g∗(z0)

∣
∣ ≤ τ. As

∣
∣g∗(z0)

∣
∣ �= 0, g is not

constant. Hence, by Theorem 3.7.14 (the open mapping theorem), g(G) ⇐ B; also,
by Theorem 3.7.21, g is injective. Summarising, g ∈ V and

∣
∣g∗(z0)

∣
∣ = sup

f ∈V

∣
∣ f ∗(z0)

∣
∣ . �

Theorem 3.8.15 Let G be a region in C. The following statements are equivalent:

(i) G is simply-connected.
(ii) indθ (z) = 0 for all z ∈ C\G and all circuits θ in G;
(iii)

∫
θ

f = 0 for all f ∈ H(G) and all circuits θ in G;
(iv) every f ∈ H(G) has a primitive on G;
(v) every zero-free f ∈ H(G) has an analytic logarithm on G;
(vi) every zero-free f ∈ H(G) has an analytic square root on G;
(vii) either G = C or G is analytically isomorphic to B;
(viii) G is homeomorphic to B.

Proof (i)=∼(ii)
Given (i), since every closed path in G is null-homotopic, Proposition 3.4.24

and Theorem 3.4.28 show that, whenever z ∈ C\G and θ is a closed path in G,

n(θ, z) = 0; if in addition, θ is a circuit in G, Theorem 3.6.20 identifies n(θ, z) and
indθ (z). The validity of (ii) follows.
(ii)=∼(iii)

This follows from Theorem 3.6.32, the global form of Cauchy’s theorem.
(iii)=∼(iv)
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This is immediate from Theorem 3.6.2, the fundamental theorem of contour inte-
gration.
(iv)=∼(v)

This is a consequence of Theorem 3.6.17.
(v)=∼(vi)

Let f ∈ H(G) , 0 /∈ f (G). Since (v) holds, there exists g ∈ H(G) such that
exp(g) = f . Set h = exp(g/2). Then h ∈ H(G) and h2 = f : thus h is an analytic
square root of f.
(vi)=∼(vii)

This is the Riemann mapping theorem, Theorem 3.8.14.
(vii)=∼(viii)

C and B are homeomorphic: an explicit homeomorphism is given by

z ∞−∪ (1 + |z|)−1z : C ∪ B.

When G �= C, the result is plain.
(viii)=∼(i)

By Theorem 2.4.23, G is path-connected. Let f : G ∪ B be a homeomorphism,
let θ : [0, 1] ∪ G be a closed path in G and let z0 = f −1(0). The map f ◦ θ is a
path in B which is freely homotopic to the constant path s ∞−∪ 0 : [0, 1] ∪ B under
H : [0, 1] × [0, 1] ∪ B given by H(s, t) = (1 − t) f (θ (s)). Let H̃ = f −1 ◦ H . It
is trivial to verify that H̃ is a homotopy between θ and the constant path s ∞−∪ z0 :
[0, 1] ∪ G. Thus G is simply-connected. �

Asa consequence ofTheorem3.8.15 it follows that every simply-connected region
G �= C inC is analytically isomorphic to the unit disc B(0, 1). This assertion is often
referred to in the literature as the Riemann mapping theorem. We refer to the books
by Burckel [3] and Remmert [13] for historical discussion of this famous result.
Theorem 3.8.15 is extraordinary because of the equivalence it establishes between
different kinds of properties: analytic ((ii), (iii), (iv), (v), (vii)), topological ((i), (viii))
and algebraic (vi). It has exceptional aesthetic appeal.

3.9 The Jordan Curve Theorem

The famous Jordan curve theorem (briefly mentioned in Remark 3.4.31) states that
if θ is a simple closed path in C, then C\θ ∗ has exactly two connected components,
I and O; the first of these is bounded and is called the inside of θ , while O is
unbounded and referred to as the outside of θ . Moreover, θ ∗ is the boundary of
each of these components; the winding number n(θ, z) is zero for all z ∈ O ; either
n(θ, z) = 1 for all z ∈ I or n(θ, z) = −1 for all z ∈ I . While this is immediate
for such elementary paths as circles, nevertheless to establish it as stated is by no
means a trivial matter, even though it may appear intuitively obvious. We refer to
Burckel’s book [3], and the references given there, for accounts of the history of
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this theorem. Over the years many proofs have been devised, largely falling into
two categories: those designated as ‘elementary’ but often involving extraordinary
ingenuity and complicated geometric constructions; and those that employ more
advanced material. The lack of aesthetic appeal is a common feature of much of
this work. Here we try to avoid the more obvious pitfalls in approaching this topic
and, inspired by the approach of Burckel, attempt to give an account that grows in a
natural way out of the material in the earlier part of the chapter.

3.9.1 Closed Paths and Continuous Maps on S1

We remind the reader that the notation S1 was introduced in Example 2.4.21 (iv):
identifying R2 and C as metric spaces, S1 = {z ∈ C : |z| = 1}.
Theorem 3.9.1 Let (X, d) be a metric space and denote by I the closed interval
[0, 1]. Let β : I × I ∪ X be continuous and suppose that, for all t ∈ I,

β(0, t) = β(1, t).

Then there is a continuous F : S1 × I ∪ X such that, for all (s, t) ∈ I × I,

F(exp(2Δ is), t) = β(s, t).

Proof The map (s, t) ∞−∪ (exp(2Δ is), t) : [0, 1)× I ∪ S1 × I is bijective. Hence,
if (z, t) ∈ S1 × I , then there exists a unique (s, t) ∈ [0, 1) × I such that

(exp(2Δ is), t) = (z, t).

Let F(z, t) = β(s, t). Since β(0, t) = β(1, t) for all t ∈ I , it follows that for all
(s, t) ∈ I × I,

F(exp(2Δ is), t) = β(s, t).

It remains to prove that F is continuous. Suppose that F is not continuous at (z0, t0) ∈
S1 × I . Then an δ > 0 and a sequence ((zn, tn)) in S1 × I exist such that (z n, tn) ∪
(z0, t0) and

d(F(z n, tn), F(z0, t0)) ≤ δ (n ∈ N). (3.9.1)

For each n ∈ N let sn be that unique element of [0, 1) such that zn = exp(2Δ isn).
Some subsequence of (sn), (sm(n)) say, is convergent: suppose that sm(n) ∪ s0 ∈ I .
Then

(sm(n), tm(n)) ∪ (s0, t0),

(zm(n), tm(n)) = (exp(2Δ ism(n)), tm(n)) ∪ (exp(2Δ is0), t0) = (z0, t0)
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and
d(F(z m(n), tm(n)), F(z0, t0)) = d(β(sm(n), tm(n)), β(s0, t0)) ∪ 0,

which contradicts (3.9.1). �

Corollary 3.9.2 Let X be a metric space and let ψ : I ∪ X be a closed path in X.
Then there exists a continuous map f : S1 ∪ X such that for all s ∈ I,

f (exp(2Δ is)) = ψ(s).

Proof Let β : I × I ∪ X be defined by β(s, t) = ψ(s). Then β is continuous
and, for all t ∈ I , β(0, t) = β(1, t). The theorem just proved shows that there is a
continuous F : S1 × I ∪ X such that, for all (s, t) ∈ I × I,

F(exp(2Δ is), t) = β(s, t) = ψ(s).

Let f : S1 ∪ X be defined by f (z) = F(z, 0). Then f is continuous and
f (exp(2Δ is)) = ψ(s) for all s ∈ I . �

Theorem 3.9.3 Let X be a metric space. For j ∈ {0, 1}, let f j : S1 ∪ X be
continuous, ψ j : I ∪ X be a closed path in X, and suppose that

f j (exp(2Δ is)) = ψ j (s) (s ∈ I ).

Then f0 and f1 are homotopic if, and only if, ψ0 and ψ1 are freely homotopic.

Proof Suppose f0 ⊃ f1, so that there is a continuous map F : S1 × I ∪ X such
that

F(z, 0) = f0(z), F(z, 1) = f1(z) (z ∈ S1).

Define β : I × I ∪ X by β(s, t) = F(exp(2Δ is), t). As it is a composition of
continuous maps, β is continuous. Moreover,

β(s, 0) = ψ0(s),β(s, 1) = ψ1(s) (s ∈ I )

and
β(0, t) = F(1, t) = β(1, t) (t ∈ I ).

Thus ψ0 and ψ1 are freely homotopic.
Conversely, suppose ψ0 and ψ1 are freely homotopic. Then there is a continuous

map β : I × I ∪ X such that

β(s, 0) = ψ0(s),β(s, 1) = ψ1(s) (s ∈ I )

and
β(0, t) = β(1, t) (t ∈ I ).
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By Theorem 3.9.1, there is a continuous map F : S1 × I ∪ X such that, for all
(s, t) ∈ I × I,

F(exp(2Δ is), t) = β(s, t).

Let z ∈ S1. A unique s ∈ [0, 1) exists such that exp(2Δ is) = z. Evidently

f0(z) = ψ0(s) = β(s, 0) = F(z, 0)

and
f1(z) = ψ1(s) = β(s, 1) = F(z, 1).

Hence F is a homotopy between f0 and f1. �

3.9.2 Existence of Continuous Logarithms

Theorem 3.9.4 Let U ⇐ C be open and f : U ∪ C\{0} be continuous. Then the
following statements are equivalent:

(i) n( f ◦ θ, 0) = 0 for every closed path θ in U.
(ii) f has a continuous logarithm.

Proof Suppose that (i) holds and that U is connected. It is enough to establish (ii)
in the case that U is connected because of Theorem 2.4.27 : for, if this case is
established, then, more generally, a continuous logarithm exists on each component
of U and therefore on U itself.

Let z0 ∈ U . By Theorem 3.4.6, since f (z0) �= 0, there exists w0 ∈ C such that
exp(w0) = f (z0). By Theorem 2.4.23, since U is open and connected, it is path-
connected. Associate with each z ∈ U a path θz : [0, 1] ∪ U joining z0 to z, so that
θz(0) = z0, θz(1) = z.We show that the family {θz : z ∈ U } determines a continuous
logarithm of f . Evidently, f ◦ θz is a path in C\{0} and, by Theorem 3.4.19, it has
a continuous logarithm, ψz say, so that

exp(ψz(t)) = f (θz(t)) (0 ⊂ t ⊂ 1).

Since exp(ψz(0)) = f (θz(0)) = f (z0) = exp(w0), say, this logarithm may be
adjusted so that ψz(0) = w0. Put

Γ(z) = ψz(1) (z ∈ U ).

Then
exp(Γ(z)) = exp(ψz(1)) = f (z) (z ∈ U ),

and it remains to show that Γ is continuous.
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Let z1 ∈ U and r > 0 be such that B(z1, r) ⇐ U and f (B(z1, r)) ⇐
B( f (z1), | f (z1)|). By Theorem 3.4.13, there is a branch L of the logarithm on
B( f (z1), | f (z1)|):

exp(L(w)) = w (w ∈ B( f (z1), | f (z1)|)).

It follows that, for all z ∈ B(z1, r),

exp(L( f (z))) = f (z) = exp(ψz(1)).

Since these equalities hold at the point z1 we may and shall suppose L is so chosen
that

L( f (z1)) = ψz1(1).

Let z ∈ B(z1, r) and let ν : [0, 1] ∪ C be the path joining z1 to z defined by
ν(t) = z1 + t (z − z1). Define a closed path θ by

θ (t) =
⎨
⎩

⎪

θz(1 − t), 0 ⊂ t ⊂ 1,
θz1(t − 1), 1 ⊂ t ⊂ 2,
ν(t − 2), 2 ⊂ t ⊂ 3,

and a function ψ by

ψ(t) =
⎨
⎩

⎪

ψz(1 − t), 0 ⊂ t ⊂ 1,
ψz1(t − 1), 1 ⊂ t ⊂ 2,
L( f (ν(t − 2))), 2 ⊂ t ⊂ 3.

The function ψ is continuous on [0, 3], being continuous on each of the subintervals
[0, 1], [1, 2] and [2, 3], and suitably defined at the points 1 and 2. Further, it is simple
to check that it is a continuous logarithm of f ◦ θ :

exp(ψ(t)) = f (θ (t)) (0 ⊂ t ⊂ 3).

Since (i) holds,

0 = 2Δ in( f ◦ θ, 0) = ψ(3) − ψ(0) = L( f (z)) − ψz(1),

and therefore
Γ(z) = ψz(1) = L( f (z)).

It follows that L ◦ f andΓ coincide on B(z1, r); moreover, since L ◦ f is continuous
on B(z1, r), so also isΓ . Since z1 is an arbitrarily chosen point ofU ,Γ is continuous
on U and (ii) holds.

Conversely, suppose (ii) holds. Let g : U ∪ C be a continuous logarithm of f ,
and let θ : [0, 1] ∪ U be a closed path. Then
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exp(g(θ (t))) = f (θ (t))(0 ⊂ t ⊂ 1);

g ◦ θ is a continuous logarithm of f ◦ θ ; and

0 = g(θ (1)) − g(θ (0)) = 2Δ in( f ◦ θ, 0),

thus establishing (i). �

Theorem 3.9.5 Let U ⇐ C be open and simply connected, and let f : U ∪ C\{0}
be continuous. Then f has a continuous logarithm.

Proof Letθ be a closed path inU . SinceU is simply connected,θ is freely homotopic
to a constant path in U , and so f ◦θ is freely homotopic to a constant path in C\{0}.
Appeal to Theorem3.4.28, which establishes the homotopy invariance of thewinding
number, and to Proposition 3.4.24, shows that n( f ◦ θ, 0) = 0. The proof is now
completed by use of Theorem 3.9.4. �

We consider next zero-free continuous functions on compact subsets of C, with
initial attention paid to functions on the compact sets S1 = {z ∈ C : |z| = 1} and
π Q, where Q = [−1, 1]2.
Theorem 3.9.6 Let f : S1 ∪ C\{0} be continuous and odd in the sense that
f (−z) = − f (z) for all z ∈ S1. Then f does not have a continuous square root and
so does not have a continuous logarithm.

Proof To obtain a contradiction, suppose f has a continuous square root g, so that
g2 = f and g is zero-free. Let ψ : S1 ∪ C\{0} be defined by

ψ(z) = g(−z)/g(z). (3.9.2)

Then ψ is continuous and ψ2 = −1, so that ψ is a continuous square root of the
function −1. Since ψ is continuous and S1 is connected, either ψ(S1) = {−i} or
ψ(S1) = {i}. Whichever is the case,

−1 = ψ(z)ψ(−z) for all z ∈ S1;

but this contradicts the equality

ψ(z)ψ(−z) = 1 for all z ∈ S1

which is an immediate consequence of (3.9.2). Thus f does not have a continuous
square root.

Lastly, f does not have a continuous logarithm: if it did have one, say h, then
exp(h/2) would be a continuous square root. �

Note that this theorem applies to the case in which f is the identity map on S1.



284 3 Complex Analysis

Theorem 3.9.7 (i) Let f : S1 ∪ C\{0} be continuous. Then there is an integer m
such that

z ∞−∪ zm f (z) : S1 ∪ C\{0}

has a continuous logarithm.
(ii) Let g : S1 ∪ C\{0} be continuous, let p be an integer other than 0, and suppose

that g p has a continuous logarithm. Then g itself has a continuous logarithm.

Proof (i) Let θ : [0, 1] ∪ C\{0} be the closed path defined by θ (t) = f (exp(2Δ i t))
and let m = −n(θ, 0). By Theorem 3.4.19, θ has a continuous logarithm and so

θ (t) = exp(2Δ iΓ(t)) (0 ⊂ t ⊂ 1),

where Γ is continuous and
−m = Γ(1) − Γ(0).

It follows that

exp(2Δ imt) f (exp(2Δ i t)) = exp(2Δ i(Γ(t) + mt)) (0 ⊂ t ⊂ 1). (3.9.3)

The function t ∞−∪ 2Δ i(Γ(t) + mt) : [0, 1] ∪ C has the same value at t = 0 as at
t = 1. Thus, by Corollary 3.9.2, there exists a continuous ψ : S1 ∪ C such that

ψ(exp(2Δ i t)) = 2Δ i(Γ(t) + mt) (0 ⊂ t ⊂ 1).

Substitution of this equality in (3.9.3) shows that

exp(2Δmit) f (exp(2Δ i t)) = exp(ψ(exp(2Δ i t))) (0 ⊂ t ⊂ 1),

which translated to S1 gives

zm f (z) = exp(ψ(z)) (z ∈ S1).

Hence ψ is a continuous logarithm of the map z ∞−∪ zm f (z).
(ii) We may and shall assume that p > 0. Let ψ : S1 ∪ C be a continuous logarithm
of g p : exp(ψ) = g p. The set of roots of z p = 1 is

{exp(2Δki/p) : k = 1, 2, . . . , p}.

For k ∈ {1, 2, . . . , p} let

Ak := {z ∈ S1 : g(z) = exp((ψ(z) + 2kΔ i)/p)}.

Each of the Ak is closed; they are pairwise disjoint and have union S1. Since S1 is
connected, exactly one of the Ak = S1 and the rest are empty. �
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Theorem 3.9.7 (i) has an analogue for squares.

Theorem 3.9.8 Let Q = [−1, 1]2 and suppose that f : π Q ∪ C\{0} is continuous.
Then there exists an integer m such that

z ∞−∪ zm f (z) : π Q ∪ C\{0}

has a continuous logarithm.

Proof The map η : π Q ∪ S1 given by η(z) = z/ |z| is a homeomorphism of π Q
onto S1 (see Example 2.1.39 (iii)). Applying part (i) of the preceding theorem to
f ◦ η−1 we see that there exists an integer m and a continuous map Γ : S1 ∪ C
such that

wm f (η−1(w)) = exp(Γ(w)) (w ∈ S1).

Thus for all z ∈ π Q,

(η (z))m f (z) = exp(Γ(η(z)))

and therefore

zm f (z) = |z|m exp(Γ(η(z))) = exp(Γ(η(z)) + m log |z|) = exp(ψ(z)),

where ψ has the obvious definition and is a continuous logarithm of the map z ∞−∪
zm f (z). �

Theorem 3.9.9 Let K ⇐ C be one or other of the compact sets [−1, 1]2 and B(0, 1),
and suppose that f : K ∪ C\{0} is continuous. Then f has a continuous logarithm.

Proof By the Tietze extension theorem (extended in an obvious manner to complex-
valued functions), there exists a continuous function F : C ∪ C such that F |K = f .
Let V = F−1(C\{0}). Then V is open, dist(K ,c V ) > 0 and, where U is the interior
of K , there exists ε > 1 such that K ⇐ εU ⇐ V . By Theorem 3.9.5, F |εU has a
continuous logarithm and thus so does f . �

We have seen via Theorems 3.9.5 and 3.9.6 that whether or not a zero-free con-
tinuous map has a continuous logarithm is influenced by its domain. If an extension
to a disk or to C is possible, then the existence of continuous logarithms is assured.
Extension theorems come into their own in the context of compact domains of defi-
nition. The theorem that follows preserves not only the property of being continuous
but also that of being zero-free.

Theorem 3.9.10 (The homotopy extension theorem) Suppose A ⇐ B ⇐ Rn, with
A compact and B closed. Let the functions f : A ∪ C\{0} and g : B ∪ C\{0} be
continuous, and suppose that f and the restriction g |A of g to A are homotopic, so
that there exists a continuous map h : A × [0, 1] ∪ C\{0} such that

h(x, 0) = f (x), h(x, 1) = g(x) (x ∈ A).
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Then there exists a continuous function F : B ∪ C\{0} such that F |A= f .

Proof Let T = (A ×[0, 1])◦ (B ×{1}) and extend the domain of h to T by defining

h(x, 1) = g(x) (x ∈ B) :

the glueing lemma shows that this extension is continuous. Applied to the real and
imaginary parts of h, the Tietze extension theorem establishes that there is a contin-
uous map H : Rn+1 ∪ C whose restriction to T is h. Evidently T ⇐ H−1(C\{0}),
since H(T ) = h(T ) ⇐ C\{0}. For each k ∈ N put

Ak = {x ∈ Rn : d(x, A) ⊂ k−1};

each Ak is compact and

∩→
k=1Ak × [0, 1] = A × [0, 1] ⇐ T ⇐ H−1(C\{0}).

Since c
(
H−1(C\{0})) is closed and its distance from the compact set A × [0, 1] is

positive, there exists k ∈ N such that

Ak × [0, 1] ⇐ H−1(C\{0}).

Let x ∈ B. Then

(x,min{1, kd(x, A)}) ∈ (Ak × [0, 1]) ◦ (B × {1})

and, if we put
F(x) = H (x,min{1, kd(x, A)}) ,

then a continuous zero-free extension of f to B is obtained. �

Theorem 3.9.11 Let c ∈ C\{0}, K be a compact subset of C and f : K ∪ C\{0}
be continuous. With the understanding that ‘the constant map c’ refers to the map
z ∞−∪ c : K ∪ C\{0}, the following statements are equivalent:

(i) f and the constant map c are homotopic.
(ii) f has a continuous, zero-free extension to C; that is, there is a continuous

function F : C ∪ C\{0} whose restriction to K equals f .
(iii) f has a continuous logarithm.

Proof The results that (i) implies (ii) and (ii) implies (iii) are immediate consequences
of Theorems 3.9.10 and 3.9.5, respectively. To show that (iii) implies (i), let ψ : K ∪
C be a continuous logarithm of f , so that

f (z) = exp(ψ(z)) (z ∈ K ),
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and let w ∈ C be such that c = exp(w). Such a w exists in view of Theorem 3.4.6.
Define h : K × [0, 1] ∪ C\{0} by

h(z, t) = exp((1 − t)w + tψ(z)).

Evidently h is a homotopy between f and the constant map c. �

Corollary 3.9.12 Let K be a compact subset of C and let functions f0, f1 : K ∪
C\{0} be continuous and homotopic. Then f0 has a continuous logarithm if and only
if f1 has.

Proof Suppose that f0 has a continuous logarithm and that c ∈ C\{0}. By Theo-
rem 3.9.11, f0 and the constant map c are homotopic. Hence, by Theorem 2.5.5, f1
and the constant map c are also homotopic, and so a further appeal to Theorem 3.9.11
shows that f1 has a continuous logarithm. �

Theorem 3.9.13 Let K be a compact subset of C, f : K ∪ C\{0} be continuous
and suppose 0 lies in the unbounded component of C\ f (K ). Then f has a continuous
logarithm.

Proof Let r > sup | f (K )| and let f + r denote the map z ∞−∪ f (z) + r : K ∪
C\{0}. Let U be the unbounded component of C\ f (K ). Since U is open and con-
nected, it is path-connected. Let θ : [0, 1] ∪ U be a path joining 0 to r : θ (0) = 0,
θ (1) = r . Define maps g, h : K × [0, 1] ∪ C\{0} as follows:

g(z, t) = f (z) + θ (t), h(z, t) = (1 − t) f (z) + r.

Plainly, g is a homotopy between f and f + r , and h is a homotopy between f + r
and the constant map r . By Theorem 2.5.5 it follows that f and the constant map r
are homotopic, and application of Theorem 3.9.11 now gives the result. �

Theorem 3.9.14 Let K be a compact subset of C and let f : K ∪ C\{0} be
continuous. Then there are finitely many points p1, . . . , pN ∈ C\K and integers
n1, . . . , nN such that the map F : K ∪ C\{0} defined by

F(z) = f (z)
N∏

j=1

(z − p j )
n j

has a continuous logarithm.

Proof Let ζ > sup |K |. Since z ∞−∪ (2ζ)−1(z + ζ(1 + i)) is a homeomorphism
from [−ζ, ζ]2 onto Q := [0, 1]2, we may and shall assume that K ⇐ (0, 1)2. By the
Tietze theorem for complex-valued functions, a continuous f0 : Q ∪ C exists such
that f0 |K = f . Let L = f −1

0 ({0}). If L = √, then the result is immediate: after an
obvious transformation Theorem 3.9.9 may be applied and so f0 has a continuous
logarithm, as does f .
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Suppose that L �= √. Since L is closed in Q and L ∩ K = √, dist(K , L) > 0 and
there exists λ > 0 such that

|z − w| > λ (z ∈ K , w ∈ L).

Let m ∈ N, m >
≥
2/λ and, for j, k = 1, 2, . . . , m, consider the cells

Q jk = [m−1( j − 1), m−1 j] × [m−1(k − 1), m−1k]

with centres
p jk = m−1(( j − 1/2) + i(k − 1/2))

and vertices v j−1,k−1, v j−1,k , v j,k−1, v j,k , where v j,k = m−1( j + ik). Put

K = {( j, k) : 1 ⊂ j, k ⊂ m, Q jk ∩ K �= √}

and
L = {( j, k) : 1 ⊂ j, k ⊂ m, Q jk ∩ K = √}.

Let
K1 = ◦( j,k)∈K Q jk .

It is plain that K1 is closed, K ⇐ K1 ⇐ Q\L and f1 := f0 |K1 is a continuous
zero-free extension of f to K1. Let

K2 = K1 ◦
(
◦m

j,k=1π Q jk

)
.

Wenext seek a continuous zero-free function f2 on the closed set K2 whose restriction
to K1 is f1. Let f2(z) = f1(z) for all z ∈ K1, and let f2(v j,k) = 1 whenever
v j,k /∈ K1. To complete the definition of f2 on the π Q jk it will be convenient to use
the symbol η(a, b) to denote the line segment with complex endpoints a and b :

η(a, b) = {(1 − t)a + tb : 0 ⊂ t ⊂ 1}.

The intersection of each ‘horizontal’ line segment η(v j−1,k, v j,k) (1 ⊂ j ⊂ m,
0 ⊂ k ⊂ m) and each ‘vertical’ line segment η(v j,k−1, v j,k) with K1 is either the
segment itself or is contained in the set of endpoints of the segment. Let η(a, b)

be a segment of the type η(a, b) ∩ K1 ⇐ {a, b}. Then f2(a) and f2(b) are non-
zero complex numbers and f2 is not so far defined on η(a, b)\{a, b}. Since C\{0}
is path-connected, there is a path ν : [0, 1] ∪ C\{0} joining f2(a) to f2(b). For
z ∈ η(a, b), define f2(z) = ν((z − a)/(b − a)). Thus a map f2 : K2 ∪ C\{0} has
been defined, it is continuous and its restriction to K1 is f1.

Finally, let ( j, k) ∈ L . Then π Q jk = K2 ∩ Q jk and Theorems 3.9.8 and 3.9.11
show, through use of the map
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w ∞−∪ p jk + (2m)−1w : [−1, 1]2 ∪ Q jk,

that an integer n jk exists such that

z ∞−∪ (z − p jk)
n jk f2(z) : π Q jk ∪ C\{0}

has a continuous zero-free extension Fjk : Q jk ∪ C\{0}, say. Consider the map
G jk : Q jk ∪ C\{0} defined by

G jk(z) = Fjk(z)
∏

(r,s)∈L \{( j,k)}
(z − prs)

nrs ;

if z ∈ π Q jk , then

G jk(z) = f2(z)
∏

(r,s)∈L
(z − prs)

nrs .

It follows that a function F0 : Q ∪ C\{0} is well-defined by

F0(z) =
{

f2(z)
⎫

(r,s)∈L (z − prs)
nrs (z ∈ K2),

G jk(z) (z ∈ Q jk, ( j, k) ∈ L );

the glueing lemma shows it to be continuous; and an application of Theorem 3.9.9
extended in the obvious way, shows it to have a continuous logarithm. Let F be the
restriction of F0 to K . Then F has a continuous logarithm and is of the form required.

�

The next result strengthens Theorem 3.9.14, casting out those p j which lie in the
unbounded component of C\K and replacing by a single representative those which
lie in the same bounded component.

Theorem 3.9.15 Let K ⇐ C be compact, letC be the set of all bounded components
of C\K and associate with each C ∈ C a point pC ∈ C. Then, given any continuous
function f : K ∪ C\{0}, there exist components C1, . . . , CM ∈ C and integers
m1, . . . , mM such that the function F : K ∪ C\{0} defined by

F(z) = f (z)
M∏

k=1

(z − pCk )
mk

has a continuous logarithm. (If C is void, then the product is to be interpreted as 1.)

Proof Let p1, . . . , pN and n1, . . . , nN be as in Theorem 3.9.14, so that F̃ : K
∪ C\{0} defined by

F̃(z) = f (z)
N∏

j=1

(z − p j )
n j
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has a continuous logarithm. By Theorem 3.9.13, if some p j exists which lies in the
unbounded component of C\K , then

z ∞−∪ z − p j : K ∪ C\{0}

has a continuous logarithm and, therefore, so also does

z ∞−∪ F̃(z)(z − p j )
−n j : K ∪ C\{0}.

It follows henceforth that we may assume that each p j lies in a bounded component
of C\K .

Let Ck (1 ⊂ k ⊂ M) be those elements of C which contain at least one of the
points p j and, for each j (1 ⊂ j ⊂ N ) let g j : K ∪ C\{0} be defined by

g j (z) = (z − p j )
−1(z − pCk ),

where p j ∈ Ck . Since Ck is open, connected and thus path-connected, there is a path
ν : [0, 1] ∪ Ck such that ν(0) = pCk , ν(1) = p j . Themap H : K ×[0, 1] ∪ C\{0}
defined by

H(z, t) = (z − p j )
−1(z − ν(t))

is evidently a homotopy between g j and the constant map 1, and so, by
Theorem 3.9.11, g j has a continuous logarithm. Setting mk = ∑

{ j :p j ∈Ck } n j , it
follows that F : K ∪ C\{0} given by

F(z) = F̃(z)
N∏

j=1

(g j (z))
n j = f (z)

M∏

k=1

(z − pCk )
mk

has a continuous logarithm, as required. �

An immediate consequence of the last theorem is that the connectedness of C\K
(which implies that C\K has no bounded component) is a sufficient condition to
ensure that every continuous f : K ∪ C\{0} has a continuous logarithm. This
condition turns out to be also necessary: the following result is an aid in establishing
this.

Theorem 3.9.16 Let K ⇐ C be compact, C be a bounded component of C\K ,
p ∈ C, and define f : K ∪ C\{0} by f (z) = z − p. Then, for all non-zero integers
n, f n does not have a continuous zero-free extension to K ◦ C.

Proof We may plainly suppose that p = 0. To obtain a contradiction, let n be a
non-zero integer and suppose that F : K ◦ C ∪ C\{0} is a continuous map that
extends f n . Note that since C has empty intersection with any component of C\K
other than C , C ⇐ K ◦ C . Let r > sup |C | and, for z ∈ B(0, r), define
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g(z) =
{

zn if z ∈ B(0, r)\C,

F(z) if z ∈ C .

Since C ∩
(

B(0, r)\C
)

= C\C ⇐ K and F(z) = zn whenever z ∈ K ,

there is consistency of definition. Because F is zero-free and 0 ∈ C , the map g
defined on B(0, r) is also zero-free; further, by the glueing lemma it is contin-
uous. Appeal to Theorem 3.9.9 shows that g has a continuous logarithm and so
a continuous ψ : B(0, r) ∪ C exists such that g(z) = exp(ψ(z)). In particular,
whenever |z| = r , zn = exp(ψ(z)). Thus z ∞−∪ zn has a continuous logarithm
on |z| = r as, in view of Theorem 3.9.7 (ii), does the identity map z ∞−∪ z.
But this contradicts Theorem 3.9.6. �

Theorem 3.9.17 (Borsuk) Let K ⇐ C be compact. Then the following conditions
are equivalent:

(i) C\K is connected.
(ii) Each continuous function f : K ∪ C\{0} has a continuous logarithm.
(iii) Each continuous function f : K ∪ C\{0} has a continuous, zero-free extension

to C.

Proof That (i) implies (ii) is immediate from Theorem 3.9.15; further, (ii) implies
(iii) by Theorem 3.9.11.

Suppose that (iii) holds. If C\K had a bounded component then, by Theo-
rem 3.9.16, a continuous f : K ∪ C\{0} exists which does not have a continuous
zero-free extension to C. Hence C\K has no bounded component and (i) holds. �

3.9.3 Properties of Jordan Curves

Definition 3.9.18 A set J ⇐ C is said to be a Jordan curve if it is a homeomorphic
image of the unit circle S1 = {z ∈ C : |z| = 1}.
Theorem 3.9.19 Let J be a Jordan curve. Then C\J has exactly one bounded
component.

Proof To begin with, suppose that C\J has no bounded component and therefore is
connected. Let ψ : S1 ∪ J be a homeomorphism and suppose that f : S1 ∪ C\{0}
is continuous. Then f ◦ ψ−1 : J ∪ C\{0} is continuous and, by Theorem 3.9.17, a
continuous map Γ : J ∪ C exists such that

f (ψ−1(z)) = exp(Γ(z)) (z ∈ J ).

This equality shows that

f (w) = exp(Γ(ψ(w))) (w ∈ S1)
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and so f has a continuous logarithm. But Theorem 3.9.6 contradicts this conclusion:
not every such f has a continuous logarithm. It follows that C\J has at least one
bounded component.

Next, suppose that C\J has two distinct bounded components C1 and C2 and,
as earlier, let ψ : S1 ∪ J be a homeomorphism. Choose p j ∈ C j and put f j (z) =
z − p j ( j = 1, 2; z ∈ J ). For j = 1, 2 the map f j ◦ψ is continuous and zero-free on
S1 and so, by Theorem 3.9.7 (i), there are an integer n j and a continuous function
Γ j on S1 such that

ψ(w) − p j = wn j exp(Γ j (w)) (w ∈ S1).

It follows that

(ψ(w) − p1)
n2 (ψ(w) − p2)

−n1 = exp(n2Γ1(w) − n1Γ2(w)) (w ∈ S1),

and therefore
(z − p1)

n2 (z − p2)
−n1 = exp(ξ (z)) (z ∈ J ),

where ξ = n2Γ1 ◦ ψ−1 − n1Γ2 ◦ ψ−1.
Suppose n2 �= 0. Then

(z − p1)
n2 = (z − p2)

n1 exp(ξ (z)) (z ∈ J ).

Evidently z ∞−∪ (z − p2)n1 has a continuous zero-free extension to J ◦ C1;
also, because of the Tietze theorem, ξ has a continuous extension to C. Hence
z ∞−∪ (z − p1)n2 has a continuous zero-free extension to J ◦C1, an outcome which
contradicts Theorem 3.9.16. Thus n2 = 0 and, similarly, n1 = 0. Hence

ψ(w) − p1 = exp(Γ1(w)) (w ∈ S1)

and
f1(z) = z − p1 = exp(Γ1(ψ

−1(z))) (z ∈ J ).

Another appeal to the Tietze extension theorem shows thatΓ1◦ψ−1 has a continuous
extension to C and therefore f1 has a continuous zero-free extension to J ◦ C1. But,
by Theorem 3.9.16, no such extension exists. Hence C\J has at most one bounded
component. �
Lemma 3.9.20 Let K be a proper closed subset of a Jordan curve J . Then C\K is
connected.

Proof Initially, suppose J = S1. Then since C\K is open, it is enough to observe
that it is path-connected: if z0 ∈ S1\K , then it is clear that each z ∈ C\K can be
joined to z0 by a path in C\K .

Next, suppose J = ψ(S1) for somehomeomorphismψ : S1 ∪ J . Let K = ψ(T ),
where T is a proper subset of S1, and let f : K ∪ C\{0} be continuous. Then
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f ◦ψ : T ∪ C\{0} is continuous and so, byTheorem3.9.17, there exists a continuous
Γ : T ∪ C such that

f (ψ(w)) = exp(Γ(w)) (w ∈ T ).

Hence
f (z) = exp(Γ(ψ−1(z))) (z ∈ K )

and so, using Theorem 3.9.17 again, we see that C\K is connected. �

Theorem 3.9.21 Let J be a Jordan curve and let C be a component of C\J . Then
πC = J .

Proof By Theorem 3.9.19, C\J has exactly one bounded component. Let U be that
component and let V be the unbounded component. The setsU , J and V are pairwise
disjoint and their union is C; further, U and V are open and J is compact. Since U
is contained in the closed set cV , we must have U ⇐ cV ; similarly, V ⇐ cU . Hence
πU = U\U ⇐ cV ∩ cU = c(U ◦ V ) = J and, likewise, πV ⇐ J .

To obtain a contradiction, suppose that πU �= J . Then, by Lemma 3.9.20, C\πU
is connected. However,

C\πU = c(U ∩ cU ) = U ◦ c(U ),

U ∩ c(U ) ⇐ (U ∩ cU ) = √, U �= √ and c(U ) ⊃ V �= √,

from which it follows that C\πU is disconnected. Thus πU = J . Analogous reason-
ing shows that πV = J . �

Theorem 3.9.22 Let J be a Jordan curve and C be the bounded component of C\J .
Let ψ : S1 ∪ J be be a homeomorphism and let θ : [0, 1] ∪ J be the closed path
defined by

θ (t) = ψ(exp(2Δ i t)) (0 ⊂ t ⊂ 1).

Then either n(θ, z) = 1 for all z ∈ C or n(θ, z) = −1 for all z ∈ C.

Proof Applied to the map ψ−1 : J ∪ S1 ⇐ C\{0}, Theorem 3.9.15 establishes the
existence of a point p ∈ C , an integer m and a continuous map Γ : J ∪ C such that

(z − p)−mψ−1(z) = exp(Γ(z)) (z ∈ J ).

Hence
w = (ψ(w) − p)m exp(Γ(ψ(w))) (w ∈ S1)

and therefore

ν = (θ − p)m exp(Γ ◦ θ ), where ν(t) = exp(2Δ i t) (0 ⊂ t ⊂ 1).
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By Proposition 3.4.25, relative to 0 ∈ C, the winding numbers of the closed paths ν,
θ − p and exp(Γ ◦ θ ) satisfy the equality

n(ν, 0) = mn(θ − p, 0) + n(exp(Γ ◦ θ ), 0).

By Example 3.4.22 (i), n(ν, 0) = 1; also, since Γ ◦ θ is a continuous logarithm of
exp(Γ ◦ θ ), n(exp(Γ ◦ θ ), 0) = 0. Thus mn(θ − p, 0) = mn(θ, p) = 1 and so
n(θ, p) = ±1. Lastly, use of Theorem 3.4.27 shows that

n(θ, z) = n(θ, p) (z ∈ C),

and the proof is complete.
�

For the convenience of the reader we summarise the preceding results in the
following form, often called the Jordan curve theorem.

Theorem 3.9.23 Let J be a Jordan curve. Then C\J has exactly one bounded
component I (J ) (called the inside of J ), and exactly one unbounded component
O(J ) (called the outside of J ); πI (J ) = πO(J ) = J . Let ψ : S1 ∪ J be be a
homeomorphism and let θ : [0, 1] ∪ J be the closed path defined by

θ (t) = ψ(exp(2Δ i t)) (0 ⊂ t ⊂ 1).

Then either n(θ, z) = 1 for all z ∈ I (J ) or n(θ, z) = −1 for all z ∈ I (J );
n(θ, z) = 0 for all z ∈ O(J ).

Note that the the claim n(θ, z) = 0 for all z ∈ O(J ) follows fromTheorem3.4.27.
The ‘inside, outside’ terminology is in accordance with Definition 3.4.30.

Identification of Jordan curves is made simpler by the next result.

Theorem 3.9.24 A set J ⇐ C is a Jordan curve if and only if it is the track of a
simple closed path in C.

Proof First suppose that J is a Jordan curve. Then there is a homeomorphism f :
S1 ∪ J . Define a continuous map θ of [0, 1] onto S1 by θ (s) = exp(2Δ is). Then
J = ( f ◦ θ )∗ and f ◦ θ is a simple closed path in C.

Conversely, if θ : [0, 1] ∪ C is a simple closed path, then by Corollary 3.9.2
there is a continuous map f : S1 ∪ C such that f (exp(2Δ is)) = θ (s). Since θ is
simple, f is injective, and so, by Theorem 2.3.24 (ii), it is a homeomorphism onto
f (S1). Thus θ ∗ = f (S1) is a homeomorphic image of S1 and so is a Jordan curve.

�



Appendix A
Sets and Functions

A.1 Sets

For a systematic development of set theorywe refer to [14]. Herewe restrict ourselves
to terminology.We accept as undefined basic concepts those of ‘set’ and ‘membership
of a set’. To express this last we use the symbol → and write x → A to indicate that x
is a member (an element) of A. If x is not a member of A we write x /→ A.

The set which has no elements is called the empty set (void set) and is written ∅.
If A and B are sets and every element of A is an element of B, we say that A is

a subset of B and write A ∈ B or B ≤ A. If, in addition, there is an element of B
which is not in A, then A is said to be a proper subset of B. Note that, for each set
A, ∅ ∈ A and A ∈ A.

If A ∈ B and B ∈ A, we write A = B; otherwise A ⊂= B.
Common ways of specifying a subset of a given set A are as follows:

(i) If a, b, c, . . . are members of A, then the subset of consisting of precisely those
members is written

{a, b, c, . . .}.

(ii) If, for each x → A, S(x) is a statement which is either true or false, then

{x → A : S(x)}

is the set of those x → A such that S(x) is true.

To illustrate, when A = N,

{3, 7} = {n → N : n2 − 10n + 21 = 0}.

Note that sets may themselves be elements of other sets. For example,

{{1, 3, 5, 7}, {2, 4, 6}}

R. H. Dyer and D. E. Edmunds, From Real to Complex Analysis, 295
Springer Undergraduate Mathematics Series, DOI: 10.1007/978-3-319-06209-9,
© Springer International Publishing Switzerland 2014
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is a set with two elements, namely the set of all positive odd integers <8 and the set
of all positive even integers <8.

If A is any set, then the collection of its subsets constitutes a set with these subsets
as its elements. This collection is denoted by P(A), or 2A, and is termed the power
set of A. Thus if A = {1, 2}, then P(A) = {∅, {1}, {2}, {1, 2}}. In general, if A has
n elements, then P(A) has 2n elements.

A set whose elements are sets is often referred to as a family of sets.
Let A and B be sets. The set A × B, called the Cartesian product of A and B,

is the totality of all ordered pairs (x, y) whose first coordinate x → A and whose
second y → B. Here the ordering is essential: (x, y) = (u, v) if and only if x = u
and y = v. Note that (x, y) ⊂= (y, x) if x ⊂= y. When A = B we sometimes write
A2 for A × A; for example, R2 in place of R × R.

Similarly, we may write A × B × C as a set of ordered triples, etc.

A.2 Set Operations

Fix a set E and let P(E) be the family of all subsets of E . Let A, B → P(E). Their
union

A ∪ B := {x → E : x → A or x → B};

their intersection
A ∗ B := {x → E : x → A and x → B}.

When A ∗ B = ∅ the sets A and B are said to be disjoint.
If A, B and C are subsets of E , then

A ∪ (B ∪ C) = (A ∪ B) ∪ C,

and either side is written A ∪ B ∪ C . A similar remark holds for A ∗ B ∗ C . Further,
operations with ∪ and ∗ obey certain distributive laws:

A ∪ (B ∗ C) = (A ∪ B) ∗ (A ∪ C),

A ∗ (B ∪ C) = (A ∗ B) ∪ (A ∗ C).

Proof of these assertions is straightforward. To illustrate:

x → A ∪ (B ∗ C) ⇐⇒ x → A or x → B ∗ C ⇐⇒ x → A ∪ B and x → A ∪ C

⇐⇒ x → (A ∪ B) ∗ (A ∪ C).



Appendix A: Sets and Functions 297

For A → P(E), the complement of A relative to E is the set

c A := {x → E : x /→ A};

note that c (c A) = A. The De Morgan laws relate complements to intersections and
unions: for all A, B → P(E),

c (A ∪ B) = c A ∗ c B, c (A ∗ B) = c A ∪ c B.

To prove the first:

x → c (A ∪ B) ⇐⇒ x → E and x /→ (A ∪ B) ⇐⇒ x → E, x /→ A and x /→ B

⇐⇒ x → c A and x → c B ⇐⇒ x → c A ∗ c B.

Let A, B → P(E). We define the difference B\A (the relative complement of A
in B) by

B\A = {x → E : x → B and x /→ A};

plainly B\A = B ∗ c A.
The process of taking the union (intersection) of two sets can be extended to larger

families. For F ∈ P(E),

⋃
F→F F := {x → E : for some F → F , x → F}

and ⋂
F→F F := {x → E : for all F → F , x → F}.

The union of the sets in F may be denoted by ∪F ; their intersection by ∗F .
Sometimes a family of subsets of E may be given in indexed form and then we use

a different notation for the union (intersection). Let I be a non-void set and suppose
that to each i → I corresponds a set Ai → P(E). The set {A → P(E): for some
i → I, A = Ai }, commonly written {Ai : i → I } or {Ai }i→I , is called an indexed
family of sets and I is called an indexing set. The union of this indexed family

⋃
i→I Ai := {x → E : for some i → I, x → Ai };

and the intersection

⋂
i→I Ai := {x → E : for all i → I, x → Ai }.
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A.3 Functions

Let A and B be non-empty sets. A function f from A to B associates with each
x → A exactly one element f (x) → B. The set A is the set of definition (the domain)
of f , B is the target set (the codomain) of f . To display the three components of a
function (rule of correspondence, domain, codomain), we write

f : A ∞ B or x ≥∞ f (x) : A ∞ B.

As an example, if E ∈ A, then the characteristic function of E with domain A and
codomain R, denoted by χE : A ∞ R, is defined by

χE (x) =
{
1 if x → E,

0 if x → A\E .

As synonyms for the word function we may use map or mapping. The graph of f is
the set

G( f ) := {(x, f (x)) → A × B : x → A} .

A set H ∈ A × B is the graph of a function from A to B if, and only if,

(i) for all x → A, there exists y → B such that (x, y) → H ;
(ii) (x, y) → H , (x, y′) → H =⇒ y = y′.

A map f : A ∞ B generates further maps between the power sets of A and of B:

f : P(A) ∞ P(B)

is defined by
f (X) = { f (x) → B : x → X};

while
f −1 : P(B) ∞ P(A)

is defined by
f −1(Y ) = {x → A : f (x) → Y }.

The set f (X) is called the image (under f ) of X ∈ A; f (A) is called the range of
f ; f −1(Y ) is called the inverse image (under f ) of Y ∈ B.

Example A.3.1 Let f be the map x ≥−∞ x2 : R ∞ R. Then

f ([0, 1]) = [0, 1] = f ([−1, 0]), f ([1, 2]) = [1, 4], f ({1, 2, 3, 4})
= {1, 4, 9, 16};

f −1([0, 1]) = [−1, 1], f −1([1, 4]) = [−2,−1] ∪ [1, 2], f −1([−1, 0]) = {0},
f −1([−4,−1]) = ∅.
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The composition of mappings f : A ∞ B and g : B ∞ C is the map g √ f from
A to C which associates with each x → A the element (g √ f )(x) := g( f (x)) of C .
For any map h : C ∞ D it is easy to show that h √ (g √ f ) = (h √ g) √ f .

A function f : A ∞ B is said to be injective (one-to-one) if a, a′ → A, a ⊂= a′
=⇒ f (a) ⊂= f (a′); it is called surjective (onto) if f (A) = B; if it is both injective
and surjective, then it is termed bijective. As an example of a bijective map we cite
the identity map i A from A onto itself defined by i A(x) = x .

Bijective maps prove to be of considerable importance. Suppose that f : A ∞ B
is bijective. Then, for each b → B, there is one and only one a → A such that
f (a) = b. Hence a function g : B ∞ A may be defined by the rule which assigns
to each b → B that unique element g(b) → A such that f (g(b)) = b. The function g
is injective since f √ g = iB :

b, b′ → B, g(b) = g(b′) =⇒ b = f (g(b)) = f (g(b′)) = b′.

Moreover, since g √ f = i A, g is surjective:

a → A =⇒ f (a) → B =⇒ f (g( f (a))) = f (a) =⇒ g( f (a)) = a.

Thus, corresponding to a bijective map f : A ∞ B there is a bijective map g : B ∞
A such that

f √ g = iB and g √ f = i A.

It is elementary to show that g is the unique map with these properties; it is called
the inverse of f . Since for each b → B,

f −1 ({b}) = {a → A : f (a) = b} = {g(b)},

it is customary to denote the map g by f −1. One has to understand by context the
sense in which the symbol f −1 is used.

Particular terminology is needed for maps f : I ∞ R, where I is an interval in
the real line. Such a map is said to be increasing (strictly increasing) if f (y) ∩ f (x)

( f (y) > f (x)) whenever x, y → I and y > x; it is said to be decreasing (strictly
decreasing) if f (y) ◦ f (x) ( f (y) < f (x)) whenever x, y → I and y > x .

A.4 The Real Number System

The real number system consists of a setR, a subsetP ofR, and twomaps (x, y) ≥−∞
x + y and (x, y) ≥−∞ x · y (commonly written xy) of R × R to R such that the
following three axioms are satisfied.

Axiom A.4.1 (R,+, ·) is a field: (R,+) and (R\{0}, ·) are abelian groups and, for
all x, y, z → R, x(y + z) = xy + xz.
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Axiom A.4.2 The sets P, {0}, −P := { − x : x → P} are pairwise disjoint and their
union is R; further, x + y and xy belong to P whenever x, y → P.

The elements of P are called positive numbers and those of−P negative numbers.
We write x < y or y > x to mean that y − x → P. We also write x ◦ y or y ∩ x to
mean that y − x→ P ∪ {0}.
Axiom A.4.3 (Dedekind completeness) Let A, B be non-empty subsets of R with
union R, and suppose that a < b whenever a → A and b → B. Then there exists a
unique c → R such that

(i) x → R, x < c =⇒ x → A,
(ii) x → R, c < x =⇒ x → B.

The existence of an object R satisfying the above axioms is assumed. The next
two results flow from Axioms 1 and 2.

Theorem A.4.4 Let x, y, z → R. Then

(i) x < y, y < z =⇒ x < z;
(ii) exactly one of x < y, x = y, x > y holds;
(iii) x < y, z → R =⇒x + z < y + z;
(iv) x < y, z > 0 =⇒ xz < yz;
(v) x < y, z < 0 =⇒ xz > yz;
(vi) 1 > 0 and −1 < 0;
(vii) z > 0 =⇒ z−1

(
= 1

z

)
> 0;

(viii) 0 < x < y =⇒ 0 < y−1 < x−1.

A similar theorem holds with ‘◦’ in place of ‘<’ in some instances.

Theorem A.4.5 For each x → R, let

|x | :=
{

x if x ∩ 0,
−x if x < 0.

Then, for all x, y → R,
(i) |xy| = |x | |y|, (ii) |x + y| ◦ |x | + |y|, (iii) ||x | − |y|| ◦ |x − y|.
Definition A.4.6 Let E be a non-empty subset of R. If b → R and, for every x → E ,
x ◦ b, then b is termed an upper bound for E and the set E is said to be bounded
above. If c → R is such that

(i) x ◦ c for all x → E , and
(ii) x ◦ b for all x → E =⇒ c ◦ b,

then c is called the least upper bound (supremum) of E and is written as supE . [The
terms lower bound and greatest lower bound (infimum) are defined similarly.]
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Theorem A.4.7 (The axiom of order completeness; the supremum principle) Every
non-empty set of real numbers which is bounded above has a least upper bound.

Proof Let E be a non-empty subset of R which is bounded above. Let B = {b → R :
x ◦ b for all x → E} and A = R\B. Plainly B ⊂= ∅; also, if x → E , then x − 1 → A
and so A ⊂= ∅. Given a → A and b → B, there exists x → E such that a < x ◦ b.
Thus a → A, b → B =⇒ a < b. Appealing now to Axiom A.4.3, there exists a
unique c → R such that (−∞, c) ∈ A and (c,∞) ∈ B. Suppose c → A. Then c < y
for some y → E and, with 2 := 1 + 1, c < 1

2 (c + y) < y. But c < 1
2 (c + y) =⇒

1
2 (c + y) → B, while 1

2 (c + y) < y =⇒ 1
2 (c + y) → A. Hence c /→ A, c → B and

c = supE . �

Corollary A.4.8 Every non-empty set of real numbers which is bounded below has
an infimum.

The natural numbers
A set I ∈ R is said to be inductive if
(i) 1 → I , and (ii) x → I =⇒ x + 1 → I .

Let I be the class of all inductive sets in R. Note that I ⊂= ∅; for example, the
sets R, P and {x → R : x ∩ 1} all belong toI . The set of natural numbers (positive
integers)

N := ∗I→I I.

Clearly N ∈ I for every I → I and, for all n → N, n ∩ 1. Further, N is inductive:
1 → N (since 1 → I for all I → I ); x → N =⇒ x → I (I → I ) =⇒ x + 1 → I
(I → I ) =⇒ x + 1 → N.

The symbol 2 := 1 + 1, 3 := 2 + 1, 4 := 3 + 1, etc.

Theorem A.4.9 (The finite induction principle) Let S ∈ N be such that (i) 1 → S,
and (ii) x → S =⇒ x + 1 → S. Then S = N.

Proof By hypothesis, S is inductive and so N ∈ S. But also S ∈ N. Hence S = N.�

This theorem may be used to establish the following results, the proofs of which
are left to the reader:

(i) If n → N and n > 1, then n − 1 → N.
(ii) If m, n → N, then m + n, mn → N.
(iii) If n → N, x → R and n < x < n + 1, then x /→ N.

Corollary A.4.10 (The well-ordering principle) If A is a non-empty subset of N,
then it has a smallest element.

Theorem A.4.11 (The Archimedean order property) Let a, b → R and a > 0. Then
there is an n → N such that na > b. In particular, N is not bounded above in R.
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Proof Suppose there exist a, b → R with a > 0 for which the result is false. Let
A = {na : n → N}. Then b is an upper bound for A and so, by Theorem A.4.7, A
has a supremum. Choose k → N such that ka > supA − a. Then (k + 1)a > supA.
But this is not possible since na ◦ supA for all n → N.

To show that N is not bounded above take a = 1. �

It is assumed that the reader is familiar with the extension of N to Z, the set of all
integers:

Z = −N ∪ {0} ∪ N.

Sequences in R
Let X be a non-empty set. A map f : N ∞ X is called a sequence in X . Writing
xn = f (n), xn is the nth term of the sequence. It is customary to write (xn)n→N, or
simply (xn), in place of f : N ∞ X .

A sequence (yn) in X is said to be a subsequence of (xn) if there exists a map
m : N ∞ N such that, for all n → N,

(i) m(n) < m(n + 1),
(ii) yn = xm(n).

A sequence (xn) in R is said to be monotone if one of the following holds:

(i) xn < xn+1 (n → N), strictly increasing;
(ii) xn ◦ xn+1 (n → N), increasing;
(iii) xn > xn+1 (n → N), strictly decreasing;
(iv) xn ∩ xn+1 (n → N), decreasing.

A sequence (xn) in R is said to converge if there exists x → R such that, given any
ε > 0, there exists N = N (ε) → N such that

n ∩ N =⇒ |xn − x | < ε.

In this event we may write limn∞∞ xn = x , lim xn = x or xn ∞ x .

Theorem A.4.12 Every bounded monotone sequence in R converges.

Proof Let (xn) be an increasing sequence in R such that xn ◦ K (n → N), where
K → R. Let E = {xn : n → N} and x = supE (Theorem A.4.7 ensures existence).
Let ε > 0. Since x − ε is not an upper bound for E , there exists N → N such that
x − ε < xN . It follows that, for all n ∩ N , x − ε < xn ◦ x . Hence n ∩ N =⇒
|x − xn| < ε, and xn ∞ x .

In the case that (xn) is decreasing, consider (−xn). �

Theorem A.4.13 (Bolzano-Weierstrass) Every bounded sequence in R has a con-
vergent subsequence.

Proof Let (xn) be a bounded sequence in R; let K → R be such that |xn| ◦ K
(n → N). For each n → N let un := sup{xk : k ∩ n}. The sequence (un) is
decreasing. Let u := lim un = inf{un : n ∩ 1} ∩ −K . Define

(
xm(n)

)
inductively
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as follows. Choose m(1) to be the least k → N such that xk > u − 1. Having chosen
m(1) < m(2) < ... < m(n) for some n ∩ 1, select m(n + 1) to be the least integer
k > m(n) such that xk > u − (n + 1)−1. Then

un ∩ um(n) ∩ xm(n) > u − n−1 (n → N),

and so, by a sandwich argument, lim xm(n) = u. �

A sequence (xn) in R is said to be a Cauchy sequence if, given any ε > 0, there
exists N = N (ε) → N such that

m, n ∩ N =⇒ |xm − xn| < ε.

Theorem A.4.14 The real number system is Cauchy complete; that is, every Cauchy
sequence in R converges.

Proof Let (xn) be a Cauchy sequence in R. The sequence is bounded, since there
exists an N → N such that |xn − xN | < 1whenever n ∩ N and therefore |xn| ◦ K :=
1+max1◦k◦N |xk | (n → N). By TheoremA.4.13, it follows that (xn) has a convergent
subsequence,

(
xm(n)

)
say. Suppose lim xm(n) = x . We show that lim xn = x .

Let ε > 0. There exists N1 → N such that

n ∩ N1 =⇒ ∣
∣xm(n) − x

∣
∣ < ε/2.

Also, there exists N2 → N such that

p, q ∩ N2 =⇒ ∣
∣x p − xq

∣
∣ < ε/2.

Hence
|xn − x | ◦ ∣∣xn − xm(n)

∣
∣+ ∣∣xm(n) − x

∣
∣ < ε

whenever n > max(N1, N2). Thus lim xn = x . �

Theorem A.4.15 (The Cantor nested intervals principle) Let {In} be a family of
non-empty, bounded, closed intervals such that

(i) In+1 ∈ In (n → N), and
(ii) lim l(In) = 0.

Then there exists x → R such that {x} = ∗∞
n=1 In.

[Here l(In), the length of In, is defined by l(In) = supIn − inf In .]

Proof Let (xn) be a sequence in R such that xn → In (n → N). By (i), if n ∩ m,
then xn → Im and |xn − xm | ◦ l(Im). Let ε > 0. By (ii), there exists N → N such
that l(IN ) < ε. Hence m, n ∩ N =⇒ |xn − xm | ◦ max{ l(In), l(Im)} ◦ l(IN ) < ε,
and so (xn) is a Cauchy sequence in R. Let x = lim xn . Since In is a closed interval,
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x → In (n → N). Hence x → ∗∞
n=1 In . If y → ∗∞

n=1 In , then x = y, since |x − y| ◦
l(In) ∞ 0. �

For further details of the development and properties of the real number system,
see [17], Chap. 1.

A.5 The Axiom of Choice

First we recall some basic concepts. A set S is said to be finite if either it is empty or
there exists n → N such that S can be mapped bijectively onto {k → N : 1 ◦ k ◦ n}.
Sets that are not finite are said to be infinite. A set E is called countable if it can
be mapped bijectively onto N; any infinite set that is not countable is said to be
uncountable.

The axiom of choice has various equivalent forms (see, for example, [10]). We
give the following:

Axiom A.5.1 (The axiom of choice) For every non-empty family F of non-empty
sets, there is a function f : F ∞ ∪S→F S such that for all S → F , f (S) → S.

The function f is said to be a choice function onF . The only form of this axiom
that will be used in this book is the following weaker version.

Axiom A.5.2 (The countable axiom of choice) Every countable family of non-empty
sets has a choice function.

Proposition A.5.3 The countable axiom of choice implies that every infinite set has
a countable subset.

Proof Let S be an infinite set and let F be the family of all finite sequences of
distinct elements of S: that is,F = {Ak : k → N}, where

Ak = {(a0, a1, . . . , ak) : a0, . . . , ak distinct elements of S} .

Then by the countable axiom of choice, F has a choice function f : f (Ak) → Ak

for all k. The union of all the chosen finite sequences is countable. �

We refer to [10] for a thorough discussion of the axiom of choice and its variants,
together with an analysis of its place in contemporary mathematics.



Notes on the Exercises

Sketch solutions or hints are provided for selected exercises.

Exercise 1.1.10

2. By question 1 above,

osc( f ; A) = sup{| f (x) − f (y)| : x, y → A} = sup{ f (x) − f (y) : x, y → A}
= sup{ f (x) : x → A} + sup{− f (x) : x → A}
= sup{ f (x) : x → A} − inf{ f (x) : x → A}.

5. Suppose the claim in the hint is false. There is a nested sequence ([an, bn]) of
closed subintervals of [a, b] such that 0 < bn − an < 1/n and sup{ f (t) :
an ◦ t ◦ bn} < 1/n. By Theorem A.4.15, the [an, bn] have intersection {u} for
some u → [a, b]. Thus f (u) < 1/n for all n, contradicting the hypothesis that
f (u) > 0. Now let P, Q → P[a, b] and Q = {a, c, d, b}. Then 0 < ε(d − c) ◦
U (P ∪ Q, f ) ◦ U (P, f ): thus

∫ b
a f > 0.

6. Suppose f → R[a, b] and ε > 0. There exist P1, P2 → P[a, b] such that

∫ b

a
f − ε/2 < L(P1, f ), U (P2, f ) <

∫ b

a
f + ε/2.

Let P = P1∪ P2. Since L(P1, f ) ◦ L(P, f ) ◦ U (P, f ) ◦ U (P2, f ), it follows
that U (P, f ) − L(P, f ) < ε.

For the converse, as L(P, f ) ◦ ∫ b
a f ◦ ∫ b

a f ◦ U (P, f )whenever P → P[a, b],
we see that 0 ◦ ∫ b

a f − ∫ b
a f < ε whenever ε > 0.

Exercise 1.2.14

2. For the lack of uniform continuity, consider points 1/(2n + 1), 1/(2n).
3. Since f is uniformly continuous on (0, 1], given ε > 0, there exists δ > 0 such

that | f (x) − f (y)| < ε if |x − y| < δ (x, y → (0, 1]). Suppose f is unbounded:

R. H. Dyer and D. E. Edmunds, From Real to Complex Analysis, 305
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there exists (xn) ∈ (0, 1] such that | f (xn)| ∞ ∞. But the bounded sequence
(xn) must have a convergent subsequence, denoted again by (xn), and so there
exists N → N such that |xn − xm | < δ if m, n > N : thus | f (xn) − f (xm)| < ε

if m, n > N , contradicting | f (xn)| ∞ ∞.
7. If f ′ is bounded, then by the mean-value theorem,

∣
∣
∣
∣

f (x) − f (y)

x − y

∣
∣
∣
∣ =

∣
∣ f ′(z)

∣
∣ for some z between the distinct points x, y.

Thus f is Lipschitz. The converse is obvious.
8. (a) f (x) = |x − 1/2| is not differentiable at 1/2.

(b) Use question 7 above plus the fact that f ′ is not bounded.
9. Consider f : [0, 1] ∞ R given by f (t) = |t − 1/2| if t is rational, f (t) = 0

otherwise.
10. Let x → [a, b) and un = x + (b − x)/n (n → N). By Lemma 1.2.6 and The-

orem 1.2.8, f → R[un+1, un] and there exists xn → (un+1, un) at which f is
continuous. The case in which x → (a, b] is similar.

Exercise 1.3.10

1. By Example 1.1.4 (i) and Theorem 1.3.1 (v), f → R[c j−1, c j ] and
∫ c j

c j−1

f = α j (c j − c j−1) (1 ◦ j ◦ k);

now use Corollary 1.3.5.
2. f is bounded on [0, 1] and continuous on (0, 1): use Example 1.3.9 (ii).
3. Use Theorem 1.2.13 to show that | f | , f 2 and 1/ f 2 → R[a, b]. Now appeal to

Theorem 1.3.2 (a): 1/ f = f · (1/ f 2) → R[a, b]. Alternatively, observe that for
any P = {x0, x1, . . . , xn} → P[a, b],

U (P, 1/ f ) − L(P, 1/ f ) =
∑n

i=1
osc (1/ f ; [xi−1, xi ])Δxi

◦ ε−2
∑n

i=1
osc ( f ; [xi−1, xi ])Δxi

= ε−2 {U (P, f ) − L(P, f )} ,

and either apply Theorem 1.1.7 or Exercise 1.1.10/6.
6. For n → N, let Tn = {t → [0, 1] : f (t) > 1/n} : Tn is finite.

(a) Continuity: suppose u → [0, 1] ∗ Q and f (u) = 1/q. For all δ > 0 there is
an irrational number v → [0, 1] such that |u − v| < δ and | f (u) − f (v)| = 1/q.
Hence f is not continuous at u. Now suppose u → [0, 1]\Q, ε > 0 and n → N is
such that 1/n < ε. Let δ = min{|u − t | : t → Tn} : δ > 0. Since | f (u) − f (v)| =
| f (v)| ◦ 1/n < ε if v → [0, 1] and |v − u| < δ, f is continuous at u.
(b) Integrability: for each n → N, let fn : [0, 1] ∞ R be defined by
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fn(t) =
{
0, t → Tn,

f (t), t → [0, 1]\Tn .

Since fn(t) ◦ 1/n (t → [0, 1]) and f ∩ 0, appeal to Theorem 1.3.1 (v) and
Corollary 1.1.8 shows that

0 ◦
∫ 1

0
f ◦

∫ 1

0
f =

∫ 1

0
fn ◦ 1/n.

Exercise 1.4.15

1. Let Pn → P[a, b] have as its points of partition a + r(b − a)/n (r =
0, 1, 2, . . . , n); w(Pn) = (b − a)/n ∞ 0. Then

L(Pn, f ) ◦
∑n

r=1
f
(
ξ (n)

r

)
(b − a)/n ◦ U (Pn, f ).

Now use Theorem 1.1.7.
3. Use question 1 above to show that

π/4 =
∫ 1

0
(1 + t2)−1dt = lim

∑n

r=1
n−1

(

1 + r2

n2

)−1

.

4. Use question 1 above to show that

(b − a)−1
∫ b

a
f = lim

1

n

∑n−1

r=0
f (x2r ) = lim

1

n

∑n

r=1
f (x2r−1)

= lim
1

n

∑n

r=1
f (x2r );

combine these.
5. Suppose | f (t)| , ∣∣ f ′(t)

∣
∣ ◦ K (t → [a, b]). For λ > 0, integration by parts gives

∣
∣
∣
∣

∫ b

a
f (t) cos λtdt

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

[
sin λt

λ
f (t)

]b

a
−
∫ b

a
f ′(t)

(
sin λt

λ

)

dt

∣
∣
∣
∣
∣

◦ K (2 + b − a)/λ.

7. Since t ≥−∞ cosec(t/2) : (0, 2π) ∞ R is continuously differentiable, use of
exercise 5 above shows that

lim
λ∞∞ Iλ(x) = 0 (0 < x < 2π). (*)
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For n → N and 0 < x < 2π ,

In+1/2(x) − In−1/2(x) =
∫ π

x
cos ntdt = − sin nx

n

and hence

Ik+1/2(x) − I1/2(x) = −
∑k

n=1

sin nx

n
.

Thus
∣
∣Ik+1/2(x)

∣
∣ =

∣
∣
∣
∣
1

2
(π − x) −

∑k

n=1

sin nx

n

∣
∣
∣
∣ .

Now use (*).
10. Use of Theorems 1.4.4 and 1.4.6 shows that J (0) = π/2, J (1) = 1 and (n +

2)J (n + 2) = (n + 1)J (n) (n → N0). Induction gives the formulae for J (2n)

and J (2n + 1). Since 0 < 1 − sin θ < 1 if 0 < θ < π/2, use of Theorem 1.3.1
(vi) shows that J (2n + 1) < J (2n) < J (2n − 1). Now routine manipulation
gives Wallis’s inequality; the product follows trivially.

11. As g′(x) = f ′(x) − γ , it follows that g′(a) < 0 < g′(b). The continuity of g
implies that g has a minimum on [a, b], at c → [a, b], say. Since 0 > g′(a) =
limy∞a

g(y)−g(a)
y−a , g(y) < g(a) when y is close enough to a: thus c ⊂= a;

similarly c ⊂= b. Hence c → (a, b) and so g′(c) = 0.
12. Take f = F ′, where F(x) = x2 sin(1/x) (0 < x ◦ 1), F(0) = 0.
15. On making the suggested substitution,

I (a) =
∫ π/2

0
log
{
(1 − 2a cos x + a2)(1 + 2a cos x + a2)

}

=
∫ π/2

0
log(1 + a4 − 2a2 cos 2x)dx = I (a2)/2.

Thus for all n → N, I (a) = 2−n I (a2n
): if |a| < 1, then

|I (a)| ◦
∣
∣
∣log(1 − |a|)2

∣
∣
∣π/2n,

and so I (a) = 0. If |a| > 1, then I (a) = 2π log |a| + I (1/a) = 2π log |a|.

Exercise 1.5.7

1. Both φ and logφ belong toR[a, b]. For each n → N, write x (n)
r = a+r(b−a)/n

(r = 0, 1, . . . , n), An = n−1∑n
r=1 log

(
φ
(

x (n)
r

))
, Bn = n−1∑n

r=1 φ
(

x (n)
r

)
.

Then An = log
{∏n

r=1 φ
(

x (n)
r

)}1/n
, and appeal to the arithmetic-geometric

inequality and Exercise 1.4.15/1 shows that
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An ◦ log Bn, An ∞ (b − a)−1
∫ b

a
log(φ(t))dt, Bn ∞ (b − a)−1

∫ b

a
φ(t)dt > 0.

2. Use the integral test.
4. Suppose that α < β; when β < α the proof is similar. Define Rn(β) =

1
(n−1)!

∫ β

α
(β − t)n−1 f (n)(t)dt . Integrate by parts to obtain Rk(β) − Rk+1(β) =

(β−α)k f (k)(α)/k! (k = 1, . . . , n−1); by the fundamental theorem of calculus,
R1(β) = f (β) − f (α). Sum over k:

Rn(β) = f (β) −
∑n−1

k=0

f (k)(α)

k! (β − α)k .

To derive the result involving γ , let m, M be the inf and sup respectively of f (n)

on [α, β]. If m = M , use the fundamental theorem of calculus. Otherwise, by
the continuity of f (n), there exists t → (α, β) such that m < f (n)(t) < M , which
leads to m(β − α)n/n! < Rn(β) < M(β − α)n/n!. Now use the intermediate-
value theorem. For the final part, proceed as above, this time by consideration
of the inf and sup of (β − t)n−1 f (n)(t).

5. By Theorem 1.4.4, f1 is differentiable, f ′
1 = f and f1(a) = 0. Use of induction

together with Theorem 1.4.9 shows that each fn is n—times differentiable and
f ( j)
n = fn− j ( j = 0, 1, . . . , n), setting f0 = f . Since f j (a) = 0 ( j =

1, . . . , n), the result follows from Taylor’s theorem.
7. (i) Plainly L is linear; since L(1) = L(u1) = L(u2) = L(u3) = 0, where

u j (t) = t j , it follows that L(p) = 0 if p is a polynomial of degree at most 3.
Use Taylor’s theorem with integral form of the remainder to give

L( f ) = 1

3!
{∫ h

0

(∫ x

0
(x − t)3 f (4)(t)dt

)

dx − h

3

∫ h

0
(h − x)3 f (4)(x)dx

}

+ 1

3!
{∫ 0

−h

(∫ x

0
(x − t)3 f (4)(t)dt

)

dx − h

3

∫ 0

−h
(h + x)3 f (4)(x)dx

}

= − 1

72

{∫ h

0
(h − x)3(h + 3x) f (4)(x)dx

+
∫ 0

−h
(h + x)3(h − 3x) f (4)(x)dx

}

,

from which the required inequality follows.
(ii) Let M = supa◦t◦b

∣
∣ f (4)(t)

∣
∣, h = (b − a)/n, gr (t) = f (t + x2r−1) (1 ◦

r ◦ n). Then gr is four times differentiable, g(4)
r → R[−h, h] and

∣
∣
∣
∣

∫ h

−h
gr − h

3
{gr (−h) + 4gr (0) + gr (h)}

∣
∣
∣
∣ ◦

Mh5

90
.
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Thus

∣
∣
∣
∣

∫ x2r

x2r−2

f − (b − a)

6n
{ f (x2r−2) + 4 f (x2r−1) + f (x2r )}

∣
∣
∣
∣ ◦

M(b − a)5

2880n5
.

Exercise 1.6.15

2. Use Theorems 1.6.11 and 1.6.12.
3. The integrand is locally integrable. For 0 < u < 1 < v < ∞, let a(u) =
∫ 1

u x p−1e−x dx , b(v) = ∫ v
1 x p−1e−x dx . Then a(u) ◦ ∫ 1

u x p−1dx ◦ 1/p and
a(u) increases as u decreases: hence limu∞0 a(u) exists in R. Moreover, if
n → N, n > p + 1, then b(v) ◦ n! ∫ v

1 x−(n+1−p)dx ◦ n! ∫ v
1 x−2dx ◦ n!; since

b(v) increases with v, limv∞∞ b(v) exists in R. Thus Γ (p) = limu∞0 a(u) +
limv∞∞ b(v). For the rest, use integration by parts.

4. (a) To deal with the lower limit of integration, α > 0; for the upper limit we
need α < 1: for both, α → (0, 1).
(b) α < 1.
(c) Integrand is x−α+1 sin x

x ; need α < 2.
(d) α > −1.

6. For n → N, define fn, gn : [0, π/2] ∞ R by fn(x) = cot x sin 2nx (x ⊂=
0), fn(0) = 2n; gn(x) = x−1 sin 2nx (x ⊂= 0), gn(0) = 2n. The functions fn

and gn are continuous; moreover,

∫ π/2

0
fn(x)dx =

∫ π/2

0

{

1 + 2
∑n−1

r=1
cos 2r x + cos 2nx

}

dx = π/2

and, using a change of variable and Remark 1.6.13,

lim
n∞∞

∫ π/2

0
gn(x)dx = lim

n∞∞

∫ nπ

0
x−1 sin xdx =

∫ ∞

0
x−1 sin xdx .

Define h : [0, π/2] ∞ R by h(x) = cot x − x−1 (x ⊂= 0), h(0) = 0; h is
continuously differentiable. Use Exercise 1.4.15/5 to show that

0 = lim
n∞∞

∫ π/2

0
h(x) sin 2nxdx = lim

n∞∞

∫ π/2

0
( fn(x) − gn(x))dx

= π

2
−
∫ ∞

0
x−1 sin xdx .

7.
∫ 1/e
ε

x−1(log(1/x))−θ dx = [(log(1/x))−θ+1
]1/e
ε

/(θ − 1).
8. Use integration by parts to evaluate

∫ v
0 e−x sin(λx)dx and then let v ∞ ∞.
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9.
∫ v
2

cos x
log x dx =

[
sin x
log x

]v

2
+ ∫ v

2
sin x

x(log x)2
dx; note that the integral on the right is

bounded above by
∫ v
2

1
x(log x)2

dx . The other part of the question is similar but
easier.

10.
∫ v

u sin(ex )dx = ∫ ev

eu
sin y

y dy.

Exercise 1.7.17

1. (a) limn∞∞ fn(x) = 0 but fn(1/n) = n2/(n2 + 1) ∩ 1/2: not uniformly
convergent.
(b) limn∞∞ fn(x) = 0 but fn

(
n
↑
1/2
) = 1/4: not uniformly convergent.

(c) limn∞∞ fn(x) = 0 (0 ◦ x < 1), 1/2 (x = 1). Each fn is continuous but
the limit function is not: not uniformly convergent.
(d) | fn(x)| ◦ 1/n: uniformly convergent.

2. Since 0 ◦ fn(x) ◦ n p(1− x)n it follows that limn∞∞ fn(x) = 0 (0 < x ◦ 1);
also plainly limn∞∞ fn(0) = 0. As f ′

n(x) = n p(1− x)n−1 {1 − (n + 1)x} = 0
iff x = 1 or 1/(n + 1), we see that fn has a global maximum at 1/(n + 1). Thus

0 ◦ fn(x) ◦ fn (1/(n + 1)) = n p−1/

(

1 + 1

n

)n+1

,

which shows that ( fn) is uniformly convergent to 0 on [0, 1] iff p < 1. Since
∫ 1
0 fn = n p

(n+1)(n+2) the rest follows.
3. For the first part use theWeierstrass M−test. The series does not converge when

x = 1 as the nth term does not tend to zero.
4. If 0 < |t | < 1, then t−1 log(1−t2) = −∑∞

r=0 t2r+1/(r+1). Use theWeierstrass

M−test to show that
∑∞

r=0

( 1
2 sin θ

)2r+1
/(r +1) converges uniformly on [0, 1],

justifying term by term integration.
8. Since fn is continuous and | fn(x)| ◦ 2.4−n (x → R, n → N), Theorems 1.7.5

and 1.7.7 show that
∑∞

n=1 fn converges uniformly onR and that f is continuous.
Fix u → R. Note that if r → Z and 2r ◦ x, y ◦ 2(r + 1), then

|g(x) − g(y)| = |x − y| . (*)

Given any k → N, there is a unique rk → Z such that 2rk ◦ 4ku < 2(rk + 1).
Let Ik = [2rk, 2(rk + 1)]; each Ik has length 2 and Ik+1 ∈ 4Ik (k → N). Set
vk = 1 if 4ku + 1 → Ik , vk = −1 otherwise. Then 4ku + vk → Ik (k → N), where
vk → {−1, 1}; moreover, 4 j u + 4 j−kvk → I j if 1 ◦ j ◦ k, since Ik ∈ 4Ik−1 ∈
42 Ik−2 ∈ ... ∈ 4k−1 I1. For each n → N,

∣
∣
∣ fn

(
u + 4−kvk

)
− fn(u)

∣
∣
∣ = 4−n

∣
∣
∣g
(
4nu + 4n−kvk

)
− g

(
4nu
)∣∣
∣ ;
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further, since g is periodic with period 4 and (∼) holds, it follows that

∣
∣
∣ fn

(
u + 4−kvk

)
− fn(u)

∣
∣
∣ =

{
4−k, 1 ◦ n ◦ k,

0, n > k.

Let hk = 4−kvk . Then

h−1
k ( f (u + hk) − f (u)) =

∑k

n=1
h−1

k ( fn(u + hk) − fn(u)) =
∑k

n=1
vk,

an integer which is even or odd according as k is even or odd. Since hk ∞ 0 and
limk∞∞ h−1

k ( f (u + hk) − f (u)) does not exist, f is not differentiable at u.

9. The maximum value of xn(1− x) on [0, 1] is
(

n
n+1

)n
/(n + 1); by the M−test,

the series is uniformly convergent on [0, 1].
10. For all x → R,

∣
∣(2n)! sin3(x/n!)∣∣ ◦ (2n)!/(n!)3 ◦ 22n/n! := an . Since

lim an+1/an = 0, the M−test show that the series is uniformly convergent on
R; continuity follows.

11. If 0 ◦ x < 1, then (1 − x)/(1 − x3) = (1 − x)(1 + x3 + ... + x3(n−1)) +
x3n/(1 + x + x2), so that

∣
∣
∣
∣

∫ 1

0

1 − x

1 − x3
dx −

∑n−1

r=0

∫ 1

0
(1 − x)x3r dx

∣
∣
∣
∣ =

∫ 1

0

x3n

1 + x + x2
dx ◦

∫ 1

0
x3ndx

= 1

3n + 1
.

Hence

∑∞
r=0

1

(3r + 1)(3r + 2)
=
∫ 1

0

1 − x

1 − x3
dx =

∫ 1

0
(1+x+x2)−1dx = π/(3

↑
3).

Apply this technique to the given integral.
13. Expand log(1 − x).
14. Use of the inequalities

∫ 1

0
(1 − t2)ndt ∩

∫ 1/n

0
(1 − t2)ndt ∩

∫ 1/n

0
(1 − nt2)dt >

1

2n

shows that cn < n for all n → N. Let 0 < δ ◦ 1. The uniform convergence
of (qn) on [−1,−δ] ∪ [δ, 1] is clear: supδ◦|t |◦1qn(t) ◦ n(1 − δ2)n ∞ 0. Each
pn(s) is a polynomial. Since f (t) = 0 if |t | ∩ 1, use of Exercise 1.3.10/5 shows
that, for all n → N and s → [0, 1],

pn(s) =
∫ 1−s

−s
f (u + s)qn(u)du =

∫ 1

−1
f (u + s)qn(u)du
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and hence

pn(s) − f (s) =
∫ 1

−1
( f (u + s) − f (s)) qn(u)du.

Let K = 1+supt→R | f (t)| and ε > 0. As f is uniformly continuous, there exists
δ → (0, 1) such that for all x → R, | f (x + h) − f (x)| < ε if |h| < δ. Further,
there exists N → N such that supδ◦|u|◦1qn(u) < ε if n ∩ N . Thus if s → [0, 1]
and n ∩ N , then

∫ δ

−δ

| f (u + s) − f (s)| qn(u)du < ε and
∫ −δ

−1
| f (u + s) − f (s)| qn(u)du

< 2K ε;

similarly,
∫ 1
δ

| f (u + s) − f (s)| qn(u)du < 2K ε. Hence, for all n ∩ N ,

sups→[0,1] |pn(s) − f (s)| ◦
∫ 1

−1
| f (u + s) − f (s)| qn(u)du < (4K + 1)ε,

from which the desired uniform convergence follows. The rest is a matter of
routine manipulation.

18. Let gn = fn − f for each n and suppose that (gn) is decreasing and converges
pointwise but not uniformly to 0. For some ε > 0 there is a sequence (xn) in
[a, b] such that gn(xn) ∩ ε (n → N). By Theorem A.4.13, a point x → [a, b]
and a subsequence

(
xm(n)

)
of (xn) exist such that xm(n) ∞ x . Let k → N.

For n ∩ k, gk
(
xm(n)

) ∩ gm(n)

(
xm(n)

) ∩ ε; further, since gk is continuous,
limn∞∞ gk

(
xm(n)

) = gk(x) ∩ ε. Thus 0 = limk∞∞ gk(x) ∩ ε: contradiction.

Exercise 2.1.45

1. Since f ′(t) = t p−1−1, theminimum of f is attained only at 1 and theminimum
value is 0. Hence t p/p + 1/p′ − t ∩ 0 for all t ∩ 0. Now take t = ab−1/(p−1)

(assuming b ⊂= 0; the result is obvious if b = 0). Hölder’s inequality is clear if
either

∑ |xk |p or
∑ |yk |p is zero. Otherwise, put a = ∣∣x j

∣
∣ /
(∑ |xk |p

)1/p, b =
∣
∣y j
∣
∣ /
(∑ |yk |p′)1/p′

in the first part to obtain

∣
∣x j y j

∣
∣

(∑ |xk |p
)1/p

(∑ |yk |p′)1/p′ ◦
∣
∣x j
∣
∣p

p
∑ |xk |p +

∣
∣y j
∣
∣p

′

p′∑ |yk |p′ ;
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now sum over j . For Minkowski’s inequality, note that

∑n

1
|xk + yk |p ◦

∑n

1
|xk + yk |p−1 |xk | +

∑n

1
|xk + yk |p−1 |yk |

◦
(∑n

1
|xk + yk |p

)1/p′
⎧
⎨

⎩

( n∑

1

|xk |p

)1/p

+
( n∑

1

|yk |p′
)1/p′⎫

⎬

⎭
.

Verification of the metric space axioms is routine.
2. Only the triangle inequality presents any problems: proceed as in question 1

above to obtain the integral version of Minkowski’s inequality.
3. As above, the triangle inequality holds for sums

∑N
1 ; now let N ∞ ∞.

4. The triangle inequality follows from the hint and the fact that |xn − yn| ◦
|xn − zn| + |zn − yn|.

6. (i) Closed, not open, (ii) neither, (iii) neither, (iv) neither.
7. Last part: no.
8. Let S be any proper non-empty subset. If x → S, then B(x, 1) = {x} ∈ S and so

S is open. Now apply the same argument to the complement of S.
9. Let x, y, z → S and suppose that d(x, z) = 1/k, d(z, y) = 1/ l. Then xr = zr

(r < k), xk ⊂= zk; zr = yr (r < l), zl ⊂= yl . Hence either x = y, in which case
d(x, y) = 0, or d(x, y) = 1/t for some t ∩ min(k, l).

11. Take x = y in (ii): d(y, z) ◦ d(z, y). Interchange of z and y gives d(y, z) =
d(z, y).

12. Let U be open in (X, d1). Given x → U , there exists ε > 0 such that
{y → X : d1(x, y) < ε} ∈ U : thus {y → X : d2(x, y) < αε} ∈ U and so U is
open in (X, d2). Interchange the rôles of d1 and d2.

13. If x → o
A ∗ o

B then B(x, ε1) ∈ A and B(x, ε2) ∈ B for some ε1, ε2 > 0: thus

B(x, ε) ∈ A ∗ B, ε = min(ε1, ε2), giving . The reverse inclusion
is obvious. Also, plainly A ∪ B is contained in the closed set A ∪ B, so that
A ∪ B ∈ A∪ B; the reverse inclusion is obvious. Take X = R, A = Q, B = cQ

.
D is closed; for its interior, replace ∩ by >.

14. (i) Interior {(x, y) : 0 < x < y < 1}, closure {(x, y) : 0 ◦ x ◦ y ◦ 1} ; (ii) in-
terior empty, closure {(x, 0) : 0 ◦ x ◦ 1} ; (iii) interior empty, closure R2.

15. Let y → [0, 1]\S. Uniqueness of decimal representation is obtained by ruling
out recurring 9’s. There is a first digit in the decimal representation of y which
is not 0 or 1: suppose it is the nth digit. Then the distance of y from S is greater
than 10−n−1 and so B(y, 10−n−1) ∗ S = ∅: thus S is closed.

16. Let (E, d) be discrete and let x, y be distinct points of E . Then B(x, 1) = {x} =
{x}, while {z → E : d(x, z) ◦ 1} = E .

17. (i) A is a closed subset of Y iff Y\A is open in Y , which by Lemma 2.1.5 (iii)
is equivalent to the existence of an open set U in X such that Y\A = Y ∗ U ,
which is equivalent to A = Y ∗ (X\U ).
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(ii) By (i), clY (S) = B ∗ Y for some closed subset B of X : hence clY (S) is
closed in X and so clY (S) ≤ clX (S). Given x → clY (S), there exists (xn) ∈ S
such that xn ∞ x : thus clY (S) ∈ clX (S).

18. Continuity at (x, y) ⊂= (0, 0) : (xn, yn) ∞ (x, y) implies that xn ∞ x and yn ∞
y, so that f (xn, yn) ∞ xy/(x2 + y2). Discontinuity at (0, 0) : f (1/n, 1/n) =
1/2 � 0.

20. f is continuous everywhere except at (0, 0): f (2y, y) = (3/5, 9y2/5) � (0, 0)
as y ∞ 0.

21. The map f : R2 ∞ R given by f (x, y) = x2 − y2 + 2xy is continuous:
S = f −1 ((−∞, 0)) is open.

23. There is a sequence (an) of elements of A that converges to a: thus a → A.
24. Take U = f −1((1/2, 3/2)), V = f −1((−3/2,−1/2)), where f is as in

Urysohn’s lemma.

Exercise 2.2.29

2. (i) If (xn) is a Cauchy sequence in F , then xn ∞ x → X : x → F as F is closed,
and so F is complete.
(ii) Let x → F , and let (xn) be a sequence in F that converges to x . Then (xn) is
a Cauchy sequence in F; (xn) converges to a point of F; thus x → F and F is
closed.

3. For all f, g → C(I ) and x → I ,

|(T f )(x) − (T g)(x)| ◦ d∞( f, g)

∫ x

0
(x − t)dt ◦ (1/2)d∞( f, g).

Thus d∞(T f, T g) ◦ d∞( f, g)/2. Hence T has a unique fixed point; routine
verification or use of the iterative process shows that it is given by sinh x .

4. Define T : C([0, k]) ∞ C([0, k]) by (T f )(x) = 1 + ∫ x
0 f (t2)dt . Since

|(T f )(x) − (T g)(x)| ◦
∫ x

0

∣
∣
∣ f (t2) − g(t2)

∣
∣
∣ dt ◦ xd∞( f, g),

it follows that d∞(T f, T g) ◦ kd∞( f, g). By the contraction mapping theorem
the integral equation has exactly one solution fk , when k → (0, 1).
To deal with the case k = 1, define f by f (x) = fl(x) whenever x ◦ l < 1.
Since the sequence (T ng)n→N converges to f , direct calculation of T ng shows
that f is bounded above on (0, 1). Thus f satisfies the integral equation on (0, 1)
and may be extended by continuity to [0, 1].

5. (i) T : (0, 1) ∞ (0, 1), T x = x2/4.
(ii) T : R ∞ R, T x = π

2 + x − tan−1 x . Given x, y → R, x ⊂= y, there exists z
strictly between x and y such that |T x − T y| = |x − y| z2/(1+ z2) < |x − y| ;
but T has no fixed point.
(iii) T : B([0, 1]) ∞ B([0, 1]),
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(T f )(x) =
{

f
( 1
2 + x

)
, 0 ◦ x < 1

2 ,

0, 1
2 ◦ x ◦ 1.

Note that T 2 = 0.
6. Define φ : (0,∞) ∞ (0,∞) by φ(t) = 1/t : φ coincides with its inverse and

is continuous when (0,∞) is given the natural metric inherited from R. Thus
|x − xn| ∞ 0 =⇒ |φ(x) − φ(xn)| ∞ 0 =⇒ |φ(φ(x)) − φ(φ(xn))| ∞ 0 :
d1(x, xn) ∞ 0 =⇒ d2(x, xn) ∞ 0 =⇒ d1(x, xn) ∞ 0. If (xn) is a Cauchy
sequence in (X, d2), then there exists y → R, y ∩ 1, such thatφ(xn) ∞ y, so that
d2(xn, 1/y) ∞ 0: thus (R, d2) is complete. However, (R, d1) is not complete:
consider (1/n).

Exercise 2.3.38

2. Suppose the result false. Then for each n → N, there exists xn → X such that
d(xn, Fi ) < 1/n for all i : as X is compact, (xn) must have a convergent subse-
quence, with limit x → X; and as each Fi is closed, x → Fi for all i , giving a
contradiction.

4. As X is compact, there are convergent subsequences (T n j (a)) j→N and
(T n j (b)) j→N: thus given ε > 0, there exists J → N such that

d
(
T n j (a), T n j+l (a)

)
< ε and d

(
T n j (b), T n j+l (b)

)
< ε

whenever j ∩ J and l → N. Thus d
(
a, T k(a)

)
< ε and d

(
b, T k(b)

)
< ε, where

k = n J+1 − n J . Hence

d(T (a), T (b)) ◦ d(T k(a), T k(b)) ◦ d(T k(a), a) + d(a, b) + d(b, T k(b))

< d(a, b) + 2ε.

Thus d(T (a), T (b)) = d(a, b). Density is clear from d
(
a, T k(a)

)
< ε. Given

a → X , by the density of T (X) and the compactness of X , there is a sequence
(xn) such that xn ∞ c and T xn ∞ a: thus

d(a, T c) ◦ d(a, T xn) + d(T xn, T c) = d(a, T xn) + d(xn, c),

which implies that a = T c.
5. Uniqueness: if T x = x, T y = y and x ⊂= y, then d(x, y) = d(T x, T y) <

d(x, y): contradiction.
Existence: suppose there is no fixed point. The map x ≥−∞ d(x, T x) is con-
tinuous on the compact set X and so attains its minimum, at x0, say. But
d(T x0, T 2x0) < d(x0, T x0): contradiction.

6. Suppose ( fn) is decreasing, put gn = fn − f : gn ∩ gn+1 ∩ 0. Put Mn =
sup {gn(x) : x → X} = d(gn, 0): we must show that Mn ∞ 0. Given ε > 0,
put Un = g−1

n ((−∞, ε)). Then Un is open, increases with n and for all x → X ,
gn(x) ∞ 0 : x → Un for some n. Hence the Un cover the compact X , which is
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thus covered by a finite collection of the Un : as the Un are nested, UN = X for
some N , which means that gN (x) < ε for all x → X , and so MN ◦ ε. Since
Mn ⊃ as n ∅, and Mn ∩ 0, lim Mn = 0.

10. Boundedness is clear; for equicontinuity and pointwise convergence use the
mean-value theorem. If the set were relatively compact, there would be a conver-
gent sequence

(
fnk

)
, with limit the zero function. But fnk

(
(4nk + 1) π2

) = −1
for all k: contradiction.

11. Use the mean-value theorem.
12. Suppose that f is not lower semi-continuous at x but f (x) ◦ lim inf f (xn)

whenever xn ∞ x . Then there exist ε > 0 and a sequence (yn) such that
d(x, yn) < 1/n and f (yn) ◦ f (x)−ε: thus yn ∞ x and lim inf f (yn) < f (x),
and we have a contradiction. Conversely, suppose f is lower semi-continuous
at x , xn ∞ x and ε > 0. Then there exists δ > 0 such that f (y) > f (x) − ε

if d(x, y) < δ. Thus for some n → N, inf{ f (xk) : k ∩ n} ∩ f (x) − ε, which
implies that lim inf f (xn) ∩ f (x) − ε. This holds for all ε > 0.

15. Suppose the result false. Then for each n → N, there exists An ∈ X not contained
in any U and with diam An < 1/n. Let xn → An; the sequence (xn) has a
convergent subsequence with limit x; x → U for some U ; B(x, ε) ∈ U for
some ε > 0. There exists n > 2/ε such that xn → B(x, ε/2). If a → An , then

d(a, x) ◦ d(a, xn) + d(xn, x) < diam An + ε/2 < ε.

Thus An ∈ B(x, ε) ∈ U : contradiction.

Exercise 2.4.33

1. Suppose B is not connected. Then there are open sets U, V such that U ∗ B ⊂=
∅, V ∗ B ⊂= ∅, U ∗ V ∗ B = ∅ and B ∈ U ∪ V . Then U ∗ V ∗ A = ∅ and
A ∈ U ∪ V . If U ∗ A = ∅, then A ∈cU , which is closed: hence A ∈cU , so that
U ∗ B = ∅: contradiction. Thus U ∗ A ⊂= ∅; similarly V ∗ A ⊂= ∅. This means
that A is not connected: contradiction.

2. R2 is path-connected and thus connected. Since S ∗(C\S) = ∅, S ∪(C\S) = C
and both S and C\S are open, either S or C\S is empty.

3. E is path-connected and thus connected. F is not connected: its components are{
(x, y) : x2 + y2 < 1

}
and the one-point sets {(1 + 1/n, 0)} (n → N).

4. Define f : GL(n, R) ∞ R\{0} by f (a) = det a. Since f is continuous and
surjective, and R\{0} is not connected, GL(n, R) is not connected.

5. Let c → A ∗ B and suppose a, b → A ∪ B. There are paths in A ∪ B joining a to
c and c to b: combine them.

6. Let c, d → f (E), c = f (a), d = f (b). There is a path γ in E joining a and b:
consider f √ γ .
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Exercise 2.5.30

1. Define g : Sn × I ∞ Rn+1 by g(x, t) = (1 − t) f (x) + t x; both g and
(x, t) ≥−∞ ‖g(x, t)‖ are continuous. The hypothesis guarantees that for all
(x, t) → Sn × I , g(x, t) ⊂= 0, for the only zero of g could be when t = 1/2 and
f (x) = −x , which is impossible.Hence H is continuous. Since H(x, 0) = f (x)

and H(x, 1) = x (x → Sn), f � idSn .
2. Supposeμ ∼ ν. Thenμ∼ ν̂ ∼ ν ∼ ν̂ (Theorem 2.5.9)∼ ex (Theorem 2.5.13). By

Theorem 2.5.5, μ ∼ ν̂ ∼ ex . Conversely, suppose μ ∼ ν̂ ∼ ex . Then μ ∼ μ ∼ ey

(Theorem 2.5.12) ∼ μ ∼ (̂ν ∼ ν) (Theorems 2.5.9 and 2.5.13) ∼ (μ∼ ν̂) ∼ ν

(Theorem 2.5.11) ∼ ex ∼ ν (Theorem 2.5.9) ∼ ν (Theorem 2.5.12).
3. Consider the maps f, g : I ∞ R2 defined by f (t) = (cos 2π t, sin 2π t), g(t) =

(1, 0).
4. To avoid triviality, suppose 0 < a < 1. Let K1 = {(s, t) → I × I : s + at ◦ 1},

K2 = {(s, t) → I × I : s + at ∩ 1}; both these sets are closed. The maps
(s, t) ≥−∞ s + at ≥−∞ f (s + at) : K1 ∞ X , (s, t) ≥−∞ s + at − 1 ≥−∞ f (s +
at −1) : K2 ∞ X are continuous and, since f (1) = f (0), their values coincide
at points (s, t) → K1 ∗ K2. Hence H is consistently defined and the glueing
lemma shows it to be continuous. Plainly H(s, 0) = f (s), H(s, 1) = g(s)
(s → I ) and H(0, t) = f (ta) = H(1, t) (t → I ). The rest is left to the reader.

5. Let F : X × I ∞ Y be defined by F(x, t) = (1 − t) f0(x) + t f1(x). Then
F(x, 0) = f0(x), F(x, 1) = f1(x) and it remains to prove that F is continuous.
Since

d2 (F(x0, t0), F(x1, t1)) ◦ |t0 − t1| d2( f0(x1), f1(x1))

+ (1 − t0)d2( f0(x1), f0(x0)) + t0d2( f1(x1), f1(x0)),

routine procedures give the result.
7. (i) X and Y are not homeomorphic as the removal of (1, 0) from Y disconnects

Y but the removal of any point from X leaves X connected.
Let T = {(x, 0) : 1 ◦ x ◦ 2}, p = (1, 0); let d be the standard metric on
R2. Since d( f (w), f (x)) = d(w, x) (w, x → X), f is continuous. Further, g is
continuous: if y → Y\{p}, r = d(y, p) and u → B(y, r), then

d(g(u), g(y)) =
{

d(u, y) if y → S1,

0 if y → T ;

if y = p, then

d(g(u), g(y)) =
{

d(u, y) if u → S1,

0 if u → T .

Evidently g √ f = idX . The map f √ g : Y ∞ Y is defined by

( f √ g)(y) =
{

y if y → S1,

p if y → T .
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Consider H : Y × I ∞ Y defined by H(y, t) = (1 − t) f (g(y)) + t y. This
map is continuous: (yn, tn) ∞ (y, t) =⇒ H(yn, tn) ∞ H(y, t). Moreover,
H(y, 0) = f (g(y)), H(y, 1) = y (y → Y ). Hence X and Y are homotopy-
equivalent.
(ii) Referring to (i), f is continuous; the continuity of g follows from that of
y ≥−∞ |y|−1 : Y ∞ R and idY . Plainly g √ f � idX . The map f √ g : Y ∞
Y is defined by ( f √ g) (y) = |y|−1 y. Let H : Y × I ∞ Y be defined by
H(y, t) = (1 − t) f (g(y)) + t idY (y) = (1 − t + t |y|) |y|−1 y. Then H is
continuous, H(y, 0) = ( f √ g)(y) and H(y, 1) = idY (y) (y → Y ). Hence f √
g � idY : thus X and Y are homotopy-equivalent. They are not homeomorphic:
S1\{(−1, 0), (1, 0)} is not connected.

8. Suppose that X is contractible. Let a → X and assume that idX � c, where
c : X ∞ X is the constant map c(x) = a (x → X). Let g : {a} ∞ X be defined
by g(a) = a. Then g √ c = c, c √ g = id{a}, g √ c � idX and c √ g � id{a}. Thus
X and {a} are homotopy-equivalent. Conversely, let a → X and suppose that X
and {a} are homotopy-equivalent. There are continuous maps f : X ∞ {a} and
g : {a} ∞ X such that g √ f � idX and f √g � id{a}. Since g √ f is the constant
map x ≥−∞ g(a), X is contractible.
Let K ∈ Rn be convex, a → K and suppose c is the constant map c(x) = a
(x → K ). The map H : K × I ∞ K given by H(x, t) = (1 − t)x + ta is
continuous, H(·, 0) = idK and H(·, 1) = c. Hence K is contractible.

Exercise 3.1.24

1. If C were an ordered field, then either i > 0 or i < 0. Suppose i > 0. Then
−1 = i2 > 0, so that 0 = 1+ (−1) > 1; but 1 = (−1)(−1) > 0: contradiction.
Proceed similarly if it is supposed that i < 0.

2. |z1| = |z1 − z2 + z2| ◦ |z1 − z2| + |z2|, so that |z1| − |z2| ◦ |z1 − z2|. Now
interchange z1 and z2.

3. First part: induction. If equality holds, then

|z1| + · · · + |zn| = |(z1 + z2) + · · · + zn| ◦ |z1 + z2| + · · · + |zn| ,

so that |z1|+|z2| = |z1 + z2|, which gives z1z2 = |z1| |z2|. As the numbering of
terms is arbitrary, necessity follows. Sufficiency: clear if all z j are zero. Suppose
some z j ⊂= 0. Then

|z1 + z2 + · · · + zn| = 1
∣
∣z j
∣
∣

∣
∣z1z j + · · · + znz j

∣
∣

= 1
∣
∣z j
∣
∣

(|z1|
∣
∣z j
∣
∣+ · · · + |zn| ∣∣z j

∣
∣
)
.

4. If im(ab) = 0, then ab = ± |ab| and so a |b|2 = ± |ab| b. For the converse,
note that
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ab =
{

μλ−1 |b|2 , λ ⊂= 0,
λμ−1 |a|2 , μ ⊂= 0.

5. For all λ → C,

0 ◦
∑

|ak − λbk |2 = A + |λ|2 B − 2 re(λC).

If B = 0 the result is obvious; if B ⊂= 0, choose λ = C/B.
6. For all z → C,

|(1 − z)p(z)| ∩ a0 −
{∑n

k=1
(ak−1 − ak) |z|k + an |z|n+1

}
;

by exercise 3 above, the inequality is strict if and only if z ⊂= |z|. If z ⊂= |z| and
|z| ◦ 1, then

|(1 − z)p(z)| > a0 −
{∑n

k=1
(ak−1 − ak) |z|k + an |z|n+1

}
∩ 0.

Plainly p(z) ⊂= 0 if z = |z|.

Exercise 3.2.12

1. For all rational r , f (r) = r f (1) and f (ir) = r f (i); since the rationals are dense
in R, f (x) = x f (1) and f (i x) = x f (i) for all real x . For all z = x + iy → C,

f (z) = x f (1) + y f (i) = 1

2
(z + z) f (1) + 1

2i
(z − z) f (i).

2. f is not continuous at 0: if x ⊂= 0, x real, then f (x) = 1 � f (0) as x ∞ 0.
Since |g(z)| ◦ |z|2 ∞ 0 as z ∞ 0, g is continuous at 0.

3. Since
f (r cosα + ir sin α)

r
= r4 cos3 α sin α(sin α − i cosα)

r6 cos6 α + r2 sin2 α
,

this expression is zero if either cosα or sin α is zero, and otherwise has modulus
bounded above by r4/(r6 cos6 α + r2 sin2 α) ∞ 0 as r ∞ 0. If z = x + imx3

(x, m real, x ⊂= 0), f (z)/z = −im/(1 + m2).
4. (i) ||z| − |a|| ◦ |z − a| ∞ 0 as z ∞ a: continuity follows. The function is not

differentiable anywhere as the Cauchy-Riemann equations are not satisfied.
(ii) As limz∞0 |z|2 /z = 0 the function is differentiable at 0. Since the Cauchy-
Riemann equations do not hold at any point other than 0, the function is differ-
entiable only at 0.

5. Put f = u + iv. If u is constant, then u1 = v2 = 0 and u2 = −v1 = 0: thus
f ′ = 0 in G and f is constant (Theorem 3.2.11). The same holds when v is
constant. If u2 + v2 is constant, then uu1 + vv1 = 0 and uu2 + vv2 = 0; use of
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the Cauchy-Riemann equations gives (u2 + v2)u1 = 0 and (u2 + v2)u2 = 0. If
u2 + v2 = 0 the result is clear; if u2 + v2 ⊂= 0, use the first part.

6. Since u1(x, y) = ex cos y + y and u2(x, y) = −ex sin y + x , use of the Cauchy-
Riemann equations leads us to consider v of the forms v(x, y) = ex sin y +
1
2 y2 + g(x) and v(x, y) = ex sin y − 1

2 x2 + h(y): thus a desired f is given by
f (z) = ez − i z2/2.

7. Take f0(z) = z−2e−i z . Let f → F and define g = f/ f0 : g → H(G) and
|g(z)| = 1 in G. Write g = u + iv: then u2 + v2 = 1 and by question 5 above,
g is constant, g = λ, |λ| = 1.

Exercise 3.3.14

1. Put b = lim sup bn and suppose that b is finite. There is a subsequence
(
bnk

)

that converges to b; hence ank bnk ∞ ab and so ab ◦ lim sup anbn . We may
suppose that for all n, an ⊂= 0. Apply what has been proved with an replaced
by 1/an and bn replaced by anbn : thus lim sup bn = lim sup(1/an)anbn ∩
(1/a) lim sup anbn , and the result follows. The case b = ∞ is simpler.

2. 1, 0,∞, 1.
3. (i) lim sup

∣
∣n3an

∣
∣1/n = lim sup |an|1/n : radius of convergence is R;

(ii) R1/3; (iii) R3.
4. For all n → N,

∑n
r=0 |cr | ◦ (∑n

r=0 |ar |) (∑n
r=0 |br |) ◦ (∑∞

r=0 |ar |) (∑∞
r=0 |br |) ;(∑n

r=0 |cr |
)
ismonotonic increasing and bounded above;

∑
cr is absolutely con-

vergent. Put An =∑n
r=0 ar , Bn =∑n

r=0 br , Cn =∑n
r=0 cr , En =∑n

r=0 |ar | , Fn =
∑n

r=0 |br |. Then

An ∞ A, Bn ∞ B, |C2n − AB| ◦ |C2n − An Bn| + |An Bn − AB|
◦ |E2n F2n − En Fn| + |An Bn − AB| ∞ 0.

Since (Cn) is convergent and C2n ∞ AB, we see that Cn ∞ AB.
5.
∑

anzn is uniformly convergent on the closed unit disc D and is therefore con-
tinuous on it, by the Weierstrass theorem. Suppose z, ζ → D, z ⊂= ζ . Then

f (z) − f (ζ )

z − ζ
= 1 +

∑∞
n=2

an

(
zn−1 + zn−2ζ + ... + ζ n−1

)
,

and so ∣
∣
∣
∣

f (z) − f (ζ )

z − ζ

∣
∣
∣
∣ ∩ 1 −

∑∞
n=2

nan > 0.

Exercise 3.4.36

1. Application of the ratio test shows that the radius of convergence is 1. If |z| < 1,

(1 + z) f ′(z) = α +
∑∞

n=1

{
α(α − 1) . . . (α − n)

n! + α(α − 1) . . . (α − n + 1)

(n − 1)!
}

zn

= α f (z).
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Put D = C\{z : re z ◦ −1, im z = 0}. Then z ≥−∞ (1 + z)−α → H(D) and
has derivative z ≥−∞ −α(1 + z)−1−α . For |z| < 1, φ′(z) = (1 + z)−α f ′(z) −
α(1+ z)−1−α f (z) = 0. Hence φ is constant; since φ(0) = f (0) = 1, the result
follows.

3. arg(−1 − i) = −3π/4, log(−1 − i) = log
↑
2 − 3π i/4,

(−1 − i)i = E (i log(−1 − i)) = E(3π/4)E(i log
↑
2)

= E(3π/4)
{
cos(log

↑
2) + i sin(log

↑
2)
}

.

(3π/2 − arg)(−1 − i) = 5π/4, (3π/2 − log)(−1 − i) = log
↑
2 + 5π i/4,

(
(−1 − i)i

)

3π/2
= E (i(3π/2 − log)(−1 − i))

= E(−5π/4)
{
cos(log

↑
2) + i sin(log

↑
2)
}

.

4. (i) {m + nα : m, n → Z} = ∪n→Z {m + nα : m → Z}: countability follows. For
density, enough to prove that given θ → R, ε > 0, there exist m, n → Z such that

|m + nα − θ | < ε. (1)

Let r → N, r > ε−1. By the Archimedean order property (Theorem A.4.11)
and the well-ordering principle (Corollary A.4.10), for each j → N, there is a
unique s j → Z such that 0 ◦ s j + jα < 1. Among the (r + 1) numbers sk + kα

(k = 1, . . . , r + 1) there are at least two, indexed by k1, k2, such that

sk1 + k1α < sk2 + k2α, 0 < sk2 − sk1 + (k2 − k1) α < r−1 < ε.

Let p = sk2 − sk1 , q = k2 − k1, λ = p + qα > 0: then 0 < λ < ε. Arguing as
before, there is a least l → Z such that λ−1(θ − ε) < l. Thus

λ−1(θ − ε) < l < λ−1(θ − ε) + 2 < λ−1(θ + ε).

Hence |lλ − θ | < ε. Now take m = lp, n = lq to obtain (1).
(ii) Let w → C, |w| = 1, w = eiθ . By (i), there are sequences (ln) , (kn) ∈ Z
such that ln+knα ∞ θ/(2π). Letwn = exp (2π (ln + knα) i) = exp (2πknαi) ;
wn ∞ eiθ = w and each wn belongs to the αth power of 1.

5. (i) Let An = {z → C : zn = 1}, A = ∪∞
1 An : A is countable but the unit circle

is not. Alternatively, note that α → R\Q, λ = exp(iπα) =⇒ for all n → N,

λn ⊂= 1.
(ii) (a) Since

∑
anzn is absolutely convergent when |z| < R,
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An(z) = 1

n + 1

∑n

k=0

∑∞
p=0

apλ
kpz p = 1

n + 1

∑∞
p=0

{∑n

k=0
λkp
}

apz p

= a0 + 1

n + 1

∑∞
p=1

(
1 − λ(n+1)p

1 − λp

)

apz p (|z| < R, n → N0).

Given ε > 0, fix z (0 < |z| < R), choose q such that
∑∞

p=q+1

∣
∣apz p

∣
∣ < ε/2:

for all large enough n,

|An(z) − a0| ◦ 1

n + 1

∑q

p=1

∣
∣
∣
∣
∣

1 − λ(n+1)p

1 − λp

∣
∣
∣
∣
∣

∣
∣apz p

∣
∣+
∑∞

p=q+1

∣
∣apz p

∣
∣ < ε.

(b) If |z| = r , | f (z)| ◦ M(r), |An(z)| ◦ M(r), lim |An(z)| = |a0| ◦ M(r).
(iii) Proceed as in (ii), working with g, where g(z) = f (z)/z j .
(iv)

∣
∣a j
∣
∣ ◦ Mr− j (r > 0, j → N). Let r ∞ ∞.

7. Let θ : [a, b] ∞ R be a continuous argument of γ : 2πn(γ, 0) = θ(b) −
θ(a). The map θ √ ψ : [c, d] ∞ R is a continuous argument of γ √ ψ and
2πn (γ √ ψ, 0) = θ (ψ(d)) − θ (ψ(c)) = θ (b)) − θ (a).

Exercise 3.5.14

1. Values of integrals: i, 2i, 2i .
2. (i)

∫
ν
re zdz = ∫ π

0 a cos s(−a sin s + ib cos s)ds = π iab/2.
(ii)
∫
ν

zdz = ∫ π

0 (a cos s − ib sin s)(−a sin s + ib cos s)ds = π iab.
The integrals involving μ are handled in a similar way.

Exercise 3.6.37

1. (i)
∫
μ
cos zdz = sin(−π/2) − sin(π/2) = −2.

(ii) ν′(t) = (3t2 + 2π ti) exp(−2π i/t) (t ⊂= 0), ν′(0) = 0 : ν′ is continuous on
[0, 1] and so ν is a contour.

∫
ν

z2ezdz = e − 2.
2. γ is continuous, limt∞0 γ (t) = limt∞1 γ (t) = 0: γ is a closed path. γ ′ exists

and is continuous in [0, 1/2], [1/2, 1]: γ is a circuit.
Both z ≥−∞ cos3(z2) and z ≥−∞ log(1 + z) are analytic in the unit disc: by
Cauchy’s theorem in a convex set, both integrals are 0.

4. z2 −2az +1 = (z −α)(z −β), α = a +↑
a2 − 1, β = a −↑

a2 − 1; (z −α)−1

is analytic in the disc |z| < α; by Cauchy’s integral formula,

indγ (β) · 1

β − α
= 1

2π i

∫

γ

1

(z − α)(z − β)
dz;

by Lemma 3.6.11, indγ (β) = 1. Thus
∫
γ

1
z2−2az+1

dz = −π i/
↑

a2 − 1. Now

observe that
∫
γ

1
z2−2az+1

dz = − i
2

∫ 2π
0

dt
a−cos t .
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7. Let V be a convex open subset of G. By Theorem 3.6.6, there exists F → H(V )

such that F ′(z) = f (z) (z → V ); thus f is analytic on V , and as this holds for
all such V , f → H(G).

10. Radii of convergence are (a) 1, (b) π/2.
11. 2, π, 4.
12. Radii of convergence are (a) 1, (b) 1 − e−1.
13. Suppose f ⊂= 0. There exist a → G and r > 0 such that f (z) ⊂= 0 if z → B(a, r).

Hence g(z) = 0 for all z → B(a, r): by Theorem 3.6.27, g = 0.
15. To obtain a contradiction, suppose w /→ S and that (w − z0)/(w − z1) /→ D(π).

For some r > 0, w − z0 = reiπ (w − z1), so that w = (1 − t ′)z0 + t ′z1 → S,

where t ′ = r(1+r)−1, a contradiction. Sincew ≥−∞ log
(

w−z1
w−z0

)
is a primitive of

w ≥−∞ (w−z1)−1−(w−z0)−1 onC\S, byTheorem3.6.2, indγ (z1) = indγ (z0).
It follows that indγ (·) is constant on each component of C\γ ∼, each being open,
connected and polygonally connected (Theorem 2.4.23). Finally, suppose that
sup{|w| : w → γ ∼} < r < |z|, where z lies in the unbounded component
of C\γ ∼. Since w ≥−∞ (w − z)−1 is analytic on the convex set B(0, r), by
Theorem 3.6.9,

indγ (z) = 1

2π i

∫

γ

(w − z)−1dw = 0.

Exercise 3.7.25

1. (a) Pole of order 1 (use Lemma 3.7.7), (b) removable singularity (use Lemma
3.7.6), (c) essential singularity (use a contradiction argument).

2. (a) −(1 + i/
↑
3)/4, (b) −1/3, (c) (2ei)−1, (d) 1/4!.

3. (a) (1 + z2)−2 =∑∞
n=0(−1)n(n + 1)z2n .

(b) (1 + z2)−2 = z−4∑∞
n=0(−1)n(n + 1)z−2n =∑∞

n=2(−1)n(n − 1)z−2n .
(c)

(1 + z2)−2 = − 1

4(z − i)2

(

1 + z − i

2i

)−2

= − 1

4(z − i)2
+ 1

4i(z − i)
+ 1

16

∑∞
p=0

(−1)p(p + 3)

(
z − i

2i

)p

.

f has a pole of order 2 at i and res( f ; i) = 1
4i .

Use the standard semicircular contour γ : by the residue theorem,

2π i · 1

4i
=
∫

γ

(1 + z2)−2dz

and so
∣
∣
∣
∣
∣

π

4
−
∫ R

0
(1 + t2)−2dt

∣
∣
∣
∣
∣
◦ R

2

∣
∣
∣
∣
∣

∫ π

0

exp(iθ)
(
1 + R2 exp(2iθ

)
)2

dθ

∣
∣
∣
∣
∣
◦ π R(R2 − 1)−2/2.
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Thus
∫∞
0 (1 + t2)−2dt = π/4.

4. Integrate appropriate functions over the unit circle.
9. The function z ≥−∞ z/(1 + z5) has simple poles at zn = exp((2n + 1)iπ/5)

with corresponding residues −z2n/5 (n = 0,±1,±2).
17. The functions f and g given by f (z) = αzn , g(z) = αzn − exp z are entire.

Since f has n zeros in the open unit disc and | f (z) − g(z)| < | f (z)| if |z| = 1,
the result follows from Rouché’s theorem.

19. Consider the function g defined by

g(z) = {π z cosec (π z) − 1} /z2 (z ⊂= 0), g(0) = π2/6,

observe that g is meromorphic in C with simple poles at ±n(n → N), proceed

as in 3.7.1 to show that g(z) =∑∞
k=1

(−1)k

z2−k2
, then put z = 0.
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Coordinate functions, 79
Covering, 113
Cycle, 232

D
Diameter, 77
Disc of convergence, 181
Discrete metric, 69

E
Entire function, 174
Equicontinuity, 119
Euclidean metric, 69
Everywhere dense set, 105
Exponential function, 186

F
First category set, 106
First fundamental theorem of calculus, 22
Free homotopy, 157
Function

analytic, 174
Fundamental

group, 161
theorem of algebra, 250

G
Glueing lemma, 81
Gronwall’s inequality, 136

H
Hölder’s inequality, 89
Heine-Borel theorem, 117
Hilbert cube, 119
Holomorphic function, 174
Homeomorphism, 82
Homologous, 235
Homotopy, 150

-equivalent, 164
extension theorem, 285

Hurwitz’s theorem, 253

I
Improper Riemann integral, 43
Index, 224
Initial point , 141
Initial-value problem, 127
Inside, 294

Integral test for convergence, 36
Interior, 74

point, 74
Intermediate-value property, 137
Inverse function theorem, 251
Isometry, 83

J
Jordan curve, 291

theorem, 294

L
Laurent’s theorem, 241
Length of contour, 207
Limit

of a sequence, 76
point, 78

Line segment, 142
Liouville’s theorem, 229
Lipschitz condition, 12
Logarithm, 193

branch, 193
principal, 192

Loop, 157
Lower

integral, 3
semi-continuity, 122
sum, 2

M
Maximum modulus theorem, 231
Meagre set, 106
Mean value theorem for integrals

first, 27
Mean value theorem for integrals

second, 27
Metric, 68

space, 68
Minkowski’s inequality, 69
Montel’s theorem, 272
Morera’s theorem, 237

N
Neighbourhood, 76
Nonmeagre set, 106
Norm, 72
Normal family, 272
Nowhere dense set, 105
Null

-homotopic, 160
set, 132
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O
Open

ball, 72
mapping theorem, 250
set, 72

Opposite contour, 207
Oscillation, 7

function, 80
Outside, 294

P
P-path, 142
Parameter interval, 141
Partial

fraction decomposition, 264
sum, 171

Partition, 1
Path, 141

closed, 141, 157
component, 147
connected, 142
polygonal, 142

Peano
curve, 150
theorem, 130

Picard’s theorem, 246
Pointwise convergence, 86
Pole, 244
Polygonally connected, 142
Positively oriented circle, 208
Primitive, 22
Principal

part, 243
power, 193

R
Radius of convergence, 181
Rare set, 105
Ratio test, 172
Refinement, 3
Region, 174
Relative

maximum, 123
minimum, 123

Reparametrisation, 209
Residual set, 106
Residue, 241

theorem, 247
Retract, 203
Reverse path, 156
Riemann

integrability criterion, 132
integral, 3
mapping theorem, 276

Rouché’s theorem, 249

S
Schwarz’s

inequality, 17, 89
lemma, 273

Second category set, 106
Second fundamental theorem of calculus, 24
Sequentially compact

metric space, 112
set, 116

Simple
path, 141
pole, 254

Simply-connected, 160
Singularity, 243

essential, 244
removable, 244

Square root property, 275
Standard reparametrisation, 211

T
Taylor expansion, 222
Taylor’s theorem, 37
Terminal point, 141
Tietze’s extension theorem, 87
Totally bounded

metric space, 112
set, 116

Track, 142
Trapezium rule, 21
Triangle inequality, 170
Triangular circuit, 215

U
Uniform

continuity, 8
convergence, 50, 87
equicontinuity, 119
metric, 97

Uniformly continuous function, 78
Upper

integral, 3
semi-continuity, 122
sum, 2

Urysohn’s lemma, 87
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V
Volterra integral equation, 128

W
Weierstrass

approximation theorem, 54
M-test, 52

Width, 1
Winding number, 197
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