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Preface

The field of digital communication has evolved rapidly in the past few

decades, with commercial applications proliferating in wireline communi-

cation networks (e.g., digital subscriber loop, cable, fiber optics), wireless

communication (e.g., cell phones and wireless local area networks), and stor-

age media (e.g., compact discs, hard drives). The typical undergraduate and

graduate student is drawn to the field because of these applications, but is

often intimidated by the mathematical background necessary to understand

communication theory. A good lecturer in digital communication alleviates

this fear by means of examples, and covers only the concepts that directly

impact the applications being studied. The purpose of this text is to provide

such a lecture style exposition to provide an accessible, yet rigorous, intro-

duction to the subject of digital communication. This book is also suitable for

self-study by practioners who wish to brush up on fundamental concepts.

The book can be used as a basis for one course, or a two course sequence, in

digital communication. The following topics are covered: complex baseband

representation of signals and noise (and its relation to modern transceiver

implementation); modulation (emphasizing linear modulation); demodulation

(starting from detection theory basics); communication over dispersive chan-

nels, including equalization and multicarrier modulation; computation of per-

formance benchmarks using information theory; basics of modern coding

strategies (including convolutional codes and turbo-like codes); and introduc-

tion to wireless communication. The choice of material reflects my personal

bias, but the concepts covered represent a large subset of the tricks of the

trade. A student who masters the material here, therefore, should be well

equipped for research or cutting edge development in communication sys-

tems, and should have the fundamental grounding and sophistication needed

to explore topics in further detail using the resources that any researcher or

designer uses, such as research papers and standards documents.

Organization

Chapter 1 provides a quick perspective on digital communication. Chapters 2

and 3 introduce modulation and demodulation, respectively, and contain

xiii
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material that I view as basic to an understanding of modern digital communi-

cation systems. In addition, a review of “just enough” background in signals

and systems is woven into Chapter 2, with a special focus on the complex

baseband representation of passband signals and systems. The emphasis is

placed on complex baseband because it is key to algorithm design and imple-

mentation in modern digital transceivers. In a graduate course, many students

will have had a first exposure to digital communication, hence the instructor

may choose to discuss only a few key concepts in class, and ask students to

read the chapter as a review. Chapter 3 focuses on the application of detection

and estimation theory to the derivation of optimal receivers for the additive

white Gaussian noise (AWGN) channel, and the evaluation of performance

as a function of Eb/N0 for various modulation strategies. It also includes a

glimpse of soft decisions and link budget analysis.

Once students are firmly grounded in the material of Chapters 2 and 3,

the remaining chapters more or less stand on their own. Chapter 4 contains

a framework for estimation of parameters such as delay and phase, starting

from the derivation of the likelihood ratio of a signal in AWGN. Optimal non-

coherent receivers are derived based on this framework. Chapter 5 describes

the key ideas used in channel equalization, including maximum likelihood

sequence estimation (MLSE) using the Viterbi algorithm, linear equaliza-

tion, and decision feedback equalization. Chapter 6 contains a brief treatment

of information theory, focused on the computation of performance bench-

marks. This is increasingly important for the communication system designer,

now that turbo-like codes provide a framework for approaching information-

theoretic limits for virtually any channel model. Chapter 7 introduces channel

coding, focusing on the shortest route to conveying a working understanding

of basic turbo-like constructions and iterative decoding. It includes convolu-

tional codes, serial and parallel concatenated turbo codes, and low density

parity check (LDPC) codes. Finally, Chapter 8 contains an introduction to

wireless communication, and includes discussion of channel models, fading,

diversity, common modulation formats used in wireless systems, such as

orthogonal frequency division multiplexing, spread spectrum, and continuous

phase modulation, as well as multiple antenna, or space–time, communica-

tion. Wireless communication is a richly diverse field to which entire books

are devoted, hence my goal in this chapter is limited to conveying a subset

of the concepts underlying link design for existing and emerging wireless

systems. I hope that this exposition stimulates the reader to explore further.

How to use this book

My view of the dependencies among the material covered in the different

chapters is illustrated in Figure 1, as a rough guideline for course design

or self-study based on this text. Of course, an instructor using this text
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Chapter 7 (channel coding)
Chapter 5

(channel equalization) 
Chapter 4 (synchronization and
noncoherent communication)

Chapter 8 (wireless communication)

Chapter 2 (modulation)
Chapter 3 (demodulation)

Chapter 6 (information−theoretic
limits and their computation)

Figure 1 Dependencies among

various chapters. Dashed lines

denote weak dependencies.
may be able to short-circuit some of these dependencies, especially the

weak ones indicated by dashed lines. For example, much of the material

in Chapter 7 (coding) and Chapter 8 (wireless communication) is accessible

without detailed coverage of Chapter 6 (information theory).

In terms of my personal experience with teaching the material at the Uni-

versity of California, Santa Barbara (UCSB), in the introductory graduate

course on digital communication, I cover the material in Chapters 2, 3, 4,

and 5 in one quarter, typically spending little time on the material in Chapter 2

in class, since most students have seen some version of this material. Some-

times, depending on the pace of the class, I am also able to provide a glimpse

of Chapters 6 and 7. In a follow-up graduate course, I cover the material in

Chapters 6, 7, and 8. The pace is usually quite rapid in a quarter system, and

the same material could easily take up two semesters when taught in more

depth, and at a more measured pace.

An alternative course structure that is quite appealing, especially in terms

of systematic coverage of fundamentals, is to cover Chapters 2, 3, 6, and part

of 7 in an introductory graduate course, and to cover the remaining topics in

a follow-up course.
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C H A P T E R

1 Introduction

We define communication as information transfer between different points

in space or time, where the term information is loosely employed to cover

standard formats that we are all familiar with, such as voice, audio, video,

data files, web pages, etc. Examples of communication between two points

in space include a telephone conversation, accessing an Internet website from

our home or office computer, or tuning in to a TV or radio station. Examples

of communication between two points in time include accessing a storage

device, such as a record, CD, DVD, or hard drive. In the preceding exam-

ples, the information transferred is directly available for human consumption.

However, there are many other communication systems, which we do not

directly experience, but which form a crucial part of the infrastructure that

we rely upon in our daily lives. Examples include high-speed packet trans-

fer between routers on the Internet, inter- and intra-chip communication in

integrated circuits, the connections between computers and computer periph-

erals (such as keyboards and printers), and control signals in communication

networks.

In digital communication, the information being transferred is represented

in digital form, most commonly as binary digits, or bits. This is in contrast to

analog information, which takes on a continuum of values. Most communica-

tion systems used for transferring information today are either digital, or are

being converted from analog to digital. Examples of some recent conversions

that directly impact consumers include cellular telephony (from analog FM

to several competing digital standards), music storage (from vinyl records to

CDs), and video storage (from VHS or beta tapes to DVDs). However, we

typically consume information in analog form; for example, reading a book or

a computer screen, listening to a conversation or to music. Why, then, is the

world going digital? I consider this issue after first discussing the components

of a typical digital communication system.

1
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2 Introduction

1.1 Components of a digital communication system

Consider the block diagram of a digital communication link depicted in

Figure 1.1. I will now briefly discuss the roles of the blocks shown in the

figure.

Figure 1.1 Block diagram of a

digital communication link.

Source encoder Information theory tells us that any information can be effi-

ciently represented in digital form up to arbitrary precision, with the number

of bits required for the representation depending on the required fidelity. The

task of the source encoder is to accomplish this in a practical setting, reducing

the redundancy in the original information in a manner that takes into account

the end user’s requirements. For example, voice can be intelligibly encoded

into a 4 kbit/s bitstream for severely bandwidth constrained settings, or sent at

64 kbit/s for conventional wireline telephony. Similarly, audio encoding rates

have a wide range – MP3 players for consumer applications may employ

typical bit rates of 128 kbit/s, while high-end digital audio studio equipment

may require around ten times higher bit rates. While the preceding examples

refer to lossy source coding (in which a controlled amount of information

is discarded), lossless compression of data files can also lead to substantial

reductions in the amount of data to be transmitted.

Channel encoder and modulator While the source encoder eliminates

unwanted redundancy in the information to be sent, the channel encoder

introduces redundancy in a controlled fashion in order to combat errors that

may arise from channel imperfections and noise. The output of the channel

encoder is a codeword from a channel code, which is designed specifically

for the anticipated channel characteristics and the requirements dictated by

higher network layers. For example, for applications that are delay insensitive,

the channel code may be optimized for error detection, followed by a request

for retransmission. On the other hand, for real-time applications for which

retransmissions are not possible, the channel code may be optimized for

error correction. Often, a combination of error correction and detection may

be employed. The modulator translates the discrete symbols output by the

channel code into an analog waveform that can be transmitted over the

To

information
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Channel

encoder
Modulator

Channel

Demodulator
Channel

decoder
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3 1.1 Components of a digital communication system

physical channel. The physical channel for an 802.11b based wireless local

area network link is, for example, a band of 20MHz width at a frequency of

approximately 2.4GHz. For this example, the modulator translates a bitstream

of rate 1, 2, 5.5, or 11Mbit/s (the rate varies, depending on the channel

conditions) into a waveform that fits within the specified 20MHz frequency

band.

Channel The physical characteristics of communication channels can vary

widely, and good channel models are critical to the design of efficient commu-

nication systems. While receiver thermal noise is an impairment common to

most communication systems, the channel distorts the transmitted waveform

in a manner that may differ significantly in different settings. For wireline

communication, the channel is well modeled as a linear time-invariant sys-

tem, and the transfer function in the band used by the modulator can often

be assumed to be known at the transmitter, based on feedback obtained

from the receiver at the link set-up phase. For example, in high-speed digital

subscriber line (DSL) systems over twisted pairs, such channel feedback is

exploited to send more information at frequencies at which the channel gain

is larger. On the other hand, for wireless mobile communication, the channel

may vary because of relative mobility between the transmitter and receiver,

which affects both transmitter design (accurate channel feedback is typically

not available) and receiver design (the channel must either be estimated, or

methods that do not require accurate channel estimates must be used). Fur-

ther, since wireless is a broadcast medium, multiple-access interference due

to simultaneous transmissions must either be avoided by appropriate resource

sharing mechanisms, or by designing signaling waveforms and receivers to

provide robust performance in the presence of interference.

Demodulator and channel decoder The demodulator processes the analog

received waveform, which is a distorted and noisy version of the transmitted

waveform. One of its key tasks is synchronization: the demodulator must

account for the fact that the channel can produce phase, frequency, and

time shifts, and that the clocks and oscillators at the transmitter and receiver

are not synchronized a priori. Another task may be channel equalization, or

compensation of the intersymbol interference induced by a dispersive channel.

The ultimate goal of the demodulator is to produce tentative decisions on the

transmitted symbols to be fed to the channel decoder. These decisions may be

“hard” (e.g., the demodulator guesses that a particular bit is 0 or 1), or “soft”

(e.g., the demodulator estimates the likelihood of a particular bit being 0 or 1).

The channel decoder then exploits the redundancy in the channel to code to

improve upon the estimates from the demodulator, with its final goal being

to produce an estimate of the sequence of information symbols that were the

input to the channel encoder. While the demodulator and decoder operate

independently in traditional receiver designs, recent advances in coding and
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communication theory show that iterative information exchange between the

demodulator and the decoder can dramatically improve performance.

Source decoder The source decoder converts the estimated information

bits produced by the channel decoder into a format that can be used by the

end user. This may or may not be the same as the original format that was

the input to the source encoder. For example, the original source encoder

could have translated speech into text, and then encoded it into bits, and the

source decoder may then display the text to the end user, rather than trying

to reproduce the original speech.

I am now ready to offer an explanation of why the world is going digital.

The two key advantages of the digital communication approach to the design

of transmission and storage media are as follows:

Source-independent design Once information is transformed into bits by

the source encoder, it can be stored or transmitted without interpretation: as

long as the bits are recovered, the information they represent can be recon-

structed with the same degree of precision as the originally encoding. This

means that the storage or communication medium can be independent of the

source characteristics, so that a variety of information sources can share the

same communication medium. This leads to significant economies of scale

in the design of individual communication links as well as communication

networks comprising many links, such as the Internet. Indeed, when infor-

mation has to traverse multiple communication links in a network, the source

encoding and decoding in Figure 1.1 would typically be done at the end

points alone, with the network transporting the information bits put out by

the source encoder without interpretation.

Channel-optimized design For each communication link, the channel

encoder or decoder and modulator or demodulator can be optimized for the

specific channel characteristics. Since the bits being transported are regener-

ated at each link, there is no “noise accumulation.”

The preceding framework is based on a separation of source coding and

channel coding. Not only does this separation principle yield practical advan-

tages as mentioned above, but we are also reassured by the source-channel

separation theorem of information theory that it is theoretically optimal for

point-to-point links (under mild conditions). While the separation approach

is critical to obtaining the economies of scale driving the growth of digital

communication systems, we note in passing that joint source and channel

coding can yield superior performance, both in theory and practice, in certain

settings (e.g., multiple-access and broadcast channels, or applications with

delay or complexity constraints).

The scope of this textbook is indicated in Figure 1.1: I consider modulation

and demodulation, channel encoding and decoding, and channel modeling.
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Source encoding and decoding are not covered. Thus, I implicitly restrict

attention to communication systems based on the separation principle.

1.2 Text outline

The objective of this text is to convey an understanding of the principles

underlying the design of a modern digital communication link. An introduc-

tion to modulation techniques (i.e., how to convert bits into a form that can be

sent over a channel) is provided in Chapter 2. I emphasize the important role

played by the complex baseband representation for passband signals in both

transmitter and receiver design, describe some common modulation formats,

and discuss how to determine how much bandwidth is required to support

a given modulation format. An introduction to demodulation (i.e., how to

estimate the transmitted bits from a noisy received signal) for the classical

additive white Gaussian noise (AWGN) channel is provided in Chapter 3. My

starting point is the theory of hypothesis testing. I emphasize the geometric

view of demodulation first popularized by the classic text of Wozencraft and

Jacobs, introduce the concept of soft decisions, and provide a brief exposure

to link budget analysis (which is used by system designers for determining

parameters such as antenna gains and transmit powers). Mastery of Chap-

ters 2 and 3 is a prerequisite for the remainder of this book. The remaining

chapters essentially stand on their own. Chapter 4 contains a framework for

estimation of parameters such as delay and phase, starting from the derivation

of the likelihood ratio of a signal in AWGN. Optimal noncoherent receivers

are derived based on this framework. Chapter 5 describes the key ideas used

in channel equalization, including maximum likelihood sequence estimation

(MLSE) using the Viterbi algorithm, linear equalization, and decision feed-

back equalization. Chapter 6 contains a brief treatment of information theory,

focused on the computation of performance benchmarks. This is increas-

ingly important for the communication system designer, now that turbo-like

codes provide a framework for approaching information-theoretic limits for

virtually any channel model. Chapter 7 introduces error-correction coding.

It includes convolutional codes, serial and parallel concatenated turbo codes,

and low density parity check (LDPC) codes. It also provides a very brief

discussion of how algebraic codes, which are covered in depth in coding

theory texts, fit within modern communication link design, with an emphasis

on Reed–Solomon codes. Finally, Chapter 8 contains an introduction to wire-

less communication, including channel modeling, the effect of fading, and

a discussion of some modulation formats commonly used over the wireless

channel that are not covered in the introductory treatment in Chapter 2. The

latter include orthogonal frequency division multiplexing (OFDM), spread

spectrum communication, continuous phase modulation, and space–time (or

multiple antenna) communication.
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1.3 Further reading

Useful resources for getting a quick exposure to many topics on commu-

nication systems are The Communications Handbook [1] and The Mobile

Communications Handbook [2], both edited by Gibson. Standards for com-

munication systems are typically available online from organizations such as

the Institute for Electrical and Electronics Engineers (IEEE). Recently pub-

lished graduate-level textbooks on digital communication include Proakis [3],

Benedetto and Biglieri [4], and Barry, Lee, and Messerschmitt [5]. Under-

graduate texts on communications include Haykin [6], Proakis and Salehi [7],

Pursley [8], and Ziemer and Tranter [9]. Classical texts of enduring value

include Wozencraft and Jacobs [10], which was perhaps the first textbook

to introduce signal space design techniques, Viterbi [11], which provides

detailed performance analysis of demodulation and synchronization tech-

niques, Viterbi and Omura [12], which provides a rigorous treatment of mod-

ulation and coding, and Blahut [13], which provides an excellent perspective

on the concepts underlying digital communication systems.

I do not cover source coding in this text. An information-theoretic treatment

of source coding is provided in Cover and Thomas [14], while a more detailed

description of compression algorithms is found in Sayood [15].

Finally, while this text deals with the design of individual communicaiton

links, the true value of these links comes from connecting them together

to form communication networks, such as the Internet, the wireline phone

network, and the wireless cellular communication network. Two useful texts

on communication networks are Bertsekas and Gallager [16] and Walrand and

Varaiya [17]. On a less technical note, Friedman [18] provides an interesting

discussion on the immense impact of advances in communication networking

on the global economy.
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2 Modulation

Modulation refers to the representation of digital information in terms of

analog waveforms that can be transmitted over physical channels. A simple

example is depicted in Figure 2.1, where a sequence of bits is translated into

a waveform. The original information may be in the form of bits taking the

values 0 and 1. These bits are translated into symbols using a bit-to-symbol

map, which in this case could be as simple as mapping the bit 0 to the symbol

+1, and the bit 1 to the symbol −1. These symbols are then mapped to

an analog waveform by multiplying with translates of a transmit waveform

(a rectangular pulse in the example shown): this is an example of linear

modulation, to be discussed in detail in Section 2.5. For the bit-to-symbol

map just described, the bitstream encoded into the analog waveform shown

in Figure 2.1 is 01100010100.

Figure 2.1 A simple example

of binary modulation.

While a rectangular timelimited transmit waveform is shown in the example

of Figure 2.1, in practice, the analog waveforms employed for modulation

are often constrained in the frequency domain. Such constraints arise either

from the physical characteristics of the communication medium, or from

external factors such as government regulation of spectrum usage. Thus, we

typically classify channels, and the signals transmitted over them, in terms of

the frequency bands they occupy. In this chapter, we discuss some important

modulation techniques, after first reviewing some basic concepts regarding

frequency domain characterization of signals and systems. The material in this

chapter is often covered in detail in introductory digital communication texts,

−1

+1

−1

+1 +1 +1 +1 +1 +1

−1−1

7
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but I emphasize some specific points in somewhat more detail than usual.

One of these is the complex baseband representation of passband signals,

which is a crucial tool both for understanding and implementing modern

communication systems. Thus, the reader who is familiar with this material

is still encouraged to skim through this chapter.

Map of this chapter In Section 2.1, I review basic notions such as the fre-

quency domain representation of signals, inner products between signals, and

the concept of baseband and passband signals. While currents and voltages in

a circuit are always real-valued, both baseband and passband signals can be

treated under a unified framework by allowing baseband signals to take on

complex values. This complex baseband representation of passband signals is

developed in Section 2.2, where we point out that manipulation of complex

baseband signals is an essential component of modern transceivers. While

the preceding development is for deterministic, finite energy signals, mod-

eling of signals and noise in digital communication relies heavily on finite

power, random processes. I therefore discuss frequency domain description

of random processes in Section 2.3. This completes the background needed

to discuss the main theme of this chapter: modulation. Section 2.4 briefly

discusses the degrees of freedom available for modulation, and introduces

the concept of bandwidth efficiency. Section 2.5 covers linear modulation

using two-dimensional constellations, which, in principle, can utilize all avail-

able degrees of freedom in a bandlimited channel. The Nyquist criterion for

avoidance of intersymbol interference (ISI) is discussed, in order to establish

guidelines relating bandwidth to bit rate. Section 2.6 discusses orthogonal and

biorthogonal modulation, which are nonlinear modulation formats optimized

for power efficiency. Finally, Section 2.7 discusses differential modulation

as a means of combating phase uncertainty. This concludes my introduction

to modulation. Several other modulation formats are discussed in Chapter 8,

where I describe some modulation techniques commonly employed in wire-

less communication.

2.1 Preliminaries

This section contains a description of just enough material on signals and

systems for our purpose in this text, including the definitions of inner product,

norm and energy for signals, convolution, Fourier transform, and baseband

and passband signals.

Complex numbers A complex number z can be written as z = x+ jy,

where x and y are real numbers, and j =
√
−1. We say that x = Re�z� is

the real part of z and y = Im�z� is the imaginary part of z. As depicted in

Figure 2.2, it is often advantageous to interpret the complex number z as
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(x,y)

x

y

Re(z)

Im(z)

θ

r

a two-dimensional real vector, which can be represented in rectangular form

as �x� y�= �Re�z�� Im�z��, or in polar form as

r = �z� =
√

x2+y2�

� = arg�z�= tan−1 y

x
�

Figure 2.2 A complex number

z represented in the

two-dimensional real plane.

Euler’s identity We routinely employ this to decompose a complex expo-

nential into real-valued sinusoids as follows:

ej� = cos�+ j sin �� (2.1)

A key building block of communication theory is the relative geometry

of the signals used, which is governed by the inner products between sig-

nals. Inner products for continuous-time signals can be defined in a manner

exactly analogous to the corresponding definitions in finite-dimensional vec-

tor space.

Inner product The inner product for two m× 1 complex vectors s =
�s�1��…� s�m��T and r = �r�1��…� r�m��T is given by

�s� r� =
m
∑

i=1

s�i�r∗�i�= rHs� (2.2)

Similarly, we define the inner product of two (possibly complex-valued)

signals s�t� and r�t� as follows:

�s� r� =
∫ �

−�
s�t�r∗�t� dt� (2.3)

The inner product obeys the following linearity properties:

�a1s1+a2s2� r� = a1�s1� r�+a2�s2� r��
�s� a1r1+a2r2� = a∗

1�s� r1�+a∗
2�s� r2��

where a1, a2 are complex-valued constants, and s, s1, s2, r, r1, r2 are signals

(or vectors). The complex conjugation when we pull out constants from the

second argument of the inner product is something that we need to remain

aware of when computing inner products for complex signals.
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Energy and norm The energy Es of a signal s is defined as its inner product

with itself:

Es = ��s��2 = �s� s� =
∫ �

−�
�s�t��2dt� (2.4)

where ��s�� denotes the norm of s. If the energy of s is zero, then s must be

zero “almost everywhere” (e.g., s�t� cannot be nonzero over any interval, no

matter how small its length). For continuous-time signals, we take this to be

equivalent to being zero everywhere. With this understanding, ��s�� = 0 implies

that s is zero, which is a property that is true for norms in finite-dimensional

vector spaces.

Cauchy–Schwartz inequality The inner product obeys the Cauchy–

Schwartz inequality, stated as follows:

��s� r�� ≤ ��s�� ��r��� (2.5)

with equality if and only if, for some complex constant a, s�t� = ar�t� or

r�t� = as�t� almost everywhere. That is, equality occurs if and only if one

signal is a scalar multiple of the other. The proof of this inequality is given

in Problem 2.4.

Convolution The convolution of two signals s and r gives the signal

q�t�= �s ∗ r��t�=
∫ �

−�
s�u�r�t−u�du�

Here, the convolution is evaluated at time t, while u is a “dummy” variable that

is integrated out. However, it is sometimes convenient to abuse notation and

use q�t�= s�t�∗ r�t� to denote the convolution between s and r. For example,

this enables us to state compactly the following linear time invariance (LTI)

property:

�a1s1�t− t1�+a2s2�t− t2��∗ r�t�= a1�s1 ∗ r��t− t1�+a2�s2 ∗ r��t− t2��

for any complex gains a1 and a2, and any time offsets t1 and t2.

Delta function The delta function 	�t� is defined via the following “sifting”

property: for any finite energy signal s�t�, we have
∫ �

−�
	�t− t0�s�t�dt = s�t0�� (2.6)

In particular, this implies that convolution of a signal with a shifted version

of the delta function gives a shifted version of the signal:

	�t− t0�∗ s�t�= s�t− t0�� (2.7)

Equation (2.6) can be shown to imply that 	�0�=� and 	�t�= 0 for t 	= 0.

Thus, thinking of the delta function as a signal is a convenient abstraction,

since it is not physically realizable.
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Multipath components

Channel input

Channel output

Figure 2.3 A signal going

through a multipath channel.
Convolution plays a fundamental role in both modeling and transceiver

implementation in communication systems, as illustrated by the following

examples.

Example 2.1.1 (Modeling a multipath channel) The channel between

the transmitter and the receiver is often modeled as an LTI system, with

the received signal y given by

y�t�= �s ∗h��t�+n�t��

where s is the transmitted waveform, h is the channel impulse response, and

n�t� is receiver thermal noise and interference. Suppose that the channel

impulse response is given by

h�t�=
M
∑

i=1

ai	�t− ti��

Ignoring the noise, a signal s�t� passing through such a channel produces

an output

y�t�= �s ∗h��t�=
M
∑

i=1

ais�t− ti��

This could correspond, for example, to a wireless multipath channel in

which the transmitted signal is reflected by a number of scatterers, each

of which gives rise to a copy of the signal with a different delay and

scaling. Typically, the results of propagation studies would be used to
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obtain statistical models for the number of multipath components M , the

delays 
ti�, and the gains 
ai�.

Example 2.1.2 (Matched filter) For a complex-valued signal s�t�, the

matched filter is defined as a filter with impulse response smf�t�= s∗�−t�;

see Figure 2.4 for an example. Note that Smf�f� = S∗�f�. If the input to

the matched filter is x�t�, then the output is given by

Re(smf(t)) = Re(s(−t))   

Im(smf(t)) = −Im(s(−t))   

Re(s(t))

Im(s(t))

t

t

t

t
−1−221

−1.5

1.5

Figure 2.4 Matched filter for a complex-valued signal.

y�t�= �x∗ smf��t�=
∫ �

−�
x�u�smf�t−u�du=

∫ �

−�
x�u�s∗�u− t�du� (2.8)

The matched filter, therefore, computes the inner product between the

input x and all possible time translates of the waveform s, which can be

interpreted as “template matching.” In particular, the inner product �x� s�
equals the output of the matched filter at time 0. Some properties of the

matched filter are explored in Problem 2.5. For example, if x�t�= s�t− t0�

(i.e., the input is a time translate of s), then, as shown in Problem 2.5, the

magnitude of the matched filter output is maximum at t= t0. We can, then,

intuitively see how the matched filter would be useful, for example, in

delay estimation using “peak picking.” In later chapters, a more systematic

development is used to reveal the key role played by the matched filter in

digital communication receivers.
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Indicator function We use IA to denote the indicator function of a set A,

defined as

IA�x�=
{

1� x∈A

0� otherwise
�

For example, the indicator function of an interval has a boxcar shape, as

shown in Figure 2.5.

1

I[a,b](x)

a b
x

Figure 2.5 The indicator

function of an interval has a

boxcar shape.

Sinc function The sinc function is defined as

sinc�x�= sin��x�

�x
�

where the value at x = 0 is defined as the limit as x→ 0 to be sinc�0�= 1.

The sinc function is shown in Figure 2.19. Since � sin��x�� ≤ 1, we have that

�sinc�x�� ≤ �1/�x�. That is, the sinc function exhibits a sinusoidal variation,

with an envelope that decays as 1/x. I plot the sinc function later in this

chapter, in Figure 2.19, when I discuss linear modulation.

Fourier transform Let s�t� denote a signal, and S�f�= � �s�t�� denote its

Fourier transform, defined as

S�f�=
∫ �

−�
s�t�e−j2�ft dt� (2.9)

The inverse Fourier transform is given by

s�t�=
∫ �

−�
S�f�ej2�ft df� (2.10)

Both s�t� and S�f� are allowed to take on complex values. We denote the

relationship that s�t� and S�f� are a Fourier transform pair by s�t�↔ S�f�.

Time–frequency duality in Fourier transform From an examination of

the expressions (2.9) and (2.10), we obtain the following duality relation:

if s�t� has Fourier transform S�f�, then the signal r�t� = S�t� has Fourier

transform R�f�= s�−f�.

Important Fourier transform pairs

(i) The boxcar and the sinc functions form a pair:

s�t�= I�− T
2 �

T
2 �
�t�↔ S�f�= T sinc�fT�� (2.11)

(ii) The delta function and the constant function form a pair:

s�t�= 	�t�↔ S�f�≡ 1� (2.12)

I list only two pairs here, because most of the examples that we use

in our theoretical studies can be derived in terms of these, using time–

frequency duality and the properties of the Fourier transform below. On

the other hand, closed form analytical expressions are not available for
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many waveforms encountered in practice, and the Fourier or inverse

Fourier transform is computed numerically using the discrete Fourier

transform (DFT) in the sampled domain.

Basic properties of the Fourier transform Some properties of the Fourier

transform that we use extensively are as follows (it is instructive to derive

these starting from the definition (2.9)):

(i) Complex conjugation in the time domain corresponds to conjugation and

reflection around the origin in the frequency domain, and vice versa;

s∗�t�↔ S∗�−f��

s∗�−t�↔ S∗�f��
(2.13)

(ii) A signal s�t� is real-valued (i.e., s�t� = s∗�t�) if and only if its Fourier

transform is conjugate symmetric (i.e., S�f� = S∗�−f�). Note that con-

jugate symmetry of S�f� implies that Re�S�f�� = Re�S�−f�� (real part

is symmetric) and Im�S�f��=−Im�S�−f�� (imaginary part is antisym-

metric).

(iii) Convolution in the time domain corresponds to multiplication in the

frequency domain, and vice versa;

s�t�= �s1 ∗ s2��t�↔ S�f�= S1�f�S2�f��

s�t�= s1�t�s2�t�↔ S�f�= �S1 ∗S2��f��
(2.14)

(iv) Translation in the time domain corresponds to multiplication by a com-

plex exponential in the frequency domain, and vice versa;

s�t− t0�↔ S�f�e−j2�ft0�

s�t�ej2�f0t ↔ S�f −f0��
(2.15)

(v) Time scaling leads to reciprocal frequency scaling;

s�at�↔ 1

�a�S�
f

a
�� (2.16)

(vi) Parseval’s identity The inner product of two signals can be computed in

either the time or frequency domain, as follows:

�s1� s2� =
∫ �

−�
s1�t�s

∗
2�t�dt =

∫ �

−�
S1�f�S

∗
2�f�df = �S1� S2�� (2.17)

Setting s1 = s2 = s, we obtain the following expression for the energy Es

of a signal s�t�:

Es = ��s��2 =
∫ �

−�
�s�t��2dt =

∫ �

−�
�S�f��2df� (2.18)
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Energy spectral density The energy spectral density Es�f� of a signal s�t�

can be defined operationally as follows. Pass the signal s�t� through an ideal

narrowband filter with transfer function;

Hf0
�f�=

{

1� f0− 
f

2
< f < f0+ 
f

2

0� else�

The energy spectral density Es�f0� is defined to be the energy at the output

of the filter, divided by the width 
f (in the limit as 
f → 0). That is, the

energy at the output of the filter is approximately Es�f0�
f . But the Fourier

transform of the filter output is

Y�f�= S�f�H�f�=
{

S�f�� f0− 
f

2
< f < f0+ 
f

2

0� else
�

By Parseval’s identity, the energy at the output of the filter is

∫ �

−�
�Y�f��2 df =

∫ f0+ 
f
2

f0− 
f
2

�S�f��2 df ≈ �S�f0��2 
f�

assuming that S�f� varies smoothly and 
f is small enough. We can now

infer that the energy spectral density is simply the magnitude squared of the

Fourier transform:

Es�f�= �S�f��2� (2.19)

The integral of the energy spectral density equals the signal energy, which is

simply a restatement of Parseval’s identity.

Autocorrelation function The inverse Fourier transform of the energy

spectral density Es�f� is termed the autocorrelation function Rs���, since it

measures how closely the signal s matches delayed versions of itself. Since

�S�f��2 = S�f�S∗�f�= S�f�Smf�f�, where smf�t�= s∗�−t� is the matched filter

for s introduced earlier. We therefore have that

Es�f�= �S�f��2 ↔ Rs���= �s ∗ smf����=
∫ �

−�
s�u�s∗�u− �� du� (2.20)

Thus, Rs��� is the outcome of passing the signal s through its matched filter,

and sampling the output at time �, or equivalently, correlating the signal s

with a complex conjugated version of itself, delayed by �.

While the preceding definitions are for finite energy deterministic signals,

I will revisit these concepts in the context of finite power random processes

later in this chapter.

Baseband and passband signals A signal s�t� is said to be baseband if

S�f�≈ 0� �f �>W (2.21)

for some W> 0. That is, the signal energy is concentrated in a band around

DC. Similarly, a channel modeled as a linear time-invariant system is said to

be baseband if its transfer function H�f� satisfies (2.21).
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A signal s�t� is said to be passband if

S�f�≈ 0� �f ±fc�>W (2.22)

where fc > W > 0. A channel modeled as a linear time-invariant system is

said to be passband if its transfer function H�f� satisfies (2.22).

Figure 2.6 Example of the

spectrum S�f� for a real-valued

baseband signal. The

bandwidth of the signal is B.

Figure 2.7 Example of the

spectrum S�f� for a real-valued

passband signal. The

bandwidth of the signal is B.

The figure shows an arbitrarily

chosen frequency fc within the

band in which S�f� is nonzero.

Typically, fc is much larger

than the signal bandwidth B.

Examples of baseband and passband signals are shown in Figures 2.6 and

2.7, respectively. We consider real-valued signals, since any signal that has

a physical realization in terms of a current or voltage must be real-valued.

As shown, the Fourier transforms can be complex-valued, but they must

satisfy the conjugate symmetry condition S�f� = S∗�−f�. The bandwidth

B is defined to be the size of the frequency interval occupied by S�f�,

where we consider only the spectral occupancy for the positive frequencies

1

Im(S(f ))

f

1

−1

Re(S(f ))

f
0 B–B

B−B

−fc

−fc

fc

fc

f

f

B

Re(Sp(f ))

Im(Sp(f ))



August 13, 2007 5:46 p.m. CUP/FOD Page-17 9780521874144c02

17 2.1 Preliminaries

for a real-valued signal s�t�. This makes sense from a physical viewpoint:

after all, when the FCC allocates a frequency band to an application, say,

around 2.4GHz for unlicensed usage, it specifies the positive frequencies that

can be occupied. However, in order to be clear about the definition being

used, we occasionally employ the more specific term one-sided bandwidth,

and also define the two-sided bandwidth based on the spectral occupancy

for both positive and negative frequencies. For real-valued signals, the two-

sided bandwidth is simply twice the one-sided bandwidth, because of the

conjugate symmetry condition S�f�= S∗�−f�. However, when I consider the

complex baseband representation of real-valued passband signals in the next

section, the complex-valued signals which I consider do not, in general, satisfy

the conjugate symmetry condition, and there is no longer a deterministic

relationship between the two-sided and one-sided bandwidths. As I show in

the next section, a real-valued passband signal has an equivalent representation

as a complex-valued baseband signal, and the (one-sided) bandwidth of the

passband signal equals the two-sided bandwidth of its complex baseband

representation.

In Figures 2.6 and 2.7, the spectrum is shown to be exactly nonzero outside

a well defined interval, and the bandwidth B is the size of this interval. In

practice, there may not be such a well defined interval, and the bandwidth

depends on the specific definition employed. For example, the bandwidth

might be defined as the size of an appropriately chosen interval in which a

specified fraction (say 99%) of the signal energy lies.

Example 2.1.3 (Fractional energy containment bandwidth) Consider a

rectangular time domain pulse s�t� = I�0�T�. Using (2.11) and (2.15), the

Fourier transform of this signal is given by S�f� = T sinc�fT�e−j�fT , so

that

�S�f��2 = T 2sinc2�fT��

Clearly, there is no finite frequency interval that contains all of the signal

energy. Indeed, it follows from a general uncertainty principle that strictly

timelimited signals cannot be strictly bandlimited, and vice versa. How-

ever, most of the energy of the signal is concentrated around the origin, so

that s�t� is a baseband signal. We can now define the (one-sided) fractional

energy containment bandwidth B as follows:

∫ B

−B
�S�f��2 df = a

∫ �

−�
�S�f��2 df� (2.23)

where 0 < a ≤ 1 is the fraction of energy contained in the band �−B�B�.

The value of B must be computed numerically, but there are certain

simplifications that are worth pointing out. First, note that T can be set to

any convenient value, say T = 1 (equivalently, one unit of time is redefined

to be T ). By virtue of the scaling property (2.16), time scaling leads to
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reciprocal frequency scaling. Thus, if the bandwidth for T = 1 is B1, then

the bandwidth for arbitrary T must be BT = B1

/

T . This holds regardless

of the specific notion of bandwidth used, since the scaling property can be

viewed simply as redefining the unit of frequency in a consistent manner

with the change in our unit for time. The second observation is that the

right-hand side of (2.23) can be evaluated in closed form using Parseval’s

identity (2.18). Putting these observations together, it is left as an exercise

for the reader to show that (2.23) can be rewritten as

∫ B1

−B1

sinc2f df = a� (2.24)

which can be further simplified to

∫ B1

0
sinc2f df = a

2
� (2.25)

using the symmetry of the integrand around the origin. We can now

evaluate B1 numerically for a given value of a. We obtain B1 = 10�2 for a=
0�99, and B1 = 0�85 for a= 0�9. Thus, while the 90% energy containment

bandwidth is moderate, the 99% energy containment bandwidth is large,

because of the slow decay of the sinc function. For an arbitrary value of

T , the 99% energy containment bandwidth is B = 10�2/T .

A technical note: (2.24) could also be inferred from (2.23) by applying a

change of variables, replacing fT in (2.23) by f . This change of variables

is equivalent to the scaling argument that I invoked.

2.2 Complex baseband representation

We often employ passband channels, which means that we must be able to

transmit and receive passband signals. I will now show that all the informa-

tion carried in a real-valued passband signal is contained in a corresponding

complex-valued baseband signal. This baseband signal is called the complex

baseband representation, or complex envelope, of the passband signal. This

equivalence between passband and complex baseband has profound practical

significance. Since the complex envelope can be represented accurately in dis-

crete time using a much smaller sampling rate than the corresponding passband

signal sp�t�, modern communication transceivers can implement complicated

signal processing algorithms digitally on complex baseband signals, keeping

the analog processing of passband signals to a minimum. Thus, the transmitter

encodes information into the complex baseband waveform using encoding,

modulation and filtering performed using digital signal processing (DSP).

The complex baseband waveform is then upconverted to the corresponding

passband signal to be sent on the channel. Similarly, the passband received

waveform is downconverted to complex baseband by the receiver, followed
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by DSP operations for synchronization, demodulation, and decoding. This

leads to a modular framework for transceiver design, in which sophisticated

algorithms can be developed in complex baseband, independent of the phys-

ical frequency band that is ultimately employed for communication.

I now describe in detail the relation between passband and complex base-

band, and the relevant transceiver operations. Given the importance of being

comfortable with complex baseband, the pace of the development here is

somewhat leisurely. For a reader who knows this material, quickly browsing

this section to become familiar with the notation should suffice.

Time domain representation of a passband signal Any passband signal

sp�t� can be written as

sp�t�=
√
2sc�t� cos2�fct−

√
2ss�t� sin 2�fct� (2.26)

where sc�t� (“c” for “cosine”) and ss�t� (“s” for “sine”) are real-valued signals,

and fc is a frequency reference typically chosen in or around the band occupied

by Sp�f�. The factor of
√
2 is included only for convenience in normalization

(more on this later), and is often omitted in the literature.

In-phase and quadrature components The waveforms sc�t� and ss�t� are

also referred to as the in-phase (or I) component and the quadrature (or Q)

component of the passband signal sp�t�, respectively.

Example 2.2.1 (Passband signal) The signal

sp�t�=
√
2I�0�1��t� cos300�t−

√
2�1−�t��I�−1�1��t� sin 300�t�

is a passband signal with I component sc�t� = I�0�1��t� and Q component

ss�t�= �1−�t��I�−1�1��t�. Like Example 2.1.3, this example also illustrates

that we do not require strict bandwidth limitations in our definitions of

passband and baseband: the I and Q components are timelimited, and

hence cannot be bandlimited. However, they are termed baseband signals

because most of their energy lies in the baseband. Similarly, sp�t� is termed

a passband signal, since most of its frequency content lies in a small band

around 150Hz.

Complex envelope The complex envelope, or complex baseband represen-

tation, of sp�t� is now defined as

s�t�= sc�t�+ jss�t�� (2.27)

In the preceding example, the complex envelope is given by s�t�= I�0�1��t�+
j�1−�t��I�−1�1��t�.



August 13, 2007 5:46 p.m. CUP/FOD Page-20 9780521874144c02

20 Modulation

Time domain relationship between passband and complex baseband We

can rewrite (2.26) as

sp�t�= Re�
√
2s�t�ej2�fct�� (2.28)

To check this, plug in (2.27) and Euler’s identity (2.1) on the right-hand side

to obtain the expression (2.26).

Envelope and phase of a passband signal The complex envelope s�t� can

also be represented in polar form, defining the envelope e�t� and phase ��t� as

e�t�= �s�t�� =
√

s2c �t�+ s2s �t�� ��t�= tan−1 ss�t�

sc�t�
� (2.29)

Plugging s�t� = e�t�ej��t� into (2.28), we obtain yet another formula for the

passband signal s:

sp�t�= e�t� cos�2�fct+��t��� (2.30)

The equations (2.26), (2.28) and (2.30) are three different ways of expressing

the same relationship between passband and complex baseband in the time

domain.

Example 2.2.2 (Modeling frequency or phase offsets in complex base-

band) Consider the passband signal sp (2.26), with complex baseband

representation s = sc + jss. Now, consider a phase-shifted version of the

passband signal

s̃p�t�=
√
2sc�t� cos�2�fct+��t��−

√
2ss�t� sin�2�fct+��t���

where ��t� may vary slowly with time. For example, a carrier frequency

offset a and a phase offset b corresponds to ��t�= 2�at+b. We wish to

find the complex envelope of s̃p with respect to fc. To do this, we write

s̃p in the standard form (2.28) as follows:

s̃p�t�= Re�
√
2s�t�ej�2�fct+��t����

Comparing with the desired form

s̃p�t�= Re�
√
2s̃�t�ej2�fct��

we can read off

s̃�t�= s�t�ej��t�� (2.31)

Equation (2.31) relates the complex envelopes before and after a phase

offset. We can expand out this “polar form” representation to obtain the

corresponding relationship between the I and Q components. Suppressing

time dependence from the notation, we can rewrite (2.31) as

s̃c+ js̃s = �sc+ jss��cos�+ j sin ��
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using Euler’s formula. Equating real and imaginary parts on both sides,

we obtain

s̃c = sc cos�− ss sin ��

s̃s = sc sin �+ ss cos��
(2.32)

This is a typical example of the advantage of working in complex baseband.

Relationships between passband signals can be compactly represented in

complex baseband, as in (2.31). For signal processing using real-valued

arithmetic, these complex baseband relationships can be expanded out to

obtain relationships involving real-valued quantities, as in (2.32).

Orthogonality of I and Q channels The passband waveform xc�t� =√
2sc�t� cos2�fct corresponding to the I component, and the passband wave-

form xs�t�=
√
2ss�t� sin 2�fct corresponding to the Q component, are orthog-

onal. That is,

�xc� xs� = 0� (2.33)

Since what we know about sc and ss (i.e., they are baseband) is specified in

the frequency domain, we prove this result by computing the inner product

in the frequency domain, using Parseval’s identity (2.17):

�xc� xs� = �Xc�Xs� =
∫ �

−�
Xc�f�X

∗
s �f� df�

We now need expressions for Xc and Xs. Since cos� = 1
2
�ej� + e−j�� and

sin � = 1
2j
�ej�− e−j�� we have

xc�t�=
1√
2
�sc�t�e

j2�fct+sc�t�e
−j2�fct�↔Xc�f�=

1√
2
�Sc�f−fc�+Sc�f+fc���

xs�t�=
1√
2j
�ss�t�e

j2�fct−ss�t�e
−j2�fct�↔Xs�f�=

1√
2j
�Ss�f−fc�−Ss�f+fc���

The inner product can now be computed as follows:

�Xc�Xs� =
1

2j

∫ �

−�
�Sc�f −fc�+Sc�f +fc�� �S

∗
s �f −fc�−S∗

s �f +fc��df�

(2.34)

We now look more closely at the integrand above. Since fc is assumed to be

larger than the bandwidth of the baseband signals Sc and Ss, the translation

of Sc�f� to the right by fc will have zero overlap with a translation of S∗
s �f�

to the left by fc. That is, Sc�f − fc�S
∗
s �f + fc� ≡ 0. Similarly, Sc�f + fc�S

∗

�f −fc� ≡ 0. We can therefore rewrite the inner product in (2.34) as

�Xc�Xs� = 1

2j

[

∫ �

−�
Sc�f −fc�S

∗
s �f −fc�df −

∫ �

−�
Sc�f +fc�S

∗
s �f +fc�df

]

= 1

2j

[

∫ �

−�
Sc�f�S

∗
s �f�df −

∫ �

−�
Sc�f�S

∗
s �f�df

]

= 0� (2.35)
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where we have used a change of variables to show that the integrals involved

cancel out.

Exercise 2.2.1 Work through the details of an alternative, shorter, proof of

(2.33) as follows. Show that

u�t�= xc�t�xs�t�= 2sc�t�ss�t� cos2�fct sin 2�fct

is a passband signal (around what frequency?), and thus infer that
∫ �

−�
u�t�dt = U�0�= 0�

Passband and complex baseband inner products For real passband sig-

nals ap and bp with complex envelopes a and b, respectively, the inner product

satisfies

�up� vp� = �uc� vc�+�us� vs� = Re��u� v��� (2.36)

To show the first equality, we substitute the standard form (2.26) for up and vp
and use the orthogonality of the I and Q components. For the second equality,

we write out the complex inner product �u� v�,

�u� v� =
∫ �

−�
�uc�t�+ jus�t���vc�t�− jvs�t�� dt

= ��uc� vc�+�us� vs��+ j �−�uc� vs�+�us� vc�� � (2.37)

and note that the real part gives the desired term.

Energy of complex envelope Specializing (2.36) to the inner product of a

signal with itself, we infer that the energy of the complex envelope is equal to

that of the corresponding passband signal (this is a convenient consequence

of the specific scaling we have chosen in our definition of the complex

envelope). That is,

��s��2 = ��sp��2� (2.38)

To show this, set u= v= s and up = vp = sp in (2.36), noting that Re��s� s��=
Re���s��2�= ��s��2.

Frequency domain relationship between passband and complex baseband

We first summarize the results relating Sp�f� and S�f�. Let S
+
p �f�= Sp�f�I
f>0�

denote the segment of Sp�f� occupying positive frequencies. Then the complex

envelope is specified as

S�f�=
√
2S+

p �f +fc� (2.39)

Conversely, given the complex envelope S�f� in the frequency domain, the

passband signal is specified as

Sp�f�=
S�f −fc�+S∗�−f −fc�√

2
� (2.40)
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We now derive and discuss these relationships. Define

v�t�=
√
2s�t�ej2�fct ↔ V�f�=

√
2S�f −fc�� (2.41)

By the time domain relationship between sp and s, we have

sp�t� = Re�v�t��= v�t�+v∗�t�

2
↔ Sp�f�=

V�f�+V ∗�−f�

2

= S�f −fc�+S∗�−f −fc�√
2

� (2.42)

If S�f� has energy concentrated in the baseband, then the energy of V�f� is

concentrated around fc, and the energy of V
∗�−f� is concentrated around−fc.

Thus, Sp�f� is indeed passband. We also see from (2.42) that the symmetry

condition Sp�f�= S∗
p�−f� holds, which implies that sp�t� is real-valued. This

is, of course, not surprising, since our starting point was the time-domain

expression (2.28) for a real-valued signal sp�t�.

Figure 2.8 shows the relation between the passband signal Sp�f�, its scaled

version V�f� restricted to positive frequencies, and the complex baseband

signal S�f�. As this example emphasizes, all of these spectra can, in general,

be complex-valued. Equation (2.41) corresponds to starting with an arbitrary

2A

2B

A

B

  

2A

2B

−fc

−fc

fc

fc
fc

fc

f

f f

f

f f

Re(Sp(f )) Im(Sp(f ))

Re(V(f ))

Re(S(f )) Im(S(f ))

Im(V(f ))

Figure 2.8 Frequency domain relationship between a real-valued passband signal and its complex

envelope. The figure shows the spectrum Sp�f� of the passband signal, its scaled restriction to positive

frequencies V�f�, and the spectrum S�f� of the complex envelope.
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baseband signal S�f� as in the bottom of the figure, and constructing V�f� as

depicted in the middle of the figure. We then use V�f� to construct a conjugate

symmetric passband signal Sp�f�, proceeding from the middle of the figure to

the top. This example also shows that S�f� does not, in general, obey conjugate

symmetry, so that the baseband signal s�t� is complex-valued. However, by

construction, Sp�f� is conjugate symmetric, and hence the passband signal

sp�t� is real-valued.

General applicability of complex baseband representation We have so

far seen that, given a complex baseband signal (or equivalently, a pair of real

baseband signals), we can generate a real-valued passband signal using (2.26)

or (2.28). But do these baseband representations apply to any real-valued

passband signal? To show that they indeed do apply, we simply reverse the

frequency domain operations in (2.41) and (2.42). Specifically, suppose that

sp�t� is an arbitrary real-valued passband waveform. This means that the

conjugate symmetry condition Sp�f� = S∗
p�−f� holds, so that knowing the

values of Sp for positive frequencies is enough to characterize the values for

all frequencies. Let us therefore consider an appropriately scaled version of

the segment of Sp for positive frequencies, defined as

V�f�= 2S+
p �f�=

{

2Sp�f�� f > 0

0� else �
(2.43)

By the definition of V , and using the conjugate symmetry of Sp, we see

that (2.42) holds. Note also that, since Sp is passband, the energy of V is

concentrated around +fc. Now, let us define the complex envelope of Sp by

inverting the relation (2.41), as follows:

S�f�= 1√
2
V�f +fc�� (2.44)

Since V�f� is concentrated around +fc, S�f�, which is obtained by translating

it to the left by fc, is baseband. Thus, starting from an arbitrary passband

signal Sp�f�, we have obtained a baseband signal S�f� that satisfies (2.41)

and (2.42), which are equivalent to the time domain relationship (2.28). We

refer again to Figure 2.8 to illustrate the relation between Sp�f�, V�f� and

S�f�. However, we now go from top to bottom: starting from an arbitrary

conjugate symmetric Sp�f�, we construct V�f�, and then S�f�.

Upconversion and downconversion Equation (2.26) immediately tells us

how to upconvert from baseband to passband. To downconvert from passband

to baseband, consider
√
2sp�t� cos�2�fct� = 2sc�t� cos

2 2�fct−2ss�t� sin 2�fct cos2�fct

= sc�t�+ sc�t� cos4�fct− ss�t� sin 4�fct�

The first term on the extreme right-hand side is the I component, a baseband

signal. The second and third terms are passband signals at 2fc, which we can
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ss(t)

sc(t)

sp(t)

2 cos 2πfc  

t

2 sin 2πfc  

t  −

Lowpass

filter

Lowpass

filter

Upconversion

(baseband to passband)

Downconversion

(passband to baseband)

2 cos 2πfc t  

2 sin 2πfc t  

ss(t)

sc(t)

sp(t)

−

Figure 2.9 Upconversion from

baseband to passband and

downconversion from

passband to baseband.

get rid of by lowpass filtering. Similarly, we can obtain the Q component by

lowpass filtering −
√
2sp�t� sin 2�fct. The upconversion and downconversion

operations are depicted in Figure 2.9.

Information resides in complex baseband The complex baseband rep-

resentation corresponds to subtracting out the rapid, but predictable, phase

variation due to the fixed reference frequency fc, and then considering the

much slower amplitude and phase variations induced by baseband modula-

tion. Since the phase variation due to fc is predictable, it cannot convey any

information. Thus, all the information in a passband signal is contained in its

complex envelope.

Example 2.2.3 (Linear modulation) Suppose that information is enc-

oded into a complex number b = bc + jbs = rej�, where bc� bs are real-

valued numbers corresponding to its rectangular form, and r ≥ 0, � are

real-valued and correspond to its polar form. Let p�t� denote a baseband

pulse (for simplicity, assume that p is real-valued). Then the linearly mod-

ulated complex baseband waveform s�t�= bp�t� can be used to convey the

information in b over a passband channel by upconverting to an arbitrary

carrier frequency fc. The corresponding passband signal is given by

sp�t�= Re
(√

2s�t�ej2�fct
)

=
√
2 �bcp�t� cos2�fct−bsp�t� sin 2�fct�

=
√
2r cos�2�fct+���

Thus, linear modulation in complex baseband by a complex symbol b can

be viewed as separate amplitude modulation (by bc, bs) of the I component

and the Q component, or as amplitude and phase modulation (by r, �) of the

overall passband waveform. In practice, we encode information in a stream

of complex symbols 
b�n�� that linearly modulate time shifts of a basic

waveform, and send the complex baseband waveform
∑

n b�n�p�t−nT�.

Linear modulation is discussed in detail in Section 2.5.
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Complex baseband equivalent of passband filtering I now state another

result that is extremely relevant to transceiver operations; namely, any pass-

band filter can be implemented in complex baseband. This result applies to

filtering operations that we desire to perform at the transmitter (e.g., to con-

form to spectral masks), at the receiver (e.g., to filter out noise), and to a

broad class of channels modeled as linear filters. Suppose that a passband

signal sp�t� is passed through a passband filter with impulse response hp�t�.

Denote the filter output (which is clearly also passband) by yp�t�= �sp∗hp��t�.

Let y, s and h denote the complex envelopes for yp, sp and hp, respec-

tively, with respect to a common frequency reference fc. Since real-valued

passband signals are completely characterized by their behavior for positive

frequencies, the passband filtering equation Yp�f� = Sp�f�Hp�f� can be sep-

arately (and redundantly) written out for positive and negative frequencies,

because the waveforms are conjugate symmetric around the origin, and there

is no energy around f = 0. Thus, focusing on the positive frequency seg-

ments Y+�f�= Yp�f�I
f>0�, S+�f�= Sp�f�I
f>0�, H+�f�=Hp�f�I
f>0�, we have

Y+�f�= S+�f�H+�f�, from which we conclude that the complex envelope of

y is given by

Y�f�=
√
2Y+�f +fc�=

√
2S+�f +fc�H+�f +fc�=

1√
2
S�f�H�f��

Figure 2.10 The relationship

between passband filtering and

its complex baseband analog.

Figure 2.10 depicts the relationship between the passband and complex

baseband waveforms in the frequency domain, and supplies a pictorial proof

of the preceding relationship. I now restate this important result in the time

domain:

FilterA
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Output

Input

f f

f f

f f

Hp (f ) H(f )

S(f )

Y(f )

Sp (f )
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fc
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fc
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Real baseband operations

−

Passband

signal

sp (t ) 
Downconverter

hc

hc

hs

hs

sc (t )

ss (t )
Ys (t )

Yc (t )

y�t�= 1√
2
�s ∗h��t�� (2.45)

That is, passband filtering can be implemented in complex baseband, using

the complex baseband representation of the desired filter impulse response.

As shown in Figure 2.11, this requires four real baseband filters: writing out

the real and imaginary parts of (2.45), we obtain

yc =
1√
2
�sc ∗hc− ss ∗hs�� ys =

1√
2
�ss ∗hc+ sc ∗hs� (2.46)

Figure 2.11 Complex

baseband realization of

passband filter. The constant

scale factors of 1/
√

2 have

been omitted.

Remark 2.2.1 (Complex baseband in transceiver implementations)

Given the equivalence of passband and complex baseband, and the fact that

key operations such as linear filtering can be performed in complex baseband,

it is understandable why, in typical modern passband transceivers, most of

the intelligence is moved to baseband processing. For moderate bandwidths

at which analog-to-digital and digital-to-analog conversion can be accom-

plished inexpensively, baseband operations can be efficiently performed in

DSP. These digital algorithms are independent of the passband over which

communication eventually occurs, and are amenable to a variety of low-cost

implementations, including very large scale integrated circuits (VLSI), field

programmable gate arrays (FPGA), and general purpose DSP engines. On the

other hand, analog components such as local oscillators, power amplifiers,

and low noise amplifiers must be optimized for the bands of interest, and are

often bulky. Thus, the trend in modern transceivers is to accomplish as much

as possible using baseband DSP algorithms. For example, complicated filters

shaping the transmitted waveform to a spectral mask dictated by the FCC can

be achieved with baseband DSP algorithms, allowing the use of relatively

sloppy analog filters at passband. Another example is the elimination of ana-

log phase locked loops for carrier synchronization in many modern receivers;

the receiver instead employs a fixed analog local oscillator for downcon-

version, followed by a digital phase locked loop implemented in complex

baseband.
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Downconversion with fixed LO

Lowpass

filter

Lowpass

filter
~

−

Real baseband operations for undoing frequency and phase offset

2 cos 2π fct  

cos (2πat + b)

sin (2πat + b)

cos (2πat + b)

sin (2πat + b)

2 sin 2π fct  

yp(t)

yc(t)
yc(t)

ys(t)
~
ys(t)

−

Figure 2.12 Undoing frequency and phase offsets in complex baseband after downconverting using a

local oscillator at a fixed carrier frequency fc . The complex baseband operations are expanded out into

real arithmetic as shown.

Example 2.2.4 (Handling carrier frequency and phase offsets in com-

plex baseband) As shown in Figure 2.12, a communication receiver

uses a local oscillator with a fixed carrier frequency fc to demodulate an

incoming passband signal

yp�t�=
√
2�yc�t� cos�2��fc+a�t+b�−ys�t� sin�2��fc+a�t+b���

where a, b, are carrier frequency and phase offsets, respectively. Denote

the I and Q components at the output of the downconverter as ỹc, ỹs,

respectively, and the corresponding complex envelope as ỹ = ỹc+ jỹs. We

wish to recover yc, ys, the I and Q components relative to a reference that

accounts for the offsets a and b. Typically, the receiver would estimate

a and b using the downconverter output ỹ; an example of an algorithm

for such frequency and phase synchronization is discussed in the next

chapter. Assuming that such estimates are available, we wish to specify

baseband operations using real-valued arithmetic for obtaining yc, ys from

the downconverter output. Equivalently, we wish to recover the complex

envelope y = yc + jys from ỹ. We can relate y and ỹ via (2.31) as in

Example 2.2.2, and obtain

ỹ�t�= y�t�ej�2�at+b��

This relation can now be inverted to get y from ỹ:

y�t�= ỹ�t�e−j�2�at+b��
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Plugging in I and Q components explicitly and using Euler’s formula, we

obtain

yc�t�+ jys�t�= �ỹc�t�+ jỹs�t�� �cos�2�at+b�− j sin�2�at+b�� �

Equating real and imaginary parts, we obtain equations involving real-

valued quantities alone:

yc = ỹc cos�2�at+b�+ ỹs sin�2�at+b�

ys =−ỹc sin�2�at+b�+ ỹs cos�2�at+b��
(2.47)

These computations are depicted in Figure 2.12.

Example 2.2.5 (Coherent and noncoherent reception) We see in the

next two chapters that a fundamental receiver operation is to compare

a noisy received signal against noiseless copies of the received signals

corresponding to the different possible transmitted signals. This com-

parison is implemented by a correlation, or inner product. Let yp�t� =√
2Re�y�t�ej2�fct� denote the noisy received passband signal, and sp�t� =√
2Re�s�t�ej2�fct� denote a noiseless copy that we wish to compare it with,

where y = yc + jys and s = sc + jss are the complex envelopes of yp and

sp, respectively. A coherent receiver (which is a building block for the

optimal receivers in Chapter 3) for s implements the inner product �yp� sp�.
In terms of complex envelopes, we know from (2.36) that this can be

written as

�yp� sp� = Re��y� s��= �yc� sc�+�ys� ss�� (2.48)

Clearly, when y = As (plus noise), where A > 0 is an arbitrary amplitude

scaling, the coherent receiver gives a large output. However, coherent

reception assumes carrier phase synchronization (in order to separate out

and compute inner products with the I and Q components of the received

passband signal). If, on the other hand, the receiver is not synchronized

in phase, then (see Example 2.2.2) the complex envelope of the received

signal is given by y = Aej�s (plus noise), where A > 0 is the amplitude

scale factor, and � is an unknown carrier phase. Now, the coherent receiver

gives the output

�yp� sp� = Re��Aej�s� s�� �plus noise�

= A cos���s��2 �plus noise��

In this case, the output can be large or small, depending on the value

of �. Indeed, for � = �/2, the signal contribution to the inner prod-

uct becomes zero. The noncoherent receiver deals with this problem by

using the magnitude, rather than the real part, of the complex inner
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product �y� s�. The signal contribution to this noncoherent correlation is

given by

��y� s�� = ��Aej�s� s� �plus noise�� ≈ A��s��2 �ignoring noise��

where we have omitted the terms arising from the nonlinear interac-

tion between noise and signal in the noncoherent correlator output. The

noiseless output from the preceding computation shows that we do get

a large signal contribution regardless of the value of the carrier phase

�. It is convenient to square the magnitude of the complex inner prod-

uct for computation. Substituting the expression (2.37) for the complex

inner product, we obtain that the squared magnitude inner product com-

puted by a noncoherent receiver requires the following real baseband

computations:

��y� s��2 = ��uc� vc�+�us� vs��2+ �−�uc� vs�+�us� vc��2 � (2.49)

We see in Chapter 4 that the preceding computations are a building block

for optimal noncoherent demodulation under carrier phase uncertainty. The

implementations of the coherent and noncoherent receivers in complex

baseband are shown in Figure 2.13.

Figure 2.13 Complex

baseband implementations of

coherent and noncoherent

receivers. The real-valued

correlations are performed

using matched filters sampled

at time zero.

Remark 2.2.2 (Bandwidth) Given the scarcity of spectrum and the potential

for interference between signals operating in neighboring bands, determining

the spectral occupancy of signals accurately is an important part of commu-

nication system design. As mentioned earlier, the spectral occupancy of a

physical (and hence real-valued) signal is the smallest band of positive fre-

quencies that contains most of the signal content. Negative frequencies are

not included in the definition, since they contain no information beyond that

already contained in the positive frequencies (S�−f�= S∗�f� for real-valued

s�t�). For complex baseband signals, however, information resides in both

positive and negative frequencies, since the complex baseband representa-

tion is a translated version of the corresponding passband signal restricted to

Squarer
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positive frequencies. We therefore define the spectral occupancy of a complex

baseband signal as the smallest band around the origin, including both posi-

tive and negative frequencies, that contains most of the signal content. These

definitions of bandwidth are consistent: from Figure 2.8, it is evident that

the bandwidth of a passband signal (defined based on positive frequencies

alone) is equal to the bandwidth of its complex envelope (defined based on

both positive and negative frequencies). Thus, it suffices to work in com-

plex baseband when determining the spectral occupancy and bandwidth of

passband signals.

2.3 Spectral description of random processes

So far, I have considered deterministic signals with finite energy. From the

point of view of communication system design, however, it is useful to be

able to handle random signals, and to allow the signal energy to be infi-

nite. For example, consider the binary signaling example depicted in Figure

2.1. We would like to be handle bitstreams of arbitrary length within our

design framework, and would like our design to be robust to which partic-

ular bitstream was sent. We therefore model the bitstream as random (and

demand good system performance averaged over these random realizations),

which means that the modulated signal is modeled as a random process.

Since the bitstream can be arbitrarily long, the energy of the modulated signal

is unbounded. On the other hand, when averaged over a long interval, the

power of the modulated signal in Figure 2.1 is finite, and tends to a constant,

regardless of the transmitted bitstream. It is evident from this example, there-

fore, that we must extend our discussion of baseband and passband signals

to random processes. Random processes serve as a useful model not only

for modulated signals, but also for noise, interference, and for the input–

output response of certain classes of communication channels (e.g., wireless

mobile channels).

For a finite-power signal (with unbounded energy), a time-windowed real-

ization is a deterministic signal with finite energy, so that we can employ

our existing machinery for finite-energy signals. Our basic strategy is to

define properties of a finite-power signal in terms of quantities that can be

obtained as averages over a time window, in the limit as the time window

gets large. These time averaged properties can be defined for any finite-power

signal. However, we are interested mainly in scenarios where the signal is

a realization of a random process, and we wish to ensure that properties we

infer as a time average over one realization apply to most other realizations

as well. In this case, a time average is meaningful as a broad descriptor

of the random process only under an ergodicity assumption that the time

average along a realization equals a corresponding statistical average across

realizations. Moreover, while the time average provides a definition that has
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operational significance (in terms of being implementable by measurement or

computer simulation), when a suitable notion of ergodicity holds, it is often

analytically tractable to compute the statistical average. In my forthcoming

discussions, I discuss both time averages and statistical averages for several

random processes of interest.

Power spectral density As with our definition of energy spectral density,

let us define the power spectral density (PSD) for a finite-power signal s�t�

in operational terms. Pass the signal s�t� through an ideal narrowband filter

with transfer function

Hf0
�f�=

{

1� f0− 
f

2
< f < f0+ 
f

2

0� else
�

The PSD evaluated at f0, Ss�f0�, can now be defined to be the measured

power at the filter output, divided by the filter width 
f (in the limit as


f → 0).

The preceding definition directly leads to a procedure for computing the

PSD based on empirical measurements or computer simulations. Given a

physical signal or a computer model, we can compute the PSD by time-

windowing the signal and computing the Fourier transform, as follows. Define

the time-windowed version of s as

sTo�t�= s�t�I�− To
2 �

To
2 ��t�� (2.50)

where To is the length of the observation interval. (The observation interval

need not be symmetric about the origin, in general.) Since To is finite, sTo�t�

has finite energy if s�t� has finite power, and we can compute its Fourier

transform

STo�f�= � �sTo��

The energy spectral density of sTo is given by �STo�f��
2, so that an estimate of

the PSD of s is obtained by averaging this over the observation interval. We

thus obtain an estimated PSD

Ŝs�f�=
�STo�f��

2

To

� (2.51)

The computations required to implement (2.51) are often referred to as a

periodogram. In practice, the signal s is sampled, and the Fourier transform is

computed using a DFT. The length of the observation interval determines the

frequency resolution, while the sampling rate is chosen to be large enough to

avoid significant aliasing. The multiplication by a rectangular time window

in (2.50) corresponds to convolution in the frequency domain with the sinc

function, which can lead to significant spectral distortion. It is common, there-

fore, to employ time windows that taper off at the edges of the observation

interval, so as to induce a quicker decay of the frequency domain signal being

convolved with. Finally, multiple periodograms can be averaged in order to

get a less noisy estimate of the PSD.
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Autocorrelation function As with finite-energy signals, the inverse Fourier

transform of (2.51) has the interpretation of autocorrelation. Specifically,

using (2.20), we have that the inverse Fourier transform of (2.51) is given by

Ŝs�f� =
�STo�f��

2

To

↔ R̂s���=
1

To

∫ �

−�
sTo�u�s

∗
To
�u− �� du

= 1

To

∫

To
2 +min�0���

− To
2 +max�0���

sTo�u�s
∗
To
�u− �� du

≈ 1

To

∫

To
2

− To
2

sTo�u�s
∗
To
�u− �� du� (2.52)

where the last approximation neglects edge effects as To gets large (for fixed

�). An alternative method for computing PSD, therefore, is first to compute

the empirical autocorrelation function (again, this is typically done in discrete

time), and then to compute the DFT. While these methods are equivalent in

theory, in practice, the properties of the estimates depends on a number of

computational choices, discussion of which is beyond the scope of this book.

The interested reader may wish to explore the various methods for estimating

PSD available in Matlab or similar programs.

Formal definitions of PSD and autocorrelation function In addition to

providing a procedure for computing the PSD, we can also use (2.51) to

provide a formal definition of PSD by letting the observation interval get large:

S̄s�f�= lim
To→�

�STo�f��
2

To

� (2.53)

Similarly, we can take limits in (2.52) to obtain a formal definition of auto-

correlation function as follows:

R̄s���= lim
To→�

1

To

∫

To
2

− To
2

sTo�u�s
∗
To
�u− �� du� (2.54)

where the overbar notation denotes time averages along a realization. As

we see shortly, we can also define the PSD and autocorrelation function as

statistical averages across realizations; we drop the overbar notation when we

consider these. More generally, we adopt the shorthand f̄ �t� to denote the

time average of f�t�. That is,

f̄ �t�= lim
To→�

1

To

∫

To
2

− To
2

f�u� du�

Thus, the definition (2.54) can be rewritten as

R̄s���= s�u�s∗�u− ���
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Baseband and passband random processes A random process is baseband

if its PSD is baseband, and it is passband if its PSD is passband. Since the

PSD is defined as a time average along a realization, this also means (by

assumption) that the realizations of baseband and passband random processes

are modeled as deterministic baseband and passband signals, respectively. In

the next section, this assumption enables us to use the development of the

complex baseband representation for deterministic passband signals in our

discussion of the complex baseband representation of passband random pro-

cesses.

Crosscorrelation function For finite-power signals s1 and s2, we define the

crosscorrelation function as the following time average:

R̄s1�s2
���= s1�u�s

∗
2�u− ��� (2.55)

The cross-spectral density is defined as the Fourier transform of the crosscor-

relation function:

S̄s1�s2�f�= � �R̄s1�s2
�f��� (2.56)

Example 2.3.1 Autocorrelation function and power spectral density

for a complex waveform Let s�t�= sc�t�+ jss�t� be a complex-valued,

finite-power, signal, where sc and ss are real-valued. Then the autocorre-

lation function of s can be computed as

R̄s���= s�t�s∗�t− ��= �sc�t�+ jss�t���sc�t− ��− jss�t− ����

Simplifying, we obtain

R̄s���= �R̄sc
���+ R̄ss

����+ j�R̄ss�sc
���− R̄sc�ss

����� (2.57)

Taking Fourier transforms, we obtain the PSD

S̄s�f�= �S̄sc�f�+ S̄ss�f��+ j�S̄ss�sc�f�− S̄sc�ss�f��� (2.58)

We use this result in our discussion of the complex baseband representation

of passband random processes in the next section.

Example 2.3.2 Power spectral density of a linearly modulated signal

The modulated waveform shown in Figure 2.1 can be written in the form

s�t�=
�
∑

n=−�
b�n�p�t−nT��

where the bits b�n� take the values ±1, and p�t� is a rectangular pulse.

Let us try to compute the PSD for this signal using the definition (2.53).
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Anticipating the discussion of linear modulation in Section 2.5, let us

consider a generalized version of Figure 2.1 in the derivation, allowing the

symbols b�n� to be complex-valued and p�t� to be an arbitrary pulse in the

derivation. Consider the signal ŝ�t� restricted to the observation interval

�0�NT�, given by

sTo�t�=
N−1
∑

n=0

b�n�p�t−nT��

The Fourier transform of the time-windowed waveform is given by

STo�f�=
N−1
∑

n=0

b�n�P�f�e−j2�fnT = P�f�
N−1
∑

n=0

b�n�e−j2�fnT �

The estimate of the power spectral density is therefore given by

�STo�f��
2

To

= �P�f��2�∑N−1
n=0 b�n�e

−j2�fnT �2
NT

� (2.59)

Let us now simplify the preceding expression and take the limit as To →�
(i.e., N →�). Define the term

A=
∣

∣

∣

∣

∣

N−1
∑

n=0

b�n�e−j2�fnT

∣

∣

∣

∣

∣

2

=
N−1
∑

n=0

b�n�e−j2�fnT

(

N−1
∑

m=0

b�m�e−j2�fmT

)∗

=
N−1
∑

n=0

N−1
∑

m=0

b�n�b∗�m�e−j2�f�n−m�T �

Setting k= n−m, we can rewrite the preceding as

A =
N−1
∑

n=0

�b�n��2+
N−1
∑

k=1

e−j2�fkT
N−1
∑

n=k

b�n�b∗�n−k�

+
−1
∑

k=−�N−1�

e−j2�fkT
N−1+k
∑

n=0

b�n�b∗�n−k��

Now, suppose that the symbols are uncorrelated, in that the time average

of b�n�b∗�n−k� is zero for k 	= 0. Also, denote the empirical average of

�b�n��2 by �2
b . Then the limit becomes

lim
N→�

A

N
= �2

b �

Substituting into (2.59), we can now infer that

S̄s�f�= lim
To→�

�STo�f��
2

To

= lim
N→�

�P�f��2A
NT

= �2
b

�P�f��2
T

�

Thus, we have shown that the PSD of a linearly modulated signal scales

as the magnitude squared of the spectrum of the modulating pulse.
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The time averages discussed thus far interpret a random process s�t� as

a collection of deterministic signals, or realizations, evolving over time t,

where the specific realization is chosen randomly. Next, I discuss methods for

computing the corresponding statistical averages, which rely on an alternate

view of s�t�, for fixed t, as a random variable which takes a range of values

across realizations of the random process. If � is the set of allowable values

for the index t, which is interpreted as time for our purpose here, (e.g., � =
�−���� when the time index can take any real value), then 
s�t�� t∈� �

denotes a collection of random variables over a common probability space.

The term common probability space means that we can talk about the joint

distribution of these random variables.

In particular, the statistical averages of interest to us are the autocorrelation

function and PSD for wide sense stationary and wide sense cyclostationary

random processes (defined later). Since most of the signal and noise mod-

els that we encounter fall into one of these two categories, these techniques

form an important part of the communication system designer’s toolkit. The

practical utility of a statistical average in predicting the behavior of a par-

ticular realization of a random process depends, of course, on the ergodicity

assumption (discussed in more detail later) that time averages equal statistical

averages for the random processes of interest.

Mean, autocorrelation, and autocovariance functions For a random pro-

cess s�t�, the mean function is defined as

ms�t�= E�s�t�� (2.60)

and the autocorrelation function as

Rs�t1� t2�= E�s�t1�s
∗�t2��� (2.61)

The autocovariance function of s is the autocorrelation function of the zero

mean version of s, and is given by

Cs�t1� t2�=E��s�t1�−E�s�t1����s�t2�−E�s�t2���
∗�=Rs�t1� t2�−ms�t1�m

∗
s �t2��

(2.62)

Crosscorrelation and crosscovariance functions For random processes s1
and s2 defined on a common probability space (i.e., we can talk about the joint

distribution of samples from these random processes), the crosscorrelation

function is defined as

Rs1�s2
�t1� t2�= E�s1�t1�s

∗
2�t2�� (2.63)

and the crosscovariance function is defined as

Cs1�s2
�t1� t2� = E��s1�t1�−E�s1�t1����s2�t2�−E�s2�t2���

∗�

= Rs1�s2
�t1� t2�−ms1

�t1�m
∗
s2
�t2�� (2.64)
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Stationary random process A random process s�t� is said to be stationary

if it is statistically indistinguishable from a delayed version of itself. That is,

s�t� and s�t−d� have the same statistics for any delay d∈ �−����.

For a stationary random process s, the mean function satisfies

ms�t�=ms�t−d�

for any t, regardless of the value of d. Choosing d = t, we infer that

ms�t�=ms�0��

That is, the mean function is a constant. Similarly, the autocorrelation function

satisfies

Rs�t1� t2�= Rs�t1−d� t2−d�

for any t1� t2, regardless of the value of d. Setting � = t2, we have

Rs�t1� t2�= Rs�t1− t2�0��

That is, the autocorrelation function depends only on the difference of its

arguments.

Stationarity is a stringent requirement that is not always easy to verify.

However, the preceding properties of the mean and autocorrelation functions

can be used as the defining characteristics for a weaker property termed wide

sense stationarity.

Wide sense stationary (WSS) random process A random process s is said

to be WSS if

ms�t�≡ms�0� for all t

and

Rs�t1� t2�= Rs�t1− t2�0� for all t1� t2�

In this case, we change notation and express the autocorrelation function as

a function of � = t1− t2 alone. Thus, for a WSS process, we can define the

autocorrelation function as

Rs���= E�s�t�s∗�t− ��� for s WSS (2.65)

with the understanding that the expectation is independent of t.

Power spectral density for a WSS process We define the PSD of a WSS

process s as the Fourier transform of its autocorrelation function, as follows:

Ss�f�= � �Rs���� � (2.66)

We sometimes also need the notion of joint wide sense stationarity of two

random processes.
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Jointly wide sense stationary random processes The random processes

X and Y are said to be jointly WSS if (a) X is WSS, (b) Y is WSS, (c) the

crosscorrelation function RX�Y �t1� t1� = E�X�t1�Y
∗�t2�� depends on the time

difference � = t1− t2 alone. In this case, we can redefine the crosscorrelation

function as RX�Y ���= E�X�t�Y ∗�t− ���.

Ergodicity A stationary random process s is ergodic if time averages along

a realization equal statistical averages across realizations. For WSS processes,

we are primarily interested in ergodicity for the mean and autocorrelation func-

tions. For example, for a WSS process s that is ergodic in its autocorrelation

function, the definitions (2.54) and (2.65) of autocorrelation functions give

the same result, which gives us the choice of computing the autocorrelation

function (and hence the PSD) as either a time average or a statistical average.

Intuitively, ergodicity requires having “enough randomness” in a given real-

ization so that a time average along a realization is rich enough to capture the

statistics across realizations. Specific technical conditions for ergodicity are

beyond our present scope, but it is worth mentioning the following intuition

in the context of the simple binary modulated waveform depicted in Figure

2.1. If all bits take the same value over a realization, then the waveform is

simply a constant taking value +1 or −1: clearly, a time average across such a

degenerate realization does not yield “typical” results. Thus, we need the bits

in a realization to exhibit enough variation to obtain ergodicity. In practice,

we often use line codes or scramblers specifically designed to avoid long runs

of zeros or ones, in order to induce enough transitions for proper operation

of synchronization circuits. It is fair to say, therefore, that there is typically

enough randomness in the kinds of waveforms we encounter (e.g., modulated

waveforms, noise and interference) that ergodicity assumptions hold.

Example 2.3.3 Armed with these definitions, let us revisit the binary

modulated waveform depicted in Figure 2.1, or more generally, a linearly

modulated waveform of the form

s�t�=
�
∑

n=−�
b�n�p�t−nT�� (2.67)

When we delay this waveform by d, we obtain

s�t−d�=
�
∑

n=−�
b�n�p�t−nT −d��

Let us consider the special case d = kT , where k is an integer. We obtain

s�t−kT�=
�
∑

n=−�
b�n�p�t− �n+k�T�=

�
∑

n=−�
b�n−k�p�t−nT�� (2.68)

where we have replaced n+k by n in the last summation. Comparing (2.67)

and (2.68), we note that the only difference is that the symbol sequence
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b�n�� is replaced by a delayed version 
b�n− k��. If the symbol sequence

is stationary, then it has the same statistics as its delayed version, which

implies that s�t� and s�t− kT� are statistically indistinguishable. However,

this is a property that only holds for delays that are integer multiples of the

symbol time. For example, for the binary signaling waveform in Figure 2.1,

it is immediately evident by inspection that s�t� can be distinguished easily

from s�t−T/2� (e.g., from the location of the symbol edges). Slightly more

sophisticated arguments can be used to show similar results for pulses that

are more complicated than the rectangular pulse. We conclude, therefore, that

a linearly modulated waveform of the form (2.67), with a stationary symbol

sequence 
b�n��, is a cyclostationary random process, where the latter is

defined formally below.

Cyclostationary random process The random process s�t� is cyclostation-

ary with respect to time interval T if it is statistically indistinguishable from

s�t−kT� for any integer k.

As with the concept of stationarity, we can relax the notion of cyclosta-

tionarity by considering only the first and second order statistics.

Wide sense cyclostationary random process The random process s�t� is

wide sense cyclostationary with respect to time interval T if the mean and

autocorrelation functions satisfy the following:

ms�t�=ms�t−T� for all t�

Rs�t1� t2�= Rs�t1−T� t2−T� for all t1� t2�

I will now state the following theorem regarding cyclostationary processes;

this is proved in Problem 2.14.

Theorem 2.3.1 Stationarizing a cyclostationary process Let s�t� be a

cyclostationary random process with respect to the time interval T . Suppose

that D is a random variable that is uniformly distributed over �0� T�, and

independent of s�t�. Then s�t−D� is a stationary random process. Similarly,

if s�t� is wide sense cyclostationary, then s�t−D� is a WSS random process.

The random process s�t−D� is a “stationarized” version of s�t�, with the

random delay D transforming the periodicity in the statistics of s�t� into time

invariance in the statistics of s�t−D�. We can now define the PSD of s to be

that of its stationarized version, as follows.

Computation of PSD for a (wide sense) cyclostationary process as a

statistical average For s�t� (wide sense) cyclostationary with respect to

time interval T , we define the PSD as

Ss�f�= � �Rs�����
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where Rs is the “stationarized” autocorrelation function,

Rs���= E�s�t−D�s∗�t−D− ����

with the random variable D chosen as in Theorem 2.3.1.

In Problem 2.14, I discuss why this definition of PSD for cyclostationary

processes is appropriate when we wish to relate statistical averages to time

averages. That is, when a cyclostationary process satisfies intuitive notions of

ergodicity, then its time averaged PSD equals the statistically averaged PSD

of the corresponding stationarized process. We then rederive the PSD for a

linearly modulated signal, obtained as a time average in Example 2.3.2 and

as a statistical average in Problem 2.22.

2.3.1 Complex envelope for passband random processes

For a passband random process sp�t� with PSD Ssp�f�, we know that the time-

windowed realizations are also approximately passband. We can therefore

define the complex envelope for these time-windowed realizations, and then

remove the windowing in the limit to obtain a complex baseband random

process s�t�. Since we have defined this relationship on the basis of the

deterministic time-windowed realizations, the random processes sp and s obey

the same upconversion and downconversion relationships (Figure 2.9) as

deterministic signals. It remains to specify the relation between the PSDs

of sp and s, which we again infer from the relationships between the time-

windowed realizations. For notational simplicity, denote by ŝp�t� a realization

of sp�t� windowed by an observation interval of length To; that is, ŝp�t� =
sp�t�I�− To

2 �
To
2 �. Let Ŝp�f� denote the Fourier transform of ŝp, ŝ�t� the complex

envelope of ŝp, and Ŝ�f� the Fourier transform of ŝ�t�. We know that the PSD

of sp and s can be approximated as follows:

Ssp�f�≈
�Ŝp�f��2

To

� Ss�f�≈
�Ŝ�f��2
To

� (2.69)

Furthermore, we know from the relationship (2.42) between deterministic

passband signals and their complex envelopes that the following spectral

relationships hold:

Ŝp�f�=
1√
2

(

Ŝ�f −fc�+ Ŝ∗�−f −fc�
)

�

Since the Ŝ�f� is (approximately) baseband, the right translate Ŝ�f −fc� and

the left translate Ŝ∗�−f −fc� do not overlap, so that

�Ŝp�f��2 =
1

2

(

�Ŝ�f −fc��2+�Ŝ∗�−f −fc��2
)

�

Combining with (2.69), and letting the observation interval To get large, we

obtain

Ssp�f�=
1

2
�Ss�f −fc�+Ss�−f −fc�� � (2.70)
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In a similar fashion, starting from the passband PSD and working backward,

we can infer that

Ss�f�= 2S+
sp
�f +fc��

where S+
sp
�f�= Ssp�f�I
f>0� is the “right half” of the passband PSD.

As with deterministic signals, the definition of bandwidth for real-valued

passband random processes is based on occupancy of positive frequencies

alone, while that for complex baseband random processes is based on occu-

pancy of both positive and negative frequencies. For a given passband random

process, both definitions lead to the same value of bandwidth.

2.4 Modulation degrees of freedom

While analog waveforms and channels live in a continuous time space with

uncountably infinite dimensions, digital communication systems employing

such waveforms and channels can be understood in terms of vector spaces

with finite, or countably infinite, dimensions. This is because the dimen-

sion, or degrees of freedom, available for modulation is limited when we

restrict the time and bandwidth of the signaling waveforms to be used. Let

us consider signaling over an ideally bandlimited passband channel spanning

fc−W/2 ≤ f ≤ fc+W/2. By choosing fc as a reference, this is equivalent

to an ideally bandlimited complex baseband channel spanning �−W/2�W/2�.

That is, modulator design corresponds to design of a set of complex baseband

transmitted waveforms that are bandlimited to �−W/2�W/2�. We can now

invoke Nyquist’s sampling theorem, stated below.

Theorem 2.4.1 (Nyquist’s sampling theorem) Any signal s�t� bandlimited

to �−W/2�W/2� can be described completely by its samples 
s�n/W�� at rate

W . Furthermore, s�t� can be recovered from its samples using the following

interpolation formula:

s�t�=
�
∑

n=−�
s
( n

W

)

p
(

t− n

W

)

� (2.71)

where p�t�= sinc�Wt�.

By the sampling theorem, the modulator need only specify the samples


s�n/W�� to specify a signal s�t� bandlimited to �−W/2�W/2�. If the signals

are allowed to span a large time interval To (large enough that they are still

approximately bandlimited), the number of complex-valued samples that the

modulator must specify is approximately WTo. That is, the set of possible

transmitted signals lies in a finite-dimensional complex subspace of dimension

WTo, or equivalently, in a real subspace of dimension 2WTo. To summarize,

the dimension of the complex-valued signal space (i.e., the number of degrees

of freedom available to the modulator) equals the time-bandwidth product.



August 13, 2007 5:46 p.m. CUP/FOD Page-42 9780521874144c02

42 Modulation

The interpolation formula (2.71) can be interpreted as linear modulation

(which has been introduced informally via several examples, and is consid-

ered in detail in the next section) at rate W using the samples 
s�n/W��

as the symbols, and the sinc pulse as the modulating pulse gTX�t�. Linear

modulation with the sinc pulse has the desirable characteristic, therefore, of

being able to utilize all of the degrees of freedom available in a bandlimited

channel. As I shall show in the next section, however, the sinc pulse has

its problems, and in practice, it is necessary to back off from utilizing all

available degrees of freedom, using modulating pulses that have less abrupt

transitions in the frequency domain than the brickwall Fourier transform of the

sinc pulse.

Bandwidth efficiency Bandwidth efficiency for a modulation scheme is

defined to be the number of bits conveyed per degree of freedom. Thus,

M-ary signaling in a D-dimensional signal space has bandwidth efficiency

�B =
log2M

D
� (2.72)

The number of degrees of freedom in the preceding definition is taken to

be the maximum available. Thus, for a bandlimited channel with bandwidth

W , we would set D = WTo to obtain the number of complex degrees of

freedom available to a modulator over a large time interval To. In practice,

the number of effective degrees of freedom is smaller owing to a variety of

implementation considerations, as mentioned for the example of linear mod-

ulation in the previous paragraph. We do not include such considerations in

our definition of bandwidth efficiency, in order to get a number that funda-

mentally characterizes a modulation scheme, independent of implementation

variations.

To summarize, the set of possible transmitted waveforms in a time-limited

and bandwidth-limited system lies in a finite-dimensional signal space. The

broad implication of this observation is that we can restrict attention to

discrete-time signals, or vectors, for most aspects of digital communication

system design, even though the physical communication mechanism is based

on sending continuous-time waveforms over continuous-time channels. In

particular, we shall see in Chapter 3 that signal space concepts play an

important role in developing a geometric understanding of receiver design.

Signal space concepts are also useful for describing modulation techniques,

as I briefly describe below (postponing a more detailed development to

Chapter 3).

Signal space description of modulation formats Consider a modulation

format in which one of M signals, s1�t��…� sM�t�, is transmitted. The signal

space spanned by these signals is of dimension n ≤ M , so we can repre-

sent each signal si�t� by an n-dimensional vector si = �si�1��…� si�n��
T , with
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respect to some orthonormal basis �1�t��…��n�t� satisfying ��k��l� = 	kl,

1≤ k� l≤ n. That is, we have

si�t�=
n
∑

l=1

si�l��l�t�� si�l�= �si��l� =
∫

si�t��
∗
l �t�dt� (2.73)

By virtue of (2.73), we can describe a modulation format by specifying

either the signals si�t�, 1 ≤ i ≤ M , or the vectors si, 1 ≤ i ≤ M . More

importantly, the geometry of the signal set is preserved when we go from

continuous-time to vectors, in the sense that inner products, and Euclidean

distances, are preserved: �si� sj� = �si� sj� for 1 ≤ i� j ≤ M . As we shall

see in Chapter 3, it is this geometry that determines performance over the

AWGN channel, which is the basic model upon which we build when

designing most communication systems. Thus, we can design vectors with

a given geometry, depending on the performance characteristics we desire,

and then map them into continuous-time signals using a suitable orthonor-

mal basis 
�k�. This implies that the same vector space design can be

reused over very different physical channels, simply by choosing an appro-

priate basis matched to the channel’s time-bandwidth constraints. An exam-

ple of signal space construction based on linear modulation is provided in

Section 2.5.4.

2.5 Linear modulation

We now know that we can encode information to be transmitted over a

passband channel into a complex-valued baseband waveform. For a physical

baseband channel, information must be encoded into a real-valued base-

band waveform. I focus on more general complex baseband (i.e., passband)

systems, with physical real baseband systems automatically included as a

special case.

As the discussion in the previous section indicates, linear modulation is

a technique of fundamental importance for communication over bandlimited

channels. We have already had sneak previews of this modulation technique

in Figure 2.1 and Examples 2.3.2, 2.2.3, and we now build on these for a

more systematic exposition. The complex baseband transmitted waveform for

linear modulation can be written as

u�t�=
∑

n

b�n�gTX�t−nT�� (2.74)

Here 
b�n�� are the transmitted symbols, typically taking values in a fixed sym-

bol alphabet, or constellation. The modulating pulse gTX�t� is a fixed baseband

waveform. The symbol rate, or baud rate is 1/T , and T is termed the symbol

interval.
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2.5.1 Examples of linear modulation

I now discuss some commonly used linear modulation formats for baseband

and passband channels.

Baseband line codes Linear modulation over physical baseband channels

is a special case of (2.74), with all quantities constrained to be real-valued,

since u�t� is actually the physical waveform transmitted over the channel. For

such real baseband channels, methods of mapping bits to (real-valued) analog

waveforms are often referred to as line codes. Examples of some binary line

codes are shown in Figure 2.14 and can be interpreted as linear modulation

with either a 
−1�+1� or a 
0�1� alphabet.

Figure 2.14 Some baseband

line codes using memoryless

linear modulation.

If a clock is not sent in parallel with the modulated data, then bit timing

must be extracted from the modulated signal. For the non return to zero (NRZ)

formats shown in Figure 2.14, a long run of zeros or ones can lead to loss

of synchronization, since there are no transitions in voltage to demarcate bit

boundaries. This can be alleviated by precoding the data so that it has a high

enough rate of transitions from 0 to 1, and vice versa. Alternatively, transitions

can be guaranteed through choice of modulating pulse: the Manchester code

shown in Figure 2.14 has transitions that are twice as fast as the bit rate.

The spectral characteristics of baseband line codes are discussed further in

Problem 2.23.

Linear memoryless modulation is not the only option The line codes in

Figure 2.14 can be interpreted as memoryless linear modulation: the waveform

corresponding to a bit depends only on the value of the bit, and is a translate

of a single basic pulse shape. We note at this point that this is certainly not

the only way to construct a line code. Specifically, the Miller code, depicted

in Figure 2.15, is an example of a line code employing memory and nonlinear

modulation. The code uses two different basic pulse shapes, ±s1�t� to send

1, and ±s0�t� to send 0. A sign change is enforced when 0 is followed by 0,

in order to enforce a transition. For the sequences 01, 10 and 11, a transition

is ensured because of the transition within s1�t�. In this case, the sign of the

waveform is chosen to delay the transition as much as possible; it is intuitively

A > 0, B = 0   Unipolar NRZ
0 1 1 0 1 0 0 1

     Manchester code

Linear modulation with alphabet {+1,−1} and pulse

A

B

Data (NRZ format) A > 0, B = −A  Bipolar NRZ
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+A

s0 (t)

0 1 1 0 1 0 0 1
A

−A

Miller code

+A

−A

s1 (t)

plausible that this makes the modulated waveform smoother, and reduces its

spectral occupancy.

Figure 2.15 The Miller code is

a nonlinear modulation format

with memory.

Passband linear modulation For passband linear modulation, the sym-

bols 
b�n�� in (2.74) are allowed to be complex-valued, so that they can

be represented in the two-dimensional real plane. Thus, we often use the

term two-dimensional modulation for this form of modulation. The complex

baseband signal u�t�= uc�t�+ jus�t� is upconverted to passband as shown in

Figure 2.9.

Two popular forms of modulation are phase shift keying (PSK) and quadra-

ture amplitude modulation (QAM). Phase shift keying corresponds to choos-

ing arg�b�n�� from a constellation where the modulus �b�n�� is constant.

Quadrature amplitude modulation allows both �b�n�� and arg�b�n�� to vary,

and often consists of varying Re�b�n�� and Im�b�n�� independently. Assum-

ing, for simplicity, that gTX�t� is real-valued, we have

uc�t�=
∑

n

Re�b�n��gTX�t−nT�� us�t�=
∑

n

Im�b�n��gTX�t−nT��

The term QAM refers to the variations in the amplitudes of I and Q com-

ponents caused by the modulating symbol sequence 
b�n��. If the sequence


b�n�� is real-valued, then QAM specializes to pulse amplitude modula-

tion (PAM). Figure 2.16 depicts some well-known constellations, where we

plot Re�b� on the x-axis, and Im�b� on the y-axis, as b ranges over all

possible values for the signaling alphabet. Note that rectangular QAM con-

stellations can be interpreted as modulation of the in-phase and quadrature

components using PAM (e.g., 16-QAM is equivalent to I and Q modulation

using 4-PAM).

Each symbol in a constellation of size M can be uniquely mapped to

log2M bits. For a symbol rate of 1/T symbols per unit time, the bit rate



August 13, 2007 5:46 p.m. CUP/FOD Page-46 9780521874144c02

46 Modulation

QPSK (4−PSK or 4−QAM) 8−PSK

16−QAM

is therefore �log2 M�/T bits per unit time. Since the transmitted bits often

contain redundancy because of a channel code employed for error correction

or detection, the information rate is typically smaller than the bit rate.

Figure 2.16 Some

constellations for

two-dimensional linear

modulation.

Design choices Some basic choices that a designer of a linearly modulated

system must make are: the transmitted pulse shape gTX , the symbol rate 1/T ,

the signaling constellation, the mapping from bits to symbols, and the channel

code employed, if any. I now show that the symbol rate and pulse shape

are determined largely by the available bandwidth, and by implementation

considerations. The background needed to make the remaining choices is built

up as we progress through this book. In particular, it will be seen later that

the constellation size M and the channel code, if any, should be chosen based

on channel quality measures such as the signal-to-noise ratio.

2.5.2 Spectral occupancy of linearly modulated signals

From Example 2.3.3, we know that the linearly modulated signal u in (2.74)

is a cyclostationary random process if the modulating symbol sequence 
b�n��

is a stationary random process. Problem 2.22 discusses computation of the

PSD for u as a statistical average across realizations, while Example 2.3.2
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discusses computation of the PSD as a time average. I now summarize these

results in the following theorem.

Theorem 2.5.1 (Power spectral density of a complex baseband linearly

modulated signal) Consider a linearly modulated signal

u�t�=
�
∑

n=−�
b�n�gTX�t−nT��

Assume that the symbol stream b�n� is uncorrelated and has zero mean. That

is, E�b�n�b∗�m��=E��b�n��2�	nm and E�b�n��= 0 (the expectation is replaced

by a time average when the PSD is defined as a time average). Then the PSD

of u is given by

Su�f�=
E��b�n��2

T
�GTX�f��2� (2.75)

Figure 2.17 PSD for linear

modulation using rectangular

and cosine timelimited pulses.

The normalization is such that

the power (i.e., the area under

the PSD) is the same in both

cases.

Figure 2.17 shows the PSD (as a function of normalized frequency fT ) for

linear modulation using a rectangular timelimited pulse, as well as the cosine-

shaped timelimited pulse used for minimum shift keying, which is discussed

in Problem 2.24. The smoother shape of the cosine pulse leads to a faster

decay of the PSD beyond the main lobe.

Theorem 2.5.1 implies that, for uncorrelated symbols, the shape of the PSD

of a linearly modulated signal is determined completely by the spectrum of

the modulating pulse gTX�t�. A generalization of this theorem for correlated

symbol sequences is considered in Problem 2.22, which also discusses the

use of such correlations in spectrally shaping the transmitted signal. Another
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generalization of this theorem, discussed in Problem 2.23, is when the symbols


b�n�� have nonzero mean, as is the case for some baseband line codes. In

this case, the PSD has spectral lines at multiples of the symbol rate 1/T ,

which can be exploited for symbol synchronization.

The preceding result, and the generalizations in Problems 2.22 and 2.23,

do not apply to nonlinear modulation formats such as the Miller code shown

in Figure 2.15. However, the basic concepts of analytical characterization of

PSD developed in these problems can be extended to more general modulation

formats with a Markovian structure, such as the Miller code. The details are

straightforward but tedious, hence I will not discuss them further.

Once the PSD is known, the bandwidth of u can be characterized using any

of a number of definitions. One popular concept (analogous to the energy con-

tainment bandwidth for a finite-energy signal) is the 1−� power containment

bandwidth, where � is a small number: this is the size of the smallest contigu-

ous band that contains a fraction 1−� of the signal power. The fraction of the

power contained is often expressed in terms of a percentage: for example, the

99% power containment bandwidth corresponds to �= 0�01. Since the PSD of

the modulated signal u is proportional to �GTX�f��2, the fractional power con-
tainment bandwidth is equal to the fractional energy containment bandwidth

for GTX�f�. Thus, the 1− � power containment bandwidth B satisfies

∫
B
2

− B
2

�GTX�f��2df = �1− ��
∫ �

−�
�GTX�f��2df� (2.76)

We use the two-sided bandwidth B for the complex baseband signal to

quantify the signaling bandwidth needed, since this corresponds to the

physical (one-sided) bandwidth of the corresponding passband signal. For

real-valued signaling over a physical baseband channel, the one-sided

bandwidth of u would be used to quantify the physical signaling bandwidth.

Normalized bandwidth Time scaling the modulated waveform u�t� pre-

serves its shape, but corresponds to a change of symbol rate. For example,

we can double the symbol rate by using a time compressed version u�2t� of

the modulated waveform in (2.74):

u2�t�= u�2t�=
∑

n

b�n�gTX�2t−nT�=
∑

n

b�n�gTX

(

2

(

t−n
T

2

))

�

Time compression leads to frequency dilation by a factor of two, while keep-

ing the signal power the same. It is intuitively clear that the PSD Su2�f� =
1/2Su�f/2�, regardless of what definition we use to compute it. Thus, what-

ever our notion of bandwidth, changing the symbol rate in this fashion leads

to a proportional scaling of the required bandwidth. This has the following

important consequence. Once we have arrived at a design for a given symbol

rate 1/T , we can reuse it without any change for a different symbol rate a/T ,

simply by replacing gTX�t� with gTX�at� (i.e., GTX�f� with a scaled version

of GTX�f/a�). If the bandwidth required was B, then the new bandwidth
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required is aB. Thus, it makes sense to consider the normalized bandwidth

BT , which is invariant to the specific symbol rate employed, and depends

only on the shape of the modulating pulse gTX�t�. In doing this, it is also

convenient to consider the normalized time t/T and normalized frequency

fT . Equivalently, we can, without loss of generality, set T = 1 to compute

the normalized bandwidth, and then simply scale the result by the desired

symbol rate.

Example 2.5.1 (Fractional power containment bandwidth with time-

limited pulse) We wish to determine the 99% power containment band-

width when signaling at 100Mbps using 16-QAM, using a rectangular

transmit pulse shape timelimited over the symbol interval. Since there are

log2 16= 4 bit/symbol, the symbol rate is given by

1/T = 100 Mbps

4 bit/symbol
= 25 Msymbol/s�

Let us first compute the normalized bandwidth B1 for T = 1. The transmit

pulse is gTX�t�= I�0�1��t�, so that

�GTX�f��2 = �sinc�f��2�

We can now substitute into (2.76) to compute the power containment

bandwidth B. I have actually already solved this problem in Example 2.1.3,

where I computed B1 = 10�2 for 99% energy containment. We therefore

find that the bandwidth required is

B = B1

T
= 10�2×25 MHz= 260 MHz�

This is clearly very wasteful of bandwidth. Thus, if we are concerned about

strict power containment within the allocated band, we should not be using

rectangular timelimited pulses. On the other hand, if we are allowed to be

sloppier, and can allow 10% of the power to spill outside the allocated

band, then the required bandwidth is less than 25MHz (B1 = 0�85 for

a= 0�9, from Example 2.1.3).

2.5.3 The Nyquist criterion: relating bandwidth to symbol rate

Typically, a linearly modulated system is designed so as to avoid intersymbol

interference at the receiver, assuming an ideal channel, as illustrated in Figure

2.18, which shows symbols going through a transmit filter, a channel (also

modeled as a filter), and a receive filter (noise is ignored for now). Since

symbols are being fed into the transmit filter at rate 1/T , it is natural to expect

that we can process the received signal such that, in the absence of channel

distortions and noise, samples at rate 1/T equal the transmitted symbols. This

expectation is fulfilled when the cascade of the transmit filter, the channel
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z(t )
Transmit

filter

 g TX 

(t )

Channel

filter

g c 

(t )

Receive

filter

g RX 

(t )

Symbols

{b[n]}

rate 1/T

Sampler

rate 1/ T

z (nT )

When is z (nT ) = b [n]?

Figure 2.18 Set-up for

applying Nyquist criterion.
filter, and the receive filter satisfy the Nyquist criterion for ISI avoidance,

which we now state.

From Figure 2.18, the noiseless signal at the output of the receive filter is

given by

z�t�=
∑

n

b�n�x�t−nT�� (2.77)

where

x�t�= �gTX ∗gC ∗gRX��t�

is the overall system response to a single symbol. The Nyquist criterion

answers the following question: when is z�nT�= b�n�? That is, when is there

no ISI in the symbol spaced samples? The answer is stated in the following

theorem.

Theorem 2.5.2 (Nyquist criterion for ISI avoidance) Intersymbol inter-

ference can be avoided in the symbol-spaced samples, i.e.,

z�nT�= b�n� for all n (2.78)

if

x�mT�= 	m0 =
{

1� m= 0

0� m 	= 0�
(2.79)

Letting X�f� denote the Fourier transform of x�t�, the preceding condition

can be equivalently written as

1/T
�
∑

k=−�
X

(

f + k

T

)

= 1 for all f� (2.80)

Proof of Theorem 2.5.2 It is immediately obvious that the time domain

condition (2.79) gives the desired ISI avoidance (2.78). It can be shown that

this is equivalent to the frequency domain condition (2.80) by demonstrating

that the sequence 
x�−mT�� is the Fourier series for the periodic waveform

B�f�= 1/T
�
∑

k=−�
X

(

f + k

T

)

obtained by summing all the aliased copies X�f +k/T� of the Fourier trans-

form of x. Thus, for the sequence 
x�mT�� to be a discrete delta, the periodic

function B�f� must be a constant. The details are developed in Problem 2.15.
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A pulse x�t� or X�f� is said to be Nyquist at rate 1/T if it satisfies (2.79)

or (2.80), where we permit the right-hand sides to be scaled by arbitrary

constants.

Minimum bandwidth Nyquist pulse The minimum bandwidth Nyquist

pulse is

X�f�=
{

T� �f � ≤ 1
2T

0� else �

corresponding to the time domain pulse

x�t�= sinc
( t

T

)

�

The need for excess bandwidth The sinc pulse is not used in practice

because it decays too slowly: the 1/t decay implies that the signal z�t� in

(2.77) can exhibit arbtrarily large fluctuations, depending on the choice of

the sequence 
b�n��. It also implies that the ISI caused by sampling errors

can be unbounded (see Problem 2.21). Both of these phenomena are related

to the divergence of the series
∑�

n=1 1/n, which determines the worst-case

contribution from “distant” symbols at a given instant of time. Since the series
∑�

n=1 1/n
a converges for a > 1, these problems can be fixed by employing a

pulse x�t� that decays as 1/ta for a > 1. A faster time decay implies a slower

decay in frequency. Thus, we need excess bandwidth, beyond the minimum

bandwidth dictated by the Nyquist criterion, to fix the problems associated

with the sinc pulse. The (fractional) excess bandwidth for a linear modulation

scheme is defined to be the fraction of bandwidth over the minimum required

for ISI avoidance at a given symbol rate.

Raised cosine pulse An example of a pulse with a fast enough time decay

is the frequency domain raised cosine pulse shown in Figure 2.20, and spec-

ified as

S�f�=























T� �f � ≤ 1−a
2T

T
2

[

1− sin���f �− 1
2T
��T

a
�
]

� 1−a
2T

≤ �f � ≤ 1+�
2T

0� �f �> 1+a
2T

�

where a is the fractional excess bandwidth, typically chosen in the range

where 0 ≤ a < 1. As shown in Problem 2.16, the time domain pulse s�t� is

given by

s�t�= sinc
( t

T

) cos�a t
T

1−
(

2at
T

)2
�

This pulse inherits the Nyquist property of the sinc pulse, while having

an additional multiplicative factor that gives an overall (1/t3) decay with
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(b) Time domain sinc pulse

time. The faster time decay compared with the sinc pulse is evident from a

comparison of Figures 2.20(b) and 2.19(b).

The Nyquist criterion applies to the cascade of the transmit, channel, and

receive filters. How is Nyquist signaling done in practice, since the channel is

typically not within our control? Typically, the transmit and receive filters are

designed so that the cascade GTX�f�GRX�f� is Nyquist, and the ISI introduced

by the channel, if any, is handled separately. A typical choice is to set GTX

and GRX to be square roots (in the frequency domain) of a Nyquist pulse.

Such a pulse is called a square root Nyquist pulse. For example, the square

root raised cosine (SRRC) pulse is often used in practice. Another common

choice is to set GTX to be a Nyquist pulse, and GRX to be a wideband filter

whose response is flat over the band of interest.

Figure 2.19 Sinc pulse for

minimum bandwidth ISI-free

signaling at rate 1/T . Both

time and frequency axes

are normalized to be

dimensionless.

I had argued in Section 2.4, using Nyquist’s sampling theorem, that linear

modulation using the sinc pulse takes up all of the degrees of freedom in a

bandlimited channel. The Nyquist criterion for ISI avoidance may be viewed

loosely as a converse to the preceding result, saying that if there are not

enough degrees of freedom, then linear modulation incurs ISI. The relation

between these two observations is not accidental: both Nyquist’s sampling
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(b) Time domain pulse (excess bandwidth a = 0.5)

theorem and the Nyquist criterion are based on the Fourier series relationship

between the samples of a waveform and its aliased Fourier transform.

Figure 2.20 Raised cosine

pulse for minimum bandwidth

ISI-free signaling at rate 1/T ,

with excess bandwidth a. Both

time and frequency axes

are normalized to be

dimensionless.

Bandwidth efficiency We define the bandwidth efficiency of linear modu-

lation with an M-ary alphabet as

�B = log2 M bit/symbol�

This is consistent with the definition (2.72) in Section 2.4, since one symbol

in linear modulation takes up one degree of freedom. Since the Nyquist

criterion states that the minimum bandwidth required equals the symbol rate,

knowing the bit rate Rb and the bandwidth efficiency �B of the modulation

scheme, we can determine the symbol rate, and hence the minimum required

bandwidth Bmin.

Bmin =
Rb

�B

�

This bandwidth would then be expanded by the excess bandwidth used in the

modulating pulse, which (as discussed already in Section 2.4) is not included
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in our definition of bandwidth efficiency, because it is a highly variable

quantity dictated by a variety of implementation considerations. Once we

decide on the fractional excess bandwidth a, the actual bandwidth required is

B = �1+a�Bmin = �1+a�
Rb

�B

�

2.5.4 Linear modulation as a building block

Linear modulation can be used as a building block for constructing more

sophisticated waveforms, using a square root Nyquist pulse as the modulating

waveform. To see this, let us first describe the square root Nyquist property

in the time domain. Suppose that ��t� is square root Nyquist at rate 1
Tc
.

This means that Q�f�= ���f��2 =��f�� ∗�f� is Nyquist at rate 1
Tc
. Note that

� ∗�f� is simply the frequency domain representation of �mf�t�= �∗�−t�, the

matched filter for ��t�. This means that

Q�f�=��f�� ∗�f�↔ q�t�= �� ∗�mf��t�=
∫

��s��∗�s− t� ds� (2.81)

That is, q�t� is the autocorrelation function of ��t�, obtained by passing �

through its matched filter. Thus, � is square root Nyquist if its autocorrelation

function q is Nyquist. That is, the autocorrelation function satisfies q�kTc�=
	k0 for integer k.

I have just shown that the translates 
��t−kTc�� are orthonormal. We can

now use these as a basis for signal space constructions. Representing a signal

si�t� in terms of these basis functions is equivalent to linear modulation at

rate 1
Tc

as follows:

si�t�=
N−1
∑

k=0

si�k���t−kTc�� i= 1� � � �M�

where si = �si�0�� � � � � si�N−1�� is a code vector that is mapped to continuous

time by linear modulation using the waveform �. We often refer to ��t� as

the chip waveform, and 1
Tc

as the chip rate, where N chips constitute a single

symbol. Note that the continuous-time inner products between the signals

thus constructed is determined by the discrete-time inner product between the

corresponding code vectors:

�si� sj�=
N−1
∑

k=0

N−1
∑

l=0

si�k�s
∗
j �l�

∫

��t−kTc��
∗�t−lTc�dt=

N−1
∑

k=0

si�k�s
∗
j �k�=�si� sj��

where we have use the orthonormality of the translates 
��t−kTc��.

Examples of square root Nyquist chip waveforms include a rectangular

pulse timelimited to an interval of length Tc, as well as bandlimited pulses

such as the square root raised cosine. From Theorem 2.5.1, we see that the

PSD of the modulated waveform is proportional to ���f��2 (it is typically a

good approximation to assume that the chips 
si�k�� are uncorrelated). That

is, the bandwidth occupancy is determined by that of the chip waveform �.
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In the next section, I apply the preceding construction to obtain waveforms

for orthogonal modulation. In Chapter 8, I discuss direct sequence spread

spectrum systems based on this construction.

2.6 Orthogonal and biorthogonal modulation

The number of possible transmitted signals for orthogonal modulation equals

the number of degrees of freedom M available to the modulator, since we can

fit only M orthogonal vectors in an M-dimensional signal space. However, as

discussed below, whether we need M real degrees of freedom or M complex

degrees of freedom depends on the notion of orthogonality required by the

receiver implementation.

Frequency shift keying A classical example of orthogonal modulation is

frequency shift keying (FSK). The complex baseband signaling waveforms

for M-ary FSK over a signaling interval of length T are given by

si�t�= ej2�fitI�0�T�� i= 1� � � � �M�

where the frequency shifts �fi − fj� are chosen to make the M waveforms

orthogonal. The bit rate for such a system is therefore given by �log2M�/T ,

since log2 M bits are conveyed over each interval of length T . To determine

the bandwidth needed to implement such an FSK scheme, we must determine

the minimal frequency spacing such that the 
si� are orthogonal. Let me first

discuss what orthogonality means.

I have introduced the concepts of coherent and noncoherent reception in

Example 2.2.5, where we correlated the received waveform against copies of

the possible noiseless received waveforms corresponding to different trans-

mitted signals. In practical terms, therefore, orthogonality means that, if si
is sent, and we are correlating the received signal against sj , j 	= i, then the

output of the correlator should be zero (ignoring noise). This criterion leads

to two different notions of orthogonality, depending on the assumptions we

make on the receiver’s capabilities.

Orthogonality for coherent and noncoherent systems Consider two com-

plex baseband waveforms u = uc + jus and v = vc + jvs, and their passband

equivalents up�t�= Re�
√
2u�t�ej2�fct� and vp�t�= Re�

√
2v�t�ej2�fct�, respec-

tively. From (2.36), we know that

�up� vp� = Re��u� v��= �uc� vc�+�us� vs�� (2.82)

Thus, one concept of orthogonality between complex baseband waveforms

is that their passband equivalents (with respect to a common frequency and

phase reference) are orthogonal. This requires that Re ��u� v�� = 0. In the

inner product Re ��u� v��, the I and Q components are correlated separately
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and then summed up. At a practical level, extracting the I and Q components

from a passband waveform requires a coherent system, in which an accurate

frequency and phase reference is available for downconversion.

Now, suppose that we want the passband equivalents of u and v to remain

orthogonal in noncoherent systems in which an accurate phase reference may

not be available. Mathematically, we want up�t� = Re�
√
2u�t�ej2�fct� and

v̂p�t� = Re�
√
2v�t�ej2�fct+�� to remain orthogonal, regardless of the value of

�. The complex envelope of v̂p with respect to fc is v̂�t� = v�t�ej�, so that,

applying (2.82), we have

�up� v̂p� = Re��u� v̂��= Re��u� v�e−j��� (2.83)

It is easy to see that the preceding inner product is zero for all possible � if

and only if �u� v� = 0; set � = 0 and � = �
2
in (2.83) to see this.

We therefore have two different notions of orthogonality, depending on

which of the inner products (2.82) and (2.83) is employed:

Re��si� sj��= 0 Coherent orthogonality criterion

�si� sj� = 0 Noncoherent orthogonality criterion�
(2.84)

I leave it as an exercise (Problem 2.25) to show that a tone spacing of

1/2T provides orthogonality in coherent FSK, while a tone spacing of 1/T

is required for noncoherent FSK. The bandwidth for coherent M-ary FSK

is therefore approximately M/2T , which corresponds to a time-bandwidth

product of approximately M/2. This corresponds to a complex vector space

of dimension M/2, or a real vector space of dimension M , in which we can

fit M orthogonal signals. On the other hand, M-ary noncoherent signaling

requires M complex dimensions, since the complex baseband signals must

remain orthogonal even under multiplication by complex-valued scalars. This

requirement doubles the bandwidth requirement for noncoherent orthogonal

signaling.

Bandwidth efficiency We can conclude from the example of orthog-

onal FSK that the bandwidth efficiency of orthogonal signaling is

�B = �log2M�/M bit/complex dimension for coherent systems, and �B =
�log2M�/M bit/complex dimension for noncoherent systems. This is a general

observation that holds for any realization of orthogonal signaling. In a signal

space of complex dimension D (and hence real dimension 2D), we can fit

2D signals satisfying the coherent orthogonality criterion, but only D signals

satisfying the noncoherent orthogonality criterion. As M gets large, the band-

width efficiency tends to zero. In compensation, as we see in Chapter 3, the

power efficiency of orthogonal signaling for large M is the “best possible.”

Orthogonal Walsh–Hadamard codes Section 2.5.4 shows how to map

vectors to waveforms while preserving inner products, by using linear modu-

lation with a square root Nyquist chip waveform. Applying this construction,
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the problem of designing orthogonal waveforms 
si� now reduces to designing

orthogonal code vectors 
si�. Walsh–Hadamard codes are a standard con-

struction employed for this purpose, and can be constructed recursively as

follows: at the nth stage, we generate 2n orthogonal vectors, using the 2n−1

vectors constructed in the n− 1 stage. Let Hn denote a matrix whose rows

are 2n orthogonal codes obtained after the nth stage, with H0 = �1�. Then

Hn =
(

Hn−1 Hn−1

Hn−1 −Hn−1

)

�

We therefore get

H1 =
(

1 1

1 −1

)

� H2 =









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









� etc�

The signals 
si� obtained above can be used for noncoherent orthogonal

signaling, since they satisfy the orthogonality criterion �si� sj� = 0 for i 	= j.

However, just as for FSK, we can fit twice as many signals into the same

number of degrees of freedom if we used the weaker notion of orthogonality

required for coherent signaling, namely Re��si� sj� = 0 for i 	= j. It is easy

to check that for M-ary Walsh–Hadamard signals 
si� i = 1�…�M�, we can

get 2M orthogonal signals for coherent signaling: 
si� jsi� i = 1�…�M�. This

construction corresponds to independently modulating the I and Q components

with a Walsh–Hadamard code.

Biorthogonal modulation Given an orthogonal signal set, a biorthogonal

signal set of twice the size can be obtained by including a negated copy of

each signal. Since signals s and −s cannot be distinguished in a noncoherent

system, biorthogonal signaling is applicable to coherent systems. Thus, for an

M-ary Walsh–Hadamard signal set 
si� with M signals obeying the nonco-

herent orthogonality criterion, we can construct a coherent orthogonal signal

set 
si� jsi� of size 2M , and hence a biorthogonal signal set of size 4M , e.g.,


si� jsi�−si�−jsi�.

2.7 Differential modulation

Differential modulation uses standard PSK constellations, but encodes the

information in the phase transitions between successive symbols rather than

in the absolute phase of one symbol. This allows recovery of the information

even when there is no absolute phase reference.

Differential modulation is useful for channels in which the amplitude and

phase may vary over time (e.g., for a wireless mobile channel), or if there is

a residual carrier frequency offset after carrier synchronization. To see why,
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consider linear modulation of a PSK symbol sequence 
b�n��. Under ideal

Nyquist signaling, the samples at the output of the receive filter obey the

model

r�n�= h�n�b�n�+ noise

where h�n� is the channel gain. If the phase of h�n� can vary arbitrarily

fast with n, then there is no hope of conveying any information in the

carrier phase. However, if h�n� varies slowly enough that we can approximate

it as piecewise constant over at least two symbol intervals, then we can

use phase transitions to convey information. Figure 2.21 illustrates this for

two successive noiseless received samples for a QPSK alphabet, comparing

b�n�b∗�n− 1� with r�n�r∗�n− 1�. We see that, ignoring noise, these two

quantities have the same phase. Thus, even when the channel imposes an

arbitrary phase shift, as long as the phase shift is roughly constant over

two consecutive symbols, the phase difference is unaffected by the channel,

and hence can be used to convey information. On the other hand, we see

from Figure 2.21 that the amplitude of b�n�b∗�n− 1� differs from that of

r�n�r∗�n−1�. Thus, some form of explicit amplitude estimation or tracking is

required in order to generalize differential modulation to QAM constellations.

How best to design differential modulation for QAM alphabets is still a

subject of ongoing research, and I do not discuss it further.

Figure 2.22 shows an example of how two information bits can be mapped

to phase transitions for differential QPSK. For example, if the information

bits at time n are i�n� = 00, then b�n� has the same phase as b�n− 1�. If

Noiseless received samples

b[n − 1]

b[n]
b[n]b*[n−1]

r [n] = h[n] b[n]

×r [n − 1] = h[n − 1] b[n − 1]

×  r [n]r *[n − 1]

Transmitted symbols

×

Figure 2.21 Ignoring noise, the phase transitions between successive symbols remain unchanged after

an arbitrary phase offset induced by the channel. This motivates differential modulation as a means of

dealing with unknown or slowly time-varying channels.
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10
00

11

01

i�n�= 10, then b�n�= ej�/2b�n−1�, and so on, where the symbols b�n� take

values in 
ej�/4� ej3�/4� ej5�/4� ej7�/4�.

I will now discuss the special case of binary differential PSK (DPSK),

which has an interesting interpretation as orthogonal modulation. For a BPSK

alphabet, suppose that the information bits 
i�n�� take values in 
0�1�, the

transmitted symbols 
b�n�� take values in 
−1�+1�, and the encoding rule is

as follows:

b�n�= b�n−1� if

b�n�=−b�n−1� if

i[n]=0�

i[n]=1�

Figure 2.22 Mapping

information bits to phase

transitions in differential QPSK.

If we think of the signal corresponding to i�n� as s�n�= �b�n−1�� b�n��, then

s�n� can take the following values:

for i�n� = 0� s�n�=±s0� where s0 = �+1�+1��

for i�n� = 1� s�n�=±s1� where s0 = �+1�−1��

The signals s0 and s1 are orthogonal. Note that s�n� = �b�n− 1�� b�n�� =
b�n− 1��1� b�n�/b�n−1��. Since b�n�/b�n−1� depends only on the infor-

mation bit i�n�, the direction of s�n� depends only on i�n�, while there is a

sign ambiguity due to b�n−1�. Not knowing the channel h�n� would impose

a further phase ambiguity. Thus, binary DPSK can be interpreted as binary

noncoherent orthogonal signaling, with the signal duration spanning two sym-

bol intervals. However, there is an important distinction from standard binary

noncoherent orthogonal signaling, which conveys one bit using two complex

degrees of freedom. Binary DPSK uses the available degrees of freedom more

efficiently by employing overlapping signaling intervals for sending succes-

sive information bits: the signal �b�n�� b�n− 1�� used to send i�n� has one

degree of freedom in common with the signal �b�n+ 1�� b�n�� used to send

i�n+1�. In particular, we need n+1 complex degrees of freedom to send n

bits. Thus, for large enough n, binary DPSK needs one complex degree of
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freedom per information bit, so that its bandwidth efficiency is twice that of

standard binary noncoherent orthogonal signaling.

A more detailed investigation of noncoherent communication and differ-

ential modulation is postponed to Chapter 4, after I have developed the tools

for handling noise and noncoherent processing.

2.8 Further reading

Additional modulation schemes (and corresponding references for further

reading) are described in Chapter 8, when I discuss wireless communication.

Analytic computations of PSD for a variety of modulation schemes, including

line codes with memory, can be found in the text by Proakis [3]. Averaging

techniques for simulation-based computation of PSD are discussed in Chapter

8, Problem 8.29.

2.9 Problems

2.9.1 Signals and systems

Problem 2.1 A signal s�t� and its matched filter are shown in Figure 2.4.

(a) Sketch the real and imaginary parts of the output waveform y�t� = �s ∗
smf��t� when s�t� is passed through its matched filter.

(b) Draw a rough sketch of the magnitude �y�t��. When is the output magni-

tude the largest?

Problem 2.2 For s�t�= sinc�t�sinc�2t�:

(a) Find and sketch the Fourier transform S�f�.

(b) Find and sketch the Fourier transform U�f� of u�t� = s�t� cos�100�t�

(sketch real and imaginary parts separately if U�f� is complex-valued).

Problem 2.3 For s�t�= �10−�t��I�−10�10��t�:

(a) Find and sketch the Fourier transform S�f�.

(b) Find and sketch the Fourier transform U�f� of u�t� = s�t� sin�1000�t�

(sketch real and imaginary parts separately if U�f� is complex-valued).

Problem 2.4 In this problem, we prove the Cauchy–Schwartz inequality

(2.5), restated here for convenience,

��s� r�� =
∣

∣

∣

∫

s�t�r∗�t� dt
∣

∣

∣
≤ ��s����r���
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for any complex-valued signals s�t� and r�t�, with equality if and only if one

signal is a scalar multiple of the other. For simplicity, we assume in the proof

that s�t� and r�t� are real-valued.

(a) Suppose we try to approximate s�t� by ar�t�, a scalar multiple of r, where

a is a real number. That is, we are trying to approximate s by an element

in the subspace spanned by r. Then the error in the approximation is the

signal e�t� = s�t�−ar�t�. Show that the energy of the error signal, as a

function of the scalar a, is given by

J�a�= ��e��2 = ��s��2+a2��r��2−2a�s� r��

(b) Note that J�a� is a quadratic function of a with a global minimum. Find

the minimizing argument amin by differentiation and evaluate J�amin�. The

Cauchy–Schwartz inequality now follows by noting that the minimum

error energy is nonnegative. That is, it is a restatement of the fact that

J�amin�≥ 0.

(c) Infer the condition for equality in the Cauchy–Schwartz inequality.

Note For a rigorous argument, the case when s�t�= 0 or r�t�= 0 almost everywhere

should be considered separately. In this case, it can be verified directly that the

Cauchy–Schwartz condition is satisfied with equality.

(d) Interpret the minimizing argument amin as follows: the signal aminr�t�

corresponds to the projection of s�t� along a unit “vector” in the direction

of r�t�. The Cauchy–Schwartz inequality then amounts to saying that the

error incurred in the projection has nonnegative energy, with equality if

s�t� lies in the subspace spanned by r�t�.

Problem 2.5 Let us now show why using a matched filter makes sense for

delay estimation, as asserted in Example 2.1.2. Suppose that x�t�=As�t− t0�

is a scaled and delayed version of s. We wish to design a filter h such that,

when we pass x through h, we get a peak at time t0, and we wish to make

this peak as large as possible. Without loss of generality, we scale the filter

impulse response so as to normalize it as ��h�� = ��s��.

(a) Using the Cauchy–Schwartz inequality, show that the output y is bounded

at all times as follows:

�y�t�� ≤ �A���s��2�

(b) Using the condition for equality in Cauchy–Schwartz, show that y�t0�

attains the upper bound in (a) if and only if h�t� = s∗�−t� (we are

considering complex-valued signals in general, so be careful with the

complex conjugates). This means two things: y�t� must have a peak at

t = t0, and this peak is an upper bound for the output of any other choice

of filter (subject to the normalization we have adopted) at any time.
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Note We show in the next chapter that, under a suitable noise model, the matched

filter is the optimal form of preprocessing in a broad class of digital communication

systems.

2.9.2 Complex baseband representation

Problem 2.6 Consider a real-valued passband signal xp�t� whose Fourier

transform for positive frequencies is given by

Re�Xp�f��=







√
2� 20 ≤ f ≤ 22

0� 0 ≤ f < 20

0� 22< f <�
�

Im�Xp�f��=











1√
2
�1−�f −22�� � 21≤ f ≤ 23

0� 0 ≤ f < 21

0� 23< f <�
�

(a) Sketch the real and imaginary parts of Xp�f� for both positive and negative

frequencies.

(b) Specify the time domain waveform that you get when you pass√
2xp�t� cos�40�t� through a low pass filter.

Problem 2.7 Let v�t� denote a real passband signal, with Fourier transform

V�f� specified as follows for negative frequencies:

V�f�=
{

f +101� −101≤ f ≤−99

0� f <−101 or −99< f ≤ 0�

(a) Sketch V�f� for both positive and negative frequencies.

(b) Without explicitly taking the inverse Fourier transform, can you say

whether v�t�= v�−t� or not?

(c) Choosing f0 = 100, find real baseband waveforms vc�t� and vs�t� such

that

v�t�=
√
2�vc�t� cos2�f0t−vs�t� sin 2�f0t��

(d) Repeat (c) for f0 = 101.

Problem 2.8 Consider the following two passband signals:

up�t�=
√
2 sinc�2t� cos100�t

and

vp�t�=
√
2 sinc�t� sin

(

101�t+ �

4

)
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(a) Find the complex envelopes u�t� and v�t� for up and vp, respectively,

with respect to the frequency reference fc = 50.

(b) What is the bandwidth of up�t�? What is the bandwidth of vp�t�?

(c) Find the inner product �up� vp�, using the result in (a).

(d) Find the convolution yp�t�= �up ∗vp��t�, using the result in (a).

Problem 2.9 Let u�t� denote a real baseband waveform with Fourier trans-

form for f > 0 specified by

U�f�=
{

ej�f 0< f < 1

0 f > 1
�

(a) Sketch Re�U�f�� and Im�U�f�� for both positive and negative frequencies,

where Re�z�, Im�z�, denote the real and imaginary parts of a complex

number z.

(b) Find u�t�.

Now, consider the bandpass waveform v�t� generated from u�t� as

follows:

v�t�=
√
2u�t� cos200�t�

(c) Sketch Re�V�f�� and Im�V�f�� for both positive and negative frequencies.

(d) Let y�t�= �v∗hhp��t� denote the result of filtering v�t� using a high pass

filter with transfer function

Hhp�f�=
{

1 �f � ≥ 100

0 else
�

Find real baseband waveforms yc, ys such that

y�t�=
√
2�yc�t� cos200�t−ys�t� sin 200�t��

(e) Finally, pass y�t� cos200�t through an ideal low pass filter with transfer

function

Hlp�f�=
{

1 �f � ≤ 1

0 else
�

How is the result related to u�t�?

Remark It is a good idea to draw pictures of what is going on in the

frequency domain to get a good handle on this problem.

Problem 2.10 Consider a passband filter whose transfer function for f > 0

is specified by

Hp�f�=







1 fc−2 ≤ f ≤ fc
1−f +fc fc ≤ f ≤ fc+1

0 else

�fc ≫ 1�� (2.85)

Let yp�t� denote the output of the filter when fed by a passband signal up�t�.

We would like to generate yp�t� from up�t� using baseband processing in the

system shown in Figure 2.23.
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2 cos 2π f1t

2 sin 2π f1t− 2 sin 2π f2t−

2 cos 2π f2t

yp(t )up(t )

Real

baseband

operations

only

(a) For f1 = f2 = fc, sketch the baseband processing required, specifying

completely the transfer function of all baseband filters used. Be careful

with signs.

(b) Repeat (a) for f1 = fc+1/2 and f2 = fc−1/2.

Figure 2.23 Implementation of

a passband filter using

downconversion, baseband

operations and upconversion

(Problem 2.10).

Hint The inputs to the black box are the real and imaginary parts of the complex

baseband representation for u�t� centered at f1. Hence, we can use baseband filtering

to produce the real and imaginary parts for the complex baseband representation for

the output y�t� using f1 as center frequency. Then use baseband processing to construct

the real and imaginary parts of the complex baseband representation for y�t� centered

at f2. These will be the output of the black box.

Problem 2.11 Consider a pure sinusoid sp�t� = cos2�fct, which is the

simplest possible example of a passband signal with finite power.

(a) Find the time-averaged PSD S̄s�f� and autotocorrelation function R̄s���,

proceeding from the definitions. Check that the results conform to your

intuition.

(b) Find the complex envelope s�t�, and its time-averaged PSD and autocor-

relation function. Check that the relation (2.70) holds for the passband

and baseband PSDs.

Problem 2.12 Consider a passband random process np�t� = Re�
√
2n�t�

ej2�fct� with complex envelope n�t�= nc�t�+ jns�t�.

(a) Given the time-averaged PSD for np, can you find the time-averaged PSD

for n? Specify any additional information you might need.

(b) Given the time-averaged PSD for np, can you find the time-averaged

PSDs for nc and ns? Specify any additional information you might need.

(c) Now, consider a statistical description of np. What are the conditions on

nc and ns for np to be WSS? Under these conditions, what are the relations

between the statistically averaged PSDs of np, n, nc and ns?

2.9.3 Random processes

Problem 2.13 We discuss passband white noise, an important noise model

used extensively in Chapter 3, in this problem. A passband random process
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np�t� = Re�
√
2n�t�ej2�fct� with complex envelope n�t� = nc�t�+ jns�t� has

PSD

Sn�f�=
{ N0

2
� �f −fc� ≤ W

2
or �f +fc� ≤ W

2

0� else
�

where nc, ns are independent and identically distributed zero mean random

processes.

(a) Find the PSD Sn�f� for the complex envelope n.

(b) Find the PSDs Snc�f� and Sns�f� if possible. If this is not possible from

the given information, say what further information is needed.

Problem 2.14 In this problem, we prove Theorem 2.3.1 regarding (wide

sense) stationarization of a (wide sense) cyclostationary process. Let s�t�

be (wide sense) cyclostationary with respect to the time interval T . Define

v�t�= s�t−D�, where D is uniformly distributed over �0� T� and independent

of s.

(a) Suppose that s is cyclostationary. Use the following steps to show that v

is stationary; that is, for any delay a, the statistics of v�t� and v�t−a�

are indistinguishable.

(i) Show that a+D= kT + D̃, where k is an integer, and D̃ is a random

variable which is independent of s, and uniformly distributed over

�0� T�.

(ii) Show that the random process s̃ defined by s̃�t� = s�t− kT� is sta-

tistically indistinguishable from s.

(iii) Show that the random process ṽ defined by ṽ�t�= v�t−a�= s̃�t−D̃�

is statistically indistinguishable from v.

(b) Now, suppose that s is wide sense cyclostationary. Use the following

steps to show that u is WSS.

(i) Show that mv�t� = 1/T
∫ T

0
ms��� d� for all t. That is, the mean

function of v is constant.

(ii) Show that

Rv�t1� t2�= 1/T
∫ T

0
Rs�t+ t1− t2� t� dt�

This implies that the autocorrelation function of v depends only on

the time difference t1− t2.

(c) Now, let us show that, under an intuitive notion of ergodicity, that the

autocorrelation function for s, computed as a time average along a realiza-

tion, equals the autocorrelation function computed as a statistical average

for its stationarized version u. This means, for example, that it is the

stationarized version of a cyclostationary process which is relevant for

computation of PSD as a statistical average.
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(i) Show that s�t�s∗�t−�� has the same statistics as s�t+T�s∗�t+T−��

for any t.

(ii) Show that the time averaged autocorrelation estimate

R̂s���=
1

To

∫

To
2

− To
2

s�t�s∗�t− ��dt

can be rewritten, for To = KT (K a large integer), as

R̂s���≈ 1/T
∫ T

0

1

K

K/2
∑

k=−K/2

s�t+kT�s∗�t+kT − ��dt�

(iii) Invoke the following intuitive notion of ergodicity: the

time average of the identically distributed random variables


s�t + kT�s∗�t + kT − �� equals its statistical average E�s�t�s∗

�t − ���. Infer that

R̂s���→ 1/T
∫ T

0
Rs�t� t− ��dt = Rv���

as K (and To) becomes large.

2.9.4 Modulation

Problem 2.15 In this problem, we derive the Nyquist criterion for ISI avoid-

ance. Let x�t� denote a pulse satisfying the time domain Nyquist condition

for signaling at rate 1/T : x�mT� = 	m0 for all integer m. Using the inverse

Fourier transform formula, we have

x�mT�=
∫ �

−�
X�f�ej2�fmTdf�

(a) Observe that the integral can be written as an infinite sum of integrals

over segments of length 1/T :

x�mT�=
�
∑

k=−�

∫

k+ 1
2

T

k− 1
2

T

X�f�ej2�fmTdf�

(b) In the integral over the kth segment, make the substitution � = f −k/T .

Simplify to obtain

x�mT�= T
∫

1
2T

− 1
2T

B���e−j2��mT d��

where B�f�= 1/T
∑�

k=−�X�f +k/T�.

(c) Show that B�f� is periodic in f with period P = 1/T , so that it can be

written as a Fourier series involving complex exponentials:

B�f�=
�
∑

m=−�
a�m�ej2�

m
P f �

where the Fourier series coefficients 
a�m�� are given by

a�m�= 1

P

∫
P
2

− P
2

B�f� e−j2� m
P f df�



August 13, 2007 5:46 p.m. CUP/FOD Page-67 9780521874144c02

67 2.9 Problems

(d) Conclude that x�mT�= a�−m�, so that the Nyquist criterion is equivalent

to a�m�= 	m0. This implies that B�f�≡ 1, which is the desired frequency

domain Nyquist criterion.

Problem 2.16 In this problem, we derive the time domain response of

the frequency domain raised cosine pulse. Let R�f� = I�− 1
2 �

1
2 �
�f� denote an

ideal boxcar transfer function, and let C�f�= �/2a cos��/af�I�− a
2 �

a
2 �
denote

a cosine transfer function.

(a) Sketch R�f� and C�f�, assuming that 0< a < 1.

(b) Show that the frequency domain raised cosine pulse can be written as

S�f�= �R∗C��f��

(c) Find the time domain pulse s�t�= r�t�c�t�. Where are the zeros of s�t�?

Conclude that s�t/T� is Nyquist at rate 1/T .

(d) Sketch an argument that shows that, if the pulse s�t/T� is used for BPSK

signaling at rate 1/T , then the magnitude of the transmitted waveform is

always finite.

Problem 2.17 Consider a pulse s�t�= sinc�at�sinc�bt�, where a≥ b.

(a) Sketch the frequency domain response S�f� of the pulse.

(b) Suppose that the pulse is to be used over an ideal real baseband channel

with one-sided bandwidth 400Hz. Choose a and b so that the pulse is

Nyquist for 4-PAM signaling at 1200 bit/s and exactly fills the channel

bandwidth.

(c) Now, suppose that the pulse is to be used over a passband channel

spanning the frequencies 2.4–2.42GHz. Assuming that we use 64-QAM

signaling at 60Mbit/s, choose a and b so that the pulse is Nyquist and

exactly fills the channel bandwidth.

(d) Sketch an argument showing that the magnitude of the transmitted wave-

form in the preceding settings is always finite.

Problem 2.18 Consider the pulse

p�t�=







1− �t�
T
� 0 ≤ �t� ≤ T

0� else

�

Let P�f� denote the Fourier transform of p�t�.

(a) True or False The pulse p�t� is Nyquist at rate 1/T .

(b) True or False The pulse p�t� is square root Nyquist at rate 1/T . (i.e.,

�P�f��2 is Nyquist at rate 1/T ).
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Problem 2.19 Consider the pulse p�t�, whose Fourier transform satisfies:

P�f�=



























1� 0 ≤ �f � ≤ A

B−�f �
B−A

� A≤ �f � ≤ B

0� else

�

where A= 250KHz and B = 1�25MHz.

(a) True or False The pulse p�t� can be used for Nyquist signaling at rate

3Mbps using an 8-PSK constellation.

(b) True or False The pulse p�t� can be used for Nyquist signaling at rate

4.5Mbps using an 8-PSK constellation.

Problem 2.20 True or False Any pulse timelimited to duration T is square

root Nyquist (up to scaling) at rate 1/T .

Problem 2.21 (Effect of timing errors) Consider digital modulation at rate

1/T using the sinc pulse s�t�= sinc�2Wt�, with transmitted waveform

y�t�=
100
∑

n=1

bns�t− �n−1�T��

where 1/T is the symbol rate and 
bn� is the bitstream being sent (assume

that each bn takes one of the values ±1 with equal probability). The receiver

makes bit decisions based on the samples rn = y��n−1�T�, n= 1�…�100.

(a) For what value of T (as a function of W ) is rn = bn, n= 1�…�100?

Remark In this case, we simply use the sign of the nth sample rn as an

estimate of bn.

(b) For the choice of T as in (a), suppose that the receiver sampling times

are off by 0.25 T. That is, the nth sample is given by rn = y��n−1�T +
0�25T�, n = 1�…�100. In this case, we do have ISI of different degrees

of severity, depending on the bit pattern. Consider the following bit

pattern:

bn =
{

�−1�n−1 1≤ n≤ 49

�−1�n 50 ≤ n≤ 100
�

Numerically evaluate the 50th sample r50. Does it have the same sign as

the 50th bit b50?

Remark The preceding bit pattern creates the worst possible ISI for the

50th bit. Since the sinc pulse dies off slowly with time, the ISI contribu-
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tions from the 99 bits other than the 50th sample sum up to a number

larger in magnitude, and opposite in sign, relative to the contribution due to

b50. A decision on b50 based on the sign of r50 would therefore be wrong.

This sensitivity to timing error is why the sinc pulse is seldom used in

practice.

(c) Now, consider the digitally modulated signal in (a) with the pulse s�t�=
sinc�2Wt�sinc�Wt�. For ideal sampling as in (a), what are the two values

of T such that rn = bn?

(d) For the smaller of the two values of T found in (c) (which corresponds

to faster signaling, since the symbol rate is 1/T ), repeat the computation

in (b). That is, find r50 and compare its sign with b50 for the bit pattern

in (b).

(e) Find and sketch the frequency response of the pulse in (c). What is the

excess bandwidth relative to the pulse in (a), assuming Nyquist signaling

at the same symbol rate?

(f) Discuss the impact of the excess bandwidth on the severity of the ISI due

to timing mismatch.

Problem 2.22 (PSD for linearly modulated signals) Consider the linearly

modulated signal

s�t�=
�
∑

n=−�
b�n�p�t−nT��

(a) Show that s is cyclostationary with respect to the interval T if 
b�n�� is

stationary.

(b) Show that s is wide sense cyclostationary with respect to the interval T

if 
b�n�� is WSS.

(c) Assume that 
b�n�� is zero mean, WSS with autocorrelation function

Rb�k� = E�b�n�b∗�n− k��. The z-transform of Rb is denoted by Sb�z� =
∑�

k=−�Rb�k�z
−k. Let v�t� = s�t−D� denote the stationarized version of

s, where D is uniform over �0� T� and independent of s. Show that the

PSD of v is given by

Sv�f�= Sb�e
j2�fT �

�P�f��2
T

� (2.86)

For uncorrelated symbols with equal average energy (i.e., Rb�k�= �2
b	k0),

we have Sb�z�≡ �2
b , and the result reduces to Theorem 2.5.1.

(d) Spectrum shaping via line coding We can design the sequence 
b�n��

using a line code so as to shape the PSD of the modulated signal v. For

example, for physical baseband channels, we might want to put a null

at DC. For example, suppose that we wish to send i.i.d. symbols 
a�n��

which take values ±1 with equal probability. Instead of sending a�n�
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directly, we can send b�n� = a�n�− a�n− 1�. The transformation from

a�n� to b�n� is called a line code.

(i) What is the range of values taken by b�n�?

(ii) Show that there is a spectral null at DC.

(iii) Find a line code of the form b�n� = a�n�+ ka�n− 1� which puts a

spectral null at f = 1/2T .

Remark The preceding line code can be viewed as introducing ISI in a

controlled fashion, which must be taken into account in receiver design.

The techniques for dealing with controlled ISI (introduced by a line code)

and uncontrolled ISI (introduced by channel distortion) operate on the same

principles. Methods for handling ISI are discussed in Chapter 5.

Problem 2.23 (Linear modulation using alphabets with nonzero mean)

Consider again the linearly modulated signal

s�t�=
�
∑

n=−�
b�n�p�t−nT��

where 
b�n�� is WSS, but with nonzero mean b̄ = � �b�n��.

(a) Show that we can write s as a sum of a deterministic signal s̄ and a zero

mean random signal s̃ as follows:

s�t�= s̄�t�+ s̃�t��

where

s̄�t�= b̄
�
∑

n=−�
p�t−nT�

and

s̃�t�=
�
∑

n=−�
b̃�n�p�t−nT��

where b̃�n� = b�n�− b̄ is zero mean, WSS with autocorrelation function

Rb̃�k�= Cb�k�, where Cb�k� is the autocovariance function of the symbol

sequence 
b�n��.

(b) Show that the PSD of s is the sum of the PSDs of s̄ and s̃, by showing

that the two signals are uncorrelated.

(c) Note that the PSD of s̃ can be found using the result of Problem 2.22 (c).

It remains to find the PSD of s̄. Note that s̄ is periodic with period T . It

can therefore be written as a Fourier series

s̄�t�=
∑

k

a�k�ej2�kt/T �

where

a�n�= 1/T
∫ T

0
s̄�t�e−j2�nt/Tdt�
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Argue that the PSD of s̄ is given by

Ss̄�f�=
∑

k

�a�k��2	
(

f − k

T

)

�

(d) Find the PSD for the unipolar NRZ baseband line code in Figure 2.14

(set A= 1 and B = 0 in the NRZ code in the figure).

Problem 2.24 (OQPSK and MSK) Linear modulation with a bandlimited

pulse can perform poorly over nonlinear passband channels. For example, the

output of a passband hardlimiter (which is a good model for power amplifiers

operating in a saturated regime) has constant envelope, but a PSK signal

employing a bandlimited pulse has an envelope that passes through zero

during a 180 degree phase transition, as shown in Figure 2.24. One way to

alleviate this problem is to not allow 180 degree phase transitions. Offset

QPSK (OQPSK) is one example of such a scheme, where the transmitted

signal is given by

Figure 2.24 The envelope of a

PSK signal passes through zero

during a 180 degree phase

transition, and gets distorted

over a nonlinear channel.

s�t�=
�
∑

n=−�
bc�n�gTX�t−nT�+ jbs�n�gTX

(

t−nT − T

2

)

� (2.87)

where 
bc�n��, bs�n� are ±1 BPSK symbols modulating the I and Q channels,

with the I and Q signals being staggered by half a symbol interval. This leads

to phase transitions of at most 90 degrees at integer multiples of the bit time

Tb = T/2. Minimum shift keying (MSK) is a special case of OQPSK with

timelimited modulating pulse

gTX�t�= sin
(�t

T

)

I�0�T��t�� (2.88)

(a) Sketch the I and Q waveforms for a typical MSK signal, clearly showing

the timing relationship between the waveforms.

(b) Show that the MSK waveform has constant envelope (an extremely desir-

able property for nonlinear channels).

(c) Find an analytical expression for the PSD of an MSK signal, assuming

that all bits sent are i.i.d., taking values ±1 with equal probability. Plot

the PSD versus normalized frequency fT .

(d) Find the 99% power containment normalized bandwidth of MSK. Com-

pare with the minimum Nyquist bandwidth, and the 99% power contain-

ment bandwidth of OQPSK using a rectangular pulse.

Envelope is zero due to 180 degree phase transition
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(e) Recognize that Figure 2.17 gives the PSD for OQPSK and MSK, and

reproduce this figure, normalizing the area under the PSD curve to be the

same for both modulation formats.

Problem 2.25 (FSK tone spacing) Consider two real-valued passband

pulses of the form

s0�t�= cos�2�f0t+�0� 0 ≤ t ≤ T

s1�t�= cos�2�f1t+�1� 0 ≤ t ≤ T
�

where f1 > f0 ≫ 1/T . The pulses are said to be orthogonal if �s0� s1� =
∫ T

0
s0�t�s1�t�dt = 0.

(a) If �0 = �1 = 0, show that the minimum frequency separation such that

the pulses are orthogonal is f1−f0 = 1/2T .

(b) If �0 and �1 are arbitrary phases, show that the minimum separation for

the pulses to be orthogonal regardless of �0, �1 is f1−f0 = 1/T .

Remark The results of this problem can be used to determine the bandwidth

requirements for coherent and noncoherent FSK, respectively.

Problem 2.26 (Walsh–Hadamard codes)

(a) Specify the Walsh–Hadamard codes for 8-ary orthogonal signaling with

noncoherent reception.

(b) Plot the baseband waveforms corresponding to sending these codes using

a square root raised cosine pulse with excess bandwidth of 50%.

(c) What is the fractional increase in bandwidth efficiency if we use these

eight waveforms as building blocks for biorthogonal signaling with coher-

ent reception?

Problem 2.27 (Bandwidth occupancy as a function of modulation format)

We wish to send at a rate of 10Mbit/s over a passband channel. Assuming

that an excess bandwidth of 50% is used, how much bandwidth is needed

for each of the following schemes: QPSK, 64-QAM, and 64-ary noncoherent

orthogonal modulation using a Walsh–Hadamard code?

Problem 2.28 (Binary DPSK) Consider binary DPSK with encoding as

described in Section 2.7. Assume that we fix b�0�=−1, and that the stream

of information bits 
i�n�� n= 1� � � � �10� to be sent is 0110001011.

(a) Find the transmitted symbol sequence 
b�n�� corresponding to the pre-

ceding bit sequence.

(b) Assuming that we use a rectangular timelimited pulse, draw the corre-

sponding complex baseband transmitted waveform. Is the Q component

being used?
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(c) Now, suppose that the channel imposes a phase shift of −�/6. Draw the

I and Q components of the noiseless received complex baseband signal.

(d) Suppose that the complex baseband signal is sent through a matched filter

to the rectangular timelimited pulse, and is sampled at the peaks. What

are the received samples 
r�n�� that are obtained corresponding to the

transmitted symbol sequence 
b�n��.

(e) Find r�2�r∗�1�. How do you figure out the information bit i�2� based on

this complex number?

Problem 2.29 (Differential QPSK) Consider differential QPSK as shown

in Figure 2.22. Suppose that b�0�= e−j�/4, and that b�1�� b�2�� � � � � b�10� are

determined by using the mapping shown in the figure, where the information

bit sequence to be sent is given by 00�11�01�10�10�01�11�00�01�10.

(a) Specify the phases arg�b�n��, n= 1� � � �10.

(b) If you received noisy samples r�1�= 2− j and r�2�= 1+ j, what would

be a sensible decision for the pair of bits corresponding to the phase

transition from n = 1 to n = 2? Does this match the true value of these

bits? (A systematic treatment of differential demodulation in the presence

of noise is given in Chapter 4.)
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3 Demodulation

We now know that information is conveyed in a digital communication system

by selecting one of a set of signals to transmit. The received signal is a

distorted and noisy version of the transmitted signal. A fundamental problem

in receiver design, therefore, is to decide, based on the received signal, which

of the set of possible signals was actually sent. The task of the link designer

is to make the probability of error in this decision as small as possible, given

the system constraints. Here, we examine the problem of receiver design for a

simple channel model, in which the received signal equals one of M possible

deterministic signals, plus white Gaussian noise (WGN). This is called the

additive white Gaussian noise (AWGN) channel model. An understanding

of transceiver design principles for this channel is one of the first steps in

learning digital communication theory. White Gaussian noise is an excellent

model for thermal noise in receivers, whose PSD is typically flat over most

signal bandwidths of interest.

In practice, when a transmitted signal goes through a channel, at the very

least, it gets attenuated and delayed, and (if it is a passband signal) undergoes a

change of carrier phase. Thus, the model considered here applies to a receiver

that can estimate the effects of the channel, and produce a noiseless copy of

the received signal corresponding to each possible transmitted signal. Such a

receiver is termed a coherent receiver. Implementation of a coherent receiver

involves synchronization in time, carrier frequency, and phase, which are all

advanced receiver functions that I discuss in the next chapter. In this chapter,

I assume that such synchronization functions have already been taken care

of. Despite such idealization, the material in this chapter is perhaps the most

important tool for the communication systems designer. For example, it is the

performance estimates provided here that are used in practice for link budget

analysis, which provides a methodology for quick link designs, allowing for

nonidealities with a link margin.

74
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Prerequisites for this chapter I assume a familiarity with the modula-

tion schemes described in Chapter 2. I also assume familiarity with common

terminology and important concepts in probability, random variables, and

random processes. See Appendix A for a quick review, as well as for recom-

mendations for further reading on these topics.

Map of this chapter In this chapter, I provide the classical derivation of

optimal receivers for the AWGN channel using the framework of hypothesis

testing, and describe techniques for obtaining quick performance estimates.

Hypothesis testing is the process of deciding which of a fixed number of

hypotheses best explains an observation. In our application, the observation

is the received signal, while the hypotheses are the set of possible signals

that could have been transmitted. I begin with a quick review of Gaussian

random variables, vectors and processes in Section 3.1. The basic ingredients

and concepts of hypothesis testing are developed in Section 3.2. I then show

in Section 3.3 that, for M-ary signaling in AWGN, the receiver can restrict

attention to theM-dimensional signal space spanned by theM signals without

loss of optimality. The optimal receiver is then characterized in Section 3.4,

with performance analysis discussed in Section 3.5. In addition to the classical

discussion of hard decision demodulation, I also provide a quick introduction

to soft decisions, as a preview to their extensive use in coded systems in

Chapter 7. I end with an example of a link budget in Section 3.7, showing

how the results in this chapter can be applied to get a quick characterization

of the combination of system parameters (e.g., signaling scheme, transmit

power, range, and antenna gains) required to obtain an operational link.

Notation This is the chapter in which I begin to deal more extensively with random

variables, hence it is useful to clarify and simplify notation at this point. Given a

random variable X, a common notation for probability density function or probability

mass function is pX�x�, with X denoting the random variable, and x being a dummy

variable which we might integrate out when computing probabilities. However, when

there is no scope for confusion, I use the less cumbersome (albeit incomplete) notation

p�x�, using the dummy variable x not only as the argument of the density, but also

to indicate that the density corresponds to the random variable X. (Similarly, I would

use p�y� to denote the density for a random variable Y .) The same convention is used

for joint and conditional densities as well. For random variables X and Y , I use the

notation p�x� y� instead of pX�Y �x� y�, and p�y�x� instead of pY �X�y�x�, to denote the

joint and conditional densities, respectively.

3.1 Gaussian basics

The key reason why Gaussian random variables crop up so often in both natu-

ral and manmade systems is the central limit theorem (CLT). In its elementary

form, the CLT states that the sum of a number of independent and identically

distributed random variables is well approximated as a Gaussian random vari-

able. However, the CLT holds in far more general settings: without going into
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technical detail, it holds as long as dependencies or correlations among the ran-

dom variables involved in the sum die off rapidly enough, and no one random

variable contributes too greatly to the sum. The Gaussianity of receiver ther-

mal noise can be attributed to its arising from the movement of a large num-

ber of electrons. However, because the CLT kicks in with a relatively small

number of random variables, we shall see the CLT invoked in a number of

other contexts, including performance analysis of equalizers in the presence

of ISI as well as AWGN, and the modeling of multipath wireless channels.

Gaussian random variable The random variable X is said to follow a

Gaussian, or normal distribution if its density is of the form:

p�x�= 1√
2�v2

exp

(

− �x−m�2

2v2

)

� −�< x <�� (3.1)

where m = ��X� is the mean of X, and v2 = var�X� is the variance of X.

The Gaussian density is therefore completely characterized by its mean and

variance. Figure 3.1 shows an N�−5�4� Gaussian density.

Notation for Gaussian distribution I use N�m�v2� to denote a Gaussian

distribution with meanm and variance v2, and use the shorthand X∼N�m�v2�

to denote that a random variable X follows this distribution.

Figure 3.1 The shape of an

N�−5� 4� density.

Standard Gaussian random variable A zero mean, unit variance Gaussian

random variable, X∼N�0�1�, is termed a standard Gaussian random variable.

An extremely important property of Gaussian random variables is that they

remain Gaussian when we scale them or add constants to them (i.e., when we

put them through an affine transformation).

Gaussianity is preserved under affine transformations If X is Gaussian,

then aX+b is Gaussian for any constants a and b.

In particular, probabilities involving Gaussian random variables can be

expressed compactly by normalizing them into standard Gaussian form.

−5

p (u)

u0



August 13, 2007 5:46 p.m. CUP/FOD Page-77 9780521874144c03

77 3.1 Gaussian basics

x u

p(u)

Φ(x ) Q(x )

Conversion of a Gaussian random variable into standard form If X ∼
N�m�v2�, then �X−m�/v∼ N�0�1�.

Figure 3.2 The � and Q

functions are obtained by

integrating the N�0� 1� density

over appropriate intervals.

I set aside special notation for the cumulative distribution function (CDF)

��x� and complementary cumulative distribution function (CCDF) Q�x� of a

standard Gaussian random variable. By virtue of the standard form conversion,

we can easily express probabilities involving any Gaussian random variable

in terms of the � or Q functions. The definitions of these functions are

illustrated in Figure 3.2, and the corresponding formulas are specified below.

��x�= P�N�0�1�≤ x�=
∫ x

−�

1√
2�

exp

(

− t2

2

)

dt� (3.2)

Q�x�= P�N�0�1� > x�=
∫ �

x

1√
2�

exp

(

− t2

2

)

dt	 (3.3)

See Figure 3.3 for a plot of these functions. By definition, ��x�+Q�x�= 1.

Furthermore, by the symmetry of the Gaussian density around zero, Q�−x�=
��x�. Combining these observations, we note that Q�−x�= 1−Q�x�, so that

Figure 3.3 The � and Q

functions.
Q(x ) Φ(x )

1

0 x
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it suffices to consider only positive arguments for the Q function in order to

compute probabilities of interest.

Example 3.1.1 X is a Gaussian random variable with mean m = −3

and variance v2 = 4. Find expressions in terms of the Q function with

positive arguments for the following probabilities: P�X > 5�, P�X <−1�,

P�1< X< 4�, P�X2+X > 2�.

Solution We solve this problem by normalizing X to a standard Gaussian

random variable X−mv= X+3/2:

P�X > 5�= P

[

X+3

2
>

5+3

2
= 4

]

=Q�4��

P�X <−1�= P

[

X+3

2
<

−1+3

2
= 1

]

=��1�= 1−Q�1��

P�1< X< 4�= P

[

2= 1+3

2
<

X+3

2
<

4+3

2
= 3	5

]

=��3	5�−��2�

=Q�2�−Q	�3	5�	

Computation of the last probability needs a little more work to characterize

the event of interest in terms of simpler events:

P�X2+X > 2�= P�X2+X−2> 0�= P��X+2��X−1� > 0�	

The factorization shows that X2 +X > 2 if and only if X+ 2 > 0 and

X− 1 > 0, or X+ 2 < 0 and X− 1 < 0. This simplifies to the disjoint

union (i.e., “or”) of the mutually exclusive events X> 1 and X<−2. We

therefore obtain

P�X2+X > 2� = P�X > 1�+P�X <−2�=Q

(

1+3

2

)

+�

(−2+3

2

)

= Q�2�+�

(

1

2

)

=Q�2�+1−Q

(

1

2

)

	

The Q function is ubiquitous in communication systems design, hence it

is worth exploring its properties in some detail. The following bounds on

the Q function are derived in Problem 3.3.

Bounds on Q�x� for large arguments

�1− 1

x2
�
e−x2/2

x
√
2�

≤Q�x�≤ e−x2/2

x
√
2�

� x ≥ 0	 (3.4)

These bounds are tight (the upper and lower bounds converge) for large

values of x.
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Upper bound on Q�x� useful for small arguments and for analysis

Q�x�≤ 1

2
e−x2/2 � x ≥ 0	 (3.5)

This bound is tight for small x, and gives the correct exponent of decay for

large x. It is also useful for simplifying expressions involving a large number

of Q functions, as we see when we derive transfer function bounds for the

performance of optimal channel equalization and decoding in Chapters 5

and 7, respectively.

Figure 3.4 plots Q�x� and its bounds for positive x. A logarithmic scale is

used for the values of the function to demonstrate the rapid decay with x. The

bounds (3.4) are seen to be tight even at moderate values of x (say x ≥ 2).

Figure 3.4 The Q function and

bounds.

Notation for asymptotic equivalence Since we are often concerned with

exponential rates of decay (e.g., as SNR gets large), it is useful to introduce the

notationP
	=Q (as we take some limit), whichmeans that logP/ logQ→ 1. An

analogous notationp∼ q denotes, on the other hand, thatp/q→ 1. Thus,P
	=Q

and logP ∼ logQ are two equivalent ways of expressing the same relationship.

Asymptotics of Q�x� for large arguments For large x> 0, the exponential

decay of the Q function dominates. We denote this by

Q�x�
	= e−x2/2 � x→�� (3.6)

0 1 2 3 4 5 6 7 8
10–16
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10–10
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100

x

Q (x)
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Upper bound 2 (3.5)
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which is shorthand for the following limiting result:

lim
x→�

logQ�x�

−x2/2
= 1	 (3.7)

This can be proved by application of the upper and lower bounds in (3.4). The

asymptotics of the Q function play a key role in design of communication

systems. Events that cause bit errors have probabilities involving terms such

as Q�
√
a SNR�

	= e−a SNR/2 as a function of the signal-to-noise ratio (SNR).

When there are several events that can cause bit errors, the ones with the

smallest rates of decay a dominate performance, and we often focus on these

worst-case events in our designs for moderate and high SNR. This simplistic

view does not quite hold in heavily coded systems operating at low SNR, but

is still an excellent perspective for arriving at a coarse link design.

Often, we need to deal with multiple Gaussian random variables defined on

the same probability space. These might arise, for example, when we sample

filtered WGN. In many situations of interest, not only are such random vari-

ables individually Gaussian, but they satisfy a stronger joint Gaussianity prop-

erty. Before discussing joint Gaussianity, however, I review mean and covari-

ance for arbitrary random variables defined on the same probability space.

Mean vector and covariance matrix Consider an arbitrary m-dimensional

random vector X = �X1� 
 
 
 �Xm�
T . The m×1 mean vector of X is defined

as mX =��X�= ���X1�� 
 
 
 ���Xm��
T . The m×m covariance matrix CX has

its �i� j�th entry given by

CX�i� j�= cov�Xi�Xj� = ���Xi−��Xi���Xj −��Xj���

= ��XiXj�−��Xi���Xj�	

More compactly,

CX = ���X−��X���X−��X��T �= ��XXT �−��X����X��T 	

Some properties of covariance matrices are explored in Problem 3.31.

Variance Variance is the covariance of a random variable with itself.

var�X�= cov�X�X�

We can also define a normalized version of covariance, as a scale-independent

measure of the correlation between two random variables.

Correlation coefficient The correlation coefficient ��X1�X2� between ran-

dom variables X1 and X2 is defined as the following normalized version of

their covariance:

��X1�X2�=
cov�X1�X2�

√

var�X1�var�X2�
	



August 13, 2007 5:46 p.m. CUP/FOD Page-81 9780521874144c03

81 3.1 Gaussian basics

Using the Cauchy–Schwartz inequality for random variables, it can be shown

that ���X1�X2�� ≤ 1, with equality if and only if X2 = aX1+b with probability

one, for some constants a, b.

Notes on covariance computation Computations of variance and covari-

ance come up often when we deal with Gaussian random variables, hence it

is useful to note the following properties of covariance.

Property 1 Covariance is unaffected by adding constants.

cov�X+a�Y +b�= cov�X�Y� for any constants a�b	

Covariance provides a measure of the correlation between random variables

after subtracting out their means, hence adding constants to the random vari-

ables (which changes their means) does not affect covariance.

Property 2 Covariance is a bilinear function.

cov�a1X1+a2X2� a3X3+a4X4�= a1a3cov�X1�X3�+a1a4cov�X1�X4�

+a2a3cov�X2�X3�+a2a4cov�X2�X4�	

By Property 1, it is clear that we can always consider zero mean versions of

random variables when computing the covariance. An example that frequently

arises in performance analysis of communication systems is a random variable

which is a sum of a deterministic term (e.g., due to a signal), and a zero mean

random term (e.g. due to noise). In this case, dropping the signal term is often

convenient when computing variance or covariance.

Mean and covariance evolution under affine transformations Consider

an m×1 random vector X with mean vector mX and covariance matrix CX .

Define Y = AX+b, where A is an n×m matrix, and b is an n× 1 vector.

Then the random vector Y has mean vector mY = AmX+b and covariance

matrix CY = ACXA
T . To see this, first compute the mean vector of Y using

the linearity of the expectation operator:

mY = ��Y�= ��AX+b�= A��X�+b= AmX+b	 (3.8)

This also implies that the “zero mean” version of Y is given by

Y−��Y�= �AX+b�− �AmX+b�= A�X−mX��

so that the covariance matrix of Y is given by

CY = ���Y−��Y���Y−��Y��T �= ��A�X−mX��X−mX�
TAT �= ACXA

T 	

(3.9)

Mean and covariance evolve separately under affine transformations

The mean of Y depends only on the mean of X, and the covariance of Y

depends only on the covariance of X. Furthermore, the additive constant b in

the transformation does not affect the covariance, since it influences only the

mean of Y.
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Jointly Gaussian random variables, or Gaussian random vectors Ran-

dom variables X1� 
 
 
 �Xm defined on a common probability space are said

to be jointly Gaussian, or the m× 1 random vector X = �X1� 
 
 
 �Xm�
T is

termed a Gaussian random vector, if any linear combination of these random

variables is a Gaussian random variable. That is, for any scalar constants

a1� 
 
 
 � am, the random variable a1X1+· · ·+amXm is Gaussian.

A Gaussian random vector is completely characterized by its mean vector

and covariance matrix The definition of joint Gaussianity only requires

us to characterize the distribution of an arbitrarily chosen linear combination

of X1� 
 
 
 �Xm. For a Gaussian random vector X= �X1� 
 
 
 �Xm�
T , consider

Y = a1X1 + · · ·+amXm, where a1� 
 
 
 � am can be any scalar constants. By

definition, Y is a Gaussian random variable, and is completely characterized

by its mean and variance. We can compute these in terms ofmX and CX using

(3.8) and (3.9) by noting that Y = aTX, where a = �a1� 
 
 
 � am�
T . Thus,

mY = aTmX�

CY = var�Y�= aTCXa	

I have, therefore, shown that we can characterize the mean and variance, and

hence the density, of an arbitrarily chosen linear combination Y if and only

if we know the mean vector mX and covariance matrix CX . This implies the

desired result that the distribution of Gaussian random vector X is completely

characterized by mX and CX .

Notation for joint Gaussianity We use the notation X∼N�m�C� to denote

a Gaussian random vector X with mean vector m and covariance matrix C.

The preceding definitions and observations regarding joint Gaussianity apply

evenwhen the random variables involved do not have a joint density. For exam-

ple, it is easy to check that, according to this definition, X1 and X2 = 2X1 −
3 are jointly Gaussian. However, the joint density of X1 and X2 is not well

defined (unless we allow delta functions), since all of the probability mass in

the two-dimensional �x1� x2� plane is collapsed onto the line x2 = 2x1 − 3.

Of course, since X2 is completely determined by X1, any probability involv-

ing X1�X2 can be expressed in terms of X1 alone. In general, when the m-

dimensional joint density does not exist, probabilities involving X1� 
 
 
 �Xm

can be expressed in terms of a smaller number of random variables, and can

be evaluated using a joint density over a lower-dimensional space. A simple

necessary and sufficient condition for the joint density to exist is as follows:

Joint Gaussian density exists if and only if the covariance matrix is

invertible The proof of this result is sketched in Problem 3.32.
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Joint Gaussian density For X = �X1� 
 
 
 �Xm�∼ N�m�C�, if C is invert-

ible, the joint density exists and takes the following form:

p�x1� 
 
 
 � xm�= p�x�= 1
√

�2��m�C�
exp

(

−1

2
�x−m�TC−1�x−m�

)

	

(3.10)

In Problem 3.32, we derive the joint density above, starting from the definition

that any linear combination of jointly Gaussian random variables is a Gaussian

random variable.

Uncorrelatedness X1 and X2 are said to be uncorrelated if cov�X1�X2�= 0.

Independent random variables are uncorrelated If X1 and X2 are inde-

pendent, then

cov�X1�X2�= ��X1X2�−��X1���X2�= ��X1���X2�−��X1���X2�= 0	

The converse is not true in general, but does hold when the random variables

are jointly Gaussian.

Uncorrelated jointly Gaussian random variables are independent This

follows from the form of the joint Gaussian density (3.10). If X1� 
 
 
 �Xm are

pairwise uncorrelated and joint Gaussian, then the covariance matrixC is diag-

onal, and the joint density decomposes into a product of marginal densities.

Example 3.1.2 (Variance of a sum of random variables) For random

variables X1� 
 
 
 �Xm,

var�X1+· · ·+Xm�= cov�X1+· · ·+Xm�X1+· · ·+Xm�

=
m
∑

i=1

m
∑

j=1

cov�Xi�Xj�

=
m
∑

i=1

var�Xi�+
m
∑

i� j = 1

i 	= j

cov�Xi�Xj�	

Thus, for uncorrelated random variables, the variance of the sum equals

the sum of the variances:

var�X1+· · ·+Xm�= var�X1�+· · ·+var�Xm� for uncorrelated

random variables	

I now characterize the distribution of affine transformations of jointly Gaus-

sian random variables.
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Joint Gaussianity is preserved under affine transformations If X above

is a Gaussian random vector, then Y= AX+b is also Gaussian. To see this,

note that any linear combination of Y1� 
 
 
 � Yn equals a linear combination

of X1� 
 
 
 �Xm (plus a constant), which is a Gaussian random variable by

the Gaussianity of X. Since Y is Gaussian, its distribution is completely

characterized by its mean vector and covariance matrix, which I have just

computed. I can now state the following result:

If X∼ N�m�C�, then

AX+b∼ N�Am+b�ATCA�	 (3.11)

Example 3.1.3 (Computations with jointly Gaussian random variables)

The random variables X1 and X2 are jointly Gaussian, with ��X1�=1,

��X2� = −2, var�X1� = 4, var�X2� = 1, and correlation coefficient

��X1�X2�=−1.

(a) Write down the mean vector and covariance matrix for the random

vector X= �X1�X2�
T .

(b) Evaluate the probability P�2X1−3X2 < 6� in terms of the Q function

with positive arguments.

(c) Suppose that Z = X1−aX2. Find the constant a such that Z is inde-

pendent of X1.

I will solve this problem in detail in order to provide a concrete illustration

of the properties we have discussed.

Solution to (a) The mean vector is given by

mX =
(

��X1�

��X2�

)

=
(

1

−2

)

	

We know the diagonal entries of the covariance matrix, which are simply

the variances of X1 and X2. The cross terms

CX�1�2�= CX�2�1�= ��X1�X2�
√

var�X1�var�X2�=−1
√
4=−2�

so that

CX =
(

4 −2

−2 1

)

	

Solution to (b) The random variable Y = 2X1−3X2 is Gaussian, by the

joint Gaussianity of X1 and X2. To compute the desired probability, we

need to compute

��Y�= ��2X1−3X2�= 2��X1�−3��X2�= 2�1�−3�−2�= 8�
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var�Y� = cov�Y�Y�= cov�2X1−3X2�2X1−3X2�

= 4 cov�X1�X1�−6 cov�X1�X2�

−6 cov�X2�X1�+9 cov�X2�X2�

= 4�4�−6�−2�−6�−2�+9�1�= 49	

Thus,

P�2X1−3X2 < 6�= P�Y < 6�=�

(

6−8√
49

)

=�

(

−2

7

)

=Q

(

2

7

)

	

When using software such as Matlab, which is good at handling vectors

and matrices, it is convenient to use vector-based computations. To do

this, we note that Y = AX, where A= �2�−3� is a row vector, and apply

(3.11) to conclude that

��Y�= AmX = �2 −3�

(

1

−2

)

= 8

and

var�Y�= cov�Y�Y�= ATCXA=
(

2

−3

)(

4 −2

−2 1

)

�2 −3�= 49	

Solution to (c) Since Z = X1−aX2 and X1 are jointly Gaussian (why?),

they are independent if they are uncorrelated. The covariance is given by

cov�Z�X1�= cov�X1−aX2�X1�= cov�X1�X1�−a cov�X2�X1�= 4+2a�

so that we need a=−2 for Z and X1 to be independent.

We are now ready to move on to Gaussian random processes, which are

just generalizations of Gaussian random vectors to an arbitrary number of

components (countable or uncountable).

Gaussian random process A random process X= 
X�t�� t∈T� is said to be

Gaussian if any linear combination of samples is a Gaussian random variable.

That is, for any number n of samples, any sampling times t1� 
 
 
 � tn, and any

scalar constants a1� 
 
 
 � an, the linear combination a1X�t1�+· · ·+anX�tn� is

a Gaussian random variable. Equivalently, the samples X�t1�� 
 
 
 �X�tn� are

jointly Gaussian.

A linear combination of samples from a Gaussian random process is com-

pletely characterized by its mean and variance. To compute the latter quanti-

ties for an arbitrary linear combination, we can show, as we did for random

vectors, that all we need to know are the mean function and the autocovariance

function of the random process. These functions therefore provide a complete

statistical characterization of a Gaussian random process, since the definition
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of a Gaussian random process requires only that we be able to characterize

the distribution of an arbitrary linear combination of samples.

Characterizing a Gaussian random process The statistics of a Gaussian

random process are completely specified by its mean functionmX�t�=��X�t�

and its autocovariance function CX�t1� t2� = ��X�t1�X�t2��. Since the auto-

correlation function RX�t1� t2� can be computed from CX�t1� t2�, and vice

versa, given the mean function mX�t�, it also follows that a Gaussian random

process is completely specified by its mean and autocorrelation functions.

Wide sense stationary Gaussian random processes are stationary We

know that a stationary random process is WSS. The converse is not true in

general, but GaussianWSS processes are indeed stationary. This is because the

statistics of a Gaussian random process are characterized by its first and second

order statistics, and if these are shift invariant (as they are for WSS processes),

the random process is statistically indistinguishable under a time shift.

As in the previous chapter, I use the notation RX��� and CX��� to denote

the autocorrelation and autocovariance functions, respectively, for a WSS

process. The PSD SX�f�= � �RX�. I am now ready to define WGN.

Figure 3.5 shows the steps we use to go from receiver noise in bandlimited

systems to infinite-power WGN. Since receiver processing in bandlimited

systems always involves filtering, we can assume that the receiver noise prior

to filtering is not bandlimited.

White Gaussian noise Real-valued WGN n�t� is a zero mean, WSS, Gaus-

sian random process with Sn�f�≡N0/2=�2. Equivalently, Rn���= N0

2
����=

�2����. The quantity N0/2= �2 is often termed the two-sided PSD of WGN,

since we must integrate over both positive and negative frequencies in order

to compute power using this PSD. The quantity N0 is therefore referred to as

the one-sided PSD, and has the dimension of watt/hertz, or joules. Complex-

valued WGN has real and imaginary components modeled as i.i.d. real WGN

processes, and has two-sided PSD N0 which is the sum of the two-sided PSDs

of its components. Figure 3.5 shows the role played by WGN in modeling

receiver noise in bandlimited systems.

WGN as model for receiver noise in bandlimited systems White Gaussian

noise has infinite power, whereas receiver noise power in any practical system

is always finite. However, since receiver processing always involves some

form of bandlimiting, it is convenient to assume that the input to the system

is infinite-power WGN. After filtering, the noise statistics obtained with this

simplified description are the same as those obtained by bandlimiting the

noise upfront. Figure 3.5 shows that real-valued WGN can serve as a model

for bandlimited receiver noise in a passband system, as well as for each of

the I and Q noise components after downconversion. It can also model the
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Figure 3.5 Since receiver processing always involves some form of band limitation, it is not necessary

to impose band limitation on the WGN model. Real-valued infinite-power WGN provides a simplified

description for both passband WGN, and for each of the I and Q components for complex baseband

WGN. Complex-valued infinite-power WGN provides a simplified description for bandlimited complex

baseband WGN.

receiver noise in a physical baseband system, which is analogous to using

only the I component in a passband system. Complex-valued WGN, on the

other hand, models the complex envelope of passband WGN. Its PSD is

double that of real-valued WGN because the PSDs of the real and imaginary

parts of the noise, modeled as i.i.d. real-valued WGN, add up. The PSD is

also double that of the noise model for passband noise; this is consistent with

the relations developed in Chapter 2 between the PSD of a passband random

process and its complex envelope.

Numerical value of noise PSD For an ideal receiver at room temperature,

we have

N0 = kT0�

where k= 1	38×10−23 joule/kelvin is Boltzman’s constant, and T0 is a ref-

erence temperature, usually set to 290K (“room temperature”) by convention.
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A receiver with a noise figure of F dB has a higher noise PSD, given by

N0 = kT10F/10	

Example 3.1.4 (Noise power computation) A 5GHz wireless local area

network (WLAN) link has a receiver bandwidth B of 20MHz. If the

receiver has a noise figure of 6 dB, what is the receiver noise power Pn?

Solution The noise power

Pn = N0B = kT010
F/10B = �1	38×10−23��290��106/10��20×106�

= 3	2×10−13 watt = 3	2×10−10 milliwatts �mW�	

The noise power is often expressed in dBm, which is obtained by convert-

ing the raw number in milliwatts (mW) into dB. We therefore get

Pn�dBm = 10 log10 Pn�mW�=−95dBm	

3.2 Hypothesis testing basics

Hypothesis testing is a framework for deciding which of M possible hypothe-

ses, H1� 
 
 
 �HM , “best” explains an observation Y . We assume that the obser-

vation Y takes values in a finite-dimensional observation space � ; that is, Y is

a scalar or vector. (It is possible to consider a more general observation space

� , but that is not necessary for our purpose). The observation is related to the

hypotheses using a statistical model: given the hypothesis Hi, the conditional

density of the observation, p�y�i�, is known, for i = 1� 
 
 
 �M . In Bayesian

hypothesis testing, the prior probabilities for the hypotheses, ��i� = P�Hi�,

i = 1� 
 
 
 �M , are known (
∑M

i=1��i� = 1). We often (but not always) con-

sider the special case of equal priors, which corresponds to ��i�= 1
M

for all

i= 1� 
 
 
 �M .

Example 3.2.1 (Basic Gaussian example) Consider binary hypothesis

testing, in which H0 corresponds to 0 being sent, H1 corresponds to 1

being sent, and Y is a scalar decision statistic (e.g., generated by sampling

the output of a receive filter or an equalizer). The conditional distributions

for the observation given the hypotheses are H0 � Y ∼ N�0� v2� and H1 �

Y ∼ N�m�v2�, so that

p�y�0�=
exp

(

− y2

2v2

)

√
2�v2

� p�y�1�=
exp

(

− �y−m�2

2v2

)

√
2�v2

	 (3.12)
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Decision rule A decision rule � � � → 
1� 
 
 
 �M� is a mapping from the

observation space to the set of hypotheses. Alternatively, a decision rule can

be described in terms of a partition of the observation space � into disjoint

decision regions 
�i� i= 1� 
 
 
 �M�, where

�i = 
y∈� � ��y�= i�	

That is, when y∈�i, the decision rule says that Hi is true.

Example 3.2.2 A “sensible” decision rule for the basic Gaussian example

(assuming that m> 0) is

��y�=
{

1� y > m
2

0� y ≤ m
2
	

(3.13)

This corresponds to the decision regions �1 = �m
2
���, and �0 = �−�� m

2
�.

Figure 3.6 The conditional

densities and “sensible”

decision rule for the basic

Gaussian example.

The conditional densities and the “sensible” rule for the basic Gaussian exam-

ple are illustrated in Figure 3.6.

We would like to quantify our intuition that the preceding sensible rule,

which splits the difference between the means under the two hypotheses, is a

good one. Indeed, this rule need not always be the best choice: for example,

if we knew for sure that 0 was sent, then clearly a better rule is to say that H0

is true, regardless of the observation. Thus, a systematic framework is needed

to devise good decision rules, and the first step toward doing this is to define

0 m/2 m

Γ1
Γ0

m/2

p (y |0) p (y |1)

y

“Sensible” rule
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criteria for evaluating the goodness of a decision rule. Central to such criteria

is the notion of conditional error probability, defined as follows.

Conditional error probability For an M-ary hypothesis testing problem,

the conditional error probability, conditioned on Hi, for a decision rule � is

defined as

Pe�i = P�say Hj for some j 	= i�Hi is true� =
∑

j 	=i

P�Y ∈�j�Hi�

= 1−P�Y ∈�i�Hi�� (3.14)

where we have used the equivalent specification of the decision rule in terms

of the decision regions it defines. We will denote by Pc�i = P�Y ∈�i�Hi�, the

conditional probability of correct decision, given Hi.

If the prior probabilities are known, then we can define the (average) error

probability as

Pe =
M
∑

i=1

��i�Pe�i	 (3.15)

Similarly, the average probability of a correct decision is given by

Pc =
M
∑

i=1

��i�Pc�i = 1−Pe	 (3.16)

Example 3.2.3 The conditional error probabilities for the “sensible” deci-

sion rule (3.13) for the basic Gaussian example (Example 3.2.2) are

Pe�0 = P
[

Y >
m

2
�H0

]

=Q
(m

2v

)

�

since Y ∼ N�0� v2� under H0, and

Pe�1 = P
[

Y ≤ m

2
�H1

]

=�

( m
2
−m

v

)

=Q
(m

2v

)

�

since Y ∼ N�m�v2� under H1. Furthermore, since Pe�1 = Pe�0, the average

error probability is also given by

Pe =Q
(m

2v

)

�

regardless of the prior probabilities.

Notation Let us denote by “arg max” the argument of the maximum. That is, for a

function f�x� with maximum occurring at x0, we have

max
x

f�x�= f�x0�� arg max
x

f�x�= x0	



August 13, 2007 5:46 p.m. CUP/FOD Page-91 9780521874144c03

91 3.2 Hypothesis testing basics

Maximum likelihood decision rule The maximum likelihood (ML) deci-

sion rule is defined as

�ML�y�= arg max
1≤i≤M

p�y�i�= arg max
1≤i≤M

logp�y�i�	 (3.17)

The ML rule chooses the hypothesis for which the conditional density of the

observation is maximized. In rather general settings, it can be proven to be

asymptotically optimal as the quality of the observation improves (e.g., as

the number of samples gets large, or the signal-to-noise ratio gets large). It

can be checked that the sensible rule in Example 3.2.2 is the ML rule for the

basic Gaussian example.

Another popular decision rule is the minimum probability of error (MPE)

rule, which seeks to minimize the average probability of error. It is assumed

that the prior probabilities 
��i�� are known. I will now derive the form of

the MPE decision rule.

Derivation of MPE rule Consider the equivalent problem of maximizing

the probability of a correct decision. For a decision rule � corresponding

to decision regions 
�i�, the conditional probabilities of making a correct

decision are given by

Pc�i =
∫

�i

p�y�i�dy� i= 1� 
 
 
 �M

and the average probability of a correct decision is given by

Pc =
M
∑

i=1

��i�Pc�i =
M
∑

i=1

��i�
∫

�i

p�y�i�dy	

Now, pick a point y∈� . If we see Y = y and decide Hi (i.e., y∈�i), the

contribution to the integrand in the expression for Pc is ��i�p�y�i�. Thus,
to maximize the contribution to Pc for that potential observation value y,

we should put y∈�i such that ��i�p�y�i� is the largest. Doing this for each

possible y leads to the MPE decision rule. I summarize and state this as a

theorem below.

Theorem 3.2.1 (MPE decision rule) For M-ary hypothesis testing, the

MPE rule is given by

�MPE�y�= arg max
1≤i≤M

��i�p�y�i�= arg max
1≤i≤M

log��i�+ logp�y�i�	 (3.18)

A number of important observations related to the characterization of the

MPE rule are now stated below.

Remark 3.2.1 (MPE rule maximizes posterior probabilities) By Bayes’

rule, the conditional probability of hypothesis Hi given the observation is

Y = y is given by

P�Hi�y�=
��i�p�y�i�

p�y�
�
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where p�y� is the unconditional density of Y , given by p�y�=∑

j ��j�p�y�j�.
The MPE rule (3.18) is therefore equivalent to the maximum a posteriori

probability (MAP) rule, as follows:

�MAP�y�= arg max
1≤i≤M

P�Hi�y�	 (3.19)

This has a nice intuitive interpretation: the error probability is minimized by

choosing the hypothesis that is most likely, given the observation.

Remark 3.2.2 (ML rule is MPE for equal priors) By setting ��i�= 1/M

in the MPE rule (3.18), we see that it specializes to the ML rule (3.17). For

example, the rule in Example 3.2.2 minimizes the error probability in the

basic Gaussian example, if 0 and 1 are equally likely to be sent. While the

ML rule minimizes the error probability for equal priors, it may also be used

as a matter of convenience when the hypotheses are not equally likely.

We now introduce the notion of a likelihood ratio, a fundamental notion

in hypothesis testing.

Likelihood ratio test for binary hypothesis testing For binary hypothesis

testing, the MPE rule specializes to

�MPE�y�=







1� ��1�p�y�1� > ��0�p�y�0�
0� ��1�p�y�1� < ��0�p�y�0�
don′t care� ��1�p�y�1�= ��0�p�y�0��

(3.20)

which can be rewritten as

L�y�= p�y�1�
p�y�0�

H1

>

<

H0

��0�

��1�
� (3.21)

where L�y� is called the likelihood ratio (LR). A test that compares the

likelihood ratio with a threshold is called a likelihood ratio test (LRT). We

have just shown that the MPE rule is an LRT with threshold ��0�
/

��1�.

Similarly, the ML rule is an LRT with threshold one. Often, it is convenient

(and equivalent) to employ the log likelihood ratio test (LLRT), which consists

of comparing logL�y� with a threshold.

Example 3.2.4 (Likelihood ratio for the basic Gaussian example) Sub-

stituting (3.12) into (3.21), we obtain the likelihood ratio for the basic

Gaussian example as

L�y�= exp

(

1

v2

(

my− m2

2

))

	 (3.22)
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We shall encounter likelihood ratios of similar form when considering the

more complicated scenario of a continuous-time signal in WGN. Comparing

logL�y� with zero gives the ML rule, which reduces to the decision rule

(3.13) for m> 0. For m< 0, the inequalities in (3.13) are reversed.

Irrelevant statistics In many settings, the observation Y to be used for

hypothesis testing is complicated to process. For example, over the AWGN

channel to be considered in the next section, the observation is a continuous-

time waveform. In such scenarios, it is useful to identify simpler decision

statistics that we can use for hypothesis testing, without any loss in perfor-

mance. To this end, I introduce the concept of irrelevance, which I use to

derive optimal receivers for signaling over the AWGN channel in the next

section. Suppose that we can decompose the observation into two compo-

nents: Y = �Y1� Y2�. We say that Y2 is irrelevant for the hypothesis testing

problem if we can throw it away (i.e., use only Y1 instead of Y ) without any

performance degradation.

As an example, consider binary hypothesis testing with observation �Y1� Y2�

as follows:

H1 � Y1 =m+N1� Y2 = N2

H0 � Y1 = N1� Y2 = N2�
(3.23)

where N1 ∼ N�0� v2�, N2 ∼ N�0� v2� are jointly Gaussian “noise” random

variables. Note that only Y1 contains the “signal” component m. However,

does this automatically imply that the component Y2, which contains only

noise, is irrelevant? Intuitively, we feel that if N2 is independent of N1, then

Y2 will carry no information relevant to the decision. On the other hand, if

N2 is highly correlated with N1, then Y2 contains valuable information that

we could exploit. As an extreme example, if N2 ≡ N1, then we could obtain

perfect detection by constructing a noiseless observation Ŷ = Y1−Y2, which

takes value m under H1 and value 0 under H0. Thus, a systematic criterion for

recognizing irrelevance is useful, and I provide this in the following theorem.

Theorem 3.2.2 (Characterizing an irrelevant statistic) ForM-ary hypoth-

esis testing using an observation Y = �Y1� Y2�, the statistic Y2 is irrelevant

if the conditional distribution of Y2, given Y1 and Hi, is independent of i. In

terms of densities, we can state the condition for irrelevance as p�y2�y1� i�=
p�y2�y1� for all i.

Proof If p�y2�y1� i� does not depend on i, then it is easy to see that

p�y2�y1� i�≡p�y2�y1� for all i= 1� 
 
 
 �M . The statistical relationship between

the observation Y and the hypotheses 
Hi� is through the conditional densities


p�y�i��. We have

p�y�i�= p�y1� y2�i�= p�y2�y1� i�p�y1�i�= p�y2�y1�p�y1�i�	
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From the form of the MPE rule (3.18), we know that terms independent of i

can be discarded, which means that we can restrict attention to the conditional

densities p�y1�i� for the purpose of hypothesis testing. That is, Y2 is irrelevant
for hypothesis testing.

Example 3.2.5 (Application of irrelevance criterion) In (3.23), suppose

that N2 is independent of N1. Then Y2 = N2 is independent of Hi and N1,

and hence of Hi and Y1 and

p�y2�y1� i�= p�y2��

which is a stronger version of the irrelevance condition in Theorem 3.2.2.

In the next section, I use exactly this argument when deriving optimal

receivers over AWGN channels.

We note in passing that the concept of sufficient statistic, which plays a

key role in detection and estimation theory, is closely related to that of an

irrelevant statistic. Consider a hypothesis testing problem with observation

Y . Consider the augmented observation Ỹ = �Y1 = f�Y�� Y2 = Y�, where f

is a function. Then f�Y� is a sufficient statistic if Y2 = Y is irrelevant for

hypothesis testing using Ỹ . That is, once we know Y1 = f�Y�, we have all the

information we need to make our decision, and no longer need the original

observation Y2 = Y .

3.3 Signal space concepts

I am now ready to take the first step in deriving optimal receivers for M-ary

signaling in AWGN. I restrict attention to real-valued signals and noise to

start with (this model applies to passband and real baseband systems). Con-

sider a communication system in which one of M continuous-time signals,

s1�t�� 
 
 
 � sM�t� is sent. The received signal equals the transmitted signal cor-

rupted by AWGN. Of course, when we say “transmitted signal,” we actually

mean the noiseless copy produced by the coherent receiver of each possible

transmitted signal, accounting for the effects of the channel.

In the language of hypothesis testing, we haveM hypotheses for explaining

the received signal, with

Hi � y�t�= si�t�+n�t�� i= 1� 
 
 
 �M� (3.24)

where n�t� is WGN with PSD �2 = N0/2. I show in this section that, without

any loss of detection performance, we can reduce the continuous-time received

signal to a finite-dimensional received vector.
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A note on signal and noise scaling Even before we investigate this model

in detail, we can make the following simple but important observation. If

we scale the signal and the noise by the same factor, the performance of

an optimal receiver remains the same (assuming that the receiver knows the

scaling). Consider a scaled observation ỹ satisfying

Hi � ỹ�t�= Asi�t�+An�t�� i= 1� 
 
 
 �M	 (3.25)

I can now argue, without knowing anything about the structure of the optimal

receiver, that the performance of optimal reception for models (3.24) and

(3.25) is identical. An optimal receiver designed for model (3.24) provides

exactly the same performance with model (3.25), by operating on ỹ/A. Sim-

ilarly, an optimal receiver designed for model (3.25) would provide exactly

the same performance with model (3.25) by operating on Ay�t�. Hence, the

performance of these two optimal receivers must be the same, otherwise we

could improve the performance of one of the optimal receivers simply by

scaling and using an optimal receiver for the scaled received signal. A con-

sequence of this observation is that system performance is determined by the

ratio of signal and noise strengths (in a sense to be made precise later), rather

than individually on the signal and noise strengths. Therefore, when I discuss

the structure of a given set of signals, my primary concern is with the relative

geometry of the signal set, rather than with scale factors that are common to

the entire signal set.

Next, I derive a fundamental property of WGN related to its distribution

when linearly transformed. Any number obtained by linear processing of

WGN can be expressed as the output of a correlation operation of the form

Z =
∫ �

−�
n�t�u�t�dt = 
n�u��

where u�t� is a deterministic, finite-energy, signal. Since WGN is a Gaussian

random process, we know that Z is a Gaussian random variable. To charac-

terize its distribution, therefore, we need only compute its mean and variance.

Since n has zero mean, the mean of Z is seen to be zero by the following

simple computation:

��Z�=
∫ �

−�
��n�t��u�t�dt = 0�

where expectation and integral can be interchanged, both being linear opera-

tions. Instead of computing the variance of Z, however, I state a more general

result below on covariance, from which the result on variance can be inferred.

This result is important enough to state formally as a proposition.

Proposition 3.3.1 (WGN through correlators) Let u1�t� and u2�t� denote

finite-energy signals, and let n�t� denote WGN with PSD �2 = N0/2. Then


n�u1� and 
n�u2� are jointly Gaussian with covariance

cov�
n�u1�� 
n�u2��= �2
u1� u2�	
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In particular, setting u1 = u2 = u, we obtain that

var�
n�u��= cov�
n�u�� 
n�u��= �2��u��2	

Proof of Proposition 3.3.1 The random variables 
n�u1� and 
n�u2� are

zero mean and jointly Gaussian, since n is zero mean and Gaussian. Their

covariance is computed as

cov�
n�u1�� 
n�u2�� = ��
n�u1�
n�u2��= ��
∫

n�t�u1�t�dt
∫

n�s�u2�s�ds�

=
∫ ∫

u1�t�u2�s���n�t�n�s��dt ds

=
∫ ∫

u1�t�u2�s��
2��t− s�dt ds

= �2
∫

u1�t�u2�t�dt = �2
u1� u2�	

This completes the proof.

The preceding result is simple but powerful, leading to the following geo-

metric interpretation for white Gaussian noise.

Remark 3.3.1 (Geometric interpretation of WGN) Proposition 3.3.1

implies that the projection of WGN along any “direction” in the space of

signals (i.e., the result of correlating WGN with a unit energy signal) has

variance �2 = N0/2. Also, its projections in orthogonal directions are jointly

Gaussian and uncorrelated, and hence independent.

Armed with this geometric understanding of white Gaussian noise, I plan

to argue as follows:

(1) The signal space spanned by the M possible received signals is finite-

dimensional, of dimension at most M . There is no signal energy outside

this signal space, regardless of which signal is transmitted.

(2) The component of WGN orthogonal to the signal space is independent of

the component in the signal space, and its distribution does not depend on

which signal was sent. It is therefore irrelevant to our hypothesis testing

problem (it satisfies the condition of Theorem 3.2.2.

(3) I can therefore restrict attention to the signal and noise components lying

in the signal space. These can be represented by finite-dimensional vec-

tors, thus simplifying the problem immensely relative to our original

problem of detection in continuous time.

Let me now flesh out the details of the preceding chain of reasoning. We

begin by indicating how to construct a vector representation of the signal

space. The signal space � is the finite-dimensional subspace (of dimension

n ≤ M) spanned by s1�t�� 
 
 
 � sM�t�. That is, � consists of all signals of

the form a1s1�t�+· · ·+aMsM�t�, where a1� 
 
 
 � aM are arbitrary scalars. Let
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�1�t�� 
 
 
 ��n�t� denote an orthonormal basis for �. Such a basis can be

constructed systematically by Gramm–Schmidt orthogonalization (described

below) of the set of signals s1�t�� 
 
 
 � sM�t�, or may be evident from inspec-

tion in some settings.

Example 3.3.1 (Developing a signal space representation for a 4-ary

signal set) Consider the example depicted in Figure 3.7, where there are

four possible received signals, s1� 
 
 
 � s4. It is clear from inspection that

these span a three-dimensional signal space, with a convenient choice of

basis signals,

�1�t�= I�−1�0��t�� �1�t�= I�0�1��t�� �3�t�= I�1�2��t��

as shown in Figure 3.8. Let si = �si�1�� si�2�� si�3��
T denote the vector

representation of the signal si with respect to the basis, for i = 1� 
 
 
 4.

That is, the coefficients of the vector si are such that

si�t�=
3
∑

k=1

si�k��k�t�	

We obtain, again by inspection,

s1 =





0

1

1



 � s2 =





1

1

0



 � s3 =





0

2

0



 � s4 =





−1

1

−1



 	

In general, for any signal set with M signals 
si�t�� i = 1� 
 
 
 �M�, we can

find an orthonormal basis 
�k� k = 1� 
 
 
 � n�, where the dimension of the

signal space, n, is at most equal to the number of signals, M . The vector

Figure 3.7 Four signals

spanning a three-dimensional

signal space.

t

s2(t )

s3(t ) s4(t )

0 2

1

−1 1

1

10

2

1 20

−1

1

−1

t t

t

s1(t )
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Figure 3.8 An orthonormal

basis for the signal set in

Figure 3.7, obtained by

inspection.

ψ 2(t ) ψ 3(t )

tt t
−1 0

1 1 1

0 1 0 1

ψ 1(t )

representation of signal si�t� with respect to the basis is given by si =
�si�1�� 
 
 
 � si�n��

T , where

si�k�= 
si��k�� i= 1� 
 
 
 �M� k= 1� 
 
 
 � n	

Finding a basis by inspection is not always feasible. A systematic procedure

for finding a basis is Gramm–Schmidt orthogonalization, described next.

Gramm–Schmidt orthogonalization Letting �k denote the subspace

spanned by s1� 
 
 
 � sk, the Gramm–Schmidt algorithm proceeds iteratively:

given an orthonormal basis for �k, it finds an orthonormal basis for �k+1. The

procedure stops when k=M . The method is identical to that used for finite-

dimensional vectors, except that the definition of the inner product involves

an integral, rather than a sum, for the continuous-time signals considered here.

Step 1 (Initialization) Let �1 = s1. If �1 	= 0, then set �1 = �1

���1��
. Note that

�1 provides a basis function for �1.

Step k+ 1 Suppose that we have constructed an orthonormal basis �k =

�1� 
 
 
 �m� for the subspace �k spanned by the first k signals (note that

m≤ k). Define

�k+1�t�= sk+1�t�−
m
∑

i=1


sk+1��i��i�t�	

The signal �k+1�t� is the component of sk+1�t� orthogonal to the subspace

�k. If �k+1 	= 0, define a new basis function �m+1�t�=
�k+1�t�

���k+1��
, and update the

basis as �k+1 = 
�1� 
 
 
 ��m��m+1�. If �k+1 = 0, then sk+1 ∈�k, and it is not

necessary to update the basis; in this case, we set �k+1 =�k = 
�1� 
 
 
 ��m�.

The procedure terminates at stepM , which yields a basis �= 
�1� 
 
 
 ��n�

for the signal space � = �M . The basis is not unique, and may depend (and

typically does depend) on the order in which we go through the signals in the

set. We use the Gramm–Schmidt procedure here mainly as a conceptual tool,

in assuring us that there is indeed a finite-dimensional vector representation

for a finite set of continuous-time signals.

Exercise 3.3.1 (Application of the Gramm–Schmidt procedure) Apply

the Gramm–Schmidt procedure to the signal set in Figure 3.7. When the
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signals are considered in increasing order of index in the Gramm–Schmidt

procedure, verify that the basis signals are as in Figure 3.9, and fill in the

missing numbers. While the basis thus obtained is not as “nice” as the one

obtained by inspection in Figure 3.8, the Gramm–Schmidt procedure has the

advantage of general applicability.

Projection on to signal space I now project the received signal y�t� onto

the signal space to obtain an n-dimensional vector Y. Specifically, set Y =
�
y��1�� 
 
 
 � 
y��n��T . Under hypothesis Hi (i = 1� 
 
 
 �M), we have Y =
si + N, where si = �
si��1�� 
 
 
 � 
si��n��T ,
i = 1� 
 
 
 �M , and N = �
n��1�� 
 
 
 �

n��n��T are obtained by projecting the signals and noise onto the signal

space. Note that the vector Y = �y�1�� 
 
 
 � y�n��T completely describes the

component of the received signal y�t� in the signal space, given by

y��t�=
n
∑

j=1


y��j��j�t�=
n
∑

j=1

y�j��j�t�	

The component of y�t� orthogonal to the signal space is given by

y⊥�t�= y�t�−y��t�= y�t�−
n
∑

j=1

yj�j�t�	

I now explore the structure of the signal space representation further.

Figure 3.9 An orthonormal

basis for the signal set in

Figure 3.7, obtained by

applying the Gramm–Schmidt

procedure. The unknowns a, b,

and c are to be determined in

Exercise 3.3.1.

Inner products are preserved I will soon show that performance of optimal

reception of M-ary signaling on an AWGN channel depends only on the

inner products between the signal, once the noise PSD is fixed. It is therefore

important to check that the inner products of the continuous-time signals and

their signal space counterparts remain the same. Specifically, plugging in the

representation of the signals in terms of the basis functions, we get (si�k�

denotes 
si��k�, for 1≤ i ≤M , 1≤ k≤ n)


si� sj� = 

∑n

k=1
si�k��k�

∑n

l=1
sj�l��l� =

∑n

k=1

∑n

l=1
si�k�sj�l�
�k��l�

=
∑n

k=1

∑n

l=1
si�k�sj�l��kl =

∑n

k=1
si�k�sj�k�= 
si� sj�	

Recall that �kl denotes the Kronecker delta function, defined as

�kl =
{

1 k= l

0 k 	= l	
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In the above, I have used the orthonormality of the basis functions 
�k� k=
1� 
 
 
 � n� in collapsing the two summations into one.

Noise vector is discrete WGN The noise vector N = �N�1�� 
 
 
 �N�n��T

corrupting the observation within the signal space is discrete-time WGN. That

is, it is a zero mean Gaussian random vector with covariance matrix �2I, so

that its components 
N�j�� are i.i.d. N�0��2� random variables. This follows

immediately from Proposition 3.3.1 and Remark 3.3.1.

Now that we understand the signal and noise structure within the signal

space, I state and prove the fundamental result that the component of the

received signal orthogonal to the signal space, y⊥�t�, is irrelevant for detection

in AWGN. Thus, it suffices to restrict attention to the finite-dimensional

vector Y in the signal space for the purpose of optimal reception in AWGN.

Theorem 3.3.1 (Restriction to signal space is optimal) For the model

(3.24), there is no loss in detection performance in ignoring the component

y⊥�t� of the received signal orthogonal to the signal space. Thus, it suffices

to consider the equivalent hypothesis testing model given by

Hi � Y= si+N i= 1� 
 
 
 �M	

Proof of Theorem 3.3.1 Conditioning on hypothesisHi, we first note that y
⊥

does not have any signal contribution, since all of the M possible transmitted

signals are in the signal space. That is, for y�t�= si�t�+n�t�, we have

y⊥�t� = y�t�−
n
∑

j=1


y��j��j�t�= si�t�+n�t�−
n
∑

j=1


si+n��j��j�t�

= n�t�−
n
∑

j=1


n��j��j�t�= n⊥�t��

where n⊥ is the noise contribution orthogonal to the signal space. Next, I

show that n⊥ is independent of N, the noise contribution in the signal space.

Since n⊥ and N are jointly Gaussian, it suffices to demonstrate that they are

uncorrelated. Specifically, for any t and k, we have

cov�n⊥�t��N�k�� = ��n⊥�t�N�k��= ��
n�t�−
∑n

j=1
N�j��j�t��N�k��

= ��n�t�N�k��−
∑n

j=1
��N�j�N�k���j�t�	 (3.26)

The first term on the extreme right-hand side can be simplified as

��n�t�
n��k��= ��n�t�
∫

n�s��k�s�ds�

=
∫

��n�t�n�s���k�s�ds =
∫

�2��s− t��k�s�ds = �2�k�t�	

(3.27)
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Plugging (3.27) into (3.26), and noting that ��N�j�N�k��= �2�jk, we obtain

cov�n⊥�t��N�j��= �2�k�t�−�2�k�t�= 0	

Thus, conditionedonHi,y
⊥ = n⊥ doesnot containanysignal contribution, and is

independent of the noise vectorN in the signal space. It is therefore irrelevant to

the detection problem; applyingTheorem3.2.2 in amanner exactly analogous to

theobservationY2 inExample3.2.5. (I havenotdiscussedhowtodefinedensities

for infinite-dimensional random processes such as y⊥, but let us assume this can

be done. Then y⊥ plays exactly the role of Y2 in the example.)

Example 3.3.2 (Application to two-dimensional linear modulation)

Consider linear modulation in passband, for which the transmitted signal

corresponding to a given symbol is of the form

sbc�bs�t�= Abcp�t��
√
2 cos2�fct�−Absp�t��

√
2 sin 2�fct��

where the information is encoded in the pair of real numbers �bc� bs�, and

where p�t� is a baseband pulse whose bandwidth is smaller than the carrier

frequency fc. We assume that there is no intersymbol interference, hence

it suffices to consider each symbol separately. In this case, the signal space

is two-dimensional, and a natural choice of basis functions for the signal

space is �c�t� = �p�t� cos2�fct and �s�t� = �p�t� sin 2�fct, where � is

a normalization constant. From Chapter 2, we know that �c and �s are

indeed orthogonal. The signal space representation for sbc�bs�t� is therefore

(a possibly scaled version of) �bc� bs�
T . The absolute scaling of the signal

constellation can be chosen arbitrarily, since, as I have already observed,

it is the signal-to-noise ratio that determines the performance. The two-

dimensional received signal vector (the first dimension is the I component,

and the second the Q component) can therefore be written as

y=
(

yc
ys

)

=
(

bc
bs

)

+
(

Nc

Ns

)

� (3.28)

where Nc, Ns are i.i.d. N�0��2� random variables. While the received

vector y is written as a column vector above, I reuse the same notation

(y or y) to denote the corresponding row vector �yc� ys� when convenient.

Figure 3.10 shows the signal space representations of some PSK and QAM

constellations (which we have just observed is just the symbol alphabet).

I have not specified the scale for the constellations, since it is the con-

stellation geometry, rather than the scaling, that determines performance.

Now that we have reduced the detection problem to finite dimensions, we can

write down the density of the observation Y, conditioned on the hypotheses,

and infer the optimal decision rules using the detection theory basics described

earlier. This is done in the next section.
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Figure 3.10 For linear

modulation with no

intersymbol interference, the

complex symbols themselves

provide a two-dimensional

signal space representation.

Three different constellations

are shown here.

QPSK (4−PSK or 4−QAM) 8−PSK

16−QAM

3.4 Optimal reception in AWGN

I begin with a theorem characterizing the optimal receiver when the received

signal is a finite-dimensional vector. Using this, I infer the optimal receiver

for continuous-time received signals.

Theorem 3.4.1 (Optimal detection in discrete time AWGN) Consider the

finite-dimensional M-ary hypothesis testing problem where the observation

is a random vector Y modeled as

Hi � Y= si+N i= 1� 
 
 
 �M� (3.29)

where N∼ N�0��2I� is discrete-time WGN.

(a) When we observe Y = y, the ML decision rule is a “minimum distance

rule”, given by

�ML�y�= arg min
1≤i≤M

��y− si��2 = arg max
1≤i≤M


y� si�−
��si��2
2

	 (3.30)

(b) If hypothesis Hi has prior probability ��i�, i= 1� 
 
 
 �M (
∑M

i=1��i�= 1),

then the MPE decision rule is given by

�MPE�y�= arg min
1≤i≤M

��y− si��2−2�2 log��i�

= arg max
1≤i≤M


y� si�−
��si��2
2

+�2 log��i�	 (3.31)
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Proof of Theorem 3.4.1 Under hypothesis Hi, Y is a Gaussian random

vector with mean si and covariance matrix �2I (the translation of the noise

vector N by the deterministic signal vector si does not change the covariance

matrix), so that

pY�i�y�Hi�=
1

�2��2�n/2
exp�−��y− si��2

2�2
�	 (3.32)

Plugging (3.32) into the ML rule (3.17), we obtain the rule (3.30) upon

simplification. Similarly, we obtain (3.31) by substituting (3.32) in the MPE

rule (3.18).

I now provide the final step in deriving the optimal detector for the origi-

nal continuous-time model (3.24), by mapping the optimal decision rules in

Theorem 3.4.1 back to continuous time via Theorem 3.3.1.

Theorem 3.4.2 (Optimal coherent demodulation with real-valued signals)

For the continuous-time model (3.24), the optimal detectors are given as

follows:

(a) The ML decision rule is

�ML�y�= arg max
1≤i≤M


y� si�−
��si��2
2

	 (3.33)

(b) If hypothesis Hi has prior probability ��i�, i= 1� 
 
 
 �M (
∑M

i=1��i�= 1),

then the MPE decision rule is given by

�MPE�y�= arg max
1≤i≤M


y� si�−
��si��2
2

+�2 log��i�	 (3.34)

Proof of Theorem 3.4.2 From Theorem 3.3.1, we know that the continuous-

time model (3.24) is equivalent to the discrete-time model (3.29) in Theorem

3.4.1. It remains to map the optimal decision rules (3.30) and (3.31) back

to continuous time. These rules involve correlation between the received and

transmitted signals and the transmitted signal energies. It suffices to show

that these quantities are the same for both the continuous-time model and the

equivalent discrete-time model. We know now that signal inner products are

preserved, so that

��si��2 = ��si��2	

Further, the continuous-time correlator output can be written as


y� si� = 
y� +y⊥� si� = 
y�� si�+
y⊥� si�

= 
y�� si� = 
y� si� �
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where the last equality follows because the inner product between the signals

y� and si (which both lie in the signal space) is the same as the inner product

between their vector representations.

Remark 3.4.1 (A technical remark of the form of optimal rules in contin-

uous time) Notice that Theorem 3.4.2 does not contain the continuous-time

version of the minimum distance rule in Theorem 3.4.1. This is because of a

technical subtlety. In continuous time, the squares of the distances would be

��y− si��2 = ��y� − si��2+��y⊥��2 = ��y� − si��2+��n⊥��2	

Under the AWGN model, the noise power orthogonal to the signal space

is infinite, hence from a purely mathematical point of view, the preceding

quantities are infinite for each i (so that we cannot minimize over i). Hence,

it only makes sense to talk about the minimum distance rule in a finite-

dimensional space in which the noise power is finite. The correlator-based

form of the optimal detector, on the other hand, automatically achieves the

projection onto the finite-dimensional signal space, and hence does not suffer

from this technical difficulty. Of course, in practice, even the continuous-time

received signal may be limited to a finite-dimensional space by filtering and

time-limiting, but correlator-based detection still has the practical advantage

that only components of the received signal that are truly useful appear in the

decision statistics.

Correlators and matched filters The decision statistics for optimal detec-

tion can be computed using a bank of M correlators or matched filters as

follows:


y� si� =
∫

y�t�si�t�dt = �y ∗ si�mf ��0��

where si�mf �t�= si�−t� is the impulse response of the matched filter for si�t�.

Coherent demodulation in complex baseband We can now infer the form

of the optimal receiver for complex baseband signals by applying Theorem

3.4.2 to real-valued passband signals, and then expressing the decision rule

in terms of their complex envelopes. Specifically, suppose that si�p�t�, i =
1� 
 
 
 �M , are M possible real passband transmitted signals, yp�t� is the noisy

received signal, and np�t� is real-valued AWGN with PSD N0/2 (see Figure

3.5). Let si�t� denote the complex envelope of si�p�t�, i = 1� 
 
 
 �M , and let

y�t� denote the complex envelope of yp�t�. Then the passband model

Hi � yp�t�= si�p�t�+np�t�� i= 1� 
 
 
 �M (3.35)

translates to the complex baseband model

Hi � y�t�= si�t�+n�t�� i= 1� 
 
 
 �M� (3.36)

where n�t� is complex WGN with PSD N0, as shown in Figure 3.5.
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Applying Theorem 3.4.2, we know that the decision statistics based on the

real passband received signal are given by


yp� si�p�−
��si�p��2

2
= Re �
y� si��−

��si��2
2

�

where we have translated passband inner products to complex baseband inner

products as in Chapter 2. We therefore obtain the following theorem.

Theorem 3.4.3 (Optimal coherent demodulation in complex baseband)

For the passband model (3.35), and its equivalent complex baseband model

(3.36), the optimal coherent demodulator is specified in complex baseband

as follows:

(a) The ML decision rule is

�ML�y�= arg max
1≤i≤M

Re �
y� si��−
��si��2
2

	 (3.37)

(b) If hypothesis Hi has prior probability ��i�, i= 1� 
 
 
 �M (
∑M

i=1��i�= 1),

then the MPE decision rule is given by

�MPE�y�= arg max
1≤i≤M

Re �
y� si��−
��si��2
2

+�2 log��i�	 (3.38)

Coherent reception can be understood in terms of real-valued vector

spaces In Theorem 3.4.3, even though we are dealing with complex base-

band signals, the decision statistics can be evaluated by interpreting each

complex signal as a pair of real-valued signals. Specifically, the coherent

correlation

Re�
y� si��= 
yc� si�c�+
ys� si�s�

corresponds to separate correlation of the I and Q components, followed by

addition, and the signal energy

�si��2 = ��si�c��2+��si�s��2

is the sum of the energies of the I and Q components. Thus, there is no cross

coupling between the I and Q components in a coherent receiver, because the

receiver can keep the components separate. We can therefore develop signal

space concepts for coherent receivers in real-valued vector spaces, as done

for the example of two-dimensional modulation in Example 3.3.2.

When do we really need statistical models for complex-valued signals?

We have seen in Example 2.2.5 in Chapter 2 that, for noncoherent receivers

that are not synchronized in carrier phase to the incoming signal, the I and

Q components cannot be processed separately. I explore this observation in
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far more detail in Chapter 4, which considers estimation of parameters such

as delay, carrier frequency, and phase (which typically occur prior to carrier

phase synchronization), as well as optimal noncoherent reception. At that

point, it becomes advantageous to understand complex WGN on its own

terms, rather than thinking of it as a pair of real-valued WGN processes, and

to develop geometric notions specifically tailored to complex-valued vector

spaces.

3.4.1 Geometry of the ML decision rule

The minimum distance interpretation for the ML decision rule implies that

the decision regions (in signal space) for M-ary signaling in AWGN are

constructed as follows. Interpret the signal vectors 
si�, and the received

vector y, as points in n-dimensional Euclidean space. It is easiest to think

about this in two dimensions (n = 2). For any given i, draw a line between

si and sj for all j 	= i. The perpendicular bisector of the line between si and

sj defines two half planes, one in which we choose si over sj , the other in

which we choose sj over si. The intersection of the half planes in which si
is chosen over sj , for j 	= i, defines the decision region �i. This procedure is

illustrated for a two-dimensional signal space in Figure 3.11. The line L1i is

the perpendicular bisector of the line between s1 and si. The intersection of

these lines defines �1 as shown. Note that L16 plays no role in determining

�1, since signal s6 is “too far” from s1, in the following sense: if the received

signal is closer to s6 than to s1, then it is also closer to si than to s1 for

some i = 2�3�4�5. This kind of observation plays an important role in the

performance analysis of ML reception in Section 3.5.

The preceding procedure can now be applied to the simpler scenario of

the two-dimensional constellations depicted in Figure 2.16. The resulting ML

decision regions are shown in Figure 3.12. For QPSK, the ML regions are

simply the four quadrants. For 8PSK, the ML regions are sectors of a circle.

For 16QAM, the ML regions take a rectangular form.

Figure 3.11 Maximum

likelihood (ML) decision region

�1 for signal s1 .

s2

s3

s4

s5

s6

L12

L13

L14

L15

L16Γ1

s1
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Figure 3.12 Maximum

likelihood (ML) decision

regions for some

two-dimensional constellations.

QPSK 8−PSK

16−QAM

3.4.2 Soft decisions

Maximum likelihood and MPE demodulation correspond to “hard” decisions

regarding which of M signals have been sent. Each such M-ary “symbol”

corresponds to log2M bits. Often, however, we send many such symbols (and

hence many more than log2M bits), and may employ an error-correcting code

over the entire sequence of transmitted symbols or bits. In such a situation,

the decisions from the demodulator, which performsM-ary hypothesis testing

for each symbol, must be fed to a decoder which accounts for the structure

of the error-correcting code to produce more reliable decisions. It becomes

advantageous in such a situation to feed the decoder more information than

that provided by hard decisions. Consider the model (3.29), where the receiver

is processing a finite-dimensional observation vector Y. Two possible val-

ues of the observation (dark circles) are shown in Figure 3.13 for a QPSK

constellation.

Clearly, we would have more confidence in the decision for the observed

value �1	5�−2�, which lies further away from the edge of the decision region

in which it falls. “Soft” decisions are a means of quantifying our estimate of

the reliability of our decisions. While there are many mechanisms that could

be devised for conveying more information than hard decisions, the maximal

amount of information that the demodulator can provide are the posterior

probabilities

��i�y�= P�si sent�y�= P�Hi�y��
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Figure 3.13 Two possible

observations (shown in black

circles) for QPSK signaling,

with signal points denoted by

�si � i = 1� � � � � 4	. The signal

space is two-dimensional.

(1.5, −2)

s2

s3 s4

(0.25, 0.5)

−1−2

1

2

−1

−2

1 2

s1

where y is the value taken by the observation Y. These posterior probabilities

can be computed using Bayes’ rule, as follows:

��i�y�= P�Hi�y�=
p�y�i�P�Hi�

p�y�
= p�y�i�P�Hi�
∑M

j=1 p�y�j�P�Hj�
	

Plugging in the expression (3.32) for the conditional densities p�y�j� and

setting ��i�= P�Hi�, we obtain

��i�y�=
��i� exp

(

− ��y−si��2
2�2

)

∑M
j=1��j� exp

(

− ��y−sj ��2
2�2

) 	 (3.39)

For the example in Figure 3.13, suppose that we set �2 = 1 and ��i�≡ 1/4.

Then we can use (3.39) to compute the values shown in Table 3.1 for the

posterior probabilities:

The observation y = �0	25�0	5� falls in the decision region for s1, but

is close to the decision boundary. The posterior probabilities in Table 3.1

reflect the resulting uncertainty, with significant probabilities assigned to all

symbols. On the other hand, the observation y= �1	5�−2�, which falls within

the decision region for s4, is far away from the decision boundaries, hence

we would expect it to provide a reliable decision. The posterior probabilities

reflect this: the posterior probability for s4 is significantly larger than that of

the other possible symbol values. In particular, the posterior probability for

s2, which is furthest away from the received signal, is very small (and equals

zero when rounded to three decimal places as in the table).

Unlike ML hard decisions, which depend only on the distances between

the observation and the signal points, the posterior probabilities also depend
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Table 3.1 Posterior probabilities for the QPSK constellation

in Figure 3.13, assuming equal priors and 
 2
= 1.

��i�y� y= �0	25�0	5� y= �1	5�−2�

1 0.455 0.017

2 0.276 0

3 0.102 0.047

4 0.167 0.935

Table 3.2 Posterior probabilities for the QPSK constellation

in Figure 3.13, assuming equal priors and 
 2
= 4.

��i�y� y= �0	25�0	5� y= �1	5�−2�

1 0.299 0.183

2 0.264 0.086

3 0.205 0.235

4 0.233 0.497

on the noise variance. If the noise variance is higher, then the decision

becomes more unreliable. Table 3.2 illustrates what happens when the noise

variance is increased to �2 = 4 for the scenario depicted in Figure 3.13. The

posteriors for y = �0	25�0	5�, which is close to the decision boundaries, are

close to uniform, which indicates that the observation is highly unreliable.

Even for y = �1	5�−2�, the posterior probabilities for symbols other than s3
are significant.

In Chapter 7, I consider the role of posterior probabilities in far greater

detail for systems with error correction coding.

3.5 Performance analysis of ML reception

I focus on performance analysis for the ML decision rule, assuming equal

priors (for which the ML rule minimizes the error probability). The analysis

for MPE reception with unequal priors is similar, and is sketched in one of

the problems.

Now that I have firmly established the equivalence between continuous-

time signals and signal space vectors, I can become sloppy about the distinc-

tion between them in our notation, using the notation y, si and n to denote

the received signal, the transmitted signal, and the noise, respectively, in both

settings.
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3.5.1 Performance with binary signaling

The basic building block for performance analysis is binary signaling. Specif-

ically, consider on–off signaling with

H1 � y�t�= s�t�+n�t�

H0 � y�t�= n�t� 	
(3.40)

Applying Theorem 3.4.2, we find that the ML rule reduces to


y� s�

H1

>

<

H0

��s��2
2

	 (3.41)

Setting Z = 
y� s�, we wish to compute the conditional error probabilities

given by

Pe�1 = P

[

Z <
��s��2
2

�H1

]

Pe�0 = P

[

Z >
��s��2
2

�H0

]

	 (3.42)

To this end, note that, conditioned on either hypothesis, Z is a Gaussian

random variable. The conditional mean and variance of Z under H0 are

given by

��Z�H0� = ��
n� s��
var�Z�H0� = cov�
n� s�� 
n� s��

= 0

= �2��s��2�
where we have used Proposition 3.3.1, and the fact that n�t� has zero mean.

The corresponding computation under H1 is as follows:

��Z�H1� = � �
s+n� s��= ��s��2

var�Z�H1� = cov �
s+n� s�� 
s+n� s��= cov �
n� s�� 
n� s��= �2��s��2�

noting that covariances do not change upon adding constants. Thus, Z ∼
N�0� v2� under H0 and Z ∼ N�m�v2� under H1, where m = ��s��2 and v2 =
�2��s��2. Substituting in (3.42), it is easy to check that

Pe�ML = Pe�1 = Pe�0 =Q

( ��s��
2�

)

	 (3.43)

In the language of detection theory, the correlation decision statistic Z is

a sufficient statistic for the decision, in that it contains all the statistical

information relevant to the decision. Thus, the ML or MPE decision rules

based on Z must be equivalent (in form as well as performance) to the

corresponding rules based on the original observation y�t�. This is easy to

check as follows. The statistics of Z are exactly as in the basic scalar Gaussian

example in Example 3.2.1, so that the ML rule is given by

Z

H1

>

<

H0

m

2
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and its performance is given by

Pe�ML =Q
(m

2v

)

�

as discussed previously: see Examples 3.2.1, 3.2.2, and 3.2.3. It is easy to see

that these results are identical to (3.41) and (3.43) by plugging in the values

of m and v2.

Next, consider binary signaling in general, with

H1 � y�t�= s1�t�+n�t�

H0 � y�t�= s0�t�+n�t�	

The ML rule for this can be inferred from Theorem 3.4.2 as


y� s1�−
��s1��2
2

H1

>

<

H0


y� s0�−
��s0��2
2

	

We can analyze this system by considering the joint distribution of the correla-

tor statistics Zi =
y� si�, i= 0�1, conditioned on the hypotheses. Alternatively,

we can rewrite the ML decision rule as


y� s1− s0�

H1

>

<

H0

��s1��2
2

− ��s0��2
2

�

which corresponds to an implementation using a single correlator. The analysis

now involves the conditional distributions of the single decision statistic Z=

y� s1−s0�. Analyzing the performance of the ML rule using these approaches

is left as an exercise for the reader.

Yet another alternative is to consider a transformed system, where the

received signal is ỹ�t� = y�t�− s0�t�. Since this transformation is invertible,

the performance of an optimal rule is unchanged under it. But the transformed

received signal ỹ�t� falls under the on–off signaling model (3.40), with s�t�=
s1�t�− s0�t�. The ML error probability therefore follows from the formula

(3.43), and is given by

Pe�ML = Pe�1 = Pe�0 =Q

( ��s1− s0��
2�

)

=Q

(

d

2�

)

� (3.44)

where d= ��s1−s0�� is the distance between the two possible received signals.
Before investigating the performance of some commonly used binary sig-

naling schemes, let me establish some standard measures of signal and noise

strength.

Energy per bit,Eb This is a measure of the signal strength that is universally

employed to compare different communication system designs. A design is

more power efficient if it gives the same performance with a smaller Eb, if we
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fix the noise strength. Since binary signaling conveys one bit of information,

Eb is given by the formula

Eb =
1

2
���s0��2+��s1��2��

assuming that 0 and 1 are equally likely to be sent.

Performance scaling with signal and noise strengths If we scale up both

s1 and s0 by a factor A, Eb scales up by a factor A2, while the distance d

scales up by a factor A. We therefore define the scale-invariant parameter

�P =
d2

Eb

	 (3.45)

Now, substituting, d =√
�PEb and � =

√

N0/2 into (3.44), we find that the

ML performance is given by

Pe�ML =Q

(
√

�PEb

2N0

)

=Q

(
√

d2

Eb

√

Eb

2N0

)

	 (3.46)

Two important observations follow.

Performance depends on signal-to-noise ratio We observe from (3.46)

that the performance depends on the ratio Eb/N0, rather than separately on

the signal and noise strengths.

Concept of power efficiency For fixed Eb/N0, the performance is better

for a signaling scheme that has a higher value of �P. We therefore use the

term power efficiency for �P = d2
/

Eb.

Let us now compute the performance of some common binary signaling

schemes in terms of Eb/N0, using (3.46). Since inner products (and hence

energies and distances) are preserved in signal space, we can compute �P for

each scheme using the signal space representations depicted in Figure 3.14.

The absolute scale of the signals is irrelevant, since the performance depends

on the signaling scheme only through the scale-invariant parameter �P. We

therefore choose a convenient scaling for the signal space representation.

Figure 3.14 Signal space

representations with

conveniently chosen scaling for

three binary signaling schemes.

Equal energy,
orthogonal signaling

0 1

s1

0 1 1−1

1

0

0

Antipodal signalingOn–off keying

s0 s1 s1 s0 s0
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On–off keying Here s1�t� = s�t� and s0�t� = 0. As shown in Figure 3.14,

the signal space is one-dimensional. For the scaling in the figure, we have

d= 1 and Eb = 1/2�12+02�= 1/2, so that �P = d2/Eb = 2. Substituting into

(3.46), we obtain Pe�ML =Q�
√

Eb/N0�.

Antipodal signaling Here s1�t� = −s0�t�, leading again to a one-

dimensional signal space representation. One possible realization of antipodal

signaling is BPSK, discussed in the previous chapter. For the scaling chosen,

d = 2 and Eb = 1/2�12 + �−1�2� = 1, which gives �P = d2/Eb = 4. Substi-

tuting into (3.46), we obtain Pe�ML =Q�
√

2Eb/N0�.

Equal-energy orthogonal signaling Here s1 and s0 are orthogonal, with

��s1��2 = ��s0��2. This is a two-dimensional signal space. Several possible

realizations of orthogonal signaling were discussed in the previous chapter,

including FSK and Walsh–Hadamard codes. From Figure 3.14, we have

d=
√
2 and Eb = 1, so that �P = d2/Eb = 2. This gives Pe�ML =Q�

√

Eb/N0�.

Thus, on–off keying (which is orthogonal signaling with unequal energies)

and equal-energy orthogonal signaling have the same power efficiency, while

the power efficiency of antipodal signaling is a factor of two (i.e., 3 dB) better.

In plots of bit error rate (BER) versus SNR, we typically express BER on

a log scale (to capture the rapid decay of error probability with SNR) and to

express SNR in decibels (to span a large range). Such a plot is provided for

antipodal and orthogonal signaling in Figure 3.15.

Figure 3.15 Bit error rate

versus Eb/N0 (dB) for

antipodal and orthogonal

signaling.
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3.5.2 Performance with M-ary signaling

I turn now to M-ary signaling. Recall that the ML rule can be written as

�ML�y�= arg max
1≤i≤M

Zi�

where, for 1≤ i ≤M , the decision statistics

Zi = 
y� si�−
1

2
��si�2	

For a finite-dimensional signal space, it is also convenient to use the minimum

distance form of the decision rule:

�ML�y�= arg min
1≤i≤M

Di�

where

Di = ��y− si��	

For convenience, we do not show the dependence of Zi or Di on the received

signal y in our notation. However, it is worth noting that the ML decision

regions can be written as

�i = 
y � �ML�y�= i�= 
y � Zi ≥Zj for all j 	= i�= 
y � Di ≤Dj for all j 	= i�	

(3.47)

First note the basic structural property that the performance is completely

determined by the signal inner products and noise variance. Then observe that

exact performance analysis is difficult in general. This leads into a discussion

of performance bounds and approximations, and the kind of design tradeoffs

we can infer from them.

Performance is determined by signal inner products normalized by noise

strength The correlator decision statistics in the ML rule in Theorem 3.4.2

are jointly Gaussian, conditioned on a given hypothesis. To see this, condition

on Hi. The conditional error probability is then given by

Pe�i = P�y � �i�i sent�= P�Zi < Zj for some j 	= i�i sent�	 (3.48)

To compute this probability, we need to know the joint distribution of the

decision statistics 
Zj�, conditioned on Hi. Let us now examine the structure

of this joint distribution. Conditioned on Hi, the received signal is given by

y�t�= si�t�+n�t�	

The decision statistics 
Zj�1≤ j ≤M� are now given by

Zj = 
y� sj�−
1

2
��sj��2 = 
si� sj�+
n� sj�−

1

2
��sj��2	 (3.49)

The random variables 
Zj� are jointly Gaussian, since n is a Gaussian ran-

dom process, so that their joint distribution is completely determined by
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means and covariances. Taking expectation in 3.49, we have (suppressing the

conditioning on Hi from the notation)

��Zj�= 
si� sj�−
1

2
��sj��2	

Furthermore, using Proposition 3.3.1,

cov�Zj�Zk�= �2
sk� sj��

note that only the noise terms in (3.49) contribute to the covariance. Thus,

conditioned on Hi, the joint distribution of 
Zj� depends only on the noise

variance �2 and the signal inner products 

si� sj��1 ≤ i� j ≤M�. Indeed, it

is easy to show, replacing Zj by
Zj

�
, that the joint distribution depends only

on the normalized inner products 

si� sj�
/

�2�1 ≤ i� j ≤ M�. We can now

infer that Pe�i for each i, and hence the unconditional error probability Pe, is

completely determined by these normalized inner products.

Performance-invariant transformations Since performance depends only

on normalized inner products, any transformation of the signal constellation

that leaves these unchanged does not change the performance. Mapping finite-

dimensional signal vectors 
si� to continuous-time signals 
si�t�� using an

orthonormal basis is one example of such a transformation that we have

already seen. Another example is a transformation of the signal vectors 
si� to

another set of signal vectors s̃i by using a different orthonormal basis for the

vector space in which they lie. Such a transformation is called a rotation, and

we can write s̃i =Qsi, whereQ is a rotation matrix containing as rows the new

orthonormal basis vectors we wish to use. For this basis to be orthonormal,

the rows must have unit energy and must be orthogonal, which we can write

as QQT = I (that is, the inverse of a rotation matrix is its transpose). We

can now check explicitly that the inner products between signal vectors are

unchanged by the rotation:


Qsi�Qsj� = sTj Q
TQsi = sTj si = 
si� sj�	

Figure 3.16 provides a pictorial summary of these performance-invariant

transformations.

Figure 3.16 Transformations

of the signal constellation that

leave performance over the

AWGN channel unchanged.

Q
T
 = Q

−1

{si (t)}{ si }

{ si }

Signal
waveforms

Expand using basis functions

Project onto basis functions

Orthonormal basis {ψk(t )}

Q
Rotation
matrix

Signal
vectors

Rotated
signal

vectors
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I have derived the preceding properties without having to explicitly compute

any error probabilities. Building further on this, I can make some broad

comments on how the performance depends on scale-invariant properties of

the signal constellation and signal-to-noise ratio measures such as Eb/N0. Let

me first define the energy per symbol and energy per bit for M-ary signaling.

Energy per symbol, Es For M-ary signaling with equal priors, the energy

per symbol Es is given by

Es =
1

M

M
∑

i=1

��si��2	

Energy per bit, Eb Since M-ary signaling conveys log2M bit/symbol, the

energy per bit is given by

Eb =
Es

log2M
	

If all signals in a M-ary constellation are scaled up by a factor A, then Es

and Eb get scaled up by A2, as do all inner products 

si� sj��. Thus, we can

define scale-invariant inner products �
si� sj��/Eb� that depend only on the

shape of the signal constellation. Setting �2 = N0/2, we can now write the

normalized inner products determining performance as follows:


si� sj�
�2

=

si� sj�
Eb

2Eb

N0

(3.50)

We can now infer the following statement.

Performance depends only on Eb/N0 and constellation shape This fol-

lows from (3.50), which shows that the signal inner products normalized

by noise strength (which we have already observed determine performance)

depend only on Eb/N0 and the scale-invariant inner products
{

�si� sj�
/

Eb

}

.

The latter depend only on the shape of the signal constellation, and are

completely independent of the signal and noise strengths.

Specialization to binary signaling Note that the preceding observations

are consistent with our performance analysis of binary signaling in Section

3.5.1. We know from 3.46 that the performance depends only on Eb/N0 and

the power efficiency. As shown below, the power efficiency is a function of

the scale-invariant inner products defined above.

�P =
d2

Eb

= ��s1− s0��2
Eb

= 
s1� s1�+
s0� s0�−
s1� s0�−
s0� s1�
Eb

	

The preceding scaling arguments yield insight into the factors determining the

performance for M-ary signaling. I now discuss how to estimate the perfor-

mance explicitly for a given M-ary signaling scheme. I have shown that there

is a compact formula for ML performance with binary signaling. However,

exact performance analysis of M-ary signaling for M> 2 requires the compu-

tation of Pe�i (for each i= 1� 
 
 
 �M) using the joint distribution of the 
Zj�

conditioned on Hi. This involves, in general, an integral of a multidimensional
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Gaussian density over the decision regions defined by the ML rule. In many

cases, computer simulation of the ML rule is a more straightforward means

of computing error probabilities than multidimensional Gaussian integrals.

Either method is computationally intensive for large constellations, but is

important for accurately evaluating performance for, say, a completed design.

However, during the design process, simple formulas that can be quickly

computed, and can provide analytical insight, are often indispensable. I there-

fore proceed to develop bounds and approximations for ML performance,

building on the simple analysis for binary signaling in Section 3.5.1.

I will employ performance analysis for QPSK signaling as a running exam-

ple, since it is possible to perform an exact analysis of ML performance

in this case, and to compare it with the bounds and approximations that I

develop. The ML decision regions (boundaries coincide with the axes) and

the distances between the signal points for QPSK are depicted in Figure 3.17.

Exact analysis for QPSK Let us find Pe�1, the conditional error probability

for the ML rule conditioned on s1 being sent. For the scaling shown in the

figure, s1 = �d/2� d/2�, and the two-dimensional observation y is given by

y = s1+ �Nc�Ns�=
(

Nc+
d

2
�Ns+

d

2

)

�

where Nc, Ns are i.i.d. N�0��2� random variables, using the geometric inter-

pretation of WGN after Proposition 3.3.1. An error occurs if the noise moves

the observation out of the positive quadrant, which is the decision region for

s1. This happens if Nc+d/2< 0 or Ns +d/2< 0. We can therefore write

Pe�1 = P

[

Nc+
d

2
< 0 or Ns+

d

2
< 0

]

= P

[

Nc+
d

2
< 0

]

+P

[

Ns+
d

2
< 0

]

−P

[

Nc+
d

2
< 0 and Ns+

d

2
< 0

]

	

Figure 3.17 Distances

between signal points for

QPSK.

d

2 d

s4

s1s2

s3

Nc

Ns
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It is easy to see that

P

[

Nc+
d

2
< 0

]

= P

[

Ns+
d

2
< 0

]

=Q�
d

2�
�	

Using the independence of Nc, Ns, we obtain

Pe�1 = 2Q

(

d

2�

)

−
[

Q

(

d

2�

)]2

	 (3.51)

By symmetry, the preceding equals Pe�i for all i, which implies that the

average error probability is also given by the expression above. To express the

error probability in terms of Eb/N0, we compute the scale-invariant parameter

d2/Eb, and use the relation

d

2�
=
√

d2

Eb

√

Eb

2N0

�

as we did for binary signaling. The energy per symbol is given by

Es =
1

M

M
∑

i=1

��si��2 = ��s1��2 =
(

d

2

)2

+
(

d

2

)2

= d2

2
�

which implies that the energy per bit is

Eb =
Es

log2M
= Es

log2 4
= d2

4
	

This yields d2
/

Eb = 4, and hence d
/

2� =
√

2
E b

/

N0. Substituting into

(3.51), we obtain

Pe = Pe�1 = 2Q

(
√

2Eb

N0

)

−Q2

(
√

2Eb

N0

)

(3.52)

as the exact error probability for QPSK.

Union bound and variants I now discuss the union bound on the perfor-

mance of M-ary signaling in AWGN. We can rewrite (3.48), the conditional

error probability, conditioned on Hi, as a union of M−1 events, as follows:

Pe�i = P�∪j 	=i
Zi < Zj��i sent��	

Since the probability of the union of events is upper bounded by the sum of

their probabilities, we obtain

Pe�i ≤
∑

j 	=i

P�Zi < Zj�i sent��	 (3.53)

But the jth term on the right-hand side above is simply the error probability

of ML reception for binary hypothesis testing between the signals si and sj .
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From the results of Section 3.5.1, we therefore obtain the following pairwise

error probability:

P�Zi < Zj�i sent��=Q

( ��sj − si��
2�

)

	

Substituting into (3.53), we obtain the following union bound.

Union bound The conditional error probabilities for the ML rule are

bounded as

Pe�i ≤
∑

j 	=i

Q

( ��sj − si��
2�

)

=
∑

j 	=i

Q

(

dij

2�

)

� (3.54)

introducing the notation dij for the distance between signals si and sj . This

can be averaged using the prior probabilities to obtain a bound on the average

error probability as follows:

Pe =
∑

i

��i�Pe�i ≤
∑

i

��i�
∑

j 	=i

Q

( ��sj − si��
2�

)

=
∑

i

��i�
∑

j 	=i

Q

(

dij

2�

)

	 (3.55)

We can now rewrite the union bound in terms of Eb/N0 and the scale-invariant

squared distances d2
ij

/

Eb as follows:

Pe�i ≤
∑

j 	=i

Q

(

√

d2
ij/Eb

√

Eb/2N0

)

� (3.56)

Pe =
∑

i

��i�Pe�i ≤
∑

i

��i�
∑

j 	=i

Q

(

√

d2
ij/Eb

√

Eb/2N0

)

	 (3.57)

Union bound for QPSK For QPSK, we infer from Figure 3.17 that the

union bound for Pe�1 is given by

Pe = Pe�1 ≤Q

(

d12

2�

)

+Q

(

d13

2�

)

+Q

(

d14

2�

)

= 2Q

(

d

2�

)

+Q

(√
2d

2�

)

	

Using d2/Eb = 4, we obtain the union bound in terms of Eb/N0 to be

Pe ≤ 2Q

(
√

2Eb

N0

)

+Q

(
√

4Eb

N0

)

QPSK union bound	 (3.58)

For moderately large Eb/N0, the dominant term in terms of the decay of the

error probability is the first one, since Q�x� falls off rapidly as x gets large.

Thus, while the union bound (3.58) is larger than the exact error probability

(3.52), as it must be, it gets the multiplicity and argument of the dominant

term correct.

The union bound can be quite loose for large signal constellations. However,

if we understand the geometry of the constellation well enough, we can tighten

this bound by pruning a number of terms from (3.54). Let me first discuss

this in the context of QPSK. Condition again on s1 being sent. Let E1 denote
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the event that y falls outside the first quadrant, the decision region for s1. We

see from Figure 3.17 that this implies that event E2 holds, where E2 is the

event that either y is closer to s2 than to s1 (if y lies in the left half plane), or

y is closer to s4 than to s1 (if it lies in the bottom half plane). Since E1 implies

E2, it is contained in E2, and its (conditional) probability is bounded by that

of E2. In terms of the decision statistics Zi, we can bound the conditional

error probability (i.e., the conditional probability of E1) as follows:

Pe�1 ≤ P�Z2 > Z1 or Z4 > Z1�s1 sent�≤ P�Z2 > Z1�s1 sent�

+P�Z4 > Z1�s1 sent�= 2Q

(

d

2�

)

	

In terms of Eb/N0, we obtain the “intelligent” union bound;

Pe = Pe�1 ≤ 2Q

(
√

2Eb

N0

)

QPSK intelligent union bound	 (3.59)

This corresponds to dropping the term corresponding to s3 from the union

bound for Pe�1. We term the preceding bound an “intelligent” union bound

because we have used our knowledge of the geometry of the signal constel-

lation to prune the terms in the union bound, while still obtaining an upper

bound for the error probability.

We now provide a characterization of the intelligent union bound forM-ary

signaling in general. Denote by Nml�i� the indices of the set of neighbors

of signal si (we exclude i from Nml�i� by definition) that characterize the

ML decision region �i. That is, the half planes that we intersect to obtain �i
correspond to the perpendicular bisectors of lines joining si and sj , j∈Nml�i�.

In particular, we can express the decision region in (3.47) as

�i = 
y � �ML�y�= i�= 
y � Zi ≥ Zj for all j∈Nml�i��	 (3.60)

We can now say the following: y falls outside �i if and only if Zi < Zj for

some j∈Nml�i�. We can therefore write

Pe�i = P�y � �i�i sent�= P�Zi < Zj for some j∈Nml�i��i sent� (3.61)

and from there, following the same steps as in the union bound, get a tighter

bound, which we express as follows.

Intelligent union bound A better bound on Pe�i is obtained by considering

only the neighbors of si that determine its ML decision region, as follows:

Pe�i ≤
∑

j∈ Nml�i�

Q

( ��sj − si��
2�

)

	 (3.62)

In terms of Eb/N0, we get

Pe�i ≤
∑

j∈ Nml�i�

Q





√

d2
ij

Eb

√

Eb

2N0



 (3.63)
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(the bound on the unconditional error probability Pe is computed as before

by averaging the bounds on Pe�i).

For QPSK, we see from Figure 3.17 that Nml�1�= 
2�4�, which means that

we need only consider terms corresponding to s2 and s4 in the union bound

for Pe�1, yielding the result (3.59).

As another example, consider the signal constellation depicted in Figure

3.11. The union bound is given by

Pe�1 ≤Q

(

d12

2�

)

+Q

(

d13

2�

)

+Q

(

d14

2�

)

+Q

(

d15

2�

)

+Q

(

d16

2�

)

	

However, since Nml�1�= 
2�3�4�5�, the last terms above can be dropped to

get the following intelligent union bound:

Pe�1 ≤Q

(

d12

2�

)

+Q

(

d13

2�

)

+Q

(

d14

2�

)

+Q

(

d15

2�

)

	

The gains from employing intelligent pruning of the union bound are larger

for larger signal constellations. In Chapter 5, for example, we apply more

sophisticated versions of these pruning techniques when discussing the per-

formance of ML demodulation for channels with intersymbol interference.

Another common approach for getting a better (and quicker to compute)

estimate than the original union bound is the nearest neighbors approxi-

mation. This is a loose term employed to describe a number of different

methods for pruning the terms in the summation (3.54). Most commonly,

it refers to regular signal sets in which each signal point has a number of

nearest neighbors at distance dmin from it, where dmin =min
i 	=j

��si− sj��. Letting
Ndmin

�i� denote the number of nearest neighbors of si, we obtain the following

approximation.

Nearest neighbors approximation

Pe�i ≈ Ndmin
�i�Q

(

dmin

2�

)

	 (3.64)

Averaging over i, we obtain

Pe ≈ N̄dmin
Q

(

dmin

2�

)

� (3.65)

where N̄dmin
denotes the average number of nearest neighbors for a signal

point. The rationale for the nearest neighbors approximation is that, since

Q�x� decays rapidly, Q�x� ∼ e−x2/2, as x gets large, the terms in the union

bound corresponding to the smallest arguments for the Q function dominate

at high SNR.
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The corresponding formulas as a function of scale-invariant quantities and

Eb/N0 are:

Pe�i ≈ Ndmin
�i�Q





√

d2
min

Eb

√

Eb

2N0



 	 (3.66)

It is also worth explicitly writing down an expression for the average error

probability, averaging the preceding over i:

Pe ≈ N̄dmin
Q





√

d2
min

Eb

√

Eb

2N0



 � (3.67)

where

N̄dmin
= 1

M

M
∑

i=1

Ndmin
�i�

is the average number of nearest neighbors for the signal points in the con-

stellation.

For QPSK, we have from Figure 3.17 that

Ndmin
�i�≡ 2= N̄dmin

and
√

d2
min

Eb

=
√

d2

Eb

= 4�

yielding

Pe ≈ 2Q

(
√

2Eb

N0

)

	

In this case, the nearest neighbors approximation coincides with the intelligent

union bound (3.59). This happens because the ML decision region for each

signal point is determined by its nearest neighbors for QPSK. Indeed, the latter

property holds for many regular constellations, including all of the PSK and

QAM constellations whose ML decision regions are depicted in Figure 3.12.

Power efficiency While the performance analysis for M-ary signaling is

difficult, we have now obtained simple enough estimates that we can define

concepts such as power efficiency, analogous to the development for binary

signaling. In particular, comparing the nearest neighbors approximation (3.65)

with the error probability for binary signaling (3.46), we define in analogy

the power efficiency of an M-ary signaling scheme as

�P =
d2
min

Eb

	 (3.68)
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We can rewrite the nearest neighbors approximation as

Pe ≈ N̄dmin
Q

(
√

�PEb

2N0

)

	 (3.69)

Since the argument of the Q function in (3.69) plays a bigger role than the

multiplicity N̄dmin
for moderately large SNR, �P offers a means of quickly

comparing the power efficiency of different signaling constellations, as well

as for determining the dependence of performance on Eb/N0.

Performance analysis for 16QAM I now apply the preceding performance

analysis to the 16QAM constellation depicted in Figure 3.18, where I have

chosen a convenient scale for the constellation. We now compute the nearest

neighbors approximation, which coincides with the intelligent union bound,

since the ML decision regions are determined by the nearest neighbors. Noting

that the number of nearest neighbors is four for the four innermost signal

points, two for the four outermost signal points, and three for the remaining

eight signal points, we obtain upon averaging

N̄dmin
= 3	 (3.70)

It remains to compute the power efficiency �P and apply (3.69). For the

scaling shown, we have dmin = 2. The energy per symbol is obtained as

follows:

Figure 3.18 ML decision

regions for 16QAM with

scaling chosen for convenience

in computing power efficiency.

Q

1

1

3

−1−3

−3

–1

I
3



August 13, 2007 5:46 p.m. CUP/FOD Page-124 9780521874144c03

124 Demodulation

Es = average energy of I component + average energy of Q component

= 2�average energy of I component�

by symmetry. Since the I component is equally likely to take the four values

±1 and ±3, we have:

average energy of I component = 1

2
�12+32�= 5

and

Es = 10	

We therefore obtain

Eb =
Es

log2M
= 10

log2 16
= 5

2
	

The power efficiency is therefore given by

�P =
d2
min

Eb

= 22

5
2

= 8

5
	 (3.71)

Substituting (3.70) and (3.71) into (3.69), we obtain

Pe�16QAM�≈ 3Q

(
√

4Eb

5N0

)

(3.72)

as the nearest neighbors approximation and intelligent union bound for

16QAM. The bandwidth efficiency for 16QAM is 4 bit/2 dimensions, which

is twice that of QPSK, whose bandwidth efficiency is 2 bit/2 dimensions.

It is not surprising, therefore, that the power efficiency of 16QAM (�P = 1	6)

is smaller than that of QPSK (�P = 4). We often encounter such tradeoffs

between power and bandwidth efficiency in the design of communication sys-

tems, including when the signaling waveforms considered are sophisticated

codes that are constructed from multiple symbols drawn from constellations

such as PSK and QAM.

Figure 3.19 shows the symbol error probabilities for QPSK, 16QAM, and

16PSK, comparing the intelligent union bounds (which coincide with near-

est neighbors approximations) with exact (up to, of course, the numerical

accuracy of the computer programs used) results. The exact computations

for 16QAM and 16PSK use expressions (3.72) and (3.92), as derived in

the problems. It can be checked that the power efficiencies of the con-

stellations accurately predict the distance between the curves. For example,

�P�QPSK�/�P�16QAM� = 4/1	6, which equals about 4 dB. From Figure

3.19, we see that the distance between the QPSK and 16QAM curves at small

error probabilities is about 4 dB.
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Figure 3.19 Symbol error

probabilities for QPSK,

16QAM, and 16PSK.
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Performance analysis for equal-energyM-ary orthogonal signaling This

is a signaling technique that lies at an extreme of the power-bandwidth tradeoff

space. The signal space is M-dimensional, hence it is convenient to take the

M orthogonal signals as unit vectors along the M axes. With this scaling, we

have Es = 1, so that Eb = 1/�log2M�. All signals are equidistant from each

other, so that the union bound, the intelligent union bound, and the nearest

neighbors approximation all coincide, with d2
min = 2 for the chosen scaling.

We therefore get the power efficiency

�P =
d2
min

Eb

= 2 log2M	

Note that the power efficiency gets better as M gets large. On the other hand,

the bandwidth efficiency, or the number of bits per dimension, is given by

�B =
log2M

M

and goes to zero as M → �. We now examine the behavior of the error

probability as M gets large, using the union bound.

Expressions for the probabilities of correct detection and error are derived

in Problem 3.25. Note here one of these expressions:

Pe = �M−1�
∫ �
−����x��M−2 ��x−m� 1√

2�
e−x2/2 dx

Exact error probability for orthogonal signaling�

(3.73)

where

m=
√

2Es

N0

=
√

2Eb log2M

N0
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The union bound is given by

Pe ≤ �M−1�Q

(√

Es

N0

)

= �M−1�Q

(√

Eb log2M

N0

)

Union bound for orthogonal signaling	

(3.74)

Let us now examine the behavior of this bound as M gets large. Noting that

the Q function goes to zero, and the term M−1 goes to infinity, we employ

l’Hôspital’s rule to evaluate the limit of the right-hand side above, interpreting

M as a real variable rather than an integer. Specifically, let

f1�M�=Q

(
√

Eb

N0

log2M

)

=Q

(
√

Eb

N0

lnM

ln 2

)

� f2�M�= 1

M−1
	

Since

dQ�x�

dx
=− 1√

2�
e−

x2

2 � we have

df1�M�

dM
=
[

d

dM

(
√

Eb

N0

lnM

ln 2

)]

[

− 1√
2�

e
−
(√

Eb
N0

lnM
ln 2

)2

/2

]

and

df2�M�

dM
=−�M−1�−2 ≈−M−2	

We obtain upon simplification that

lim
M→�

Pe ≤ lim
M→�

df1�M�

dM

df2�M�

dM

= lim
M→�

A�lnM�−
1
2M1−

Eb
N0
2 ln 2 � (3.75)

where A is a constant independent of M . The asymptotics as M → � are

dominated by the power of M on the right-hand side. If Eb/N0 < 2 ln 2, the

right-hand side of (3.75) tends to infinity; that is, the union bound becomes

useless, since Pe is bounded above by one. However, if Eb/N0 > 2 ln 2, the

right-hand side of (3.75) tends to zero, which implies that Pe tends to zero.

The union bound has quickly revealed a remarkable thresholding effect: M-

ary orthogonal signaling can be made arbitrarily reliable by increasing M ,

as long as Eb/N0 is above a threshold.

A more detailed analysis shows that the union bound threshold is off by

3 dB. One can actually show the following result (see Problem 3.26):

lim
M→�

Pe =
{

0� Eb

N0
> ln 2

1� Eb

N0
< ln 2

	 (3.76)

That is, by letting M get large, we can get arbitrarily reliable performance

as long as Eb/N0 exceeds −1	6 dB (ln 2 expressed in dB). Using the tools of

information theory, I observe in a later chapter that it is not possible to do

any better than this in the limit of communication over AWGN channels, as
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Figure 3.20 Symbol error

probabilities for M-ary

orthogonal signaling.
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the bandwidth efficiency is allowed to go to zero. That is, M-ary orthogonal

signaling is asymptotically optimum in terms of power efficiency

Figure 3.20 shows the probability of symbol error as a function of Eb/N0

for several values of M . We see that the performance is quite far away from

the asymptotic limit of –1.6 dB (also marked on the plot) for the moderate

values of M considered. For example, the Eb/N0 required for achieving an

error probability of 10−6 for M = 16 is more than 9 dB away from the

asymptotic limit.

3.6 Bit-level demodulation

So far, I have discussed how to decide which of M signals have been sent,

and how to estimate the performance of decision rules we employ. In practice,

however, the information to be sent is encoded in terms of binary digits, or

bits, taking value 0 or 1. Sending one of M signals conveys log2M bits of

information. Thus, an ML decision rule that picks one of these M signals is

actually making a decision on log2M bits. For hard decisions, we wish to

compute the probability of bit error, also termed the bit error rate (BER), as

a function of Eb/N0.

For a given SNR, the symbol error probability is only a function of the

constellation geometry, but the BER depends also on the manner in which

bits are mapped to signals. Let me illustrate this using the example of QPSK.

Figure 3.21 shows two possible bit maps for QPSK, along with the ML

decision regions demarcated by bold lines. The first is a Gray code, in which

the bit mapping is such that the labels for nearest neighbors differ in exactly
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Figure 3.21 QPSK with Gray

and lexicographic bitmaps.
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one bit. The second corresponds to a lexicographic binary representation of

0, 1, 2, 3, numbering the signals in counterclockwise order. Let us denote the

symbol labels as b�1�b�2� for the transmitted symbol, where b�1� and b�2�

each take values 0 and 1. Letting b̂�1�b̂�2� denote the label for the ML symbol

decision, the probabilities of bit error are given by p1 = P�b̂�1� 	= b�1�� and

p2 = P�b̂�2� 	= b�2��. The average probability of bit error, which we wish to

estimate, is given by pb = 1/2�p1+p2�.

Bit error probability for QPSK with Gray bitmap Conditioned on 00

being sent, the probability of making an error on b�1� is as follows:

P�b̂�1� = 1�00 sent�= P�ML decision is 10 or 11�00 sent�

= P�Nc <−d

2
�=Q�

d

2�
�=Q

(
√

2Eb

N0

)

�

where, as before, I have expressed the result in terms of Eb/N0 using the

power efficiency d2/Eb = 4. Also note, by the symmetry of the constellation

and the bit map, that the conditional probability of error of b�1� is the same,

regardless of which symbol we condition on. Moreover, exactly the same

analysis holds for b�2�, except that errors are caused by the noise random

variable Ns. We therefore obtain

pb = p1 = p2 =Q

(
√

2Eb

N0

)

	 (3.77)

The fact that this expression is identical to the bit error probability for binary

antipodal signaling is not a coincidence; QPSK with Gray coding can be

thought of as two independent BPSK (or binary antipodal signaling) systems,

one signaling along the I (or “cosine”) component, and the other along the Q

(or “sine”) component.
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Bit error probability for QPSK with lexicographic bitmap Conditioned

on 00 being sent, it is easy to see that the error probability for b�1� is as with

the Gray code. That is,

p1 =Q

(
√

2Eb

N0

)

	

However, the conditional error probability for b�2� is different: to make an

error in b�2�, the noise must move the received signal from the first quadrant

into the second or fourth quadrants, the probability of which is given as

follows:

P�b̂�2� 	= b�2��00 sent�= P�b̂�2�= 1�00 sent�

= P�ML decision is 01 or 11�00 sent�

= P

[

Nc <−d

2
�Ns >−d

2

]

+P

[

Nc >−d

2
�Ns <−d

2

]

	

We have a similar situation regardless of which symbol we condition on. An

error in b�2� occurs if the noise manages to move the received signal into

either one of the two quadrants adjacent to the one in which the transmitted

signal lies. We obtain, therefore,

p2 = 2Q

(

d

2�

)[

1−Q

(

d

2�

)]

= 2Q

(

√

2Eb

N0

)[

1−Q

(

√

2Eb

N0

)]

≈ 2Q

(

√

2Eb

N0

)

for moderately large Eb/N0. Thus, p2 is approximately two times larger

than the corresponding quantity for Gray coding, and the average bit error

probability is about 1.5 times larger than for Gray coding.

While I have invoked large SNR to discuss the impact of bitmaps, the

superiority of Gray coding over an arbitrary bitmap, such as a lexicographic

map, plays a bigger role for coded systems operating at low SNR. Gray

coding also has the advantage of simplifying the specification of the bit-level

demodulation rules for regular constellations. Gray coding is an important

enough concept to merit a systematic definition, as follows.

Gray coding Consider a 2n-ary constellation in which each point is repre-

sented by a binary string b = �b1� 
 
 
 � bn�. The bit assigment is said to be

Gray coded if, for any two constellation points b and b′ which are nearest

neighbors, the bit representations b and b′ differ in exactly one bit location.

Fortunately, QPSK is a simple enough constellation to allow for an exact

analysis. A similar analysis can be carried out for larger rectangular constella-

tions such as 16QAM. It is not possible to obtain simple analytical expressions

for BER for nonrectangular constellations such as 8PSK. In general, it is

useful to develop quick estimates for the bit error probability, analogous to

the results derived earlier for symbol error probability. Finding bounds on the
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bit error probability is difficult, hence I restrict myself to a discussion of the

nearest neighbors approximation.

Nearest neighbors approximation to the bit error probability Consider

a 2n-ary constellation in which each constellation point is represented by a

binary string of length n as above. Define d�b�b′� as the distance between

constellation points labeled by b and b′. Define dmin�b� = min
b′ 	=b

d�b�b′� as

the the distance of b from its nearest neighbors. Let Ndmin
�b� i� denote the

number of nearest neighbors of b that differ in the ith bit location, i.e.,

Ndmin
�b� i� = card
b′ � d�b�b′� = dmin�b�� bi 	= b′ i�. Given that b is sent, the

conditional probability of error for the ith bit can be approximated by

P�bi wrong�b sent�≈ Ndmin
�b� i�Q

(

dmin�b�

2�

)

so that, for equiprobable signaling, the unconditional probability of the ith bit

being in error is

P�bi wrong�≈
1

2n

∑

b

Ndmin
�b� i�Q

(

dmin�b�

2�

)

	

For an arbitrary constellation or an arbitrary bit mapping, the probability of

error for different bit locations may be different. This may indeed be desirable

for certain applications in which we wish to provide unequal error protection

among the bits. Usually, however, we attempt to protect each bit equally. In

this case, we are interested in the average bit error probability

P�bit error�= 1

n

n
∑

i=1

P�bi wrong�	

BER with Gray coding For a Gray coded constellation, Ndmin
�b� i�≤ 1 for

all b and all i. It follows that the value of the nearest neighbors approximation

for bit error probability is at most Q�dmin/2�� = Q
(

√

��PEb/2N0�
)

, where

�P = d2
min/Eb is the power efficiency.

P�bit error�≈Q

(
√

�PEb

2N0

)

with Gray coding (3.78)

Figure 3.22 shows the BER of 16QAM and 16PSK with Gray coding, com-

paring the nearest neighbors approximation with exact results (obtained ana-

lytically for 16QAM, and by simulation for 16PSK). The slight pessimism

and ease of computation of the nearest neighbors approximation implies that

it is an excellent tool for link design.

Note that Gray coding may not always be possible. Indeed, for an arbitrary

set of M = 2n signals, we may not understand the geometry well enough to

assign a Gray code. In general, a necessary (but not sufficient) condition for

an n-bit Gray code to exist is that the number of nearest neighbors for any

signal point should be at most n.
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Figure 3.22 BER for 16QAM

and 16PSK with Gray coding.
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Bit error rate for orthogonal modulation For M = 2m-ary equal energy,

orthogonal modulation, each of the m bits split the signal set into half. By

the symmetric geometry of the signal set, any of the M− 1 wrong symbols

is equally likely to be chosen, given a symbol error, and M/2 of these will

correspond to error in a given bit. We therefore have

P�bit error�=
M
2

M−1
P�symbol error�� BER for M-ary orthogonal

signaling	 (3.79)

Note that Gray coding is out of the question here, since there are only m bits

and 2m−1 neighbors, all at the same distance.

Alternative bit-to-symbol maps Gray coding tries to minimize the number

of bit errors due to likely symbol error events. It therefore works well for

uncoded systems, or for coded systems in which the bits sent to the modulator

are all of equal importance. However, there are coded modulation strategies

that can be built on the philosophy of assigning different levels of importance

to different bits, for which alternatives to the Gray map are more appropriate.

I discuss this in the context of trellis coded modulation in Chapter 7.

3.6.1 Bit-level soft decisions

Bit-level soft decisions can be computed from symbol level soft decisions.

Consider the posterior probabilities computed for the scenario depicted in
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Figure 3.13 in Section 3.4.2. If we now assume Gray coding as in Figure

3.21, we have

P�b�1�= 0�y�= P�s1 or s4 sent�y�= �1�y�+�4�y�	

Similarly,

P�b�2�= 0�y�= P�s1 or s2 sent�y�= �1�y�+�2�y�	

We can now read off the bit level soft decisions from Table 3.1. For exam-

ple, for y = �0	25�0	5�, we have P�b�1�= 0�y�= 0	455+0	167= 0	622 and

P�b�2� = 0�y� = 0	455+ 0	276 = 0	731. As shall be seen in Chapter 7, it is

often convenient to express the bit-level soft decisions as log likelihood ratios

(LLRs), where we define the LLR for a bit b as

LLR�b�= log
P�b = 0�

P�b = 1�
	

We therefore obtain the LLR for b�1�, conditioned on the observation, as

LLR�b�1��y�= log
0	622

1−0	622
= 0	498	

For Gray coded QPSK, it is easier to compute the bit-level soft decisions

directly, using the fact that b�1� and b�2� may be interpreted as being trans-

mitted using BPSK on two parallel channels. Let me now outline how to

compute soft decisions for BPSK signaling.

Soft decisions for BPSK Suppose that a bit b∈ 
0�1� is sent by mapping

it to the symbol �−1�b ∈ 
−1�+1�. Then the decision statistic Y for BPSK

follows the model:

Y =
{

A+N� b = 0

−A+N� b = 1�

where A > 0 is the amplitude and N ∼ N�0��2�. Suppose that the prior

probability of 0 being sent is �0. (While 0 and 1 are usually equally likely,

we shall see the benefit of this general formulation when I discuss iterative

decoding in Chapter 7: decoding modules exchange information, with the

output of one module in the decoder provides priors to be used for LLR

computation in another.) Using Bayes’ rule, P�b�y� = P�b�p�y�b�/p�y�, b =
0�1, so that the LLR is given by

LLR�b�y�= log
P�b = 0�y�
P�b = 1�y� = log

�0p�y�0�
�1p�y�1�

	

Plugging in the Gaussian densities p�y�0� and p�y�1� and simplifying, we

obtain

LLR�b�y�= LLRprior�b�+
2Ay

�2
� (3.80)
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where LLRprior = log�0/�1 is the LLR based on the priors. The formula

reveals a key advantage of using LLR (as opposed to, say, the conditional

probability P�0�y�) to express soft decisions: the LLR is simply as a sum of

information from the priors and from the observation.

3.7 Elements of link budget analysis

Communication link design corresponds to making choices regarding transmit

power, antenna gains at transmitter and receiver, quality of receiver circuitry,

and range, which have not been mentioned so far in either this chapter or the

previous one. I now discuss how these physical parameters are related to the

quantities we have been working with. Before doing this, let me summarize

what we do know:

(a) Given the bit rate Rb and the signal constellation, we know the symbol

rate (or more generally, the number of modulation degrees of freedom

required per unit time), and hence the minimum Nyquist bandwidth Bmin.

We can then factor in the excess bandwidth a dictated by implementation

considerations to find the bandwidth B = �1+a�Bmin required.

(b) Given the constellation and a desired bit error probability, we can infer the

Eb/N0 we need to operate at. Since the SNR satisfies SNR= EbRb/N0B,

we have

SNRreqd =
(

Eb

N0

)

reqd

Rb

B
	 (3.81)

(c) Given the receiver noise figure F (dB), we can infer the noise power

Pn =N0B= kT010
F/10B, and hence the minimum required received signal

power is given by

PRX�min�= SNRreqdPn =
(

Eb

N0

)

reqd

Rb

B
Pn	 (3.82)

This is called the required receiver sensitivity, and is usually quoted in dBm,

as PRX�dBm�min�= 10 log10 PRX�min��mW�.

Now that we know the required received power for “closing” the link, all

we need to do is to figure out link parameters such that the receiver actually

gets at least that much power, plus a link margin (typically expressed in dB).

Let us do this using the example of an idealized line-of-sight wireless link. In

this case, if PTX is the transmitted power, then the received power is obtained

using Friis’ formula for propagation loss in free space:

PRX = PTX GTX GRX

�2

16�2R2
� (3.83)

where

• GTX is the gain of the transmit antenna,

• GRX is the gain of the receive antenna,



August 13, 2007 5:46 p.m. CUP/FOD Page-134 9780521874144c03

134 Demodulation

• �= c/fc is the carrier wavelength (c = 3×108 m/s, is the speed of light,

fc the carrier frequency),

• R is the range (line-of-sight distance between transmitter and receiver).

Note that the antenna gains are with respect to an isotropic radiator. As with

most measures related to power in communication systems, antenna gains are

typically expressed on the logarithmic scale, in dBi, where GdBi = 10 log10G

for an antenna with raw gain G.

It is convenient to express the preceding equation in the logarithmic scale

to convert the multiplicative factors into addition. For example, expressing

the powers in dBm and the gains in dB, we have

PRX�dBm = PTX�dBm +GTX�dBi+GRX�dBi+10 log10
�2

16�2R2
(3.84)

where the antenna gains are expressed in dBi (referenced to the 0 dB gain of

an isotropic antenna). More generally, we have the link budget equation

PRX�dBm = PTX�dBm +GTX�dB+GRX�dB−Lpath�dB�R� (3.85)

where Lpath�dB�R� is the path loss in dB. For free space propagation, we have

from Friis’ formula (3.84) that

Lpath�dB�R�=−10 log10
�2

16�2R2
path loss in dB for free space propagation	

(3.86)

However, we can substitute any other expression for path loss in (3.85),

depending on the propagation environment we are operating under. For exam-

ple, for wireless communication in a cluttered environment, the signal power

may decay as 1/R4 rather than the free space decay of 1/R2. Propagation

measurements, along with statistical analysis, are typically used to charac-

terize the path loss as a function of range for the system being designed.

Once we decide on the path loss formula (Lpath�dB�R�) to be used in the

design, the transmit power required to attain a given receiver sensitivity can

be determined as a function of range R. Such a path loss formula typically

characterizes an “average” operating environment, around which there might

be significant statistical variations that are not captured by the model used

to arrive at the receiver sensitivity For example, the receiver sensitivity for a

wireless link may be calculated based on the AWGN channel model, whereas

the link may exhibit rapid amplitude variations due to multipath fading, and

slower variations due to shadowing (e.g., due to buildings and other obsta-

cles). Even if fading or shadowing effects are factored into the channel model

used to compute the BER, and the model for path loss, the actual environment

encountered may be worse than that assumed in the model. In general, there-

fore, we add a link margin Lmargin�dB, again expressed in dB, in an attempt

to budget for potential performance losses due to unmodeled or unforeseen
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impairments. The size of the link margin depends, of course, on the confi-

dence of the system designer in the models used to arrive at the rest of the

link budget.

Putting this all together, if PRX�dBm�min� is the desired receiver sensitivity

(i.e., the minimum required received power), then we compute the transmit

power for the link to be

PTX�dBm = PRX�dBm�min�−GTX�dB−GRX�dB+Lpath�dB�R�+Lmargin�dB	 (3.87)

Let me now illustrate these concepts using an example.

Example 3.7.1 Consider again the 5GHz WLAN link of Example 3.1.4.

We wish to utilize a 20MHz channel, using QPSK and an excess band-

width of 33 %. The receiver has a noise figure of 6 dB.

(a) What is the bit rate?

(b) What is the receiver sensitivity required to achieve a bit error rate

(BER) of 10−6?

(c) Assuming transmit and receive antenna gains of 2 dBi each, what is

the range achieved for 100mW transmit power, using a link margin

of 20 dB? Use link budget analysis based on free space path loss.

Solution to (a) For bandwidth B and fractional excess bandwidth a, the

symbol rate

Rs =
1

T
= B

1+a
= 20

1+0	33
= 15 Msymbol/s

and the bit rate for an M-ary constellation is

Rb = Rs log2M = 15 Msymbol/s×2 bit/symbol= 30 Mbit/s	

Solution to (b) The BER for QPSK with Gray coding is Q
(

√

2Eb/N0

)

.

For a desired BER of 10−6, we obtain that �Eb/N0�reqd is about 10.2 dB.

From (3.81), we obtain

SNRreqd = 10	2+10 log10
30

20
≈ 12 dB	

We know from Example 3.1.4 that the noise power is −95 dBm. Thus,

the desired receiver sensitivity is

PRX�dBm�min�= Pn�dBm +SNRreqd�dB =−95+12=−83 dBm	

Solution to (c) The transmit power is 100mW, or 20 dBm. Rewriting

(3.87), the allowed path loss to attain the desired sensitivity at the desired

link margin is

Lpath�dB�R� = PTX�dBm −PRX�dBm�min�+GTX�dBi+GRX�dBi−Lmargin�dB

= 20− �−83�+2+2−20= 87 dB	 (3.88)
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We can now invert the formula for free space loss, (3.86), to get a range R

of 107 meters, which is of the order of the advertised ranges for WLANs

under nominal operating conditions. The range decreases, of course, for

higher bit rates using larger constellations. What happens, for example,

when we use 16QAM or 64-QAM?

3.8 Further reading

Most communication theory texts, including those mentioned in Section 1.3,

cover signal space concepts in some form. These concepts were first presented

in a cohesive manner in the classic text by Wozencraft and Jacobs [10], which

remains recommended reading. The fundamentals of detection and estimation

can be explored further using the text by Poor [19].

3.9 Problems

3.9.1 Gaussian basics

Problem 3.1 Two random variables X and Y have joint density

pX�Y �x� y�=
{

Ke−
2x2+y2

2 xy ≥ 0

0 xy < 0	

(a) Find K.

(b) Show that X and Y are each Gaussian random variables.

(c) Express the probability P�X2+X > 2� in terms of the Q function.

(d) Are X and Y jointly Gaussian?

(e) Are X and Y independent?

(f) Are X and Y uncorrelated?

(g) Find the conditional density pX�Y �x�y�. Is it Gaussian?

Problem 3.2 (Computations for Gaussian random vectors) The random

vector X= �X1X2�
T is Gaussian with mean vectorm= �2�1�T and covariance

matrix C given by

C=
(

1 −1

−1 4

)

	

(a) Let Y1 = X1+2X2, Y2 =−X1+X2. Find cov�Y1� Y2�.

(b) Write down the joint density of Y1 and Y2.

(c) Express the probability P�Y1 > 2Y2+1� in terms of the Q function.
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Problem 3.3 (Bounds on the Q function) We derive the bounds (3.5) and

(3.4) for

Q�x�=
∫ �

x

1√
2�

e−t2/2dt	 (3.89)

(a) Show that, for x ≥ 0, the following upper bound holds:

Q�x�≤ 1

2
e−x2/2	

Hint Try pulling out a factor of e−x2 from (3.89), and then bounding the resulting

integrand. Observe that t ≥ x ≥ 0 in the integration interval.

(b) For x≥ 0, derive the following upper and lower bounds for theQ function:

(

1− 1

x2

)

e−x2/2

√
2�x

≤Q�x�≤ e−x2/2

√
2�x

	

Hint Write the integrand in (3.89) as a product of 1/t and te−t2/2 and then integrate

by parts to get the upper bound. Integrate by parts once more using a similar trick to

get the lower bound. Note that you can keep integrating by parts to get increasingly

refined upper and lower bounds.

Problem 3.4 (From Gaussian to Rayleigh, Rician, and exponential ran-

dom variables) Let X1, X2 be i.i.d. Gaussian random variables, each with

mean zero and variance v2. Define �R��� as the polar representation of the

point �X1�X2�, i.e.,

X1 = R cos�� X2 = R sin��

where R≥ 0 and �∈ �0�2��.

(a) Find the joint density of R and �.

(b) Observe from (a) that R, � are independent. Show that � is uniformly

distributed in �0�2��, and find the marginal density of R.

(c) Find the marginal density of R2.

(d) What is the probability that R2 is at least 20 dB below its mean value?

Does your answer depend on the value of v2?

Remark The random variable R is said to have a Rayleigh distribution.

Further, you should recognize that R2 has an exponential distribution. We use

these results when we discuss noncoherent detection and Rayleigh fading in

Chapter 3.
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(e) Now, assume that X1 ∼N�m1� v
2�, X2 ∼N�m2� v

2� are independent, where

m1 and m2 may be nonzero. Find the joint density of R and �, and the

marginal density of R. Express the latter in terms of the modified Bessel

function

I0�x�=
1

2�

∫ 2�

0
exp�x cos�� d�	

Remark The random variable R is said to have a Rician distribution in this

case. This specializes to a Rayleigh distribution when m1 =m2 = 0.

Problem 3.5 (Geometric derivation of Q function bound) Let X1 and X2

denote independent standard Gaussian random variables.

(a) For a > 0, express P��X1�> a� �X2�> a� in terms of the Q function.

(b) Find P�X2
1 +X2

2 > 2a2�.

Hint Transform to polar coordinates. Or use the results of Problem 3.4.

(c) Sketch the regions in the �x1� x2� plane corresponding to the events con-

sidered in (a) and (b).

(d) Use (a)–(c) to obtain an alternative derivation of the boundQ�x�≤ 1
2
e−x2/2

for x ≥ 0 (i.e., the bound in Problem 3.3(a)).

3.9.2 Hypothesis testing basics

Problem 3.6 The received signal in a digital communication system is

given by

y�t�=
{

s�t�+n�t� 1 sent

n�t� 0 sent�

where n is AWGN with PSD �2 = N0/2 and s�t� is as shown below. The

received signal is passed through a filter, and the output is sampled to yield

a decision statistic. An ML decision rule is employed based on the decision

statistic. The set-up is shown in Figure 3.23.

Figure 3.23 Set-up for

Problem 3.6.

t = t0

ML decision
ruleh(t)

0 4

1

–1

t

s(t)

2
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(a) For h�t� = s�−t�, find the error probability as a function of Eb/N0 if

t0 = 1.

(b) Can the error probability in (a) be improved by choosing the sampling

time t0 differently?

(c) Now find the error probability as a function of Eb/N0 for h�t�= I�0�2� and

the best possible choice of sampling time.

(d) Finally, comment on whether you can improve the performance in (c) by

using a linear combination of two samples as a decision statistic, rather

than just using one sample.

Problem 3.7 Find and sketch the decision regions for a binary hypothesis

testing problem with observation Z, where the hypotheses are equally likely,

and the conditional distributions are given by

H0: Z is uniform over �−2�2�,

H1: Z is Gaussian with mean 0 and variance 1.

Problem 3.8 The receiver in a binary communication system employs a

decision statistic Z which behaves as follows:

Z = N if 0 is sent,

Z = 4+N if 1 is sent,

where N is modeled as Laplacian with density

pN�x�=
1

2
e−�x�� −�< x <�	

Note Parts (a) and (b) can be done independently.

(a) Find and sketch, as a function of z, the log likelihood ratio

K�z�= logL�z�= log
p�z�1�
p�z�0� �

where p�z�i� denotes the conditional density of Z given that i is sent

(i= 0�1).

(b) Find Pe�1, the conditional error probability given that 1 is sent, for the

decision rule

��z�=
{

0� z < 1

1� z≥ 1	

(c) Is the rule in (b) the MPE rule for any choice of prior probabilities? If

so, specify the prior probability �0 = P� 0 sent� for which it is the MPE

rule. If not, say why not.

Problem 3.9 The output of the receiver in an optical on–off keyed system

is a photon count Y , where Y is a Poisson random variable with mean m1 if

1 is sent, and mean m0 if 0 is sent (assume m1 >m0). Assume that 0 and 1

are equally likely to be sent.
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(a) Find the form of the ML rule. Simplify as much as possible, and explicitly

specify it for m1 = 100, m0 = 10.

(b) Find expressions the conditional error probabilities Pe�i, i = 0�1 for the

ML rule, and give numerical values for m1 = 100, m0 = 10.

Problem 3.10 Consider hypothesis testing based on the decision statistic Y ,

where Y ∼ N�1�4� under H1 and Y ∼ N�−1�1� under H0.

(a) Show that the optimal (ML or MPE) decision rule is equivalent to com-

paring a function of the form ay2+by with a threshold.

(b) Specify the rule explicitly (i.e., specify a, b and the threshold) for the

MPE rule when �0 = 1/3.

3.9.3 Receiver design and performance analysis for the AWGN channel

Problem 3.11 Let p1�t�= I�0�1��t� denote a rectangular pulse of unit duration.

Consider two 4-ary signal sets as follows:

Signal set A: si�t�= p1�t− i�, i= 0�1�2�3.

Signal set B: s0�t� = p1�t�+p1�t− 3�, s1�t� = p1�t− 1�+p1�t− 2�, s2�t� =
p1�t�+p1�t−2�, s3�t�= p1�t−1�+p1�t−3�.

(a) Find signal space representations for each signal set with respect to the

orthonormal basis 
p1�t− i�� i= 0�1�2�3�.

(b) Find union bounds on the average error probabilities for both signal sets

as a function of Eb/N0. At high SNR, what is the penalty in dB for using

signal set B?

(c) Find an exact expression for the average error probability for signal set

B as a function of Eb/N0.

Problem 3.12 Three 8-ary signal constellations are shown in Figure 3.24.

Figure 3.24 Signal

constellations for Problem

3.12.

(a) Express R and d
�2�

min in terms of d
�1�

min so that all three constellations have

the same Eb.

(b) For a given Eb/N0, which constellation do you expect to have the smallest

bit error probability over a high SNR AWGN channel?

(c) For each constellation, determine whether you can label signal points

using three bits so that the label for nearest neighbors differs by at most

QAM1 QAM2

R

8-PSK
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one bit. If so, find such a labeling. If not, say why not and find some

“good” labeling.

(d) For the labelings found in part (c), compute nearest neighbors approxima-

tions for the average bit error probability as a function of Eb/N0 for each

constellation. Evaluate these approximations for Eb/N0 = 15 dB.

Problem 3.13 Consider the signal constellation shown in Figure 3.25, which

consists of two QPSK constellations of different radii, offset from each other

by �/4. The constellation is to be used to communicate over a passband

AWGN channel.

(a) Carefully redraw the constellation (roughly to scale, to the extent possible)

for r = 1 and R=
√
2. Sketch the ML decision regions.

(b) For r = 1 and R=
√
2, find an intelligent union bound for the conditional

error probability, given that a signal point from the inner circle is sent,

as a function of Eb/N0.

(c) How would you choose the parameters r and R so as to optimize the

power efficiency of the constellation (at high SNR)?

Problem 3.14 (Exact symbol error probabilities for rectangular con-

stellations) Assuming each symbol is equally likely, derive the following

expressions for the average error probability for 4PAM and 16QAM:

Pe =
3

2
Q

(
√

4Eb

5N0

)

� symbol error probability for 4PAM (3.90)

Pe = 3Q

(
√

4Eb

5N0

)

− 9

4
Q2

(
√

4Eb

5N0

)

� symbol error probability

for 16QAM (3.91)

Figure 3.25 Constellation for

Problem 3.13.

R

r
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(Assume 4PAM with equally spaced levels symmetric about the origin, and

rectangular 16QAM equivalent to two 4PAM constellations independently

modulating the I and Q components.)

Problem 3.15 (Symbol error probability for PSK) In this problem, we

will derive an expression for the symbol error probability for M-ary PSK

that requires numerical evaluation of a single integral over a finite interval.

Figure 3.26 shows the decision boundaries corresponding to a point in a PSK

constellation. A two-dimensional noise vector originating from the signal

point must reach beyond the boundaries to cause an error. A direct approach

to evaluating error probability requires integration of the two-dimensional

Gaussian density over an infinite region. We avoid this by switching to polar

coordinates, with the noise vector having radius L and angle � as shown.

(a) Owing to symmetry, the error probability equals twice the probability

of the noise vector crossing the top decision boundary. Argue that this

happens if L > d��� for some �∈ �0��−�/M�.

(b) Show that the probability of error is given by

Pe = 2
∫ �− �

M

0
P�L > d������p��� d�	

(c) Use Problem 3.4 to show that P�L > d�= e
− d2

2�2 , that L is independent of

�, and that � is uniform over �0�2��.

(d) Show that d���= �R sin�/M�/�sin��+�/M��.

(e) Conclude that the error probability is given by

Pe =
1

�

∫ �− �
M

0
e
− R2 sin2 �

M
2�2 sin2��+ �

M � d�	

(f) Use the change of variable �= �− ��+�/M� (or alternatively, realize

that �+�/M (mod 2�) is also uniform over �0�2��) to conclude that

Pe =
1

�

∫ �− �
M

0
e
− R2 sin2 �

M
2�2 sin2 � d�= 1

�

∫ �− �
M

0
e
− Eb log2M sin2 �

M
N0 sin

2 � d�� (3.92)

symbol error probability for M-ary PSK

Figure 3.26 Figure for

Problem 3.15.

π/M θ

Origin R Signal point

Decision boundary

Decision boundary

Noise vector 
(length L)

d(θ)
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Figure 3.27 Constellation for

Problem 3.16.

d

I

Q

d

Problem 3.16 The signal constellation shown in Figure 3.27 is obtained by

moving the outer corner points in rectangular 16QAM to the I and Q axes.

(a) Sketch the ML decision regions.

(b) Is the constellation more or less power efficient than rectangular 16QAM?

Problem 3.17 The V.29 standard for 9.6 Kbit/s modems uses a 16-ary

signal constellation with four signals with coordinates �±− 1�±− 1�, four

others with coordinates �±3�±3�, and two each having coordinates �±3�0�,

�±5�0�, �0�±3�, and �0�±5�, respectively.

(a) Sketch the signal constellation and indicate the ML decision regions.

(b) Find an intelligent union bound on the average symbol error probability

as a function of Eb/N0.

(c) Find the nearest neighbors approximation to the average symbol error

probability as a function of Eb/N0.

(d) Find the nearest neighbors approximation to the average symbol error

probability for 16QAM as a function of Eb/N0.

(e) Comparing (c) and (d) (i.e., comparing the performance at high SNR),

which signal set is more power efficient?

d

d1

Figure 3.28 QPSK with

erasures.

Problem 3.18 A QPSK demodulator is designed to put out an erasure when

the decision is ambivalent. Thus, the decision regions are modified as shown

in Figure 3.28, where the cross-hatched region corresponds to an erasure. Set

�= d1/d, where 0 ≤ �≤ 1.

(a) Use the intelligent union bound to find approximations to the probability

p of symbol error and the probability q of symbol erasure in terms of

Eb/N0 and �.

(b) Find exact expressions for p and q as functions of Eb/N0 and �.

(c) Using the approximations in (a), find an approximate value for � such

that q = 2p for Eb/N0 = 4 dB.
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(0, 1)

(0, 0) (1, 0)

(1, 1)

θ

Remark The motivation for (c) is that a typical error-correcting code can

correct twice as many erasures as errors.

Figure 3.29 Signal

constellation with unequal

error protection (Problem

3.19).

Problem 3.19 Consider the constant modulus constellation shown in

Figure 3.29 where � ≤ �/4. Each symbol is labeled by two bits �b1� b2�,

as shown. Assume that the constellation is used over a complex base-

band AWGN channel with noise power spectral density (PSD) N0/2 in

each dimension. Let �b̂1� b̂2� denote the maximum likelihood (ML) estimates

of �b1� b2�.

(a) Find Pe1 = P�b̂1 	= b1� and Pe2 = P�b̂2 	= b2� as a function of Es/N0, where

Es denotes the signal energy.

(b) Assume now that the transmitter is being heard by two receivers, R1 and

R2, and that R2 is twice as far away from the transmitter as R1. Assume

that the received signal energy falls off as 1/r4, where r is the distance

from the transmitter, and that the noise PSD for both receivers is identical.

Suppose that R1 can demodulate both bits b1 and b2 with error probability

at least as good as 10−3, i.e., so that max
Pe1�R1��Pe2�R1�� = 10−3.

Design the signal constellation (i.e., specify �) so that R2 can demodulate

at least one of the bits with the same error probability, i.e., such that

min
Pe1�R2��Pe2�R2��= 10−3.

Remark You have designed an unequal error protection scheme in which

the receiver that sees a poorer channel can still extract part of the information

sent.

Problem 3.20 (Demodulation with amplitude mismatch) Consider a

4PAM system using the constellation points 
±1�±3�. The receiver has an

accurate estimate of its noise level. An automatic gain control (AGC) circuit

is supposed to scale the decision statistics so that the noiseless constellation

points are in 
±1�±3�. The ML decision boundaries are set according to this

nominal scaling.

(a) Suppose that the AGC scaling is faulty, and the actual noiseless signal

points are at 
±0	9�±2	7�. Sketch the points and the mismatched decision
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regions. Find an intelligent union bound for the symbol error probability

in terms of the Q function and Eb/N0.

(b) Repeat (a), assuming that faulty AGC scaling puts the noiseless signal

points at 
±1	1�±3	3�.

(c) The AGC circuits try to maintain a constant output power as the input

power varies, and can be viewed as imposing a scale factor on the

input inversely proportional to the square root of the input power.

In (a), does the AGC circuit overestimate or underestimate the input

power?

Problem 3.21 (Demodulation with phase mismatch) Consider a BPSK

system in which the receiver’s estimate of the carrier phase is off by �.

(a) Sketch the I and Q components of the decision statistic, showing the

noiseless signal points and the decision region.

(b) Derive the BER as a function of � and Eb/N0 (assume that � < �/2).

(c) Assuming now that � is a random variable taking values uniformly

in �−�/4��/4�, numerically compute the BER averaged over �, and

plot it as a function of Eb/N0. Plot the BER without phase mis-

match as well, and estimate the dB degradation due to the phase

mismatch.

Problem 3.22 (Soft decisions for BPSK) Consider a BPSK system in which

0 and 1 are equally likely to be sent, with 0 mapped to +1 and 1 to −1 as

usual.

(a) Show that the LLR is conditionally Gaussian given the transmitted bit,

and that the conditional distribution is scale-invariant, depending only on

the SNR.

(b) If the BER for hard decisions is 10%, specify the conditional distribution

of the LLR, given that 0 is sent.

Problem 3.23 (Soft decisions for PAM) Consider a 4PAM constellation in

which the signal levels at the receiver have been scaled to±1�±3. The system

is operating at Eb/N0 of 6 dB. Bits b1� b2 ∈ 
0�1� are mapped to the symbols

using Gray coding. Assume that �b1� b2� = �0�0� for symbol −3, and �1�0�

for symbol +3.

(a) Sketch the constellation, along with the bit maps. Indicate the ML hard

decision boundaries.

(b) Find the posterior symbol probability P�−3�y� as a function of the noisy

observation y. Plot it as a function of y.

Hint The noise variance can be inferred from the signal levels and SNR.

(c) Find P�b1 = 1�y� and P�b2 = 1�y�, and plot each as a function of y.
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(d) Display the results of part (c) in terms of LLRs.

LLR1�y�= log
P�b1 = 0�y�
P�b1 = 1�y� � LLR2�y�= log

P�b2 = 0�y�
P�b2 = 1�y�

Plot the LLRs as a function of y, saturating the values as ±50.

(e) Try other values of Eb/N0 (e.g., 0 dB, 10 dB). Comment on any trends

you notice. How do the LLRs vary as a function of distance from the

noiseless signal points? How do they vary as you change Eb/N0?

(f) Simulate the system over multiple symbols at Eb/N0 such that the BER is

about 5%. Plot the histograms of the LLRs for each of the two bits, and

comment on whether they look Gaussian. What happens as you increase

or decrease Eb/N0?

Figure 3.30 Gray coded 8PSK

constellation for Problem 3.24.

Problem 3.24 (Soft decisions for PSK) Consider the Gray coded 8PSK

constellation shown in Figure 3.30, labeled with bits �b1� b2� b3�. The received

samples are ISI-free, with the noise contribution modeled as discrete-time

WGN with variance 0	1 per dimension. The system operates at an Eb/N0

of 8 dB.

(a) Use the nearest neighbors approximation to estimate the BER for hard

decisions.

(b) For a received sample y = 2e−j2�/3, find the hard decisions on the bits.

(c) Find the LLRs for each of the three bits for the received sample in (b).

(d) Now, simulate the system over multiple symbols at Eb/N0 such that the

BER for hard decisions is approximately 5%. Plot the histograms of the

LLRs of each of the three bits, and comment on their shapes. What

happens as you increase or decrease Eb/N0?

Problem 3.25 (Exact performance analysis for M-ary orthogonal sig-

naling) Consider an M-ary orthogonal equal-energy signal set 
si� i =

I

001

011

010

110

111

101

100

Q

000
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1� 
 
 
 �M� with 
si� sj� = Es�ij , for 1≤ i� j ≤M . Condition on s1 being sent,

so that the received signal y= s1+n, where n is WGN with PSD �2 = N0/2.

The ML decision rule in this case is given by

�ML�y�= arg max
1≤i≤M

Zi�

where Zi = 
y� si�, i= 1� 
 
 
 �M . Let Z= �Z1� 
 
 
 �ZM�
T .

(a) Show that 
Zi� are (conditionally) independent, with Z1 ∼ N�Es��
2Es�

and Zi ∼ N�0��2Es�.

(b) Show that the conditional probability of correct reception (given s1 sent)

is given by

Pc�1 = P�Z1 =max
i

Zi�= P�Z1 ≥ Z2�Z1 ≥ Z3� 
 
 
 �Z1 ≥ ZM �

=
∫ �

−�
���x��M−1 1√

2�
e−�x−m�2/2 dx�

where

m =
√

2Es

N0

	 (3.93)

Hint Scale the 
Zi� so that they have unit variance (this does not change the outcome

of the decision, since they all have the same variance). Condition on the value of Z1.

(c) Show that the conditional probability of error (given s1 sent) is given by

Pe�1 = P�Z1 <max
i

Zi�= 1−P�Z1 =max
i

Zi�

= �M−1�
∫ �

−�
���x��M−2 ��x−m�

1√
2�

e−x2/2 dx	 (3.94)

Hint One approach is to use (3.93) and integrate by parts. Alternatively, decompose

the event of getting an error 
Z1 < max
i

Zi� into M − 1 disjoint events and evaluate

their probabilities. Note that events such as Zi = Zj for i 	= j have zero probability.

Remark The probabilities (3.93) and (3.94) sum up to one, but (3.94) is

better for numerical evaluation when the error probability is small.

(d) Compute and plot the probability of error (log scale) versus Eb/N0 (dB),

for M = 4�8�16�32. Comment on what happens with increasing M .

Problem 3.26 (M-ary orthogonal signaling performance as M →�) We

wish to derive the result that

lim
M→�

P�correct�=
{

1� Eb

N0
> ln 2

0� Eb

N0
< ln 2	

(3.95)
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(a) Show that

P�correct�=
∫ �

−�

[

�

(

x+
√

2Eb log2M

N0

)]M−1

1√
2�

e−x2/2 dx	

Hint Use Problem 3.25(b).

(b) Show that, for any x,

lim
M→�

[

�

(

x+
√

2Eb log2M

N0

)]M−1

=
{

0 Eb

N0
< ln 2

1 Eb

N0
> ln 2	

Hint Use l’Hôpital’s rule on the log of the expression whose limit is to be evaluated.

(c) Substitute (b) into the integral in (a) to infer the desired result.

Problem 3.27 (Preview of Rayleigh fading) I shall how in Chapter 8

that constructive and destructive interference between multiple paths in wire-

less systems lead to large fluctuations in received amplitude, modeled as a

Rayleigh random variable A (see Problem 3.4). The energy per bit is there-

fore proportional to A2. Thus, using Problem 3.4(c), we can model Eb as an

exponential random variable with mean Ēb, where Ēb is the average energy

per bit.

(a) Show that the BER for BPSK over a Rayleigh fading channel is given by

Pe =
1

2

(

1−
(

1+ N0

Eb

)− 1
2

)

	

How does the BER decay with Eb/N0 at high SNR?

Hint Compute �
[

Q
(

√

2Eb/N0

)]

using the distribution of Eb/N0. Integrate by parts

to evaluate.

(b) Plot BER versus Ēb/N0 for BPSK over the AWGN and Rayleigh fading

channels (BER on log scale, Ē/N0 in dB). Note that Ēb = Eb for the

AWGN channel. At BER of 10−4, what is the degradation in dB due to

Rayleigh fading?

Problem 3.28 (ML decision rule for multiuser systems) Consider 2-user

BPSK signaling in AWGN, with received signal

y= b1u1+b2u2+n� (3.96)

where u1 = �−1�−1�T , u2 = �2�1�T , b1, b2 take values ±1 with equal prob-

ability, and n is AWGN of variance �2 per dimension.
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(a) Draw the decision regions in the �y1� y2� plane for making joint ML

decisions for b1� b2, and specify the decision if y= �2	5�1�T .

Hint Think of this as M-ary signaling in WGN, with M = 4.

(b) Find an intelligent union bound on the conditional error probability, con-

ditioned on b1 = +1� b2 = +1, for the joint ML rule (an error occurs if

either of the bits are wrong). Repeat for b1 =+1� b2 =−1.

(c) Find the average error probability Pe�1 that the joint ML rule makes an

error in b1.

Hint Use the results of part (b).

(d) If the second user were not transmitting (remove the term b2u2 from

(3.96)), sketch the ML decision region for b1 in the �y1� y2� plane and

evaluate the error probability Psu
e�1 for b1, where the superscript su denotes

“single user”.

(e) Find the rates of exponential decay as �2 → 0 for the error probabilities

in (c) and (d). That is, find a�b≥ 0 such that Pe�1

	= e
− a2

�2 and Psu
e�1

	= e
− b2

�2 .

Remark The ratio a/b is the asymptotic efficiency (of the joint ML decision

rule) for user 1. It measures the fractional degradation in the exponential rate

of decay (as SNR increases) of error probability for user 1 due to the presence

of user 2.

(f) Redo parts (d) and (e) for user 2.

3.9.4 Link budget analysis

Problem 3.29 You are given an AWGN channel of bandwidth 3MHz.

Assume that implementation constraints dictate an excess bandwidth of 50%.

Find the achievable bit rate, the Eb/N0 required for a BER of 10−8, and the

receiver sensitivity (assuming a receiver noise figure of 7 dB) for the following

modulation schemes, assuming that the bit-to-symbol map is optimized to

minimize the BER whenever possible:

(a) QPSK;

(b) 8PSK;

(c) 64QAM;

(d) Coherent 16-ary orthogonal signaling.

Remark Use nearest neighbors approximations for the BER.
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Problem 3.30 Consider the setting of Example 3.7.1.

(a) For all parameters remaining the same, find the range and bit rate when

using a 64QAM constellation.

(b) Suppose now that the channel model is changed from AWGN to Rayleigh

fading (see Problem 3.27). Find the receiver sensitivity required for QPSK

at BER of 10−6. What is the range, assuming all other parameters are as

in Example 3.7.1?

3.9.5 Some mathematical derivations

Problem 3.31 (Properties of covariance matrices) Let C denote the

covariance matrix of a random vector X of dimension m. Let 
�i� i =
1� 
 
 
 �m� denote its eigenvalues, and let 
vi� i = 1� 
 
 
 �m� denote the cor-

responding eigenvectors, chosen to form an orthonormal basis for �m (let us

take it for granted that this can always be done). That is, we have Cvi = �ivi
and vTi vj = �ij .

(a) Show that C is nonnegative definite. That is, for any vector a, we have

aTCa ≥ 0.

Hint Show that you can write aTCa = E�Y 2� for some random variable Y .

(b) Show that any eigenvalue �i ≥ 0.

(c) Show that C can be written in terms of its eigenvectors as follows:

C=
m
∑

i=1

�iviv
T
i 	 (3.97)

Hint The matrix equality A= B is equivalent to saying that Ax= Bx for any vector

x. We use this to show that the two sides of (3.97) are equal. For any vector x, consider

its expansion x = xivi with respect to the basis 
vi�. Now, show that applying the

matrices on each side of (3.97) gives the same result.

The expression (3.97) is called the spectral factorization of C, with the eigenvalues


�i� playing the role of a discrete spectrum. The advantage of this view is that, as

shown in the succeeding parts of this problem, algebraic operations on the eigenvalues,

such as taking their inverse or square root, correspond to analogous operations on the

matrix C.

(d) Show that, for C invertible, the inverse is given by

C−1 =
m
∑

i=1

1

�i

viv
T
i 	 (3.98)

Hint Check this by directly multiplying the right-hand sides of (3.97) and (3.98),

and using the orthonormality of the eigenvectors.

(e) Show that the matrix

A=
m
∑

i=1

√

�iviv
T
i (3.99)
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can be thought of as a square root of C, in that A2 = C. We denote this

as C
1
2 .

(f) Suppose now that C is not invertible. Show that there is a nonzero vector

a such that the entire probability mass of X lies along the �m− 1�-

dimensional plane aT �X−m�= 0. That is, them-dimensional joint density

of X does not exist.

Hint If C is not invertible, then there is a nonzero a such that Ca = 0. Now left

multiply by aT and write out C as an expectation.

Remark In this case, it is possible to write one of the components of X

as a linear combination of the others, and work in a lower-dimensional space

for computing probabilities involving X. Note that this result does not require

Gaussianity.

Problem 3.32 (Derivation of joint Gaussian density) We wish to derive

the density of a real-valued Gaussian random vector X = �X1� 
 
 
 �Xm�
T ∼

N�0�C�, starting from the assumption that any linear combination of the

elements of X is a Gaussian random variable. This can then be translated by

m to get any desired mean vector. To this end, we employ the characteristic

function of X, defined as

�X�w�= E�ejw
TX�= E�ej�w1X1+···+wmXm��=

∫

ejw
TXpX�x� dx� (3.100)

as a multidimensional Fourier transform of X. The density pX�x� is therefore

given by a multidimensional inverse Fourier transform,

pX�x�=
1

�2��m

∫

e−jwT x�X�w� dw	 (3.101)

(a) Show that the characteristic function of a standard Gaussian random

variable Z ∼ N�0�1� is given by �Z�w�= e−w2/2.

(b) Set Y = wTX. Show that Y ∼ N�0� v2�, where v2 = wTCw.

(c) Use (a) and (b) to show that

�X�w�= e−
1
2w

TCw	 (3.102)

(d) To obtain the density using the integral in (3.101), make the change of

variable u= C
1
2w. Show that you get

pX�x�=
1

�2��m
1

�C� 12

∫

e−juTC
− 1

2 xe−
1
2 u

T u du�

where �A� denotes the determinant of a matrix A.

Hint We have �X�w�= e−
1
2 u

T u and du= �C 1
2 �dw.
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(d) Now, set C− 1
2 x = z, with pX�x�= f�z�. Show that

f�z�= 1

�2��m
1

�C� 12

∫

e−juT ze−
1
2 u

T u du= 1

�C� 12

m
∏

i=1

(

1

2�

∫

e−juizie−u2i /2 dui

)

	

(e) Using (a) to evaluate f�z� in (d), show that

f�z�= 1

�C� 12
1

�2��
m
2

e−
1
2 z

T z	

Now substitute C− 1
2 x = z to get the density pX�x�.
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4 Synchronization and noncoherent
communication

In Chapter 3, I established a framework for demodulation over AWGN chan-

nels under the assumption that the receiver knows and can reproduce the

noiseless received signal for each possible transmitted signal. These provide

“templates” against which we can compare the noisy received signal (using

correlation), and thereby make inferences about the likelihood of each possible

transmitted signal. Before the receiver can arrive at these templates, however,

it must estimate unknown parameters such as the amplitude, frequency and

phase shifts induced by the channel. I discuss synchronization techniques

for obtaining such estimates in this chapter. Alternatively, the receiver might

fold in implicit estimation of these parameters, or average over the possible

values taken by these parameters, in the design of the demodulator. Non-

coherent demodulation, discussed in detail in this chapter, is an example of

such an approach to dealing with unknown channel phase. Noncoherent com-

munication is employed when carrier synchronization is not available (e.g.,

because of considerations of implementation cost or complexity, or because

the channel induces a difficult-to-track time-varying phase, as for wireless

mobile channels). Noncoherent processing is also an important component

of many synchronization algorithms (e.g., for timing synchronization, which

often takes place prior to carrier synchronization).

Since there are many variations in individual (and typically proprietary)

implementations of synchronization and demodulation algorithms, my focus

here is on developing basic principles, and on providing some simple exam-

ples of how these principles might be applied. Good transceiver designs are

often based on a sound understanding of such principles, together with a

willingness to make approximations guided by intuition, driven by implemen-

tation constraints, and verified by simulations.

The framework for demodulation developed in Chapter 3 exploited signal

space techniques to project the continuous-time signal to a finite-dimensional

vector space, and then applied detection theory to characterize optimal

receivers. I now wish to apply a similar strategy for the more general prob-

lem of parameter estimation, where the parameter may be continuous-valued,

153
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e.g., an unknown delay, phase or amplitude. The resulting framework also

enables me to recover, as a special case, the results I derived earlier for

optimal detection for M-ary signaling in AWGN, since this problem can be

interpreted as that of estimating an M-valued parameter. The model for the

received signal is

y�t�= s��t�+n�t�� (4.1)

where �∈� indexes the set of possible noiseless received signals, and n�t�

is WGN with PSD �2 = N0/2 per dimension. Note that this description

captures both real-valued and complex-valued WGN; for the latter, the real

part nc and the imaginary part ns each has PSD N0/2, so that the sum

nc + jns has PSD N0. The parameter � may be vector-valued (e.g., when

we wish to obtain joint estimates of the amplitude, delay and phase). I

develop a framework for optimal parameter estimation that applies to both

real-valued and complex-valued signals. I then apply this framework to some

canonical problems of synchronization, and to the problem of noncoherent

communication.

Map of this chapter I begin by providing a qualitative discussion of the

issues facing the receiver designer in Section 4.1, with a focus on the prob-

lem of synchronization, which involves estimation and tracking of parameters

such as delay, phase, and frequency. I then summarize some basic concepts

of parameter estimation in Section 4.2. Estimation of a parameter � using

an observation Y requires knowledge of the conditional density of Y , con-

ditioned on each possible value of �. In the context of receiver design, the

observation is actually a continuous-time analog signal. Thus, an important

result is the establishment of the concept of (conditional) density for such

signals. To this end, I develop the concept of a likelihood function, which

is an appropriately defined likelihood ratio playing the role of density for

a signal corrupted by AWGN. I then apply this to receiver design in the

subsequent sections. Section 4.3 discusses application of parameter estima-

tion to some canonical synchronization problems. Section 4.4 derives optimal

noncoherent receivers using the framework of composite hypothesis testing,

where we choose between multiple hypotheses (i.e., the possible transmitted

signals) when there are some unknown “nuisance” parameters in the statis-

tical relationship between the observation and the hypotheses. In the case

of noncoherent communication, the unknown parameter is the carrier phase.

Classical examples of modulation formats amenable to noncoherent demod-

ulation, including orthogonal modulation and differential PSK (DPSK), are

discussed. Finally, Section 4.5 is devoted to techniques for analyzing the

performance of noncoherent systems. An important tool is the concept of

proper complex Gaussianity, discussed in Section 4.5.1. Binary noncoherent

communication is analyzed in Section 4.5.2; in addition to exact analysis

for orthogonal modulation, I also develop geometric insight analogous to
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the signal space concepts developed for coherent communication in Chapter

3. These concepts provide the building block for the rest of Section 4.5,

which discusses M-ary orthogonal signaling, DPSK, and block differential

demodulation.

4.1 Receiver design requirements

In this section, I discuss the synchronization tasks underlying a typical receiver

design. For concreteness, the discussion is set in the context of linear mod-

ulation over a passband channel. Some key transceiver blocks are shown in

Figure 4.1.

Figure 4.1 Block diagram of

key transceiver blocks for

synchronization and

demodulation.

The transmitted complex baseband signal is given by

u�t�=
∑

n

b�n	gTX�t−nT��

and is upconverted to passband using a local oscillator (LO) at carrier fre-

quency fc. Both the local oscillator and the sampling clock are often integer

or rational multiples of the natural frequency fXO of a crystal oscillator, and

can be generated using a phase locked loop, as shown in Figure 4.2. Detailed

description of the operation of a PLL does not fall within my agenda (of

developing optimal estimators) in this chapter, but I briefly interpret the PLL

as an ML estimator in Example 4.3.3.

Effect of delay The passband signal up�t� = Re
(

u�t�ej2
fct
)

goes through

the channel. For simplicity, I consider a nondispersive channel which causes

Decisions fed back for decision-directed tracking

Downconverter
(fc − ∆f )

Linearly 
modulated
complex
baseband

signal

Passband
channel

Noise
(from receiver

front end)

Fractionally spaced
sampler

Symbol rate samplerCoherent demodulator Derotator

Downsampler or
Interpolator

Upconverter
(fc)  

Carrier synchronization

Timing synchronization
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Voltage 
controlled
oscillator

Reference frequency
from crystal oscillator

Loop filterPhase comparator

Divide by N counter

N fref fref

Output frequency

(to up/down converter 
or sampler)

Figure 4.2 Generation of LOs

and clocks from a crystal

oscillator reference using a

PLL.
only amplitude scaling and delay (dispersive channels are considered in the

next chapter). Thus, the passband received signal is given by

yp�t�= Aup�t− ��+np�t��

where A is an unknown amplitude, � is an unknown delay, and np is passband

noise. Let us consider the effect of the delay � in complex baseband. We can

write the passband signal as

up�t− ��= Re
(

u�t− ��ej2
fc�t−��
)

= Re
(

u�t− ��ej�ej2
fct
)

�

where the phase � =−2
fc� mod 2
 is very sensitive to the delay �, since

the carrier frequency fc is typically very large. We can therefore safely model

� as uniformly distributed over �0�2
	, and read off the complex baseband

representation of Aup�t−�� with respect to fc as Au�t−��ej�, where �, � are

unknown parameters.

Effect of LO offset The passband received signal yp is downconverted to

complex baseband using a local oscillator, again typically synthesized from

a crystal oscillator using a PLL. Crystal oscillators typically have tolerances

of the order of 10–100 parts per million (ppm), so that the frequency of the

local oscillator at the receiver typically differs from that of the transmitter.

Assuming that the frequency of the receiver’s LO is fc −�f , the output

y of the downconverter is the complex baseband representation of yp with

respect to fc −�f . We therefore obtain the following complex baseband

model including unknown delay, frequency offset, and phase.

Complex baseband model prior to synchronization

y�t�= Aej�u�t− ��ej2
�ft +n�t�

= Aej�2
�ft+��
∑

n b�n	gTX�t−nT − ��+n�t��

(4.2)

where n is complex WGN.
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Sampling In many modern receiver architectures, the operations on the

downconverted complex baseband signal are made using DSP, which can,

in principle, implement any desired operation on the original analog signal

with arbitrarily high fidelity, as long as the sampling rate is high enough

and the analog-to-digital converter has high enough precision. The sam-

pling rate is usually chosen to be an integer multiple of the symbol rate;

this is referred to as fractionally spaced sampling. For signaling with mod-

erate excess bandwidth (less than 100%), the signal bandwidth is at most

2/T , hence sampling at rate 2/T preserves all the information in the analog

received signal. Recall from Chapter 2, however, that reconstruction of an

analog signal from its sample requires complicated interpolation using sinc

functions, when sampling at the minimum rate required to avoid aliasing.

Such interpolation can be simplified (or even eliminated) by sampling even

faster, so that sampling at four or eight times the symbol rate is not uncom-

mon in modern receiver implementations. For example, consider the problem

of timing synchronization for Nyquist signaling over an ideal communica-

tion channel. When working with the original analog signal, our task is to

choose sampling points spaced by T which have no ISI. If we sample at

rate 8/T , we have eight symbol-spaced substreams, at least one of which

is within at most T/8 of the best sampling instant. In this case, we may be

willing to live with the performance loss incurred by sampling slightly away

from the optimum point, and simply choose the best among the eight sub-

streams. On the other hand, if we sample at rate 2/T , then there are only two

symbol-spaced substreams, and the worst-case offset of T/2 yields too high a

performance degradation. In this case, we need to interpolate the samples in

order to generate a T -spaced stream of samples that we can use for symbol

decisions.

The two major synchronization blocks shown in Figure 4.1 are timing

synchronization and carrier synchronization.

Timing synchronization The first important task of the timing synchro-

nization block is to estimate the delay � in (4.2). If the symbols 
b�n	� are

stationary, then the delay � can only be estimated in modulo T , since shifts

in the symbol stream are undistinguishable from each other. Thus, to estimate

the absolute value of �, we typically require a subset of the symbols 
b�n	� to

be known, so that we can match what we receive against the expected signal

corresponding to these known symbols. These training symbols are usually

provided in a preamble at the beginning of the transmission. This part of

timing synchronization usually occurs before carrier synchronization.

I have already observed in (4.2) the consequences of the offset between

the transmitter and receiver LOs. A similar observation also applies to the

nominal symbol rate at the transmitter and receiver. That is, the symbol time T

in the model (4.2) corresponds to the symbol rate clock at the transmitter. The

(fractionally spaced) sampler at the receiver operates at �1+��m/T , where �
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is of the order of 10–100 ppm (and can be positive or negative), and where m

is a positive integer. The relative timing of the T -spaced “ticks” generated by

the transmitter and receiver clocks therefore drifts apart significantly over a

period of tens of thousands of symbols. If the number of transmitted symbols is

significantly smaller than this, which is the case for some packetized systems,

then this drift can be ignored. However, when a large number of symbols

are sent, the timing synchronization block must track the drift in symbol

timing. Training symbols are no longer available at this point, hence the

algorithms must either operate in decision-directed mode, with the decisions

from the demodulator being fed back to the synchronization block, or they

must be blind, or insensitive to the specific values of the symbols transmitted.

Blind algorithms are generally derived by averaging over all possible values

of the transmitted symbols, but often turn out to have a form similar to

decision-directed algorithms, with hard decisions replaced by soft decisions.

See Example 4.2.2 for a simple instance of this observation.

Carrier synchronization This corresponds to estimation of �f and � in

(4.2). These estimates would then be used to undo the rotations induced by

the frequency and phase offsets before coherent demodulation. Initial esti-

mates of the frequency and phase offset are often obtained using a training

sequence, with subsequent tracking in decision-directed mode. Another clas-

sical approach is first to remove the data modulation by nonlinear operations

(e.g., squaring for BPSK modulation), and then to use a PLL for carrier

frequency and phase acquisition.

As evident from the preceding discussion, synchronization typically

involves two stages: obtaining an initial estimate of the unknown parameters

(often using a block of known training symbols sent as a preamble at the

beginning of transmission), and then tracking these parameters as they vary

slowly over time (typically after the training phase, so that the 
b�n	� are

unknown). For packetized communication systems, which are increasingly

common in both wireless and wireline communication, the variations of the

synchronization parameters over a packet are often negligible, and the track-

ing phase can often be eliminated. The estimation framework developed in

this chapter consists of choosing parameter values that optimize an appropri-

ately chosen cost function. Typically, initial estimates from a synchronization

algorithm can be viewed as directly optimizing the cost function, while feed-

back loops for subsequent parameter tracking can be interpreted as using the

derivative of the cost function to drive recursive updates of the estimate.

Many classical synchronization algorithms, originally obtained using intuitive

reasoning, can be interpreted as approximations to optimal estimators derived

in this fashion. More importantly, the optimal estimation framework in this

chapter gives us a systematic method to approach new receiver design sce-

narios, with the understanding that creative approximations may be needed

when computation of optimal estimators is too difficult.
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I discuss some canonical estimation problems in Section 4.3, after dis-

cussing basic concepts in parameter estimation in Section 4.2.

4.2 Parameter estimation basics

I begin by outlining a basic framework for parameter estimation. Given an

observation Y , we wish to estimate a parameter �. The relation between Y

and � is statistical: we know p�y���, the conditional density of Y given �.

The maximum likelihood estimate (MLE) of � is given by

�̂ML�y�= arg max
�

p�y��� = arg max
�

logp�y���� (4.3)

where it is sometimes more convenient to maximize a monotone increasing

function, such as the logarithm, of p�y���.
If prior information about the parameter is available, that is, if the den-

sity p��� is known, then it is possible to apply Bayesian estimation, wherein

we optimize the value of an appropriate cost function, averaged using the

joint distribution of Y and �. It turns out that the key to such minimiza-

tion is the the a posteriori density of � (i.e., the conditional density of �

given Y )

p���y�= p�y���p���
p�y�

� (4.4)

For my purpose, I only define the maximum a posteriori probability (MAP)

estimator, which maximizes the posterior density (4.4) over �. The denomina-

tor of (4.4) does not depend on �, and can therefore be dropped. Furthermore,

we can maximize any monotonic increasing function, such as the logarithm,

of the cost function. We therefore obtain several equivalent forms of the MAP

rule, as follows:

�̂MAP�y�= arg max
�

p���y�= arg max
�

p�y���p���

= arg max
�

logp�y��� + logp���
(4.5)

Example 4.2.1 (Density conditioned on amplitude) As an example

of the kinds of conditional densities used in parameter estimation, con-

sider a single received sample in a linearly modulated BPSK system, of

the form:

Y = A b+N� (4.6)

where A is an amplitude, b is a BPSK symbol taking values ±1 with

equal probability, and N ∼ N�0��2� is noise. If b is known (e.g., because

it is part of a training sequence), then, conditioned on A= a, the received
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sample Y is Gaussian: Y ∼ N�a��2� for b =+1, and Y ∼ N�−a��2� for

b =−1. That is,

p�y�a�b =+1�= e
− �y−a�2

2�2

√
2
�2

� p�y�a�b =−1�= e
− �y+a�2

2�2

√
2
�2

� (4.7)

However, if b is not known, then we must average over the possible values

it can take in order to compute the conditional density p�y�a�. For b=±1

with equal probability, we obtain

p�y�a�= P�b =+1	p�y�a�b =+1�+P�b =+−1	p�y�a�b =−1�

= 1

2

e
−
�y−a�2

2�2

√
2
�2

+ 1

2

e
−
�y+a�2

2�2

√
2
�2

= e
−
a2

2�2 cosh
(ay

�2

) e
−
y2

2�2

√
2
�2

�

(4.8)

We can now maximize (4.6) or (4.8) over a to obtain an ML esti-

mate, depending on whether the transmitted symbol is known or not.

Of course, amplitude estimation based on a single symbol is unreli-

able at typical SNRs, hence we use the results of this example as a

building block for developing an amplitude estimator for a block of

symbols.

Example 4.2.2 (ML amplitude estimation using multiple symbols)

Consider a linearly modulated system in which the samples at the receive

filter output are given by

Y�k	= A b�k	+N�k	 � k= 1� � � � K� (4.9)

where A is an unknown amplitude, b�k	 are transmitted symbols tak-

ing values ±1, and N�k	 are i.i.d. N�0��2� noise samples. We wish

to find an ML estimate for the amplitude A, using the vector observa-

tion Y = �Y�1	�…� Y�K	�T . The vector of K symbols is denoted by b =
�b�1	�…� b�K	�T . We consider two cases separately: first, when the sym-

bols 
b�k	� are part of a known training sequence, and second, when the

symbols 
b�k	� are unknown, and modeled as i.i.d., taking values ±1 with

equal probability.

Case 1 (Training based estimation) The ML estimate is given by

ÂML = arg max
A

logp�y�A�b�= arg max
A

K
∑

k=1

logp�Y�k	�A�b�k	��

where the logarithm of the joint density decomposes into a sum of the loga-

rithms of the marginals because of the conditional independence of the Y �k	,

given A and b. Substituting from (4.6), we can show that (see Problem 4.1)
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ÂML =
1

K

K
∑

k=1

Y �k	b�k	� (4.10)

That is, the ML estimate is obtained by correlating the received samples

against the training sequence, which is an intuitively pleasing result. The

generalization to complex-valued symbols is straighforward, and is left as an

exercise.

Case 2 (Blind estimation) “Blind” estimation refers to estimation without

the use of a training sequence. In this case, we model the 
b�k	� as i.i.d.,

taking values ±1 with equal probability. Conditioned on A, the 
Y�k	� are

independent, with marginals given by (4.7). The ML estimate is therefore

given by

ÂML = arg max
A

logp�y�A�= arg max
A

K
∑

k=1

logp�Y �k	�A��

Substituting from (4.8) and setting the derivative of the cost function with

respect to A to zero, we can show that (see Problem 4.1) the ML estimate

ÂML = a satisfies the transcendental equation

a= 1

K

K
∑

k=1

Y �k	 tanh

(

aY �k	

�2

)

= 1

K

K
∑

k=1

Y �k	b̂�k	� (4.11)

where the analogy with correlation in the training-based estimator (4.10)

is evident, interpreting b̂�k	 = tanh��aY�k	�/�2� as a “soft” estimate of the

symbol b�k	, k = 1�…�K. How would the preceding estimators need to be

modified if we wished to implement the MAP rule, assuming that the prior

distribution of A is N�0��2
A�?

We see that the key ingredient of parameter estimation is the conditional

density of the observation, given the parameter. To apply this framework

to a continuous-time observation as in (4.1), therefore, we must be able to

define a conditional “density” for the infinite-dimensional observation y�t�,

conditioned on �. To do this, let us first reexamine the notion of density for

scalar random variables more closely.

Example 4.2.3 (There are many ways to define a density) Consider

the Gaussian random variable Y ∼ N����2�, where � is an unknown

parameter. The conditional density of Y , given �, is given by

p�y���= 1√
2
�2

exp

(

− �y−��2

2�2

)

�

The conditional probability that Y takes values in a subset A of real

numbers is given by

P�Y ∈A���=
∫

A
p�y��� dy� (4.12)
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For any arbitrary function q�y� satisfying the property that q�y� > 0 wher-

ever p�y� > 0, we may rewrite the above probability as

P�Y ∈A�=
∫

A

p�y���
q�y�

q�y�dy =
∫

A
L�y��� q�y�dy� (4.13)

An example of such a function q�y� is a Gaussian N�0��2� density,

given by

q�y�= 1√
2
�2

exp

(

− y2

2�2

)

In this case, we obtain

L�y���= p�y���
q�y�

= exp

(

1

�2

(

y�− �2

2

))

�

Comparing (4.12) and (4.13), we observe the following. The probability of

an infinitesimal interval �y� y+dy� is given by the product of the density

and the size of the interval. Thus, p�y��� is the (conditional) probability

density of Y when the measure of the size of an infinitesimal interval

�y� y+ dy� is its length dy. However, if we redefine the measure of the

interval size as q�y�dy (this measure now depends on the location of the

interval as well as its length), then the (conditional) density of Y with

respect to this new measure of length is L�y���. The two notions of density
are equivalent, since the probability of the infinitesimal interval is the same

in both cases. In this particular example, the new density L�y��� can be

interpreted as a likelihood ratio, since p�y��� and q�y� are both probability

densities.

Suppose, now, that we wish to estimate the parameter � based on Y . Noting

that q�y� does not depend on �, dividing p�y��� by q�y� does not affect the

MLE for � based on Y : check that �̂ML�y� = y in both cases. In general,

we can choose to define the density p�y��� with respect to any convenient

measure, to get a form that is easy to manipulate. This is the idea we use

to define the notion of a density for a continuous-time signal in WGN: we

define the density as the likelihood function of a hypothesis corresponding to

the model (4.1), with respect to a dummy hypothesis that is independent of

the signal s��t�.

4.2.1 Likelihood function of a signal in AWGN

Let Hs be the hypothesis corresponding to the signal model of (4.1), dropping

the subscript � for convenience:

Hs � y�t�= s�t�+n�t�� (4.14)
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where n�t� is WGN and s�t� has finite energy. Define a noise-only dummy

hypothesis as follows:

Hn � y�t�= n�t�� (4.15)

We now use signal space concepts in order to compute the likelihood ratio

for the hypothesis testing problem Hs versus Hn. Define

Z = �y� s� (4.16)

as the component of the received signal along the signal s. Let

y⊥�t�= y�t�−�y� s� s�t�

��s��2

denote the component of y orthogonal to the signal space spanned by s. Since

Z and y⊥ provide a complete description of the received signal y, it suffices to

compute the likelihood ratio for the pair �Z� y⊥�t��. We can now argue as in

Chapter 3. First, note that y⊥ = n⊥, where n⊥�t�= n�t�−�n� s�s�t�
/

��s��2 is

the noise component orthogonal to the signal space. Thus, y⊥ is unaffected by

s. Second, n⊥ is independent of the noise component in Z, since components

of WGN in orthogonal directions are uncorrelated and jointly Gaussian, and

hence independent. This implies that Z and y⊥ are conditionally independent,

conditioned on each hypothesis, and that y⊥ is identically distributed under

each hypothesis. Thus, it is irrelevant to the decision and does not appear in

the likelihood ratio. We can interpret this informally as follows: when taking

the ratio of the conditional densities of �Z� y⊥�t�� under the two hypotheses,

the conditional density of y⊥�t� cancels out. We therefore obtain L�y�=L�z�.

The random variable Z is conditionally Gaussian under each hypothesis, and

its mean and variance can be computed in the usual fashion. The problem has

now reduced to computing the likelihood ratio for the scalar random variable

Z under the following two hypotheses:

Hs � Z ∼ N���s��2��2��s��2�
Hn � Z ∼ N�0��2��s��2��

Taking the ratio of the densities yields

L�z�= exp

(

1

�2��s��2
(

��s��2 z− ���s��2�2/2
)

)

= exp

(

1

�2

(

z−��s��2/2
)

)

�

Expressing the result in terms of y, using (4.16), we obtain the following

result.

Likelihood function for a signal in real AWGN

L�y�s�= exp

(

1

�2

(

�y� s�− ��s��2/2
)

)

� (4.17)

where we have made the dependence on s explicit in the notation for the

likelihood function. If s�t� = s��t�, the likelihood function may be denoted

by L�y���.
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We can now immediately extend this result to complex baseband signals,

by applying (4.17) to a real passband signal, and then translating the results

to complex baseband. To this end, consider the hypotheses

Hs � yp�t�= sp�t�+np�t�

Hn � yp�t�= np�t��

where yp is the passband received signal, sp is the noiseless passband signal,

and np is passband WGN. The equivalent model in complex baseband is

Hs � y�t�= s�t�+n�t�

Hn � y�t�= n�t��

where s is the complex envelope of sp, and n is complex WGN. The likelihood

functions computed in passband and complex baseband must be the same,

since the information in the two domains is identical. Thus,

L�y�s�= exp

(

1

�2

(

�yp� sp�− ��sp��2/2
)

)

�

We can now replace the passband inner products by the equivalent com-

putations in complex baseband, noting that �yp� sp� = Re��y� s�� and that

��sp��2 = ��s��2. We therefore obtain the following generalization of (4.17) to

complex-valued signals in complex AWGN, which we can state as a theorem.

Theorem 4.2.1 (Likelihood function for a signal in complex AWGN) For

a signal s�t� corrupted by complex AWGN n�t�, modeled as

y�t�= s�t�+n�t��

the likelihood function (i.e., the likelihood ratio with respect to a noise-only

dummy hypothesis) is given by

L�y�s�= exp

(

1

�2

(

Re��y� s��−��s��2/2
)

)

� (4.18)

We can use (4.18) for both complex-valued and real-valued received signals

from now on, since the prior formula (4.17) for real-valued received signals

reduces to a special case of (4.18).

Discrete time likelihood functions The preceding formulas also hold for

the analogous scenario of discrete-time signals in AWGN. Consider the signal

model

y�k	= s�k	+n�k	� (4.19)

where Re�n�k	�, Im�n�k	� are i.i.d. N�0��2� random variables for all k. We

say that n�k	 is complex WGN with variance �2 = N0/2 per dimension,

and discuss this model in more detail in Section 4.5.1 in the context of

performance analysis. For now, however, it is easy to show that a formula
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entirely analogous to (4.18) holds for this model (taking the likelihood ratio

with respect to a noise only hypothesis) as follows:

L�y�s�= exp

(

1

�2

(

Re��y� s��−��s��2/2
)

)

� (4.20)

where y= �y�1	� � � � � y�K	�T and s= �s�1	� � � � � s�K	�T are the received vector

and the signal vector, respectively.

In the next two sections, we apply the results of this section to derive

receiver design principles for synchronization and noncoherent communica-

tion. Before doing that, however, let us use the framework of parameter

estimation to quickly rederive the optimal receiver structures in Chapter 3 as

follows.

Example 4.2.4 (M-ary signaling in AWGN revisited) The problem of

testing among M hypotheses of the form

Hi � y�t�= si�t�+n�t�� i= 1� � � � �M

is a special case of parameter estimation, where the parameter takes one

of M possible values. For a complex baseband received signal y, the

conditional density, or likelihood function, of y follows from setting s�t�=
si�t� in (4.18):

L�y�Hi�= exp

(

1

�2

(

Re ��y� si��−��si��2/2
)

)

�

The ML decision rule can now be interpreted as the MLE of an M-valued

parameter, and is given by

îML�y�= arg max
i

L�y�Hi�= arg max
i

Re ��y� si��−��si��2/2�

thus recovering our earlier result on the optimality of a bank of correlators.

4.3 Parameter estimation for synchronization

I now discuss several canonical examples of parameter estimation in AWGN,

beginning with phase estimation. The model (4.2) includes the effect of fre-

quency offset between the local oscillators at the transmitter and receiver.

Such a phase offset is of the order of 10–100 ppm, relative to the carrier

frequency. In addition, certain channels, such as the wireless mobile channel,

can induce a Doppler shift in the signal of the order of vfc/c , where v is the

relative velocity between the transmitter and receiver, and c is the speed of

light. For a velocity of 200 km/hr, the ratio v/c of the Doppler shift to the

carrier frequency is about 0.2 ppm. On the other hand, typical baseband signal
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bandwidths are about 1–10 % of the carrier frequency. Thus, the time vari-

ations of the modulated signal are typically much faster than those induced

by the frequency offsets due to LO mismatch and Doppler. Consider, for

example, a linearly modulated system, in which the signal bandwidth is of

the order of the symbol rate 1/T . Thus, for a frequency shift �f which is

small compared with the signal bandwidth, the change in phase 2
�f T over

a symbol interval T is small. Thus, the phase can often be taken to be con-

stant over multiple symbol intervals. This can be exploited for both explicit

phase estimation, as in the following example, and for implicit phase esti-

mation in noncoherent and differentially coherent reception, as discussed in

Section 4.4.

Example 4.3.1 (ML phase estimation) Consider a noisy signal with

unknown phase, modeled in complex baseband as

y�t�= s�t�ej�+n�t�� (4.21)

where � is an unknown phase, s is a known complex-valued signal, and n

is complex WGN with PSD N0. To find the ML estimate of �, we write

down the likelihood function of y conditioned on �, replacing s with sej�

in (4.18) to get

L�y���= exp

(

1

�2

(

Re
(

�y� sej��
)

−��sej���2/2
)

)

� (4.22)

Setting �y� s� = �Z�ej� = Zc+ jZs, we have

�y� sej�� = e−j�Z = �Z�ej��−���

so that

Re
(

�y� sej��
)

= �Z� cos��−���

Further, ��sej���2 = ��s��2. The conditional likelihood function, therefore,

can be rewritten as

L�y���= exp

(

1

�2

(

�Z� cos��−��−��s��2/2
)

)

� (4.23)

The ML estimate of � is obtained by maximizing the exponent in (4.23),

which corresponds to

�̂ML = �= arg��y� s��= tan−1 Zs

Zc

�

Note that this is also the MAP estimate if the prior distribution of � is

uniform over �0�2
	. The ML phase estimate, therefore, equals the phase of

the complex inner product between the received signal y and the template
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Figure 4.3 Maximum

likelihood phase estimation:

the complex baseband

operations in Example 4.3.1

are implemented after

downconverting the passband

received signal.

signal s. The implementation of the phase estimate, starting from the passband

received signal yp is shown in Figure 4.3. The four real-valued correlations

involved in computing the complex inner product �y� s� are implemented

using matched filters.

Example 4.3.2 (ML delay estimation) Let us now consider the problem

of estimating delay in the presence of an unknown phase (recall that timing

synchronization is typically done prior to carrier synchronization). The

received signal is given by

y�t�= As�t− ��ej�+n�t�� (4.24)

where n is complex WGN with PSD N0, with unknown vector parameter

� = ���A���. We can now apply (4.18), replacing s�t� by s��t�= As�t−
��ej�, to obtain

L�y���= exp

(

1

�2

(

Re
(

�y� s��
)

−��s���2/2
)

)

�

Defining the filter matched to s as smf�t�= s∗�−t�, we obtain

�y� s�� = Ae−j�
∫

y�t�s∗�t− ��dt =Ae−j�
∫

y�t�smf��− t�dt

=Ae−j��y ∗ smf�����

Note also that, assuming a large enough observation interval, the signal

energydoesnotdependon thedelay, so that ��s���2 =A2��s��2.Thus,weobtain

L�y���= exp

(

1

�2

(

Re�Ae−j��y ∗ smf�����−A2��s��2/2
)

)

�

The MLE of the vector parameter � is now given by

�̂ML�y�= arg max
�

L�y����
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This is equivalent to maximizing the cost function

J���A���= Re
(

Ae−j��y ∗ smf����
)

−A2��s��2/2 (4.25)

over �, A, and �. Since our primary objective is to maximize over �, let

us first eliminate the dependence on A and �. We first maximize over

� for �, A fixed, proceeding exactly as in Example 4.3.1. We can write

�y ∗ smf����= Z���= �Z����ej����, and realize that

Re
(

Ae−j��y ∗ smf����
)

= A�Z���� cos �����−�� �

Thus, the maximizing value of � = ����. Substituting into (4.25), we get

a cost function which is now a function of only two arguments:

J���A�=max
�

J���A���= A�y ∗ smf�����−A2��s��2/2�

For any fixed value of A, the preceding is maximized by maximizing

�y ∗ smf�����. We can conclude, therefore, that the ML estimate of the

delay is

�̂ML = arg max
�

�y ∗ smf������ (4.26)

That is, the ML delay estimate corresponds to the intuitively pleasing

strategy of picking the peak of the magnitude of the matched filter output

in complex baseband. As shown in Figure 4.4, this requires noncoherent

processing, with building blocks similar to those used for phase estimation.

Figure 4.4 Maximum

likelihood delay estimation.

We have implicitly assumed in Examples 4.3.1 and 4.3.2 that the data

sequence 
b�n	� is known. This data-aided approach can be realized either

by using a training sequence, or in decision-directed mode, assuming that the

symbol decisions fed to the synchronization algorithms are reliable enough.

An alternative nondata-aided (NDA) approach, illustrated in the blind ampli-

tude estimator in Example 4.2.2 is to average over the unknown symbols,

typically assuming that they are i.i.d., drawn equiprobably from a fixed con-

stellation. The resulting receiver structure in Case 2 of Example 4.2.2 is
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Loop filter

Voltage
controlled
oscillator

Passband received signal

yp(t)

cos (2π fc t + θ) + noise

– sin (2π fc t + θ)̂

actually quite typical of NDA estimators, which have a structure similar to the

data-aided, or decision-directed setting, except that “soft” rather than “hard”

decisions are fed back.

Finally, we consider tracking time variations in a synchronization parameter

once we are close enough to the true value. For example, we may wish to

update a delay estimate to track the offset between the clocks of the transmitter

and the receiver, or to update the carrier frequency or phase to track a wireless

mobile channel. Most tracking loops are based on the following basic idea.

Consider a cost function J���, typically proportional to the log likelihood

function, to be maximized over a parameter �. The tracking algorithm consists

of a feedback loop that performs “steepest ascent”, perturbing the parameter

so as to go in the direction in which the cost function is increasing:

d�

dt
= a

dJ���

d�
��=�̂� (4.27)

The success of this strategy of following the derivative depends on our being

close enough to the global maximum so that the cost function is locally

concave.

I now illustrate this ML tracking framework by deriving the classical PLL

structure for tracking carrier phase. Similar interpretations can also be given to

commonly used feedback structures such as the Costas loop for phase tracking,

and the delay locked loop for delay tracking, and are explored in the problems.

Figure 4.5 Passband

implementation of PLL

approximating ML phase

tracking.

Example 4.3.3 (ML interpretation of phase locked loop) Consider a

noisy unmodulated sinusoid with complex envelope

y�t�= ej�+n�t�� (4.28)

where � is the phase to be tracked (its dependence on t has been suppressed

from the notation), and n�t� is complex WGN. Writing down the likelihood

function over an observation interval of length To, we have

L�y���= exp

(

1

�2

(

Re�y� e−j��− To

2

))

�
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so that the cost function to be maximized is

J���= Re�y� ej�� =
∫ To

0
�yc�t� cos��t�+ys�t� sin ��t�� dt�

Applying the steepest ascent (4.27), we obtain

d�

dt
= a

∫ To

0

(

−yc�t� sin �̂�t� + ys�t� cos �̂�t�
)

dt� (4.29)

Since 1/2
 d�/dt equals the frequency, we can implement steepest ascent

by applying the right-hand side of (4.29) to a voltage controlled oscillator.

Furthermore, this expression can be recognized to be the real part of the

complex inner product between y�t� and v�t�=− sin �̂+ j cos �̂= jej�̂. The

corresponding passband signals are yp�t� and vp�t� = − sin�2
fct+ �̂�.

Recognizing that Re�y� v� = �yp� sp�, we can rewrite the right-hand side

of (4.29) as a passband inner product to get:

d�

dt
=−a

∫ To

0
yp�t� sin�2
fct+ �̂� dt� (4.30)

In both (4.29) and (4.30), the integral can be replaced by a low pass filter

for continuous tracking. Doing this for (4.30) gives us the well-known

structure of a passband PLL, as shown in Figure 4.5.

Further examples of amplitude, phase, and delay estimation, including block-

based estimators, as well as classical structures such as the Costas loop for

phase tracking in linearly modulated systems, are explored in the problems.

4.4 Noncoherent communication

I have shown that the frequency offsets due to LO mismatch at the transmit-

ter and receiver, and the Doppler induced by relative mobility between the

transmitter and receiver, are typically small compared with the bandwidth of

the transmitted signal. Noncoherent communication exploits this observation

to eliminate the necessity for carrier synchronization, modeling the phase

over the duration of a demodulation interval as unknown, but constant. The

mathematical model for a noncoherent system is as follows.

Model for M-ary noncoherent communication The complex baseband

received signal under the ith hypothesis is as follows:

Hi � y�t�= si�t�e
j�+n�t�� i= 1� � � � �M� (4.31)

where � is an unknown phase, and n is complex AWGN with PSD �2 =N0/2

per dimension.
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Before deriving the receiver structure in this setting, we need some back-

ground on composite hypothesis testing, or hypothesis testing with one or

more unknown parameters.

4.4.1 Composite hypothesis testing

As in a standard detection theory framework, we have an observation Y taking

values in � , and M hypotheses H1�…�HM . However, the conditional density

of the observation given the hypothesis is not known, but is parameterized

by an unknown parameter. That is, we know the conditional density p�y�i� ��
of the observation Y given Hi and an unknown parameter � taking values in

�. The unknown parameter � may not have the same interpretation under all

hypotheses, in which case the set � may actually depend on i. However, we

do not introduce this complication into the notation, since it is not required

for our intended application of these concepts to noncoherent demodulation

(where the unknown parameter for each hypothesis is the carrier phase).

Generalized likelihood ratio test (GLRT) approach This corresponds to

joint ML estimation of the hypothesis (treated as an M-valued parameter) and

�, so that

�î� �̂��y�= arg max
1≤i≤M��∈�

p�y�i� ���

This can be interpreted as maximizing first with respect to �, for each i,

getting

�̂i�y�= arg max
�∈�

p�y�i� ��

then plugging into the conditional density p�y�i� �� to get the “generalized

density”,

qi�y�= p�y�i� �̂i�y��=max
�∈�

p�y�i� ��

(note that qi is not a true density, in that it does not integrate to one.) The

GLRT decision rule can be then expressed as

�GLRT�y�= arg max
1≤i≤M

qi�y��

This is of similar form to the ML decision rule for simple hypothesis testing,

hence the term GLRT.

Bayesian approach If p���i�, the conditional density of � given Hi, is

known, then the unknown parameter � can be integrated out, yielding a

simple hypothesis testing problem that we know how to solve. That is, we

can compute the conditional density of Y given Hi as follows:

p�y�i�=
∫

�
p�y�i� ��p���i� d��
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4.4.2 Optimal noncoherent demodulation

I now apply the GLRT and Bayesian approaches to derive receiver structures

for noncoherent communication. For simplicity, I will consider equal-energy

signaling.

Equal energy M-ary noncoherent communication: receiver structure

The model is as in (4.31) with equal signal energies under all hypotheses,

��si��2 ≡ Es. From (4.22), we find that

L�y�i� ��= exp

(

1

�2
��Zi� cos��−�i�−��si��2/2	

)

� (4.32)

where Zi = �y� si� is the result of complex correlation with si, and �i =
arg�Zi�.

Applying the GLRT approach, we note that the preceding is maximized at

� = �i to get the generalized density

qi�y�= exp

(

1

�2
��Zi�−Es/2	

)

�

where we have used the equal energy assumption. Maximizing over i, we get

the GLRT rule

�GLRT�y�= arg max
1≤i≤M

�Zi� = arg max
1≤i≤M

Z2
i�c+Z2

i�s�

where Zi�c = Re�Zi� and Zi�s = Im�Zi�.

Figure 4.6 Computation of the

noncoherent decision statistic

for a complex baseband signal

s. The optimal noncoherent

receiver employs a bank of

such processors, one for each

of M signals, and picks the

maximum of M noncoherent

decision statistics.

Figure 4.6 shows the computation of the noncoherent decision statistic

�Z�2 = ��y� s��2 for a signal s. The noncoherent receiver chooses the maximum

among the outputs of a bank of such processors, for s = si, i= 1� � � � �M .

Now, let us apply the Bayesian approach, modeling the unknown phase

under each hypothesis as a random variable uniformly distributed over �0�2
	.

We can now average out � in (4.32) as follows:

L�y�i�= 1

2


∫ 2


0
L�y�i� �� d�� (4.33)
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It is now useful to introduce the following modified Bessel function of the

first kind, of order zero:

I0�x�=
1

2


∫ 2


0
ex cos� d�� (4.34)

Noting that the integrand is a periodic function of �, we note that

I0�x�=
1

2


∫ 2


0
ex cos��−�� d��

for any fixed phase offset �. Using (4.32) and (4.33), we obtain

L�y�i�= e
− ��si ��2

2�2 I0

( �Zi�
�2

)

� (4.35)

For equal energy signaling, the first term above is independent of i. Noting

that I0�x� is increasing in �x�, we obtain the following ML decision rule

(which is also MPE for equal priors) by maximizing (4.35) over i:

�ML�y�= arg max
1≤i≤M

�Zi��

which is the same receiver structure that we derived using the GLRT rule. The

equivalence of the GLRT and Bayesian rules is a consequence of the specific

models that we use; in general, the two approaches can lead to different

receivers.

4.4.3 Differential modulation and demodulation

A drawback of noncoherent communication is the inability to encode infor-

mation in the signal phase, since the channel produces an unknown phase

shift that would destroy such information. However, if this unknown phase

can be modeled as approximately constant over more than one symbol, then

we can get around this problem by encoding information in the phase dif-

ferences between successive symbols. This enables recovery of the encoded

information even if the absolute phase is unknown. This method is known

as differential phase shift keying (DPSK), and is robust against unknown

channel amplitude as well as phase. I have already introduced this concept in

Section 2.7, and am now able to discuss it in greater depth as an instance of

noncoherent communication, where the signal of interest now spans several

symbols.

In principle, differential modulation can also be employed with QAM alpha-

bets, by encoding information in amplitude and phase transitions, assuming

that the channel is roughly constant over several symbols, but there are techni-

cal issues with both encoding (unrestricted amplitude transitions may lead to

poor performance) and decoding (handling an unknown amplitude is trickier)

that are still a subject of research. I therefore restrict attention to DPSK here.

I explain the ideas in the context of the following discrete-time model, in

which the nth sample at the receiver is given by

y�n	= h�n	b�n	+w�n	� (4.36)
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where 
b�n	� is the sequence of complex-valued transmitted symbols, 
h�n	�

is the effective channel gain seen by the nth symbol, and 
w�n	� is discrete-

time complex AWGN with variance �2 = N0/2 per dimension. The sequence


y�n	� would typically be generated by downconversion of a continuous-time

passband signal, followed by baseband filtering, and sampling at the symbol

rate. I have assumed that there is no ISI.

Suppose that the complex-valued channel gains h�n	 = A�n	ej��n	 are

unknown. This could occur, for example, as a result of inherent channel time

variations (e.g., in a wireless mobile environment), or of imperfect carrier

phase recovery (e.g., due to free running local oscillators at the receiver). If the


h�n	� can vary arbitrarily, then there is no hope of recovering the information

encoded in 
b�n	�. However, now suppose that h�n	≈ h�n−1	 (i.e., the rate

of variation of the channel gain is slower than the symbol rate). Consider the

vector of two successive received samples, given by y�n	= �y�n−1	� y�n	�T .

Setting h�n	= h�n−1	= h, we have

(

y�n−1	

y�n	

)

= h

(

b�n−1	

b�n	

)

+
(

w�n−1	

w�n	

)

= hb�n−1	

(

1

b�n	
/

b�n−1	

)

+
(

w�n−1	

w�n	

)

(4.37)

The point of the above manipulations is that we can now think of h̃ =
hb�n−1	 as an unknown gain, and treat �1� b�n	/b�n−1	�T as a signal to be

demodulated noncoherently. The problem now reduces to one of noncoherent

demodulation for M-ary signaling: the set of signals is given by sa�n	 =
�1� a�n	�T , whereM is the number of possible values of a�n	= b�n	/b�n−1	.

That is, we can rewrite (4.37) as

y�n	= h̃sa�n	+w�n	� (4.38)

where y�n	 = �y�n− 1	� y�n	�T and w�n	 = �w�n− 1	�w�n	�T . In DPSK, we

choose a�n	∈A from a standard PSK alphabet, and set b�n	 = b�n− 1	a�n	

(the initial condition can be set arbitrarily, say, as b�0	= 1). Thus, the trans-

mitted symbols 
b�n	� are also drawn from a PSK constellation. The infor-

mation bits are mapped to a�n	 in standard fashion, and then are recovered

via noncoherent demodulation based on the model (4.38).

Example (Binary DPSK) Suppose that we wish to transmit a sequence


a�n	� of ±1 bits. Instead of sending these directly over the channel, we

send the ±1 sequence b�n	, defined by b�n	 = a�n	b�n− 1	. Thus, we

are encoding information in the phase transitions of successive symbols

drawn from a BPSK constellation: b�n	= b�n−1	 (no phase transition) if

a�n	= 1, and b�n	=−b�n−1	 (phase transition of 
) if a�n	=−1. The

signaling set sa�n	, a�n	=±1 is �1�1�T and �1�−1�, which corresponds to

equal-energy, binary, orthogonal signaling.
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For the DPSK model (4.38), the noncoherent decision rule for equal

energy signaling becomes

â�n	= arg max
a∈ A

��y�n	� sa��2� (4.39)

For binary DPSK, this reduces to taking the sign of

��y� s+1��2−��y� s−1��2 = �y�n	+y�n−1	�2−�y�n	−y�n−1	�2

= 2Re�y�n	y∗�n−1	�

That is, we have

âbinary�n	= sign�Re�y�n	y∗�n−1	�	� (4.40)

That is, we take the phase difference between the two samples, and check

whether it falls into the right half plane or the left half plane.

For M-ary DPSK, a similar rule is easily derived by examining the the

decision statistics in (4.39) in more detail:

��y�n	� sa��2 =�y�n−1	+y�n	a∗�n	�2 = �y�n−1	�2+�y�n	�2�a�n	�2

+2Re�y�n	y∗�n−1	a∗�n	�= �y�n−1	�2+�y�n	�2

+2Re�y�n	y∗�n−1	a∗�n	��

where we have used �a�n	� = 1 for PSK signaling. Since only the last term

depends on a, the decision rule can be simplified to

âM−ary�n	= arg max
a∈ A

Re�y�n	y∗�n−1	a∗�� (4.41)

This corresponds to taking the phase difference between two successive

received samples, and mapping it to the closest constellation point in the

PSK alphabet from which a�n	 is drawn.

4.5 Performance of noncoherent communication

Performance analysis for noncoherent receivers is typically more complicated

than for coherent receivers, since we need to handle complex-valued decision

statistics going through nonlinear operations. As a motivating example, con-

sider noncoherent detection for equal energy, binary signaling, with complex

baseband received signal under hypothesis Hi, i= 0�1, given by

Hi � y�t�= si�t�e
j�+n�t��

where � is an unknown phase shift induced by the channel. For equal priors,

and assuming that � is uniformly distributed over �0�2
	, the MPE rule has

been shown to be

�MPE�y�= arg max
i=0�1

��y� si���
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We are interested in evaluating the error probability for this decision rule. As

usual, we condition on one of the hypotheses, say H0, so that y = s0e
j� +n.

The conditional error probability is then given by

Pe�0 = P��Z1�> �Z0��H0	�

where Zi = �y� si�, i= 0�1. Conditioned on H0, we obtain

Z0 = �s0ej�+n� s0� = ��s0��2ej�+�n� s0��
Z1 = �s0ej�+n� s1� = �s0� s1�ej�+�n� s1��

Each of the preceding statistics contains a complex-valued noise contribution

obtained by correlating complexWGNwith a (possibly complex) signal. Since

our prior experience has been with real random variables, before proceeding

further, I devote the next section to developing a machinery for handling

complex-valued random variables generated in this fashion.

4.5.1 Proper complex Gaussianity

For real-valued signals, performance analysis in a Gaussian setting is made

particularly easy by the fact that (joint) Gaussianity is preserved under lin-

ear transformations, and that probabilities are completely characterized by

means and covariances. For complex AWGN models, joint Gaussianity is

preserved for the real and imaginary parts under operations such as filter-

ing, sampling, and correlation, and probabilities can be computed by keeping

track of the covariance of the real part, the covariance of the imaginary part,

and the crosscovariance of the real and imaginary parts. However, I describe

below a simpler and more elegant approach based purely on complex-valued

covariances. This approach works when the complex-valued random pro-

cesses involved are proper complex Gaussian (to be defined shortly), as is

the case for the random processes of interest to us, which are obtained from

complex WGN through linear transformations.

Definition (covariance and pseudocovariance for complex-valued random

vectors) Let U denote an m×1 complex-valued random vector, and V an

n×1 complex-valued random vector, defined on a common probability space.

The m×n covariance matrix is defined as

CU�V = ���U−��U	��V−��V	�H 	= ��UVH 	−��U	���V	�H �

The m×n pseudocovariance matrix is defined as

C̃U�V = ���U−��U	��V−��V	�T 	= ��UVT 	−��U	���V	�T �

Note that covariance and pseudocovariance are the same for real random

vectors.
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Definition 4.5.1 (Complex Gaussian random vector) The n× 1 complex

random vector X = Xc+ jXs is Gaussian if the real random vectors Xc and

Xs are Gaussian, and Xc, Xs are jointly Gaussian.

To characterize probabilities involving an n× 1 complex Gaussian random

vector X, one general approach is to use the statistics of a real random vector

formed by concatenating the real and imaginary parts of X into a single 2n×1

random vector

Xr =
(

Xc

Xs

)

�

Since Xr is a Gaussian random vector, it can be described completely in terms

of its 2n×1 mean vector, and its 2n×2n covariance matrix, given by

Cr =
(

Cc Ccs

Csc Cs

)

�

where Ccc = cov�Xc�Xc�, Css = cov�Xs�Xs� and Ccs = cov�Xc�Xs�= CT
sc.

The preceding approach is cumbersome, requiring us to keep track of three

n×n covariance matrices, and can be simplified if X satisfies some special

properties.

Definition 4.5.2 (Proper complex random vector) The complex random

vector X= Xc+ jXs is proper if its pseudocovariance matrix, given by

ĈX = ���X−��X	��X−��X	�T 	= 0� (4.42)

In terms of the real covariance matrices defined above, X is proper if

Ccc = Css and Ccs =−Csc =−CT
cs� (4.43)

I now state a very important result: a proper complex Gaussian random vector

is characterized completely by its mean vector and covariance matrix.

Characterizing a proper complex Gaussian random vector Suppose that

the complex random vector X=Xc+ jXs is proper (i.e., it has zero pseudoco-

variance) and Gaussian (i.e., Xc, Xs are jointly Gaussian real random vectors).

In this case, X is completely characterized by its mean vector mX = E�X	 and

its complex covariance matrix

CX = ���X−��X	��X−��X	�H 	= 2Ccc+2jCsc� (4.44)

The probability density function of X is given by

p�x�= 1


ndet�CX�
exp

(

−�x−mX�
HC−1

X �x−mX�
)

� (4.45)

We denote the distribution of X as CN�mX�CX�.
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Remark 4.5.1 (Loss of generality due to insisting on properness) In

general,

CX = Ccc+Css+ j�Csc−Ccs��

Thus, knowledge of CX is not enough to infer knowledge of Ccc, Css, and

Csc, which are needed, in general, to characterize an n dimensional complex

Gaussian random vector in terms of a 2n-dimensional real Gaussian random

vector Xr. However, under the properness condition (4.43), CX contains all

the information needed to infer Ccc, Css, and Csc, which is why CX (together

with the mean) provides a complete statistical characterization of X.

Remark 4.5.2 (Proper complex Gaussian density) The form of the density

(4.45) is similar to that of a real Gaussian random vector, but the constants

are a little different, because the density integrates to one over complex

n-dimensional space. As with real Gaussian random vectors, we can infer

from the form of the density (4.45) that two jointly proper complex Gaussian

random variables are independent if their complex covariance vanishes.

Proposition 4.5.1 (Scalar proper complex Gaussian random variable) If

X = Xc+ jXs is a scalar complex Gaussian random variable, then its covari-

ance CX must be real and nonnegative, and its real and imaginary parts, Xc

and Xs, are i.i.d. N�0�CX/2�.

Proof of Proposition 4.5.1 The covariance matrices Ccc, Css, and Csc are

now scalars. Using (4.44), the condition Csc =−CT
sc implies that Csc = 0. Since

Xc, Xs are jointly Gaussian, their uncorrelatedness implies their independence.

It remains to note that CX = 2Ccc = 2Css to complete the proof.

Remark 4.5.3 (Functions of a scalar proper complex Gaussian random

variable) Proposition 4.5.1 and Problem 3.4 imply that for scalar proper

complex Gaussian X, the magnitude �X� is Rayleigh, the phase arg�X� is

uniform over �0�2
	 (and independent of the magnitude), the magnitude

squared �X�2 is exponential with mean CX , and the magnitude �m+X�, where
m is a complex constant, is Rician.

Proposition 4.5.2 (Preservation of properness and Gaussianity under lin-

ear transformations) If X is proper, so is Y = AX+b, where A, b are

arbitrary complex matrices. If X is proper Gaussian, so is Y= AX+b. The

mean and covariance of X and Y are related as follows:

mY = AmY +b� CY = ACXA
H � (4.46)

Proof of Proposition 4.5.2 To check the properness of Y, we compute

���AX+b−��AX+b	��AX+b−��AX+b	�T 	 = A���X−��X	�

�X−��X	�T 	AT = 0
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by the properness of X. The expressions for mean and covariance follow from

similar computations. To check the Gaussianity of Y, note that any linear

combination of real and imaginary components of Y can be expressed as a

linear combination of real and imaginary components of X, which is Gaussian

by the Gaussianity of X.

We can now extend the definition of properness to random processes.

Definition 4.5.3 (Proper complex random process) A random process

X�t�= Xc�t�+ jXs�t� is proper if any set of samples form a proper complex

random vector. Since the sampling times and number of samples is arbitrary,

X is proper if

���X�t1�−��X�t1�	� �X�t2�−��X�t2�	�	= 0

for all times, t1� t2. Equivalently, X is proper if

CXc�Xc
�t1� t2�= CXs�Xs

�t1� t2� and CXs�Xc
�t1� t2�=−CXs�Xc

�t2� t1� (4.47)

for all t1� t2.

Definition 4.5.4 (Proper complex Gaussian random processes) A random

process X is proper complex Gaussian if any set of samples is a proper

complex Gaussian random vector. Since a proper complex Gaussian random

vector is completely characterized by its mean vector and covariance matrix, a

proper complex Gaussian random processX is completely characterized by its

mean function mX�t�= ��X�t�	 and its autocovariance function CX�t1� t2�=
��X�t1�X

∗�t2�	 (which can be used to compute mean and covariance for an

arbitrary set of samples).

Proposition 4.5.3 (Complex WGN is proper) Complex WGN n�t� is a zero

mean, proper complex Gaussian random process with autocorrelation and

autocovariance functions given by

Cn�t1� t2� = Rn�t1� t2�= ��n�t1�n
∗�t2�	

= 2�2��t1− t2��

Proof of Proposition 4.5.3 We have n�t�= nc�t�+ jns�t�, where nc, ns are

i.i.d. zero mean real WGN, so that

Cnc
�t1� t2�= Cns

�t1� t2�= �2��t1− t2� and Cns�nc
�t1� t2�≡ 0�

which satisfies the definition of properness in (4.47). Since n is zero mean, all

that remains to specify its statistics completely is its autocovariance function.

We compute this as

Cn�t1� t2� = Rn�t1� t2�= ��n�t1�n
∗�t2�	= ���nc�t1�+ jns�t1���nc�t2�− jns�t2��	

= Rnc
�t1� t2�+Rns

�t1� t2�= 2�2��t1− t2��
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where cross terms such as ��nc�t1�ns�t2�	 = 0 because of the independence,

and hence uncorrelatedness, of nc and ns.

Notation Since the autocovariance and autocorrelation functions for complex WGN

depends only on the time difference � = t1− t2, it is often convenient to denote them

as functions of one variable, as follows:

Cn���= Rn���= ��n�t+ ��n∗�t�	= 2�2�����

Proposition 4.5.4 (Complex WGN through a correlator) Let n�t� =
nc�t�+ jns�t� denote complex WGN, and let s�t�= sc�t�+ jss�t� denote a finite

energy complex-valued signal. Let

Z = �n� s� =
∫

n�t�s∗�t�dt

denote the result of correlating n against s. Denoting Z = Zc+ jZs (Zc, Zs

real), we have the following equivalent statements:

(a) Z is zero mean, proper complex Gaussian with variance 2�2��s��2.
(b) Zc, Zs are i.i.d. N�0��2��s��2� real random variables.

Proof of Proposition 4.5.4 (the “proper” way) The proof is now simple,
since the hard work has already been done in developing the machinery
of proper Gaussianity. Since n is zero mean, proper complex Gaussian, so
is Z, since it is obtained via a linear transformation from n. It remains to
characterize the covariance of Z, given by

CZ =� ��n� s��n� s�∗	= �

[∫

n�t�s∗�t�dt
∫

n∗�u�s�u�du
]

=
∫ ∫

��n�t�n∗�u�	

s∗�t�s�u�dtdu=
∫ ∫

2�2��t−u�s∗�t�s�u�dtdu= 2�2
∫

�s�t��2dt = 2�2��s��2�

The equivalence of (a) and (b) follows from Proposition 4.5.1, since Z is a

scalar proper complex Gaussian random variable.

Proof of Proposition 4.5.4 (without invoking properness) We can also

infer these results, using only what we know about real WGN. I provide this

alternative proof to illustrate that the computations get somewhat messy (and

do not scale well when we would like to consider the outputs of multiple

complex correlators), compared with the prior proof exploiting properness.

First, recall that for real WGN (nc for example), if u1 and u2 are two finite-

energy real-valued signals, then �nc� u1� and �nc� u2� are jointly Gaussian

with covariance

cov��nc� u1�� �nc� u2��= �2�u1� u2�� (4.48)

Setting u1 = u2 = u, specialize to the useful result that Var��nc� u��=�2��u��2.
The preceding results also hold if nc is replaced by ns. Now, note that

Zc = �nc� sc�+�ns� ss� Zs = �ns� sc�−�nc� ss��
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Since nc, ns are independent Gaussian random processes, the two terms in

the equation for Zc above are independent Gaussian random variables. Using

(4.48) to compute the variances of these terms, and then adding these variances

up, we obtain that

Var�Zc�= Var��nc� sc��+Var��ns� ss��= �2��sc��2+�2��ss��2 = �2��s��2�

A similar computation yields the same result for Var�Zs�. Finally, the covari-

ance of Zc and Zs is given by

Cov�Zc�Zs� = Cov��nc� sc�+�ns� ss�� �ns� sc�−�nc� ss��

= Cov��nc� sc�� �ns� sc��+Cov��ns� ss�� �ns� sc��

−Cov��nc� sc�� �nc� ss��−Cov��ns� ss�� �nc� ss��

= 0+�2�ss� sc�−�2�sc� ss�−0= 0�

where we have used (4.48), and the fact that the contribution of cross terms

involving nc and ns is zero because of their independence.

Remark 4.5.4 Complex WGN through multiple correlators Using the

same arguments as in the proof of Proposition 4.5.4, we can characterize the

joint distribution of complex WGN through multiple correlators. Specifically,

for finite energy signals s1�t� and s0�t�, it is left as an exercise to show that

�n� s1� and �n� s0� are jointly proper complex Gaussian with covariance

Cov��n� s1�� �n� s0��= 2�2�s0� s1�� (4.49)

4.5.2 Performance of binary noncoherent communication

We now return to noncoherent detection for equal energy, equiprobable,

binary signaling, with the complex baseband received signal under hypothesis

Hi, i= 0�1, given by

Hi � y�t�= si�t�e
j�+n�t��

We assume that the phase shift � induced by the channel is uniformly dis-

tributed over �0�2
	. Under these conditions, the MPE rule has been shown

to be as follows:

�MPE�y�= arg max
i=0�1

��y� si���

We denote the signal energies by Es = ��s1��2 = ��s0��2, and define the complex

correlation coefficient � = ��s0� s1��/���s0����s1���, so that �s0� s1� = �Es =
�s1� s0�∗.
Conditioned on H0, the received signal y = s0e

j�+n, The conditional error

probability is then given by

Pe�0 = P��Z1�> �Z0��H0	�
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where Zi = �y� si�, i= 0�1 are given by

Z0 = �s0ej�+n� s0� = Ese
j�+�n� s0��

Z1 = �s0ej�+n� s1� = �Ese
j�+�n� s1��

Conditioned on H0 and � (we soon show that the conditional error probability

does not depend on �), Z= �Z0�Z1�
T is proper complex Gaussian, because n

is proper complex Gaussian. Using Proposition 4.5.4 and Remark 4.5.4, we

find that the covariance matrix for Z is

CZ = 2�2Es

(

1 �∗

� 1

)

(4.50)

and the mean vector is

mZ = Ese
j�

(

1

�

)

(4.51)

In general, developing an expression for the exact error probability involves

the painful process of integration over contours in the complex plane, and

does not give insight into how, for example, the error probability varies

with SNR. I therefore restrict myself here to broader observations on the

dependence of the error probability on system parameters, including high SNR

asymptotics. I do, however, derive the exact error probability for the special

case of orthogonal signaling (� = 0). I state these results as propositions,

discuss their implications, and then provide proofs (in the case of Proposition

4.5.5 below, I only sketch the proof, providing a reference for the details).

Proposition 4.5.5 (dependence on ��� and SNR) The error probability

depends only on ��� and Es/N0, and its high SNR asymptotics are given by

Pe�noncoh�∼ exp

(

− Es

2N0

�1−����
)

�
Es

2N0

→�� (4.52)

Remark 4.5.5 (Contrast with coherent demodulation) For coherent detec-

tion, we know that the error probability is given by Q� ��s1− s0��
/

2��. Noting

that ��s1− s0��2 = 2Es�1−Re���� for equal energy signals, and setting �2 =
N0/2, we have Pe�coh� = Q�

√

Es�1−Re����/N0�. Using Q�x� ∼ e−x2/2 for

large x, the high SNR asymptotics for coherent detection of equal energy

signaling are given by

Pe�coh�∼ exp

(

− Es

2N0

�1−Re����

)

�
Es

2N0

→�� (4.53)

Proposition 4.5.6 (Error probability for orthogonal signaling) For non-

coherent demodulation of equal energy orthogonal signals (�= 0), the error

probability is given by

Pe =
1

2
exp

(

− Es

2N0

)

Binary equal energy� noncoherent signaling�

(4.54)
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Remark 4.5.6 (Orthogonal signaling with coherent and noncoherent

detection) Comparing (4.52) and (4.53), we see that the high SNR asymp-

totics with orthogonal signaling are the same for both coherent and nonco-

herent demodulation. However, there are hidden costs associated with non-

coherent demodulation. First, if coherent detection were possible, then we

could design the signals such that Re��� < 0 (e.g., � = −1 for antipodal

signaling) in order to obtain better performance than with orthogonal signal-

ing. Second, orthogonal signaling with coherent demodulation requires only

that Re��� = 0, while orthogonal signaling with noncoherent demodulation

requires that ��� = 0. As I showed in Chapter 2, this implies that noncoherent

orthogonal signaling requires twice as many degrees of freedom than coherent

signaling. For example, orthogonal FSK requires a tone spacing of 1/T for

noncoherent demodulation, and only 1/2T for coherent demodulation, where

T is the symbol interval.

I now proceed with the proofs.

Proof of Proposition 4.5.5 We condition on H0 and �, and our starting

points are (4.50) and (4.51).

First, we show that the performance depends only on ���. Suppose that

�= ���ej�. We can now rotate one of the signals such that the correlation coef-

ficient becomes positive. Specifically, set ŝ0�t�= s0�t�e
−j�, and replace Z0 by

Ẑ0 = �y� ŝ0�. The decision rule depends only on �Zi�, i= 0�1, and �Z0� = �Ẑ0�,
so that the outcome, and hence performance, of the decision rule is unchanged.

Conditioned on H0 and �, the statistics of Ẑ= �Ẑ0�Z1�
T are as in (4.50) and

(4.51), except that � is now replaced by �̂= ��ŝ0� s1��/��ŝ0����s1���= ���.
A related point worth noting is that the performance is independent of �;

that is, from the point of performance analysis, we may set �= 0. To see this,

replace Zi by Zie
−j�; this does not change �Zi�, and hence it does not change

the decision. Now, write

Zie
−j� = �s0� si�+�ne−j�� si�

and note that the statistics of the proper Gaussian random process ne−j� are

the same as those of n (check that the mean and autocovariance functions are

unchanged).

Thus, we can replace � by ��� and �= 0 in (4.50) and (4.51). Furthermore,

let us normalize Z0 and Z1 to obtain the scale-invariant Ui = Zi

/

�
√
Es,

i= 0�1. The conditional mean and covariance matrix (conditioned on 0 being

sent) for the proper complex Gaussian vector U= �U0�U1�
T is now given by

mU =
√

Es

�2

(

1

���

)

CU = 2

(

1 ���
��� 1

)

� (4.55)

Since the decision based on comparing �U0� and �U1� is identical to those

provided by the original decision rule, and the conditional distribution of these

decision statistics depends on ��� and Es/N0 alone, so does the conditional

error probability (and hence also the unconditional error probability).
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I now sketch a plausibility argument for the high SNR asymptotics given

in (4.52). The noncoherent rule may be viewed as comparing the magnitudes

of the projections of the received signal onto the one-dimensional complex

subspaces S0 and S1 spanned by s0 and s1, respectively (each subspace has

two real dimensions). High SNR asymptotics are determined by the most

likely way to make an error. If s0 is sent, then the most likely way for the

noise to induce a wrong decision is to move the signal a distance d along the

two-dimensional plane defined by the minimum angle between the subspaces

S0 and S1, as shown in Figure 4.7.

Figure 4.7 Geometric view of

noncoherent demodulation.

The angle between two complex signals is given by

cos� = Re��u� v��
��u����v��

To determine the minimum angle between S0 and S1, we need to maximize

cos� for u�t� = �s0�t� and v�t� = �s1�t�, where �, � are scalars. It is easy

to see that the answer is cos�min = ���: this corresponds to rotating one of

the signals so that the inner product becomes nonnegative (u�t� = s0�t� and

v�t�= s1�t�e
j� works, where �= arg���). We therefore find that the minimum

angle is given by

cos�min = ���� (4.56)

The minimum distance that the noise needs to move the signal is seen from

Figure 4.7 to be

d = ��s0�� sin
(

�min

2

)

�

Since

sin2
(

�min

2

)

= 1− cos�min

2
= 1−���

2
�

we obtain

d2 = Es

2
�1−����� (4.57)

This yields the high SNR asymptotics

Pe ∼Q

(

d

�

)

∼ exp

(

− d2

2�2

)

�

which yields the desired result (4.52) upon substituting from (4.57).

θmin

d = || s0 || sin( θmin / 2 )

cos θmin = | ρ |

S0

S1

subspace spanned by s0 

Subspace spanned by s1 

Minimum angle between the subspaces:

s0
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Proof of Proposition 4.5.6 I now consider the special case of orthogonal

signaling, for which �= 0. Let us use the equivalent scaled decision statistics

U0 and U1 as defined in the proof of Proposition 4.5.5, conditioning on H0

and setting �= 0 without loss of generality, as before. Setting �= 0 in (4.55),

we obtainmU =m�1�0�T , and CU = 2I, where m=
√

Es/�
2. Since U0 and U1

are uncorrelated, they are independent. Since U0 is a scalar proper complex

Gaussian random variable, its real and imaginary parts are independent, with

U0c ∼ N�m�1� and U0s ∼ N�0�1� Similarly, U1c ∼ N�0�1� and U1s ∼ N�0�1�

are independent Gaussian random variables. This implies that R0 = �U0� is
Rician (see Problem 3.4) with pdf

pR0
�r�= r exp

(

−m2+ r2

2

)

I0�mr� r ≥ 0

and R1 = �U1� is Rayleigh with pdf

pR1
�r�= r exp

(

− r2

2

)

r ≥ 0�

where we have dropped the conditioning onH0 in the notation. The conditional

error probability is given by

Pe�0 = P�R1 > R0�H0	=
∫ �

0
P�R1 > r�R0 = r	pR0

�r�dr�

Noting that P�R1 > r�R0 = r	= P�R1 > r	= e−r2/2, we obtain

Pe�0 =
∫ �

0
exp

(

− r2

2

)

r exp

(

−m2+ r2

2

)

I0�mr� dr� (4.58)

We can now massage the integrand above into the form of a new Rician

density, multiplied by a constant factor. Since the density must integrate to

one, the constant factor is our final answer. The general form of the Rician

density is r/v2e
− a2+r2

2v2 I0�
ar
v2
�. Comparing this with the terms involving r in

(4.58), we obtain r2 = r2/2v2 and mr = ar/v2, which gives v2 = 1/2 and

a = m/2. It is left as an exercise to complete the proof by showing that the

integral evaluates to 1/2 exp�−m2/4�. Substituting m =
√

Es/�
2, we obtain

the desired formula (4.54).

4.5.3 Performance of M-ary noncoherent orthogonal signaling

An important class of noncoherent systems is M-ary orthogonal signaling. I

have shown in Chapter 3 that coherent orthogonal signaling attains fundamen-

tal limits of power efficiency as M →�. I now show that this property holds

for noncoherent orthogonal signaling as well. I will consider equal energy

M-ary orthogonal signaling with symbol energy Es = Eb log2 M .
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Exact error probability As shown in Problem 4.8, this is given by the

expression

Pe =
M−1
∑

k=1

(

M−1

k

)

�−1�k+1

k+1
exp

(

− k

k+1

Es

N0

)

� (4.59)

Union bound For equal energy orthogonal signaling with symbol energy

Es, Proposition 4.5.6 provides a formula for the pairwise error probability.

We therefore obtain the following union bound:

Pe ≤
M−1

2
exp

(

− Es

2N0

)

� (4.60)

Note that the union bound coincides with the first term in the summation

(4.59) for the exact error probability.

As for coherent orthogonal signaling in Chapter 2, we can take the limit

of the union bound as M →� to infer that Pe → 0 if Eb/N0 is larger than a

threshold. However, as before, the threshold obtained from the union bound

is off by 3 dB. As we show in Problem 4.9, the threshold for reliable commu-

nication for M-ary noncoherent orthogonal signaling is actually Eb/N0 > ln 2

(−1�6 dB). That is, coherent and noncoherent M-ary orthogonal signaling

achieve the same asympotically optimal power efficiency as M gets large.

Figure 4.8 Symbol error

probabilities for M-ary

orthogonal signaling with

noncoherent demodulation.

Figure 4.8 shows the probability of symbol error as a function of Eb/N0

for several values of M . As for coherent demodulation (see Figure 3.20), we

see that the performance for the values of M considered is quite far from the

asymptotic limit of −1�6 dB.
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4.5.4 Performance of DPSK

Exact analysis of the performance of M-ary DPSK suffers from the same

complication as the exact analysis of noncoherent demodulation of correlated

signals. However, an exact result is available for the special case of binary

DPSK, as follows.

Proposition 4.5.7 (Performance of binary DPSK) For an AWGN channel

with unknown phase, the error probability for demodulation of binary DPSK

over a two-symbol window is given by

Pe =
1

2
exp

(

−Eb

N0

)

Binary DPSK� (4.61)

Proof of Proposition 4.5.7 Demodulation of binary DPSK over two sym-

bols corresponds to noncoherent demodulation of binary, equal-energy,

orthogonal signaling using the signals s+1 = �1�1�T and s−1 = �1�−1�T in

(4.38), so that the error probability is given by the formula 1/2 exp�−Es/2N0�.

The result follows upon noting that Es = 2Eb, since the signal sa spans two

bit intervals, a=±1.

Remark 4.5.7 (Comparison of binary DPSK and coherent BPSK) The

error probability for coherent BPSK, which is given by Q
√
�2Eb/N0� ∼

exp�−Eb/N0�. Comparing with (4.61), note that the high SNR asymptotics

are not degraded due to differential demodulation in this case.

ForM-ary DPSK, Proposition 4.5.5 implies that the high SNR asymptotics for

the pairwise error probabilities are given by exp�−Es/2N0�1−�����, where
� is the pairwise correlation coefficient between signals drawn from the

set 
sa� a∈A�, and Es = 2Eb log2 M . The worst-case value of � dominates

the high SNR asymptotics. For example, if a�n	 are drawn from a QPSK

constellation 
±1�±j�, the largest value of ��� can be obtained by correlating

the signals �1�1�T and �1� j�T , which yields ��� = 1√
2
. We therefore find that

the high SNR asymptotics for DQPSK, demodulated over two successive

symbols, are given by

Pe�DQPSK�∼ exp

(

−Eb

N0

�2−
√
2�

)

�

Comparing with the error probability for coherent QPSK, which is given by

Q
√
�2Eb/N0�

�= exp�−Eb/N0�, we note that there is a degradation of 2.3 dB

(10 log10�2−
√
2�=−2�3). It can be checked using similar methods that the

degradation relative to coherent demodulation gets worse with the size of the

constellation.
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4.5.5 Block noncoherent demodulation

Now that I have developed some insight into the performance of nonco-

herent communication, I can introduce some more advanced techniques in

noncoherent and differential demodulation. If the channel is well approx-

imated as constant over more than two symbols, the performance degra-

dation of M-ary DPSK relative to coherent M-PSK can be alleviated by

demodulating over a larger block of symbols. Specifically, suppose that

h�n	= h�n−1	= � � � =h�n−L+1	= h, where L> 2. Then we can group L

received samples together, constructing a vector y = �y�n−L+ 1	�… y�n	�,

and obtain

y= h̃sa+w�

where w is the vector of noise samples, h̃ = hb�n−L+ 1	 is unknown,

a= �a�n−L+2	� � � � � a�n	�T is the set of information symbols affecting the

block of received samples, and, for DPSK,

sa = �1� a�n−L+2	� a�n−L+2	a�n−L+3	� � � � �

a�n−L+2	a�n−L+3	� � � a�n	�T �

We can now make a joint decision on a by maximizing the noncoherent

decision statistics ��y� sa��2 over all possible values of a.

Remark 4.5.8 (Approaching coherent performance with large block

lengths) It can be shown that, for an M-ary PSK constellation, as L →
�, the high SNR asymptotics for the error probability of block differential

demodulation approaches that of coherent demodulation. For binary DPSK,

however, there is no point in increasing the block size beyond L= 2, since the

high SNR asymptotics are already as good as those for coherent demodulation.

Remark 4.5.9 (Complexity considerations) For block demodulation of

M-ary DPSK, the number of candidate vectors a is ML−1, so that the com-

plexity of direct block differential demodulation grows exponentially with

the block length. Contrast this with coherent, symbol-by-symbol, demod-

ulation, for which the complexity of demodulating a block of symbols is

linear. However, near-optimal, linear-complexity, techniques for block dif-

ferential demodulation are available. The idea is to quantize the unknown

phase corresponding to the effective channel gain h̃ into Q hypothe-

ses, to perform symbol-by-symbol coherent demodulation over the block

for each hypothesized phase, and to choose the best of the Q candi-

date sequences a1� � � � �aQ thus generated by picking the maximum among

the noncoherent decision statistics ��y� sai��, i = 1� � � � Q. The complex-

ity is larger than that of coherent demodulation by a fixed factor Q,

rather than the exponential complexity of brute force block differential

demodulation.
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Figure 4.9 shows the effect of block length on block noncoherent demodula-

tion of differential QPSK. Note the large performance improvement in going

from a block length of T = 2 (standard differential demodulation) to T = 5; as

we increase the block length further, the performance improves more slowly,

and eventually approaches that of coherent QPSK.

Figure 4.9 Symbol error

probabilities for block

noncoherent demodulation of

differential QPSK, compared

with the performance of

“absolute” modulation (or

coherent QPSK).

4.6 Further reading

For further reading on synchronization, I suggest the books by Mengali and

D’Andrea [20], Meyr and Ascheid [21], and Meyr, Moenclaey, and Fechtel

[22], and the references therein. I recommend the book by Poor [19] for a

systematic treatment of estimation theory, including bounds on achievable

performance such as the Cramer–Rao lower bound. An important classical

reference, which includes a detailed analysis of the nonlinear dynamics of

the PLL, is the text by Viterbi [11]. References related to synchronization for

spread spectrum modulation formats are given in Chapter 8. The material on

signal space concepts for noncoherent communication is drawn from the paper

by Warrier and Madhow [23]. An earlier paper by Divsalar and Simon [24]

was the first to point out that block noncoherent demodulation could approach

the performance of coherent systems. For detailed analysis of noncoherent

communication with correlated signals, I refer to Appendix B of the book by

Proakis [3]. Finally, extensive tabulation of the properties of special functions

such as Bessel functions can be found in Abramowitz and Stegun [25] and

Gradshteyn [26].
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4.7 Problems

Problem 4.1 (Amplitude estimation) Fill in the details for the amplitude

estimates in Example 4.2.2 by deriving (4.10) and (4.11).

Problem 4.2 (NDA amplitude and phase estimation for sampled QPSK

system) The matched filter outputs in a linearly modulated system are mod-

eled as

z�k	= Aej�b�k	+N�k	 � k= 1� � � � �K�

where A > 0, �∈ �0�2
	 are unknown, b�k	 are i.i.d. QPSK symbols taking

values equiprobably in ±1�±j, and N�k	 are i.i.d. complex WGN samples

with variance �2 per dimension.

(a) Find the likelihood function of z�k	 given A and �, using the discrete-time

likelihood function (4.20). Show that it can be written as a sum of two

hyperbolic cosines.

(b) Use the result of (a) to write down the log likelihood function for

z�1	� � � � � z�K	, given A and �.

(c) Show that the likelihood function is unchanged when � is replaced by

�+
/2. Conclude that the phase � can only be estimated modulo 
/2 in

NDA mode, so that we can restrict attention to �∈ �0�
/2�, without loss

of generality.

(d) Show that

���z�k	�2	= A2+2�2�

Use this to motivate an ad hoc estimator for A based on averaging �z�k	�2.
(e) Maximize the likelihood function in (c) numerically over A and � for

K = 4, with

z�1	=−0�1+0�9j� z�2	= 1�2+0�2j� z�3	= 0�3−1�1j� z�4	=−0�8+0�4j

and �2 = 0�1.

Hint Use (c) to restrict attention to �∈ �0�
/2�. You can try an iterative approach in

which you fix the value of one parameter, and maximize numerically over the other,

and continue until the estimates “settle.” The amplitude estimator in (d) can provide

a good starting point.

Problem 4.3 (Costas loop for phase tracking in linearly modulated

systems) Consider the complex baseband received signal

y�t�=
M
∑

k=1

b�k	p�t−kT�ej�+n�t��

where 
b�k	� are drawn from a complex-valued constellation � is an unknown

phase, For data-aided systems, we assume that the symbol sequence b= 
b�k	�
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is known. For nondata-aided systems, we assume that the symbols 
b�k	�

are i.i.d., selected equiprobably from the constellation. Let z�t�= �y∗pmf��t�

denote the output, at time t, of the matched filter with impulse response

pmf�t�= p∗�−t�.

(a) Show that the likelihood function conditioned on � and b depends on the

received signal only through the sampled matched filter outputs 
z�kT��.

(b) For known symbol sequence b, find the ML estimate of �. It should depend

on y only through the sampled matched filter outputs 
z�k	= z�kT��.

(c) For tracking slowly varying � in data-aided mode, assume that b is known,

and define the log likelihood function cost function

Jk���= logL�z�k	���b��

where L�z�k	���b� is proportional to the conditional density of z�k	 =
z�kT�, given � (and the known symbol sequence b). Show that

�Jk���

��
= a Im

(

b∗�k	z�k	e−j��
)

�

where a is a constant.

(d) Suppose, now, that we wish to operate in decision-directed mode. Spe-

cialize to BPSK signaling (i.e., b�k	∈ 
−1�+1�). Show that the optimum

coherent decision on b�k	, assume ideal phase tracking, is

b̂�k	= sign
(

Re�z�k	e−j��
)

�

Assuming that this bit estimate is correct, substitute b̂�k	 in place of b�k	

into the result of (c). Show that a discrete-time ascent algorithm of the

form

�̂�k+1	= ��k	+b
�Jk���

��
��=��k	

reduces to

�̂�k+1	= ��k	+� sign
(

Re�z�k	e−j��k	�
)

Im�z�k	e−j��k	��

where � > 0 is a parameter that governs the reaction time of the tracking

algorithm. The block diagram for the algorithm is shown in Figure 4.10.

(e) Now, consider nondata-aided estimation for i.i.d. BPSK symbols taking

values±1 equiprobably. Find the log likelihood function averaged over b:

logL�y���= log� �L�y���b�	 �

where the expectation is over the symbol sequence b. Assume that p is

square root Nyquist at rate 1/T if needed.
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exp(−jθ [k])

z 
−1

Complex baseband
received signal

y(t)

Symbol rate
sampler

Imaginary
 part

Real part

Symbol matched filter
p*(−t)

Look−up 
table

α

z[k]

Figure 4.10 Discrete time

decision-directed Costas loop

for BPSK modulation.
Hint Use techniques similar to those used to derive the NDA amplitude estimate in

Example 4.2.2.

(f) Find an expression for a block-based ML estimate of � using the NDA

likelihood function in (d). Again, this should depend on y only through


z�k	�.

(g) Derive a tracking algorithm as in part (d), but this time with in NDA

mode. That is, use the cost function

Jk���= logL�z�k	���
where L�z�k	��� is obtained by averaging over all possible values of the

BPSK symbols. Show that the tracker can be implemented as in the block

diagram in Figure 4.10 by replacing the hard decision by a hyperbolic

tangent with appropriately scaled argument.

(h) Show that the tracker in (g) is approximated by the decision-directed

tracker in (d) by using the high SNR approximation tanh x≈ sign�x�. Can

you think of a low SNR approximation?

Remark The low SNR approximation mentioned in (h) corresponds to what

is generally known as a Costas loop. In this problem, I use the term for a

broad class of phase trackers with similar structure.

Problem 4.4 (Frequency offset estimation using training sequence)

Consider a linear modulated system with no ISI and perfect timing recovery,

but with unknown frequency offset �f and phase offset �. The symbol rate

samples are modeled as

y�k	= b�k	ej�2
�fkT+��+N�k	 � k= 1� � � � �K�

where T is the symbol time, and N�k	 is discrete-time complex WGN with

variance �2 = N0/2 per dimension. Define � = 2
�fT as the normalized

frequency offset. We wish to obtain ML estimates of � and �, based on the

observation y = �y�1	�…� y�K	�T . Assume that the complex symbols 
b�k	�

are part of a known training sequence.
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(a) Find the log likelihood function conditioned on � and �, simplifying as

much as possible.

(b) Fixing �, maximize the log likelihood function over �. Substitute the

maximizing value of � to derive a cost function J��� to be maximized

over �.

(c) Discuss approximate computation of the ML estimate for � using a

discrete Fourier transform (DFT).

Problem 4.5 (Example of one-shot timing estimation) The received signal

in a real baseband system is given by

y�t�= p�t− ��+n�t��

where p�t�= I�0�1	�t�, � is an unknown delay taking values in �0�1	, and n is

real-valued WGN with PSD �2 =N0/2. The received signal is passed through

a filter matched to p to obtain z�t�= �y ∗pmf��t�, where pmf�t�= p�−t�, but

the ML estimation algorithm only has access to the samples at times 0�1/2�1.

(a) Specify the distribution of the sample vector z = �z�0�� z�1/2�� z�1��T ,

conditioned on � ∈ �0�1	.

Hint Consider the cases � ≤ 1/2 and � ≥ 1/2 separately.

(b) Compute the ML estimate of � if z = �0�7�0�8�−0�1�T , assuming that

�2 = 0�1. How does your answer change if �2 = 0�01?

Problem 4.6 (Block-based timing estimation for a linearly modulated

signal) Consider the timing estimation problem in Example 4.3.2 for a

linearly modulated signal. That is, the received signal y is given by

y�t�= As�t− ��ej�+n�t��

for

s�t�=
K
∑

k=1

b�k	p�t−kT��

where � is to be estimated, A, � are “nuisance” parameters which we eliminate

by estimating (for fixed �) and substituting into the cost function, as in

Example 4.3.2, and n is complex WGN. Assume that 
b�k	� k= 1� � � �K� are

part of a known training sequence.

(a) Specializing the result in Example 4.3.2, show that the ML estimate of

the delay � can be implemented using the output z�t�= �y ∗pmf��t� of a

filter with impulse response pmf�t� = p∗�−t� matched to the modulating

pulse p.

(b) Now, suppose that we only have access to the matched filter outputs

sampled at twice the symbol rate, at sample times ℓT/2. Discuss how you

might try to approximate the delay estimate in (a), which has access to

the matched filter outputs at all times.
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Problem 4.7 Consider an on–off keyed system in which the receiver

makes its decision based on a single complex number y, as follows:

y = hA+n� 1 sent

y = n� 0 sent�

where A > 0, h is a random channel gain modeled as a zero mean, proper

complex Gaussian random variable with ���h�2	 = 1, and n is zero mean,

proper complex Gaussian noise with variance �2 = N0/2 per dimension.

(a) Assume that h is unknown to the receiver, but that the receiver knows

its distribution (given above). Show that the ML decision rule based on

y is equivalent to comparing �y�2 with a threshold. Find the value of the

threshold in terms of the system parameters.

(b) Find the conditional probability of error, as a function of the average

Eb/N0 (averaged over all possible realizations of h), given that 0 is sent.

(c) Assume now that the channel gain is known to the receiver. What is the

ML decision if y = 1+ j, h= j, A= 3/2, and �2 = 0�01 for the coherent

receiver?

Problem 4.8 (Exact performance analysis forM-ary, equal energy, nonco-

herent orthogonal signaling) Consider an M-ary orthogonal equal-energy

signal set 
si� i = 1� ���M� with �si� sj� = Es�ij , for 1 ≤ i� j ≤M . Condition

on s1 being sent, so that the received signal y= s1e
j�+n, where n is complex

WGN with variance �2 =N0/2 per dimension, and � is an arbitrary unknown

phase shift. The noncoherent decision rule is given by

�nc�y�= arg max
1≤i≤M

�Zi��

where we consider the normalized, scale-invariant decision statistics Zi =
��y� si��/��

√
Es�, i= 1� � � � �M . Let Z= �Z1�… �ZM�

T , and denote the mag-

nitudes by Ri = �Zi�, i= 1� � � � �M .

(a) Show that the normalized decision statistics 
Zi� are (condition-

ally) independent, with Z1 ∼ CN�mej��2� and Zi ∼ CN�0�2�, where

m=√
�2Es/N0�.

(b) Conclude that, conditioned on s1 sent, the magnitudes Ri, i �= 1, obey a

Rayleigh distribution (see Problem 3.4) satisfying

P�Ri ≤ r	= 1− e−
r2

2 � r ≥ 0�

(c) Show that, conditioned on s1 sent, R1 = �Z1� is Rician (see Problem 3.4)

with conditional density

pR1�1�r�1�= r exp

(

−m2+ r2

2

)

I0 �mr� � r ≥ 0�
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(d) Show that the conditional probability of correct reception (given s1 sent),

which also equals the unconditional probability of correct reception by

symmetry, is given by

Pc=Pc�1 = P�R1=max
i

Ri�H1	=P�R2 ≤ R1�R3 ≤ R1� � � � �RM ≤ R1�H1	

=
∫ �

0

(

1− e−
r2

2

)M−1

pR1�1�r�1� dr (4.62)

=
∫ �

0

(

1− e−
r2

2

)M−1

r exp

(

−m2+ r2

2

)

I0�mr� dr

(m=
√

2Es

N0
).

(e) Show that the error probability is given by

Pe = 1−Pc =
∫ �

0

[

1−
(

1− e−
r2

2

)M−1
]

r exp

(

−m2+ r2

2

)

I0�mr� dr�

Using a binomial expansion within the integrand, conclude that

Pe =
M−1
∑

k=1

(

M−1

k

)

Ak�

where

Ak = �−1�k+1
∫ �

0
re−

kr2

2 exp

(

−m2+ r2

2

)

I0�mr� dr� (4.63)

(f) Now,massage the integrand into the formof aRician density aswe didwhen

computing the error probability for binary orthogonal signaling. Use this to

evaluateAk and obtain the following final expression for error probability

Pe =
M−1
∑

k=1

(

M−1

k

)

�−1�k+1

k+1
exp

(

k

k+1

Es

N0

)

�

Check that this specializes to the expression for binary orthogonal

signaling by setting M = 2.

Problem 4.9 (Asymptotic performance of M-ary noncoherent orthogonal

signaling) In the setting of Problem 4.8, we wish to derive the result that

lim
M→�

Pc =
{

1, Eb

N0
> ln 2

0, Eb

N0
< ln 2

(4.64)

Set

m=
√

2Es

N0

=
√

2Eb log2M

N0

�

as in Problem 4.8.
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(a) In (4.8), use a change of variables U =R1−m to show that the probability

of correct reception is given by

Pc =
∫ �

0

(

1− e−
�u+m�2

2

)M−1

p�u�1� du�

(b) Show that, for any u≥ 0,

lim
M→�

(

1− e−
�u+m�2

2

)M−1

=
{

0, Eb

N0
< ln 2

1, Eb

N0
> ln 2�

Hint Use L’Hôpital’s rule on the log of the expression whose limit is to be evaluated.

(c) Show that, by a suitable change of coordinates, we can write

R1 =
√

�m+V1�
2+V 2

2 �

where V1, V2 are i.i.d. N�0�1� random variables. Use this to show that, as

m→�, U = R1−m converges to a random variable whose distribution

does not depend on M (an intuitive argument rather than a rigorous proof

is expected). What is the limiting distribution? (The specific form of

the density is actually not required in the subsequent proof, which only

uses the fact that there is some limiting distribution that does not depend

on M).

(d) Assume now that we can interchange limit and integral as we letM →�,

so that

lim
M→�

Pc =
∫ �

0
lim
M→�

(

1− e−
�u+m�2

2

)M−1

lim
M→�

p�u�1�du�

Now use (b) and (c) to infer the desired result.

Problem 4.10 (Noncoherent orthogonal signaling over a Rayleigh fading

channel) Binary orthogonal signaling over a Rayleigh fading channel can

be modeled using the following hypothesis testing problem:

H1 � y�t�= As1�t�e
j�+n�t�� 0 ≤ t ≤ T

H0 � y�t�= As0�t�e
j�+n�t� 0 ≤ t ≤ T�

where �s1� s0� = 0, ��s1��2 = ��s0��2 = Eb, n is complex AWGN with PSD

�2 = N0/2 per dimension. Conditioned on either hypothesis, the amplitude

A > 0 is Rayleigh with ��A2	 = 1, � is uniformly distributed over �0�2
	,

and A, � are independent of each other and of the noise n. Equivalently,

h = Aej� ∼ CN�0�1� is a proper complex Gaussian random variable. Define

the complex-valued correlation decision statistics Zi = �y� si�, i= 0�1.

(a) Show that the MPE decision rule is the noncoherent detector given by

î= arg max
�Z1�� �Z0��
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(b) Find the error probability as a function of Eb/N0 by first conditioning on

A and using Proposition 4.5.6, and then removing the conditioning.

(c) Now, find the error probability directly using the following reasoning.

Condition throughout on H0. Show that Z1 and Z0 are independent com-

plex Gaussian random variables with i.i.d. real and imaginary parts. Infer

that �Z1�2 and �Z0�2 are independent exponential random variables (see

Problem 3.4), and use this fact to derive directly the error probability

conditioned on H0 (without conditioning on A or �).

(d) Plot the error probability on a log scale as a function of Eb/N0 in dB for

the range 0–20 dB. Compare with the results for the AWGN channel (i.e.,

for A≡ 1)), and note the heavy penalty due to Rayleigh fading.

Problem 4.11 (Soft decisions with noncoherent demodulation) Consider

noncoherent binary on–off keying over a Rayleigh fading channel, where the

receiver decision statistic modeled as:

Y = h+N� 1 sent

Y = N� 0 sent�

where h is zero mean complex Gaussian with ���h�2	 = 3, N is zero mean

complex Gaussian with ���N �2	= 1, and h, N are independent. The receiver

does not know the actual value of h, although it knows the distributions

above. Find the posterior probability P�1 sent�Y = 1−2j	, assuming the prior

probability P�1 sent	= 1/3.

Problem 4.12 (A toy model illustrating channel uncertainty and diversity)

Consider binary, equiprobable signaling over a scalar channel in which the

(real-valued) received sample is given by

y = hb+n� (4.65)

where b∈ 
−1�+1� is the transmitted symbol, n ∼ N�0�1�, and the channel

gain h is a random variable taking one of two values, as follows:

P�h= 1	= 1

4
� P�h= 2	= 3

4
� (4.66)

(a) Find the probability of error, in terms of the Q function with positive

arguments, for the decision rule b̂= sign�y�. Express your answer in terms

of Eb/N0, where Eb denotes the average received energy per bit (averaged

over channel realizations).

(b) True or False The decision rule in (a) is the minimum probability of error

(MPE) rule. Justify your answer. Now, suppose that we have two-channel

diversity, with two received samples given by

y1 = h1b+n1� y2 = h2b+n2� (4.67)
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where b is equally likely to be ±1, n1 and n2 are independent and

identically distributed (i.i.d.) N�0��2�, and h1 and h2 are i.i.d., each with

distribution given by (4.66).

(c) Find the probability of error, in terms of the Q function with positive

arguments, for the decision rule b̂ = sign�y1+y2�.

(d) True or False The decision rule in 1(b) is the MPE rule for the model

(4.67), assuming that the receiver does not know h1, h2, but knows their

joint distribution. Justify your answer.

Problem 4.13 (Preview of diversity for wireless channels) The perfor-

mance degradation due to Rayleigh fading encountered in Problem 4.10 can

be alleviated by the use of diversity, in which we see multiple Rayleigh fading

channels (ideally independent), so that the probability of all channels having

small amplitudes is small. We explore diversity in greater depth in Chapter

8, but this problem provides a quick preview. Consider, as in Problem 4.10,

binary orthogonal signaling, except that we now have access to two copies of

the noisy transmitted signal over independent Rayleigh fading channels. The

resulting hypothesis testing problem can be written as follows:

H1 � y1�t�= h1s1�t�+n1�t�� y2�t�= h2s1�t�+n2�t�� 0 ≤ t ≤ T

H0 � y1�t�= h1s0�t�+n1�t�� y2�t�= h2s0�t�+n2�t�� 0 ≤ t ≤ T�

where �s1� s0� = 0, ��s1��2 = ��s0��2 = Eb, h1, h2 are i.i.d. CN�0�1/2� (normal-

izing so that the net average received energy per bit is still Eb), and n is

complex AWGN with PSD �2 = N0/2 per dimension.

(a) Assuming that h1 and h2 are known (i.e., coherent reception) to the

receiver, find the ML decision rule based on y1 and y2.

(b) Find an expression for the error probability (averaged over the distribution

of h1 and h2) for the decision rule in (a). Evaluate this expression for

Eb/N0 = 15dB, either analytically or by simulation.

(c) Assuming now that the channel gains are unknown (i.e., noncoherent

reception), find the ML decision rule based on y1 and y2.

(d) Find an expression for the error probability (averaged over the distribution

of h1 and h2) for the decision rule in (c). Evaluate this expression for

Eb/N0 = 15 dB, either analytically or by simulation.
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5 Channel equalization

In this chapter, I develop channel equalization techniques for handling the

intersymbol interference (ISI) incurred by a linearly modulated signal that

goes through a dispersive channel. The principles behind these techniques

also apply to dealing with interference from other users, which, depending

on the application, may be referred to as co-channel interference, multiple-

access interference, multiuser interference, or crosstalk. Indeed, I revisit some

of these techniques in Chapter 8 when I briefly discuss multiuser detection.

More generally, there is great commonality between receiver techniques for

efficiently accounting for memory, whether it is introduced by nature, as

considered in this chapter, or by design, as in the channel coding schemes

considered in Chapter 7. Thus, the optimum receiver for ISI channels (in

which the received signal is a convolution of the transmitted signal with the

channel impulse response) uses the same Viterbi algorithm as the optimum

receiver for convolutional codes (in which the encoded data is a convolution

of the information stream with the code “impulse response”) in Chapter 7.

The techniques developed in this chapter apply to single-carrier systems

in which data are sent using linear modulation. An alternative technique for

handling dispersive channels, discussed in Chapter 8, is the use of multi-

carrier modulation, or orthogonal frequency division multiplexing (OFDM).

Roughly speaking, OFDM, or multicarrier modulation, transforms a system

with memory into a memoryless system in the frequency domain, by decom-

posing the channel into parallel narrowband subchannels, each of which sees

a scalar channel gain.

Map of this chapter After introducing the channel model in Section 5.1,

I discuss the choice of receiver front end in Section 5.2. I then briefly dis-

cuss the visualization of the effect of ISI using eye diagrams in Section 5.3.

This is followed by a derivation of maximum likelihood sequence estima-

tion (MLSE) for optimum equalization in Section 5.4. I introduce the Viterbi

algorithm for efficient implementation of MLSE. Since the complexity of

199
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MLSE is exponential in the channel memory, suboptimal equalizers with

lower complexity are often used in practice. Section 5.5 describes a geometric

model for design of such equalizers. The model is then used to design linear

equalizers in Section 5.6, and decision feedback equalizers in Section 5.7.

Techniques for evaluating the performance of these suboptimum equalizers

are also discussed. Finally, Section 5.8 discusses the more complicated prob-

lem of estimating the performance of MLSE. The idea is to use the union

bounds introduced in Chapter 3 for estimating the performance of M-ary

signaling in AWGN, except that M can now be very large, since it equals

the number of possible symbol sequences that could be sent. I therefore dis-

cuss “intelligent” union bounds to prune out unnecessary terms, as well as a

transfer function bound for summing such bounds over infinitely many terms.

Similar arguments are also used in performance analysis of ML decoding of

coded systems (see Chapter 7).

5.1 The channel model

Consider the complex baseband model for linear modulation over a dispersive

channel, as depicted in Figure 5.1.

Figure 5.1 Linear modulation

over a dispersive channel.

The signal sent over the channel is given by

u�t�=
�
∑

n=−�
b�n�gTX�t−nT��

where gTX�t� is the impulse response of the transmit filter, and �b�n�� is the

symbol sequence, transmitted at rate 1/T . The channel is modeled as a filter

with impulse response gC�t�, followed by AWGN. Thus, the received signal

is given by

y�t�=
�
∑

n=−�
b�n�p�t−nT�+n�t�� (5.1)

where

p�t�= �gTX ∗gC��t�

is the impulse response of the cascade of the transmit and channel filters, and

n�t� is complex WGN with PSD 	2 = N0/2 per dimension. The task of the

channel equalizer is to extract the transmitted sequence b= �b�n�� from the

received signal y�t�.

Transmit filter

g T(t )
Channel filter

g C(t )

Received signal

n (t )

White Gaussian noise

Transmitted symbols

{bn }

Rate 1/T y (t )
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Running example As a running example through this chapter, we con-

sider the setting shown in Figure 5.2. The symbol rate is 1/2 (i.e., one

symbol every two time units). The transmit pulse gTX�t� = I�0�2��t� is an

ideal rectangular pulse in the time domain, while the channel response

gC�t�= 
�t−1�−1/2
�t−2� corresponds to two discrete paths.

1

−1/2

1 2
t t

0

g TX(t ) g C(t )
p(t )

0

1

2
t 0 1 2 3 4

1

1/2

−1/2

Figure 5.2 Transmit pulse gTX�t�, channel impulse response gC�t�, and overall pulse p�t� for the

running example. The symbol rate is 1/2 symbol per unit time.

5.2 Receiver front end

Most modern digital communication receivers are DSP-intensive. For example,

for RF communication, relatively sloppy analog filters are used in the passband

and at intermediate frequencies (for superheterodyne reception). The complex

baseband version of these passband filtering operations corresponds to passing

the complex envelope of the received signal through a sloppy analog complex

baseband filter, which is a cascade of the complex baseband versions of the

analog filters used in the receive chain. We would typically design this equiv-

alent analog baseband filter to have a roughly flat transfer function over the

band, say �−W/2�W/2�, occupied by the transmitted signal. Thus, there is no

loss of information in the signal contribution to the output of the equivalent

complex baseband receive filter if it is sampled at a rate faster than W . Typi-

cally, the sampling rate is chosen to be an integer multiple of 1/T , the symbol

rate. This provides an information-lossless front end which yields a discrete-

time signal which we can now process in DSP. For example, we can imple-

ment the equivalent of a specific passband filtering operation on the passband

received signal using DSP operations on the discrete-time complex baseband

signal that implement the correspond complex baseband filtering operations.

Now that we have assured ourselves that we can implement any analog

operation in DSP using samples at the output of a sloppy wideband filter,

let us now return to the analog complex baseband signal y�t� and ask how

to process it optimally if we did not have to worry about implementation
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details. The answer is given by the following theorem, which characterizes

the optimal receiver front end.

Theorem 5.2.1 (Optimality of the matched filter) The optimal receive

filter is matched to the equivalent pulse p�t�, and is specified in the time and

frequency domains as follows:

gR�opt�t�= pMF�t�= p∗�−t��

GR�opt�f�= PMF�f�= P∗�f��
(5.2)

In terms of a decision on the symbol sequence b, there is no loss of relevant

information by restricting attention to symbol rate samples of the matched

filter output, given by

z�n�= �y ∗pMF��nT�=
∫

y�t�pMF�nT − t� dt =
∫

y�t�p∗�t−nT� dt� (5.3)

Proof of Theorem 5.2.1 We can prove this result using either the hypoth-

esis testing framework of Chapter 3, or the broader parameter estimation

framework of Chapter 4. Deciding on the sequence b is equivalent to test-

ing between all possible hypothesized sequences b, with the hypothesis Hb

corresponding to sequence b given by

Hb � y�t�= sb�t�+n�t��

where

sb�t�=
∑

n

b�n�p�t−nT�

is the noiseless received signal corresponding to transmitted sequence b. We

know from Theorem 3.4.3 that the ML rule is given by


ML�y�= arg max
b

Re��y� sb��−
��sb��2
2

�

The MPE rule is similar, except for an additive correction term accounting

for the priors. In both cases, the decision rule depends on the received signal

only through the term �y� sb�. The optimal front end, therefore, should capture

enough information to be able to compute this inner product for all possible

sequences b.

We can also use the more general framework of the likelihood function

derived in Theorem 4.2.1 to infer the same result. For y= sb+n, the likelihood

function (conditioned on b) is given by

L�y�b�= exp

(

1

	2
�Re�y� sb�−

��sb��2
2

�

)

�

We have sufficient information for deciding on b if we can compute the pre-

ceding likelihood function for any sequence b, and the observation-dependent

part of this computation is the inner product �y� sb�.
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Equivalent to analog matched filter with symbol rate sampling

Wideband
analog filter

Discrete-time
matched filter

Synchronization
channel estimation

Complex baseband
received signal

y (t )

rate m / T rate 1 / T

Let us now consider the structure of this inner product in more detail.

�y� sb�= �y�
∑

n

b�n�p�t−nT��=
∑

n

b∗�n�
∫

y�t�p∗�t−nT� dt=
∑

n

b∗�n�z�n��

where �z�n�� are as in (5.3). Generation of �z�n�� by sampling the outputs

of the matched filter (5.2) at the symbol rate follows immediately from the

definition of the matched filter.

Figure 5.3 Typical

implementation of optimal

front end.

While the matched filter is an analog filter, as discussed earlier, it can be

implemented in discrete-time using samples at the output of a wideband

analog filter. A typical implementation is shown in Figure 5.3. The matched

filter is implemented in discrete time after estimating the effective discrete-

time channel (typically using a sequence of known training symbols) from

the input to the transmit filter to the output of the sampler after the analog

filter.

For the suboptimal equalization techniques that I discuss, it is not necessary

to implement the matched filter. Rather, the sampled outputs of the analog

filter can be processed directly by an adaptive digital filter that is determined

by the specific equalization algorithm employed.

5.3 Eye diagrams

An intuitive sense of the effect of ISI can be obtained using eye diagrams.

Consider the noiseless signal r�t� = ∑

n b�n�x�t− nT�, where �b�n�� is the

transmitted symbol sequence. The waveform x�t� is the effective symbol

waveform: for an eye diagram at the input to the receive filter, it is the

cascade of the transmit and channel filters; for an eye diagram at the output

of the receive filter, it is the cascade of the transmit, channel, and receive

filters. The effect of ISI seen by different symbols is different, depending on

how the contributions due to neighboring symbols add up. The eye diagram

superimposes the ISI patterns seen by different symbols into one plot, thus

enabling us to see the variation between the best-case and worst-case effects

of ISI. One way to generate such a plot is to generate �b�n�� randomly, and

then superimpose the waveforms �r�t−kT�� k = 0�±1�±2�…�, plotting the

superposition over a basic interval of length chosen to be an integer multiple
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Figure 5.4 Eye diagrams for

raised cosine pulse with 50%

excess bandwidth for (a) an

ideal channel and (b) a highly

dispersive channel.

of T . The eye diagram for BPSK using a raised cosine pulse with 50% excess

bandwidth is shown in Figure 5.4(a), where the interval chosen is of length

3T . Note that, in every symbol interval, there is a sampling time at which we

can clearly distinguish between symbol value of +1 and −1, for all possible

ISI realizations. This desirable situation is termed an “open” eye. In contrast,

Figure 5.4(b) shows the eye diagram when the raised cosine pulse is passed

through a channel 
�t�− 0�6
�t− 0�5T�+ 0�7
�t− 1�5T�. Now there is no

longer a sampling point where we can clearly distinguish the value +1 from

the value −1 for all possible ISI realizations. That is, the eye is “closed,” and

simple symbol-by-symbol decisions based on samples at appropriately chosen

times do not provide reliable performance. However, sophisticated channel

equalization schemes such as the ones I discuss in this chapter can provide

reliable performance even when the eye is closed.

5.4 Maximum likelihood sequence estimation

I develop a method for ML estimation of the entire sequence b = �b�n��

based on the received signal model (5.1). Theorem 5.2.1 tells us that the

optimal front end is the filter matched to the cascade of the transmit and

channel filters. I use the notation in Theorem 5.2.1 and its proof in the

following.

We wish to maximize L�y�b� over all possible sequences b. Equivalently,

we wish to maximize


�b�= Re�y� sb�−
��sb��2
2

� (5.4)
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where the dependence on the MF outputs �z�n�� has been suppressed from the

notation. To see the computational infeasibility of a brute force approach to

this problem, suppose that N symbols, each drawn from an M-ary alphabet,

are sent. Then there are MN possible sequences b that must be considered

in the maximization, a number that quickly blows up for any reasonable

sequence length (e.g., a direct ML estimation for 1000 QPSK symbols incurs

a complexity of 41000). We must therefore understand the structure of the

preceding cost function in more detail, in order to develop efficient algorithms

to maximize it. In particular, we would like to develop a form for the cost

function that we can compute simply by adding terms as we increment the

symbol time index n. We shall soon see that such a form is key to developing

an efficient maximization algorithm.

It is easy to show that the first term in (5.4) has the desired additive form.

From the proof of Theorem 5.2.1, we know that

Re�y� sb� =
∑

n

Re�b∗�n�z�n��� (5.5)

To simplify the term involving ��sb��2, it is convenient to introduce the

sampled autocorrelation sequence of the pulse p as follows:

h�m�=
∫

p�t�p∗�t−mT� dt = �p∗pMF� �mT�� (5.6)

The sequence �h�m�� is conjugate symmetric:

h�−m�= h∗�m�� (5.7)

This is proved as follows:

h�−m� =
∫

p�t�p∗�t+mT� dt

=
∫

p�u−mT�p∗�u� du

=
(∫

p∗�u−mT�p�u� du
)∗

= h∗�m��

where we have used the change of variables u= t+mT .

Running example For our running example, it is easy to see from Figure

5.1 that p�t� only has nontrivial overlap with p�t−nT� for n= 0�±1. In

particular, we can compute that h�0� = 3/2, h�1� = h�−1� = −1/2, and

h�n�= 0 for �n�> 1.

We can now write

��sb��2 = �
∑

n

b�n�p�t−nT��
∑

m

b�m�p�t−mT�

=
∑

n

∑

m

b�n�b∗�m�
∫

p�t−nT�p∗�t−mT� dt

=
∑

n

∑

m

b�n�b∗�m�h�m−n��

(5.8)
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This does not have the desired additive form, since, for each value of n,

we must consider all possible values of m in the inner summation. To

remedy this, rewrite the preceding as

��sb��2 =
∑

n

�b�n��2h�0�+
∑

n

∑

m<n

b�n�b∗�m�h�m−n�+
∑

n

∑

m>n

b�n�b∗�m�

h�m−n�

Interchanging the roles of m and n in the last summation, we obtain

��sb��2 =h�0�
∑

n

�b�n��2+
∑

n

∑

m<n

�b�n�b∗�m�h�m−n�+b∗�n�b�m�h�n−m���

Using (5.7), we can rewrite the above as follows:

��sb��2 = h�0�
∑

n

�b�n��2+
∑

n

∑

m<n

2Re�b∗�n�b�m�h�n−m��� (5.9)

Substituting (5.5) and (5.9) into (5.4), the cost function to be maximized

becomes


�b�=
∑

n

{

Re�b∗�n�z�n��− h�0�

2
�b�n��2

−Re

(

b∗�n�
∑

m<n

b�m�h�n−m�

)}

� (5.10)

Notice that the preceding cost function is additive in n, and that the term to

be added at the nth step is a function of the “current” symbol b�n� and the

“past” symbols �b�m��m < n�.

In practice, the memory needed to compute the term that needs to be added

at step n is truncated using the following finite memory condition:

h�n�= 0� �n�> L� (5.11)

(For our running example, we have shown that L= 1.)

Under the condition (5.11), we can rewrite (5.10) as


�b�=
∑

n

�Re�b∗�n�z�n��− h�0�

2
�b�n��2−Re�b∗�n�

n−1
∑

m=n−L

b�m�h�n−m����

(5.12)

Thus, to compute the term at time n for a candidate sequence b, we need to

keep track of the current symbol b�n� and a state consisting of the past L

symbols: s�n�= �b�n−L��…� b�n−1��. This term is written as

�n�b�n�� s�n�� = �n�s�n�→ s�n+1��= Re�b∗�n�z�n��− h�0�

2
�b�n��2

−Re

(

b∗�n�
n−1
∑

m=n−L

b�m�h�n−m�

)

� (5.13)
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where the two alternative notations reflect two useful interpretations for the

metric: it is a function of the current symbol b�n� and the current state s�n�,

or it is a function of the transition between the current state s�n� and the next

state s�n+1�= �b�n+1−L�� � � � � b�n��. The cost function can therefore be

written in the following additive form:


�b�=
∑

n

�n�b�n�� s�n��=
∑

n

�n�s�n�→ s�n+1��� (5.14)

If b�n� are drawn from anM-ary alphabet, the number of possible states at any

time n is ML. We can now define a trellis which consists of the set of states

as we step through n: the set of states at n and n+1 are connected by edges.

The label for an edge, or branch, between s�n�= a and s�n+1�= b is simply

the “branch metric” �n�a→ b�. Note that, even when the states at either end

of a branch are specified, the metric value depends on n through the matched

filter output z�n�. A particular candidate sequence b = �b�n��n = 1�2� � � � �

corresponds to a unique path through the trellis. The running sum up to time

k of the metrics is defined as


k�b�=
k
∑

n=1

�n�b�n�� s�n��=
k
∑

n=1

�n�s�n�→ s�n+1��� (5.15)

We can update the running sum for any given sequence as we proceed through

the trellis, since themetric at time n depends only on the states s�n� and s�n+1�.

Running example For our running example in Figure 5.1, suppose that

we employ BPSK modulation, with b�n�∈ �−1�+1�. The number of states

is given by ML = 21 = 2. The state at time n is s�n�= b�n−1�. The branch

metric in going from state s�n�= b�n−1� to state s�n+1�= b�n� is given

by specializing (5.13), to obtain

�n�b�n�� s�n�� = �n�s�n�→ s�n+1��

= Re�b∗�n�z�n��− h�0�

2
�b�n��2−Re�b∗�n�b�n−1�h�1���

Since �b�k�� are real-valued, we see that only y�n� = Re�z�n�� (i.e. the I

component of the samples) affects the preceding metric. Furthermore, since

�b�n��2 ≡ 1, the second term in the preceding equation does not depend

on b�n� (since �b�n��2 ≡ 1), and can be dropped from the branch metric.

(This simplification applies more generally to PSK alphabets, but not to

constellations with amplitude variations, such as 16-QAM.) We therefore

obtain the modified metric

mn�b�n�� s�n�� = mn�s�n�→ s�n+1��

= b�n�y�n�+ 1

2
b�n�b�n−1�

= b�n�

(

y�n�+ 1

2
b�n−1�

)

� (5.16)
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Suppose now that we know that b�0�=+1, and that the first few samples

at the output of the matched filter are given by y�0� = −1, y�1� = 2,

y�2�=−2, and y�3�= 1�5. We can now use (5.16) to compute the branch

metrics for the trellis. Figure 5.4 shows the corresponding trellis, with the

branches labeled by the corresponding metrics. Note that, since we know

that s�1�= b�0�=+1, we do not need the value of y�0�. The first branch

metric we need is

m1�s�1�→ s�2��= b�1�y�1�+ 1

2
b�0�b�1��

We compute this for b�0�=+1 and for b�1�=±1. After this, we compute

the branch metrics

mn�s�n�→ s�n+1�� = b�n�y�n�− 1

2
b�n�b�n−1�

= b�n��y�n�− 1

2
b�n−1��

for b�n�=±1 and b�n+1�=±1 for n= 1�2�3.

Figure 5.5 First few trellis

branches for the running

example.

Consider now a bit sequence b�0�=+1� b�1�=+1� b�2�=+1. From Figure

5.5, this has an accumulated metric of 1�5− 2�5 = −1. Compare it with the

sequence b�0�=+1� b�1�=−1� b�2�=+1. This has an accumulated metric of

−1�5−1�5=−3. Both sequences start from the same state s�1�= b�0�=+1

and end in the same state s�3�= b�2�=+1. Thus, for each possible value of

b�3�, we add the same branch metric m3�s�3�→ s�4�� to the accumulated met-

ric. Since the first sequence had a better accumulated metric coming into state

s�3�, it continues to have a better accumulated metric for each possible value of

state s�4�. This means that the second sequence cannot be part of the ML solu-

tion, since we can construct another sequence that has a better accumulated

metric. Hence we can discard the second sequence from further consideration.

The preceding logic can be applied at any state. Two sequences meeting

at a state s�n� have a common starting state s�1�= b�0�=+1 and a common

ending state s�n� over the time 1� � � � � n. By the same reasoning as above, the

sequence that has a worse accumulated metric at state s�n� can be discarded

from further consideration , since it cannot be part of the ML solution. Thus,

at any given state, we only need to keep track of the sequence that has the

−1

+1 +1 +1 +1

−1 −1 −1

s [2] = b [1] s [3] = b [2] s [4] = b [3]s [1] = b [0]
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+1 +1 +1 +1

−1 −1 −1

0
2.5

−2.5

−1.5

1.5

−2.5

2.5

2

−2

1

−1

1 52.5

−2.5 4 3

s [1] = b [0] s [2] = b [1] s [3] = b [2]

best accumulated metric up to that state. This sequence is called the survivor

at state s�n�. Figure 5.6 shows this pruning procedure in action for the trellis

in Figure 5.5, with the survivors at each state shown in bold. In the figure,

the number labeling each state is the accumulated metric for the survivor at

that state. We can now make the following observations:

Figure 5.6 Example

application of the Viterbi

algorithm. Survivors are shown

in bold.

• At each time, there are two survivors, since there are two states. We cannot

compare across survivors ending at different states; a survivor with a poorer

metric now could make up for it in the future. We do not know whether or

not that happens until the survivors merge, at which point we can directly

compare the accumulated metrics and choose the best.

• Based on the given information, we know that the ML solution will be an

extension of the two survivors at any given state. Thus, if the survivors

have merged in the past, then we know that the ML solution must contain

this merged segment. Specifically, the two survivors at s�4� have actually

merged at s�3�. Thus, we know that the ML sequence must contain this

merged segment, which implies that b̂�1� = +1, b̂�2� = −1 are the ML

decisions for b�1� and b�2�, respectively.
• Just as we have forced the starting state to be s�1�= b�0�=+1 to ensure

a common starting point for all paths through the trellis, we can also force

the ending state to be a predetermined state by specifying the final bit

that is sent. For example, if we send hundred bits b�0�� � � � � b�99�, we can

specify b�0� = b�99� = +1 to ensure that all sequences have a common

start and end state. The ML solution is then the survivor at state s�100�=
b�99�=+1.

In the above discussion, I have invoked the principle of optimality to derive

the Viterbi algorithm for efficient implementation of MLSE, in the context

of our running example. Let me now state this principle formally, and in

greater generality.

Principle of optimality Consider two sequences specified up to time k,

b= �b�1�� � � � � b�k�� and c= �c�1�� � � � � c�k��. Suppose that the state at time

k is the same for both sequences; that is, s�k� = �b�k−L�� � � � � b�k− 1�� =
�c�k−L�� � � � � c�k− 1��. If c has a smaller running sum than b up to time

k, then it cannot be the ML sequence, and can be eliminated from further
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Figure 5.7 The add and

compare steps in the Viterbi

algorithm. consideration. This follows from the following reasoning. Sequence c is worse

than b up to time k. As we proceed further along the trellis, for any possible

state s�k+1�, the term �k�s�k�→ s�k+1�� is the same for both sequences, so

that the running sum for any extension of the sequence c will remain worse

than that of the corresponding extension for sequence b.

Since any two sequences meeting at a state can be directly compared,

we can define the surviving sequence, or survivor, at state s�n� = a as the

sequence entering the state with the largest running sum. By the principle of

optimality, no other sequences entering state s�n� need be considered further

for the purpose of MLSE. Since there are S =ML possible states at any given

time, we need to maintain a list of S survivors at each time. Given S survivors

at time n, we extend each survivor in M possible ways, corresponding to the

M possible values for b�n�, and update the corresponding running sums by

adding ��s�n�→ s�n+1��. At time n+1, for each possible state s�n+1�= b,

we pick the sequence entering the state with the largest running sum, thus

obtaining a new set of S survivors. If the first and last L symbols of the

transmitted sequence are known, the start and end states are fixed, and the

ML sequence is the only survivor at the end of this process. This is the Viterbi

algorithm, which we state more formally below.

Viterbi algorithm Assume that the starting state of the encoder s�1� is

known. Now, all sequences through the trellis meeting at state s�n� can be

directly compared, using the principle of optimality between times 0 and n,

and all sequences except the one with the best running sum can be discarded.

If the trellis has S =ML states at any given time (the algorithm also applies

to time-varying trellises where the number of states can depend on time),

we have exactly S surviving sequences, or survivors, at any given time. We

need to keep track of only these S sequences (i.e., the sequence of states

through the trellis, or equivalently, the input sequence, that they correspond

to) up to the current time. We apply this principle successively at times
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n= 1�2�3� � � � . Consider the S survivors at time k. Let F�s′� denote the set

of possible values of the next state s�k+ 1�, given that the current state is

s�k� = s′. For an M-ary alphabet, there are M possible values of s�k+ 1� =
�bk� b�k− 1�� � � � � b�k−L+ 1�� given that s�k� = �b�k− 1�� � � � � b�k−L+
1�� b�k−L�� is fixed. Denoting the running sum of metrics up to time k for

the survivor at s�k�= s′ by 
∗�1 � k� s′�. We now extend the survivors by one

more time step as follows:

Add step: for each state s′, extend the survivor at s′ in all admissible ways,

and add the corresponding branch metric to the current running sum to get


0�1 � k+1� s′ → s�=
∗�1 � k� s′�+�k+1�s
′ → s�� s∈F�s′��

Compare step: after the “add” step, each possible state s�k+ 1� = s has a

number of candidate sequences coming into it, corresponding to different

possible values of the prior state. We compare the metrics for these candidates

and choose the best as the survivor at s�k+1�= s. Denote by P�s� the set of

possible values of s�k� = s′, given that s�k+1� = s. For an M-ary alphabet,

P�s� has M elements. We can now update the metric of the survivor at

s�k+1�= s as follows:


∗�1 � k+1� s�= max
s′ ∈ P�s�


0�1 � k+1� s′ → s�

and store the maximizing s′ for each s�k+1�= s. (when we wish to minimize

the metric, the maximization above is replaced by minimization).

At the end of the add and compare steps, we have extended the set of

S survivors by one more time step. If the information sequence is chosen

such that the terminating state is fixed, then we simply pick the survivor with

the best metric at the terminal state as the ML sequence. The complexity of

this algorithm is O�S� per time step; that is, it is exponential in the channel

memory, but linear in the (typically much larger) number of transmitted

symbols. Contrast this with brute force ML estimation, which is exponential

in the number of transmitted symbols.

The Viterbi algorithm is often simplified further in practical implemen-

tations. For true MLSE, we must wait until the terminal state to make bit

decisions, which can be cumbersome in terms of both decoding delay and

memory (we need to keep track of S surviving information sequences) for

long information sequences. However, we can take advantage of the fact

that the survivors at time k typically have merged at some point in the past,

and make hard decisions on the bits corresponding to this common section

with the confidence that this section must be part of the ML solution. For

example, in Figure 5.4, the two survivors at time 4 have merged prior to

s�2�, which means we can make the decision that b̂ML�1� = +1. In practice,

we may impose a hard constraint on the decoding delay d and say that, if

the Viterbi algorithm is at time step k, then we must make decisions on all

information bits prior to time step k−d. If the survivors at time k have not
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merged by time step k− d, therefore, we must employ heuristic rules for

making bit decisions: for example, we may make decisions prior to k−d

corresponding to the survivor with the best metric at time k. Alternatively,

some form of majority logic, or weighted majority logic, may be used to

combine the information contained in all survivors at time k.

5.4.1 Alternative MLSE formulation

The preceding MLSE formulation derived the cost function directly from

the continuous-time model (5.1) of a signal depending on b, plus WGN. An

alternative approach is to derive the cost function from a discrete-time WGN

model. I briefly outline this approach here. Start with the matched filter outputs

�z�n��, which consist of a discrete-time signal depending on the transmitted

sequence b, plus discrete-time colored noise. This noise is obtained by passing

continuous-time WGN through the matched filter p∗�−t�, and sampling at

the symbol rate. Knowing the matched filter impulse response, we know the

noise correlation, and we can pass it through a discrete-time whitening filter

to obtain discrete-time WGN. The whitening filter would also change the

signal component, but the overall discrete-time system can be represented as

the symbol sequence passed through a discrete-time filter (the cascade of the

transmit filter, channel filter, receive filter, sampler, and whitening filter), plus

discrete-time WGN. The received sequence v = �v�k�� is therefore given by

v�k�=
L
∑

n=0

f�n�b�k−n�+�k� (5.17)

where ��k� is discrete-time WGN with variance 	2 per dimension, f = �f�n��

is the overall discrete-time channel impulse response, and b = �b�n�� is the

transmitted symbol sequence. We have assumed that f�n� = 0 for n < 0

(causality) and n > L (finite memory): the causality follows from an appro-

priate choice of the whitening filter. The details of this whitened matched

filter approach are developed for the running example in Problem 5.7.

The MLSE for the discrete-time WGN model (5.17) is obtained simply by

minimizing the distance between the received sequence v and the noiseless

signal sb = �s�k�b��, where the kth component of the signal is given by

s�k�b�=∑L
n=0 f�n�b�k−n�. Thus, the cost function to be minimized is

g�b�=
∑

k

�v�k�− s�k�b��2 =
∑

k

�v�k�−
L
∑

n=0

f�n�b�k−n��2�

As before, the contribution at time k is a function of the current symbol b�k�

and the state s�k�= �b�k−L�� � � � � b�k−1�� consisting of the L past symbols,

and can be written as

�k�b�k�� s�k��= ��s�k�→ s�k+1��= �v�k�−
L
∑

n=0

f�n�b�k−n��2� (5.18)
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Thus, the MLSE is defined as

b̂ML = arg min
b

∑

k

��s�k�→ s�k+1���

The principles of optimality and the Viterbi algorithm apply as before, except

that maximization is replaced by minimization.

5.5 Geometric model for suboptimal equalizer design

The optimum MLSE receiver has complexity O�ML� per demodulated sym-

bol, where M is the alphabet size and L is the channel memory. This may be

excessive for large constellations or large channel memory. I now consider

suboptimal equalization strategies whose complexity scales linearly with the

channel memory. The schemes I describe are amenable to adaptive implemen-

tation, and do not require an optimal front end. While they can be developed

in continuous time, I describe these equalization strategies in discrete time,

which is almost invariably the setting in which they are implemented. Specif-

ically, assume that the received signal is passed through an arbitrary receive

filter gRX�t�, and being sampled at a rate 1/Ts =m/T , where m is a positive

integer: m = 1 corresponds to symbol spaced sampling, while m > 1 cor-

responds to fractionally spaced sampling. The received signal is, as before,

given by

y�t�=
∑

n

b�n�p�t−nT�+n�t��

The output of the sampler is a discrete-time sequence �r�k��, where

r�k�= �y ∗gRX��kTs+
��

where 
 is a sampling offset. To understand the structure of �r�k��, consider

the signal and noise contributions to it separately. The signal contribution is

best characterized by considering the response, at the output of the sampler, to

a single symbol, say b�0�. This is given by the discrete-time impulse response

f�k�= �p∗gRX��kTs+
�� k= � � � �−1�0�1�2� � � �

The next symbol sees the same response, shifted by the symbol interval T ,

which corresponds to m samples, and so on. The noise sequence at the output

of the sampler is given by

w�k�= �n∗gRX��kTs+
��

If n is complex WGN, the noise at the receive filter output, w�t�= �n∗gRX��t�,
is zero mean, proper complex, Gaussian random process with autocorrela-

tion/covariance function

2	2
∫

gRX�t�g
∗
RX�t− ��dt = 2	2�gRX ∗gR�mf�����
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where gR�mf�t�= g∗RX�−t� (You should be able to derive the above formula.)

Thus, the sampled noise sequence �w�k�= w�kTs +
�� is zero mean, proper

complex Gaussian, with autocovariance function

Cw�k�= cov�wn+k�wn�= 2	2
∫

gRX�t�g
∗
RX�t−kTs�dt� (5.19)

In the following, I discuss equalization schemes which operate on a block of

received samples for each symbol decision. The formula (5.19) can be used

to determine the the covariance matrix for the noise contribution to any such

block of samples. Note that the noise correlation depends on the autocorrelation

function of gRX�t� evaluated at integer multiples of the sample spacing.

Running example Consider our running example of Figure 5.2, and

consider a receive filter gRX�t�= I�0�1�. Note that this receive filter in this

example is not matched to either the transmit filter or to the cascade of

the transmit filter and the channel. The symbol interval T = 2, and we

choose a sampling interval Ts = 1; that is, we sample twice as fast as

the symbol rate. Note that the impulse response of the receive filter is of

shorter duration than that of the transmit filter, which means that it has a

higher bandwidth than the transmit filter. While I have chosen time-limited

waveforms in my running example for convenience, this is consistent with

my discussion in Section 5.2, in which a wideband filter followed by

sampling, typically at a rate faster than the symbol rate, is employed to

discretize the observation with no (or minimal) loss of information. The

received samples are given by

r�k�= �y ∗gRX��k�=
∫ k

k−1
y�t�dt�

The sampled response to the symbol b�0� can be shown to be

�� � � �0�1�
1

2
�−1

2
�0� � � � �� (5.20)

The sampled response to successive symbols is shifted by two samples,

since there are two samples per symbol. This defines the signal contribution

to the output. To define the noise contribution, note that the autocovariance

function of the complex Gaussian noise samples is given by

Cw�k�= 2	2
k0�

That is, the noise samples are complex WGN. Suppose, now, that we wish

to make a decision on the symbol b�n� based on a block of five samples

r�n�, chosen such that b�n� makes a strong contribution to the block. The

model for such a block can be written as
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r�n�= b�n−1�


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
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0
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0

0

0

1
1
2
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









+wn =Ub�n�+w�n��

(5.21)

where w�n� is discrete-time WGN,

b�n�=





b�n−1�

b�n�

b�n+1�



 (5.22)

is the block of symbols making a nonzero contribution to the block of

samples, and

U=















1
2

0 0

− 1
2

1 0

0 1
2

0

0 − 1
2

1

0 0 1
2















(5.23)

is a matrix whose columns equal the responses corresponding to the sym-

bols contributing to r�n�. The middle column corresponds to the desired

symbol b�n�, while the other columns correspond to the interfering sym-

bols b�n− 1� and b�n+ 1�. The columns are acyclic shifts of the basic

discrete impulse response to a single symbol, with the entries shifting

down by one symbol interval (two samples in this case) as the symbol

index is incremented. We use r�n� to decide on b�n� (using methods to be

discussed shortly). For a decision on the next symbol, b�n+1�, we simply

shift the window of samples to the right by a symbol interval (i.e., by two

samples), to obtain a vector r�n+ 1�. Now b�n+ 1� becomes the desired

symbol, and b�n� and bn+2 the interfering symbols, but the basic model

remains the same. Note that the blocks of samples used for successive

symbol decisions overlap, in general.

Geometric model I am now ready to discuss a general model for finite-

complexity, suboptimal equalizers. A block of L received samples r�n� is used

to decide on b�n�, with successive blocks shifted with respect to each other

by the symbol interval (m samples). The model for the received vector is

r�n�= U b�n�+w�n�� (5.24)

where b�n�= �b�n−k1�� � � � � b�n−1�� b�n�� b�n+1�� � � � � b�n+k2��
T is the

K× 1 vector of symbols making nonzero contributions to r�n�, with K =
k1+ k2 + 1. The L×K matrix U has as its columns the responses, or “sig-

nal vectors,” corresponding to the individual symbols. All of these column
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vectors are acyclic shifts of the basic discrete-time impulse response to

a single symbol, given by the samples of gTX ∗ gC ∗ gRX. We denote the

signal vector corresponding to symbol b�n+ i� as ui, −k1 ≤ i ≤ k2. The

noise vector w�n� is zero mean, proper complex Gaussian with covariance

matrix Cw.

5.6 Linear equalization

Linear equalization corresponds to correlating r�n� with a vector c to produce

a decision statistic Z�n� = �r�n�� c� = cHr�n�. This decision statistic is then

employed to generate either hard or soft decisions for b�n�. Rewriting r�n� as

r�n�= b�n�u0+
∑

i �=0

b�n+ i�ui+w�n�� (5.25)

we obtain the correlator output as

Z�n�= cHr�n�= b�n��cHu0�+
∑

i �=0

b�n+ i��cHui�+ cHw�n�� (5.26)

To make a reliable decision on b�n� based on Z�n�, we must choose c such

that the term cHu0 is significantly larger than the “residual ISI” terms cHui,

i �= 0. We must also keep in mind the effects of the noise term cHw�n�, which

is zero mean proper Gaussian with covariance cHCwc.

Figure 5.8 A typical

architecture for implementing

a linear equalizer.

The correlator c can also be implemented as a discrete-time filter, whose

outputs are sampled at the symbol rate to obtain the desired decision statistics

�Z�n��. Such an architecture is depicted in Figure 5.8.

Zero-forcing (ZF) equalizer The ZF equalizer addresses the preceding

considerations by insisting that the ISI at the correlator output be set to zero.

While doing this, we must constrain the desired term cHu0 so that it is not

driven to zero. Thus, the ZF solution, if it exists, satisfies

cHu0 = 1� (5.27)

and

cHui = 0� for all i �= 0� (5.28)

Filter with coefficients computed

adaptively or with explicit channel estimates

Wideband

analog filter

Complex baseband

received signal

y (t )

rate m /T rate 1/T

Symbol−by−symbol

decisions

Symbol
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To obtain an expression for the ZF correlator, it is convenient to write (5.27)

and (5.28) in matrix form:

cHU= �0� � � � �0�1�0� � � � �0�= eT �

where the nonzero entry on the right-hand side corresponds to the column with

the desired signal vector. It is more convenient to work with the conjugate

transposed of the preceding equation:

UHc = e� (5.29)

The solution to the preceding equation may not be unique (e.g., if the dimen-

sion L is larger than the number of signal vectors, as in the example consid-

ered earlier). Uniqueness is enforced by seeking a minimum norm solution

to (5.29). To minimize ��c��2 subject to (5.29), we realize that any compo-

nent orthogonal to the subspace spanned by the signal vectors �ui� must be

set to zero, so that we may insist that c is a linear combination of the ui,

given by

c = Ua�

where the K×1 vector a contains the coefficients of the linear combination.

Substituting in (5.30), we obtain

UHUa = e�

We can now solve to obtain a = �UHU�−1e, which yields

cZF = U�UHU�−1e� (5.30)

Figure 5.9 The geometry of

zero-forcing equalization.

Geometric view of the zero-forcing equalizer A linear correlator c must

lie in the signal space spanned by the vectors �ui�, since any component of c

orthogonal to this space only contributes noise to the correlator output. This

signal space can be viewed as in Figure 5.9, which shows the desired vector

u0, and the interference subspace SI spanned by the interference vectors

�ui� i �= 0�. If there were no interference, then the best strategy is to point c

along u0 to gather as much energy as possible from the desired vector: this

is the matched filter receiver. However, if we wish to force the ISI to zero,

u0PI

u1

u–1

Interference
subspace

Desired signal

Orthogonal
projection

u0
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we must choose c orthogonal to the interference subspace SI. The correlator

vector c that maximizes the contribution of the desired signal, while being

orthogonal to the interference subspace, is simply (any scaled version of) the

projection P⊥
I u0 of u0 orthogonal to SI. The ZF solution exists if and only if

this projection is nonzero, which is the case if and only if the desired vector

u0 is linearly independent of the interfering vectors. A rule of thumb for

the existence of the ZF solution, therefore, is that the number of available

dimensions L is greater than the number of interference vectors K−1.

How does the preceding geometric view relate to the algebraic specification

(5.27), (5.28) of the ZF solution? Consider a correlator c which is a scalar

multiple of the projection of u0 orthogonal to the interference subspace,

c = �P⊥
I u0. By definition, this satisfies the zero ISI condition (5.28). The

contribution of the desired signal at the output of the correlator is given by

�c�u0� = ��P⊥
I u0�u0� = a��P⊥

I u0��2�

To obtain the normalization �c�u0� = 1, we set

�= 1

��P⊥
I u0��2

�

Thus, the smaller the orthogonal projection P⊥
I u0, the larger the scale factor a

required to obtain the normalization (5.27) for the contribution of the desired

signal to the correlator output. As the scale factor increases, so does the noise

at the correlator output: the variance v2 (per dimension) of the output noise

is given by

v2ZF = 	2��c��2 = 	2�2��P⊥
I u0��2 =

	2

��P⊥
I u0��2

� (5.31)

The corresponding noise variance for matched filter reception (which is opti-

mal if there is no ISI) is

v2MF =
	2

��u0��2
� (5.32)

Thus, when we fix the desired signal contribution to the correlator output as

in (5.27), the output noise variance for the ZF solution is larger than that of

the matched filter receiver. The factor by which the noise variance increases

is called the noise enhancement factor, and is given by

v2ZF
v2MF

= ��u0��2
��P⊥

I u0��2
� (5.33)

The noise enhancement factor is the price we pay for knocking out the ISI,

and is often expressed in dB. Since there is no ISI at the output of the ZF

equalizer, we obtain a scalar observation corrupted by Gaussian noise, so

that performance is completely determined by SNR. Fixing the desired signal

contribution at the output, the SNR scales inversely the noise variance. Thus,

the noise enhancement factor (5.33) is the factor by which the SNR must be

increased for a system employing the ZF equalizer to combat ISI, in order to
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maintain the same performance as matched filter reception in a system with

no ISI.

Running example Going back to our running example, we see that L= 5

and K = 3, so that the ZF solution is likely to exist. Applying (5.30) to

the example, we obtain that (check!)

cZF =
1

8
�5�5�5�−1�2�T � (5.34)

The output of the ZF equalizer for the example is therefore given by

Z�n�= cHZFr�n�= b�n�+N�n��

where N�n�∼ CN�0�2v2�, where 2v2 = cHZFCwcZF = 2	2��cZF��2 = 5/2	2.

For BPSK transmission b�n�∈ �−1�1�, our decision rule is

b̂�n�= sign�Re�Z�n����

Since Re�N�n��∼ N�0� v2�, the error probability is given by

Q

(

1

v

)

�

Using scaling arguments as in Chapter 3, we know that this can be written

as Q�
√

aEb/N0� for some constant a. We can now solve for a by noting

that v2 = 5	2/4 = 5N0/8, and that the received energy per bit is Eb =
��p��2 = 3/2. Setting

1

v
=

√

aEb

N0

yields a = 16/15. Contrast this with a = 2 for ISI-free BPSK. The loss

of 10 log10 2/16/15= 2�73 dB can be interpreted as “noise enhancement”

due to the ZF solution.

In the preceding, we have enforced the constraint that the ZF equalizer must

operate on a finite block of samples for each symbol. If this restriction is lifted

(i.e., if each symbol decision can involve an arbitrary number of samples),

then it is convenient to express the ZF solution in z-transform notation. For

fractionally spaced sampling at rate m/T , think of the samples as m parallel

symbol-spaced streams. The response to a single symbol for stream i is

denoted as �hi�n��, 1 ≤ i ≤ m, and has z-transform Hi�z� =
∑

n hi�n�z
−n. In

my example, we may set

H1�z�= 1− 1

2
z−1� H2�z�=

1

2
�

A linear ZF equalizer can then be characterized as a set of parallel filters

with z-transforms �Gi�z�� such that, in the absence of noise, the sum of the
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parallel filter outputs reconstructs the original symbol stream up to a decision

delay d, as follows:
m
∑

i=1

Hi�z�Gi�z�= z−d� (5.35)

The coefficients of the filters �Gi�z�� are time-reversed, subsampled versions

of the corresponding correlator operating on the fractionally spaced data.

Thus, the ZF correlator (5.34) in my example corresponds to the following

pair of parallel filters:

G1�z�=
1

8
�−1+5z−1�� G2�z�=

1

8
�2+5z−1+5z−2��

so that

H1�z�G1�z�+H2�z�G2�z�= z−1�

For fractionally spaced equalization, it is known that finite-length �Gi�z��

satisfying (5.35) exist, as long as the parallel channel z-transforms �Hi�z��

do not have common zeros (although finite-length ZF solutions exist under

milder conditions as well). On the other hand, for symbol-spaced samples,

there is only one discrete-time channel, so that the ZF equalizer must take

the form �z−d�/�H1�z��. This has infinite length for a finite impulse response

(FIR) channel H1�z�, so that perfect ZF equalization using a finite-length

equalizer is not possible for symbol-spaced sampling. This is one reason why

fractionally spaced sampling is often preferred in practice, especially when the

receive filter is suboptimal. Fractionally spaced sampling is also less sensitive

to timing offsets. This is illustrated by Problem 5.8, which computes the ZF

solution for the running example when the sampling times are shifted by a

fraction of the symbol.

Even though perfect ZF equalization is not possible for symbol spaced

sampling using a finite window of samples, it can be realized approximately

by choosing which of the ISI vectors to null out, and being reconciled to

having residual ISI due to the other ISI vectors at the correlator output. In

this case, we can compute the ZF solution as in (5.30), except that the matrix

U contains as its columns the desired signal vector and the ISI vectors to be

nulled out (the columns corresponding to the other ISI vectors are deleted).

Linear MMSE equalizer The design of the ZF equalizer ignores the effect

of noise at the equalizer output. An alternative to this is the linear minimum

mean squared error (MMSE) criterion, which trades off the effect of noise

and ISI at the equalizer output. The mean squared error (MSE) at the output

of a linear equalizer c is defined as

MSE = J�c�= ���cHr�n�−b�n��2�� (5.36)

where the expectation is taken over the symbol stream �b�n��. The MMSE

correlator is given by

cMMSE = R−1p� (5.37)



August 13, 2007 5:48 p.m. CUP/FOD Page-221 9780521874144c05

221 5.6 Linear equalization

where

R = ��r�n��r�n��H �� p= ��b∗�n�r�n��� (5.38)

The MMSE criterion is useful in many settings, not just equalization, and the

preceding solution holds in great generality.

Direct Proof by differentiation For simplicity, consider real-valued r�n�

and c first. The function J�c� is quadratic in c, so a global minimum exists,

and can be found by setting the gradient with respect to c to zero, as follows:

▽
c J�c� = ▽

c ���c
Tr�n�−b�n��2�

= ��▽c �c
Tr�n�−b�n��2�= ��2�cTr�n�−b�n��r�n��

= 2�Rc−p��

In addition to characterizing the optimal solution, the gradient can also be

employed for descent algorithms for iterative computation of the optimal

solution. For complex-valued r�n� and c, there is a slight subtlety in computing

the gradient. Letting c = cc+ jcs, where cc and cs are the real and imaginary

parts of c, respectively, note that the gradient to be used for descent is actually

▽
cc
J + j▽cs

J�

While the preceding characterization treats the function J as function of two

independent real vector variables cc and cs, a more compact characterization

in the complex domain is obtained by interpreting it as a function of the

independent complex vector variables c and c∗. Since

c = cc+ jcs� c∗ = cc− jcs�

we can show, using the chain rule, that

▽
cc
J =▽

c J+▽
c∗ J�

▽
cs
J = j▽c J − j ▽c∗ J�

so that

▽
cc
J + j▽cs

J = 2▽c∗ J� (5.39)

Thus, the right gradient to use for descent is ▽c∗ J . To compute this, rewrite

the cost function as

J = ����c∗�Tr�n�−b�n���r�n�Hc−b∗�n����

so that

▽
c∗ J = ��r�n���r�n��Hc−b∗�n��= Rc−p� (5.40)

Setting the gradient to zero proves the result.
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Alternative Proof using the orthogonality principle I do not prove the

orthogonality principle here, but state a form of it convenient for my purpose.

Suppose that we wish to find the best linear approximation for a complex

random variable Y in terms of a sequence of complex random variables �Xi�.

Thus, the approximation must be of the form
∑

i aiXi, where �ai� are complex

scalars to be chosen to minimize the MSE:

�

[

�Y −
∑

i

aiXi�2
]

�

The preceding can be viewed as minimizing a distance in a space of random

variables, in which the inner product is defined as

�U�V � = ��UV ∗��

This satisfies all the usual properties of an inner product: �aU�bV � =
ab∗�U�V �, and �U�U� = 0 if and only if U = 0 (where equalities are to

be interpreted as holding with probability one). The orthogonality principle

holds for very general inner product spaces, and states that, for the optimal

approximation, the approximation error is orthogonal to every element of the

approximating space. Specifically, defining the error as

e= Y −
∑

i

aiXi�

we must have

�Xi� e� = 0 for all i� (5.41)

Applying it to our setting, we have Y = b�n�, Xi are the components of r�n�,

and

e= cHr�n�−b�n��

In this setting, the orthogonality principle can be compactly stated as

0= ��r�n�e∗�= ��r�n���r�n��Hc−b∗�n���= Rc−p�

This completes the proof.

Let me now give an explicit formula for the MMSE correlator in terms of

the model (5.24). Assuming that the symbols �b�n�� are uncorrelated, with

��b�n�b∗�m��= 	2
b
nm, (5.37) and (5.38) specialize to

cMMSE = R−1p� where R = 	2
bUU

H +Cw = 	2
b

∑

j

uju
H
j +Cw� p= 	2

bu0�

(5.42)

While the ultimate performance measure for any equalizer is the error proba-

bility, a useful performance measure for the linear equalizer is the signal-to-

interference ratio (SIR) at the equalizer output, given by

SIR = 	2
b ��c�u0��2

	2
b

∑

j �=0 ��c�uj��2 + cHCwc
� (5.43)



August 13, 2007 5:48 p.m. CUP/FOD Page-223 9780521874144c05

223 5.6 Linear equalization

Two important properties of the MMSE equalizer are as follows:

• The MMSE equalizer maximizes the SIR (5.43) among all linear equalizers.

Since scaling the correlator does not change the SIR, any scaled multiple

of the MMSE equalizer also maximizes the SIR.

• In the limit of vanishing noise, the MMSE equalizer specializes to the ZF

equalizer.

These, and other properties, are explored in Problem 5.9.

5.6.1 Adaptive implementations

Directly computing the expression (5.42) for the MMSE correlator requires

knowledge of the matrix of signal vectors U, which in turn requires an explicit

channel estimate. This approach requires the use of the specific model (5.24)

for the received vectors �r�n��, along with an explicit channel estimate for

computing the matrix U. An alternative, and more general, approach begins

with the observation that the MSE cost function (5.36) and the solution

(5.38) is based on expectations involving only the received vectors �r�n�� and

the symbol sequence �b�n��. At the receiver, we know the received vectors

�r�n��, and, if we have a known training sequence, we know �b�n��. Thus,

we can compute estimates of (5.36) and (5.38) simply by replacing statistical

expectation by empirical averages. This approach does not rely on a detailed

model for the received vectors �r�n��, and is therefore quite general.

In the following, I derive the least squares (LS) and recursive least squares

(RLS) implementations of the MMSE correlator by replacing the statistical

expectations involved in the expression (5.38) by suitable empirical averages.

An alternate approach is to employ a gradient descent on the MSE cost

function: by replacing the gradient, which involves a statistical expectation,

by its instantaneous empirical realization, we obtain the least mean squares

(LMS) algorithm.

Training and decision-directed modes It is assumed that the symbol

sequence �b�n�� is known in the training phase of the adaptive algorithm.

Once a correlator has been computed based on the training sequence, it can

be used for making symbol decisions. These symbol decisions can then be

used to further update the correlator, if necessary, in decision-directed mode,

by replacing �b�n�� by its estimates.

Least squares algorithm The LS implementation replaces the statistical

expectations in (5.38) by empirical averages computed over a block of N

received vectors, as follows:

cLS = R̂−1p̂

R̂ = 1
N

∑N
n=1 r�n��r�n��

H � p̂= 1
N

∑N
n=1 b

∗�n�r�n��
(5.44)
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where we would typically require an initial training sequence for �b�n�� to

compute p̂. Just as (5.38) is the solution that minimizes the MSE (5.36), the

LS solution (5.44) is the solution that minimizes the empirical MSE

Empirical MSE = Ĵ �c�= 1

N

N
∑

n=1

�cHr�n�−b�n��2� (5.45)

obtained by replacing the expectation in (5.36) by an empirical average. Note

that the normalization factors of 1/N in (5.44) and (5.45) are included to

reinforce the concept of an empirical average, but can be omitted without

affecting the final result, since scaling a cost function does not change the

optimizing solution.

Recursive least squares algorithm While the preceding empirical aver-

ages (or sums, if the normalizing factors of 1/N are omitted) are computed

over a block of N received vectors, another approach is to sum over terms

corresponding to all available received vectors �r�n�� (i.e., to use a poten-

tially infinite number of received vectors) for computing the empirical MSE

to be optimized, ensuring convergence of the cost function by putting in

an exponential forget factor. This approach allows continual updating of the

correlator, which is useful when we wish to adapt to a time-varying channel.

The cost function evolves over time as follows:

Ĵk�c�=
k
∑

n=0

�k−n�cHr�n�−b�n��2� (5.46)

where 0 < � < 1 is the exponential forget factor, and c�k�, the solution that

minimizes the cost function Ĵk�c�, computed based on all received vectors

�r�n�� n ≤ k�. In direct analogy with (5.38) and (5.44), we can write down

the following formula for c�k�:

c�k� =
(

R̂�k�
)−1

p̂�k�
(5.47)

R̂�k� =
k
∑

n=0

�k−nr�n��r�n��H� p̂�k�=
k
∑

n=0

�k−nb∗�n�r�n��

At first sight, the RLS solution appears to be computationally inefficient,

requiring a matrix inversion at every iteration, in contrast to the LS solution

(5.44), which only requires one matrix inversion for the entire block of

received vectors considered. However, the preceding computations can be

simplified significantly by exploiting the special relationship between the

sequence of matrices R̂�k� to be inverted. Specifically, we have

R̂�k�= �R̂�k−1�+ r�k��r�k��H� (5.48)

which says that the new matrix equals another matrix, plus an outer product.

We can now invoke the matrix inversion lemma (see Problem 5.18 for a

proof), which handles exactly this scenario.
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Matrix inversion Lemma If A is an m×m invertible conjugate symmetric

matrix, and x is a m×1 vector, then

(

A+xxH
)−1 = A−1− x̃x̃H

1+xH x̃
� where x̃ = A−1x� (5.49)

That is, if the matrix A is updated by adding the outer product of x, then

the inverse is updated by the scaled outer product of x̃ = A−1x. Thus, the

computation of the inverse of the new matrix reduces to the simple operations

of calculation of x̃ and its outer product.

The matrices R̂�k� involved in the RLS algorithms are conjugate symmetric,

and (5.48) is precisely the setting addressed by the matrix inversion lemma,

with A= �R̂�k−1� and x = r�k�. It is convenient to define

P�k�= �R̂�k��−1� (5.50)

Applying (5.49) to (5.48), we obtain, upon simplification, the following recur-

sive formula for the required inverse:

P�k�= �−1

(

P�k−1�− r̃�k� �r̃�k��H

�+ �r�k��H r̃�k�

)

� where r̃�k�= P�k−1�r�k��

(5.51)

The vector p̂�k� in (5.47) is easy to compute recursively, since

p�k�= �p�k−1�+b∗�k�r�k�� (5.52)

We can now compute the correlator at the kth iteration as

c�k�= P�k�p�k�� (5.53)

Further algebraic manipulations of (5.53) based on (5.51) and (5.52) yield the

following recursion for the correlator sequence �c�k��:

c�k�= c�k−1�+ e∗�k�r̃�k�

�+ �r�k��H r̃�k�
� (5.54)

where

e�k�= b�k�− �c�k−1��Hr�k� (5.55)

is the instantaneous error in tracking the desired sequence �b�k��.

Least mean squares algorithm When deriving (5.38), I showed that the

gradient of the cost function is given by

▽
c∗ J�c�= ��r�n���r�n��Hc−b∗�n��= Rc−p�

One approach to optimizing the cost function J�c�, therefore, is to employ

gradient descent:

c�k�= c�k−1�−�▽
c∗ J�c�k−1��= c�k−1�

−�
[

r�n�
(

�r�n��Hc�k−1�−b∗�n�
)]

�
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where the parameter � can be adapted as a function of k. The LMS algo-

rithm is a stochastic gradient algorithm obtained by dropping the statis-

tical expectation above, using the instantaneous value of the term being

averaged: at iteration k, the generic terms r�n�, b�n� are replaced by their

current values r�k�, b�k�. We can therefore write an iteration of the LMS

algorithm as

c�k�= c�k−1�−�r�k�
(

�r�k��Hc�k−1�−b∗�k�
)

= c�k−1�+�e∗�k�r�k��

(5.56)

where e�k� is the instantaneous error (5.55) and � is a constant that determines

the speed of adaptation. Too high a value of � leads to instability, while too

small a value leads to very slow adaptation (which may be inadequate for

tracking channel time variations).

The variant of LMS that is most commonly used in practice is the normal-

ized LMS (NLMS) algorithm. To derive this algorithm, suppose that we scale

the received vectors �r�k�� by a factor of A (which means that the power of

the received signal scales by A2). Since cHr�k� must track b�k�, this implies

that c must be scaled by a factor of 1/A, making cHr�k�, and hence e�k�,

scale-invariant. From (5.56), we see that the update to c�k−1� scales by �A:

for this to have the desired 1/A scaling, the constant � must scale as 1/A2.

That is, the adaptation constant must scale inversely as the received power.

The NLMS algorithm implements this as follows:

c�k�= c�k−1�+ �

P�k�
e∗�k�r�k�� (5.57)

where P�k� is adaptively updated to scale with the power of the received

signal, while � is chosen to be a scale-invariant constant (typically 0<�< 1).

A common choice for P�k� is the instantaneous power P�k�= �r�k��Hr�k�+�,

where � > 0 is a small constant providing a lower bound for P�k�. Another

choice is an exponentially weighted average of �r�k��Hr�k�.

Our goal here is to provide a sketch of the key ideas underlying some

common adaptive algorithms. Problem 5.15 contains further exploration of

these algorithms. However, there is a huge body of knowledge regarding both

the theory and implementation of these algorithms and their variants that is

beyond the scope of this book.

5.6.2 Performance analysis

The output (5.26) of a linear equalizer c can be rewritten as

Z�n�= A0b�n�+
∑

i �=0

Aib�n+ i�+W�n��

where A0 = �c�u0� is the amplitude of the desired symbol, Ai = �c�ui�,
i �= 0 are the amplitudes of the terms corresponding to the residual ISI at the
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correlator output, and W�n�∼ N�0� v2� is Gaussian noise with variance v2 =
	2��c��2 per dimension. If there is no residual ISI (i.e., Ai ≡ 0 for i �= 0), as for

a ZF equalizer, then error probability computation is straightforward. How-

ever, the residual ISI is nonzero for both MMSE equalization and imperfect

ZF equalization. I illustrate the methodology for computing the probability of

error in such situations for a BPSK (�b�k�� i.i.d., ±1 with equal probability),

real baseband system. Generalizations to complex-valued constellations are

straightforward. The exact error probability computation involves condition-

ing on, and then averaging out, the ISI, which is computationally complex if

the number of ISI terms is large. A useful Gaussian approximation, which

is easy to compute, involves approximating the residual ISI as a Gaussian

random variable.

BPSK system The bit estimate is given by

b̂�n�= sign�Z�n��

and the error probability is given by

Pe = P�b̂�n� �= b�n���

By symmetry, we can condition on b�n�=+1, getting

Pe = P�Z�n� > 0�b�n�=+1��

Computation of this probability involves averaging over the distribution of

both the noise and the ISI. For the exact error probability, we condition further

on the ISI bits bI = �bn+i� i �= 0�.

Pe�bI = P�Z�n� > 0�b�n�=+1�bI �

= P�W�n� >−�A0+
∑

i �=0

Aib�n+ i���

= Q

(

A0+
∑

i �=0Aib�n+ i�

v

)

�

We can now average over bI to obtain the average error probability:

Pe = ��Pe�bI ��

The complexity of computing the exact error probability as above is exponen-

tial in the number of ISI bits: if there are K ISI bits, then bI takes 2
K different

values with equal probability under our model. An alternative approach, which

is accurate when there are a moderately large number of residual ISI terms,

each of which takes small values, is to apply the central limit theorem to



August 13, 2007 5:48 p.m. CUP/FOD Page-228 9780521874144c05

228 Channel equalization

approximate the residual ISI as a Gaussian random variable. The variance of

this Gaussian random variable is given by

v2I = var

(

∑

i �=0

Aib�n+ i�

)

=
∑

i �=0

A2
i �

We therefore get the approximate model

Z�n�= A0b�n�+N�0� v2I +v2��

The corresponding approximation to the error probability is

Pe ≈Q

(

A0
√

v2I +v2

)

=Q�
√
SIR��

recognizing that the SIR is given by

SIR = A2
0

v2I +v2
= ��c�u0��2

∑

i �=0�c�ui�+	2��c��2 �

5.7 Decision feedback equalization

Figure 5.10 A typical

architecture for implementing

a decision feedback equalizer.

Linear equalizers suppress ISI by projecting the received signal in a direction

orthogonal to the interference space: the ZF equalizer does this exactly, the

MMSE equalizer does this approximately, taking into account the noise-ISI

tradeoff. The resulting noise enhancement can be substantial, if the desired

signal vector component orthogonal to the interference subspace is small. The

DFE, depicted in Figure 5.10, alleviates this problem by using feedback from

prior decisions to cancel the interference due to the past symbols, and linearly

suppressing only the ISI due to future symbols. Since fewer ISI vectors are

being suppressed, the noise enhancement is reduced. The price of this is

error propagation: an error in a prior decision can cause errors in the current

decision via the decision feedback.

The DFE employs a feedforward correlator cFF to suppress the ISI due

to future symbols. This can be computed based on either the ZF or MMSE

criteria: the corresponding DFE is called the ZF-DFE or MMSE-DFE, respec-

tively. To compute this correlator, we simply ignore ISI from the past symbols

(assuming that they will be canceled perfectly by decision feedback), and

rate 1/T

Wideband
analog filter

Complex baseband

received signal

y (t )

rate m/T

Feedforward
filter

Symbol−by−symbol
decisions

Feedback filter

Symbol
estimates
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work with the following reduced model including only the ISI from future

symbols:

rfn = b�n�u0+
∑

j>0

b�n+ j�uj +w�n�� (5.58)

The corresponding matrix of signal vectors, containing �uj� j ≥ 0� is denoted

by Uf . The ZF and MMSE solutions for cFF can be computed simply by

replacing U by Uf in (5.30) and (5.42), respectively.

Running example For the model (5.21), (5.22), (5.23) corresponding to

our running example, we have

Uf =















0 0

1 0
1
2

0

− 1
2

1

0 1
2















� (5.59)

Now that cFF is specified, let us consider its output:

cHFFr�n�= b�n�cHFFu0+
{

∑

j>0

b�n+ j�cHFFuj + cHFFw�n�

}

+
∑

j>0

b�n− j�cHFFu−j�

(5.60)

By optimizing cFF for the reduced model (5.58), we have suppressed the

contribution of the term within � � above, but the set of terms on the extreme

right-hand side, which corresponds to the ISI due to past symbols at the output

of the feedforward correlator, can be large. Decision feedback is used to

cancel these terms. Setting cFB�j�=−cHFFu−j , j > 0, the DFE decision statistic

is given by

ZDFE�n�= cHFFr�n�+
∑

j>0

cFB�j�b̂�n− j�� (5.61)

Note that

ZDFE�n� = b�n�cHFFu0+
{

∑

j>0

b�n+ j�cHFFuj + cHFFw�n�

}

+
∑

j>0

�b�n− j�− b̂�n− j��cHFFu−j�

so that the contribution of the past symbols is perfectly canceled if the

feedback is correct.

Setting Up as the matrix with the past ISI vectors �u−1�u−2� � � � � as

columns, we can write the feedback filter taps in more concise fashion as

cFB =−cHFFUp� (5.62)

where we define cFB = �cFB�Kp�� � � � � cFB�1��
T , where Kp are the number of

past symbols being fed back.
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Running example We compute the ZF-DFE, so as to avoid dependence

on the noise variance. The feedforward filter is given by

cFF = Uf

(

UH
f Uf

)−1
e�

Using (5.59), we obtain

cFF =
1

13
�0�10�5�−1�2�T �

Since there is only one past ISI vector, we obtain a single feedback tap

cFB =−cHFFUp =
5

13
�

since

Up = �
1

2
�−1

2
�0�0�0�T �

Unified notation for feedforward and feedback taps We can write (5.61)

in vector form by setting b̂n = �b̂�n−Kp�� � � � � b̂�n− 1��T as the vector of

decisions on past symbols, and cFB = �cFB�Kp�� � � � � cFB�1��
T , to obtain

ZDFE�n�= cHFFr�n�+ cHFBb̂n = cHDFEr̃�n�� (5.63)

where the extreme right-hand side corresponds to an interpretation of the DFE

output as the output of a single correlator

cDFE =
(

cFF
cFB

)

�

whose input is the concatenation of the received vector and the vector of past

decisions, given by

r̃�n�=
(

r�n�

b̂�n�

)

�

This interpretation is useful for adaptive implementation of the DFE; for

example, by replacing r�n� by r̃�n� in (5.44) to obtain a LS implementation

of the MMSE-DFE.

5.7.1 Performance analysis

Computing the exact error probability for the DFE is difficult because of

the error propagation it incurs. However, we can get a quick idea of its

performance based on the following observations about its behavior for typical

channels. When all the feedback symbols are correct, then the probability

of error equals that of the linear equalizer cFF for the reduced model (5.58),

since the past ISI is perfectly canceled out. This error probability, Pe�FF,

can be exactly computed or estimated using the techniques of Section 5.6.2.
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Starting from correct feedback, if an error does occur, then it initiates an

error propagation event. The error propagation event terminates when the

feedback again becomes correct (i.e., when there are LFB consecutive correct

decisions, where LFB is the number of feedback taps). The number of symbols

for which an error propagation event lasts Te, and the number of symbol

errors Ne incurred during an error propagation event, are random variables

whose distributions are difficult to characterize. However, the number of

symbols between two successive error propagation events is much easier to

characterize. When the feedback is correct, if we model the effect of residual

ISI and noise for the reduced model (5.58) as independent from symbol to

symbol (an excellent approximation in most cases), then symbol errors occur

independently. That is, the time Tc between error propagation events is well

modeled as a geometric random variable with parameter Pe�FF:

P�Tc = k�= Pe�FF�1−Pe�FF�
k−1�

with mean ��Tc� = 1
Pe�FF

. We can now estimate the error probability of the

DFE as the average number of errors in an error propagation event, divided

by the average length of the error-free and error propagation periods:

Pe�DFE =
��Ne�

��Te�+��Tc�
≈ ��Ne�Pe�FF� (5.64)

noting that the average length of an error propagation event, ��Te� is typically

much shorter than the average length of an error-free period, ��Tc� ≈ 1
Pe�FF

.

The average number of errors ��Ne� for an error propagation event can be

estimated by simulations in which we inject an error and let it propagate

(which is more efficient than directly simulating DFE performance, especially

for moderately high SNR).

The estimate (5.64) allows us to draw important qualitative conclusions

about DFE performance relative to the performance of a linear equalizer.

Since ��Ne� is typically quite small, the decay of error probability with SNR

is governed by the term Pe�FF. Thus, the gain in performance of a DFE over

a linear equalizer can be quickly estimated by simply comparing the error

probability, for linear equalization, of the reduced system (5.58) with that for

the original system. In particular, comparing the ZF-DFE and the ZF linear

equalizer, the difference in noise enhancement for the reduced and original

systems is the dominant factor determining performance.

5.8 Performance analysis of MLSE

We now discuss performance analysis of MLSE. This is important not only

for understanding the impact of ISI, but the ideas presented here also apply

to analysis of the Viterbi algorithm in other settings, such as ML decoding of

convolutional codes.
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For concreteness, we consider the continuous-time system model

y�t�=
∑

n

b�n�p�t−nT�+n�t�� (5.65)

where n is WGN. We also restrict attention to real-valued signals and BPSK

modulation, so that b�n�∈ �−1�+1�.

Notation change To avoid carrying around complicated subscripts, we write

the noiseless received signal corresponding to the sequence b as s�b�, dropping

the time index. This is the same signal denoted earlier by sb:

s�b�= sb =
∑

n

b�n�p�t−nT�� (5.66)

so that the received signal, conditioned on b being sent, is given by

y = s�b�+n�

Note that this model also applies to the whitened discrete-time model (5.17)

in Section 5.4.1, with s�b� = �
∑L

n=0 f�n�b�k− n� � k integer�. The analysis

is based on the basic results for M-ary signaling in AWGN developed in

Chapter 3, which applies to both continuous-time and discrete-time systems.

Let 
�b� denote the log likelihood function being optimized by the Viterbi

algorithm, and let L denote the channel memory. As before, the state at time

n is denoted by s�n� = �b�n−L�� � � � � b�n− 1��. Let b̂ML denote the MLSE

output. We want to estimate

Pe�k�= P�b̂ML�k� �= b�k���

the probability of error in the kth bit.

5.8.1 Union bound

We will first need the notion of an error sequence.

Definition 5.8.1 (Error sequence) The error sequence corresponding to an

estimate b̂ and transmitted sequence b is defined as

e = b− b̂

2
� (5.67)

so that

b̂= b+2e� (5.68)

For BPSK, the elements of e = �e�n�� take values in �0�−1�+1�. It is also

easy to verify the following consistency condition.

Consistency condition If e�n� �= 0 (i.e., b̂n �= b�n�), then e�n�= b�n�.
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Definition 5.8.2 (Valid error sequence) An error sequence e is valid for a

transmitted sequence b if the consistency condition is satisfied for all elements

of the error sequence.

The probability that a given error sequence e is valid for a randomly selected

sequence b is

P�e is valid for b�= 2−w�e�� (5.69)

where w�e� denotes the weight of e (i.e., the number of nonzero elements

in e). This is because, for any nonzero element of e, say e�n� �= 0, we have

P�b�n�= e�n��= 1/2.

We can now derive a union bound for Pe�k� by summing over all error

sequences that could cause an error in bit b�k�. The set of such sequences is

denoted by Ek = �e � e�k� �= 0�. Since there are too many such sequences, we

tighten it using an “intelligent” union bound which sums over an appropriate

subset of Ek.

The exact error probability is given by summing over Ek as follows:

Pe�k� =
∑

e∈ Ek

P
[

b+2e = b̂ML�e valid for b
]

P �e valid for b�

=
∑

e∈ Ek

P
[


�b+2e�= arg max
a


�a��e valid for b
]

2−w�e��

We can now bound this as we did for M-ary signaling by noting that

P �
�b+2e� = arg max
a


�a��e valid for b
]

≤ P �
�b+2e�≥
�b��e valid for b� � (5.70)

The probability on the right-hand side above is simply the pairwise error

probability for binary hypothesis testing between y = s�b+ 2e�+ n versus

y = s�b�+n, which we know to be

Q

( ��s�b+2e�− s�b���
2	

)

�

It is easy to see, from (5.66), that

s�b+2e�− s�b�= 2s�e��

so that the pairwise error probability becomes

P�
�b+2e�≥
�b��e valid for b�=Q

( ��s�e���
	

)

� (5.71)

Combining (5.70) and (5.71), we obtain the union bound

Pe�k�≤
∑

e∈ Ek

Q

( ��s�e���
	

)

2−w�e�� (5.72)

We now want to prune the terms in (5.72) to obtain an “intelligent union

bound.” To do this, consider Figure 5.11, which shows a simplified schematic
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m nk

m nk Transmitted sequence b

(all-zero error sequence)

ML sequence b (error sequence e has nonzero entry at position k)
^

Transmitted sequence b

(all-zero error sequence)

Simple error sequence e

(coincides with ML sequence between m and n, 

and with transmitted sequence elsewhere)

~

Figure 5.11 Correct path and MLSE output as paths on the error sequence trellis. The correct path

corresponds to the all-zero error sequence. In the scenario depicted, the MLSE output makes an error

in bit b�k�. I also show the simple error sequence, which coincides with the MLSE output where it

diverges from the correct path around bit b�k�, and coincides with the correct path elsewhere.

of the ML sequence b̂ and the true sequence b as paths through a trellis.

Instead of considering a trellis corresponding to the symbol sequence (as in

the development of the Viterbi algorithm), it is now convenient to consider

a trellis in which a symbol sequence is represented by its error sequence

relative to the transmitted sequence. This trellis has 3L states at each time, and

the transmitted sequence corresponds to the all-zero path. Two paths in the

trellis merge when L successive symbols for the path are the same. Thus, a

path in our error sequence trellis merges with the all-zero path corresponding

to the transmitted sequence if there are L consecutive zeros in the error

sequence. In the figure, the ML sequence is in Ek, and is shown to diverge

and remerge with the transmitted sequence in several segments. Consider

now the error sequence ẽ, which coincides with the segment of the ML

sequence which diverges from the true sequence around the bit of interest,

b�k�, and coincides with the true sequence otherwise. Such a sequence has the

property that, once it remerges with the all-zero path, it never diverges again.

We call such sequences simple error sequences, and characterize them as

follows.

Definition 5.8.3 (Simple error sequence) An error sequence e is simple

if there are no more than L− 1 zeros between any two successive nonzero

entries. The set of simple error sequences with e�k� �= 0 is denoted by Sk.

I now state and prove that the union bound (5.72) can be pruned to include

only simple error sequences.

Proposition 5.8.1 (Intelligent union bound using simple error sequences)

The probability of bit error is bounded as

Pe�k�≤
∑

e∈ Sk

Q

( ��s�e���
	

)

2−w�e�� (5.73)
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Proof Consider the scenario depicted in Figure 5.11. Since the ML sequence

and the true sequence have the same state at times m and n, by the principle

of optimality, the sum of the branch metrics between times m and n must be

strictly greater for the ML path. That is, denoting the sum of branch metrics

from m to n as 
m�n, we have


m�n�b̂� > 
m�n�b�� (5.74)

The sequence b̃ corresponding to the simpler error sequence satisfies


m�n�b̃�=
m�n�b̂� (5.75)

by construction, since it coincides with the ML sequence b̂ from m to n.

Further, since b̃ coincides with the true sequence b prior to m and after n,

we have, from (5.74) and (5.75)


�b̃�−
�b�=
m�n�b̃�−
m�n�b� > 0�

This shows that, for any e∈Ek, if b̂= b+2e is the ML estimate, then there

exists ẽ∈Sk such that


�b+2ẽ� > 
�b��

This implies that

Pe�k� =
∑

e∈ Ek
P
[


�b+2e�= arg max
a


�a��e valid for b
]

2−w�e�

≤
∑

e∈ Sk
P �
�b+2e�≥
�b��e valid for b�2−w�e��

which proves the desired result upon using (5.71).

I now consider methods for computing (5.73). To this end, we first recognize

that there is nothing special about the bit k whose error probability we are

computing. For any times k and l, an error sequence e in Sk has a one-to-one

correspondence with a unique error sequence e′ in Sl obtained by time-shifting

e by l−k. To enumerate the error sequences in Sk efficiently, therefore, we

introduce the notion of error event.

Definition 5.8.4 (Error event) An error event is a simple error sequence

whose first nonzero entry is at a fixed time, say at 0. The set of error events

is denoted by �.

For L= 2, two examples of error events are

e1 = �±1�0�0�0� � � � �� e2 = �±1�0�±1�0�±1�0�0� � � � ��

On the other hand, e3 = �±1�0�0�±1�0�0� � � � � is not an error event, since

it is not a simple error sequence for L= 2.

Note that e1 can be time-shifted so as to line up its nonzero entry with bit

b�k�, thus creating a simple error sequence in Sk. On the other hand, e2 can be
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time-shifted in three different ways, corresponding to its three nonzero entries,

to line up with bit b�k�; it can therefore generate three distinct members of Sk.

In general, an error event of weight w�e� can generate w�e� distinct elements

in Sk. Clearly, all members of Sk can be generated in this fashion using error

events. We can therefore express the bound (5.73) in terms of error events as

follows:

Pe�k�≤
∑

e∈ �

Q

( ��s�e���
	

)

w�e�2−w�e�� (5.76)

where the contribution of a given error event e is scaled by its weight, w�e�

corresponding to the number of simple error sequences in Sk it represents.

High SNR asymptotics The high SNR asymptotics of the error probability

are determined by the term in the union bound that decays most slowly as

the SNR gets large. This corresponds to the smallest Q-function argument,

which is determined by

�2min =mine∈ �
��s�e���2� (5.77)

Proceeding as in the development of the Viterbi algorithm, and specializing

to real signals, we have

��s�e���2 =
∑

n

�h�0�e2�n�+2e�n�
n−1
∑

m=n−L

h�n−m�e�m��=
∑

n

��s�n�→ s�n+1���

(5.78)

where s�n�= �en−L� � � � � e�n−1�� is the state in the error sequence trellis, and

where the branch metric � is implicitly defined above. We can now use the

Viterbi algorithm on the error sequence trellis to compute �2min. We therefore

have the high SNR asymptotics

Pe ∼ exp�− �2min

2	2
�� 	2 → 0�

Compare this with the performance without ISI. This corresponds to the error

sequence e1 = �±1�0�0� � � � �, which gives

��s�e1���2 = ��p��2 = h�0�� (5.79)

Asymptotic efficiency The asymptotic efficiency of MLSE, relative to a

system with no ISI, can be defined as the ratio of the error exponents of the

error probability in the two cases, given by

�= lim
	2→0

− logPe�MLSE�

− logPe�no ISI�
= mine∈ �

��s�e���2
��s�e1���2

= �2min

h�0�
� (5.80)
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Even for systems operating at low to moderate SNR, the preceding high

SNR asymptotics of MLSE shed some light on the structure of the memory

imposed by the channel, analogous to the concept of minimum distance in

understanding the structure of a signaling set.

Example 5.8.1 (Channels with unit memory) For L = 1, error events

must only have consecutive nonzero entries (no more than L− 1 zeros

between successive nonzero entries). For an error event of weight w, show

that

��s�e���2min = wh�0�−2�h�1���w−1�= h�0�+ �w−1��h�0�−2�h�1���
(5.81)

We infer from this, letting w get large, that

2�h�1�� ≤ h�0�� (5.82)

Note that this is a stronger result than that which can be obtained by the

Cauchy–Schwartz inequality, which only implies that �h�1�� ≤ h�0�. We also

infer from (5.82) that the minimum in (5.81) is achieved for w = 1. That is,

�2min = h�0�, so that, from (5.80), we see that the asymptotic efficiency �= 1.

Thus, we have shown that, for L = 1, there is no asymptotic penalty due to

ISI as long as optimal detection is employed.

Computation of union bound Usually, the bound (5.76) is truncated after

a certain number of terms, exploiting the rapid decay of the Q function. The

error sequence trellis can be used to compute the energies ��s�e���2 using

(5.78). Next, I discuss an alternative approach, which leads to the transfer

function bound.

5.8.2 Transfer function bound

The transfer function bound includes all terms of the intelligent union bound,

rather than truncating it at a finite number of terms. There are two steps to

computing this bound: first, represent each error event as a path in a state

diagram, beginning and ending at the all-zero state; second, replace the Q

function by an upper bound which can be evaluated as a product of branch

gains as we traverse the state diagram. Specifically, we employ the upper

bound

Q

( ��s�e���
	

)

≤ 1

2
exp

(

−��s�e���2
2	2

)

�
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which yields

Pe ≤
1

2

∑

e∈ �

exp

(

−��s�e���2
2	2

)

w�e�2−w�e�� (5.83)

From (5.78), we see that ��s�e���2 can be computed as the sum of additive

metrics as we go from state to state in an error sequence trellis. Instead

of a trellis, we can consider a state diagram that starts from the all-zero

state, contains 3L− 1 nonzero states, and then ends at the all-zero state: an

error event is a specific path from the all-zero start state to the all-zero end

state. The idea now is to associate a branch gain with each state transition,

and to compute the net transfer function from the all-zero start state to

the all-zero end state, thus summing over all possible error events. By an

appropriate choice of the branch gains, we show that the bound (5.83) can

be computed as a function of such a transfer function. I illustrate this for

L= 1 below.

Example 5.8.2 (transfer function bound for L=1) For L=1, (5.78)

specializes to

��s�e���2 =
∑

n

�h�0�e2�n�+2h�1�e�n�e�n−1���

We can therefore rewrite (5.83) as

Pe ≤
1

2

∑

e∈ �

w�e�
∏

n

2−�e�n�� exp

(

−h�0�e2�n�+2h�1�e�n�e�n−1�

2	2

)

�

If it were not for the term w�e� inside the summation, the preceding

function could be written as the sum of products of branch gains in

the state transition diagram. To handle the offending term, we introduce

a dummy variable, and consider the following transfer function, which

can be computed as a sum of products of branch gains using a state

diagram:

T�X�=
∑

e∈ �
Xw�e�

∏

n

2−�e�n�� exp

(

−h�0�e2�n�+2h�1�e�n�e�n−1�

2	2

)

=
∑

e∈ �

∏

n

(

X

2

)�e�n��

exp

(

−h�0�e2�n�+2h�1�e�n�e�n−1�

2	2

)

�

(5.84)

Differentiating (5.84) with respect to X, we see that (5.83) can be rewrit-

ten as

Pe ≤
1

2

d

dX
T�X��X=1� (5.85)
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We can now label the state diagram for L= 1 with branch gains specified

as in (5.84): the result is shown in Figure 5.12, with

a0 = exp
(

− h�0�

2	2

)

a1 = exp
(

− h�0�+2h�1�

2	2

)

a2 = exp
(

− h�0�−2h�1�

2	2

)

�

A systematic way to compute the transfer function from the all-zero start state

A to the all-zero end state D is to solve simultaneous equations that relate

the transfer functions from the start state to all other states. For example, any

path from A to D is a path from A to B, plus the branch BD, or a path from

A to C, plus the branch CD. This gives

TAD�X�= TAB�X�bBD+TAC�X�bCD�

where bBD = 1 and bCD = 1 are the branch gains from B to D and C to D,

respectively. Similarly, we obtain

TAB�X�= TAA�X�bAB+TAB�X�bBB+TAC�X�bCB
TAC�X�= TAA�X�bAC+TAB�X�bBC+TAC�X�bCC�

Figure 5.12 State transition

diagram for L= 1.

Plugging in the branch gains from Figure 5.12, and the initial condition

TAA�X�= 1, we obtain the simultaneous equations

TAD�X�= TAB�X�+TAC�X��

TAB�X�= a0
X
2
+a1

X
2
TAB�X�+a2

X
2
TAC�X��

TAC�X�= a0
X
2
+a2

X
2
TAB�X�+a1

X
2
TAC�X��

(5.86)

which can be solved to obtain that

T�X�= TAD�X�=
a0X

1− 1
2
�a1+a2�X

� (5.87)

a0 
X /2

a1 
X /2

a0 
X /2

a1 
X /2

0
start

0
end

+1

–1

1

1

A

B

C

D

a2 
X /2

a2 
X /2
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Substituting into (5.85), we obtain

Pe ≤
1
2
a0

�1− 1
2
�a1+a2��

2
=

1
2
exp

(

− h�0�

2	2

)

[

1− 1
2

(

exp
(

− h�0�+2h�1�

2	2

)

+ exp
(

− h�0�−2h�1�

2	2

))]2
�

We can infer from (5.82) that the denominator is bounded away from zero as

	2 → 0, so that the high SNR asymptotics of the transfer function bound are

given by exp�−�h�0��/�2	2��. This is the same conclusion that we arrived at

earlier using the dominant term of the union bound.

The computation of the transfer function bound for L> 1 is entirely similar

to that for the preceding example, with the transfer function defined as

T�X�=
∑

e∈ �

∏

n

(

X

2

)�e�n��

��s�n�→ s�n+1���

where

��s�n�→ s�n+1��= exp

(

−h�0�e2�n�+2e�n�
∑n−1

n−L h�n−m�e�m�

2	2

)

�

The bound (5.85) applies in this general case as well, and the simultaneous

equations relating the transfer function from the all-zero start state to all other

states can be written down and solved as before. However, solving for T�X�

as a function of X can be difficult for large L. An alternative strategy is to

approximate (5.85) numerically as

Pe ≤
1

2

T�1+
�−T�1�



�

where 
 > 0 is small. Simultaneous equations such as (5.86) can now be

solved numerically for X = 1+
 and X = 1, which is simpler than solving

algebraically for the function T�X�.

5.9 Numerical comparison of equalization techniques

To illustrate the performance of the equalization schemes discussed here, let

us consider a numerical example for a somewhat more elaborate channel

model than in our running example. Consider a rectangular transmit pulse

gTX�t� = I�0�1��t� and a channel impulse response given by gC�t� = 2
�t−
0�5�− 3
�t− 2�/4+ j
�t− 2�25�. The impulse response of the cascade of

the transmit pulse and channel filter is denoted by p�t� and is displayed in

Figure 5.13. Over this channel, we transmit Gray-coded QPSK symbols taking

values b�n�∈ �1+ j�1− j�−1− j�−1+ j� at a rate of 1 symbol per unit time.

At the receiver front end, we use the optimal matched filter, gRX�t�= p∗�−t�.

It can be checked that the channel memory L= 2, so that MLSE requires

42 = 16 states. For a linear equalizer, suppose that we use an observation

interval that exactly spans the impulse response �h�n�� for the desired symbol:
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Figure 5.13 The received

pulse p�t� formed by the

cascade of the transmit and

channel filters.
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this is of length 2L+1= 5. It can be seen that the ZF equalizer does not exist,

and that the LMMSE equalizer will have an error floor due to unsuppressed

ISI. The ZF-DFE and MMSE-DFE can be computed as described in the text:

the DFE has four feedback taps, corresponding to the four “past” ISI vectors.

A comparison of the performance of all of the equalizers, obtained by aver-

aging over multiple 500 symbol packets, is shown in Figure 5.14. Note that

MLSE performance is almost indistinguishable from ISI-free performance.

The MMSE-DFE is the best suboptimal equalizer, about 2 dB away from

MLSE performance. The LMMSE performance exhibits an error floor, since

Figure 5.14 Numerical

comparison of the

performance of various

equalizers.
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it does not have enough dimensions to suppress all of the ISI as the SNR gets

large. The ZF performance is particularly poor here: the linear ZF equalizer

does not exist, and the ZF-DFE performs more poorly than even the linear

MMSE equalizer over a wide range of SNR.

5.10 Further reading

The treatment of MLSE in this chapter is based on some classic papers

that are still recommended reading. The MLSE formulation I follow is that

of Ungerboeck [27], while the alternative whitening-based approach was

proposed earlier by Forney [28]. Forney was also responsible for naming

and popularizing the Viterbi algorithm in his paper [29]. The sharpest known

performance bounds for MLSE (sharper than the ones developed here) are

in the paper by Verdu [30]. The geometric approach to finite-complexity

equalization, in which the ISI is expressed as interference vectors, is adapted

from my own work on multiuser detection [31, 32], based on the analogy

between intersymbol interference and multiuser interference. For example,

the formulation of the LMMSE equalizer is exactly analogous to the MMSE

interference suppression receiver described in [31]. It is worth noting that

a geometric approach was first suggested for infinite-length equalizers in a

classic two-part paper by Messerschmitt [33], which is still recommended

reading. A number of papers have addressed the problem of analyzing DFE

performance, the key difficulty in which lies in characterizing the phenomenon

of error propagation; see [34] and the references therein.

Discussions on the benefits of fractionally spaced equalization can be found

in [35]. Detailed discussion of adaptive algorithms for equalization are found

in the books by Haykin [36] and Honig and Messerschmitt [37].

While I discuss three broad classes of equalizers, linear, DFE, and MLSE,

many variations have been explored in the literature, and I mention a few

below. Hybrid equalizers employing MLSE with decision feedback can be

used to reduce complexity, as pointed out in [38]. The performance of the

DFE can be enhanced by running it in both directions and then arbitrating the

results [39]. For long, sparse, channels, the number of equalizer taps can be

constrained, but their location optimized [40]. A method for alleviating error

propagation in a DFE by using parallelism, and a high-rate error correction

code, is proposed in [41].

While the material in this chapter, and in the preceding references, discuss

broad principles of channel equalization, creative modifications are required

in order to apply these ideas to specific contexts such as wireless chan-

nels (e.g., handling time variations due to mobility), magnetic recording

channels (e.g., handling runlength constraints), and optical communication

channels (e.g., handling nonlinearities). I do not attempt to give specific

citations from the vast literature on these topics.
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5.11 Problems

5.11.1 MLSE

Problem 5.1 Consider a digitally modulated system using QPSK signaling

at bit rate 2/T , and with transmit filter, channel, and receive filter specified

as follows:

gTX�t�= I�0� T2 �− I� T2 �T�� gC�t�= 
�t�− 1

2

�t− T

2
�� gRX�t�= I�0� T2 ��

Let z�k� denote the receive filter output sample at time kTs+ �, where Ts is

a sampling interval to be chosen.

(a) Show that ML sequence detection using the samples �z�k�� is possible,

given an appropriate choice of Ts and �. Specify the corresponding choice

of Ts and �.

(b) How many states are needed in the trellis for implementing ML sequence

detection using the Viterbi algorithm?

Problem 5.2 Consider the transmit pulse gTX�t�= sinc� t
T
�sinc� t

2T
�, which

is Nyquist at symbol rate 1/T .

(a) If gTX�t� is used for Nyquist signaling using 8-PSK at 6Mbit/s, what is

the minimum required channel bandwidth?

(b) For the setting in (a), suppose that the complex baseband channel has

impulse response gC�t� = 
�t− 0�5T �− 1
2

�t− 1�5T �+ 1

4

�t− 2�5T �.

What is the minimum number of states in the trellis for MLSE using the

Viterbi algorithm?

Problem 5.3 (MLSE performance analysis) For BPSK ±1 signaling in

the standard MLSE setting, suppose that the channel memory L = 1, with

h0 = 1, h1 =−0�3.

(a) What is the maximum pairwise error probability, as a function of the

received Eb/N0, for two bit sequences that differ only in the first two

bits? Express your answer in terms of the Q function.

(b) Plot the transfer function bound (log scale) as a function of Eb/N0 (dB).

Also plot the error probability of BPSK without ISI for comparison.

Problem 5.4 Consider a received signal of the form y�t� = ∑

l b�l�p�t−
lT�+n�t�, where b�l�∈ �−1�1�, n�t� is AWGN, and p�t� has Fourier trans-

form given by

P�f�=
{

cos�fT �f � ≤ 1
2T

0 else�
(5.88)
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(a) Is p a Nyquist pulse for signaling at rate 1/T?

(b) Suppose that the receive filter is an ideal lowpass filter with transfer

function

GRX�f�=
{

1 �f � ≤ 1
2T

0 else�
(5.89)

Note that GRX is not the matched filter for P. Let r�t� = �y ∗ gRX��t�
denote the output of the receive filter, and define the samples r�l� =
r�lTs − ��. Show that it is possible to implement MLSE based on the

original continuous-time signal y�t� using only the samples �r�l��, and

specify a choice of Ts and � that makes this possible.

(c) Draw a trellis for implementing MLSE, and find an appropriate branch

metric assuming that the Viterbi algorithm searches for a minimum weight

path through the trellis.

(d) What is the asymptotic efficiency (relative to the ISI-free case) of MLSE?

(e) What is the asymptotic efficiency of one-shot detection (which ignores

the presence of ISI)?

(f) For Eb/N0 of 10 dB, evaluate the exact error probability of one-shot

detection (condition on the ISI bits, and then remove the conditioning)

and the transfer function bound on the error probability of MLSE, and

compare with the ISI-free error probability benchmark.

Problem 5.5 (Noise samples at the output of a filter) Consider complex

WGN n�t� with PSD 	2 per dimension, passed through a filter g�t� and

sampled at rate 1/�Ts�. The samples are given by

N�k�= �n∗g��kTs��

(a) Show that �N�k�� is a stationary proper complex Gaussian random process

with zero mean and autocorrelation function

RN �l�= � �N�k�N ∗�k− l��= 	2rg�l��

where

rg�l�=
∫

g�t�g∗�t− lTs�dt

is the sampled autocorrelation function of g�t�.

(b) Show that �rg�l�� and �RN �l�� are conjugate symmetric.

(c) Define the PSD of N as the z-transform

SN �z�=
�
∑

k=−�
RN �l�z

−l

(setting z = ej2�f yields the discrete-time Fourier transform). Show that

SN �z�= S∗
N �z

∗−1�.

(d) Conclude that, if z0 is a root of SN �z�, then so is 1/z∗0.



August 13, 2007 5:48 p.m. CUP/FOD Page-245 9780521874144c05

245 5.11 Problems

(e) Assuming a finite number of roots �ak� inside the unit circle, show that

SN �z�= A
∏

k

�1−akz
−1��1−a∗

kz��

where A is a constant. Note that the factors �1−akz
−1� are causal and

causally invertible for �ak�< 1.

(f) Show that �N�k�� can be generated by passing discrete-time WGN through

a causal filter (this is useful for simulating colored noise).

(g) Show that �N�k�� can be whitened by passing it through an anticausal

filter (this is useful for algorithms predicated on white noise).

Problem 5.6 (MLSE simulation) We would like to develop a model

for simulating the symbol rate sampled matched filter outputs for linear

modulation through a dispersive channel. That is, we wish to generate the

samples z�k� = �y ∗pmf��kT� for y�t� =
∑

n b�n�p�t−nT�+n�t�, where n is

complex WGN.

(a) Show that the signal contribution to z�k� can be written as

zs�k�=
∑

n

b�n�h�k−n�= �b ∗h��k��

where h�l�= �p∗pmf��lT� as before.

(b) Show that the noise contribution to z�k� is a WSS, proper com-

plex Gaussian random process �zn�k�� with zero mean and covariance

function

Czn
�k�= E�zn�l�z

∗
n�l−k��= 2	2h�k��

For real-valued symbols, signals and noise, h�k� are real, and

Czn
�k�= E�zn�l�zn�l−k��= 	2h�k��

(c) Now, specialize to the running example in Figure 5.1, with BPSK signal-

ing (b�n�∈ �−1�+1�). We can now restrict y, p and n to be real-valued.

Show that the results of (a) specialize to

zs�k�=
3

2
b�k�− 1

2
�b�k−1�+b�k+1���

Show that the results of (b) specialize to

Szn�z�= 	2

(

3

2
− 1

2
�z+ z−1�

)

�

where the PSD Szn�z�=
∑

kCzn
�k�z−k is the z-transform of Czn

�k�.
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(d) Suppose that �w�k�� are i.i.d. N�0�1� random variables. Show that this

discrete-time WGN sequence can be filtered to generate zn�k� as follows:

zn�k�= g�0�w�k�+g�1�w�k−1��

Find the coefficients g�0� and g�1� such that zn�k� has statistics as specified

in (c).

Hint Factorize Szn�z� = �a+ bz��a∗ + b∗z−1� by finding the roots, and use one of

the factors to specify the filter.

(e) Use these results to simulate the performance of MLSE for the running

example. Compare the resulting BER with that obtained using the transfer

function bound.

Problem 5.7 (Alternative MLSE formulation for running example) In

Problem 5.6, it is shown that the MF output for the running example satisfies:

z�k�= zs�k�+ zn�k��

where zs�k�= 3
2
b�k�− 1

2
�b�k−1�+b�k+1��, and �zn�k�� is zero mean colored

Gaussian noise with PSD Szn�z� =
(

3
2
− 1

2
�z+ z−1�

)

(set 	2 = 1 for conve-

nience, absorbing the effect of SNR into the energies of the symbol stream

�b�k��). In Problem 5.6, we factorized this PSD in order to be able to simulate

colored noise by putting white noise through a filter. Now, we use the same

factorization to whiten the noise to get an alternative MLSE formulation.

(a) Show that Szn�z�= A�1+az−1��1+a∗z�, where �a�< 1 and A> 0. Note

that the first factor is causal (and causally invertible), and the second is

anticausal (and anticausally invertible).

(b) Define a whitening filterQ�z�= 1/�
√
A�1+a∗z��. Observe that the corre-

sponding impulse response is anticausal. Show that �zn�k�� passed through

the filter Q yields discrete-time WGN.

(c) Show that �zs�k�� passed through the filter Q yields the symbol sequence

�b�k�� convolved with
√
A�1+az−1�.

(d) Conclude that passing the matched filter output �z�k�� through the whiten-

ing filter Q yields a new sequence �y�k�� obeying the following model

y�k�=
√
A�b�k�+ab�k−1��+w�k��

where w�k�∼ N�0�1� are i.i.d. WGN samples. This is an example of the

alternative whitened model (5.17).

(e) Is there any information loss due to the whitening transformation?

Problem 5.8 For our running example, how does the model (5.21) change

if the sampling times at the output of the receive filter are shifted by 1/2?

(Assume that we still use a block of five samples for each symbol decision).

Find a ZF solution and compute its noise enhancement in dB. How sensitive

is the performance to the offset in sampling times?
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Remark The purpose of this problem is to show the relative insensitivity of

the performance of fractionally spaced equalization to sampling time offsets.

Problem 5.9 (Properties of linear MMSE reception) Prove each of

the following results regarding the linear MMSE correlator specified by

(5.37)–(5.38). For simplicity, restrict attention to real-valued signals and

noise and ±1 BPSK symbols in your proofs.

(a) The MMSE is given by

MMSE = 1−pTcmmse = 1−pTR−1p�

(b) For the model (5.25), the MMSE receiver maximizes the SIR as defined

in (5.43).

Hint Consider the problem of maximizing SIR subject to �c�u0� = �. Show that the

achieved maximum SIR is independent of �. Now choose �= �cmmse�u0�.

(c) Show that the SIR attained by the MMSE correlator is given by

SIRmax =
1

MMSE
−1�

where the MMSE is given by (a).

(d) Suppose that the noise covariance is given by Cw = 	2I, and that the

desired vector u0 is linearly independent of the interference vectors

�uj� j �= 0�. Prove that the MMSE solution tends to the zero forcing

solution as 	2 → 0. That is, show that

�c�u0�→ 1

�c�uj�→ 0� j = 2� ����K�

Hint Show that a correlator satisfying the preceding limits asymptotically (as 	2 →
0) satisfies the necessary and sufficient condition characterizing the MMSE solution.

(e) For the model (5.24), show that a linear correlator c maximizing cTu0,

subject to cTRc = 1, is proportional to the LMMSE correlator.

Hint Write down the Lagrangian for the given constrained optimization problem,

and use the fact that p in (5.37)–(5.38) is proportional to u0 for the model (5.24).

Remark The correlator in (e) is termed the constrained minimum output

energy (CMOE) detector, and has been studied in detail in the context of

linear multiuser detection.

Problem 5.10 The discrete-time end-to-end impulse response for a lin-

early modulated system sampled at three times the symbol rate is � � � �0�

− 1+j

2
� 1−j

4
�1+ 2j� 1

2
�0�− j

4
� 1
4
� 1+2j

4
� 3−j

2
�0� ���. Assume that the noise at the

output of the sampler is discrete-time AWGN.
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(a) Find a length 9 ZF equalizer where the desired signal vector is exactly

aligned with the observation interval. What is the noise enhancement?

(b) Express the channel as three parallel symbol rate channels �Hi�z�� i =
1�2�3�. Show that the equalizer you found satisfies a relation of the form
∑3

i=1Hi�z�Gi�z�= z−d, specifying �Gi�z�� i= 1�2�3� and d.

(c) If you were using a rectangular 16-QAM alphabet over this channel,

estimate the symbol error rate and the BER (with Gray coding) at Eb/N0

of 15 dB.

(d) Plot the noise enhancement in dB as you vary the equalizer length

between 9 and 18, keeping the desired signal vector in the “middle” of

the observation interval (this does not uniquely specify the equalizers in

all cases). As a receiver designer, which length would you choose?

Problem 5.11 Consider the setting of Problem 5.10. Answer the following

questions for a linear MMSE equalizer of length 9, where the desired sig-

nal vector is exactly aligned with the observation interval. Assume that the

modulation format is rectangular 16-QAM. Fix Eb/N0 at 15 dB.

(a) Find the coefficients of theMMSE equalizer, assuming that desired symbol

sequence being tracked is normalized to unit average energy (	2
b = 1).

(b) Generate and plot a histogram of the I and Q components of the residual

ISI at the equalizer output. Does the histogram look zero-mean Gaussian?

(c) Use a Gaussian approximation for the residual ISI to estimate the symbol

error rate and the BER (with Gray coding) at the output of the equalizer.

Compare the performance with that of the ZF equalizer in Problem 5.10(c).

(d) Compute the normalized inner product between the MMSE correlator,

and the corresponding ZF equalizer in Problem 5.10. Repeat at Eb/N0 of

5 dB and at 25 dB, and comment on the results.

Problem 5.12 Consider again the setting of Problem 5.10. Answer the fol-

lowing questions for a DFE in which the feedforward filter is of length 9, with

the desired signal vector exactly aligned with the observation interval. Assume

that the modulation format is rectangular 16-QAM. Fix Eb/N0 at 15 dB.

(a) How many feedback taps are needed to cancel out the effect of all “past”

symbols falling into the observation interval?

(b) For a number of feedback taps as in (a), find the coefficients of the feedfor-

ward and feedback filters for a ZF-DFE.

(c) Repeat (b) for anMMSE-DFE.

(d) Estimate the expected performance improvement in dB for theDFE, relative

to the linear equalizers in Problems 5.10 and 5.11. Assumemoderately high

SNR, and ignore error propagation.

Problem 5.13 Consider the channel of Problem 5.10, interpreted as three

parallel symbol-spaced subchannels, with received samples �ri�n�� for the ith

subchannel, i= 1�2�3. We wish to perform MLSE for a QPSK alphabet.
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(a) What are the minimum number of states required in the trellis?

(b) Specify the form of the additive metric to be used.

Problem 5.14 (Computer simulations of equalizer performance) For the

channel model in Problem 5.10, suppose that we use a QPSK alphabet with

Gray coding. Assume that we send 500 byte packets (i.e., 4000 bits per

packet). Estimate the BER incurred by averaging within and across packets

for the linear MMSE and MMSE-DFE, for a range of error probabilities

10−1–10−4.

(a) Plot the BER (log scale) versus Eb/N0 (dB). Provide for comparison the

BER curve without ISI.

(b) From a comparison of the curves, estimate the approximate degradation

in dB due to ISI at BER of 10−2. Can this be predicted by computing

the noise enhancement for the corresponding ZF and ZF-DFE equalizers

(e.g., using the results from Problems 5.10 and 5.12)?

Problem 5.15 (Computer simulations of adaptive equalization) Consider

the packetized system of Problem 5.14. Suppose that the first 100 symbols of

every packet are a randomly generated, but known, training sequence.

(a) Implement the normalized LMS algorithm (5.57) with � = 0�5, and

plot the MSE as a function of the number of iterations. (Continue run-

ning the equalizer in decision directed mode after the training sequence

is over.)

(b) Simulate over multiple packets to estimate the BER as a function of Eb/N0

(dB). Compare with the results in Problem 5.14 and comment on the degra-

dation due to the adaptive implementation.

(c) Implement a block least squares equalizer based on the training sequence

alone. Estimate theBERand comparewith the results in Problem5.14.Does

it work better or worse than NLMS?

(d) Implement the RLS algorithm, using both training and decision-directed

modes. Plot the MSE as a function of the number of iterations.

(e) Plot the BER as a function of Eb/N0 of the RLS implementation, and

compare it with the other results.

Problem 5.16 (BER for linear equalizers) The decision statistic at the

output of a linear equalizer is given by

y�n�= b�n�+0�1b�n−1�−0�05b�n−2�−0�1b�n+1�−0�05b�n+2�+w�n��

where �b�k�� are independent and identically distributed symbols taking values

±1 with equal probability, and �w�k�� is real WGN with zero mean and

variance 	2. The decision rule employed is

b̂�n�= sign�y�n���
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(a) Find a numerical value for the following limit:

lim
	2→0

	2 logP�b̂n �= bn��

(b) Find the approximate error probability for 	2 = 0�16, modeling the sum of

the ISI and the noise contributions to y�n� as a Gaussian random variable.

(c) Find the exact error probability for 	2 = 0�16.

Problem 5.17 (Software project) This project is intended to give hands-on

experience of complexity and performance tradeoffs in channel equalization

by working through the example in Section 5.9. Expressing time in units of

the symbol time, we take the symbol rate to be 1 symbol per unit time. We

consider Gray-coded QPSK with symbols b�n� taking values in �±1±j�. The

transmit filter has impulse response

gT�t�= I�0�1��t��

The channel impulse response is given by

gC�t�= 2
�t−0�5�− 3

4

�t−2�+ j
�t−2�25�

(this can be varied to see the effect of the channel on equalizer performance).

The receive filter is matched to the cascade of the transmit and channel filters,

and is sampled at the symbol rate so as to generate sufficient statistics for

symbol demodulation.

You are to evaluate the performance of MLSE as well as of suboptimal

equalization schemes, as laid out in the steps below. The results should be

formatted in a report that supplies all the relevant information and formulas

required for reproducing your results, and a copy of the simulation software

should be attached.

The range of error probabilities of interest is 10−3 or higher, and the range

of Eb/N0 of interest is 0–30dB. In plotting your results, choose your range

of Eb/N0 based on the preceding two factors. For all error probability com-

putations, average over multiple 500 symbol packets, with enough additional

symbols at the beginning and end to ensure that MLSE starts and ends with

a state consisting of 1+ j symbols. In all your plots, include the error prob-

ability curve for QPSK over the AWGN channel without ISI for reference. In

(c) and (d), nominal values for the number of equalizer taps are suggested,

but you are encouraged to experiment with other values if they work better.

(a) Set up a discrete-time simulation, in which, given a sequence of symbols

and a value of received Eb/N0, you can generate the corresponding sam-

pled matched filter outputs �z�n��. To generate the signal contribution to

the output, first find the discrete-time impulse response seen by a single

symbol at the output of the sampler. To generate the colored noise at the

output, pass discrete-time WGN through a suitable discrete-time filter.
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Specify clearly how you generate the signal and noise contributions in

your report.

(b) For symbol rate sampling, and for odd values of L ranging from 5 to

21, compute the MMSE as a function of the number of taps for an L-tap

LMMSE receivers with decision delay chosen such that the symbol being

demodulated falls in the middle of the observation interval. What choice

of L would you recommend?

Note In finding the MMSE solution, make sure you account for the fact that the

noise at the matched filter output is colored.

(c) For L= 11, find by computer simulations the bit error rate (BER) of the

LMMSE equalizer. Plot the error probability (on log scale) against Eb/N0

in dB, simulating over enough symbols to get a smooth curve.

(d) Compute the coefficients of an MMSE-DFE with five symbol-spaced

feedforward taps, with the desired symbol falling in the middle of the

observation interval used by the feedforward filter. Choose the number

of feedback taps equal to the number of past symbols falling within the

observation interval. Simulate the performance for QPSK as before, and

compare the BER with the results of (a).

(e) Find the BER of MLSE by simulation, again considering QPSK with

Gray coding. Compare with the results from (b) and (c), and with the

performance with no ISI. What is the dB penalty due to ISI at high SNR?

Can you predict this based on analysis of MLSE?

Problem 5.18 (Proof of matrix inversion lemma) If we know the inverse

of a matrix A, then the matrix inversion lemma (5.49) provides a simple way

of updating the inverse to compute B =
(

A+xxH
)−1

. Derive this result as

follows. For an arbitrary vector y, consider the equation
(

A+xxH
)

z= y� (5.90)

Finding B is equivalent to finding a formula for z of the form z= By.

(a) Premultiply both sides of (5.90) by A−1 and obtain

z= A−1y−A−1xxHz� (5.91)

(b) Premultiply both sides of (5.91) by xH and then solve for xHz in terms

of x, A, and y.

(c) Substitute into (5.91) and manipulate to bring into the desired form z =
By. Read off the expression for B to complete the proof.
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6 Information-theoretic limits and
their computation

Information theory (often termed Shannon theory in honor of its founder,

Claude Shannon) provides fundamental benchmarks against which a com-

munication system design can be compared. Given a channel model and

transmission constraints (e.g., on power), information theory enables us to

compute, at least in principle, the highest rate at which reliable communication

over the channel is possible. This rate is called the channel capacity.

Once channel capacity is computed for a particular set of system parame-

ters, it is the task of the communication link designer to devise coding and

modulation strategies that approach this capacity. After 50 years of effort

since Shannon’s seminal work, it is now safe to say that this goal has been

accomplished for some of the most common channel models. The proofs of

the fundamental theorems of information theory indicate that Shannon lim-

its can be achieved by random code constructions using very large block

lengths. While this appeared to be computationally infeasible in terms of

both encoding and decoding, the invention of turbo codes by Berrou et al. in

1993 provide implementable mechanisms for achieving just this. Turbo codes

are random-looking codes obtained from easy-to-encode convolutional codes,

which can be decoded efficiently using iterative decoding techniques instead

of ML decoding (which is computationally infeasible for such constructions).

Since then, a host of “turbo-like” coded modulation strategies have been pro-

posed, including rediscovery of the low-density parity check (LDPC) codes

invented by Gallager in the 1960s. These developments encourage us to pos-

tulate that it should be possible (with the application of sufficient ingenuity)

to devise a turbo-like coded modulation strategy that approaches the capacity

of a very large class of channels. Thus, it is more important than ever to

characterize information-theoretic limits when setting out to design a com-

munication system, both in terms of setting design goals and in terms of

gaining intuition on design parameters (e.g., size of constellation to use). The

goal of this chapter, therefore, is to provide enough exposure to Shannon

theory to enable computation of capacity benchmarks, with the focus on the

AWGN channel and some variants. There is no attempt to give a complete,

252



August 13, 2007 5:55 p.m. CUP/FOD Page-253 9780521874144c06

253 6.1 Capacity of AWGN: modeling and geometry

or completely rigorous, exposition. For this purpose, the reader is referred to

information theory textbooks mentioned in Section 6.5.

The techniques discussed in this chapter are employed in Chapter 8 in order

to obtain information-theoretic insights into wireless systems. Constructive

coding strategies, including turbo-like codes, are discussed in Chapter 7.

We note that the law of large numbers (LLN) is a key ingredient of infor-

mation theory: if X1� � � � �Xn are i.i.d. random variables, then their empirical

average �X1 + · · ·+Xn�/n tends to the statistical mean ��X1� (with proba-

bility one) as n→� under rather general conditions. Moreover, associated

with the LLN are large deviations results that say that the probability of O�1�

deviation of the empirical average from the mean decays exponentially with

n. These can be proved using the Chernoff bound (see Appendix B). In this

chapter, when I invoke the LLN to replace an empirical average or sum by its

statistical counterpart, I implicitly rely on such large deviations results as an

underlying mathematical justification, although I do not provide the technical

details behind such justification.

Map of this chapter In Section 6.1, I compute the capacity of the con-

tinuous and discrete-time AWGN channels using geometric arguments, and

discuss the associated power-bandwidth tradeoffs. In Section 6.2, I take a

more systematic view, discussing some basic quantities and results of Shan-

non theory, including the discrete memoryless channel model and the channel

coding theorem. This provides a framework for capacity computations that

I use in Section 6.3, where I discuss how to compute capacity under input

constraints (specifically focusing on computing AWGN capacity with stan-

dard constellations such as PAM, QAM, and PSK). I also characterize the

capacity for parallel Gaussian channels, and apply it for modeling dispersive

channels. Finally, Section 6.4 provides a glimpse of optimization techniques

for computing capacity in more general settings.

6.1 Capacity of AWGN channel: modeling and geometry

In this section, I discuss fundamental benchmarks for communication over a

bandlimited AWGN channel.

Theorem 6.1.1 For an AWGN channel of bandwidth W and received power

P, the channel capacity is given by the formula

C =W log2

(

1+ P

N0W

)

bit/s� (6.1)

Let me first discuss some implications of this formula, and then provide some

insight into why the formula holds, and how one would go about achieving

the rate promised by (6.1).
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Consider a communication system that provides an information rate of R

bit/s. Denoting by Eb the energy per information bit, the transmitted power

is P = EbR. For reliable transmission, we must have R < C, so that we have

from (6.1):

R <W log2

(

1+ EbR

N0W

)

�

Defining r = R/W as the spectral efficiency, or information rate per unit of

bandwidth, of the system, we obtain the condition

r < log2

(

1+ Ebr

N0

)

�

This implies that, for reliable communication, the signal-to-noise ratio must

exceed a threshold that depends on the operating spectral efficiency:

Eb

N0

>
2r −1

r
� (6.2)

“Reliable communication” in an information-theoretic context means that the

error probability tends to zero as codeword lengths get large, while a practical

system is deemed reliable if it operates at some desired, nonzero but small,

error probability level. Thus, we might say that a communication system is

operating 3 dB away from Shannon capacity at a bit error probability of 10−6,

meaning that the operating Eb/N0 for a BER of 10−6 is 3 dB higher than the

minimum required based on (6.2).

Equation (6.2) brings out a fundamental tradeoff between power and band-

width. The required Eb/N0, and hence the required power (assuming that the

information rate R and noise PSD N0 are fixed) increases as we increase

the spectral efficiency r, while the bandwidth required to support a given

information rate decreases if we increase r. Taking the log of both sides

of (6.2), we see that the spectral efficiency and the required Eb/N0 in dB

have an approximately linear relationship. This can be seen from Figure 6.1,

which plots achievable spectral efficiency versus Eb/N0 (dB). Reliable com-

munication is not possible above the curve. In comparing a specific coded

modulation scheme with the Shannon limit, we compare the Eb/N0 required

to attain a certain reference BER (e.g., 10−5) with the minimum possible

Eb/N0, given by (6.2) at that spectral efficiency (excess bandwidth used in the

modulating pulse is not considered, since that is a heavily implementation-

dependent parameter). With this terminology, uncoded QPSK achieves a

BER of 10−5 at an Eb/N0 of about 9.5 dB. For the corresponding spec-

tral efficiency r = 2, the Shannon limit given by (6.2) is 1.76 dB, so that

uncoded QPSK is about 7.8 dB away from the Shannon limit at a BER of

10−5. A similar gap also exists for uncoded 16QAM. As we shall see in

the next chapter, the gap to Shannon capacity can be narrowed considerably

by the use of channel coding. For example, suppose that we use a rate 1/2

binary code (1 information bit/2 coded bits), with the coded bits mapped to a

QPSK constellation (2 coded bits/channel use). Then the spectral efficiency
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7.8 dB gap
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is r = 1/2× 2 = 1, and the corresponding Shannon limit is 0 dB. We now

know how to design turbo-like codes that get within a fraction of a dB of

this limit.

Figure 6.1 Spectral efficiency

as a function of Eb/N0 (dB).

The large gap to capacity for

uncoded constellations (at a

reference BER of 10−5) shows

the significant potential

benefits of channel coding,

which I discuss in Chapter 7.

The preceding discussion focuses on spectral efficiency, which is important

when there are bandwidth constraints. What if we have access to unlim-

ited bandwidth (for a fixed information rate)? As discussed below, even in

this scenario, we cannot transmit at arbitrarily low powers: there is a fun-

damental limit on the smallest possible value of Eb/N0 required for reliable

communication.

Power-limited communication As we let the spectral efficiency r → 0,

we enter a power-limited regime. Evaluating the limit (6.2) tells us that, for

reliable communication, we must have

Eb

N0

> ln 2 �−1�6 dB� minimum required for reliable communication

(6.3)

That is, even if we let bandwidth tend to infinity for a fixed information

rate, we cannot reduce Eb/N0 below its minimum value of −1�6 dB. As we

have seen in Chapters 3 and 4, M-ary orthogonal signaling is asympototically

optimum in this power-limited regime, both for coherent and noncoherent

communication.

Let me now sketch an intuitive proof of the capacity formula (6.1). While

the formula refers to a continuous-time channel, both the proof of the capacity

formula, and the kinds of constructions we typically employ to try to achieve

capacity, are based on discrete-time constructions.
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6.1.1 From continuous to discrete time

I now consider an ideal complex WGN channel bandlimited to �−W/2� W/2�.

If the transmitted signal is s�t�, then the received signal

y�t�= �s ∗h��t�+n�t��

where h is the impulse response of an ideal bandlimited channel, and n�t� is

complex WGN. We wish to design the set of possible signals that we would

send over the channel so as to maximize the rate of reliable communication,

subject to a constraint that the signal s�t� has average power at most P.

To start with, note that it does not make sense for s�t� to have any com-

ponent outside of the band �−W/2�W/2�, since any such component would

be annihilated once we pass it through the ideal bandlimited filter h. Hence,

without loss of generality, s�t� must be bandlimited to �−W/2�W/2� for an

optimal signal set design. We now recall the discussion on modulation degrees

of freedom from Chapter 2 in order to obtain a discrete-time model.

By the sampling theorem, a signal bandlimited to �−W/2�W/2� is com-

pletely specified by its samples at rate W , 	s�i/W�
. Thus, signal design

consists of specifying these samples, and modulation for transmission over

the ideal bandlimited channel consists of invoking the interpolation formula.

Thus, once we have designed the samples, the complex baseband waveform

that we send is given by

s�t�=
�
∑

i=�
s�i/W�p

(

t− i

W

)

� (6.4)

where p�t�= sinc�Wt� is the impulse response of an ideal bandlimited pulse

with transfer function P�f �= 1
W
I�−W

2 �W2 �. As noted in Chapter 2, this is linear

modulation at symbol rate W with symbol sequence 	s�i/W�
 and transmit

pulse p�t� = sinc�Wt�, which is the minimum bandwidth Nyquist pulse at

rate W . The translates 	p�t− i/W�
 form an orthogonal basis for the space of

ideally bandlimited functions, so that (6.4) specifies a basis expansion fo s�t�.

For signaling under a power constraint P over a (large) interval To, the

transmitted signal energy should satisfy

∫ To

0
�s�t��2dt ≈ PTo�

Let Ps = ���s�1/W��2� denote the average power per sample. Since energy is

preserved under the basis expansion (6.4), and we have about ToW samples

in this interval, we also have

ToWPs��p��2 ≈ PTo�

For p�t� = sinc�Wt�, we have ��p��2 = 1/W , so that Ps = P. That is, for the

scaling adopted in (6.4), the samples obey the same power constraint as the

continuous-time signal.
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When the bandlimited signal s passes through the ideally bandlimited

complex AWGN channel, we get

y�t�= s�t�+n�t�� (6.5)

where n is complex WGN. Since s is linearly modulated at symbol rate W

using modulating pulse p, we know that the optimal receiver front end is

to pass the received signal through a filter matched to p�t�, and to sample

at the symbol rate W . For notational convenience, we use a receive filter

transfer function GR�f �= I�−W
2 �W2 � which is a scalar multiple of the matched

filter P∗�f �= P�f �= 1
W
I�−W

2 �W2 �. This ideal bandlimited filter lets the signal

s�t� through unchanged, so that the signal contributions to the output of the

receive filter, sampled at rate W , are 	s�i/W�
. The noise at the output of the

receive filter is bandlimited complex WGN with PSD N0I�−W
2 �W2 �, from which

it follows that the noise samples at rate W are independent complex Gaussian

random variables with covariance N0W . To summarize, the noisy samples at

the receive filter output can be written as

y�i�= s�i/W�+N�i�� (6.6)

where the signal samples are subject to an average power constraint

��s�i/W��2� ≤ P, and 	N�i�
 are i.i.d., zero mean, proper complex Gaussian

noise samples with ���N�i��2�= N0W .

Thus, we have reduced the continuous-time bandlimited passband AWGN

channel model to the discrete-time complex WGN channel model (6.6) that

we get to use W times per second if we employ bandwidth W . We can now

characterize the capacity of the discrete-time channel, and then infer that of

the continuous-time bandlimited channel.

6.1.2 Capacity of the discrete time AWGN channel

Since the real and imaginary part of the discrete-time complex AWGN model

(6.6) can be interpreted as two uses of a real-valued AWGN channel, we

consider the latter first.

Consider a discrete-time real AWGN channel in which the output at any

given time

Y = X+Z� (6.7)

where X is a real-valued input satisfying ��X2�≤ S, and Z∼ N�0�N� is real-

valued AWGN. The noise samples over different channel uses are i.i.d. This

is an example of a discrete memoryless channel, where p�Y �X� is specified
for a single channel use, and the channel outputs for multiple channel uses

are conditionally independent given the inputs. A signal, or codeword, over

such a channel is a vector X = �X1� ����Xn�
T , where Xi is the input for the

ith channel use. A code of rate R bits per channel use can be constructed

by designing a set of 2nR such signals 	Xk� k = 1� ����2nR
, with each signal
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having an equal probability of being chosen for transmission over the channel.

Thus, nR bits are conveyed over n channel uses. Capacity is defined as the

largest rate R for which the error probability tends to zero as n→�.

Shannon has provided a general framework for computing capacity for

a discrete memoryless channel, which I discuss in Section 6.3. However, I

provide here a heuristic derivation of capacity for the AWGN channel (6.7),

that specifically utilizes the geometry induced by AWGN.

Sphere packing based derivation of capacity formula For a transmitted

signal Xj , the n-dimensional output vector Y= �Y1� ���� Yn�
T is given by

Y= Xj +Z� Xj sent�

where Z is a vector of i.i.d. N�0�N� noise samples. For equal priors, the MPE

and ML rules are equivalent. The ML rule for the AWGN channel is the

minimum distance rule

�ML�Y�= arg min
1≤k≤2nR

��Y−Xk��2�

Now, the noise vector Z that perturbs the transmitted signal has energy

��Z��2 =
N
∑

i=1

Z2
i ≈ n��Z2

1�= nN�

where we have invoked the LLN. This implies that, if we draw a sphere of

radius
√
nN around a signal Xj , then, with high probability, the received

vector Y lies within the sphere when Xj is sent. Calling such a sphere the

“decoding sphere” for Xj , the minimum distance rule would lead to very small

error probability if the decoding spheres for different signals were disjoint.

We now wish to estimate how many such decoding spheres we can come up

with; this gives the value of 2nR for which reliable communication is possible.

Since X is independent of Z (the transmitter does not know the noise

realization) in the model (6.7), the input power constraint implies an output

power constraint

��Y 2�=���X+Z�2�=��X2�+��Z2�+2��X���Z�=��X2�+��Z2�≤ S+N�

(6.8)

Invoking the law of large numbers again, the received signal energy satisfies

����Y��2�≈ n�S+N��

so that, with high probability, the received signal vector lies within an

n-dimensional sphere with radius Rn =
√

n�S+N�. The problem of signal

design for reliable communication now boils down to packing disjoint decod-

ing spheres of radius rn =
√
nN within a sphere of radius Rn, as shown in

Figure 6.2. The volume of an n-dimensional sphere of radius r equals Knr
n,
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rn

Rn

and the number of decoding spheres we can pack is roughly the following

ratio of volumes:

KnR
n
n

Knr
n
n

= Kn�
√

n�S+N��n

Kn�
√
nN�n

≈ 2nR�

Figure 6.2 Decoding spheres

of radius rn =
√
nN are

packed inside a sphere of

radius Rn =
√

n�S+N�.

Solving, we obtain that the rate R = 1/2 log2�1+ S/N�. I shall show in

Section 6.3 that this rate exactly equals the capacity of the discrete-time real

AWGN channel. (It is also possible to make the sphere packing argument

rigorous, but we do not attempt that here.) I now state the capacity formula

formally.

Theorem 6.1.2 Capacity of discrete-time real AWGN channel The capac-

ity of the discrete-time, real AWGN channel (6.7) is

CAWGN = 1

2
log2�1+SNR� bit/channel use� (6.9)

where SNR= S/N is the signal-to-noise ratio.

Thus, capacity grows approximately logarithmically with SNR, or approxi-

mately linearly with SNR in dB.

6.1.3 From discrete to continuous time

For the continuous-time bandlimited complex baseband channel that we con-

sidered earlier, we have 2W uses per second of the discrete-time real AWGN

channel (6.7). With the normalization we employed in (6.4), we have that, per

real-valued sample, the average signal energy S = P/2 and the noise energy
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N = N0W/2, where P is the power constraint on the continuous-time signal.

Plugging in, we get

Ccont−time = 2W
1

2
log2�1+

P

N0W
� bit/s�

which gives (6.1).

As the invocation of the LLN in the sphere packing based derivation shows,

capacity for the discrete-time channel is achieved by using codewords that

span a large number of symbols. Suppose, now, that we have designed a

capacity achieving strategy for the discrete-time channel; that is, we have

specified a good code, or signal set. A codeword from this set is a discrete-

time sequence 	s�i�
. We can now translate this design to continuous time

by using the modulation formula (6.4) to send the symbols 	s�i� = s�i/W�
.

Of course, as we discussed in Section 2, the sinc pulse used in this formula

cannot be used in practice, and should be replaced by a modulating pulse

whose bandwidth is larger than the symbol rate employed. A good choice

would be a square root Nyquist modulating pulse at the transmitter, and its

matched filter at the receiver, which again yields the ISI-free discrete-time

model (6.6) with uncorrelated noise samples.

In summary, good codes for the discrete-time AWGN channel (6.6) can be

translated into good signal designs for the continuous-time bandlimited AWGN

channel using practical linear modulation techniques; this corresponds to using

translates of a square root Nyquist pulse as an orthonormal basis for the signal

space. It is also possible to use an entirely different basis: for example, orthog-

onal frequency division multiplexing, which I discuss in Chapter 8, employs

complex sinusoids as basis functions. In general, the use of appropriate signal

space arguments allows us to restrict attention to discrete-time models, both for

code design and for deriving information-theoretic benchmarks.

Real baseband channel The preceding observations also hold for a phys-

ical (i.e., real-valued) baseband channel. That is, both the AWGN capacity

formula (6.1) and its corollary (6.2) hold, where W for a physical baseband

channel refers to the bandwidth occupancy for positive frequencies. Thus, a

real baseband signal s�t� occupying a bandwidth W actually spans the inter-

val �−W�W�, with the constraint that S�f � = S∗�−f �. Using the sampling

theorem, such a signal can be represented by 2W real-valued samples per

second. This is the same result as for a passband signal of bandwidth W , so

that the arguments I have made so far, relating the continuous-time model to

the discrete-time real AWGN channel, apply as before. For example, suppose

that we wish to find out how far uncoded binary antipodal signaling at BER

of 10−5 is from Shannon capacity. Since we transmit at 1 bit per sample, the

information rate is 2W bits per second, corresponding to a spectral efficiency

of r = R/W = 2. This corresponds to a Shannon limit of 1.8 dB Eb/N0, using

(6.2). Setting the BER of Q
(

√

�2Eb/N0�
)

for binary antipodal signaling to
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10−5, we find that the required Eb/N0 is 9.5 dB, which is 7.7 dB away from

the Shannon limit. There is good reason for this computation looking familiar:

we obtained exactly the same result earlier for uncoded QPSK on a pass-

band channel. This is because QPSK can be interpreted as binary antipodal

modulation along the I and Q channels, and is therefore exactly equivalent to

binary antipodal modulation for a real baseband channel.

At this point, it is worth mentioning the potential for confusion when

dealing with Shannon limits in the literature. Even though PSK is a passband

technique, the term BPSK is often used when referring to binary antipodal

signaling on a real baseband channel. Thus, when we compare the performance

of BPSK with rate 1/2 coding to the Shannon limit, we should actually be

keeping in mind a real baseband channel, so that r = 1, corresponding to a

Shannon limit of 0 dB Eb/N0. (On the other hand, if we had literally interpreted

BPSK as using only the I channel in a passband system, we would have gotten

r = 1/2.) That is, whenever we consider real-valued alphabets, we restrict

ourselves to the real baseband channel for the purpose of computing spectral

efficiency and comparing Shannon limits. For a passband channel, we can use

the same real-valued alphabet over the I and Q channels (corresponding to a

rectangular complex-valued alphabet) to get exactly the same dependence of

spectral efficiency on Eb/N0.

6.1.4 Summarizing the discrete-time AWGN model

In previous chapters, I have used constellations over the AWGN channel with

a finite number of signal points. One of the goals of this chapter is to be

able to compute Shannon theoretic limits for performance when we constrain

ourselves to using such constellations. In Chapters 3 to 5, when sampling

signals corrupted by AWGN, we model the discrete-time AWGN samples

as having variance �2 = N0/2 per dimension. On the other hand, the noise

variance in the discrete-time model in Section 6.1.3 depends on the system

bandwidth W . I would now like to reconcile these two models, and use a

notation that is consistent with that in the prior chapters.

Real discrete-time AWGN channel Consider the following model for a

real-valued discrete-time channel:

Y = X+Z � Z ∼ N�0��2� (6.10)

where X is a power-constrained input, ��X2� ≤ Es, as well as possibly con-

strained to take values in a given alphabet (e.g., BPSK or 4PAM). This

notation is consistent with that in Chapter 3, where we use Es to denote the

average energy per symbol. Suppose that we compute the capacity of this

discrete-time model as Cd bits per channel use, where Cd is a function of

SNR=Es/�
2. If Eb is the energy per information bit, we must have Es =EbCd

joules per channel use. Now, if this discrete-time channel arose from a real
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baseband channel of bandwidth W , we would have 2W channel uses per

second, so that the capacity of the continuous-time channel is Cc = 2WCd bits

per second. This means that the spectral efficiency is given by

r = Cc

W
= 2Cd Real discrete-time channel� (6.11)

Thus, the SNR for this system is given by

SNR = Es

�2
= 2Cd

Eb

N0

= r
Eb

N0

Real discrete-time channel� (6.12)

Thus, we can restrict attention to the real discrete-time model (6.10), which

is consistent with our notation in prior chapters. To apply the results to

a bandlimited system as in Sections 6.1.1 and 6.1.3, all we need is the

relationship (6.11) which specifies the spectral efficiency (bits per Hz) in

terms of the capacity of the discrete-time channel (bits per channel use).

Complex discrete-time AWGN model The real-valued model (6.10) can

be used to calculate the capacity for rectangular complex-valued constellations

such as rectangular 16-QAM, which can viewed as a product of two real-

valued 4-PAM constellations. However, for constellations such as 8PSK, it is

necessary to work directly with a two-dimensional observation. We can think

of this as a complex-valued symbol, plus proper complex AWGN (discussed

in Chapter 4). The discrete-time model we employ for this purpose is

Y = X+Z � Z ∼ CN�0�2�2�� (6.13)

where ���X�2� ≤ Es as before. However, we can also express this model in

terms of a two-dimensional real-valued observation (in which case, we do

not need to invoke the concepts of proper complex Gaussianity covered in

Chapter 4):

Yc = Xc+Zc � Ys = Xs+Zs� (6.14)

with Zc, Zs i.i.d. N�0��
2�, and ��X2

c +X2
s � ≤ Es. The capacity Cd bits per

channel use for this system is a function of the SNR, which is given by

Es/2�
2, as well as any other constraints (e.g., that X is drawn from an 8PSK

constellation). If this discrete-time channel arises from a passband channel

of bandwidth W , we have W channel uses per second for the corresponding

complex baseband channel, so that the capacity of the continuous-time channel

is Cc =WCd bits per second, so that the spectral efficiency is given by

r = Cc

W
= Cd Complex discrete-time channel� (6.15)

The SNR is given by

SNR = Es

2�2
= Cd

Eb

N0

= r
Eb

N0

Complex discrete-time channel� (6.16)

Comparing (6.12) with (6.16), we note that the relation of SNR with Eb/N0

and spectral efficiency is the same for both systems. The relations (6.11) and
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(6.15) are also consistent: if we get a given capacity for a real-valued model,

we should be able to double that in a consistent complex-valued model by

using the real-valued model twice.

6.2 Shannon theory basics

From the preceding sphere packing arguments, we take away the intuition that

we need to design codewords so as to achieve a good packing of decoding

spheres in n dimensions. A direct approach to trying to realize this intu-

ition is not easy (although much progress has been made in recent years

in the encoding and decoding of lattice codes that attempt to implement

the sphere packing prescription directly). We are interested in determining

whether standard constellations (e.g., PSK, QAM), in conjunction with appro-

priately chosen error-correcting codes, can achieve the same objectives. In

this section, I discuss just enough of the basics of Shannon theory to enable

me to develop elementary capacity computation techniques. I introduce the

general discrete memoryless channel model, for which the model (6.7) is a

special case. Key information-theoretic quantities such as entropy, mutual

information, and divergence are discussed. I end this section with a statement

and partial proof of the channel coding theorem.

While developing this framework, I emphasize the role played by the

LLN as the fundamental basis for establishing information-theoretic bench-

marks: roughly speaking, the randomness that is inherent in one channel

use is averaged out by employing signal designs spanning multiple inde-

pendent channel uses, thus leading to reliable communication. We have

already seen this approach at work in the sphere packing argumentsin

Section 6.1.2.

Definition 6.2.1 Discrete memoryless channel A discrete memoryless

channel is specified by a transition density or probability mass function p�y�x�
specifying the conditional distribution of the output y given the input x. For

multiple channel uses, the outputs are conditionally independent given the

inputs. That is, if x1� ���� xn are the inputs, and y1� ���� yn denote the corre-

sponding outputs, for n channel uses, then

p�y1� ���� yn�x1� ���� xn�= p�y1�x1����p�yn�xn��

Real AWGN channel For the real Gaussian channel (6.10), the channel

transition density is given by

p�y�x�= e
− �y−x�2

2�2

√
2
�2

� y real� (6.17)

Here both the input and the output are real numbers, but we typically constrain

the input to average symbol energy Es. In addition, we can constrain the input
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x to be drawn from a finite constellation: for example, for BPSK, the input

would take values x =±√
Es.

Complex AWGN channel For the complex Gaussian channel (6.13) or

(6.14), the channel transition density is given by

p�y�x�= e
− �y−x�2

2�2

2
�2
= e

− �yc−xc�
2

2�2

√
2
�2

e
− �ys−xs�

2

2�2

√
2
�2

� (6.18)

where the output y= yc+ jys and input x= xc+ jxs can be viewed as complex

numbers or two-dimensional real vectors. We typically constrain the input to

average symbol energy Es, and may also constrain it to be drawn from a finite

constellation: for example, for M-ary PSK, the input x∈ 	
√
Ese

j2
i/M� i =
0�1� � � � �M − 1
. Equation (6.18) makes it transparent that the complex

AWGN model is equivalent to two uses of the real model (6.17), where the

I component xc and the Q component xs of the input may be correlated due

to constraints on the input alphabet.

Figure 6.3 Binary symmetric

channel with crossover

probability p.

Binary symmetric channel (BSC) In this case, x and y both take values in

	0�1
, and the transition “density” is now a probability mass function:

p�y�x�=
{

1−p� y = x

p� y = 1−x�
(6.19)

That is, the BSC is specified by a “crossover” probability p, as shown in

Figure 6.3.

Consider BPSK transmission over an AWGN channel. When we make

symbol by symbol ML decisions, we create a BSC with crossover proba-

bility p = Q�
√

2Eb/N0�. Of course, we know that such symbol-by-symbol

hard decisions are not optimal; for example, ML decoding using the Viterbi

algorithm for a convolutional code involves real-valued observations, or soft

decisions. In Problem 6.10, we quantify the fundamental penalty for hard

decisions by comparing the capacity of the BSC induced by hard decisions

to the maximum achievable rate on the AWGN channel with BPSK input.

Channel transition
probabilities p (y | x )

1

0

1

0

Output YInput X
1 − p

1 − p

p

p
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6.2.1 Entropy, mutual information and divergence

I now provide a brief discussion of relevant information-theoretic quantities

and discuss their role in the law of large numbers arguments invoked in

information theory.

Definition 6.2.2 Entropy For a discrete random variable (or vector) X with

probability mass function p�x�, the entropy H�X� is defined as

H�X�=−��log2 p�X��=−
∑

i

p�xi� log2 p�xi� Entropy� (6.20)

where 	xi
 is the set of values taken by X.

Entropy is a measure of the information gained from knowing the value of the

random variable X. The more uncertain we are regarding the random variable

from just knowing its distribution, the more information we gain when its

value is revealed, and the larger its entropy. The information is measured in

bits, corresponding to the base 2 used in the logarithms in (6.20).

Example 6.2.1 (Binary entropy) We set aside the special notation

HB�p� for the entropy of a Bernoulli random variable X with P�X = 1�=
p= 1−P�X = 0�. From (6.20), we can compute this entropy as

HB�p�=−p log2 p− �1−p� log2�1−p� Binary entropy function�

(6.21)

Note that HB�p� = HB�1−p�: as expected, the information content of X

does not change if we switch the labels 0 and 1. The binary entropy func-

tion is plotted in Figure 6.4. The end points p = 0 and p = 1 correspond

to certainty regarding the value of the random variable, so that no infor-

mation is gained by revealing its value. On the other hand, HB�p� attains

its maximum value of 1 bit at p = 1/2, which corresponds to maximal

uncertainty regarding the value of the random variable (which maximizes

the information gained by revealing its value).

Law of large numbers interpretation of entropy Let X1� � � � �Xn be i.i.d.

random variables, each with pmf p�x�, then their joint pmf satisfies

1

n
log2 p�X1� ����Xn�=

1

n

n
∑

i=1

log2 p�Xi�→��log2 p�X1��=−H�X�� n→��

(6.22)

We can therefore infer that, with high probability, we see the “typical”

behavior

p�X1� ����Xn�≈ 2−nH�X� typical behavior� (6.23)
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A sequence that satisfies this behavior is called a typical sequence. The set

of such sequences is called the typical set. The LLN implies that

P��X1� ����Xn� is typical�→ 1� n→�� (6.24)

That is, any sequence of length n that is not typical are extremely unlikely

to occur. Using (6.23) and (6.24), we infer that there must be approximately

2nH�X� sequences in the typical set. We have thus inferred a very important

principle, called the asymptotic equipartition property (AEP), stated infor-

mally as follows.

Figure 6.4 The binary entropy

function.

Asymptotic equipartition property (discrete random variables) For a

length n sequence of i.i.d. discrete random variables X1� ����Xn, where n is

large, the typical set consists of about 2nH�X� sequences, each occurring with

probability approximately 2−nH�X�. Sequences outside the typical set occur

with negligible probability for large n.

Since nH�X� bits are required to specify the 2nH�X� typical sequences, the

AEP tells us that describing n i.i.d. copies of the random variable X requires

about nH�X� bits, so that the average number of bits per copy of the random

variable is H�X�. This gives a concrete interpretation for what we mean by

entropy measuring information content. The implications for data compression

(not considered in detail here) are immediate: by arranging i.i.d. copies of

the source in long blocks, we can describe it at rates approaching H�X� per

source symbol, by only assigning bits to represent the typical sequences.

I have defined entropy for discrete random variables. We also need an anal-

ogous notion for continuous random variables, termed differential entropy,

defined as follows.
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Definition 6.2.3 Differential entropy For a continuous random variable

(or vector) X with probability density function p�x�, the differential entropy

h�X� is defined as

h�X�=−��log2 p�X��=−
∫

p�x� log2 p�x� dx Differential entropy�

Example 6.2.2 (Differential entropy for a Gaussian random variable)

For X ∼ N�m�v2�,

− log2 p�x�=
�x−m�2

2v2
�log2 e�+

1

2
log2�2
v

2��

Thus, we obtain

h�X�=−��log2 p�X��=��
�X−m�2

2v2
�log2 e�+

1

2
log2�2
v

2�= 1

2
log2 e+

1

2
log2�2
v

2��

We summarize as follows:

h�X�=1

2
log2�2
ev

2� Differential entropy for Gaussian N�m�v2�

random variable� (6.25)

Note that the differential entropy does not depend on the mean, since that

is a deterministic parameter that can be subtracted out from X without any

loss of information.

Cautionary note There are key differences between entropy and differential

entropy. While entropy must be nonnegative, this is not true of differential

entropy (e.g., set v2 < 1/2
e in Example 6.2.2). While entropy is scale-invariant,

differential entropy is not, even though scaling a random variable by a known

constant should not change its information content. These differences can be

traced to the differences between probability mass functions and probability den-

sity functions. Scaling changes the location of the mass points for a discrete ran-

dom variable, but does not change their probabilities. On the other hand, scaling

changes both the location and size of the infinitesimal intervals used to define

a probability density function for a continuous random variable. However, such

differences between entropy and differential entropy are irrelevant for our main

purpose of computing channel capacities, which, as we shall see, requires com-

puting differences between unconditional and conditional entropies or differen-

tial entropies. The effect of scale factors “cancels out” when we compute such

differences.
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Law of large numbers interpretation of differential entropy Let

X1� ����Xn be i.i.d. random variables, each with density f�x�, then their joint

density satisfies

1

n
log2 f�X1� ����Xn�=

1

n

n
∑

i=1

log2 f�Xi�→ ��log2 f�X1��=−h�X�� n→��

(6.26)

We now define “typical” behavior in terms of the value of the joint density

f�X1� ����Xn�≈ 2−nh�X� typical behavior� (6.27)

and invoke the LLN to infer that (6.24) holds. Since the “typical” value of

the joint density is a constant, 2−nh�X�, we infer that the typical set must have

volume approximately 2nh�X�, in order for the joint density to integrate to one.

This leads to the AEP for continuous random variables stated below.

Asymptotic equipartition property (continuous random variables) For

a length n sequence of i.i.d. continuous random variables X1� ����Xn, where n

is large, the joint density takes value approximately 2−nh�X� over a typical set

of volume 2nh�X�. The probability mass outside the typical set is negligible

for large n.

Joint entropy and mutual information The entropy H�X�Y� of a pair of

random variables �X�Y� (e.g., the input and output of a channel) is called the

joint entropy of X and Y , and is given by

H�X�Y�=−��log2 p�X�Y��� (6.28)

where p�x� y�= p�x�p�y�x� is the joint pmf. The mutual information between

X and Y is defined as

I�X�Y�=H�X�+H�Y�−H�X�Y�� (6.29)

Conditional entropy The conditional entropy H�Y �X� is defined as

H�Y �X�=−��log2 p�Y �X��=−
∑

x

∑

y

p�x� y� log2 p�y�x�� (6.30)

Since p�y�x�= p�x� y�/p�x�, we have

log2 p�Y �X�= log2 p�X�Y�− log2 p�X��

Taking expectations and changing sign, we get

H�Y �X�=H�X�Y�−H�X��

Substituting into (6.29), we get an alternative formula for the mutual

information (6.29): I�X�Y� = H�Y�−H�Y �X�. By symmetry, we also have
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I�X�Y�= H�X�−H�X�Y�. For convenience, I state all of these formulas for

mutual information together:

I�X�Y�=H�Y�−H�Y �X�

=H�X�−H�X�Y�

=H�X�+H�Y�−H�X�Y�� (6.31)

It is also useful to define the entropy of Y conditioned on a particular value

of X = x, as follows:

H�Y �X = x�=−��log2 p�Y �X��X = x�=−
∑

y

p�y�x� log2 p�y�x��

and note that

H�Y �X�=
∑

x

p�x�H�Y �X = x�� (6.32)

The preceding definitions and formulas hold for continuous random variables

as well, with entropy replaced by differential entropy.

One final concept that is closely related to entropies is information-theoretic

divergence, also termed the Kullback–Leibler (KL) distance.

Divergence The divergence D�P��Q� between two distributions P and Q

(with corresponding densities p�x� and q�x� is defined as

D�P��Q�= �P

[

logp�X�

logq�X�

]

=
∑

x

p�x�
logp�x�

logq�x�
�

where �P denotes expectation computed using the distribution P (i.e., X is a

random variable with distribution P).

Divergence is nonnegative The divergence D�P��Q� ≥ 0, with equality if

and only if P ≡Q.

The proof is as follows:

−D�P��Q�=�P

[

log

(

q�X�

p�X�

)]

=
∑

x�p�x�>0 p�x� log

(

q�x�

p�x�

)

≤
∑

x�p�x�>0 p�x�

(

q�x�

p�x�
−1

)

=
(∑

x�p�x�>0 q�x�
)

− 1≤ 0�

where the first inequality is because logx≤ x−1. Since equality in the latter

inequality occurs if and only if x= 1, the first inequality is an equality if and

only if q�x�/p�x�= 1 wherever p�x� > 0. The second inequality follows from

the fact that q is a pmf, and is an equality if and only if q�x� = 0 wherever

p�x�= 0. Thus, we find that D�P��Q�= 0 if and only if p�x�= q�x� for all

x (for continuous random variables, the equalities would only need to hold

“almost everywhere”).
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Mutual information as a divergence The mutual information between

two random variables can be expressed as a divergence between their joint

distribution, and a distribution corresponding to independent realizations of

these random variables, as follows:

I�X�Y�=D�PX�Y ��PXPY �� (6.33)

This follows by noting that

I�X�Y� = H�X�+H�Y�−H�X�Y�

= −��logp�X��−��logp�Y��+��logp�X�Y��

= �

[

log

(

p�X�Y�

p�X�p�Y�

)]

�

where the expectation is computed using the joint distribution of X and Y .

6.2.2 The channel coding theorem

I first introduce joint typicality, which is the central component of a random

coding argument for characterizing the maximum achievable rate on a DMC.

Joint typicality Let X and Y have joint density p�x� y�. Then the law of

large numbers can be applied to n channel uses with i.i.d. inputs X1� ����Xn,

leading to outputs Y1� ���� Yn, respectively. Note that the pairs �Xi� Yi� are i.i.d.,

as are the outputs 	Yi
. We thus get three LLN-based results:

1

n
log2 p�X1� ����Xn�→−H�X�

1

n
log2 p�Y1� ���� Yn�→−H�Y�

1

n
log2 p�X1� Y1� ����Xn� Yn�→−H�X�Y��

(6.34)

For an input sequence x = �x1� ���� xn�
T and an output sequence y =

�y1� ���� yn�
T , the pair �x�y� is said to be jointly typical if its empirical char-

acteristics conform to the statistical averages in (6.34); that is, if

p�x�≈ 2−nH�X�

p�y�≈ 2−nH�Y�

p�x�y�≈ 2−nH�X�Y��

(6.35)

We also infer that there are about 2nH�X�Y� jointly typical sequences, since
∑

x�y joint typical

p�x�y�≈ 1�

In the following, we apply the concept of joint typicality to a situation in which

X is the input to a DMC, and Y its output. In this case, p�x� y�= p�x�p�y�x�,
where p�x� is the marginal pmf of X, and p�y�x� is the channel transition pmf.
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Random coding For communicating at rate R bit/channel use over a

DMC p�y�x�, we use 2nR codewords, where a codeword of the form X =
�X1� ����Xn�

T is sent using n channel uses (input Xi sent for ith channel use).

The elements 	Xi
 are chosen to be i.i.d., drawn from a pmf p�x�. Thus, all

elements in all codewords are i.i.d., hence the term random coding (of course,

the encoder and decoder both know the set of codewords once the random

codebook choice has been made). All codewords are equally likely to be sent.

Joint typicality decoder While ML decoding is optimal for equiprobable

transmission, it suffices to consider the following joint typicality decoder for

our purpose. This decoder checks whether the received vector Y= �Y1� ���� Yn�

is jointly typical with any codeword X̂ = �X̂1� ���� X̂n�
T . If so, and if there is

exactly one such codeword, then the decoder outputs X̂. If not, it declares

decoding failure. Decoding error occurs if X̂ 
=X, where X is the transmitted

codeword. Let us now estimate the probability of decoding error or failure.

If X is the transmitted codeword, and X̂ is any other codeword, then X̂

and the output Y are independent by our random coding construction, so

that p�X̂�Y� = p�X̂�p�Y� ≈ 2−n�H�X�+H�Y�� if X̂ and Y are typical. Now, the

probability that they are jointly typical is

P�X̂�Y jointly typical� =
∑

x�y jointly typical

p�X̂�p�Y�

≈ 2nH�X�Y�2−n�H�X�+H�Y�� = 2−nI�X�Y��

Since there are 2nR−1 possible incorrect codewords, the probability of at least

one of them being jointly typical with the received vector can be estimated

using the union bound

�2nR−1�2−nI�X�Y� ≤ 2−n�I�X�Y�−R�� (6.36)

which tends to zero as n→�, as long as R < I�X�Y�.

There are some other possible events that lead to decoding error that we

also need to estimate (but that I omit here). However, the estimate (6.36) is

the crux of the random coding argument for the “forward” part of the noisy

channel coding theorem, which I now state below.

Theorem 6.2.1 (Channel coding theorem: achievability)

(a) For a DMC with channel transition pmf p�y�x�, we can use i.i.d. inputs

with pmf p�x� to communicate reliably, as long as the code rate satisfies

R < I�X�Y��

(b) The preceding achievable rate can be maximized over the input density

p�x� to obtain the channel capacity

C =max
p�x�

I�X�Y��



August 13, 2007 5:55 p.m. CUP/FOD Page-272 9780521874144c06

272 Information-theoretic limits and their computation

I omit detailed discussion and proof of the “converse” part of the channel

coding theorem, which states that it is not possible to do better than the

achievable rates promised by the preceding theorem.

Note that, while we considered discrete random variables for concreteness,

the preceding discussion goes through unchanged for continuous random

variables (as well as for mixed settings, such as when X is discrete and Y is

continuous), by appropriately replacing entropy by differential entropy.

6.3 Some capacity computations

I are now ready to make some example capacity computations. In Section

6.3.1, I discuss capacity computations for guiding the choice of signal con-

stellations and code rates on the AWGN channel. Specifically, for a given

constellation, we wish to establish a benchmark on the best rate that it can

achieve on the AWGN channel as a function of SNR. Such a result is noncon-

structive, saying only that there is some error-correcting code which, when

used with the constellation, achieves the promised rate (and that no code

can achieve reliable communication at a higher rate). However, as mentioned

earlier, it is usually possible with a moderate degree of ingenuity to obtain a

turbo-like coded modulation scheme that approaches these benchmarks quite

closely. Thus, the information-theoretic benchmarks provide valuable guid-

ance on on choice of constellation and code rate. I then discuss the parallel

Gaussian channel model, and its application to modeling dispersive channels,

in Section 6.3.2. The optimal “waterfilling” power allocation for this model

is an important technique that appears in many different settings.

6.3.1 Capacity for standard constellations

I now compute mutual information for some examples. We term the maximum

mutual information attained under specific input constraints as the channel

capacity under those constraints. For example, we compute the capacity of

the AWGN channel with BPSK signaling and a power constraint. This is,

of course, smaller than the capacity of power-constrained AWGN signaling

when there are no constraints on the input alphabet, which is what we typically

refer to as the capacity of the AWGN channel.

Binary symmetric channel capacity Consider the BSC with crossover

probability p as in Figure 6.3. Given the symmetry of the channel, it is

plausible that the optimal input distribution is to send 0 and 1 with equal

probability (see Section 6.4 for techniques for validating such guesses, as

well as for computing optimal input distributions when the answer is not



August 13, 2007 5:55 p.m. CUP/FOD Page-273 9780521874144c06

273 6.3 Some capacity computations

“obvious”). We now calculate C = I�X�Y�=H�Y�−H�Y �X�. By symmetry,

the resulting output distribution is also uniform over 	0�1
, so that

H�Y�=−1

2
log2

1

2
− 1

2
log2

1

2
= 1�

Now,

H�Y �X = 0�=−p�Y = 1�X = 0� log2 p�Y = 1�X = 0�−p�Y = 0�X = 0�

log2 p�Y = 0�X = 0�=−p log2 p− �1−p� log2�1−p�=HB�p��

where HB�p� is the entropy of a Bernoulli random variable with probability

p of taking the value one. By symmetry, we also have H�Y �X = 1�=HB�p�,

so that, from (6.32), we get

H�Y �X�=HB�p��

We therefore obtain the capacity of the BSC with crossover probability p as

CBSC�p�= 1−HB�p�� (6.37)

AWGN channel capacity Consider the channel model (6.10), with the

observation

Y = X+Z

with input ��X2�≤ Es and Z ∼ N�0��2�. We wish to compute the capacity

C = max
p�x����X2�≤Es

I�X�Y��

Given X = x, h�Y �X = x�= h�Z�, so that h�Y �X�= h�Z�. We therefore have

I�X�Y�= h�Y�−h�Z�� (6.38)

so that maximizing mutual information is equivalent to maximizing h�Y�.

Since X and Z are independent (the transmitter does not know the noise

realization Z), we have E�Y 2� = E�X2�+E�Z2� ≤ Es +�2. Subject to this

constraint, it follows from Problem 6.3 that h�Y� is maximized if Y is zero

mean Gaussian. This is achieved if the input distribution is X ∼ N�0�Es�,

independent of the noise Z, which yields Y ∼ N�0�Es+�2�. Substituting the

expression (6.25) for the entropy of a Gaussian random variable into (6.38),

we obtain the capacity:

I�X�Y� = 1

2
log2�2
e�Es+�2���− 1

2
log2�2
e�

2�

= 1

2
log2�1+

Es

�2
�= 1

2
log2�1+SNR��

the same formula that we got from the sphere packing arguments. We have

now in addition proved that this capacity is attained by Gaussian input X ∼
N�0�Es�.

I now consider the capacity of the AWGN channel when the signal con-

stellation is constrained.
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Example 6.3.1 (AWGN capacity with BPSK signaling) Let us first

consider BPSK signaling, for which we have the channel model

Y =
√

EsX+Z� X∈ 	−1�+1
� Z ∼ N�0��2��

It can be shown (e.g., using the techniques to be developed in Section

6.4.1) that the mutual information I�X�Y�, subject to the constraint of

BPSK signaling, is maximized for equiprobable signaling. Let us now

compute the mutual information I�X�Y� as a function of the signal power

Es and the noise power �2. I first show that, as with the capacity without

an input alphabet constraint, the capacity for BPSK also depends on these

parameters only through their ratio, the SNR Es/�
2. To show this, replace

Y by Y/� to get the model

Y =
√
SNR X+Z� X∈ 	−1�+1
� Z ∼ N�0�1�� (6.39)

For notational simplicity, set A=
√
SNR. We have

p�y�+1�= 1√
2


e−�y−A�2/2�

p�y�−1�= 1√
2


e−�y+A�2/2�

and

p�y�= 1

2
p�y�+1�+ 1

2
p�y�−1�� (6.40)

We can now compute

I�X�Y�= h�Y�−h�Y �X��

As before, we can show that h�Y �X� = h�Z� = 1/2 log2�2
e�. We can

now compute

h�Y�=−
∫

log2�pY �y�� pY �y� dy

by numerical integration, plugging in (6.40). An alternative approach,

which is particularly useful for more complicated constellations and chan-

nel models, is to use Monte Carlo integration (i.e., simulation-based empir-

ical averaging) for computing the expectation h�Y�=−��log2 p�Y��. For

this method, we generate i.i.d. samples Y1� ���� Yn using the model (6.39),

and then use the estimate

ĥ�Y�=−1

n

n
∑

i=1

log2 p�Yi��

We can also use the alternative formula

I�X�Y�=H�X�−H�X�Y�
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to compute the capacity. For equiprobable binary input, H�X�=HB�
1
2
�= 1

bit/symbol. It remains to compute

H�X�Y�=
∫

H�X�Y = y�pY �y� dy� (6.41)

By Bayes’ rule, we have

P �X = +1�Y = y�= P�X =+1�p�y�+1�

p�y�
= P�X =+1�p�y�+1�

P�X =+1�p�y�+1�+P�X =−1�p�y�−1�

= eAy

eAy + e−Ay
�equal priors��

We also have

P�X =−1�Y = y�= 1−P�X =+1�Y = y�= e−Ay

eAy+ e−Ay
�

Such a posteriori probability computations can be thought of as soft deci-

sions on the transmitted bits, and are employed extensively when we discuss

iterative decoding. We can now use the binary entropy function to compute

H�X�Y = y�=HB�P�X =+1�Y = y���

The average in (6.41) can now be computed by direct numerical integration

or by Monte Carlo integration as before. The latter, which generalizes

better to more complex models, gives the estimate

Ĥ�X�Y�= 1

n

n
∑

i=1

HB�P�X =+1�Yi = yi���

The preceding methodology generalizes in a straightforward manner to PAM

constellations. For complex-valued constellations, we need to consider the

complex discrete-time AWGN channel model (6.13). For rectangular QAM

constellations, one use of the complex channel with QAM input is equivalent

to two uses of a real channel using PAM input, so that the same methodol-

ogy applies again. However, for complex-valued constellations that cannot be

decomposed in this fashion (e.g., 8-PSK and other higher order PSK alpha-

bets), we must work directly with the complex AWGN channel model (6.18).

Example 6.3.2 (Capacity with PSK signaling) For PSK signaling over

the complex AWGN channel (6.13), we have the model:

Y = X+Z�

where X∈A = 	
√
SNRej2
i/M� i = 0�1� � � � �M − 1
 and Z ∼ CN�0�1�

with density

pZ�z�=
e−�z�2



� z complex-valued�
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where we have normalized the noise to obtain a scale-invariant model. As

before, for an additive noise model in which the noise is independent of

the input, we have h�Y �X�= h�Z�. The differential entropy of the proper

complex Gaussian random variable Z can be inferred from that for a real

Gaussian random variable given by (6.25), or by specializing the formula

in Problem 6.4(b). This yields that

h�Z�= log2 �e

Furthermore, assuming that a uniform distribution achieves capacity (this

can be proved using the techniques in Section 6.4.2), we have

pY �y�=
1

M

∑

x∈ A

pZ�y−x�= 1

M

M−1
∑

i=0

1



exp

(

−
∣

∣

∣
y−

√
SNRej2
i/M

∣

∣

∣

2
)

�

We can now use Monte Carlo integration to compute h�Y�, and then

compute the mutual information I�X�Y�= h�Y�−h�Z�.

Figure 6.5 plots the capacity (in bits per channel use) for QPSK, 16PSK and

16QAM versus SNR (dB).

Figure 6.5 The capacity of the

AWGN channel with different

constellations as a function of

SNR.

Power–bandwidth tradeoffs Now that we know how to compute capacity

as a function of SNR for specific constellations using the discrete-time AWGN

channel model, we can relate it, as discussed in Section 6.1.4, back to the

continuous-time AWGN channel to understand the tradeoff between power

efficiency and spectral efficiency. As shown in Section 6.1.4, we have, for

both the real and complex models,

SNR = r
Eb

N0
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where r is the spectral efficiency in bit/s per Hz (not accounting for excess

bandwidth requirements imposed by implementation considerations).

For a given complex-valued constellation A, suppose that the capacity in

discrete time is CA�SNR� bit/channel use. Then, using (6.15), we find that

the feasible region for communication using this constellation is given, as a

function of Eb/N0, by

r < CA

(

r
Eb

N0

)

� complex-valued constellation A� (6.42)

Figure 6.6 expresses the plots in Figure 6.5 in terms of Eb/N0 (dB), obtained

by numerically solving for equality in (6.42). (Actually, for each value of

SNR, we compute the capacity, and then the corresponding Eb/N0 value, and

then plot the latter two quantities against each other.)

Figure 6.6 The capacity of the

AWGN channel with different

constellations as a function of

Eb/N0 .

For real-valued constellations such as 4PAM, we would use (6.11), and

obtain

r < 2CA

(

r
Eb

N0

)

� real-valued constellation A� (6.43)

6.3.2 Parallel Gaussian channels and waterfilling

A useful generalization of the AWGN channel model is the parallel Gaussian

channel model (we can use this to model both dispersive channels and colored

noise, as we shall see shortly), stated as follows. We have access to K parallel

complex Gaussian channels, with the output of the kth channel, 1 ≤ k ≤ K,

modeled as

Yk = hkXk+Zk�
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where hk is the channel gain, Zk ∼ CN�0�Nk� is the noise on the kth channel,

and E��Xk�2�= Pk, with a constraint on the total power:

K
∑

k=1

Pk ≤ P� (6.44)

The noises 	Zk
 are independent across channels, as well as across time. The

channel is characterized by the gains 	hk
 and the noise variances 	Nk
. My

purpose is to derive the capacity of this channel model for fixed 	Pk
, which

is appropriate when the transmitter does not know the channel characteristics,

as well as to optimize the capacity over the power allocation 	Pk
 when the

channel characteristics are known at the transmitter.

The mutual information between the input vector X = �X1� � � � �Xk� and

the output vector Y= �Y1� � � � � YK� is given by

I�X�Y�= h�Y�−h�Y�X�= h�Y�−h�Z��

Owing to the independence of the noises, h�Z� =∑K
k=1 h�Zk�. Furthermore,

we can bound the joint differential entropy of the output as the sum of the

individual differential entropies:

h�Y�= h�Y1� � � � � YK�≤
K
∑

k=1

h�Yk�

with equality if Y1� � � � � YK are independent. Thus, we obtain

I�X�Y�≤
K
∑

k=1

�h�Yk�−h�Zk�� �

Each of the K terms on the right hand side can be maximized as for a standard

Gaussian channel, by choosing Xk ∼ CN�0�Pk�. We therefore find that, for a

given power allocation P = �P1� � � � �PK�, the capacity is given by

C�P�=
K
∑

k=1

log2

(

1+ �hk�2Pk

Nk

)

Fixed power allocation (6.45)

(the received signal power on the kth channel is Sk = �hk�2Pk). The preceding

development also holds for real-valued parallel Gaussian channels, except

that a factor of 1/2 must be inserted in (6.45).

Optimizing the power allocation We can now optimize C�P� subject to

the constraint (6.44) by maximizing the Lagrangian

J�P�= C�P�+�
K
∑

k=1

Pk =
K
∑

k=1

log2

(

1+ �hk�2Pk

Nk

)

−�
K
∑

k=1

Pk� (6.46)

I discuss the theory of such convex optimization problems very briefly in

Section 6.4.1, but for now, it suffices to note that we can optimize J�P� by

setting the partial derivative with respect to Pk to zero. This yields

0= �J�P�

�Pk

= �hk�2/Nk

1+ �hk�2Pk

Nk

−��
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so that

Pk = a− Nk

�hk�2
for some constant a. However, we must also satisfy the constraint that Pk ≥ 0.

We therefore get the following solution.

Figure 6.7 Waterfilling power

allocation for the parallel

Gaussian channel.

Waterfilling power allocation

Pk =



















a− Nk

�hk�2
�

Nk

�hk�2
≤ a

0�
Nk

�hk�2
> a�

(6.47)

where a is chosen so as to satisfy the power constraint with equality:

K
∑

k=1

Pk = P�

This has the waterfilling interpretation depicted in Figure 6.7. The water level

a is determined by pouring water until the net amount equals the power budget

P. Thus, if the normalized noise level Nk/�hk�2 is too large for a channel, then

it does not get used (the corresponding Pk = 0 in the optimal allocation).

Application to dispersive channels The parallel Gaussian model provides

a means of characterizing the capacity of a dispersive channel with impulse

response h�t� (we are working in complex baseband now), by signaling across

parallel frequency bins. Let us assume colored proper complex Gaussian noise

with PSD Sn�f �. Then a frequency bin of width �f around fk follows the

model

Yk =H�fk�Xk+Zk�

where Nk ∼ CN�0� Sn�fk��f � and E��Xk�2� = Ss�fk��f , where Ss�f � is the

PSD of the input (which must be proper complex Gaussian to achieve capac-

ity). Note that the SNR on the channel around fk is

SNR�fk�=
�H�fk��2Ss�fk��f

Sn�fk��f
= �H�fk��2Ss�fk�

Sn�fk�
�

The net capacity is now given by
∑

k

�f log2 �1+SNR�fk�� �

P1 P3

P2 = 0

Water level a

N1

|h1|2
N2

|h2|2
N3

|h3|2
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By letting �f → 0, the sum above tends to an integral, and we obtain the

capacity as a function of the input PSD:

C�Ss�=
∫

W
2

−W
2

log2

(

1+ �H�f ��2Ss� f �
Sn� f �

)

df� (6.48)

where W is the channel bandwidth, and the input power is given by

∫
W
2

−W
2

Ss� f � df = P� (6.49)

This reduces to the formula (6.1) for the complex baseband AWGN channel

by setting H�f �≡ 1, Ss� f �≡ P/W and Sn� f �≡ N0 for −W/2 ≤ f ≤W/2.

Waterfilling can now be used to determine the optimum input PSD as

follows:

Ss� f �=



















a− Sn� f �

�H�f ��2 �
Sn� f �

�H�f ��2 ≤ a

0�
Sn� f �

�H�f ��2 > a�

(6.50)

with a chosen to satisfy the power constraint (6.49).

An important application of the parallel Gaussian model is orthogonal

frequency division multiplexing (OFDM), also called discrete multitone, in

which data are modulated onto a discrete set of subcarriers in parallel. Orthog-

onal frequency division multiplexing is treated in detail in Chapter 8, where

I focus on its wireless applications. However, OFDM has also been success-

fully applied to dispersive wireline channels such as digital subscriber loop

(DSL). In such settings, the channel can be modeled as time-invariant, and

can be learnt by the transmitter using channel sounding and receiver feedback.

Waterfilling, appropriately modified to reflect practical constraints such as

available constellation choices and the gap to capacity for the error correction

scheme used, then plays an important role in optimizing the constellations to

be used on the different subcarriers, with larger constellations being used on

subcarriers seeing a better channel gain.

6.4 Optimizing the input distribution

I have shown how to compute mutual information between the input and

output of a discrete memoryless channel (DMC) for a given input distribu-

tion. For finite constellations over the AWGN channel, I have, for example,

considered input distributions that are uniform over the alphabet. This is an

intuitively pleasing and practical choice, and indeed, it is optimal in certain

situations, as I shall show. However, the optimal input distribution is by no

means obvious in all cases, hence it is important to develop a set of tools for

characterizing and computing it in general. The key ideas behind developing

such tools are as follows:
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(a) Mutual information is a concave function of the input distribution, hence

a unique maximizing input distribution exists.

(b) There are necessary and sufficient conditions for optimality that can

easily be used to check guesses regarding the optimal input distribution.

However, directly solving for the optimal input distribution based on these

conditions is difficult.

(c) An iterative algorithm to find the optimal input distribution can be

obtained by writing the maximum mutual information as the solution to a

two-stage maximization problem, such that it is easy to solve each stage.

Convergence to the optimal input distribution is obtained by alternating

between the two stages. This algorithm is referred to as the Blahut–

Arimoto algorithm.

I begin with a brief discussion of concave functions and their maximization.

I apply this to obtain necessary and sufficient conditions that must be sat-

isfied by the optimal input distribution. I end with a discussion of the

Blahut–Arimoto algorithm.

6.4.1 Convex optimization

A set C is convex if, given x1�x2 ∈C, �x1+ �1−��x2 ∈C for any �∈ �0�1�.

We are interested in optimizing mutual information over a set of probability

distributions, which is a convex set. Thus, we consider functions whose

arguments lie in a convex set.

A function f�x� (whose argument may be a real or complex vector x in a

convex set C) is convex (also termed convex up) if

f��x1+ �1−��x2�≤ �f�x1�+ �1−��f�x2� (6.51)

for any x1, x2, and any �∈ �0�1�. That is, the line joining any two points on

the graph of the function lies above the function.

Similarly, f�x� is concave (also termed convex down) if

f��x1+ �1−��x2�≥ �f�x1�+ �1−��f�x2�� (6.52)

From the preceding definitions, it is easy to show that linear combinations

of convex (concave) functions are convex (concave). Also, the negative of

a convex function is concave, and vice versa. Affine functions (i.e., linear

functions plus constants) are both convex and concave, since they satisfy

(6.51) and (6.52) with equality.

Example 6.4.1 A twice differentiable function f�x� with a one-

dimensional argument x is convex if f ′′�x�≥ 0, and concave if f ′′�x�≤ 0.

Thus, f�x�= x2 is convex, f�x�= logx is concave, and a line has second

derivative zero, and is therefore both convex and concave.
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Entropy is a concave function of the probability density/mass function

The function f�x�=−x logx is concave (verify by differentiating twice). Use

this to show that

−
∑

x

p�x� logp�x�

is concave in the probability mass function 	p�x�
, where the latter is viewed

as a real-valued vector.

Mutual information between input and output of a DMC is a concave

function of the input probability distribution The mutual information is

given by I�X�Y� = H�Y�−H�Y �X�. The output entropy H�Y� is a concave

function of pY , and pY is a linear function of pX . It is easy to show, pro-

ceeding from the definition (6.52) that H�Y� is a concave function of pX . The

conditional entropy H�Y �X� is easily seen to be a linear function of pX .

Kuhn–Tucker conditions for constrained maximization of a concave

function I state without proof necessary and sufficient conditions for opti-

mality for a special case of constrained optimization, which are specializations

of the so-called Kuhn–Tucker conditions for constrained convex optimiza-

tion. Suppose that f�x� is a concave function to be maximized over x =
�x1� � � � � xm�

T , subject to the constraints xk ≥ 0, 1≤ k≤m, and
∑m

k=1 xk = c,

where c is a constant. Then the following conditions are necessary and suffi-

cient for optimality: for 1≤ k≤m, we have

�f

�xk
= �� xk > 0�

�f

�xk
≤ �� xk = 0�

(6.53)

for a value of � such that
∑

k xk = c.

We can interpret the Kuhn–Tucker conditions in terms of the Lagrangian

for the constrained optimization problem at hand:

J�x�= f�x�−�
∑

k

xk�

For xk > 0, we set �/�xkJ�x�= 0. For a point on the boundary with xk = 0,

the performance must get worse when we move in from the boundary by

increasing xk, so that �/�xkJ�x�≤ 0.

I apply these results in the next section to characterize optimal input dis-

tributions for a DMC.

6.4.2 Characterizing optimal input distributions

A capacity-achieving input distribution must satisfy the following conditions.

Necessary and sufficient conditions for optimal input distribution For

a DMC with transition probabilities pY �X�y�x�, an input distribution p�x� is

optimal, achieving a capacity C, if and only if, for each input xk,
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D�PY �X=xk
��PY �= C� p�xk� > 0

D�PY �X=xk
��PY �≤ C� p�xk�= 0�

(6.54)

Interpretation of optimality condition I show that the mutual information

is the average of the terms D�PY �X=x��PY � as follows.

I�X�Y� = D�PX�Y ��PXPY �=
∑

x�y

p�x� y� log

(

p�x� y�

p�x�p�y�

)

=
∑

x

p�x�
∑

y

p�y�x� log
(

p�y�x�
p�y�

)

=
∑

x

p�x�D�PY �X=x��PY �� (6.55)

The optimality conditions state that each term making a nontrivial contribution

to the average mutual information must be equal. That is, each term equals

the average, which for the optimal input distribution equals the capacity C.

Terms corresponding to p�x� = 0 do not contribute to the average, and are

smaller (otherwise we could get a bigger average by allocating probability

mass to them). I now provide a proof of these conditions.

Proof The Kuhn–Tucker conditions for capacity maximization are as fol-

lows:

�

�p�x�
I�X�Y �−�= 0� p�x� > 0

�

�p�x�
I�X�Y �−�≤ 0� p�x�= 0�

(6.56)

to evaluate the partial derivatives of I�X�Y�=H�Y�−H�Y �X�. Since

H�Y�=−
∑

y

p�y� logp�y��

we have, using the chain rule,

�

�p�xk�
H�Y �=

∑

y

[

�H�Y �

�p� y�

[

�p�y�

�p�xk�

]

=
∑

y

�−1− logp�y�� p� y�xk�

=−1−
∑

y

p�y�xk� logp�y��

(6.57)

Also,

H�Y �X�=−
∑

x�y

p�x�p�y�x� logp�y�x��

so that

�

�p�xk�
H�Y �X�=−

∑

y

p�y�xk� logp�y�xk�=H�Y �X = xk�� (6.58)
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Using (6.57) and (6.58), we obtain

�

�p�xk�
I�X�Y �=−1+

∑

y

p�y�xk� log
p�y�xk�
p�y�

=−1+D�PY �X=xk
��PY ��

(6.59)

Plugging into (6.56), we get D�PY �X=xk
��PY �≤ �+1, with equality for p�xk� >

0. Averaging over the input distribution, we realize from (6.55) that we must

have �+1= C, completing the proof.

Remark While I prove all results for discrete random variables, their nat-

ural extensions to continuous random variables hold, with probability mass

functions replaced by probability density functions, and summations replaced

by integrals. In what follows, I will use the term density to refer to either

probability mass function or probability density function.

Symmetric channels The optimality conditions (6.54) impose a symmetry

in the input–output relation. When the channel transition probabilities exhibit a

natural symmetry, it often suffices to pick an input distribution that is uniform

over the alphabet to achieve capacity. Rather than formally characterizing

the class of symmetric channels for which this holds, I leave it to the reader

to check, for example, that uniform inputs work for the BSC, and for PSK

constellations over the AWGN channel.

While the conditions (6.54) are useful for checking guesses as to the optimal

input distribution, they do not provide an efficient computational procedure

for obtaining the optimal input distribution. For channels for which guessing

the optimal distribution is difficult, a general procedure for computing it

is provided by the Blahut–Arimoto algorithm, which I describe in the next

section.

6.4.3 Computing optimal input distributions

A key step in the Blahut–Arimoto algorithm is the following lemma, which

expresses mutual information as the solution to a maximization problem

with an explicit solution. This will enable us to write the maximum mutual

information, or capacity, as the solution to a double maximization that can be

obtained by an alternating maximization algorithm.

Lemma 6.4.1 The mutual information between X and Y can be written as

I�X�Y�=max
q�x�y�

∑

x�y

p�x�p�y�x� log q�x�y�
p�x�

�

where 	q�x�y�
 is a set of conditional densities for X (that is,
∑

x q�x�y�= 1

for each y). The maximum is achieved by the conditional distribution p�x�y�
that are consistent with p�x� and p�y�x�. That is, the optimizing q is given by

q∗�x�y�= p�x�p�y�x�
∑

x′ p�x
′�p�y�x′� �
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Proof We show that the difference in values attained by q∗ and any other

q is nonnegative as follows:

∑

x�y

p�x�p�y�x� log q∗�x�y�
p�x�

−
∑

x�y

p�x�p�y�x� log q�x�y�
p�x�

=
∑

x�y

p�x�p�y�x� log q∗�x�y�
q�x�y�

=
∑

y

p�y�
∑

x

q∗�x�y� log q∗�x�y�
q�x�y�

=
∑

y

p�y�D�Q∗�·�y���Q�·�y��≥ 0�

where I have used p�x� y� = p�x�p�y�x� = p�y�p�x�y� = p�y�q∗�x�y�, and
where Q∗�·�y�, Q�·�y� denote the conditional distributions corresponding to

the conditional densities q∗�x�y� and q�x�y�, respectively.

The capacity of a DMC characterized by transition densities 	p�y�x�
 can

now be written as

C =max
p�x�

I�X�Y�=max
p�x�

max
q�x�y�

∑

x�y

p�x�p�y�x� log q�x�y�
p�x�

�

I state without proof that an alternating maximization algorithm, which maxi-

mizes over q�x�y� keeping p�x� fixed, and then maximizes over p�x� keeping

q�x�y� fixed, converges to the global optimum. The utility of this procedure

is that each maximization can be carried out explicitly. The lemma provides

an explicit form for the optimal q�x�y� for fixed p�x�. It remains to provide

an explicit form for the optimal p�x� for fixed q�x�y�. To this end, consider

the Lagrangian

J�p� =
∑

x�y

p�x�p�y�x� log q�x�y�
p�x�

−�
∑

x

p�x�

=
∑

x�y

�p�x�p�y�x� logq�x�y�−p�x�p�y�x� logp�x��−�
∑

x

p�x�� (6.60)

corresponding to the usual sum constraint
∑

x p�x�= 1. Setting partial deriva-

tives to zero, we obtain

�

�p�xk�
J�p�=

∑

y

�p�y�xk� logq�xk�y�−p�y�xk�−p�y�xk� logp�xk��−�= 0�

Noting that
∑

y p�y�xk�= 1, we get

logp�xk�=−�−1+
∑

y

p�y�xk� logq�xk�y��

from which we conclude that

p∗�xk�= K exp�
∑

y

p�y�xk� logq�xk�y��= K�y �q�xk�y��p�y�xk� �

where the constant K is chosen so that
∑

x p
∗�x�= 1.

We can now state the Blahut–Arimoto algorithm for computing optimal

input distributions.



August 13, 2007 5:55 p.m. CUP/FOD Page-286 9780521874144c06

286 Information-theoretic limits and their computation

Blahut–Arimoto algorithm

Step 0 Choose an initial guess p�x� for input distribution, ensuring that there

is nonzero probability mass everywhere that the optimal input distribution

is expected to have nonzero probability mass (e.g., for finite alphabets, a

uniform distribution is a safe choice).

Step 1 For the current p�x�, compute the optimal q�x�y� using

q∗�x�y�= p�x�p�y�x�
∑

x′ p�x
′�p�y�x′� �

Set this to be the current q�x�y�.

Step 2 For the current q�x�y�, compute the optimal p�x� using

p∗�x�=
�y �q�x�y��p�y�x�

∑

x′ �y �q�x
′�y��p�y�x′�

�

Set this to be the current p�x�. Go back to Step 1.

Alternate Steps 1 and 2 until convergence (using any sensible stopping crite-

rion to determine when the changes in p�x� are sufficiently small).

Example 6.4.2 (Blahut–Arimoto algorithm applied to BSC) For a

BSC with crossover probability �, we know that the optimal input distri-

bution is uniform. However, let us apply the Blahut–Arimoto algorithm,

starting with an arbitrary input distribution P�X = 1�= p= 1−P�X = 0�,

where 0< p < 1. We can now check that Step 1 yields

q�1�0�= p�

p�+ �1−p��1−��
= 1−q�0�0�

q�0�1�= �1−p��

�1−p��+p�1−��
= 1−q�1�1�

and Step 2 yields

p= p�1�= q�1�0��q�1�1�1−�

q�1�0��q�1�1�1−�+q�0�1��q�0�0�1−�
�

Iterating these steps should yield p→ 1/2.

Extensions of the basic Blahut–Arimoto algorithm Natural extensions

of the Blahut–Arimoto algorithm provide methods for computing optimal

input distributions that apply in great generality. As an example of a simple

extension, Problem 6.16 considers optimization of the input probabilities for a

4-PAM alphabet 	±d�±3d
 over the AWGN channel with a power constraint.

The Blahut–Arimoto iterations must now account for the fact that the signal

power depends both on d and the input probabilities.
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6.5 Further reading

The information theory textbook by Cover and Thomas [14] provides a lucid

exposition of the fundamental concepts of information theory, and is perhaps the

best starting point for delving further into this field. The classic text by Gallager

[42] is an important reference for many topics. The text by Csiszar and Korner

[43] is the definitiveworkon the use of combinatorial techniques and themethod

of types in proving fundamental theorems of information theory. Other notable

texts providing in-depth treatments of information theory include Blahut [44],

McEliece [45],Viterbi andOmura [12], andWolfowitz [46]. Shannon’s original

work [47, 48] is a highly recommended read, because of its beautiful blend of

intuition and rigor in establishing the foundations of the field.

For most applications, information-theoretic quantities such as capacity

must be computed numerically as solutions to optimization problems. The

Blahut–Arimoto algorithm discussed here [49, 50] is the classical technique

for optimizing input distributions. More recently, however, methods based on

convex optimization and duality [51, 52] and on linear programming [53] have

been developed for deeper insight into, and efficient solution of, optimization

problems related to the computation of information-theoretic quantities. Much

attention has been focused in recent years on information-theoretic limits for

the wireless channel, as discussed in Chapter 8.

Good sources for recent results in information theory are the Proceedings

of the International Symposium on Information Theory (ISIT), and the journal

IEEE Transactions on Information Theory. The October 1998 issue of the

latter commemorates the fiftieth anniversary of Shannon’s seminal work, and

provides a perspective on the state of the field at that time.

6.6 Problems

Problem 6.1 (Estimating the capacity of a physical channel) Consider

a line of sight radio link with free space propagation. Assume transmit and

receive antenna gains of 10 dB each, a receiver noise figure of 6 dB, and a

range of 1 km. Using the Shannon capacity formula for AWGN channels,

what is the transmit power required to attain a link speed of 1 Gigabit/s using

a bandwidth of 1.5GHz (assuming 50 % excess bandwidth)?

Problem 6.2 (Entropy for an M-ary random variable) Suppose that X is

a random variable taking one of M possible values (e.g., X may be the index

of the transmitted signal in an M-ary signaling scheme).

(a) What is the entropy of X, assuming all M values are equally likely?

(b) Denoting the pmf for the uniform distribution in (a) by q�x�, suppose

now that X is distributed according to pmf p�x�. Denote the entropy of X

under pmf p by Hp�X�. Show that the divergence between p and q equals
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D�p��q�= �p�log2
p�X�

q�X�
�= log2M−Hp�X��

(c) Infer from (b) that the maximum possible entropy for X is log2M , which

is achieved by the uniform distribution.

Problem 6.3 (Differential entropy is maximum for Gaussian random vari-

ables) Consider a zero mean random variable X with density p�x� and

variance v2. Let q�x� denote the density of a N�0� v2� random variable with

the same mean and variance.

(a) Compute the divergence D�p��q� in terms of h�X� and v2.

(b) Use the nonnegativity of divergence to show that

h�X�≤ 1

2
log2�2
ev

2�= h
(

N�0� v2�
)

�

That is, the Gaussian density maximizes the differential entropy over all

densities with the same variance.

Remark This result, and the technique used for proving it, generalizes

to random vectors, with Gaussian random vectors maximizing differential

entropy over all densities with the same covariance.

Problem 6.4 (Differential entropy for Gaussian random vectors) Derive

the following results.

(a) If X ∼ N�m�C� is an n-dimensional Gaussian random vector with mean

vectorm and covariance matrix C, then its differential entropy is given by

h�X�= 1

2
log2 ��2
e�

n�C�� Differential entropy for real Gaussian�

(b) If X∼ CN �m�C� is an n-dimensional proper complex Gaussian random

vector with mean vector m and covariance matrix C, then its differential

entropy is given by

h�X�= log2 ��
e�
n�C�� Differential entropy for proper complex

Gaussian�

Problem 6.5 (Entropy under simple transformations) Let X denote a

random variable, and a, b denote arbitrary constants.

(a) If X is discrete, how are the entropies H�aX� and H�X+ b� related to

H�X�?

(b) If X is continuous, how are the differential entropies h�aX� and h�X+b�

related to h�X�?
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Problem 6.6 (Binary erasures channel) Show that the channel capacity of

the binary erasures channel with erasure probability q, as shown in Figure

6.8, is given by HE�q�= 1−q.

Figure 6.8 The binary

(symmetric) erasures channel.

Problem 6.7 (Binary errors and erasures channel) Find the channel

capacity of the binary errors and erasures channel with error probability p

and erasures probability q, as shown in Figure 6.9.

Figure 6.9 The binary

(symmetric) errors and

erasures channel.

Problem 6.8 (AWGN capacity plots for complex constellations) Write

computer programs for reproducing the capacity plots in Figures 6.5 and 6.6.

Problem 6.9 (Shannon theory for due diligence) A binary noncoherent

FSK system is operating at an Eb/N0 of 5 dB, and passes hard decisions (i.e.,

decides whether 0 or 1 was sent) up to the decoder. The designer claims that

her system achieves a BER of 10−5 using a powerful rate 1/2 code. Do you

believe her claim?

Problem 6.10 (BPSK with errors and erasures) Consider BPSK signaling

with the following scale-invariant model for the received samples:

Y = A�−1�X +Z�

where X∈ 	0�1
 is equiprobable, and Z ∼ N�0�1�, with A2 = SNR.

(a) Find the capacity in bits per channel use as outlined in the text, and plot

it as a function of SNR (dB).
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(b) Specify the BSC induced by hard decisions. Find the capacity in bits per

channel use and plot it as a function of SNR (dB).

(c) What is the degradation in dB due to hard decisions at a rate of 1/4 bits

per channel use?

(d) What is the Eb/N0 (dB) corresponding to (c), for both soft and hard

decisions?

(e) Now suppose that the receiver supplements hard decisions with erasures.

That is, the receiver declares an erasure when �Y �< �, with � ≥ 0. Find

the error and erasure probabilities as a function of � and SNR.

(f ) Apply the result of Problem 6.7 to compute the capacity as a function

of � and SNR. Set SNR at 3 dB, and plot capacity as a function of �.

Compare with the capacity for hard decisions.

(g) Find the best value of � for SNR of 0 dB, 3 dB and 6 dB. Is there a value

of � that works well over the range 0–6 dB?

Problem 6.11 (Gray coded two-dimensional modulation with hard deci-

sions) A communication system employs Gray coded 16QAM, with the

demodulator feeding hard decisions to an outer binary code.

(a) What is a good channel model for determining information-theoretic limits

on the rate of the binary code as a function of Eb/N0?

(b) We would like to use the system to communicate at an information rate

of 100Mbps using a bandwidth of 150MHz, where the modulating pulse

uses an an excess bandwidth of 50%. Use the model in (a) to determine

the minimum required value of Eb/N0 for reliable communication.

(c) Now suppose that we use QPSK instead of 16QAM in the setting

of (b). What is the minimum required value of Eb/N0 for reliable

communication?

Problem 6.12 (Parallel Gaussian channels) Consider two parallel com-

plex Gaussian channels with channel gains h1 = 1+ j, h2 = −2j and noise

covariances N1 = 1, N2 = 2. Assume that the transmitter knows the channel

characteristics.

(a) At “low” SNR, which of the two channels would you use?

(b) For what values of net input power P would you start using both channels?

(c) Plot the capacity as a function of net input power P using the waterfilling

power allocation.

Also plot for comparison the capacity attained if the transmitter does not know

the channel characteristics, and splits power evenly across the two channels.

Problem 6.13 (Waterfilling for a dispersive channel) A real baseband

dispersive channel with colored Gaussian noise is modeled as in Figure 6.10.
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We plan to use the channel over the band �0�100�. Let N =
∫ 100

0
Sn�f �df

denote the net noise power over the band. If the net signal power is P, then

we define SNR as P/N .

(a) Assuming an SNR of 10 dB, find the optimal signal PSD using waterfill-

ing. Find the corresponding capacity.

(b) Repeat (a) for an SNR of 0 dB.

(c) Repeat (a) and (b) assuming that signal power is allocated uniformly over

the band �0�100�.

Problem 6.14 (Multipath channel) Consider a complex baseband multi-

path channel with impulse response

h�t�= 2��t−1�− j

2
��t−2�+ �1+ j���t−3�5��

The channel is used over the band �−W/2�W/2�. Let CW �SNR� denote the

capacity as a function of bandwidth W and SNR, assuming that the input

power is spread evenly over the bandwidth used and that the noise is AWGN.

(a) Plot CW �SNR�/W versus W over the range 1<W< 20, fixing the SNR

at 10 dB. Do you notice any trends?

(b) For W = 10, find the improvement in capacity due to waterfilling at an

SNR of 10 dB.

Figure 6.10 Channel

characteristics for Problem

6.13.

Problem 6.15 (Blahut–Arimoto iterations for BSC) Consider the binary

symmetric channel with crossover probability 0.1. Starting from an initial

input distribution with P�X = 1�= p= 0�3, specify the values of p obtained
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in the first five iterations of the Blahut–Arimoto algorithm. Comment on

whether the iterations are converging to the result you would expect.
Problem 6.16 (Extension of Blahut–Arimoto algorithm for constellation

optimization) Consider a 4-PAM alphabet 	±d�±3d
 to be used on the

real, discrete-time AWGN channel. Without loss of generality, normalize the

noise variance to one. Assuming that the input distribution satisfies a natural

symmetry condition:

P�X =±d�= p� P�X =±3d�= 1

2
−p�

(a) What is the relation between p and d at SNR of 3 dB?

(b) Starting from an initial guess of p = 1/4, iterate the Blahut–Arimoto

algorithm to find the optimal input distribution at SNR of 3 dB, modifying

as necessary to satisfy the SNR constraint.

(c) Comment on how the optimal value of p varies with SNR by running the

Blahut–Arimoto algorithm for a few other values.
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7 Channel coding

In this chapter, I provide an introduction to some commonly used channel

coding techniques. The key idea of channel coding is to introduce redundancy

in the transmitted signal so as to enable recovery from channel impairments

such as errors and erasures. We know from the previous chapter that, for any

given set of channel conditions, there exists a Shannon capacity, or maxi-

mum rate of reliable transmission. Such Shannon-theoretic limits provide the

ultimate benchmark for channel code design. A large number of error control

techniques are available to the modern communication system designer, and

this chapter, we provide a glimpse of a small subset of these. Our emphasis is

on convolutional codes, which have been a workhorse of communication link

design for many decades, and turbo-like codes, which have revolutionized

communication systems by enabling implementable designs that approach

Shannon capacity for a variety of channel models.

Map of this chapter I begin in Section 7.1 with binary convolutional

codes. I introduce the trellis representation and the Viterbi algorithm for ML

decoding, and develop performance analysis techniques. The structure of the

memory introduced by a convolutional code is similar to that introduced by a

dispersive channel. Thus, the techniques are similar to (but simpler than) those

developed for MLSE for channel equalization in Chapter 5. Concatenation

of convolutional codes lead to turbo codes, which are iteratively decoded by

exchanging soft information between the component convolutional decoders.

I discuss turbo codes in Section 7.2. While the Viterbi algorithm gives the

ML sequence, we need soft information regarding individual bits for iterative

decoding. This is provided by MAP decoding using the BCJR algorithm,

discussed in Section 7.2.1. The logarithmic version of the BCJR algorithm,

which is actually more useful both practically and conceptually, is discussed

in Section 7.2.2. Once this is done, we can specify both parallel and serial

concatenated turbo codes quite easily, and this is done in Section 7.2.3. The

performance of turbo codes is discussed in Sections 7.2.4, 7.2.5 and 7.2.6.

An especially intuitive way of visualizing the progress of iterative decoding,

293
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as well as to predict the SNR threshold at which the BER starts decreasing

steeply, is the method of EXIT charts introduced by ten Brink, which is

discussed in Section 7.2.5. Another important class of “turbo-like” codes,

namely, low density parity check (LDPC) codes, are discussed in Section 7.3.

Section 7.4 discusses channel code design for two-dimensional modulation.

A broadly applicable approach is the use of bit interleaved coded modulation

(BICM), which allows us to employ powerful binary codes in conjunction with

higher order modulation formats: the output of a binary encoder is scrambled

and then mapped to the signaling constellation, typically with a Gray-like

encoding that minimizes the number of bits changing across nearest neighbors.

I also discuss another approach that couples coding and modulation more

tightly: trellis coded modulation (TCM). Finally, in Section 7.5, I provide a

quick exposure to the role played in communication system design by codes

such as Reed–Solomon codes, which are constructed using finite-field algebra.

I attempt to provide an operational understanding of what we can do with

such codes, without getting into the details of the code construction, since the

required background in finite fields is beyond the scope of this book.

7.1 Binary convolutional codes

Binary convolutional codes are important not only because they are deployed

in many practical systems, but also because they form a building block for

other important classes of codes, such as trellis coded modulation and a variety

of “turbo-like” codes. Such codes can be interpreted as convolving a binary

information sequence through a filter, or “code generator”, with binary coeffi-

cients (with addition and multiplication over the binary field). They therefore

have a structure very similar to the dispersive channels discussed earlier, and

are therefore amenable to similar techniques for decoding (using the Viterbi

algorithm) and performance analysis (union bounds using error events, and

transfer function bounds). I discuss these techniques in the following, focusing

on examples rather than on the most general development.

Consider a binary information sequence u�k�∈ �0�1�, which we want to

send reliably using BPSK over an AWGN channel. Instead of directly sending

the information bits (e.g., sending the BPSK symbols ��−1�u�k�), we first use

u = �u�k�� to generate a coded binary sequence, termed a codeword, which

includes redundancy. This operation is referred to as encoding. We will then

send this new coded bit sequence using BPSK, over an AWGN channel. The

decoder at the receiver exploits the redundancy to recover the information bits

from the noisy received signal. The code is the set of all possible codewords

that can be obtained in this fashion. The encoder, or the mapping between

information bits and coded bits, is not unique for a given code, and bit error

rate attained by the code, as well as its role as a building block for more

complex codes, can depend on the mapping. The encoder mapping is termed
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nonrecursive, or feedforward, if the codeword is obtained by passing the

information sequence through a finite impulse response feedforward filter.

It is termed recursive if codeword generation involves the use of feedback.

The encoder is systematic if the information sequence appears directly as one

component of the codeword, and it is termed nonsystematic otherwise. In

addition to the narrow definition of the term “code” as the set of all possible

codewords, we often also employ the term more broadly, to refer to both the

set of codewords and the encoder.

For the purpose of this introductory development, it suffices to restrict

attention to two classes of convolutional codes, based on how the encoding

is done: nonrecursive, nonsystematic codes and recursive, systematic codes.

7.1.1 Nonrecursive nonsystematic encoding

Consider the following nonrecursive nonsystematic convolutional code: for

an input sequence �u�k��, the encoded sequence c�k�= �y1�k�� y2�k��, where

y1�k�= u�k�+u�k−1�+u�k−2��

y2�k�= u�k�+u�k−2��
(7.1)

where the addition is modulo 2. A shift register implementation of the encoder

is depicted in Figure 7.1.

Figure 7.1 Shift register

implementation of

convolutional encoder for the

running example. The outputs

�y1�k�� y2�k�� at time k are a

function of the input u�k� and

the shift register state

s�k�= �u�k− 1�� u�k− 2��.

The output sequences y1 = �y1�k�, y2 = �y2�k�� are generated by convolving

the input sequence u with two “channels” using binary arithmetic. The output

y�k� = �y1�k�� y2�k�� at time k depends on the input u�k� at time k, and

the encoder state s�k� = �u�k− 1�� u�k− 2��. A codeword is any sequence

y = �y1�y2� that is a valid output of such a system. The rate R of the code

equals the ratio of the number of information bits to the number of coded

bits. In our example, R= 1/2, since two coded bits y1�k�, y2�k� are generated

per information bit u�k� coming in.

Nomenclature Some common terminology used to describe convolutional

encoding is summarized below. It is common to employ the D-transform

in the literature on convolutional codes; this is the same as the z-transform

commonly used in signal processing, except that the delay operator D= z−1.

y2[k]

y1[k]

u[k] u[k – 1] u[k – 2]
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For a discrete-time sequence �x�k��, let x�D� = ∑

k x�k�D
k denote the D

transform. The encoding operation (7.1) can now be expressed as

y1�D�= u�D��1+D+D2��

y2�D�= u�D��1+D2�	

Thus, we can specify the convolutional encoder by the set of two generator

polynomials

G�D�=
[

g1�D�= 1+D+D2� g2�D�= 1+D2
]

	 (7.2)

The input polynomial u�D� is multiplied by the generator polynomials to

obtain the codeword polynomials. The generator polynomials are often spec-

ified in terms of their coefficients. Thus, the generator vectors corresponding

to the polynomials are

�g1 = �1 1 1�� g2 = �1 0 1��	 (7.3)

Often, we specify the encoder even more compactly by representing the

preceding coefficients in octal format. Thus, in my example, the generators

are specified as �7�5�.

Figure 7.2 A section of the

trellis representation of the

code, showing state transitions

between time k and k+ 1.

Each trellis branch is

labeled with the input and

outputs associated with it,

u�k�/y1�k�y2�k�.

Trellis representation As for a dispersive channel, we can introduce a

trellis that represents the code. The trellis has four states at each time k,

corresponding to the four possible values of s�k�. The transition from s�k� to

s�k+ 1� is determined by the value of the input u�k�. In Figure 7.2, I show

a section of the trellis between time k and k+ 1, with each branch labeled

with the input and outputs associated with it: u�k�/y1�k�y2�k�. Each path

through the trellis corresponds to a different information sequence u and a

corresponding codeword y.

I will use this nonrecursive, nonsystematic code as a running example for

my discussions of ML decoding and its performance analysis.

00

01

10

11

00

01

10

11

u[k]/y1 [k] y2[k]

(Branch label)

0/00

0/11

1/11

1/00

0/10

1/10

1/01

s[k]

State at

time k

s[k + 1]

State at

time k + 1
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7.1.2 Recursive systematic encoding

The same set of codewords as in Section 7.1.1 can be obtained using a

recursive systematic encoder, simply by dividing the generator polynomials

in (7.2) by g1�D�. That is, we use the set of generators

G�D�=
[

1�
g2�D�

g1�D�
= 1+D2

1+D+D2

]

	 (7.4)

Thus, the encoder outputs two sequences, the information sequence �u�k��,

and a parity sequence v�k� whose D-transform satisfies

v�D�= u�D�
1+D2

1+D+D2
	

The code can still be specified in octal notation as �7�5�, where we understand

that, for a recursive systematic code, the parity generating polynomial is

obtained by dividing the second polynomial by the first one.

We would now like to specify a shift register implementation for gener-

ating the parity sequence �v�k��. The required transfer function we wish to

implement is �1+D2�/�1+D+D2�. Let us do this in two stages, first by

implementing the transfer function 1/�1+D+D2�, which requires feedback,

and then the feedforward transfer function 1+D2. To this end, define

y�D�= u�D�

1+D+D2

as the output of the first stage. We see that

y�D�+Dy�D�+D2y�D�= u�D��

so that

y�k�+y�k−1�+y�k−2�= u�k�	

Thus, in binary arithmetic, we have

y�k�= u�k�+y�k−1�+y�k−2�	

We now have to pass �y�k�� through the feedforward transfer function 1+D2

to get �v�k��. That is,

v�k�= y�k�+y�k−2�	

The resulting encoder implementation is depicted in Figure 7.3.

I employ this recursive, systematic code as a running example in my later

discussions of maximum a posteriori probability (MAP) decoding and turbo

codes.
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y [k – 1] y [k – 2]
u[k] y [k – 1] y [k – 2]

1/(1 + D + D 

2)

u[k]

u[k] Systematic bits

Encoder
input

(a) Shift register realization of feedback
 transfer function

(b) Shift register realization of encoder for recursive systematic code
 (cascade feedforward transfer function with feedback function in
 (a) to generate parity bits)  

y [k] = u[k] + y [k – 1] + y [k – 2]
v [k] = y[k] + y [k – 2]
Parity bits

y [k ]

Figure 7.3 Shift register implementation of a [7,5] recursive systematic code. The state of the shift

register at time k is s�k�= �y�k−1�� y�k−2��, and the outputs at time k depend on the input u�k� and

the state s�k�.

Systematic bits

Parity bits

Figure 7.4 Recursive

systematic encoder for a

[23,35] code.
Another example code While my running example is a 4-state code,

in practice, we often use more complex codes; for example, a 16-state

code is shown in Figure 7.4. This code is historically important because

it was a component code for the turbo code invented by Berrou et al in

1993. This example also gives us the opportunity to clarify our notation

for the code generators. Note that g1 = 10011 (specifies the feedback taps)

and g2 = 11101 (specifies the feedforward taps), reading the shift register

tap settings from left to right. The convention for the octal notation for

specifying the generators is to group the bits specifying the taps in groups

of three, from right to left. This yields g1 = 23 and g2 = 35. Thus, the code

in Figure 7.4 is a [23,35] recursive systematic code.

7.1.3 Maximum likelihood decoding

I use the rate 1/2 [7,5] code as a running example in my discussion. For

both the encoders shown in Figures 7.1 and 7.4, an incoming input bit u�k�

at time k results in two coded bits, say c1�k� and c2�k�, that depend on

u�k� and the state s�k� at time k. Also, there is a unique mapping between
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�u�k�� s�k�� and �s�k�� s�k+1��, since, given s�k�, there is a one-to-one map-

ping between the input bit and the next state s�k+1�. Thus, c1�k� and c2�k�

are completely specified given either �u�k�� s�k�� or �s�k�� s�k+ 1��. This

observation is important in the development of efficient algorithms for ML

decoding.

Let us now consider the example of BPSK transmission for sending these

coded bits over an AWGN channel.

BPSK transmission Letting Eb denote the received energy per information

bit, the energy per code symbol is Es = EbR, where R is the code rate. For

BPSK transmission over a discrete-time real WGN channel, therefore, the

noisy received sequence z�k�= �z1�k�� z2�k�� is given by

z1�k�=
√
Es�−1�c1�k�+n1�k��

z2�k�=
√
Es�−1�c2�k�+n2�k��

(7.5)

where �n1�k��, �n2�k�� are i.i.d. N�0�
2� random variables (
2 = N0

2
). Hard

decision decoding corresponds to only the signs of the received sequence

�z�k�� being passed up to the decoder. Soft decisions correspond to the real

values �zi�k��, or multilevel quantization (number of levels greater than two)

of some function of these values, being passed to the decoder. I now discuss

maximum likelihood decoding when the real values �zi�k�� are available to

the decoder.

Maximum likelihood decoding with soft decisions An ML decoder for

the AWGN channel must minimize the minimum distance between the

noisy received signal and the set of possible transmitted signals. For

any given information sequence u = �u�k�� (with corresponding codeword

c = ��c1�k�� c2�k���, this distance can be written as

D�u�=
∑

k

{

(

z1�k�−
√

Es�−1�c1�k�
)2

+
(

z2�k�−
√

Es�−1�c2�k�
)2
}

	

Recalling that �c1�k�� c2�k�� are determined completely by s�k� and s�k+1�,

we can denote the kth term in the above sum by

�k�s�k�� s�k+1��=
(

z1�k�−
√

Es�−1�c1�k�
)2

+
(

z2�k�−
√

Es�−1�c2�k�
)2

	

The ML decoder must therefore minimize an additive distance squared metric

to obtain the sequence

ûML = arg min
u

D�u�= arg min
u

∑

k

�k�s�k�� s�k+1��	

An alternative form of the metric is obtained by noting that

(

zi�k�−
√

Es�−1�ci�k�
)2

= z2i �k�+Es−2
√

Eszi�k��−1�ci�k��
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with the first two terms on the right-hand side independent of u. Dropping

these terms, and scaling and changing the sign of the third term, we can

therefore define an alternative correlator branch metric:

�k�s�k�� s�k+1��= zi�k��−1�ci�k��

where the objective is now to maximize the sum of the branch metrics.

For an information sequence of length K, a direct approach to ML decoding

would require comparing the metrics for 2K possible sequences; this exponen-

tial complexity in K makes the direct approach infeasible even for moderately

large values of K. Fortunately, ML decoding can be accomplished much more

efficiently, with complexity linear in K, using the Viterbi algorithm, which

I describe below.

The basis for the Viterbi algorithm is the principle of optimality for additive

metrics, which allows us to prune drastically the set of candidates when

searching for the ML sequence. Let


�m � n�u�=
n
∑

k=m

�k�su�k�� su�k+1��

denote the running sum of the branch metrics between times m and n, where

�su�k�� denotes the sequence of trellis states corresponding to u.

Principle of optimality Suppose that two sequences u1 and u2 have the

same state at times m and n (i.e., su1 �m� = su2 �m� and su1 �n� = su2 �n�), as

shown in Figure 7.5. Then the sequence that has a worse running sum between

m and n cannot be the ML sequence.

Proof For concreteness, suppose that we seek to maximize the sum metric,

and that 
�m � n�u1� > 
�m � n�u2�. Then I claim that u2 cannot be the ML

sequence. To see this, note that the additive nature of the metric implies that


�u2�=
�1 � m−1�u2�+
�m � n�u2�+
�n+1 � K�u2�	 (7.6)

Since u2 and u1 have the same states at times m and n, and the branch

metrics depend only on the states at either end of the branch, we can replace

the segment of u2 between m and n by the corresponding segment from u1

m
n

Common
section

u1

u2
u1

u2

Figure 7.5 Two paths through a trellis with a common section between times m and n. The principle of

optimality states that the path with the worse metric in the common section cannot be the ML path.
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without changing the first and third terms in (7.6). We get a new sequence

u3 with metric


�u3�=
�1 � m−1�u2�+
�m � n�u1�+
�n+1 � K�u2� > 
�u2�	

Since u3 has a better metric than u2, I have shown that u2 cannot be the ML

sequence.

I can now state the Viterbi algorithm.

Viterbi algorithm Assume that the starting state of the encoder s�0� is

known. Now, all sequences through the trellis meeting at state s�k� can be

directly compared, using the principle of optimality between times 0 and k,

and all sequences except the one with the best running sum can be discarded.

If the trellis has S states at any given time (the algorithm also applies to time-

varying trellises where the number of states can depend on time), we have

exactly S surviving sequences, or survivors, at any given time. We need to

keep track of only these S sequences (i.e., the sequence of states through the

trellis, or equivalently, the input sequence, that they correspond to) up to the

current time. We apply this principle successively at times k = 1�2�3� � � � .

Consider the S survivors at time k. Let F�s′� denote the set of possible values

of the next state s�k+1�, given that the current state is s�k�= s′. for example,

a convolutional code with one input bit per unit time, for each possible value

of s�k� = s′, there are two possible values of s�k+1�; that is, F�s′� contains

two states. Denoting the running sum of metrics up to time k for the survivor

at s�k�= s′ by 
∗�1 � k� s′�. We now extend the survivors by one more time

step as follows:

Add step For each state s′, extend the survivor at s′ in all admissible ways,

and add the corresponding branch metric to the current running sum to get


0�1 � k+1� s′ → s�=
∗�1 � k� s′�+�k+1�s
′� s�� s∈F�s′�	

Compare step After the “add” step, each possible state s�k+ 1� = s has

a number of candidate sequences coming into it, corresponding to differ-

ent possible values of the prior state. We compare the metrics for these

candidates and choose the best as the survivor at s�k+ 1� = s. Denote by

P�s� the set of possible values of s�k� = s′, given that s�k+ 1� = s. For

example, for a convolutional code with one input bit per unit time, P�s�

has two elements. We can now update the metric of the survivor at s�k+
1� = s as follows (assuming for concreteness that we wish to maximize the

running sum)


∗�1 � k+1� s�= max
s′ ∈ P�s�


0�1 � k+1� s′ → s�

and store the maximizing s′ for each s�k+1�= s. (When we wish to minimize

the metric, the maximization above is replaced by minimization).
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At the end of the add and compare steps, we have extended the set of S

survivors by one more time step. If the information sequence is chosen such

that the terminating state is fixed, then we simply pick the survivor with

the best metric at the terminal state as the ML sequence. The complexity of

this algorithm is O�S� per time step; that is, it is exponential in the encoder

complexity but linear in the (typically much larger) number of transmitted

symbols. Contrast this with brute force ML estimation, which is exponential

in the number of transmitted symbols.

The Viterbi algorithm is often simplified further in practical implementa-

tions. For true ML decoding, we must wait until the terminal state to make

bit decisions, which can be cumbersome in terms of both decoding delay and

memory (we need to keep track of S surviving information sequences) for

long information sequences. However, we can take advantage of the fact that

the survivors at time k typically have merged at some point in the past, and

make hard decisions on the bits corresponding to this common section with

the confidence that this section must be part of the ML solution. In practice,

we may impose a hard constraint on the decoding delay d and say that, if

the Viterbi algorithm is at time step k, then we must make hard decisions on

all information bits prior to time step k−d. If the survivors at time k have

not merged by time step k−d, therefore, we must employ heuristic rules for

making bit decisions: for example, we may make decisions prior to k−d

corresponding to the survivor with the best metric at time k. Alternatively,

some form of majority logic, or weighted majority logic, may be used to

combine the information contained in all survivors at time k.

General applicability of the Viterbi algorithm The Viterbi algorithm

applies whenever there is an additive metric that depends only on the current

time and the state transition, and is an example of dynamic programming. In

the case of BPSK transmission over the AWGN channel, it is easy to see,

for example, how the Viterbi algorithm applies if we quantize the channel

outputs. Referring back to (7.5), suppose that we pass back to the decoder

the quantized observation r�k�= ��z�k��, where � is a memoryless transfor-

mation. An example of this is hard decisions on the code bits ci�k�; that is

r�k�= �ĉ1�k�� ĉ2�k��, where

ĉi�k�= 1zi�k�<0� i= 1�2	

Regardless of the choice of �, we can characterize the equivalent discrete

memoryless channel p�r�k��c�k�� that it induces. By the independence of the

noise at different time units, we can write the ML decoding metric in terms

of maximizing the log likelihood ratio,

∑

k

logp�r�k��c�k��� (7.7)

over all possible codewords c (or equivalently, information sequences u).
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As discussed in Problem 7.7, ML decoding for the BSC induced by hard

decisions for BPSK over an AWGN channel takes a particularly simple and

intuitive form, minimizing the Hamming distance between the hard decision

estimate and the codewords.

7.1.4 Performance analysis of ML decoding

I will first develop a general framework for performance analysis, rather than

considering a code with a specific structure. Let c = �c�i�� denote a binary

codeword in C, the set of all possible codewords. Let s = �si� denote the

BPSK signal corresponding to it. Thus,

s�i�=
√

Es�−1�c�i�	

I will first analyze the performance of ML decoding with channel outputs

directly available to the decoder (i.e., with unquantized soft decisions). I will

then note that the same methods apply when the decoder only has access to

quantized channel outputs.

I first wish to determine the pairwise error probability, or the probability

that, given that c1 is the transmitted codeword, the ML decoder outputs a

different codeword c2. We know that, over an AWGN channel, this probability

is determined by the Euclidean distance between the BPSK signals s1 and

s2 corresponding to these two codewords. Now, s2�i�− s1�i� = ±2
√
Es if

c2�i� �= c1�i�. Let dH�c1� c2� denote the Hamming distance between c1 and c2,

which is defined as the number of bits in which they differ. We can also write

the Hamming distance as w�c2 − c1�, the weight of the difference between

the two codewords (computed, of course, using binary arithmetic, so that

c2− c1 = c2+ c1). Thus,

��s2− s1��2 =
∑

i

�s2�i�− s1�i��2 = 4Esw�c2− c1�= 4EbR w�c2− c1��

where R is the code rate. We can now write the pairwise error probability of

decoding to c2 when c1 is sent as

P�c1 → c2�=Q

( ��s2− s1��
2


)

=Q

(
√

2EbR w�c2− c1�

N0

)

	 (7.8)

Condition on sending the all zero codeword Now, note that a convolu-

tional code is a linear code, in that, if c1 and c2 are codewords, then so is

c2 − c1 = c2 + c1. We can therefore subtract out c1 from the code, leaving

it (and hence the relative geometry of the corresponding BPSK modulated

signal set) unchanged. This means that we can condition, without loss of

generality, on the all-zero codeword being sent. Let us therefore set c1 equal

to the all-zero codeword, and set c2 = c.

We wish to estimate Pe�k�, the probability that the kth information bit,

u�k� is decoded incorrectly. Since we have sent the all-zero codeword, the
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correct information sequence is the all-zero sequence. Thus, to make an error

in the kth information bit, the ML decoder must output a codeword such that

u�k�= 1. Let C�k� denote the set of all such codewords:

C�k�= �c∈C � u�k�= 1�	

Clearly,

Pe�k�= P�ML decoder chooses some c∈Ck�	

From (7.8), we see that the pairwise error probability that a codeword c has

a higher likelihood than the all-zero codeword, when the all-zero codeword

is sent, is given by Q�
√
�2EbRw�c�/N0��. Since this depends only on the

weight of c, it is convenient to define

q�x�=Q

(
√

2EbRx

N0

)

(7.9)

as the pairwise error probability for a codeword of weight x relative to the

all-zero codeword.

We start with a loose union bound on the bit error probability

Pe�k�≤
∑

c∈C�k�

q�w�c��	 (7.10)

We now want to prune the terms in (7.10) to obtain an “intelligent union

bound.” To do this, consider Figure 7.6, which shows a simplified schematic

of the ML codeword c and the transmitted all-zero codeword as paths through

a trellis. Any nonzero codeword must diverge from the all-zero codeword on

the code trellis at some point. Such a codeword may or may not remerge with

the all-zero codeword at some later point, and in general, may diverge and

All-zero codeword

All-zero codewordkm n

km n

Simple codeword coinciding with ML codeword between m and n

Has better metric than all-zero codeword, and has an error in information bit k

ML codeword having an error in information bit k must diverge from all-zero codeword around k

ML codeword may diverge and remerge from all-zero codeword several times

Figure 7.6 Transmitted all-zero codeword and ML codeword as paths on the trellis. In the scenario

depicted, the input bit u�k� corresponding to the ML codeword is incorrect. I also show the simple

codeword which coincides with the ML codeword where it diverges from the all-zero path around bit k,

and coincides with the all-zero codeword elsewhere.
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remerge several times. We define a simple codeword as a nonzero codeword

that, if it remerges with the all-zero codeword, never diverges again. Let Cs�k�

denote all simple codewords that belong to C�k�; that is,

Cs�k�= �c∈C � u�k�= 1� c simple�	

We now state and prove that the union bound (7.10) can be pruned to include

only simple codewords.

Proposition 7.1.1 (Intelligent union bound using simple codewords) The

probability of bit error is bounded as

Pe�k�≤
∑

c∈Cs�k�

q�w�c��	 (7.11)

Proof Consider the scenario depicted in Figure 7.6. Since the ML codeword

and the all-zero codeword have the same state at times m and n, by the

principle of optimality, the sum of the branch metrics between times m and

n must be strictly greater for the ML path. That is,


�m � n�uML� > 
�m � n�0��

where uML denotes the information sequence corresponding to the ML

codeword. Thus, the accumulated metric for the simple codeword which coin-

cides with the ML codeword between m and n, and with the all-zero path

elsewhere, must be bigger than that of the all-zero path, since the difference

in their metrics is precisely the difference accumulated between m and n,

given by


�m � n�u�−
�m � n�0� > 0	

This shows that the ML codeword c∈C�k� if and only if there is some simple

codeword c̃∈Cs�k� which has a better metric than the all-zero codeword. A

union bound on the latter event is given by

Pe�k�≤
∑

c∈Cs�k�

P�c has better metric than 0�0 sent�=
∑

c∈Cs�k�

q�w�c���

which proves the desired result.

We now want to count simple codewords efficiently for computing the above

bound. To this end, we use the concept of error event, defined via the trellis

representation of the code.

Definition 7.1.1 Error event An error event c is a simple codeword which

diverges on the trellis from the all-zero codeword for the first time at time

zero.
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Output weight w = 6

1/01 0/01 0/111/11

(Inputs and outputs along the path shown in bold)

Input weight i = 2

For the rate 1/2 nonrecursive, nonsystematic code �7�5� in Section 7.1.1 that

serves as my running example, Figure 7.7 shows an error event marked as

a path in bold through the trellis. Note that the error event is a nonzero

codeword that diverges from the all-zero path at time zero, and remerges four

time units later (never to diverge again).

Figure 7.7 An error event for

our running example of a

nonrecursive, nonsystematic

rate 1/2 code with generator

�7� 5�.

Let E denote the set of error events. Suppose that a given codeword

c∈E has output weight x and input weight i. That is, the input sequence

that generates c has i nonzero elements, and the codeword c has x nonzero

elements. Then we can translate c to create i simple error events in Cs�k�, by

lining up each of the nonzero input bits in turn with u�k�. The corresponding

pairwise error probability q�x� depends only on the output weight w. Now,

suppose there are A�i� x� error events with input weight i and output weight

x. We can now rewrite the bound (7.11) as follows:

Union bound using error event weight enumeration

Pe�k�≤


∑

i=1



∑

x=1

iA�i� x�q�x�	 (7.12)

If �A�i� x��, the weight enumerator function of the code, is known, then the

preceding bound can be directly computed, truncating the infinite summations

in i and x at moderate values, exploiting the rapid decay of the Q function

with its argument.

We can also use a “nearest neighbor” approximation, in which we only

consider the minimum weight codewords in the preceding sum. The minimum

possible weight for a nonzero codeword is called the free distance of the

code, dfree. That is,

dfree =min�x > 0 � A�i� x� > 0 for some i�	
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Then the nearest neighbor approximation is given by

Pe�k�≈Q

(
√

2EbRdfree

N0

)

∑

i

iA�i�dfree�	 (7.13)

This provides information on the high SNR asymptotics of the error prob-

ability. The exponent of decay of error probability with Eb/N0 relative to

uncoded BPSK is better by a factor of Rdfree, which is termed the coding

gain (typically expressed in dB). Of course, this provides only coarse insight;

convolutional codes are typically used at low enough SNR that it is neces-

sary to go beyond the nearest neighbors approximation to estimate the error

probability accurately.

We now show how A�i� x� can be computed using the transfer function

method. We also slightly loosen the bound (7.12) to get a more explicit form

that can be computed using the transfer function method without truncation

of the summations in i and x.

Figure 7.8 State diagram for

running example. Each

transition is labeled with the

input and output bits, as well

as a branch gain IaX b , where

a is the input weight, and b

the output weight.

Transfer function Define the transfer function

T�I�X�=


∑

i=1



∑

x=1

A�i� x�I iXx	 (7.14)

This transfer function can be computed using a state diagram representation for

the convolutional code. I illustrate this procedure using my running example,

the nonrecursive, nonsystematic encoder depicted in Figure 7.1 in Section

7.1.1. The state diagram is depicted in Figure 7.8. We start from the all-zero

state START and end at the all-zero state END, but the states in between

are all nonzero. Thus, a path from START to END is an error event, or a

codeword that diverges from the all-zero codeword for the first time at time

zero, and does not diverge again once it remerges with the all-zero codeword.

By considering all possible paths from START to END, we can enumerate

all possible error events. If a state transition corresponds to a nonzero input

bits and b nonzero output bits, then the branch gain for that transition is IaXb.

For an error event of input weight i and output weight x, the product of all

branch gains along the path equals I iXx. Thus, summing over all possible

paths gives us the transfer function T�I�W� between START and END.

IX 
2

X 
2

00

10

11

01 00
1/01

0/01

0/11

1/11
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0/10

1/00

X 
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X 

ENDSTART
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The transfer function for my running example equals

T�I�X�= IX5

1−2IX
	 (7.15)

A formal expansion yields

T�I�X�= IX5


∑

k=0

2kIkXk	 (7.16)

Comparing the coefficients of terms of the form I iXx, we can now read

off A�i� x�, and then compute (7.12). We can also see that the free distance

dfree = 5, corresponding to the smallest power of X that appears in (7.16).

Thus, the the coding gain Rdfree relative to uncoded BPSK is 10 log10�5/2�≈
4 dB. Note that my running example is meant to illustrate basic concepts, and

that better coding gains can be obtained at the same rate by increasing the

code memory (with a corresponding penalty in terms of decoding complexity,

which is proportional to the number of trellis states).

Transfer function bound I now develop a transfer function based bound

that can be computed without truncating the sum over paths from START to

END. Using the bound Q�x�≤ 1
2
e−x2/2 in (7.9), we have

q�x�≤ abx� (7.17)

where a= 1/2 and b= e
− EbR

N0 . Plugging into (7.12), we get the slightly weaker

bound

Pe�k�≤ a


∑

i=1



∑

x=1

iA�i� x�bx	 (7.18)

From (7.14), we see that

�

�I
T�I�X�=



∑

i=1



∑

x=1

A�i�w�iI i−1Xx	

We can now rewrite (7.18) as follows:

Transfer function bound

Pe�k�≤ a
�

�I
T�I�X��I=1�X=b� (7.19)

(a= 1/2, b = e
− EbR

N0 for soft decisions).

For my running example, we can evaluate the transfer function bound

(7.19) using (7.15) to get

Pe ≤
1

2

e
− 5Eb

2N0

(

1−2e
− Eb

2N0

)2
	 (7.20)
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For moderately high SNR, this is close to the nearest neighbors (7.13), which

is given by

Pe ≈Q

(
√

5Eb

N0

)

≤ 1

2
e
− 5Eb

2N0 �

where we have used (7.16) to infer that dfree = 5, A�i�dfree�= 1 for i= 1, and

A�i�dfree�= 0 for i > 1.

7.1.5 Performance analysis for quantized observations

I noted in Section 7.1.3 that the Viterbi algorithm applies in great generality,

and can be used in particular for ML decoding using quantized observations.

I now show that the performance analysis methods we have discussed are also

directly applicable in this setting. To see this, consider a single coded bit c sent

using BPSK over an AWGN channel. The corresponding real-valued received

sample is z = √
Es�−1�c +N , where N ∼ N�0�
2�. A quantized version

r = ��z� is then sent up to the decoder. The equivalent discrete memoryless

channel has transition densities p�r�1� and p�r�0�. When running the Viterbi

algorithm to maximize the log likelihood, the branch metric corresponding

to r is logp�r�0� for a trellis branch with c = 0, and logp�r�1� for a trellis

branch with c = 1.

The quantized observations inherit the symmetry of the noise and the signal

around the origin, as long as the quantizer is symmetric. That is, p�r�0� =
p�−r�1� for a symmetric quantizer. Under this condition, it can be shown

with a little thought that there is no loss of generality in assuming in our

performance analysis that the all-zero codeword is sent.

Next, I discuss computation of pairwise error probabilities. A given nonzero

codeword c is more likely than the all-zero codeword if
∑

i

logp�ri�ci� >
∑

i

logp�ri�0��

where ci denotes the ith code symbol, and ri the corresponding quantized

observation. Cancelling the common terms corresponding to ci = 0, we see

that c is more likely than the all-zero codeword if

∑

i�ci=1

log
p�ri�1�
p�ri�0�

> 0	

If c has weight x, then there are x terms in the summation above. These

terms are independent and identically distributed, conditioned on the all-zero

codeword being sent. A typical term is of the form

V = log
p�r�1�
p�r�0� � (7.21)

where, conditioned on the code bit c = 0,

r = ��
√

Es+N�� N ∼ N�0�
2�	
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It is clear that the pairwise error probability depends only on the codeword

weight x, hence we denote it as before by q�x�, where

q�x�= P0�V1+· · ·+Vx > 0�� (7.22)

with P0 denoting the distribution conditioned on zero code bits being sent.

Given the equivalent channel model, we can compute q�x� exactly.

I now note that the intelligent union bound (7.12) applies as before, since its

derivation only used the principle of optimality and the fact that the pairwise

error probability for a codeword depends only on its weight. Only the value

of q�x� depends on the specific form of quantization employed.

The transfer function bound (7.19) is also directly applicable in this more

general setting. This is because, for sums of i.i.d. random variables as in

(7.22), we can find Chernoff bounds (see Appendix B) of the form

q�x�≤ abx

for constants a > 0 and b ≤ 1. A special case of the Chernoff bound that is

useful for random variables which are log likelihood ratios, as in (7.21) is

the Bhattacharya bound, introduced in Problem 7.9, and applied in Problems

7.10 and 7.11.

Example 7.1.1 (Performance with hard decisions) Consider a BPSK

system with hard decisions. The hard decision r = ĉ = I�z<0�, where

z=√
Es�−1�c+N is the noisy observation corresponding to the transmit-

ted code symbol c∈ �0�1�, where N ∼ N�0�
2�. Clearly, we can model r

as the output when c is passed through an equivalent BSC with crossover

probability p = Q�
√
�2EbR/N0�. In Problems 7.8 and 7.10, I derive the

following upper bound on the pairwise error probability for ML decoding

over a BSC:

q�x�≤ �2
√

p�1−p��x	

This can now be plugged into the transfer function bound to estimate the BER

with hard decisions as follows:

Pe ≤
�

�I
T�I�X��I=1�X=b� (7.23)

where b = 2
√

p�1−p�. For large SNR, p
	= e−EbR/N0 , so that

b = 2
√

p�1−p�≈ 2
√
p

	= e−EbR/2N0 . Comparing with (7.19), where

b ≈ e−EbR/N0 , we see that hard decisions incur a 3 dB degradation in

performance relative to soft decisions, asymptotically at high SNR (at low

SNR, the degradation is smaller – about 2 dB). However, most of this deficit

can be made up by using observations quantized using relatively few levels.

Problem 7.11 explores this comment in further detail.
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7.2 Turbo codes and iterative decoding

I now describe turbo codes, which employ convolutional codes as build-

ing blocks for constructing random-looking codes that perform very close

to Shannon-theoretic limits. Since the randomization leads to dependencies

among code bits that are very far apart in time, a finite state representation of

the code amenable to ML decoding using the Viterbi algorithm is infeasible.

Thus, a crucial component of this breakthrough in error correction coding

is a mechanism for suboptimal iterative decoding, in which simple decoders

for the component convolutional codes exchange information over several

iterations. The component decoders are based on the BCJR algorithm (named

in honor of its inventors, Bahl, Cocke, Jelinek, and Raviv), which provides

an estimate of the a posteriori probability of each bit in a codeword, based on

the received signal, and taking into account the constraints imposed by the

code structure. Therefore, I first describe the BCJR algorithm in a great deal

of detail. This makes my subsequent description of turbo codes and iterative

decoding quite straightforward. I consider both parallel concatenated codes

(the original turbo codes) and serial concatenated codes (often found to yield

superior performance).

7.2.1 The BCJR algorithm: soft-in, soft-out decoding

Maximum likelihood decoding using the Viterbi algorithm chooses the most

likely codeword. If all codewords are equally likely to be sent, this also

minimizes the probability of choosing the wrong codeword. In contrast, the

BCJR algorithm provides estimates of the posterior distribution of each bit in

the codeword. The method applies to both the information bits and coded bits

for all classes of convolutional codes that I have discussed so far. The major

part of the computation is in running two Viterbi-like algorithms, one forward

and one backward, through the trellis. The complexity of the BCJR algorithm

is therefore somewhat higher than that of the Viterbi algorithm. For any given

bit b∈ �0�1�, the output of the BCJR algorithm can be summarized by the

log likelihood ratio (LLR) Lout�b� = log�P�b = 0�y��/�P�b = 1�y��, where y

denotes the observations fed to the BCJR algorithm. Note that computation

of the posterior distribution of b requires knowledge of the prior distribution

of b, which can also be summarized in terms of an LLR Lin�b�= log�P�b =
0��/�P�b = 1��. These LLRs provide soft information regarding b, with our

confidence on our knowledge of b increasing with their magnitude (the LLR

takes value +
 if b = 0 and value −
 if b = 1).

I begin with an exposition of the original BCJR algorithm, followed by a

detailed discussion of its logarithmic version, which is preferred in practice

because of its numerical stability. The logarithmic implementation also pro-

vides more insight into the nature of the different kinds of information being
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used by the BCJR algorithm. This is important in my later discussion of how

to use the BCJR algorithm as a building block for iterative decoding.

Notation: BPSK version of a bit Since I focus on BPSK modulation, it is

convenient to define for any bit b taking values in �0�1� its BPSK counterpart,

b̃ = �−1�b� (7.24)

taking values in �+1�−1�, with 0 mapped to +1 and 1 to −1. Thus,

L�b�= log
P�b = 0�

P�b = 1�
= log

P�b̃ =+1�

P�b̃ =−1�
	 (7.25)

After running the algorithm, we can make a maximum a posteriori probability

(MAP) hard decision for b, if we choose to, as follows:

b̂MAP =
{

0� L�b� > 0

1� L�b� < 0�

with ties broken arbitrarily. From the theory of hypothesis testing, we know

that such MAP decoding minimizes the probability of error, so that the BCJR

algorithm can be used to implement the bitwise minimum probability of error

(MPE) rule. However, this in itself does not justify the additional complexity

relative to the Viterbi algorithm: for a typical convolutional code, the BER

obtained using ML decoding is almost as good as that obtained using MAP

decoding. This is why the BCJR algorithm, while invented in 1974, did not

have a major impact on the practice of decoding until the invention of turbo

codes in 1993. We now know that the true value of the BCJR algorithm,

and of a number of its suboptimal, lower-complexity, variants, lies in their

ability to accept soft inputs and produce soft outputs. Interchange of soft

information between such soft-in, soft-out (SISO) modules is fundamental to

iterative decoding.

As a running example in this section, I consider the rate 1/2 RSC code

with generator �7�5� that I introduced earlier. A trellis section for this code

is shown in Figure 7.9.

The fundamental quantity to be computed by the BCJR algorithm is the

posterior probability of a given branch of the trellis being traversed by

the transmitted codeword, given the received signal and the priors. Given the

posterior probabilities of all allowable branches in a trellis section, we can

compute posterior probabilities for the bits associated with these branches.

For example, we see from Figure 7.9 that the input bit uk = 0 corresponds

to exactly four of the eight branches in the trellis section, so the posterior

probability that uk = 0 can be written as:

P�uk = 0�y� = P�sk = 00� sk+1 = 00�y�+P�sk = 01� sk+1 = 10�y�

+P�sk = 10� sk+1 = 11�y�+P�sk = 11� sk+1 = 01�y�	

(7.26)
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implementation and trellis

section for our running

example of a rate 1/2

recursive systematic code.

Similarly, the posterior probability that uk = 1 can be obtained by summing

up the posterior probability of the other four branches in the trellis section:

P�uk = 1�y�= P�sk = 00� sk+1 = 10�y�+P�sk = 01� sk+1 = 00�y�

+P�sk = 10� sk+1 = 01�y�+P�sk = 11� sk+1 = 11�y�	

(7.27)

The posterior probability P�sk = A� sk+1 = B�y� of a branch A → B is pro-

portional to the the joint probability P�sk = A� sk+1 = B�y�, which is more

convenient to compute. Note that I have abused notation in denoting this as

a probability: y is often a random vector with continuous-valued components

(e.g., the output of an AWGN channel with BPSK modulation), so that this

“joint probability” is really a mixture of a probability mass function and a

probability density function. That is, we get one when we sum over branches

and integrate over y. However, since we are interested in posterior distribu-

tions conditioned on y, we never need to integrate out y. We therefore do not

need to be careful about this issue. On the other hand, the posterior probabil-

ities of all branches in a trellis section do add up to one. Since the posterior

probability of a branch is proportional to the joint probability, this gives us

the normalization condition that we need. That is, for any state transition

A→ B,

P�sk = A� sk+1 = B�y�= �kP�sk = A� sk+1 = B�y�� (7.28)

where �k is a normalization constant such that the posterior probabilities of

all branches in the kth trellis section sum up to one:

�k =
1

∑

sk=s′�sk+1=s P�sk = s′� sk+1 = s�y�
�

where only the eight branches s′ → s that are feasible under the code con-

straints appear in the summation above. For example, the transition 10→ 00

does not appear, since it is not permitted by the code constraints in the code

trellis.



August 13, 2007 5:55 p.m. CUP/FOD Page-314 9780521874144c07

314 Channel coding

Explicit computation of the normalization constant �k is often not required

(e.g., if we are interested in LLRs). For example, if we compute the output

LLR of uk from (7.26) and (7.27), and plug in (7.28), we see that �k cancels

out and we get

Lout�uk� = log
P�uk = 0�y�
P�uk = 1�y�

= log

(

P�sk = 00� sk+1 = 00�y�+P�sk = 01� sk+1 = 10�y�

P�sk = 00� sk+1 = 10�y�+P�sk = 01� sk+1 = 00�y�

+P�sk = 10� sk+1 = 11�y�+P�sk = 11� sk+1 = 01�y�

+P�sk = 10� sk+1 = 01�y�+P�sk = 11� sk+1 = 11�y�

)

	

Let me now express this in more compact notation. Denote by U0 and U1 the

branches in the trellis section corresponding to uk = 0 and uk = 1, respectively,

given by

U0 = ��s′� s� � sk = s′� sk+1 = s� uk = 0��

U1 = ��s′� s� � sk = s′� sk+1 = s� uk = 1�	
(7.29)

In my example, we have

U0 = ��00�00�� �01�10�� �10�11�� �11�01���

U1 = ��00�10�� �01�00�� �10�01�� �11�11��	

(Since I consider a time-invariant trellis, the sets U0 and U1 do not depend

on k. However, the method of computing bit LLRs from branch posteriors

applies just as well to time-varying trellises.)

Writing

Pk�s
′� s�y�= P�sk = s′� sk+1 = s�y��

we can now provide bit LLRs as the output of the BCJR algorithm, as follows.

Log likelihood ratio computation

Lout�uk�= log

(

∑

�s′�s�∈ U0
Pk�s

′� s�y�
∑

�s′�s�∈ U1
Pk�s

′� s�y�

)

	 (7.30)

This method applies to any bit associated with a given trellis section. For

example, the LLR for the parity bit vk output by the BCJR algorithm is

computed by partitioning the branches according to the value of vk:

Lout�vk�= log

(

∑

�s′�s�∈ V0
Pk�s

′� s�y�
∑

�s′�s�∈ V1
Pk�s

′� s�y�

)

� (7.31)

where, for our example, we see from Figure 7.9, that

V0 = ��s′� s� � sk = s′� sk+1 = s� vk = 0�

= ��00�00�� �01�10�� �10�01�� �11�11��

V1 = ��s′� s� � sk = s′� sk+1 = s� vk = 1�

= ��00�10�� �01�00�� �10�11�� �11�01��	
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I now discuss how to compute the joint “probabilities” Pk�s
′� s�y�. Before

doing this, let me establish some more notation. Let yk denote the received

signal corresponding to the bits sent in the kth trellis section, and let yba
denote �ya�ya+1� � � � �yb�, the received signals corresponding to trellis sec-

tions a through b. Suppose that there are K trellis sections in all, numbered

from 1 through K. Considering our rate 1/2 running example, suppose that

we use BPSK modulation over an AWGN channel, and that we feed the

unquantized channel outputs directly to the decoder. Then the received sig-

nal yk = �yk�1�� yk�2�� in the kth trellis section is given by the two real-

valued samples:

yk�1�= A�−1�uk +N1�k = Aũk+N1�k

yk�2�= A�−1�vk +N2�k = Aṽk+N2�k�
(7.32)

where N1�k, N2�k are i.i.d. N�0�
2� noise samples, and A=√
Es =

√

Eb/2 is

the modulating amplitude.

Applying the chain rule for joint probabilities, we can now write

Pk�s
′� s�y� = P�sk = s′� sk+1 = s�yk−1

1 �yk�y
K
k+1�

= P�yKk+1�sk = s′� sk+1 = s�yk−1
1 �yk�P�sk+1

= s�yk�sk = s′�yk−1
1 �P�sk = s′�yk−1

1 �	 (7.33)

We can now simplify the preceding expression as follows. Given sk+1 = s, the

channel outputs yKk+1 are independent of the values of the prior channel outputs

yk1 and the prior state sk, because the channel is memoryless, and because future

outputs of a convolutional encoder are determined completely by current

state and future inputs. Thus, we have P�yKk+1�sk = s′� sk+1 = s�yk−1
1 �yk� =

P�yKk+1�sk+1 = s�. Following the notation in the original exposition of the BCJR

algorithm, we define this quantity as

�k�s�= P�yKk+1�sk+1 = s�	 (7.34)

The memorylessness of the channel also implies that P�sk+1 = s�yk�sk = s′,

yk−1
1 �= P�sk+1 = s�yk�sk = s′�, since, given the state at time k, the past channel

outputs do not tell us anything about the present and future states and channel

outputs. We define this quantity as

�k�s
′� s�= P�sk+1 = s�yk�sk = s′�	 (7.35)

Finally, let us define the quantity

�k−1�s
′�= P�sk = s′�yk−1

1 �	 (7.36)

We can now rewrite (7.33) as follows.

Branch probability computation

Pk�s
′� s�y�= �k�s��k�s

′� s��k−1�s
′�	 (7.37)
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Note that �, �, � do not have the interpretation of probability mass functions

over a discrete space, since all of them involve the probability density of

a possibly continuous-valued observation. Indeed, these functions can be

scaled arbitrarily (possibly differently for each k), as long as the scaling

is independent of the states. By virtue of (7.37), these scale factors get

absorbed into the joint probability Pk�s
′� s�y�, which also does not have the

interpretation of probability mass function over a discrete space. However,

the posterior branch probabilities Pk�s
′� s�y� must indeed sum to one over

�s′� s�, so that the arbitrary scale factors are automatically resolved using the

normalization (7.28). By the same reasoning, arbitrary (state-independent)

scale factors in �, �, � leave posterior bit probabilities and LLRs unchanged.

I now develop a forward recursion for �k in terms of �k−1, and a backward

recursion for �k−1 in terms of �k. Let us assume that the trellis sections are

numbered from k= 0� � � � �K−1, with initial all-zero state s�0�= 0. The final

state sk is also terminated at 0 (although I will have occasion to revisit this

condition in the context of turbo codes).

We can rewrite �k�s� using the law of total probability as follows:

�k�s�= P�sk+1 = s�yk1�=
∑

s′
P�sk+1 = s�yk1� sk = s′�� (7.38)

considering all possible prior states s′ (the set of states s′ that need to be

considered is restricted by code constraints, as I illustrate in an example

shortly). A typical term in the preceding summation can be rewritten as

P�sk+1 = s�yk1� sk = s′� = P�sk+1 = s�yk�y
k−1
1 � sk = s′�

= P�sk+1 = s�yk�yk−1
1 � sk = s′�P�yk−1

1 � sk = s′�	

Now, given the present state sk = s′, the future states and observations are

independent of the past observations yk−1
1 , so that

P�sk+1 = s�yk�yk−1
1 � sk = s′�= P�sk+1 = s�yk�sk = s′��k�s

′� s�	

We now see that

P�sk+1 = s�yk1� sk = s′�= �k�s
′� s��k−1�s

′�	

Substituting into (7.38), we get the forward recursion in compact form.

Forward recursion

�k�s�=
∑

s′
�k�s

′� s��k−1�s
′�� (7.39)

which is the desired forward recursion for �. If the initial state is known to

be, say, the all-zero state 0, then we would initialize the recursion with

�0�s�=
{

0� s �= 0

c� s = 0�
(7.40)

where the constant c > 0 can be chosen arbitratrily, since we only need to

know �k�s� for any given k upto a scale factor. We often set c = 1 for

convenience.
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Forward recursion for running example Consider now the forward

recursion for �k�s�, s = 01. Referring to Figure 7.9, we see that the two

possible values of prior state s′ permitted by the code constraints are s′ = 10

and s′ = 11. We therefore get

�k�01�= �k�10�01��k−1�10�+�k�11�01��k−1�11�	 (7.41)

Similarly, we can rewrite �k−1�s
′� using the law of total probability, consid-

ering all possible future states s, as follows:

�k−1�s
′�= P�yKk �sk = s′�=

∑

s

P�yKk � sk+1 = s�sk = s′�	 (7.42)

A typical term in the summation above can be written as

P�yKk � sk+1 = s�sk = s′� = P�yKk+1�yk� sk+1 = s�sk = s′�

= P�yKk+1�sk+1 = s� sk = s′�yk�P�sk+1 = s�yk�sk = s′�	

Given the state sk+1, the future observations yKk+1 are independent of past

states and observations, so that

P�yKk+1�sk+1 = s� sk = s′�yk�= P�yKk+1�sk+1 = s�= �k�s�	

This shows that

P�yKk � sk+1 = s�sk = s′�= �k�s��k�s
′� s�	

Substituting into (7.42), we obtain the backward recursion.

Backward recursion

�k−1�s
′�=

∑

s

�k�s��k�s
′� s�	 (7.43)

Often, we set the terminal state of the encoder to be the all-zero state, 0, in

which case the initial condition for the backward recursion is given by

�K�s�=
{

0� s �= 0

c > 0� s = 0�
(7.44)

where we often set c = 1.

Backward recursion for running example Consider �k−1�s
′� for s′ =

11. The two possible values of next state s are 01 and 11, so that

�k−1�11�= �k�11�01��k�01�+�k�11�11��k�11�	

While termination in the all-zero code for a nonrecursive encoder is typically

a matter of sending several zero information bits at the end of the information

payload, for an recursive code, the terminating sequence of bits may depend

on the payload, as illustrated next for our running example.
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Table 7.1 Terminating information bits required to

obtain sk = 00 are a function of the state s�K− 2�,

as shown for the RSC running example.

s�K−2� u�K−2� u�K−1�

00 0 0

01 1 0

10 1 1

11 0 1

Trellis termination for running example To get an all-zero terminal

state s�K� = 00, we see from Figure 7.9 that, for different values of the

state s�K−2�, we need different choices of information bits u�K−2� and

u�K−1�, as listed in Table 7.1 below.

It remains to specify the computation of �k�s
′� s�, which we can rewrite as

�k�s
′� s� = P�yk� sk+1 = s�sk = s′�= P�yk�sk+1

= s� sk = s′�P�sk+1 = s�sk = s′�	 (7.45)

Given the states sk+1 and sk, the code output corresponding to the trellis

section k is completely specified as ck�s
′� s�. The probability

P�yk�sk+1 = s� sk = s′�= P�yk�ck�s′� s��

is a function of the modulation and demodulation employed, and the channel

model (i.e., how code bits are mapped to channel symbols, how the channel

output and input are statistically related, and how the received signal is

processed before sending the information to the decoder). The probability

P�sk+1 = s�sk = s′� is the prior probability that the input to the decoder is such

that, starting from state s′, we transition to state s. Letting uk�s
′� s� denote the

value of the input corresponding to this transition, we have

�k�s
′� s�= P�yk� sk+1 = s�sk = s′�= P�yk�ck�s′� s��P�uk�s

′� s��	 (7.46)

Thus, �k incorporates information from the priors and the channel outputs.

Note that, if prior information about parity bits is available, then it should

also be incorporated into �k. For the moment, I ignore this issue, but I will

return to it when we consider iterative decoding of serially concatenated

convolutional codes.

Computation of �k�s
′� s� for running example Assume BPSK modula-

tion of the bits uk and vk corresponding to the kth trellis section as in (7.32).

There is a unique mapping between the states sk� sk+1 and the output bits
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uk� vk. Thus, the first term in the extreme right-hand side of (7.46) can be

written as

P�yk�uk�s
′� s�� vk�s

′� s��= P�yk�1��uk�s
′� s��P�yk�2��vk�s′� s���

using the independence of the channel noise samples. Since the noise is

Gaussian, we get

P�yk�1��uk�=
1√
2�
2

exp
(

−�yk�1�−Aũk�
2
)

�

P�yk�2��vk�=
1√
2�
2

exp
(

−�yk�2�−Aṽk�
2
)

	

Note that we can scale these quantities arbitrarily, as long as the scale factor

is independent of the states. Thus, we can discard the factor 1/�
√
2�
2�.

Further, expanding the exponent in the expression for P�yk�1��uk�,

we have

�yk�1�−A�−1�uk �2 = y2k�1�+A2−2Ayk�1�ũk	

Only the third term, which is a correlation between the received signal

and the hypothesized transmitted signal, is state-dependent. The other

two terms contribute state-independent multiplicative factors that can be

discarded. The same reasoning applies to the expression for P�yk�2��vk�.
We can therefore write

P�yk�1��uk�= �k exp

(

Ayk�1�ũk


2

)

�

P�yk�2��vk�= �k exp

(

Ayk�2�ṽk

2

)

�

(7.47)

where �k, �k are constants that are implicitly evaluated or cancelled when

we compute posterior probabilities.

For computing the second term on the extreme right-hand side of (7.46),

we note that, given sk = s′, the information bit uk uniquely defines the

next state sk+1 = s. Thus, we have

P�sk+1 = s�sk = s′�= P�uk�s
′� s��=

{

P�uk = 0� �s′� s�∈U0

P�uk = 1� �s′� s�∈U1	
(7.48)

Using (7.47) and (7.48), we can now write down an expression for �k�s
′s�

as follows:

�k�s
′� s�= �k exp

(

A


2
�yk�1�ũk+yk�2�ṽk�

)

P�uk�� (7.49)

where the dependence of the bits on �s′� s� has been suppressed from the

notation.
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I can now summarize the BCJR algorithm as follows.

Summary of BCJR algorithm

Step 1 Using the received signal and the priors, compute �k�s
′� s� for all k,

and for all �s′� s� allowed by the code constraints.

Step 2 Run the forward recursion (7.39) and the backward recursion (7.43),

scaling the outputs at any given time in state-independent fashion as necessary

to avoid overflow or underflow.

Step 3 Compute the LLRs of the bits of interest. Substituting (7.37) into

(7.30), we get

Lout�uk�= log

(

∑

�s′�s�∈ U0
�k−1�s

′��k�s
′� s��k�s�

∑

�s′�s�∈ U1
�k−1�s

′��k�s
′� s��k�s�

)

	 (7.50)

(A similar equation holds for vk, with Ui replaced by Vi, i= 0�1).

Hard decisions, if needed, are made based on the sign of the LLRs: for a

generic bit b, we make the hard decision

b̂ =
{

0� L�b� > 0

1� L�b� < 0
	 (7.51)

We now discuss the logarithmic implementation of the BCJR algorithm,

which is not only computationally more stable, but also reveals more clearly

the role of the various sources of soft information.

7.2.2 Logarithmic BCJR algorithm

We can now propagate the log of the intermediate variables �, � and �,

defined as

ak�s�= log�k�s��

bk�s�= log�k�s��

gk�s�= log�k�s�	

I can now rewrite a typical forward recursion (7.41) for my running example

as follows:

ak�00�= log�egk�10�01�+ak−1�10�+ egk�11�01�+ak−1�11��	 (7.52)

To obtain a more compact notation, as well as to better understand the nature

of the preceding computation, it is convenient to define a new function, max∗,

as follows.

The max∗ operation For real numbers x1� � � � � xn, we define

max∗�x1� x2� � � � � xn�= log�ex1 + ex2 + � � � � exn�	 (7.53)

For two arguments, the max∗ operation can be rewritten as

max∗�x� y�=max�x� y�+ log�1+ e−�x−y��	 (7.54)
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This relation is easy to see by considering x > y and y ≥ x separately. For

x > y,

max∗�x� y� = log
(

ex�1+ e−�x−y��
)

= log ex+ log
(

�1+ e−�x−y��
)

= x+ log
(

�1+ e−�x−y��
)

�

while for y ≥ x, we similarly obtain

max∗�x� y�= y+ log
(

�1+ e−�y−x��
)

	

The second term in (7.54) has a small range, from 0 to log2. It can therefore

be computed efficiently using a look-up table. Thus, the max∗ operation can

be viewed as a maximization operation together with a correction term.

Properties of max∗ I list below two useful properties of the max∗ operation.

Associativity The max∗ operation can be easily shown to be associative, so

that its efficient computation for two arguments can be applied successively

to evaluate it for multiple arguments:

max∗�x� y� z�=max∗ �max∗�x� y�� z� 	 (7.55)

Translation of arguments It is also easy to check that common additive

constants in the arguments of max∗ can be pulled out. That is, for any real

number c,

max∗�x1+ c� x2+ c� � � � � xn+ c�= c+max∗�x1� x2� � � � � xn�	 (7.56)

We can now rewrite the computation (7.52) as

ak�00�=max∗�gk�10�01�+ak−1�10�� gk�11�01�+ak−1�11��	

Thus, the forward recursion is analogous to the Viterbi algorithm, in that

we add a branch metric gk to the accumulated metric ak−1 for the different

branches entering the state 00. However, instead of then picking the maximum

from among the various branches, we employ the max∗ operation. Similarly,

the backward recursion is a Viterbi algorithm running backward through the

trellis, with maximum replaced by max∗. If we drop the correction term in

(7.54) and approximate max∗ by max, the recursions reduce to the standard

Viterbi algorithm.

I now specify computation of the logarithmic version of �k. From (7.46),

we can write

gk�s
′� s�= logP�yk�ck�s′� s��+ logP�uk�s

′� s��	

For my running example, I can write a more explicit expression, based on

(7.49) as follows:

gk�s
′� s�= A


2
�yk�1�ũk+yk�2�ṽk�+ logP�uk�s

′� s��	 (7.57)
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To express the role of priors in a convenient fashion, I now derive a convenient

relation between LLR and log probabilities. For a generic bit b taking values

in �0�1�, the LLR L is given by

L= log
P�b = 0�

P�b = 1�
�

from which we can infer that

P�b = 0�= eL

eL+1
= eL/2

eL/2+ e−L/2
	

Similarly,

P�b = 1�= 1

eL+1
= e−L/2

eL/2+ e−L/2
	

Taking logarithms, we have

logP�b�=
{

L/2+ log�eL/2+ e−L/2� b = 0

−L/2+ log�eL/2+ e−L/2� b = 0	

This can be summarized as

logP�b�= b̃L/2+ log�eL/2+ e−L/2�� (7.58)

where b̃ is the BPSK version of b. The second term on the right-hand side is

the same for both b = 0 and b = 1 in the expressions above. Thus, it can be

discarded as a state-independent constant when it appears in quantities such

as gk�s
′� s�.

The channel information can also be conveniently expressed in terms of an

LLR. Suppose that y is a channel observation corresponding to a transmitted

bit b. Assuming uniform priors for b, the LLR for b that we can compute

from the observation is as follows:

Lchannel�b�= log
p�y�b = 0�

p�y�b = 1�
	

For BPSK signaling over an AWGN channel, we have

y = Ab̃+N�

where N ∼ N�0�
2�, from which it is easy to show that

Lchannel�b�=
2A


2
y	 (7.59)

For my running example, I have

Lchannel�uk�=
2A


2
yk�1� � Lchannel�vk�=

2A


2
yk�2�	 (7.60)

Returning to (7.57), suppose that the prior information for uk is specified in

the form of an input LLR Lin�uk�. We can replace the prior term logP�uk�

in (7.57) by ũkLin�uk�/2, using the first term in (7.58). Further, we use the

channel LLRs (7.60) to express the information obtained from the channel.

We can now rewrite (7.57) as

gk�s
′� s�= ũk �Lin�uk�+Lchannel�uk�� /2+ ṽkLchannel�vk�/2	 (7.61)
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If prior information is available about the parity bit vk (e.g., from another

component decoder in an iteratively decoded turbo code), then we incorporate

it into (7.61) as follows:

gk�s
′� s�= ũk �Lin�uk�+Lchannel�uk�� /2+ ṽk �Lin�vk�+Lchannel�vk�� /2	 (7.62)

We now turn to the computation of the output LLR for a given information

bit uk. We transform (7.50) to logarithmic form to get

Lout�uk�= max
�s′�s�∈ U0

∗ �ak−1�s
′�+gk�s

′s�+bk�s��

− max
�s′�s�∈ U1

∗ �ak−1�s
′�+gk�s

′s�+bk�s�� 	
(7.63)

We now write this in a form that makes transparent the roles played by

different sources of information about uk. Specializing to our running example

for concreteness, we rewrite (7.62) in more detail:

gk�s
′� s�=















�Lin�uk�+Lchannel�uk�� /2+ ṽk �Lin�vk�

+ Lchannel�vk�� /2� �s′s�∈U0

− �Lin�uk�+Lchannel�uk�� /2+ ṽk �Lin�vk�

+ Lchannel�vk�� /2� �s′s�∈U1�

since ũk =+1 (uk = 0) for �s′s�∈U0, and ũk =−1 (uk = 1) for �s′s�∈U1. The

common contribution due to the input and channel LLRs for uk can therefore

be pulled out of the max∗ operations in (7.63), and we get

Lout�uk�= Lin�uk�+Lchannel�uk�+Lcode�uk�� (7.64)

where we define the code LLR Lcode�uk� as

Lcode�uk�= max
�s′�s�∈ U0

∗ �ak−1�s
′�+ ṽk�Lin�vk�+Lchannel�vk��/2+bk�s��

− max
�s′�s�∈ U1

∗ �ak−1�s
′�+ ṽk�Lin�vk�+Lchannel�vk��/2+bk�s�� 	

This is the information obtained about uk from the prior and channel infor-

mation about other bits, invoking the code constraints relating uk to these

bits.

Equation (7.64) shows that the output LLR is a sum of three LLRs: the

input (or prior) LLR, the channel LLR, and the code LLR. We emphasize that

the code LLR for uk does not depend on the input and channel LLRs for uk,

The quantity ak−1�s
′� summarizes information from bits associated with trellis

sections before time k, and the quantity bk�s� summarizes information from

bits associated with trellis sections after time k. The remaining information

in Lcode�uk� comes from the prior and channel information regarding other

bits in the kth trellis section (in our example, this corresponds to Lin�vk� and

Lchannel�vk�).
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I am now ready to summarize the logarithmic BCJR algorithm.

Step 0 (Input LLRs) Express prior information, if any, in the form of input

LLRs Lin�b�. If no prior information is available for bit b, then set Lin�b�= 0.

Step 1 (Channel LLRs) Use the received signal to compute Lchannel�b� for

all bits sent over the channel. For BPSK modulation over the AWGN

channel with received signal y = Ab̃ + N , N ∼ N�0�
2�, we have

Lchannel�b�= 2Ay/
2.

Step 2 (Branch gains) Compute the branch gains gk�s
′� s� using the prior and

channel information for all bits associated with that branch, adding terms of

the form b̃L�b�/2. For our running example,

gk�s
′� s�= ũk�Lin�uk�+Lchannel�uk��/2+ ṽk�Lin�vk�+Lchannel�vk��/2	

Step 3 (Forward and backward recursions) Run Viterbi-like algorithms for-

ward and backward, using max∗ instead of maximization.

ak�s�=max
s′

∗�ak−1�s
′�+gk�s

′� s��	

(Initial condition: a0�s� = −C, s �= 0 and a0�0� = 0, where C > 0 is a large

positive number.)

bk−1�s
′�=max

s

∗�bk�s�+gk�s
′� s��	

(Initial condition: bK�s�=−C, s �= 0 and bK�0�= 0, where C > 0 is a large

positive number.)

Step 4 (Output LLRs and hard decisions) Compute output LLRs for each bit

of interest as

Lout�b�= Lin�b�+Lchannel�b�+Lcode�b��

where Lcode�b� is a summary of prior and channel information for bits other

than b, using the code constraints. For my running example, I have

Lcode�uk�= max
�s′�s�∈ U0

∗�ak−1�s
′�+ ṽk�Lin�vk�+Lchannel�vk��/2+bk�s��

− max
�s′�s�∈ U1

∗�ak−1�s
′�+ ṽk�Lin�vk�+Lchannel�vk��/2+bk�s���

Lcode�vk�= max
�s′�s�∈ V0

∗�ak−1�s
′�+ ũk�Lin�uk�+Lchannel�uk��/2+bk�s��

− max
�s′�s�∈ V1

∗�ak−1�s
′�+ ũk�Lin�uk�+Lchannel�uk��/2+bk�s��	

Once output LLRs have been computed, hard decisions are obtained using

b̂ = 1Lout�b�<0.
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Note on Step 3 In case the trellis is not terminated in the all-zero state

(or some other fixed state), then the initial condition stated earlier for the

backward recursion need not be satisfied. In this case, one practical approach

is to use the result of the forward recursion as an initial condition for the

backward recursion (e.g., �K�s�≡ �K�s�).

7.2.3 Turbo constructions from convolutional codes

We know from Shannon theory that random coding can be used to attain

capacity. However, optimum (e.g., ML or MPE) decoding of random codes

with no structure is computationally infeasible, unlike, for example, Viterbi or

BCJR decoding for convolutional codes that can be described by a trellis with

a manageable number of states. Thus, the basic contradiction in coding theory

prior to the invention of turbo codes was that, while random codes are known

to be good, all known codes were highly structured and “not good” (i.e., far

from Shannon-theoretic limits). Turbo codes avoid this dilemma by using long

interleavers to obtain a random-looking code based on structured component

codes, and then exploiting the structure of the component codes to obtain

a very effective suboptimal iterative decoding algorithm. For concatenated

convolutional codes, iterative decoding may involve information exchange

between two or more decoders running the BCJR algorithm, or approximations

thereof. A given decoder sends another decoder extrinsic information that is

approximately independent of the information available to the second decoder,

and that serves as a prior for the second decoder. For example, if Decoder

1 sends Decoder 2 the LLR for a given bit b, this becomes Lin�b� for

Decoder 2. Decoder 2 then applies the BCJR algorithm to compute Lout�b�=
Lin�b�+Lchannel�b�+Lcode�b�. However, it does not send Lout�b� back to

Decoder 1, since it includes Lin�b�, the information that came from Decoder

1. The extrinsic information that Decoder 2 sends back to Decoder 1 will

either be Lchannel�b�+Lcode�b� (if Decoder 1 does not have direct access to

the channel observation regarding bit b), or Lcode�b� (if Decoder 1 does have

access to the same channel information regarding bit b that Decoder 2 does).

I clarify these concepts in the context of two turbo constructions built from

simple convolutional component codes: parallel concatenation (the original

turbo codes) and serial concatenation.

Parallel concatenated codes Parallel concatenation of convolutional codes

is depicted in Figure 7.10. An information sequence u is fed into a con-

volutional encoder, Encoder 1. To get good performance, it turns out that

the encoder should be chosen to be recursive. I will employ our recursive

systematic rate 1/2 code in Figure 7.9 as a running example. The information

sequence is then permuted and fed to another convolutional encoder, Encoder

2. Encoders 1 and 2 can be, and often are, chosen to be identical. The infor-

mation sequence and the two parity sequences are then modulated and sent
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L out (u) = L in(u) + L channel (u) + L code (u) Used for final hard decisions

L12(u) = Lcode(u) Extrinsic information sent to Decoder 2

L21 
(Πu)

Π
−1

Lin 
(u)

Lin 
(Πu)

Encoder 1

Encoder 2

Interleaver
Π

Modulator
and

channel

Decoder inputs

Parity bits

Parity bits

Information bits u

Πu

y (1)

y (2)

y (3)

Decoder 1
(BCJR)

y (1)

y (2)

Decoder 2
(BCJR)y (3)

Πy (1)

Π Π

L21(Πu) = Lcode(Πu) Extrinsic information sent to decoder 1

L12 
(u)

Figure 7.10 Encoder and

decoder for a parallel

concatenated turbo code. through the channel (we use BPSK over an AWGN channel as a running

example). Thus, if the constituent encoders are rate 1/2, then the overall turbo

code thus obtained is of rate 1/3. A higher rate can be achieved using the

same construction simply by not transmitting some of the bits generated by

the encoders. This procedure is referred to as puncturing. Note that a punc-

tured convolutional code can be decoded in the same manner as one without

puncturing, by interpreting the bits not sent as erasures (set Lchannel�b�= 0 in

the logarithmic BCJR algorithm). For simplicity of notation, however, I do

not consider puncturing in my discussion here.

In the iterative decoding depicted in Figure 7.10. both decoders see the

channel output y�1� for the information sequence. Decoder 1 sees the channel

output y�2� for the parity sequence for Encoder 1, while Decoder 2 sees the

channel output y�3� for the parity sequence from Encoder 2. The decoders

exchange information about the information sequence u.

For a typical information bit u, the two decoders function as follows.

Channel LLRs These are computed as in the standard BCJR algorithm for

both information and parity bits. For example, for a bit b sent using BPSK over

AWGN, we have Lchannel�b�= 2Ay/
2, where y = Ab+N , N ∼ N�0�
2�.

Decoder 1 Operates using channel outputs y�1� and y�2�, and extrinsic

information from Decoder 2.

Step 1 Receive extrinsic information from Decoder 2 regarding the LLRs of

information bits. Use these as Lin�u� for BCJR algorithm (set Lin�u�= 0 for

first iteration). Set Lin�v�= 0 for parity bits.
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Step 2 Run forward and backward recursions.

Step 3 Compute Lcode�u� for each information bit u. Feed Lcode�u� back as

extrinsic information to Decoder 2 (note that Lcode�u� does not depend on

Lin�u� or Lchannel�u�, and hence is not directly available to Decoder 2).

Decoder 2 Operation is identical to that of Decoder 1, except that it works

with the permuted information sequence, and with the received signals y�1�

(permuted) and y�3�.

Iteration and termination Decoders 1 and 2 interchange information in

this fashion until some termination condition is satisfied (e.g., a maximum

number of iterations is reached, or the LLRs have large enough magnitude,

or a CRC check is satisfied). Then they make hard decisions based on

Lout�u�= Lin�u�+Lchannel�u�+Lcode�u� for each information bit based on the

output of Decoder 1.

Figure 7.11 Encoder and

decoder for a serial

concatenated turbo code.

Serial concatenated codes Serial concatenation of convolutional codes is

shown in Figure 7.11. The output from the first convolutional encoder is

interleaved and then fed as input to a second convolutional encoder. The

output from the second encoder is then modulated and transmitted over the

channel.

In the iterative decoding method depicted in Figure 7.11, only Decoder 2

sees the channel outputs. Thus, extrinsic information sent by Decoder 2 is

given by Lcode+Lchannel, since Decoder 1 does not have access to the channel.

Decoder 1 employs this extrinsic information to compute Lcode, and sends it

back to Decoder 2 as extrinsic information. The final decisions are based on

the output LLRs Lout from Decoder 1, since the information sequence is the

c(1) u(2) c(2)

Π

Information bits

u = u(1)
Encoder 1

Interleaver

Π
Encoder 2

Channel

and

modulator

y

Decoder

input

Π
−1

Decoder 2

(BCJR)

Decoder 1

(BCJR)

y

Used for final

hard decisions

Extrinsic information

sent to Decoder 2

L21 (u(2)) = Lchannel (u
(2)) + Lcode (u(2))

Lout (u
(1)) = Lin (u(1)) + Lcode (u(1))

L12(c
(1)) = Lcode(c

(1))

Extrinsic information sent to Decoder 1

Lin (u(2))L21 (u(2))

L12 (c(1))Lin (c(1))
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input to Encoder 1. Note that Lin�u
�1��= 0 if the outer code is nonsystematic,

since the extrinsic information available to the outer decoder is regarding the

output bits of the outer code. Thus, for a nonsystematic outer code, the only

information extracted regarding the input bits u�1� is Lcode�u
�1��.

7.2.4 The BER performance of turbo codes

Figure 7.12 Bit error rate

for a rate 1/3 parallel

concatenated turbo code

obtain by concatenating two

identical rate 1/2 �7� 5�

convolutional codes. The block

length is 214 ≈ 16 000.

Figure 7.12 shows the BER for a rate 1/3 parallel concatenated turbo code.

The component convolutional code is our familiar rate 1/2 convolutional

code with generator �7�5�. Despite the simplicity of this code (it has only

four states), parallel concatenation gets to within 1 dB of the Shannon limit

at a BER of 10−4, as shown in Figure 7.12. The steep decrease in BER is

termed the “waterfall” region. As the BER gets smaller (not shown in the

figure), we eventually hit an “error floor” region (not evident from the figure)

where the decrease in BER becomes less steep. Turbo code design requires

an understanding of how code construction impacts the SNR threshold for

the waterfall region and the BER floor. As shown in Section 7.2.5, the SNR

threshold can be understood in terms of averaged trajectories for iterative

decoding which are termed extrinsic information transfer (EXIT) charts. The

slope of the error floor region, on the other hand, is governed by the “most

likely” error events, the characterizing of which requires investigation of the

code weight distribution, as discussed in Section 7.2.6.

While Figure 7.12 shows the BER after a relatively large number of

iterations, the dependence of BER on the number of iterations is shown in
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Figure 7.13. There is a large improvement in performance in the first few

iterations, after which the progress is slower. Typically, the improvement in

performance is insignificant after about 10–15 iterations.

Similar observations also hold for serially concatenated turbo codes, hence

I omit BER plots for these.

7.2.5 Extrinsic information transfer charts

Bit error rate curves for turbo codes have a distinct waterfall region: once

Eb/N0 crosses a threshold, the BER decays sharply. Extrinsic information

transfer (EXIT) charts provide a computationally efficient tool for visual-

izing the progress of iterative decoding, showing what happens before and

after the waterfall region without requiring exhaustive simulations for esti-

mating the BER. These EXIT charts are therefore a very useful design

tool for optimizing the component codes in parallel or serial concatenated

turbo codes.

Figure 7.13 Bit error rate as a

function of number of

iterations for the turbo code in

Figure 7.12.

Let me illustrate the concept by considering the parallel concatenated turbo

code shown in Figure 7.10. Decoders 1 and 2 exchange extrinsic information

about the information bits. Let X denote a particular information bit. Let

E1 denote the extrinsic information (expressed as an LLR) regarding X at

the output of Decoder 1, and let E2 denote the LLR corresponding to the

extrinsic information regarding X at the output of Decoder 2. Similarly, let A1

denote the a priori information regarding X at the input of Decoder 1, and A2

the a priori information regarding X at the input of Decoder 2. For iterative

decoding, A1�n�= E2�n−1� and A2�n�= E1�n−1�, where n denotes the nth
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iteration. The mutual information I�X�E1� is a measure of the quality of the

information regarding X at the output of decoder 1, and equals the mutual

information I�X�A2� at the input of decoder 2 at the next iteration. Similarly,

I�X�E2� is a measure of the quality of the output of decoder 2, and equals

I�X�A1� at the input of decoder 1 at the next iteration.

Figure 7.14 An EXIT chart

showing decoding progress for

the running example of a

parallel concatenated code

when the SNR is high enough

�Eb/N0 = 0�8dB� that the

iterations converge.

The information transfer function for decoder j (j = 1�2) plots the mutual

information at its output, I�X�Ej�, versus the mutual information at its input,

I�X�Aj�. Let us call this curve Tj�i�, where i is the mutual information

at the input, and Tj�i� the mutual information at the output. The output

extrinsic information for Decoder 1 is the input extrinsic information for

Decoder 2, and vice versa. Thus, to plot both decoder characteristics using

the same set of axes, we flip the roles of input and output for one of them.

Specifically, let us plot I�X�E1� and I�X�A2� on the y-axis, and I�X�A1�

and I�X�E2� on the x-axis. That is, we plot T1�i� versus i, and T−1
2 �i�

versus i. Figure 7.14 shows an example of such a plot. We can now visu-

alize the progress of iterative decoding as shown. We have I�X�A1� = 0 at

the beginning (no input from Decoder 2). In this case, Decoder 1 gener-

ates extrinsic information E1 of nonzero quality i = I�X�E1� using its code

constraints and the information available from the channel. This provides

extrinsic information A2 of quality i = I�X�A2� at the input to Decoder 2.

This is then used by Decoder 2, in conjunction with the channel informa-

tion, to generate extrinsic information E2 of quality T2�i� = I�X�E2�, which

is now fed as input A1 for Decoder 1. Figure 7.14 indicates that iterative

decoding should be successful, since the quality of the extrinsic information

keeps increasing, approaching the �1�1� point on the EXIT chart. This is
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consistent with the BER curve in Figure 7.12: the Eb/N0 value of 0.8 dB

used in the EXIT chart is beyond the onset of the waterfall region. In

contrast, Figure 7.15 shows a scenario where iterative decoding gets stuck

at the intersection of the curves for Decoders 1 and 2, since the “tun-

nel” required to progress towards the �1�1� point is not available. Refer-

ring back to the BER curve in Figure 7.12, we see that the Eb/N0 value

of −0	7dB used in the EXIT chart is prior to the onset of the waterfall

region.

Figure 7.15 An EXIT chart for

the running example of a

parallel concatenated code,

showing that iterative decoding

gets stuck when the SNR is too

low (Eb/N0 =−0�7dB).

The shape of the information transfer functions depends, of course, on

the quality of the information obtained from the channel. Thus, the tunnel

between the curves for Decoders 1 and 2 should be open at large enough

Eb/N0. The value of Eb/N0 at which the tunnel is barely open is when we

expect iterative decoding to begin to work, and provides an excellent estimate

of the beginning of the waterfall portion of the BER curve for a turbo code

with long enough block length. The beauty of this approach is that we do

not need exhaustive simulations of the turbo code; we only need to simulate

the performance of the individual decoders to generate their input–output

characteristics. Let me now discuss how to do this.

Estimation of mutual information I first discuss computation of mutual

information between an information bit and an LLR. Specifically, if we run

a decoder with a given set of priors and generate a set of extrinsic LLRs

�Ln� corresponding to information bits �Xn�, how do we estimate the mutual

information I�X�L� from the pairs �Xn�Ln�? The mutual information between

a bit X taking values 0 and 1 with equal probability, and a random variable

L is given by
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I�X�L� =
1
∑

x=0

p�x�
∫ 


−

p�l�x� log2

p�l�x�
p�l�

dl

= 1

2

1
∑

x=0

∫ 


−

p�l�x� log2

2p�l�x�
p�l�0�+p�l�1� dl	 (7.65)

Suppose now that the random variable L is an LLR for X obtained using

an observation Y whose distribution conditioned on X satisfies the following

symmetry condition: p�y�0�= p�−y�1�. Note that L�y�= log2�P�X = 0�Y =
y��/�P�X = 1�Y = y��. As shown in Problem 7.12, the conditional distribution

of L given X obeys the following consistency condition:

p�l�0�= p�−l�1�= elp�−l�0� Consistency condition for LLRs	 (7.66)

Plugging (7.66) into (7.65), we obtain

I�X�L� = 1

2

∫ 


−

p�l�0� log2

2p�l�0�
p�l�0�+p�l�1� dl

+1

2

∫ 


−

p�l�1� log2

2p�l�1�
p�l�0�+p�l�1� dl

= 1

2

∫ 


−

p�l�0� log2

2p�l�0�
p�l�0�+p�−l�0� dl

+1

2

∫ 


−

p�−l�0� log2

2p�−l�0�
p�l�0�+p�−l�0� dl

=
∫ 


−

p�l�0� log2

2p�l�0�
p�l�0�+p�−l�0� dl

=
∫ 


−

p�l�0� log2

2

1+ e−l
dl

= 1−
∫ 


−

p�l�0� log2�1+ e−l� dl	

In summary, under the consistency condition (7.66), the mutual information

between a bit X and its LLR L is given by

I�X�L�= 1−E�log2�1+ e−L��X = 0�= 1−
∫ 


−

p�l�0� log2�1+ e−l� dl	

(7.67)

Under the consistency condition, it also follows that

E�log2�1+ e−L��X = 0�= E�log2�1+ eL��X = 1��

so that

I�X�L�= 1−E�log2�1+ e−�−1�xL��X = x�	 (7.68)

To measure the mutual information empirically using independent pairs

�Xn�Ln�, n = 1� � � � �N . We can replace (7.68) by the following empirical

average:

Î�X�L�= 1− 1

N

N
∑

n=1

log2

(

1+ e−�−1�XnLn

)

	 (7.69)
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For symmetric channels, it suffices to consider the all-zero codeword in order

to measure the mutual information, in which case, we can use the empirical

average corresponding to the formula (7.67):

Î�X�L�= 1− 1

N

N
∑

n=1

log2
(

1+ e−Ln
)

All-zero codeword sent	 (7.70)

The Gaussian approximation for computing information transfer func-

tions We now know how to measure the mutual information between the

information bits and the extrinsic information at the output of a decoder. To

run the decoder, however, we need to generate the LLRs at the input to the

decoder. Assuming large enough code block lengths and good enough inter-

leaving, the LLRs corresponding to different information bits can be modeled

as conditionally independent, conditioned on the value of the information bit.

Thus, we can generate these LLRs if we know their conditional marginal

distributions. For parallel concatenation, the LLR for a given bit X at the

input to the decoder is given by Lin = Lchannel +Lprior. In turn, Lchannel and

Lprior can be modeled as conditionally independent, given X. The conditional

distribution of Lchannel can be computed based on the channel statistics. Let us

consider the example of BPSK transmission of bit X∈ �0�1� over an AWGN

channel to obtain observation Y :

Y = A�−1�X +N�0�
2�	

It can be shown that the channel LLR is given by

L�y�= log2
P�X = 0�Y = y�

P�X = 1�Y = y�
= 2Ay


2
	

Since L�Y� depends linearly on Y , it inherits the conditional Gaussian-

ity of Y . We have L ∼ N
(

2A2/
2�4A2/
2
)

conditioned on X = 0, and

L∼ N
(

−2A2/
2�4A2/
2
)

conditioned on 1. That is, the conditional mean

and variance of the LLR depend on a scale-invariant SNR parameter, and are

linearly related. In particular, we can take 
2
L = 4A2/
2 as a measure of the

quality of the LLR, and with the means under the two hypotheses given by

±
2
L/2.

Thus, all that remains is to specify the conditional distribution of Lprior,

which is actually the extrinsic information from some other decoder. A key

simplification results from modeling the extrinsic conditional distribution as

Gaussian; simulations show that this is an excellent model for the AWGN

channel. A complete explanation for this observed Gaussianity is not yet

available. The Gaussianity of the underlying channel may be a factor. Another

factor, perhaps, is that a particular extrinsic LLR involves contributions from

many LLRs, so that some form of central limit theorem might be at work

(although the operations in the log BCJR algorithm cannot be interpreted

simply as an arithmetic sum, which is the standard setting for application

of central limit theorem approximations). Indeed, an excellent model of the
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extrinsic LLR L is to assume that it comes from BPSK modulation over a

virtual AWGN channel. This yields the following model for the conditional

distribution of the extrinsic LLR.

Gaussian model for LLR

L∼ N
(


2
L

2
�
2

L

)

if X = 0� L∼ N
(

−
2
L

2
�
2

L

)

if X = 1	 (7.71)

As shown in Problem 7.12, if we assume that the conditional LLRs are

Gaussian, then the consistency condition (7.66) can be used to infer that the

conditional means and variances must be related as in (7.71).

Using (7.71), we can generate the decoder characteristic very simply. The

input LLR for bit X is given by

Lin = Lchannel+Lprior�

where Lchannel ∼N
(

�−1�X
2
c /2�


2
c

)

and Lprior ∼N
(

�−1�X
2
p/2�


2
p

)

are con-

ditionally independent. The parameter 
2
c = 4A2/
2 for BPSK signaling,

whereas 
2
p is a parameter that we vary from 0 to 
 to vary the quality of the

input extrinsic information (which would be obtained from the other decoder

during iterative decoding). The quality of the input extrinsic information is

given by the mutual information (7.67), where

p�l�0�= 1
√

2�
2
p

exp



−
(

l−

2
p

2

)2

/2
2
p



 	

Let us term this Iin�

2
p �. We can now simulate BCJR decoding and gen-

erate the output extrinsic LLRs �Ln� for the bits �Xn�. We could model

these as conditionally Gaussian, but we do not need to. We can empiri-

cally estimate the mutual information using the formula (7.69). We term

this Iout�

2
p �. The information transfer function is simply the plot of T�i� =

Iout�

2
p � versus i= Iin�


2
p � as the parameter 
2

p varies from 0 to 
. The func-

tion T�i� depends on Eb/N0, but we have suppressed this dependence from

the notation.

The results shown in Figures 7.14 and 7.15 were obtained using the preced-

ing procedure to compute the information transfer functions for the component

decoders. Of course, since we consider identical component codes, we only

need to find a single information transfer function. Thus, the curve for decoder

1 is T�i� versus i, whereas the curve for decoder 2 is T−1�i� versus i.

The EXIT charts apply to serially concatenated codes as well. Consider

the serial concatenated code shown in Figure 7.11. Even though the bits

of ultimate interest are the information bits u�1� at the input to the outer

encoder, for the EXIT chart, we must consider the mutual information of the

bits c�1� at the output of the outer encoder, which are also the inputs u�2� to

the inner encoder (after interleaving), since the decoders exchange extrinsic

information regarding these bits. This leads to information transfer functions



August 13, 2007 5:55 p.m. CUP/FOD Page-335 9780521874144c07

335 7.2 Turbo codes and iterative decoding

0 0.2 0.4 0.6 0.8 1

Input information (bits)

0 0.2 0.4 0.6 0.8 1

Input information (bits)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

u
tp

u
t 

in
fo

rm
a

ti
o

n
 (

b
it

s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
u

tp
u

t 
in

fo
rm

a
ti

o
n

 (
b

it
s
)

T
inner

(i )

T
inner

(i )

T 
–1

outer
(i )

T 
–1

outer
(i )
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Figure 7.16 The EXIT charts

for a rate 1/4 serial

concatenated turbo code. Inner

and outer codes are identical

recursive systematic rate 1/2

�7� 5� convolutional codes.

Touter�i� and Tinner�i� for the outer and inner decoders, respectively. The inner

decoder starts decoding first, since it has access to the channel measurements.

As before, the extrinsic inputs can be modeled as Gaussian when generating

the information transfer curves. The EXIT chart plots Tinner�i� and T−1
outer�i�

versus i. In this case, the Tinner�i� must lie above T−1
outer�i�, to provide the

tunnel needed for iterative decoding to converge. Figure 7.16 shows an EXIT

chart for a serially concatenated code constructed from my rate 1/2 running

example convolutional code. Since the outer decoder does not have access to

the channel measurements, its curve does not change with Eb/N0. On the other

hand, Tinner�i� moves upward as we increase Eb/N0. Thus, we can again esti-

mate the threshold corresponding to the waterfall region as the Eb/N0 at which

the inner decoder’s curve Tinner�i� is barely above the curve T−1
outer�i� for the

outer decoder.

Area properties When the extrinsic information can be modeled as coming

from an erasures channel, it is possible to relate the the area under the infor-

mation transfer function of a code to quantities such as channel capacity and

code rate. Moreover, empirical results indicate that such area properties hold

more generally (e.g., over AWGN channels in which the extrinsic information

is well approximated as Gaussian). I state without proof two such results:

Code without channel access For a binary code of rate R that does not see

the channel observations (e.g., the outer code in a serially concatenated turbo

code), we have

∫ 1

0
T�i�di= 1−R	
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Since the information transfer function is plotted in a box of area one, this

also implies that
∫ 1

0
T−1�i�di= R	 (7.72)

From Figure 7.16, we can see that the area under T−1
out �i� does appear to

satisfy the preceding result (R= 1/2).

Unit rate code For a unit rate code in which the input follows the opti-

mal distribution (e.g., equally likely binary input for a channel which obeys

symmetry conditions), we have
∫ 1

0
T�i�di= C� (7.73)

where C is the channel capacity.

Consider, for example, serial concatenation of a convolutional outer code

of rate Rout with an inner unit rate binary DPSK encoder, to obtain an overall

code of rate R= Rout. From (7.72), the area under the outer code’s exit chart

is given by
∫ 1

0
T−1
outer�i�di= Rout = R	

From (7.73), the area under the inner code’s exit chart equal C. For conver-

gence of iterative decoding, the inner code’s curve must lie above the outer

code’s curve, which implies that the area under the inner code’s curve must

be larger than that under the outer code’s curve. Thus, a necessary condition

for convergence of iterative decoding is the intuitively pleasing condition that

R<C. More interestingly, this example illustrates how exit charts can help in

code design. The closer we can fit the outer code’s curve to the inner code’s

curve, the closer we can operate to capacity. That is, suitable application of the

area property means that code design (for a fixed code rate) becomes a matter

of designing the shape of information transfer curves, subject to a constraint

on the area under the curve. Details of such design are beyond the scope of

this book, but references for further reading are provided in Section 7.6.

7.2.6 Turbo weight enumeration

The EXIT charts predict the SNR threshold at which we expect iterative

decoding to converge, at which point the BER starts dropping steeply. At

SNRs significantly above this threshold (i.e., when the decoding tunnel in the

EXIT chart is wide open), turbo codes exhibit a BER floor that is governed

by the weight distribution of the turbo code (which depends strongly on the

code length as well as the structure of the component codes). The EXIT

chart analysis does not shed light on this behavior: at low BER, the mutual

information attained by a decoder is very close to one. To understand the

behavior at high SNR, therefore, we must revert to signal space concepts
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and look for the “most likely” error events that determine the BER floor.

We now seek to develop an understanding of the role of the choice of the

component codes and the codeword length on these error events. The approach

is to employ a union bound on ML decoding using an appropriately chosen

weight enumerator function for the turbo code. Of course, ML decoding

is computationally infeasible for turbo codes because of their random-like

structure. However, comparison of simulation results for suboptimal iterative

decoding to approximate union bounds for ML decoding indicate that iterative

decoding performs almost as well as ML decoding. Thus, insights based on

analysis of ML decoding provide valuable guidelines for the design of codes

to be decoded using iterative decoding.

The key reason why turbo codes work is that the number of low-weight

codewords for a turbo code is much smaller than for the constituent con-

volutional codes. Thus, turbo codes reduce the multiplicity of low-weight

codewords, rather than increasing the minimum possible codeword weight

as in conventional design. The following discussion is based on a series of

influential papers by Benedetto et al. I focus on parallel concatenated codes,

but also summarize design rules for serial concatenated codes.

Consider parallel concatenation of two identical rate 1/2 convolutional

codes to get a rate 1/3 turbo code. Neglecting edge effects due to trellis

termination, we have K information bits as input, and 3K bits sent over the

channel (we assume BPSK over an AWGN channel): the K information bits,

K parity bits from the first encoder, and K parity bits from the second encoder

(which sees an interleaved version of the input bits at its input). The resulting

turbo code is a block code with codeword length 3K bits. Let Aturbo�w�p� be

the number of codewords of this block code which have input weight w and

parity weight p. We now consider a union bound on the bit error probability.

As in my earlier analysis of ML decoding of convolutional codes, I assume,

without loss of generality, that the all-zero codeword is sent. The pairwise

error probability that a codeword of input weight w and parity weight p is

more likely than the all-zero word is

q�w�p�=Q

(
√

2EbR�w+p�

N0

)

	 (7.74)

Such a codeword error causes error in w out of K information bits. We can

now write the following union bound for the probability of bit error:

Pe = P�information bit error�≤
∑

w�p

w

K
Aturbo�w�p� Q

(
√

2EbR�w+p�

N0

)

	

(7.75)

Let us now define the conditional parity weight enumeration function (where

we condition on the weight w of the information sequence) as

Aturbo�P�w�=
∑

p

Aturbo�w�p�P
p� (7.76)
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where P is a dummy variable. We now consider a looser version of the bound

in (7.75) using the inequality

Q�x�≤ e−
x2

2 (7.77)

(we can tighten this further by a factor of 1/2, but I choose not to carry this

around in what follows). Using (7.77) in (7.75), and substituting the definition

(7.76), we get

Pe ≤
∑

w

w

K
WwAturbo�P�w� �

W=P=e
− EbR

N0

	 (7.78)

The exponential decay of the term Ww with w means that we can concentrate

on the terms with small w to get insight into performance. To do this, we

need to characterize Aturbo�P�w�.
Consider the conditional parity weight enumerating function A�P�w� for

the constituent convolutional RSC (i.e., this enumerates the parity weight

on one of the two branches of the parallel concatenated structure). A

nonzero codeword for this code can be decomposed into a number of

error events. Let A�P�n�w� denote the parity weight enumerating function

for an input sequence of weight w, considering codewords that consist of

exactly n error events, as shown in Figure 7.17. Any nonzero codeword

that is not an error event has a very large weight, and hence has a very

small pairwise error probability contribution to the union bounds (7.75)

or (7.78).

Figure 7.17 Nonzero

convolutional codeword

consisting of n error events,

with total input weight w .

If we know A�P�w�n�, then we can write down the following approximate

expression for A�P�w�:

A�P�w�≈
nmax
∑

n=1

A�P�w�n�
(

K

n

)

�

by counting the number of ways in which the input bits starting each of the n

error events can be located among the K input bits, and neglecting the lengths

of the error events compared to K. In the above equation, nmax = nmax�w� is

the largest number of error events that can be generated by an input sequence

of weight w.

We now wish to find Aturbo�P�w�. Finding the weights resulting for a

specific interleaver is complicated, but it is relatively easy to find the weight

enumerator averaging over all possible interleavers. Thus, for any parity

sequence generated by Encoder 1 for an input sequence of weight w, we

can get any other parity sequence from Encoder 2 that can be generated by

w1 + w2 + •  •  • + wn = w

Input weight

w1

Input weight

w2

Input weight

wn
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an input sequence of weight w with probability 1
/(

K
w

)

. In terms of weight

enumerator functions,

we therefore obtain that

Aturbo�P�w�=
�A�P�w��2
(

K

w

)

≈
∑nmax

n1=1

∑nmax

n2=1

(

K

n1

) (

K

n2

)

(

K

w

)
A�P�w�n1�A�P�w�n2�	

(7.79)

The union bound depends linearly on A�P�w�. Thus, the union bound for the

averaged weight enumerator function above is an upper bound on the BER

for the best interleaver. Therefore, there exists some interleaver for which the

BER is at least as good as the union bound computed using the averaged

weight enumerator above.

We can now approximate the combinatorial coefficients in (7.79) using the

following result:
(

K

l

)

≈ Kl

l! for large K	

Substituting into (7.79), we have

Aturbo�P�w�≈
nmax
∑

n1=1

nmax
∑

n2=1

w!
n1! n2!

Kn1+n2−wA�P�w�n1�A�P�w�n2�	

We approximate the preceding summation by its dominant term, n1 = n2 =
nmax, which corresponds to the highest power of K. We therefore get

Aturbo�P�w�≈
w!

�nmax!�2
K2nmax−w �A�P�w�nmax��

2
	 (7.80)

Substituting into (7.78), we get

Pe �
K
∑

w=wmin

w

K
Ww w!

�nmax!�2
K2nmax−w �A�P�w�nmax��

2 �
W=P=e

− EbR
N0

� (7.81)

where we now show the dependence of nmax on w, and where wmin is the

lowest weight input that can result in an error event.

Nonrecursive component codes do not work I can now immediately show

that choosing a nonrecursive component code is a bad idea. For such a code,

a finite weight input leads to a finite weight output, i.e., to an error event.

Thus, wmin = 1, and the maximum number of error events resulting from an

input sequence of weight w is w. That is, nmax�w�= w, and

A�P�w�nmax�= �A�P�1�1��w �
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since we consider w error events, each with input weight 1. Substituting in

(7.81), we have

Pe �
K
∑

w=1

Kw−1

�w−1�!W
w �A�P�1�1��2w �

W=P=e
− EbR

N0

Nonrecursive
component code	 (7.82)

The dominant term above is w = 1, which is independent of K. Thus, there

is no performance gain from using longer input sequences (and hence inter-

leavers) for parallel concatenation of nonrecursive codes. As we show next,

however, the use of recursive component codes does lead to performance

improvement as a function of interleaver length K.

Interleaving gain for recursive component codes Now, consider a sys-

tematic recursive component code with generator

G�D�=
[

1
n�D�

d�D�

]

	

For such a code, an input sequence of weight 1 leads to an infinite impulse

response, so that the minimum input weight for an error event, wmin must be

larger than one. In fact, we can show that wmin = 2. This is because there

exists i such that d�D� divides 1+Di; in fact, the smallest such i is the period

of a linear shift register with connection polynomial d�D�. Thus, a weight 2

input u�D�= 1+Di leads to a finite length output u�D�G�D�.

Since wmin = 2, the maximum number of error events that can be generated

by a weight w input is

nmax�w�=
⌊w

2

⌋

I now consider w even and odd separately.

Case1 w = 2k even. Then nmax = k, and these k error events each corre-

spond to a weight 2 subsequence of the input sequence. Since there are k

such subsequences, we have A�P�w�nmax�= A�P�2k�k�= �A�P�2�1��k. The
corresponding term in the union bound (7.81) is

�2k�
�2k�!
�k!�2 K

2k−2k−1W 2k �A�P�2�1��2k Even weight term in union bound	

(7.83)

The rate of decay with the interleaver length K is seen to be K−1. This is

referred to as the interleaver gain.

Case 2 w= 2k+1 odd. Then nmax = k. The corresponding term in the union

bound (7.81) is given by

�2k+1�
�2k+1�!
�k!�2 K2k−�2k+1�−1W 2k+1 �A�P�2k+1� k��

2

Odd weight term in union bound	 (7.84)
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The dependence on the interleaver length K is therefore K−2, which is faster

than the decay for w even. We can therefore neglect terms corresponding to

odd w in the union bound for large K.

We can now concentrate on terms corresponding to even w. Let us first

evaluate A�P�2�1� for our running example RSC code with generatorG�D�=
�1� �1+D2�/�1+D+D2��. From the trellis or state diagram for this code,

we see that the minimum parity weight for an error event resulting from a

weight 2 input is pmin = 4. This corresponds to the states 00, 10, 11,01,00

being traversed in succession, corresponding to the input sequence 1001. More

generally, noting that the state traversal 10,11,01 forms a cycle corresponding

to zero input weight and parity weight pmin−2= 2, we can get an error event

of parity weight 2+ l�pmin − 2�, l ≥ 1 from an input sequence of weight 2

by traversing this zero input weight cycle l times. We therefore obtain the

following expression for A�P�2�1�:

A�P�2�1�=


∑

l=1

P2+l�pmin−2� = Ppmin

1−Ppmin−2
	 (7.85)

It turns out that this formula, which we have derived for our running example,

holds for any choice of parity generating polynomials, although the value of

pmin depends on the specific choice of polynomials.

Substituting (7.85) and (7.83) into (7.81), we get

Pe � K−1

� K
2
�

∑

k=1

2k

(

2k

k

)

�S2+2pmin �k

�1−Spmin−2�2k
�
S=e

− EbR
N0

� (7.86)

where we have set W = P = S = e
− EbR

N0 , and we have neglected terms corre-

sponding to odd w. For k= 1, the decay with SNR has exponent 2+2pmin.

Interleaving gain and effective free distance The approximate union

bound (7.86) clearly shows the interleaving gain K−1 from increasing the

length of the turbo code. In addition, from the k = 1 term in (7.86), we

see that the “high SNR” asymptotics are governed by an effective free dis-

tance deff = 2+ 2pmin. For my running example, I have pmin = 4 and hence

deff = 10.

Design rules for parallel concatenation I now summarize the design rules

that I have derived.

(a) The component codes should be recursive.

(b) The interleaver length K should be as large as possible (subject to memory

and delay constraints), to maximize interleaving gain.

(c) The component code should be chosen so as to maximize pmin, and hence

the effective free distance deff = 2+2pmin. This is typically accomplished

by choosing as large a memory for the constituent code as possible,

subject to complexity constraints (this is similar to the conventional design

prescriptions for convolutional codes).
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An EXIT analysis yields further insights and design rules: while I have

considered parallel concatenation of identical component codes, not choos-

ing the component codes to be identical can have advantages in trad-

ing off convergence thresholds and error floors. I do not discuss this in

detail here.

Design rules for serial concatenation A similar analysis based on weight

enumerator functions can also be carried out for serial concatenation of con-

volutional codes. I omit this development, but the results are summarized

below:

(a) The inner code must be recursive.

(b) If N is the number of bits at the output of the outer code (and hence

the length of the interleaver), then the interleaving gain is given by

N−� dfree�outer�+1

2 �, where dfree�outer� is the free distance of the outer convo-

lutional code.

(c) The outer code is preferably nonrecursive, since this leads to fewer input

errors for error events at the free distance (which dominate the overall

code performance). This means, for example, that we could improve

on the code considered in Figure 7.16 by making the outer code the

nonrecursive version of our running example.

To summarize, both parallel and serial concatenation of convolutional codes

provide interleaving gains by decreasing the multiplicity of low-weight

codewords in inverse proportion to the interleaver length. This is contrast to

classical design, where the effort is to increase the minimum distance. While

turbo codes do display an error floor, this can be pushed down by increasing

the code length, with residual errors handled by an outer error detection code

(e.g., a CRC code) or a high rate error correction code (e.g., a Reed–Solomon

code).

7.3 Low density parity check codes

Low density parity check (LDPC) codes were introduced by Gallager in the

1960s, but were essentially forgotten for three decades after that. After turbo

codes were introduced in 1993, it was realized by MacKay that LDPC codes

form a compelling alternative for approaching Shannon limits. Since then,

there has been a flurry of effort on design and analysis of LDPC codes

for various channels. I describe here the code structure, iterative decoding,

and some approaches to performance analysis for LDPC codes. These codes

have the distinction of being the only class of codes for which theorems

giving guarantees on asymptotic performance for large block lengths are

available, with an analytical framework for evaluating how far away the

performance is from Shannon capacity. As a practical consequence, it is
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possible to design LDPC codes that, for large block lengths, outperform

turbo codes formed from serial or parallel concatenation of convolutional

codes. Encoding for LDPC codes is somewhat more complex than for turbo

codes, but decoding has the advantage of being more amenable to parallelized

implementation.

7.3.1 Some terminology from coding theory

An �n� k� binary block code is a mapping of k information bits onto n

coded bits, forming a codeword x = �x1� � � � xn�. Let us denote the set of 2k

codewords by � .

A binary linear code satisfies the property that, if x1�x2 ∈� , then x1 +
x2 ∈� , where the addition is over the binary field, and corresponds to the XOR

operator. Thus, for a�b� c∈ �0�1�, we have properties such as the following:

a+a= 0� so that a=−a�

if a+b+ c = 0� then a= b+ c	

Generator matrix We are familiar with vector spaces and subspaces over

the real and complex fields. A binary linear code � forms a subspace of

dimension k within an n-dimensional space over the binary field. Just as with

real and complex fields, we can find k linearly independent basis vectors

v1� � � � �vk for � , such that any codeword x∈� can be written as

x = u1v1+· · ·+ukvk� (7.87)

where u1� � � � � uk ∈ �0�1� are coefficients of the basis expansion of x with

respect to the chosen basis. Note that we are considering row vectors here,

respecting standard convention in coding theory. We can rewrite (7.87) as

x = uG� (7.88)

where u = �u1� � � � � uk� is a 1× k vector of basis expansion coefficients,

and G is a k× n matrix with the basis vectors v1� � � � �vk as the rows.

Since u1� � � � � uk can be freely assigned any values from �0�1�, there are 2k

possible choices for u, each corresponding to a unique x, by virtue of the

linear independence of the basis vectors. Thus, (7.88) can be interpreted as

an encoding map from information vectors u of length k to codewords x of

length n. The matrix G is a generator matrix for � . Since the basis for a

linear subspace is not unique, the generator matrix G and the corresponding

encoding map are not unique either, even though the vector space, or the set

of codewords � , is fixed.

Dual code and parity check matrix Appealing again to our knowledge

of vector spaces over the real and complex fields, we know that, for any
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k-dimensional subspace of an n-dimensional space, there is an �n− k�-

dimensional subspace that is its orthogonal complement. Similarly, we can

define an �n−k�-dimensional subspace �⊥ over the binary field for an �n� k�

binary linear code � . Clearly, �⊥ can also be thought of as an �n�n− k�

binary linear code, which we term the dual code or dual space for � . For

x∈� and y∈�
⊥, the inner product

< x� y>=
∑

i
xiyi = 0 �modulo 2�	

Let H denote a matrix whose rows form a basis for �⊥. If the basis is chosen

to be linearly independent, then the matrix H has dimension �n−k�×n, and

can serve as a generator matrix for �⊥. Now, any codeword x∈C must be

orthogonal to every element of �⊥, which is true if and only if it is orthogonal

to every row of H. The latter condition can be written as

HxT = 0	 (7.89)

Thus, each row of H provides as a parity check equation that any codeword

x must satisfy. Thus, H is termed a parity check matrix for � . The parity

check matrix is not unique, since the choice of basis for the dual code �
⊥ is

not unique.

Example 7.3.1 Hamming code A generator matrix for the (7,4) Ham-

ming code is given by

G=









1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1









	 (7.90)

This generator matrix is in systematic form, i.e., four out of the seven code

bits are the information bits, without any modification. The remaining

three bits are the parity check bits, formed by taking linear combinations

of the information bits. A parity check matrix for the (7,4) Hamming code

is given by

H=





0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1



 	 (7.91)

It can be checked that the inner product (using binary arithmetic) of any

row of the generator matrix with any row of the parity check matrix is

zero.

For any vector space of dimension n, a k-dimensional subspace can be

specified either directly, or by specifying its orthogonal complement of

dimension n−k within the vector space. Thus, the code � can be specified

compactly by either specifying a generator matrix G or a parity check

matrix H.
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x1

c1

c2

c3

x2

x3

x4

x5

x6

x7

Tanner graph representation of a binary linear code Any binary linear

graph can be represented by a Tanner graph using a parity check matrix H.

A Tanner graph is a bipartite graph with variable nodes on the left corre-

sponding to the different code symbols, and check nodes on the right, one for

each check equation, or row of the parity check matrix. A variable node is

connected to a check node if it participates in the corresponding parity check

equation.

The Tanner graph corresponding to the parity check matrix (7.91) for the

(7,4) Hamming code is depicted in Figure 7.18. For example, the first check

node c1 corresponds to the first row of the parity check matrix:

x2+x3+x4+x5 = 0�

so that the variable nodes x2, x3, x4 and x5 are connected to check node c1.

Figure 7.18 Tanner graph for

(7, 4) Hamming code.

Low density parity check codes are described in terms of a parity check

matrix H, with the term “low density” referring to the sparseness of ones

in H. Recall that parity check matrices are not unique, so it is also possible

to find nonsparse parity check matrices for the same code. However, the

sparseness of the parity check matrix H that we do use is crucial for both

code construction and iterative decoding of LDPC codes.

7.3.2 Regular LDPC codes

A regular �dv�dc� LDPC code is one which is specified by a parity check

matrix that has dv ones in each column, and dc ones in each row. That is,

each parity check equation has dc participating code variables, and each code

variable appears in dv parity check equations. As the code length n grows,

keeping the code rate R constant, the dimensions of H scale up. However,

H is sparse, in that the row and column weights remain constant at dc and
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Typical variable node Typical check node

dv edges
dc edges

(n − k) check nodesn variable nodes

dv edges

dv edges
dc edgesx1

c1

xn

cn − k

P

e

r

m

u

t

a

t

i

o

n

Π

(n − k) check nodes
n variable nodes

N sockets

dv, respectively. Consider a Tanner graph for the code, with n variable nodes

on the left, and n− k parity check nodes on the right. Typical variable and

check nodes in such a graph are shown in Figure 7.19. There are dv edges

emanating from each variable node, so that there are N = ndv edges in all.

Number this in any way (e.g., sequentially, starting from the first edge for

the first variable). Similarly, there are dc edges emanating from each check

node, so that there are N = �n−k�dc edges in all. Since the number of edges

N satisfies

N = ndv = �n−k�dc�

we obtain the code rate;

R= k

n
= 1− dv

dc

	

Figure 7.19 Typical variable

and check node in a �dv� dc�

regular LDPC code.

Figure 7.20 Random

generation of a �dv� dc�

regular LDPC code.

Let us now consider how such a code can be generated randomly. On the left

side of the Tanner graph, provide dv “sockets” where edges can go in for each

variable node. On the right side, provide dc “sockets” for each check node. On

each side, number the sockets from 1 to N in any order. Then connect socket

i on the left with socket ��i� on the right to form the ith edge, i= 1� � � � �N ,

where � is a permutation of �1� � � � �N�. This specifies the Tanner graph,
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and a corresponding parity check matrix, for the code. Thus, codes can be

generated randomly by random choices of �. The work of Richardson and

Urbanke shows that most such codes are good, with performance clustering

around the ensemble-averaged performance as the block length gets large.

Thus, one way to get a good code is to generate random instances as above,

and use some simple criteria to eliminate obviously bad choices. Of course,

we must finally check by computer simulation that the candidate code indeed

works well. That is, the chosen code (at some large but finite block length)

should have a performance close to the average behavior, which can be

analytically characterized in the limit of infinite code block lengths.

7.3.3 Irregular LDPC codes

For irregular LDPC codes, the variable nodes can have a range of degrees,

as can the check nodes, where the degrees are chosen in a random manner

according to specified degree distributions. Rather than specifying the fraction

of nodes with a given degree, however, it is more convenient to specify these

distributions in terms of what a randomly chosen edge in the Tanner graph

sees. Specifically, let

�i = P�random edge is incident on variable node of degree i�

�i = P�random edge is incident on check node of degree i�	

It is convenient to specify the degree distributions in the form of polynomials:

��x�=∑

i �ix
i−1

��x�=∑

i �ix
i−1 	

For example, for a �3�6� regular code,

��x�= x2� ��x�= x5	

In an irregular code, a check node must have a degree of at least two. For a

nontrivial check equation, there must be at least two variables participating

(otherwise we get an equation of the form xl = 0, which means that the code

variable xl conveys no information). Typically, the variable node degrees are

also chosen to be at least two, unless we are considering relatively high rate

codes.

Suppose, now, that there are N edges in the Tanner graph. The number of

edges connected to degree i variable nodes is therefore equal to N�i. Thus,

the number of variable nodes with degree i equals N�i/i, and the total number

of variables equals

n= N
∑

i

�i

i
= N

∫ 1

0
��x� dx	
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Similarly, the number of edges connected to check nodes of degree j is N�j ,

and the number of check nodes of degree j equals N�j/j. The total number

of check nodes is therefore given by

n−k= N
∑

j

�j

j
= N

∫ 1

0
��x� dx	

We can therefore infer that the code rate R depends on the degree distributions

as follows:

R= k

n
= 1−

∫ 1

0
��x� dx

∫ 1

0
��x� dx

	 (7.92)

We can also see that the fraction of variable nodes of degree i is given by

�̃i =
�i
i

∑

l
�l
l

and the fraction of check nodes of degree j is given by

�̃j =
�j
j

∑

l
�l
l

	

Example 7.3.2 (Irregular LDPC code) Consider an irregular LDPC

code with ��x�= 0	2x+0	8x2 and ��x�= 0	5x4+0	5x5. We can compute,

using (7.92), the code rate as R = 1/2. We can also see that the fraction

of variable nodes of degree 2 is

�̃2 =
0	2
2

0	2
2
+ 0	8

3

= 3

11

and the fraction of check nodes of degree 5 is

�̃5 =
0	5
5

0	5
5
+ 0	5

6

= 6

11
	

As with regular codes, irregular LDPC codes can be generated by randomly

choosing edges on a Tanner graph, as follows. For polynomials ��x� and ��x�

of a given degree, compute the rate R and the node degree distributions ��̃i�

and ��̃j�. For n variable nodes and n�1−R� = n− k check nodes, assign i

sockets to n�̃i of the variable nodes, and assign j sockets to �n−k��̃j of the

check nodes. We number the sockets on each side from 1� � � � �N , where

N = n
∫ 1

0
��x�dx

= n−k
∫ 1

0
��x�dx

is the number of edges to be specified. As before, for a random permutation

� on �1� � � � �N�, connect socket i to socket ��i� to form an edge. Throw out

or modify obviously bad choices, and verify that the code obtained performs

well by simulation.
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Maximum likelihood decoding is too complex for LDPC codes of even

moderate block lengths, but iterative decoding based on message passing

on the Tanner graph provides excellent performance. I now describe some

message algorithms and techniques for understanding their performance.

7.3.4 Message passing and density evolution

Consider a regular �dv�dc� LDPC code over a BSC with crossover probability

�. A variable node xl is connected to the channel, and receives a bit yl
which is in error with probability �. We now consider a simple iterative bit

flipping algorithm for decoding, termed Gallager’s algorithm A, where the

messages being passed back and forth between the variable and check nodes

are binary, with the interpretation of simply being estimates of the code

bits �xl�. The key principle, which applies also to more complex iterative

decoding algorithms, is that, for any node, the message sent out on an edge e

is extrinsic information, depending only on messages coming in on the other

edges incident on the node, and not on the message coming in on e.

Gallager’s algorithm A

Initialization (variable node) The only information available at this point

to a variable node is the channel bit. Thus, the variable node xl sends the

message yl to each of the dv check nodes connected to it.

Iteration 1 (check node) A check node corresponding to a check equation of

the form

xi1 +· · ·+xidc
= 0

estimates each of the variables involved based on the estimates for the other

variables, and passes the message back to the corresponding variable nodes.

For example, the message passed back to variable node xi1 is

x̂i1 = yi2 +· · ·+yidc
	

Iteration 1 (variable node) A variable node xl receives dv bit estimates from

the check nodes it is connected to. It now uses these, and the channel bit, to

compute messages to be sent back to the check nodes it is connected to. The

message to be sent back to a given check node c depends only on the dv−1

messages coming in from the other check nodes, and the message from the

channel. If all dv− 1 messages from the other check nodes agree, and their

estimate differs from the bit received from the channel, then the channel bit

is flipped to obtain the message sent to c.

Iteration 2 (check node) As before, estimates to be sent back to the variable

nodes are computed by taking the XOR of messages coming in from the other

variable nodes.
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These iterations continue until convergence, or until a maximum number

of iterations is reached. At that point, one can check whether the bit estimates

obtained form a valid codeword, and declare decoding failure if not.

Let me now provide a more formal description of the algorithm by describ-

ing the operations performed at a typical variable and check node at a given

iteration.

Message from variable node Let u0 denote the message received from the

channel, and let u1� � � � � udv
denote the incoming messages (from the check

nodes) on the dv edges incident on the variable node. The message vi sent

out along the ith edge, i= 1� � � � � dv, is then given by

vi =
{

ū0� u1 = � � � = ui−1 = ui+1 = � � � = udv
= ū0

u0� else	

The message vi going out on the ith edge satisfies our concept of extrinsic

information, since it does not depend on the message ui coming in on that

edge.

Message from check node Let v1� � � � � vdc denote the incoming messages

from the variable nodes on the dc edges incident on the check node. The

message uj sent out along the jth edge, j = 1� � � � � dc, is given by

uj =
dc
∑

l=1�l �=j

vl�

where the addition is over the binary field. Again, note that the outgoing

message uj is extrinsic information that does not depend on the incoming

message vj on that edge.

Initialization The variable nodes initiate the iterations using the channel

outputs, setting vi ≡ u0 for i = 1� � � � � dv, since there are no messages yet

from the check nodes.

While we consider a regular code as an example, the same algorithm is

equally applicable to irregular codes (dv and dc above can vary).

Intuitively, we expect this simple bit flipping algorithm to correct all chan-

nel errors successively if the initial number of channel errors is small enough.

We would now like to understand the performance in more detail. To this end,

condition, without loss of generality, on the all-zero codeword being sent.

Assume that all messages arriving at a node are independent and identically

distributed. Since the initial channel outputs (and hence the messages sent by

the variable nodes in iteration 1) are independent, this assumption holds if

there are no cycles in the Tanner graph, so that the influence of a message

sent out by a node in some iteration is not included in an incoming message to

that node at a later iteration. Actually, this tree-based analysis can be shown

to yield the right answer for computing ensemble averaged performance for
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randomly generated Tanner graphs for “long enough” block lengths, for which

the cycle lengths in the Tanner graph are, with high probability, long enough

to be “tree-like.” Since the messages are binary, they are modeled as i.i.d.

Bernoulli random variables, whose distribution can be described by a single

parameter (e.g. the probability of taking the value 1).

Define

p�l� = P�message sent by variable node in iteration l is 1��

q�l� = P�message sent by check node in iteration l is 1�	

Note that p�0�= �. Recall that we are conditioning on the all-zero codeword

being sent, so that p and q are estimates of the error probability of messages

being sent along the edges, as a function of iteration number.

The message sent by a check node on an edge is 1 if and only if an odd

number of ones come in on the other edges. At iteration l, the probability of

an incoming 1 is p�l�. Thus,

q�l�=
dc−1
∑

j=1�j odd

(

dc−1

j

)

�p�l��j�1−p�l��dc−1−j	

This can be simplified to

q�l�= 1− �1−2p�l��dc−1

2
	 (7.93)

The message sent by a variable node to a check node c is 1 if and only

if one of two mutually exclusive events occur: (a) the channel output is 1,

and not all incoming messages are 0, or (b) the channel output is 0, and all

incoming messages are 1, where the incoming messages are those coming in

from all check nodes other than c. These are modeled as i.i.d. Bernoulli, with

probability q�l� of taking the value 1. We therefore obtain

p�l�= p�0��1− �1−q�l��dv−1�+ �1−p�0���q�l��dv−1	 (7.94)

We can combine (7.93) and (7.94) into a single recursion for p, given by:

p�l�= p�0�−p�0�

{

1

2
�1+ �1−2p�l−1��dc−1�

}dv−1

+�1−p�0��

{

1

2
�1− �1−2p�l−1��dc−1�

}dv−1

�

(7.95)

with p�0�= �.

The preceding procedure is an example of density evolution, where we

characterize the message probability density as a function of the iteration

number, assuming independent messages coming in. In this case, the density is

specified by a single number, which makes the evolution particularly simple.

The bit flipping algorithm converges to the correct solution if p�l�→ 0 as

l→
. By implementing the recursion for various values of �, we can find a

threshold value �t such that the error probability converges to zero for � < �t.
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We would typically find that this threshold is quite far from the � for which

the BSC channel capacity equals the rate of the code being used. However,

significant improvement in the performance of bit flipping can be obtained

at a relatively small increase in complexity. For example, we can introduce

erasures when we cannot decide whether to believe the messages from the

check nodes or from the channel, rather than insisting on binary messages.

Simple message formats and node operations can also be handcrafted for

more complex channel models.

The most powerful form of message passing is when the messages are log

likelihood ratios (LLRs). Such a message passing algorithm is referred to as

belief propagation, where the terminology comes from Pearl’s seminal work

on Bayesian networks. I discuss this next.

7.3.5 Belief propagation

As before, consider the Tanner graph for a �dv�dc� regular LDPC code as an

example, with the understanding that the message passing algorithm extends

immediately to irregular LDPC codes.

The messages being passed are LLRs for the code bits. The initial message

from the channel regarding a bit is denoted by u0. If x is the bit of interest

and y is the corresponding channel output, then

u0 = log
p�y�x = 0�

p�y�x = 1�
	

For a BSC with crossover probability �, we have

u0�BSC�=
{

log 1−�
�

y = 0

− log 1−�
�

y = 1
	

For BPSK over an AWGN channel, where y = A�−1�x+N�0�
2�, we have

u0�AWGN�= 2Ay


2
�

as derived earlier.

Once the messages from the channel are determined, the remainder of the

algorithm proceeds without any further need to invoke the channel model

(we assume a memoryless channel). As with the bit flipping algorithm, we

can specify the belief propagation algorithm by describing the operations

performed at a typical variable and check node at a given iteration. I derive

these next, and then summarize the operation of iterative decoding with belief

propagation.

A message coming in on an edge incident on variable node x conveys

an LLR for x. Assuming that the LLRs coming in on different edges are

independent, the extrinsic LLR to be sent out on an edge is simply the sum

of the LLRs coming in on the other edges, since all these LLRs refer to the

same variable x.
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For a check node c, the computation required for message passing is more

complicated. Consider, for example, the check equation x1 + x2 + x3 = 0.

Suppose that we know the LLRs for x1 and x2 (these come in as messages m1

and m2 along the edges corresponding to x1 and x2, respectively). Assuming

that these are independent, we wish to compute the LLR for x3, and then

send it out as message m3 on the edge connected to x3. Since x3 = x1+x2,

we have

P�x3 = 0� = P�x1 = 0� x2 = 0�+P�x1 = 1� x2 = 1� (7.96)

= P�x1 = 0�P�x2 = 0�+P�x1 = 1�P�x2 = 1��

P�x3 = 1� = P�x1 = 0� x2 = 1�+P�x1 = 1� x2 = 0�

= P�x1 = 0�P�x2 = 1�+P�x1 = 1�P�x2 = 0�	

Now, since mi = log P�xi=0�

P�xi=1�
, we have

P�xi = 0�= emi

emi +1
� P�xi = 1�= 1

emi +1
	

Substituting into (7.96) and simplifying, we obtain

em3 = P�x3 = 0�

P�x3 = 1�
= em1+m2 +1

em1 + em2
� (7.97)

from which we can compute m3 in terms of m1 and m2. However, this

formula does not generalize to check nodes with larger degrees. To remedy

this, instead of considering the LLR, let us consider instead the quantity

P�x = 0�−P�x = 1� for a bit x whose LLR is m. We obtain that

P�x = 0�−P�x = 1�= em−1

em+1
= em/2− e−m/2

em/2+ e−m/2
= tanh

(m

2

)

	 (7.98)

We can now use (7.97) to infer that

tanh�m3/2� = P�x3 = 0�−P�x3 = 1�= em1+m2 +1− em1 − em2

em1+m2 +1+ em1 + em2
(7.99)

= �em1 −1��em2 −1�

�em1 +1��em2 +1�
= tanh

(m1

1

)

tanh
(m2

2

)

	

This is a formula that does generalize to check nodes with larger degrees,

as we can see by induction. While the choice of using P�x = 0�−P�x = 1�

appears to have been fortuitous, the fact that this is indeed the right quantity

to consider to obtain a generalizable formula is discussed in Problem 7.19.

I can now summarize message passing for belief propagation as follows.

Message from variable node Let u0 denote the message received from the

channel, and let u1� � � � � udv
denote the incoming messages (from the check

nodes) on the dv edges incident on the variable node. Then the message vp
sent out along the pth edge, p= 1� � � � � dv, is given by

vp = u0+
dv
∑

q=1�q �=p

uq	 (7.100)



August 13, 2007 5:55 p.m. CUP/FOD Page-354 9780521874144c07

354 Channel coding

Note that vp does not depend on up.

Message from check node Let v1� � � � � vdc denote the incoming messages

from the variable nodes on the dc edges incident on the check node. The

message up sent out along the pth edge, p= 1� � � � � dc, is given by the implicit

equation

tanh
(up

2

)

=�
dc
q=1�q �=ptanh

(vq

2

)

(7.101)

Alternatively, the outgoing message up can be represented as a hard

decision b̂p�out� = I�up<0�, together with a reliability metric 
p�out� =
� log tanh��up�/2��. By representing the incoming messages in the same fash-

ion, with b̂q�in�= I�vq<0� and 
q�in�= � log tanh��vq�/2��, it is easy to show,

from (7.101), that

b̂p�out� =
∑dc

q=1�q �=p
b̂q�in� �binary addition�� (7.102)


p�out� =
∑dc

q=1�q �=p

q�in� �real addition�	

We can get the LLR L for a bit from its �b̂�
� representation as follows:

L= �−1�b̂ 2tanh−1
(

e

)

	

Initialization The variable nodes initiate the iterations using the channel

outputs, setting vi ≡ u0 for i = 1� � � � � dv, since there are no messages yet

from the check nodes.

The preceding description specifies the belief propagation algorithm, where

for irregular codes, the degrees dv and dc would be variable. The algorithm

is initialized by each variable node sending its channel message along all of

its edges.

The alternative representation (7.102) is useful for a density evolution

analysis of belief propagation. However, I employ a less complex Gaus-

sian approximation to develop an understanding of belief propagation in the

following, for which (7.101) suffices.

7.3.6 Gaussian approximation

To evaluate the performance of belief propagation, condition on the all-zero

codeword being sent. As in my discussion of how to generate EXIT charts

for turbo codes, we again invoke the consistency condition for LLRs. That is,

from Problem 7.12, we have the following results. For an output symmetric

channel satisfying p�y�0� = p�−y�1�, the conditional density p�z�0� of the

channel LLR, conditioned on 0 being sent, satisfies p�z�0� = ezp�−z�0�.
Assuming that enough mixing is going on at the variable and check nodes, we

model the LLR messages as Gaussian, satisfying this consistency condition.

If the conditional distribution Z ∼ N�m�v2�, conditioned on 0 being sent, the

consistency condition becomes equivalent to v2 = 2m (which automatically
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imposes the requirement that m≥ 0). We therefore only need to specify how

the means evolve as a function of iteration number.

Regular LDPC codes For a �dv�dc� regular LDPC code, model the mes-

sages going out from a variable node at iteration l as N�mv�l��2mv�l��, and

the messages going out from a check node at iteration l as N�mv�l��2mv�l��.

From (7.100), it follows immediately that the mean of the output from a

variable node is given by

mv�l�=mu0
+ �dv−1�mu�l−1�� (7.103)

where the channel LLR is N�mu0
�2mu0

�. This is exactly true for BPSK over

an AWGN channel, but may also be a good approximation to bit LLRs for

larger constellations with a Gray coded bit-to-symbol map.

For a check node, a typical outgoing message u�l� at iteration l satisfies

tanh

(

u�l�

2

)

=�
dc
i=1�i �=jtanh

(

vi�l�

2

)

	 (7.104)

For m≥ 0, it is now convenient to define the function

��m�= 1−E

[

tanh

(

Z

2

)]

� Z ∼ N�m�2m�	 (7.105)

Since we model vi�l� as i.i.d. N�mv�l��2mv�l��, and u�l�∼N�mu�l��2mu�l��,

we have, taking expectations on both sides of (7.103):

1−��mu�l��= �1−��mv�l���
dc−1�

so that

mu�l�= �−1
(

1− �1−��mv�l���
dc−1

)

	 (7.106)

Combining (7.103) and (7.106), we get the following recursion for mu:

mu�l�= �−1
(

1− �1−�
(

mu0
+ �dv−1�mu�l−1�

)

�dc−1
)

� (7.107)

with mu�0�= 0.

One can compute thresholds on the channel quality by checking for what

values of mu0
we have mu�l�→
.

Some bounds and approximations for ��m� can be used to simplify the

computation of � and �−1, as well as to understand the behaviour of the

Gaussian approximation in more depth. I state these below without proof.
(

1− 3

m

)
√

�

m
e−

m
4 <��m� <

(

1+ 1

7m

)
√

�

m
e−

m
4 ��m�	 (7.108)

(The bounds are only useful for m> 0. For m= 0, observe that ��0�= 1.)

An approximation that works well for � for m< 10 is

��m�≈ e�m
�+�� (7.109)
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where �=−0	4527, �= 0	0218, � = 0	86. This has the advantage of being

analytically invertible. For m> 10, an average of the upper and lower bounds

in (7.108) has been found to work well.

Thresholds calculated using such techniques are found to be within 0.1 dB

of far more complex calculations using density evolution, so that the Gaussian

approximation is a very valuable tool for understanding LDPC performance.

Next, I discuss irregular LDPC codes, for which the Gaussian approxima-

tion has been employed effectively as a tool for optimizing degree sequences.

Irregular LDPC codes The messages from the channel to the variable

nodes are modeled as N�mu0
�2mu0

� (this is exact for BPSK over an AWGN

channel). Let us model the input messages to variable nodes at the beginning

of iteration l as i.i.d., N�mu�l−1��2mu�l−1��. Consider a variable node of

degree i. From (7.100), we have that the typical output message from such a

node takes the form

v= u0+
i−1
∑

q=1

uq�

where uq are messages coming in on the �i− 1� other edges, and u0 is the

message from the channel. Modeling uq as i.i.d. N�mu�l− 1��2mu�l− 1��,

it follows that the output message can be modeled as N�mv�i�l��2mv�i�l��,

where

mv�i�l�=mu0
+ �i−1�mu�l−1�	 (7.110)

These messages are sent to the check nodes. A typical edge incident on a check

node sees an edge connected to a degree i variable node with probability �i.

Thus, a typical input message v�l� to a check node at iteration l is a Gaussian

mixture, with the distribution N�mv�i�l��2mv�i�l�� selected with probability

�i. We denote this as

v�l�∼
∑

i

�iN�mv�i�l��2mv�i�l��	 (7.111)

We would now like to characterize the mean of the output message from

the check node of degree j. We do this indirectly by instead comput-

ing the mean of the hyperbolic tangent of the message, using the check

update equation (7.101). Then, assuming that the output message is Gaussian

N�mu�j�l��2mu�j�l��, we compute mu�j�l� by inverting the � function. Let me

now go through the details. From (7.101), the check update at a degree j node

takes the form

tanh
(u

2

)

=�
j−1
q=1tanh

(vq

2

)

	 (7.112)

Assuming that vq follow the Gaussian mixture distribution 7.111, we obtain

E
[

tanh
(vq

2

)]

=
∑

i

�i

(

1−��mv�i�l��
)

= 1−
∑

i

�i��mv�i�l��	
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Modeling vq as i.i.d., we have, taking expectations on both sides of (7.112),

1−��mu�j�l�=
[

1−
∑

i

�i��mv�i�l��

]j−1

�

where we have used the Gaussian model u ∼ N�mu�j�l��2mu�j�l�� for the

output message. We therefore obtain

mu�j�l�= �−1



1−
[

1−
∑

i

�i��mv�i�l��

]j−1


 	 (7.113)

Averaging across the check node degrees, we see that the mean of the mes-

sages going into the variable nodes after iteration l is

mu�l� =
∑

j

�jmu�j�l� (7.114)

=
∑

j

�j�
−1



1−
[

1−
∑

i

�i��mv�i�l��

]j−1


 	

We can now substitute (7.110) into (7.114) to get a recursion for mu�l� as

follows:

mu�l�=
∑

j

�j�
−1



1−
[

1−
∑

i

�i��mu0
+ �i−1�mu�l−1��

]j−1


 �

(7.115)

with initial condition mu�0�= 0.

Convergence to a good solution occurs if mu�l�→
.

7.4 Bandwidth-efficient coded modulation

Thus far, I have focused on BPSK modulation over an AWGN channel, when

illustrating the performance of binary codes. Clearly, these results apply to

coherent QPSK modulation directly, since QPSK with Gray coding can be

viewed as two BPSK streams sent in parallel over the I and Q channels.

However, when we wish to increase bandwidth efficiency at the cost of power

efficiency, we must learn how to do channel coding for larger constellations,

such as 8PSK or 16QAM. There are several approaches for constructing such

bandwidth-efficient coded modulation techniques, and I now discuss two of

these: bit interleaved coded modulation (BICM) and trellis coded modulation

(TCM). Bit interleaved coded modulation exploits the powerful binary codes

I have discussed so far, and essentially achieves a clean separation between

coding and modulation, while TCM involves a more detailed co-design of

coding and modulation. Given the advances in binary turbo-like codes, BICM

probably has the edge for applications in which the code block lengths can

be large enough for the turbo effect to kick in.
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Binary encoder
Information

bits
Interleaver Modulator

(E.g., bit-to-symbol
Gray map)

Demodulator

(E.g., generates soft
information  for each bit)

Deinterleaver
Iterative
decoder

Estimated

information bits
From channel

To channel

(E.g., turbo-like code)

Figure 7.21 Bit interleaved coded modulation with a turbo-like outer binary code, serially concatenated

with Gray coded modulation.

7.4.1 Bit interleaved coded modulation

The term BICM has acquired a rather broad usage, but I focus on a spe-

cific meaning corresponding to a clean separation of coding and modulation.

The information bits are encoded using a binary code. The coded bits are

interleaved and then mapped to the modulated signal sent over the channel.

A particularly appealing combination, shown in Figure 7.21, is a turbo-like

binary code, along with Gray coded modulation. The demodulator then com-

putes soft decisions for each bit corresponding to a symbol, and then feeds

them via the deinterleaver to the decoder, which then uses standard iterative

decoding techniques. Because of the interleaving, we can think of each coded

bit as seeing an equivalent channel which is the cascade of the modulator, the

channel, and the demodulator’s soft information computation. This effective

binary channel is different from the BPSK channel I have considered so far.

However, we do expect turbo-like codes optimized for BPSK over AWGN to

work quite well in this context as well. Moreover, once we characterize the

effective binary channel, it is also possible to optimize turbo-like codes (e,g.,

irregular LDPC codes) specifically for it, although this is beyond the scope

of this book.

Figure 7.22 Gray-coded

4PAM, with symbols labeled

x1x2 , where x1 and x2 are bits

coming from the interleaver.

To make the concepts concrete, let us consider the example of BICM using

Gray-coded 4PAM, as shown in Figure 7.22. When used over an AWGN

channel, the output is given by

Y = s�x1x2�+n � n∼ N�0�
2�� (7.116)

where the symbol s�x1x2� takes values in �±A�±3A� as a function of the bits

x1 and x2 according to a Gray code, as shown in Figure 7.22. Assuming that

0010

–3A +3A–A +A

11 01
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x1, x2 are i.i.d., taking values in �0�1� with equal probability, we can now

compute their LLRs based on Y as follows:

Li�y�= log
P�xi = 0�Y = y�

P�xi = 1�Y = y�
= log

p�y�xi = 0�

p�y�xi = 1�
� i= 1�2

As shown in Problem 7.23, these can be evaluated to be

L1�y� = 2Ay


2
+ log

1+ e
2A


2
�y−2A�

1+ e
− 2A


2
�y+2A�

� (7.117)

L2�y� = −4A2


2
+ log

cosh 3Ay


2

cosh Ay


2

	 (7.118)

Knowing the values of A and 
2, the demodulator can compute these LLRs

and feed them to the decoder. The signal power per coded symbol The energy

per coded symbol, Es = A2+�3A�2

2
= 5A2 = 2EbR, where where Eb is the energy

per information bit, and R is the rate of the outer binary code. This allows

us to relate the parameters A and 
2 to Eb/N0 and R, once we choose a

convenient scaling (e.g., 
2 = N0/2= 1).

Once the LLRs above are fed to the binary decoder, it can perform soft-

input decoding as usual (e.g., using iterative decoding, if the outer code is a

turbo-like code, or using the Viterbi or BCJR algorithm, if it is a convolutional

code).

Once the effective binary channels are characterized, it is easy to identify

information-theoretic performance limits for BICM. For example, the capacity

attained by a 4PAM-based BICM scheme is the sum of the capacities of the

effective binary channels seen by the bits x1 and x2. We can compare this

with the capacity of equiprobable 4PAM over an AWGN channel to quantify

the degradation in performance due to restricting the design to BICM.

The capacity for standard 4PAM with equiprobable signaling can be com-

puted as discussed in Chapter 6. For the BICM effective binary channels for

bits xi, i= 1�2, the capacity can be computed using the equation

Ci =H�Xi�−H�Xi�Y�= 1−H�Xi�Y��

where we use capital letters to denote random variables, and where the quantity

H�Xi�Y� can be estimated either by numerical integration or simulation, as

discussed in Chapter 6. Specifically, consider noisy observations y1� � � � � yK
generated by K i.i.d. uses of the 4PAM channel (7.116) with the bits X1�X2

used to select the symbols chosen i.i.d., equiprobable over �0�1�. we obtain

the estimates

Ĥ�Xi�Y�=
1

K

K
∑

j=1

HB�P�Xi = 1�Yj = yj��

= 1

K

K
∑

j=1

HB

(

1

eLi�yj�+1

)

�

(7.119)
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where HB�p�=−p log2 p−�1−p� log2�1−p� is the binary entropy function.

The capacity for the BICM scheme is therefore CBICM = C1+C2.

Problem 7.23 compares the capacity of standard 4PAM with the BICM-

based 4PAM capacity. The capacity is a function of SNR=Es/

2 = 5A2/
2.

This can then be converted into a plot of spectral efficiency versus Eb/N0 as

described in Chapter 6.

7.4.2 Trellis coded modulation

Trellis coded modulation (TCM), pioneered by Ungerboeck in the early

1980s, combines coding and modulation using convolutional code based trel-

lis structures, but with the design criterion being Euclidean distance between

the sequences of real-valued or complex-valued symbols, rather than the

Hamming distance between binary sequences. I illustrate the basic concepts

underlying TCM through a simple example here, and provide pointers for

delving deeper in Section 7.6. Suppose that we wish to use a passband

channel to signal at a spectral efficiency of 2 bits per complex-valued sam-

ple. For uncoded communication, we could achieve this by using uncoded

QPSK, which is about 8 dB away from Shannon capacity at a BER of 10−5.

To close this gap using coding, clearly we must use a constellation larger

than QPSK in order to “make room” for inserting some redundancy. If we

expand the constellation by a factor of two, to 8PSK, then we obtain one

extra bit to work with. I now present one of Ungerboeck’s original code

constructions. The basic idea is as follows: partition the 8PSK constella-

tion into subsets, as shown in Figure 7.23. The partition is hierarchical,

with the bit c1 partitioning 8PSK into two QPSK subsets S�0� and S�1�,

the bit c2 partitioning the QPSK subsets further into BPSK subsets S�00�,

S�01�, S�10�, S�11�, and the bit c3 indexing the elements of the BPSK

subsets. This introduces a 3 bit labeling c1c2c3 for the 8PSK constellation.

Note that this set-partitioning-based labeling is quite different from a Gray

map.

The symbol error probability for uncoded 8PSK is dominated by the min-

imum distance d0 for the constellation. An error to a nearest neighbor corre-

sponds to an error in c1 (i.e., we decode into a QPSK subset which is different

from the one the transmitted symbol belongs to). However, if the bit c1 could

be sent error-free (in which case we know which QPSK subset the transmitted

symbol belongs to), then the error probability is dominated by the minimum

distance d1 for the QPSK subconstellations. Furthermore, if both c1 and c2
could be transmitted error-free, then the error probability would be dominated

by the minimum distance d2 for the BPSK subset.

Suppose, now, that we wish to support the same rate as uncoded QPSK

using a TCM scheme based on 8PSK. If we set the energy per information bit

Eb = 1/2, the symbol energy becomes normalized to one (i.e., the radius of the

constellation is one). In this case, the minimum distance for uncoded QPSK
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Figure 7.24 A TCM encoder uses convolutionally coded bits to select a subset of points, and uncoded

bits to select points within the subset. In the figure, the constellation has 2n+k2 points, divided into 2n

subsets, each with 2k2 points. The convolutional code has rate k1/n.

satisfies d2
min�QPSK�= d2

1 = 2. We would like to devise a TCM scheme for

which the minimum distance between codewords is better than this.

Figure 7.24 depicts the generic structure of a TCM encoder. In the follow-

ing, I illustrate the basic concepts of TCM using an 8PSK-based scheme in

which k1 = k2 = 1 and n= 2; thus, the convolutional code has rate 1/2. The

bits c1 and c2 in the 8PSK set partition of Figure 7.23 are provided by the

output of the convolutional encoder, while the bit c3 is left uncoded. Thus,

if c1 and c2 could be sent error-free, then the error probability is dominated

by d2
2 = 4, the minimum distance of the BPSK subconstellation S�c1c2�. This

is 3 dB better than the squared minimum distance of d2
1 = 2 obtained for
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uncoded QPSK. Of course, c1 and c2 cannot be sent without error. However,

we soon show that, by an appropriate choice of the rate 1/2 convolutional

code, the minimum distance that dominates the error probability for c1 and

c2 is larger than d2. Thus, the error probability for the overall TCM scheme

is determined by dmin�TCM� = d2, which gives a 3 dB gain over uncoded

QPSK.

Let us now see how to ensure that the minimum distance corresponding

to c1 and c2 is larger than d2. Let us first define the distance between two

subconstellations A and B as

d�A�B�= min
s1 ∈ A�s2 ∈ B

��s1− s2��	

Thus, the distance between the QPSK subsets S�0� and S�1� is d0. The distance

between the BPSK subsets S�00� and S�01� is d1 > d0, while the distance

between the BPSK subsets S�00� and S�10� is d0 again. That is, two BPSK

subsets have a larger distance only if their labels agree in the first bit c1. Let us

now consider the minimum Euclidean distance between the subsets chosen as

the convolutional codeword dictating the sequence of c1c2 diverges from the

all-zero path. Suppose that we restrict attention to a four-state encoder of the

form shown in Figure 7.25. The output corresponding to a one at the input to

the encoder is dictated by the generators g1�D�= g10+g11D+g12D
2 (for c1)

and g2�D�= g20+g21D+g22D
2 (for c2). When we diverge from the all-zero

path, we would like to maximize the contribution to the Euclidean distance,

and hence we wish to keep c1 = 0. Similarly, when we merge back with the all-

zero path, we would again like to have c1 = 0. This means that g10 = g12 = 0.

Thus, for nontrivial g1, we must have g11 = 1, which gives g1�D� = D2. To

ensure that the outputs when we diverge and merge are different from those

for the all-zero path, we must have g20 = g22 = 1 (since g10 = g12 = 0). Setting

g21 = 0 (for no particular reason), we get g2�D�= 1+D2. The TCM scheme

we obtain thus is depicted in Figure 7.26.

Figure 7.25 A generic rate

1/2, four state, convolutional

encoder.

A trellis for this code is shown in Figure 7.27. Assuming that the input bits

are equally likely, all BPSK subsets S�c1c2� are used equally often. Moreover,

both branches leaving or entering a state have the same value of c1, which

maximizes the Euclidean distance between the corresponding subsets. The

g10 g11 g12

g22
g21g20

c1

c2
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all-zero sequence is highlighted in the trellis. It corresponds to repeatedly

using the BPSK subset S�00�. Also highlighted in the trellis is a binary

codeword whose subset sequence has minimum Euclidean distance to the

subset sequence corresponding to the all-zero binary codeword. This binary

codeword corresponds to the �c1c2� sequence �01�� �10�� �01�. The squared

Euclidean distance between the corresponding subset sequences is

d2
subset = d2�S�00�� S�01��+d2�S�00�� S�10��+d2�S�00�� S�01��

= d2
1 +d2

0 +d2
1 = 4	586�

where we have substituted d0 = 2 sin�/8 and d1 =
√
2. Since dsubset is bigger

than the Euclidean distance d2 = 2 governing the error in the uncoded bit c3,

the performance of the TCM scheme is dominated by d2. This gives us the

promised 3 dB gain over uncoded QPSK.

Figure 7.26 Four-state TCM

scheme with rate 2 bit/channel

use, using an 8PSK alphabet.

Figure 7.27 Trellis section for

the convolutional code in

Figure 7.26. The branches are

labeled with the input bit and

the two output bits

corresponding to the transition.

Figure 7.27 shows only the evolution of the BPSK subset sequences chosen

using the bits c1c2. The effect of the uncoded bit c3, which chooses one of

the two points in the BPSK subset selected by c1c2, is not shown. If we

were to include the effect of c3 in the trellis, then each branch would have

to be replaced by a pair of parallel branches, one for c3 = 0 and the other

for c3 = 1. These are usually termed parallel transitions in the literature. I

have designed our TCM scheme so that the performance is dominated by

the minimum Euclidean distance d2 between parallel transitions, by making
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sure that the Euclidean distance dsubset between the subset sequences is larger.

But this means that our coding gain is limited by the parallel transitions. In

particular, for the TCM scheme considered, even if we try to improve the rate

1/2 convolutional code, we cannot get more than 3 dB gain over uncoded

QPSK. Thus, if we wish to increase the coding gain (for the same information

rate and the same constellation), we must eliminate parallel transitions. This

can be achieved, for example, by using a rate 2/3 convolutional code whose

output determines the triple c1c2c3. Indeed, such TCM codes do exist, and

provide gains of up to about 6 dB beyond uncoded QPSK. However, such

codes involve a large number of states (e.g., a 256 state code was found by

Ungerboeck for 5.75 dB gain).

Our distance computations implicitly assumed that performance can be

evaluated by conditioning on the all-zero codeword. How do we know this is

valid? This technique works for evaluating the performance for binary linear

codes because the set of neighbors of the all-zero codeword are isomorphic

to the set of neighbors of any other codeword c. That is, the geometric

relationship between a codeword ck and the all-zero codeword is exactly

the same as that between the codewords ck + c (the addition is over the

binary field) and c. This geometric relationship is defined by the places at

which these codewords differ, and is summarized by the Hamming distances

between the codewords. When these zeros and ones are sent over a channel

in the case of TCM, however, we are interested in the Euclidean distance

between sequences of subsets chosen based on the output of the convolutional

code. There is a significant body of work (see Section 7.6) on characterizing

when an analysis of the weight patterns of the component convolutional

code is sufficient to determine the performance of the corresponding TCM

scheme. I do not discuss such criteria in detail, but summarize the intuition

as follows. First, the constellation must be partitioned into subsets that are

geometrically congruent: for example, we partitioned 8PSK into two QPSK

subsets that are rotations of each other, and then we similarly partitioned

each QPSK subset into BPSK subsets. Second, the labeling we employ for

these subsets must obey some natural symmetry conditions. The result of such

“geometric uniformity” is that the geometric relationship in Euclidean space

of a codeword with its neighbors is the same for all codewords. This means

that we can condition on the complex-valued TCM codeword corresponding

to the all-zero binary convolutional codeword.

Study of TCM in further detail is beyond the scope of this book, but

references for further reading are of this book provided in Section 7.6.

7.5 Algebraic codes

So far, I have considered convolutional codes, turbo codes, and LDPC

codes. Classical treatments of coding theory, however, start with algebraic
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constructions of codes with relatively short block lengths. The term

“algebraic" refers to the fact that such code designs often relies on the

mathematical properties of finite fields, the study of which is often termed

abstract algebra. Since the study of finite fields falls outside the scope of

this book, I restrict myself here to giving an operational description of some

such codes. That is, my goal is to illustrate how such codes fit within the

communication system designer’s toolbox, rather than to explain the details

of code construction.

Finite fields A finite field is a set with a finite number of elements on which

one can do arithmetic manipulations similar to those we are accustomed to for

real and complex numbers: this includes addition, subtraction, multiplication,

and division (except by zero). We saw examples of operations over the binary

field when we discussed encoders for convolutional codes. In general, we can

define finite fields with 2m elements (m a positive integer), termed Galois

fields in honor of Evariste Galois, and denoted by GF�2m�. Clearly, m bits

can be mapped to an element of a Galois field. An �n� k� block code over

GF�2m� has k information symbols encoded into n code symbols. Thus, a

codeword in such a code carries km bits of information.

Minimum distance The minimum Hamming distance between two code-

words is denoted by dmin. For an �n� k� code, the minimum distance cannot

exceed the following bound, termed the Singleton bound:

dmin ≤ n−k+1� Singleton bound	 (7.120)

Channel model and decoding Traditionally, the decoder for an algebraic

code would have access only to hard decisions or erasures. Efficient algebraic

decoding algorithms are available for bounded distance decoding under such

a model: given a received word, decode to a codeword which is within

Hamming distance d of it. If no such codeword exists, then declare a decoding

failure. A decoding error occurs when we decode to the wrong codeword.

Correct decoding occurs if the received word is within distance d of the

transmitted codeword. We can now infer the following facts about bounded

distance decoding.

Number of correctable erasures For an erasures-only channel, bounded

distance decoding can correct up to dmin−1 erasures.

Number of correctable errors For an errors-only channel, bounded dis-

tance decoding can correct up to �dmin−1/2� errors.

Number of correctable errors and erasures For an errors and erasures

channel, bounded distance decoding can correct terror errors and terasure erasures,

as long as the following criterion is satisfied:

2terror + terasure ≤ dmin−1	 (7.121)
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For most algebraic codes, if correct decoding does not occur, then decoding

failure is significantly more likely than decoding error (the gaps between

the decoding spheres for various codewords occupy a greater “volume” than

the decoding spheres themselves). This is fortunate, because knowing that

we have failed to decode is usually preferable to possibly incurring a large

number of errors. Denoting the probability of correct decoding by PC, that of

decoding failure by PDF, and that of decoding error by PDE, we have

PC+PDF+PDE = 1	

For quick analytical calculations, we often approximate the probability of

decoding failure by the bound PDF ≤ 1−PC, and ignore the probability of

decoding error, since computation of the latter involves a detailed understand-

ing of the code structure.

Some common examples of block codes over the binary fieldGF�2� include

parity check codes, Hamming codes, Reed–Muller codes, Golay codes, and

Bose–Choudhary–Hocquenhem (BCH) codes. I discuss a few of these in the

problems.

Example 7.5.1 (Estimating the probability of decoding failure)

A (15,7) BCH code has minimum distance dmin = 5. It is used over a

binary symmetric channel with crossover probability p = 0	01. Find an

upper bound on the probability of decoding failure.

The number of errors that can be corrected by bounded distance decoding

is t = �dmin−1/2� = 2. The probability of decoding failure is bounded by

the probability that we make t+1 errors or more:

PDF ≤ 1−PC =
n
∑

l=t+1

(

n

l

)

pl�1−p�n−l�

which yields PDF ≤?

Reed–Solomon codes Reed–Solomon (RS) codes are codes defined over

GF�2m� that satisfy the following properties:

n≤ 2m−1� Block length limited by alphabet size� (7.122)

dmin = n−k+1� Singleton bound satisfied with equality	 (7.123)

These codes also have the desirable property that the probability of decoding

error is extremely small, relative to the probability of decoding failure. Thus,

RS codes are a very good option if we wish to employ bounded distance

decoding, since they have the best possible minimum distance for a given

block length and rate. Unfortunately, the restriction (7.122) on block length

means that, to get the averaging effects of increasing block length, we would

also be forced to increase the alphabet size, thus increasing the complexity of
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encoding and decoding. Increasing alphabet size can also adversely impact

performance, depending on the channel model. For example, if GF�2m� sym-

bols are sent over a binary channel, with each symbol encoded into m bits,

then a symbol error occurs if any of these m bits are incorrect. Thus, the

probability of symbol error increases with m.

For completeness, note that the range of block lengths in (7.122) can be

increased by one for an extended RS code to obtain n = 2m, while still

satisfying (7.123). However, this does not change the drawbacks associated

with linking block length to alphabet size.

For low enough symbol error probabilities, RS codes provide extremely

small probabilities of decoding failure with relatively small redundancy. Thus,

if we require a very high level of reliability over a low SNR channel, we could

serially concatenate an inner channel code designed to give low BER (e.g., a

binary convolutional code or a turbo-like code), with an outer RS code. The

RS code can then “clean up” the (relatively infrequent) errors at the output of

the inner decoder. Reed–Shannon codes are also useful for cleaning up errors

in systems without an inner code, if they are operating at high SNR (e.g., on

optical links). Finally, they are effective on erasures channels.

While bounded distance decoding with hard decisions (and erasures) is the

classical technique for decoding algebraic codes, techniques for ML decoding

and for the utilization of soft decisions have also been developed over the

years. These techniques increase the range of SNRs over which such codes

might be useful. However, for long block lengths, the utility of algebraic codes

in communication system design is increasingly threatened by advances in

turbo-like codes. For example, while RS codes are very effective at handling

erasures, irregular binary LDPC codes with degree sequences optimized for

the erasures channel can give almost as good a performance, while allowing

for simple decoding and arbitrarily long block lengths. However, algebraic

codes should still have a significant role in system design for short code block

lengths, for which turbo-like codes are less effective.

7.6 Further reading

Good sources for “classical” coding theory include textbooks by Blahut [54]

and Lin and Costello [55]. I also recommend another text by Blahut [13],

which provides an excellent perspective on digital communication, including

a discussion of the key concepts behind pre-turbo error control coding. For a

detailed treatment of performance analysis for coded systems, the classic text

by Viterbi and Omura [12] remains an excellent resource. A recent book by

Biglieri [56] covers coding with a special emphasis on wireless channels.

Turbo-like codes are discussed in the books by Biglieri [56] and Lin and

Costello [55]. Other books on turbo coding include [57] and [58]. However,

for a detailed understanding of the rapidly evolving field of turbo-like codes,
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the research literature is perhaps the best source. In particular, I refer the

reader to the papers in the literature from which the material presented here

has been drawn, as well as a small sampling of some additional papers of

interest. The original papers by Berrou et al., introducing turbo codes, are

still highly recommended reading [59, 60]. The connection between iterative

decoding and belief propagation (a well established tool in artificial intel-

ligence pioneered by Pearl [61]) was established in [62]. The material on

EXIT charts and area properties is drawn from the work of ten Brink and his

collaborators [63, 64]. Reference [65] contains related work on the Gaussian

approximation for estimating turbo code thresholds and code design. The

material on weight distributions for turbo codes is based on the papers of

Benedetto et al. [66–68], which I recommend for more detailed exploration

of the turbo error floor. Interleaver design and trellis termination are impor-

tant implementation aspects of turbo codes, for which I refer to [69] and the

references therein.

Gallager’s work in the 1960s on LDPC codes can be found in [70]. The

rediscovery of Gallager’s LDPC codes byMacKay subsequent to the invention

of turbo codes is documented in [71]. The description of LDPC codes provided

here is based on a series of influential papers [72–74] by Richardson, Urbanke,

and their co-authors. Efficient encoding for LDPC codes, which I do not

consider here, is addressed by Richardson and Urbanke in [75]. There are

many other authors who have made significant contributions to the state of the

art for LDPC codes, and the February 2001 special issue of IEEE Transactions

on Information Theory provides a good snapshot of the state of the art at

that time. Two companies that have pioneered the use of irregular LDPC

codes in practice are Digital Fountain, which focuses on packet loss recovery

on the Internet, and Flarion Networks (now part of Qualcomm, Inc.), which

employs them in their proposed fourth generation wireless communication

system. Tornado codes [76] were an early example of erasure-optimized codes

constructed by Digital Fountain. These were followed by the invention of

“rateless” codes, which are irregular LDPC codes that do not require prior

knowledge of the channel’s erasure probability. That is, if k information

packets are to be sent, then a rateless code decodes successfully, with high

probability, when the receiver gets slightly more than k packets. Examples of

rateless codes include LT codes [77] and raptor codes [78].

While iterative decoding relies on information exchange between decoders,

the “turbo principle” can be applied more broadly for iterative informa-

tion exchange between receiver modules. For example, turbo equalization

[79, 80] is based on information exchange between a decoder and an equal-

izer; turbo multiuser detection [81] is based on information exchange between

a decoder and a multiuser detector (see Chapter 8 for more on multiuser

detection); and turbo noncoherent communication [82] involves information

exchange between a decoder and a block noncoherent demodulator (the latter

is described in Chapter 4). These are just a few examples of the large, and



August 13, 2007 5:55 p.m. CUP/FOD Page-369 9780521874144c07

369 7.7 Problems

rapidly expanding, literature on exploring applications of the turbo principle

for joint estimation (broadly applied to receiver functions including synchro-

nization, channel estimation, and demodulation) and decoding.

I refer to [83] as the starting point for more detailed investigation of BICM.

For further reading on TCM, a good source is the survey paper by Forney and

Ungerboeck [84] and the references therein. A description of the successful

application of TCM to voiceband modems is provided in [85, 86].

7.7 Problems

Problem 7.1 For the running example of the rate 1/2 [7,5] convolutional

code with nonsystematic, nonrecursive encoding as in Figure 7.1, answer the

following questions using what you have learnt about transfer functions:

(a) What is the minimum number of differing input bits corresponding to two

codewords that have Hamming distance 7?

(b) What is the maximum output weight that can be generated by an input

sequence of weight 4?

(c) For an Eb/N0 of 7 dB, what is the pairwise error probability for two

codewords that have Hamming distance 7? Let E denote the set of error

events (i.e., paths through the trellis that diverge from the all-zero state at

time 0, and never diverge again once they remerge). Define the following

sum over all error events:

T�W�L�=
∑

e∈ E

Ww�e�Ll�e��

where w�e� is the weight of the coded bits corresponding to an error

event, and l�e� is the length of the error event (i.e., the number of trellis

branches traversed before merging with the all-zero state).

(d) Find a closed form expression for T�W�L�.

(e) Is there an error event of weight 100 and length 190?

Problem 7.2 Consider the running example [7,5] rate 1/2 convolutional

code with recursive systematic encoding as in Figure 7.3.

(a) Draw a state diagram for the code.

(b) Draw a trellis section for the code.

(c) Find the transfer function T�I�X� defined in (7.14).

(d) What is the minimum Hamming distance between codewords which differ

by one input bit?

Problem 7.3 Consider a nonsystematic, nonrecursive, rate 1/2 convolutional

code with generator [7,6].

(a) Draw a state diagram for the code.

(b) Draw a trellis section for the code.
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(c) Find the transfer function T�I�X� defined in (7.14).

(d) Find the free distance of the code. How does it compare with the [7,5]

code of the running example?

Problem 7.4 Consider a rate 2/3 convolutional code in which two

inputs �u1�k�� u2�k�� come in at every time k, and the three outputs

�y1�k�� y2�k�� y3�k�� are emitted at every time k. The input–output relation is

given by

y1�k�= u1�k�+u1�k−1�+u2�k−1��

y2�k�= u1�k−1�+u2�k��

y3�k�= u1�k�+u2�k�	

(a) Draw a simple shift register implementation of the preceding encoding

function.

(b) Draw a trellis section showing all possible transitions between the encoder

states. Label each transition by u1�k�u2�k�/y1�k�y2�k�y3�k�.

(c) Draw a state diagram for enumerating all error events. Label each branch

by I iXx, where i is the input weight, and x the output weight, of the

transition.

(d) Find the free distance of the code. Find the transfer function T�X� for

enumerating the output weights of error events. How many error events

of weight 5 are there?

Problem 7.5 Consider BPSK transmission over the AWGN channel of the

code in Problem 7.1. The encoder starts in state 00, and five randomly chosen

input bits are sent, followed by two zero bits to ensure that the encoder state

goes back to 00. Thus, there are a total of 14 output bits, in seven groups of

two, that are sent out, mapping 0 to +1 and 1 to −1 as usual. Suppose that

we get noisy received samples, grouped in seven pairs as below:

�−0	5�1	5�−0	5�−0	8�1	2�−0	2�0	2�0	1�1�1�−0	5�1	5�−1	1�−2�	

(a) Run the Viterbi algorithm to get an ML estimate of the five bit input

payload.

(b) Make hard decisions on the samples and then run the Viterbi algorithm.

Compare the result with (a).

Problem 7.6 Consider the rate 1/2 nonrecursive, nonsystematic convolu-

tional code with generator [7,5] which provides the running example.

(a) Plot the transfer function bound on BER on a log scale as a function of

Eb/N0 (dB) for BPSK transmission over the AWGN channel, with soft

decision ML decoding. Also plot the BER estimate obtained by taking

the first few terms of the union bound (e.g., up to the code’s free distance

plus three).
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(b) On the same plot, show the performance of uncoded BPSK and comment

on the coding gain.

(c) At a BER of 10−5, how far is this code from the Shannon limits for

unrestricted input and BPSK input on the AWGN channel? (Use the

results from Chapter 6 and compare with the results of (a)).

Problem 7.7 Consider transmission of a binary codeword over a BSC.

(a) Use (7.7) to show that ML decoding for transmission over a BSC is

equivalent to minimizing the Hamming distance between the received

word and the set of codewords, assuming that the crossover probability

p < 1/2.

(b) For a binary code of rate R transmitted over an AWGN channel using

BPSK, show that hard decisions induce a BSC, and specify the crossover

probability in terms of R and Eb/N0.

Problem 7.8 Performance of Viterbi decoding with hard decisions Con-

sider Viterbi decoding with hard decisions for BPSK over an AWGN channel.

(a) For two codewords with Hamming distance x, show that the pairwise

error probability for ML decoding with hard decisions takes the form

q�x�=
x
∑

i=�x/2�

(

x

i

)

pi�1−p�x−i� (7.124)

where p is the probability of hard decision error.

(b) For p< 1
2
and i≥ �x/2�, show that pi�1−p�x−i ≤ �

√

p�1−p��x. Use this

to infer that

q�x�≤ �2
√

p�1−p��x	

(c) Follow the steps in Example 7.1.1 to derive a transfer function bound

for hard decisions for the running example rate 1/2 [7,5], nonrecursive,

nonsystematic code. Plot the BER as a function of Eb/N0 as in Problem

7.6. Compare with the soft decision BER curve in Problem 7.6 to estimate

the dB loss in performance due to hard decisions.

(d) Using the first term in the union bound and a high SNR approximation,

estimate analytically the dB loss in performance due to hard decisions.

Problem 7.9 (Bhattacharya bound) Consider ML decoding over a

discrete memoryless channel, as discussed in Section 7.1.5. We wish to

derive a special case of the Chernoff bound, called the Bhattacharya bound.

Consider V = log�p�r�1��/�p�r�0��, the log likelihood ratio corresponding to

a particular observation.
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(a) Show that

�
[

esV �0
]

=
∫

�p�r�1��s �p�r�0��1−s
dr = b0�

where the integral becomes a sum over all possible values of r when r

takes discrete values. Set s = 1/2 to obtain the special case

b0 =
∫

√

p�r�1�p�r�0� dr�Continuous valued observation�

b0 =
∑

r

√

p�r�1�p�r�0��Discrete valued observation	
(7.125)

(b) Consider the pairwise error probability q�x� defined by (7.22). Show that

q�x�≤ bx0� (7.126)

where b0 is as defined in (7.125). This is the Bhattacharya bound on

pairwise error probability with ML decoding.

Problem 7.10 (Bhattacharya bound for BSC) Show that the Bhattacharya

bound for pairwise error probability with ML decoding for the special case

of the BSC with crossover probability p is given by

q�x�≤
(

2
√

p�1−p�
)x

�

the same result as in Problem 7.8(b). Is this the best possible Chernoff bound

for the BSC?

Problem 7.11 (Performance with two bit quantization of observations)

Consider BPSK transmission over the AWGN channel with observation cor-

responding to code symbol c given by

z=
√

Es�−1�c+N�

where N ∼N�0�
2�. Fix SNR=Es/

2 to 6 dB, and set 
2 = 1 for simplicity.

(a) Find the Bhattacharya bound parameter b0 given by (7.125) for unquan-

tized observations. Now, suppose that we use 2-bit quantized observations

as follows:

r =















+3, z > �

+1, 0< z < �

-1, −� < z < 0

-3, z <−� �

where �> 0 is a design parameter. (The values for the quantized observa-

tion r could be assigned arbitrarily, but are chosen so as to make obvious

the symmetry of the mapping.)

(b) Numerically compute, and plot, the Bhattacharya bound parameter b0
given by (7.125) as a function of � from 0 to 3. What is the best choice of

�? How does the Bhattacharya parameter b0 for the optimum � compare

with that for unquantized observations?
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(c) Repeat (b) for SNRs of 0 dB and 10 dB. How does the optimal value of

� depend on SNR?

Problem 7.12 (Consistency condition for LLR distributions) Consider

binary transmission (0 or 1 sent) over a symmetric channel with a real-valued

output satisfying

p�y�0�= p�−y�1�	
Define the LLR L�y�= log�p�y�0��/�p�y�1��. Let q�l� denote the conditional
density of L�y�, given that 0 is sent. Derive a consistency condition that q�l�

must satisfy using the following steps.

(a) Show that L�y� is an antisymmetric function.

(b) How is the distribution of L�y� conditioned on 0 related to the distribution

of L�−y� conditioned on 1?

(c) Show that

P�L�y�= l�0�= P�L�y�=−l�1�	
(For convenience of notation, we treat L�y� as a discrete random variable.

Otherwise we would replace L�y�= l by L�y�∈ �l� l+dl�, etc.)

(d) Using p�y�1� = eL�y�p�y�0�, show that following consistency condition

holds:

q�l�= elq�−l�	

(d) For BPSK transmission through an AWGN channel, show that the LLR

satisfies the consistency condition.

(e) Suppose that the LLR conditioned on 0 sent is modeled as Gaussian

N�m�v2�. Apply the consistency condition to infer that v2 = 2�m�.

Problem 7.13 (Software project: BCJR algorithm) For the running exam-

ple of the rate 1/2 [7,5] RSC convolutional code, implement the log domain

BCJR algorithm in software. Assume that you are sending 10 000 information

bits, with two more bits for terminating the trellis in the all-zero state. The

encoded bits are sent using BPSK over an AWGN channel.

(a) For the all-zero codeword, plot the histograms of Lcode, Lchannel, and

Lout = Lcode +Lchannel over a packet. Also plot histograms over multiple

packets (with independent noise samples across packets, of course). Plot

the histograms for several values of Eb/N0, including 0 dB and 7 dB, and

comment on the shapes.

(b) Make hard decisions based on the bit LLRs Lout, and estimate the BER by

simulation over “enough” packets. Plot the BER as a function of Eb/N0,

starting from the Shannon limit for BPSK at the given rate, and going up

to 10 dB. How far away is the code from the Shannon limit for BER of

10−4? Also plot the uncoded BER for BPSK for reference, and comment

on the coding gain at BER of 10−4.
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(c) Plot the simulated BER with the log BCJR algorithm with the transfer

function bound for the BER with the Viterbi algorithm. Comment on the

plots.

(d) Now, suppose that the all-zero codeword is sent, and you get nonzero

prior LLRs as input to the BCJR algorithm. These prior LLRs are modeled

as i.i.d. Gaussian random variables Lin�u�∼ N�m�2m�, where m> 0 is a

parameter to be varied. Assume that there is no input from the channel.

Plot the mean and variance of Lcode�u� as a function of m, averaging over

multiple packets if needed to get a smooth curve. Is there a relation that

you can find between the mean and the variance of Lcode�u�? Also, plot

the histogram of Lcode�u� and comment on its shape.

Problem 7.14 (Software project: BCJR algorithm) Repeat Problem 7.13

for the nonrecursive nonsystematic version of the running example rate 1/2

[7,5] code. In part (d), assume that prior LLRs are available for coded bits,

rather than the information bits. (This would be the case when the code is an

outer code in a serial concatenated system, as in Problem 7.17.)

Problem 7.15 (Software project: parallel concatenated turbo code) This

project builds on the software developed for Problem 7.13. Use parallel

concatenation of the rate 1/2 [7,5] RSC code which is the running example

to obtain a rate 1/3 turbo code.

(a) Implement the encoder, using a good interleaver obtained from the liter-

ature (e.g., Berrou and Glavieux [60]) or a web search. Use about 10 000

input bits. Discuss whether or not the encoder is (or can be) terminated

in the all-zero state on both branches. Try encoding a number of input

sequences of weight 2, and report on the codeword weights thus obtained.

(b) Implement iterative decoding with information exchange between two

logarithmic BCJR decoders. Simulate performance (assume all-zero code-

word sent) by plotting the BER (log scale) versus Eb/N0 (dB) from 10−1

down to 10−5, sending enough packets of 10 000 bits each to get an accu-

rate estimate. Look at the curve to estimate the threshold Eb/N0 at which

iterative decoding converges. At a BER of 10−4, how far is the code from

the Shannon limit?

(c) Perform an EXIT analysis at Eb/N0 which is 0.5 dB smaller and 0.5 dB

larger than the convergence threshold estimated from your simulation of

the turbo code, and comment on the differences in behavior. The EXIT

analysis involves a simulation of an individual BCJR decoder in a manner

similar to Problem 7.13(d). Can you predict the convergence threshold

using the EXIT analysis?

(d) Plot the histograms for various LLRs (e.g., Lcode and Lout) at various stages

of the iterative decoding. Do they look Gaussian? Using the Gaussian

assumption, how well can you predict the “SNR” (square of mean, divided
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by variance) of the LLRs by counting the number of bit errors resulting

from hard decisions based on these LLRs?

Problem 7.16 (Software project: serial concatenated turbo code) Repeat

Problem 7.15 for the rate 1/4 turbo code obtained by serial concatenation of

the rate 1/2 [7,5] RSC code with itself.

Problem 7.17 (Software project: serial concatenated turbo code) Repeat

Problem 7.15 for the rate 1/4 turbo code obtained by serial concatenation with

the rate 1/2 [7,5] nonsystematic, nonrecursive code as outer code, and the

RSC version of the same code as inner code. For the EXIT analysis, you now

need two different transfer functions, leveraging Problems 7.13 and 7.14.

Problem 7.18 (Turbo weight enumeration) Consider the rate 1/3 turbo

code obtained by parallel concatenation of the [7,5] rate 1/2 RSC code which

is our running example.

(a) For K= 103�104�105, plot the Benedetto bound (7.81) on BER (log scale)

versus Eb/N0 (dB), focusing on the BER range 10−2 to 10−5. How far

away is this code from the Shannon limit at BER of 10−4?

(b) Repeat part (a) for a [5,7] rate 1/2 component code, i.e., with generator

G�D� = �1� �1+D+D2�/�1+D2��. Note that the codewords for this

convolutional code are the same as that for the one in part (a).

(c) For K = 104, plot the BER bounds for both turbo codes on the same

graph, and comment on the reason for the differences.

Problem 7.19 (The tanh rule) Consider independent binary random vari-

ables X1 and X2, with P�Xi = 0� = pi�0� and P�Xi = 1� = pi�1�, i = 1�2. Of

course, we have pi�0�+pi�1�= 1. Now, consider the random variable

X = X1+X2�

where the addition is over the binary field (i.e., the sum is actually an exclusive

or operation).

(a) Show that the probability mass function for X is given by the cyclic

convolution

pX�k�= �p1 ∗p2��k�=
∑

n1+n2=k�mod 2�

p1�n1�p2�n2�	

(b) Recall that the DFT of an N -dimensional vector is given by

Pi�n�=
1
∑

k=0

pi�k�e
−j2�kn/N 	
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For the two-dimensional pmfs pi, set N = 2 to show that the DFT is

given by

Pi�0�= 1�

and that

Pi�1�= pi�0�−pi�1�	

(c) Using the result that cyclic convolution in the time domain corresponds

to multiplication in the discrete Fourier transform domain, show that

pX�0�−pX�1�= �p1�0�−p1�1�� �p2�0�−p2�1�� 	

(d) Setting m1 and m2 as the LLRs for X1 and X2, given by mi =
log�pi�0��/�pi�1��, and m equal to the LLR for X, show that

tanh
(m

2

)

= tanh
(m1

2

)

tanh
(m2

2

)

� Tanh rule	

(e) Use induction to infer that the preceding tanh rule generalizes to the

exclusive or of an arbitrary number of independent binary variables. This

yields the formula (7.101) for belief propagation at a check node.

Problem 7.20 (LDPC convergence thresholds) The purpose of this prob-

lem is to compute convergence thresholds for LDPC codes.

(a) For a �3�6� LDPC code over a BSC with crossover probability �, find

the threshold for Gallager’s algorithm A using density evolution.

(b) For the same �3�6� code over the same BSC channel, find the threshold for

belief propagation using density evolution or a Gaussian approximation

for the LLRs passed between the variable and check nodes. For a given

�, one possible approach is to use the exact message distribution for the

first set of messages from variable to check nodes (the message only takes

one of two values at this point). Use this to compute E�tanh�u/2�� for the

messages passed from check nodes to variable nodes, and now invoke

the Gaussian approximation to find mu. Thereafter, use the Gaussian

approximation.

(c) Use the Gaussian approximation to find the Eb/N0 threshold for the �3�6�

code sent using BPSK over an AWGN channel, and decoded using belief

propagation. How far is this from the Shannon limit?

(d) Use the results of (b) and (c) to estimate the penalty in dB of using hard

decisions with the �3�6� code, for BPSK transmission over AWGN.

(e) Use the Gaussian approximation to compute the Eb/N0 threshold for

the rate 1/2 irregular LDPC with degree sequences specified by ��x� =
0	2x+0	8x2, ��x�= 0	5x4+0	5x5, for BPSK over AWGN, decoded using

belief propagation. How does the result compare with (c)?
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Problem 7.21 (Irregular LDPC codes) Consider an irregular LDPC code

with ��x�= 0	3x2+0	1x3+0	6x4 and ��x�= ax7+bx8.

(a) Find a and b such that the code has rate 1/2. Use these values for the

remaining parts of the problem.

(b) What fraction of the variable nodes have degree 4?

(c) What fraction of the check nodes have degree 9?

(d) Find the Eb/N0 threshold for belief propagation over an AWGN channel

using the Gaussian approximation. Compare with the performance for the

codes in Problem 7.20(c) and (e).

(e) Now, compute the Eb/N0 threshold with hard decisions, decoded using

Gallager’s algorithm A. Compare with (d).

Problem 7.22 (Message passing with errors and erasures) Consider a

(3, 6) binary regular LDPC code. Assume that the all-zero codeword is sent.

For any bit x, the channel output z is 1 (error) with probability p0� e (erasure)

with probability q0, and 0 (correct decision) with probability 1− p0 − q0.

The following suboptimal message passing algorithm is employed by the

decoder. Messages take values 0, 1, e, and are updated as follows. The

message density is characterized by �p� q�, where p is the probability of error

and q the probability of erasure.

Variable node computations Take a majority vote of incoming messages

(from the check nodes and the channel) to determine whether the outgoing

message is 0 or 1. Ignore erasures in the voting. If the vote is deadlocked, or

if all incoming messages are erasures, then the output message is an erasure.

Check node computations If any incoming message is an erasure, then

the outgoing message is an erasure. Otherwise the outgoing message is the

XOR sum of the incoming messages.

Initialization The variable nodes send out the channel output to check

nodes on all edges. This is followed by multiple iterations, in which first the

check nodes, and then the variable nodes, send messages. In the following,

you are asked to go through density evolution for the first iteration.

(a) Find expressions for the check node output message distribution �pu� qu�

on a given iteration, as a function of the message distribution �pv� qv�

coming from the variable nodes. Give numerical values for �pu� qu� for

the first iteration when p0 = 0	03 and q0 = 0	2 (pv = p0 and qv = q0 for

the first iteration).

(b) Give expressions for the variable node output message distribution

�pv� qv� as a function of the channel message distribution �p0� q0� and the

input message distribution �pu� qu� from the check nodes. Give a numer-

ical answer for �pv� qv� at the end of the first iteration, using p0 = 0	03,

q0 = 0	2, and �pu� qu� taking the numerical values from(a).
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Problem 7.23 (BICM) Consider the Gray coded 4PAM-based BICM sys-

tem described in Section 7.4.1.

(a) For the channel model (7.116), derive the expressions (7.117) and (7.118)

for the LLRs. Plot these LLRs as a function of the observation y.

(b) Normalizing the noise variance 
2 = 1, what is the value of A for a rate

1/2 outer binary code, if Eb/N0 is 6 dB?

(c) Compute and plot the sum of the capacities of the equivalent binary

channels seen by the bits x1 and x2 as a function of SNR (dB). Plot for

comparison the capacity of equiprobable 4PAM over the AWGN channel.

Comment on the performance degradation due to restricting to a BICM

system.

(d) Replot the results of (c) as spectral efficiency versus Eb/N0 (dB).

Problem 7.24 (TCM) Consider the following TCM scheme based on a

rectangular 16-QAM constellation.

(a) Use Ungerboeck set partitioning to obtain four subsets which are trans-

lated versions of QPSK. Illustrate the partitioning using a figure analogous

to Figure 7.23.

(b) Use the rate 1/2 convolutional code in Figure 7.26 for subset selection,

and use a Gray code for the two uncoded bits selecting the symbol within

the subset. Compute the asymptotic coding gain in dB (if any) relative to

an uncoded 8-QAM constellation which is optimized for power efficiency.
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8 Wireless communication

Freedom from wires is an attractive, and often indispensable, feature for many

communication applications. Examples of wireless communication include

radio and television broadcast, point-to-point microwave links, cellular com-

munications, and wireless local area networks (WLANs). Increasing integra-

tion of transceiver functionality using DSP-centric design has driven down

implementation costs, and has led to explosive growth in consumer and enter-

prise applications of wireless, especially cellular telephony and WLANs.

While the focus of this chapter is on wireless link design, I comment briefly

on some system design issues in this introductory section. In terms of system

design, a key difference between wireless and wireline communication is

that wireless is a broadcast medium. That is, users “close enough” to each

other can “hear,” and potentially interfere with, each other. Thus, appropriate

resource sharing mechanisms must be put in place if multiple users are to

co-exist in a particular frequency band. The wireless channel can be shared

among multiple users using several different approaches. One possibility is

to eliminate potential interference by assigning different frequency channels

to different users; this is termed frequency division multiple access (FDMA).

Similarly, we can assign different time slots to different users; this is termed

time division multiple access (TDMA). If we use orthogonal multiple access

such as FDMA or TDMA, then we can focus on single-user wireless link

design. However, there are also nonorthogonal forms of multiple access, in

which different users can signal at the same time over the same frequency

band. In this case, the users would be assigned different waveforms, or

“codes,” which leads to the name code division multiple access (CDMA) for

these techniques.

In addition to time and bandwidth, another resource available in wireless

systems is space. For example, if one transmitter-receiver pair is far enough

away from another, then the mutual interference between them is attenuated

enough so as to be negligible. Thus, wireless resources can be utilized more

efficiently by employing spatial reuse, which forms the basis for cellular com-

munication systems. The area controlled by a single base station in a cellular

379
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system is termed a cell. The GSM and IS-54 digital cellular standards use

TDMA within a cell, and FDMA to avoid interference between neighboring

cells. However, cells that are far enough away can use the same frequency

band, with the “reuse pattern” depending on factors such as whether direc-

tional antennas are used, and how much interference the modulation technique

has been designed to tolerate. On the other hand, the IS-95 and related third

generation cellular standards use CDMA with “100% spatial reuse,” with the

same frequency band used across all cells.

For the remainder of this chapter, I restrict attention to the design of

an individual wireless link. There are three major themes: understanding

the characteristics of the wireless channel, coverage of modulation formats

commonly used in wireless systems, and the design of wireless systems with

multiple antennas.

Map of this chapter I begin by discussing wireless channel models in

Section 8.1, including the phenomenon of multipath fading and channel time

variations due to mobility. In Section 8.2, I discuss the potentially disastrous

impact of Rayleigh fading on performance, and discuss how diversity can be

used to combat fading. The remainder of this chapter provides an exposure to

communication techniques commonly used on wireless channels. I begin with

orthogonal frequency division multiplexing (OFDM) in Section 8.3, a tech-

nique designed to simplify the task of equalization over a multipath channel.

This is the basis for emerging fourth generation cellular systems, including

those based on the IEEE 802.16 and 802.20 standards, as well as for the

IEEE 802.11a, 802.11g, and 802.11n standards. Direct sequence (DS) spread

spectrum signaling is discussed in Section 8.4; DS-CDMA forms the basis

for the IS-95 second generation cellular standard, as well as third generation

cellular standards. Frequency hop (FH) spread spectrum is briefly discussed

in Section 8.5; FH-CDMA is used in military packet radio networks (e.g.,

the SINCGARS system) due to its robustness to multiple-access interference,

fading, and jamming. It is also used in the IEEE 802.15.1 WPAN standard

commonly known as Bluetooth. Space–time, or multiple antenna, communi-

cation is discussed in Section 8.7. Space–time communication is a key feature

of the emerging IEEE 802.11n WLAN standard, and can also be used to

enhance the performance of cellular systems.

8.1 Channel modeling

Channel models play a critical role in the design of communication systems:

a typical design must go through several iterations driven by computer-

based performance evaluations before the expense of building and testing a

prototype is taken on. A common approach to channel modeling is to abstract

statistical models from a large set of measurements. Computer simulations of
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performance can then be carried out by drawing channel realizations from the

statistical model, evaluating the performance for a specific realization, and

averaging the performance attained over many such realizations. In addition

to measurements, artificial statistical channel models may also be defined,

to test whether the communication system design can withstand a variety of

challenges. For example, there are a number of representative channel models

defined for the GSM cellular system that a good design must be able to

function under. In the following, I discuss some basic elements of statistical

channel modeling.

As shown in Figure 8.1, in a typical wireless environment, the receiver

sees a superposition of multiple attenuated and phase shifted copies of the

transmitted signal. Thus, if u�t� is the transmitted complex baseband signal,

the received complex baseband signal has the form

y�t�=
M
∑

k=1

Ake
j�ku�t− �k�e

−j2�fc�k�

where, for the kth multipath component, Ak is the amplitude, �k is the

phase (modeling the phase changes due to the scattering undergone by this

component), �k is relative delay, and 2�fc�k is the phase lag caused by this

delay, where fc is the carrier frequency.

Figure 8.1 The signal from

transmitter to receiver in a

wireless system may undergo

reflections from multiple

scatterers, creating a multipath

channel. The line of sight

(LOS) path may or may not be

available, depending on the

propagation environment.

Since the carrier frequency fc is large, small changes in delay �k cause large

changes in the phase −2�fc�k. When expressed modulo 2�, such changes

may be viewed as a completely random new choice of phase. Thus, setting

�k = �k − 2�fc�k mod 2� as the phase of the k component, expressed in

the interval 	0�2�
, we obtain the following model. The complex baseband

Transmitter

Scatterer

LOS path

(not always available)

Reflected path

Receiver



August 13, 2007 7:57 p.m. CUP/FOD Page-382 9780521874144c08

382 Wireless communication

received signal y is obtained by passing the transmitted signal u through a

complex baseband channel with impulse response

h�t�=
M
∑

k=1

Ake
j�k��t− �k� Multipath channel model� (8.1)

where the phases ��k
 are modeled as independent and identically distributed

random variables, uniformly distributed in 	0�2�
. In general, when either

the transmitter, the receiver, or the scatterers are mobile, the gains Ak, �k,

and �k would vary with time. For the moment, I do not consider such time

variations, so that the amplitudes and delays are constants.

Narrowband Rayleigh and Rician fading models Taking the Fourier

transform of (8.1), we get the channel transfer function

H�f�=
M
∑

k=1

Ake
j�ke−j2�f�k � (8.2)

Narrowband signaling refers to a setting in which the channel transfer function

is approximately constant over the signal band, which is, say, a small band

around f0. In this case, the channel can be modeled as a scalar gain h, given by

h≈H�f0�=
M
∑

k=1

Ake
j�k� (8.3)

where �k = �k− j2�f0�k mod 2�. Since ��k
 are i.i.d., uniform over 	0�2�
,

so are ��k
. We therefore have

Re�h�=
M
∑

k=1

Ak cos��k�� Im�h�=
M
∑

k=1

Ak sin��k��

If the number of multipath components is large, and the contribution of any

one component is small, then we can apply the central limit theorem to

approximate Re�h�, Im�h� as jointly Gaussian random variables. Their joint

distribution is therefore specified by computing the following means and

covariances, using the identities

�	Re�h�
 =
M
∑

k=1

Ak�	cos��k�
= 0� �	Im�h�
=
M
∑

k=1

Ak�	sin��k�
= 0�

var �Re�h�� = �

[

�Re�h��2
]

=
M
∑

k=1

M
∑

l=1

AkAl�	cos��k� cos��l�


=
M
∑

k=1

A2
k�	cos

2 �k
+
∑

k �=l

AkAl�	cos��k�
�	cos��l�


= 1

2

M
∑

k=1

A2
k�
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Similarly, we can show var �Im�h��= 1
2

∑M
k=1A

2
k and cov�Re�h�� Im�h��= 0.

Thus, under our central limit theorem based approximation, Re�h� and Im�h�

are i.i.d. N�0� 1
2

∑M
k=1A

2
k�. That is, the channel h is proper complex Gaussian,

h∼CN�0�
∑M

k=1A
2
k�. This implies that the amplitude �h� is a Rayleigh random

variable, leading to the term Rayleigh fading. The power �h�2 is an exponential
random variable with mean �	�h�2
=∑M

k=1A
2
k. In summary, we have

H�f�∼ CN�0�
∑

k

A2
k� Narrowband Rayleigh fading� (8.4)

Now, suppose that one of the multipath components (say component 1) is

significantly stronger than the others. A classical example is when there is a

“specular” line of sight (LOS) path with the smallest delay, together with a

large number of smaller, “diffuse,” multipath components. Then, reasoning

as above, the complex gain hdiffuse resulting from the sum of the diffuse

components can be modeled as zero mean, proper complex Gaussian, so that

the net channel gain has the form

h= A1e
j�1 +hdiffuse�

In this case, the amplitude �h� is a Rician random variable, corresponding to

a Rician fading channel model, given by

H�f�∼ CN�A1e
j�1

M
∑

k=2

A2
k� Narrowband Rician fading� (8.5)

The preceding narrowband models are termed frequency nonselective, or flat,

fading, because the channel gain is approximately constant over the signal

frequency band.

Bandwidth-dependent tap delay line model Suppose now that the trans-

mitted signal has bandwidth large enough that the channel can no longer be

modeled as approximately constant over the signal band. Such a channel is

termed frequency selective, and we must go back to the generality of model

(8.1) in order to develop a statistical model for the channel. However, one

can tailor the channel model to the characteristics of the signals we anticipate

using over the channel. Specifically, if the transmitted signal has bandwidth

W , then it suffices to consider delays that are spaced by 1/W . This is because

the received signal y has bandwidth bounded by W , and can therefore be

represented by 1/W -spaced samples. This in turn implies that it suffices to

consider taps spaced by 1/W in a mathematical channel model such as (8.1).

That is, unresolvable channel multipath components that may be spaced much

closer than 1/W can be merged into resolvable 1/W -spaced taps, leading to

an equivalent tap delay line (TDL) model of the form

h�t�=
�
∑

i=1

�i��t−
i

W
� TDL model� (8.6)
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If there are a large number of unresolvable multipath components that com-

prise each resolvable tap, then, from (8.1), the ith resolvable tap is given by

�i ≈
∑

k��k≈ i
W

Ake
j�k � (8.7)

If the number of unresolvable taps being summed in (8.7) is large enough,

then, applying a central limit theorem approximation as before, we can model

��i
 as zero mean, proper complex Gaussian random variables. Furthermore,

since the phases for the unresolvable components in each resolvable tap

are independent, the resolvable taps ��i
 are independent. Thus, the tap

amplitudes ��i� are independent Rayleigh random variables. Note also that,

for specular multipath components, one or more of the resolvable taps may

be modeled as Rician rather than Rayleigh.

To complete the description, I must say something about the tap strengths.

Channel measurements are often summarized in terms of power-delay profiles.

A power delay profile P��� (� ≥ 0) can be interpreted as a density, normalizing

such that
∫ �
0
P��� d� = 1, with P���d� denoting the fraction of power in

taps with delays in the interval 	�� �+ d�
. The standard deviation for this

density is termed the root mean squared (RMS) delay, �rms, of the channel.

Let us consider an exponential PDP of the form P��� = �e−�� , since these

are often encountered in measurement campaigns. Noting that �rms = 1/�, we

can rewrite the exponential PDP as

P���= 1

�rms

e−
�

�rms � � ≥ 0� (8.8)

Knowing the PDP, we can now compute the power in the ith resolvable tap as

�	��i�2
=
∫ �i+1�/W

i/W
P���d��

Instead of an exact computation as above, we may also just approximate as

�	��i�2
≈ cP

(

i

W

)

� (8.9)

where it is often convenient to choose the normalization factor c such that
∑�

i=0�	��i�2
= 1.

Example 8.1.1 (TDL model for exponential PDP) For an exponential

PDP with RMS delay spread �rms and a signal bandwidth W , the taps in

a bandwidth-dependent TDL model (8.6) can be modeled as independent,

with

�i ∼ CN�0� abi��

where b = exp
(

− 1
W�rms

)

and a= 1−b.



August 13, 2007 7:57 p.m. CUP/FOD Page-385 9780521874144c08

385 8.1 Channel modeling

The TDL model is widely used in the design of wireless systems. For example,

a set of nominal channel models is defined for the design of GSM cellular

systems, for settings such as “typical urban” and “hilly terrain.” The taps in

such a model are not necessarily evenly spaced, and may follow Rayleigh,

Rician, or other fading models. However, the broad rationale for such models

is similar to that in the preceding discussion.

Channel time variations Time variations for typical wireline channels are

very slow (e.g., caused by temperature fluctuations) compared with the time

scale of communication, and can be safely ignored for all practical purposes,

assuming that the transmitter and receiver have autocalibration mechanisms

that adapt to channel variations across different settings. For example, a

DSL transceiver must be able to adapt to the different channels encountered

when providing connectivity to different homes. Of course, even when a

channel is time-invariant, time variations may be induced by factors such

as the mismatch between the frequency references used by the transmitter

and receiver. However, such mismatch can be virtually eliminated for time-

invariant channels by the use of synchronization circuits such as phase locked

loops. For wireless mobile channels, on the other hand, channel time variations

due to relative mobility between transmitter, receiver, or scatterers, cannot be

eliminated, and impose fundamental limitations on performance. Fortunately,

such channel time variations are, typically, slower than the symbol rate. For

example, for a carrier frequency fc of 1GHz and a mobile terminal moving at

velocity v of 100 km/h, the maximum Doppler frequency is fd = fcv/c, which

comes to less than 100Hz. This is two orders of magnitude smaller than even

a relatively slow symbol rate of 10 ksymbol/s. This means that it is possible

to track the channel without excessive overhead by employing known pilot

signals, or to use noncoherent techniques that exploit the fact that the channel

can be approximated as roughly constant over several symbols.

For the TDL model (8.6), we can include the effect of such time variations

by making the tap gains �i�t� time-varying. A popular approach is to model

�i�t� as independent, wide sense stationary (WSS), random processes whose

power spectral density depends on the Doppler spread of the channel.

Clarke’s model for time-varying Rayleigh fading A now-classical model

for channel time variations in a typical urban cellular wireless system is

Clarke’s model. The mathematical model is that of a time-varying complex

gain that is a sum of a number of gains of a complex exponential form

modeling Doppler shifts, as follows:

X�t�=
∑

k

ej�2�fkt+�k�� (8.10)

where fk is the Doppler shift seen by the kth component. Figure 8.2 depicts

a typical application of Clarke’s model to the channel seen by a mobile

receiver surrounded by a circular field of scatterers and moving at velocity v.
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The velocity along the kth scattered component is v cos�k, where �k is the

angle that the path makes relative to the direction of relative motion. The

resulting Doppler shift fk = fD cos�k, where fD = vfc/c is the maximum

Doppler shift, with c denoting the speed of light (c = 3× 108 meters per

second in free space). By now familiar central limit theorem arguments, we

can model X�t� as a proper complex Gaussian random process with zero

mean, so that it is only necessary now to specify its power spectral density.

Replacing the summation over k in (8.10) by a continuum, we see that the

power is a small band around frequency f = fD cos� and is given by

Figure 8.2 Clarke’s model for

time variations for a

narrowband Rayleigh fading

channel. The waves arriving

from the ring of scatterers

superimpose to result in a gain

modeled as a complex

Gaussian random process with

PSD given by (8.11).

SX�f��df � =G����d���

where G��� is the power gain at angle of incidence �, and is influenced by

both the receive antenna gain and the power-angle profile. Note that

df

d�
=−fD sin�=−fD

√

1− �f/fD�
2�

Now, assuming rich scattering and an omnidirectional receive antenna, we

know that G��� is independent of �. This yields

SX�f�=
1

�fD
√

1− �f/fD�
2
� (8.11)

where we have normalized so that

�	�X�t��2
=
∫ fD

−fD

SX�f�df = 1�

The preceding development can be used to infuse a basic Rayleigh fading

model with time variations in a number of different contexts. For example,

Clarke’s model is widely used to model time variations in the taps in a TDL

model such as (8.6), since each tap can be thought of as a sum of a number of

unresolvable components arriving from different directions. Clarke’s model is
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also applied to model the time variations of a narrowband channel as in (8.2),

since again the complex channel gain is a sum of a number of components,

each of which could be arriving from a different direction. Simulation of

Clarke’s model is typically done using Jakes’ simulator (or its variants), which

implements the summation in (8.10) for a finite number of paths, with the

Doppler shift for the kth path, fk = fD cos�k, and arrival angles �k spaced

uniformly on a circle.

In addition to the fading caused by the changes in the relative delays

of various paths, the wireless channel also exhibits shadowing effects due

to blockages of the paths between the transmitter and receiver by various

obstacles.

8.2 Fading and diversity

I have shown now that Rayleigh fading is a fundamental feature of “rich

scattering” channels with a large number of multipath components. I now

show the potentially disastrous consequences of Rayleigh fading and discuss

some remedies.

8.2.1 The problem with Rayleigh fading

Under Rayleigh fading, the noiseless received signal corresponding to a

transmitted narrowband signal s�t� is of the form hs�t�, where h is zero

mean, proper complex Gaussian. It is convenient to normalize such that

h∼ CN�0�1�, and to define the power gain G= �h�2, where G is exponential

with mean one. The density of G is given by

pG�g�= e−gI�g≥0
� (8.12)

Furthermore, R=
√
G is a Rayleigh random variable with density

pR�r�= 2re−r2I�r≥0
� (8.13)

I define the average SNR parameter S̄ = Ēb/N0, and note that the SNR

S = Eb/N0 = GS̄. Rayleigh fading causes performance degradation because

the power gain G has a high probability of taking on values significantly

smaller than its mean value of one. This phenomenon is termed fading. The

probabililty of a fade can be computed as follows:

P	G≤ �
= 1− e−� ≈ �� �≪ 1� (8.14)

Thus, the probability of a 10 dB fade (�= 0�1) is about 10%, and the probabil-

ity of a 20 dB fade (�= 0�01) is 1%. The bits sent during fades are very likely

to be wrong, and it turns out that these events dominate the average error

probability (averaged over the fading distribution) in uncoded systems. As a
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result, as I show below, the average error probability for uncoded communi-

cation with Rayleigh fading decreases as the reciprocal of the average SNR,

which is much less power efficient than communication over the AWGN

channel, where the error probability decays exponentially with SNR.

Averaging over fades When the fading gain fluctuates over the duration

of communication, we are interested in performance averaged over fades.

We would hope that such averaging would improve performance, with the

good performance for large G compensating for the bad performance for

small G. However, if we simply average over fades in an uncoded system, the

average error probabililty is dominated by the performance during deep fades,

which severely degrades the performance. I quantify this effect next, and then

discuss more intelligent strategies for averaging over fades in Sections 8.2.2

and 8.2.3.

Performance of uncoded systems with Rayleigh fading Let us consider

the error probability for noncoherent demodulation of equal energy binary

orthogonal signaling (e.g., FSK), given by 1/2e−Eb/2N0 = 1/2e−S/2 for an

AWGN channel. Over the Rayleigh fading channel, the error probability is

a function of the normalized fading gain G as follows: Pe�G� = 1/2e−GS̄/2.

Averaging out G using (8.12) for a Rayleigh fading channel, we get the

average error probability

Pe = �	Pe�G�
=
∫

Pe�g�fG�g� dg =
∫ �

0

1

2
e−

gS̄
2 e−g dg�= 1

2+ S̄
�

We therefore have

Pe =
(

2+ Ēb/N0

)−1
Noncoherent FSK in Rayleigh fading� (8.15)

which has the reciprocal decay with average SNR mentioned earlier. As

shown in Problem 4.10, this result can also be deduced directly for a Rayleigh

fading model, without going through the above process of averaging the error

probability for an AWGN channel.

We can employ the preceding analysis to evaluate the average error prob-

ability for binary DPSK (which we know to be 3 dB better than noncoherent

binary FSK on the AWGN channel), by replacing S̄ by 2S̄ in the expression

(8.15). This yields

Pe =
(

2+2Ēb/N0

)−1
Binary DPSK in Rayleigh fading� (8.16)

We expect similar results to hold for coherent demodulation as well. In this

case, the error probability takes the formQ�
√
aS� (a is a constant that depends

on the modulation scheme). Since the error probability is again approximately

exponential in S (using Q�x� ∼ e−x2/2), we again expect to get a reciprocal

dependence on average SNR. Let us carry out the detailed computations for

coherent binary FSK, to compare with our prior result for noncoherent FSK.
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The error probability is Q
(√

Eb/N0

)

, which we rewrite as Pe�S�=Q
(√

S
)

=
Q
(

√
GS̄
)

. We shall see in Problem 8.9 how this expectation can be evaluated

using the gamma function introduced in Problem 8.7. Here, however, we

evaluate the expectation by expressing the error probability in terms of the

Rayleigh random variable R=
√
G. We have Pe�R�=Q�R

√
S̄�, and average

out R using (8.13), as follows:

Pe = �	Pe�R�
=
∫

Pe�r�fR�r� dr =
∫ �

0
Q
(

r
√

S̄
)

2re−r2 dr

= −e−r2Q
(

r
√

S̄
)

�r=�
r=0 +

∫ �

0
e−r2 d

dr
Q
(

r
√

S̄
)

dr� (8.17)

where we have integrated by parts. We have

d

dr
Q
(

r
√

S̄
)

=−
√

S̄
e−r2 S̄/2

√
2�

�

Substituting into (8.17), we have

Pe =
1

2
−
√

S̄
∫ �

0

1√
2�

e−r2�1+ S̄
2 � dr� (8.18)

We can now evaluate the second term by recognizing that the integral is of

the form of an N�0� v2� density integrated over positive reals. That is, setting

1

2v2
= 1+ S̄

2

we can write the second term in (8.18) as

√

S̄v
∫ �

0

1√
2�v2

e
− r2

2v2 dr = S̄v

2

We therefore get

Pe =
1

2
−

√
S̄v

2
= 1

2

(

1−
√
S̄

√

2+ S̄

)

= 1

2

(

1−
(

1+ 2

S̄

)− 1
2

)

�

At high SNR, 2/S̄ is small. Using �1+x�−1/2 ≈ 1−x/2 for x small, we find

that
(

1+2/S̄
)−1/2 ≈ 1−1/S̄ at high SNR. The error probability is therefore

given by

Pe =
1

2

(

1−
(

1+2N0/Ēb

)− 1
2

)

high

≈
SNR

(

2Ēb/N0

)−1

Coherent FSK in Rayleigh fading� (8.19)

The preceding analysis for Pe�S� = Q�
√
S� can be employed to deduce the

average error probability for any digital modulation scheme with error prob-

ability Q�
√

kEb/N0�, by replacing S by kS, and hence S̄ by kS̄. For BPSK,
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which has error probability Q�
√

2Eb/N0�, we can replace S̄ by 2S̄ in the

above to get

Pe =
1

2

(

1−
(

1+N0/Ēb

)− 1
2

)

high

≈
SNR

(

4Ēb/N0

)−1

Coherent BPSKinRayleighfading� (8.20)

Comparing coherent FSK performance (8.19) with noncoherent FSK perfor-

mance (8.15), or comparing coherent BPSK performance (8.20) with binary

DPSK performance (8.16), we note that, for large Ēb/N0, coherent demod-

ulation is 3 dB better for the Rayleigh fading channel. This is in contrast

to our earlier results for AWGN channels, in which we noted that the error

probability for coherent and noncoherent FSK have the same exponent of

decay at large SNR as do those for BPSK and binary DPSK. This is because

high SNR asymptotics for the AWGN channel are not an accurate predictor

of performance for uncoded communication over Rayleigh fading channels,

since the error probability for the latter is dominated by deep fades, where

the power gain G is small. On the other hand, in a well engineered system for

dealing with Rayleigh fading, we would like the performance to be dominated

by the performance when the power gain G is large, which is the case most of

the time: while a 10 dB fade occurs with 10% probability, by the same token,

the power gain is no worse than 10 dB below its average value with 90%

probability. As discussed in Section 8.2.2, coding across fades is one way to

accomplish this: this is one form of diversity, in which the system exploits

the variation of fading gains across code symbols. The code is designed to

have enough redundancy to deal with the anticipated fraction of badly faded

symbols. While I focus on coherent coded systems in Section 8.2.2, as shown

by a simple example in Problem 8.4, the performance gap between coherent

and noncoherent systems does narrow when we employ coding.

In Section 8.2.3, I discuss another form of diversity, where each transmitted

symbol sees several different fading gains (e.g., if the receiver has multiple

antennas). In this case, a suitable combining scheme is used to ensure that the

effective gain seen by the symbol fluctuates less than a single fading gain.

8.2.2 Diversity through coding and interleaving

I have shown that multipath fading channels vary across frequency, and,

when there is mobility, across time. Thus, if we employ a wide enough

bandwidth, or a large enough time interval, for signaling, then we should see

good channel realizations as well as bad fades. Furthermore, good channel

realizations occur far more often than bad fades. Symbols that see good

channel realizations are likely to be correctly demodulated. By employing

error correction coding over a large enough time–frequency span, we can

therefore compensate for the small fraction of symbols that see bad fades and
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are incorrectly demodulated. Thus, coding is a way of exploiting frequency

and time diversity. Since typical codes are optimized for random errors, while

fades are correlated in time and frequency, the correlations are broken up by

scrambling, or interleaving, the code symbols before modulation. A simple

example of an interleaver is the row–column structure depicted in Figure 8.3,

but more sophisticated interleavers may be employed in practice.

Figure 8.3 A simple

row–column interleaver.

Rather than discuss specific codes, I illustrate the power of coding and

interleaving using a simple information-theoretic analysis for the idealized

Rayleigh faded system described later.

Ergodic capacity In a system with ideal interleaving and codewords that

are long enough to see all possible channel realizations, the nth received

sample is given by

y	n
= h	n
x	n
+w	n
� (8.21)

where h	n
 ∼ CN�0�1� are i.i.d. Rayleigh faded gains, x	n
 are transmitted

symbols subject to a power constraint �	�x	n
�2
≤ P, and w	n
∼CN�0�2�2�

are i.i.d. WGN samples. Because we average over the Rayleigh fading distri-

bution across the symbols of each codeword, we term the maximum achiev-

able rate the ergodic capacity of the channel. Conditioned on h	n
, the channel

is an AWGN channel at each time instant, which can be used to show, using

the techniques of Chapter 6, that i.i.d. white Gaussian input, x	n
∼CN�0�P�,

is optimal. The average SNR is therefore SNR = �	�h�2
P/�2�2� = P/N0

(with the normalization �	�h	n
�2
 = 1). The resulting mutual information

averaged over a codeword of length N is given by using the AWGN formula

with SNR at time n given by �h	n
�2 SNR. This yields
1

N
I�x	1
� � � � � x	n
� y	1
� � � � � y	n
� = 1

N

N
∑

n=1

log
(

1+�h	n
�2SNR
)

→ �
[

log
(

1+�h�2SNR
)]

�

N → ��
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where h∼ CN�0�1�. Since �h�2 =G is an exponential random variable with

mean one, the capacity in bits per channel use is given by

CRayleigh = � 	log �1+G SNR�
=
∫ �
0
log �1+g SNR� e−gdg �

Ergodic capacity with Rayleigh fading�
(8.22)

Using Jensen’s inequality (see Appendix C and Problem 8.3), it can be shown

that CRayleigh < CAwgn for a given SNR. However, as shown in the numerical

computations of Problem 8.3, the degradation in performance is relatively

modest, in contrast to the huge performance loss due to fading in uncoded

systems.

Outage capacity Now, let us consider a different scenario in which each

codeword sees a single fading gain. Under this slow fading model, the nth

received sample sees the model

y	n
= hx	n
+w	n
� (8.23)

where h∼CN�0�1�. The power constraint and noise model are as before. Con-

ditioned on h, the channel is an AWGN channel, and the capacity is given by

C�h�= log
(

1+�h�2SNR
)

= log �1+G SNR� � (8.24)

where G = �h�2 is exponential with mean one, as before. Since G can take

arbitrarily small values, so can C�h�, so that there is no rate at which we

can always guarantee reliable communication. Instead, we might opt to

communicate at rate R, where R is chosen so as to be smaller than C�h�

“most of the time.” When C�h� < R, we have outage. The maximum rate R

such that the probability of outage is � is termed the outage capacity for that

outage probability. For example, we may design a packetized system with

a 10% outage probability (also called outage rate): if different packets see

different enough channel realizations, then retransmissions are effective for

dealing with packet failures caused by outage.

Given the monotone increasing relationship between the gain G and the

capacity C�h�, we see that

Cout = log �1+GoutSNR� �

where Gout satisfies the outage criterion

P	G <Gout
= ��

From (8.14), we see that Gout ≈ � for Rayleigh fading. Thus, we need to

increase the SNR by a factor of 1/� relative to the AWGN channel. For

example, the SNR penalty is 10 dB for a 10% outage rate, but it increases to

20 dB if we wish to reduce the outage rate to 1%.



August 13, 2007 7:57 p.m. CUP/FOD Page-393 9780521874144c08

393 8.2 Fading and diversity

8.2.3 Receive diversity

One approach to combating Rayleigh fading is to reduce the fluctuations

in the power gain G seen by the transmitted signal. I illustrate this for a

system with receive diversity, in which the receiver gets multiple versions

of the transmitted signal (e.g., at different receive antenna elements that are

spaced widely enough apart) which are unlikely to all fade badly at the same

time. Given the sufficiency of restricting to a finite-dimensional signal space

for AWGN channels, the following development applies to both vector and

continuous-time observations.

For two branch receive diversity, if signal s is sent, we obtain two received

signals:

y1 = h1s+n1

y2 = h2s+n2�
(8.25)

where h1, h2 are complex fading gains, and n1 and n2 are independent complex

WGN, each with variance �2 = N0/2 per dimension.

To infer the optimal receiver structure, we begin, as usual, with the like-

lihood ratio. Denoting y = �y1� y2� as the pair of received signals and condi-

tioning on h= �h1� h2�, we have

L�y�s�h�= L�y1�s�h1�L�y2�s�h2�� (8.26)

where the conditional independence of y1 and y2 follows from the indepen-

dence of the noise Furthermore, for i= 1�2,

L�yi�s�hi�= exp

(

1

�2
	Re��y�his
�−

1

2
��his��2


)

� (8.27)

Coherent diversity combining If h1 and h2 are known, then we see from

(8.26) that the LR depends on the observation only through the following

decision statistic:

Z =
2
∑

i=1

Re ��y�hisi
�= Re

(

2
∑

i=1

h∗
i �yi� s


)

� (8.28)

We can therefore restrict attention to Z for both receiver implementation

and performance analysis. (I have ignored the usual energy correction term

1/2
∑2

i=1 �hi�2��s��2 in order to focus on the observation-dependent term in the

LR exponent (8.27). For hypothesis testing with unequal energy signals, this

term must be subtracted as usual from the decision statistics.) The combining

rule that results in Z is referred to as coherent maximal ratio combining. Note

that this can be interpreted as standard coherent matched filtering against

the signal, summing over both branches, and accounting for the complex

gains h. Thus, all the results that we already know for coherent demodulation

apply, with Eb computed by summing the signal energy across branches.
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For example, if the signal s is employed for on–off keying, then the received

energy per bit

Eb =
1

2
��s��2��h1�2+�h2�2��

and the error probability is Q�
√

Eb/N0�. Note that the signal energy increases

due to summing across branches.

Diversity and beamforming gains Let us now examine what happens when

we generalize to N receive branches. Summing the signal energy across

branches, we have a net energy per bit of

Eb =
1

2
��s��2

N
∑

i=1

�hi�2 = NG�N�ēb =G�N�Ēb� (8.29)

where ēb = 1/2��s��2 is the statistical average of the energy per bit for each

branch, Ēb is the average energy per bit summed over branches, and G�N� is

the fading gain averaged over branches:

G�N� = 1

N

N
∑

i=1

�hi�2� (8.30)

From (8.29) and (8.30), we can now observe that maximal ratio combining

leads to performance improvement in two ways.

Diversity The averaging of �hi�2 in (8.30) means that fluctuations of the

channel strengths in different branches will be averaged out, assuming that

the gains on different branches are approximately independent. For example,

for i.i.d. �hi
, in the limit as N →�, the empirically averaged gain tends to

its statistical average:

G�N� → �	�h1�2
= 1� N →��

so that we recover the performance without fading. For finite N , the improve-

ment of outage performance using diversity is explored in Problem 8.11.

Beamforming The summing of signal energies across branches to get an

N -fold gain in the effective energy per bit leads to a beamforming gain. This

happens because the signal terms add up in amplitude (in the mean of the

decision statistic) across branches, while the noise terms add up in power (in

the variance of the decision statistic).

Performance with coherent diversity combining As shown in Problems

8.8 and 8.9, the performance with N diversity branches decays as SNR−N

for large SNR, which, even for small N of two to four branches, yields

significant improvement over the SNR−1 decay for Rayleigh fading (N = 1).
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For example, for binary coherent FSK, we obtain the following upper bound

for the error probability by applying the results of Problem 8.8:

Pe ≤
1

2

(

1+ 1

N

Ēb

2N0

)−N

= 1

2

(

1+ ēb
2N0

)−N

(8.31)

FSK with coherent diversity combining�

Noncoherent diversity combining Now, consider the model (8.25) with

the complex gains h1 and h2 unknown. The conditional density of the received

signal given �hi
 is given by (8.26) and (8.27), from which we conclude that

it suffices to restrict attention to the complex correlator outputs

Zi = �yi� s
 i= 1�2�

Now, consider M-ary signaling. The received signal y = �y1� y2� obeys one

of M hypotheses specified by

Hk �
y1 = h1sk+n1

y2 = h2sk+n2

k= 1� � � � �M� (8.32)

Reasoning as above, it suffices to restrict attention to the decision statistics

obtained by complex correlation of the received signal in each branch with

each possible transmitted signal as follows:

zik = �yi� sk
 i= 1�2� k= 1� � � � �M�

Letting z = �zik� i = 1�2� k = 1� � � � �M
 denote the collection of decision

statistics, the ML rule can be written as

�ML�y�= arg max
1≤j≤M

p�z�Hj��

It remains to find the conditional density of z given each hypothesis in order

to specify the ML rule in detail. Let us condition on Hj . Then yi = hisj +ni,

i= 1�2, and

zik = �hisj +ni� sk
 = hi�sj� sk
+�ni� sk
� (8.33)

Quadratic form of ML rule We can now show that the the ML rule is

quadratic in z under rather general assumptions. Let us assume that h is proper

complex Gaussian, and is independent of the noise. Then, conditioned on

hypothesis Hk, z is proper complex Gaussian, say z∼CN�mk�Ck�, wheremk,

Ck depend on the mean and covariance of h, the signal correlations �sj� sk
,
and the noise PSD. Without any explicit computations, we can write

p�z�Hk�=
1

�ndet�Ck�
exp
(

−�z−mk�
HC−1

k �z−mk�
)

�

Taking logarithms and maximizing over k, we obtain

�ML�y�= arg min
1≤k≤M

�z−mk�
HC−1

k �z−mk�− logdet�Ck�� (8.34)
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Binary orthogonal equal energy signaling Let us now get some explicit

results by specializing to binary FSK and i.i.d. Rayleigh fading on the

branches. Set M = 2 in (8.32), and set �sk� sj
 = E�kj . For convenience, we

set �	�h1�2
=�	�h2�2
= 1. Now, let us condition on H1. Plugging into (8.33),

we have

z11 = �y1� s1
 = h1E+�n1� s1
� z21 = �y2� s1
 = h2E+�n2� s1

z12 = �y1� s2
 = �n1� s2
� z22 = �y2� s1
 = �n2� s1
�

Under our model, it is easy to see that the decision statistics Z are zero

mean, proper complex Gaussian, with all components uncorrelated and hence

independent (this follows from the independence of h1, h2, n1, n2, and orthog-

onality of s1 and s2). We can also show that, conditioned on H1,

�	�z11�2
= �	�z21�2
= E2+2�2E

�	�z12�2
= �	�z22�2
= 2�2E
�conditioned on H1��

Similarly, conditioned on H2, the roles of the correlator outputs for s1 and s2
get interchanged, so that

�	�z11�2
= �	�z21�2
= 2�2E

�	�z12�2
= �	�z22�2
= E2+2�2E
�conditioned on H2��

Substituting into (8.34), and dropping the logdet�Ck� term because it is equal

for k= 1�2, we have

�z11�2
E2+2�2E

+ �z21�2
E2+2�2E

+ �z12�2
2�2E

+ �z22�2
2�2E

H2

>

<

H1

�z11�2
2�2E

+ �z21�2
2�2E

+ �z12�2
E2+2�2E

+ �z22�2
E2+2�2E

�

which simplifies to

�z12�2+�z22�2
H2

>

<

H1

�z11�2+�z21�2�

Rewording to express the decision rule in terms of the received signal y, we

have

�ML�y�= arg max
k

��y1� sk
�2+��y2� sk
�2� (8.35)

Thus, the ML decision rule leads to the intuitively plausible strategy of picking

the signal for which the sum of the correlator energies across branches is the

largest. While I have derived (8.35) for M = 2, this applies to M-ary equal

energy orthogonal signaling for M > 2 as well, since the ML rule can be

interpreted as a pairwise comparison among different hypotheses. Similarly,

the result generalizes to a larger number of diversity branches simply by

correlating and summing over all branches.
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Summing of energies as in (8.35) is termed noncoherent combining, in

contrast to maximal ratio combining (8.28), where knowledge of the channel

gains is used to combine coherently across branches.

Performance with noncoherent diversity combining The noncoherent

combining rule (8.35) generalizes to N branches as follows:

�ML�y�= arg max
k

N
∑

i=1

��yi� sk
�2� (8.36)

Considering binary FSK (k = 1�2), we note that, conditioned on H1, Ui =
��yi� s1
�2 are i.i.d. exponential random variables, each with mean 1

�U
= E2+

2�2E, and and Vi = ��yi� s2
�2 are i.i.d. exponential random variables, each

with mean 1
�V

= 2�2E, with these two sets of random variables also being

independent of each other. The conditional error probability (also equal to the

unconditional error probability Pe by symmetry), conditioned on H1, is

Pe = Pe�1 = P	V1+· · ·+VN > U1+· · ·+UN �H1
� (8.37)

It is possible to compute this error probability exactly, since
∑N

i=1Ui and
∑N

i=1 Vi are independent Gamma random variables whose densities and cdfs

can be characterized as in Problems 8.5 and 8.6. However, insight into the

dependence of error probability on diversity level is more readily obtained

using the Chernoff bound derived in Problem 8.12:

Pe ≤
(

1+ 1
N Ēb/N0

�1+ 1
N Ēb/2N0�

2

)N

=
(

1+ēb/N0

�1+ēb/2N0�
2

)N
high

≈
SNR

(

ēb
4N0

)−N

FSK with noncoherent diversity combining�
(8.38)

where I have used the high SNR approximation

1+ ēb/N0

�1+ ēb/2N0�
2
≈
(

ēb
4N0

)−1

�

As with coherent systems, the error probability exhibits an SNR−N decay.

8.3 Orthogonal frequency division multiplexing

The Nyquist criterion for ISI avoidance in linearly modulation over a linear

time-invariant channel is equivalent to requiring that the waveforms �x�t−kT


used to modulate the transmitted symbols �b	k
 are orthogonal, where x�t�=
�gT ∗ gC ∗ gR��t� is the cascade of the transmit, channel, and receive filters.

The system designer typically has control over the transmit and receive filters,

but often must operate in scenarios in which the channel is unknown. Thus,

for nontrivial channel responses gC�t�, linear modulation in the time domain

incurs ISI. Can we use modulating waveforms that stay orthogonal when
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they go through any LTI channel? The answer is yes: this is achieved by

choosing the modulating waveforms to be eigenfunctions of the channel: a

waveform s�t� is an eigenfunction of a channel gC if, when s is the input to

the channel, the output is s ∗ gC is a scalar multiple of s. Thus, orthogonal

eigenfunctions stay orthogonal as they go through the channel. As stated

in the following theorem, which provides the conceptual basis for OFDM,

there is a set of universal eigenfunctions that work for all LTI channels: the

complex exponentials.

Theorem 8.3.1 Consider a linear time-invariant channel with impulse

response gC�t� and transfer function GC�f�, Then the following statements

are true:

(a) The complex exponential waveform ej2�ft is an eigenfunction of the chan-

nel with eigenvalue GC�f�. That is,

ej2�ft ∗gC�t�=GC�f�e
j2�ft�

(b) Complex exponentials at different frequencies are orthogonal.

Proof The eigenfunction property (a) is verified as follows:

ej2�ft ∗gC�t� =
∫ �

−�
gC�u�e

j2�f�t−u� du

= ej2�ft
∫ �

−�
gC�u�e

−j2�fu du=GC�f�e
j2�ft�

We now verify statement (b) on orthogonality for different frequencies:

�ej2�f1t� ej2�f2t
 =
∫ �

−�
ej2�f1te−j2�f2t = ��f2−f1�= 0� f1 �= f2�

using the fact that the Fourier transform of a constant is the delta function.

The complex exponential waveforms in Theorem 8.3.1 are defined over an

infinite time horizon, and there is no restriction on the selection of the fre-

quencies f to be used for modulation. In practice, an OFDM system employs

a discrete set of subcarriers over a symbol interval of finite length T . The

transmitted complex baseband waveform is given by

u�t�=
N−1
∑

n=0

B	n
ej2�fntI	0�T
�t�=
N−1
∑

n=0

B	n
pn�t�� (8.39)

where B	n
 is the symbol transmitted using the modulating signal pn�t� =
ej2�fntI	0�T
, using the nth subcarrier at frequency fn. We now have to check

how the results of Theorem 8.3.1 must be modified to deal with the finite

signaling interval. The timelimited tone pn�t� has Fourier transform Pn�f�=
T sinc��f − fn�T�e

−�fT , which decays quickly as �f − fn� takes on values of
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the order of k/T . If T is large compared with the channel delay spread, then

1/T is small compared with the channel coherence bandwidth, so that the

gain seen by Pn�f� is roughly constant, and the eigenfunction property is

roughly preserved. That is, when Pn�f� goes through a channel with transfer

function GC�f�, the output

Qn�f�=GC�f�Pn�f�GC�f�≈GC�fn�Pn�f�

The orthogonality of different subcarriers holds over an interval of length T

is they are spaced apart by an integer multiple of 1/T :

∫ T

0
ej2�fnte−j2�fmtdt= ej2��fn−fm�T −1

j2��fn−fm�
= 0� for �fn−fm�T = nonzero integer�

We can therefore rewrite the transmitted waveform as follows:

u�t�=
N−1
∑

n=0

B	n
pn�t�=
N−1
∑

n=0

B	n
ej2�nt/T I	0�T
� (8.40)

We would typically subtract �N − 1�/2T from all the frequencies above to

center the baseband frequency content around the origin, but this is not shown,

in order to keep the notation simple.

When the signal u�t� goes through the channel, the nth subcarrier at fre-

quency fn sees a gain of GC�fn�, so that the receiver sees a noisy version of

GC�fn�B	n
 when demodulating the nth subcarrier. The effect of the channel

can therefore be undone separately for each subcarrier, unlike the equalization

techniques (see Chapter 5) required for single-carrier modulation. While these

advantages of OFDM have been well known for many decades, it is the ability

to push the complexity of OFDM into the digital domain, thereby allowing

cost-effective implementation by exploiting Moore’s law, which has been key

to its growing adoption in a multitude of applications. These include digital

subscriber loop (DSL), digital video broadcast from satellites, as well as a

multitude of wireless communication systems, including IEEE 802.11 based

WLANs, and IEEE 802.16/20 and other fourth generation cellular systems.

We discuss the digital realization of OFDM next.

Digital-signal-processing-centric implementation of OFDM For T large

enough, the bandwidth of the OFDM signal u is approximately N/T . Thus,

we can represent u�t� accurately by sampling at rate 1/Ts = N/T , where Ts

is the sampling interval. From (8.40), the samples can be written as

u�kTs�=
N−1
∑

n=0

B	n
ej2�nk/N �

We can recognize this simply as the inverse DFT of the symbol sequence

�B	n

. We make this explicit in the notation as follows:

b	k
= u�kTs�=
N−1
∑

n=0

B	n
ej2�nk/N � (8.41)
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If N is a power of two (which can be achieved by zeropadding if necessary),

the samples �b	k

 can be efficiently generated from the symbols �B	n

 using

an inverse fast Fourier transform (IFFT). The complex baseband waveform

u�t� can now be obtained from its samples by digital-to-analog (D/A) conver-

sion. This implementation of an OFDM transmitter is as shown in Figure 8.4:

the bits are mapped to symbols, the symbols are fed in parallel to the inverse

FFT (IFFT) block, and the complex baseband signal is obtained by D/A con-

version of the samples (after insertion of a cyclic prefix, to be discussed after

we motivate it in the context of receiver implementation). Typically, the D/A

converter is an interpolating filter, so that its effect can be subsumed within

the channel impulse response.

Note that the relation (8.41) can be inverted as follows:

B	n
= 1

N

N−1
∑

k=0

b	k
e−j2�nk/N � (8.42)

This is exploited in the digital implementation of the OFDM receiver, dis-

cussed next.

We know that, once we limit the signaling duration to be finite, the ISI

avoidance property of OFDM is approximate rather than exact. However,

as I now show, orthogonality between subcarriers can be restored exactly in

discrete time by using a cyclic prefix, which allows for efficient demodulation

using an FFT. The noiseless received OFDM signal is modeled as

v�t�=
N−1
∑

k=0

b	k
p�t−kTs��

where the “effective” channel impulse response p�t� includes the effect of

the D/A converter at the transmitter, the physical channel, and the receive

filter. When we sample this signal at rate 1/Ts, we obtain the discrete-time

model

v	m
=
N−1
∑

k=0

b	k
h	m−k
� (8.43)
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where �h	l
 = p�lTs�
 is the effective discrete-time channel of length L,

assumed to be less than N . We assume, without loss of generality, that h	l
= 0

for l < 0 and l≥ L. We can rewrite (8.43) as

v	m
=
L−1
∑

l=0

h	l
b	m− l
� (8.44)

Let H denote the N point DFT of h:

H	n
=
N−1
∑

l=0

h	l
e−j2�nl/N =
L−1
∑

l=0

h	l
e−j2�nl/N � (8.45)

As noted in (8.42), the DFT of �b	k

 is the symbol sequence B	n
 (the

normalization is chosen differently in (8.42) and (8.45) to simplify the forth-

coming equations.) If we could replace the linear convolution of (8.44) by

the circular convolution ṽ= h⊙b given by

ṽ	m
= �h⊙b�	m
=
N−1
∑

l=0

h	l mod N
b	�m− l� mod N
� (8.46)

then the corresponding N -point DFTs would satisfy

Ṽ 	n
=H	n
B	n
� n= 0� � � � �N −1�

See Problem 8.13 for a review of the relationship between cyclic convolution

and the DFT. Since L < N , we can write the circular convolution (8.46) as

ṽ	m
=
min�L−1�m�
∑

l=0

h	l
b	m− l
+
L−1
∑

l=m+1

h	l
b	m− l+N
� (8.47)

Comparing the linear convolution (8.44) and the cyclic convolution (8.47), we

see that they are identical except when the index m− l takes negative values:

in this case, b	m− l
= 0 in the linear convolution, while b	�m− l�modN
=
b	m− l+N
 contributes to the circular convolution. Thus, we can emulate a
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cyclic convolution using the physical linear convolution by sending a cyclic

prefix; that is, by sending

b	k
= b	N +k
� k=−�L−1��−�L−2�� � � � �−1�

before we send the samples b	0
� � � � � b	N − 1
. That is, we transmit the

samples

b	N −L+1
� � � � � b	N −1
� b	0
� � � � � b	N −1
�

incurring an overhead of �L−1�/N which can be made small by choosing N

to be large.

At the receiver, the complex baseband signal is sampled at rate 1/Ts to

obtain noisy versions of the samples �b	k

. The FFT of these samples then

yields the model

Y	n
=H	n
B	n
+N	n
� (8.48)

where the frequency domain noise samples N	n
 are modeled as i.i.d.

CN�0�2�2�, being the DFT of i.i.d. CN�0�2�2� time domain noise sam-

ples. If the receiver knows the channel, then it can implement ML reception

based on the statistic H∗	n
B	n
. Thus, the task of channel equalization has

been reduced to compensating for scalar channel gains for each subcarrier.

This makes OFDM extremely attractive for highly dispersive channels, for

which time-domain single-carrier equalization strategies would be difficult to

implement.

The PSD of OFDM Assuming that the symbols �B	n

 transmitted on the

different frequencies are uncorrelated, the PSDs corresponding to different

subcarriers in the transmitted signal u in (8.39) add up, and we get, using the

PSD expression in Theorem 2.5.1 from Chapter 2,

Su�f� =
N−1
∑

n=0

�	�B	n
�2
 �Pn�f��2
T

= T
N−1
∑

n=0

�2
B	n
�sinc��f −fn�T��2�

where �2
B	n
 = �	�B	n
�2
 is the symbol energy for subcarrier fn =

1/T �n− �N −1�/2�. The PSD is plotted against the normalized frequency

(normalized by the symbol rate) in Figure 8.6 for N = 64. Since we send

N symbols over time T , the symbol rate Rs = N/T , and the normalized fre-

quency is f/Rs = fT/N . Note the exceptionally efficient use of spectrum by

OFDM, which essentially achieves Nyquist rate signaling if we ignore the

overhead due to the cyclic prefix.

Peak-to-average ratio A key implementation problem with OFDM is that

it has a high peak-to-average ratio (PAR); that is, the peak power of the
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Figure 8.6 The PSD of OFDM

with N = 64 subcarriers as a

function of normalized

frequency fT/N.
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transmitted signal can be much larger than its average power. The basic prob-

lem is that, depending on the transmitted symbol sequence, the subcarriers

can constructively interfere to yield amplitudes that scale as N , the number

of subcarriers. The peak power therefore scales as N 2, while the average

power only scales as N . This implies that the transmit power amplifier must

exhibit a linear characteristic over a large dynamic range in order to avoid

significant distortions of the OFDM signal. Since power amplifiers operate

most efficiently in a nonlinear saturation regime, backing off into a linear

regime leads to a loss in power efficiency. To get a quantitative idea of the

PAR problem, let us develop a statistical model for the transmitted samples

�b	k

 in (8.41), obtained by taking the inverse DFT of the symbols �B	n

.

Symbols drawn from standard PSK and QAM constellations can be modeled

as zero mean, proper random variables, i.e., �	B	n
 = 0 and �	B2	n

 = 0.

These properties are preserved under linear transformation, and are therefore

inherited by �b	k

. Thus, since �b	k

 are the sum of N independent terms

(assuming that �B	n

 are independent), they are well approximated, by the

central limit theorem, as zero mean, proper complex Gaussian. This central

limit theorem approximation is accurate even for moderate values of N (e.g.,

N = 8 or more). Under the preceding assumption, �b	k

 are uncorrelated.

Furthermore, using a vector central limit theorem to model �b	k

 as jointly

proper complex Gaussian, we infer that they can be approximated as inde-

pendent. The power of the samples P	k
 = �b	k
�2 can therefore be modeled

as i.i.d. exponential random variables with mean �	P	k

= 1, normalized to
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unity for convenience of notation. The sample peak-to-average ratio (PAR)

is defined as

PAR =
max

0≤k≤N−1
P	k


1
N

∑N−1
k=0 P	k


≈ max
0≤k≤N−1

P	k
� (8.49)

replacing the empirical average of the sample power in the denominator by

the statistical average. Note that the PAR for the continuous-time signal u�t�

obtained by D/A conversion of the samples is actually a little larger than

this sample PAR, but I restrict our attention to the sample PAR because it

is easier to compute, and follows the same trends as we vary the symbol

sequence �B	n

. Based on our central limit theorem approximations, we can

now compute the CDF of the PAR as follows:

P	PAR≤ x
=P	 max
0≤k≤N−1

P	k
≤ x
= P	P	0
≤ x� � � � �P	N −1
≤ x


= �P	P	0
≤ x
�N = �1− e−x�N (8.50)

We can also approximate the complementary CDF of the PAR using a union

bound as follows:

P	PAR > x
= P	 max
0≤k≤N−1

P	k
≤ x
≤
N−1
∑

k=0

P	P	k
 > x
= Ne−x� (8.51)

This clearly shows how the PAR problem is exacerbated as we increase the

number of subcarriers.

PAR reduction strategies The implementation difficulties caused by high

PAR have motivated significant effort in developing PAR reduction strategies.

One strategy for dealing with OFDM’s high PAR is simply to clip the signal

at some level. The formulas (8.50) or (8.51) can be used to infer, for example,

the probability that clipping at, say, 5 dB above the average power will cause

distortion of the signal. Similarly, given the input–output characteristics of the

power amplifier and a desired upper bound on the probability of distortion,

we can use (8.50) to infer the required backoff from the nonlinear regime.

Errors caused by distortion can be handled using standard error correction

and detection codes. For example, one approach is to design for a relatively

small PAR, based on the probabilistic view that “most” transmitted sequences

do not result in high PAR (at least for moderate N ). A packet error may

occur for a data sequence that leads to high PAR, and hence large distortion

from a transmitter front end optimized for a smaller dynamic range. The

data sequence can be scrambled pseudorandomly when such a packet is

retransmitted, based on the reasoning that it is unlikely that the scrambled

sequence also corresponds to a high PAR. Strategies for explicitly reducing

PAR include the design of codes for PAR reduction: since the PAR depends

on the data sequence �B	n

, it is possible to restrict the set of transmitted

sequences �B	n

 so as to limit the PAR. Finally, another approach is to
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reserve a set of subcarriers for PAR reduction: once the symbols on the data-

carrying subcarriers have been determined, the reserved set of subcarriers is

modulated so as to reduce the PAR.

Inter-carrier interference The OFDM is designed to avoid ISI by signaling

in the frequency domain. However, imperfect carrier synchronization can

cause inter-carrier interference (ICI) between the symbols transmitted on

different subcarriers. To understand why, let us go back to the noiseless

samples ṽ	m
, and note that a frequency offset �f corresponds to multiplying,

sample by sample, by the discrete-time tone

g	m
= ej��m+��� (8.52)

where � = 2��f Ts is the discrete-time frequency shift, and � is a phase

shift. This yields

v̂	m
= ṽ	m
g	m
↔ V̂ 	n
= �H	n
B	n
�⊙G	n
�

where �G	n

 is the DFT of �g	m

. This convolution with G destroys the

orthogonality of the subcarriers, and reintroduces the ISI that the OFDM

designer has worked so hard to avoid. Thus, accurate carrier synchronization

is a very high design priority. Typically, a number of known pilot (or training)

symbols are allocated to aid in both carrier synchronization and channel

estimation.

Wireless versus wireline applications If the transmitter knows the channel

�H	n

, then it could use waterfilling-style techniques to optimize through-

put, such as using larger constellations to send more bits per symbol over

subcarriers seeing stronger channel gains. Indeed, this is the strategy used

for OFDM signaling over the wireline digital subscriber loop (DSL) channel;

in the latter context, the term discrete multitone (DMT) is often employed

instead of OFDM. Since DSL employs a physical baseband channel, the time

domain samples �b	k

 must be real-valued, which implies that the symbols

�B	n

 must obey conjugate symmetry. Problem 8.14 illustrates some aspects

of DMT system design for a real baseband channel. For a passband wireless

channel, the baseband samples �b	k

 are complex-valued, so that there is no

restriction on �B	n

. Typically, it is assumed in wireless systems that the

transmitter does not know the channel, which is understandable in view of the

rapid time variations of a cellular mobile channel. In this case, the common

strategy is to use the same constellation for each subcarrier. However, sev-

eral current and emerging wireless networks consist of links with very slow

time variations; examples include wireless local area networks and in-room

wireless personal area networks. In this case, it may be useful to reexamine

the assumption that the transmitter does not know the channel, and to explore

OFDM system design when some form of channel feedback is available to

the system designer.
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8.4 Direct sequence spread spectrum

Spread spectrum is a broad term for modulation formats in which the band-

width is significantly larger than the information rate. Typically, spread spec-

trum is employed for one or more of the following reasons:

Diversity using a larger bandwidth provides frequency diversity for com-

bating fading.

Multiple access Appropriately designed spread spectrum waveforms enable

multiple users to access the channel simultaneously, without necessarily coor-

dinating as required for orthogonal multiple access techniques such as TDMA

or FDMA.

Low probability of intercept or detect and antijam Spreading the signal

energy over a wide bandwidth makes it more difficult for an adversary to

detect, intercept or jam it. These are desirable features for applications such

as military communication.

I discuss here direct sequence (DS) spread spectrum, followed by a discussion

of frequency hop (FH) spread spectrum in Section 8.5. Direct sequence signal-

ing is based on linear modulation. As we know from Chapter 2, for standard

linear modulation, a stream of symbols �b	m

 is transmitted at symbol rate

1/T by transmitting the waveform
∑

m b	m
p�t−mT�, where p�t� is a symbol

waveform whose bandwidth is of the order of the Nyquist rate 1/T (typical

excess bandwidths range from 25–100 %). In a DS system, to send a symbol

b, instead of using one complex dimension, we use N> 1 dimensions, sending

instead the elements of the vector bs, where s = �s	0
� � � � � s	N − 1
�T is a

spreading vector. The factor N is termed the processing gain. Since we send

N “chips” using linear modulation to transmit a single symbol, the bandwidth

of the linearly modulated system scales with the chip rate 1/Tc = N/T (in

practice, excess bandwidth beyond this minimum Nyquist bandwidth would

be employed). The modulating pulse ��t� for this chip rate linearly modulated

system is termed the chip waveform. Typical examples of chip waveforms

include a rectangular pulse timelimited to an interval of length Tc, or a ban-

dlimited square root Nyquist pulse at rate 1/Tc. such as a square root raised

cosine pulse.

To represent a DS signal compactly as a chip rate linearly modulated signal,

it is convenient to express the symbols �b	n

 at the chip rate. At the chip

rate, each symbol can be viewed as being repeated N times. Accordingly, we

define the chip-rate symbol sequence �b̃	l

 as

b̃	l
= b	m
� mN ≤ l≤ �m+1�N −1�

The DS transmitted complex baseband signal therefore takes the following

general form:

u�t�=
∑

l

b̃	l
s	l
��t− lTc�� (8.53)
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Figure 8.7 Example of DS modulation, with processing gain N = 5 and a short spreading sequence. In

this chip rate implementation, the data sequence is converted to the chip rate and is multiplied

chip-by-chip with the spreading sequence before modulating the chip waveform. These discrete-time

chip rate sequences are indicated by delta functions in the figure. These are then passed through a chip

filter (which may itself be implemented in DSP at a multiple of the chip rate, followed by

digital-to-analog conversion) to obtain the baseband analog waveform to be upconverted.

where �s	l

 is the spreading sequence. Figure 8.7 shows a typical implemen-

tation of a DS modulator, where, for convenience in drawing the figure, I

have assumed the chip waveform to be a rectangular timelimited pulse rather

than a bandwidth-efficient pulse. The multiplication of bits and chips taking

values ±1 shown in the figure might often be implemented using exclusive

or of bits and chips taking values in �0�1
, followed by 0 being mapped to +1

and 1 to−1. The N -dimensional spreading vector for the symbol b	n
 is given

by s	n
= �s	nN
� � � � � s	�n+1�N −1��T . The spreading sequence is typically

chosen so as to have good autocorrelation properties: in operational terms,

this means that the spreading vector for a given symbol has small normalized

inner products with shifts of itself, as well as with shifts of spreading vectors

corresponding to adjacent symbols. We shall soon see how this property,

which holds for a variety of pseudorandom spreading sequences, alleviates

ISI and simplifies the receiver structure in DS systems.

While chip rate operations form the core of DS transceiver implementations,

it is also important to keep in mind what is happening at the symbol rate. The

transmitted signal in (8.53) can be rewritten as

u�t�=
∑

m

b	m
s�m� t−mT�� (8.54)

where

s�m� t�=
N−1
∑

l=0

s	mN + l
��t− lTc�

is the spreading waveform modulating the mth transmitted symbol.

Short spreading sequences If the spreading sequence �s	l

 is periodic with

period N , we call it a short spreading sequence. In this case, the spreading



August 13, 2007 7:57 p.m. CUP/FOD Page-408 9780521874144c08

408 Wireless communication

waveforms s�m� t� for different symbols are all identical, with

s�m� t�≡ s�t�=
N−1
∑

l=0

s	l
��t− lTc��

The transmitted waveform therefore has exactly the form that we considered

in Chapter 2 for linearly modulated signals

u�t�=
∑

m

b	m
s�t−mT��

except that the modulating waveform s�t� has bandwidth scaling with the chip

rate 1/Tc = N/T instead of with the symbol rate 1/T . For short spreading

sequences, the waveform u�t� is cyclostationary with period T . The conse-

quences of this are discussed later.

Long spreading sequences If the spreading sequence �s	l

 is aperiodic, or

has a period much longer than N , we call it a long spreading sequence. In this

case, the N chips corresponding to a given symbol are often well modeled

as i.i.d. and randomly chosen. This random spreading sequence model is a

useful tool for performance analysis that is extensively used in system design.

Code division multiple access In a DS code division multiple access

(CDMA) system, multiple users access the wireless medium at the same

time. If the spreading waveforms for these users were orthogonal, then

multiple-access interference (MAI) could be completely eliminated. This

strategy is effective when a single transmitter sends different DS wave-

forms to different receivers. Assuming an ideal channel between the trans-

mitter and any particular receiver, the spreading waveforms retain their

orthogonality when arriving at the receiver, thus eliminating MAI. In prac-

tice, passing the spreading waveforms through a multipath channel destroys

their orthogonality. However, if a particular path is dominant, then design-

ing the waveforms to be orthogonal can significantly reduce MAI along

this path, and improve overall performance. This strategy is used on

the base station to mobile “downlink” of CDMA-based digital cellular

systems.

For the “uplink” of a CDMA-based cellular system, different mobiles

transmitting to a base station see different channels. It is not possible to

design spreading waveforms so as to maintain orthogonality at the base

station receiver for all possible channel realizations. Thus, the strategy is to

choose spreading waveforms that have small normalized inner products on

average, regardless of the relative delays of the waveforms. This is also an

appropriate design approach for peer-to-peer wireless communication, where

communication for a particular transmitter-receiver pair incurs interference

due to communication between other transmitter-receiver pairs.

The choice of spreading waveforms is discussed in Section 8.4.2. For the

moment, suffice it to say that spreading waveforms are typically designed to
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have small normalized inner products with delayed versions of themselves

(i.e., they have good autocorrelation properties) and with delayed versions of

other spreading waveforms (i.e., they have good crosscorrelation properties).

The conventional approach to receiver design for DS systems, therefore, is to

ignore ISI and MAI when determining the structure of the receiver, but to take

interference into account when evaluating the performance of the receiver.

This leads to the rake receiver discussed in Section 8.4.1. An alternative

approach is to employ more sophisticated multiuser detection strategies which

exploit the structure of the MAI. The methods used are similar to those

used for channel equalization in Chapter 5, and are discussed briefly in

Section 8.4.4.

8.4.1 The rake receiver

The rake receiver is the name given to matched filter reception of a wideband

waveform over a multipath channel. Such a matched filter receiver is optimal

for the AWGN channel, but it ignores the effect of ISI and MAI, relying

on the good autocorrelation and crosscorrelation properties of DS spreading

waveforms.

Effect of multipath Suppose now that the signal u passes through a multi-

path channel with impulse response

h�t�=
M
∑

i=1

�i��t− �i��

where, for 1≤ i≤ L, �i is the complex gain of the ith path, which has delay

�i, and where we ignore channel time variations. The effective spreading

waveform seen by symbol k is given by

s̃�m� t�= s�m� t�∗h�t�=
M
∑

i=1

�is�m� t− �i��

The received signal is given by

y�t�= �u∗h��t�+n�t�=
∑

m

b	m
s̃�m� t−mT�+n�t��

where n is WGN with PSD �2 = N0/2 per dimension. For well-designed

spreading waveforms, we can typically ignore the ISI from adjacent symbols

in receiver design. In this case, the model for demodulating b	m
 is given by

y�t�= b	m
s̃�m� t−mT�+n�t� Reduced model ignoring ISI�

Based on the reduced model, the optimal statistic for deciding on b	m
 is to

correlate y against s̃�m�, as follows:

Z	k
=
∫

y�t�s̃∗�m� t−mT�dt =
L
∑

i=1

�∗
i

∫

y�t�s∗�m� t−mT − �i�dt� (8.55)
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This receiver structure is called the rake receiver, because of the way in which

it “rakes up” the energy in the multipath components. The L correlators used

in the rake receiver are often termed “fingers” of the rake.

Chip rate implementation of the rake receiver The basic operation needed

for the rake receiver is to correlate the received signal against a shifted version

of a spreading waveform. Let us consider a generic operation of this form,

which is called despreading:

Z���=
∫

y�t�s∗�t− ��dt� (8.56)

where s�t� =∑N−1
l=0 s	l
��t− lTc� is the spreading waveform, and � is the

delay. Define the chip matched filter as

�mf�t�= �∗�−t��

We can now rewrite the decision statistic Z as

Z���=
N−1
∑

l=0

s∗	l

∫

y�t��∗�t− lTc− ��dt =
N−1
∑

l=0

s∗	l
Y�	l
� (8.57)

where

Y�	l
=
∫

y�t��∗�t− lTc− ��dt = �y ∗�mf��lTc+ �� (8.58)

is the output of the chip matched filter at a suitable delay. Writing the delay

� = �D+��Tc, where D = ��/Tc� and �= �−DTc ∈ 	0�1�, we have

Y�	l
= �y ∗�mf���l+D+��Tc�� (8.59)

Thus, despreading involves a discrete correlation (8.57) of the spreading

sequence s	l
 with suitably chosen chip-rate samples �Y�	l

 at the output of

the chip matched filter. The offset for the required samples is determined by

the fractional delay parameter �. We can now implement the rake receiver

(8.55) as shown in Figure 8.8, by combining the outputs of L despreaders,

one for each significant multipath component.

DefiningDi =��i/Tc� and �i = ��i/Tc�−Di ∈ 	0�1� as the delay parameters

for the ith multipath component, we realize that the required sampling offsets

�iTc vary across multipath components. Thus, a single chip-rate sampler

cannot directly generate the chip-rate samples �Y�i 	l

 required for the different

multipath components. There are several approaches typically used in practice

to handle this problem: (a) sample at the chip rate, or perhaps at twice the chip

rate, and then interpolate the samples to approximately synthesize samples

corresponding to the desired sampling times, (b) sample significantly faster

than the sampling rate (e.g., at eight times the chip rate), and choose, for

a given multipath component, the subset of chip-rate samples whose timing
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Figure 8.8 Digital-signal-processing-centric implementation of the rake receiver. The output of the chip

matched filter is sampled faster than the chip rate. The synchronization circuit provides the timing

control required to select a chip rate substream of samples, together with an appropriate delay, before

despreading.

most closely approximates the desired delay, (c) Use L different chip rate

samplers: estimate the delay for each multipath component coarsely, and then

lock on to it using a closed loop tracking loop. Such a loop used to be

implemented using an analog delay locked loop, but in modern transceivers,

DSP-based discrete-time tracking loops might be used, using samples as in

(a) or (b).

Digital-signal-processing-centric implementations usually rely on samples

obtained using a free-running clock, which is independent of the received

signal parameters. These samples are then processed in a manner that depends

on received signal parameters such as the delays of the multipath components.

Thus, the design of algorithms for such processing requires models for how

the samples depend on the received signal parameters. The following example

illustrates such modeling.

Example 8.4.1 (Modeling chip rate samples) Let us consider the output

of a chip matched filter in response to a delayed spreading waveform

s�t− ��. Setting s�t� = ∑l s	l
��t− lTc�, we see that the output ys =
s�t− ��∗��t� can be written as

ys�t�= �s ∗�mf��t− ��=
∑

l

s	l
�� ∗�mf��t− lTc− ��

=
∑

l

s	l
r��t− lTc− ���

where

r��t�= �� ∗�mf��t�

is the autocorrelation function of the chip waveform. Writing � = �D+
��Tc, D an integer and �∈ 	0�1�, we obtain

ys�t�=
∑

l

s	l
r��t− �l+D�Tc−�Tc�=
∑

l

s	l−D
r��t− lTc−�Tc�
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(replacing l by l+D as the dummy variable for summation to get the sec-

ond equality). For a rectangular chip waveform timelimited to an interval

of length Tc, we have

r��t�=
(

1− �t�
Tc

)

I	−Tc�Tc


(normalizing the chip waveform to unit energy, so that r��0�= 1.) Suppose

now that we sample the output of the chip matched filter at the chip rate.

The signal contribution to these samples is given by

ys�mTc�=
∑

l

s	l−D
r���m− l�Tc−�Tc��

For the special case of �= 0 (i.e., the sample times are chip-aligned with

the delayed spreading waveform), we have

ys�mTc�= s	m−D
� (8.60)

since r���m− l�Tc�= �ml. For 0< � < 1, we have

r���m− l�Tc−�Tc�=
{

1−� l=m

� l=m−1�

so that

ys�mTc�= �1−��s	m−D
+�s	m−1−D
� (8.61)

That is, each chip rate sample has contributions from two adjacent elements

of the spreading sequence. Suppose, for example, that we desire that

ys�mTc� to be as close to s	m−D
 as possible. Then we must make �,

the chip offset, small. For example, if we make �= 1/16, corresponding

to the worst-case chip offset when sampling at rate 8/Tc, we get that the

contribution due to the desired chip as 1−�= 15/16. The loss in SNR due

to the reduced amplitude seen by the desired chip s	m−D
 is therefore

20 log10�16/15�= 0�56 dB. We ignore the inter-chip interference induced

by the contribution of the chip s	m− 1−D
, since this is usually small

compared to the dominant sources of impairment that we design for in DS

systems, such as multiple-access interference or jamming.

More generally, if � is square root Nyquist at rate 1/Tc, the equality (8.60)

holds for chip-synchronous sampling (i.e., �= 0), since r��t� is Nyquist at rate

1/Tc. For chip-asynchronous sampling, the signal contribution to the chip-rate

samples can be written as a discrete-time convolution between the spreading

sequence and an equivalent chip rate “channel,” as shown in Problem 8.20.

Estimation of the multipath delays ��i
 is usually done as a two stage pro-

cess, timing acquisition, aimed at obtaining a coarse estimate of the delay, and

tracking, aimed at refining the delay estimate and updating it as it varies (e.g.,

due to relative mobility between transmitter and receiver). Timing acquisition
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algorithms employ hypothesis testing to obtain a coarse estimate of the delay,

by quantizing the uncertainty in the delay into a discrete set of hypotheses.

Timing acquisition typically occurs prior to carrier synchronization, so that

noncoherent reception techniques are often required. I discuss this further in

Problem 8.18.

Bothrakereceptionandtimingacquisitionrequire thebasicoperationofcorre-

lating the receivedwaveformwith a spreadingwaveform. In practice, a receiver

may have a limited number of correlators, or “rake fingers,” and may assign a

subset of them to demodulation, and a subset to a timing acquisition algorithm

whose task is to discover newmultipath components when they appear.

8.4.2 Choice of spreading sequences

I have mentioned that DS signaling is designed so that the normalized inner

products between delayed versions of spreading waveforms is small. I now

show that these inner products can be made small by proper design of the

discrete-time correlation functions for the corresponding spreading sequences.

The problem of waveform design thus reduces to one of spreading sequence

design, and I briefly mention some common approaches for the latter.

Consider two spreading waveforms u�t� and v�t�, given by

u�t� =
N−1
∑

l=0

u	l
��t− lTc� (8.62)

v�t� =
N−1
∑

l=0

v	l
��t− lTc��

Crosscorrelation functions Let us define a continuous-time cross-

correlation function for these spreading waveforms as follows:

Ru�v���=
∫

u�t�v∗�t− ��dt� (8.63)

In addition, let us define a discrete-time crosscorrelation function for the

corresponding spreading sequences as

Ru�v	n
=
∑

l

u	l
v∗	l−n
� (8.64)

For convenience, we set u	l
= v	l
= 0 for l < 0 and l > N −1. This allows

us to leave unspecified the range of the index l in the summation (8.64): in

fact, nontrivial elements of u and v feature in the summation only over the

range n≤ l≤ N −1.

Autocorrelation functions Setting u= v, we specialize to the continuous-

time and discrete-time autocorrelation functions,

Ru���= Ru�u���=
∫

u�t�u∗�t− ��dt� (8.65)
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Ru	n
= Ru�u	n
=
∑

l

u	l
u∗	l−n
� (8.66)

I now express the continuous-time crosscorrelation function in terms of the

discrete-time crosscorrelation function for the special case of a rectangular

chip waveform timelimited to an interval of length Tc.

Ru�v��� =
∑

l

∑

k

u	l
v∗	k

∫

��t− lTc��
∗�t−kTc− ��dt

=
∑

l

∑

k

u	l
v∗	k
r���k− l�Tc+ ���

Setting � = �D+��Tc as before, whereD=��/Tc� is an integer, and �∈ 	0�1�,

we get

Ru�v���=
∑

l�k

u	l
v∗	k
r���k+D− l�Tc+�Tc�� (8.67)

For the rectangular chip waveform, we have

r���k+D− l�Tc+�Tc�=







1−�� k+D− l= 0

�� k+D− l=−1

0� else

� (8.68)

This means that the only nonzero terms in (8.67) correspond to k= l−D and

k= l−D−1. Substituting (8.68) into (8.67), we obtain

Ru�v��� = �1−��

(

∑

l

u	l
v∗	l−D


)

+�

(

∑

l

u	l
v∗	l−D−1


)

= �1−��Ru�v	D
+�Ru�v	D+1
� (8.69)

The preceding expression shows that the continuous-time crosscorrelation

function can be made small for an arbitrary delay � by making the discrete-

time crosscorrelation function small (on average) for all integer delays dif-

ferent from zero. By specializing to u= v, we see that this observation holds

for autocorrelation functions as well. While these conclusions are based on

a rectangular timelimited chip waveform, Problem 8.20 generalizes (8.69) to

arbitrary chip waveforms �.

Pseudorandom spreading sequences A common approach is to employ

spreading sequences which are either aperiodic, or periodic with period much

longer than the processing gain N . In this case, the section of the spreading

sequence corresponding to a single symbol is well modeled as consisting of

randomly chosen, i.i.d., elements (e.g. ±1 with equal probability for binary

spreading sequences). We term this the random spreading sequence model.

A convenient way to generate sequences of very long periods is to use

maximum length shift register (MLSR) sequences: a shift register of length

m, together with some combinatorial logic, can be used to generate a periodic

sequence of period 2m−1 (the IS-95 digital cellular standard employsm= 42,

which generates a sequence of period 242 − 1 in excess of 4 billion). Such
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sequences are often termed pseudorandom, or pseudonoise (PN) sequences.

See Problem 8.19 for a simple example of an MLSR sequence. The CDMA-

based digital cellular standard IS-95 employs long spreading waveforms,

with the spreading waveforms for multiple users generated from a single PN

sequence of very long period simply by assigning different delayed versions

of the sequence to different users.

For the random spreading sequence model, the crosscorrelation function

between two pseudorandom sequences u and v of length N can be modeled

as follows:

Ru�v	n
=
∑

l

u	l
v∗	l−n
=
N−1
∑

l=n

u	l
v∗	l−n
�

When �u	l

, �v	l

 are modeled as i.i.d., symmetric Bernoulli, Ru�v	n
 can

be modeled as a sum of N −n i.i.d., symmetric Bernoulli random variables.

Note that PN sequences of shorter period (e.g., period 31 corresponding

to m = 5), and sequences constructed from PN sequences such as Gold

sequences, can be useful for CDMA systems employing short spreading

waveforms.

Barker sequences For a binary sequence u, the smallest possible magni-

tudes for the autocorrelation function Ru	n
 correspond to Ru	n
= 0 for even

n, and Ru	n
 = ±1 for odd n. Barker sequences are binary sequences that

achieve these lower bounds. Binary Barker sequences are only known to exist

for lengths 5, 7, 11, 13. However, if the sequence elements are allowed to

take on complex values, then it is possible to find Barker-like sequences

with excellent autocorrelation properties for other lengths as well. A Barker

sequence of length 11 is employed in the DS waveform used for the 1 and

2Mbps rates in the 802.11b WLAN standard. This is an example of a DS

system in which all users employ the same short spreading waveform. If dif-

ferent users arrive at the receiver with different delays, it is possible that the

receiver can still demodulate the user of interest successfully by locking onto

the spreading waveform at the delay corresponding to that user. The good

autocorrelation properties of the Barker sequence help with this so-called

capture effect.

8.4.3 Performance of conventional reception in CDMA systems

The conventional rake receiver is derived ignoring ISI and MAI. However,

in a CDMA system, the performance of the rake receiver is significantly

affected by MAI (self-interference due to ISI is small, and can typically be

neglected). I now illustrate this in an idealized scenario, via the example of a

synchronous CDMA system in which the received signal for a given symbol

is given by

y�t�=
K
∑

k=1

bkAksk�t�+n�t�� (8.70)
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where �bk
 are BPSK symbols, sk�t� =
∑N−1

l=0 sk	l
��t− lTc� are spreading

waveforms assigned to K users, and Ak is a complex gain corresponding to

user k. Assume for simplicity that all signals are real-valued, and that the

elements �sk	l

 of the spreading sequences are i.i.d, taking values ±1 with

probability 1/2. Suppose that User 1 is the desired user, and that the receiver

employs the matched filter statistic

Z1 =
∫

y�t�s1�t�dt =
K
∑

k=1

bk

∫

sk�t�s1�t�dt+
∫

n�t�s1�t�dt�

For � square root Nyquist at rate 1/Tc, normalized to r��0� = �����2 = 1,

we have

Z1 =
K
∑

k=1

bkAkRsk�s1
	0
+N1 = b1A1N +

K
∑

k=2

bkAkRsk�s1
�0�+N1�

where N1 ∼ N�0��2N�. The MAI is determined by the crosscorrelation func-

tions

Rsk�s1
	0
=

N−1
∑

l=0

sk	l
s1	l
 � k= 2� � � � �K�

Note that, if one of the interferers has a significantly larger power than that

of the desired user, then the sign of the decision statistic can be dominated by

the signal of bk (we need �AkRsk�s1
	0
� ≫ �A1N � for this to happen). This is the

so-called near–far problem incurred by conventional matched filter reception.

The CDMA-based digital cellular systems are particularly vulnerable to the

near–far problem on the uplink, since different mobiles may incur different

propagation losses to the base station. For example, the d−4 propagation

loss often encountered in wireless systems (where d is the distance between

transmitter and receiver) means that a factor of four difference in distance

translates to a 24 dB difference in received power if there is no power control.

Typical processing gains of the order of 10 dB certainly cannot overcome this

difference. Such systems must, therefore, employ power control to ensure

that the signals from different mobiles are received at the base station with

roughly equal powers.

Let us now develop a Gaussian approximation to the error probability. For

�sk	l

 i.i.d., taking values ±1 with equal probability, the terms sk	l
s1	l
, k=
2� � � � �K, are also i.i.d., taking values ±1 with equal probability. Thus, for

N large, we can approximate, using the central limit theorem, each Rsk�s1
�0�

as a Gaussian random variable, with mean zero and variance N . Thus, we

can approximately model bkAkRsk�sl
�0� as N�0�A2

kN�. Under our model, the

contribution to the MAI due to different users is independent, and the MAI

is independent of the noise. The sum of the MAI and noise can therefore be

modeled as a Gaussian random variable N�0� v2� whose variance is the sum

of the variances of its components, given by

v2 =
K
∑

k=2

A2
kN +�2N�
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We therefore have the following model for the matched filter decision statistic

Z1 = b1A1N +N�0� v2��

The decision rule

b̂1 = sign�Z1�

therefore incurs an error probability Pe ≈ Q�A1N/v�. Noting that Eb = A2N

and that �2 = N0/2, the preceding expression simplifies to

Pe ≈Q

(
√

1

�2Eb/N0�
−1+ 1

N

∑K
k=2A

2
k/A

2
1

)

� (8.71)

We can see the effect of the near–far problem from (8.71): if A2
k/A

2
1 →� for

some k �= 1, then Pe → 1/2.

Under perfect power control (all amplitudes equal), the expression (8.71)

specializes to

Pe ≈Q







√

√

√

√

1
(

2Eb

N0

)−1

+ K−1
N






� (8.72)

Note that the system performance is interference-limited: even if Eb/N0 is

large, the probability of error cannot be better than Q
(√

N
K−1

)

.

In practice, the signals corresponding to different users are not aligned at

the receiver at either the chip or the symbol level. Assuming that the receiver

is locked to the desired User 1, the interference due to the interfering users

is attenuated by this lack of chip alignment, in a manner that depends on the

chip waveform �. Performance analysis of matched filter reception for such

asynchronous CDMA systems is explored in Problem 8.21.

8.4.4 Multiuser detection for DS-CDMA systems

Multiuser detection refers to reception techniques that exploit the structure

of the MAI in receiver design, rather than ignoring it as in conventional

rake reception. An idealized setting suffices to illustrate the basic concepts,

hence we consider a K-user discrete-time, real baseband, synchronous CDMA

system with BPSK modulation. The N -dimensional received vector r over a

given symbol interval is given by

r =
K
∑

k=1

Akbksk+W� (8.73)

where, for 1≤ k≤K, bk ∈ �−1�+1
 is the symbol for user k, Ak its amplitude,

and sk its spreading vector, normalized for convenience to unit energy. The

vector W∼ N�0��2I� is WGN.

The analogy between MAI and ISI is immediate, from a comparison of the

MAI model (8.73) and the ISI model (5.25) developed in Chapter 5. However,

there are two major differences between the MAI and ISI models:
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(i) In the MAI model, the interference vectors can be arbitrary. In the ISI

model, they are restricted to being acyclic shifts of the channel impulse

response.

(ii) In the MAI model, the amplitudes �Ak� k �= 1
 for the interferers can scale

independently of the amplitude A1 of the desired user, and can in fact be

much larger than A1 (e.g., if an interfering transmitter is closer to the receiver

than the desired transmitter in a system without power control). We would

therefore like our multiuser detection schemes to be near–far resistant, i.e., to

provide good performance even in the presence of such a near–far problem.

Example 8.4.2 (ML reception for a two-user system) I take as my

running example a two-user system with received vector given by

r = A1b1s1+A2b2s2+W� (8.74)

where b1, b2 are ±1 BPSK symbols, and the signal vectors are normalized

to unit energy: ��s1��2 = ��s2��2 = 1. I denote the signal correlation as � =
�s1� s2
. The matched filters for the two users produce the outputs

z1 = �r� s1
 = A1b1+�A2b2+N1�

z2 = �r� s2
 = �A1b1+A2b2+N2�
(8.75)

where N1 ∼ N�0��2�, N2 ∼ N�0��2� are jointly Gaussian with

cov�N1�N2� = �2�. Conventional reception simply takes the sign of the

matched filter outputs:

b̂1�mf = sign�z1�� b̂2�mf = sign�z2�� (8.76)

We henceforth term such a receiver the matched filter (MF) receiver. For

� �= 0, each matched filter output is corrupted by interference, so that

the matched filter receiver is suboptimal. Let us now consider joint ML

reception for the two users; that is, we wish to decide on b = �b1� b2�
T .

To this end, rewrite (8.74) as

r = sb+W� (8.77)

where

sb = A1b1s1+A2b2s2�

The ML rule must maximize the log likelihood ratio, which is propor-

tional to

��b�= �r� sb
−
1

2
��sb��2� (8.78)

Since

�r� sb
 = A1b1�r� s1
+A2b2�r� s2

= A1b1z1+A2b2z2� (8.79)
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we realize that, in order to compute ��b� for all possible b (four possible

values in our case), it is necessary and sufficient to compute the matched

filter statistics z1 and z2. The problem with conventional reception is that

these statistics are being used separately as in (8.76), rather than jointly

according to the ML rule

b̂ML = arg max
b

�r� sb
−
1

2
��sb��2� (8.80)

Let us get the ML rule into a more explicit form. Consider the second

term above:

��sb��2 = ��A1b1s1+A2b2s2��2

= A2
1b

2
1��s1��2+A2

2b
2
2��s2��2+2A1A2b1b2�s1� s2


= A2
1+A2

2+2A1A2b1b2�� (8.81)

Throwing away terms independent of b, we obtain, using (8.79) and (8.81)

in (8.80), that

�b̂1� b̂2�ML = arg max
b1�b2

A1b1z1+A2b2z2−A1A2b1b2�� (8.82)

By writing out and comparing the terms above for the four possible values

of �b1� b2� = �±1�±1�, we get the ML decision regions as a function

of z1� z2. For example, consider A1 = 1�A2 = 2 and � = −1/2. The ML

decision is �+1�+1� if the following three inequalities hold:

z1+2z2+1> z1−2z2−1�

z1+2z2+1>−z1−2z2+1�

z1+2z2+1>−z1+2z2−1�

which reduces to z2 >−1/2, z1+2z2 > 0 and z1 >−1. By doing this for all

possible values of �b1� b2�, we obtain the decision regions shown in Figure

8.9. In contrast, the MF decision regions are simply the four quadrants

in the figure, since they do not account for the correlation between the

spreading waveforms. The relative performance of the MF and ML rules

is discussed in Example 8.4.3.

One of the goals of multiuser detection is to ensure that, as long as there are

enough dimensions in the signal space, the receiver performance is limited

by noise rather than by interference. Performance measures that are useful

for quantifying progress towards this goal are the asymptotic efficiency and

near–far resistance, defined in the following for a multiuser system over an

AWGN channel with noise variance �2 per dimension.

Asymptotic efficiency Let Pe denote the error probability attained (for a

specific desired user) by a given receiver, and let Pe�su denote the single-user
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1
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−1,−1
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z1

error probability for that user if there were no MAI. The asymptotic efficiency

� is the ratio of the exponent of decay with MAI, relative to that in the

single-user system, as the SNR gets large. That is,

Figure 8.9 Decision regions

for ML reception with two

users: A1 = 1, A2 = 2 and

�=−1/2 in Example 8.4.2.

�= lim
�2→0

logPe

logPe�su

� (8.83)

For example, if Pe

�= e−a/�2

and Pe�su

�= e−b/�2

, where a�b ≥ 0 are exponents

of decay, then � = a/b. If Pe does not decay exponentially with SNR, then

we have a= 0 and hence �= 0.

Example 8.4.3 (Asymptotic efficiency of ML and MF reception) Con-

sider the two-user system in Example 8.4.2, with A1 = 1�A2 = 2 and

�=−1/2. We wish to compute the asymptotic efficiency for user 1. With-

out loss of generality, condition on b1 = +1. In this case, we see from

(8.75) that

z1 = A1+�A2b2+N1�

Since we compare z1 to zero to make our decision, the asymptotic error

probability is given by the minimum distance to the decision boundary.

This equals A1 if there is no MAI (i.e., if �= 0 or A2 = 0), so that

Pe�su =Q

(

A1

�

)

�= e−A2
1/�

2

�

If there is MAI, then the distance from the decision boundary depends on

b2. Averaging over b2, we get

Pe =
1

2
Q

(

A1+�A2

�

)

+ 1

2
Q

(

A1−�A2

�

)

�

Since Q�x�
�= e−x2/2, the asymptotic performance is achieved by the worst-

case argument of the Q function, which is given by A1 − ��A2�. If this
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is negative, then the error probability is bounded away from zero, and

the asymptotic efficiency is zero. We can now infer that the asymptotic

efficiency of matched filter reception for user 1 is given by

�MF =
{

�A1−��A2��2
A2
1

=
(

1−���A2

A1

)2

� ���< A1

A2

0� else
� (8.84)

For the ML receiver, the error probability of User 1 at high SNR is

determined by the minimum distance dmin between the two signal sets

S+1 = �sb � b1 =+1
 and S−1 = �sb � b1 =−1
. That is, Pe

�=Q
(

dmin

2�

)

. Note

that, if there is no MAI, we have S+1 = �A1s1
 and S−1 = �−A1s1
, so that

dmin�su = 2A1��s1�� = 2A1, which gives us Pe�su =Q�A1/�� as before. When

MAI is present, a typical element of S+1 takes the form u=A1s1+b2A2s2
and a typical element of S−1 takes the form v = −A1s1 + b′2A2s2. The

distance between these two signals is given by

d2 = ��u−v��2 = ��2A1s1+ �b2−b′2�A2s2��2�

For b2 = b′2, we have d2 = 4A2
1 = d2

min�su. For b2 =−b′2, we get

d2 = 4�A2
1+A2

2+2b2�A1A2�= 4�A2
1+A2

2±2�A1A2��

whose minimum value is 4A2
1

(

1+A2
2/A

2
1−2���A2/A1

)

. Thus, the asymp-

totic efficiency for ML reception is given by

�ML =min�1�1+A2
2/A

2
1−2���A2/A1
� (8.85)

It can be checked that, as the interference strength increases (i.e., as

A2/A1 → �), we have �MF → 0 and �ML → 1 (see Figure 8.11). That

is, while the MF receiver performs poorly when there is a near–far prob-

lem, the ML receiver approaches single-user performance. An intuitive

interpretation of the latter is that, when User 2 is much stronger, the ML

receiver can first make a reliable decision on b2 based on z2 (since the

MAI due to User 1 is weak), and then subtract out the MAI due to User 2

from z1. Thus, the reliability of demodulation for b1 becomes noise-limited

rather than interference-limited.

The preceding example shows the power of multiuser detection: by exploiting

the structure of the MAI, we can get exponential decay of error probability

with SNR, rather than encountering an interference floor as with MF recep-

tion. The asymptotic efficiency of the ML receiver, however, depends on the

relative amplitudes of the users, as shown in the example of Figure 8.11.

Notice that the asymptotic efficiency achieves a minimum value as we vary

A2/A1. We term this the near–far resistance, and formally define it as

follows.
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Near–far resistance The near–far resistance is the minimum value of the

asymptotic efficiency as we vary the amplitudes of the interfering users.

For the two-user system in Examples 8.4.2 and 8.4.3, it can be shown that

the minimum value of the asymptotic efficiency occurs at A2/A1 = ���, which
yields

�ML�nf = 1−���2� (8.86)

Thus, the near–far resistance is strictly positive for ���< 1. For �= 1, s1 and

s2 are scalar multiples of each other, and the near–far resistance is equal to

zero.

The preceding results are easily generalized to more than two users, as

shown in Problem 8.25. Note here that the complexity of ML reception for

K users is exponential in K, so that ML reception does not scale well as

the number of users increases. It therefore becomes necessary to consider

suboptimal strategies, just as we did for equalization. In particular, let us

consider a linear receiver for the K-user system (8.73), the decision statistic

for which is of the form Z = �c� r
, where c is a correlator to be designed.

For BPSK signaling, hard decisions for User 1 would be of the form

b̂1 = sign�Z�= sign��c� r
��

(Since the correlator scaling is unimportant for BPSK signaling, I am not

careful about it in the following development.)

For the model (8.73), the output of a linear receiver is of the form

Z = A1b1�c� s1
+
∑

k �=1

Akbk�c� sk
+�c�W
� (8.87)

The first term is the desired term, the second term is the MAI contribution,

and the third term is the noise contribution. As in Chapter 5, we define the

signal-to-interference ratio (SIR) as the ratio of the energy of the desired term

to those of the undesired interference and noise terms, as follows:

SIR = A2
1��c� s1
�2

∑

k �=1A
2
k��c� sk
�2+�2��c��2 � (8.88)

Let us also define the signal space S as the space spanned by the signal vectors

�s1� s2� � � � � sK
, and the interference subspace SI as the space spanned by the

interference vectors �s2� � � � � sK
.

Zero-forcing, or decorrelating, detector The zero-forcing (ZF) detector

for User 1 is a correlator c = aP⊥
I s1 (a is an arbitrary scalar), where P⊥

I s1 is

the projection of s1 orthogonal to SI . The latter projection exists if and only

if the desired signal s1 is linearly independent of s2� � � � � sK . The ZF detector

knocks out the MAI at the expense of noise enhancement (exactly as for the

ZF equalizer in Chapter 5), as shown in Figure 8.10. For c = P⊥
I s1, we have

�c� r
 = A1b1��P⊥
I s1��2+N�0��2��P⊥

I s1��2��
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from which it can be inferred that the asymptotic efficiency is

�ZF =
��P⊥

I s1��2
��s1��2

= ��P⊥
I s1��2� (8.89)

That is, the asymptotic efficiency of the ZF detector is the fraction of the

desired signal energy orthogonal to the interference subspace. It is also

equal to the near–far resistance, since it does not depend on the interference

amplitudes.

Figure 8.10 The ZF correlator

is a scalar multiple of the

projection of the desired

spreading vector orthogonal to

the interference subspace.

Example 8.4.4 (ZF detector for two users) For the two-user system in

Example 8.4.2, we have

P⊥
I s1 = s1−�s1� s2
s2 = s1−�s2

and the asymptotic efficiency or near–far resistance of the ZF detector is

�ZF = ��P⊥
I s1��2 = 1−���2� (8.90)

Comparing with (8.85) and (8.86), we see that the ML and ZF detectors

have the same near–far resistance (i.e., they have the same worst-case

asymptotic performance). However, the ML detector has a higher asymp-

totic efficiency than the ZF detector for all values of A2/A1 except for the

minimizing value of A2/A1 = �. See Figure 8.11. This is the price we pay

for suboptimal reception.

Note that both the ML and ZF detectors require knowledge of the signal vec-

tors for both the desired and interfering users. (In addition, the ML receiver

requires the signal amplitudes and noise variance.) The matched filter receiver

for a given user, on the other hand, only needs to know the signal vector cor-

responding to that user. The centralized knowledge of the system parameters

required by multiuser detection schemes is problematic in many settings. We

now discuss the linear MMSE receiver, a multiuser detection scheme which

is amenable to decentralized adaptive implementation.
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The MMSE receiver for User 1 is a linear correlator minimizing the MSE,

given by

MSE = �	��c� r
−b1�2
�

The MMSE solution can be shown (see Chapter 5) to be of the form

cMMSE = R−1p� (8.91)

where (specializing to real-valued signals and symbols)

R = �	rrT 
� p= �	b1r
� (8.92)

For the model (8.73), we obtain (assuming i.i.d. BPSK symbols with equal

probability of ±1).

R =∑K
k=1A

2
ksks

T
k +�2I

p= A1s1�
(8.93)

Figure 8.11 Asymptotic

efficiency for User 1 as a

function of the ratio of

amplitudes A2/A1 for

normalized correlation

�=±0�5. The ML and ZF

detectors are near–far

resistant, while the near–far

resistance for the MF goes to

zero once A2 ≥ 2A1 .

Two important properties of the MMSE receiver as follows:

• The MMSE receiver tends to the ZF receiver as the noise variance gets

small (we had already noted this for ISI channels in Chapter 5). Thus, its

asymptotic efficiency equals that of the ZF receiver.
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• Even when the noise variance is finite, if the relative strength of an interferer

relative to the desired signal gets large, then the MMSE receiver forces its

contribution to the output to zero: if Ak/A1 →�, then �cMMSE�Aksk
→ 0.

These properties show that the MMSE receiver is near–far resistant, like a

good multiuser detection scheme should be. They are derived for a two-user

system in Problem 8.22.

The MMSE correlator (8.91) depends on the signal vectors, amplitudes,

and noise variance, and hence can be implemented if we have centralized

knowledge of all of these parameters. However, a more attractive decentral-

ized implementation is to adaptively compute it based on received vectors over

multiple observation intervals. The received vector for observation interval m

is given by

r	m
=
K
∑

k=1

Akbk	m
sk+W	m
� (8.94)

This corresponds to a system with short spreading sequences, where the signal

vectors for each observation interval are the same. We can now estimate

R and p in (8.92) as empirical averages for a least squares implementation

(again, see Chapter 5 for more detailed discussion):

R̂ = 1

M

M
∑

m=1

r	m
�r	m
�T � p̂= 1

M

M
∑

m=1

b1	m
r	m
� (8.95)

Other adaptive implementations such as LMS and RLS are also possible.

The computation of R̂ is purely based on the received vectors, while the

computation of p̂ requires a known training sequence �b1	m

 for the desired

user. Since no explicit knowledge of interference parameters is required, the

MMSE receiver can be implemented in completely decentralized fashion for

each user.

Other suboptimal techniques include interference cancellation schemes

combining linear reception with decision feedback. See Problem 8.23 for a

simple example.

While the preceding development has been carried out for a synchronous,

discrete-time system, the ideas apply more generally, as illustrated in some of

the problems. However, there remain significant implementation challenges

before the promise of multiuser detection can be realized for CDMA systems.

In a system with many users (more than the signal space dimension), the

benefits of multiuser detection over conventional matched filter reception

become less pronounced. On the other hand, in systems without power control

(for which multiuser detection provides the greatest performance gains over

conventional reception), the dynamic range of analog-to-digital conversion

must be large enough that the signal from weak users is not washed out

by the quantization noise. Indeed, the first major commercial application of

multiuser detection techniques may well be spatial multiplexing in single-

user space–time communication systems, as discussed in Section 8.7.3, where
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the multiple “users” correspond to different transmit antenna elements at the

same node.

8.5 Frequency hop spread spectrum

Frequency hop (FH) spread spectrum is conceptually quite simple: use a stan-

dard narrowband signaling scheme, but change the carrier frequency accord-

ing to some hopping pattern. If multiple symbols are sent over each hop,

we use the term “slow” FH, while if there is one symbol per hop, we use

the term “fast” FH. Frequency hopping can provide frequency diversity to

combat frequency-selective fading, as in the GSM digital cellular standard. It

can also be used to provide randomized multiple access, in which different

users use different hopping patterns (or different phases of the same hop-

ping pattern), as in the Bluetooth wireless personal area networking standard.

Frequency hop systems are also difficult to jam for an adversary who does

not know the hopping pattern (thereby forcing the adversary to spread its

jamming energy over a wide band), which makes them attractive for military

communication.

Phase synchronization is difficult to acquire in FH systems because of the

loss of phase coherence when hopping from one frequency to the next. Thus,

noncoherent or differentially coherent modulation are attractive design choices

for FH systems, since they avoid the expenditure of pilot overhead at the

beginning of each hop for acquiring explicit phase estimates. Another common

design choice is to apply error and erasure correction coding across hops. This

is especially effective for combating frequency-selective impairments due to

fading, multiple-access interference or “partial band” jamming (in which a

fraction of the band is jammed). In particular, concatenated coding strategies

can be very useful for FH systems with frequency-selective impairments. If

we have a mechanism for detecting hops that are severely impaired, then it

is efficient to erase such hops, since it is less expensive to deal with erasures

than with errors. An outer code optimized primarily for erasures can be

used to handle these frequency-selective impairments. Example 8.5.1 shows

how Reed–Solomon (RS) codes can be used for this purpose. The random

errors within hops that see “normal conditions” (e.g., background noise) can

be cleaned up by an inner code. For example, an inner convolutional code,

together with an outer RS code, might be an effective strategy. Of course,

with the recent developments in turbo-like coded modulation, it is possible to

design a single code for correcting both errors and erasures (e.g., by suitably

optimizing the degree sequence for an irregular LDPC code).

We consider a simple example illustrating the efficacy of coding across

hops in the following example, in which RS coding across hops is used to

combat multiple-access interference. Figure 8.12 illustrates that “hits” are rare

for well designed hopping patterns.
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Figure 8.12 Frequency hop

users employ hopping patterns

that collide occasionally.

Example 8.5.1 (Coded frequency hop multiple access) Consider a

K-user FH multiple-access system in which each user chooses a random

hopping pattern, with the frequency for each hop being chosen equiprob-

ably and independently from among q frequencies. Assume that all users

hop in synchronized fashion, and focus on the performance of a specific

user, say User 1. A “hit” occurs in a particular hop for User 1 when some

other user has hopped to the same frequency. The probability of a hit is

given by

phit = 1−
(

q−1

q

)K−1

� (8.96)

Assuming that we design the modulation scheme and link budget for

background noise, a hit would lead to very poor demodulation performance

in that hop. Thus, it makes sense to simply erase all symbols in a hop that

is hit. There are a number of mechanisms that can be used for detecting

hits, which we do not discuss here. For simplicity, let us assume that hits

can be detected perfectly, and that there are no demodulation errors in

hops that are not hit (e.g., by the use of an error correction code across

the symbols within a hop). Then a code operating across hops simply

has to correct erasures due to hits. An example of such a code, that has

been employed in the FH-based SINCGARS packet radio used by the US

military, is a Reed–Solomon code (see Section 7.5): an �n� k� RS code has

n code symbols, k information symbols, all drawn from an alphabet of

size Q. The block length n is constrained by the alphabet size: n≤Q−1

(we can actually go up for n = Q for an extended RS code). Thus, RS

codes operate on fairly large alphabets; for example, we can use eight

bits per code symbol, corresponding to Q = 28 = 256, and constraining

n ≤ 255. An �n� k� RS code can correct up to n−k erasures; that is, we
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can decode correctly as long as we get any k of the n symbols. If the

number of erasures is larger than n−k, then the RS decoder gives up. The

probability PF of such decoding failure is given by

PF =
n
∑

h=n−k+1

(

n

h

)

ph
hit�1−phit�

n−h�

Problem 8.26 discusses numerical examples illustrating design choices for

RS code parameters as a function of K and q.

8.6 Continuous phase modulation

Continuous phase modulation (CPM) encodes data in a signal of the form ej��t�,

where ��t� is a continuous function of t. The corresponding passband signal

is of the form up�t�= cos�2�fct+��t��. The constant envelope of this signal

means that we can recover it accurately even when it passes through severe

nonlinearities. This is a significant advantage over power-limited channels,

such as satellite and cellular wireless communication, since power amplifiers

operate most efficiently in a nonlinear saturation regime. For example, let us

consider the effect of an extreme nonlinearity, a hardlimiter, on the passband

signal up (such a nonlinearity would severely distort a signal with time-

varying envelope, since envelope information is destroyed by hardlimiting).

The hardlimited output is given by

vp�t�= sign
(

up�t�
)

= sign �cos�2�fct+��t��� �

This corresponds to replacing a sinusoid by a square wave. From a local

Fourier series expansion (��t� varies slowly compared with the carrier fre-

quency, and hence can be approximated as constant over many cycles), the

square wave is a sum of the odd harmonics:

vp�t� ≈ a1 cos�2�fct+��t��+a3 cos�3�2�fct+��t���

+a5 cos�5�2�fct+��t���+ � � �

where a1� a3� a5� � � � are determined as in Problem 8.27. Thus, we can recover

the original signal up�t� upto a scalar multiple simply by rejecting the har-

monics at 3fc�5fc� � � � (a transmit antenna tuned to fc typically suffices for

this purpose).

In theory, the constant envelope property can hold even without insisting

that ��t� be continuous: for example, QPSK with an ideal rectangular time-

limited pulse has a constant envelope. However, bandlimited circuits cannot

implement ideal timelimited signals, and hence cannot produce instantaneous

jumps in phase. Thus, if the phase jumps from �1 to �2, then the com-

plex envelope traces a path from ej�1 to ej�2 , passing through, for example,
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Envelope is zero due to 180º phase transition

�ej�1 + ej�2�/2. Since ��ej�1 + ej�2�/2� �= 1 for �1 �= �2, we see that the constant

envelope property no longer holds. Figure 8.13 shows the example of a PSK

signal going through a 180� phase shift: even though the pulse was intended

to be an ideal rectangular pulse, practical implementations have nonideal

transitions as shown, so that the envelope goes through zero.

Building on our familiarity with linear modulation, we begin our discus-

sion with minimum shift keying (MSK), a modulation format that can be

interpreted both as linear modulation and as CPM. As shown in Figure 8.14

(see also Problem 2.24), MSK can be represented as offset QPSK linear

modulation with bit rate 1/Tb with complex baseband transmitted signal

u�t�=
∑

k

�bc	k
p�t−2kTb�+ jbs	k
p�t−2kTb−Tb�� �

where bc	k
, bs	k
 are ±1 bits sent on the I and Q channels, and

p�t�= sin
�t

Ts

I	0�2Tb


is a sine pulse. The symbol duration on each of the I and Q channels is 2Tb.

Figure 8.13 The envelope of a

PSK signal passes through zero

during a 180� phase transition,

and gets distorted over a

nonlinear channel.

Figure 8.14 MSK interpreted

as offset QPSK using a

sinusoidal pulse. The I and Q

channel symbols are offset by

Tb , as shown.

We now wish to show that u is a CPM signal (i.e., that it is a constant

envelope signal with continuous phase). Since u is cyclostationary with period

2Tb, it suffices to discuss its structure over a typical interval 	0�2Tb
. It is

helpful to refer to the typical sample path shown in Figure 8.14.

Consider first 0 ≤ t ≤ Tb. From Figure 8.14, we see that we can write

u�t�= bc	0
 sin
�t

2Tb

+ jbs	−1
 cos
�t

2Tb

� 0 ≤ t ≤ Tb�

{bc[k]}

{bs[k]}

t

+1 +1

t

I channel

Q channel

−1 +1 +1 −1

−1 +1

2Tb 4Tb

Tb 3Tb

0

Tb
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which can be rewritten as

u�t�= jbs	−1
e
ja	0
 �t

2Tb � 0 ≤ t ≤ Tb�

where a	0
 = − bc	0


bs	−1

= −bc	0
bs	−1
 takes values in ±1. Note that u has a

constant envelope, and its phase is a linear function of t over this interval.

Now, consider Tb ≤ t ≤ 2Tb. From Figure 8.14, we have

u�t�= bc	0
 sin
�t

2Tb

− jbs	1
 cos
�t

2Tb

� Tb ≤ t ≤ 2Tb�

This can be rewritten as

u�t�=−jbs	1
e
ja	1
 �t

2Tb � Tb ≤ t ≤ 2Tb

where a	1
= �bc	0
�/�bs	1
�= bc	0
bs	1
 takes values in ±1. Again, note the

constant envelope and linear phase.

Figure 8.15 A trellis

representation for the phase

evolution of MSK. The path in

bold corresponds to the

realization shown in Figure

8.14.

Of the I and Q bitstreams �bc	k

, �bs	k

, exactly one bit changes sign at

integer multiples of Tb. The modulating pulse for that bit vanishes at the time

at which it changes sign, and u�t� is determined by the bit that is not changing

sign, which leads to continuity in phase: for example, u�0�= jbs	−1
, u�Tb�=
bc	0
, u�2Tb�= jbs	0
, and so on. Thus, the phase of u�t� follows a piecewise

linear trajectory over intervals of length Tb, while remaining continuous at

the edges of these intervals. A trellis representation of the phase evolution is

shown in Figure 8.15: the states are defined as the phase values at integer

multiples of Tb, as shown. The change in phase over an interval 	iTb� �i+1�Tb


is of the form a	i
�/2, where showed by example (i = 0�1) how the bits

a	i
∈ �−1�+1
 are defined. We can now interpret the phase as being a result

of linearly modulating the bits �a	i

 at rate 1/Tb, using the pulse ��t�,

given by

��t�=











0� t < 0
�t
2Tb

� 0 ≤ t ≤ Tb

�
2
� t ≥ Tb

� (8.97)

Note that � is a continuous function, which implies the continuity of the

phase of the CPM signal, given by

��t�=
∑

n

a	n
��t−nT�� (8.98)

5Tb

π/2 π/2 π/2

−π/2−π/2−π/2

Time

0 4Tb3Tb2Tb

0

π

0

π

0

π

Tb
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where we replace Tb by T to obtain the general form taken by the phase of a

CPM signal modulated at a symbol rate 1/T . In general, �a	n

 can be chosen

from a nonbinary alphabet, and � may be nonlinear, and can span an interval

larger than T . For MSK, �a	n

 are binary, so that T = Tb, and � is given by

(8.97).

Defining the instantaneous frequency f�t�= �1/2���d��t�/dt�, we obtain

by differentiating (8.98) that the instantaneous frequency is also linearly

modulated:

f�t�=
∑

n

a	n
g�t−nT�� (8.99)

where the frequency pulse g�t� = �1/2���d��t�/dt�. The phase pulse � can

be written in terms of the frequency pulse g as follows:

��t�= 2�
∫ t

−�
g�s� ds� (8.100)

We can therefore describe a CPM system by specifying the alphabet for the

�a	n

, and specifying either the phase or the frequency pulse.

For MSK, we obtain from (8.97)

g�t�= 1

4T
I	0�T
 MSK frequency pulse (8.101)

(recall that T = Tb). That is, the instantaneous frequency in MSK is modulated

by a rectangular pulse, leading to discrete frequency shifts over intervals of

length Tb. This is an example of continuous phase FSK (CPFSK), which is a

special case of CPM corresponding to piecewise linear phase variation. For

MSK, there are two possible frequency shifts of ±1/4T : the difference in

frequencies is therefore 1/2T , the minimum separation required to guarantee

orthogonality of FSK for coherent demodulation. This is the source of the

term minimum shift keying.

A DSP-centric realization of a CPM modulator is depicted in Figure 8.16.

In the following, we continue to focus on binary alphabets for �a	n

,

since CPM systems are usually designed for power efficiency. We now seek

to improve upon MSK in terms of bandwidth efficiency. For �a	n

 i.i.d.,

taking values ±1 with equal probability, the PSD of a CPM signal with phase

given by (8.98) clearly depends only on � or g. An analytical derivation

 θ (t )
cos θ (t )

sin θ (t )

{a[n]}

Rate 1/T

Phase

pulse φ (t )
Lookup

table
Upconverter Passband signal

Typically implemented in DSP

at rate m / T (m > 1), followed by DAC

Figure 8.16 Digital signal processing-centric realization of a CPM modulator. The linear modulation of

the phase ��t�, followed by look-up of the sine and cosine, is often implemented in DSP at an integer

multiple of the symbol rate, followed by digital-to-analog conversion prior to upconversion.
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0

φ (t )

LT
t

0

π h

of the PSD is possible, but the resulting expressions are too messy to yield

insight (numerical estimates of the PSD based on applying the FFT to a

sampled version of the CPM signal are often more computationally efficient).

However, it is intuitively reasonable that the bandwidth of a CPM signal can

be reduced by using a smoother phase pulse � (or equivalently, a smoother

frequency pulse g).

To reduce the bandwidth, one approach is to extend the time duration over

which a symbol a	n
 affects the instantaneous frequency beyond T . This is

termed partial response signaling, since only part of the response due to

a given symbol lies within an interval of length T . A simple extension of

MSK, therefore, is simply to stretch out the change in phase due to a symbol

over a longer period, while keeping the linear variation with time. The phase

pulse for partial response CPFSK is shown in Figure 8.17. The maximum

phase change due to a symbol is �h, where h is termed the modulation index

(0<h< 1 in practice). The modulation index for MSK is h= 1/2. The signal

bandwidth can be reduced further by smoothing out the sharp transitions in

the phase or frequency pulses. I now illustrate this by discussing in some

detail Gaussian MSK (GMSK), which is the modulation format used in the

GSM cellular system.

Figure 8.17 Phase pulse for

CPFSK has a linear increase.

Partial response CPFSK

corresponds to L > 1, and h is

the modulation index.

8.6.1 Gaussian MSK

The frequency pulse g�t� for GMSK is obtained by “smoothing” the rectan-

gular frequency pulse of MSK by passing it through a Gaussian filter. I first

discuss some facts and nomenclature related to Gaussian filters.

Gaussian filter A Gaussian filter has transfer function of the form

H�f�= exp

(

−
(

f

B

)2
log2

2

)

� (8.102)

where B is the (one-sided) 3 dB bandwidth, defined as

�H�B��2
�H�0��2 = 1

2
�

(H�f� is maximum at f = 0, and decays monotonically with �f �.)
It turns out that the impulse response of a Gaussian filter is also Gaus-

sian. We can see this by massaging the inverse Fourier transform of (8.102)
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into the form of a Gaussian density, as follows (we set A = log2/2B2 for

convenience):

h�t�=
∫ �

−�
e−Af 2ej2�ftdf = eA��t/A�

2
∫ �

−�
e−A�f+�ft/A�2df�

completing squares. Recognizing that the integrand has the form of a

N�−�ft/A�a2 = 1/2A� density, we see that the the integral on the extreme

right-hand side evaluates to
√
2�a2 =

√
�/A. We therefore obtain

h�t�=
√

�

A
e−�2t2/A�

which takes the form of a N�0� v2� density with v2 = A/2�2 = log2/4�2B2.

To summarize, the impulse response of the Gaussian filter (8.102) is given by

h�t�= 1

2�v2
e
− t2

2v2 � v2 = log2

4�2B2
� (8.103)

The normalization H�0�=
∫

h�t�dt = 1 is important, as we see shortly.

Convolving the MSK frequency pulse gMSK�t�= 1
4T
I	0�T
 with the Gaussian

filter in (8.103) yields

gGMSK�t� = 1

4T

[

Q

(

t−T

v

)

−Q
( t

v

)

]

= 1

4T

[

Q

(

2��
t−T

T
√
ln 2

)

−Q

(

2��
t

T
√
ln 2

)]

� (8.104)

The parameter v2 of the Gaussian filter is related to the normalized 3 dB

bandwidth �=BT as follows: v2 = T 2 ln 2/4�2�2. The GSM system specifies

� = 0�3. By virtue of our normalization of the Gaussian filter such that

H�0� =
∫

h�t�dt = 1, the area under the frequency pulse, and hence the net

phase deviation due to a given symbol, remains the same as in MSK:
∫

gGMSK�t�dt =GGMSK�0�=GMSK�0�H�0�=GMSK�0�=
∫

gMSK�t�dt =
1

4
�

That is, each bit in GMSK causes a phase change of ±2�
∫

gGMSK�t�dt =
±�/2.

I plot gGMSK in Figure 8.18. Note how the Gaussian filtering spreads out

and smooths the rectangular MSK pulse over time. In the frequency domain,

the slow sinc function decay of the MSK frequency pulse is multiplied by the

rapidly decaying Gaussian transfer function e−�2f 2/a2 to reduce the spectral

occupancy of the MSK frequency pulse significantly.

8.6.2 Receiver design and Laurent’s expansion

The instantaneous frequency of a CPM signal is linearly modulated by the

symbols �a	n

. Thus, a suboptimal approach for demodulating CPM is to first

extract the instantaneous frequency using an FM demodulator, and then use

standard techniques for detecting linearly modulated signals. Alternatively,
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one could try to use an optimal, maximum likelihood approach. Figure 8.15

shows that the phase for MSK takes one of a discrete set of values at integer

multiples of T . This can be used to define a phase trellis over which to

perform MLSE for the sequence �a	n

, as shown in Problem 8.28. Of course,

for MSK, it is far easier to carryout symbol by symbol demodulation of the

sequences �bc	k

 and �bs	k

 using an OQPSK interpretation). The MLSE

approach can be extended to partial response CPM for rational modulation

index (in which case the phases at the end of T -length intervals take on values

from a finite set, leading to a finite-state phase trellis).

Figure 8.18 The frequency

pulse gGMSK�t� for Gaussian

MSK with �= 0�3 as in the

GSM system.

The suboptimum FM demodulator does not perform well when the CPM

signal passes through a dispersive channel, since the noiseless received sig-

nal can no longer be modeled using linear modulation of the instantaneous

frequency. On the other hand, the MLSE approach becomes cumbersome for

a dispersive channel. In addition to the explosion of the number of states

required to capture the memory of the channel and the modulation, the num-

ber of correlator decision statistics per time interval T scales with the number

of states. This is in contrast to linear modulation, where only one decision

statistic is needed per time interval T : the matched filter output sampled at the

symbol rate. Moreover, we have a suite of strategies for handling ISI for linear

modulation, ranging from computationally complex MLSE to low-complexity

linear and decision-feedback equalization. In contrast, it is unclear, a priori,

as to how we would develop suboptimal, low-complexity equalizers for a

nonlinear modulation format such as CPM.
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An elegant solution to the preceding quandary lies in Laurent’s represen-

tation of CPM signals. Laurent showed that CPM signals can be very well

approximated as linear modulation in most cases of practical interest, so that

we can write

u�t�= exp

(

∑

n

a	n
��t−nT�

)

≈
∑

n

B	n
s�t−nT�Laurent approximation�

(8.105)

where �B	n

 are “pseudosymbols” that can be computed in terms of the

CPFSK symbols �a	n

, and s�t� is a function of the phase pulse ��t�. The

details of the Laurent approximation are worked out for a partial response

CPFSK system in Example 8.6.1. The approximation (8.105) is extremely sig-

nificant for receiver design, since it allows us to exploit all of the equalization

techniques that we already know for linearly modulated systems. The modu-

lating pulse s�t� is not Nyquist or square root Nyquist at rate 1/T for partial

response CPM, so that ISI is built into this model of CPM. When we pass

the CPM signal through a channel gC, we incur further ISI from the effective

modulating pulse s ∗ gC. We can now recover �B	n

 using the equalization

techniques of Chapter 5 for this effective pulse, choosing between options

such as MLSE, linear MMSE or DFE, depending on our implementation

constraints.

I illustrate Laurent’s approach using an example, followed by a discussion

of how the results generalize.

Example 8.6.1 (Laurent approximation for CPFSK with L = 2)

I illustrate Laurent’s method using a phase pulse with a linear increase

over an interval of length 2T and modulation index 1/2 (i.e., L = 2 in

Figure 8.17). The modulated signal is written as

u�t�= exp �j��t��= exp

(

j
�
∑

n=0

a	n
��t−nT�

)

�

Define the pseudosymbol sequence �B0	k

 as follows:

B0	k
= exp

(

j
�

2

k
∑

n=0

a	n


)

= j
∑k

n=0 a	n
� (8.106)

We plan to approximate u�t� as linear modulation with these pseu-

dosymbols. Note that �B0	k

 come from a QPSK constellation. For

t∈ 	NT� �N +1�T�, we can see that the phase is given by

��t�= ��t−NT�a	N
+��t−NT +T�a	N −1
+ �

2

N−2
∑

n=0

a	n
� (8.107)

We can use Euler’s formula to write

ejab = cosb+ ja sin b� a=±1� (8.108)
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Let us introduce the shorthand �N =��t−NT� and �N =��t−NT+T� for

NT ≤ t < �N +1�T , suppressing the dependence on time for the moment.

We can now write, for NT ≤ t < �N +1�T ,

u�t�= ej��t� = eja	N
�N eja	N−1
�NB0	N −2


= �cos�N + ja	N
 sin�N ��cos�N + ja	N−1
 sin�N �B0	N −2
 (8.109)

Noting that ja	N−1
B0	N−2
=B0	N−1
 and ja	N
ja	N−1
B0	N−2
=B0	N
,

we can write

u�t�= B0	N
 sin�N sin�N +B0	N −1
 cos�N sin�N

+B0	N −2
 cos�N cos�N +B1	N
 sin�N cos�N � (8.110)

where B1	k
 = ja	k
B0	k− 2
 = B0	k
j
−a	k−1
 is another pseudosymbol

sequence. We now show that u�t� can be expressed as a sum of linearly

modulated signals using the pseudosymbol sequences �B0	k

 and �B1	k

,

with the dominant contribution coming from the signal corresponding to

�B	k

. That is, we show that

u�t�=
∑

k

B0	k
s0�t−kT�+
∑

k

B1	k
s1�t−kT�

for some waveforms s0 and s1. The expression (8.110) holds over the

length-T interval 	NT� �N + 1�T�. Summing over all such intervals, and

substituting the expressions for �N , �N , we obtain

u�t� =
∑

N

�B0	N
 sin��t−NT� sin��t−NT +T�

+B0	N −1
 cos��t−NT� sin��t−NT +T�

+ B0	N −2
 cos��t−NT� cos��t−NT +T�

+ B1	N
 sin��t−NT� cos��t−NT +T�
 I	NT��N+1�T �

Grouping together all terms multiplying B0	k
, we see that

u�t�=
∑

k

B0	k
s0�k�t�+
∑

k

B1	k
s1�k�t��

where

s0�k�t� = sin��t−kT� sin��t− �k−1�T�I	kT��k+1�T�

+ cos��t− �k+1�T� sin��t−kT�I	�k+1�T��k+2�T�

+ cos��t− �k+2�T� cos��t− �k+1�T�I	�k+2�T��k+3�T�

and

s1�k�t�= sin��t−kT� cos��t− �k−1�T�I	kT��k+1�T��

It is now clear that we can write

s0�k�t�= s0�t−kT�� s1�k�t�= s1�t−kT�
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where

s0�t� = sin��t� sin��t+T�I	0�T�

+ cos��t−T� sin��t�I	T�2T�

+ cos��t−2T� cos��t−T�I	2T�3T�

and

s1�t�= sin��t� cos��t+T�I	0�T��

Figure 8.19 shows the waveforms s0 and s1. Clearly, s0 is much larger,

so that we can approximate the modulated waveform as QPSK linear

modulation as follows:

u�t�≈
∑

k

B0	k
s0�t−kT��

The waveform s0�t� can be put into a more compact form by defining the

extended phase function �, defined by piecing together the linear portion

of � and its reflection around 2T :

��t�=



















0� t < 0

��t�� 0 ≤ t ≤ 2T
�
2
−��t−2T�� 2T ≤ t ≤ 4T

0� t ≥ 4T�

(8.111)

By noting that cosa = sin��/2−a�, a little thought shows that we can

write

s0�t�= sin��t� sin��t+T��

Similarly,

s1�t�= sin��t� sin��t+3T��

The preceding method generalizes to arbitrary phase or frequency pulses,

assuming that the frequency pulse is zero outside an interval of length LT ,

where L ≥ 1 is an integer. Note that, even if the frequency pulse does not

have finite support, it must die out eventually in order to be integrable, so

that we can approximate it well by truncation to a finite interval of length LT

for some L. For example, Figure 8.20 shows the phase pulse for GMSK with

�= 0�3. Clearly, truncation to L= 4 works well for this pulse.

For a frequency pulse of duration LT , it can be shown that the modulated

signal can be decomposed into a sum of 2L−1 parallel linearly modulated

systems, with correlated pseudosymbol sequences that are related to the CPM

symbols �a	n

. One of these parallel systems dominates, which results in

the linear modulation approximation (8.105). The derivation involves simple

generalizations of the arguments used in the preceding example, and I sketch

some key features next.
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Figure 8.19 Laurent pulses s0
and s1 for CPFSK with L= 2,

computed as described in

Example 8.6.1. Note that the

dominant pulse s0�t�, shown

using an unbroken line, is

much larger than the pulse

s1�t�, shown using a dashed

line.

Figure 8.20 The phase pulse

�GMSK�t� for Gaussian MSK

with �= 0�3. Note that the

variation of the phase can be

captured in an interval of

length L= 4.
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The most important step in the general derivation is to account for mod-

ulation index h different from 1/2. For general h and L, equation (8.107)

becomes

��t� = ��t−NT�a	N
+��t−NT +T�a	N −1
+

� � � +��t−NT + �L−1�T�a	N −L+1
�

We define the pseudosymbols for the dominant system as

B0	k
= ej�h
∑k

n=0 a	n
 = J
∑k

n=0 a	n
� where J = ej�h� (8.112)

(Note: J = j for h = 1/2). For rational h = p/q (p < q, p, q integers), the

pseudosymbols are drawn from a q-ary PSK alphabet.

In the example, the next critical step in the Laurent expansion was to

apply the Euler-based formula (8.108) to (8.107). However, to get expressions

in terms of the pseudosymbols (8.112), we must now use a more general

Euler-like formula involving J = ej�h: for a∈ �−1�+1
,

ejab = sin��h−b�+ Ja sin b

sin�h
� (8.113)

We also need to modify the definition of the generalized phase function � as

follows:

��t�=















0� t < 0

��t�� 0 ≤ t ≤ LT

�h−��t−LT�� LT ≤ t ≤ 2LT�

0� t ≥ 2LT

(8.114)

We can now mimic the derivation in the example, using � to obtain a compact

representation for the modulating signals in the 2L−1 parallel systems. We

specify here only the modulating waveform for the dominant system, which

is given by

s0�t�= K�t�K�t+T�� � � K�t+ �L−1�T�� (8.115)

where

K�t�= sin��t�

sin�h
� (8.116)

That is, the approximation (8.105) holds with B = B0 and s = s0.

8.7 Space–time communication

Space–time communication is a broad term that includes a gamut of tech-

niques developed for communication systems with multiple transmit and

receive antennas. Another term for such systems that is in widespread usage is

multiple input multiple output (MIMO). The use of multiple receive antennas

for diversity and beamforming, as described in Section 8.2.3, has been known

for many decades. More recently, however, there has been increasing interest
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in how to use multiple transmit as well as receive antennas. The number

of antennas at the transmitter and receiver varies across applications. For

cellular systems, it is reasonable to assume that the base station is equipped

with several antennas, while the mobile terminal might only have one or two

antennas. In this case, the transmitter has more antennas than the receiver

on the base-to-mobile downlink, while the receiver has more antennas on

the mobile-to-base uplink. In contrast, for emerging IEEE 802.11n WLANs

based on MIMO techniques, most nodes might have similar form factors, and

a similar number of antennas (ranging from two to four).

I begin with space–time channel modeling, using a linear antenna array

as my running example. I derive the array response as a function of the

angle of arrival of an incoming electromagnetic wave (the same derivation

holds for outgoing waves as well). In a multipath environment, the overall

received signal is a sum of multiple waves arriving from different angles: for

a statistical channel model, these can be statistically characterized in terms

of a power-angle profile (PAP). I use central limit theorem arguments to

model the overall array response as complex Gaussian with covariance matrix

depending on the PAP. Next, I provide an information-theoretic analysis in

a “rich scattering” environment in which this spatial covariance matrix is

white. This analysis motivates some of the specific techniques that I discuss

next, which fall into one of three broad classes: spatial multiplexing, transmit

diversity, and transmit beamforming.

My discussion of space–time communication is for narrowband systems, in

which the channel for a given pair of transmit and receive antenna elements

can be modeled as a complex gain. Wideband channels can be converted into

parallel narrowband channels using OFDM, and MIMO techniques can be

used within each subcarrier; an example of such a MIMO-OFDM system is

the emerging IEEE 802.11n WLAN standard.

8.7.1 Space–time channel modeling

Consider a linear array of m antenna elements with inter-element spacing of

d, as shown in Figure 8.21. The reference for defining the angle of arrival

of incoming waves is taken to be the broadside of the array, which is the

direction perpendicular to the line of the array.

As shown in Figure 8.21, a wave arriving at angle � incurs a path length

difference between successive antenna elements of d sin �. The corresponding

difference in phase is given by

�= ����= 2�d sin �

�
�

where � = c/fc is the wavelength, c is the speed of light (assuming free

space propagation), and fc is the carrier frequency. Thus, taking the phase

at the first antenna element as the reference, if y�t� is the complex baseband

signal received at the first element, then the ith element receives the signal
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Incoming wave

θ

Broadside direction

d

Inter-element spacing

d
 sin

 θ

y�t− i��ej�i−1��, where � = d sin �/c is the inter-element delay. For d of the

order of �, � is of the order of 1/fc. Assuming that the bandwidth of y is

much smaller than fc, we can ignore the effect of the delay on y�t�. Under this

“narrowband assumption,” we can set y�t− i�� ≈ y�t�, so that the received

signal at the ith element is modeled as y�t�ej�i−1��. Thus, the complex baseband

signal sees an m-dimensional vector gain that we term the array response,

defined as

a���=
(

1� ej�� � � � � ej�m−1��
)T

� (8.117)

The collection �a���
 of array responses as a function of �, as � varies

over a semicircle (�∈ 	−�/2��/2
) is termed the array manifold. While I

have derived the array manifold for a linear array, it is clear that similar

calculations could be carried out to determine the array manifold for other

geometries. (For two-dimensional arrays, the array manifold depends on two

angular parameters.)

Figure 8.21 Geometry of a

linear antenna array.

Now, consider a multipath channel in which the received signal is a super-

position of waves with different amplitudes and phases, arriving from different

directions. The composite array response is given by

h= �h1� � � � � hm�
T =

M
∑

i=1

gia��i��

whereM is the number of multipath components, and gi denoting the complex

gain, and �i the angle of arrival, for the ith path. We can now argue as we

did when we developed the scalar Rayleigh fading model in Section 8.1. The

multipath phases arg�gi� are well modeled as independent and uniform over

	0�2�
. As long as the magnitudes �gi� are comparable, we can apply a vector

central limit theorem to model h as zero mean, proper complex Gaussian,

with covariance matrix

C=
M
∑

i=1

�gi�2a��i� �a��i��H � (8.118)

We now introduce the PAP P���, with P���d� the average power arriving from

angles in the infinitesimal interval of length d� around �. For convenience,
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let us normalize P��� so that it plays the role of a density:
∫

P��� d� = 1.

Assuming that there are enough paths, we can replace the sum (8.118) by an

average computed using the PAP as follows:

C=
∫

a���aH��� P��� d�� (8.119)

Note that vi are orthogonal for different eigenvalues, and can be chosen

to be orthogonal for repeated eigenvalues. We therefore assume that they

are orthogonal, and term them the channel eigenmodes. The random array

response h ∼ CN�0�C� can be written as a linear combination of the eigen-

modes as follows:

h=
m
∑

i=1

h̃ivi� (8.120)

where h̃i ∼ CN�0��i� is the complex gain along the ith eigenmode. Note that

h̃i are independent under our model.

For narrow PAPs, there are a small number of dominant eigenmodes:

in this case, the channel energy can be efficiently gathered by focusing

communication along these eigenmodes (assuming that these are known). For

a large power-angle spread, there are a larger number of eigenmodes. We dub

the special case in which all eigenmodes are equally strong a “rich scattering”

environment. In this case, C is a scalar multiple of the identity matrix, and

we have i.i.d. zero mean, complex Gaussian gains at each element.

Multiple antennas at both ends Now, consider a system with NT antenna

elements at the transmitter, and NR antenna elements at the receiver. For

narrowband signaling, we can describe the channel by an NR×NT matrix H,

where the jth column of H is the receive array response to the jth transmit

element. If the lth path has departure angle �l, arrival angle �l, and complex

gain gl, then the channel matrix is given by

H=
∑

l

gl aT��l�a
T
R��l��

where aT�·� is the transmit array manifold and aR�·� is the receive array

manifold. The distribution of the coefficients gl is determined by the PAP at

each end. For simplicity, I consider some special cases below.

LOS link If �T is the angle of departure from the transmitter, and �R is the

angle of arrival at the receiver, then the channel matrix is rank one:

H= aR��R��aT��T��
T � (8.121)

Rich scattering If there is rich scattering around both the transmitter and

the receiver, then the entries of H can be modeled i.i.d., zero mean, proper

complex Gaussian random variables.
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Base station sees

narrow power−angle

profile

Mobile sees rich scattering

due to ring of scatterers

Figure 8.22 An elevated base station sees a narrow power-angle profile to a given mobile, but the

mobile sees a rich scattering environment locally. The nodes may have multiple antenna elements (not

shown in figure).

Narrow PAP at one end, rich scattering at other end In many cellular

systems, an elevated base station would see a relatively small angular spread to

a particular mobile, while the mobile may be see a rich scattering environment

due to buildings and other scatterers surrounding it. This scenario is depicted

in Figure 8.22. Suppose that the base station sees PAP P���, where � is the

angle of departure. Then the ith receive element sees a 1×NT transmit vector

H�i� ·� modeled as CN�0�CP�, where CP is as in (8.119). Under the rich

scattering model at the mobile receiver, we can model the transmit vectors for

different receive elements as i.i.d.: thus, the rows of H are i.i.d. CN�0�CP�

random vectors.

8.7.2 Information-theoretic limits

The key idea here is to decompose the channel into a number of parallel eigen-

modes, with the net rate being the sum of the rates sent over the eigenmodes.

For an NR×NT channel matrix H, the NR×1 channel output y corresponding

to an NT×1 input x is given by

y=Hx+w� (8.122)

where the noise w ∼ CN�0�2�2I� is complex WGN with variance �2 per

dimension. As usual, the noise is i.i.d. over multiple uses of the channel. We

assume that H is fixed.
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Our information-theoretic computations rely on a singular value decompo-

sition (SVD) to reduce the channel into a number of parallel scalar channels.

Singular value decomposition Let us first review the SVD. Assume that

NR ≥ NT (otherwise replace H by HH in the following). Define the NT×NT

matrix

W=HHH� (8.123)

Note thatW is nonnegative definite, so that it has nonnegative eigenvalues: let

vi denote the NT×1 eigenvector corresponding to the ith eigenvalue �i ≥ 0,

i = 1� � � � �NT. Let V denote a matrix whose ith column is vi. Note that

�vi
 can be chosen to be orthonormal (eigenvectors for different eigenvalues

are orthogonal, while eigenvectors for repeated eigenvalues can be chosen

to be orthogonal), so that VHV = I. Suppose, now, that exactly k of these

eigenvalues are strictly positive (for i= 1� � � � � k, without loss of generality).

Note that

Hvi = 0� if �i = 0� (8.124)

which occurs for i= k+1� � � � �NT . Define the NR×1 vectors

ui = �
− 1

2

i Hvi � i= 1� � � � k�

where k≤ NT ≤ NR. Note that �ui
 are orthonormal:

uH
i uj = ��i�j�

− 1
2 vHi H

HHvj = ��i�j�
− 1

2�jvj = �ij�

Complete the set �ui� i = 1� � � � � k
 to form an orthonormal basis �ui� i =
1� � � � �NR
 in NR dimensions, and denote by U the NR×NR matrix whose ith

column is ui. We now claim that we can write the NR×NT channel matrix H

as follows:

H=
NT
∑

i=1

ui

√

�iv
H
i = UDVH� (8.125)

where D = diag��
1
2

1 � � � � � �
1
2

NT
� is an NT ×NT diagonal matrix; the diagonal

entries
√

�i are termed the singular values of H. To verify (8.125), we need

to check that its left and right hand sides give the same result when operating

on an arbitrary NT×1 vector x. To see this, note that any such vector can be

expressed in terms of the orthonormal basis �vi
 as follows:

x =
NT
∑

i=1

viv
H
i x�

so that

Hx =
NT
∑

i=1

Hviv
H
i x =

k
∑

i=1

Hviv
H
i x

=
k
∑

i=1

√

�iuiv
H
i x =

NT
∑

i=1

√

�iuiv
H
i x�
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where we have used (8.124) in the second equality, and the fact that �i = 0

for i > k in the fourth equality. This completes the proof of (8.125).

Application of SVD If we send the vector vi through the channel matrix

H, we get a nonzero output corresponding to the k nonzero singular values.

For these, we get the noiseless outputs Hvi =
√

�iui, i= 1� � � � � k. Since the

vectors �vi
 form an orthonormal basis for the input space, and the vectors

�ui
 form an orthonormal basis for the output space, we have effectively

decomposed the channel into k parallel channels, corresponding to k nontrivial

“eigenmodes.” More formally, let us express the NT × 1 channel input x in

terms of the orthonormal basis �vi
, and the NR×1 channel output y in terms

of the orthonormal basis �ui
 as follows:

x̂ = VHx� ŷ= UHy�

Using the SVD (8.125), the channel model (8.122) can now be rephrased as

ŷ= Dx̂+ ŵ�

where ŵ is complex WGN as before. That is, we now have k parallel scalar

channels of the form:

ŷi =
√

�ix̂i+ ŵi� i= 1� � � � � k�

corresponding to the k nonzero eigenvalues of W.

What we do now depends on whether or not the transmitter knows the

channel. If it does, then we can simply apply the waterfilling solution devel-

oped in Chapter 6 for parallel Gaussian channels. Let us therefore assume that

the transmitter does not know the channel. We wish to communicate at the

largest rate possible, under the input power constraint �	��x��2
≤ P. A code-

word spanning n time intervals is a sequence of input vectors X= �x	j
� j =
1� � � � � n
. The corresponding output vectors are Y = �y	j
� j = 1� � � � � n
,

where y	j
=Hx	j
+w	j
, whereW= �w	j
� j= 1� � � � � n
 is complexWGN.

We wish to maximize the average mutual information �1/n�I�X�Y�. We first

show that this can be achieved by i.i.d. zero mean, proper complex Gaussian

inputs x	j
. To show the optimality of Gaussian inputs, we can reason as

follows:

• If the channel is known at the receiver,H�Y�X�=H�W�, independent of the

input distribution. Thus, maximizing the mutual information is equivalent

to maximizing the output entropy H�Y�.
• We have H�Y�≤∑n

j=1H�y	j
�, with equality if �y	j

 are independent. The

latter can be achieved by choosing �x	j

 independent, and by maximizing

the marginals H�y	j

. Thus, the problem reduces to choosing x	j
 i.i.d.

with a distribution that maximizes H�y	j
� for each j.
• Given an input x with covariance Cx, the covariance of y = Hx+w is

given by Cy =HCxH
H +2�2I. For a given covariance Cy, the (differential)

entropy is maximized if y is proper complex Gaussian (the proof is similar
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to that for a scalar Gaussian channel in Chapter 6). This can be achieved

by choosing the input x to be proper complex Gaussian.

• Since the entropy of the output does not depend on the mean, choosing a

nonzero input mean represents a power expenditure which does not increase

the output entropy. We can therefore set the input mean to zero.

Based on the preceding reasoning, the only remaining issue is the choice of

the input spatial covariance Cx subject to the power constraint trace �Cx�≤ P.

Before doing this, I provide a formula (proved in Problem 8.31) for the

differential entropy for an n×1 complex Gaussian vector Z∼ CN�m�C�:

h�Z�= logdet ��eC�=
n
∑

i=1

�log�i+ log�e� � (8.126)

where det denotes the determinant of a matrix, and ��i
 are the eigenval-

ues of C.

Capacity with proper complex Gaussian input For the channel (8.122),

for complex Gaussian input (which leads to complex Gaussian output), we

obtain, upon some manipulation,

I�x�y�=H�y�−H�w�= logdet
(

2�2I+HCxH
H
)

− logdet�2�2I�

= logdet
(

I+ 1
2�2HCxH

H
)

�
(8.127)

Robustness of white Gaussian input The specific choice of spatially white

Gaussian input Cx = PI/NT has the property that it sends equal energy along

all channel eigenmodes �vi
, regardless of the channel matrix H. Furthermore,

the projections x̂i along the eigenmodes are independent, so that the entropies

of the parallel channels corresponding to the eigenmodes simply add up. The

resulting mutual information is

Cwhite = logdet

(

I+ SNR

NT

HHH

)

=
∑

i

log

(

1+ SNR

NT

�i

)

� (8.128)

where SNR = P/2�2.

I have just presented a heuristic argument that using spatially white inputs

is a good strategy when the transmitter does not know the spatial channel.

Moreover, spatially white inputs can be shown to be optimal in certain settings.

Specifically, for rich scattering environments in which the entries of H are

i.i.d., zero mean complex Gaussian random variables, spatially white inputs

maximize ergodic capacity. They are also conjectured to maximize outage

capacity, assuming that the desired outage probability is small enough.

Ergodic capacity for rich scattering The ergodic capacity for a rich scat-

tering environment in which the entries of H are i.i.d., zero mean, proper

complex Gaussian is achieved by spatially white input with Cx = PI/NT.
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Substituting into (8.127) and taking expectation over H, we get

Crich−scattering = �

[

logdet

(

I+ SNR

NT

HHH

)]

=
∑

i

�

[

log

(

1+ SNR

NT

�i

)]

�

(8.129)

where �i are the eigenvalues of the Wishart matrix W, defined as

W=
{

HHH� NT ≤ NR

HHH � NR ≤ NT

�

That is, W is an m×m matrix, where m=min�NT�NR�. We see, therefore,

that

C=min�NT�NR��

[

log

(

1+ SNR

NT

�

)]

MIMO capacity with rich scattering�

where � is a typical eigenvalue of W. Thus, even without specifying the dis-

tribution of �, we see that the capacity scales linearly with the minimum of the

number of transmit and receive antenna elements, as long as the distribution

of � has some probability mass away from zero. This linear scaling, which is

termed the spatial multiplexing gain, is analogous to that provided by addi-

tional bandwidth: adding antennas so as to increase min�NT�NR� increases the

dimension of the available signal space, just as increasing the time-bandwidth

product does. In Section 8.7.3, I discuss constructive techniques for exploiting

these spatial degrees of freedom.

8.7.3 Spatial multiplexing

We know now that MIMO capacity in a rich scattering environment scales

with min�NT�NR�. Let us now consider how we would attain this linear

scaling of capacity in practice. For simplicity, suppose that NR ≥ NT. The

received signal can be written as

y= b1h1+ � � � +bNT
hNT

+W� (8.130)

Comparing with the synchronous CDMA (8.73) in Section 8.4.4, we note that

the receive array responses �hi
 play the same role as the scaled spreading

codes �Aksk
. That is, we can think of this as a CDMA system with NT “users,”

with the ith user, or transmit element, being assigned a spreading code hi by

nature. We can now apply multiuser detection techniques as in Section 8.4.4

to demodulate these NT streams. Assuming that NR ≥NT, �hi
 are likely to be

linearly independent in a rich scattering environment, and linear interference

suppression based on the ZF or MMSE criterion should work. Indeed, the

first prototype BLAST (Bell Labs layered space–time architecture) system

developed by Bell Labs employed linear MMSE reception. There are many

different combinations of coded modulation at the transmitter, and multiuser

detection techniques at the receiver, that can be employed. However, they are

all based on the basic understanding that (a) spatial multiplexed systems are
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analogous to CDMA systems, with signaling waveforms provided by nature,

and (b) since the NT “users” are colocated at the transmitter, it is possible to

employ a single channel code across users, thus getting the benefit of transmit

diversity as well (different transmit elements can see space–time channels

of different quality, depending on the strengths of the channel gains and the

geometric relationship between the channel vectors �hi
).

8.7.4 Space–time coding

We have seen the benefits of time diversity for coded transmission over fading

channels. Time diversity, however, is often not available for systems with

quasistationary nodes, in which channel time variations might be very slow

relative to the duration of the codeword; an example is the indoor WLAN

channel, in which nodes such as laptops might be tetherless, but relatively

immobile. In such scenarios, spatial and frequency diversity are particularly

important. In this section, I focus on space–time codes for exploiting spatial

transmit diversity, assuming a narrowband, time-invariant system without

frequency or time diversity.

Consider a system with NT transmit antennas and one receive antenna

(any space–time code designed for one receive antenna can be used with

multiple receive antennas, simply by employing maximal ratio combining at

the receiver). The channel matrix is now a vector h= �h1� ��� hNT
�, where hi is

the gain from transmit element i to the receive element. The input to transmit

element i at time m is denoted by xi	m
, with x	m
= �x1	m
� � � � � xNT
	m
�T .

The received signal at time m is given by

y	m
= h1x1	m
+ � � � hNT
xNT

	m
+w	m
= hx	m
+w	m
� (8.131)

where w	m
 are i.i.d. CN�0�2�2� noise samples. A space–time codeword

spanning N symbol intervals is a sequence X= �x	m
�m= 1� � � � �N
, chosen

from a set of 2NR possible codewords, where R bits per channel use is the

code rate. The channel h is fixed over the codeword duration. I consider

coherent space–time codes here, designed under the assumption that the

transmitter does not know the channel h, but that the receiver does know the

channel. We constrain the transmit power to P per unit time, splitting the

power evenly among all of the transmit elements. Thus, we set �	��x	n
��2
=
∑NT

l=1�	�xl	n
�2
= P, with �	�xl	n
�2
= P/NT, 1≤ l≤ NT.

Ideal performance From the capacity formula (8.127), we see that i.i.d.

Gaussian input sent from each transmit element achieves the capacity

C�h�= log

(

1+ ��h��2
NT

SNR

)

� (8.132)

This is equal to the capacity of an AWGN channel in which each symbol

sees an effective channel gain of G= ��h��2
NT

= 1
NT

∑NT

l=1 �hl�2. For i.i.d. �hl
, the
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averaging used to produce this effective gain reduces fluctuations in C�h�,

and improves the outage capacity.

While the capacity formula (8.132) is the same as that for an AWGN

channel with gain G= ��h��2/NT, the physical space–time channel (8.131) is

much messier: the symbols sent from different transmit elements at a given

time superimpose at the receiver, which then has to somehow disentagle them:

doing so for i.i.d. Gaussian input requires ML decoding with complexity

exponential in NT. Practical space–time code constructions, therefore, are

designed to allow structured decoding at reasonable complexity. Consider,

for example, space–time coding for a cellular downlink: we might want to

improve performance by increasing the number of base station antennas, but

we do not want the decoding complexity at the mobile to explode.

In the following, I provide two examples of space–time codes. The first,

which we term antenna hopping, is suboptimal, but scales well with NT.

The second is the Alamouti code, which is optimal, but only applies to

NT = 2. In both cases, it is straightforward to use a standard error-correcting

coded modulation in conjunction with the space–time code: the map between

symbols coming out of the encoder and the output of the transmit elements is

a straightforward one. Thus, I discuss only the impact of the space–time code

on information-theoretic limits, with the understanding that such limits are

within reach using, say, an appropriate turbo-like coded modulation strategy

prior to the space–time code.

Figure 8.23 Antenna hopping

space–time code.

Antenna hopping A trivial, but effective, space–time code that scales easily

to an arbitrary number of transmit antennas is simply to hop across transmit

elements, using exactly one transmit element at a time in an alternating

fashion. An example for three antennas is shown in Figure 8.23. The maximum

achievable rate for a given channel h with this strategy therefore becomes the

average of the rates corresponding to each transmit element:

Calternating�h�=
1

NT

NT
∑

l=1

log
(

1+�hl�2 SNR
)

� (8.133)

Antenna hopping space−time code

Input symbols

b[1]

Time

b[2]

b[3]

b[4]

b[1], b[2], b[3], ...
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It can be shown using Jensen’s inequality (see Appendix C and Problem 8.32)

that this is smaller than the capacity in (8.132) for any fixed h, which also

implies that the outage capacity is smaller, regardless of the statistics of h.

Note that, if the gains �hl
 are i.i.d., then the terms in the average (8.133) are

i.i.d. Thus, for a moderately large number of transmit elements (e.g., NT ≥ 6),

C�h� is well approximated as a Gaussian random variable using the central

limit theorem. This allows us to compute an analytical approximation to the

outage capacity, as shown in Problem 8.32. Moreover, if we let NT → �,

then the law of large numbers implies that C�h� tends to the ergodic capacity

of the Rayleigh fading channel, given by (8.22).

Figure 8.24 Alamouti

space–time code.

Alamouti code The Alamouti code is optimal for NT = 2, in the sense

that it achieves the capacity (8.132). Its simplicity makes it attractive for

implementation, and it has been standardized for third generation cellular

systems. Suppose that a stream of symbols �b	n

 is coming from an outer

encoder. These are sent in blocks of two over the channel. For example, as

shown in Figure 8.24, b	1
 and b	2
 are mapped to x	1
 and x	2
 as follows:

x1	1
= b	1
� x1	2
=−b∗	2


x2	1
= b	2
� x2	2
= b∗	1
�
(8.134)

The corresponding received signals are

y	1
= h1x1	1
+h2x2	1
+w	1
= h1b	1
+h2b	2
+w	1


y	2
= h1x1	2
+h2x2	2
+w	2
=−h1b
∗	2
+h2b

∗	1
+w	2
�

We would now like to think of these two received samples as a single vector,

and see the vector response to the two symbols. Let use therefore consider

the vector y= �y	1
� y∗	2
�T , which obeys the following model:

y=
(

y	1


y∗	2


)

= b	1


(

h1

h∗
2

)

+b	2


(

h2

−h∗
1

)

+
(

w	1


w∗	2


)

(8.135)

= b	1
v0+b	2
v1+w�

Note that the vectors v0 and v1 modulating b	1
 and b	2
, respectively, are

orthogonal, regardless of h. Also, the noise vector w= �w	1
�w∗	2
�T remains

complex WGN. Thus, by projecting y along v0 and v1, we can create two

entirely separate AWGN channels for b	1
 and b	2
 with effective SNR

b[1] b[2]

Input symbols

b[1]

b[2]

−b*[2]

b*[1]

Time

Output of Alamouti

space−time encoder
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��v0��2/2�2 = ��v1��2/2�2 = ��h��2/2�2. The capacity of such a channel is

precisely (8.132), with the power normalization �	�b	n
�2
= P/NT = P/2 for

the symbols sent to the antenna elements. This shows the optimality of the

Alamouti code.

Significant research effort has gone into developing space–time block codes

generalizing the Alamouti code to a larger number of antennas, as well as

into trellis-based “convolutional” constructions. Discussion of such strategies

is beyond the scope of this book.

8.7.5 Transmit beamforming

Consider a system with NT transmit elements and one receive element. If the

space–time channel h= �h1� � � � � hNT
� from the transmitter to the receiver is

known at the transmitter, then a spatial matched filter hH can be implemented

at the transmitter. This is equivalent to sending along the sole channel eigen-

mode, and is information-theoretically optimal from the results of Section

8.7.2. Thus, to send the symbol sequence �b	n

, we send from transmit

antenna k the sequence xk	n
 = h∗
kb	n
. The received signal at time n is

given by

y	n
=
NT
∑

k=1

hkxk	n
+w	n
= b	n

NT
∑

k=1

�hk�2+w	n
�

where w	n
 is WGN. Thus, we see an effective channel gain of ��h��2.
Transmit beamforming is an intuitively obvious strategy if the transmitter

knows the channel. It is well matched to cellular downlinks, such as the

one shown in Figure 8.22, in which the base station transmitter may have

a large number of antennas, but the number of eigenmodes may be small

because (a) the power-angle profile from the base station’s point of view is

narrow, and (b) the mobile receiver may have only one or two antennas. Of

course, there are many issues regarding the implementability and optimality

of transmit beamforming strategies, but these are beyond the present scope.

Some references for further reading on this topic are provided in Section 8.8.

8.8 Further reading

I mention a few among the many recent books devoted to wireless com-

munication: Goldsmith [87], Rappaport [88] and Stuber [89] provide broad

descriptions of the field, but with somewhat different emphases. Tse and

Viswanath [90] focus on the fundamentals of fading, interference, and MIMO

channels. Other useful texts include Jakes [91] and Parsons [92].

From a Shannon theory point of view, there has been a significant effort in

recent years at understanding the effect of channel time variations on capacity.

For a time-varying channel, it is unrealistic to assume that the channel is
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known a priori to the receiver, hence channel estimation, explicit or implicit,

must be part of the model for which capacity should be computed. Examples

of Shannon theoretic characterization of noncoherent communication over

time-varying channels include Marzetta and Hochwald [93], Lapidoth and

Moser [94], and Etkin and Tse [95]. Turbo constructions and comparison with

Shannon theoretic limits with constellation constraints are provided by Chen

et al. [82] and Jacobsen and Madhow [96].

There is a very large literature on OFDM, but a good starting point for

getting more detail than in this chapter are the relevant chapters in [87] and

[90]. For DS-CDMA with conventional reception, I recommend the book

by Viterbi [97], which provides a description of the concepts underlying the

CDMA-based digital cellular standards. The Rappaport text [88] also provides

detail on systems aspects of these standards. Properties of spreading sequences

are discussed by Pursley and Sarwate [98]. Detailed error probability analy-

ses for direct sequence CDMA with conventional reception are contained in

[99, 101]. An excellent treatment of multiuser detection is found in the text by

Verdu [102]. Early papers on multiuser detection include Verdu [103, 104],

Lupas and Verdu [105, 106], and Varanasi and Aazhang [107, 108]. Early

papers on adaptive multiuser detection, or adaptive interference suppression,

include Abdulrahman et al. [109], Rapajic and Vucetic [110], Madhow and

Honig [31], and Honig et al. [111]. The application of adaptive interfer-

ence suppression techniques to timing acquisition is found in Madhow [112].

Finally, standard adaptive algorithms have difficulty keeping up with the time

variations of the wireless mobile channel; see Madhow et al. [113], and the

references therein, for variants of the linear MMSE criterion for handling

such time variations.

For the Laurent decomposition of CPM, the best reference is the original

paper by Laurent [114]. An early example of the use of the Laurent approx-

imation for MLSE reception for GMSK is given in [115]. Generalization of

the Laurent decomposition to M-ary CPM is provided in a later paper by

Mengali and Morelli [116]. An alternative decomposition of CPM is given in

the paper by Rimoldi [117]. The book by Anderson et al. [118] provides a

detailed treatment of several aspects of CPM.

For space–time communication, the original technical report by Telatar

[119] (also published in journal form in [120]) is highly recommended read-

ing, as is the original paper by Foschini [121]. There are a number of recent

books focusing specifically on space–time communication, including Paulraj

et al. [122] and Jafarkhani [123]. A recent compilation edited by Bolcskei

et al. [124] is a useful resource, covering a broad range of topics. The book

by Tse and Viswanath [90] contains a detailed treatment of fundamental

tradeoffs in space–time communication. Space–time communication plays a

key role in the emerging IEEE 802.11n WLAN standard. Finally, while the

channel for indoor space–time communication is often well modeled as fre-

quency nonselective (small delay spreads imply large coherence bandwidths
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relative to typical bandwidths used), emerging broadband systems for outdoor

space–time communication, such as IEEE 802.16 and 802.20, are frequency

selective. Since these emerging standards are based on OFDM, we often term

the resulting systems MIMO-OFDM. Examples of recent theoretical research

on MIMO-OFDM include Bolcskei et al. [125], and Barriac and Madhow

[126, 127].

8.9 Problems

Problem 8.1 (Rician fading) Consider a narrowband frequency nonselec-

tive channel with channel gain h modeled as h∼ CN�m�2v2�. Then �h� is a
Rician random variable with Rice factor K = �m�2/2v2 measuring the relative

strengths of the LOS and diffuse components. Suppose that we are designing

a system for 95% outage. If a nominal link budget is computed based on

the average channel power gain E	�h�2
, we define the link margin needed to

combat fading as the additional power (expressed in dB) needed to attain a

95% outage rate.

(a) What is the required link margin (dB) for Rayleigh fading (K = 0)?

(b) What is the required link margin (dB) for the AWGN channel (K =�)?

(c) Plot the required link margin (dB) as a function of K, as K varies from

0 to �. What is the value of K at which the required link margin equals

3 dB?

Problem 8.2 (Power delay profile and coherence bandwidth) In this

problem, we relate the channel coherence bandwidth to the channel PDP P���.

It is convenient to consider a limiting case of the TDL model (8.6) for large

signaling bandwidth W . We therefore get

h�t�=
∫ �

0
h�����t− ���

where we replace i/W by �, and ��i/W� by h���, but maintain the assumption

that h��� are independent zero mean complex Gaussian random variables,

with h���∼ CN�0�P����, where we normalize P��� to unit area. Let H�f�=
∫

h�t�e−j2�ftdt denote the (random) channel gain at frequency f .

(a) Show that �H�f�
 are jointly complex Gaussian random variables, with

H�f�∼ CN�0�1�.

(b) Show that cov �H�f1��H�f2�� = P̂�f1 − f2�, where P̂�f� is the Fourier

transform of the PDP P���.

(c) Define the coherence bandwidth (somewhat arbitrarily) as the minimum

separation �f1−f2� where the normalized correlation between H�f1� and
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H�f2� is 0.1. Find the coherence bandwidth for an exponential PDP with

rms delay spread of 10 microseconds.

(d) Suppose you are designing an OFDM system with subcarrier spacing

much smaller than the coherence bandwidth, in order to ensure that the

channel gain H�f� over a subcarrier is approximately constant. If your

design criterion is that the normalized correlation between adjacent sub-

carriers is at least 0.9, what is the minimum subcarrier spacing?

Problem 8.3 (Shannon capacity with Rayleigh fading) Consider the

information-theoretic analysis of the coded Rayleigh fading channel described

in Section 8.2.2.

(a) Using (8.22) and Jensen’s inequality (see Appendix C), show that the

ergodic capacity with Rayleigh fading is strictly smaller than that of

an AWGN channel with the same average SNR. That is, fading always

reduces the capacity relative to a constant channel gain.

(b) For a Rayleigh fading channel, we have h	n
 ∼ CN�0�1�. Compute

Cfading�S/N� for this case and plot it as a function of SNR in dB. Also

plot the AWGN capacity for comparison.

(c) Find (analytically) the asymptotic penalty in dB for Rayleigh fading as

SNR→�.

(d) Repeat (c) for SNR→ 0.

(e) If the transmitter also knew the fading coefficients �h	n

 (e.g., this could

be achieved by explicit channel feedback or, for slow fading, by the use

of reciprocity), what is your intuition as to what the best strategy should

be?

Problem 8.4 Suppose that you employ BPSK with hard decisions and ideal

interleaving over a Rayleigh fading channel.

(a) Show that the Shannon capacity as a function of Ēb/N0 is given by

C = �	1−HB�p�G��
�

where the expectation above is with respect to an exponential random

variable G with mean one, HB is the binary entropy function, and p�G�=
Q
(

√

2ĒbGN0

)

.

(b) Show that (a) also holds for binary DPSK with hard decisions, except

that p�G�= 1
2
e−GEb/N0 .

(c) Plot the capacities in (a) and (b) as a function of Ēb/N0 (dB). Also plot

for comparison the corresponding capacity for both coherent BPSK and

DPSK with hard decisions over the AWGN channel. Comment on the

difference in performance between the coherent and noncoherent sys-

tems, and on the difference between the AWGN and Rayleigh fading

channels.
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Problem 8.5 (Sum of i.i.d. exponential random variables) For a random

variable X, set

KX�s�= �	esX
=
∫ �

−�
esxp�x�dx� (8.136)

where p�x� denotes the density of X. Note that KX�s� is the Laplace transform

of the density p�x� (although s is replaced by −s in standard signals and

systems texts). The present notation is more common when taking Laplace

transforms of densities. The expression (8.136) is defined wherever the inte-

gral converges, and the range of s where the integral converges is called the

region of convergence.

(a) For X exponential with mean 1, show that KX�s�= 1/�1− s�, with region

of convergence Re�s� < 1.

(b) If Y = X1+X2, where X1 and X2 are independent, show that

KY �s�= KX1
�s�KX2

�s��

(c) Differentiate (8.136) with respect to s to show that the Laplace transform

of xp�x� is dKX�s�/ds.

(d) Consider Y =X1+ � � � +XN , where �Xi
 are i.i.d., exponential with mean

one. We term the random variable Y a standard Gamma random variable

with dimension N . Show that

KY �s�=
1

�1− s�N
� Re�s� < 1� (8.137)

(e) Use (d), and repeated applications of (c), to show that the density of Y in

(d) is given by

p�y�= yN−1

�N −1�!e
−y � y ≥ 0� (8.138)

(f) Now, suppose that the exponential random variables in (d) each have

parameter �, where 1/� is the mean. Show that the density of the sum Y

is given by

p�y�= �
��y�N−1

�N −1�!e
−�y � y ≥ 0� (8.139)

Hint Scale the random variables in (d) and (e) by 1/�.

Problem 8.6 (Relating the Gamma random variable to a Poisson process)

Consider a Poisson process �N�t�� t ≥ 0
, which is defined as follows: we

start with N�0� = 0, and N�t� jumps by one at times t1� t2� � � � , so that

N�tn� = n and N�t−n � = n− 1. Setting t0 = 0, define the inter-arrival times
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Xi = ti − ti−1, i = 1�2� � � � . These are i.i.d. exponential random variables

with mean 1/�. The Poisson process is also characterized by the following

properties:

• Increments are Poisson random variables For u2 ≥ u1 ≥ 0, N�u�−N�v�

is a Poisson random variable with mean m = ��u2−u1�. That is, its pmf

is given by

P	N�u2�−N�u1�= k
= mk

k! e
−m � k= 0�1�2� � � �

• Independent increments Increments over nonoverlapping time intervals

are independent. That is, for u4 ≥ u3 ≥ u2 ≥ u1 ≥ 0, the random variables

N�u4�−N�u3� and N�u2�−N�u1� are independent.

Using these properties, we show how to infer the properties of gamma random

variables. Consider a gamma random variable Y of dimension N : Y = X1+
· · ·+XN , where �Xi
 are i.i.d. exponential random variables with mean 1/�.

Interpreting the Xi as inter-arrival times of a rate � Poisson process N�t� as

discussed above, we can now infer properties of gamma random variables

from those of the Poisson random process as follows.

(a) Show that the event Y ≤ y is equivalent to the event N�y�≥ N .

(b) Use (a) to infer that the cdf of Y is given by

P	Y ≤ y
= 1− e−�y
N−1
∑

k=0

��y�k

k! �

(c) Show that the event Y ∈ 	y� y+ �� is equivalent to the events �N�y� ≤
N
 and �N�y+�� > N
.

(d) For small �, argue that the event in (c) is dominated by the events

�N�y�= N
 and �N�y+��= N +1
.

Hint Show that the ratio of the probability that the increment over an interval of

length � equals two or more to the probability that it equals one tends to zero as

�→ 0.

(e) Using (c) and (d), find the density p�y� of Y using the following relations

for small �:

P	Y ∈ 	y� y+��
≈ p�y��

and

P	Y ∈ 	y� �y+��
 ≈ P	N�y�= N�N�y+��= N +1


= P	N	y
= N�N�y+��−N�y�= 1
�

Use the independent increments property and simplify to obtain (8.139).
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Problem 8.7 (The Gamma function) For x > 0, the Gamma function is

defined as

��x�=
∫ �

0
tx−1e−tdt� (8.140)

(a) For x > 1, use integration by parts to show that

��x�= �x−1���x−1�� (8.141)

(b) Show that ��1�= 1.

(c) Use (a) and (b) to show that, for any positive integer N ,

��N�= �N −1�!

(d) Show that ��1/2�=√
�.

Hint You can relate the corresponding integral to a standard Gaussian density by

substituting t = z2/2.

(e) Suppose that Y is a standard Gamma random variable of dimension n, as

in Problem 8.5(d)–(e). Find �	
√
Y 
.

Problem 8.8 (Error probability bound for receive diversity with maximal

ratio combining) Consider a coherent binary communication system over

a Rayleigh fading channel with N -fold receive diversity and maximal ratio

combining, where the fading gains are i.i.d. across elements, and the received

signal at each element is corrupted by i.i.d. AWGN processes. Let eb denote

the average bit energy per diversity branch, and let Eb denote the average bit

energy summed over diversity branches.

(a) For a BPSK system, show that the error probability with maximal ratio

combining can be written as

Pe = �

[

Q
(√

aY
)]

� (8.142)

where a is a constant, and Y is a standard Gamma random variable of

dimension N , as in Problem 8.5(d)–(e). Express a in terms of both eb/N0

and Eb/N0.

(b) Using the boundQ�x�≤ 1
2
e−x2/2 in (8.142), show that (see Problem 8.5(d))

Pe ≤
1

2

1
(

a
2
+1
)N

� (8.143)

(c) For N = 1�2�4�8, plot the error probability bound in (c) on a log scale

versus Eb/N0 (dB) for BPSK. Also plot for reference the error probability

for BPSK transmission over the AWGN channel. Comment on how the

error probability behaves with N .
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Problem 8.9 (Exact error probability for receive diversity with maximal

ratio combining) Consider the setting of Problem 8.8. We illustrate the

exact computation of the error probability (8.142) for N = 2 in this problem,

using the gamma function introduced in Problem 8.7.

(a) It is helpful first to redo the computation for Rayleigh fading that was

done in the text (i.e., leading to expressions such as (8.20)) using the

gamma function. For N = 1, we have

Pe =
∫ �

0
Q�

√
ay� e−ydy =−e−yQ�

√
ay� ��0 +

∫ �

0
e−y d

dy
Q�

√
ay� dy

= 1

2
−

√
a

2
√
2�

∫ �

0
y−

1
2 e−�1+ a

2 �y dy = 1

2
−

√
a

2
√
2�

�

(

1

2

)(

1+ a

2

)− 1
2

= 1

2

(

1−
(

1+ 2

a

)− 1
2

)

� (8.144)

(b) Now, use (8.138) for N = 2 and integrate by parts to show that

Pe =
∫ �

0
Q�

√
ay� ye−ydy=−e−yyQ�

√
ay� ��0 +

∫ �

0
e−y d

dy
�yQ�

√
ay�� dy�

(b) Obtain the expression

Pe =
∫ �

0
e−yQ�

√
ay� dy−

√
a

2
√
2�

∫ �

0
y

1
2 e−�1+ a

2 �y dy�

(c) The first term is exactly the same as in (a) for N = 1, and evaluates

to (8.144). The second term can be evaluated using gamma functions.

Simplify to obtain the expression

Pe =
1

2

(

1−
(

1+ 2

a

)− 1
2

− 1

a

(

1+ 2

a

)− 3
2

)

� (8.145)

(d) Plot the preceding expression (log scale) as a function of Eb/N0 (dB) for

BPSK. Plot for comparison the corresponding bound in Problem 8.8.

(e) Show that the high SNR asympotics for the error probability expressions

(8.144) and (8.145) are given by

Pe ≈
1

2a
� N = 1

Pe ≈
3

2a2
� N = 2�

(8.146)

Hint For x small, �1+x�b ≈ 1+bx. Apply this for x = 2/a.

(f) Mimic the development in (b) and (c) for a general value of N ≥ 2. That

is, letting Pe�N� denote the error probability with N -fold diversity, show

that

Pe�N�= Pe�N −1�−f�N��

where you are to determine an expression for f�N� > 0.
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Problem 8.10 (Error probability for selection diversity) Consider again

the setting of Problem 8.8, but now assume that the receiver uses selection

diversity. That is, it demodulates the signal coming in on the receive diversity

branch with the biggest gain. The error probability again takes the form

(8.142), but now

Y =max �X1� � � � �XN � �

where �Xi
 are i.i.d. exponential random variables, each with mean one.

(a) Find the cumulative distribution function of Y .

(b) Find the density of Y . Specialize to N = 2 to show that

p�y�= 2
(

e−y− e−2y
)

� y ≥ 0�

(c) For N = 2, evaluate the average error probability (8.142) to obtain

Pe =
1

2
−
(

1+ 2

a

)− 1
2

+ 1

2

(

1+ 4

a

)− 1
2

� (8.147)

Hint Use (8.144).

(d) Show that the high SNR asymptotics of (8.147) give

Pe ≈
3

2a2
�

which is the same result as obtained in (8.146) for maximal ratio com-

bining.

Hint Use the approximation �1+x�b ≈ 1+bx+ b�b−1�

2
x2 for small x.

Note The arguments used for N = 2 extend to general N -fold selection diversity,

noting that the density of Y can be written as a linear combination of e−ky, k =
1�2� � � � � n.

Problem 8.11 (Outage rates with receive diversity) Consider a system

with N -fold receive diversity with maximal ratio combining, as in Problems

8.8–8.9.

(a) Find a Chernoff bound on the probability of a 10 dB fade after diversity

combining. That is, consider the random variable Y in Problems 8.8-8.9,

and find an upper bound on the probability P 	Y < 0�1�	Y

 of the form

e−�N .

Hint For i.i.d. �Xi
, find the Chernoff bound P	X1+ � � � +XN < tN
≤ e−�N , where

�=min
s<0

�M�s�− st
, with M�s� denoting the moment generating function of X1. See

Appendix B

(b) Using the upper bound in (a), estimate the number of diversity branches

needed to reduce the probability of a 10 dB fade to 10−3?

(c) For the number of diversity branches found in (a), calculate the exact

probability of a 10 dB fade after diversity combining using the gamma

cdf derived in Problem 8.6(b).
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Problem 8.12 (Error probability bound for noncoherent diversity combin-

ing) Recall from (8.37) that the error probability for FSK with noncoherent

diversity combining is given by

Pe = P	V1+ � � � +VN > U1+ � � � +UN 
�

where �Vi
 are i.i.d. exponential random variables with mean 1/�V = 2�2E,

and �Ui
 are i.i.d. exponential random variables with mean 1/�U = 2�2E+E2

(�Vi
 and �Ui
 are independent). Set Xi = Vi−Ui, so that the error probability

is given by

Pe = P	X1+ � � � +XN > 0
�

Note that E	X1
=�	V1
−�	U1
=−E2 < 0, so that we are computing a tail

probability for which a nontrivial Chernoff bound exists (see Appendix B).

Apply (B.6) from Appendix B (with a= 0) to obtain the bound

Pe ≤ e−NM∗�0��

where M∗�0� = min
s>0

M�s�, and M�s� = log�	esX1 
 is the moment generating

function for X1.

(a) Show that

�	esX1 
= �V

�V − s

�U

�U + s
�

What is the range of s for which the preceding expectation exists?

(b) Show that the minimizing value of s for the Chernoff bound is

s0 =
�V +�U

2
�

(c) Show that the Chernoff bound is given by

Pe ≤ e−�N �

where

�= 2 log

(

�V+�U

2√
�V�U

)

�

(d) Substitute the values of �U and �V (note that E = Eb for binary FSK) to

obtain (8.38).

Problem 8.13 (Cyclic convolution and DFT) This problem shows that

cyclic convolution in the time domain corresponds to multiplication in the

DFT domain. That is, if h and g are vectors of length N , with DFT H and

G, respectively, and if

y	k
= �h⊙g�	k
=
N−1
∑

m=0

h	m
b	�k−m�modN
� k= 0�1� � � � �N −1
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denotes their cyclic convolution, then the DFT of y is given by

Y	n
=H	n
G	n
� (8.148)

Show this result using the following steps:

(a) Define the complex exponential functions �gn� n= 0�1� � � � �N −1
 as

gn	k
= ej2�nk/N � k= 0�1� � � � �N −1�

Show that

h⊙gn =H	n
gn�

That is, the complex exponentials �gn
 are eigenfunctions for the oper-

ation of cyclic convolution with h, with eigenvalues equal to the DFT

coefficients �H	n

.

(b) Recognize that g can be expressed as a linear combination of the eigen-

functions �gn
 as follows:

g = 1

N

N−1
∑

n=0

G	n
gn�

(c) Use the linearity of cyclic convolution to infer that

y = h⊙g = 1

N

N−1
∑

n=0

G	n
 �h⊙gn� �

Plug in the result of (a) to obtain that

y = h⊙g = 1

N

N−1
∑

n=0

G	n
H	n
gn�

Recognize that the right-hand side is an inverse DFT to infer (8.148).

Problem 8.14 (OFDM for a real baseband channel) Suppose that you

were implementing an OFDM system over a real baseband channel. Modifying

(8.40) to center the transmitted signal around the origin, we have

u�t�= e−j��N−1�t/T
N−1
∑

n=0

B	n
ej2�nt/T I	0�T
�

(a) What is the constraint on the frequency domain symbols B	n
 such that

the time domain signal u�t� is real-valued? Can you choose �B	n

 from

a complex-valued constellation? What is the bandwidth of the signal u�t�,

as a function of N and T?

(b) For N = 512, a cyclic prefix of 50 samples, and a sampling rate of 2MHz,

what is the bandwidth and inter-carrier spacing of the baseband channel

used? What is the maximum channel delay spread that the system is

designed for?
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Problem 8.15 (OFDM for a complex baseband channel) A complex base-

band channel has impulse response

h�t�= ��t�−0�7j��t−1�−0�4��t−2��

where the unit of time is microseconds.

(a) Plot �H�f�� versus f over a frequency range spanning 10 times the coher-

ence bandwidth.

(b) What is the Shannon capacity for signaling over this channel (assume

AWGN) using a bandwidth of 10MHz, assuming a white input and SNR

of 10 dB? Compare it with the Shannon capacity for a nondispersive

AWGN channel.

(c) Now assume that the channel is known to the transmitter, and that the

transmitter employs waterfilling. Find the Shannon capacity for SNR of

10 dB. Compare this with the results from (b).

(d) How would you design an OFDM system to try to approach the

information-theoretic limits of (b) and (c)? How many subcarriers? What

constellations?

Problem 8.16 (Overhead in OFDM systems) Consider an OFDM system

to be used over an indoor wireless channel modeled as having an exponential

PDP with an rms delay spread of 100 milliseconds. Suppose that the cyclic

prefix is chosen to span a length such that 90% of the channel energy falls

within the length.

(a) What is the overhead for a 64 subcarrier system with a subcarrier spacing

of 100KHz?

(b) How does the answer to (a) change if we use a 128 subcarrier system

with the same subcarrier spacing?

(c) How does the answer to (a) change if we use a 128 subcarrier system

with half the subcarrier spacing?

Problem 8.17 (Peak-to-average ratio for OFDM systems) Consider an

OFDM system with 64 subcarriers.

(a) Simulate the time domain samples (8.41) for i.i.d. frequency domain

symbols �B	k

 drawn from a QPSK constellation. Collect samples for

multiple OFDM symbols and plot the histograms (separately for the I and

Q components). Comment on whether the histograms look Gaussian.

(b) Compute the sample PAR defined in (8.49). Plot a histogram of the sample

PAR obtained over multiple OFDM symbols. Estimate the probability

that the sample PAR exceeds 10 dB from the empirical distribution thus

obtained. Compare this with the analytical estimate obtained from (8.51).

Plot a histogram of the PAR for multiple simulation runs, and comment

on whether the histogram looks Gaussian.
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(c) Repeat (a)–(b) for 16-QAM, normalizing to the same symbol energy

E	�B	k
�2
. Comment on how, if at all, the results depend on the constel-

lation.

(d) Denoting the average sample power by P = �	�b	k
�2
, suppose that the

signal is clipped by the transmitter whenever its magnitude exceeds a
√
P.

That is, the transmitted samples are given by

b̂	k
=min

{

1�
a
√
P

�b	k
�

}

b	k
�

If there is no source of error other than the self-interference across subcar-

riers introduced by the clipping, the recovered frequency domain symbols

�B̂	k

 are simply the DFT of �b̂	k

. Find, using simulations, the symbol

error probability due to clipping for the 16-QAM system, for clip levels

that are 0 dB, 3 dB, and 10 dB higher than the average sample power.

(e) Find a value for the clip level such that the symbol error rate in (d) is 1%.

(f) Repeat (d) and (e) for QPSK modulation, and comment on whether, and

how, the sensitivity to clipping varies with constellation size.

Problem 8.18 (Timing acquisition in DS systems) Consider a DS signal

s�t� =∑N−1
l=0 s	l
��t− lTc�, where �s	l

 is the spreading sequence, and � is

the chip waveform (square root Nyquist at rate 1/Tc). The received complex

baseband signal is given by

y�t�= As�t−D�+n�t��

where D is an unknown delay taking values in 	0�MTc�, A is an unknown

complex gain, and n is AWGN. The unknown delay can be expressed as a

multiple of the chip interval as follows: D= �K+��Tc, where K is an integer

between 0 and M−1, and �∈ 	0�1�.

(a) Assuming a joint ML estimate of A and D, show that the delay estimate

is given by

D̂ML = max
u∈ 	0�MTc�

�Z�u��2�

where Z�u� is the output of the matched filter smf�t�= s∗�−t� at time u:

Z�u�= �y ∗ smf��u�=
∫

y�t�s∗�t−u�dt�

(b) Express the signal contribution to Z�u� in terms of the continuous-time

autocorrelation function of the spreading waveform s�t� defined in (8.65).

(c) Assume that the spreading sequence has an ideal discrete-time autocor-

relation function (defined in (8.66)). That is, assume that Rs	n
 = N�n0.

Further, suppose that � = 0 (i.e., the unknown delay is an integer D =
KTc). The integer part

K̂ = max
0≤k≤M−1

�Z�kTc��2�
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What is the probability of making an error in the delay estimate (i.e.,

P	K̂ �= K
) as a function of Es/N0, where Es = �A�2��s��2 is the energy of

the spreading waveform?

Hint Can you relate to a problem in noncoherent communication (see Chapter 4)?

(d) Now, suppose that �∈ 	0�1�. Assume further that � is a rectangular

waveform of duration Tc. Assuming that the output of the matched filter

is still sampled at the chip rate, show that, for u = kTc (k integer), the

signal contribution to Z�u� is nontrivial only for k = K and k = K+ 1.

Formulate the problem of joint ML estimation of A, K, and � (A is

a nuisance parameter), simplifying as much as possible. Also, discuss

simple suboptimal estimators that estimate � after estimating K, say, using

the rule in (d).

Problem 8.19 (A linear feedback shift register sequence) Consider a 3

bit vector �s	0
� s	1
� s	2
� that evolves in time according to the following

relationships:

sn	1
= sn−1	0


sn	2
= sn−1	1


sn	0
= sn−1	1
+ sn−1	2
�

where the addition is in binary arithmetic (i.e., it is an exclusive or).

(a) Describe how you should implement the preceding time evolution using

a clocked, 3 bit shift register.

(b) Starting from the initial condition �1�0�1�, describe the time evolution of

the 3 bit vector. How many distinct values does the 3 bit vector take?

(c) If you take �sn	2

 as an “output,” what binary sequence do you get,

starting from the initial condition in (b)? Is the sequence periodic?

(d) Find the autocorrelation function of the sequence in (c). Is this a good

choice for a DS spreading sequence?

Problem 8.20 (Asynchronous CDMA with bandlimited chip waveforms)

Consider a DS system employing a square root raised cosine chip waveform

� with 50% excess bandwidth. In this problem, we develop a model for the

chip matched filter output ys similar to that developed in Example 8.4.1 for a

rectangular chip waveform.

(a) Find a time domain expression for r��t�.

(b) Show that ys�mTc�= �s∗g�	m
, where s is the spreading sequence, and g

is an “equivalent chip rate channel” which depends on � and �. Specify

g for K = 2 and � = 1/4, truncating it as appropriate when the entries

become insignificant.

(c) For DS waveforms u and v as in (8.62), generalize the relation (8.69)

between the continuous-time and discrete-time crosscorrelation functions

to arbitrary chip waveforms, starting from (8.67). In particular, show that
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the continuous-time autocorrelation function is a discrete-time convolution

between the discrete-time autocorrelation function and an equivalent chip

rate channel.

Problem 8.21 (Direct sequence CDMA with conventional reception) Con-

sider a DS signal u�t� of the form (8.53), where the spreading sequence �s	l



is modeled as having i.i.d., zero mean elements satisfying E	�s	l
�2
= 1. The

symbol sequence b̃	l
 (expressed at chip rate in (8.53)) is also normalized to

unit energy.

(a) Show that the PSD of u is given by

Su�f�=
���f��2

Tc

�

(b) Now, suppose that u is passed through a chip matched filter �∗�−t�.

Show that the output z has PSD

Sz�f�=
���f��4

Tc

�

The random process z�t� models the contribution of an interfering signal

at the output of a chip matched filter for a desired signal. The delay of

the interfering signal relative to the receiver’s time reference is modeled

as uniform over 	0� Tc
 (this is implicit in the PSD computation; see

Chapter 2). The random processes, and relative delays, corresponding to

different interfering signals are independent, so that the PSDs add up.

Now, consider a DS-CDMA system with complex baseband received

signal

y�t�= A1u1�t�+
K
∑

k=2

Akuk�t�+n�t��

where uk�t�, k= 2� � � � �K are interfering signals of the form considered

in (a) and (b), u1�t� is the desired signal, and n is AWGN. Suppose that y

is passed through a chip matched filter with samples synchronized to the

desired signal. Let Ec = �����2 denote the energy of the chip waveform.

(c) Show that the signal contribution to the lth sample at the output of the

chip matched filter is given by

S	l
= b̃1	l
s1	l
Ec�

Evaluate the result for the rectangular chip waveform ��t�= I	0�Tc
�t�.

(d) Show that the PSD of the noise plus interference at the output of the chip

matched filter is given by

SI�f�= N0���f��2 +
K
∑

k=2

�Ak�2
���f��4

Tc

�
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(e) Let I	l
 denote the contribution of the interference plus noise to the lth

sample at the output of the chip matched filter. Show that

�	�I	l
�2
= N0Ec +
∑K

k=2 �Ak�2
Tc

∫ �

−�
���f��4df�

Evaluate the result for the rectangular chip waveform ��t�= I	0�Tc
�t�.

Hint Use Parseval’s identity.

(g) Let Z =∑N−1
l=0 s∗1	l
�S	l
+ I	l
� denote the output obtained by correlating

over N chip samples. Setting b̃	l
 ≡ b, where b is the desired symbol,

show that

Z = bNEc+
N−1
∑

l=0

s∗1	l
I	l
�

where the first term corresponds to the desired signal, and the second

to the interference plus noise. Normalizing �	�b�2
 = 1, we see that the

symbol energy Es = NEc.

(h) Show that the SIR at the output of the correlator satisfies

1

SIR
= N0

Es

+
∑K

k=2 �Ak�2
�A1�2

∫ �
−� ���f��4df

TcE
2
c

� (8.149)

(i) Specialize (8.149) for a rectangular chip waveform and QPSK. Further,

assume that all users arrive at the receiver at equal power. Show that the

SIR satisfies

1

SIR
= N0

2Eb

+ 2�K−1�

3N
�

(j) Comment on the relative performance of asynchronous and synchronous

DS-CDMA with conventional reception by comparing the result with

(8.72).

Problem 8.22 (Illustrating the properties of MMSE reception) Consider

the two-user system in Example 8.4.2.

(a) Find the MMSE correlator for user 1, and express it in the form

cMMSE = �1s1+�2s2�

specifying ��i
 explicitly in terms of the system parameters.

(b) Find an explicit expression for the MMSE.

(c) Show that the limit of (a) as �2 →� is the ZF correlator.

(d) Show that the limit of (a) as A2/A1 →� (with �2 fixed at some positive

value) is the ZF correlator.
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Problem 8.23 (Successive interference cancellation) For the two-user sys-

tem in Example 8.4.2, consider the following successive interference cancel-

lation scheme (SIC) scheme:

b̂1 = sign�z1�

b̂2 = sign
(

z2−A1�b̂1

)

�

That is, we decide on the first user’s bit ignoring the MAI due to User 2, and

then use this decision to cancel the interference due to User 1 in User 2’s

matched filter output.

(a) Do you think this scheme works better when User 1 has larger or smaller

amplitude than User 2?

(b) Find the asymptotic efficiency for User 1. When is it nonzero?

(c) What can you say about the asymptotic efficiency for user 2 as

A2/A1 → �?

Problem 8.24 Consider a 3-user DS-CDMA system with short spreading

sequences given by

s1 = �1�1�1�−1�−1�T

s2 = �1�−1�1�1�−1�T

s3 = �1�1�−1�−1�1�T �

where sk denotes the spreading sequence for user k.

(a) Assuming a synchronous system, compute the near–far resistance for each

user, assuming zero-forcing reception. Express the noise enhancement in

each case in dB.

(b) Assuming that all users are received at equal power, find the error proba-

bility for User 1 with matched filter reception assuming BPSK modulation

with Eb/N0 of 15 dB. Compare with the error probability, assuming zero-

forcing reception.

(c) Repeat (b), this time assuming that Users 2 and 3 are 10 dB stronger than

User 1.

(d) Now, consider a chip-synchronous, but symbol-asynchronous, system,

in which User 2 is delayed with respect to User 1 by 2 chips, while

User 3 remains synchronized with User 1. Find the near–far resistance

for User 1, assuming zero-forcing reception with an observation interval

spanning a symbol interval for User 1. Compare with the corresponding

result in (a).

Hint User 2 generates two interference vectors modulated by independent symbols over

User 1’s symbol interval. We must therefore consider an equivalent synchronous system

with three interference vectors.
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Problem 8.25 Consider the following real baseband vector model for a

K-user synchronous CDMA system with processing gain N and BPSK mod-

ulation.

r = SAb+N� (8.150)

where b is the vector of bits sent by the K users; the N ×K matrix S has

the spreading waveforms as its columns: its kth column is sk, 1 ≤ k ≤ K;

A is a diagonal matrix whose k diagonal element is Ak, 1 ≤ k ≤ K: A =
diag�A1� � � � �AK�; and N∼ N�0��2I� is AWGN.

(a) Show that the vector of matched filter outputs, y = STr, is a sufficient

statistic for deciding on b.

Hint Show that the log likelihood ratio of r, conditioned on b, depends only on y.

(b) Show that the ML decision rule for b is of the form

b̂ML = arg max
b

uTy− 1

2
bTRb� (8.151)

Specify the vector u and the matrix R.

(c) For the setting of Problem 8.24(a), assuming thatAk ≡ 1, find the ML deci-

sion for b assuming that the received signal is r= �1�5�4�−0�5�−4�2�T .

Problem 8.26 (Coded frequency hop multiple access) Consider frequency

hop multiple access with Reed–Solomon coding, as described in Example

8.5.1.

(a) Suppose that there are K = 10 simultaneous users and q = 64 hopping

frequencies. Choose a �31� k� RS code, operating over an alphabet of

size Q = 32, which maximizes the rate subject to the constraint that the

decoding failure probability is at least as good as 10−3.

(b) Fixing K = 10, minimize the number of hopping frequencies needed so

as to attain a decoding failure probability of 10−3 and an information rate

of at least 0.8.

Problem 8.27 (Fourier series for a square wave) A periodic signal u�t�

of period P can be written as a Fourier series as follows:

u�t�=
�
∑

k=−�
a	k
ej2�kf0t� (8.152)

where f0 = 1/P is the fundamental frequency, and kf0 is the kth harmonic

with Fourier coefficient

a	k
= 1

P

∫

P
u�t�e−j2�kt/P � (8.153)

Here
∫

P
denotes integration over any conveniently chosen integral of length

P. As usual, we denote the transform relationship as u�t�↔ �a	k

.
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(a) For a periodic square wave of period P, specified over �0�P� as

u�t�=
{

+1� 0< t < P
2
�

−1� P
2
< t < P�

find the Fourier series coefficients using (8.153).

(b) If u�t�↔ �a	k

, find the Fourier series for u�t− �� and du�t�/dt.

(c) Find the Fourier series for the periodic impulse train
∑�

k=−� ��t−kP�.

(d) Use (b) and (c) to redo (a). (i.e., find the Fourier series for the derivative

of the square wave, and then infer that of the square wave).

Problem 8.28 (CPFSK basics) Consider CPFSK with L= 3 and a modu-

lation index h= 1/4.

(a) Sketch the frequency pulse g�t� and the phase pulse ��t�.

(b) Writing ��t�=∑�
n=0 a	n
��t−nT�, where �a	n

 take values ±1, sketch

the phase trajectory for the symbol sequence �+1�−1�−1�−1�+1�+1
,

assuming that ��0�= 0.

(c) What is the maximum number of possible values that the phase take at

integer multiples of T?

We now develop the MLSE receiver over a phase trellis whose states

are the values of the phase at integer multiples of T , based on the received

signal

y�t�= Aej��t�+n�t�� t ≥ 0�

where A is a known gain, and n is AWGN.

(d) Show that the sufficient statistics for MLSE reception are

Zn	�
=
∫

nT
�n+1�Ty�t�e−j�tdt�

where � takes a discrete set of values. Specify the values for �.

(e) What are the minimal number of states required for MLSE reception using

the Viterbi algorithm based on the sufficient statistics in (d)?

Hint What are the parameters you need to predict the phase evolution between nT

and �n+1�T , in addition to the initial condition ��nT�? How many values can ��nT�

take?

Problem 8.29 (PSD simulation for CPM waveforms) I discuss how to

compute the PSD of a communication waveform by simulation, and then

apply it to compute the PSD for GMSK. Suppose that u�t��0 ≤ t < To is

a communication waveform observed over an interval To (spanning a large

number of symbol intervals). We know from Chapter 2 that we can estimate

the PSD as �U�f��2/To. We can now average over several simulation runs to

smooth out the estimate. In this problem, I discuss how to implement this

using a discrete-time simulation.
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(a) Sample u at rate Ts to obtain �u	k
 = u�kTs�� k = 0� � � � �N − 1
, where

N = To/Ts. Letting U	k
 denote the DFT of �u	k

, show that it is related

to U�f� as follows:

U

(

k

NTs

)

≈ U	k
Ts�

(b) For Gaussian MSK at rate 1/T , suppose that the sampling rate is 8/T ,

and that you want a frequency resolution at least as good as 1/10T . To

estimate the PSD by simulation using an N -point FFT (i.e., N is a power

of 2), what is the smallest required value of N , and the corresponding

observation interval To (as a multiple of T )?

(c) By averaging over multiple simulation runs, estimate and plot the PSD

of Gaussian MSK with � = 0�3. Plot for comparison the PSD of MSK,

computed either analytically or by simulation. Express Su�f� in dB (with

Su�0� normalized to 0 dB) and a linear scale on the f -axis. Comment on

the relative spectral occupancy of the two schemes.

Problem 8.30 (Laurent approximation) Use Example 8.6.1, and the com-

ments following it, as a guide for developing a Laurent approximation for

CPFSK with L= 3 and h= 1/2. Plot the waveformsK�t� and s0�t�. (Set T = 1

for convenience.) How many symbols does the ISI span in the corresponding

linearly modulated system? Specify the set of values that the pseudosymbols

B0	n
 can take.

Problem 8.31 (Differential entropy for complex Gaussian random vector)

We wish to derive the expression (8.126) for the differential entropy for an n×
1 complex Gaussian vector Z ∼ CN�m�C�. Let ��i
 denote the eigenvalues

of C and �vi
 the corresponding orthonormal eigenvectors.

(a) Argue that we can set the mean vector m to zero without changing the

differential entropy.

(b) Directly compute h�Z� = �	− logp�z�
 using the density of Z to infer

that

h�Z�= logdet ��eC� �

Now relate the determinant of C to the eigenvalues ��i
 to infer that

h�Z�=
n
∑

i=1

�log��i�+ log��e�� � (8.154)

(c) As an alternative proof of (8.154), define the complex random variables

Yi = vHi Z. Show that �Yi
 are independent CN�0��i�. Show that h�Z� =
∑

i h�Yi�. Now use the results of Chapter 6 on scalar proper complex

Gaussian random variables to infer (8.154).
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Problem 8.32 (Capacity of the antenna-hopping space–time code) Con-

sider the antenna-hopping space–time code with capacity C given by (8.133).

(a) Use Jensen’s inequality (Appendix C) to show that the capacity of the

antenna-hopping code is smaller than the capacity (8.127) with optimal

space–time coding.

(b) Assuming that hi ∼ CN�0�1� are i.i.d., apply the CLT to approximate

the capacity given by (8.133) as a Gaussian random variable. Compute

the mean and variance by simulation or numerical integration for SNR of

10 dB and six transmit antennas.

(c) Using the Gaussian approximation for the distribution of C, and the results

from (b), predict the 1% outage capacity for the setting of (b). Compare

with the corresponding capacity for the AWGN channel, and with the

ergodic capacity of the Rayleigh fading channel.

I now develop an analytical approximation for the variance of C.

(d) For a real random variable X with �	X
= 1, show that

log�1+aX�= log�1+a�+ log

(

1+ a

1+a
�X−1�

)

�

(e) Using the approximation log�1+x�≈ x in the preceding equation, derive

the following estimate for the variance of log�1+aX�:

var �log�1+aX��= a2

�1+a�2
var�X��

(f) Apply the result of (e) to estimate the variance of the capacity as

var�C�= 1

NT

(

SNR

SNR+1

)2

�

for hi ∼ CN�0�1� i.i.d.
(f) Compare the 1% outage capacity for SNR of 10 dB using this variance

estimate with that obtained in (c).

Problem 8.33 (Capacity with ideal space–time coding) Consider the

capacity C given by (8.127) for hi ∼CN�0�1� i.i.d. Assume an SNR of 10 dB

and NT = 6, unless specified otherwise.

(a) Specify the density of the averaged channel gain G= 1
NT

∑NT

l=1 �hl�2.
(b) Use numerical integration using (a) to estimate the 1% outage capacity.

Compare with the results from Problem 8.32.

(c) Approximate G as a Gaussian random variable, and use analytical esti-

mates of its mean and variance to estimate the 1% outage capacity.

Compare with the results from (b).
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Problem 8.34 (Deterministic MIMO channel) Consider a MIMO system

with t = 2 transmit elements and r = 3 receive elements. The 3×2 channel

matrix is given by

H=









1+ j j
√
2j 1+j√

2

−1+ j 1









�

Assume that the net transmitted power per channel use is P, and that the noise

per receive element is i.i.d. CN�0�1�.

(a) Specify the eigenmodes and eigenvalues associated with the matrix W=
HHH.

(b) Assuming that the transmitter knows the channel, specify, as a function of

P, the transmit strategy that maximizes mutual information as a function

of P. Plot the mutual information thus attained as a function of P.

(c) Repeat (b) for two different cases:

(i) the second transmit element is not used, but all three receive elements

are used.

(ii) the third receive element is not used, but both transmit elements are

used.

Plot the mutual information as a function of P for both these cases on the

same plot as (b), and discuss the results.

(d) Now, suppose the transmitter does not know the channel. Plot the mutual

information attained by transmitting at equal power from both antennas

as a function of P. Compare with the result of (b), and with (c), case (i).

Discuss the results.

Problem 8.35 (Deterministic MIMO channel) Consider a 2× 2 MIMO

system with channel matrix

H=
(

1+ j 1

1− j −1

)

�

If x is the 2×1 transmitted vector, then y=Hx+n is the 2×1 received vector,

where n is a noise vector with i.i.d. CN�0�1� entries. The net transmitted

power E	��x��2
 = P. If both the transmitter and receiver know H, describe

in detail the transmit strategy the maximizes the ergodic capacity for P = 1.

What is the corresponding capacity in bits per channel use?

Problem 8.36 (MIMO capacity with rich scattering) Consider an n×
n MIMO system with i.i.d. CN�0�1� channel entries. Let SNR denote the

average SNR in a 1× 1 system with the same transmit power. Assume that

the transmitter does not know the channel, and splits its power evenly among

all transmit elements.
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(a) Find the ergodic capacity and the outage capacity corresponding to 10%

outage rate for a 2×2 system and a 3×3 system. Plot these as a function

of SNR (dB).

(b) Use either analysis or simulation (e.g., for a 6× 6 system) to estimate

C�n�/n, where C�n� is the ergodic capacity for an n×n system.

Problem 8.37 (MIMO with covariance feedback) A MIMO system has

six transmit elements and one receive element. The transmit elements are

arranged in a linear array with inter-element spacing d. The carrier wavelength

is denoted by �. The spatial channel from transmitter to receiver has a power-

angle profile that is uniform between 	−�/12��/12
. Letting h denote the

6×1 channel, define the spatial covariance matrix as C= E	hhH 
, where the

expectation can be viewed as an average across subcarriers.

(a) Compute C and find its eigenvalues �1� � � � � �6, ordered as �1 ≥ � � � ≥ �6,

for d/� = 0�5. Do you have any physical interpretation for the corre-

sponding eigenvectors?

(b) Suppose that the transmitter knows C, and sends with power Pi along

the ith eigenmode, i= 1� � � � �6, where
∑

i Pi = P. Show that the ergodic

capacity as a function of the power allocation vector P= �P1� � � � �P6� is

given by C�P�=E	log�1+∑6
i=1 Pi�iXi�
 where �Xi
 are i.i.d. exponential

random variables with mean one.
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Appendix A Probability, random variables, and
random processes

In this appendix, I provide a quick review of some basics of probability,

random variables, and random processes that are assumed in the text. The

purpose is to provide a reminder of concepts and terminology that the reader

is expected to be already familiar with.

A.1 Basic probability

I assume that the concept of sample space and events is known to the reader.

I simply state for the record some important relationships regarding the prob-

abilities of events. For events A and B, the union is denoted by A∪B and the

intersection by A∩B.

Range of probability For any event A, we have 0 ≤ P�A�≤ 1.

Complement The complement of an event A is denoted by Ac, and

P�A�+P�Ac�= 1� (A.1)

Independence Events A and B are independent if

P�A∩B�= P�A�P�B�� (A.2)

Mutual exclusion Events A and B are mutually exclusive if P�A∩B�= 0.

Probability of unions and intersections The following relation holds:

P�A∪B�= P�A�+P�B�−P�A∩B�� (A.3)

Conditional probability The conditional probability ofA given B is defined

as (assuming that P�B� > 0)

P�A�B�=
P�A∩B�

P�B�
� (A.4)

474
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Law of total probability For events A and B, we have

P�A�= P �A∩B�+P �A∩Bc�= P�A�B�P�B�+P�A�Bc�P�Bc�� (A.5)

This generalizes to any partition of the entire probability space: if B1�B2� � � �

are mutually exclusive events such that their union covers the entire proba-

bility space (actually, it is enough if the union contains A), then

P�A�=
∑

i

P �A∩Bi�=
∑

i

P�A�Bi�P�Bi�� (A.6)

Bayes’ rule Given P�A�B�, we can compute P�B�A� as follows:

P�B�A�=
P�A�B�P�B�

P�A�
=

P�A�B�P�B�

P�A�B�P�B�+P�A�Bc�P�Bc�
� (A.7)

where we have used (A.5). Similarly, in the setting of (A.6), we can compute

P�Bj�A� as follows:

P�Bj�A�=
P�A�Bj�P�Bj�

P�A�
=

P�A�Bj�P�Bj�
∑

i P�A�Bi�P�Bi�
� (A.8)

A.2 Random variables

I summarize important definitions regarding random variables, and also men-

tion some important random variables other than the Gaussian, which is

discussed in detail in Chapter 3.

Cumulative distribution function (cdf) The cdf of a random variable X is

defined as

F�x�= P�X ≤ x��

Any cdf F�x� is nondecreasing in x, with F�−��= 0 and F���= 1. Further-

more, the cdf is right-continuous.

Complementary cumulative distribution function (ccdf) The ccdf of a

random variable X is defined as

F c�x�= P�X > x�= 1−F�x��

Continuous random variables X is a continuous random variable if its cdf

F�x� is differentiable. Examples are the Gaussian and exponential random

variables. The probability density function (pdf) of a continuous random

variable is given by

p�x�= F ′�x�� (A.9)

For continuous random variables, the probability P�X= x�=F�x�−F�x−�= 0

for all x, since F�x� is continuous. Thus, the probabilistic interpretation of pdf
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is that it is used to evaluate the probability of infinitesimally small intervals

as follows:

P �X∈ �x� x+�x��≈ p�x� �x�

for �x small.

Discrete random variables X is a discrete random variable if its cdf FX�x�

is piecewise constant. The jumps occur at x = xi such that P�X = xi� > 0.

Examples are the Bernoulli, binomial, and Poisson random variables. That is,

the probability mass function is given by

p�x�= P�X = x�= lim
	→0+

F�x�−F�x−	��

Density I use the generic term “density” to refer to both pdf and pmf,

relying on the context to clarify my meaning.

Expectation The expectation of a function of a random variable X is

defined as
��g�X��=

∫

g�x�p�x�dx X continuous�

��g�X��=
∑

g�x�p�x� X discrete�

Mean and variance The mean of a random variable X is ��X� and its

variance is �
[

�X−��X��2
]

.

Gaussian random variable This is the most important random variable for

our purpose, and is discussed in detail in Chapter 3.

Exponential random variable The random variable X has an exponential

distribution with parameter 
, which we denote as X ∼ Exp�
�, if its pdf is

given by

p�x�= 
e−
xI�0����x��

The cdf is given by

F�x�= �1− e−
x�I�0����x��

For x ≥ 0, the ccdf is given by F c�x�= P�X > x�= e−
x. Note that ��X�=

var�X�= 1/
.

Random variables related to the Gaussian and exponential random variables

are the Rayleigh, Rician, and Gamma random variables. These are discussed

as they arise in the text and problems.

Bernoulli random variable X is Bernoulli if it takes values 0 or 1. The

Bernoulli distribution is characterized by a parameter p∈ �0�1�, where p =

P�X = 1�= 1−P�X = 0�.

Binomial random variable X is a binomial random variable with parame-

ters n and p if it is a sum of independent Bernoulli random variables, each

with parameter p. It takes integer values from 0 to n, and its pmf is given by

P�X = k�=

(

n

k

)

pk�1−p�n−k � k= 0�1� � � � � n�
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Poisson random variable X is a Poisson random variable with parameter

� > 0 if it takes values from the nonnegative integers, with pmf given by

P�X = k�=
�k

k!
e−� � k= 0�1�2� � � �

Note that ��X�= var�X�= �.

Joint distributions For multiple random variables X1� � � � �Xn defined on a

common probability space, which can also be represented as an n-dimensional

random vector X= �X1� � � � �Xn�
T , the joint cdf is defined as

F�x�= F�x1� � � � � xn�= P�X1 ≤ x1� � � � �Xn ≤ xn��

For jointly continuous random variables, the joint pdf p�x� = p�x1� � � � � xn�

is obtained by taking partial derivatives above with respect to each variable

xi, and has the interpretation that

P �X1 ∈ �x1� x1+�x1�� � � � �Xn ∈ �xn� xn+�xn��≈ p�x1� � � � � xn� �x1 � � ��xn�

for �x1� � � ��xn small.

For discrete random variables, the pmf is defined as expected:

p�x�= p�x1� � � � � xn�= P�X1 = x1� � � � �Xn = xn��

Marginal densities from joint densities This is essentially an application

of the law of total probability. For continuous random variables, we integrate

out all arguments in the joint pdf, except for the argument corresponding to

the random variable of interest (say x1):

p�x1�=
∫

� � �
∫

p�x1� x2� � � � � xn� dx2 � � �dxn�

For discrete random variables, we sum over all arguments in the joint pmf

except for the argument corresponding to the random variable of interest

(say x1):

p�x1�=
∑

x2

� � �
∑

xn

p�x1� x2� � � � � xn��

Conditional density The conditional density of Y given X is defined as

p�y�x�=
p�x� y�

p�x�
� (A.10)

where the definition applies for both pdfs and pmfs, and where we are

interested in values of x such that p�x� > 0. For jointly continuous X and Y ,

the conditional density p�y�x� has the interpretation

p�y�x�≈ �yP
[

Y ∈ �y� y+�y�
∣

∣X∈ �x� x+�x�
]

�

for �x, �y small. For discrete random variables, the conditional pmf is simply

the following conditional probability:

p�x�y�= P�X = x�Y = y��
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Bayes’ rule for conditional densities Given the conditional density of Y

given X, the conditional density for X given Y is given by

p�x�y�=
p�y�x�p�x�

p�y�
=

p�y�x�p�x�
∫

p�y�x�p�x�dx
Continuous random variables�

p�x�y�=
p�y�x�p�x�

p�y�
=

p�y�x�p�x�
∑

x p�y�x�p�x�
Discrete random variables�

A.3 Random processes

A random process X is a collection of random variables �X�t�� t∈� 
 defined

on a common probability space, where the index set � often, but not always,

has the interpretation of time (for convenience, I often refer to the index as

time in the remainder of this section). Since the random variables are defined

on a common probability space, we can talk meaningfully about the joint

distributions of a finite subset of these random variables, say X�t1�� � � � �X�tn�,

where the sampling times t1� � � � � tn ∈� . Such joint distributions are said to

be the finite-dimensional distributions for X, and we say that we know the

statistics of the random process X if we know all possible joint distributions

for any number and choice of the sampling times t1� � � � � tn.

In practice, we do not have a complete statistical characterization of a

random process, and settle for partial descriptions of it. In Chapters 2 and 3,

I mainly discuss second order statistics such as the mean function and the

autocorrelation function, which are typically easy to compute analytically,

or to measure experimentally or by simulation. Furthermore, if the random

process is Gaussian, then second order statistics provide a complete statistical

characterization. In addition to the focus on Gaussian random processes in

the text, other processes such as Poisson random processes are introduced in

a “need-to-know” basis in the text and problems.

For the purpose of this appendix, I supplement the material in Chapters 2

and 3 by summarizing what happens to random processes through linear sys-

tems. I restrict attention to wide sense stationary (WSS) random processes, and

allow complex values: X is WSS if its mean function mX�t�= ��X�t�� does

not depend on t, and its autocorrelation function ��X�t+ ��X∗�t�� depends

only on the time difference �, in which case we denote it by RX���. The

Fourier transform of RX��� is the power spectral density SX�f�.

A.3.1 Wide sense stationary random processes through LTI systems

Suppose, now, that a WSS random process X is passed through an LTI system

with impulse response h�t� (which we allow to be complex-valued) to obtain

an output Y�t� = �X ∗h��t�. We wish to characterize the joint second order

statistics of X and Y .



August 13, 2007 5:45 p.m. CUP/FOD Page-479 9780521874144app01

479 A.3 Random processes

Defining the crosscorrelation function of Y and X as

RYX�t+ �� t�= ��Y�t+ ��X∗�t���

we have

RYX�t+ �� t�= �

[(∫

X�t+ �−u�h�u�du
)

X∗�t�
]

=
∫

RX��−u�h�u�du�

(A.11)

interchanging expectation and integration. Thus, RYX�t+ �� t� depends only

on the time difference �. We therefore denote it by RYX���. From (A.11), we

see that

RYX���= �RX ∗h�����

The autocorrelation function of Y is given by

RY �t+ �� t�= � �Y�t+ ��Y ∗�t��

= �
[

Y�t+ ��
(∫

X�t−u�h∗�u�du
)]

=
∫

��Y�t+ ��X∗�t−u��h∗�u�du

=
∫

RYX��+u�h∗�u�du�

(A.12)

Thus, RY �t+ �� t� depends only on the time difference �, and we denote it

by RY ���. Recalling that the matched filter hmf�u� = h∗�−u�, we can see,

replacing u by −u in the integral at the end of (A.12), that

RY ���= �RYX ∗hmf����= �RX ∗h∗hmf�����

Finally, we note that the mean function of Y is a constant given by

mY =mX ∗h=mX

∫

h�u�du�

Thus, X and Y are jointly WSS: X is WSS, Y is WSS, and their crosscorre-

lation function depends on the time difference. The formulas for the second

order statistics, including the corresponding power spectral densities obtained

by taking Fourier transforms, are collected below:

RYX���= �RX ∗h�����

RY ���= �RYX ∗hmf����= �RX ∗h∗hmf�����

SYX�f �= SX�f �H�f��

SY �f �= SYX�f �H
∗�f �= SX�f ��H�f��2�

(A.13)

A.3.2 Discrete-time random processes

I have discussed continuous-time random processes in this appendix, and

in Chapters 2 and 3. Most of the concepts, such as Gaussianity and (wide

sense) stationarity, apply essentially unchanged to discrete-time random pro-

cesses, with the understanding that the index set is now finite or countable.

However, we do need some additional notation to talk about discrete-time

random processes through discrete-time linear systems. Discrete-time random

processes are important because these are what we deal with when using DSP
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in communication transmitters and receivers. Moreover, while a communica-

tion system may involve continuous time signals, computer simulation of the

system must inevitably be in discrete time.

z-transform: The z-transform of a discrete-time signal s = �s�n�
 is

given by

S�z�=
�
∑

n=−�

s�n�z−n�

The operator z−1 corresponds to a unit delay. Given the z-transform of S�z�

expressed as a power series in z, you can read off s�n� as the coefficient

multiplying z−n. We allow the variable z to take complex values. We are often

most interested in z= ej2�f (on the unit circle), at which point the z-transform

reduces to a discrete-time Fourier transform (see below).

Discrete time Fourier transform (DTFT) The DTFT of a discrete-time

signal s is its z-transform evaluated at z= ej2�f ; i.e., it is given by

S�ej2�f �= S�z��z=ej2�f =
�
∑

n=−�

s�n�e−j2�fn�

It suffices to consider f ∈ �0�1�, since S�ej2�f � is periodic with period 1.

Autocorrelation function For a WSS discrete-time random process X, the

autocorrelation function is defined as

RX�k�= � �X�n+k�X∗�n�� �

The crosscorrelation between jointly WSS processes X and Y is similarly

defined:

RXY �k�= � �X�n+k�Y ∗�n�� �

Power spectral density For a WSS discrete-time random process X, the

PSD is defined as the DTFT of the autocorrelation function. However, it

is often also convenient to consider the z-transform of the autocorrelation

function. As before, we use a unified notation for the z-transform and DTFT,

and define the PSD as follows:

SX�z�=
∑�

n=−�RX�n�z
−n�

SX�e
j2�f �=

∑�
n=−�RX�n�e

−j2�fn�
(A.14)

Similarly, for X, Y , jointly WSS, the cross-spectral density SXY is defined as

the z-transform or DTFT of the crosscorrelation function RXY .

Convolution If s3 = s1 ∗ s2 is the convolution of two discrete-time signals,

then S3�z�= S1�z�S2�z�.

Matched filter Let hmf �n� = h∗�−n� denote the impulse response for the

matched filter for h. It is left as an exercise to show that
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Hmf�z�=H∗��z∗�−1�� (A.15)

This implies that Hmf�e
j2�f � = H∗�ej2�f �. Note that, if h is a real-valued

impulse response, (A.15) reduces to Hmf�z�=H�z−1�).

Discrete time random processes through discrete-time linear systems

Let X = �X�n�
, a discrete-time random process, be the input to a discrete-

time linear time invariant system with impulse response h = �h�n�
, and let

Y = �Y�n�
 denote the system output. If X is WSS, then X and Y are jointly

WSS with

RYX�k�= �RX ∗h��k��

RY �k�= �RX ∗h∗hmf��k��
(A.16)

The corresponding relationships in the spectral domain are as follows:

SYX�z�=H�z�SX�z��

SY �z�=H�z�H∗��z∗�−1�SX�z��

SYX�e
j2�f �=H�ej2�f �SX�e

j2�f ��

SY �e
j2�f �= �H�ej2�f ��2SX�e

j2�f ��

(A.17)

A.4 Further reading

Expositions of probability and random processes sufficient for our purposes

are provided by a number of textbooks on “probability for engineers,” such as

Yates and Goodman [128], Woods and Stark [129], and Leon-Garcia [130].

A slightly more detailed treatment of these same topics, still with an engi-

neering focus, is provided by Papoulis and Pillai [131].

Those interested in delving deeper into probability than our present require-

ments may wish to examine the many excellent texts on this subject written

by applied mathematicians. These include the classic texts by Feller [132],

Breiman [133], and Billingsley [134]. Worth reading is the excellent text

by Williams [135], which provides an accessible yet rigorous treatment to

many concepts in advanced probability. Mathematically rigorous treatments

of stochastic processes include Doob [136], and Wong and Hajek [137].
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We are interested in finding bounds for probabilities of the form P�X > a�

or P�X < a� that arise when evaluating the performance of communication

systems.

Our starting point is a weak bound known as the Markov inequality.

Markov inequality If X is a random variable which is nonnegative with

probability one, then, for any a > 0,

P�X > a�≤
��X�

a
� (B.1)

Proof of Markov inequality For X ≥ 0 (with probability one), we have

��X�=
∫ �

0

xpX�x� dx ≥
∫ �

a
xpX�x� dx ≥ a

∫ �

a
pX�x� dx = aP�X > a��

which gives the desired result (B.1).

Of course, the condition X≥ 0 is not satisfied by most of the random variables

we encounter, so the Markov inequality has limited utility in its original

form. However, for any arbitrary random variable X, the random variable esX

(s a real number) is nonnegative. Note also that the function esx is strictly

increasing in x if s > 0, so that X>a if and only if esX > esa. We can therefore

bound the tail probability as follows:

P�X > a�= P�esX > esa�≤ e−sa
��esX�= eM�s�−sa� s > 0� (B.2)

where

M�s�= log��esX� (B.3)

is the moment generating function (MGF) of the random variable X. Equation

(B.2) gives a family of bounds indexed by s > 0, and the Chernoff bound is

obtained by finding the best bound in the family by minimizing the exponent

on the right hand side of (B.2) over s > 0. Specifically, define

M∗�a�=min
s>0

M�s�− sa� (B.4)

482
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Then the Chernoff bound for the tail probability is

P�X > a�≤ eM
∗�a�� (B.5)

Note that similar techniques can also be used to bound probabilities of the

form P�X < a�, except that we would now consider s < 0 in obtaining a

Chernoff bound:

P�X < a�= P�esX > esa�≤ e−sa
��esX�= eM�s�−sa� s < 0�

I do not pursue this separately, since we can always write P�X < a�= P�Y =
−X >−a� and apply the techniques that we have already developed.

Theoretical exercise Show that M∗�a� < 0 for a > ��X�, and M∗�a� = 0

for a < ��X�. That is, the Chernoff bound is nontrivial only when we are

finding the probability of intervals that do not include the mean.

Hint Show that F�s� =M�s�− sa is concave, and that F ′�0� = ��X�−a. Use this

to figure out the shape of F�s� for the two cases under consideration.

Chernoff bound for a Gaussian random variable Let X ∼ N�0�1�. Find

the Chernoff bound for Q�x�, x > 0. The first step is to find M�s�. We have

��esX�=
∫ �

−�
esx

e−x2/2

√
2�

dx = es
2/2

∫ �

−�

e−�x−s�2/2

√
2�

dx = es
2/2�

where we have completed squares in the exponent to get an N�s�1� Gaussian

density that integrates out to one. Thus, M�s�= s2/2 and F�s�=M�s�− sx=
s2/2− sx is minimized at s = x to get a minimum value M∗�x� = −x2/2.

Thus, the Chernoff bound on the Q function is given by

Q�x�≤ e−x2/2� x > 0�

Note that the Chernoff bound correctly predicts the exponent of decay of the

Q function for large x > 0. However, as we have shown using a different

technique, we can improve the bound by a factor of 1/2. That is,

Q�x�≤
1

2
e−x2/2� x > 0�

An important application of Chernoff bounds is to find the tail probabilities

of empirical averages of random variables. By the law of large numbers, the

empirical average of n i.i.d. random variables tends to their statistical mean as

n gets large. The probability that the empirical average is larger than the mean

can be estimated using Chernoff bounds as follows (a Chernoff bound can

be similarly derived for the probability that the empirical average is smaller

than the mean).

Chernoff bound for a sum of i.i.d. random variables Let X1� 	 	 	 �Xn

denote i.i.d. random variables with MGF M�s� = log��esX1 �. Then the tail

probability for their empirical average can be bounded as

P�
X1+· · ·Xn

n
> a�≤ enM

∗�a�� (B.6)
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where M∗�a� < 0 for a > ��X1�. Thus, the probability that the empirical

average of n i.i.d. random variables is larger than its statistical average decays

exponentially with n.

Proof We have, for s > 0,

P�
X1+· · ·Xn

n
> a� = P�X1+· · ·+Xn > na�≤ e−na

��es�X1+···+Xn��

= en�M�s�−sa��

using the independence of the 
Xi�. The bound is minimized by minimizing

M�s�− sa as for a single random variable, to get the value M∗�a�. The result

that M∗�a� < 0 for a > ��X1� follows from the theoretical exercise˙

The event whose probability we estimate in (B.6) is a large deviation, in that

the sum X1+…+Xn is deviating from its mean n��X1� by n�a−��X1��,

which increase linearly in n.

Comparison with central limit theorem The preceding “large” deviation

is in contrast to the
√
n-scaled deviations from the mean that the central limit

theorem (CLT) can be used to estimate. The CLT says that

X1+· · ·+Xn−n��X1�√
n�X

→ N�0�1� in distribution�

where �2
X = var�X1�. Thus, we can estimate tail probabilities as

P
[

X1+· · ·+Xn > n��X1�+a
√
n�X

]

≈Q�a��

That is,

P�X1+· · ·+Xn > b�≈Q

(

b−n��X1�√
n�X

)

� (B.7)

It is not always clear cut when to use the Chernoff bound (B.6, and when

to use the CLT approximation (B.7), when estimating tail probabilities for

a sum of i.i.d. (or, more generally, independent) random variables, but it is

useful to have both these techniques in our arsenal when trying to get design

insights.
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Appendix C Jensen’s inequality

I derive Jensen’s inequality in this appendix.

Convex and concave functions Recall the definition of a convex function

from Section 6.4.1: specializing to scalar arguments, f is a convex, or convex

up, function if it satisfies

f ��x1+ �1−��x2�≤ �f�x1�+ �1−��f�x2�� (C.1)

for all x1, x2, and for all �∈ �0�1�. The function is strictly convex if the

preceding inequality is strict for all x1 �= x2, as long as 0< � < 1.

For a concave, or convex down, function, the inequality (C.1) is reversed.

A function f is convex if and only if −f is concave.

Tangents to a convex function lie below it For a differentiable function

f�x�, a tangent at x0 is a line with equation: y = f�x0�+ f ′�x0��x−x0�. For

a convex function, any tangent always lies “below” the function. That is,

regardless of the choice of x0, we have

f�x�≥ f�x0�+f ′�x0��x−x0�� (C.2)

as illustrated in Figure C.1. If the function is not differentiable, then it

has multiple tangents, all of which lie below the function. Just like the

definition (C.1), the property (C.2) also generalizes to higher dimensions.

When x is a vector, the tangents become “hyperplanes,” and the vec-

tor analog of (C.2) is called the supporting hyperplane property. That is,

convex functions have supporting hyperplanes (the hyperplanes lie below

the function, and can be thought of as holding it up, hence the term

“supporting”).

To prove (C.2), consider a convex function satisfying (C.1), so that

f ��x+ �1−��x0�≤ �f�x�+ �1−��f�x0� For convex f�

485
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Tangent at x0
(not unique) 

Tangent at x0

f (x)f (x)

xx0xx0

(b) Convex function not differentiable at x0(a) Convex function differentiable at x0

Figure C.1 Tangents for

convex functions lie below it.
This can be rewritten as

f�x� ≥
f ��x+ �1−��x0�− �1−��f�x0�

�

= f�x0�+ �x−x0�
f �x0+��x−x0��−f�x0�

��x−x0�
�

Taking the limit as �→ 0 of the extreme right-hand side, we obtain (C.2).

It can also be shown that, if (C.2) holds, then (C.1) is satisfied. Thus,

the supporting hyperplane property is an alternative definition of convexity

(which holds in full generality if we allow nonunique tangents corresponding

to nondifferentiable functions). I am now ready to state and prove Jensen’s

inequality.

Theorem (Jensen’s inequality) Let X denote a random variable. Then

��f�X��≥ f ���X�� For convex f� (C.3)

��f�X��≤ f ���X�� For concave f� (C.4)

If f is strictly convex or concave, then equality occurs if and only if X is

constant with probability one.

Proof I provide the proof for convex f : for concave f , the proof can

be applied to −f , which is convex. For convex f , apply the supporting

hyperplane property (C.2) with x0 = ��X�, setting x = X to obtain

f�X�≥ f ���X��+f ′ ���X�� �X−��X�� � (C.5)

Taking expectations on both sides, the second term drops out, yielding (C.3).

If f is strictly convex, the inequality (C.5) is strict for X �=��X�, which leads

to a strict inequality in (C.3) upon taking expectations, unless X =��X� with

probability one.
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487 Jensen’s inequality

Example applications Since f�x�= x2 is a strictly convex function, we

have

��X2�≥ ���X��
2
�

with equality if and only if X is a constant almost surely. Similarly,

���X��≥ ���X���

On the other hand, f�x�= logx is concave, hence

��logX�≤ log��X��
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Adaptive equalization, 224

least mean squares (LMS), 226

least squares, 224

recursive least squares (RLS), 225

Antipodal signaling, 114

Asymptotic efficiency

MLSE, 237

of multiuser detection, 421

Asymptotic equipartition property (AEP)

continuous random variables, 269

discrete random variables, 267

Autocorrelation function

random process, 32, 36

signal, 15

spreading waveform, 415

AWGN channel

M-ary signaling over, 95

optimal reception, 102

Bandwidth, 30

fractional energy containment, 17

fractional power containment, 48

normalized, 48

Bandwidth efficiency, 42

linear modulation, 53

orthogonal modulation, 56

Barker sequence, 417

Baseband channel, 15

Baseband signal, 15

BCH codes, 367

BCJR algorithm, 313

backward recursion, 318

forward recursion, 317

log BCJR algorithm, 321

summary, 320

summary of log BCJR algorithm, 325

Bhattacharya bound, 311, 373

Binary symmetric channel (BSC), 265

capacity, 273

Biorthogonal modulation, 57

Bit interleaved coded modulation (BICM),

358

capacity, 360

Blahut–Arimoto algorithm, 285

block noncoherent demodulation

DPSK, 189

Bounded distance decoding, 366

Capacity

bandlimited AWGN channel, 254

binary symmetric channel, 273

BPSK over AWGN channel, 274

discrete-time AWGN channel, 260

optimal input distributions, 283

plots for AWGN channel, 277

power–bandwidth tradeoffs, 277

power-limited regime, 256

PSK over AWGN channel, 276

Cauchy–Schwartz inequality, 10

proof, 60

Channel coding theorem, 271

Coherent receiver, 29

Complex baseband representation, 18

energy, 22

filtering, 26

for passband random processes, 40

frequency domain relationship, 22

inner product, 22

modeling phase and frequency offsets, 28

role in transceiver implementation, 27

time domain relationship, 19

Complex envelope, 19

Complex numbers, 8

Composite hypothesis testing, 172

Bayesian, 172

GLRT, 172

Concave function, 282

Conditional error probabilities, 91

Continuous phase modulation (CPM), 430

Laurent approximation, 437
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Convex function, 282

Convolution, 10

Convolutional codes, 295

generator polynomials, 297

nonrecursive nonsystematic encoder, 296

performance of ML decoding, 304

performance with hard decisions, 311

performance with quantized observations,

310

recursive systematic encoder, 297

transfer function, 308

trellis representation, 297

trellis termination, 318

Correlation coefficient, 81

Correlator

for optimal reception, 105

Costas loop, 191

Covariance

matrix, 81

properties, 82

Crosscorrelation function

random process, 34, 36

spreading waveform, 415

dBm, 89

Decision feedback equalizer (DFE), 229

Decorrelating detector, 424

Delta function, 10

Differential demodulation, 174

Differential entropy, 267

Gaussian random variable, 268

Differential modulation, 57

Differential PSK, see DPSK, 57

Direct sequence, 407

CDMA, 410

long spreading sequence, 410

rake receiver, 411

short spreading sequence, 409

Discrete memoryless channel

(DMC), 264

Divergence, 270

Diversity combining

maximal ratio, 395

noncoherent, 398

Downconversion, 24

DPSK, 57

binary, 59

demodulation, 174

performance for binary DPSK, 188

Energy, 9

Energy per bit (Eb)

binary signaling, 112

Energy spectral density, 14

Entropy, 266

binary, 266

concavity of, 283

conditional, 269

joint, 269

Equalization, 200

fractionally spaced, 221

model for suboptimal equalization, 216

Error event, 236

Error sequence, 233

Euler’s identity, 9

Excess bandwidth, 51

EXIT charts, 330

area property, 336

Gaussian approximation, 334

FDMA, 381

Finite fields, 366

Fourier transform, 13

important transform pairs, 13

properties, 14

time–frequency duality, 13

Frequency hop, 428

Frequency shift keying (FSK), 55

Friis’ formula, 134

Gaussian filter, 434

Gaussian random vector, 82

Generalized likelihood ratio test (GLRT),

172

Gramm–Schmidt orthogonalization, 99

Gray coding, 128, 130

BER with, 131

Hamming code, 345

Hypothesis testing, 89

irrelevant statistic, 94

sufficient statistic, 95

I and Q channels

orthogonality of, 21

I component, 19

In-phase component, see I component, 19

Indicator function, 13

Inner product, 9

Intersymbol interference, see ISI, 200

ISI, 200

eye diagrams, 204

Kuhn–Tucker conditions, 283

Kullback–Leibler (KL) distance, 270

Law of large numbers (LLN), 254

interpretation of differential entropy, 268

interpretation of entropy, 266

large deviations, 254

LDPC codes, 343

belief propagation, 353

bit flipping, 350

degree distributions, 348

Gaussian approximation, 355
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message passing, 350

rate for irregular codes, 349

Tanner graph, 346

Likelihood function, 163

Likelihood ratio, 93

signal in AWGN, 163

Line codes, 44

Linear code, 344

dual code, 344

generator matrix, 344

parity check matrix, 345

Linear equalization, 217

performance, 227

Linear modulation, 43

example, 25

power spectral density, 34, 47, 70

Link budget analysis, 134

example, 136

Link margin, 135

Low density parity check codes, see LDPC

codes, 343

Lowpass equivalent representation, see

Complex baseband representation, 18

MAP

decision rule, 92

estimate, 160

Matched filter, 12

delay estimation, 61

for optimal reception, 105

optimality for dispersive channel, 203

Matrix inversion lemma, 225

Maximum a posteriori, see MAP, 160

Maximum likelihood (ML)

application to multiuser detection, 149

decision rule, 91

decoding of convolutional codes, 299

estimate, 160

geometry of decision rule, 107

multiuser detection, 420

sequence estimation, 205

Maximum likelihood sequence estimation,

see MLSE, 205

MIMO, see Space–time communication, 442

Minimum mean squared error, see MMSE,

221

Minimum probability of error rule, 92

Minimum shift keying (MSK), 431

Gaussian MSK, 434

preview, 72

MLSE, 205

performance analysis, 232

whitened matched filter, 213

MMSE

adaptive implementation, 224, 427

linear MMSE equalizer, 221

linear multiuser detection, 426

properties, 426

Modulation

degrees of freedom, 41

MPE rule, see Minimum probability of error

rule, 92

Multipath channel, 383

Multiuser detection, 419

asymptotic efficiency, 421

linear MMSE, 426

ML reception, 420

near–far resistance, 423

Mutual information, 269

as a divergence, 270

concavity of, 283

Near–far problem, 418

Nearest neighbors approximation, 122,

131

Noise figure, 88, 134

Noncoherent communication, 154

block demodulation, 188

high SNR asymptotics, 183

optimal reception, 172

performance for binary orthogonal

signaling, 183

performance with M-ary orthogonal

signaling, 186

receiver operations, 29

Norm, 9

Nyquist

criterion for ISI avoidance, 49, 66

sampling theorem, 41

Nyquist pulse, 51

OFDM, 399

cyclic prefix, 403

peak-to-average ratio, 404

power spectral density, 404

Offset QPSK, 72

On–off keying, 113

Orthogonal modulation

bandwidth efficiency, 56

BER, 131

binary, 114

coherent, 55

noncoherent, 55

Parallel Gaussian channels, 278

waterfilling, 280

Parameter estimation, 160

delay, 168

phase, 167

amplitude, 161

Parseval’s identity, 14

Passband channel, 15

Passband filtering, 26

Passband signal, 15

time domain representation, 19
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Performance analysis

M-ary orthogonal signaling, 125

16QAM, 124

ML reception, 110

QPSK, 118

rotational invariance, 116

scale-invariance, 113

scaling arguments, 117

union bound, 119

Phase locked loop (PLL), 156

ML interpretation, 170

Power efficiency, 113, 123

Power spectral density, 32

analytic computation, 60

linear modulation, 34, 47, 70

WSS random process, 37

Power-delay profile, 386

Principle of optimality, 210, 301

Proper complex Gaussian

density, 179

random process, 180

random vector, 178

WGN, 180

Proper complex random vector, 178

Q component, 19

Q function, 78

asymptotic behavior, 80

bounds, 79, 138, 139

Quadrature component, see Q component, 19

Raised cosine pulse, 51, 67

Random coding, 271

Random processes

autocorrelation function, 36

autocovariance function, 36

baseband and passband, 33

crosscorrelation function, 36

crosscovariance function, 36

cyclostationary, 39, 65

ergodicity, 38

Gaussian, 86

jointly WSS, 37

mean function, 36

power spectral density, 32

spectral description, 31

stationary, 36

wide sense stationary (WSS), 37

Random variables

Gaussian, 77

joint Gaussianity, 82

Rayleigh, 138

Rician, 138

standard Gaussian, 77

uncorrelated, 84

Rayleigh fading, 384

Clarke’s model, 387

ergodic capacity, 393

interleaving, 393

Jakes’ simulator, 389

performance with diversity, 396, 399

preview, 149

receive diversity, 394

uncoded performance, 390

Receiver sensitivity, 134

Reed–Solomon codes, 367

Rician fading, 385

Sampling theorem, 41

Shannon, 253

Signal space, 42, 95

basis for, 99

Signal-to-interference ratio (SIR), 223

Sinc function, 13

Singleton bound, 366

Singular value decomposition (SVD), 447

Soft decisions

bit level, 132

symbol level, 107

Space–time communication, 442

Alamouti code, 453

BLAST, 450

capacity, 449

channel model, 443

space–time codes, 451

spatial multiplexing gain, 450

transmit beamforming, 454

Spatial reuse, 381

Spread spectrum

direct sequence, 407

frequency hop, 428

Square root Nyquist pulse, 52

Square root raised cosine (SRRC)

pulse, 52

Synchronization, 154

transceiver blocks, 156

Tanner graph, 346

Tap delay line, 385

TDMA, 381

Transfer function bound

ML decoding of convolutional codes, 309

MLSE for dispersive channels, 238

Trellis coded modulation, 361

4-state code, 363

Ungerboeck set partitioning for

8PSK, 361

Turbo codes

BER, 329

design rules, 342

EXIT charts, 330

parallel concatenated, 326

serial concatenated, 328

weight enumeration, 337

Two-dimensional modulation, 45
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Typicality, 267

joint, 271

joint typicality decoder, 272

Union bound, 119

intelligent union bound, 121

Upconversion, 24

Viterbi algorithm, 211, 302

Walsh–Hadamard codes, 56

WGN, see White Gaussian noise, 87

White Gaussian noise, 87

geometric interpretation, 97

through correlator, 181

through correlators, 96

Zero-forcing detector, 424

Zero-forcing equalizer, 217

geometric interpretation, 218
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