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PREFACE TO THE
SECOND EDITION

In the years since the publication of the first edition, there were many
aspects of the book that we wished to improve, to rearrange, or to expand,
but the constraints of reprinting would not allow us to make those changes
between printings. In the new edition, we now get a chance to make some
of these changes, to add problems, and to discuss some topics that we had
omitted from the first edition.

The key changes include a reorganization of the chapters to make
the book easier to teach, and the addition of more than two hundred
new problems. We have added material on universal portfolios, universal
source coding, Gaussian feedback capacity, network information theory,
and developed the duality of data compression and channel capacity. A
new chapter has been added and many proofs have been simplified. We
have also updated the references and historical notes.

The material in this book can be taught in a two-quarter sequence. The
first quarter might cover Chapters 1 to 9, which includes the asymptotic
equipartition property, data compression, and channel capacity, culminat-
ing in the capacity of the Gaussian channel. The second quarter could
cover the remaining chapters, including rate distortion, the method of
types, Kolmogorov complexity, network information theory, universal
source coding, and portfolio theory. If only one semester is available, we
would add rate distortion and a single lecture each on Kolmogorov com-
plexity and network information theory to the first semester. A web site,
http://www.elementsofinformationtheory.com, provides links to additional
material and solutions to selected problems.

In the years since the first edition of the book, information theory
celebrated its 50th birthday (the 50th anniversary of Shannon’s original
paper that started the field), and ideas from information theory have been
applied to many problems of science and technology, including bioin-
formatics, web search, wireless communication, video compression, and

xv



xvi PREFACE TO THE SECOND EDITION

others. The list of applications is endless, but it is the elegance of the
fundamental mathematics that is still the key attraction of this area. We
hope that this book will give some insight into why we believe that this
is one of the most interesting areas at the intersection of mathematics,
physics, statistics, and engineering.

Tom Cover
Joy Thomas

Palo Alto, California
January 2006



PREFACE TO THE
FIRST EDITION

This is intended to be a simple and accessible book on information theory.
As Einstein said, “Everything should be made as simple as possible, but no
simpler.” Although we have not verified the quote (first found in a fortune
cookie), this point of view drives our development throughout the book.
There are a few key ideas and techniques that, when mastered, make the
subject appear simple and provide great intuition on new questions.

This book has arisen from over ten years of lectures in a two-quarter
sequence of a senior and first-year graduate-level course in information
theory, and is intended as an introduction to information theory for stu-
dents of communication theory, computer science, and statistics.

There are two points to be made about the simplicities inherent in infor-
mation theory. First, certain quantities like entropy and mutual information
arise as the answers to fundamental questions. For example, entropy is
the minimum descriptive complexity of a random variable, and mutual
information is the communication rate in the presence of noise. Also,
as we shall point out, mutual information corresponds to the increase in
the doubling rate of wealth given side information. Second, the answers
to information theoretic questions have a natural algebraic structure. For
example, there is a chain rule for entropies, and entropy and mutual infor-
mation are related. Thus the answers to problems in data compression
and communication admit extensive interpretation. We all know the feel-
ing that follows when one investigates a problem, goes through a large
amount of algebra, and finally investigates the answer to find that the
entire problem is illuminated not by the analysis but by the inspection of
the answer. Perhaps the outstanding examples of this in physics are New-
ton’s laws and Schrödinger’s wave equation. Who could have foreseen the
awesome philosophical interpretations of Schrödinger’s wave equation?

In the text we often investigate properties of the answer before we look
at the question. For example, in Chapter 2, we define entropy, relative
entropy, and mutual information and study the relationships and a few

xvii
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interpretations of them, showing how the answers fit together in various
ways. Along the way we speculate on the meaning of the second law of
thermodynamics. Does entropy always increase? The answer is yes and
no. This is the sort of result that should please experts in the area but
might be overlooked as standard by the novice.

In fact, that brings up a point that often occurs in teaching. It is fun
to find new proofs or slightly new results that no one else knows. When
one presents these ideas along with the established material in class, the
response is “sure, sure, sure.” But the excitement of teaching the material
is greatly enhanced. Thus we have derived great pleasure from investigat-
ing a number of new ideas in this textbook.

Examples of some of the new material in this text include the chapter
on the relationship of information theory to gambling, the work on the uni-
versality of the second law of thermodynamics in the context of Markov
chains, the joint typicality proofs of the channel capacity theorem, the
competitive optimality of Huffman codes, and the proof of Burg’s theorem
on maximum entropy spectral density estimation. Also, the chapter on
Kolmogorov complexity has no counterpart in other information theory
texts. We have also taken delight in relating Fisher information, mutual
information, the central limit theorem, and the Brunn–Minkowski and
entropy power inequalities. To our surprise, many of the classical results
on determinant inequalities are most easily proved using information the-
oretic inequalities.

Even though the field of information theory has grown considerably
since Shannon’s original paper, we have strived to emphasize its coher-
ence. While it is clear that Shannon was motivated by problems in commu-
nication theory when he developed information theory, we treat informa-
tion theory as a field of its own with applications to communication theory
and statistics. We were drawn to the field of information theory from
backgrounds in communication theory, probability theory, and statistics,
because of the apparent impossibility of capturing the intangible concept
of information.

Since most of the results in the book are given as theorems and proofs,
we expect the elegance of the results to speak for themselves. In many
cases we actually describe the properties of the solutions before the prob-
lems. Again, the properties are interesting in themselves and provide a
natural rhythm for the proofs that follow.

One innovation in the presentation is our use of long chains of inequal-
ities with no intervening text followed immediately by the explanations.
By the time the reader comes to many of these proofs, we expect that he
or she will be able to follow most of these steps without any explanation
and will be able to pick out the needed explanations. These chains of
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inequalities serve as pop quizzes in which the reader can be reassured
of having the knowledge needed to prove some important theorems. The
natural flow of these proofs is so compelling that it prompted us to flout
one of the cardinal rules of technical writing; and the absence of verbiage
makes the logical necessity of the ideas evident and the key ideas per-
spicuous. We hope that by the end of the book the reader will share our
appreciation of the elegance, simplicity, and naturalness of information
theory.

Throughout the book we use the method of weakly typical sequences,
which has its origins in Shannon’s original 1948 work but was formally
developed in the early 1970s. The key idea here is the asymptotic equipar-
tition property, which can be roughly paraphrased as “Almost everything
is almost equally probable.”

Chapter 2 includes the basic algebraic relationships of entropy, relative
entropy, and mutual information. The asymptotic equipartition property
(AEP) is given central prominence in Chapter 3. This leads us to dis-
cuss the entropy rates of stochastic processes and data compression in
Chapters 4 and 5. A gambling sojourn is taken in Chapter 6, where the
duality of data compression and the growth rate of wealth is developed.

The sensational success of Kolmogorov complexity as an intellectual
foundation for information theory is explored in Chapter 14. Here we
replace the goal of finding a description that is good on the average with
the goal of finding the universally shortest description. There is indeed
a universal notion of the descriptive complexity of an object. Here also
the wonderful number � is investigated. This number, which is the binary
expansion of the probability that a Turing machine will halt, reveals many
of the secrets of mathematics.

Channel capacity is established in Chapter 7. The necessary material
on differential entropy is developed in Chapter 8, laying the groundwork
for the extension of previous capacity theorems to continuous noise chan-
nels. The capacity of the fundamental Gaussian channel is investigated in
Chapter 9.

The relationship between information theory and statistics, first studied
by Kullback in the early 1950s and relatively neglected since, is developed
in Chapter 11. Rate distortion theory requires a little more background
than its noiseless data compression counterpart, which accounts for its
placement as late as Chapter 10 in the text.

The huge subject of network information theory, which is the study
of the simultaneously achievable flows of information in the presence of
noise and interference, is developed in Chapter 15. Many new ideas come
into play in network information theory. The primary new ingredients are
interference and feedback. Chapter 16 considers the stock market, which is
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the generalization of the gambling processes considered in Chapter 6, and
shows again the close correspondence of information theory and gambling.

Chapter 17, on inequalities in information theory, gives us a chance to
recapitulate the interesting inequalities strewn throughout the book, put
them in a new framework, and then add some interesting new inequalities
on the entropy rates of randomly drawn subsets. The beautiful relationship
of the Brunn–Minkowski inequality for volumes of set sums, the entropy
power inequality for the effective variance of the sum of independent
random variables, and the Fisher information inequalities are made explicit
here.

We have made an attempt to keep the theory at a consistent level.
The mathematical level is a reasonably high one, probably the senior or
first-year graduate level, with a background of at least one good semester
course in probability and a solid background in mathematics. We have,
however, been able to avoid the use of measure theory. Measure theory
comes up only briefly in the proof of the AEP for ergodic processes in
Chapter 16. This fits in with our belief that the fundamentals of infor-
mation theory are orthogonal to the techniques required to bring them to
their full generalization.

The essential vitamins are contained in Chapters 2, 3, 4, 5, 7, 8, 9,
11, 10, and 15. This subset of chapters can be read without essential
reference to the others and makes a good core of understanding. In our
opinion, Chapter 14 on Kolmogorov complexity is also essential for a deep
understanding of information theory. The rest, ranging from gambling to
inequalities, is part of the terrain illuminated by this coherent and beautiful
subject.

Every course has its first lecture, in which a sneak preview and overview
of ideas is presented. Chapter 1 plays this role.

Tom Cover
Joy Thomas

Palo Alto, California
June 1990
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CHAPTER 1

INTRODUCTION AND PREVIEW

Information theory answers two fundamental questions in communication
theory: What is the ultimate data compression (answer: the entropy H ),
and what is the ultimate transmission rate of communication (answer: the
channel capacity C). For this reason some consider information theory
to be a subset of communication theory. We argue that it is much more.
Indeed, it has fundamental contributions to make in statistical physics
(thermodynamics), computer science (Kolmogorov complexity or algo-
rithmic complexity), statistical inference (Occam’s Razor: “The simplest
explanation is best”), and to probability and statistics (error exponents for
optimal hypothesis testing and estimation).

This “first lecture” chapter goes backward and forward through infor-
mation theory and its naturally related ideas. The full definitions and study
of the subject begin in Chapter 2. Figure 1.1 illustrates the relationship
of information theory to other fields. As the figure suggests, information
theory intersects physics (statistical mechanics), mathematics (probability
theory), electrical engineering (communication theory), and computer sci-
ence (algorithmic complexity). We now describe the areas of intersection
in greater detail.

Electrical Engineering (Communication Theory). In the early 1940s
it was thought to be impossible to send information at a positive rate
with negligible probability of error. Shannon surprised the communica-
tion theory community by proving that the probability of error could be
made nearly zero for all communication rates below channel capacity.
The capacity can be computed simply from the noise characteristics of
the channel. Shannon further argued that random processes such as music
and speech have an irreducible complexity below which the signal cannot
be compressed. This he named the entropy, in deference to the parallel
use of this word in thermodynamics, and argued that if the entropy of the

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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FIGURE 1.2. Information theory as the extreme points of communication theory.

source is less than the capacity of the channel, asymptotically error-free
communication can be achieved.

Information theory today represents the extreme points of the set of
all possible communication schemes, as shown in the fanciful Figure 1.2.
The data compression minimum I (X; X̂) lies at one extreme of the set of
communication ideas. All data compression schemes require description
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rates at least equal to this minimum. At the other extreme is the data
transmission maximum I (X;Y), known as the channel capacity. Thus,
all modulation schemes and data compression schemes lie between these
limits.

Information theory also suggests means of achieving these ultimate
limits of communication. However, these theoretically optimal communi-
cation schemes, beautiful as they are, may turn out to be computationally
impractical. It is only because of the computational feasibility of sim-
ple modulation and demodulation schemes that we use them rather than
the random coding and nearest-neighbor decoding rule suggested by Shan-
non’s proof of the channel capacity theorem. Progress in integrated circuits
and code design has enabled us to reap some of the gains suggested by
Shannon’s theory. Computational practicality was finally achieved by the
advent of turbo codes. A good example of an application of the ideas of
information theory is the use of error-correcting codes on compact discs
and DVDs.

Recent work on the communication aspects of information theory has
concentrated on network information theory: the theory of the simultane-
ous rates of communication from many senders to many receivers in the
presence of interference and noise. Some of the trade-offs of rates between
senders and receivers are unexpected, and all have a certain mathematical
simplicity. A unifying theory, however, remains to be found.

Computer Science (Kolmogorov Complexity). Kolmogorov,
Chaitin, and Solomonoff put forth the idea that the complexity of a string
of data can be defined by the length of the shortest binary computer
program for computing the string. Thus, the complexity is the minimal
description length. This definition of complexity turns out to be universal,
that is, computer independent, and is of fundamental importance. Thus,
Kolmogorov complexity lays the foundation for the theory of descriptive
complexity. Gratifyingly, the Kolmogorov complexity K is approximately
equal to the Shannon entropy H if the sequence is drawn at random from
a distribution that has entropy H . So the tie-in between information theory
and Kolmogorov complexity is perfect. Indeed, we consider Kolmogorov
complexity to be more fundamental than Shannon entropy. It is the ulti-
mate data compression and leads to a logically consistent procedure for
inference.

There is a pleasing complementary relationship between algorithmic
complexity and computational complexity. One can think about computa-
tional complexity (time complexity) and Kolmogorov complexity (pro-
gram length or descriptive complexity) as two axes corresponding to
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program running time and program length. Kolmogorov complexity fo-
cuses on minimizing along the second axis, and computational complexity
focuses on minimizing along the first axis. Little work has been done on
the simultaneous minimization of the two.

Physics (Thermodynamics). Statistical mechanics is the birthplace of
entropy and the second law of thermodynamics. Entropy always increases.
Among other things, the second law allows one to dismiss any claims to
perpetual motion machines. We discuss the second law briefly in Chapter 4.

Mathematics (Probability Theory and Statistics). The fundamental
quantities of information theory—entropy, relative entropy, and mutual
information—are defined as functionals of probability distributions. In
turn, they characterize the behavior of long sequences of random variables
and allow us to estimate the probabilities of rare events (large deviation
theory) and to find the best error exponent in hypothesis tests.

Philosophy of Science (Occam’s Razor). William of Occam said
“Causes shall not be multiplied beyond necessity,” or to paraphrase it,
“The simplest explanation is best.” Solomonoff and Chaitin argued per-
suasively that one gets a universally good prediction procedure if one takes
a weighted combination of all programs that explain the data and observes
what they print next. Moreover, this inference will work in many problems
not handled by statistics. For example, this procedure will eventually pre-
dict the subsequent digits of π . When this procedure is applied to coin flips
that come up heads with probability 0.7, this too will be inferred. When
applied to the stock market, the procedure should essentially find all the
“laws” of the stock market and extrapolate them optimally. In principle,
such a procedure would have found Newton’s laws of physics. Of course,
such inference is highly impractical, because weeding out all computer
programs that fail to generate existing data will take impossibly long. We
would predict what happens tomorrow a hundred years from now.

Economics (Investment). Repeated investment in a stationary stock
market results in an exponential growth of wealth. The growth rate of
the wealth is a dual of the entropy rate of the stock market. The paral-
lels between the theory of optimal investment in the stock market and
information theory are striking. We develop the theory of investment to
explore this duality.

Computation vs. Communication. As we build larger computers
out of smaller components, we encounter both a computation limit and
a communication limit. Computation is communication limited and com-
munication is computation limited. These become intertwined, and thus
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all of the developments in communication theory via information theory
should have a direct impact on the theory of computation.

1.1 PREVIEW OF THE BOOK

The initial questions treated by information theory lay in the areas of
data compression and transmission. The answers are quantities such as
entropy and mutual information, which are functions of the probability
distributions that underlie the process of communication. A few definitions
will aid the initial discussion. We repeat these definitions in Chapter 2.

The entropy of a random variable X with a probability mass function
p(x) is defined by

H(X) = −
∑

x

p(x) log2 p(x). (1.1)

We use logarithms to base 2. The entropy will then be measured in bits.
The entropy is a measure of the average uncertainty in the random vari-
able. It is the number of bits on average required to describe the random
variable.

Example 1.1.1 Consider a random variable that has a uniform distribu-
tion over 32 outcomes. To identify an outcome, we need a label that takes
on 32 different values. Thus, 5-bit strings suffice as labels.

The entropy of this random variable is

H(X) = −
32∑
i=1

p(i) log p(i) = −
32∑
i=1

1

32
log

1

32
= log 32 = 5 bits,

(1.2)
which agrees with the number of bits needed to describe X. In this case,
all the outcomes have representations of the same length.

Now consider an example with nonuniform distribution.

Example 1.1.2 Suppose that we have a horse race with eight horses
taking part. Assume that the probabilities of winning for the eight horses
are

(1
2 , 1

4 , 1
8 , 1

16 , 1
64 , 1

64 , 1
64 , 1

64

)
. We can calculate the entropy of the horse

race as

H(X) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

1

64
log

1

64

= 2 bits. (1.3)
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Suppose that we wish to send a message indicating which horse won
the race. One alternative is to send the index of the winning horse. This
description requires 3 bits for any of the horses. But the win probabilities
are not uniform. It therefore makes sense to use shorter descriptions for the
more probable horses and longer descriptions for the less probable ones,
so that we achieve a lower average description length. For example, we
could use the following set of bit strings to represent the eight horses: 0,
10, 110, 1110, 111100, 111101, 111110, 111111. The average description
length in this case is 2 bits, as opposed to 3 bits for the uniform code.
Notice that the average description length in this case is equal to the
entropy. In Chapter 5 we show that the entropy of a random variable is
a lower bound on the average number of bits required to represent the
random variable and also on the average number of questions needed to
identify the variable in a game of “20 questions.” We also show how to
construct representations that have an average length within 1 bit of the
entropy.

The concept of entropy in information theory is related to the concept of
entropy in statistical mechanics. If we draw a sequence of n independent
and identically distributed (i.i.d.) random variables, we will show that the
probability of a “typical” sequence is about 2−nH(X) and that there are
about 2nH(X) such typical sequences. This property [known as the asymp-
totic equipartition property (AEP)] is the basis of many of the proofs in
information theory. We later present other problems for which entropy
arises as a natural answer (e.g., the number of fair coin flips needed to
generate a random variable).

The notion of descriptive complexity of a random variable can be
extended to define the descriptive complexity of a single string. The Kol-
mogorov complexity of a binary string is defined as the length of the
shortest computer program that prints out the string. It will turn out that
if the string is indeed random, the Kolmogorov complexity is close to
the entropy. Kolmogorov complexity is a natural framework in which
to consider problems of statistical inference and modeling and leads to
a clearer understanding of Occam’s Razor : “The simplest explanation is
best.” We describe some simple properties of Kolmogorov complexity in
Chapter 1.

Entropy is the uncertainty of a single random variable. We can define
conditional entropy H(X|Y), which is the entropy of a random variable
conditional on the knowledge of another random variable. The reduction
in uncertainty due to another random variable is called the mutual infor-
mation. For two random variables X and Y this reduction is the mutual
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information

I (X;Y) = H(X) − H(X|Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (1.4)

The mutual information I (X;Y) is a measure of the dependence between
the two random variables. It is symmetric in X and Y and always non-
negative and is equal to zero if and only if X and Y are independent.

A communication channel is a system in which the output depends
probabilistically on its input. It is characterized by a probability transition
matrix p(y|x) that determines the conditional distribution of the output
given the input. For a communication channel with input X and output
Y , we can define the capacity C by

C = max
p(x)

I (X;Y). (1.5)

Later we show that the capacity is the maximum rate at which we can send
information over the channel and recover the information at the output
with a vanishingly low probability of error. We illustrate this with a few
examples.

Example 1.1.3 (Noiseless binary channel ) For this channel, the binary
input is reproduced exactly at the output. This channel is illustrated in
Figure 1.3. Here, any transmitted bit is received without error. Hence,
in each transmission, we can send 1 bit reliably to the receiver, and the
capacity is 1 bit. We can also calculate the information capacity C =
max I (X;Y) = 1 bit.

Example 1.1.4 (Noisy four-symbol channel ) Consider the channel
shown in Figure 1.4. In this channel, each input letter is received either as
the same letter with probability 1

2 or as the next letter with probability 1
2 .

If we use all four input symbols, inspection of the output would not reveal
with certainty which input symbol was sent. If, on the other hand, we use

1

0

1

0

FIGURE 1.3. Noiseless binary channel. C = 1 bit.
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1

2

3

4

1

2

3

4

FIGURE 1.4. Noisy channel.

only two of the inputs (1 and 3, say), we can tell immediately from the
output which input symbol was sent. This channel then acts like the noise-
less channel of Example 1.1.3, and we can send 1 bit per transmission
over this channel with no errors. We can calculate the channel capacity
C = max I (X;Y) in this case, and it is equal to 1 bit per transmission,
in agreement with the analysis above.

In general, communication channels do not have the simple structure of
this example, so we cannot always identify a subset of the inputs to send
information without error. But if we consider a sequence of transmissions,
all channels look like this example and we can then identify a subset of the
input sequences (the codewords) that can be used to transmit information
over the channel in such a way that the sets of possible output sequences
associated with each of the codewords are approximately disjoint. We can
then look at the output sequence and identify the input sequence with a
vanishingly low probability of error.

Example 1.1.5 (Binary symmetric channel ) This is the basic example
of a noisy communication system. The channel is illustrated in Figure 1.5.

1 − p

1 − p

0 0

1 1

p

p

FIGURE 1.5. Binary symmetric channel.
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The channel has a binary input, and its output is equal to the input with
probability 1 − p. With probability p, on the other hand, a 0 is received
as a 1, and vice versa. In this case, the capacity of the channel can be cal-
culated to be C = 1 + p log p + (1 − p) log(1 − p) bits per transmission.
However, it is no longer obvious how one can achieve this capacity. If we
use the channel many times, however, the channel begins to look like the
noisy four-symbol channel of Example 1.1.4, and we can send informa-
tion at a rate C bits per transmission with an arbitrarily low probability
of error.

The ultimate limit on the rate of communication of information over
a channel is given by the channel capacity. The channel coding theorem
shows that this limit can be achieved by using codes with a long block
length. In practical communication systems, there are limitations on the
complexity of the codes that we can use, and therefore we may not be
able to achieve capacity.

Mutual information turns out to be a special case of a more general
quantity called relative entropy D(p||q), which is a measure of the “dis-
tance” between two probability mass functions p and q. It is defined
as

D(p||q) =
∑

x

p(x) log
p(x)

q(x)
. (1.6)

Although relative entropy is not a true metric, it has some of the properties
of a metric. In particular, it is always nonnegative and is zero if and only
if p = q. Relative entropy arises as the exponent in the probability of
error in a hypothesis test between distributions p and q. Relative entropy
can be used to define a geometry for probability distributions that allows
us to interpret many of the results of large deviation theory.

There are a number of parallels between information theory and the
theory of investment in a stock market. A stock market is defined by a
random vector X whose elements are nonnegative numbers equal to the
ratio of the price of a stock at the end of a day to the price at the beginning
of the day. For a stock market with distribution F(x), we can define the
doubling rate W as

W = max
b:bi≥0,

∑
bi=1

∫
log btx dF(x). (1.7)

The doubling rate is the maximum asymptotic exponent in the growth
of wealth. The doubling rate has a number of properties that parallel the
properties of entropy. We explore some of these properties in Chapter 16.
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The quantities H, I, C, D, K, W arise naturally in the following areas:

• Data compression. The entropy H of a random variable is a lower
bound on the average length of the shortest description of the random
variable. We can construct descriptions with average length within 1
bit of the entropy. If we relax the constraint of recovering the source
perfectly, we can then ask what communication rates are required to
describe the source up to distortion D? And what channel capacities
are sufficient to enable the transmission of this source over the chan-
nel and its reconstruction with distortion less than or equal to D?
This is the subject of rate distortion theory.

When we try to formalize the notion of the shortest description
for nonrandom objects, we are led to the definition of Kolmogorov
complexity K . Later, we show that Kolmogorov complexity is uni-
versal and satisfies many of the intuitive requirements for the theory
of shortest descriptions.

• Data transmission. We consider the problem of transmitting infor-
mation so that the receiver can decode the message with a small prob-
ability of error. Essentially, we wish to find codewords (sequences
of input symbols to a channel) that are mutually far apart in the
sense that their noisy versions (available at the output of the channel)
are distinguishable. This is equivalent to sphere packing in high-
dimensional space. For any set of codewords it is possible to calculate
the probability that the receiver will make an error (i.e., make an
incorrect decision as to which codeword was sent). However, in most
cases, this calculation is tedious.

Using a randomly generated code, Shannon showed that one can
send information at any rate below the capacity C of the channel
with an arbitrarily low probability of error. The idea of a randomly
generated code is very unusual. It provides the basis for a simple
analysis of a very difficult problem. One of the key ideas in the proof
is the concept of typical sequences. The capacity C is the logarithm
of the number of distinguishable input signals.

• Network information theory . Each of the topics mentioned previously
involves a single source or a single channel. What if one wishes to com-
press each of many sources and then put the compressed descriptions
together into a joint reconstruction of the sources? This problem is
solved by the Slepian–Wolf theorem. Or what if one has many senders
sending information independently to a common receiver? What is the
channel capacity of this channel? This is the multiple-access channel
solved by Liao and Ahlswede. Or what if one has one sender and many
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receivers and wishes to communicate (perhaps different) information
simultaneously to each of the receivers? This is the broadcast channel.
Finally, what if one has an arbitrary number of senders and receivers in
an environment of interference and noise. What is the capacity region
of achievable rates from the various senders to the receivers? This is
the general network information theory problem. All of the preceding
problems fall into the general area of multiple-user or network informa-
tion theory. Although hopes for a comprehensive theory for networks
may be beyond current research techniques, there is still some hope that
all the answers involve only elaborate forms of mutual information and
relative entropy.

• Ergodic theory . The asymptotic equipartition theorem states that most
sample n-sequences of an ergodic process have probability about 2−nH

and that there are about 2nH such typical sequences.
• Hypothesis testing . The relative entropy D arises as the exponent in

the probability of error in a hypothesis test between two distributions.
It is a natural measure of distance between distributions.

• Statistical mechanics . The entropy H arises in statistical mechanics
as a measure of uncertainty or disorganization in a physical system.
Roughly speaking, the entropy is the logarithm of the number of
ways in which the physical system can be configured. The second law
of thermodynamics says that the entropy of a closed system cannot
decrease. Later we provide some interpretations of the second law.

• Quantum mechanics . Here, von Neumann entropy S = tr(ρ ln ρ) =∑
i λi log λi plays the role of classical Shannon–Boltzmann entropy

H = − ∑
i pi log pi . Quantum mechanical versions of data compres-

sion and channel capacity can then be found.
• Inference. We can use the notion of Kolmogorov complexity K to

find the shortest description of the data and use that as a model to
predict what comes next. A model that maximizes the uncertainty or
entropy yields the maximum entropy approach to inference.

• Gambling and investment . The optimal exponent in the growth rate
of wealth is given by the doubling rate W . For a horse race with
uniform odds, the sum of the doubling rate W and the entropy H is
constant. The increase in the doubling rate due to side information is
equal to the mutual information I between a horse race and the side
information. Similar results hold for investment in the stock market.

• Probability theory . The asymptotic equipartition property (AEP)
shows that most sequences are typical in that they have a sam-
ple entropy close to H . So attention can be restricted to these
approximately 2nH typical sequences. In large deviation theory, the
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probability of a set is approximately 2−nD, where D is the relative
entropy distance between the closest element in the set and the true
distribution.

• Complexity theory . The Kolmogorov complexity K is a measure of
the descriptive complexity of an object. It is related to, but different
from, computational complexity, which measures the time or space
required for a computation.

Information-theoretic quantities such as entropy and relative entropy
arise again and again as the answers to the fundamental questions in
communication and statistics. Before studying these questions, we shall
study some of the properties of the answers. We begin in Chapter 2 with
the definitions and basic properties of entropy, relative entropy, and mutual
information.



CHAPTER 2

ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

In this chapter we introduce most of the basic definitions required for
subsequent development of the theory. It is irresistible to play with their
relationships and interpretations, taking faith in their later utility. After
defining entropy and mutual information, we establish chain rules, the
nonnegativity of mutual information, the data-processing inequality, and
illustrate these definitions by examining sufficient statistics and Fano’s
inequality.

The concept of information is too broad to be captured completely by
a single definition. However, for any probability distribution, we define a
quantity called the entropy, which has many properties that agree with the
intuitive notion of what a measure of information should be. This notion is
extended to define mutual information, which is a measure of the amount
of information one random variable contains about another. Entropy then
becomes the self-information of a random variable. Mutual information is
a special case of a more general quantity called relative entropy, which is
a measure of the distance between two probability distributions. All these
quantities are closely related and share a number of simple properties,
some of which we derive in this chapter.

In later chapters we show how these quantities arise as natural answers
to a number of questions in communication, statistics, complexity, and
gambling. That will be the ultimate test of the value of these definitions.

2.1 ENTROPY

We first introduce the concept of entropy, which is a measure of the
uncertainty of a random variable. Let X be a discrete random variable
with alphabet X and probability mass function p(x) = Pr{X = x}, x ∈ X.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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We denote the probability mass function by p(x) rather than pX(x), for
convenience. Thus, p(x) and p(y) refer to two different random variables
and are in fact different probability mass functions, pX(x) and pY (y),
respectively.

Definition The entropy H(X) of a discrete random variable X is
defined by

H(X) = −
∑
x∈X

p(x) log p(x). (2.1)

We also write H(p) for the above quantity. The log is to the base 2
and entropy is expressed in bits. For example, the entropy of a fair coin
toss is 1 bit. We will use the convention that 0 log 0 = 0, which is easily
justified by continuity since x log x → 0 as x → 0. Adding terms of zero
probability does not change the entropy.

If the base of the logarithm is b, we denote the entropy as Hb(X). If
the base of the logarithm is e, the entropy is measured in nats. Unless
otherwise specified, we will take all logarithms to base 2, and hence all
the entropies will be measured in bits. Note that entropy is a functional
of the distribution of X. It does not depend on the actual values taken by
the random variable X, but only on the probabilities.

We denote expectation by E. Thus, if X ∼ p(x), the expected value of
the random variable g(X) is written

Epg(X) =
∑
x∈X

g(x)p(x), (2.2)

or more simply as Eg(X) when the probability mass function is under-
stood from the context. We shall take a peculiar interest in the eerily
self-referential expectation of g(X) under p(x) when g(X) = log 1

p(X)
.

Remark The entropy of X can also be interpreted as the expected value
of the random variable log 1

p(X)
, where X is drawn according to probability

mass function p(x). Thus,

H(X) = Ep log
1

p(X)
. (2.3)

This definition of entropy is related to the definition of entropy in ther-
modynamics; some of the connections are explored later. It is possible
to derive the definition of entropy axiomatically by defining certain prop-
erties that the entropy of a random variable must satisfy. This approach
is illustrated in Problem 2.46. We do not use the axiomatic approach to
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justify the definition of entropy; instead, we show that it arises as the
answer to a number of natural questions, such as “What is the average
length of the shortest description of the random variable?” First, we derive
some immediate consequences of the definition.

Lemma 2.1.1 H(X) ≥ 0.

Proof: 0 ≤ p(x) ≤ 1 implies that log 1
p(x)

≥ 0. �

Lemma 2.1.2 Hb(X) = (logb a)Ha(X).

Proof: logb p = logb a loga p. �

The second property of entropy enables us to change the base of the
logarithm in the definition. Entropy can be changed from one base to
another by multiplying by the appropriate factor.

Example 2.1.1 Let

X =
{

1 with probability p,

0 with probability 1 − p.
(2.4)

Then
H(X) = −p log p − (1 − p) log(1 − p)

def== H(p). (2.5)

In particular, H(X) = 1 bit when p = 1
2 . The graph of the function H(p)

is shown in Figure 2.1. The figure illustrates some of the basic properties
of entropy: It is a concave function of the distribution and equals 0 when
p = 0 or 1. This makes sense, because when p = 0 or 1, the variable
is not random and there is no uncertainty. Similarly, the uncertainty is
maximum when p = 1

2 , which also corresponds to the maximum value of
the entropy.

Example 2.1.2 Let

X =




a with probability 1
2 ,

b with probability 1
4 ,

c with probability 1
8 ,

d with probability 1
8 .

(2.6)

The entropy of X is

H(X) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

8
log

1

8
= 7

4
bits. (2.7)
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FIGURE 2.1. H(p) vs. p.

Suppose that we wish to determine the value of X with the minimum
number of binary questions. An efficient first question is “Is X = a?”
This splits the probability in half. If the answer to the first question is
no, the second question can be “Is X = b?” The third question can be
“Is X = c?” The resulting expected number of binary questions required
is 1.75. This turns out to be the minimum expected number of binary
questions required to determine the value of X. In Chapter 5 we show that
the minimum expected number of binary questions required to determine
X lies between H(X) and H(X) + 1.

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY

We defined the entropy of a single random variable in Section 2.1. We
now extend the definition to a pair of random variables. There is nothing
really new in this definition because (X, Y ) can be considered to be a
single vector-valued random variable.

Definition The joint entropy H(X, Y ) of a pair of discrete random
variables (X, Y ) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (2.8)
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which can also be expressed as

H(X, Y ) = −E log p(X, Y ). (2.9)

We also define the conditional entropy of a random variable given
another as the expected value of the entropies of the conditional distribu-
tions, averaged over the conditioning random variable.

Definition If (X, Y ) ∼ p(x, y), the conditional entropy H(Y |X) is
defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) (2.10)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (2.11)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (2.12)

= −E log p(Y |X). (2.13)

The naturalness of the definition of joint entropy and conditional entropy
is exhibited by the fact that the entropy of a pair of random variables is
the entropy of one plus the conditional entropy of the other. This is proved
in the following theorem.

Theorem 2.2.1 (Chain rule)

H(X, Y ) = H(X) + H(Y |X). (2.14)

Proof

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.15)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)p(y|x) (2.16)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x) −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

(2.17)

= −
∑
x∈X

p(x) log p(x) −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (2.18)

= H(X) + H(Y |X). (2.19)
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Equivalently, we can write

log p(X, Y ) = log p(X) + log p(Y |X) (2.20)

and take the expectation of both sides of the equation to obtain the
theorem. �

Corollary
H(X, Y |Z) = H(X|Z) + H(Y |X, Z). (2.21)

Proof: The proof follows along the same lines as the theorem. �

Example 2.2.1 Let (X, Y ) have the following joint distribution:

The marginal distribution of X is ( 1
2 , 1

4 , 1
8 , 1

8) and the marginal distribution
of Y is ( 1

4 , 1
4 , 1

4 , 1
4), and hence H(X) = 7

4 bits and H(Y) = 2 bits. Also,

H(X|Y) =
4∑

i=1

p(Y = i)H(X|Y = i) (2.22)

= 1

4
H

(
1

2
,

1

4
,

1

8
,

1

8

)
+ 1

4
H

(
1

4
,

1

2
,

1

8
,

1

8

)

+ 1

4
H

(
1

4
,

1

4
,

1

4
,

1

4

)
+ 1

4
H(1, 0, 0, 0) (2.23)

= 1

4
× 7

4
+ 1

4
× 7

4
+ 1

4
× 2 + 1

4
× 0 (2.24)

= 11

8
bits. (2.25)

Similarly, H(Y |X) = 13
8 bits and H(X, Y ) = 27

8 bits.

Remark Note that H(Y |X) �= H(X|Y). However, H(X) − H(X|Y) =
H(Y)− H(Y |X), a property that we exploit later.
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2.3 RELATIVE ENTROPY AND MUTUAL INFORMATION

The entropy of a random variable is a measure of the uncertainty of the
random variable; it is a measure of the amount of information required on
the average to describe the random variable. In this section we introduce
two related concepts: relative entropy and mutual information.

The relative entropy is a measure of the distance between two distribu-
tions. In statistics, it arises as an expected logarithm of the likelihood ratio.
The relative entropy D(p||q) is a measure of the inefficiency of assuming
that the distribution is q when the true distribution is p. For example, if
we knew the true distribution p of the random variable, we could con-
struct a code with average description length H(p). If, instead, we used
the code for a distribution q, we would need H(p) + D(p||q) bits on the
average to describe the random variable.

Definition The relative entropy or Kullback–Leibler distance between
two probability mass functions p(x) and q(x) is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
(2.26)

= Ep log
p(X)

q(X)
. (2.27)

In the above definition, we use the convention that 0 log 0
0 = 0 and the

convention (based on continuity arguments) that 0 log 0
q

= 0 and p log p

0 =
∞. Thus, if there is any symbol x ∈ X such that p(x) > 0 and q(x) = 0,
then D(p||q) = ∞.

We will soon show that relative entropy is always nonnegative and is
zero if and only if p = q. However, it is not a true distance between
distributions since it is not symmetric and does not satisfy the triangle
inequality. Nonetheless, it is often useful to think of relative entropy as a
“distance” between distributions.

We now introduce mutual information, which is a measure of the
amount of information that one random variable contains about another
random variable. It is the reduction in the uncertainty of one random
variable due to the knowledge of the other.

Definition Consider two random variables X and Y with a joint proba-
bility mass function p(x, y) and marginal probability mass functions p(x)

and p(y). The mutual information I (X;Y) is the relative entropy between
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the joint distribution and the product distribution p(x)p(y):

I (X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.28)

= D(p(x, y)||p(x)p(y)) (2.29)

= Ep(x,y) log
p(X, Y )

p(X)p(Y )
. (2.30)

In Chapter 8 we generalize this definition to continuous random vari-
ables, and in (8.54) to general random variables that could be a mixture
of discrete and continuous random variables.

Example 2.3.1 Let X = {0, 1} and consider two distributions p and q

on X. Let p(0) = 1 − r , p(1) = r , and let q(0) = 1 − s, q(1) = s. Then

D(p||q) = (1 − r) log
1 − r

1 − s
+ r log

r

s
(2.31)

and
D(q||p) = (1 − s) log

1 − s

1 − r
+ s log

s

r
. (2.32)

If r = s, then D(p||q) = D(q||p) = 0. If r = 1
2 , s = 1

4 , we can calculate

D(p||q) = 1

2
log

1
2
3
4

+ 1

2
log

1
2
1
4

= 1 − 1

2
log 3 = 0.2075 bit, (2.33)

whereas

D(q||p) = 3

4
log

3
4
1
2

+ 1

4
log

1
4
1
2

= 3

4
log 3 − 1 = 0.1887 bit. (2.34)

Note that D(p||q) �= D(q||p) in general.

2.4 RELATIONSHIP BETWEEN ENTROPY AND MUTUAL
INFORMATION

We can rewrite the definition of mutual information I (X;Y) as

I (X;Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(2.35)
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=
∑
x,y

p(x, y) log
p(x|y)

p(x)
(2.36)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y) (2.37)

= −
∑

x

p(x) log p(x) −
(

−
∑
x,y

p(x, y) log p(x|y)

)
(2.38)

= H(X) − H(X|Y). (2.39)

Thus, the mutual information I (X;Y) is the reduction in the uncertainty
of X due to the knowledge of Y .

By symmetry, it also follows that

I (X;Y) = H(Y) − H(Y |X). (2.40)

Thus, X says as much about Y as Y says about X.
Since H(X, Y ) = H(X) + H(Y |X), as shown in Section 2.2, we have

I (X;Y) = H(X) + H(Y) − H(X, Y ). (2.41)

Finally, we note that

I (X;X) = H(X) − H(X|X) = H(X). (2.42)

Thus, the mutual information of a random variable with itself is the
entropy of the random variable. This is the reason that entropy is some-
times referred to as self-information.

Collecting these results, we have the following theorem.

Theorem 2.4.1 (Mutual information and entropy)

I (X;Y) = H(X) − H(X|Y) (2.43)

I (X;Y) = H(Y) − H(Y |X) (2.44)

I (X;Y) = H(X) + H(Y) − H(X, Y ) (2.45)

I (X;Y) = I (Y ;X) (2.46)

I (X;X) = H(X). (2.47)
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H(X,Y)

H(Y |X )H(X|Y )

H(Y )

I(X;Y)

H(X )

FIGURE 2.2. Relationship between entropy and mutual information.

The relationship between H(X), H(Y ),H(X, Y ),H(X|Y), H(Y |X),
and I (X;Y) is expressed in a Venn diagram (Figure 2.2). Notice that
the mutual information I (X;Y) corresponds to the intersection of the
information in X with the information in Y .

Example 2.4.1 For the joint distribution of Example 2.2.1, it is easy to
calculate the mutual information I (X;Y) = H(X) − H(X|Y) = H(Y) −
H(Y |X) = 0.375 bit.

2.5 CHAIN RULES FOR ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

We now show that the entropy of a collection of random variables is the
sum of the conditional entropies.

Theorem 2.5.1 (Chain rule for entropy) Let X1, X2, . . . , Xn be drawn
according to p(x1, x2, . . . , xn). Then

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi |Xi−1, . . . , X1). (2.48)

Proof: By repeated application of the two-variable expansion rule for
entropies, we have

H(X1,X2) = H(X1) + H(X2|X1), (2.49)

H(X1, X2,X3) = H(X1) + H(X2, X3|X1) (2.50)
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= H(X1) + H(X2|X1) + H(X3|X2, X1), (2.51)

...

H(X1, X2, . . . , Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|Xn−1, . . . , X1)

(2.52)

=
n∑

i=1

H(Xi |Xi−1, . . . , X1). � (2.53)

Alternative Proof: We write p(x1, . . . , xn) = ∏n
i=1 p(xi |xi−1, . . . , x1)

and evaluate

H(X1, X2, . . . , Xn)

= −
∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log p(x1, x2, . . . , xn) (2.54)

= −
∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log
n∏

i=1

p(xi |xi−1, . . . , x1) (2.55)

= −
∑

x1,x2,...,xn

n∑
i=1

p(x1, x2, . . . , xn) log p(xi |xi−1, . . . , x1) (2.56)

= −
n∑

i=1

∑
x1,x2,...,xn

p(x1, x2, . . . , xn) log p(xi |xi−1, . . . , x1) (2.57)

= −
n∑

i=1

∑
x1,x2,...,xi

p(x1, x2, . . . , xi) log p(xi |xi−1, . . . , x1) (2.58)

=
n∑

i=1

H(Xi |Xi−1, . . . , X1). � (2.59)

We now define the conditional mutual information as the reduction in
the uncertainty of X due to knowledge of Y when Z is given.

Definition The conditional mutual information of random variables X

and Y given Z is defined by

I (X;Y |Z) = H(X|Z) − H(X|Y, Z) (2.60)

= Ep(x,y,z) log
p(X, Y |Z)

p(X|Z)p(Y |Z)
. (2.61)

Mutual information also satisfies a chain rule.
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Theorem 2.5.2 (Chain rule for information)

I (X1, X2, . . . , Xn; Y) =
n∑

i=1

I (Xi; Y |Xi−1, Xi−2, . . . , X1). (2.62)

Proof

I (X1, X2, . . . , Xn; Y)

= H(X1, X2, . . . , Xn) − H(X1, X2, . . . , Xn|Y) (2.63)

=
n∑

i=1

H(Xi |Xi−1, . . . , X1) −
n∑

i=1

H(Xi |Xi−1, . . . , X1, Y )

=
n∑

i=1

I (Xi; Y |X1, X2, . . . , Xi−1). � (2.64)

We define a conditional version of the relative entropy.

Definition For joint probability mass functions p(x, y) and q(x, y), the
conditional relative entropy D(p(y|x)||q(y|x)) is the average of the rela-
tive entropies between the conditional probability mass functions p(y|x)

and q(y|x) averaged over the probability mass function p(x). More pre-
cisely,

D(p(y|x)||q(y|x)) =
∑

x

p(x)
∑

y

p(y|x) log
p(y|x)

q(y|x)
(2.65)

= Ep(x,y) log
p(Y |X)

q(Y |X)
. (2.66)

The notation for conditional relative entropy is not explicit since it omits
mention of the distribution p(x) of the conditioning random variable.
However, it is normally understood from the context.

The relative entropy between two joint distributions on a pair of ran-
dom variables can be expanded as the sum of a relative entropy and a
conditional relative entropy. The chain rule for relative entropy is used in
Section 4.4 to prove a version of the second law of thermodynamics.

Theorem 2.5.3 (Chain rule for relative entropy)

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)). (2.67)
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Proof

D(p(x, y)||q(x, y))

=
∑

x

∑
y

p(x, y) log
p(x, y)

q(x, y)
(2.68)

=
∑

x

∑
y

p(x, y) log
p(x)p(y|x)

q(x)q(y|x)
(2.69)

=
∑

x

∑
y

p(x, y) log
p(x)

q(x)
+

∑
x

∑
y

p(x, y) log
p(y|x)

q(y|x)
(2.70)

= D(p(x)||q(x)) + D(p(y|x)||q(y|x)). � (2.71)

2.6 JENSEN’S INEQUALITY AND ITS CONSEQUENCES

In this section we prove some simple properties of the quantities defined
earlier. We begin with the properties of convex functions.

Definition A function f (x) is said to be convex over an interval (a, b)

if for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2). (2.72)

A function f is said to be strictly convex if equality holds only if λ = 0
or λ = 1.

Definition A function f is concave if −f is convex. A function is
convex if it always lies below any chord. A function is concave if it
always lies above any chord.

Examples of convex functions include x2, |x|, ex , x log x (for x ≥
0), and so on. Examples of concave functions include log x and

√
x for

x ≥ 0. Figure 2.3 shows some examples of convex and concave functions.
Note that linear functions ax + b are both convex and concave. Convexity
underlies many of the basic properties of information-theoretic quantities
such as entropy and mutual information. Before we prove some of these
properties, we derive some simple results for convex functions.

Theorem 2.6.1 If the function f has a second derivative that is non-
negative (positive) over an interval, the function is convex (strictly convex)
over that interval.
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(a)

(b)

FIGURE 2.3. Examples of (a) convex and (b) concave functions.

Proof: We use the Taylor series expansion of the function around x0:

f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(x∗)
2

(x − x0)
2, (2.73)

where x∗ lies between x0 and x. By hypothesis, f ′′(x∗) ≥ 0, and thus
the last term is nonnegative for all x.

We let x0 = λx1 + (1 − λ)x2 and take x = x1, to obtain

f (x1) ≥ f (x0) + f ′(x0)((1 − λ)(x1 − x2)). (2.74)

Similarly, taking x = x2, we obtain

f (x2) ≥ f (x0) + f ′(x0)(λ(x2 − x1)). (2.75)

Multiplying (2.74) by λ and (2.75) by 1 − λ and adding, we obtain (2.72).
The proof for strict convexity proceeds along the same lines. �

Theorem 2.6.1 allows us immediately to verify the strict convexity of
x2, ex , and x log x for x ≥ 0, and the strict concavity of log x and

√
x for

x ≥ 0.
Let E denote expectation. Thus, EX = ∑

x∈X p(x)x in the discrete
case and EX = ∫

xf (x) dx in the continuous case.
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The next inequality is one of the most widely used in mathematics and
one that underlies many of the basic results in information theory.

Theorem 2.6.2 (Jensen’s inequality) If f is a convex function and
X is a random variable,

Ef (X) ≥ f (EX). (2.76)

Moreover, if f is strictly convex, the equality in (2.76) implies that
X = EX with probability 1 (i.e., X is a constant).

Proof: We prove this for discrete distributions by induction on the num-
ber of mass points. The proof of conditions for equality when f is strictly
convex is left to the reader.

For a two-mass-point distribution, the inequality becomes

p1f (x1) + p2f (x2) ≥ f (p1x1 + p2x2), (2.77)

which follows directly from the definition of convex functions. Suppose
that the theorem is true for distributions with k − 1 mass points. Then
writing p′

i = pi/(1 − pk) for i = 1, 2, . . . , k − 1, we have

k∑
i=1

pif (xi) = pkf (xk) + (1 − pk)

k−1∑
i=1

p′
if (xi) (2.78)

≥ pkf (xk) + (1 − pk)f

(
k−1∑
i=1

p′
ixi

)
(2.79)

≥ f

(
pkxk + (1 − pk)

k−1∑
i=1

p′
ixi

)
(2.80)

= f

(
k∑

i=1

pixi

)
, (2.81)

where the first inequality follows from the induction hypothesis and the
second follows from the definition of convexity.

The proof can be extended to continuous distributions by continuity
arguments. �

We now use these results to prove some of the properties of entropy and
relative entropy. The following theorem is of fundamental importance.
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Theorem 2.6.3 (Information inequality) Let p(x), q(x), x ∈ X, be
two probability mass functions. Then

D(p||q) ≥ 0 (2.82)

with equality if and only if p(x) = q(x) for all x.

Proof: Let A = {x : p(x) > 0} be the support set of p(x). Then

−D(p||q) = −
∑
x∈A

p(x) log
p(x)

q(x)
(2.83)

=
∑
x∈A

p(x) log
q(x)

p(x)
(2.84)

≤ log
∑
x∈A

p(x)
q(x)

p(x)
(2.85)

= log
∑
x∈A

q(x) (2.86)

≤ log
∑
x∈X

q(x) (2.87)

= log 1 (2.88)

= 0, (2.89)

where (2.85) follows from Jensen’s inequality. Since log t is a strictly
concave function of t , we have equality in (2.85) if and only if q(x)/p(x)

is constant everywhere [i.e., q(x) = cp(x) for all x]. Thus,
∑

x∈A q(x) =
c
∑

x∈A p(x) = c. We have equality in (2.87) only if
∑

x∈A q(x) = ∑
x∈X

q(x) = 1, which implies that c = 1. Hence, we have D(p||q) = 0 if and
only if p(x) = q(x) for all x. �

Corollary (Nonnegativity of mutual information) For any two random
variables, X, Y ,

I (X;Y) ≥ 0, (2.90)

with equality if and only if X and Y are independent.

Proof: I (X;Y) = D(p(x, y)||p(x)p(y)) ≥ 0, with equality if and only
if p(x, y) = p(x)p(y) (i.e., X and Y are independent). �
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Corollary
D(p(y|x)||q(y|x)) ≥ 0, (2.91)

with equality if and only if p(y|x) = q(y|x) for all y and x such that
p(x) > 0.

Corollary
I (X;Y |Z) ≥ 0, (2.92)

with equality if and only if X and Y are conditionally independent given Z.

We now show that the uniform distribution over the range X is the
maximum entropy distribution over this range. It follows that any random
variable with this range has an entropy no greater than log |X|.

Theorem 2.6.4 H(X) ≤ log |X|, where |X| denotes the number of ele-
ments in the range of X, with equality if and only X has a uniform distri-
bution over X.

Proof: Let u(x) = 1
|X | be the uniform probability mass function over X,

and let p(x) be the probability mass function for X. Then

D(p ‖ u) =
∑

p(x) log
p(x)

u(x)
= log |X| − H(X). (2.93)

Hence by the nonnegativity of relative entropy,

0 ≤ D(p ‖ u) = log |X| − H(X). � (2.94)

Theorem 2.6.5 (Conditioning reduces entropy)(Information can’t hurt)

H(X|Y) ≤ H(X) (2.95)

with equality if and only if X and Y are independent.

Proof: 0 ≤ I (X;Y) = H(X) − H(X|Y). �

Intuitively, the theorem says that knowing another random variable Y

can only reduce the uncertainty in X. Note that this is true only on the
average. Specifically, H(X|Y = y) may be greater than or less than or
equal to H(X), but on the average H(X|Y) = ∑

y p(y)H(X|Y = y) ≤
H(X). For example, in a court case, specific new evidence might increase
uncertainty, but on the average evidence decreases uncertainty.
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Example 2.6.1 Let (X, Y ) have the following joint distribution:

Then H(X) = H(1
8 , 7

8) = 0.544 bit, H(X|Y = 1) = 0 bits, and
H(X|Y = 2) = 1 bit. We calculate H(X|Y) = 3

4H(X|Y = 1) + 1
4

H(X|Y = 2) = 0.25 bit. Thus, the uncertainty in X is increased if Y = 2
is observed and decreased if Y = 1 is observed, but uncertainty decreases
on the average.

Theorem 2.6.6 (Independence bound on entropy) Let
X1, X2, . . . , Xn be drawn according to p(x1, x2, . . . , xn). Then

H(X1, X2, . . . , Xn) ≤
n∑

i=1

H(Xi) (2.96)

with equality if and only if the Xi are independent.

Proof: By the chain rule for entropies,

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi |Xi−1, . . . , X1) (2.97)

≤
n∑

i=1

H(Xi), (2.98)

where the inequality follows directly from Theorem 2.6.5. We have equal-
ity if and only if Xi is independent of Xi−1, . . . , X1 for all i (i.e., if and
only if the Xi’s are independent). �

2.7 LOG SUM INEQUALITY AND ITS APPLICATIONS

We now prove a simple consequence of the concavity of the logarithm,
which will be used to prove some concavity results for the entropy.
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Theorem 2.7.1 (Log sum inequality) For nonnegative numbers,
a1, a2, . . . , an and b1, b2, . . . , bn,

n∑
i=1

ai log
ai

bi

≥
(

n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

(2.99)

with equality if and only if ai

bi
= const.

We again use the convention that 0 log 0 = 0, a log a
0 = ∞ if a > 0 and

0 log 0
0 = 0. These follow easily from continuity.

Proof: Assume without loss of generality that ai > 0 and bi > 0. The
function f (t) = t log t is strictly convex, since f ′′(t) = 1

t
log e > 0 for all

positive t . Hence by Jensen’s inequality, we have

∑
αif (ti) ≥ f

(∑
αiti

)
(2.100)

for αi ≥ 0,
∑

i αi = 1. Setting αi = bi∑n
j=1 bj

and ti = ai

bi
, we obtain

∑ ai∑
bj

log
ai

bi

≥
∑ ai∑

bj

log
∑ ai∑

bj

, (2.101)

which is the log sum inequality. �

We now use the log sum inequality to prove various convexity results.
We begin by reproving Theorem 2.6.3, which states that D(p||q) ≥ 0 with
equality if and only if p(x) = q(x). By the log sum inequality,

D(p||q) =
∑

p(x) log
p(x)

q(x)
(2.102)

≥
(∑

p(x)
)

log
∑

p(x)
/∑

q(x) (2.103)

= 1 log
1

1
= 0 (2.104)

with equality if and only if p(x)

q(x)
= c. Since both p and q are probability

mass functions, c = 1, and hence we have D(p||q) = 0 if and only if
p(x) = q(x) for all x.
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Theorem 2.7.2 (Convexity of relative entropy) D(p||q) is convex in
the pair (p, q); that is, if (p1, q1) and (p2, q2) are two pairs of probability
mass functions, then

D(λp1 + (1 − λ)p2||λq1 + (1 − λ)q2) ≤ λD(p1||q1) + (1 − λ)D(p2||q2)

(2.105)
for all 0 ≤ λ ≤ 1.

Proof: We apply the log sum inequality to a term on the left-hand side
of (2.105):

(λp1(x) + (1 − λ)p2(x)) log
λp1(x) + (1 − λ)p2(x)

λq1(x) + (1 − λ)q2(x)

≤ λp1(x) log
λp1(x)

λq1(x)
+ (1 − λ)p2(x) log

(1 − λ)p2(x)

(1 − λ)q2(x)
. (2.106)

Summing this over all x, we obtain the desired property. �

Theorem 2.7.3 (Concavity of entropy) H(p) is a concave function
of p.

Proof
H(p) = log |X| − D(p||u), (2.107)

where u is the uniform distribution on |X| outcomes. The concavity of H

then follows directly from the convexity of D. �

Alternative Proof: Let X1 be a random variable with distribution p1,
taking on values in a set A. Let X2 be another random variable with
distribution p2 on the same set. Let

θ =
{

1 with probability λ,

2 with probability 1 − λ.
(2.108)

Let Z = Xθ . Then the distribution of Z is λp1 + (1 − λ)p2. Now since
conditioning reduces entropy, we have

H(Z) ≥ H(Z|θ), (2.109)

or equivalently,

H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2), (2.110)

which proves the concavity of the entropy as a function of the distribution.
�
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One of the consequences of the concavity of entropy is that mixing two
gases of equal entropy results in a gas with higher entropy.

Theorem 2.7.4 Let (X, Y ) ∼ p(x, y) = p(x)p(y|x). The mutual infor-
mation I (X;Y) is a concave function of p(x) for fixed p(y|x) and a convex
function of p(y|x) for fixed p(x).

Proof: To prove the first part, we expand the mutual information

I (X;Y) = H(Y) − H(Y |X) = H(Y) −
∑

x

p(x)H(Y |X = x). (2.111)

If p(y|x) is fixed, then p(y) is a linear function of p(x). Hence H(Y),
which is a concave function of p(y), is a concave function of p(x). The
second term is a linear function of p(x). Hence, the difference is a concave
function of p(x).

To prove the second part, we fix p(x) and consider two different con-
ditional distributions p1(y|x) and p2(y|x). The corresponding joint dis-
tributions are p1(x, y) = p(x)p1(y|x) and p2(x, y) = p(x)p2(y|x), and
their respective marginals are p(x), p1(y) and p(x), p2(y). Consider a
conditional distribution

pλ(y|x) = λp1(y|x) + (1 − λ)p2(y|x), (2.112)

which is a mixture of p1(y|x) and p2(y|x) where 0 ≤ λ ≤ 1. The cor-
responding joint distribution is also a mixture of the corresponding joint
distributions,

pλ(x, y) = λp1(x, y) + (1 − λ)p2(x, y), (2.113)

and the distribution of Y is also a mixture,

pλ(y) = λp1(y) + (1 − λ)p2(y). (2.114)

Hence if we let qλ(x, y) = p(x)pλ(y) be the product of the marginal
distributions, we have

qλ(x, y) = λq1(x, y) + (1 − λ)q2(x, y). (2.115)

Since the mutual information is the relative entropy between the joint
distribution and the product of the marginals,

I (X;Y) = D(pλ(x, y)||qλ(x, y)), (2.116)

and relative entropy D(p||q) is a convex function of (p, q), it follows that
the mutual information is a convex function of the conditional distribution.

�
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2.8 DATA-PROCESSING INEQUALITY

The data-processing inequality can be used to show that no clever manip-
ulation of the data can improve the inferences that can be made from
the data.

Definition Random variables X, Y,Z are said to form a Markov chain
in that order (denoted by X → Y → Z) if the conditional distribution of
Z depends only on Y and is conditionally independent of X. Specifically,
X, Y , and Z form a Markov chain X → Y → Z if the joint probability
mass function can be written as

p(x, y, z) = p(x)p(y|x)p(z|y). (2.117)

Some simple consequences are as follows:

• X → Y → Z if and only if X and Z are conditionally independent
given Y . Markovity implies conditional independence because

p(x, z|y) = p(x, y, z)

p(y)
= p(x, y)p(z|y)

p(y)
= p(x|y)p(z|y). (2.118)

This is the characterization of Markov chains that can be extended
to define Markov fields, which are n-dimensional random processes
in which the interior and exterior are independent given the values
on the boundary.

• X → Y → Z implies that Z → Y → X. Thus, the condition is some-
times written X ↔ Y ↔ Z.

• If Z = f (Y ), then X → Y → Z.

We can now prove an important and useful theorem demonstrating that
no processing of Y , deterministic or random, can increase the information
that Y contains about X.

Theorem 2.8.1 (Data-processing inequality) If X → Y → Z, then
I (X;Y) ≥ I (X;Z).

Proof: By the chain rule, we can expand mutual information in two
different ways:

I (X;Y, Z) = I (X;Z) + I (X;Y |Z) (2.119)

= I (X;Y) + I (X;Z|Y). (2.120)
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Since X and Z are conditionally independent given Y , we have
I (X;Z|Y) = 0. Since I (X;Y |Z) ≥ 0, we have

I (X;Y) ≥ I (X;Z). (2.121)

We have equality if and only if I (X;Y |Z) = 0 (i.e., X → Z → Y forms
a Markov chain). Similarly, one can prove that I (Y ;Z) ≥ I (X;Z). �

Corollary In particular, if Z = g(Y ), we have I (X;Y) ≥ I (X; g(Y )).

Proof: X → Y → g(Y ) forms a Markov chain. �

Thus functions of the data Y cannot increase the information about X.

Corollary If X → Y → Z, then I (X;Y |Z) ≤ I (X;Y).

Proof: We note in (2.119) and (2.120) that I (X;Z|Y) = 0, by
Markovity, and I (X;Z) ≥ 0. Thus,

I (X;Y |Z) ≤ I (X;Y). � (2.122)

Thus, the dependence of X and Y is decreased (or remains unchanged)
by the observation of a “downstream” random variable Z. Note that it is
also possible that I (X;Y |Z) > I (X;Y) when X, Y , and Z do not form a
Markov chain. For example, let X and Y be independent fair binary ran-
dom variables, and let Z = X + Y . Then I (X;Y) = 0, but I (X;Y |Z) =
H(X|Z) − H(X|Y,Z) = H(X|Z) = P(Z = 1)H(X|Z = 1) = 1

2 bit.

2.9 SUFFICIENT STATISTICS

This section is a sidelight showing the power of the data-processing
inequality in clarifying an important idea in statistics. Suppose that we
have a family of probability mass functions {fθ(x)} indexed by θ , and let
X be a sample from a distribution in this family. Let T (X) be any statistic
(function of the sample) like the sample mean or sample variance. Then
θ → X → T (X), and by the data-processing inequality, we have

I (θ;T (X)) ≤ I (θ;X) (2.123)

for any distribution on θ . However, if equality holds, no information
is lost.

A statistic T (X) is called sufficient for θ if it contains all the infor-
mation in X about θ .
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Definition A function T (X) is said to be a sufficient statistic relative to
the family {fθ(x)} if X is independent of θ given T (X) for any distribution
on θ [i.e., θ → T (X) → X forms a Markov chain].

This is the same as the condition for equality in the data-processing
inequality,

I (θ;X) = I (θ; T (X)) (2.124)

for all distributions on θ . Hence sufficient statistics preserve mutual infor-
mation and conversely.

Here are some examples of sufficient statistics:

1. Let X1,X2, . . . , Xn, Xi ∈ {0, 1}, be an independent and identically
distributed (i.i.d.) sequence of coin tosses of a coin with unknown
parameter θ = Pr(Xi = 1). Given n, the number of 1’s is a sufficient
statistic for θ . Here T (X1, X2, . . . , Xn) = ∑n

i=1 Xi . In fact, we can
show that given T , all sequences having that many 1’s are equally
likely and independent of the parameter θ . Specifically,

Pr

{
(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)

∣∣∣∣∣
n∑

i=1

Xi = k

}

=
{

1
(n
k)

if
∑

xi = k,

0 otherwise.
(2.125)

Thus, θ → ∑
Xi → (X1, X2, . . . , Xn) forms a Markov chain, and

T is a sufficient statistic for θ .
The next two examples involve probability densities instead of

probability mass functions, but the theory still applies. We define
entropy and mutual information for continuous random variables in
Chapter 8.

2. If X is normally distributed with mean θ and variance 1; that is, if

fθ(x) = 1√
2π

e−(x−θ)2/2 = N(θ, 1), (2.126)

and X1, X2, . . . , Xn are drawn independently according to this distri-
bution, a sufficient statistic for θ is the sample mean Xn = 1

n

∑n
i=1 Xi .

It can be verified that the conditional distribution of X1, X2, . . . , Xn,
conditioned on Xn and n does not depend on θ .
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3. If fθ = Uniform(θ, θ + 1), a sufficient statistic for θ is

T (X1, X2, . . . , Xn)

= (max{X1, X2, . . . , Xn}, min{X1, X2, . . . , Xn}). (2.127)

The proof of this is slightly more complicated, but again one can
show that the distribution of the data is independent of the parameter
given the statistic T .

The minimal sufficient statistic is a sufficient statistic that is a function
of all other sufficient statistics.

Definition A statistic T (X) is a minimal sufficient statistic relative to
{fθ(x)} if it is a function of every other sufficient statistic U . Interpreting
this in terms of the data-processing inequality, this implies that

θ → T (X) → U(X) → X. (2.128)

Hence, a minimal sufficient statistic maximally compresses the infor-
mation about θ in the sample. Other sufficient statistics may contain
additional irrelevant information. For example, for a normal distribution
with mean θ , the pair of functions giving the mean of all odd samples and
the mean of all even samples is a sufficient statistic, but not a minimal
sufficient statistic. In the preceding examples, the sufficient statistics are
also minimal.

2.10 FANO’S INEQUALITY

Suppose that we know a random variable Y and we wish to guess the value
of a correlated random variable X. Fano’s inequality relates the probabil-
ity of error in guessing the random variable X to its conditional entropy
H(X|Y). It will be crucial in proving the converse to Shannon’s channel
capacity theorem in Chapter 7. From Problem 2.5 we know that the con-
ditional entropy of a random variable X given another random variable
Y is zero if and only if X is a function of Y . Hence we can estimate X

from Y with zero probability of error if and only if H(X|Y) = 0.
Extending this argument, we expect to be able to estimate X with a

low probability of error only if the conditional entropy H(X|Y) is small.
Fano’s inequality quantifies this idea. Suppose that we wish to estimate a
random variable X with a distribution p(x). We observe a random variable
Y that is related to X by the conditional distribution p(y|x). From Y , we
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calculate a function g(Y ) = X̂, where X̂ is an estimate of X and takes on
values in X̂. We will not restrict the alphabet X̂ to be equal to X, and we
will also allow the function g(Y ) to be random. We wish to bound the
probability that X̂ �= X. We observe that X → Y → X̂ forms a Markov
chain. Define the probability of error

Pe = Pr
{
X̂ �= X

}
. (2.129)

Theorem 2.10.1 (Fano’s Inequality) For any estimator X̂ such that
X → Y → X̂, with Pe = Pr(X �= X̂), we have

H(Pe) + Pe log |X| ≥ H(X|X̂) ≥ H(X|Y). (2.130)

This inequality can be weakened to

1 + Pe log |X| ≥ H(X|Y) (2.131)

or

Pe ≥ H(X|Y) − 1

log |X| . (2.132)

Remark Note from (2.130) that Pe = 0 implies that H(X|Y) = 0, as
intuition suggests.

Proof: We first ignore the role of Y and prove the first inequality in
(2.130). We will then use the data-processing inequality to prove the more
traditional form of Fano’s inequality, given by the second inequality in
(2.130). Define an error random variable,

E =
{

1 if X̂ �= X,

0 if X̂ = X.
(2.133)

Then, using the chain rule for entropies to expand H(E, X|X̂) in two
different ways, we have

H(E, X|X̂) = H(X|X̂) + H(E|X, X̂)︸ ︷︷ ︸
=0

(2.134)

= H(E|X̂)︸ ︷︷ ︸
≤H(Pe)

+ H(X|E, X̂)︸ ︷︷ ︸
≤Pe log |X |

. (2.135)

Since conditioning reduces entropy, H(E|X̂) ≤ H(E) = H(Pe). Now
since E is a function of X and X̂, the conditional entropy H(E|X, X̂) is
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equal to 0. Also, since E is a binary-valued random variable, H(E) =
H(Pe). The remaining term, H(X|E, X̂), can be bounded as follows:

H(X|E, X̂) = Pr(E = 0)H(X|X̂, E = 0) + Pr(E = 1)H(X|X̂, E = 1)

≤ (1 − Pe)0 + Pe log |X|, (2.136)

since given E = 0, X = X̂, and given E = 1, we can upper bound the
conditional entropy by the log of the number of possible outcomes. Com-
bining these results, we obtain

H(Pe) + Pe log |X| ≥ H(X|X̂). (2.137)

By the data-processing inequality, we have I (X; X̂) ≤ I (X;Y) since
X → Y → X̂ is a Markov chain, and therefore H(X|X̂) ≥ H(X|Y). Thus,
we have

H(Pe) + Pe log |X| ≥ H(X|X̂) ≥ H(X|Y). � (2.138)

Corollary For any two random variables X and Y , let p = Pr(X �= Y).

H(p) + p log |X| ≥ H(X|Y). (2.139)

Proof: Let X̂ = Y in Fano’s inequality. �

For any two random variables X and Y , if the estimator g(Y ) takes
values in the set X, we can strengthen the inequality slightly by replacing
log |X| with log(|X| − 1).

Corollary Let Pe = Pr(X �= X̂), and let X̂ : Y → X; then

H(Pe) + Pe log(|X| − 1) ≥ H(X|Y). (2.140)

Proof: The proof of the theorem goes through without change, except
that

H(X|E, X̂) = Pr(E = 0)H(X|X̂, E = 0) + Pr(E = 1)H(X|X̂, E = 1)

(2.141)
≤ (1 − Pe)0 + Pe log(|X| − 1), (2.142)

since given E = 0, X = X̂, and given E = 1, the range of possible X

outcomes is |X| − 1, we can upper bound the conditional entropy by the
log(|X| − 1), the logarithm of the number of possible outcomes. Substi-
tuting this provides us with the stronger inequality. �
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Remark Suppose that there is no knowledge of Y . Thus, X must be
guessed without any information. Let X ∈ {1, 2, . . . , m} and p1 ≥ p2 ≥
· · · ≥ pm. Then the best guess of X is X̂ = 1 and the resulting probability
of error is Pe = 1 − p1. Fano’s inequality becomes

H(Pe) + Pe log(m − 1) ≥ H(X). (2.143)

The probability mass function

(p1, p2, . . . , pm) =
(

1 − Pe,
Pe

m − 1
, . . . ,

Pe

m − 1

)
(2.144)

achieves this bound with equality. Thus, Fano’s inequality is sharp.
While we are at it, let us introduce a new inequality relating probability

of error and entropy. Let X and X′ by two independent identically dis-
tributed random variables with entropy H(X). The probability at X = X′
is given by

Pr(X = X′) =
∑

x

p2(x). (2.145)

We have the following inequality:

Lemma 2.10.1 If X and X′ are i.i.d. with entropy H(X),

Pr(X = X′) ≥ 2−H(X), (2.146)

with equality if and only if X has a uniform distribution.

Proof: Suppose that X ∼ p(x). By Jensen’s inequality, we have

2E log p(X) ≤ E2log p(X), (2.147)

which implies that

2−H(X) = 2
∑

p(x) log p(x) ≤
∑

p(x)2log p(x) =
∑

p2(x). � (2.148)

Corollary Let X, X′ be independent with X ∼ p(x), X′ ∼ r(x), x, x′ ∈
X. Then

Pr(X = X′) ≥ 2−H(p)−D(p||r), (2.149)

Pr(X = X′) ≥ 2−H(r)−D(r||p). (2.150)
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Proof: We have

2−H(p)−D(p||r) = 2
∑

p(x) log p(x)+∑
p(x) log r(x)

p(x) (2.151)

= 2
∑

p(x) log r(x) (2.152)

≤
∑

p(x)2log r(x) (2.153)

=
∑

p(x)r(x) (2.154)

= Pr(X = X′), (2.155)

where the inequality follows from Jensen’s inequality and the convexity
of the function f (y) = 2y . �

The following telegraphic summary omits qualifying conditions.

SUMMARY

Definition The entropy H(X) of a discrete random variable X is
defined by

H(X) = −
∑
x∈X

p(x) log p(x). (2.156)

Properties of H

1. H(X) ≥ 0.
2. Hb(X) = (logb a)Ha(X).

3. (Conditioning reduces entropy) For any two random variables, X

and Y , we have

H(X|Y) ≤ H(X) (2.157)

with equality if and only if X and Y are independent.
4. H(X1, X2, . . . , Xn) ≤ ∑n

i=1 H(Xi), with equality if and only if the
Xi are independent.

5. H(X) ≤ log | X |, with equality if and only if X is distributed uni-
formly over X.

6. H(p) is concave in p.



42 ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION

Definition The relative entropy D(p ‖ q) of the probability mass
function p with respect to the probability mass function q is defined by

D(p ‖ q) =
∑

x
p(x) log

p(x)

q(x)
. (2.158)

Definition The mutual information between two random variables X

and Y is defined as

I (X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.159)

Alternative expressions

H(X) = Ep log
1

p(X)
, (2.160)

H(X, Y ) = Ep log
1

p(X, Y )
, (2.161)

H(X|Y) = Ep log
1

p(X|Y)
, (2.162)

I (X;Y) = Ep log
p(X, Y )

p(X)p(Y )
, (2.163)

D(p||q) = Ep log
p(X)

q(X)
. (2.164)

Properties of D and I

1. I (X;Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) = H(X) +
H(Y) − H(X, Y ).

2. D(p ‖ q) ≥ 0 with equality if and only if p(x) = q(x), for all x ∈
X.

3. I (X;Y) = D(p(x, y)||p(x)p(y)) ≥ 0, with equality if and only if
p(x, y) = p(x)p(y) (i.e., X and Y are independent).

4. If | X |= m, and u is the uniform distribution over X, then D(p ‖
u) = log m − H(p).

5. D(p||q) is convex in the pair (p, q).

Chain rules
Entropy: H(X1, X2, . . . , Xn) = ∑n

i=1 H(Xi |Xi−1, . . . , X1).

Mutual information:
I (X1, X2, . . . , Xn; Y) = ∑n

i=1 I (Xi;Y |X1, X2, . . . , Xi−1).
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Relative entropy:
D(p(x, y)||q(x, y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)).

Jensen’s inequality. If f is a convex function, then Ef (X) ≥ f (EX).

Log sum inequality. For n positive numbers, a1, a2, . . . , an and
b1, b2, . . . , bn,

n∑
i=1

ai log
ai

bi

≥
(

n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

(2.165)

with equality if and only if ai

bi
= constant.

Data-processing inequality. If X → Y → Z forms a Markov chain,
I (X;Y) ≥ I (X;Z).

Sufficient statistic. T (X) is sufficient relative to {fθ(x)} if and only
if I (θ;X) = I (θ; T (X)) for all distributions on θ .

Fano’s inequality. Let Pe = Pr{X̂(Y ) �= X}. Then

H(Pe) + Pe log |X| ≥ H(X|Y). (2.166)

Inequality. If X and X′ are independent and identically distributed,
then

Pr(X = X′) ≥ 2−H(X), (2.167)

PROBLEMS

2.1 Coin flips . A fair coin is flipped until the first head occurs. Let
X denote the number of flips required.
(a) Find the entropy H(X) in bits. The following expressions may

be useful:

∞∑
n=0

rn = 1

1 − r
,

∞∑
n=0

nrn = r

(1 − r)2
.

(b) A random variable X is drawn according to this distribution.
Find an “efficient” sequence of yes–no questions of the form,
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“Is X contained in the set S?” Compare H(X) to the expected
number of questions required to determine X.

2.2 Entropy of functions . Let X be a random variable taking on a
finite number of values. What is the (general) inequality relation-
ship of H(X) and H(Y) if
(a) Y = 2X?
(b) Y = cos X?

2.3 Minimum entropy . What is the minimum value of
H(p1, . . . , pn) = H(p) as p ranges over the set of n-dimensional
probability vectors? Find all p’s that achieve this minimum.

2.4 Entropy of functions of a random variable. Let X be a discrete
random variable. Show that the entropy of a function of X is less
than or equal to the entropy of X by justifying the following steps:

H(X, g(X))
(a)= H(X) + H(g(X) | X) (2.168)

(b)= H(X), (2.169)

H(X, g(X))
(c)= H(g(X)) + H(X | g(X)) (2.170)

(d)≥ H(g(X)). (2.171)

Thus, H(g(X)) ≤ H(X).

2.5 Zero conditional entropy . Show that if H(Y |X) = 0, then Y is
a function of X [i.e., for all x with p(x) > 0, there is only one
possible value of y with p(x, y) > 0].

2.6 Conditional mutual information vs. unconditional mutual informa-
tion. Give examples of joint random variables X, Y , and Z

such that
(a) I (X;Y | Z) < I (X;Y).
(b) I (X;Y | Z) > I (X;Y).

2.7 Coin weighing . Suppose that one has n coins, among which there
may or may not be one counterfeit coin. If there is a counterfeit
coin, it may be either heavier or lighter than the other coins. The
coins are to be weighed by a balance.
(a) Find an upper bound on the number of coins n so that k

weighings will find the counterfeit coin (if any) and correctly
declare it to be heavier or lighter.
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(b) (Difficult) What is the coin- weighing strategy for k = 3 weigh-
ings and 12 coins?

2.8 Drawing with and without replacement . An urn contains r red, w

white, and b black balls. Which has higher entropy, drawing k ≥ 2
balls from the urn with replacement or without replacement? Set it
up and show why. (There is both a difficult way and a relatively
simple way to do this.)

2.9 Metric. A function ρ(x, y) is a metric if for all x, y,
• ρ(x, y) ≥ 0.
• ρ(x, y) = ρ(y, x).
• ρ(x, y) = 0 if and only if x = y.
• ρ(x, y) + ρ(y, z) ≥ ρ(x, z).
(a) Show that ρ(X, Y ) = H(X|Y) + H(Y |X) satisfies the first,

second, and fourth properties above. If we say that X = Y if
there is a one-to-one function mapping from X to Y , the third
property is also satisfied, and ρ(X, Y ) is a metric.

(b) Verify that ρ(X, Y ) can also be expressed as

ρ(X, Y ) = H(X) + H(Y) − 2I (X;Y) (2.172)

= H(X, Y ) − I (X;Y) (2.173)

= 2H(X, Y ) − H(X) − H(Y). (2.174)

2.10 Entropy of a disjoint mixture. Let X1 and X2 be discrete random
variables drawn according to probability mass functions p1(·) and
p2(·) over the respective alphabets X1 = {1, 2, . . . , m} and X2 =
{m + 1, . . . , n}. Let

X =
{

X1 with probability α,

X2 with probability 1 − α.

(a) Find H(X) in terms of H(X1), H(X2), and α.

(b) Maximize over α to show that 2H(X) ≤ 2H(X1) + 2H(X2) and
interpret using the notion that 2H(X) is the effective alpha-
bet size.

2.11 Measure of correlation. Let X1 and X2 be identically distributed
but not necessarily independent. Let

ρ = 1 − H(X2 | X1)

H(X1)
.
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(a) Show that ρ = I (X1;X2)

H(X1)
.

(b) Show that 0 ≤ ρ ≤ 1.

(c) When is ρ = 0?
(d) When is ρ = 1?

2.12 Example of joint entropy . Let p(x, y) be given by

Find:
(a) H(X),H(Y ).

(b) H(X | Y), H(Y | X).

(c) H(X, Y ).

(d) H(Y) − H(Y | X).

(e) I (X;Y).
(f) Draw a Venn diagram for the quantities in parts (a) through (e).

2.13 Inequality . Show that ln x ≥ 1 − 1
x

for x > 0.

2.14 Entropy of a sum. Let X and Y be random variables that take
on values x1, x2, . . . , xr and y1, y2, . . . , ys , respectively. Let Z =
X + Y.

(a) Show that H(Z|X) = H(Y |X). Argue that if X, Y are inde-
pendent, then H(Y) ≤ H(Z) and H(X) ≤ H(Z). Thus, the
addition of independent random variables adds uncertainty.

(b) Give an example of (necessarily dependent) random variables
in which H(X) > H(Z) and H(Y) > H(Z).

(c) Under what conditions does H(Z) = H(X) + H(Y)?

2.15 Data processing . Let X1 → X2 → X3 → · · · → Xn form a
Markov chain in this order; that is, let

p(x1, x2, . . . , xn) = p(x1)p(x2|x1) · · ·p(xn|xn−1).

Reduce I (X1; X2, . . . , Xn) to its simplest form.

2.16 Bottleneck . Suppose that a (nonstationary) Markov chain starts
in one of n states, necks down to k < n states, and then
fans back to m > k states. Thus, X1 → X2 → X3, that is,
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p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2), for all x1 ∈ {1, 2, . . . , n},
x2 ∈ {1, 2, . . . , k}, x3 ∈ {1, 2, . . . , m}.
(a) Show that the dependence of X1 and X3 is limited by the

bottleneck by proving that I (X1;X3) ≤ log k.

(b) Evaluate I (X1; X3) for k = 1, and conclude that no depen-
dence can survive such a bottleneck.

2.17 Pure randomness and bent coins . Let X1, X2, . . . , Xn denote the
outcomes of independent flips of a bent coin. Thus, Pr {Xi =
1} = p, Pr {Xi = 0} = 1 − p, where p is unknown. We wish
to obtain a sequence Z1, Z2, . . . , ZK of fair coin flips from
X1, X2, . . . , Xn. Toward this end, let f : Xn → {0, 1}∗ (where
{0, 1}∗ = {�, 0, 1, 00, 01, . . .} is the set of all finite-length binary
sequences) be a mapping f (X1, X2, . . . , Xn) = (Z1, Z2, . . . , ZK),
where Zi ∼ Bernoulli ( 1

2), and K may depend on (X1, . . . , Xn).
In order that the sequence Z1, Z2, . . . appear to be fair coin flips,
the map f from bent coin flips to fair flips must have the prop-
erty that all 2k sequences (Z1, Z2, . . . , Zk) of a given length k

have equal probability (possibly 0), for k = 1, 2, . . .. For example,
for n = 2, the map f (01) = 0, f (10) = 1, f (00) = f (11) = �

(the null string) has the property that Pr{Z1 = 1|K = 1} = Pr{Z1 =
0|K = 1} = 1

2 . Give reasons for the following inequalities:

nH(p)
(a)= H(X1, . . . , Xn)

(b)≥ H(Z1, Z2, . . . , ZK, K)

(c)= H(K) + H(Z1, . . . , ZK |K)

(d)= H(K) + E(K)

(e)≥ EK.

Thus, no more than nH(p) fair coin tosses can be derived from
(X1, . . . , Xn), on the average. Exhibit a good map f on sequences
of length 4.

2.18 World Series . The World Series is a seven-game series that termi-
nates as soon as either team wins four games. Let X be the random
variable that represents the outcome of a World Series between
teams A and B; possible values of X are AAAA, BABABAB, and
BBBAAAA. Let Y be the number of games played, which ranges
from 4 to 7. Assuming that A and B are equally matched and that
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the games are independent, calculate H(X), H(Y), H(Y |X), and
H(X|Y).

2.19 Infinite entropy . This problem shows that the entropy of a discrete
random variable can be infinite. Let A = ∑∞

n=2(n log2 n)−1. [It is
easy to show that A is finite by bounding the infinite sum by the
integral of (x log2 x)−1.] Show that the integer-valued random vari-
able X defined by Pr(X = n) = (An log2 n)−1 for n = 2, 3, . . .,
has H(X) = +∞.

2.20 Run-length coding . Let X1, X2, . . . , Xn be (possibly dependent)
binary random variables. Suppose that one calculates the run
lengths R = (R1, R2, . . .) of this sequence (in order as they
occur). For example, the sequence X = 0001100100 yields run
lengths R = (3, 2, 2, 1, 2). Compare H(X1, X2, . . . , Xn), H(R),
and H(Xn, R). Show all equalities and inequalities, and bound all
the differences.

2.21 Markov’s inequality for probabilities . Let p(x) be a probability
mass function. Prove, for all d ≥ 0, that

Pr {p(X) ≤ d} log
1

d
≤ H(X). (2.175)

2.22 Logical order of ideas . Ideas have been developed in order of
need and then generalized if necessary. Reorder the following ideas,
strongest first, implications following:
(a) Chain rule for I (X1, . . . , Xn; Y), chain rule for D(p(x1, . . . ,

xn)||q(x1, x2, . . . , xn)), and chain rule for H(X1, X2, . . . , Xn).
(b) D(f ||g) ≥ 0, Jensen’s inequality, I (X;Y) ≥ 0.

2.23 Conditional mutual information. Consider a sequence of n binary
random variables X1, X2, . . . , Xn. Each sequence with an even
number of 1’s has probability 2−(n−1), and each sequence with an
odd number of 1’s has probability 0. Find the mutual informations

I (X1; X2), I (X2; X3|X1), . . . , I (Xn−1; Xn|X1, . . . , Xn−2).

2.24 Average entropy . Let H(p) = −p log2 p − (1 − p) log2(1 − p)

be the binary entropy function.
(a) Evaluate H( 1

4) using the fact that log2 3 ≈ 1.584. (Hint: You
may wish to consider an experiment with four equally likely
outcomes, one of which is more interesting than the others.)
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(b) Calculate the average entropy H(p) when the probability p is
chosen uniformly in the range 0 ≤ p ≤ 1.

(c) (Optional ) Calculate the average entropy H(p1, p2, p3), where
(p1, p2, p3) is a uniformly distributed probability vector. Gen-
eralize to dimension n.

2.25 Venn diagrams . There isn’t really a notion of mutual information
common to three random variables. Here is one attempt at a defini-
tion: Using Venn diagrams, we can see that the mutual information
common to three random variables X, Y , and Z can be defined by

I (X;Y ; Z) = I (X;Y) − I (X;Y |Z) .

This quantity is symmetric in X, Y , and Z, despite the preceding
asymmetric definition. Unfortunately, I (X;Y ; Z) is not necessar-
ily nonnegative. Find X, Y , and Z such that I (X;Y ; Z) < 0, and
prove the following two identities:
(a) I (X;Y ; Z) = H(X, Y,Z) − H(X) − H(Y) − H(Z) +

I (X;Y) + I (Y ;Z) + I (Z;X).
(b) I (X;Y ; Z) = H(X, Y, Z) − H(X, Y ) − H(Y, Z) −

H(Z, X) + H(X) + H(Y) + H(Z).
The first identity can be understood using the Venn diagram analogy
for entropy and mutual information. The second identity follows
easily from the first.

2.26 Another proof of nonnegativity of relative entropy . In view of the
fundamental nature of the result D(p||q) ≥ 0, we will give another
proof.
(a) Show that ln x ≤ x − 1 for 0 < x < ∞.
(b) Justify the following steps:

−D(p||q) =
∑

x

p(x) ln
q(x)

p(x)
(2.176)

≤
∑

x

p(x)

(
q(x)

p(x)
− 1

)
(2.177)

≤ 0. (2.178)

(c) What are the conditions for equality?

2.27 Grouping rule for entropy . Let p = (p1, p2, . . . , pm) be a prob-
ability distribution on m elements (i.e., pi ≥ 0 and

∑m
i=1 pi = 1).
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Define a new distribution q on m − 1 elements as q1 = p1, q2 = p2,
. . . , qm−2 = pm−2, and qm−1 = pm−1 + pm [i.e., the distribution q
is the same as p on {1, 2, . . . , m − 2}, and the probability of the
last element in q is the sum of the last two probabilities of p].
Show that

H(p) = H(q) + (pm−1 + pm)H

(
pm−1

pm−1 + pm

,
pm

pm−1 + pm

)
.

(2.179)

2.28 Mixing increases entropy . Show that the entropy of the proba-
bility distribution, (p1, . . . , pi, . . . , pj , . . . , pm), is less than the
entropy of the distribution (p1, . . . ,

pi+pj

2 , . . . ,
pi+pj

2 ,

. . . , pm). Show that in general any transfer of probability that
makes the distribution more uniform increases the entropy.

2.29 Inequalities . Let X, Y , and Z be joint random variables. Prove
the following inequalities and find conditions for equality.
(a) H(X, Y |Z) ≥ H(X|Z).
(b) I (X, Y ; Z) ≥ I (X;Z).
(c) H(X, Y, Z) − H(X, Y ) ≤ H(X, Z) − H(X).
(d) I (X;Z|Y) ≥ I (Z;Y |X) − I (Z;Y) + I (X;Z).

2.30 Maximum entropy . Find the probability mass function p(x) that
maximizes the entropy H(X) of a nonnegative integer-valued ran-
dom variable X subject to the constraint

EX =
∞∑

n=0

np(n) = A

for a fixed value A > 0. Evaluate this maximum H(X).

2.31 Conditional entropy . Under what conditions does H(X|g(Y )) =
H(X|Y)?

2.32 Fano. We are given the following joint distribution on (X, Y ):
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Let X̂(Y ) be an estimator for X (based on Y ) and let Pe =
Pr{X̂(Y ) �= X}.
(a) Find the minimum probability of error estimator X̂(Y ) and the

associated Pe.
(b) Evaluate Fano’s inequality for this problem and compare.

2.33 Fano’s inequality . Let Pr(X = i) = pi, i = 1, 2, . . . , m, and let
p1 ≥ p2 ≥ p3 ≥ · · · ≥ pm. The minimal probability of error pre-
dictor of X is X̂ = 1, with resulting probability of error Pe =
1 − p1. Maximize H(p) subject to the constraint 1 − p1 = Pe to
find a bound on Pe in terms of H . This is Fano’s inequality in the
absence of conditioning.

2.34 Entropy of initial conditions . Prove that H(X0|Xn) is nondecreas-
ing with n for any Markov chain.

2.35 Relative entropy is not symmetric.
Let the random variable X have three possible outcomes {a, b, c}.
Consider two distributions on this random variable:

Symbol p(x) q(x)

a 1
2

1
3

b 1
4

1
3

c 1
4

1
3

Calculate H(p), H(q), D(p||q), and D(q||p). Verify that in this
case, D(p||q) �= D(q||p).

2.36 Symmetric relative entropy . Although, as Problem 2.35 shows,
D(p||q) �= D(q||p) in general, there could be distributions for
which equality holds. Give an example of two distributions p and
q on a binary alphabet such that D(p||q) = D(q||p) (other than
the trivial case p = q).

2.37 Relative entropy . Let X, Y, Z be three random variables with a
joint probability mass function p(x, y, z). The relative entropy
between the joint distribution and the product of the marginals is

D(p(x, y, z)||p(x)p(y)p(z)) = E

[
log

p(x, y, z)

p(x)p(y)p(z)

]
. (2.180)

Expand this in terms of entropies. When is this quantity zero?
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2.38 The value of a question. Let X ∼ p(x), x = 1, 2, . . . , m. We are
given a set S ⊆ {1, 2, . . . , m}. We ask whether X ∈ S and receive
the answer

Y =
{

1 if X ∈ S

0 if X �∈ S.

Suppose that Pr{X ∈ S} = α. Find the decrease in uncertainty
H(X) − H(X|Y).
Apparently, any set S with a given α is as good as any other.

2.39 Entropy and pairwise independence. Let X, Y,Z be three binary
Bernoulli(1

2) random variables that are pairwise independent; that
is, I (X;Y) = I (X;Z) = I (Y ;Z) = 0.
(a) Under this constraint, what is the minimum value for

H(X, Y, Z)?
(b) Give an example achieving this minimum.

2.40 Discrete entropies . Let X and Y be two independent integer-
valued random variables. Let X be uniformly distributed over {1, 2,

. . . , 8}, and let Pr{Y = k} = 2−k , k = 1, 2, 3, . . ..
(a) Find H(X).
(b) Find H(Y).
(c) Find H(X + Y,X − Y).

2.41 Random questions . One wishes to identify a random object X ∼
p(x). A question Q ∼ r(q) is asked at random according to r(q).
This results in a deterministic answer A = A(x, q) ∈ {a1, a2, . . .}.
Suppose that X and Q are independent. Then I (X;Q, A) is the
uncertainty in X removed by the question–answer (Q, A).
(a) Show that I (X;Q, A) = H(A|Q). Interpret.
(b) Now suppose that two i.i.d. questions Q1, Q2, ∼ r(q) are

asked, eliciting answers A1 and A2. Show that two questions
are less valuable than twice a single question in the sense that
I (X;Q1, A1, Q2, A2) ≤ 2I (X;Q1, A1).

2.42 Inequalities . Which of the following inequalities are generally
≥,=, ≤? Label each with ≥,=, or ≤.
(a) H(5X) vs. H(X)

(b) I (g(X);Y) vs. I (X;Y)

(c) H(X0|X−1) vs. H(X0|X−1, X1)

(d) H(X, Y )/(H(X) + H(Y)) vs. 1
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2.43 Mutual information of heads and tails
(a) Consider a fair coin flip. What is the mutual information

between the top and bottom sides of the coin?
(b) A six-sided fair die is rolled. What is the mutual information

between the top side and the front face (the side most facing
you)?

2.44 Pure randomness . We wish to use a three-sided coin to generate
a fair coin toss. Let the coin X have probability mass function

X =



A, pA

B, pB

C, pC,

where pA, pB, pC are unknown.
(a) How would you use two independent flips X1, X2 to generate

(if possible) a Bernoulli(1
2 ) random variable Z?

(b) What is the resulting maximum expected number of fair bits
generated?

2.45 Finite entropy . Show that for a discrete random variable X ∈
{1, 2, . . .}, if E log X < ∞, then H(X) < ∞.

2.46 Axiomatic definition of entropy (Difficult). If we assume certain
axioms for our measure of information, we will be forced to use a
logarithmic measure such as entropy. Shannon used this to justify
his initial definition of entropy. In this book we rely more on the
other properties of entropy rather than its axiomatic derivation to
justify its use. The following problem is considerably more difficult
than the other problems in this section.
If a sequence of symmetric functions Hm(p1, p2, . . . , pm) satisfies
the following properties:
• Normalization: H2

(1
2 , 1

2

) = 1,

• Continuity: H2(p, 1 − p) is a continuous function of p,
• Grouping: Hm(p1, p2, . . . , pm) = Hm−1(p1 + p2, p3, . . . , pm) +

(p1 + p2)H2

(
p1

p1+p2
,

p2
p1+p2

)
,

prove that Hm must be of the form

Hm(p1, p2, . . . , pm) = −
m∑

i=1

pi log pi, m = 2, 3, . . . .

(2.181)
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There are various other axiomatic formulations which result in the
same definition of entropy. See, for example, the book by Csiszár
and Körner [149].

2.47 Entropy of a missorted file. A deck of n cards in order 1, 2, . . . , n

is provided. One card is removed at random, then replaced at ran-
dom. What is the entropy of the resulting deck?

2.48 Sequence length. How much information does the length of a
sequence give about the content of a sequence? Suppose that we
consider a Bernoulli (1

2) process {Xi}. Stop the process when the
first 1 appears. Let N designate this stopping time. Thus, XN is an
element of the set of all finite-length binary sequences {0, 1}∗ =
{0, 1, 00, 01, 10, 11, 000, . . . }.
(a) Find I (N;XN).

(b) Find H(XN |N).

(c) Find H(XN).

Let’s now consider a different stopping time. For this part, again
assume that Xi ∼ Bernoulli( 1

2) but stop at time N = 6, with prob-
ability 1

3 and stop at time N = 12 with probability 2
3 . Let this

stopping time be independent of the sequence X1X2 · · ·X12.

(d) Find I (N;XN).

(e) Find H(XN |N).

(f) Find H(XN).

HISTORICAL NOTES

The concept of entropy was introduced in thermodynamics, where it
was used to provide a statement of the second law of thermodynam-
ics. Later, statistical mechanics provided a connection between thermo-
dynamic entropy and the logarithm of the number of microstates in a
macrostate of the system. This work was the crowning achievement of
Boltzmann, who had the equation S = k ln W inscribed as the epitaph on
his gravestone [361].

In the 1930s, Hartley introduced a logarithmic measure of informa-
tion for communication. His measure was essentially the logarithm of the
alphabet size. Shannon [472] was the first to define entropy and mutual
information as defined in this chapter. Relative entropy was first defined
by Kullback and Leibler [339]. It is known under a variety of names,
including the Kullback–Leibler distance, cross entropy, information diver-
gence, and information for discrimination, and has been studied in detail
by Csiszár [138] and Amari [22].
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Many of the simple properties of these quantities were developed by
Shannon. Fano’s inequality was proved in Fano [201]. The notion of
sufficient statistic was defined by Fisher [209], and the notion of the
minimal sufficient statistic was introduced by Lehmann and Scheffé [350].
The relationship of mutual information and sufficiency is due to Kullback
[335]. The relationship between information theory and thermodynamics
has been discussed extensively by Brillouin [77] and Jaynes [294].

The physics of information is a vast new subject of inquiry spawned
from statistical mechanics, quantum mechanics, and information theory.
The key question is how information is represented physically. Quan-
tum channel capacity (the logarithm of the number of distinguishable
preparations of a physical system) and quantum data compression [299]
are well-defined problems with nice answers involving the von Neumann
entropy. A new element of quantum information arises from the exis-
tence of quantum entanglement and the consequences (exhibited in Bell’s
inequality) that the observed marginal distribution of physical events are
not consistent with any joint distribution (no local realism). The funda-
mental text by Nielsen and Chuang [395] develops the theory of quantum
information and the quantum counterparts to many of the results in this
book. There have also been attempts to determine whether there are
any fundamental physical limits to computation, including work by Ben-
nett [47] and Bennett and Landauer [48].





CHAPTER 3

ASYMPTOTIC EQUIPARTITION
PROPERTY

In information theory, the analog of the law of large numbers is the
asymptotic equipartition property (AEP). It is a direct consequence
of the weak law of large numbers. The law of large numbers states
that for independent, identically distributed (i.i.d.) random variables,
1
n

∑n
i=1 Xi is close to its expected value EX for large values of n.

The AEP states that 1
n

log 1
p(X1,X2,...,Xn)

is close to the entropy H , where
X1, X2, . . . , Xn are i.i.d. random variables and p(X1, X2, . . . , Xn) is the
probability of observing the sequence X1, X2, . . . , Xn. Thus, the proba-
bility p(X1, X2, . . . , Xn) assigned to an observed sequence will be close
to 2−nH .

This enables us to divide the set of all sequences into two sets, the
typical set, where the sample entropy is close to the true entropy, and the
nontypical set, which contains the other sequences. Most of our attention
will be on the typical sequences. Any property that is proved for the typical
sequences will then be true with high probability and will determine the
average behavior of a large sample.

First, an example. Let the random variable X ∈ {0, 1} have a probability
mass function defined by p(1) = p and p(0) = q. If X1, X2, . . . , Xn are
i.i.d. according to p(x), the probability of a sequence x1, x2, . . . , xn is∏n

i=1 p(xi). For example, the probability of the sequence (1, 0, 1, 1, 0, 1)

is p
∑

Xiqn−∑
Xi = p4q2. Clearly, it is not true that all 2n sequences of

length n have the same probability.
However, we might be able to predict the probability of the sequence

that we actually observe. We ask for the probability p(X1, X2, . . . , Xn) of
the outcomes X1, X2, . . . , Xn, where X1, X2, . . . are i.i.d. ∼ p(x). This is
insidiously self-referential, but well defined nonetheless. Apparently, we
are asking for the probability of an event drawn according to the same
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probability distribution. Here it turns out that p(X1, X2, . . . , Xn) is close
to 2−nH with high probability.

We summarize this by saying, “Almost all events are almost equally
surprising.” This is a way of saying that

Pr
{
(X1, X2, . . . , Xn) : p(X1, X2, . . . , Xn) = 2−n(H±ε)

} ≈ 1 (3.1)

if X1, X2, . . . , Xn are i.i.d. ∼ p(x).
In the example just given, where p(X1, X2, . . . , Xn) = p

∑
Xiqn−∑

Xi ,
we are simply saying that the number of 1’s in the sequence is close
to np (with high probability), and all such sequences have (roughly) the
same probability 2−nH(p). We use the idea of convergence in probability,
defined as follows:

Definition (Convergence of random variables). Given a sequence of
random variables, X1, X2, . . . , we say that the sequence X1, X2, . . . con-
verges to a random variable X:

1. In probability if for every ε > 0, Pr{|Xn − X| > ε} → 0
2. In mean square if E(Xn − X)2 → 0
3. With probability 1 (also called almost surely) if Pr{limn→∞ Xn =

X} = 1

3.1 ASYMPTOTIC EQUIPARTITION PROPERTY THEOREM

The asymptotic equipartition property is formalized in the following
theorem.

Theorem 3.1.1 (AEP ) If X1, X2, . . . are i.i.d. ∼ p(x), then

−1

n
log p(X1, X2, . . . , Xn) → H(X) in probability. (3.2)

Proof: Functions of independent random variables are also independent
random variables. Thus, since the Xi are i.i.d., so are log p(Xi). Hence,
by the weak law of large numbers,

−1

n
log p(X1, X2, . . . , Xn) = −1

n

∑
i

log p(Xi) (3.3)

→ −E log p(X) in probability (3.4)

= H(X), (3.5)

which proves the theorem. �
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Definition The typical set A(n)
ε with respect to p(x) is the set of se-

quences (x1, x2, . . . , xn) ∈ Xn with the property

2−n(H(X)+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X)−ε). (3.6)

As a consequence of the AEP, we can show that the set A(n)
ε has the

following properties:

Theorem 3.1.2

1. If (x1, x2, . . . , xn) ∈ A(n)
ε , then H(X) − ε ≤ − 1

n
log p(x1, x2, . . . ,

xn) ≤ H(X) + ε.
2. Pr

{
A(n)

ε

}
> 1 − ε for n sufficiently large.

3.
∣∣A(n)

ε

∣∣ ≤ 2n(H(X)+ε), where |A| denotes the number of elements in the
set A.

4. |A(n)
ε | ≥ (1 − ε)2n(H(X)−ε) for n sufficiently large.

Thus, the typical set has probability nearly 1, all elements of the typical
set are nearly equiprobable, and the number of elements in the typical set
is nearly 2nH .

Proof: The proof of property (1) is immediate from the definition of
A(n)

ε . The second property follows directly from Theorem 3.1.1, since the
probability of the event (X1,X2, . . . , Xn) ∈ A(n)

ε tends to 1 as n → ∞.
Thus, for any δ > 0, there exists an n0 such that for all n ≥ n0, we have

Pr

{∣∣∣∣−1

n
log p(X1, X2, . . . , Xn) − H(X)

∣∣∣∣ < ε

}
> 1 − δ. (3.7)

Setting δ = ε, we obtain the second part of the theorem. The identification
of δ = ε will conveniently simplify notation later.

To prove property (3), we write

1 =
∑

x∈X n

p(x) (3.8)

≥
∑

x∈A
(n)
ε

p(x) (3.9)

≥
∑

x∈A
(n)
ε

2−n(H(X)+ε) (3.10)

= 2−n(H(X)+ε)|A(n)
ε |, (3.11)
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where the second inequality follows from (3.6). Hence

|A(n)
ε | ≤ 2n(H(X)+ε). (3.12)

Finally, for sufficiently large n, Pr{A(n)
ε } > 1 − ε, so that

1 − ε < Pr{A(n)
ε } (3.13)

≤
∑

x∈A
(n)
ε

2−n(H(X)−ε) (3.14)

= 2−n(H(X)−ε)|A(n)
ε |, (3.15)

where the second inequality follows from (3.6). Hence,

|A(n)
ε | ≥ (1 − ε)2n(H(X)−ε), (3.16)

which completes the proof of the properties of A(n)
ε . �

3.2 CONSEQUENCES OF THE AEP: DATA COMPRESSION

Let X1, X2, . . . , Xn be independent, identically distributed random vari-
ables drawn from the probability mass function p(x). We wish to find
short descriptions for such sequences of random variables. We divide all
sequences in Xn into two sets: the typical set A(n)

ε and its complement,
as shown in Figure 3.1.

Non-typical set

Typical set

∋
∋

A(n) : 2n(H +   ) elements

n:|    |n elements

FIGURE 3.1. Typical sets and source coding.
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Non-typical set

Typical set

Description: n log |     | + 2 bits

Description: n(H +   ) + 2 bits∋

FIGURE 3.2. Source code using the typical set.

We order all elements in each set according to some order (e.g., lexi-
cographic order). Then we can represent each sequence of A(n)

ε by giving
the index of the sequence in the set. Since there are ≤ 2n(H+ε) sequences
in A(n)

ε , the indexing requires no more than n(H + ε) + 1 bits. [The extra
bit may be necessary because n(H + ε) may not be an integer.] We pre-
fix all these sequences by a 0, giving a total length of ≤ n(H + ε) + 2
bits to represent each sequence in A(n)

ε (see Figure 3.2). Similarly, we can
index each sequence not in A(n)

ε by using not more than n log |X| + 1 bits.
Prefixing these indices by 1, we have a code for all the sequences in Xn.

Note the following features of the above coding scheme:

• The code is one-to-one and easily decodable. The initial bit acts as
a flag bit to indicate the length of the codeword that follows.

• We have used a brute-force enumeration of the atypical set A(n)
ε

c

without taking into account the fact that the number of elements in
A(n)

ε

c
is less than the number of elements in Xn. Surprisingly, this is

good enough to yield an efficient description.
• The typical sequences have short descriptions of length ≈ nH .

We use the notation xn to denote a sequence x1, x2, . . . , xn. Let l(xn)

be the length of the codeword corresponding to xn. If n is sufficiently
large so that Pr{A(n)

ε } ≥ 1 − ε, the expected length of the codeword is

E(l(Xn)) =
∑
xn

p(xn)l(xn) (3.17)
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=
∑

xn∈A
(n)
ε

p(xn)l(xn) +
∑

xn∈A
(n)
ε

c

p(xn)l(xn) (3.18)

≤
∑

xn∈A
(n)
ε

p(xn)(n(H + ε) + 2)

+
∑

xn∈A
(n)
ε

c

p(xn)(n log |X| + 2) (3.19)

= Pr
{
A(n)

ε

}
(n(H + ε) + 2) + Pr

{
A(n)

ε

c
}

(n log |X| + 2)

(3.20)

≤ n(H + ε) + εn(log |X|) + 2 (3.21)

= n(H + ε′), (3.22)

where ε′ = ε + ε log |X| + 2
n

can be made arbitrarily small by an appro-
priate choice of ε followed by an appropriate choice of n. Hence we have
proved the following theorem.

Theorem 3.2.1 Let Xn be i.i.d. ∼ p(x). Let ε > 0. Then there exists a
code that maps sequences xn of length n into binary strings such that the
mapping is one-to-one (and therefore invertible) and

E

[
1

n
l(Xn)

]
≤ H(X) + ε (3.23)

for n sufficiently large.

Thus, we can represent sequences Xn using nH(X) bits on the average.

3.3 HIGH-PROBABILITY SETS AND THE TYPICAL SET

From the definition of A(n)
ε , it is clear that A(n)

ε is a fairly small set that
contains most of the probability. But from the definition, it is not clear
whether it is the smallest such set. We will prove that the typical set has
essentially the same number of elements as the smallest set, to first order
in the exponent.

Definition For each n = 1, 2, . . . , let B
(n)
δ ⊂ Xn be the smallest set

with

Pr{B(n)
δ } ≥ 1 − δ. (3.24)
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We argue that B
(n)
δ must have significant intersection with A(n)

ε and there-
fore must have about as many elements. In Problem 3.3.11, we outline
the proof of the following theorem.

Theorem 3.3.1 Let X1, X2, . . . , Xn be i.i.d. ∼ p(x). For δ < 1
2 and

any δ′ > 0, if Pr{B(n)
δ } > 1 − δ, then

1

n
log |B(n)

δ | > H − δ′ for n sufficiently large. (3.25)

Thus, B
(n)
δ must have at least 2nH elements, to first order in the expo-

nent. But A(n)
ε has 2n(H±ε) elements. Therefore, A(n)

ε is about the same
size as the smallest high-probability set.

We will now define some new notation to express equality to first order
in the exponent.

Definition The notation an
.= bn means

lim
n→∞

1

n
log

an

bn

= 0. (3.26)

Thus, an
.= bn implies that an and bn are equal to the first order in the

exponent.
We can now restate the above results: If δn → 0 and εn → 0, then

|B(n)
δn

| .=|A(n)
εn

| .=2nH . (3.27)

To illustrate the difference between A(n)
ε and B

(n)
δ , let us con-

sider a Bernoulli sequence X1, X2, . . . , Xn with parameter p = 0.9. [A
Bernoulli(θ ) random variable is a binary random variable that takes on
the value 1 with probability θ .] The typical sequences in this case are the
sequences in which the proportion of 1’s is close to 0.9. However, this
does not include the most likely single sequence, which is the sequence of
all 1’s. The set B

(n)
δ includes all the most probable sequences and there-

fore includes the sequence of all 1’s. Theorem 3.3.1 implies that A(n)
ε and

B
(n)
δ must both contain the sequences that have about 90% 1’s, and the

two sets are almost equal in size.
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SUMMARY

AEP. “Almost all events are almost equally surprising.” Specifically,
if X1, X2, . . . are i.i.d. ∼ p(x), then

−1

n
log p(X1, X2, . . . , Xn) → H(X) in probability. (3.28)

Definition. The typical set A(n)
ε is the set of sequences x1, x2, . . . , xn

satisfying

2−n(H(X)+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X)−ε). (3.29)

Properties of the typical set

1. If (x1, x2, . . . , xn) ∈ A(n)
ε , then p(x1, x2, . . . , xn) = 2−n(H±ε).

2. Pr
{
A(n)

ε

}
> 1 − ε for n sufficiently large.

3.
∣∣A(n)

ε

∣∣ ≤ 2n(H(X)+ε), where |A| denotes the number of elements in
set A.

Definition. an
.=bn means that 1

n
log an

bn
→ 0 as n → ∞.

Smallest probable set. Let X1, X2, . . . , Xn be i.i.d. ∼ p(x), and for
δ < 1

2 , let B
(n)
δ ⊂ Xn be the smallest set such that Pr{B(n)

δ } ≥ 1 − δ.
Then

|B(n)
δ | .=2nH . (3.30)

PROBLEMS

3.1 Markov’s inequality and Chebyshev’s inequality
(a) (Markov’s inequality) For any nonnegative random variable X

and any t > 0, show that

Pr {X ≥ t} ≤ EX

t
. (3.31)

Exhibit a random variable that achieves this inequality with
equality.

(b) (Chebyshev’s inequality) Let Y be a random variable with
mean µ and variance σ 2. By letting X = (Y − µ)2, show that
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for any ε > 0,

Pr {|Y − µ| > ε} ≤ σ 2

ε2
. (3.32)

(c) (Weak law of large numbers) Let Z1, Z2, . . . , Zn be a sequence
of i.i.d. random variables with mean µ and variance σ 2. Let

Zn = 1
n

n∑
i=1

Zi be the sample mean. Show that

Pr
{∣∣Zn − µ

∣∣ > ε
} ≤ σ 2

nε2
. (3.33)

Thus, Pr
{∣∣Zn − µ

∣∣ > ε
} → 0 as n → ∞. This is known as the

weak law of large numbers.

3.2 AEP and mutual information. Let (Xi, Yi) be i.i.d. ∼ p(x, y). We
form the log likelihood ratio of the hypothesis that X and Y are
independent vs. the hypothesis that X and Y are dependent. What
is the limit of

1

n
log

p(Xn)p(Y n)

p(Xn, Y n)
?

3.3 Piece of cake.
A cake is sliced roughly in half, the largest piece being chosen each
time, the other pieces discarded. We will assume that a random cut
creates pieces of proportions

P =
{

( 2
3 , 1

3) with probability 3
4

( 2
5 , 3

5) with probability 1
4

Thus, for example, the first cut (and choice of largest piece) may
result in a piece of size 3

5 . Cutting and choosing from this piece
might reduce it to size

(3
5

) ( 2
3

)
at time 2, and so on. How large, to

first order in the exponent, is the piece of cake after n cuts?

3.4 AEP . Let Xi be iid ∼ p(x), x ∈ {1, 2, . . . , m}. Let µ = EX and
H = −∑

p(x) log p(x). Let An = {xn ∈ Xn : | − 1
n

log p(xn) −
H | ≤ ε}. Let Bn = {xn ∈ Xn : | 1

n

∑n
i=1 Xi − µ| ≤ ε}.

(a) Does Pr{Xn ∈ An} −→ 1?
(b) Does Pr{Xn ∈ An ∩ Bn} −→ 1?
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(c) Show that |An ∩ Bn| ≤ 2n(H+ε) for all n.
(d) Show that |An ∩ Bn| ≥ (1

2

)
2n(H−ε) for n sufficiently large.

3.5 Sets defined by probabilities . Let X1, X2, . . . be an i.i.d. sequence
of discrete random variables with entropy H(X). Let

Cn(t) = {xn ∈ Xn : p(xn) ≥ 2−nt}

denote the subset of n-sequences with probabilities ≥ 2−nt .

(a) Show that |Cn(t)| ≤ 2nt .

(b) For what values of t does P({Xn ∈ Cn(t)}) → 1?

3.6 AEP-like limit . Let X1, X2, . . . be i.i.d. drawn according to prob-
ability mass function p(x). Find

lim
n→∞ (p(X1, X2, . . . , Xn))

1
n .

3.7 AEP and source coding . A discrete memoryless source emits a
sequence of statistically independent binary digits with probabilities
p(1) = 0.005 and p(0) = 0.995. The digits are taken 100 at a time
and a binary codeword is provided for every sequence of 100 digits
containing three or fewer 1’s.
(a) Assuming that all codewords are the same length, find the min-

imum length required to provide codewords for all sequences
with three or fewer 1’s.

(b) Calculate the probability of observing a source sequence for
which no codeword has been assigned.

(c) Use Chebyshev’s inequality to bound the probability of observ-
ing a source sequence for which no codeword has been assign-
ed. Compare this bound with the actual probability computed
in part (b).

3.8 Products .
Let

X =




1, with probability 1
2

2, with probability 1
4

3, with probability 1
4

Let X1, X2, . . . be drawn i.i.d. according to this distribution. Find
the limiting behavior of the product

(X1X2 · · · Xn)
1
n .
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3.9 AEP . Let X1, X2, . . . be independent, identically distributed ran-
dom variables drawn according to the probability mass function
p(x), x ∈ {1, 2, . . . ,m}. Thus, p(x1, x2, . . . , xn) = ∏n

i=1 p(xi). We
know that − 1

n
log p(X1, X2, . . . , Xn) → H(X) in probability. Let

q(x1, x2, . . . , xn) = ∏n
i=1 q(xi), where q is another probability

mass function on {1, 2, . . . , m}.
(a) Evaluate lim − 1

n
log q(X1, X2, . . . , Xn), where X1, X2, . . . are

i.i.d. ∼ p(x).
(b) Now evaluate the limit of the log likelihood ratio

1
n

log q(X1,...,Xn)

p(X1,...,Xn)
when X1, X2, . . . are i.i.d. ∼ p(x). Thus, the

odds favoring q are exponentially small when p is true.

3.10 Random box size.
An n-dimensional rectangular box with sides X1, X2, X3, . . . , Xn is
to be constructed. The volume is Vn = ∏n

i=1 Xi . The edge length l

of a n-cube with the same volume as the random box is l = V
1/n
n .

Let X1, X2, . . . be i.i.d. uniform random variables over the unit
interval [0, 1]. Find limn→∞ V

1/n
n and compare to (EVn)

1
n . Clearly,

the expected edge length does not capture the idea of the volume
of the box. The geometric mean, rather than the arithmetic mean,
characterizes the behavior of products.

3.11 Proof of Theorem 3.3.1. This problem shows that the size of the
smallest “probable” set is about 2nH . Let X1, X2, . . . , Xn be i.i.d.
∼ p(x). Let B

(n)
δ ⊂ Xn such that Pr(B(n)

δ ) > 1 − δ. Fix ε < 1
2 .

(a) Given any two sets A, B such that Pr(A) > 1 − ε1 and Pr(B) >

1 − ε2, show that Pr(A ∩ B) > 1 − ε1 − ε2. Hence, Pr(A(n)
ε ∩

B
(n)
δ ) ≥ 1 − ε − δ.

(b) Justify the steps in the chain of inequalities

1 − ε − δ ≤ Pr(A(n)
ε ∩ B

(n)
δ ) (3.34)

=
∑

A
(n)
ε ∩B

(n)
δ

p(xn) (3.35)

≤
∑

A
(n)
ε ∩B

(n)
δ

2−n(H−ε) (3.36)

= |A(n)
ε ∩ B

(n)
δ |2−n(H−ε) (3.37)

≤ |B(n)
δ |2−n(H−ε). (3.38)

(c) Complete the proof of the theorem.
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3.12 Monotonic convergence of the empirical distribution.
Let p̂n denote the empirical probability mass function correspond-
ing to X1, X2, . . . , Xn i.i.d. ∼ p(x), x ∈ X. Specifically,

p̂n(x) = 1

n

n∑
i=1

I (Xi = x)

is the proportion of times that Xi = x in the first n samples, where
I is the indicator function.
(a) Show for X binary that

ED(p̂2n ‖ p) ≤ ED(p̂n ‖ p).

Thus, the expected relative entropy “distance” from the empir-
ical distribution to the true distribution decreases with sample
size. (Hint: Write p̂2n = 1

2 p̂n + 1
2 p̂′

n and use the convexity
of D.)

(b) Show for an arbitrary discrete X that

ED(p̂n ‖ p) ≤ ED(p̂n−1 ‖ p).

(Hint: Write p̂n as the average of n empirical mass functions
with each of the n samples deleted in turn.)

3.13 Calculation of typical set . To clarify the notion of a typical set
A(n)

ε and the smallest set of high probability B
(n)
δ , we will calculate

the set for a simple example. Consider a sequence of i.i.d. binary
random variables, X1, X2, . . . , Xn, where the probability that Xi =
1 is 0.6 (and therefore the probability that Xi = 0 is 0.4).
(a) Calculate H(X).
(b) With n = 25 and ε = 0.1, which sequences fall in the typi-

cal set A(n)
ε ? What is the probability of the typical set? How

many elements are there in the typical set? (This involves com-
putation of a table of probabilities for sequences with k 1’s,
0 ≤ k ≤ 25, and finding those sequences that are in the typi-
cal set.)

(c) How many elements are there in the smallest set that has prob-
ability 0.9?

(d) How many elements are there in the intersection of the sets in
parts (b) and (c)? What is the probability of this intersection?
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k

(
n

k

) (
n

k

)
pk(1 − p)n−k − 1

n
log p(xn)

0 1 0.000000 1.321928
1 25 0.000000 1.298530
2 300 0.000000 1.275131
3 2300 0.000001 1.251733
4 12650 0.000007 1.228334
5 53130 0.000054 1.204936
6 177100 0.000227 1.181537
7 480700 0.001205 1.158139
8 1081575 0.003121 1.134740
9 2042975 0.013169 1.111342

10 3268760 0.021222 1.087943
11 4457400 0.077801 1.064545
12 5200300 0.075967 1.041146
13 5200300 0.267718 1.017748
14 4457400 0.146507 0.994349
15 3268760 0.575383 0.970951
16 2042975 0.151086 0.947552
17 1081575 0.846448 0.924154
18 480700 0.079986 0.900755
19 177100 0.970638 0.877357
20 53130 0.019891 0.853958
21 12650 0.997633 0.830560
22 2300 0.001937 0.807161
23 300 0.999950 0.783763
24 25 0.000047 0.760364
25 1 0.000003 0.736966

HISTORICAL NOTES

The asymptotic equipartition property (AEP) was first stated by Shan-
non in his original 1948 paper [472], where he proved the result for
i.i.d. processes and stated the result for stationary ergodic processes.
McMillan [384] and Breiman [74] proved the AEP for ergodic finite
alphabet sources. The result is now referred to as the AEP or the Shan-
non–McMillan–Breiman theorem. Chung [101] extended the theorem to
the case of countable alphabets and Moy [392], Perez [417], and Kieffer
[312] proved the L1 convergence when {Xi} is continuous valued and
ergodic. Barron [34] and Orey [402] proved almost sure convergence for
real-valued ergodic processes; a simple sandwich argument (Algoet and
Cover [20]) will be used in Section 16.8 to prove the general AEP.





CHAPTER 4

ENTROPY RATES
OF A STOCHASTIC PROCESS

The asymptotic equipartition property in Chapter 3 establishes that
nH(X) bits suffice on the average to describe n independent and iden-
tically distributed random variables. But what if the random variables
are dependent? In particular, what if the random variables form a sta-
tionary process? We will show, just as in the i.i.d. case, that the entropy
H(X1, X2, . . . , Xn) grows (asymptotically) linearly with n at a rate H(X),
which we will call the entropy rate of the process. The interpretation of
H(X) as the best achievable data compression will await the analysis in
Chapter 5.

4.1 MARKOV CHAINS

A stochastic process {Xi} is an indexed sequence of random variables.
In general, there can be an arbitrary dependence among the random vari-
ables. The process is characterized by the joint probability mass functions
Pr{(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)}= p(x1, x2, . . . , xn), (x1, x2, . . . ,

xn) ∈ Xn for n = 1, 2, . . . .

Definition A stochastic process is said to be stationary if the joint
distribution of any subset of the sequence of random variables is invariant
with respect to shifts in the time index; that is,

Pr{X1 = x1, X2 = x2, . . . , Xn = xn}
= Pr{X1+l = x1, X2+l = x2, . . . , Xn+l = xn} (4.1)

for every n and every shift l and for all x1, x2, . . . , xn ∈ X.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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A simple example of a stochastic process with dependence is one in
which each random variable depends only on the one preceding it and
is conditionally independent of all the other preceding random variables.
Such a process is said to be Markov.

Definition A discrete stochastic process X1, X2, . . . is said to be a
Markov chain or a Markov process if for n = 1, 2, . . . ,

Pr(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1)

= Pr (Xn+1 = xn+1|Xn = xn) (4.2)

for all x1, x2, . . . , xn, xn+1 ∈ X.
In this case, the joint probability mass function of the random variables

can be written as

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) · · ·p(xn|xn−1). (4.3)

Definition The Markov chain is said to be time invariant if the con-
ditional probability p(xn+1|xn) does not depend on n; that is, for n =
1, 2, . . . ,

Pr{Xn+1 = b|Xn = a} = Pr{X2 = b|X1 = a} for all a, b ∈ X. (4.4)

We will assume that the Markov chain is time invariant unless otherwise
stated.

If {Xi} is a Markov chain, Xn is called the state at time n. A time-
invariant Markov chain is characterized by its initial state and a probability
transition matrix P = [Pij ], i, j ∈ {1, 2, . . . , m}, where Pij = Pr{Xn+1 =
j |Xn = i}.

If it is possible to go with positive probability from any state of the
Markov chain to any other state in a finite number of steps, the Markov
chain is said to be irreducible. If the largest common factor of the lengths
of different paths from a state to itself is 1, the Markov chain is said to
aperiodic.

If the probability mass function of the random variable at time n is
p(xn), the probability mass function at time n + 1 is

p(xn+1) =
∑
xn

p(xn)Pxnxn+1 . (4.5)

A distribution on the states such that the distribution at time n + 1 is the
same as the distribution at time n is called a stationary distribution. The
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stationary distribution is so called because if the initial state of a Markov
chain is drawn according to a stationary distribution, the Markov chain
forms a stationary process.

If the finite-state Markov chain is irreducible and aperiodic, the sta-
tionary distribution is unique, and from any starting distribution, the
distribution of Xn tends to the stationary distribution as n → ∞.

Example 4.1.1 Consider a two-state Markov chain with a probability
transition matrix

P =
[

1 − α α

β 1 − β

]
(4.6)

as shown in Figure 4.1.
Let the stationary distribution be represented by a vector µ whose com-

ponents are the stationary probabilities of states 1 and 2, respectively. Then
the stationary probability can be found by solving the equation µP = µ

or, more simply, by balancing probabilities. For the stationary distribution,
the net probability flow across any cut set in the state transition graph is
zero. Applying this to Figure 4.1, we obtain

µ1α = µ2β. (4.7)

Since µ1 + µ2 = 1, the stationary distribution is

µ1 = β

α + β
, µ2 = α

α + β
. (4.8)

If the Markov chain has an initial state drawn according to the stationary
distribution, the resulting process will be stationary. The entropy of the

State 1 State 2

1 − β1 − α

β

α

FIGURE 4.1. Two-state Markov chain.
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state Xn at time n is

H(Xn) = H

(
β

α + β
,

α

α + β

)
. (4.9)

However, this is not the rate at which entropy grows for H(X1, X2, . . . ,

Xn). The dependence among the Xi’s will take a steady toll.

4.2 ENTROPY RATE

If we have a sequence of n random variables, a natural question to ask
is: How does the entropy of the sequence grow with n? We define the
entropy rate as this rate of growth as follows.

Definition The entropy of a stochastic process {Xi} is defined by

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (4.10)

when the limit exists.
We now consider some simple examples of stochastic processes and

their corresponding entropy rates.

1. Typewriter .
Consider the case of a typewriter that has m equally likely output
letters. The typewriter can produce mn sequences of length n, all
of them equally likely. Hence H(X1, X2, . . . , Xn) = log mn and the
entropy rate is H(X) = log m bits per symbol.

2. X1, X2, . . . are i.i.d. random variables . Then

H(X) = lim
H(X1, X2, . . . , Xn)

n
= lim

nH(X1)

n
= H(X1),

(4.11)

which is what one would expect for the entropy rate per symbol.
3. Sequence of independent but not identically distributed random vari-

ables . In this case,

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi), (4.12)

but the H(Xi)’s are all not equal. We can choose a sequence of dis-
tributions on X1, X2, . . . such that the limit of 1

n

∑
H(Xi) does not

exist. An example of such a sequence is a random binary sequence
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where pi = P(Xi = 1) is not constant but a function of i, chosen
carefully so that the limit in (4.10) does not exist. For example, let

pi =
{

0.5 if 2k < log log i ≤ 2k + 1,

0 if 2k + 1 < log log i ≤ 2k + 2
(4.13)

for k = 0, 1, 2, . . . .
Then there are arbitrarily long stretches where H(Xi) = 1, followed
by exponentially longer segments where H(Xi) = 0. Hence, the run-
ning average of the H(Xi) will oscillate between 0 and 1 and will
not have a limit. Thus, H(X) is not defined for this process.

We can also define a related quantity for entropy rate:

H ′(X) = lim
n→∞ H(Xn|Xn−1, Xn−2, . . . , X1) (4.14)

when the limit exists.
The two quantities H(X) and H ′(X) correspond to two different notions

of entropy rate. The first is the per symbol entropy of the n random vari-
ables, and the second is the conditional entropy of the last random variable
given the past. We now prove the important result that for stationary pro-
cesses both limits exist and are equal.

Theorem 4.2.1 For a stationary stochastic process, the limits in (4.10)
and (4.14) exist and are equal:

H(X) = H ′(X). (4.15)

We first prove that lim H(Xn|Xn−1, . . . , X1) exists.

Theorem 4.2.2 For a stationary stochastic process, H(Xn|Xn−1, . . . ,

X1) is nonincreasing in n and has a limit H ′(X).

Proof

H(Xn+1|X1,X2, . . . , Xn) ≤ H(Xn+1|Xn, . . . , X2) (4.16)

= H(Xn|Xn−1, . . . , X1), (4.17)

where the inequality follows from the fact that conditioning reduces en-
tropy and the equality follows from the stationarity of the process. Since
H(Xn|Xn−1, . . . , X1) is a decreasing sequence of nonnegative numbers,
it has a limit, H ′(X). �
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We now use the following simple result from analysis.

Theorem 4.2.3 (Cesáro mean) If an → a and bn = 1
n

∑n
i=1 ai , then

bn → a.

Proof: (Informal outline). Since most of the terms in the sequence {ak}
are eventually close to a, then bn, which is the average of the first n terms,
is also eventually close to a.

Formal Proof: Let ε > 0. Since an → a, there exists a number N(ε)

such that |an − a| ≤ ε for all n ≥ N(ε). Hence,

|bn − a| =
∣∣∣∣∣
1

n

n∑
i=1

(ai − a)

∣∣∣∣∣ (4.18)

≤ 1

n

n∑
i=1

|(ai − a)| (4.19)

≤ 1

n

N(ε)∑
i=1

|ai − a| + n − N(ε)

n
ε (4.20)

≤ 1

n

N(ε)∑
i=1

|ai − a| + ε (4.21)

for all n ≥ N(ε). Since the first term goes to 0 as n → ∞, we can make
|bn − a| ≤ 2ε by taking n large enough. Hence, bn → a as n → ∞. �

Proof of Theorem 4.2.1: By the chain rule,

H(X1, X2, . . . , Xn)

n
= 1

n

n∑
i=1

H(Xi |Xi−1, . . . , X1), (4.22)

that is, the entropy rate is the time average of the conditional entropies.
But we know that the conditional entropies tend to a limit H ′. Hence, by
Theorem 4.2.3, their running average has a limit, which is equal to the
limit H ′ of the terms. Thus, by Theorem 4.2.2,

H(X) = lim
H(X1, X2, . . . , Xn)

n
= lim H(Xn|Xn−1, . . . , X1)

= H ′(X). � (4.23)
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The significance of the entropy rate of a stochastic process arises from
the AEP for a stationary ergodic process. We prove the general AEP in
Section 16.8, where we show that for any stationary ergodic process,

−1

n
log p(X1, X2, . . . , Xn) → H(X) (4.24)

with probability 1. Using this, the theorems of Chapter 3 can easily be
extended to a general stationary ergodic process. We can define a typical
set in the same way as we did for the i.i.d. case in Chapter 3. By the
same arguments, we can show that the typical set has a probability close
to 1 and that there are about 2nH(X ) typical sequences of length n, each
with probability about 2−nH(X ). We can therefore represent the typical
sequences of length n using approximately nH(X) bits. This shows the
significance of the entropy rate as the average description length for a
stationary ergodic process.

The entropy rate is well defined for all stationary processes. The entropy
rate is particularly easy to calculate for Markov chains.

Markov Chains. For a stationary Markov chain, the entropy rate is
given by

H(X) = H ′(X) = lim H(Xn|Xn−1, . . . , X1) = lim H(Xn|Xn−1)

= H(X2|X1), (4.25)

where the conditional entropy is calculated using the given stationary
distribution. Recall that the stationary distribution µ is the solution of the
equations

µj =
∑

i

µiPij for all j. (4.26)

We express the conditional entropy explicitly in the following theorem.

Theorem 4.2.4 Let {Xi} be a stationary Markov chain with station-
ary distribution µ and transition matrix P . Let X1 ∼ µ. Then the entropy
rate is

H(X) = −
∑
ij

µiPij log Pij . (4.27)

Proof: H(X) = H(X2|X1) = ∑
i µi

(∑
j −Pij log Pij

)
. �
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Example 4.2.1 (Two-state Markov chain) The entropy rate of the two-
state Markov chain in Figure 4.1 is

H(X) = H(X2|X1) = β

α + β
H(α) + α

α + β
H(β). (4.28)

Remark If the Markov chain is irreducible and aperiodic, it has a unique
stationary distribution on the states, and any initial distribution tends to
the stationary distribution as n → ∞. In this case, even though the initial
distribution is not the stationary distribution, the entropy rate, which is
defined in terms of long-term behavior, is H(X), as defined in (4.25) and
(4.27).

4.3 EXAMPLE: ENTROPY RATE OF A RANDOM WALK
ON A WEIGHTED GRAPH

As an example of a stochastic process, let us consider a random walk on
a connected graph (Figure 4.2). Consider a graph with m nodes labeled
{1, 2, . . . , m}, with weight Wij ≥ 0 on the edge joining node i to node
j . (The graph is assumed to be undirected, so that Wij = Wji . We set
Wij = 0 if there is no edge joining nodes i and j .)

A particle walks randomly from node to node in this graph. The ran-
dom walk {Xn}, Xn ∈ {1, 2, . . . , m}, is a sequence of vertices of the
graph. Given Xn = i, the next vertex j is chosen from among the nodes
connected to node i with a probability proportional to the weight of the
edge connecting i to j . Thus, Pij = Wij/

∑
k Wik.

1

2

5

3

4

FIGURE 4.2. Random walk on a graph.
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In this case, the stationary distribution has a surprisingly simple form,
which we will guess and verify. The stationary distribution for this Markov
chain assigns probability to node i proportional to the total weight of the
edges emanating from node i. Let

Wi =
∑

j

Wij (4.29)

be the total weight of edges emanating from node i, and let

W =
∑

i,j :j>i

Wij (4.30)

be the sum of the weights of all the edges. Then
∑

i Wi = 2W .
We now guess that the stationary distribution is

µi = Wi

2W
. (4.31)

We verify that this is the stationary distribution by checking that µP = µ.
Here

∑
i

µiPij =
∑

i

Wi

2W

Wij

Wi

(4.32)

=
∑

i

1

2W
Wij (4.33)

= Wj

2W
(4.34)

= µj . (4.35)

Thus, the stationary probability of state i is proportional to the weight of
edges emanating from node i. This stationary distribution has an inter-
esting property of locality: It depends only on the total weight and the
weight of edges connected to the node and hence does not change if the
weights in some other part of the graph are changed while keeping the
total weight constant. We can now calculate the entropy rate as

H(X) = H(X2|X1) (4.36)

= −
∑

i

µi

∑
j

Pij log Pij (4.37)
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= −
∑

i

Wi

2W

∑
j

Wij

Wi

log
Wij

Wi

(4.38)

= −
∑

i

∑
j

Wij

2W
log

Wij

Wi

(4.39)

= −
∑

i

∑
j

Wij

2W
log

Wij

2W
+

∑
i

∑
j

Wij

2W
log

Wi

2W
(4.40)

= H

(
. . . ,

Wij

2W
, . . .

)
− H

(
. . . ,

Wi

2W
, . . .

)
. (4.41)

If all the edges have equal weight, the stationary distribution puts
weight Ei/2E on node i, where Ei is the number of edges emanating
from node i and E is the total number of edges in the graph. In this case,
the entropy rate of the random walk is

H(X) = log(2E) − H

(
E1

2E
,

E2

2E
, . . . ,

Em

2E

)
. (4.42)

This answer for the entropy rate is so simple that it is almost mislead-
ing. Apparently, the entropy rate, which is the average transition entropy,
depends only on the entropy of the stationary distribution and the total
number of edges.

Example 4.3.1 (Random walk on a chessboard ) Let a king move at
random on an 8 × 8 chessboard. The king has eight moves in the interior,
five moves at the edges, and three moves at the corners. Using this and
the preceding results, the stationary probabilities are, respectively, 8

420 ,
5

420 , and 3
420 , and the entropy rate is 0.92 log 8. The factor of 0.92 is due

to edge effects; we would have an entropy rate of log 8 on an infinite
chessboard.

Similarly, we can find the entropy rate of rooks (log 14 bits, since the
rook always has 14 possible moves), bishops, and queens. The queen
combines the moves of a rook and a bishop. Does the queen have more
or less freedom than the pair?

Remark It is easy to see that a stationary random walk on a graph is
time-reversible; that is, the probability of any sequence of states is the
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same forward or backward:

Pr(X1 = x1, X2 = x2, . . . , Xn = xn)

= Pr(Xn = x1, Xn−1 = x2, . . . , X1 = xn). (4.43)

Rather surprisingly, the converse is also true; that is, any time-reversible
Markov chain can be represented as a random walk on an undirected
weighted graph.

4.4 SECOND LAW OF THERMODYNAMICS

One of the basic laws of physics, the second law of thermodynamics,
states that the entropy of an isolated system is nondecreasing. We now
explore the relationship between the second law and the entropy function
that we defined earlier in this chapter.

In statistical thermodynamics, entropy is often defined as the log of
the number of microstates in the system. This corresponds exactly to our
notion of entropy if all the states are equally likely. But why does entropy
increase?

We model the isolated system as a Markov chain with transitions obey-
ing the physical laws governing the system. Implicit in this assumption is
the notion of an overall state of the system and the fact that knowing the
present state, the future of the system is independent of the past. In such
a system we can find four different interpretations of the second law. It
may come as a shock to find that the entropy does not always increase.
However, relative entropy always decreases.

1. Relative entropy D(µn||µ′
n) decreases with n. Let µn and µ′

n be two
probability distributions on the state space of a Markov chain at time
n, and let µn+1 and µ′

n+1 be the corresponding distributions at time
n + 1. Let the corresponding joint mass functions be denoted by
p and q. Thus, p(xn, xn+1) = p(xn)r(xn+1|xn) and q(xn, xn+1) =
q(xn)r(xn+1|xn), where r(·|·) is the probability transition function
for the Markov chain. Then by the chain rule for relative entropy,
we have two expansions:

D(p(xn, xn+1)||q(xn, xn+1)) = D(p(xn)||q(xn))

+ D(p(xn+1|xn)||q(xn+1|xn))
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= D(p(xn+1)||q(xn+1))

+ D(p(xn|xn+1)||q(xn|xn+1)).

Since both p and q are derived from the Markov chain, the con-
ditional probability mass functions p(xn+1|xn) and q(xn+1|xn) are
both equal to r(xn+1|xn), and hence D(p(xn+1|xn)||q(xn+1|xn)) = 0.
Now using the nonnegativity of D(p(xn|xn+1)||q(xn|xn+1)) (Corol-
lary to Theorem 2.6.3), we have

D(p(xn)||q(xn)) ≥ D(p(xn+1)||q(xn+1)) (4.44)

or

D(µn||µ′
n) ≥ D(µn+1||µ′

n+1). (4.45)

Consequently, the distance between the probability mass functions
is decreasing with time n for any Markov chain.
An example of one interpretation of the preceding inequality is
to suppose that the tax system for the redistribution of wealth is
the same in Canada and in England. Then if µn and µ′

n represent
the distributions of wealth among people in the two countries, this
inequality shows that the relative entropy distance between the two
distributions decreases with time. The wealth distributions in Canada
and England become more similar.

2. Relative entropy D(µn||µ) between a distribution µn on the states at
time n and a stationary distribution µ decreases with n. In (4.45),
µ′

n is any distribution on the states at time n. If we let µ′
n be any

stationary distribution µ, the distribution µ′
n+1 at the next time is

also equal to µ. Hence,

D(µn||µ) ≥ D(µn+1||µ), (4.46)

which implies that any state distribution gets closer and closer to
each stationary distribution as time passes. The sequence D(µn||µ)

is a monotonically nonincreasing nonnegative sequence and must
therefore have a limit. The limit is zero if the stationary distribution
is unique, but this is more difficult to prove.

3. Entropy increases if the stationary distribution is uniform. In gen-
eral, the fact that the relative entropy decreases does not imply that
the entropy increases. A simple counterexample is provided by any
Markov chain with a nonuniform stationary distribution. If we start



4.4 SECOND LAW OF THERMODYNAMICS 83

this Markov chain from the uniform distribution, which already is
the maximum entropy distribution, the distribution will tend to the
stationary distribution, which has a lower entropy than the uniform.
Here, the entropy decreases with time.
If, however, the stationary distribution is the uniform distribution,
we can express the relative entropy as

D(µn||µ) = log |X| − H(µn) = log |X| − H(Xn). (4.47)

In this case the monotonic decrease in relative entropy implies a
monotonic increase in entropy. This is the explanation that ties in
most closely with statistical thermodynamics, where all the micro-
states are equally likely. We now characterize processes having a
uniform stationary distribution.

Definition A probability transition matrix [Pij ], Pij = Pr{Xn+1 =
j |Xn = i}, is called doubly stochastic if

∑
i

Pij = 1, j = 1, 2, . . . (4.48)

and ∑
j

Pij = 1, i = 1, 2, . . . . (4.49)

Remark The uniform distribution is a stationary distribution of P if
and only if the probability transition matrix is doubly stochastic (see
Problem 4.1).

4. The conditional entropy H(Xn|X1) increases with n for a station-
ary Markov process . If the Markov process is stationary, H(Xn) is
constant. So the entropy is nonincreasing. However, we will prove
that H(Xn|X1) increases with n. Thus, the conditional uncertainty
of the future increases. We give two alternative proofs of this result.
First, we use the properties of entropy,

H(Xn|X1) ≥ H(Xn|X1, X2) (conditioning reduces entropy)

(4.50)

= H(Xn|X2) (by Markovity) (4.51)

= H(Xn−1|X1) (by stationarity). (4.52)
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Alternatively, by an application of the data-processing inequality to
the Markov chain X1 → Xn−1 → Xn, we have

I (X1;Xn−1) ≥ I (X1; Xn). (4.53)

Expanding the mutual informations in terms of entropies, we have

H(Xn−1) − H(Xn−1|X1) ≥ H(Xn) − H(Xn|X1). (4.54)

By stationarity, H(Xn−1) = H(Xn), and hence we have

H(Xn−1|X1) ≤ H(Xn|X1). (4.55)

[These techniques can also be used to show that H(X0|Xn) is
increasing in n for any Markov chain.]

5. Shuffles increase entropy . If T is a shuffle (permutation) of a deck
of cards and X is the initial (random) position of the cards in the
deck, and if the choice of the shuffle T is independent of X, then

H(T X) ≥ H(X), (4.56)

where T X is the permutation of the deck induced by the shuffle T

on the initial permutation X. Problem 4.3 outlines a proof.

4.5 FUNCTIONS OF MARKOV CHAINS

Here is an example that can be very difficult if done the wrong
way. It illustrates the power of the techniques developed so far. Let
X1, X2, . . . , Xn, . . . be a stationary Markov chain, and let Yi = φ(Xi) be
a process each term of which is a function of the corresponding state
in the Markov chain. What is the entropy rate H(Y)? Such functions of
Markov chains occur often in practice. In many situations, one has only
partial information about the state of the system. It would simplify matters
greatly if Y1, Y2, . . . , Yn also formed a Markov chain, but in many cases,
this is not true. Since the Markov chain is stationary, so is Y1, Y2, . . . , Yn,
and the entropy rate is well defined. However, if we wish to compute
H(Y), we might compute H(Yn|Yn−1, . . . , Y1) for each n and find the
limit. Since the convergence can be arbitrarily slow, we will never know
how close we are to the limit. (We can’t look at the change between the
values at n and n + 1, since this difference may be small even when we
are far away from the limit—consider, for example,

∑ 1
n
.)
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It would be useful computationally to have upper and lower bounds con-
verging to the limit from above and below. We can halt the computation
when the difference between upper and lower bounds is small, and we
will then have a good estimate of the limit.

We already know that H(Yn|Yn−1, . . . , Y1) converges monoton-
ically to H(Y) from above. For a lower bound, we will use
H(Yn|Yn−1, . . . , Y1, X1). This is a neat trick based on the idea that X1
contains as much information about Yn as Y1, Y0, Y−1, . . . .

Lemma 4.5.1

H(Yn|Yn−1, . . . , Y2, X1) ≤ H(Y). (4.57)

Proof: We have for k = 1, 2, . . . ,

H(Yn|Yn−1, . . . , Y2, X1)
(a)= H(Yn|Yn−1, . . . , Y2, Y1, X1) (4.58)

(b)= H(Yn|Yn−1, . . . , Y1, X1, X0, X−1, . . . , X−k)

(4.59)

(c)= H(Yn|Yn−1, . . . , Y1, X1, X0,X−1, . . . ,

X−k, Y0, . . . , Y−k) (4.60)

(d)≤ H(Yn|Yn−1, . . . , Y1, Y0, . . . , Y−k) (4.61)

(e)= H(Yn+k+1|Yn+k, . . . , Y1), (4.62)

where (a) follows from that fact that Y1 is a function of X1, and (b) follows
from the Markovity of X, (c) follows from the fact that Yi is a function
of Xi , (d) follows from the fact that conditioning reduces entropy, and (e)
follows by stationarity. Since the inequality is true for all k, it is true in
the limit. Thus,

H(Yn|Yn−1, . . . , Y1, X1) ≤ lim
k

H(Yn+k+1|Yn+k, . . . , Y1) (4.63)

= H(Y). � (4.64)

The next lemma shows that the interval between the upper and the
lower bounds decreases in length.

Lemma 4.5.2

H(Yn|Yn−1, . . . , Y1) − H(Yn|Yn−1, . . . , Y1, X1) → 0. (4.65)
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Proof: The interval length can be rewritten as

H(Yn|Yn−1, . . . , Y1) − H(Yn|Yn−1, . . . , Y1, X1)

= I (X1; Yn|Yn−1, . . . , Y1). (4.66)

By the properties of mutual information,

I (X1;Y1, Y2, . . . , Yn) ≤ H(X1), (4.67)

and I (X1; Y1, Y2, . . . , Yn) increases with n. Thus, lim I (X1; Y1, Y2, . . . ,

Yn) exists and

lim
n→∞ I (X1; Y1, Y2, . . . , Yn) ≤ H(X1). (4.68)

By the chain rule,

H(X) ≥ lim
n→∞ I (X1;Y1, Y2, . . . , Yn) (4.69)

= lim
n→∞

n∑
i=1

I (X1; Yi |Yi−1, . . . , Y1) (4.70)

=
∞∑
i=1

I (X1; Yi |Yi−1, . . . , Y1). (4.71)

Since this infinite sum is finite and the terms are nonnegative, the terms
must tend to 0; that is,

lim I (X1; Yn|Yn−1, . . . , Y1) = 0, (4.72)

which proves the lemma. �

Combining Lemmas 4.5.1 and 4.5.2, we have the following theorem.

Theorem 4.5.1 If X1, X2, . . . , Xn form a stationary Markov chain, and
Yi = φ(Xi), then

H(Yn|Yn−1, . . . , Y1, X1) ≤ H(Y) ≤ H(Yn|Yn−1, . . . , Y1) (4.73)

and

lim H(Yn|Yn−1, . . . , Y1, X1) = H(Y) = lim H(Yn|Yn−1, . . . , Y1). (4.74)

In general, we could also consider the case where Yi is a stochastic
function (as opposed to a deterministic function) of Xi . Consider a Markov
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process X1, X2, . . . , Xn, and define a new process Y1, Y2, . . . , Yn, where
each Yi is drawn according to p(yi |xi), conditionally independent of all
the other Xj, j �= i; that is,

p(xn, yn) = p(x1)

n−1∏
i=1

p(xi+1|xi)

n∏
i=1

p(yi|xi). (4.75)

Such a process, called a hidden Markov model (HMM), is used extensively
in speech recognition, handwriting recognition, and so on. The same argu-
ment as that used above for functions of a Markov chain carry over to
hidden Markov models, and we can lower bound the entropy rate of a
hidden Markov model by conditioning it on the underlying Markov state.
The details of the argument are left to the reader.

SUMMARY

Entropy rate. Two definitions of entropy rate for a stochastic process
are

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn), (4.76)

H ′(X) = lim
n→∞ H(Xn|Xn−1, Xn−2, . . . , X1). (4.77)

For a stationary stochastic process,

H(X) = H ′(X). (4.78)

Entropy rate of a stationary Markov chain

H(X) = −
∑
ij

µiPij log Pij . (4.79)

Second law of thermodynamics. For a Markov chain:

1. Relative entropy D(µn||µ′
n) decreases with time

2. Relative entropy D(µn||µ) between a distribution and the stationary
distribution decreases with time.

3. Entropy H(Xn) increases if the stationary distribution is uniform.
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4. The conditional entropy H(Xn|X1) increases with time for a sta-
tionary Markov chain.

5. The conditional entropy H(X0|Xn) of the initial condition X0 in-
creases for any Markov chain.

Functions of a Markov chain. If X1, X2, . . . , Xn form a stationary
Markov chain and Yi = φ(Xi), then

H(Yn|Yn−1, . . . , Y1, X1) ≤ H(Y) ≤ H(Yn|Yn−1, . . . , Y1) (4.80)

and

lim
n→∞ H(Yn|Yn−1, . . . , Y1, X1) = H(Y) = lim

n→∞ H(Yn|Yn−1, . . . , Y1).

(4.81)

PROBLEMS

4.1 Doubly stochastic matrices . An n × n matrix P = [Pij ] is said
to be doubly stochastic if Pij ≥ 0 and

∑
j Pij = 1 for all i and∑

i Pij = 1 for all j . An n × n matrix P is said to be a permu-
tation matrix if it is doubly stochastic and there is precisely one
Pij = 1 in each row and each column. It can be shown that every
doubly stochastic matrix can be written as the convex combination
of permutation matrices.

(a) Let at = (a1, a2, . . . , an), ai ≥ 0,
∑

ai = 1, be a probability
vector. Let b = aP , where P is doubly stochastic. Show that b
is a probability vector and that H(b1, b2, . . . , bn) ≥ H(a1, a2,

. . . , an). Thus, stochastic mixing increases entropy.

(b) Show that a stationary distribution µ for a doubly stochastic
matrix P is the uniform distribution.

(c) Conversely, prove that if the uniform distribution is a stationary
distribution for a Markov transition matrix P , then P is doubly
stochastic.

4.2 Time’s arrow . Let {Xi}∞i=−∞ be a stationary stochastic process.
Prove that

H(X0|X−1, X−2, . . . , X−n) = H(X0|X1, X2, . . . , Xn).
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In other words, the present has a conditional entropy given the past
equal to the conditional entropy given the future. This is true even
though it is quite easy to concoct stationary random processes for
which the flow into the future looks quite different from the flow
into the past. That is, one can determine the direction of time by
looking at a sample function of the process. Nonetheless, given
the present state, the conditional uncertainty of the next symbol in
the future is equal to the conditional uncertainty of the previous
symbol in the past.

4.3 Shuffles increase entropy . Argue that for any distribution on shuf-
fles T and any distribution on card positions X that

H(T X) ≥ H(T X|T ) (4.82)

= H(T −1T X|T ) (4.83)

= H(X|T ) (4.84)

= H(X) (4.85)

if X and T are independent.

4.4 Second law of thermodynamics . Let X1, X2, X3, . . . be a station-
ary first-order Markov chain. In Section 4.4 it was shown that
H(Xn | X1) ≥ H(Xn−1 | X1) for n = 2, 3, . . . . Thus, conditional
uncertainty about the future grows with time. This is true although
the unconditional uncertainty H(Xn) remains constant. However,
show by example that H(Xn|X1 = x1) does not necessarily grow
with n for every x1.

4.5 Entropy of a random tree. Consider the following method of gen-
erating a random tree with n nodes. First expand the root node:

Then expand one of the two terminal nodes at random:

At time k, choose one of the k − 1 terminal nodes according to a
uniform distribution and expand it. Continue until n terminal nodes
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have been generated. Thus, a sequence leading to a five-node tree
might look like this:

Surprisingly, the following method of generating random trees
yields the same probability distribution on trees with n termi-
nal nodes. First choose an integer N1 uniformly distributed on
{1, 2, . . . , n − 1}. We then have the picture

N1 n − N1

Then choose an integer N2 uniformly distributed over
{1, 2, . . . , N1 − 1}, and independently choose another integer N3
uniformly over {1, 2, . . . , (n − N1) − 1}. The picture is now

N2 N3 n − N1 − N3N1 − N2

Continue the process until no further subdivision can be made.
(The equivalence of these two tree generation schemes follows, for
example, from Polya’s urn model.)
Now let Tn denote a random n-node tree generated as described. The
probability distribution on such trees seems difficult to describe, but
we can find the entropy of this distribution in recursive form.
First some examples. For n = 2, we have only one tree. Thus,
H(T2) = 0. For n = 3, we have two equally probable trees:
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Thus, H(T3) = log 2. For n = 4, we have five possible trees, with
probabilities 1

3 , 1
6 , 1

6 , 1
6 , 1

6 .
Now for the recurrence relation. Let N1(Tn) denote the number of
terminal nodes of Tn in the right half of the tree. Justify each of
the steps in the following:

H(Tn)
(a)= H(N1, Tn) (4.86)

(b)= H(N1) + H(Tn|N1) (4.87)

(c)= log(n − 1) + H(Tn|N1) (4.88)

(d)= log(n − 1) + 1

n − 1

n−1∑
k=1

(H(Tk) + H(Tn−k)) (4.89)

(e)= log(n − 1) + 2

n − 1

n−1∑
k=1

H(Tk) (4.90)

= log(n − 1) + 2

n − 1

n−1∑
k=1

Hk. (4.91)

(f) Use this to show that

(n − 1)Hn = nHn−1 + (n − 1) log(n − 1) − (n − 2) log(n − 2)

(4.92)

or
Hn

n
= Hn−1

n − 1
+ cn (4.93)

for appropriately defined cn. Since
∑

cn = c < ∞, you have proved
that 1

n
H(Tn) converges to a constant. Thus, the expected number of

bits necessary to describe the random tree Tn grows linearly with n.

4.6 Monotonicity of entropy per element . For a stationary stochastic
process X1, X2, . . . , Xn, show that
(a)

H(X1, X2, . . . , Xn)

n
≤ H(X1, X2, . . . , Xn−1)

n − 1
. (4.94)

(b)
H(X1, X2, . . . , Xn)

n
≥ H(Xn|Xn−1, . . . , X1). (4.95)
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4.7 Entropy rates of Markov chains
(a) Find the entropy rate of the two-state Markov chain with tran-

sition matrix

P =
[

1 − p01 p01
p10 1 − p10

]
.

(b) What values of p01, p10 maximize the entropy rate?
(c) Find the entropy rate of the two-state Markov chain with tran-

sition matrix

P =
[

1 − p p

1 0

]
.

(d) Find the maximum value of the entropy rate of the Markov
chain of part (c). We expect that the maximizing value of p

should be less than 1
2 , since the 0 state permits more informa-

tion to be generated than the 1 state.
(e) Let N(t) be the number of allowable state sequences of length t

for the Markov chain of part (c). Find N(t) and calculate

H0 = lim
t→∞

1

t
log N(t).

[Hint: Find a linear recurrence that expresses N(t) in terms
of N(t − 1) and N(t − 2). Why is H0 an upper bound on the
entropy rate of the Markov chain? Compare H0 with the max-
imum entropy found in part (d).]

4.8 Maximum entropy process . A discrete memoryless source has the
alphabet {1, 2}, where the symbol 1 has duration 1 and the sym-
bol 2 has duration 2. The probabilities of 1 and 2 are p1 and p2,
respectively. Find the value of p1 that maximizes the source entropy
per unit time H(X) = H(X)

ET
. What is the maximum value H(X)?

4.9 Initial conditions . Show, for a Markov chain, that

H(X0|Xn) ≥ H(X0|Xn−1).

Thus, initial conditions X0 become more difficult to recover as the
future Xn unfolds.

4.10 Pairwise independence. Let X1, X2, . . . , Xn−1 be i.i.d. random
variables taking values in {0, 1}, with Pr{Xi = 1} = 1

2 . Let Xn = 1
if

∑n−1
i=1 Xi is odd and Xn = 0 otherwise. Let n ≥ 3.
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(a) Show that Xi and Xj are independent for i �= j , i, j ∈ {1, 2,

. . . , n}.
(b) Find H(Xi, Xj ) for i �= j .
(c) Find H(X1, X2, . . . , Xn). Is this equal to nH(X1)?

4.11 Stationary processes . Let . . . , X−1, X0, X1, . . . be a stationary
(not necessarily Markov) stochastic process. Which of the follow-
ing statements are true? Prove or provide a counterexample.
(a) H(Xn|X0) = H(X−n|X0) .

(b) H(Xn|X0) ≥ H(Xn−1|X0) .

(c) H(Xn|X1, X2, . . . , Xn−1, Xn+1) is nonincreasing in n.
(d) H(Xn|X1, . . . , Xn−1, Xn+1, . . . , X2n) is nonincreasing in n.

4.12 Entropy rate of a dog looking for a bone. A dog walks on the
integers, possibly reversing direction at each step with probability
p = 0.1. Let X0 = 0. The first step is equally likely to be positive
or negative. A typical walk might look like this:

(X0, X1, . . .) = (0, −1, −2, −3, −4, −3, −2, −1, 0, 1, . . .).

(a) Find H(X1, X2, . . . , Xn).

(b) Find the entropy rate of the dog.
(c) What is the expected number of steps that the dog takes before

reversing direction?

4.13 The past has little to say about the future. For a stationary stochas-
tic process X1, X2, . . . , Xn, . . . , show that

lim
n→∞

1

2n
I (X1, X2, . . . , Xn;Xn+1, Xn+2, . . . , X2n) = 0. (4.96)

Thus, the dependence between adjacent n-blocks of a stationary
process does not grow linearly with n.

4.14 Functions of a stochastic process
(a) Consider a stationary stochastic process X1, X2, . . . , Xn, and

let Y1, Y2, . . . , Yn be defined by

Yi = φ(Xi), i = 1, 2, . . . (4.97)

for some function φ. Prove that

H(Y) ≤ H(X). (4.98)
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(b) What is the relationship between the entropy rates H(Z) and
H(X) if

Zi = ψ(Xi, Xi+1), i = 1, 2, . . . (4.99)

for some function ψ?

4.15 Entropy rate. Let {Xi} be a discrete stationary stochastic process
with entropy rate H(X). Show that

1

n
H(Xn, . . . , X1 | X0, X−1, . . . , X−k) → H(X) (4.100)

for k = 1, 2, . . ..

4.16 Entropy rate of constrained sequences . In magnetic recording, the
mechanism of recording and reading the bits imposes constraints
on the sequences of bits that can be recorded. For example, to
ensure proper synchronization, it is often necessary to limit the
length of runs of 0’s between two 1’s. Also, to reduce intersymbol
interference, it may be necessary to require at least one 0 between
any two 1’s. We consider a simple example of such a constraint.
Suppose that we are required to have at least one 0 and at most
two 0’s between any pair of 1’s in a sequences. Thus, sequences
like 101001 and 0101001 are valid sequences, but 0110010 and
0000101 are not. We wish to calculate the number of valid se-
quences of length n.
(a) Show that the set of constrained sequences is the same as the

set of allowed paths on the following state diagram:

(b) Let Xi(n) be the number of valid paths of length n ending at
state i. Argue that X(n) = [X1(n) X2(n) X3(n)]t satisfies the
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following recursion:
 X1(n)

X2(n)

X3(n)


 =


 0 1 1

1 0 0
0 1 0





 X1(n − 1)

X2(n − 1)

X3(n − 1)


, (4.101)

with initial conditions X(1) = [1 1 0]t .
(c) Let

A =

 0 1 1

1 0 0
0 1 0


. (4.102)

Then we have by induction

X(n) = AX(n − 1) = A2X(n − 2) = · · · = An−1X(1).

(4.103)
Using the eigenvalue decomposition of A for the case of distinct
eigenvalues, we can write A = U−1�U , where � is the diag-
onal matrix of eigenvalues. Then An−1 = U−1�n−1U . Show
that we can write

X(n) = λn−1
1 Y1 + λn−1

2 Y2 + λn−1
3 Y3, (4.104)

where Y1, Y2, Y3 do not depend on n. For large n, this sum
is dominated by the largest term. Therefore, argue that for i =
1, 2, 3, we have

1

n
log Xi(n) → log λ, (4.105)

where λ is the largest (positive) eigenvalue. Thus, the number
of sequences of length n grows as λn for large n. Calculate λ

for the matrix A above. (The case when the eigenvalues are
not distinct can be handled in a similar manner.)

(d) We now take a different approach. Consider a Markov chain
whose state diagram is the one given in part (a), but with
arbitrary transition probabilities. Therefore, the probability tran-
sition matrix of this Markov chain is

P =

 0 1 0

α 0 1 − α

1 0 0


. (4.106)

Show that the stationary distribution of this Markov chain is

µ =
[

1

3 − α
,

1

3 − α
,

1 − α

3 − α

]
. (4.107)
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(e) Maximize the entropy rate of the Markov chain over choices
of α. What is the maximum entropy rate of the chain?

(f) Compare the maximum entropy rate in part (e) with log λ in
part (c). Why are the two answers the same?

4.17 Recurrence times are insensitive to distributions . Let X0, X1, X2,

. . . be drawn i.i.d. ∼ p(x), x ∈ X = {1, 2, . . . , m}, and let N be the
waiting time to the next occurrence of X0. Thus N = minn{Xn =
X0}.
(a) Show that EN = m.
(b) Show that E log N ≤ H(X).
(c) (Optional ) Prove part (a) for {Xi} stationary and ergodic.

4.18 Stationary but not ergodic process . A bin has two biased coins,
one with probability of heads p and the other with probability of
heads 1 − p. One of these coins is chosen at random (i.e., with
probability 1

2 ) and is then tossed n times. Let X denote the identity
of the coin that is picked, and let Y1 and Y2 denote the results of
the first two tosses.
(a) Calculate I (Y1;Y2|X).
(b) Calculate I (X;Y1, Y2).
(c) Let H(Y) be the entropy rate of the Y process (the se-

quence of coin tosses). Calculate H(Y). [Hint: Relate this to
lim 1

n
H(X, Y1, Y2, . . . , Yn).]

You can check the answer by considering the behavior as p → 1
2 .

4.19 Random walk on graph. Consider a random walk on the following
graph:

1

5

4

3

2

(a) Calculate the stationary distribution.
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(b) What is the entropy rate?
(c) Find the mutual information I (Xn+1; Xn) assuming that the

process is stationary.

4.20 Random walk on chessboard . Find the entropy rate of the Markov
chain associated with a random walk of a king on the 3 × 3 chess-
board

1 2 3
4 5 6
7 8 9

What about the entropy rate of rooks, bishops, and queens? There
are two types of bishops.

4.21 Maximal entropy graphs . Consider a random walk on a connected
graph with four edges.
(a) Which graph has the highest entropy rate?
(b) Which graph has the lowest?

4.22 Three-dimensional maze. A bird is lost in a 3 × 3 × 3 cubical
maze. The bird flies from room to room going to adjoining rooms
with equal probability through each of the walls. For example, the
corner rooms have three exits.
(a) What is the stationary distribution?
(b) What is the entropy rate of this random walk?

4.23 Entropy rate. Let {Xi} be a stationary stochastic process with
entropy rate H(X).
(a) Argue that H(X) ≤ H(X1).
(b) What are the conditions for equality?

4.24 Entropy rates . Let {Xi} be a stationary process. Let Yi = (Xi,

Xi+1). Let Zi = (X2i , X2i+1). Let Vi = X2i . Consider the entropy
rates H(X), H(Y), H(Z), and H(V) of the processes {Xi},{Yi},
{Zi}, and {Vi}. What is the inequality relationship ≤, =, or ≥
between each of the pairs listed below?
(a) H(X)�<H(Y).

(b) H(X)�<H(Z).

(c) H(X)�<H(V).

(d) H(Z)�<H(X).

4.25 Monotonicity
(a) Show that I (X;Y1, Y2, . . . , Yn) is nondecreasing in n.
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(b) Under what conditions is the mutual information constant for
all n?

4.26 Transitions in Markov chains . Suppose that {Xi} forms an irre-
ducible Markov chain with transition matrix P and stationary distri-
bution µ. Form the associated “edge process” {Yi} by keeping track
only of the transitions. Thus, the new process {Yi} takes values in
X × X, and Yi = (Xi−1, Xi). For example,

Xn = 3, 2, 8, 5, 7, . . .

becomes
Yn = (∅, 3), (3, 2), (2, 8), (8, 5), (5, 7), . . . .

Find the entropy rate of the edge process {Yi}.
4.27 Entropy rate. Let {Xi} be a stationary {0, 1}-valued stochastic

process obeying

Xk+1 = Xk ⊕ Xk−1 ⊕ Zk+1,

where {Zi} is Bernoulli(p)and ⊕ denotes mod 2 addition. What is
the entropy rate H(X)?

4.28 Mixture of processes . Suppose that we observe one of two
stochastic processes but don’t know which. What is the entropy
rate? Specifically, let X11, X12, X13, . . . be a Bernoulli process with
parameter p1, and let X21,X22, X23, . . . be Bernoulli(p2). Let

θ =
{

1 with probability 1
2

2 with probability 1
2

and let Yi = Xθi, i = 1, 2, . . . , be the stochastic process observed.
Thus, Y observes the process {X1i} or {X2i}. Eventually, Y will
know which.
(a) Is {Yi} stationary?
(b) Is {Yi} an i.i.d. process?
(c) What is the entropy rate H of {Yi}?
(d) Does

−1

n
log p(Y1, Y2, . . . Yn) −→ H?

(e) Is there a code that achieves an expected per-symbol description
length 1

n
ELn −→ H?
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Now let θi be Bern(1
2 ). Observe that

Zi = Xθii, i = 1, 2, . . . .

Thus, θ is not fixed for all time, as it was in the first part, but is
chosen i.i.d. each time. Answer parts (a), (b), (c), (d), (e) for the
process {Zi}, labeling the answers (a′), (b′), (c′), (d′), (e′).

4.29 Waiting times . Let X be the waiting time for the first heads to
appear in successive flips of a fair coin. For example, Pr{X = 3} =
( 1

2)3. Let Sn be the waiting time for the nth head to appear. Thus,

S0 = 0

Sn+1 = Sn + Xn+1,

where X1, X2, X3, . . . are i.i.d according to the distribution above.
(a) Is the process {Sn} stationary?
(b) Calculate H(S1, S2, . . . , Sn).
(c) Does the process {Sn} have an entropy rate? If so, what is it?

If not, why not?
(d) What is the expected number of fair coin flips required to

generate a random variable having the same distribution as Sn?

4.30 Markov chain transitions

P = [Pij ] =




1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2


.

Let X1 be distributed uniformly over the states {0, 1, 2}. Let {Xi}∞1
be a Markov chain with transition matrix P ; thus, P(Xn+1 =
j |Xn = i) = Pij , i, j ∈ {0, 1, 2}.
(a) Is {Xn} stationary?
(b) Find limn→∞ 1

n
H(X1, . . . , Xn).

Now consider the derived process Z1, Z2, . . . , Zn, where

Z1 = X1

Zi = Xi − Xi−1 (mod 3), i = 2, . . . , n.

Thus, Zn encodes the transitions, not the states.
(c) Find H(Z1, Z2, . . . , Zn).

(d) Find H(Zn) and H(Xn) for n ≥ 2.
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(e) Find H(Zn|Zn−1) for n ≥ 2.
(f) Are Zn−1 and Zn independent for n ≥ 2?

4.31 Markov . Let {Xi} ∼ Bernoulli(p). Consider the associated
Markov chain {Yi}ni=1, where
Yi = (the number of 1’s in the current run of 1’s). For example, if
Xn = 101110 . . . , we have Yn = 101230 . . . .
(a) Find the entropy rate of Xn.
(b) Find the entropy rate of Yn.

4.32 Time symmetry . Let {Xn} be a stationary Markov process. We
condition on (X0, X1) and look into the past and future. For what
index k is

H(X−n|X0, X1) = H(Xk|X0, X1)?

Give the argument.

4.33 Chain inequality . Let X1 → X2 → X3 → X4 form a Markov
chain. Show that

I (X1; X3) + I (X2; X4) ≤ I (X1; X4) + I (X2; X3). (4.108)

4.34 Broadcast channel . Let X → Y → (Z, W) form a Markov chain
[i.e., p(x, y, z, w) = p(x)p(y|x)p(z, w|y) for all x, y, z, w]. Show
that

I (X;Z) + I (X;W) ≤ I (X;Y) + I (Z;W). (4.109)

4.35 Concavity of second law . Let {Xn}∞−∞ be a stationary Markov
process. Show that H(Xn|X0) is concave in n. Specifically, show
that

H(Xn|X0) − H(Xn−1|X0) − (H(Xn−1|X0) − H(Xn−2|X0))

= −I (X1; Xn−1|X0, Xn) ≤ 0. (4.110)

Thus, the second difference is negative, establishing that H(Xn|X0)

is a concave function of n.

HISTORICAL NOTES

The entropy rate of a stochastic process was introduced by Shannon [472],
who also explored some of the connections between the entropy rate of the
process and the number of possible sequences generated by the process.
Since Shannon, there have been a number of results extending the basic
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theorems of information theory to general stochastic processes. The AEP
for a general stationary stochastic process is proved in Chapter 16.

Hidden Markov models are used for a number of applications, such
as speech recognition [432]. The calculation of the entropy rate for con-
strained sequences was introduced by Shannon [472]. These sequences
are used for coding for magnetic and optical channels [288].





CHAPTER 5

DATA COMPRESSION

We now put content in the definition of entropy by establishing the funda-
mental limit for the compression of information. Data compression can be
achieved by assigning short descriptions to the most frequent outcomes
of the data source, and necessarily longer descriptions to the less fre-
quent outcomes. For example, in Morse code, the most frequent symbol
is represented by a single dot. In this chapter we find the shortest average
description length of a random variable.

We first define the notion of an instantaneous code and then prove the
important Kraft inequality, which asserts that the exponentiated codeword
length assignments must look like a probability mass function. Elemen-
tary calculus then shows that the expected description length must be
greater than or equal to the entropy, the first main result. Then Shan-
non’s simple construction shows that the expected description length can
achieve this bound asymptotically for repeated descriptions. This estab-
lishes the entropy as a natural measure of efficient description length.
The famous Huffman coding procedure for finding minimum expected
description length assignments is provided. Finally, we show that Huff-
man codes are competitively optimal and that it requires roughly H fair
coin flips to generate a sample of a random variable having entropy H .
Thus, the entropy is the data compression limit as well as the number of
bits needed in random number generation, and codes achieving H turn
out to be optimal from many points of view.

5.1 EXAMPLES OF CODES

Definition A source code C for a random variable X is a mapping from
X, the range of X, to D∗, the set of finite-length strings of symbols from
a D-ary alphabet. Let C(x) denote the codeword corresponding to x and
let l(x) denote the length of C(x).

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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For example, C(red) = 00, C(blue) = 11 is a source code for X = {red,
blue} with alphabet D = {0, 1}.

Definition The expected length L(C) of a source code C(x) for a ran-
dom variable X with probability mass function p(x) is given by

L(C) =
∑
x∈X

p(x)l(x), (5.1)

where l(x) is the length of the codeword associated with x.
Without loss of generality, we can assume that the D-ary alphabet is

D = {0, 1, . . . , D − 1}.
Some examples of codes follow.

Example 5.1.1 Let X be a random variable with the following distri-
bution and codeword assignment:

Pr(X = 1) = 1
2 , codeword C(1) = 0

Pr(X = 2) = 1
4 , codeword C(2) = 10

Pr(X = 3) = 1
8 , codeword C(3) = 110

Pr(X = 4) = 1
8 , codeword C(4) = 111.

(5.2)

The entropy H(X) of X is 1.75 bits, and the expected length L(C) =
El(X) of this code is also 1.75 bits. Here we have a code that has the
same average length as the entropy. We note that any sequence of bits
can be uniquely decoded into a sequence of symbols of X. For example,
the bit string 0110111100110 is decoded as 134213.

Example 5.1.2 Consider another simple example of a code for a random
variable:

Pr(X = 1) = 1
3 , codeword C(1) = 0

Pr(X = 2) = 1
3 , codeword C(2) = 10

Pr(X = 3) = 1
3 , codeword C(3) = 11.

(5.3)

Just as in Example 5.1.1, the code is uniquely decodable. However, in
this case the entropy is log 3 = 1.58 bits and the average length of the
encoding is 1.66 bits. Here El(X) > H(X).

Example 5.1.3 (Morse code) The Morse code is a reasonably efficient
code for the English alphabet using an alphabet of four symbols: a dot,
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a dash, a letter space, and a word space. Short sequences represent fre-
quent letters (e.g., a single dot represents E) and long sequences represent
infrequent letters (e.g., Q is represented by “dash,dash,dot,dash”). This is
not the optimal representation for the alphabet in four symbols—in fact,
many possible codewords are not utilized because the codewords for let-
ters do not contain spaces except for a letter space at the end of every
codeword, and no space can follow another space. It is an interesting prob-
lem to calculate the number of sequences that can be constructed under
these constraints. The problem was solved by Shannon in his original
1948 paper. The problem is also related to coding for magnetic recording,
where long strings of 0’s are prohibited [5], [370].

We now define increasingly more stringent conditions on codes. Let xn

denote (x1, x2, . . . , xn).

Definition A code is said to be nonsingular if every element of the
range of X maps into a different string in D∗; that is,

x �= x′ ⇒ C(x) �= C(x′). (5.4)

Nonsingularity suffices for an unambiguous description of a single
value of X. But we usually wish to send a sequence of values of X.
In such cases we can ensure decodability by adding a special symbol
(a “comma”) between any two codewords. But this is an inefficient use
of the special symbol; we can do better by developing the idea of self-
punctuating or instantaneous codes. Motivated by the necessity to send
sequences of symbols X, we define the extension of a code as follows:

Definition The extension C∗ of a code C is the mapping from finite-
length strings of X to finite-length strings of D, defined by

C(x1x2 · · · xn) = C(x1)C(x2) · · ·C(xn), (5.5)

where C(x1)C(x2) · · ·C(xn) indicates concatenation of the corresponding
codewords.

Example 5.1.4 If C(x1) = 00 and C(x2) = 11, then C(x1x2) = 0011.

Definition A code is called uniquely decodable if its extension is non-
singular.

In other words, any encoded string in a uniquely decodable code has
only one possible source string producing it. However, one may have
to look at the entire string to determine even the first symbol in the
corresponding source string.
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Definition A code is called a prefix code or an instantaneous code if
no codeword is a prefix of any other codeword.

An instantaneous code can be decoded without reference to future code-
words since the end of a codeword is immediately recognizable. Hence,
for an instantaneous code, the symbol xi can be decoded as soon as we
come to the end of the codeword corresponding to it. We need not wait
to see the codewords that come later. An instantaneous code is a self-
punctuating code; we can look down the sequence of code symbols and
add the commas to separate the codewords without looking at later sym-
bols. For example, the binary string 01011111010 produced by the code
of Example 5.1.1 is parsed as 0,10,111,110,10.

The nesting of these definitions is shown in Figure 5.1. To illustrate the
differences between the various kinds of codes, consider the examples of
codeword assignments C(x) to x ∈ X in Table 5.1. For the nonsingular
code, the code string 010 has three possible source sequences: 2 or 14 or
31, and hence the code is not uniquely decodable. The uniquely decodable
code is not prefix-free and hence is not instantaneous. To see that it is
uniquely decodable, take any code string and start from the beginning.
If the first two bits are 00 or 10, they can be decoded immediately. If

All
codes

Nonsingular
codes

Uniquely
decodable

codes

Instantaneous
codes

FIGURE 5.1. Classes of codes.
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TABLE 5.1 Classes of Codes

Nonsingular, But Not Uniquely Decodable,
X Singular Uniquely Decodable But Not Instantaneous Instantaneous

1 0 0 10 0
2 0 010 00 10
3 0 01 11 110
4 0 10 110 111

the first two bits are 11, we must look at the following bits. If the next
bit is a 1, the first source symbol is a 3. If the length of the string of
0’s immediately following the 11 is odd, the first codeword must be 110
and the first source symbol must be 4; if the length of the string of 0’s is
even, the first source symbol is a 3. By repeating this argument, we can see
that this code is uniquely decodable. Sardinas and Patterson [455] have
devised a finite test for unique decodability, which involves forming sets
of possible suffixes to the codewords and eliminating them systematically.
The test is described more fully in Problem 5.5.27. The fact that the last
code in Table 5.1 is instantaneous is obvious since no codeword is a prefix
of any other.

5.2 KRAFT INEQUALITY

We wish to construct instantaneous codes of minimum expected length to
describe a given source. It is clear that we cannot assign short codewords
to all source symbols and still be prefix-free. The set of codeword lengths
possible for instantaneous codes is limited by the following inequality.

Theorem 5.2.1 (Kraft inequality) For any instantaneous code (prefix
code) over an alphabet of size D, the codeword lengths l1, l2, . . . , lm must
satisfy the inequality

∑
i

D−li ≤ 1. (5.6)

Conversely, given a set of codeword lengths that satisfy this inequality,
there exists an instantaneous code with these word lengths.

Proof: Consider a D-ary tree in which each node has D children. Let the
branches of the tree represent the symbols of the codeword. For example,
the D branches arising from the root node represent the D possible values
of the first symbol of the codeword. Then each codeword is represented



108 DATA COMPRESSION

Root

0

10

110

111

FIGURE 5.2. Code tree for the Kraft inequality.

by a leaf on the tree. The path from the root traces out the symbols of the
codeword. A binary example of such a tree is shown in Figure 5.2. The
prefix condition on the codewords implies that no codeword is an ancestor
of any other codeword on the tree. Hence, each codeword eliminates its
descendants as possible codewords.

Let lmax be the length of the longest codeword of the set of codewords.
Consider all nodes of the tree at level lmax. Some of them are codewords,
some are descendants of codewords, and some are neither. A codeword
at level li has Dlmax−li descendants at level lmax. Each of these descendant
sets must be disjoint. Also, the total number of nodes in these sets must
be less than or equal to Dlmax . Hence, summing over all the codewords,
we have

∑
Dlmax−li ≤ Dlmax (5.7)

or
∑

D−li ≤ 1, (5.8)

which is the Kraft inequality.
Conversely, given any set of codeword lengths l1, l2, . . . , lm that sat-

isfy the Kraft inequality, we can always construct a tree like the one in
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Figure 5.2. Label the first node (lexicographically) of depth l1 as code-
word 1, and remove its descendants from the tree. Then label the first
remaining node of depth l2 as codeword 2, and so on. Proceeding this
way, we construct a prefix code with the specified l1, l2, . . . , lm. �

We now show that an infinite prefix code also satisfies the Kraft inequal-
ity.

Theorem 5.2.2 (Extended Kraft Inequality) For any countably infi-
nite set of codewords that form a prefix code, the codeword lengths satisfy
the extended Kraft inequality,

∞∑
i=1

D−li ≤ 1. (5.9)

Conversely, given any l1, l2, . . . satisfying the extended Kraft inequality,
we can construct a prefix code with these codeword lengths.

Proof: Let the D-ary alphabet be {0, 1, . . . , D − 1}. Consider the ith
codeword y1y2 · · · yli . Let 0.y1y2 · · · yli be the real number given by the
D-ary expansion

0.y1y2 · · · yli =
li∑

j=1

yjD
−j . (5.10)

This codeword corresponds to the interval
[

0.y1y2 · · · yli , 0.y1y2 · · · yli + 1

Dli

)
, (5.11)

the set of all real numbers whose D-ary expansion begins with
0.y1y2 · · · yli . This is a subinterval of the unit interval [0, 1]. By the prefix
condition, these intervals are disjoint. Hence, the sum of their lengths has
to be less than or equal to 1. This proves that

∞∑
i=1

D−li ≤ 1. (5.12)

Just as in the finite case, we can reverse the proof to construct the
code for a given l1, l2, . . . that satisfies the Kraft inequality. First, reorder
the indexing so that l1 ≤ l2 ≤ . . . . Then simply assign the intervals in
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order from the low end of the unit interval. For example, if we wish to
construct a binary code with l1 = 1, l2 = 2, . . . , we assign the intervals
[0, 1

2), [ 1
2 , 1

4), . . . to the symbols, with corresponding codewords 0, 10,
. . . . �

In Section 5.5 we show that the lengths of codewords for a uniquely
decodable code also satisfy the Kraft inequality. Before we do that, we
consider the problem of finding the shortest instantaneous code.

5.3 OPTIMAL CODES

In Section 5.2 we proved that any codeword set that satisfies the prefix
condition has to satisfy the Kraft inequality and that the Kraft inequality
is a sufficient condition for the existence of a codeword set with the
specified set of codeword lengths. We now consider the problem of finding
the prefix code with the minimum expected length. From the results of
Section 5.2, this is equivalent to finding the set of lengths l1, l2, . . . , lm
satisfying the Kraft inequality and whose expected length L = ∑

pili is
less than the expected length of any other prefix code. This is a standard
optimization problem: Minimize

L =
∑

pili (5.13)

over all integers l1, l2, . . . , lm satisfying
∑

D−li ≤ 1. (5.14)

A simple analysis by calculus suggests the form of the minimizing l∗i .
We neglect the integer constraint on li and assume equality in the con-
straint. Hence, we can write the constrained minimization using Lagrange
multipliers as the minimization of

J =
∑

pili + λ
(∑

D−li

)
. (5.15)

Differentiating with respect to li , we obtain

∂J

∂li
= pi − λD−li loge D. (5.16)

Setting the derivative to 0, we obtain

D−li = pi

λ loge D
. (5.17)
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Substituting this in the constraint to find λ, we find λ = 1/ loge D, and
hence

pi = D−li , (5.18)

yielding optimal code lengths,

l∗i = − logD pi. (5.19)

This noninteger choice of codeword lengths yields expected codeword
length

L∗ =
∑

pil
∗
i = −

∑
pi logD pi = HD(X). (5.20)

But since the li must be integers, we will not always be able to set
the codeword lengths as in (5.19). Instead, we should choose a set of
codeword lengths li “close” to the optimal set. Rather than demonstrate
by calculus that l∗i = − logD pi is a global minimum, we verify optimality
directly in the proof of the following theorem.

Theorem 5.3.1 The expected length L of any instantaneous D-ary code
for a random variable X is greater than or equal to the entropy HD(X);
that is,

L ≥ HD(X), (5.21)

with equality if and only if D−li = pi .

Proof: We can write the difference between the expected length and the
entropy as

L − HD(X) =
∑

pili −
∑

pi logD

1

pi

(5.22)

= −
∑

pi logD D−li +
∑

pi logD pi. (5.23)

Letting ri = D−li /
∑

j D−lj and c = ∑
D−li , we obtain

L − H =
∑

pi logD

pi

ri

− logD c (5.24)

= D(p||r) + logD

1

c
(5.25)

≥ 0 (5.26)
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by the nonnegativity of relative entropy and the fact (Kraft inequality)
that c ≤ 1. Hence, L ≥ H with equality if and only if pi = D−li (i.e., if
and only if − logD pi is an integer for all i). �

Definition A probability distribution is called D-adic if each of the
probabilities is equal to D−n for some n. Thus, we have equality in the
theorem if and only if the distribution of X is D-adic.

The preceding proof also indicates a procedure for finding an optimal
code: Find the D-adic distribution that is closest (in the relative entropy
sense) to the distribution of X. This distribution provides the set of code-
word lengths. Construct the code by choosing the first available node as
in the proof of the Kraft inequality. We then have an optimal code for X.

However, this procedure is not easy, since the search for the closest
D-adic distribution is not obvious. In the next section we give a good
suboptimal procedure (Shannon–Fano coding). In Section 5.6 we describe
a simple procedure (Huffman coding) for actually finding the optimal
code.

5.4 BOUNDS ON THE OPTIMAL CODE LENGTH

We now demonstrate a code that achieves an expected description length
L within 1 bit of the lower bound; that is,

H(X) ≤ L < H(X) + 1. (5.27)

Recall the setup of Section 5.3: We wish to minimize L = ∑
pili sub-

ject to the constraint that l1, l2, . . . , lm are integers and
∑

D−li ≤ 1. We
proved that the optimal codeword lengths can be found by finding the
D-adic probability distribution closest to the distribution of X in relative
entropy, that is, by finding the D-adic r (ri = D−li /

∑
j D−lj ) minimizing

L − HD = D(p||r) − log
(∑

D−li

)
≥ 0. (5.28)

The choice of word lengths li = logD
1
pi

yields L = H . Since logD
1
pi

may not equal an integer, we round it up to give integer word-length
assignments,

li =
⌈

logD

1

pi

⌉
, (5.29)
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where 	x
 is the smallest integer ≥ x. These lengths satisfy the Kraft
inequality since

∑
D

−	log 1
pi


 ≤
∑

D
− log 1

pi =
∑

pi = 1. (5.30)

This choice of codeword lengths satisfies

logD

1

pi

≤ li < logD

1

pi

+ 1. (5.31)

Multiplying by pi and summing over i, we obtain

HD(X) ≤ L < HD(X) + 1. (5.32)

Since an optimal code can only be better than this code, we have the
following theorem.

Theorem 5.4.1 Let l∗1 , l∗2 , . . . , l∗m be optimal codeword lengths for a
source distribution p and a D-ary alphabet, and let L∗ be the associated
expected length of an optimal code (L∗ = ∑

pil
∗
i ). Then

HD(X) ≤ L∗ < HD(X) + 1. (5.33)

Proof: Let li = 	logD
1
pi


. Then li satisfies the Kraft inequality and from
(5.32) we have

HD(X) ≤ L =
∑

pili < HD(X) + 1. (5.34)

But since L∗, the expected length of the optimal code, is less than L =∑
pili , and since L∗ ≥ HD from Theorem 5.3.1, we have the

theorem. �

In Theorem 5.4.1 there is an overhead that is at most 1 bit, due to the
fact that log 1

pi
is not always an integer. We can reduce the overhead per

symbol by spreading it out over many symbols. With this in mind, let us
consider a system in which we send a sequence of n symbols from X.
The symbols are assumed to be drawn i.i.d. according to p(x). We can
consider these n symbols to be a supersymbol from the alphabet Xn.

Define Ln to be the expected codeword length per input symbol, that
is, if l(x1, x2, . . . , xn) is the length of the binary codeword associated
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with (x1, x2, . . . , xn) (for the rest of this section, we assume that D = 2,
for simplicity), then

Ln = 1

n

∑
p(x1, x2, . . . , xn)l(x1, x2, . . . , xn) = 1

n
El(X1, X2, . . . , Xn).

(5.35)
We can now apply the bounds derived above to the code:

H(X1, X2, . . . , Xn) ≤ El(X1, X2, . . . , Xn) < H(X1, X2, . . . , Xn) + 1.

(5.36)
Since X1, X2, . . . , Xn are i.i.d., H(X1, X2, . . . , Xn) = ∑

H(Xi) =
nH(X). Dividing (5.36) by n, we obtain

H(X) ≤ Ln < H(X) + 1

n
. (5.37)

Hence, by using large block lengths we can achieve an expected code-
length per symbol arbitrarily close to the entropy.

We can use the same argument for a sequence of symbols from a
stochastic process that is not necessarily i.i.d. In this case, we still have
the bound

H(X1, X2, . . . , Xn) ≤ El(X1, X2, . . . , Xn) < H(X1, X2, . . . , Xn) + 1.

(5.38)
Dividing by n again and defining Ln to be the expected description length
per symbol, we obtain

H(X1, X2, . . . , Xn)

n
≤ Ln <

H(X1, X2, . . . , Xn)

n
+ 1

n
. (5.39)

If the stochastic process is stationary, then H(X1, X2, . . . , Xn)/n →
H(X), and the expected description length tends to the entropy rate as
n → ∞. Thus, we have the following theorem:

Theorem 5.4.2 The minimum expected codeword length per symbol sat-
isfies

H(X1, X2, . . . , Xn)

n
≤ L∗

n <
H(X1, X2, . . . , Xn)

n
+ 1

n
. (5.40)

Moreover, if X1, X2, . . . , Xn is a stationary stochastic process,

L∗
n → H(X), (5.41)

where H(X) is the entropy rate of the process.
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This theorem provides another justification for the definition of entropy
rate—it is the expected number of bits per symbol required to describe
the process.

Finally, we ask what happens to the expected description length if the
code is designed for the wrong distribution. For example, the wrong dis-
tribution may be the best estimate that we can make of the unknown true

distribution. We consider the Shannon code assignment l(x) =
⌈

log 1
q(x)

⌉
designed for the probability mass function q(x). Suppose that the true
probability mass function is p(x). Thus, we will not achieve expected
length L ≈ H(p) = − ∑

p(x) log p(x). We now show that the increase
in expected description length due to the incorrect distribution is the rel-
ative entropy D(p||q). Thus, D(p||q) has a concrete interpretation as the
increase in descriptive complexity due to incorrect information.

Theorem 5.4.3 (Wrong code) The expected length under p(x) of the

code assignment l(x) =
⌈

log 1
q(x)

⌉
satisfies

H(p) + D(p||q) ≤ Epl(X) < H(p) + D(p||q) + 1. (5.42)

Proof: The expected codelength is

El(X) =
∑

x

p(x)

⌈
log

1

q(x)

⌉
(5.43)

<
∑

x

p(x)

(
log

1

q(x)
+ 1

)
(5.44)

=
∑

x

p(x) log
p(x)

q(x)

1

p(x)
+ 1 (5.45)

=
∑

x

p(x) log
p(x)

q(x)
+

∑
x

p(x) log
1

p(x)
+ 1 (5.46)

= D(p||q) + H(p) + 1. (5.47)

The lower bound can be derived similarly. �

Thus, believing that the distribution is q(x) when the true distribution
is p(x) incurs a penalty of D(p||q) in the average description length.

5.5 KRAFT INEQUALITY FOR UNIQUELY DECODABLE CODES

We have proved that any instantaneous code must satisfy the Kraft inequal-
ity. The class of uniquely decodable codes is larger than the class of



116 DATA COMPRESSION

instantaneous codes, so one expects to achieve a lower expected codeword
length if L is minimized over all uniquely decodable codes. In this section
we prove that the class of uniquely decodable codes does not offer any
further possibilities for the set of codeword lengths than do instantaneous
codes. We now give Karush’s elegant proof of the following theorem.

Theorem 5.5.1 (McMillan) The codeword lengths of any uniquely
decodable D-ary code must satisfy the Kraft inequality

∑
D−li ≤ 1. (5.48)

Conversely, given a set of codeword lengths that satisfy this inequality, it
is possible to construct a uniquely decodable code with these codeword
lengths.

Proof: Consider Ck , the kth extension of the code (i.e., the code formed
by the concatenation of k repetitions of the given uniquely decodable code
C). By the definition of unique decodability, the kth extension of the code
is nonsingular. Since there are only Dn different D-ary strings of length n,
unique decodability implies that the number of code sequences of length
n in the kth extension of the code must be no greater than Dn. We now
use this observation to prove the Kraft inequality.

Let the codeword lengths of the symbols x ∈ X be denoted by l(x).
For the extension code, the length of the code sequence is

l(x1, x2, . . . , xk) =
k∑

i=1

l(xi). (5.49)

The inequality that we wish to prove is
∑
x∈X

D−l(x) ≤ 1. (5.50)

The trick is to consider the kth power of this quantity. Thus,
(∑

x∈X
D−l(x)

)k

=
∑
x1∈X

∑
x2∈X

· · ·
∑
xk∈X

D−l(x1)D−l(x2) · · ·D−l(xk) (5.51)

=
∑

x1,x2,...,xk∈X k

D−l(x1)D−l(x2) · · ·D−l(xk) (5.52)

=
∑

xk∈X k

D−l(xk), (5.53)
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by (5.49). We now gather the terms by word lengths to obtain

∑
xk∈X k

D−l(xk) =
klmax∑
m=1

a(m)D−m, (5.54)

where lmax is the maximum codeword length and a(m) is the number
of source sequences xk mapping into codewords of length m. But the
code is uniquely decodable, so there is at most one sequence mapping
into each code m-sequence and there are at most Dm code m-sequences.
Thus, a(m) ≤ Dm, and we have

(∑
x∈X

D−l(x)

)k

=
klmax∑
m=1

a(m)D−m (5.55)

≤
klmax∑
m=1

DmD−m (5.56)

= klmax (5.57)

and hence
∑

j

D−lj ≤ (klmax)
1/k . (5.58)

Since this inequality is true for all k, it is true in the limit as k → ∞.
Since (klmax)

1/k → 1, we have

∑
j

D−lj ≤ 1, (5.59)

which is the Kraft inequality.
Conversely, given any set of l1, l2, . . . , lm satisfying the Kraft inequal-

ity, we can construct an instantaneous code as proved in Section 5.2. Since
every instantaneous code is uniquely decodable, we have also constructed
a uniquely decodable code. �

Corollary A uniquely decodable code for an infinite source alphabet X
also satisfies the Kraft inequality.

Proof: The point at which the preceding proof breaks down for infinite
|X| is at (5.58), since for an infinite code lmax is infinite. But there is a
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simple fix to the proof. Any subset of a uniquely decodable code is also
uniquely decodable; thus, any finite subset of the infinite set of codewords
satisfies the Kraft inequality. Hence,

∞∑
i=1

D−li = lim
N→∞

N∑
i=1

D−li ≤ 1. (5.60)

Given a set of word lengths l1, l2, . . . that satisfy the Kraft inequality, we
can construct an instantaneous code as in Section 5.4. Since instantaneous
codes are uniquely decodable, we have constructed a uniquely decodable
code with an infinite number of codewords. So the McMillan theorem
also applies to infinite alphabets. �

The theorem implies a rather surprising result—that the class of
uniquely decodable codes does not offer any further choices for the set
of codeword lengths than the class of prefix codes. The set of achievable
codeword lengths is the same for uniquely decodable and instantaneous
codes. Hence, the bounds derived on the optimal codeword lengths con-
tinue to hold even when we expand the class of allowed codes to the class
of all uniquely decodable codes.

5.6 HUFFMAN CODES

An optimal (shortest expected length) prefix code for a given distribution
can be constructed by a simple algorithm discovered by Huffman [283].
We will prove that any other code for the same alphabet cannot have a
lower expected length than the code constructed by the algorithm. Before
we give any formal proofs, let us introduce Huffman codes with some
examples.

Example 5.6.1 Consider a random variable X taking values in the set
X = {1, 2, 3, 4, 5} with probabilities 0.25, 0.25, 0.2, 0.15, 0.15, respec-
tively. We expect the optimal binary code for X to have the longest
codewords assigned to the symbols 4 and 5. These two lengths must be
equal, since otherwise we can delete a bit from the longer codeword and
still have a prefix code, but with a shorter expected length. In general,
we can construct a code in which the two longest codewords differ only
in the last bit. For this code, we can combine the symbols 4 and 5 into
a single source symbol, with a probability assignment 0.30. Proceeding
this way, combining the two least likely symbols into one symbol until
we are finally left with only one symbol, and then assigning codewords
to the symbols, we obtain the following table:
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Codeword
Length Codeword X Probability

2 01 1 0.25 0.3 0.45 0.55 1
2 10 2 0.25 0.25 0.3 0.45
2 11 3 0.2 0.25 0.25
3 000 4 0.15 0.2
3 001 5 0.15

This code has average length 2.3 bits.

Example 5.6.2 Consider a ternary code for the same random variable.
Now we combine the three least likely symbols into one supersymbol and
obtain the following table:

Codeword X Probability

1 1 0.25 0.5 1
2 2 0.25 0.25
00 3 0.2 0.25
01 4 0.15
02 5 0.15

This code has an average length of 1.5 ternary digits.

Example 5.6.3 If D ≥ 3, we may not have a sufficient number of sym-
bols so that we can combine them D at a time. In such a case, we add
dummy symbols to the end of the set of symbols. The dummy symbols
have probability 0 and are inserted to fill the tree. Since at each stage of
the reduction, the number of symbols is reduced by D − 1, we want the
total number of symbols to be 1 + k(D − 1), where k is the number of
merges. Hence, we add enough dummy symbols so that the total number
of symbols is of this form. For example:

This code has an average length of 1.7 ternary digits.
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A proof of the optimality of Huffman coding is given in Section 5.8.

5.7 SOME COMMENTS ON HUFFMAN CODES

1. Equivalence of source coding and 20 questions . We now digress
to show the equivalence of coding and the game “20 questions”.
Suppose that we wish to find the most efficient series of yes–no
questions to determine an object from a class of objects. Assuming
that we know the probability distribution on the objects, can we find
the most efficient sequence of questions? (To determine an object,
we need to ensure that the responses to the sequence of questions
uniquely identifies the object from the set of possible objects; it is
not necessary that the last question have a “yes” answer.)

We first show that a sequence of questions is equivalent to a code
for the object. Any question depends only on the answers to the
questions before it. Since the sequence of answers uniquely deter-
mines the object, each object has a different sequence of answers,
and if we represent the yes–no answers by 0’s and 1’s, we have a
binary code for the set of objects. The average length of this code
is the average number of questions for the questioning scheme.

Also, from a binary code for the set of objects, we can find a
sequence of questions that correspond to the code, with the average
number of questions equal to the expected codeword length of the
code. The first question in this scheme becomes: Is the first bit equal
to 1 in the object’s codeword?

Since the Huffman code is the best source code for a random
variable, the optimal series of questions is that determined by the
Huffman code. In Example 5.6.1 the optimal first question is: Is
X equal to 2 or 3? The answer to this determines the first bit of
the Huffman code. Assuming that the answer to the first question
is “yes,” the next question should be “Is X equal to 3?”, which
determines the second bit. However, we need not wait for the answer
to the first question to ask the second. We can ask as our second
question “Is X equal to 1 or 3?”, determining the second bit of the
Huffman code independent of the first.

The expected number of questions EQ in this optimal scheme
satisfies

H(X) ≤ EQ < H(X) + 1. (5.61)
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2. Huffman coding for weighted codewords . Huffman’s algorithm for
minimizing

∑
pili can be applied to any set of numbers pi ≥ 0,

regardless of
∑

pi . In this case, the Huffman code minimizes the
sum of weighted code lengths

∑
wili rather than the average code

length.

Example 5.7.1 We perform the weighted minimization using the
same algorithm.

In this case the code minimizes the weighted sum of the codeword
lengths, and the minimum weighted sum is 36.

3. Huffman coding and “slice” questions (Alphabetic codes). We have
described the equivalence of source coding with the game of 20
questions. The optimal sequence of questions corresponds to an
optimal source code for the random variable. However, Huffman
codes ask arbitrary questions of the form “Is X ∈ A?” for any set
A ⊆ {1, 2, . . . , m}.

Now we consider the game “20 questions” with a restricted set
of questions. Specifically, we assume that the elements of X =
{1, 2, . . . , m} are ordered so that p1 ≥ p2 ≥ · · · ≥ pm and that the
only questions allowed are of the form “Is X > a?” for some a. The
Huffman code constructed by the Huffman algorithm may not cor-
respond to slices (sets of the form {x : x < a}). If we take the code-
word lengths (l1 ≤ l2 ≤ · · · ≤ lm, by Lemma 5.8.1) derived from the
Huffman code and use them to assign the symbols to the code tree
by taking the first available node at the corresponding level, we
will construct another optimal code. However, unlike the Huffman
code itself, this code is a slice code, since each question (each bit
of the code) splits the tree into sets of the form {x : x > a} and
{x : x < a}.

We illustrate this with an example.

Example 5.7.2 Consider the first example of Section 5.6. The
code that was constructed by the Huffman coding procedure is not a
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slice code. But using the codeword lengths from the Huffman pro-
cedure, namely, {2, 2, 2, 3, 3}, and assigning the symbols to the first
available node on the tree, we obtain the following code for this
random variable:

1 → 00, 2 → 01, 3 → 10, 4 → 110, 5 → 111

It can be verified that this code is a slice code, codes known as
alphabetic codes because the codewords are ordered alphabetically.

4. Huffman codes and Shannon codes . Using codeword lengths of
	log 1

pi

 (which is called Shannon coding) may be much worse than

the optimal code for some particular symbol. For example, con-
sider two symbols, one of which occurs with probability 0.9999 and
the other with probability 0.0001. Then using codeword lengths of
	log 1

pi

 gives codeword lengths of 1 bit and 14 bits, respectively.

The optimal codeword length is obviously 1 bit for both symbols.
Hence, the codeword for the infrequent symbol is much longer in
the Shannon code than in the optimal code.

Is it true that the codeword lengths for an optimal code are always
less than 	log 1

pi

? The following example illustrates that this is not

always true.

Example 5.7.3 Consider a random variable X with a distribution(1
3 , 1

3 , 1
4 , 1

12

)
. The Huffman coding procedure results in codeword

lengths of (2, 2, 2, 2) or (1, 2, 3, 3) [depending on where one puts
the merged probabilities, as the reader can verify (Problem 5.5.12)].
Both these codes achieve the same expected codeword length. In the
second code, the third symbol has length 3, which is greater than
	log 1

p3

. Thus, the codeword length for a Shannon code could be

less than the codeword length of the corresponding symbol of an
optimal (Huffman) code. This example also illustrates the fact that
the set of codeword lengths for an optimal code is not unique (there
may be more than one set of lengths with the same expected value).

Although either the Shannon code or the Huffman code can be
shorter for individual symbols, the Huffman code is shorter on aver-
age. Also, the Shannon code and the Huffman code differ by less
than 1 bit in expected codelength (since both lie between H and
H + 1.)
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5. Fano codes . Fano proposed a suboptimal procedure for constructing
a source code, which is similar to the idea of slice codes. In his
method we first order the probabilities in decreasing order. Then we

choose k such that
∣∣∣∑k

i=1 pi − ∑m
i=k+1 pi

∣∣∣ is minimized. This point
divides the source symbols into two sets of almost equal probability.
Assign 0 for the first bit of the upper set and 1 for the lower set.
Repeat this process for each subset. By this recursive procedure, we
obtain a code for each source symbol. This scheme, although not
optimal in general, achieves L(C) ≤ H(X) + 2. (See [282].)

5.8 OPTIMALITY OF HUFFMAN CODES

We prove by induction that the binary Huffman code is optimal. It is
important to remember that there are many optimal codes: inverting all
the bits or exchanging two codewords of the same length will give another
optimal code. The Huffman procedure constructs one such optimal code.
To prove the optimality of Huffman codes, we first prove some properties
of a particular optimal code.

Without loss of generality, we will assume that the probability masses
are ordered, so that p1 ≥ p2 ≥ · · · ≥ pm. Recall that a code is optimal if∑

pili is minimal.

Lemma 5.8.1 For any distribution, there exists an optimal instantaneous
code (with minimum expected length) that satisfies the following proper-
ties:

1. The lengths are ordered inversely with the probabilities (i.e., if pj >

pk , then lj ≤ lk).
2. The two longest codewords have the same length.
3. Two of the longest codewords differ only in the last bit and corre-

spond to the two least likely symbols.

Proof: The proof amounts to swapping, trimming, and rearranging, as
shown in Figure 5.3. Consider an optimal code Cm:

• If pj > pk, then lj ≤ lk . Here we swap codewords.
Consider C ′

m, with the codewords j and k of Cm interchanged. Then

L(C ′
m) − L(Cm) =

∑
pili

′ −
∑

pili (5.62)

= pj lk + pklj − pj lj − pklk (5.63)

= (pj − pk)(lk − lj ). (5.64)
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FIGURE 5.3. Properties of optimal codes. We assume that p1 ≥ p2 ≥ · · · ≥ pm. A possible
instantaneous code is given in (a). By trimming branches without siblings, we improve the
code to (b). We now rearrange the tree as shown in (c), so that the word lengths are ordered
by increasing length from top to bottom. Finally, we swap probability assignments to improve
the expected depth of the tree, as shown in (d ). Every optimal code can be rearranged and
swapped into canonical form as in (d ), where l1 ≤ l2 ≤ · · · ≤ lm and lm−1 = lm, and the last
two codewords differ only in the last bit.

But pj − pk > 0, and since Cm is optimal, L(C ′
m) − L(Cm) ≥ 0.

Hence, we must have lk ≥ lj . Thus, Cm itself satisfies property 1.
• The two longest codewords are of the same length. Here we trim the

codewords. If the two longest codewords are not of the same length,
one can delete the last bit of the longer one, preserving the prefix
property and achieving lower expected codeword length. Hence, the
two longest codewords must have the same length. By property 1, the
longest codewords must belong to the least probable source symbols.

• The two longest codewords differ only in the last bit and correspond
to the two least likely symbols. Not all optimal codes satisfy this
property, but by rearranging, we can find an optimal code that does.
If there is a maximal-length codeword without a sibling, we can delete
the last bit of the codeword and still satisfy the prefix property. This
reduces the average codeword length and contradicts the optimality
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of the code. Hence, every maximal-length codeword in any optimal
code has a sibling. Now we can exchange the longest codewords so
that the two lowest-probability source symbols are associated with
two siblings on the tree. This does not change the expected length,∑

pili . Thus, the codewords for the two lowest-probability source
symbols have maximal length and agree in all but the last bit.

Summarizing, we have shown that if p1 ≥ p2 ≥ · · · ≥ pm, there exists
an optimal code with l1 ≤ l2 ≤ · · · ≤ lm−1 = lm, and codewords C(xm−1)

and C(xm) that differ only in the last bit. �

Thus, we have shown that there exists an optimal code satisfy-
ing the properties of the lemma. We call such codes canonical codes.
For any probability mass function for an alphabet of size m, p =
(p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reduc-
tion p′ = (p1, p2, . . . , pm−2, pm−1 + pm) over an alphabet of size m − 1
(Figure 5.4). Let C∗

m−1(p
′) be an optimal code for p′, and let C∗

m(p) be
the canonical optimal code for p.

The proof of optimality will follow from two constructions: First, we
expand an optimal code for p′ to construct a code for p, and then we
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FIGURE 5.4. Induction step for Huffman coding. Let p1 ≥ p2 ≥ · · · ≥ p5. A canonical
optimal code is illustrated in (a). Combining the two lowest probabilities, we obtain the
code in (b). Rearranging the probabilities in decreasing order, we obtain the canonical code
in (c) for m − 1 symbols.
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condense an optimal canonical code for p to construct a code for the
Huffman reduction p′. Comparing the average codeword lengths for the
two codes establishes that the optimal code for p can be obtained by
extending the optimal code for p′.

From the optimal code for p′, we construct an extension code for m

elements as follows: Take the codeword in C∗
m−1 corresponding to weight

pm−1 + pm and extend it by adding a 0 to form a codeword for symbol
m − 1 and by adding 1 to form a codeword for symbol m. The code
construction is illustrated as follows:

C∗
m−1(p

′) Cm(p)

p1 w′
1 l′1 w1 = w′

1 l1 = l′1
p2 w′

2 l′2 w2 = w′
2 l2 = l′2

...
...

...
...

...

pm−2 w′
m−2 l′m−2 wm−2 = w′

m−2 lm−2 = l′m−2
pm−1 + pm w′

m−1 l′m−1 wm−1 = w′
m−10 lm−1 = l′m−1 + 1

wm = w′
m−11 lm = l′m−1 + 1

(5.65)
Calculation of the average length

∑
i p′

i l
′
i shows that

L(p) = L∗(p′) + pm−1 + pm. (5.66)

Similarly, from the canonical code for p, we construct a code for p′ by
merging the codewords for the two lowest-probability symbols m − 1 and
m with probabilities pm−1 and pm, which are siblings by the properties
of the canonical code. The new code for p′ has average length

L(p′) =
m−2∑
i=1

pili + pm−1(lm−1 − 1) + pm(lm − 1) (5.67)

=
m∑

i=1

pili − pm−1 − pm (5.68)

= L∗(p) − pm−1 − pm. (5.69)

Adding (5.66) and (5.69) together, we obtain

L(p′) + L(p) = L∗(p′) + L∗(p) (5.70)

or

(L(p′) − L∗(p′)) + (L(p) − L∗(p)) = 0. (5.71)



5.9 SHANNON–FANO–ELIAS CODING 127

Now examine the two terms in (5.71). By assumption, since L∗(p′) is the
optimal length for p′, we have L(p′) − L∗(p′) ≥ 0. Similarly, the length
of the extension of the optimal code for p′ has to have an average length
at least as large as the optimal code for p [i.e., L(p) − L∗(p) ≥ 0]. But
the sum of two nonnegative terms can only be 0 if both of them are 0,
which implies that L(p) = L∗(p) (i.e., the extension of the optimal code
for p′ is optimal for p).

Consequently, if we start with an optimal code for p′ with m − 1 sym-
bols and construct a code for m symbols by extending the codeword
corresponding to pm−1 + pm, the new code is also optimal. Starting with
a code for two elements, in which case the optimal code is obvious, we
can by induction extend this result to prove the following theorem.

Theorem 5.8.1 Huffman coding is optimal; that is, if C∗ is a Huffman
code and C ′ is any other uniquely decodable code, L(C∗) ≤ L(C ′).

Although we have proved the theorem for a binary alphabet, the proof
can be extended to establishing optimality of the Huffman coding algo-
rithm for a D-ary alphabet as well. Incidentally, we should remark that
Huffman coding is a “greedy” algorithm in that it coalesces the two least
likely symbols at each stage. The proof above shows that this local opti-
mality ensures global optimality of the final code.

5.9 SHANNON–FANO–ELIAS CODING

In Section 5.4 we showed that the codeword lengths l(x) =
⌈

log 1
p(x)

⌉
sat-

isfy the Kraft inequality and can therefore be used to construct a uniquely
decodable code for the source. In this section we describe a simple con-
structive procedure that uses the cumulative distribution function to allot
codewords.

Without loss of generality, we can take X = {1, 2, . . . , m}. Assume that
p(x) > 0 for all x. The cumulative distribution function F(x) is defined
as

F(x) =
∑
a≤x

p(a). (5.72)

This function is illustrated in Figure 5.5. Consider the modified cumulative
distribution function

F(x) =
∑
a<x

p(a) + 1

2
p(x), (5.73)
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F(x)

F(x)

F(x − 1)

1 2 x x

p(x)

FIGURE 5.5. Cumulative distribution function and Shannon–Fano–Elias coding.

where F(x) denotes the sum of the probabilities of all symbols less than
x plus half the probability of the symbol x. Since the random variable is
discrete, the cumulative distribution function consists of steps of size p(x).
The value of the function F(x) is the midpoint of the step corresponding
to x.

Since all the probabilities are positive, F(a) �= F(b) if a �= b, and hence
we can determine x if we know F(x). Merely look at the graph of the
cumulative distribution function and find the corresponding x. Thus, the
value of F(x) can be used as a code for x.

But, in general, F(x) is a real number expressible only by an infinite
number of bits. So it is not efficient to use the exact value of F(x) as a
code for x. If we use an approximate value, what is the required accuracy?

Assume that we truncate F(x) to l(x) bits (denoted by �F(x)�l(x)).
Thus, we use the first l(x) bits of F(x) as a code for x. By definition of
rounding off, we have

F(x) − �F(x)�l(x) <
1

2l(x)
. (5.74)

If l(x) =
⌈

log 1
p(x)

⌉
+ 1, then

1

2l(x)
<

p(x)

2
= F(x) − F(x − 1), (5.75)

and therefore �F(x)�l(x) lies within the step corresponding to x. Thus,
l(x) bits suffice to describe x.
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In addition to requiring that the codeword identify the corresponding
symbol, we also require the set of codewords to be prefix-free. To check
whether the code is prefix-free, we consider each codeword z1z2 · · · zl to

represent not a point but the interval
[
0.z1z2 · · · zl, 0.z1z2 · · · zl + 1

2l

)
. The

code is prefix-free if and only if the intervals corresponding to codewords
are disjoint.

We now verify that the code above is prefix-free. The interval corre-
sponding to any codeword has length 2−l(x), which is less than half the
height of the step corresponding to x by (5.75). The lower end of the
interval is in the lower half of the step. Thus, the upper end of the inter-
val lies below the top of the step, and the interval corresponding to any
codeword lies entirely within the step corresponding to that symbol in the
cumulative distribution function. Therefore, the intervals corresponding to
different codewords are disjoint and the code is prefix-free. Note that this
procedure does not require the symbols to be ordered in terms of proba-
bility. Another procedure that uses the ordered probabilities is described
in Problem 5.5.28.

Since we use l(x) =
⌈

log 1
p(x)

⌉
+ 1 bits to represent x, the expected

length of this code is

L =
∑

x

p(x)l(x) =
∑

x

p(x)

(⌈
log

1

p(x)

⌉
+ 1

)
< H(X) + 2. (5.76)

Thus, this coding scheme achieves an average codeword length that is
within 2 bits of the entropy.

Example 5.9.1 We first consider an example where all the probabilities
are dyadic. We construct the code in the following table:

x p(x) F (x) F (x) F (x) in Binary l(x) =
⌈

log
1

p(x)

⌉
+ 1 Codeword

1 0.25 0.25 0.125 0.001 3 001
2 0.5 0.75 0.5 0.10 2 10
3 0.125 0.875 0.8125 0.1101 4 1101
4 0.125 1.0 0.9375 0.1111 4 1111

In this case, the average codeword length is 2.75 bits and the entropy
is 1.75 bits. The Huffman code for this case achieves the entropy
bound. Looking at the codewords, it is obvious that there is some inef-
ficiency—for example, the last bit of the last two codewords can be
omitted. But if we remove the last bit from all the codewords, the code
is no longer prefix-free.
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Example 5.9.2 We now give another example for construction of the
Shannon–Fano–Elias code. In this case, since the distribution is not
dyadic, the representation of F(x) in binary may have an infinite number
of bits. We denote 0.01010101 . . . by 0.01. We construct the code in the
following table:

x p(x) F (x) F (x) F (x) in Binary l(x) =
⌈

log
1

p(x)

⌉
+ 1 Codeword

1 0.25 0.25 0.125 0.001 3 001
2 0.25 0.5 0.375 0.011 3 011
3 0.2 0.7 0.6 0.10011 4 1001
4 0.15 0.85 0.775 0.1100011 4 1100
5 0.15 1.0 0.925 0.1110110 4 1110

The above code is 1.2 bits longer on the average than the Huffman
code for this source (Example 5.6.1).

The Shannon–Fano–Elias coding procedure can also be applied to
sequences of random variables. The key idea is to use the cumulative
distribution function of the sequence, expressed to the appropriate accu-
racy, as a code for the sequence. Direct application of the method to blocks
of length n would require calculation of the probabilities and cumulative
distribution function for all sequences of length n, a calculation that would
grow exponentially with the block length. But a simple trick ensures that
we can calculate both the probability and the cumulative density func-
tion sequentially as we see each symbol in the block, ensuring that the
calculation grows only linearly with the block length. Direct application
of Shannon–Fano–Elias coding would also need arithmetic whose preci-
sion grows with the block size, which is not practical when we deal with
long blocks. In Chapter 13 we describe arithmetic coding, which is an
extension of the Shannon–Fano–Elias method to sequences of random
variables that encodes using fixed-precision arithmetic with a complexity
that is linear in the length of the sequence. This method is the basis of
many practical compression schemes such as those used in the JPEG and
FAX compression standards.

5.10 COMPETITIVE OPTIMALITY OF THE SHANNON CODE

We have shown that Huffman coding is optimal in that it has minimum
expected length. But what does that say about its performance on any
particular sequence? For example, is it always better than any other code
for all sequences? Obviously not, since there are codes that assign short



5.10 COMPETITIVE OPTIMALITY OF THE SHANNON CODE 131

codewords to infrequent source symbols. Such codes will be better than
the Huffman code on those source symbols.

To formalize the question of competitive optimality, consider the fol-
lowing two-person zero-sum game: Two people are given a probability
distribution and are asked to design an instantaneous code for the dis-
tribution. Then a source symbol is drawn from this distribution, and the
payoff to player A is 1 or −1, depending on whether the codeword of
player A is shorter or longer than the codeword of player B. The payoff
is 0 for ties.

Dealing with Huffman code lengths is difficult, since there is no explicit
expression for the codeword lengths. Instead, we consider the Shannon

code with codeword lengths l(x) =
⌈

log 1
p(x)

⌉
. In this case, we have the

following theorem.

Theorem 5.10.1 Let l(x) be the codeword lengths associated with the
Shannon code, and let l′(x) be the codeword lengths associated with any
other uniquely decodable code. Then

Pr
(
l(X) ≥ l′(X) + c

) ≤ 1

2c−1
. (5.77)

For example, the probability that l′(X) is 5 or more bits shorter than
l(X) is less than 1

16 .

Proof

Pr
(
l(X) ≥ l′(X) + c

) = Pr

(⌈
log

1

p(X)

⌉
≥ l′(X) + c

)
(5.78)

≤ Pr

(
log

1

p(X)
≥ l′(X) + c − 1

)
(5.79)

= Pr
(
p(X) ≤ 2−l′(X)−c+1

)
(5.80)

=
∑

x: p(x)≤2−l′(x)−c+1

p(x) (5.81)

≤
∑

x: p(x)≤2−l′(x)−c+1

2−l′(x)−(c−1) (5.82)

≤
∑

x

2−l′(x)2−(c−1) (5.83)

≤ 2−(c−1) (5.84)

since
∑

2−l′(x) ≤ 1 by the Kraft inequality. �
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Hence, no other code can do much better than the Shannon code most
of the time. We now strengthen this result. In a game-theoretic setting,
one would like to ensure that l(x) < l′(x) more often than l(x) > l′(x).
The fact that l(x) ≤ l′(x) + 1 with probability ≥ 1

2 does not ensure this.
We now show that even under this stricter criterion, Shannon coding is
optimal. Recall that the probability mass function p(x) is dyadic if log 1

p(x)

is an integer for all x.

Theorem 5.10.2 For a dyadic probability mass function p(x), let
l(x) = log 1

p(x)
be the word lengths of the binary Shannon code for the

source, and let l′(x) be the lengths of any other uniquely decodable binary
code for the source. Then

Pr(l(X) < l′(X)) ≥ Pr(l(X) > l′(X)), (5.85)

with equality if and only if l′(x) = l(x) for all x. Thus, the code length
assignment l(x) = log 1

p(x)
is uniquely competitively optimal.

Proof: Define the function sgn(t) as follows:

sgn(t) =



1 if t > 0
0 if t = 0
−1 if t < 0

(5.86)

Then it is easy to see from Figure 5.6 that

sgn(t) ≤ 2t − 1 for t = 0, ±1, ±2, . . . . (5.87)

sgn(x)

−1 1

1

2t − 1

x

FIGURE 5.6. Sgn function and a bound.
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Note that though this inequality is not satisfied for all t , it is satisfied
at all integer values of t . We can now write

Pr(l′(X) < l(X)) − Pr(l′(X) > l(X)) =
∑

x:l′(x)<l(x)

p(x) −
∑

x:l′(x)>l(x)

p(x)

(5.88)

=
∑

x

p(x)sgn(l(x) − l′(x))

(5.89)

= E sgn
(
l(X) − l′(X)

)
(5.90)

(a)≤
∑

x

p(x)
(

2l(x)−l′(x) − 1
)

(5.91)

=
∑

x

2−l(x)
(

2l(x)−l′(x) − 1
)

(5.92)

=
∑

x

2−l′(x) −
∑

x

2−l(x) (5.93)

=
∑

x

2−l′(x) − 1 (5.94)

(b)≤ 1 − 1 (5.95)

= 0, (5.96)

where (a) follows from the bound on sgn(x) and (b) follows from the fact
that l′(x) satisfies the Kraft inequality.

We have equality in the above chain only if we have equality in (a)
and (b). We have equality in the bound for sgn(t) only if t is 0 or 1 [i.e.,
l(x) = l′(x) or l(x) = l′(x) + 1]. Equality in (b) implies that l′(x) satisfies
the Kraft inequality with equality. Combining these two facts implies that
l′(x) = l(x) for all x. �

Corollary For nondyadic probability mass functions,

E sgn(l(X) − l′(X) − 1) ≤ 0, (5.97)

where l(x) =
⌈

log 1
p(x)

⌉
and l′(x) is any other code for the source.
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Proof: Along the same lines as the preceding proof. �

Hence we have shown that Shannon coding l(x) =
⌈

log 1
p(x)

⌉
is opti-

mal under a variety of criteria; it is robust with respect to the payoff
function. In particular, for dyadic p, E(l − l′) ≤ 0, E sgn(l − l′) ≤ 0, and
by use of inequality (5.87), Ef (l − l′) ≤ 0 for any function f satisfying
f (t) ≤ 2t − 1, t = 0, ±1, ±2, . . ..

5.11 GENERATION OF DISCRETE DISTRIBUTIONS FROM FAIR
COINS

In the early sections of this chapter we considered the problem of repre-
senting a random variable by a sequence of bits such that the expected
length of the representation was minimized. It can be argued (Prob-
lem 5.5.29) that the encoded sequence is essentially incompressible and
therefore has an entropy rate close to 1 bit per symbol. Therefore, the bits
of the encoded sequence are essentially fair coin flips.

In this section we take a slight detour from our discussion of source
coding and consider the dual question. How many fair coin flips does
it take to generate a random variable X drawn according to a specified
probability mass function p? We first consider a simple example.

Example 5.11.1 Given a sequence of fair coin tosses (fair bits), suppose
that we wish to generate a random variable X with distribution

X =



a with probability 1
2 ,

b with probability 1
4 ,

c with probability 1
4 .

(5.98)

It is easy to guess the answer. If the first bit is 0, we let X = a. If the
first two bits are 10, we let X = b. If we see 11, we let X = c. It is clear
that X has the desired distribution.

We calculate the average number of fair bits required for generating
the random variable, in this case as 1

2(1) + 1
4(2) + 1

4(2) = 1.5 bits. This
is also the entropy of the distribution. Is this unusual? No, as the results
of this section indicate.

The general problem can now be formulated as follows. We are given a
sequence of fair coin tosses Z1, Z2, . . . , and we wish to generate a discrete
random variable X ∈ X = {1, 2, . . . , m} with probability mass function
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a

b c

FIGURE 5.7. Tree for generation of the distribution ( 1
2 , 1

4 , 1
4 ).

p = (p1, p2, . . . , pm). Let the random variable T denote the number of
coin flips used in the algorithm.

We can describe the algorithm mapping strings of bits Z1, Z2, . . . , to
possible outcomes X by a binary tree. The leaves of the tree are marked
by output symbols X, and the path to the leaves is given by the sequence
of bits produced by the fair coin. For example, the tree for the distribution
( 1

2 , 1
4 , 1

4) is shown in Figure 5.7.
The tree representing the algorithm must satisfy certain properties:

1. The tree should be complete (i.e., every node is either a leaf or has
two descendants in the tree). The tree may be infinite, as we will
see in some examples.

2. The probability of a leaf at depth k is 2−k . Many leaves may be
labeled with the same output symbol—the total probability of all
these leaves should equal the desired probability of the output sym-
bol.

3. The expected number of fair bits ET required to generate X is equal
to the expected depth of this tree.

There are many possible algorithms that generate the same output dis-
tribution. For example, the mapping 00 → a, 01 → b, 10 → c, 11 → a

also yields the distribution ( 1
2 , 1

4 , 1
4). However, this algorithm uses two

fair bits to generate each sample and is therefore not as efficient as the
mapping given earlier, which used only 1.5 bits per sample. This brings
up the question: What is the most efficient algorithm to generate a given
distribution, and how is this related to the entropy of the distribution?

We expect that we need at least as much randomness in the fair bits as
we produce in the output samples. Since entropy is a measure of random-
ness, and each fair bit has an entropy of 1 bit, we expect that the number
of fair bits used will be at least equal to the entropy of the output. This
is proved in the following theorem. We will need a simple lemma about
trees in the proof of the theorem. Let Y denote the set of leaves of a com-
plete tree. Consider a distribution on the leaves such that the probability



136 DATA COMPRESSION

of a leaf at depth k on the tree is 2−k. Let Y be a random variable with
this distribution. Then we have the following lemma.

Lemma 5.11.1 For any complete tree, consider a probability distribu-
tion on the leaves such that the probability of a leaf at depth k is 2−k. Then
the expected depth of the tree is equal to the entropy of this distribution.

Proof: The expected depth of the tree

ET =
∑
y∈Y

k(y)2−k(y) (5.99)

and the entropy of the distribution of Y is

H(Y) = − ∑
y∈Y

1
2k(y) log 1

2k(y) (5.100)

= ∑
y∈Y k(y)2−k(y), (5.101)

where k(y) denotes the depth of leaf y. Thus,

H(Y) = ET. � (5.102)

Theorem 5.11.1 For any algorithm generating X, the expected number
of fair bits used is greater than the entropy H(X), that is,

ET ≥ H(X). (5.103)

Proof: Any algorithm generating X from fair bits can be represented by
a complete binary tree. Label all the leaves of this tree by distinct symbols
y ∈ Y = {1, 2, . . .}. If the tree is infinite, the alphabet Y is also infinite.

Now consider the random variable Y defined on the leaves of the tree,
such that for any leaf y at depth k, the probability that Y = y is 2−k.
By Lemma 5.11.1, the expected depth of this tree is equal to the entropy
of Y :

ET = H(Y). (5.104)

Now the random variable X is a function of Y (one or more leaves
map onto an output symbol), and hence by the result of Problem 2.4, we
have

H(X) ≤ H(Y). (5.105)
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Thus, for any algorithm generating the random variable X, we have

H(X) ≤ ET. � (5.106)

The same argument answers the question of optimality for a dyadic dis-
tribution.

Theorem 5.11.2 Let the random variable X have a dyadic distribu-
tion. The optimal algorithm to generate X from fair coin flips requires an
expected number of coin tosses precisely equal to the entropy:

ET = H(X). (5.107)

Proof: Theorem 5.11.1 shows that we need at least H(X) bits to generate
X. For the constructive part, we use the Huffman code tree for X as
the tree to generate the random variable. For a dyadic distribution, the
Huffman code is the same as the Shannon code and achieves the entropy
bound. For any x ∈ X, the depth of the leaf in the code tree corresponding
to x is the length of the corresponding codeword, which is log 1

p(x)
. Hence,

when this code tree is used to generate X, the leaf will have a probability

2− log 1
p(x) = p(x). The expected number of coin flips is the expected depth

of the tree, which is equal to the entropy (because the distribution is
dyadic). Hence, for a dyadic distribution, the optimal generating algorithm
achieves

ET = H(X). � (5.108)

What if the distribution is not dyadic? In this case we cannot use the
same idea, since the code tree for the Huffman code will generate a dyadic
distribution on the leaves, not the distribution with which we started. Since
all the leaves of the tree have probabilities of the form 2−k , it follows that
we should split any probability pi that is not of this form into atoms of this
form. We can then allot these atoms to leaves on the tree. For example, if
one of the outcomes x has probability p(x) = 1

4 , we need only one atom
(leaf of the tree at level 2), but if p(x) = 7

8 = 1
2 + 1

4 + 1
8 , we need three

atoms, one each at levels 1, 2, and 3 of the tree.
To minimize the expected depth of the tree, we should use atoms with

as large a probability as possible. So given a probability pi , we find the
largest atom of the form 2−k that is less than pi , and allot this atom to
the tree. Then we calculate the remainder and find that largest atom that
will fit in the remainder. Continuing this process, we can split all the
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probabilities into dyadic atoms. This process is equivalent to finding the
binary expansions of the probabilities. Let the binary expansion of the
probability pi be

pi =
∑
j≥1

p
(j)

i , (5.109)

where p
(j)

i = 2−j or 0. Then the atoms of the expansion are the {p(j)

i :
i = 1, 2, . . . , m, j ≥ 1}.

Since
∑

i pi = 1, the sum of the probabilities of these atoms is 1.
We will allot an atom of probability 2−j to a leaf at depth j on the
tree. The depths of the atoms satisfy the Kraft inequality, and hence by
Theorem 5.2.1, we can always construct such a tree with all the atoms at
the right depths. We illustrate this procedure with an example.

Example 5.11.2 Let X have the distribution

X =
{

a with probability 2
3 ,

b with probability 1
3 .

(5.110)

We find the binary expansions of these probabilities:

2

3
= 0.10101010 . . .2 (5.111)

1

3
= 0.01010101 . . .2 . (5.112)

Hence, the atoms for the expansion are

2

3
→

(
1

2
,

1

8
,

1

32
, . . .

)
(5.113)

1

3
→

(
1

4
,

1

16
,

1

64
, . . .

)
. (5.114)

These can be allotted to a tree as shown in Figure 5.8.

This procedure yields a tree that generates the random variable X.
We have argued that this procedure is optimal (gives a tree of minimum
expected depth), but we will not give a formal proof. Instead, we bound
the expected depth of the tree generated by this procedure.
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a

b

a

b

FIGURE 5.8. Tree to generate a ( 2
3 , 1

3 ) distribution.

Theorem 5.11.3 The expected number of fair bits required by the opti-
mal algorithm to generate a random variable X lies between H(X) and
H(X) + 2:

H(X) ≤ ET < H(X) + 2. (5.115)

Proof: The lower bound on the expected number of coin tosses is proved
in Theorem 5.11.1. For the upper bound, we write down an explicit
expression for the expected number of coin tosses required for the proce-
dure described above. We split all the probabilities (p1, p2, . . . , pm) into
dyadic atoms, for example,

p1 →
(
p

(1)
1 , p

(2)
1 , . . .

)
, (5.116)

and so on. Using these atoms (which form a dyadic distribution), we
construct a tree with leaves corresponding to each of these atoms. The
number of coin tosses required to generate each atom is its depth in the
tree, and therefore the expected number of coin tosses is the expected
depth of the tree, which is equal to the entropy of the dyadic distribution
of the atoms. Hence,

ET = H(Y), (5.117)

where Y has the distribution, (p
(1)
1 , p

(2)
1 , . . . , p

(1)
2 , p

(2)
2 , . . . , p

(1)
m , p

(2)
m , . . .).

Now since X is a function of Y , we have

H(Y) = H(Y,X) = H(X) + H(Y |X), (5.118)
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and our objective is to show that H(Y |X) < 2. We now give an algebraic
proof of this result. Expanding the entropy of Y , we have

H(Y) = − ∑m
i=1

∑
j≥1 p

(j)

i log p
(j)

i (5.119)

= ∑m
i=1

∑
j :p(j)

i >0
j2−j , (5.120)

since each of the atoms is either 0 or 2−k for some k. Now consider the
term in the expansion corresponding to each i, which we shall call Ti :

Ti =
∑

j :p(j)
i >0

j2−j . (5.121)

We can find an n such that 2−(n−1) > pi ≥ 2−n, or

n − 1 < − log pi ≤ n. (5.122)

Then it follows that p
(j)

i > 0 only if j ≥ n, so that we can rewrite (5.121)
as

Ti =
∑

j :j≥n,p
(j)
i >0

j2−j . (5.123)

We use the definition of the atom to write pi as

pi =
∑

j :j≥n,p
(j)
i >0

2−j . (5.124)

To prove the upper bound, we first show that Ti < −pi log pi + 2pi .
Consider the difference

Ti + pi log pi − 2pi

(a)
< Ti − pi(n − 1) − 2pi (5.125)

= Ti − (n − 1 + 2)pi (5.126)

=
∑

j :j≥n,p
(j)
i

>0

j2−j − (n + 1)
∑

j :j≥n,p
(j)
i

>0

2−j

(5.127)

=
∑

j :j≥n,p
(j)
i >0

(j − n − 1)2−j (5.128)
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= −2−n + 0 +
∑

j :j≥n+2,p
(j)
i >0

(j − n − 1)2−j

(5.129)

(b)= −2−n +
∑

k:k≥1,p
(k+n+1)
i

>0

k2−(k+n+1) (5.130)

(c)≤ −2−n +
∑
k:k≥1

k2−(k+n+1) (5.131)

= −2−n + 2−(n+1)2 (5.132)

= 0, (5.133)

where (a) follows from (5.122), (b) follows from a change of variables
for the summation, and (c) follows from increasing the range of the sum-
mation. Hence, we have shown that

Ti < −pi log pi + 2pi. (5.134)

Since ET = ∑
i Ti , it follows immediately that

ET < −
∑

i

pi log pi + 2
∑

i

pi = H(X) + 2, (5.135)

completing the proof of the theorem.
�

Thus, an average of H(X) + 2 coin flips suffice to simulate a random
variable X.

SUMMARY

Kraft inequality. Instantaneous codes ⇔ ∑
D−li ≤ 1.

McMillan inequality. Uniquely decodable codes ⇔ ∑
D−li ≤ 1.

Entropy bound on data compression

L
�=

∑
pili ≥ HD(X). (5.136)
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Shannon code

li =
⌈

logD

1

pi

⌉
(5.137)

HD(X) ≤ L < HD(X) + 1. (5.138)

Huffman code

L∗ = min∑
D−li ≤1

∑
pili (5.139)

HD(X) ≤ L∗ < HD(X) + 1. (5.140)

Wrong code. X ∼ p(x), l(x) =
⌈

log 1
q(x)

⌉
, L = ∑

p(x)l(x):

H(p) + D(p||q) ≤ L < H(p) + D(p||q) + 1. (5.141)

Stochastic processes

H(X1, X2, . . . , Xn)

n
≤ Ln <

H(X1, X2, . . . , Xn)

n
+ 1

n
. (5.142)

Stationary processes

Ln → H(X). (5.143)

Competitive optimality. Shannon code l(x) =
⌈

log 1
p(x)

⌉
versus any

other code l′(x):

Pr
(
l(X) ≥ l′(X) + c

) ≤ 1

2c−1
. (5.144)

PROBLEMS

5.1 Uniquely decodable and instantaneous codes . Let
L = ∑m

i=1 pil
100
i be the expected value of the 100th power

of the word lengths associated with an encoding of the random
variable X. Let L1 = min L over all instantaneous codes; and let
L2 = min L over all uniquely decodable codes. What inequality
relationship exists between L1 and L2?
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5.2 How many fingers has a Martian? Let

S =
(

S1, . . . , Sm

p1, . . . , pm

)
.

The Si’s are encoded into strings from a D-symbol output alphabet
in a uniquely decodable manner. If m = 6 and the codeword lengths
are (l1, l2, . . . , l6) = (1, 1, 2, 3, 2, 3), find a good lower bound on
D. You may wish to explain the title of the problem.

5.3 Slackness in the Kraft inequality . An instantaneous code has word
lengths l1, l2, . . . , lm, which satisfy the strict inequality

m∑
i=1

D−li < 1.

The code alphabet is D = {0, 1, 2, . . . , D − 1}. Show that there
exist arbitrarily long sequences of code symbols in D∗ which cannot
be decoded into sequences of codewords.

5.4 Huffman coding . Consider the random variable

X =
(

x1 x2 x3 x4 x5 x6 x7
0.49 0.26 0.12 0.04 0.04 0.03 0.02

)
.

(a) Find a binary Huffman code for X.

(b) Find the expected code length for this encoding.
(c) Find a ternary Huffman code for X.

5.5 More Huffman codes . Find the binary Huffman code for the
source with probabilities ( 1

3 , 1
5 , 1

5 , 2
15 , 2

15). Argue that this code is
also optimal for the source with probabilities ( 1

5 , 1
5 , 1

5 , 1
5 , 1

5).

5.6 Bad codes . Which of these codes cannot be Huffman codes for
any probability assignment?
(a) {0, 10, 11}
(b) {00, 01, 10, 110}
(c) {01, 10}

5.7 Huffman 20 questions . Consider a set of n objects. Let Xi =
1 or 0 accordingly as the ith object is good or defective. Let
X1, X2, . . . , Xn be independent with Pr{Xi = 1} = pi; and p1 >

p2 > · · · > pn > 1
2 . We are asked to determine the set of all defec-

tive objects. Any yes–no question you can think of is admissible.



144 DATA COMPRESSION

(a) Give a good lower bound on the minimum average number of
questions required.

(b) If the longest sequence of questions is required by nature’s
answers to our questions, what (in words) is the last ques-
tion we should ask? What two sets are we distinguishing with
this question? Assume a compact (minimum average length)
sequence of questions.

(c) Give an upper bound (within one question) on the minimum
average number of questions required.

5.8 Simple optimum compression of a Markov source. Consider the
three-state Markov process U1, U2, . . . having transition matrix

Un

Un−1 S1 S2 S3

S1
1
2

1
4

1
4

S2
1
4

1
2

1
4

S3 0 1
2

1
2

Thus, the probability that S1 follows S3 is equal to zero. Design
three codes C1, C2, C3 (one for each state 1, 2 and 3, each code
mapping elements of the set of Si’s into sequences of 0’s and 1’s,
such that this Markov process can be sent with maximal compres-
sion by the following scheme:
(a) Note the present symbol Xn = i.
(b) Select code Ci.

(c) Note the next symbol Xn+1 = j and send the codeword in Ci

corresponding to j .
(d) Repeat for the next symbol. What is the average message length

of the next symbol conditioned on the previous state Xn = i

using this coding scheme? What is the unconditional average
number of bits per source symbol? Relate this to the entropy
rate H(U) of the Markov chain.

5.9 Optimal code lengths that require one bit above entropy . The
source coding theorem shows that the optimal code for a random
variable X has an expected length less than H(X) + 1. Give an
example of a random variable for which the expected length of the
optimal code is close to H(X) + 1 [i.e., for any ε > 0, construct a
distribution for which the optimal code has L > H(X) + 1 − ε].
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5.10 Ternary codes that achieve the entropy bound . A random variable
X takes on m values and has entropy H(X). An instantaneous
ternary code is found for this source, with average length

L = H(X)

log2 3
= H3(X). (5.145)

(a) Show that each symbol of X has a probability of the form 3−i

for some i.
(b) Show that m is odd.

5.11 Suffix condition. Consider codes that satisfy the suffix condition,
which says that no codeword is a suffix of any other codeword.
Show that a suffix condition code is uniquely decodable, and show
that the minimum average length over all codes satisfying the suffix
condition is the same as the average length of the Huffman code
for that random variable.

5.12 Shannon codes and Huffman codes . Consider a random variable
X that takes on four values with probabilities ( 1

3 , 1
3 , 1

4 , 1
12).

(a) Construct a Huffman code for this random variable.
(b) Show that there exist two different sets of optimal lengths

for the codewords; namely, show that codeword length assign-
ments (1, 2, 3, 3) and (2, 2, 2, 2) are both optimal.

(c) Conclude that there are optimal codes with codeword lengths
for some symbols that exceed the Shannon code length⌈

log 1
p(x)

⌉
.

5.13 Twenty questions . Player A chooses some object in the universe,
and player B attempts to identify the object with a series of yes–no
questions. Suppose that player B is clever enough to use the code
achieving the minimal expected length with respect to player A’s
distribution. We observe that player B requires an average of 38.5
questions to determine the object. Find a rough lower bound to the
number of objects in the universe.

5.14 Huffman code. Find the (a) binary and (b) ternary Huffman codes
for the random variable X with probabilities

p =
(

1

21
,

2

21
,

3

21
,

4

21
,

5

21
,

6

21

)
.

(c) Calculate L = ∑
pili in each case.
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5.15 Huffman codes
(a) Construct a binary Huffman code for the following distribu-

tion on five symbols: p = (0.3, 0.3, 0.2, 0.1, 0.1). What is the
average length of this code?

(b) Construct a probability distribution p′ on five symbols for
which the code that you constructed in part (a) has an average
length (under p′) equal to its entropy H(p′).

5.16 Huffman codes . Consider a random variable X that takes six val-
ues {A, B, C, D, E, F } with probabilities 0.5, 0.25, 0.1, 0.05, 0.05,
and 0.05, respectively.
(a) Construct a binary Huffman code for this random variable.

What is its average length?
(b) Construct a quaternary Huffman code for this random variable

[i.e., a code over an alphabet of four symbols (call them a, b, c

and d)]. What is the average length of this code?
(c) One way to construct a binary code for the random variable

is to start with a quaternary code and convert the symbols into
binary using the mapping a → 00, b → 01, c → 10, and d →
11. What is the average length of the binary code for the random
variable above constructed by this process?

(d) For any random variable X, let LH be the average length of
the binary Huffman code for the random variable, and let LQB

be the average length code constructed by first building a qua-
ternary Huffman code and converting it to binary. Show that

LH ≤ LQB < LH + 2. (5.146)

(e) The lower bound in the example is tight. Give an example
where the code constructed by converting an optimal quaternary
code is also the optimal binary code.

(f) The upper bound (i.e., LQB < LH + 2) is not tight. In fact, a
better bound is LQB ≤ LH + 1. Prove this bound, and provide
an example where this bound is tight.

5.17 Data compression. Find an optimal set of binary codeword
lengths l1, l2, . . . (minimizing

∑
pili) for an instantaneous code

for each of the following probability mass functions:
(a) p = ( 10

41 , 9
41 , 8

41 , 7
41 , 7

41)

(b) p = ( 9
10 , ( 9

10)( 1
10), (

9
10)( 1

10)
2, ( 9

10)( 1
10)3, . . .)
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5.18 Classes of codes . Consider the code {0, 01}.
(a) Is it instantaneous?

(b) Is it uniquely decodable?

(c) Is it nonsingular?

5.19 The game of Hi-Lo

(a) A computer generates a number X according to a known proba-
bility mass function p(x), x ∈ {1, 2, . . . , 100}. The player asks
a question, “Is X = i?” and is told “Yes,” “You’re too high,”
or “You’re too low.” He continues for a total of six questions.
If he is right (i.e., he receives the answer “Yes”) during this
sequence, he receives a prize of value v(X). How should the
player proceed to maximize his expected winnings?

(b) Part (a) doesn’t have much to do with information theory. Con-
sider the following variation: X ∼ p(x), prize = v(x), p(x)

known, as before. But arbitrary yes–no questions are asked
sequentially until X is determined. (“Determined” doesn’t mean
that a “Yes” answer is received.) Questions cost 1 unit each.
How should the player proceed? What is the expected payoff?

(c) Continuing part (b), what if v(x) is fixed but p(x) can be
chosen by the computer (and then announced to the player)?
The computer wishes to minimize the player’s expected return.
What should p(x) be? What is the expected return to the
player?

5.20 Huffman codes with costs . Words such as “Run!”, “Help!”, and
“Fire!” are short, not because they are used frequently, but perhaps
because time is precious in the situations in which these words are
required. Suppose that X = i with probability pi, i = 1, 2, . . . , m.

Let li be the number of binary symbols in the codeword associated
with X = i, and let ci denote the cost per letter of the codeword
when X = i. Thus, the average cost C of the description of X is
C = ∑m

i=1 picili .

(a) Minimize C over all l1, l2, . . . , lm such that
∑

2−li ≤ 1. Ignore
any implied integer constraints on li . Exhibit the minimizing
l∗1 , l∗2 , . . . , l∗m and the associated minimum value C∗.

(b) How would you use the Huffman code procedure to minimize
C over all uniquely decodable codes? Let CHuffman denote this
minimum.
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(c) Can you show that

C∗ ≤ CHuffman ≤ C∗ +
m∑

i=1

pici?

5.21 Conditions for unique decodability . Prove that a code C is
uniquely decodable if (and only if) the extension

Ck(x1, x2, . . . , xk) = C(x1)C(x2) · · ·C(xk)

is a one-to-one mapping from Xk to D∗ for every k ≥ 1. (The “only
if” part is obvious.)

5.22 Average length of an optimal code. Prove that L(p1, . . . , pm),
the average codeword length for an optimal D-ary prefix code for
probabilities {p1, . . . , pm}, is a continuous function of p1, . . . , pm.
This is true even though the optimal code changes discontinuously
as the probabilities vary.

5.23 Unused code sequences . Let C be a variable-length code that
satisfies the Kraft inequality with an equality but does not satisfy
the prefix condition.
(a) Prove that some finite sequence of code alphabet symbols is

not the prefix of any sequence of codewords.
(b) (Optional ) Prove or disprove: C has infinite decoding delay.

5.24 Optimal codes for uniform distributions . Consider a random vari-
able with m equiprobable outcomes. The entropy of this informa-
tion source is obviously log2 m bits.
(a) Describe the optimal instantaneous binary code for this source

and compute the average codeword length Lm.
(b) For what values of m does the average codeword length Lm

equal the entropy H = log2 m?
(c) We know that L < H + 1 for any probability distribution. The

redundancy of a variable-length code is defined to be ρ =
L − H . For what value(s) of m, where 2k ≤ m ≤ 2k+1, is the
redundancy of the code maximized? What is the limiting value
of this worst-case redundancy as m → ∞?

5.25 Optimal codeword lengths . Although the codeword lengths of an
optimal variable-length code are complicated functions of the mes-
sage probabilities {p1, p2, . . . , pm}, it can be said that less probable
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symbols are encoded into longer codewords. Suppose that the mes-
sage probabilities are given in decreasing order, p1 > p2 ≥ · · · ≥
pm.
(a) Prove that for any binary Huffman code, if the most probable

message symbol has probability p1 > 2
5 , that symbol must be

assigned a codeword of length 1.
(b) Prove that for any binary Huffman code, if the most probable

message symbol has probability p1 < 1
3 , that symbol must be

assigned a codeword of length ≥ 2.

5.26 Merges . Companies with values W1,W2, . . . , Wm are merged as
follows. The two least valuable companies are merged, thus form-
ing a list of m − 1 companies. The value of the merge is the
sum of the values of the two merged companies. This contin-
ues until one supercompany remains. Let V equal the sum of
the values of the merges. Thus, V represents the total reported
dollar volume of the merges. For example, if W = (3, 3, 2, 2),
the merges yield (3, 3, 2, 2) → (4, 3, 3) → (6, 4) → (10) and V =
4 + 6 + 10 = 20.
(a) Argue that V is the minimum volume achievable by sequences

of pairwise merges terminating in one supercompany. (Hint:
Compare to Huffman coding.)

(b) Let W = ∑
Wi, W̃i = Wi/W , and show that the minimum

merge volume V satisfies

WH(W̃) ≤ V ≤ WH(W̃) + W. (5.147)

5.27 Sardinas–Patterson test for unique decodability . A code is not
uniquely decodable if and only if there exists a finite sequence of
code symbols which can be resolved into sequences of codewords
in two different ways. That is, a situation such as

B1

A1 A2 A3 Am

B2 B3 Bn
...

...

must occur where each Ai and each Bi is a codeword. Note that
B1 must be a prefix of A1 with some resulting “dangling suffix.”
Each dangling suffix must in turn be either a prefix of a codeword
or have another codeword as its prefix, resulting in another dan-
gling suffix. Finally, the last dangling suffix in the sequence must
also be a codeword. Thus, one can set up a test for unique decod-
ability (which is essentially the Sardinas–Patterson test [456]) in
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the following way: Construct a set S of all possible dangling suf-
fixes. The code is uniquely decodable if and only if S contains no
codeword.
(a) State the precise rules for building the set S.
(b) Suppose that the codeword lengths are li , i = 1, 2, . . . , m. Find

a good upper bound on the number of elements in the set S.
(c) Determine which of the following codes is uniquely decodable:

(i) {0, 10, 11}
(ii) {0, 01, 11}

(iii) {0, 01, 10}
(iv) {0, 01}
(v) {00, 01, 10, 11}

(vi) {110, 11, 10}
(vii) {110, 11, 100, 00, 10}

(d) For each uniquely decodable code in part (c), construct, if pos-
sible, an infinite encoded sequence with a known starting point
such that it can be resolved into codewords in two different
ways. (This illustrates that unique decodability does not imply
finite decodability.) Prove that such a sequence cannot arise in
a prefix code.

5.28 Shannon code. Consider the following method for generating a
code for a random variable X that takes on m values {1, 2, . . . , m}
with probabilities p1, p2, . . . , pm. Assume that the probabilities are
ordered so that p1 ≥ p2 ≥ · · · ≥ pm. Define

Fi =
i−1∑
k=1

pk, (5.148)

the sum of the probabilities of all symbols less than i. Then the
codeword for i is the number Fi ∈ [0, 1] rounded off to li bits,
where li = 	log 1

pi

.

(a) Show that the code constructed by this process is prefix-free
and that the average length satisfies

H(X) ≤ L < H(X) + 1. (5.149)

(b) Construct the code for the probability distribution (0.5, 0.25,
0.125, 0.125).
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5.29 Optimal codes for dyadic distributions . For a Huffman code tree,
define the probability of a node as the sum of the probabilities of
all the leaves under that node. Let the random variable X be drawn
from a dyadic distribution [i.e., p(x) = 2−i , for some i, for all
x ∈ X]. Now consider a binary Huffman code for this distribution.
(a) Argue that for any node in the tree, the probability of the left

child is equal to the probability of the right child.
(b) Let X1, X2, . . . , Xn be drawn i.i.d. ∼ p(x). Using the Huff-

man code for p(x), we map X1, X2, . . . , Xn to a sequence
of bits Y1, Y2, . . . , Yk(X1,X2,...,Xn). (The length of this sequence
will depend on the outcome X1, X2, . . . , Xn.) Use part (a) to
argue that the sequence Y1, Y2, . . . forms a sequence of fair coin
flips [i.e., that Pr{Yi = 0} = Pr{Yi = 1} = 1

2 , independent of
Y1, Y2, . . . , Yi−1]. Thus, the entropy rate of the coded sequence
is 1 bit per symbol.

(c) Give a heuristic argument why the encoded sequence of bits
for any code that achieves the entropy bound cannot be com-
pressible and therefore should have an entropy rate of 1 bit per
symbol.

5.30 Relative entropy is cost of miscoding . Let the random variable X

have five possible outcomes {1, 2, 3, 4, 5}. Consider two distribu-
tions p(x) and q(x) on this random variable.

Symbol p(x) q(x) C1(x) C2(x)

1 1
2

1
2 0 0

2 1
4

1
8 10 100

3 1
8

1
8 110 101

4 1
16

1
8 1110 110

5 1
16

1
8 1111 111

(a) Calculate H(p), H(q), D(p||q), and D(q||p).
(b) The last two columns represent codes for the random variable.

Verify that the average length of C1 under p is equal to the
entropy H(p). Thus, C1 is optimal for p. Verify that C2 is
optimal for q.

(c) Now assume that we use code C2 when the distribution is p.
What is the average length of the codewords. By how much
does it exceed the entropy p?

(d) What is the loss if we use code C1 when the distribution is q?
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5.31 Nonsingular codes . The discussion in the text focused on instan-
taneous codes, with extensions to uniquely decodable codes. Both
these are required in cases when the code is to be used repeatedly
to encode a sequence of outcomes of a random variable. But if
we need to encode only one outcome and we know when we have
reached the end of a codeword, we do not need unique decod-
ability—the fact that the code is nonsingular would suffice. For
example, if a random variable X takes on three values, a, b, and c,
we could encode them by 0, 1, and 00. Such a code is nonsingular
but not uniquely decodable.
In the following, assume that we have a random variable X which
takes on m values with probabilities p1, p2, . . . , pm and that the
probabilities are ordered so that p1 ≥ p2 ≥ · · · ≥ pm.
(a) By viewing the nonsingular binary code as a ternary code with

three symbols, 0, 1, and “STOP,” show that the expected length
of a nonsingular code L1:1 for a random variable X satisfies the
following inequality:

L1:1 ≥ H2(X)

log2 3
− 1, (5.150)

where H2(X) is the entropy of X in bits. Thus, the average
length of a nonsingular code is at least a constant fraction of
the average length of an instantaneous code.

(b) Let LINST be the expected length of the best instantaneous code
and L∗

1:1 be the expected length of the best nonsingular code
for X. Argue that L∗

1:1 ≤ L∗
INST ≤ H(X) + 1.

(c) Give a simple example where the average length of the non-
singular code is less than the entropy.

(d) The set of codewords available for a nonsingular code is {0, 1,

00, 01, 10, 11, 000, . . .}. Since L1:1 = ∑m
i=1 pili , show that this

is minimized if we allot the shortest codewords to the most
probable symbols. Thus, l1 = l2 = 1, l3 = l4 = l5 = l6 = 2, etc.
Show that in general li = ⌈

log
(

i
2 + 1

)⌉
, and therefore L∗

1:1 =∑m
i=1 pi

⌈
log

(
i
2 + 1

)⌉
.

(e) Part (d) shows that it is easy to find the optimal nonsin-
gular code for a distribution. However, it is a little more
tricky to deal with the average length of this code. We now
bound this average length. It follows from part (d) that L∗

1:1 ≥
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L̃
�= ∑m

i=1 pi log
(

i
2 + 1

)
. Consider the difference

F(p) = H(X) − L̃ = −
m∑

i=1

pi log pi −
m∑

i=1

pi log

(
i

2
+ 1

)
.

(5.151)
Prove by the method of Lagrange multipliers that the maximum
of F(p) occurs when pi = c/(i + 2), where c = 1/(Hm+2 −
H2) and Hk is the sum of the harmonic series:

Hk
�=

k∑
i=1

1

i
. (5.152)

(This can also be done using the nonnegativity of relative
entropy.)

(f) Complete the arguments for

H(X) − L∗
1:1 ≤ H(X) − L̃ (5.153)

≤ log(2(Hm+2 − H2)). (5.154)

Now it is well known (see, e.g., Knuth [315]) that Hk ≈ ln k

(more precisely, Hk = ln k + γ + 1
2k

− 1
12k2 + 1

120k4 − ε, where
0 < ε < 1/252n6, and γ = Euler’s constant = 0.577 . . .).
Using either this or a simple approximation that Hk ≤ ln k + 1,
which can be proved by integration of 1

x
, it can be shown that

H(X) − L∗
1:1 < log log m + 2. Thus, we have

H(X) − log log |X| − 2 ≤ L∗
1:1 ≤ H(X) + 1. (5.155)

A nonsingular code cannot do much better than an instantaneous
code!

5.32 Bad wine. One is given six bottles of wine. It is known that
precisely one bottle has gone bad (tastes terrible). From inspection
of the bottles it is determined that the probability pi that the ith
bottle is bad is given by (p1, p2, . . . , p6) = ( 8

23,
6

23 , 4
23 , 2

23 , 2
23 , 1

23).
Tasting will determine the bad wine. Suppose that you taste the
wines one at a time. Choose the order of tasting to minimize the
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expected number of tastings required to determine the bad bottle.
Remember, if the first five wines pass the test, you don’t have to
taste the last.
(a) What is the expected number of tastings required?
(b) Which bottle should be tasted first?
Now you get smart. For the first sample, you mix some of the wines
in a fresh glass and sample the mixture. You proceed, mixing and
tasting, stopping when the bad bottle has been determined.
(a) What is the minimum expected number of tastings required to

determine the bad wine?
(b) What mixture should be tasted first?

5.33 Huffman vs. Shannon. A random variable X takes on three values
with probabilities 0.6, 0.3, and 0.1.
(a) What are the lengths of the binary Huffman codewords for

X? What are the lengths of the binary Shannon codewords(
l(x) =

⌈
log

(
1

p(x)

)⌉)
for X?

(b) What is the smallest integer D such that the expected Shannon
codeword length with a D-ary alphabet equals the expected
Huffman codeword length with a D-ary alphabet?

5.34 Huffman algorithm for tree construction. Consider the following
problem: m binary signals S1, S2, . . . , Sm are available at times
T1 ≤ T2 ≤ · · · ≤ Tm, and we would like to find their sum S1 ⊕ S2 ⊕
· · · ⊕ Sm using two-input gates, each gate with one time unit delay,
so that the final result is available as quickly as possible. A simple
greedy algorithm is to combine the earliest two results, forming
the partial result at time max(T1, T2) + 1. We now have a new
problem with S1 ⊕ S2, S3, . . . , Sm, available at times max(T1, T2) +
1, T3, . . . , Tm. We can now sort this list of T ’s and apply the same
merging step again, repeating this until we have the final result.
(a) Argue that the foregoing procedure is optimal, in that it con-

structs a circuit for which the final result is available as quickly
as possible.

(b) Show that this procedure finds the tree that minimizes

C(T ) = max
i

(Ti + li), (5.156)

where Ti is the time at which the result allotted to the ith leaf
is available and li is the length of the path from the ith leaf to
the root.
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(c) Show that

C(T ) ≥ log2

(∑
i

2Ti

)
(5.157)

for any tree T .
(d) Show that there exists a tree such that

C(T ) ≤ log2

(∑
i

2Ti

)
+ 1. (5.158)

Thus, log2

(∑
i 2Ti

)
is the analog of entropy for this problem.

5.35 Generating random variables . One wishes to generate a random
variable X

X =
{

1 with probability p

0 with probability 1 − p.
(5.159)

You are given fair coin flips Z1, Z2, . . . . Let N be the (random)
number of flips needed to generate X. Find a good way to use
Z1, Z2, . . . to generate X. Show that EN ≤ 2.

5.36 Optimal word lengths .
(a) Can l = (1, 2, 2) be the word lengths of a binary Huffman

code. What about (2,2,3,3)?
(b) What word lengths l = (l1, l2, . . .) can arise from binary Huff-

man codes?

5.37 Codes . Which of the following codes are
(a) Uniquely decodable?
(b) Instantaneous?

C1 = {00, 01, 0}
C2 = {00, 01, 100, 101, 11}
C3 = {0, 10, 110, 1110, . . .}
C4 = {0, 00, 000, 0000}

5.38 Huffman. Find the Huffman D-ary code for (p1, p2, p3, p4, p5,

p6) = ( 6
25 , 6

25 , 4
25 , 4

25 , 3
25 , 2

25) and the expected word length
(a) For D = 2.
(b) For D = 4.
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5.39 Entropy of encoded bits . Let C : X −→ {0, 1}∗ be a nonsingular
but nonuniquely decodable code. Let X have entropy H(X).

(a) Compare H(C(X)) to H(X).
(b) Compare H(C(Xn)) to H(Xn).

5.40 Code rate. Let X be a random variable with alphabet {1, 2, 3}
and distribution

X =




1 with probability 1
2

2 with probability 1
4

3 with probability 1
4 .

The data compression code for X assigns codewords

C(x) =



0 if x = 1
10 if x = 2
11 if x = 3.

Let X1, X2, . . . be independent, identically distributed according
to this distribution and let Z1Z2Z3 · · · = C(X1)C(X2) · · · be the
string of binary symbols resulting from concatenating the corre-
sponding codewords. For example, 122 becomes 01010.
(a) Find the entropy rate H(X) and the entropy rate H(Z) in bits

per symbol. Note that Z is not compressible further.
(b) Now let the code be

C(x) =



00 if x = 1
10 if x = 2
01 if x = 3

and find the entropy rate H(Z).

(c) Finally, let the code be

C(x) =



00 if x = 1
1 if x = 2
01 if x = 3

and find the entropy rate H(Z).

5.41 Optimal codes . Let l1, l2, . . . , l10 be the binary Huffman code-
word lengths for the probabilities p1 ≥ p2 ≥ · · · ≥ p10. Suppose
that we get a new distribution by splitting the last probability
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mass. What can you say about the optimal binary codeword lengths
l̃1, l̃2, . . . , ˜l11 for the probabilities p1, p2, . . . , p9, αp10, (1 − α)p10,
where 0 ≤ α ≤ 1.

5.42 Ternary codes . Which of the following codeword lengths can be
the word lengths of a 3-ary Huffman code, and which cannot?
(a) (1, 2, 2, 2, 2)

(b) (2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3)

5.43 Piecewise Huffman . Suppose the codeword that we use to
describe a random variable X ∼ p(x) always starts with a symbol
chosen from the set {A, B, C}, followed by binary digits {0, 1}.
Thus, we have a ternary code for the first symbol and binary
thereafter. Give the optimal uniquely decodable code (minimum
expected number of symbols) for the probability distribution

p =
(

16

69
,

15

69
,

12

69
,

10

69
,

8

69
,

8

69

)
. (5.160)

5.44 Huffman. Find the word lengths of the optimal binary encoding
of p = ( 1

100 , 1
100 , . . . , 1

100

)
.

5.45 Random 20 questions . Let X be uniformly distributed over {1, 2,

. . . , m}. Assume that m = 2n. We ask random questions: Is X ∈ S1?
Is X ∈ S2?... until only one integer remains. All 2m subsets S of
{1, 2, . . . , m} are equally likely to be asked.
(a) Without loss of generality, suppose that X = 1 is the random

object. What is the probability that object 2 yields the same
answers for k questions as does object 1?

(b) What is the expected number of objects in {2, 3, . . . , m} that
have the same answers to the questions as does the correct
object 1?

(c) Suppose that we ask n + √
n random questions. What is the

expected number of wrong objects agreeing with the answers?
(d) Use Markov’s inequality Pr{X ≥ tµ} ≤ 1

t
, to show that the

probability of error (one or more wrong object remaining) goes
to zero as n −→ ∞.

HISTORICAL NOTES

The foundations for the material in this chapter can be found in Shan-
non’s original paper [469], in which Shannon stated the source coding
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theorem and gave simple examples of codes. He described a simple code
construction procedure (described in Problem 5.5.28), which he attributed
to Fano. This method is now called the Shannon–Fano code construction
procedure.

The Kraft inequality for uniquely decodable codes was first proved
by McMillan [385]; the proof given here is due to Karush [306]. The
Huffman coding procedure was first exhibited and proved to be optimal
by Huffman [283].

In recent years, there has been considerable interest in designing source
codes that are matched to particular applications, such as magnetic record-
ing. In these cases, the objective is to design codes so that the output
sequences satisfy certain properties. Some of the results for this problem
are described by Franaszek [219], Adler et al. [5] and Marcus [370].

The arithmetic coding procedure has its roots in the Shannon–Fano
code developed by Elias (unpublished), which was analyzed by Jelinek
[297]. The procedure for the construction of a prefix-free code described
in the text is due to Gilbert and Moore [249]. The extension of the
Shannon–Fano–Elias method to sequences is based on the enumerative
methods in Cover [120] and was described with finite-precision arithmetic
by Pasco [414] and Rissanen [441]. The competitive optimality of Shan-
non codes was proved in Cover [125] and extended to Huffman codes by
Feder [203]. Section 5.11 on the generation of discrete distributions from
fair coin flips follows the work of Knuth and Yao[317].



CHAPTER 6

GAMBLING AND DATA
COMPRESSION

At first sight, information theory and gambling seem to be unrelated.
But as we shall see, there is strong duality between the growth rate of
investment in a horse race and the entropy rate of the horse race. Indeed,
the sum of the growth rate and the entropy rate is a constant. In the process
of proving this, we shall argue that the financial value of side information
is equal to the mutual information between the horse race and the side
information. The horse race is a special case of investment in the stock
market, studied in Chapter 16.

We also show how to use a pair of identical gamblers to compress a
sequence of random variables by an amount equal to the growth rate of
wealth on that sequence. Finally, we use these gambling techniques to
estimate the entropy rate of English.

6.1 THE HORSE RACE

Assume that m horses run in a race. Let the ith horse win with probability
pi . If horse i wins, the payoff is oi for 1 (i.e., an investment of 1 dollar
on horse i results in oi dollars if horse i wins and 0 dollars if horse i

loses).
There are two ways of describing odds: a-for-1 and b-to-1. The first

refers to an exchange that takes place before the race—the gambler puts
down 1 dollar before the race and at a-for-1 odds will receive a dollars
after the race if his horse wins, and will receive nothing otherwise. The
second refers to an exchange after the race—at b-to-1 odds, the gambler
will pay 1 dollar after the race if his horse loses and will pick up b dollars
after the race if his horse wins. Thus, a bet at b-to-1 odds is equivalent to
a bet at a-for-1 odds if b = a − 1. For example, fair odds on a coin flip
would be 2-for-1 or 1-to-1, otherwise known as even odds.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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We assume that the gambler distributes all of his wealth across the
horses. Let bi be the fraction of the gambler’s wealth invested in horse i,
where bi ≥ 0 and

∑
bi = 1. Then if horse i wins the race, the gambler

will receive oi times the amount of wealth bet on horse i. All the other
bets are lost. Thus, at the end of the race, the gambler will have multiplied
his wealth by a factor bioi if horse i wins, and this will happen with prob-
ability pi . For notational convenience, we use b(i) and bi interchangeably
throughout this chapter.

The wealth at the end of the race is a random variable, and the gambler
wishes to “maximize” the value of this random variable. It is tempting to
bet everything on the horse that has the maximum expected return (i.e.,
the one with the maximum pioi). But this is clearly risky, since all the
money could be lost.

Some clarity results from considering repeated gambles on this race.
Now since the gambler can reinvest his money, his wealth is the product
of the gains for each race. Let Sn be the gambler’s wealth after n races.
Then

Sn =
n∏

i=1

S(Xi), (6.1)

where S(X) = b(X)o(X) is the factor by which the gambler’s wealth is
multiplied when horse X wins.

Definition The wealth relative S(X) = b(X)o(X) is the factor by which
the gambler’s wealth grows if horse X wins the race.

Definition The doubling rate of a horse race is

W(b, p) = E(log S(X)) =
m∑

k=1

pk log bkok. (6.2)

The definition of doubling rate is justified by the following theorem.

Theorem 6.1.1 Let the race outcomes X1, X2, . . . be i.i.d. ∼ p(x).
Then the wealth of the gambler using betting strategy b grows exponen-
tially at rate W(b, p); that is,

Sn
.= 2nW(b,p). (6.3)
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Proof: Functions of independent random variables are also independent,
and hence log S(X1), log S(X2), . . . are i.i.d. Then, by the weak law of
large numbers,

1

n
log Sn = 1

n

n∑
i=1

log S(Xi) → E(log S(X)) in probability. (6.4)

Thus,

Sn
.= 2nW(b,p). � (6.5)

Now since the gambler’s wealth grows as 2nW(b,p), we seek to maximize
the exponent W(b, p) over all choices of the portfolio b.

Definition The optimum doubling rate W ∗(p) is the maximum doubling
rate over all choices of the portfolio b:

W ∗(p) = max
b

W(b, p) = max
b:bi≥0,

∑
i bi=1

m∑
i=1

pi log bioi. (6.6)

We maximize W(b, p) as a function of b subject to the constraint∑
bi = 1. Writing the functional with a Lagrange multiplier and changing

the base of the logarithm (which does not affect the maximizing b), we
have

J (b) =
∑

pi ln bioi + λ
∑

bi. (6.7)

Differentiating this with respect to bi yields

∂J

∂bi

= pi

bi

+ λ, i = 1, 2, . . . , m. (6.8)

Setting the partial derivative equal to 0 for a maximum, we have

bi = −pi

λ
. (6.9)

Substituting this in the constraint
∑

bi = 1 yields λ = −1 and bi = pi .
Hence, we can conclude that b = p is a stationary point of the function
J (b). To prove that this is actually a maximum is tedious if we take
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second derivatives. Instead, we use a method that works for many such
problems: Guess and verify. We verify that proportional gambling b = p
is optimal in the following theorem. Proportional gambling is known as
Kelly gambling [308].

Theorem 6.1.2 (Proportional gambling is log-optimal ) The optimum
doubling rate is given by

W ∗(p) =
∑

pi log oi − H(p) (6.10)

and is achieved by the proportional gambling scheme b∗ = p.

Proof: We rewrite the function W(b, p) in a form in which the maximum
is obvious:

W(b, p) =
∑

pi log bioi (6.11)

=
∑

pi log

(
bi

pi

pioi

)
(6.12)

=
∑

pi log oi − H(p) − D(p||b) (6.13)

≤
∑

pi log oi − H(p), (6.14)

with equality iff p = b (i.e., the gambler bets on each horse in proportion
to its probability of winning). �

Example 6.1.1 Consider a case with two horses, where horse 1 wins
with probability p1 and horse 2 wins with probability p2. Assume even
odds (2-for-1 on both horses). Then the optimal bet is proportional bet-
ting (i.e., b1 = p1, b2 = p2). The optimal doubling rate is W ∗(p) =∑

pi log oi − H(p) = 1 − H(p), and the resulting wealth grows to infin-
ity at this rate:

Sn
.= 2n(1−H(p)). (6.15)

Thus, we have shown that proportional betting is growth rate optimal
for a sequence of i.i.d. horse races if the gambler can reinvest his wealth
and if there is no alternative of keeping some of the wealth in cash.

We now consider a special case when the odds are fair with respect to
some distribution (i.e., there is no track take and

∑ 1
oi

= 1). In this case,

we write ri = 1
oi

, where ri can be interpreted as a probability mass function
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over the horses. (This is the bookie’s estimate of the win probabilities.)
With this definition, we can write the doubling rate as

W(b, p) =
∑

pi log bioi (6.16)

=
∑

pi log

(
bi

pi

pi

ri

)
(6.17)

= D(p||r) − D(p||b). (6.18)

This equation gives another interpretation for the relative entropy dis-
tance: The doubling rate is the difference between the distance of the
bookie’s estimate from the true distribution and the distance of the gam-
bler’s estimate from the true distribution. Hence, the gambler can make
money only if his estimate (as expressed by b) is better than the bookie’s.

An even more special case is when the odds are m-for-1 on each horse.
In this case, the odds are fair with respect to the uniform distribution and
the optimum doubling rate is

W ∗(p) = D

(
p|| 1

m

)
= log m − H(p). (6.19)

In this case we can clearly see the duality between data compression and
the doubling rate.

Theorem 6.1.3 (Conservation theorem) For uniform fair odds,

W ∗(p) + H(p) = log m. (6.20)

Thus, the sum of the doubling rate and the entropy rate is a constant.

Every bit of entropy decrease doubles the gambler’s wealth. Low entropy
races are the most profitable.

In the analysis above, we assumed that the gambler was fully invested.
In general, we should allow the gambler the option of retaining some of
his wealth as cash. Let b(0) be the proportion of wealth held out as cash,
and b(1), b(2), . . . , b(m) be the proportions bet on the various horses.
Then at the end of a race, the ratio of final wealth to initial wealth (the
wealth relative) is

S(X) = b(0) + b(X)o(X). (6.21)

Now the optimum strategy may depend on the odds and will not necessar-
ily have the simple form of proportional gambling. We distinguish three
subcases:
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1. Fair odds with respect to some distribution:
∑ 1

oi
= 1. For fair odds,

the option of withholding cash does not change the analysis. This is
because we can get the effect of withholding cash by betting bi = 1

oi

on the ith horse, i = 1, 2, . . . , m. Then S(X) = 1 irrespective of
which horse wins. Thus, whatever money the gambler keeps aside
as cash can equally well be distributed over the horses, and the
assumption that the gambler must invest all his money does not
change the analysis. Proportional betting is optimal.

2. Superfair odds :
∑ 1

oi
< 1. In this case, the odds are even better than

fair odds, so one would always want to put all one’s wealth into the
race rather than leave it as cash. In this race, too, the optimum
strategy is proportional betting. However, it is possible to choose
b so as to form a Dutch book by choosing bi = c 1

oi
, where c =

1/
∑ 1

ci
, to get oibi = c, irrespective of which horse wins. With

this allotment, one has wealth S(X) = 1/
∑ 1

oi
> 1 with probability

1 (i.e., no risk). Needless to say, one seldom finds such odds in
real life. Incidentally, a Dutch book, although risk-free, does not
optimize the doubling rate.

3. Subfair odds:
∑ 1

oi
> 1. This is more representative of real life. The

organizers of the race track take a cut of all the bets. In this case it
is optimal to bet only some of the money and leave the rest aside
as cash. Proportional gambling is no longer log-optimal. A paramet-
ric form for the optimal strategy can be found using Kuhn–Tucker
conditions (Problem 6.6.2); it has a simple “water-filling” interpre-
tation.

6.2 GAMBLING AND SIDE INFORMATION

Suppose the gambler has some information that is relevant to the outcome
of the gamble. For example, the gambler may have some information
about the performance of the horses in previous races. What is the value
of this side information?

One definition of the financial value of such information is the increase
in wealth that results from that information. In the setting described in
Section 6.1 the measure of the value of information is the increase in the
doubling rate due to that information. We will now derive a connection
between mutual information and the increase in the doubling rate.

To formalize the notion, let horse X ∈ {1, 2, . . . , m} win the race with
probability p(x) and pay odds of o(x) for 1. Let (X, Y ) have joint
probability mass function p(x, y). Let b(x|y) ≥ 0,

∑
x b(x|y) = 1 be an

arbitrary conditional betting strategy depending on the side information
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Y , where b(x|y) is the proportion of wealth bet on horse x when y is
observed. As before, let b(x) ≥ 0,

∑
b(x) = 1 denote the unconditional

betting scheme.
Let the unconditional and the conditional doubling rates be

W ∗(X) = max
b(x)

∑
x

p(x) log b(x)o(x), (6.22)

W ∗(X|Y) = max
b(x|y)

∑
x,y

p(x, y) log b(x|y)o(x) (6.23)

and let
�W = W ∗(X|Y) − W ∗(X). (6.24)

We observe that for (Xi, Yi) i.i.d. horse races, wealth grows like 2nW∗(X|Y)

with side information and like 2nW∗(X) without side information.

Theorem 6.2.1 The increase �W in doubling rate due to side infor-
mation Y for a horse race X is

�W = I (X;Y). (6.25)

Proof: With side information, the maximum value of W ∗(X|Y) with
side information Y is achieved by conditionally proportional gambling
[i.e., b∗(x|y) = p(x|y)]. Thus,

W ∗(X|Y) = max
b(x|y)

E
[
log S

] = max
b(x|y)

∑
p(x, y) log o(x)b(x|y) (6.26)

=
∑

p(x, y) log o(x)p(x|y) (6.27)

=
∑

p(x) log o(x) − H(X|Y). (6.28)

Without side information, the optimal doubling rate is

W ∗(X) =
∑

p(x) log o(x) − H(X). (6.29)

Thus, the increase in doubling rate due to the presence of side information
Y is

�W = W ∗(X|Y) − W ∗(X) = H(X) − H(X|Y) = I (X;Y). � (6.30)
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Hence, the increase in doubling rate is equal to the mutual informa-
tion between the side information and the horse race. Not surprisingly,
independent side information does not increase the doubling rate.

This relationship can also be extended to the general stock market
(Chapter 16). In this case, however, one can only show the inequality
�W ≤ I , with equality if and only if the market is a horse race.

6.3 DEPENDENT HORSE RACES AND ENTROPY RATE

The most common example of side information for a horse race is the
past performance of the horses. If the horse races are independent, this
information will be useless. If we assume that there is dependence among
the races, we can calculate the effective doubling rate if we are allowed
to use the results of previous races to determine the strategy for the next
race.

Suppose that the sequence {Xk} of horse race outcomes forms a stochas-
tic process. Let the strategy for each race depend on the results of previous
races. In this case, the optimal doubling rate for uniform fair odds is

W ∗(Xk|Xk−1, Xk−2, . . . , X1)

= E

[
max

b(·|Xk−1,Xk−2,...,X1)
E[log S(Xk)|Xk−1, Xk−2, . . . , X1]

]

= log m − H(Xk|Xk−1, Xk−2, . . . , X1), (6.31)

which is achieved by b∗(xk|xk−1, . . . , x1) = p(xk|xk−1, . . . , x1).
At the end of n races, the gambler’s wealth is

Sn =
n∏

i=1

S(Xi), (6.32)

and the exponent in the growth rate (assuming m for 1 odds) is

1

n
E log Sn = 1

n

∑
E log S(Xi) (6.33)

= 1

n

∑
(log m − H(Xi |Xi−1, Xi−2, . . . , X1)) (6.34)

= log m − H(X1, X2, . . . , Xn)

n
. (6.35)
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The quantity 1
n
H(X1, X2, . . . , Xn) is the average entropy per race. For

a stationary process with entropy rate H(X), the limit in (6.35) yields

lim
n→∞

1

n
E log Sn + H(X) = log m. (6.36)

Again, we have the result that the entropy rate plus the doubling rate is a
constant.

The expectation in (6.36) can be removed if the process is ergodic. It
will be shown in Chapter 16 that for an ergodic sequence of horse races,

Sn
.= 2nW with probability 1, (6.37)

where W = log m − H(X) and

H(X) = lim
1

n
H(X1, X2, . . . , Xn). (6.38)

Example 6.3.1 (Red and black ) In this example, cards replace horses
and the outcomes become more predictable as time goes on. Consider the
case of betting on the color of the next card in a deck of 26 red and 26
black cards. Bets are placed on whether the next card will be red or black,
as we go through the deck. We also assume that the game pays 2-for-1;
that is, the gambler gets back twice what he bets on the right color. These
are fair odds if red and black are equally probable.

We consider two alternative betting schemes:

1. If we bet sequentially, we can calculate the conditional probability
of the next card and bet proportionally. Thus, we should bet ( 1

2 , 1
2)

on (red, black) for the first card, ( 26
51 , 25

51) for the second card if the
first card is black, and so on.

2. Alternatively, we can bet on the entire sequence of 52 cards at once.
There are

(52
26

)
possible sequences of 26 red and 26 black cards, all

of them equally likely. Thus, proportional betting implies that we
put 1/

(52
26

)
of our money on each of these sequences and let each

bet “ride.”

We will argue that these procedures are equivalent. For example, half
the sequences of 52 cards start with red, and so the proportion of money
bet on sequences that start with red in scheme 2 is also one-half, agreeing
with the proportion used in the first scheme. In general, we can verify that
betting 1/

(52
26

)
of the money on each of the possible outcomes will at each
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stage give bets that are proportional to the probability of red and black
at that stage. Since we bet 1/

(52
26

)
of the wealth on each possible output

sequence, and a bet on a sequence increases wealth by a factor of 252 on
the sequence observed and 0 on all the others, the resulting wealth is

S∗
52 = 252(52

26

) = 9.08. (6.39)

Rather interestingly, the return does not depend on the actual sequence.
This is like the AEP in that the return is the same for all sequences. All
sequences are typical in this sense.

6.4 THE ENTROPY OF ENGLISH

An important example of an information source is English text. It is
not immediately obvious whether English is a stationary ergodic process.
Probably not! Nonetheless, we will be interested in the entropy rate of
English. We discuss various stochastic approximations to English. As we
increase the complexity of the model, we can generate text that looks like
English. The stochastic models can be used to compress English text. The
better the stochastic approximation, the better the compression.

For the purposes of discussion, we assume that the alphabet of English
consists of 26 letters and the space symbol. We therefore ignore punctua-
tion and the difference between upper- and lowercase letters. We construct
models for English using empirical distributions collected from samples
of text. The frequency of letters in English is far from uniform. The most
common letter, E, has a frequency of about 13%, and the least common
letters, Q and Z, occur with a frequency of about 0.1%. The letter E is
so common that it is rare to find a sentence of any length that does not
contain the letter. [A surprising exception to this is the 267-page novel,
Gadsby, by Ernest Vincent Wright (Lightyear Press, Boston, 1997; orig-
inal publication in 1939), in which the author deliberately makes no use
of the letter E.]

The frequency of pairs of letters is also far from uniform. For example,
the letter Q is always followed by a U. The most frequent pair is TH,
which occurs normally with a frequency of about 3.7%. We can use
the frequency of the pairs to estimate the probability that a letter fol-
lows any other letter. Proceeding this way, we can also estimate higher-
order conditional probabilities and build more complex models for the
language. However, we soon run out of data. For example, to build
a third-order Markov approximation, we must estimate the values of
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p(xi |xi−1, xi−2, xi−3). There are 274 = 531, 441 entries in this table, and
we would need to process millions of letters to make accurate estimates
of these probabilities.

The conditional probability estimates can be used to generate random
samples of letters drawn according to these distributions (using a random
number generator). But there is a simpler method to simulate randomness
using a sample of text (a book, say). For example, to construct the second-
order model, open the book at random and choose a letter at random on
the page. This will be the first letter. For the next letter, again open the
book at random and starting at a random point, read until the first letter is
encountered again. Then take the letter after that as the second letter. We
repeat this process by opening to another page, searching for the second
letter, and taking the letter after that as the third letter. Proceeding this
way, we can generate text that simulates the second-order statistics of the
English text.

Here are some examples of Markov approximations to English from
Shannon’s original paper [472]:

1. Zero-order approximation. (The symbols are independent and equi-
probable.)

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation. (The symbols are independent. The fre-
quency of letters matches English text.)

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

3. Second-order approximation. (The frequency of pairs of letters
matches English text.)

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

4. Third-order approximation. (The frequency of triplets of letters
matches English text.)

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE
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5. Fourth-order approximation. (The frequency of quadruplets of let-
ters matches English text. Each letter depends on the previous three
letters. This sentence is from Lucky’s book, Silicon Dreams [366].)

THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED
CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL
IT DO HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER
ANY OF PUBLE AND TO THEORY. EVENTIAL CALLEGAND TO ELAST
BENERATED IN WITH PIES AS IS WITH THE )

Instead of continuing with the letter models, we jump to word
models.

6. First-order word model . (The words are chosen independently but
with frequencies as in English.)

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO
EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE
THESE.

7. Second-order word model . (The word transition probabilities match
English text.)

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER
METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD
THE PROBLEM FOR AN UNEXPECTED

The approximations get closer and closer to resembling English. For
example, long phrases of the last approximation could easily have occurred
in a real English sentence. It appears that we could get a very good approx-
imation by using a more complex model. These approximations could be
used to estimate the entropy of English. For example, the entropy of the
zeroth-order model is log 27 = 4.76 bits per letter. As we increase the
complexity of the model, we capture more of the structure of English,
and the conditional uncertainty of the next letter is reduced. The first-
order model gives an estimate of the entropy of 4.03 bits per letter, while
the fourth-order model gives an estimate of 2.8 bits per letter. But even
the fourth-order model does not capture all the structure of English. In
Section 6.6 we describe alternative methods for estimating the entropy of
English.

The distribution of English is useful in decoding encrypted English text.
For example, a simple substitution cipher (where each letter is replaced
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by some other letter) can be solved by looking for the most frequent letter
and guessing that it is the substitute for E, and so on. The redundancy in
English can be used to fill in some of the missing letters after the other
letters are decrypted: for example,

TH R S NLY N W Y T F LL N TH V W LS N TH S S NT NC .

Some of the inspiration for Shannon’s original work on information
theory came out of his work in cryptography during World War II. The
mathematical theory of cryptography and its relationship to the entropy
of language is developed in Shannon [481].

Stochastic models of language also play a key role in some speech
recognition systems. A commonly used model is the trigram (second-order
Markov) word model, which estimates the probability of the next word
given the preceding two words. The information from the speech signal
is combined with the model to produce an estimate of the most likely
word that could have produced the observed speech. Random models do
surprisingly well in speech recognition, even when they do not explicitly
incorporate the complex rules of grammar that govern natural languages
such as English.

We can apply the techniques of this section to estimate the entropy rate
of other information sources, such as speech and images. A fascinating
nontechnical introduction to these issues may be found in the book by
Lucky [366].

6.5 DATA COMPRESSION AND GAMBLING

We now show a direct connection between gambling and data compres-
sion, by showing that a good gambler is also a good data compressor. Any
sequence on which a gambler makes a large amount of money is also a
sequence that can be compressed by a large factor. The idea of using
the gambler as a data compressor is based on the fact that the gambler’s
bets can be considered to be his estimate of the probability distribution
of the data. A good gambler will make a good estimate of the probability
distribution. We can use this estimate of the distribution to do arithmetic
coding (Section 13.3). This is the essential idea of the scheme described
below.

We assume that the gambler has a mechanically identical twin, who
will be used for the data decompression. The identical twin will place the
same bets on possible sequences of outcomes as the original gambler (and
will therefore make the same amount of money). The cumulative amount
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of money that the gambler would have made on all sequences that are
lexicographically less than the given sequence will be used as a code
for the sequence. The decoder will use the identical twin to gamble on
all sequences, and look for the sequence for which the same cumulative
amount of money is made. This sequence will be chosen as the decoded
sequence.

Let X1, X2, . . . , Xn be a sequence of random variables that we wish
to compress. Without loss of generality, we will assume that the random
variables are binary. Gambling on this sequence will be defined by a
sequence of bets

b(xk+1 | x1, x2, . . . , xk) ≥ 0,
∑
xk+1

b(xk+1 | x1, x2, . . . , xk) = 1,

(6.40)
where b(xk+1 | x1, x2, . . . , xk) is the proportion of money bet at time k on
the event that Xk+1 = xk+1 given the observed past x1, x2, . . . , xk. Bets
are paid at uniform odds (2-for-1). Thus, the wealth Sn at the end of the
sequence is given by

Sn = 2n

n∏
k=1

b(xk | x1, . . . , xk−1) (6.41)

= 2nb(x1, x2, . . . , xn), (6.42)

where

b(x1, x2, . . . , xn) =
n∏

k=1

b(xk|xk−1, . . . , x1). (6.43)

So sequential gambling can also be considered as an assignment of proba-
bilities (or bets) b(x1, x2, . . . , xn) ≥ 0,

∑
x1,...,xn

b(x1, . . . , xn) = 1, on the
2n possible sequences.

This gambling elicits both an estimate of the true probability of the text
sequence (p̂(x1, . . . , xn) = Sn/2n) as well as an estimate of the entropy[
Ĥ = − 1

n
log p̂

]
of the text from which the sequence was drawn. We now

wish to show that high values of wealth Sn lead to high data compression.
Specifically, we argue that if the text in question results in wealth Sn,
then log Sn bits can be saved in a naturally associated deterministic data
compression scheme. We further assert that if the gambling is log optimal,
the data compression achieves the Shannon limit H .
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Consider the following data compression algorithm that maps the
text x = x1x2 · · · xn ∈ {0, 1}n into a code sequences c1c2 · · · ck , ci ∈
{0, 1}. Both the compressor and the decompressor know n. Let
the 2n text sequences be arranged in lexicographical order: for
example, 0100101 < 0101101. The encoder observes the sequence
xn = (x1, x2, . . . , xn). He then calculates what his wealth Sn(x

′
(n))

would have been on all sequences x
′
(n) ≤ x(n) and calculates

F(x(n)) = ∑
x

′
(n)≤x(n)

2−nSn(x
′
(n)). Clearly, F(x(n)) ∈ [0, 1]. Let k =

	n − log Sn(x(n))
. Now express F(x(n)) as a binary decimal to k-place
accuracy: �F(x(n))� = .c1c2 · · · ck. The sequence c(k) = (c1, c2, . . . , ck)

is transmitted to the decoder.
The decoder twin can calculate the precise value S(x

′
(n)) associated

with each of the 2n sequences x
′
(n). He thus knows the cumulative sum

of 2−nS(x
′
(n)) up through any sequence x(n). He tediously calculates

this sum until it first exceeds .c(k). The first sequence x(n) such that
the cumulative sum falls in the interval [.c1 · · · ck, .c1 . . . ck + (1/2)k] is
defined uniquely, and the size of S(x(n))/2n guarantees that this sequence
will be precisely the encoded x(n).

Thus, the twin uniquely recovers x(n). The number of bits required
is k = 	n − log S(x(n))
. The number of bits saved is n − k =
�log S(x(n))�. For proportional gambling, S(x(n)) = 2np(x(n)). Thus,
the expected number of bits is Ek = ∑

p(x(n))	− log p(x(n))
 ≤
H(X1, . . . , Xn) + 1.

We see that if the betting operation is deterministic and is known
both to the encoder and the decoder, the number of bits necessary to
encode x1, . . . , xn is less than n − log Sn + 1. Moreover, if p(x) is known,
and if proportional gambling is used, the description length expected is
E(n − log Sn) ≤ H(X1, . . . , Xn) + 1. Thus, the gambling results corre-
spond precisely to the data compression that would have been achieved
by the given human encoder–decoder identical twin pair.

The data compression scheme using a gambler is similar to the idea
of arithmetic coding (Section 13.3) using a distribution b(x1, x2, . . . , xn)

rather than the true distribution. The procedure above brings out the duality
between gambling and data compression. Both involve estimation of the
true distribution. The better the estimate, the greater the growth rate of
the gambler’s wealth and the better the data compression.

6.6 GAMBLING ESTIMATE OF THE ENTROPY OF ENGLISH

We now estimate the entropy rate for English using a human gambler to
estimate probabilities. We assume that English consists of 27 characters
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(26 letters and a space symbol). We therefore ignore punctuation and case
of letters. Two different approaches have been proposed to estimate the
entropy of English.

1. Shannon guessing game. In this approach the human subject is
given a sample of English text and asked to guess the next letter.
An optimal subject will estimate the probabilities of the next letter
and guess the most probable letter first, then the second most prob-
able letter next, and so on. The experimenter records the number of
guesses required to guess the next letter. The subject proceeds this
way through a fairly large sample of text. We can then calculate the
empirical frequency distribution of the number of guesses required
to guess the next letter. Many of the letters will require only one
guess; but a large number of guesses will usually be needed at the
beginning of words or sentences.
Now let us assume that the subject can be modeled as a computer
making a deterministic choice of guesses given the past text. Then
if we have the same machine and the sequence of guess numbers,
we can reconstruct the English text. Just let the machine run, and if
the number of guesses at any position is k, choose the kth guess of
the machine as the next letter. Hence the amount of information in
the sequence of guess numbers is the same as in the English text.
The entropy of the guess sequence is the entropy of English text. We
can bound the entropy of the guess sequence by assuming that the
samples are independent. Hence, the entropy of the guess sequence
is bounded above by the entropy of the histogram in the experiment.
The experiment was conducted in 1950 by Shannon [482], who
obtained a value of 1.3 bits per symbol for the entropy of English.

2. Gambling estimate. In this approach we let a human subject gamble
on the next letter in a sample of English text. This allows finer
gradations of judgment than does guessing. As in the case of a horse
race, the optimal bet is proportional to the conditional probability
of the next letter. The payoff is 27-for-1 on the correct letter.
Since sequential betting is equivalent to betting on the entire
sequence, we can write the payoff after n letters as

Sn = (27)nb(X1, X2, . . . , Xn). (6.44)

Thus, after n rounds of betting, the expected log wealth satisfies

E
1

n
log Sn = log 27 + 1

n
E log b(X1, X2, . . . , Xn) (6.45)
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= log 27 + 1

n

∑
xn

p(xn) log b(xn) (6.46)

= log 27 − 1

n

∑
xn

p(xn) log
p(xn)

b(xn)

+ 1

n

∑
xn

p(xn) log p(xn) (6.47)

= log 27 − 1

n
D(p(xn)||b(xn)) − 1

n
H(X1, X2, . . . , Xn)

(6.48)

≤ log 27 − 1

n
H(X1, X2, . . . , Xn) (6.49)

≤ log 27 − H(X), (6.50)

where H(X) is the entropy rate of English. Thus, log 27 − E 1
n

log Sn

is an upper bound on the entropy rate of English. The upper bound
estimate, Ĥ (X) = log 27 − 1

n
log Sn, converges to H(X) with prob-

ability 1 if English is ergodic and the gambler uses b(xn) = p(xn).
An experiment [131] with 12 subjects and a sample of 75 letters
from the book Jefferson the Virginian by Dumas Malone (Little,
Brown, Boston, 1948; the source used by Shannon) resulted in an
estimate of 1.34 bits per letter for the entropy of English.

SUMMARY

Doubling rate. W(b, p) = E(log S(X)) = ∑m
k=1 pk log bkok.

Optimal doubling rate. W ∗(p) = maxb W(b, p).

Proportional gambling is log-optimal

W ∗(p) = max
b

W(b, p) =
∑

pi log oi − H(p) (6.51)

is achieved by b∗ = p.

Growth rate. Wealth grows as Sn
.=2nW∗(p).
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Conservation law. For uniform fair odds,

H(p) + W ∗(p) = log m. (6.52)

Side information. In a horse race X, the increase �W in doubling
rate due to side information Y is

�W = I (X;Y). (6.53)

PROBLEMS

6.1 Horse race. Three horses run a race. A gambler offers 3-for-
1 odds on each horse. These are fair odds under the assumption
that all horses are equally likely to win the race. The true win
probabilities are known to be

p = (p1, p2, p3) =
(

1

2
,

1

4
,

1

4

)
. (6.54)

Let b = (b1, b2, b3), bi ≥ 0,
∑

bi = 1, be the amount invested on
each of the horses. The expected log wealth is thus

W(b) =
3∑

i=1

pi log 3bi. (6.55)

(a) Maximize this over b to find b∗ and W ∗. Thus, the wealth
achieved in repeated horse races should grow to infinity like
2nW∗

with probability 1.
(b) Show that if instead we put all of our money on horse 1, the

most likely winner, we will eventually go broke with probabil-
ity 1.

6.2 Horse race with subfair odds . If the odds are bad (due to a track
take), the gambler may wish to keep money in his pocket. Let b(0)

be the amount in his pocket and let b(1), b(2), . . . , b(m) be the
amount bet on horses 1, 2, . . . , m, with odds o(1), o(2), . . . , o(m),
and win probabilities p(1), p(2), . . . , p(m). Thus, the resulting
wealth is S(x) = b(0) + b(x)o(x), with probability p(x), x =
1, 2, . . . , m.

(a) Find b∗ maximizing E log S if
∑

1/o(i) < 1.
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(b) Discuss b∗ if
∑

1/o(i) > 1. (There isn’t an easy closed-form
solution in this case, but a “water-filling” solution results from
the application of the Kuhn–Tucker conditions.)

6.3 Cards . An ordinary deck of cards containing 26 red cards and
26 black cards is shuffled and dealt out one card at time without
replacement. Let Xi be the color of the ith card.
(a) Determine H(X1).

(b) Determine H(X2).

(c) Does H(Xk | X1, X2, . . . , Xk−1) increase or decrease?
(d) Determine H(X1, X2, . . . , X52).

6.4 Gambling . Suppose that one gambles sequentially on the card
outcomes in Problem 6.6.3. Even odds of 2-for-1 are paid. Thus,
the wealth Sn at time n is Sn = 2nb(x1, x2, . . . , xn), where
b(x1, x2, . . . , xn) is the proportion of wealth bet on x1, x2, . . . , xn.

Find maxb(·) E log S52.

6.5 Beating the public odds . Consider a three-horse race with win
probabilities

(p1, p2, p3) =
(

1

2
,

1

4
,

1

4

)

and fair odds with respect to the (false) distribution

(r1, r2, r3) =
(

1

4
,

1

4
,

1

2

)
.

Thus, the odds are

(o1, o2, o3) = (4, 4, 2).

(a) What is the entropy of the race?
(b) Find the set of bets (b1, b2, b3) such that the compounded

wealth in repeated plays will grow to infinity.

6.6 Horse race. A three-horse race has win probabilities p =
(p1, p2, p3), and odds o = (1, 1, 1). The gambler places bets b =
(b1, b2, b3), bi ≥ 0,

∑
bi = 1, where bi denotes the proportion on

wealth bet on horse i. These odds are very bad. The gambler gets
his money back on the winning horse and loses the other bets.
Thus, the wealth Sn at time n resulting from independent gambles
goes exponentially to zero.
(a) Find the exponent.
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(b) Find the optimal gambling scheme b (i.e., the bet b∗ that max-
imizes the exponent).

(c) Assuming that b is chosen as in part (b), what distribution p
causes Sn to go to zero at the fastest rate?

6.7 Horse race. Consider a horse race with four horses. Assume that
each horse pays 4-for-1 if it wins. Let the probabilities of win-
ning of the horses be {1

2 , 1
4 , 1

8 , 1
8}. If you started with $100 and

bet optimally to maximize your long-term growth rate, what are
your optimal bets on each horse? Approximately how much money
would you have after 20 races with this strategy?

6.8 Lotto. The following analysis is a crude approximation to the
games of Lotto conducted by various states. Assume that the player
of the game is required to pay $1 to play and is asked to choose
one number from a range 1 to 8. At the end of every day, the state
lottery commission picks a number uniformly over the same range.
The jackpot (i.e., all the money collected that day) is split among
all the people who chose the same number as the one chosen by the
state. For example, if 100 people played today, 10 of them chose
the number 2, and the drawing at the end of the day picked 2, the
$100 collected is split among the 10 people (i.e., each person who
picked 2 will receive $10, and the others will receive nothing).
The general population does not choose numbers uni-
formly—numbers such as 3 and 7 are supposedly lucky and are
more popular than 4 or 8. Assume that the fraction of people choos-
ing the various numbers 1, 2, . . . , 8 is (f1, f2, . . . , f8), and assume
that n people play every day. Also assume that n is very large, so
that any single person’s choice does not change the proportion of
people betting on any number.
(a) What is the optimal strategy to divide your money among

the various possible tickets so as to maximize your long-term
growth rate? (Ignore the fact that you cannot buy fractional
tickets.)

(b) What is the optimal growth rate that you can achieve in this
game?

(c) If (f1, f2, . . . , f8) = ( 1
8 , 1

8 , 1
4 , 1

16 , 1
16 , 1

16 , 1
4 , 1

16), and you start
with $1, how long will it be before you become a millionaire?

6.9 Horse race. Suppose that one is interested in maximizing the
doubling rate for a horse race. Let p1, p2, . . . , pm denote the win
probabilities of the m horses. When do the odds (o1, o2, . . . , om)

yield a higher doubling rate than the odds (o′
1, o

′
2, . . . , o

′
m)?
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6.10 Horse race with probability estimates .
(a) Three horses race. Their probabilities of winning are ( 1

2 , 1
4 , 1

4).
The odds are 4-for-1, 3-for-1, and 3-for-1. Let W ∗ be the opti-
mal doubling rate. Suppose you believe that the probabilities
are (1

4 , 1
2 , 1

4). If you try to maximize the doubling rate, what
doubling rate W will you achieve? By how much has your dou-
bling rate decrease due to your poor estimate of the probabilities
(i.e., what is �W = W ∗ − W )?

(b) Now let the horse race be among m horses, with probabil-
ities p = (p1, p2, . . . , pm) and odds o = (o1, o2, . . . , om). If
you believe the true probabilities to be q = (q1, q2, . . . , qm),
and try to maximize the doubling rate W , what is W ∗ − W?

6.11 Two-envelope problem . One envelope contains b dollars, the other
2b dollars. The amount b is unknown. An envelope is selected at
random. Let X be the amount observed in this envelope, and let Y

be the amount in the other envelope. Adopt the strategy of switch-
ing to the other envelope with probability p(x), where p(x) =

e−x

(e−x+ex)
. Let Z be the amount that the player receives. Thus,

(X, Y ) =
{

(b, 2b) with probability 1
2

(2b, b) with probability 1
2

(6.56)

Z =
{

X with probability 1 − p(x)

Y with probability p(x).
(6.57)

(a) Show that E(X) = E(Y) = 3b
2 .

(b) Show that E(Y/X) = 5
4 . Since the expected ratio of the

amount in the other envelope is 5
4 , it seems that one should

always switch. (This is the origin of the switching paradox.)
However, observe that E(Y) 
= E(X)E(Y/X). Thus, although
E(Y/X) > 1, it does not follow that E(Y) > E(X).

(c) Let J be the index of the envelope containing the maximum
amount of money, and let J ′ be the index of the envelope
chosen by the algorithm. Show that for any b, I (J ; J ′) > 0.
Thus, the amount in the first envelope always contains some
information about which envelope to choose.

(d) Show that E(Z) > E(X). Thus, you can do better than always
staying or always switching. In fact, this is true for any mono-
tonic decreasing switching function p(x). By randomly switch-
ing according to p(x), you are more likely to trade up than to
trade down.
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6.12 Gambling . Find the horse win probabilities p1, p2, . . . , pm:
(a) Maximizing the doubling rate W ∗ for given fixed known odds

o1, o2, . . . , om.
(b) Minimizing the doubling rate for given fixed odds o1, o2, . . . ,

om.

6.13 Dutch book . Consider a horse race with m = 2 horses,

X = 1, 2

p = 1
2 , 1

2

odds (for one) = 10, 30

bets = b, 1 − b.

The odds are superfair.
(a) There is a bet b that guarantees the same payoff regardless of

which horse wins. Such a bet is called a Dutch book. Find this
b and the associated wealth factor S(X).

(b) What is the maximum growth rate of the wealth for the optimal
choice of b? Compare it to the growth rate for the Dutch book.

6.14 Horse race. Suppose that one is interested in maximizing the
doubling rate for a horse race. Let p1, p2, . . . , pm denote the win
probabilities of the m horses. When do the odds (o1, o2, . . . , om)

yield a higher doubling rate than the odds (o′
1, o

′
2, . . . , o

′
m)?

6.15 Entropy of a fair horse race. Let X ∼ p(x), x = 1, 2, . . . , m,
denote the winner of a horse race. Suppose that the odds o(x)

are fair with respect to p(x) [i.e., o(x) = 1
p(x)

]. Let b(x) be the
amount bet on horse x, b(x) ≥ 0,

∑m
1 b(x) = 1. Then the resulting

wealth factor is S(x) = b(x)o(x), with probability p(x).
(a) Find the expected wealth ES(X).
(b) Find W ∗, the optimal growth rate of wealth.
(c) Suppose that

Y =
{

1, X = 1 or 2
0, otherwise.

If this side information is available before the bet, how much
does it increase the growth rate W ∗?

(d) Find I (X;Y).
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6.16 Negative horse race. Consider a horse race with m horses with
win probabilities p1, p2, . . . , pm. Here the gambler hopes that a
given horse will lose. He places bets (b1, b2, . . . , bm),

∑m
i=1 bi = 1,

on the horses, loses his bet bi if horse i wins, and retains the rest of
his bets. (No odds.) Thus, S = ∑

j 
=i bj , with probability pi , and
one wishes to maximize

∑
pi ln(1 − bi) subject to the constraint∑

bi = 1.

(a) Find the growth rate optimal investment strategy b∗. Do not
constrain the bets to be positive, but do constrain the bets to
sum to 1. (This effectively allows short selling and margin.)

(b) What is the optimal growth rate?

6.17 St. Petersburg paradox . Many years ago in ancient St. Petersburg
the following gambling proposition caused great consternation. For
an entry fee of c units, a gambler receives a payoff of 2k units with
probability 2−k, k = 1, 2, . . . .
(a) Show that the expected payoff for this game is infinite. For this

reason, it was argued that c = ∞ was a “fair” price to pay to
play this game. Most people find this answer absurd.

(b) Suppose that the gambler can buy a share of the game. For
example, if he invests c/2 units in the game, he receives 1

2 a
share and a return X/2, where Pr(X = 2k) = 2−k, k = 1, 2, . . . .
Suppose that X1, X2, . . . are i.i.d. according to this distribution
and that the gambler reinvests all his wealth each time. Thus,
his wealth Sn at time n is given by

Sn =
n∏

i=1

Xi

c
. (6.58)

Show that this limit is ∞ or 0, with probability 1, accordingly
as c < c∗ or c > c∗. Identify the “fair” entry fee c∗.

More realistically, the gambler should be allowed to keep a pro-
portion b = 1 − b of his money in his pocket and invest the rest
in the St. Petersburg game. His wealth at time n is then

Sn =
n∏

i=1

(
b + bXi

c

)
. (6.59)

Let

W(b, c) =
∞∑

k=1

2−k log

(
1 − b + b2k

c

)
. (6.60)
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We have

Sn
.= 2nW(b,c). (6.61)

Let

W ∗(c) = max
0≤b≤1

W(b, c). (6.62)

Here are some questions about W ∗(c).
(a) For what value of the entry fee c does the optimizing value b∗

drop below 1?
(b) How does b∗ vary with c?
(c) How does W ∗(c) fall off with c?
Note that since W ∗(c) > 0, for all c, we can conclude that any
entry fee c is fair.

6.18 Super St. Petersburg . Finally, we have the super St. Peters-
burg paradox, where Pr(X = 22k

) = 2−k, k = 1, 2, . . . . Here the
expected log wealth is infinite for all b > 0, for all c, and the
gambler’s wealth grows to infinity faster than exponentially for
any b > 0. But that doesn’t mean that all investment ratios b are
equally good. To see this, we wish to maximize the relative growth
rate with respect to some other portfolio, say, b = ( 1

2 , 1
2). Show

that there exists a unique b maximizing

E ln
b + bX/c
1
2 + 1

2X/c

and interpret the answer.

HISTORICAL NOTES

The original treatment of gambling on a horse race is due to Kelly [308],
who found that �W = I . Log-optimal portfolios go back to the work
of Bernoulli, Kelly [308], Latané [346], and Latané and Tuttle [347].
Proportional gambling is sometimes referred to as the Kelly gambling
scheme. The improvement in the probability of winning by switching
envelopes in Problem 6.11 is based on Cover [130].

Shannon studied stochastic models for English in his original paper
[472]. His guessing game for estimating the entropy rate of English is
described in [482]. Cover and King [131] provide a gambling estimate
for the entropy of English. The analysis of the St. Petersburg paradox
is from Bell and Cover [39]. An alternative analysis can be found in
Feller [208].



CHAPTER 7

CHANNEL CAPACITY

What do we mean when we say that A communicates with B? We mean
that the physical acts of A have induced a desired physical state in B. This
transfer of information is a physical process and therefore is subject to the
uncontrollable ambient noise and imperfections of the physical signaling
process itself. The communication is successful if the receiver B and the
transmitter A agree on what was sent.

In this chapter we find the maximum number of distinguishable signals
for n uses of a communication channel. This number grows exponen-
tially with n, and the exponent is known as the channel capacity. The
characterization of the channel capacity (the logarithm of the number of
distinguishable signals) as the maximum mutual information is the central
and most famous success of information theory.

The mathematical analog of a physical signaling system is shown
in Figure 7.1. Source symbols from some finite alphabet are mapped
into some sequence of channel symbols, which then produces the out-
put sequence of the channel. The output sequence is random but has a
distribution that depends on the input sequence. From the output sequence,
we attempt to recover the transmitted message.

Each of the possible input sequences induces a probability distribution
on the output sequences. Since two different input sequences may give rise
to the same output sequence, the inputs are confusable. In the next few
sections, we show that we can choose a “nonconfusable” subset of input
sequences so that with high probability there is only one highly likely input
that could have caused the particular output. We can then reconstruct the
input sequences at the output with a negligible probability of error. By
mapping the source into the appropriate “widely spaced” input sequences
to the channel, we can transmit a message with very low probability of
error and reconstruct the source message at the output. The maximum rate
at which this can be done is called the capacity of the channel.

Definition We define a discrete channel to be a system consisting of an
input alphabet X and output alphabet Y and a probability transition matrix

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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Encoder DecoderChannel
p(y|x)

W Xn Yn

Message

W
Estimate
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Message

^

FIGURE 7.1. Communication system.

p(y|x) that expresses the probability of observing the output symbol y

given that we send the symbol x. The channel is said to be memoryless
if the probability distribution of the output depends only on the input at
that time and is conditionally independent of previous channel inputs or
outputs.

Definition We define the “information” channel capacity of a discrete
memoryless channel as

C = max
p(x)

I (X;Y), (7.1)

where the maximum is taken over all possible input distributions p(x).
We shall soon give an operational definition of channel capacity as the

highest rate in bits per channel use at which information can be sent with
arbitrarily low probability of error. Shannon’s second theorem establishes
that the information channel capacity is equal to the operational channel
capacity. Thus, we drop the word information in most discussions of
channel capacity.

There is a duality between the problems of data compression and data
transmission. During compression, we remove all the redundancy in the
data to form the most compressed version possible, whereas during data
transmission, we add redundancy in a controlled fashion to combat errors
in the channel. In Section 7.13 we show that a general communication
system can be broken into two parts and that the problems of data com-
pression and data transmission can be considered separately.

7.1 EXAMPLES OF CHANNEL CAPACITY

7.1.1 Noiseless Binary Channel

Suppose that we have a channel whose the binary input is reproduced
exactly at the output (Figure 7.2).

In this case, any transmitted bit is received without error. Hence, one
error-free bit can be transmitted per use of the channel, and the capacity is
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0 0

1 1

X Y

FIGURE 7.2. Noiseless binary channel. C = 1 bit.

1 bit. We can also calculate the information capacity C = max I (X;Y) =
1 bit, which is achieved by using p(x) = (1

2 , 1
2).

7.1.2 Noisy Channel with Nonoverlapping Outputs

This channel has two possible outputs corresponding to each of the two
inputs (Figure 7.3). The channel appears to be noisy, but really is not.
Even though the output of the channel is a random consequence of the
input, the input can be determined from the output, and hence every trans-
mitted bit can be recovered without error. The capacity of this channel is
also 1 bit per transmission. We can also calculate the information capacity
C = max I (X;Y) = 1 bit, which is achieved by using p(x) = ( 1

2 , 1
2).

1/2

1/2

0

2

1

X Y

1/3

2/3

1

4

3

FIGURE 7.3. Noisy channel with nonoverlapping outputs. C = 1 bit.
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7.1.3 Noisy Typewriter

In this case the channel input is either received unchanged at the
output with probability 1

2 or is transformed into the next letter with
probability 1

2 (Figure 7.4). If the input has 26 symbols and we
use every alternate input symbol, we can transmit one of 13 sym-
bols without error with each transmission. Hence, the capacity of
this channel is log 13 bits per transmission. We can also calculate
the information capacity C = max I (X;Y) = max (H(Y ) − H(Y |X)) =
max H(Y) − 1 = log 26 − 1 = log 13, achieved by using p(x) distributed
uniformly over all the inputs.

Noisy channel

A

B

A A

B

C

D

CC

D

E

A

B

C

D

E

Y

Z

Y

Z Z

Noiseless subset of inputs

FIGURE 7.4. Noisy Typewriter. C = log 13 bits.
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7.1.4 Binary Symmetric Channel

Consider the binary symmetric channel (BSC), which is shown in Fig. 7.5.
This is a binary channel in which the input symbols are complemented
with probability p. This is the simplest model of a channel with errors,
yet it captures most of the complexity of the general problem.

When an error occurs, a 0 is received as a 1, and vice versa. The bits
received do not reveal where the errors have occurred. In a sense, all
the bits received are unreliable. Later we show that we can still use such
a communication channel to send information at a nonzero rate with an
arbitrarily small probability of error.

We bound the mutual information by

I (X;Y) = H(Y) − H(Y |X) (7.2)

= H(Y) −
∑

p(x)H(Y |X = x) (7.3)

= H(Y) −
∑

p(x)H(p) (7.4)

= H(Y) − H(p) (7.5)

≤ 1 − H(p), (7.6)

where the last inequality follows because Y is a binary random variable.
Equality is achieved when the input distribution is uniform. Hence, the
information capacity of a binary symmetric channel with parameter p is

C = 1 − H(p) bits. (7.7)

1 − p

1 − p

p

p

0

1

0

1

FIGURE 7.5. Binary symmetric channel. C = 1 − H(p) bits.
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7.1.5 Binary Erasure Channel

The analog of the binary symmetric channel in which some bits are lost
(rather than corrupted) is the binary erasure channel. In this channel, a
fraction α of the bits are erased. The receiver knows which bits have
been erased. The binary erasure channel has two inputs and three outputs
(Figure 7.6).

We calculate the capacity of the binary erasure channel as follows:

C = max
p(x)

I (X;Y) (7.8)

= max
p(x)

(H(Y ) − H(Y |X)) (7.9)

= max
p(x)

H(Y ) − H(α). (7.10)

The first guess for the maximum of H(Y) would be log 3, but we cannot
achieve this by any choice of input distribution p(x). Letting E be the
event {Y = e}, using the expansion

H(Y) = H(Y, E) = H(E) + H(Y |E), (7.11)

and letting Pr(X = 1) = π , we have

H(Y) = H((1 − π)(1 − α), α, π(1 − α)) = H(α) + (1 − α)H(π).

(7.12)

1 − a

1 − a

0

e
a

a

0

11

FIGURE 7.6. Binary erasure channel.
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Hence

C = max
p(x)

H(Y ) − H(α) (7.13)

= max
π

(1 − α)H(π) + H(α) − H(α) (7.14)

= max
π

(1 − α)H(π) (7.15)

= 1 − α, (7.16)

where capacity is achieved by π = 1
2 .

The expression for the capacity has some intuitive meaning: Since a
proportion α of the bits are lost in the channel, we can recover (at most)
a proportion 1 − α of the bits. Hence the capacity is at most 1 − α. It is
not immediately obvious that it is possible to achieve this rate. This will
follow from Shannon’s second theorem.

In many practical channels, the sender receives some feedback from
the receiver. If feedback is available for the binary erasure channel, it is
very clear what to do: If a bit is lost, retransmit it until it gets through.
Since the bits get through with probability 1 − α, the effective rate of
transmission is 1 − α. In this way we are easily able to achieve a capacity
of 1 − α with feedback.

Later in the chapter we prove that the rate 1 − α is the best that can be
achieved both with and without feedback. This is one of the consequences
of the surprising fact that feedback does not increase the capacity of
discrete memoryless channels.

7.2 SYMMETRIC CHANNELS

The capacity of the binary symmetric channel is C = 1 − H(p) bits per
transmission, and the capacity of the binary erasure channel is C = 1 −
α bits per transmission. Now consider the channel with transition matrix:

p(y|x) =

 0.3 0.2 0.5

0.5 0.3 0.2
0.2 0.5 0.3


. (7.17)

Here the entry in the xth row and the yth column denotes the conditional
probability p(y|x) that y is received when x is sent. In this channel, all
the rows of the probability transition matrix are permutations of each other
and so are the columns. Such a channel is said to be symmetric. Another
example of a symmetric channel is one of the form

Y = X + Z (mod c), (7.18)
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where Z has some distribution on the integers {0, 1, 2, . . . , c − 1}, X has
the same alphabet as Z, and Z is independent of X.

In both these cases, we can easily find an explicit expression for the
capacity of the channel. Letting r be a row of the transition matrix, we
have

I (X;Y) = H(Y) − H(Y |X) (7.19)

= H(Y) − H(r) (7.20)

≤ log |Y| − H(r) (7.21)

with equality if the output distribution is uniform. But p(x) = 1/|X|
achieves a uniform distribution on Y , as seen from

p(y) =
∑
x∈X

p(y|x)p(x) = 1

|X|
∑

p(y|x) = c
1

|X| = 1

|Y| , (7.22)

where c is the sum of the entries in one column of the probability transition
matrix.

Thus, the channel in (7.17) has the capacity

C = max
p(x)

I (X;Y) = log 3 − H(0.5, 0.3, 0.2), (7.23)

and C is achieved by a uniform distribution on the input.
The transition matrix of the symmetric channel defined above is doubly

stochastic. In the computation of the capacity, we used the facts that the
rows were permutations of one another and that all the column sums were
equal.

Considering these properties, we can define a generalization of the
concept of a symmetric channel as follows:

Definition A channel is said to be symmetric if the rows of the channel
transition matrix p(y|x) are permutations of each other and the columns
are permutations of each other. A channel is said to be weakly symmetric
if every row of the transition matrix p(·|x) is a permutation of every other
row and all the column sums

∑
x p(y|x) are equal.

For example, the channel with transition matrix

p(y|x) =
(

1
3

1
6

1
2

1
3

1
2

1
6

)
(7.24)

is weakly symmetric but not symmetric.
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The above derivation for symmetric channels carries over to weakly
symmetric channels as well. We have the following theorem for weakly
symmetric channels:

Theorem 7.2.1 For a weakly symmetric channel,

C = log |Y| − H(row of transition matrix), (7.25)

and this is achieved by a uniform distribution on the input alphabet.

7.3 PROPERTIES OF CHANNEL CAPACITY

1. C ≥ 0 since I (X;Y) ≥ 0.
2. C ≤ log |X| since C = max I (X;Y) ≤ max H(X) = log |X|.
3. C ≤ log |Y| for the same reason.
4. I (X;Y) is a continuous function of p(x).
5. I (X;Y) is a concave function of p(x) (Theorem 2.7.4). Since

I (X;Y) is a concave function over a closed convex set, a local
maximum is a global maximum. From properties 2 and 3, the maxi-
mum is finite, and we are justified in using the term maximum rather
than supremum in the definition of capacity. The maximum can then
be found by standard nonlinear optimization techniques such as gra-
dient search. Some of the methods that can be used include the
following:

• Constrained maximization using calculus and the Kuhn–Tucker
conditions.

• The Frank–Wolfe gradient search algorithm.
• An iterative algorithm developed by Arimoto [25] and Blahut

[65]. We describe the algorithm in Section 10.8.

In general, there is no closed-form solution for the capacity. But for
many simple channels it is possible to calculate the capacity using prop-
erties such as symmetry. Some of the examples considered earlier are of
this form.

7.4 PREVIEW OF THE CHANNEL CODING THEOREM

So far, we have defined the information capacity of a discrete memoryless
channel. In the next section we prove Shannon’s second theorem, which
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FIGURE 7.7. Channels after n uses.

gives an operational meaning to the definition of capacity as the number
of bits we can transmit reliably over the channel. But first we will try to
give an intuitive idea as to why we can transmit C bits of information over
a channel. The basic idea is that for large block lengths, every channel
looks like the noisy typewriter channel (Figure 7.4) and the channel has a
subset of inputs that produce essentially disjoint sequences at the output.

For each (typical) input n-sequence, there are approximately 2nH(Y |X)

possible Y sequences, all of them equally likely (Figure 7.7). We wish
to ensure that no two X sequences produce the same Y output sequence.
Otherwise, we will not be able to decide which X sequence was sent.

The total number of possible (typical) Y sequences is ≈ 2nH(Y ). This set
has to be divided into sets of size 2nH(Y |X) corresponding to the different
input X sequences. The total number of disjoint sets is less than or equal
to 2n(H(Y )−H(Y |X)) = 2nI (X;Y). Hence, we can send at most ≈ 2nI (X;Y)

distinguishable sequences of length n.
Although the above derivation outlines an upper bound on the capacity,

a stronger version of the above argument will be used in the next section
to prove that this rate I is achievable with an arbitrarily low probability
of error.

Before we proceed to the proof of Shannon’s second theorem, we need
a few definitions.

7.5 DEFINITIONS

We analyze a communication system as shown in Figure 7.8.
A message W , drawn from the index set {1, 2, . . . ,M}, results in the

signal Xn(W), which is received by the receiver as a random sequence
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Yn ∼ p(yn|xn). The receiver then guesses the index W by an appropriate
decoding rule Ŵ = g(Y n). The receiver makes an error if Ŵ is not the
same as the index W that was transmitted. We now define these ideas
formally.

Definition A discrete channel, denoted by (X, p(y|x),Y), consists of
two finite sets X and Y and a collection of probability mass functions
p(y|x), one for each x ∈ X, such that for every x and y, p(y|x) ≥ 0, and
for every x,

∑
y p(y|x) = 1, with the interpretation that X is the input

and Y is the output of the channel.

Definition The nth extension of the discrete memoryless channel (DMC)
is the channel (Xn, p(yn|xn),Yn), where

p(yk|xk, yk−1) = p(yk|xk), k = 1, 2, . . . , n. (7.26)

Remark If the channel is used without feedback [i.e., if the input sym-
bols do not depend on the past output symbols, namely, p(xk|xk−1, yk−1)

= p(xk|xk−1)], the channel transition function for the nth extension of the
discrete memoryless channel reduces to

p(yn|xn) =
n∏

i=1

p(yi |xi). (7.27)

When we refer to the discrete memoryless channel, we mean the discrete
memoryless channel without feedback unless we state explicitly other-
wise.

Definition An (M, n) code for the channel (X, p(y|x),Y) consists of
the following:

1. An index set {1, 2, . . . , M}.
2. An encoding function Xn : {1, 2, . . . , M} → Xn, yielding codewords

xn(1), xn(2), . . ., xn(M). The set of codewords is called the code-
book.
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3. A decoding function

g : Yn → {1, 2, . . . ,M}, (7.28)

which is a deterministic rule that assigns a guess to each possible
received vector.

Definition (Conditional probability of error ) Let

λi = Pr(g(Y n) �= i|Xn = xn(i)) =
∑
yn

p(yn|xn(i))I (g(yn) �= i) (7.29)

be the conditional probability of error given that index i was sent, where
I (·) is the indicator function.

Definition The maximal probability of error λ(n) for an (M, n) code is
defined as

λ(n) = max
i∈{1,2,...,M}

λi. (7.30)

Definition The (arithmetic) average probability of error P
(n)
e for an

(M, n) code is defined as

P (n)
e = 1

M

M∑
i=1

λi. (7.31)

Note that if the index W is chosen according to a uniform distribution
over the set {1, 2, . . . , M}, and Xn = xn(W), then

P (n)
e

�= Pr(W �= g(Y n)), (7.32)

(i.e., P
(n)
e is the probability of error). Also, obviously,

P (n)
e ≤ λ(n). (7.33)

One would expect the maximal probability of error to behave quite differ-
ently from the average probability. But in the next section we prove that
a small average probability of error implies a small maximal probability
of error at essentially the same rate.
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It is worth noting that P
(n)
e defined in (7.32) is only a mathematical

construct of the conditional probabilities of error λi and is itself a proba-
bility of error only if the message is chosen uniformly over the message
set {1, 2, . . . , 2M}. However, both in the proof of achievability and the
converse, we choose a uniform distribution on W to bound the probability
of error. This allows us to establish the behavior of P

(n)
e and the maximal

probability of error λ(n) and thus characterize the behavior of the channel
regardless of how it is used (i.e., no matter what the distribution of W ).

Definition The rate R of an (M, n) code is

R = log M

n
bits per transmission. (7.34)

Definition A rate R is said to be achievable if there exists a sequence
of (

⌈
2nR

⌉
, n) codes such that the maximal probability of error λ(n) tends

to 0 as n → ∞.
Later, we write (2nR, n) codes to mean (

⌈
2nR

⌉
, n) codes. This will

simplify the notation.

Definition The capacity of a channel is the supremum of all achievable
rates.

Thus, rates less than capacity yield arbitrarily small probability of error
for sufficiently large block lengths.

7.6 JOINTLY TYPICAL SEQUENCES

Roughly speaking, we decode a channel output Yn as the ith index if
the codeword Xn(i) is “jointly typical” with the received signal Yn. We
now define the important idea of joint typicality and find the probabil-
ity of joint typicality when Xn(i) is the true cause of Yn and when it
is not.

Definition The set A(n)
ε of jointly typical sequences {(xn, yn)} with

respect to the distribution p(x, y) is the set of n-sequences with empirical
entropies ε-close to the true entropies:

A(n)
ε = {

(xn, yn) ∈ Xn × Yn :∣∣∣∣−1

n
log p(xn) − H(X)

∣∣∣∣ < ε, (7.35)
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∣∣∣∣−1

n
log p(yn) − H(Y)

∣∣∣∣ < ε, (7.36)

∣∣∣∣−1

n
log p(xn, yn) − H(X, Y )

∣∣∣∣ < ε

}
, (7.37)

where

p(xn, yn) =
n∏

i=1

p(xi, yi). (7.38)

Theorem 7.6.1 (Joint AEP ) Let (Xn, Y n) be sequences of length n

drawn i.i.d. according to p(xn, yn) = ∏n
i=1 p(xi, yi). Then:

1. Pr((Xn, Y n) ∈ A(n)
ε ) → 1 as n → ∞.

2. |A(n)
ε | ≤ 2n(H(X,Y )+ε).

3. If (X̃n, Ỹ n) ∼ p(xn)p(yn) [i.e., X̃n and Ỹ n are independent with the
same marginals as p(xn, yn)], then

Pr
(
(X̃n, Ỹ n) ∈ A(n)

ε

)
≤ 2−n(I (X;Y)−3ε). (7.39)

Also, for sufficiently large n,

Pr
(
(X̃n, Ỹ n) ∈ A(n)

ε

)
≥ (1 − ε)2−n(I (X;Y)+3ε). (7.40)

Proof

1. We begin by showing that with high probability, the sequence is in
the typical set. By the weak law of large numbers,

−1

n
log p(Xn) → −E[log p(X)] = H(X) in probability.

(7.41)
Hence, given ε > 0, there exists n1, such that for all n > n1,

Pr

(∣∣∣∣−1

n
log p(Xn) − H(X)

∣∣∣∣ ≥ ε

)
<

ε

3
. (7.42)

Similarly, by the weak law,

−1

n
log p(Y n) → −E[log p(Y )] = H(Y) in probability (7.43)
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and

−1

n
log p(Xn, Y n) → −E[log p(X, Y )] = H(X, Y ) in probability,

(7.44)
and there exist n2 and n3, such that for all n ≥ n2,

Pr

(∣∣∣∣−1

n
log p(Y n) − H(Y)

∣∣∣∣ ≥ ε

)
<

ε

3
(7.45)

and for all n ≥ n3,

Pr

(∣∣∣∣−1

n
log p(Xn, Y n) − H(X, Y )

∣∣∣∣ ≥ ε

)
<

ε

3
. (7.46)

Choosing n > max{n1, n2, n3}, the probability of the union of the
sets in (7.42), (7.45), and (7.46) must be less than ε. Hence for n

sufficiently large, the probability of the set A(n)
ε is greater than 1 − ε,

establishing the first part of the theorem.
2. To prove the second part of the theorem, we have

1 =
∑

p(xn, yn) (7.47)

≥
∑
A

(n)
ε

p(xn, yn) (7.48)

≥ |A(n)
ε |2−n(H(X,Y )+ε), (7.49)

and hence

|A(n)
ε | ≤ 2n(H(X,Y )+ε). (7.50)

3. Now if X̃n and Ỹ n are independent but have the same marginals as
Xn and Yn, then

Pr((X̃n, Ỹ n) ∈ A(n)
ε ) =

∑
(xn,yn)∈A

(n)
ε

p(xn)p(yn) (7.51)

≤ 2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε) (7.52)

= 2−n(I (X;Y)−3ε). (7.53)
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For sufficiently large n, Pr(A(n)
ε ) ≥ 1 − ε, and therefore

1 − ε ≤
∑

(xn,yn)∈A
(n)
ε

p(xn, yn) (7.54)

≤ |A(n)
ε |2−n(H(X,Y )−ε) (7.55)

and

|A(n)
ε | ≥ (1 − ε)2n(H(X,Y )−ε). (7.56)

By similar arguments to the upper bound above, we can also show
that for n sufficiently large,

Pr((X̃n, Ỹ n) ∈ A(n)
ε ) =

∑
A

(n)
ε

p(xn)p(yn) (7.57)

≥ (1 − ε)2n(H(X,Y )−ε)2−n(H(X)+ε)2−n(H(Y )+ε)

(7.58)

= (1 − ε)2−n(I (X;Y)+3ε). � (7.59)

The jointly typical set is illustrated in Figure 7.9. There are about
2nH(X) typical X sequences and about 2nH(Y ) typical Y sequences. How-
ever, since there are only 2nH(X,Y ) jointly typical sequences, not all pairs
of typical Xn and typical Yn are also jointly typical. The probability that

.

..

.

.
.

.

.

. .

..
.

.....

..

...

.

...

..

..
..

...
...

.. .

.
...

.

.

.

.

.

.

.
..

..

.
.

.

.

.
.

.

.

. .

..

.

.

.

. .
..

.

..
.

.

.
.

..
..

.

..

.

.

.

..
xn

yn

FIGURE 7.9. Jointly typical sequences.
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any randomly chosen pair is jointly typical is about 2−nI (X;Y). Hence,
we can consider about 2nI (X;Y) such pairs before we are likely to come
across a jointly typical pair. This suggests that there are about 2nI (X;Y)

distinguishable signals Xn.
Another way to look at this is in terms of the set of jointly typical

sequences for a fixed output sequence Yn, presumably the output sequence
resulting from the true input signal Xn. For this sequence Yn, there are
about 2nH(X|Y) conditionally typical input signals. The probability that
some randomly chosen (other) input signal Xn is jointly typical with Yn

is about 2nH(X|Y)/2nH(X) = 2−nI (X;Y). This again suggests that we can
choose about 2nI (X;Y) codewords Xn(W) before one of these codewords
will get confused with the codeword that caused the output Yn.

7.7 CHANNEL CODING THEOREM

We now prove what is perhaps the basic theorem of information theory,
the achievability of channel capacity, first stated and essentially proved
by Shannon in his original 1948 paper. The result is rather counterintu-
itive; if the channel introduces errors, how can one correct them all? Any
correction process is also subject to error, ad infinitum.

Shannon used a number of new ideas to prove that information can be
sent reliably over a channel at all rates up to the channel capacity. These
ideas include:

• Allowing an arbitrarily small but nonzero probability of error
• Using the channel many times in succession, so that the law of large

numbers comes into effect
• Calculating the average of the probability of error over a random

choice of codebooks, which symmetrizes the probability, and which
can then be used to show the existence of at least one good code

Shannon’s outline of the proof was based on the idea of typical sequen-
ces, but the proof was not made rigorous until much later. The proof given
below makes use of the properties of typical sequences and is probably
the simplest of the proofs developed so far. As in all the proofs, we
use the same essential ideas—random code selection, calculation of the
average probability of error for a random choice of codewords, and so
on. The main difference is in the decoding rule. In the proof, we decode
by joint typicality; we look for a codeword that is jointly typical with the
received sequence. If we find a unique codeword satisfying this property,
we declare that word to be the transmitted codeword. By the properties
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of joint typicality stated previously, with high probability the transmitted
codeword and the received sequence are jointly typical, since they are
probabilistically related. Also, the probability that any other codeword
looks jointly typical with the received sequence is 2−nI . Hence, if we
have fewer then 2nI codewords, then with high probability there will be
no other codewords that can be confused with the transmitted codeword,
and the probability of error is small.

Although jointly typical decoding is suboptimal, it is simple to analyze
and still achieves all rates below capacity.

We now give the complete statement and proof of Shannon’s second
theorem:

Theorem 7.7.1 (Channel coding theorem) For a discrete memory-
less channel, all rates below capacity C are achievable. Specifically, for
every rate R < C, there exists a sequence of (2nR, n) codes with maximum
probability of error λ(n) → 0.

Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must have
R ≤ C.

Proof: We prove that rates R < C are achievable and postpone proof of
the converse to Section 7.9.

Achievability: Fix p(x). Generate a (2nR, n) code at random according
to the distribution p(x). Specifically, we generate 2nR codewords inde-
pendently according to the distribution

p(xn) =
n∏

i=1

p(xi). (7.60)

We exhibit the 2nR codewords as the rows of a matrix:

C =




x1(1) x2(1) · · · xn(1)
...

...
. . .

...

x1(2nR) x2(2nR) · · · xn(2nR)


. (7.61)

Each entry in this matrix is generated i.i.d. according to p(x). Thus, the
probability that we generate a particular code C is

Pr(C) =
2nR∏
w=1

n∏
i=1

p(xi(w)). (7.62)
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Consider the following sequence of events:

1. A random code C is generated as described in (7.62) according to
p(x).

2. The code C is then revealed to both sender and receiver. Both sender
and receiver are also assumed to know the channel transition matrix
p(y|x) for the channel.

3. A message W is chosen according to a uniform distribution

Pr(W = w) = 2−nR, w = 1, 2, . . . , 2nR. (7.63)

4. The wth codeword Xn(w), corresponding to the wth row of C, is
sent over the channel.

5. The receiver receives a sequence Yn according to the distribution

P(yn|xn(w)) =
n∏

i=1

p(yi |xi(w)). (7.64)

6. The receiver guesses which message was sent. (The optimum proce-
dure to minimize probability of error is maximum likelihood decod-
ing (i.e., the receiver should choose the a posteriori most likely
message). But this procedure is difficult to analyze. Instead, we will
use jointly typical decoding, which is described below. Jointly typi-
cal decoding is easier to analyze and is asymptotically optimal.) In
jointly typical decoding, the receiver declares that the index Ŵ was
sent if the following conditions are satisfied:

• (Xn(Ŵ ), Y n) is jointly typical.
• There is no other index W ′ �= Ŵ such that (Xn(W ′), Y n) ∈

A(n)
ε .

If no such Ŵ exists or if there is more than one such, an error is
declared. (We may assume that the receiver outputs a dummy index
such as 0 in this case.)

7. There is a decoding error if Ŵ �= W . Let E be the event {Ŵ �= W }.

Analysis of the probability of error
Outline: We first outline the analysis. Instead of calculating the proba-

bility of error for a single code, we calculate the average over all codes
generated at random according to the distribution (7.62). By the symmetry
of the code construction, the average probability of error does not depend
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on the particular index that was sent. For a typical codeword, there are two
different sources of error when we use jointly typical decoding: Either the
output Yn is not jointly typical with the transmitted codeword or there is
some other codeword that is jointly typical with Yn. The probability that
the transmitted codeword and the received sequence are jointly typical
goes to 1, as shown by the joint AEP. For any rival codeword, the proba-
bility that it is jointly typical with the received sequence is approximately
2−nI , and hence we can use about 2nI codewords and still have a low
probability of error. We will later extend the argument to find a code with
a low maximal probability of error.

Detailed calculation of the probability of error: We let W be drawn
according to a uniform distribution over {1, 2, . . . , 2nR} and use jointly
typical decoding Ŵ (yn) as described in step 6. Let E = {Ŵ (Y n) �= W }
denote the error event. We will calculate the average probability of error,
averaged over all codewords in the codebook, and averaged over all code-
books; that is, we calculate

Pr(E) =
∑
C

Pr(C)P (n)
e (C) (7.65)

=
∑
C

Pr(C) 1

2nR

2nR∑
w=1

λw(C) (7.66)

= 1

2nR

2nR∑
w=1

∑
C

Pr(C)λw(C), (7.67)

where P
(n)
e (C) is defined for jointly typical decoding. By the symmetry

of the code construction, the average probability of error averaged over
all codes does not depend on the particular index that was sent [i.e.,∑

C Pr(C)λw(C) does not depend on w]. Thus, we can assume without
loss of generality that the message W = 1 was sent, since

Pr(E) = 1

2nR

2nR∑
w=1

∑
C

Pr(C)λw(C) (7.68)

=
∑
C

Pr(C)λ1(C) (7.69)

= Pr(E|W = 1). (7.70)

Define the following events:

Ei = { (Xn(i), Y n) is in A(n)
ε }, i ∈ {1, 2, . . . , 2nR}, (7.71)
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where Ei is the event that the ith codeword and Yn are jointly typical.
Recall that Yn is the result of sending the first codeword Xn(1) over the
channel.

Then an error occurs in the decoding scheme if either Ec
1 occurs (when

the transmitted codeword and the received sequence are not jointly typical)
or E2 ∪ E3 ∪ · · · ∪ E2nR occurs (when a wrong codeword is jointly typical
with the received sequence). Hence, letting P(E) denote Pr(E|W = 1), we
have

Pr(E|W = 1) = P
(
Ec

1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR |W = 1
)

(7.72)

≤ P(Ec
1|W = 1) +

2nR∑
i=2

P(Ei |W = 1), (7.73)

by the union of events bound for probabilities. Now, by the joint AEP,
P (Ec

1|W = 1)→0, and hence

P(Ec
1|W = 1) ≤ ε for n sufficiently large. (7.74)

Since by the code generation process, Xn(1) and Xn(i) are independent
for i �= 1, so are Yn and Xn(i). Hence, the probability that Xn(i) and Yn

are jointly typical is ≤ 2−n(I (X;Y)−3ε) by the joint AEP. Consequently,

Pr(E) = Pr(E|W = 1) ≤ P(Ec
1|W = 1) +

2nR∑
i=2

P(Ei |W = 1) (7.75)

≤ ε +
2nR∑
i=2

2−n(I (X;Y)−3ε) (7.76)

= ε + (
2nR − 1

)
2−n(I (X;Y)−3ε) (7.77)

≤ ε + 23nε2−n(I (X;Y)−R) (7.78)

≤ 2ε (7.79)

if n is sufficiently large and R < I (X;Y) − 3ε. Hence, if R < I (X;Y),
we can choose ε and n so that the average probability of error, averaged
over codebooks and codewords, is less than 2ε.

To finish the proof, we will strengthen this conclusion by a series of
code selections.

1. Choose p(x) in the proof to be p∗(x), the distribution on X that
achieves capacity. Then the condition R < I (X;Y) can be replaced
by the achievability condition R < C.
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2. Get rid of the average over codebooks. Since the average proba-
bility of error over codebooks is small (≤ 2ε), there exists at least
one codebook C∗ with a small average probability of error. Thus,
Pr(E|C∗) ≤ 2ε. Determination of C∗ can be achieved by an exhaus-
tive search over all (2nR, n) codes. Note that

Pr(E|C∗) = 1

2nR

2nR∑
i=1

λi(C∗), (7.80)

since we have chosen Ŵ according to a uniform distribution as
specified in (7.63).

3. Throw away the worst half of the codewords in the best codebook
C∗. Since the arithmetic average probability of error P

(n)
e (C∗) for

this code is less then 2ε, we have

Pr(E|C∗) ≤ 1

2nR

∑
λi(C∗) ≤ 2ε, (7.81)

which implies that at least half the indices i and their associated
codewords Xn(i) must have conditional probability of error λi less
than 4ε (otherwise, these codewords themselves would contribute
more than 2ε to the sum). Hence the best half of the codewords
have a maximal probability of error less than 4ε. If we reindex these
codewords, we have 2nR−1 codewords. Throwing out half the code-
words has changed the rate from R to R − 1

n
, which is negligible

for large n.

Combining all these improvements, we have constructed a code of rate
R′ = R − 1

n
, with maximal probability of error λ(n) ≤ 4ε. This proves the

achievability of any rate below capacity. �

Random coding is the method of proof for Theorem 7.7.1, not the
method of signaling. Codes are selected at random in the proof merely to
symmetrize the mathematics and to show the existence of a good deter-
ministic code. We proved that the average over all codes of block length
n has a small probability of error. We can find the best code within this
set by an exhaustive search. Incidentally, this shows that the Kolmogorov
complexity (Chapter 14) of the best code is a small constant. This means
that the revelation (in step 2) to the sender and receiver of the best code
C∗ requires no channel. The sender and receiver merely agree to use the
best (2nR, n) code for the channel.

Although the theorem shows that there exist good codes with arbitrar-
ily small probability of error for long block lengths, it does not provide
a way of constructing the best codes. If we used the scheme suggested
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by the proof and generate a code at random with the appropriate distri-
bution, the code constructed is likely to be good for long block lengths.
However, without some structure in the code, it is very difficult to decode
(the simple scheme of table lookup requires an exponentially large table).
Hence the theorem does not provide a practical coding scheme. Ever
since Shannon’s original paper on information theory, researchers have
tried to develop structured codes that are easy to encode and decode.
In Section 7.11, we discuss Hamming codes, the simplest of a class of
algebraic error correcting codes that can correct one error in a block of
bits. Since Shannon’s paper, a variety of techniques have been used to
construct error correcting codes, and with turbo codes have come close
to achieving capacity for Gaussian channels.

7.8 ZERO-ERROR CODES

The outline of the proof of the converse is most clearly motivated by
going through the argument when absolutely no errors are allowed. We
will now prove that P

(n)
e = 0 implies that R ≤ C. Assume that we have a

(2nR, n) code with zero probability of error [i.e., the decoder output g(Y n)

is equal to the input index W with probability 1]. Then the input index W

is determined by the output sequence [i.e., H(W |Yn) = 0]. Now, to obtain
a strong bound, we arbitrarily assume that W is uniformly distributed
over {1, 2, . . . , 2nR}. Thus, H(W) = nR. We can now write the string of
inequalities:

nR = H(W) = H(W |Yn)︸ ︷︷ ︸
=0

+I (W ;Yn) (7.82)

= I (W ;Yn) (7.83)

(a)≤ I (Xn; Yn) (7.84)

(b)≤
n∑

i=1

I (Xi; Yi) (7.85)

(c)≤ nC, (7.86)

where (a) follows from the data-processing inequality (since W → Xn(W)

→ Yn forms a Markov chain), (b) will be proved in Lemma 7.9.2 using
the discrete memoryless assumption, and (c) follows from the definition
of (information) capacity. Hence, for any zero-error (2nR, n) code, for
all n,

R ≤ C. (7.87)
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7.9 FANO’S INEQUALITY AND THE CONVERSE
TO THE CODING THEOREM

We now extend the proof that was derived for zero-error codes to the case
of codes with very small probabilities of error. The new ingredient will be
Fano’s inequality, which gives a lower bound on the probability of error
in terms of the conditional entropy. Recall the proof of Fano’s inequality,
which is repeated here in a new context for reference.

Let us define the setup under consideration. The index W is uniformly
distributed on the set W = {1, 2, . . . , 2nR}, and the sequence Yn is related
probabilistically to W . From Yn, we estimate the index W that was sent.
Let the estimate be Ŵ = g(Y n). Thus, W → Xn(W) → Yn → Ŵ forms
a Markov chain. Note that the probability of error is

Pr
(
Ŵ �= W

) = 1

2nR

∑
i

λi = P (n)
e . (7.88)

We begin with the following lemma, which has been proved in
Section 2.10:

Lemma 7.9.1 (Fano’s inequality) For a discrete memoryless channel
with a codebook C and the input message W uniformly distributed over
2nR , we have

H(W |Ŵ ) ≤ 1 + P (n)
e nR. (7.89)

Proof: Since W is uniformly distributed, we have P
(n)
e = Pr(W �= Ŵ ).

We apply Fano’s inequality (Theorem 2.10.1) for W in an alphabet of
size 2nR . �

We will now prove a lemma which shows that the capacity per trans-
mission is not increased if we use a discrete memoryless channel many
times.

Lemma 7.9.2 Let Yn be the result of passing Xn through a discrete
memoryless channel of capacity C. Then

I (Xn; Yn) ≤ nC for all p(xn). (7.90)

Proof

I (Xn;Yn) = H(Yn) − H(Yn|Xn) (7.91)

= H(Yn) −
n∑

i=1

H(Yi |Y1, . . . , Yi−1, X
n) (7.92)

= H(Yn) −
n∑

i=1

H(Yi |Xi), (7.93)
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since by the definition of a discrete memoryless channel, Yi depends only
on Xi and is conditionally independent of everything else. Continuing the
series of inequalities, we have

I (Xn; Yn) = H(Yn) −
n∑

i=1

H(Yi |Xi) (7.94)

≤
n∑

i=1

H(Yi) −
n∑

i=1

H(Yi |Xi) (7.95)

=
n∑

i=1

I (Xi; Yi) (7.96)

≤ nC, (7.97)

where (7.95) follows from the fact that the entropy of a collection of ran-
dom variables is less than the sum of their individual entropies, and (7.97)
follows from the definition of capacity. Thus, we have proved that using the
channel many times does not increase the information capacity in bits per
transmission. �

We are now in a position to prove the converse to the channel coding
theorem.

Proof: Converse to Theorem 7.7.1 (Channel coding theorem). We have
to show that any sequence of (2nR, n) codes with λ(n) → 0 must have R ≤
C. If the maximal probability of error tends to zero, the average probability
of error for the sequence of codes also goes to zero [i.e., λ(n) → 0 implies
P

(n)
e → 0, where P

(n)
e is defined in (7.32)]. For a fixed encoding rule

Xn(·) and a fixed decoding rule Ŵ = g(Y n), we have W → Xn(W) →
Yn → Ŵ . For each n, let W be drawn according to a uniform distribution
over {1, 2, . . . , 2nR}. Since W has a uniform distribution, Pr(Ŵ �= W) =
P

(n)
e = 1

2nR

∑
i λi . Hence,

nR
(a)= H(W) (7.98)

(b)= H(W |Ŵ ) + I (W ; Ŵ ) (7.99)

(c)≤ 1 + P (n)
e nR + I (W ; Ŵ ) (7.100)

(d)≤ 1 + P (n)
e nR + I (Xn; Yn) (7.101)

(e)≤ 1 + P (n)
e nR + nC, (7.102)
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where (a) follows from the assumption that W is uniform over {1, 2, . . . ,

2nR}, (b) is an identity, (c) is Fano’s inequality for W taking on at most 2nR

values, (d) is the data-processing inequality, and (e) is from Lemma 7.9.2.
Dividing by n, we obtain

R ≤ P (n)
e R + 1

n
+ C. (7.103)

Now letting n → ∞, we see that the first two terms on the right-hand
side tend to 0, and hence

R ≤ C. (7.104)

We can rewrite (7.103) as

P (n)
e ≥ 1 − C

R
− 1

nR
. (7.105)

This equation shows that if R > C, the probability of error is bounded
away from 0 for sufficiently large n (and hence for all n, since if P

(n)
e = 0

for small n, we can construct codes for large n with P
(n)
e = 0 by con-

catenating these codes). Hence, we cannot achieve an arbitrarily low
probability of error at rates above capacity. �

This converse is sometimes called the weak converse to the channel
coding theorem. It is also possible to prove a strong converse, which states
that for rates above capacity, the probability of error goes exponentially
to 1. Hence, the capacity is a very clear dividing point—at rates below
capacity, P

(n)
e → 0 exponentially, and at rates above capacity, P

(n)
e → 1

exponentially.

7.10 EQUALITY IN THE CONVERSE TO THE CHANNEL
CODING THEOREM

We have proved the channel coding theorem and its converse. In essence,
these theorems state that when R < C, it is possible to send informa-
tion with an arbitrarily low probability of error, and when R > C, the
probability of error is bounded away from zero.

It is interesting and rewarding to examine the consequences of equality
in the converse; hopefully, it will give some ideas as to the kinds of codes
that achieve capacity. Repeating the steps of the converse in the case when
Pe = 0, we have

nR = H(W) (7.106)

= H(W |Ŵ ) + I (W ; Ŵ ) (7.107)
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= I (W ; Ŵ )) (7.108)

(a)≤ I (Xn(W); Yn) (7.109)

= H(Yn) − H(Yn|Xn) (7.110)

= H(Yn) −
n∑

i=1

H(Yi |Xi) (7.111)

(b)≤
n∑

i=1

H(Yi) −
n∑

i=1

H(Yi |Xi) (7.112)

=
n∑

i=1

I (Xi; Yi) (7.113)

(c)≤ nC. (7.114)

We have equality in (a), the data-processing inequality, only if I (Y n;
Xn(W)|W) = 0 and I (Xn; Yn|Ŵ ) = 0, which is true if all the codewords
are distinct and if Ŵ is a sufficient statistic for decoding. We have equality
in (b) only if the Yi’s are independent, and equality in (c) only if the
distribution of Xi is p∗(x), the distribution on X that achieves capacity.
We have equality in the converse only if these conditions are satisfied. This
indicates that a capacity-achieving zero-error code has distinct codewords
and the distribution of the Yi’s must be i.i.d. with

p∗(y) =
∑

x

p∗(x)p(y|x), (7.115)

the distribution on Y induced by the optimum distribution on X. The
distribution referred to in the converse is the empirical distribution on X

and Y induced by a uniform distribution over codewords, that is,

p(xi, yi) = 1

2nR

2nR∑
w=1

I (Xi(w) = xi)p(yi |xi). (7.116)

We can check this result in examples of codes that achieve capacity:

1. Noisy typewriter . In this case we have an input alphabet of 26 let-
ters, and each letter is either printed out correctly or changed to the
next letter with probability 1

2 . A simple code that achieves capacity
(log 13) for this channel is to use every alternate input letter so that
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no two letters can be confused. In this case, there are 13 codewords
of block length 1. If we choose the codewords i.i.d. according to a
uniform distribution on {1, 3, 5, 7, . . . , 25}, the output of the channel
is also i.i.d. and uniformly distributed on {1, 2, . . . , 26}, as expected.

2. Binary symmetric channel . Since given any input sequence, every
possible output sequence has some positive probability, it will not
be possible to distinguish even two codewords with zero probability
of error. Hence the zero-error capacity of the BSC is zero. How-
ever, even in this case, we can draw some useful conclusions. The
efficient codes will still induce a distribution on Y that looks i.i.d.
∼ Bernoulli(1

2). Also, from the arguments that lead up to the con-
verse, we can see that at rates close to capacity, we have almost
entirely covered the set of possible output sequences with decoding
sets corresponding to the codewords. At rates above capacity, the
decoding sets begin to overlap, and the probability of error can no
longer be made arbitrarily small.

7.11 HAMMING CODES

The channel coding theorem promises the existence of block codes that
will allow us to transmit information at rates below capacity with an
arbitrarily small probability of error if the block length is large enough.
Ever since the appearance of Shannon’s original paper [471], people have
searched for such codes. In addition to achieving low probabilities of
error, useful codes should be “simple,” so that they can be encoded and
decoded efficiently.

The search for simple good codes has come a long way since the pub-
lication of Shannon’s original paper in 1948. The entire field of coding
theory has been developed during this search. We will not be able to
describe the many elegant and intricate coding schemes that have been
developed since 1948. We will only describe the simplest such scheme
developed by Hamming [266]. It illustrates some of the basic ideas under-
lying most codes.

The object of coding is to introduce redundancy so that even if some
of the information is lost or corrupted, it will still be possible to recover
the message at the receiver. The most obvious coding scheme is to repeat
information. For example, to send a 1, we send 11111, and to send a 0, we
send 00000. This scheme uses five symbols to send 1 bit, and therefore
has a rate of 1

5 bit per symbol. If this code is used on a binary symmetric
channel, the optimum decoding scheme is to take the majority vote of
each block of five received bits. If three or more bits are 1, we decode
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the block as a 1; otherwise, we decode it as 0. An error occurs if and
only if more than three of the bits are changed. By using longer repetition
codes, we can achieve an arbitrarily low probability of error. But the rate
of the code also goes to zero with block length, so even though the code
is “simple,” it is really not a very useful code.

Instead of simply repeating the bits, we can combine the bits in some
intelligent fashion so that each extra bit checks whether there is an error in
some subset of the information bits. A simple example of this is a parity
check code. Starting with a block of n − 1 information bits, we choose
the nth bit so that the parity of the entire block is 0 (the number of 1’s
in the block is even). Then if there is an odd number of errors during
the transmission, the receiver will notice that the parity has changed and
detect the error. This is the simplest example of an error-detecting code.
The code does not detect an even number of errors and does not give any
information about how to correct the errors that occur.

We can extend the idea of parity checks to allow for more than one
parity check bit and to allow the parity checks to depend on various subsets
of the information bits. The Hamming code that we describe below is an
example of a parity check code. We describe it using some simple ideas
from linear algebra.

To illustrate the principles of Hamming codes, we consider a binary
code of block length 7. All operations will be done modulo 2. Consider
the set of all nonzero binary vectors of length 3. Arrange them in columns
to form a matrix:

H =

 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1


. (7.117)

Consider the set of vectors of length 7 in the null space of H (the vectors
which when multiplied by H give 000). From the theory of linear spaces,
since H has rank 3, we expect the null space of H to have dimension 4.
These 24 codewords are

0000000 0100101 1000011 1100110
0001111 0101010 1001100 1101001
0010110 0110011 1010101 1110000
0011001 0111100 1011010 1111111

Since the set of codewords is the null space of a matrix, it is linear in the
sense that the sum of any two codewords is also a codeword. The set of
codewords therefore forms a linear subspace of dimension 4 in the vector
space of dimension 7.
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Looking at the codewords, we notice that other than the all-0 codeword,
the minimum number of 1’s in any codeword is 3. This is called the
minimum weight of the code. We can see that the minimum weight of
a code has to be at least 3 since all the columns of H are different, so
no two columns can add to 000. The fact that the minimum distance is
exactly 3 can be seen from the fact that the sum of any two columns must
be one of the columns of the matrix.

Since the code is linear, the difference between any two codewords is
also a codeword, and hence any two codewords differ in at least three
places. The minimum number of places in which two codewords differ is
called the minimum distance of the code. The minimum distance of the
code is a measure of how far apart the codewords are and will determine
how distinguishable the codewords will be at the output of the channel.
The minimum distance is equal to the minimum weight for a linear code.
We aim to develop codes that have a large minimum distance.

For the code described above, the minimum distance is 3. Hence if a
codeword c is corrupted in only one place, it will differ from any other
codeword in at least two places and therefore be closer to c than to
any other codeword. But can we discover which is the closest codeword
without searching over all the codewords?

The answer is yes. We can use the structure of the matrix H for decod-
ing. The matrix H , called the parity check matrix, has the property that
for every codeword c, Hc = 0. Let ei be a vector with a 1 in the ith
position and 0’s elsewhere. If the codeword is corrupted at position i, the
received vector r = c + ei . If we multiply this vector by the matrix H ,
we obtain

Hr = H(c + ei) = Hc + Hei = Hei , (7.118)

which is the vector corresponding to the ith column of H . Hence looking
at Hr, we can find which position of the vector was corrupted. Revers-
ing this bit will give us a codeword. This yields a simple procedure for
correcting one error in the received sequence. We have constructed a code-
book with 16 codewords of block length 7, which can correct up to one
error. This code is called a Hamming code.

We have not yet identified a simple encoding procedure; we could use
any mapping from a set of 16 messages into the codewords. But if we
examine the first 4 bits of the codewords in the table, we observe that
they cycle through all 24 combinations of 4 bits. Thus, we could use
these 4 bits to be the 4 bits of the message we want to send; the other
3 bits are then determined by the code. In general, it is possible to modify
a linear code so that the mapping is explicit, so that the first k bits in each
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codeword represent the message, and the last n − k bits are parity check
bits. Such a code is called a systematic code. The code is often identified
by its block length n, the number of information bits k and the minimum
distance d. For example, the above code is called a (7,4,3) Hamming code
(i.e., n = 7, k = 4, and d = 3).

An easy way to see how Hamming codes work is by means of a Venn
diagram. Consider the following Venn diagram with three circles and with
four intersection regions as shown in Figure 7.10. To send the information
sequence 1101, we place the 4 information bits in the four intersection
regions as shown in the figure. We then place a parity bit in each of the
three remaining regions so that the parity of each circle is even (i.e., there
are an even number of 1’s in each circle). Thus, the parity bits are as
shown in Figure 7.11.

Now assume that one of the bits is changed; for example one of the
information bits is changed from 1 to 0 as shown in Figure 7.12. Then
the parity constraints are violated for two of the circles (highlighted in the
figure), and it is not hard to see that given these violations, the only single
bit error that could have caused it is at the intersection of the two circles
(i.e., the bit that was changed). Similarly working through the other error
cases, it is not hard to see that this code can detect and correct any single
bit error in the received codeword.

We can easily generalize this procedure to construct larger matrices
H . In general, if we use l rows in H , the code that we obtain will have
block length n = 2l − 1, k = 2l − l − 1 and minimum distance 3. All
these codes are called Hamming codes and can correct one error.

1

1

0
1

FIGURE 7.10. Venn diagram with information bits.
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1

FIGURE 7.11. Venn diagram with information bits and parity bits with even parity for each
circle.

0

1

1

0

0
1

0

FIGURE 7.12. Venn diagram with one of the information bits changed.

Hamming codes are the simplest examples of linear parity check codes.
They demonstrate the principle that underlies the construction of other
linear codes. But with large block lengths it is likely that there will be
more than one error in the block. In the early 1950s, Reed and Solomon
found a class of multiple error-correcting codes for nonbinary channels.
In the late 1950s, Bose and Ray-Chaudhuri [72] and Hocquenghem [278]
generalized the ideas of Hamming codes using Galois field theory to con-
struct t-error correcting codes (called BCH codes) for any t . Since then,
various authors have developed other codes and also developed efficient
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decoding algorithms for these codes. With the advent of integrated circuits,
it has become feasible to implement fairly complex codes in hardware and
realize some of the error-correcting performance promised by Shannon’s
channel capacity theorem. For example, all compact disc players include
error-correction circuitry based on two interleaved (32, 28, 5) and (28, 24,
5) Reed–Solomon codes that allow the decoder to correct bursts of up to
4000 errors.

All the codes described above are block codes —they map a block of
information bits onto a channel codeword and there is no dependence on
past information bits. It is also possible to design codes where each output
block depends not only on the current input block, but also on some of
the past inputs as well. A highly structured form of such a code is called
a convolutional code. The theory of convolutional codes has developed
considerably over the last 40 years. We will not go into the details, but
refer the interested reader to textbooks on coding theory [69, 356].

For many years, none of the known coding algorithms came close
to achieving the promise of Shannon’s channel capacity theorem. For a
binary symmetric channel with crossover probability p, we would need a
code that could correct up to np errors in a block of length n and have
n(1 − H(p)) information bits. For example, the repetition code suggested
earlier corrects up to n/2 errors in a block of length n, but its rate goes
to 0 with n. Until 1972, all known codes that could correct nα errors for
block length n had asymptotic rate 0. In 1972, Justesen [301] described
a class of codes with positive asymptotic rate and positive asymptotic
minimum distance as a fraction of the block length.

In 1993, a paper by Berrou et al. [57] introduced the notion that the
combination of two interleaved convolution codes with a parallel cooper-
ative decoder achieved much better performance than any of the earlier
codes. Each decoder feeds its “opinion” of the value of each bit to the
other decoder and uses the opinion of the other decoder to help it decide
the value of the bit. This iterative process is repeated until both decoders
agree on the value of the bit. The surprising fact is that this iterative
procedure allows for efficient decoding at rates close to capacity for a
variety of channels. There has also been a renewed interest in the theory
of low-density parity check (LDPC) codes that were introduced by Robert
Gallager in his thesis [231, 232]. In 1997, MacKay and Neal [368] showed
that an iterative message-passing algorithm similar to the algorithm used
for decoding turbo codes could achieve rates close to capacity with high
probability for LDPC codes. Both Turbo codes and LDPC codes remain
active areas of research and have been applied to wireless and satellite
communication channels.
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FIGURE 7.13. Discrete memoryless channel with feedback.

7.12 FEEDBACK CAPACITY

A channel with feedback is illustrated in Figure 7.13. We assume that
all the received symbols are sent back immediately and noiselessly to
the transmitter, which can then use them to decide which symbol to send
next. Can we do better with feedback? The surprising answer is no, which
we shall now prove. We define a (2nR, n) feedback code as a sequence
of mappings xi(W, Y i−1), where each xi is a function only of the mes-
sage W ∈ 2nR and the previous received values, Y1, Y2, . . . , Yi−1, and a
sequence of decoding functions g : Yn → {1, 2, . . . , 2nR}. Thus,

P (n)
e = Pr

{
g(Y n) �= W

}
, (7.119)

when W is uniformly distributed over {1, 2, . . . , 2nR}.

Definition The capacity with feedback, CFB , of a discrete memoryless
channel is the supremum of all rates achievable by feedback codes.

Theorem 7.12.1 (Feedback capacity)

CFB = C = max
p(x)

I (X;Y). (7.120)

Proof: Since a nonfeedback code is a special case of a feedback code,
any rate that can be achieved without feedback can be achieved with
feedback, and hence

CFB ≥ C. (7.121)

Proving the inequality the other way is slightly more tricky. We cannot
use the same proof that we used for the converse to the coding theorem
without feedback. Lemma 7.9.2 is no longer true, since Xi depends on
the past received symbols, and it is no longer true that Yi depends only
on Xi and is conditionally independent of the future X’s in (7.93).
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There is a simple change that will fix the problem with the proof.
Instead of using Xn, we will use the index W and prove a similar series
of inequalities. Let W be uniformly distributed over {1, 2, . . . , 2nR}. Then
Pr(W �= Ŵ ) = P

(n)
e and

nR = H(W) = H(W |Ŵ ) + I (W ; Ŵ ) (7.122)

≤ 1 + P (n)
e nR + I (W ; Ŵ ) (7.123)

≤ 1 + P (n)
e nR + I (W ;Yn), (7.124)

by Fano’s inequality and the data-processing inequality. Now we can
bound I (W ;Yn) as follows:

I (W ;Yn) = H(Yn) − H(Yn|W) (7.125)

= H(Yn) −
n∑

i=1

H(Yi |Y1, Y2, . . . , Yi−1, W) (7.126)

= H(Yn) −
n∑

i=1

H(Yi |Y1, Y2, . . . , Yi−1, W, Xi) (7.127)

= H(Yn) −
n∑

i=1

H(Yi |Xi), (7.128)

since Xi is a function of Y1, . . . , Yi−1 and W ; and conditional on Xi , Yi

is independent of W and past samples of Y . Continuing, we have

I (W ;Yn) = H(Yn) −
n∑

i=1

H(Yi |Xi) (7.129)

≤
n∑

i=1

H(Yi) −
n∑

i=1

H(Yi |Xi) (7.130)

=
n∑

i=1

I (Xi; Yi) (7.131)

≤ nC (7.132)

from the definition of capacity for a discrete memoryless channel. Putting
these together, we obtain

nR ≤ P (n)
e nR + 1 + nC, (7.133)
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and dividing by n and letting n → ∞, we conclude that

R ≤ C. (7.134)

Thus, we cannot achieve any higher rates with feedback than we can
without feedback, and

CFB = C. � (7.135)

As we have seen in the example of the binary erasure channel, feedback
can help enormously in simplifying encoding and decoding. However, it
cannot increase the capacity of the channel.

7.13 SOURCE–CHANNEL SEPARATION THEOREM

It is now time to combine the two main results that we have proved so far:
data compression (R > H : Theorem 5.4.2) and data transmission (R <

C: Theorem 7.7.1). Is the condition H < C necessary and sufficient for
sending a source over a channel? For example, consider sending digitized
speech or music over a discrete memoryless channel. We could design
a code to map the sequence of speech samples directly into the input
of the channel, or we could compress the speech into its most efficient
representation, then use the appropriate channel code to send it over the
channel. It is not immediately clear that we are not losing something
by using the two-stage method, since data compression does not depend
on the channel and the channel coding does not depend on the source
distribution.

We will prove in this section that the two-stage method is as good as
any other method of transmitting information over a noisy channel. This
result has some important practical implications. It implies that we can
consider the design of a communication system as a combination of two
parts, source coding and channel coding. We can design source codes
for the most efficient representation of the data. We can, separately and
independently, design channel codes appropriate for the channel. The com-
bination will be as efficient as anything we could design by considering
both problems together.

The common representation for all kinds of data uses a binary alphabet.
Most modern communication systems are digital, and data are reduced
to a binary representation for transmission over the common channel.
This offers an enormous reduction in complexity. Networks like, ATM
networks and the Internet use the common binary representation to allow
speech, video, and digital data to use the same communication channel.
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The result—that a two-stage process is as good as any one-stage pro-
cess—seems so obvious that it may be appropriate to point out that it
is not always true. There are examples of multiuser channels where the
decomposition breaks down. We also consider two simple situations where
the theorem appears to be misleading. A simple example is that of sending
English text over an erasure channel. We can look for the most efficient
binary representation of the text and send it over the channel. But the
errors will be very difficult to decode. If, however, we send the English
text directly over the channel, we can lose up to about half the letters and
yet be able to make sense out of the message. Similarly, the human ear has
some unusual properties that enable it to distinguish speech under very
high noise levels if the noise is white. In such cases, it may be appropriate
to send the uncompressed speech over the noisy channel rather than the
compressed version. Apparently, the redundancy in the source is suited to
the channel.

Let us define the setup under consideration. We have a source V that
generates symbols from an alphabet V. We will not make any assumptions
about the kind of stochastic process produced by V other than that it is
from a finite alphabet and satisfies the AEP. Examples of such processes
include a sequence of i.i.d. random variables and the sequence of states
of a stationary irreducible Markov chain. Any stationary ergodic source
satisfies the AEP, as we show in Section 16.8.

We want to send the sequence of symbols V n = V1, V2, . . . , Vn over
the channel so that the receiver can reconstruct the sequence. To do this,
we map the sequence onto a codeword Xn(V n) and send the codeword
over the channel. The receiver looks at his received sequence Yn and
makes an estimate V̂ n of the sequence V n that was sent. The receiver
makes an error if V n �= V̂ n. We define the probability of error as

Pr(V n �= V̂ n) =
∑
yn

∑
vn

p(vn)p(yn|xn(vn))I (g(yn) �= vn), (7.136)

where I is the indicator function and g(yn) is the decoding function. The
system is illustrated in Figure 7.14.

We can now state the joint source–channel coding theorem:

Encoder DecoderChannel
p(y|x)

Vn Xn(Vn) Yn
Vn^

FIGURE 7.14. Joint source and channel coding.
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Theorem 7.13.1 (Source–channel coding theorem) If V1, V2, . . . V
n

is a finite alphabet stochastic process that satisfies the AEP and H(V) <

C, there exists a source–channel code with probability of error Pr(V̂ n �=
V n) → 0. Conversely, for any stationary stochastic process, if H(V) > C,
the probability of error is bounded away from zero, and it is not possible
to send the process over the channel with arbitrarily low probability of
error.

Proof: Achievability. The essence of the forward part of the proof is
the two-stage encoding described earlier. Since we have assumed that the
stochastic process satisfies the AEP, it implies that there exists a typical
set A(n)

ε of size ≤ 2n(H(V)+ε) which contains most of the probability. We
will encode only the source sequences belonging to the typical set; all
other sequences will result in an error. This will contribute at most ε to
the probability of error.

We index all the sequences belonging to A(n)
ε . Since there are at most

2n(H+ε) such sequences, n(H + ε) bits suffice to index them. We can
transmit the desired index to the receiver with probability of error less
than ε if

H(V) + ε = R < C. (7.137)

The receiver can reconstruct V n by enumerating the typical set A(n)
ε

and choosing the sequence corresponding to the estimated index. This
sequence will agree with the transmitted sequence with high probability.
To be precise,

P(V n �= V̂ n) ≤ P(V n /∈ A(n)
ε ) + P(g(Y n) �= V n|V n ∈ A(n)

ε ) (7.138)

≤ ε + ε = 2ε (7.139)

for n sufficiently large. Hence, we can reconstruct the sequence with low
probability of error for n sufficiently large if

H(V) < C. (7.140)

Converse: We wish to show that Pr(V̂ n �= V n) → 0 implies that H(V)

≤ C for any sequence of source-channel codes

Xn(V n) : Vn → Xn, (7.141)

gn(Y
n) : Yn → Vn. (7.142)
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Thus Xn(·) is an arbitrary (perhaps random) assignment of codewords
to data sequences V n, and gn(·) is any decoding function (assignment of
estimates V̂ n to output sequences Yn. By Fano’s inequality, we must have

H(V n|V̂ n) ≤ 1 + Pr(V̂ n �= V n) log |Vn| = 1 + Pr(V̂ n �= V n)n log |V|.
(7.143)

Hence for the code,

H(V)
(a)≤ H(V1, V2, . . . , Vn)

n
(7.144)

= H(V n)

n
(7.145)

= 1

n
H(V n|V̂ n) + 1

n
I (V n; V̂ n) (7.146)

(b)≤ 1

n
(1 + Pr(V̂ n �= V n)n log |V|) + 1

n
I (V n; V̂ n) (7.147)

(c)≤ 1

n
(1 + Pr(V̂ n �= V n)n log |V|) + 1

n
I (Xn; Yn) (7.148)

(d)≤ 1

n
+ Pr(V̂ n �= V n) log |V| + C, (7.149)

where (a) follows from the definition of entropy rate of a stationary
process, (b) follows from Fano’s inequality, (c) follows from the data-
processing inequality (since V n → Xn → Yn → V̂ n forms a Markov
chain) and (d) follows from the memorylessness of the channel. Now
letting n → ∞, we have Pr(V̂ n �= V n) → 0 and hence

H(V) ≤ C. (7.150)
�

Hence, we can transmit a stationary ergodic source over a channel if and
only if its entropy rate is less than the capacity of the channel. The joint
source–channel separation theorem enables us to consider the problem of
source coding separately from the problem of channel coding. The source
coder tries to find the most efficient representation of the source, and
the channel coder encodes the message to combat the noise and errors
introduced by the channel. The separation theorem says that the separate
encoders (Figure 7.15) can achieve the same rates as the joint encoder
(Figure 7.14).

With this result, we have tied together the two basic theorems of
information theory: data compression and data transmission. We will try
to summarize the proofs of the two results in a few words. The data
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Source
Encoder

Source
Decoder

Channel
Encoder

Channel
Decoder

Channel
p(y|x)

Vn Xn(Vn) Yn V n^

FIGURE 7.15. Separate source and channel coding.

compression theorem is a consequence of the AEP, which shows that
there exists a “small” subset (of size 2nH ) of all possible source sequences
that contain most of the probability and that we can therefore represent
the source with a small probability of error using H bits per symbol.
The data transmission theorem is based on the joint AEP; it uses the
fact that for long block lengths, the output sequence of the channel is
very likely to be jointly typical with the input codeword, while any other
codeword is jointly typical with probability ≈ 2−nI . Hence, we can use
about 2nI codewords and still have negligible probability of error. The
source–channel separation theorem shows that we can design the source
code and the channel code separately and combine the results to achieve
optimal performance.

SUMMARY

Channel capacity. The logarithm of the number of distinguishable
inputs is given by

C = max
p(x)

I (X;Y).

Examples

• Binary symmetric channel: C = 1 − H(p).

• Binary erasure channel: C = 1 − α.

• Symmetric channel: C = log |Y| − H(row of transition matrix).

Properties of C

1. 0 ≤ C ≤ min{log |X|, log |Y|}.
2. I (X;Y) is a continuous concave function of p(x).

Joint typicality. The set A(n)
ε of jointly typical sequences {(xn, yn)}

with respect to the distribution p(x, y) is given by

A(n)
ε = {

(xn, yn) ∈ Xn × Yn : (7.151)∣∣∣∣−1

n
log p(xn) − H(X)

∣∣∣∣ < ε, (7.152)
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∣∣∣∣−1

n
log p(yn) − H(Y)

∣∣∣∣ < ε, (7.153)

∣∣∣∣−1

n
log p(xn, yn) − H(X, Y )

∣∣∣∣ < ε

}
, (7.154)

where p(xn, yn) = ∏n
i=1 p(xi, yi).

Joint AEP. Let (Xn, Y n) be sequences of length n drawn i.i.d. accord-
ing to p(xn, yn) = ∏n

i=1 p(xi, yi). Then:

1. Pr((Xn, Y n) ∈ A(n)
ε ) → 1 as n → ∞.

2. |A(n)
ε | ≤ 2n(H(X,Y )+ε).

3. If (X̃n, Ỹ n) ∼ p(xn)p(yn), then Pr
(
(X̃n, Ỹ n) ∈ A(n)

ε

)
≤ 2−n(I (X;Y)−3ε).

Channel coding theorem. All rates below capacity C are achievable,
and all rates above capacity are not; that is, for all rates R < C, there
exists a sequence of (2nR, n) codes with probability of error λ(n) → 0.
Conversely, for rates R > C, λ(n) is bounded away from 0.

Feedback capacity. Feedback does not increase capacity for discrete
memoryless channels (i.e., CFB = C).

Source–channel theorem. A stochastic process with entropy rate H

cannot be sent reliably over a discrete memoryless channel if H >

C. Conversely, if the process satisfies the AEP, the source can be
transmitted reliably if H < C.

PROBLEMS

7.1 Preprocessing the output. One is given a communication chan-
nel with transition probabilities p(y|x) and channel capacity C =
maxp(x) I (X;Y). A helpful statistician preprocesses the output by
forming Ỹ = g(Y ). He claims that this will strictly improve the
capacity.

(a) Show that he is wrong.

(b) Under what conditions does he not strictly decrease the
capacity?
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7.2 Additive noise channel. Find the channel capacity of the following
discrete memoryless channel:

Z

YX

where Pr{Z = 0} = Pr{Z = a} = 1
2 . The alphabet for x is X =

{0, 1}. Assume that Z is independent of X. Observe that the channel
capacity depends on the value of a.

7.3 Channels with memory have higher capacity. Consider a binary
symmetric channel with Yi = Xi ⊕ Zi, where ⊕ is mod 2 addi-
tion, and Xi , Yi ∈ {0, 1}. Suppose that {Zi} has constant marginal
probabilities Pr{Zi = 1} = p = 1 − Pr{Zi = 0}, but that Z1, Z2,
. . ., Zn are not necessarily independent. Assume that Zn is inde-
pendent of the input Xn. Let C = 1 − H(p, 1 − p). Show that
maxp(x1,x2,...,xn) I (X1,X2, . . . , Xn; Y1, Y2, . . . ,

Yn) ≥ nC.

7.4 Channel capacity. Consider the discrete memoryless channel Y =
X + Z (mod 11), where

Z =
(

1, 2, 3
1
3 , 1

3 , 1
3

)

and X ∈ {0, 1, . . . , 10}. Assume that Z is independent of X.
(a) Find the capacity.
(b) What is the maximizing p∗(x)?

7.5 Using two channels at once. Consider two discrete memoryless
channels (X1, p(y1 | x1),Y1) and (X2, p(y2 | x2),Y2) with capac-
ities C1 and C2, respectively. A new channel (X1 × X2, p(y1 |
x1) × p(y2 | x2),Y1 × Y2) is formed in which x1 ∈ X1 and x2 ∈ X2
are sent simultaneously, resulting in y1, y2. Find the capacity of this
channel.

7.6 Noisy typewriter. Consider a 26-key typewriter.
(a) If pushing a key results in printing the associated letter, what

is the capacity C in bits?
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(b) Now suppose that pushing a key results in printing that letter or
the next (with equal probability). Thus, A → A or B, . . . , Z →
Z or A. What is the capacity?

(c) What is the highest rate code with block length one that you
can find that achieves zero probability of error for the channel
in part (b)?

7.7 Cascade of binary symmetric channels. Show that a cascade of n

identical independent binary symmetric channels,

X0 → BSC → X1 → · · · → Xn−1 → BSC → Xn,

each with raw error probability p, is equivalent to a single BSC with
error probability 1

2

(
1 − (1 − 2p)n

)
and hence that lim

n→∞ I (X0;Xn)

= 0 if p �= 0, 1. No encoding or decoding takes place at the inter-
mediate terminals X1, . . . , Xn−1. Thus, the capacity of the cascade
tends to zero.

7.8 Z-channel. The Z-channel has binary input and output alphabets
and transition probabilities p(y|x) given by the following matrix:

Q =
[

1 0
1/2 1/2

]
x, y ∈ {0, 1}

Find the capacity of the Z-channel and the maximizing input prob-
ability distribution.

7.9 Suboptimal codes. For the Z-channel of Problem 7.8, assume that
we choose a (2nR, n) code at random, where each codeword is a
sequence of fair coin tosses. This will not achieve capacity. Find the
maximum rate R such that the probability of error P

(n)
e , averaged

over the randomly generated codes, tends to zero as the block length
n tends to infinity.

7.10 Zero-error capacity. A channel with alphabet {0, 1, 2, 3, 4} has tran-
sition probabilities of the form

p(y|x) =
{

1/2 if y = x ± 1 mod 5
0 otherwise.

(a) Compute the capacity of this channel in bits.
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(b) The zero-error capacity of a channel is the number of bits per
channel use that can be transmitted with zero probability of
error. Clearly, the zero-error capacity of this pentagonal chan-
nel is at least 1 bit (transmit 0 or 1 with probability 1/2). Find
a block code that shows that the zero-error capacity is greater
than 1 bit. Can you estimate the exact value of the zero-error
capacity? (Hint: Consider codes of length 2 for this channel.)
The zero-error capacity of this channel was finally found by
Lovasz [365].

7.11 Time-varying channels. Consider a time-varying discrete memory-
less channel.
Let Y1, Y2, . . . , Yn be conditionally independent given X1, X2,

. . . , Xn, with conditional distribution given by p(y | x) = ∏n
i=1

pi(yi | xi). Let X = (X1, X2, . . . , Xn), Y = (Y1, Y2, . . . , Yn). Find
maxp(x) I (X; Y).

1 − pi

1 − pi

0

1

0

1

pi

pi

7.12 Unused symbols. Show that the capacity of the channel with prob-
ability transition matrix

Py|x =




2
3

1
3 0

1
3

1
3

1
3

0 1
3

2
3


 (7.155)

is achieved by a distribution that places zero probability on one
of input symbols. What is the capacity of this channel? Give an
intuitive reason why that letter is not used.

7.13 Erasures and errors in a binary channel. Consider a channel with
binary inputs that has both erasures and errors. Let the probability
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of error be ε and the probability of erasure be α, so the channel is
follows:

0
1 − a −

0

1 1

e

∋

1 − a − ∋

∋

∋

a

a

(a) Find the capacity of this channel.
(b) Specialize to the case of the binary symmetric channel (α = 0).
(c) Specialize to the case of the binary erasure channel (ε = 0).

7.14 Channels with dependence between the letters. Consider the fol-
lowing channel over a binary alphabet that takes in 2-bit symbols
and produces a 2-bit output, as determined by the following map-
ping: 00 → 01, 01 → 10, 10 → 11, and 11 → 00. Thus, if the
2-bit sequence 01 is the input to the channel, the output is 10 with
probability 1. Let X1, X2 denote the two input symbols and Y1, Y2
denote the corresponding output symbols.
(a) Calculate the mutual information I (X1, X2;Y1, Y2) as a func-

tion of the input distribution on the four possible pairs of inputs.
(b) Show that the capacity of a pair of transmissions on this chan-

nel is 2 bits.
(c) Show that under the maximizing input distribution, I (X1;Y1)

= 0. Thus, the distribution on the input sequences that achieves
capacity does not necessarily maximize the mutual information
between individual symbols and their corresponding outputs.

7.15 Jointly typical sequences. As we did in Problem 3.13 for the typical
set for a single random variable, we will calculate the jointly typical
set for a pair of random variables connected by a binary symmetric
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channel, and the probability of error for jointly typical decoding
for such a channel.

0.9

0.9

0

1

0

1

0.1

0.1

We consider a binary symmetric channel with crossover probability
0.1. The input distribution that achieves capacity is the uniform
distribution [i.e., p(x) = ( 1

2 , 1
2)], which yields the joint distribution

p(x, y) for this channel is given by

X
Y 0 1

0 0.45 0.05
1 0.05 0.45

The marginal distribution of Y is also ( 1
2 , 1

2).
(a) Calculate H(X), H(Y), H(X, Y ), and I (X;Y) for the joint

distribution above.
(b) Let X1, X2, . . . , Xn be drawn i.i.d. according the Bernoulli( 1

2 )
distribution. Of the 2n possible input sequences of length n,
which of them are typical [i.e., member of A(n)

ε (X) for ε =
0.2]? Which are the typical sequences in A(n)

ε (Y )?
(c) The jointly typical set A(n)

ε (X, Y ) is defined as the set of
sequences that satisfy equations (7.35-7.37). The first two
equations correspond to the conditions that xn and yn are in
A(n)

ε (X) and A(n)
ε (Y ), respectively. Consider the last condi-

tion, which can be rewritten to state that − 1
n

log p(xn, yn) ∈
(H(X, Y ) − ε, H(X, Y ) + ε). Let k be the number of places
in which the sequence xn differs from yn (k is a function of
the two sequences). Then we can write

p(xn, yn) =
n∏

i=1

p(xi, yi) (7.156)



PROBLEMS 229

= (0.45)n−k(0.05)k (7.157)

=
(

1

2

)n

(1 − p)n−kpk. (7.158)

An alternative way at looking at this probability is to look at the
binary symmetric channel as in additive channel Y = X ⊕ Z,
where Z is a binary random variable that is equal to 1 with
probability p, and is independent of X. In this case,

p(xn, yn) = p(xn)p(yn|xn) (7.159)

= p(xn)p(zn|xn) (7.160)

= p(xn)p(zn) (7.161)

=
(

1

2

)n

(1 − p)n−kpk. (7.162)

Show that the condition that (xn, yn) being jointly typical is
equivalent to the condition that xn is typical and zn = yn − xn

is typical.
(d) We now calculate the size of A(n)

ε (Z) for n = 25 and ε = 0.2.
As in Problem 3.13, here is a table of the probabilities and
numbers of sequences with k ones:

k
(
n
k

) (
n
k

)
pk(1 − p)n−k − 1

n
log p(xn)

0 1 0.071790 0.152003
1 25 0.199416 0.278800
2 300 0.265888 0.405597
3 2300 0.226497 0.532394
4 12650 0.138415 0.659191
5 53130 0.064594 0.785988
6 177100 0.023924 0.912785
7 480700 0.007215 1.039582
8 1081575 0.001804 1.166379
9 2042975 0.000379 1.293176

10 3268760 0.000067 1.419973
11 4457400 0.000010 1.546770
12 5200300 0.000001 1.673567

[Sequences with more than 12 ones are omitted since their total
probability is negligible (and they are not in the typical set).]
What is the size of the set A(n)

ε (Z)?
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(e) Now consider random coding for the channel, as in the proof
of the channel coding theorem. Assume that 2nR codewords
Xn(1), Xn(2),. . ., Xn(2nR) are chosen uniformly over the 2n

possible binary sequences of length n. One of these codewords
is chosen and sent over the channel. The receiver looks at
the received sequence and tries to find a codeword in the
code that is jointly typical with the received sequence. As
argued above, this corresponds to finding a codeword Xn(i)

such that Yn − Xn(i) ∈ A(n)
ε (Z). For a fixed codeword xn(i),

what is the probability that the received sequence Yn is such
that (xn(i), Y n) is jointly typical?

(f) Now consider a particular received sequence yn =
000000 . . . 0, say. Assume that we choose a sequence
Xn at random, uniformly distributed among all the 2n possible
binary n-sequences. What is the probability that the chosen
sequence is jointly typical with this yn? [Hint : This is the
probability of all sequences xn such that yn − xn ∈ A(n)

ε (Z).]

(g) Now consider a code with 29 = 512 codewords of length 12
chosen at random, uniformly distributed among all the 2n

sequences of length n = 25. One of these codewords, say
the one corresponding to i = 1, is chosen and sent over the
channel. As calculated in part (e), the received sequence, with
high probability, is jointly typical with the codeword that was
sent. What is the probability that one or more of the other
codewords (which were chosen at random, independent of the
sent codeword) is jointly typical with the received sequence?
[Hint : You could use the union bound, but you could also
calculate this probability exactly, using the result of part (f)
and the independence of the codewords.]

(h) Given that a particular codeword was sent, the probability of
error (averaged over the probability distribution of the chan-
nel and over the random choice of other codewords) can be
written as

Pr(Error|xn(1) sent) = ∑
yn:yncauses error p(yn|xn(1)). (7.163)

There are two kinds of error: the first occurs if the received
sequence yn is not jointly typical with the transmitted code-
word, and the second occurs if there is another codeword
jointly typical with the received sequence. Using the result
of the preceding parts, calculate this probability of error. By
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the symmetry of the random coding argument, this does not
depend on which codeword was sent.

The calculations above show that average probability of error for
a random code with 512 codewords of length 25 over the binary
symmetric channel of crossover probability 0.1 is about 0.34. This
seems quite high, but the reason for this is that the value of ε that
we have chosen is too large. By choosing a smaller ε and a larger
n in the definitions of A(n)

ε , we can get the probability of error to
be as small as we want as long as the rate of the code is less than
I (X;Y) − 3ε.

Also note that the decoding procedure described in the problem
is not optimal. The optimal decoding procedure is maximum like-
lihood (i.e., to choose the codeword that is closest to the received
sequence). It is possible to calculate the average probability of
error for a random code for which the decoding is based on an
approximation to maximum likelihood decoding, where we decode
a received sequence to the unique codeword that differs from the
received sequence in ≤ 4 bits, and declare an error otherwise. The
only difference with the jointly typical decoding described above
is that in the case when the codeword is equal to the received
sequence! The average probability of error for this decoding scheme
can be shown to be about 0.285.

7.16 Encoder and decoder as part of the channel. Consider a binary
symmetric channel with crossover probability 0.1. A possible cod-
ing scheme for this channel with two codewords of length 3 is to
encode message a1 as 000 and a2 as 111. With this coding scheme,
we can consider the combination of encoder, channel, and decoder
as forming a new BSC, with two inputs a1 and a2 and two outputs
a1 and a2.
(a) Calculate the crossover probability of this channel.
(b) What is the capacity of this channel in bits per transmission of

the original channel?
(c) What is the capacity of the original BSC with crossover prob-

ability 0.1?
(d) Prove a general result that for any channel, considering the

encoder, channel, and decoder together as a new channel from
messages to estimated messages will not increase the capacity
in bits per transmission of the original channel.

7.17 Codes of length 3 for a BSC and BEC. In Problem 7.16, the prob-
ability of error was calculated for a code with two codewords of
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length 3 (000 and 111) sent over a binary symmetric channel with
crossover probability ε. For this problem, take ε = 0.1.
(a) Find the best code of length 3 with four codewords for this

channel. What is the probability of error for this code? (Note
that all possible received sequences should be mapped onto
possible codewords.)

(b) What is the probability of error if we used all eight possible
sequences of length 3 as codewords?

(c) Now consider a binary erasure channel with erasure probability
0.1. Again, if we used the two-codeword code 000 and 111,
received sequences 00E, 0E0, E00, 0EE, E0E, EE0 would all
be decoded as 0, and similarly, we would decode 11E, 1E1,
E11, 1EE, E1E, EE1 as 1. If we received the sequence EEE,
we would not know if it was a 000 or a 111 that was sent—so
we choose one of these two at random, and are wrong half the
time. What is the probability of error for this code over the
erasure channel?

(d) What is the probability of error for the codes of parts (a) and
(b) when used over the binary erasure channel?

7.18 Channel capacity. Calculate the capacity of the following channels
with probability transition matrices:
(a) X = Y = {0, 1, 2}

p(y|x) =




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 (7.164)

(b) X = Y = {0, 1, 2}

p(y|x) =




1
2

1
2 0

0 1
2

1
2

1
2 0 1

2


 (7.165)

(c) X = Y = {0, 1, 2, 3}

p(y|x) =




p 1 − p 0 0
1 − p p 0 0

0 0 q 1 − q

0 0 1 − q q


 (7.166)
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7.19 Capacity of the carrier pigeon channel. Consider a commander of
an army besieged in a fort for whom the only means of commu-
nication to his allies is a set of carrier pigeons. Assume that each
carrier pigeon can carry one letter (8 bits), that pigeons are released
once every 5 minutes, and that each pigeon takes exactly 3 minutes
to reach its destination.
(a) Assuming that all the pigeons reach safely, what is the capacity

of this link in bits/hour?
(b) Now assume that the enemies try to shoot down the pigeons

and that they manage to hit a fraction α of them. Since the
pigeons are sent at a constant rate, the receiver knows when
the pigeons are missing. What is the capacity of this link?

(c) Now assume that the enemy is more cunning and that every
time they shoot down a pigeon, they send out a dummy pigeon
carrying a random letter (chosen uniformly from all 8-bit let-
ters). What is the capacity of this link in bits/hour?

Set up an appropriate model for the channel in each of the above
cases, and indicate how to go about finding the capacity.

7.20 Channel with two independent looks at Y. Let Y1 and Y2 be condi-
tionally independent and conditionally identically distributed given
X.
(a) Show that I (X;Y1, Y2) = 2I (X;Y1) − I (Y1, Y2).

(b) Conclude that the capacity of the channel

X (Y1, Y2)

is less than twice the capacity of the channel

X Y1

7.21 Tall, fat people. Suppose that the average height of people in a
room is 5 feet. Suppose that the average weight is 100 lb.
(a) Argue that no more than one-third of the population is 15 feet

tall.
(b) Find an upper bound on the fraction of 300-lb 10-footers in

the room.
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7.22 Can signal alternatives lower capacity? Show that adding a row to
a channel transition matrix does not decrease capacity.

7.23 Binary multiplier channel

(a) Consider the channel Y = XZ, where X and Z are independent
binary random variables that take on values 0 and 1. Z is
Bernoulli(α) [i.e., P(Z = 1) = α]. Find the capacity of this
channel and the maximizing distribution on X.

(b) Now suppose that the receiver can observe Z as well as Y .
What is the capacity?

7.24 Noise alphabets. Consider the channel

Z

YX ∑

X = {0, 1, 2, 3}, where Y = X + Z, and Z is uniformly distributed
over three distinct integer values Z = {z1, z2, z3}.
(a) What is the maximum capacity over all choices of the Z alpha-

bet? Give distinct integer values z1, z2, z3 and a distribution on
X achieving this.

(b) What is the minimum capacity over all choices for the Z alpha-
bet? Give distinct integer values z1, z2, z3 and a distribution on
X achieving this.

7.25 Bottleneck channel. Suppose that a signal X ∈ X = {1, 2, . . . , m}
goes through an intervening transition X −→ V −→ Y :

X V Yp(v |x) p(y |v )

where x = {1, 2, . . . , m}, y = {1, 2, . . . , m}, and v = {1, 2, . . . , k}.
Here p(v|x) and p(y|v) are arbitrary and the channel has transition
probability p(y|x) = ∑

v p(v|x)p(y|v). Show that C ≤ log k.
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7.26 Noisy typewriter. Consider the channel with x, y ∈ {0, 1, 2, 3} and
transition probabilities p(y|x) given by the following matrix:




1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

1
2 0 0 1

2




(a) Find the capacity of this channel.
(b) Define the random variable z = g(y), where

g(y) =
{

A if y ∈ {0, 1}
B if y ∈ {2, 3}.

For the following two PMFs for x, compute I (X;Z):
(i)

p(x) =
{

1
2 if x ∈ {1, 3}
0 if x ∈ {0, 2}.

(ii)

p(x) =
{

0 if x ∈ {1, 3}
1
2 if x ∈ {0, 2}.

(c) Find the capacity of the channel between x and z, specifically
where x ∈ {0, 1, 2, 3}, z ∈ {A, B}, and the transition probabil-
ities P(z|x) are given by

p(Z = z|X = x) =
∑

g(y0)=z

P (Y = y0|X = x).

(d) For the X distribution of part (i) of (b), does X → Z → Y

form a Markov chain?

7.27 Erasure channel. Let {X, p(y|x),Y} be a discrete memoryless chan-
nel with capacity C. Suppose that this channel is cascaded imme-
diately with an erasure channel {Y, p(s|y),S} that erases α of its
symbols.

X p (y | x) Y

e

S



236 CHANNEL CAPACITY

Specifically, S = {y1, y2, . . . , ym, e}, and

Pr{S = y|X = x} = αp(y|x), y ∈ Y,

Pr{S = e|X = x} = α.

Determine the capacity of this channel.

7.28 Choice of channels. Find the capacity C of the union of two chan-
nels (X1, p1(y1|x1),Y1) and (X2, p2(y2|x2),Y2), where at each
time, one can send a symbol over channel 1 or channel 2 but
not both. Assume that the output alphabets are distinct and do not
intersect.
(a) Show that 2C = 2C1 + 2C2 . Thus, 2C is the effective alphabet

size of a channel with capacity C.
(b) Compare with Problem 2.10 where 2H = 2H1 + 2H2 , and inter-

pret part (a) in terms of the effective number of noise-free
symbols.

(c) Use the above result to calculate the capacity of the following
channel.

1 − p

1 − p

0

1

0

1

2 2
1

p

p

7.29 Binary multiplier channel
(a) Consider the discrete memoryless channel Y = XZ, where X

and Z are independent binary random variables that take on
values 0 and 1. Let P(Z = 1) = α. Find the capacity of this
channel and the maximizing distribution on X.

(b) Now suppose that the receiver can observe Z as well as Y .
What is the capacity?
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7.30 Noise alphabets. Consider the channel

Z

YX ∑

X = {0, 1, 2, 3}, where Y = X + Z, and Z is uniformly distributed
over three distinct integer values Z = {z1, z2, z3}.
(a) What is the maximum capacity over all choices of the Z alpha-

bet? Give distinct integer values z1, z2, z3 and a distribution on
X achieving this.

(b) What is the minimum capacity over all choices for the Z alpha-
bet? Give distinct integer values z1, z2, z3 and a distribution on
X achieving this.

7.31 Source and channel. We wish to encode a Bernoulli(α) process
V1, V2, . . . for transmission over a binary symmetric channel with
crossover probability p.

1 − p

Xn (Vn) VnVn Y n

1 − p

p
p

^

Find conditions on α and p so that the probability of error P(V̂ n �=
V n) can be made to go to zero as n −→ ∞.

7.32 Random 20 questions. Let X be uniformly distributed over {1, 2,

. . . , m}. Assume that m = 2n. We ask random questions: Is X ∈ S1?
Is X ∈ S2? . . . until only one integer remains. All 2m subsets S of
{1, 2, . . . , m} are equally likely.
(a) How many deterministic questions are needed to determine X?
(b) Without loss of generality, suppose that X = 1 is the random

object. What is the probability that object 2 yields the same
answers as object 1 for k questions?

(c) What is the expected number of objects in {2, 3, . . . , m} that
have the same answers to the questions as those of the correct
object 1?
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(d) Suppose that we ask n + √
n random questions. What is the

expected number of wrong objects agreeing with the answers?
(e) Use Markov’s inequality Pr{X ≥ tµ} ≤ 1

t
, to show that the

probability of error (one or more wrong object remaining) goes
to zero as n −→ ∞.

7.33 BSC with feedback. Suppose that feedback is used on a binary
symmetric channel with parameter p. Each time a Y is received,
it becomes the next transmission. Thus, X1 is Bern(1

2 ), X2 = Y1,
X3 = Y2, . . ., Xn = Yn−1.

(a) Find limn→∞ 1
n
I (Xn; Yn).

(b) Show that for some values of p, this can be higher than capac-
ity.

(c) Using this feedback transmission scheme, Xn(W, Y n) = (X1
(W), Y1, Y2, . . . , Ym−1), what is the asymptotic communication
rate achieved; that is, what is limn→∞ 1

n
I (W ;Yn)?

7.34 Capacity. Find the capacity of
(a) Two parallel BSCs:

p

p

1

2

1

2

p

p

3

X Y

4

3

4

(b) BSC and a single symbol:

p

p

1

2

1

2

3

X Y

3
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(c) BSC and a ternary channel:

p

p

1

2

1

2

p

4

X Y

5

4

3 3

5

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(d) Ternary channel:

p(y|x) =
[

2
3

1
3 0

0 1
3

2
3

]
. (7.167)

7.35 Capacity. Suppose that channel P has capacity C, where P is an
m × n channel matrix.
(a) What is the capacity of

P̃ =
[

P 0
0 1

]
?

(b) What about the capacity of

P̂ =
[

P 0
0 Ik

]
?

where Ik if the k × k identity matrix.

7.36 Channel with memory. Consider the discrete memoryless channel
Yi = ZiXi with input alphabet Xi ∈ {−1, 1}.
(a) What is the capacity of this channel when {Zi} is i.i.d. with

Zi =
{

1, p = 0.5
−1, p = 0.5?

(7.168)
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Now consider the channel with memory. Before transmission
begins, Z is randomly chosen and fixed for all time. Thus,
Yi = ZXi.

(b) What is the capacity if

Z =
{

1, p = 0.5
−1, p = 0.5? (7.169)

7.37 Joint typicality. Let (Xi, Yi, Zi) be i.i.d. according to p(x, y, z). We
will say that (xn, yn, zn) is jointly typical [written (xn, yn, zn) ∈
A(n)

ε ] if
• p(xn) ∈ 2−n(H(X)±ε).
• p(yn) ∈ 2−n(H(Y )±ε).
• p(zn) ∈ 2−n(H(Z)±ε).
• p(xn, yn) ∈ 2−n(H(X,Y )±ε).
• p(xn, zn) ∈ 2−n(H(X,Z)±ε).
• p(yn, zn) ∈ 2−n(H(Y,Z)±ε).
• p(xn, yn, zn) ∈ 2−n(H(X,Y,Z)±ε).
Now suppose that (X̃n, Ỹ n, Z̃n) is drawn according to p(xn)p(yn)

p(zn). Thus, X̃n, Ỹ n, Z̃n have the same marginals as p(xn, yn, zn)

but are independent. Find (bounds on) Pr{(X̃n,Ỹ n,Z̃n) ∈ A(n)
ε } in

terms of the entropies H(X),H(Y),H(Z),H(X, Y ),H(X, Z),
H(Y,Z), and H(X, Y, Z).

HISTORICAL NOTES

The idea of mutual information and its relationship to channel capacity
was developed by Shannon in his original paper [472]. In this paper, he
stated the channel capacity theorem and outlined the proof using typical
sequences in an argument similar to the one described here. The first
rigorous proof was due to Feinstein [205], who used a painstaking “cookie-
cutting” argument to find the number of codewords that can be sent with a
low probability of error. A simpler proof using a random coding exponent
was developed by Gallager [224]. Our proof is based on Cover [121] and
on Forney’s unpublished course notes [216].

The converse was proved by Fano [201], who used the inequality bear-
ing his name. The strong converse was first proved by Wolfowitz [565],
using techniques that are closely related to typical sequences. An iterative
algorithm to calculate the channel capacity was developed independently
by Arimoto [25] and Blahut [65].
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The idea of the zero-error capacity was developed by Shannon [474];
in the same paper, he also proved that feedback does not increase the
capacity of a discrete memoryless channel. The problem of finding the
zero-error capacity is essentially combinatorial; the first important result
in this area is due to Lovasz [365]. The general problem of finding the
zero error capacity is still open; see a survey of related results in Körner
and Orlitsky [327].

Quantum information theory, the quantum mechanical counterpart to
the classical theory in this chapter, is emerging as a large research area in
its own right and is well surveyed in an article by Bennett and Shor [49]
and in the text by Nielsen and Chuang [395].





CHAPTER 8

DIFFERENTIAL ENTROPY

We now introduce the concept of differential entropy, which is the entropy
of a continuous random variable. Differential entropy is also related to the
shortest description length and is similar in many ways to the entropy of
a discrete random variable. But there are some important differences, and
there is need for some care in using the concept.

8.1 DEFINITIONS

Definition Let X be a random variable with cumulative distribution
function F(x) = Pr(X ≤ x). If F(x) is continuous, the random variable
is said to be continuous. Let f (x) = F ′(x) when the derivative is defined.
If

∫ ∞
−∞ f (x) = 1, f (x) is called the probability density function for X. The

set where f (x) > 0 is called the support set of X.

Definition The differential entropy h(X) of a continuous random vari-
able X with density f (x) is defined as

h(X) = −
∫

S

f (x) log f (x) dx, (8.1)

where S is the support set of the random variable.
As in the discrete case, the differential entropy depends only on the

probability density of the random variable, and therefore the differential
entropy is sometimes written as h(f ) rather than h(X).

Remark As in every example involving an integral, or even a density,
we should include the statement if it exists. It is easy to construct examples

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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of random variables for which a density function does not exist or for
which the above integral does not exist.

Example 8.1.1 (Uniform distribution) Consider a random variable dis-
tributed uniformly from 0 to a so that its density is 1/a from 0 to a and 0
elsewhere. Then its differential entropy is

h(X) = −
∫ a

0

1

a
log

1

a
dx = log a. (8.2)

Note: For a < 1, log a < 0, and the differential entropy is negative. Hence,
unlike discrete entropy, differential entropy can be negative. However,
2h(X) = 2log a = a is the volume of the support set, which is always non-
negative, as we expect.

Example 8.1.2 (Normal distribution) Let X ∼ φ(x) = 1√
2πσ 2

e
−x2

2σ2 .
Then calculating the differential entropy in nats, we obtain

h(φ) = −
∫

φ ln φ (8.3)

= −
∫

φ(x)

[
− x2

2σ 2
− ln

√
2πσ 2

]
(8.4)

= EX2

2σ 2
+ 1

2
ln 2πσ 2 (8.5)

= 1

2
+ 1

2
ln 2πσ 2 (8.6)

= 1

2
ln e + 1

2
ln 2πσ 2 (8.7)

= 1

2
ln 2πeσ 2 nats. (8.8)

Changing the base of the logarithm, we have

h(φ) = 1

2
log 2πeσ 2 bits. (8.9)
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8.2 AEP FOR CONTINUOUS RANDOM VARIABLES

One of the important roles of the entropy for discrete random variables
is in the AEP, which states that for a sequence of i.i.d. random variables,
p(X1, X2, . . . , Xn) is close to 2−nH(X) with high probability. This enables
us to define the typical set and characterize the behavior of typical sequences.

We can do the same for a continuous random variable.

Theorem 8.2.1 Let X1, X2, . . . , Xn be a sequence of random vari-
ables drawn i.i.d. according to the density f (x). Then

−1

n
log f (X1, X2, . . . , Xn) → E[− log f (X)] = h(X) in probability.

(8.10)

Proof: The proof follows directly from the weak law of large numbers.
�

This leads to the following definition of the typical set.

Definition For ε > 0 and any n, we define the typical set A(n)
ε with

respect to f (x) as follows:

A(n)
ε =

{
(x1, x2, . . . , xn) ∈ Sn :

∣∣∣∣−1

n
log f (x1, x2, . . . , xn) − h(X)

∣∣∣∣ ≤ ε

}
,

(8.11)
where f (x1, x2, . . . , xn) = ∏n

i=1 f (xi).

The properties of the typical set for continuous random variables par-
allel those for discrete random variables. The analog of the cardinality of
the typical set for the discrete case is the volume of the typical set for
continuous random variables.

Definition The volume Vol(A) of a set A ⊂ Rn is defined as

Vol(A) =
∫

A

dx1 dx2 · · · dxn. (8.12)

Theorem 8.2.2 The typical set A(n)
ε has the following properties:

1. Pr
(
A(n)

ε

)
> 1 − ε for n sufficiently large.

2. Vol
(
A(n)

ε

) ≤ 2n(h(X)+ε) for all n.

3. Vol
(
A(n)

ε

) ≥ (1 − ε)2n(h(X)−ε) for n sufficiently large.
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Proof: By Theorem 8.2.1, − 1
n

log f (Xn) = − 1
n

∑
log f (Xi) → h(X) in

probability, establishing property 1. Also,

1 =
∫

Sn

f (x1, x2, . . . , xn) dx1 dx2 · · · dxn (8.13)

≥
∫

A
(n)
ε

f (x1, x2, . . . , xn) dx1 dx2 · · · dxn (8.14)

≥
∫

A
(n)
ε

2−n(h(X)+ε) dx1 dx2 · · · dxn (8.15)

= 2−n(h(X)+ε)

∫
A

(n)
ε

dx1 dx2 · · · dxn (8.16)

= 2−n(h(X)+ε) Vol
(
A(n)

ε

)
. (8.17)

Hence we have property 2. We argue further that the volume of the typical
set is at least this large. If n is sufficiently large so that property 1 is
satisfied, then

1 − ε ≤
∫

A
(n)
ε

f (x1, x2, . . . , xn) dx1 dx2 · · · dxn (8.18)

≤
∫

A
(n)
ε

2−n(h(X)−ε) dx1 dx2 · · · dxn (8.19)

= 2−n(h(X)−ε)

∫
A

(n)
ε

dx1 dx2 · · · dxn (8.20)

= 2−n(h(X)−ε) Vol
(
A(n)

ε

)
, (8.21)

establishing property 3. Thus for n sufficiently large, we have

(1 − ε)2n(h(X)−ε) ≤ Vol(A(n)
ε ) ≤ 2n(h(X)+ε). � (8.22)

Theorem 8.2.3 The set A(n)
ε is the smallest volume set with probability

≥ 1 − ε, to first order in the exponent.

Proof: Same as in the discrete case. �

This theorem indicates that the volume of the smallest set that contains
most of the probability is approximately 2nh. This is an n-dimensional

volume, so the corresponding side length is (2nh)
1
n = 2h. This provides
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an interpretation of the differential entropy: It is the logarithm of the
equivalent side length of the smallest set that contains most of the prob-
ability. Hence low entropy implies that the random variable is confined
to a small effective volume and high entropy indicates that the random
variable is widely dispersed.
Note. Just as the entropy is related to the volume of the typical set, there
is a quantity called Fisher information which is related to the surface
area of the typical set. We discuss Fisher information in more detail in
Sections 11.10 and 17.8.

8.3 RELATION OF DIFFERENTIAL ENTROPY TO DISCRETE
ENTROPY

Consider a random variable X with density f (x) illustrated in Figure 8.1.
Suppose that we divide the range of X into bins of length �. Let us
assume that the density is continuous within the bins. Then, by the mean
value theorem, there exists a value xi within each bin such that

f (xi)� =
∫ (i+1)�

i�

f (x) dx. (8.23)

Consider the quantized random variable X�, which is defined by

X� = xi if i� ≤ X < (i + 1)�. (8.24)

∆

f(x)

x

FIGURE 8.1. Quantization of a continuous random variable.
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Then the probability that X� = xi is

pi =
∫ (i+1)�

i�

f (x) dx = f (xi)�. (8.25)

The entropy of the quantized version is

H(X�) = −
∞∑

−∞
pi log pi (8.26)

= −
∞∑

−∞
f (xi)� log(f (xi)�) (8.27)

= −
∑

�f (xi) log f (xi) −
∑

f (xi)� log � (8.28)

= −
∑

�f (xi) log f (xi) − log �, (8.29)

since
∑

f (xi)� = ∫
f (x) = 1. If f (x) log f (x) is Riemann integrable (a

condition to ensure that the limit is well defined [556]), the first term in
(8.29) approaches the integral of −f (x) log f (x) as � → 0 by definition
of Riemann integrability. This proves the following.

Theorem 8.3.1 If the density f (x) of the random variable X is Rie-
mann integrable, then

H(X�) + log � → h(f ) = h(X), as � → 0. (8.30)

Thus, the entropy of an n-bit quantization of a continuous random vari-
able X is approximately h(X) + n.

Example 8.3.1

1. If X has a uniform distribution on [0, 1] and we let � = 2−n,
then h = 0, H(X�) = n, and n bits suffice to describe X to n

bit accuracy.
2. If X is uniformly distributed on [0, 1

8 ], the first 3 bits to the right
of the decimal point must be 0. To describe X to n-bit accuracy
requires only n − 3 bits, which agrees with h(X) = −3.

3. If X ∼ N(0, σ 2) with σ 2 = 100, describing X to n bit accuracy
would require on the average n + 1

2 log(2πeσ 2) = n + 5.37 bits.
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In general, h(X) + n is the number of bits on the average required to
describe X to n-bit accuracy.

The differential entropy of a discrete random variable can be considered
to be −∞. Note that 2−∞ = 0, agreeing with the idea that the volume of
the support set of a discrete random variable is zero.

8.4 JOINT AND CONDITIONAL DIFFERENTIAL ENTROPY

As in the discrete case, we can extend the definition of differential entropy
of a single random variable to several random variables.

Definition The differential entropy of a set X1, X2, . . . , Xn of random
variables with density f (x1, x2, . . . , xn) is defined as

h(X1, X2, . . . , Xn) = −
∫

f (xn) log f (xn) dxn. (8.31)

Definition If X, Y have a joint density function f (x, y), we can define
the conditional differential entropy h(X|Y) as

h(X|Y) = −
∫

f (x, y) log f (x|y) dx dy. (8.32)

Since in general f (x|y) = f (x, y)/f (y), we can also write

h(X|Y) = h(X, Y ) − h(Y ). (8.33)

But we must be careful if any of the differential entropies are infinite.

The next entropy evaluation is used frequently in the text.

Theorem 8.4.1 (Entropy of a multivariate normal distribution) Let
X1, X2, . . . , Xn have a multivariate normal distribution with mean µ and
covariance matrix K . Then

h(X1, X2, . . . , Xn) = h(Nn(µ, K)) = 1

2
log(2πe)n|K| bits, (8.34)

where |K| denotes the determinant of K .
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Proof: The probability density function of X1, X2, . . . , Xn is

f (x) = 1(√
2π

)n |K| 1
2

e− 1
2 (x−µ)T K−1(x−µ). (8.35)

Then

h(f ) = −
∫

f (x)

[
−1

2
(x − µ)T K−1(x − µ) − ln

(√
2π

)n |K| 1
2

]
dx

(8.36)

= 1

2
E


∑

i,j

(Xi − µi)
(
K−1)

ij
(Xj − µj)


 + 1

2
ln(2π)n|K| (8.37)

= 1

2
E


∑

i,j

(Xi − µi)(Xj − µj)
(
K−1)

ij


 + 1

2
ln(2π)n|K| (8.38)

= 1

2

∑
i,j

E[(Xj − µj)(Xi − µi)]
(
K−1)

ij
+ 1

2
ln(2π)n|K| (8.39)

= 1

2

∑
j

∑
i

Kji

(
K−1)

ij
+ 1

2
ln(2π)n|K| (8.40)

= 1

2

∑
j

(KK−1)jj + 1

2
ln(2π)n|K| (8.41)

= 1

2

∑
j

Ijj + 1

2
ln(2π)n|K| (8.42)

= n

2
+ 1

2
ln(2π)n|K| (8.43)

= 1

2
ln(2πe)n|K| nats (8.44)

= 1

2
log(2πe)n|K| bits. � (8.45)

8.5 RELATIVE ENTROPY AND MUTUAL INFORMATION

We now extend the definition of two familiar quantities, D(f ||g) and
I (X;Y), to probability densities.
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Definition The relative entropy (or Kullback–Leibler distance) D(f ||g)

between two densities f and g is defined by

D(f ||g) =
∫

f log
f

g
. (8.46)

Note that D(f ||g) is finite only if the support set of f is contained in
the support set of g. [Motivated by continuity, we set 0 log 0

0 = 0.]

Definition The mutual information I (X;Y) between two random vari-
ables with joint density f (x, y) is defined as

I (X;Y) =
∫

f (x, y) log
f (x, y)

f (x)f (y)
dx dy. (8.47)

From the definition it is clear that

I (X;Y) = h(X) − h(X|Y) = h(Y ) − h(Y |X) = h(X) + h(Y ) − h(X, Y )

(8.48)
and

I (X;Y) = D(f (x, y)||f (x)f (y)). (8.49)

The properties of D(f ||g) and I (X;Y) are the same as in the dis-
crete case. In particular, the mutual information between two random
variables is the limit of the mutual information between their quantized
versions, since

I (X�;Y�) = H(X�) − H(X�|Y�) (8.50)

≈ h(X) − log � − (h(X|Y) − log �) (8.51)

= I (X;Y). (8.52)

More generally, we can define mutual information in terms of finite
partitions of the range of the random variable. Let X be the range of a
random variable X. A partition P of X is a finite collection of disjoint
sets Pi such that ∪iPi = X. The quantization of X by P (denoted [X]P )
is the discrete random variable defined by

Pr([X]P = i) = Pr(X ∈ Pi) =
∫

Pi

dF (x). (8.53)

For two random variables X and Y with partitions P and Q, we can
calculate the mutual information between the quantized versions of X

and Y using (2.28). Mutual information can now be defined for arbitrary
pairs of random variables as follows:
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Definition The mutual information between two random variables X

and Y is given by
I (X;Y) = sup

P,Q
I ([X]P; [Y ]Q), (8.54)

where the supremum is over all finite partitions P and Q.
This is the master definition of mutual information that always applies,

even to joint distributions with atoms, densities, and singular parts. More-
over, by continuing to refine the partitions P and Q, one finds a mono-
tonically increasing sequence I ([X]P ; [Y ]Q) ↗ I .

By arguments similar to (8.52), we can show that this definition of
mutual information is equivalent to (8.47) for random variables that have
a density. For discrete random variables, this definition is equivalent to
the definition of mutual information in (2.28).

Example 8.5.1 (Mutual information between correlated Gaussian ran-
dom variables with correlation ρ) Let (X, Y ) ∼ N(0, K), where

K =
[

σ 2 ρσ 2

ρσ 2 σ 2

]
. (8.55)

Then h(X) = h(Y ) = 1
2 log(2πe)σ 2 and h(X, Y ) = 1

2 log(2πe)2|K| =
1
2 log(2πe)2σ 4(1 − ρ2), and therefore

I (X;Y) = h(X) + h(Y ) − h(X, Y ) = −1

2
log(1 − ρ2). (8.56)

If ρ = 0, X and Y are independent and the mutual information is 0.
If ρ = ±1, X and Y are perfectly correlated and the mutual information
is infinite.

8.6 PROPERTIES OF DIFFERENTIAL ENTROPY, RELATIVE
ENTROPY, AND MUTUAL INFORMATION

Theorem 8.6.1

D(f ||g) ≥ 0 (8.57)

with equality iff f = g almost everywhere (a.e.).

Proof: Let S be the support set of f . Then

−D(f ||g) =
∫

S

f log
g

f
(8.58)

≤ log
∫

S

f
g

f
(by Jensen’s inequality) (8.59)



8.6 DIFFERENTIAL ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION 253

= log
∫

S

g (8.60)

≤ log 1 = 0. (8.61)

We have equality iff we have equality in Jensen’s inequality, which
occurs iff f = g a.e. �

Corollary I (X;Y) ≥ 0 with equality iff X and Y are independent.

Corollary h(X|Y) ≤ h(X) with equality iff X and Y are independent.

Theorem 8.6.2 (Chain rule for differential entropy)

h(X1, X2, . . . , Xn) =
n∑

i=1

h(Xi |X1, X2, . . . , Xi−1). (8.62)

Proof: Follows directly from the definitions. �

Corollary
h(X1, X2, . . . , Xn) ≤

∑
h(Xi), (8.63)

with equality iff X1, X2, . . . , Xn are independent.

Proof: Follows directly from Theorem 8.6.2 and the corollary to Theo-
rem 8.6.1. �

Application (Hadamard’s inequality) If we let X ∼ N(0, K) be a mul-
tivariate normal random variable, calculating the entropy in the above
inequality gives us

|K| ≤
n∏

i=1

Kii, (8.64)

which is Hadamard’s inequality. A number of determinant inequalities
can be derived in this fashion from information-theoretic inequalities
(Chapter 17).

Theorem 8.6.3
h(X + c) = h(X). (8.65)

Translation does not change the differential entropy.

Proof: Follows directly from the definition of differential entropy. �
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Theorem 8.6.4
h(aX) = h(X) + log |a|. (8.66)

Proof: Let Y = aX. Then fY (y) = 1
|a|fX(

y

a
), and

h(aX) = −
∫

fY (y) log fY (y) dy (8.67)

= −
∫

1

|a|fX

(y

a

)
log

(
1

|a|fX

(y

a

))
dy (8.68)

= −
∫

fX(x) log fX(x) dx + log |a| (8.69)

= h(X) + log |a|, (8.70)

after a change of variables in the integral. �

Similarly, we can prove the following corollary for vector-valued ran-
dom variables.

Corollary
h(AX) = h(X) + log |det(A)|. (8.71)

We now show that the multivariate normal distribution maximizes the
entropy over all distributions with the same covariance.

Theorem 8.6.5 Let the random vector X ∈ Rn have zero mean and
covariance K = EXXt (i.e., Kij = EXiXj , 1 ≤ i, j ≤ n). Then h(X) ≤
1
2 log(2πe)n|K|, with equality iff X ∼ N(0, K).

Proof: Let g(x) be any density satisfying
∫

g(x)xixjdx = Kij for all
i, j . Let φK be the density of a N(0, K) vector as given in (8.35), where we
set µ = 0. Note that log φK(x) is a quadratic form and

∫
xixjφK(x) dx =

Kij . Then
0 ≤ D(g||φK) (8.72)

=
∫

g log(g/φK) (8.73)

= −h(g) −
∫

g log φK (8.74)
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= −h(g) −
∫

φK log φK (8.75)

= −h(g) + h(φK), (8.76)

where the substitution
∫

g log φK = ∫
φK log φK follows from the fact

that g and φK yield the same moments of the quadratic form log φK(x).
�

In particular, the Gaussian distribution maximizes the entropy over
all distributions with the same variance. This leads to the estimation
counterpart to Fano’s inequality. Let X be a random variable with differ-
ential entropy h(X). Let X̂ be an estimate of X, and let E(X − X̂)2 be
the expected prediction error. Let h(X) be in nats.

Theorem 8.6.6 (Estimation error and differential entropy) For any
random variable X and estimator X̂,

E(X − X̂)2 ≥ 1

2πe
e2h(X),

with equality if and only if X is Gaussian and X̂ is the mean of X.

Proof: Let X̂ be any estimator of X; then

E(X − X̂)2 ≥ min
X̂

E(X − X̂)2 (8.77)

= E (X − E(X))2 (8.78)

= var(X) (8.79)

≥ 1

2πe
e2h(X), (8.80)

where (8.78) follows from the fact that the mean of X is the best estimator
for X and the last inequality follows from the fact that the Gaussian
distribution has the maximum entropy for a given variance. We have
equality only in (8.78) only if X̂ is the best estimator (i.e., X̂ is the mean
of X and equality in (8.80) only if X is Gaussian). �

Corollary Given side information Y and estimator X̂(Y ), it follows that

E(X − X̂(Y ))2 ≥ 1

2πe
e2h(X|Y).
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SUMMARY

h(X) = h(f ) = −
∫

S

f (x) log f (x) dx (8.81)

f (Xn)
.=2−nh(X) (8.82)

Vol(A(n)
ε )

.=2nh(X). (8.83)

H ([X]2−n) ≈ h(X) + n. (8.84)

h(N(0, σ 2)) = 1

2
log 2πeσ 2. (8.85)

h(Nn(µ, K)) = 1

2
log(2πe)n|K|. (8.86)

D(f ||g) =
∫

f log
f

g
≥ 0. (8.87)

h(X1, X2, . . . , Xn) =
n∑

i=1

h(Xi |X1, X2, . . . , Xi−1). (8.88)

h(X|Y) ≤ h(X). (8.89)

h(aX) = h(X) + log |a|. (8.90)

I (X;Y) =
∫

f (x, y) log
f (x, y)

f (x)f (y)
≥ 0. (8.91)

max
EXXt=K

h(X) = 1

2
log(2πe)n|K|. (8.92)

E(X − X̂(Y ))2 ≥ 1

2πe
e2h(X|Y).

2nH(X) is the effective alphabet size for a discrete random variable.
2nh(X) is the effective support set size for a continuous random variable.
2C is the effective alphabet size of a channel of capacity C.

PROBLEMS

8.1 Differential entropy . Evaluate the differential entropy h(X) =
− ∫

f ln f for the following:
(a) The exponential density, f (x) = λe−λx , x ≥ 0.
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(b) The Laplace density, f (x) = 1
2λe−λ|x|.

(c) The sum of X1 and X2, where X1 and X2 are independent
normal random variables with means µi and variances σ 2

i , i =
1, 2.

8.2 Concavity of determinants . Let K1 and K2 be two symmetric non-
negative definite n × n matrices. Prove the result of Ky Fan [199]:

| λK1 + λK2 |≥| K1 |λ| K2 |λ for 0 ≤ λ ≤ 1, λ = 1 − λ,

where | K | denotes the determinant of K . [Hint: Let Z = Xθ ,

where X1 ∼ N(0, K1), X2 ∼ N(0, K2) and θ = Bernoulli(λ). Then
use h(Z | θ) ≤ h(Z).]

8.3 Uniformly distributed noise. Let the input random variable X to
a channel be uniformly distributed over the interval −1

2 ≤ x ≤ +1
2 .

Let the output of the channel be Y = X + Z, where the noise ran-
dom variable is uniformly distributed over the interval −a/2 ≤ z ≤
+a/2.
(a) Find I (X;Y) as a function of a.
(b) For a = 1 find the capacity of the channel when the input X

is peak-limited; that is, the range of X is limited to −1
2 ≤ x ≤

+1
2 . What probability distribution on X maximizes the mutual

information I (X;Y)?
(c) (Optional ) Find the capacity of the channel for all values of a,

again assuming that the range of X is limited to −1
2 ≤ x ≤ +1

2 .

8.4 Quantized random variables . Roughly how many bits are required
on the average to describe to three-digit accuracy the decay time
(in years) of a radium atom if the half-life of radium is 80 years?
Note that half-life is the median of the distribution.

8.5 Scaling . Let h(X) = −∫
f (x) log f (x) dx. Show

h(AX) = log | det(A) | + h(X).

8.6 Variational inequality . Verify for positive random variables X

that

log EP (X) = sup
Q

[
EQ(log X) − D(Q||P)

]
, (8.93)

where EP (X) = ∑
x xP (x) and D(Q||P) = ∑

x Q(x) log Q(x)
P (x)

,
and the supremum is over all Q(x)≥0,

∑
Q(x)=1. It is enough

to extremize J (Q)=EQ ln X−D(Q||P)+λ(
∑

Q(x)−1).
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8.7 Differential entropy bound on discrete entropy . Let X be a dis-
crete random variable on the set X = {a1, a2, . . .} with Pr(X =
ai) = pi . Show that

H(p1, p2, . . .) ≤ 1

2
log(2πe)


 ∞∑

i=1

pii
2 −

( ∞∑
i=1

ipi

)2

+ 1

12


 .

(8.94)
Moreover, for every permutation σ ,

H(p1, p2, . . .) ≤ 1

2
log(2πe)


 ∞∑

i=1

pσ(i)i
2 −

( ∞∑
i=1

ipσ(i)

)2

+ 1

12


.

(8.95)
[Hint: Construct a random variable X′ such that Pr(X′ = i) = pi .
Let U be a uniform (0,1] random variable and let Y = X′ + U ,
where X′ and U are independent. Use the maximum entropy bound
on Y to obtain the bounds in the problem. This bound is due to
Massey (unpublished) and Willems (unpublished).]

8.8 Channel with uniformly distributed noise. Consider a additive
channel whose input alphabet X = {0,±1,±2} and whose output
Y = X+Z, where Z is distributed uniformly over the interval
[−1, 1]. Thus, the input of the channel is a discrete random vari-
able, whereas the output is continuous. Calculate the capacity C =
maxp(x) I (X;Y) of this channel.

8.9 Gaussian mutual information. Suppose that (X, Y, Z) are jointly
Gaussian and that X → Y → Z forms a Markov chain. Let X and
Y have correlation coefficient ρ1 and let Y and Z have correlation
coefficient ρ2. Find I (X;Z).

8.10 Shape of the typical set . Let Xi be i.i.d. ∼ f (x), where

f (x) = ce−x4
.

Let h = − ∫
f ln f . Describe the shape (or form) or the typical set

A(n)
ε = {xn ∈ Rn : f (xn) ∈ 2−n(h±ε)}.

8.11 Nonergodic Gaussian process . Consider a constant signal V in
the presence of iid observational noise {Zi}. Thus, Xi = V + Zi ,
where V ∼ N(0, S) and Zi are iid ∼ N(0, N). Assume that V and
{Zi} are independent.
(a) Is {Xi} stationary?
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(b) Find limn−→∞ 1
n

∑n
i=1 Xi . Is the limit random?

(c) What is the entropy rate h of {Xi}?
(d) Find the least-mean-squared error predictor X̂n+1(X

n), and find
σ 2∞ = limn−→∞ E(X̂n − Xn)

2.
(e) Does {Xi} have an AEP? That is, does − 1

n
log f (Xn) −→ h?

HISTORICAL NOTES

Differential entropy and discrete entropy were introduced in Shannon’s
original paper [472]. The general rigorous definition of relative entropy
and mutual information for arbitrary random variables was developed by
Kolmogorov [319] and Pinsker [425], who defined mutual information as
supP,Q I ([X]P; [Y ]Q), where the supremum is over all finite partitions P
and Q.





CHAPTER 9

GAUSSIAN CHANNEL

The most important continuous alphabet channel is the Gaussian channel
depicted in Figure 9.1. This is a time-discrete channel with output Yi at
time i, where Yi is the sum of the input Xi and the noise Zi . The noise
Zi is drawn i.i.d. from a Gaussian distribution with variance N . Thus,

Yi = Xi + Zi, Zi ∼ N(0, N). (9.1)

The noise Zi is assumed to be independent of the signal Xi . This channel
is a model for some common communication channels, such as wired and
wireless telephone channels and satellite links. Without further conditions,
the capacity of this channel may be infinite. If the noise variance is zero,
the receiver receives the transmitted symbol perfectly. Since X can take
on any real value, the channel can transmit an arbitrary real number with
no error.

If the noise variance is nonzero and there is no constraint on the input,
we can choose an infinite subset of inputs arbitrarily far apart, so that
they are distinguishable at the output with arbitrarily small probability of
error. Such a scheme has an infinite capacity as well. Thus if the noise
variance is zero or the input is unconstrained, the capacity of the channel
is infinite.

The most common limitation on the input is an energy or power constraint.
We assume an average power constraint. For any codeword (x1, x2, . . . , xn)

transmitted over the channel, we require that

1

n

n∑
i=1

x2
i ≤ P. (9.2)

This communication channel models many practical channels, includ-
ing radio and satellite links. The additive noise in such channels may be
due to a variety of causes. However, by the central limit theorem, the
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Zi

YiXi

FIGURE 9.1. Gaussian channel.

cumulative effect of a large number of small random effects will be
approximately normal, so the Gaussian assumption is valid in a large
number of situations.

We first analyze a simple suboptimal way to use this channel. Assume
that we want to send 1 bit over the channel in one use of the channel.
Given the power constraint, the best that we can do is to send one of
two levels, +√

P or −√
P . The receiver looks at the corresponding Y

received and tries to decide which of the two levels was sent. Assuming
that both levels are equally likely (this would be the case if we wish to
send exactly 1 bit of information), the optimum decoding rule is to decide
that +√

P was sent if Y > 0 and decide −√
P was sent if Y < 0. The

probability of error with such a decoding scheme is

Pe = 1

2
Pr(Y < 0|X = +

√
P) + 1

2
Pr(Y > 0|X = −

√
P) (9.3)

= 1

2
Pr(Z < −

√
P |X = +

√
P) + 1

2
Pr(Z >

√
P |X = −

√
P) (9.4)

= Pr(Z >
√

P) (9.5)

= 1 − �
(√

P/N
)

, (9.6)

where �(x) is the cumulative normal function

�(x) =
∫ x

−∞

1√
2π

e
−t2

2 dt. (9.7)

Using such a scheme, we have converted the Gaussian channel into a dis-
crete binary symmetric channel with crossover probability Pe. Similarly,
by using a four-level input signal, we can convert the Gaussian channel
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into a discrete four-input channel. In some practical modulation schemes,
similar ideas are used to convert the continuous channel into a discrete
channel. The main advantage of a discrete channel is ease of processing
of the output signal for error correction, but some information is lost in
the quantization.

9.1 GAUSSIAN CHANNEL: DEFINITIONS

We now define the (information) capacity of the channel as the maxi-
mum of the mutual information between the input and output over all
distributions on the input that satisfy the power constraint.

Definition The information capacity of the Gaussian channel with
power constraint P is

C = max
f (x):E X2≤P

I (X;Y). (9.8)

We can calculate the information capacity as follows: Expanding
I (X;Y), we have

I (X;Y) = h(Y ) − h(Y |X) (9.9)

= h(Y ) − h(X + Z|X) (9.10)

= h(Y ) − h(Z|X) (9.11)

= h(Y ) − h(Z), (9.12)

since Z is independent of X. Now, h(Z) = 1
2 log 2πeN . Also,

EY 2 = E(X + Z)2 = EX2 + 2EXEZ + EZ2 = P + N, (9.13)

since X and Z are independent and EZ = 0. Given EY 2 = P + N , the
entropy of Y is bounded by 1

2 log 2πe(P + N) by Theorem 8.6.5 (the
normal maximizes the entropy for a given variance).

Applying this result to bound the mutual information, we obtain

I (X;Y) = h(Y ) − h(Z) (9.14)

≤ 1

2
log 2πe(P + N) − 1

2
log 2πeN (9.15)

= 1

2
log

(
1 + P

N

)
. (9.16)
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Hence, the information capacity of the Gaussian channel is

C = max
EX2≤P

I (X;Y) = 1

2
log

(
1 + P

N

)
, (9.17)

and the maximum is attained when X ∼ N(0, P ).
We will now show that this capacity is also the supremum of the rates

achievable for the channel. The arguments are similar to the arguments
for a discrete channel. We will begin with the corresponding definitions.

Definition An (M, n) code for the Gaussian channel with power con-
straint P consists of the following:

1. An index set {1, 2, . . . , M}.
2. An encoding function x : {1, 2, . . . , M} → Xn, yielding codewords

xn(1), xn(2), . . . , xn(M), satisfying the power constraint P ; that is,
for every codeword

n∑
i=1

x2
i (w) ≤ nP, w = 1, 2, . . . , M. (9.18)

3. A decoding function

g : Yn → {1, 2, . . . , M}. (9.19)

The rate and probability of error of the code are defined as in Chapter 7
for the discrete case. The arithmetic average of the probability of error is
defined by

P (n)
e = 1

2nR

∑
λi. (9.20)

Definition A rate R is said to be achievable for a Gaussian channel
with a power constraint P if there exists a sequence of (2nR, n) codes
with codewords satisfying the power constraint such that the maximal
probability of error λ(n) tends to zero. The capacity of the channel is the
supremum of the achievable rates.

Theorem 9.1.1 The capacity of a Gaussian channel with power con-
straint P and noise variance N is

C = 1

2
log

(
1 + P

N

)
bits per transmission. (9.21)
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Remark We first present a plausibility argument as to why we may be
able to construct (2nC, n) codes with a low probability of error. Consider
any codeword of length n. The received vector is normally distributed with
mean equal to the true codeword and variance equal to the noise variance.
With high probability, the received vector is contained in a sphere of radius√

n(N + ε) around the true codeword. If we assign everything within this
sphere to the given codeword, when this codeword is sent there will be
an error only if the received vector falls outside the sphere, which has
low probability.

Similarly, we can choose other codewords and their corresponding
decoding spheres. How many such codewords can we choose? The vol-
ume of an n-dimensional sphere is of the form Cnr

n, where r is the
radius of the sphere. In this case, each decoding sphere has radius

√
nN .

These spheres are scattered throughout the space of received vectors. The
received vectors have energy no greater than n(P + N), so they lie in a
sphere of radius

√
n(P + N). The maximum number of nonintersecting

decoding spheres in this volume is no more than

Cn(n(P + N))
n
2

Cn(nN)
n
2

= 2
n
2 log

(
1 + P

N

)
(9.22)

and the rate of the code is 1
2 log(1 + P

N
). This idea is illustrated in Figure 9.2.

FIGURE 9.2. Sphere packing for the Gaussian channel.
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This sphere-packing argument indicates that we cannot hope to send
at rates greater than C with low probability of error. However, we can
actually do almost as well as this, as is proved next.

Proof: (Achievability). We will use the same ideas as in the proof of
the channel coding theorem in the case of discrete channels: namely,
random codes and joint typicality decoding. However, we must make
some modifications to take into account the power constraint and the fact
that the variables are continuous and not discrete.

1. Generation of the codebook . We wish to generate a codebook in
which all the codewords satisfy the power constraint. To ensure
this, we generate the codewords with each element i.i.d. accord-
ing to a normal distribution with variance P − ε. Since for large
n, 1

n

∑
X2

i → P − ε, the probability that a codeword does not sat-
isfy the power constraint will be small. Let Xi(w), i = 1, 2, . . . , n,

w = 1, 2, . . . , 2nR be i.i.d. ∼ N(0, P − ε), forming codewords
Xn(1), Xn(2), . . . , Xn(2nR) ∈ Rn.

2. Encoding . After the generation of the codebook, the codebook is
revealed to both the sender and the receiver. To send the message
index w, the transmitter sends the wth codeword Xn(w) in the code-
book.

3. Decoding . The receiver looks down the list of codewords {Xn(w)}
and searches for one that is jointly typical with the received vector.
If there is one and only one such codeword Xn(w), the receiver
declares Ŵ = w to be the transmitted codeword. Otherwise, the
receiver declares an error. The receiver also declares an error if the
chosen codeword does not satisfy the power constraint.

4. Probability of error . Without loss of generality, assume that code-
word 1 was sent. Thus, Yn = Xn(1) + Zn. Define the following
events:

E0 =



1

n

n∑
j=1

X2
j (1) > P


 (9.23)

and

Ei = {(Xn(i), Y n) is in A(n)
ε

}
. (9.24)

Then an error occurs if E0 occurs (the power constraint is violated)
or Ec

1 occurs (the transmitted codeword and the received sequence
are not jointly typical) or E2 ∪ E3 ∪ · · · ∪ E2nR occurs (some wrong
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codeword is jointly typical with the received sequence). Let E denote
the event Ŵ �= W and let P denote the conditional probability given
that W = 1. Hence,

Pr(E|W = 1) = P(E) = P
(
E0 ∪ Ec

1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR

)

(9.25)

≤ P(E0) + P(Ec
1) +

2nR∑
i=2

P(Ei), (9.26)

by the union of events bound for probabilities. By the law of large
numbers, P(E0) → 0 as n → ∞. Now, by the joint AEP (which
can be proved using the same argument as that used in the discrete
case), P(Ec

1) → 0, and hence

P(Ec
1) ≤ ε for n sufficiently large. (9.27)

Since by the code generation process, Xn(1) and Xn(i) are indepen-
dent, so are Yn and Xn(i). Hence, the probability that Xn(i) and Yn

will be jointly typical is ≤ 2−n(I (X;Y)−3ε) by the joint AEP.
Now let W be uniformly distributed over {1, 2, . . . , 2nR}, and con-
sequently,

Pr(E) = 1

2nR

∑
λi = P (n)

e . (9.28)

Then

P (n)
e = Pr(E) = Pr(E|W = 1) (9.29)

≤ P(E0) + P(Ec
1) +

2nR∑
i=2

P(Ei) (9.30)

≤ ε + ε +
2nR∑
i=2

2−n(I (X;Y)−3ε) (9.31)

= 2ε + (2nR − 1
)

2−n(I (X;Y)−3ε) (9.32)

≤ 2ε + 23nε2−n(I (X;Y)−R) (9.33)

≤ 3ε (9.34)
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for n sufficiently large and R < I (X;Y) − 3ε. This proves the exis-
tence of a good (2nR, n) code.

Now choosing a good codebook and deleting the worst half of the
codewords, we obtain a code with low maximal probability of error. In
particular, the power constraint is satisfied by each of the remaining code-
words (since the codewords that do not satisfy the power constraint have
probability of error 1 and must belong to the worst half of the codewords).
Hence we have constructed a code that achieves a rate arbitrarily close to
capacity. The forward part of the theorem is proved. In the next section
we show that the achievable rate cannot exceed the capacity. �

9.2 CONVERSE TO THE CODING THEOREM FOR GAUSSIAN
CHANNELS

In this section we complete the proof that the capacity of a Gaussian
channel is C = 1

2 log(1 + P
N

) by proving that rates R > C are not achiev-
able. The proof parallels the proof for the discrete channel. The main new
ingredient is the power constraint.

Proof: (Converse to Theorem 9.1.1). We must show that if P
(n)
e → 0 for

a sequence of (2nR, n) codes for a Gaussian channel with power constraint
P , then

R ≤ C = 1

2
log

(
1 + P

N

)
. (9.35)

Consider any (2nR, n) code that satisfies the power constraint, that is,

1

n

n∑
i=1

x2
i (w) ≤ P, (9.36)

for w = 1, 2, . . . , 2nR . Proceeding as in the converse for the discrete case,
let W be distributed uniformly over {1, 2, . . . , 2nR}. The uniform distri-
bution over the index set W ∈ {1, 2, . . . , 2nR} induces a distribution on
the input codewords, which in turn induces a distribution over the input
alphabet. This specifies a joint distribution on W → Xn(W) → Yn → Ŵ .
To relate probability of error and mutual information, we can apply Fano’s
inequality to obtain

H(W |Ŵ ) ≤ 1 + nRP (n)
e = nεn, (9.37)
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where εn → 0 as P
(n)
e → 0. Hence,

nR = H(W) = I (W ; Ŵ ) + H(W |Ŵ ) (9.38)

≤ I (W ; Ŵ ) + nεn (9.39)

≤ I (Xn; Yn) + nεn (9.40)

= h(Y n) − h(Y n|Xn) + nεn (9.41)

= h(Y n) − h(Zn) + nεn (9.42)

≤
n∑

i=1

h(Yi) − h(Zn) + nεn (9.43)

=
n∑

i=1

h(Yi) −
n∑

i=1

h(Zi) + nεn (9.44)

=
n∑

i=1

I (Xi; Yi) + nεn. (9.45)

Here Xi = xi(W), where W is drawn according to the uniform distribution
on {1, 2, . . . , 2nR}. Now let Pi be the average power of the ith column of
the codebook, that is,

Pi = 1

2nR

∑
w

x2
i (w). (9.46)

Then, since Yi = Xi + Zi and since Xi and Zi are independent, the aver-
age power EYi

2 of Yi is Pi + N . Hence, since entropy is maximized by
the normal distribution,

h(Yi) ≤ 1

2
log 2πe(Pi + N). (9.47)

Continuing with the inequalities of the converse, we obtain

nR ≤
∑

(h(Yi) − h(Zi)) + nεn (9.48)

≤
∑(

1

2
log(2πe(Pi + N)) − 1

2
log 2πeN

)
+ nεn (9.49)

=
∑ 1

2
log

(
1 + Pi

N

)
+ nεn. (9.50)
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Since each of the codewords satisfies the power constraint, so does their
average, and hence

1

n

∑
i

Pi ≤ P. (9.51)

Since f (x) = 1
2 log(1 + x) is a concave function of x, we can apply

Jensen’s inequality to obtain

1

n

n∑
i=1

1

2
log

(
1 + Pi

N

)
≤ 1

2
log

(
1 + 1

n

n∑
i=1

Pi

N

)
(9.52)

≤ 1

2
log

(
1 + P

N

)
. (9.53)

Thus R ≤ 1
2 log(1 + P

N
) + εn, εn → 0, and we have the required converse.

Note that the power constraint enters the standard proof in (9.46).

9.3 BANDLIMITED CHANNELS

A common model for communication over a radio network or a telephone
line is a bandlimited channel with white noise. This is a continuous-
time channel. The output of such a channel can be described as the
convolution

Y(t) = (X(t) + Z(t)) ∗ h(t), (9.54)

where X(t) is the signal waveform, Z(t) is the waveform of the white
Gaussian noise, and h(t) is the impulse response of an ideal bandpass
filter, which cuts out all frequencies greater than W . In this section we
give simplified arguments to calculate the capacity of such a channel.

We begin with a representation theorem due to Nyquist [396] and Shan-
non [480], which shows that sampling a bandlimited signal at a sampling
rate 1

2W
is sufficient to reconstruct the signal from the samples. Intuitively,

this is due to the fact that if a signal is bandlimited to W , it cannot change
by a substantial amount in a time less than half a cycle of the maximum
frequency in the signal, that is, the signal cannot change very much in
time intervals less than 1

2W
seconds.
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Theorem 9.3.1 Suppose that a function f (t) is bandlimited to W ,
namely, the spectrum of the function is 0 for all frequencies greater than
W . Then the function is completely determined by samples of the function
spaced 1

2W
seconds apart.

Proof: Let F(ω) be the Fourier transform of f (t). Then

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω (9.55)

= 1

2π

∫ 2πW

−2πW

F(ω)eiωt dω, (9.56)

since F(ω) is zero outside the band −2πW ≤ ω ≤ 2πW . If we consider
samples spaced 1

2W
seconds apart, the value of the signal at the sample

points can be written

f
( n

2W

)
= 1

2π

∫ 2πW

−2πW

F(ω)eiω n
2W dω. (9.57)

The right-hand side of this equation is also the definition of the coefficients
of the Fourier series expansion of the periodic extension of the function
F(ω), taking the interval −2πW to 2πW as the fundamental period. Thus,
the sample values f ( n

2W
) determine the Fourier coefficients and, by exten-

sion, they determine the value of F(ω) in the interval (−2πW, 2πW).
Since a function is uniquely specified by its Fourier transform, and since
F(ω) is zero outside the band W , we can determine the function uniquely
from the samples.

Consider the function

sinc(t) = sin(2πWt)

2πWt
. (9.58)

This function is 1 at t = 0 and is 0 for t = n/2W , n �= 0. The spectrum
of this function is constant in the band (−W,W) and is zero outside this
band. Now define

g(t) =
∞∑

n=−∞
f
( n

2W

)
sinc

(
t − n

2W

)
. (9.59)

From the properties of the sinc function, it follows that g(t) is bandlim-
ited to W and is equal to f (n/2W) at t = n/2W . Since there is only
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one function satisfying these constraints, we must have g(t) = f (t). This
provides an explicit representation of f (t) in terms of its samples. �

A general function has an infinite number of degrees of freedom—the
value of the function at every point can be chosen independently. The
Nyquist–Shannon sampling theorem shows that a bandlimited function
has only 2W degrees of freedom per second. The values of the function
at the sample points can be chosen independently, and this specifies the
entire function.

If a function is bandlimited, it cannot be limited in time. But we can
consider functions that have most of their energy in bandwidth W and
have most of their energy in a finite time interval, say (0, T ). We can
describe these functions using a basis of prolate spheroidal functions. We
do not go into the details of this theory here; it suffices to say that there
are about 2T W orthonormal basis functions for the set of almost time-
limited, almost bandlimited functions, and we can describe any function
within the set by its coordinates in this basis. The details can be found
in a series of papers by Landau, Pollak, and Slepian [340, 341, 500].
Moreover, the projection of white noise on these basis vectors forms
an i.i.d. Gaussian process. The above arguments enable us to view the
bandlimited, time-limited functions as vectors in a vector space of 2T W

dimensions.
Now we return to the problem of communication over a bandlimited

channel. Assuming that the channel has bandwidth W , we can represent
both the input and the output by samples taken 1/2W seconds apart. Each
of the input samples is corrupted by noise to produce the corresponding
output sample. Since the noise is white and Gaussian, it can be shown
that each noise sample is an independent, identically distributed Gaussian
random variable.

If the noise has power spectral density N0/2 watts/hertz and bandwidth
W hertz, the noise has power N0

2 2W = N0W and each of the 2WT noise
samples in time T has variance N0WT /2WT = N0/2. Looking at the
input as a vector in the 2T W -dimensional space, we see that the received
signal is spherically normally distributed about this point with covariance
N0
2 I .

Now we can use the theory derived earlier for discrete-time Gaussian
channels, where it was shown that the capacity of such a channel is

C = 1

2
log

(
1 + P

N

)
bits per transmission. (9.60)

Let the channel be used over the time interval [0, T ]. In this case, the
energy per sample is PT/2WT = P/2W , the noise variance per sample
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is N0
2 2W T

2WT
= N0/2, and hence the capacity per sample is

C = 1

2
log

(
1 + P

2W

N0
2

)
= 1

2
log

(
1 + P

N0W

)
bits per sample.

(9.61)

Since there are 2W samples each second, the capacity of the channel can
be rewritten as

C = W log

(
1 + P

N0W

)
bits per second. (9.62)

This equation is one of the most famous formulas of information theory. It
gives the capacity of a bandlimited Gaussian channel with noise spectral
density N0/2 watts/Hz and power P watts.

A more precise version of the capacity argument [576] involves con-
sideration of signals with a small fraction of their energy outside the
bandwidth W of the channel and a small fraction of their energy outside
the time interval (0, T ). The capacity above is then obtained as a limit as
the fraction of energy outside the band goes to zero.

If we let W → ∞ in (9.62), we obtain

C = P

N0
log2 e bits per second (9.63)

as the capacity of a channel with an infinite bandwidth, power P , and
noise spectral density N0/2. Thus, for infinite bandwidth channels, the
capacity grows linearly with the power.

Example 9.3.1 (Telephone line) To allow multiplexing of many chan-
nels, telephone signals are bandlimited to 3300 Hz. Using a bandwidth of
3300 Hz and a SNR (signal-to-noise ratio) of 33 dB (i.e., P/N0W =
2000) in (9.62), we find the capacity of the telephone channel to be
about 36,000 bits per second. Practical modems achieve transmission rates
up to 33,600 bits per second in both directions over a telephone channel.
In real telephone channels, there are other factors, such as crosstalk, inter-
ference, echoes, and nonflat channels which must be compensated for to
achieve this capacity.

The V.90 modems that achieve 56 kb/s over the telephone channel
achieve this rate in only one direction, taking advantage of a purely digital
channel from the server to final telephone switch in the network. In this
case, the only impairments are due to the digital-to-analog conversion at
this switch and the noise in the copper link from the switch to the home;
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these impairments reduce the maximum bit rate from the 64 kb/s for the
digital signal in the network to the 56 kb/s in the best of telephone lines.

The actual bandwidth available on the copper wire that links a home to
a telephone switch is on the order of a few megahertz; it depends on the
length of the wire. The frequency response is far from flat over this band.
If the entire bandwidth is used, it is possible to send a few megabits per
second through this channel; schemes such at DSL (Digital Subscriber
Line) achieve this using special equipment at both ends of the telephone
line (unlike modems, which do not require modification at the telephone
switch).

9.4 PARALLEL GAUSSIAN CHANNELS

In this section we consider k independent Gaussian channels in parallel
with a common power constraint. The objective is to distribute the total
power among the channels so as to maximize the capacity. This channel
models a nonwhite additive Gaussian noise channel where each parallel
component represents a different frequency.

Assume that we have a set of Gaussian channels in parallel as illustrated
in Figure 9.3. The output of each channel is the sum of the input and
Gaussian noise. For channel j ,

Yj = Xj + Zj, j = 1, 2, . . . , k, (9.64)

with

Zj ∼ N(0, Nj ), (9.65)

and the noise is assumed to be independent from channel to channel. We
assume that there is a common power constraint on the total power used,
that is,

E

k∑
j=1

X2
j ≤ P. (9.66)

We wish to distribute the power among the various channels so as to
maximize the total capacity.

The information capacity of the channel C is

C = max
f (x1,x2,...,xk):

∑
E X2

i ≤P

I (X1, X2, . . . , Xk ; Y1, Y2, . . . , Yk). (9.67)
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Z1

Y1X1

Zk

YkXk

FIGURE 9.3. Parallel Gaussian channels.

We calculate the distribution that achieves the information capacity for
this channel. The fact that the information capacity is the supremum of
achievable rates can be proved by methods identical to those in the proof
of the capacity theorem for single Gaussian channels and will be omitted.

Since Z1, Z2, . . . , Zk are independent,

I (X1, X2, . . . , Xk ; Y1, Y2, . . . , Yk)

= h(Y1, Y2, . . . , Yk) − h(Y1, Y2, . . . , Yk|X1, X2, . . . , Xk)

= h(Y1, Y2, . . . , Yk) − h(Z1, Z2, . . . , Zk|X1, X2, . . . , Xk)

= h(Y1, Y2, . . . , Yk) − h(Z1, Z2, . . . , Zk) (9.68)

= h(Y1, Y2, . . . , Yk) −
∑

i

h(Zi) (9.69)

≤
∑

i

h(Yi) − h(Zi) (9.70)

≤
∑

i

1

2
log

(
1 + Pi

Ni

)
, (9.71)
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where Pi = EX2
i , and

∑
Pi = P . Equality is achieved by

(X1, X2, . . . , Xk) ∼ N


0,




P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...

0 0 · · · Pk





 . (9.72)

So the problem is reduced to finding the power allotment that max-
imizes the capacity subject to the constraint that

∑
Pi = P . This is a

standard optimization problem and can be solved using Lagrange multi-
pliers. Writing the functional as

J (P1, . . . , Pk) =
∑ 1

2
log

(
1 + Pi

Ni

)
+ λ

(∑
Pi

)
(9.73)

and differentiating with respect to Pi , we have

1

2

1

Pi + Ni

+ λ = 0 (9.74)

or

Pi = ν − Ni. (9.75)

However, since the Pi’s must be nonnegative, it may not always be possi-
ble to find a solution of this form. In this case, we use the Kuhn–Tucker
conditions to verify that the solution

Pi = (ν − Ni)
+ (9.76)

is the assignment that maximizes capacity, where ν is chosen so that

∑
(ν − Ni)

+ = P. (9.77)

Here (x)+ denotes the positive part of x:

(x)+ =
{

x if x ≥ 0,

0 if x < 0.
(9.78)

This solution is illustrated graphically in Figure 9.4. The vertical levels
indicate the noise levels in the various channels. As the signal power is
increased from zero, we allot the power to the channels with the lowest
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P1

n

P2

N1
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FIGURE 9.4. Water-filling for parallel channels.

noise. When the available power is increased still further, some of the
power is put into noisier channels. The process by which the power is
distributed among the various bins is identical to the way in which water
distributes itself in a vessel, hence this process is sometimes referred to
as water-filling.

9.5 CHANNELS WITH COLORED GAUSSIAN NOISE

In Section 9.4, we considered the case of a set of parallel independent
Gaussian channels in which the noise samples from different channels
were independent. Now we will consider the case when the noise is depen-
dent. This represents not only the case of parallel channels, but also the
case when the channel has Gaussian noise with memory. For channels
with memory, we can consider a block of n consecutive uses of the chan-
nel as n channels in parallel with dependent noise. As in Section 9.4, we
will calculate only the information capacity for this channel.

Let KZ be the covariance matrix of the noise, and let KX be the input
covariance matrix. The power constraint on the input can then be writ-
ten as

1

n

∑
i

EX2
i ≤ P, (9.79)

or equivalently,

1

n
tr(KX) ≤ P. (9.80)



278 GAUSSIAN CHANNEL

Unlike Section 9.4, the power constraint here depends on n; the capacity
will have to be calculated for each n.

Just as in the case of independent channels, we can write

I (X1, X2, . . . , Xn; Y1, Y2, . . . , Yn) = h(Y1, Y2, . . . , Yn)

− h(Z1, Z2, . . . , Zn). (9.81)

Here h(Z1, Z2, . . . , Zn) is determined only by the distribution of the noise
and is not dependent on the choice of input distribution. So finding the
capacity amounts to maximizing h(Y1, Y2, . . . , Yn). The entropy of the
output is maximized when Y is normal, which is achieved when the input
is normal. Since the input and the noise are independent, the covariance
of the output Y is KY = KX + KZ and the entropy is

h(Y1, Y2, . . . , Yn) = 1

2
log
(
(2πe)n|KX + KZ|) . (9.82)

Now the problem is reduced to choosing KX so as to maximize |KX +
KZ|, subject to a trace constraint on KX. To do this, we decompose KZ

into its diagonal form,

KZ = Q�Qt, where QQt = I. (9.83)

Then

|KX + KZ| = |KX + Q�Qt | (9.84)

= |Q||QtKXQ + �||Qt | (9.85)

= |QtKXQ + �| (9.86)

= |A + �|, (9.87)

where A = QtKXQ. Since for any matrices B and C,

tr(BC) = tr(CB), (9.88)

we have

tr(A) = tr(QtKXQ) (9.89)

= tr(QQtKX) (9.90)

= tr(KX). (9.91)
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Now the problem is reduced to maximizing |A + �| subject to a trace
constraint tr(A) ≤ nP .

Now we apply Hadamard’s inequality, mentioned in Chapter 8. Hada-
mard’s inequality states that the determinant of any positive definite matrix
K is less than the product of its diagonal elements, that is,

|K| ≤
∏

i

Kii (9.92)

with equality iff the matrix is diagonal. Thus,

|A + �| ≤
∏

i

(Aii + λi) (9.93)

with equality iff A is diagonal. Since A is subject to a trace constraint,

1

n

∑
i

Aii ≤ P, (9.94)

and Aii ≥ 0, the maximum value of
∏

i(Aii + λi) is attained when

Aii + λi = ν. (9.95)

However, given the constraints, it may not always be possible to satisfy
this equation with positive Aii . In such cases, we can show by the standard
Kuhn–Tucker conditions that the optimum solution corresponds to setting

Aii = (ν − λi)
+, (9.96)

where the water level ν is chosen so that
∑

Aii = nP . This value of A

maximizes the entropy of Y and hence the mutual information. We can
use Figure 9.4 to see the connection between the methods described above
and water-filling.

Consider a channel in which the additive Gaussian noise is a stochas-
tic process with finite-dimensional covariance matrix K

(n)
Z . If the process

is stationary, the covariance matrix is Toeplitz and the density of eigen-
values on the real line tends to the power spectrum of the stochastic
process [262]. In this case, the above water-filling argument translates to
water-filling in the spectral domain.

Hence, for channels in which the noise forms a stationary stochastic
process, the input signal should be chosen to be a Gaussian process with
a spectrum that is large at frequencies where the noise spectrum is small.
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F(w)

w

FIGURE 9.5. Water-filling in the spectral domain.

This is illustrated in Figure 9.5. The capacity of an additive Gaussian
noise channel with noise power spectrum N(f ) can be shown to be [233]

C =
∫ π

−π

1

2
log

(
1 + (ν − N(f ))+

N(f )

)
df, (9.97)

where ν is chosen so that
∫
(ν − N(f ))+ df = P .

9.6 GAUSSIAN CHANNELS WITH FEEDBACK

In Chapter 7 we proved that feedback does not increase the capacity for
discrete memoryless channels, although it can help greatly in reducing
the complexity of encoding or decoding. The same is true of an additive
noise channel with white noise. As in the discrete case, feedback does not
increase capacity for memoryless Gaussian channels.

However, for channels with memory, where the noise is correlated
from time instant to time instant, feedback does increase capacity. The
capacity without feedback can be calculated using water-filling, but we do
not have a simple explicit characterization of the capacity with feedback.
In this section we describe an expression for the capacity in terms of the
covariance matrix of the noise Z. We prove a converse for this expression
for capacity. We then derive a simple bound on the increase in capacity
due to feedback.

The Gaussian channel with feedback is illustrated in Figure 9.6. The
output of the channel Yi is

Yi = Xi + Zi, Zi ∼ N(0, K
(n)
Z ). (9.98)
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Zi

YiXi

FIGURE 9.6. Gaussian channel with feedback.

The feedback allows the input of the channel to depend on the past values
of the output.

A (2nR, n) code for the Gaussian channel with feedback consists of
a sequence of mappings xi(W, Y i−1), where W ∈ {1, 2, . . . , 2nR} is the
input message and Y i−1 is the sequence of past values of the output. Thus,
x(W, ·) is a code function rather than a codeword. In addition, we require
that the code satisfy a power constraint,

E

[
1

n

n∑
i=1

x2
i (w, Y i−1)

]
≤ P, w ∈ {1, 2, . . . , 2nR}, (9.99)

where the expectation is over all possible noise sequences.
We characterize the capacity of the Gaussian channel is terms of the

covariance matrices of the input X and the noise Z. Because of the feed-
back, Xn and Zn are not independent; Xi depends causally on the past
values of Z. In the next section we prove a converse for the Gaussian
channel with feedback and show that we achieve capacity if we take X

to be Gaussian.
We now state an informal characterization of the capacity of the channel

with and without feedback.

1. With feedback . The capacity Cn,FB in bits per transmission of the
time-varying Gaussian channel with feedback is

Cn,FB = max
1
n tr(K(n)

X )≤P

1

2n
log

|K(n)
X+Z|

|K(n)
Z |

, (9.100)
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where the maximization is taken over all Xn of the form

Xi =
i−1∑
j=1

bijZj + Vi, i = 1, 2, . . . , n, (9.101)

and V n is independent of Zn. To verify that the maximization over
(9.101) involves no loss of generality, note that the distribution on
Xn + Zn achieving the maximum entropy is Gaussian. Since Zn is
also Gaussian, it can be verified that a jointly Gaussian distribu-
tion on (Xn, Zn, Xn + Zn) achieves the maximization in (9.100).
But since Zn = Yn − Xn, the most general jointly normal causal
dependence of Xn on Yn is of the form (9.101), where V n plays the
role of the innovations process. Recasting (9.100) and (9.101) using
X = BZ + V and Y = X + Z, we can write

Cn,FB = max
1

2n
log

|(B + I )K
(n)
Z (B + I )t + KV |
|K(n)

Z |
, (9.102)

where the maximum is taken over all nonnegative definite KV and
strictly lower triangular B such that

tr(BK
(n)
Z Bt + KV ) ≤ nP. (9.103)

Note that B is 0 if feedback is not allowed.
2. Without feedback . The capacity Cn of the time-varying Gaussian

channel without feedback is given by

Cn = max
1
n tr(K(n)

X )≤P

1

2n
log

|K(n)
X + K

(n)
Z |

|K(n)
Z |

. (9.104)

This reduces to water-filling on the eigenvalues {λ(n)
i } of K

(n)
Z . Thus,

Cn = 1

2n

n∑
i=1

log

(
1 + (λ − λ

(n)
i )+

λ
(n)
i

)
, (9.105)

where (y)+ = max{y, 0} and where λ is chosen so that

n∑
i=1

(λ − λ
(n)
i )+ = nP. (9.106)
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We now prove an upper bound for the capacity of the Gaussian channel
with feedback. This bound is actually achievable [136], and is therefore
the capacity, but we do not prove this here.

Theorem 9.6.1 For a Gaussian channel with feedback, the rate Rn for
any sequence of (2nRn, n) codes with P

(n)
e → 0 satisfies

Rn ≤ Cn,FB + εn, (9.107)

with εn → 0 as n → ∞, where Cn,FB is defined in (9.100).

Proof: Let W be uniform over 2nR , and therefore the probability of error
P

(n)
e is bounded by Fano’s inequality,

H(W |Ŵ ) ≤ 1 + nRnP
(n)
e = nεn, (9.108)

where εn → 0 as P
(n)
e → 0. We can then bound the rate as follows:

nRn = H(W) (9.109)

= I (W ; Ŵ ) + H(W |Ŵ ) (9.110)

≤ I (W ; Ŵ ) + nεn (9.111)

≤ I (W ;Yn) + nεn (9.112)

=
∑

I (W ;Yi |Y i−1) + nεn (9.113)

(a)=
∑(

h(Yi|Y i−1) − h(Yi |W,Y i−1, Xi, X
i−1, Zi−1)

)+ nεn

(9.114)

(b)=
∑(

h(Yi |Y i−1) − h(Zi |W,Y i−1, Xi, X
i−1, Zi−1)

)+ nεn

(9.115)

(c)=
∑(

h(Yi|Y i−1) − h(Zi |Zi−1)
)+ nεn (9.116)

= h(Y n) − h(Zn) + nεn, (9.117)

where (a) follows from the fact that Xi is a function of W and the past
Yi’s, and Zi−1 is Y i−1 − Xi−1, (b) follows from Yi = Xi + Zi and the
fact that h(X + Z|X) = h(Z|X), and (c) follows from the fact Zi and
(W, Y i−1, Xi) are conditionally independent given Zi−1. Continuing the
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chain of inequalities after dividing by n, we have

Rn ≤ 1

n

(
h(Y n) − h(Zn)

)+ εn (9.118)

≤ 1

2n
log

|K(n)
Y |

|K(n)
Z |

+ εn (9.119)

≤ Cn,FB + εn, (9.120)

by the entropy maximizing property of the normal. �

We have proved an upper bound on the capacity of the Gaussian chan-
nel with feedback in terms of the covariance matrix K

(n)
X+Z. We now derive

bounds on the capacity with feedback in terms of K
(n)
X and K

(n)
Z , which

will then be used to derive bounds in terms of the capacity without feed-
back. For simplicity of notation, we will drop the superscript n in the
symbols for covariance matrices.

We first prove a series of lemmas about matrices and determinants.

Lemma 9.6.1 Let X and Z be n-dimensional random vectors. Then

KX+Z + KX−Z = 2KX + 2KZ. (9.121)

Proof

KX+Z = E(X + Z)(X + Z)t (9.122)

= EXXt + EXZt + EZXt + EZZt (9.123)

= KX + KXZ + KZX + KZ. (9.124)

Similarly,

KX−Z = KX − KXZ − KZX + KZ. (9.125)

Adding these two equations completes the proof. �

Lemma 9.6.2 For two n × n nonnegative definite matrices A and B, if
A − B is nonnegative definite, then |A| ≥ |B|.
Proof: Let C = A − B. Since B and C are nonnegative definite, we
can consider them as covariance matrices. Consider two independent nor-
mal random vectors X1 ∼ N(0, B) and X2 ∼ N(0, C). Let Y = X1 + X2.
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Then

h(Y) ≥ h(Y|X2) (9.126)

= h(X1|X2) (9.127)

= h(X1), (9.128)

where the inequality follows from the fact that conditioning reduces dif-
ferential entropy, and the final equality from the fact that X1 and X2 are
independent. Substituting the expressions for the differential entropies of
a normal random variable, we obtain

1

2
log(2πe)n|A| >

1

2
log(2πe)n|B|, (9.129)

which is equivalent to the desired lemma. �

Lemma 9.6.3 For two n-dimensional random vectors X and Z,

|KX+Z| ≤ 2n|KX + KZ|. (9.130)

Proof: From Lemma 9.6.1,

2(KX + KZ) − KX+Z = KX−Z � 0, (9.131)

where A � 0 means that A is nonnegative definite. Hence, applying
Lemma 9.6.2, we have

|KX+Z| ≤ |2(KX + KZ)| = 2n|KX + KZ|, (9.132)

which is the desired result. �

Lemma 9.6.4 For A,B nonnegative definite matrices and 0 ≤ λ ≤ 1,

|λA + (1 − λ)B| ≥ |A|λ|B|1−λ. (9.133)

Proof: Let X ∼ Nn(0, A) and Y ∼ Nn(0, B). Let Z be the mixture ran-
dom vector

Z =
{

X if θ = 1
Y if θ = 2,

(9.134)
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where

θ =
{

1 with probability λ

2 with probability 1 − λ.
(9.135)

Let X, Y, and θ be independent. Then

KZ = λA + (1 − λ)B. (9.136)

We observe that

1

2
ln(2πe)n|λA + (1 − λ)B| ≥ h(Z) (9.137)

≥ h(Z|θ) (9.138)

= λh(X) + (1 − λ)h(Y) (9.139)

= 1

2
ln(2πe)n|A|λ|B|1−λ, (9.140)

which proves the result. The first inequality follows from the entropy
maximizing property of the Gaussian under the covariance constraint. �

Definition We say that a random vector Xn is causally related to Zn if

f (xn, zn) = f (zn)

n∏
i=1

f (xi |xi−1, zi−1). (9.141)

Note that the feedback codes necessarily yield causally related (Xn, Zn).

Lemma 9.6.5 If Xn and Zn are causally related, then

h(Xn − Zn) ≥ h(Zn) (9.142)

and

|KX−Z| ≥ |KZ|, (9.143)

where KX−Z and KZ are the covariance matrices of Xn − Zn and Zn,
respectively.

Proof: We have

h(Xn − Zn)
(a)=

n∑
i=1

h(Xi − Zi |Xi−1 − Zi−1) (9.144)



9.6 GAUSSIAN CHANNELS WITH FEEDBACK 287

(b)≥
n∑

i=1

h(Xi − Zi|Xi−1, Zi−1, Xi) (9.145)

(c)=
n∑

i=1

h(Zi|Xi−1, Zi−1, Xi) (9.146)

(d)=
n∑

i=1

h(Zi|Zi−1) (9.147)

(e)= h(Zn). (9.148)

Here (a) follows from the chain rule, (b) follows from conditioning
h(A|B) ≥ h(A|B, C), (c) follows from the conditional determinism of
Xi and the invariance of differential entropy under translation, (d) fol-
lows from the causal relationship of Xn and Zn, and (e) follows from the
chain rule.

Finally, suppose that Xn and Zn are causally related and the associ-
ated covariance matrices for Zn and Xn − Zn are KZ and KX−Z. There
obviously exists a multivariate normal (causally related) pair of random
vectors X̃n, Z̃n with the same covariance structure. Thus, from (9.148),
we have

1

2
ln(2πe)n|KX−Z| = h(X̃n − Z̃n) (9.149)

≥ h(Z̃n) (9.150)

= 1

2
ln(2πe)n|KZ|, (9.151)

thus proving (9.143). �

We are now in a position to prove that feedback increases the capacity
of a nonwhite Gaussian additive noise channel by at most half a bit.

Theorem 9.6.2

Cn,FB ≤ Cn + 1

2
bits per transmission. (9.152)

Proof: Combining all the lemmas, we obtain

Cn,FB ≤ max
tr(KX)≤nP

1

2n
log

|KY |
|KZ| (9.153)
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≤ max
tr(KX)≤nP

1

2n
log

2n|KX + KZ|
|KZ| (9.154)

= max
tr(KX)≤nP

1

2n
log

|KX + KZ|
|KZ| + 1

2
(9.155)

≤ Cn + 1

2
bits per transmission, (9.156)

where the inequalities follow from Theorem 9.6.1, Lemma 9.6.3, and the
definition of capacity without feedback, respectively. �

We now prove Pinsker’s statement that feedback can at most double
the capacity of colored noise channels.

Theorem 9.6.3 Cn,FB ≤ 2Cn.

Proof: It is enough to show that

1

2

1

2n
log

|KX+Z|
|KZ| ≤ 1

2n
log

|KX + KZ|
|KZ| , (9.157)

for it will then follow that by maximizing the right side and then the left
side that

1

2
Cn,FB ≤ Cn. (9.158)

We have

1

2n
log

|KX + KZ|
|KZ|

(a)= 1

2n
log

|1
2KX+Z + 1

2KX−Z|
|KZ| (9.159)

(b)≥ 1

2n
log

|KX+Z| 1
2 |KX−Z| 1

2

|KZ| (9.160)

(c)≥ 1

2n
log

|KX+Z| 1
2 |KZ| 1

2

|KZ| (9.161)

(d)= 1

2

1

2n
log

|KX+Z|
|KZ| (9.162)

and the result is proved. Here (a) follows from Lemma 9.6.1, (b) is the
inequality in Lemma 9.6.4, and (c) is Lemma 9.6.5 in which causality is
used. �
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Thus, we have shown that Gaussian channel capacity is not increased
by more than half a bit or by more than a factor of 2 when we have
feedback; feedback helps, but not by much.

SUMMARY

Maximum entropy. maxEX2=α h(X) = 1
2 log 2πeα.

Gaussian channel. Yi = Xi + Zi; Zi ∼ N(0, N); power constraint
1
n

∑n
i=1 x2

i ≤ P ; and

C = 1

2
log

(
1 + P

N

)
bits per transmission. (9.163)

Bandlimited additive white Gaussian noise channel. Bandwidth W ;
two-sided power spectral density N0/2; signal power P ; and

C = W log

(
1 + P

N0W

)
bits per second. (9.164)

Water-filling (k parallel Gaussian channels). Yj = Xj + Zj, j = 1,

2, . . . , k; Zj ∼ N(0, Nj );
∑k

j=1 X2
j ≤ P ; and

C =
k∑

i=1

1

2
log

(
1 + (ν − Ni)

+

Ni

)
, (9.165)

where ν is chosen so that
∑

(ν − Ni)
+ = nP .

Additive nonwhite Gaussian noise channel. Yi = Xi + Zi ; Zn ∼
N(0, KZ); and

C = 1

n

n∑
i=1

1

2
log

(
1 + (ν − λi)

+

λi

)
, (9.166)

where λ1, λ2, . . . , λn are the eigenvalues of KZ and ν is chosen so that∑
i(ν − λi)

+ = P .

Capacity without feedback

Cn = max
tr(K

X
)≤nP

1

2n
log

|KX + KZ|
|KZ| . (9.167)
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Capacity with feedback

Cn,FB = max
tr(KX)≤nP

1

2n
log

|KX+Z|
|KZ| . (9.168)

Feedback bounds

Cn,FB ≤ Cn + 1

2
. (9.169)

Cn,FB ≤ 2Cn. (9.170)

PROBLEMS

9.1 Channel with two independent looks at Y . Let Y1 and Y2 be condi-
tionally independent and conditionally identically distributed
given X.

(a) Show that I (X;Y1, Y2) = 2I (X;Y1) − I (Y1;Y2).

(b) Conclude that the capacity of the channel

X (Y1, Y2)

is less than twice the capacity of the channel

X Y1

9.2 Two-look Gaussian channel

X (Y1, Y2)

Consider the ordinary Gaussian channel with two correlated looks
at X, that is, Y = (Y1, Y2), where

Y1 = X + Z1 (9.171)

Y2 = X + Z2 (9.172)
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with a power constraint P on X, and (Z1, Z2) ∼ N2(0, K), where

K =
[

N Nρ

Nρ N

]
. (9.173)

Find the capacity C for
(a) ρ = 1
(b) ρ = 0
(c) ρ = −1

9.3 Output power constraint . Consider an additive white Gaussian
noise channel with an expected output power constraint P . Thus,
Y = X + Z, Z ∼ N(0, σ 2), Z is independent of X, and EY 2 ≤ P .
Find the channel capacity.

9.4 Exponential noise channels . Yi = Xi + Zi , where Zi is i.i.d. ex-
ponentially distributed noise with mean µ. Assume that we have
a mean constraint on the signal (i.e., EXi ≤ λ). Show that the
capacity of such a channel is C = log(1 + λ

µ
).

9.5 Fading channel . Consider an additive noise fading channel

V

X

Z

Y

Y = XV + Z,

where Z is additive noise, V is a random variable representing
fading, and Z and V are independent of each other and of X.
Argue that knowledge of the fading factor V improves capacity by
showing that

I (X;Y |V ) ≥ I (X;Y).

9.6 Parallel channels and water-filling . Consider a pair of parallel
Gaussian channels:(

Y1
Y2

)
=
(

X1
X2

)
+
(

Z1
Z2

)
, (9.174)
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where (
Z1
Z2

)
∼ N

(
0,

[
σ 2

1 0
0 σ 2

2

])
, (9.175)

and there is a power constraint E(X2
1 + X2

2) ≤ 2P . Assume that
σ 2

1 > σ 2
2 . At what power does the channel stop behaving like a

single channel with noise variance σ 2
2 , and begin behaving like a

pair of channels?

9.7 Multipath Gaussian channel . Consider a Gaussian noise channel
with power constraint P , where the signal takes two different paths
and the received noisy signals are added together at the antenna.

∑X Y

Z1

Y1

Y2

Z2

(a) Find the capacity of this channel if Z1 and Z2 are jointly normal
with covariance matrix

KZ =
[

σ 2 ρσ 2

ρσ 2 σ 2

]
.

(b) What is the capacity for ρ = 0, ρ = 1, ρ = −1?

9.8 Parallel Gaussian channels . Consider the following parallel
Gaussian channel:

Z1 ~ (0,N1)

X1 Y1

Z2 ~ (0,N2)

X2 Y2
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where Z1 ∼ N(0,N1) and Z2 ∼ N(0,N2) are independent Gaussian
random variables and Yi = Xi + Zi . We wish to allocate power
to the two parallel channels. Let β1 and β2 be fixed. Consider
a total cost constraint β1P1 + β2P2 ≤ β, where Pi is the power
allocated to the ith channel and βi is the cost per unit power in
that channel. Thus, P1 ≥ 0 and P2 ≥ 0 can be chosen subject to
the cost constraint β.
(a) For what value of β does the channel stop acting like a single

channel and start acting like a pair of channels?
(b) Evaluate the capacity and find P1 and P2 that achieve capacity

for β1 = 1, β2 = 2, N1 = 3, N2 = 2, and β = 10.

9.9 Vector Gaussian channel . Consider the vector Gaussian noise
channel

Y = X + Z,

where X = (X1, X2, X3), Z = (Z1, Z2, Z3), Y = (Y1, Y2, Y3),

E‖X‖2 ≤ P, and

Z ∼ N


0,


 1 0 1

0 1 1
1 1 2




 .

Find the capacity. The answer may be surprising.

9.10 Capacity of photographic film . Here is a problem with a nice
answer that takes a little time. We’re interested in the capacity
of photographic film. The film consists of silver iodide crystals,
Poisson distributed, with a density of λ particles per square inch.
The film is illuminated without knowledge of the position of the
silver iodide particles. It is then developed and the receiver sees
only the silver iodide particles that have been illuminated. It is
assumed that light incident on a cell exposes the grain if it is there
and otherwise results in a blank response. Silver iodide particles
that are not illuminated and vacant portions of the film remain
blank. The question is: What is the capacity of this film?
We make the following assumptions. We grid the film very finely
into cells of area dA. It is assumed that there is at most one sil-
ver iodide particle per cell and that no silver iodide particle is
intersected by the cell boundaries. Thus, the film can be consid-
ered to be a large number of parallel binary asymmetric channels
with crossover probability 1 − λdA. By calculating the capacity of
this binary asymmetric channel to first order in dA (making the
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necessary approximations), one can calculate the capacity of the
film in bits per square inch. It is, of course, proportional to λ. The
question is: What is the multiplicative constant?
The answer would be λ bits per unit area if both illuminator and
receiver knew the positions of the crystals.

9.11 Gaussian mutual information. Suppose that (X, Y, Z) are jointly
Gaussian and that X → Y → Z forms a Markov chain. Let X and
Y have correlation coefficient ρ1 and let Y and Z have correlation
coefficient ρ2. Find I (X;Z).

9.12 Time-varying channel . A train pulls out of the station at constant
velocity. The received signal energy thus falls off with time as
1/i2. The total received signal at time i is

Yi = 1

i
Xi + Zi,

where Z1, Z2, . . . are i.i.d. ∼ N(0, N). The transmitter constraint
for block length n is

1

n

n∑
i=1

x2
i (w) ≤ P, w ∈ {1, 2, . . . , 2nR}.

Using Fano’s inequality, show that the capacity C is equal to zero
for this channel.

9.13 Feedback capacity . Let (Z1, Z2) ∼ N(0, K),K =
[

1 ρ

ρ 1

]
.

Find the maximum of 1
2 log |KX+Z |

|KZ | with and without feedback given
a trace (power) constraint tr(KX) ≤ 2P.

9.14 Additive noise channel . Consider the channel Y = X + Z, where
X is the transmitted signal with power constraint P , Z is indepen-
dent additive noise, and Y is the received signal. Let

Z =
{

0 with probability 1
10

Z∗ with probability 9
10 ,

where Z∗ ∼ N(0, N). Thus, Z has a mixture distribution that is
the mixture of a Gaussian distribution and a degenerate distribution
with mass 1 at 0.
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(a) What is the capacity of this channel? This should be a pleasant
surprise.

(b) How would you signal to achieve capacity?

9.15 Discrete input, continuous output channel . Let Pr{X = 1} = p,
Pr{X = 0} = 1 − p, and let Y = X + Z, where Z is uniform over
the interval [0, a], a > 1, and Z is independent of X.

(a) Calculate

I (X;Y) = H(X) − H(X|Y).

(b) Now calculate I (X;Y) the other way by

I (X;Y) = h(Y ) − h(Y |X).

(c) Calculate the capacity of this channel by maximizing over p.

9.16 Gaussian mutual information. Suppose that (X, Y, Z) are jointly
Gaussian and that X → Y → Z forms a Markov chain. Let X and
Y have correlation coefficient ρ1 and let Y and Z have correlation
coefficient ρ2. Find I (X;Z).

9.17 Impulse power . Consider the additive white Gaussian channel

Zi

YiXi ∑

where Zi ∼ N(0, N), and the input signal has average power con-
straint P .

(a) Suppose that we use all our power at time 1 (i.e., EX2
1 = nP

and EX2
i = 0 for i = 2, 3, . . . , n). Find

max
f (xn)

I (Xn; Yn)

n
,

where the maximization is over all distributions f (xn) subject
to the constraint EX2

1 = nP and EX2
i = 0 for i = 2, 3, . . . , n.
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(b) Find

max
f (xn): E

(
1
n

∑n
i=1 X2

i

)
≤P

1

n
I (Xn; Yn)

and compare to part (a).

9.18 Gaussian channel with time-varying mean. Find the capacity of
the following Gaussian channel:

Zi

Xi Yi

Let Z1, Z2, . . . be independent and let there be a power constraint
P on xn(W). Find the capacity when:
(a) µi = 0, for all i.
(b) µi = ei, i = 1, 2, . . .. Assume that µi is known to the trans-

mitter and receiver.
(c) µi unknown, but µi i.i.d. ∼ N(0, N1) for all i.

9.19 Parametric form for channel capacity . Consider m parallel Gaus-
sian channels, Yi = Xi + Zi , where Zi ∼ N(0, λi) and the noises
Xi are independent random variables. Thus, C =∑m

i=1
1
2 log(1 +

(λ−λi)
+

λi
), where λ is chosen to satisfy

∑m
i=1(λ − λi)

+ = P . Show
that this can be rewritten in the form

P(λ) =∑i:λi≤λ(λ − λi)

C(λ) =∑i:λi≤λ

1

2
log

λ

λi

.

Here P(λ) is piecewise linear and C(λ) is piecewise logarithmic
in λ.

9.20 Robust decoding . Consider an additive noise channel whose out-
put Y is given by

Y = X + Z,

where the channel input X is average power limited,

EX2 ≤ P,
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and the noise process {Zk}∞k=−∞ is i.i.d. with marginal distribution
pZ(z) (not necessarily Gaussian) of power N ,

EZ2 = N.

(a) Show that the channel capacity, C = maxEX2≤P I (X;Y), is
lower bounded by CG, where

CG = 1

2
log

(
1 + P

N

)

(i.e., the capacity CG corresponding to white Gaussian noise).
(b) Decoding the received vector to the codeword that is closest to

it in Euclidean distance is in general suboptimal if the noise is
non-Gaussian. Show, however, that the rate CG is achievable
even if one insists on performing nearest-neighbor decoding
(minimum Euclidean distance decoding) rather than the optimal
maximum-likelihood or joint typicality decoding (with respect
to the true noise distribution).

(c) Extend the result to the case where the noise is not i.i.d. but is
stationary and ergodic with power N .

(Hint for b and c: Consider a size 2nR random codebook whose
codewords are drawn independently of each other according to a
uniform distribution over the n-dimensional sphere of radius

√
nP .)

(a) Using a symmetry argument, show that conditioned on the
noise vector, the ensemble average probability of error depends
on the noise vector only via its Euclidean norm ‖z‖.

(b) Use a geometric argument to show that this dependence is
monotonic.

(c) Given a rate R < CG, choose some N ′ > N such that

R <
1

2
log

(
1 + P

N ′

)
.

Compare the case where the noise is i.i.d. N(0, N ′) to the case
at hand.

(d) Conclude the proof using the fact that the above ensemble of
codebooks can achieve the capacity of the Gaussian channel
(no need to prove that).
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9.21 Mutual information game. Consider the following channel:

Z

X Y

Throughout this problem we shall constrain the signal power

EX = 0, EX2 = P, (9.176)

and the noise power

EZ = 0, EZ2 = N, (9.177)

and assume that X and Z are independent. The channel capacity is
given by I (X;X + Z).
Now for the game. The noise player chooses a distribution on Z to
minimize I (X;X + Z), while the signal player chooses a distribu-
tion on X to maximize I (X;X + Z). Letting X∗ ∼ N(0, P ), Z∗ ∼
N(0, N), show that Gaussian X∗ and Z∗ satisfy the saddlepoint
conditions

I (X;X + Z∗) ≤ I (X∗; X∗ + Z∗) ≤ I (X∗; X∗ + Z). (9.178)

Thus,

min
Z

max
X

I (X;X + Z) = max
X

min
Z

I (X;X + Z) (9.179)

= 1

2
log

(
1 + P

N

)
, (9.180)

and the game has a value. In particular, a deviation from normal
for either player worsens the mutual information from that player’s
standpoint. Can you discuss the implications of this?
Note: Part of the proof hinges on the entropy power inequality from
Section 17.8, which states that if X and Y are independent random
n-vectors with densities, then

2
2
nh(X+Y) ≥ 2

2
nh(X) + 2

2
nh(Y). (9.181)
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9.22 Recovering the noise. Consider a standard Gaussian channel Yn =
Xn + Zn, where Zi is i.i.d. ∼ N(0, N), i = 1, 2, . . . , n, and
1
n

∑n
i=1 X2

i ≤ P. Here we are interested in recovering the noise Zn

and we don’t care about the signal Xn. By sending Xn = (0, 0, . . . ,

0), the receiver gets Yn = Zn and can fully determine the value of
Zn. We wonder how much variability there can be in Xn and still
recover the Gaussian noise Zn. Use of the channel looks like

Zn

Zn(Yn)Xn Yn ^

Argue that for some R > 0, the transmitter can arbitrarily send one
of 2nR different sequences of xn without affecting the recovery of
the noise in the sense that

Pr{Ẑn �= Zn} → 0 as n → ∞.

For what R is this possible?

HISTORICAL NOTES

The Gaussian channel was first analyzed by Shannon in his original
paper [472]. The water-filling solution to the capacity of the colored
noise Gaussian channel was developed by Shannon [480] and treated in
detail by Pinsker [425]. The time-continuous Gaussian channel is treated
in Wyner [576], Gallager [233], and Landau, Pollak, and Slepian [340,
341, 500].

Pinsker [421] and Ebert [178] argued that feedback at most doubles
the capacity of a nonwhite Gaussian channel; the proof in the text is
from Cover and Pombra [136], who also show that feedback increases
the capacity of the nonwhite Gaussian channel by at most half a bit.
The most recent feedback capacity results for nonwhite Gaussian noise
channels are due to Kim [314].





CHAPTER 10

RATE DISTORTION THEORY

The description of an arbitrary real number requires an infinite number
of bits, so a finite representation of a continuous random variable can
never be perfect. How well can we do? To frame the question appropri-
ately, it is necessary to define the “goodness” of a representation of a
source. This is accomplished by defining a distortion measure which is a
measure of distance between the random variable and its representation.
The basic problem in rate distortion theory can then be stated as follows:
Given a source distribution and a distortion measure, what is the minimum
expected distortion achievable at a particular rate? Or, equivalently, what
is the minimum rate description required to achieve a particular distortion?

One of the most intriguing aspects of this theory is that joint descriptions
are more efficient than individual descriptions. It is simpler to describe an
elephant and a chicken with one description than to describe each alone. This
is true even for independent random variables. It is simpler to describe X1
and X2 together (at a given distortion for each) than to describe each by itself.
Why don’t independent problems have independent solutions? The answer
is found in the geometry. Apparently, rectangular grid points (arising from
independent descriptions) do not fill up the space efficiently.

Rate distortion theory can be applied to both discrete and continuous
random variables. The zero-error data compression theory of Chapter 5
is an important special case of rate distortion theory applied to a discrete
source with zero distortion. We begin by considering the simple problem
of representing a single continuous random variable by a finite number
of bits.

10.1 QUANTIZATION

In this section we motivate the elegant theory of rate distortion by showing
how complicated it is to solve the quantization problem exactly for a single
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random variable. Since a continuous random source requires infinite preci-
sion to represent exactly, we cannot reproduce it exactly using a finite-rate
code. The question is then to find the best possible representation for any
given data rate.

We first consider the problem of representing a single sample from the
source. Let the random variable be represented be X and let the represen-
tation of X be denoted as X̂(X). If we are given R bits to represent X,
the function X̂ can take on 2R values. The problem is to find the optimum
set of values for X̂ (called the reproduction points or code points) and
the regions that are associated with each value X̂.

For example, let X ∼ N(0, σ 2), and assume a squared-error distortion
measure. In this case we wish to find the function X̂(X) such that X̂ takes
on at most 2R values and minimizes E(X − X̂(X))2. If we are given one
bit to represent X, it is clear that the bit should distinguish whether or
not X > 0. To minimize squared error, each reproduced symbol should
be the conditional mean of its region. This is illustrated in Figure 10.1.
Thus,

X̂(x) =




√
2

π
σ if x ≥ 0,

−
√

2

π
σ if x < 0.

(10.1)

If we are given 2 bits to represent the sample, the situation is not as
simple. Clearly, we want to divide the real line into four regions and use
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FIGURE 10.1. One-bit quantization of Gaussian random variable.
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a point within each region to represent the sample. But it is no longer
immediately obvious what the representation regions and the reconstruc-
tion points should be. We can, however, state two simple properties of
optimal regions and reconstruction points for the quantization of a single
random variable:

• Given a set {X̂(w)} of reconstruction points, the distortion is mini-
mized by mapping a source random variable X to the representation
X̂(w) that is closest to it. The set of regions of X defined by this
mapping is called a Voronoi or Dirichlet partition defined by the
reconstruction points.

• The reconstruction points should minimize the conditional expected
distortion over their respective assignment regions.

These two properties enable us to construct a simple algorithm to find a
“good” quantizer: We start with a set of reconstruction points, find the opti-
mal set of reconstruction regions (which are the nearest-neighbor regions
with respect to the distortion measure), then find the optimal reconstruc-
tion points for these regions (the centroids of these regions if the distortion
is squared error), and then repeat the iteration for this new set of recon-
struction points. The expected distortion is decreased at each stage in the
algorithm, so the algorithm will converge to a local minimum of the dis-
tortion. This algorithm is called the Lloyd algorithm [363] (for real-valued
random variables) or the generalized Lloyd algorithm [358] (for vector-
valued random variables) and is frequently used to design quantization
systems.

Instead of quantizing a single random variable, let us assume that we
are given a set of n i.i.d. random variables drawn according to a Gaussian
distribution. These random variables are to be represented using nR bits.
Since the source is i.i.d., the symbols are independent, and it may appear
that the representation of each element is an independent problem to be
treated separately. But this is not true, as the results on rate distortion
theory will show. We will represent the entire sequence by a single index
taking 2nR values. This treatment of entire sequences at once achieves a
lower distortion for the same rate than independent quantization of the
individual samples.

10.2 DEFINITIONS

Assume that we have a source that produces a sequence X1, X2, . . . , Xn

i.i.d. ∼ p(x), x ∈ X. For the proofs in this chapter, we assume that the
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Encoder DecoderXn Xn
fn(Xn) {1,2,...,2nR}∋

^

FIGURE 10.2. Rate distortion encoder and decoder.

alphabet is finite, but most of the proofs can be extended to continuous
random variables. The encoder describes the source sequence Xn by an
index fn(X

n) ∈ {1, 2, . . . , 2nR}. The decoder represents Xn by an estimate
X̂n ∈ X̂, as illustrated in Figure 10.2.

Definition A distortion function or distortion measure is a mapping

d : X × X̂ → R+ (10.2)

from the set of source alphabet-reproduction alphabet pairs into the set of
nonnegative real numbers. The distortion d(x, x̂) is a measure of the cost
of representing the symbol x by the symbol x̂.

Definition A distortion measure is said to be bounded if the maximum
value of the distortion is finite:

dmax
def= max

x∈X ,x̂∈X̂

d(x, x̂) < ∞. (10.3)

In most cases, the reproduction alphabet X̂ is the same as the source
alphabet X.

Examples of common distortion functions are

• Hamming (probability of error) distortion. The Hamming distortion
is given by

d(x, x̂) =
{

0 if x = x̂

1 if x �= x̂,
(10.4)

which results in a probability of error distortion, since Ed(X, X̂) =
Pr(X �= X̂).
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• Squared-error distortion. The squared-error distortion,

d(x, x̂) = (x − x̂)2, (10.5)

is the most popular distortion measure used for continuous alphabets.
Its advantages are its simplicity and its relationship to least-squares
prediction. But in applications such as image and speech coding,
various authors have pointed out that the mean-squared error is not an
appropriate measure of distortion for human observers. For example,
there is a large squared-error distortion between a speech waveform
and another version of the same waveform slightly shifted in time,
even though both would sound the same to a human observer.

Many alternatives have been proposed; a popular measure of distortion
in speech coding is the Itakura–Saito distance, which is the relative entropy
between multivariate normal processes. In image coding, however, there is
at present no real alternative to using the mean-squared error as the distortion
measure.

The distortion measure is defined on a symbol-by-symbol basis. We
extend the definition to sequences by using the following definition:

Definition The distortion between sequences xn and x̂n is defined by

d(xn, x̂n) = 1

n

n∑
i=1

d(xi, x̂i). (10.6)

So the distortion for a sequence is the average of the per symbol dis-
tortion of the elements of the sequence. This is not the only reasonable
definition. For example, one may want to measure the distortion between
two sequences by the maximum of the per symbol distortions. The the-
ory derived below does not apply directly to this more general distortion
measure.

Definition A (2nR, n)-rate distortion code consists of an encoding func-
tion,

fn : Xn → {1, 2, . . . , 2nR}, (10.7)

and a decoding (reproduction) function,

gn : {1, 2, . . . , 2nR} → X̂n. (10.8)
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The distortion associated with the (2nR, n) code is defined as

D = Ed(Xn, gn(fn(X
n))), (10.9)

where the expectation is with respect to the probability distribution on X:

D =
∑
xn

p(xn)d(xn, gn(fn(x
n))). (10.10)

The set of n-tuples gn(1), gn(2), . . . , gn(2nR), denoted by X̂n(1), . . . ,

X̂n(2nR), constitutes the codebook, and f −1
n (1), . . . , f −1

n (2nR) are the
associated assignment regions.

Many terms are used to describe the replacement of Xn by its quantized
version X̂n(w). It is common to refer to X̂n as the vector quantiza-
tion, reproduction, reconstruction, representation, source code, or estimate
of Xn.

Definition A rate distortion pair (R, D) is said to be achievable if
there exists a sequence of (2nR, n)-rate distortion codes (fn, gn) with
limn→∞ Ed(Xn, gn(fn(X

n))) ≤ D.

Definition The rate distortion region for a source is the closure of the
set of achievable rate distortion pairs (R, D).

Definition The rate distortion function R(D) is the infimum of rates R

such that (R,D) is in the rate distortion region of the source for a given
distortion D.

Definition The distortion rate function D(R) is the infimum of all dis-
tortions D such that (R, D) is in the rate distortion region of the source
for a given rate R.

The distortion rate function defines another way of looking at the
boundary of the rate distortion region. We will in general use the rate
distortion function rather than the distortion rate function to describe this
boundary, although the two approaches are equivalent.

We now define a mathematical function of the source, which we call
the information rate distortion function. The main result of this chapter
is the proof that the information rate distortion function is equal to the
rate distortion function defined above (i.e., it is the infimum of rates that
achieve a particular distortion).
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Definition The information rate distortion function R(I)(D) for a source
X with distortion measure d(x, x̂) is defined as

R(I)(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I (X; X̂), (10.11)

where the minimization is over all conditional distributions p(x̂|x) for
which the joint distribution p(x, x̂) = p(x)p(x̂|x) satisfies the expected
distortion constraint.

Paralleling the discussion of channel capacity in Chapter 7, we initially
consider the properties of the information rate distortion function and
calculate it for some simple sources and distortion measures. Later we
prove that we can actually achieve this function (i.e., there exist codes with
rate R(I)(D) with distortion D). We also prove a converse establishing
that R ≥ R(I)(D) for any code that achieves distortion D.

The main theorem of rate distortion theory can now be stated as follows:

Theorem 10.2.1 The rate distortion function for an i.i.d. source X

with distribution p(x) and bounded distortion function d(x, x̂) is equal to
the associated information rate distortion function. Thus,

R(D) = R(I)(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I (X; X̂) (10.12)

is the minimum achievable rate at distortion D.

This theorem shows that the operational definition of the rate distortion
function is equal to the information definition. Hence we will use R(D)

from now on to denote both definitions of the rate distortion function.
Before coming to the proof of the theorem, we calculate the information
rate distortion function for some simple sources and distortions.

10.3 CALCULATION OF THE RATE DISTORTION FUNCTION

10.3.1 Binary Source

We now find the description rate R(D) required to describe a Bernoulli(p)
source with an expected proportion of errors less than or equal to D.

Theorem 10.3.1 The rate distortion function for a Bernoulli(p) source
with Hamming distortion is given by

R(D) =
{

H(p) − H(D), 0 ≤ D ≤ min{p, 1 − p},
0, D > min{p, 1 − p}. (10.13)
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Proof: Consider a binary source X ∼ Bernoulli(p) with a Hamming
distortion measure. Without loss of generality, we may assume that p < 1

2 .
We wish to calculate the rate distortion function,

R(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I (X; X̂). (10.14)

Let ⊕ denote modulo 2 addition. Thus, X ⊕ X̂ = 1 is equivalent to X �=
X̂. We do not minimize I (X; X̂) directly; instead, we find a lower bound
and then show that this lower bound is achievable. For any joint distribu-
tion satisfying the distortion constraint, we have

I (X; X̂) = H(X) − H(X|X̂) (10.15)

= H(p) − H(X ⊕ X̂|X̂) (10.16)

≥ H(p) − H(X ⊕ X̂) (10.17)

≥ H(p) − H(D), (10.18)

since Pr(X �= X̂) ≤ D and H(D) increases with D for D ≤ 1
2 . Thus,

R(D) ≥ H(p) − H(D). (10.19)

We now show that the lower bound is actually the rate distortion function
by finding a joint distribution that meets the distortion constraint and
has I (X; X̂) = R(D). For 0 ≤ D ≤ p, we can achieve the value of the
rate distortion function in (10.19) by choosing (X, X̂) to have the joint
distribution given by the binary symmetric channel shown in Figure 10.3.

1 − D1 − p − D

1 − 2D

1 − D

D

D

X

0

1

0 1 − p

p1
p − D

1 − 2D

X
^

FIGURE 10.3. Joint distribution for binary source.
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We choose the distribution of X̂ at the input of the channel so that the
output distribution of X is the specified distribution. Let r = Pr(X̂ = 1).
Then choose r so that

r(1 − D) + (1 − r)D = p, (10.20)

or

r = p − D

1 − 2D
. (10.21)

If D ≤ p ≤ 1
2 , then Pr(X̂ = 1) ≥ 0 and Pr(X̂ = 0) ≥ 0. We then have

I (X; X̂) = H(X) − H(X|X̂) = H(p) − H(D), (10.22)

and the expected distortion is Pr(X �= X̂) = D.
If D ≥ p, we can achieve R(D) = 0 by letting X̂ = 0 with probability

1. In this case, I (X; X̂) = 0 and D = p. Similarly, if D ≥ 1 − p, we can
achieve R(D) = 0 by setting X̂ = 1 with probability 1. Hence, the rate
distortion function for a binary source is

R(D) =
{

H(p) − H(D), 0 ≤ D ≤ min{p, 1 − p},
0, D > min{p, 1 − p}. (10.23)

This function is illustrated in Figure 10.4. �
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FIGURE 10.4. Rate distortion function for a Bernoulli ( 1
2 ) source.
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The above calculations may seem entirely unmotivated. Why should
minimizing mutual information have anything to do with quantization?
The answer to this question must wait until we prove Theorem 10.2.1.

10.3.2 Gaussian Source

Although Theorem 10.2.1 is proved only for discrete sources with a
bounded distortion measure, it can also be proved for well-behaved contin-
uous sources and unbounded distortion measures. Assuming this general
theorem, we calculate the rate distortion function for a Gaussian source
with squared-error distortion.

Theorem 10.3.2 The rate distortion function for a N(0, σ 2) source with
squared-error distortion is

R(D) =



1

2
log

σ 2

D
, 0 ≤ D ≤ σ 2,

0, D > σ 2.

(10.24)

Proof: Let X be ∼ N(0, σ 2). By the rate distortion theorem extended
to continuous alphabets, we have

R(D) = min
f (x̂|x):E(X̂−X)2≤D

I (X; X̂). (10.25)

As in the preceding example, we first find a lower bound for the rate
distortion function and then prove that this is achievable. Since E(X −
X̂)2 ≤ D, we observe that

I (X; X̂) = h(X) − h(X|X̂) (10.26)

= 1

2
log(2πe)σ 2 − h(X − X̂|X̂) (10.27)

≥ 1

2
log(2πe)σ 2 − h(X − X̂) (10.28)

≥ 1

2
log(2πe)σ 2 − h(N(0, E(X − X̂)2)) (10.29)

= 1

2
log(2πe)σ 2 − 1

2
log(2πe)E(X − X̂)2 (10.30)

≥ 1

2
log(2πe)σ 2 − 1

2
log(2πe)D (10.31)

= 1

2
log

σ 2

D
, (10.32)
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where (10.28) follows from the fact that conditioning reduces entropy and
(10.29) follows from the fact that the normal distribution maximizes the
entropy for a given second moment (Theorem 8.6.5). Hence,

R(D) ≥ 1

2
log

σ 2

D
. (10.33)

To find the conditional density f (x̂|x) that achieves this lower bound,
it is usually more convenient to look at the conditional density f (x|x̂),
which is sometimes called the test channel (thus emphasizing the duality of
rate distortion with channel capacity). As in the binary case, we construct
f (x|x̂) to achieve equality in the bound. We choose the joint distribution
as shown in Figure 10.5. If D ≤ σ 2, we choose

X = X̂ + Z, X̂ ∼ N(0, σ 2 − D), Z ∼ N(0, D), (10.34)

where X̂ and Z are independent. For this joint distribution, we calculate

I (X; X̂) = 1

2
log

σ 2

D
, (10.35)

and E(X − X̂)2 = D, thus achieving the bound in (10.33). If D > σ 2, we
choose X̂ = 0 with probability 1, achieving R(D) = 0. Hence, the rate
distortion function for the Gaussian source with squared-error distortion is

R(D) =



1

2
log

σ 2

D
, 0 ≤ D ≤ σ 2,

0, D > σ 2,

(10.36)

as illustrated in Figure 10.6. �

We can rewrite (10.36) to express the distortion in terms of the rate,

D(R) = σ 22−2R. (10.37)

Z ~ (0,D)

X ~ (0, s2 − D)
^

X ~ (0,s2)

FIGURE 10.5. Joint distribution for Gaussian source.
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FIGURE 10.6. Rate distortion function for a Gaussian source.

Each bit of description reduces the expected distortion by a factor of 4.
With a 1-bit description, the best expected square error is σ 2/4. We can
compare this with the result of simple 1-bit quantization of a N(0, σ 2)

random variable as described in Section 10.1. In this case, using the two
regions corresponding to the positive and negative real lines and repro-
duction points as the centroids of the respective regions, the expected dis-
tortion is (π−2)

π
σ 2 = 0.3633σ 2 (see Problem 10.1). As we prove later, the

rate distortion limit R(D) is achieved by considering long block lengths.
This example shows that we can achieve a lower distortion by consider-
ing several distortion problems in succession (long block lengths) than can
be achieved by considering each problem separately. This is somewhat
surprising because we are quantizing independent random variables.

10.3.3 Simultaneous Description of Independent Gaussian
Random Variables

Consider the case of representing m independent (but not identically dis-
tributed) normal random sources X1, . . . , Xm, where Xi are ∼ N(0, σ 2

i ),
with squared-error distortion. Assume that we are given R bits with which
to represent this random vector. The question naturally arises as to how
we should allot these bits to the various components to minimize the
total distortion. Extending the definition of the information rate distortion
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function to the vector case, we have

R(D) = min
f (x̂m|xm):Ed(Xm,X̂m)≤D

I (Xm; X̂m), (10.38)

where d(xm, x̂m) = ∑m
i=1(xi − x̂i )

2. Now using the arguments in the pre-
ceding example, we have

I (Xm; X̂m) = h(Xm) − h(Xm|X̂m) (10.39)

=
m∑

i=1

h(Xi) −
m∑

i=1

h(Xi |Xi−1, X̂m) (10.40)

≥
m∑

i=1

h(Xi) −
m∑

i=1

h(Xi |X̂i) (10.41)

=
m∑

i=1

I (Xi; X̂i) (10.42)

≥
m∑

i=1

R(Di) (10.43)

=
m∑

i=1

(
1

2
log

σ 2
i

Di

)+
, (10.44)

where Di = E(Xi − X̂i)
2 and (10.41) follows from the fact that condi-

tioning reduces entropy. We can achieve equality in (10.41) by choosing
f (xm|x̂m) = ∏m

i=1 f (xi |x̂i ) and in (10.43) by choosing the distribution of
each X̂i ∼ N(0, σ 2

i − Di), as in the preceding example. Hence, the prob-
lem of finding the rate distortion function can be reduced to the following
optimization (using nats for convenience):

R(D) = min∑
Di=D

m∑
i=1

max

{
1

2
ln

σ 2
i

Di

, 0

}
. (10.45)

Using Lagrange multipliers, we construct the functional

J (D) =
m∑

i=1

1

2
ln

σ 2
i

Di

+ λ

m∑
i=1

Di, (10.46)
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and differentiating with respect to Di and setting equal to 0, we have

∂J

∂Di

= −1

2

1

Di

+ λ = 0 (10.47)

or
Di = λ′. (10.48)

Hence, the optimum allotment of the bits to the various descriptions
results in an equal distortion for each random variable. This is possible if
the constant λ′ in (10.48) is less than σ 2

i for all i. As the total allowable
distortion D is increased, the constant λ′ increases until it exceeds σ 2

i

for some i. At this point the solution (10.48) is on the boundary of the
allowable region of distortions. If we increase the total distortion, we must
use the Kuhn–Tucker conditions to find the minimum in (10.46). In this
case the Kuhn–Tucker conditions yield

∂J

∂Di

= −1

2

1

Di

+ λ, (10.49)

where λ is chosen so that

∂J

∂Di

{ = 0 if Di < σ 2
i

≤ 0 if Di ≥ σ 2
i .

(10.50)

It is easy to check that the solution to the Kuhn–Tucker equations is given
by the following theorem:

Theorem 10.3.3 (Rate distortion for a parallel Gaussian source) Let
Xi ∼ N(0, σ 2

i ), i = 1, 2, . . . , m, be independent Gaussian random vari-
ables, and let the distortion measure be d(xm, x̂m) = ∑m

i=1(xi − x̂i)
2 .

Then the rate distortion function is given by

R(D) =
m∑

i=1

1

2
log

σ 2
i

Di

, (10.51)

where

Di =
{

λ if λ < σ 2
i ,

σ 2
i if λ ≥ σ 2

i ,
(10.52)

where λ is chosen so that
∑m

i=1 Di = D.
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FIGURE 10.7. Reverse water-filling for independent Gaussian random variables.

This gives rise to a kind of reverse water-filling, as illustrated in
Figure 10.7. We choose a constant λ and only describe those random vari-
ables with variances greater than λ. No bits are used to describe random
variables with variance less than λ. Summarizing, if

X ∼ N(0,




σ 2
1 · · · 0
...

. . .
...

0 · · · σ 2
m


), then X̂ ∼ N(0,




σ̂ 2
1 · · · 0
...

. . .
...

0 · · · σ̂ 2
m


),

and E(Xi − X̂i)
2 = Di , where Di = min{λ, σ 2

i }. More generally, the rate
distortion function for a multivariate normal vector can be obtained by
reverse water-filling on the eigenvalues. We can also apply the same argu-
ments to a Gaussian stochastic process. By the spectral representation
theorem, a Gaussian stochastic process can be represented as an inte-
gral of independent Gaussian processes in the various frequency bands.
Reverse water-filling on the spectrum yields the rate distortion function.

10.4 CONVERSE TO THE RATE DISTORTION THEOREM

In this section we prove the converse to Theorem 10.2.1 by showing that
we cannot achieve a distortion of less than D if we describe X at a rate
less than R(D), where

R(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I (X; X̂). (10.53)
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The minimization is over all conditional distributions p(x̂|x) for which
the joint distribution p(x, x̂) = p(x)p(x̂|x) satisfies the expected distor-
tion constraint. Before proving the converse, we establish some simple
properties of the information rate distortion function.

Lemma 10.4.1 (Convexity of R(D)) The rate distortion function R(D)

given in (10.53) is a nonincreasing convex function of D.

Proof: R(D) is the minimum of the mutual information over increas-
ingly larger sets as D increases. Thus, R(D) is nonincreasing in D. To
prove that R(D) is convex, consider two rate distortion pairs, (R1, D1)

and (R2, D2), which lie on the rate distortion curve. Let the joint distribu-
tions that achieve these pairs be p1(x, x̂) = p(x)p1(x̂|x) and p2(x, x̂) =
p(x)p2(x̂|x). Consider the distribution pλ = λp1 + (1 − λ)p2. Since the
distortion is a linear function of the distribution, we have D(pλ) = λD1 +
(1 − λ)D2. Mutual information, on the other hand, is a convex function
of the conditional distribution (Theorem 2.7.4), and hence

Ipλ
(X; X̂) ≤ λIp1(X; X̂) + (1 − λ)Ip2(X; X̂). (10.54)

Hence, by the definition of the rate distortion function,

R(Dλ) ≤ Ipλ
(X; X̂) (10.55)

≤ λIp1(X; X̂) + (1 − λ)Ip2(X; X̂) (10.56)

= λR(D1) + (1 − λ)R(D2), (10.57)

which proves that R(D) is a convex function of D. �

The converse can now be proved.

Proof: (Converse in Theorem 10.2.1). We must show for any source X

drawn i.i.d. ∼ p(x) with distortion measure d(x, x̂) and any (2nR, n) rate
distortion code with distortion ≤ D, that the rate R of the code satis-
fies R ≥ R(D). In fact, we prove that R ≥ R(D) even for randomized
mappings fn and gn, as long as fn takes on at most 2nR values.

Consider any (2nR, n) rate distortion code defined by functions fn and
gn as given in (10.7) and (10.8). Let X̂n = X̂n(Xn) = gn(fn(X

n)) be the
reproduced sequence corresponding to Xn. Assume that Ed(Xn, X̂n) ≥ D
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for this code. Then we have the following chain of inequalities:

nR
(a)≥ H(fn(X

n)) (10.58)

(b)≥ H(fn(X
n)) − H(fn(X

n)|Xn) (10.59)

= I (Xn; fn(X
n)) (10.60)

(c)≥ I (Xn; X̂n) (10.61)

= H(Xn) − H(Xn|X̂n) (10.62)

(d)=
n∑

i=1

H(Xi) − H(Xn|X̂n) (10.63)

(e)=
n∑

i=1

H(Xi) −
n∑

i=1

H(Xi |X̂n, Xi−1, . . . , X1) (10.64)

(f)≥
n∑

i=1

H(Xi) −
n∑

i=1

H(Xi |X̂i) (10.65)

=
n∑

i=1

I (Xi; X̂i) (10.66)

(g)≥
n∑

i=1

R(Ed(Xi, X̂i)) (10.67)

= n

(
1

n

n∑
i=1

R(Ed(Xi, X̂i))

)
(10.68)

(h)≥ nR

(
1

n

n∑
i=1

Ed(Xi, X̂i)

)
(10.69)

(i)= nR(Ed(Xn, X̂n)) (10.70)

(j)= nR(D), (10.71)

where
(a) follows from the fact that the range of fn is at most 2nR

(b) follows from the fact that H(fn(X
n)|Xn) ≥ 0
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(c) follows from the data-processing inequality
(d) follows from the fact that the Xi are independent
(e) follows from the chain rule for entropy
(f) follows from the fact that conditioning reduces entropy
(g) follows from the definition of the rate distortion function
(h) follows from the convexity of the rate distortion function (Lemma
10.4.1) and Jensen’s inequality
(i) follows from the definition of distortion for blocks of length n

(j) follows from the fact that R(D) is a nonincreasing function of D and
Ed(Xn, X̂n) ≤ D

This shows that the rate R of any rate distortion code exceeds the rate
distortion function R(D) evaluated at the distortion level D = Ed(Xn, X̂n)

achieved by that code. �

A similar argument can be applied when the encoded source is passed
through a noisy channel and hence we have the equivalent of the source
channel separation theorem with distortion:

Theorem 10.4.1 (Source–channel separation theorem with distortion)
Let V1, V2, . . . , Vn be a finite alphabet i.i.d. source which is encoded as
a sequence of n input symbols Xn of a discrete memoryless channel with
capacity C. The output of the channel Yn is mapped onto the reconstruction
alphabet V̂ n = g(Y n). Let D = Ed(V n, V̂ n) = 1

n

∑n
i=1 Ed(Vi, V̂i) be the

average distortion achieved by this combined source and channel coding
scheme. Then distortion D is achievable if and only if C > R(D).

Channel Capacity CVn VnYnXn(Vn)
^

Proof: See Problem 10.17. �

10.5 ACHIEVABILITY OF THE RATE DISTORTION FUNCTION

We now prove the achievability of the rate distortion function. We begin
with a modified version of the joint AEP in which we add the condition
that the pair of sequences be typical with respect to the distortion measure.
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Definition Let p(x, x̂) be a joint probability distribution on X × X̂ and
let d(x, x̂) be a distortion measure on X × X̂. For any ε > 0, a pair of
sequences (xn, x̂n) is said to be distortion ε-typical or simply distortion
typical if

∣∣∣∣−1

n
log p(xn) − H(X)

∣∣∣∣ < ε (10.72)

∣∣∣∣−1

n
log p(x̂n) − H(X̂)

∣∣∣∣ < ε (10.73)

∣∣∣∣−1

n
log p(xn, x̂n) − H(X, X̂)

∣∣∣∣ < ε (10.74)

|d(xn, x̂n) − Ed(X, X̂)| < ε. (10.75)

The set of distortion typical sequences is called the distortion typical set
and is denoted A

(n)
d,ε .

Note that this is the definition of the jointly typical set (Section 7.6)
with the additional constraint that the distortion be close to the expected
value. Hence, the distortion typical set is a subset of the jointly typical
set (i.e., A

(n)
d,ε ⊂ A(n)

ε ). If (Xi, X̂i) are drawn i.i.d ∼ p(x, x̂), the distortion
between two random sequences

d(Xn, X̂n) = 1

n

n∑
i=1

d(Xi, X̂i) (10.76)

is an average of i.i.d. random variables, and the law of large numbers
implies that it is close to its expected value with high probability. Hence
we have the following lemma.

Lemma 10.5.1 Let (Xi, X̂i) be drawn i.i.d. ∼ p(x, x̂). Then Pr(A(n)
d,ε) →

1 as n → ∞.

Proof: The sums in the four conditions in the definition of A
(n)
d,ε are

all normalized sums of i.i.d random variables and hence, by the law of
large numbers, tend to their respective expected values with probability 1.
Hence the set of sequences satisfying all four conditions has probability
tending to 1 as n → ∞. �

The following lemma is a direct consequence of the definition of the
distortion typical set.
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Lemma 10.5.2 For all (xn, x̂n) ∈ A
(n)
d,ε ,

p(x̂n) ≥ p(x̂n|xn)2−n(I (X;X̂)+3ε). (10.77)

Proof: Using the definition of A
(n)
d,ε , we can bound the probabilities

p(xn), p(x̂n) and p(xn, x̂n) for all (xn, x̂n) ∈ A
(n)
d,ε , and hence

p(x̂n|xn) = p(xn, x̂n)

p(xn)
(10.78)

= p(x̂n)
p(xn, x̂n)

p(xn)p(x̂n)
(10.79)

≤ p(x̂n)
2−n(H(X,X̂)−ε)

2−n(H(X)+ε)2−n(H(X̂)+ε)
(10.80)

= p(x̂n)2n(I (X;X̂)+3ε), (10.81)

and the lemma follows immediately. �

We also need the following interesting inequality.

Lemma 10.5.3 For 0 ≤ x, y ≤ 1, n > 0,

(1 − xy)n ≤ 1 − x + e−yn. (10.82)

Proof: Let f (y) = e−y − 1 + y. Then f (0) = 0 and f ′(y) = −e−y +
1 > 0 for y > 0, and hence f (y) > 0 for y > 0. Hence for 0 ≤ y ≤ 1,
we have 1 − y ≤ e−y , and raising this to the nth power, we obtain

(1 − y)n ≤ e−yn. (10.83)

Thus, the lemma is satisfied for x = 1. By examination, it is clear that
the inequality is also satisfied for x = 0. By differentiation, it is easy
to see that gy(x) = (1 − xy)n is a convex function of x, and hence for
0 ≤ x ≤ 1, we have

(1 − xy)n = gy(x) (10.84)

≤ (1 − x)gy(0) + xgy(1) (10.85)

= (1 − x)1 + x(1 − y)n (10.86)

≤ 1 − x + xe−yn (10.87)

≤ 1 − x + e−yn. � (10.88)

We use the preceding proof to prove the achievability of Theorem 10.2.1.
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Proof: (Achievability in Theorem 10.2.1). Let X1, X2, . . . , Xn be drawn
i.i.d. ∼ p(x) and let d(x, x̂) be a bounded distortion measure for this
source. Let the rate distortion function for this source be R(D). Then for
any D, and any R > R(D), we will show that the rate distortion pair
(R, D) is achievable by proving the existence of a sequence of rate dis-
tortion codes with rate R and asymptotic distortion D. Fix p(x̂|x), where
p(x̂|x) achieves equality in (10.53). Thus, I (X; X̂) = R(D). Calculate
p(x̂) = ∑

x p(x)p(x̂|x). Choose δ > 0. We will prove the existence of a
rate distortion code with rate R and distortion less than or equal to D + δ.

Generation of codebook: Randomly generate a rate distortion codebook
C consisting of 2nR sequences X̂n drawn i.i.d. ∼ ∏n

i=1 p(x̂i). Index these
codewords by w ∈ {1, 2, . . . , 2nR}. Reveal this codebook to the encoder
and decoder.

Encoding: Encode Xn by w if there exists a w such that (Xn, X̂n(w)) ∈
A

(n)
d,ε , the distortion typical set. If there is more than one such w, send the

least. If there is no such w, let w = 1. Thus, nR bits suffice to describe
the index w of the jointly typical codeword.

Decoding: The reproduced sequence is X̂n(w).
Calculation of distortion: As in the case of the channel coding theorem,

we calculate the expected distortion over the random choice of codebooks
C as

D = EXn,Cd(Xn, X̂n), (10.89)

where the expectation is over the random choice of codebooks and over
Xn.

For a fixed codebook C and choice of ε > 0, we divide the sequences
xn ∈ Xn into two categories:

• Sequences xn such that there exists a codeword X̂n(w) that is dis-
tortion typical with xn [i.e., d(xn, x̂n(w)) < D + ε]. Since the total
probability of these sequences is at most 1, these sequences contribute
at most D + ε to the expected distortion.

• Sequences xn such that there does not exist a codeword X̂n(w)

that is distortion typical with xn. Let Pe be the total probability of
these sequences. Since the distortion for any individual sequence is
bounded by dmax, these sequences contribute at most Pedmax to the
expected distortion.

Hence, we can bound the total distortion by

Ed(Xn, X̂n(Xn)) ≤ D + ε + Pedmax, (10.90)
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which can be made less than D + δ for an appropriate choice of ε if Pe is
small enough. Hence, if we show that Pe is small, the expected distortion
is close to D and the theorem is proved.

Calculation of Pe: We must bound the probability that for a random
choice of codebook C and a randomly chosen source sequence, there is
no codeword that is distortion typical with the source sequence. Let J (C)
denote the set of source sequences xn such that at least one codeword in
C is distortion typical with xn. Then

Pe =
∑
C

P(C)
∑

xn:xn /∈J (C)

p(xn). (10.91)

This is the probability of all sequences not well represented by a code,
averaged over the randomly chosen code. By changing the order of sum-
mation, we can also interpret this as the probability of choosing a code-
book that does not well represent sequence xn, averaged with respect to
p(xn). Thus,

Pe =
∑
xn

p(xn)
∑

C:xn /∈J (C)

p(C). (10.92)

Let us define

K(xn, x̂n) =
{

1 if (xn, x̂n) ∈ A
(n)
d,ε,

0 if (xn, x̂n) /∈ A
(n)
d,ε.

(10.93)

The probability that a single randomly chosen codeword X̂n does not well
represent a fixed xn is

Pr((xn, X̂n) /∈ A
(n)
d,ε) = Pr(K(xn, X̂n) = 0) = 1 −

∑
x̂n

p(x̂n)K(xn, x̂n),

(10.94)
and therefore the probability that 2nR independently chosen codewords do
not represent xn, averaged over p(xn), is

Pe =
∑
xn

p(xn)
∑

C:xn /∈J (C)

p(C) (10.95)

=
∑
xn

p(xn)

[
1 −

∑
x̂n

p(x̂n)K(xn, x̂n)

]2nR

. (10.96)
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We now use Lemma 10.5.2 to bound the sum within the brackets. From
Lemma 10.5.2, it follows that

∑
x̂n

p(x̂n)K(xn, x̂n) ≥
∑
x̂n

p(x̂n|xn)2−n(I (X;X̂)+3ε)K(xn, x̂n), (10.97)

and hence

Pe ≤
∑
xn

p(xn)

(
1 − 2−n(I (X;X̂)+3ε)

∑
x̂n

p(x̂n|xn)K(xn, x̂n)

)2nR

.

(10.98)

We now use Lemma 10.5.3 to bound the term on the right-hand side
of (10.98) and obtain

(
1 − 2−n(I (X;X̂)+3ε)

∑
x̂n

p(x̂n|xn)K(xn, x̂n)

)2nR

≤ 1 − ∑
x̂n p(x̂n|xn)K(xn, x̂n) + e−(2−n(I (X;X̂)+3ε)2nR). (10.99)

Substituting this inequality in (10.98), we obtain

Pe ≤ 1 −
∑
xn

∑
x̂n

p(xn)p(x̂n|xn)K(xn, x̂n) + e−2−n(I (X;X̂)+3ε)2nR

.

(10.100)

The last term in the bound is equal to

e−2n(R−I (X;X̂)−3ε)

, (10.101)

which goes to zero exponentially fast with n if R > I (X; X̂) + 3ε. Hence
if we choose p(x̂|x) to be the conditional distribution that achieves the
minimum in the rate distortion function, then R > R(D) implies that
R > I (X; X̂) and we can choose ε small enough so that the last term in
(10.100) goes to 0.

The first two terms in (10.100) give the probability under the joint
distribution p(xn, x̂n) that the pair of sequences is not distortion typical.
Hence, using Lemma 10.5.1, we obtain

1 −
∑
xn

∑
x̂n

p(xn, x̂n)K(xn, x̂n) = Pr((Xn, X̂n) /∈ A
(n)
d,ε) < ε

(10.102)
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for n sufficiently large. Therefore, by an appropriate choice of ε and n,
we can make Pe as small as we like.

So, for any choice of δ > 0, there exists an ε and n such that over all
randomly chosen rate R codes of block length n, the expected distortion
is less than D + δ. Hence, there must exist at least one code C∗ with this
rate and block length with average distortion less than D + δ. Since δ was
arbitrary, we have shown that (R, D) is achievable if R > R(D). �

We have proved the existence of a rate distortion code with an expected
distortion close to D and a rate close to R(D). The similarities between
the random coding proof of the rate distortion theorem and the random
coding proof of the channel coding theorem are now evident. We will
explore the parallels further by considering the Gaussian example, which
provides some geometric insight into the problem. It turns out that channel
coding is sphere packing and rate distortion coding is sphere covering.

Channel coding for the Gaussian channel. Consider a Gaussian channel,
Yi = Xi + Zi , where the Zi are i.i.d. ∼ N(0, N) and there is a power
constraint P on the power per symbol of the transmitted codeword. Con-
sider a sequence of n transmissions. The power constraint implies that
the transmitted sequence lies within a sphere of radius

√
nP in Rn. The

coding problem is equivalent to finding a set of 2nR sequences within
this sphere such that the probability of any of them being mistaken for
any other is small—the spheres of radius

√
nN around each of them are

almost disjoint. This corresponds to filling a sphere of radius
√

n(P + N)

with spheres of radius
√

nN . One would expect that the largest number
of spheres that could be fit would be the ratio of their volumes, or, equiv-
alently, the nth power of the ratio of their radii. Thus, if M is the number
of codewords that can be transmitted efficiently, we have

M ≤ (
√

n(P + N))n

(
√

nN)n
=

(
P + N

N

) n
2

. (10.103)

The results of the channel coding theorem show that it is possible to do
this efficiently for large n; it is possible to find approximately

2nC =
(

P + N

N

) n
2

(10.104)

codewords such that the noise spheres around them are almost disjoint
(the total volume of their intersection is arbitrarily small).
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Rate distortion for the Gaussian source. Consider a Gaussian source of
variance σ 2. A (2nR, n) rate distortion code for this source with distortion
D is a set of 2nR sequences in Rn such that most source sequences of
length n (all those that lie within a sphere of radius

√
nσ 2) are within a

distance
√

nD of some codeword. Again, by the sphere-packing argument,
it is clear that the minimum number of codewords required is

2nR(D) =
(

σ 2

D

) n
2

. (10.105)

The rate distortion theorem shows that this minimum rate is asymptotically
achievable (i.e., that there exists a collection of spheres of radius

√
nD

that cover the space except for a set of arbitrarily small probability).
The above geometric arguments also enable us to transform a good

code for channel transmission into a good code for rate distortion. In both
cases, the essential idea is to fill the space of source sequences: In channel
transmission, we want to find the largest set of codewords that have a large
minimum distance between codewords, whereas in rate distortion, we wish
to find the smallest set of codewords that covers the entire space. If we
have any set that meets the sphere packing bound for one, it will meet the
sphere packing bound for the other. In the Gaussian case, choosing the
codewords to be Gaussian with the appropriate variance is asymptotically
optimal for both rate distortion and channel coding.

10.6 STRONGLY TYPICAL SEQUENCES AND RATE
DISTORTION

In Section 10.5 we proved the existence of a rate distortion code of
rate R(D) with average distortion close to D. In fact, not only is the
average distortion close to D, but the total probability that the distor-
tion is greater than D + δ is close to 0. The proof of this is similar
to the proof in Section 10.5; the main difference is that we will use
strongly typical sequences rather than weakly typical sequences. This
will enable us to give an upper bound to the probability that a typical
source sequence is not well represented by a randomly chosen codeword
in (10.94). We now outline an alternative proof based on strong typical-
ity that will provide a stronger and more intuitive approach to the rate
distortion theorem.

We begin by defining strong typicality and quoting a basic theorem
bounding the probability that two sequences are jointly typical. The
properties of strong typicality were introduced by Berger [53] and were
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explored in detail in the book by Csiszár and Körner [149]. We will
define strong typicality (as in Chapter 11) and state a fundamental lemma
(Lemma 10.6.2).

Definition A sequence xn ∈ Xn is said to be ε-strongly typical with
respect to a distribution p(x) on X if:

1. For all a ∈ X with p(a) > 0, we have
∣∣∣∣1

n
N(a|xn) − p(a)

∣∣∣∣ <
ε

|X| . (10.106)

2. For all a ∈ X with p(a) = 0, N(a|xn) = 0.

N(a|xn) is the number of occurrences of the symbol a in the sequence
xn.

The set of sequences xn ∈ Xn such that xn is strongly typical is called
the strongly typical set and is denoted A∗(n)

ε (X) or A∗(n)
ε when the random

variable is understood from the context.

Definition A pair of sequences (xn, yn) ∈ Xn × Yn is said to be ε-
strongly typical with respect to a distribution p(x, y) on X × Y if:

1. For all (a, b) ∈ X × Y with p(a, b) > 0, we have
∣∣∣∣1

n
N(a, b|xn, yn) − p(a, b)

∣∣∣∣ <
ε

|X||Y| . (10.107)

2. For all (a, b) ∈ X × Y with p(a, b) = 0, N(a, b|xn, yn) = 0.

N(a, b|xn, yn) is the number of occurrences of the pair (a, b) in the pair
of sequences (xn, yn).

The set of sequences (xn, yn) ∈ Xn × Yn such that (xn, yn) is strongly
typical is called the strongly typical set and is denoted A∗(n)

ε (X, Y ) or
A∗(n)

ε . From the definition, it follows that if (xn, yn) ∈ A∗(n)
ε (X, Y ), then

xn ∈ A∗(n)
ε (X). From the strong law of large numbers, the following

lemma is immediate.

Lemma 10.6.1 Let (Xi, Yi) be drawn i.i.d. ∼ p(x, y). Then Pr(A∗(n)
ε )

→ 1 as n → ∞.

We will use one basic result, which bounds the probability that an
independently drawn sequence will be seen as jointly strongly typical
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with a given sequence. Theorem 7.6.1 shows that if we choose Xn and
Yn independently, the probability that they will be weakly jointly typical
is ≈ 2−nI (X;Y). The following lemma extends the result to strongly typical
sequences. This is stronger than the earlier result in that it gives a lower
bound on the probability that a randomly chosen sequence is jointly typical
with a fixed typical xn.

Lemma 10.6.2 Let Y1, Y2, . . . , Yn be drawn i.i.d. ∼ p(y). For xn ∈
A∗(n)

ε (X), the probability that (xn, Y n) ∈ A∗(n)
ε is bounded by

2−n(I (X;Y)+ε1) ≤ Pr((xn, Y n) ∈ A∗(n)
ε ) ≤ 2−n(I (X;Y)−ε1), (10.108)

where ε1 goes to 0 as ε → 0 and n → ∞.

Proof: We will not prove this lemma, but instead, outline the proof in
Problem 10.16 at the end of the chapter. In essence, the proof involves
finding a lower bound on the size of the conditionally typical set. �

We will proceed directly to the achievability of the rate distortion
function. We will only give an outline to illustrate the main ideas. The
construction of the codebook and the encoding and decoding are similar
to the proof in Section 10.5.

Proof: Fix p(x̂|x). Calculate p(x̂) = ∑
x p(x)p(x̂|x). Fix ε > 0. Later

we will choose ε appropriately to achieve an expected distortion less than
D + δ.

Generation of codebook: Generate a rate distortion codebook C consist-
ing of 2nR sequences X̂n drawn i.i.d. ∼ ∏

i p(x̂i). Denote the sequences
X̂n(1), . . . , X̂n(2nR).

Encoding: Given a sequence Xn, index it by w if there exists a w such
that (Xn, X̂n(w)) ∈ A∗(n)

ε , the strongly jointly typical set. If there is more
than one such w, send the first in lexicographic order. If there is no such
w, let w = 1.

Decoding: Let the reproduced sequence be X̂n(w).
Calculation of distortion: As in the case of the proof in Section 10.5, we

calculate the expected distortion over the random choice of codebook as

D = EXn,Cd(Xn, X̂n) (10.109)

= EC
∑
xn

p(xn)d(xn, X̂n(xn)) (10.110)

=
∑
xn

p(xn)ECd(xn, X̂n), (10.111)



328 RATE DISTORTION THEORY
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FIGURE 10.8. Classes of source sequences in rate distortion theorem.

where the expectation is over the random choice of codebook. For a fixed
codebook C, we divide the sequences xn ∈ Xn into three categories, as
shown in Figure 10.8.

• Nontypical sequences xn /∈ A∗(n)
ε . The total probability of these

sequences can be made less than ε by choosing n large enough. Since
the individual distortion between any two sequences is bounded by
dmax, the nontypical sequences can contribute at most εdmax to the
expected distortion.

• Typical sequences xn ∈ A∗(n)
ε such that there exists a codeword X̂n(w)

that is jointly typical with xn. In this case, since the source sequence
and the codeword are strongly jointly typical, the continuity of the
distortion as a function of the joint distribution ensures that they
are also distortion typical. Hence, the distortion between these xn

and their codewords is bounded by D + εdmax, and since the total
probability of these sequences is at most 1, these sequences contribute
at most D + εdmax to the expected distortion.

• Typical sequences xn ∈ A∗(n)
ε such that there does not exist a code-

word X̂n that is jointly typical with xn. Let Pe be the total probability
of these sequences. Since the distortion for any individual sequence
is bounded by dmax, these sequences contribute at most Pedmax to the
expected distortion.
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The sequences in the first and third categories are the sequences that
may not be well represented by this rate distortion code. The probability
of the first category of sequences is less than ε for sufficiently large n. The
probability of the last category is Pe, which we will show can be made
small. This will prove the theorem that the total probability of sequences
that are not well represented is small. In turn, we use this to show that
the average distortion is close to D.

Calculation of Pe: We must bound the probability that there is no code-
word that is jointly typical with the given sequence Xn. From the joint
AEP, we know that the probability that Xn and any X̂n are jointly typical
is

.= 2−nI (X;X̂). Hence the expected number of jointly typical X̂n(w) is
2nR2−nI (X;X̂), which is exponentially large if R > I (X; X̂).

But this is not sufficient to show that Pe → 0. We must show that the
probability that there is no codeword that is jointly typical with Xn goes
to zero. The fact that the expected number of jointly typical codewords is
exponentially large does not ensure that there will at least one with high
probability. Just as in (10.94), we can expand the probability of error as

Pe =
∑

xn∈A
∗(n)
ε

p(xn)
[
1 − Pr((xn, X̂n) ∈ A∗(n)

ε )
]2nR

. (10.112)

From Lemma 10.6.2 we have

Pr((xn, X̂n) ∈ A∗(n)
ε ) ≥ 2−n(I (X;X̂)+ε1). (10.113)

Substituting this in (10.112) and using the inequality (1 − x)n ≤ e−nx , we
have

Pe ≤ e−(2nR2−n(I (X;X̂)+ε1))

, (10.114)

which goes to 0 as n → ∞ if R > I (X; X̂) + ε1. Hence for an appropriate
choice of ε and n, we can get the total probability of all badly represented
sequences to be as small as we want. Not only is the expected distortion
close to D, but with probability going to 1, we will find a codeword whose
distortion with respect to the given sequence is less than D + δ. �

10.7 CHARACTERIZATION OF THE RATE DISTORTION
FUNCTION

We have defined the information rate distortion function as

R(D) = min
q(x̂|x):

∑
(x,x̂) p(x)q(x̂|x)d(x,x̂)≤D

I (X; X̂), (10.115)
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where the minimization is over all conditional distributions q(x̂|x) for
which the joint distribution p(x)q(x̂|x) satisfies the expected distortion
constraint. This is a standard minimization problem of a convex function
over the convex set of all q(x̂|x) ≥ 0 satisfying

∑
x̂ q(x̂|x) = 1 for all x

and
∑

q(x̂|x)p(x)d(x, x̂) ≤ D.
We can use the method of Lagrange multipliers to find the solution.

We set up the functional

J (q) =
∑

x

∑
x̂

p(x)q(x̂|x) log
q(x̂|x)∑

x p(x)q(x̂|x)

+ λ
∑

x

∑
x̂

p(x)q(x̂|x)d(x, x̂) (10.116)

+
∑

x

ν(x)
∑

x̂

q(x̂|x), (10.117)

where the last term corresponds to the constraint that q(x̂|x) is a condi-
tional probability mass function. If we let q(x̂) = ∑

x p(x)q(x̂|x) be the
distribution on X̂ induced by q(x̂|x), we can rewrite J (q) as

J (q) =
∑

x

∑
x̂

p(x)q(x̂|x) log
q(x̂|x)

q(x̂)

+λ
∑

x

∑
x̂

p(x)q(x̂|x)d(x, x̂) (10.118)

+
∑

x

ν(x)
∑

x̂

q(x̂|x). (10.119)

Differentiating with respect to q(x̂|x), we have

∂J

∂q(x̂|x)
= p(x) log

q(x̂|x)

q(x̂)
+ p(x) −

∑
x′

p(x′)q(x̂|x′)
1

q(x̂)
p(x)

+ λp(x)d(x, x̂) + ν(x) = 0. (10.120)

Setting log µ(x) = ν(x)/p(x), we obtain

p(x)

[
log

q(x̂|x)

q(x̂)
+ λd(x, x̂) + log µ(x)

]
= 0 (10.121)
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or

q(x̂|x) = q(x̂)e−λd(x,x̂)

µ(x)
. (10.122)

Since
∑

x̂ q(x̂|x) = 1, we must have

µ(x) =
∑

x̂

q(x̂)e−λd(x,x̂) (10.123)

or

q(x̂|x) = q(x̂)e−λd(x,x̂)∑
x̂ q(x̂)e−λd(x,x̂)

. (10.124)

Multiplying this by p(x) and summing over all x, we obtain

q(x̂) = q(x̂)
∑

x

p(x)e−λd(x,x̂)∑
x̂′ q(x̂′)e−λd(x,x̂′) . (10.125)

If q(x̂) > 0, we can divide both sides by q(x̂) and obtain

∑
x

p(x)e−λd(x,x̂)∑
x̂′ q(x̂′)e−λd(x,x̂′) = 1 (10.126)

for all x̂ ∈ X̂. We can combine these |X̂| equations with the equation
defining the distortion and calculate λ and the |X̂| unknowns q(x̂). We
can use this and (10.124) to find the optimum conditional distribution.

The above analysis is valid if q(x̂) is unconstrained (i.e., q(x̂) > 0 for
all x̂). The inequality condition q(x̂) > 0 is covered by the Kuhn–Tucker
conditions, which reduce to

∂J

∂q(x̂|x)
= 0 if q(x̂|x) > 0,

(10.127)≥ 0 if q(x̂|x) = 0.

Substituting the value of the derivative, we obtain the conditions for the
minimum as

∑
x

p(x)e−λd(x,x̂)∑
x̂′ q(x̂′)e−λd(x,x̂′) = 1 if q(x̂) > 0, (10.128)

≤ 1 if q(x̂) = 0. (10.129)
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This characterization will enable us to check if a given q(x̂) is a solution
to the minimization problem. However, it is not easy to solve for the
optimum output distribution from these equations. In the next section we
provide an iterative algorithm for computing the rate distortion function.
This algorithm is a special case of a general algorithm for finding the
minimum relative entropy distance between two convex sets of probability
densities.

10.8 COMPUTATION OF CHANNEL CAPACITY AND THE RATE
DISTORTION FUNCTION

Consider the following problem: Given two convex sets A and B in Rn

as shown in Figure 10.9, we would like to find the minimum distance
between them:

dmin = min
a∈A,b∈B

d(a, b), (10.130)

where d(a, b) is the Euclidean distance between a and b. An intuitively
obvious algorithm to do this would be to take any point x ∈ A, and find
the y ∈ B that is closest to it. Then fix this y and find the closest point in
A. Repeating this process, it is clear that the distance decreases at each
stage. Does it converge to the minimum distance between the two sets?
Csiszár and Tusnády [155] have shown that if the sets are convex and
if the distance satisfies certain conditions, this alternating minimization
algorithm will indeed converge to the minimum. In particular, if the sets
are sets of probability distributions and the distance measure is the relative
entropy, the algorithm does converge to the minimum relative entropy
between the two sets of distributions.

A

B

FIGURE 10.9. Distance between convex sets.
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To apply this algorithm to rate distortion, we have to rewrite the rate
distortion function as a minimum of the relative entropy between two sets.
We begin with a simple lemma. A form of this lemma comes up again
in theorem 13.1.1, establishing the duality of channel capacity universal
data compression.

Lemma 10.8.1 Let p(x)p(y|x) be a given joint distribution. Then the
distribution r(y) that minimizes the relative entropy D(p(x)p(y|x)||p(x)

r(y)) is the marginal distribution r∗(y) corresponding to p(y|x):

D(p(x)p(y|x)||p(x)r∗(y)) = min
r(y)

D(p(x)p(y|x)||p(x)r(y)), (10.131)

where r∗(y) = ∑
x p(x)p(y|x). Also,

max
r(x|y)

∑
x,y

p(x)p(y|x) log
r(x|y)

p(x)
=

∑
x,y

p(x)p(y|x) log
r∗(x|y)

p(x)
,

(10.132)

where

r∗(x|y) = p(x)p(y|x)∑
x p(x)p(y|x)

. (10.133)

Proof

D(p(x)p(y|x)||p(x)r(y)) − D(p(x)p(y|x)||p(x)r∗(y))

=
∑
x,y

p(x)p(y|x) log
p(x)p(y|x)

p(x)r(y)
(10.134)

−
∑
x,y

p(x)p(y|x) log
p(x)p(y|x)

p(x)r∗(y)
(10.135)

=
∑
x,y

p(x)p(y|x) log
r∗(y)

r(y)
(10.136)

=
∑

y

r∗(y) log
r∗(y)

r(y)
(10.137)

= D(r∗||r) (10.138)

≥ 0. (10.139)
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The proof of the second part of the lemma is left as an exercise. �

We can use this lemma to rewrite the minimization in the definition of
the rate distortion function as a double minimization,

R(D) = min
r(x̂)

min
q(x̂|x):

∑
p(x)q(x̂|x)d(x,x̂)≤D

∑
x

∑
x̂

p(x)q(x̂|x) log
q(x̂|x)

r(x̂)
.

(10.140)

If A is the set of all joint distributions with marginal p(x) that satisfy the
distortion constraints and if B the set of product distributions p(x)r(x̂)

with arbitrary r(x̂), we can write

R(D) = min
q∈B

min
p∈A

D(p||q). (10.141)

We now apply the process of alternating minimization, which is called the
Blahut–Arimoto algorithm in this case. We begin with a choice of λ and
an initial output distribution r(x̂) and calculate the q(x̂|x) that minimizes
the mutual information subject to the distortion constraint. We can use the
method of Lagrange multipliers for this minimization to obtain

q(x̂|x) = r(x̂)e−λd(x,x̂)∑
x̂ r(x̂)e−λd(x,x̂)

. (10.142)

For this conditional distribution q(x̂|x), we calculate the output distribu-
tion r(x̂) that minimizes the mutual information, which by Lemma 10.8.1
is

r(x̂) =
∑

x

p(x)q(x̂|x). (10.143)

We use this output distribution as the starting point of the next iteration.
Each step in the iteration, minimizing over q(·|·) and then minimizing over
r(·), reduces the right-hand side of (10.140). Thus, there is a limit, and
the limit has been shown to be R(D) by Csiszár [139], where the value
of D and R(D) depends on λ. Thus, choosing λ appropriately sweeps out
the R(D) curve.

A similar procedure can be applied to the calculation of channel capac-
ity. Again we rewrite the definition of channel capacity,

C = max
r(x)

I (X;Y) = max
r(x)

∑
x

∑
y

r(x)p(y|x) log
r(x)p(y|x)

r(x)
∑

x′ r(x′)p(y|x′)

(10.144)
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as a double maximization using Lemma 10.8.1,

C = max
q(x|y)

max
r(x)

∑
x

∑
y

r(x)p(y|x) log
q(x|y)

r(x)
. (10.145)

In this case, the Csiszár–Tusnady algorithm becomes one of alternating
maximization—we start with a guess of the maximizing distribution r(x)

and find the best conditional distribution, which is, by Lemma 10.8.1,

q(x|y) = r(x)p(y|x)∑
x r(x)p(y|x)

. (10.146)

For this conditional distribution, we find the best input distribution
r(x) by solving the constrained maximization problem with Lagrange
multipliers. The optimum input distribution is

r(x) =
∏

y (q(x|y))p(y|x)

∑
x

∏
y (q(x|y))p(y|x)

, (10.147)

which we can use as the basis for the next iteration.
These algorithms for the computation of the channel capacity and the

rate distortion function were established by Blahut [65] and Arimoto [25]
and the convergence for the rate distortion computation was proved by
Csiszár [139]. The alternating minimization procedure of Csiszár and Tus-
nady can be specialized to many other situations as well, including the EM
algorithm [166], and the algorithm for finding the log-optimal portfolio
for a stock market [123].

SUMMARY

Rate distortion. The rate distortion function for a source X ∼ p(x)

and distortion measure d(x, x̂) is

R(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I (X; X̂), (10.148)

where the minimization is over all conditional distributions p(x̂|x) for
which the joint distribution p(x, x̂) = p(x)p(x̂|x) satisfies the expected
distortion constraint.
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Rate distortion theorem. If R > R(D), there exists a sequence of
codes X̂n(Xn) with the number of codewords |X̂n(·)| ≤ 2nR with
Ed(Xn, X̂n(Xn)) → D. If R < R(D), no such codes exist.

Bernoulli source. For a Bernoulli source with Hamming distortion,

R(D) = H(p) − H(D). (10.149)

Gaussian source. For a Gaussian source with squared-error distortion,

R(D) = 1

2
log

σ 2

D
. (10.150)

Source–channel separation. A source with rate distortion R(D) can
be sent over a channel of capacity C and recovered with distortion D

if and only if R(D) < C.

Multivariate Gaussian source. The rate distortion function for a mul-
tivariate normal vector with Euclidean mean-squared-error distortion is
given by reverse water-filling on the eigenvalues.

PROBLEMS

10.1 One-bit quantization of a single Gaussian random variable. Let
X ∼ N(0, σ 2) and let the distortion measure be squared error.
Here we do not allow block descriptions. Show that the optimum

reproduction points for 1-bit quantization are ±
√

2
π
σ and that the

expected distortion for 1-bit quantization is π−2
π

σ 2. Compare this
with the distortion rate bound D = σ 22−2R for
R = 1.

10.2 Rate distortion function with infinite distortion. Find the rate dis-
tortion function R(D) = min I (X; X̂) for X ∼ Bernoulli ( 1

2) and
distortion

d(x, x̂) =



0, x = x̂

1, x = 1, x̂ = 0
∞, x = 0, x̂ = 1.
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10.3 Rate distortion for binary source with asymmetric distortion . Fix
p(x̂|x) and evaluate I (X; X̂) and D for

X ∼ Bernoulli

(
1

2

)
,

d(x, x̂) =
[

0 a

b 0

]
.

(The rate distortion function cannot be expressed in closed form.)

10.4 Properties of R(D). Consider a discrete source X ∈ X =
{1, 2, . . . , m} with distribution p1, p2, . . . , pm and a distortion
measure d(i, j). Let R(D) be the rate distortion function for
this source and distortion measure. Let d ′(i, j) = d(i, j) − wi be
a new distortion measure, and let R′(D) be the corresponding
rate distortion function. Show that R′(D) = R(D + w), where
w = ∑

piwi , and use this to show that there is no essential loss of
generality in assuming that minx̂ d(i, x̂) = 0 (i.e., for each x ∈ X,
there is one symbol x̂ that reproduces the source with zero dis-
tortion). This result is due to Pinkston [420].

10.5 Rate distortion for uniform source with Hamming distortion.
Consider a source X uniformly distributed on the set {1, 2, . . . ,m}.
Find the rate distortion function for this source with Hamming
distortion; that is,

d(x, x̂) =
{

0 if x = x̂,

1 if x �= x̂.

10.6 Shannon lower bound for the rate distortion function. Consider
a source X with a distortion measure d(x, x̂) that satisfies the
following property: All columns of the distortion matrix are per-
mutations of the set {d1, d2, . . . , dm}. Define the function

φ(D) = max
p:

∑m
i=1 pidi≤D

H(p). (10.151)

The Shannon lower bound on the rate distortion function [485]
is proved by the following steps:
(a) Show that φ(D) is a concave function of D.
(b) Justify the following series of inequalities for I (X; X̂) if

Ed(X, X̂) ≤ D,

I (X; X̂) = H(X) − H(X|X̂) (10.152)



338 RATE DISTORTION THEORY

= H(X) −
∑

x̂

p(x̂)H(X|X̂ = x̂) (10.153)

≥ H(X) −
∑

x̂

p(x̂)φ(Dx̂) (10.154)

≥ H(X) − φ

(∑
x̂

p(x̂)Dx̂

)
(10.155)

≥ H(X) − φ(D), (10.156)

where Dx̂ = ∑
x p(x|x̂)d(x, x̂).

(c) Argue that

R(D) ≥ H(X) − φ(D), (10.157)

which is the Shannon lower bound on the rate distortion func-
tion.

(d) If, in addition, we assume that the source has a uniform
distribution and that the rows of the distortion matrix are per-
mutations of each other, then R(D) = H(X) − φ(D) (i.e., the
lower bound is tight).

10.7 Erasure distortion. Consider X ∼ Bernoulli ( 1
2 ), and let the dis-

tortion measure be given by the matrix

d(x, x̂) =
[

0 1 ∞
∞ 1 0

]
. (10.158)

Calculate the rate distortion function for this source. Can you
suggest a simple scheme to achieve any value of the rate distortion
function for this source?

10.8 Bounds on the rate distortion function for squared-error distortion .
For the case of a continuous random variable X with mean zero
and variance σ 2 and squared-error distortion, show that

h(X) − 1

2
log(2πeD) ≤ R(D) ≤ 1

2
log

σ 2

D
. (10.159)

For the upper bound, consider the following joint distribution:
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Z ~ 0,
Ds2

s2 − D

X X 
^

X (X + Z )=
^

s2 − D
s2

s2 − D

s2

Are Gaussian random variables harder or easier to describe than
other random variables with the same variance?

10.9 Properties of optimal rate distortion code. A good (R, D) rate
distortion code with R ≈ R(D) puts severe constraints on the rela-
tionship of the source Xn and the representations X̂n. Examine the
chain of inequalities (10.58–10.71) considering the conditions for
equality and interpret as properties of a good code. For example,
equality in (10.59) implies that X̂n is a deterministic function
of Xn.

10.10 Rate distortion. Find and verify the rate distortion function R(D)

for X uniform on X = {1, 2, . . . , 2m} and

d(x, x̂) =
{

1 for x − x̂ odd,
0 for x − x̂ even,

where X̂ is defined on X̂ = {1, 2, . . . , 2m}. (You may wish to use
the Shannon lower bound in your argument.)

10.11 Lower bound . Let

X ∼ e−x4

∫ ∞
−∞ e−x4

dx

and
∫

x4e−x4
dx∫

e−x4
dx

= c.

Define g(a) = max h(X) over all densities such that EX4 ≤ a.
Let R(D) be the rate distortion function for X with the density
above and with distortion criterion d(x, x̂) = (x − x̂)4. Show that
R(D) ≥ g(c) − g(D).
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10.12 Adding a column to the distortion matrix . Let R(D) be the rate
distortion function for an i.i.d. process with probability mass func-
tion p(x) and distortion function d(x, x̂), x ∈ X, x̂ ∈ X̂. Now
suppose that we add a new reproduction symbol x̂0 to X̂ with asso-
ciated distortion d(x, x̂0), x ∈ X. Does this increase or decrease
R(D), and why?

10.13 Simplification. Suppose that X = {1, 2, 3, 4}, X̂ = {1, 2, 3, 4},
p(i) = 1

4 , i = 1, 2, 3, 4, and X1, X2, . . . are i.i.d. ∼ p(x). The
distortion matrix d(x, x̂) is given by

1 2 3 4
1 0 0 1 1
2 0 0 1 1
3 1 1 0 0
4 1 1 0 0

(a) Find R(0), the rate necessary to describe the process with
zero distortion.

(b) Find the rate distortion function R(D). There are some irrel-
evant distinctions in alphabets X and X̂, which allow the
problem to be collapsed.

(c) Suppose that we have a nonuniform distribution p(i) = pi ,
i = 1, 2, 3, 4. What is R(D)?

10.14 Rate distortion for two independent sources . Can one compress
two independent sources simultaneously better than by compress-
ing the sources individually? The following problem addresses this
question. Let {Xi} be i.i.d. ∼ p(x) with distortion d(x, x̂) and rate
distortion function RX(D). Similarly, let {Yi} be i.i.d. ∼ p(y) with
distortion d(y, ŷ) and rate distortion function RY (D). Suppose we
now wish to describe the process {(Xi, Yi)} subject to distortions
Ed(X, X̂) ≤ D1 and Ed(Y, Ŷ ) ≤ D2. Thus, a rate RX,Y (D1, D2)

is sufficient, where

RX,Y (D1,D2) = min
p(x̂,ŷ|x,y):Ed(X,X̂)≤D1,Ed(Y,Ŷ )≤D2

I (X, Y ; X̂, Ŷ ).

Now suppose that the {Xi} process and the {Yi} process are inde-
pendent of each other.
(a) Show that

RX,Y (D1, D2) ≥ RX(D1) + RY (D2).
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(b) Does equality hold?
Now answer the question.

10.15 Distortion rate function. Let

D(R) = min
p(x̂|x):I (X;X̂)≤R

Ed(X, X̂) (10.160)

be the distortion rate function.
(a) Is D(R) increasing or decreasing in R?
(b) Is D(R) convex or concave in R?
(c) Converse for distortion rate functions: We now wish to prove

the converse by focusing on D(R). Let X1, X2, . . . , Xn be
i.i.d. ∼ p(x). Suppose that one is given a (2nR, n) rate dis-
tortion code Xn → i(Xn) → X̂n(i(Xn)), with i(Xn) ∈ 2nR,
and suppose that the resulting distortion is D = Ed(Xn, X̂n

(i(Xn))). We must show that D ≥ D(R). Give reasons for the
following steps in the proof:

D = Ed(Xn, X̂n(i(Xn))) (10.161)

(a)= E
1

n

n∑
i=1

d(Xi, X̂i) (10.162)

(b)= 1

n

n∑
i=1

Ed(Xi, X̂i) (10.163)

(c)≥ 1

n

n∑
i=1

D
(
I (Xi; X̂i)

)
(10.164)

(d)≥ D

(
1

n

n∑
i=1

I (Xi; X̂i)

)
(10.165)

(e)≥ D

(
1

n
I (Xn; X̂n)

)
(10.166)

(f)≥ D(R). (10.167)

10.16 Probability of conditionally typical sequences . In Chapter 7 we
calculated the probability that two independently drawn sequences
Xn and Yn are weakly jointly typical. To prove the rate distor-
tion theorem, however, we need to calculate this probability when
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one of the sequences is fixed and the other is random. The tech-
niques of weak typicality allow us only to calculate the average
set size of the conditionally typical set. Using the ideas of strong
typicality, on the other hand, provides us with stronger bounds
that work for all typical xn sequences. We outline the proof that
Pr{(xn, Y n) ∈ A∗(n)

ε } ≈ 2−nI (X;Y) for all typical xn. This approach
was introduced by Berger [53] and is fully developed in the book
by Csiszár and Körner [149].
Let (Xi, Yi) be drawn i.i.d. ∼ p(x, y). Let the marginals of X and
Y be p(x) and p(y), respectively.
(a) Let A∗(n)

ε be the strongly typical set for X. Show that

|A∗(n)
ε | .=2nH(X). (10.168)

(Hint: Theorems 11.1.1 and 11.1.3.)
(b) The joint type of a pair of sequences (xn, yn) is the proportion

of times (xi, yi) = (a, b) in the pair of sequences:

pxn,yn(a, b) = 1

n
N(a, b|xn, yn) = 1

n

n∑
i=1

I (xi = a, yi = b).

(10.169)
The conditional type of a sequence yn given xn is a stochastic

matrix that gives the proportion of times a particular element
of Y occurred with each element of X in the pair of sequences.
Specifically, the conditional type Vyn|xn(b|a) is defined as

Vyn|xn(b|a) = N(a, b|xn, yn)

N(a|xn)
. (10.170)

Show that the number of conditional types is bounded by (n +
1)|X ||Y|.

(c) The set of sequences yn ∈ Yn with conditional type V with
respect to a sequence xn is called the conditional type class
TV (xn). Show that

1

(n + 1)|X ||Y| 2
nH(Y |X) ≤ |TV (xn)| ≤ 2nH(Y |X). (10.171)

(d) The sequence yn ∈ Yn is said to be ε-strongly conditionally
typical with the sequence xn with respect to the conditional
distribution V (·|·) if the conditional type is close to V . The
conditional type should satisfy the following two conditions:
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(i) For all (a, b) ∈ X × Y with V (b|a) > 0,

1

n

∣∣N(a, b|xn, yn) − V (b|a)N(a|xn)
∣∣ ≤ ε

|Y| + 1
.

(10.172)

(ii) N(a, b|xn, yn) = 0 for all (a, b) such that V (b|a) = 0.
The set of such sequences is called the conditionally typi-
cal set and is denoted A∗(n)

ε (Y |xn). Show that the number
of sequences yn that are conditionally typical with a given
xn ∈ Xn is bounded by

1

(n + 1)|X ||Y| 2
n(H(Y |X)−ε1) ≤ |A∗(n)

ε (Y |xn)|

≤ (n + 1)|X ||Y|2n(H(Y |X)+ε1), (10.173)

where ε1 → 0 as ε → 0.
(e) For a pair of random variables (X, Y ) with joint distribution

p(x, y), the ε-strongly typical set A∗(n)
ε is the set of sequences

(xn, yn) ∈ Xn × Yn satisfying
(i) ∣∣∣∣1

n
N(a, b|xn, yn) − p(a, b)

∣∣∣∣ <
ε

|X||Y| (10.174)

for every pair (a, b) ∈ X × Y with p(a, b) > 0.
(ii) N(a, b|xn, yn) = 0 for all (a, b) ∈ X × Y with

p(a, b) = 0.
The set of ε-strongly jointly typical sequences is called the
ε-strongly jointly typical set and is denoted A∗(n)

ε (X, Y ). Let
(X, Y ) be drawn i.i.d. ∼ p(x, y). For any xn such that there
exists at least one pair (xn, yn) ∈ A∗(n)

ε (X, Y ), the set of se-
quences yn such that (xn, yn) ∈ A∗(n)

ε satisfies

1

(n + 1)|X ||Y| 2
n(H(Y |X)−δ(ε)) ≤ |{yn : (xn, yn) ∈ A∗(n)

ε }|

≤ (n + 1)|X ||Y|2n(H(Y |X)+δ(ε)), (10.175)

where δ(ε) → 0 as ε → 0. In particular, we can write

2n(H(Y |X)−ε2) ≤ |{yn : (xn, yn) ∈ A∗(n)
ε }| ≤ 2n(H(Y |X)+ε2),

(10.176)
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where we can make ε2 arbitrarily small with an appropriate
choice of ε and n.

(f) Let Y1, Y2, . . . , Yn be drawn i.i.d. ∼ ∏
p(yi). For xn ∈ A∗(n)

ε ,
the probability that (xn, Y n) ∈ A∗(n)

ε is bounded by

2−n(I (X;Y)+ε3) ≤ Pr((xn, Y n) ∈ A∗(n)
ε ) ≤ 2−n(I (X;Y)−ε3),

(10.177)

where ε3 goes to 0 as ε → 0 and n → ∞.

10.17 Source–channel separation theorem with distortion. Let V1,

V2, . . . , Vn be a finite alphabet i.i.d. source which is encoded
as a sequence of n input symbols Xn of a discrete memoryless
channel. The output of the channel Yn is mapped onto the recon-
struction alphabet V̂ n = g(Y n). Let D = Ed(V n, V̂ n) = 1

n

∑n
i=1

Ed(Vi, V̂i) be the average distortion achieved by this combined
source and channel coding scheme.

Channel Capacity CVn VnYnXn(Vn)
^

(a) Show that if C > R(D), where R(D) is the rate distortion
function for V , it is possible to find encoders and decoders
that achieve a average distortion arbitrarily close to D.

(b) (Converse) Show that if the average distortion is equal to D,
the capacity of the channel C must be greater than R(D).

10.18 Rate distortion. Let d(x, x̂) be a distortion function. We have
a source X ∼ p(x). Let R(D) be the associated rate distortion
function.
(a) Find R̃(D) in terms of R(D), where R̃(D) is the rate

distortion function associated with the distortion d̃(x, x̂) =
d(x, x̂) + a for some constant a > 0. (They are not equal.)

(b) Now suppose that d(x, x̂) ≥ 0 for all x, x̂ and define a new
distortion function d∗(x, x̂) = bd(x, x̂), where b is some num-
ber ≥ 0. Find the associated rate distortion function R∗(D) in
terms of R(D).

(c) Let X ∼ N(0, σ 2) and d(x, x̂) = 5(x − x̂)2 + 3. What is
R(D)?
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10.19 Rate distortion with two constraints . Let Xi be iid ∼ p(x). We
are given two distortion functions, d1(x, x̂) and d2(x, x̂). We
wish to describe Xn at rate R and reconstruct it with distortions
Ed1(X

n, X̂n
1) ≤ D1, and Ed2(X

n, X̂n
2) ≤ D2, as shown here:

Xn −→ i(Xn) −→ (X̂n
1(i), X̂n

2(i))

D1 = Ed1(X
n
1 , X̂n

1)

D2 = Ed2(X
n
1 , X̂n

2).

Here i(·) takes on 2nR values. What is the rate distortion function
R(D1, D2)?

10.20 Rate distortion. Consider the standard rate distortion problem,
Xi i.i.d. ∼ p(x), Xn → i(Xn) → X̂n, |i(·)| = 2nR. Consider two
distortion criteria d1(x, x̂) and d2(x, x̂). Suppose that d1(x, x̂) ≤
d2(x, x̂) for all x ∈ X, x̂ ∈ X̂. Let R1(D) and R2(D) be the cor-
responding rate distortion functions.
(a) Find the inequality relationship between R1(D) and R2(D).
(b) Suppose that we must describe the source {Xi} at the mini-

mum rate R achieving d1(X
n, X̂n

1) ≤ D and d2(X
n, X̂n

2) ≤ D.

Thus,

Xn → i(Xn) →
{

X̂n
1(i(Xn))

X̂n
2(i(Xn))

and |i(·)| = 2nR.

Find the minimum rate R.

HISTORICAL NOTES

The idea of rate distortion was introduced by Shannon in his original
paper [472]. He returned to it and dealt with it exhaustively in his 1959
paper [485], which proved the first rate distortion theorem. Meanwhile,
Kolmogorov and his school in the Soviet Union began to develop rate
distortion theory in 1956. Stronger versions of the rate distortion theorem
have been proved for more general sources in the comprehensive book by
Berger [52].

The inverse water-filling solution for the rate distortion function for
parallel Gaussian sources was established by McDonald and Schultheiss
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[381]. An iterative algorithm for the calculation of the rate distortion
function for a general i.i.d. source and arbitrary distortion measure was
described by Blahut [65], Arimoto [25], and Csiszár [139]. This algorithm
is a special case of a general alternating minimization algorithm due to
Csiszár and Tusnády [155].



CHAPTER 11

INFORMATION THEORY
AND STATISTICS

We now explore the relationship between information theory and statistics.
We begin by describing the method of types, which is a powerful technique
in large deviation theory. We use the method of types to calculate the
probability of rare events and to show the existence of universal source
codes. We also consider the problem of testing hypotheses and derive the
best possible error exponents for such tests (the Chernoff–Stein lemma).
Finally, we treat the estimation of the parameters of a distribution and
describe the role of Fisher information.

11.1 METHOD OF TYPES

The AEP for discrete random variables (Chapter 3) focuses our attention
on a small subset of typical sequences. The method of types is an even
more powerful procedure in which we consider sequences that have the
same empirical distribution. With this restriction, we can derive strong
bounds on the number of sequences with a particular empirical distribution
and the probability of each sequence in this set. It is then possible to derive
strong error bounds for the channel coding theorem and prove a variety
of rate distortion results. The method of types was fully developed by
Csiszár and Körner [149], who obtained most of their results from this
point of view.

Let X1, X2, . . . , Xn be a sequence of n symbols from an alphabet X =
{a1, a2, . . . , a|X |}. We use the notation xn and x interchangeably to denote
a sequence x1, x2, . . . , xn.

Definition The type Px (or empirical probability distribution) of a se-
quence x1, x2, . . . , xn is the relative proportion of occurrences of each

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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symbol of X (i.e., Px(a) = N(a|x)/n for all a ∈ X, where N(a|x) is the
number of times the symbol a occurs in the sequence x ∈ Xn).

The type of a sequence x is denoted as Px. It is a probability mass
function on X. (Note that in this chapter, we will use capital letters to
denote types and distributions. We also loosely use the word distribution
to mean a probability mass function.)

Definition The probability simplex in Rm is the set of points x =
(x1, x2, . . . , xm) ∈ Rm such that xi ≥ 0,

∑m
i=1 xi = 1.

The probability simplex is an (m − 1)-dimensional manifold in
m-dimensional space. When m = 3, the probability simplex is the
set of points {(x1, x2, x3) : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = 1}
(Figure 11.1). Since this is a triangular two-dimensional flat in R3, we
use a triangle to represent the probability simplex in later sections of this
chapter.

Definition Let Pn denote the set of types with denominator n.
For example, if X = {0, 1}, the set of possible types with denominator

n is

Pn =
{
(P (0), P (1)) :

(
0

n
,
n

n

)
,

(
1

n
,
n − 1

n

)
, . . . ,

(
n

n
,

0

n

)}
. (11.1)

Definition If P ∈ Pn, the set of sequences of length n and type P is
called the type class of P , denoted T (P ):

T (P ) = {x ∈ Xn : Px = P }. (11.2)

The type class is sometimes called the composition class of P .

x2

x3

x1

x1 + x2 + x3 = 1

1

1

1

FIGURE 11.1. Probability simplex in R3.
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Example 11.1.1 Let X = {1, 2, 3}, a ternary alphabet. Let x = 11321.
Then the type Px is

Px(1) = 3

5
, Px(2) = 1

5
, Px(3) = 1

5
. (11.3)

The type class of Px is the set of all sequences of length 5 with three 1’s,
one 2, and one 3. There are 20 such sequences, and

T (Px) = {11123, 11132, 11213, . . . , 32111}. (11.4)

The number of elements in T (P ) is

|T (P )| =
(

5

3, 1, 1

)
= 5!

3! 1! 1!
= 20. (11.5)

The essential power of the method of types arises from the following
theorem, which shows that the number of types is at most polynomial
in n.

Theorem 11.1.1

|Pn| ≤ (n + 1)|X |. (11.6)

Proof: There are |X| components in the vector that specifies Px. The
numerator in each component can take on only n + 1 values. So there are
at most (n + 1)|X | choices for the type vector. Of course, these choices
are not independent (e.g., the last choice is fixed by the others). But this
is a sufficiently good upper bound for our needs. �

The crucial point here is that there are only a polynomial number of
types of length n. Since the number of sequences is exponential in n, it
follows that at least one type has exponentially many sequences in its
type class. In fact, the largest type class has essentially the same number
of elements as the entire set of sequences, to first order in the exponent.

Now, we assume that the sequence X1, X2, . . . , Xn is drawn i.i.d.
according to a distribution Q(x). All sequences with the same type have
the same probability, as shown in the following theorem. Let Qn(xn) =∏n

i=1 Q(xi) denote the product distribution associated with Q.

Theorem 11.1.2 If X1, X2, . . . , Xn are drawn i.i.d. according to Q(x),
the probability of x depends only on its type and is given by

Qn(x) = 2−n(H(Px)+D(Px||Q)). (11.7)
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Proof

Qn(x) =
n∏

i=1

Q(xi) (11.8)

=
∏
a∈X

Q(a)N(a|x) (11.9)

=
∏
a∈X

Q(a)nPx(a) (11.10)

=
∏
a∈X

2nPx(a) log Q(a) (11.11)

=
∏
a∈X

2n(Px(a) log Q(a)−Px(a) log Px(a)+Px(a) log Px(a)) (11.12)

= 2n
∑

a∈X (−Px(a) log Px(a)
Q(a)

+Px(a) log Px(a)) (11.13)

= 2n(−D(Px||Q)−H(Px)). � (11.14)

Corollary If x is in the type class of Q, then

Qn(x) = 2−nH(Q). (11.15)

Proof: If x ∈ T (Q), then Px = Q, which can be substituted into (11.14).
�

Example 11.1.2 The probability that a fair die produces a particular
sequence of length n with precisely n/6 occurrences of each face (n is a
multiple of 6) is 2−nH( 1

6 , 1
6 ,..., 1

6 ) = 6−n. This is obvious. However, if the
die has a probability mass function ( 1

3 , 1
3 , 1

6 , 1
12 , 1

12 , 0), the probability of
observing a particular sequence with precisely these frequencies is pre-
cisely 2−nH( 1

3 , 1
3 , 1

6 , 1
12 , 1

12 ,0) for n a multiple of 12. This is more interesting.

We now give an estimate of the size of a type class T (P ).

Theorem 11.1.3 (Size of a type class T (P )) For any type P ∈ Pn,

1

(n + 1)|X | 2
nH(P ) ≤ |T (P )| ≤ 2nH(P ). (11.16)

Proof: The exact size of T (P ) is easy to calculate. It is a simple combi-
natorial problem—the number of ways of arranging nP (a1), nP (a2), . . . ,
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nP (a|X |) objects in a sequence, which is

|T (P )| =
(

n

nP (a1), nP (a2), . . . , nP (a|X |)

)
. (11.17)

This value is hard to manipulate, so we derive simple exponential bounds
on its value.

We suggest two alternative proofs for the exponential bounds. The first
proof uses Stirling’s formula [208] to bound the factorial function, and
after some algebra, we can obtain the bounds of the theorem. We give an
alternative proof. We first prove the upper bound. Since a type class must
have probability ≤ 1, we have

1 ≥ P n(T (P )) (11.18)

=
∑

x∈T (P )

P n(x) (11.19)

=
∑

x∈T (P )

2−nH(P ) (11.20)

= |T (P )|2−nH(P ), (11.21)

using Theorem 11.1.2. Thus,

|T (P )| ≤ 2nH(P ). (11.22)

Now for the lower bound. We first prove that the type class T (P )

has the highest probability among all type classes under the probability
distribution P :

P n(T (P )) ≥ P n(T (P̂ )) for all P̂ ∈ Pn. (11.23)

We lower bound the ratio of probabilities,

P n(T (P ))

P n(T (P̂ ))
= |T (P )|∏a∈X P(a)nP(a)

|T (P̂ )|∏a∈X P(a)nP̂ (a)
(11.24)

=
(

n
nP (a1), nP (a2),...,nP (a|X |)

)∏
a∈X P(a)nP(a)

(
n

nP̂ (a1), nP̂ (a2),...,nP̂ (a|X |)
)∏

a∈X P(a)nP̂ (a)
(11.25)

=
∏
a∈X

(nP̂ (a))!

(nP (a))!
P(a)n(P (a)−P̂ (a)). (11.26)
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Now using the simple bound (easy to prove by separately considering the
cases m ≥ n and m < n)

m!

n!
≥ nm−n, (11.27)

we obtain

P n(T (P ))

P n(T (P̂ ))
≥

∏
a∈X

(nP (a))nP̂ (a)−nP (a)P (a)n(P (a)−P̂ (a)) (11.28)

=
∏
a∈X

nn(P̂ (a)−P(a)) (11.29)

= nn(
∑

a∈X P̂ (a)−∑
a∈X P(a)) (11.30)

= nn(1−1) (11.31)

= 1. (11.32)

Hence, P n(T (P )) ≥ P n(T (P̂ )). The lower bound now follows easily
from this result, since

1 =
∑

Q∈Pn

P n(T (Q)) (11.33)

≤
∑

Q∈Pn

max
Q

P n(T (Q)) (11.34)

=
∑

Q∈Pn

P n(T (P )) (11.35)

≤ (n + 1)|X |P n(T (P )) (11.36)

= (n + 1)|X | ∑
x∈T (P )

P n(x) (11.37)

= (n + 1)|X | ∑
x∈T (P )

2−nH(P ) (11.38)

= (n + 1)|X ||T (P )|2−nH(P ), (11.39)

where (11.36) follows from Theorem 11.1.1 and (11.38) follows from
Theorem 11.1.2. �

We give a slightly better approximation for the binary case.
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Example 11.1.3 (Binary alphabet) In this case, the type is defined
by the number of 1’s in the sequence, and the size of the type class is
therefore

(
n
k

)
. We show that

1

n + 1
2

nH
(

k
n

)
≤

(
n

k

)
≤ 2

nH
(

k
n

)
. (11.40)

These bounds can be proved using Stirling’s approximation for the fac-
torial function (Lemma 17.5.1). But we provide a more intuitive proof
below.

We first prove the upper bound. From the binomial formula, for any p,

n∑
k=0

(
n

k

)
pk(1 − p)n−k = 1. (11.41)

Since all the terms of the sum are positive for 0 ≤ p ≤ 1, each of the
terms is less than 1. Setting p = k/n and taking the kth term, we get

1 ≥
(

n

k

)(
k

n

)k (
1 − k

n

)n−k

(11.42)

=
(

n

k

)
2k log k

n+(n−k) log n−k
n (11.43)

=
(

n

k

)
2

n
(

k
n log k

n+ n−k
n log n−k

n

)
(11.44)

=
(

n

k

)
2

−nH
(

k
n

)
. (11.45)

Hence,
(

n

k

)
≤ 2

nH
(

k
n

)
. (11.46)

For the lower bound, let S be a random variable with a binomial
distribution with parameters n and p. The most likely value of S is
S = 〈np〉. This can easily be verified from the fact that

P(S = i + 1)

P (S = i)
= n − i

i + 1

p

1 − p
(11.47)

and considering the cases when i < np and when i > np. Then, since
there are n + 1 terms in the binomial sum,
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1 =
n∑

k=0

(
n

k

)
pk(1 − p)n−k ≤ (n + 1) max

k

(
n

k

)
pk(1 − p)n−k (11.48)

= (n + 1)

(
n

〈np〉
)

p〈np〉(1 − p)n−〈np〉. (11.49)

Now let p = k/n. Then we have

1 ≤ (n + 1)

(
n

k

)(
k

n

)k (
1 − k

n

)n−k

, (11.50)

which by the arguments in (11.45) is equivalent to

1

n + 1
≤

(
n

k

)
2

−nH
(

k
n

)
, (11.51)

or

(
n

k

)
≥ 2

nH
(

k
n

)

n + 1
. (11.52)

Combining the two results, we see that(
n

k

)
.= 2

nH
(

k
n

)
. (11.53)

A more precise bound can be found in theorem 17.5.1 when k �= 0 or n.

Theorem 11.1.4 (Probability of type class) for any P ∈ Pn and any
distribution Q, the probability of the type class T (P ) under Qn is 2−nD(P ||Q)

to first order in the exponent. More precisely,

1

(n + 1)|X | 2
−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q). (11.54)

Proof: We have

Qn(T (P )) =
∑

x∈T (P )

Qn(x) (11.55)

=
∑

x∈T (P )

2−n(D(P ||Q)+H(P)) (11.56)

= |T (P )|2−n(D(P ||Q)+H(P)), (11.57)
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by Theorem 11.1.2. Using the bounds on |T (P )| derived in Theorem
11.1.3, we have

1

(n + 1)|X | 2
−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q). � (11.58)

We can summarize the basic theorems concerning types in four equa-
tions:

|Pn| ≤ (n + 1)|X |, (11.59)

Qn(x) = 2−n(D(Px||Q)+H(Px)), (11.60)

|T (P )| .= 2nH(P ), (11.61)

Qn(T (P ))
.= 2−nD(P ||Q). (11.62)

These equations state that there are only a polynomial number of types
and that there are an exponential number of sequences of each type. We
also have an exact formula for the probability of any sequence of type P

under distribution Q and an approximate formula for the probability of a
type class.

These equations allow us to calculate the behavior of long sequences
based on the properties of the type of the sequence. For example, for
long sequences drawn i.i.d. according to some distribution, the type of
the sequence is close to the distribution generating the sequence, and we
can use the properties of this distribution to estimate the properties of the
sequence. Some of the applications that will be dealt with in the next few
sections are as follows:

• The law of large numbers
• Universal source coding
• Sanov’s theorem
• The Chernoff–Stein lemma and hypothesis testing
• Conditional probability and limit theorems

11.2 LAW OF LARGE NUMBERS

The concept of type and type classes enables us to give an alternative
statement of the law of large numbers. In fact, it can be used as a proof
of a version of the weak law in the discrete case. The most important
property of types is that there are only a polynomial number of types, and
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an exponential number of sequences of each type. Since the probability
of each type class depends exponentially on the relative entropy distance
between the type P and the distribution Q, type classes that are far from
the true distribution have exponentially smaller probability.

Given an ε > 0, we can define a typical set T ε
Q of sequences for the

distribution Qn as

T ε
Q = {xn : D(Pxn ||Q) ≤ ε}. (11.63)

Then the probability that xn is not typical is

1 − Qn(T ε
Q) =

∑
P :D(P ||Q)>ε

Qn(T (P )) (11.64)

≤
∑

P :D(P ||Q)>ε

2−nD(P ||Q) (Theorem 11.1.4) (11.65)

≤
∑

P :D(P ||Q)>ε

2−nε (11.66)

≤ (n + 1)|X |2−nε (Theorem 11.1.1) (11.67)

= 2
−n

(
ε−|X | log(n+1)

n

)
, (11.68)

which goes to 0 as n → ∞. Hence, the probability of the typical set T ε
Q

goes to 1 as n → ∞. This is similar to the AEP proved in Chapter 3,
which is a form of the weak law of large numbers. We now prove that
the empirical distribution PXn converges to P .

Theorem 11.2.1 Let X1, X2, . . . , Xn be i.i.d. ∼ P(x). Then

Pr {D(Pxn ||P) > ε} ≤ 2−n(ε−|X | log(n+1)
n ), (11.69)

and consequently, D(Pxn ||P) → 0 with probability 1.

Proof: The inequality (11.69) was proved in (11.68). Summing over n,
we find that

∞∑
n=1

Pr{D(Pxn ||P) > ε} < ∞. (11.70)



11.3 UNIVERSAL SOURCE CODING 357

Thus, the expected number of occurrences of the event {D(Pxn ||P) > ε}
for all n is finite, which implies that the actual number of such occur-
rences is also finite with probability 1 (Borel–Cantelli lemma). Hence
D(Pxn ||P) → 0 with probability 1. �

We now define a stronger version of typicality than in Chapter 3.

Definition We define the strongly typical set A∗(n)
ε to be the set of

sequences in Xn for which the sample frequencies are close to the true
values:

A∗(n)
ε =


x ∈ Xn :

∣∣∣∣1

n
N(a|x) − P(a)

∣∣∣∣ <
ε

|X | , if P(a) > 0

N(a|x) = 0 if P(a) = 0


 .

(11.71)
Hence, the typical set consists of sequences whose type does not differ
from the true probabilities by more than ε/|X| in any component. By the
strong law of large numbers, it follows that the probability of the strongly
typical set goes to 1 as n → ∞. The additional power afforded by strong
typicality is useful in proving stronger results, particularly in universal
coding, rate distortion theory, and large deviation theory.

11.3 UNIVERSAL SOURCE CODING

Huffman coding compresses an i.i.d. source with a known distribution
p(x) to its entropy limit H(X). However, if the code is designed for
some incorrect distribution q(x), a penalty of D(p||q) is incurred. Thus,
Huffman coding is sensitive to the assumed distribution.

What compression can be achieved if the true distribution p(x) is
unknown? Is there a universal code of rate R, say, that suffices to describe
every i.i.d. source with entropy H(X) < R? The surprising answer is yes.
The idea is based on the method of types. There are 2nH(P ) sequences of
type P . Since there are only a polynomial number of types with denom-
inator n, an enumeration of all sequences xn with type Pxn such that
H(Pxn) < R will require roughly nR bits. Thus, by describing all such
sequences, we are prepared to describe any sequence that is likely to arise
from any distribution Q having entropy H(Q) < R. We begin with a
definition.

Definition A fixed-rate block code of rate R for a source X1, X2, . . . ,

Xn which has an unknown distribution Q consists of two mappings: the
encoder,

fn : Xn → {1, 2, . . . , 2nR}, (11.72)
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and the decoder,

φn : {1, 2, . . . , 2nR} → Xn. (11.73)

Here R is called the rate of the code. The probability of error for the
code with respect to the distribution Q is

P (n)
e = Qn(Xn : φn(fn(X

n)) �= Xn) (11.74)

Definition A rate R block code for a source will be called universal
if the functions fn and φn do not depend on the distribution Q and if
P

(n)
e → 0 as n → ∞ if R > H(Q).
We now describe one such universal encoding scheme, due to Csiszár

and Körner [149], that is based on the fact that the number of sequences
of type P increases exponentially with the entropy and the fact that there
are only a polynomial number of types.

Theorem 11.3.1 There exists a sequence of (2nR, n) universal source
codes such that P

(n)
e → 0 for every source Q such that H(Q) < R.

Proof: Fix the rate R for the code. Let

Rn = R − |X| log(n + 1)

n
. (11.75)

Consider the set of sequences

A = {x ∈ Xn : H(Px) ≤ Rn}. (11.76)

Then

|A| =
∑

P∈Pn:H(P)≤Rn

|T (P )| (11.77)

≤
∑

P∈Pn:H(P)≤Rn

2nH(P ) (11.78)

≤
∑

P∈Pn:H(P)≤Rn

2nRn (11.79)

≤ (n + 1)|X |2nRn (11.80)

= 2n(Rn+|X | log(n+1)
n ) (11.81)

= 2nR. (11.82)
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By indexing the elements of A, we define the encoding function fn as

fn(x) =
{

index of x in A if x ∈ A,

0 otherwise.
(11.83)

The decoding function maps each index onto the corresponding element
of A. Hence all the elements of A are recovered correctly, and all the
remaining sequences result in an error. The set of sequences that are
recovered correctly is illustrated in Figure 11.2.

We now show that this encoding scheme is universal. Assume that the
distribution of X1, X2, . . . , Xn is Q and H(Q) < R. Then the probability
of decoding error is given by

P (n)
e = 1 − Qn(A) (11.84)

=
∑

P :H(P)>Rn

Qn(T (P )) (11.85)

≤ (n + 1)|X | max
P :H(P)>Rn

Qn(T (P )) (11.86)

≤ (n + 1)|X |2−n minP :H(P )>Rn D(P ||Q). (11.87)

Since Rn ↑ R and H(Q) < R, there exists n0 such that for all n ≥ n0,
Rn > H(Q). Then for n ≥ n0, minP :H(P)>Rn D(P ||Q) must be greater
than 0, and the probability of error P

(n)
e converges to 0 exponentially fast

as n → ∞.

H(P ) = R

A

FIGURE 11.2. Universal code and the probability simplex. Each sequence with type that
lies outside the circle is encoded by its index. There are fewer than 2nR such sequences.
Sequences with types within the circle are encoded by 0.
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FIGURE 11.3. Error exponent for the universal code.

On the other hand, if the distribution Q is such that the entropy H(Q)

is greater than the rate R, then with high probability the sequence will
have a type outside the set A. Hence, in such cases the probability of
error is close to 1.

The exponent in the probability of error is

D∗
R,Q = min

P :H(P)>R
D(P ||Q), (11.88)

which is illustrated in Figure 11.3. �

The universal coding scheme described here is only one of many such
schemes. It is universal over the set of i.i.d. distributions. There are other
schemes, such as the Lempel–Ziv algorithm, which is a variable-rate uni-
versal code for all ergodic sources. The Lempel–Ziv algorithm, discussed
in Section 13.4, is often used in practice to compress data that cannot be
modeled simply, such as English text or computer source code.

One may wonder why it is ever necessary to use Huffman codes, which
are specific to a probability distribution. What do we lose in using a
universal code? Universal codes need a longer block length to obtain
the same performance as a code designed specifically for the probability
distribution. We pay the penalty for this increase in block length by the
increased complexity of the encoder and decoder. Hence, a distribution
specific code is best if one knows the distribution of the source.

11.4 LARGE DEVIATION THEORY

The subject of large deviation theory can be illustrated by an example.
What is the probability that 1

n

∑
Xi is near 1

3 if X1, X2, . . . , Xn are drawn
i.i.d. Bernoulli( 1

3 )? This is a small deviation (from the expected outcome)
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and the probability is near 1. Now what is the probability that 1
n

∑
Xi

is greater than 3
4 given that X1, X2, . . . , Xn are Bernoulli( 1

3 )? This is
a large deviation, and the probability is exponentially small. We might
estimate the exponent using the central limit theorem, but this is a poor
approximation for more than a few standard deviations. We note that
1
n

∑
Xi = 3

4 is equivalent to Px = ( 1
4 , 3

4). Thus, the probability that Xn is
near 3

4 is the probability that type PX is near (3
4 , 1

4 ). The probability of

this large deviation will turn out to be ≈ 2−nD(( 3
4 , 1

4 )||( 1
3 , 2

3 )). In this section
we estimate the probability of a set of nontypical types.

Let E be a subset of the set of probability mass functions. For example,
E may be the set of probability mass functions with mean µ. With a slight
abuse of notation, we write

Qn(E) = Qn(E ∩ Pn) =
∑

x:Px∈E∩Pn

Qn(x). (11.89)

If E contains a relative entropy neighborhood of Q, then by the weak
law of large numbers (Theorem 11.2.1), Qn(E) → 1. On the other hand,
if E does not contain Q or a neighborhood of Q, then by the weak law
of large numbers, Qn(E) → 0 exponentially fast. We will use the method
of types to calculate the exponent.

Let us first give some examples of the kinds of sets E that we are
considering. For example, assume that by observation we find that the
sample average of g(X) is greater than or equal to α [i.e., 1

n

∑
i g(xi) ≥ α].

This event is equivalent to the event PX ∈ E ∩ Pn, where

E =
{

P :
∑
a∈X

g(a)P (a) ≥ α

}
, (11.90)

because

1

n

n∑
i=1

g(xi) ≥ α ⇔
∑
a∈X

PX(a)g(a) ≥ α (11.91)

⇔ PX ∈ E ∩ Pn. (11.92)

Thus,

Pr

(
1

n

n∑
i=1

g(Xi) ≥ α

)
= Qn(E ∩ Pn) = Qn(E). (11.93)
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P*

Q

E

FIGURE 11.4. Probability simplex and Sanov’s theorem.

Here E is a half space in the space of probability vectors, as illustrated
in Figure 11.4.

Theorem 11.4.1 (Sanov’s theorem) Let X1, X2, . . . , Xn be i.i.d.
∼ Q(x). Let E ⊆ P be a set of probability distributions. Then

Qn(E) = Qn(E ∩ Pn) ≤ (n + 1)|X |2−nD(P ∗||Q), (11.94)

where

P ∗ = arg min
P∈E

D(P ||Q) (11.95)

is the distribution in E that is closest to Q in relative entropy.
If, in addition, the set E is the closure of its interior, then

1

n
log Qn(E) → −D(P ∗||Q). (11.96)

Proof: We first prove the upper bound:

Qn(E) =
∑

P∈E∩Pn

Qn(T (P )) (11.97)

≤
∑

P∈E∩Pn

2−nD(P ||Q) (11.98)
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≤
∑

P∈E∩Pn

max
P∈E∩Pn

2−nD(P ||Q) (11.99)

=
∑

P∈E∩Pn

2−n minP∈E∩Pn D(P ||Q) (11.100)

≤
∑

P∈E∩Pn

2−n minP∈E D(P ||Q) (11.101)

=
∑

P∈E∩Pn

2−nD(P ∗||Q) (11.102)

≤ (n + 1)|X |2−nD(P ∗||Q), (11.103)

where the last inequality follows from Theorem 11.1.1. Note that P ∗ need
not be a member of Pn. We now come to the lower bound, for which we
need a “nice” set E, so that for all large n, we can find a distribution in
E ∩ Pn that is close to P ∗. If we now assume that E is the closure of its
interior (thus, the interior must be nonempty), then since ∪nPn is dense
in the set of all distributions, it follows that E ∩ Pn is nonempty for all
n ≥ n0 for some n0. We can then find a sequence of distributions Pn such
that Pn ∈ E ∩ Pn and D(Pn||Q) → D(P ∗||Q). For each n ≥ n0,

Qn(E) =
∑

P∈E∩Pn

Qn(T (P )) (11.104)

≥ Qn(T (Pn)) (11.105)

≥ 1

(n + 1)|X | 2
−nD(Pn||Q). (11.106)

Consequently,

lim inf
1

n
log Qn(E) ≥ lim inf

(
−|X| log(n + 1)

n
− D(Pn||Q)

)

= −D(P ∗||Q). (11.107)

Combining this with the upper bound establishes the theorem. �

This argument can be extended to continuous distributions using quan-
tization.
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11.5 EXAMPLES OF SANOV’S THEOREM

Suppose that we wish to find Pr{ 1
n

∑n
i=1 gj (Xi) ≥ αj , j = 1, 2, . . . , k}.

Then the set E is defined as

E =
{

P :
∑

a

P (a)gj (a) ≥ αj , j = 1, 2, . . . , k

}
. (11.108)

To find the closest distribution in E to Q, we minimize D(P ||Q) subject
to the constraints in (11.108). Using Lagrange multipliers, we construct
the functional

J (P ) =
∑

x

P (x) log
P(x)

Q(x)
+

∑
i

λi

∑
x

P (x)gi(x) + ν
∑

x

P (x).

(11.109)

We then differentiate and calculate the closest distribution to Q to be of
the form

P ∗(x) = Q(x)e
∑

i λigi (x)∑
a∈X Q(a)e

∑
i λigi (a)

, (11.110)

where the constants λi are chosen to satisfy the constraints. Note that if
Q is uniform, P ∗ is the maximum entropy distribution. Verification that
P ∗ is indeed the minimum follows from the same kinds of arguments as
given in Chapter 12.

Let us consider some specific examples:

Example 11.5.1 (Dice) Suppose that we toss a fair die n times; what
is the probability that the average of the throws is greater than or equal
to 4? From Sanov’s theorem, it follows that

Qn(E)
.= 2−nD(P ∗||Q), (11.111)

where P ∗ minimizes D(P ||Q) over all distributions P that satisfy

6∑
i=1

iP (i) ≥ 4. (11.112)
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From (11.110), it follows that P ∗ has the form

P ∗(x) = 2λx

∑6
i=1 2λi

, (11.113)

with λ chosen so that
∑

iP ∗(i) = 4. Solving numerically, we obtain
λ = 0.2519, P ∗ = (0.1031, 0.1227, 0.1461, 0.1740, 0.2072, 0.2468), and
therefore D(P ∗||Q) = 0.0624 bit. Thus, the probability that the average
of 10000 throws is greater than or equal to 4 is ≈ 2−624.

Example 11.5.2 (C oins) Suppose that we have a fair coin and want
to estimate the probability of observing more than 700 heads in a series
of 1000 tosses. The problem is like Example 11.5.1. The probability is

P(Xn ≥ 0.7)
.= 2−nD(P ∗||Q), (11.114)

where P ∗ is the (0.7, 0.3) distribution and Q is the (0.5, 0.5) distribution.
In this case, D(P ∗||Q) = 1 − H(P ∗) = 1 − H(0.7) = 0.119. Thus, the
probability of 700 or more heads in 1000 trials is approximately 2−119.

Example 11.5.3 (Mutual dependence) Let Q(x, y) be a given joint
distribution and let Q0(x, y) = Q(x)Q(y) be the associated product dis-
tribution formed from the marginals of Q. We wish to know the likelihood
that a sample drawn according to Q0 will “appear” to be jointly dis-
tributed according to Q. Accordingly, let (Xi, Yi) be i.i.d. ∼ Q0(x, y) =
Q(x)Q(y). We define joint typicality as we did in Section 7.6; that is,
(xn, yn) is jointly typical with respect to a joint distribution Q(x, y) iff
the sample entropies are close to their true values:

∣∣∣∣−1

n
log Q(xn) − H(X)

∣∣∣∣ ≤ ε, (11.115)

∣∣∣∣−1

n
log Q(yn) − H(Y)

∣∣∣∣ ≤ ε, (11.116)

and ∣∣∣∣−1

n
log Q(xn, yn) − H(X, Y )

∣∣∣∣ ≤ ε. (11.117)

We wish to calculate the probability (under the product distribution) of
seeing a pair (xn, yn) that looks jointly typical of Q [i.e., (xn, yn)
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satisfies (11.115)–(11.117)]. Thus, (xn, yn) are jointly typical with respect
to Q(x, y) if Pxn,yn ∈ E ∩ Pn(X, Y ), where

E = {P (x, y) :

∣∣∣∣∣−
∑
x,y

P (x, y) log Q(x) − H(X)

∣∣∣∣∣ ≤ ε,

∣∣∣∣∣−
∑
x,y

P (x, y) log Q(y) − H(Y)

∣∣∣∣∣ ≤ ε,

∣∣∣∣∣−
∑
x,y

P (x, y) log Q(x, y) − H(X, Y )

∣∣∣∣∣ ≤ ε}. (11.118)

Using Sanov’s theorem, the probability is

Qn
0(E)

.= 2−nD(P ∗||Q0), (11.119)

where P ∗ is the distribution satisfying the constraints that is closest to
Q0 in relative entropy. In this case, as ε → 0, it can be verified (Prob-
lem 11.10) that P ∗ is the joint distribution Q, and Q0 is the product
distribution, so that the probability is 2−nD(Q(x,y)||Q(x)Q(y)) = 2−nI (X;Y),
which is the same as the result derived in Chapter 7 for the joint AEP.

In the next section we consider the empirical distribution of the sequence
of outcomes given that the type is in a particular set of distributions E. We
will show that not only is the probability of the set E essentially determined
by D(P ∗||Q), the distance of the closest element of E to Q, but also that
the conditional type is essentially P ∗, so that given that we are in set E, the
type is very likely to be close to P ∗.

11.6 CONDITIONAL LIMIT THEOREM

It has been shown that the probability of a set of types under a distribution
Q is determined essentially by the probability of the closest element of
the set to Q; the probability is 2−nD∗

to first order in the exponent, where

D∗ = min
P∈E

D(P ||Q). (11.120)

This follows because the probability of the set of types is the sum of the
probabilities of each type, which is bounded by the largest term times the
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FIGURE 11.5. Pythagorean theorem for relative entropy.

number of terms. Since the number of terms is polynomial in the length
of the sequences, the sum is equal to the largest term to first order in the
exponent.

We now strengthen the argument to show that not only is the proba-
bility of the set E essentially the same as the probability of the closest
type P ∗ but also that the total probability of other types that are far
away from P ∗ is negligible. This implies that with very high probabil-
ity, the type observed is close to P ∗. We call this a conditional limit
theorem.

Before we prove this result, we prove a “Pythagorean” theorem, which
gives some insight into the geometry of D(P ||Q). Since D(P ||Q) is not
a metric, many of the intuitive properties of distance are not valid for
D(P ||Q). The next theorem shows a sense in which D(P ||Q) behaves
like the square of the Euclidean metric (Figure 11.5).

Theorem 11.6.1 For a closed convex set E ⊂ P and distribution Q /∈
E, let P ∗ ∈ E be the distribution that achieves the minimum distance to
Q; that is,

D(P ∗||Q) = min
P∈E

D(P ||Q). (11.121)

Then

D(P ||Q) ≥ D(P ||P ∗) + D(P ∗||Q) (11.122)

for all P ∈ E.
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Note. The main use of this theorem is as follows: Suppose that we have
a sequence Pn ∈ E that yields D(Pn||Q) → D(P ∗||Q). Then from the
Pythagorean theorem, D(Pn||P ∗) → 0 as well.

Proof: Consider any P ∈ E. Let

Pλ = λP + (1 − λ)P ∗. (11.123)

Then Pλ → P ∗ as λ → 0. Also, since E is convex, Pλ ∈ E for 0 ≤ λ ≤ 1.
Since D(P ∗||Q) is the minimum of D(Pλ||Q) along the path P ∗ → P ,
the derivative of D(Pλ||Q) as a function of λ is nonnegative at λ = 0.
Now

Dλ = D(Pλ||Q) =
∑

Pλ(x) log
Pλ(x)

Q(x)
(11.124)

and

dDλ

dλ
=

∑(
(P (x) − P ∗(x)) log

Pλ(x)

Q(x)
+ (P (x) − P ∗(x))

)
. (11.125)

Setting λ = 0, so that Pλ = P ∗ and using the fact that
∑

P(x) = ∑
P ∗

(x) = 1, we have

0 ≤
(

dDλ

dλ

)
λ=0

(11.126)

=
∑

(P (x) − P ∗(x)) log
P ∗(x)

Q(x)
(11.127)

=
∑

P(x) log
P ∗(x)

Q(x)
−

∑
P ∗(x) log

P ∗(x)

Q(x)
(11.128)

=
∑

P(x) log
P(x)

Q(x)

P ∗(x)

P (x)
−

∑
P ∗(x) log

P ∗(x)

Q(x)
(11.129)

= D(P ||Q) − D(P ||P ∗) − D(P ∗||Q), (11.130)

which proves the theorem. �

Note that the relative entropy D(P ||Q) behaves like the square of the
Euclidean distance. Suppose that we have a convex set E in Rn. Let A

be a point outside the set, B the point in the set closest to A, and C any
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A

B

C

FIGURE 11.6. Triangle inequality for distance squared.

other point in the set. Then the angle between the lines BA and BC must
be obtuse, which implies that l2

AC ≥ l2
AB + l2

BC , which is of the same form
as Theorem 11.6.1. This is illustrated in Figure 11.6.

We now prove a useful lemma which shows that convergence in relative
entropy implies convergence in the L1 norm.

Definition The L1 distance between any two distributions is defined as

||P1 − P2||1 =
∑
a∈X

|P1(a) − P2(a)|. (11.131)

Let A be the set on which P1(x) > P2(x). Then

||P1 − P2||1 =
∑
x∈X

|P1(x) − P2(x)| (11.132)

=
∑
x∈A

(P1(x) − P2(x)) +
∑
x∈Ac

(P2(x) − P1(x)) (11.133)

= P1(A) − P2(A) + P2(A
c) − P1(A

c) (11.134)

= P1(A) − P2(A) + 1 − P2(A) − 1 + P1(A) (11.135)

= 2(P1(A) − P2(A)). (11.136)
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Also note that

max
B⊆X

(P1(B) − P2(B)) = P1(A) − P2(A) = ||P1 − P2||1
2

. (11.137)

The left-hand side of (11.137) is called the variational distance between
P1 and P2.

Lemma 11.6.1

D(P1||P2) ≥ 1

2 ln 2
||P1 − P2||21. (11.138)

Proof: We first prove it for the binary case. Consider two binary distri-
butions with parameters p and q with p ≥ q. We will show that

p log
p

q
+ (1 − p) log

1 − p

1 − q
≥ 4

2 ln 2
(p − q)2. (11.139)

The difference g(p, q) between the two sides is

g(p, q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
− 4

2 ln 2
(p − q)2. (11.140)

Then

dg(p, q)

dq
= − p

q ln 2
+ 1 − p

(1 − q) ln 2
− 4

2 ln 2
2(q − p) (11.141)

= q − p

q(1 − q) ln 2
− 4

ln 2
(q − p) (11.142)

≤ 0 (11.143)

since q(1 − q) ≤ 1
4 and q ≤ p. For q = p, g(p, q) = 0, and hence

g(p, q) ≥ 0 for q ≤ p, which proves the lemma for the binary case.
For the general case, for any two distributions P1 and P2, let

A = {x : P1(x) > P2(x)}. (11.144)

Define a new binary random variable Y = φ(X), the indicator of the set A,
and let P̂1 and P̂2 be the distributions of Y . Thus, P̂1 and P̂2 correspond
to the quantized versions of P1 and P2. Then by the data-processing
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inequality applied to relative entropies (which is proved in the same way
as the data-processing inequality for mutual information), we have

D(P1||P2) ≥ D(P̂1||P̂2) (11.145)

≥ 4

2 ln 2
(P1(A) − P2(A))2 (11.146)

= 1

2 ln 2
||P1 − P2||21, (11.147)

by (11.137), and the lemma is proved. �

We can now begin the proof of the conditional limit theorem. We first
outline the method used. As stated at the beginning of the chapter, the
essential idea is that the probability of a type under Q depends exponen-
tially on the distance of the type from Q, and hence types that are farther
away are exponentially less likely to occur. We divide the set of types in
E into two categories: those at about the same distance from Q as P ∗ and
those a distance 2δ farther away. The second set has exponentially less
probability than the first, and hence the first set has a conditional proba-
bility tending to 1. We then use the Pythagorean theorem to establish that
all the elements in the first set are close to P ∗, which will establish the
theorem.

The following theorem is an important strengthening of the maximum
entropy principle.

Theorem 11.6.2 (Conditional limit theorem) Let E be a closed con-
vex subset of P and let Q be a distribution not in E. Let X1, X2, . . . , Xn

be discrete random variables drawn i.i.d. ∼ Q. Let P ∗ achieve minP∈E

D(P ||Q). Then

Pr(X1 = a|PXn ∈ E) → P ∗(a) (11.148)

in probability as n → ∞, i.e., the conditional distribution of X1, given that
the type of the sequence is in E, is close to P ∗ for large n.

Example 11.6.1 If Xi i.i.d. ∼ Q, then

Pr

{
X1 = a

∣∣∣∣1

n

∑
X2

i ≥ α

}
→ P ∗(a), (11.149)
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where P ∗(a) minimizes D(P ||Q) over P satisfying
∑

P(a)a2 ≥ α. This
minimization results in

P ∗(a) = Q(a)
eλa2

∑
a Q(a)eλa2 , (11.150)

where λ is chosen to satisfy
∑

P ∗(a)a2 = α. Thus, the conditional dis-
tribution on X1 given a constraint on the sum of the squares is a (normal-
ized) product of the original probability mass function and the maximum
entropy probability mass function (which in this case is Gaussian).

Proof of Theorem: Define the sets

St = {P ∈ P : D(P ||Q) ≤ t}. (11.151)

The set St is convex since D(P ||Q) is a convex function of P . Let

D∗ = D(P ∗||Q) = min
P∈E

D(P ||Q). (11.152)

Then P ∗ is unique, since D(P ||Q) is strictly convex in P . Now define
the set

A = SD∗+2δ ∩ E (11.153)

and

B = E − SD∗+2δ ∩ E. (11.154)

Thus, A ∪ B = E. These sets are illustrated in Figure 11.7. Then

Qn(B) =
∑

P∈E∩Pn:D(P ||Q)>D∗+2δ

Qn(T (P )) (11.155)

≤
∑

P∈E∩Pn:D(P ||Q)>D∗+2δ

2−nD(P ||Q) (11.156)

≤
∑

P∈E∩Pn:D(P ||Q)>D∗+2δ

2−n(D∗+2δ) (11.157)

≤ (n + 1)|X |2−n(D∗+2δ) (11.158)
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FIGURE 11.7. Conditional limit theorem.

since there are only a polynomial number of types. On the other hand,

Qn(A) ≥ Qn(SD∗+δ ∩ E) (11.159)

=
∑

P∈E∩Pn:D(P ||Q)≤D∗+δ

Qn(T (P )) (11.160)

≥
∑

P∈E∩Pn:D(P ||Q)≤D∗+δ

1

(n + 1)|X | 2
−nD(P ||Q) (11.161)

≥ 1

(n + 1)|X | 2
−n(D∗+δ) for n sufficiently large, (11.162)

since the sum is greater than one of the terms, and for sufficiently large n,
there exists at least one type in SD∗+δ ∩ E ∩ Pn. Then, for n sufficiently
large,

Pr(PXn ∈ B|PXn ∈ E) = Qn(B ∩ E)

Qn(E)
(11.163)

≤ Qn(B)

Qn(A)
(11.164)

≤ (n + 1)|X |2−n(D∗+2δ)

1
(n+1)|X | 2−n(D∗+δ)

(11.165)

= (n + 1)2|X |2−nδ, (11.166)
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which goes to 0 as n → ∞. Hence the conditional probability of B goes
to 0 as n → ∞, which implies that the conditional probability of A goes
to 1.

We now show that all the members of A are close to P ∗ in relative
entropy. For all members of A,

D(P ||Q) ≤ D∗ + 2δ. (11.167)

Hence by the “Pythagorean” theorem (Theorem 11.6.1),

D(P ||P ∗) + D(P ∗||Q) ≤ D(P ||Q) ≤ D∗ + 2δ, (11.168)

which in turn implies that

D(P ||P ∗) ≤ 2δ, (11.169)

since D(P ∗||Q) = D∗. Thus, Px ∈ A implies that D(Px||Q) ≤ D∗ + 2δ,
and therefore that D(Px||P ∗) ≤ 2δ. Consequently, since Pr{PXn ∈ A|PXn

∈ E} → 1, it follows that

Pr(D(PXn ||P ∗) ≤ 2δ|PXn ∈ E) → 1 (11.170)

as n → ∞. By Lemma 11.6.1, the fact that the relative entropy is small
implies that the L1 distance is small, which in turn implies that maxa∈X
|PXn(a) − P ∗(a)| is small. Thus, Pr(|PXn(a) − P ∗(a)| ≥ ε|PXn ∈ E) →
0 as n → ∞. Alternatively, this can be written as

Pr(X1 = a|PXn ∈ E) → P ∗(a) in probability, a ∈ X. (11.171)

In this theorem we have only proved that the marginal distribution goes
to P ∗ as n → ∞. Using a similar argument, we can prove a stronger
version of this theorem:

Pr(X1 = a1,X2 = a2, . . . , Xm

= am|PXn ∈ E) →
m∏

i=1

P ∗(ai) in probability. (11.172)

This holds for fixed m as n → ∞. The result is not true for m = n, since
there are end effects; given that the type of the sequence is in E, the
last elements of the sequence can be determined from the remaining ele-
ments, and the elements are no longer independent. The conditional limit



11.7 HYPOTHESIS TESTING 375

theorem states that the first few elements are asymptotically independent
with common distribution P ∗.

Example 11.6.2 As an example of the conditional limit theorem, let us
consider the case when n fair dice are rolled. Suppose that the sum of the
outcomes exceeds 4n. Then by the conditional limit theorem, the proba-
bility that the first die shows a number a ∈ {1, 2, . . . , 6} is approximately
P ∗(a), where P ∗(a) is the distribution in E that is closest to the uni-
form distribution, where E = {P :

∑
P(a)a ≥ 4}. This is the maximum

entropy distribution given by

P ∗(x) = 2λx

∑6
i=1 2λi

, (11.173)

with λ chosen so that
∑

iP ∗(i) = 4 (see Chapter 12). Here P ∗ is the
conditional distribution on the first (or any other) die. Apparently, the
first few dice inspected will behave as if they are drawn independently
according to an exponential distribution.

11.7 HYPOTHESIS TESTING

One of the standard problems in statistics is to decide between two alter-
native explanations for the data observed. For example, in medical testing,
one may wish to test whether or not a new drug is effective. Similarly, a
sequence of coin tosses may reveal whether or not the coin is biased.

These problems are examples of the general hypothesis-testing problem.
In the simplest case, we have to decide between two i.i.d. distributions.
The general problem can be stated as follows:

Problem 11.7.1 Let X1, X2, . . . , Xn be i.i.d. ∼ Q(x). We consider two
hypotheses:

• H1: Q = P1.
• H2: Q = P2.

Consider the general decision function g(x1, x2, . . . , xn), where g(x1,

x2, . . . , xn) = 1 means that H1 is accepted and g(x1, x2, . . . , xn) = 2
means that H2 is accepted. Since the function takes on only two val-
ues, the test can also be specified by specifying the set A over which
g(x1, x2, . . . , xn) is 1; the complement of this set is the set where
g(x1, x2, . . . , xn) has the value 2. We define the two probabilities of error:

α = Pr(g(X1, X2, . . . , Xn) = 2|H1 true) = P n
1 (Ac) (11.174)



376 INFORMATION THEORY AND STATISTICS

and

β = Pr(g(X1, X2, . . . , Xn) = 1|H2 true) = P n
2 (A). (11.175)

In general, we wish to minimize both probabilities, but there is a trade-
off. Thus, we minimize one of the probabilities of error subject to a
constraint on the other probability of error. The best achievable error
exponent in the probability of error for this problem is given by the
Chernoff–Stein lemma.

We first prove the Neyman–Pearson lemma, which derives the form of
the optimum test between two hypotheses. We derive the result for discrete
distributions; the same results can be derived for continuous distributions
as well.

Theorem 11.7.1 (Neyman–Pearson lemma) Let X1, X2, . . . , Xn be
drawn i.i.d. according to probability mass function Q. Consider the deci-
sion problem corresponding to hypotheses Q = P1 vs. Q = P2. For T ≥ 0,
define a region

An(T ) =
{
xn :

P1(x1, x2, . . . , xn)

P2(x1, x2, . . . , xn)
> T

}
. (11.176)

Let

α∗ = P n
1 (Ac

n(T )), β∗ = P n
2 (An(T )) (11.177)

be the corresponding probabilities of error corresponding to decision re-
gion An. Let Bn be any other decision region with associated probabilities
of error α and β. If α ≤ α∗, then β ≥ β∗.

Proof: Let A = An(T ) be the region defined in (11.176) and let B ⊆ Xn

be any other acceptance region. Let φA and φB be the indicator func-
tions of the decision regions A and B, respectively. Then for all x =
(x1, x2, . . . , xn) ∈ Xn,

(φA(x) − φB(x))(P1(x) − T P2(x)) ≥ 0. (11.178)

This can be seen by considering separately the cases x ∈ A and x /∈ A.
Multiplying out and summing this over the entire space, we obtain

0 ≤
∑

(φAP1 − T φAP2 − P1φB + T P2φB) (11.179)
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=
∑
A

(P1 − T P2) −
∑
B

(P1 − T P2) (11.180)

= (1 − α∗) − Tβ∗ − (1 − α) + Tβ (11.181)

= T (β − β∗) − (α∗ − α). (11.182)

Since T ≥ 0, we have proved the theorem. �
The Neyman–Pearson lemma indicates that the optimum test for two

hypotheses is of the form

P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
> T . (11.183)

This is the likelihood ratio test and the quantity P1(X1,X2,...,Xn)

P2(X1,X2,...,Xn)
is called the

likelihood ratio. For example, in a test between two Gaussian distributions
[i.e., between f1 = N(1, σ 2) and f2 = N(−1, σ 2)], the likelihood ratio
becomes

f1(X1, X2, . . . , Xn)

f2(X1, X2, . . . , Xn)
=

∏n
i=1

1√
2πσ 2

e
− (Xi−1)2

2σ2

∏n
i=1

1√
2πσ 2

e
− (Xi+1)2

2σ2

(11.184)

= e
+ 2

∑n
i=1 Xi

σ2 (11.185)

= e
+ 2nXn

σ2 . (11.186)

Hence, the likelihood ratio test consists of comparing the sample mean
Xn with a threshold. If we want the two probabilities of error to be equal,
we should set T = 1. This is illustrated in Figure 11.8.

In Theorem 11.7.1 we have shown that the optimum test is a likelihood
ratio test. We can rewrite the log-likelihood ratio as

L(X1, X2, . . . , Xn) = log
P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
(11.187)

=
n∑

i=1

log
P1(Xi)

P2(Xi)
(11.188)

=
∑
a∈X

nPXn(a) log
P1(a)

P2(a)
(11.189)

=
∑
a∈X

nPXn(a) log
P1(a)

P2(a)

PXn(a)

PXn(a)
(11.190)
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FIGURE 11.8. Testing between two Gaussian distributions.

=
∑
a∈X

nPXn(a) log
PXn(a)

P2(a)

−
∑
a∈X

nPXn(a) log
PXn(a)

P1(a)
(11.191)

= nD(PXn ||P2) − nD(PXn ||P1), (11.192)

the difference between the relative entropy distances of the sample type
to each of the two distributions. Hence, the likelihood ratio test

P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
> T (11.193)

is equivalent to

D(PXn ||P2) − D(PXn ||P1) >
1

n
log T . (11.194)

We can consider the test to be equivalent to specifying a region of the sim-
plex of types that corresponds to choosing hypothesis H1. The optimum
region is of the form (11.194), for which the boundary of the region is the
set of types for which the difference between the distances is a constant.
This boundary is the analog of the perpendicular bisector in Euclidean
geometry. The test is illustrated in Figure 11.9.

We now offer some informal arguments based on Sanov’s theorem to
show how to choose the threshold to obtain different probabilities of error.
Let B denote the set on which hypothesis 1 is accepted. The probability
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D(P||P1) = D(P||P2) = log T
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P1

1
n

FIGURE 11.9. Likelihood ratio test on the probability simplex.

of error of the first kind is

αn = P n
1 (PXn ∈ Bc). (11.195)

Since the set Bc is convex, we can use Sanov’s theorem to show that the
probability of error is determined essentially by the relative entropy of
the closest member of Bc to P1. Therefore,

αn
.= 2−nD(P ∗

1 ||P1), (11.196)

where P ∗
1 is the closest element of Bc to distribution P1. Similarly,

βn
.= 2−nD(P ∗

2 ||P2), (11.197)

where P ∗
2 is the closest element in B to the distribution P2.

Now minimizing D(P ||P2) subject to the constraint D(P ||P2) −
D(P ||P1) ≥ 1

n
log T will yield the type in B that is closest to P2. Set-

ting up the minimization of D(P ||P2) subject to D(P ||P2) − D(P ||P1) =
1
n

log T using Lagrange multipliers, we have

J (P ) =
∑

P(x) log
P(x)

P2(x)
+ λ

∑
P(x) log

P1(x)

P2(x)
+ ν

∑
P(x).

(11.198)

Differentiating with respect to P(x) and setting to 0, we have

log
P(x)

P2(x)
+ 1 + λ log

P1(x)

P2(x)
+ ν = 0. (11.199)
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Solving this set of equations, we obtain the minimizing P of the form

P ∗
2 = Pλ∗ = P λ

1 (x)P 1−λ
2 (x)∑

a∈X P λ
1 (a)P 1−λ

2 (a)
, (11.200)

where λ is chosen so that D(Pλ∗||P1) − D(Pλ∗ ||P2) = 1
n

log T .
From the symmetry of expression (11.200), it is clear that P ∗

1 = P ∗
2 and

that the probabilities of error behave exponentially with exponents given
by the relative entropies D(P ∗||P1) and D(P ∗||P2). Also note from the
equation that as λ → 1, Pλ → P1 and as λ → 0, Pλ → P2. The curve
that Pλ traces out as λ varies is a geodesic in the simplex. Here Pλ is a
normalized convex combination, where the combination is in the exponent
(Figure 11.9).

In the next section we calculate the best error exponent when one of
the two types of error goes to zero arbitrarily slowly (the Chernoff–Stein
lemma). We will also minimize the weighted sum of the two probabilities
of error and obtain the Chernoff information bound.

11.8 CHERNOFF–STEIN LEMMA

We consider hypothesis testing in the case when one of the probabili-
ties of error is held fixed and the other is made as small as possible.
We will show that the other probability of error is exponentially small,
with an exponential rate equal to the relative entropy between the two
distributions. The method of proof uses a relative entropy version of the
AEP.

Theorem 11.8.1 (AEP for relative entropy) Let X1, X2, . . . , Xn be
a sequence of random variables drawn i.i.d. according to P1(x), and let
P2(x) be any other distribution on X. Then

1

n
log

P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
→ D(P1||P2) in probability. (11.201)

Proof: This follows directly from the weak law of large numbers.

1

n
log

P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
= 1

n
log

∏n
i=1 P1(Xi)∏n
i=1 P2(Xi)

(11.202)
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= 1

n

n∑
i=1

log
P1(Xi)

P2(Xi)
(11.203)

→ EP1 log
P1(X)

P2(X)
in probability (11.204)

= D(P1||P2). � (11.205)

Just as for the regular AEP, we can define a relative entropy typical
sequence as one for which the empirical relative entropy is close to its
expected value.

Definition For a fixed n and ε > 0, a sequence (x1, x2, . . . , xn) ∈ Xn

is said to be relative entropy typical if and only if

D(P1||P2) − ε ≤ 1

n
log

P1(x1, x2, . . . , xn)

P2(x1, x2, . . . , xn)
≤ D(P1||P2) + ε. (11.206)

The set of relative entropy typical sequences is called the relative entropy
typical set A(n)

ε (P1||P2).
As a consequence of the relative entropy AEP, we can show that the

relative entropy typical set satisfies the following properties:

Theorem 11.8.2

1. For (x1, x2, . . . , xn) ∈ A(n)
ε (P1||P2),

P1(x1, x2, . . . , xn)2
−n(D(P1||P2)+ε)

≤ P2(x1, x2, . . . , xn)

≤ P1(x1, x2, . . . , xn)2
−n(D(P1||P2)−ε). (11.207)

2. P1(A
(n)
ε (P1||P2)) > 1 − ε, for n sufficiently large.

3. P2(A
(n)
ε (P1||P2)) < 2−n(D(P1||P2)−ε).

4. P2(A
(n)
ε (P1||P2)) > (1 − ε)2−n(D(P1||P2)+ε), for n sufficiently large.

Proof: The proof follows the same lines as the proof of Theorem 3.1.2,
with the counting measure replaced by probability measure P2. The proof
of property 1 follows directly from the definition of the relative entropy
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typical set. The second property follows from the AEP for relative entropy
(Theorem 11.8.1). To prove the third property, we write

P2(A
(n)
ε (P1||P2)) =

∑
xn∈A

(n)
ε (P1||P2)

P2(x1, x2, . . . , xn) (11.208)

≤
∑

xn∈A
(n)
ε (P1||P2)

P1(x1, x2, . . . , xn)2
−n(D(P1||P2)−ε) (11.209)

= 2−n(D(P1||P2)−ε)
∑

xn∈A
(n)
ε (P1||P2)

P1(x1, x2, . . . , xn) (11.210)

= 2−n(D(P1||P2)−ε)P1(A
(n)
ε (P1||P2)) (11.211)

≤ 2−n(D(P1||P2)−ε), (11.212)

where the first inequality follows from property 1, and the second inequal-
ity follows from the fact that the probability of any set under P1 is less
than 1.

To prove the lower bound on the probability of the relative entropy
typical set, we use a parallel argument with a lower bound on the proba-
bility:

P2(A
(n)
ε (P1||P2)) =

∑
xn∈A

(n)
ε (P1||P2)

P2(x1, x2, . . . , xn) (11.213)

≥
∑

xn∈A
(n)
ε (P1||P2)

P1(x1, x2, . . . , xn)2
−n(D(P1||P2)+ε) (11.214)

= 2−n(D(P1||P2)+ε)
∑

xn∈A
(n)
ε (P1||P2)

P1(x1, x2, . . . , xn) (11.215)

= 2−n(D(P1||P2)+ε)P1(A
(n)
ε (P1||P2)) (11.216)

≥ (1 − ε)2−n(D(P1||P2)+ε), (11.217)

where the second inequality follows from the second property of A(n)
ε

(P1||P2). �

With the standard AEP in Chapter 3, we also showed that any set that
has a high probability has a high intersection with the typical set, and
therefore has about 2nH elements. We now prove the corresponding result
for relative entropy.
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Lemma 11.8.1 Let Bn ⊂ Xn be any set of sequences x1, x2, . . . , xn such
that P1(Bn) > 1 − ε. Let P2 be any other distribution such that D(P1||P2)

< ∞. Then P2(Bn) > (1 − 2ε)2−n(D(P1||P2)+ε).

Proof: For simplicity, we will denote A(n)
ε (P1||P2) by An. Since P1(Bn)

> 1 − ε and P(An) > 1 − ε (Theorem 11.8.2), we have, by the union of
events bound, P1(A

c
n ∪ Bc

n) < 2ε, or equivalently, P1(An ∩ Bn) > 1 − 2ε.
Thus,

P2(Bn) ≥ P2(An ∩ Bn) (11.218)

=
∑

xn∈An∩Bn

P2(x
n) (11.219)

≥
∑

xn∈An∩Bn

P1(x
n)2−n(D(P1||P2)+ε) (11.220)

= 2−n(D(P1||P2)+ε)
∑

xn∈An∩Bn

P1(x
n) (11.221)

= 2−n(D(P1||P2)+ε)P1(An ∩ Bn) (11.222)

≥ 2−n(D(P1||P2)+ε)(1 − 2ε), (11.223)

where the second inequality follows from the properties of the relative
entropy typical sequences (Theorem 11.8.2) and the last inequality follows
from the union bound above. �

We now consider the problem of testing two hypotheses, P1 vs. P2. We
hold one of the probabilities of error fixed and attempt to minimize the
other probability of error. We show that the relative entropy is the best
exponent in probability of error.

Theorem 11.8.3 (Chernoff–Stein Lemma) Let X1, X2, . . . , Xn be
i.i.d. ∼ Q. Consider the hypothesis test between two alternatives, Q = P1
and Q = P2, where D(P1||P2) < ∞. Let An ⊆ Xn be an acceptance
region for hypothesis H1. Let the probabilities of error be

αn = P n
1 (Ac

n), βn = P n
2 (An). (11.224)

and for 0 < ε < 1
2 , define

βε
n = min

An ⊆ Xn

αn < ε

βn. (11.225)
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Then

lim
n→∞

1

n
log βε

n = −D(P1||P2). (11.226)

Proof: We prove this theorem in two parts. In the first part we exhibit
a sequence of sets An for which the probability of error βn goes expo-
nentially to zero as D(P1||P2). In the second part we show that no other
sequence of sets can have a lower exponent in the probability of error.

For the first part, we choose as the sets An = A(n)
ε (P1||P2). As proved in

Theorem 11.8.2, this sequence of sets has P1(A
c
n) < ε for n large enough.

Also,

lim
n→∞

1

n
log P2(An) ≤ −(D(P1||P2) − ε) (11.227)

from property 3 of Theorem 11.8.2. Thus, the relative entropy typical set
satisfies the bounds of the lemma.

To show that no other sequence of sets can to better, consider any
sequence of sets Bn with P1(Bn) > 1 − ε. By Lemma 11.8.1, we have
P2(Bn) > (1 − 2ε)2−n(D(P1||P2)+ε), and therefore

lim
n→∞

1

n
log P2(Bn) > −(D(P1||P2) + ε) + lim

n→∞
1

n
log(1 − 2ε)

= −(D(P1||P2) + ε). (11.228)

Thus, no other sequence of sets has a probability of error exponent better
than D(P1||P2). Thus, the set sequence An = A(n)

ε (P1||P2) is asymptoti-
cally optimal in terms of the exponent in the probability. �

Not that the relative entropy typical set, although asymptotically opti-
mal (i.e., achieving the best asymptotic rate), is not the optimal set for
any fixed hypothesis-testing problem. The optimal set that minimizes the
probabilities of error is that given by the Neyman–Pearson lemma.

11.9 CHERNOFF INFORMATION

We have considered the problem of hypothesis testing in the classical
setting, in which we treat the two probabilities of error separately. In the
derivation of the Chernoff–Stein lemma, we set αn ≤ ε and achieved
βn

.= 2−nD. But this approach lacks symmetry. Instead, we can fol-
low a Bayesian approach, in which we assign prior probabilities to both
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hypotheses. In this case we wish to minimize the overall probability of
error given by the weighted sum of the individual probabilities of error.
The resulting error exponent is the Chernoff information.

The setup is as follows: X1, X2, . . . , Xn i.i.d. ∼ Q. We have two
hypotheses: Q = P1 with prior probability π1 and Q = P2 with prior
probability π2. The overall probability of error is

P (n)
e = π1αn + π2βn. (11.229)

Let

D∗ = lim
n→∞ −1

n
log min

An⊆X n
P (n)

e . (11.230)

Theorem 11.9.1 (Chernoff ) The best achievable exponent in the
Bayesian probability of error is D∗, where

D∗ = D(Pλ∗ ||P1) = D(Pλ∗ ||P2), (11.231)

with

Pλ = P λ
1 (x)P 1−λ

2 (x)∑
a∈X P λ

1 (a)P 1−λ
2 (a)

, (11.232)

and λ∗ the value of λ such that

D(Pλ∗ ||P1) = D(Pλ∗||P2). (11.233)

Proof: The basic details of the proof were given in Section 11.8. We
have shown that the optimum test is a likelihood ratio test, which can be
considered to be of the form

D(PXn ||P2) − D(PXn ||P1) >
1

n
log T . (11.234)

The test divides the probability simplex into regions corresponding to
hypothesis 1 and hypothesis 2, respectively. This is illustrated in Fig-
ure 11.10.

Let A be the set of types associated with hypothesis 1. From the dis-
cussion preceding (11.200), it follows that the closest point in the set Ac

to P1 is on the boundary of A and is of the form given by (11.232). Then
from the discussion in Section 11.8, it is clear that Pλ is the distribution
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P1

P2

Pl

FIGURE 11.10. Probability simplex and Chernoff information.

in A that is closest to P2; it is also the distribution in Ac that is closest
to P1. By Sanov’s theorem, we can calculate the associated probabilities
of error,

αn = P n
1 (Ac)

.= 2−nD(Pλ∗ ||P1) (11.235)

and

βn = P n
2 (A)

.= 2−nD(Pλ∗ ||P2). (11.236)

In the Bayesian case, the overall probability of error is the weighted sum
of the two probabilities of error,

Pe
.= π12−nD(Pλ||P1) + π22−nD(Pλ||P2) .= 2−n min{D(Pλ||P1),D(Pλ||P2)},

(11.237)

since the exponential rate is determined by the worst exponent. Since
D(Pλ||P1) increases with λ and D(Pλ||P2) decreases with λ, the maxi-
mum value of the minimum of {D(Pλ||P1),D(Pλ||P2)} is attained when
they are equal. This is illustrated in Figure 11.11. Hence, we choose λ so
that

D(Pλ||P1) = D(Pλ||P2). (11.238)

Thus, C(P1, P2) is the highest achievable exponent for the probability of
error and is called the Chernoff information. �
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FIGURE 11.11. Relative entropy D(Pλ||P1) and D(Pλ||P2) as a function of λ.

The definition D∗ = D(Pλ∗||P1) = D(Pλ∗ ||P2) is equivalent to the
standard definition of Chernoff information,

C(P1, P2)
�= − min

0≤λ≤1
log

(∑
x

P λ
1 (x)P 1−λ

2 (x)

)
. (11.239)

It is left as an exercise to the reader to show the equivalence of (11.231)
and (11.239).

We outline briefly the usual derivation of the Chernoff information
bound. The maximum a posteriori probability decision rule minimizes the
Bayesian probability of error. The decision region A for hypothesis H1
for the maximum a posteriori rule is

A =
{

x :
π1P1(x)

π2P2(x)
> 1

}
, (11.240)

the set of outcomes where the a posteriori probability of hypothesis H1 is
greater than the a posteriori probability of hypothesis H2. The probability
of error for this rule is

Pe = π1αn + π2βn (11.241)

=
∑
Ac

π1P1 +
∑
A

π2P2 (11.242)

=
∑

min{π1P1, π2P2}. (11.243)
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Now for any two positive numbers a and b, we have

min{a, b} ≤ aλb1−λ for all 0 ≤ λ ≤ 1. (11.244)

Using this to continue the chain, we have

Pe =
∑

min{π1P1, π2P2} (11.245)

≤
∑

(π1P1)
λ(π2P2)

1−λ (11.246)

≤
∑

P λ
1 P 1−λ

2 . (11.247)

For a sequence of i.i.d. observations, Pk(x) = ∏n
i=1 Pk(xi), and

P (n)
e ≤

∑
πλ

1 π1−λ
2

∏
i

P λ
1 (xi)P

1−λ
2 (xi) (11.248)

= πλ
1 π1−λ

2

∏
i

∑
P λ

1 (xi)P
1−λ
2 (xi) (11.249)

≤
∏
xi

∑
P λ

1 P 1−λ
2 (11.250)

=
(∑

x

P λ
1 P 1−λ

2

)n

, (11.251)

where (11.250) follows since π1 ≤ 1, π2 ≤ 1. Hence, we have

1

n
log P (n)

e ≤ log
∑

P λ
1 (x)P 1−λ

2 (x). (11.252)

Since this is true for all λ, we can take the minimum over 0 ≤ λ ≤ 1,
resulting in the Chernoff information bound. This proves that the exponent
is no better than C(P1, P2). Achievability follows from Theorem 11.9.1.

Note that the Bayesian error exponent does not depend on the actual
value of π1 and π2, as long as they are nonzero. Essentially, the effect of
the prior is washed out for large sample sizes. The optimum decision rule
is to choose the hypothesis with the maximum a posteriori probability,
which corresponds to the test

π1P1(X1, X2, . . . , Xn)

π2P2(X1, X2, . . . , Xn)

>
< 1. (11.253)
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Taking the log and dividing by n, this test can be rewritten as

1

n
log

π1

π2
+ 1

n

∑
i

log
P1(Xi)

P2(Xi)

<
> 0, (11.254)

where the second term tends to D(P1||P2) or −D(P2||P1) accordingly as
P1 or P2 is the true distribution. The first term tends to 0, and the effect
of the prior distribution washes out.

Finally, to round off our discussion of large deviation theory and hypoth-
esis testing, we consider an example of the conditional limit theorem.

Example 11.9.1 Suppose that major league baseball players have a bat-
ting average of 260 with a standard deviation of 15 and suppose that
minor league ballplayers have a batting average of 240 with a standard
deviation of 15. A group of 100 ballplayers from one of the leagues (the
league is chosen at random) are found to have a group batting average
greater than 250 and are therefore judged to be major leaguers. We are
now told that we are mistaken; these players are minor leaguers. What
can we say about the distribution of batting averages among these 100
players? The conditional limit theorem can be used to show that the dis-
tribution of batting averages among these players will have a mean of 250
and a standard deviation of 15. To see this, we abstract the problem as
follows.

Let us consider an example of testing between two Gaussian distribu-
tions, f1 = N(1, σ 2) and f2 = N(−1, σ 2), with different means and the
same variance. As discussed in Section 11.8, the likelihood ratio test in
this case is equivalent to comparing the sample mean with a threshold.
The Bayes test is “Accept the hypothesis f = f1 if 1

n

∑n
i=1 Xi > 0.” Now

assume that we make an error of the first kind (we say that f = f1 when
indeed f = f2) in this test. What is the conditional distribution of the
samples given that we have made an error?

We might guess at various possibilities:

• The sample will look like a ( 1
2 , 1

2) mix of the two normal distributions.
Plausible as this is, it is incorrect.

• Xi ≈ 0 for all i. This is quite clearly very unlikely, although it is
conditionally likely that Xn is close to 0.

• The correct answer is given by the conditional limit theorem. If the
true distribution is f2 and the sample type is in the set A, the condi-
tional distribution is close to f ∗, the distribution in A that is closest to
f2. By symmetry, this corresponds to λ = 1

2 in (11.232). Calculating



390 INFORMATION THEORY AND STATISTICS

the distribution, we get

f ∗(x) =

(
1√

2πσ 2
e
− (x−1)2

2σ2

) 1
2
(

1√
2πσ 2

e
− (x+1)2

2σ2

) 1
2

∫ (
1√

2πσ 2
e
− (x−1)2

2σ2

) 1
2
(

1√
2πσ 2

e
− (x+1)2

2σ2

) 1
2

dx

(11.255)

=
1√

2πσ 2
e
− (x2+1)

2σ2

∫ 1√
2πσ 2

e
− (x2+1)

2σ2 dx

(11.256)

= 1√
2πσ 2

e
− x2

2σ2 (11.257)

= N (0, σ 2). (11.258)

It is interesting to note that the conditional distribution is normal with
mean 0 and with the same variance as the original distributions. This
is strange but true; if we mistake a normal population for another, the
“shape” of this population still looks normal with the same variance
and a different mean. Apparently, this rare event does not result from
bizarre-looking data.

Example 11.9.2 (Large deviation theory and football ) Consider a very
simple version of football in which the score is directly related to the
number of yards gained. Assume that the coach has a choice between two
strategies: running or passing. Associated with each strategy is a distri-
bution on the number of yards gained. For example, in general, running
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FIGURE 11.12. Distribution of yards gained in a run or a pass play.
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results in a gain of a few yards with very high probability, whereas passing
results in huge gains with low probability. Examples of the distributions
are illustrated in Figure 11.12.

At the beginning of the game, the coach uses the strategy that promises
the greatest expected gain. Now assume that we are in the closing min-
utes of the game and one of the teams is leading by a large margin.
(Let us ignore first downs and adaptable defenses.) So the trailing team
will win only if it is very lucky. If luck is required to win, we might
as well assume that we will be lucky and play accordingly. What is the
appropriate strategy?

Assume that the team has only n plays left and it must gain l yards,
where l is much larger than n times the expected gain under each play. The
probability that the team succeeds in achieving l yards is exponentially
small; hence, we can use the large deviation results and Sanov’s theorem to
calculate the probability of this event. To be precise, we wish to calculate
the probability that

∑n
i=1 Zi ≥ nα, where Zi are independent random

variables and Zi has a distribution corresponding to the strategy chosen.
The situation is illustrated in Figure 11.13. Let E be the set of types

corresponding to the constraint,

E =
{

P :
∑
a∈X

P(a)a ≥ α

}
. (11.259)

If P1 is the distribution corresponding to passing all the time, the proba-
bility of winning is the probability that the sample type is in E, which by
Sanov’s theorem is 2−nD(P ∗

1 ||P1), where P ∗
1 is the distribution in E that is

closest to P1. Similarly, if the coach uses the running game all the time,

E

P1

P2

FIGURE 11.13. Probability simplex for a football game.
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the probability of winning is 2−nD(P ∗
2 ||P2). What if he uses a mixture of

strategies? Is it possible that 2−nD(P ∗
λ ||Pλ), the probability of winning with

a mixed strategy, Pλ = λP1 + (1 − λ)P2, is better than the probability of
winning with either pure passing or pure running? The somewhat surpris-
ing answer is yes, as can be shown by example. This provides a reason
to use a mixed strategy other than the fact that it confuses the defense.

We end this section with another inequality due to Chernoff, which
is a special version of Markov’s inequality. This inequality is called the
Chernoff bound.

Lemma 11.9.1 Let Y be any random variable and let ψ(s) be the
moment generating function of Y ,

ψ(s) = EesY . (11.260)

Then for all s ≥ 0,

Pr(Y ≥ a) ≤ e−saψ(s), (11.261)

and thus

Pr(Y ≥ a) ≤ min
s≥0

e−saψ(s). (11.262)

Proof: Apply Markov’s inequality to the nonnegative random variable
esY . �

11.10 FISHER INFORMATION AND THE CRAMÉR–RAO
INEQUALITY

A standard problem in statistical estimation is to determine the parameters
of a distribution from a sample of data drawn from that distribution.
For example, let X1, X2, . . . , Xn be drawn i.i.d. ∼ N(θ, 1). Suppose that
we wish to estimate θ from a sample of size n. There are a number of
functions of the data that we can use to estimate θ . For example, we can
use the first sample X1. Although the expected value of X1 is θ , it is clear
that we can do better by using more of the data. We guess that the best
estimate of θ is the sample mean Xn = 1

n

∑
Xi . Indeed, it can be shown

that Xn is the minimum mean-squared-error unbiased estimator.
We begin with a few definitions. Let {f (x; θ)}, θ ∈ �, denote an

indexed family of densities, f (x; θ) ≥ 0,
∫

f (x; θ) dx = 1 for all θ ∈ �.
Here � is called the parameter set.

Definition An estimator for θ for sample size n is a function T :
Xn → �.
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An estimator is meant to approximate the value of the parameter. It
is therefore desirable to have some idea of the goodness of the approxi-
mation. We will call the difference T − θ the error of the estimator. The
error is a random variable.

Definition The bias of an estimator T (X1, X2, . . . , Xn) for the param-
eter θ is the expected value of the error of the estimator [i.e., the bias is
EθT (x1, x2, . . . , xn) − θ ]. The subscript θ means that the expectation is
with respect to the density f (·; θ). The estimator is said to be unbiased
if the bias is zero for all θ ∈ � (i.e., the expected value of the estimator
is equal to the parameter).

Example 11.10.1 Let X1, X2, . . . , Xn drawn i.i.d. ∼ f (x) = (1/λ)

e−x/λ, x ≥ 0 be a sequence of exponentially distributed random variables.
Estimators of λ include X1 and Xn. Both estimators are unbiased.

The bias is the expected value of the error, and the fact that it is
zero does not guarantee that the error is low with high probability. We
need to look at some loss function of the error; the most commonly
chosen loss function is the expected square of the error. A good estima-
tor should have a low expected squared error and should have an error
that approaches 0 as the sample size goes to infinity. This motivates the
following definition:

Definition An estimator T (X1, X2, . . . , Xn) for θ is said to be consis-
tent in probability if
T (X1, X2, . . . , Xn) → θ in probability as n → ∞.

Consistency is a desirable asymptotic property, but we are interested in
the behavior for small sample sizes as well. We can then rank estimators
on the basis of their mean-squared error.

Definition An estimator T1(X1, X2, . . . , Xn) is said to dominate
another estimator T2(X1, X2, . . . , Xn) if, for all θ ,

E (T1(X1, X2, . . . , Xn) − θ)2 ≤ E (T2(X1, X2, . . . , Xn) − θ)2 .

(11.263)

This raises a natural question: Is there a best estimator of θ that dom-
inates every other estimator? To answer this question, we derive the
Cramér–Rao lower bound on the mean-squared error of any estimator.
We first define the score function of the distribution f (x; θ). We then use
the Cauchy–Schwarz inequality to prove the Cramér–Rao lower bound
on the variance of all unbiased estimators.
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Definition The score V is a random variable defined by

V = ∂

∂θ
ln f (X; θ) =

∂
∂θ

f (X; θ)

f (X; θ)
, (11.264)

where X ∼ f (x; θ).
The mean value of the score is

EV =
∫ ∂

∂θ
f (x; θ)

f (x; θ)
f (x; θ) dx (11.265)

=
∫

∂

∂θ
f (x; θ) dx (11.266)

= ∂

∂θ

∫
f (x; θ) dx (11.267)

= ∂

∂θ
1 (11.268)

= 0, (11.269)

and therefore EV 2 = var(V ). The variance of the score has a special
significance.

Definition The Fisher information J (θ) is the variance of the score:

J (θ) = Eθ

[
∂

∂θ
ln f (X; θ)

]2

. (11.270)

If we consider a sample of n random variables X1, X2, . . . , Xn drawn
i.i.d. ∼ f (x; θ), we have

f (x1, x2, . . . , xn; θ) =
n∏

i=1

f (xi; θ), (11.271)

and the score function is the sum of the individual score functions,

V (X1, X2, . . . , Xn) = ∂

∂θ
ln f (X1,X2, . . . , Xn; θ) (11.272)

=
n∑

i=1

∂

∂θ
ln f (Xi; θ) (11.273)

=
n∑

i=1

V (Xi), (11.274)
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where the V (Xi) are independent, identically distributed with zero mean.
Hence, the n-sample Fisher information is

Jn(θ) = Eθ

[
∂

∂θ
ln f (X1, X2, . . . , Xn; θ)

]2

(11.275)

= EθV
2(X1, X2, . . . , Xn) (11.276)

= Eθ

(
n∑

i=1

V (Xi)

)2

(11.277)

=
n∑

i=1

EθV
2(Xi) (11.278)

= nJ (θ). (11.279)

Consequently, the Fisher information for n i.i.d. samples is n times the
individual Fisher information. The significance of the Fisher information
is shown in the following theorem.

Theorem 11.10.1 (Cramér–Rao inequality) The mean-squared error
of any unbiased estimator T (X) of the parameter θ is lower bounded by
the reciprocal of the Fisher information:

var(T ) ≥ 1

J (θ)
. (11.280)

Proof: Let V be the score function and T be the estimator. By the
Cauchy–Schwarz inequality, we have

(Eθ [(V − EθV )(T − EθT )])2 ≤ Eθ(V − EθV )2Eθ(T − EθT )2.

(11.281)
Since T is unbiased, EθT = θ for all θ . By (11.269), EθV = 0 and hence
Eθ(V − EθV )(T − EθT ) = Eθ(V T ). Also, by definition, var(V ) = J (θ).
Substituting these conditions in (11.281), we have

[Eθ(V T )]2 ≤ J (θ)var(T ). (11.282)

Now,

Eθ(V T ) =
∫ ∂

∂θ
f (x; θ)

f (x; θ)
T (x)f (x; θ) dx (11.283)
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=
∫

∂

∂θ
f (x; θ)T (x) dx (11.284)

= ∂

∂θ

∫
f (x; θ)T (x) dx (11.285)

= ∂

∂θ
EθT (11.286)

= ∂

∂θ
θ (11.287)

= 1, (11.288)

where the interchange of differentiation and integration in (11.285) can be
justified using the bounded convergence theorem for appropriately well
behaved f (x; θ), and (11.287) follows from the fact that the estimator T

is unbiased. Substituting this in (11.282), we obtain

var(T ) ≥ 1

J (θ)
, (11.289)

which is the Cramér–Rao inequality for unbiased estimators. �

By essentially the same arguments, we can show that for any estimator

E(T − θ)2 ≥ (1 + b′
T (θ))2

J (θ)
+ b2

T (θ), (11.290)

where bT (θ) = EθT − θ and b′
T (θ) is the derivative of bT (θ) with respect

to θ . The proof of this is left as a problem at the end of the chapter.

Example 11.10.2 Let X1, X2, . . . , Xn be i.i.d. ∼ N(θ, σ 2), σ 2 known.
Here J (θ) = n/σ 2. Let T (X1, X2, . . . , Xn) = Xn = 1

n

∑
Xi . Then

Eθ(Xn − θ)2 = σ 2/n = 1/J (θ). Thus, Xn is the minimum variance unbi-
ased estimator of θ , since it achieves the Cramér–Rao lower bound.

The Cramér–Rao inequality gives us a lower bound on the variance
for all unbiased estimators. When this bound is achieved, we call the
estimator efficient.

Definition An unbiased estimator T is said to be efficient if it meets
the Cramér–Rao bound with equality [i.e., if var(T ) = 1

J (θ)
].



SUMMARY 397

The Fisher information is therefore a measure of the amount of “infor-
mation” about θ that is present in the data. It gives a lower bound on the
error in estimating θ from the data. However, it is possible that there does
not exist an estimator meeting this lower bound.

We can generalize the concept of Fisher information to the multipa-
rameter case, in which case we define the Fisher information matrix J (θ)

with elements

Jij (θ) =
∫

f (x; θ)
∂

∂θi

ln f (x; θ)
∂

∂θj

ln f (x; θ) dx. (11.291)

The Cramér–Rao inequality becomes the matrix inequality

� ≥ J−1(θ), (11.292)

where � is the covariance matrix of a set of unbiased estimators for the
parameters θ and � ≥ J−1(θ) in the sense that the difference � − J−1 is
a nonnegative definite matrix. We will not go into the details of the proof
for multiple parameters; the basic ideas are similar.

Is there a relationship between the Fisher information J (θ) and quanti-
ties such as entropy defined earlier? Note that Fisher information is defined
with respect to a family of parametric distributions, unlike entropy, which
is defined for all distributions. But we can parametrize any distribution
f (x) by a location parameter θ and define Fisher information with respect
to the family of densities f (x − θ) under translation. We explore the
relationship in greater detail in Section 17.8, where we show that while
entropy is related to the volume of the typical set, the Fisher information
is related to the surface area of the typical set. Further relationships of
Fisher information to relative entropy are developed in the problems.

SUMMARY

Basic identities

Qn(x) = 2−n(D(Px||Q)+H(Px)), (11.293)

|Pn| ≤ (n + 1)|X |, (11.294)

|T (P )| .= 2nH(P ), (11.295)

Qn(T (P ))
.= 2−nD(P ||Q). (11.296)
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Universal data compression

P (n)
e ≤ 2−nD(P ∗

R ||Q) for all Q, (11.297)

where

D(P ∗
R||Q) = min

P :H(P)≥R
D(P ||Q). (11.298)

Large deviations (Sanov’s theorem)

Qn(E) = Qn(E ∩ Pn) ≤ (n + 1)|X |2−nD(P ∗||Q), (11.299)

D(P ∗||Q) = min
P∈E

D(P ||Q). (11.300)

If E is the closure of its interior, then

Qn(E)
.= 2−nD(P ∗||Q). (11.301)

L1 bound on relative entropy

D(P1||P2) ≥ 1

2 ln 2
||P1 − P2||21. (11.302)

Pythagorean theorem. If E is a convex set of types, distribution Q /∈
E, and P ∗ achieves D(P ∗||Q) = minP∈E D(P ||Q), we have

D(P ||Q) ≥ D(P ||P ∗) + D(P ∗||Q) (11.303)

for all P ∈ E.

Conditional limit theorem. If X1, X2, . . . , Xn i.i.d. ∼ Q, then

Pr(X1 = a|PXn ∈ E) → P ∗(a) in probability, (11.304)

where P ∗ minimizes D(P ||Q) over P ∈ E. In particular,

Pr

{
X1 = a

∣∣∣∣∣
1

n

n∑
i=1

Xi ≥ α

}
→ Q(a)eλa∑

x Q(x)eλx
. (11.305)

Neyman–Pearson lemma. The optimum test between two densities
P1 and P2 has a decision region of the form “accept P = P1 if
P1(x1,x2,...,xn)

P2(x1,x2,...,xn)
> T .”
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Chernoff–Stein lemma. The best achievable error exponent βε
n if

αn ≤ ε:

βε
n = min

An ⊆ Xn

αn < ε

βn, (11.306)

lim
n→∞

1

n
log βε

n = −D(P1||P2). (11.307)

Chernoff information. The best achievable exponent for a Bayesian
probability of error is

D∗ = D(Pλ∗ ||P1) = D(Pλ∗ ||P2), (11.308)

where

Pλ = P λ
1 (x)P 1−λ

2 (x)∑
a∈X P λ

1 (a)P 1−λ
2 (a)

(11.309)

with λ = λ∗ chosen so that

D(Pλ||P1) = D(Pλ||P2). (11.310)

Fisher information

J (θ) = Eθ

[
∂

∂θ
ln f (x; θ)

]2

. (11.311)

Cramér–Rao inequality. For any unbiased estimator T of θ ,

Eθ(T (X) − θ)2 = var(T ) ≥ 1

J (θ)
. (11.312)

PROBLEMS

11.1 Chernoff–Stein lemma. Consider the two-hypothesis test

H1 : f = f1 vs. H2 : f = f2.

Find D(f1 ‖ f2) if
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(a) fi(x) = N(0, σ 2
i ), i = 1, 2.

(b) fi(x) = λie
−λix, x ≥ 0, i = 1, 2.

(c) f1(x) is the uniform density over the interval [0, 1] and f2(x)

is the uniform density over [a, a + 1]. Assume that 0 < a < 1.

(d) f1 corresponds to a fair coin and f2 corresponds to a two-
headed coin.

11.2 Relation between D(P ‖ Q) and chi-square. Show that the χ2

statistic

χ2 = �x

(P (x) − Q(x))2

Q(x)

is (twice) the first term in the Taylor series expansion of D(P ‖
Q) about Q. Thus, D(P ‖ Q) = 1

2χ2 + · · · . [Suggestion: Write
P
Q

= 1 + P−Q
Q

and expand the log.]

11.3 Error exponent for universal codes . A universal source code of
rate R achieves a probability of error P

(n)
e

.= e−nD(P ∗‖Q), where
Q is the true distribution and P ∗ achieves min D(P ‖ Q) over all
P such that H(P ) ≥ R.
(a) Find P ∗ in terms of Q and R.

(b) Now let X be binary. Find the region of source probabili-
ties Q(x), x ∈ {0, 1}, for which rate R is sufficient for the
universal source code to achieve P

(n)
e → 0.

11.4 Sequential projection. We wish to show that projecting Q onto
P1 and then projecting the projection Q̂ onto P1

⋂
P2 is the same

as projecting Q directly onto P1
⋂

P2. Let P1 be the set of prob-
ability mass functions on X satisfying

∑
x

p(x) = 1, (11.313)

∑
x

p(x)hi(x) ≥ αi, i = 1, 2, . . . , r. (11.314)

Let P2 be the set of probability mass functions on X satisfying

∑
x

p(x) = 1, (11.315)

∑
x

p(x)gj (x) ≥ βj , j = 1, 2, . . . , s. (11.316)
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Suppose that Q �∈ P1
⋃

P2. Let P ∗ minimize D(P ‖ Q) over all
P ∈ P1. Let R∗ minimize D(R ‖ Q) over all R ∈ P1

⋂
P2. Argue

that R∗ minimizes D(R ‖ P ∗) over all R ∈ P1
⋂

P2.

11.5 Counting . Let X = {1, 2, . . . , m}. Show that the number of se-
quences xn ∈ Xn satisfying 1

n

∑n
i=1 g(xi) ≥ α is approximately

equal to 2nH ∗
, to first order in the exponent, for n sufficiently large,

where

H ∗ = max
P :

∑m
i=1 P(i)g(i)≥α

H(P ). (11.317)

11.6 Biased estimates may be better . Consider the problem of esti-
mating µ and σ 2 from n samples of data drawn i.i.d. from a
N(µ, σ 2) distribution.
(a) Show that Xn is an unbiased estimator of µ.
(b) Show that the estimator

S2
n = 1

n

n∑
i=1

(Xi − Xn)
2 (11.318)

is a biased estimator of σ 2 and the estimator

S2
n−1 = 1

n − 1

n∑
i=1

(Xi − Xn)
2 (11.319)

is unbiased.
(c) Show that S2

n has a lower mean-squared error than that of
S2

n−1. This illustrates the idea that a biased estimator may be
“better” than an unbiased estimator.

11.7 Fisher information and relative entropy . Show for a parametric
family {pθ(x)} that

lim
θ ′→θ

1

(θ − θ ′)2
D(pθ ||pθ ′) = 1

ln 4
J (θ). (11.320)

11.8 Examples of Fisher information. The Fisher information J (�)

for the family fθ(x), θ ∈ R is defined by

J (θ) = Eθ

(
∂fθ(X)/∂θ

fθ (X)

)2

=
∫

(f
′
θ )

2

fθ

.

Find the Fisher information for the following families:
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(a) fθ(x) = N(0, θ) = 1√
2πθ

e− x2
2θ

(b) fθ(x) = θe−θx, x ≥ 0
(c) What is the Cramèr–Rao lower bound on Eθ(θ̂(X) − θ)2,

where θ̂ (X) is an unbiased estimator of θ for parts (a) and
(b)?

11.9 Two conditionally independent looks double the Fisher informa-
tion. Let gθ(x1, x2) = fθ(x1)fθ (x2). Show that Jg(θ) = 2Jf (θ).

11.10 Joint distributions and product distributions. Consider a joint
distribution Q(x, y) with marginals Q(x) and Q(y). Let E be
the set of types that look jointly typical with respect to Q:

E = {P (x, y) : −
∑
x,y

P (x, y) log Q(x) − H(X) = 0,

−
∑
x,y

P (x, y) log Q(y) − H(Y) = 0,

−
∑
x,y

P (x, y) log Q(x, y)

−H(X, Y ) = 0}. (11.321)

(a) Let Q0(x, y) be another distribution on X × Y. Argue
that the distribution P ∗ in E that is closest to Q0 is of the
form

P ∗(x, y) = Q0(x, y)eλ0+λ1 log Q(x)+λ2 log Q(y)+λ3 log Q(x,y),

(11.322)
where λ0, λ1, λ2, and λ3 are chosen to satisfy the constraints.
Argue that this distribution is unique.

(b) Now let Q0(x, y) = Q(x)Q(y). Verify that Q(x, y) is of the
form (11.322) and satisfies the constraints. Thus, P ∗(x, y) =
Q(x, y) (i.e., the distribution in E closest to the product dis-
tribution is the joint distribution).

11.11 Cramér–Rao inequality with a bias term . Let X ∼ f (x; θ) and
let T (X) be an estimator for θ . Let bT (θ) = EθT − θ be the bias
of the estimator. Show that

E(T − θ)2 ≥ [1 + b′
T (θ)]2

J (θ)
+ b2

T (θ). (11.323)
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11.12 Hypothesis testing . Let X1, X2, . . . , Xn be i.i.d. ∼ p(x). Con-
sider the hypothesis test H1 : p = p1 vs. H2 : p = p2 . Let

p1(x) =




1
2 , x = −1
1
4 , x = 0
1
4 , x = 1

and

p2(x) =




1
4 , x = −1
1
4 , x = 0
1
2 , x = 1.

Find the error exponent for Pr{Decide H2|H1 true} in the best
hypothesis test of H1 vs. H2 subject to Pr{Decide H1|H2 true}
≤ 1

2 .

11.13 Sanov’s theorem . Prove a simple version of Sanov’s theorem for
Bernoulli(q) random variables.
Let the proportion of 1’s in the sequence X1, X2, . . . , Xn be

Xn = 1

n

n∑
i=1

Xi. (11.324)

By the law of large numbers, we would expect Xn to be close
to q for large n. Sanov’s theorem deals with the probability that
pXn is far away from q. In particular, for concreteness, if we take
p > q > 1

2 , Sanov’s theorem states that

− 1

n
log Pr

{
(X1, X2, . . . , Xn) : Xn ≥ p

}

→ p log
p

q
+ (1 − p) log

1 − p

1 − q

= D((p, 1 − p)||(q, 1 − q)). (11.325)

Justify the following steps:

• Pr
{
(X1, X2, . . . , Xn) : Xn ≥ p

} ≤
n∑

i=�np�

(
n

i

)
qi(1 − q)n−i .

(11.326)
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• Argue that the term corresponding to i = �np� is the largest
term in the sum on the right-hand side of the last equation.

• Show that this term is approximately 2−nD.
• Prove an upper bound on the probability in Sanov’s theorem

using the steps above. Use similar arguments to prove a lower
bound and complete the proof of Sanov’s theorem.

11.14 Sanov . Let Xi be i.i.d. ∼ N(0, σ 2).

(a) Find the exponent in the behavior of Pr{ 1
n

∑n
i=1 X2

i ≥ α2}.
This can be done from first principles (since the normal dis-
tribution is nice) or by using Sanov’s theorem.

(b) What do the data look like if 1
n

∑n
i=1 X2

i ≥ α? That is, what
is the P ∗ that minimizes D(P ‖ Q)?

11.15 Counting states . Suppose that an atom is equally likely to be in
each of six states, X ∈ {s1, s2, s3, . . . , s6}. One observes n atoms
X1, X2, . . . , Xn independently drawn according to this uniform
distribution. It is observed that the frequency of occurrence of
state s1 is twice the frequency of occurrence of state s2.
(a) To first order in the exponent, what is the probability of

observing this event?
(b) Assuming n large, find the conditional distribution of the state

of the first atom X1, given this observation.

11.16 Hypothesis testing . Let {Xi} be i.i.d. ∼ p(x), x ∈ {1, 2, . . .}.
Consider two hypotheses, H0 : p(x) = p0(x) vs. H1 : p(x) =
p1(x), where p0(x) = (1

2

)x
and p1(x) = qpx−1, x = 1, 2, 3, . . . .

(a) Find D(p0 ‖ p1).
(b) Let Pr{H0} = 1

2 . Find the minimal probability of error test for
H0 vs. H1 given data X1, X2, . . . , Xn ∼ p(x).

11.17 Maximum likelihood estimation. Let {fθ(x)} denote a parametric
family of densities with parameter θεR. Let X1, X2, . . . , Xn be
i.i.d. ∼ fθ(x). The function

lθ (x
n) = ln

(
n∏

i=1

fθ(xi)

)

is known as the log likelihood function. Let θ0 denote the true
parameter value.
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(a) Let the expected log likelihood be

Eθ0 lθ (X
n) =

∫ (
ln

n∏
i=1

fθ(xi)

)
n∏

i=1

fθ0(xi)dxn,

and show that

Eθ0(l(X
n)) = (−h(fθ0) − D(fθ0 ||fθ ))n.

(b) Show that the maximum over θ of the expected log likelihood
is achieved by θ = θ0.

11.18 Large deviations . Let X1, X2, . . . be i.i.d. random variables
drawn according to the geometric distribution

Pr{X = k} = pk−1(1 − p), k = 1, 2, . . . .

Find good estimates (to first order in the exponent) of:
(a) Pr{ 1

n

∑n
i=1 Xi ≥ α}.

(b) Pr{X1 = k| 1
n

∑n
i=1 Xi ≥ α}.

(c) Evaluate parts (a) and (b) for p = 1
2 , α = 4.

11.19 Another expression for Fisher information . Use integration by
parts to show that

J (θ) = −E
∂2 ln fθ(x)

∂θ2
.

11.20 Stirling’s approximation. Derive a weak form of Stirling’s
approximation for factorials; that is, show that

(n

e

)n

≤ n! ≤ n
(n

e

)n

(11.327)

using the approximation of integrals by sums. Justify the following
steps:

ln(n!) =
n−1∑
i=2

ln(i) + ln(n) ≤
∫ n−1

2
ln x dx + ln n = · · ·

(11.328)
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and

ln(n!) =
n∑

i=1

ln(i) ≥
∫ n

0
ln x dx = · · · . (11.329)

11.21 Asymptotic value of

(
n

k

)
. Use the simple approximation of Prob-

lem 11.20 to show that if 0 ≤ p ≤ 1, and k = �np� (i.e., k is the
largest integer less than or equal to np), then

lim
n→∞

1

n
log

(
n

k

)
= −p log p − (1 − p) log(1 − p) = H(p).

(11.330)
Now let pi , i = 1, . . . , m be a probability distribution on m sym-
bols (i.e., pi ≥ 0 and

∑
i pi = 1). What is the limiting value of

1

n
log

(
n

�np1� �np2� . . . �npm−1� n − ∑m−1
j=0 �npj�

)

= 1

n
log

n!

�np1�! �np2�! . . . �npm−1�! (n − ∑m−1
j=0 �npj�)!

?

(11.331)

11.22 Running difference. Let X1, X2, . . . , Xn be i.i.d. ∼ Q1(x), and
Y1, Y2, . . . , Yn be i.i.d. ∼ Q2(y). Let Xn and Yn be independent.
Find an expression for Pr{∑n

i=1 Xi − ∑n
i=1 Yi ≥ nt} good to first

order in the exponent. Again, this answer can be left in parametric
form.

11.23 Large likelihoods . Let X1, X2, . . . be i.i.d. ∼ Q(x), x ∈ {1, 2,

. . . ,m}. Let P(x) be some other probability mass function. We
form the log likelihood ratio

1

n
log

P n(X1, X2, . . . , Xn)

Qn(X1, X2, . . . , Xn)
= 1

n

n∑
i=1

log
P(Xi)

Q(Xi)

of the sequence Xn and ask for the probability that it exceeds a
certain threshold. Specifically, find (to first order in the exponent)

Qn

(
1

n
log

P(X1, X2, . . . , Xn)

Q(X1, X2, . . . , Xn)
> 0

)
.

There may be an undetermined parameter in the answer.
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11.24 Fisher information for mixtures . Let f1(x) and f0(x) be two
given probability densities. Let Z be Bernoulli(θ ), where θ is
unknown. Let X ∼ f1(x) if Z = 1 and X ∼ f0(x) if Z = 0.

(a) Find the density fθ(x) of the observed X.
(b) Find the Fisher information J (θ).
(c) What is the Cramér–Rao lower bound on the mean-squared

error of an unbiased estimate of θ?
(d) Can you exhibit an unbiased estimator of θ?

11.25 Bent coins . Let {Xi} be iid ∼ Q, where

Q(k) = Pr(Xi = k) =
(

m

k

)
qk(1 − q)m−k for k = 0, 1, 2, . . . , m.

Thus, the Xi’s are iid ∼ Binomial(m, q). Show that as n → ∞,

Pr

(
X1 = k

∣∣∣∣1

n

n∑
i=1

Xi ≥ α

)
→ P ∗(k),

where P ∗ is Binomial(m, λ) (i.e., P ∗(k) =
(

m

k

)
λk(1 − λ)m−k for

some λ ∈ [0, 1]). Find λ.

11.26 Conditional limiting distribution

(a) Find the exact value of

Pr

{
X1 = 1

∣∣∣∣1

n

n∑
i=1

Xi = 1

4

}
(11.332)

if X1, X2, . . . , are Bernoulli( 2
3 ) and n is a multiple of 4.

(b) Now let Xiε{−1, 0, 1} and let X1, X2 . . . be i.i.d. uniform
over {−1, 0, +1}. Find the limit of

Pr

{
X1 = +1

∣∣∣∣1

n

n∑
i=1

X2
i = 1

2

}
(11.333)

for n = 2k, k → ∞.
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11.27 Variational inequality . Verify for positive random variables X

that

log EP (X) = sup
Q

[
EQ(log X) − D(Q||P)

]
, (11.334)

where EP (X) = ∑
x xP (x) and D(Q||P) = ∑

x Q(x) log Q(x)
P (x)

and the supremum is over all Q(x) ≥ 0,
∑

Q(x) = 1.
It is enough to extremize J (Q) = EQ ln X − D(Q||P) +
λ(
∑

Q(x) − 1).

11.28 Type constraints
(a) Find constraints on the type PXn such that the sample variance

X2
n − (Xn)

2 ≤ α, where X2
n = 1

n

∑n
i=1 X2

i and
Xn = 1

n

∑n
i=1 Xi .

(b) Find the exponent in the probability Qn(X2
n − (Xn)

2 ≤ α).
You can leave the answer in parametric form.

11.29 Uniform distribution on the simplex . Which of these methods
will generate a sample from the uniform distribution on the sim-
plex {x ∈ Rn : xi ≥ 0,

∑n
i=1 xi = 1}?

(a) Let Yi be i.i.d. uniform [0, 1] with Xi = Yi/
∑n

j=1 Yj .

(b) Let Yi be i.i.d. exponentially distributed ∼ λe−λy , y ≥ 0, with
Xi = Yi/

∑n
j=1 Yj .

(c) (Break stick into n parts) Let Y1, Y2, . . . , Yn−1 be i.i.d. uni-
form [0, 1], and let Xi be the length of the ith interval.

HISTORICAL NOTES

The method of types evolved from notions of strong typicality; some
of the ideas were used by Wolfowitz [566] to prove channel capacity
theorems. The method was fully developed by Csiszár and Körner [149],
who derived the main theorems of information theory from this viewpoint.
The method of types described in Section 11.1 follows the development
in Csiszár and Körner. The L1 lower bound on relative entropy is due to
Csiszár [138], Kullback [336], and Kemperman [309]. Sanov’s theorem
[455] was generalized by Csiszár [141] using the method of types.



CHAPTER 12

MAXIMUM ENTROPY

The temperature of a gas corresponds to the average kinetic energy of the
molecules in the gas. What can we say about the distribution of veloci-
ties in the gas at a given temperature? We know from physics that this
distribution is the maximum entropy distribution under the temperature
constraint, otherwise known as the Maxwell–Boltzmann distribution. The
maximum entropy distribution corresponds to the macrostate (as indexed
by the empirical distribution) that has the most microstates (the individual
gas velocities). Implicit in the use of maximum entropy methods in physics
is a sort of AEP which says that all microstates are equally probable.

12.1 MAXIMUM ENTROPY DISTRIBUTIONS

Consider the following problem: Maximize the entropy h(f ) over all
probability densities f satisfying

1. f (x) ≥ 0, with equality outside the support set S

2.
∫
S
f (x) dx = 1

3.
∫
S
f (x)ri(x) dx = αi for 1 ≤ i ≤ m.

(12.1)

Thus, f is a density on support set S meeting certain moment con-
straints α1, α2, . . . , αm.

Approach 1 ( Calculus) The differential entropy h(f ) is a concave
function over a convex set. We form the functional

J (f ) = −
∫

f ln f + λ0

∫
f +

m∑
i=1

λi

∫
f ri (12.2)

and “differentiate” with respect to f (x), the xth component of f , to obtain

∂J

∂f (x)
= − ln f (x) − 1 + λ0 +

m∑
i=1

λiri(x). (12.3)

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
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Setting this equal to zero, we obtain the form of the maximizing density

f (x) = eλ0−1+∑m
i=1 λiri (x), x ∈ S, (12.4)

where λ0, λ1, . . . , λm are chosen so that f satisfies the constraints.
The approach using calculus only suggests the form of the density that

maximizes the entropy. To prove that this is indeed the maximum, we can
take the second variation. It is simpler to use the information inequality
D(g||f ) ≥ 0.

Approach 2 (Information inequality) If g satisfies (12.1) and if f ∗ is
of the form (12.4), then 0 ≤ D(g||f ∗) = −h(g) + h(f ∗). Thus h(g) ≤
h(f ∗) for all g satisfying the constraints. We prove this in the following
theorem.

Theorem 12.1.1 (Maximum entropy distribution) Let f ∗(x) = fλ(x)

= eλ0+∑m
i=1 λiri (x), x ∈ S, where λ0, . . . , λm are chosen so that f ∗ satisfies

(12.1). Then f ∗ uniquely maximizes h(f ) over all probability densities f

satisfying constraints (12.1).

Proof: Let g satisfy the constraints (12.1). Then

h(g) = −
∫

S

g ln g (12.5)

= −
∫

S

g ln
g

f ∗ f ∗ (12.6)

= −D(g||f ∗) −
∫

S

g ln f ∗ (12.7)

(a)≤ −
∫

S

g ln f ∗ (12.8)

(b)= −
∫

S

g
(
λ0 +

∑
λiri

)
(12.9)

(c)= −
∫

S

f ∗
(
λ0 +

∑
λiri

)
(12.10)

= −
∫

S

f ∗ ln f ∗ (12.11)

= h(f ∗), (12.12)

where (a) follows from the nonnegativity of relative entropy, (b) follows
from the definition of f ∗, and (c) follows from the fact that both f ∗
and g satisfy the constraints. Note that equality holds in (a) if and only
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if g(x) = f ∗(x) for all x, except for a set of measure 0, thus proving
uniqueness. �

The same approach holds for discrete entropies and for multivariate
distributions.

12.2 EXAMPLES

Example 12.2.1 (One-dimensional gas with a temperature constraint)
Let the constraints be EX = 0 and EX2 = σ 2. Then the form of the
maximizing distribution is

f (x) = eλ0+λ1x+λ2x2
. (12.13)

To find the appropriate constants, we first recognize that this distribution
has the same form as a normal distribution. Hence, the density that satisfies
the constraints and also maximizes the entropy is the N(0, σ 2) distribution:

f (x) = 1√
2πσ 2

e
− x2

2σ2 . (12.14)

Example 12.2.2 (Dice, no constraints) Let S = {1, 2, 3, 4, 5, 6}. The
distribution that maximizes the entropy is the uniform distribution, p(x) =
1
6 for x ∈ S.

Example 12.2.3 (Dice, with EX = ∑
ipi = α) This important exam-

ple was used by Boltzmann. Suppose that n dice are thrown on the table
and we are told that the total number of spots showing is nα. What
proportion of the dice are showing face i, i = 1, 2, . . . , 6?

One way of going about this is to count the number of ways that

n dice can fall so that ni dice show face i. There are

(
n

n1, n2, . . . , n6

)

such ways. This is a macrostate indexed by (n1, n2, . . . , n6) corresponding

to

(
n

n1, n2, . . . , n6

)
microstates, each having probability 1

6n . To find the

most probable macrostate, we wish to maximize

(
n

n1, n2, . . . , n6

)
under

the constraint observed on the total number of spots,
6∑

i=1

ini = nα. (12.15)

Using a crude Stirling’s approximation, n! ≈ (n
e
)n, we find that(

n

n1, n2, . . . , n6

)
≈ (n

e
)n∏6

i=1 (
ni

e
)ni

(12.16)
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=
6∏

i=1

(
n

ni

)ni

(12.17)

= e
nH

(
n1
n ,

n2
n ,...,

n6
n

)
. (12.18)

Thus, maximizing

(
n

n1, n2, . . . , n6

)
under the constraint (12.15) is almost

equivalent to maximizing H(p1, p2, . . . , p6) under the constraint
∑

ipi =
α. Using Theorem 12.1.1 under this constraint, we find the maximum
entropy probability mass function to be

p∗
i = eλi

∑6
i=1 eλi

, (12.19)

where λ is chosen so that
∑

ip∗
i = α. Thus, the most probable macrostate

is (np∗
1, np

∗
2 . . . . , np

∗
6), and we expect to find n∗

i = np∗
i dice showing

face i.

In Chapter 11 we show that the reasoning and the approximations are
essentially correct. In fact, we show that not only is the maximum entropy
macrostate the most likely, but it also contains almost all of the probability.
Specifically, for rational α,

Pr

{∣∣∣∣Ni

n
− p∗

i

∣∣∣∣ < ε, i = 1, 2, . . . , 6

∣∣∣∣∣
n∑

i=1

Xi = nα

}
→ 1, (12.20)

as n → ∞ along the subsequence such that nα is an integer.

Example 12.2.4 Let S = [a, b], with no other constraints. Then the
maximum entropy distribution is the uniform distribution over this range.

Example 12.2.5 S = [0, ∞) and EX = µ. Then the entropy-maxi-
mizing distribution is

f (x) = 1

µ
e
− x

µ , x ≥ 0. (12.21)

This problem has a physical interpretation. Consider the distribution of the
height X of molecules in the atmosphere. The average potential energy of
the molecules is fixed, and the gas tends to the distribution that has the
maximum entropy subject to the constraint that E(mgX) is fixed. This
is the exponential distribution with density f (x) = λe−λx, x ≥ 0. The
density of the atmosphere does indeed have this distribution.
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Example 12.2.6 S = (−∞,∞), and EX = µ. Here the maximum en-
tropy is infinite, and there is no maximum entropy distribution. (Consider
normal distributions with larger and larger variances.)

Example 12.2.7 S = (−∞,∞), EX = α1, and EX2 = α2. The maxi-
mum entropy distribution is N(α1, α2 − α2

1).

Example 12.2.8 S = Rn, EXiXj = Kij , 1 ≤ i, j ≤ n. This is a mul-
tivariate example, but the same analysis holds and the maximum entropy
density is of the form

f (x) = eλ0+∑
i,j λij xixj . (12.22)

Since the exponent is a quadratic form, it is clear by inspection that the
density is a multivariate normal with zero mean. Since we have to satisfy
the second moment constraints, we must have a multivariate normal with
covariance Kij , and hence the density is

f (x) = 1(√
2π

)n |K|1/2
e− 1

2 xT K−1x, (12.23)

which has an entropy

h(Nn(0, K)) = 1

2
log(2πe)n|K|, (12.24)

as derived in Chapter 8.

Example 12.2.9 Suppose that we have the same constraints as in Ex-
ample 12.2.8, but EXiXj = Kij only for some restricted set of (i, j) ∈ A.
For example, we might know only Kij for i = j ± 2. Then by comparing
(12.22) and (12.23), we can conclude that (K−1)ij = 0 for (i, j) ∈ Ac

(i.e., the entries in the inverse of the covariance matrix are 0 when (i, j)

is outside the constraint set).

12.3 ANOMALOUS MAXIMUM ENTROPY PROBLEM

We have proved that the maximum entropy distribution subject to the
constraints ∫

S

hi(x)f (x) dx = αi (12.25)

is of the form
f (x) = eλ0+∑

λihi (x) (12.26)

if λ0, λ1, . . . , λp satisfying the constraints (12.25) exist.
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We now consider a tricky problem in which the λi cannot be chosen
to satisfy the constraints. Nonetheless, the “maximum” entropy can be
found. We consider the following problem: Maximize the entropy subject
to the constraints ∫ ∞

−∞
f (x) dx = 1, (12.27)

∫ ∞

−∞
xf (x) dx = α1, (12.28)

∫ ∞

−∞
x2f (x) dx = α2, (12.29)

∫ ∞

−∞
x3f (x) dx = α3. (12.30)

Here, the maximum entropy distribution, if it exists, must be of the form

f (x) = eλ0+λ1x+λ2x2+λ3x3
. (12.31)

But if λ3 is nonzero,
∫ ∞
−∞ f = ∞ and the density cannot be normalized.

So λ3 must be 0. But then we have four equations and only three variables,
so that in general it is not possible to choose the appropriate constants.
The method seems to have failed in this case.

The reason for the apparent failure is simple: The entropy has a least
upper bound under these constraints, but it is not possible to attain it. Con-
sider the corresponding problem with only first and second moment con-
straints. In this case, the results of Example 12.2.1 show that the entropy-
maximizing distribution is the normal with the appropriate moments. With
the additional third moment constraint, the maximum entropy cannot be
higher. Is it possible to achieve this value?

We cannot achieve it, but we can come arbitrarily close. Consider a
normal distribution with a small “wiggle” at a very high value of x. The
moments of the new distribution are almost the same as those of the old
one, the biggest change being in the third moment. We can bring the
first and second moments back to their original values by adding new
wiggles to balance out the changes caused by the first. By choosing the
position of the wiggles, we can get any value of the third moment without
reducing the entropy significantly below that of the associated normal.
Using this method, we can come arbitrarily close to the upper bound for
the maximum entropy distribution. We conclude that

sup h(f ) = h(N(0, α2 − α2
1)) = 1

2
ln 2πe(α2 − α2

1). (12.32)
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This example shows that the maximum entropy may only be ε-achiev-
able.

12.4 SPECTRUM ESTIMATION

Given a stationary zero-mean stochastic process {Xi}, we define the auto-
correlation function as

R(k) = EXiXi+k. (12.33)

The Fourier transform of the autocorrelation function for a zero-mean
process is the power spectral density S(λ):

S(λ) =
∞∑

m=−∞
R(m)e−imλ, −π < λ ≤ π, (12.34)

where i = √−1. Since the power spectral density is indicative of the
structure of the process, it is useful to form an estimate from a sample of
the process.

There are many methods to estimate the power spectrum. The simplest
way is to estimate the autocorrelation function by taking sample averages
for a sample of length n,

R̂(k) = 1

n − k

n−k∑
i=1

XiXi+k. (12.35)

If we use all the values of the sample correlation function R̂(·) to cal-
culate the spectrum, the estimate that we obtain from (12.34) does not
converge to the true power spectrum for large n. Hence, this method, the
periodogram method, is rarely used. One of the reasons for the problem
with the periodogram method is that the estimates of the autocorrelation
function from the data have different accuracies. The estimates for low
values of k (called the lags) are based on a large number of samples and
those for high k on very few samples. So the estimates are more accurate
at low k. The method can be modified so that it depends only on the
autocorrelations at low k by setting the higher lag autocorrelations to 0.
However, this introduces some artifacts because of the sudden transition to
zero autocorrelation. Various windowing schemes have been suggested to
smooth out the transition. However, windowing reduces spectral resolution
and can give rise to negative power spectral estimates.

In the late 1960s, while working on the problem of spectral estimation for
geophysical applications, Burg suggested an alternative method. Instead of
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setting the autocorrelations at high lags to zero, he set them to values that
make the fewest assumptions about the data (i.e., values that maximize the
entropy rate of the process). This is consistent with the maximum entropy
principle as articulated by Jaynes [294]. Burg assumed the process to be
stationary and Gaussian and found that the process which maximizes the
entropy subject to the correlation constraints is an autoregressive Gaussian
process of the appropriate order. In some applications where we can assume
an underlying autoregressive model for the data, this method has proved
useful in determining the parameters of the model (e.g., linear predictive
coding for speech). This method (known as the maximum entropy method
or Burg’s method ) is a popular method for estimation of spectral densities.
We prove Burg’s theorem in Section 12.6.

12.5 ENTROPY RATES OF A GAUSSIAN PROCESS

In Chapter 8 we defined the differential entropy of a continuous random
variable. We can now extend the definition of entropy rates to real-valued
stochastic processes.

Definition The differential entropy rate of a stochastic process {Xi}, Xi ∈
R, is defined to be

h(X) = lim
n→∞

h(X1, X2, . . . , Xn)

n
(12.36)

if the limit exists.
Just as in the discrete case, we can show that the limit exists for sta-

tionary processes and that the limit is given by the two expressions

h(X) = lim
n→∞

h(X1, X2, . . . , Xn)

n
(12.37)

= lim
n→∞ h(Xn|Xn−1, . . . , X1). (12.38)

For a stationary Gaussian stochastic process, we have

h(X1,X2, . . . , Xn) = 1

2
log(2πe)n|K(n)|, (12.39)

where the covariance matrix K(n) is Toeplitz with entries R(0), R(1), . . . ,

R(n − 1) along the top row. Thus, K
(n)
ij = R(i − j) = E(Xi − EXi)(Xj
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− EXj). As n → ∞, the density of the eigenvalues of the covariance
matrix tends to a limit, which is the spectrum of the stochastic process.
Indeed, Kolmogorov showed that the entropy rate of a stationary Gaussian
stochastic process can be expressed as

h(X) = 1

2
log 2πe + 1

4π

∫ π

−π

log S(λ) dλ. (12.40)

The entropy rate is also limn→∞ h(Xn|Xn−1). Since the stochastic pro-
cess is Gaussian, the conditional distribution is also Gaussian, and hence
the conditional entropy is 1

2 log 2πeσ 2∞, where σ 2∞ is the variance of the
error in the best estimate of Xn given the infinite past. Thus,

σ 2
∞ = 1

2πe
22h(X ), (12.41)

where h(X) is given by (12.40). Hence, the entropy rate corresponds to
the minimum mean-squared error of the best estimator of a sample of the
process given the infinite past.

12.6 BURG’S MAXIMUM ENTROPY THEOREM

Theorem 12.6.1 The maximum entropy rate stochastic process {Xi} sat-
isfying the constraints

EXiXi+k = αk, k = 0, 1, . . . , p for all i, (12.42)

is the pth-order Gauss–Markov process of the form

Xi = −
p∑

k=1

akXi−k + Zi, (12.43)

where the Zi are i.i.d. ∼ N(0, σ 2) and a1, a2, . . . , ap, σ 2 are chosen to
satisfy (12.42).

Remark We do not assume that {Xi} is (a) zero mean, (b) Gaussian, or
(c) wide-sense stationary.

Proof: Let X1, X2, . . . , Xn be any stochastic process that satisfies the
constraints (12.42). Let Z1, Z2, . . . , Zn be a Gaussian process with the
same covariance matrix as X1, X2, . . . , Xn. Then since the multivariate
normal distribution maximizes the entropy over all vector-valued random
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variables under a covariance constraint, we have

h(X1, X2, . . . , Xn) ≤ h(Z1, Z2, . . . , Zn) (12.44)

= h(Z1, . . . , Zp) +
n∑

i=p+1

h(Zi|Zi−1, Zi−2, . . . , Z1)

(12.45)

≤ h(Z1, . . . , Zp) +
n∑

i=p+1

h(Zi|Zi−1, Zi−2, . . . , Zi−p)

(12.46)
by the chain rule and the fact that conditioning reduces entropy. Now
define Z′

1, Z
′
2, . . . , Z

′
n as a pth-order Gauss–Markov process with the

same distribution as Z1, Z2, . . . , Zn for all orders up to p. (Existence of
such a process will be verified using the Yule–Walker equations immedi-
ately after the proof.) Then since h(Zi|Zi−1, . . . , Zi−p) depends only on
the pth-order distribution, h(Zi|Zi−1, . . . , Zi−p)= h(Z′

i |Z′
i−1, . . . , Z

′
i−p),

and continuing the chain of inequalities, we obtain

h(X1, X2, . . . , Xn) ≤ h(Z1, . . . , Zp) +
n∑

i=p+1

h(Zi |Zi−1, Zi−2, . . . , Zi−p)

(12.47)

= h(Z′
1, . . . , Z

′
p) +

n∑
i=p+1

h(Z′
i |Z′

i−1, Z
′
i−2, . . . , Z

′
i−p)

(12.48)

= h(Z′
1, Z

′
2, . . . , Z

′
n), (12.49)

where the last equality follows from the pth-order Markovity of the {Z′
i}.

Dividing by n and taking the limit, we obtain

lim
1

n
h(X1, X2, . . . , Xn) ≤ lim

1

n
h(Z′

1, Z
′
2, . . . , Z

′
n) = h∗, (12.50)

where

h∗ = 1

2
log 2πeσ 2, (12.51)

which is the entropy rate of the Gauss–Markov process. Hence, the max-
imum entropy rate stochastic process satisfying the constraints is the
pth-order Gauss–Markov process satisfying the constraints. �

A bare-bones summary of the proof is that the entropy of a finite
segment of a stochastic process is bounded above by the entropy of a
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segment of a Gaussian random process with the same covariance structure.
This entropy is in turn bounded above by the entropy of the minimal order
Gauss–Markov process satisfying the given covariance constraints. Such
a process exists and has a convenient characterization by means of the
Yule–Walker equations given below.
Note on the choice of a1, . . . , ap and σ 2: Given a sequence of covariances
R(0), R(1), . . . , R(p), does there exist a pth-order Gauss–Markov pro-
cess with these covariances? Given a process of the form (12.43), can we
choose the ak’s to satisfy the constraints? Multiplying (12.43) by Xi−l

and taking expectations, noting that R(k) = R(−k), we get

R(0) = −
p∑

k=1

akR(−k) + σ 2 (12.52)

and

R(l) = −
p∑

k=1

akR(l − k), l = 1, 2, . . . . (12.53)

These equations are called the Yule–Walker equations . There are p + 1
equations in the p + 1 unknowns a1, a2, . . . , ap, σ 2. Therefore, we can
solve for the parameters of the process from the covariances.

Fast algorithms such as the Levinson algorithm and the Durbin algo-
rithm [433] have been devised to use the special structure of these
equations to calculate the coefficients a1, a2, . . . , ap efficiently from the
covariances. (We set a0 = 1 for a consistent notation.) Not only do the
Yule–Walker equations provide a convenient set of linear equations for
calculating the ak’s and σ 2 from the R(k)’s, they also indicate how the
autocorrelations behave for lags greater than p. The autocorrelations for
high lags are an extension of the values for lags less than p. These val-
ues are called the Yule–Walker extension of the autocorrelations. The
spectrum of the maximum entropy process is seen to be

S(λ) =
∞∑

m=−∞
R(m)e−imλ (12.54)

= σ 2

∣∣1 + ∑p

k=1 ake−ikλ
∣∣2 , −π ≤ λ ≤ π. (12.55)

This is the maximum entropy spectral density subject to the constraints
R(0), R(1), . . . , R(p).

However, for the pth-order Gauss–Markov process, it is possible to
calculate the entropy rate directly without calculating the ai’s. Let Kp be
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the autocorrelation matrix corresponding to this process—the matrix with
R0, R1, . . . , Rp along the top row. For this process, the entropy rate is
equal to

h∗ = h(Xp|Xp−1, . . . , X0) = h(X0, . . . , Xp) − h(X0, . . . , Xp−1)

(12.56)

= 1

2
log(2πe)p+1|Kp| − 1

2
log(2πe)p|Kp−1|

(12.57)

= 1

2
log(2πe)

|Kp|
|Kp−1| . (12.58)

In a practical problem, we are generally given a sample sequence
X1, X2, . . . , Xn, from which we calculate the autocorrelations. An impor-
tant question is: How many autocorrelation lags should we consider (i.e.,
what is the optimum value of p)? A logically sound method is to choose
the value of p that minimizes the total description length in a two-stage
description of the data. This method has been proposed by Rissanen
[442, 447] and Barron [33] and is closely related to the idea of Kol-
mogorov complexity.

SUMMARY

Maximum entropy distribution. Let f be a probability density satis-
fying the constraints∫

S

f (x)ri(x) = αi for 1 ≤ i ≤ m. (12.59)

Let f ∗(x) = fλ(x) = eλ0+∑m
i=1 λiri (x), x ∈ S, and let λ0, . . . , λm be cho-

sen so that f ∗ satisfies (12.59). Then f ∗ uniquely maximizes h(f ) over
all f satisfying these constraints.

Maximum entropy spectral density estimation. The entropy rate of a
stochastic process subject to autocorrelation constraints R0, R1, . . . , Rp

is maximized by the pth order zero-mean Gauss-Markov process satis-
fying these constraints. The maximum entropy rate is

h∗ = 1

2
log(2πe)

|Kp|
|Kp−1| , (12.60)
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and the maximum entropy spectral density is

S(λ) = σ 2

∣∣1 + ∑p

k=1 ake−ikλ
∣∣2 . (12.61)

PROBLEMS

12.1 Maximum entropy . Find the maximum entropy density f ,
defined for x ≥ 0, satisfying EX = α1, E ln X = α2. That is, max-
imize − ∫

f ln f subject to
∫

xf (x) dx = α1,
∫
(ln x)f (x) dx =

α2, where the integral is over 0 ≤ x < ∞. What family of densi-
ties is this?

12.2 Min D(P ‖ Q) under constraints on P . We wish to find the
(parametric form) of the probability mass function P(x), x ∈{1, 2,

. . .} that minimizes the relative entropy D(P ‖ Q) over all P such
that

∑
P(x)gi(x) = αi, i = 1, 2, . . . .

(a) Use Lagrange multipliers to guess that

P ∗(x) = Q(x)e
∑∞

i=1 λigi (x)+λ0 (12.62)

achieves this minimum if there exist λi’s satisfying the αi

constraints. This generalizes the theorem on maximum en-
tropy distributions subject to constraints.

(b) Verify that P ∗ minimizes D(P ‖ Q).

12.3 Maximum entropy processes . Find the maximum entropy rate
stochastic process {Xi}∞−∞ subject to the constraints:
(a) EX2

i = 1, i = 1, 2, . . . .
(b) EX2

i = 1, EXiXi+1 = 1
2 , i = 1, 2, . . . .

(c) Find the maximum entropy spectrum for the processes in parts
(a) and (b).

12.4 Maximum entropy with marginals . What is the maximum en-
tropy distribution p(x, y) that has the following marginals?
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(Hint: You may wish to guess and verify a more general result.)

12.5 Processes with fixed marginals . Consider the set of all densities
with fixed pairwise marginals fX1,X2(x1, x2), fX2,X3(x2, x3), . . . ,

fXn−1,Xn(xn−1, xn). Show that the maximum entropy process with
these marginals is the first-order (possibly time-varying) Markov
process with these marginals. Identify the maximizing f ∗(x1, x2,

. . . , xn).

12.6 Every density is a maximum entropy density . Let f0(x) be a
given density. Given r(x), let gα(x) be the density maximizing
h(X) over all f satisfying

∫
f (x)r(x) dx = α. Now let r(x) =

ln f0(x). Show that gα(x) = f0(x) for an appropriate choice α =
α0. Thus, f0(x) is a maximum entropy density under the constraint∫

f ln f0 = α0.

12.7 Mean-squared error . Let {Xi}ni=1 satisfy EXiXi+k = Rk, k =
0, 1, . . . , p. Consider linear predictors for Xn; that is,

X̂n =
n−1∑
i=1

biXn−i .

Assume that n > p. Find

max
f (xn)

min
b

E(Xn − X̂n)
2,

where the minimum is over all linear predictors b and the maxi-
mum is over all densities f satisfying R0, . . . , Rp.

12.8 Maximum entropy characteristic functions . We ask for the max-
imum entropy density f (x), 0 ≤ x ≤ a, satisfying a constraint on
the characteristic function �(u) = ∫ a

0 eiuxf (x) dx. The answers
need be given only in parametric form.
(a) Find the maximum entropy f satisfying

∫ a

0 f (x) cos(u0x) dx

= α, at a specified point u0.
(b) Find the maximum entropy f satisfying

∫ a

0 f (x) sin(u0x) dx

= β.
(c) Find the maximum entropy density f (x), 0 ≤ x ≤ a, having a

given value of the characteristic function �(u0) at a specified
point u0.

(d) What problem is encountered if a = ∞?
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12.9 Maximum entropy processes
(a) Find the maximum entropy rate binary stochastic process

{Xi}∞i=−∞, Xi ∈ {0, 1}, satisfying Pr{Xi = Xi+1} = 1
3 for

all i.
(b) What is the resulting entropy rate?

12.10 Maximum entropy of sums . Let Y = X1 + X2. Find the maxi-
mum entropy density for Y under the constraint EX2

1 = P1, EX2
2= P2:

(a) If X1 and X2 are independent.
(b) If X1 and X2 are allowed to be dependent.
(c) Prove part (a).

12.11 Maximum entropy Markov chain . Let {Xi} be a stationary
Markov chain with Xi ∈ {1, 2, 3}. Let I (Xn;Xn+2) = 0 for all n.

(a) What is the maximum entropy rate process satisfying this
constraint?

(b) What if I (Xn; Xn+2) = α for all n for some given value of
α, 0 ≤ α ≤ log 3?

12.12 Entropy bound on prediction error . Let {Xn} be an arbitrary real
valued stochastic process. Let X̂n+1 = E{Xn+1|Xn}. Thus the con-
ditional mean X̂n+1 is a random variable depending on the n-past
Xn. Here X̂n+1 is the minimum mean squared error prediction of
Xn+1 given the past.
(a) Find a lower bound on the conditional variance E{E{(Xn+1

− X̂n+1)
2|Xn}} in terms of the conditional differential entropy

h(Xn+1|Xn).
(b) Is equality achieved when {Xn} is a Gaussian stochastic pro-

cess?

12.13 Maximum entropy rate. What is the maximum entropy rate sto-
chastic process {Xi} over the symbol set {0, 1} for which the
probability that 00 occurs in a sequence is zero?

12.14 Maximum entropy
(a) What is the parametric-form maximum entropy density f (x)

satisfying the two conditions

EX8 = a, EX16 = b?
(b) What is the maximum entropy density satisfying the condition

E(X8 + X16) = a + b?

(c) Which entropy is higher?
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12.15 Maximum entropy . Find the parametric form of the maximum
entropy density f satisfying the Laplace transform condition

∫
f (x)e−x dx = α,

and give the constraints on the parameter.

12.16 Maximum entropy processes . Consider the set of all stochastic
processes with {Xi}, Xi ∈ R, with

R0 = EX2
i = 1, R1 = EXiXi+1 = 1

2
.

Find the maximum entropy rate.

12.17 Binary maximum entropy . Consider a binary process {Xi}, Xi ∈
{−1, +1}, with R0 = EX2

i = 1 and R1 = EXiXi+1 = 1
2 .

(a) Find the maximum entropy process with these constraints.
(b) What is the entropy rate?
(c) Is there a Bernoulli process satisfying these constraints?

12.18 Maximum entropy . Maximize h(Z, Vx, Vy, Vz) subject to the en-
ergy constraint E( 1

2m‖V ‖2 + mgZ) = E0. Show that the resulting
distribution yields

E
1

2
m‖V ‖2 = 3

5
E0, EmgZ = 2

5
E0.

Thus, 2
5 of the energy is stored in the potential field, regardless of

its strength g.

12.19 Maximum entropy discrete processes
(a) Find the maximum entropy rate binary stochastic process

{Xi}∞i=−∞, Xi ∈ {0, 1}, satisfying Pr{Xi = Xi+1} = 1
3 for all

i.
(b) What is the resulting entropy rate?

12.20 Maximum entropy of sums . Let Y = X1 + X2. Find the maxi-
mum entropy of Y under the constraint EX2

1 = P1, EX2
2 = P2:

(a) If X1 and X2 are independent.
(b) If X1 and X2 are allowed to be dependent.
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12.21 Entropy rate
(a) Find the maximum entropy rate stochastic process {Xi} with

EX2
i = 1, EXiXi+2 = α, i = 1, 2, . . .. Be careful.

(b) What is the maximum entropy rate?
(c) What is EXiXi+1 for this process?

12.22 Minimum expected value
(a) Find the minimum value of EX over all probability density

functions f (x) satisfying the following three constraints:
(i) f (x) = 0 for x ≤ 0.

(ii)
∫ ∞
−∞ f (x) dx = 1.

(iii) h(f ) = h.

(b) Solve the same problem if (i) is replaced by
(i′) f (x) = 0 for x ≤ a.

HISTORICAL NOTES

The maximum entropy principle arose in statistical mechanics in the
nineteenth century and has been advocated for use in a broader con-
text by Jaynes [294]. It was applied to spectral estimation by Burg [80].
The information-theoretic proof of Burg’s theorem is from Choi and
Cover [98].





CHAPTER 13

UNIVERSAL SOURCE CODING

Here we develop the basics of universal source coding. Minimax regret
data compression is defined, and the descriptive cost of universality is
shown to be the information radius of the relative entropy ball containing
all the source distributions. The minimax theorem shows this radius to
be the channel capacity for the associated channel given by the source
distribution. Arithmetic coding enables the use of a source distribution
that is learned on the fly. Finally, individual sequence compression is
defined and achieved by a succession of Lempel–Ziv parsing algorithms.

In Chapter 5 we introduced the problem of finding the shortest rep-
resentation of a source, and showed that the entropy is the fundamental
lower limit on the expected length of any uniquely decodable represen-
tation. We also showed that if we know the probability distribution for
the source, we can use the Huffman algorithm to construct the optimal
(minimal expected length) code for that distribution.

For many practical situations, however, the probability distribution
underlying the source may be unknown, and we cannot apply the methods
of Chapter 5 directly. Instead, all we know is a class of distributions. One
possible approach is to wait until we have seen all the data, estimate the
distribution from the data, use this distribution to construct the best code,
and then go back to the beginning and compress the data using this code.
This two-pass procedure is used in some applications where there is a
fairly small amount of data to be compressed. But there are many situa-
tions in which it is not feasible to make two passes over the data, and it
is desirable to have a one-pass (or online) algorithm to compress the data
that “learns” the probability distribution of the data and uses it to com-
press the incoming symbols. We show the existence of such algorithms
that do well for any distribution within a class of distributions.

In yet other cases, there is no probability distribution underlying the
data—all we are given is an individual sequence of outcomes. Examples

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
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of such data sources include text and music. We can then ask the question:
How well can we compress the sequence? If we do not put any restric-
tions on the class of algorithms, we get a meaningless answer—there
always exists a function that compresses a particular sequence to one
bit while leaving every other sequence uncompressed. This function is
clearly “overfitted” to the data. However, if we compare our performance
to that achievable by optimal word assignments with respect to Bernoulli
distributions or kth-order Markov processes, we obtain more interesting
answers that are in many ways analogous to the results for the probabilis-
tic or average case analysis. The ultimate answer for compressibility for
an individual sequence is the Kolmogorov complexity of the sequence,
which we discuss in Chapter 14.

We begin the chapter by considering the problem of source coding as
a game in which the coder chooses a code that attempts to minimize
the average length of the representation and nature chooses a distribution
on the source sequence. We show that this game has a value that is
related to the capacity of a channel with rows of its transition matrix that
are the possible distributions on the source sequence. We then consider
algorithms for encoding the source sequence given a known or “estimated”
distribution on the sequence. In particular, we describe arithmetic coding,
which is an extension of the Shannon–Fano–Elias code of Section 5.9
that permits incremental encoding and decoding of sequences of source
symbols.

We then describe two basic versions of the class of adaptive dictionary
compression algorithms called Lempel–Ziv, based on the papers by Ziv
and Lempel [603, 604]. We provide a proof of asymptotic optimality for
these algorithms, showing that in the limit they achieve the entropy rate
for any stationary ergodic source. In Chapter 16 we extend the notion of
universality to investment in the stock market and describe online portfolio
selection procedures that are analogous to the universal methods for data
compression.

13.1 UNIVERSAL CODES AND CHANNEL CAPACITY

Assume that we have a random variable X drawn according to a dis-
tribution from the family {pθ }, where the parameter θ ∈ {1, 2, . . . , m} is
unknown. We wish to find an efficient code for this source.

From the results of Chapter 5, if we know θ , we can construct a code
with codeword lengths l(x) = log 1

pθ (x)
, achieving an average codeword
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length equal to the entropy Hθ(x) = −∑x pθ(x) log pθ(x), and this is the
best that we can do. For the purposes of this section, we will ignore the
integer constraints on l(x), knowing that applying the integer constraint
will cost at most one bit in expected length. Thus,

min
l(x)

Epθ
[l(X)] = Epθ

[
log

1

pθ(X)

]
= H(pθ). (13.1)

What happens if we do not know the true distribution pθ , yet wish to
code as efficiently as possible? In this case, using a code with codeword
lengths l(x) and implied probability q(x) = 2−l(x), we define the redun-
dancy of the code as the difference between the expected length of the
code and the lower limit for the expected length:

R(pθ , q) = Epθ
[l(X)] − Epθ

[
log

1

pθ(X)

]
(13.2)

=
∑

x

pθ(x)

(
l(x) − log

1

p(x)

)
(13.3)

=
∑

x

pθ(x)

(
log

1

q(x)
− log

1

p(x)

)
(13.4)

=
∑

x

pθ(x) log
pθ(x)

q(x)
(13.5)

= D(pθ‖q), (13.6)

where q(x) = 2−l(x) is the distribution that corresponds to the codeword
lengths l(x).

We wish to find a code that does well irrespective of the true distribution
pθ , and thus we define the minimax redundancy as

R∗ = min
q

max
pθ

R(pθ , q) = min
q

max
pθ

D(pθ‖q). (13.7)

This minimax redundancy is achieved by a distribution q that is at the
“center” of the information ball containing the distributions pθ , that is,
the distribution q whose maximum distance from any of the distributions
pθ is minimized (Figure 13.1).

To find the distribution q that is as close as possible to all the possible
pθ in relative entropy, consider the following channel:
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p1

q*
pm

FIGURE 13.1. Minimum radius information ball containing all the pθ ’s

θ →




. . . p1 . . .

. . . p2 . . .
...

. . . pθ . . .
...

. . . pm . . .




→ X. (13.8)

This is a channel {θ, pθ(x),X} with the rows of the transition matrix equal
to the different pθ ’s, the possible distributions of the source. We will show
that the minimax redundancy R∗ is equal to the capacity of this channel,
and the corresponding optimal coding distribution is the output distribution
of this channel induced by the capacity-achieving input distribution. The
capacity of this channel is given by

C = max
π(θ)

I (θ;X) = max
π(θ)

∑
θ

π(θ)pθ(x) log
pθ(x)

qπ(x)
, (13.9)

where
qπ(x) =

∑
θ

π(θ)pθ (x). (13.10)

The equivalence of R∗ and C is expressed in the following theorem:

Theorem 13.1.1 (Gallager [229], Ryabko [450]) The capacity of a
channel p(x|θ) with rows p1, p2, . . . , pm is given by

C = R∗ = min
q

max
θ

D(pθ‖q). (13.11)
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The distribution q that achieves the minimum in (13.11) is the output
distribution q∗(x) induced be the capacity-achieving input distribution
π∗(θ):

q∗(x) = qπ∗(x) =
∑

θ

π∗(θ)pθ(x). (13.12)

Proof: Let π(θ) be an input distribution on θ ∈ {1, 2, . . . , m}, and let
the induced output distribution be qπ :

(qπ )j =
m∑

i=1

πipij , (13.13)

where pij = pθ(x) for θ = i, x = j . Then for any distribution q on the
output, we have

Iπ(θ;X) =
∑
i,j

πipij log
pij

(qπ)j
(13.14)

=
∑

i

πiD(pi‖qπ) (13.15)

=
∑
i,j

πipij log
pij

qj

qj

(qπ)j
(13.16)

=
∑
i,j

πipij log
pij

qj

+
∑
i,j

πipij log
qj

(qπ)j
(13.17)

=
∑
i,j

πipij log
pij

qj

+
∑

j

(qπ)j log
qj

(qπ)j
(13.18)

=
∑
i,j

πipij log
pij

qj

− D(qπ‖q) (13.19)

=
∑

i

πiD(pi‖q) − D(qπ‖q) (13.20)

≤
∑

i

πiD(pi‖q) (13.21)

for all q, with equality iff q = qπ . Thus, for all q,
∑

i

πiD(pi‖q) ≥
∑

i

πiD(pi‖qπ), (13.22)



432 UNIVERSAL SOURCE CODING

and therefore

Iπ(θ;X) = min
q

∑
i

πiD(pi‖q) (13.23)

is achieved when q = qπ . Thus, the output distribution that minimizes the
average distance to all the rows of the transition matrix is the the output
distribution induced by the channel (Lemma 10.8.1).

The channel capacity can now be written as

C = max
π

Iπ(θ; X) (13.24)

= max
π

min
q

∑
i

πiD(pi‖q). (13.25)

We can now apply a fundamental theorem of game theory, which states
that for a continuous function f (x, y), x ∈ X, y ∈ Y, if f (x, y) is convex
in x and concave in y, and X, Y are compact convex sets, then

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y). (13.26)

The proof of this minimax theorem can be found in [305, 392].
By convexity of relative entropy (Theorem 2.7.2),

∑
i πiD(pi‖q) is

convex in q and concave in π , and therefore

C = max
π

min
q

∑
i

πiD(pi‖q) (13.27)

= min
q

max
π

∑
i

πiD(pi‖q) (13.28)

= min
q

max
i

D(pi‖q), (13.29)

where the last equality follows from the fact that the maximum is achieved
by putting all the weight on the index i maximizing D(pi‖q) in (13.28).
It also follows that q∗ = qπ∗ . This completes the proof. �

Thus, the channel capacity of the channel from θ to X is the minimax
expected redundancy in source coding.

Example 13.1.1 Consider the case when X = {1, 2, 3} and θ takes only
two values, 1 and 2, and the corresponding distributions are p1 = (1 − α,

α, 0) and p2 = (0, α, 1 − α). We would like to encode a sequence of
symbols from X without knowing whether the distribution is p1 or p2.
The arguments above indicate that the worst-case optimal code uses the
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codeword lengths corresponding to the distribution that has a minimal
relative entropy distance from both distributions, in this case, the midpoint
of the two distributions. Using this distribution, q = {1−α

2 , α, 1−α
2

}
, we

achieve a redundancy of

D(p1‖q) = D(p2‖q) = (1 − α) log
1 − α

(1 − α)/2
+ α log

α

α
+ 0 = 1 − α.

(13.30)
The channel with transition matrix rows equal to p1 and p2 is equivalent
to the erasure channel (Section 7.1.5), and the capacity of this channel can
easily be calculated to be (1 − α), achieved with a uniform distribution on
the inputs. The output distribution corresponding to the capacity-achieving
input distribution is equal to

{1−α
2 , α, 1−α

2

}
(i.e., the same as the distri-

bution q above). Thus, if we don’t know the distribution for this class of
sources, we code using the distribution q rather than p1 or p2, and incur
an additional cost of 1 − α bits per source symbol above the ideal entropy
bound.

13.2 UNIVERSAL CODING FOR BINARY SEQUENCES

Now we consider an important special case of encoding a binary sequence
xn ∈ {0, 1}n. We do not make any assumptions about the probability dis-
tribution for x1, x2, . . . , xn.

We begin with bounds on the size of
(
n
k

)
, taken from Wozencraft and

Reiffen [567] proved in Lemma 17.5.1: For k �= 0 or n,
√

n

8k(n − k)
≤
(

n

k

)
2−nH(k/n) ≤

√
n

πk(n − k)
. (13.31)

We first describe an offline algorithm to describe the sequence; we
count the number of 1’s in the sequence, and after we have seen the entire
sequence, we send a two-stage description of the sequence. The first stage
is a count of the number of 1’s in the sequence [i.e., k =∑i xi (using
�log(n + 1)	 bits)], and the second stage is the index of this sequence
among all sequences that have k 1’s (using �log

(
n
k

)	 bits). This two-stage
description requires total length

l(xn) ≤ log(n + 1) + log

(
n

k

)
+ 2 (13.32)

≤ log n + nH

(
k

n

)
− 1

2
log n − 1

2
log

(
π

k

n

(n − k)

n

)
+ 3 (13.33)
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= nH

(
k

n

)
+ 1

2
log n − 1

2
log

(
π

k

n

n − k

n

)
+ 3. (13.34)

Thus, the cost of describing the sequence is approximately 1
2 log n bits

above the optimal cost with the Shannon code for a Bernoulli distribution
corresponding to k/n. The last term is unbounded at k = 0 or k = n, so
the bound is not useful for these cases (the actual description length is
log(n + 1) bits, whereas the entropy H(k/n) = 0 when k = 0 or k = n).

This counting approach requires the compressor to wait until he has
seen the entire sequence. We now describe a different approach using a
mixture distribution that achieves the same result on the fly. We choose
the coding distribution q(x1, x2, . . . , xn) = 2−l(x1,x2,...,xn) to be a uniform
mixture of all Bernoulli(θ ) distributions on x1, x2, . . . , xn. We will analyze
the performance of a code using this distribution and show that such codes
perform well for all input sequences.

We construct this distribution by assuming that θ , the parameter of
the Bernoulli distribution is drawn according to a uniform distribution on
[0, 1]. The probability of a sequence x1, x2, . . . , xn with k ones is θk(1 −
θ)n−k under the Bernoulli(θ ) distribution. Thus, the mixture probability
of the sequence is

p(x1, x2, . . . , xn) =
∫ 1

0
θk(1 − θ)n−kdθ

�= A(n, k). (13.35)

Integrating by parts, setting u = (1 − θ)n−k and dv = θkdθ , we have

∫ 1

0
θk(1 − θ)n−kdθ =

[
1

k + 1
θk+1(1 − θ)n−k

]1

0

+ n − k

k + 1

∫ 1

0
θk+1(1 − θ)n−k−1dθ, (13.36)

or

A(n, k) = n − k

k + 1
A(n, k + 1). (13.37)

Now A(n, n) = ∫ 1
0 θndθ = 1

n+1 , and we can easily verify from the recur-
sion that

p(x1, x2, . . . , xn) = A(n, k) = 1

n + 1

1(
n

k

) . (13.38)
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The codeword length with respect to the mixture distribution is

⌈
log

1

q(xn)

⌉
≤ log(n + 1) + log

(
n

k

)
+ 1, (13.39)

which is within one bit of the length of the two-stage description above.
Thus, we have a similar bound on the codeword length

l(x1, x2, . . . , xn) ≤ H

(
k

n

)
+ 1

2
log n − 1

2
log

(
π

k

n

(n − k)

n

)
+ 2 (13.40)

for all sequences x1, x2, . . . , xn. This mixture distribution achieves a code-
word length within 1

2 log n bits of the optimal code length nH(k/n) that
would be required if the source were really Bernoulli(k/n), without any
assumptions about the distribution of the source.

This mixture distribution yields a nice expression for the conditional prob-
ability of the next symbol given the previous symbols of x1, x2, . . . , xn. Let
ki be the number of 1’s in the first i symbols of x1, x2, . . . , xn. Using (13.38),
we have

q(xi+1 = 1|xi) = q(xi, 1)

q(xi)
(13.41)

=
(

1

i + 2

1(
i+1
ki+1

)
)/(

1

i + 1

1(
i
ki

)
)

(13.42)

= 1

i + 2

(ki + 1)!(n − ki)!

(i + 1)!
(i + 1)

ki!(i − ki)!

i!
(13.43)

= ki + 1

i + 2
. (13.44)

This is the Bayesian posterior probability of 1 given the uniform prior
on θ , and is called the Laplace estimate for the probability of the next
symbol. We can use this posterior probability as the probability of the next
symbol for arithmetic coding, and achieve the codeword length log 1

q(xn)

in a sequential manner with finite-precision arithmetic. This is a horizon-
free result, in that the procedure does not depend on the length of the
sequence.

One issue with the uniform mixture approach or the two-stage approach
is that the bound does not apply for k = 0 or k = n. The only uni-
form bound that we can give on the extra redundancy is log n, which
we can obtain by using the bounds of (11.40). The problem is that
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we are not assigning enough probability to sequences with k = 0 or
k = n. If instead of using a uniform distribution on θ , we used the
Dirichlet

(1
2 , 1

2

)
distribution, also called the Beta

(1
2 , 1

2

)
distribution, the

probability of a sequence x1, x2, . . . , xn becomes

q 1
2
(xn) =

∫ 1

0
θk(1 − θ)n−k 1

π
√

θ(1 − θ)
dθ (13.45)

and it can be shown that this achieves a description length

log
1

q 1
2 (xn)

≤ H(k/n) + 1

2
log n + log

π

8
(13.46)

for all xn ∈ {0, 1}n, achieving a uniform bound on the redundancy of the
universal mixture code. As in the case of the uniform prior, we can cal-
culate the conditional distribution of the next symbol, given the previous
observations, as

q 1
2
(xi+1 = 1|xi) = ki + 1

2

i + 1
, (13.47)

which can be used with arithmetic coding to provide an online algorithm
to encode the sequence. We will analyze the performance of the mix-
ture algorithm in greater detail when we analyze universal portfolios in
Section 16.7.

13.3 ARITHMETIC CODING

The Huffman coding procedure described in Chapter 5 is optimal for
encoding a random variable with a known distribution that has to be
encoded symbol by symbol. However, due to the fact that the codeword
lengths for a Huffman code were restricted to be integral, there could be a
loss of up to 1 bit per symbol in coding efficiency. We could alleviate this
loss by using blocks of input symbols—however, the complexity of this
approach increases exponentially with block length. We now describe a
method of encoding without this inefficiency. In arithmetic coding, instead
of using a sequence of bits to represent a symbol, we represent it by a
subinterval of the unit interval.

The code for a sequence of symbols is an interval whose length decreases
as we add more symbols to the sequence. This property allows us to have a
coding scheme that is incremental (the code for an extension to a sequence
can be calculated simply from the code for the original sequence) and for
which the codeword lengths are not restricted to be integral. The motivation
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for arithmetic coding is based on Shannon–Fano–Elias coding (Section 5.9)
and the following lemma:

Lemma 13.3.1 Let Y be a random variable with continuous probability
distribution function F(y). Let U = F(Y ) (i.e., U is a function of Y defined
by its distribution function). Then U is uniformly distributed on [0, 1].

Proof: Since F(y) ∈ [0, 1], the range of U is [0, 1]. Also, for u ∈ [0, 1],

FU(u) = Pr(U ≤ u) (13.48)

= Pr(F (Y ) ≤ u) (13.49)

= Pr(Y ≤ F−1(u)) (13.50)

= F(F−1(u)) (13.51)

= u, (13.52)

which proves that U has a uniform distribution in [0, 1]. �

Now consider an infinite sequence of random variables X1, X2, . . . from
a finite alphabet X = 0, 1, 2, . . . , m. For any sequence x1, x2, . . . , from
this alphabet, we can place 0. in front of the sequence and consider it as
a real number (base m + 1) between 0 and 1. Let X be the real-valued
random variable X = 0.X1X2 . . . . Then X has the following distribution
function:

FX(x) = Pr{X ≤ x = 0.x1x2 · · ·} (13.53)

= Pr{0.X1X2 · · · ≤ 0.x1x2 · · ·} (13.54)

= Pr{X1 < x1} + Pr{X1 = x1, X2 < x2} + · · · . (13.55)

Now let U = FX(X) = FX(0.X1X2 . . .) = 0.F1F2 . . . . If the distribution
on infinite sequences X∞ has no atoms, then, by the lemma above, U has a
uniform distribution on [0, 1], and therefore the bits F1F2 . . . in the binary
expansion of U are Bernoulli( 1

2 ) (i.e., they are independent and uniformly
distributed on {0, 1}). These bits are therefore incompressible, and form a
compressed representation of the sequence 0.X1X2 . . . . For Bernoulli or
Markov models, it is easy to calculate the cumulative distribution function,
as illustrated in the following example.

Example 13.3.1 Let X1, X2, . . . , Xn be Bernoulli(p). Then the sequence
xn = 110101 maps into
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F(xn) = Pr(X1 < 1) + Pr(X1 = 1, X2 < 1)

+ Pr(X1 = 1, X2 = 1, X3 < 0)

+ Pr(X1 = 1, X2 = 1, X3 = 0, X4 < 1)

+ Pr(X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 < 0)

+ Pr(X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 = 0, X6 < 1)

(13.56)

= q + pq + p2·0 + p2q·q + p2qp·0 + p2qpqq (13.57)

= q + pq + p2q2 + p3q3. (13.58)

Note that each term is easily computed from the previous terms. In general,
for an arbitrary binary process {Xi},

F(xn) =
n∑

k=1

p(xk−10)xk. (13.59)

The probability transform thus forms an invertible mapping from infi-
nite source sequences to incompressible infinite binary sequences. We
now consider the compression achieved by this transformation on finite
sequences. Let X1, X2, . . . , Xn be a sequence of binary random vari-
ables of length n, and let x1, x2, . . . , xn be a particular outcome. We
can treat this sequence as representing an interval [0.x1x2 . . . xn000 . . . ,

0.x1x2 . . . xn1111 . . .), or equivalently, [0.x1x2 . . . xn, 0.x1x2 . . . xn +
( 1

2)n). This is the set of infinite sequences that start with 0.x1x2 · · · xn.
Under the probability transform, this interval gets mapped into another
interval, [FY (0.x1x2 · · · xn), FY (0.x1x2 · · · xn + ( 1

2)n)), whose length is
equal to PX(x1, x2, . . . , xn), the sum of the probabilities of all infinite
sequences that start with 0.x1x2 · · · xn. Under the probability inverse trans-
form, any real number u within this interval maps into a sequence that
starts with x1, x2, . . . , xn, and therefore given u and n, we can recon-
struct x1, x2, . . . , xn. The Shannon–Fano–Elias coding scheme described
earlier allows one to construct a prefix-free code of length log

1
p(x1,x2,...,xn)

+ 2 bits, and therefore it is possible to encode the sequence

x1, x2, . . . , xn with this length. Note that log 1
p(x1,...,xn)

is the ideal code-
word length for xn.

The process of encoding the sequence with the cumulative distribution
function described above assumes arbitrary accuracy for the computa-
tion. In practice, though, we have to implement all numbers with finite
precision, and we describe such an implementation. The key is to consider
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not infinite-precision points for the cumulative distribution function but
intervals in the unit interval. Any finite-length sequence of symbols can
be said to correspond to a subinterval of the unit interval. The objective
of the arithmetic coding algorithm is to represent a sequence of random
variables by a subinterval in [0, 1]. As the algorithm observes more input
symbols, the length of the subinterval corresponding to the input sequence
decreases. As the top end of the interval and the bottom end of the inter-
val get closer, they begin to agree in the first few bits. These will be first
few bits of the output sequence. As soon as the two ends of the interval
agree, we can output the corresponding bits. We can therefore shift these
bits out of the calculation and effectively scale the remaining intervals so
that entire calculation can be done with finite precision. We will not go
into the details here—there is a very good description of the algorithm
and performance considerations in Bell et al. [41]

Example 13.3.2 (Arithmetic coding for a ternary input alphabet) Con-
sider a random variable X with a ternary alphabet {A, B, C}, which
are assumed to have probabilities 0.4, 0.4, and 0.2, respectively. Let
the sequence to be encoded by ACAA. Thus, Fl(·) = (0, 0.4, 0.8) and
Fh(·) = (0.4, 0.8, 1.0). Initially, the input sequence is empty, and the cor-
responding interval is [0, 1). The cumulative distribution function after
the first input symbol is shown in Figure 13.2. It is easy to calculate that
the interval in the algorithm without scaling after the first symbol A is

A

1.0

0.8

0.4

B C xn

F(xn)

FIGURE 13.2. Cumulative distribution function after the first symbol.
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AA AB AC BA BB BC CA CB CC xn

F(xn)

0.32

0.4

FIGURE 13.3. Cumulative distribution function after the second symbol.

[0, 0.4); after the second symbol, C, it is [0.32, 0.4) (Figure 13.3); after
the third symbol A, it is [0.32,0.352); and after the fourth symbol A, it
is [0.32, 0.3328). Since the probability of this sequence is 0.0128, we
will use log(1/0.0128) + 2 (i.e., 9 bits) to encode the midpoint of the
interval sequence using Shannon–Fano–Elias coding (0.3264, which is
0.010100111 binary).

In summary, the arithmetic coding procedure, given any length n and
probability mass function q(x1x2 · · · xn), enables one to encode the sequence
x1x2 · · · xn in a code of length log 1

q(x1x2···xn)
+ 2 bits. If the source is i.i.d.

and the assumed distribution q is equal to the true distribution p of the data,
this procedure achieves an average length for the block that is within 2 bits
of the entropy. Although this is not necessarily optimal for any fixed block
length (a Huffman code designed for the distribution could have a lower
average codeword length), the procedure is incremental and can be used for
any blocklength.

13.4 LEMPEL–ZIV CODING

In Section 13.3 we discussed the basic ideas of arithmetic coding and
mentioned some results on worst-case redundancy for coding a sequence
from an unknown distribution. We now discuss a popular class of tech-
niques for source coding that are universally optimal (their asymptotic
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compression rate approaches the entropy rate of the source for any sta-
tionary ergodic source) and simple to implement. This class of algorithms
is termed Lempel–Ziv, named after the authors of two seminal papers
[603, 604] that describe the two basic algorithms that underlie this class.
The algorithms could also be described as adaptive dictionary compression
algorithms.

The notion of using dictionaries for compression dates back to the
invention of the telegraph. At the time, companies were charged by the
number of letters used, and many large companies produced codebooks for
the frequently used phrases and used the codewords for their telegraphic
communication. Another example is the notion of greetings telegrams
that are popular in India—there is a set of standard greetings such as
“25:Merry Christmas” and “26:May Heaven’s choicest blessings be show-
ered on the newly married couple.” A person wishing to send a greeting
only needs to specify the number, which is used to generate the actual
greeting at the destination.

The idea of adaptive dictionary-based schemes was not explored until
Ziv and Lempel wrote their papers in 1977 and 1978. The two papers
describe two distinct versions of the algorithm. We refer to these ver-
sions as LZ77 or sliding window Lempel–Ziv and LZ78 or tree-structured
Lempel–Ziv. (They are sometimes called LZ1 and LZ2, respectively.)

We first describe the basic algorithms in the two cases and describe
some simple variations. We later prove their optimality, and end with
some practical issues. The key idea of the Lempel–Ziv algorithm is to
parse the string into phrases and to replace phrases by pointers to where
the same string has occurred in the past. The differences between the
algorithms is based on differences in the set of possible match locations
(and match lengths) the algorithm allows.

13.4.1 Sliding Window Lempel–Ziv Algorithm

The algorithm described in the 1977 paper encodes a string by finding the
longest match anywhere within a window of past symbols and represents
the string by a pointer to location of the match within the window and the
length of the match. There are many variations of this basic algorithm,
and we describe one due to Storer and Szymanski [507].

We assume that we have a string x1, x2, . . . to be compressed from a
finite alphabet. A parsing S of a string x1x2 · · · xn is a division of the
string into phrases, separated by commas. Let W be the length of the
window. Then the algorithm can be described as follows: Assume that
we have compressed the string until time i − 1. Then to find the next
phrase, find the largest k such that for some j , i − 1 − W ≤ j ≤ i − 1,
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the string of length k starting at xj is equal to the string (of length k)
starting at xi (i.e., xj+l = xi+l for all 0 ≤ l < k). The next phrase is then
of length k (i.e., xi . . . xi+k−1) and is represented by the pair (P,L), where
P is the location of the beginning of the match and L is the length of
the match. If a match is not found in the window, the next character is
sent uncompressed. To distinguish between these two cases, a flag bit
is needed, and hence the phrases are of two types: (F, P, L) or (F, C),
where C represents an uncompressed character.

Note that the target of a (pointer,length) pair could extend beyond the
window, so that it overlaps with the new phrase. In theory, this match
could be arbitrarily long; in practice, though, the maximum phrase length
is restricted to be less than some parameter.

For example, if W = 4 and the string is ABBABBABBBAABABA
and the initial window is empty, the string will be parsed as follows:
A,B,B,ABBABB,BA,A,BA,BA, which is represented by the sequence of
“pointers”: (0,A),(0,B),(1,1,1),(1,3,6),(1,4,2),(1,1,1),(1,3,2),(1,2,2), where
the flag bit is 0 if there is no match and 1 if there is a match, and the
location of the match is measured backward from the end of the window.
[In the example, we have represented every match within the window
using the (P,L) pair; however, it might be more efficient to represent
short matches as uncompressed characters. See Problem 13.8 for details.]

We can view this algorithm as using a dictionary that consists of all
substrings of the string in the window and of all single characters. The
algorithm finds the longest match within the dictionary and sends a pointer
to that match. We later show that a simple variation on this version of
LZ77 is asymptotically optimal. Most practical implementations of LZ77,
such as gzip and pkzip, are also based on this version of LZ77.

13.4.2 Tree-Structured Lempel–Ziv Algorithms

In the 1978 paper, Ziv and Lempel described an algorithm that parses a
string into phrases, where each phrase is the shortest phrase not seen ear-
lier. This algorithm can be viewed as building a dictionary in the form of
a tree, where the nodes correspond to phrases seen so far. The algorithm is
particularly simple to implement and has become popular as one of the early
standard algorithms for file compression on computers because of its speed
and efficiency. It is also used for data compression in high-speed modems.

The source sequence is sequentially parsed into strings that have not
appeared so far. For example, if the string is ABBABBABBBAABABAA
. . . , we parse it as A,B,BA,BB,AB,BBA,ABA,BAA . . . . After every com-
ma, we look along the input sequence until we come to the shortest string
that has not been marked off before. Since this is the shortest such string,
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all its prefixes must have occurred earlier. (Thus, we can build up a tree
of these phrases.) In particular, the string consisting of all but the last bit
of this string must have occurred earlier. We code this phrase by giving
the location of the prefix and the value of the last symbol. Thus, the string
above would be represented as (0,A),(0,B),(2,A),(2,B),(1,B),(4,A),(5,A),
(3,A), . . . .

Sending an uncompressed character in each phrase results in a loss of
efficiency. It is possible to get around this by considering the extension
character (the last character of the current phrase) as part of the next
phrase. This variation, due to Welch [554], is the basis of most practical
implementations of LZ78, such as compress on Unix, in compression in
modems, and in the image files in the GIF format.

13.5 OPTIMALITY OF LEMPEL–ZIV ALGORITHMS

13.5.1 Sliding Window Lempel–Ziv Algorithms

In the original paper of Ziv and Lempel [603], the authors described the
basic LZ77 algorithm and proved that it compressed any string as well
as any finite-state compressor acting on that string. However, they did
not prove that this algorithm achieved asymptotic optimality (i.e., that the
compression ratio converged to the entropy for an ergodic source). This
result was proved by Wyner and Ziv [591].

The proof relies on a simple lemma due to Kac: the average length of
time that you need to wait to see a particular symbol is the reciprocal of
the probability of a symbol. Thus, we are likely to see the high-probability
strings within the window and encode these strings efficiently. The strings
that we do not find within the window have low probability, so that
asymptotically, they do not influence the compression achieved.

Instead of proving the optimality of the practical version of LZ77, we
will present a simpler proof for a different version of the algorithm, which,
though not practical, captures some of the basic ideas. This algorithm
assumes that both the sender and receiver have access to the infinite past
of the string, and represents a string of length n by pointing to the last
time it occurred in the past.

We assume that we have a stationary and ergodic process defined
for time from −∞ to ∞, and that both the encoder and decoder have
access to . . . , X−2, X−1, the infinite past of the sequence. Then to encode
X0, X1, . . . , Xn−1 (a block of length n), we find the last time we have
seen these n symbols in the past. Let

Rn(X0, X1, . . . , Xn−1) =
max{j < 0 : (X−j , X−j+1 . . . X−j+n−1) = (X0, . . . , Xn−1)}. (13.60)
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Then to represent X0, . . . , Xn−1, we need only to send Rn to the receiver,
who can then look back Rn bits into the past and recover X0, . . . , Xn−1.
Thus, the cost of the encoding is the cost of representing Rn. We will show
that this cost is approximately log Rn and that asymptotically 1

n
E log Rn

→ H(X), thus proving the asymptotic optimality of this algorithm.
We will need the following lemmas.

Lemma 13.5.1 There exists a prefix-free code for the integers such that
the length of the codeword for integer k is log k + 2 log log k + O(1).

Proof: If we knew that k ≤ m, we could encode k with log m bits. How-
ever, since we don’t have an upper limit for k, we need to tell the receiver
the length of the encoding of k (i.e., we need to specify log k). Consider
the following encoding for the integer k: We first represent �log k	 in
unary, followed by the binary representation of k:

C1(k) = 00 · · · 0︸ ︷︷ ︸
�log k	 0’s

1 xx · · · x︸ ︷︷ ︸
k in binary

. (13.61)

It is easy to see that the length of this representation is 2�log k	 + 1 ≤
2 log k + 3. This is more than the length we are looking for since we are
using the very inefficient unary code to send log k. However, if we use C1
to represent log k, it is now easy to see that this representation has a length
less than log k + 2 log log k + 4, which proves the lemma. A similar method
is presented in the discussion following Theorem 14.2.3. �

The key result that underlies the proof of the optimality of LZ77 is
Kac’s lemma, which relates the average recurrence time to the proba-
bility of a symbol for any stationary ergodic process. For example, if
X1, X2, . . . , Xn is an i.i.d. process, we ask what is the expected waiting
time to see the symbol a again, conditioned on the fact that X1 = a. In
this case, the waiting time has a geometric distribution with parameter
p = p(X0 = a), and thus the expected waiting time is 1/p(X0 = a). The
somewhat surprising result is that the same is true even if the process is
not i.i.d., but stationary and ergodic. A simple intuitive reason for this
is that in a long sample of length n, we would expect to see a about
np(a) times, and the average distance between these occurrences of a is
n/(np(a)) (i.e., 1/p(a)).

Lemma 13.5.2 (Kac) Let . . . , U2, U1, U0, U1, . . . be a stationary
ergodic process on a countable alphabet. For any u such that p(u) > 0
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and for i = 1, 2, . . . , let

Qu(i) = Pr
{
U−i = u; Uj �= u for − i < j < 0|U0 = u

}
(13.62)

[i.e., Qu(i) is the conditional probability that the most recent previous
occurrence of the symbol u is i, given that U0 = u]. Then

E(R1(U)|X0 = u) =
∑

i

iQu(i) = 1

p(u)
. (13.63)

Thus, the conditional expected waiting time to see the symbol u again,
looking backward from zero, is 1/p(u).

Note the amusing fact that the expected recurrence time

ER1(U) =
∑

p(u)
1

p(u)
= m, (13.64)

where m is the alphabet size.

Proof: LetU0 = u. Define the events for j = 1, 2, . . . andk = 0, 1, 2, . . . :

Ajk = {U−j = u, Ul �= u, −j < l < k, Uk = u
}
. (13.65)

Event Ajk corresponds to the event where the last time before zero at
which the process is equal to u is at −j , the first time after zero at which
the process equals u is k. These events are disjoint, and by ergodicity, the
probability Pr{∪j,kAjk} = 1. Thus,

1 = Pr
{∪j,kAjk

}
(13.66)

(a)=
∞∑

j=1

∞∑
k=0

Pr{Ajk} (13.67)

=
∞∑

j=1

∞∑
k=0

Pr(Uk = u) Pr
{
U−j = u, Ul �= u, −j < l < k|Uk = u

}

(13.68)

(b)=
∞∑

j=1

∞∑
k=0

Pr(Uk = u)Qu(j + k) (13.69)



446 UNIVERSAL SOURCE CODING

(c)=
∞∑

j=1

∞∑
k=0

Pr(U0 = u)Qu(j + k) (13.70)

= Pr(U0 = u)

∞∑
j=1

∞∑
k=0

Qu(j + k) (13.71)

(d)= Pr(U0 = u)

∞∑
i=1

iQu(i), (13.72)

where (a) follows from the fact that the Ajk are disjoint, (b) follows from
the definition of Qu(·), (c) follows from stationarity, and (d) follows from
the fact that there are i pairs (j, k) such that j + k = i in the sum. Kac’s
lemma follows directly from this equation. �

Corollary Let . . . , X−1, X0, X1, . . . be a stationary ergodic process and
let Rn(X0, . . . , Xn−1) be the recurrence time looking backward as defined
in (13.60). Then

E
[
Rn(X0, . . . , Xn−1)|(X0, . . . , Xn−1) = xn−1

0

]
= 1

p(xn−1
0 )

. (13.73)

Proof: Define a new process with Ui = (Xi, Xi+1, . . . , Xi+n−1). The U

process is also stationary and ergodic, and thus by Kac’s lemma the aver-
age recurrence time for U conditioned on U0 = u is 1/p(u). Translating
this to the X process proves the corollary. �

We are now in a position to prove the main result, which shows that
the compression ratio for the simple version of Lempel–Ziv using recur-
rence time approaches the entropy. The algorithm describes Xn−1

0 by
describing Rn(X

n−1
0 ), which by Lemma 13.5.1 can be done with log Rn +

2 log log Rn + 4 bits. We now prove the following theorem.

Theorem 13.5.1 Let Ln(X
n−1
0 ) = log Rn + 2 log log Rn + O(1) be the

description length for Xn−1
0 in the simple algorithm described above. Then

1

n
ELn(X

n−1
0 ) → H(X) (13.74)

as n → ∞, where H(X) is the entropy rate of the process {Xi}.



13.5 OPTIMALITY OF LEMPEL–ZIV ALGORITHMS 447

Proof: We will prove upper and lower bounds for ELn. The lower bound
follows directly from standard source coding results (i.e., ELn ≥ nH for
any prefix-free code). To prove the upper bound, we first show that

lim
1

n
E log Rn ≤ H (13.75)

and later bound the other terms in the expression for Ln. To prove the
bound for E log Rn, we expand the expectation by conditioning on the
value of Xn−1

0 and then applying Jensen’s inequality. Thus,

1

n
E log Rn = 1

n

∑
xn−1

0

p(xn−1
0 )E[log Rn(X

n−1
0 )|Xn−1

0 = xn−1
0 ] (13.76)

≤ 1

n

∑
xn−1

0

p(xn−1
0 ) log E[Rn(X

n−1
0 )|Xn−1

0 = xn−1
0 ] (13.77)

= 1

n

∑
xn−1

0

p(xn−1
0 ) log

1

p(xn−1
0 )

(13.78)

= 1

n
H(Xn−1

0 ) (13.79)

↘ H(X). (13.80)

The second term in the expression for Ln is log log Rn, and we wish to
show that

1

n
E[log log Rn(X

n−1
0 )] → 0. (13.81)

Again, we use Jensen’s inequality,

1

n
E log log Rn ≤ 1

n
log E[log Rn(X

n−1
0 )] (13.82)

≤ 1

n
log H(Xn−1

0 ), (13.83)

where the last inequality follows from (13.79). For any ε > 0, for large
enough n, H(Xn−1

0 ) < n(H + ε), and therefore 1
n

log log Rn < 1
n

log n + 1
n

log(H + ε) → 0. This completes the proof of the
theorem. �

Thus, a compression scheme that represents a string by encoding the
last time it was seen in the past is asymptotically optimal. Of course, this
scheme is not practical, since it assumes that both sender and receiver
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have access to the infinite past of a sequence. For longer strings, one
would have to look further and further back into the past to find a match.
For example, if the entropy rate is 1

2 and the string has length 200 bits,
one would have to look an average of 2100 ≈ 1030 bits into the past to
find a match. Although this is not feasible, the algorithm illustrates the
basic idea that matching the past is asymptotically optimal. The proof of
the optimality of the practical version of LZ77 with a finite window is
based on similar ideas. We will not present the details here, but refer the
reader to the original proof in [591].

13.5.2 Optimality of Tree-Structured Lempel–Ziv Compression

We now consider the tree-structured version of Lempel–Ziv, where the
input sequence is parsed into phrases, each phrase being the shortest string
that has not been seen so far. The proof of the optimality of this algorithm
has a very different flavor from the proof for LZ77; the essence of the
proof is a counting argument that shows that the number of phrases cannot
be too large if they are all distinct, and the probability of any sequence of
symbols can be bounded by a function of the number of distinct phrases
in the parsing of the sequence.

The algorithm described in Section 13.4.2 requires two passes over the
string—in the first pass, we parse the string and calculate c(n), the number
of phrases in the parsed string. We then use that to decide how many bits
[log c(n)] to allot to the pointers in the algorithm. In the second pass, we
calculate the pointers and produce the coded string as indicated above.
The algorithm can be modified so that it requires only one pass over the
string and also uses fewer bits for the initial pointers. These modifications
do not affect the asymptotic efficiency of the algorithm. Some of the
implementation details are discussed by Welch [554] and Bell et al. [41].

We will show that like the sliding window version of Lempel–Ziv,
this algorithm asymptotically achieves the entropy rate for the unknown
ergodic source. We first define a parsing of the string to be a decomposition
into phrases.

Definition A parsing S of a binary string x1x2 · · · xn is a division of the
string into phrases, separated by commas. A distinct parsing is a parsing
such that no two phrases are identical. For example, 0,111,1 is a distinct
parsing of 01111, but 0,11,11 is a parsing that is not distinct.

The LZ78 algorithm described above gives a distinct parsing of the
source sequence. Let c(n) denote the number of phrases in the LZ78
parsing of a sequence of length n. Of course, c(n) depends on the sequence
Xn. The compressed sequence (after applying the Lempel–Ziv algorithm)
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consists of a list of c(n) pairs of numbers, each pair consisting of a pointer
to the previous occurrence of the prefix of the phrase and the last bit of
the phrase. Each pointer requires log c(n) bits, and hence the total length
of the compressed sequence is c(n)[log c(n) + 1] bits. We now show that
c(n)(log c(n)+1)

n
→ H(X) for a stationary ergodic sequence X1, X2, . . . , Xn.

Our proof is based on the simple proof of asymptotic optimality of LZ78
coding due to Wyner and Ziv [575].

Before we proceed to the details of the proof, we provide an outline
of the main ideas. The first lemma shows that the number of phrases in
a distinct parsing of a sequence is less than n/ log n; the main argument
in the proof is based on the fact that there are not enough distinct short
phrases. This bound holds for any distinct parsing of the sequence, not
just the LZ78 parsing.

The second key idea is a bound on the probability of a sequence based
on the number of distinct phrases. To illustrate this, consider an i.i.d.
sequence of random variables X1, X2, X3, X4 that take on four possible
values, {A, B,C, D}, with probabilities pA, pB , pC , and pD, respec-
tively. Now consider the probability of a sequence P(D, A, B, C) =
pDpApBpC . Since pA + pB + pC + pD = 1, the product pDpApBpC is
maximized when the probabilities are equal (i.e., the maximum value of
the probability of a sequence of four distinct symbols is 1/256). On the
other hand, if we consider a sequence A, B,A, B, the probability of this
sequence is maximized if pA = pB = 1

2 , pC = pD = 0, and the maximum
probability for A, B, A, B is 1

16 . A sequence of the form A, A, A, A could
have a probability of 1. All these examples illustrate a basic point—se-
quences with a large number of distinct symbols (or phrases) cannot have
a large probability. Ziv’s inequality (Lemma 13.5.5) is the extension of
this idea to the Markov case, where the distinct symbols are the phrases
of the distinct parsing of the source sequence.

Since the description length of a sequence after the parsing grows as
c log c, the sequences that have very few distinct phrases can be com-
pressed efficiently and correspond to strings that could have a high prob-
ability. On the other hand, strings that have a large number of distinct
phrases do not compress as well; but the probability of these sequences
could not be too large by Ziv’s inequality. Thus, Ziv’s inequality enables
us to connect the logarithm of the probability of the sequence with the
number of phrases in its parsing, and this is finally used to show that the
tree-structured Lempel–Ziv algorithm is asymptotically optimal.

We first prove a few lemmas that we need for the proof of the theorem.
The first is a bound on the number of phrases possible in a distinct parsing
of a binary sequence of length n.
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Lemma 13.5.3 (Lempel and Ziv [604]) The number of phrases c(n) in
a distinct parsing of a binary sequence X1, X2, . . . , Xn satisfies

c(n) ≤ n

(1 − εn) log n
, (13.84)

where εn = min{1,
log(log n)+4

log n
} → 0 as n → ∞.

Proof: Let

nk =
k∑

j=1

j2j = (k − 1)2k+1 + 2 (13.85)

be the sum of the lengths of all distinct strings of length less than or equal
to k. The number of phrases c in a distinct parsing of a sequence of length
n is maximized when all the phrases are as short as possible. If n = nk,
this occurs when all the phrases are of length ≤ k, and thus

c(nk) ≤
k∑

j=1

2j = 2k+1 − 2 < 2k+1 ≤ nk

k − 1
. (13.86)

If nk ≤ n < nk+1, we write n = nk + �, where � < (k + 1)2k+1. Then
the parsing into shortest phrases has each of the phrases of length ≤ k

and �/(k + 1) phrases of length k + 1. Thus,

c(n) ≤ nk

k − 1
+ �

k + 1
≤ nk + �

k − 1
= n

k − 1
. (13.87)

We now bound the size of k for a given n. Let nk ≤ n < nk+1. Then

n ≥ nk = (k − 1)2k+1 + 2 ≥ 2k, (13.88)

and therefore

k ≤ log n. (13.89)
Moreover,

n ≤ nk+1 = k2k+2 + 2 ≤ (k + 2)2k+2 ≤ (log n + 2)2k+2, (13.90)

by (13.89), and therefore

k + 2 ≥ log
n

log n + 2
, (13.91)
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or for all n ≥ 4,

k − 1 ≥ log n − log(log n + 2) − 3 (13.92)

=
(

1 − log(log n + 2) + 3

log n

)
log n (13.93)

≥
(

1 − log(2 log n) + 3

log n

)
log n (13.94)

=
(

1 − log(log n) + 4

log n

)
log n (13.95)

= (1 − εn) log n. (13.96)

Note that εn = min{1,
log(log n)+4

log n
}. Combining (13.96) with (13.87), we

obtain the lemma. �

We will need a simple result on maximum entropy in the proof of the
main theorem.

Lemma 13.5.4 Let Z be a nonnegative integer-valued random variable
with mean µ. Then the entropy H(Z) is bounded by

H(Z) ≤ (µ + 1) log(µ + 1) − µ log µ. (13.97)

Proof: The lemma follows directly from the results of Theorem 12.1.1,
which show that the geometric distribution maximizes the entropy of a
nonnegative integer-valued random variable subject to a mean constraint.

�

Let {Xi}∞i=−∞ be a binary stationary ergodic process with probabil-
ity mass function P(x1, x2, . . . , xn). (Ergodic processes are discussed in
greater detail in Section 16.8.) For a fixed integer k, define the kth-order
Markov approximation to P as

Qk(x−(k−1), . . . , x0, x1, . . . , xn)
�= P(x0

−(k−1))

n∏
j=1

P(xj |xj−1
j−k ), (13.98)

where x
j

i

�= (xi, xi+1, . . . , xj ), i ≤ j , and the initial state x0
−(k−1) will be

part of the specification of Qk . Since P(Xn|Xn−1
n−k) is itself an ergodic
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process, we have

−1

n
log Qk(X1, X2, . . . , Xn|X0

−(k−1)) = −1

n

n∑
j=1

log P(Xj |Xj−1
j−k)

(13.99)

→ −E log P(Xj |Xj−1
j−k) (13.100)

= H(Xj |Xj−1
j−k). (13.101)

We will bound the rate of the LZ78 code by the entropy rate of the kth-
order Markov approximation for all k. The entropy rate of the Markov
approximation H(Xj |Xj−1

j−k) converges to the entropy rate of the process
as k → ∞, and this will prove the result.

Suppose that Xn
−(k−1) = xn

−(k−1), and suppose that xn
1 is parsed into c

distinct phrases, y1, y2, . . . , yc. Let νi be the index of the start of the
ith phrase (i.e., yi = x

νi+1−1
νi ). For each i = 1, 2, . . . , c, define si = x

νi−1
νi−k .

Thus, si is the k bits of x preceding yi . Of course, s1 = x0
−(k−1).

Let cls be the number of phrases yi with length l and preceding state
si = s for l = 1, 2, . . . and s ∈ Xk. We then have

∑
l,s

cls = c (13.102)

and ∑
l,s

lcls = n. (13.103)

We now prove a surprising upper bound on the probability of a string
based on the parsing of the string.

Lemma 13.5.5 (Ziv’s inequality) For any distinct parsing (in particu-
lar, the LZ78 parsing) of the string x1x2 · · · xn, we have

log Qk(x1, x2, . . . , xn|s1) ≤ −
∑
l,s

cls log cls . (13.104)

Note that the right-hand side does not depend on Qk .

Proof: We write

Qk(x1, x2, . . . , xn|s1) = Qk(y1, y2, . . . , yc|s1) (13.105)
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=
c∏

i=1

P(yi |si) (13.106)

or

log Qk(x1, x2, . . . , xn|s1) =
c∑

i=1

log P(yi |si) (13.107)

=
∑
l,s

∑
i:|yi |=l,si=s

log P(yi |si) (13.108)

=
∑
l,s

cls

∑
i:|yi |=l,si=s

1

cls

log P(yi |si) (13.109)

≤
∑
l,s

cls log


 ∑

i:|yi |=l,si=s

1

cls

P (yi |si)


 ,

(13.110)

where the inequality follows from Jensen’s inequality and the concavity
of the logarithm.

Now since the yi are distinct, we have
∑

i:|yi |=l,si=s P (yi |si) ≤ 1. Thus,

log Qk(x1, x2, . . . , xn|s1) ≤
∑
l,s

cls log
1

cls

, (13.111)

proving the lemma. �

We can now prove the main theorem.

Theorem 13.5.2 Let {Xn} be a binary stationary ergodic process with
entropy rate H(X), and let c(n) be the number of phrases in a distinct
parsing of a sample of length n from this process. Then

lim sup
n→∞

c(n) log c(n)

n
≤ H(X) (13.112)

with probability 1.

Proof: We begin with Ziv’s inequality, which we rewrite as

log Qk(x1, x2, . . . , xn|s1) ≤ −
∑
l,s

cls log
clsc

c
(13.113)
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= −c log c − c
∑
ls

cls

c
log

cls

c
. (13.114)

Writing πls = cls

c
, we have

∑
l,s

πls = 1,
∑
l,s

lπls = n

c
, (13.115)

from (13.102) and (13.103). We now define random variables U , V such
that

Pr(U = l, V = s) = πls. (13.116)

Thus, EU = n
c

and

log Qk(x1, x2, . . . , xn|s1) ≤ cH(U, V ) − c log c (13.117)

or

−1

n
log Qk(x1, x2, . . . , xn|s1) ≥ c

n
log c − c

n
H(U, V ). (13.118)

Now

H(U, V ) ≤ H(U) + H(V ) (13.119)

and H(V ) ≤ log |X|k = k. By Lemma 13.5.4, we have

H(U) ≤ (EU + 1) log(EU + 1) − (EU) log(EU) (13.120)

=
(n

c
+ 1
)

log
(n

c
+ 1
)

− n

c
log

n

c
(13.121)

= log
n

c
+
(n

c
+ 1
)

log
( c

n
+ 1
)

. (13.122)

Thus,

c

n
H(U, V ) ≤ c

n
k + c

n
log

n

c
+ o(1). (13.123)

For a given n, the maximum of c
n

log n
c

is attained for the maximum value
of c (for c

n
≤ 1

e
). But from Lemma 13.5.3, c ≤ n

log n
(1 + o(1)). Thus,

c

n
log

n

c
≤ O

(
log log n

log n

)
, (13.124)
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and therefore c
n
H(U, V ) → 0 as n → ∞. Therefore,

c(n) log c(n)

n
≤ −1

n
log Qk(x1, x2, . . . , xn|s1) + εk(n), (13.125)

where εk(n) → 0 as n → ∞. Hence, with probability 1,

lim sup
n→∞

c(n) log c(n)

n
≤ lim

n→∞ −1

n
log Qk(X1, X2, . . . , Xn|X0

−(k−1))

(13.126)

= H(X0|X−1, . . . , X−k) (13.127)

→ H(X) as k → ∞. � (13.128)

We now prove that LZ78 coding is asymptotically optimal.

Theorem 13.5.3 Let {Xi}∞−∞ be a binary stationary ergodic stochastic
process. Let l(X1, X2, . . . , Xn) be the LZ78 codeword length associated
with X1, X2, . . . , Xn. Then

lim sup
n→∞

1

n
l(X1, X2, . . . , Xn) ≤ H(X) with probability 1, (13.129)

where H(X) is the entropy rate of the process.

Proof: We have shown that l(X1, X2, . . . , Xn) = c(n)(log c(n) + 1),
where c(n) is the number of phrases in the LZ78 parsing of the
string X1, X2, . . . , Xn. By Lemma 13.5.3, lim sup c(n)/n = 0, and thus
Theorem 13.5.2 establishes that

lim sup
l(X1, X2, . . . , Xn)

n
= lim sup

(
c(n) log c(n)

n
+ c(n)

n

)

≤ H(X) with probability 1. � (13.130)

Thus, the length per source symbol of the LZ78 encoding of an ergodic
source is asymptotically no greater than the entropy rate of the source.
There are some interesting features of the proof of the optimality of LZ78
that are worth noting. The bounds on the number of distinct phrases
and Ziv’s inequality apply to any distinct parsing of the string, not just
the incremental parsing version used in the algorithm. The proof can be
extended in many ways with variations on the parsing algorithm; for
example, it is possible to use multiple trees that are context or state
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dependent [218, 426]. Ziv’s inequality (Lemma 13.5.5) remains partic-
ularly intriguing since it relates a probability on one side with a purely
deterministic function of the parsing of a sequence on the other.

The Lempel–Ziv codes are simple examples of a universal code (i.e., a
code that does not depend on the distribution of the source). This code can
be used without knowledge of the source distribution and yet will achieve
an asymptotic compression equal to the entropy rate of the source.

SUMMARY

Ideal word length

l∗(x) = log
1

p(x)
. (13.131)

Average description length

Epl∗(x) = H(p). (13.132)

Estimated probability distribution p̂(x). If l̂(x) = log 1
p̂(x)

, then

Epl̂(x) = H(p) + D(p||p̂). (13.133)

Average redundancy

Rp = Epl(X) − H(p). (13.134)

Minimax redundancy. For X ∼ pθ(x), θ ∈ θ ,

D∗ = min
l

max
p

Rp = min
q

max
θ

D(pθ ||q). (13.135)

Minimax theorem. D∗ = C, where C is the capacity of the channel
{θ, pθ (x),X}.
Bernoulli sequences. For Xn ∼Bernoulli(θ ), the redundancy is

D∗
n = min

q
max

θ
D(pθ (x

n)||q(xn)) ≈ 1

2
log n + o(log n). (13.136)

Arithmetic coding. nH bits of F(xn) reveal approximately n bits
of xn.
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Lempel–Ziv coding (recurrence time coding). Let Rn(X
n) be the

last time in the past that we have seen a block of n symbols Xn. Then
1
n

log Rn → H(X), and encoding by describing the recurrence time is
asymptotically optimal.

Lempel–Ziv coding (sequence parsing). If a sequence is parsed into
the shortest phrases not seen before (e.g., 011011101 is parsed to
0,1,10,11,101,...) and l(xn) is the description length of the parsed se-
quence, then

lim sup
1

n
l(Xn) ≤ H(X) with probability 1 (13.137)

for every stationary ergodic process {Xi}.

PROBLEMS

13.1 Minimax regret data compression and channel capacity . First
consider universal data compression with respect to two source
distributions. Let the alphabet V = {1, e, 0} and let p1(v) put mass
1 − α on v = 1 and mass α on v = e. Let p2(v) put mass 1 − α on
0 and mass α on v = e. We assign word lengths to V according to
l(v) = log 1

p(v)
, the ideal codeword length with respect to a clev-

erly chosen probability mass function p(v). The worst-case excess
description length (above the entropy of the true distribution) is

max
i

(
Epi

log
1

p(V )
− Epi

log
1

pi(V )

)
= max

i
D(pi ‖ p).

(13.138)

Thus, the minimax regret is D∗ = minp maxi D(pi ‖ p).
(a) Find D∗.

(b) Find the p(v) achieving D∗.
(c) Compare D∗ to the capacity of the binary erasure channel

[
1 − α α 0

0 α 1 − α

]

and comment.
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13.2 Universal data compression . Consider three possible source dis-
tributions on X,

Pa = (0.7, 0.2, 0.1), Pb = (0.1, 0.7, 0.2), Pc = (0.2, 0.1, 0.7).

(a) Find the minimum incremental cost of compression

D∗ = min
P

max
θ

D(Pθ‖P),

the associated mass function P = (p1, p2, p3), and ideal code-
word lengths li = log(1/pi).

(b) What is the channel capacity of a channel matrix with rows
Pa, Pb, Pc?

13.3 Arithmetic coding . Let {Xi}∞i=0 be a stationary binary Markov
chain with transition matrix

pij =
[

3
4

1
4

1
4

3
4

]
. (13.139)

Calculate the first 3 bits of F(X∞) = 0.F1F2 . . . when X∞ =
1010111 . . . . How many bits of X∞ does this specify?

13.4 Arithmetic coding . Let Xi be binary stationary Markov with

transition matrix

[ 1
3

2
3

2
3

1
3

]
.

(a) Find F(01110) = Pr{.X1X2X3X4X5 < .01110}.
(b) How many bits .F1F2 . . . can be known for sure if it is not

known how X = 01110 continues?

13.5 Lempel–Ziv . Give the LZ78 parsing and encoding of
00000011010100000110101.

13.6 Compression of constant sequence. We are given the constant
sequence xn = 11111 . . . .
(a) Give the LZ78 parsing for this sequence.
(b) Argue that the number of encoding bits per symbol for this

sequence goes to zero as n → ∞.

13.7 Another idealized version of Lempel–Ziv coding . An idealized
version of LZ was shown to be optimal: The encoder and decoder
both have available to them the “infinite past” generated by the
process, . . . , X−1, X0, and the encoder describes the string (X1,

X2, . . . , Xn) by telling the decoder the position Rn in the past
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of the first recurrence of that string. This takes roughly log Rn +
2 log log Rn bits. Now consider the following variant: Instead of
describing Rn, the encoder describes Rn−1 plus the last sym-
bol, Xn. From these two the decoder can reconstruct the string
(X1, X2, . . . , Xn).
(a) What is the number of bits per symbol used in this case to

encode (X1, X2, . . . , Xn)?
(b) Modify the proof given in the text to show that this version is

also asymptotically optimal: namely, that the expected number
of bits per symbol converges to the entropy rate.

13.8 Length of pointers in LZ77 . In the version of LZ77 due to Storer
and Szymanski [507] described in Section 13.4.1, a short match
can be represented by either (F, P,L) (flag, pointer, length) or
by (F, C) (flag, character). Assume that the window length is W ,
and assume that the maximum match length is M .
(a) How many bits are required to represent P ? To represent L?
(b) Assume that C, the representation of a character, is 8 bits

long. If the representation of P plus L is longer than 8 bits,
it would be better to represent a single character match as
an uncompressed character rather than as a match within the
dictionary. As a function of W and M , what is the shortest
match that one should represent as a match rather than as
uncompressed characters?

(c) Let W = 4096 and M = 256. What is the shortest match that
one would represent as a match rather than uncompressed
characters?

13.9 Lempel–Ziv 78 .
(a) Continue the Lempel–Ziv parsing of the sequence

0,00,001,00000011010111.
(b) Give a sequence for which the number of phrases in the LZ

parsing grows as fast as possible.
(c) Give a sequence for which the number of phrases in the LZ

parsing grows as slowly as possible.

13.10 Two versions of fixed-database Lempel–Ziv . Consider a source
(A, P ). For simplicity assume that the alphabet is finite |A| =
A < ∞ and the symbols are i.i.d. ∼ P . A fixed database D is
given and is revealed to the decoder. The encoder parses the tar-
get sequence xn

1 into blocks of length l, and subsequently encodes
them by giving the binary description of their last appearance
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in the database. If a match is not found, the entire block is
sent uncompressed, requiring l log A bits. A flag is used to tell
the decoder whether a match location is being described or the
sequence itself. Parts (a) and (b) give some preliminaries you will
need in showing the optimality of fixed-database LZ in part (c).
(a) Let xl be a δ-typical sequence of length l starting at 0, and let

Rl(x
l) be the corresponding recurrence index in the infinite

past . . . , X−2, X−1. Show that

E
[
Rl(X

l)|Xl = xl
] ≤ 2l(H+δ),

where H is the entropy rate of the source.
(b) Prove that for any ε > 0, Pr

(
Rl(X

l) > 2l(H+ε)
)→ 0 as l →

∞. (Hint: Expand the probability by conditioning on strings
xl , and break things up into typical and nontypical. Markov’s
inequality and the AEP should prove handy as well.)

(c) Consider the following two fixed databases: (i) D1 is formed
by taking all δ-typical l-vectors; and (ii) D2 formed by taking
the most recent L̃ = 2l(H+δ) symbols in the infinite past (i.e.,
X−L̃, . . . , X−1). Argue that the algorithm described above is
asymptotically optimal: namely, that the expected number of
bits per symbol converges to the entropy rate when used in
conjunction with either database D1 or D2.

13.11 Tunstall coding . The normal setting for source coding maps a
symbol (or a block of symbols) from a finite alphabet onto a variable-
length string. An example of such a code is the Huffman code, which
is the optimal (minimal expected length) mapping from a set of
symbols to a prefix-free set of codewords. Now consider the dual
problem of variable-to-fixed length codes, where we map a variable-
length sequence of source symbols into a fixed-length binary (or
D-ary) representation. A variable-to-fixed length code for an i.i.d.
sequence of random variables X1, X2, . . . , Xn, Xi ∼ p(x), x ∈ X
= {0, 1, . . . , m − 1}, is defined by a prefix-free set of phrases AD ⊂
X∗, where X∗ is the set of finite-length strings of symbols of X, and
|AD| = D. Given any sequence X1, X2, . . . , Xn, the string is parsed
into phrases from AD (unique because of the prefix-free property of
AD) and represented by a sequence of symbols from a D-ary alpha-
bet. Define the efficiency of this coding scheme by

R(AD) = log D

EL(AD)
, (13.140)
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where EL(AD) is the expected length of a phrase from AD.
(a) Prove that R(AD) ≥ H(X).
(b) The process of constructing AD can be considered as a process

of constructing an m-ary tree whose leaves are the phrases in
AD. Assume that D = 1 + k(m − 1) for some integer k ≥ 1.
Consider the following algorithm due to Tunstall:

(i) Start with A = {0, 1, . . . , m − 1} with probabilities p0,

p1, . . . , pm−1. This corresponds to a complete m-ary tree
of depth 1.

(ii) Expand the node with the highest probability. For ex-
ample, if p0 is the node with the highest probability, the
new set is A = {00, 01, . . . , 0(m − 1), 1, . . . , (m − 1)}.

(iii) Repeat step 2 until the number of leaves (number of
phrases) reaches the required value.

Show that the Tunstall algorithm is optimal in the sense that
it constructs a variable to a fixed code with the best R(AD)

for a given D [i.e., the largest value of EL(AD) for a given
D].

(c) Show that there exists a D such that R(A∗
D) < H(X) + 1.

HISTORICAL NOTES

The problem of encoding a source with an unknown distribution was
analyzed by Fitingof [211] and Davisson [159], who showed that there
were classes of sources for which the universal coding procedure was
asymptotically optimal. The result relating the average redundancy of a
universal code and channel capacity is due to Gallager [229] and Ryabko
[450]. Our proof follows that of Csiszár. This result was extended to
show that the channel capacity was the lower bound for the redundancy
for “most” sources in the class by Merhav and Feder [387], extending the
results obtained by Rissanen [444, 448] for the parametric case.

The arithmetic coding procedure has its roots in the Shannon–Fano
code developed by Elias (unpublished), which was analyzed by Jelinek
[297]. The procedure for the construction of a prefix-free code described
in the text is due to Gilbert and Moore [249]. Arithmetic coding itself was
developed by Rissanen [441] and Pasco [414]; it was generalized by Lang-
don and Rissanen [343]. See also the enumerative methods in Cover [120].
Tutorial introductions to arithmetic coding can be found in Langdon [342]
and Witten et al. [564]. Arithmetic coding combined with the context-tree
weighting algorithm due to Willems et al. [560, 561] achieve the Rissanen
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lower bound [444] and therefore have the optimal rate of convergence to
the entropy for tree sources with unknown parameters.

The class of Lempel–Ziv algorithms was first described in the seminal
papers of Lempel and Ziv [603, 604]. The original results were theoreti-
cally interesting, but people implementing compression algorithms did not
take notice until the publication of a simple efficient version of the algo-
rithm due to Welch [554]. Since then, multiple versions of the algorithms
have been described, many of them patented. Versions of this algorithm
are now used in many compression products, including GIF files for image
compression and the CCITT standard for compression in modems. The
optimality of the sliding window version of Lempel–Ziv (LZ77) is due to
Wyner and Ziv [575]. An extension of the proof of the optimality of LZ78
[426] shows that the redundancy of LZ78 is on the order of 1/ log(n),
as opposed to the lower bounds of log(n)/n. Thus even though LZ78
is asymptotically optimal for all stationary ergodic sources, it converges
to the entropy rate very slowly compared to the lower bounds for finite-
state Markov sources. However, for the class of all ergodic sources, lower
bounds on the redundancy of a universal code do not exist, as shown by
examples due to Shields [492] and Shields and Weiss [494]. A lossless
block compression algorithm based on sorting the blocks and using simple
run-length encoding due to Burrows and Wheeler [81] has been analyzed
by Effros et al. [181]. Universal methods for prediction are discussed in
Feder, Merhav and Gutman [204, 386, 388].



CHAPTER 14

KOLMOGOROV COMPLEXITY

The great mathematician Kolmogorov culminated a lifetime of research
in mathematics, complexity, and information theory with his definition in
1965 of the intrinsic descriptive complexity of an object. In our treatment
so far, the object X has been a random variable drawn according to
a probability mass function p(x). If X is random, there is a sense in
which the descriptive complexity of the event X = x is log 1

p(x)
, because

�log 1
p(x)

� is the number of bits required to describe x by a Shannon code.
One notes immediately that the descriptive complexity of such an object
depends on the probability distribution.

Kolmogorov went further. He defined the algorithmic (descriptive)
complexity of an object to be the length of the shortest binary com-
puter program that describes the object. (Apparently, a computer, the
most general form of data decompressor, will after a finite amount of
computation, use this description to exhibit the object described.) Thus,
the Kolmogorov complexity of an object dispenses with the probability
distribution. Kolmogorov made the crucial observation that the definition
of complexity is essentially computer independent. It is an amazing fact
that the expected length of the shortest binary computer description of a
random variable is approximately equal to its entropy. Thus, the shortest
computer description acts as a universal code which is uniformly good
for all probability distributions. In this sense, algorithmic complexity is a
conceptual precursor to entropy.

Perhaps a good point of view of the role of this chapter is to consider
Kolmogorov complexity as a way to think. One does not use the shortest
computer program in practice because it may take infinitely long to find
such a minimal program. But one can use very short, not necessarily mini-
mal programs in practice; and the idea of finding such short programs leads
to universal codes, a good basis for inductive inference, a formalization
of Occam’s razor (“The simplest explanation is best”) and to fundamental
understanding in physics, computer science, and communication theory.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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Before formalizing the notion of Kolmogorov complexity, let us give
three strings as examples:

1. 0101010101010101010101010101010101010101010101010101010101010101

2. 0110101000001001111001100110011111110011101111001100100100001000

3. 1101111001110101111101101111101110101101111000101110010100111011

What are the shortest binary computer programs for each of these
sequences? The first sequence is definitely simple. It consists of thirty-
two 01’s. The second sequence looks random and passes most tests for
randomness, but it is in fact the initial segment of the binary expansion
of

√
2 − 1. Again, this is a simple sequence. The third again looks ran-

dom, except that the proportion of 1’s is not near 1
2 . We shall assume

that it is otherwise random. It turns out that by describing the number
k of 1’s in the sequence, then giving the index of the sequence in a
lexicographic ordering of those with this number of 1’s, one can give a
description of the sequence in roughly log n + nH(k

n
) bits. This again is

substantially fewer than the n bits in the sequence. Again, we conclude
that the sequence, random though it is, is simple. In this case, however, it
is not as simple as the other two sequences, which have constant-length
programs. In fact, its complexity is proportional to n. Finally, we can
imagine a truly random sequence generated by pure coin flips. There are
2n such sequences and they are all equally probable. It is highly likely
that such a random sequence cannot be compressed (i.e., there is no bet-
ter program for such a sequence than simply saying “Print the following:
0101100111010. . . 0”). The reason for this is that there are not enough
short programs to go around. Thus, the descriptive complexity of a truly
random binary sequence is as long as the sequence itself.

These are the basic ideas. It will remain to be shown that this notion of
intrinsic complexity is computer independent (i.e., that the length of the
shortest program does not depend on the computer). At first, this seems
like nonsense. But it turns out to be true, up to an additive constant. And
for long sequences of high complexity, this additive constant (which is
the length of the preprogram that allows one computer to mimic the other)
is negligible.

14.1 MODELS OF COMPUTATION

To formalize the notions of algorithmic complexity, we first discuss accept-
able models for computers. All but the most trivial computers are univer-
sal, in the sense that they can mimic the actions of other computers.
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We touch briefly on a certain canonical universal computer, the universal
Turing machine, the conceptually simplest universal computer.

In 1936, Turing was obsessed with the question of whether the thoughts
in a living brain could be held equally well by a collection of inani-
mate parts. In short, could a machine think? By analyzing the human
computational process, he posited some constraints on such a computer.
Apparently, a human thinks, writes, thinks some more, writes, and so on.
Consider a computer as a finite-state machine operating on a finite symbol
set. (The symbols in an infinite symbol set cannot be distinguished in finite
space.) A program tape, on which a binary program is written, is fed left
to right into this finite-state machine. At each unit of time, the machine
inspects the program tape, writes some symbols on a work tape, changes
its state according to its transition table, and calls for more program. The
operations of such a machine can be described by a finite list of tran-
sitions. Turing argued that this machine could mimic the computational
ability of a human being.

After Turing’s work, it turned out that every new computational sys-
tem could be reduced to a Turing machine, and conversely. In particular,
the familiar digital computer with its CPU, memory, and input output
devices could be simulated by and could simulate a Turing machine. This
led Church to state what is now known as Church’s thesis, which states
that all (sufficiently complex) computational models are equivalent in the
sense that they can compute the same family of functions. The class of
functions they can compute agrees with our intuitive notion of effectively
computable functions, that is, functions for which there is a finite pre-
scription or program that will lead in a finite number of mechanically
specified computational steps to the desired computational result.

We shall have in mind throughout this chapter the computer illustrated
in Figure 14.1. At each step of the computation, the computer reads a
symbol from the input tape, changes state according to its state transition
table, possibly writes something on the work tape or output tape, and

Input tape Output tape
Finite
State

Machine

Work tape

... ...p2p1 x1x2

FIGURE 14.1. A Turing machine.
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moves the program read head to the next cell of the program read tape.
This machine reads the program from right to left only, never going back,
and therefore the programs form a prefix-free set. No program leading to a
halting computation can be the prefix of another such program. The restric-
tion to prefix-free programs leads immediately to a theory of Kolmogorov
complexity which is formally analogous to information theory.

We can view the Turing machine as a map from a set of finite-length
binary strings to the set of finite- or infinite-length binary strings. In
some cases, the computation does not halt, and in such cases the value of
the function is said to be undefined. The set of functions f : {0, 1}∗ →
{0, 1}∗ ∪ {0, 1}∞ computable by Turing machines is called the set of par-
tial recursive functions.

14.2 KOLMOGOROV COMPLEXITY: DEFINITIONS
AND EXAMPLES

Let x be a finite-length binary string and let U be a universal computer.
Let l(x) denote the length of the string x. Let U(p) denote the output of
the computer U when presented with a program p.

We define the Kolmogorov (or algorithmic) complexity of a string x

as the minimal description length of x.

Definition The Kolmogorov complexity KU (x) of a string x with respect
to a universal computer U is defined as

KU (x) = min
p:U(p)=x

l(p), (14.1)

the minimum length over all programs that print x and halt. Thus, KU (x)

is the shortest description length of x over all descriptions interpreted by
computer U.

A useful technique for thinking about Kolmogorov complexity is the
following—if one person can describe a sequence to another person in
such a manner as to lead unambiguously to a computation of that sequence
in a finite amount of time, the number of bits in that communication is an
upper bound on the Kolmogorov complexity. For example, one can say
“Print out the first 1,239,875,981,825,931 bits of the square root of e.”
Allowing 8 bits per character (ASCII), we see that the unambiguous 73-
symbol program above demonstrates that the Kolmogorov complexity of
this huge number is no greater than (8)(73) = 584 bits. Most numbers of
this length (more than a quadrillion bits) have a Kolmogorov complexity
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of nearly 1,239,875,981,825,931 bits. The fact that there is a simple algo-
rithm to calculate the square root of e provides the saving in descriptive
complexity.

In the definition above, we have not mentioned anything about the
length of x. If we assume that the computer already knows the length of
x, we can define the conditional Kolmogorov complexity knowing l(x) as

KU (x|l(x)) = min
p:U(p,l(x))=x

l(p). (14.2)

This is the shortest description length if the computer U has the length of
x made available to it.

It should be noted that KU (x|y) is usually defined as KU (x|y, y∗),
where y∗ is the shortest program for y. This is to avoid certain slight
asymmetries, but we will not use this definition here.

We first prove some of the basic properties of Kolmogorov complexity
and then consider various examples.

Theorem 14.2.1 (Universality of Kolmogorov complexity) If U is a
universal computer, for any other computer A there exists a constant cA
such that

KU (x) ≤ KA(x) + cA (14.3)

for all strings x ∈ {0, 1}∗, and the constant cA does not depend on x.

Proof: Assume that we have a program pA for computer A to print x.
Thus, A(pA) = x. We can precede this program by a simulation program
sA which tells computer U how to simulate computer A. Computer U
will then interpret the instructions in the program for A, perform the
corresponding calculations and print out x. The program for U is p =
sApA and its length is

l(p) = l(sA) + l(pA) = cA + l(pA), (14.4)

where cA is the length of the simulation program. Hence,

KU (x) = min
p:U(p)=x

l(p) ≤ min
p:A(p)=x

(l(p) + cA) = KA(x) + cA (14.5)

for all strings x. �

The constant cA in the theorem may be very large. For example, A may
be a large computer with a large number of functions built into the system.
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The computer U can be a simple microprocessor. The simulation program
will contain the details of the implementation of all these functions, in
fact, all the software available on the large computer. The crucial point is
that the length of this simulation program is independent of the length of
x, the string to be compressed. For sufficiently long x, the length of this
simulation program can be neglected, and we can discuss Kolmogorov
complexity without talking about the constants.

If A and U are both universal, we have

|KU (x) − KA(x)| < c (14.6)

for all x. Hence, we will drop all mention of U in all further definitions. We
will assume that the unspecified computer U is a fixed universal computer.

Theorem 14.2.2 (Conditional complexity is less than the length of the
sequence)

K(x|l(x)) ≤ l(x) + c. (14.7)

Proof: A program for printing x is

Print the following l-bit sequence: x1x2 . . . xl(x).

Note that no bits are required to describe l since l is given. The program
is self-delimiting because l(x) is provided and the end of the program is
thus clearly defined. The length of this program is l(x) + c. �

Without knowledge of the length of the string, we will need an addi-
tional stop symbol or we can use a self-punctuating scheme like the one
described in the proof of the next theorem.

Theorem 14.2.3 (Upper bound on Kolmogorov complexity)

K(x) ≤ K(x|l(x)) + 2 log l(x) + c. (14.8)

Proof: If the computer does not know l(x), the method of Theorem
14.2.2 does not apply. We must have some way of informing the com-
puter when it has come to the end of the string of bits that describes
the sequence. We describe a simple but inefficient method that uses a
sequence 01 as a “comma.”

Suppose that l(x) = n. To describe l(x), repeat every bit of the binary
expansion of n twice; then end the description with a 01 so that the
computer knows that it has come to the end of the description of n.
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For example, the number 5 (binary 101) will be described as 11001101.
This description requires 2�log n� + 2 bits. Thus, inclusion of the binary
representation of l(x) does not add more than 2 log l(x) + c bits to the
length of the program, and we have the bound in the theorem. �

A more efficient method for describing n is to do so recursively. We
first specify the number (log n) of bits in the binary representation of n

and then specify the actual bits of n. To specify log n, the length of the
binary representation of n, we can use the inefficient method (2 log log n)
or the efficient method (log log n + · · ·). If we use the efficient method at
each level, until we have a small number to specify, we can describe n

in log n + log log n + log log log n + · · · bits, where we continue the sum
until the last positive term. This sum of iterated logarithms is sometimes
written log∗ n. Thus, Theorem 14.2.3 can be improved to

K(x) ≤ K(x|l(x)) + log∗ l(x) + c. (14.9)

We now prove that there are very few sequences with low complexity.

Theorem 14.2.4 (Lower bound on Kolmogorov complexity). The
number of strings x with complexity K(x) < k satisfies

|{x ∈ {0, 1}∗ : K(x) < k}| < 2k. (14.10)

Proof: There are not very many short programs. If we list all the pro-
grams of length < k, we have

�︸︷︷︸
1

, 0, 1︸︷︷︸
2

, 00, 01, 10, 11︸ ︷︷ ︸
4

, . . . , . . . ,

k−1︷ ︸︸ ︷
11 . . . 1︸ ︷︷ ︸
2k−1

(14.11)

and the total number of such programs is

1 + 2 + 4 + · · · + 2k−1 = 2k − 1 < 2k. (14.12)

Since each program can produce only one possible output sequence, the
number of sequences with complexity < k is less than 2k . �

To avoid confusion and to facilitate exposition in the rest of this chapter,
we shall need to introduce a special notation for the binary entropy func-
tion

H0(p) = −p log p − (1 − p) log(1 − p). (14.13)
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Thus, when we write H0(
1
n

∑n
i=1 Xi), we will mean −Xn log Xn − (1 −

Xn) log(1 − Xn) and not the entropy of random variable Xn. When there
is no confusion, we shall simply write H(p) for H0(p).

Now let us consider various examples of Kolmogorov complexity. The
complexity will depend on the computer, but only up to an additive con-
stant. To be specific, we consider a computer that can accept unambiguous
commands in English (with numbers given in binary notation). We will
use the inequality

√
n

8k(n − k)
2nH(k/n) ≤

(
n

k

)
≤

√
n

πk(n − k)
2nH(k/n), k 
= 0, n,

(14.14)

which is proved in Lemma 17.5.1.

Example 14.2.1 (A sequence of n zeros) If we assume that the com-
puter knows n, a short program to print this string is

Print the specified number of zeros.

The length of this program is a constant number of bits. This program
length does not depend on n. Hence, the Kolmogorov complexity of this
sequence is c, and

K(000 . . . 0|n) = c for all n. (14.15)

Example 14.2.2 (Kolmogorov complexity of π ) The first n bits of π

can be calculated using a simple series expression. This program has a
small constant length if the computer already knows n. Hence,

K(π1π2 · · ·πn|n) = c. (14.16)

Example 14.2.3 (Gotham weather) Suppose that we want the com-
puter to print out the weather in Gotham for n days. We can write a
program that contains the entire sequence x = x1x2 · · · xn, where xi = 1
indicates rain on day i. But this is inefficient, since the weather is quite
dependent. We can devise various coding schemes for the sequence to
take the dependence into account. A simple one is to find a Markov
model to approximate the sequence (using the empirical transition prob-
abilities) and then code the sequence using the Shannon code for this
probability distribution. We can describe the empirical Markov transitions
in O(log n) bits and then use log 1

p(x)
bits to describe x, where p is the
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specified Markov probability. Assuming that the entropy of the weather
is 1

5 bit per day, we can describe the weather for n days using about n/5
bits, and hence

K(Gotham weather|n) ≈ n

5
+ O(log n) + c. (14.17)

Example 14.2.4 (Repeating sequence of the form 01010101. . .01 ) A
short program suffices. Simply print the specified number of 01 pairs.
Hence,

K(010101010 . . . 01|n) = c. (14.18)

Example 14.2.5 (Fractal) A fractal is part of the Mandelbrot set and
is generated by a simple computer program. For different points c in the
complex plane, one calculates the number of iterations of the map zn+1 =
z2
n + c (starting with z0 = 0) needed for |z| to cross a particular threshold.

The point c is then colored according to the number of iterations needed.
Thus, the fractal is an example of an object that looks very complex but
is essentially very simple. Its Kolmogorov complexity is essentially zero.

Example 14.2.6 (Mona Lisa) We can make use of the many structures
and dependencies in the painting. We can probably compress the image
by a factor of 3 or so by using some existing easily described image
compression algorithm. Hence, if n is the number of pixels in the image
of the Mona Lisa,

K(Mona Lisa|n) ≤ n

3
+ c. (14.19)

Example 14.2.7 (Integer n) If the computer knows the number of bits
in the binary representation of the integer, we need only provide the values
of these bits. This program will have length c + log n.

In general, the computer will not know the length of the binary repre-
sentation of the integer. So we must inform the computer in some way
when the description ends. Using the method to describe integers used
to derive (14.9), we see that the Kolmogorov complexity of an integer is
bounded by

K(n) ≤ log∗ n + c. (14.20)

Example 14.2.8 (Sequence of n bits with k ones) Can we compress a
sequence of n bits with k ones?

Our first guess is no, since we have a series of bits that must be repro-
duced exactly. But consider the following program:
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Generate, in lexicographic order, all sequences with k ones;
Of these sequences, print the ith sequence.

This program will print out the required sequence. The only variables in
the program are k (with known range {0, 1, . . . , n}) and i (with conditional
range {1, 2, . . . ,

(
n
k

)}). The total length of this program is

l(p) = c + log n︸︷︷︸
to express k

+ log

(
n

k

)
︸ ︷︷ ︸

to express i

(14.21)

≤ c′ + log n + nH
(

k
n

) − 1
2 log n, (14.22)

since
(
n

k

) ≤ 1√
πnpq

2nH0(p) by (14.14) for p = k/n and q = 1 − p and k 
=
0 and k 
= n. We have used log n bits to represent k. Thus, if

∑n
i=1 xi = k,

then

K(x1, x2, . . . , xn|n) ≤ nH0

(
k

n

)
+ 1

2
log n + c. (14.23)

We can summarize Example 14.2.8 in the following theorem.

Theorem 14.2.5 The Kolmogorov complexity of a binary string x is
bounded by

K(x1x2 · · · xn|n) ≤ nH0

(
1

n

n∑
i=1

xi

)
+ 1

2
log n + c. (14.24)

Proof: Use the program described in Example 14.2.8. �

Remark Let x ∈ {0, 1}∗ be the data that we wish to compress, and
consider the program p to be the compressed data. We will have succeeded
in compressing the data only if l(p) < l(x), or

K(x) < l(x). (14.25)

In general, when the length l(x) of the sequence x is small, the constants
that appear in the expressions for the Kolmogorov complexity will over-
whelm the contributions due to l(x). Hence, the theory is useful primarily
when l(x) is very large. In such cases we can safely neglect the terms
that do not depend on l(x).
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14.3 KOLMOGOROV COMPLEXITY AND ENTROPY

We now consider the relationship between the Kolmogorov complexity of
a sequence of random variables and its entropy. In general, we show that
the expected value of the Kolmogorov complexity of a random sequence
is close to the Shannon entropy. First, we prove that the program lengths
satisfy the Kraft inequality.

Lemma 14.3.1 For any computer U,

∑
p:U(p)halts

2−l(p) ≤ 1. (14.26)

Proof: If the computer halts on any program, it does not look any further
for input. Hence, there cannot be any other halting program with this
program as a prefix. Thus, the halting programs form a prefix-free set,
and their lengths satisfy the Kraft inequality (Theorem 5.2.1).

We now show that 1
n
EK(Xn|n) ≈ H(X) for i.i.d. processes with a

finite alphabet.

Theorem 14.3.1 (Relationship of Kolmogorov complexity and entropy)
Let the stochastic process {Xi} be drawn i.i.d. according to the probability
mass function f (x), x ∈ X, where X is a finite alphabet. Let f (xn) =∏n

i=1 f (xi). Then there exists a constant c such that

H(X) ≤ 1

n

∑
xn

f (xn)K(xn|n) ≤ H(X) + (|X| − 1) log n

n
+ c

n
(14.27)

for all n. Consequently,

E
1

n
K(Xn|n) → H(X). (14.28)

Proof: Consider the lower bound. The allowed programs satisfy the pre-
fix property, and thus their lengths satisfy the Kraft inequality. We assign
to each xn the length of the shortest program p such that U(p, n) = xn.
These shortest programs also satisfy the Kraft inequality. We know from
the theory of source coding that the expected codeword length must be
greater than the entropy. Hence,

∑
xn

f (xn)K(xn|n) ≥ H(X1, X2, . . . , Xn) = nH(X). (14.29)
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We first prove the upper bound when X is binary (i.e., X1,X2, . . . , Xn

are i.i.d. ∼ Bernoulli(θ)). Using the method of Theorem 14.2.5, we can
bound the complexity of a binary string by

K(x1x2 . . . xn|n) ≤ nH0

(
1

n

n∑
i=1

xi

)
+ 1

2
log n + c. (14.30)

Hence,

EK(X1X2 . . . Xn|n) ≤ nEH0

(
1

n

n∑
i=1

Xi

)
+ 1

2
log n + c (14.31)

(a)≤ nH0

(
1

n

n∑
i=1

EXi

)
+ 1

2
log n + c (14.32)

= nH0(θ) + 1

2
log n + c, (14.33)

where (a) follows from Jensen’s inequality and the concavity of the
entropy. Thus, we have proved the upper bound in the theorem for binary
processes.

We can use the same technique for the case of a nonbinary finite alpha-
bet. We first describe the type of the sequence (the empirical frequency
of occurrence of each of the alphabet symbols as defined in Section 11.1)
using (|X| − 1) log n bits (the frequency of the last symbol can be cal-
culated from the frequencies of the rest). Then we describe the index
of the sequence within the set of all sequences having the same type.
The type class has less than 2nH(Pxn) elements (where Pxn is the type
of the sequence xn) as shown in Chapter 11, and therefore the two-stage
description of a string xn has length

K(xn|n) ≤ nH(Pxn) + (|X| − 1) log n + c. (14.34)

Again, taking the expectation and applying Jensen’s inequality as in the
binary case, we obtain

EK(Xn|n) ≤ nH(X) + (|X| − 1) log n + c. (14.35)

Dividing this by n yields the upper bound of the theorem. �
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Removing the conditioning on the length of the sequence is straight-
forward. By similar arguments, we can show that

H(X) ≤ 1

n

∑
xn

f (xn)K(xn) ≤ H(X) + (|X| + 1) log n

n
+ c

n
(14.36)

for all n. The lower bound follows from the fact that K(xn) is also a
prefix-free code for the source, and the upper bound can be derived from
the fact that K(xn) ≤ K(xn|n) + 2 log n + c. Thus,

E
1

n
K(Xn) → H(X), (14.37)

and the compressibility achieved by the computer goes to the entropy
limit.

14.4 KOLMOGOROV COMPLEXITY OF INTEGERS

In Section 14.3 we defined the Kolmogorov complexity of a binary string
as the length of the shortest program for a universal computer that prints
out that string. We can extend that definition to define the Kolmogorov
complexity of an integer to be the Kolmogorov complexity of the corre-
sponding binary string.

Definition The Kolmogorov complexity of an integer n is defined as

K(n) = min
p:U(p)=n

l(p). (14.38)

The properties of the Kolmogorov complexity of integers are very sim-
ilar to those of the Kolmogorov complexity of bit strings. The following
properties are immediate consequences of the corresponding properties
for strings.

Theorem 14.4.1 For universal computers A and U,

KU (n) ≤ KA(n) + cA. (14.39)

Also, since any number can be specified by its binary expansion, we
have the following theorem.

Theorem 14.4.2

K(n) ≤ log∗ n + c. (14.40)
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Theorem 14.4.3 There are an infinite number of integers n such that
K(n) > log n.

Proof: We know from Lemma 14.3.1 that∑
n

2−K(n) ≤ 1 (14.41)

and
∑

n

2− log n =
∑

n

1

n
= ∞. (14.42)

But if K(n) < log n for all n > n0, then

∞∑
n=n0

2−K(n) >

∞∑
n=n0

2− log n = ∞, (14.43)

which is a contradiction. �

14.5 ALGORITHMICALLY RANDOM AND INCOMPRESSIBLE
SEQUENCES

From the examples in Section 14.2, it is clear that there are some long
sequences that are simple to describe, like the first million bits of π . By
the same token, there are also large integers that are simple to describe,
such as

2222222

or (100!)!.
We now show that although there are some simple sequences, most

sequences do not have simple descriptions. Similarly, most integers are
not simple. Hence, if we draw a sequence at random, we are likely to
draw a complex sequence. The next theorem shows that the probability
that a sequence can be compressed by more than k bits is no greater than
2−k .

Theorem 14.5.1 Let X1,X2, . . . , Xn be drawn according to a Bernoulli
(1

2 ) process. Then

P (K(X1X2 . . . Xn|n) < n − k) < 2−k. (14.44)
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Proof:

P(K(X1X2 . . . Xn|n) < n − k)

=
∑

x1x2...xn: K(x1x2...xn|n)<n−k

p(x1, x2, . . . , xn)

(14.45)

=
∑

x1x2...xn: K(x1x2...xn|n)<n−k

2−n (14.46)

= |{x1x2 . . . xn : K(x1x2 . . . xn|n) < n − k}| 2−n

< 2n−k2−n (by Theorem 14.2.4) (14.47)

= 2−k. (14.48)
�

Thus, most sequences have a complexity close to their length. For
example, the fraction of sequences of length n that have complexity less
than n − 5 is less than 1/32. This motivates the following definition:

Definition A sequence x1, x2, . . . , xn is said to be algorithmically ran-
dom if

K(x1x2 . . . xn|n) ≥ n. (14.49)

Note that by the counting argument, there exists, for each n, at least
one sequence xn such that

K(xn|n) ≥ n. (14.50)

Definition We call an infinite string x incompressible if

lim
n→∞

K(x1x2x3 · · · xn|n)

n
= 1. (14.51)

Theorem 14.5.2 (Strong law of large numbers for incompressible se-
quences) If a string x1x2 . . . is incompressible, it satisfies the law of large
numbers in the sense that

1

n

n∑
i=1

xi → 1

2
. (14.52)

Hence the proportions of 0’s and 1’s in any incompressible string are
almost equal.
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Proof: Let θn = 1
n

∑n
i=1 xi denote the proportion of 1’s in x1x2 . . .

xn. Then using the method of Example 14.2, one can write a program
of length nH0(θn) + 2 log(nθn) + c to print xn. Thus,

K(xn|n)

n
< H0(θn) + 2

log n

n
+ c′

n
. (14.53)

By the incompressibility assumption, we also have the lower bound for
large enough n,

1 − ε ≤ K(xn|n)

n
≤ H0(θn) + 2

log n

n
+ c′

n
. (14.54)

Thus,

H0(θn) > 1 − 2 log n + c′

n
− ε. (14.55)

Inspection of the graph of H0(p) (Figure 14.2) shows that θn is close to
1
2 for large n. Specifically, the inequality above implies that

θn ∈
(

1

2
− δn,

1

2
+ δn

)
, (14.56)
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where δn is chosen so that

H0

(
1

2
− δn

)
= 1 − 2 log n + cn + c′

n
, (14.57)

which implies that δn → 0 as n → ∞. Thus, 1
n

∑
xi → 1

2 as n → ∞. �

We have now proved that incompressible sequences look random in the
sense that the proportion of 0’s and 1’s are almost equal. In general, we
can show that if a sequence is incompressible, it will satisfy all computable
statistical tests for randomness. (Otherwise, identification of the test that x

fails will reduce the descriptive complexity of x, yielding a contradiction.)
In this sense, the algorithmic test for randomness is the ultimate test,
including within it all other computable tests for randomness.

We now prove a related law of large numbers for the Kolmogorov
complexity of Bernoulli(θ ) sequences. The Kolmogorov complexity of
a sequence of binary random variables drawn i.i.d. according to a
Bernoulli(θ ) process is close to the entropy H0(θ). In Theorem 14.3.1
we proved that the expected value of the Kolmogorov complex-
ity of a random Bernoulli sequence converges to the entropy [i.e.,
E 1

n
K(X1X2 . . . Xn|n) → H0(θ)]. Now we remove the expectation.

Theorem 14.5.3 Let X1, X2, . . . , Xn be drawn i.i.d. ∼ Bernoulli(θ ).
Then

1

n
K(X1X2 . . . Xn|n) → H0(θ) in probability. (14.58)

Proof: Let Xn = 1
n

∑
Xi be the proportion of 1’s in X1, X2, . . . , Xn.

Then using the method described in (14.23), we have

K(X1X2 . . . Xn|n) ≤ nH0
(
Xn

) + 2 log n + c, (14.59)

and since by the weak law of large numbers, Xn → θ in probability, we
have

Pr

{
1

n
K(X1X2 . . . Xn|n) − H0(θ) ≥ ε

}
→ 0. (14.60)

Conversely, we can bound the number of sequences with complexity sig-
nificantly lower than the entropy. From the AEP, we can divide the set
of sequences into the typical set and the nontypical set. There are at
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least (1 − ε)2n(H0(θ)−ε) sequences in the typical set. At most 2n(H0(θ)−c)

of these typical sequences can have a complexity less than n(H0(θ) − c).
The probability that the complexity of the random sequence is less than
n(H0(θ) − c) is

Pr(K(Xn|n) < n(H0(θ) − c))

≤ Pr(Xn /∈ A(n)
ε ) + Pr(Xn ∈ A(n)

ε , K(Xn|n) < n(H0(θ) − c))

≤ ε +
∑

xn∈A
(n)
ε ,K(xn|n)<n(H0(θ)−c)

p(xn) (14.61)

≤ ε +
∑

xn∈A
(n)
ε ,K(xn|n)<n(H0(θ)−c)

2−n(H0(θ)−ε) (14.62)

≤ ε + 2n(H0(θ)−c)2−n(H0(θ)−ε) (14.63)

= ε + 2−n(c−ε), (14.64)

which is arbitrarily small for appropriate choice of ε, n, and c. Hence with
high probability, the Kolmogorov complexity of the random sequence is
close to the entropy, and we have

K(X1, X2, . . . , Xn|n)

n
→ H0(θ) in probability. (14.65)

�

14.6 UNIVERSAL PROBABILITY

Suppose that a computer is fed a random program. Imagine a monkey
sitting at a keyboard and typing the keys at random. Equivalently, feed a
series of fair coin flips into a universal Turing machine. In either case, most
strings will not make sense to the computer. If a person sits at a terminal
and types keys at random, he will probably get an error message (i.e., the
computer will print the null string and halts). But with a certain probability
she will hit on something that makes sense. The computer will then print
out something meaningful. Will this output sequence look random?

From our earlier discussions, it is clear that most sequences of length n

have complexity close to n. Since the probability of an input program p

is 2−l(p), shorter programs are much more probable than longer ones; and
when they produce long strings, shorter programs do not produce random
strings; they produce strings with simply described structure.

The probability distribution on the output strings is far from uniform.
Under the computer-induced distribution, simple strings are more likely
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than complicated strings of the same length. This motivates us to define
a universal probability distribution on strings as follows:

Definition The universal probability of a string x is

PU (x) =
∑

p:U(p)=x

2−l(p) = Pr(U(p) = x), (14.66)

which is the probability that a program randomly drawn as a sequence of
fair coin flips p1, p2, . . . will print out the string x.

This probability is universal in many senses. We can consider it as the
probability of observing such a string in nature; the implicit belief is that
simpler strings are more likely than complicated strings. For example, if
we wish to describe the laws of physics, we might consider the simplest
string describing the laws as the most likely. This principle, known as
Occam’s Razor, has been a general principle guiding scientific research
for centuries: If there are many explanations consistent with the observed
data, choose the simplest. In our framework, Occam’s Razor is equivalent
to choosing the shortest program that produces a given string.

This probability mass function is called universal because of the fol-
lowing theorem.

Theorem 14.6.1 For every computer A,

PU (x) ≥ c′
APA(x) (14.67)

for every string x ∈ {0, 1}∗, where the constant c′
A depends only on U and

A.

Proof: From the discussion of Section 14.2, we recall that for every
program p′ for A that prints x, there exists a program p for U of length
not more than l(p′) + cA produced by prefixing a simulation program for
A. Hence,

PU (x) =
∑

p:U(p)=x

2−l(p) ≥
∑

p′:A(p′)=x

2−l(p′)−cA = c′
APA(x). (14.68)

�

Any sequence drawn according to a computable probability mass func-
tion on binary strings can be considered to be produced by some computer
A acting on a random input (via the probability inverse transformation
acting on a random input). Hence, the universal probability distribution
includes a mixture of all computable probability distributions.
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Remark (Bounded likelihood ratio). In particular, Theorem 14.6.1 guar-
antees that a likelihood ratio test of the hypothesis that X is drawn
according to PU versus the hypothesis that it is drawn according to
PA will have bounded likelihood ratio. If U and A are universal, the
PU (x)/PA(x) is bounded away from 0 and infinity for all x. This is in
contrast to other simple hypothesis-testing problems (like Bernoulli(θ1)
versus Bernoulli(θ2)), where the likelihood ratio goes to 0 or ∞ as the
sample size goes to infinity. Apparently, PU , which is a mixture of all
computable distributions, can never be rejected completely as the true
distribution of any data drawn according to some computable probability
distribution. In that sense we cannot reject the possibility that the universe
is the output of monkeys typing at a computer. However, we can reject
the hypothesis that the universe is random (monkeys with no computer).

In Section 14.11 we prove that

PU (x) ≈ 2−K(x), (14.69)

thus showing that K(x) and log 1
PU (x)

have equal status as universal algo-

rithmic complexity measures. This is especially interesting since log 1
PU (x)

is the ideal codeword length (the Shannon codeword length) with respect
to the universal probability distribution PU (x).

We conclude this section with an example of a monkey at a typewriter
vs. a monkey at a computer keyboard. If the monkey types at random
on a typewriter, the probability that it types out all the works of Shake-
speare (assuming that the text is 1 million bits long) is 2−1,000,000. If the
monkey sits at a computer terminal, however, the probability that it types
out Shakespeare is now 2−K(Shakespeare) ≈ 2−250,000, which although
extremely small is still exponentially more likely than when the monkey
sits at a dumb typewriter.

The example indicates that a random input to a computer is much more
likely to produce “interesting” outputs than a random input to a typewriter.
We all know that a computer is an intelligence amplifier. Apparently, it
creates sense from nonsense as well.

14.7 THE HALTING PROBLEM AND THE NONCOMPUTABILITY
OF KOLMOGOROV COMPLEXITY

Consider the following paradoxical statement:

This statement is false.

This paradox is sometimes stated in a two-statement form:
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The next statement is false.
The preceding statement is true.

These paradoxes are versions of what is called the Epimenides liar para-
dox, and it illustrates the pitfalls involved in self-reference. In 1931, Gödel
used this idea of self-reference to show that any interesting system of
mathematics is not complete; there are statements in the system that are
true but that cannot be proved within the system. To accomplish this, he
translated theorems and proofs into integers and constructed a statement
of the above form, which can therefore not be proved true or false.

The halting problem in computer science is very closely connected
with Gödel’s incompleteness theorem. In essence, it states that for any
computational model, there is no general algorithm to decide whether a
program will halt or not (go on forever). Note that it is not a statement
about any specific program. Quite clearly, there are many programs that
can easily be shown to halt or go on forever. The halting problem says
that we cannot answer this question for all programs. The reason for this
is again the idea of self-reference.

To a practical person, the halting problem may not be of any immediate
significance, but it has great theoretical importance as the dividing line
between things that can be done on a computer (given unbounded memory
and time) and things that cannot be done at all (such as proving all true
statements in number theory). Gödel’s incompleteness theorem is one of
the most important mathematical results of the twentieth century, and its
consequences are still being explored. The halting problem is an essential
example of Gödel’s incompleteness theorem.

One of the consequences of the nonexistence of an algorithm for the
halting problem is the noncomputability of Kolmogorov complexity. The
only way to find the shortest program in general is to try all short programs
and see which of them can do the job. However, at any time some of
the short programs may not have halted and there is no effective (finite
mechanical) way to tell whether or not they will halt and what they will
print out. Hence, there is no effective way to find the shortest program to
print a given string.

The noncomputability of Kolmogorov complexity is an example of the
Berry paradox . The Berry paradox asks for the shortest number not name-
able in under 10 words. A number like 1,101,121 cannot be a solution
since the defining expression itself is less than 10 words long. This illus-
trates the problems with the terms nameable and describable; they are
too powerful to be used without a strict meaning. If we restrict ourselves
to the meaning “can be described for printing out on a computer,” we can
resolve Berry’s paradox by saying that the smallest number not describable
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in less than 10 words exists but is not computable. This “description” is
not a program for computing the number. E. F. Beckenbach pointed out
a similar problem in the classification of numbers as dull or interesting;
the smallest dull number must be interesting.

As stated at the beginning of the chapter, one does not really anticipate
that practitioners will find the shortest computer program for a given
string. The shortest program is not computable, although as more and more
programs are shown to produce the string, the estimates from above of
the Kolmogorov complexity converge to the true Kolmogorov complexity.
(The problem, of course, is that one may have found the shortest program
and never know that no shorter program exists.) Even though Kolmogorov
complexity is not computable, it provides a framework within which to
consider questions of randomness and inference.

14.8 �

In this section we introduce Chaitin’s mystical, magical number, �, which
has some extremely interesting properties.

Definition

� =
∑

p:U(p) halts

2−l(p). (14.70)

Note that � = Pr(U(p) halts), the probability that the given universal
computer halts when the input to the computer is a binary string drawn
according to a Bernoulli( 1

2 ) process.
Since the programs that halt are prefix-free, their lengths satisfy the

Kraft inequality, and hence the sum above is always between 0 and 1. Let
�n = .ω1ω2 · · ·ωn denote the first n bits of �. The properties of � are
as follows:

1. � is noncomputable. There is no effective (finite, mechanical) way
to check whether arbitrary programs halt (the halting problem), so
there is no effective way to compute �.

2. � is a “philosopher’s stone”. Knowing � to an accuracy of n

bits will enable us to decide the truth of any provable or finitely
refutable mathematical theorem that can be written in less than n

bits. Actually, all that this means is that given n bits of �, there
is an effective procedure to decide the truth of n-bit theorems; the
procedure may take an arbitrarily long (but finite) time. Of course,
without knowing �, it is not possible to check the truth or falsity of
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every theorem by an effective procedure (Gödel’s incompleteness
theorem).
The basic idea of the procedure using n bits of � is simple: We
run all programs until the sum of the masses 2−l(p) contributed
by programs that halt equals or exceeds �n = 0.ω1ω2 · · ·ωn, the
truncated version of � that we are given. Then, since

� − �n < 2−n, (14.71)

we know that the sum of all further contributions of the form 2−l(p)

to � from programs that halt must also be less than 2−n. This implies
that no program of length ≤ n that has not yet halted will ever halt,
which enables us to decide the halting or nonhalting of all programs
of length ≤ n.
To complete the proof, we must show that it is possible for a com-
puter to run all possible programs in “parallel” in such a way that
any program that halts will eventually be found to halt. First, list all
possible programs, starting with the null program, �:

�, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . . . (14.72)

Then let the computer execute one clock cycle of � for the first
cycle. In the next cycle, let the computer execute two clock cycles
of � and two clock cycles of the program 0. In the third cycle, let
it execute three clock cycles of each of the first three programs, and
so on. In this way, the computer will eventually run all possible
programs and run them for longer and longer times, so that if any
program halts, it will eventually be discovered to halt. The com-
puter keeps track of which program is being executed and the cycle
number so that it can produce a list of all the programs that halt.
Thus, we will ultimately know whether or not any program of less
than n bits will halt. This enables the computer to find any proof
of the theorem or a counterexample to the theorem if the theorem
can be stated in less than n bits. Knowledge of � turns previously
unprovable theorems into provable theorems. Here � acts as an
oracle.

Although � seems magical in this respect, there are other numbers
that carry the same information. For example, if we take the list of
programs and construct a real number in which the ith bit indicates
whether program i halts, this number can also be used to decide
any finitely refutable question in mathematics. This number is very
dilute (in information content) because one needs approximately 2n
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bits of this indicator function to decide whether or not an n-bit
program halts. Given 2n bits, one can tell immediately without any
computation whether or not any program of length less than n halts.
However, � is the most compact representation of this information
since it is algorithmically random and incompressible.

What are some of the questions that we can resolve using �?
Many of the interesting problems in number theory can be stated
as a search for a counterexample. For example, it is straightforward
to write a program that searches over the integers x, y, z, and n

and halts only if it finds a counterexample to Fermat’s last theorem,
which states that

xn + yn = zn (14.73)

has no solution in integers for n ≥ 3. Another example is Goldbach’s
conjecture, which states that any even number is a sum of two
primes. Our program would search through all the even numbers
starting with 2, check all prime numbers less than it and find a
decomposition as a sum of two primes. It will halt if it comes across
an even number that does not have such a decomposition. Knowing
whether this program halts is equivalent to knowing the truth of
Goldbach’s conjecture.

We can also design a program that searches through all proofs
and halts only when it finds a proof of the theorem required. This
program will eventually halt if the theorem has a finite proof. Hence
knowing n bits of �, we can find the truth or falsity of all theorems
that have a finite proof or are finitely refutable and which can be
stated in less than n bits.

3. � is algorithmically random .

Theorem 14.8.1 � cannot be compressed by more than a constant;
that is, there exists a constant c such that

K(ω1ω2 . . . ωn) ≥ n − c for all n. (14.74)

Proof: We know that if we are given n bits of �, we can determine
whether or not any program of length ≤ n halts. Using K(ω1ω2 · · ·
ωn) bits, we can calculate n bits of �, and then we can generate a list
of all programs of length ≤ n that halt, together with their corresponding
outputs. We find the first string x0 that is not on this list. The string x0

is then the shortest string with Kolmogorov complexity K(x0) > n. The
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complexity of this program to print x0 is K(�n) + c, which must be at
least as long as the shortest program for x0. Consequently,

K(�n) + c ≥ K(x0) > n (14.75)

for all n. Thus, K(ω1ω2 · · ·ωn) > n − c, and � cannot be compressed by
more than a constant. �

14.9 UNIVERSAL GAMBLING

Suppose that a gambler is asked to gamble sequentially on sequences
x ∈ {0, 1}∗. He has no idea of the origin of the sequence. He is given
fair odds (2-for-1) on each bit. How should he gamble? If he knew the
distribution of the elements of the string, he might use proportional betting
because of its optimal growth-rate properties, as shown in Chapter 6. If he
believes that the string occurred naturally, it seems intuitive that simpler
strings are more likely than complex ones. Hence, if he were to extend
the idea of proportional betting, he might bet according to the universal
probability of the string. For reference, note that if the gambler knows the
string x in advance, he can increase his wealth by a factor of 2l(x) simply
by betting all his wealth each time on the next symbol of x. Let the wealth
S(x) associated with betting scheme b(x),

∑
b(x) = 1, be given by

S(x) = 2l(x)b(x). (14.76)

Suppose that the gambler bets b(x) = 2−K(x) on a string x. This betting
strategy can be called universal gambling. We note that the sum of the
bets ∑

x

b(x) =
∑

x

2−K(x) ≤
∑

p:p halts

2−l(p) = � ≤ 1, (14.77)

and he will not have used all his money. For simplicity, let us assume
that he throws the rest away. For example, the amount of wealth resulting
from a bet b(0110) on a sequence x = 0110 is 2l(x)b(x) = 24b(0110) plus
the amount won on all bets b(0110 . . .) on sequences that extend x.

Then we have the following theorem:

Theorem 14.9.1 The logarithm of the wealth a gambler achieves on a
sequence using universal gambling plus the complexity of the sequence is
no smaller than the length of the sequence, or

log S(x) + K(x) ≥ l(x). (14.78)
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Remark This is the counterpart of the gambling conservation theorem
W ∗ + H = log m from Chapter 6.

Proof: The proof follows directly from the universal gambling scheme,
b(x) = 2−K(x), since

S(x) =
∑
x′�x

2l(x)b(x′) ≥ 2l(x)2−K(x), (14.79)

where x′ � x means that x is a prefix of x′. Taking logarithms establishes
the theorem. �

The result can be understood in many ways. For infinite sequences x

with finite Kolmogorov complexity,

S(x1 x2 · · · xl) ≥ 2l−K(x) = 2l−c (14.80)

for all l. Since 2l is the most that can be won in l gambles at fair odds,
this scheme does asymptotically as well as the scheme based on knowing
the sequence in advance. For example, if x = π1π2 · · ·πn · · ·, the digits
in the expansion of π , the wealth at time n will be Sn = S(xn) ≥ 2n−c

for all n.
If the string is actually generated by a Bernoulli process with parameter

p, then

S(X1 . . . Xn) ≥ 2n−nH0(Xn)−2 log n−c ≈ 2n(1−H0(p)−2 log n
n − c

n ), (14.81)

which is the same to first order as the rate achieved when the gambler
knows the distribution in advance, as in Chapter 6.

From the examples we see that the universal gambling scheme on a
random sequence does asymptotically as well as a scheme that uses prior
knowledge of the true distribution.

14.10 OCCAM’S RAZOR

In many areas of scientific research, it is important to choose among
various explanations of data observed. After choosing the explanation,
we wish to assign a confidence level to the predictions that ensue from
the laws that have been deduced. For example, Laplace considered the
probability that the sun will rise again tomorrow given that it has risen
every day in recorded history. Laplace’s solution was to assume that the
rising of the sun was a Bernoulli(θ ) process with unknown parameter θ .
He assumed that θ was uniformly distributed on the unit interval. Using
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the observed data, he calculated the posterior probability that the sun will
rise again tomorrow and found that it was

P(Xn+1 = 1|Xn = 1, Xn−1 = 1, . . . , X1 = 1)

= P(Xn+1 = 1, Xn = 1, Xn−1 = 1, . . . , X1 = 1)

P (Xn = 1, Xn−1 = 1, . . . , X1 = 1)

=
∫ 1

0 θn+1 dθ∫ 1
0 θn dθ

(14.82)

= n + 1

n + 2
, (14.83)

which he put forward as the probability that the sun will rise on day n + 1
given that it has risen on days 1 through n.

Using the ideas of Kolmogorov complexity and universal probability,
we can provide an alternative approach to the problem. Under the universal
probability, let us calculate the probability of seeing a 1 next after having
observed n 1’s in the sequence so far. The conditional probability that
the next symbol is a 1 is the ratio of the probability of all sequences
with initial segment 1n and next bit equal to 1 to the probability of all
sequences with initial segment 1n. The simplest programs carry most of
the probability; hence we can approximate the probability that the next
bit is a 1 with the probability of the program that says “Print 1’s forever.”
Thus,

∑
y

p(1n1y) ≈ p(1∞) = c > 0. (14.84)

Estimating the probability that the next bit is 0 is more difficult. Since any
program that prints 1n0 . . . yields a description of n, its length should at
least be K(n), which for most n is about log n + O(log log n), and hence
ignoring second-order terms, we have

∑
y

p(1n0y) ≈ p(1n0) ≈ 2− log n ≈ 1

n
. (14.85)

Hence, the conditional probability of observing a 0 next is

p(0|1n) = p(1n0)

p(1n0) + p(1∞)
≈ 1

cn + 1
, (14.86)

which is similar to the result p(0|1n) = 1/(n + 1) derived by Laplace.



490 KOLMOGOROV COMPLEXITY

This type of argument is a special case of Occam’s Razor, a general
principle governing scientific research, weighting possible explanations by
their complexity. William of Occam said “Nunquam ponenda est pluralitas
sine necesitate”: Explanations should not be multiplied beyond necessity
[516]. In the end, we choose the simplest explanation that is consistent
with the data observed. For example, it is easier to accept the general
theory of relativity than it is to accept a correction factor of c/r3 to the
gravitational law to explain the precession of the perihelion of Mercury,
since the general theory explains more with fewer assumptions than does
a “patched” Newtonian theory.

14.11 KOLMOGOROV COMPLEXITY AND UNIVERSAL
PROBABILITY

We now prove an equivalence between Kolmogorov complexity and uni-
versal probability. We begin by repeating the basic definitions.

K(x) = min
p:U(p)=x

l(p) (14.87)

PU (x) =
∑

p:U(p)=x

2−l(p). (14.88)

Theorem 14.11.1 (Equivalence of K(x) and log 1
PU (x))

.) There exists
a constant c, independent of x, such that

2−K(x) ≤ PU (x) ≤ c2−K(x) (14.89)

for all strings x. Thus, the universal probability of a string x is determined
essentially by its Kolmogorov complexity.

Remark This implies that K(x) and log 1
PU (x)

have equal status as uni-
versal complexity measures, since

K(x) − c′ ≤ log
1

PU (x)
≤ K(x). (14.90)

Recall that the complexity defined with respect to two different computers
KU and KU ′ are essentially equivalent complexity measures if |KU (x) −
KU ′(x)| is bounded. Theorem 14.11.1 shows that KU (x) and log 1

PU (x)
are

essentially equivalent complexity measures.
Notice the striking similarity between the relationship of K(x) and

log 1
PU (x)

in Kolmogorov complexity and the relationship of H(X) and

log 1
p(x)

in information theory. The ideal Shannon code length assignment
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l(x) = log 1
p(x)

achieves an average description length H(X), while in

Kolmogorov complexity theory, the ideal description length log 1
PU (x)

is

almost equal to K(X). Thus, log 1
p(x)

is the natural notion of descriptive
complexity of x in algorithmic as well as probabilistic settings.

The upper bound in (14.90) is obvious from the definitions, but the
lower bound is more difficult to prove. The result is very surprising, since
there are an infinite number of programs that print x. From any program
it is possible to produce longer programs by padding the program with
irrelevant instructions. The theorem proves that although there are an
infinite number of such programs, the universal probability is essentially
determined by the largest term, which is 2−K(x). If PU (x) is large, K(x)

is small, and vice versa.
However, there is another way to look at the upper bound that makes

it less surprising. Consider any computable probability mass function on
strings p(x). Using this mass function, we can construct a Shannon–Fano
code (Section 5.9) for the source and then describe each string by the
corresponding codeword, which will have length log 1

p(x)
. Hence, for

any computable distribution, we can construct a description of a string
using not more than log 1

p(x)
+ c bits, which is an upper bound on the

Kolmogorov complexity K(x). Even though PU (x) is not a computable
probability mass function, we are able to finesse the problem using the
rather involved tree construction procedure described below.

Proof: (of Theorem 14.11.1). The first inequality is simple. Let p∗ be
the shortest program for x. Then

PU (x) =
∑

p:U(p)=x

2−l(p) ≥ 2−l(p∗) = 2−K(x), (14.91)

as we wished to show.
We can rewrite the second inequality as

K(x) ≤ log
1

PU (x)
+ c. (14.92)

Our objective in the proof is to find a short program to describe the strings
that have high PU (x). An obvious idea is some kind of Huffman coding
based on PU (x), but PU (x) cannot be calculated effectively, hence a proce-
dure using Huffman coding is not implementable on a computer. Similarly,
the process using the Shannon–Fano code also cannot be implemented.
However, if we have the Shannon–Fano code tree, we can reconstruct the
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string by looking for the corresponding node in the tree. This is the basis
for the following tree construction procedure.

To overcome the problem of noncomputability of PU (x), we use a mod-
ified approach, trying to construct a code tree directly. Unlike Huffman
coding, this approach is not optimal in terms of minimum expected code-
word length. However, it is good enough for us to derive a code for which
each codeword for x has a length that is within a constant of log 1

PU (x)
.

Before we get into the details of the proof, let us outline our approach.
We want to construct a code tree in such a way that strings with high
probability have low depth. Since we cannot calculate the probability of a
string, we do not know a priori the depth of the string on the tree. Instead,
we assign x successively to the nodes of the tree, assigning x to nodes
closer and closer to the root as our estimate of PU (x) improves. We want
the computer to be able to recreate the tree and use the lowest depth node
corresponding to the string x to reconstruct the string.

We now consider the set of programs and their corresponding outputs
{(p, x)}. We try to assign these pairs to the tree. But we immediately
come across a problem—there are an infinite number of programs for a
given string, and we do not have enough nodes of low depth. However,
as we shall show, if we trim the list of program-output pairs, we will be
able to define a more manageable list that can be assigned to the tree.
Next, we demonstrate the existence of programs for x of length log 1

PU (x)
.

Tree construction procedure: For the universal computer U, we simulate
all programs using the technique explained in Section 14.8. We list all
binary programs:

�, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . . . (14.93)

Then let the computer execute one clock cycle of � for the first stage.
In the next stage, let the computer execute two clock cycles of � and
two clock cycles of the program 0. In the third stage, let the computer
execute three clock cycles of each of the first three programs, and so on.
In this way, the computer will eventually run all possible programs and
run them for longer and longer times, so that if any program halts, it will
be discovered to halt eventually. We use this method to produce a list
of all programs that halt in the order in which they halt, together with
their associated outputs. For each program and its corresponding output,
(pk, xk), we calculate nk, which is chosen so that it corresponds to the
current estimate of PU (x). Specifically,

nk =
⌈

log
1

P̂U (xk)

⌉
, (14.94)
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where
P̂U (xk) =

∑
(pi ,xi):xi=xk,i≤k

2−l(pi). (14.95)

Note that P̂U (xk) ↑ PU (x) on the subsequence of times k such that xk = x.
We are now ready to construct a tree. As we add to the list of triplets,
(pk, xk, nk), of programs that halt, we map some of them onto nodes of
a binary tree. For purposes of the construction, we must ensure that all
the ni’s corresponding to a particular xk are distinct. To ensure this, we
remove from the list all triplets that have the same x and n as a previous
triplet. This will ensure that there is at most one node at each level of the
tree that corresponds to a given x.

Let {(p′
i , x

′
i , n

′
i) : i = 1, 2, 3, . . .} denote the new list. On the winnowed

list, we assign the triplet (p′
k, x

′
k, n

′
k) to the first available node at level

n′
k + 1. As soon as a node is assigned, all of its descendants become

unavailable for assignment. (This keeps the assignment prefix-free.)
We illustrate this by means of an example:

(p1, x1, n1) = (10111, 1110, 5), n1 = 5 because PU (x1) ≥ 2−l(p1) = 2−5

(p2, x2, n2) = (11, 10, 2), n2 = 2 because PU (x2) ≥ 2−l(p2) = 2−2

(p3, x3, n3) = (0, 1110, 1), n3 = 1 because PU (x3) ≥ 2−l(p3) + 2−l(p1)

= 2−5 + 2−1

≥ 2−1

(p4, x4, n4) = (1010, 1111, 4), n4 = 4 because PU (x4) ≥ 2−l(p4) = 2−4

(p5, x5, n5) = (101101, 1110, 1), n5 = 1 because PU (x5) ≥ 2−1 + 2−5 + 2−5

≥ 2−1

(p6, x6, n6) = (100, 1, 3), n6 = 3 because PU (x6) ≥ 2−l(p6) = 2−3.
...

(14.96)
We note that the string x = (1110) appears in positions 1, 3 and 5 in
the list, but n3 = n5. The estimate of the probability P̂U (1110) has not
jumped sufficiently for (p5, x5, n5) to survive the cut. Thus the winnowed
list becomes

(p′
1, x

′
1, n

′
1) = (10111, 1110, 5),

(p′
2, x

′
2, n

′
2) = (11, 10, 2),

(p′
3, x

′
3, n

′
3) = (0, 1110, 1),

(p′
4, x

′
4, n

′
4) = (1010, 1111, 4),

(p′
5, x

′
5, n

′
5) = (100, 1, 3),

...

(14.97)

The assignment of the winnowed list to nodes of the tree is illustrated in
Figure 14.3.
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(p3, x3, n3), x3 = 110 

(p2, x2, n2), x2 = 10

(p5, x5, n5), x5 = 100

(p4, x4, n4), x4 = 1111

(p1, x1, n1), x1 = 1110

FIGURE 14.3. Assignment of nodes.

In the example, we are able to find nodes at level nk + 1 to which
we can assign the triplets. Now we shall prove that there are always
enough nodes so that the assignment can be completed. We can perform
the assignment of triplets to nodes if and only if the Kraft inequality is
satisfied.

We now drop the primes and deal only with the winnowed list illustrated
in (14.97). We start with the infinite sum in the Kraft inequality and split
it according to the output strings:

∞∑
k=1

2−(nk+1) =
∑

x∈{0,1}∗

∑
k:xk=x

2−(nk+1). (14.98)

We then write the inner sum as
∑

k:xk=x

2−(nk+1) = 2−1
∑

k:xk=x

2−nk (14.99)
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≤ 2−1 (
2�log PU (x)� + 2�log PU (x)�−1 + 2�log PU (x)�−2 + · · ·)

(14.100)

= 2−12�log PU (x)�
(

1 + 1

2
+ 1

4
+ · · ·

)
(14.101)

= 2−12�log PU (x)�2 (14.102)

≤ PU (x), (14.103)

where (14.100) is true because there is at most one node at each level
that prints out a particular x. More precisely, the nk’s on the winnowed
list for a particular output string x are all different integers. Hence,

∑
k

2−(nk+1) ≤
∑

x

∑
k:xk=x

2−(nk+1) ≤
∑

x

PU (x) ≤ 1, (14.104)

and we can construct a tree with the nodes labeled by the triplets.
If we are given the tree constructed above, it is easy to identify a given

x by the path to the lowest depth node that prints x. Call this node p̃.
(By construction, l(p̃) ≤ log 1

PU (x)
+ 2.) To use this tree in a program

to print x, we specify p̃ and ask the computer to execute the foregoing
simulation of all programs. Then the computer will construct the tree as
described above and wait for the particular node p̃ to be assigned. Since
the computer executes the same construction as the sender, eventually the
node p̃ will be assigned. At this point, the computer will halt and print
out the x assigned to that node.

This is an effective (finite, mechanical) procedure for the computer to
reconstruct x. However, there is no effective procedure to find the lowest
depth node corresponding to x. All that we have proved is that there is
an (infinite) tree with a node corresponding to x at level �log 1

PU (x)
� + 1.

But this accomplishes our purpose.
With reference to the example, the description of x = 1110 is the path

to the node (p3, x3, n3) (i.e., 01), and the description of x = 1111 is the
path 00001. If we wish to describe the string 1110, we ask the computer
to perform the (simulation) tree construction until node 01 is assigned.
Then we ask the computer to execute the program corresponding to node
01 (i.e., p3). The output of this program is the desired string, x = 1110.

The length of the program to reconstruct x is essentially the length of
the description of the position of the lowest depth node p̃ corresponding
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to x in the tree. The length of this program for x is l(p̃) + c, where

l(p̃) ≤
⌈

log
1

PU (x)

⌉
+ 1, (14.105)

and hence the complexity of x satisfies

K(x) ≤
⌈

log
1

PU (x)

⌉
+ c. (14.106)

14.12 KOLMOGOROV SUFFICIENT STATISTIC

Suppose that we are given a sample sequence from a Bernoulli(θ ) process.
What are the regularities or deviations from randomness in this sequence?
One way to address the question is to find the Kolmogorov complexity
K(xn|n), which we discover to be roughly nH0(θ) + log n + c. Since,
for θ 
= 1

2 , this is much less than n, we conclude that xn has structure
and is not randomly drawn Bernoulli(1

2 ). But what is the structure? The
first attempt to find the structure is to investigate the shortest program p∗
for xn. But the shortest description of p∗ is about as long as p∗ itself;
otherwise, we could further compress the description of xn, contradicting
the minimality of p∗. So this attempt is fruitless.

A hint at a good approach comes from an examination of the way in
which p∗ describes xn. The program “The sequence has k 1’s; of such
sequences, it is the ith” is optimal to first order for Bernoulli(θ ) sequences.
We note that it is a two-stage description, and all of the structure of the
sequence is captured in the first stage. Moreover, xn is maximally complex
given the first stage of the description. The first stage, the description of
k, requires log(n + 1) bits and defines a set S = {x ∈ {0, 1}n :

∑
xi = k}.

The second stage requires log |S| = log
(
n
k

) ≈ nH0(xn) ≈ nH0(θ) bits and
reveals nothing extraordinary about xn.

We mimic this process for general sequences by looking for a simple
set S that contains xn. We then follow it with a brute-force description of
xn in S using log |S| bits. We begin with a definition of the smallest set
containing xn that is describable in no more than k bits.

Definition The Kolmogorov structure function Kk(x
n|n) of a binary

string x ∈ {0, 1}n is defined as

Kk(x
n|n) = min

p : l(p) ≤ k

U(p, n) = S

xn ∈ S ⊆ {0, 1}n

log |S|. (14.107)
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The set S is the smallest set that can be described with no more than
k bits and which includes xn. By U(p, n) = S, we mean that running the
program p with data n on the universal computer U will print out the
indicator function of the set S.

Definition For a given small constant c, let k∗ be the least k such that

Kk(x
n|n) + k ≤ K(xn|n) + c. (14.108)

Let S∗∗ be the corresponding set and let p∗∗ be the program that prints out
the indicator function of S∗∗. Then we shall say that p∗∗ is a Kolmogorov
minimal sufficient statistic for xn.

Consider the programs p∗ describing sets S∗ such that

Kk(x
n|n) + k = K(xn|n). (14.109)

All the programs p∗ are “sufficient statistics” in that the complexity of
xn given S∗ is maximal. But the minimal sufficient statistic is the shortest
“sufficient statistic.”

The equality in the definition above is up to a large constant depending
on the computer U . Then k∗ corresponds to the least k for which the two-
stage description of xn is as good as the best single-stage description of
xn. The second stage of the description merely provides the index of xn

within the set S∗∗; this takes Kk(x
n|n) bits if xn is conditionally maximally

complex given the set S∗∗. Hence the set S∗∗ captures all the structure
within xn. The remaining description of xn within S∗∗ is essentially the
description of the randomness within the string. Hence S∗∗ or p∗∗ is called
the Kolmogorov sufficient statistic for xn.

This is parallel to the definition of a sufficient statistic in mathematical
statistics. A statistic T is said to be sufficient for a parameter θ if the
distribution of the sample given the sufficient statistic is independent of
the parameter; that is,

θ → T (X) → X (14.110)

forms a Markov chain in that order. For the Kolmogorov sufficient statistic,
the program p∗∗ is sufficient for the “structure” of the string xn; the
remainder of the description of xn is essentially independent of the “struc-
ture” of xn. In particular, xn is maximally complex given S∗∗.

A typical graph of the structure function is illustrated in Figure 14.4.
When k = 0, the only set that can be described is the entire set {0, 1}n,
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Slope = −1

k* K(x) k

n

Kk(x)

FIGURE 14.4. Kolmogorov sufficient statistic.

so that the corresponding log set size is n. As we increase k, the size of
the set drops rapidly until

k + Kk(x
n|n) ≈ K(xn|n). (14.111)

After this, each additional bit of k reduces the set by half, and we pro-
ceed along the line of slope −1 until k = K(xn|n). For k ≥ K(xn|n), the
smallest set that can be described that includes xn is the singleton {xn},
and hence Kk(x

n|n) = 0.
We will now illustrate the concept with a few examples.

1. Bernoulli(θ ) sequence. Consider a sample of length n from a
Bernoulli sequence with an unknown parameter θ . As discussed in
Example 14.2, we can describle this sequence with nH

(
k
n

) + 1
2 log n

bits using a two stage description where we describe k in the first
stage (using log n bits) and then describe the sequence within all
sequences with k ones (using log

(
n

k

)
bits). However, we can use an

even shorter first stage description. Instead of describing k exactly,
we divide the range of k into bins and describe k only to an accu-

racy of
√

k
n

n−k
n

√
n using 1

2 log n bits. Then we describe the actual
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Slope = −1

log n1
2 nH0(p) +    log n k

n

Kk(x)

1
2

FIGURE 14.5. Kolmogorov sufficient statistic for a Bernoulli sequence.

sequence among all sequences whose type is in the same bin as k.

The size of the set of all sequences with l ones, l ∈ k ±
√

k
n

n−k
n

√
n is

nH
(
k
n

) + o(n) by Stirling’s formula, so the total description length
is still nH

(
k
n

) + 1
2 log n + o(n), but the description length of the

Kolmogorov sufficient statistics is k∗ ≈ 1
n

log n.
2. Sample from a Markov chain. In the same vein as the preceding

example, consider a sample from a first-order binary Markov chain.
In this case again, p∗∗ will correspond to describing the Markov type
of the sequence (the number of occurrences of 00’s, 01’s, 10’s, and
11’s in the sequence); this conveys all the structure in the sequence.
The remainder of the description will be the index of the sequence
in the set of all sequences of this Markov type. Hence, in this case,
k∗ ≈ 2( 1

2 log n) = log n, corresponding to describing two elements
of the conditional joint type to appropriate accuracy. (The other
elements of the conditional joint type can be determined from these
two.)

3. Mona Lisa. Consider an image that consists of a gray circle on a
white background. The circle is not uniformly gray but Bernoulli
with parameter θ . This is illustrated in Figure 14.6. In this case, the
best two-stage description is first to describe the size and position of
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FIGURE 14.6. Mona Lisa.

the circle and its average gray level and then to describe the index of
the circle among all the circles with the same gray level. Assuming
an n-pixel image (of size

√
n by

√
n), there are about n + 1 possible

gray levels, and there are about (
√

n)3 distinguishable circles. Hence,
k∗ ≈ 5

2 log n in this case.

14.13 MINIMUM DESCRIPTION LENGTH PRINCIPLE

A natural extension of Occam’s razor occurs when we need to describe
data drawn from an unknown distribution. Let X1, X2, . . . , Xn be drawn
i.i.d. according to probability mass function p(x). We assume that we
do not know p(x), but know that p(x) ∈ P, a class of probability mass
functions. Given the data, we can estimate the probability mass function in
P that best fits the data. For simple classes P (e.g., if P has only finitely
many distributions), the problem is straightforward, and the maximum
likelihood procedure [i.e., find p̂ ∈ P that maximizes p̂(X1, X2, . . . , Xn)]
works well. However, if the class P is rich enough, there is a problem
of overfitting the data. For example, if X1, X2, . . . , Xn are continuous
random variables, and if P is the set of all probability distributions, the
maximum likelihood estimator given X1, X2, . . . , Xn is a distribution that
places a single mass point of weight 1

n
at each observed value. Clearly, this

estimate is too closely tied to actual observed data and does not capture
any of the structure of the underlying distribution.

To get around this problem, various methods have been applied. In the
simplest case, the data are assumed to come from some parametric distri-
bution (e.g., the normal distribution), and the parameters of the distribution
are estimated from the data. To validate this method, the data should be
tested to check whether the distribution “looks” normal, and if the data
pass the test, we could use this description of the data. A more general
procedure is to take the maximum likelihood estimate and smooth it out
to obtain a smooth density. With enough data, and appropriate smoothness
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conditions, it is possible to make good estimates of the original density.
This process is called kernel density estimation.

However, the theory of Kolmogorov complexity (or the Kolmogorov
sufficient statistic) suggests a different procedure: Find the p ∈ P that
minimizes

Lp(X1, X2, . . . , Xn) = K(p) + log
1

p(X1, X2, . . . , Xn)
. (14.112)

This is the length of a two-stage description of the data, where we first
describe the distribution p and then, given the distribution, construct the
Shannon code and describe the data using log 1

p(X1,X2,...,Xn)
bits. This pro-

cedure is a special case of what is termed the minimum description length
(MDL) principle: Given data and a choice of models, choose the model
such that the description of the model plus the conditional description of
the data is as short as possible.

SUMMARY

Definition. The Kolmogorov complexity K(x) of a string x is

K(x) = min
p:U(p)=x

l(p) (14.113)

K(x|l(x)) = min
p:U(p,l(x))=x

l(p). (14.114)

Universality of Kolmogorov complexity. There exists a universal
computer U such that for any other computer A,

KU (x) ≤ KA(x) + cA (14.115)

for any string x, where the constant cA does not depend on x. If U and
A are universal, |KU (x) − KA(x)| ≤ c for all x.

Upper bound on Kolmogorov complexity

K(x|l(x)) ≤ l(x) + c (14.116)

K(x) ≤ K(x|l(x)) + 2 log l(x) + c. (14.117)
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Kolmogorov complexity and entropy. If X1, X2, . . . are i.i.d. integer-
valued random variables with entropy H , there exists a constant c such
that for all n,

H ≤ 1

n
EK(Xn|n) ≤ H + |X| log n

n
+ c

n
. (14.118)

Lower bound on Kolmogorov complexity. There are no more than
2k strings x with complexity K(x) < k. If X1, X2, . . . , Xn are drawn
according to a Bernoulli(1

2 ) process,

Pr (K(X1X2 . . . Xn|n) ≤ n − k) ≤ 2−k. (14.119)

Definition A sequence x is said to be incompressible if
K(x1x2 . . . xn|n)/n → 1.

Strong law of large numbers for incompressible sequences

K(x1, x2, . . . , xn)

n
→ 1 ⇒ 1

n

n∑
i=1

xi → 1

2
. (14.120)

Definition The universal probability of a string x is

PU (x) =
∑

p:U(p)=x

2−l(p) = Pr(U(p) = x). (14.121)

Universality of PU (x). For every computer A,

PU (x) ≥ cAPA(x) (14.122)

for every string x ∈ {0, 1}∗, where the constant cA depends only on U
and A.

Definition � = ∑
p:U(p) halts 2−l(p) = Pr(U(p) halts) is the proba-

bility that the computer halts when the input p to the computer is a
binary string drawn according to a Bernoulli( 1

2 ) process.

Properties of �

1. � is not computable.
2. � is a “philosopher’s stone”.
3. � is algorithmically random (incompressible).
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Equivalence of K(x) and log
(

1
PU (x)

)
. There exists a constant c inde-

pendent of x such that
∣∣∣∣log

1

PU (x)
− K(x)

∣∣∣∣ ≤ c (14.123)

for all strings x. Thus, the universal probability of a string x is essen-
tially determined by its Kolmogorov complexity.

Definition The Kolmogorov structure function Kk(x
n|n) of a binary

string xn ∈ {0, 1}n is defined as

Kk(x
n|n) = min

p : l(p) ≤ k

U(p, n) = S

x ∈ S

log |S|. (14.124)

Definition Let k∗ be the least k such that

Kk∗(xn|n) + k∗ = K(xn|n). (14.125)

Let S∗∗ be the corresponding set and let p∗∗ be the program that prints
out the indicator function of S∗∗. Then p∗∗ is the Kolmogorov minimal
sufficient statistic for x.

PROBLEMS

14.1 Kolmogorov complexity of two sequences . Let x, y ∈ {0, 1}∗.
Argue that K(x, y) ≤ K(x) + K(y) + c.

14.2 Complexity of the sum

(a) Argue that K(n) ≤ log n + 2 log log n + c.

(b) Argue that K(n1 + n2) ≤ K(n1) + K(n2) + c.

(c) Give an example in which n1 and n2 are complex but the sum
is relatively simple.

14.3 Images . Consider an n × n array x of 0’s and 1’s . Thus, x has
n2 bits.
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Find the Kolmogorov complexity K(x | n) (to first order) if:
(a) x is a horizontal line.
(b) x is a square.
(c) x is the union of two lines, each line being vertical or hori-

zontal.

14.4 Do computers reduce entropy? Feed a random program P into
an universal computer. What is the entropy of the corresponding
output? Specifically, let X = U(P ), where P is a Bernoulli( 1

2 )
sequence. Here the binary sequence X is either undefined or is
in {0, 1}∗. Let H(X) be the Shannon entropy of X. Argue that
H(X) = ∞. Thus, although the computer turns nonsense into
sense, the output entropy is still infinite.

14.5 Monkeys on a computer . Suppose that a random program is
typed into a computer. Give a rough estimate of the probability
that the computer prints the following sequence:
(a) 0n followed by any arbitrary sequence.
(b) π1π2 . . . πn followed by any arbitrary sequence, where πi is

the ith bit in the expansion of π.

(c) 0n1 followed by any arbitrary sequence.
(d) ω1ω2 . . . ωn followed by any arbitrary sequence.
(e) A proof of the four-color theorem.

14.6 Kolmogorov complexity and ternary programs . Suppose that the
input programs for a universal computer U are sequences in
{0, 1, 2}∗ (ternary inputs). Also, suppose that U prints ternary out-
puts. Let K(x|l(x)) = minU(p,l(x))=x l(p). Show that:
(a) K(xn|n) ≤ n + c.

(b) |xn ∈ {0, 1}∗ : K(xn|n) < k| < 3k.

14.7 Law of large numbers . Using ternary inputs and outputs as in
Problem 14.14.6, outline an argument demonstrating that if a
sequence x is algorithmically random [i.e., if K(x|l(x)) ≈ l(x)],
the proportion of 0’s, 1’s, and 2’s in x must each be near 1

3 . It
may be helpful to use Stirling’s approximation n! ≈ (n/e)n.
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14.8 Image complexity . Consider two binary subsets A and B (of an
n × n grid): for example,

Find general upper and lower bounds, in terms of K(A|n) and
K(B|n), for:
(a) K(Ac|n).

(b) K(A ∪ B|n).

(c) K(A ∩ B|n).

14.9 Random program . Suppose that a random program (symbols
i.i.d. uniform over the symbol set) is fed into the nearest available
computer. To our surprise the first n bits of the binary expansion
of 1/

√
2 are printed out. Roughly what would you say the proba-

bility is that the next output bit will agree with the corresponding
bit in the expansion of 1/

√
2 ?

14.10 Face–vase illusion

(a) What is an upper bound on the complexity of a pattern on an
m × m grid that has mirror-image symmetry about a vertical
axis through the center of the grid and consists of horizontal
line segments?

(b) What is the complexity K if the image differs in one cell
from the pattern described above?

14.11 Kolmogorov complexity . Assume that n is very large and known.
Let all rectangles be parallel to the frame.
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(a) What is the (maximal) Kolmogorov complexity of the union
of two rectangles on an n × n grid?

(b) What if the rectangles intersect at a corner?

(c) What if they have the same (unknown) shape?
(d) What if they have the same (unknown) area?
(e) What is the minimum Kolmogorov complexity of the union

of two rectangles? That is, what is the simplest union?
(f) What is the (maximal) Kolmogorov complexity over all images

(not necessarily rectangles) on an n × n grid?

14.12 Encrypted text . Suppose that English text xn is encrypted into
yn by a substitution cypher: a 1-to-1 reassignment of each of the
27 letters of the alphabet (A–Z, including the space character)
to itself. Suppose that the Kolmogorov complexity of the text
xn is K(xn) = n

4 . (This is about right for English text. We’re
now assuming a 27-symbol programming language, instead of a
binary symbol-set for the programming language. So, the length
of the shortest program, using a 27-ary programming language,
that prints out a particular string of English text of length n, is
approximately n/4.)
(a) What is the Kolmogorov complexity of the encryption map?
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(b) Estimate the Kolmogorov complexity of the encrypted text
yn.

(c) How high must n be before you would expect to be able to
decode yn?

14.13 Kolmogorov complexity . Consider the Kolmogorov complexity
K(n) over the integers n. If a specific integer n1 has a low Kol-
mogorov complexity K(n1), by how much can the Kolmogorov
complexity K(n1 + k) for the integer n1 + k vary from K(n1)?

14.14 Complexity of large numbers . Let A(n) be the set of positive
integers x for which a terminating program p of length less than
or equal to n bits exists that outputs x. Let B(n) be the com-
plement of A(n) [i.e., B(n) is the set of integers x for which no
program of length less than or equal to n outputs x]. Let M(n)

be the maximum integer in A(n), and let S(n) be the minimum
integer in B(n). What is the Kolmogorov complexity K(M(n))

(approximately)? What is K(S(n)) (approximately)? Which is
larger (M(n) or S(n))? Give a reasonable lower bound on M(n)

and a reasonable upper bound on S(n).

HISTORICAL NOTES

The original ideas of Kolmogorov complexity were put forth indepen-
dently and almost simultaneously by Kolmogorov [321, 322], Solomonoff
[504], and Chaitin [89]. These ideas were developed further by students of
Kolmogorov such as Martin-Löf [374], who defined the notion of algorith-
mically random sequences and algorithmic tests for randomness, and by
Levin and Zvonkin [353], who explored the ideas of universal probability
and its relationship to complexity. A series of papers by Chaitin [90]–[92]
developed the relationship between algorithmic complexity and mathemat-
ical proofs. C. P. Schnorr studied the universal notion of randomness and
related it to gambling in [466]–[468].

The concept of the Kolmogorov structure function was defined by Kol-
mogorov at a talk at the Tallin conference in 1973, but these results
were not published. V’yugin pursues this in [549], where he shows that
there are some very strange sequences xn that reveal their structure arbi-
trarily slowly in the sense that Kk(x

n|n) = n − k, k < K(xn|n). Zurek
[606]–[608] addresses the fundamental questions of Maxwell’s demon
and the second law of thermodynamics by establishing the physical con-
sequences of Kolmogorov complexity.
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Rissanen’s minimum description length (MDL) principle is very close
in spirit to the Kolmogorov sufficient statistic. Rissanen [445, 446] finds a
low-complexity model that yields a high likelihood of the data. Barron and
Cover [32] argue that the density minimizing K(f ) + log 1∏

f (Xi)
yields

consistent density estimation.
A nontechnical introduction to the various measures of complexity can

be found in a thought-provoking book by Pagels [412]. Additional refer-
ences to work in the area can be found in a paper by Cover et al. [114] on
Kolmogorov’s contributions to information theory and algorithmic com-
plexity. A comprehensive introduction to the field, including applications
of the theory to analysis of algorithms and automata, may be found in the
book by Li and Vitanyi [354]. Additional coverage may be found in the
books by Chaitin [86, 93].



CHAPTER 15

NETWORK INFORMATION
THEORY

A system with many senders and receivers contains many new elements
in the communication problem: interference, cooperation, and feedback.
These are the issues that are the domain of network information theory.
The general problem is easy to state. Given many senders and receivers
and a channel transition matrix that describes the effects of the interference
and the noise in the network, decide whether or not the sources can be
transmitted over the channel. This problem involves distributed source
coding (data compression) as well as distributed communication (finding
the capacity region of the network). This general problem has not yet been
solved, so we consider various special cases in this chapter.

Examples of large communication networks include computer networks,
satellite networks, and the phone system. Even within a single computer,
there are various components that talk to each other. A complete theory
of network information would have wide implications for the design of
communication and computer networks.

Suppose that m stations wish to communicate with a common satellite
over a common channel, as shown in Figure 15.1. This is known as a
multiple-access channel. How do the various senders cooperate with each
other to send information to the receiver? What rates of communication are
achievable simultaneously? What limitations does interference among the
senders put on the total rate of communication? This is the best understood
multiuser channel, and the above questions have satisfying answers.

In contrast, we can reverse the network and consider one TV station
sending information to m TV receivers, as in Figure 15.2. How does
the sender encode information meant for different receivers in a common
signal? What are the rates at which information can be sent to the different
receivers? For this channel, the answers are known only in special cases.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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FIGURE 15.1. Multiple-access channel.

FIGURE 15.2. Broadcast channel.

There are other channels, such as the relay channel (where there is
one source and one destination, but one or more intermediate sender–
receiver pairs that act as relays to facilitate the communication between the
source and the destination), the interference channel (two senders and two
receivers with crosstalk), and the two-way channel (two sender–receiver
pairs sending information to each other). For all these channels, we have
only some of the answers to questions about achievable communication
rates and the appropriate coding strategies.

All these channels can be considered special cases of a general com-
munication network that consists of m nodes trying to communicate with
each other, as shown in Figure 15.3. At each instant of time, the ith node
sends a symbol xi that depends on the messages that it wants to send
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(X1, Y1)

(X2, Y2)

(Xm, Ym)

FIGURE 15.3. Communication network.

and on past received symbols at the node. The simultaneous transmis-
sion of the symbols (x1, x2, . . . , xm) results in random received symbols
(Y1, Y2, . . . , Ym) drawn according to the conditional probability distribu-
tion p(y(1), y(2), . . . , y(m)|x(1), x(2), . . . , x(m)). Here p(·|·) expresses the
effects of the noise and interference present in the network. If p(·|·) takes
on only the values 0 and 1, the network is deterministic.

Associated with some of the nodes in the network are stochastic data
sources, which are to be communicated to some of the other nodes in the
network. If the sources are independent, the messages sent by the nodes
are also independent. However, for full generality, we must allow the
sources to be dependent. How does one take advantage of the dependence
to reduce the amount of information transmitted? Given the probability
distribution of the sources and the channel transition function, can one
transmit these sources over the channel and recover the sources at the
destinations with the appropriate distortion?

We consider various special cases of network communication. We con-
sider the problem of source coding when the channels are noiseless and
without interference. In such cases, the problem reduces to finding the set
of rates associated with each source such that the required sources can
be decoded at the destination with a low probability of error (or appro-
priate distortion). The simplest case for distributed source coding is the
Slepian–Wolf source coding problem, where we have two sources that
must be encoded separately, but decoded together at a common node. We
consider extensions to this theory when only one of the two sources needs
to be recovered at the destination.

The theory of flow in networks has satisfying answers in such domains
as circuit theory and the flow of water in pipes. For example, for the
single-source single-sink network of pipes shown in Figure 15.4, the max-
imum flow from A to B can be computed easily from the Ford–Fulkerson
theorem . Assume that the edges have capacities Ci as shown. Clearly,
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C1

A B

C2

C4

C5

C = min{C1 + C2, C2 + C3 + C4, C4 + C5, C1 + C5}

C3

FIGURE 15.4. Network of water pipes.

the maximum flow across any cut set cannot be greater than the sum
of the capacities of the cut edges. Thus, minimizing the maximum flow
across cut sets yields an upper bound on the capacity of the network. The
Ford–Fulkerson theorem [214] shows that this capacity can be achieved.

The theory of information flow in networks does not have the same
simple answers as the theory of flow of water in pipes. Although we
prove an upper bound on the rate of information flow across any cut set,
these bounds are not achievable in general. However, it is gratifying that
some problems, such as the relay channel and the cascade channel, admit
a simple max-flow min-cut interpretation. Another subtle problem in the
search for a general theory is the absence of a source–channel separation
theorem, which we touch on briefly in Section 15.10. A complete theory
combining distributed source coding and network channel coding is still
a distant goal.

In the next section we consider Gaussian examples of some of the
basic channels of network information theory. The physically motivated
Gaussian channel lends itself to concrete and easily interpreted answers.
Later we prove some of the basic results about joint typicality that we use
to prove the theorems of multiuser information theory. We then consider
various problems in detail: the multiple-access channel, the coding of cor-
related sources (Slepian–Wolf data compression), the broadcast channel,
the relay channel, the coding of a random variable with side information,
and the rate distortion problem with side information. We end with an
introduction to the general theory of information flow in networks. There
are a number of open problems in the area, and there does not yet exist a
comprehensive theory of information networks. Even if such a theory is
found, it may be too complex for easy implementation. But the theory will
be able to tell communication designers how close they are to optimality
and perhaps suggest some means of improving the communication rates.
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15.1 GAUSSIAN MULTIPLE-USER CHANNELS

Gaussian multiple-user channels illustrate some of the important features
of network information theory. The intuition gained in Chapter 9 on the
Gaussian channel should make this section a useful introduction. Here the
key ideas for establishing the capacity regions of the Gaussian multiple-
access, broadcast, relay, and two-way channels will be given without
proof. The proofs of the coding theorems for the discrete memoryless
counterparts to these theorems are given in later sections of the chapter.

The basic discrete-time additive white Gaussian noise channel with
input power P and noise variance N is modeled by

Yi = Xi + Zi, i = 1, 2, . . . , (15.1)

where the Zi are i.i.d. Gaussian random variables with mean 0 and vari-
ance N . The signal X = (X1, X2, . . . , Xn) has a power constraint

1

n

n∑
i=1

X2
i ≤ P. (15.2)

The Shannon capacity C is obtained by maximizing I (X;Y) over all
random variables X such that EX2 ≤ P and is given (Chapter 9) by

C = 1

2
log

(
1 + P

N

)
bits per transmission. (15.3)

In this chapter we restrict our attention to discrete-time memoryless chan-
nels; the results can be extended to continuous-time Gaussian channels.

15.1.1 Single-User Gaussian Channel

We first review the single-user Gaussian channel studied in Chapter 9.
Here Y = X + Z. Choose a rate R < 1

2 log(1 + P
N

). Fix a good (2nR, n)

codebook of power P . Choose an index w in the set 2nR . Send the
wth codeword X(w) from the codebook generated above. The receiver
observes Y = X(w) + Z and then finds the index ŵ of the codeword
closest to Y. If n is sufficiently large, the probability of error Pr(w �= ŵ)

will be arbitrarily small. As can be seen from the definition of joint typ-
icality, this minimum-distance decoding scheme is essentially equivalent
to finding the codeword in the codebook that is jointly typical with the
received vector Y.
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15.1.2 Gaussian Multiple-Access Channel with m Users

We consider m transmitters, each with a power P . Let

Y =
m∑

i=1

Xi + Z. (15.4)

Let

C

(
P

N

)
= 1

2
log

(
1 + P

N

)
(15.5)

denote the capacity of a single-user Gaussian channel with signal-to-noise
ratio P/N . The achievable rate region for the Gaussian channel takes on
the simple form given in the following equations:

Ri < C

(
P

N

)
(15.6)

Ri + Rj < C

(
2P

N

)
(15.7)

Ri + Rj + Rk < C

(
3P

N

)
(15.8)

... (15.9)
m∑

i=1

Ri < C

(
mP

N

)
. (15.10)

Note that when all the rates are the same, the last inequality dominates
the others.

Here we need m codebooks, the ith codebook having 2nRi codewords
of power P . Transmission is simple. Each of the independent transmitters
chooses an arbitrary codeword from its own codebook. The users send
these vectors simultaneously. The receiver sees these codewords added
together with the Gaussian noise Z.

Optimal decoding consists of looking for the m codewords, one from
each codebook, such that the vector sum is closest to Y in Euclidean
distance. If (R1, R2, . . . , Rm) is in the capacity region given above, the
probability of error goes to 0 as n tends to infinity.
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Remarks It is exciting to see in this problem that the sum of the rates
of the users C(mP/N) goes to infinity with m. Thus, in a cocktail party
with m celebrants of power P in the presence of ambient noise N , the
intended listener receives an unbounded amount of information as the
number of people grows to infinity. A similar conclusion holds, of course,
for ground communications to a satellite. Apparently, the increasing inter-
ference as the number of senders m → ∞ does not limit the total received
information.

It is also interesting to note that the optimal transmission scheme here
does not involve time-division multiplexing. In fact, each of the transmit-
ters uses all of the bandwidth all of the time.

15.1.3 Gaussian Broadcast Channel

Here we assume that we have a sender of power P and two distant
receivers, one with Gaussian noise power N1 and the other with Gaussian
noise power N2. Without loss of generality, assume that N1 < N2. Thus,
receiver Y1 is less noisy than receiver Y2. The model for the channel is
Y1 = X + Z1 and Y2 = X + Z2, where Z1 and Z2 are arbitrarily corre-
lated Gaussian random variables with variances N1 and N2, respectively.
The sender wishes to send independent messages at rates R1 and R2 to
receivers Y1 and Y2, respectively.

Fortunately, all scalar Gaussian broadcast channels belong to the class
of degraded broadcast channels discussed in Section 15.6.2. Specializing
that work, we find that the capacity region of the Gaussian broadcast
channel is

R1 < C

(
αP

N1

)
(15.11)

R2 < C

(
(1 − α)P

αP + N2

)
, (15.12)

where α may be arbitrarily chosen (0 ≤ α ≤ 1) to trade off rate R1 for
rate R2 as the transmitter wishes.

To encode the messages, the transmitter generates two codebooks, one
with power αP at rate R1, and another codebook with power αP at rate
R2, where R1 and R2 lie in the capacity region above. Then to send
an index w1 ∈ {1, 2, . . . , 2nR1} and w2 ∈ {1, 2, . . . , 2nR2} to Y1 and Y2,
respectively, the transmitter takes the codeword X(w1) from the first code-
book and codeword X(w2) from the second codebook and computes the
sum. He sends the sum over the channel.
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The receivers must now decode the messages. First consider the bad
receiver Y2. He merely looks through the second codebook to find the clos-
est codeword to the received vector Y2. His effective signal-to-noise ratio is
αP/(αP + N2), since Y1’s message acts as noise to Y2. (This can be proved.)

The good receiver Y1 first decodes Y2’s codeword, which he can accom-
plish because of his lower noise N1. He subtracts this codeword X̂2 from
Y1. He then looks for the codeword in the first codebook closest to
Y1 − X̂2. The resulting probability of error can be made as low as desired.

A nice dividend of optimal encoding for degraded broadcast channels is
that the better receiver Y1 always knows the message intended for receiver
Y2 in addition to the message intended for himself.

15.1.4 Gaussian Relay Channel

For the relay channel, we have a sender X and an ultimate intended
receiver Y . Also present is the relay channel, intended solely to help the
receiver. The Gaussian relay channel (Figure 15.31 in Section 15.7) is
given by

Y1 = X + Z1, (15.13)

Y = X + Z1 + X1 + Z2, (15.14)

where Z1 and Z2 are independent zero-mean Gaussian random variables
with variance N1 and N2, respectively. The encoding allowed by the relay
is the causal sequence

X1i = fi(Y11, Y12, . . . , Y1i−1). (15.15)

Sender X has power P and sender X1 has power P1. The capacity is

C = max
0≤α≤1

min

{
C

(
P + P1 + 2

√
αPP1

N1 + N2

)
, C

(
αP

N1

)}
, (15.16)

where α = 1 − α. Note that if

P1

N2
≥ P

N1
, (15.17)

it can be seen that C = C(P/N1),which is achieved by α = 1. The channel
appears to be noise-free after the relay, and the capacity C(P/N1) from
X to the relay can be achieved. Thus, the rate C(P/(N1 + N2)) without
the relay is increased by the presence of the relay to C(P/N1). For large
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N2 and for P1/N2 ≥ P/N1, we see that the increment in rate is from
C(P/(N1 + N2)) ≈ 0 to C(P/N1).

Let R1 < C(αP/N1). Two codebooks are needed. The first codebook
has 2nR1 words of power αP . The second has 2nR0 codewords of power
αP . We shall use codewords from these codebooks successively to cre-
ate the opportunity for cooperation by the relay. We start by sending a
codeword from the first codebook. The relay now knows the index of
this codeword since R1 < C(αP/N1), but the intended receiver has a list
of possible codewords of size 2n(R1−C(αP/(N1+N2))). This list calculation
involves a result on list codes.

In the next block, the transmitter and the relay wish to cooperate to
resolve the receiver’s uncertainty about the codeword sent previously that
is on the receiver’s list. Unfortunately, they cannot be sure what this list
is because they do not know the received signal Y . Thus, they randomly
partition the first codebook into 2nR0 cells with an equal number of code-
words in each cell. The relay, the receiver, and the transmitter agree on
this partition. The relay and the transmitter find the cell of the partition
in which the codeword from the first codebook lies and cooperatively
send the codeword from the second codebook with that index. That is, X

and X1 send the same designated codeword. The relay, of course, must
scale this codeword so that it meets his power constraint P1. They now
transmit their codewords simultaneously. An important point to note here
is that the cooperative information sent by the relay and the transmitter
is sent coherently. So the power of the sum as seen by the receiver Y is
(
√

αP + √
P1)

2.
However, this does not exhaust what the transmitter does in the second

block. He also chooses a fresh codeword from the first codebook, adds it
“on paper” to the cooperative codeword from the second codebook, and
sends the sum over the channel.

The reception by the ultimate receiver Y in the second block involves
first finding the cooperative index from the second codebook by looking
for the closest codeword in the second codebook. He subtracts the code-
word from the received sequence and then calculates a list of indices of
size 2nR0 corresponding to all codewords of the first codebook that might
have been sent in the second block.

Now it is time for the intended receiver to complete computing the
codeword from the first codebook sent in the first block. He takes his list
of possible codewords that might have been sent in the first block and
intersects it with the cell of the partition that he has learned from the
cooperative relay transmission in the second block. The rates and powers
have been chosen so that it is highly probable that there is only one
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codeword in the intersection. This is Y ’s guess about the information sent
in the first block.

We are now in steady state. In each new block, the transmitter and the
relay cooperate to resolve the list uncertainty from the previous block. In
addition, the transmitter superimposes some fresh information from his
first codebook to this transmission from the second codebook and trans-
mits the sum. The receiver is always one block behind, but for sufficiently
many blocks, this does not affect his overall rate of reception.

15.1.5 Gaussian Interference Channel

The interference channel has two senders and two receivers. Sender 1
wishes to send information to receiver 1. He does not care what receiver
2 receives or understands; similarly with sender 2 and receiver 2. Each
channel interferes with the other. This channel is illustrated in Figure 15.5.
It is not quite a broadcast channel since there is only one intended receiver
for each sender, nor is it a multiple access channel because each receiver
is only interested in what is being sent by the corresponding transmitter.
For symmetric interference, we have

Y1 = X1 + aX2 + Z1 (15.18)

Y2 = X2 + aX1 + Z2, (15.19)

where Z1, Z2 are independent N(0, N) random variables. This channel has
not been solved in general even in the Gaussian case. But remarkably, in
the case of high interference, it can be shown that the capacity region of
this channel is the same as if there were no interference whatsoever.

To achieve this, generate two codebooks, each with power P and rate
C(P/N). Each sender independently chooses a word from his book and

X1 Y1

X2 Y2

Z1 ~ (0,N )

Z2 ~ (0,N )

a

a

FIGURE 15.5. Gaussian interference channel.
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sends it. Now, if the interference a satisfies C(a2P/(P + N)) > C(P/N),
the first transmitter understands perfectly the index of the second transmit-
ter. He finds it by the usual technique of looking for the closest codeword
to his received signal. Once he finds this signal, he subtracts it from
his waveform received. Now there is a clean channel between him and
his sender. He then searches the sender’s codebook to find the closest
codeword and declares that codeword to be the one sent.

15.1.6 Gaussian Two-Way Channel

The two-way channel is very similar to the interference channel, with the
additional provision that sender 1 is attached to receiver 2 and sender 2
is attached to receiver 1, as shown in Figure 15.6. Hence, sender 1 can
use information from previous received symbols of receiver 2 to decide
what to send next. This channel introduces another fundamental aspect
of network information theory: namely, feedback. Feedback enables the
senders to use the partial information that each has about the other’s
message to cooperate with each other.

The capacity region of the two-way channel is not known in general.
This channel was first considered by Shannon [486], who derived upper
and lower bounds on the region (see Problem 15.15). For Gaussian chan-
nels, these two bounds coincide and the capacity region is known; in
fact, the Gaussian two-way channel decomposes into two independent
channels.

Let P1 and P2 be the powers of transmitters 1 and 2, respectively,
and let N1 and N2 be the noise variances of the two channels. Then
the rates R1 < C(P1/N1) and R2 < C(P2/N2) can be achieved by the
techniques described for the interference channel. In this case, we generate
two codebooks of rates R1 and R2. Sender 1 sends a codeword from the
first codebook. Receiver 2 receives the sum of the codewords sent by the

p(y1, y2|x1, x2)

X1

Y1

X2

Y2

FIGURE 15.6. Two-way channel.
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two senders plus some noise. He simply subtracts out the codeword of
sender 2 and he has a clean channel from sender 1 (with only the noise of
variance N1). Hence, the two-way Gaussian channel decomposes into two
independent Gaussian channels. But this is not the case for the general
two-way channel; in general, there is a trade-off between the two senders
so that both of them cannot send at the optimal rate at the same time.

15.2 JOINTLY TYPICAL SEQUENCES

We have previewed the capacity results for networks by considering mul-
tiuser Gaussian channels. We begin a more detailed analysis in this section,
where we extend the joint AEP proved in Chapter 7 to a form that we
will use to prove the theorems of network information theory. The joint
AEP will enable us to calculate the probability of error for jointly typical
decoding for the various coding schemes considered in this chapter.

Let (X1, X2, . . . , Xk) denote a finite collection of discrete random vari-
ables with some fixed joint distribution, p(x(1), x(2), . . . , x(k)), (x(1), x(2),

. . . , x(k)) ∈ X1 × X2 × · · · × Xk . Let S denote an ordered subset of these
random variables and consider n independent copies of S. Thus,

Pr{S = s} =
n∏

i=1

Pr{Si = si}, s ∈ Sn. (15.20)

For example, if S = (Xj , Xl), then

Pr{S = s} = Pr
{
(Xj , Xl) = (xj , xl)

}
(15.21)

=
n∏

i=1

p(xij , xil). (15.22)

To be explicit, we will sometimes use X(S) for S. By the law of large
numbers, for any subset S of random variables,

−1

n
log p(S1, S2, . . . , Sn) = −1

n

n∑
i=1

log p(Si) → H(S), (15.23)

where the convergence takes place with probability 1 for all 2k subsets,
S ⊆ {X(1), X(2), . . . , X(k)}.
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Definition The set A(n)
ε of ε-typical n-sequences (x1, x2, . . . , xk) is

defined by

A(n)
ε (X(1), X(2), . . . , X(k))

= A(n)
ε

=
{
(x1, x2, . . . , xk) :

∣∣∣∣−1

n
log p(s) − H(S)

∣∣∣∣ < ε, ∀S ⊆ {X(1), X(2), . . . ,

X(k)}
}

. (15.24)

Let A(n)
ε (S) denote the restriction of A(n)

ε to the coordinates of S. Thus,
if S = (X1, X2), we have

A(n)
ε (X1, X2) = {(x1, x2) :∣∣∣∣−1

n
log p(x1, x2) − H(X1, X2)

∣∣∣∣ < ε,

∣∣∣∣−1

n
log p(x1) − H(X1)

∣∣∣∣ < ε,

∣∣∣∣−1

n
log p(x2) − H(X2)

∣∣∣∣ < ε}. (15.25)

Definition We will use the notation an
.= 2n(b±ε) to mean that

∣∣∣∣1

n
log an − b

∣∣∣∣ < ε (15.26)

for n sufficiently large.

Theorem 15.2.1 For any ε > 0, for sufficiently large n,

1. P(A(n)
ε (S)) ≥ 1 − ε, ∀S ⊆ {X(1), X(2), . . . , X(k)}. (15.27)

2. s ∈ A(n)
ε (S) �⇒ p(s) .= 2n(H(S)±ε). (15.28)

3. |A(n)
ε (S)| .= 2n(H(S)±2ε). (15.29)
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4. Let S1, S2 ⊆ {X(1), X(2), . . . , X(k)}. If (s1, s2) ∈ A(n)
ε (S1, S2), then

p(s1|s2)
.= 2−n(H(S1|S2)±2ε). (15.30)

Proof
1. This follows from the law of large numbers for the random variables

in the definition of A(n)
ε (S).

2. This follows directly from the definition of A(n)
ε (S).

3. This follows from

1 ≥
∑

s∈A
(n)
ε (S)

p(s) (15.31)

≥
∑

s∈A
(n)
ε (S)

2−n(H(S)+ε) (15.32)

= |A(n)
ε (S)|2−n(H(S)+ε). (15.33)

If n is sufficiently large, we can argue that

1 − ε ≤
∑

s∈A
(n)
ε (S)

p(s) (15.34)

≤
∑

s∈A
(n)
ε (S)

2−n(H(S)−ε) (15.35)

= |A(n)
ε (S)|2−n(H(S)−ε). (15.36)

Combining (15.33) and (15.36), we have |A(n)
ε (S)| .= 2n(H(S)±2ε) for

sufficiently large n.
4. For (s1, s2) ∈ A(n)

ε (S1, S2), we have p(s1)
.= 2−n(H(S1)±ε) and

p(s1, s2)
.= 2−n(H(S1,S2)±ε). Hence,

p(s2|s1) = p(s1, s2)

p(s1)

.= 2−n(H(S2|S1)±2ε). � (15.37)

The next theorem bounds the number of conditionally typical sequences
for a given typical sequence.



15.2 JOINTLY TYPICAL SEQUENCES 523

Theorem 15.2.2 Let S1, S2 be two subsets of X(1), X(2), . . . , X(k). For
any ε > 0, define A(n)

ε (S1|s2) to be the set of s1 sequences that are jointly ε-
typical with a particular s2 sequence. If s2 ∈ A(n)

ε (S2), then for sufficiently
large n, we have

|A(n)
ε (S1|s2)| ≤ 2n(H(S1|S2)+2ε) (15.38)

and

(1 − ε)2n(H(S1|S2)−2ε) ≤
∑

s2

p(s2)|A(n)
ε (S1|s2)|. (15.39)

Proof: As in part 3 of Theorem 15.2.1, we have

1 ≥
∑

s1∈A
(n)
ε (S1|s2)

p(s1|s2) (15.40)

≥
∑

s1∈A
(n)
ε (S1|s2)

2−n(H(S1|S2)+2ε) (15.41)

= |A(n)
ε (S1|s2)|2−n(H(S1|S2)+2ε). (15.42)

If n is sufficiently large, we can argue from (15.27) that

1 − ε ≤
∑

s2

p(s2)
∑

s1∈A
(n)
ε (S1|s2)

p(s1|s2) (15.43)

≤
∑

s2

p(s2)
∑

s1∈A
(n)
ε (S1|s2)

2−n(H(S1|S2)−2ε) (15.44)

=
∑

s2

p(s2)|A(n)
ε (S1|s2)|2−n(H(S1|S2)−2ε). � (15.45)

To calculate the probability of decoding error, we need to know the
probability that conditionally independent sequences are jointly typical.
Let S1, S2, and S3 be three subsets of {X(1), X(2), . . . , X(k)}. If S′

1 and
S′

2 are conditionally independent given S′
3 but otherwise share the same

pairwise marginals of (S1, S2, S3), we have the following probability of
joint typicality.
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Theorem 15.2.3 Let A(n)
ε denote the typical set for the probability mass

function p(s1, s2, s3), and let

P(S′
1 = s1, S′

2 = s2, S′
3 = s3) =

n∏
i=1

p(s1i|s3i)p(s2i|s3i)p(s3i). (15.46)

Then

P {(S′
1, S′

2, S′
3) ∈ A(n)

ε } .= 2n(I (S1;S2|S3)±6ε). (15.47)

Proof: We use the
.= notation from (15.26) to avoid calculating the

upper and lower bounds separately. We have

P {(S′
1, S′

2, S′
3) ∈ A(n)

ε }
=

∑
(s1, s2, s3)∈A

(n)
ε

p(s3)p(s1|s3)p(s2|s3) (15.48)

.= |A(n)
ε (S1, S2, S3)|2−n(H(S3)±ε)2−n(H(S1|S3)±2ε)2−n(H(S2|S3)±2ε) (15.49)

.= 2n(H(S1,S2,S3)±ε)2−n(H(S3)±ε)2−n(H(S1|S3)±2ε)2−n(H(S2|S3)±2ε) (15.50)

.= 2−n(I (S1;S2|S3)±6ε). � (15.51)

We will specialize this theorem to particular choices of S1, S2, and S3
for the various achievability proofs in this chapter.

15.3 MULTIPLE-ACCESS CHANNEL

The first channel that we examine in detail is the multiple-access channel,
in which two (or more) senders send information to a common receiver.
The channel is illustrated in Figure 15.7. A common example of this
channel is a satellite receiver with many independent ground stations, or
a set of cell phones communicating with a base station. We see that the
senders must contend not only with the receiver noise but with interference
from each other as well.

Definition A discrete memoryless multiple-access channel consists of
three alphabets, X1, X2, and Y, and a probability transition matrix
p(y|x1, x2).
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p(y |x1, x2)

X1

Y1

W1

(W1, W2)

W2

Y
^ ^

FIGURE 15.7. Multiple-access channel.

Definition A ((2nR1, 2nR2), n) code for the multiple-access channel con-
sists of two sets of integers W1 = {1, 2, . . . , 2nR1} and W2 = {1, 2, . . . ,

2nR2}, called the message sets, two encoding functions,

X1 : W1 → Xn
1 (15.52)

and

X2 : W2 → Xn
2, (15.53)

and a decoding function,

g : Yn → W1 × W2. (15.54)

There are two senders and one receiver for this channel. Sender 1
chooses an index W1 uniformly from the set {1, 2, . . . , 2nR1} and sends
the corresponding codeword over the channel. Sender 2 does likewise.
Assuming that the distribution of messages over the product set W1 × W2
is uniform (i.e., the messages are independent and equally likely), we
define the average probability of error for the ((2nR1, 2nR2), n) code as
follows:

P (n)
e = 1

2n(R1+R2)

∑
(w1,w2)∈W1×W2

Pr
{
g(Y n) �= (w1, w2)|(w1, w2) sent

}
.

(15.55)

Definition A rate pair (R1, R2) is said to be achievable for the multiple-
access channel if there exists a sequence of ((2nR1, 2nR2), n) codes with
P

(n)
e → 0.
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Definition The capacity region of the multiple-access channel is the
closure of the set of achievable (R1, R2) rate pairs.

An example of the capacity region for a multiple-access channel is
illustrated in Figure 15.8. We first state the capacity region in the form of
a theorem.

Theorem 15.3.1 (Multiple-access channel capacity) The capacity of
a multiple-access channel (X1 × X2, p(y|x1, x2),Y) is the closure of the
convex hull of all (R1, R2) satisfying

R1 < I (X1; Y |X2), (15.56)

R2 < I (X2; Y |X1), (15.57)

R1 + R2 < I (X1, X2;Y) (15.58)

for some product distribution p1(x1)p2(x2) on X1 × X2.

Before we prove that this is the capacity region of the multiple-access
channel, let us consider a few examples of multiple-access channels:

Example 15.3.1 (Independent binary symmetric channels) Assume
that we have two independent binary symmetric channels, one from sender
1 and the other from sender 2, as shown in Figure 15.9. In this case, it is
obvious from the results of Chapter 7 that we can send at rate 1 − H(p1)

over the first channel and at rate 1 − H(p2) over the second channel.

R1

R2

0

C2

C1

FIGURE 15.8. Capacity region for a multiple-access channel.
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X2

X2

Y

FIGURE 15.9. Independent binary symmetric channels.

Since the channels are independent, there is no interference between the
senders. The capacity region in this case is shown in Figure 15.10.

Example 15.3.2 (Binary multiplier channel ) Consider a multiple-
access channel with binary inputs and output

Y = X1X2. (15.59)

Such a channel is called a binary multiplier channel. It is easy to see
that by setting X2 = 1, we can send at a rate of 1 bit per transmission
from sender 1 to the receiver. Similarly, setting X1 = 1, we can achieve
R2 = 1. Clearly, since the output is binary, the combined rates R1 + R2
of sender 1 and sender 2 cannot be more than 1 bit. By timesharing, we
can achieve any combination of rates such that R1 + R2 = 1. Hence the
capacity region is as shown in Figure 15.11.

Example 15.3.3 (Binary erasure multiple-access channel ) This
multiple-access channel has binary inputs, X1 = X2 = {0, 1}, and a
ternary output, Y = X1 + X2. There is no ambiguity in (X1, X2) if Y = 0
or Y = 2 is received; but Y = 1 can result from either (0,1) or (1,0).
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R2

R1

C2 = 1 − H(p2)

C1 = 1 − H(p1)0

FIGURE 15.10. Capacity region for independent BSCs.

R2

R1
0

C2 = 1

C1 = 1

FIGURE 15.11. Capacity region for binary multiplier channel.

We now examine the achievable rates on the axes. Setting X2 = 0, we
can send at a rate of 1 bit per transmission from sender 1. Similarly, setting
X1 = 0, we can send at a rate R2 = 1. This gives us two extreme points of
the capacity region. Can we do better? Let us assume that R1 = 1, so that
the codewords of X1 must include all possible binary sequences; X1 would
look like a Bernoulli( 1

2) process. This acts like noise for the transmission
from X2. For X2, the channel looks like the channel in Figure 15.12.
This is the binary erasure channel of Chapter 7. Recalling the results, the
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0 0

1 1

?

1
2

1
2

1
2

1
2

FIGURE 15.12. Equivalent single-user channel for user 2 of a binary erasure multiple-
access channel.

R2

R1

C2 = 1

C1 = 1

1

0

2

1
2

FIGURE 15.13. Capacity region for binary erasure multiple-access channel.

capacity of this channel is 1
2 bit per transmission. Hence when sending at

maximum rate 1 for sender 1, we can send an additional 1
2 bit from sender

2. Later, after deriving the capacity region, we can verify that these rates
are the best that can be achieved. The capacity region for a binary erasure
channel is illustrated in Figure 15.13.
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15.3.1 Achievability of the Capacity Region for the
Multiple-Access Channel

We now prove the achievability of the rate region in Theorem 15.3.1;
the proof of the converse will be left until the next section. The proof
of achievability is very similar to the proof for the single-user channel.
We therefore only emphasize the points at which the proof differs from
the single-user case. We begin by proving the achievability of rate pairs
that satisfy (15.58) for some fixed product distribution p(x1)p(x2). In
Section 15.3.3 we extend this to prove that all points in the convex hull
of (15.58) are achievable.

Proof: (Achievability in Theorem 15.3.1). Fix p(x1, x2) = p1(x1)p2(x2).
Codebook generation: Generate 2nR1 independent codewords X1(i),

i ∈ {1, 2, . . . , 2nR1}, of length n, generating each element i.i.d.
∼ ∏n

i=1 p1(x1i). Similarly, generate 2nR2 independent codewords X2(j),
j ∈ {1, 2, . . . , 2nR2}, generating each element i.i.d. ∼ ∏n

i=1 p2(x2i). These
codewords form the codebook, which is revealed to the senders and the
receiver.

Encoding: To send index i, sender 1 sends the codeword X1(i). Simi-
larly, to send j , sender 2 sends X2(j).

Decoding: Let A(n)
ε denote the set of typical (x1, x2, y) sequences. The

receiver Yn chooses the pair (i, j) such that

(x1(i), x2(j), y) ∈ A(n)
ε (15.60)

if such a pair (i, j) exists and is unique; otherwise, an error is de-
clared.

Analysis of the probability of error: By the symmetry of the random
code construction, the conditional probability of error does not depend on
which pair of indices is sent. Thus, the conditional probability of error
is the same as the unconditional probability of error. So, without loss of
generality, we can assume that (i, j) = (1, 1) was sent.

We have an error if either the correct codewords are not typical with
the received sequence or there is a pair of incorrect codewords that are
typical with the received sequence. Define the events

Eij = {(X1(i), X2(j), Y) ∈ A(n)
ε }. (15.61)
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Then by the union of events bound,

P (n)
e = P

(
Ec

11

⋃
∪(i,j) �=(1,1)Eij

)
(15.62)

≤ P(Ec
11) +

∑
i �=1, j=1

P(Ei1) +
∑

i=1, j �=1

P(E1j )

+
∑

i �=1, j �=1

P(Eij ), (15.63)

where P is the conditional probability given that (1, 1) was sent. From the
AEP, P(Ec

11) → 0. By Theorems 15.2.1 and 15.2.3, for i �= 1, we have

P(Ei1) = P((X1(i), X2(1), Y) ∈ A(n)
ε ) (15.64)

=
∑

(x1,x2,y)∈A
(n)
ε

p(x1)p(x2, y) (15.65)

≤ |A(n)
ε |2−n(H(X1)−ε)2−n(H(X2,Y )−ε) (15.66)

≤ 2−n(H(X1)+H(X2,Y )−H(X1,X2,Y )−3ε) (15.67)

= 2−n(I (X1;X2,Y )−3ε) (15.68)

= 2−n(I (X1;Y |X2)−3ε), (15.69)

where the equivalence of (15.68) and (15.69) follows from the indepen-
dence of X1 and X2, and the consequent I (X1; X2, Y ) = I (X1; X2) +
I (X1; Y |X2) = I (X1; Y |X2). Similarly, for j �= 1,

P(E1j ) ≤ 2−n(I (X2;Y |X1)−3ε), (15.70)

and for i �= 1, j �= 1,

P(Eij ) ≤ 2−n(I (X1,X2;Y)−4ε). (15.71)

It follows that

P
(n)
e ≤ P(Ec

11) + 2nR12−n(I (X1;Y |X2)−3ε) + 2nR22−n(I (X2;Y |X1)−3ε)

+2n(R1+R2)2−n(I (X1,X2;Y)−4ε). (15.72)

Since ε > 0 is arbitrary, the conditions of the theorem imply that each
term tends to 0 as n → ∞. Thus, the probability of error, conditioned
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on a particular codeword being sent, goes to zero if the conditions of the
theorem are met. The above bound shows that the average probability of
error, which by symmetry is equal to the probability for an individual
codeword, averaged over all choices of codebooks in the random code
construction, is arbitrarily small. Hence, there exists at least one code C∗
with arbitrarily small probability of error.

This completes the proof of achievability of the region in (15.58) for
a fixed input distribution. Later, in Section 15.3.3, we show that time-
sharing allows any (R1, R2) in the convex hull to be achieved, completing
the proof of the forward part of the theorem. �

15.3.2 Comments on the Capacity Region for the
Multiple-Access Channel

We have now proved the achievability of the capacity region of the
multiple-access channel, which is the closure of the convex hull of the set
of points (R1, R2) satisfying

R1 < I (X1; Y |X2), (15.73)

R2 < I (X2; Y |X1), (15.74)

R1 + R2 < I (X1, X2;Y) (15.75)

for some distribution p1(x1)p2(x2) on X1 × X2. For a particular
p1(x1)p2(x2), the region is illustrated in Figure 15.14.

R2

R1

I(X2;Y|X1) D C

B

A

I(X2;Y)

I(X1;Y) I(X1;Y|X2)
0

FIGURE 15.14. Achievable region of multiple-access channel for a fixed input distribution.
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Let us now interpret the corner points in the region. Point A corresponds
to the maximum rate achievable from sender 1 to the receiver when sender
2 is not sending any information. This is

max R1 = max
p1(x1)p2(x2)

I (X1; Y |X2). (15.76)

Now for any distribution p1(x1)p2(x2),

I (X1; Y |X2) =
∑
x2

p2(x2)I (X1; Y |X2 = x2) (15.77)

≤ max
x2

I (X1;Y |X2 = x2), (15.78)

since the average is less than the maximum. Therefore, the maximum
in (15.76) is attained when we set X2 = x2, where x2 is the value that
maximizes the conditional mutual information between X1 and Y . The
distribution of X1 is chosen to maximize this mutual information. Thus,
X2 must facilitate the transmission of X1 by setting X2 = x2.

The point B corresponds to the maximum rate at which sender 2 can
send as long as sender 1 sends at his maximum rate. This is the rate that
is obtained if X1 is considered as noise for the channel from X2 to Y . In
this case, using the results from single-user channels, X2 can send at a
rate I (X2;Y). The receiver now knows which X2 codeword was used and
can “subtract” its effect from the channel. We can consider the channel
now to be an indexed set of single-user channels, where the index is the
X2 symbol used. The X1 rate achieved in this case is the average mutual
information, where the average is over these channels, and each channel
occurs as many times as the corresponding X2 symbol appears in the
codewords. Hence, the rate achieved is

∑
x2

p(x2)I (X1; Y |X2 = x2) = I (X1; Y |X2). (15.79)

Points C and D correspond to B and A, respectively, with the roles of the
senders reversed. The noncorner points can be achieved by time-sharing.
Thus, we have given a single-user interpretation and justification for the
capacity region of a multiple-access channel.

The idea of considering other signals as part of the noise, decoding
one signal, and then “subtracting” it from the received signal is a very
useful one. We will come across the same concept again in the capacity
calculations for the degraded broadcast channel.
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15.3.3 Convexity of the Capacity Region of the Multiple-Access
Channel

We now recast the capacity region of the multiple-access channel in order
to take into account the operation of taking the convex hull by introducing
a new random variable. We begin by proving that the capacity region is
convex.

Theorem 15.3.2 The capacity region C of a multiple-access channel
is convex [i.e., if (R1, R2) ∈ C and (R′

1, R
′
2) ∈ C, then (λR1 + (1 − λ)R′

1,

λR2 + (1 − λ)R′
2) ∈ C for 0 ≤ λ ≤ 1].

Proof: The idea is time-sharing. Given two sequences of codes at dif-
ferent rates R = (R1, R2) and R′ = (R′

1, R
′
2), we can construct a third

codebook at a rate λR + (1 − λ)R′ by using the first codebook for the
first λn symbols and using the second codebook for the last (1 − λ)n

symbols. The number of X1 codewords in the new code is

2nλR12n(1−λ)R′
1 = 2n(λR1+(1−λ)R′

1), (15.80)

and hence the rate of the new code is λR + (1 − λ)R′. Since the overall
probability of error is less than the sum of the probabilities of error for
each of the segments, the probability of error of the new code goes to 0
and the rate is achievable. �

We can now recast the statement of the capacity region for the multiple-
access channel using a time-sharing random variable Q. Before we prove
this result, we need to prove a property of convex sets defined by lin-
ear inequalities like those of the capacity region of the multiple-access
channel. In particular, we would like to show that the convex hull of two
such regions defined by linear constraints is the region defined by the
convex combination of the constraints. Initially, the equality of these two
sets seems obvious, but on closer examination, there is a subtle difficulty
due to the fact that some of the constraints might not be active. This is
best illustrated by an example. Consider the following two sets defined
by linear inequalities:

C1 = {(x, y) : x ≥ 0, y ≥ 0, x ≤ 10, y ≤ 10, x + y ≤ 100} (15.81)

C2 = {(x, y) : x ≥ 0, y ≥ 0, x ≤ 20, y ≤ 20, x + y ≤ 20}. (15.82)

In this case, the (1
2 , 1

2 ) convex combination of the constraints defines the
region

C = {(x, y) : x ≥ 0, y ≥ 0, x ≤ 15, y ≤ 15, x + y ≤ 60}. (15.83)
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It is not difficult to see that any point in C1 or C2 has x + y < 20, so
any point in the convex hull of the union of C1 and C2 satisfies this
property. Thus, the point (15,15), which is in C, is not in the convex hull
of (C1 ∪ C2). This example also hints at the cause of the problem—in the
definition for C1, the constraint x + y ≤ 100 is not active. If this constraint
were replaced by a constraint x + y ≤ a, where a ≤ 20, the above result
of the equality of the two regions would be true, as we now prove.

We restrict ourselves to the pentagonal regions that occur as compo-
nents of the capacity region of a two-user multiple-access channel. In
this case, the capacity region for a fixed p(x1)p(x2) is defined by three
mutual informations, I (X1; Y |X2), I (X2; Y |X1), and I (X1, X2; Y), which
we shall call I1, I2, and I3, respectively. For each p(x1)p(x2), there is a
corresponding vector, I = (I1, I2, I3), and a rate region defined by

CI = {(R1, R2) : R1 ≥ 0, R2 ≥ 0, R1 ≤ I1, R2 ≤ I2, R1 + R2 ≤ I3}.
(15.84)

Also, since for any distribution p(x1)p(x2), we have I (X2; Y |X1) =
H(X2|X1) − H(X2|Y, X1) = H(X2) − H(X2|Y, X1) = I (X2;Y, X1) =
I (X2; Y) + I (X2; X1|Y) ≥ I (X2;Y), and therefore, I (X1; Y |X2) +
I (X2; Y |X1) ≥ I (X1; Y |X2)+ I (X2; Y) = I (X1, X2; Y), we have for all
vectors I that I1 + I2 ≥ I3. This property will turn out to be critical for
the theorem.

Lemma 15.3.1 Let I1, I2 ∈ R3 be two vectors of mutual informations
that define rate regions CI1 and CI2 , respectively, as given in (15.84).
For 0 ≤ λ ≤ 1, define Iλ = λI1 + (1 − λ)I2, and let CIλ be the rate region
defined by Iλ. Then

CIλ = λCI1 + (1 − λ)CI2 . (15.85)

Proof: We shall prove this theorem in two parts. We first show that
any point in the (λ, 1 − λ) mix of the sets CI1 and CI2 satisfies the con-
straints Iλ. But this is straightforward, since any point in CI1 satisfies the
inequalities for I1 and a point in CI2 satisfies the inequalities for I2, so
the (λ, 1 − λ) mix of these points will satisfy the (λ, 1 − λ) mix of the
constraints. Thus, it follows that

λCI1 + (1 − λ)CI2 ⊆ CIλ. (15.86)

To prove the reverse inclusion, we consider the extreme points of the
pentagonal regions. It is not difficult to see that the rate regions defined
in (15.84) are always in the form of a pentagon, or in the extreme case



536 NETWORK INFORMATION THEORY

when I3 = I1 + I2, in the form of a rectangle. Thus, the capacity region
CI can be also defined as a convex hull of five points:

(0, 0), (I1, 0), (I1, I3 − I1), (I3 − I2, I2), (0, I2). (15.87)

Consider the region defined by Iλ; it, too, is defined by five points. Take
any one of the points, say (I

(λ)
3 − I

(λ)
2 , I

(λ)
2 ). This point can be written as

the (λ, 1 − λ) mix of the points (I
(1)
3 − I

(1)
2 , I

(1)
2 ) and (I

(2)
3 − I

(2)
2 , I

(2)
2 ),

and therefore lies in the convex mixture of CI1 and CI2 . Thus, all extreme
points of the pentagon CIλ lie in the convex hull of CI1 and CI2 , or

CIλ ⊆ λCI1 + (1 − λ)CI2 . (15.88)

Combining the two parts, we have the theorem. �

In the proof of the theorem, we have implicitly used the fact that all
the rate regions are defined by five extreme points (at worst, some of
the points are equal). All five points defined by the I vector were within
the rate region. If the condition I3 ≤ I1 + I2 is not satisfied, some of the
points in (15.87) may be outside the rate region and the proof collapses.

As an immediate consequence of the above lemma, we have the fol-
lowing theorem:

Theorem 15.3.3 The convex hull of the union of the rate regions defined
by individual I vectors is equal to the rate region defined by the convex
hull of the I vectors.

These arguments on the equivalence of the convex hull operation on
the rate regions with the convex combinations of the mutual informa-
tions can be extended to the general m-user multiple-access channel. A
proof along these lines using the theory of polymatroids is developed in
Han [271].

Theorem 15.3.4 The set of achievable rates of a discrete memoryless
multiple-access channel is given by the closure of the set of all (R1, R2)

pairs satisfying

R1 < I (X1; Y |X2, Q),

R2 < I (X2; Y |X1, Q),

R1 + R2 < I (X1, X2; Y |Q) (15.89)
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for some choice of the joint distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2)

with |Q| ≤ 4.

Proof: We will show that every rate pair lying in the region defined in
(15.89) is achievable (i.e., it lies in the convex closure of the rate pairs
satisfying Theorem 15.3.1). We also show that every point in the convex
closure of the region in Theorem 15.3.1 is also in the region defined
in (15.89).

Consider a rate point R satisfying the inequalities (15.89) of the theo-
rem. We can rewrite the right-hand side of the first inequality as

I (X1;Y |X2, Q) =
m∑

q=1

p(q)I (X1; Y |X2, Q = q) (15.90)

=
m∑

q=1

p(q)I (X1; Y |X2)p1q ,p2q
, (15.91)

where m is the cardinality of the support set of Q. We can expand the
other mutual informations similarly.

For simplicity in notation, we consider a rate pair as a vector and
denote a pair satisfying the inequalities in (15.58) for a specific input
product distribution p1q(x1)p2q(x2) as Rp1,p2 as Rq . Specifically, let Rq =
(R1q, R2q) be a rate pair satisfying

R1q < I (X1; Y |X2)p1q (x1)p2q (x2), (15.92)

R2q < I (X2; Y |X1)p1q (x1)p2q (x2), (15.93)

R1q + R2q < I (X1, X2; Y)p1q(x1)p2q(x2). (15.94)

Then by Theorem 15.3.1, Rq = (R1q, R2q) is achievable. Then since R
satisfies (15.89) and we can expand the right-hand sides as in (15.91),
there exists a setof pairs Rq satisfying (15.94) such that

R =
m∑

q=1

p(q)Rq. (15.95)

Since a convex combination of achievable rates is achievable, so is R.
Hence, we have proven the achievability of the region in the theorem.
The same argument can be used to show that every point in the convex
closure of the region in (15.58) can be written as the mixture of points
satisfying (15.94) and hence can be written in the form (15.89).
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The converse is proved in the next section. The converse shows that
all achievable rate pairs are of the form (15.89), and hence establishes
that this is the capacity region of the multiple-access channel. The cardi-
nality bound on the time-sharing random variable Q is a consequence of
Carathéodory’s theorem on convex sets. See the discussion below. �

The proof of the convexity of the capacity region shows that any convex
combination of achievable rate pairs is also achievable. We can continue
this process, taking convex combinations of more points. Do we need to
use an arbitrary number of points ? Will the capacity region be increased?
The following theorem says no.

Theorem 15.3.5 (Carathéodory) Any point in the convex closure of a
compact set A in a d-dimensional Euclidean space can be represented as
a convex combination of d + 1 or fewer points in the original set A.

Proof: The proof may be found in Eggleston [183] and Grünbaum
[263]. �

This theorem allows us to restrict attention to a certain finite convex
combination when calculating the capacity region. This is an important
property because without it, we would not be able to compute the capacity
region in (15.89), since we would never know whether using a larger
alphabet Q would increase the region.

In the multiple-access channel, the bounds define a connected compact
set in three dimensions. Therefore, all points in its closure can be defined
as the convex combination of at most four points. Hence, we can restrict
the cardinality of Q to at most 4 in the above definition of the capacity
region.

Remark Many of the cardinality bounds may be slightly improved by
introducing other considerations. For example, if we are only interested
in the boundary of the convex hull of A as we are in capacity theorems,
a point on the boundary can be expressed as a mixture of d points of
A, since a point on the boundary lies in the intersection of A with a
(d − 1)-dimensional support hyperplane.

15.3.4 Converse for the Multiple-Access Channel

We have so far proved the achievability of the capacity region. In this
section we prove the converse.
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Proof: (Converse to Theorems 15.3.1 and 15.3.4). We must show that
given any sequence of ((2nR1, 2nR2), n) codes with P

(n)
e → 0, the rates

must satisfy

R1 ≤ I (X1;Y |X2, Q),

R2 ≤ I (X2;Y |X1, Q),

R1 + R2 ≤ I (X1, X2;Y |Q) (15.96)

for some choice of random variable Q defined on {1, 2, 3, 4} and joint
distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2). Fix n. Consider the given
code of block length n. The joint distribution on W1 × W2 × Xn

1 × Xn
2 ×

Yn is well defined. The only randomness is due to the random uniform
choice of indices W1 and W2 and the randomness induced by the channel.
The joint distribution is

p(w1, w2, x
n
1 , xn

2 , yn) = 1

2nR1

1

2nR2
p(xn

1 |w1)p(xn
2 |w2)

n∏
i=1

p(yi |x1i , x2i),

(15.97)
where p(xn

1 |w1) is either 1 or 0, depending on whether xn
1 = x1(w1), the

codeword corresponding to w1, or not, and similarly, p(xn
2 |w2) = 1 or 0,

according to whether xn
2 = x2(w2) or not. The mutual informations that

follow are calculated with respect to this distribution.
By the code construction, it is possible to estimate (W1, W2) from the

received sequence Yn with a low probability of error. Hence, the condi-
tional entropy of (W1, W2) given Yn must be small. By Fano’s inequality,

H(W1, W2|Yn) ≤ n(R1 + R2)P
(n)
e + H(P (n)

e )
�= nεn. (15.98)

It is clear that εn → 0 as P
(n)
e → 0. Then we have

H(W1|Yn) ≤ H(W1, W2|Yn) ≤ nεn, (15.99)

H(W2|Yn) ≤ H(W1, W2|Yn) ≤ nεn. (15.100)

We can now bound the rate R1 as

nR1 = H(W1) (15.101)

= I (W1; Yn) + H(W1|Yn) (15.102)

(a)≤ I (W1; Yn) + nεn (15.103)
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(b)≤ I (Xn
1(W1); Yn) + nεn (15.104)

= H(Xn
1(W1)) − H(Xn

1(W1)|Yn) + nεn (15.105)

(c)≤ H(Xn
1(W1)|Xn

2(W2)) − H(Xn
1(W1)|Yn, Xn

2(W2)) + nεn (15.106)

= I (Xn
1(W1);Yn|Xn

2(W2)) + nεn (15.107)

= H(Yn|Xn
2(W2)) − H(Yn|Xn

1(W1),X
n
2(W2)) + nεn (15.108)

(d)= H(Yn|Xn
2(W2)) −

n∑
i=1

H(Yi |Y i−1, Xn
1(W1),X

n
2(W2)) + nεn

(15.109)

(e)= H(Yn|Xn
2(W2)) −

n∑
i=1

H(Yi |X1i , X2i) + nεn (15.110)

(f)≤
n∑

i=1

H(Yi |Xn
2(W2)) −

n∑
i=1

H(Yi |X1i , X2i) + nεn (15.111)

(g)

≤
n∑

i=1

H(Yi |X2i) −
n∑

i=1

H(Yi |X1i , X2i) + nεn (15.112)

=
n∑

i=1

I (X1i; Yi |X2i) + nεn, (15.113)

where

(a) follows from Fano’s inequality
(b) follows from the data-processing inequality
(c) follows from the fact that since W1 and W2 are independent,

so are Xn
1(W1) and Xn

2(W2), and hence H(Xn
1(W1)|Xn

2(W2)) =
H(Xn

1(W1)), and H(Xn
1(W1)|Yn, Xn

2(W2)) ≤ H(Xn
1(W1)|Yn) by

conditioning
(d) follows from the chain rule
(e) follows from the fact that Yi depends only on X1i and X2i by the

memoryless property of the channel
(f) follows from the chain rule and removing conditioning
(g) follows from removing conditioning

Hence, we have

R1 ≤ 1

n

n∑
i=1

I (X1i; Yi |X2i ) + εn. (15.114)
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Similarly, we have

R2 ≤ 1

n

n∑
i=1

I (X2i; Yi |X1i ) + εn. (15.115)

To bound the sum of the rates, we have

n(R1 + R2) = H(W1, W2) (15.116)

= I (W1, W2; Yn) + H(W1, W2|Yn) (15.117)

(a)≤ I (W1, W2;Yn) + nεn (15.118)

(b)≤ I (Xn
1(W1),X

n
2(W2); Yn) + nεn (15.119)

= H(Yn) − H(Yn|Xn
1(W1),X

n
2(W2)) + nεn (15.120)

(c)= H(Yn) −
n∑

i=1

H(Yi |Y i−1, Xn
1(W1), X

n
2(W2)) + nεn

(15.121)

(d)= H(Yn) −
n∑

i=1

H(Yi |X1i , X2i) + nεn (15.122)

(e)≤
n∑

i=1

H(Yi) −
n∑

i=1

H(Yi |X1i , X2i) + nεn (15.123)

=
n∑

i=1

I (X1i, X2i;Yi) + nεn, (15.124)

where

(a) follows from Fano’s inequality
(b) follows from the data-processing inequality
(c) follows from the chain rule
(d) follows from the fact that Yi depends only on X1i and X2i and is

conditionally independent of everything else
(e) follows from the chain rule and removing conditioning

Hence, we have

R1 + R2 ≤ 1

n

n∑
i=1

I (X1i, X2i; Yi) + εn. (15.125)
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The expressions in (15.114), (15.115), and (15.125) are the averages of the
mutual informations calculated at the empirical distributions in column i

of the codebook. We can rewrite these equations with the new variable Q,
where Q = i ∈ {1, 2, . . . , n} with probability 1

n
. The equations become

R1 ≤ 1

n

n∑
i=1

I (X1i; Yi |X2i ) + εn (15.126)

= 1

n

n∑
i=1

I (X1q; Yq |X2q, Q = i) + εn (15.127)

= I (X1Q; YQ|X2Q, Q) + εn (15.128)

= I (X1; Y |X2, Q) + εn, (15.129)

where X1
�= X1Q, X2

�= X2Q, and Y
�= YQ are new random variables

whose distributions depend on Q in the same way as the distributions
of X1i , X2i and Yi depend on i. Since W1 and W2 are independent, so are
X1i(W1) and X2i(W2), and hence

Pr (X1i(W1) = x1, X2i(W2) = x2)

�= Pr{X1Q = x1|Q = i} Pr{X2Q = x2|Q = i}. (15.130)

Hence, taking the limit as n → ∞, P
(n)
e → 0, we have the following

converse:

R1 ≤ I (X1;Y |X2, Q),

R2 ≤ I (X2;Y |X1, Q),

R1 + R2 ≤ I (X1, X2;Y |Q) (15.131)

for some choice of joint distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2). As
in Section 15.3.3, the region is unchanged if we limit the cardinality of
Q to 4.

This completes the proof of the converse. �

Thus, the achievability of the region of Theorem 15.3.1 was proved in
Section 15.3.1. In Section 15.3.3 we showed that every point in the region
defined by (15.96) was also achievable. In the converse, we showed that
the region in (15.96) was the best we can do, establishing that this is
indeed the capacity region of the channel. Thus, the region in (15.58)
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cannot be any larger than the region in (15.96), and this is the capacity
region of the multiple-access channel.

15.3.5 m-User Multiple-Access Channels

We will now generalize the result derived for two senders to m senders,
m ≥ 2. The multiple-access channel in this case is shown in Figure 15.15.

We send independent indices w1, w2, . . . , wm over the channel from
the senders 1, 2, . . . , m, respectively. The codes, rates, and achievability
are all defined in exactly the same way as in the two-sender case.

Let S ⊆ {1, 2, . . . , m}. Let Sc denote the complement of S. Let
R(S) = ∑

i∈S Ri , and let X(S) = {Xi : i ∈ S}. Then we have the follow-
ing theorem.

Theorem 15.3.6 The capacity region of the m-user multiple-access
channel is the closure of the convex hull of the rate vectors satisfying

R(S) ≤ I (X(S);Y |X(Sc)) for all S ⊆ {1, 2, . . . , m} (15.132)

for some product distribution p1(x1)p2(x2) · · ·pm(xm).

Proof: The proof contains no new ideas. There are now 2m − 1 terms in
the probability of error in the achievability proof and an equal number of
inequalities in the proof of the converse. Details are left to the reader. �

In general, the region in (15.132) is a beveled box.

p(y|x1,x2,...,xm)

X1

X2

Xm

...
Y

FIGURE 15.15. m-user multiple-access channel.
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15.3.6 Gaussian Multiple-Access Channels

We now discuss the Gaussian multiple-access channel of Section 15.1.2
in somewhat more detail.

Two senders, X1 and X2, communicate to the single receiver, Y . The
received signal at time i is

Yi = X1i + X2i + Zi, (15.133)

where {Zi} is a sequence of independent, identically distributed, zero-
mean Gaussian random variables with variance N (Figure 15.16). We
assume that there is a power constraint Pj on sender j ; that is, for each
sender, for all messages, we must have

1

n

n∑
i=1

x2
ji(wj ) ≤ Pj , wj ∈ {1, 2, . . . , 2nRj }, j = 1, 2. (15.134)

Just as the proof of achievability of channel capacity for the discrete
case (Chapter 7) was extended to the Gaussian channel (Chapter 9), we
can extend the proof for the discrete multiple-access channel to the Gaus-
sian multiple-access channel. The converse can also be extended similarly,
so we expect the capacity region to be the convex hull of the set of rate
pairs satisfying

R1 ≤ I (X1; Y |X2), (15.135)

R2 ≤ I (X2; Y |X1), (15.136)

R1 + R2 ≤ I (X1, X2; Y) (15.137)

for some input distribution f1(x1)f2(x2) satisfying EX2
1 ≤ P1 and

EX2
2 ≤ P2.

Zn

Xn
1

W1

W2

P1

Xn
2

P2

Yn (W1, W2)
^ ^

FIGURE 15.16. Gaussian multiple-access channel.



15.3 MULTIPLE-ACCESS CHANNEL 545

Now, we can expand the mutual information in terms of relative
entropy, and thus

I (X1; Y |X2) = h(Y |X2) − h(Y |X1, X2) (15.138)

= h(X1 + X2 + Z|X2) − h(X1 + X2 + Z|X1, X2)

(15.139)

= h(X1 + Z|X2) − h(Z|X1, X2) (15.140)

= h(X1 + Z|X2) − h(Z) (15.141)

= h(X1 + Z) − h(Z) (15.142)

= h(X1 + Z) − 1

2
log(2πe)N (15.143)

≤ 1

2
log(2πe)(P1 + N) − 1

2
log(2πe)N (15.144)

= 1

2
log

(
1 + P1

N

)
, (15.145)

where (15.141) follows from the fact that Z is independent of X1 and
X2, (15.142) from the independence of X1 and X2, and (15.144) from
the fact that the normal maximizes entropy for a given second moment.
Thus, the maximizing distribution is X1 ∼ N(0, P1) and X2 ∼ N(0, P2)

with X1 and X2 independent. This distribution simultaneously maximizes
the mutual information bounds in (15.135)–(15.137).

Definition We define the channel capacity function

C(x)
�= 1

2
log(1 + x), (15.146)

corresponding to the channel capacity of a Gaussian white-noise channel
with signal-to-noise ratio x (Figure 15.17). Then we write the bound on
R1 as

R1 ≤ C

(
P1

N

)
. (15.147)

Similarly,

R2 ≤ C

(
P2

N

)
(15.148)
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R2

R1

DP2

NC
C

B

A

0
P1

NC

P2

P1 + NC

P1

P2 + NC

FIGURE 15.17. Gaussian multiple-access channel capacity.

and

R1 + R2 ≤ C

(
P1 + P2

N

)
. (15.149)

These upper bounds are achieved when X1 ∼ N(0, P1) and X2 =
N(0, P2) and define the capacity region. The surprising fact about these

inequalities is that the sum of the rates can be as large as C
(

P1+P2
N

)
,

which is that rate achieved by a single transmitter sending with a power
equal to the sum of the powers.

The interpretation of the corner points is very similar to the interpre-
tation of the achievable rate pairs for a discrete multiple-access channel
for a fixed input distribution. In the case of the Gaussian channel, we can
consider decoding as a two-stage process: In the first stage, the receiver
decodes the second sender, considering the first sender as part of the noise.
This decoding will have low probability of error if R2 < C(

P2
P1+N

). After
the second sender has been decoded successfully, it can be subtracted out
and the first sender can be decoded correctly if R1 < C(

P1
N

). Hence, this
argument shows that we can achieve the rate pairs at the corner points
of the capacity region by means of single-user operations. This process,
called onion-peeling, can be extended to any number of users.

If we generalize this to m senders with equal power, the total rate
is C

(
mP
N

)
, which goes to ∞ as m → ∞. The average rate per sender,

1
m

C(mP
N

), goes to 0. Thus, when the total number of senders is very large,
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so that there is a lot of interference, we can still send a total amount of
information that is arbitrarily large even though the rate per individual
sender goes to 0.

The capacity region described above corresponds to code-division mul-
tiple access (CDMA), where separate codes are used for the different
senders and the receiver decodes them one by one. In many practical situ-
ations, though, simpler schemes, such as frequency-division multiplexing
or time-division multiplexing, are used. With frequency-division multiplex-
ing, the rates depend on the bandwidth allotted to each sender. Consider
the case of two senders with powers P1 and P2 using nonintersecting
frequency bands with bandwidths W1 and W2, where W1 + W2 = W (the
total bandwidth). Using the formula for the capacity of a single-user ban-
dlimited channel, the following rate pair is achievable:

R1 = W1 log

(
1 + P1

NW1

)
, (15.150)

R2 = W2 log

(
1 + P2

NW2

)
. (15.151)

As we vary W1 and W2, we trace out the curve as shown in Figure 15.18.
This curve touches the boundary of the capacity region at one point,
which corresponds to allotting bandwidth to each channel proportional to
the power in that channel. We conclude that no allocation of frequency
bands to radio stations can be optimal unless the allocated powers are
proportional to the bandwidths.

In time-division multiple access (TDMA), time is divided into slots,
and each user is allotted a slot during which only that user will transmit
and every other user remains quiet. If there are two users, each of power
P , the rate that each sends when the other is silent is C(P/N). Now if
time is divided into equal-length slots, and every odd slot is allocated
to user 1 and every even slot to user 2, the average rate that each user
achieves is 1

2C(P/N). This system is called naive time-division multiple
access (TDMA). However, it is possible to do better if we notice that since
user 1 is sending only half the time, it is possible for him to use twice
the power during his transmissions and still maintain the same average
power constraint. With this modification, it is possible for each user to
send information at a rate 1

2C(2P/N). By varying the lengths of the
slots allotted to each sender (and the instantaneous power used during the
slot), we can achieve the same capacity region as FDMA with different
bandwidth allocations.

As Figure 15.18 illustrates, in general the capacity region is larger than
that achieved by time- or frequency-division multiplexing. But note that



548 NETWORK INFORMATION THEORY

R2

R1

P2

NC

0
P1

NC

P2

P1 + NC

P1

P2 + NC

FIGURE 15.18. Gaussian multiple-access channel capacity with FDMA and TDMA.

the multiple-access capacity region derived above is achieved by use of
a common decoder for all the senders. However, it is also possible to
achieve the capacity region by onion-peeling, which removes the need
for a common decoder and instead, uses a sequence of single-user codes.
CDMA achieves the entire capacity region, and in addition, allows new
users to be added easily without changing the codes of the current users.
On the other hand, TDMA and FDMA systems are usually designed for
a fixed number of users and it is possible that either some slots are empty
(if the actual number of users is less than the number of slots) or some
users are left out (if the number of users is greater than the number
of slots). However, in many practical systems, simplicity of design is
an important consideration, and the improvement in capacity due to the
multiple-access ideas presented earlier may not be sufficient to warrant
the increased complexity.

For a Gaussian multiple-access system with m sources with powers
P1, P2, . . . , Pm and ambient noise of power N , we can state the equivalent
of Gauss’s law for any set S in the form

∑
i∈S

Ri = total rate of information flow from S (15.152)

≤ C

(∑
i∈S Pi

N

)
. (15.153)
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15.4 ENCODING OF CORRELATED SOURCES

We now turn to distributed data compression. This problem is in many
ways the data compression dual to the multiple-access channel problem.
We know how to encode a source X. A rate R > H(X) is sufficient. Now
suppose that there are two sources (X, Y ) ∼ p(x, y). A rate H(X, Y )

is sufficient if we are encoding them together. But what if the X and
Y sources must be described separately for some user who wishes to
reconstruct both X and Y ? Clearly, by separately encoding X and Y , it is
seen that a rate R = Rx + Ry > H(X) + H(Y) is sufficient. However, in
a surprising and fundamental paper by Slepian and Wolf [502], it is shown
that a total rate R = H(X, Y ) is sufficient even for separate encoding of
correlated sources.

Let (X1, Y1), (X2, Y2), . . . be a sequence of jointly distributed random
variables i.i.d. ∼ p(x, y). Assume that the X sequence is available at a
location A and the Y sequence is available at a location B. The situation
is illustrated in Figure 15.19.

Before we proceed to the proof of this result, we will give a few
definitions.

Definition A ((2nR1, 2nR2), n) distributed source code for the joint
source (X, Y ) consists of two encoder maps,

f1 : Xn → {1, 2, . . . , 2nR1}, (15.154)

f2 : Yn → {1, 2, . . . , 2nR2}, (15.155)

X

(X, Y ) (X, Y )

Encoder

Decoder

R1

Y
Encoder

R2

^ ^

FIGURE 15.19. Slepian–Wolf coding.
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and a decoder map,

g : {1, 2, . . . , 2nR1} × {1, 2, . . . , 2nR2} → Xn × Yn. (15.156)

Here f1(X
n) is the index corresponding to Xn, f2(Y

n) is the index cor-
responding to Yn, and (R1, R2) is the rate pair of the code.

Definition The probability of error for a distributed source code is
defined as

P (n)
e = P(g(f1(X

n), f2(Y
n)) �= (Xn, Y n)). (15.157)

Definition A rate pair (R1, R2) is said to be achievable for a distributed
source if there exists a sequence of ((2nR1, 2nR2), n) distributed source
codes with probability of error P

(n)
e → 0. The achievable rate region is

the closure of the set of achievable rates.

Theorem 15.4.1 (Slepian–Wolf ) For the distributed source coding
problem for the source (X, Y ) drawn i.i.d ∼ p(x, y), the achievable rate
region is given by

R1 ≥ H(X|Y), (15.158)

R2 ≥ H(Y |X), (15.159)

R1 + R2 ≥ H(X, Y ). (15.160)

Let us illustrate the result with some examples.

Example 15.4.1 Consider the weather in Gotham and Metropolis. For
the purposes of our example, we assume that Gotham is sunny with prob-
ability 0.5 and that the weather in Metropolis is the same as in Gotham
with probability 0.89. The joint distribution of the weather is given as
follows:

Metropolis

p(x, y) Rain Shine

Gotham
Rain 0.445 0.055
Shine 0.055 0.445
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Assume that we wish to transmit 100 days of weather information to the
National Weather Service headquarters in Washington. We could send all
the 100 bits of the weather in both places, making 200 bits in all. If we
decided to compress the information independently, we would still need
100H(0.5) = 100 bits of information from each place, for a total of 200
bits. If, instead, we use Slepian–Wolf encoding, we need only H(X) +
H(Y |X) = 100H(0.5) + 100H(0.89) = 100 + 50 = 150 bits total.

Example 15.4.2 Consider the following joint distribution:

p(u, v) 0 1

0 1
3

1
3

1 0 1
3

In this case, the total rate required for the transmission of this
source is H(U) + H(V |U) = log 3 = 1.58 bits rather than the 2 bits that
would be needed if the sources were transmitted independently without
Slepian–Wolf encoding.

15.4.1 Achievability of the Slepian–Wolf Theorem

We now prove the achievability of the rates in the Slepian–Wolf theorem.
Before we proceed to the proof, we introduce a new coding procedure
using random bins. The essential idea of random bins is very similar to
hash functions: We choose a large random index for each source sequence.
If the set of typical source sequences is small enough (or equivalently, the
range of the hash function is large enough), then with high probability,
different source sequences have different indices, and we can recover the
source sequence from the index.

Let us consider the application of this idea to the encoding of a single
source. In Chapter 3 the method that we considered was to index all
elements of the typical set and not bother about elements outside the
typical set. We will now describe the random binning procedure, which
indexes all sequences but rejects untypical sequences at a later stage.

Consider the following procedure: For each sequence Xn, draw an index
at random from {1, 2, . . . , 2nR}. The set of sequences Xn which have the
same index are said to form a bin, since this can be viewed as first laying
down a row of bins and then throwing the Xn’s at random into the bins.
For decoding the source from the bin index, we look for a typical Xn

sequence in the bin. If there is one and only one typical Xn sequence
in the bin, we declare it to be the estimate X̂n of the source sequence;
otherwise, an error is declared.
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The above procedure defines a source code. To analyze the probability
of error for this code, we will now divide the Xn sequences into two
types, typical sequences and nontypical sequences. If the source sequence
is typical, the bin corresponding to this source sequence will contain at
least one typical sequence (the source sequence itself). Hence there will
be an error only if there is more than one typical sequence in this bin. If
the source sequence is nontypical, there will always be an error. But if
the number of bins is much larger than the number of typical sequences,
the probability that there is more than one typical sequence in a bin is
very small, and hence the probability that a typical sequence will result
in an error is very small.

Formally, let f (Xn) be the bin index corresponding to Xn. Call the
decoding function g. The probability of error (averaged over the random
choice ofcodes f ) is

P(g(f (X)) �= X) ≤ P(X /∈ A(n)
ε ) +

∑
x

P(∃x′ �= x : x′ ∈ A(n)
ε , f (x′)

= f (x))p(x)

≤ ε +
∑

x

∑
x′ ∈ A(n)

ε

x′ �= x

P(f (x′) = f (x))p(x) (15.161)

≤ ε +
∑

x

∑
x′∈A

(n)
ε

2−nRp(x) (15.162)

= ε +
∑

x′∈A
(n)
ε

2−nR
∑

x

p(x) (15.163)

≤ ε +
∑

x′∈A
(n)
ε

2−nR (15.164)

≤ ε + 2n(H(X)+ε)2−nR (15.165)

≤ 2ε (15.166)

if R > H(X) + ε and n is sufficiently large. Hence, if the rate of the code
is greater than the entropy, the probability of error is arbitrarily small and
the code achieves the same results as the code described in Chapter 3.

The above example illustrates the fact that there are many ways to
construct codes with low probabilities of error at rates above the entropy
of the source; the universal source code is another example of such a code.



15.4 ENCODING OF CORRELATED SOURCES 553

Note that the binning scheme does not require an explicit characterization
of the typical set at the encoder; it is needed only at the decoder. It is
this property that enables this code to continue to work in the case of a
distributed source, as illustrated in the proof of the theorem.

We now return to the consideration of the distributed source coding and
prove the achievability of the rate region in the Slepian–Wolf theorem.

Proof: (Achievability in Theorem 15.4.1). The basic idea of the proof is
to partition the space of Xn into 2nR1 bins and the space of Yn into 2nR2

bins.
Random code generation: Assign every x ∈ Xn to one of 2nR1 bins

independently according to a uniform distribution on {1, 2, . . . , 2nR1}.
Similarly, randomly assign every y ∈ Yn to one of 2nR2 bins. Reveal
the assignments f1 and f2 to both the encoder and the decoder.

Encoding: Sender 1 sends the index of the bin to which X belongs.
Sender 2 sends the index of the bin to which Y belongs.

Decoding: Given the received index pair (i0, j0), declare (x̂, ŷ) = (x, y)

if there is one and only one pair of sequences (x, y) such that f1(x) = i0,
f2(y) = j0 and (x, y) ∈ A(n)

ε . Otherwise, declare an error. The scheme
is illustrated in Figure 15.20. The set of X sequences and the set of Y

sequences are divided into bins in such a way that the pair of indices
specifies a product bin.

2nH(X, Y )

jointly typical pairs
(xn,yn)

2nR1 bins

yn
xn

2nR
2  

bi
ns

FIGURE 15.20. Slepian–Wolf encoding: the jointly typical pairs are isolated by the product
bins.
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Probability of error: Let (Xi, Yi) ∼ p(x, y). Define the events

E0 = {(X, Y) /∈ A(n)
ε }, (15.167)

E1 = {∃x′ �= X : f1(x′) = f1(X) and (x′, Y) ∈ A(n)
ε }, (15.168)

E2 = {∃y′ �= Y : f2(y′) = f2(Y) and (X, y′) ∈ A(n)
ε }, (15.169)

and

E12 = {∃(x′, y′) : x′ �= X, y′ �= Y, f1(x′)

= f1(X), f2(y′) = f2(Y) and (x′, y′) ∈ A(n)
ε }. (15.170)

Here X, Y, f1, and f2 are random. We have an error if (X, Y) is not in
A(n)

ε or if there is another typical pair in the same bin. Hence by the union
of events bound,

P (n)
e = P(E0 ∪ E1 ∪ E2 ∪ E12) (15.171)

≤ P(E0) + P(E1) + P(E2) + P(E12). (15.172)

First consider E0. By the AEP, P(E0) → 0 and hence for n sufficiently
large, P(E0) < ε. To bound P(E1), we have

P(E1) = P {∃x′ �= X : f1(x′) = f1(X), and (x′, Y) ∈ A(n)
ε } (15.173)

=
∑
(x,y)

p(x, y)P {∃x′ �= x : f1(x′) = f1(x), (x′, y) ∈ A(n)
ε }

(15.174)

≤
∑
(x,y)

p(x, y)
∑

x′ �= x
(x′, y) ∈ A(n)

ε

P (f1(x′) = f1(x)) (15.175)

=
∑
(x,y)

p(x, y)2−nR1|Aε(X|y)| (15.176)

≤ 2−nR12n(H(X|Y)+ε) (by Theorem 15.2.2 ), (15.177)

which goes to 0 if R1 > H(X|Y). Hence for sufficiently large n, P(E1) <

ε. Similarly, for sufficiently large n, P(E2) < ε if R2 > H(Y |X) and
P (E12) < ε if R1 + R2 > H(X, Y ). Since the average probability of error
is < 4ε, there exists at least one code (f ∗

1 , f ∗
2 , g∗) with probability of error

< 4ε. Thus, we can construct a sequence of codes with P
(n)
e → 0, and

the proof of achievability is complete. �
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15.4.2 Converse for the Slepian–Wolf Theorem

The converse for the Slepian–Wolf theorem follows obviously from the
results for a single source, but we will provide it for completeness.

Proof: (Converse to Theorem 15.4.1). As usual, we begin with Fano’s
inequality. Let f1, f2, g be fixed. Let I0 = f1(X

n) and J0 = f2(Y
n). Then

H(Xn, Y n|I0, J0) ≤ P (n)
e n(log |X| + log |Y|) + 1 = nεn, (15.178)

where εn → 0 as n → ∞. Now adding conditioning, we also have

H(Xn|Yn, I0, J0) ≤ nεn, (15.179)

and

H(Yn|Xn, I0, J0) ≤ nεn. (15.180)

We can write a chain of inequalities

n(R1 + R2)
(a)≥ H(I0, J0) (15.181)

= I (Xn, Y n; I0, J0) + H(I0, J0|Xn, Y n) (15.182)

(b)= I (Xn, Y n; I0, J0) (15.183)

= H(Xn, Y n) − H(Xn, Y n|I0, J0) (15.184)

(c)≥ H(Xn, Y n) − nεn (15.185)

(d)= nH(X, Y ) − nεn, (15.186)

where

(a) follows from the fact that I0 ∈ {1, 2, . . . , 2nR1} and J0 ∈
{1, 2, . . . , 2nR2}

(b) follows from the fact the I0 is a function of Xn and J0 is a function
of Yn

(c) follows from Fano’s inequality (15.178)
(d) follows from the chain rule and the fact that (Xi, Yi) are i.i.d.
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Similarly, using (15.179), we have

nR1
(a)≥ H(I0) (15.187)

≥ H(I0|Yn) (15.188)

= I (Xn; I0|Yn) + H(I0|Xn, Y n) (15.189)

(b)= I (Xn; I0|Yn) (15.190)

= H(Xn|Yn) − H(Xn|I0, J0, Y
n) (15.191)

(c)≥ H(Xn|Yn) − nεn (15.192)

(d)= nH(X|Y) − nεn, (15.193)

where the reasons are the same as for the equations above. Similarly, we
can show that

nR2 ≥ nH(Y |X) − nεn. (15.194)

Dividing these inequalities by n and taking the limit as n → ∞, we have
the desired converse. �

The region described in the Slepian–Wolf theorem is illustrated in
Figure 15.21.

15.4.3 Slepian–Wolf Theorem for Many Sources

The results of Section 15.4.2 can easily be generalized to many sources.
The proof follows exactly the same lines.

Theorem 15.4.2 Let (X1i, X2i , . . . , Xmi) be i.i.d. ∼ p(x1, x2, . . . , xm).
Then the set of rate vectors achievable for distributed source coding with
separate encoders and a common decoder is defined by

R(S) > H(X(S)|X(Sc)) (15.195)

for all S ⊆ {1, 2, . . . , m}, where

R(S) =
∑
i∈S

Ri (15.196)

and X(S) = {Xj : j ∈ S}.
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R2

R1
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H(Y|X)

H(X|Y) H(X)0

FIGURE 15.21. Rate region for Slepian–Wolf encoding.

Proof: The proof is identical to the case of two variables and is
omitted. �

The achievability of Slepian–Wolf encoding has been proved for an
i.i.d. correlated source, but the proof can easily be extended to the case
of an arbitrary joint source that satisfies the AEP; in particular, it can
be extended to the case of any jointly ergodic source [122]. In these
cases the entropies in the definition of the rate region are replaced by the
corresponding entropy rates.

15.4.4 Interpretation of Slepian–Wolf Coding

We consider an interpretation of the corner points of the rate region in
Slepian–Wolf encoding in terms of graph coloring. Consider the point
with rate R1 = H(X), R2 = H(Y |X). Using nH(X) bits, we can encode
Xn efficiently, so that the decoder can reconstruct Xn with arbitrarily low
probability of error. But how do we code Yn with nH(Y |X) bits? Looking
at the picture in terms of typical sets, we see that associated with every
Xn is a typical “fan” of Yn sequences that are jointly typical with the
given Xn as shown in Figure 15.22.

If the Y encoder knows Xn, the encoder can send the index of the Yn

within this typical fan. The decoder, also knowing Xn, can then construct
this typical fan and hence reconstruct Yn. But the Y encoder does not
know Xn. So instead of trying to determine the typical fan, he randomly
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xn yn

FIGURE 15.22. Jointly typical fans.

colors all Yn sequences with 2nR2 colors. If the number of colors is high
enough, then with high probability all the colors in a particular fan will
be different and the color of the Yn sequence will uniquely define the
Yn sequence within the Xn fan. If the rate R2 > H(Y |X), the number of
colors is exponentially larger than the number of elements in the fan and
we can show that the scheme will have an exponentially small probability
of error.

15.5 DUALITY BETWEEN SLEPIAN–WOLF ENCODING
AND MULTIPLE-ACCESS CHANNELS

With multiple-access channels, we considered the problem of sending
independent messages over a channel with two inputs and only one output.
With Slepian–Wolf encoding, we considered the problem of sending a
correlated source over a noiseless channel, with a common decoder for
recovery of both sources. In this section we explore the duality between
the two systems.

In Figure 15.23, two independent messages are to be sent over the
channel as Xn

1 and Xn
2 sequences. The receiver estimates the messages

from the received sequence. In Figure 15.24 the correlated sources are
encoded as “independent” messages i and j . The receiver tries to estimate
the source sequences from knowledge of i and j .

In the proof of the achievability of the capacity region for the multiple-
access channel, we used a random map from the set of messages to the
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FIGURE 15.23. Multiple-access channels.
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FIGURE 15.24. Correlated source encoding.

sequences Xn
1 and Xn

2 . In the proof for Slepian–Wolf coding, we used a
random map from the set of sequences Xn and Yn to a set of messages.
In the proof of the coding theorem for the multiple-access channel, the
probability of error was bounded by

P (n)
e ≤ ε +

∑
codewords

Pr(codeword jointly typical with sequence received)

(15.197)

= ε +
∑

2nR1 terms

2−nI1 +
∑

2nR2 terms

2−nI2 +
∑

2n(R1+R2) terms

2−nI3,

(15.198)
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where ε is the probability the sequences are not typical, Ri are the rates
corresponding to the number of codewords that can contribute to the
probability of error, and Ii is the corresponding mutual information that
corresponds to the probability that the codeword is jointly typical with
the received sequence.

In the case of Slepian–Wolf encoding, the corresponding expression
for the probability of error is

P (n)
e ≤ ε +

∑
jointly typical sequences

Pr( have the same codeword) (15.199)

= ε +
∑

2nH1 terms

2−nR1 +
∑

2nH2 terms

2−nR2 +
∑

2nH3 terms

2−n(R1+R2),

(15.200)
where again the probability that the constraints of the AEP are not satisfied
is bounded by ε, and the other terms refer to the various ways in which
another pair of sequences could be jointly typical and in the same bin as
the given source pair.

The duality of the multiple-access channel and correlated source encod-
ing is now obvious. It is rather surprising that these two systems are duals
of each other; one would have expected a duality between the broadcast
channel and the multiple-access channel.

15.6 BROADCAST CHANNEL

The broadcast channel is a communication channel in which there is one
sender and two or more receivers. It is illustrated in Figure 15.25. The
basic problem is to find the set of simultaneously achievable rates for
communication in a broadcast channel. Before we begin the analysis, let
us consider some examples.

Example 15.6.1 (TV station) The simplest example of the broadcast
channel is a radio or TV station. But this example is slightly degenerate
in the sense that normally the station wants to send the same informa-
tion to everybody who is tuned in; the capacity is essentially maxp(x)

mini I (X;Yi), which may be less than the capacity of the worst receiver.
But we may wish to arrange the information in such a way that the bet-
ter receivers receive extra information, which produces a better picture
or sound, while the worst receivers continue to receive more basic infor-
mation. As TV stations introduce high-definition TV (HDTV), it may be
necessary to encode the information so that bad receivers will receive the
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FIGURE 15.25. Broadcast channel.

regular TV signal, while good receivers will receive the extra informa-
tion for the high-definition signal. The methods to accomplish this will
be explained in the discussion of the broadcast channel.

Example 15.6.2 (Lecturer in classroom) A lecturer in a classroom is
communicating information to the students in the class. Due to differences
among the students, they receive various amounts of information. Some of
the students receive most of the information; others receive only a little. In
the ideal situation, the lecturer would be able to tailor his or her lecture in
such a way that the good students receive more information and the poor
students receive at least the minimum amount of information. However, a
poorly prepared lecture proceeds at the pace of the weakest student. This
situation is another example of a broadcast channel.

Example 15.6.3 (Orthogonal broadcast channels) The simplest broad-
cast channel consists of two independent channels to the two receivers.
Here we can send independent information over both channels, and we
can achieve rate R1 to receiver 1 and rate R2 to receiver 2 if R1 < C1 and
R2 < C2. The capacity region is the rectangle shown in Figure 15.26.

Example 15.6.4 (Spanish and Dutch speaker) To illustrate the idea of
superposition, we will consider a simplified example of a speaker who can
speak both Spanish and Dutch. There are two listeners: One understands
only Spanish and the other understands only Dutch. Assume for simplicity
that the vocabulary of each language is 220 words and that the speaker
speaks at the rate of 1 word per second in either language. Then he
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FIGURE 15.26. Capacity region for two orthogonal broadcast channels.

can transmit 20 bits of information per second to receiver 1 by speaking
to her all the time; in this case, he sends no information to receiver 2.
Similarly, he can send 20 bits per second to receiver 2 without sending
any information to receiver 1. Thus, he can achieve any rate pair with
R1 + R2 = 20 by simple time-sharing. But can he do better?

Recall that the Dutch listener, even though he does not understand
Spanish, can recognize when the word is Spanish. Similarly, the Spanish
listener can recognize when Dutch occurs. The speaker can use this to
convey information; for example, if the proportion of time he uses each
language is 50%, then of a sequence of 100 words, about 50 will be
Dutch and about 50 will be Spanish. But there are many ways to order the

Spanish and Dutch words; in fact, there are about
(100

50

) ≈ 2100H(
1
2) ways

to order the words. Choosing one of these orderings conveys information
to both listeners. This method enables the speaker to send information at
a rate of 10 bits per second to the Dutch receiver, 10 bits per second to
the Spanish receiver, and 1 bit per second of common information to both
receivers, for a total rate of 21 bits per second, which is more than that
achievable by simple timesharing. This is an example of superposition of
information.

The results of the broadcast channel can also be applied to the case
of a single-user channel with an unknown distribution. In this case, the
objective is to get at least the minimum information through when the
channel is bad and to get some extra information through when the channel
is good. We can use the same superposition arguments as in the case of
the broadcast channel to find the rates at which we can send information.
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15.6.1 Definitions for a Broadcast Channel

Definition A broadcast channel consists of an input alphabet X and
two output alphabets, Y1 and Y2, and a probability transition function
p(y1, y2|x). The broadcast channel will be said to be memoryless if
p(yn

1 , yn
2 |xn) = ∏n

i=1 p(y1i , y2i |xi).
We define codes, probability of error, achievability, and capacity regions

for the broadcast channel as we did for the multiple-access channel. A
((2nR1, 2nR2), n) code for a broadcast channel with independent informa-
tion consists of an encoder,

X : ({1, 2, . . . , 2nR1} × {1, 2, . . . , 2nR2}) → Xn, (15.201)

and two decoders,

g1 : Yn
1 → {1, 2, . . . , 2nR1} (15.202)

and

g2 : Yn
2 → {1, 2, . . . , 2nR2}. (15.203)

We define the average probability of error as the probability that the
decoded message is not equal to the transmitted message; that is,

P (n)
e = P(g1(Y

n
1 ) �= W1 or g2(Y

n
2 ) �= W2), (15.204)

where (W1, W2) are assumed to be uniformly distributed over 2nR1 × 2nR2 .

Definition A rate pair (R1, R2) is said to be achievable for the broad-
cast channel if there exists a sequence of ((2nR1, 2nR2), n) codes with
P

(n)
e → 0.
We will now define the rates for the case where we have common

information to be sent to both receivers. A ((2nR0, 2nR1, 2nR2), n) code
for a broadcast channel with common information consists of an encoder,

X : ({1, 2, . . . , 2nR0} × {1, 2, . . . , 2nR1} × {1, 2, . . . , 2nR2}) → Xn,

(15.205)
and two decoders,

g1 : Yn
1 → {1, 2, . . . , 2nR0} × {1, 2, . . . , 2nR1} (15.206)

and
g2 : Yn

2 → {1, 2, . . . , 2nR0} × {1, 2, . . . , 2nR2}. (15.207)
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Assuming that the distribution on (W0, W1, W2) is uniform, we can define
the probability of error as the probability that the decoded message is not
equal to the transmitted message:

P (n)
e = P(g1(Y

n
1 ) �= (W0, W1) or g2(Z

n) �= (W0, W2)). (15.208)

Definition A rate triple (R0, R1, R2) is said to be achievable for the
broadcast channel with common information if there exists a sequence of
((2nR0, 2nR1, 2nR2), n) codes with P

(n)
e → 0.

Definition The capacity region of the broadcast channel is the closure
of the set of achievable rates.

We observe that an error for receiver Yn
1 depends only the distribution

p(xn, yn
1 ) and not on the joint distribution p(xn, yn

1 , yn
2 ). Thus, we have

the following theorem:

Theorem 15.6.1 The capacity region of a broadcast channel depends
only on the conditional marginal distributions p(y1|x) and p(y2|x).

Proof: See the problems. �

15.6.2 Degraded Broadcast Channels

Definition A broadcast channel is said to be physically degraded if
p(y1, y2|x) = p(y1|x)p(y2|y1).

Definition A broadcast channel is said to be stochastically degraded if
its conditional marginal distributions are the same as that of a physically
degraded broadcast channel; that is, if there exists a distribution p′(y2|y1)

such that

p(y2|x) =
∑
y1

p(y1|x)p′(y2|y1). (15.209)

Note that since the capacity of a broadcast channel depends only on the
conditional marginals, the capacity region of the stochastically degraded
broadcast channel is the same as that of the corresponding physically
degraded channel. In much of the following, we therefore assume that the
channel is physically degraded.
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15.6.3 Capacity Region for the Degraded Broadcast Channel

We now consider sending independent information over a degraded broad-
cast channel at rate R1 to Y1 and rate R2 to Y2.

Theorem 15.6.2 The capacity region for sending independent infor-
mation over the degraded broadcast channel X → Y1 → Y2 is the convex
hull of the closure of all (R1, R2) satisfying

R2 ≤ I (U ;Y2), (15.210)

R1 ≤ I (X;Y1|U) (15.211)

for some joint distribution p(u)p(x|u)p(y1, y2|x), where the auxiliary ran-
dom variable U has cardinality bounded by |U| ≤ min{|X|, |Y1|, |Y2|}.

Proof: (The cardinality bounds for the auxiliary random variable U are
derived using standard methods from convex set theory and are not dealt
with here.) We first give an outline of the basic idea of superposition
coding for the broadcast channel. The auxiliary random variable U will
serve as a cloud center that can be distinguished by both receivers Y1
and Y2. Each cloud consists of 2nR1 codewords Xn distinguishable by the
receiver Y1. The worst receiver can only see the clouds, while the better
receiver can see the individual codewords within the clouds. The formal
proof of the achievability of this region uses a random coding argument:
Fix p(u) and p(x|u).

Random codebook generation: Generate 2nR2 independent codewords
of length n, U(w2), w2 ∈ {1, 2, . . . , 2nR2}, according to

∏n
i=1 p(ui). For

each codeword U(w2), generate 2nR1 independent codewords X(w1, w2)

according to
∏n

i=1 p(xi |ui(w2)). Here u(i) plays the role of the cloud
center understandable to both Y1 and Y2, while x(i, j) is the j th satellite
codeword in the ith cloud.

Encoding: To send the pair (W1, W2), send the corresponding codeword
X(W1, W2).

Decoding: Receiver 2 determines the unique ˆ̂W 2 such that (U( ˆ̂W 2),

Y2) ∈ A(n)
ε . If there are none such or more than one such, an error is

declared.
Receiver 1 looks for the unique (Ŵ1, Ŵ2) such that (U(Ŵ2), X(Ŵ1, Ŵ2),

Y1) ∈ A(n)
ε . If there are none such or more than one such, an error is

declared.
Analysis of the probability of error: By the symmetry of the code gen-

eration, the probability of error does not depend on which codeword was
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sent. Hence, without loss of generality, we can assume that the mes-
sage pair (W1, W2) = (1, 1) was sent. Let P(·) denote the conditional
probability of an event given that (1,1) was sent.

Since we have essentially a single-user channel from U to Y2, we will
be able to decode the U codewords with a low probability of error if
R2 < I (U ;Y2). To prove this, we define the events

EYi = {(U(i), Y2) ∈ A(n)
ε }. (15.212)

Then the probability of error at receiver 2 is

P (n)
e (2) = P(Ec

Y1

⋃ ⋃
i �=1

EYi) (15.213)

≤ P(Ec
Y1) +

∑
i �=1

P(EYi) (15.214)

≤ ε + 2nR22−n(I (U ;Y2)−2ε) (15.215)

≤ 2ε (15.216)

if n is large enough and R2 < I (U ;Y2), where (15.215) follows from the
AEP. Similarly, for decoding for receiver 1, we define the events

ẼY i = {(U(i), Y1) ∈ A(n)
ε }, (15.217)

ẼY ij = {(U(i), X(i, j), Y1) ∈ A(n)
ε }, (15.218)

where the tilde refers to events defined at receiver 1. Then we can bound
the probability of error as

P (n)
e (1) = P


Ẽc

Y1

⋃
Ẽc

Y11

⋃ ⋃
i �=1

ẼY i

⋃ ⋃
j �=1

ẼY1j


 (15.219)

≤ P(Ẽc
Y1) + P(Ẽc

Y11) +
∑
i �=1

P(ẼY i) +
∑
j �=1

P(ẼY1j ). (15.220)

By the same arguments as for receiver 2, we can bound P(ẼY i) ≤
2−n(I (U ;Y1)−3ε). Hence, the third term goes to 0 if R2 < I (U ;Y1). But
by the data-processing inequality and the degraded nature of the chan-
nel, I (U ;Y1) ≥ I (U ;Y2), and hence the conditions of the theorem imply
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that the third term goes to 0. We can also bound the fourth term in the
probability of error as

P(ẼY1j ) = P((U(1), X(1, j), Y1) ∈ A(n)
ε ) (15.221)

=
∑

(U,X,Y1)∈A
(n)
ε

P ((U(1), X(1, j), Y1)) (15.222)

=
∑

(U,X,Y1)∈A
(n)
ε

P (U(1))P (X(1, j)|U(1))P (Y1|U(1)) (15.223)

≤
∑

(U,X,Y1)∈A
(n)
ε

2−n(H(U)−ε)2−n(H(X|U)−ε)2−n(H(Y1|U)−ε)

(15.224)

≤ 2n(H(U,X,Y1)+ε)2−n(H(U)−ε)2−n(H(X|U)−ε)2−n(H(Y1|U)−ε)

(15.225)

= 2−n(I (X;Y1|U)−4ε). (15.226)

Hence, if R1 < I (X;Y1|U), the fourth term in the probability of error
goes to 0. Thus, we can bound the probability of error

P (n)
e (1) ≤ ε + ε + 2nR22−n(I (U ;Y1)−3ε) + 2nR12−n(I (X;Y1|U)−4ε) (15.227)

≤ 4ε (15.228)

if n is large enough and R2 < I (U ;Y1) and R1 < I (X;Y1|U). The above
bounds show that we can decode the messages with total probability
of error that goes to 0. Hence, there exists a sequence of good ((2nR1,

2nR2), n) codes C∗
n with probability of error going to 0. With this, we com-

plete the proof of the achievability of the capacity region for the degraded
broadcast channel. Gallager’s proof [225] of the converse is outlined in
Problem 15.11. �

So far we have considered sending independent information to each
receiver. But in certain situations, we wish to send common information
to both receivers. Let the rate at which we send common information be
R0. Then we have the following obvious theorem:

Theorem 15.6.3 If the rate pair (R1, R2) is achievable for a broadcast
channel with independent information, the rate triple (R0, R1 − R0, R2 −
R0) with a common rate R0 is achievable, provided that R0 ≤
min(R1, R2).
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In the case of a degraded broadcast channel, we can do even better.
Since by our coding scheme the better receiver always decodes all the
information that is sent to the worst receiver, one need not reduce the
amount of information sent to the better receiver when we have common
information. Hence, we have the following theorem:

Theorem 15.6.4 If the rate pair (R1, R2) is achievable for a degraded
broadcast channel, the rate triple (R0, R1, R2 − R0) is achievable for the
channel with common information, provided that R0 < R2.

We end this section by considering the example of the binary symmetric
broadcast channel.

Example 15.6.5 Consider a pair of binary symmetric channels with
parameters p1 and p2 that form a broadcast channel as shown in Fig-
ure 15.27. Without loss of generality in the capacity calculation, we can
recast this channel as a physically degraded channel. We assume that
p1 < p2 < 1

2 . Then we can express a binary symmetric channel with
parameter p2 as a cascade of a binary symmetric channel with parameter
p1 with another binary symmetric channel. Let the crossover probability
of the new channel be α. Then we must have

p1(1 − α) + (1 − p1)α = p2 (15.229)

X

Y1

Y2

0

0

1

1

0

1

FIGURE 15.27. Binary symmetric broadcast channel.



15.6 BROADCAST CHANNEL 569

U

1 − b

1 − b

1 − a

1 − a

1 − p1

1 − p1

X Y1 Y2

b

b

a
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p1

p1

FIGURE 15.28. Physically degraded binary symmetric broadcast channel.

or
α = p2 − p1

1 − 2p1
. (15.230)

We now consider the auxiliary random variable in the definition of the
capacity region. In this case, the cardinality of U is binary from the bound
of the theorem. By symmetry, we connect U to X by another binary
symmetric channel with parameter β, as illustrated in Figure 15.28.

We can now calculate the rates in the capacity region. It is clear by sym-
metry that the distribution on U that maximizes the rates is the uniform
distribution on {0, 1}, so that

I (U ;Y2) = H(Y2) − H(Y2|U) (15.231)

= 1 − H(β ∗ p2), (15.232)
where

β ∗ p2 = β(1 − p2) + (1 − β)p2. (15.233)
Similarly,

I (X;Y1|U) = H(Y1|U) − H(Y1|X, U) (15.234)

= H(Y1|U) − H(Y1|X) (15.235)

= H(β ∗ p1) − H(p1), (15.236)
where

β ∗ p1 = β(1 − p1) + (1 − β)p1. (15.237)

Plotting these points as a function of β, we obtain the capacity region
in Figure 15.29. When β = 0, we have maximum information transfer
to Y2 [i.e., R2 = 1 − H(p2) and R1 = 0]. When β = 1

2 , we have maxi-
mum information transfer to Y1 [i.e., R1 = 1 − H(p1)] and no information
transfer to Y2. These values of β give us the corner points of the rate
region.
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R2

R1

I − H(p2)

I − H(p1)

FIGURE 15.29. Capacity region of binary symmetric broadcast channel.

Z1 ~

Y1
Y2

(0,N1) Z ′2 ~ (0,N2 − N1)

X

FIGURE 15.30. Gaussian broadcast channel.

Example 15.6.6 (Gaussian broadcast channel ) The Gaussian broad-
cast channel is illustrated in Figure 15.30. We have shown it in the case
where one output is a degraded version of the other output. Based on
the results of Problem 15.10, it follows that all scalar Gaussian broadcast
channels are equivalent to this type of degraded channel.

Y1 = X + Z1, (15.238)

Y2 = X + Z2 = Y1 + Z′
2, (15.239)

where Z1 ∼ N(0, N1) and Z′
2 ∼ N(0, N2 − N1).

Extending the results of this section to the Gaussian case, we can show
that the capacity region of this channel is given by

R1 < C

(
αP

N1

)
(15.240)

R2 < C

(
(1 − α)P

αP + N2

)
, (15.241)
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where α may be arbitrarily chosen (0 ≤ α ≤ 1). The coding scheme that
achieves this capacity region is outlined in Section 15.1.3.

15.7 RELAY CHANNEL

The relay channel is a channel in which there is one sender and one
receiver with a number of intermediate nodes that act as relays to help
the communication from the sender to the receiver. The simplest relay
channel has only one intermediate or relay node. In this case the channel
consists of four finite sets X, X1, Y, and Y1 and a collection of probability
mass functions p(y, y1|x, x1) on Y × Y1, one for each (x, x1) ∈ X × X1.
The interpretation is that x is the input to the channel and y is the output
of the channel, y1 is the relay’s observation, and x1 is the input symbol
chosen by the relay, as shown in Figure 15.31. The problem is to find the
capacity of the channel between the sender X and the receiver Y .

The relay channel combines a broadcast channel (X to Y and Y1) and a
multiple-access channel (X and X1 to Y ). The capacity is known for the
special case of the physically degraded relay channel. We first prove an
outer bound on the capacity of a general relay channel and later establish
an achievable region for the degraded relay channel.

Definition A (2nR, n) code for a relay channel consists of a set of
integers W = {1, 2, . . . , 2nR}, an encoding function

X : {1, 2, . . . , 2nR} → Xn, (15.242)

a set of relay functions {fi}ni=1 such that

x1i = fi(Y11, Y12, . . . , Y1i−1), 1 ≤ i ≤ n, (15.243)

and a decoding function,

g : Yn → {1, 2, . . . , 2nR}. (15.244)

X

Y1 : X1

Y

FIGURE 15.31. Relay channel.
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Note that the definition of the encoding functions includes the nonan-
ticipatory condition on the relay. The relay channel input is allowed to
depend only on the past observations y11, y12, . . . , y1i−1. The channel is
memoryless in the sense that (Yi, Y1i) depends on the past only through
the current transmitted symbols (Xi, X1i). Thus, for any choice p(w),
w ∈ W, and code choice X : {1, 2, . . . , 2nR} → Xn

i and relay functions
{fi}ni=1, the joint probability mass function on W × Xn × Xn

1 × Yn × Yn
1

is given by

p(w, x, x1, y, y1) = p(w)

n∏
i=1

p(xi|w)p(x1i |y11, y12, . . . , y1i−1)

× p(yi, y1i |xi, x1i). (15.245)

If the message w ∈ [1, 2nR] is sent, let

λ(w) = Pr{g(Y) �= w|w sent} (15.246)

denote the conditional probability of error. We define the average proba-
bility of error of the code as

P (n)
e = 1

2nR

∑
w

λ(w). (15.247)

The probability of error is calculated under the uniform distribution over
the codewords w ∈ {1, . . . , 2nR}. The rate R is said to be achievable
by the relay channel if there exists a sequence of (2nR, n) codes with
P

(n)
e → 0. The capacity C of a relay channel is the supremum of the set

of achievable rates.
We first give an upper bound on the capacity of the relay channel.

Theorem 15.7.1 For any relay channel (X × X1, p(y, y1|x, x1),Y ×
Y1), the capacity C is bounded above by

C ≤ sup
p(x,x1)

min {I (X,X1; Y), I (X;Y, Y1|X1)} . (15.248)

Proof: The proof is a direct consequence of a more general max-flow
min-cut theorem given in Section 15.10. �

This upper bound has a nice max-flow min-cut interpretation. The first
term in (15.248) upper bounds the maximum rate of information transfer
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from senders X and X1 to receiver Y . The second terms bound the rate
from X to Y and Y1.

We now consider a family of relay channels in which the relay receiver
is better than the ultimate receiver Y in the sense defined below. Here the
max-flow min-cut upper bound in the (15.248) is achieved.

Definition The relay channel (X × X1, p(y, y1|x, x1),Y × Y1) is said
to be physically degraded if p(y, y1|x, x1) can be written in the form

p(y, y1|x, x1) = p(y1|x, x1)p(y|y1, x1). (15.249)

Thus, Y is a random degradation of the relay signal Y1.
For the physically degraded relay channel, the capacity is given by the

following theorem.

Theorem 15.7.2 The capacity C of a physically degraded relay channel
is given by

C = sup
p(x,x1)

min {I (X,X1; Y), I (X;Y1|X1)} , (15.250)

where the supremum is over all joint distributions on X × X1.

Proof:
Converse: The proof follows from Theorem 15.7.1 and by degradedness,

since for the degraded relay channel, I (X;Y, Y1|X1) = I (X;Y1|X1).
Achievability: The proof of achievability involves a combination

of the following basic techniques: (1) random coding, (2) list codes,
(3) Slepian–Wolf partitioning, (4) coding for the cooperative multiple-
access channel, (5) superposition coding, and (6) block Markov encoding
at the relay and transmitter. We provide only an outline of the proof.

Outline of achievability: We consider B blocks of transmission, each of
n symbols. A sequence of B − 1 indices, wi ∈ {1, . . . , 2nR}, i = 1, 2, . . . ,

B − 1, will be sent over the channel in nB transmissions. (Note that as
B → ∞ for a fixed n, the rate R(B − 1)/B is arbitrarily close to R.)

We define a doubly indexed set of codewords:

C = {x(w|s), x1(s)} : w ∈ {1, 2nR}, s ∈ {1, 2nR0}, x ∈ Xn, x1 ∈ Xn
1 .

(15.251)
We will also need a partition

S = {S1, S2, . . . , S2nR0 } of W = {1, 2, . . . , 2nR} (15.252)
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into 2nR0 cells, with Si ∩ Sj = φ, i �= j , and ∪Si = W. The partition will
enable us to send side information to the receiver in the manner of Slepian
and Wolf [502].

Generation of random code: Fix p(x1)p(x|x1).
First generate at random 2nR0 i.i.d. n-sequences in Xn

1 , each
drawn according to p(x1) = ∏n

i=1 p(x1i). Index them as x1(s), s ∈
{1, 2, . . . , 2nR0}. For each x1(s), generate 2nR conditionally independent
n-sequences x(w|s), w ∈ {1, 2, . . . , 2nR}, drawn independently accord-
ing to p(x|x1(s)) = ∏n

i=1 p(xi |x1i (s)). This defines the random code-
book C = {x(w|s), x1(s)}. The random partition S = {S1, S2, . . . , S2nR0 } of
{1, 2, . . . , 2nR} is defined as follows. Let each integer w ∈ {1, 2, . . . , 2nR}
be assigned independently, according to a uniform distribution over the
indices s = 1, 2, . . . , 2nR0 , to cells Ss .

Encoding: Let wi ∈ {1, 2, . . . , 2nR} be the new index to be sent in block
i, and let si be defined as the partition corresponding to wi−1 (i.e., wi−1 ∈
Ssi ). The encoder sends x(wi |si). The relay has an estimate ˆ̂wi−1 of the
previous index wi−1. (This will be made precise in the decoding section.)
Assume that ˆ̂wi−1 ∈ S ˆ̂si

. The relay encoder sends x1( ˆ̂si) in block i.
Decoding: We assume that at the end of block i − 1, the receiver

knows (w1, w2, . . . , wi−2) and (s1, s2, . . . , si−1) and the relay knows (w1,

w2, . . . , wi−1) and consequently, (s1, s2, . . . , si). The decoding procedures
at the end of block i are as follows:

1. Knowing si and upon receiving y1(i), the relay receiver estimates
the message of the transmitter ˆ̂wi = w if and only if there exists
a unique w such that (x(w|si), x1(si), y1(i)) are jointly ε-typical.
Using Theorem 15.2.3, it can be shown that ˆ̂wi = wi with an arbi-
trarily small probability of error if

R < I (X;Y1|X1) (15.253)

and n is sufficiently large.
2. The receiver declares that ŝi = s was sent iff there exists one and

only one s such that (x1(s), y(i)) are jointly ε-typical. From Theo-
rem 15.2.1 we know that si can be decoded with arbitrarily small
probability of error if

R0 < I (X1;Y) (15.254)

and n is sufficiently large.
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3. Assuming that si is decoded correctly at the receiver, the receiver
constructs a list Ł(y(i − 1)) of indices that the receiver considers to
be jointly typical with y(i − 1) in the (i − 1)th block. The receiver
then declares ŵi−1 = w as the index sent in block i − 1 if there is
a unique w in Ssi ∩ Ł(y(i − 1)). If n is sufficiently large and if

R < I (X;Y |X1) + R0, (15.255)

then ŵi−1 = wi−1 with arbitrarily small probability of error. Com-
bining the two constraints (15.254) and (15.255), R0 drops out,
leaving

R < I (X;Y |X1) + I (X1; Y) = I (X,X1; Y). (15.256)

For a detailed analysis of the probability of error, the reader is
referred to Cover and El Gamal [127]. �

Theorem 15.7.2 can also shown to be the capacity for the following
classes of relay channels:

1. Reversely degraded relay channel, that is,

p(y, y1|x, x1) = p(y|x, x1)p(y1|y, x1). (15.257)

2. Relay channel with feedback
3. Deterministic relay channel,

y1 = f (x, x1), y = g(x, x1). (15.258)

15.8 SOURCE CODING WITH SIDE INFORMATION

We now consider the distributed source coding problem where two random
variables X and Y are encoded separately but only X is to be recovered.We
now ask how many bits R1 are required to describe X if we are allowed
R2 bits to describe Y . If R2 > H(Y), then Y can be described perfectly,
and by the results of Slepian–Wolf coding, R1 = H(X|Y) bits suffice
to describe X. At the other extreme, if R2 = 0, we must describe X

without any help, and R1 = H(X) bits are then necessary to describe X. In
general, we use R2 = I (Y ; Ŷ ) bits to describe an approximate version of
Y . This will allow us to describe X using H(X|Ŷ ) bits in the presence of
side information Ŷ . The following theorem is consistent with this intuition.
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Theorem 15.8.1 Let (X, Y ) ∼ p(x, y). If Y is encoded at rate R2 and
X is encoded at rate R1, we can recover X with an arbitrarily small prob-
ability of error if and only if

R1 ≥ H(X|U), (15.259)

R2 ≥ I (Y ;U) (15.260)

for some joint probability mass function p(x, y)p(u|y), where |U| ≤
|Y| + 2.

We prove this theorem in two parts. We begin with the converse, in
which we show that for any encoding scheme that has a small probability
of error, we can find a random variable U with a joint probability mass
function as in the theorem.

Proof: (Converse). Consider any source code for Figure 15.32. The
source code consists of mappings fn(X

n) and gn(Y
n) such that the rates of

fn and gn are less than R1 and R2, respectively, and a decoding mapping
hn such that

P (n)
e = Pr{hn(fn(X

n), gn(Y
n)) �= Xn} < ε. (15.261)

Define new random variables S = fn(X
n) and T = gn(Y

n). Then since
we can recover Xn from S and T with low probability of error, we have,
by Fano’s inequality,

H(Xn|S, T ) ≤ nεn. (15.262)

Then

nR2
(a)≥ H(T ) (15.263)

(b)≥ I (Y n; T ) (15.264)

Encoder Decoder

Encoder

X X
R1

R2
Y

^

FIGURE 15.32. Encoding with side information.
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=
n∑

i=1

I (Yi; T |Y1, . . . , Yi−1) (15.265)

(c)=
n∑

i=1

I (Yi; T , Y1, . . . , Yi−1) (15.266)

(d)=
n∑

i=1

I (Yi; Ui) (15.267)

where

(a) follows from the fact that the range of gn is {1, 2, . . . , 2nR2}
(b) follows from the properties of mutual information
(c) follows from the chain rule and the fact that Yi is independent of

Y1, . . . , Yi−1 and hence I (Yi;Y1, . . . , Yi−1) = 0
(d) follows if we define Ui = (T , Y1, . . . , Yi−1)

We also have another chain for R1,

nR1
(a)≥ H(S) (15.268)

(b)≥ H(S|T ) (15.269)

= H(S|T ) + H(Xn|S, T ) − H(Xn|S, T ) (15.270)

(c)≥ H(Xn, S|T ) − nεn (15.271)

(d)= H(Xn|T ) − nεn (15.272)

(e)=
n∑

i=1

H(Xi |T , X1, . . . , Xi−1) − nεn (15.273)

(f)≥
n∑

i=1

H(Xi |T ,Xi−1, Y i−1) − nεn (15.274)

(g)=
n∑

i=1

H(Xi |T , Y i−1) − nεn (15.275)

(h)=
n∑

i=1

H(Xi |Ui) − nεn, (15.276)
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where
(a) follows from the fact that the range of S is {1, 2, . . . , 2nR1}
(b) follows from the fact that conditioning reduces entropy
(c) follows from Fano’s inequality
(d) follows from the chain rule and the fact that S is a function of Xn

(e) follows from the chain rule for entropy
(f) follows from the fact that conditioning reduces entropy
(g) follows from the (subtle) fact that Xi → (T , Y i−1) → Xi−1 forms

a Markov chain since Xi does not contain any information about
Xi−1 that is not there in Y i−1 and T

(h) follows from the definition of U

Also, since Xi contains no more information about Ui than is present
in Yi , it follows that Xi → Yi → Ui forms a Markov chain. Thus we have
the following inequalities:

R1 ≥ 1

n

n∑
i=1

H(Xi |Ui), (15.277)

R2 ≥ 1

n

n∑
i=1

I (Yi; Ui). (15.278)

We now introduce a timesharing random variable Q so that we can rewrite
these equations as

R1 ≥ 1

n

n∑
i=1

H(Xi |Ui, Q = i) = H(XQ|UQ, Q), (15.279)

R2 ≥ 1

n

n∑
i=1

I (Yi; Ui |Q = i) = I (YQ; UQ|Q). (15.280)

Now since Q is independent of YQ (the distribution of Yi does not depend
on i), we have

I (YQ; UQ|Q) = I (YQ; UQ, Q) − I (YQ; Q) = I (YQ; UQ, Q). (15.281)

Now XQ and YQ have the joint distribution p(x, y) in the theorem. Defin-
ing U = (UQ, Q), X = XQ, and Y = YQ, we have shown the existence
of a random variable U such that

R1 ≥ H(X|U), (15.282)

R2 ≥ I (Y ;U) (15.283)
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for any encoding scheme that has a low probability of error. Thus, the
converse is proved. �

Before we proceed to the proof of the achievability of this pair of rates,
we will need a new lemma about strong typicality and Markov chains.
Recall the definition of strong typicality for a triple of random variables
X, Y , and Z. A triplet of sequences xn, yn, zn is said to be ε-strongly
typical if

∣∣∣∣1

n
N(a, b, c|xn, yn, zn) − p(a, b, c)

∣∣∣∣ <
ε

|X||Y||Z| . (15.284)

In particular, this implies that (xn, yn) are jointly strongly typical and
that (yn, zn) are also jointly strongly typical. But the converse is not true:
The fact that (xn, yn) ∈ A∗(n)

ε (X, Y ) and (yn, zn) ∈ A∗(n)
ε (Y,Z) does not

in general imply that (xn, yn, zn) ∈ A∗(n)
ε (X, Y,Z). But if X → Y → Z

forms a Markov chain, this implication is true. We state this as a lemma
without proof [53, 149].

Lemma 15.8.1 Let (X, Y, Z) form a Markov chain X → Y → Z [i.e.,
p(x, y, z) = p(x, y)p(z|y)]. If for a given (yn, zn) ∈ A∗(n)

ε (Y,Z), Xn is
drawn ∼ ∏n

i=1 p(xi|yi), then Pr{(Xn, yn, zn) ∈ A∗(n)
ε (X, Y, Z)} > 1 − ε

for n sufficiently large.

Remark The theorem is true from the strong law of large numbers if
Xn ∼ ∏n

i=1 p(xi |yi, zi). The Markovity of X → Y → Z is used to show
that Xn ∼ p(xi |yi) is sufficient for the same conclusion.

We now outline the proof of achievability in Theorem 15.8.1.

Proof: (Achievability in Theorem 15.8.1). Fix p(u|y). Calculate p(u) =∑
y p(y)p(u|y).
Generation of codebooks: Generate 2nR2 independent codewords of

length n, U(w2), w2 ∈ {1, 2, . . . , 2nR2} according to
∏n

i=1 p(ui). Ran-
domly bin all the Xn sequences into 2nR1 bins by independently generating
an index b distributed uniformly on {1, 2, . . . , 2nR1} for each Xn. Let B(i)

denote the set of Xn sequences allotted to bin i.
Encoding: The X sender sends the index i of the bin in which Xn falls.
The Y sender looks for an index s such that (Y n, Un(s)) ∈ A∗(n)

ε (Y, U).
If there is more than one such s, it sends the least. If there is no such
Un(s) in the codebook, it sends s = 1.

Decoding: The receiver looks for a unique Xn ∈ B(i) such that (Xn,

Un(s)) ∈ A∗(n)
ε (X,U). If there is none or more than one, it declares an

error.
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Analysis of the probability of error: The various sources of error are as
follows:

1. The pair (Xn, Y n) generated by the source is not typical. The proba-
bility of this is small if n is large. Hence, without loss of generality,
we can condition on the event that the source produces a particular
typical sequence (xn, yn) ∈ A∗(n)

ε .
2. The sequence Yn is typical, but there does not exist a Un(s) in the

codebook that is jointly typical with it. The probability of this is
small from the arguments of Section 10.6, where we showed that if
there are enough codewords; that is, if

R2 > I (Y ;U), (15.285)

we are very likely to find a codeword that is jointly strongly typical
with the given source sequence.

3. The codeword Un(s) is jointly typical with yn but not with xn. But
by Lemma 15.8.1, the probability of this is small since X → Y → U

forms a Markov chain.
4. We also have an error if there exists another typical Xn ∈ B(i) which

is jointly typical with Un(s). The probability that any other Xn is
jointly typical with Un(s) is less than 2−n(I (U ;X)−3ε), and therefore
the probability of this kind of error is bounded above by

|B(i) ∩ A∗(n)
ε (X)|2−n(I (X;U)−3ε) ≤ 2n(H(X)+ε)2−nR12−n(I (X;U)−3ε),

(15.286)
which goes to 0 if R1 > H(X|U).

Hence, it is likely that the actual source sequence Xn is jointly typical
with Un(s) and that no other typical source sequence in the same bin is
also jointly typical with Un(s). We can achieve an arbitrarily low proba-
bility of error with an appropriate choice of n and ε, and this completes
the proof of achievability. �

15.9 RATE DISTORTION WITH SIDE INFORMATION

We know that R(D) bits are sufficient to describe X within distortion D.
We now ask how many bits are required given side information Y .

We begin with a few definitions. Let (Xi, Yi) be i.i.d. ∼p(x, y) and
encoded as shown in Figure 15.33.
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Encoder DecoderX X

Ed (X,X ) = D

R

Y

^

^

FIGURE 15.33. Rate distortion with side information.

Definition The rate distortion function with side information RY (D)

is defined as the minimum rate required to achieve distortion D if the
side information Y is available to the decoder. Precisely, RY (D) is the
infimum of rates R such that there exist maps in : Xn → {1, . . . , 2nR},
gn : Yn × {1, . . . , 2nR} → X̂n such that

lim sup
n→∞

Ed(Xn, gn(Y
n, in(X

n))) ≤ D. (15.287)

Clearly, since the side information can only help, we have RY (D) ≤
R(D). For the case of zero distortion, this is the Slepian–Wolf problem
and we will need H(X|Y) bits. Hence, RY (0) = H(X|Y). We wish to
determine the entire curve RY (D). The result can be expressed in the
following theorem.

Theorem 15.9.1 (Rate distortion with side information (Wyner and Ziv))
Let (X, Y ) be drawn i.i.d. ∼ p(x, y) and let d(xn, x̂n)

= 1
n

∑n
i=1 d(xi, x̂i) be given. The rate distortion function with side infor-

mation is

RY (D) = min
p(w|x)

min
f

(I (X;W) − I (Y ;W)) (15.288)

where the minimization is over all functions f : Y × W → X̂ and condi-
tional probability mass functions p(w|x), |W| ≤ |X| + 1, such that

∑
x

∑
w

∑
y

p(x, y)p(w|x)d(x, f (y, w)) ≤ D. (15.289)

The function f in the theorem corresponds to the decoding map that
maps the encoded version of the X symbols and the side information Y to
the output alphabet. We minimize over all conditional distributions on W

and functions f such that the expected distortion for the joint distribution
is less than D.

We first prove the converse after considering some of the properties of
the function RY (D) defined in (15.288).
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Lemma 15.9.1 The rate distortion function with side information
RY (D) defined in (15.288) is a nonincreasing convex function of D.

Proof: The monotonicity of RY (D) follows immediately from the fact
that the domain of minimization in the definition of RY (D) increases with
D. As in the case of rate distortion without side information, we expect
RY (D) to be convex. However, the proof of convexity is more involved
because of the double rather than single minimization in the definition of
RY (D) in (15.288). We outline the proof here.

Let D1 and D2 be two values of the distortion and let W1, f1 and
W2, f2 be the corresponding random variables and functions that achieve
the minima in the definitions of RY (D1) and RY (D2), respectively. Let
Q be a random variable independent of X, Y, W1, and W2 which takes on
the value 1 with probability λ and the value 2 with probability 1 − λ.

Define W = (Q, WQ) and let f (W, Y ) = fQ(WQ, Y ). Specifically,
f (W, Y ) = f1(W1, Y ) with probability λ and f (W, Y ) = f2(W2, Y ) with
probability 1 − λ. Then the distortion becomes

D = Ed(X, X̂) (15.290)

= λEd(X, f1(W1, Y )) + (1 − λ)Ed(X, f2(W2, Y )) (15.291)

= λD1 + (1 − λ)D2, (15.292)

and (15.288) becomes

I (W ;X) − I (W ;Y) = H(X) − H(X|W) − H(Y) + H(Y |W)

(15.293)

= H(X) − H(X|WQ, Q) − H(Y) + H(Y |WQ, Q)

(15.294)

= H(X) − λH(X|W1) − (1 − λ)H(X|W2)

− H(Y) + λH(Y |W1) + (1 − λ)H(Y |W2)

(15.295)

= λ (I (W1, X) − I (W1; Y))

+ (1 − λ) (I (W2, X) − I (W2;Y)) , (15.296)

and hence

RY (D) = min
U :Ed≤D

(I (U ;X) − I (U ;Y)) (15.297)

≤ I (W ;X) − I (W ;Y) (15.298)
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= λ (I (W1, X) − I (W1; Y)) + (1 − λ) (I (W2, X) − I (W2; Y))

= λRY (D1) + (1 − λ)RY (D2), (15.299)

proving the convexity of RY (D). �

We are now in a position to prove the converse to the conditional rate
distortion theorem.

Proof: (Converse to Theorem 15.9.1). Consider any rate distortion code
with side information. Let the encoding function be fn : Xn → {1, 2, . . . ,

2nR}. Let the decoding function be gn : Yn × {1, 2, . . . , 2nR} → X̂n, and
let gni : Yn × {1, 2, . . . , 2nR} → X̂ denote the ith symbol produced by the
decoding function. Let T = fn(X

n) denote the encoded version of Xn.
We must show that if Ed(Xn, gn(Y

n, fn(X
n))) ≤ D, then R ≥ RY (D).

We have the following chain of inequalities:

nR
(a)≥ H(T ) (15.300)

(b)≥ H(T |Yn) (15.301)

≥ I (Xn; T |Yn) (15.302)

(c)=
n∑

i=1

I (Xi; T |Yn, Xi−1) (15.303)

=
n∑

i=1

H(Xi |Yn, Xi−1) − H(Xi |T , Y n, Xi−1) (15.304)

(d)=
n∑

i=1

H(Xi |Yi) − H(Xi |T , Y i−1, Yi, Y
n
i+1, X

i−1) (15.305)

(e)≥
n∑

i=1

H(Xi |Yi) − H(Xi |T , Y i−1, Yi, Y
n
i+1) (15.306)

(f)=
n∑

i=1

H(Xi |Yi) − H(Xi |Wi, Yi) (15.307)

(g)=
n∑

i=1

I (Xi; Wi |Yi) (15.308)
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=
n∑

i=1

H(Wi |Yi) − H(Wi |Xi, Yi) (15.309)

(h)=
n∑

i=1

H(Wi |Yi) − H(Wi |Xi) (15.310)

=
n∑

i=1

H(Wi) − H(Wi |Xi) − H(Wi) + H(Wi |Yi) (15.311)

=
n∑

i=1

I (Wi; Xi) − I (Wi;Yi) (15.312)

(i)≥
n∑

i=1

RY (Ed(Xi, g
′
ni(Wi, Yi))) (15.313)

= n
1

n

n∑
i=1

RY (Ed(Xi, g
′
ni(Wi, Yi))) (15.314)

(j)
≥ nRY

(
1

n

n∑
i=1

Ed(Xi, g
′
ni(Wi, Yi))

)
(15.315)

(k)≥ nRY (D) , (15.316)

where

(a) follows from the fact that the range of T is {1, 2, . . . , 2nR}
(b) follows from the fact that conditioning reduces entropy
(c) follows from the chain rule for mutual information
(d) follows from the fact that Xi is independent of the past and future

Y ’s and X’s given Yi

(e) follows from the fact that conditioning reduces entropy
(f) follows by defining Wi = (T , Y i−1, Y n

i+1)

(g) follows from the definition of mutual information
(h) follows from the fact that since Yi depends only on Xi and is condi-

tionally independent of T and the past and future Y ’s, Wi → Xi →
Yi forms a Markov chain

(i) follows from the definition of the (information) conditional

rate distortion function since X̂i = gni(T , Y n)
�= g′

ni(Wi, Yi),
and hence I (Wi; Xi) − I (Wi; Yi) ≥ minW :Ed(X,X̂)≤Di

I (W ;X) −
I (W ;Y) = RY (Di)
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(j) follows from Jensen’s inequality and the convexity of the conditional
rate distortion function (Lemma 15.9.1)

(k) follows from the definition of D = E[ 1
n

∑n
i=1 d(Xi, X̂i)] �

It is easy to see the parallels between this converse and the converse
for rate distortion without side information (Section 10.4). The proof of
achievability is also parallel to the proof of the rate distortion theorem
using strong typicality. However, instead of sending the index of the
codeword that is jointly typical with the source, we divide these codewords
into bins and send the bin index instead. If the number of codewords in
each bin is small enough, the side information can be used to isolate
the particular codeword in the bin at the receiver. Hence again we are
combining random binning with rate distortion encoding to find a jointly
typical reproduction codeword. We outline the details of the proof below.

Proof: (Achievability of Theorem 15.9.1). Fix p(w|x) and the function
f (w, y). Calculate p(w) = ∑

x p(x)p(w|x).
Generation of codebook: Let R1 = I (X;W) + ε. Generate 2nR i.i.d.

codewords Wn(s) ∼ ∏n
i=1 p(wi), and index them by s ∈ {1, 2, . . . , 2nR1}.

Let R2 = I (X;W) − I (Y ;W) + 5ε. Randomly assign the indices s ∈
{1, 2, . . . , 2nR1} to one of 2nR2 bins using a uniform distribution over
the bins. Let B(i) denote the indices assigned to bin i. There are approx-
imately 2n(R1−R2) indices in each bin.

Encoding: Given a source sequence Xn, the encoder looks for a code-
word Wn(s) such that (Xn, Wn(s)) ∈ A∗(n)

ε . If there is no such Wn, the
encoder sets s = 1. If there is more than one such s, the encoder uses the
lowest s. The encoder sends the index of the bin in which s belongs.

Decoding: The decoder looks for a Wn(s) such that s ∈ B(i) and
(Wn(s), Y n) ∈ A∗(n)

ε . If he finds a unique s, he then calculates X̂n, where
X̂i = f (Wi, Yi). If he does not find any such s or more than one such s,
he sets X̂n = x̂n, where x̂n is an arbitrary sequence in X̂n. It does not
matter which default sequence is used; we will show that the probability
of this event is small.

Analysis of the probability of error: As usual, we have various error
events:

1. The pair (Xn, Y n) /∈ A∗(n)
ε . The probability of this event is small for

large enough n by the weak law of large numbers.
2. The sequence Xn is typical, but there does not exist an s such that

(Xn, Wn(s)) ∈ A∗(n)
ε . As in the proof of the rate distortion theorem,
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the probability of this event is small if

R1 > I (W ;X). (15.317)

3. The pair of sequences (Xn, Wn(s)) ∈ A∗(n)
ε but (Wn(s), Y n) /∈ A∗(n)

ε

(i.e., the codeword is not jointly typical with the Yn sequence). By
the Markov lemma (Lemma 15.8.1), the probability of this event is
small if n is large enough.

4. There exists another s ′ with the same bin index such that (Wn(s ′),
Y n) ∈ A∗(n)

ε . Since the probability that a randomly chosen Wn is
jointly typical with Yn is ≈ 2−nI (Y ;W), the probability that there is
another Wn in the same bin that is typical with Yn is bounded by
the number of codewords in the bin times the probability of joint
typicality, that is,

Pr(∃s ′ ∈ B(i) : (Wn(s ′), Y n) ∈ A∗(n)
ε ) ≤ 2n(R1−R2)2−n(I (W ;Y)−3ε),

(15.318)
which goes to zero since R1 − R2 < I (Y ;W) − 3ε.

5. If the index s is decoded correctly, (Xn, Wn(s)) ∈ A∗(n)
ε . By item 1

we can assume that (Xn, Y n) ∈ A∗(n)
ε . Thus, by the Markov lemma,

we have (Xn, Y n, Wn) ∈ A∗(n)
ε and therefore the empirical joint dis-

tribution is close to the original distribution p(x, y)p(w|x) that we
started with, and hence (Xn, X̂n) will have a joint distribution that
is close to the distribution that achieves distortion D.

Hence with high probability, the decoder will produce X̂n such that the
distortion between Xn and X̂n is close to nD. This completes the proof
of the theorem. �

The reader is referred to Wyner and Ziv [574] for details of the proof.
After the discussion of the various situations of compressing distributed
data, it might be expected that the problem is almost completely solved,
but unfortunately, this is not true. An immediate generalization of all
the above problems is the rate distortion problem for correlated sources,
illustrated in Figure 15.34. This is essentially the Slepian–Wolf problem
with distortion in both X and Y . It is easy to see that the three dis-
tributed source coding problems considered above are all special cases
of this setup. Unlike the earlier problems, though, this problem has not
yet been solved and the general rate distortion region remains
unknown.
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Xn

(Xn, Yn)

Encoder 1
i(xn) ∈ 2nR1

j(yn) ∈ 2nR2

Decoder

Yn Encoder 2

^ ^

FIGURE 15.34. Rate distortion for two correlated sources.

15.10 GENERAL MULTITERMINAL NETWORKS

We conclude this chapter by considering a general multiterminal network
of senders and receivers and deriving some bounds on the rates achievable
for communication in such a network. A general multiterminal network
is illustrated in Figure 15.35. In this section, superscripts denote node
indices and subscripts denote time indices. There are m nodes, and node
i has an associated transmitted variable X(i) and a received variable Y (i).

S Sc

(X(1),Y (1))
(X (m),Y (m))

FIGURE 15.35. General multiterminal network.
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The node i sends information at rate R(ij) to node j . We assume that all
the messages W(ij) being sent from node i to node j are independent and
uniformly distributed over their respective ranges {1, 2, . . . , 2nR(ij)}.

The channel is represented by the channel transition function
p(y(1), . . . , y(m)|x(1), . . . , x(m)), which is the conditional probability mass
function of the outputs given the inputs. This probability transition func-
tion captures the effects of the noise and the interference in the network.
The channel is assumed to be memoryless (i.e., the outputs at any time
instant depend only the current inputs and are conditionally independent
of the past inputs).

Corresponding to each transmitter–receiver node pair is a message
W(ij) ∈ {1, 2, . . . , 2nR(ij)}. The input symbol X(i) at node i depends on
W(ij), j ∈ {1, . . . , m} and also on the past values of the received symbol
Y (i) at node i. Hence, an encoding scheme of block length n consists of
a set of encoding and decoding functions, one for each node:

• Encoders: X
(i)
k (W(i1), W(i2), . . . ,W(im), Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
k−1), k = 1,

. . . , n. The encoder maps the messages and past received symbols
into the symbol X

(i)
k transmitted at time k.

• Decoders: Ŵ (ji)
(
Y

(i)
1 , . . . , Y

(i)
n , W(i1), . . . , W(im)

)
, j = 1, 2, . . . , m.

The decoder j at node i maps the received symbols in each block and
his own transmitted information to form estimates of the messages
intended for him from node j , j = 1, 2, . . . , m.

Associated with every pair of nodes is a rate and a corresponding
probability of error that the message will not be decoded correctly,

P (n)
e

(ij) = Pr
(
Ŵ (ij)

(
Y(j), W(j1), . . . ,W(jm)

) �= W(ij)
)
, (15.319)

where P
(n)
e

(ij)
is defined under the assumption that all the messages are

independent and distributed uniformly over their respective ranges.
A set of rates {R(ij)} is said to be achievable if there exist encoders and

decoders with block length n with P
(n)
e

(ij) → 0 as n → ∞ for all i, j ∈
{1, 2, . . . , m}. We use this formulation to derive an upper bound on the
flow of information in any multiterminal network. We divide the nodes
into two sets, S and the complement Sc. We now bound the rate of flow
of information from nodes in S to nodes in Sc. See [514]
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Theorem 15.10.1 If the information rates {R(ij)} are achievable, there
exists some joint probability distribution p(x(1), x(2), . . . , x(m)) such that

∑
i∈S,j∈Sc

R(ij) ≤ I (X(S); Y (Sc)|X(Sc)) (15.320)

for all S ⊂ {1, 2, . . . ,m}. Thus, the total rate of flow of information across
cut sets is bounded by the conditional mutual information.

Proof: The proof follows the same lines as the proof of the converse
for the multiple access channel. Let T = {(i, j) : i ∈ S, j ∈ Sc} be the set
of links that cross from S to Sc, and let T c be all the other links in the
network. Then

n
∑

i∈S,j∈Sc

R(ij) (15.321)

(a)=
∑

i∈S,j∈Sc

H
(
W(ij)

)
(15.322)

(b)= H
(
W(T )

)
(15.323)

(c)= H
(
W(T )|W(T c)

)
(15.324)

= I
(
W(T ); Y

(Sc)
1 , . . . , Y (Sc)

n |W(T c)
)

(15.325)

+ H
(
W(T )|Y (Sc)

1 , . . . , Y (Sc)
n , W(T c)

)
(15.326)

(d)≤ I
(
W(T ); Y

(Sc)
1 , . . . , Y (Sc)

n |W(T c)
)

+ nεn (15.327)

(e)=
n∑

k=1

I
(
W(T ); Y

(Sc)
k |Y (Sc)

1 , . . . , Y
(Sc)
k−1 , W(T c)

)
+ nεn (15.328)

(f)=
n∑

k=1

H
(
Y

(Sc)
k |Y (Sc)

1 , . . . , Y
(Sc)
k−1 , W(T c)

)

− H
(
Y

(Sc)
k |Y (Sc)

1 , . . . , Y
(Sc)
k−1 , W(T c), W(T )

)
+ nεn (15.329)
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(g)

≤
n∑

k=1

H
(
Y

(Sc)
k |Y (Sc)

1 , . . . , Y
(Sc)
k−1 , W(T c), X

(Sc)
k

)

− H
(
Y

(Sc)
k |Y (Sc)

1 , . . . , Y
(Sc)
k−1 , W(T c), W(T ), X

(S)
k , X

(Sc)
k

)
+ nεn

(15.330)
(h)≤

n∑
k=1

H
(
Y

(Sc)
k |X(Sc)

k

)
− H

(
Y

(Sc)
k |X(Sc)

k , X
(S)
k

)
+ nεn (15.331)

=
n∑

k=1

I
(
X

(S)
k ;Y

(Sc)
k |X(Sc)

k

)
+ nεn (15.332)

(i)= n
1

n

n∑
k=1

I
(
X

(S)
Q ; Y

(Sc)
Q |X(Sc)

Q , Q = k
)

+ nεn (15.333)

(j)= nI
(
X

(S)
Q ; Y

(Sc)
Q |X(Sc)

Q , Q
)

+ nεn (15.334)

= n
(
H

(
Y

(Sc)
Q |X(Sc)

Q , Q
)

− H
(
Y

(Sc)
Q |X(S)

Q ,X
(Sc)
Q , Q

))
+ nεn (15.335)

(k)≤ n
(
H

(
Y

(Sc)
Q |X(Sc)

Q

)
− H

(
Y

(Sc)
Q |X(S)

Q , X
(Sc)
Q , Q

))
+ nεn (15.336)

(l)= n
(
H

(
Y

(Sc)
Q |X(Sc)

Q

)
− H

(
Y

(Sc)
Q |X(S)

Q , X
(Sc)
Q

))
+ nεn (15.337)

= nI
(
X

(S)
Q ; Y

(Sc)
Q |X(Sc)

Q

)
+ nεn, (15.338)

where

(a) follows from the fact that the messages W(ij) are uniformly dis-
tributed over their respective ranges {1, 2, . . . , 2nR(ij)}

(b) follows from the definition of W(T ) = {W(ij) : i ∈ S, j ∈ Sc} and
the fact that the messages are independent

(c) follows from the independence of the messages for T and T c

(d) follows from Fano’s inequality since the messages W(T ) can be
decoded from Y (S) and W(T c)

(e) is the chain rule for mutual information
(f) follows from the definition of mutual information
(g) follows from the fact that X

(Sc)
k is a function of the past received

symbols Y (Sc) and the messages W(T c) and the fact that adding
conditioning reduces the second term
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(h) follows from the fact that Y
(Sc)
k depends only on the current input

symbols X
(S)
k and X

(Sc)
k

(i) follows after we introduce a new timesharing random variable Q

distributed uniformly on {1, 2, . . . , n}
(j) follows from the definition of mutual information
(k) follows from the fact that conditioning reduces entropy
(l) follows from the fact that Y

(Sc)
Q depends only on the inputs X

(S)
Q and

X
(Sc)
Q and is conditionally independent of Q

Thus, there exist random variables X(S) and X(Sc) with some arbitrary
joint distribution that satisfy the inequalities of the theorem. �

The theorem has a simple max-flow min-cut interpretation. The rate of
flow of information across any boundary is less than the mutual informa-
tion between the inputs on one side of the boundary and the outputs on
the other side, conditioned on the inputs on the other side.

The problem of information flow in networks would be solved if the
bounds of the theorem were achievable. But unfortunately, these bounds
are not achievable even for some simple channels. We now apply these
bounds to a few of the channels that we considered earlier.

• Multiple-access channel. The multiple access channel is a network
with many input nodes and one output node. For the case of a two-user
multiple-access channel, the bounds of Theorem 15.10.1 reduce to

R1 ≤ I (X1; Y |X2), (15.339)

R2 ≤ I (X2; Y |X1), (15.340)

R1 + R2 ≤ I (X1, X2; Y) (15.341)

for some joint distribution p(x1, x2)p(y|x1, x2). These bounds coin-
cide with the capacity region if we restrict the input distribution to
be a product distribution and take the convex hull (Theorem 15.3.1).

• Relay channel. For the relay channel, these bounds give the upper
bound of Theorem 15.7.1 with different choices of subsets as shown
in Figure 15.36. Thus,

C ≤ sup
p(x,x1)

min {I (X,X1; Y), I (X;Y, Y1|X1)} . (15.342)

This upper bound is the capacity of a physically degraded relay chan-
nel and for the relay channel with feedback [127].
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X

Y1 : X1

Y

S1 S2

FIGURE 15.36. Relay channel.

p(y|x1, x2)

X1

X2

U

(U,V )

V

Y
^ ^

FIGURE 15.37. Transmission of correlated sources over a multiple-access channel.

To complement our discussion of a general network, we should mention
two features of single-user channels that do not apply to a multiuser
network.

• Source–channel separation theorem. In Section 7.13 we discussed
the source–channel separation theorem, which proves that we can
transmit the source noiselessly over the channel if and only if the
entropy rate is less than the channel capacity. This allows us to char-
acterize a source by a single number (the entropy rate) and the channel
by a single number (the capacity). What about the multiuser case?
We would expect that a distributed source could be transmitted over
a channel if and only if the rate region for the noiseless coding of the
source lay within the capacity region of the channel. To be specific,
consider the transmission of a distributed source over a multiple-
access channel, as shown in Figure 15.37. Combining the results of
Slepian–Wolf encoding with the capacity results for the multiple-
access channel, we can show that we can transmit the source over
the channel and recover it with a low probability of error if

H(U |V ) ≤ I (X1; Y |X2, Q), (15.343)
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H(V |U) ≤ I (X2; Y |X1, Q), (15.344)

H(U, V ) ≤ I (X1, X2; Y |Q) (15.345)

for some distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2). This condition
is equivalent to saying that the Slepian–Wolf rate region of the source
has a nonempty intersection with the capacity region of the multiple-
access channel.
But is this condition also necessary? No, as a simple example illus-
trates. Consider the transmission of the source of Example 15.4.2
over the binary erasure multiple-access channel (Example 15.3.3).
The Slepian–Wolf region does not intersect the capacity region, yet
it is simple to devise a scheme that allows the source to be transmit-
ted over the channel. We just let X1 = U and X2 = V , and the value
of Y will tell us the pair (U, V ) with no error. Thus, the conditions
(15.345) are not necessary.
The reason for the failure of the source–channel separation theorem
lies in the fact that the capacity of the multiple-access channel
increases with the correlation between the inputs of the channel.
Therefore, to maximize the capacity, one should preserve the cor-
relation between the inputs of the channel. Slepian–Wolf encoding,
on the other hand, gets rid of the correlation. Cover et al. [129] pro-
posed an achievable region for transmission of a correlated source
over a multiple access channel based on the idea of preserving the
correlation. Han and Costa [273] have proposed a similar region for
the transmission of a correlated source over a broadcast channel.

• Capacity regions with feedback. Theorem 7.12.1 shows that feedback
does not increase the capacity of a single-user discrete memoryless
channel. For channels with memory, on the other hand, feedback
enables the sender to predict something about the noise and to combat
it more effectively, thus increasing capacity.
What about multiuser channels? Rather surprisingly, feedback does
increase the capacity region of multiuser channels, even when the
channels are memoryless. This was first shown by Gaarder and Wolf
[220], who showed how feedback helps increase the capacity of the
binary erasure multiple-access channel. In essence, feedback from the
receiver to the two senders acts as a separate channel between the two
senders. The senders can decode each other’s transmissions before the
receiver does. They then cooperate to resolve the uncertainty at the
receiver, sending information at the higher cooperative capacity rather
than the noncooperative capacity. Using this scheme, Cover and
Leung [133] established an achievable region for a multiple-access
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channel with feedback. Willems [557] showed that this region was
the capacity for a class of multiple-access channels that included the
binary erasure multiple-access channel. Ozarow [410] established the
capacity region for a two-user Gaussian multiple-access channel. The
problem of finding the capacity region for a multiple-access channel
with feedback is closely related to the capacity of a two-way channel
with a common output.

There is as yet no unified theory of network information flow. But there
can be no doubt that a complete theory of communication networks would
have wide implications for the theory of communication and computation.

SUMMARY

Multiple-access channel. The capacity of a multiple-access channel
(X1 × X2, p(y|x1, x2),Y) is the closure of the convex hull of all (R1, R2)

satisfying

R1 < I (X1; Y |X2), (15.346)

R2 < I (X2; Y |X1), (15.347)

R1 + R2 < I (X1, X2; Y) (15.348)

for some distribution p1(x1)p2(x2) on X1 × X2.
The capacity region of the m-user multiple-access channel is the closure
of the convex hull of the rate vectors satisfying

R(S) ≤ I (X(S);Y |X(Sc)) for all S ⊆ {1, 2, . . . , m} (15.349)

for some product distribution p1(x1)p2(x2) · · ·pm(xm).

Gaussian multiple-access channel. The capacity region of a two-user
Gaussian multiple-access channel is

R1 ≤ C

(
P1

N

)
, (15.350)

R2 ≤ C

(
P2

N

)
, (15.351)
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R1 + R2 ≤ C

(
P1 + P2

N

)
, (15.352)

where
C(x) = 1

2
log(1 + x). (15.353)

Slepian–Wolf coding. Correlated sources X and Y can be described
separately at rates R1 and R2 and recovered with arbitrarily low prob-
ability of error by a common decoder if and only if

R1 ≥ H(X|Y), (15.354)

R2 ≥ H(Y |X), (15.355)

R1 + R2 ≥ H(X, Y ). (15.356)

Broadcast channels. The capacity region of the degraded broadcast
channel X → Y1 → Y2 is the convex hull of the closure of all (R1, R2)

satisfying

R2 ≤ I (U ;Y2), (15.357)

R1 ≤ I (X;Y1|U) (15.358)

for some joint distribution p(u)p(x|u)p(y1, y2|x).

Relay channel. The capacity C of the physically degraded relay chan-
nel p(y, y1|x, x1) is given by

C = sup
p(x,x1)

min {I (X,X1; Y), I (X;Y1|X1)} , (15.359)

where the supremum is over all joint distributions on X × X1.

Source coding with side information. Let (X, Y ) ∼ p(x, y). If Y is
encoded at rate R2 and X is encoded at rate R1, we can recover X with
an arbitrarily small probability of error iff

R1 ≥ H(X|U), (15.360)

R2 ≥ I (Y ;U) (15.361)

for some distribution p(y, u) such that X → Y → U .
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Rate distortion with side information. Let (X, Y ) ∼ p(x, y). The
rate distortion function with side information is given by

RY (D) = min
p(w|x)

min
f :Y×W→X̂

I (X;W) − I (Y ;W), (15.362)

where the minimization is over all functions f and conditional distri-
butions p(w|x), |W| ≤ |X| + 1, such that

∑
x

∑
w

∑
y

p(x, y)p(w|x)d(x, f (y, w)) ≤ D. (15.363)

PROBLEMS

15.1 Cooperative capacity of a multiple-access channel

p(y|x1, x2)

X1

X2

(W1,W2)(W1,W2) Y
^ ^

(a) Suppose that X1 and X2 have access to both indices W1 ∈
{1, 2nR}, W2 ∈ {1, 2nR2}. Thus, the codewords X1(W1,

W2), X2(W1, W2) depend on both indices. Find the capacity
region.

(b) Evaluate this region for the binary erasure multiple access
channel Y = X1 + X2, Xi ∈ {0, 1}. Compare to the noncoop-
erative region.

15.2 Capacity of multiple-access channels . Find the capacity region
for each of the following multiple-access channels:
(a) Additive modulo 2 multiple-access channel. X1 ∈ {0, 1},

X2 ∈ {0, 1}, Y = X1 ⊕ X2.
(b) Multiplicative multiple-access channel. X1 ∈{−1, 1},

X2 ∈{−1, 1}, Y = X1 · X2.
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15.3 Cut-set interpretation of capacity region of multiple-access chan-
nel . For the multiple-access channel we know that (R1, R2) is
achievable if

R1 < I (X1;Y | X2), (15.364)

R2 < I (X2;Y | X1), (15.365)

R1 + R2 < I (X1, X2;Y) (15.366)

for X1, X2 independent. Show, for X1, X2 independent that

I (X1; Y | X2) = I (X1; Y, X2).

X1

Y

X2

S1

S2

S3

Interpret the information bounds as bounds on the rate of flow
across cut sets S1, S2, and S3.

15.4 Gaussian multiple-access channel capacity . For the AWGN
multiple-access channel, prove, using typical sequences, the
achievability of any rate pairs (R1, R2) satisfying

R1 <
1

2
log

(
1 + P1

N

)
, (15.367)

R2 <
1

2
log

(
1 + P2

N

)
, (15.368)

R1 + R2 <
1

2
log

(
1 + P1 + P2

N

)
. (15.369)



598 NETWORK INFORMATION THEORY

The proof extends the proof for the discrete multiple-access chan-
nel in the same way as the proof for the single-user Gaussian
channel extends the proof for the discrete single-user channel.

15.5 Converse for the Gaussian multiple-access channel . Prove the
converse for the Gaussian multiple-access channel by extending
the converse in the discrete case to take into account the power
constraint on the codewords.

15.6 Unusual multiple-access channel . Consider the following
multiple-access channel: X1 = X2 = Y = {0, 1}. If (X1, X2) =
(0, 0), then Y = 0. If (X1,X2) = (0, 1), then Y = 1. If (X1, X2) =
(1, 0), then Y = 1. If (X1,X2) = (1, 1), then Y = 0 with proba-
bility 1

2 and Y = 1 with probability 1
2 .

(a) Show that the rate pairs (1,0) and (0,1) are achievable.
(b) Show that for any nondegenerate distribution p(x1)p(x2), we

have I (X1,X2; Y) < 1.
(c) Argue that there are points in the capacity region of this

multiple-access channel that can only be achieved by time-
sharing; that is, there exist achievable rate pairs (R1, R2) that
lie in the capacity region for the channel but not in the region
defined by

R1 ≤ I (X1; Y |X2), (15.370)

R2 ≤ I (X2; Y |X1), (15.371)

R1 + R2 ≤ I (X1, X2; Y) (15.372)

for any product distribution p(x1)p(x2). Hence the operation
of convexification strictly enlarges the capacity region. This
channel was introduced independently by Csiszár and Körner
[149] and Bierbaum and Wallmeier [59].

15.7 Convexity of capacity region of broadcast channel . Let C ⊆ R2

be the capacity region of all achievable rate pairs R = (R1, R2)

for the broadcast channel. Show that C is a convex set by using
a time-sharing argument. Specifically, show that if R(1) and R(2)

are achievable, λR(1) + (1 − λ)R(2) is achievable for 0 ≤ λ ≤ 1.

15.8 Slepian–Wolf for deterministically related sources . Find and
sketch the Slepian–Wolf rate region for the simultaneous data
compression of (X, Y ), where y = f (x) is some deterministic
function of x.
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15.9 Slepian–Wolf . Let Xi be i.i.d. Bernoulli(p). Let Zi be i.i.d. ∼
Bernoulli(r), and let Z be independent of X. Finally, let Y =
X ⊕ Z (mod 2 addition). Let X be described at rate R1 and Y
be described at rate R2. What region of rates allows recovery of
X, Y with probability of error tending to zero?

15.10 Broadcast capacity depends only on the conditional marginals .
Consider the general broadcast channel (X, Y1 × Y2, p(y1, y2 | x)).
Show that the capacity region depends only on p(y1 | x) and p(y2 |
x). To do this, for any given ((2nR1, 2nR2), n) code, let

P
(n)
1 = P {Ŵ1(Y1) �= W1}, (15.373)

P
(n)
2 = P {Ŵ2(Y2) �= W2}, (15.374)

P (n) = P {(Ŵ1, Ŵ2) �= (W1, W2)}. (15.375)

Then show that

max{P (n)
1 , P

(n)
2 } ≤ P (n) ≤ P

(n)
1 + P

(n)
2 .

The result now follows by a simple argument. (Remark: The
probability of error P (n) does depend on the conditional joint
distribution p(y1, y2 | x). But whether or not P (n) can be driven
to zero [at rates (R1, R2)] does not [except through the conditional
marginals p(y1 | x), p(y2 | x)] .)

15.11 Converse for the degraded broadcast channel . The following
chain of inequalities proves the converse for the degraded dis-
crete memoryless broadcast channel. Provide reasons for each of
the labeled inequalities.
Setup for converse for degraded broadcast channel capacity:

(W1, W2)indep. → Xn(W1, W2) → Yn
1 → Yn

2 .

• Encoding fn : 2nR1 × 2nR2 → Xn

• Decoding: gn : Yn
1 → 2nR1, hn : Yn

2 → 2nR2 . Let Ui =
(W2, Y

i−1
1 ). Then

nR2
·≤Fano I (W2; Yn

2 ) (15.376)

(a)=
n∑

i=1

I (W2; Y2i | Y i−1
2 ) (15.377)
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(b)=
∑

i

(H(Y2i | Y i−1
2 ) − H(Y2i | W2, Y

i−1
2 )) (15.378)

(c)≤
∑

i

(H(Y2i) − H(Y2i | W2, Y
i−1
2 , Y i−1

1 )) (15.379)

(d)=
∑

i

(H(Y2i) − H(Y2i | W2, Y
i−1
1 )) (15.380)

(e)=
n∑

i=1

I (Ui; Y2i). (15.381)

Continuation of converse: Give reasons for the labeled inequali-
ties:

nR1
·≤Fano I (W1; Yn

1 ) (15.382)

(f)≤ I (W1; Yn
1 , W2) (15.383)

(g)

≤ I (W1;Yn
1 | W2) (15.384)

(h)=
n∑

i−1

I (W1; Y1i | Y i−1
1 , W2) (15.385)

(i)≤
n∑

i=1

I (Xi; Y1i | Ui). (15.386)

Now let Q be a time-sharing random variable with Pr(Q = i) =
1/n, i = 1, 2, . . . , n. Justify the following:

R1 ≤ I (XQ; Y1Q|UQ, Q), (15.387)

R2 ≤ I (UQ; Y2Q|Q) (15.388)

for some distribution p(q)p(u|q)p(x|u, q)p(y1, y2|x). By appro-
priately redefining U , argue that this region is equal to the convex
closure of regions of the form

R1 ≤ I (X;Y1|U), (15.389)

R2 ≤ I (U ;Y2) (15.390)

for some joint distribution p(u)p(x|u)p(y1, y2|x).
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15.12 Capacity points .
(a) For the degraded broadcast channel X → Y1 → Y2, find the

points a and b where the capacity region hits the R1 and R2
axes.

R2

R1

b

a

(b) Show that b ≤ a.

15.13 Degraded broadcast channel . Find the capacity region for the
degraded broadcast channel shown below.

X
p

1 − p

1 − p

1 − a

1 − a

a

a
p

Y2Y1

15.14 Channels with unknown parameters . We are given a binary
symmetric channel with parameter p. The capacity is C = 1 −
H(p). Now we change the problem slightly. The receiver knows
only that p ∈ {p1, p2} (i.e., p = p1 or p = p2, where p1 and p2
are given real numbers). The transmitter knows the actual value
of p. Devise two codes for use by the transmitter, one to be used
if p = p1, the other to be used if p = p2, such that transmission
to the receiver can take place at rate ≈ C(p1) if p = p1 and at
rate ≈ C(p2) if p = p2. (Hint: Devise a method for revealing
p to the receiver without affecting the asymptotic rate. Prefixing
the codeword by a sequence of 1’s of appropriate length should
work.)
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15.15 Two-way channel . Consider the two-way channel shown in
Figure 15.6. The outputs Y1 and Y2 depend only on the current
inputs X1 and X2.
(a) By using independently generated codes for the two senders,

show that the following rate region is achievable:

R1 < I (X1; Y2|X2), (15.391)

R2 < I (X2; Y1|X1) (15.392)

for some product distribution p(x1)p(x2)p(y1, y2|x1, x2).
(b) Show that the rates for any code for a two-way channel with

arbitrarily small probability of error must satisfy

R1 ≤ I (X1;Y2|X2), (15.393)

R2 ≤ I (X2;Y1|X1) (15.394)

for some joint distribution p(x1, x2)p(y1, y2|x1, x2).
The inner and outer bounds on the capacity of the two-way

channel are due to Shannon [486]. He also showed that the inner
bound and the outer bound do not coincide in the case of the
binary multiplying channel X1 = X2 = Y1 = Y2 = {0, 1}, Y1 =
Y2 = X1X2. The capacity of the two-way channel is still an open
problem.

15.16 Multiple-access channel . Let the output Y of a multiple-access
channel be given by

Y = X1 + sgn(X2),

where X1, X2 are both real and power limited,

E(X2
1) ≤ P1,

E(X2
2) ≤ P2,

and sgn(x) =
{

1, x > 0,

−1, x ≤ 0.

Note that there is interference but no noise in this channel.
(a) Find the capacity region.
(b) Describe a coding scheme that achieves the capacity region.
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15.17 Slepian–Wolf . Let (X, Y ) have the joint probability mass func-
tion p(x, y):

p(x, y) 1 2 3

1 α β β

2 β α β

3 β β α

where β = 1
6 − α

2 . (Note: This is a joint, not a conditional, prob-
ability mass function.)
(a) Find the Slepian–Wolf rate region for this source.
(b) What is Pr{X = Y } in terms of α?
(c) What is the rate region if α = 1

3?

(d) What is the rate region if α = 1
9?

15.18 Square channel . What is the capacity of the following multiple-
access channel?

X1 ∈ {−1, 0, 1},
X2 ∈ {−1, 0, 1},
Y = X2

1 + X2
2.

(a) Find the capacity region.
(b) Describe p∗(x1), p

∗(x2) achieving a point on the boundary of
the capacity region.

15.19 Slepian–Wolf . Two senders know random variables U1 and U2,
respectively. Let the random variables (U1, U2) have the following
joint distribution:

U1\U2 0 1 2 · · · m − 1

0 α
β

m−1
β

m−1 · · · β

m−1
1 γ

m−1 0 0 · · · 0
2 γ

m−1 0 0 · · · 0
...

...
...

...
. . .

...

m − 1 γ

m−1 0 0 · · · 0

where α + β + γ = 1. Find the region of rates (R1, R2) that would
allow a common receiver to decode both random variables reliably.
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15.20 Multiple access

(a) Find the capacity region for the multiple-access channel

Y = X
X2
1 ,

where
X1ε{2, 4} , X2ε{1, 2}.

(b) Suppose that the range of X1 is {1, 2}. Is the capacity region
decreased? Why or why not?

15.21 Broadcast channel . Consider the following degraded broadcast
channel.

1 − a1

1 − a1

a1

a1

0

1

0

1

1E

X Y1

1 − a2

1 − a2

a2

a2

0

1

E

Y2

(a) What is the capacity of the channel from X to Y1?

(b) What is the channel capacity from X to Y2?

(c) What is the capacity region of all (R1, R2) achievable for this
broadcast channel? Simplify and sketch.

15.22 Stereo. The sum and the difference of the right and left ear sig-
nals are to be individually compressed for a common receiver. Let
Z1 be Bernoulli (p1) and Z2 be Bernoulli (p2) and suppose that
Z1 and Z2 are independent. Let X = Z1 + Z2, and Y = Z1 − Z2.

(a) What is the Slepian–Wolf rate region of achievable (RX, RY )?

RX

Decoder (X, Y)

X

RYY

^ ^
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(b) Is this larger or smaller than the rate region of (RZ1, RZ2)?
Why?

RZ1

Decoder (Z1, Z2)

Z1

RZ2
Z2

^ ^

There is a simple way to do this part.

15.23 Multiplicative multiple-access channel . Find and sketch the ca-
pacity region of the following multiplicative multiple-access chan-
nel:

X1

X2

Y

with X1 ∈ {0, 1}, X2 ∈ {1, 2, 3}, and Y = X1X2.

15.24 Distributed data compression . Let Z1, Z2, Z3 be independent
Bernoulli(p). Find the Slepian–Wolf rate region for the description
of (X1, X2, X3), where

X1 = Z1

X2 = Z1 + Z2

X3 = Z1 + Z2 + Z3.

X1

(X1, X2, X3)X2

X3

^ ^ ^
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15.25 Noiseless multiple-access channel . Consider the following
multiple-access channel with two binary inputs X1, X2 ∈ {0, 1}
and output Y = (X1, X2).
(a) Find the capacity region. Note that each sender can send at

capacity.
(b) Now consider the cooperative capacity region, R1 ≥ 0, R2 ≥

0, R1 + R2 ≤ maxp(x1,x2) I (X1, X2; Y). Argue that the
throughput R1 + R2 does not increase but the capacity region
increases.

15.26 Infinite bandwidth multiple-access channel . Find the capacity
region for the Gaussian multiple-access channel with infinite band-
width. Argue that all senders can send at their individual capacities
(i.e., infinite bandwidth eliminates interference).

15.27 Multiple-access identity . Let C(x) = 1
2 log(1 + x) denote the

channel capacity of a Gaussian channel with signal-to-noise ratio
x. Show that

C

(
P1

N

)
+ C

(
P2

P1 + N

)
= C

(
P1 + P2

N

)
.

This suggests that two independent users can send information as
well as if they had pooled their power.

15.28 Frequency-division multiple access (FDMA). Maximize the
throughput R1+R2 = W1 log(1 + P1

NW1
) + (W − W1) log(1 +

P2
N(W−W1)

) over W1 to show that bandwidth should be proportional
to transmitted power for FDMA.

15.29 Trilingual-speaker broadcast channel . A speaker of Dutch,
Spanish, and French wishes to communicate simultaneously to
three people: D, S, and F . D knows only Dutch but can distin-
guish when a Spanish word is being spoken as distinguished from
a French word; similarly for the other two, who know only Span-
ish and French, respectively, but can distinguish when a foreign
word is spoken and which language is being spoken. Suppose
that each language, Dutch, Spanish, and French, has M words: M

words of Dutch, M words of French, and M words of Spanish.
(a) What is the maximum rate at which the trilingual speaker can

speak to D?
(b) If he speaks to D at the maximum rate, what is the maximum

rate at which he can speak simultaneously to S?
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(c) If he is speaking to D and S at the joint rate in part (b), can
he also speak to F at some positive rate? If so, what is it? If
not, why not?

15.30 Parallel Gaussian channels from a mobile telephone. Assume
that a sender X is sending to two fixed base stations. Assume that
the sender sends a signal X that is constrained to have average
power P . Assume that the two base stations receive signals Y1
and Y2, where

Y1 = α1X + Z1

Y2 = α2X + Z2,

where Zi ∼ N(0, N1), Z2 ∼ N(0, N2), and Z1 and Z2 are inde-
pendent. We will assume the α’s are constant over a transmitted
block.
(a) Assuming that both signals Y1 and Y2 are available at a com-

mon decoder Y = (Y1, Y2), what is the capacity of the channel
from the sender to the common receiver?

(b) If, instead, the two receivers Y1 and Y2 each decode their sig-
nals independently, this becomes a broadcast channel. Let R1
be the rate to base station 1 and R2 be the rate to base station
2. Find the capacity region of this channel.

15.31 Gaussian multiple access . A group of m users, each with power
P , is using a Gaussian multiple-access channel at capacity, so that

m∑
i=1

Ri = C

(
mP

N

)
, (15.395)

where C(x) = 1
2 log(1 + x) and N is the receiver noise power. A

new user of power P0 wishes to join in.
(a) At what rate can he send without disturbing the other users?
(b) What should his power P0 be so that the new users’ rate is

equal to the combined communication rate C(mP/N) of all
the other users?

15.32 Converse for deterministic broadcast channel . A deterministic
broadcast channel is defined by an input X and two outputs, Y1
and Y2, which are functions of the input X. Thus, Y1 = f1(X) and
Y2 = f2(X). Let R1 and R2 be the rates at which information can
be sent to the two receivers. Prove that

R1 ≤ H(Y1) (15.396)
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R2 ≤ H(Y2) (15.397)

R1 + R2 ≤ H(Y1, Y2). (15.398)

15.33 Multiple-access channel . Consider the multiple-access channel
Y = X1
+ X2 (mod 4), where X1 ∈ {0, 1, 2, 3}, X2 ∈ {0, 1}.
(a) Find the capacity region (R1, R2).
(b) What is the maximum throughput R1 + R2?

15.34 Distributed source compression. Let

Z1 =
{

1, p

0, q,

Z2 =
{

1, p

0, q,

and let U = Z1Z2, V = Z1 + Z2. Assume that Z1 and Z2 are
independent. This induces a joint distribution on (U, V ). Let
(Ui, Vi) be i.i.d. according to this distribution. Sender 1 describes
Un at rate R1, and sender 2 describes V n at rate R2.
(a) Find the Slepian–Wolf rate region for recovering (Un, V n)

at the receiver.
(b) What is the residual uncertainty (conditional entropy) that

the receiver has about (Xn, Y n).

15.35 Multiple-access channel capacity with costs . The cost of using
symbol x is r(x). The cost of a codeword xn is r(xn) =
1
n

∑n
i=1 r(xi). A (2nR, n) codebook satisfies cost constraint r if

1
n

∑n
i=1 r(xi(w)) ≤ r for all w ∈ 2nR .

(a) Find an expression for the capacity C(r) of a discrete mem-
oryless channel with cost constraint r .

(b) Find an expression for the multiple-access channel capacity
region for (X1 × X2, p(y|x1, x2),Y) if sender X1 has cost con-
straint r1 and sender X2 has cost constraint r2.

(c) Prove the converse for part (b).

15.36 Slepian–Wolf . Three cards from a three-card deck are dealt, one
to sender X1, one to sender X2, and one to sender X3. At what
rates do X1, X2, and X3 need to communicate to some receiver
so that their card information can be recovered?
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Decoder (Xn
1, Xn

2, Xn
3)

i(Xn
1)

k(Xn
3)

j(Xn
2)

Xn
1

Xn
3

Xn
2

^ ^ ^

Assume that (X1i, X2i , X3i) are drawn i.i.d. from a uniform dis-
tribution over the permutations of {1, 2, 3}.

HISTORICAL NOTES

This chapter is based on the review in El Gamal and Cover [186]. The
two-way channel was studied by Shannon [486] in 1961. He derived inner
and outer bounds on the capacity region. Dueck [175] and Schalkwijk
[464, 465] suggested coding schemes for two-way channels that achieve
rates exceeding Shannon’s inner bound; outer bounds for this channel
were derived by Zhang et al. [596] and Willems and Hekstra [558].

The multiple-access channel capacity region was found by Ahlswede
[7] and Liao [355] and was extended to the case of the multiple-access
channel with common information by Slepian and Wolf [501]. Gaarder
and Wolf [220] were the first to show that feedback increases the capac-
ity of a discrete memoryless multiple-access channel. Cover and Leung
[133] proposed an achievable region for the multiple-access channel with
feedback, which was shown to be optimal for a class of multiple-access
channels by Willems [557]. Ozarow [410] has determined the capacity
region for a two-user Gaussian multiple-access channel with feedback.
Cover et al. [129] and Ahlswede and Han [12] have considered the prob-
lem of transmission of a correlated source over a multiple-access channel.
The Slepian–Wolf theorem was proved by Slepian and Wolf [502] and was
extended to jointly ergodic sources by a binning argument in Cover [122].

Superposition coding for broadcast channels was suggested by Cover
in 1972 [119]. The capacity region for the degraded broadcast channel
was determined by Bergmans [55] and Gallager [225]. The superposi-
tion codes for the degraded broadcast channel are also optimal for the
less noisy broadcast channel (Körner and Marton [324]), the more capa-
ble broadcast channel (El Gamal [185]), and the broadcast channel with
degraded message sets (Körner and Marton [325]). Van der Meulen [526]
and Cover [121] proposed achievable regions for the general broadcast
channel. The capacity of a deterministic broadcast channel was found by
Gelfand and Pinsker [242, 243, 423] and Marton [377]. The best known
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achievable region for the broadcast channel is due to Marton [377]; a sim-
pler proof of Marton’s region was given by El Gamal and Van der Meulen
[188]. El Gamal [184] showed that feedback does not increase the capac-
ity of a physically degraded broadcast channel. Dueck [176] introduced
an example to illustrate that feedback can increase the capacity of a mem-
oryless broadcast channel; Ozarow and Leung [411] described a coding
procedure for the Gaussian broadcast channel with feedback that increased
the capacity region.

The relay channel was introduced by Van der Meulen [528]; the capac-
ity region for the degraded relay channel was determined by Cover and
El Gamal [127]. Carleial [85] introduced the Gaussian interference chan-
nel with power constraints and showed that very strong interference is
equivalent to no interference at all. Sato and Tanabe [459] extended the
work of Carleial to discrete interference channels with strong interference.
Sato [457] and Benzel [51] dealt with degraded interference channels. The
best known achievable region for the general interference channel is due
to Han and Kobayashi [274]. This region gives the capacity for Gaussian
interference channels with interference parameters greater than 1, as was
shown in Han and Kobayashi [274] and Sato [458]. Carleial [84] proved
new bounds on the capacity region for interference channels.

The problem of coding with side information was introduced by Wyner
and Ziv [573] and Wyner [570]; the achievable region for this problem
was described in Ahlswede and Körner [13], Gray and Wyner [261], and
Wyner [571],[572]. The problem of finding the rate distortion function
with side information was solved by Wyner and Ziv [574]. The channel
capacity counterpart of rate distortion with side information was solved by
Gelfand and Pinsker [243]; the duality between the two results is explored
in Cover and Chiang [113]. The problem of multiple descriptions is treated
in El Gamal and Cover [187].

The special problem of encoding a function of two random variables
was discussed by Körner and Marton [326], who described a simple
method to encode the modulo 2 sum of two binary random variables.
A general framework for the description of source networks may be
found in Csiszár and Körner [148],[149]. A common model that includes
Slepian–Wolf encoding, coding with side information, and rate distor-
tion with side information as special cases was described by Berger and
Yeung [54].

In 1989, Ahlswede and Dueck [17] introduced the problem of identi-
fication via communication channels, which can be viewed as a problem
where the sender sends information to the receivers but each receiver only
needs to know whether or not a single message was sent. In this case, the
set of possible messages that can be sent reliably is doubly exponential in
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the block length, and the key result of this paper was to show that 22nC

messages could be identified for any noisy channel with capacity C. This
problem spawned a set of papers [16, 18, 269, 434], including extensions
to channels with feedback and multiuser channels.

Another active area of work has been the analysis of MIMO (multiple-
input multiple-output) systems or space-time coding, which use multiple
antennas at the transmitter and receiver to take advantage of the diversity
gains from multipath for wireless systems. The analysis of these multiple
antenna systems by Foschini [217], Teletar [512], and Rayleigh and Cioffi
[246] show that the capacity gains from the diversity obtained using mul-
tiple antennas in fading environments can be substantial relative to the
single-user capacity achieved by traditional equalization and interleav-
ing techniques. A special issue of the IEEE Transactions in Information
Theory [70] has a number of papers covering different aspects of this
technology.

Comprehensive surveys of network information theory may be found
in El Gamal and Cover [186], Van der Meulen [526–528], Berger [53],
Csiszár and Körner [149], Verdu [538], Cover [111], and Ephremides and
Hajek [197].





CHAPTER 16

INFORMATION THEORY
AND PORTFOLIO THEORY

The duality between the growth rate of wealth in the stock market and
the entropy rate of the market is striking. In particular, we shall find the
competitively optimal and growth rate optimal portfolio strategies. They
are the same, just as the Shannon code is optimal both competitively and
in the expected description rate. We also find the asymptotic growth rate
of wealth for an ergodic stock market process. We end with a discussion
of universal portfolios that enable one to achieve the same asymptotic
growth rate as the best constant rebalanced portfolio in hindsight.

In Section 16.8 we provide a “sandwich” proof of the asymptotic
equipartition property for general ergodic processes that is motivated by
the notion of optimal portfolios for stationary ergodic stock markets.

16.1 THE STOCK MARKET: SOME DEFINITIONS

A stock market is represented as a vector of stocks X = (X1, X2, . . . , Xm),
Xi ≥ 0, i = 1, 2, . . . , m, where m is the number of stocks and the price
relative Xi is the ratio of the price at the end of the day to the price at the
beginning of the day. So typically, Xi is near 1. For example, Xi = 1.03
means that the ith stock went up 3 percent that day.

Let X ∼ F(x), where F(x) is the joint distribution of the vector of
price relatives. A portfolio b = (b1, b2, . . . , bm), bi ≥ 0,

∑
bi = 1, is an

allocation of wealth across the stocks. Here bi is the fraction of one’s
wealth invested in stock i. If one uses a portfolio b and the stock vector
is X, the wealth relative (ratio of the wealth at the end of the day to the
wealth at the beginning of the day) is S = btX = ∑m

i=1 biXi .
We wish to maximize S in some sense. But S is a random variable,

the distribution of which depends on portfolio b, so there is controversy

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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Variance

Mean

Risk-free asset

Efficient
frontier

FIGURE 16.1. Sharpe–Markowitz theory: set of achievable mean–variance pairs.

over the choice of the best distribution for S. The standard theory of
stock market investment is based on consideration of the first and second
moments of S. The objective is to maximize the expected value of S

subject to a constraint on the variance. Since it is easy to calculate these
moments, the theory is simpler than the theory that deals with the entire
distribution of S.

The mean–variance approach is the basis of the Sharpe–Markowitz
theory of investment in the stock market and is used by business ana-
lysts and others. It is illustrated in Figure 16.1. The figure illustrates the
set of achievable mean–variance pairs using various portfolios. The set
of portfolios on the boundary of this region corresponds to the undomi-
nated portfolios: These are the portfolios that have the highest mean for
a given variance. This boundary is called the efficient frontier , and if one
is interested only in mean and variance, one should operate along this
boundary.

Normally, the theory is simplified with the introduction of a risk-free
asset (e.g., cash or Treasury bonds, which provide a fixed interest rate
with zero variance). This stock corresponds to a point on the Y axis
in the figure. By combining the risk-free asset with various stocks, one
obtains all points below the tangent from the risk-free asset to the efficient
frontier. This line now becomes part of the efficient frontier.

The concept of the efficient frontier also implies that there is a true
price for a stock corresponding to its risk. This theory of stock prices,
called the capital asset pricing model (CAPM), is used to decide whether
the market price for a stock is too high or too low. Looking at the mean
of a random variable gives information about the long-term behavior of
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the sum of i.i.d. versions of the random variable. But in the stock market,
one normally reinvests every day, so that the wealth at the end of n days
is the product of factors, one for each day of the market. The behavior of
the product is determined not by the expected value but by the expected
logarithm. This leads us to define the growth rate as follows:

Definition The growth rate of a stock market portfolio b with respect
to a stock distribution F(x) is defined as

W(b, F ) =
∫

log btx dF(x) = E
(
log btX

)
. (16.1)

If the logarithm is to base 2, the growth rate is also called the doubling
rate.

Definition The optimal growth rate W ∗(F ) is defined as

W ∗(F ) = max
b

W(b, F ), (16.2)

where the maximum is over all possible portfolios bi ≥ 0,
∑

i bi = 1.

Definition A portfolio b∗ that achieves the maximum of W(b, F ) is
called a log-optimal portfolio or growth optimal portfolio.

The definition of growth rate is justified by the following theorem,
which shows that wealth grows as 2nW∗

.

Theorem 16.1.1 Let X1, X2, . . . , Xn be i.i.d. according to F(x). Let

S∗
n =

n∏
i=1

b∗tXi (16.3)

be the wealth after n days using the constant rebalanced portfolio b∗. Then

1

n
log S∗

n → W ∗ with probability 1. (16.4)

Proof: By the strong law of large numbers,

1

n
log S∗

n = 1

n

n∑
i=1

log b∗tXi (16.5)

→ W ∗ with probability 1. (16.6)

Hence, S∗
n

.= 2nW∗
. �
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We now consider some of the properties of the growth rate.

Lemma 16.1.1 W(b, F ) is concave in b and linear in F . W ∗(F ) is
convex in F .

Proof: The growth rate is

W(b, F ) =
∫

log btx dF(x). (16.7)

Since the integral is linear in F , so is W(b, F ). Since

log(λb1 + (1 − λ)b2)
tX ≥ λ log bt

1X + (1 − λ) log bt
2X, (16.8)

by the concavity of the logarithm, it follows, by taking expectations, that
W(b, F ) is concave in b. Finally, to prove the convexity of W ∗(F ) as a
function of F , let F1 and F2 be two distributions on the stock market and
let the corresponding optimal portfolios be b∗(F1) and b∗(F2), respec-
tively. Let the log-optimal portfolio corresponding to λF1 + (1 − λ)F2 be
b∗(λF1 + (1 − λ)F2). Then by linearity of W(b, F ) with respect to F ,
we have

W ∗(λF1 + (1 − λ)F2)

= W(b∗(λF1 + (1 − λ)F2), λF1 + (1 − λ)F2) (16.9)

= λW(b∗(λF1 + (1 − λ)F2), F1)

+ (1 − λ)W(b∗(λF1 + (1 − λ)F2), F2)

≤ λW(b∗(F1), F1) + (1 − λ)W ∗(b∗(F2), F2), (16.10)

since b∗(F1) maximizes W(b, F1) and b∗(F2) maximizes W(b, F2). �

Lemma 16.1.2 The set of log-optimal portfolios with respect to a given
distribution is convex.

Proof: Suppose thatb1 andb2 are log-optimal (i.e.,W(b1, F ) = W(b2, F )

= W ∗(F )). By the concavity of W(b, F ) in b, we have

W(λb1 + (1 − λ)b2, F ) ≥ λW(b1, F ) + (1 − λ)W(b2, F ) = W ∗(F ).

(16.11)

Thus, λb1 + (1 − λ)b2 is also log-optimal. �

In the next section we use these properties to characterize the log-
optimal portfolio.
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16.2 KUHN–TUCKER CHARACTERIZATION
OF THE LOG-OPTIMAL PORTFOLIO

Let B = {b ∈ Rm : bi ≥ 0,
∑m

i=1bi = 1} denote the set of allowed port-
folios. The determination of b∗ that achieves W ∗(F ) is a problem of
maximization of a concave function W(b, F ) over a convex set B. The
maximum may lie on the boundary. We can use the standard Kuhn–Tucker
conditions to characterize the maximum. Instead, we derive these condi-
tions from first principles.

Theorem 16.2.1 The log-optimal portfolio b∗ for a stock market X ∼ F

(i.e., the portfolio that maximizes the growth rate W(b, F )) satisfies the
following necessary and sufficient conditions:

E

(
Xi

b∗tX

)
= 1 if b∗

i > 0,

≤ 1 if b∗
i = 0. (16.12)

Proof: The growth rate W(b) = E(ln btX) is concave in b, where b
ranges over the simplex of portfolios. It follows that b∗ is log-optimum
iff the directional derivative of W(·) in the direction from b∗ to any
alternative portfolio b is nonpositive. Thus, letting bλ = (1 − λ)b∗ + λb
for 0 ≤ λ ≤ 1, we have

d

dλ
W(bλ)

∣∣∣
λ=0+

≤ 0, b ∈ B. (16.13)

These conditions reduce to (16.12) since the one-sided derivative at λ =
0+ of W(bλ) is

d

dλ
E(ln(bt

λX))

∣∣∣
λ=0+

= lim
λ↓0

1

λ
E

(
ln

(
(1 − λ)b∗tX + λbtX

b∗tX

))
(16.14)

= E

(
lim
λ↓0

1

λ
ln

(
1 + λ

(
btX
b∗tX

− 1

)))
(16.15)

= E

(
btX
b∗tX

)
− 1, (16.16)

where the interchange of limit and expectation can be justified using the
dominated convergence theorem [39]. Thus, (16.13) reduces to

E

(
btX
b∗tX

)
− 1 ≤ 0 (16.17)
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for all b ∈ B. If the line segment from b to b∗ can be extended beyond b∗
in the simplex, the two-sided derivative at λ = 0 of W(bλ) vanishes and
(16.17) holds with equality. If the line segment from b to b∗ cannot be
extended because of the inequality constraint on b, we have an inequality
in (16.17).

The Kuhn–Tucker conditions will hold for all portfolios b ∈ B if they
hold for all extreme points of the simplex B since E(btX/b∗tX) is linear
in b. Furthermore, the line segment from the j th extreme point (b : bj =
1, bi = 0, i �= j ) to b∗ can be extended beyond b∗ in the simplex iff b∗

j >

0. Thus, the Kuhn–Tucker conditions that characterize the log-optimum
b∗ are equivalent to the following necessary and sufficient conditions:

E

(
Xi

b∗tX

)
= 1 if b∗

i > 0,

≤ 1 if b∗
i = 0. � (16.18)

This theorem has a few immediate consequences. One useful equiva-
lence is expressed in the following theorem.

Theorem 16.2.2 Let S∗ = b∗tX be the random wealth resulting from
the log-optimal portfolio b∗. Let S = btX be the wealth resulting from any
other portfolio b. Then

E ln
S

S∗ ≤ 0 for all S ⇔ E
S

S∗ ≤ 1 for all S. (16.19)

Proof: From Theorem 16.2.1 it follows that for a log-optimal portfolio
b∗,

E

(
Xi

b∗tX

)
≤ 1 (16.20)

for all i. Multiplying this equation by bi and summing over i, we have

m∑
i=1

biE

(
Xi

b∗tX

)
≤

m∑
i=1

bi = 1, (16.21)

which is equivalent to

E
btX
b∗tX

= E
S

S∗ ≤ 1. (16.22)

The converse follows from Jensen’s inequality, since

E log
S

S∗ ≤ log E
S

S∗ ≤ log 1 = 0. � (16.23)
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Maximizing the expected logarithm was motivated by the asymptotic
growth rate. But we have just shown that the log-optimal portfolio, in
addition to maximizing the asymptotic growth rate, also “maximizes” the
expected wealth relative E(S/S∗) for one day. We shall say more about
the short-term optimality of the log-optimal portfolio when we consider
the game-theoretic optimality of this portfolio.

Another consequence of the Kuhn–Tucker characterization of the log-
optimal portfolio is the fact that the expected proportion of wealth in
each stock under the log-optimal portfolio is unchanged from day to day.
Consider the stocks at the end of the first day. The initial allocation of
wealth is b∗. The proportion of the wealth in stock i at the end of the day

is
b∗
i Xi

b∗t X , and the expected value of this proportion is

E
b∗

i Xi

b∗tX
= b∗

i E
Xi

b∗tX
= b∗

i . (16.24)

Hence, the proportion of wealth in stock i expected at the end of the
day is the same as the proportion invested in stock i at the beginning of
the day. This is a counterpart to Kelly proportional gambling, where one
invests in proportions that remain unchanged in expected value after the
investment period.

16.3 ASYMPTOTIC OPTIMALITY OF THE LOG-OPTIMAL
PORTFOLIO

In Section 16.2 we introduced the log-optimal portfolio and explained its
motivation in terms of the long-term behavior of a sequence of investments
in a repeated independent versions of the stock market. In this section we
expand on this idea and prove that with probability 1, the conditionally
log-optimal investor will not do any worse than any other investor who
uses a causal investment strategy.

We first consider an i.i.d. stock market (i.e., X1, X2, . . . , Xn are i.i.d.
according to F(x)). Let

Sn =
n∏

i=1

bt
iXi (16.25)

be the wealth after n days for an investor who uses portfolio bi on day i.
Let

W ∗ = max
b

W(b, F ) = max
b

E log btX (16.26)
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be the maximal growth rate, and let b∗ be a portfolio that achieves the
maximum growth rate. We only allow alternative portfolios bi that depend
causally on the past and are independent of the future values of the stock
market.

Definition A nonanticipating or causal portfolio strategy is a sequence
of mappings bi : Rm(i−1) → B, with the interpretation that portfolio bi(x1,

. . . , xi−1) is used on day i.
From the definition of W ∗, it follows immediately that the log-optimal

portfolio maximizes the expected log of the final wealth. This is stated in
the following lemma.

Lemma 16.3.1 Let S∗
n be the wealth after n days using the log-optimal

strategy b∗ on i.i.d. stocks, and let Sn be the wealth using a causal portfolio
strategy bi . Then

E log S∗
n = nW ∗ ≥ E log Sn. (16.27)

Proof

max
b1,b2,...,bn

E log Sn = max
b1,b2,...,bn

E

n∑
i=1

log bt
iXi (16.28)

=
n∑

i=1

max
bi (X1,X2,...,Xi−1)

E log bt
i(X1, X2, . . . , Xi−1)Xi

(16.29)

=
n∑

i=1

E log b∗tXi (16.30)

= nW ∗, (16.31)

and the maximum is achieved by a constant portfolio strategy b∗. �

So far, we have proved two simple consequences of the definition of
log-optimal portfolios: that b∗ (satisfying (16.12)) maximizes the expected
log wealth, and that the resulting wealth S∗

n is equal to 2nW∗
to first order

in the exponent, with high probability.
Now we prove a much stronger result, which shows that S∗

n exceeds
the wealth (to first order in the exponent) of any other investor for almost
every sequence of outcomes from the stock market.

Theorem 16.3.1 (Asymptotic optimality of the log-optimal portfolio)
Let X1, X2, . . . , Xn be a sequence of i.i.d. stock vectors drawn according
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to F(x). Let S∗
n = ∏n

i=1 b∗tXi , where b∗ is the log-optimal portfolio, and
let Sn = ∏n

i=1 bt
iXi be the wealth resulting from any other causal portfolio.

Then

lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 with probability 1. (16.32)

Proof: From the Kuhn–Tucker conditions and the log optimality of S∗
n ,

we have
E

Sn

S∗
n

≤ 1. (16.33)

Hence by Markov’s inequality, we have

Pr
(
Sn > tnS

∗
n

) = Pr

(
Sn

S∗
n

> tn

)
<

1

tn
. (16.34)

Hence,

Pr

(
1

n
log

Sn

S∗
n

>
1

n
log tn

)
≤ 1

tn
. (16.35)

Setting tn = n2 and summing over n, we have

∞∑
n=1

Pr

(
1

n
log

Sn

S∗
n

>
2 log n

n

)
≤

∞∑
n=1

1

n2
= π2

6
. (16.36)

Then, by the Borel–Cantelli lemma,

Pr

(
1

n
log

Sn

S∗
n

>
2 log n

n
, infinitely often

)
= 0. (16.37)

This implies that for almost every sequence from the stock market, there
exists an N such that for all n > N , 1

n
log Sn

S∗
n

<
2 log n

n
. Thus,

lim sup
1

n
log

Sn

S∗
n

≤ 0 with probability 1. � (16.38)

The theorem proves that the log-optimal portfolio will perform as well
as or better than any other portfolio to first order in the exponent.

16.4 SIDE INFORMATION AND THE GROWTH RATE

We showed in Chapter 6 that side information Y for the horse race X can
be used to increase the growth rate by the mutual information I (X;Y).



622 INFORMATION THEORY AND PORTFOLIO THEORY

We now extend this result to the stock market. Here, I (X;Y) is an upper
bound on the increase in the growth rate, with equality if X is a horse
race. We first consider the decrease in growth rate incurred by believing
in the wrong distribution.

Theorem 16.4.1 Let X ∼ f (x). Let bf be a log-optimal portfolio cor-
responding to f (x), and let bg be a log-optimal portfolio corresponding
to some other density g(x). Then the increase in growth rate �W by using
bf instead of bg is bounded by

�W = W(bf , F ) − W(bg, F ) ≤ D(f ||g). (16.39)

Proof: We have

�W =
∫

f (x) log bt
f x −

∫
f (x) log bt

gx (16.40)

=
∫

f (x) log
bt
f x

bt
gx

(16.41)

=
∫

f (x) log
bt
f x

bt
gx

g(x)

f (x)

f (x)

g(x)
(16.42)

=
∫

f (x) log
bt
f x

bt
gx

g(x)

f (x)
+ D(f ||g) (16.43)

(a)≤ log
∫

f (x)
bt
f x

bt
gx

g(x)

f (x)
+ D(f ||g) (16.44)

= log
∫

g(x)
bt
f x

bt
gx

+ D(f ||g) (16.45)

(b)≤ log 1 + D(f ||g) (16.46)

= D(f ||g), (16.47)

where (a) follows from Jensen’s inequality and (b) follows from the
Kuhn–Tucker conditions and the fact that bg is log-optimal for g. �

Theorem 16.4.2 The increase �W in growth rate due to side informa-
tion Y is bounded by

�W ≤ I (X;Y). (16.48)
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Proof: Let (X, Y ) ∼ f (x, y), where X is the market vector and Y is the
related side information. Given side information Y = y, the log-optimal
investor uses the conditional log-optimal portfolio for the conditional
distribution f (x|Y = y). Hence, conditional on Y = y, we have, from
Theorem 16.4.1,

�WY=y ≤ D(f (x|Y = y)||f (x)) =
∫

x
f (x|Y = y) log

f (x|Y = y)

f (x)
dx.

(16.49)
Averaging this over possible values of Y , we have

�W ≤
∫

y

f (y)

∫
x
f (x|Y = y) log

f (x|Y = y)

f (x)
dx dy (16.50)

=
∫

y

∫
x
f (y)f (x|Y = y) log

f (x|Y = y)

f (x)

f (y)

f (y)
dx dy (16.51)

=
∫

y

∫
x
f (x, y) log

f (x, y)

f (x)f (y)
dx dy (16.52)

= I (X;Y). (16.53)

Hence, the increase in growth rate is bounded above by the mutual infor-
mation between the side information Y and the stock market X. �

16.5 INVESTMENT IN STATIONARY MARKETS

We now extend some of the results of Section 16.4 from i.i.d. markets
to time-dependent market processes. Let X1, X2, . . . , Xn, . . . be a vector-
valued stochastic process with Xi ≥ 0. We consider investment strategies
that depend on the past values of the market in a causal fashion (i.e., bi

may depend on X1, X2, . . . , Xi−1). Let

Sn =
n∏

i=1

bt
i(X1, X2, . . . , Xi−1)Xi . (16.54)

Our objective is to maximize E log Sn over all such causal portfolio strate-
gies {bi(·)}. Now

max
b1,b2,...,bn

E log Sn =
n∑

i=1

max
bi (X1,X2,...,Xi−1)

E log bt
iXi (16.55)

=
n∑

i=1

E log b∗t
i Xi , (16.56)
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where b∗
i is the log-optimal portfolio for the conditional distribution of Xi

given the past values of the stock market; that is, b∗
i (x1, x2, . . . , xi−1) is

the portfolio that achieves the conditional maximum, which is denoted by

max
b

E[ log btXi |(X1, X2, . . . , Xi−1) = (x1, x2, . . . , xi−1)]

= W ∗(Xi|x1, x2, . . . , xi−1). (16.57)

Taking the expectation over the past, we write

W ∗(Xi |X1, X2, . . . , Xi−1) = E max
b

E
[
log btXi |X1, X2, . . . , Xi−1

]
(16.58)

as the conditional optimal growth rate, where the maximum is over all
portfolio-valued functions b defined on X1, . . . , Xi−1. Thus, the high-
est expected log return is achieved by using the conditional log-optimal
portfolio at each stage. Let

W ∗(X1, X2, . . . , Xn) = max
b1,b2,...,bn

E log Sn, (16.59)

where the maximum is over all causal portfolio strategies. Then since
log S∗

n = ∑m
i=1 log b∗t

i Xi , we have the following chain rule for W ∗:

W ∗(X1, X2, . . . , Xn) =
n∑

i=1

W ∗(Xi |X1, X2, . . . , Xi−1). (16.60)

This chain rule is formally the same as the chain rule for H . In some
ways, W is the dual of H . In particular, conditioning reduces H but
increases W . We now define the counterpart of the entropy rate for time-
dependent stochastic processes.

Definition The growth rate W ∗∞ is defined as

W ∗
∞ = lim

n→∞
W ∗(X1, X2, . . . , Xn)

n
(16.61)

if the limit exists.

Theorem 16.5.1 For a stationary market, the growth rate exists and is
equal to

W ∗
∞ = lim

n→∞ W ∗(Xn|X1, X2, . . . , Xn−1). (16.62)
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Proof: By stationarity, W ∗(Xn|X1, X2, . . . , Xn−1) is nondecreasing in n.
Hence, it must have a limit, possibly infinity. Since

W ∗(X1, X2, . . . , Xn)

n
= 1

n

n∑
i=1

W ∗(Xi|X1, X2, . . . , Xi−1), (16.63)

it follows by the theorem of the Cesáro mean (Theorem 4.2.3) that the
left-hand side has the same limit as the limit of the terms on the right-hand
side. Hence, W ∗∞ exists and

W ∗
∞ = lim

n→∞
W ∗(X1, X2, . . . , Xn)

n
= lim

n→∞ W ∗(Xn|X1, X2, . . . , Xn−1). �
(16.64)

We can now extend the asymptotic optimality property to stationary
markets. We have the following theorem.

Theorem 16.5.2 Consider an arbitrary stochastic process {Xi}, Xi ∈
Rm+, conditionally log-optimal portfolios, b∗

i (X
i−1) and wealth S∗

n . Let Sn

be the wealth generated by any other causal portfolio strategy bi(X
i−1).

Then Sn/S
∗
n is a positive supermartingale with respect to the sequence of

σ -fields generated by the past X1, X2, . . . , Xn. Consequently, there exists
a random variable V such that

Sn

S∗
n

→ V with probability 1 (16.65)

EV ≤ 1 (16.66)

and

Pr

{
sup

n

Sn

S∗
n

≥ t

}
≤ 1

t
. (16.67)

Proof: Sn/S
∗
n is a positive supermartingale because

E

[
Sn+1(X

n+1)

S∗
n+1(X

n+1)

∣∣∣∣Xn

]
= E

[
(bt

n+1Xn+1)Sn(X
n)

(b∗t
n+1Xn+1)S∗

n(Xn)

∣∣∣∣Xn

]
(16.68)

= Sn(X
n)

S∗
n(Xn)

E

[
bt

n+1Xn+1

b∗t
n+1Xn+1

∣∣∣∣Xn

]
(16.69)

≤ Sn(X
n)

S∗
n(Xn)

, (16.70)
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by the Kuhn–Tucker condition on the conditionally log-optimal portfolio.
Thus, by the martingale convergence theorem, Sn/S

∗
n has a limit, call it

V , and EV ≤ E(S0/S
∗
0 ) = 1. Finally, the result for sup(Sn/S

∗
n) follows

from Kolmogorov’s inequality for positive martingales. �

We remark that (16.70) shows how strong the competitive optimality
of S∗

n is. Apparently, the probability is less than 1/10 that Sn(X
n) will

ever be 10 times as large as S∗
n(Xn). For a stationary ergodic market, we

can extend the asymptotic equipartition property to prove the following
theorem.

Theorem 16.5.3 (AEP for the stock market) Let X1, X2, . . . , Xn be a
stationary ergodic vector-valued stochastic process. Let S∗

n be the wealth
at time n for the conditionally log-optimal strategy, where

S∗
n =

n∏
i=1

b∗t
i (X1, X2, . . . , Xi−1)Xi . (16.71)

Then

1

n
log S∗

n → W ∗
∞ with probability 1. (16.72)

Proof: The proof involves a generalization of the sandwich argument
[20] used to prove the AEP in Section 16.8. The details of the proof (in
Algoet and Cover [21]) are omitted. �

Finally, we consider the example of the horse race once again. The
horse race is a special case of the stock market in which there are m

stocks corresponding to the m horses in the race. At the end of the race,
the value of the stock for horse i is either 0 or oi , the value of the odds
for horse i. Thus, X is nonzero only in the component corresponding to
the winning horse.

In this case, the log-optimal portfolio is proportional betting, known as
Kelly gambling (i.e., b∗

i = pi), and in the case of uniform fair odds (i.e.,
oi = m, for all i),

W ∗ = log m − H(X). (16.73)

When we have a sequence of correlated horse races, the optimal portfolio
is conditional proportional betting and the asymptotic growth rate is

W ∗
∞ = log m − H(X), (16.74)
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where H(X) = lim 1
n
H(X1, X2, . . . , Xn) if the limit exists. Then Theo-

rem 16.5.3 asserts that
S∗

n

.= 2nW∗
, (16.75)

in agreement with the results in chapter 6.

16.6 COMPETITIVE OPTIMALITY OF THE LOG-OPTIMAL
PORTFOLIO

We now ask whether the log-optimal portfolio outperforms alternative
portfolios at a given finite time n. As a direct consequence of the
Kuhn–Tucker conditions, we have

E
Sn

S∗
n

≤ 1, (16.76)

and hence by Markov’s inequality,

Pr(Sn > tS∗
n) ≤ 1

t
. (16.77)

This result is similar to the result derived in Chapter 5 for the competitive
optimality of Shannon codes.

By considering examples, it can be seen that it is not possible to get
a better bound on the probability that Sn > S∗

n . Consider a stock market
with two stocks and two possible outcomes,

(X1, X2) =


(

1,
1

1 − ε

)
with probability 1 − ε,

(1, 0) with probability ε.

(16.78)

In this market the log-optimal portfolio invests all the wealth in the first
stock. [It is easy to verify that b = (1, 0) satisfies the Kuhn–Tucker con-
ditions.] However, an investor who puts all his wealth in the second stock
earns more money with probability 1 − ε. Hence, it is not true that with
high probability the log-optimal investor will do better than any other
investor.

The problem with trying to prove that the log-optimal investor does
best with a probability of at least 1

2 is that there exist examples like the
one above, where it is possible to beat the log-optimal investor by a
small amount most of the time. We can get around this by allowing each
investor an additional fair randomization, which has the effect of reducing
the effect of small differences in the wealth.
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Theorem 16.6.1 (Competitive optimality) Let S∗ be the wealth at the
end of one period of investment in a stock market X with the log-optimal
portfolio, and let S be the wealth induced by any other portfolio. Let U ∗ be
a random variable independent of X uniformly distributed on [0, 2], and
let V be any other random variable independent of X and U ∗ with V ≥ 0
and EV = 1. Then

Pr(V S ≥ U ∗S∗) ≤ 1

2
. (16.79)

Remark Here U ∗ and V correspond to initial “fair” randomizations of
the initial wealth. This exchange of initial wealth S0 = 1 for “fair” wealth
U ∗ can be achieved in practice by placing a fair bet. The effect of the
fair randomization is to randomize small differences, so that only the
significant deviations of the ratio S/S∗ affect the probability of winning.

Proof: We have

Pr(V S ≥ U ∗S∗) = Pr

(
V S

S∗ ≥ U ∗
)

(16.80)

= Pr(W ≥ U ∗), (16.81)

where W = V S
S∗ is a non-negative-valued random variable with mean

EW = E(V )E

(
Sn

S∗
n

)
≤ 1 (16.82)

by the independence of V from X and the Kuhn–Tucker conditions. Let
F be the distribution function of W . Then since U ∗ is uniform on [0, 2],

Pr(W ≥ U ∗) =
∫ 2

0
Pr(W > w)fU∗(w) dw (16.83)

=
∫ 2

0
Pr(W > w)

1

2
dw (16.84)

=
∫ 2

0

1 − F(w)

2
dw (16.85)

≤
∫ ∞

0

1 − F(w)

2
dw (16.86)

= 1

2
EW (16.87)

≤ 1

2
, (16.88)
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using the easily proved fact (by integrating by parts) that

EW =
∫ ∞

0
(1 − F(w)) dw (16.89)

for a positive random variable W . Hence, we have

Pr(V S ≥ U ∗S∗) = Pr(W ≥ U ∗) ≤ 1

2
. � (16.90)

Theorem 16.6.1 provides a short-term justification for the use of the
log-optimal portfolio. If the investor’s only objective is to be ahead of his
opponent at the end of the day in the stock market, and if fair randomiza-
tion is allowed, Theorem 16.6.1 says that the investor should exchange his
wealth for a uniform [0, 2] wealth and then invest using the log-optimal
portfolio. This is the game-theoretic solution to the problem of gambling
competitively in the stock market.

16.7 UNIVERSAL PORTFOLIOS

The development of the log-optimal portfolio strategy in Section 16.1
relies on the assumption that we know the distribution of the stock vectors
and can therefore calculate the optimal portfolio b∗. In practice, though,
we often do not know the distribution. In this section we describe a causal
portfolio that performs well on individual sequences. Thus, we make no
statistical assumptions about the market sequence. We assume that the
stock market can be represented by a sequence of vectors x1, x2, . . . ∈ Rm+,
where xij is the price relative for stock j on day i and xi is the vector
of price relatives for all stocks on day i. We begin with a finite-horizon
problem, where we have n vectors x1, . . . , xn. We later extend the results
to the infinite-horizon case.

Given this sequence of stock market outcomes, what is the best we
can do? A realistic target is the growth achieved by the best constant
rebalanced portfolio strategy in hindsight (i.e., the best constant rebal-
anced portfolio on the known sequence of stock market vectors). Note
that constant rebalanced portfolios are optimal against i.i.d. stock mar-
ket sequences with known distribution, so that this set of portfolios is
reasonably natural.

Let us assume that we have a number of mutual funds, each of which
follows a constant rebalanced portfolio strategy chosen in advance. Our
objective is to perform as well as the best of these funds. In this section
we show that we can do almost as well as the best constant rebalanced
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portfolio without advance knowledge of the distribution of the stock
market vectors.

One approach is to distribute the wealth among a continuum of fund
managers, each of which follows a different constantly rebalanced portfo-
lio strategy. Since one of the managers will do exponentially better than
the others, the total wealth after n days will be dominated by the largest
term. We will show that we can achieve a performance of the best fund
manager within a factor of n

m−1
2 . This is the essence of the argument for

the infinite-horizon universal portfolio strategy.
A second approach to this problem is as a game against a malicious

opponent or nature who is allowed to choose the sequence of stock
market vectors. We define a causal (nonanticipating) portfolio strategy
b̂i(xi−1, . . . , x1) that depends only on the past values of the stock market
sequence. Then nature, with knowledge of the strategy b̂i(xi−1), chooses a
sequence of vectors xi to make the strategy perform as poorly as possible
relative to the best constantly rebalanced portfolio for that stock sequence.
Let b∗(xn) be the best constantly rebalanced portfolio for a stock market
sequence xn. Note that b∗(xn) depends only on the empirical distribution
of the sequence, not on the order in which the vectors occur. At the end
of n days, a constantly rebalanced portfolio b achieves wealth:

Sn(b, xn) =
n∏

i=1

btxi , (16.91)

and the best constant portfolio b∗(xn) achieves a wealth

S∗
n(xn) = max

b

n∏
i=1

btxi , (16.92)

whereas the nonanticipating portfolio b̂i(xi−1) strategy achieves

Ŝn(xn) =
n∏

i=1

b̂t
i(x

i−1)xi . (16.93)

Our objective is to find a nonanticipating portfolio strategy b̂(·) = (b̂1,

b̂2(x1), . . . , b̂i(xi−1)) that does well in the worst case in terms of the ratio
of Ŝn to S∗

n . We will find the optimal universal strategy and show that this
strategy for each stock sequence achieves wealth Ŝn that is within a factor

Vn ≈ n
−m−1

2 of the wealth S∗
n achieved by the best constantly rebalanced

portfolio on that sequence. This strategy depends on n, the horizon of
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the game. Later we describe some horizon-free results that have the same
worst-case asymptotic performance as that of the finite-horizon game.

16.7.1 Finite-Horizon Universal Portfolios

We begin by analyzing a stock market of n periods, where n is known
in advance, and attempt to find a portfolio strategy that does well against
all possible sequences of n stock market vectors. The main result can be
stated in the following theorem.

Theorem 16.7.1 For a stock market sequence xn = x1, . . . , xn, xi ∈
Rm+ of length n with m assets, let S∗

n(xn) be the wealth achieved by the
optimal constantly rebalanced portfolio on xn, and let Ŝn(xn) be the wealth
achieved by any causal portfolio strategy b̂i(·) on xn; then

max
b̂i (·)

min
x1,...,xn

Ŝn(xn)

S∗
n(xn)

= Vn, (16.94)

where

Vn =
[ ∑

n1+···+nm=n

(
n

n1, n2, . . . , nm

)
2−nH(

n1
n ,...,

nm
n )

]−1

. (16.95)

Using Stirling’s approximation, we can show that Vn is on the order
of n−m−1

2 , and therefore the growth rate for the universal portfolio on
the worst sequence differs from the growth rate of the best constantly
rebalanced portfolio on that sequence by at most a polynomial factor.
The logarithm of the ratio of growth of wealth of the universal portfolio
b̂ to the growth of wealth of the best constant portfolio behaves like
the redundancy of a universal source code. (See Shtarkov [496], where
log Vn appears as the minimax individual sequence redundancy in data
compression.)

We first illustrate the main results by means of an example for n = 1.
Consider the case of two stocks and a single day. Let the stock vector for
the day be x = (x1, x2). If x1 > x2, the best portfolio is one that puts all
its money on stock 1, and if x2 > x1, the best portfolio puts all its money
on stock 2. (If x1 = x2, all portfolios are equivalent.)

Now assume that we must choose a portfolio in advance and our oppo-
nent can choose the stock market sequence after we have chosen our
portfolio to make us do as badly as possible relative to the best portfolio.
Given our portfolio, the opponent can ensure that we do as badly as pos-
sible by making the stock on which we have put more weight equal to 0
and the other stock equal to 1. Our best strategy is therefore to put equal
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weight on both stocks, and with this, we will achieve a growth factor at
least equal to half the growth factor of the best stock, and hence we will
achieve at least half the gain of the best constantly rebalanced portfolio.
It is not hard to calculate that Vn = 2 when n = 1 and m = 2 in equation
(16.94).

However, this result seems misleading, since it appears to suggest that
for n days, we would use a constant uniform portfolio, putting half our
money on each stock every day. If our opponent then chose the stock
sequence so that only the first stock was 1 (and the other was 0) every
day, this uniform strategy would achieve a wealth of 1/2n, and we would
achieve a wealth only within a factor of 2n of the best constant portfolio,
which puts all the money on the first stock for all time.

The result of the theorem shows that we can do significantly better.
The main part of the argument is to reduce a sequence of stock vectors to
the extreme cases where only one of the stocks is nonzero for each day.
If we can ensure that we do well on such sequences, we can guarantee
that we do well on any sequence of stock vectors, and achieve the bounds
of the theorem.

Before we prove the theorem, we need the following lemma.

Lemma 16.7.1 For p1, p2, . . . , pm ≥ 0 and q1, q2, . . . , qm ≥ 0,∑m
i=1 pi∑m
i=1 qi

≥ min
i

pi

qi

. (16.96)

Proof: Let I denote the index i that minimizes the right-hand side in
(16.96). Assume that pI > 0 (if pI = 0, the lemma is trivially true). Also,
if qI = 0, both sides of (16.96) are infinite (all the other qi’s must also
be zero), and again the inequality holds. Therefore, we can also assume
that qI > 0. Then∑m

i=1 pi∑m
i=1 qi

= pI

qI

1 +∑
i �=I (pi/pI )

1 +∑
i �=I (qi/qI )

≥ pI

qI

(16.97)

because
pi

qi

≥ pI

qI

−→ pi

pI

≥ qi

qI

(16.98)

for all i. �
First consider the case when n = 1. The wealth at the end of the first

day is

Ŝ1(x) = b̂tx, (16.99)

S1(x) = btx (16.100)
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and

Ŝ1(x)

S1(x)
=
∑

b̂ixi∑
bixi

≥ min

{
b̂i

bi

}
. (16.101)

We wish to find maxb̂ minb,x
b̂t x
bt x . Nature should choose x = ei , where ei is

the ith basis vector with 1 in the component i that minimizes b̂i

b∗
i
, and the

investor should choose b̂ to maximize this minimum. This is achieved by
choosing b̂ = ( 1

m
, 1

m
, . . . , 1

m
).

The important point to realize is that

Ŝn(xn)

Sn(xn)
=
∏n

i=1 b̂t
ixi∏n

i=1 bt
ixi

(16.102)

can also be rewritten in the form of a ratio of terms

Ŝn(xn)

Sn(xn)
= b̂tx′

btx′ , (16.103)

where b̂, b, x′ ∈ Rmn

+ . Here the mn components of the constantly rebal-
anced portfolios b are all of the product form b

n1
1 b

n2
2 · · · bnm

m . One wishes
to find a universal b̂ that is uniformly close to the b’s corresponding to
constantly rebalanced portfolios.

We can now prove the main theorem (Theorem 16.7.1).

Proof of Theorem 16.7.1: We will prove the theorem for m = 2. The
proof extends in a straightforward fashion to the case m > 2. Denote the
stocks by 1 and 2. The key idea is to express the wealth at time n,

Sn(xn) =
n∏

i=1

bt
ixi , (16.104)

which is a product of sums, into a sum of products. Each term in the sum
corresponds to a sequence of stock price relatives for stock 1 or stock
2 times the proportion bi1 or bi2 that the strategy places on stock 1 or
stock 2 at time i. We can therefore view the wealth Sn as a sum over
all 2n possible n-sequences of 1’s and 2’s of the product of the portfolio
proportions times the stock price relatives:

Sn(xn) =
∑

jn∈{1,2}n

n∏
i=1

biji
xiji

=
∑

jn∈{1,2}n

n∏
i=1

biji

n∏
i=1

xiji
. (16.105)
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If we let w(jn) denote the product
∏n

i=1 biji
, the total fraction of wealth

invested in the sequence jn, and let

x(jn) =
n∏

i=1

xiji
(16.106)

be the corresponding return for this sequence, we can write

Sn(xn) =
∑

jn∈{1,2}n
w(jn)x(jn). (16.107)

Similar expressions apply to both the best constantly rebalanced portfolio
and the universal portfolio strategy. Thus, we have

Ŝn(xn)

S∗
n(xn)

=
∑

jn∈{1,2}n ŵ(jn)x(jn)∑
jn∈{1,2}n w∗(jn)x(jn)

, (16.108)

where ŵn is the amount of wealth placed on the sequence jn by the
universal nonanticipating strategy, and w∗(jn) is the amount placed by the
best constant rebalanced portfolio strategy. Now applying Lemma 16.7.1,
we have

Ŝn(xn)

S∗
n(xn)

≥ min
jn

ŵ(jn)x(jn)

w∗(jn)x(jn)
= min

jn

ŵ(jn)

w∗(jn)
. (16.109)

Thus, the problem of maximizing the performance ratio Ŝn/S
∗
n is reduced

to ensuring that the proportion of money bet on a sequence of stocks by
the universal portfolio is uniformly close to the proportion bet by b∗. As
might be obvious by now, this formulation of Sn reduces the n-period
stock market to a special case of a single-period stock market—there are
2n stocks, one invests w(jn) in stock jn and receives a return x(jn) for
stock jn, and the total wealth Sn is

∑
jn w(jn)x(jn).

We first calculate the weight w∗(jn) associated with the best constant
rebalanced portfolio b∗. We observe that a constantly rebalanced portfolio
b results in

w(jn) =
n∏

i=1

biji
= bk(1 − b)n−k, (16.110)

where k is the number of times 1 appears in the sequence jn. Thus, w(jn)

depends only on k, the number of 1’s in jn. Fixing attention on jn, we
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find by differentiating with respect to b that the maximum value

w∗(jn) = max
0≤b≤1

bk(1 − b)n−k (16.111)

=
(

k

n

)k (
n − k

n

)n−k

, (16.112)

which is achieved by

b∗ =
(

k

n
,
n − k

n

)
. (16.113)

Note that
∑

w∗(jn) > 1, reflecting the fact that the amount “bet” on
jn is chosen in hindsight, thus relieving the hindsight investor of the
responsibility of allocating his investments w∗(jn) to sum to 1. The causal
investor has no such luxury. How can the causal investor choose initial
investments ŵ(jn),

∑
ŵ(jn) = 1, to protect himself from all possible jn

and hindsight-determined w∗(jn)? The answer will be to choose ŵ(jn)

proportional to w∗(jn). Then the worst-case ratio of ŵ(jn)/w∗(jn) will
be maximized. To proceed, we define Vn by

1

Vn

=
∑
jn

(
k(jn)

n

)k(jn) (
n − k(jn)

n

)n−k(jn)

(16.114)

=
n∑

k=0

(
n

k

)(
k

n

)k (
n − k

n

)n−k

(16.115)

and let

ŵ(jn) = Vn

(
k(jn)

n

)k(jn) (
n − k(jn)

n

)n−k(jn)

. (16.116)

It is clear that ŵ(jn) is a legitimate distribution of wealth over the 2n

stock sequences (i.e., ŵ(jn) ≥ 0 and
∑

jn ŵ(jn) = 1). Here Vn is the
normalization factor that makes ŵ(jn) a probability mass function. Also,
from (16.109) and (16.113), for all sequences xn,

Ŝn(xn)

S∗
n(xn)

≥ min
jn

ŵ(jn)

w∗(jn)
(16.117)

= min
k

Vn(
k
n
)k(n−k

n
)n−k

b∗k(1 − b∗)n−k
(16.118)

≥ Vn, (16.119)
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where (16.117) follows from (16.109) and (16.119) follows from (16.112).
Consequently, we have

max
b̂

min
xn

Ŝn(xn)

S∗
n(xn)

≥ Vn. (16.120)

We have thus demonstrated a portfolio on the 2n possible sequences of
length n that achieves wealth Ŝn(xn) within a factor Vn of the wealth
S∗

n(xn) achieved by the best constant rebalanced portfolio in hindsight. To
complete the proof of the theorem, we show that this is the best possible,
that is, that any nonanticipating portfolio bi(xi−1) cannot do better than
a factor Vn in the worst case (i.e., for the worst choice of xn). To prove
this, we construct a set of extremal stock market sequences and show that
the performance of any nonanticipating portfolio strategy is bounded by
Vn for at least one of these sequences, proving the worst-case bound.

For each jn ∈ {1, 2}n, we define the corresponding extremal stock mar-
ket vector xn(jn) as

xi (ji) =
{

(1, 0)t if ji = 1,

(0, 1)t if ji = 2,
(16.121)

Let e1 = (1, 0)t , e2 = (0, 1)t be standard basis vectors. Let

K = {x(jn) : jn ∈ {1, 2}n, xiji
= eji

} (16.122)

be the set of extremal sequences. There are 2n such extremal sequences,
and for each sequence at each time, there is only one stock that yields
a nonzero return. The wealth invested in the other stock is lost. There-
fore, the wealth at the end of n periods for extremal sequence xn(jn)

is the product of the amounts invested in the stocks j1, j2, . . . , jn, [i.e.,
Sn(xn(jn)) = ∏

i bji
= w(jn)]. Again, we can view this as an investment

on sequences of length n, and given the 0–1 nature of the return, it is
easy to see for xn ∈ K that

∑
jn

Sn(xn(jn)) = 1. (16.123)

For any extremal sequence xn(jn) ∈ K, the best constant rebalanced port-
folio is

b∗(xn(jn)) =
(
n1(j

n)
n ,

n2(j
n)

n

)t

, (16.124)
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where n1(j
n) is the number of occurrences of 1 in the sequence jn. The

corresponding wealth at the end of n periods is

S∗
n(xn(jn)) =

(
n1(j

n)

n

)n1(jn) (
n2(j

n)

n

)n2(jn)

= ŵ(jn)

Vn

, (16.125)

from (16.116) and it therefore follows that

∑
xn∈K

S∗
n(xn) = 1

Vn

∑
jn

ŵ(jn) = 1

Vn

. (16.126)

We then have the following inequality for any portfolio sequence {bi}ni=1,
with Sn(xn) defined as in (16.104):

min
xn∈K

Sn(xn)

S∗
n(xn)

≤
∑
x̃n∈K

S∗
n(x̃n)∑

xn∈K S∗
n(xn)

Sn(x̃n)

S∗
n(x̃n)

(16.127)

=
∑
x̃n∈K

Sn(x̃n)∑
xn∈K S∗

n(xn)
(16.128)

= 1∑
xn∈K S∗

n(xn)
(16.129)

= Vn, (16.130)

where the inequality follows from the fact that the minimum is less than
the average. Thus,

max
b

min
xn∈K

Sn(xn)

S∗
n(xn)

≤ Vn. � (16.131)

The strategy described in the theorem puts mass on all sequences of
length n and is clearly dependent on n. We can recast the strategy in
incremental terms (i.e., in terms of the amount bet on stock 1 and stock
2 at time 1), then, conditional on the outcome at time 1, the amount bet
on each of the two stocks at time 2, and so on. Consider the weight
b̂i,1 assigned by the algorithm to stock 1 at time i given the previous
sequence of stock vectors xi−1. We can calculate this by summing over
all sequences jn that have a 1 in position i, giving

b̂i,1(xi−1) =
∑

j i−1∈Mi−1 ŵ(j i−11)x(j i−1)∑
j i∈Mi ŵ(j i)x(j i−1)

, (16.132)
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where

ŵ(j i) =
∑

jn:j i⊆jn

w(jn) (16.133)

is the weight put on all sequences jn that start with j i , and

x(j i−1) =
i−1∏
k=1

xkjk
(16.134)

is the return on those sequences as defined in (16.106).
Investigation of the asymptotics of Vn reveals [401, 496] that

Vn ∼
(√

2

n

)m−1

�(m/2)/
√

π (16.135)

for m assets. In particular, for m = 2 assets,

Vn ∼
√

2

πn
(16.136)

and

1

2
√

n + 1
≤ Vn ≤ 2√

n + 1
(16.137)

for all n [400]. Consequently, for m = 2 stocks, the causal portfolio strat-
egy b̂i(xi−1) given in (16.132) achieves wealth Ŝn(x

n) such that

Ŝn(x
n)

S∗
n(xn)

≥ Vn ≥ 1

2
√

n + 1
(16.138)

for all market sequences xn.

16.7.2 Horizon-Free Universal Portfolios

We describe the horizon-free strategy in terms of a weighting of different
portfolio strategies. As described earlier, each constantly rebalanced port-
folio b can be viewed as corresponding to a mutual fund that rebalances
the m assets according to b. Initially, we distribute the wealth among
these funds according to a distribution µ(b), where dµ(b) is the amount
of wealth invested in portfolios in the neighborhood db of the constantly
rebalanced portfolio b.
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Let

Sn(b, xn) =
n∏

i=1

btxi (16.139)

be the wealth generated by a constant rebalanced portfolio b on the stock
sequence xn. Recall that

S∗
n(xn) = max

b∈B
Sn(b, xn) (16.140)

is the wealth of the best constant rebalanced portfolio in hindsight.
We investigate the causal portfolio defined by

b̂i+1(xi ) =
∫
B bSi(b, xi ) dµ(b)∫
B Si(b, xi) dµ(b)

. (16.141)

We note that

b̂t
i+1(x

i)xi+1 =
∫
B btxi+1Si(b, xi) dµ(b)∫

B Si(b, xi ) dµ(b)
(16.142)

=
∫
B Si+1(b, xi+1) dµ(b)∫

B Si(b, xi ) dµ(b)
. (16.143)

Thus, the product
∏

b̂t
ixi telescopes and we see that the wealth Ŝn(xn)

resulting from this portfolio is given by

Ŝn(xn) =
n∏

i=1

b̂t
i(x

i−1)xi (16.144)

=
∫

b∈B
Sn(b, xn) dµ(b). (16.145)

There is another way to interpret (16.145). The amount given to port-
folio manager b is dµ(b), the resulting growth factor for the manager
rebalancing to b is S(b, xn), and the total wealth of this batch of invest-
ments is

Ŝn(xn) =
∫
B

Sn(b, xn) dµ(b). (16.146)

Then b̂i+1, defined in (16.141), is the performance-weighted total “buy
order” of the individual portfolio manager b.
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So far, we have not specified what distribution µ(b) we use to apportion
the initial wealth. We now use a distribution µ that puts mass on all
possible portfolios, so that we approximate the performance of the best
portfolio for the actual distribution of stock price vectors.

In the next lemma, we bound Ŝn/S
∗
n as a function of the initial wealth

distribution µ(b).

Lemma 16.7.2 Let S∗
n(xn) in 16.140 be the wealth achieved by the best

constant rebalanced portfolio and let Ŝn(xn) in (16.144) be the wealth
achieved by the universal mixed portfolio b̂(·), given by

b̂i+1(xi ) =
∫

bSi(b, xi ) dµ(b)∫
Si(b, xi ) dµ(b)

. (16.147)

Then

Ŝn(xn)

S∗
n(xn)

≥ min
jn

∫
B
∏n

i=1 bji
dµ(b)∏n

i=1 b∗
ji

. (16.148)

Proof: As before, we can write

S∗
n(xn) =

∑
jn

w∗(jn)x(jn), (16.149)

where w∗(jn) = ∏n
i=1 b∗

ji
is the amount invested on the sequence jn and

x(jn) = ∏n
i=1 xiji

is the corresponding return. Similarly, we can write

Ŝn(xn) =
∫ n∏

i=1

btxi dµ(b) (16.150)

=
∑
jn

∫ n∏
i=1

bji
xiji

dµ(b) (16.151)

=
∑
jn

ŵ(jn)x(jn), (16.152)

where ŵ(jn) = ∫ ∏n
i=1 bji

dµ(b). Now applying Lemma 16.7.1, we have

Ŝn(xn)

S∗
n(xn)

=
∑

jn ŵ(jn)x(jn)∑
jn w∗(jn)x(jn)

(16.153)

≥ min
jn

ŵ(jn)x(jn)

w∗(jn)x(jn)
(16.154)

= min
jn

∫
B
∏n

i=1 bji
dµ(b)∏n

i=1 b∗
ji

. � (16.155)
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We now apply this lemma when µ(b) is the Dirichlet(1
2 ) distribution.

Theorem 16.7.2 For the causal universal portfolio b̂i ( ), i = 1, 2, . . .,
given in (16.141), with m = 2 stocks and dµ(b) the Dirichlet(1

2 , 1
2 ) distri-

bution, we have

Ŝn(x
n)

S∗
n(x n)

≥ 1

2
√

n + 1
,

for all n and all stock sequences x n.

Proof: As in the discussion preceding (16.112), we can show that the
weight put by the best constant portfolio b∗ on the sequence jn is

n∏
i=1

b∗
ji

=
(

k

n

)k (
n − k

n

)n−k

= 2−nH(k/n), (16.156)

where k is the number of indices where ji = 1. We can also explicitly
calculate the integral in the numerator of (16.148) in Lemma 16.7.2 for
the Dirichlet( 1

2) density, defined for m variables as

dµ(b) = �(m
2 )[

�
(1

2

)]m
m∏

j=1

b
− 1

2
j db, (16.157)

where �(x) = ∫∞
0 e−t t x−1 dt denotes the gamma function. For simplicity,

we consider the case of two stocks, in which case

dµ(b) = 1

π

1√
b(1 − b)

db, 0 ≤ b ≤ 1, (16.158)

where b is the fraction of wealth invested in stock 1. Now consider any
sequence jn ∈ {1, 2}n, and consider the amount invested in that sequence,

b(jn) =
n∏

i=1

bji
= bl(1 − b)n−l, (16.159)

where l is the number of indices where ji = 1. Then
∫

b(jn) dµ(b) =
∫

bl(1 − b)n−l 1

π

1√
b(1 − b)

db (16.160)
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= 1

π

∫
bl− 1

2 (1 − b)n−l− 1
2 db (16.161)

�= 1

π
B

(
l + 1

2
, n − l + 1

2

)
, (16.162)

where B(λ1, λ2) is the beta function, defined as

B(λ1, λ2) =
∫ 1

0
xλ1−1(1 − x)λ2−1 dx (16.163)

= �(λ1)�(λ2)

�(λ1 + λ2)
(16.164)

and

�(λ) =
∫ ∞

0
xλ−1e−x dx. (16.165)

Note that for any integer n, �(n + 1) = n! and �(n + 1
2) = 1·3·5···(2n−1)

2n

√
π .

We can calculate B(l + 1
2 , n − l + 1

2) by means of simple recursion
using integration by parts. Alternatively, using (16.164), we obtain

B

(
l + 1

2
, n − l + 1

2

)
= π

22n

(
2n

n

)(
n

l

)
(

2n

2l

) . (16.166)

Combining all the results with Lemma 16.7.2, we have

Ŝn(xn)

S∗
n(xn)

≥ min
jn

∫
B
∏n

i=1 bji
dµ(b)∏n

i=1 b∗
ji

(16.167)

≥ min
l

1
π
B(l + 1

2 , n − l + 1
2)

2−nH(l/n)
(16.168)

≥ 1

2
√

n + 1
, (16.169)

using the results in [135, Theorem 2]. �

It follows for m = 2 stocks that

Ŝn

S∗
n

≥ 1√
2π

Vn (16.170)
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for all n and all market sequences x1, x2, . . . , xn. Thus, good minimax per-
formance for all n costs at most an extra factor

√
2π over the fixed horizon

minimax portfolio. The cost of universality is Vn, which is asymptotically
negligible in the growth rate in the sense that

1

n
ln Ŝn(xn) − 1

n
ln S∗

n(xn) ≥ 1

n
ln

Vn√
2π

→ 0. (16.171)

Thus, the universal causal portfolio achieves the same asymptotic growth
rate of wealth as the best hindsight portfolio.

Let’s now consider how this portfolio algorithm performs on two real
stocks. We consider a 14-year period (ending in 2004) and two stocks,
Hewlett-Packard and Altria (formerly, Phillip Morris), which are both
components of the Dow Jones Index. Over these 14 years, HP went up by
a factor of 11.8, while Altria went up by a factor of 11.5. The performance
of the different constantly rebalanced portfolios that contain HP and Altria
are shown in Figure 16.2. The best constantly rebalanced portfolio (which
can be computed only in hindsight) achieves a growth of a factor of 18.7
using a mixture of about 51% HP and 49% Altria. The universal portfolio
strategy described in this section achieves a growth factor of 15.7 without
foreknowledge.
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FIGURE 16.2. Performance of different constant rebalanced portfolios b for HP and Altria.
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16.8 SHANNON–MCMILLAN–BREIMAN THEOREM
(GENERAL AEP)

The AEP for ergodic processes has come to be known as the Shan-
non –McMillan –Breiman theorem. In Chapter 3 we proved the AEP for
i.i.d. processes. In this section we offer a proof of the theorem for a
general ergodic process. We prove the convergence of 1

n
log p(Xn) by

sandwiching it between two ergodic sequences.
In a sense, an ergodic process is the most general dependent process for

which the strong law of large numbers holds. For finite alphabet processes,
ergodicity is equivalent to the convergence of the kth-order empirical
distributions to their marginals for all k.

The technical definition requires some ideas from probability theory. To
be precise, an ergodic source is defined on a probability space (�,B, P ),
where B is a σ -algebra of subsets of � and P is a probability measure.
A random variable X is defined as a function X(ω), ω ∈ �, on the prob-
ability space. We also have a transformation T : � → �, which plays
the role of a time shift. We will say that the transformation is stationary
if P(T A) = P(A) for all A ∈ B. The transformation is called ergodic if
every set A such that T A = A, a.e., satisfies P(A) = 0 or 1. If T is station-
ary and ergodic, we say that the process defined by Xn(ω) = X(T nω) is
stationary and ergodic. For a stationary ergodic source, Birkhoff’s ergodic
theorem states that

1

n

n∑
i=1

Xi(ω) → EX =
∫

X dP with probability 1. (16.172)

Thus, the law of large numbers holds for ergodic processes.
We wish to use the ergodic theorem to conclude that

−1

n
log p(X0, X1, . . . , Xn−1) = −1

n

n−1∑
i=0

log p(Xi|Xi−1
0 )

→ lim
n→∞ E[− log p(Xn|Xn−1

0 )]. (16.173)

But the stochastic sequence p(Xi|Xi−1
0 ) is not ergodic. However, the

closely related quantities p(Xi|Xi−1
i−k) and p(Xi|Xi−1

−∞) are ergodic and
have expectations easily identified as entropy rates. We plan to sandwich
p(Xi|Xi−1

0 ) between these two more tractable processes.
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We define the kth-order entropy Hk as

Hk = E {− log p(Xk|Xk−1, Xk−2, . . . , X0)} (16.174)

= E {− log p(X0|X−1, X−2, . . . , X−k)} , (16.175)

where the last equation follows from stationarity. Recall that the entropy
rate is given by

H = lim
k→∞

Hk (16.176)

= lim
n→∞

1

n

n−1∑
k=0

Hk. (16.177)

Of course, Hk ↘ H by stationarity and the fact that conditioning does
not increase entropy. It will be crucial that Hk ↘ H = H∞, where

H∞ = E {− log p(X0|X−1, X−2, . . .)} . (16.178)

The proof that H∞ = H involves exchanging expectation and limit.
The main idea in the proof goes back to the idea of (conditional) propor-

tional gambling. A gambler receiving uniform odds with the knowledge of
the k past will have a growth rate of wealth log |X| − Hk , while a gambler
with a knowledge of the infinite past will have a growth rate of wealth
of log |X| − H∞. We don’t know the wealth growth rate of a gambler
with growing knowledge of the past Xn

0 , but it is certainly sandwiched
between log |X| − Hk and log |X| − H∞. But Hk ↘ H = H∞. Thus, the
sandwich closes and the growth rate must be log |X| − H .

We will prove the theorem based on lemmas that will follow the proof.

Theorem 16.8.1 (AEP: Shannon–McMillan–Breiman Theorem) If
H is the entropy rate of a finite-valued stationary ergodic process {Xn},
then

−1

n
log p(X0, . . . , Xn−1) → H with probability 1. (16.179)

Proof: We prove this for finite alphabet X; this proof and the proof for
countable alphabets and densities is given in Algoet and Cover [20]. We
argue that the sequence of random variables − 1

n
log p(Xn−1

0 ) is asymptot-
ically sandwiched between the upper bound Hk and the lower bound H∞
for all k ≥ 0. The AEP will follow since Hk → H∞ and H∞ = H . The
kth-order Markov approximation to the probability is defined for n ≥ k as

pk(Xn−1
0 ) = p(Xk−1

0 )

n−1∏
i=k

p(Xi|Xi−1
i−k). (16.180)
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From Lemma 16.8.3 we have

lim sup
n→∞

1

n
log

pk(Xn−1
0 )

p(Xn−1
0 )

≤ 0, (16.181)

which we rewrite, taking the existence of the limit 1
n

log pk(Xn
0) into

account (Lemma 16.8.1), as

lim sup
n→∞

1

n
log

1

p(Xn−1
0 )

≤ lim
n→∞

1

n
log

1

pk(Xn−1
0 )

= Hk (16.182)

for k = 1, 2, . . . . Also, from Lemma 16.8.3, we have

lim sup
n→∞

1

n
log

p(Xn−1
0 )

p(Xn−1
0 |X−1

−∞)
≤ 0, (16.183)

which we rewrite as

lim inf
1

n
log

1

p(Xn−1
0 )

≥ lim
1

n
log

1

p(Xn−1
0 |X−1

−∞)
= H∞ (16.184)

from the definition of H∞ in Lemma 16.8.1.
Putting together (16.182) and (16.184), we have

H∞ ≤ lim inf −1

n
log p(Xn−1

0 ) ≤ lim sup −1

n
log p(Xn−1

0 )

≤ Hk for all k. (16.185)

But by Lemma 16.8.2, Hk → H∞ = H . Consequently,

lim −1

n
log p(Xn

0) = H. � (16.186)

We now prove the lemmas that were used in the main proof. The first
lemma uses the ergodic theorem.

Lemma 16.8.1 (Markov approximations) For a stationary ergodic
stochastic process {Xn},

−1

n
log pk(Xn−1

0 ) → Hk with probability 1, (16.187)

−1

n
log p(Xn−1

0 |X−1
−∞) → H∞ with probability 1. (16.188)
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Proof: Functions Yn = f (Xn−∞) of ergodic processes {Xi} are ergodic
processes. Thus, log p(Xn|Xn−1

n−k) and log p(Xn|Xn−1, Xn−2, . . . , ) are also
ergodic processes, and

−1

n
log pk(Xn−1

0 ) = −1

n
log p(Xk−1

0 ) − 1

n

n−1∑
i=k

log p(Xi|Xi−1
i−k) (16.189)

→ 0 + Hk with probability 1, (16.190)

by the ergodic theorem. Similarly, by the ergodic theorem,

−1

n
log p(Xn−1

0 |X−1, X−2, . . .) = −1

n

n−1∑
i=0

log p(Xi |Xi−1, Xi−2, . . .)

(16.191)

→ H∞ with probability 1. � (16.192)

Lemma 16.8.2 (No gap) Hk ↘ H∞ and H = H∞.

Proof: We know that for stationary processes, Hk ↘ H , so it remains
to show that Hk ↘ H∞, thus yielding H = H∞. Levy’s martingale
convergence theorem for conditional probabilities asserts that

p(x0|X−1
−k) → p(x0|X−1

−∞) with probability 1 (16.193)

for all x0 ∈ X. Since X is finite and p log p is bounded and continuous in
p for all 0 ≤ p ≤ 1, the bounded convergence theorem allows interchange
of expectation and limit, yielding

lim
k→∞

Hk = lim
k→∞

E

{
−
∑
x0∈X

p(x0|X−1
−k) log p(x0|X−1

−k)

}
(16.194)

= E

{
−
∑
x0∈X

p(x0|X−1
−∞) log p(x0|X−1

−∞)

}
(16.195)

= H∞. (16.196)

Thus, Hk ↘ H = H∞. �
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Lemma 16.8.3 (Sandwich)

lim sup
n→∞

1

n
log

pk(Xn−1
0 )

p(Xn−1
0 )

≤ 0, (16.197)

lim sup
1

n
log

p(Xn−1
0 )

p(Xn−1
0 |X−1

−∞)
≤ 0. (16.198)

Proof: Let A be the support set of p(Xn−1
0 ). Then

E

{
pk(Xn−1

0 )

p(Xn−1
0 )

}
=

∑
xn−1

0 ∈A

p(xn−1
0 )

pk(xn−1
0 )

p(xn−1
0 )

(16.199)

=
∑

xn−1
0 ∈A

pk(xn−1
0 ) (16.200)

= pk(A) (16.201)

≤ 1. (16.202)

Similarly, let B(X−1
−∞) denote the support set of p(·|X−1

−∞). Then we have

E

{
p(Xn−1

0 )

p(Xn−1
0 |X−1

−∞)

}
= E

[
E

{
p(Xn−1

0 )

p(Xn−1
0 |X−1

−∞)

∣∣∣∣∣X−1
−∞

}]
(16.203)

= E


 ∑

xn∈B(X−1
−∞)

p(xn)

p(xn|X−1
−∞)

p(xn|X−1
−∞)


 (16.204)

= E


 ∑

xn∈B(X−1
−∞)

p(xn)


 (16.205)

≤ 1. (16.206)

By Markov’s inequality and (16.202), we have

Pr

{
pk(Xn−1

0 )

p(Xn−1
0 )

≥ tn

}
≤ 1

tn
(16.207)
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or

Pr

{
1

n
log

pk(Xn−1
0 )

p(Xn−1
0 )

≥ 1

n
log tn

}
≤ 1

tn
. (16.208)

Letting tn = n2 and noting that
∑∞

n=1
1
n2 < ∞, we see by the

Borel–Cantelli lemma that the event
{

1

n
log

pk(Xn−1
0 )

p(Xn−1
0 )

≥ 1

n
log tn

}
(16.209)

occurs only finitely often with probability 1. Thus,

lim sup
1

n
log

pk(Xn−1
0 )

p(Xn−1
0 )

≤ 0 with probability 1. (16.210)

Applying the same arguments using Markov’s inequality to (16.206), we
obtain

lim sup
1

n
log

p(Xn−1
0 )

p(Xn−1
0 |X−1

−∞)
≤ 0 with probability 1, (16.211)

proving the lemma. �

The arguments used in the proof can be extended to prove the AEP for
the stock market (Theorem 16.5.3).

SUMMARY

Growth rate. The growth rate of a stock market portfolio b with
respect to a distribution F(x) is defined as

W(b, F ) =
∫

log btx dF(x) = E
(
log btx

)
. (16.212)

Log-optimal portfolio. The optimal growth rate with respect to a dis-
tribution F(x) is

W ∗(F ) = max
b

W(b, F ). (16.213)
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The portfolio b∗ that achieves the maximum of W(b, F ) is called the
log-optimal portfolio.

Concavity. W(b, F ) is concave in b and linear in F . W ∗(F ) is convex
in F .

Optimality conditions. The portfolio b∗ is log-optimal if and only if

E

(
Xi

b∗tX

)
= 1 if b∗

i > 0,

≤ 1 if b∗
i = 0. (16.214)

Expected ratio optimality. If S∗
n = ∏n

i=1 b∗tXi , Sn = ∏n
i=1 bt

iXi , then

E
Sn

S∗
n

≤ 1 if and only if E ln
Sn

S∗
n

≤ 0. (16.215)

Growth rate (AEP)

1

n
log S∗

n → W ∗(F ) with probability 1. (16.216)

Asymptotic optimality

lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 with probability 1. (16.217)

Wrong information. Believing g when f is true loses

�W = W(b∗
f , F ) − W(b∗

g, F ) ≤ D(f ||g). (16.218)

Side information Y

�W ≤ I (X;Y). (16.219)

Chain rule

W ∗(Xi |X1, X2, . . . , Xi−1) = max
bi (x1,x2,...,xi−1)

E log bt
iXi (16.220)

W ∗(X1, X2, . . . , Xn) =
n∑

i=1

W ∗(Xi|X1, X2, . . . , Xi−1). (16.221)
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Growth rate for a stationary market.

W ∗
∞ = lim

W ∗(X1, X2, . . . , Xn)

n
(16.222)

1

n
log S∗

n → W ∗
∞. (16.223)

Competitive optimality of log-optimal portfolios.

Pr(V S ≥ U ∗S∗) ≤ 1

2
. (16.224)

Universal portfolio.

max
b̂i (·)

min
xn,b

∏n
i=1 b̂t

i(x
i−1)xi∏n

i=1 btxi

= Vn, (16.225)

where

Vn =
[ ∑

n1+···+nm=n

(
n

n1, n2, . . . , nm

)
2−nH(n1/n,...,nm/n)

]−1

. (16.226)

For m = 2,
Vn ∼

√
2/πn (16.227)

The causal universal portfolio

b̂i+1(xi) =
∫

bSi(b, xi ) dµ(b)∫
Si(b, xi ) dµ(b)

(16.228)

achieves
Ŝn(xn)

S∗
n(xn)

≥ 1

2
√

n + 1
(16.229)

for all n and all xn.

AEP. If {Xi} is stationary ergodic, then

−1

n
log p(X1, X2, . . . , Xn) → H(X) with probability 1. (16.230)
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PROBLEMS

16.1 Growth rate. Let

X =




(1, a) with probability
1

2

(1, 1/a) with probability
1

2

where a > 1. This vector X represents a stock market vector of
cash vs. a hot stock. Let

W(b, F ) = E log btX

and
W ∗ = max

b
W(b, F )

be the growth rate.
(a) Find the log optimal portfolio b∗.
(b) Find the growth rate W ∗.
(c) Find the asymptotic behavior of

Sn =
n∏

i=1

btXi

for all b.

16.2 Side information. Suppose, in Problem 16.1, that

Y =
{

1 if (X1, X2) ≥ (1, 1),

0 if (X1, X2) ≤ (1, 1).

Let the portfolio b depend on Y. Find the new growth rate W ∗∗
and verify that �W = W ∗∗ − W ∗ satisfies

�W ≤ I (X;Y).

16.3 Stock dominance. Consider a stock market vector

X = (X1, X2).

Suppose that X1 = 2 with probability 1. Thus an investment in
the first stock is doubled at the end of the day.
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(a) Find necessary and sufficient conditions on the distribution of
stock X2 such that the log-optimal portfolio b∗ invests all the
wealth in stock X2 [i.e., b∗ = (0, 1)].

(b) Argue for any distribution on X2 that the growth rate satisfies
W ∗ ≥ 1.

16.4 Including experts and mutual funds . Let X ∼ F(x), x ∈ Rm+, be
the vector of price relatives for a stock market. Suppose that an
“expert” suggests a portfolio b. This would result in a wealth
factor btX. We add this to the stock alternatives to form X̃ =
(X1, X2, . . . , Xm, btX). Show that the new growth rate,

W̃ ∗ = max
b1,...,bm,bm+1

∫
ln(bt x̃) dF (x̃), (16.231)

is equal to the old growth rate,

W ∗ = max
b1,...,bm

∫
ln(btx) dF (x). (16.232)

16.5 Growth rate for symmetric distribution. Consider a stock vec-
tor X ∼ F(x), X ∈ Rm, X ≥ 0, where the component stocks
are exchangeable. Thus, F(x1, x2, . . . , xm) = F(xσ(1), xσ(2), . . . ,

xσ(m)) for all permutations σ .
(a) Find the portfolio b∗ optimizing the growth rate and establish

its optimality. Now assume that X has been normalized so
that 1

m

∑m
i=1 Xi = 1, and F is symmetric as before.

(b) Again assuming X to be normalized, show that all symmetric
distributions F have the same growth rate against b∗.

(c) Find this growth rate.

16.6 Convexity . We are interested in the set of stock market densities
that yield the same optimal porfolio. Let Pb0 be the set of all
probability densities on Rm+ for which b0 is optimal. Thus, Pb0 =
{p(x) :

∫
ln(btx)p(x) dx is maximized by b = b0}. Show that Pb0

is a convex set. It may be helpful to use Theorem 16.2.2.

16.7 Short selling . Let

X =
{

(1, 2), p,

(1, 1
2), 1 − p.

Let B = {(b1, b2) : b1 + b2 = 1}. Thus, this set of portfolios B

does not include the constraint bi ≥ 0. (This allows short selling.)
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(a) Find the log optimal portfolio b∗(p).
(b) Relate the growth rate W ∗(p) to the entropy rate H(p).

16.8 Normalizing x. Suppose that we define the log-optimal portfolio
b∗ to be the portfolio maximizing the relative growth rate

∫
ln

btx
1
m

∑m
i=1 xi

dF (x1, . . . , xm).

The virtue of the normalization 1
m

∑
Xi , which can be viewed as

the wealth associated with a uniform portfolio, is that the relative
growth rate is finite even when the growth rate

∫
ln btxdF (x)

is not. This matters, for example, if X has a St. Petersburg-like
distribution. Thus, the log-optimal portfolio b∗ is defined for all
distributions F , even those with infinite growth rates W ∗(F ).
(a) Show that if b maximizes

∫
ln(btx) dF (x), it also maximizes∫

ln bt x
utx

dF (x), where u = ( 1
m

, 1
m

, . . . , 1
m

).
(b) Find the log optimal portfolio b∗ for

X =
{

(22k+1, 22k
), 2−(k+1),

(22k
, 22k+1), 2−(k+1),

where k = 1, 2, . . . .
(c) Find EX and W ∗.
(d) Argue that b∗ is competitively better than any portfolio b in

the sense that Pr{btX > cb∗tX} ≤ 1
c
.

16.9 Universal portfolio. We examine the first n = 2 steps of the
implementation of the universal portfolio in (16.7.2) for µ(b) uni-
form for m = 2 stocks. Let the stock vectors for days 1 and 2 be
x1 = (1, 1

2), and x2 = (1, 2). Let b = (b, 1 − b) denote a portfo-
lio.
(a) Graph S2(b) = ∏2

i=1 btxi , 0 ≤ b ≤ 1.
(b) Calculate S∗

2 = maxb S2(b).
(c) Argue that log S2(b) is concave in b.

(d) Calculate the (universal) wealth Ŝ2 = ∫ 1
0 S2(b)db.

(e) Calculate the universal portfolio at times n = 1 and n = 2:

b̂1 =
∫ 1

0
b db
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b̂2(x1) =
∫ 1

0 bS1(b) db∫ 1
0 S1(b) db

.

(f) Which of S2(b), S∗
2 , Ŝ2, b̂2 are unchanged if we permute the

order of appearance of the stock vector outcomes [i.e., if the
sequence is now (1, 2), (1, 1

2)]?

16.10 Growth optimal . Let X1, X2 ≥ 0, be price relatives of two inde-
pendent stocks. Suppose that EX1 > EX2. Do you always want
some of X1 in a growth rate optimal portfolio S(b) = bX1 + bX2?
Prove or provide a counterexample.

16.11 Cost of universality . In the discussion of finite-horizon universal
portfolios, it was shown that the loss factor due to universality is

1

Vn

=
n∑

k=0

(
n

k

)(
k

n

)k (
n − k

n

)n−k

. (16.233)

Evaluate Vn for n = 1, 2, 3.

16.12 Convex families . This problem generalizes Theorem 16.2.2. We
say that S is a convex family of random variables if S1, S2 ∈ S
implies that λS1 + (1 − λ)S2 ∈ S. Let S be a closed convex family
of random variables. Show that there is a random variable S∗ ∈ S
such that

E ln

(
S

S∗

)
≤ 0 (16.234)

for all S ∈ S if and only if

E

(
S

S∗

)
≤ 1 (16.235)

for all S ∈ S.

HISTORICAL NOTES

There is an extensive literature on the mean–variance approach to invest-
ment in the stock market. A good introduction is the book by Sharpe
[491]. Log-optimal portfolios were introduced by Kelly [308] and Latané
[346], and generalized by Breiman [75]. The bound on the increase in the
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growth rate in terms of the mutual information is due to Barron and Cover
[31]. See Samuelson [453, 454] for a criticism of log-optimal investment.

The proof of the competitive optimality of the log-optimal portfolio
is due to Bell and Cover [39, 40]. Breiman [75] investigated asymptotic
optimality for random market processes.

The AEP was introduced by Shannon. The AEP for the stock mar-
ket and the asymptotic optimality of log-optimal investment are given
in Algoet and Cover [21]. The relatively simple sandwich proof for the
AEP is due to Algoet and Cover [20]. The AEP for real-valued ergodic
processes was proved in full generality by Barron [34] and Orey [402].

The universal portfolio was defined in Cover [110] and the proof of
universality was given in Cover [110] and more exactly in Cover and
Ordentlich [135]. The fixed-horizon exact calculation of the cost of uni-
versality Vn is given in Ordentlich and Cover [401]. The quantity Vn also
appears in data compression in the work of Shtarkov [496].



CHAPTER 17

INEQUALITIES IN
INFORMATION THEORY

This chapter summarizes and reorganizes the inequalities found throughout
this book. A number of new inequalities on the entropy rates of subsets
and the relationship of entropy and Lp norms are also developed. The
intimate relationship between Fisher information and entropy is explored,
culminating in a common proof of the entropy power inequality and the
Brunn–Minkowski inequality. We also explore the parallels between the
inequalities in information theory and inequalities in other branches of
mathematics, such as matrix theory and probability theory.

17.1 BASIC INEQUALITIES OF INFORMATION THEORY

Many of the basic inequalities of information theory follow directly from
convexity.

Definition A function f is said to be convex if

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2) (17.1)

for all 0 ≤ λ ≤ 1 and all x1 and x2.

Theorem 17.1.1 (Theorem 2.6.2: Jensen’s inequality) If f is convex,
then

f (EX) ≤ Ef (X). (17.2)

Lemma 17.1.1 The function log x is concave and x log x is convex, for
0 < x < ∞.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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Theorem 17.1.2 (Theorem 2.7.1: Log sum inequality) For positive
numbers a1, a2, . . . , an and b1, b2, . . . , bn,

n∑
i=1

ai log
ai

bi

≥
(

n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

(17.3)

with equality iff ai

bi
= constant.

We recall the following properties of entropy from Section 2.1.

Definition The entropy H(X) of a discrete random variable X is de-
fined by

H(X) = −
∑

x∈Xp(x) log p(x). (17.4)

Theorem 17.1.3 (Lemma 2.1.1, Theorem 2.6.4: Entropy bound )

0 ≤ H(X) ≤ log |X|. (17.5)

Theorem 17.1.4 (Theorem 2.6.5: Conditioning reduces entropy) For
any two random variables X and Y ,

H(X|Y) ≤ H(X), (17.6)

with equality iff X and Y are independent.

Theorem 17.1.5 (Theorem 2.5.1 with Theorem 2.6.6: Chain rule)

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi |Xi−1, . . . , X1) ≤
n∑

i=1

H(Xi), (17.7)

with equality iff X1, X2, . . . , Xn are independent.

Theorem 17.1.6 (Theorem 2.7.3) H(p) is a concave function of p.

We now state some properties of relative entropy and mutual informa-
tion (Section 2.3).

Definition The relative entropy or Kullback–Leibler distance between
two probability mass functions p(x) and q(x) is defined by

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (17.8)
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Definition The mutual information between two random variables X

and Y is defined by

I (X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y)||p(x)p(y)).

(17.9)

The following basic information inequality can be used to prove many
of the other inequalities in this chapter.

Theorem 17.1.7 (Theorem 2.6.3: Information inequality) For any
two probability mass functions p and q,

D(p||q) ≥ 0 (17.10)

with equality iff p(x) = q(x) for all x ∈ X.

Corollary For any two random variables X and Y ,

I (X;Y) = D(p(x, y)||p(x)p(y)) ≥ 0 (17.11)

with equality iff p(x, y) = p(x)p(y) (i.e., X and Y are independent).

Theorem 17.1.8 (Theorem 2.7.2: Convexity of relative entropy)
D(p||q) is convex in the pair (p, q).

Theorem 17.1.9 (Theorem 2.4.1 )

I (X;Y) = H(X) − H(X|Y). (17.12)

I (X;Y) = H(Y) − H(Y |X). (17.13)

I (X;Y) = H(X) + H(Y) − H(X, Y ). (17.14)

I (X;X) = H(X). (17.15)

Theorem 17.1.10 (Section 4.4) For a Markov chain:

1. Relative entropy D(µn||µ′
n) decreases with time.

2. Relative entropy D(µn||µ) between a distribution and the stationary
distribution decreases with time.

3. Entropy H(Xn) increases if the stationary distribution is uniform.
4. The conditional entropy H(Xn|X1) increases with time for a station-

ary Markov chain.
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Theorem 17.1.11 Let X1, X2, . . . , Xn be i.i.d. ∼ p(x). Let p̂n be the
empirical probability mass function of X1, X2, . . . , Xn. Then

ED(p̂n||p) ≤ ED(p̂n−1||p). (17.16)

17.2 DIFFERENTIAL ENTROPY

We now review some of the basic properties of differential entropy
(Section 8.1).

Definition The differential entropy h(X1, X2, . . . , Xn), sometimes writ-
ten h(f ), is defined by

h(X1, X2, . . . , Xn) = −
∫

f (x) log f (x) dx. (17.17)

The differential entropy for many common densities is given in
Table 17.1.

Definition The relative entropy between probability densities f and
g is

D(f ||g) =
∫

f (x) log (f (x)/g(x)) dx. (17.18)

The properties of the continuous version of relative entropy are iden-
tical to the discrete version. Differential entropy, on the other hand, has
some properties that differ from those of discrete entropy. For example,
differential entropy may be negative.

We now restate some of the theorems that continue to hold for differ-
ential entropy.

Theorem 17.2.1 (Theorem 8.6.1: Conditioning reduces entropy)
h(X|Y) ≤ h(X), with equality iff X and Y are independent.

Theorem 17.2.2 (Theorem 8.6.2: Chain rule)

h(X1, X2, . . . , Xn) =
n∑

i=1

h(Xi |Xi−1, Xi−2, . . . , X1) ≤
n∑

i=1

h(Xi)

(17.19)
with equality iff X1, X2, . . . , Xn are independent.

Lemma 17.2.1 If X and Y are independent, then h(X + Y) ≥ h(X).

Proof: h(X + Y) ≥ h(X + Y |Y) = h(X|Y) = h(X). �
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TABLE 17.1 Differential Entropiesa

Distribution

Name Density Entropy (nats)

f (x) = xp−1(1 − x)q−1

B(p, q)
, ln B(p, q) − (p − 1)

Beta ×[ψ(p) − ψ(p + q)]
0 ≤ x ≤ 1, p, q > 0 −(q − 1)[ψ(q) − ψ(p + q)]

f (x) = λ

π

1

λ2 + x2
,

Cauchy ln(4πλ)

−∞ < x < ∞, λ > 0

f (x) = 2

2n/2σn�(n/2)
xn−1e

− x2

2σ2 ,

Chi ln
σ�(n/2)√

2
− n − 1

2
ψ

(n

2

)
+ n

2x > 0, n > 0

f (x) = 1

2n/2σn�(n/2)
x

n
2 − 1

e
− x

2σ2 ,
ln 2σ 2�

(n

2

)
Chi-squared

x > 0, n > 0
−

(
1 − n

2

)
ψ

(n

2

)
+ n

2

f (x) = βn

(n − 1)!
xn−1e−βx,

Erlang (1 − n)ψ(n) + ln
�(n)

β
+ n

x, β > 0, n > 0

Exponential f (x) = 1

λ
e
− x

λ , x, λ > 0 1 + ln λ

f (x) = n

n1
2

1 n

n2
2

2

B(
n1
2 ,

n2
2 )

× x
(
n1
2 ) − 1

(n2 + n1x)
n1+n2

2

,

ln
n1

n2
B

(n1

2
,
n2

2

)

x > 0, n1, n2 > 0

F + (
1 − n1

2

)
ψ

(n1

2

)

−
(

1 − n2

2

)
ψ

(n2

2

)

+n1 + n2

2
ψ

(
n1 + n2

2

)

Gamma f (x) = xα−1e
− x

β

βα�(α)
, x, α, β > 0 ln(β�(α)) + (1 − α)ψ(α) + α

f (x) = 1

2λ
e
− |x−θ |

λ ,

Laplace 1 + ln 2λ
−∞ < x, θ < ∞, λ > 0

f (x) = e−x

(1+e−x )2
,

Logistic 2
−∞ < x < ∞
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TABLE 17.1 (continued )
Distribution

Name Density Entropy (nats)

f (x) = 1
σx

√
2π

e
− ln(x−m)2

2σ2 ,

Lognormal m + 1
2 ln(2πeσ 2)

x > 0,−∞ < m < ∞, σ > 0

Maxwell– f (x) = 4π− 1
2 β

3
2 x2e−βx2

,

Boltzmann
1

2
ln

π

β
+ γ − 1

2x, β > 0

f (x) = 1√
2πσ 2

e
− (x−µ)2

2σ2 ,

Normal
1

2
ln(2πeσ 2)

−∞ < x,µ < ∞, σ > 0

Generalized f (x) = 2β
α
2

�(α
2 )

xα−1e−βx2
,

normal ln
�(α

2 )

2β
1
2

− α − 1

2
ψ

(α

2

)
+ α

2
x, α, β > 0

Pareto f (x) = aka

xa+1
, x ≥ k > 0, a > 0 ln

k

a
+ 1 + 1

a

Rayleigh f (x) = x

b2
e
− x2

2b2 , x, b > 0 1 + ln
β√
2

+ γ

2

f (x) = (1 + x2/n)−(n+1)/2

√
nB( 1

2 , n
2 )

,
n + 1

2
ψ

(
n + 1

2

)
− ψ

(n

2

)
Student’s t

−∞ < x < ∞, n > 0 + ln
√

nB

(
1

2
,
n

2

)

Triangular f (x) =




2x

a
, 0 ≤ x ≤ a

2(1 − x)

1 − a
, a ≤ x ≤ 1

1

2
− ln 2

Uniform f (x) = 1

β − α
, α ≤ x ≤ β ln(β − α)

Weibull f (x) = c

α
xc−1e

− xc

α , x, c, α > 0
(c − 1)γ

c
+ ln

α
1
c

c
+ 1

a All entropies are in nats; �(z) = ∫ ∞
0 e−t t z−1 dt ; ψ(z) = d

dz
ln �(z); γ = Euler’s constant =

0.57721566 . . . .
Source: Lazo and Rathie [543].
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Theorem 17.2.3 (Theorem 8.6.5) Let the random vector X ∈ Rn have
zero mean and covariance K = EXXt (i.e., Kij = EXiXj , 1 ≤ i, j ≤ n).
Then

h(X) ≤ 1

2
log(2πe)n|K| (17.20)

with equality iff X ∼ N(0, K).

17.3 BOUNDS ON ENTROPY AND RELATIVE ENTROPY

In this section we revisit some of the bounds on the entropy function. The
most useful is Fano’s inequality, which is used to bound away from zero
the probability of error of the best decoder for a communication channel
at rates above capacity.

Theorem 17.3.1 (Theorem 2.10.1: Fano’s inequality) Given two ran-
dom variables X and Y , let X̂ = g(Y ) be any estimator of X given Y and
let Pe = Pr(X �= X̂) be the probability of error. Then

H(Pe) + Pe log |X| ≥ H(X|X̂) ≥ H(X|Y). (17.21)

Consequently, if H(X|Y) > 0, then Pe > 0.

A similar result is given in the following lemma.

Lemma 17.3.1 (Lemma 2.10.1) If X and X′ are i.i.d. with entropy
H(X)

Pr(X = X′) ≥ 2−H(X) (17.22)

with equality if and only if X has a uniform distribution.

The continuous analog of Fano’s inequality bounds the mean-squared
error of an estimator.

Theorem 17.3.2 (Theorem 8.6.6 ) Let X be a random variable with
differential entropy h(X). Let X̂ be an estimate of X, and let E(X − X̂)2

be the expected prediction error. Then

E(X − X̂)2 ≥ 1

2πe
e2h(X). (17.23)

Given side information Y and estimator X̂(Y ),

E(X − X̂(Y ))2 ≥ 1

2πe
e2h(X|Y). (17.24)
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Theorem 17.3.3 (L1 bound on entropy) Let p and q be two proba-
bility mass functions on X such that

||p − q||1 =
∑
x∈X

|p(x) − q(x)| ≤ 1

2
. (17.25)

Then

|H(p) − H(q)| ≤ −||p − q||1 log
||p − q||1

|X| . (17.26)

Proof: Consider the function f (t) = −t log t shown in Figure 17.1. It
can be verified by differentiation that the function f (·) is concave. Also,
f (0) = f (1) = 0. Hence the function is positive between 0 and 1. Con-
sider the chord of the function from t to t + ν (where ν ≤ 1

2). The
maximum absolute slope of the chord is at either end (when t = 0 or
1 − ν). Hence for 0 ≤ t ≤ 1 − ν, we have

|f (t) − f (t + ν)| ≤ max{f (ν), f (1 − ν)} = −ν log ν. (17.27)

Let r(x) = |p(x) − q(x)|. Then

|H(p) − H(q)| =
∣∣∣∣∣
∑
x∈X

(−p(x) log p(x) + q(x) log q(x))

∣∣∣∣∣ (17.28)

≤
∑
x∈X

|(−p(x) log p(x) + q(x) log q(x))| (17.29)
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FIGURE 17.1. Function f (t) = −t ln t .



17.4 INEQUALITIES FOR TYPES 665

≤
∑
x∈X

−r(x) log r(x) (17.30)

= ||p − q||1
∑
x∈X

− r(x)

||p − q||1 log
r(x)

||p − q||1 ||p − q||1 (17.31)

= −||p − q||1 log ||p − q||1 + ||p − q||1H
(

r(x)

||p − q||1

)
(17.32)

≤ −||p − q||1 log ||p − q||1 + ||p − q||1 log |X|, (17.33)

where (17.30) follows from (17.27). �

Finally, relative entropy is stronger than the L1 norm in the following
sense:

Lemma 17.3.2 (Lemma 11.6.1)

D(p1||p2) ≥ 1

2 ln 2
||p1 − p2||21. (17.34)

The relative entropy between two probability mass functions P(x) and
Q(x) is zero when P = Q. Around this point, the relative entropy has
a quadratic behavior, and the first term in the Taylor series expansion of
the relative entropy D(P ||Q) around the point P = Q is the chi-squared
distance between the distributions P and Q. Let

χ2(P,Q) =
∑

x

(P (x) − Q(x))2

Q(x)
. (17.35)

Lemma 17.3.3 For P near Q,

D(P ‖ Q) = 1

2
χ2 + · · · . (17.36)

Proof: See Problem 11.2. �

17.4 INEQUALITIES FOR TYPES

The method of types is a powerful tool for proving results in large devi-
ation theory and error exponents. We repeat the basic theorems.

Theorem 17.4.1 (Theorem 11.1.1) The number of types with denom-
inator n is bounded by

|Pn| ≤ (n + 1)|X |. (17.37)
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Theorem 17.4.2 (Theorem 11.1.2) If X1, X2, . . . , Xn are drawn i.i.d.
according to Q(x), the probability of xn depends only on its type and is
given by

Qn(xn) = 2−n(H(Pxn)+D(Pxn ||Q)). (17.38)

Theorem 17.4.3 (Theorem 11.1.3: Size of a type class T (P )) For any
type P ∈ Pn,

1

(n + 1)|X | 2
nH(P ) ≤ |T (P )| ≤ 2nH(P ). (17.39)

Theorem 17.4.4 (Theorem 11.1.4) For any P ∈ Pn and any distribu-
tion Q, the probability of the type class T (P ) under Qn is 2−nD(P ||Q) to
first order in the exponent. More precisely,

1

(n + 1)|X | 2
−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q). (17.40)

17.5 COMBINATORIAL BOUNDS ON ENTROPY

We give tight bounds on the size of
(
n
k

)
when k is not 0 or n using the

result of Wozencraft and Reiffen [568]:

Lemma 17.5.1 For 0 < p < 1, q = 1 − p, such that np is an integer,

1√
8npq

≤
(

n

np

)
2−nH(p) ≤ 1√

πnpq
. (17.41)

Proof: We begin with a strong form of Stirling’s approximation [208],
which states that

√
2πn

(n

e

)n ≤ n! ≤
√

2πn
(n

e

)n

e
1

12n . (17.42)

Applying this to find an upper bound, we obtain

(
n

np

)
≤

√
2πn(n

e
)ne

1
12n

√
2πnp(

np

e
)np

√
2πnq(

nq

e
)nq

(17.43)

= 1√
2πnpq

1

pnpqnq
e

1
12n (17.44)
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<
1√

πnpq
2nH(p), (17.45)

since e
1

12n < e
1
12 = 1.087 <

√
2, hence proving the upper bound.

The lower bound is obtained similarly. Using Stirling’s formula, we
obtain

(
n

np

)
≥

√
2πn(n

e
)ne

−
(

1
12np

+ 1
12nq

)
√

2πnp(
np

e
)np

√
2πnq(

nq

e
)nq

(17.46)

= 1√
2πnpq

1

pnpqnq
e
−
(

1
12np

+ 1
12nq

)
(17.47)

= 1√
2πnpq

2nH(p) e
−
(

1
12np

+ 1
12nq

)
. (17.48)

If np ≥ 1, and nq ≥ 3, then

e
−
(

1
12np

+ 1
12nq

)
≥ e− 1

9 = 0.8948 >

√
π

2
= 0.8862, (17.49)

and the lower bound follows directly from substituting this into the equa-
tion. The exceptions to this condition are the cases where np = 1, nq = 1
or 2, and np = 2, nq = 2 (the case when np ≥ 3, nq = 1 or 2 can be
handled by flipping the roles of p and q). In each of these cases

np = 1, nq = 1 → n = 2, p = 1
2 ,

(
n
np

) = 2, bound = 2

np = 1, nq = 2 → n = 3, p = 1
3 ,

(
n
np

) = 3, bound = 2.92

np = 2, nq = 2 → n = 4, p = 1
2 ,

(
n
np

) = 6, bound = 5.66.

Thus, even in these special cases, the bound is valid, and hence the lower
bound is valid for all p �= 0, 1. Note that the lower bound blows up when
p = 0 or p = 1, and is therefore not valid. �

17.6 ENTROPY RATES OF SUBSETS

We now generalize the chain rule for differential entropy. The chain rule
provides a bound on the entropy rate of a collection of random variables
in terms of the entropy of each random variable:

h(X1, X2, . . . , Xn) ≤
n∑

i=1

h(Xi). (17.50)
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We extend this to show that the entropy per element of a subset of a set of
random variables decreases as the size of the subset increases. This is not
true for each subset but is true on the average over subsets, as expressed
in Theorem 17.6.1.

Definition Let (X1, X2, . . . , Xn) have a density, and for every S ⊆
{1, 2, . . . , n}, denote by X(S) the subset {Xi : i ∈ S). Let

h
(n)
k = 1(

n
k

) ∑
S: |S|=k

h(X(S))

k
. (17.51)

Here h
(n)
k is the average entropy in bits per symbol of a randomly drawn

k-element subset of {X1, X2, . . . , Xn}.
The following theorem by Han [270] says that the average entropy

decreases monotonically in the size of the subset.

Theorem 17.6.1

h
(n)
1 ≥ h

(n)
2 ≥ · · · ≥ h(n)

n . (17.52)

Proof: We first prove the last inequality, h
(n)
n ≤ h

(n)
n−1. We write

h(X1, X2, . . . , Xn) = h(X1, X2, . . . , Xn−1)+h(Xn|X1, X2, . . . , Xn−1),

h(X1, X2, . . . , Xn) = h(X1, X2, . . . , Xn−2, Xn)

+ h(Xn−1|X1, X2, . . . , Xn−2, Xn),

≤ h(X1, X2, . . . , Xn−2, Xn)

+ h(Xn−1|X1, X2, . . . , Xn−2),
...

h(X1, X2, . . . , Xn) ≤ h(X2, X3, . . . , Xn) + h(X1).

Adding these n inequalities and using the chain rule, we obtain

n h(X1, X2, . . . , Xn) ≤
n∑

i=1

h(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn)

+ h(X1, X2, . . . , Xn) (17.53)

or
1

n
h(X1, X2, . . . , Xn) ≤ 1

n

n∑
i=1

h(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn)

n − 1
,

(17.54)



17.6 ENTROPY RATES OF SUBSETS 669

which is the desired result h
(n)
n ≤ h

(n)
n−1. We now prove that h

(n)
k ≤ h

(n)
k−1

for all k ≤ n by first conditioning on a k-element subset, and then taking
a uniform choice over its (k − 1)-element subsets. For each k-element
subset, h

(k)
k ≤ h

(k)
k−1, and hence the inequality remains true after taking

the expectation over all k-element subsets chosen uniformly from the n

elements. �

Theorem 17.6.2 Let r > 0, and define

t
(n)
k = 1(

n
k

) ∑
S: |S|=k

e
r h(X(S))

k . (17.55)

Then

t
(n)
1 ≥ t

(n)
2 ≥ · · · ≥ t (n)

n . (17.56)

Proof: Starting from (17.54), we multiply both sides by r , exponentiate,
and then apply the arithmetic mean geometric mean inequality, to obtain

e
1
n
rh(X1, X2, . . . , Xn)

≤ e
1
n

∑n
i=1

rh(X1,X2,...,Xi−1,Xi+1,...,Xn)

(n−1) (17.57)

≤ 1

n

n∑
i=1

e
rh(X1,X2,...,Xi−1,Xi+1,...,Xn)

(n−1) for all r ≥ 0, (17.58)

which is equivalent to t
(n)
n ≤ t

(n)
n−1. Now we use the same arguments as

in Theorem 17.6.1, taking an average over all subsets to prove the result
that for all k ≤ n, t

(n)
k ≤ t

(n)
k−1. �

Definition The average conditional entropy rate per element for all
subsets of size k is the average of the above quantities for k-element
subsets of {1, 2, . . . , n}:

g
(n)
k = 1(

n
k

) ∑
S:|S|=k

h(X(S)|X(Sc))

k
. (17.59)

Here gk(S) is the entropy per element of the set S conditional on the
elements of the set Sc. When the size of the set S increases, one can
expect a greater dependence among the elements of the set S, which
explains Theorem 17.6.1.
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In the case of the conditional entropy per element, as k increases, the
size of the conditioning set Sc decreases and the entropy of the set S

increases. The increase in entropy per element due to the decrease in
conditioning dominates the decrease due to additional dependence among
the elements, as can be seen from the following theorem due to Han [270].
Note that the conditional entropy ordering in the following theorem is the
reverse of the unconditional entropy ordering in Theorem 17.6.1.

Theorem 17.6.3

g
(n)
1 ≤ g

(n)
2 ≤ · · · ≤ g(n)

n . (17.60)

Proof: The proof proceeds on lines very similar to the proof of the
theorem for the unconditional entropy per element for a random subset.
We first prove that g

(n)
n ≥ g

(n)
n−1 and then use this to prove the rest of

the inequalities. By the chain rule, the entropy of a collection of random
variables is less than the sum of the entropies:

h(X1, X2, . . . , Xn) ≤
n∑

i=1

h(Xi). (17.61)

Subtracting both sides of this inequality from nh(X1, X2, . . . , Xn), we
have

(n − 1)h(X1, X2, . . . , Xn) ≥
n∑

i=1

(h(X1, X2, . . . , Xn) − h(Xi)) (17.62)

=
n∑

i=1

h(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi).

(17.63)
Dividing this by n(n − 1), we obtain

h(X1, X2, . . . , Xn)

n
≥ 1

n

n∑
i=1

h(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn|Xi)

n − 1
,

(17.64)
which is equivalent to g

(n)
n ≥ g

(n)
n−1. We now prove that g

(n)
k ≥ g

(n)
k−1 for

all k ≤ n by first conditioning on a k-element subset and then taking
a uniform choice over its (k − 1)-element subsets. For each k-element
subset, g

(k)
k ≥ g

(k)
k−1, and hence the inequality remains true after taking

the expectation over all k-element subsets chosen uniformly from the n

elements. �
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Theorem 17.6.4 Let

f
(n)
k = 1(

n
k

) ∑
S:|S|=k

I (X(S);X(Sc))

k
. (17.65)

Then

f
(n)
1 ≥ f

(n)
2 ≥ · · · ≥ f (n)

n . (17.66)

Proof: The theorem follows from the identity I (X(S);X(Sc)) =
h(X(S)) − h(X(S)|X(Sc)) and Theorems 17.6.1 and 17.6.3. �

17.7 ENTROPY AND FISHER INFORMATION

The differential entropy of a random variable is a measure of its descriptive
complexity. The Fisher information is a measure of the minimum error
in estimating a parameter of a distribution. In this section we derive a
relationship between these two fundamental quantities and use this to
derive the entropy power inequality.

Let X be any random variable with density f (x). We introduce a loca-
tion parameter θ and write the density in a parametric form as f (x − θ).
The Fisher information (Section 11.10) with respect to θ is given by

J (θ) =
∫ ∞

−∞
f (x − θ)

[
∂

∂θ
ln f (x − θ)

]2

dx. (17.67)

In this case, differentiation with respect to x is equivalent to differentiation
with respect to θ . So we can write the Fisher information as

J (X) =
∫ ∞

−∞
f (x − θ)

[
∂

∂x
ln f (x − θ)

]2

dx

=
∫ ∞

−∞
f (x)

[
∂

∂x
ln f (x)

]2

dx, (17.68)

which we can rewrite as

J (X) =
∫ ∞

−∞
f (x)

[
∂
∂x

f (x)

f (x)

]2

dx. (17.69)

We will call this the Fisher information of the distribution of X. Notice
that like entropy, it is a function of the density.

The importance of Fisher information is illustrated in the following
theorem.
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Theorem 17.7.1 (Theorem 11.10.1: Cramér–Rao inequality) The
mean-squared error of any unbiased estimator T (X) of the parameter θ is
lower bounded by the reciprocal of the Fisher information:

var(T ) ≥ 1

J (θ)
. (17.70)

We now prove a fundamental relationship between the differential
entropy and the Fisher information:

Theorem 17.7.2 (de Bruijn’s identity: entropy and Fisher information)
Let X be any random variable with a finite variance with a density f (x).

Let Z be an independent normally distributed random variable with zero
mean and unit variance. Then

∂

∂t
he(X + √

tZ) = 1

2
J (X + √

tZ), (17.71)

where he is the differential entropy to base e. In particular, if the limit
exists as t → 0,

∂

∂t
he(X + √

tZ)

∣∣∣∣
t=0

= 1

2
J (X). (17.72)

Proof: Let Yt = X + √
tZ. Then the density of Yt is

gt (y) =
∫ ∞

−∞
f (x)

1√
2πt

e
− (y−x)2

2t dx. (17.73)

Then

∂

∂t
gt (y) =

∫ ∞

−∞
f (x)

∂

∂t

[
1√
2πt

e
− (y−x)2

2t

]
dx (17.74)

=
∫ ∞

−∞
f (x)

[
− 1

2t

1√
2πt

e
− (y−x)2

2t

+(y − x)2

2t2

1√
2πt

e
− (y−x)2

2t

]
dx. (17.75)

We also calculate

∂

∂y
gt (y) =

∫ ∞

−∞
f (x)

1√
2πt

∂

∂y

[
e
− (y−x)2

2t

]
dx (17.76)

=
∫ ∞

−∞
f (x)

1√
2πt

[
−y − x

t
e
− (y−x)2

2t

]
dx (17.77)
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and

∂2

∂y2
gt (y) =

∫ ∞

−∞
f (x)

1√
2πt

∂

∂y

[
−y − x

t
e
− (y−x)2

2t

]
dx (17.78)

=
∫ ∞

−∞
f (x)

1√
2πt

[
−1

t
e
− (y−x)2

2t + (y − x)2

t2
e
− (y−x)2

2t

]
dx.

(17.79)

Thus,

∂

∂t
gt (y) = 1

2

∂2

∂y2
gt(y). (17.80)

We will use this relationship to calculate the derivative of the entropy of
Yt , where the entropy is given by

he(Yt ) = −
∫ ∞

−∞
gt (y) ln gt (y) dy. (17.81)

Differentiating, we obtain

∂

∂t
he(Yt) = −

∫ ∞

−∞

∂

∂t
gt (y) dy −

∫ ∞

−∞

∂

∂t
gt (y) ln gt(y) dy (17.82)

= − ∂

∂t

∫ ∞

−∞
gt(y) dy − 1

2

∫ ∞

−∞

∂2

∂y2
gt(y) ln gt(y) dy. (17.83)

The first term is zero since
∫

gt(y) dy = 1. The second term can be inte-
grated by parts to obtain

∂

∂t
he(Yt ) = −1

2

[
∂gt (y)

∂y
ln gt(y)

]∞

−∞
+ 1

2

∫ ∞

−∞

[
∂

∂y
gt (y)

]2 1

gt (y)
dy.

(17.84)

The second term in (17.84) is 1
2J (Yt ). So the proof will be complete if

we show that the first term in (17.84) is zero. We can rewrite the first
term as

∂gt (y)

∂y
ln gt(y) =

[
∂gt (y)

∂y√
gt(y)

][
2
√

gt(y) ln
√

gt(y)
]
. (17.85)

The square of the first factor integrates to the Fisher information and
hence must be bounded as y → ±∞. The second factor goes to zero since
x ln x → 0 as x → 0 and gt(y) → 0 as y → ±∞. Hence, the first term in
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(17.84) goes to 0 at both limits and the theorem is proved. In the proof, we
have exchanged integration and differentiation in (17.74), (17.76), (17.78),
and (17.82). Strict justification of these exchanges requires the application
of the bounded convergence and mean value theorems; the details may
be found in Barron [30]. �

This theorem can be used to prove the entropy power inequality, which
gives a lower bound on the entropy of a sum of independent random
variables.

Theorem 17.7.3 (Entropy power inequality) If X and Y are indepen-
dent random n-vectors with densities, then

2
2
n
h(X + Y) ≥ 2

2
n
h(X) + 2

2
n
h(Y)

. (17.86)

We outline the basic steps in the proof due to Stam [505] and Blachman
[61]. A different proof is given in Section 17.8.

Stam’s proof of the entropy power inequality is based on a perturbation
argument. Let n = 1. Let Xt = X + √

f (t)Z1, Yt = Y + √
g(t)Z2, where

Z1 and Z2 are independent N(0, 1) random variables. Then the entropy
power inequality for n = 1 reduces to showing that s(0) ≤ 1, where we
define

s(t) = 22h(Xt ) + 22h(Yt )

22h(Xt+Yt )
. (17.87)

If f (t) → ∞ and g(t) → ∞ as t → ∞, it is easy to show that s(∞) = 1.
If, in addition, s ′(t) ≥ 0 for t ≥ 0, this implies that s(0) ≤ 1. The proof
of the fact that s ′(t) ≥ 0 involves a clever choice of the functions f (t)

and g(t), an application of Theorem 17.7.2 and the use of a convolution
inequality for Fisher information,

1

J (X + Y)
≥ 1

J (X)
+ 1

J (Y )
. (17.88)

The entropy power inequality can be extended to the vector case by
induction. The details may be found in the papers by Stam [505] and
Blachman [61].

17.8 ENTROPY POWER INEQUALITY AND
BRUNN–MINKOWSKI INEQUALITY

The entropy power inequality provides a lower bound on the differential
entropy of a sum of two independent random vectors in terms of their
individual differential entropies. In this section we restate and outline an
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alternative proof of the entropy power inequality. We also show how the
entropy power inequality and the Brunn–Minkowski inequality are related
by means of a common proof.

We can rewrite the entropy power inequality for dimension n = 1 in
a form that emphasizes its relationship to the normal distribution. Let
X and Y be two independent random variables with densities, and let
X′ and Y ′ be independent normals with the same entropy as X and
Y , respectively. Then 22h(X) = 22h(X′) = (2πe)σ 2

X′ and similarly, 22h(Y ) =
(2πe)σ 2

Y ′ . Hence the entropy power inequality can be rewritten as

22h(X+Y) ≥ (2πe)(σ 2
X′ + σ 2

Y ′) = 22h(X′+Y ′), (17.89)

since X′ and Y ′ are independent. Thus, we have a new statement of the
entropy power inequality.

Theorem 17.8.1 (Restatement of the entropy power inequality) For
two independent random variables X and Y ,

h(X + Y) ≥ h(X′ + Y ′), (17.90)

where X′ and Y ′ are independent normal random variables with h(X′) =
h(X) and h(Y ′) = h(Y ).

This form of the entropy power inequality bears a striking resemblance
to the Brunn–Minkowski inequality, which bounds the volume of set
sums.

Definition The set sum A + B of two sets A, B ⊂ Rn is defined as the
set {x + y : x ∈ A, y ∈ B}.
Example 17.8.1 The set sum of two spheres of radius 1 is a sphere of
radius 2.

Theorem 17.8.2 (Brunn–Minkowski inequality) The volume of the set
sum of two sets A and B is greater than the volume of the set sum of two
spheres A′ and B ′ with the same volume as A and B, respectively:

V (A + B) ≥ V (A′ + B ′), (17.91)

where A′ and B ′ are spheres with V (A′) = V (A) and V (B ′) = V (B).

The similarity between the two theorems was pointed out in [104].
A common proof was found by Dembo [162] and Lieb, starting from a
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strengthened version of Young’s inequality. The same proof can be used to
prove a range of inequalities which includes the entropy power inequality
and the Brunn–Minkowski inequality as special cases. We begin with a
few definitions.

Definition Let f and g be two densities over Rn and let f ∗ g denote
the convolution of the two densities. Let the Lr norm of the density be
defined by

||f ||r =
(∫

f r(x) dx

) 1
r

. (17.92)

Lemma 17.8.1 (Strengthened Young’s inequality) For any two densi-
ties f and g over Rn,

||f ∗ g||r ≤
(

CpCq

Cr

)n
2 ||f ||p||g||q , (17.93)

where
1

r
= 1

p
+ 1

q
− 1 (17.94)

and

Cp = p
1
p

p′ 1
p′

,
1

p
+ 1

p′ = 1. (17.95)

Proof: The proof of this inequality may be found in [38] and [73]. �

We define a generalization of the entropy.

Definition The Renyi entropy hr(X) of order r is defined as

hr(X) = 1

1 − r
log

[∫
f r(x) dx

]
(17.96)

for 0 < r < ∞, r �= 1. If we take the limit as r → 1, we obtain the Shan-
non entropy function,

h(X) = h1(X) = −
∫

f (x) log f (x) dx. (17.97)

If we take the limit as r → 0, we obtain the logarithm of the volume of
the support set,

h0(X) = log (µ{x : f (x) > 0}) . (17.98)
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Thus, the zeroth-order Renyi entropy gives the logarithm of the measure
of the support set of the density f , and the Shannon entropy h1 gives the
logarithm of the size of the “effective” support set (Theorem 8.2.2). We
now define the equivalent of the entropy power for Renyi entropies.

Definition The Renyi entropy power Vr(X) of order r is defined as

Vr(X) =




[∫
f r(x) dx

]− 2
n

r ′
r , 0 < r ≤ ∞ , r �= 1 , 1

r
+ 1

r ′ = 1
exp [ 2

n
h(X)], r = 1

µ({x : f (x) > 0})
2
n , r = 0

(17.99)

Theorem 17.8.3 For two independent random variables X and Y and
any 0 ≤ r < ∞ and any 0 ≤ λ ≤ 1, we have

log Vr(X + Y) ≥ λ log Vp(X) + (1 − λ) log Vq(Y ) + H(λ)

+1+r
1−r

[
H

(
r+λ(1−r)

1+r

)
− H

(
r

1+r

)]
, (17.100)

where p = r
(r+λ(1−r))

, q = r
(r+(1−λ)(1−r))

and H(λ) = −λ log λ − (1 − λ)

log(1 − λ).

Proof: If we take the logarithm of Young’s inequality (17.93), we obtain

1

r ′ log Vr(X + Y) ≥ 1

p′ log Vp(X) + 1

q ′ log Vq(Y ) + log Cr

− log Cp − log Cq. (17.101)

Setting λ = r ′/p′ and using (17.94), we have 1 − λ = r ′/q ′, p = r
r+λ(1−r)

and q = r
r+(1−λ)(1−r)

. Thus, (17.101) becomes

log Vr(X + Y) ≥ λ log Vp(X) + (1 − λ) log Vq(Y ) + r ′

r
log r − log r ′

− r ′

p
log p + r ′

p′ log p′ − r ′

q
log q + r ′

q ′ log q ′

(17.102)

= λ log Vp(X) + (1 − λ) log Vq(Y )

+ r ′

r
log r − (λ + 1 − λ) log r ′

− r ′

p
log p + λ log p′ − r ′

q
log q + (1 − λ) log q ′

(17.103)
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= λ log Vp(X) + (1 − λ) log Vq(Y ) + 1

r − 1
log r + H(λ)

− r + λ(1 − r)

r − 1
log

r

r + λ(1 − r)

− r + (1 − λ)(1 − r)

r − 1
log

r

r + (1 − λ)(1 − r)
(17.104)

= λ log Vp(X) + (1 − λ) log Vq(Y ) + H(λ)

+ 1 + r

1 − r

[
H

(
r + λ(1 − r)

1 + r

)
− H

(
r

1 + r

)]
,

(17.105)

where the details of the algebra for the last step are omitted. �
The Brunn–Minkowski inequality and the entropy power inequality

can then be obtained as special cases of this theorem.

• The entropy power inequality. Taking the limit of (17.100) as r → 1
and setting

λ = V1(X)

V1(X) + V1(Y )
, (17.106)

we obtain
V1(X + Y) ≥ V1(X) + V1(Y ), (17.107)

which is the entropy power inequality.
• The Brunn–Minkowski inequality. Similarly, letting r → 0 and choos-

ing

λ =
√

V0(X)√
V0(X) + √

V0(Y )
, (17.108)

we obtain √
V0(X + Y) ≥

√
V0(X) +

√
V0(Y ). (17.109)

Now let A be the support set of X and B be the support set of Y .
Then A + B is the support set of X + Y , and (17.109) reduces to

[µ(A + B)]
1
n ≥ [µ(A)]

1
n + [µ(B)]

1
n , (17.110)

which is the Brunn–Minkowski inequality.
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The general theorem unifies the entropy power inequality and the
Brunn–Minkowski inequality and introduces a continuum of new
inequalities that lie between the entropy power inequality and the
Brunn–Minkowski inequality. This further strengthens the analogy
between entropy power and volume.

17.9 INEQUALITIES FOR DETERMINANTS

Throughout the remainder of this chapter, we assume that K is a nonneg-
ative definite symmetric n × n matrix. Let |K| denote the determinant of
K .

We first give an information-theoretic proof of a result due to Ky Fan
[199].

Theorem 17.9.1 log |K| is concave.

Proof: Let X1 and X2 be normally distributed n-vectors, Xi ∼ N(0, Ki),
i = 1, 2. Let the random variable θ have the distribution

Pr{θ = 1} = λ, (17.111)

Pr{θ = 2} = 1 − λ (17.112)

for some 0 ≤ λ ≤ 1. Let θ , X1, and X2 be independent, and let Z =
Xθ . Then Z has covariance KZ = λK1 + (1 − λ)K2. However, Z will
not be multivariate normal. By first using Theorem 17.2.3, followed by
Theorem 17.2.1, we have

1

2
log(2πe)n|λK1 + (1 − λ)K2| ≥ h(Z) (17.113)

≥ h(Z|θ) (17.114)

= λ
1

2
log(2πe)n|K1|

+ (1 − λ)
1

2
log(2πe)n|K2|.

Thus,

|λK1 + (1 − λ)K2| ≥ |K1|λ|K2|1−λ, (17.115)

as desired. �

We now give Hadamard’s inequality using an information-theoretic
proof [128].
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Theorem 17.9.2 (Hadamard) |K| ≤ 
Kii , with equality iff Kij =
0, i �= j .

Proof: Let X ∼ N(0, K). Then

1

2
log(2πe)n|K| = h(X1, X2, . . . , Xn) ≤

∑
h(Xi) =

n∑
i=1

1

2
log 2πe|Kii |,

(17.116)
with equality iff X1, X2, . . . , Xn are independent (i.e., Kij = 0, i �= j ).�

We now prove a generalization of Hadamard’s inequality due to Szasz
[391]. Let K(i1, i2, . . . , ik) be the k × k principal submatrix of K formed
by the rows and columns with indices i1, i2, . . . , ik.

Theorem 17.9.3 (Szasz ) If K is a positive definite n × n matrix and
Pk denotes the product of the determinants of all the principal k-rowed
minors of K , that is,

Pk =
∏

1≤i1<i2<···<ik≤n

|K(i1, i2, . . . , ik)|, (17.117)

then

P1 ≥ P

1

(n−1
1 )

2 ≥ P

1

(n−1
2 )

3 ≥ · · · ≥ Pn. (17.118)

Proof: Let X ∼ N(0, K). Then the theorem follows directly from
Theorem 17.6.1, with the identification h

(n)
k = 1

2n(n−1
k−1)

log Pk + 1
2 log 2πe.

�

We can also prove a related theorem.

Theorem 17.9.4 Let K be a positive definite n × n matrix and let

S
(n)
k = 1(

n
k

) ∑
1≤i1<i2<···<ik≤n

|K(i1, i2, . . . , ik)|
1
k . (17.119)

Then

1

n
tr(K) = S

(n)
1 ≥ S

(n)
2 ≥ · · · ≥ S(n)

n = |K|
1
n . (17.120)

Proof: This follows directly from the corollary to Theorem 17.6.1, with
the identification t

(n)
k = (2πe)S

(n)
k and r = 2. �
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Theorem 17.9.5 Let

Qk =

 ∏

S:|S|=k

|K|
|K(Sc)|




1
k(n

k)

. (17.121)

Then
(

n∏
i=1

σ 2
i

) 1
n

= Q1 ≤ Q2 ≤ · · · ≤ Qn−1 ≤ Qn = |K|
1
n . (17.122)

Proof: The theorem follows immediately from Theorem 17.6.3 and the
identification

h(X(S)|X(Sc)) = 1

2
log(2πe)k

|K|
|K(Sc)| . � (17.123)

The outermost inequality, Q1 ≤ Qn, can be rewritten as

|K| ≥
n∏

i=1

σ 2
i , (17.124)

where

σ 2
i = |K|

|K(1, 2 . . . , i − 1, i + 1, . . . , n)| (17.125)

is the minimum mean-squared error in the linear prediction of Xi from
the remaining X’s. Thus, σ 2

i is the conditional variance of Xi given the
remaining Xj ’s if X1,X2, . . . , Xn are jointly normal. Combining this with
Hadamard’s inequality gives upper and lower bounds on the determinant
of a positive definite matrix.

Corollary ∏
i

Kii ≥ |K| ≥
∏

i

σ 2
i . (17.126)

Hence, the determinant of a covariance matrix lies between the product
of the unconditional variances Kii of the random variables Xi and the
product of the conditional variances σ 2

i .
We now prove a property of Toeplitz matrices, which are important as

the covariance matrices of stationary random processes. A Toeplitz matrix
K is characterized by the property that Kij = Krs if |i − j | = |r − s|.
Let Kk denote the principal minor K(1, 2, . . . , k). For such a matrix, the
following property can be proved easily from the properties of the entropy
function.
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Theorem 17.9.6 If the positive definite n × n matrix K is Toeplitz, then

|K1| ≥ |K2| 1
2 ≥ · · · ≥ |Kn−1|

1
(n−1) ≥ |Kn|

1
n (17.127)

and |Kk|/|Kk−1| is decreasing in k, and

lim
n→∞ |Kn|

1
n = lim

n→∞
|Kn|

|Kn−1| . (17.128)

Proof: Let (X1, X2, . . . , Xn) ∼ N(0, Kn). We observe that

h(Xk|Xk−1, . . . , X1) = h(Xk) − h(Xk−1) (17.129)

= 1

2
log(2πe)

|Kk|
|Kk−1| . (17.130)

Thus, the monotonicity of |Kk|/|Kk−1| follows from the monotonocity of
h(Xk|Xk−1, . . . , X1), which follows from

h(Xk|Xk−1, . . . , X1) = h(Xk+1|Xk, . . . , X2) (17.131)

≥ h(Xk+1|Xk, . . . , X2, X1), (17.132)

where the equality follows from the Toeplitz assumption and the inequality
from the fact that conditioning reduces entropy. Since h(Xk|Xk−1, . . . , X1)

is decreasing, it follows that the running averages

1

k
h(X1, . . . , Xk) = 1

k

k∑
i=1

h(Xi |Xi−1, . . . , X1) (17.133)

are decreasing in k. Then (17.127) follows from h(X1, X2, . . . , Xk) =
1
2 log(2πe)k|Kk|. �

Finally, since h(Xn|Xn−1, . . . , X1) is a decreasing sequence, it has a
limit. Hence by the theorem of the Cesáro mean,

lim
n→∞

h(X1, X2, . . . , Xn)

n
= lim

n→∞
1

n

n∑
k=1

h(Xk|Xk−1, . . . , X1)

= lim
n→∞ h(Xn|Xn−1, . . . , X1). (17.134)
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Translating this to determinants, one obtains

lim
n→∞ |Kn|

1
n = lim

n→∞
|Kn|

|Kn−1| . (17.135)

Theorem 17.9.7 (Minkowski inequality [390] )

|K1 + K2|1/n ≥ |K1|1/n + |K2|1/n. (17.136)

Proof: Let X1, X2 be independent with Xi ∼ N(0, Ki). Noting that X1 +
X2 ∼ N(0, K1 + K2) and using the entropy power inequality (Theorem
17.7.3) yields

(2πe)|K1 + K2|1/n = 2
2
n
h(X1 + X2) (17.137)

≥ 2
2
n
h(X1) + 2

2
nh(X2) (17.138)

= (2πe)|K1|1/n + (2πe)|K2|1/n. �(17.139)

17.10 INEQUALITIES FOR RATIOS OF DETERMINANTS

We now prove similar inequalities for ratios of determinants. Before devel-
oping the next theorem, we make an observation about minimum mean-
squared-error linear prediction. If (X1, X2, . . . , Xn) ∼ N(0, Kn), we know
that the conditional density of Xn given (X1, X2, . . . , Xn−1) is univariate
normal with mean linear in X1, X2, . . . , Xn−1 and conditional variance
σ 2

n . Here σ 2
n is the minimum mean squared error E(Xn − X̂n)

2 over all
linear estimators X̂n based on X1, X2, . . . , Xn−1.

Lemma 17.10.1 σ 2
n = |Kn|/|Kn−1|.

Proof: Using the conditional normality of Xn, we have

1

2
log 2πeσ 2

n = h(Xn|X1, X2, . . . , Xn−1) (17.140)

= h(X1, X2, . . . , Xn) − h(X1, X2, . . . , Xn−1) (17.141)

= 1

2
log(2πe)n|Kn| − 1

2
log(2πe)n−1|Kn−1| (17.142)

= 1

2
log 2πe|Kn|/|Kn−1|. � (17.143)
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Minimization of σ 2
n over a set of allowed covariance matrices {Kn} is

aided by the following theorem. Such problems arise in maximum entropy
spectral density estimation.

Theorem 17.10.1 (Bergstrøm [42] ) log(|Kn|/|Kn−p|) is concave
in Kn.

Proof: We remark that Theorem 17.9.1 cannot be used because
log(|Kn|/|Kn−p|) is the difference of two concave functions. Let Z = Xθ ,
where X1 ∼ N(0, Sn), X2 ∼ N(0, Tn), Pr{θ = 1} = λ = 1 − Pr{θ = 2},
and let X1, X2, θ be independent. The covariance matrix Kn of Z is
given by

Kn = λSn + (1 − λ)Tn. (17.144)

The following chain of inequalities proves the theorem:

λ
1

2
log(2πe)p|Sn|/|Sn−p| + (1 − λ)

1

2
log(2πe)p|Tn|/|Tn−p|

(a)= λh(X1,n, X1,n−1, . . . , X1,n−p+1|X1,1, . . . , X1,n−p)

+ (1 − λ)h(X2,n, X2,n−1, . . . , X2,n−p+1|X2,1, . . . , X2,n−p)

(17.145)

= h(Zn, Zn−1, . . . , Zn−p+1|Z1, . . . , Zn−p, θ) (17.146)

(b)≤ h(Zn, Zn−1, . . . , Zn−p+1|Z1, . . . , Zn−p) (17.147)

(c)≤ 1

2
log(2πe)p

|Kn|
|Kn−p| , (17.148)

where (a) follows from h(Xn, Xn−1, . . . , Xn−p+1|X1, . . . , Xn−p) =
h(X1, . . . , Xn) − h(X1, . . . , Xn−p), (b) follows from the conditioning
lemma, and (c) follows from a conditional version of Theorem 17.2.3. �

Theorem 17.10.2 (Bergstrøm [42] ) |Kn|/|Kn−1| is concave in Kn.

Proof: Again we use the properties of Gaussian random variables. Let
us assume that we have two independent Gaussian random n-vectors,
X ∼ N(0, An) and Y ∼ N(0, Bn). Let Z = X + Y. Then

1

2
log 2πe

|An + Bn|
|An−1 + Bn−1|

(a)= h(Zn|Zn−1, Zn−2, . . . , Z1) (17.149)
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(b)≥ h(Zn|Zn−1, Zn−2, . . . , Z1, Xn−1, Xn−2, . . . , X1, Yn−1, Yn−2, . . . , Y1)

(17.150)

(c)= h(Xn + Yn|Xn−1, Xn−2, . . . , X1, Yn−1, Yn−2, . . . , Y1) (17.151)

(d)= E
1

2
log

[
2πe Var(Xn + Yn|Xn−1, Xn−2, . . . , X1, Yn−1,

Yn−2, . . . , Y1)
]

(17.152)

(e)= E
1

2
log

[
2πe(Var(Xn|Xn−1, Xn−2, . . . , X1)

+ Var(Yn|Yn−1, Yn−2, . . . , Y1))
]

(17.153)

(f)= E
1

2
log

(
2πe

( |An|
|An−1| + |Bn|

|Bn−1|
))

(17.154)

= 1

2
log

(
2πe

( |An|
|An−1| + |Bn|

|Bn−1|
))

, (17.155)

where

(a) follows from Lemma 17.10.1
(b) follows from the fact that the conditioning decreases entropy
(c) follows from the fact that Z is a function of X and Y

(d) follows since Xn + Yn is Gaussian conditioned on X1, X2, . . . ,

Xn−1, Y1, Y2, . . . , Yn−1, and hence we can express its entropy in
terms of its variance

(e) follows from the independence of Xn and Yn conditioned on the
past X1, X2, . . . , Xn−1, Y1, Y2, . . . , Yn−1

(f) follows from the fact that for a set of jointly Gaussian random
variables, the conditional variance is constant, independent of the
conditioning variables (Lemma 17.10.1)

Setting A = λS and B = λT , we obtain

|λSn + λTn|
|λSn−1 + λTn−1|

≥ λ
|Sn|

|Sn−1| + λ
|Tn|

|Tn−1| (17.156)

(i.e., |Kn|/|Kn−1| is concave). Simple examples show that |Kn|/
|Kn−p| is not necessarily concave for p ≥ 2. �

A number of other determinant inequalities can be proved by these
techniques. A few of them are given as problems.
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OVERALL SUMMARY

Entropy. H(X) = − ∑
p(x) log p(x).

Relative entropy. D(p||q) = ∑
p(x) log p(x)

q(x)
.

Mutual information. I (X;Y) = ∑
p(x, y) log p(x,y)

p(x)p(y)
.

Information inequality. D(p||q) ≥ 0.

Asymptotic equipartition property. − 1
n

log p(X1, X2, . . . , Xn) →
H(X).

Data compression. H(X) ≤ L∗ < H(X) + 1.

Kolmogorov complexity. K(x) = minU(p)=x l(p).

Universal probability. log 1
PU (x)

≈ K(x).

Channel capacity. C = maxp(x) I (X;Y).

Data transmission

• R < C: Asymptotically error-free communication possible
• R > C: Asymptotically error-free communication not possible

Gaussian channel capacity. C = 1
2 log(1 + P

N
).

Rate distortion. R(D) = min I (X; X̂) over all p(x̂|x) such that
Ep(x)p(x̂|x)d(X, X̂) ≤ D.

Growth rate for investment. W ∗ = maxb∗ E log btX.

PROBLEMS

17.1 Sum of positive definite matrices . For any two positive definite
matrices, K1 and K2, show that |K1 + K2| ≥ |K1|.
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17.2 Fan’s inequality [200] for ratios of determinants . For all 1 ≤ p ≤
n, for a positive definite K = K(1, 2, . . . , n), show that

|K|
|K(p + 1, p + 2, . . . , n)| ≤

p∏
i=1

|K(i, p + 1, p + 2, . . . , n)|
|K(p + 1, p + 2, . . . , n)| .

(17.157)

17.3 Convexity of determinant ratios . For positive definite matrices K ,
K0, show that ln(|K + K0|/|K|) is convex in K .

17.4 Data-processing inequality . Let random variable X1, X2, X3, and
X4 form a Markov chain X1 → X2 → X3 → X4. Show that

I (X1; X3) + I (X2; X4) ≤ I (X1; X4) + I (X2; X3). (17.158)

17.5 Markov chains . Let random variables X, Y,Z, and W form a
Markov chain so that X → Y → (Z,W) [i.e., p(x, y, z, w) =
p(x)p(y|x)p(z, w|y)]. Show that

I (X;Z) + I (X;W) ≤ I (X;Y) + I (Z;W). (17.159)

HISTORICAL NOTES

The entropy power inequality was stated by Shannon [472]; the first for-
mal proofs are due to Stam [505] and Blachman [61]. The unified proof
of the entropy power and Brunn–Minkowski inequalities is in Dembo
et al.[164].

Most of the matrix inequalities in this chapter were derived using
information-theoretic methods by Cover and Thomas [118]. Some of the
subset inequalities for entropy rates may be found in Han [270].
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[28] J. Aczél and Z. Daróczy. On Measures of Information and Their Character-
ization. Academic Press, New York, 1975.

[29] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimizing symbol error rate (corresp.). IEEE Trans. Inf. Theory,
pages 284–287, March 1974.

[30] A. Barron. Entropy and the central limit theorem. Ann. Prob., 14(1):
336–342, 1986.

[31] A. Barron and T. M. Cover. A bound on the financial value of information.
IEEE Trans. Inf. Theory, IT-34:1097–1100, 1988.



BIBLIOGRAPHY 691

[32] A. Barron and T. M. Cover. Minimum complexity density estimation. IEEE
Trans. Inf. Theory, 37(4):1034–1054, July 1991.

[33] A. R. Barron. Logically smooth density estimation. Ph.D. thesis, Department
of Electrical Engineering, Stanford University, Stanford, CA, 1985.

[34] A. R. Barron. The strong ergodic theorem for densities: generalized Shan-
non–McMillan–Breiman theorem. Ann. Prob., 13:1292–1303, 1985.

[35] A. R. Barron. Are Bayes’ rules consistent in information? Prob. Commun.
Computation, pages 85–91, 1987.

[36] A. R. Barron, J. Rissanen, and Bin Yu. The minimum description length prin-
ciple in coding and modeling. IEEE Trans. Inf. Theory, pages 2743–2760,
Oct. 1998.

[37] E. B. Baum. Neural net algorithms that learn in polynomial time from
examples and queries. IEEE Trans. Neural Networks, pages 5–19, 1991.

[38] W. Beckner. Inequalities in Fourier analysis. Ann. Math., 102:159–182,
1975.

[39] R. Bell and T. M. Cover. Competitive optimality of logarithmic investment.
Math. Oper. Res., 5(2):161–166, May 1980.

[40] R. Bell and T. M. Cover. Game-theoretic optimal portfolios. Manage. Sci.,
34(6):724–733, 1988.

[41] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice-Hall,
Englewood Cliffs, NJ, 1990.

[42] R. Bellman. Notes on matrix theory. IV: An inequality due to Bergstrøm.
Am. Math. Monthly, 62:172–173, 1955.

[43] C. H. Bennett and G. Brassard. Quantum cryptography: public key distri-
bution and coin tossing. Proc. IEEE Int. Conf. Comput., pages 175–179,
1984.

[44] C. H. Bennett, D. P. DiVincenzo, J. Smolin, and W. K. Wootters. Mixed
state entanglement and quantum error correction. Phys. Rev. A, pages
3824–3851, 1996.

[45] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin. Capacities of quantum
erasure channels. Phys. Rev. Lett., pages 3217–3220, 1997.

[46] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle
operators on Einstein–podolsky–Rosen states. Phys. Rev. Lett., pages
2881–2884, 1992.

[47] C. H. Bennett. Demons, engines and the second law. Sci. Am.,
259(5):108–116, Nov. 1987.

[48] C. H. Bennett and R. Landauer. The fundamental physical limits of compu-
tation. Sci. Am., 255(1):48–56, July 1985.

[49] C. H. Bennett and P. W. Shor. Quantum information theory. IEEE Trans.
Inf. Theory, IT-44:2724–2742, Oct. 1998.

[50] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. Locally adaptive data
compression scheme. Commun. ACM, pages 320–330, 1986.



692 BIBLIOGRAPHY

[51] R. Benzel. The capacity region of a class of discrete additive degraded
interference channels. IEEE Trans. Inf. Theory, IT-25:228–231, 1979.

[52] T. Berger. Rate Distortion Theory: A Mathematical Basis for Data
Compression. Prentice-Hall, Englewood Cliffs, NJ, 1971.

[53] T. Berger. Multiterminal source coding. In G. Longo (Ed.), The Information
Theory Approach to Communications. Springer-Verlag, New York, 1977.

[54] T. Berger and R. W. Yeung. Multiterminal source encoding with one dis-
tortion criterion. IEEE Trans. Inf. Theory, IT-35:228–236, 1989.

[55] P. Bergmans. Random coding theorem for broadcast channels with degraded
components. IEEE Trans. Inf. Theory, IT-19:197–207, 1973.

[56] E. R. Berlekamp. Block Coding with Noiseless Feedback. Ph.D. thesis, MIT,
Cambridge, MA, 1964.

[57] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: Turbo codes. Proc. 1993 Int. Conf. Com-
mun., pages 1064–1070, May 1993.

[58] D. Bertsekas and R. Gallager. Data Networks, 2nd ed.. Prentice-Hall, Engle-
wood Cliffs, NJ, 1992.

[59] M. Bierbaum and H. M. Wallmeier. A note on the capacity region of the
multiple access channel. IEEE Trans. Inf. Theory, IT-25:484, 1979.

[60] E. Biglieri, J. Proakis, and S. Shamai. Fading channels: information-theoretic
and communications aspects. IEEE Trans. Inf. Theory, pages 2619–2692,
October 1998.

[61] N. Blachman. The convolution inequality for entropy powers. IEEE Trans.
Inf. Theory, IT-11:267–271, Apr. 1965.

[62] D. Blackwell, L. Breiman, and A. J. Thomasian. Proof of Shannon’s trans-
mission theorem for finite-state indecomposable channels. Ann. Math. Stat.,
pages 1209–1220, 1958.

[63] D. Blackwell, L. Breiman, and A. J. Thomasian. The capacity of a class of
channels. Ann. Math. Stat., 30:1229–1241, 1959.

[64] D. Blackwell, L. Breiman, and A. J. Thomasian. The capacities of cer-
tain channel classes under random coding. Ann. Math. Stat., 31:558–567,
1960.

[65] R. Blahut. Computation of channel capacity and rate distortion functions.
IEEE Trans. Inf. Theory, IT-18:460–473, 1972.

[66] R. E. Blahut. Information bounds of the Fano–Kullback type. IEEE Trans.
Inf. Theory, IT-22:410–421, 1976.

[67] R. E. Blahut. Principles and Practice of Information Theory. Addison-
Wesley, Reading, MA, 1987.

[68] R. E. Blahut. Hypothesis testing and information theory. IEEE Trans. Inf.
Theory, IT-20:405–417, 1974.

[69] R. E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley,
Reading, MA, 1983.



BIBLIOGRAPHY 693

[70] B. M. Hochwald, G. Caire, B. Hassibi, and T. L. Marzetta (Eds.). IEEE
Trans. Inf. Theory, Special Issue on Space-Time Transmission, Reception,
Coding and Signal-Processing, Vol. 49, Oct. 2003.

[71] L. Boltzmann. Beziehung Zwischen dem zweiten Hauptsatze der
mechanischen Wärmertheorie und der Wahrscheilichkeitsrechnung respek-
tive den Saetzen uber das Wärmegleichgwicht. Wien. Ber., pages 373–435,
1877.

[72] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Inf. Control, 3:68–79, Mar. 1960.

[73] H. J. Brascamp and E. J. Lieb. Best constants in Young’s inequality, its
converse and its generalization to more than three functions. Adv. Math.,
20:151–173, 1976.

[74] L. Breiman. The individual ergodic theorems of information theory. Ann.
Math. Stat., 28:809–811, 1957. With correction made in 31:809-810.

[75] L. Breiman. Optimal gambling systems for favourable games. In Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1,
pages 65–78. University of California Press, Berkeley, CA, 1961.

[76] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth & Brooks, Pacific Grove, CA, 1984.

[77] L. Brillouin. Science and Information Theory. Academic Press, New York,
1962.

[78] J. A. Bucklew. The source coding theorem via Sanov’s theorem. IEEE
Trans. Inf. Theory, pages 907–909, Nov. 1987.

[79] J. A. Bucklew. Large Deviation Techniques in Decision, Simulation, and
Estimation. Wiley, New York, 1990.

[80] J. P. Burg. Maximum entropy spectral analysis. Ph.D. thesis, Department of
Geophysics, Stanford University, Stanford, CA, 1975.

[81] M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Compression
Algorithm (Tech. Rept. 124). Digital Systems Research Center, Palo Alto,
CA, May 1994.

[82] A. R. Calderbank. The art of signaling: fifty years of coding theory. IEEE
Trans. Inf. Theory, pages 2561–2595, Oct. 1998.

[83] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes
exist. Phys. Rev. A, pages 1098–1106, 1995.

[84] A. Carleial. Outer bounds on the capacity of the interference channel. IEEE
Trans. Inf. Theory, IT-29:602–606, 1983.

[85] A. B. Carleial. A case where interference does not reduce capacity. IEEE
Trans. Inf. Theory, IT-21:569–570, 1975.

[86] G. Chaitin. Information-Theoretic Incompleteness. World Scientific, Singa-
pore, 1992.

[87] G. J. Chaitin. On the length of programs for computing binary sequences.
J. ACM, pages 547–569, 1966.



694 BIBLIOGRAPHY

[88] G. J. Chaitin. The limits of mathematics. J. Universal Comput. Sci.,
2(5):270–305, 1996.

[89] G. J. Chaitin. On the length of programs for computing binary sequences.
J. ACM, 13:547–569, 1966.

[90] G. J. Chaitin. Information theoretical limitations of formal systems. J. ACM,
21:403–424, 1974.

[91] G. J. Chaitin. Randomness and mathematical proof. Sci. Am., 232(5):47–52,
May 1975.

[92] G. J. Chaitin. Algorithmic information theory. IBM J. Res. Dev., 21:350–359,
1977.

[93] G. J. Chaitin. Algorithmic Information Theory. Cambridge University Press,
Cambridge, 1987.

[94] C. S. Chang and J. A. Thomas. Huffman algebras for independent random
variables. Discrete Event Dynam. Syst., 4:23–40, 1994.

[95] C. S. Chang and J. A. Thomas. Effective bandwidth in high speed digital
networks. IEEE J. Select. Areas Commun., 13:1091–1114, Aug. 1995.

[96] R. Chellappa. Markov Random Fields: Theory and Applications. Academic
Press, San Diego, CA, 1993.

[97] H. Chernoff. A measure of the asymptotic efficiency of tests of a hypo-
thesis based on a sum of observations. Ann. Math. Stat., 23:493–507,
1952.

[98] B. S. Choi and T. M. Cover. An information-theoretic proof of Burg’s
maximum entropy spectrum. Proc. IEEE, 72:1094–1095, 1984.

[99] N. Chomsky. Three models for the description of language. IEEE Trans.
Inf. Theory, pages 113–124, Sept. 1956.

[100] P. A. Chou, M. Effros, and R. M. Gray. A vector quantization approach to
universal noiseless coding and quantization. IEEE Trans. Inf. Theory, pages
1109–1138, July 1996.

[101] K. L. Chung. A note on the ergodic theorem of information theory. Ann.
Math. Stat., 32:612–614, 1961.

[102] B. S. Clarke and A. R. Barron. Information-theoretic asymptotics of Bayes’
methods. IEEE Trans. Inf. Theory, pages 453–471, May 1990.

[103] B. S. Clarke and A. R. Barron. Jeffreys’ prior is asymptotically least favor-
able under entropy risk. J. Stat. Planning Inf., pages 37–60, Aug. 1994.

[104] M. Costa and T. M. Cover. On the similarity of the entropy power inequal-
ity and the Brunn–Minkowski inequality. IEEE Trans. Inf. Theory, IT-
30:837–839, 1984.

[105] M. H. M. Costa. On the Gaussian interference channel. IEEE Trans. Inf.
Theory, pages 607–615, Sept. 1985.

[106] M. H. M. Costa and A. A. El Gamal. The capacity region of the discrete
memoryless interference channel with strong interference. IEEE Trans. Inf.
Theory, pages 710–711, Sept. 1987.



BIBLIOGRAPHY 695

[107] T. M. Cover. Geometrical and statistical properties of systems of linear
inequalities with applications to pattern recognition. IEEE Trans. Electron.
Computation, pages 326–334, 1965.

[108] T. M. Cover. Universal Gambling Schemes and the Complexity Measures of
Kolmogorov and Chaitin (Tech. Rept. 12). Department of Statistics, Stanford
University, Stanford, CA, Oct. 1974.

[109] T. M. Cover. Open problems in information theory. Proc. Moscow Inf.
Theory Workshop, pages 35–36, 1975.

[110] T. M. Cover. Universal portfolios. Math. Finance, pages 1–29, Jan. 1991.

[111] T. M. Cover. Comments on broadcast channels. IEEE Trans. Inf. Theory,
pages 2524–2530, Oct. 1998.

[112] T. M. Cover. Shannon and investment. IEEE Inf. Theory Newslett (Special
Golden Jubilee Issue), pp. 10–11, June 1998.

[113] T. M. Cover and M. S. Chiang. Duality between channel capacity and
rate distortion with two-sided state information. IEEE Trans. Inf. Theory,
IT-48(6):1629–1638, June 2002.
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[347] H. A. Latané and D.L. Tuttle. Criteria for portfolio building. J. Finance,
22:359–373, Sept. 1967.

[348] E. A. Lee and D. G. Messerschmitt. Digital Communication, 2nd ed.
Kluwer, Boston, 1994.

[349] J. Leech and N. J. A. Sloane. Sphere packing and error-correcting codes.
Can. J. Math, pages 718–745, 1971.
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Efron, B., 699
Eggleston, H.G., 538, 699
eigenvalue, 95, 279, 282, 315, 336
Einstein, A., xvii
Ekroot, L., xxiii
El Gamal, A., xxiii, 575, 609–611,

694–696, 699, 701, 702, 710
elephant, 301
Elias, P., 158, 699
Ellis, R.S., 699
EM algorithm, 335
empirical, 68, 381, 409, 470, 474, 542, 660
empirical distribution, 68, 168, 209, 347,

356, 366, 630
convergence, 68

empirical entropy, 195
empirical frequency, 474
encoder, 173, 231, 304, 321, 357, 360, 443,

458, 459, 549, 553, 557, 574, 585, 588



734 INDEX

encoding function, 193, 264, 305, 359, 571,
583, 599

encrypted text, 506
energy, 261, 265, 272, 273, 294, 424
England, 82
English, 104, 168–171, 174, 175, 182, 360,

470, 506
entropy rate, 159, 182
models of, 168

entanglement, 56
entropy, xvii, 3, 4, 13–56, 87, 659, 671,

686
average, 49
axiomatic definition, 14, 54
base of logarithm, 14, 15
bounds, 663
chain rule, 23
concavity, 33, 34
conditional, 16, 51, see conditional

entropy
conditioning, 42
cross entropy, 55
differential, see differential entropy
discrete, 14
encoded bits, 156
functions, 45
grouping, 50
independence bound, 31
infinite, 49
joint, 16, 47, see joint entropy
mixing increase, 51
mixture, 46
and mutual information, 21
properties of, 42
relative, see relative entropy
Renyi, 676
sum, 47
thermodynamics, 14

entropy and relative entropy, 12, 28
entropy power, xviii, 674, 675, 678, 679,

687
entropy power inequality, xx, 298, 657,

674–676, 678, 679, 687
entropy rate, 4, 74, 71–101, 114, 115, 134,

151, 156, 159, 163, 167, 168, 171,
175, 182, 221, 223, 259, 417, 419,
420, 423–425, 428–462, 613, 624,
645, 667, 669

differential, 416

English, 168, 170, 174, 175
Gaussian process, 416
Hidden Markov model, 86
Markov chain, 77
subsets, 667

envelopes, 182
Ephremides, A., 611, 699
Epimenides liar paradox, 483
equalization, 611
Equitz, W., xxiii, 699
erasure, 188, 226, 227, 232, 235, 527, 529,

594
erasure channel, 219, 235, 433
ergodic, 69, 96, 167, 168, 175, 297, 360,

443, 444, 455, 462, 557, 613, 626,
644, 646, 647, 651

ergodic process, xx, 11, 77, 168, 444, 446,
451, 453, 644

ergodic source, 428, 644
ergodic theorem, 644
ergodic theory, 11
Erkip, E., xxi, xxiii
Erlang distribution, 661
error correcting code, 205
error detecting code, 211
error exponent, 4, 376, 380, 384, 385, 388,

399, 403
estimation, xviii, 255, 347, 392, 425, 508

spectrum, 415
estimator, 39, 40, 52, 255, 392, 393,

395–397, 401, 402, 407, 417, 500, 663
bias, 393
biased, 401
consistent in probability, 393
domination, 393
efficient, 396
unbiased, 392, 393, 395–397, 399, 401,

402, 407
Euclidean distance, 514
Euclidean geometry, 378
Euclidean space, 538
Euler’s constant, 153, 662
exchangeable stocks, 653
expectation, 14, 167, 281, 306, 321, 328,

393, 447, 479, 617, 645, 647, 669, 670
expected length, 104
exponential distribution, 256, 661
extension of channel, 193
extension of code, 105
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F-distribution, 661
face vase illusion, 505
factorial, 351, 353

Stirling’s approximation, 405
fading, 611
fading channel, 291
Fahn, P., xxi
fair odds, 159, 164, 487, 488
fair randomization, 627, 629
Fan, K., 679, 699
Fano, R.M., 56, 158, 240, 699, 700, see

also Shannon-Fano-Elias code
Fano’s inequality, 13, 38, 39, 41, 44, 52,

56, 206, 208, 221, 255, 268, 283,
539–541, 555, 576, 578, 590, 663

FAX, 130
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Access), 547, 548, 606
Feder, M., 158, 462, 700, 709, 718
Feder, T., 461
feedback, xix, 189, 193, 216, 218, 238,

280–284, 286–290, 509, 519, 593,
594, 610, 611

discrete memoryless channel, 216
Gaussian channel, xv, 280–289

Feinstein, A., 240, 699, 700
Feller, W., 182, 700
Fermat’s last theorem, 486
fingers, 143
finite alphabet, 220, 318, 344, 473, 474, 645
finitely often, 649
finitely refutable, 486
first order in the expononent, 63
Fisher, R.A., 56, 700
Fisher information, xviii, xx, 247, 347, 392,

394, 395, 397, 399, 401, 407, 657,
671, 673, 674
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multiparameter, 397

Fitingof, B.M., 461, 700
fixed rate block code, 357
flag, 61, 442, 460
flow of information, 588, 589
flow of time, 89
flow of water, 511
football, 390, 391
Ford, L.R., 700
Ford-Fulkerson theorem, 511, 512
Forney, G.D., 240, 700

Foschini, G.J., 611, 700
Fourier transform, 271, 415
fractal, 471
Franaszek, P.A., xxi, xxiii, 158, 700
Frank-Wolfe algorithm, 191
French, 606
frequency, 168–170, 270, 274, 315, 404,

547
Friedman, J.H., 693
Fulkerson, D.R., 697, 700
function,

concave, 26
convex, 26

functional, 161, 276, 313, 330
future, 93

Gaarder, T., 593, 609, 700
Gabor, D., 701
Gács, P., 695, 701
Gadsby, 168
Gallager, R.G., xxiii, 215, 240, 299, 430,

461, 609, 692, 701, 713, 715, 716
Galois field theory, 214
gambling, xviii, xx, 11, 13, 159, 171–173,

175, 178, 181, 182, 488, 507, 629
universal, 487

gambling and data compression, 171
game, 181, 298, 391, 631

20 questions, 6, 120, 121, 143, 145, 157,
237

Hi-Lo, 147
mutual information, 298
red and black, 167, 177
Shannon guessing, 174
stock market, 630

game theory, 132
fundamental theorem, 432

game-theoretic optimality, 132, 619
γ (Euler’s constant), 153, 662
Gamma distribution, 661
gas, 34, 409, 411, 412
Gauss’s law, 548
Gauss-Markov process, 417–420
Gaussian, 252, 255, 258, 378, 389, 684, 685
Gaussian channel, xv, xix, 205, 261–299,

324, 513, 514, 519, 520, 544, 546, 686
achievability, 266
AWGN (additive white Gaussian noise),

289
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Gaussian channel (continued )

bandlimited, 270–274
broadcast, see broadcast channel,

Gaussian
capacity, 264
colored noise, 277
converse, 268
feedback, 280–289
interference, see interference channel,

Gaussian
with memory, 277, 280
multiple access, see also multiple access

channel, Gaussian
parallel, 274–280, 292
relay, see also relay channel, Gaussian

Gaussian distribution, see normal
distribution

Gaussian process, 272, 279, 417
Gaussian source, 311, 336

rate distortion function, 311
Gaussian stochastic process, 315, 416, 417,

423
Gelfand, I.M., 702
Gelfand, S.I., 609, 610, 702
Gemelos, G., xxi
general multiterminal network, 587
general theory of relativity, 490
generalized Lloyd algorithm, 303
generation of random variables, 134
geodesic, 380
geometric distribution, 405, 444
geometry, 9, 301, 367

Euclidean, 378
geophysical applications, 415
Gersho, A., 702
Gibson, J.D., 702
GIF, 443, 462
Gilbert, E.N., 158, 702
Gill, J., xxiii
Glavieux, A., 692
Gödel’s incompleteness theorem, 483
Goldbach’s conjecture, 486
Goldberg, M., xxiii
Goldman, S., 702
Goldsmith, A., 702
Golomb, S.W., 702
Goodell, K., xxiii
Gopinath, R., xxi
Gotham, 470, 550

gradient search, 191
grammar, 171
Grant, A.J., 702
graph, 73, 78, 79, 97
graph coloring, 557
gravestone, 55
gravitation, 490
Gray, R.M., 610, 694, 695, 702, 703, 708
greetings telegrams, 441
Grenander, U., 703
grouping rule, 50
growth rate, xix, 4, 159, 178, 180, 182,

615, 613–656, 686
chain rule, 624, 650
competitive optimality, 628
convexity, 616, 650
optimal, 615
side information, 622, 650

growth rate optimal, 162, 613
Grünbaum, B., 538, 703
Guiasu, S., 703
Gupta, V., xxi
Gutman, M., 462, 700
Gyorfi, L., 698
gzip, 442

Hadamard’s inequality, 279, 680, 681
Hajek, B., 611, 699, 703
halting, 484
halting computation, 466, 486
halting problem, 483
halting program, 473
Hamming codes, 205, 212–214
Hamming distortion, 307, 308, 336, 337
Hamming, R.V., 210, 703
Han, T.S., xxi, 593, 609, 610, 668, 670,

687, 689, 703, 717, 718
handwriting, 87
Hart, P.E., 695, 698
Hartley, R.V., 55, 703
Hassanpour, N., xxi
Hassibi, B., 693
Hassner, M., 689
HDTV, 560
Hekstra, A.P., 609, 718
Helstrom, C.W., 703
Hershkovits, Y., 703
Hewlett-Packard, 643
hidden Markov model (HMM), 87, 101
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high probability set, 62
histogram, 174
historical notes, xv
HMM, see hidden Markov model (HMM)
Hochwald, B.M., 693
Hocquenghem, P.A., 214, 703
Holsinger, J.L., 704
Honig, M.L., 704
Hopcroft, J.E., 704
Horibe, Y., 704
horse race, 5, 6, 11, 159–182, 622, 626
Huffman code, 103, 118–127, 129–131,

137, 142, 145, 146, 149, 151, 155,
157, 357, 427, 436, 460, 491, 492

competitive optimality, 158
dyadic distribution, 151

Huffman, D.A., 158, 704
Hui, J.Y., 704
Humblet, P.A., 704
hypothesis testing, 1, 4, 11, 355, 375, 380,

384, 389
Bayesian, 384
optimal, see Neyman-Pearson lemma

i.i.d. (independent and identically
distributed) source, 307, 318, 344, 357

identification capacity, 610
Ihara, S., 704
image, 305

distortion measure, 305
entropy rate, 171
Kolmogorov complexity, 499, 505, 506

Immink, K.A.S., 704
incompressible sequence, 477, 479
independence bound on entropy, 31
India, 441
indicator function, 194, 219, 486, 497, 503
induction, 95, 123, 127, 674
inequalities, xviii–xx, 53, 207, 418,

657–687
inequality,

arithmetic mean geometric mean, 669
Brunn-Minkowski,

see Brunn-Minkowski inequality
Cauchy-Schwarz, 393
Chebyshev’s, 64
data processing, see data processing

inequality
determinant, see determinant inequalities

entropy power, see entropy power
inequality

Fano’s, see Fano’s inequality
Hadamard’s, see Hadamard’s inequality
information, 29, 410, 659
Jensen’s, see Jensen’s inequality
Kraft, see Kraft inequality
log sum, see log sum inequality
Markov’s, see Markov’s inequality
McMillan’s, see McMillan’s inequality
subset, see subset inequalities
Young’s, 676
Ziv’s, 450

inference, 1, 3, 4, 463, 484
infinite bandwidth, 273
infinitely often, 621
information, see also Fisher information,

mutual information, self information
information capacity, 207, 263, 274, 277
information channel capacity, 184
information divergence, 55, see

also relative entropy
information for discrimination, 55, see

also relative entropy
information rate distortion function, 306,

307, 329
innovations, 282
input alphabet, 183, 209, 268
input distribution, 188, 227, 228, 278, 335,

430, 431, 532, 544, 546, 591
instantaneous code, see code, instantaneous
integer,

binary representation, 469
descriptive complexity, 469

integrability, 248
interference, xix, 3, 11, 273, 509, 511, 515,

518, 519, 527, 547, 588, 610
interference channel, 510, 518, 519, 610

degraded, 610
Gaussian, 518, 519, 610
high interference, 518
strong interference, 610

interleaving, 611
internet, 218
intersymbol interference, 94
intrinsic complexity, 464
investment, 4, 9, 11, 159, 614, 619, 623,

636, 655, 656
investor, 619, 623, 627, 629, 633, 635
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irreducible Markov chain, see Markov
chain, irreducible

Itakura-Saito distance, 305
iterative decoding, 215
Iyengar, G., xxi

Jacobs, I.M., 719
Jayant, N.S., 704
Jaynes, E.T., 56, 416, 425, 704
Jelinek, F., xxiii, 158, 690, 704, 705
Jensen’s inequality, 28, 32, 41, 42, 44, 49,

252, 253, 270, 318, 447, 453, 474,
585, 618, 622, 657

Johnson, R.W., 715
joint AEP, 202, 203, 267, 329, 520
joint density, 249
joint distribution, 16, 23, 34, 51, 52, 71,

228, 268, 307, 308, 323, 328, 343,
365, 402, 537, 539, 542, 550, 564,
565, 578, 586, 595, 600, 602, 608

joint entropy, 16
joint source channel coding theorem, 218
joint type, 499
joint typicality, 195, 222, 240
jointly typical, 198–203, 227–230, 240,

266, 267, 319, 327–329, 341, 343,
365, 366, 520, 553, 557, 559, 560,
575, 580

jointly typical sequences, 520
jointly typical set, 227, 228, 319, 327
Jozsa, R, 705
JPEG, 130
Julian, D., xxi
Justesen, J., 215, 705

Kac, M., 443, 705
Kac’s lemma, 444
Kailath, T., 705
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Karush, J., 158, 705
Kaul, A., xxiii
Kawabata, B., xxiii
Keegel, J.C., 707
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Kelly, F.P., 705
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Kieffer, J.C., 69, 705, 720
Kim, Y.H., xxi, 299, 705
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Knuth, D.E., 153, 705
Kobayashi, K., 610, 703
Kolmogorov, A.N., 3, 345, 417, 463, 507,

702, 706
Kolmogorov complexity, xv, xviii, xix, 1,

3, 4, 10–12, 428, 466, 463–508, 686
conditional, 467
and entropy, 473, 502
of integers, 475
lower bound, 469, 502
universal probability, 490
upper bound, 501

Kolmogorov structure function, 496, 503,
507

Kolmogorov sufficient statistic, 496, 497,
508
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Kontoyiannis, Y., xxi
Körner, J., 241, 325, 347, 358, 408, 609,

610, 690, 697, 698, 701, 706
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Kraft, L.G., 158, 706
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116–118, 127, 138, 141, 143, 158,
473, 484, 494

Krichevsky, R.E., 706
Kuhn-Tucker conditions, 164, 177, 191,

314, 331, 617, 618, 621, 622
Kulkarni, S.R., 698, 707, 718
Kullback, J.H., 707
Kullback, S., xix, 55, 408, 707
Kullback Leibler distance, 20, 55, 251, see

also relative entropy
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Lagrange multipliers, 110, 153, 161, 276,

313, 330, 334, 335, 421
Laird, N.M., 698
Lamping, J., xxi
Landau, H.J., 272, 299, 707
Landauer, R., 56, 691
Langdon, G.G., 705, 707, 713
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Lapidoth, A., xxi, 707
Laplace, P.S., 488, 489
Laplace distribution, 257, 661
Laplace estimate, 488
large deviation theory, 4, 12, 357, 360
Latané, H.A., 182, 655, 707
Lavenberg, S., xxiii
law of large numbers, 57, 199, 245, 267,

319, 326, 355–357, 361, 403, 477,
479, 520, 522, 615

incompressible sequences, 477, 502
method of types, 355
weak law, 57, 58, 65, 196, 245, 361,
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lecturer, 561
Lee, E.A., 707
Leech, J., 707
Lehmann, E.L., 56, 707
Leibler, R.A., 55, 707
Lempel, A., 428, 442, 462, 707, 721, see

also Lempel-Ziv coding
Lempel-Ziv,

fixed database, 459
infinite dictionary, 458
sliding window, 443
tree structured, 448

Lempel-Ziv algorithm, xxiii, 441
Lempel-Ziv coding, 440–456
Lempel-Ziv compression, 360
Lempel-Ziv parsing, 427
letter, 105, 168–171, 174, 175, 209, 210,

224, 226, 233
Leung, C.S.K., 593, 609, 610, 696, 711
Levin, L.A., 507, 707
Levinson algorithm, 419
Levy’s martingale convergence theorem,

647
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Li, M., 508, 707
Liao, H., 10, 609, 708
liar paradox, 483
Lieb, E.J., 693
likelihood, 20, 365, 377, 404, 482, 508
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likelihood ratio test, 377, 378, 385,
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Linde, Y., 708
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Lindley, D., 708
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linear code, 214
linear inequalities, 534
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list decoding, 517, 575
Liversidge, A., 708
Lloyd, S.P., 708
Lloyd aglorithm, 303
local realism, 56
logarithm,

base of, 14
lognormal distribution, 662
log likelihood, 65, 67, 405
log-optimal portfolio, 616–624, 626–629,

649, 653, 654, 656
competitive optimality, 627, 651

log sum inequality, 31–33, 44
Longo, G., 697
Lotto, 178
Louchard, G., 708
Lovasz, L., 226, 241, 708
low density parity check (LDPC) codes,

215
Lucky, R.W., 170, 171, 708
Lugosi, G., 698, 707, 708
LZ77, 441
LZ78, 441

MacKay, D.J.C., 215, 708, 709
macrostate, 55, 409, 411, 412
MacWilliams, F.J., 708
Madhow, U., 704
magnetic recording, 94, 101, 105, 158
Malone, D., 175
Mandelbrot set, 471
Marcus, B., 158, 708
margin, 181
marginal distribution, 297, 333
Markov approximation, 169, 646
Markov chain, 35, 36, 39, 40, 47, 52,

71–100, 144, 206, 258, 294, 295, 423,
458, 470, 497, 499, 578–580, 584,
659, 687

aperiodic, 72, 78
functions of, 84
irreducible, 72, 78, 98
stationary distribution, 73
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Markov chain (continued )
time invariant, 72
time-reversible, 81

Markov fields, 35
Markov lemma, 586
Markov process, 87, 100, 144, 422, 428,

437, see also Gauss-Markov process
Markov’s inequality, 49, 64, 157, 238, 392,

460, 621, 627, 648, 649
Markowitz, H., 614
Marks, R.J., 708
Marshall, A., 708, 709
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Martin-Löf, P., 507, 709
martingale, 647
martingale convergence theorem, 626
Marton, K., 609, 610, 706, 709
Marzetta, T.L., 693
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Mathys, P., 709
matrix, 88, 95, 99, 200, 212, 239, 337, 338,

340, 342, 397, 432, 458, 657, 681,
682, 687

channel transition, 190
doubly stochastic, 190
parity check, 211
permutation, 88
probability transition, 72
trace, 278
transition, 77, 88

matrix inequalities, 687
max-flow min-cut, 512
maximal probability of error, 204, 207,

264, 268
maximum a posteriori, 388
maximum entropy, xviii, 51, 92, 96, 255,

258, 263, 282, 289, 375, 409,
412–415, 417, 420–425, 451

conditional limit theorem, 371
prediction error, 423
spectral density, 419, 421

maximum entropy distribution, 30, 364,
375, 409, 410, 412–414

maximum entropy graph, 97
maximum entropy process, 419, 422
maximum likelihood, 201, 231, 500
maximum likelihood decoding, 231

maximum likelihood estimation, 404
Maxwell-Boltzmann distribution, 409, 662
Maxwell’s demon, 507
maze, 97
Mazo, J., xxiii
McDonald, R.A., 345, 709
McEliece, R.J., 696, 697, 709
McLaughlin, S.W., 718
McMillan, B., 69, 158, 709, see

also Shannon-McMillan-Breiman
theorem

McMillan’s inequality, 141
MDL (minimum description length), 501
mean value theorem, 247
mean-variance theory, 614
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median, 257
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memoryless, 184, 216, 280, 513, 563, 572,
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Merhav, N., 461, 462, 700, 709, 718, 721
Merton, R.C., 709
Messerschmitt, D.G., 707
method of types, xv, 347, 357, 361, 665
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microstate, 55, 409, 411
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minimum distance, 213, 325, 332
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minimum weight, 212
Minkowski, H., 710
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mixed strategy, 391
mobile telephone, 607
models of computation, 464
modem, 273, 442
modulation, 3, 263
modulo 2 arithmetic, 211, 308, 596



INDEX 741

molecules, 409
moments, 255, 414, 614
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Moy, S.C., 69, 710
multipath, 292, 611
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binary erasure channel, 527
binary erasure multiple access channel,
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binary multiplier channel, 527
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converse, 538
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correlated source, 593
duality with Slepian-Wolf coding, 558
erasure channel, 529
feedback, 594
Gaussian, 514, 598, 607
independent BSC’s, 526

multiplexing, 273, 515, 547
multi-user information theory, see network
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315, 413, 417, 679
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Neal, R.M., 215, 708, 719
nearest neighbor, 303
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546, 548, 588
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Noll, P., 704
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nonsense, 464, 482, 504
norm, 297
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414, 662, 675, see also Gaussian
channel, Gaussian source
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Nyquist, H., 270, 272, 710

Occam’s Razor, 1, 4, 463, 481, 488, 490,
500

odds, 11, 67, 159, 162–164, 176–180, 626,
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even, 159
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odds (continued )
fair, 159, 167, 176
subfair, 164, 176
superfair, 164
uniform, 172
uniform fair, 163
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