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PREFACE TO THE
SECOND EDITION

In the years since the publication of the first edition, there were many
aspects of the book that we wished to improve, to rearrange, or to expand,
but the constraints of reprinting would not allow us to make those changes
between printings. In the new edition, we now get a chance to make some
of these changes, to add problems, and to discuss some topics that we had
omitted from the first edition.

The key changes include a reorganization of the chapters to make
the book easier to teach, and the addition of more than two hundred
new problems. We have added material on universal portfolios, universal
source coding, Gaussian feedback capacity, network information theory,
and developed the duality of data compression and channel capacity. A
new chapter has been added and many proofs have been simplified. We
have also updated the references and historical notes.

The material in this book can be taught in a two-quarter sequence. The
first quarter might cover Chapters 1 to 9, which includes the asymptotic
equipartition property, data compression, and channel capacity, culminat-
ing in the capacity of the Gaussian channel. The second quarter could
cover the remaining chapters, including rate distortion, the method of
types, Kolmogorov complexity, network information theory, universal
source coding, and portfolio theory. If only one semester is available, we
would add rate distortion and a single lecture each on Kolmogorov com-
plexity and network information theory to the first semester. A web site,
http://www .elementsofinformationtheory.com, provides links to additional
material and solutions to selected problems.

In the years since the first edition of the book, information theory
celebrated its 50th birthday (the 50th anniversary of Shannon’s original
paper that started the field), and ideas from information theory have been
applied to many problems of science and technology, including bioin-
formatics, web search, wireless communication, video compression, and

XV



Xvi PREFACE TO THE SECOND EDITION

others. The list of applications is endless, but it is the elegance of the
fundamental mathematics that is still the key attraction of this area. We
hope that this book will give some insight into why we believe that this
is one of the most interesting areas at the intersection of mathematics,
physics, statistics, and engineering.

Tom COVER
Joy THOMAS

Palo Alto, California
January 2006



PREFACE TO THE
FIRST EDITION

This is intended to be a simple and accessible book on information theory.
As Einstein said, “Everything should be made as simple as possible, but no
simpler.” Although we have not verified the quote (first found in a fortune
cookie), this point of view drives our development throughout the book.
There are a few key ideas and techniques that, when mastered, make the
subject appear simple and provide great intuition on new questions.

This book has arisen from over ten years of lectures in a two-quarter
sequence of a senior and first-year graduate-level course in information
theory, and is intended as an introduction to information theory for stu-
dents of communication theory, computer science, and statistics.

There are two points to be made about the simplicities inherent in infor-
mation theory. First, certain quantities like entropy and mutual information
arise as the answers to fundamental questions. For example, entropy is
the minimum descriptive complexity of a random variable, and mutual
information is the communication rate in the presence of noise. Also,
as we shall point out, mutual information corresponds to the increase in
the doubling rate of wealth given side information. Second, the answers
to information theoretic questions have a natural algebraic structure. For
example, there is a chain rule for entropies, and entropy and mutual infor-
mation are related. Thus the answers to problems in data compression
and communication admit extensive interpretation. We all know the feel-
ing that follows when one investigates a problem, goes through a large
amount of algebra, and finally investigates the answer to find that the
entire problem is illuminated not by the analysis but by the inspection of
the answer. Perhaps the outstanding examples of this in physics are New-
ton’s laws and Schrodinger’s wave equation. Who could have foreseen the
awesome philosophical interpretations of Schrodinger’s wave equation?

In the text we often investigate properties of the answer before we look
at the question. For example, in Chapter 2, we define entropy, relative
entropy, and mutual information and study the relationships and a few

xvii



Xviii PREFACE TO THE FIRST EDITION

interpretations of them, showing how the answers fit together in various
ways. Along the way we speculate on the meaning of the second law of
thermodynamics. Does entropy always increase? The answer is yes and
no. This is the sort of result that should please experts in the area but
might be overlooked as standard by the novice.

In fact, that brings up a point that often occurs in teaching. It is fun
to find new proofs or slightly new results that no one else knows. When
one presents these ideas along with the established material in class, the
response is “sure, sure, sure.” But the excitement of teaching the material
is greatly enhanced. Thus we have derived great pleasure from investigat-
ing a number of new ideas in this textbook.

Examples of some of the new material in this text include the chapter
on the relationship of information theory to gambling, the work on the uni-
versality of the second law of thermodynamics in the context of Markov
chains, the joint typicality proofs of the channel capacity theorem, the
competitive optimality of Huffman codes, and the proof of Burg’s theorem
on maximum entropy spectral density estimation. Also, the chapter on
Kolmogorov complexity has no counterpart in other information theory
texts. We have also taken delight in relating Fisher information, mutual
information, the central limit theorem, and the Brunn—Minkowski and
entropy power inequalities. To our surprise, many of the classical results
on determinant inequalities are most easily proved using information the-
oretic inequalities.

Even though the field of information theory has grown considerably
since Shannon’s original paper, we have strived to emphasize its coher-
ence. While it is clear that Shannon was motivated by problems in commu-
nication theory when he developed information theory, we treat informa-
tion theory as a field of its own with applications to communication theory
and statistics. We were drawn to the field of information theory from
backgrounds in communication theory, probability theory, and statistics,
because of the apparent impossibility of capturing the intangible concept
of information.

Since most of the results in the book are given as theorems and proofs,
we expect the elegance of the results to speak for themselves. In many
cases we actually describe the properties of the solutions before the prob-
lems. Again, the properties are interesting in themselves and provide a
natural rhythm for the proofs that follow.

One innovation in the presentation is our use of long chains of inequal-
ities with no intervening text followed immediately by the explanations.
By the time the reader comes to many of these proofs, we expect that he
or she will be able to follow most of these steps without any explanation
and will be able to pick out the needed explanations. These chains of
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inequalities serve as pop quizzes in which the reader can be reassured
of having the knowledge needed to prove some important theorems. The
natural flow of these proofs is so compelling that it prompted us to flout
one of the cardinal rules of technical writing; and the absence of verbiage
makes the logical necessity of the ideas evident and the key ideas per-
spicuous. We hope that by the end of the book the reader will share our
appreciation of the elegance, simplicity, and naturalness of information
theory.

Throughout the book we use the method of weakly typical sequences,
which has its origins in Shannon’s original 1948 work but was formally
developed in the early 1970s. The key idea here is the asymptotic equipar-
tition property, which can be roughly paraphrased as “Almost everything
is almost equally probable.”

Chapter 2 includes the basic algebraic relationships of entropy, relative
entropy, and mutual information. The asymptotic equipartition property
(AEP) is given central prominence in Chapter 3. This leads us to dis-
cuss the entropy rates of stochastic processes and data compression in
Chapters 4 and 5. A gambling sojourn is taken in Chapter 6, where the
duality of data compression and the growth rate of wealth is developed.

The sensational success of Kolmogorov complexity as an intellectual
foundation for information theory is explored in Chapter 14. Here we
replace the goal of finding a description that is good on the average with
the goal of finding the universally shortest description. There is indeed
a universal notion of the descriptive complexity of an object. Here also
the wonderful number 2 is investigated. This number, which is the binary
expansion of the probability that a Turing machine will halt, reveals many
of the secrets of mathematics.

Channel capacity is established in Chapter 7. The necessary material
on differential entropy is developed in Chapter 8, laying the groundwork
for the extension of previous capacity theorems to continuous noise chan-
nels. The capacity of the fundamental Gaussian channel is investigated in
Chapter 9.

The relationship between information theory and statistics, first studied
by Kullback in the early 1950s and relatively neglected since, is developed
in Chapter 11. Rate distortion theory requires a little more background
than its noiseless data compression counterpart, which accounts for its
placement as late as Chapter 10 in the text.

The huge subject of network information theory, which is the study
of the simultaneously achievable flows of information in the presence of
noise and interference, is developed in Chapter 15. Many new ideas come
into play in network information theory. The primary new ingredients are
interference and feedback. Chapter 16 considers the stock market, which is
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the generalization of the gambling processes considered in Chapter 6, and
shows again the close correspondence of information theory and gambling.

Chapter 17, on inequalities in information theory, gives us a chance to
recapitulate the interesting inequalities strewn throughout the book, put
them in a new framework, and then add some interesting new inequalities
on the entropy rates of randomly drawn subsets. The beautiful relationship
of the Brunn—Minkowski inequality for volumes of set sums, the entropy
power inequality for the effective variance of the sum of independent
random variables, and the Fisher information inequalities are made explicit
here.

We have made an attempt to keep the theory at a consistent level.
The mathematical level is a reasonably high one, probably the senior or
first-year graduate level, with a background of at least one good semester
course in probability and a solid background in mathematics. We have,
however, been able to avoid the use of measure theory. Measure theory
comes up only briefly in the proof of the AEP for ergodic processes in
Chapter 16. This fits in with our belief that the fundamentals of infor-
mation theory are orthogonal to the techniques required to bring them to
their full generalization.

The essential vitamins are contained in Chapters 2, 3, 4, 5, 7, 8, 9,
11, 10, and 15. This subset of chapters can be read without essential
reference to the others and makes a good core of understanding. In our
opinion, Chapter 14 on Kolmogorov complexity is also essential for a deep
understanding of information theory. The rest, ranging from gambling to
inequalities, is part of the terrain illuminated by this coherent and beautiful
subject.

Every course has its first lecture, in which a sneak preview and overview
of ideas is presented. Chapter 1 plays this role.

Tom COVER
Joy THOMAS

Palo Alto, California
June 1990
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I CHAPTER 1

INTRODUCTION AND PREVIEW

Information theory answers two fundamental questions in communication
theory: What is the ultimate data compression (answer: the entropy H),
and what is the ultimate transmission rate of communication (answer: the
channel capacity C). For this reason some consider information theory
to be a subset of communication theory. We argue that it is much more.
Indeed, it has fundamental contributions to make in statistical physics
(thermodynamics), computer science (Kolmogorov complexity or algo-
rithmic complexity), statistical inference (Occam’s Razor: “The simplest
explanation is best”), and to probability and statistics (error exponents for
optimal hypothesis testing and estimation).

This “first lecture” chapter goes backward and forward through infor-
mation theory and its naturally related ideas. The full definitions and study
of the subject begin in Chapter 2. Figure 1.1 illustrates the relationship
of information theory to other fields. As the figure suggests, information
theory intersects physics (statistical mechanics), mathematics (probability
theory), electrical engineering (communication theory), and computer sci-
ence (algorithmic complexity). We now describe the areas of intersection
in greater detail.

Electrical Engineering (Communication Theory). In the early 1940s
it was thought to be impossible to send information at a positive rate
with negligible probability of error. Shannon surprised the communica-
tion theory community by proving that the probability of error could be
made nearly zero for all communication rates below channel capacity.
The capacity can be computed simply from the noise characteristics of
the channel. Shannon further argued that random processes such as music
and speech have an irreducible complexity below which the signal cannot
be compressed. This he named the entropy, in deference to the parallel
use of this word in thermodynamics, and argued that if the entropy of the

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.



2 INTRODUCTION AND PREVIEW

Information
Theory

Portfolio Theory
Kelly Gambling

FIGURE 1.1. Relationship of information theory to other fields.

Data compression
limit

Data transmission
limit

min /(X: X) max (X Y)

FIGURE 1.2. Information theory as the extreme points of communication theory.

source is less than the capacity of the channel, asymptotically error-free
communication can be achieved.

Information theory today represents the extreme points of the set of
all possible communication schemes, as shown in the fanciful Figure 1.2.
The data compression minimum 7 (X; X) lies at one extreme of the set of
communication ideas. All data compression schemes require description
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rates at least equal to this minimum. At the other extreme is the data
transmission maximum / (X; Y), known as the channel capacity. Thus,
all modulation schemes and data compression schemes lie between these
limits.

Information theory also suggests means of achieving these ultimate
limits of communication. However, these theoretically optimal communi-
cation schemes, beautiful as they are, may turn out to be computationally
impractical. It is only because of the computational feasibility of sim-
ple modulation and demodulation schemes that we use them rather than
the random coding and nearest-neighbor decoding rule suggested by Shan-
non’s proof of the channel capacity theorem. Progress in integrated circuits
and code design has enabled us to reap some of the gains suggested by
Shannon’s theory. Computational practicality was finally achieved by the
advent of turbo codes. A good example of an application of the ideas of
information theory is the use of error-correcting codes on compact discs
and DVDs.

Recent work on the communication aspects of information theory has
concentrated on network information theory: the theory of the simultane-
ous rates of communication from many senders to many receivers in the
presence of interference and noise. Some of the trade-offs of rates between
senders and receivers are unexpected, and all have a certain mathematical
simplicity. A unifying theory, however, remains to be found.

Computer Science (Kolmogorov Complexity). Kolmogorov,
Chaitin, and Solomonoff put forth the idea that the complexity of a string
of data can be defined by the length of the shortest binary computer
program for computing the string. Thus, the complexity is the minimal
description length. This definition of complexity turns out to be universal,
that is, computer independent, and is of fundamental importance. Thus,
Kolmogorov complexity lays the foundation for the theory of descriptive
complexity. Gratifyingly, the Kolmogorov complexity K is approximately
equal to the Shannon entropy H if the sequence is drawn at random from
a distribution that has entropy H. So the tie-in between information theory
and Kolmogorov complexity is perfect. Indeed, we consider Kolmogorov
complexity to be more fundamental than Shannon entropy. It is the ulti-
mate data compression and leads to a logically consistent procedure for
inference.

There is a pleasing complementary relationship between algorithmic
complexity and computational complexity. One can think about computa-
tional complexity (time complexity) and Kolmogorov complexity (pro-
gram length or descriptive complexity) as two axes corresponding to
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program running time and program length. Kolmogorov complexity fo-
cuses on minimizing along the second axis, and computational complexity
focuses on minimizing along the first axis. Little work has been done on
the simultaneous minimization of the two.

Physics (Thermodynamics). Statistical mechanics is the birthplace of
entropy and the second law of thermodynamics. Entropy always increases.
Among other things, the second law allows one to dismiss any claims to
perpetual motion machines. We discuss the second law briefly in Chapter 4.

Mathematics (Probability Theory and Statistics). The fundamental
quantities of information theory—entropy, relative entropy, and mutual
information—are defined as functionals of probability distributions. In
turn, they characterize the behavior of long sequences of random variables
and allow us to estimate the probabilities of rare events (large deviation
theory) and to find the best error exponent in hypothesis tests.

Philosophy of Science (Occam’s Razor). William of Occam said
“Causes shall not be multiplied beyond necessity,” or to paraphrase it,
“The simplest explanation is best.” Solomonoff and Chaitin argued per-
suasively that one gets a universally good prediction procedure if one takes
a weighted combination of all programs that explain the data and observes
what they print next. Moreover, this inference will work in many problems
not handled by statistics. For example, this procedure will eventually pre-
dict the subsequent digits of 7. When this procedure is applied to coin flips
that come up heads with probability 0.7, this too will be inferred. When
applied to the stock market, the procedure should essentially find all the
“laws” of the stock market and extrapolate them optimally. In principle,
such a procedure would have found Newton’s laws of physics. Of course,
such inference is highly impractical, because weeding out all computer
programs that fail to generate existing data will take impossibly long. We
would predict what happens tomorrow a hundred years from now.

Economics (Investment). Repeated investment in a stationary stock
market results in an exponential growth of wealth. The growth rate of
the wealth is a dual of the entropy rate of the stock market. The paral-
lels between the theory of optimal investment in the stock market and
information theory are striking. We develop the theory of investment to
explore this duality.

Computation vs. Communication. As we build larger computers
out of smaller components, we encounter both a computation limit and
a communication limit. Computation is communication limited and com-
munication is computation limited. These become intertwined, and thus
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all of the developments in communication theory via information theory
should have a direct impact on the theory of computation.

1.1 PREVIEW OF THE BOOK

The initial questions treated by information theory lay in the areas of
data compression and transmission. The answers are quantities such as
entropy and mutual information, which are functions of the probability
distributions that underlie the process of communication. A few definitions
will aid the initial discussion. We repeat these definitions in Chapter 2.

The entropy of a random variable X with a probability mass function
p(x) is defined by

H(X)= - p(x)log, p(x). (1.1)

We use logarithms to base 2. The entropy will then be measured in bits.
The entropy is a measure of the average uncertainty in the random vari-
able. It is the number of bits on average required to describe the random
variable.

Example 1.1.1 Consider a random variable that has a uniform distribu-
tion over 32 outcomes. To identify an outcome, we need a label that takes
on 32 different values. Thus, 5-bit strings suffice as labels.

The entropy of this random variable is

32 32
|
H(X)=—> p(i)log p(i) = —Z—log—2 —log32 = 5 bits,

i=1 i=1
(1.2)
which agrees with the number of bits needed to describe X. In this case,
all the outcomes have representations of the same length.

Now consider an example with nonuniform distribution.

Example 1.1.2 Suppose that we have a horse race with eight horses
taking part. Assume that the probabilities of winning for the eight horses

are (%, %, %,1—16,6—14,6—2, 61—4, 6L4). We can calculate the entropy of the horse
race as
HX) 11 1 11 1 11 1 11 1 411 1
=—=log-——-log- —-log= — —log— —4—log —
22 TR T 16 16 64 Coa

= 2 bits. (1.3)
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Suppose that we wish to send a message indicating which horse won
the race. One alternative is to send the index of the winning horse. This
description requires 3 bits for any of the horses. But the win probabilities
are not uniform. It therefore makes sense to use shorter descriptions for the
more probable horses and longer descriptions for the less probable ones,
so that we achieve a lower average description length. For example, we
could use the following set of bit strings to represent the eight horses: 0,
10, 110, 1110, 111100, 111101, 111110, 111111. The average description
length in this case is 2 bits, as opposed to 3 bits for the uniform code.
Notice that the average description length in this case is equal to the
entropy. In Chapter 5 we show that the entropy of a random variable is
a lower bound on the average number of bits required to represent the
random variable and also on the average number of questions needed to
identify the variable in a game of “20 questions.” We also show how to
construct representations that have an average length within 1 bit of the
entropy.

The concept of entropy in information theory is related to the concept of
entropy in statistical mechanics. If we draw a sequence of n independent
and identically distributed (i.i.d.) random variables, we will show that the
probability of a “typical” sequence is about 277 and that there are
about 27X guch typical sequences. This property [known as the asymp-
totic equipartition property (AEP)] is the basis of many of the proofs in
information theory. We later present other problems for which entropy
arises as a natural answer (e.g., the number of fair coin flips needed to
generate a random variable).

The notion of descriptive complexity of a random variable can be
extended to define the descriptive complexity of a single string. The Kol-
mogorov complexity of a binary string is defined as the length of the
shortest computer program that prints out the string. It will turn out that
if the string is indeed random, the Kolmogorov complexity is close to
the entropy. Kolmogorov complexity is a natural framework in which
to consider problems of statistical inference and modeling and leads to
a clearer understanding of Occam’s Razor: “The simplest explanation is
best.” We describe some simple properties of Kolmogorov complexity in
Chapter 1.

Entropy is the uncertainty of a single random variable. We can define
conditional entropy H(X|Y), which is the entropy of a random variable
conditional on the knowledge of another random variable. The reduction
in uncertainty due to another random variable is called the mutual infor-
mation. For two random variables X and Y this reduction is the mutual
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information

p(x,y)
I(X:Y)=H(X)— H(X|Y § 1.4
( ) (X) (X|Y)= ) px,y)log—F—-— P (1.4)

The mutual information 7 (X; Y) is a measure of the dependence between
the two random variables. It is symmetric in X and Y and always non-
negative and is equal to zero if and only if X and Y are independent.

A communication channel is a system in which the output depends
probabilistically on its input. It is characterized by a probability transition
matrix p(y|x) that determines the conditional distribution of the output
given the input. For a communication channel with input X and output
Y, we can define the capacity C by

C=maxI(X;Y). (1.5)
p(x)

Later we show that the capacity is the maximum rate at which we can send
information over the channel and recover the information at the output
with a vanishingly low probability of error. We illustrate this with a few
examples.

Example 1.1.3 (Noiseless binary channel) For this channel, the binary
input is reproduced exactly at the output. This channel is illustrated in
Figure 1.3. Here, any transmitted bit is received without error. Hence,
in each transmission, we can send 1 bit reliably to the receiver, and the
capacity is 1 bit. We can also calculate the information capacity C =
max / (X;Y) =1 bit.

Example 1.1.4 (Noisy four-symbol channel) Consider the channel
shown in Figure 1.4. In this channel, each input letter is received either as
the same letter with probability % or as the next letter with probability %
If we use all four input symbols, inspection of the output would not reveal
with certainty which input symbol was sent. If, on the other hand, we use

1 > 1

FIGURE 1.3. Noiseless binary channel. C = 1 bit.
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FIGURE 1.4. Noisy channel.

only two of the inputs (1 and 3, say), we can tell immediately from the
output which input symbol was sent. This channel then acts like the noise-
less channel of Example 1.1.3, and we can send 1 bit per transmission
over this channel with no errors. We can calculate the channel capacity
C =max [ (X;Y) in this case, and it is equal to 1 bit per transmission,
in agreement with the analysis above.

In general, communication channels do not have the simple structure of
this example, so we cannot always identify a subset of the inputs to send
information without error. But if we consider a sequence of transmissions,
all channels look like this example and we can then identify a subset of the
input sequences (the codewords) that can be used to transmit information
over the channel in such a way that the sets of possible output sequences
associated with each of the codewords are approximately disjoint. We can
then look at the output sequence and identify the input sequence with a
vanishingly low probability of error.

Example 1.1.5 (Binary symmetric channel) This is the basic example
of a noisy communication system. The channel is illustrated in Figure 1.5.

1-p

1-p

FIGURE 1.5. Binary symmetric channel.
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The channel has a binary input, and its output is equal to the input with
probability 1 — p. With probability p, on the other hand, a 0 is received
as a 1, and vice versa. In this case, the capacity of the channel can be cal-
culatedtobe C =1+ plog p + (1 — p)log(l — p) bits per transmission.
However, it is no longer obvious how one can achieve this capacity. If we
use the channel many times, however, the channel begins to look like the
noisy four-symbol channel of Example 1.1.4, and we can send informa-
tion at a rate C bits per transmission with an arbitrarily low probability
of error.

The ultimate limit on the rate of communication of information over
a channel is given by the channel capacity. The channel coding theorem
shows that this limit can be achieved by using codes with a long block
length. In practical communication systems, there are limitations on the
complexity of the codes that we can use, and therefore we may not be
able to achieve capacity.

Mutual information turns out to be a special case of a more general
quantity called relative entropy D(pl|q), which is a measure of the “dis-
tance” between two probability mass functions p and ¢. It is defined
as

p(x)

D = 1 . 1.6
(pllg) =), p(x)log pres (1.6)

X

Although relative entropy is not a true metric, it has some of the properties
of a metric. In particular, it is always nonnegative and is zero if and only
if p = ¢q. Relative entropy arises as the exponent in the probability of
error in a hypothesis test between distributions p and ¢g. Relative entropy
can be used to define a geometry for probability distributions that allows
us to interpret many of the results of large deviation theory.

There are a number of parallels between information theory and the
theory of investment in a stock market. A stock market is defined by a
random vector X whose elements are nonnegative numbers equal to the
ratio of the price of a stock at the end of a day to the price at the beginning
of the day. For a stock market with distribution F(x), we can define the
doubling rate W as

W= max /logb’x dF (x). (1.7)
b:biZO,ZbiZI

The doubling rate is the maximum asymptotic exponent in the growth
of wealth. The doubling rate has a number of properties that parallel the
properties of entropy. We explore some of these properties in Chapter 16.
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The quantities H, I, C, D, K, W arise naturally in the following areas:

e Data compression. The entropy H of a random variable is a lower

bound on the average length of the shortest description of the random
variable. We can construct descriptions with average length within 1
bit of the entropy. If we relax the constraint of recovering the source
perfectly, we can then ask what communication rates are required to
describe the source up to distortion D? And what channel capacities
are sufficient to enable the transmission of this source over the chan-
nel and its reconstruction with distortion less than or equal to D?
This is the subject of rate distortion theory.

When we try to formalize the notion of the shortest description
for nonrandom objects, we are led to the definition of Kolmogorov
complexity K. Later, we show that Kolmogorov complexity is uni-
versal and satisfies many of the intuitive requirements for the theory
of shortest descriptions.

Data transmission. We consider the problem of transmitting infor-
mation so that the receiver can decode the message with a small prob-
ability of error. Essentially, we wish to find codewords (sequences
of input symbols to a channel) that are mutually far apart in the
sense that their noisy versions (available at the output of the channel)
are distinguishable. This is equivalent to sphere packing in high-
dimensional space. For any set of codewords it is possible to calculate
the probability that the receiver will make an error (i.e., make an
incorrect decision as to which codeword was sent). However, in most
cases, this calculation is tedious.

Using a randomly generated code, Shannon showed that one can
send information at any rate below the capacity C of the channel
with an arbitrarily low probability of error. The idea of a randomly
generated code is very unusual. It provides the basis for a simple
analysis of a very difficult problem. One of the key ideas in the proof
is the concept of typical sequences. The capacity C is the logarithm
of the number of distinguishable input signals.

e Network information theory. Each of the topics mentioned previously

involves a single source or a single channel. What if one wishes to com-
press each of many sources and then put the compressed descriptions
together into a joint reconstruction of the sources? This problem is
solved by the Slepian—Wolf theorem. Or what if one has many senders
sending information independently to a common receiver? What is the
channel capacity of this channel? This is the multiple-access channel
solved by Liao and Ahlswede. Or what if one has one sender and many
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receivers and wishes to communicate (perhaps different) information
simultaneously to each of the receivers? This is the broadcast channel.
Finally, what if one has an arbitrary number of senders and receivers in
an environment of interference and noise. What is the capacity region
of achievable rates from the various senders to the receivers? This is
the general network information theory problem. All of the preceding
problems fall into the general area of multiple-user or network informa-
tion theory. Although hopes for a comprehensive theory for networks
may be beyond current research techniques, there is still some hope that
all the answers involve only elaborate forms of mutual information and
relative entropy.

Ergodic theory. The asymptotic equipartition theorem states that most
sample n-sequences of an ergodic process have probability about 277
and that there are about 2"# such typical sequences.

Hypothesis testing. The relative entropy D arises as the exponent in
the probability of error in a hypothesis test between two distributions.
It is a natural measure of distance between distributions.

Statistical mechanics. The entropy H arises in statistical mechanics
as a measure of uncertainty or disorganization in a physical system.
Roughly speaking, the entropy is the logarithm of the number of
ways in which the physical system can be configured. The second law
of thermodynamics says that the entropy of a closed system cannot
decrease. Later we provide some interpretations of the second law.

Quantum mechanics. Here, von Neumann entropy S = tr(plnp) =
> ;i AilogA; plays the role of classical Shannon—Boltzmann entropy
H = — )", pilog p;. Quantum mechanical versions of data compres-
sion and channel capacity can then be found.

Inference. We can use the notion of Kolmogorov complexity K to
find the shortest description of the data and use that as a model to
predict what comes next. A model that maximizes the uncertainty or
entropy yields the maximum entropy approach to inference.
Gambling and investment. The optimal exponent in the growth rate
of wealth is given by the doubling rate W. For a horse race with
uniform odds, the sum of the doubling rate W and the entropy H is
constant. The increase in the doubling rate due to side information is
equal to the mutual information / between a horse race and the side
information. Similar results hold for investment in the stock market.
Probability theory. The asymptotic equipartition property (AEP)
shows that most sequences are typical in that they have a sam-
ple entropy close to H. So attention can be restricted to these
approximately 2" typical sequences. In large deviation theory, the
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probability of a set is approximately 27"?, where D is the relative
entropy distance between the closest element in the set and the true
distribution.

o Complexity theory. The Kolmogorov complexity K is a measure of
the descriptive complexity of an object. It is related to, but different
from, computational complexity, which measures the time or space
required for a computation.

Information-theoretic quantities such as entropy and relative entropy
arise again and again as the answers to the fundamental questions in
communication and statistics. Before studying these questions, we shall
study some of the properties of the answers. We begin in Chapter 2 with
the definitions and basic properties of entropy, relative entropy, and mutual
information.



BN CHAPTER 2

ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

In this chapter we introduce most of the basic definitions required for
subsequent development of the theory. It is irresistible to play with their
relationships and interpretations, taking faith in their later utility. After
defining entropy and mutual information, we establish chain rules, the
nonnegativity of mutual information, the data-processing inequality, and
illustrate these definitions by examining sufficient statistics and Fano’s
inequality.

The concept of information is too broad to be captured completely by
a single definition. However, for any probability distribution, we define a
quantity called the entropy, which has many properties that agree with the
intuitive notion of what a measure of information should be. This notion is
extended to define mutual information, which is a measure of the amount
of information one random variable contains about another. Entropy then
becomes the self-information of a random variable. Mutual information is
a special case of a more general quantity called relative entropy, which is
a measure of the distance between two probability distributions. All these
quantities are closely related and share a number of simple properties,
some of which we derive in this chapter.

In later chapters we show how these quantities arise as natural answers
to a number of questions in communication, statistics, complexity, and
gambling. That will be the ultimate test of the value of these definitions.

2.1 ENTROPY

We first introduce the concept of entropy, which is a measure of the
uncertainty of a random variable. Let X be a discrete random variable
with alphabet & and probability mass function p(x) = Pr{X = x}, x € X.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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We denote the probability mass function by p(x) rather than px(x), for
convenience. Thus, p(x) and p(y) refer to two different random variables
and are in fact different probability mass functions, px(x) and py(y),
respectively.

Definition The entropy H(X) of a discrete random variable X is
defined by

H(X) ==Y p(x)log p(x). 2.1)
xeX

We also write H(p) for the above quantity. The log is to the base 2
and entropy is expressed in bits. For example, the entropy of a fair coin
toss is 1 bit. We will use the convention that 0log 0 = 0, which is easily
justified by continuity since x logx — 0 as x — 0. Adding terms of zero
probability does not change the entropy.

If the base of the logarithm is b, we denote the entropy as Hp(X). If
the base of the logarithm is e, the entropy is measured in nats. Unless
otherwise specified, we will take all logarithms to base 2, and hence all
the entropies will be measured in bits. Note that entropy is a functional
of the distribution of X. It does not depend on the actual values taken by
the random variable X, but only on the probabilities.

We denote expectation by E. Thus, if X ~ p(x), the expected value of
the random variable g(X) is written

Epg(X) =) gx)p(x), 2.2)

xeX

or more simply as Eg(X) when the probability mass function is under-
stood from the context. We shall take a peculiar interest in the eerily
self-referential expectation of g(X) under p(x) when g(X) = log ﬁ.
Remark The entropy of X can also be interpreted as the expected value
of the random variable log ﬁ, where X is drawn according to probability
mass function p(x). Thus,

1
H(X)=E,log——. 2.

(X) = E,log (%) (2.3)

This definition of entropy is related to the definition of entropy in ther-
modynamics; some of the connections are explored later. It is possible
to derive the definition of entropy axiomatically by defining certain prop-
erties that the entropy of a random variable must satisfy. This approach
is illustrated in Problem 2.46. We do not use the axiomatic approach to
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justify the definition of entropy; instead, we show that it arises as the
answer to a number of natural questions, such as “What is the average
length of the shortest description of the random variable?” First, we derive
some immediate consequences of the definition.

Lemma2.1.1 H((X) > 0.

Proof: 0 < p(x) <1 implies that log —— p(x) > 0. O
Lemma2.1.2 H,(X) = (log, a) H,(X).

Proof: log, p =log,alog, p. O

The second property of entropy enables us to change the base of the
logarithm in the definition. Entropy can be changed from one base to
another by multiplying by the appropriate factor.

Example 2.1.1 Let

__ |} 1 with probability p,
X = { 0 with probability 1 — p. 2.4)
Then dof
H(X)=—plogp—(1—p)log(l — p) = H(p).  (2.5)

In particular, H(X) = 1 bit when p = % The graph of the function H(p)
is shown in Figure 2.1. The figure illustrates some of the basic properties
of entropy: It is a concave function of the distribution and equals 0 when
p =0 or 1. This makes sense, because when p = 0 or 1, the variable
is not random and there is no uncertainty. Similarly, the uncertainty is
maximum when p = 5, which also corresponds to the maximum value of
the entropy.

Example 2.1.2 Let

a with probability%,
P b W%th probab%l%ty %, (2.6)
¢ with probabilityg,
d  with probability .
The entropy of X is
HOX) 11 1 11 1 11 1 11 1 7b't 2.7
- —— - — = - — = - — = — = — DIls. .
282 T 4%y Ty g By Ty "
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0 01 02 03 04 05 06 07 08 09 1
o

FIGURE 2.1. H(p) vs. p.

Suppose that we wish to determine the value of X with the minimum
number of binary questions. An efficient first question is “Is X = a?”
This splits the probability in half. If the answer to the first question is
no, the second question can be “Is X = »?” The third question can be
“Is X = ¢?” The resulting expected number of binary questions required
is 1.75. This turns out to be the minimum expected number of binary
questions required to determine the value of X. In Chapter 5 we show that
the minimum expected number of binary questions required to determine
X lies between H(X) and H(X) + 1.

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY

We defined the entropy of a single random variable in Section 2.1. We
now extend the definition to a pair of random variables. There is nothing
really new in this definition because (X, Y) can be considered to be a
single vector-valued random variable.

Definition The joint entropy H(X,Y) of a pair of discrete random
variables (X, Y) with a joint distribution p(x, y) is defined as

HX,Y)=—=Y "% px, ylogp(x,y), (2.8)

xeX yey
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which can also be expressed as

H(X,Y)=—FElogp(X,Y). (2.9)

We also define the conditional entropy of a random variable given
another as the expected value of the entropies of the conditional distribu-
tions, averaged over the conditioning random variable.

Definition 1f (X,Y) ~ p(x,y), the conditional entropy H(Y|X) is
defined as

H(Y|X)=)_ p@xHY|X =x) (2.10)
xeX
== (@) ) pOylolog p(ylx) (2.11)
xeX yey
=—Y Y plx.y)log p(ylx) (2.12)
xeX yey
= —Elog p(Y|X). (2.13)

The naturalness of the definition of joint entropy and conditional entropy
is exhibited by the fact that the entropy of a pair of random variables is
the entropy of one plus the conditional entropy of the other. This is proved
in the following theorem.

Theorem 2.2.1 (Chain rule)

H(X,Y)=HX)+ HY|X). (2.14)
Proof
HX,Y)==Y > p ylogp(x,y) (2.15)
xeX ye)y
=—Y_ Y p, »log p(x)p(ylx) (2.16)
xeX ye)y
==Y Y p,»logpx) =Y > plx, y)log p(ylx)
xeX yey xeX yeY (2‘17)
== p@logp@) = Y Y ple.y)log p(yl)  (2.18)
xeX xeX yey

— H(X) + H(Y|X). (2.19)



18 ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION

Equivalently, we can write

log p(X,Y) =log p(X) + log p(Y|X) (2.20)
and take the expectation of both sides of the equation to obtain the
theorem. O
Corollary

H(X,Y|Z)=HX|Z2)+ H(Y|X, Z). (2.21)
Proof: The proof follows along the same lines as the theorem. O

Example 2.2.1 Let (X, Y) have the following joint distribution:

X

Y | 2 3 4
i1 1 1 1

8 16 32 32

1 1 1 1

2| 15 8 » »

1 | | |
3 16 T6 16 16

41 1 0 0 0

The marginal distribution of X is (%, }L, %, %) and the marginal distribution
of Y is (4, 1. 1. 7). and hence H(X) = I bits and H(Y) = 2 bits. Also,

4
H(X|Y)=Y p(Y =)H(X|Y =) (2.22)
i=1

1 1 111 1 1 111
=-H PR RPST . +_H T Ao o
4 24 8 8 4 42 8 8

1 /1 111\ 1
+ H( )+ZH(1,O,O,O) (2.23)

47 \4 444
:lxz+lxz+lx2+lx0 (2.24)
4 4 4 4 4 4
11 .
= 5 bits. (2.25)

Similarly, H(Y|X) = % bits and H(X,Y) = ¥ bits.

Remark Note that H(Y|X) # H(X|Y). However, H(X) — H(X|Y) =
H(Y)— H(Y|X), a property that we exploit later.
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2.3 RELATIVE ENTROPY AND MUTUAL INFORMATION

The entropy of a random variable is a measure of the uncertainty of the
random variable; it is a measure of the amount of information required on
the average to describe the random variable. In this section we introduce
two related concepts: relative entropy and mutual information.

The relative entropy is a measure of the distance between two distribu-
tions. In statistics, it arises as an expected logarithm of the likelihood ratio.
The relative entropy D(p]|q) is a measure of the inefficiency of assuming
that the distribution is ¢ when the true distribution is p. For example, if
we knew the true distribution p of the random variable, we could con-
struct a code with average description length H (p). If, instead, we used
the code for a distribution g, we would need H(p) + D(pllg) bits on the
average to describe the random variable.

Definition The relative entropy or Kullback—Leibler distance between
two probability mass functions p(x) and g(x) is defined as

p(x)
D = E 1 2.26
(pllg) xexp(x) og 700 (2.26)
_ p(X)
=E,log —q(X)' (2.27)

In the above definition, we use the convention that Olog% = 0 and the
convention (based on continuity arguments) that 0log 2 = 0 and p log % =
oo. Thus, if there is any symbol x € X such that p(x) > 0 and g(x) = 0,
then D(p|lg) = oo.

We will soon show that relative entropy is always nonnegative and is
zero if and only if p = ¢. However, it is not a true distance between
distributions since it is not symmetric and does not satisfy the triangle
inequality. Nonetheless, it is often useful to think of relative entropy as a
“distance” between distributions.

We now introduce mutual information, which is a measure of the
amount of information that one random variable contains about another
random variable. It is the reduction in the uncertainty of one random
variable due to the knowledge of the other.

Definition Consider two random variables X and Y with a joint proba-
bility mass function p(x, y) and marginal probability mass functions p(x)
and p(y). The mutual information 1(X; Y) is the relative entropy between
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the joint distribution and the product distribution p(x)p(y):

p(x,y)
IX:Y)=) ) plx.y)log— = (2.28)
ooy p(xX)p(y)
= D(p(x. MIIp)p(y) (2.29)
p(X,Y)
— E ) log —2— 7 2.30
p(x,y) 108 (X p() (2.30)

In Chapter 8 we generalize this definition to continuous random vari-
ables, and in (8.54) to general random variables that could be a mixture
of discrete and continuous random variables.

Example 2.3.1 Let X = {0, 1} and consider two distributions p and ¢
on X. Let p(O)=1—r, p(1)=r,and let g(0) =1 -5, g(1) = 5. Then

1—
D(pllg) = (1 = r)log -— +r10g— 2.31)

and

1—
D(ql|lp) = (1 —s)log - —|— slog - (2.32)

If r =5, then D(p|lg) = D(q|lp) =0.If r = %, s = %, we can calculate

ISR S B 1
D(pllq) = 5 log 2+ 5 log2 =1-— 5 log3=02075 bit,  (233)
7 7
whereas
3 1
3.3, 1 7 3 .
D(qllp) = Jlog | + ;log = Jlog3 — 1 =0.1887 bit.  (234)
2 2

Note that D(p||lg) # D(q||p) in general.

2.4 RELATIONSHIP BETWEEN ENTROPY AND MUTUAL
INFORMATION

We can rewrite the definition of mutual information /(X; Y) as

p(x,y)
I(X:Y § 2.35
( )= ) p(x,y)log——— 2P0 (2.35)
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=3 px, y) log 2 (2.36)
o p(x)
=— Y px,»logp(x) + Y plx, »log p(xly) (2.37)
X,y X,y

=-Y p@)log px) - (— > p(x.y) log p<x|y>><2.38)
X X,y
= H(X)— HX]|Y). (2.39)
Thus, the mutual information / (X; Y) is the reduction in the uncertainty

of X due to the knowledge of Y.
By symmetry, it also follows that

I(X;Y)=H{)—-H{Y|X). (2.40)

Thus, X says as much about Y as Y says about X.
Since H(X,Y) = H(X) + H(Y|X), as shown in Section 2.2, we have

I(X;Y)=HX)+HY)— H(X,Y). (2.41)
Finally, we note that
I1(X;X)=HX)—- HX|X)=H(X). (2.42)

Thus, the mutual information of a random variable with itself is the
entropy of the random variable. This is the reason that entropy is some-
times referred to as self-information.

Collecting these results, we have the following theorem.

Theorem 2.4.1 (Mutual information and entropy)

[(X;Y)=H(X)— HX|Y) (2.43)
[(X;Y)=H(Y)— HY|X) (2.44)
[(X;Y)=HX)+HY) - H(X.,Y) (2.45)
[(X;Y)=1(Y; X) (2.46)

1(X;: X) = H(X). (2.47)
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HX,Y)

>

H(X) H(Y)
FIGURE 2.2. Relationship between entropy and mutual information.
The relationship between H(X), H(Y), H(X,Y), H(X|Y), H(Y|X),
and I(X;Y) is expressed in a Venn diagram (Figure 2.2). Notice that

the mutual information /(X;Y) corresponds to the intersection of the
information in X with the information in Y.

Example 2.4.1 For the joint distribution of Example 2.2.1, it is easy to
calculate the mutual information /(X;Y) = H(X) — H(X|Y) = H(Y) —
H(Y|X) = 0.375 bit.

2.5 CHAIN RULES FOR ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

We now show that the entropy of a collection of random variables is the
sum of the conditional entropies.

Theorem 2.5.1 (Chain rule for entropy) Let X1, X», ..., X, be drawn
according to p(xy, X2, ..., X,). Then

H(Xl,Xz,...,Xn)=ZH(X,-|X,-_1,...,X1). (2.48)

i=1

Proof: By repeated application of the two-variable expansion rule for
entropies, we have

H(Xy, Xp) = H(Xy) + H(X2|Xy), (2.49)
H(Xy, X3, X3) = H(X) + H(X2, X31X1) (2.50)
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= H(X)) + H(X3|Xy) + H(X3[X3, Xy), (2.51)

H(X17X27 "~7Xl’l) = H(X1)+H(X2|X1)+"+H(XI1|Xn—lv °"9X1)

(2.52)
=Y HXi|Xiy,....Xp). O (2.53)
i=1
Alternative Proof: We write p(xi,...,x,) = [[/o; p(xilxiz1, ..., x1)
and evaluate
H(XI’XZ’ ~--,Xn)
= — Z p(x1, x2, ..., x,) log p(x1, X2, ..., Xn) (2.54)

n
= — Z p(x1, x2, ..., x,,)logl_[p(x,-|x,-_1, ce,X1) (2.55)

X1,X2, 005X i=1

= — Z Z p(x1, x2, ..., xp) log p(xilxi—1,...,x1) (2.56)
n

=- Y. plrxa, . x)log pxilxioy, ..., x1) (257)
=

= —Z Z p(x1, x2, ..., x;) log p(xi|xi—1, ..., x1) (2.58)

=Y H(Xi|Xi_1,....X)). O (2.59)
i=1

We now define the conditional mutual information as the reduction in
the uncertainty of X due to knowledge of ¥ when Z is given.

Definition The conditional mutual information of random variables X
and Y given Z is defined by
1(X:Y|Z)= H(X|Z) — H(X|Y, Z) (2.60)
p(X,Y|Z)

_—. (2.61)
r(X1Z)p(Y|Z)

= Ep(x,y,5) log

Mutual information also satisfies a chain rule.
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Theorem 2.5.2 (Chain rule for information)

n
I(X1, Xa, ., X Y) = ) T(Xi YIXi1, Xia, oo, X)), (262)
i=1

Proof

I(X17X2’~7Xnvy)
= H(X1, X2, ..., X)) — H(X1, Xo, ..., XulY) (2.63)

n n
= ZH(Xilxi—l,m,Xl) _ZH(Xilxi—lau-aXl’ Y)
i=1

i=1

n
=Y I(XiY|X1. Xp, ..., Xiop). O (2.64)

i=1
We define a conditional version of the relative entropy.

Definition For joint probability mass functions p(x, y) and ¢(x, y), the
conditional relative entropy D(p(y|x)|lg(y|x)) is the average of the rela-
tive entropies between the conditional probability mass functions p(y|x)
and g (y|x) averaged over the probability mass function p(x). More pre-
cisely,

D(pGIaG) =3 pe) Y p(yln) log ;’ g l'jg (2.65)
x y
- p(Y|X)
= Ep(x,y) log q(Y|X) . (266)

The notation for conditional relative entropy is not explicit since it omits
mention of the distribution p(x) of the conditioning random variable.
However, it is normally understood from the context.

The relative entropy between two joint distributions on a pair of ran-
dom variables can be expanded as the sum of a relative entropy and a
conditional relative entropy. The chain rule for relative entropy is used in
Section 4.4 to prove a version of the second law of thermodynamics.

Theorem 2.5.3 (Chain rule for relative entropy)

D(p(x, Y)lg(x,y)) = D(p(x)|lg(x)) + D(p(y|X)llg(ylx)). (2.67)
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Proof

D(p(x, y)llg(x, y))

=2 plx.ylog SR (2.68)
=5 q(x,y)
=YD plx.y)log PEOPOT) (2.69)
PR q(x)q(ylx)
P< ) p<y|x)
—ZZP(’C Mlog o5 +ZZP( ylog o (270)
= D(p()llg(x)) + D(p(ylX)llg(ylx)). O (2.71)

2.6 JENSEN’S INEQUALITY AND ITS CONSEQUENCES

In this section we prove some simple properties of the quantities defined
earlier. We begin with the properties of convex functions.

Definition A function f(x) is said to be convex over an interval (a, b)
if for every x;,xp € (a,b) and 0 < A <1,

fOxi+ (1 =Mx2) < Af(x) + (1 =2) f(x2). (2.72)

A function f is said to be strictly convex if equality holds only if L =0
or A =1.

Definition A function f is concave if —f is convex. A function is
convex if it always lies below any chord. A function is concave if it
always lies above any chord.

Examples of convex functions include x2, |x|, ¢*, xlogx (for x >
0), and so on. Examples of concave functlons include log x and /x for
x > 0. Figure 2.3 shows some examples of convex and concave functions.
Note that linear functions ax + b are both convex and concave. Convexity
underlies many of the basic properties of information-theoretic quantities
such as entropy and mutual information. Before we prove some of these
properties, we derive some simple results for convex functions.

X

Theorem 2.6.1  If the function f has a second derivative that is non-
negative (positive) over an interval, the function is convex (strictly convex)
over that interval.
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\ A

(b)

FIGURE 2.3. Examples of (a) convex and (b) concave functions.

Proof: We use the Taylor series expansion of the function around x:

fx) = fxo) + f'(xo)(x — x0) + (x — x0)°, (2.73)

[
2

where x* lies between xo and x. By hypothesis, f”(x*) > 0, and thus
the last term is nonnegative for all x.
We let xo = Ax; + (1 — A)x and take x = x{, to obtain

f(x1) = f(xo) + f/(xo)((1 — 1) (x; — x2)). (2.74)
Similarly, taking x = x,, we obtain
fx2) = fxo) + f(xo)(A(x2 — x1)). (2.75)

Multiplying (2.74) by A and (2.75) by 1 — A and adding, we obtain (2.72).
The proof for strict convexity proceeds along the same lines. U

Theorem 2.6.1 allows us immediately to verify the strict convexity of
x2, ¢*, and x log x for x > 0, and the strict concavity of logx and /x for
x> 0.

Let E denote expectation. Thus, EX = )  _, p(x)x in the discrete

case and EX = f xf(x)dx in the continuous case.
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The next inequality is one of the most widely used in mathematics and
one that underlies many of the basic results in information theory.

Theorem 2.6.2 (Jensen’s inequality)  If f is a convex function and
X is a random variable,

Ef(X) = f(EX). (2.76)

Moreover, if f is strictly convex, the equality in (2.76) implies that
X = EX with probability 1 (i.e., X is a constant).

Proof: We prove this for discrete distributions by induction on the num-
ber of mass points. The proof of conditions for equality when f is strictly
convex is left to the reader.

For a two-mass-point distribution, the inequality becomes

p1f(x1) + paf(x2) = f(pi1x1 + paxa), (2.77)

which follows directly from the definition of convex functions. Suppose
that the theorem is true for distributions with k& — 1 mass points. Then
writing p; = p; /(1 — pi) fori =1,2,...,k — 1, we have

k—1

k
Y pif i) =pef i)+ (L= p) Y pifix) 2.78)

i=1 i=1

k—1
> pif () + (1= p) f (Z p;x,) (2.79)

i=1

k—1
> f (pkxk +(=p))Y, pﬁxi> (2.80)

i=1
k
=f (Z pm) : (2.81)
i=l1

where the first inequality follows from the induction hypothesis and the
second follows from the definition of convexity.

The proof can be extended to continuous distributions by continuity
arguments. 0

We now use these results to prove some of the properties of entropy and
relative entropy. The following theorem is of fundamental importance.
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Theorem 2.6.3 (Information inequality) Let p(x),q(x),x € X, be
two probability mass functions. Then

D(pllg) = 0 (2.82)
with equality if and only if p(x) = q(x) for all x.
Proof: Let A = {x: p(x) > 0} be the support set of p(x). Then

p(x)

-D S 1 2.83
(pllq) gpm e (2.83)
= p(x)log a) (2.84)
xXeA p(JC)
q(x)
1 2.85
< og%p(x)p(x) (2.85)
=log ) q(x) (2.86)
xeA
<log ) q(x) (2.87)
xeX
=log 1 (2.88)
=0, (2.89)

where (2.85) follows from Jensen’s inequality. Since log? is a strictly
concave function of ¢, we have equality in (2.85) if and only if g(x)/p(x)
is constant everywhere [i.e., ¢(x) = cp(x) for all x]. Thus, D" _, g(x) =
€Y rea P(x) = c. We have equality in (2.87) only if D ., q(x) =) .y
q(x) = 1, which implies that ¢ = 1. Hence, we have D(p||g) = 0 if and
only if p(x) = g(x) for all x. O

Corollary (Nonnegativity of mutual information)  For any two random
variables, X, Y,

I1(X;Y) >0, (2.90)
with equality if and only if X and Y are independent.

Proof: I(X;Y)= D(p(x,y)|lp(x)p(y)) > 0, with equality if and only
if p(x,y) = p(x)p(y) (i.e., X and Y are independent). Il
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Corollary
D(p(y0)llg(ylx)) = 0, (2.91)

with equality if and only if p(y|x) = q(y|x) for all y and x such that
px) > 0.

Corollary
I1(X;Y|Z) =0, (2.92)

with equality if and only if X and Y are conditionally independent given Z.

We now show that the uniform distribution over the range X is the
maximum entropy distribution over this range. It follows that any random
variable with this range has an entropy no greater than log | A].

Theorem 2.6.4 H(X) < log|X|, where |X]| denotes the number of ele-
ments in the range of X, with equality if and only X has a uniform distri-
bution over X.

Proof: Letu(x)= ﬁ be the uniform probability mass function over X,

and let p(x) be the probability mass function for X. Then
(x)
D(pllw =3 pl)log = =log|X] — H(X). (2.93)

Hence by the nonnegativity of relative entropy,
0<D(p|lu)=log|lXl—HX). O (2.94)
Theorem 2.6.5 (Conditioning reduces entropy)(Information can’t hurt)
H(X|Y) < H(X) (2.95)
with equality if and only if X and Y are independent.
Proof: 0 <I(X;Y)=H(X)— H(X|Y). O

Intuitively, the theorem says that knowing another random variable Y
can only reduce the uncertainty in X. Note that this is true only on the
average. Specifically, H(X|Y = y) may be greater than or less than or
equal to H(X), but on the average H(X|Y) = Zy POMHX|Y =y) <
H(X). For example, in a court case, specific new evidence might increase
uncertainty, but on the average evidence decreases uncertainty.
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Example 2.6.1 Let (X, Y) have the following joint distribution:

X

2 s
wl=
sel— =l | B

Then H(X) = H(%, %) =0.544 bit, H(X|Y =1)=0 bits, and
H(X|Y =2)=1 bit. We calculate H(X|Y) = %H(XIY =1 —F‘—lt
H(X|Y = 2) = 0.25 bit. Thus, the uncertainty in X is increased if ¥ = 2
is observed and decreased if ¥ = 1 is observed, but uncertainty decreases
on the average.

Theorem 2.6.6 (Independence  bound on  entropy) Let
X1, X2, ..., X, be drawn according to p(x1, x2, ..., x,). Then
n
H(X1, Xa,..., Xp) < Y H(X;) (2.96)
i=1

with equality if and only if the X; are independent.
Proof: By the chain rule for entropies,

H(X1, X, Xp) =Y HXi|Xi1, ..., X1) (2.97)

i=1

<> HX), (2.98)
i=1

where the inequality follows directly from Theorem 2.6.5. We have equal-
ity if and only if X; is independent of X;_1,..., X for all i (i.e., if and
only if the X;’s are independent). O

2.7 LOG SUM INEQUALITY AND ITS APPLICATIONS

We now prove a simple consequence of the concavity of the logarithm,
which will be used to prove some concavity results for the entropy.
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Theorem 2.7.1 (Log sum inequality)  For nonnegative numbers,
ai,ax, ..., a, and by, by, ..., b,

a;log — > a; | log ==—— (2.99)
2 0e, (Z ) Sh
with equality if and only if Z—f = const.

We again use the convention that 0log0 = 0, alog 5 = oo if a > 0 and
0 log% = 0. These follow easily from continuity.

Proof: Assume without loss of generality that a¢; > 0 and b; > 0. The
function f(z) = tlogt is strictly convex, since f”(t) = % loge > 0 for all
positive ¢. Hence by Jensen’s inequality, we have

Saif) = f (Y an) (2.100)

a;

for ; >0, ), o; = 1. Setting o; = and ; = -, we obtain

bi
dj—1bj

aj ai a; a;
log — > log —_, (2.101)
ZZ’?/‘ bi ZZb,- Zij
which is the log sum inequality. O
We now use the log sum inequality to prove various convexity results.
We begin by reproving Theorem 2.6.3, which states that D(p||g) > 0 with
equality if and only if p(x) = g(x). By the log sum inequality,

()
q(x)

> (Y pw)loe Y p) /Y g @103

1
= 1log 1= 0 (2.104)

D(pllg) =) p(x)log (2.102)

with equality if and only if % = c¢. Since both p and ¢ are probability

mass functions, ¢ = 1, and hence we have D(p]||g) = 0 if and only if
p(x) = g(x) for all x.
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Theorem 2.7.2 (Convexity of relative entropy) — D(pl||q) is convex in
the pair (p, q); that is, if (p1, q1) and (p2, q2) are two pairs of probability
mass functions, then

D(Apy + (1 = ) p2llrgr + (1 — X)g2) < AD(pillg1) + (1 — 2)D(p2llg2)
(2.105)
forall0 <A < 1.

Proof: We apply the log sum inequality to a term on the left-hand side
of (2.105):

Ap1(x) + (1 = A)p2(x)
Agqr(x) + (1 = A)ga(x)

(Ap1(x) + (1 = 1) p2(x)) log

Api(x) (1 =2)p2(x)

< Ap1(x)log + (1 =) pa(x)log————.  (2.106)
Aqi(x) (I = 2)g2(x)

Summing this over all x, we obtain the desired property. g

Theorem 2.7.3 (Concavity of entropy)  H(p) is a concave function
of p.
Proof

H(p) =log|X] — D(pllu), (2.107)

where u is the uniform distribution on |X| outcomes. The concavity of H
then follows directly from the convexity of D. O

Alternative Proof: Let X; be a random variable with distribution pj,
taking on values in a set A. Let X, be another random variable with
distribution p, on the same set. Let

o _ { 1 with probability A, (2.108)

2 with probability 1 — A.

Let Z = Xy. Then the distribution of Z is Ap; 4+ (1 — A) p. Now since
conditioning reduces entropy, we have

H(Z) > H(Z|0), (2.109)
or equivalently,
H@pyr+ (0 —Mp2) = AH(p1) + (1 = M H(p2), (2.110)

which proves the concavity of the entropy as a function of the distribution.
O
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One of the consequences of the concavity of entropy is that mixing two
gases of equal entropy results in a gas with higher entropy.

Theorem2.7.4 Let (X,Y) ~ p(x,y) = p(x)p(y|x). The mutual infor-
mation I (X; Y) is a concave function of p(x) for fixed p(y|x) and a convex
Sfunction of p(y|x) for fixed p(x).

Proof: To prove the first part, we expand the mutual information

I(X;Y)=HY)—-HY|X) = H(Y)—Zp(x)H(Y|X:x). (2.111)

If p(y|x) is fixed, then p(y) is a linear function of p(x). Hence H(Y),
which is a concave function of p(y), is a concave function of p(x). The
second term is a linear function of p(x). Hence, the difference is a concave
function of p(x).

To prove the second part, we fix p(x) and consider two different con-
ditional distributions p;(y|x) and p>(y|x). The corresponding joint dis-
tributions are pi(x, y) = p(x)pi1(y|lx) and pa(x, y) = p(x)p2(y|x), and
their respective marginals are p(x), p1(y) and p(x), po(y). Consider a
conditional distribution

P.(y|x) = Ap1(ylx) + (1 — A) p2(¥]x), (2.112)

which is a mixture of p;(y|x) and p,(y|x) where O < A < 1. The cor-
responding joint distribution is also a mixture of the corresponding joint
distributions,

pi(x,y) = Ap1(x,y) + (1 = A)p2(x, y), (2.113)
and the distribution of Y is also a mixture,
Pa(y) = Ap1(y) + (1 — 1) pa(y). (2.114)

Hence if we let g, (x,y) = p(x)p,n(y) be the product of the marginal
distributions, we have

gr(x, y) = Aq1(x, y) + (I = M)qa(x, y). (2.115)

Since the mutual information is the relative entropy between the joint
distribution and the product of the marginals,

1(X;Y) = D(pi(x, lgalx, y)), (2.116)

and relative entropy D(p||g) is a convex function of (p, ¢), it follows that
the mutual information is a convex function of the conditional distribution.
O
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2.8 DATA-PROCESSING INEQUALITY

The data-processing inequality can be used to show that no clever manip-
ulation of the data can improve the inferences that can be made from
the data.

Definition Random variables X, Y, Z are said to form a Markov chain
in that order (denoted by X — Y — Z) if the conditional distribution of
Z depends only on Y and is conditionally independent of X. Specifically,
X, Y, and Z form a Markov chain X — Y — Z if the joint probability
mass function can be written as

px,y,2) = px)p(yIx)p(zly). (2.117)

Some simple consequences are as follows:

e X - Y — Z if and only if X and Z are conditionally independent
given Y. Markovity implies conditional independence because

px,y,2) _ plx,y)ply)
r(y) r(y)

p(x,zly) = = p(x|y)p(zly). (2.118)

This is the characterization of Markov chains that can be extended
to define Markov fields, which are n-dimensional random processes
in which the interior and exterior are independent given the values
on the boundary.

e X - Y — Zimplies that Z — Y — X. Thus, the condition is some-
times written X < Y < Z.

e If Z=f(Y), then X - Y — Z.

We can now prove an important and useful theorem demonstrating that
no processing of Y, deterministic or random, can increase the information
that Y contains about X.

Theorem 2.8.1 (Data-processing inequality) If X - Y — Z, then
1(X;Y)>1(X; Z).

Proof: By the chain rule, we can expand mutual information in two
different ways:

I(X:Y,2)=1(X;Z)+ 1(X;Y|Z) (2.119)
=1(X;Y)+1(X; Z|Y). (2.120)



2.9 SUFFICIENT STATISTICS 35

Since X and Z are conditionally independent given Y, we have
1(X;Z|Y)=0. Since I(X;Y|Z) >0, we have

1(X:Y) > [(X;2Z). (2.121)

We have equality if and only if /(X; Y|Z) =0 (i.e., X — Z — Y forms
a Markov chain). Similarly, one can prove that /(Y; Z2) > I(X; Z). U

Corollary  In particular, if Z = g(Y), we have 1(X;Y) > 1(X; g(Y)).
Proof: X — Y — g(Y) forms a Markov chain. O

Thus functions of the data Y cannot increase the information about X.
Corollary IfX - Y — Z, then [(X;Y|Z) < I(X; 7).

Proof: We note in (2.119) and (2.120) that I(X;Z|Y)=0, by
Markovity, and /(X; Z) > 0. Thus,

I(X;Y|Z) < I(X;Y). O (2.122)

Thus, the dependence of X and Y is decreased (or remains unchanged)
by the observation of a “downstream” random variable Z. Note that it is
also possible that /(X; Y|Z) > I(X;Y) when X, Y, and Z do not form a
Markov chain. For example, let X and Y be independent fair binary ran-
dom variables, and let Z = X + Y. Then I(X;Y) =0, but I(X;Y|Z) =
H(X|Z)—HX|Y,Z)=HX|Z)=P(Z=1)HX|Z=1) = % bit.

2.9 SUFFICIENT STATISTICS

This section is a sidelight showing the power of the data-processing
inequality in clarifying an important idea in statistics. Suppose that we
have a family of probability mass functions { fy(x)} indexed by 6, and let
X be a sample from a distribution in this family. Let 7 (X) be any statistic
(function of the sample) like the sample mean or sample variance. Then
6 — X — T(X), and by the data-processing inequality, we have

10, T(X)) <1(;X) (2.123)

for any distribution on 6. However, if equality holds, no information
is lost.

A statistic T(X) is called sufficient for 6 if it contains all the infor-
mation in X about 6.



36 ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION

Definition A function T (X) is said to be a sufficient statistic relative to
the family { fy(x)} if X is independent of 6 given 7' (X) for any distribution
on Ali.e., 8 — T(X) — X forms a Markov chain].

This is the same as the condition for equality in the data-processing
inequality,

10; X) = 16; T(X)) (2.124)

for all distributions on 6. Hence sufficient statistics preserve mutual infor-
mation and conversely.
Here are some examples of sufficient statistics:

1. Let X1, Xo, ..., X,, X; € {0, 1}, be an independent and identically
distributed (i.i.d.) sequence of coin tosses of a coin with unknown
parameter & = Pr(X; = 1). Given n, the number of 1’s is a sufficient
statistic for 6. Here T(Xy, X2, ..., X,) = Z?:l X;. In fact, we can
show that given T, all sequences having that many 1’s are equally
likely and independent of the parameter 6. Specifically,

i=1

1. _
={ (@) if D xi =k, (2.125)

Pr{(X13X27"'7X}’l) = (x17x2""’xn)

0 otherwise.

Thus, 6 — Y X; — (X1, X2, ..., X,,) forms a Markov chain, and
T is a sufficient statistic for 6.

The next two examples involve probability densities instead of
probability mass functions, but the theory still applies. We define
entropy and mutual information for continuous random variables in
Chapter 8.

2. If X is normally distributed with mean 6 and variance 1; that is, if

falx) = \/%e—@—‘”z/z = NG, 1), (2.126)
JT

and X1, X», ..., X, are drawn independently according to this distri-
bution, a sufficient statistic for 6 is the sample mean X, = % X
It can be verified that the conditional distribution of X, X», ..., X,,
conditioned on X, and n does not depend on 6.
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3. If fy = Uniform(0, 6 + 1), a sufficient statistic for 6 is

T(le XZ’ LI ) Xn)
= (max{Xi, Xo, ..., X,,}, min{X{, Xo, ..., X,,}). (2.127)

The proof of this is slightly more complicated, but again one can
show that the distribution of the data is independent of the parameter
given the statistic 7.

The minimal sufficient statistic is a sufficient statistic that is a function
of all other sufficient statistics.

Definition A statistic T (X) is a minimal sufficient statistic relative to
{ fo(x)} if it is a function of every other sufficient statistic U. Interpreting
this in terms of the data-processing inequality, this implies that

0—-TX) — UX) — X. (2.128)

Hence, a minimal sufficient statistic maximally compresses the infor-
mation about 6 in the sample. Other sufficient statistics may contain
additional irrelevant information. For example, for a normal distribution
with mean 6, the pair of functions giving the mean of all odd samples and
the mean of all even samples is a sufficient statistic, but not a minimal
sufficient statistic. In the preceding examples, the sufficient statistics are
also minimal.

2.10 FANO'’S INEQUALITY

Suppose that we know a random variable Y and we wish to guess the value
of a correlated random variable X. Fano’s inequality relates the probabil-
ity of error in guessing the random variable X to its conditional entropy
H(X|Y). It will be crucial in proving the converse to Shannon’s channel
capacity theorem in Chapter 7. From Problem 2.5 we know that the con-
ditional entropy of a random variable X given another random variable
Y is zero if and only if X is a function of Y. Hence we can estimate X
from Y with zero probability of error if and only if H(X|Y) = 0.
Extending this argument, we expect to be able to estimate X with a
low probability of error only if the conditional entropy H(X|Y) is small.
Fano’s inequality quantifies this idea. Suppose that we wish to estimate a
random variable X with a distribution p(x). We observe a random variable
Y that is related to X by the conditional distribution p(y|x). From Y, we
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calculate a function g(Y) = X, where X is an estimate of X and takes on
values in X. We will not restrict the alphabet X to be equal to X, and we
will also allow the function g(Y) to be random. We wish to bound the
probability that X # X. We observe that X — ¥ — X forms a Markov
chain. Define the probability of error

P, =Pr{X #X}. (2.129)

Theorem 2.10.1 (Fano’s Inequality)  For any estimator X such that
X — Y — X, with P, = Pr(X # X), we have

H(P,) + P.log|X| > H(X|X) > H(X|Y). (2.130)

This inequality can be weakened to

1+ P.log|X] > H(X|Y) (2.131)
or
H(X|Y)—1
> (2.132)
log | ]

Remark Note from (2.130) that P, = 0 implies that H(X|Y) = 0, as
intuition suggests.

Proof: We first ignore the role of Y and prove the first inequality in
(2.130). We will then use the data-processing inequality to prove the more
traditional form of Fano’s inequality, given by the second inequality in
(2.130). Define an error random variable,

1 ifX#X,
E‘{o if X = X. (2.133)

Then, using the chain rule for entropies to expand H(E, X|X) in two
different ways, we have

H(E,X|X)=HX|X)+ H(E|X, X) (2.134)
—_————
=0
= H(E|X)+ H(X|E,X). (2.135)
——— —_
<H(P.) <P, log|X]|

Since conditioning reduces entropy, H (E|X) < H(E) = H(P,). Now
since E is a function of X and X, the conditional entropy H(E|X, X) is
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equal to 0. Also, since E is a binary-valued random variable, H(E) =
H(P,). The remaining term, H (X|E, X), can be bounded as follows:

H(X|E,X)=Pr(E=0)H(X|X,E=0)+Pr(E=1)HX|X,E=1)
< (1 — P,)0+ P,log|A], (2.136)

since given £ =0, X = X, and given E = 1, we can upper bound the
conditional entropy by the log of the number of possible outcomes. Com-
bining these results, we obtain

H(P,) + P.log|X| > H(X|X). (2.137)

By the data-processing inequality, we have I(X;X) < I(X;Y) since
X — Y — X is a Markov chain, and therefore H(X|X) > H(X|Y). Thus,
we have

H(P,) + P, log|X] > H(X|®) > H(X|Y). O (2.138)
Corollary  For any two random variables X and Y, let p = Pr(X #Y).
H(p) + plog|X] > H(X|Y). (2.139)

Proof: Let X =Y in Fano’s inequality. O

For any two random variables X and Y, if the estimator g(Y) takes
values in the set X, we can strengthen the inequality slightly by replacing
log | X] with log(|X] — 1).

Corollary Let P, =Pr(X # X), and let X : Y — X; then

H(P,) + P, log(|X] — 1) > H(X|Y). (2.140)

Proof: The proof of the theorem goes through without change, except
that

H(X|E,X)=Pr(E=0)H(X|X,E=0)+Pr(E=1)HX|X,E=1)
(2.141)
< (1 —P)0+ P, log(|X] — 1), (2.142)

since given £ =0, X = X, and given E = 1, the range of possible X
outcomes is |X] — 1, we can upper bound the conditional entropy by the
log(]X] — 1), the logarithm of the number of possible outcomes. Substi-
tuting this provides us with the stronger inequality. n
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Remark Suppose that there is no knowledge of Y. Thus, X must be
guessed without any information. Let X € {1,2,...,m} and p; > py >
.-+ > pm. Then the best guess of X is X = 1 and the resulting probability
of error is P, = 1 — p;. Fano’s inequality becomes

H(P,) + P,logim — 1) > H(X). (2.143)

The probability mass function

P, P,
(p17p27""pm)= I_PL)v 9 e ey (2.144)
m—1 m—1

achieves this bound with equality. Thus, Fano’s inequality is sharp.

While we are at it, let us introduce a new inequality relating probability
of error and entropy. Let X and X’ by two independent identically dis-
tributed random variables with entropy H (X). The probability at X = X’
is given by

Pr(X = X') =Y p*(x). (2.145)

We have the following inequality:

Lemma 2.10.1  If X and X' are i.i.d. with entropy H (X),
Pr(X = X') > 270X (2.146)
with equality if and only if X has a uniform distribution.
Proof: Suppose that X ~ p(x). By Jensen’s inequality, we have
pEloep(X) < pologp(X), (2.147)
which implies that
27O X ploert) < 7 pyloer® = 37 20 O (2.148)

Corollary Let X, X' be independent with X ~ p(x), X' ~r(x), x,x" €
X. Then

Pr(X = X) > 2~ HW@=DwlIn, (2.149)
Pr(X = X') > 2~ H")=DClp), (2.150)
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Proof: We have

2= H(p)=D(plir) _ 7 X p()log p)+ 3 p(x) log 55 (2.151)
_ 9¥ P logr(x) (2.152)
< Zp(x)zlog’(x) (2.153)
= p)rx) (2.154)
=Pr(X = X)), (2.155)

where the inequality follows from Jensen’s inequality and the convexity
of the function f(y) = 2”. O

The following telegraphic summary omits qualifying conditions.

SUMMARY
Definition The entropy H(X) of a discrete random variable X is
defined by
H(X)=—) p(x)log p(x). (2.156)
xeX

Properties of H

1. H(X) > 0.

2. Hy(X) = (log,a)H,(X).

3. (Conditioning reduces entropy) For any two random variables, X
and Y, we have

H(X|Y) < H(X) (2.157)

with equality if and only if X and Y are independent.

4. H(X1, X2, ..., X,) <Y ', H(X;), with equality if and only if the
X; are independent.

5. H(X) <log| X |, with equality if and only if X is distributed uni-
formly over X.

6. H(p) is concave in p.
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Definition The relative entropy D(p | q) of the probability mass
function p with respect to the probability mass function ¢ is defined by

D(p Il ) =Y px)log % 2.158)

Definition The mutual information between two random variables X
and Y is defined as

p(x,y)
I(X:Y § 2 2.159
( ) = xexyeyp(x 1 gp(x)p(y) ( )

Alternative expressions

H(X) = E, log ﬁ, (2.160)
H(X.,Y)=E,log ﬁ, 2.161)
H(X|Y) = E, log (;IY) (2.162)
[(X;Y) = E,log %, (2.163)
D(pllg) = E 1gp§ ; (2.164)

Properties of D and 1

1. IX;Y)=HX)—HX|Y)=H)—-HY|X)=HX)+
HY)-H(X,Y).

2. D(p || g) = 0 with equality if and only if p(x) = ¢g(x), for all x €
X.

3. I(X;Y) = D(px, y)|lpx)p(y)) = 0, with equality if and only if
px,y) = p(x)p(y) (i.e., X and Y are independent).

4. If | X |=m, and u is the uniform distribution over X, then D(p ||
u) =logm — H(p).

5. D(pl||g) is convex in the pair (p, q).

Chain rules
Entropy: H(X1, X2, ..., X,) = > o HXi|Xi—1, ..., X1).
Mutual information:
I(Xl, X2, ey Xn; Y) = Z?:l I(X,'; Y|X1, X2, ey Xi—l)'
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Relative entropy:
D(p(x, llg(x, y)) = D(p(x)llg(x)) + D(p(y|x)llg(ylx)).

Jensen’s inequality. If f is a convex function, then Ef (X) > f(EX).

Log sum inequality. For n positive numbers, aj,as,...,a, and
bl»bZ, '-'abna

n a; n Zl :
> a log -~ > (Z >log S ib, (2.165)

i=1 ! i=1
. o eoap
with equality if and only if 7- = constant.

Data-processing inequality. If X — Y — Z forms a Markov chain,
1(X;Y)>I1(X;2).

Sufficient statistic. 7(X) is sufficient relative to {fy(x)} if and only
if 1(6; X)=1(0; T (X)) for all distributions on 6.

Fano’s inequality. Let P, = Pr{X(Y) # X}. Then
H(P,) + P.log|X| > H(X]Y). (2.166)

Inequality. If X and X’ are independent and identically distributed,
then

Pr(X = X') > 27 HXO, (2.167)

PROBLEMS

2.1 Coin flips. A fair coin is flipped until the first head occurs. Let
X denote the number of flips required.

(a) Find the entropy H (X) in bits. The following expressions may
be useful:

o 1 o0
2= L= (1—;»)2

n=0 n=0

(b) A random variable X is drawn according to this distribution.
Find an “efficient” sequence of yes—no questions of the form,
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“Is X contained in the set $?” Compare H (X) to the expected
number of questions required to determine X.

Entropy of functions. Let X be a random variable taking on a
finite number of values. What is the (general) inequality relation-
ship of H(X) and H(Y) if

(a) Y =2%?

(b) Y =cos X?

Minimum  entropy. What is the minimum value of
H(pi,..., pn) = H(p) as p ranges over the set of n-dimensional
probability vectors?  Find all p’s that achieve this minimum.

Entropy of functions of a random variable. Let X be a discrete
random variable. Show that the entropy of a function of X is less
than or equal to the entropy of X by justifying the following steps:

H(X.g(X)) € HX) + H(g(X) | X) (2.168)

® mx). (2.169)

HX, g(X) C HX) + HX | (X)) (2.170)
S Hgx)). @.171)

Thus, H(g(X)) < H(X).

Zero conditional entropy. Show that if H(Y|X) =0, then Y is
a function of X [i.e., for all x with p(x) > 0, there is only one
possible value of y with p(x,y) > 0].

Conditional mutual information vs. unconditional mutual informa-
tion. Give examples of joint random variables X, Y, and Z
such that

@ I(X;Y|Z2) <I(X;Y).
(b) I(X;Y|Z2)>I1(X;Y).

Coin weighing. Suppose that one has n coins, among which there

may or may not be one counterfeit coin. If there is a counterfeit

coin, it may be either heavier or lighter than the other coins. The

coins are to be weighed by a balance.

(a) Find an upper bound on the number of coins n so that k
weighings will find the counterfeit coin (if any) and correctly
declare it to be heavier or lighter.
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(b) (Difficult) What is the coin- weighing strategy for k = 3 weigh-
ings and 12 coins?

Drawing with and without replacement. An urn contains r red, w
white, and b black balls. Which has higher entropy, drawing k > 2
balls from the urn with replacement or without replacement? Set it
up and show why. (There is both a difficult way and a relatively
simple way to do this.)

Metric. A function p(x, y) is a metric if for all x, y,

e p(x,y) =0.

e plx,y) =p(y, x).

e p(x,y) =0 if and only if x = y.

s plx,y)+p(y,2) = px, 2).

(a) Show that p(X,Y)= H(X|Y)+ H(Y|X) satisfies the first,
second, and fourth properties above. If we say that X =Y if
there is a one-to-one function mapping from X to Y, the third
property is also satisfied, and p(X, Y) is a metric.

(b) Verity that p(X, Y) can also be expressed as

p(X,Y)=HX)+HY)-21(X;Y) (2172
— H(X,Y)— I[(X;Y) (2.173)
—2H(X,Y) — H(X)— H(Y). (2.174)

Entropy of a disjoint mixture. Let X; and X, be discrete random
variables drawn according to probability mass functions pi(-) and
p2(+) over the respective alphabets X} = {1,2,...,m} and &, =
{m+1,...,n}. Let

¥ — X1 with probability o,
| X, with probability 1 — «.

(a) Find H(X) in terms of H(X;), H(X>), and «.

(b) Maximize over « to show that 27X) < 2HX1) 4 2H(X2) gpd
interpret using the notion that 27X) is the effective alpha-
bet size.

Measure of correlation. Let X and X, be identically distributed
but not necessarily independent. Let

1 H(X, | Xy)
H(X))
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— 1(X1:X5)

(a) Show that p = o -

(b) Show that 0 < p < 1.

(¢) When is p = 0?

(d) Whenis p =1?

Example of joint entropy. Let p(x,y) be given by

Y
XN\ 0 1
1 1
I S |
1
1o 1

Find:

(@ H(X),H(Y).

(b) HX |Y), HY | X).

() H(X,Y).

d HY)—HY | X).

(e) I(X;7Y).

(f) Draw a Venn diagram for the quantities in parts (a) through (e).

Inequality. Show that In x > 1 — % for x > 0.

Entropy of a sum. Let X and Y be random variables that take
on values xi, x2,...,x, and yi, y2, ..., Vs, respectively. Let Z =
X+Y.

(a) Show that H(Z|X) = H(Y|X). Argue that if X,Y are inde-
pendent, then H(Y) < H(Z) and H(X) < H(Z). Thus, the
addition of independent random variables adds uncertainty.

(b) Give an example of (necessarily dependent) random variables
in which H(X) > H(Z) and H(Y) > H(Z).

(¢) Under what conditions does H(Z) = H(X) + H(Y)?

Data processing. Let X; - X, > X3 — ---— X, form a

Markov chain in this order; that is, let

p(x1,x2, ..., xp) = p(x1) p(x2|x1) - - p(Xp|Xp—1).

Reduce 1(X1; X», ..., X,,) to its simplest form.

Bottleneck. Suppose that a (nonstationary) Markov chain starts
in one of n states, necks down to k <n states, and then
fans back to m > k states. Thus, X; — X, — X3, that is,
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p(x1, x2, x3) = p(x1) p(x2]|x1) p(x3]x2), for all x; € {1,2,...,n},

xe{l,2,....k},x3e€{l,2,...,m}.

(a) Show that the dependence of X; and X3 is limited by the
bottleneck by proving that 7 (X;; X3) < logk.

(b) Evaluate I(X;; X3) for k =1, and conclude that no depen-
dence can survive such a bottleneck.

Pure randomness and bent coins. Let X, X5, ..., X, denote the
outcomes of independent flips of a bent coin. Thus, Pr {X; =
1} =p, Pr {X; =0} =1— p, where p is unknown. We wish
to obtain a sequence Zi, Zj,...,Zg of fair coin flips from
Xy, Xo, ..., X,,. Toward this end, let f : X" — {0, 1}* (where
{0, 1}* = {A,0,1,00,01, ...} is the set of all finite-length binary
sequences) be a mapping f (X1, X2, ..., Xy) = (Z1,Zs, ..., Zk),
where Z; ~ Bernoulli (%), and K may depend on (Xi,..., X},).
In order that the sequence Zi, Z,, ... appear to be fair coin flips,
the map f from bent coin flips to fair flips must have the prop-
erty that all 2k sequences (Zy, Z», ..., Zy) of a given length k
have equal probability (possibly 0), for k = 1, 2, .. .. For example,
for n =2, the map f(01) =0, f(10) =1, f(00) = f(11) = A
(the null string) has the property that Pr{Z; = 1|K =1} = Pr{Z;| =
0K =1} = % Give reasons for the following inequalities:

nH(p) L HXy,.... X))

(b)
> H(Zy, 23, ..., Zg, K)

©Q HK)+ H(Z,, ..., Zk|K)

Q H(K)+ E(K)

(e)
> FEK.

Thus, no more than nH (p) fair coin tosses can be derived from
(X1, ..., X,), on the average. Exhibit a good map f on sequences
of length 4.

World Series. The World Series is a seven-game series that termi-
nates as soon as either team wins four games. Let X be the random
variable that represents the outcome of a World Series between
teams A and B; possible values of X are AAAA, BABABAB, and
BBBAAAA. Let Y be the number of games played, which ranges
from 4 to 7. Assuming that A and B are equally matched and that
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the games are independent, calculate H(X), H(Y), H(Y|X), and
H(X|Y).

Infinite entropy. This problem shows that the entropy of a discrete
random variable can be infinite. Let A = Zzozz(n log2 n)~ ' [It is
easy to show that A is finite by bounding the infinite sum by the
integral of (x log? x)~!.] Show that the integer-valued random vari-
able X defined by Pr(X =n) = (Anlog2 n)~ ! forn=2,3, ...,
has H(X) = +o0.

Run-length coding. Let X, X, ..., X,, be (possibly dependent)
binary random variables. Suppose that one calculates the run
lengths R = (R, Ry,...) of this sequence (in order as they
occur). For example, the sequence X = 0001100100 yields run
lengths R = (3,2,2,1,2). Compare H(Xi, X2,...,X,), HR),
and H(X,, R). Show all equalities and inequalities, and bound all
the differences.

Markov’s inequality for probabilities. Let p(x) be a probability
mass function. Prove, for all d > 0, that

Pr{p(X) <d} logé < H(X). (2.175)

Logical order of ideas. ldeas have been developed in order of

need and then generalized if necessary. Reorder the following ideas,

strongest first, implications following:

(a) Chain rule for /(Xy,..., X,;Y), chain rule for D(p(xy, ...,
Xu)llg(x1, x2, ..., X)), and chain rule for H(X{, X», ..., X,).

(b) D(fllg) = 0, Jensen’s inequality, /(X;Y) > 0.

Conditional mutual information. Consider a sequence of n binary
random variables X, X», ..., X,,. Each sequence with an even
number of 1’s has probability 2="*~1_ and each sequence with an
odd number of 1’s has probability 0. Find the mutual informations

I(X1; X2), 1(X2; X31X1), ..., T(Xy—1;3 Xul X1, ooty Xno2).

Average entropy. Let H(p) = —plog, p — (1 — p)log,(1 — p)

be the binary entropy function.

(a) Evaluate H (}t) using the fact that log, 3 ~ 1.584. (Hint: You
may wish to consider an experiment with four equally likely
outcomes, one of which is more interesting than the others.)
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(b) Calculate the average entropy H (p) when the probability p is
chosen uniformly in the range 0 < p < 1.

(¢) (Optional) Calculate the average entropy H (pi, p2, p3), wWhere
(p1, p2, p3) 1s a uniformly distributed probability vector. Gen-
eralize to dimension 7.

Venn diagrams. There isn’t really a notion of mutual information
common to three random variables. Here is one attempt at a defini-
tion: Using Venn diagrams, we can see that the mutual information
common to three random variables X, Y, and Z can be defined by

I(X:Y;Z)=1(X:Y)— I(X;Y|Z).

This quantity is symmetric in X, Y, and Z, despite the preceding

asymmetric definition. Unfortunately, /(X; Y; Z) is not necessar-

ily nonnegative. Find X, Y, and Z such that /(X;Y; Z) <0, and

prove the following two identities:

@ I(X;Y;Z)=HX,Y,Z2)—-H(X)—HY)—-H(Z)+
I(X;Y)+1(Y; Z2) + 1(Z; X).

() I(X;Y;Z)=H(X,Y,Z)—HX,Y)—H{Y,Z)—
H(Z,X)+H(X)+ HY) + H(Z).

The first identity can be understood using the Venn diagram analogy

for entropy and mutual information. The second identity follows

easily from the first.

Another proof of nonnegativity of relative entropy. In view of the
fundamental nature of the result D(p||g) > 0, we will give another
proof.

(a) Show thatInx <x — 1 for 0 < x < o0.
(b) Justify the following steps:

_ q(x)
—D(pllg) = Z p(x)In o (2.176)
q(x) )
—1 2.177
< Z p(x) (,, & (2.177)
<0. (2.178)

(¢) What are the conditions for equality?

Grouping rule for entropy. Let p = (p1, p2,..., pm) be a prob-
ability distribution on m elements (i.e., p; > 0 and > i, p; = 1).
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2.28

2.29

2.30

231

2.32
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Define a new distribution q on m — 1 elements as ¢, = p1, g2 = pa2,

-y qm—2 = Pm—2, and g;,—1 = pm—1 + pm [i.e., the distribution q
is the same as p on {1,2,...,m — 2}, and the probability of the
last element in q is the sum of the last two probabilities of p].
Show that

Pm—1 Pm
H(p) = H(Q) + (pm—1 + pm)H ( , ) :
Pm—1 + Pm  Pm—1 + Pm

(2.179)

Mixing increases entropy. Show that the entropy of the proba-
bility distribution, (pi,..., pis..., Pj,---, Pm), 18 less than the
entropy of the distribution  (pi,..., pi;pj, e pi;pj,

.., pm). Show that in general any transfer of probability that
makes the distribution more uniform increases the entropy.

Inequalities. Let X, Y, and Z be joint random variables. Prove
the following inequalities and find conditions for equality.

(@ H(X,Y|Z) = H(X|Z).

(b) I(X,Y;2) = I(X; Z).

() HX,Y,Z)—H(X,Y) < HX,Z) - H(X).

@ I(X; Z|Y) = I(Z; YX) = [(Z;Y) + [(X; Z).

Maximum entropy. Find the probability mass function p(x) that

maximizes the entropy H (X) of a nonnegative integer-valued ran-
dom variable X subject to the constraint

o
EX = an(n) =A
n=0

for a fixed value A > 0. Evaluate this maximum H (X).

Conditional entropy. Under what conditions does H(X|g(Y)) =
H(X|Y)?

Fano. We are given the following joint distribution on (X, Y):

14
X a b ¢
1 1 |
L5 v ¥
1 1 |
2l 1 6 i)
1 1 1
12 12 6
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LetA)A( (Y) be an estimator for X (based on Y) and let P, =

Pr{X(Y) # X}.

(a) Find the minimum probability of error estimator X (Y) and the
associated P,.

(b) Evaluate Fano’s inequality for this problem and compare.

Fano’s inequality. Let Pr(X =i)=p;, i =1,2,...,m, and let
p1 > p2 > p3 > --- > p,. The minimal probability of error pre-
dictor of X is X = 1, with resulting probability of error P, =
1 — p;. Maximize H (p) subject to the constraint 1 — p; = P, to
find a bound on P, in terms of H. This is Fano’s inequality in the
absence of conditioning.

Entropy of initial conditions. Prove that H (X|X},) is nondecreas-
ing with n for any Markov chain.

Relative entropy is not symmetric.
Let the random variable X have three possible outcomes {a, b, c}.
Consider two distributions on this random variable:

Symbol px) q(x)

N T N
W= W= W=

Calculate H(p), H(q), D(p|lg), and D(q||p). Verify that in this
case, D(pllg) # D(ql|p).

Symmetric relative entropy. Although, as Problem 2.35 shows,
D(pllg) # D(q|lp) in general, there could be distributions for
which equality holds. Give an example of two distributions p and
g on a binary alphabet such that D(pl|lq) = D(q||p) (other than
the trivial case p = q).

Relative entropy. Let X, Y, Z be three random variables with a
joint probability mass function p(x,y,z). The relative entropy
between the joint distribution and the product of the marginals is

p(x,y,2)

—] (2.180)
pxX)p(y)p(2)

D(p(x,y, Dllp(x)p(y)p(z)) = E[log

Expand this in terms of entropies. When is this quantity zero?
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2.38

2.39

2.40

241

242
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The value of a question. Let X ~ p(x), x =1,2,...,m. We are
given a set S C {1,2,..., m}. We ask whether X € § and receive
the answer

y_|1 itxes
10 ifxées.

Suppose that Pr{X € S} = «. Find the decrease in uncertainty
H(X)— H(X|Y).
Apparently, any set S with a given « is as good as any other.

Entropy and pairwise independence. Let X, Y, Z be three binary

Bernoulli(%) random variables that are pairwise independent; that

i, I(X;Y)=I1(X;2)=1(;Z)=0.

(a) Under this constraint, what is the minimum value for
H(X,Y,Z)?

(b) Give an example achieving this minimum.

Discrete entropies. Let X and Y be two independent integer-
valued random variables. Let X be uniformly distributed over {1, 2,
.8 andletPr{y =k} =2"% k=1,2,3,....

(a) Find H(X).

(b) Find H (Y).

(¢) Find HX+Y, X -Y).

Random questions. One wishes to identify a random object X ~
p(x). A question Q ~ r(q) is asked at random according to r(gq).
This results in a deterministic answer A = A(x, q) € {a1, az, .. .}.

Suppose that X and Q are independent. Then I(X; Q, A) is the
uncertainty in X removed by the question—answer (Q, A).

(a) Show that I(X; Q, A) = H(A|Q). Interpret.

(b) Now suppose that two ii.d. questions Qp, Q, ~ r(g) are
asked, eliciting answers A; and A,. Show that two questions
are less valuable than twice a single question in the sense that
1(X; Q1, A1, Q2, A2) < 21(X; Q1, Ay).

Inequalities. Which of the following inequalities are generally

> =, <? Label each with >, =, or <.

(@) H(5X) vs. H(X)

(b) I(g(X);Y) vs. I(X;Y)

(© H(XolX-1) vs. H(Xo|X-1, X1)

d) HX,Y)/(HX)+ H(Y)) vs. 1
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Mutual information of heads and tails

(a) Consider a fair coin flip. What is the mutual information
between the top and bottom sides of the coin?

(b) A six-sided fair die is rolled. What is the mutual information
between the top side and the front face (the side most facing
you)?

Pure randomness. We wish to use a three-sided coin to generate
a fair coin toss. Let the coin X have probability mass function

A’ Pa
X = B, PB
C, pc,

where pa, pp, pc are unknown.

(a) How would you use two independent flips X, X, to generate
(if possible) a Bernoulli(%) random variable Z?

(b) What is the resulting maximum expected number of fair bits
generated?

Finite entropy. Show that for a discrete random variable X €
{1,2,...},if Elog X < oo, then H(X) < oo.

Axiomatic definition of entropy (Difficult). If we assume certain
axioms for our measure of information, we will be forced to use a
logarithmic measure such as entropy. Shannon used this to justify
his initial definition of entropy. In this book we rely more on the
other properties of entropy rather than its axiomatic derivation to
justify its use. The following problem is considerably more difficult
than the other problems in this section.

If a sequence of symmetric functions H,,(p1, p2, - - ., pm) satisfies
the following properties:

e Normalization: Hz(%, %) =1,

o Continuity: Hy(p, 1 — p) is a continuous function of p,

» Grouping: Hy(p1, p2, -, pm) = Hu—1(p1 + p2, p3, ..., pm) +

P P2
(pr+ p2)H; <P1+[72’ pitp2 )’

prove that H,, must be of the form

Hu(p1, pas- o pm) ==Y _pilogp;,  m=2,3,....
i=1
(2.181)
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There are various other axiomatic formulations which result in the
same definition of entropy. See, for example, the book by Csiszar
and Korner [149].

2.47 Entropy of a missorted file. A deck of n cardsin order 1,2, ..., n
is provided. One card is removed at random, then replaced at ran-
dom. What is the entropy of the resulting deck?

2.48 Sequence length. How much information does the length of a
sequence give about the content of a sequence? Suppose that we
consider a Bernoulli (%) process {X;}. Stop the process when the
first 1 appears. Let N designate this stopping time. Thus, X" is an
element of the set of all finite-length binary sequences {0, 1}* =
{0, 1,00, 01, 10, 11, 000, ... }.

(a) Find I(N; XN).

(b) Find H(XV|N).

(¢) Find H(XNM).

Let’s now consider a different stopping time. For this part, again
assume that X; ~ Bernoulli(%) but stop at time N = 6, with prob-
ability % and stop at time N = 12 with probability % Let this
stopping time be independent of the sequence XX, --- X15.

(d) Find I(N; XM).

(e) Find H(XV|N).

(f) Find H(XN).

HISTORICAL NOTES

The concept of entropy was introduced in thermodynamics, where it
was used to provide a statement of the second law of thermodynam-
ics. Later, statistical mechanics provided a connection between thermo-
dynamic entropy and the logarithm of the number of microstates in a
macrostate of the system. This work was the crowning achievement of
Boltzmann, who had the equation S = kIn W inscribed as the epitaph on
his gravestone [361].

In the 1930s, Hartley introduced a logarithmic measure of informa-
tion for communication. His measure was essentially the logarithm of the
alphabet size. Shannon [472] was the first to define entropy and mutual
information as defined in this chapter. Relative entropy was first defined
by Kullback and Leibler [339]. It is known under a variety of names,
including the Kullback—Leibler distance, cross entropy, information diver-
gence, and information for discrimination, and has been studied in detail
by Csiszar [138] and Amari [22].
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Many of the simple properties of these quantities were developed by
Shannon. Fano’s inequality was proved in Fano [201]. The notion of
sufficient statistic was defined by Fisher [209], and the notion of the
minimal sufficient statistic was introduced by Lehmann and Scheffé [350].
The relationship of mutual information and sufficiency is due to Kullback
[335]. The relationship between information theory and thermodynamics
has been discussed extensively by Brillouin [77] and Jaynes [294].

The physics of information is a vast new subject of inquiry spawned
from statistical mechanics, quantum mechanics, and information theory.
The key question is how information is represented physically. Quan-
tum channel capacity (the logarithm of the number of distinguishable
preparations of a physical system) and quantum data compression [299]
are well-defined problems with nice answers involving the von Neumann
entropy. A new element of quantum information arises from the exis-
tence of quantum entanglement and the consequences (exhibited in Bell’s
inequality) that the observed marginal distribution of physical events are
not consistent with any joint distribution (no local realism). The funda-
mental text by Nielsen and Chuang [395] develops the theory of quantum
information and the quantum counterparts to many of the results in this
book. There have also been attempts to determine whether there are
any fundamental physical limits to computation, including work by Ben-
nett [47] and Bennett and Landauer [48].






I CHAPTER 3

ASYMPTOTIC EQUIPARTITION
PROPERTY

In information theory, the analog of the law of large numbers is the
asymptotic equipartition property (AEP). It is a direct consequence
of the weak law of large numbers. The law of large numbers states
that for independent, identically distributed (i.i.d.) random variables,
%Z?:l X; is close to its expected value EX for large values of n.

The AEP states that %log m is close to the entropy H, where
X1, X2, ..., X, are i.i.d. random variables and p(X, X», ..., X,) is the
probability of observing the sequence X, X, ..., X,,. Thus, the proba-
bility p(Xi, X», ..., X,;) assigned to an observed sequence will be close
to 271,

This enables us to divide the set of all sequences into two sets, the
typical set, where the sample entropy is close to the true entropy, and the
nontypical set, which contains the other sequences. Most of our attention
will be on the typical sequences. Any property that is proved for the typical
sequences will then be true with high probability and will determine the
average behavior of a large sample.

First, an example. Let the random variable X € {0, 1} have a probability
mass function defined by p(1) = p and p(0) = ¢. If X, X», ..., X, are
i.i.d. according to p(x), the probability of a sequence xi, x2, ..., x, is
]_[;’:l p(x;). For example, the probability of the sequence (1,0, 1,1,0, 1)
is pXign=2Xi = p42. Clearly, it is not true that all 2" sequences of
length n have the same probability.

However, we might be able to predict the probability of the sequence
that we actually observe. We ask for the probability p(X;, X», ..., X;;) of
the outcomes X1, X», ..., X,, where X, X5, ... are i.i.d. ~ p(x). This is
insidiously self-referential, but well defined nonetheless. Apparently, we
are asking for the probability of an event drawn according to the same

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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probability distribution. Here it turns out that p(X;, X», ..., X,,) is close
to 27" with high probability.

We summarize this by saying, “Almost all events are almost equally
surprising.” This is a way of saying that

Pr{(Xi,Xo.....X») : p(X1. X2, ..., X)) =27"F9 ~ 1 3.)

if Xy, Xp,..., X, are i.i.d. ~ p(x).

In the example just given, where p(Xi, X2,..., X,) = pZ qu”_z Xi
we are simply saying that the number of 1’s in the sequence is close
to np (with high probability), and all such sequences have (roughly) the
same probability 27"(P) We use the idea of convergence in probability,
defined as follows:

Definition (Convergence of random variables). Given a sequence of
random variables, X1, X», ..., we say that the sequence X, X», ... con-
verges to a random variable X:

1. In probability if for every € > 0, Pr{|X,, — X| > €} — 0
2. In mean square if E(X, — X)> — 0

3. With probability 1 (also called almost surely) if Pr{lim,_ . X, =
X}=1

3.1 ASYMPTOTIC EQUIPARTITION PROPERTY THEOREM

The asymptotic equipartition property is formalized in the following
theorem.

Theorem 3.1.1 (AEP) If Xy, X3, ... are iid. ~ p(x), then
1
——log p(X1, Xo, ..., X,)) > H(X) in probability. 3.2)
n
Proof: Functions of independent random variables are also independent

random variables. Thus, since the X; are i.i.d., so are log p(X;). Hence,
by the weak law of large numbers,

1 1
——log p(X1, X2, ..., X) = —= Y _log p(X;) (3.3)
n n :

— —FElog p(X) in probability  (3.4)
= H(X), (3.5

which proves the theorem. U
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Definition The typical set A" with respect to p(x) is the set of se-
quences (X, x2, ..., X,) € X" with the property

27 MHET) < b(xy, xa, .., xy) < 27MHE)ZO) (3.6)

As a consequence of the AEP, we can show that the set Ag”) has the
following properties:

Theorem 3.1.2

1 If (x1,x0,...,x,) € Ag”),
xp) < H(X) +e.

2. Pr{Ag”)} > 1 — € for n sufficiently large.

3. ‘Ag”)| < 2"HE+) ywhere | A| denotes the number of elements in the
set A.

4. |AD| > (1 — €)2"HE)=9) for n sufficiently large.

then H(X) —¢€ < —%logp(xl,xz, R

Thus, the typical set has probability nearly 1, all elements of the typical
set are nearly equiprobable, and the number of elements in the typical set
is nearly 2"H .

Proof: The proof of property (1) is immediate from the definition of
A" The second property follows directly from Theorem 3.1.1, since the
probability of the event (X, X5,..., X;) € AE”) tends to 1 as n — oo.
Thus, for any § > 0, there exists an ng such that for all n > ng, we have

1
PI‘H—_IOgP(Xl,Xz,...,Xn) — H(X)
n

<e}>1—8. 3.7)

Setting § = €, we obtain the second part of the theorem. The identification
of § = € will conveniently simplify notation later.
To prove property (3), we write

1= r® (3:8)
xeX"

> Y p® (3.9)
xeA™

> Z 2—n(H(X)+e) (3.10)
xeAE”)

— P HXOFO) g0 3.11)
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where the second inequality follows from (3.6). Hence
|A| < 2n(HOO+e)
S < .
Finally, for sufficiently large n, Pr{A"™} > 1 — ¢, so that

l—€< Pr{Aé”)}

< Z 2—n(H(X)—e)

xeA™

— 2—'1(H(X)—€)|A(ﬂ)|
€ 9

where the second inequality follows from (3.6). Hence,

|A(ﬂ)| > (1 — 6)2”(H(X)—€)
P )

which completes the proof of the properties of A™.

3.2 CONSEQUENCES OF THE AEP: DATA COMPRESSION

(3.12)

(3.13)
(3.14)

(3.15)

(3.16)

Let Xy, X», ..., X, be independent, identically distributed random vari-
ables drawn from the probability mass function p(x). We wish to find
short descriptions for such sequences of random variables. We divide all
sequences in X" into two sets: the typical set Ag”) and its complement,

as shown in Figure 3.1.

K2022202 %272, 222022

FIGURE 3.1. Typical sets and source coding.

2™ 21" elements

*3— Non-typical set

a8 '\ Typical set

AN 2n(H+€) glements
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Non-typical set
Description: n log 2’| + 2 bits

Typical set
Description: n(H + €) + 2 bits

DI

FIGURE 3.2. Source code using the typical set.

We order all elements in each set according to some order (e.g., lexi-
cographic order). Then we can represent each sequence of A" by giving
the index of the sequence in the set. Since there are < 2"+ sequences
in Ag”), the indexing requires no more than n(H + €) + 1 bits. [The extra
bit may be necessary because n(H + €) may not be an integer.] We pre-
fix all these sequences by a 0, giving a total length of <n(H +¢€)+2
bits to represent each sequence in A" (see Figure 3.2). Similarly, we can
index each sequence not in Ag”) by using not more than n log |X| 4 1 bits.
Prefixing these indices by 1, we have a code for all the sequences in X".

Note the following features of the above coding scheme:

e The code is one-to-one and easily decodable. The initial bit acts as
a flag bit to indicate the length of the codeword that follows.

e We have used a brute-force enumeration of the atypical set Ag”)c
without taking into account the fact that the number of elements in
Ag")c is less than the number of elements in X". Surprisingly, this is
good enough to yield an efficient description.

» The typical sequences have short descriptions of length ~ nH.

We use the notation x" to denote a sequence xi, X2, ..., X,. Let [(x™)
be the length of the codeword corresponding to x". If n is sufficiently
large so that Pr{Ag")} > 1 — ¢, the expected length of the codeword is

E(I(X") =) pi(x") (3.17)
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= 3 peMIEM + Y pGaMI") (3.18)

xn eAén) xn eAE’”C

< Y pG"((H+e€)+2)

x”eAgn)

+ ) paM(nlog|X] +2) (3.19)

x"eAé")C

= Pr{AD) (n(H + €) +2) +Pr {Ag’““} (nlog |A] +2)

(3.20)
<n(H + ¢€) + en(log | X]) + 2 (3.21)
— n(H +€), (3.22)

where € = € + e log |X| + % can be made arbitrarily small by an appro-
priate choice of € followed by an appropriate choice of n. Hence we have
proved the following theorem.

Theorem 3.2.1  Let X" be i.i.d. ~ p(x). Let € > 0. Then there exists a
code that maps sequences x" of length n into binary strings such that the
mapping is one-to-one (and therefore invertible) and

E[%Z(X”):| <H(X)+e (3.23)

for n sufficiently large.

Thus, we can represent sequences X" using n H (X) bits on the average.

3.3 HIGH-PROBABILITY SETS AND THE TYPICAL SET

From the definition of A", it is clear that A™ is a fairly small set that
contains most of the probability. But from the definition, it is not clear
whether it is the smallest such set. We will prove that the typical set has
essentially the same number of elements as the smallest set, to first order
in the exponent.

Definition For each n=1,2,..., let Bgn) C X" be the smallest set
with

Pr{B"} > 1 —56. (3.24)
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We argue that B;’” must have significant intersection with A" and there-
fore must have about as many elements. In Problem 3.3.11, we outline
the proof of the following theorem.

Theorem 3.3.1  Let X1, X5,..., X, be ii.d. ~ p(x). For § < % and
any §' > 0, ifPr{Bé”)} > 1 — 4, then

1
—log |B(§")| > H -8  forn sufficiently large. (3.25)
n

Thus, B(g") must have at least 2" elements, to first order in the expo-
nent. But A" has 2"#£€) elements. Therefore, A" is about the same
size as the smallest high-probability set.

We will now define some new notation to express equality to first order
in the exponent.

Definition The notation a, = b, means

N
lim —log b = 0. (3.26)

n—oon n

Thus, a, =b, implies that a, and b, are equal to the first order in the
exponent.
We can now restate the above results: If §, — 0 and ¢, — 0, then

B =AM =21 (3.27)

To 1llustrate the difference between Ag”) and Ba("), let us con-

sider a Bernoulli sequence X, X, ..., X,, with parameter p = 0.9. [A
Bernoulli(f) random variable is a binary random variable that takes on
the value 1 with probability 6.] The typical sequences in this case are the
sequences in which the proportion of 1’s is close to 0.9. However, this
does not include the most likely single sequence, which is the sequence of
all 1’s. The set B;") includes all the most probable sequences and there-
fore includes the sequence of all 1’s. Theorem 3.3.1 implies that A" and
B(g") must both contain the sequences that have about 90% 1’s, and the
two sets are almost equal in size.
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SUMMARY

AEP. “Almost all events are almost equally surprising.” Specifically,
if Xy, Xp,... are ii.d. ~ p(x), then

1
——log p(X1, Xo, ..., X;;) = H(X) in probability. (3.28)

n
Definition. The typical set Ag") is the set of sequences xi, x2, ..., X,

satisfying
27MHOOY) < pay, ;2 . Xp) S 2THHOOTO, (3.29)

Properties of the typical set

1. If (x1,x2,...,%,) € Ag”), then p(xy, x2,...,x,) = Pt
2. Pr {Ag")} > 1 — € for n sufficiently large.

3. !Ag’”! < MHX)+€) where |A| denotes the number of elements in
set A.

Definition. a,=b,, means that %log Z—” — 0 as n — oo.

Smallest probable set. Let X, X5, ..., X;, be i.i.d. ~ p(x), and for
§ <1, let B{"” C X" be the smallest set such that Pr{B§"} > 1 — 4.
Then

1BV =21 (3.30)

PROBLEMS

3.1 Markov’s inequality and Chebyshev’s inequality

(@) (Markov’s inequality) For any nonnegative random variable X
and any ¢ > 0, show that

EX
Pr{X >t} < - (3.31)

Exhibit a random variable that achieves this inequality with
equality.

(b) (Chebyshev’s inequality) Let Y be a random variable with
mean 4 and variance o2, By letting X = (Y — )2, show that
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for any € > 0,

2
Pr{lY — | > €} < Z—z (3.32)

(¢) (Weak law of large numbers) Let Zy, Z», ..., Z, be a sequence
of i.i.d. random variables with mean pu and variance o2. Let

o n
Z, = % > Z; be the sample mean. Show that
i=1

2

Pr{‘?n—u‘ >e} < (3.33)

o
ne?’
Thus, Pr {|Z1 — ,u! > e} — 0 as n — oo. This is known as the
weak law of large numbers.

3.2 AEP and mutual information. Let (X;, Y;) beiid. ~ p(x,y). We
form the log likelihood ratio of the hypothesis that X and Y are
independent vs. the hypothesis that X and Y are dependent. What
is the limit of

Lo PP,

n 8 (X, Yy

3.3 Piece of cake.
A cake is sliced roughly in half, the largest piece being chosen each
time, the other pieces discarded. We will assume that a random cut
creates pieces of proportions

| &4 with probability

B (%, %) with probability

NN

Thus, for example, the first cut (and choice of largest piece) may
result in a piece of size % Cutting and choosing from this piece
might reduce it to size (%) (%) at time 2, and so on. How large, to

first order in the exponent, is the piece of cake after n cuts?

34 AEP. LetX;beiid~ p(x), x €{l,2,...,m}. Let u = EX and
H=-) px)logp(x). Let A"={x"eX":|— %logp(x”) —
H| <€} Let B" ={x" € X" : |1 37| X; — u| <€}
(a) Does Pr{X" € A"} — 1?
(b) Does Pr{X" € A" N B"} — 17
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3.5

3.6

3.7

3.8
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(c) Show that |[A” N B"| < 2"H+9) for all n.
(d) Show that [A" N B"| > (%) 2MH=€) for n sufficiently large.

Sets defined by probabilities. Let X, X», ... be an i.i.d. sequence
of discrete random variables with entropy H (X). Let

Co(t)={x" € X": p(x™) =27}

denote the subset of n-sequences with probabilities > 27",
(a) Show that |C,(2)| < 2".
(b) For what values of r does P({X" € C,,(1)}) — 1?

AEP-like limit. Let X, X», ... be i.i.d. drawn according to prob-
ability mass function p(x). Find

. 1
llm (p(Xl’X2’~'-’Xn))n'
n— 00

AEP and source coding. A discrete memoryless source emits a
sequence of statistically independent binary digits with probabilities
p(1) =0.005 and p(0) = 0.995. The digits are taken 100 at a time
and a binary codeword is provided for every sequence of 100 digits
containing three or fewer 1’s.

(a) Assuming that all codewords are the same length, find the min-
imum length required to provide codewords for all sequences
with three or fewer 1’s.

(b) Calculate the probability of observing a source sequence for
which no codeword has been assigned.

(¢) Use Chebyshev’s inequality to bound the probability of observ-
ing a source sequence for which no codeword has been assign-
ed. Compare this bound with the actual probability computed
in part (b).

Products.
Let

—

,  with probability
X =1 2, with probability

Bl— B =

3, with probability

Let X1, X», ... be drawn i.i.d. according to this distribution. Find
the limiting behavior of the product

1
(X1 X2 - X)) .
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3.9 AEP. Let Xq, X5, ... be independent, identically distributed ran-

3.10

3.11

dom variables drawn according to the probability mass function

px),x €{1,2,...,m}. Thus, p(x1, x2,...,x,) = [['_; p(xi). We

know that —% log p(X1, X2, ..., X,) = H(X) in probability. Let
qg(x1, X2, 00, Xy) = ]_[;1:1 q(x;), where ¢ is another probability

mass function on {1, 2, ..., m}.

(a) Evaluate lim—% logg (X1, Xa, ..., X,), where X1, X», ... are
iid. ~ p(x).

(b) Now evaluate the limit of the log likelihood ratio
%log% when X1, X5, ... are i.i.d. ~ p(x). Thus, the
odds favoring g are exponentially small when p is true.

Random box size.

An n-dimensional rectangular box with sides X1, X7, X3, ..., X, is

to be constructed. The volume is V,, = []/_, X;. The edge length /

of a n-cube with the same volume as the random box is [ = Vn1 /.

Let Xy, X5, ... be i.i.d. uniform random variables over the unit

interval [0, 1]. Find lim,,_, o V,,l/ " and compare to (E V,,)%. Clearly,

the expected edge length does not capture the idea of the volume
of the box. The geometric mean, rather than the arithmetic mean,
characterizes the behavior of products.

Proof of Theorem 3.3.1. This problem shows that the size of the

smallest “probable” set is about 2" Let Xy, Xa, ..., X, be i.id.

~ p(x). Let B(g") C X" such that Pr(Bé")) >1—-4.Fix e < %

(a) Given any two sets A, B such that Pr(A) > 1 — €; and Pr(B) >
1 — €, show that Pr(AN B) > 1 — €| — €. Hence, Pr(Aé”) N
B")>1—¢—3s.

(b) Justify the steps in the chain of inequalities

1 —e—38<Pr(A” N B") (3.34)
= > pG" (3.35)
AW nBM
< Y 2o (3.36)
AD B
= |[A™ 0 B |2 7H =) (3.37)
< |B{M[27nH=), (3.38)

(c) Complete the proof of the theorem.
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3.12

3.13

ASYMPTOTIC EQUIPARTITION PROPERTY

Monotonic convergence of the empirical distribution.
Let p, denote the empirical probability mass function correspond-
ing to X1, Xp,..., X, 1.i.d. ~ p(x), x € &. Specifically,

N R
Pa(x) = ;El(xl = x)

is the proportion of times that X; = x in the first n samples, where
I is the indicator function.

(a) Show for X binary that

ED(pon |l P) = ED(pn |l P).

Thus, the expected relative entropy “distance” from the empir-
ical distribution to the true distribution decreases with sample
size. (Hint: Write po, = % Pn + % p,, and use the convexity
of D.)

(b) Show for an arbitrary discrete A" that

ED(pn |l P) < ED(Pn—1 ||l P).

(Hint: Write p, as the average of n empirical mass functions
with each of the n samples deleted in turn.)

Calculation of typical set. To clarify the notion of a typical set

Ag”) and the smallest set of high probability B ™ we will calculate

the set for a simple example. Consider a sequence of i.i.d. binary

random variables, X1, X5, ..., X,;, where the probability that X; =

1 is 0.6 (and therefore the probability that X; = 0 is 0.4).

(a) Calculate H(X).

(b) With n =25 and € = 0.1, which sequences fall in the typi-
cal set A"? What is the probability of the typical set? How
many elements are there in the typical set? (This involves com-
putation of a table of probabilities for sequences with k 1’s,
0 < k <25, and finding those sequences that are in the typi-
cal set.)

(¢) How many elements are there in the smallest set that has prob-
ability 0.9?

(d) How many elements are there in the intersection of the sets in
parts (b) and (c)? What is the probability of this intersection?
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n n k n—k 1 n
k <k) (k)p (1-p) . log p(x™)
0 1 0.000000 1.321928
1 25 0.000000 1.298530
2 300 0.000000 1.275131
3 2300 0.000001 1.251733
4 12650 0.000007 1.228334
5 53130 0.000054 1.204936
6 177100 0.000227 1.181537
7 480700 0.001205 1.158139
8 1081575 0.003121 1.134740
9 2042975 0.013169 1.111342
10 3268760 0.021222 1.087943
11 4457400 0.077801 1.064545
12 5200300 0.075967 1.041146
13 5200300 0.267718 1.017748
14 4457400 0.146507 0.994349
15 3268760 0.575383 0.970951
16 2042975 0.151086 0.947552
17 1081575 0.846448 0.924154
18 480700 0.079986 0.900755
19 177100 0.970638 0.877357
20 53130 0.019891 0.853958
21 12650 0.997633 0.830560
22 2300 0.001937 0.807161
23 300 0.999950 0.783763
24 25 0.000047 0.760364
25 1 0.000003 0.736966

HISTORICAL NOTES

The asymptotic equipartition property (AEP) was first stated by Shan-
non in his original 1948 paper [472], where he proved the result for
ii.d. processes and stated the result for stationary ergodic processes.
McMillan [384] and Breiman [74] proved the AEP for ergodic finite
alphabet sources. The result is now referred to as the AEP or the Shan-
non—McMillan—Breiman theorem. Chung [101] extended the theorem to
the case of countable alphabets and Moy [392], Perez [417], and Kieffer
[312] proved the L£; convergence when {X;} is continuous valued and
ergodic. Barron [34] and Orey [402] proved almost sure convergence for
real-valued ergodic processes; a simple sandwich argument (Algoet and
Cover [20]) will be used in Section 16.8 to prove the general AEP.






EEEN CHAPTER 4

ENTROPY RATES
OF A STOCHASTIC PROCESS

The asymptotic equipartition property in Chapter 3 establishes that
nH (X) bits suffice on the average to describe n independent and iden-
tically distributed random variables. But what if the random variables
are dependent? In particular, what if the random variables form a sta-
tionary process? We will show, just as in the i.i.d. case, that the entropy
H(X1, X2, ..., X,) grows (asymptotically) linearly with n at a rate H (X),
which we will call the entropy rate of the process. The interpretation of
H (X) as the best achievable data compression will await the analysis in
Chapter 5.

4.1 MARKOYV CHAINS

A stochastic process {X;} is an indexed sequence of random variables.
In general, there can be an arbitrary dependence among the random vari-
ables. The process is characterized by the joint probability mass functions
Pr{(X1, Xo, ..., Xp) = (x1,x2, ..., X))} = p(x1, X0, ..., Xp), (X1, X2, ..,
xp)eX forn=1,2,....

Definition A stochastic process is said to be stationary if the joint
distribution of any subset of the sequence of random variables is invariant
with respect to shifts in the time index; that is,

Pr{X| =x1, X =x2,..., X,, = x,,}

= PI‘{XH_l = X1, X2+1 = X2, ..., Xn+l = Xn} (41)

for every n and every shift / and for all x, x5, ..., x, € .

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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A simple example of a stochastic process with dependence is one in
which each random variable depends only on the one preceding it and
is conditionally independent of all the other preceding random variables.
Such a process is said to be Markov.

Definition A discrete stochastic process Xi, X»,...is said to be a
Markov chain or a Markov process if forn =1,2, ...,

Pr(Xn—H = -xn—l—lan = Xn, Xn—l = Xp—1s--» Xl = X])

= Pr (Xn—i-l = Xn+1 |Xn = xn) (42)

for all xq, xa, ..., Xy, X141 € X.
In this case, the joint probability mass function of the random variables
can be written as

P(Xl, X2y enns xn) = P(XI)P()C2|X1)P(X3|X2) o p(xn|xn—1)- (43)

Definition The Markov chain is said to be time invariant if the con-
ditional probability p(x,+1|x,) does not depend on n; that is, for n =
1,2,...,

Pr{X, 1 =b|X, =a} =Pr{Xo =b|X, =a) foralla,beX. (4.4)

We will assume that the Markov chain is time invariant unless otherwise
stated.

If {X;} is a Markov chain, X, is called the srate at time n. A time-
invariant Markov chain is characterized by its initial state and a probability
transition matrix P = [P;;], i, j € {1,2,...,m}, where P;; = Pr{X, | =
J1Xn =i}

If it is possible to go with positive probability from any state of the
Markov chain to any other state in a finite number of steps, the Markov
chain is said to be irreducible. If the largest common factor of the lengths
of different paths from a state to itself is 1, the Markov chain is said to
aperiodic.

If the probability mass function of the random variable at time n is
p(x,), the probability mass function at time n + 1 is

PGns)) =D pn) P,y (4.5)

Xn

A distribution on the states such that the distribution at time n + 1 is the
same as the distribution at time » is called a stationary distribution. The
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stationary distribution is so called because if the initial state of a Markov
chain is drawn according to a stationary distribution, the Markov chain
forms a stationary process.

If the finite-state Markov chain is irreducible and aperiodic, the sta-
tionary distribution is unique, and from any starting distribution, the
distribution of X,, tends to the stationary distribution as n — oo.

Example 4.1.1 Consider a two-state Markov chain with a probability
transition matrix
l -« o
P = 4.6
as shown in Figure 4.1.

Let the stationary distribution be represented by a vector u whose com-
ponents are the stationary probabilities of states 1 and 2, respectively. Then
the stationary probability can be found by solving the equation P = u
or, more simply, by balancing probabilities. For the stationary distribution,

the net probability flow across any cut set in the state transition graph is
zero. Applying this to Figure 4.1, we obtain

mioe = o p. 4.7)
Since p + pno = 1, the stationary distribution is

__B _
Tatp T arp

Wi (4.8)

If the Markov chain has an initial state drawn according to the stationary
distribution, the resulting process will be stationary. The entropy of the

1-a o 1-B

State 1 B State 2

FIGURE 4.1. Two-state Markov chain.
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state X, at time »n is

H(X,) = H (L L) : 4.9)
a+pB a+p

However, this is not the rate at which entropy grows for H (X, X, ...,

X,). The dependence among the X;’s will take a steady toll.

4.2 ENTROPY RATE

If we have a sequence of n random variables, a natural question to ask
is: How does the entropy of the sequence grow with n? We define the
entropy rate as this rate of growth as follows.

Definition The entropy of a stochastic process {X;} is defined by
1
H(.X)= lim —H(Xl,Xz,...,Xn) (410)
n—oon

when the limit exists.
We now consider some simple examples of stochastic processes and
their corresponding entropy rates.

1. Typewriter.
Consider the case of a typewriter that has m equally likely output
letters. The typewriter can produce m" sequences of length n, all
of them equally likely. Hence H (X1, X», ..., X,,) = logm" and the
entropy rate is H (X) = logm bits per symbol.

2. X1, X», ...are i.i.d. random variables. Then

H(XI’XZs"'7Xn)_ . nH(Xl)

H(X) = lim lim

= H(X1),
4.11)

n

which is what one would expect for the entropy rate per symbol.

3. Sequence of independent but not identically distributed random vari-
ables. In this case,

H(X\, Xa, ... X,) = Y H(X)), 4.12)
i=1

but the H(X;)’s are all not equal. We can choose a sequence of dis-
tributions on Xy, X», ...such that the limit of % > H(X;) does not
exist. An example of such a sequence is a random binary sequence
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where p; = P(X; = 1) is not constant but a function of i, chosen
carefully so that the limit in (4.10) does not exist. For example, let

{ 0.5 if 2k <loglogi <2k +1,
pi =

) ) (4.13)
0 if2k+1<loglogi <2k+2

fork=0,1,2,....

Then there are arbitrarily long stretches where H(X;) = 1, followed
by exponentially longer segments where H (X;) = 0. Hence, the run-
ning average of the H(X;) will oscillate between 0 and 1 and will
not have a limit. Thus, H (X) is not defined for this process.

We can also define a related quantity for entropy rate:

H/(-X) =nli>ngoH(Xn|Xn—l,Xn—2,~~"X1) (414)

when the limit exists.

The two quantities H (X) and H'(X) correspond to two different notions
of entropy rate. The first is the per symbol entropy of the n random vari-
ables, and the second is the conditional entropy of the last random variable
given the past. We now prove the important result that for stationary pro-
cesses both limits exist and are equal.

Theorem 4.2.1  For a stationary stochastic process, the limits in (4.10)
and (4.14) exist and are equal:

H(X) = H'(X). (4.15)
We first prove that lim H (X, | X;,—1, ..., X1) exists.

Theorem 4.2.2  For a stationary stochastic process, H(X,;|X,_1, ...,
X1) is nonincreasing in n and has a limit H'(X).

Proof

H(Xy1| X1, Xo, ..o, X)) = HX 1| X, -, X2) (4.16)
= H(X,[Xy-1, ..., X1), (4.17)

where the inequality follows from the fact that conditioning reduces en-
tropy and the equality follows from the stationarity of the process. Since
H(X,|X,-1,...,X1) is a decreasing sequence of nonnegative numbers,
it has a limit, H'(X). O
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We now use the following simple result from analysis.

Theorem 4.2.3 (Cesdro mean) Ifa, — a and b, = % Y i ai, then
b, — a.

Proof: (Informal outline). Since most of the terms in the sequence {ay}
are eventually close to a, then b,,, which is the average of the first n terms,
is also eventually close to a.

Formal Proof: Let € > 0. Since a, — a, there exists a number N (¢)
such that |a, — a| < € for all n > N (¢). Hence,

by, —a| = ‘ Z(al —a) (4.18)
1 n
<) l@—a) (4.19)
i=1
N(e)
<- Z ja; —a) + ——< N(E) (4.20)
N(G)
< —Z|a,—a|+e 4.21)

for all n > N (¢). Since the first term goes to 0 as n — oo, we can make
|b, — a| < 2e by taking n large enough. Hence, b, — a as n — oco. [

Proof of Theorem 4.2.1: By the chain rule,

H(Xl’XZ, -'~’Xl’l)

n

1 n
== HXilXi1,. .. Xy, (4.22)
i=1

that is, the entropy rate is the time average of the conditional entropies.
But we know that the conditional entropies tend to a limit H’. Hence, by
Theorem 4.2.3, their running average has a limit, which is equal to the
limit H' of the terms. Thus, by Theorem 4.2.2,

. H(Xy, X0, ..., X,) )
H(X) = lim =limH(X,|X,—1,...,X1)
n

— H'(X). O 4.23)
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The significance of the entropy rate of a stochastic process arises from
the AEP for a stationary ergodic process. We prove the general AEP in
Section 16.8, where we show that for any stationary ergodic process,

1
__logp(Xl’X2’~"’Xn)_>H(‘X) (4‘24)
n

with probability 1. Using this, the theorems of Chapter 3 can easily be
extended to a general stationary ergodic process. We can define a typical
set in the same way as we did for the i.i.d. case in Chapter 3. By the
same arguments, we can show that the typical set has a probability close
to 1 and that there are about 2"7(*) typical sequences of length 1, each
with probability about 27"#(*) We can therefore represent the typical
sequences of length n using approximately nH (&) bits. This shows the
significance of the entropy rate as the average description length for a
stationary ergodic process.

The entropy rate is well defined for all stationary processes. The entropy
rate is particularly easy to calculate for Markov chains.

Markov Chains. For a stationary Markov chain, the entropy rate is
given by

H(X) = H'(X) = lim H(X,|Xp-1, ..., X1) = lim H (X, |X,,—1)
= H(X72|X1), (4.25)

where the conditional entropy is calculated using the given stationary
distribution. Recall that the stationary distribution w is the solution of the
equations

j =Y wiPy forall j. (4.26)

We express the conditional entropy explicitly in the following theorem.

Theorem 4.2.4 Let {X;} be a stationary Markov chain with station-
ary distribution | and transition matrix P. Let X| ~ . Then the entropy
rate is

HX) ==Y uiPjlog P;j. (4.27)
ij

Proof: H(X) = H(Xo|X1) =3, i (Zj —Pijlog PiJ')' =
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Example 4.2.1 (Two-state Markov chain) The entropy rate of the two-
state Markov chain in Figure 4.1 is

H(X) = H(X2|X)) = ﬁH(u) S H) 4.28)

Remark If the Markov chain is irreducible and aperiodic, it has a unique
stationary distribution on the states, and any initial distribution tends to
the stationary distribution as n — oo. In this case, even though the initial
distribution is not the stationary distribution, the entropy rate, which is
defined in terms of long-term behavior, is H (&), as defined in (4.25) and
(4.27).

4.3 EXAMPLE: ENTROPY RATE OF A RANDOM WALK
ON A WEIGHTED GRAPH

As an example of a stochastic process, let us consider a random walk on
a connected graph (Figure 4.2). Consider a graph with m nodes labeled
{1,2,...,m}, with weight W;; > 0 on the edge joining node i to node
J. (The graph is assumed to be undirected, so that W;; = W;;. We set
Wi;; = 0 if there is no edge joining nodes i and j.)

A particle walks randomly from node to node in this graph. The ran-
dom walk {X,}, X, € {1,2,...,m}, is a sequence of vertices of the
graph. Given X, = i, the next vertex j is chosen from among the nodes
connected to node i with a probability proportional to the weight of the
edge connecting i to j. Thus, P;; = W;;/ Zk Wir.

5

FIGURE 4.2. Random walk on a graph.
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In this case, the stationary distribution has a surprisingly simple form,
which we will guess and verify. The stationary distribution for this Markov
chain assigns probability to node i proportional to the total weight of the
edges emanating from node i. Let

Wi =YW (4.29)
J
be the total weight of edges emanating from node i, and let
W= > W, (4.30)
i,jij>i

be the sum of the weights of all the edges. Then ), W; = 2W.
We now guess that the stationary distribution is

W;

=W (4.31)

Hi

We verify that this is the stationary distribution by checking that u P = p.
Here

Wl' Wij
Pi=) — 432
1
=Y —W; 433
W‘
=L (4.34)
2W
= ;. (4.35)

Thus, the stationary probability of state i is proportional to the weight of
edges emanating from node i. This stationary distribution has an inter-
esting property of locality: It depends only on the total weight and the
weight of edges connected to the node and hence does not change if the
weights in some other part of the graph are changed while keeping the
total weight constant. We can now calculate the entropy rate as

H(X) = H(X2|X1) (4.36)
= _ZMiZPij log P;; (4.37)
i
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Wi Wi Wi
_ log Vil 438
Xi:zw; W, 8w, (4.38)
:_ZZW"J log Wi (4.39)
oW W, ‘
=— 1 ! | 4.40
ZXJ.:ZW Og2W+Xi:;2W 82w (440)
W, W,
—H( 2 Y —H (). 4.41)
W W

If all the edges have equal weight, the stationary distribution puts
weight E;/2E on node i, where E; is the number of edges emanating
from node i and E is the total number of edges in the graph. In this case,
the entropy rate of the random walk is

H) = logE) — o ( L E2 Eum (4.42)
-8 2E'2E " 2E) '

This answer for the entropy rate is so simple that it is almost mislead-
ing. Apparently, the entropy rate, which is the average transition entropy,
depends only on the entropy of the stationary distribution and the total
number of edges.

Example 4.3.1 (Random walk on a chessboard) Let a king move at
random on an 8 x 8 chessboard. The king has eight moves in the interior,
five moves at the edges, and three moves at the corners. Using this and
the preceding results, the stationary probabilities are, respectively, %,
%, and 43%, and the entropy rate is 0.92 log 8. The factor of 0.92 is due
to edge effects; we would have an entropy rate of log8 on an infinite

chessboard.

Similarly, we can find the entropy rate of rooks (log 14 bits, since the
rook always has 14 possible moves), bishops, and queens. The queen
combines the moves of a rook and a bishop. Does the queen have more
or less freedom than the pair?

Remark 1t is easy to see that a stationary random walk on a graph is
time-reversible; that is, the probability of any sequence of states is the
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same forward or backward:

Pr(X; =x1,Xo=x2,..., X, =xp)
= PI‘(X,, = X1, Xn—l = X2, ..., X] = )Cn). (443)

Rather surprisingly, the converse is also true; that is, any time-reversible
Markov chain can be represented as a random walk on an undirected
weighted graph.

4.4 SECOND LAW OF THERMODYNAMICS

One of the basic laws of physics, the second law of thermodynamics,
states that the entropy of an isolated system is nondecreasing. We now
explore the relationship between the second law and the entropy function
that we defined earlier in this chapter.

In statistical thermodynamics, entropy is often defined as the log of
the number of microstates in the system. This corresponds exactly to our
notion of entropy if all the states are equally likely. But why does entropy
increase?

We model the isolated system as a Markov chain with transitions obey-
ing the physical laws governing the system. Implicit in this assumption is
the notion of an overall state of the system and the fact that knowing the
present state, the future of the system is independent of the past. In such
a system we can find four different interpretations of the second law. It
may come as a shock to find that the entropy does not always increase.
However, relative entropy always decreases.

1. Relative entropy D(uw,||i,) decreases withn. Let j, and u, be two
probability distributions on the state space of a Markov chain at time
n, and let , 41 and w;,,; be the corresponding distributions at time
n + 1. Let the corresponding joint mass functions be denoted by
p and g. Thus, p(xy, Xp+1) = p(x)r (Xp411x,) and q(xn, Xp41) =
q (x)r (xp411|x,), where r(-|-) is the probability transition function
for the Markov chain. Then by the chain rule for relative entropy,
we have two expansions:

D(p(xn, Xus-DI1q (Xn, Xnt1)) = D(p(xn)llg(xn))
+ D(p(xXns11x) g (xng11x4))
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= D(p(xn+1g(Xn41))
+ D(p(xn |xn+1)| |Q(xn |xn+1))~

Since both p and ¢ are derived from the Markov chain, the con-
ditional probability mass functions p(x,4+1|x,) and q(x,41]|x,) are
both equal to 7 (x,+1]x,), and hence D(p(xXp+1|x,)11g (Xn+11x,)) = 0.
Now using the nonnegativity of D(p(x,|Xn+1)|lg(xn|Xn+1)) (Corol-
lary to Theorem 2.6.3), we have

D(p(xn)llg(xn)) = D(p(xXn4+1)1lg (Xn41)) (4.44)

or

D(pnllpy) = Dty 40)- (4.45)

Consequently, the distance between the probability mass functions
is decreasing with time n for any Markov chain.

An example of one interpretation of the preceding inequality is
to suppose that the tax system for the redistribution of wealth is
the same in Canada and in England. Then if w, and u, represent
the distributions of wealth among people in the two countries, this
inequality shows that the relative entropy distance between the two
distributions decreases with time. The wealth distributions in Canada
and England become more similar.

2. Relative entropy D (i, || ) between a distribution 1, on the states at
time n and a stationary distribution p decreases with n. In (4.45),
w, is any distribution on the states at time n. If we let u, be any
stationary distribution p, the distribution ), 41 at the next time is
also equal to . Hence,

D(pnlln) = D(pns1llm), (4.46)

which implies that any state distribution gets closer and closer to
each stationary distribution as time passes. The sequence D (w,||1)
is a monotonically nonincreasing nonnegative sequence and must
therefore have a limit. The limit is zero if the stationary distribution
is unique, but this is more difficult to prove.

3. Entropy increases if the stationary distribution is uniform. In gen-
eral, the fact that the relative entropy decreases does not imply that
the entropy increases. A simple counterexample is provided by any
Markov chain with a nonuniform stationary distribution. If we start
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this Markov chain from the uniform distribution, which already is
the maximum entropy distribution, the distribution will tend to the
stationary distribution, which has a lower entropy than the uniform.
Here, the entropy decreases with time.
If, however, the stationary distribution is the uniform distribution,
we can express the relative entropy as

D(pnllp) = log |X] — H(pp) = log |X] — H(X,). (4.47)

In this case the monotonic decrease in relative entropy implies a
monotonic increase in entropy. This is the explanation that ties in
most closely with statistical thermodynamics, where all the micro-
states are equally likely. We now characterize processes having a
uniform stationary distribution.

Definition A probability transition matrix [P;;], Pij = Pr{X,41 =
Jj1X, =i}, is called doubly stochastic if

dopi=1, ji=1,2,... (4.48)
i

and
dopi=1 i=12... (4.49)
J

Remark The uniform distribution is a stationary distribution of P if
and only if the probability transition matrix is doubly stochastic (see
Problem 4.1).

4. The conditional entropy H(X,|X) increases with n for a station-
ary Markov process. 1f the Markov process is stationary, H(X,) is
constant. So the entropy is nonincreasing. However, we will prove
that H(X,|X) increases with n. Thus, the conditional uncertainty
of the future increases. We give two alternative proofs of this result.
First, we use the properties of entropy,

H(X,|X) > H(X,|X1, X2) (conditioning reduces entropy)
(4.50)

= H(X,|X,) (by Markovity) (4.51)
= H(X,—1|X1) (by stationarity). (4.52)
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Alternatively, by an application of the data-processing inequality to
the Markov chain X; — X,_; — X,,, we have

[(X15 Xp—1) = 1(X15 X). (4.53)
Expanding the mutual informations in terms of entropies, we have
H(Xp—1) — H(X,—11X1) = H(X,) — H(X,[X)). (4.54)

By stationarity, H(X,—1) = H(X,), and hence we have
H(Xp—11X1) = H(X,|X1). (4.55)

[These techniques can also be used to show that H(Xg|X,) is
increasing in n for any Markov chain.]

5. Shuffles increase entropy. If T is a shuffle (permutation) of a deck
of cards and X is the initial (random) position of the cards in the
deck, and if the choice of the shuffle 7' is independent of X, then

H(TX)> H(X), (4.56)

where T X is the permutation of the deck induced by the shuffle T
on the initial permutation X. Problem 4.3 outlines a proof.

4.5 FUNCTIONS OF MARKOYV CHAINS

Here is an example that can be very difficult if done the wrong
way. It illustrates the power of the techniques developed so far. Let
X1, X2, ..., Xy, ...be a stationary Markov chain, and let ¥; = ¢ (X;) be
a process each term of which is a function of the corresponding state
in the Markov chain. What is the entropy rate H()))? Such functions of
Markov chains occur often in practice. In many situations, one has only
partial information about the state of the system. It would simplify matters
greatly if Y1, Y», ..., Y, also formed a Markov chain, but in many cases,
this is not true. Since the Markov chain is stationary, so is Yy, Y2, ..., ¥,
and the entropy rate is well defined. However, if we wish to compute
H(Y), we might compute H(Y,|Y,-1,..., Y1) for each n and find the
limit. Since the convergence can be arbitrarily slow, we will never know
how close we are to the limit. (We can’t look at the change between the
values at n and n + 1, since this difference may be small even when we
are far away from the limit—consider, for example, > %.)
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It would be useful computationally to have upper and lower bounds con-
verging to the limit from above and below. We can halt the computation
when the difference between upper and lower bounds is small, and we
will then have a good estimate of the limit.

We already know that H(Y,|Y,—1,...,Y;) converges monoton-
ically to H()) from above. For a lower bound, we will use
HY,|Y,_1,...,Y:, X1). This is a neat trick based on the idea that X,
contains as much information about Y, as Yy, Yy, Y_q,....

Lemma 4.5.1

HYp|Yn-1, ..., Y2, X1) = HQ). (4.57)

Proof: We have fork=1,2, ...,
(@)

H(Yl’l|Yl’l—1’ ’Y23X1): H(Yn|Yn—lv '~'3Y2’ YI’XI) (458)
(b
- H(YH|Y}’L—1’ st YI’XI’X()’ X—l’ ’X—k)
(4.59)
©
= H(YVL|YIZ—1,---aYIleaXO,X—la---a
X 0, Yo, ..., Yp) (4.60)
()
S H(Yn|Yn—1""’Y1aY07"~7Y—k) (4'61)
©
= HY k11 Yotk -, Y1), (4.62)

where (a) follows from that fact that Y; is a function of X, and (b) follows
from the Markovity of X, (c) follows from the fact that Y; is a function
of X;, (d) follows from the fact that conditioning reduces entropy, and (e)
follows by stationarity. Since the inequality is true for all &, it is true in
the limit. Thus,

HYu|Yy—1, ..., Y1, X)) < lilgnH(Yn—{—k—i—llYan, oY) (4.63)

=H(). O (4.64)

The next lemma shows that the interval between the upper and the
lower bounds decreases in length.

Lemma 4.5.2

HY,\Yn-1,.... Y1) — HY, Y01, ..., Y1, X1) — 0. (4.65)
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Proof: The interval length can be rewritten as

HY Y1, ..., Y1) — HY,|Y—1, ..., Y1, Xy)
=I(X1;Yn|Yn_1,...,Y1). (466)

By the properties of mutual information,

and 1(X; Yy, Ys, ...,Y,) increases with n. Thus, lim I/ (X; Yy, Ya, ...,
Y,) exists and

lim 1(X; Y1, Ya, ..., Y,) < H(X)). (4.68)
n—0o0

By the chain rule,

H(X) = lim [(X;; Y1, Y2, ..., Y) (4.69)
n
=n1£§o;1(x1; YilYi_i, ..., Y1) (4.70)
G
=Y I(Xi: YilYioy. ... Y). 4.71)
i=1

Since this infinite sum is finite and the terms are nonnegative, the terms
must tend to 0; that is,

im I (Xy; Y,|Y,o1,..., Y1) =0, 4.72)
which proves the lemma. U
Combining Lemmas 4.5.1 and 4.5.2, we have the following theorem.

Theorem 4.5.1 [f Xy, X», ..., X, form a stationary Markov chain, and
Yi = ¢(X;), then

H(YnlYn—l, LR ] Yl’ Xl) S H(y) S H(Yl’llYn—15 LR ] Yl) (473)
and
limH(Yn|Yn_1, ey Yl,Xl) = H(y) =1imH(Y,,|Yn_1, ey Yl). (474)

In general, we could also consider the case where Y; is a stochastic
function (as opposed to a deterministic function) of X;. Consider a Markov
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process X1, Xo, ..., X,, and define a new process Yy, Ys, ..., Y,, where
each Y; is drawn according to p(y;|x;), conditionally independent of all
the other X, j # i; that is,

n—1 n
p&", 3" = pl) [ [ pGinilx [ [ pGilxi). (4.75)
i=1

i=1

Such a process, called a hidden Markov model (HMM)), is used extensively
in speech recognition, handwriting recognition, and so on. The same argu-
ment as that used above for functions of a Markov chain carry over to
hidden Markov models, and we can lower bound the entropy rate of a
hidden Markov model by conditioning it on the underlying Markov state.
The details of the argument are left to the reader.

SUMMARY
Entropy rate. Two definitions of entropy rate for a stochastic process
are
H(X)z,,li,rgo%H(Xl’Xz’“"X")’ (4.76)
H'(X) :nll)ngo H(Xu| Xn-1, Xn—2, ..., X1). (4.77)

For a stationary stochastic process,
HX) = H (X). (4.78)

Entropy rate of a stationary Markov chain

H(X)=—)_u;PjlogP;. (4.79)
ij

Second law of thermodynamics. For a Markov chain:

1. Relative entropy D(u,||u,) decreases with time

2. Relative entropy D(u,||pn) between a distribution and the stationary
distribution decreases with time.

3. Entropy H (X,) increases if the stationary distribution is uniform.
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The conditional entropy H(X,|X;) increases with time for a sta-
tionary Markov chain.

. The conditional entropy H (Xo|X,) of the initial condition X in-

creases for any Markov chain.

Functions of a Markov chain. If X, X;,..., X,, form a stationary
Markov chain and Y; = ¢ (X;), then

HYu Y1, ..., Y1, X)) < HQ) < HYplYy—1, ..., Y1) (4.80)

and

lim H(Yn|Yn_1,...,Y1,X1) = H(y) = lim H(Yn|Yn_1,...,Y1).
n— 00 n— 0o

(4.81)

PROBLEMS

4.1

4.2

Doubly stochastic matrices. An n x n matrix P = [P;;] is said
to be doubly stochastic if P;j >0 and ) jPiji=1 for all i and
Y i Pij=1forall j. An n x n matrix P is said to be a permu-
tation matrix if it is doubly stochastic and there is precisely one
P;; =1 in each row and each column. It can be shown that every
doubly stochastic matrix can be written as the convex combination
of permutation matrices.
(@) Let a' = (a1, a2, ...,ay), a; >0, Y a; =1, be a probability
vector. Let b = aP, where P is doubly stochastic. Show that b
is a probability vector and that H (by, by, ..., b,) > H(ay, as,
..., ay). Thus, stochastic mixing increases entropy.

(b) Show that a stationary distribution p for a doubly stochastic
matrix P is the uniform distribution.

(c) Conversely, prove that if the uniform distribution is a stationary
distribution for a Markov transition matrix P, then P is doubly
stochastic.

o0

Time’s arrow. Let {X;}72_

Prove that

be a stationary stochastic process.

H(X0|X—15 X—2, cre X—I’l) = H(XOle, X2, R} Xl’l)
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In other words, the present has a conditional entropy given the past
equal to the conditional entropy given the future. This is true even
though it is quite easy to concoct stationary random processes for
which the flow into the future looks quite different from the flow
into the past. That is, one can determine the direction of time by
looking at a sample function of the process. Nonetheless, given
the present state, the conditional uncertainty of the next symbol in
the future is equal to the conditional uncertainty of the previous
symbol in the past.

Shuffles increase entropy. Argue that for any distribution on shuf-
fles T and any distribution on card positions X that

H(TX)> H(TX|T) (4.82)
= H(T'TX|T) (4.83)
= H(X|T) (4.84)
= H(X) (4.85)

if X and T are independent.

Second law of thermodynamics. Let X, X», X3, ...be a station-
ary first-order Markov chain. In Section 4.4 it was shown that
H(X,| X)) >H(X,_1]Xy) for n =2,3,.... Thus, conditional
uncertainty about the future grows with time. This is true although
the unconditional uncertainty H (X,) remains constant. However,
show by example that H(X,|X| = x;) does not necessarily grow
with n for every x;.

Entropy of a random tree. Consider the following method of gen-
erating a random tree with n nodes. First expand the root node:

/N

Then expand one of the two terminal nodes at random:

At time k, choose one of the kK — 1 terminal nodes according to a
uniform distribution and expand it. Continue until n terminal nodes
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have been generated. Thus, a sequence leading to a five-node tree
might look like this:

Surprisingly, the following method of generating random trees
yields the same probability distribution on trees with n termi-
nal nodes. First choose an integer N; uniformly distributed on
{1,2,...,n — 1}. We then have the picture

N1 n-— N1

Then choose an integer N, uniformly distributed over
{1,2,..., Ny — 1}, and independently choose another integer N3
uniformly over {1, 2, ..., (n — Ny) — 1}. The picture is now

N, Ny — Ny Ny n—Ny— Ny

Continue the process until no further subdivision can be made.
(The equivalence of these two tree generation schemes follows, for
example, from Polya’s urn model.)

Now let 7;, denote a random n-node tree generated as described. The
probability distribution on such trees seems difficult to describe, but
we can find the entropy of this distribution in recursive form.

First some examples. For n = 2, we have only one tree. Thus,
H(T,) = 0. For n = 3, we have two equally probable trees:

N A
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Thus, H(T3) = log2. For n = 4, we have five possible trees, with
probabilities 3 % % % 5

Now for the recurrence relation. Let N{(7,,) denote the number of
terminal nodes of 7, in the right half of the tree. Justify each of

the steps in the following:

(@

H(T,) = HN,,T,) (4.86)
© H(Ny) + H(T,INy) (4.87)
9 log(n — 1)+ H(T,|Ny) (4.88)
n—1
@ R
= log(n — 1) + — ; (H(T) + H(T,—x))  (4.89)
© ) n—I1
= log(n = 1) + — ; H(Ty) (4.90)
=log(n — ) + — Z H. 4.91)

(f) Use this to show that

(n—1)H, =nH,_; + (n — Dlog(n — 1) — (n — 2) log(n — 2)
(4.92)

or

H, H,_
e _ It o (4.93)
n n—1

for appropriately defined c,. Since ) _ ¢, = ¢ < 00, you have proved

that %H (T,,) converges to a constant. Thus, the expected number of
bits necessary to describe the random tree 7,, grows linearly with .

Monotonicity of entropy per element. For a stationary stochastic
process X1, X2, ..., X, show that

(a)
H(X1, X2, ..., Xy) _ H(X1, X2, ..., Xy—1)

n - n—1

(4.94)

(b)
H(X1, X2, ..., X»)

n

= H(X}1|Xn—l,---»X1)- (495)
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Entropy rates of Markov chains

(a) Find the entropy rate of the two-state Markov chain with tran-
sition matrix

pP— 1 —por  po '
pio L= pio

(b) What values of pg, p1o maximize the entropy rate?
(¢) Find the entropy rate of the two-state Markov chain with tran-

sition matrix
| I=-p p
p_[ ) 0].

(d) Find the maximum value of the entropy rate of the Markov
chain of part (c). We expect that the maximizing value of p
should be less than %, since the O state permits more informa-

tion to be generated than the 1 state.

(e) Let N(7) be the number of allowable state sequences of length ¢
for the Markov chain of part (c). Find N(¢) and calculate

1
Hy = lim —log N (t).
=00

[Hint: Find a linear recurrence that expresses N (¢) in terms
of N(t — 1) and N(r — 2). Why is Hy an upper bound on the
entropy rate of the Markov chain? Compare Hy with the max-
imum entropy found in part (d).]

Maximum entropy process. A discrete memoryless source has the
alphabet {1, 2}, where the symbol 1 has duration 1 and the sym-
bol 2 has duration 2. The probabilities of 1 and 2 are p; and p»,
respectively. Find the value of p; that maximizes the source entropy
per unit time H (&) = % What is the maximum value H (X)?

Initial conditions. Show, for a Markov chain, that
H(Xo|X,) = H(Xo|Xn-1).
Thus, initial conditions X become more difficult to recover as the

future X, unfolds.

Pairwise independence. Let X, X»,..., X,—1 be i.i.d. random
variables taking values in {0, 1}, with Pr{X; = 1} = % Let X, =1
if /7! X; is odd and X, = 0 otherwise. Let n > 3.
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(a) Show that X; and X; are independent for i # j, i, j € {I, 2,
...,n}

(b) Find H(X;, X;) for i # j.

(¢) Find H(X1, X3, ..., X,). Is this equal to n H(X)?

Stationary processes. Let ..., X_1, X9, X1,...be a stationary

(not necessarily Markov) stochastic process. Which of the follow-
ing statements are true? Prove or provide a counterexample.

(@) H(Xn|Xo) = H(X-pn|Xo) -

(b) H(X,|Xo) > H(X,—1|Xo) .

(¢) H(X,|X1, X2, ..., Xy—1, X41) 18 nonincreasing in n.

d HX,|X1,..., Xn-1, Xn+1, - - -, X2,) 1S nonincreasing in n.
Entropy rate of a dog looking for a bone. A dog walks on the
integers, possibly reversing direction at each step with probability

p = 0.1. Let Xg = 0. The first step is equally likely to be positive
or negative. A typical walk might look like this:

(Xo, Xy,...)=(0,-1,-2,-3,—-4,-3,-2,-1,0,1,...).

(a) Find H(X 1, X2, ..., Xpn).
(b) Find the entropy rate of the dog.

(c) What is the expected number of steps that the dog takes before
reversing direction?

The past has little to say about the future. For a stationary stochas-
tic process X, X2, ..., X, ..., show that

. 1
lim — 7 (X, X2, ..., Xu; Xoat, Xpa2, ..., Xon) = 0. (4.96)

n—oo 2n

Thus, the dependence between adjacent n-blocks of a stationary
process does not grow linearly with n.

Functions of a stochastic process

(a) Consider a stationary stochastic process X, X», ..., X, and
let Y1, Y», ..., Y, be defined by

Yi=¢(X;), i=1,2,... 4.97)
for some function ¢. Prove that

H()) = H(X). (4.98)
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(b) What is the relationship between the entropy rates H(Z) and

H(X) if
Zi=vy(X;, Xiy1), i=12,... (4.99)

for some function ?

4.15 Entropy rate. Let {X;} be a discrete stationary stochastic process
with entropy rate H (X). Show that

1
-H(X,,.... X1 | Xo, X1, ..., X)) > HX) (4.100)
n

fork=1,2,....

4.16 Entropy rate of constrained sequences. In magnetic recording, the
mechanism of recording and reading the bits imposes constraints
on the sequences of bits that can be recorded. For example, to
ensure proper synchronization, it is often necessary to limit the
length of runs of 0’s between two 1’s. Also, to reduce intersymbol
interference, it may be necessary to require at least one 0 between
any two 1’s. We consider a simple example of such a constraint.
Suppose that we are required to have at least one 0 and at most
two 0’s between any pair of 1’s in a sequences. Thus, sequences
like 101001 and 0101001 are valid sequences, but 0110010 and
0000101 are not. We wish to calculate the number of valid se-
quences of length n.

(a) Show that the set of constrained sequences is the same as the
set of allowed paths on the following state diagram:

(b) Let X;(n) be the number of valid paths of length n ending at
state i. Argue that X(n) = [X|(n) X,(n) X3(n)]" satisfies the
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following recursion:

Xi(n) 011 Xi(n—1)
Xo(n) =11 0 0 Xo(n—1) |, (4.101)
X3(n) 010 X3(n—1)
with initial conditions X(1) = [1 1 0]’.
Let
0 1 1
A=|1 0 0 |. (4.102)
010
Then we have by induction
X(n) = AX(n — 1) = A2X(n —2) = --- = A" 'X(1).

(4.103)
Using the eigenvalue decomposition of A for the case of distinct
eigenvalues, we can write A = U ' AU, where A is the diag-
onal matrix of eigenvalues. Then A"~! = U~'A"~'U. Show
that we can write

X(n) =27+ 2570 + 457YG, (4.104)

where Y1, Y2, Y3 do not depend on n. For large n, this sum
is dominated by the largest term. Therefore, argue that for i =
1,2, 3, we have

1
—log X;(n) — log A, (4.105)
n

where A is the largest (positive) eigenvalue. Thus, the number
of sequences of length n grows as A" for large n. Calculate A
for the matrix A above. (The case when the eigenvalues are
not distinct can be handled in a similar manner.)

We now take a different approach. Consider a Markov chain
whose state diagram is the one given in part (a), but with
arbitrary transition probabilities. Therefore, the probability tran-
sition matrix of this Markov chain is

01 0
P=|a 0 1l—a | (4.106)
10 0

Show that the stationary distribution of this Markov chain is

-t L l-e (4.107)
"= 3—a’ 3—a 3—a '
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(e) Maximize the entropy rate of the Markov chain over choices
of @. What is the maximum entropy rate of the chain?

(f) Compare the maximum entropy rate in part (e) with log A in
part (c). Why are the two answers the same?

Recurrence times are insensitive to distributions. Let Xq, X1, Xo,
...bedrawn i.id. ~ p(x),x € X={1,2,...,m}, and let N be the
waiting time to the next occurrence of Xy. Thus N = min,{X, =
Xo}.

(a) Show that EN = m.

(b) Show that Elog N < H(X).

(¢) (Optional) Prove part (a) for {X;} stationary and ergodic.

Stationary but not ergodic process. A bin has two biased coins,

one with probability of heads p and the other with probability of

heads 1 — p. One of these coins is chosen at random (i.e., with

probability %) and is then tossed n times. Let X denote the identity

of the coin that is picked, and let Y| and Y, denote the results of

the first two tosses.

(a) Calculate I (Yy; Y»|X).

(b) Calculate I(X; Yy, Y>).

(c) Let H()) be the entropy rate of the Y process (the se-
quence of coin tosses). Calculate H()). [Hint: Relate this to
limlHX, Y, Y2, ..., Y]

You can check the answer by considering the behavior as p — 1

E .
Random walk on graph. Consider a random walk on the following
graph:

(a) Calculate the stationary distribution.
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(b) What is the entropy rate?

(¢) Find the mutual information 7(X,11; X,) assuming that the
process is stationary.

Random walk on chessboard. Find the entropy rate of the Markov
chain associated with a random walk of a king on the 3 x 3 chess-
board

1 2 3
4 5 6
7 8 9

What about the entropy rate of rooks, bishops, and queens? There
are two types of bishops.

Maximal entropy graphs. Consider a random walk on a connected
graph with four edges.

(a) Which graph has the highest entropy rate?
(b) Which graph has the lowest?

Three-dimensional maze. A bird is lost in a 3 x 3 x 3 cubical
maze. The bird flies from room to room going to adjoining rooms
with equal probability through each of the walls. For example, the
corner rooms have three exits.

(a) What is the stationary distribution?

(b) What is the entropy rate of this random walk?

Entropy rate. Let {X;} be a stationary stochastic process with
entropy rate H (X).

(a) Argue that H(X) < H(X)).

(b) What are the conditions for equality?

Entropy rates. Let {X;} be a stationary process. Let ¥; = (X;,
Xiv1). Let Z; = (Xoi, X2i+1). Let V; = X»;. Consider the entropy
rates H(X), H(Y), H(Z), and H(V) of the processes {X;},{Y;},
{Z;}, and {V;}. What is the inequality relationship <, =, or >
between each of the pairs listed below?

(@) HOZH ().

(b) H()ZH(Z).

(© HX)ZHW).

() H(ZZHX).

Monotonicity

(a) Show that I(X; Yy, Ys,...,Y,) is nondecreasing in n.
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(b) Under what conditions is the mutual information constant for
all n?

Transitions in Markov chains. Suppose that {X;} forms an irre-
ducible Markov chain with transition matrix P and stationary distri-
bution . Form the associated “edge process” {Y;} by keeping track
only of the transitions. Thus, the new process {Y;} takes values in
X x X, and Y; = (X;_1, X;). For example,

X"=3,2,8,5,7,...
becomes

Y"=1(9,3),3,2),(2,8),(8,5,5,7),....

Find the entropy rate of the edge process {Y;}.

Entropy rate. Let {X;} be a stationary {0, 1}-valued stochastic
process obeying

X1 = Xk ® Xi—1 @ Ziy1,

where {Z;} is Bernoulli(p)and & denotes mod 2 addition. What is
the entropy rate H(X)?

Mixture of processes. Suppose that we observe one of two
stochastic processes but don’t know which. What is the entropy
rate? Specifically, let X1, X2, X13, ... be a Bernoulli process with
parameter pi, and let X1, X272, X»3, ...be Bernoulli(p,). Let

b 1 with probability 1
| 2 with probability 1
and let ¥; = Xy;,i = 1,2, ..., be the stochastic process observed.

Thus, Y observes the process {Xi;} or {X5;}. Eventually, ¥ will
know which.

(a) Is {Y;} stationary?

(b) Is {Y;} an i.i.d. process?

(c) What is the entropy rate H of {Y;}?
(d) Does

1
——logp(Yl, Yz, Yn) — H?
n

(e) Is there a code that achieves an expected per-symbol description
length %EL,, — H?
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Now let 6; be Bern(%). Observe that
Zi=Xgi, i=12,....

Thus, 6 is not fixed for all time, as it was in the first part, but is
chosen i.i.d. each time. Answer parts (a), (b), (c), (d), (e) for the
process {Z;}, labeling the answers (a’), (b'), (¢)), (d), (€)).

Waiting times. Let X be the waiting time for the first heads to
appear in successive flips of a fair coin. For example, Pr{X = 3} =
(%)3. Let S, be the waiting time for the nth head to appear. Thus,

So=0
Sn+1 = Su + Xn+1,
where X1, X», X3, ...are i.i.d according to the distribution above.
(a) Is the process {S,} stationary?

(b) Calculate H(Sy, S2, ..., Sy).

(¢) Does the process {S,} have an entropy rate? If so, what is it?
If not, why not?

(d) What is the expected number of fair coin flips required to
generate a random variable having the same distribution as S,,?

Markov chain transitions

P =[P;l=

Bl— B— D=
Bl— I— B—
Pol— B— B —

Let X be distributed uniformly over the states {0, 1, 2}. Let {X;}{°
be a Markov chain with transition matrix P; thus, P(X,+; =
JIXn=1i)=P;y,i,j€{0,1,2}.

(a) Is {X,} stationary?

(b) Find lim, .o 2H (X1, ..., X,).

Now consider the derived process Zy, Z», ..., Z,, where

Z1 =X,
Zi:Xi_Xi—l (m0d3), l:2,,l’l
Thus, Z" encodes the transitions, not the states.

(¢c) Find H(Z\, Z», ..., Z,).
(d) Find H(Z,) and H(X,) for n > 2.
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(e) Find H(Z,|Z,_) for n > 2.
(f) Are Z,—1 and Z, independent for n > 2?

4.31 Markov. Let {X;} ~ Bernoulli(p). Consider the associated
Markov chain {Y;}_,, where
Y; = (the number of 1’s in the current run of 1’s). For example, if
X" =101110..., we have Y" = 101230....

(a) Find the entropy rate of X".
(b) Find the entropy rate of Y".

4.32 Time symmetry. Let {X,} be a stationary Markov process. We
condition on (X, X) and look into the past and future. For what
index k is

H(X_n|Xo, X1) = H(X|Xo, X1)?
Give the argument.

4.33 Chain inequality. Let X; — X, — X3 — X4 form a Markov

chain. Show that
I(Xy; X3) + 1(Xo; Xq) < 1(Xy; Xg) + 1(X2; X3). (4.108)

4.34 Broadcast channel. Let X — Y — (Z, W) form a Markov chain
[ie., p(x,y,z, w) = p(x)p(y|x)p(z, wly) for all x, y, z, w]. Show
that

IX;2)+1(X; W) <I(X;Y)+1(Z, W). (4.109)

4.35 Concavity of second law. Let {X,}> be a stationary Markov
process. Show that H(X,|Xo) is concave in n. Specifically, show
that

H(Xy|Xo) — H(Xy-11X0) — (H(X,-1]X0) — H(Xn—2|X0))
= —1(X1; Xn—11Xo, Xn) <0. (4.110)
Thus, the second difference is negative, establishing that H (X,| X))
is a concave function of n.
HISTORICAL NOTES

The entropy rate of a stochastic process was introduced by Shannon [472],
who also explored some of the connections between the entropy rate of the
process and the number of possible sequences generated by the process.
Since Shannon, there have been a number of results extending the basic
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theorems of information theory to general stochastic processes. The AEP
for a general stationary stochastic process is proved in Chapter 16.

Hidden Markov models are used for a number of applications, such
as speech recognition [432]. The calculation of the entropy rate for con-
strained sequences was introduced by Shannon [472]. These sequences
are used for coding for magnetic and optical channels [288].






I CHAPTER 5

DATA COMPRESSION

We now put content in the definition of entropy by establishing the funda-
mental limit for the compression of information. Data compression can be
achieved by assigning short descriptions to the most frequent outcomes
of the data source, and necessarily longer descriptions to the less fre-
quent outcomes. For example, in Morse code, the most frequent symbol
is represented by a single dot. In this chapter we find the shortest average
description length of a random variable.

We first define the notion of an instantaneous code and then prove the
important Kraft inequality, which asserts that the exponentiated codeword
length assignments must look like a probability mass function. Elemen-
tary calculus then shows that the expected description length must be
greater than or equal to the entropy, the first main result. Then Shan-
non’s simple construction shows that the expected description length can
achieve this bound asymptotically for repeated descriptions. This estab-
lishes the entropy as a natural measure of efficient description length.
The famous Huffman coding procedure for finding minimum expected
description length assignments is provided. Finally, we show that Huff-
man codes are competitively optimal and that it requires roughly H fair
coin flips to generate a sample of a random variable having entropy H.
Thus, the entropy is the data compression limit as well as the number of
bits needed in random number generation, and codes achieving H turn
out to be optimal from many points of view.

5.1 EXAMPLES OF CODES

Definition A source code C for a random variable X is a mapping from
X, the range of X, to D*, the set of finite-length strings of symbols from
a D-ary alphabet. Let C(x) denote the codeword corresponding to x and
let /(x) denote the length of C(x).

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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For example, C(red) = 00, C(blue) = 11 is a source code for X = {red,
blue} with alphabet D = {0, 1}.

Definition The expected length L(C) of a source code C(x) for a ran-
dom variable X with probability mass function p(x) is given by

L(C) =) p®)l(x), (5.1)

xeX

where [(x) is the length of the codeword associated with x.

Without loss of generality, we can assume that the D-ary alphabet is
D={0,1,...,D—1}.

Some examples of codes follow.

Example 5.1.1 Let X be a random variable with the following distri-
bution and codeword assignment:

Pr(X = 1) =1, codeword C(1) =0

Pr(X =2) =, codeword C(2) =10 5.2)
Pr(X =3) =, codeword C(3) =110 '
Pr(X =4) =g, codeword C(4) = 111.

The entropy H(X) of X is 1.75 bits, and the expected length L(C) =
El(X) of this code is also 1.75 bits. Here we have a code that has the
same average length as the entropy. We note that any sequence of bits
can be uniquely decoded into a sequence of symbols of X. For example,
the bit string 0110111100110 is decoded as 134213.

Example 5.1.2 Consider another simple example of a code for a random

variable:
PriX=1)= %, codeword C(1) =0
Pr(X =2) =1, codeword C(2) = 10 (5.3)
Pr(X =3) =1, codeword C(3) = 11.

Just as in Example 5.1.1, the code is uniquely decodable. However, in
this case the entropy is log3 = 1.58 bits and the average length of the
encoding is 1.66 bits. Here EI(X) > H(X).

Example 5.1.3 (Morse code) The Morse code is a reasonably efficient
code for the English alphabet using an alphabet of four symbols: a dot,
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a dash, a letter space, and a word space. Short sequences represent fre-
quent letters (e.g., a single dot represents E) and long sequences represent
infrequent letters (e.g., Q is represented by “dash,dash,dot,dash”). This is
not the optimal representation for the alphabet in four symbols—in fact,
many possible codewords are not utilized because the codewords for let-
ters do not contain spaces except for a letter space at the end of every
codeword, and no space can follow another space. It is an interesting prob-
lem to calculate the number of sequences that can be constructed under
these constraints. The problem was solved by Shannon in his original
1948 paper. The problem is also related to coding for magnetic recording,
where long strings of 0’s are prohibited [5], [370].

We now define increasingly more stringent conditions on codes. Let x"
denote (x1,x2, ..., X,).

Definition A code is said to be nonsingular if every element of the
range of X maps into a different string in D*; that is,

x #x' = C(x) #CX). (5.4)

Nonsingularity suffices for an unambiguous description of a single
value of X. But we usually wish to send a sequence of values of X.
In such cases we can ensure decodability by adding a special symbol
(a “comma”) between any two codewords. But this is an inefficient use
of the special symbol; we can do better by developing the idea of self-
punctuating or instantaneous codes. Motivated by the necessity to send
sequences of symbols X, we define the extension of a code as follows:

Definition The extension C* of a code C is the mapping from finite-
length strings of X to finite-length strings of D, defined by

C(xixz -+ xp) = C(x))C(x2) - - Cxyp), (5.5)

where C(x1)C(x3) - - - C(x,) indicates concatenation of the corresponding
codewords.

Example 5.1.4 If C(x;) = 00 and C(x,) = 11, then C(x1x) = 0011.

Definition A code is called uniquely decodable if its extension is non-
singular.

In other words, any encoded string in a uniquely decodable code has
only one possible source string producing it. However, one may have
to look at the entire string to determine even the first symbol in the
corresponding source string.
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Definition A code is called a prefix code or an instantaneous code if
no codeword is a prefix of any other codeword.

An instantaneous code can be decoded without reference to future code-
words since the end of a codeword is immediately recognizable. Hence,
for an instantaneous code, the symbol x; can be decoded as soon as we
come to the end of the codeword corresponding to it. We need not wait
to see the codewords that come later. An instantaneous code is a self-
punctuating code; we can look down the sequence of code symbols and
add the commas to separate the codewords without looking at later sym-
bols. For example, the binary string 01011111010 produced by the code
of Example 5.1.1 is parsed as 0,10,111,110,10.

The nesting of these definitions is shown in Figure 5.1. To illustrate the
differences between the various kinds of codes, consider the examples of
codeword assignments C(x) to x € X in Table 5.1. For the nonsingular
code, the code string 010 has three possible source sequences: 2 or 14 or
31, and hence the code is not uniquely decodable. The uniquely decodable
code is not prefix-free and hence is not instantaneous. To see that it is
uniquely decodable, take any code string and start from the beginning.
If the first two bits are 00 or 10, they can be decoded immediately. If

Nonsingular
codes

Uniquely
decodable
codes

Instantaneous
codes

FIGURE 5.1. Classes of codes.
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TABLE 5.1 Classes of Codes

Nonsingular, But Not Uniquely Decodable,
X  Singular Uniquely Decodable But Not Instantaneous  Instantaneous
1 0 0 10 0
2 0 010 00 10
3 0 01 11 110
4 0 10 110 111

the first two bits are 11, we must look at the following bits. If the next
bit is a 1, the first source symbol is a 3. If the length of the string of
0’s immediately following the 11 is odd, the first codeword must be 110
and the first source symbol must be 4; if the length of the string of 0’s is
even, the first source symbol is a 3. By repeating this argument, we can see
that this code is uniquely decodable. Sardinas and Patterson [455] have
devised a finite test for unique decodability, which involves forming sets
of possible suffixes to the codewords and eliminating them systematically.
The test is described more fully in Problem 5.5.27. The fact that the last
code in Table 5.1 is instantaneous is obvious since no codeword is a prefix
of any other.

5.2 KRAFT INEQUALITY

We wish to construct instantaneous codes of minimum expected length to
describe a given source. It is clear that we cannot assign short codewords
to all source symbols and still be prefix-free. The set of codeword lengths
possible for instantaneous codes is limited by the following inequality.

Theorem 5.2.1 (Kraft inequality) For any instantaneous code (prefix
code) over an alphabet of size D, the codeword lengths 11,1, . .., 1, must
satisfy the inequality

Y bz (5.6)

Conversely, given a set of codeword lengths that satisfy this inequality,
there exists an instantaneous code with these word lengths.

Proof: Consider a D-ary tree in which each node has D children. Let the
branches of the tree represent the symbols of the codeword. For example,
the D branches arising from the root node represent the D possible values
of the first symbol of the codeword. Then each codeword is represented
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Root

FIGURE 5.2. Code tree for the Kraft inequality.

by a leaf on the tree. The path from the root traces out the symbols of the
codeword. A binary example of such a tree is shown in Figure 5.2. The
prefix condition on the codewords implies that no codeword is an ancestor
of any other codeword on the tree. Hence, each codeword eliminates its
descendants as possible codewords.

Let /max be the length of the longest codeword of the set of codewords.
Consider all nodes of the tree at level /,,x. Some of them are codewords,
some are descendants of codewords, and some are neither. A codeword
at level /; has D'max—li descendants at level .. Each of these descendant
sets must be disjoint. Also, the total number of nodes in these sets must
be less than or equal to D'max | Hence, summing over all the codewords,
we have

> pmeli < pleas (5.7)
or
o<1, (5.8)
which is the Kraft inequality.

Conversely, given any set of codeword lengths /1, [», ..., [, that sat-
isfy the Kraft inequality, we can always construct a tree like the one in
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Figure 5.2. Label the first node (lexicographically) of depth /; as code-
word 1, and remove its descendants from the tree. Then label the first
remaining node of depth /; as codeword 2, and so on. Proceeding this
way, we construct a prefix code with the specified /1, l», ..., [,. O

We now show that an infinite prefix code also satisfies the Kraft inequal-
ity.

Theorem 5.2.2 (Extended Kraft Inequality)  For any countably infi-
nite set of codewords that form a prefix code, the codeword lengths satisfy
the extended Kraft inequality,

o0
Z D7l <1, (5.9)
i=1

Conversely, given any [y, 1o, ... satisfying the extended Kraft inequality,
we can construct a prefix code with these codeword lengths.

Proof: Let the D-ary alphabet be {0, 1,..., D — 1}. Consider the ith
codeword yiys>---yy,. Let 0.y;ys---y; be the real number given by the
D-ary expansion

li
Oyiyz2 -y, =Y yiD7. (5.10)
j=1

This codeword corresponds to the interval

1
|:0‘y1y2"°yli’0'y1y2"'yli +E> ) (5.11)

the set of all real numbers whose D-ary expansion begins with
0.y1y2 - - y;;. This is a subinterval of the unit interval [0, 1]. By the prefix
condition, these intervals are disjoint. Hence, the sum of their lengths has
to be less than or equal to 1. This proves that

(o]
ZD—lf <1. (5.12)
i=l1

Just as in the finite case, we can reverse the proof to construct the
code for a given /1, [», ... that satisfies the Kraft inequality. First, reorder
the indexing so that /[y </, <.... Then simply assign the intervals in
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order from the low end of the unit interval. For example, if we wish to

construct a binary code with [y = 1,[, =2,..., we assign the intervals
[0, %), [%, }1), ... to the symbols, with corresponding codewords 0, 10,
O

In Section 5.5 we show that the lengths of codewords for a uniquely
decodable code also satisfy the Kraft inequality. Before we do that, we
consider the problem of finding the shortest instantaneous code.

5.3 OPTIMAL CODES

In Section 5.2 we proved that any codeword set that satisfies the prefix
condition has to satisfy the Kraft inequality and that the Kraft inequality
is a sufficient condition for the existence of a codeword set with the
specified set of codeword lengths. We now consider the problem of finding
the prefix code with the minimum expected length. From the results of
Section 5.2, this is equivalent to finding the set of lengths [1, /5, ..., 1,
satisfying the Kraft inequality and whose expected length L = ) p;l; is
less than the expected length of any other prefix code. This is a standard
optimization problem: Minimize

L=Y"pi (5.13)
over all integers /1, [», ..., [, satisfying
Y bz (5.14)

A simple analysis by calculus suggests the form of the minimizing /7.
We neglect the integer constraint on /; and assume equality in the con-
straint. Hence, we can write the constrained minimization using Lagrange
multipliers as the minimization of

J=3"pili+x (Z D‘li> . (5.15)

Differentiating with respect to /;, we obtain

aJ _I
3 =pi—AD log, D. (5.16)

Setting the derivative to 0, we obtain

—li _ Di
Alog, D’

(5.17)



5.3 OPTIMAL CODES 111

Substituting this in the constraint to find A, we find A = 1/log, D, and
hence

pi=D7", (5.18)
yielding optimal code lengths,
I¥ = —logp pi- (5.19)

This noninteger choice of codeword lengths yields expected codeword
length

L* =) pilf == pilogy pi = Hp(X). (5.20)

But since the /; must be integers, we will not always be able to set
the codeword lengths as in (5.19). Instead, we should choose a set of
codeword lengths /; “close” to the optimal set. Rather than demonstrate
by calculus that [ = —log, p; is a global minimum, we verify optimality
directly in the proof of the following theorem.

Theorem 5.3.1 The expected length L of any instantaneous D-ary code
for a random variable X is greater than or equal to the entropy Hp(X);
that is,

L = Hp(X), (5.21)
with equality if and only if D™ = p;.

Proof: We can write the difference between the expected length and the
entropy as

1
L—Hp(X)=) pili— ) pilogy . (5.22)
== pilog, D7 +>" pilog,, pi. (5.23)
Letting r; = D7li/ > D7' and ¢ = Y D7'i, we obtain
Di
L—H= i 1 — —1 5.24
> oz, 2~ gy 52

1
= D(p||r) + log, . (5.25)

>0 (5.26)
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by the nonnegativity of relative entropy and the fact (Kraft inequality)
that ¢ < 1. Hence, L > H with equality if and only if p; = Dl (i.e., if
and only if —log,, p; is an integer for all ). 0

Definition A probability distribution is called D-adic if each of the
probabilities is equal to D" for some n. Thus, we have equality in the
theorem if and only if the distribution of X is D-adic.

The preceding proof also indicates a procedure for finding an optimal
code: Find the D-adic distribution that is closest (in the relative entropy
sense) to the distribution of X. This distribution provides the set of code-
word lengths. Construct the code by choosing the first available node as
in the proof of the Kraft inequality. We then have an optimal code for X.

However, this procedure is not easy, since the search for the closest
D-adic distribution is not obvious. In the next section we give a good
suboptimal procedure (Shannon—Fano coding). In Section 5.6 we describe
a simple procedure (Huffman coding) for actually finding the optimal
code.

5.4 BOUNDS ON THE OPTIMAL CODE LENGTH

We now demonstrate a code that achieves an expected description length
L within 1 bit of the lower bound; that is,

HX)<L < HX)+1. (5.27)

Recall the setup of Section 5.3: We wish to minimize L = ) p;l; sub-
ject to the constraint that [y, [, ..., [, are integers and ) D7l < 1. We
proved that the optimal codeword lengths can be found by finding the
D-adic probability distribution closest to the distribution of X in relative
entropy, that is, by finding the D-adicr (r; = D7/ j D~') minimizing

L — Hp = D(pl|r) — log (Z D‘li) > 0. (5.28)

The choice of word lengths [; =log, i yields L = H. Since log, %
may not equal an integer, we round it up to give integer word-length
assignments,

1
[ = lrlogD ——‘ , (5.29)
i

]
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where [x] is the smallest integer > x. These lengths satisfy the Kraft
inequality since

S p MR <3 DR =Y =1 (5.30)

This choice of codeword lengths satisfies

1 1
logp, — <1I; <logp, —+ 1. (5.31)

i pi

Multiplying by p; and summing over i, we obtain
Hp(X) <L < Hp(X)+1. (5.32)

Since an optimal code can only be better than this code, we have the
following theorem.

Theorem5.4.1  Let If, 15, ..., 1} be optimal codeword lengths for a
source distribution p and a D-ary alphabet, and let L* be the associated
expected length of an optimal code (L* =) p;l¥). Then

Proof: Let/; = [log, i}. Then /; satisfies the Kraft inequality and from
(5.32) we have

Hp(X) < L= pili < Hp(X) + 1. (5.34)

But since L*, the expected length of the optimal code, is less than L =
> pili, and since L* > Hp from Theorem 5.3.1, we have the
theorem. O

In Theorem 5.4.1 there is an overhead that is at most 1 bit, due to the
fact that log pi is not always an integer. We can reduce the overhead per
symbol by spfeading it out over many symbols. With this in mind, let us
consider a system in which we send a sequence of n symbols from X.
The symbols are assumed to be drawn i.i.d. according to p(x). We can
consider these n symbols to be a supersymbol from the alphabet X".

Define L, to be the expected codeword length per input symbol, that
is, if I(xy, x2, ..., x,) is the length of the binary codeword associated
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with (xy, x2, ..., x,) (for the rest of this section, we assume that D = 2,
for simplicity), then

1 1
L,=- Zp(xl,xz,---,xn)l(xl,xz,---,Xn) = —FEl(X1, X2, ..., Xp).
n n

(5.35)
We can now apply the bounds derived above to the code:

H(X,X5,...,X,) <El(Xy,X2,...., X)) <HX1,Xo,...,X,) + 1.
(5.36)
Since X, X2,..., X, are iid, H(X;, X2, ...,X,) =Y HX;) =
nH (X). Dividing (5.36) by n, we obtain

H(X)<L,<HX)+ % (5.37)

Hence, by using large block lengths we can achieve an expected code-
length per symbol arbitrarily close to the entropy.

We can use the same argument for a sequence of symbols from a
stochastic process that is not necessarily i.i.d. In this case, we still have
the bound

H(X1, X2,...,Xp) < El(X1,X2,...,X,) < HX1, X2, ..., X)) + 1.
(5.38)
Dividing by n again and defining L, to be the expected description length
per symbol, we obtain

H(X, X5,..., X HX, X5,..., X 1

(X1, X2 H)SLn< (X1, X2 n)+_' (5.39)
n n n

If the stochastic process is stationary, then H (X, X»,..., X,)/n —

H(X), and the expected description length tends to the entropy rate as
n — o00. Thus, we have the following theorem:

Theorem 5.4.2 The minimum expected codeword length per symbol sat-

isfies
H(X, Xo,..., X H(X, Xp,..., X 1
(X1, X» n)SL:< (X1, X» n)+_. (5.40)
n n n
Moreover, if X1, X2, ..., X, is a stationary stochastic process,
L* — H(X), (5.41)

where H(X) is the entropy rate of the process.
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This theorem provides another justification for the definition of entropy
rate—it is the expected number of bits per symbol required to describe
the process.

Finally, we ask what happens to the expected description length if the
code is designed for the wrong distribution. For example, the wrong dis-
tribution may be the best estimate that we can make of the unknown true

distribution. We consider the Shannon code assignment /(x) = (log ﬁ—‘

designed for the probability mass function g(x). Suppose that the true
probability mass function is p(x). Thus, we will not achieve expected
length L ~ H(p) = —>_ p(x)log p(x). We now show that the increase
in expected description length due to the incorrect distribution is the rel-
ative entropy D(p||q). Thus, D(p||q) has a concrete interpretation as the
increase in descriptive complexity due to incorrect information.

Theorem 5.4.3 (Wrong code) The expected length under p(x) of the

code assignment [(x) = lrlog L—‘ satisfies

q(x)
H(p) + D(pllg) = Epl(X) < H(p) + D(pllg) + 1. (5.42)
Proof: The expected codelength is
El(X) = Z p(x) ’710g ﬁw (5.43)
<Ype (102 o5+ 1) (5.44)
p(x) 1
= 1 5.45
Zp()g()(x)+ (5.45)
p( ) 1
= Zp(x) log + Zp(x) log ) +1 (5.46)
= D(pllg) + H(p) + L. (5.47)
The lower bound can be derived similarly. O

Thus, believing that the distribution is ¢ (x) when the true distribution
is p(x) incurs a penalty of D(p||g) in the average description length.

5.5 KRAFT INEQUALITY FOR UNIQUELY DECODABLE CODES

We have proved that any instantaneous code must satisfy the Kraft inequal-
ity. The class of uniquely decodable codes is larger than the class of
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instantaneous codes, so one expects to achieve a lower expected codeword
length if L is minimized over all uniquely decodable codes. In this section
we prove that the class of uniquely decodable codes does not offer any
further possibilities for the set of codeword lengths than do instantaneous
codes. We now give Karush’s elegant proof of the following theorem.

Theorem 5.5.1 (McMillan) The codeword lengths of any uniquely
decodable D-ary code must satisfy the Kraft inequality

Y bzl (5.48)

Conversely, given a set of codeword lengths that satisfy this inequality, it
is possible to construct a uniquely decodable code with these codeword
lengths.

Proof: Consider C*, the kth extension of the code (i.e., the code formed
by the concatenation of k repetitions of the given uniquely decodable code
(). By the definition of unique decodability, the kth extension of the code
is nonsingular. Since there are only D" different D-ary strings of length n,
unique decodability implies that the number of code sequences of length
n in the kth extension of the code must be no greater than D". We now
use this observation to prove the Kraft inequality.

Let the codeword lengths of the symbols x € X be denoted by /(x).
For the extension code, the length of the code sequence is

k
1y, X, o) = Y 1(x)). (5.49)
i=1
The inequality that we wish to prove is
Y D <1 (5.50)
xeX

The trick is to consider the kth power of this quantity. Thus,

k
(Z D—l<x>> _ Z Z Z DI p=itd) . p=i) (557

xeX xX1€X xpeX xpeX
— Z Dl p=lx) | p=lu) (5.52)
X1.X2,...,xp Xk
= Y ph, (5.53)
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by (5.49). We now gather the terms by word lengths to obtain

klmax
3" p7h =N amyp, (5.54)
xkexk m=1

where [ i1s the maximum codeword length and a(m) is the number
of source sequences x* mapping into codewords of length m. But the
code is uniquely decodable, so there is at most one sequence mapping
into each code m-sequence and there are at most D" code m-sequences.
Thus, a(m) < D™, and we have

k klmax
(Z D—“x)) = Z a(m)D™" (5.55)

xeX m=1

klmax
<Y D"D™" (5.56)

m=1
= klmax (5.57)

and hence
Y D7 = (k)" (5.58)
J

Since this inequality is true for all &, it is true in the limit as k — oo.
Since (klmax) /¥ — 1, we have

Z D7l <1, (5.59)
J

which is the Kraft inequality.

Conversely, given any set of [y, 5, ..., [, satisfying the Kraft inequal-
ity, we can construct an instantaneous code as proved in Section 5.2. Since
every instantaneous code is uniquely decodable, we have also constructed
a uniquely decodable code. O

Corollary A uniquely decodable code for an infinite source alphabet X
also satisfies the Kraft inequality.

Proof: The point at which the preceding proof breaks down for infinite
|X] is at (5.58), since for an infinite code [, is infinite. But there is a
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simple fix to the proof. Any subset of a uniquely decodable code is also
uniquely decodable; thus, any finite subset of the infinite set of codewords
satisfies the Kraft inequality. Hence,

00 N

Y D7l = lim D7l < 1. (5.60)
Given a set of word lengths /1, [, . .. that satisfy the Kraft inequality, we
can construct an instantaneous code as in Section 5.4. Since instantaneous
codes are uniquely decodable, we have constructed a uniquely decodable
code with an infinite number of codewords. So the McMillan theorem
also applies to infinite alphabets. U

The theorem implies a rather surprising result—that the class of
uniquely decodable codes does not offer any further choices for the set
of codeword lengths than the class of prefix codes. The set of achievable
codeword lengths is the same for uniquely decodable and instantaneous
codes. Hence, the bounds derived on the optimal codeword lengths con-
tinue to hold even when we expand the class of allowed codes to the class
of all uniquely decodable codes.

5.6 HUFFMAN CODES

An optimal (shortest expected length) prefix code for a given distribution
can be constructed by a simple algorithm discovered by Huffman [283].
We will prove that any other code for the same alphabet cannot have a
lower expected length than the code constructed by the algorithm. Before
we give any formal proofs, let us introduce Huffman codes with some
examples.

Example 5.6.1 Consider a random variable X taking values in the set
X ={1,2, 3,4, 5} with probabilities 0.25, 0.25, 0.2, 0.15, 0.15, respec-
tively. We expect the optimal binary code for X to have the longest
codewords assigned to the symbols 4 and 5. These two lengths must be
equal, since otherwise we can delete a bit from the longer codeword and
still have a prefix code, but with a shorter expected length. In general,
we can construct a code in which the two longest codewords differ only
in the last bit. For this code, we can combine the symbols 4 and 5 into
a single source symbol, with a probability assignment 0.30. Proceeding
this way, combining the two least likely symbols into one symbol until
we are finally left with only one symbol, and then assigning codewords
to the symbols, we obtain the following table:
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Codeword

Length Codeword X Probability

2 01 1 0.25~_ /0.3 0.45 0.5571
2 10 2 0.25 0.25 0.3%0.45
2 11 3 0.2 0.257 ™0.25

3 000 4 0.15// 0.2

3 001 5 0.15

This code has average length 2.3 bits.

Example 5.6.2 Consider a ternary code for the same random variable.
Now we combine the three least likely symbols into one supersymbol and
obtain the following table:

Codeword X Probability

1 1 0.25 0.5 1
2 2 0.25 0.255 ;

00 3 0.2 0.25

01 4 0.15

02 5 0.15

This code has an average length of 1.5 ternary digits.

Example 5.6.3 1f D > 3, we may not have a sufficient number of sym-
bols so that we can combine them D at a time. In such a case, we add
dummy symbols to the end of the set of symbols. The dummy symbols
have probability 0 and are inserted to fill the tree. Since at each stage of
the reduction, the number of symbols is reduced by D — 1, we want the
total number of symbols to be 1+ k(D — 1), where k is the number of
merges. Hence, we add enough dummy symbols so that the total number
of symbols is of this form. For example:

Codeword X Probability

1 1 0.25——0.25 0.5 1.0
2 2 0.25——0.25 0.25 5 ;

01 3 0.2 0.2 0.25

02 4 0.1 0.2

000 5 0.1 0.1

001 6 0.1

002 Dummy 0.0

This code has an average length of 1.7 ternary digits.
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A proof of the optimality of Huffman coding is given in Section 5.8.

5.7 SOME COMMENTS ON HUFFMAN CODES

1. Equivalence of source coding and 20 questions. We now digress

to show the equivalence of coding and the game “20 questions”.
Suppose that we wish to find the most efficient series of yes—no
questions to determine an object from a class of objects. Assuming
that we know the probability distribution on the objects, can we find
the most efficient sequence of questions? (To determine an object,
we need to ensure that the responses to the sequence of questions
uniquely identifies the object from the set of possible objects; it is
not necessary that the last question have a “yes” answer.)

We first show that a sequence of questions is equivalent to a code
for the object. Any question depends only on the answers to the
questions before it. Since the sequence of answers uniquely deter-
mines the object, each object has a different sequence of answers,
and if we represent the yes—no answers by 0’s and 1’s, we have a
binary code for the set of objects. The average length of this code
is the average number of questions for the questioning scheme.

Also, from a binary code for the set of objects, we can find a
sequence of questions that correspond to the code, with the average
number of questions equal to the expected codeword length of the
code. The first question in this scheme becomes: Is the first bit equal
to 1 in the object’s codeword?

Since the Huffman code is the best source code for a random
variable, the optimal series of questions is that determined by the
Huffman code. In Example 5.6.1 the optimal first question is: Is
X equal to 2 or 3?7 The answer to this determines the first bit of
the Huffman code. Assuming that the answer to the first question
is “yes,” the next question should be “Is X equal to 3?”, which
determines the second bit. However, we need not wait for the answer
to the first question to ask the second. We can ask as our second
question “Is X equal to 1 or 377, determining the second bit of the
Huffman code independent of the first.

The expected number of questions EQ in this optimal scheme
satisfies

HX)<EQ < HX) + 1. (5.61)
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2. Huffman coding for weighted codewords. Huffman’s algorithm for
minimizing ) p;l; can be applied to any set of numbers p; > 0,
regardless of ) p;. In this case, the Huffman code minimizes the
sum of weighted code lengths ) w;l; rather than the average code
length.

Example 5.7.1 We perform the weighted minimization using the
same algorithm.

X Codeword Weights

00 5 8 10718
01 5 5 8

10 4 5

11 4

In this case the code minimizes the weighted sum of the codeword
lengths, and the minimum weighted sum is 36.

BN —

3. Huffman coding and “slice” questions (Alphabetic codes). We have
described the equivalence of source coding with the game of 20
questions. The optimal sequence of questions corresponds to an
optimal source code for the random variable. However, Huffman
codes ask arbitrary questions of the form “Is X € A?” for any set
AC{l,2,...,m}.

Now we consider the game “20 questions” with a restricted set
of questions. Specifically, we assume that the elements of X =
{1,2,...,m} are ordered so that p; > p, > --- > p,, and that the
only questions allowed are of the form “Is X > a?” for some a. The
Huffman code constructed by the Huffman algorithm may not cor-
respond to slices (sets of the form {x : x < a}). If we take the code-
word lengths ([y <, <--- <l,, by Lemma 5.8.1) derived from the
Huffman code and use them to assign the symbols to the code tree
by taking the first available node at the corresponding level, we
will construct another optimal code. However, unlike the Huffman
code itself, this code is a slice code, since each question (each bit
of the code) splits the tree into sets of the form {x : x > a} and
{x:x <al.

We illustrate this with an example.

Example 5.7.2 Consider the first example of Section 5.6. The
code that was constructed by the Huffman coding procedure is not a
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slice code. But using the codeword lengths from the Huffman pro-
cedure, namely, {2, 2, 2, 3, 3}, and assigning the symbols to the first
available node on the tree, we obtain the following code for this
random variable:

1—-00, 2—-01, 3—10, 4—110, 5— 111

It can be verified that this code is a slice code, codes known as
alphabetic codes because the codewords are ordered alphabetically.

Huffman codes and Shannon codes. Using codeword lengths of
[log %1 (which is called Shannon coding) may be much worse than
the oﬁtimal code for some particular symbol. For example, con-
sider two symbols, one of which occurs with probability 0.9999 and
the other with probability 0.0001. Then using codeword lengths of
[log i} gives codeword lengths of 1 bit and 14 bits, respectively.
The optimal codeword length is obviously 1 bit for both symbols.
Hence, the codeword for the infrequent symbol is much longer in
the Shannon code than in the optimal code.

Is it true that the codeword lengths for an optimal code are always
less than [log %1 ? The following example illustrates that this is not
always true.

Example 5.7.3 Consider a random variable X with a distribution
(3,1, 1. %). The Huffman coding procedure results in codeword
lengths of (2,2,2,2) or (1, 2,3, 3) [depending on where one puts
the merged probabilities, as the reader can verify (Problem 5.5.12)].
Both these codes achieve the same expected codeword length. In the
second code, the third symbol has length 3, which is greater than
[log #1. Thus, the codeword length for a Shannon code could be
less than the codeword length of the corresponding symbol of an
optimal (Huffman) code. This example also illustrates the fact that
the set of codeword lengths for an optimal code is not unique (there
may be more than one set of lengths with the same expected value).

Although either the Shannon code or the Huffman code can be
shorter for individual symbols, the Huffman code is shorter on aver-
age. Also, the Shannon code and the Huffman code differ by less
than 1 bit in expected codelength (since both lie between H and
H+1)
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5. Fano codes. Fano proposed a suboptimal procedure for constructing
a source code, which is similar to the idea of slice codes. In his
method we first order the probabilities in decreasing order. Then we
choose k such that |>"5_| p; — Y7, .| p;| is minimized. This point
divides the source symbols into two sets of almost equal probability.
Assign 0 for the first bit of the upper set and 1 for the lower set.
Repeat this process for each subset. By this recursive procedure, we

obtain a code for each source symbol. This scheme, although not
optimal in general, achieves L(C) < H(X) + 2. (See [282].)

5.8 OPTIMALITY OF HUFFMAN CODES

We prove by induction that the binary Huffman code is optimal. It is
important to remember that there are many optimal codes: inverting all
the bits or exchanging two codewords of the same length will give another
optimal code. The Huffman procedure constructs one such optimal code.
To prove the optimality of Huffman codes, we first prove some properties
of a particular optimal code.

Without loss of generality, we will assume that the probability masses
are ordered, so that p; > py > --- > p,,. Recall that a code is optimal if
> pil; is minimal.

Lemma 5.8.1 For any distribution, there exists an optimal instantaneous
code (with minimum expected length) that satisfies the following proper-
ties:

1. The lengths are ordered inversely with the probabilities (i.e., if p; >
Pk then [ < Ii).
2. The two longest codewords have the same length.

3. Two of the longest codewords differ only in the last bit and corre-
spond to the two least likely symbols.

Proof: The proof amounts to swapping, trimming, and rearranging, as
shown in Figure 5.3. Consider an optimal code C,;:

e If pj > pi, thenl; < I;. Here we swap codewords.
Consider C,,, with the codewords j and k of C,, interchanged. Then

L(C,) — L(Cy) = Y_ pili =Y pil; (5.62)
= pils + pilj — pjlj — prlk (5.63)
=(pj — p)x — 1}). (5.64)
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(o) (d)

FIGURE 5.3. Properties of optimal codes. We assume that p; > p» > --- > p,,. A possible
instantaneous code is given in (a). By trimming branches without siblings, we improve the
code to (b). We now rearrange the tree as shown in (c), so that the word lengths are ordered
by increasing length from top to bottom. Finally, we swap probability assignments to improve
the expected depth of the tree, as shown in (d). Every optimal code can be rearranged and
swapped into canonical form as in (d), where [} <[, <--- <[, and [, = [,,, and the last
two codewords differ only in the last bit.

But p; — pr > 0, and since C,, is optimal, L(C, ) — L(C,) > 0.
Hence, we must have [ > [;. Thus, C,, itself satisfies property 1.

The two longest codewords are of the same length. Here we trim the
codewords. If the two longest codewords are not of the same length,
one can delete the last bit of the longer one, preserving the prefix
property and achieving lower expected codeword length. Hence, the
two longest codewords must have the same length. By property 1, the
longest codewords must belong to the least probable source symbols.
The two longest codewords differ only in the last bit and correspond
to the two least likely symbols. Not all optimal codes satisfy this
property, but by rearranging, we can find an optimal code that does.
If there is a maximal-length codeword without a sibling, we can delete
the last bit of the codeword and still satisfy the prefix property. This
reduces the average codeword length and contradicts the optimality



5.8 OPTIMALITY OF HUFFMAN CODES 125

of the code. Hence, every maximal-length codeword in any optimal
code has a sibling. Now we can exchange the longest codewords so
that the two lowest-probability source symbols are associated with
two siblings on the tree. This does not change the expected length,
> pil;. Thus, the codewords for the two lowest-probability source
symbols have maximal length and agree in all but the last bit.

Summarizing, we have shown that if p; > p, > --- > p,,, there exists
an optimal code with [} <[, <--- <[,_1 = [,, and codewords C (x;,,—1)
and C(x,,) that differ only in the last bit. ]

Thus, we have shown that there exists an optimal code satisfy-
ing the properties of the lemma. We call such codes canonical codes.
For any probability mass function for an alphabet of size m, p =
(p1, p2, .-, pm) With p; > pp > --- > p,,, we define the Huffman reduc-
tion p' = (p1, p2,---» Pm—2, Pm—1 + pm) Over an alphabet of size m — 1
(Figure 5.4). Let C*_,(p) be an optimal code for p’, and let C;; (p) be
the canonical optimal code for p.

The proof of optimality will follow from two constructions: First, we
expand an optimal code for p’ to construct a code for p, and then we

FIGURE 5.4. Induction step for Huffman coding. Let p; > p» > --- > ps. A canonical
optimal code is illustrated in (a). Combining the two lowest probabilities, we obtain the
code in (b). Rearranging the probabilities in decreasing order, we obtain the canonical code
in (c) for m — 1 symbols.
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condense an optimal canonical code for p to construct a code for the
Huffman reduction p’. Comparing the average codeword lengths for the
two codes establishes that the optimal code for p can be obtained by
extending the optimal code for p’.

From the optimal code for p’, we construct an extension code for m
elements as follows: Take the codeword in C; _, corresponding to weight
Pm—1+ pm and extend it by adding a 0 to form a codeword for symbol
m — 1 and by adding 1 to form a codeword for symbol m. The code
construction is illustrated as follows:

Cr 1 () Cin(p)
Pi w/l li w) = w’l ll = 1/1
)2 wé lé wy = w’2 lz = lé
Pm—-2 w,/n_z l,/n_z Wp—2 = w,/n 2 lm—2 =1
Pm—1+1 Pm w;n—l l,/n_l Wnm—1 = w;n 10 Iy = l/ 1 +1
Wy =w, 1 lm—lml-i-l
(5.65)
Calculation of the average length ), p!l] shows that
L(p) =L*(®)+ pm—1+ Pm. (5.66)

Similarly, from the canonical code for p, we construct a code for p’ by
merging the codewords for the two lowest-probability symbols m — 1 and
m with probabilities p,,—; and p,,, which are siblings by the properties
of the canonical code. The new code for p’ has average length

m—2

L) = pili + pm-1Un1 — 1)+ pulln — 1) (5.67)
i=1

= pili = pm-1 — Pm (5.68)

= L*(p) = pm—1 = Pm- (5.69)

Adding (5.66) and (5.69) together, we obtain

L)+ L(p) =L*@p") + L*(p) (5.70)

or

(L") — L*(P")) + (L(p) — L*(p)) =0. (5.71)
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Now examine the two terms in (5.71). By assumption, since L*(p’) is the
optimal length for p’, we have L(p") — L*(p’) > 0. Similarly, the length
of the extension of the optimal code for p’ has to have an average length
at least as large as the optimal code for p [i.e., L(p) — L*(p) > 0]. But
the sum of two nonnegative terms can only be O if both of them are O,
which implies that L(p) = L*(p) (i.e., the extension of the optimal code
for p’ is optimal for p).

Consequently, if we start with an optimal code for p’ with m — 1 sym-
bols and construct a code for m symbols by extending the codeword
corresponding to p;;—1 + pm, the new code is also optimal. Starting with
a code for two elements, in which case the optimal code is obvious, we
can by induction extend this result to prove the following theorem.

Theorem 5.8.1  Huffiman coding is optimal; that is, if C* is a Huffman
code and C' is any other uniquely decodable code, L(C*) < L(C").

Although we have proved the theorem for a binary alphabet, the proof
can be extended to establishing optimality of the Huffman coding algo-
rithm for a D-ary alphabet as well. Incidentally, we should remark that
Huffman coding is a “greedy” algorithm in that it coalesces the two least
likely symbols at each stage. The proof above shows that this local opti-
mality ensures global optimality of the final code.

5.9 SHANNON-FANO-ELIAS CODING

In Section 5.4 we showed that the codeword lengths /(x) = {log ﬁ—‘ sat-

isfy the Kraft inequality and can therefore be used to construct a uniquely
decodable code for the source. In this section we describe a simple con-
structive procedure that uses the cumulative distribution function to allot
codewords.

Without loss of generality, we can take X = {1, 2, ..., m}. Assume that
p(x) > 0 for all x. The cumulative distribution function F(x) is defined
as

F(x)=Y_ pla). (5.72)

This function is illustrated in Figure 5.5. Consider the modified cumulative
distribution function

— 1
Fo =) p@+5p0), (5.73)

a<x
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FIGURE 5.5. Cumulative distribution function and Shannon—Fano—Elias coding.

where F(x) denotes the sum of the probabilities of all symbols less than
x plus half the probability of the symbol x. Since the random variable is
discrete, the cumulative distribution function consists of steps of size p(x).
The value of the function F(x) is the midpoint of the step corresponding
to x.

Since all the probabilities are positive, F(a) # F (b) if a # b, and hence
we can determine x if we know F(x). Merely look at the graph of the
cumulative distribution function and find the corresponding x. Thus, the
value of F(x) can be used as a code for x.

But, in general, F(x) is a real number expressible only by an infinite
number of bits. So it is not efficient to use the exact value of F(x) as a
code for x. If we use an approximate value, what is the required accuracy?

Assume that we truncate F(x) to [(x) bits (denoted by Lf(x)Jl(x)).
Thus, we use the first /(x) bits of F(x) as a code for x. By definition of
rounding off, we have

Fx)— [Fx) i) < Il (5.74)
I () = [log 515 | + 1, then
1 _
W<¥=F(x)—F(x—l), (5.75)

and therefore | F(x)] 1(x) lies within the step corresponding to x. Thus,
[(x) bits suffice to describe x.
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In addition to requiring that the codeword identify the corresponding
symbol, we also require the set of codewords to be prefix-free. To check
whether the code is prefix-free, we consider each codeword z1z, - - - z; to

represent not a point but the interval [0.2122 coz21,0z120 7 + % . The

code is prefix-free if and only if the intervals corresponding to codewords
are disjoint.

We now verify that the code above is prefix-free. The interval corre-
sponding to any codeword has length 27/®_ which is less than half the
height of the step corresponding to x by (5.75). The lower end of the
interval is in the lower half of the step. Thus, the upper end of the inter-
val lies below the top of the step, and the interval corresponding to any
codeword lies entirely within the step corresponding to that symbol in the
cumulative distribution function. Therefore, the intervals corresponding to
different codewords are disjoint and the code is prefix-free. Note that this
procedure does not require the symbols to be ordered in terms of proba-
bility. Another procedure that uses the ordered probabilities is described
in Problem 5.5.28.

Since we use /(x) = {log ﬁ—‘ + 1 bits to represent x, the expected

length of this code is

L=Y p@lx)= Zp(x) qlog e )W + 1) < HX)+2. (5.76)

Thus, this coding scheme achieves an average codeword length that is
within 2 bits of the entropy.

Example 5.9.1 We first consider an example where all the probabilities
are dyadic. We construct the code in the following table:

x p(kx) F(x) F(x) F(x)inBinary [(x)= lrlog L—‘ +1 Codeword

p(x)
1 025 025 0.125 0.001 3 001
2 05 075 05 0.10 2 10
3 0.125 0.875 0.8125 0.1101 4 1101
4 0.125 1.0 09375 0.1111 4 1111

In this case, the average codeword length is 2.75 bits and the entropy
is 1.75 bits. The Huffman code for this case achieves the entropy
bound. Looking at the codewords, it is obvious that there is some inef-
ficiency—for example, the last bit of the last two codewords can be
omitted. But if we remove the last bit from all the codewords, the code
is no longer prefix-free.
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Example 5.9.2 We now give another example for construction of the
Shannon—Fano—Elias code. In this case, since the distribution is not
dyadic, the representation of F(x) in binary may have an infinite number
of bits. We denote 0.01010101 ... by 0.01. We construct the code in the
following table:

x pk) F(x) F(x) F(x)inBinary [(x)= lrlog L—‘ +1 Codeword

p(x)
1 025 025 0.125  0.001 3 001
2 025 05 0375 0011 3 011
3 02 07 06 0.10011 4 1001
4 015 085 0.775 0.1100011 4 1100
5 015 1.0 0925 0.1110110 4 1110

The above code is 1.2 bits longer on the average than the Huffman
code for this source (Example 5.6.1).

The Shannon—Fano-Elias coding procedure can also be applied to
sequences of random variables. The key idea is to use the cumulative
distribution function of the sequence, expressed to the appropriate accu-
racy, as a code for the sequence. Direct application of the method to blocks
of length n would require calculation of the probabilities and cumulative
distribution function for all sequences of length n, a calculation that would
grow exponentially with the block length. But a simple trick ensures that
we can calculate both the probability and the cumulative density func-
tion sequentially as we see each symbol in the block, ensuring that the
calculation grows only linearly with the block length. Direct application
of Shannon—Fano—Elias coding would also need arithmetic whose preci-
sion grows with the block size, which is not practical when we deal with
long blocks. In Chapter 13 we describe arithmetic coding, which is an
extension of the Shannon—Fano—Elias method to sequences of random
variables that encodes using fixed-precision arithmetic with a complexity
that is linear in the length of the sequence. This method is the basis of
many practical compression schemes such as those used in the JPEG and
FAX compression standards.

5.10 COMPETITIVE OPTIMALITY OF THE SHANNON CODE

We have shown that Huffman coding is optimal in that it has minimum
expected length. But what does that say about its performance on any
particular sequence? For example, is it always better than any other code
for all sequences? Obviously not, since there are codes that assign short
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codewords to infrequent source symbols. Such codes will be better than
the Huffman code on those source symbols.

To formalize the question of competitive optimality, consider the fol-
lowing two-person zero-sum game: Two people are given a probability
distribution and are asked to design an instantaneous code for the dis-
tribution. Then a source symbol is drawn from this distribution, and the
payoff to player A is 1 or —1, depending on whether the codeword of
player A is shorter or longer than the codeword of player B. The payoff
is O for ties.

Dealing with Huffman code lengths is difficult, since there is no explicit
expression for the codeword lengths. Instead, we consider the Shannon

code with codeword lengths /(x) = {log —‘ In this case, we have the

1
p)
following theorem.

Theorem 5.10.1  Let [(x) be the codeword lengths associated with the
Shannon code, and let I'(x) be the codeword lengths associated with any
other uniquely decodable code. Then

1
De—1"

For example, the probability that I’(X) is 5 or more bits shorter than
[(X) is less than 11—6.

Proof

Pr(l(X)>=1"(X)+c¢)=Pr qlog

Pr(l(X)=1'"(X)+c) <

(5.77)

1 /
X)W >1'(X) + c) (5.78)

p(
1
<Prl{lo >'(X)4c— 1) (5.79)
< & p(X)
—Pr <p(X) < 2—’/<X>—C+1) (5.80)
= ) W (5.81)
x: p(x)iz—l/(x)—c—H
< Yoo ool (5.82)
x:p(x)§2_l/(x)_c+l
<y 2pmeh (5.83)
X
< 27D (5.84)

since Y 271" < by the Kraft inequality. O
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Hence, no other code can do much better than the Shannon code most
of the time. We now strengthen this result. In a game-theoretic setting,
one would like to ensure that /(x) < I’(x) more often than I(x) > [’(x).
The fact that /(x) < [’(x) + 1 with probability > % does not ensure this.
We now show that even under this stricter criterion, Shannon coding is
optimal. Recall that the probability mass function p(x) is dyadic if log ﬁ
is an integer for all x.

Theorem 5.10.2  For a dyadic probability mass function p(x), let

[(x) = log ﬁ be the word lengths of the binary Shannon code for the

source, and let I'(x) be the lengths of any other uniquely decodable binary
code for the source. Then

Pr(l(X) < I'(X)) > Pr((X) > ['(X)), (5.85)

with equality if and only if I'(x) = l(x) for all x. Thus, the code length
assignment [(x) = log ﬁ is uniquely competitively optimal.

Proof: Define the function sgn(z) as follows:

1 ifr>0
sgn(t)=4 0 ifr=0 (5.86)
—1 ifr <0

Then it is easy to see from Figure 5.6 that

sgn(t) <2'—1 fort=0,%+1,4£2,.... (5.87)

sgn(x)

/ 2t 1
]

FIGURE 5.6. Sgn function and a bound.
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Note that though this inequality is not satisfied for all ¢, it is satisfied
at all integer values of . We can now write

Pr(/(X) <1(X)) =P’ (X) > 1(X)) = ) p)= Y pl)
x:1'(x)<l(x) x:1'(x)>1(x)
(5.88)

= p@)sgn(l(x) = I'(x))
' (5.89)
= E sgn (l(X) — l/(X)) (5.90)

(@) /
= > po) (2070 1)
X

(5.91)
=Y 2 (21<x>—1/(x) _ 1)
(5.92)
=) 271 3 o7 (5.93)
— Z PSR | (5.94)
X
(b)
<1-1 (5.95)
=0, (5.96)

where (a) follows from the bound on sgn(x) and (b) follows from the fact
that //(x) satisfies the Kraft inequality.

We have equality in the above chain only if we have equality in (a)
and (b). We have equality in the bound for sgn(z) only if 7 is O or 1 [i.e.,
[(x) =1'(x) orl(x) =1'(x) + 1]. Equality in (b) implies that /' (x) satisfies
the Kraft inequality with equality. Combining these two facts implies that
I'(x) = I(x) for all x. O

Corollary  For nondyadic probability mass functions,

E sgn(l(X) —I'(X) — 1) <0, (5.97)

where [(x) = [log —‘ and l'(x) is any other code for the source.

1
p(x)
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Proof: Along the same lines as the preceding proof. O

Hence we have shown that Shannon coding /(x) = (log ﬁ—‘ is opti-
mal under a variety of criteria; it is robust with respect to the payoff
function. In particular, for dyadic p, E(I —1') <0, Esgn(l —1') <0, and
by use of inequality (5.87), Ef (I —I’) < 0 for any function f satisfying

f()<2'—1,t=0,%1,%2,....

5.11 GENERATION OF DISCRETE DISTRIBUTIONS FROM FAIR
COINS

In the early sections of this chapter we considered the problem of repre-
senting a random variable by a sequence of bits such that the expected
length of the representation was minimized. It can be argued (Prob-
lem 5.5.29) that the encoded sequence is essentially incompressible and
therefore has an entropy rate close to 1 bit per symbol. Therefore, the bits
of the encoded sequence are essentially fair coin flips.

In this section we take a slight detour from our discussion of source
coding and consider the dual question. How many fair coin flips does
it take to generate a random variable X drawn according to a specified
probability mass function p? We first consider a simple example.

Example 5.11.1 Given a sequence of fair coin tosses (fair bits), suppose
that we wish to generate a random variable X with distribution

a with probability 1,
X = { b with probability ¢, (5.98)
¢ with probability 7.

It is easy to guess the answer. If the first bit is 0, we let X = a. If the
first two bits are 10, we let X = b. If we see 11, we let X = c. It is clear
that X has the desired distribution.

We calculate the average number of fair bits required for generating
the random variable, in this case as %(1) + %(2) + ;{(2) = 1.5 bits. This
is also the entropy of the distribution. Is this unusual? No, as the results
of this section indicate.

The general problem can now be formulated as follows. We are given a
sequence of fair coin tosses Z;, Z», ..., and we wish to generate a discrete
random variable X € X = {1, 2, ..., m} with probability mass function
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b [

FIGURE 5.7. Tree for generation of the distribution ( %, %, %).

p = (p1, p2, ..., pm). Let the random variable 7 denote the number of
coin flips used in the algorithm.
We can describe the algorithm mapping strings of bits Z;, Z,, ..., to

possible outcomes X by a binary tree. The leaves of the tree are marked
by output symbols X, and the path to the leaves is given by the sequence
of bits produced by the fair coin. For example, the tree for the distribution
(%, }t, %) is shown in Figure 5.7.

The tree representing the algorithm must satisfy certain properties:

1. The tree should be complete (i.e., every node is either a leaf or has
two descendants in the tree). The tree may be infinite, as we will
see in some examples.

2. The probability of a leaf at depth k is 27%. Many leaves may be
labeled with the same output symbol—the total probability of all
these leaves should equal the desired probability of the output sym-
bol.

3. The expected number of fair bits ET required to generate X is equal
to the expected depth of this tree.

There are many possible algorithms that generate the same output dis-
tribution. For example, the mapping 00 — a,01 — b, 10 — ¢, 11 - a
also yields the distribution (%, 4—1‘, %). However, this algorithm uses two
fair bits to generate each sample and is therefore not as efficient as the
mapping given earlier, which used only 1.5 bits per sample. This brings
up the question: What is the most efficient algorithm to generate a given
distribution, and how is this related to the entropy of the distribution?

We expect that we need at least as much randomness in the fair bits as
we produce in the output samples. Since entropy is a measure of random-
ness, and each fair bit has an entropy of 1 bit, we expect that the number
of fair bits used will be at least equal to the entropy of the output. This
is proved in the following theorem. We will need a simple lemma about
trees in the proof of the theorem. Let ) denote the set of leaves of a com-
plete tree. Consider a distribution on the leaves such that the probability
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of a leaf at depth k on the tree is 27%. Let ¥ be a random variable with
this distribution. Then we have the following lemma.

Lemma 5.11.1 For any complete tree, consider a probability distribu-
tion on the leaves such that the probability of a leaf at depth k is 2. Then
the expected depth of the tree is equal to the entropy of this distribution.

Proof: The expected depth of the tree

ET =) k(y)2 ™ (5.99)
yey

and the entropy of the distribution of Y is

HY) ==Yy 5 log 51t (5.100)
=) ey k(27 (5.101)
where k(y) denotes the depth of leaf y. Thus,

H(Y)=ET. O (5.102)

Theorem 5.11.1  For any algorithm generating X, the expected number
of fair bits used is greater than the entropy H(X), that is,

ET > H(X). (5.103)

Proof: Any algorithm generating X from fair bits can be represented by
a complete binary tree. Label all the leaves of this tree by distinct symbols
yeY={1,2,...}. If the tree is infinite, the alphabet ) is also infinite.

Now consider the random variable Y defined on the leaves of the tree,
such that for any leaf y at depth k, the probability that ¥ =y is 27,
By Lemma 5.11.1, the expected depth of this tree is equal to the entropy
of V:

ET =H(®Y). (5.104)
Now the random variable X is a function of Y (one or more leaves
map onto an output symbol), and hence by the result of Problem 2.4, we

have

H(X) < H(Y). (5.105)
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Thus, for any algorithm generating the random variable X, we have
H(X)<ET. O (5.106)

The same argument answers the question of optimality for a dyadic dis-
tribution.

Theorem 5.11.2  Let the random variable X have a dyadic distribu-
tion. The optimal algorithm to generate X from fair coin flips requires an
expected number of coin tosses precisely equal to the entropy:

ET = H(X). (5.107)

Proof: Theorem 5.11.1 shows that we need at least H (X) bits to generate
X. For the constructive part, we use the Huffman code tree for X as
the tree to generate the random variable. For a dyadic distribution, the
Huffman code is the same as the Shannon code and achieves the entropy
bound. For any x € A& the depth of the leaf in the code tree corresponding
to x is the length of the corresponding codeword, which is log % Hence,
when this code tree is used to generate X, the leaf will have a probability
o loe 0 = p(x). The expected number of coin flips is the expected depth
of the tree, which is equal to the entropy (because the distribution is
dyadic). Hence, for a dyadic distribution, the optimal generating algorithm
achieves

ET =H(X). O (5.108)

What if the distribution is not dyadic? In this case we cannot use the
same idea, since the code tree for the Huffman code will generate a dyadic
distribution on the leaves, not the distribution with which we started. Since
all the leaves of the tree have probabilities of the form 2~k it follows that
we should split any probability p; that is not of this form into atoms of this
form. We can then allot these atoms to leaves on the tree. For example, if
one of the outcomes x has probability p(x) = ‘1‘, we need only one atom
(leaf of the tree at level 2), but if p(x) = % = % + % + %, we need three
atoms, one each at levels 1, 2, and 3 of the tree.

To minimize the expected depth of the tree, we should use atoms with
as large a probability as possible. So given a probability p;, we find the
largest atom of the form 27k that is less than pi, and allot this atom to
the tree. Then we calculate the remainder and find that largest atom that
will fit in the remainder. Continuing this process, we can split all the
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probabilities into dyadic atoms. This process is equivalent to finding the
binary expansions of the probabilities. Let the binary expansion of the
probability p; be

pi=_p (5.109)
jz1
where pl.(’ ) =27/ or 0. Then the atoms of the expansion are the { pl.(’ )
i=1,2,....,m, j>1}.

Since Zi pi = 1, the sum of the probabilities of these atoms is 1.
We will allot an atom of probability 27/ to a leaf at depth j on the
tree. The depths of the atoms satisfy the Kraft inequality, and hence by
Theorem 5.2.1, we can always construct such a tree with all the atoms at
the right depths. We illustrate this procedure with an example.

Example 5.11.2 Let X have the distribution

a with probability 2,
X = 1 A1
{ b with probability % (5.110)
We find the binary expansions of these probabilities:
2
3= 0.10101010.. ., (5.111)
1
3= 0.01010101 .. 5. (5.112)
Hence, the atoms for the expansion are
2 11 1
SR (L (5.113)
3 2°8 32
! b1 (5.114)
- —> Y Ty Ty e | .
3 4’16 64°

These can be allotted to a tree as shown in Figure 5.8.

This procedure yields a tree that generates the random variable X.
We have argued that this procedure is optimal (gives a tree of minimum
expected depth), but we will not give a formal proof. Instead, we bound
the expected depth of the tree generated by this procedure.
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b .

FIGURE 5.8. Tree to generate a (%, %) distribution.

Theorem 5.11.3  The expected number of fair bits required by the opti-
mal algorithm to generate a random variable X lies between H(X) and
H(X)+2:

H(X) < ET < H(X) +2. (5.115)

Proof: The lower bound on the expected number of coin tosses is proved
in Theorem 5.11.1. For the upper bound, we write down an explicit
expression for the expected number of coin tosses required for the proce-
dure described above. We split all the probabilities (pi, p2, ..., pn) into
dyadic atoms, for example,

pr»@PJPW), (5.116)

and so on. Using these atoms (which form a dyadic distribution), we
construct a tree with leaves corresponding to each of these atoms. The
number of coin tosses required to generate each atom is its depth in the
tree, and therefore the expected number of coin tosses is the expected
depth of the tree, which is equal to the entropy of the dyadic distribution
of the atoms. Hence,

ET = H(®Y), (5.117)

where Y has the distribution, (pfl), pfz), R pél), pf), R p,(,,l), p,(nz), ).

Now since X is a function of Y, we have

H(Y)=H(Y,X)=H(X)+ H(Y|X), (5.118)
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and our objective is to show that H(Y|X) < 2. We now give an algebraic
proof of this result. Expanding the entropy of Y, we have

HY)=-Y" Y p logp” (5.119)
=i X ,0204277 (5.120)

since each of the atoms is either 0 or 2% for some k. Now consider the
term in the expansion corresponding to each i, which we shall call 7;:

=Y j27. (5.121)
j:pl.(j)>0
We can find an n such that 2-=D > pi =27", or

n—1< —logp; <n. (5.122)

Then it follows that pl.(j ) >0 only if j > n, so that we can rewrite (5.121)
as

= > @ j2. (5.123)

jijzn.p?>0

We use the definition of the atom to write p; as

pi= Y 27 (5.124)

j:jzn,pi(j)>0

To prove the upper bound, we first show that 7; < —p; log p; + 2p;.
Consider the difference

(@
T; + pilogpi —2p; < T; — pi(n — 1) = 2p; (5.125)
=T, —(n—1+2)p (5.126)
= > 2 -m+n Y 27
j:jzn,pfj>>0 j:jzn,pfj)>0
(5.127)
= Y (j-n-127 (5.128)

jijzn.p? >0
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=-2"40+ Y  (-n-D27
jijzn+2,p >0

(5.129)

= 07" Z K2~k (5.130)

kik=1,p* 050

©)

< 274 )y koKD (5.131)
k:k>1

= 27" 4 2-(thy (5.132)

=0, (5.133)

where (a) follows from (5.122), (b) follows from a change of variables
for the summation, and (c) follows from increasing the range of the sum-
mation. Hence, we have shown that

Ti < —pilog pi +2p;. (5.134)

Since ET = ), T;, it follows immediately that

ET <= pilogpi+2) pi=HX) +2, (5.135)

completing the proof of the theorem.
O

Thus, an average of H(X) + 2 coin flips suffice to simulate a random
variable X.

SUMMARY
Kraft inequality. Instantaneous codes < Y D7 < 1.
McMillan inequality. Uniquely decodable codes < > D~/ < 1.

Entropy bound on data compression

L= pili = Hp(X). (5.136)
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Shannon code

L= {logD i—‘ (5.137)
Hp(X) <L < Hp(X) + 1. (5.138)
Huffman code
L*= Zgl_ilrllﬂ > pili (5.139)
Hp(X) < L* < Hp(X) + 1. (5.140)

Wrong code. X ~ p(x), [(x) = [mg ﬁw L= p)i@):
H(p)+ D(pllg) < L < H(p) + D(pllg) + 1. (5.141)

Stochastic processes

H(Xl,Xz,..-,Xn) <L, < H(XI’XZ""’Xn) +l (5]42)
n it n

Stationary processes

L, — H(X). (5.143)

Competitive optimality. Shannon code /(x) = [log ﬁ—‘ Versus any
other code I’ (x):

1
c—1 .

Pr(l(X) = I'(X) +¢) < (5.144)

PROBLEMS

5.1 Uniquely decodable and instantaneous codes. Let
L=, p,~li]00 be the expected value of the 100th power
of the word lengths associated with an encoding of the random
variable X. Let L; = min L over all instantaneous codes; and let
L> = min L over all uniquely decodable codes. What inequality
relationship exists between L and L;?
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How many fingers has a Martian? Let

S (Sl,...,Sm)
Pls--s Pm
The S;’s are encoded into strings from a D-symbol output alphabet
in a uniquely decodable manner. If m = 6 and the codeword lengths

are (1,0, ...,lg) = (1,1,2,3,2,3), find a good lower bound on
D. You may wish to explain the title of the problem.

Slackness in the Kraft inequality. An instantaneous code has word
lengths Iy, >, ..., L, which satisfy the strict inequality

m
ZD_li < 1.
i=1

The code alphabet is D= {0,1,2,..., D — 1}. Show that there
exist arbitrarily long sequences of code symbols in D* which cannot
be decoded into sequences of codewords.

Huffman coding. Consider the random variable

X = X1 X2 X3 X4 X5 X6 X7
—\ 049 026 0.12 0.04 0.04 0.03 0.02 }°

(a) Find a binary Huffman code for X.
(b) Find the expected code length for this encoding.
(¢) Find a ternary Huffman code for X.

More Huffman codes. Find the binary Huffman code for the

source with probabilities (5 5 é, L 15) Argue that thls code is

also optimal for the source with probabilities (3 5> 5 5 3)

Bad codes. Which of these codes cannot be Huffman codes for
any probability assignment?

(a) {0, 10,11}

(b) {00, 01, 10, 110}

(¢) {01, 10}

Huffman 20 questions. Consider a set of n objects. Let X; =
1 or O accordingly as the ith object is good or defective. Let
X1, X2, ..., X, be independent with Pr{X; = 1} = p;; and p; >
P2 > > py > % We are asked to determine the set of all defec-
tive objects. Any yes—no question you can think of is admissible.
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(a) Give a good lower bound on the minimum average number of
questions required.

(b) If the longest sequence of questions is required by nature’s
answers to our questions, what (in words) is the last ques-
tion we should ask? What two sets are we distinguishing with
this question? Assume a compact (minimum average length)
sequence of questions.

(¢) Give an upper bound (within one question) on the minimum
average number of questions required.

Simple optimum compression of a Markov source. Consider the

three-state Markov process Uj, U,, ... having transition matrix
Uy

Un-1 S $2 S3

1 1 1

Si 2 7 7

1 1 1

52 7 3 7

5 o 4 4

Thus, the probability that S| follows Sz is equal to zero. Design
three codes Cy, Ca, C3 (one for each state 1,2 and 3, each code
mapping elements of the set of S;’s into sequences of 0’s and 1’s,
such that this Markov process can be sent with maximal compres-
sion by the following scheme:

(a) Note the present symbol X, = i.
(b) Select code C;.

(c) Note the next symbol X,+; = j and send the codeword in C;
corresponding to j.

(d) Repeat for the next symbol. What is the average message length
of the next symbol conditioned on the previous state X, =i
using this coding scheme? What is the unconditional average
number of bits per source symbol? Relate this to the entropy
rate H (U{) of the Markov chain.

Optimal code lengths that require one bit above entropy. The
source coding theorem shows that the optimal code for a random
variable X has an expected length less than H(X) + 1. Give an
example of a random variable for which the expected length of the
optimal code is close to H(X) + 1 [i.e., for any € > 0, construct a
distribution for which the optimal code has L > H(X) + 1 — €].
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Ternary codes that achieve the entropy bound. A random variable
X takes on m values and has entropy H(X). An instantaneous
ternary code is found for this source, with average length

H(X)
L= = H3(X). (5.145)
log, 3
(a) Show that each symbol of X has a probability of the form 3~/
for some i.

(b) Show that m is odd.

Suffix condition. Consider codes that satisfy the suffix condition,
which says that no codeword is a suffix of any other codeword.
Show that a suffix condition code is uniquely decodable, and show
that the minimum average length over all codes satisfying the suffix
condition is the same as the average length of the Huffman code
for that random variable.

Shannon codes and Huffman codes. Consider a random variable
X that takes on four values with probabilities (%, %, zlw ﬁ).

(a) Construct a Huffman code for this random variable.

(b) Show that there exist two different sets of optimal lengths
for the codewords; namely, show that codeword length assign-
ments (1,2, 3,3) and (2, 2, 2,2) are both optimal.

(¢) Conclude that there are optimal codes with codeword lengths
for some symbols that exceed the Shannon code length

[log p(lx)—‘.

Twenty questions. Player A chooses some object in the universe,
and player B attempts to identify the object with a series of yes—no
questions. Suppose that player B is clever enough to use the code
achieving the minimal expected length with respect to player A’s
distribution. We observe that player B requires an average of 38.5
questions to determine the object. Find a rough lower bound to the
number of objects in the universe.

Huffman code. Find the (a) binary and (b) ternary Huffman codes
for the random variable X with probabilities

(1 2 3 4 5 6
P=\ar 2121210210 21)

(c) Calculate L = ) p;l; in each case.
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Huffman codes

(a) Construct a binary Huffman code for the following distribu-
tion on five symbols: p = (0.3,0.3,0.2,0.1, 0.1). What is the
average length of this code?

(b) Construct a probability distribution p’ on five symbols for
which the code that you constructed in part (a) has an average
length (under p’) equal to its entropy H (p’).

Huffman codes. Consider a random variable X that takes six val-

ues {A, B, C, D, E, F} with probabilities 0.5, 0.25, 0.1, 0.05, 0.05,

and 0.05, respectively.

(a) Construct a binary Huffman code for this random variable.
What is its average length?

(b) Construct a quaternary Huffman code for this random variable
[i.e., a code over an alphabet of four symbols (call them a, b, ¢
and d)]. What is the average length of this code?

(¢) One way to construct a binary code for the random variable
is to start with a quaternary code and convert the symbols into
binary using the mapping a — 00, b — 01, ¢ — 10, and d —
11. What is the average length of the binary code for the random
variable above constructed by this process?

(d) For any random variable X, let Ly be the average length of
the binary Huffman code for the random variable, and let Lp
be the average length code constructed by first building a qua-
ternary Huffman code and converting it to binary. Show that

Ly <Lop <Ly+2. (5.146)

(e) The lower bound in the example is tight. Give an example
where the code constructed by converting an optimal quaternary
code is also the optimal binary code.

(f) The upper bound (i.e., Lop < Ly + 2) is not tight. In fact, a
better bound is Lop < Ly + 1. Prove this bound, and provide
an example where this bound is tight.

Data compression. Find an optimal set of binary codeword
lengths [, [, ... (minimizing ) p;/;) for an instantaneous code
for each of the following probability mass functions:

_ (o 9
(@) p= (ﬂ,ﬂ,ﬂaﬂaﬂ)

) p= (3 () (HEH (2 ().
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Classes of codes. Consider the code {0, 01}.
(a) Is it instantaneous?
(b) Is it uniquely decodable?

(¢) Is it nonsingular?

The game of Hi-Lo

(a) A computer generates a number X according to a known proba-
bility mass function p(x), x € {1, 2, ..., 100}. The player asks
a question, “Is X =i?” and is told “Yes,” “You’re too high,”
or “You’re too low.” He continues for a total of six questions.
If he is right (i.e., he receives the answer “Yes”) during this
sequence, he receives a prize of value v(X). How should the
player proceed to maximize his expected winnings?

(b) Part (a) doesn’t have much to do with information theory. Con-
sider the following variation: X ~ p(x), prize = v(x), p(x)
known, as before. But arbitrary yes—no questions are asked
sequentially until X is determined. (“Determined” doesn’t mean
that a “Yes” answer is received.) Questions cost 1 unit each.
How should the player proceed? What is the expected payoff?

(¢) Continuing part (b), what if v(x) is fixed but p(x) can be
chosen by the computer (and then announced to the player)?
The computer wishes to minimize the player’s expected return.
What should p(x) be? What is the expected return to the
player?

Huffman codes with costs. Words such as “Run!”, “Help!”, and
“Fire!” are short, not because they are used frequently, but perhaps
because time is precious in the situations in which these words are
required. Suppose that X = i with probability p;,i =1,2,...,m.
Let /; be the number of binary symbols in the codeword associated
with X =i, and let ¢; denote the cost per letter of the codeword
when X =i. Thus, the average cost C of the description of X is

C =) picil;.
(a) Minimize C over all /1, [, ..., I, such that ) _ 27l < 1. Ignore

any implied integer constraints on /;. Exhibit the minimizing
I7,105, ..., 1y and the associated minimum value C*.

(b) How would you use the Huffman code procedure to minimize
C over all uniquely decodable codes? Let Cyyffman denote this
minimum.
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(¢) Can you show that
m
C* = CHuffman = C* + Z PiCi?
i=1

Conditions for unique decodability. Prove that a code C is
uniquely decodable if (and only if) the extension

Cr(x1,x2, .., 1) = C(x1)C(x2) - - C(xp)

is a one-to-one mapping from X* to D* for every k > 1. (The “only
if” part is obvious.)

Average length of an optimal code. Prove that L(py, ..., pm),
the average codeword length for an optimal D-ary prefix code for
probabilities {p;, ..., pm}, is a continuous function of py, ..., p,.

This is true even though the optimal code changes discontinuously
as the probabilities vary.

Unused code sequences. Let C be a variable-length code that
satisfies the Kraft inequality with an equality but does nor satisfy
the prefix condition.

(a) Prove that some finite sequence of code alphabet symbols is
not the prefix of any sequence of codewords.

(b) (Optional) Prove or disprove: C has infinite decoding delay.

Optimal codes for uniform distributions. Consider a random vari-
able with m equiprobable outcomes. The entropy of this informa-
tion source is obviously log, m bits.

(a) Describe the optimal instantaneous binary code for this source
and compute the average codeword length L,,.

(b) For what values of m does the average codeword length L,,
equal the entropy H = log, m?

(¢) We know that L < H + 1 for any probability distribution. The
redundancy of a variable-length code is defined to be p =
L — H. For what value(s) of m, where 2¥ <m < 2! is the
redundancy of the code maximized? What is the limiting value
of this worst-case redundancy as m — 00?

Optimal codeword lengths. Although the codeword lengths of an
optimal variable-length code are complicated functions of the mes-
sage probabilities {p1, p2, ..., pm}, it can be said that less probable
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symbols are encoded into longer codewords. Suppose that the mes-

sage probabilities are given in decreasing order, p; > pp > --- >

Pm-

(a) Prove that for any binary Huffman code, if the most probable
message symbol has probability p; > %, that symbol must be
assigned a codeword of length 1.

(b) Prove that for any binary Huffman code, if the most probable
message symbol has probability p; < %, that symbol must be
assigned a codeword of length > 2.

Merges. Companies with values Wy, Wy, ..., W, are merged as
follows. The two least valuable companies are merged, thus form-
ing a list of m — 1 companies. The value of the merge is the
sum of the values of the two merged companies. This contin-
ues until one supercompany remains. Let V equal the sum of
the values of the merges. Thus, V represents the total reported
dollar volume of the merges. For example, if W = (3, 3,2, 2),
the merges yield (3,3,2,2) — (4,3,3) — (6,4) — (10) and V =
446+ 10 = 20.

(a) Argue that V is the minimum volume achievable by sequences
of pairwise merges terminating in one supercompany. (Hint:
Compare to Huffman coding.)

(b) Let W =) W, W,- = W;/W, and show that the minimum
merge volume V satisfies

WHW) <V < WH(W) + W. (5.147)

Sardinas—Patterson test for unique decodability. A code is not
uniquely decodable if and only if there exists a finite sequence of
code symbols which can be resolved into sequences of codewords
in two different ways. That is, a situation such as

| A | A, | Ay e An |

must occur where each A; and each B; is a codeword. Note that
By must be a prefix of A; with some resulting “dangling suffix.”
Each dangling suffix must in turn be either a prefix of a codeword
or have another codeword as its prefix, resulting in another dan-
gling suffix. Finally, the last dangling suffix in the sequence must
also be a codeword. Thus, one can set up a test for unique decod-
ability (which is essentially the Sardinas—Patterson test [456]) in
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the following way: Construct a set S of all possible dangling suf-
fixes. The code is uniquely decodable if and only if S contains no
codeword.

(a) State the precise rules for building the set S.

(b) Suppose that the codeword lengths are /;,i = 1,2, ..., m. Find
a good upper bound on the number of elements in the set S.

(¢) Determine which of the following codes is uniquely decodable:

@) {0, 10,11}

(i) {0,01, 11}

(ii1) {0, 01, 10}

@iv) {0, 01}

(v) {00, 01, 10, 11}

(vi) {110, 11, 10}

(vii) {110, 11, 100, 00, 10}

(d) For each uniquely decodable code in part (c), construct, if pos-
sible, an infinite encoded sequence with a known starting point
such that it can be resolved into codewords in two different
ways. (This illustrates that unique decodability does not imply

finite decodability.) Prove that such a sequence cannot arise in
a prefix code.

Shannon code. Consider the following method for generating a
code for a random variable X that takes on m values {1, 2, ..., m}
with probabilities pi, p2, ..., pm. Assume that the probabilities are
ordered so that p; > p» > --- > p,,. Define

i—1
Fi=)p (5.148)
k=1

the sum of the probabilities of all symbols less than i. Then the

codeword for i is the number F; € [0, 1] rounded off to [; bits,

where /; = [log i}.

(a) Show that the code constructed by this process is prefix-free
and that the average length satisfies

H(X)<L < HX)+1. (5.149)

(b) Construct the code for the probability distribution (0.5, 0.25,
0.125, 0.125).
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Optimal codes for dyadic distributions. For a Huffman code tree,
define the probability of a node as the sum of the probabilities of
all the leaves under that node. Let the random variable X be drawn
from a dyadic distribution [i.e., p(x) = 2= for some i, for all
x € X]. Now consider a binary Huffman code for this distribution.

(a) Argue that for any node in the tree, the probability of the left
child is equal to the probability of the right child.

(b) Let X1, X»,..., X, be drawn i.i.d. ~ p(x). Using the Huff-
man code for p(x), we map X, X»,..., X,, to a sequence
of bits Y1, Y2, ..., Yix,.x,....x,)- (The length of this sequence
will depend on the outcome X, X, ..., X,.) Use part (a) to
argue that the sequence Y1, Y», . .. forms a sequence of fair coin
flips [i.e., that Pr{Y; =0} =Pr{Y; =1} = %, independent of
Y1, Y2, ..., Yi_1]. Thus, the entropy rate of the coded sequence
is 1 bit per symbol.

(¢) Give a heuristic argument why the encoded sequence of bits
for any code that achieves the entropy bound cannot be com-
pressible and therefore should have an entropy rate of 1 bit per
symbol.

Relative entropy is cost of miscoding. Let the random variable X
have five possible outcomes {1, 2, 3, 4, 5}. Consider two distribu-
tions p(x) and ¢g(x) on this random variable.

Symbol px) q(x) Ci(x) Ca(x)
1 ! : 0 0
2 i : 10 100
3 : : 110 101
4 = : 1110 110
5 * : 1111 111

(a) Calculate H(p), H(q), D(pllg), and D(q]|p).

(b) The last two columns represent codes for the random variable.
Verify that the average length of C; under p is equal to the
entropy H(p). Thus, C; is optimal for p. Verify that C; is
optimal for q.

(¢) Now assume that we use code C, when the distribution is p.
What is the average length of the codewords. By how much
does it exceed the entropy p?

(d) What is the loss if we use code C; when the distribution is g?
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5.31 Nonsingular codes. The discussion in the text focused on instan-

taneous codes, with extensions to uniquely decodable codes. Both
these are required in cases when the code is to be used repeatedly
to encode a sequence of outcomes of a random variable. But if
we need to encode only one outcome and we know when we have
reached the end of a codeword, we do not need unique decod-
ability—the fact that the code is nonsingular would suffice. For

example, if a random variable X takes on three values, a, b, and c,

we could encode them by 0, 1, and 00. Such a code is nonsingular

but not uniquely decodable.

In the following, assume that we have a random variable X which

takes on m values with probabilities pi, pa, ..., p, and that the

probabilities are ordered so that p; > pp > --- > p,.

(a) By viewing the nonsingular binary code as a ternary code with
three symbols, 0, 1, and “STOP,” show that the expected length
of a nonsingular code Li.; for a random variable X satisfies the
following inequality:

Hy(X
Ly = 2
log, 3

1, (5.150)

where H,(X) is the entropy of X in bits. Thus, the average
length of a nonsingular code is at least a constant fraction of
the average length of an instantaneous code.

(b) Let Linst be the expected length of the best instantaneous code
and L7., be the expected length of the best nonsingular code
for X. Argue that L}, < Li\gr < H(X) + L.

(¢) Give a simple example where the average length of the non-
singular code is less than the entropy.

(d) The set of codewords available for a nonsingular code is {0, 1,
00, 01, 10, 11,000, ...}. Since L. = Y i, pil;, show that this
is minimized if we allot the shortest codewords to the most
probable symbols. Thus, [y =, =1, =14 =15 = lg = 2, etc.
Show that in general /; = (log (‘5 + 1)], and therefore L7., =
doimi Pi ]—log (IE + l)-‘

(e) Part (d) shows that it is easy to find the optimal nonsin-
gular code for a distribution. However, it is a little more
tricky to deal with the average length of this code. We now
bound this average length. It follows from part (d) that L}., >



PROBLEMS 153

LEY"  pilog (£ +1). Consider the difference

~ mn m i
F=HX)-L=-) pilogpi —Zpilog(§+1).
i=1 i=1

(5.151)
Prove by the method of Lagrange multipliers that the maximum
of F(p) occurs when p; = c¢/(i +2), where ¢ = 1/(H;y4p —
H,) and Hj is the sum of the harmonic series:

H=Y L (5.152)

(This can also be done using the nonnegativity of relative
entropy.)

(f) Complete the arguments for

HX)— L}, <HX)-L (5.153)
< log(2(Hy 12 — Hp)). (5.154)

Now it is well known (see, e.g., Knuth [315]) that H; ~ Ink

(more precisely, Hy =Ink + y + 2'—k R— 12(1)1<4 — €, where

12k%
0 <€ <1/252n% and y = Euler's constant = 0.577...).
Using either this or a simple approximation that H; < Ink + 1,
which can be proved by integration of xl, it can be shown that

H(X) — L7., <loglogm + 2. Thus, we have

H(X)—loglog|X| —2 < L}, < HX)+1. (5155

A nonsingular code cannot do much better than an instantaneous
code!

5.32 Bad wine. One is given six bottles of wine. It is known that
precisely one bottle has gone bad (tastes terrible). From inspection

of the bottles it is determined that the probability p; that the ith

' is oi 4 2 2 1
bottle is bad is given by (p1, p2, ..., pe) = (%, 2_63, 22 Z ).

Tasting will determine the bad wine. Suppose that you taste the
wines one at a time. Choose the order of tasting to minimize the
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expected number of tastings required to determine the bad bottle.
Remember, if the first five wines pass the test, you don’t have to
taste the last.

(a) What is the expected number of tastings required?

(b) Which bottle should be tasted first?

Now you get smart. For the first sample, you mix some of the wines

in a fresh glass and sample the mixture. You proceed, mixing and

tasting, stopping when the bad bottle has been determined.

(a) What is the minimum expected number of tastings required to
determine the bad wine?

(b) What mixture should be tasted first?

Huffman vs. Shannon. A random variable X takes on three values
with probabilities 0.6, 0.3, and 0.1.

(a) What are the lengths of the binary Huffman codewords for
X? What are the lengths of the binary Shannon codewords

(100 = [1og (555) |) for X2

(b) What is the smallest integer D such that the expected Shannon
codeword length with a D-ary alphabet equals the expected
Huffman codeword length with a D-ary alphabet?

Huffman algorithm for tree construction. Consider the following
problem: m binary signals Si, Sz, ..., S, are available at times
T, <T, <---<T,,and we would like to find their sum S; & S, &
-+ @ S, using two-input gates, each gate with one time unit delay,
so that the final result is available as quickly as possible. A simple
greedy algorithm is to combine the earliest two results, forming
the partial result at time max(7y, 72) + 1. We now have a new
problem with S; @ S», S3, ..., Sy, available at times max (77, 75) +
1,75, ..., T,. We can now sort this list of 7”s and apply the same
merging step again, repeating this until we have the final result.

(a) Argue that the foregoing procedure is optimal, in that it con-
structs a circuit for which the final result is available as quickly
as possible.

(b) Show that this procedure finds the tree that minimizes

C(T) = max(T; + 1), (5.156)

where T; is the time at which the result allotted to the ith leaf
is available and /; is the length of the path from the ith leaf to
the root.
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(¢) Show that

C(T) > log, (Z 2Tf> (5.157)

1

for any tree T.
(d) Show that there exists a tree such that

C(T) < log, (Z 2”) + 1. (5.158)

1

Thus, log, (ZL 2Ti) is the analog of entropy for this problem.

Generating random variables. One wishes to generate a random
variable X

__J 1 with probability p
X= { 0 with probability 1 — p. (5.159)
You are given fair coin flips Z;, Z,, ... . Let N be the (random)

number of flips needed to generate X. Find a good way to use
Z1,Z,, ... to generate X. Show that EN < 2.

Optimal word lengths.

(@) Can [ = (1,2,2) be the word lengths of a binary Huffman
code. What about (2,2,3,3)?

(b) What word lengths [ = (I, 5, . ..) can arise from binary Huff-
man codes?

Codes. Which of the following codes are
(a) Uniquely decodable?
(b) Instantaneous?

C, = {00, 01, 0}
C, = {00, 01, 100, 101, 11}
Cy = {0, 10, 110, 1110, ...}
C4 = {0, 00, 000, 0000}

Huffman. Find the Huffman D-ary code for (pi1, p2, p3, P4, Ps,
Pe) = (&, &, 5, 5=, 5. %) and the expected word length
(a) For D = 2.

(b) For D = 4.
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Entropy of encoded bits. Let C : X —> {0, 1}* be a nonsingular
but nonuniquely decodable code. Let X have entropy H (X).

(a) Compare H(C(X)) to H(X).
(b) Compare H(C(X")) to H(X"™).

Code rate. Let X be a random variable with alphabet {1, 2, 3}
and distribution

1 with probability
X =1 2 with probability

Bl—= = =

3 with probability

The data compression code for X assigns codewords

0 fx=1
Cx)=14 10 ifx=2
11 if x =3.

Let X, X», ... be independent, identically distributed according

to this distribution and let Z{Z,Z3--- = C(X;)C(X3)--- be the

string of binary symbols resulting from concatenating the corre-

sponding codewords. For example, 122 becomes 01010.

(a) Find the entropy rate H(X) and the entropy rate H(Z) in bits
per symbol. Note that Z is not compressible further.

(b) Now let the code be

00 ifx=1
Cx)=1414 10 ifx=2
01 ifx=3

and find the entropy rate H(Z).
(¢) Finally, let the code be

00 ifx=1
Cx)y=4 1 ifx =2
01 ifx=3
and find the entropy rate H(Z2).
Optimal codes. Let l1,1, ..., 1o be the binary Huffman code-

word lengths for the probabilities p; > p» > --- > pjo. Suppose
that we get a new distribution by splitting the last probability
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mass. What can you say about the optimal binary codeword lengths
l1, 1, ..., 1) for the probabilities py, pa, ..., po, apio, (1 — &) pio,
where 0 < a < 1.

Ternary codes. Which of the following codeword lengths can be
the word lengths of a 3-ary Huffman code, and which cannot?

@ (1,2,2,2,2)
) 2,2,2,2,2,2,2,2,3,3,3)

Piecewise Huffman. Suppose the codeword that we use to
describe a random variable X ~ p(x) always starts with a symbol
chosen from the set {A, B, C}, followed by binary digits {0, 1}.
Thus, we have a ternary code for the first symbol and binary
thereafter. Give the optimal uniquely decodable code (minimum
expected number of symbols) for the probability distribution

(1615 12 10 8 8 5.160)
P=16969 69696969/ '

Huffman. Find the word lengths of the optimal binary encoding

of p = (15 To5+ - - -+ T05) -

Random 20 questions. Let X be uniformly distributed over {1, 2,

..., m}. Assume that m = 2". We ask random questions: Is X € §;?

Is X € §,?... until only one integer remains. All 2" subsets S of

{1,2, ..., m} are equally likely to be asked.

(a) Without loss of generality, suppose that X = 1 is the random
object. What is the probability that object 2 yields the same
answers for k£ questions as does object 1?

(b) What is the expected number of objects in {2, 3, ..., m} that
have the same answers to the questions as does the correct
object 1?

(c) Suppose that we ask n + /n  random questions. What is the

expected number of wrong objects agreeing with the answers?

(d) Use Markov’s inequality Pr{X > ru} < %, to show that the

probability of error (one or more wrong object remaining) goes
to zero as n —> oQ.

HISTORICAL NOTES

The foundations for the material in this chapter can be found in Shan-
non’s original paper [469], in which Shannon stated the source coding
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theorem and gave simple examples of codes. He described a simple code
construction procedure (described in Problem 5.5.28), which he attributed
to Fano. This method is now called the Shannon—Fano code construction
procedure.

The Kraft inequality for uniquely decodable codes was first proved
by McMillan [385]; the proof given here is due to Karush [306]. The
Huffman coding procedure was first exhibited and proved to be optimal
by Huffman [283].

In recent years, there has been considerable interest in designing source
codes that are matched to particular applications, such as magnetic record-
ing. In these cases, the objective is to design codes so that the output
sequences satisfy certain properties. Some of the results for this problem
are described by Franaszek [219], Adler et al. [5] and Marcus [370].

The arithmetic coding procedure has its roots in the Shannon—Fano
code developed by Elias (unpublished), which was analyzed by Jelinek
[297]. The procedure for the construction of a prefix-free code described
in the text is due to Gilbert and Moore [249]. The extension of the
Shannon—Fano—Elias method to sequences is based on the enumerative
methods in Cover [120] and was described with finite-precision arithmetic
by Pasco [414] and Rissanen [441]. The competitive optimality of Shan-
non codes was proved in Cover [125] and extended to Huffman codes by
Feder [203]. Section 5.11 on the generation of discrete distributions from
fair coin flips follows the work of Knuth and Yao[317].



I CHAPTER 6

GAMBLING AND DATA
COMPRESSION

At first sight, information theory and gambling seem to be unrelated.
But as we shall see, there is strong duality between the growth rate of
investment in a horse race and the entropy rate of the horse race. Indeed,
the sum of the growth rate and the entropy rate is a constant. In the process
of proving this, we shall argue that the financial value of side information
is equal to the mutual information between the horse race and the side
information. The horse race is a special case of investment in the stock
market, studied in Chapter 16.

We also show how to use a pair of identical gamblers to compress a
sequence of random variables by an amount equal to the growth rate of
wealth on that sequence. Finally, we use these gambling techniques to
estimate the entropy rate of English.

6.1 THE HORSE RACE

Assume that m horses run in a race. Let the ith horse win with probability
pi. If horse i wins, the payoff is o; for 1 (i.e., an investment of 1 dollar
on horse i results in o; dollars if horse i wins and O dollars if horse i
loses).

There are two ways of describing odds: a-for-1 and b-to-1. The first
refers to an exchange that takes place before the race—the gambler puts
down 1 dollar before the race and at a-for-1 odds will receive a dollars
after the race if his horse wins, and will receive nothing otherwise. The
second refers to an exchange after the race—at b-to-1 odds, the gambler
will pay 1 dollar after the race if his horse loses and will pick up b dollars
after the race if his horse wins. Thus, a bet at b-to-1 odds is equivalent to
a bet at a-for-1 odds if b = a — 1. For example, fair odds on a coin flip
would be 2-for-1 or 1-to-1, otherwise known as even odds.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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We assume that the gambler distributes all of his wealth across the
horses. Let b; be the fraction of the gambler’s wealth invested in horse i,
where b; > 0 and ) _b; = 1. Then if horse i wins the race, the gambler
will receive o; times the amount of wealth bet on horse i. All the other
bets are lost. Thus, at the end of the race, the gambler will have multiplied
his wealth by a factor b;0; if horse i wins, and this will happen with prob-
ability p;. For notational convenience, we use b(i) and b; interchangeably
throughout this chapter.

The wealth at the end of the race is a random variable, and the gambler
wishes to “maximize” the value of this random variable. It is tempting to
bet everything on the horse that has the maximum expected return (i.e.,
the one with the maximum p;o0;). But this is clearly risky, since all the
money could be lost.

Some clarity results from considering repeated gambles on this race.
Now since the gambler can reinvest his money, his wealth is the product
of the gains for each race. Let S, be the gambler’s wealth after n races.
Then

Sp =[] SX0. (6.1)
i=1

where S(X) = b(X)o(X) is the factor by which the gambler’s wealth is
multiplied when horse X wins.

Definition The wealth relative S(X) = b(X)o(X) is the factor by which
the gambler’s wealth grows if horse X wins the race.

Definition The doubling rate of a horse race is
W(b, p) = E(log S(X)) = Y _ pilog brox. (6.2)
k=1
The definition of doubling rate is justified by the following theorem.

Theorem 6.1.1  Ler the race outcomes X, X,, ... be iid. ~ p(x).
Then the wealth of the gambler using betting strategy b grows exponen-
tially at rate W (b, p); that is,

S, = 2"Wmp) (6.3)
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Proof: Functions of independent random variables are also independent,
and hence log §(X1), log S(X3), ... are i.i.d. Then, by the weak law of
large numbers,

1 1 ¢
—log$, = — Z log S(X;) — E(og S(X)) in probability. (6.4)
n n =

Thus,

S, =2"Wep O (6.5)

Now since the gambler’s wealth grows as 2"V ®P) we seek to maximize
the exponent W (b, p) over all choices of the portfolio b.

Definition The optimum doubling rate W*(p) is the maximum doubling
rate over all choices of the portfolio b:

m

W*(p) = max W (b, p) = loghioi. (6.6
(p) = max W (b, p) b;biﬁaﬁb,:l;p oghioj.  (6.6)

We maximize W (b, p) as a function of b subject to the constraint
> b; = 1. Writing the functional with a Lagrange multiplier and changing
the base of the logarithm (which does not affect the maximizing b), we
have

J(b) =" pilnbio;+1> b (6.7)

Differentiating this with respect to b; yields

0J  pi .
_— = — A,, =1,2,..., . 68
b b ! " (6.8)

Setting the partial derivative equal to O for a maximum, we have

_bi

bi=—=. (6.9)

Substituting this in the constraint Y  b; = 1 yields A = —1 and b; = p;.
Hence, we can conclude that b = p is a stationary point of the function
J(b). To prove that this is actually a maximum is tedious if we take
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second derivatives. Instead, we use a method that works for many such
problems: Guess and verify. We verify that proportional gambling b = p
is optimal in the following theorem. Proportional gambling is known as
Kelly gambling [308].

Theorem 6.1.2 (Proportional gambling is log-optimal) — The optimum
doubling rate is given by

W*(p) =) _ pilogo; — H(p) (6.10)
and is achieved by the proportional gambling scheme b* = p.

Proof: We rewrite the function W (b, p) in a form in which the maximum
is obvious:

W(b.p) =) _ pilogbio (6.11)
=) pilog (%m) (6.12)
pi
=Y pilogo; — H(p) — D(p|Ib) (6.13)
<Y pilogo; — H(p), (6.14)

with equality iff p = b (i.e., the gambler bets on each horse in proportion
to its probability of winning). O

Example 6.1.1 Consider a case with two horses, where horse 1 wins
with probability p; and horse 2 wins with probability p,. Assume even
odds (2-for-1 on both horses). Then the optimal bet is proportional bet-
ting (i.e., by = p1, bo = p»). The optimal doubling rate is W*(p) =
> pilogo; — H(p) = 1 — H(p), and the resulting wealth grows to infin-
ity at this rate:

S, = 2r1-H®) (6.15)

Thus, we have shown that proportional betting is growth rate optimal
for a sequence of i.i.d. horse races if the gambler can reinvest his wealth
and if there is no alternative of keeping some of the wealth in cash.

We now consider a special case when the odds are fair with respect to
some distribution (i.e., there is no track take and ) ol, = 1). In this case,

we write r; = %, where 7; can be interpreted as a probability mass function
1
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over the horses. (This is the bookie’s estimate of the win probabilities.)
With this definition, we can write the doubling rate as

W(b.p) =) _ pilogb;o; (6.16)
=Y pilog (ﬁ ﬁ) 6.17)

piTi
= D(plIr) — D(p|[b). (6.18)

This equation gives another interpretation for the relative entropy dis-
tance: The doubling rate is the difference between the distance of the
bookie’s estimate from the true distribution and the distance of the gam-
bler’s estimate from the true distribution. Hence, the gambler can make
money only if his estimate (as expressed by b) is better than the bookie’s.

An even more special case is when the odds are m-for-1 on each horse.
In this case, the odds are fair with respect to the uniform distribution and
the optimum doubling rate is

1
W (p)=D (pIIE) = logm — H(p). (6.19)

In this case we can clearly see the duality between data compression and
the doubling rate.

Theorem 6.1.3 (Conservation theorem)  For uniform fair odds,
W*(p) + H(p) = logm. (6.20)
Thus, the sum of the doubling rate and the entropy rate is a constant.

Every bit of entropy decrease doubles the gambler’s wealth. Low entropy
races are the most profitable.

In the analysis above, we assumed that the gambler was fully invested.
In general, we should allow the gambler the option of retaining some of
his wealth as cash. Let b(0) be the proportion of wealth held out as cash,
and b(1),b(2),...,b(m) be the proportions bet on the various horses.
Then at the end of a race, the ratio of final wealth to initial wealth (the
wealth relative) is

S(X) =b(0) + b(X)o(X). (6.21)

Now the optimum strategy may depend on the odds and will not necessar-
ily have the simple form of proportional gambling. We distinguish three
subcases:
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1. Fair odds with respect to some distribution: Z - = 1. For fair odds,
the option of withholding cash does not change the analysis. This i 1s
because we can get the effect of withholding cash by betting b; = —
on the ith horse, i =1,2,...,m. Then S(X) =1 irrespective of
which horse wins. Thus, Whatever money the gambler keeps aside
as cash can equally well be distributed over the horses, and the
assumption that the gambler must invest all his money does not
change the analysis. Proportional betting is optimal.

2. Superfair odds: ) Oi < 1. In this case, the odds are even better than
fair odds, so one would always want to put all one’s wealth into the
race rather than leave it as cash. In this race, too, the optimum
strategy is proportional betting. However, it is possible to choose
b so as to form a Dutch book by choosing b; = c , where ¢ =

1/ Z o to get 0;b; = c, irrespective of which horse wins. With

this allotment, one has wealth S(X) =1/)_ Oi > | with probability
1 (i.e., no risk). Needless to say, one seldom finds such odds in
real life. Incidentally, a Dutch book, although risk-free, does not
optimize the doubling rate.

3. Subfair odds: ; > 1. This is more representative of real life. The
organizers of the race track take a cut of all the bets. In this case it
is optimal to bet only some of the money and leave the rest aside
as cash. Proportional gambling is no longer log-optimal. A paramet-
ric form for the optimal strategy can be found using Kuhn—Tucker
conditions (Problem 6.6.2); it has a simple “water-filling” interpre-
tation.

6.2 GAMBLING AND SIDE INFORMATION

Suppose the gambler has some information that is relevant to the outcome
of the gamble. For example, the gambler may have some information
about the performance of the horses in previous races. What is the value
of this side information?

One definition of the financial value of such information is the increase
in wealth that results from that information. In the setting described in
Section 6.1 the measure of the value of information is the increase in the
doubling rate due to that information. We will now derive a connection
between mutual information and the increase in the doubling rate.

To formalize the notion, let horse X € {1, 2, ..., m} win the race with
probability p(x) and pay odds of o(x) for 1. Let (X, Y) have joint
probability mass function p(x, y). Let b(x|y) >0, > b(x|y) =1 be an
arbitrary conditional betting strategy depending on the side information
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Y, where b(x|y) is the proportion of wealth bet on horse x when y is
observed. As before, let b(x) > 0, > b(x) = 1 denote the unconditional
betting scheme.

Let the unconditional and the conditional doubling rates be

W*(X) = %1(%;2; p(x)logb(x)o(x), (6.22)
WHXIY) = max D | p(x. y) logb(x[y)o(x) (6.23)
X,y
and let
AW = W(X|Y) — W*(X). (6.24)

We observe that for (X;, ¥;) i.i.d. horse races, wealth grows like 2"W*(XIV)
with side information and like 2" ) without side information.

Theorem 6.2.1  The increase AW in doubling rate due to side infor-
mation Y for a horse race X is

AW =1(X;Y). (6.25)
Proof: With side information, the maximum value of W*(X|Y) with

side information Y is achieved by conditionally proportional gambling
[i.e., b*(x]y) = p(x|y)]. Thus,

W (X|Y) = max E[log $] = max 37 p(x, ) logo()b(xly)  (626)

= p(x,y) logo(x)p(x|y) (6.27)
= Zp(x) logo(x) — H(X|Y). (6.28)
Without side information, the optimal doubling rate is

W*(X) =Y p(x)logo(x) — H(X). (6.29)

Thus, the increase in doubling rate due to the presence of side information
Y is

AW = WHX|Y) — W*(X) = H(X) — H(X|Y) = I(X;Y). O (6.30)
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Hence, the increase in doubling rate is equal to the mutual informa-
tion between the side information and the horse race. Not surprisingly,
independent side information does not increase the doubling rate.

This relationship can also be extended to the general stock market
(Chapter 16). In this case, however, one can only show the inequality
AW < I, with equality if and only if the market is a horse race.

6.3 DEPENDENT HORSE RACES AND ENTROPY RATE

The most common example of side information for a horse race is the
past performance of the horses. If the horse races are independent, this
information will be useless. If we assume that there is dependence among
the races, we can calculate the effective doubling rate if we are allowed
to use the results of previous races to determine the strategy for the next
race.

Suppose that the sequence { X} of horse race outcomes forms a stochas-
tic process. Let the strategy for each race depend on the results of previous
races. In this case, the optimal doubling rate for uniform fair odds is

W*(Xi| Xk—1, Xk—2, ..., X1)
= E[ max E[log S(Xk)lxk—l,Xk—z,.u,Xl]]
b(|Xg—1,Xk—2,..,X1)

=logm — H(Xy|X—1, Xj—2, ..., X1), (6.31)

which is achieved by b*(x|xz—1, ..., x1) = p(xX|xXp—1, - - -, X1).
At the end of n races, the gambler’s wealth is

So=[]S5X0. (6.32)

and the exponent in the growth rate (assuming m for 1 odds) is

1 1
~Elog S, =~ Y ElogS(X;) (6.33)
n n

1
=~ (logm — H(XilX;1, Xia, ... X)) (634)

H(XI!XZa '~'7XI1)
n

(6.35)

= logm —
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The quantity %H (X1, X2, ..., X,,) is the average entropy per race. For
a stationary process with entropy rate H (X), the limit in (6.35) yields

1
lim —ElogS, + H(X) = logm. (6.36)

n—-oon

Again, we have the result that the entropy rate plus the doubling rate is a
constant.

The expectation in (6.36) can be removed if the process is ergodic. It
will be shown in Chapter 16 that for an ergodic sequence of horse races,

S, = 2" with probability 1, (6.37)

where W = logm — H(X) and
o1
HX) =lim-H(X, Xa,..., Xpn). (6.38)
n

Example 6.3.1 (Red and black) In this example, cards replace horses
and the outcomes become more predictable as time goes on. Consider the
case of betting on the color of the next card in a deck of 26 red and 26
black cards. Bets are placed on whether the next card will be red or black,
as we go through the deck. We also assume that the game pays 2-for-1;
that is, the gambler gets back twice what he bets on the right color. These
are fair odds if red and black are equally probable.
We consider two alternative betting schemes:

1. If we bet sequentially, we can calculate the conditional probability
of the next card and bet proportionally. Thus, we should bet (%, %)
on (red, black) for the first card, (g—(l’, g—?) for the second card if the
first card is black, and so on.

2. Alternatively, we can bet on the entire sequence of 52 cards at once.
There are (gé) possible sequences of 26 red and 26 black cards, all
of them equally likely. Thus, proportional betting implies that we
put 1/ (;é) of our money on each of these sequences and let each
bet “ride.”

We will argue that these procedures are equivalent. For example, half
the sequences of 52 cards start with red, and so the proportion of money
bet on sequences that start with red in scheme 2 is also one-half, agreeing
with the proportion used in the first scheme. In general, we can verify that
betting 1/ (;é) of the money on each of the possible outcomes will at each



168 GAMBLING AND DATA COMPRESSION

stage give bets that are proportional to the probability of red and black
at that stage. Since we bet 1 /Gé) of the wealth on each possible output
sequence, and a bet on a sequence increases wealth by a factor of 2°2 on
the sequence observed and 0 on all the others, the resulting wealth is

252
S5, = v = 9.08. (6.39)
(56)
Rather interestingly, the return does not depend on the actual sequence.

This is like the AEP in that the return is the same for all sequences. All
sequences are typical in this sense.

6.4 THE ENTROPY OF ENGLISH

An important example of an information source is English text. It is
not immediately obvious whether English is a stationary ergodic process.
Probably not! Nonetheless, we will be interested in the entropy rate of
English. We discuss various stochastic approximations to English. As we
increase the complexity of the model, we can generate text that looks like
English. The stochastic models can be used to compress English text. The
better the stochastic approximation, the better the compression.

For the purposes of discussion, we assume that the alphabet of English
consists of 26 letters and the space symbol. We therefore ignore punctua-
tion and the difference between upper- and lowercase letters. We construct
models for English using empirical distributions collected from samples
of text. The frequency of letters in English is far from uniform. The most
common letter, E, has a frequency of about 13%, and the least common
letters, Q and Z, occur with a frequency of about 0.1%. The letter E is
so common that it is rare to find a sentence of any length that does not
contain the letter. [A surprising exception to this is the 267-page novel,
Gadsby, by Ernest Vincent Wright (Lightyear Press, Boston, 1997; orig-
inal publication in 1939), in which the author deliberately makes no use
of the letter E.]

The frequency of pairs of letters is also far from uniform. For example,
the letter Q is always followed by a U. The most frequent pair is TH,
which occurs normally with a frequency of about 3.7%. We can use
the frequency of the pairs to estimate the probability that a letter fol-
lows any other letter. Proceeding this way, we can also estimate higher-
order conditional probabilities and build more complex models for the
language. However, we soon run out of data. For example, to build
a third-order Markov approximation, we must estimate the values of
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p(xilxi—1, xi—2, x;—3). There are 274 = 531, 441 entries in this table, and
we would need to process millions of letters to make accurate estimates
of these probabilities.

The conditional probability estimates can be used to generate random
samples of letters drawn according to these distributions (using a random
number generator). But there is a simpler method to simulate randomness
using a sample of text (a book, say). For example, to construct the second-
order model, open the book at random and choose a letter at random on
the page. This will be the first letter. For the next letter, again open the
book at random and starting at a random point, read until the first letter is
encountered again. Then take the letter after that as the second letter. We
repeat this process by opening to another page, searching for the second
letter, and taking the letter after that as the third letter. Proceeding this
way, we can generate text that simulates the second-order statistics of the
English text.

Here are some examples of Markov approximations to English from
Shannon’s original paper [472]:

1. Zero-order approximation. (The symbols are independent and equi-
probable.)

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation. (The symbols are independent. The fre-
quency of letters matches English text.)

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

3. Second-order approximation. (The frequency of pairs of letters
matches English text.)

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

4. Third-order approximation. (The frequency of triplets of letters
matches English text.)

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE
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5. Fourth-order approximation. (The frequency of quadruplets of let-
ters matches English text. Each letter depends on the previous three
letters. This sentence is from Lucky’s book, Silicon Dreams [366].)

THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED
CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL
IT DO HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER
ANY OF PUBLE AND TO THEORY. EVENTIAL CALLEGAND TO ELAST
BENERATED IN WITH PIES AS IS WITH THE)

Instead of continuing with the letter models, we jump to word
models.

6. First-order word model. (The words are chosen independently but
with frequencies as in English.)

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO
EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE
THESE.

7. Second-order word model. (The word transition probabilities match
English text.)

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER
METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD
THE PROBLEM FOR AN UNEXPECTED

The approximations get closer and closer to resembling English. For
example, long phrases of the last approximation could easily have occurred
in a real English sentence. It appears that we could get a very good approx-
imation by using a more complex model. These approximations could be
used to estimate the entropy of English. For example, the entropy of the
zeroth-order model is log27 = 4.76 bits per letter. As we increase the
complexity of the model, we capture more of the structure of English,
and the conditional uncertainty of the next letter is reduced. The first-
order model gives an estimate of the entropy of 4.03 bits per letter, while
the fourth-order model gives an estimate of 2.8 bits per letter. But even
the fourth-order model does not capture all the structure of English. In
Section 6.6 we describe alternative methods for estimating the entropy of
English.

The distribution of English is useful in decoding encrypted English text.
For example, a simple substitution cipher (where each letter is replaced
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by some other letter) can be solved by looking for the most frequent letter
and guessing that it is the substitute for E, and so on. The redundancy in
English can be used to fill in some of the missing letters after the other
letters are decrypted: for example,

TH.R. S _NLY N_W.YT_F.LL NTH_V.W_LS N TH.S S.NT_NC..

Some of the inspiration for Shannon’s original work on information
theory came out of his work in cryptography during World War II. The
mathematical theory of cryptography and its relationship to the entropy
of language is developed in Shannon [481].

Stochastic models of language also play a key role in some speech
recognition systems. A commonly used model is the trigram (second-order
Markov) word model, which estimates the probability of the next word
given the preceding two words. The information from the speech signal
is combined with the model to produce an estimate of the most likely
word that could have produced the observed speech. Random models do
surprisingly well in speech recognition, even when they do not explicitly
incorporate the complex rules of grammar that govern natural languages
such as English.

We can apply the techniques of this section to estimate the entropy rate
of other information sources, such as speech and images. A fascinating
nontechnical introduction to these issues may be found in the book by
Lucky [366].

6.5 DATA COMPRESSION AND GAMBLING

We now show a direct connection between gambling and data compres-
sion, by showing that a good gambler is also a good data compressor. Any
sequence on which a gambler makes a large amount of money is also a
sequence that can be compressed by a large factor. The idea of using
the gambler as a data compressor is based on the fact that the gambler’s
bets can be considered to be his estimate of the probability distribution
of the data. A good gambler will make a good estimate of the probability
distribution. We can use this estimate of the distribution to do arithmetic
coding (Section 13.3). This is the essential idea of the scheme described
below.

We assume that the gambler has a mechanically identical twin, who
will be used for the data decompression. The identical twin will place the
same bets on possible sequences of outcomes as the original gambler (and
will therefore make the same amount of money). The cumulative amount
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of money that the gambler would have made on all sequences that are
lexicographically less than the given sequence will be used as a code
for the sequence. The decoder will use the identical twin to gamble on
all sequences, and look for the sequence for which the same cumulative
amount of money is made. This sequence will be chosen as the decoded
sequence.

Let Xy, X»,..., X, be a sequence of random variables that we wish
to compress. Without loss of generality, we will assume that the random
variables are binary. Gambling on this sequence will be defined by a
sequence of bets

bkt | X1 %2, x0) =0, Y b(xeyr | X1, X2, .., x) = 1,

Xk+1
(6.40)
where b(xi41 | X1, X2, ..., Xx) is the proportion of money bet at time k on
the event that X;,; = x;4 given the observed past xi, xa, ..., x;. Bets

are paid at uniform odds (2-for-1). Thus, the wealth S, at the end of the
sequence is given by

Sy =2"[]bCu | x1.. .. x1) (6.41)
k=1
=2"b(x1,x2,...,%,), (6.42)
where
bt x2, oo x) = [ [ oCalxi-t, . x). (6.43)
k=1

So sequential gambling can also be considered as an assignment of proba-
bilities (or bets) b(xy, x2, ..., x,) > 0, le . b(xy,...,x;) =1, on the
2" possible sequences.

This gambling elicits both an estimate of the true probability of the text
sequence (p(xq,...,x,) = S,/2") as well as an estimate of the entropy
[ﬁ = —% log ﬁ] of the text from which the sequence was drawn. We now
wish to show that high values of wealth S, lead to high data compression.
Specifically, we argue that if the text in question results in wealth S,
then log S, bits can be saved in a naturally associated deterministic data
compression scheme. We further assert that if the gambling is log optimal,
the data compression achieves the Shannon limit H.

.....
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Consider the following data compression algorithm that maps the
text X =x1x2---x, € {0, 1}" into a code sequences cicy---ck, ¢ €
{0, 1}. Both the compressor and the decompressor know n. Let
the 2" text sequences be arranged in lexicographical order: for
example, 0100101 < 0101101. The encoder observes the sequence
x" = (xy,x2,...,x,). He then calculates what his wealth S, (x/(n))
would have been on all sequences x/(n) < x(n) and calculates
F(x(n)) = Zx/(n)gx(n) 2718, (x (n)). Clearly, F(x(n)) € [0, 1]. Let k =
[n —log S,(x(n))]. Now express F(x(n)) as a binary decimal to k-place
accuracy: | F(x(n))] = .cica-- - ck. The sequence c(k) = (cy, ¢2, ..., Ck)
is transmitted to the decoder.

The decoder twin can calculate the precise value S (x,(n)) associated
with each of the 2" sequences x’(n). He thus knows the cumulative sum
of 27"§ (x/(n)) up through any sequence x(n). He tediously calculates
this sum until it first exceeds .c(k). The first sequence x(n) such that
the cumulative sum falls in the interval [.c; --- ¢k, .c1...Cp + (1/2)"] is
defined uniquely, and the size of S(x(n))/2" guarantees that this sequence
will be precisely the encoded x(n).

Thus, the twin uniquely recovers x(n). The number of bits required
is k=[n—1logS(x(n))]. The number of bits saved is n—k =
log S(x(n))]. For proportional gambling, S(x(n)) =2"p(x(n)). Thus,
the expected number of bits is Ek =) p(x(n))[—log p(x(n))] <
H(X,..., X, + 1.

We see that if the betting operation is deterministic and is known
both to the encoder and the decoder, the number of bits necessary to
encode xi, ..., x, is less than n — log S,, + 1. Moreover, if p(x) is known,
and if proportional gambling is used, the description length expected is
E(n —logs,) < H(Xi,...,X,)+ 1. Thus, the gambling results corre-
spond precisely to the data compression that would have been achieved
by the given human encoder—decoder identical twin pair.

The data compression scheme using a gambler is similar to the idea
of arithmetic coding (Section 13.3) using a distribution b(x1, x2, ..., X,)
rather than the true distribution. The procedure above brings out the duality
between gambling and data compression. Both involve estimation of the
true distribution. The better the estimate, the greater the growth rate of
the gambler’s wealth and the better the data compression.

6.6 GAMBLING ESTIMATE OF THE ENTROPY OF ENGLISH

We now estimate the entropy rate for English using a human gambler to
estimate probabilities. We assume that English consists of 27 characters
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(26 letters and a space symbol). We therefore ignore punctuation and case
of letters. Two different approaches have been proposed to estimate the
entropy of English.

1. Shannon guessing game. In this approach the human subject is
given a sample of English text and asked to guess the next letter.
An optimal subject will estimate the probabilities of the next letter
and guess the most probable letter first, then the second most prob-
able letter next, and so on. The experimenter records the number of
guesses required to guess the next letter. The subject proceeds this
way through a fairly large sample of text. We can then calculate the
empirical frequency distribution of the number of guesses required
to guess the next letter. Many of the letters will require only one
guess; but a large number of guesses will usually be needed at the
beginning of words or sentences.

Now let us assume that the subject can be modeled as a computer
making a deterministic choice of guesses given the past text. Then
if we have the same machine and the sequence of guess numbers,
we can reconstruct the English text. Just let the machine run, and if
the number of guesses at any position is k, choose the kth guess of
the machine as the next letter. Hence the amount of information in
the sequence of guess numbers is the same as in the English text.
The entropy of the guess sequence is the entropy of English text. We
can bound the entropy of the guess sequence by assuming that the
samples are independent. Hence, the entropy of the guess sequence
is bounded above by the entropy of the histogram in the experiment.
The experiment was conducted in 1950 by Shannon [482], who
obtained a value of 1.3 bits per symbol for the entropy of English.

2. Gambling estimate. In this approach we let a human subject gamble
on the next letter in a sample of English text. This allows finer
gradations of judgment than does guessing. As in the case of a horse
race, the optimal bet is proportional to the conditional probability
of the next letter. The payoff is 27-for-1 on the correct letter.
Since sequential betting is equivalent to betting on the entire
sequence, we can write the payoff after n letters as

S, = Q1"b(X1, Xa, - .., Xp). (6.44)

Thus, after n rounds of betting, the expected log wealth satisfies

1 1
E—log S, =log27+ —Elogh(X1, X2, ..., X,) (6.45)
n n
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=log27 + % > p(x")logb(x") (6.46)
1 n
=log27 — - Z p(x")log ‘Z((;Cn))
1 n n
+ Z p(x") log p(x™) (6.47)

1 1
=10g27 — =D(p(x")||b(x")) — —H (X1, X2, ..., Xy)
n n

(6.48)
1

<log27 — —-H(Xy, X2,..., Xy) (6.49)
n

<log27 — H(X), (6.50)

where H (&) is the entropy rate of English. Thus, log27 — E % log S,
is an upper bound on the entropy rate of English. The upper bound
estimate, H(X) = log27 — %log S,, converges to H(X) with prob-
ability 1 if English is ergodic and the gambler uses b(x") = p(x").
An experiment [131] with 12 subjects and a sample of 75 letters
from the book Jefferson the Virginian by Dumas Malone (Little,
Brown, Boston, 1948; the source used by Shannon) resulted in an
estimate of 1.34 bits per letter for the entropy of English.

SUMMARY
Doubling rate. W (b, p) = E(log S(X)) = Y ;_, px log biox.
Optimal doubling rate. W*(p) = maxy, W (b, p).

Proportional gambling is log-optimal
W (p) = max W (b, p) = ) _ p;logo; — H(p) (651)

is achieved by b* = p.

Growth rate. Wealth grows as §,=2"""®,
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Conservation law. For uniform fair odds,

H(p) + W*(p) = logm. (6.52)

Side information. In a horse race X, the increase AW in doubling
rate due to side information Y is

AW = I(X;Y). (6.53)

PROBLEMS

6.1

6.2

Horse race. Three horses run a race. A gambler offers 3-for-
1 odds on each horse. These are fair odds under the assumption
that all horses are equally likely to win the race. The true win
probabilities are known to be

111
= (p1, P2, =(=,-,-). 6.54
p = (p1, p2. p3) <2 1 4> (6.54)
Let b = (by, by, b3), b; > 0, >_b; = 1, be the amount invested on
each of the horses. The expected log wealth is thus

3
W(b) =) p;log3b;. (6.55)
i=1

(a) Maximize this over b to find b* and W*. Thus, the wealth
achieved in repeated horse races should grow to infinity like
2"W* with probability 1.

(b) Show that if instead we put all of our money on horse 1, the
most likely winner, we will eventually go broke with probabil-
ity 1.

Horse race with subfair odds. 1f the odds are bad (due to a track
take), the gambler may wish to keep money in his pocket. Let 5(0)
be the amount in his pocket and let b(1), b(2), ..., b(m) be the
amount bet on horses 1, 2, ..., m, with odds o(1), 0(2), ..., o(m),
and win probabilities p(1), p(2),..., p(m). Thus, the resulting
wealth is S(x) = b(0) + b(x)o(x), with probability p(x),x =
1,2,...,m.

(a) Find b* maximizing Elog S if > 1/0(i) < 1.
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(b) Discuss b* if > 1/0(i) > 1. (There isn’t an easy closed-form
solution in this case, but a “water-filling” solution results from
the application of the Kuhn—Tucker conditions.)

Cards. An ordinary deck of cards containing 26 red cards and
26 black cards is shuffled and dealt out one card at time without
replacement. Let X; be the color of the ith card.

(a) Determine H(Xy).

(b) Determine H (X>).

(¢) Does H(Xy | X1, X2, ..., Xx_1) increase or decrease?

(d) Determine H (X1, X5, ..., X52).

Gambling. Suppose that one gambles sequentially on the card
outcomes in Problem 6.6.3. Even odds of 2-for-1 are paid. Thus,
the wealth S, at time n is S, =2"b(xy, x2,...,x,), Where

b(xy, x2, ..., x,) is the proportion of wealth bet on x1, x2, ..., x,.
Find max.) E log Ss.

Beating the public odds. Consider a three-horse race with win

probabilities
( )= 111
P1, P2, p3) = A

and fair odds with respect to the (false) distribution

( ) 111
ri,r2,r3)=\-,—-, = |.
1’ 23 3 43 4’2

(01,02,03) = (4,4,2).

Thus, the odds are

(a) What is the entropy of the race?

(b) Find the set of bets (by, by, b3) such that the compounded
wealth in repeated plays will grow to infinity.

Horse race. A three-horse race has win probabilities p =
(p1, p2, p3), and odds o = (1, 1, 1). The gambler places bets b =
(b1, by, b3), b; > 0,>_ b; = 1, where b; denotes the proportion on
wealth bet on horse i. These odds are very bad. The gambler gets
his money back on the winning horse and loses the other bets.
Thus, the wealth S, at time n resulting from independent gambles
goes exponentially to zero.

(a) Find the exponent.
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(b) Find the optimal gambling scheme b (i.e., the bet b* that max-
imizes the exponent).

(¢) Assuming that b is chosen as in part (b), what distribution p
causes S, to go to zero at the fastest rate?

Horse race. Consider a horse race with four horses. Assume that
each horse pays 4-for-1 if it wins. Let the probabilities of win-
ning of the horses be {%, }1, %, %}. If you started with $100 and
bet optimally to maximize your long-term growth rate, what are
your optimal bets on each horse? Approximately how much money
would you have after 20 races with this strategy?

Lotto. The following analysis is a crude approximation to the
games of Lotto conducted by various states. Assume that the player
of the game is required to pay $1 to play and is asked to choose
one number from a range 1 to 8. At the end of every day, the state
lottery commission picks a number uniformly over the same range.
The jackpot (i.e., all the money collected that day) is split among
all the people who chose the same number as the one chosen by the
state. For example, if 100 people played today, 10 of them chose
the number 2, and the drawing at the end of the day picked 2, the
$100 collected is split among the 10 people (i.e., each person who
picked 2 will receive $10, and the others will receive nothing).
The general population does not choose numbers uni-
formly—numbers such as 3 and 7 are supposedly lucky and are
more popular than 4 or 8. Assume that the fraction of people choos-
ing the various numbers 1,2, ..., 81s (fi, f2,..., f3), and assume
that n people play every day. Also assume that n is very large, so
that any single person’s choice does not change the proportion of
people betting on any number.

(a) What is the optimal strategy to divide your money among
the various possible tickets so as to maximize your long-term
growth rate? (Ignore the fact that you cannot buy fractional
tickets.)

(b) What is the optimal growth rate that you can achieve in this
game?

© If (fi, f2o..., fa) = (%, %, %, 1—16, 1—16, 1—16, 41'1’ %), and you start
with $1, how long will it be before you become a millionaire?

Horse race. Suppose that one is interested in maximizing the
doubling rate for a horse race. Let py, p2, ..., pm denote the win
probabilities of the m horses. When do the odds (o1, 02, ..., 0)
yield a higher doubling rate than the odds (0}, 0}, ..., 0},)?
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Horse race with probability estimates.

(a) Three horses race. Their probabilities of winning are (2 4)
The odds are 4-for-1, 3-for-1, and 3-for-1. Let W* be the opti-
mal doubling rate. Suppose you believe that the probabilities
are (%, %, 4—1‘). If you try to maximize the doubling rate, what
doubling rate W will you achieve? By how much has your dou-
bling rate decrease due to your poor estimate of the probabilities
(i.e., what is AW = W* — W)?

(b) Now let the horse race be among m horses, with probabil-
ities p = (p1, p2, ..., pm) and odds o = (01,02, ...,0,). If
you believe the true probabilities to be ¢ = (g1, g2, .-+, Gm)»
and try to maximize the doubling rate W, what is W* — W?

Two-envelope problem. One envelope contains b dollars, the other
2b dollars. The amount b is unknown. An envelope is selected at
random. Let X be the amount observed in this envelope, and let Y
be the amount in the other envelope. Adopt the strategy of switch-
ing to the other envelope with probability p(x), where p(x) =
Let Z be the amount that the player receives. Thus,

(e_x+ N
(b, 2b) with probability
(X.Y) = PR Y 2 (6.56)
(2b,b) with probability 5
X with probability 1 — p(x)
Z = 6.57
{ Y  with probability p(x). 6.57)

(a) Show that E(X) = E(Y) = 2

(b) Show that E(Y/X) = %. Since the expected ratio of the

amount in the other envelope is %, it seems that one should
always switch. (This is the origin of the switching paradox.)
However, observe that E(Y) # E(X)E(Y/X). Thus, although

E(Y/X) > 1, it does not follow that E(Y) > E(X).

(c) Let J be the index of the envelope containing the maximum
amount of money, and let J’ be the index of the envelope
chosen by the algorithm. Show that for any b, 1(J; J') > 0.
Thus, the amount in the first envelope always contains some
information about which envelope to choose.

(d) Show that E(Z) > E(X). Thus, you can do better than always
staying or always switching. In fact, this is true for any mono-
tonic decreasing switching function p(x). By randomly switch-
ing according to p(x), you are more likely to trade up than to
trade down.
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6.13

6.14

6.15

GAMBLING AND DATA COMPRESSION

Gambling. Find the horse win probabilities pi, pa, ..., pm:
(a) Maximizing the doubling rate W* for given fixed known odds

01702’ .. -’Om-
(b) Minimizing the doubling rate for given fixed odds oy, 02, ...,
Om.

Dutch book. Consider a horse race with m = 2 horses,

X=1,2
11
P=3 73
odds (for one) = 10, 30
bets=b, 1 —b.

The odds are superfair.

(a) There is a bet b that guarantees the same payoff regardless of
which horse wins. Such a bet is called a Dutch book. Find this
b and the associated wealth factor S(X).

(b) What is the maximum growth rate of the wealth for the optimal
choice of b? Compare it to the growth rate for the Dutch book.

Horse race. Suppose that one is interested in maximizing the

doubling rate for a horse race. Let pi, p2, ..., p, denote the win
probabilities of the m horses. When do the odds (o1, 02, ..., 04)
yield a higher doubling rate than the odds (0}, 0}, ..., 0},)?

Entropy of a fair horse race. Let X ~ p(x), x =1,2,...,m,
denote the winner of a horse race. Suppose that the odds o(x)
are fair with respect to p(x) [i.e., o(x) = ﬁ]. Let b(x) be the
amount bet on horse x, b(x) > 0, >_1" b(x) = 1. Then the resulting
wealth factor is S(x) = b(x)o(x), with probability p(x).

(a) Find the expected wealth ES(X).

(b) Find W*, the optimal growth rate of wealth.

(¢) Suppose that

Y — 1, X=1or2
“ | 0, otherwise.

If this side information is available before the bet, how much
does it increase the growth rate W*?

(d) Find I(X;Y).



6.16

6.17

PROBLEMS 181

Negative horse race. Consider a horse race with m horses with
win probabilities pi, pa, ..., pm. Here the gambler hopes that a
given horse will lose. He places bets (b1, by, ..., by), Y i, bi =1,
on the horses, loses his bet b; if horse i wins, and retains the rest of
his bets. (No odds.) Thus, S =) ki b;, with probability p;, and
one wishes to maximize ) p; In(1 — b;) subject to the constraint
> b =1.
(a) Find the growth rate optimal investment strategy b*. Do not
constrain the bets to be positive, but do constrain the bets to
sum to 1. (This effectively allows short selling and margin.)

(b) What is the optimal growth rate?

St. Petersburg paradox. Many years ago in ancient St. Petersburg

the following gambling proposition caused great consternation. For

an entry fee of ¢ units, a gambler receives a payoff of 2¢ units with

probability 27k k=1,2,....

(a) Show that the expected payoff for this game is infinite. For this
reason, it was argued that ¢ = co was a “fair” price to pay to
play this game. Most people find this answer absurd.

(b) Suppose that the gambler can buy a share of the game. For
example, if he invests ¢/2 units in the game, he receives % a
share and a return X /2, where Pr(X = 2") =2%k=1,2,....
Suppose that X, X», ... are i.i.d. according to this distribution
and that the gambler reinvests all his wealth each time. Thus,

his wealth S, at time n is given by
n Xi
Se=11— 6.58
E - (6.58)

Show that this limit is co or 0, with probability 1, accordingly
as ¢ < ¢* or ¢ > c*. Identify the “fair” entry fee c*.
More realistically, the gambler should be allowed to keep a pro-
portion b = 1 — b of his money in his pocket and invest the rest
in the St. Petersburg game. His wealth at time n is then

n

s, =] (E T bf") . (6.59)

i=1

Let

> b2k
W(b,c) =Y 27Flog <1 —b+ —) . (6.60)
C
k=1
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We have
S, = 2"V, (6.61)
Let
W*(c) = Orgfli(l W (b, c). (6.62)

Here are some questions about W*(c).

(a) For what value of the entry fee ¢ does the optimizing value b*
drop below 1?

(b) How does b* vary with ¢?

(c) How does W*(c) fall off with ¢?

Note that since W*(c) > 0, for all ¢, we can conclude that any
entry fee c is fair.

6.18 Super St. Petersburg. Finally, we have the super St. Peters-
burg paradox, where Pr(X = 22k) =2% k=1,2,.... Here the
expected log wealth is infinite for all » > 0, for all ¢, and the
gambler’s wealth grows to infinity faster than exponentially for
any b > 0. But that doesn’t mean that all investment ratios b are
equally good. To see this, we wish to maximize the relative growth
rate with respect to some other portfolio, say, b = (%, %). Show
that there exists a unique b maximizing

b+bX/c

Eln1 :
§+§X/C

and interpret the answer.

HISTORICAL NOTES

The original treatment of gambling on a horse race is due to Kelly [308],
who found that AW = I. Log-optimal portfolios go back to the work
of Bernoulli, Kelly [308], Latané [346], and Latané and Tuttle [347].
Proportional gambling is sometimes referred to as the Kelly gambling
scheme. The improvement in the probability of winning by switching
envelopes in Problem 6.11 is based on Cover [130].

Shannon studied stochastic models for English in his original paper
[472]. His guessing game for estimating the entropy rate of English is
described in [482]. Cover and King [131] provide a gambling estimate
for the entropy of English. The analysis of the St. Petersburg paradox
is from Bell and Cover [39]. An alternative analysis can be found in
Feller [208].



I CHAPTER 7

CHANNEL CAPACITY

What do we mean when we say that A communicates with B? We mean
that the physical acts of A have induced a desired physical state in B. This
transfer of information is a physical process and therefore is subject to the
uncontrollable ambient noise and imperfections of the physical signaling
process itself. The communication is successful if the receiver B and the
transmitter A agree on what was sent.

In this chapter we find the maximum number of distinguishable signals
for n uses of a communication channel. This number grows exponen-
tially with n, and the exponent is known as the channel capacity. The
characterization of the channel capacity (the logarithm of the number of
distinguishable signals) as the maximum mutual information is the central
and most famous success of information theory.

The mathematical analog of a physical signaling system is shown
in Figure 7.1. Source symbols from some finite alphabet are mapped
into some sequence of channel symbols, which then produces the out-
put sequence of the channel. The output sequence is random but has a
distribution that depends on the input sequence. From the output sequence,
we attempt to recover the transmitted message.

Each of the possible input sequences induces a probability distribution
on the output sequences. Since two different input sequences may give rise
to the same output sequence, the inputs are confusable. In the next few
sections, we show that we can choose a “nonconfusable” subset of input
sequences so that with high probability there is only one highly likely input
that could have caused the particular output. We can then reconstruct the
input sequences at the output with a negligible probability of error. By
mapping the source into the appropriate “widely spaced” input sequences
to the channel, we can transmit a message with very low probability of
error and reconstruct the source message at the output. The maximum rate
at which this can be done is called the capacity of the channel.

Definition We define a discrete channel to be a system consisting of an
input alphabet X and output alphabet )/ and a probability transition matrix

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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n n 2
—W> Encoder X Channel 14 Decoder —W>
Message py1x) Estimate
of
Message

FIGURE 7.1. Communication system.

p(y|x) that expresses the probability of observing the output symbol y
given that we send the symbol x. The channel is said to be memoryless
if the probability distribution of the output depends only on the input at
that time and is conditionally independent of previous channel inputs or
outputs.

Definition We define the “information” channel capacity of a discrete
memoryless channel as

C=maxI(X;Y), (7.1)
p(x)

where the maximum is taken over all possible input distributions p(x).

We shall soon give an operational definition of channel capacity as the
highest rate in bits per channel use at which information can be sent with
arbitrarily low probability of error. Shannon’s second theorem establishes
that the information channel capacity is equal to the operational channel
capacity. Thus, we drop the word information in most discussions of
channel capacity.

There is a duality between the problems of data compression and data
transmission. During compression, we remove all the redundancy in the
data to form the most compressed version possible, whereas during data
transmission, we add redundancy in a controlled fashion to combat errors
in the channel. In Section 7.13 we show that a general communication
system can be broken into two parts and that the problems of data com-
pression and data transmission can be considered separately.

7.1 EXAMPLES OF CHANNEL CAPACITY

7.1.1 Noiseless Binary Channel

Suppose that we have a channel whose the binary input is reproduced
exactly at the output (Figure 7.2).

In this case, any transmitted bit is received without error. Hence, one
error-free bit can be transmitted per use of the channel, and the capacity is
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1 > 1

FIGURE 7.2. Noiseless binary channel. C =1 bit.

1 bit. We can also calculate the information capacity C = max I (X; Y) =
1 bit, which is achieved by using p(x) = (3, 3).

7.1.2  Noisy Channel with Nonoverlapping Outputs

This channel has two possible outputs corresponding to each of the two
inputs (Figure 7.3). The channel appears to be noisy, but really is not.
Even though the output of the channel is a random consequence of the
input, the input can be determined from the output, and hence every trans-
mitted bit can be recovered without error. The capacity of this channel is
also 1 bit per transmission. We can also calculate the information capacity
C = max I(X;Y) = 1 bit, which is achieved by using p(x) = (3, 3).

1/2
0
1/2 o
X Y
3
1/3
1
2/3 4

FIGURE 7.3. Noisy channel with nonoverlapping outputs. C = 1 bit.
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7.1.3 Noisy Typewriter

In this case the channel input is either received unchanged at the
output with probability % or is transformed into the next letter with
probability % (Figure 7.4). If the input has 26 symbols and we
use every alternate input symbol, we can transmit one of 13 sym-
bols without error with each transmission. Hence, the capacity of
this channel is log 13 bits per transmission. We can also calculate
the information capacity C = max [/ (X;Y) =max (H((Y) — H(Y|X)) =
max H(Y) — 1 =1log26 — 1 = log 13, achieved by using p(x) distributed
uniformly over all the inputs.

A ‘ A A i A
B ‘ B B
C ~C C i C
D “ D D
E ‘* E
‘~ i
‘~
—
: :
[—— :
E—
[ :
[——
[—0 :
[—0
‘~ :
[ ——
:‘ :
[ —
‘;
‘;
; Y Y
Z ; Z : Z
Noisy channel Noiseless subset of inputs

FIGURE 7.4. Noisy Typewriter. C = log 13 bits.
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7.1.4 Binary Symmetric Channel

Consider the binary symmetric channel (BSC), which is shown in Fig. 7.5.
This is a binary channel in which the input symbols are complemented
with probability p. This is the simplest model of a channel with errors,
yet it captures most of the complexity of the general problem.

When an error occurs, a 0 is received as a 1, and vice versa. The bits
received do not reveal where the errors have occurred. In a sense, all
the bits received are unreliable. Later we show that we can still use such
a communication channel to send information at a nonzero rate with an
arbitrarily small probability of error.

We bound the mutual information by

I(X;Y)=H()—-H{Y|X) (7.2)
=H(Y) =) pWHY|X =x) (7.3)
=H®Y)— ) px)H(p) (74)
= H(Y) — H(p) (7.5)
<1-H(p), (7.6)

where the last inequality follows because Y is a binary random variable.
Equality is achieved when the input distribution is uniform. Hence, the
information capacity of a binary symmetric channel with parameter p is

C=1-H(p)  bits. (1.7)
1-p
0 3 0
p
p
1 1
1-p

FIGURE 7.5. Binary symmetric channel. C = 1 — H(p) bits.
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7.1.5 Binary Erasure Channel

The analog of the binary symmetric channel in which some bits are lost
(rather than corrupted) is the binary erasure channel. In this channel, a
fraction « of the bits are erased. The receiver knows which bits have
been erased. The binary erasure channel has two inputs and three outputs
(Figure 7.6).

We calculate the capacity of the binary erasure channel as follows:

C =m(a));I(X; Y) (7.8)
p(x

=m(a>)i(H(Y) — H(Y|X)) (7.9)
p(x

=m(a))<H(Y) — H(x). (7.10)
px

The first guess for the maximum of H(Y) would be log 3, but we cannot
achieve this by any choice of input distribution p(x). Letting E be the
event {¥Y = e}, using the expansion

HY)=HY,E)=H(E)+ HY|E), (7.11)
and letting Pr(X = 1) = , we have

HY)=H(1 -7 —a),a,7(l —a)) = H@) + (1 —a)H (7).
(7.12)

1-«a

FIGURE 7.6. Binary erasure channel.
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Hence
C=maxH(Y) — H(x) (7.13)
px)
= m7;ax(1 —o)H(m)+ H(ax) — H(x) (7.14)
=max(l —a)H (1) (7.15)

where capacity is achieved by 7 = %

The expression for the capacity has some intuitive meaning: Since a
proportion « of the bits are lost in the channel, we can recover (at most)
a proportion 1 — « of the bits. Hence the capacity is at most 1 — «. It is
not immediately obvious that it is possible to achieve this rate. This will
follow from Shannon’s second theorem.

In many practical channels, the sender receives some feedback from
the receiver. If feedback is available for the binary erasure channel, it is
very clear what to do: If a bit is lost, retransmit it until it gets through.
Since the bits get through with probability 1 — «, the effective rate of
transmission is 1 — «. In this way we are easily able to achieve a capacity
of 1 — « with feedback.

Later in the chapter we prove that the rate 1 — « is the best that can be
achieved both with and without feedback. This is one of the consequences
of the surprising fact that feedback does not increase the capacity of

discrete memoryless channels.

7.2  SYMMETRIC CHANNELS

The capacity of the binary symmetric channel is C =1 — H(p) bits per
transmission, and the capacity of the binary erasure channel is C =1 —
« bits per transmission. Now consider the channel with transition matrix:

03 0.2 05
pylx)y=1 05 03 02 |. (7.17)
02 05 03

Here the entry in the xth row and the yth column denotes the conditional
probability p(y|x) that y is received when x is sent. In this channel, all
the rows of the probability transition matrix are permutations of each other
and so are the columns. Such a channel is said to be symmetric. Another
example of a symmetric channel is one of the form

Y=X+Z (mod o), (7.18)
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where Z has some distribution on the integers {0, 1,2,...,c — 1}, X has
the same alphabet as Z, and Z is independent of X.

In both these cases, we can easily find an explicit expression for the
capacity of the channel. Letting r be a row of the transition matrix, we
have

I(X;Y)=H)—-H{Y|X) (7.19)
=H({Y)—H() (7.20)
<log|Y| — H(r) (7.21)

with equality if the output distribution is uniform. But p(x) = 1/|A]
achieves a uniform distribution on Y, as seen from

1 1 1
_ - —c— =, 7.22
r(y) XEEXp(ny)p(x) K E p(ylx) C|X| ™ (7.22)

where c is the sum of the entries in one column of the probability transition
matrix.
Thus, the channel in (7.17) has the capacity

€ =max 1 (X; ) =log3 — H(05,03,0.2), (7.23)
p(x

and C is achieved by a uniform distribution on the input.

The transition matrix of the symmetric channel defined above is doubly
stochastic. In the computation of the capacity, we used the facts that the
rows were permutations of one another and that all the column sums were
equal.

Considering these properties, we can define a generalization of the
concept of a symmetric channel as follows:

Definition A channel is said to be symmetric if the rows of the channel
transition matrix p(y|x) are permutations of each other and the columns
are permutations of each other. A channel is said to be weakly symmetric
if every row of the transition matrix p(-|x) is a permutation of every other
row and all the column sums ) p(y|x) are equal.

For example, the channel with transition matrix

p(ylx) = ( ) (7.24)

is weakly symmetric but not symmetric.

= L] —
= O\ —
A= =
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The above derivation for symmetric channels carries over to weakly
symmetric channels as well. We have the following theorem for weakly
symmetric channels:

Theorem 7.2.1  For a weakly symmetric channel,
C =log|)Y| — H((row of transition matrix), (7.25)

and this is achieved by a uniform distribution on the input alphabet.

7.3 PROPERTIES OF CHANNEL CAPACITY

1. C >0since I(X;Y) > 0.
2. C <log|&] since C =max [ (X;Y) <max H(X) = log|&].
. C <logl)) for the same reason.

(98]

4. I1(X;Y) is a continuous function of p(x).

5. I(X;Y) is a concave function of p(x) (Theorem 2.7.4). Since
I(X;Y) is a concave function over a closed convex set, a local
maximum is a global maximum. From properties 2 and 3, the maxi-
mum is finite, and we are justified in using the term maximum rather
than supremum in the definition of capacity. The maximum can then
be found by standard nonlinear optimization techniques such as gra-
dient search. Some of the methods that can be used include the
following:

o Constrained maximization using calculus and the Kuhn—Tucker
conditions.

o The Frank—Wolfe gradient search algorithm.

e An iterative algorithm developed by Arimoto [25] and Blahut
[65]. We describe the algorithm in Section 10.8.

In general, there is no closed-form solution for the capacity. But for
many simple channels it is possible to calculate the capacity using prop-
erties such as symmetry. Some of the examples considered earlier are of
this form.

7.4 PREVIEW OF THE CHANNEL CODING THEOREM

So far, we have defined the information capacity of a discrete memoryless
channel. In the next section we prove Shannon’s second theorem, which
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Yn
Xn

FIGURE 7.7. Channels after n uses.

gives an operational meaning to the definition of capacity as the number
of bits we can transmit reliably over the channel. But first we will try to
give an intuitive idea as to why we can transmit C bits of information over
a channel. The basic idea is that for large block lengths, every channel
looks like the noisy typewriter channel (Figure 7.4) and the channel has a
subset of inputs that produce essentially disjoint sequences at the output.

For each (typical) input n-sequence, there are approximately 2" (1X)
possible Y sequences, all of them equally likely (Figure 7.7). We wish
to ensure that no two X sequences produce the same Y output sequence.
Otherwise, we will not be able to decide which X sequence was sent.

The total number of possible (typical) ¥ sequences is & 2" This set
has to be divided into sets of size 2"#Y1X) corresponding to the different
input X sequences. The total number of disjoint sets is less than or equal
to 2MHX)—HYIX)) — onl(X:Y) Hence, we can send at most ~ 2 (X:Y)
distinguishable sequences of length 7.

Although the above derivation outlines an upper bound on the capacity,
a stronger version of the above argument will be used in the next section
to prove that this rate / is achievable with an arbitrarily low probability
of error.

Before we proceed to the proof of Shannon’s second theorem, we need
a few definitions.

7.5 DEFINITIONS

We analyze a communication system as shown in Figure 7.8.
A message W, drawn from the index set {1, 2, ..., M}, results in the
signal X"(W), which is received by the receiver as a random sequence
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—W> Encoder X Channel Y Decoder —W>
Message ply1x) Estimate

of
Message

FIGURE 7.8. Communication channel.

Y" ~ p(y"|x"). The receiver then guesses the index W by an appropriate
decoding rule W = g(¥"). The receiver makes an error if W is not the
same as the index W that was transmitted. We now define these ideas
formally.

Definition A discrete channel, denoted by (X, p(y|x), )), consists of
two finite sets & and ) and a collection of probability mass functions
p(y|x), one for each x € A&, such that for every x and y, p(y|x) > 0, and
for every x, Zy p(y|x) = 1, with the interpretation that X is the input
and Y is the output of the channel.

Definition The nth extension of the discrete memoryless channel (DMC)
is the channel (X", p(y"|x"), V"), where

POk, v = pOx),  k=1,2,....n. (7.26)

Remark If the channel is used without feedback [i.e., if the input sym-
bols do not depend on the past output symbols, namely, p(xi|x !, y*=1)
= p(x¢|x*~1)], the channel transition function for the nth extension of the
discrete memoryless channel reduces to

p("1x") = pGilxo. (7.27)

i=1

When we refer to the discrete memoryless channel, we mean the discrete
memoryless channel without feedback unless we state explicitly other-
wise.

Definition An (M, n) code for the channel (X, p(y|x), )) consists of
the following:

1. An index set {1,2,..., M}.

2. Anencoding function X": {1,2, ..., M} — X", yielding codewords
x"(1), x"(2), ..., x"(M). The set of codewords is called the code-
book.
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3. A decoding function
g:YV'—={1,2,..., M}, (7.28)

which is a deterministic rule that assigns a guess to each possible
received vector.

Definition (Conditional probability of error) Let

M =Pr(g(Y") #£i|X" =x"(i) =Y _ pO" X" ) (g(y") # i) (7.29)

yll

be the conditional probability of error given that index i was sent, where
I (+) is the indicator function.

Definition The maximal probability of error . for an (M, n) code is
defined as

AW = max A (7.30)
i€{l,2,...M}

Definition The (arithmetic) average probability of error P{™ for an
(M, n) code is defined as

| M
PM = ~ Z Ai. (7.31)
i=1
Note that if the index W is chosen according to a uniform distribution
over the set {1,2,..., M}, and X" = x" (W), then
P = Pr(W # g(¥Y"), (7.32)
(.e., Pe(") is the probability of error). Also, obviously,

P <A™, (7.33)

One would expect the maximal probability of error to behave quite differ-
ently from the average probability. But in the next section we prove that
a small average probability of error implies a small maximal probability
of error at essentially the same rate.
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It is worth noting that Pe(”> defined in (7.32) is only a mathematical
construct of the conditional probabilities of error A; and is itself a proba-
bility of error only if the message is chosen uniformly over the message
set {1,2,..., oM }. However, both in the proof of achievability and the
converse, we choose a uniform distribution on W to bound the probability
of error. This allows us to establish the behavior of Pe(") and the maximal
probability of error A" and thus characterize the behavior of the channel
regardless of how it is used (i.e., no matter what the distribution of W).

Definition The rate R of an (M, n) code is

log M
R= %
n

bits per transmission. (7.34)

Definition A rate R is said to be achievable if there exists a sequence
of ((Z"R-‘ ,n) codes such that the maximal probability of error A" tends
to 0 as n — oo.

Later, we write (2"%, n) codes to mean ([2"%],n) codes. This will
simplify the notation.

Definition The capacity of a channel is the supremum of all achievable
rates.

Thus, rates less than capacity yield arbitrarily small probability of error
for sufficiently large block lengths.

7.6 JOINTLY TYPICAL SEQUENCES

Roughly speaking, we decode a channel output Y” as the ith index if
the codeword X" (i) is “jointly typical” with the received signal Y". We
now define the important idea of joint typicality and find the probabil-
ity of joint typicality when X" (i) is the true cause of Y”" and when it
is not.

Definition The set A" of jointly typical sequences {(x",y")} with

respect to the distribution p(x, y) is the set of n-sequences with empirical
entropies e-close to the true entropies:

Aén) — {(xn, yn) e X" x yn .

—% log p(x") — H(X)| < e, (7.35)
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‘—% log p(y") — H(Y)| <, (7.36)
‘—%logp(x",y")—H(X, Y) <e}, (7.37)

where
p(x", Yy = ﬁp(xi, i) (7.38)

i=1

Theorem 7.6.1 (Joint AEP) Let (X", Y") be sequences of length n
drawn i.i.d. according to p(x", y") = [\_, p(xi, yi). Then:

1 Pr((X",Y") € A™) — 1 asn — oo.
2. |A1(5n)| < 2n(H(X,Y)+s)‘

3. If(f(”, 17”) ~ pxMpO") [ie., X" and Y" are independent with the
same marginals as p(x", y")], then

Pr <()}” }7") c A(n)) < 9—nU(X;Y)=3€) (7.39)
) € < . )
Also, for sufficiently large n,

Pr ((5(", 7 e AS”) > (1 — e)2 I XD+30) (7.40)

Proof

1. We begin by showing that with high probability, the sequence is in
the typical set. By the weak law of large numbers,

1
——log p(X") - —E[log p(X)] = H(X) in probability.
n

(7.41)
Hence, given € > 0, there exists n, such that for all n > n;,

pr =) <

Similarly, by the weak law,
1
——logp(Y") - —E[log p(Y)] = H(Y) in probability (7.43)
n

—% log p(X") — H(X) (7.42)

W M
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and

1
——log p(X",Y") - —E[log p(X,Y)] = H(X,Y) in probability,
n

(7.44)
and there exist n, and n3, such that for all n > n»,
1 " €
Pr{|——logp(Y") —HY)| >¢€ <§ (7.45)
n
and for all n > nj,
1
Pr (‘——10;; p(X", Y™y — H(X, V)| > e) < g (7.46)
n

Choosing n > max{ni, n,, n3}, the probability of the union of the
sets in (7.42), (7.45), and (7.46) must be less than €. Hence for n
sufficiently large, the probability of the set Ag”) is greater than 1 — e,
establishing the first part of the theorem.

. To prove the second part of the theorem, we have

1= PGy @47)
= PGy (7:48)
AL
2 |A§n)|2—n(H(X~Y)+€), (7.49)
and hence
|A£n)| < ZH(H(XVYH‘G)‘ (7.50)

. Now if X" and Y" are independent but have the same marginals as
X" and Y", then

Pr(X", ") e Ay = Y pG"pG") (7.51)
@n,ymeAl

< 2n(H(X,Y)+e)2—n(H(X)—e)2—n(H(Y)—E) (752)

— p—nU(X:Y)=3€) (7.53)
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For sufficiently large n, Pr(Aé”)) > 1 — ¢, and therefore

l—e< > pGa"y" (7.54)
@ ymeAl”
< |A£n)|2—n(H(X,Y)—€) (755)
and
|AD] > (1 — e)2nHX)=e) (7.56)

By similar arguments to the upper bound above, we can also show
that for n sufficiently large,

Pr((X",¥") € A?) =Y p(x")p(y") (7.57)
AP
> (1 _ 6)2;1(H(X,)’)—e)z—n(H(X)—i-e)2—11(H(Y)-i—e)
(7.58)
= (1 —e)27 U&7 (7.59)
The jointly typical set is illustrated in Figure 7.9. There are about
2"HX) typical X sequences and about 2"7() typical Y sequences. How-

ever, since there are only 2"7X-Y) jointly typical sequences, not all pairs
of typical X" and typical Y" are also jointly typical. The probability that

yn
X"

FIGURE 7.9. Jointly typical sequences.
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any randomly chosen pair is jointly typical is about 27"/(X:¥) Hence,
we can consider about 2" X:¥) quch pairs before we are likely to come
across a jointly typical pair. This suggests that there are about 2"/ (X:¥)
distinguishable signals X".

Another way to look at this is in terms of the set of jointly typical
sequences for a fixed output sequence Y, presumably the output sequence
resulting from the true input signal X". For this sequence Y”, there are
about 2"7(X1Y) conditionally typical input signals. The probability that
some randomly chosen (other) input signal X" is jointly typical with Y"
is about 2"HXIY) pnHX) — 2=nl(X:¥) Thig again suggests that we can
choose about 2/ X:¥) codewords X" (W) before one of these codewords
will get confused with the codeword that caused the output Y".

7.7 CHANNEL CODING THEOREM

We now prove what is perhaps the basic theorem of information theory,
the achievability of channel capacity, first stated and essentially proved
by Shannon in his original 1948 paper. The result is rather counterintu-
itive; if the channel introduces errors, how can one correct them all? Any
correction process is also subject to error, ad infinitum.

Shannon used a number of new ideas to prove that information can be
sent reliably over a channel at all rates up to the channel capacity. These
ideas include:

o Allowing an arbitrarily small but nonzero probability of error

 Using the channel many times in succession, so that the law of large
numbers comes into effect

o Calculating the average of the probability of error over a random
choice of codebooks, which symmetrizes the probability, and which
can then be used to show the existence of at least one good code

Shannon’s outline of the proof was based on the idea of typical sequen-
ces, but the proof was not made rigorous until much later. The proof given
below makes use of the properties of typical sequences and is probably
the simplest of the proofs developed so far. As in all the proofs, we
use the same essential ideas—random code selection, calculation of the
average probability of error for a random choice of codewords, and so
on. The main difference is in the decoding rule. In the proof, we decode
by joint typicality; we look for a codeword that is jointly typical with the
received sequence. If we find a unique codeword satisfying this property,
we declare that word to be the transmitted codeword. By the properties
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of joint typicality stated previously, with high probability the transmitted
codeword and the received sequence are jointly typical, since they are
probabilistically related. Also, the probability that any other codeword
looks jointly typical with the received sequence is 27"/, Hence, if we
have fewer then 2"/ codewords, then with high probability there will be
no other codewords that can be confused with the transmitted codeword,
and the probability of error is small.

Although jointly typical decoding is suboptimal, it is simple to analyze
and still achieves all rates below capacity.

We now give the complete statement and proof of Shannon’s second
theorem:

Theorem 7.7.1 (Channel coding theorem)  For a discrete memory-
less channel, all rates below capacity C are achievable. Specifically, for
every rate R < C, there exists a sequence of (2"%, n) codes with maximum
probability of error A" — 0.

Conversely, any sequence of (2"R n) codes with .V — 0 must have
R <C.

Proof: We prove that rates R < C are achievable and postpone proof of
the converse to Section 7.9.

Achievability: Fix p(x). Generate a (2"R, n) code at random according
to the distribution p(x). Specifically, we generate 2"X codewords inde-
pendently according to the distribution

pe™ =TT pexo. (7.60)
i=1

We exhibit the 2% codewords as the rows of a matrix:

xi () () e X (1)
C= : S : (7.61)

QR xp@R) e (2R

Each entry in this matrix is generated i.i.d. according to p(x). Thus, the
probability that we generate a particular code C is

MRy

Pr© =[] pGuiw. (7.62)

w=1i=1
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Consider the following sequence of events:

1.

2.

7.

A random code C is generated as described in (7.62) according to
p(x).

The code C is then revealed to both sender and receiver. Both sender
and receiver are also assumed to know the channel transition matrix
p(y|x) for the channel.

. A message W is chosen according to a uniform distribution

Pr(W = w) = 27"k, w=1,2,...,2"% (7.63)

The wth codeword X" (w), corresponding to the wth row of C, is
sent over the channel.

. The receiver receives a sequence Y" according to the distribution

P(y"|x"(w)) = [ | pilxi(w)). (7.64)

i=1

The receiver guesses which message was sent. (The optimum proce-
dure to minimize probability of error is maximum likelihood decod-
ing (i.e., the receiver should choose the a posteriori most likely
message). But this procedure is difficult to analyze. Instead, we will
use jointly typical decoding, which is described below. Jointly typi-
cal decoding is easier to analyze and is asymptotically optimal.) In
jointly typical decoding, the receiver declares that the index W was
sent if the following conditions are satisfied:

o (X"(W), Y™) is jointly typical.
« There is no other index W’ # W such that (X"(W'),Y") e
A,

If no such W exists or if there is more than one such, an error is
declared. (We may assume that the receiver outputs a dummy index
such as 0 in this case.)

There is a decoding error if W # W. Let & be the event {W # W}.

Analysis of the probability of error

Outline: We first outline the analysis. Instead of calculating the proba-
bility of error for a single code, we calculate the average over all codes
generated at random according to the distribution (7.62). By the symmetry
of the code construction, the average probability of error does not depend
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on the particular index that was sent. For a typical codeword, there are two
different sources of error when we use jointly typical decoding: Either the
output Y" is not jointly typical with the transmitted codeword or there is
some other codeword that is jointly typical with Y”. The probability that
the transmitted codeword and the received sequence are jointly typical
goes to 1, as shown by the joint AEP. For any rival codeword, the proba-
bility that it is jointly typical with the received sequence is approximately
27" and hence we can use about 2"/ codewords and still have a low
probability of error. We will later extend the argument to find a code with
a low maximal probability of error.

Detailed calculation of the probability of error: We let W be drawn
according to a uniform distribution over {1,2,...,2"%} and use jointly
typical decoding W(y”) as described in step 6. Let £ = (W (™) #* W}
denote the error event. We will calculate the average probability of error,
averaged over all codewords in the codebook, and averaged over all code-
books; that is, we calculate

Pr(&) = > Pr©P"(0) (7.65)
C
1 an
- Xc: Pr(0)3, 5 ; A (©) (7.66)
2
= ¥ D) P01, (0, (7.67)
w=1 C

where P (C) is defined for jointly typical decoding. By the symmetry
of the code construction, the average probability of error averaged over
all codes does not depend on the particular index that was sent [i.e.,
> ¢ Pr(C)A,(C) does not depend on w]. Thus, we can assume without
loss of generality that the message W = 1 was sent, since

l an
Pr&) =25 >, ) PrOm(©) (7.68)
w=1 C
= PrOM(©) (7.69)
C
=Pr(E|W = 1). (7.70)

Define the following events:

E; = {(X"(),Y")isin AM}, iel{l, 2,...,2"%y, (7.71)
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where E; is the event that the ith codeword and Y are jointly typical.
Recall that Y" is the result of sending the first codeword X" (1) over the
channel.

Then an error occurs in the decoding scheme if either E{ occurs (when
the transmitted codeword and the received sequence are not jointly typical)
or E, U E3U---U Eyur occurs (when a wrong codeword is jointly typical
with the received sequence). Hence, letting P(€) denote Pr(E|W = 1), we
have

Pr|W =1)=P (E{UE,UE3U---UE|W=1) (172

an
SP(ETIW=1)+ZP(EL~IW=1), (1.73)
i=2
by the union of events bound for probabilities. Now, by the joint AEP,
P(E{|W = 1)— 0, and hence
P(E{|W =1) <e€ for n sufficiently large. (7.74)

Since by the code generation process, X" (1) and X" (i) are independent
for i # 1, so are Y" and X" (i). Hence, the probability that X" (i) and Y"
are jointly typical is < 27"/ (X:¥)=39) by the joint AEP. Consequently,

on R

Pr(&) =Pr(E|W = 1) < P(E{|W = 1)+ Y _ P(E}|W = 1) (7.75)
i=2

nR
<e+ 22: p—n(I(X;Y)=3¢€) (7.76)
i=2
et (2nR —1) p—n((X;Y)=3¢€) (7.77)
< € 4 23U (XsV)=R) (7.78)
<2¢ (7.79)

if n is sufficiently large and R < I(X;Y) — 3¢. Hence, if R < I(X;Y),
we can choose € and n so that the average probability of error, averaged
over codebooks and codewords, is less than 2e.

To finish the proof, we will strengthen this conclusion by a series of
code selections.

1. Choose p(x) in the proof to be p*(x), the distribution on X that
achieves capacity. Then the condition R < I(X; Y) can be replaced
by the achievability condition R < C.
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2. Get rid of the average over codebooks. Since the average proba-
bility of error over codebooks is small (< 2¢), there exists at least
one codebook C* with a small average probability of error. Thus,
Pr(&|C*) < 2e. Determination of C* can be achieved by an exhaus-
tive search over all (2"%, n) codes. Note that

2nR

1
PrEIC) = 2z D 4 (€Y, (7.80)
i=1

since we have chosen W according to a uniform distribution as
specified in (7.63).

3. Throw away the worst half of the codewords in the best codebook
C*. Since the arithmetic average probability of error Pe(")(C*) for
this code is less then 2¢, we have

1
Pr(&|C*) < g D 1€ < 2, (7.81)

which implies that at least half the indices i and their associated
codewords X" (i) must have conditional probability of error A; less
than 4¢ (otherwise, these codewords themselves would contribute
more than 2¢ to the sum). Hence the best half of the codewords
have a maximal probability of error less than 4€. If we reindex these
codewords, we have 2"8=1 codewords. Throwing out half the code-
words has changed the rate from R to R — %, which is negligible
for large n.

Combining all these improvements, we have constructed a code of rate
R =R — %, with maximal probability of error A?Y < 4e. This proves the
achievability of any rate below capacity. 0

Random coding is the method of proof for Theorem 7.7.1, not the
method of signaling. Codes are selected at random in the proof merely to
symmetrize the mathematics and to show the existence of a good deter-
ministic code. We proved that the average over all codes of block length
n has a small probability of error. We can find the best code within this
set by an exhaustive search. Incidentally, this shows that the Kolmogorov
complexity (Chapter 14) of the best code is a small constant. This means
that the revelation (in step 2) to the sender and receiver of the best code
C* requires no channel. The sender and receiver merely agree to use the
best (2%, n) code for the channel.

Although the theorem shows that there exist good codes with arbitrar-
ily small probability of error for long block lengths, it does not provide
a way of constructing the best codes. If we used the scheme suggested
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by the proof and generate a code at random with the appropriate distri-
bution, the code constructed is likely to be good for long block lengths.
However, without some structure in the code, it is very difficult to decode
(the simple scheme of table lookup requires an exponentially large table).
Hence the theorem does not provide a practical coding scheme. Ever
since Shannon’s original paper on information theory, researchers have
tried to develop structured codes that are easy to encode and decode.
In Section 7.11, we discuss Hamming codes, the simplest of a class of
algebraic error correcting codes that can correct one error in a block of
bits. Since Shannon’s paper, a variety of techniques have been used to
construct error correcting codes, and with turbo codes have come close
to achieving capacity for Gaussian channels.

7.8 ZERO-ERROR CODES

The outline of the proof of the converse is most clearly motivated by
going through the argument when absolutely no errors are allowed. We
will now prove that Pe(") = 0 implies that R < C. Assume that we have a
(2R n) code with zero probability of error [i.e., the decoder output g(¥")
is equal to the input index W with probability 1]. Then the input index W
is determined by the output sequence [i.e., H(W|Y") = 0]. Now, to obtain
a strong bound, we arbitrarily assume that W is uniformly distributed
over {1,2,..., Z”R}. Thus, H(W) = nR. We can now write the string of
inequalities:

nR=H(W) = HWI[Y")+I(W: Y") (7.82)
=0

— I(W: Y™ (7.83)
@y (7.84)

b n
EDIN(EAND (7.85)

i=1
(%) nC, (7.86)

where (a) follows from the data-processing inequality (since W — X"(W)
— Y" forms a Markov chain), (b) will be proved in Lemma 7.9.2 using
the discrete memoryless assumption, and (c) follows from the definition
of (information) capacity. Hence, for any zero-error (2"% n) code, for
all n,

R<C. (7.87)



206 CHANNEL CAPACITY

7.9 FANO’S INEQUALITY AND THE CONVERSE
TO THE CODING THEOREM

We now extend the proof that was derived for zero-error codes to the case
of codes with very small probabilities of error. The new ingredient will be
Fano’s inequality, which gives a lower bound on the probability of error
in terms of the conditional entropy. Recall the proof of Fano’s inequality,
which is repeated here in a new context for reference.

Let us define the setup under consideration. The index W is uniformly
distributed on the set W = {1, 2, ..., 2"R}, and the sequence Y" is related
probabilistically to W. From Y", we estimate the index W that was sent.
Let the estimate be W = g(¥Y™y. Thus, W - X"(W) - Y" — W forms
a Markov chain. Note that the probability of error is

Pr(W#W)= 2% > xi=P". (7.88)

We begin with the following lemma, which has been proved in
Section 2.10:

Lemma 7.9.1 (Fano’s inequality) For a discrete memoryless channel
with a codebook C and the input message W uniformly distributed over
2"R e have

H(W|W) <1+ P"nR. (7.89)
Proof: Since W is uniformly distributed, we have Pe(") = Pr(W # w).

We apply Fano’s inequality (Theorem 2.10.1) for W in an alphabet of
size 2", O

We will now prove a lemma which shows that the capacity per trans-
mission is not increased if we use a discrete memoryless channel many
times.

Lemma7.9.2 Let Y" be the result of passing X" through a discrete
memoryless channel of capacity C. Then

I(X"; YY"y <nC  forall p(x"). (7.90)
Proof

1(X"; YY) = H(Y") — H(Y"|X"™) (7.91)

=HY") =Y HXN.....Y; . X" (192)
i=1

=HY") = ) Hi|X)), (7.93)

i=1
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since by the definition of a discrete memoryless channel, ¥; depends only
on X; and is conditionally independent of everything else. Continuing the
series of inequalities, we have

I(X"Y") = H(Y") = ) H(Yi|X)) (7.94)
i=1
<Y HY) =Y HYilX) (7.95)
i=1 i=1
=) (XY (7.96)
<nC, (7.97)

where (7.95) follows from the fact that the entropy of a collection of ran-
dom variables is less than the sum of their individual entropies, and (7.97)
follows from the definition of capacity. Thus, we have proved that using the
channel many times does not increase the information capacity in bits per
transmission. O

We are now in a position to prove the converse to the channel coding
theorem.

Proof: Converse to Theorem 7.7.1 (Channel coding theorem). We have
to show that any sequence of (2"%, 1) codes with A7 — 0 must have R <
C. If the maximal probability of error tends to zero, the average probability
of error for the sequence of codes also goes to zero [i.e., A?) — 0 implies
Pe(”) — 0, where Pe(") is defined in (7.32)]. For a fixed encoding rule
X"(-) and a fixed decoding rule W= g(Y™), we have W — X"(W) —
Y" — W. For each n, let W be drawn according to a uniform distribution
over {1,2,..., 2”R}. Since W has a uniform distribution, Pr(W + W)=
pm = 1 > &i. Hence,

iR
nRE HW) (7.98)

© powiy + 10w i (7.99)

iy PnR+ 1(W; W) (7.100)

@ 1+ P"nR+1(X";Y") (7.101)

©)
< 14+ P"nR +nC, (7.102)
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where (a) follows from the assumption that W is uniform over {1, 2, ...,
2"R} (b) is an identity, (c) is Fano’s inequality for W taking on at most 2%
values, (d) is the data-processing inequality, and (e) is from Lemma 7.9.2.
Dividing by n, we obtain

(n) 1
R<P"R+—-+C. (7.103)
n

Now letting n — oo, we see that the first two terms on the right-hand
side tend to 0, and hence

R <C. (7.104)
We can rewrite (7.103) as
C 1
PW>1—-=_-—. 7.105
e - R nR ( )

This equation shows that if R > C, the probability of error is bounded
away from O for sufficiently large n (and hence for all n, since if P™ =0
for small n, we can construct codes for large n with Pe(") = 0 by con-
catenating these codes). Hence, we cannot achieve an arbitrarily low
probability of error at rates above capacity. O

This converse is sometimes called the weak converse to the channel
coding theorem. It is also possible to prove a strong converse, which states
that for rates above capacity, the probability of error goes exponentially
to 1. Hence, the capacity is a very clear dividing point—at rates below
capacity, Pe(") — 0 exponentially, and at rates above capacity, Pe(") — 1
exponentially.

7.10 EQUALITY IN THE CONVERSE TO THE CHANNEL
CODING THEOREM

We have proved the channel coding theorem and its converse. In essence,
these theorems state that when R < C, it is possible to send informa-
tion with an arbitrarily low probability of error, and when R > C, the
probability of error is bounded away from zero.

It is interesting and rewarding to examine the consequences of equality
in the converse; hopefully, it will give some ideas as to the kinds of codes
that achieve capacity. Repeating the steps of the converse in the case when
P, =0, we have

nR = H(W) (7.106)
= HW|W)+ [(W;: W) (7.107)
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= [(W; W)) (7.108)

@ oy v (7.109)

= HY") — HY"|X") (7.110)

= H(Y") =Y H(Y;|X;) (7.111)

i=l1

(b) n n

< Y HY) =) HilX) (7.112)
i=1 i=1

=Y (X1 Y)) (7.113)
i=1

©)

2 e, (7.114)

We have equality in (a), the data-processing inequality, only if 7(Y";
X"(W)|W) =0 and I (X"; Y"|W) = 0, which is true if all the codewords
are distinct and if W is a sufficient statistic for decoding. We have equality
in (b) only if the Y;’s are independent, and equality in (c) only if the
distribution of X; is p*(x), the distribution on X that achieves capacity.
We have equality in the converse only if these conditions are satisfied. This
indicates that a capacity-achieving zero-error code has distinct codewords
and the distribution of the Y;’s must be i.i.d. with

P =) P x)pOylv), (7.115)

the distribution on Y induced by the optimum distribution on X. The
distribution referred to in the converse is the empirical distribution on X
and Y induced by a uniform distribution over codewords, that is,

2nR

1
P, yi) = g D1 (Xi(w) = xi) pyilxo). (7.116)
w=1

We can check this result in examples of codes that achieve capacity:

1. Noisy typewriter. In this case we have an input alphabet of 26 let-
ters, and each letter is either printed out correctly or changed to the
next letter with probability % A simple code that achieves capacity
(log 13) for this channel is to use every alternate input letter so that
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no two letters can be confused. In this case, there are 13 codewords
of block length 1. If we choose the codewords i.i.d. according to a
uniform distribution on {1, 3, 5,7, ..., 25}, the output of the channel
is also i.i.d. and uniformly distributed on {1, 2, . .., 26}, as expected.

2. Binary symmetric channel. Since given any input sequence, every
possible output sequence has some positive probability, it will not
be possible to distinguish even two codewords with zero probability
of error. Hence the zero-error capacity of the BSC is zero. How-
ever, even in this case, we can draw some useful conclusions. The
efficient codes will still induce a distribution on Y that looks i.i.d.
~ Bernoulli(%). Also, from the arguments that lead up to the con-
verse, we can see that at rates close to capacity, we have almost
entirely covered the set of possible output sequences with decoding
sets corresponding to the codewords. At rates above capacity, the
decoding sets begin to overlap, and the probability of error can no
longer be made arbitrarily small.

7.11 HAMMING CODES

The channel coding theorem promises the existence of block codes that
will allow us to transmit information at rates below capacity with an
arbitrarily small probability of error if the block length is large enough.
Ever since the appearance of Shannon’s original paper [471], people have
searched for such codes. In addition to achieving low probabilities of
error, useful codes should be “simple,” so that they can be encoded and
decoded efficiently.

The search for simple good codes has come a long way since the pub-
lication of Shannon’s original paper in 1948. The entire field of coding
theory has been developed during this search. We will not be able to
describe the many elegant and intricate coding schemes that have been
developed since 1948. We will only describe the simplest such scheme
developed by Hamming [266]. It illustrates some of the basic ideas under-
lying most codes.

The object of coding is to introduce redundancy so that even if some
of the information is lost or corrupted, it will still be possible to recover
the message at the receiver. The most obvious coding scheme is to repeat
information. For example, to send a 1, we send 11111, and to send a 0, we
send 00000. This scheme uses five symbols to send 1 bit, and therefore
has a rate of % bit per symbol. If this code is used on a binary symmetric
channel, the optimum decoding scheme is to take the majority vote of
each block of five received bits. If three or more bits are 1, we decode
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the block as a 1; otherwise, we decode it as 0. An error occurs if and
only if more than three of the bits are changed. By using longer repetition
codes, we can achieve an arbitrarily low probability of error. But the rate
of the code also goes to zero with block length, so even though the code
is “simple,” it is really not a very useful code.

Instead of simply repeating the bits, we can combine the bits in some
intelligent fashion so that each extra bit checks whether there is an error in
some subset of the information bits. A simple example of this is a parity
check code. Starting with a block of n — 1 information bits, we choose
the nth bit so that the parity of the entire block is O (the number of 1’s
in the block is even). Then if there is an odd number of errors during
the transmission, the receiver will notice that the parity has changed and
detect the error. This is the simplest example of an error-detecting code.
The code does not detect an even number of errors and does not give any
information about how to correct the errors that occur.

We can extend the idea of parity checks to allow for more than one
parity check bit and to allow the parity checks to depend on various subsets
of the information bits. The Hamming code that we describe below is an
example of a parity check code. We describe it using some simple ideas
from linear algebra.

To illustrate the principles of Hamming codes, we consider a binary
code of block length 7. All operations will be done modulo 2. Consider
the set of all nonzero binary vectors of length 3. Arrange them in columns
to form a matrix:

H= (7.117)

—_ O O
O = O

0
1
1

S O =

1
0
1

o = -
e

Consider the set of vectors of length 7 in the null space of H (the vectors
which when multiplied by H give 000). From the theory of linear spaces,
since H has rank 3, we expect the null space of H to have dimension 4.
These 2* codewords are

0000000 0100101 1000011 1100110
0001111 0101010 1001100 1101001
0010110 0110011 1010101 1110000
0011001 0111100 1011010 1111111

Since the set of codewords is the null space of a matrix, it is /inear in the
sense that the sum of any two codewords is also a codeword. The set of
codewords therefore forms a linear subspace of dimension 4 in the vector
space of dimension 7.
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Looking at the codewords, we notice that other than the all-0 codeword,
the minimum number of 1’s in any codeword is 3. This is called the
minimum weight of the code. We can see that the minimum weight of
a code has to be at least 3 since all the columns of H are different, so
no two columns can add to 000. The fact that the minimum distance is
exactly 3 can be seen from the fact that the sum of any two columns must
be one of the columns of the matrix.

Since the code is linear, the difference between any two codewords is
also a codeword, and hence any two codewords differ in at least three
places. The minimum number of places in which two codewords differ is
called the minimum distance of the code. The minimum distance of the
code is a measure of how far apart the codewords are and will determine
how distinguishable the codewords will be at the output of the channel.
The minimum distance is equal to the minimum weight for a linear code.
We aim to develop codes that have a large minimum distance.

For the code described above, the minimum distance is 3. Hence if a
codeword c is corrupted in only one place, it will differ from any other
codeword in at least two places and therefore be closer to ¢ than to
any other codeword. But can we discover which is the closest codeword
without searching over all the codewords?

The answer is yes. We can use the structure of the matrix H for decod-
ing. The matrix H, called the parity check matrix, has the property that
for every codeword ¢, He = 0. Let e; be a vector with a 1 in the ith
position and 0’s elsewhere. If the codeword is corrupted at position i, the
received vector r = ¢ + e;. If we multiply this vector by the matrix H,
we obtain

Hr = H(c+e)=Hc+ He; = He;, (7.118)

which is the vector corresponding to the ith column of H. Hence looking
at Hr, we can find which position of the vector was corrupted. Revers-
ing this bit will give us a codeword. This yields a simple procedure for
correcting one error in the received sequence. We have constructed a code-
book with 16 codewords of block length 7, which can correct up to one
error. This code is called a Hamming code.

We have not yet identified a simple encoding procedure; we could use
any mapping from a set of 16 messages into the codewords. But if we
examine the first 4 bits of the codewords in the table, we observe that
they cycle through all 2* combinations of 4 bits. Thus, we could use
these 4 bits to be the 4 bits of the message we want to send; the other
3 bits are then determined by the code. In general, it is possible to modify
a linear code so that the mapping is explicit, so that the first k bits in each
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codeword represent the message, and the last n — k bits are parity check
bits. Such a code is called a systematic code. The code is often identified
by its block length 7, the number of information bits k£ and the minimum
distance d. For example, the above code is called a (7,4,3) Hamming code
(ie,n=7k=4,and d = 3).

An easy way to see how Hamming codes work is by means of a Venn
diagram. Consider the following Venn diagram with three circles and with
four intersection regions as shown in Figure 7.10. To send the information
sequence 1101, we place the 4 information bits in the four intersection
regions as shown in the figure. We then place a parity bit in each of the
three remaining regions so that the parity of each circle is even (i.e., there
are an even number of 1’s in each circle). Thus, the parity bits are as
shown in Figure 7.11.

Now assume that one of the bits is changed; for example one of the
information bits is changed from 1 to 0 as shown in Figure 7.12. Then
the parity constraints are violated for two of the circles (highlighted in the
figure), and it is not hard to see that given these violations, the only single
bit error that could have caused it is at the intersection of the two circles
(i.e., the bit that was changed). Similarly working through the other error
cases, it is not hard to see that this code can detect and correct any single
bit error in the received codeword.

We can easily generalize this procedure to construct larger matrices
H. In general, if we use [ rows in H, the code that we obtain will have
block length n = 2l — 1, k=2'—1—1 and minimum distance 3. All
these codes are called Hamming codes and can correct one error.

Vb

FIGURE 7.10. Venn diagram with information bits.
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FIGURE 7.11. Venn diagram with information bits and parity bits with even parity for each
circle.

FIGURE 7.12. Venn diagram with one of the information bits changed.

Hamming codes are the simplest examples of linear parity check codes.
They demonstrate the principle that underlies the construction of other
linear codes. But with large block lengths it is likely that there will be
more than one error in the block. In the early 1950s, Reed and Solomon
found a class of multiple error-correcting codes for nonbinary channels.
In the late 1950s, Bose and Ray-Chaudhuri [72] and Hocquenghem [278]
generalized the ideas of Hamming codes using Galois field theory to con-
struct ¢-error correcting codes (called BCH codes) for any ¢. Since then,
various authors have developed other codes and also developed efficient
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decoding algorithms for these codes. With the advent of integrated circuits,
it has become feasible to implement fairly complex codes in hardware and
realize some of the error-correcting performance promised by Shannon’s
channel capacity theorem. For example, all compact disc players include
error-correction circuitry based on two interleaved (32, 28, 5) and (28, 24,
5) Reed—Solomon codes that allow the decoder to correct bursts of up to
4000 errors.

All the codes described above are block codes —they map a block of
information bits onto a channel codeword and there is no dependence on
past information bits. It is also possible to design codes where each output
block depends not only on the current input block, but also on some of
the past inputs as well. A highly structured form of such a code is called
a convolutional code. The theory of convolutional codes has developed
considerably over the last 40 years. We will not go into the details, but
refer the interested reader to textbooks on coding theory [69, 356].

For many years, none of the known coding algorithms came close
to achieving the promise of Shannon’s channel capacity theorem. For a
binary symmetric channel with crossover probability p, we would need a
code that could correct up to np errors in a block of length n and have
n(1 — H(p)) information bits. For example, the repetition code suggested
earlier corrects up to n/2 errors in a block of length n, but its rate goes
to 0 with n. Until 1972, all known codes that could correct na errors for
block length n had asymptotic rate 0. In 1972, Justesen [301] described
a class of codes with positive asymptotic rate and positive asymptotic
minimum distance as a fraction of the block length.

In 1993, a paper by Berrou et al. [57] introduced the notion that the
combination of two interleaved convolution codes with a parallel cooper-
ative decoder achieved much better performance than any of the earlier
codes. Each decoder feeds its “opinion” of the value of each bit to the
other decoder and uses the opinion of the other decoder to help it decide
the value of the bit. This iterative process is repeated until both decoders
agree on the value of the bit. The surprising fact is that this iterative
procedure allows for efficient decoding at rates close to capacity for a
variety of channels. There has also been a renewed interest in the theory
of low-density parity check (LDPC) codes that were introduced by Robert
Gallager in his thesis [231, 232]. In 1997, MacKay and Neal [368] showed
that an iterative message-passing algorithm similar to the algorithm used
for decoding turbo codes could achieve rates close to capacity with high
probability for LDPC codes. Both Turbo codes and LDPC codes remain
active areas of research and have been applied to wireless and satellite
communication channels.
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X(W, Y- Y; A
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FIGURE 7.13. Discrete memoryless channel with feedback.

7.12 FEEDBACK CAPACITY

A channel with feedback is illustrated in Figure 7.13. We assume that
all the received symbols are sent back immediately and noiselessly to
the transmitter, which can then use them to decide which symbol to send
next. Can we do better with feedback? The surprising answer is no, which
we shall now prove. We define a (2", n) feedback code as a sequence
of mappings x; (W, Y'=1), where each x; is a function only of the mes-

sage W € 2R and the previous received values, Y, Y, ..., Y;_;, and a
sequence of decoding functions g : ' — {1,2, ..., 2"R} . Thus,

P =Pr{g(¥") # W}, (7.119)
when W is uniformly distributed over {1, 2, ..., 2"k},

Definition The capacity with feedback, Cgp, of a discrete memoryless
channel is the supremum of all rates achievable by feedback codes.

Theorem 7.12.1 (Feedback capacity)

Crp=C=max I (X; 7). (7.120)
px)

Proof: Since a nonfeedback code is a special case of a feedback code,
any rate that can be achieved without feedback can be achieved with
feedback, and hence

Crp > C. (7.121)

Proving the inequality the other way is slightly more tricky. We cannot
use the same proof that we used for the converse to the coding theorem
without feedback. Lemma 7.9.2 is no longer true, since X; depends on
the past received symbols, and it is no longer true that Y; depends only
on X; and is conditionally independent of the future X’s in (7.93).
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There is a simple change that will fix the problem with the proof.
Instead of using X", we will use the index W and prove a similar series
of inequalities. Let W be uniformly distributed over {1, 2, ..., 2R} Then
Pr(W # W) = P\ and

nR=HW)=HW|W)+I(W; W) (7.122)
<1+ PP nR+I(W;W) (7.123)
<1+ P"nR+I(W;Y"), (7.124)

by Fano’s inequality and the data-processing inequality. Now we can
bound 7 (W; Y") as follows:

[(W; Y™y = H(Y") — H(Y"|W) (7.125)

=HY") =Y HYIV\. Y2 Y, W) (7.126)
i=1

n
=HY") =Y HYY. V2o Yo, W X)) (7.127)

i=l1
=HY") — Z HY;|X)), (7.128)
i=1

since X; is a function of Yy, ..., Y;_; and W; and conditional on X;, Y;
is independent of W and past samples of Y. Continuing, we have

I(W:Y") = HY") — Z H(Y;|1X;) (7.129)
i=1
<> H)—) Hi|X) (7.130)
i=1 i=1
= ZI(X,-; Y (7.131)
i=1
<nC (7.132)

from the definition of capacity for a discrete memoryless channel. Putting
these together, we obtain

nR < P™nR+14nC, (7.133)
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and dividing by n and letting n — 0o, we conclude that
R <C. (7.134)

Thus, we cannot achieve any higher rates with feedback than we can
without feedback, and

Crp=C. O (7.135)

As we have seen in the example of the binary erasure channel, feedback
can help enormously in simplifying encoding and decoding. However, it
cannot increase the capacity of the channel.

7.13 SOURCE-CHANNEL SEPARATION THEOREM

It is now time to combine the two main results that we have proved so far:
data compression (R > H: Theorem 5.4.2) and data transmission (R <
C: Theorem 7.7.1). Is the condition H < C necessary and sufficient for
sending a source over a channel? For example, consider sending digitized
speech or music over a discrete memoryless channel. We could design
a code to map the sequence of speech samples directly into the input
of the channel, or we could compress the speech into its most efficient
representation, then use the appropriate channel code to send it over the
channel. It is not immediately clear that we are not losing something
by using the two-stage method, since data compression does not depend
on the channel and the channel coding does not depend on the source
distribution.

We will prove in this section that the two-stage method is as good as
any other method of transmitting information over a noisy channel. This
result has some important practical implications. It implies that we can
consider the design of a communication system as a combination of two
parts, source coding and channel coding. We can design source codes
for the most efficient representation of the data. We can, separately and
independently, design channel codes appropriate for the channel. The com-
bination will be as efficient as anything we could design by considering
both problems together.

The common representation for all kinds of data uses a binary alphabet.
Most modern communication systems are digital, and data are reduced
to a binary representation for transmission over the common channel.
This offers an enormous reduction in complexity. Networks like, ATM
networks and the Internet use the common binary representation to allow
speech, video, and digital data to use the same communication channel.
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The result—that a two-stage process is as good as any one-stage pro-
cess—seems so obvious that it may be appropriate to point out that it
is not always true. There are examples of multiuser channels where the
decomposition breaks down. We also consider two simple situations where
the theorem appears to be misleading. A simple example is that of sending
English text over an erasure channel. We can look for the most efficient
binary representation of the text and send it over the channel. But the
errors will be very difficult to decode. If, however, we send the English
text directly over the channel, we can lose up to about half the letters and
yet be able to make sense out of the message. Similarly, the human ear has
some unusual properties that enable it to distinguish speech under very
high noise levels if the noise is white. In such cases, it may be appropriate
to send the uncompressed speech over the noisy channel rather than the
compressed version. Apparently, the redundancy in the source is suited to
the channel.

Let us define the setup under consideration. We have a source V that
generates symbols from an alphabet V. We will not make any assumptions
about the kind of stochastic process produced by V other than that it is
from a finite alphabet and satisfies the AEP. Examples of such processes
include a sequence of i.i.d. random variables and the sequence of states
of a stationary irreducible Markov chain. Any stationary ergodic source
satisfies the AEP, as we show in Section 16.8.

We want to send the sequence of symbols V"' = Vi, Vo, ..., V, over
the channel so that the receiver can reconstruct the sequence. To do this,
we map the sequence onto a codeword X" (V") and send the codeword
over the channel. The receiver looks at his received sequence Y" and
makes an estimate V" of the sequence V" that was sent. The receiver
makes an error if V" # V7. We define the probability of error as

Pr(V" # Vi) =Y " p)Hp("Ix" " NI((L") #v"),  (7.136)

yn vn

where [ is the indicator function and g(y") is the decoding function. The
system is illustrated in Figure 7.14.
We can now state the joint source—channel coding theorem:

n X(vn y" /0
V_> Encoder v C:(z; TQ)e I Decoder —V>

FIGURE 7.14. Joint source and channel coding.
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Theorem 7.13.1 (Source—channel coding theorem) If Vi, V,, ... V"
is a finite alphabet stochastic process that satisfies the AEP and H (V) <
C, there exists a source—channel code with probability of error Pr(V" #
V") — 0. Conversely, for any stationary stochastic process, if H()) > C,
the probability of error is bounded away from zero, and it is not possible
to send the process over the channel with arbitrarily low probability of
error.

Proof: Achievability. The essence of the forward part of the proof is
the two-stage encoding described earlier. Since we have assumed that the
stochastic process satisfies the AEP, it implies that there exists a typical
set Ag”) of size < 2"H()+9) which contains most of the probability. We
will encode only the source sequences belonging to the typical set; all
other sequences will result in an error. This will contribute at most € to
the probability of error.

We index all the sequences belonging to Ag”). Since there are at most
2"H+€) quch sequences, n(H + €) bits suffice to index them. We can
transmit the desired index to the receiver with probability of error less
than € if

HV) +e=R <C. (7.137)

The receiver can reconstruct V" by enumerating the typical set Ag")
and choosing the sequence corresponding to the estimated index. This
sequence will agree with the transmitted sequence with high probability.

To be precise,
P(V"#£ V" < P(V" ¢ A™) + P(g(Y") # V"IV € A™) (7.138)
<€+e€ =2 (7.139)

for n sufficiently large. Hence, we can reconstruct the sequence with low
probability of error for n sufficiently large if

HY) <C. (7.140)

Converse: We wish to show that Pr(V" % V") — 0 implies that H())
< C for any sequence of source-channel codes

X'V Y A" (7.141)
gn(Y") 1 V" — V. (7.142)
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Thus X"(-) is an arbitrary (perhaps random) assignment of codewords
to data sequences V", and g,(-) is any decoding function (assignment of
estimates V" to output sequences Y”. By Fano’s inequality, we must have

HWV"V") <14+Pr(V" % VM log |V =1+ Pr(V" # Vhnlog |V

(7.143)
Hence for the code,
@ HV,Vo,...,V,
HY) < V1, V2 ) (7.144)
n
HV"
= 0 (7.145)
n
1 N 1 N
= —HV"V") + =1(V"; V") (7.146)
n n

b 1 n 1 .
< —(A+Pr(V" £ Vnlog V) + —1(V*; V") (7.147)
n n

© 1 (rn n 1 n n
< —(14Pr(V" # Vhnlog V) + —1(X"; Y")  (7.148)
n n

1 R
< — 4+ Pr(V" % V" log|V| +C, (7.149)
n

where (a) follows from the definition of entropy rate of a stationary
process, (b) follows from Fano’s inequality, (c) follows from the data-
processing inequality (since V" — X" — ¥Y" — V" forms a Markov
chain) and (d) follows from the memorylessness of the channel. Now
letting n — oo, we have Pr(V" # V") — 0 and hence

HYV) <C. (7.150)
O
Hence, we can transmit a stationary ergodic source over a channel if and
only if its entropy rate is less than the capacity of the channel. The joint
source—channel separation theorem enables us to consider the problem of
source coding separately from the problem of channel coding. The source
coder tries to find the most efficient representation of the source, and
the channel coder encodes the message to combat the noise and errors
introduced by the channel. The separation theorem says that the separate
encoders (Figure 7.15) can achieve the same rates as the joint encoder
(Figure 7.14).
With this result, we have tied together the two basic theorems of
information theory: data compression and data transmission. We will try
to summarize the proofs of the two results in a few words. The data
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V" | Source Channel | X"(V") [channel| Y™ | Channel Source |_ V"
Encoder Encoder p(yIx) Decoder Decoder

FIGURE 7.15. Separate source and channel coding.

compression theorem is a consequence of the AEP, which shows that
there exists a “small” subset (of size 2"") of all possible source sequences
that contain most of the probability and that we can therefore represent
the source with a small probability of error using H bits per symbol.
The data transmission theorem is based on the joint AEP; it uses the
fact that for long block lengths, the output sequence of the channel is
very likely to be jointly typical with the input codeword, while any other
codeword is jointly typical with probability ~ 27"/, Hence, we can use
about 2" codewords and still have negligible probability of error. The
source—channel separation theorem shows that we can design the source
code and the channel code separately and combine the results to achieve
optimal performance.

SUMMARY

Channel capacity. The logarithm of the number of distinguishable
inputs is given by

C =max [ (X;Y).
px)

Examples

 Binary symmetric channel: C =1 — H(p).
e Binary erasure channel: C =1 — «.
o Symmetric channel: C = log|)| — H (row of transition matrix).

Properties of C

1. 0 < C < min{log |X], log ||}
2. I(X;Y) is a continuous concave function of p(x).

Joint typicality. The set Ag”) of jointly typical sequences {(x",y")}
with respect to the distribution p(x, y) is given by

AW ={@E", y") e X x Y (7.151)

—% log p(x") — H(X)| < e, (7.152)
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‘—% logp(y") — H(Y)| < €, (7.153)

1
‘——logp(x", y') —H(X,Y)
n

< e}, (7.154)

where p(x", y") = [T/, p(xi, yi).

Joint AEP. Let (X", Y™) be sequences of length n drawn i.i.d. accord-
ing to p(xns yn) = H?:l P(Xi, yt) Then:

1. Pr((X",Y") € A™) — 1 as n — oo.
2. |Agn)| < 2n(H(X,Y)+E).

3. If (X7, ") ~ p(x")p(y"), then Pr ((5(", ) € Agﬂ)
< 2—n(I(X;Y)—36)'

Channel coding theorem. All rates below capacity C are achievable,
and all rates above capacity are not; that is, for all rates R < C, there
exists a sequence of (2"%, n) codes with probability of error A — 0.
Conversely, for rates R > C, A is bounded away from 0.

Feedback capacity. Feedback does not increase capacity for discrete
memoryless channels (i.e., Cpp = C).

Source—channel theorem. A stochastic process with entropy rate H
cannot be sent reliably over a discrete memoryless channel if H >
C. Conversely, if the process satisfies the AEP, the source can be
transmitted reliably if H < C.

PROBLEMS

7.1 Preprocessing the output. One is given a communication chan-
nel with transition probabilities p(y|x) and channel capacity C =
max ) I (X;Y). A helpful statistician preprocesses the output by
forming Y = g(Y). He claims that this will strictly improve the
capacity.

(a) Show that he is wrong.

(b) Under what conditions does he not strictly decrease the
capacity?
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7.2

7.3

74

7.5

7.6

CHANNEL CAPACITY

Additive noise channel. Find the channel capacity of the following
discrete memoryless channel:

N

where Pr{Z =0} =Pr{Z =a} = % The alphabet for x is X =
{0, 1}. Assume that Z is independent of X. Observe that the channel
capacity depends on the value of a.

Channels with memory have higher capacity. Consider a binary
symmetric channel with Y; = X; @ Z;, where @ is mod 2 addi-
tion, and X;, Y¥; € {0, 1}. Suppose that {Z;} has constant marginal
probabilities Pr{Z; =1} = p =1 — Pr{Z; = 0}, but that Z;, Z,,
..., Z, are not necessarily independent. Assume that Z" is inde-
pendent of the input X". Let C =1— H(p,1 — p). Show that
maxp(x; x,...x0) L (X1, Xo, .o, X3 Y1, Yo, 00,

Y, > nC.

Channel capacity. Consider the discrete memoryless channel Y =
X + Z (mod 11), where

1, 2. 3
22(1 1 1)
3 37 3

and X € {0, 1, ..., 10}. Assume that Z is independent of X.
(a) Find the capacity.
(b) What is the maximizing p*(x)?

Using two channels at once. Consider two discrete memoryless
channels (X7, p(y1 | x1), V1) and (X2, p(y2 | x2), V») with capac-
ities C; and C,, respectively. A new channel (X} x X3, p(y1 |
x1) X p(y2 | x2), V1 x Y») is formed in which x; € &} and x, € A,
are sent simultaneously, resulting in y;, y,. Find the capacity of this
channel.

Noisy typewriter. Consider a 26-key typewriter.

(a) If pushing a key results in printing the associated letter, what
is the capacity C in bits?
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(b) Now suppose that pushing a key results in printing that letter or
the next (with equal probability). Thus, A — Aor B,...,Z —
Z or A. What is the capacity?

(c) What is the highest rate code with block length one that you
can find that achieves zero probability of error for the channel
in part (b)?

Cascade of binary symmetric channels. Show that a cascade of n
identical independent binary symmetric channels,

X0—>—>X1—>---—>Xn_1—>—>X,,,

each with raw error probability p, is equivalent to a single BSC with

error probability (1 — (1 —2p)") and hence that lim 7(Xo; X,,)
n—oo

= 0if p # 0, 1. No encoding or decoding takes place at the inter-

mediate terminals X1, ..., X,—1. Thus, the capacity of the cascade

tends to zero.

Z-channel. The Z-channel has binary input and output alphabets
and transition probabilities p(y|x) given by the following matrix:

Q:[ 1}2 1(/)2] xy el

Find the capacity of the Z-channel and the maximizing input prob-
ability distribution.

Suboptimal codes. For the Z-channel of Problem 7.8, assume that
we choose a (2"® n) code at random, where each codeword is a
sequence of fair coin tosses. This will not achieve capacity. Find the
maximum rate R such that the probability of error Pe("), averaged
over the randomly generated codes, tends to zero as the block length
n tends to infinity.

Zero-error capacity. A channel with alphabet {0, 1, 2, 3, 4} has tran-
sition probabilities of the form

) 1/2 ify=x+1mod5
pylx) = { 0 otherwise.

(a) Compute the capacity of this channel in bits.



226

711

7.12

7.13
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(b) The zero-error capacity of a channel is the number of bits per
channel use that can be transmitted with zero probability of
error. Clearly, the zero-error capacity of this pentagonal chan-
nel is at least 1 bit (transmit O or 1 with probability 1/2). Find
a block code that shows that the zero-error capacity is greater
than 1 bit. Can you estimate the exact value of the zero-error
capacity? (Hint: Consider codes of length 2 for this channel.)
The zero-error capacity of this channel was finally found by
Lovasz [365].

Time-varying channels. Consider a time-varying discrete memory-
less channel.

Let Yi,Y>,...,Y, be conditionally independent given Xi, X»,
..., X, with conditional distribution given by p(y | x) =[]/,
pi(vi | x;). Let X = (X, X2,...,X,), Y= (Y, Ys,...,Y,). Find
max(x) I(X; Y)

1-p

Pi
Pi

1-p;

Unused symbols. Show that the capacity of the channel with prob-
ability transition matrix

2 1
530
Pye=|1 1 3 (7.155)
12
03 3

is achieved by a distribution that places zero probability on one
of input symbols. What is the capacity of this channel? Give an
intuitive reason why that letter is not used.

Erasures and errors in a binary channel. Consider a channel with
binary inputs that has both erasures and errors. Let the probability
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of error be € and the probability of erasure be «, so the channel is
follows:

1-a-¢€

1-a—-¢€

(a) Find the capacity of this channel.
(b) Specialize to the case of the binary symmetric channel (¢ = 0).
(c) Specialize to the case of the binary erasure channel (¢ = 0).

Channels with dependence between the letters. Consider the fol-
lowing channel over a binary alphabet that takes in 2-bit symbols
and produces a 2-bit output, as determined by the following map-
ping: 00 — 01, 01 — 10, 10 — 11, and 11 — 00. Thus, if the
2-bit sequence 01 is the input to the channel, the output is 10 with
probability 1. Let X, X, denote the two input symbols and Y, Y>
denote the corresponding output symbols.

(a) Calculate the mutual information 7 (X, X5; Y1, Y») as a func-
tion of the input distribution on the four possible pairs of inputs.

(b) Show that the capacity of a pair of transmissions on this chan-
nel is 2 bits.

(¢) Show that under the maximizing input distribution, 7 (Xy; Y1)
= 0. Thus, the distribution on the input sequences that achieves
capacity does not necessarily maximize the mutual information
between individual symbols and their corresponding outputs.

Jointly typical sequences. As we did in Problem 3.13 for the typical
set for a single random variable, we will calculate the jointly typical
set for a pair of random variables connected by a binary symmetric
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channel, and the probability of error for jointly typical decoding
for such a channel.

0.9

0.1
0.1

0.9

We consider a binary symmetric channel with crossover probability

0.1.

The input distribution that achieves capacity is the uniform

distribution [i.e., p(x) = (%, %)], which yields the joint distribution
p(x,y) for this channel is given by

X Y 0 1

0 0.45 0.05
1 0.05 0.45

The marginal distribution of Y is also (%, %).

(a)

Calculate H(X), H(Y), H(X,Y), and I(X;Y) for the joint
distribution above.

(b) Let X1, X», ..., X, be drawn i.i.d. according the Bernoulli(%)

()

distribution. Of the 2" possible input sequences of length n,
which of them are typical [i.e., member of A/ (X) for € =
0.2]? Which are the typical sequences in Ag”)(Y)?

The jointly typical set A/ (X,Y) is defined as the set of
sequences that satisfy equations (7.35-7.37). The first two
equations correspond to the conditions that x" and y” are in
AE”)(X) and Ag")(Y ), respectively. Consider the last condi-
tion, which can be rewritten to state that —% log p(x", y") €
(H(X,Y)—€, H(X,Y)+¢€). Let k be the number of places
in which the sequence x" differs from y" (k is a function of
the two sequences). Then we can write

p&" vy =[] pCei v (7.156)
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= (0.45)"%(0.05) (7.157)

1
=(3 (1 — p)"kpk. (7.158)

An alternative way at looking at this probability is to look at the
binary symmetric channel as in additive channel ¥ = X & Z,
where Z is a binary random variable that is equal to 1 with
probability p, and is independent of X. In this case,

p&", ") = pM)p(y"x") (7.159)
= p(x")p("[x") (7.160)
= p(x")p(") (7.161)

— (%) (1 — p)"~*p*. (7.162)

Show that the condition that (x”, y") being jointly typical is
equivalent to the condition that x” is typical and 7" = y" — x"
is typical.

(d) We now calculate the size of Ag”)(Z) for n =25 and € = 0.2.
As in Problem 3.13, here is a table of the probabilities and
numbers of sequences with k ones:

k ¢ ()P — pyn* —Llog p(x")
0 1 0.071790 0.152003
1 25 0.199416 0.278800
2 300 0.265888 0.405597
3 2300 0.226497 0.532394
4 12650 0.138415 0.659191
5 53130 0.064594 0.785988
6 177100 0.023924 0.912785
7 480700 0.007215 1.039582
8 1081575 0.001804 1.166379
9 2042975 0.000379 1.293176
10 3268760 0.000067 1.419973
11 4457400 0.000010 1.546770
12 5200300 0.000001 1.673567

[Sequences with more than 12 ones are omitted since their total
probability is negligible (and they are not in the typical set).]
What is the size of the set AE”)(Z)?
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(e)

®

(2

(h)

Now consider random coding for the channel, as in the proof
of the channel coding theorem. Assume that 2"% codewords
X"(1), X"(2),..., X"(2"R) are chosen uniformly over the 2"
possible binary sequences of length n. One of these codewords
is chosen and sent over the channel. The receiver looks at
the received sequence and tries to find a codeword in the
code that is jointly typical with the received sequence. As
argued above, this corresponds to finding a codeword X" (i)
such that Y" — X" (i) € AE”)(Z). For a fixed codeword x"(i),
what is the probability that the received sequence Y” is such
that (x" (i), Y") is jointly typical?

Now consider a particular received sequence y" =
000000...0, say. Assume that we choose a sequence
X" at random, uniformly distributed among all the 2" possible
binary n-sequences. What is the probability that the chosen
sequence is jointly typical with this y"? [Hint: This is the
probability of all sequences x” such that y" —x" € A™(Z).]
Now consider a code with 2° = 512 codewords of length 12
chosen at random, uniformly distributed among all the 2"
sequences of length n = 25. One of these codewords, say
the one corresponding to i = 1, is chosen and sent over the
channel. As calculated in part (e), the received sequence, with
high probability, is jointly typical with the codeword that was
sent. What is the probability that one or more of the other
codewords (which were chosen at random, independent of the
sent codeword) is jointly typical with the received sequence?
[Hint: You could use the union bound, but you could also
calculate this probability exactly, using the result of part (f)
and the independence of the codewords.]

Given that a particular codeword was sent, the probability of
error (averaged over the probability distribution of the chan-
nel and over the random choice of other codewords) can be
written as

Pr(Error|x" (1) sent) = Zyﬂ:yﬂcauses error P (V" [X"(1)). (7.163)

There are two kinds of error: the first occurs if the received
sequence y" is not jointly typical with the transmitted code-
word, and the second occurs if there is another codeword
jointly typical with the received sequence. Using the result
of the preceding parts, calculate this probability of error. By
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the symmetry of the random coding argument, this does not
depend on which codeword was sent.

The calculations above show that average probability of error for
a random code with 512 codewords of length 25 over the binary
symmetric channel of crossover probability 0.1 is about 0.34. This
seems quite high, but the reason for this is that the value of € that
we have chosen is too large. By choosing a smaller € and a larger
n in the definitions of Ag”), we can get the probability of error to
be as small as we want as long as the rate of the code is less than
1(X;Y)— 3e.

Also note that the decoding procedure described in the problem
is not optimal. The optimal decoding procedure is maximum like-
lihood (i.e., to choose the codeword that is closest to the received
sequence). It is possible to calculate the average probability of
error for a random code for which the decoding is based on an
approximation to maximum likelihood decoding, where we decode
a received sequence to the unique codeword that differs from the
received sequence in < 4 bits, and declare an error otherwise. The
only difference with the jointly typical decoding described above
is that in the case when the codeword is equal to the received
sequence! The average probability of error for this decoding scheme
can be shown to be about 0.285.

Encoder and decoder as part of the channel. Consider a binary
symmetric channel with crossover probability 0.1. A possible cod-
ing scheme for this channel with two codewords of length 3 is to
encode message a; as 000 and a, as 111. With this coding scheme,
we can consider the combination of encoder, channel, and decoder
as forming a new BSC, with two inputs a; and a, and two outputs
ap and as.

(a) Calculate the crossover probability of this channel.

(b) What is the capacity of this channel in bits per transmission of
the original channel?

(¢) What is the capacity of the original BSC with crossover prob-
ability 0.1?

(d) Prove a general result that for any channel, considering the
encoder, channel, and decoder together as a new channel from
messages to estimated messages will not increase the capacity
in bits per transmission of the original channel.

Codes of length 3 for a BSC and BEC. In Problem 7.16, the prob-
ability of error was calculated for a code with two codewords of
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length 3 (000 and 111) sent over a binary symmetric channel with
crossover probability €. For this problem, take ¢ = 0.1.

(a)

(b)

(c)

(@)

Find the best code of length 3 with four codewords for this
channel. What is the probability of error for this code? (Note
that all possible received sequences should be mapped onto
possible codewords.)

What is the probability of error if we used all eight possible
sequences of length 3 as codewords?

Now consider a binary erasure channel with erasure probability
0.1. Again, if we used the two-codeword code 000 and 111,
received sequences OOE, OEO, E0O, OEE, EOE, EEO would all
be decoded as 0, and similarly, we would decode 11E, 1E1,
Ell, 1EE, E1E, EEI as 1. If we received the sequence EEE,
we would not know if it was a 000 or a 111 that was sent—so
we choose one of these two at random, and are wrong half the
time. What is the probability of error for this code over the
erasure channel?

What is the probability of error for the codes of parts (a) and
(b) when used over the binary erasure channel?

Channel capacity. Calculate the capacity of the following channels
with probability transition matrices:

(a)

(b)

(c)

X=y=10,1,2}

1 1 1
33 3
PO =1 5 3 3 (7.164)
111
3 3 3
X=Y=1{0,1,2}
1 1
7 2 0
pOIx)=| 0 5 3% (7.165)
L o 1
2 2
X=Y=1{0,1,2,3}
p 1—p 0 0
_ -p P 0 0
pylx) = 0 0 g 1—gq (7.166)
0 0 1—gq q
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Capacity of the carrier pigeon channel. Consider a commander of
an army besieged in a fort for whom the only means of commu-
nication to his allies is a set of carrier pigeons. Assume that each
carrier pigeon can carry one letter (8 bits), that pigeons are released
once every 5 minutes, and that each pigeon takes exactly 3 minutes
to reach its destination.

(a) Assuming that all the pigeons reach safely, what is the capacity
of this link in bits/hour?

(b) Now assume that the enemies try to shoot down the pigeons
and that they manage to hit a fraction o of them. Since the
pigeons are sent at a constant rate, the receiver knows when
the pigeons are missing. What is the capacity of this link?

(¢) Now assume that the enemy is more cunning and that every
time they shoot down a pigeon, they send out a dummy pigeon
carrying a random letter (chosen uniformly from all 8-bit let-
ters). What is the capacity of this link in bits/hour?

Set up an appropriate model for the channel in each of the above

cases, and indicate how to go about finding the capacity.

Channel with two independent looks at Y. Let Y| and Y, be condi-
tionally independent and conditionally identically distributed given
X

(a) Show that I (X; Y, Yr) =21(X;Y,) — 1(Y1,Y).
(b) Conclude that the capacity of the channel

X —— —— (Y,, Yy)

is less than twice the capacity of the channel

X ——> — v,

Tall, fat people. Suppose that the average height of people in a

room is 5 feet. Suppose that the average weight is 100 Ib.

(a) Argue that no more than one-third of the population is 15 feet
tall.

(b) Find an upper bound on the fraction of 300-1b 10-footers in
the room.
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Can signal alternatives lower capacity? Show that adding a row to
a channel transition matrix does not decrease capacity.

Binary multiplier channel

(a) Consider the channel Y = X Z, where X and Z are independent
binary random variables that take on values 0 and 1. Z is
Bernoulli(x) [i.e., P(Z = 1) = «]. Find the capacity of this
channel and the maximizing distribution on X.

(b) Now suppose that the receiver can observe Z as well as Y.
What is the capacity?

Noise alphabets. Consider the channel

z

x () v

X=1{0,1, 2,3}, where Y = X + Z, and Z is uniformly distributed

over three distinct integer values Z = {z1, z2, z3}.

(a) What is the maximum capacity over all choices of the Z alpha-
bet? Give distinct integer values z1, 22, 73 and a distribution on
X achieving this.

(b) What is the minimum capacity over all choices for the Z alpha-
bet? Give distinct integer values z1, z2, z3 and a distribution on
X achieving this.

Bottleneck channel. Suppose that a signal X € X = {1,2, ..., m}
goes through an intervening transition X — V — Y:

p(v]x) 1% pylv)

~

[ 111

[TTTTI
~<

where x = {1,2,...,m},y={1,2,...,m},and v = {1, 2, ..., k}.
Here p(v|x) and p(y|v) are arbitrary and the channel has transition
probability p(y|x) = >, p(v|x)p(ylv). Show that C < logk.
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7.26 Noisy typewriter. Consider the channel with x, y € {0, 1, 2, 3} and
transition probabilities p(y|x) given by the following matrix:

1 500
05 10
00 1 1
300 3

(a) Find the capacity of this channel.
(b) Define the random variable z = g(y), where

A ifyefo )
g(y)—{ B ifye{2,3).

For the following two PMFs for x, compute /(X; Z):

(i) .

P =13 i eio
(ii)

=11 ircio

(c) Find the capacity of the channel between x and z, specifically
where x € {0, 1, 2, 3}, z € {A, B}, and the transition probabil-
ities P(z|x) are given by

pZ=zX=x)= ) P =ylX=ux.
g(yo)=z

(d) For the X distribution of part (i) of (b), does X — Z — Y
form a Markov chain?

7.27 Erasure channel. Let {X, p(y|x), )} be a discrete memoryless chan-
nel with capacity C. Suppose that this channel is cascaded imme-
diately with an erasure channel {)), p(s|y), S} that erases « of its
symbols.

pylx) —Y S

>
L1111
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Specifically, S = {y1, ¥2, ..., ym, €}, and

Pr{S = y|X = x} =ap(y|x), y €,
Pr{§ =e|lX =x} =a.

Determine the capacity of this channel.

Choice of channels. Find the capacity C of the union of two chan-

nels (X1, pi(yilx1), V1) and (X2, p2(y21x2), )2), where at each

time, one can send a symbol over channel 1 or channel 2 but

not both. Assume that the output alphabets are distinct and do not

intersect.

(a) Show that 2€ =2¢1 422, Thus, 2 is the effective alphabet
size of a channel with capacity C.

(b) Compare with Problem 2.10 where 2/ = 2/t + 212 and inter-
pret part (a) in terms of the effective number of noise-free

symbols.
(¢) Use the above result to calculate the capacity of the following
channel.
1-p
0 0
p
p
1 1
1-p
2 2

Binary multiplier channel

(a) Consider the discrete memoryless channel ¥ = XZ, where X
and Z are independent binary random variables that take on
values 0 and 1. Let P(Z = 1) = «. Find the capacity of this
channel and the maximizing distribution on X.

(b) Now suppose that the receiver can observe Z as well as Y.
What is the capacity?
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Noise alphabets. Consider the channel

z

x () v

X=1{0,1,2,3}, where Y = X 4+ Z, and Z is uniformly distributed
over three distinct integer values Z = {zy, 22, 23}-

(a) What is the maximum capacity over all choices of the Z alpha-
bet? Give distinct integer values z1, z2, z3 and a distribution on
X achieving this.

(b) What is the minimum capacity over all choices for the Z alpha-
bet? Give distinct integer values z1, z», z3 and a distribution on
X achieving this.

Source and channel. We wish to encode a Bernoulli(«) process
Vi, Va, ... for transmission over a binary symmetric channel with
crossover probability p.

—Y" —»\/}"

vn X" (V1) —>

T

1-p

Find conditions on « and p so that the probability of error P (V" %
V") can be made to go to zero as n —> 00.

Random 20 questions. Let X be uniformly distributed over {1, 2,
..., m}. Assume that m = 2". We ask random questions: Is X € §;?
Is X € 8?7 ... until only one integer remains. All 2" subsets S of
{1,2,...,m} are equally likely.

(a) How many deterministic questions are needed to determine X ?

(b) Without loss of generality, suppose that X = 1 is the random
object. What is the probability that object 2 yields the same
answers as object 1 for k questions?

(c) What is the expected number of objects in {2, 3, ..., m} that

have the same answers to the questions as those of the correct
object 17
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(d) Suppose that we ask n + /n random questions. What is the

expected number of wrong objects agreeing with the answers?
(e) Use Markov’s inequality Pr{X > tu} < % to show that the
probability of error (one or more wrong object remaining) goes

to zero as n —> ©oQ.

BSC with feedback. Suppose that feedback is used on a binary
symmetric channel with parameter p. Each time a Y is received,
it becomes the next transmission. Thus, X is Bern(%), X, =Y,
Xs=Ys ..., Xpn=Yy_1.

(a) Find lim, o 17(X"; Y").

(b) Show that for some values of p, this can be higher than capac-
1ty.

(¢) Using this feedback transmission scheme, X"(W, Y") = (X,
(W), Y1, Ys, ..., Yu_1), what is the asymptotic communication
rate achieved; that is, what is lim,,_, %I (W; Y™)?

Capacity. Find the capacity of

(a) Two parallel BSCs:

X

"
TN

(b) BSC and a single symbol:
1 v 1
5 A o
X Y

33— 3
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(¢) BSC and a ternary channel:

X Y
(d) Ternary channel:
2 1 9
pOylx) = (3) D (7.167)
3 3

7.35 Capacity. Suppose that channel P has capacity C, where P is an
m x n channel matrix.

(a) What is the capacity of

(b) What about the capacity of

A P 0
= ?
p=[7 0]
where [ if the k x k identity matrix.

7.36  Channel with memory. Consider the discrete memoryless channel
Y; = Z; X; with input alphabet X; € {—1, 1}.
(a) What is the capacity of this channel when {Z;} is i.i.d. with

_ I, p=0.5
Zi = { 1. p =05 (7.168)
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Now consider the channel with memory. Before transmission
begins, Z is randomly chosen and fixed for all time. Thus,
Yi=Z7ZX;.

(b) What is the capacity if

_ 1, p=05
Z = { 1 b =057 (7.169)

7.37 Joint typicality. Let (X;, Y;, Z;) be i.i.d. according to p(x, y, 7). We
will say that (x", y", z") is jointly typical [written (x", y", ") €
AMY if
° p(xn) c 2—n(H(X):|:é).
° p(yn) c 2—n(H(Y):|:€)'
. p(7") e 2 HDEE)
° p(xn’ yn) c 2—n(H(X,Y)ie).
° p(xn’ Zn) c 2—n(H(X,Z)ie)'
° p(yn’ Zn) c 2—n(H(Y,Z)ie)‘
o p(x", Y1, 7)€ 2 NHXY. D)xe)

Now suppose that (X” Y™, Z") is drawn according to p(x") p(y )
p(z"). Thus, X", Y", Z" have the same marginals as p(x", y", z")
but are independent. Find (bounds on) Pr{(X",Y",Z") € Ag”)} in
terms of the entropies H(X),H(Y),H(Z),H(X,Y),H(X, Z),
H(,Z),and H(X, Y, 7).

HISTORICAL NOTES

The idea of mutual information and its relationship to channel capacity
was developed by Shannon in his original paper [472]. In this paper, he
stated the channel capacity theorem and outlined the proof using typical
sequences in an argument similar to the one described here. The first
rigorous proof was due to Feinstein [205], who used a painstaking “cookie-
cutting” argument to find the number of codewords that can be sent with a
low probability of error. A simpler proof using a random coding exponent
was developed by Gallager [224]. Our proof is based on Cover [121] and
on Forney’s unpublished course notes [216].

The converse was proved by Fano [201], who used the inequality bear-
ing his name. The strong converse was first proved by Wolfowitz [565],
using techniques that are closely related to typical sequences. An iterative
algorithm to calculate the channel capacity was developed independently
by Arimoto [25] and Blahut [65].
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The idea of the zero-error capacity was developed by Shannon [474];
in the same paper, he also proved that feedback does not increase the
capacity of a discrete memoryless channel. The problem of finding the
zero-error capacity is essentially combinatorial; the first important result
in this area is due to Lovasz [365]. The general problem of finding the
zero error capacity is still open; see a survey of related results in Korner
and Orlitsky [327].

Quantum information theory, the quantum mechanical counterpart to
the classical theory in this chapter, is emerging as a large research area in
its own right and is well surveyed in an article by Bennett and Shor [49]
and in the text by Nielsen and Chuang [395].
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DIFFERENTIAL ENTROPY

We now introduce the concept of differential entropy, which is the entropy
of a continuous random variable. Differential entropy is also related to the
shortest description length and is similar in many ways to the entropy of
a discrete random variable. But there are some important differences, and
there is need for some care in using the concept.

8.1 DEFINITIONS

Definition Let X be a random variable with cumulative distribution
function F(x) = Pr(X < x). If F(x) is continuous, the random variable
is said to be continuous. Let f(x) = F’(x) when the derivative is defined.
If f_oooo f(x) =1, f(x) is called the probability density function for X. The
set where f(x) > 0 is called the support set of X.

Definition The differential entropy h(X) of a continuous random vari-
able X with density f(x) is defined as

hX) = /S f ) Tog £(x) dx, (8.1)

where S is the support set of the random variable.

As in the discrete case, the differential entropy depends only on the
probability density of the random variable, and therefore the differential
entropy is sometimes written as i (f) rather than h(X).

Remark As in every example involving an integral, or even a density,
we should include the statement if it exists. It is easy to construct examples

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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of random variables for which a density function does not exist or for
which the above integral does not exist.

Example 8.1.1 (Uniform distribution) Consider a random variable dis-
tributed uniformly from O to a so that its density is 1/a from O to a and 0
elsewhere. Then its differential entropy is

41 1
h(X) = —/ —log —dx = loga. (8.2)
0o a a

Note: Fora < 1,loga < 0, and the differential entropy is negative. Hence,
unlike discrete entropy, differential entropy can be negative. However,
2MX) = gloga — 4 i5 the volume of the support set, which is always non-
negative, as we expect.

2

Example 8.1.2 (Normal distribution) Let X ~ ¢(x) = —= =3

. . . . . V2no?
Then calculating the differential entropy in nats, we obtain
o) =~ [ oo (83)
x2
o
EX? 5
L Dnone? (8.6)
=—-+4+=-In27 .
2 T e
— et tinoro? (8.7)
=5 lne+-In2ro .
1 2
=5 In2meo nats. (8.8)

Changing the base of the logarithm, we have

1
h(¢) = 3 log2mwes?  bits. (8.9)



8.2 AEP FOR CONTINUOUS RANDOM VARIABLES 245

8.2 AEP FOR CONTINUOUS RANDOM VARIABLES

One of the important roles of the entropy for discrete random variables

is in the AEP, which states that for a sequence of i.i.d. random variables,

p(X1, X2, ..., X,) is close to 27"#(X) with high probability. This enables

us to define the typical set and characterize the behavior of typical sequences.
We can do the same for a continuous random variable.

Theorem 8.2.1 Let X1, Xo, ..., X, be a sequence of random vari-
ables drawn i.i.d. according to the density f(x). Then

—l log f(X1, X2, ..., X)) = E[—log f(X)] = h(X) in probability.
n
(8.10)

Proof: The proof follows directly from the weak law of large numbers.
O

This leads to the following definition of the typical set.

Definition For € > 0 and any n, we define the typical set A™ with
respect to f(x) as follows:
-]

(8.11)

1
Ag”) = {(xl,xg,...,xn) e S":|——1log f(x1,x2,...,x,) —h(X)
n

where f(x1,x2,...,x,) =[]/, f(x0).

The properties of the typical set for continuous random variables par-
allel those for discrete random variables. The analog of the cardinality of
the typical set for the discrete case is the volume of the typical set for
continuous random variables.

Definition The volume Vol(A) of a set A C R" is defined as

Vol(A) = / dxydxy --- dx,. (8.12)
A

Theorem 8.2.2  The typical set A™ has the following properties:
1. Pr(A™) > 1 — € for n sufficiently large.
2. Vol (A) < 2" for all n.
3. Vol (Ag”)) > (1 — )20~ for n sufficiently large.
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Proof: By Theorem 8.2.1, —% log f(X") = —% > log f(X;) = h(X)in
probability, establishing property 1. Also,

1= . fxr, x2, oo, xy)dxydxy - - -dxy, (8.13)
> /A(") fxr, x2, .o, xp)dxydxy - - - dxy, (8.14)
> /A . 27T Gy dxy - - - dx, (8.15)
— p—n(h(X)+e) /A(n) dx; dxy - -dx, (8.16)
= 27"+ ol (A™) (8.17)

Hence we have property 2. We argue further that the volume of the typical
set is at least this large. If n is sufficiently large so that property 1 is
satisfied, then

l—€< L flxr, x2, ., xp)dxydxy -+ - dxy, (8.18)
< /A " 271X~ gy dxy - - - dx, (8.19)
— p—n(h(X)—e) /A(m dx;dx; - -dx, (8.20)
= 27079 ol (AW (8.21)

establishing property 3. Thus for n sufficiently large, we have
(1 — €)2" =6 < yol(AM) < 2nhOF+e) (8.22)

Theorem 8.2.3  The set Ag”) is the smallest volume set with probability
> 1 — €, to first order in the exponent.

Proof: Same as in the discrete case. O

This theorem indicates that the volume of the smallest set that contains
most of the probability is approximately 2. This is an n-dimensional

1
volume, so the corresponding side length is (2"")" = 2". This provides



8.3 RELATION OF DIFFERENTIAL ENTROPY TO DISCRETE ENTROPY 247

an interpretation of the differential entropy: It is the logarithm of the
equivalent side length of the smallest set that contains most of the prob-
ability. Hence low entropy implies that the random variable is confined
to a small effective volume and high entropy indicates that the random
variable is widely dispersed.

Note. Just as the entropy is related to the volume of the typical set, there
is a quantity called Fisher information which is related to the surface
area of the typical set. We discuss Fisher information in more detail in
Sections 11.10 and 17.8.

8.3 RELATION OF DIFFERENTIAL ENTROPY TO DISCRETE
ENTROPY

Consider a random variable X with density f(x) illustrated in Figure 8.1.
Suppose that we divide the range of X into bins of length A. Let us
assume that the density is continuous within the bins. Then, by the mean
value theorem, there exists a value x; within each bin such that

i+hHAa
fx)A = / f(x)dx. (8.23)

A

Consider the quantized random variable X*, which is defined by

XA=x  ifiA<X < (@(i+DA. (8.24)

fx) 4

FIGURE 8.1. Quantization of a continuous random variable.
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Then the probability that X2 = x; is

(i+hA
= fwdr= s, (8.25)
in
The entropy of the quantized version is

0
H(X*) == pilogp (8.26)

—00

o
== fG)Alog(f(x;)A) (8.27)

—00

==Y Afwlogf() — ) fx)Alogh  (8.28)
=~ AfGlog f(xi) —log A, (8.29)

since ) f(x;)A = f fx) = 1.1If f(x)log f(x) is Riemann integrable (a
condition to ensure that the limit is well defined [556]), the first term in
(8.29) approaches the integral of — f(x) log f(x) as A — 0 by definition
of Riemann integrability. This proves the following.

Theorem 8.3.1  If the density f(x) of the random variable X is Rie-
mann integrable, then

H(X?) +1log A — h(f) = h(X), as A — 0. (8.30)

Thus, the entropy of an n-bit quantization of a continuous random vari-
able X is approximately h(X) + n.

Example 8.3.1

1. If X has a uniform distribution on [0, 1] and we let A =27",
then h =0, H(X®) =n, and n bits suffice to describe X to n
bit accuracy.

2. If X is uniformly distributed on [0, %], the first 3 bits to the right
of the decimal point must be 0. To describe X to n-bit accuracy
requires only n — 3 bits, which agrees with h(X) = —3.

3. If X ~ N(O, 02) with o2 = 100, describing X to n bit accuracy
would require on the average n + % log(2mea?) = n 4 5.37 bits.
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In general, h(X) + n is the number of bits on the average required to
describe X to n-bit accuracy.

The differential entropy of a discrete random variable can be considered
to be —oo. Note that 27°° = 0, agreeing with the idea that the volume of
the support set of a discrete random variable is zero.

8.4 JOINT AND CONDITIONAL DIFFERENTIAL ENTROPY

As in the discrete case, we can extend the definition of differential entropy
of a single random variable to several random variables.

Definition The differential entropy of a set X1, X», ..., X,, of random
variables with density f(xi, x2, ..., x,) is defined as
h(Xy, Xa, ..., X,) = —/ F&x™Mlog f(x™)dx". (8.31)

Definition 1If X, Y have a joint density function f(x, y), we can define
the conditional differential entropy h(X|Y) as

hX1Y) = = [ £ log f(xly) dx dy, 832)
Since in general f(x|y) = f(x,y)/f(y), we can also write
h(X|Y)=h(X,Y)—h(Y). (8.33)
But we must be careful if any of the differential entropies are infinite.
The next entropy evaluation is used frequently in the text.

Theorem 8.4.1 (Entropy of a multivariate normal distribution)  Let
X1, Xo, ..., X,, have a multivariate normal distribution with mean | and
covariance matrix K. Then

1
h(X1, X2, ..., Xp) = h(Ny (1, K)) = 5 log(2me)"|K| bits, (8.34)

where | K| denotes the determinant of K.
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Proof: The probability density function of X, X», ..., X,, is

fx) = E—— L ) (8.35)
(var) Ik
Then
1 n 1
h(f) = — f f(x)[—;x — W K x— )~ In (V) |K|2] dx
(8.36)

i 1
=_E Z(Xi—ui>(1<—1)ij (Xj =) | +5n@m)" K| (8.37)
_l]

1
;| 5@ K] (838)

= _E Z(Xi — ) (X — ) (K1),
ij

! 1
- EZ E[(X; — pj)(Xi — )] (K_l)ij + 7 In2m)"|K| (8.39)
i.j

1 1
= EZ Z Kji (K™'),; + 5 In@n)"|K] (8.40)
J i
1 -1 1 n
= 5Z(KK )jj + 5 In@m)" K| (8.41)
J
1 1 .
= EZ ljj+ 5 In@7)" K| (8.42)
J
" 4 Lin@yix) (8.43)
= — — In(Z2mw .
22
1
=3 In(2we)"|K| nats (8.44)
1
=5 log(2me)" | K| bits. O (8.45)

8.5 RELATIVE ENTROPY AND MUTUAL INFORMATION

We now extend the definition of two familiar quantities, D(f]||g) and
1(X;Y), to probability densities.
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Definition The relative entropy (or Kullback—Leibler distance) D( f|g)
between two densities f and g is defined by

me=/ﬂ%§ (8.46)

Note that D(f||g) is finite only if the support set of f is contained in
the support set of g. [Motivated by continuity, we set Olog% =0.]

Definition The mutual information 1(X;Y) between two random vari-
ables with joint density f(x, y) is defined as

fx,y)
I1(X;Y lo dxdy. 8.47
(X:¥) = ff@y)gﬂ)ﬂ).ry (847)

From the definition it is clear that

I(X;Y)=h(X)—h(X|Y)=h(Y)—-h{Y|X)=h(X)+h(Y)—h(X,Y)
(8.48)
and

I(X:Y) = D(f e, MILF)f)- (8.49)

The properties of D(f||g) and I(X;Y) are the same as in the dis-
crete case. In particular, the mutual information between two random
variables is the limit of the mutual information between their quantized
versions, since

[(X2; Y2 = HX®) — HX2|IYY) (8.50)
~ h(X) —log A — (h(X|Y) —log A) (8.51)
=1(X;Y). (8.52)

More generally, we can define mutual information in terms of finite
partitions of the range of the random variable. Let X be the range of a
random variable X. A partition P of X is a finite collection of disjoint
sets P; such that U; P, = X. The quantization of X by P (denoted [X]p)
is the discrete random variable defined by

Pr([X]p =i)=Pr(X € ;) = f dF(x). (8.53)
P;

For two random variables X and Y with partitions P and Q, we can
calculate the mutual information between the quantized versions of X
and Y using (2.28). Mutual information can now be defined for arbitrary
pairs of random variables as follows:
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Definition The mutual information between two random variables X
and Y is given by
I(X;Y) =sup I([X]p; [Y]g). (8.54)
P.Q

where the supremum is over all finite partitions P and Q.

This is the master definition of mutual information that always applies,
even to joint distributions with atoms, densities, and singular parts. More-
over, by continuing to refine the partitions P and Q, one finds a mono-
tonically increasing sequence I ([X]p; [Y]g) /1.

By arguments similar to (8.52), we can show that this definition of
mutual information is equivalent to (8.47) for random variables that have
a density. For discrete random variables, this definition is equivalent to
the definition of mutual information in (2.28).

Example 8.5.1 (Mutual information between correlated Gaussian ran-
dom variables with correlation p) Let (X,Y) ~ N(0, K), where

2 2
K = [ o, P ] (8.55)

,002 o}
Then h(X)=h(Y)= 1log(2we)o? and h(X,Y) = }log(2me)’|K| =

%10g(2ne)2a4(1 — p?), and therefore

1(X;Y)=h(X)+h(Y)—h(X,Y) = —% log(1 — p?). (8.56)

If p=0, X and Y are independent and the mutual information is O.
If p ==+£1, X and Y are perfectly correlated and the mutual information
is infinite.

8.6 PROPERTIES OF DIFFERENTIAL ENTROPY, RELATIVE
ENTROPY, AND MUTUAL INFORMATION
Theorem 8.6.1

D(fllg) =0 (8.57)
with equality iff f = g almost everywhere (a.e.).
Proof: Let S be the support set of f. Then

—D(fllg) = / Flogs (8.58)
s R

< log / f ? (by Jensen’s inequality) (8.59)
s
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= log/ g (8.60)
S
<logl=0. (8.61)

We have equality iff we have equality in Jensen’s inequality, which
occurs iff f = g a.e. O

Corollary 1(X;Y) > 0 with equality iff X and Y are independent.
Corollary A (X|Y) < h(X) with equality iff X and Y are independent.

Theorem 8.6.2 (Chain rule for differential entropy)

h(X1, Xa, oo X)) = Y h(XGIX1, X, o, X)), (8.62)
i=1
Proof: Follows directly from the definitions. 0
Corollary
h(X1, X, .00 Xn) < ) h(X0), (8.63)

with equality iff X1, Xa, ..., X, are independent.

Proof: Follows directly from Theorem 8.6.2 and the corollary to Theo-
rem 8.6.1. [

Application (Hadamard’s inequality) Ifwe let X ~ N(0, K) be a mul-
tivariate normal random variable, calculating the entropy in the above
inequality gives us

K| <[]k (8.64)
i=1

which is Hadamard’s inequality. A number of determinant inequalities
can be derived in this fashion from information-theoretic inequalities
(Chapter 17).

Theorem 8.6.3
h(X +¢) = h(X). (8.65)

Translation does not change the differential entropy.

Proof: Follows directly from the definition of differential entropy. [
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Theorem 8.6.4
h(aX) = h(X) + log |al. (8.66)

Proof: Let Y =aX. Then fy(y) = ﬁfx(%), and

hax) == [ fr( oz fr( dy (8.67)
__ (L2 REPSe
B / la| fx (a) log <|a| fx (a)) dy (8.68)
=~ [ fetotog fitx) dx +1ogla (869)
= h(X) +loglal, (8.70)
after a change of variables in the integral. 0

Similarly, we can prove the following corollary for vector-valued ran-
dom variables.

Corollary
h(AX) = h(X) + log |det(A)|. (8.71)

We now show that the multivariate normal distribution maximizes the
entropy over all distributions with the same covariance.

Theorem 8.6.5 Let the random vector X € R" have zero mean and
covariance K = EXX' (i.e, K;j = EX; X, 1 <i, j <n). Then h(X) <
% log(2me)"| K|, with equality iff X ~ N(0, K).

Proof: Let g(x) be any density satisfying f g(x)x;x;jdx = K;; for all
i, j. Let ¢ be the density of a N(0, K) vector as given in (8.35), where we
set u = 0. Note that log ¢x (x) is a quadratic form and fx,-qubK (x)dx =
K,'j. Then

0 < D(gll¢x) (8.72)

- f ¢ log(g/dx) 8.73)

— h(g) - / g log gk (8.74)
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= —h(g) - [ oxlogox (8.75)
= —h(g) + h(gK). (8.76)

where the substitution | glog¢x = [ ¢k logpx follows from the fact
that g and ¢ yield the same moments of the quadratic form log ¢k (x).
O

In particular, the Gaussian distribution maximizes the entropy over
all distributions with the same variance. This leads to the estimation
counterpart to Fano’s inequality. Let X be a random variable with differ-
ential entropy h(X). Let X be an estimate of X, and let E(X — X)2 be
the expected prediction error. Let #(X) be in nats.

Theorem 8.6.6 (Estimation error and differential entropy)  For any
random variable X and estimator X,

E(X — %) > L o200,
2mwe

with equality if and only if X is Gaussian and X is the mean of X.

Proof: Let X be any estimator of X; then

E(X — X)* > min E(X — X)? (8.77)
X
= E(X — E(X))? (8.78)
= var(X) (8.79)
> Lezh(X), (8.80)
2me

where (8.78) follows from the fact that the mean of X is the best estimator
for X and the last inequality follows from the fact that the Gaussian
distribution has the maximum entropy for a given variance. We have
equality only in (8.78) only if X is the best estimator (i.e., X is the mean
of X and equality in (8.80) only if X is Gaussian). n

Corollary  Given side information Y and estimator X (Y), it follows that

EXX —X(Y))? > iezh“'”.
2me
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SUMMARY

Mﬁ=Mﬂ=—AfmbMUMx

f(Xn)=2—nh(X)
Vol(AM)=2"X)
H ([X]y-n) ~ h(X) +n.

h(NO, 6%)) = 10g271'602
1
h(Nu (e, K)) = log(2ne) |K|.

Mﬂm=/fm§zﬂ

n
h(X1, X2, ..., X,) = Zh(Xilxl, Xo, .o, Xizn).

i=1
h(X|Y) < h(X).
h(aX) = h(X) + log |al.
1(X; Y) = /ﬂmm%f(”

1
max h(X) = log(2ne) |K|.
EXX'=K

EXX —X())? > iezh“'”.
2me

>0
VACONACO I

(8.81)

(8.82)
(8.83)
(8.84)

(8.85)

(8.86)

(8.87)

(8.88)

(8.89)
(8.90)

(8.91)

(8.92)

2H(X) is the effective alphabet size for a discrete random variable.
2""(X) {5 the effective support set size for a continuous random variable.

2€ is the effective alphabet size of a channel of capacity C.

PROBLEMS

8.1 Differential entropy. Evaluate the differential entropy h(X) =

— [ f1n f for the following:

(a) The exponential density, f(x) = e ** , x > 0.
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8.4

8.5
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(b) The Laplace density, f(x) = %ke‘”x‘.
(¢) The sum of X; and X,, where X; and X, are independent
normal random variables with means p; and variances 01.2, i =

1,2.

Concavity of determinants. Let K| and K; be two symmetric non-
negative definite n X n matrices. Prove the result of Ky Fan [199]:

| AK, + 2Ky || Ky M| Ko [* for 0<A<1, A=1-2,

where | K | denotes the determinant of K. [Hint: Let Z = X,
where X; ~ N(0, K{), Xo ~ N(0, K;) and # = Bernoulli(1). Then
use h(Z | 0) < h(Z).]

Uniformly distributed noise. Let the input random variable X to
a channel be uniformly distributed over the interval —% <x < —1—%.
Let the output of the channel be Y = X + Z, where the noise ran-
dom variable is uniformly distributed over the interval —a/2 < z <
+a/2.

(a) Find /(X;Y) as a function of a.

(b) For a =1 find the capacity of the channel when the input X
is peak-limited; that is, the range of X is limited to —% <x<
—|—%. What probability distribution on X maximizes the mutual
information /(X; Y)?

(c) (Optional) Find the capacity of the channel for all values of «,
again assuming that the range of X is limited to —% <x < +%.

Quantized random variables. Roughly how many bits are required

on the average to describe to three-digit accuracy the decay time

(in years) of a radium atom if the half-life of radium is 80 years?

Note that half-life is the median of the distribution.

Scaling. Let h(X) = —f f(x)log f(x)dx. Show
h(AX) =log | det(A) | + h(X).

Variational inequality. Verify for positive random variables X
that

log Ep(X) = sup [Eg(log X) — D(Q|IP)]. (8.93)

where Ep(X) =Y xP(x) and D(Q||P) =Y, Q(x)log %Ejg,
and the supremum is over all Q(x)>0, Y  Q(x)=1. It is enough
to extremize J(Q)=EoIn X —D(QI||P)+1(}_ Q(x)—1).
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8.7

8.8

8.9

8.10

8.11

DIFFERENTIAL ENTROPY

Differential entropy bound on discrete entropy. Let X be a dis-
crete random variable on the set X' = {ay, ap, ...} with Pr(X =
a;) = p;. Show that

1 o0 © \?
H(pi, p2,...) < Elog(Zne) ;piiz — <Zl: ipi> + 3
(8.94)
Moreover, for every permutation o,

1 00 00 2 1
H(pi, p2,...) < Elog(Zne) Zpa(i)iz - (Z ipa(i)) T

i=1 i=

(8.95)
[Hint: Construct a random variable X’ such that Pr(X’ = i) = p;.
Let U be a uniform (0,1] random variable and let ¥ = X' + U,
where X’ and U are independent. Use the maximum entropy bound
on Y to obtain the bounds in the problem. This bound is due to

Massey (unpublished) and Willems (unpublished).]

Channel with uniformly distributed noise. Consider a additive
channel whose input alphabet X' = {0,£1,42} and whose output
Y = X+Z, where Z is distributed uniformly over the interval
[—1, 1]. Thus, the input of the channel is a discrete random vari-
able, whereas the output is continuous. Calculate the capacity C =
max ) I (X;Y) of this channel.

Gaussian mutual information. Suppose that (X, Y, Z) are jointly
Gaussian and that X — Y — Z forms a Markov chain. Let X and
Y have correlation coefficient p; and let Y and Z have correlation
coefficient p,. Find 1(X; Z).

Shape of the typical set. Let X; be i.i.d. ~ f(x), where

fx) = ce ™",

Let h = — [ fIn f. Describe the shape (or form) or the typical set
AW = {x" e R": f(x") € 27"EO},

Nonergodic Gaussian process. Consider a constant signal V in
the presence of iid observational noise {Z;}. Thus, X; =V + Z;,

where V ~ N (0, S) and Z; are iid ~ N (0, N). Assume that V and
{Z;} are independent.

(a) Is {X;} stationary?
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(b) Find lim,,__, % Z?:l X;. Is the limit random?

(¢) What is the entropy rate h of {X;}?

(d) Find the least-mean-squared error predictor X n+1(X"™), and find
02 =1lim, o E(X, — X,)2.

(e) Does {X;} have an AEP? That is, does —% log f(X") —> h?

HISTORICAL NOTES

Differential entropy and discrete entropy were introduced in Shannon’s
original paper [472]. The general rigorous definition of relative entropy
and mutual information for arbitrary random variables was developed by
Kolmogorov [319] and Pinsker [425], who defined mutual information as
supp o I ([X]p; [Y]g), where the supremum is over all finite partitions P
and Q.






I CHAPTER 9

GAUSSIAN CHANNEL

The most important continuous alphabet channel is the Gaussian channel
depicted in Figure 9.1. This is a time-discrete channel with output Y; at
time i, where Y; is the sum of the input X; and the noise Z;. The noise
Z; is drawn 1.i.d. from a Gaussian distribution with variance N. Thus,

Yi=Xi+ 27, Z; ~ N, N). .1

The noise Z; is assumed to be independent of the signal X;. This channel
is a model for some common communication channels, such as wired and
wireless telephone channels and satellite links. Without further conditions,
the capacity of this channel may be infinite. If the noise variance is zero,
the receiver receives the transmitted symbol perfectly. Since X can take
on any real value, the channel can transmit an arbitrary real number with
no error.

If the noise variance is nonzero and there is no constraint on the input,
we can choose an infinite subset of inputs arbitrarily far apart, so that
they are distinguishable at the output with arbitrarily small probability of
error. Such a scheme has an infinite capacity as well. Thus if the noise
variance is zero or the input is unconstrained, the capacity of the channel
is infinite.

The most common limitation on the input is an energy or power constraint.
We assume an average power constraint. For any codeword (x1, x2, ..., Xxp)
transmitted over the channel, we require that

1 n
2
- Y x? <P 9.2)

i=1

This communication channel models many practical channels, includ-
ing radio and satellite links. The additive noise in such channels may be
due to a variety of causes. However, by the central limit theorem, the

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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FIGURE 9.1. Gaussian channel.

cumulative effect of a large number of small random effects will be
approximately normal, so the Gaussian assumption is valid in a large
number of situations.

We first analyze a simple suboptimal way to use this channel. Assume
that we want to send 1 bit over the channel in one use of the channel.
Given the power constraint, the best that we can do is to send one of
two levels, ++/P or —+/P. The receiver looks at the corresponding ¥
received and tries to decide which of the two levels was sent. Assuming
that both levels are equally likely (this would be the case if we wish to
send exactly 1 bit of information), the optimum decoding rule is to decide
that ++/P was sent if ¥ > 0 and decide —+/P was sent if ¥ < 0. The
probability of error with such a decoding scheme is

1 1
Pe=ZPr(Y <0X = +VP) + 5 Pr(¥ > 0] = —V/P) 9.3)

— %Pr(Z < —VP|X =+VP)+ %Pr(Z > VP|X =—=v/P) (9.4)
= Pr(Z > V/P) 9.5)
—1-® (,/P/N) : (9.6)

where ®(x) is the cumulative normal function

@(x):/x L #a 9.7)

e
—00 277,'

Using such a scheme, we have converted the Gaussian channel into a dis-
crete binary symmetric channel with crossover probability P,. Similarly,
by using a four-level input signal, we can convert the Gaussian channel
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into a discrete four-input channel. In some practical modulation schemes,
similar ideas are used to convert the continuous channel into a discrete
channel. The main advantage of a discrete channel is ease of processing
of the output signal for error correction, but some information is lost in
the quantization.

9.1 GAUSSIAN CHANNEL: DEFINITIONS

We now define the (information) capacity of the channel as the maxi-
mum of the mutual information between the input and output over all
distributions on the input that satisfy the power constraint.

Definition The information capacity of the Gaussian channel with
power constraint P is

C= max I(X;Y). (9.8)
f(x):EX2<P

We can calculate the information capacity as follows: Expanding
I1(X;Y), we have

[(X;Y) = h(Y) — h(Y|X) (9.9)
=h(Y) — h(X + Z|X) (9.10)
= h(Y) — h(Z|X) (9.11)
=h(Y) — h(2), (9.12)

since Z is independent of X. Now, h(Z) = %log 2mweN. Also,
EY’?=EX+ 2> =EX’>+2EXEZ+EZ>=P + N, (9.13)

since X and Z are independent and EZ = 0. Given EY 2— P+ N, the
entropy of Y is bounded by %log 2we(P + N) by Theorem 8.6.5 (the
normal maximizes the entropy for a given variance).

Applying this result to bound the mutual information, we obtain

1(X:Y) = h(Y) — h(Z) 9.14)

1 1
< > log2me(P + N) — 3 log2meN (9.15)

Doe (14 F (9.16)
= — 10 — 1. .
2 %% N
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Hence, the information capacity of the Gaussian channel is

1 P
C = I1(X;Y)=-1 1 — 1, 9.17
Jnax 106G Y) z°g(+zv) ©17

and the maximum is attained when X ~ N(0, P).

We will now show that this capacity is also the supremum of the rates
achievable for the channel. The arguments are similar to the arguments
for a discrete channel. We will begin with the corresponding definitions.

Definition An (M, n) code for the Gaussian channel with power con-
straint P consists of the following:

1. An index set {1,2,..., M}.

2. An encoding function x : {1,2,..., M} — X", yielding codewords
x*(1), x"(2), ..., x" (M), satisfying the power constraint P; that is,
for every codeword

Y oxtw)<nP,  w=12.... M. (9.18)
i=1

3. A decoding function
g:V'—>{1,2,...,M}. (9.19)

The rate and probability of error of the code are defined as in Chapter 7
for the discrete case. The arithmetic average of the probability of error is
defined by

1
P = o2 D ki (9.20)

Definition A rate R is said to be achievable for a Gaussian channel
with a power constraint P if there exists a sequence of (2"F, n) codes
with codewords satisfying the power constraint such that the maximal
probability of error A" tends to zero. The capacity of the channel is the
supremum of the achievable rates.

Theorem 9.1.1  The capacity of a Gaussian channel with power con-
straint P and noise variance N is

1 P
C = 7 log (1 + N) bits per transmission. (9.21)
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Remark We first present a plausibility argument as to why we may be
able to construct (2"€, n) codes with a low probability of error. Consider
any codeword of length n. The received vector is normally distributed with
mean equal to the true codeword and variance equal to the noise variance.
With high probability, the received vector is contained in a sphere of radius
/n(N + €) around the true codeword. If we assign everything within this
sphere to the given codeword, when this codeword is sent there will be
an error only if the received vector falls outside the sphere, which has
low probability.

Similarly, we can choose other codewords and their corresponding
decoding spheres. How many such codewords can we choose? The vol-
ume of an n-dimensional sphere is of the form C,r", where r is the
radius of the sphere. In this case, each decoding sphere has radius v/nN.
These spheres are scattered throughout the space of received vectors. The
received vectors have energy no greater than n(P + N), so they lie in a
sphere of radius /n(P 4+ N). The maximum number of nonintersecting
decoding spheres in this volume is no more than

ColnP+NDE oy (1 N 5) 9.22)
Ca(n)’ N

and the rate of the code is % log(1 + %). This idea is illustrated in Figure 9.2.

FIGURE 9.2. Sphere packing for the Gaussian channel.
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This sphere-packing argument indicates that we cannot hope to send
at rates greater than C with low probability of error. However, we can
actually do almost as well as this, as is proved next.

Proof: (Achievability). We will use the same ideas as in the proof of
the channel coding theorem in the case of discrete channels: namely,
random codes and joint typicality decoding. However, we must make
some modifications to take into account the power constraint and the fact
that the variables are continuous and not discrete.

1. Generation of the codebook. We wish to generate a codebook in
which all the codewords satisfy the power constraint. To ensure
this, we generate the codewords with each element i.i.d. accord-
ing to a normal distribution with variance P — €. Since for large
n, % > Xl.2 — P — €, the probability that a codeword does not sat-
isfy the power constraint will be small. Let X;(w), i =1,2,...,n,
w=1,2,...,2"% be iid ~ N, P —¢), forming codewords
X"(1), X"(2), ..., X"(2"®)y e R

2. Encoding. After the generation of the codebook, the codebook is
revealed to both the sender and the receiver. To send the message
index w, the transmitter sends the wth codeword X" (w) in the code-
book.

3. Decoding. The receiver looks down the list of codewords { X" (w)}
and searches for one that is jointly typical with the received vector.
If there is one and only one such codeword X" (w), the receiver
declares W = w to be the transmitted codeword. Otherwise, the
receiver declares an error. The receiver also declares an error if the
chosen codeword does not satisfy the power constraint.

4. Probability of error. Without loss of generality, assume that code-
word 1 was sent. Thus, Y" = X" (1) + Z". Define the following

events:
1 n )
Eo=1- ij(l) > P (9.23)
j=1
and
E; = {(X"(i), Y") is in A™}. (9.24)

Then an error occurs if E( occurs (the power constraint is violated)
or E{ occurs (the transmitted codeword and the received sequence
are not jointly typical) or E, U E3 U --- U E,u.r occurs (some wrong
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codeword is jointly typical with the received sequence). Let & denote
the event W # W and let P denote the conditional probability given
that W = 1. Hence,

PrEIW =1) = P(&) = P (EgUE{ U E; U E3U -+ U Eyi)

(9.25)

on R

< P(Eo) + P(E\) + Y _P(E), (9.26)
i=2

by the union of events bound for probabilities. By the law of large
numbers, P(Ep) — 0 as n — oco. Now, by the joint AEP (which
can be proved using the same argument as that used in the discrete
case), P(E{) — 0, and hence

P(E{) <€ for n sufficiently large. (9.27)
Since by the code generation process, X" (1) and X" (i) are indepen-

dent, so are Y and X" (i). Hence, the probability that X" (i) and Y"
will be jointly typical is < 27"U(X:¥)=3¢) by the joint AEP.

Now let W be uniformly distributed over {1, 2, ..., 2Ry “and con-
sequently,
P(&—LZA- = p® (9.28)
r(€) = TR i = P". .
Then
P =Pr(€) = Pr(|W = 1) (9.29)
an
< P(Eo) + P(E) + ) _ P(E) (9.30)
i=2
an
<e+tet )y 27N (9.31)
i=2
=2e + (2"F — 1) 27N (9.32)
< Qe + 23n€2—n(1(X;Y)—R) (933)

< 3¢ (9.34)
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for n sufficiently large and R < I(X; Y) — 3e. This proves the exis-
tence of a good (2"F, n) code.

Now choosing a good codebook and deleting the worst half of the
codewords, we obtain a code with low maximal probability of error. In
particular, the power constraint is satisfied by each of the remaining code-
words (since the codewords that do not satisfy the power constraint have
probability of error 1 and must belong to the worst half of the codewords).
Hence we have constructed a code that achieves a rate arbitrarily close to
capacity. The forward part of the theorem is proved. In the next section
we show that the achievable rate cannot exceed the capacity. O

9.2 CONVERSE TO THE CODING THEOREM FOR GAUSSIAN
CHANNELS

In this section we complete the proof that the capacity of a Gaussian
channel is C = %log(l + %) by proving that rates R > C are not achiev-
able. The proof parallels the proof for the discrete channel. The main new
ingredient is the power constraint.

Proof: (Converse to Theorem 9.1.1). We must show that if Pe(") — 0 for
a sequence of (2"%, n) codes for a Gaussian channel with power constraint
P, then

R<C="lroe(1+72 (9.35)
= — 10 —_ . .
= 7 %% N

Consider any (2%, n) code that satisfies the power constraint, that is,
I,
- le- (w) < P, (9.36)
n
i=1

forw=1,2,...,62"R, Proceeding as in the converse for the discrete case,
let W be distributed uniformly over {1, 2, ..., 2”R}. The uniform distri-
bution over the index set W € {1, 2, ..., 2"R} induces a distribution on
the input codewords, which in turn induces a distribution over the input
alphabet. This specifies a joint distribution on W — X"(W) — Y — W.
To relate probability of error and mutual information, we can apply Fano’s
inequality to obtain

H(W|W) <1+nRP™ = ne,, (9.37)
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where €, — 0 as P — 0. Hence,

nR=HW)=IW; W)+ HW|W) (9.38)
< I(W; W)+ ne, (9.39)
<I(X"Y" +ne, (9.40)
= h(Y") — h(Y"|1X") + ne, 9.41)
= h(Y") — h(Z") + ne, (9.42)
< h(Y) —h(Z") + ne, (9.43)
i=1
= > h(¥) = Y _h(Z) + ne, (9.44)
i=1 i=1
- Z 1(X;: i) + ne,. (9.45)

i=1

Here X; = x; (W), where W is drawn according to the uniform distribution
on{l,2,...,2"%) Now let P; be the average power of the ith column of
the codebook, that is,

p = > xtw). (9.46)

2nR

Then, since ¥; = X; + Z; and since X; and Z; are independent, the aver-
age power EY;? of Y; is P; + N. Hence, since entropy is maximized by
the normal distribution,
1
h(Y;) < 3 log2me(P; + N). (9.47)
Continuing with the inequalities of the converse, we obtain

nR <Y (h(Y) = h(Z)) + ne, (9.48)

1 1
< Z (5 log(2e(P; + N)) — 2 log 27T€N> + ne, (9.49)

—leo 1+5 + ne (9.50)
— L5 % N " '
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Since each of the codewords satisfies the power constraint, so does their
average, and hence

1
- Z P, < P. (9.51)
n i

Since f(x) = %log(l + x) is a concave function of x, we can apply
Jensen’s inequality to obtain

12”:11 14 b 5 1+12n:Pi (9.52)
— —1lo — —lo — — .
nizlzg N) =2 n&=N

Do (14 £ (9.53)
— 10 — 1. .
2 %8 N

A

IA

Thus R < % log(1 + %) + €4, €, — 0, and we have the required converse.

Note that the power constraint enters the standard proof in (9.46).

9.3 BANDLIMITED CHANNELS

A common model for communication over a radio network or a telephone
line is a bandlimited channel with white noise. This is a continuous-
time channel. The output of such a channel can be described as the
convolution

Y(#)=(X@)+ Z(@)) *h(1), (9.54)

where X (r) is the signal waveform, Z(¢) is the waveform of the white
Gaussian noise, and k() is the impulse response of an ideal bandpass
filter, which cuts out all frequencies greater than W. In this section we
give simplified arguments to calculate the capacity of such a channel.
We begin with a representation theorem due to Nyquist [396] and Shan-
non [480], which shows that sampling a bandlimited signal at a sampling
rate ﬁ is sufficient to reconstruct the signal from the samples. Intuitively,
this is due to the fact that if a signal is bandlimited to W, it cannot change
by a substantial amount in a time less than half a cycle of the maximum
frequency in the signal, that is, the signal cannot change very much in

time intervals less than ﬁ seconds.
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Theorem 9.3.1  Suppose that a function f(t) is bandlimited to W,
namely, the spectrum of the function is 0 for all frequencies greater than
W. Then the function is completely determined by samples of the function
spaced ﬁ seconds apart.

Proof: Let F(w) be the Fourier transform of f(z). Then

1 o0 .
fi)=— / F(w)e' dw (9.55)
27 J_so
2nW )
- F(w)e' do, (9.56)
27 J onw

since F(w) is zero outside the band —27 W < w < 27 W. If we consider
samples spaced ﬁ seconds apart, the value of the signal at the sample
points can be written

2n W

n 1 o5y
¥ (ﬁ) - Zf_znw F(0)e'®? dw. (9.57)

The right-hand side of this equation is also the definition of the coefficients
of the Fourier series expansion of the periodic extension of the function
F (w), taking the interval —27 W to 27 W as the fundamental period. Thus,
the sample values f(5y;) determine the Fourier coefficients and, by exten-
sion, they determine the value of F(w) in the interval (—2xW,27x W).
Since a function is uniquely specified by its Fourier transform, and since
F(w) is zero outside the band W, we can determine the function uniquely
from the samples.
Consider the function
sin(2w Wt)

SinC(I) = W (958)

This function is 1 at t = 0 and is O for t = n/2W, n # 0. The spectrum
of this function is constant in the band (—W, W) and is zero outside this
band. Now define

g(t) = i f (%) sinc (t - %) . (9.59)

From the properties of the sinc function, it follows that g(¢) is bandlim-
ited to W and is equal to f(n/2W) at t =n/2W. Since there is only
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one function satisfying these constraints, we must have g(¢) = f(¢). This
provides an explicit representation of f(¢) in terms of its samples. O

A general function has an infinite number of degrees of freedom—the
value of the function at every point can be chosen independently. The
Nyquist—Shannon sampling theorem shows that a bandlimited function
has only 2W degrees of freedom per second. The values of the function
at the sample points can be chosen independently, and this specifies the
entire function.

If a function is bandlimited, it cannot be limited in time. But we can
consider functions that have most of their energy in bandwidth W and
have most of their energy in a finite time interval, say (0, 7). We can
describe these functions using a basis of prolate spheroidal functions. We
do not go into the details of this theory here; it suffices to say that there
are about 27'W orthonormal basis functions for the set of almost time-
limited, almost bandlimited functions, and we can describe any function
within the set by its coordinates in this basis. The details can be found
in a series of papers by Landau, Pollak, and Slepian [340, 341, 500].
Moreover, the projection of white noise on these basis vectors forms
an i.i.d. Gaussian process. The above arguments enable us to view the
bandlimited, time-limited functions as vectors in a vector space of 2T W
dimensions.

Now we return to the problem of communication over a bandlimited
channel. Assuming that the channel has bandwidth W, we can represent
both the input and the output by samples taken 1/2W seconds apart. Each
of the input samples is corrupted by noise to produce the corresponding
output sample. Since the noise is white and Gaussian, it can be shown
that each noise sample is an independent, identically distributed Gaussian
random variable.

If the noise has power spectral density Ny/2 watts/hertz and bandwidth
W hertz, the noise has power %2W = NoW and each of the 2W T noise
samples in time 7 has variance NoWT /2WT = Ny/2. Looking at the
input as a vector in the 27 W-dimensional space, we see that the received
ii/gnal is spherically normally distributed about this point with covariance
X

’ Now we can use the theory derived earlier for discrete-time Gaussian
channels, where it was shown that the capacity of such a channel is

1 P
C = > log <1 + ﬁ) bits per transmission. (9.60)

Let the channel be used over the time interval [0, T']. In this case, the
energy per sample is PT/2WT = P/2W, the noise variance per sample
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is %ZWZWLT = Nyp/2, and hence the capacity per sample is

1 1+ 