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1

Basic Terms and Concepts

Sample size determination is an important and often difficult step in

planning an empirical study. Sampling theory and practice have

been extensively discussed, and, therefore, the following is a brief review

of some of the most important sampling-related concepts. For a com-

prehensive review of sampling, see Cochran (1977), Fink (2002), and

Kish (1965). For a discussion of sampling within the context of research

design, see Rubin and Babbie (2005).

An element is a unit (e.g., person, object) of a population. A pop-

ulation is a theoretically specified aggregation of elements. The cost of

studying an entire population is usually prohibitive to both researchers

and those being studied in terms of privacy, time, and money. There-

fore, a subset of a given population must be selected; this is called

sampling. Sampling is a strategy used to select elements from a popu-

lation. A sample is a subset of the population elements that results from

a sampling strategy. Ideally, a sample is selected that is representative of

a population (i.e., elements accurately portray characteristics of the

population). A sampling frame is the list, index, or records from which

the sample will be drawn, which might not be totally inclusive of the

study population. Because sampling is the process of selecting pop-

ulation elements to study, sample design addresses two basic issues:
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(1) how elements of the population will be selected and (2) how many

elements will be selected.

Selecting Elements From a Population

The ultimate goal of sample design is to select a set of elements from a

population in such a way that descriptions of those elements accurately

portray characteristics of the population (parameters) from which they

were selected. Another important goal of sample design is to yield

maximum precision (i.e., minimum variance) per unit cost. To achieve

these goals, researchers typically rely on probability sampling, in which

every element in the population has a known chance of being selected

into the sample. Probability sampling allows the chance of an element

being selected to be quantified (ideally equal). Probability sampling strat-

egies, through statistical procedures, allow estimates of sampling error

to be calculated.

There are a variety of probability sampling strategies. Frequently

used probability sampling strategies are simple, systematic, stratified, and

cluster sampling. Simple random samplingmay be the best known sam-

pling strategy. A commonly used simple random sampling procedure is

to assign a number to each element in the sampling frame and use an

unbiased process, such as a random number generator, to select elements

from the sampling frame. Random number generators are included in

some commercial software and are available free on the Internet (e.g.,

http://www.random.org).

Systematic random sampling uses a list of population elements. If

elements can be assumed to be randomly listed, then a starting point is

randomly identified, and elements are selected using a sampling interval.

These intervals are calculated by dividing the desired sample size by the

number of elements in the sampling frame. For example, to select a

sample size of 50 from a sampling frame with 100 elements, pick a

random starting point and select every second element until 50 elements

are selected.
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Stratified sampling uses groups to achieve representativeness, or to

ensure that a certain number of elements from each group are selected.

In a stratified sample, the sampling frame is divided into nonoverlap-

ping groups or strata (e.g., age groups, gender). Then a random sample

is taken from each stratum. This technique, for example, can be used to

study a small subgroup of a population that could be excluded in a

simple random sample.

Cluster sampling enables random sampling from either a very large

population or one that is geographically diverse. An important objective

of cluster sampling is to reduce costs by increasing sampling efficiency.

A problem with cluster sampling is that, although every cluster has the

same chance of being selected, elements within large clusters have a

greatly reduced chance of being selected in the final sample. Using the

probability proportionate to size (PPS) technique corrects this error.

PPS takes into account the difference in cluster size and adjusts the

chance that clusters will be selected. That is, PPS increases the odds that

elements in larger clusters will be selected.

Random sampling can be difficult to achieve because of time, cost,

and ethical considerations. Therefore, it is often necessary to use other

sampling techniques, often labeled nonrandom or nonprobability sam-

pling. With nonprobability sampling, elements of the population have

an unknown chance of being selected. At best, nonrandom sampling

strategies can yield a sample that is representative (i.e., portrays key

characteristics) of a population. At worst, nonrandom sampling strat-

egies can yield a nonrepresentative sample with an unknown amount

of error. Commonly used nonprobability sampling strategies are avail-

ability, snowball, and quota sampling.

Availability sampling is a technique in which elements are selected

because of their accessibility to the researcher. A criticism of this tech-

nique is that bias is introduced into the sample. Volunteers always are

suspect because they might not be representative of the overall popu-

lation. An example of an availability, or convenience, sample is one in

which participants are selected from the clinic, facility, or educational

institution at which the researcher is employed. Bias is likely to be
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introduced using this sampling technique because of the methods,

styles, and preferences of treatment employed at a given facility.

Purposive sampling involves the use of the researcher’s knowledge

of the population in terms of research goals. That is, elements are se-

lected based on the researcher’s judgment that they will provide access

to the desired information. For example, sometimes purposive sampling

is used to select typical cases, and sometimes it is used to select atypical

cases. Purposive sampling also can be used to select participants based

on their willingness to be studied or on their knowledge of a particular

topic.

Quota sampling is a nonprobability version of stratified sampling.

The distinguishing feature of a quota sample is that guidelines are set to

ensure that the sample represents certain characteristics in proportion to

their prevalence in the population.

Snowball sampling is sampling from a known network. Snowball

sampling is used to identify participants when appropriate candidates

for study are difficult to locate. For example, if locating an adequate

number of profoundly deaf people is difficult, a profoundly deaf person

who participates in a local support group could be recruited to assist in

locating other profoundly deaf people willing to participate in a study.

In other words, it is possible to have known members of a population

help identify other members of their population.

Deciding How Many Elements to Select From a Population

Because a sample is only part of a population, generalization from a

sample to a population usually involves error. There are two basic types

of error that can occur in the process of generalizing from a sample to a

population: sampling, or random, error and nonsampling, or system-

atic, error (SE). The latter type of error also is called bias.

Sampling error results from the ‘‘luck of the draw’’: too many ele-

ments of one kind and not enough elements of another kind. As sample

size increases, SE decreases, albeit slowly. If the population is relatively

homogeneous, SE will be small. Heterogeneity can be estimated from
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random sample data, using the standard deviation or an analogous

statistic.

Nonsampling error is often a more serious problem than SE, be-

cause nonsampling error cannot be controlled by increasing sample size

(Cuddeback, Wilson, Orme, & Combs-Orme, 2004). Nonsampling can

be organized into three categories: (1) Selection bias is the systematic

tendency to exclude some elements from the sample. With an avail-

ability sample, selection bias is a major concern. In contrast, with a well-

designed probability sample, selection bias is minimal. (2) Nonresponse

bias is present to the extent that respondents and nonrespondents differ

on variables of interest, and extrapolation from respondents to nonre-

spondents will be problematic. (3) Response bias occurs when respon-

dents ‘‘shade the truth’’ because of interviewer attitudes, the wording of

questions, or the juxtaposition of questions.

The size of a sample is an important element in determining the

statistical precision with which population values can be estimated. In

general, increased sample size is associated with decreased sampling

error. The larger the sample, the more likely the results are to represent

the population. However, the relationship between sampling error and

sample size is not simple or proportional. There are diminishing returns

associated with adding elements to a sample.

In summary, the cost of studying an entire population usually is

prohibitive to both researchers and those being studied in terms of

privacy, time, and money. Consequently, a subset or sample of a given

population must be selected. An important goal of sampling is to pro-

vide a practical and economic mechanism to enable extrapolation from

a sample to a population. This book focuses on quantitative research

in which a primary goal is to seek evidence about a characteristic or a

relationship and to use statistical inference to generalize obtained results

from a sample to a population. More specifically, the focus here is on

frequentist methods for determining sample size. The term frequentist is

used to describe those approaches that assume that probability is a long-

term frequency. Bayesian strategies are considered an alternative to fre-

quentist approaches (e.g., see Gill, 2002). Adopting a Bayesian paradigm

requires the assumption that probability is a subjective phenomenon.
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A detailed discussion of Bayesian probability theory is beyond the scope

of this book. Only procedures that assume a frequentist approach to

probability are considered. For a discussion of Bayesian strategies and

a comparison with frequentist methods, see Adcock (1997). An effec-

tive sample design requires the balancing of several important criteria:

(1) achieving research objectives, (2) providing accurate estimates of

sampling variability, (3) being feasible, and (4) maximizing economy

(i.e., achieving research objectives for minimum cost). These four cri-

teria can conflict, and researchers must seek a balance among them.

This book is organized as follows:

1. approaches to estimating sample size, including

a. power analysis

b. confidence intervals

c. computer-intensive methods

d. ethical and cost considerations

2. synthesis and recommendations

3. comprehensive worked examples

4. annotated bibliography of recommended readings and resources

for sample size determination.

See Table 1.1 for a summary of discussion and examples by proce-

dure. See Table 1.2 for a summary of effect-size measures discussed in

subsequent chapters. It is assumed that readers are familiar with issues

related to the appropriate application of each statistical procedure in

terms of assumptions and purpose. Interested readers should refer to the

appendix for an annotated bibliography of additional resources.
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Table 1.1 Summary of Discussion and Examples by Procedure

Procedure

Discussion-

Power

Analysis

Discussion-

Confidence

Intervals

Power

Analysis

Example

Confidence

Interval

Example

Difference
Two Means

Chapter 2 Chapter 3 Chapter 6,
Examples 1, 2

Chapter 6,
Examples 1, 2

Difference Two
Proportions

Chapter 2 Chapter 3 Chapter 6,
Example 3

Chapter 6,
Example 3

Odds Ratio Chapter 2 Chapter 3 Chapter 6,
Example 4

Chapter 6,
Example 4

Chi Square Chapter 2 Chapter 3 Chapter 6,
Example 5

Chapter 6,
Example 5

ANOVA/
ANCOVA/
Repeated
Measures

Chapter 2 Chapter 3 Chapter 6,
Examples 6,
7a, 7b, 8

Chapter 6,
Examples 6,
7a, 7b, 8

MANOVA/
MANCOVA/
Repeated
Measures

Chapter 2 Chapter 3 Chapter 6,
Examples 9,
10, 11

Chapter 6,
Examples 9,
10, 11

Correlation Chapter 2 Chapter 3 Chapter 6,
Example 12

Chapter 6,
Example 12

Regression Chapter 2 Chapter 3 Chapter 6,
Example 13

Chapter 6,
Example 13

Discriminant
Function
Analysis

Chapter 2 Chapter 3 Chapter 6,
Example 14

Chapter 6,
Example 14

Logistic
Regression

Chapter 2 Chapter 3 Chapter 6,
Example 15

Chapter 6,
Example 15

Cox Regression Chapter 2 Chapter 3 Chapter 6,
Example 16

Chapter 6,
Example 16

Structural
Equation
Modeling

Chapter 2 Chapter 3 Chapter 6,
Example 17

Chapter 6,
Example 17

Multilevel
Analysis

Chapter 2 Chapter 3 Chapter 6,
Example 18

Chapter 6,
Example 18

Computer-
Intensive
Methods Chapter 5 Chapter 5 Chapter 5 Chapter 5

Effect Size Chapter 2 Chapter 3 Chapter 6,
Example 19

Chapter 6,
Example 19



Table 1.2 Small, Medium, and Large Values of Cohen’s Effect Sizes

Effect Size Small Medium Large

d .20 .50 .80

r .10 .30 .50

w .10 .30 .50

f .10 .25 .40

f 2 .02 .15 .35
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2

Statistical Power Analysis

As discussed in chapter 1, the focus of this book is on quantita-

tive research in which a primary goal is to seek evidence about a

characteristic or relationship (ideally, a causal relationship) and to use

statistical inference to generalize obtained results to a population. The

costs, in terms of privacy, time, and money, of collecting data on an

entire population usually is excessive both to researchers and study

participants.

Because the sample is only part of the whole, generalization usually

involves error. The importance of sampling error is clarified if it is

assumed that the ultimate goal of sampling is to provide evidence of

causal relationships in a population. Cook and Campbell (1979) explain

that, according to the nineteenth-century philosopher John Stuart Mill,

at least three criteria must be met to justify causal claims: (1) association

(correlation or the cause is related to the effect), (2) temporality (the

cause comes before the effect), and (3) elimination of plausible alter-

native explanations (other plausible explanations for an effect are con-

sidered and ruled out).

Cook and Campbell (1979) use the term validity to refer to the best

available approximation of the truth or falsity of propositions, including

propositions about cause. Cook and Campbell identify four types of
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validity. These are construct validity, internal validity, statistical conclu-

sion validity, and external validity. Construct validity refers to whether

the measures used in a study actually measure what they purport to

measure. Internal validity refers to the strength of the causal linkages

between and among independent and dependent variables. External

validity refers to the ability to generalize a study’s results to other times,

places, and persons. Statistical conclusion validity refers to the ability to

presume covariation between or among variables given a specified alpha

level and the observed amount of dispersion in a sample.

The priority among validity types varies with the kind of research

being conducted. Statistical conclusion validity is perhaps most directly

related to sampling. According to Cook and Campbell (1979), issues or

problems that affect statistical conclusion validity are as follows:

1. Research design

2. The criterion for statistical significance (level of alpha or type I error)

3. Population variance in the criterion variable

4. Magnitude of the difference between the actual value of the tested

parameter and the value specified by the null hypothesis (effect

size)

5. Type of hypothesis (one-tailed or directional versus two-tailed or

nondirectional)

6. Types of statistical test used (e.g., t-test versus sign test)

7. Sample size

The remaining portion of this text focuses on sample size as an

important and controllable influence on the statistical precision or sam-

pling error with which population values can be estimated. In general,

increased sample size is associated with decreased sampling error. The

larger the sample, the more likely it is that the results will validly rep-

resent the population. However, the relationship between sampling

error and sample size is not simple and proportionate. There are dim-

inishing returns associated with adding elements to a sample. In most

applied research settings, however, limited resources restrict the number

of individuals that can be sampled.
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It is hoped that the following discussion will provide beginning

reference points for sample size determination and encourage research-

ers to continue to search for resolutions to often difficult sample-size

decisions. For instance, when designing a study, researchers should be

prepared to grapple with the difficult trade-offs associated with the

feasibility of using adequate sample sizes against the importance of

studying some issues regardless of the limited availability of data (cf.

Peterson, Smith, & Martorana, 2006, for a discussion of this issue in the

context of applied psychology).

An important goal of sampling, then, is to provide an accurate and

practical mechanism to enable extrapolation from a sample to a popu-

lation. The next three chapters present approaches to determining sam-

ple size: power analysis, confidence intervals, and computer-intensive

methods. Each approach will be described and critiqued in terms of its

strengths and limitations. In some ways, the aforementioned strategies

for determining sample size can be described as a patchwork quilt of

procedures. No single software package exists that allows researchers to

determine sample size according to these three strategies across all sta-

tistical procedures described in the following chapters. Specific recom-

mendations are provided for each statistical procedure. Readers should

be aware that, whenever possible, the approach recommended here is

to estimate sample size with GPower, which is a free power analysis

program available at http://www.psycho.uniduesseldorf.de/aap/projects/

gpower/. For researchers who prefer a comprehensive statistical package,

PASS is recommended. PASS is capable of performing a wide range of

sample size calculations. Information about PASS can be obtained at

http://www.ncss.com/pass_procedures.html. Other options, discussed as

appropriate later, include SPSS and SAS scripts and specialized web-

based calculators. The appendix provides a more comprehensive discus-

sion of software for sample size determination.

One strategy for determining sample size is statistical power analysis.

Power analyses can be performed before collecting data (a priori) or

after collecting data (a posteriori).1 The following discussion focuses on

a priori analysis that seeks to estimate sample size based on acceptable

levels of effect size,2 a, and power. Several authors have suggested a 4:1

Statistical Power Analysis 13
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ratio of b to a. That is, if the level of a is established a priori at .05, then

the corresponding power is 1� 4(.05) ¼ .80. This 4:1 ratio of b to a is

used in this chapter (cf. Hinkle, Wiersma, & Jurs, 2003).

Methods for estimating statistical power and sample size are well

known and have been extensively discussed (e.g., Hoenig & Heisey, 2001;

Kraemer & Thiemann, 1987; Lenth, 2001; Murphy & Myors, 2003).

Therefore, the purpose of this chapter is to (1) provide a brief descrip-

tion of the rationale and limitations of statistical power analysis and

(2) present important issues related to determining sample size for

both commonly used and emerging statistical procedures in social work

research.

Put simply, statistical power is the probability of detecting an effect.

The concept of statistical power is attributed to Neyman and Pearson

(1928), although Fisher (1925) addressed similar issues in his discus-

sions of test and design sensitivity (cf. Huberty, 1993 for a detailed dis-

cussion). Jacob Cohen is considered by many researchers to be among

the most important writers about power analysis. Cohen’s work was

motivated by his perception that power analysis was largely neglected in

psychological research. In a survey of articles published in Journal of

Abnormal and Social Psychology in the year 1960, Cohen (1962) found

the mean power to detect medium effect sizes to be .48. He concluded

that the chance of obtaining a significant result was about the same

as tossing a head with a fair coin. Hoping to correct for this neglect in

statistical power, Cohen published his most popular work, Statistical

Power Analysis for the Behavioral Sciences (1969/1988).

Following Jacob Cohen’s (1962) pioneering work on the power of

statistical tests in behavioral research, many authors have stressed the

utility of statistical power analysis. Textbooks and articles have appeared

that provide tables of power and sample sizes (e.g., Cohen, 1969/1988,

1992, 1994; Cohen & Cohen, 1983; Hager & Möller, 1986; Kraemer &

Thiemann, 1987; Lipsey, 1990; Murphy & Myors, 2003; Orme & Hud-

son, 1995).

An increasing number of computer programs for performing power

analysis have become available during the past few years. Power analysis

procedures have been incorporated into existing statistical software
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(e.g., SAS, Stata, S-Plus), and increasing interest in power analysis has

resulted in the development of specialized packages (e.g., PASS, GPower,

and Power and Precision).3 In addition, web-based calculators prolif-

erate at a rapid rate. Examples of web-based resources are provided in

this and the remaining chapters.

Power is the probability of rejecting the null when a particular al-

ternative hypothesis is true. Power can be defined only in the context of

a specific set of parameters, and, accordingly, reference to an alternative

hypothesis, expressed as an effect size (discussed subsequently), is nec-

essary. The power of a test, therefore, is defined as 1� beta (b), where b
(or type II error) is the probability of falsely accepting H0 when Ha is

true.4 Statistical power, then, is the ability of a statistical test to detect an

effect if the effect exists (Cohen, 1988). Figure 2.1 depicts an example

using a two-tailed test (e.g., a t-test), and a one-tailed alternative, or

research hypothesis.

Distribution A (labeled H0) represents a sampling distribution when

the null hypothesis is true (mean orm ¼ 0). The portion of the right tail

of this distribution labeled a/2 contains the means that would result in

rejection of H0. But what if H0 actually is false?

A. Distribution Under H0

B. Distribution Under H�

Statistical Power

Critical Value

�/2

�

Figure 2.1. Relationships Among Alpha (a), Beta (b),
and Power (1� b)
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Also termed a noncentral distribution,5 distribution B (labeled Ha)

represents one possible sampling distribution when H0 is false. Even

when H0 is false, some sample values (e.g., means) will fall to the left of

the critical region and result in failure to reject a false H0, and, ac-

cordingly, a type II error. The probability of this error is b. When H0 is

false and the test statistic falls to the right of the critical value, H0 is

rejected correctly. The probability of doing this is defined as power

(1� b). Conventionally, a test with power greater than .80 (or b is less

than or equal to .2) is considered statistically powerful.

Power is a function of the following factors: (1) alpha (a or type I

error), (2) beta (b or type II error), (3) magnitude of a hypothesized

effect size, (4) the standard deviation of the hypothesized effect size, and

(5) sample size. More specifically, power is a function of alpha and beta.

As Figure 2.1 illustrates, as a increases, b decreases with a corresponding

increase in power. Also, power is a function of effect size (i.e., the true

alternative hypothesis, such as an expected difference between groups,

how small the effect can be and still be of substantive interest, or the

expected size of the effect). As Figure 2.1 illustrates, if the distance be-

tween m0 and m1 increases, power increases. That is, the chance of

finding a difference between the two means depends on the size of the

difference; the greater the difference, the more likely it is to be identified,

and, consequently, when it is false, H0 is rejected. Finally, power is a

function of N and variance. In general, the variance of the distribution

of an effect size decreases as N increases; and, as this variance decreases,

power increases.

The logic behind power analysis is compelling: a study should be

conducted only if it relies on a sample size that is large enough to

provide an adequate and a prespecified probability of finding an effect if

an effect exists. If a sample is too small, the study could miss important

differences; too large, the study could make unnecessary demands on

respondent privacy and time or waste valuable resources. The benefits of

power analysis are at least twofold: sample size selection is made on a

rational basis rather than using rules of thumb, and the researcher must

specify the size of the effect that is substantively interesting.
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In power analysis, after specifying (1) an effect size and (2) beta and

alpha, an appropriate sample size can be calculated. In general, calcu-

lating the power of a planned study involves the following steps:

1. Establish a desired sample size (based on perceived feasibility and

other studies).

2. Determine the alpha level (e.g., .05).

3. Calculate beta, assuming the alternative hypothesis is true.

4. Calculate power (1� b).

The computation of statistical power depends on a specific model

(or test). The t-test, with its relatively simple formula, can facilitate the

discussion of an example that illustrates the calculation of statistical

power and the determination of sample size. For example, a social work

researcher plans to administer a Satisfaction with Family Life Scale to a

random sample of 100 married people, with an equal number of re-

spondents with no children and respondents with at least one child. On

this scale, higher scores indicate greater satisfaction. The researcher

wants to know whether there is a significant difference in satisfaction

with family life between respondents with no children and respondents

with at least one child. Specifically, the researcher hypothesizes that

respondents with at least one child will have scale scores 6 points higher

than respondents with no children. An earlier pilot study (N ¼ 30)

from a similar population estimated that Satisfaction with Family Life

Scale scores have a standard deviation of 10. Prior to implementation,

the researcher decides to determine the statistical power of this study

and hopes that power will be .80 or greater.

Her calculations are as follows:

1. a is set at .05.

2. Effect size equals expected difference divided by the standard devi-

ation of scale scores, or 6/10 ¼ .060.

3. If the null hypothesis is false, then scores will not be distributed

around 0 (means are not equal, or the difference between means of
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scores will not be 0). That is, if the null hypothesis is false, power is

a function of a distribution based on the assumptions of the alter-

native hypothesis: a distribution with a mean of 6. This shift in

the mean of the distribution from 0 to 6 is referred to as the degree

of noncentrality, and this noncentrality parameter is termed

delta (d). To determine power, the researcher first must identify beta

on this alternative distribution. To identify b on this alternative

distribution, compute d, defined as effect size divided by the square

root of the sample size (formula 3.2). Therefore, d ¼ .60 times

the square root of 100/4 ¼ .60 times 5 ¼ 3.00.

4. Calculate the proportion of the distribution of values of the alter-

native hypothesis less than b and subtract this proportion from 1.

To calculate this proportion, refer to a (a) cumulative distribution

table of noncentral t, (b) table of values under the normal (Z ) dis-

tribution as an approximation of values of t, or (c) table of power

for d. Tables of power and sample size are available and require no

additional computations to estimate power (cf. Howell, 2007,

p. 678). Power for a one-tailed test at alpha equals .05 equals .91.

A power of .91 means that the researcher would have a 91% chance

of rejecting H0 if it is false. Therefore, based on a desired power of

.80, her study is overpowered, and she would consider reducing her

sample size. An alternative strategy adopted in subsequent examples

is to establish an effect size, set a ¼ .05 and b ¼ .80, and then

calculate sample size.

To facilitate the identification of issues and resources related to

specific statistical procedures, the following discussion is procedure-

specific. As noted earlier, power analyses can be performed before col-

lecting data (a priori) or after collecting data (a posteriori). However,

the approach taken here is to focus on a priori analysis that seeks to

estimate sample size based on acceptable levels of effect size, a ¼ .05,

and power or 1� b ¼ .80. For each statistical test, the following topics

are addressed: (1) general issues, including definition of effect size and

noncentrality parameter, and (2) recommended approaches.
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Differences Between Means

The emphasis here is on hypothesis testing for two or more variables.

Readers interested in a detailed discussion of sample size for one sample

(single mean) should refer to Howell (2007, chapter 8). In the case of

a two-group-mean comparison, the typical effect size index is a stan-

dardized mean difference. This index, d, was proposed by Jacob Cohen

(1962; see Table 1.2 for a summary of commonly used effect sizes).

During the 1970s and 1980s, there was discussion about which standard

deviation should be used as the denominator in d. Two suggestions

made were (1) the standard deviation pooled across the two groups

proposed by Cohen (1969) and (2) the standard deviation of the control

group—the definition of which is not always clear—proposed by Glass

(1976). The letter d was used by both Cohen and Glass. In practice,

the pooled standard deviation, spooled, is commonly used (Rosnow &

Rosenthal, 1996).

Independent Samples

The effect size d is defined as the standardized distance between two

means:

d ¼ m1�m2
s

h i

Noncentrality parameter:

d¼ d

ffiffiffiffiffi
N

4

r
where N ¼ n1þn2

Formula for N desired:

Ndesired ¼
d
d 0

� �2
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Noncentrality parameter for independent-samples t with unequal group

sizes:

d¼ d

ffiffiffiffiffi
nh
2

r
¼ where ¼ nh ¼

2n1n2
n1þn2

which is the Harmonic mean.

Recommended Approach(es): GPower, PASS

Correlated Samples

When conducting a power analysis for the correlated samples design, the

effect of r12 (correlation between the scores in the one condition and

those in the second condition) must be considered by computing dDiff,

an adjusted value of the effect size d:

dDiff ¼
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(1� r12)
p :

The denominator of this ratio is the standard deviation of the dif-

ference scores rather than the standard deviation of the original scores.

The formula for desired sample size is:

n¼ d
dDiff

� �2

:

The noncentrality parameter for correlated samples t is defined as:

d¼ d
ffiffiffiffiffi
N

p
where N ¼ number of sample observations

Recommended Approach(es): GPower, PASS; if the sample size is

large enough, then there will be little difference between the t distribu-

tion and the standard normal curve, and the value of d can be obtained

from a table of power as a function of d and a (cf. Howell, 2007, p. 678).
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Differences Between Proportions

Most frequently, studies compare two or more proportions, but occa-

sionally there is a need to draw statistical inferences about a single

proportion. Readers interested in a detailed discussion of sample size for

one sample (single proportion) should refer to Fleiss, Levin, and Paik

(2003, chapter 2), and Cohen (1988, chapter 5).

Power analysis for tests of proportions can be approached in several

ways (cf. Cohen, 1988, chapter 6, for a discussion of alternatives). The

ability to detect a difference in magnitude between population propor-

tions (power) is not a simple function of the difference. For example, for

fixed sample size and alpha, proportions with equal differences do not

have the same power (see Cohen, 1988, for examples). Therefore, Cohen

discusses power analysis for proportions in the context of a normal curve

test applied to the arcsine transformation of proportions. The arcsine,

also termed arcsine root and arcsine square root transformation, converts

a binomial distribution to a nearly normal distribution. The effect size h

is defined as f1 � f2, where P is a proportion and F ¼ 2 arcsine
ffiffiffi
P

p
.

Recommended Approach(es): Using h and a predetermined alpha

(a), tables are provided in Cohen (1988, chapter 6) to calculate sample

size and power. A second option is to consult Fleiss, Levin, and Paik

(2003), which provides extensive tables for determining sample size per

group for a test of the difference between two proportions (see Table A.4

on pp. 660–682). Using these tables requires the researcher to estimate

the size of the two proportions, alpha and beta. The tables provide the

equal sample sizes necessary in the two groups for varying values of

(1) the hypothesized proportions P1 and P2, (2) alpha, and (3) power.

A third option is to use the following web-based calculator: http://

statpages.org/proppowr.html.

Odds Ratios

An odds ratio is defined as the ratio of the odds of an event occurring

in one group to the odds of it occurring in another group. If the
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probabilities of the event in each of the groups are p (first group) and q

(second group), then the odds ratio is:

p=(1� p)

q=(1� q)
¼ p(1� q)

q(1� p)
:

An odds ratio of 1 indicates that the condition or event under study

is equally likely in both groups. An odds ratio greater than 1 indicates

that the condition or event is more likely in the first group. And an odds

ratio less than 1 indicates that the condition or event is less likely in the

first group. The odds ratio must be 0 or greater than 0. As the odds of

the first group approach 0, the odds ratio approaches 0. As the odds of

the second group approach 0, the odds ratio approaches positive infinity.

Let the letters a, b, c, and d represent the frequency counts in a 2�2

table as follows:

a b
c d

Recommended Approach(es): nQuery Advisor. Information about

this software can be obtained at http://www.statsol.ie/.

Chi-Square and Contingency Tables (Test of Independence)

Effect size is defined as w. For a 2�2 table, Cohen (1988) defined w as:

f¼
ffiffiffiffiffi
w2

N

r
¼ w,

and for tables 2�3 or larger, w is defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

N(k � 1Þ

s

where k ¼ the smaller of the number of rows or the number of columns.
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The noncentrality parameter is defined as

d¼ 2fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
 ! ffiffiffiffiffi

N
p

:

Recommended Approach(es): If contingency table cell counts can be

anticipated, the effect size w can be calculated in GPower using the ‘‘Calc

‘w’ ’’ option after ‘‘Type of Test: Chi-square Test’’ is selected. Alter-

natively, w can be estimated.

ANOVA

Discussion of analysis of variance (ANOVA) is limited to fixed effects

models.6 Calculating power for a random effects model is more com-

plicated (cf. Winer, 1971). A commonly used effect size for ANOVA

designs is Cohen’s f. Cohen (1988) describes f as an extension of d

(discussed earlier). In contrast to d, however, with two or more means,

the effect size is not a reflection of the range between means but a

quantity similar to a standard deviation. To calculate f, the aforemen-

tioned quantity is divided by the standard deviation of the means being

compared by ANOVA

f ¼ sm
s

,

where for equal n,

sm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i ¼ 1

(mi � m)2

k

vuut :

To calculate the noncentrality parameter of the F-distribution requires

the specification of all of the treatment means and standard deviations.
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Moreover, with three or more means, the relationship between their

standard deviation and range depends on how the means are dispersed.

One simplified specification is the use of mean configuration: a speci-

fication of the arrangement of the means (see Cohen, 1988, chapter 8,

for an extensive discussion and appropriate tables). Cohen describes

three patterns of ways that means can be dispersed over their range:

(1) pattern 1 contains one mean at each end and the remaining means at

the midpoint; (2) pattern 2 contains means that are equally spaced over

the range; and (3) pattern 3 contains means falling at both extremes

of the range. When mean configuration is used, the required sample size

will not be estimated correctly if the means do not conform to the as-

sumed configuration. To avoid errors, a researcher should consider con-

ducting analyses for several configurations.

Alternatively, effect size d could be specified by the difference be-

tween the largest mean and the smallest mean, in units of the within-cell

standard deviation (sigma):

delta¼ largest mean� smallest mean

sigma
:

Although less precise in terms of calculating power, this minimum

power specification might be more feasible if there is little empirical

experience with a phenomenon. McClelland (1997) has argued that

often with fixed effects models more levels of the independent variables

are used than needed. That is, using more levels of the independent

variable with fixed effects models can weaken the effect across degrees of

freedom (e.g., for five levels and four degrees of freedom). Consequently,

researchers are more likely to miss detecting a linear effect. The following

web page uses the aforementioned minimum specification strategy to

perform power analysis for ANOVA designs: http://www.math.yorku.ca/

SCS/Online/power/.

This minimum power specification corresponds to the alternative

hypothesis that all means other than the two extreme ones are equal

to the grand mean. The computations assume: (1) fixed effects and
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(2) equal sample sizes in all treatments. Under these assumptions, the

noncentrality parameter of the F-distribution is

d¼N
d 2

2

� �
,

where N is the sample size per treatment. As previously, effect-size delta

values are typically in the range of 0–3, with values of delta ¼ .25, .75,

and 1.25 or greater correspond to ‘‘small,’’ ‘‘medium,’’ and ‘‘large’’ ef-

fects, respectively (Cohen, 1988).

Recommended Approach(es): GPower.

ANCOVA

Analysis of covariance (ANCOVA) is designed to assess group differ-

ences on a dependent variable after the effects of one or more covariates

are statistically removed. By utilizing the relationship between the

covariate and the dependent variable (DV), ANCOVA can increase the

power of a treatment effect in a between-subjects design. Adding cov-

ariates to an experimental study statistically reduces the error variance

and thereby increases the relative effect size. For example, the addition

of a covariate with an R2 of .49 (i.e., a correlation of .7 with the DV)

increases power to the same extent as a doubling in sample size; the

addition of a covariate with an R2 of .25 (correlation of .5) increases

power to the same extent as an increase in sample size of one third.

However, the inclusion of a covariate introduces additional com-

plexity into power analyses. Taking the strength of relationship between

treatment and the covariates into account in a power analysis would be

unduly complicated. Fortunately, in a randomized study, the strength of

this relationship reflects the vagaries of random assignment, tends to be

small, and declines as the sample size increases. As a result, the strength

of relationship tends to have a minor influence on the power analysis for

randomized studies. For nonrandomized studies, the covariate and the
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treatment variable tend to be correlated to an extent that cannot be

ignored.

In estimating sample size for ANCOVA, the denominator degrees of

freedom (df ) is adjusted. If k is the number of cells in the design and g is

the number of covariates, then groups ¼ kþ g. In this way the de-

nominator df are reduced because denominator df ¼ N� (kþ g). The

numerator does not decrease correspondingly and might even increase.

In ANOVA, the noncentrality parameter d is a function of the size

of the differences among population treatment means relative to the

size of the population within-treatment variance. In ANCOVA, d is a

function of these factors, but it also is a function of the within-treatment

population correlation between the covariate and the dependent vari-

ables. In addition, d is affected by the sample relationship between the

treatments and the covariate. For a study with two treatments and equal

cell frequencies,

d¼ n

2

n(u1 � u2)
2

2s2(1� p2)
(1� r2x ),

where r is the within-treatment correlation between the covariate and

dependent variable. The quantity rx is the sample correlation between

the covariate and a dummy variable representing the two treatments and

measures the sample strength of relationship between the treatments

and the covariate.

Recommended Approach(es): GPower.

Repeated-Measures ANOVA

A repeated-measures ANOVA compares a group (within-subjects)

across three or more conditions. A typical application is to use a

repeated-measures ANOVA to test the equality of a group mean (DV)

over time. Note that Cohen (1988) is silent on this issue. GPower and

PASS can be used to calculate sample size. A simple alternative approach

is to focus the comparison between the pair of means with the smallest
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expected difference and determine sample size for the correlated t-test

(discussed earlier). Calculating the number of cases needed to have an

80% chance of detecting a small effect, d ¼ .2, with an estimated cor-

relation between observations of the DV of .27 proceeds as follows:

dDiff ¼
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(1� r12)
p , dDiff ¼

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1� r12)

p ¼ :2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1� :27)

p ¼ :166:

The approximate sample size needed is

n¼ 2:8

dDiff

� �2

¼ 285:

Recommended Approach(es): GPower.

MANOVA

Multivariate analysis of variance (MANOVA) is a substantially more

complicated design than ANOVA, and, therefore, there can be ambi-

guity about the relationship of each independent with each dependent

variable (cf. Muller, LaVange, Ramey, & Ramey, 1992). MANOVA is an

ANOVA with several dependent variables. Testing multiple dependent

variables is accomplished by creating new dependent variables that max-

imize group differences. Gain in power obtained from decreased within-

group sum of squares might be offset by the loss in these degrees of

freedom. One degree of freedom is lost for each dependent variable. See

Enders (2003) and Huberty and Morris (1989) for a discussion of issues

related to the choice of multiple ANOVAs versus MANOVA.

A widely used measure of effect size in MANOVA is Cohen’s (1988)

f 2. For multiple correlation and regression (MCR), f 2 can easily be

expressed as a function of R2 (the multiple correlation coefficient):

f 2 ¼ R2

1� R2
:
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However, in the case of MANOVA, the relationship between f 2 and

R2 is complex. Insight into this relationship between f 2 and R2 is pro-

vided in Tables 10.2.1, 10.2.2, and 10.2.3 in Cohen (1988). A review of

these tables can assist researchers who are planning studies and who are

familiar with R2 make decisions with regard to the minimum or ex-

pected value of f 2.

Recommended Approach(es): GPower.

MANCOVA

Multiple analysis of covariance (MANCOVA) is similar to MANOVA,

but independent variables can be added as ‘‘covariates.’’ These covariates

serve as control variables for the independent factors, serving to reduce

the error term in the model. That is, it is a MANOVA in which the DVs

are adjusted for differences in one or more covariates. Resources for

estimating sample size for MANCOVA are difficult to identify. One

approach is to adapt the aforementioned sample size estimation strategy

for MANOVA. That is, use GPower and adjust the denominator df. If k

is the number of cells in the design and g is the number of covariates,

then groups ¼ kþ g.

Recommended Approach(es): GPower.

Repeated-Measures MANOVA

A repeated-measures MANOVA compares a group (within-subjects)

across three or more conditions. A typical application is to use repeated-

measures MANOVA to test the equality of two or more group means

(DVs) over time. Note that Cohen (1988) is silent on this issue.

Recommended Approach(es): GPower.
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Correlation (Pearson’s r)

Effect size is defined as

d ¼ p1�p0 ¼ p1�0¼ p1,

where p1 is the correlation in the population defined by H1. That is, r is

an effect size. The noncentrality parameter d is defined as

d¼ d
ffiffiffiffiffiffiffiffiffiffi
n�1

p
¼ p1

ffiffiffiffiffiffiffiffiffiffi
n�1

p
:

Cohen’s (1988) or Howell’s (2007) tables can be used to identify the

power associated with d at the established a.
Recommended Approach(es): GPower.

Regression

This effect size is called f 2. First consider the situation in which a re-

searcher wants to calculate the power for a significant R2. Define f 2 ¼
R2/(1�R2). The noncentrality parameter ¼ f 2(pþ vþ 1), where p ¼
number of predictor variables and v ¼ N – p – 1 ¼ number of df;

alternatively, f 2 ¼ R2/(1�R2); therefore, R2 ¼ f 2/(1þ f 2). Where small,

medium, and large effects sizes are as follows:

Maxwell (2000) raised some interesting questions about the afore-

mentioned use of f 2. According to Maxwell (2000), f 2 addresses a ques-

tion that is rarely asked. That is, researchers often assume that the overall

f 2 R2

Small .02 .02

Medium .15 .13

Large .35 .26
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R2 is significant and are more interested in the relative importance or

incremental contribution of a predictor. Ultimately, though, the con-

tributions of individual predictors must be placed within the context

of the overall model; contributions within the context of a model with

a low R2, no matter how substantial, must be evaluated accordingly. At

a minimum, evaluating R2 seems to be a logical first step and a viable

strategy for determining sample size.

Recommended Approach(es): GPower; PASS is a viable alternative

for researchers interested in a focus on individual predictors for de-

termining sample size.

Discriminant Function Analysis

Computationally similar to MANOVA, all assumptions for MANOVA

apply to discriminant function analysis (DFA). Therefore, sample size

can be determined with the aforementioned MANOVA strategies. The

principal difference between MANOVA and DFA is the labeling of the

dependent and independent variables (Stevens, 2002). Researchers will

temporarily need to reconceptualize the DFA model as a MANOVA

model by reversing the independent variables (IVs) and the DV. That is,

instead of asking: What is the relationship between the IVs and group

membership? ask: What characteristics best distinguish groups A and B?

Recommended Approach(es): Reframe as a MANOVA/Hotelling’s

T-square (two-group case) and use PASS. That is, focus the analysis on

the difference between the largest mean and the smallest mean (see

chapter 6, example 14, for an illustration of reframing the research

question; and see example 1 for an illustration of calculating a confi-

dence interval around a difference between two means).

Logistic Regression

Binomial (or binary) logistic regression is a form of regression that is

used when the dependent variable is a dichotomy and the independents
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are of any type. Multinomial or multiple logistic regression handles

dependent variables with more than two classes. When multiple classes

of the dependent variable can be ranked, then ordinal logistic regression

is preferred to multinomial logistic regression. The following discussion

focuses on determining sample size for binary logistic regression. For

additional discussion of determining sample size for logistic and Cox

regression, see Harrell (1984), Hsieh (1989), and van Belle (2002). For a

discussion of sample size determination and ordinal logistic regression,

see Walters (2004).

Although assumptions regarding the distribution of predictors are

not required for logistic regression, multivariate normality and linearity

among the predictors can enhance power, because a linear combination

of predictors is used to form the exponent (Tabachnick & Fidell, 2001).

When a goodness-of-fit test is used that compares observed with ex-

pected frequencies in cells formed by a combination of discrete vari-

ables, the analysis may have little power if expected frequencies are too

small. It is best if all expected frequencies are greater than 1 and if no

more than 20% are less than 5.

Hsieh, Block, and Larsen (1998) evaluated an approach originally

introduced by Whittemore (1981). Hsieh et al.’s results suggested that

Whittemore’s approach not only provides a simple and reasonably ac-

curate method for sample size calculations but also shows that the

approach could be expanded to more complex problems. Accordingly,

Hsieh et al. (1998) and Vaeth and Skovlund (2004) recommended that

the result of a two-sample calculation (e.g., an odds ratio7) can be

modified by a so-called variance inflation factor such that Nm ¼ N1 ¼
(1 � p2) where N1 and Nm are the required sample sizes with 1 and m

covariates, respectively, and p is the multiple correlation coefficient

between the covariate of interest and the remaining m – 1 covariates.

Recommended Approach(es): PASS and Power and Precision are

commercial software options. Alternatively, the following web page

computes power, sample size, or minimum detectable odds ratio (OR)

for logistic regression with a single binary covariate or two covariates and

their interaction: http://www.dartmouth.edu/~eugened/power-samplesize

.php. Also, the following web page computes sample size calculations for
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logistic regression with a continuous exposure variable and an additional

continuous covariate or confounding variable: http://biostat.hitchcock

.org/MeasurementError/Analytics/SampleSizeCalculationsforLogistic

Regression.asp

Cox Regression

Cox regression analyzes data in which the dependent variable is the

time-to-event with censoring and covariates. A censored observation is

defined as an observation with incomplete information. As discussed

earlier, sample size for a simple logistic regression model can be cal-

culated from the formula for a two-sample t-test (Hsieh et al., 1998;

Vaeth & Skovlund, 2004). For comparing two treatment groups using a

Cox regression model, the sample size can be obtained from the formula

for the log-rank test (Hsieh, Lavori, Cohen, & Feussner, 2003). The log-

rank test computes a p-value that answers this question: If the two

populations have identical survival curves overall, what is the chance

that random sampling of subjects would lead to as big a difference in

survival (or bigger) as you observed? If the p-value is small (< .05), then

the null hypothesis that the two populations have identical survival

characteristics is rejected (Cox & Oakes, 2001). After calculating the

sample size required for a univariate analysis, inflate the sample size as

described for logistic regression.

Recommended Approach(es): use nQuery Advisor to calculate the

log-rank test of survival in two groups, and use the VIF as described

earlier for logistic regression.

Structural Equation Modeling and Confirmatory Factor Analysis

Structural equation modeling (SEM), also termed analysis of covariance

structures, refers to a hybrid model that integrates path analysis and

factor analysis. SEM is used when data consist of multiple indicators for
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each variable (called latent variables or factors) and specified paths

connecting the latent variables. See Tabachnick and Fidell (2001) for an

introduction.

Thinking of SEM as a combination of factor analysis and path

analysis ensures consideration of SEM’s two primary components: the

measurement model and the structural model. The measurement model

describes the relationships between observed variables and the construct

or constructs those variables are hypothesized to measure. The struc-

tural model describes interrelationships among constructs. When the

measurement model and the structural model are considered together,

the model is termed the composite or full structural model.

In SEM, statistical power is the ability to detect and reject a poor

model. In contrast to traditional hypothesis testing, the goal in SEM

analysis is to produce a nonsignificant result (i.e., to fail to reject the null

of no difference between the proposed and the perfect model). The null

hypothesis is assessed by forming a discrepancy function between the

proposed model (specified by the researcher) and the perfect or satu-

rated model (one with no constraints that will always fit any data per-

fectly). Various discrepancy functions can be formed depending on the

particular minimization algorithm being used (e.g., maximum likeli-

hood), but the goal remains the same: to derive a test statistic that has a

known distribution, and then compare the obtained value of the test

statistic against tabled values in order to make a decision about the null

hypothesis. Because in SEM the researcher is attempting to develop a

theoretical model that accounts for all the covariances among the

measured items, a nonsignificant difference between the proposedmodel

and the saturated model is argued to be suggestive of support for the

proposed model.

There are at least two approaches to assessing the power of an

SEM model. One approach, presented by Satorra and Saris (1985), is as

follows:

1. Take the focal model and develop an alternative model by adding

an additional parameter (e.g., a standardized path of .2 between

two latent variables).
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2. Compute the implied covariance matrix based on this alternative

model.

3. Submit this covariance matrix to the focal model (which does not

specify the existence of this additional parameter) to obtain the

chi-square statistic (which now represents a non-centrality parameter).

4. Use this chi-square value and a given alpha level (typically .05)

to calculate the power.

This procedure requires the researcher to identify various alternative

models. This approach is automated within the SEM program Mx

(Neale, Boker, Xie, & Maes, 1999), which is available as a free download

from http://www.vcu.edu/mx/.

A second, and perhaps more popular, approach, offered by Mac-

Callum, Browne, and Sugawara (1996), does not require an alternative

model. Instead, it uses the root mean square error of approximation to

calculate power (RMSEA8; Browne & Cudeck, 1993; Hu & Bentler, 1999;

Steiger, 1990). This index weighs absolute fit, which declines whenever

a parameter is removed from the model, against model complexity, such

that the benefits of parsimony are considered along with fit (Steiger, 1990).

Models fitting with RMSEA<.05 are usually considered to be ‘‘close’’ fits;

those between .05 and .08 are ‘‘fair’’ fits, between .08 and .10 are ‘‘medi-

ocre’’ fits, and above .10 are ‘‘poor’’ fits (MacCallum et al., 1996). Change

in model fit from one proposed model to another is assessed by w2/Ddf
and by the 95% confidence interval (CI) of ea generated by this change.

MacCallum et al. (1996) suggested that a CI be calculated that should

include values between 0 and .05 to indicate the possibility of good fit.

MacCallum et al. (1996) provide both tables and an SAS routine for

calculating power and minimum sample size. The SAS routine is avail-

able for download from http://www.math.yorku.ca/SCS/sasmac/csm

power.html. NIESEM is a DOS-based program for calculating point and

interval estimates of noncentrality-based fit statistics used in structural

equation modeling. NIESEM also performs power analysis according to

the methods of MacCallum et al. (1996). The program is available as

a free download from http://rubens.its.unimelb.edu.au/~dudgeon/.

Recommended Approach(es): NIESEM.
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Multilevel Analysis

Research that seeks to describe data observed at distinct hierarchical

levels is termed multilevel analysis, research, or modeling. For an over-

view of multilevel models, see, for example, Klein and Kozlowski (2000).

For caveats regarding multilevel models, see Kreft (1996) and Hox

(2002). Stratification and clustering are commonly used sampling stra-

tegies in multilevel analysis. However, cluster and stratified samples

typically have sampling errors much larger than simple random samples

(SRS) of the same size. The reason is that elements in a cluster or strata

are likely to be more homogeneous because of (1) selective grouping

effects (e.g., people move into a neighborhood of similar people), (2)

exposure to common environments or influences, (3) the effects of in-

teracting with others in the cluster, or (4) some combination of these

factors (Henry, 1990). Consequently, a sample of size N, drawn using

SRS from a population, will usually be more efficient (i.e., have smaller

sampling errors) than a sample of the same size drawn from clusters or

strata. A way to quantify design efficiency is to calculate design effect,

which is the ratio of the sampling variance in the sampling method ac-

tually used to the sampling variance if SRS were used (Kish, 1965).

Two main components of the design effect are the intraclass cor-

relation and the cluster sample size. The intraclass correlation is the

degree of homogeneity of people within clusters (Kish, 1965). When the

intraclass correlation is larger, the design effect is larger. The amount

that the sample size needs to be adjusted is directly related to the design

effect. For example, a design effect of 3 means that the sample size needs

to be three times as large as it would be using SRS. Alternatively, the

design effect can be understood as relating to the sampling variance. In

general, what is at issue is how much standard errors are underestimated

in stratified and cluster samples compared with SRS (Kish, 1965). That

is, a design effect of 3 means that sampling variance is three times as

large as it would be in SRS. The design effect is difficult to calculate

before surveys are conducted, so usually estimates are used. For well-

designed studies, with both stratification and clustering, the design ef-

fect ranges from 1 to 3, but higher values, up to 10, are not uncommon
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(Lê & Verma, 1997; Henry, 1990). When cluster sampling is part of the

design, a reasonable approach is to use a design effect of 2 or 3.

Although few in number, simulation studies suggest that group-level

sample size is generally more important than total sample size, with

large individual-level samples partially compensating for a small num-

ber of groups; that is, a large number of groups is more important than a

large number of individuals per group. A typical approach to estimating

sample size for multilevel analysis begins by determining power for an

SRS. Next, adjustments are made for the differences between the SRS

and the planned multilevel design (i.e., the design effect).

Many of the advantages of multilevel models over traditional meth-

ods come at the expense of greater model complexity. More compli-

cated models may be closer to reality, but testing model fit and exam-

ination of model assumptions is more difficult. If the model is true,

multilevel estimates are less biased and more efficient than those ob-

tained using other methods; however, models are less parsimonious and

need larger data sets, and estimation becomes complicated. Sample size

and power calculations for multilevel hypothesis testing are particularly

complex. Power, for example, depends both on the number of groups

and on the number of individuals per group. The centering of explan-

atory variables also raises more complicated issues than it does in tra-

ditional regression models, as does the estimation of variance explained

at different levels and by different variables, particularly for models with

many random coefficients and for nonlinear models. Several authors

have warned against the rapid incorporation of complex multilevel

models before their performance is adequately understood and evalu-

ated, and especially when it is done with little regard to the adequacy of

the data and the inferences that can be drawn from it (Hox, 2002; Kreft,

1996).

Recommended Approach(es): PINT is a program for determining

standard errors and optimal sample sizes in multilevel designs with two

levels. The program calculates approximate standard errors for esti-

mates of fixed effect parameters in hierarchical linear models with two

levels. For interested readers, the formulas are derived in Snijders

and Bosker (1993). The program can be downloaded from http://stat.
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gamma.rug.nl/Pint_211.zip. Optimal Design Software (OD) is another

program for power analysis available as a free download from http://

sitemaker.umich.edu/group-based/files/od156.zip. A manual for OD is

available from the author’s web page: http://www-personal.umich.edu/

~rauden/.

In summary, this chapter has (1) provided a brief description of the

rationale and limitations of statistical power analysis and (2) presented

important issues related to determining sample size for both commonly

used and emerging statistical procedures in social work research. In the

next chapter, a second strategy for determining sample size—confidence

intervals—is discussed.
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3

Confidence Intervals

Measures of Precision

Asecond strategy is to determine sample size based on the width of

a desired confidence interval (CI). The CI was introduced by Jerzey

Neyman and developed further with Egon Pearson. A CI is a range of

values around which a population parameter (e.g., true mean) is likely

to lie in the long run (Neyman, 1952). For example, assuming a normal

distribution, if samples of the same size are drawn repeatedly from a

population and a 95% CI is calculated around each sample’s mean (i.e.,

plus or minus two standard errors from the mean), then 95% of these

intervals should contain the population mean.

A second interpretation of a CI is as a significance test (Schmidt &

Hunter, 1997). For example, if the value of 0 falls within an interval, the

estimate is not statistically significant at the level of 1�the CI.

CIs can be classified as central or noncentral (Smithson, 2003).

Central CIs are probably more familiar to researchers and are estimates

of the precision of parameters such as means. Noncentral CI sare

measures of the precision of standardized effect sizes such as Cohen’s d.

Noncentral CIs are not computed in the samemanner as CIs for statistics

such as means or standard deviations (SDs). CIs for sample statistics,

such as means and SDs, can be computed using formulas, and these

computations have been incorporated in commonly used statistical
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programs for several decades. Constructing CIs around effect sizes, on

the other hand, raises two somewhat daunting technical difficulties.

First, noncentral t- and F-distributions, with which many researchers

are unfamiliar, must be used to construct these effect-size intervals

(Fleishman, 1980; Steiger & Fouladi, 1992); these are not the central t-

and F-distributions taught in most contemporary doctoral programs or

statistics textbooks. Second, a generic formula cannot be employed to

compute CIs for effect sizes. Instead, computer estimation must be used.

Commonly available software (e.g., SPSS, SAS) can be programmed to

provide these ‘‘iterative’’ estimates (Bird, 2002; Smithson, 2001).

Iterative estimation is also necessary in various other statistical

procedures with which many researchers might be more familiar, such

as the estimation of communalities and rotations in factor analysis. A

brief comment on the iterative use of noncentral distributions in build-

ing CIs around d is warranted, although this process is extremely

technical and although considerably more detail is available elsewhere

(e.g., Cumming & Finch, 2001; Smithson, 2001). Because a formula

cannot be used for this process, one tail of the effect-size CI is iteratively

estimated at a time. For example, for the left tail, and assuming a 95%

interval is being constructed, a function of the noncentral distribution

called the noncentrality parameter is estimated, and the percentage of

the area under this curve that is immediately to the right of the d

value or a function of this value is computed. The noncentrality pa-

rameter is iteratively tweaked until 1/2 (e.g., .05/2¼ .025) of the area

in the noncentral distribution is to the right of the d value or a func-

tion of this value. Then, for example, the mean of this noncentral dis-

tribution is found, and that value defines the left boundary of the

CI for d. The process is then repeated to iteratively estimate the right

CI boundary. The two boundaries can be found either left first or

right first, because the boundaries are estimated independently using

two different noncentral distributions with different noncentrality

parameters.

It is important to emphasize that CIs around parameters such as

means and effect sizes are not the same entities, even though the data

and sample size are the same for both computations. This is illustrated
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by the fact that the widths or precisions of the intervals usually differ.

That is, the width of noncentral CIs (e.g., for Cohen’s d) is usually larger

than the width of central CIs (e.g., for a mean). See chapter 6, example

19, for an example of calculating a CI for an effect size.

Proponents of CIs emphasize that CIs can provide information

about an estimate’s precision. That is, the width of a CI indicates pre-

cision (i.e., the degree of random error associated with it), which is

determined by the chosen level of confidence. A narrow CI implies high

precision: plausible values can be specified within a narrow range. A

wide interval implies poor precision: plausible values can be specified

only within a broad range. A wide CI possibly is an indication of in-

adequate sample size. Therefore, choosing a 99% CI rather than a 95%

CI will increase the accuracy of the CI (i.e., it will have a greater chance

of including the population parameter) but will decrease its precision

(i.e., it will be wider than the corresponding 95% CI).

CIs can be estimated before conducting a study and the width can be

used to guide the choice of sample size. A CI can be computed even if no

null is stated. After a study, proponents argue, CIs can provide infor-

mation about precision that might be more useful and accessible than a

statistical power value. Proponents also argue that because CIs combine

information on location and precision, they can often be used to infer

significance levels.

The use of CIs is not a panacea. Although CIs around, for example,

a difference can be a useful tool for examining the magnitude of the

difference, CIs around effect sizes and strength of association measures

are relatively large and appear to be less useful (Barnette, 2005). Al-

though not unique to CIs, there is a temptation to interpret the long-run

coverage rate as if it applies to each individual CI. It should be em-

phasized that the confidence level is based on repeated sampling (such as

the construction of many intervals by members of a research class) but

that for a given case there usually will be a single interval under con-

sideration. This single CI is either correct or incorrect (all or nothing),

but the confidence level gives us an indication of the proportion of

correct intervals that can be expected when repeating the estimation
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procedure. Unresolved problems include establishing meaningful guide-

lines for confidence levels and acceptable interval widths.

Another issue that confronts any researcher using CIs around effect

sizes is the question of what is a noteworthy effect. There is no definitive

answer to this question. Smithson (2001) suggests, as a beginning point,

that researchers could rely on Cohen’s (1988) benchmarks. For example,

for R2, .01¼ small, .09¼medium, and .25¼ large. Consequently, when

R2¼ .05, the lower limit of the 95% CI should exceed .09, which is com-

parable to the ability to distinguish a large from a medium effect. In ad-

dition, when R2¼ .10, the upper limit of the 95% CI should fall below .25,

and the lower limit should exceed .01. It should be noted that Cohen had

reservations about his proposed, tentative benchmarks of what might

be ‘‘small,’’ ‘‘medium,’’ and ‘‘large’’ effects (Kirk, 1996; Thompson, 2002).

Cohen’s diffidence toward criteria for characterizing effect sizes was,

in part, a consequence of his opinion that the size of an effect depends

on what is being studied. On the one hand, small but replicable effects

for very important outcomes might be noteworthy. On the other hand,

extremely large effects might be needed for results to be noteworthy for

relatively unimportant outcomes. Finally, for many small but realistic

data sets, the 95% CI often can seem disappointingly wide (Frick, 1995).

That is, for small data sets, CIs are often very broad and hence allow

inexact estimates.

There is growing support for the use of CI estimation either to

supplement or substitute for hypothesis testing. In social work, Orme

and Hudson (1995) have described the use of CIs as an approach to

estimating sample size and have compared the CI results method with

those obtained from statistical power analysis. These authors suggest

that the CI method provides sample size guidelines that can result in

precise estimates and powerful tests for nontrivial effect sizes. There are

formulas and tables for determining sample size that are based on de-

sired CI widths, rather than desired power and hypothesized effect size

(e.g., Darlington, 1990; Kupper & Hafner, 1989).

The purpose of this chapter is to (1) provide a brief description of

the rationale and limitations of CIs and (2) present important issues
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related to calculating CIs for both commonly used and emerging sta-

tistical procedures in social work research. The emphasis is on con-

ceptual rather than statistical description, although more statistically

intensive supplemental readings will be identified. For each statisti-

cal procedure discussed in this chapter, recommended approaches

to estimating central CIs and, when appropriate, noncentral CIs are

presented.

According to Borenstein (1994), there are six steps to constructing

a CI. These steps are as follows:

1. Select a confidence level. The confidence level refers to the likelihood

that the true population parameter is within the range specified

by the CI. The confidence level is usually expressed as a percentage.

Therefore, a 95% confidence level suggests that the probability

that the true population parameter is within the CI is .95.

2. Compute alpha. Alpha refers to the likelihood that the true popu-

lation parameter is outside the CI. Alpha is usually expressed as a

proportion. Therefore, if the confidence level is 95%, then alpha

would equal 1� .95, or .05.

3. Identify a sample statistic (e.g., mean, SD) to serve as a point esti-

mate of the population parameter.

4. Specify the sampling distribution of the statistic. Suppose that we

draw all possible samples of size n from a given population. Suppose

further that we compute a statistic (e.g., a mean, proportion, SD) for

each sample. The probability distribution of this statistic is called

a sampling distribution.

5. Based on the sampling distribution of the statistic, find the value

for which the cumulative probability is 1� alpha/2. That value is

the upper limit of the CI. A cumulative probability refers to the

probability that the value falls within a specified range. Frequently,

cumulative probabilities refer to the probability that a random

variable is less than or equal to a specified value.

6. In a similar way, find the value for which the cumulative probability

is alpha/2. That value is the lower limit of the CI.
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Difference Between Two Means

The standard error of the estimated difference is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s
,

where the subscripts 1 and 2 indicate whether the values come from the

first or the second group. According to this formula, the standard error

and, consequently, the width of the CI narrow as sample size increases.

When planning a study comparing two groups, researchers might con-

sider using different sample sizes for each. That is, if one group is much

more variable than the other group, using a larger sample size in the

group with the larger variance might be more feasible than trying to get

equal numbers in each group.

Recommended Approach(es) for Central CIs: (1) Use nQuery.

(2) To obtain a 95% CI, multiply the standard error of the mean (SEm)

by 1.96 and then add it to and subtract it from the mean. This will give

you a lower limit and an upper limit; that is, CI(95%)¼Mean ± (1.96)

(SEm). To obtain a 99% CI, just multiply the SEm by 2.58, and then add

it to and subtract it from the mean; that is, CI(99%)¼Mean ± (2.58)

(SEm). (3) The following calculator computes CIs of a sum, difference,

quotient, or product of two means, assuming both groups follow a

Gaussian distribution: http://graphpad.com/quickcalcs/ErrorProp1.cfm.

(4) The following Excel file calculates CIs: http://www.pedro.fhs.usyd.edu

.au/Utilities/CIcalculator.xls.

Confidence Intervals for Standardized Effect Sizes

What if, instead of a CI around the difference between two means, a

researcher is interested in the CI around the effect size d? In this case, the

researcher must calculate the CI around d rather than the difference

between two means. As discussedearlier, the appropriate probability
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distribution is for noncentral values of t ; that is, values of t if the null

hypothesis of no difference between the means is false. Calculations of

CIs for the noncentral t distribution are considerably more complicated

than the calculation of CIs for the more familiar central t distribution. In

the case of the central t distribution, there are numerous tables and

programs to find points on this distribution. In the case of the non-

central t distribution, there are an infinite number of such distributions,

one for every possible value of the parameter (i.e., effect size), making

tables of little value.

Recommended Approach(es) for Noncentral CIs:Michael Smithson

has provided macros for use with SPSS and SAS. These macros, with

documentation, can be used to calculate CIs for noncentral t-, F-, and

chi-square distributions and can be downloaded from http://www

.anu.edu.au/psychology/people/smithson/details/CIstuff/CI.html. (See

chapter 6, example 19.) Alternatively, interested readers can download

a macro for calculating CIs for d, with instructions, from http://core

.ecu.edu/psyc/wuenschk/SPSS/CI-d-SPSS.zip. This macro requires the

user to specify the sample sizes and the values of t and df. Using the

pooled variances, values of t and degrees of freedom are recommended.

A third option for calculating CIs for the noncentral t-distribution is

Effect Size Calculator, which is a Microsoft Excel spreadsheet. This

spreadsheet will calculate the effect size d for the difference between

two means and plot the difference and its CI on a graph. It will also

calculate a t-test to determine whether the difference is statistically

significant. The spreadsheet can be downloaded from http://www

.cemcentre.org/renderpage.asp?linkID¼30325017.

Difference Between Two Proportions

1. Compute p1 � p2.

2. Find z for CI using a table of z-values. An online table is located

at http://davidmlane.com/hyperstat/z_table.html.

3. Estimate sp1�p2 with the formula:
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sp1 �p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1(1�p1)

n1
þ p2(1�p2)

n2

s
,

where p1 and p2 are the proportions and n1 and n2 are the re-

spective group sizes.

Recommended Approach(es): (1) The following web page calculates

the CI for the difference between two independent proportions: http://

faculty.vassar.edu/lowry/prop2_ind.html. (2) WhatIS is an expression

evaluator (with registers for constants, interim results, and formulas)

and calculator for probability values (and their inverse), CIs, and time

spans. The program can be downloaded from http://www.sph.emory

.edu/�cdckms/WinPepi/WHATIS.EXE.

Odds Ratios

Let the letters a, b, c, and d represent the frequency counts in a 2 � 2

table as follows:

a b
c d

Then the odds ratio would be ad/bc (see chapter 2 for a more extensive

description). The odds ratio is skewed, so we cannot easily compute a

standard error for the odds ratio itself. We can, however, find a standard

error for the natural logarithm of the odds ratio. It is simply

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

b
þ 1

c
þ 1

d

r
:

As any of the counts in the 2 � 2 table increase, the CI for the log odds

ratio shrinks. Also, the smallest count in the 2 � 2 table plays the largest

role in determining the size of the standard error.
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Recommended Approach(es):Calculator for CIs of odds ratio: http://

www.hutchon.net/ConfidORselect.htm.

Chi-Square and Contingency Tables (Test of Independence)

Recommended Approach(es) for Central CIs: Given a chi-square sta-

tistic, this script identifies whether it falls into a selected confidence

range: http://www.hostsrv.com/webmaa/app1/MSP/webm1010/chi2.

Recommended Approach(es) for Noncentral CIs: For noncentral

chi-square, see Michael Smithson’s macro for use with SPSS and SAS.

This macro, with documentation, can be used to calculate CIs for non-

central chi-square distributions, and it can be downloaded from http://

www.anu.edu.au/psychology/people/smithson/details/CIstuff/CI.html.

ANOVA

Discussion of ANOVA is limited to fixed effects models. Calculating CIs

for a random effects model is more complicated (cf. Fidler & Thomp-

son, 2001).

One strategy is to focus on the desired magnitude of R2. Although it

is not used frequently, an R2 can be calculated for an ANOVA model.

The R2 represents how well all the levels of the grouping (nominal)

variable fit the data. As discussed in chapter 2, with three or more levels

for the nominal variable, questions about the differences between pairs

or combinations of means can be asked.

A second strategy is to compare means through the use of simple

contrasts. Contrast coding creates a new variable by assigning numeric

weights to the levels of an ANOVA factor under the constraint that the

sum of the weights equals 0. Simple contrasts include the case of the

difference between two factor means, such as m1� m2. If one wishes to
compare treatments 1 and 2 with treatment 3, one way of expressing this

is by: m1þ m2� 2(m3). Note that m1� m2 has coefficients þ1, �1, that

m1þ m2� 2(m3) has coefficients þ1, þ1, �2, and that these coefficients

sum to 0.
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Because the calculation of CIs for a contrast is mathematically

complex, readers are encouraged to use software for these computa-

tions. Interested readers should refer to the following web page for a

detailed discussion of contrasts and the calculation of CIs for contrasts:

http://www.itl.nist.gov/div898/handbook/prc/section4/prc426.htm.

A third strategy is to focus on a minimum power specification.

Determining the sample size for an ANOVA design is usually difficult

because of the need to specify all of the treatment means and standard

deviations, so an alternative is to focus on the difference between the

largest mean and the smallest mean. Although less precise in terms of

determining sample size, this minimum power specification might be

more feasible if there is little empirical experience with a phenomenon.

Moreover, this minimum power specification corresponds to the al-

ternative hypothesis that all means other than the two extreme ones are

equal to the grand mean. In this way, the problem is reduced to cal-

culating a CI for the difference between two means (discussed earlier).

Recommended Approach(es) for Central CIs: Statistica and nQuery

compute CIs for one-way ANOVAs and around contrasts.

Confidence Intervals for Standardized Effect Sizes

Measures of effect size in ANOVA can be thought of as the correlation

between an effect and the dependent variable. If the value of the measure

of association is squared, it can be interpreted as the proportion of

variance in the dependent variable that is attributable to the effect. Two

commonly used measures of effect size in ANOVA are eta squared (Z2)

and partial eta squared (Zp
2). Eta squared and partial eta squared are

estimates of the degree of association for the sample.

Eta squared is analogous to r2. Therefore, an Z2¼ .367 means that

36.7% of the variability in the dependent variable can be explained or

accounted for by the independent variable. It is calculated as

Z2 ¼ t2

t2þdf
:
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Eta squared is the proportion of the total variance that is attributed to an

effect. Alternatively, it is calculated as the ratio of the effect variance

(SSeffect) to the total variance (SStotal), or

Z2 ¼ SSeffect=SStotal:

The partial eta squared is the proportion of the the effectþ error vari-

ance that is attributable to the effect. The formula differs from the eta-

squared formula in that the denominator includes the SSeffect plus the

SSerror rather than the SStotal, or

Zp2 ¼ SSeffect=(SSeffectþSSerror):

Recommended Approach(es) for Noncentral CIs: Smithson’s SPSS

and SAS macros for CIs around partial eta squared (noncentral F-

distribution) can be downloaded fromhttp://www.anu.edu.au/psychology/

people/smithson/details/CIstuff/CI.html

ANCOVA

As discussed in chapter 2, utilizing the relationship between a covariate

and the dependent variable reduces error variance. However, the in-

clusion of a covariate introduces additional complexity into calculating

CIs around contrasts. Fortunately, in a randomized study, the strength

of this relationship reflects the vagaries of random assignment, tends to

be small, and declines as the sample size increases. For nonrandomized

studies the covariate and the treatment variable tend to be correlated to

an extent that cannot be ignored.

Recommended Approach(es): One strategy is to compute the CI for

a contrast as described previously for an ANOVA model and consider

this CI as a conservative estimate of the true CI of the ANCOVA.
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Repeated-Measures ANOVA

Recommended Approach(es): As for ANCOVA, a simple alternative

approach is to focus on the difference between the largest mean and the

smallest mean and calculate a CI around this mean difference.

MANOVA/MANCOVA/Repeated-Measures MANOVA

As discussed in chapter 2, MANOVA is a substantially more complicated

design than ANOVA, and, therefore, there can be ambiguity about the

relationship of each independent with each dependent variable. Testing

the multiple dependent variables is accomplished by creating new de-

pendent variables that maximize group differences. One strategy is to

select a one-way model, focus on the difference between the largest mean

and the smallest mean, and calculate a CI around this mean difference.

Recommended Approach(es): Statistica produces exact standardized

CIs for individual (nonsimultaneous) planned contrasts (http://www

.statsoft.com/quote/order.html#power). The PSY program constructs

individual CIs on planned contrasts, simultaneous CIs for planned or

post hoc analyses of single-factor between-subjects and within-subjects

designs, and two-factor designs with one between-subjects and one

within-subjects factor. PSY can be downloaded from http://www.psy

.unsw.edu.au/research/psy.htm.

Correlation

Recommended Approach(es): For the CI around r, see the web page

http://faculty.vassar.edu/lowry/rho.html.

Multiple Regression

When calculating a regression line, one estimates the mean of the pop-

ulation of Y at any value of X. Thus the regression line represents the
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mean ŶYi at any value of the independent variable X. This estimated mean

is normally distributed, and one may ask the question about the CI of

the estimated Y. It can be shown that the ratio (ŶY � my)=s2 follows a t-
distribution with n� 2 degrees of freedom. From this, one can calculate

the CI of the estimated Y by the following equation:

s23 ¼ s2y, x 1þ 1

n
þ (x � �xx)2

[x2]

� �
,

with

s2y, x ¼
X (Yi� ŶYi)

2

n�2
,

[x2]¼
X
i

(xi��xx)2

The variance s2 may be estimated by

s2 ¼
P

e2i
n�2

,

also known as the mean square error (or MSE). The estimate of the

standard error s is the square root of the MSE.

MSE is the sum of the squares (SS) of the difference between the

desired response and the actual system output (the error).

Mean square error (MSE) ¼

MSE ¼
P

(Yi� ŶYi )
2

n�p

Mean square regression (MSR) ¼

MSR ¼
P

(ŶYi� �YY )
2

p�1
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Alternatively, use R or R2 as an effect size, and calculate the noncentral

CI around this measure.

Recommended Approach(es): To calculate the CI interval of a re-

gression coefficient, visit http://www.danielsoper.com/statcalc/calc26

.aspx. For the CI around R2 or R, the following options are available:

(1) The following calculator will compute the 99%, 95%, and 90% CIs

for a squared multiple correlation (i.e., an R2) given the value of the

squaredmultiple correlation, the number of predictors in themodel, and

the total sample size: http://www.danielsoper.com/statcalc/calc28.aspx.

(2) The following calculator will compute an adjusted R2 value (i.e., the

population squared multiple correlation), given a sample R2, the num-

ber of predictors in the model, and the total sample size: http://www

.danielsoper.com/statcalc/calc25.aspx. (3) R2 is a free program that cal-

culates CIs around multiple R-square. The program can downloaded

from http://www.interchg.ubc.ca/steiger/r2.zip, and the manual can be

downloaded from http://www.interchg.ubc.ca/steiger/r2.pdf. (4) Smith-

son’s macros for SPSS and SAS can be downloaded from http://www

.anu.edu.au/psychology/people/smithson/details/CIstuff/CI.html.

Discriminant Function Analysis (DFA)

Computationally similar to MANOVA, all assumptions for MANOVA

apply to DFA. Therefore, sample size can be determined with the afore-

mentioned MANOVA strategies. The principal difference between

MANOVA and DFA is the labeling of the dependent and independent

variables (Stevens, 2002). Researchers will, at least temporarily, need to

reconceptualize the DFA model as a MANOVA model (i.e., reverse the

IVs and the DV). That is, instead of asking, What characteristics best

distinguish A and B group membership? ask, What is the relationship

between the IVs and group membership?

Recommended Approach(es): Reframe the research question as a

MANOVA/Hotelling’s T-square (two-group case) and use the mini-

mum power specification presented for ANOVA. That is, focus the

analysis on the CI around the difference between the largest mean and
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the smallest mean. (See chapter 6, example 14, for an illustration of

reframing the research question; and see example 1 for an illustration of

calculating a CI around a difference between two means.)

Logistic Regression

The CI around the logistic regression coefficient is plus or minus

1.96 � ASE, where ASE is the asymptotic standard error of logistic b.

‘‘Asymptotic’’ in ASE means the smallest possible value for the standard

error when the data fit the model. It also represents the highest possible

precision. The real (enlarged) standard error is typically slightly larger

than ASE. Typically, the real ASE is used if it is hypothesized that

noise in the data are systematic; the ASE is used if it is hypothesized

that noise in the data are random.

Logit coefficients (logits), also called unstandardized logistic re-

gression coefficients or effect coefficients or simply ‘‘parameter esti-

mates’’ in SPSS output, correspond to b coefficients in ordinary least

squares (OLS) regression. Both can be used to construct prediction

equations and generate predicted values, which in logistic regression are

called logistic scores. The SPSS table which lists the b coefficients also

lists the standard error of b, the Wald statistic and its significance, and

the odds ratio (labeled Exp(b)), as well as confidence limits on the odds

ratio.

Recommended Approah(es):No practical strategies have emerged in

the literature.

Cox Regression

Relative risk (RR) is used frequently in the statistical analysis of binary

outcomes in which the outcome of interest has a low probability of

occurring. Therefore, RR often is used to compare the risk of developing

a disease in people receiving a new medical treatment versus people

receiving an established (standard of care) treatment or a placebo.
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In a simple comparison between an experimental group and a

control group, an RR of 1 means that there is no difference in risk

between the two groups. An RR of <1 means that the event is less likely

to occur in the experimental group than in the control group. An RR of

>1 means that the event is more likely to occur in the experimental

group than in the control group.

The log of RR is usually taken to have an approximately normal

sampling distribution. This permits the construction of a CI that is

symmetric around log(RR); that is,

CI ¼ log(RR)� SE�za,

where za is the standard score for the chosen level of significance and SE

the standard error. The antilog can be taken of the two bounds of the

log-CI, giving the high and low bounds for an asymmetric CI around

the RR. In regression models, the treatment is typically included as a

dummy variable along with other factors that may affect risk. The rel-

ative risk is normally reported for the mean of the sample values of the

explanatory variables.

Recommended Approach(es): No practical strategies have emerged

in the literature.

Structural Equation Modeling and Confirmatory Factor Analysis

As discussed in chapter 2, one popular measure of model fit is root mean

square error of approximation (RMSEA). This measure is based on the

noncentrality parameter. Good models have an RMSEA of .05 or less.

Models whose RMSEA is .10 or more have poor fit. A CI can be com-

puted for this index. First, the value of the noncentrality parameter is

determined by w2� df. The CI for noncentrality parameter can be de-

termined for w2, df, and the width of the CI. Then these values are

substituted for w2� df into the formula for the RMSEA. Ideally the

lower value of the 90% CI includes or is very near 0 and the upper

value is not very large, that is, less than .08.
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Recommended Approach(es): Use NIESEM, which is a DOS-based

program for calculating point and interval estimates of noncentrality-

based fit statistics used instructural equation modeling (SEM). NIESEM

is free and available for download from http://rubens.its.unimelb.edu

.au/~dudgeon/.

Multilevel Analysis

Recommended Approach(es): Use one of the aforementioned ap-

proaches and then adjust for sampling strategy, as described in chapter 2.

In summary, this chapter has (1) provided a brief description of

the rationale and limitations of CIs, (2) presented important issues re-

lated to calculating CIs for both commonly used and emerging statis-

tical procedures in social work research, and (3) identified additional

confidence-related resources, including supplemental readings, web-

based and personal computer-based power calculators. In the next chap-

ter, a third strategy for determining sample size, computer-intensive

methods, is discussed.
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4

Computer-Intensive Methods

Basic Concepts

The previous chapters on power analysis and confidence intervals sug-

gest that researchers who are searching for a comprehensive approach

to determining sample size are faced with a patchwork quilt of proce-

dures. At a minimum, there is a disparity between the range of ana-

lytical strategies and the number of available approaches to determining

sample size. Formulas range from simple, such as those for means and

proportions, to more complex, such as those to determine sample size

for t-tests, ordinary least squares regression, one-way analysis of vari-

ance, two-way contingency tables, and correlation analysis. Approx-

imations exist for other statistical models, such as multivariate analysis

of variance and logistic regression, but the accuracy of these approxi-

mations can be difficult to establish. Thus the list of all statistical tests for

which exact sample size calculation methods exist is much smaller than

the list of all statistical tests. When no formula exists, as happens with

more complex statistical designs, the researcher can try to determine

sample size for a simplified version of the study design and then extrap-

olate this sample size to the planned, and more complex, study de-

sign. In addition, no single software package can be used to determine
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sample size across all commonly used analysis strategies, and many

researchers will need several software packages, some of which can be

quite costly.

For statistical models without appropriate formulas, another ap-

proach to determining sample size is the use of computer-intensive

strategies (CISs; Efron, 1979). CISs in statistics, also termed resampling

strategies, have been available since the 1950s (Tukey, 1991). The term

computer-intensive strategies describes a range of approaches, includ-

ing bootstrapping and Monte Carlo methods (see Efron, 1982, for a

comprehensive overview). CISs rely on the use of random sampling

techniques and computer simulation to obtain approximate solutions to

mathematical or physical problems. The emphasis in this chapter is on

an adaptation of bootstrapping and Monte Carlo methods to determine

sample size.

The Bootstrap

According to Efron (1982), the term bootstrap, derived from the old

saying about pulling yourself up by your own bootstraps, is based on the

idea that the one available sample gives rise to all the others. Proponents

argue that this computationally intensive approach provides freedom

from two limiting factors that dominate traditional statistical theory:

(1) the assumption that the data conform to a bell-shaped curve, called

the normal distribution; and (2) the need to focus on statistical mea-

sures whose theoretical properties can be analyzed mathematically.

In bootstrapping, the original data set is sampled randomly, but with

replacement, to produce ‘‘new’’ data sets (Good, 1999). To bootstrap,

first assume that the population is distributed exactly as an obtained

sample. Second, construct a population (sometimes termed a pseudo-

population) that exactly mirrors the shape of the obtained sample.

Third, draw samples of a given size from this pseudo-population with

replacement. That is, each sample consists of the same number of ele-

ments, but not necessarily the same elements. Replacement is crucial

because, otherwise, resampling would create the same sample multiple
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times. Fourth, perform the planned analysis on each sample. And fifth,

average the results over all samples drawn from the pseudo-population.

Monte Carlo Methods

The expression Monte Carlo (MC) method describes a group of sto-

chastic techniques; that is, MC methods are based on the use of random

numbers and probability statistics to investigate problems. In mathe-

matics, a stochastic process is a random function. MC methods are

used to solve a range of problems, from economics to nuclear physics

to regulating the flow of traffic. Strictly speaking, to call something a

‘‘Monte Carlo’’ experiment, all that is needed is the use of random

numbers to explore a problem. The use of MC methods to model physi-

cal problems, for example, allows researchers to examine more complex

systems that otherwise would be more difficult. Solving equations that

describe the interactions between two atoms is fairly simple; solving the

same equations for hundreds or thousands of atoms is impossible. With

MC methods, a large system can be sampled in a number of random

configurations, and those data can be used to describe the system as a

whole.

Random Number Generator

As discussed, in both bootstrapping and Monte Carlo procedures, a

statistic of interest is calculated from multiple samples. Bootstrapping

selects from the populations of observed cases, sampling with replace-

ment. MC typically samples with replacement from theoretical distri-

butions with specific characteristics. It might seem like a daunting task

to use the characteristics of a single sample to construct an infinitely

large population and then to draw multiple random samples from this

population. But, with the help of a computer, it is a relatively simple

process, because most comprehensive statistics packages (e.g., SPSS,

SAS) include a random number generator. A random number generator
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produces numbers chosen as if by chance from some specified distri-

bution such that selection of a large set of these numbers reproduces the

underlying distribution. Almost always, such numbers are also required

to be independent, so that there are no correlations between successive

numbers. Computer-generated random numbers are sometimes called

pseudo-random numbers, whereas the term random is reserved for

the output of unpredictable physical processes. When used without

qualification, the word random usually means ‘‘random with a uniform

distribution.’’ A uniform distribution, sometimes also known as a rect-

angular distribution, is a distribution that has constant probability.

Applications

A common use of CIS studies is for methodological investigations of the

performance of statistical estimators under various conditions. For

instance, data are generated and models are estimated under several

conditions (e.g., missing data, violation of certain assumptions). The

performance of the estimators is compared in terms of parameter esti-

mate bias, standard error bias, and coverage. A less common use of CISs

is in deciding on sample size. The possibility of comparing various es-

timator distributions obtained for different sample sizes can prove useful

in planning research by allowing the researcher to determine the sample

size needed to achieve a desired precision level. CISs can also be used for

power estimation, allowing comparison of the power attained using

various estimators and/or sample sizes. In addition, unlike standard

approaches to power estimation, which rely on numerous assumptions,

including normal data distributions, computer-intensive power esti-

mates make no distributional assumptions. CISs can also be used to

study the effect of violation of assumptions on estimators and, conse-

quently, on alpha-level, power, and confidence intervals. Researchers

either can analyze ‘‘synthetic’’ data generated by assumed mathematical

functions (e.g., random number generators), or they can utilize real-

world data. At a minimum, CISs offer an additional perspective on de-

termining sample size. Until the literature provides greater depth and
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breadth about the strengths and weakness of computer-intensive ap-

proaches, researchers should use these strategies as complements to

power analysis and confidence intervals to determine sample size.

As discussed in chapter 1, because the sample is a part of a popu-

lation, generalization from a sample to the population usually involves

error. The traditional way of estimating sampling error is to start with

an underlying population, which is assumed to have a certain distri-

bution. Next, draw samples from this population, each of which, using a

particular estimator (e.g., mean), will yield its own estimate. Then es-

timate how (i.e., according to which distribution) and how much (i.e.,

with how much variance) this estimator will fluctuate. This traditional

approach to estimating sampling error tends to work for larger samples

of characteristics with small variance. Often, however, researchers are

unsure which underlying population distribution to assume. Computer-

intensive techniques are rapidly entering mainstream data analysis;

some researchers believe that these procedures will soon supplant com-

mon nonparametric procedures and could displace most parametric

procedures as well (cf. Howell, 2007). Alternatively, CISs assume that

sampling error can be estimated by drawing samples of the same size

from the underlying distribution. That is, CISs provide access to a

surrogate for the underlying distribution: the ‘‘empirical distribution’’

of a sample.

Strengths of Computer-Intensive Strategies

Some reasons cited by proponents for the use of computer-intensive

methods as viable alternatives to classic inferential procedures are as

follows:

1. Traditional inferential statistics requires distributional assumptions

(e.g., shape). An inferential leap from a sample to its population

can be problematic if there are reasons to suspect that assumptions

are not tenable (Diaconis & Efron, 1983; Peterson, 1991).

2. CISs are more easily understood (Rudner & Shafer, 1992).
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3. Classic inferential statistics requires random sampling to validate the

inference from a sample to a population. Edington (1995), for ex-

ample, argued that computer-intensive procedures are valid for any

kind of data, including random and nonrandom data. More con-

servatively, Lunneborg (2000) observed that use of nonrandom

samples with computer-intensive methods might not permit statis-

tical inference but can provide descriptive information and a per-

spective on the stability of results.

4. CISs treat small samples as a virtual population to ‘‘generate’’ more

observations (Helberg, 1996).

5. CISs can be used when there are too many participants (Helberg,

1996). Cohen (1969) has argued that the null hypothesis is inher-

ently false because all things are different from each other to some

extent and all things are also interrelated to some degree. According

to Cohen, given a very large sample, virtually any null hypothesis can

be rejected, no matter how practically trivial and meaningless it is.

6. According to Thompson and Snyder (1997), classical inferential

procedures do not inform researchers about how likely the results are

to be replicated. Repeated experiments in resampling, such as cross-

validation and bootstrapping, can be used as internal replications.

Weaknesses of Computer-Intensive Strategies

1. When a sample does not conform to parametric assumptions,

computer-intensive methods are recommended remedies (Diaconis

& Efron, 1983). However, Good (1999) reminds researchers that

CISs are still subject to the Behrens-Fisher problem, in which esti-

mation is problematic when population variances are unknown.

Specifically, both traditional tests and CI methods assume equal

variances.

2. Some researchers are skeptical about the benefits of computer-

intensive methods when used with nonrandom, nonrepresentative

samples. If the sample that is used to generate the empirical sampling

distribution does not reflect the characteristics of the population,
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then the validity of the inference is compromised (Laudan, 1977).

That is, nonrandom nonrepresentative samples are universal limi-

tations (Rodgers, 1999). Moreover, Noreen (1989) pointed out that

if the population conforms to the assumptions to derive the sam-

pling distribution, then no other method, including CISs, can do

any better than the conventional parametric tests.

3. Somewhat sarcastically, skeptics argue that CISs try ‘‘to get some-

thing for nothing. The same numbers are used over and over again

until an answer is obtained that cannot be obtained by any other

way’’ (Peterson, 1991).

4. Some observers question the accuracy of computer-intensive pro-

cedures. That is, in some situations, these procedures can be less

accurate than conventional parametric methods (Stine, 1989).

Computer-intensive methods, for example, fail for markedly non-

linear statistics such as the sample median (Efron, 1982). Some

critics have argued that when the collected data are biased,

computer-intensive methods can replicate and magnify error (cf.

Ludbrook & Dudley, 1998; Rodgers, 1999).

5. Parametric assumptions have been shown to be relatively unim-

portant in a variety of contexts. That is, classical tests, such as t-tests,

are robust against violations of the assumption of a normal distri-

bution (cf. Pearson & Please, 1975).

In summary, CISs are not panaceas. Similar to other approaches

to determining sample size, such as power analysis, CISs assume that

the observations in the sample are independent. In addition, these

strategies require a kind of parametric assumptions. That is, if it can be

assumed that a sample is a reasonable representation of the population

from which it was drawn, then these data can be used to reproduce a

population under a null, and then multiple samples can be drawn from

this population.

CISs are potentially useful because they can be applied to a wide

range of statistical models, regardless of the model’s complexity. These

strategies also seem to be potentially viable approaches to help research-

ers determine sample size. For example, CISs can enable researchers to

Computer-Intensive Methods 61



(1) derive power and confidence intervals empirically; (2) access pro-

cedures that require a data set (e.g., confidence intervals for ANOVA),

and (3) explore the effects of factors such as distributional assumptions

and missing data.

CISs can enable social work researchers to learn more about their

data. A recent example in social work is Guo and Hussey’s (2004) Monte

Carlo study using a multiple regression to explore the consequences of

using nonprobability sampling procedures. By allowing social work re-

searchers to begin asking and answering ‘‘what would happen if’’ ques-

tions, these techniques can enable them to begin to refine the process

of determining sample size. The following example demonstrates how

this process might work and encourage researchers to use more sophis-

ticated resources, such as Stata and Matlab.

Example: A Computer-Intensive Strategy to Determine Sample Size

The strategy can be summarized as follows:

1. Use a random generator to construct a data set with variables of a

given central tendency and dispersion.

2. Select multiple samples r of size n1.

3. Run an analysis on each of r samples.

4. Calculate a summary measure based on these r samples.

5. Select r number of samples of a different size n2.

6. Repeat steps 3 and 4.

7. Compare power and CIS samples n1 and n2.

Several decisions need to be made to carry out a Monte Carlo study.

The first is the choice of the model to be studied. This choice is driven by

the research question being asked. Once the model is chosen, population

values for each parameter of the model must be selected. These values

can be obtained from theory or from previous research. Estimates from

previous studies are often the best estimates available for population

values in the Monte Carlo study. Technical considerations in the Monte
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Carlo study are the number of samples to be drawn and the seed. The

number of samples to be drawn (replications) can be thought of as the

sample size for the Monte Carlo study. The number of replications

should be increased until stability of the results is achieved. The value of

the seed determines the starting point for the random draws of the

samples. More than one seed should be used, and the results for the

different seeds should be checked for stability.

Accordingly, as a first step, a data set is constructed. These data can

be constructed using a random number generator from a standard sta-

tistical package such as SPSS. For example, the following syntax gen-

erates 2,000 cases with three normally distributed variables.

set seed¼200409281.

input program.

loop #i¼1 to 2000.

compute x_normal¼rv.normal(50,15).

compute y_normal¼rv.normal(25,7).

compute z_normal¼rv.normal(5,2).

end case.

end loop.

end file.

end input program.

formats x_normal (f8.4).

execute.

descriptives variables¼x_normal y_normal z_normal /

statistics¼all.

One free program for generating data that conforms to user speci-

fications is DataSim. With this software, users can generate individual

and group-level data and specify the correlations among individuals and

groups. DataSim is free and can be downloaded from the following

web page: http://www.people.cornell.edu/pages/mcs5/Pages/DataSimPage

.htm. Another resource for generating random numbers from a normal

distribution with a selected mean and standard deviation is http://

graphpad.com/quickcalcs/randomN1.cfm.

Computer-Intensive Methods 63

http://www.people.cornell.edu/pages/mcs5/Pages/DataSimPage.htm
http://www.people.cornell.edu/pages/mcs5/Pages/DataSimPage.htm
http://graphpad.com/quickcalcs/randomN1.cfm
http://graphpad.com/quickcalcs/randomN1.cfm


Assume that a researcher is planning a study of 20 participants in a

parent effectiveness training program and 20 members of a comparison

group. For each participant, data are available from a posttest measure

of knowledge of child development. For simplicity, this example contains

two variables, group and posttest, for 40 cases. The researcher would like

to compare experimental and control group participants in terms of

posttest means. A larger mean is expected for the experimental group as

a result of the training. These data are summarized as follows: posttest

mean experimental group¼ 29.5, posttest mean control group¼ 28.2,

posttest standard deviation experimental group¼ 2.48, posttest stan-

dard deviation control group¼ 3.0.

1. Select 40 samples of size 40.

2. Perform an independent t-test on each the 40 samples.

3. Summarize the results of these 40 independent t-tests.

4. Select 40 samples of size 20.

5. Repeat steps 3 and 4.

6. Compare the summary results for the samples of N¼ 40 with the

samples of N¼ 20. Specifically, define power as the percentage of

samples with p< .05, and define confidence intervals as the aver-

age of the confidence intervals obtained for N¼ 40 samples and

N¼ 20 samples.

Analyses were performed in two ways: using Simstat and an SPSS

syntax file. Additional information about Simstat is available from http://

www.provalisresearch.com/simstat/simstatv.html.

Simstat is traditional statistical package. It will resample data, per-

form statistical analyses on these samples, and extract and summarize

results.

The SPSS syntax file is as follows:

DEFINE repsamp ().

!DO !doover¼1 !TO 40.

USE ALL.
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do if $casenum¼1.

compute #s_$_1¼40.

compute #s_$_2¼1000.

end if.

do if #s_$_2 > 0.

compute filter_$¼uniform(1)* #s_$_2 < #s_$_1.

compute #s_$_1¼#s_$_1—filter_$.

compute #s_$_2¼#s_$_2—1.

else.

compute filter_$¼0.

end if.

VARIABLE LABEL filter_$ ‘10 from the first 1000 cases

(SAMPLE).’

FORMAT filter_$ (f1.0).

FILTER BY filter_$.

T-TEST

GROUPS¼group(1 0)

/MISSING¼ANALYSIS

/VARIABLES¼posttest

/CRITERIA¼CI(.95).

!DOEND.

!ENDDEFINE.

repsamp.

execute.

* Line 2 directs SPSS to draw 40 samples

*Line 5 directs SPSS to draw samples of N¼40

*Line 6 defines the number of cases in the sample as 1,000.

Results of these analyses are summarized as follows:

1. The 95% confidence interval was calculated by averaging the dif-

ference and standard error for two groups on posttest scores.

For N¼ 40, the 95% confidence interval is 1.14 þ/– 2(0.140)¼
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1.21 – 1.78. For N¼ 20, the 95% confidence interval is 1.14 þ/–

2(0.18)¼ 1.13 – 1.90. These confidence intervals suggest that a

sample size of 20 might be sufficient.

2. Power was calculated by counting the number of instances in which

a random sample achieved a significant t-value (p< .05). This to-

tal was expressed as a fraction of the total number of random sam-

ples that were drawn. In effect, power is defined as the percentage of

times that the null hypothesis of no difference between the group

means on the dependent variable was rejected. For N¼ 40, power

equaled 0.82; for N¼ 20, power equaled 0.47.

Therefore, in contrast to the aforementioned confidence interval

analysis, a sample size of 40 is necessary to approximately achieve the

desired power of 0.80. To make a final decision about sample size, the

researcher should weigh precision, power, and costs to both the re-

spondent and the project. Although there are no easy answers, a con-

sideration of at least these three factors could increase the likelihood of

an ethically sound, efficient, and valid study.

Recommended Approach(es): Although CISs are conceptually sim-

ple, they require appropriate software. Computer-intensive methods can

be implemented with specialized software, such as Resampling Stats,1 or

with extensions of general purpose packages, such as Matlab, Excel,

Simstat, SAS, and SPSS. For example, free and adaptable syntax and

macros for performing resampling in SPSS and SAS are available on

the Internet.2 Howell’s (2007) text contains a very readable chapter

on resampling. Howell also provides a free program that implements

and demonstrates several resampling strategies. This program can be

downloaded from http://www.uvm.edu/~dhowell/StatPages/Resampling/

Resampling.html. Social workers interested in exploring resampling

strategies might begin with David Howell’s free resampling software.3

Howell’s software contains procedures for performing bootstrap proce-

dures for means, medians, comparing two medians, correlations, and

one-way ANOVA. For additional discussion of CISs, see Efron and

Tibshirani (1993), Good (1999), and Sprent (1998).
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In summary, this chapter (1) provided a brief description of the

rationale and limitations of CISs, (2) presented an example of how CISs

can be used to determine sample size, and (3) identified additional CISs

related resources. In the next chapter, additional considerations, in-

cluding ethics, costs, and balancing power and precision, are discussed.

Finally, recommendations are presented.
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5

Additional Considerations,

Recommendations, and Conclusions

This chapter is organized into two sections. First, additional con-

siderations that can affect sample size are discussed, including

ethical concerns, costs, and synthesis of power and precision. Second,

recommendations concerning future efforts to refine tactics and tech-

niques for determining sample size are presented.

Additional Considerations

Ethical Criteria and Sample Size

Research places demands on participants in terms of privacy, time, and

effort. Consequently, a study with a sample size that is too large or too

small can raise ethical questions. More specifically, researchers should

avoid conducting studies that are ‘‘underpowered.’’ An underpowered

study is one for which the projected scientific or clinical value is un-

acceptably low because it has less than an 80% chance of producing

p< .05 under an assumed minimum important effect size. Conversely,

researchers should avoid conducting studies with too large a sample size.
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Studies with samples that are too large can needlessly place respondents

at risk. It has been argued here that researchers should focus on de-

termining the smallest necessary sample size.

Bacchetti, Wolf, Segal, and McCulloch (2005a, 2005b) discuss how

sample size influences the balance that determines the ethical accept-

ability of a study—that is, the balance between the burdens that par-

ticipants accept and the clinical or scientific value that a study can be

expected to produce. The average projected burden per participant re-

mains constant as the sample size increases, but the projected study

value does not increase as rapidly as the sample size if it is assumed to be

proportional to power or inversely proportional to confidence interval

width. This implies that the value per participant declines as the sample

size increases and that smaller studies therefore have more favorable

ratios of projected value to participant burden. Bacchetti et al. (2005a,

2005b) provocatively conclude that that their argument ‘‘does not imply

that large studies are never ethical or that small studies are better, only

that a small study is ethically acceptable whenever a larger one is’’

(p. 113).

Analysis by Bacchetti et al. (2005a, 2005b) addresses only ethical

acceptability, not optimality; large studies may be desirable for other

than ethical reasons. The balance point between burden and value

cannot be precisely calculated in most situations because both the pro-

jected participant burden and the study’s projected value are difficult

to quantify, particularly on comparable scales. Bacchetti et al. (2005a,

2005b) provided a service by encouraging researchers to think of value

and burden on a per-participant basis and by arguing that the expected

net burden per participant may often be independent of sample size

(Prentice, 2005).

Institutional review boards are becoming more sophisticated re-

garding power and sample size issues, and, consequently, there could be

fewer unnecessarily large studies in the future. For studies with higher

risk, sequential designs should be considered. In a sequential design,

data are analyzed periodically to determine whether sampling can be

stopped and reliable conclusions drawn from the available data. In a

sense, a sequential design allows the researcher to adjust sample size
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based on the accumulating results. Use of sequential designs is relatively

common in medical research (Posch & Bauer, 2000; Whitehead, 1997),

and these designs deserve increased consideration from social workers

and other social science researchers. If a study seeks sensitive informa-

tion or seeks to collect information during a crisis, it could be unethical

to sample too many or too few people, and a sequential design can avoid

over- and under-sampling.

Costs and Sample Size

Often, a study has a limited budget, which, at least in part, determines

sample size. Consequently, sample design should aim to obtain maxi-

mum precision (minimum variance) for allowable costs (Kish, 1965).

Some researchers have begun exploring design strategies that minimize

costs while maintaining adequate power (see Schechtman & Gordon,

1993). Although it is not always possible to use cost criteria to determine

sample size, costs can, at least, provide an additional perspective on

sample size calculations.

Daniel and Terrel (1992) have suggested a formula for calculation of

sample size with a fixed budget for a study. The sample size, n, is given

by the formula n¼C–Cf/Cu, where C represents the total budgeted cost

of a sampling study, which can be broken into two parts: fixed cost, Cf,

and the variable cost per sampling unit, Cu. Assuming an agency has a

total budgeted cost that equals $5,000, variable cost (defined as the cost

per questionnaire charged by a research consultant) equals $5 and fixed

cost (agency personnel time) equals $1,500. Then N¼ (5,000–1,500)/

5¼ 700. Consequently, total budget costs for the study permit a sample

size of 700.

Allison, Allison, Faith, Paultre, and Pi-sunyer (1997) describe a

method of estimating the total research project costs that considers four

levels of expenditures. For example, using the example described in

chapter 4, assume a researcher is planning a study of participants of a

parent effectiveness training program and members of a comparison

group. To assess training effectiveness, each participant will be asked to
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complete a posttest measure of knowledge of child development. The

first level, basic overhead, includes salaries for research staff and costs

of equipment and supplies. The second level is the cost of recruiting

respondents. Respondents can be recruited through mailings and news-

paper advertisements. The third level is the cost of treatment imple-

mentation (i.e., parenting effectiveness training). The fourth level is the

cost of measuring the DV at the end of the study (e.g., posttest measure of

knowledge of child development).

An additional cost factor in surveys is response rate. In surveys, cost

and response rate play an interrelated role in determining sample size.

Although a 100% response rate always is desirable, it is not always a

realistic expectation. Using follow-ups to increase response rate, such as

telephone calls, postcards, or second and third repeat delivery of sur-

veys, increases cost. An advantage of more expensive follow-up ap-

proaches, such as telephone calls, is that the response rate will be higher.

Therefore, for a final sample size of 100 with a 75% return rate, the

sample should include 133 respondents. For a detailed discussion of

return rate and models of cost functions, see Kish (1965).

Balancing Power and Precision

Smithson (2001) argues that criteria for deciding on sample size should

include the precision of the sample estimates, as well as the power to

reject a null hypothesis. As discussed in chapter 2, if the researcher is

determining sample size based on power, then the study design should

ensure, to a high degree of certainty, that the study will be able to pro-

vide an adequate (i.e., powerful) testing of the null hypothesis. However,

a study may be designed with another goal as well. In addition to (or

instead of) testing the null hypothesis, study planning could focus on

the precision with which the study will estimate the magnitude of the

effect. The confidence interval (CI) represents the precision with which

we are able to report the effect size; the larger the sample, the more

precise the estimate. CIs provide different information from power

analysis; high power does not always involve precise estimation. The key
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to understanding the difference between them is the realization that

although significance level and sample size affect both power and in-

terval width, effect size affects only power.

Precision analysis requires a criterion for acceptable CI width. How-

ever, these criteria have received little attention in the social sciences

literature, and the establishment of acceptable benchmarks is necessary.

Smithson (2001) suggests, as a beginning point, that researchers could

rely on Cohen’s (1988) benchmarks. For example, for R2, .01¼ small,

.09¼medium, and .25¼ large. Consequently, when R2¼ .05, the lower

limit of the 95% CI should exceed .09, which is akin to being able to

distinguish a large from a medium effect. In addition, when R2 ¼ .10,

the upper limit of the 95% CI should fall below .25, and the lower limit

should exceed .01.

Using both power and precision to determine sample size is, accord-

ing to Smithson (2001), not a commonly utilized strategy. Researchers

might consider exploring power before conducting a study and then

supplementing that exploration with an investigation of CI width.

Recommendations

Power analysis, CI estimation, and computer-intensive methods suggest

that ‘‘adequate’’ sample size (e.g.,>.80) can be an expensive commodity.

Authors such as Lenth (2001) and Parker and Berman (2003) suggest

that a ‘‘sufficient’’ sample is only one component of a study’s quality.

Other important considerations include the validity of a study’s model,

measurement, and design. The aforementioned authors explain that,

traditionally, sample size calculations have been viewed as calculations

to determine the correct number of respondents needed for a study.

These calculations focus on statements such as ‘‘for a difference X, sam-

ple size Y is needed.’’ Lenth (2001) and Parker and Berman (2003), how-

ever, argue that for many studies, a focus on statements such as ‘‘for a

sample size Y, information Z is obtained’’ is more appropriate.

With the aforementioned perspective in mind, social work re-

searchers should consider the following recommendations:
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General Strategies

1. Authors should always provide detailed descriptions of the samples.

Detailed description is necessary to understand the population be-

ing studied and to judge whether the extent of generalizing results

seems appropriate. Also, when possible, a comparison of study

participants and information about the population should be pro-

vided to enable readers to evaluate a sample’s representativeness in

terms of the larger population from which it was drawn. This

comparative information is especially important when nonrandom

samples are used. With nonrandom samples external validity is best

evaluated by judging the logical probability that other popula-

tions share the relevant characteristics of the individuals who did

not participate in a given study. Moreover, detailed information

about a study’s sample is essential as techniques for combining the

results of multiple studies, such as meta-analysis, become more

widely accepted (Glass, McGaw, & Smith, 1981; Hedges & Olkin,

1985; Hunter, Schmidt, & Jackson, 1982).

2. A pilot study should be conducted when estimates needed for power

analysis, CIs, and resampling are not available.

3. Multiple approaches to calculating appropriate effect-size values and

corresponding sample sizes should be used. Within the context of a

specific study, investigators should seek a perspective on the bene-

fits and limitations of a range of sample sizes to their ability to

answer their research questions. One strategy might be to begin

with a sample size and, through resampling, explore the conse-

quences of incremental changes in sample size on power and CIs.

4. Researchers should plan in advance and in detail for data analysis

(Assman, Pocock, Enos, & Kasten, 2000). The more statistical tests

that are performed, the more likely it is that a statistically significant

result will be found. This phenomenon results from performing

multiple, unplanned statistical tests and is variously termed alpha

decay, probability pyramiding, or capitalizing on chance (see

Pocock, Geller, & Tsiatis, 1987). It is not suggested here that ex-

ploratory analysis cannot be a valuable knowledge building tool. It
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is, however, recommended that descriptive, predictive, and explan-

atory investigations should be preplanned and should include de-

tailed descriptions of data analysis procedures.

5. For ethical and efficiency concerns, social work researchers should

consider evaluating conditional power at various points in the

data collection process and stopping data collection early if, for

example, there is either a strong treatment effect or strong evi-

dence of no treatment effect. That is, conditional power is the

probability that the final study result will be statistically signifi-

cant, given data observed up to a point in a study. For example, a

conditional power computation performed at a prespecified point

in the study, such as at the midpoint, can be used as the basis for

early termination when there is little evidence of a beneficial effect

or if it appears that results have begun to stabilize (cf. Betensky,

1997; Lachin, 2005; Shih, 2001).

Use Random Sample or Generalize Outside a Sample Only With Caution

Social work researchers should make every effort to incorporate a ran-

dom process as a component of a sampling strategy. Nonrandom sam-

pling strategies present significant limitations to the use of power

analysis and CI estimation, because these strategies assume that data are

obtained through a random process. Generalizing from a nonrandom

sample to a population could yield biased conclusions. With large sam-

ples, this limitation of nonrandom samples can seem counterintuitive.

Nonetheless, even large-scale studies based on nonrandom sampling

schemes can yield biased conclusions. See, for example, Winship and

Mare (1992) for a conceptualization of sample selection bias and Guo

and Hussey (2004) for a recent Monte Carlo study and discussion of

these issues. The essential problem with nonrandom samples is that

respondents selected for the sample could differ systematically from

their population of interest. It is not suggested here that useful in-

sights cannot be gained from nonrandomly selected data. It is impor-

tant, however, that inferences from nonrandom samples be made with

great care.
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With a body of evidence that relies heavily on nonrandom samples,

‘‘streams of research’’ are particularly important. Kruglanski (1975)

argued that multiple studies aimed at investigating interrelated aspects

of a phenomenon using different samples might generate more confi-

dence in any single study’s findings. Considering the ethical and logis-

tical barriers to obtaining random samples, combing the findings from a

reasonably large set of nonprobability samples might be an acceptable,

practical compromise.

Differential Use of Smaller Versus Larger Samples

Bannister (1981), Hoyle (1999), and Isaac and Michael (1995) provide

guidance about the benefits of smaller versus larger samples. According

to Isaac and Michael (1995), large samples are essential in the following

instances:

1. A large number of uncontrolled variables are interacting unpre-

dictably, and it is desirable to minimize their separate effects; that is,

to mix the effects randomly and cancel out imbalances.

2. The total sample is to be subdivided into several subsamples to be

compared with one another.

3. The parent population consists of a wide range of variables and

characteristics, and there is a risk of missing or misrepresenting these

differences.

According to Isaac and Michael (1995), small sample sizes are jus-

tifiable in the following instances:

1. In exploratory research and pilot studies.

2. When the research seeks greater depth than breadth; for exam-

ple, when unstructured in-person interviews are used.

3. When methodological control is high.

In conclusion, this book presents approaches for determining sample

size in social work research. Approaches described include power

Additional Considerations, Recommendations, and Conclusions 75



analysis, confidence intervals, and computer-intensive strategies. Other

considerations are ethics, costs, and balancing power and precision. The

focus here has been on quantitative research in which a primary goal is

to use statistical inference to generalize results obtained from a sample

to a population. In these investigations, the preference is for a sampling

design that will yield estimated effect sizes with the least amount of

associated error.

Sample size planning is always important and almost always diffi-

cult. Accordingly, social work researchers should consider usingmultiple

approaches to estimating sample size. Pressure to increase sample size

can be mitigated by (1) a view that, in terms of fewer dependent and in-

dependent variables, simpler study designs are better; (2) an emphasis

on replication; and (3) carefully planned analyses. If, ultimately, assump-

tions for a particular statistical procedure are untenable, researchers

should frame study conclusions accordingly.
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6

Worked Examples

The following examples demonstrate a priori sample size deter-

mination strategies presented in previous chapters. Specifically,

for each procedure, minimum sample size will be estimated with

power analysis and confidence intervals (CIs). Free software, including

GPower; commercial software; and web-based calculators will be used to

demonstrate the range of resources available for estimating minimum

sample size. Sample sizes based on power analysis and CIs should be

considered within the context of ethical and cost-related issues. See

Table 1.1 in chapter 1 for a summary of discussion and examples by

procedure, and Table 1.2 for a summary of effect-size measures dis-

cussed in previous chapters.

Note that, because of space limitations, computer-intensive strate-

gies are not demonstrated in this chapter. However, a detailed example

is provided in chapter 4. A brief summary of the example in chapter 4 is

as follows:

1. Select r samples of size N1.

2. Perform an independent t-test on each the 40 samples.

3. Summarize the results of these 40 independent t-tests.

4. Select r samples of size N2.
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5. Repeat steps 3 and 4.

6. Compare the summary results for the samples of N1 with the sam-

ples of N2. Specifically, define power as the percentage of samples

with p< .05, and define CIs as the average of the CIs obtained for

N1 samples and N2 samples.

Analyses can be performed in at least two ways, using either Simstat

or an SPSS syntax file (see chapter 4 for a copy of this syntax file).

Additional information about Simstat is available from http://www

.provalisresearch.com/simstat/simstatv.html. Simstat is a traditional sta-

tistical package. It will resample data, perform statistical analyses on

these samples, and extract and summarize results.

Example 1: Difference Between Two Means—Independent Samples

Power Analysis

A researcher is planning a study to compare the effectiveness of two

treatments for spouse abusers. Treatment A consists of a group treat-

ment for abusers. Treatment B consists of group treatment for abusers

and their partners. Participants will be randomly assigned to groups,

and groups will have an equal number of participants. After completing

the treatment, spouse abusers will be administered an ‘‘empathy’’ scale.

Higher scores indicate higher levels of empathy. The researcher antici-

pates a medium effect size of d¼ 0.5. Table 6.1 and Figures 6.1 and 6.2

summarize a power analysis for this study in GPower. A complete

GPower user’s manual is available at http://www.psycho.uni-duesseldorf

.de/aap/projects/gpower/how_to_use_gpower.html.

Confidence Intervals

Based on previous research and the sample size used in the previous

example, assume mean1¼ 10, mean2¼ 12, the standard deviation (SD)
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Table 6.1

Select t-test (means)

Type of power analysis A priori

Type of test t-test (means), two-tailed

Accuracy mode calculation

Input Effect size d 0.5

Note that to calculate the effect
size from mean A, mean B, and
the pooled standard deviation,
click ‘‘Calc d,’’ insert the means
and the standard deviation, and
click ‘‘Calc & Copy.’’

Alpha .05

Power (1 – beta) .8

Click Calculate

Result Total sample size 102

Actual power .8059

Critical t 1.6602

Delta Noncentrality parameter ¼ 2.5249

Figure 6.1. Selecting a Test in GPower



for both means¼ 3.5, and N¼ 102, or 51 in each group. The web-based

calculator at http://graphpad.com/quickcalcs/ErrorProp1.cfm?Format¼
SD yields the following: 95% CI: 0.62 to 3.38 (see Figures 6.3 and 6.4).

Example 2: Difference Between Two Means—Correlated Samples

Power Analysis

A researcher is planning a study to evaluate the effectiveness of a group

treatment for spouse abusers. Before and after completing the treat-

ment, spouse abusers will be administered an ‘‘empathy’’ scale. Higher

scores indicate higher levels of empathy. The researcher anticipates a me-

dium effect size of d¼ 0.5 (e.g., increase in treatment scale scores as a

result of the treatment). Table 6.2 and Figures 6.5 and 6.6 summarize a

power analysis for this study in nQuery Advisor.

Confidence Intervals

Based on previous research and the sample size used in the previous

example, assume mean¼ 20, the SD for both means¼ 7, and N¼ 27.

Figure 6.2. GPower Input and Results
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Figure 6.3. Quick Calcs Input

Figure 6.4. Quick Calcs Results



Table 6.3 summarizes the calculation of a 95% CI for this study in

nQuery Advisor.

Therefore, the 95% CI is 7.0 minus 2.64 to 7.0 plus 2.64, or 4.36 to

9.64 (see Figures 6.7 and 6.8).

Example 3: Differences Between Independent Proportions

Power Analysis

A researcher is planning to study the relationship between going to col-

lege and working. She posits that 50% of full-time college students work

at least 20 hours per week compared with 80% percent of part-time

students. Table 6.4 summarizes a power analysis for this study using a

web-based calculator located at http://statpages.org/proppowr.html.

Note that this page incorporates a continuity correction to the usual

sample size formula based on the normal approximation to the binomial

distribution. This correction increases the sample size (for each group)

by an amount approximately equal to 2/abs(p1 � p2), where p1 and p2

are the population proportions for the two groups (see Figure 6.9).

Table 6.2

Select Goal Means

Number of groups One

Analysis method Test

Paired t-test for differences
in means

Input Alpha .05

One- or two-sided test One

Effect size d 0.5

Power (%) 80

Click on blank cell adjacent
to n to calculate

n 27
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Figure 6.6. nQuery Advisor Results

Figure 6.5. Selecting a Test in nQuery Advisor
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Figure 6.7. Selecting a Test in nQuery Advisor

Table 6.3

Select Goal Means

Number of groups One

Analysis method Confidence interval

Confidence interval for differences
in paired means

Input Alpha .05

CI .95

One- or two-sided interval Two

SD of difference scores 7.0

n 27

Click on blank cell adjacent
to n to calculate

Result Distance to mean 2.64



Confidence Intervals

The following web page calculates the confidence interval for the dif-

ference between two independent proportions: http://faculty.vassar.edu/

lowry/prop2_ind.html. Assuming the aforementioned study, this cal-

culator yields the following result: 95% CI is .1691 to .4170 (see Figure

6.10).

Example 4: Odds Ratio

Power Analysis

A researcher is planning to study the relationship between going to

college and working. She posits that 50% of full-time college students

work at least 20 hours per week compared with 80% of part-time

Figure 6.8. nQuery Advisor Results

Table 6.4

Input Alpha .05

Power (% chance of detecting) 80

First group population proportion 0.5

Second group population proportion 0.8

Relative sample sizes required (Group 2/Group 1) 1.0

Result Sample size required (For equal samples, use 1.0) Group 1: 45
Group 2: 45
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students. That is, the odds ratio equals 4.00. Table 6.5 summarizes a

power analysis for this study in nQuery Advisor.

Note that this example also suggests that odds ratios can some-

times seem to overstate relative positions: in this sample, part-time

college students have four times the odds of full-time college stu-

dents of working at least 20 hours per week (see Figures 6.11 and

6.12).

Confidence Intervals

A researcher is planning to study the relationship between going to

college and working. She posits that 50% of full-time college students

work at least 20 hours per week compared with 80% of part-time stu-

dents. That is, the odds ratio equals 4.00. Using the calculator located

Figure 6.10. VasarStats Input and Results
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Table 6.5

Select Goal Proportions

Number of groups Two

Analysis method Test

Chi-square to compare
two proportions

Compute power
or sample size

Input Alpha .05

One- or two-sided test Two

Group 1 proportion 0.5

Group 2 proportion 0.8

Odds ratio 4.00

Power (%) 80

Click on blank cell adjacent
to n to calculate

Result N per group 39

Figure 6.11. Selecting a Test in nQuery Advisor



at http://www.hutchon.net/ConfidORselect.htm, the 95% CI is 2.1357 to

7.4917 (see Figure 6.13).

Example 5: Chi-Square and Contingency Tables (Test of Independence)

Power Analysis

A researcher is planning to study the relationship between going to

college and working. She posits a medium effect size of w¼ .30. Table

6.6 and Figures 6.14 and 6.15 summarize a power analysis for this study

in GPower.

Confidence Intervals

Assuming the aforementioned study with degrees of freedom (df )¼1

and chi-square¼ 3.8413, the following web-based calculator identifies

whether it falls into a selected confidence range: http://www.hostsrv

.com/webmaa/app1/MSP/webm1010/chi2. The chi-square statistic,

3.8415, is inside the 95% confidence interval. The 95% confidence in-

terval for chi-square with 1 df is .0010 to 5.0238 (see Figure 6.16).

Figure 6.12. nQuery Results
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Example 6: ANOVA, Fixed Effects, Single Factor

Power Analysis

A researcher is planning a study to compare the level of self-esteem

amongAnglo, AfricanAmerican, andMexicanAmerican juvenile offend-

ers (i.e., three groups) in a substance abuse treatment program. After

completing the treatment, program participants will be administered

Table 6.6

Select Type of test Chi-square

Type of power analysis A priori

Accuracy mode calculation

Input Effect size w 0.3

Alpha 0.05

Power 0.80

df (rows � 1)� (columns�1)¼ 1�1¼ 1

Result Lambda 7.9200

Critical chi-square (1)¼ 3.8415

Total sample size 88

Actual power 0.8035

Figure 6.14. Selecting a Test in GPower
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a ‘‘self-esteem’’ scale. Higher scores indicate higher levels of self-esteem.

The researcher anticipates a medium effect size of f¼ 0.25. Table 6.7 and

Figures 6.17 and 6.18 summarize a power analysis for this study in

GPower.

Confidence Intervals

Recall from chapter 3, page 46, that contrast coding creates a new variable

by assigning numeric weights to the levels of an ANOVA factor under the

constraint that the sum of the weights equals zero. Assuming the afore-

mentioned study, a researcher plans to calculate the 95% CI of a contrast

to compare the posttreatment level of self-esteem among Anglo and Af-

rican American juvenile offenders with the level of self-esteem among

Mexican American juvenile offenders (i.e., three groups). One way of

expressing this is by: m1þ m2�2(m3), with coefficients þ1, þ1, �2. Note

that these coefficients sum to zero. Table 6.8 and Figures 6.19 and 6.20

summarize the calculation of a 95% CI for this study in nQuery Advisor:

Even with the aid of statistical software, the calculation of a CI on a

contrast is complex. Another strategy is to focus on a minimum power

specification. Determining the CI on a contrast for an ANOVA design is

usually difficult because of the need to specify all of the treatment means

Figure 6.15. GPower Input and Results
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Table 6.7

Select F-test (ANOVA)

Type of power analysis A priori

Type of test F-test (ANOVA)

Accuracy mode
calculation

Hypothesis Global

Input Effect size f .25

Alpha 0.05

Beta 0.80

Groups 3

Click Calculate

Result Lambda 9.9375

Critical F (2,156)¼ 3.0540

Total sample size 159

Actual power 0.8049

Figure 6.17. Selecting a Test in GPower
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Figure 6.18. GPower Input and Results

Table 6.8

Select Goal Means

Number of groups >2

Analysis method Confidence interval

Confidence interval width for
one-way contrast

Input CI .95

One- or two-sided interval Two

Number of groups 3

Contrast Using previous research or theory,
the means for each group on the
self-esteem scale must be specified

Click on ‘‘compute effect size’’ Enter group means 50, 60, 60;
coefficients 1, 1, –2

Click on ‘‘compute’’

Click on ‘‘transfer’’

Common standard deviation
(assume they are equal)

5

n per group From preceding example¼ 53

Click on blank cell adjacent to
‘‘distance from mean to limit’’

Result Distance from mean to limit 3.297; therefore, the 95% CI is
6.708 to 13.297 (10.0�3.297
to 10.0þ3.297)
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Figure 6.19. Selecting a Test in nQuery Advisor

Figure 6.20. nQuery Advisor Results



and standard deviations. An alternative is to focus on the difference

between the largest mean and the smallest mean. Although less precise in

terms of determining sample size, this minimum power specification

might be more feasible if there is little empirical experience with a

phenomenon. Moreover, this minimum power specification corre-

sponds to the alternative hypothesis that all means other than the two

extreme ones are equal to the grand mean. In this way, the problem is

reduced to calculating a CI for the difference between two means (see

example 1 above).

Example 7a: ANCOVA

Power Analysis

A researcher is planning a study to compare changes in the level of self-

esteem among Anglo, African American, and Mexican American juve-

nile offenders in a substance abuse treatment program (i.e., three

groups), controlling for age (i.e., one covariate). After completing the

treatment, program participants will be administered a self-esteem scale.

Higher scores indicate higher levels of self-esteem. The researcher an-

ticipates a medium effect size of f¼ 0.25.

In an analysis of covariance (ANCOVA), we replace a dependent

variable Y with a corrected dependent variable Y 0, which we arrive at by

partialing out the linear relation between Y and a set X of covariates. The

ANCOVA is essentially an analysis of variance (ANOVA) of the Y 0

measures. However, we need to adjust the denominator df. If k is the

number of groups in your design, enter groups¼ kþ q (q is the number

of covariates in your design). In this way, the denominator df are re-

duced appropriately because GPower assumes that denominator df¼
N� groups. Table 6.9 and Figures 6.21 and 6.22 summarize a power

analysis for this study in GPower.
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Table 6.9

Select Type of test F-test (ANOVA), special

Type of power analysis A priori

Accuracy mode
calculation

Hypothesis Special

Input Effect size f 0.25

Alpha 0.05

Power 0.80
1Groups 3þ 1¼ 4
2Numerator df 3� 1¼ 2

Result Lambda 9.8750

Critical F (2,154)¼ 3.0548

Total sample size 158

Actual power (1� beta) 0.8021

1Groups¼ k (number of groups in the design)þ q (the number of covariates in the

design)
2Numerator df¼ number of groups (not groupsþ covariates) minus 1¼ k – 1

Figure 6.21. Selecting a Test in GPower



Example 7b: ANCOVA

Power Analysis

If the correlation between Y and the covariates is substantial, then the

power of your statistical test is increased. This is so because the within-

population SD sigma Y 0 in the denominator of the F ratio is smaller than

sigma Y. Specifically, where r is the (multiple) population correlation

between Y 0 and Y, we find that SD of Y 0 equals SDY times the square root

of 1� r2. The numerator does not decrease correspondingly; it may even

increase. This example is an illustration of how to utilize SDY 0 ¼ SDY

times the square root of 1�r2 to estimate sample size. The following

strategy is possible when a researcher is able to estimate (1) the group

means on the dependent variable and (2) the correlation between a

covariate and the dependent variable. This example follows a strategy

suggested by Wuensch (2006).

A researcher wants to a conduct a one-way ANCOVA (one factor or

treatment condition) with three levels (groups) and one single covariate.

She needs to estimate sample size for power of .80, alpha of .05, and a

medium effect size (f¼ .25).

Figure 6.22. GPower Input and Results
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Assuming no covariates, Cohen’s f (effect size) is computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(mj � m)2=k

s2e

s
:

Cohen suggests that a medium-sized difference between two groups

is one that equals one half the size of the within-group (error) variance,

such as when m1¼ 16, m2¼ 24, m¼ 20, and s¼ 16. This corresponds to a

value of f equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(42þ42)=2

162

r
¼ 0:25,

which is exactly the value of f that Cohen has suggested corresponds to a

medium-sized effect in ANOVA.

Sample size equals

f¼ f
ffiffiffi
n

p
,

where n is the number of scores in each group. From Howell (2007,

Appendix ncF, p. 675), dft¼ 1, a¼ .05, a f of approximately 2 is needed,

and therefore,

n¼ f
f

� �2

¼ 2

:25

� �2

¼ 64:

Including a covariate will increase power for a fixed sample size

because the error variance (the variance of the dependent variable scores

after being adjusted for the covariate) will be reduced; the larger the

correlation between the covariate and the dependent variable (or, with

multiple covariates, the multiple R between covariates and the depen-

dent variable), the greater the reduction of error variance. The error

variance of the adjusted scores equals

sYadj ¼ sY
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
:
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Assuming a correlation between the covariate and the dependent

variable of .5, yadj ¼ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :25

p
¼ 13:86.

Adjusting the value of f to reflect the reduction in error variance

because of the covariate, the adjusted f equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(42þ42)=2

13:862

r
¼ :29,

and the required sample size equals

n¼ 2

:29

� �2

¼ 48

participants in each group; that is, 48 participants at each level of each

independent variable, or 3�48¼ 144. Notice that specifying a corre-

lation of .50 between the covariate and the dependent variable reduces

the sample size from 158 (see example 7a) to 144.

Confidence Intervals

One strategy is to compute the CI for a contrast as described previously

for an ANOVA model (see example 6) and consider this CI as a con-

servative estimate of the true CI of the ANCOVA. Another strategy is to

focus on a minimum power specification; that is, focus on the difference

between the largest mean and the smallest mean. Although less precise in

terms of determining sample size, this minimum power specification

might be more feasible if there is little empirical experience with a phe-

nomenon. Moreover, this minimum power specification corresponds to

the alternative hypothesis that all means other than the two extreme

ones are equal to the grand mean. In this way, the problem is reduced to

calculating a CI for the difference between two means (see example 1

above).
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Example 8: One-Way Repeated Measures ANOVA

Power Analysis

A researcher is planning a study of changes in the level of self-esteem of

offenders in a substance abuse treatment program. After completing the

treatment, and at three 1-month intervals, program participants will be

administered a self-esteem scale. Higher scores indicate higher levels of

self-esteem. The researcher anticipates a medium effect size of f 2 ¼
0.0625. Note that, here, effect size is f squared; that is, small¼ (.10)2¼
.01, medium¼ (.25)2¼ .0625, and large¼ (.40)2¼ .16.

Table 6.10 and Figures 6.23 and 6.24 summarize a power analysis for

this study in GPower. Note that GPower does not estimate sample size

directly for a repeated-measures ANOVA design. Through trial and

error, the researcher must identify the sample size that will yield the

desired level of power.

Table 6.10

Select Type of test Other F-tests

Type of power analysis Post hoc

Accuracy mode calculation

Input 3Effect size f 2 0.625

Alpha 0.05

N 18
1Numerator df 3� 1¼ 2
2Denominator df 18(3� 1)¼ 36

Result Lambda 11.2500

Critical F (3,36)¼ 2.8663

Power (1� beta) 0.7652

1Numerator df¼m–1, where m is the number of levels of the repeated factor
2Denominator df¼ n(m–1), where n is the sample size
3Effect size¼m*f 2/1–r, where r is the correlation between scores at any one level of the

repeated factor and any other level of the repeated fact. Note that, here, effect size is f

squared; that is, small¼ (.10)2, medium¼ (.25)2, and large¼ (.40)2. Therefore, assuming

r¼ .70, effect size¼ 3(.0625)/1 – .70¼ 0.625
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Confidence Intervals

One strategy is to compute the CI for a contrast as described previously

for an ANOVA model (see example 6) and consider this CI as a con-

servative estimate of the true confidence interval of the ANCOVA.

Another strategy is to focus on a minimum power specification; that

is, focus on the difference between the largest mean and the smallest

mean. Although less precise in terms of determining sample size, this

minimum power specification might be more feasible if there is little

Figure 6.23. Selecting a Test in GPower

Figure 6.24. GPower Input and Results
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empirical experience with a phenomenon. Moreover, this minimum

power specification corresponds to the alternative hypothesis that all

means other than the two extreme ones are equal to the grand mean. In

this way, the problem is reduced to calculating a confidence interval for

the difference between two means (see example 1).

Example 9: MANOVA

Power Analysis

A researcher is planning a study to compare levels of self-esteem and

depression among Anglo, African American, and Mexican American

juvenile offenders in a substance abuse treatment program. After

completing the treatment, program participants will be administered a

Table 6.11

Select Type of test Other F-tests

Type of power analysis Post hoc

Accuracy mode calculation

Input Effect size f 2 0.15

Alpha 0.05

N 90
1Numerator df 4
2Denominator df 174

Result Lambda 13.5000

Critical F (4,174)¼ 2.4236

Power (1 – beta): 0.8413

1Numerator degrees of freedom¼ p * n¼ 2(2)¼ 4
2Denominator degrees of freedom¼ s * (N – k – pþ s)¼ 2(45 – 3 – 2þ 2)¼ 174

N is the total number of participants summed across all k groups of the design times 2

because lambda¼ s(h) *N * f 2 ; in this example, N¼ 3�15 in each group¼ 45�2¼ 90

k¼ the number of groups in the design¼ 3

p¼ the number of dependent variables¼ 2

n¼ using dummy coding for the 3 groups, the number of predictors for the effects

to be tested¼ 3 – 1¼ 2

s¼ the smaller of either p or n¼ p¼ 2
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self-esteem scale, and a depression scale. Higher scores on both scales

indicate higher levels of each psychological attribute. The researcher

anticipates a medium effect size of f 2¼ 0.15. Table 6.11 and Figures 6.25

and 6.26 summarize a power analysis for this study in GPower. Note

that GPower does not estimate sample size directly for a MANOVA

design. Through trial and error, the researcher must identify the sample

size that will yield the desired level of power.

Figure 6.25. Selecting a Test in GPower

Figure 6.26. GPower Input and Results
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Confidence Intervals

There are few choices. One strategy is to select a one-way model, focus

on the difference between the largest mean and the smallest mean, and

calculate a confidence interval around this mean difference (see example

1 for an illustration of calculating a confidence interval around a dif-

ference between two means).

Example 10: MANCOVA

Power Analysis

MANCOVA is a MANOVA in which the dependent variables (DVs) are

initially adjusted for differences in one or more covariates. Resources for

estimating sample size for MANCOVA are difficult to identify. One

approach is to adapt the aforementioned sample size estimation strategy

for MANOVA. That is, use GPower and adjust the denominator df. If k

is the number of groups in the design and g is the number of covariates,

then groups¼ kþ g.

A researcher is planning a study to compare the levels of self-esteem

and depression among Anglo, African American, and Mexican Ameri-

can juvenile offenders (i.e., three groups) in a substance abuse treatment

program, controlling for age (i.e., one covariate). After completing the

treatment, program participants will be administered a self-esteem scale

and a depression scale. Higher scores on both scales indicate higher

levels of each psychological attribute. The researcher anticipates a me-

dium effect size of f 2¼ 0.15. Table 6.12 and Figures 6.27 and 6.28

summarize a power analysis for this study in GPower. Note that GPower

does not estimate sample size directly for a MANCOVA design.

Through trial and error, the researcher must identify the sample size that

will yield the desired level of power.
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Table 6.12

Select Type of test Other F-tests

Type of power analysis Post hoc

Accuracy mode calculation

Input Effect size f 2 0.15

Alpha 0.05

N 90
1Numerator df 4
2Denominator df 172

Result Lambda 13.50

Critical F (4,172)¼ 2.4242

Power (1 – beta) 0.8412

1Numerator degrees of freedom¼ p * n¼ 2(2)¼ 4
2Denominator degrees of freedom¼ s * [N – (kþ q) – pþ s]¼ 2[45 – (3þ 1)

–2þ 2]¼ 172

N is the total number of participants summed across all k groups of the design times 2

because lambda¼ s(h) *N * f 2 ; in this example, N¼ 3�15 in each group¼ 45�2¼ 90

k¼ the number of groups in the design¼ 3

q¼ the number of covariates¼ 1

p¼ the number of dependent variables¼ 2

n¼ using dummy coding for the 3 groups, the number of predictors for the effects

to be tested¼ 3 – 1¼ 2

s¼ the smaller of either p or n¼ p¼ 1

Figure 6.27. Selecting a Test in GPower



Confidence Intervals

There are few choices. One strategy is to select a one-way model, focus

on the difference between the largest mean and the smallest mean, and

calculate a CI around this mean difference (see example 1 for an illus-

tration of calculating a CI around a difference between two means).

Example 11: Repeated Measures MANOVA

Power Analysis

A researcher is planning a study of changes in the level of self-esteem of

offenders in a substance abuse treatment program. After completing the

treatment, and at three 1-month intervals, program participants will

be administered a self-esteem scale. Higher scores indicate higher levels

of self-esteem. The researcher anticipates a medium effect size of f 2¼
.0625. Note that, here, effect size is f squared; that is, small¼ (.10)2¼ .01,

medium¼ (.25)2¼ .0625, and large¼ (.40)2¼ .16.

Table 6.13 and Figures 6.29 and 6.30 summarize a power analysis for

this study in GPower. Note that GPower does not estimate sample size

Figure 6.28. GPower Input and Results
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Table 6.13

Select Type of test Other F-tests

Type of power analysis Post hoc

Accuracy mode calculation

Input 3Effect size f 2 0.625

Alpha 0.05

N 60
1Numerator df 4
2Denominator df 27

Result Lambda 13.50

Critical F (4,27)¼ 2.7278

Power (1 – beta) 0.9980

1Numerator degrees of freedom¼ p * n¼ 2(2)¼ 4
2Denominator degrees of freedom¼ s * (N – k – pþ s)¼ 2(30 – 3 – 2þ 2)¼ 27
3Effect size¼m * f 2/1 – r, where r is the correlation between scores at any one level of

the repeated factor and any other level of the repeated factor. Note that, here, effect size

is f squared; that is, small¼ (.10)2, medium¼ (.25)2, and large¼ (.40)2. Therefore,

assuming r¼ .70, effect size¼ 3(.0625)/1 – .70¼ 0.625.

N is the total number of participants summed across all k groups of the design times 2

because lambda¼ s(h) *N * f 2; in this example, N¼ 3�10 in each group¼ 30�2¼ 60

k¼ the number of groups in the design¼ 3

p¼ the number of dependent variables¼ 2

n¼ using dummy coding for the 3 groups, the number of predictors for the effects to

be tested¼ 3 – 1¼ 2

s¼ the smaller of either p or n¼ p¼ 2

Note that for a repeated measures MANCOVA the numbered of groups equals k groups

plus q covariates.

Figure 6.29. Selecting a Test in GPower



directly for a repeated-measures MANOVA design. Through trial and

error the researcher must identify the sample size that will yield the

desired level of power.

Confidence Intervals

There are few choices. One strategy is to select a one-way model, focus

on the difference between the largest mean and the smallest mean, and

calculate a CI around this mean difference (see example 1 for an illus-

tration of calculating a CI around a difference between two means).

Example 12: Correlation

Power Analysis

A researcher is planning to study residents of a housing development for

senior citizens. The study seeks to measure the relationship between the

level of physical activity of residents and the number of visitors they

receive in a week. The researcher posits that there is a positive rela-

tionship between level of physical activity and number of visitors, with a

Figure 6.30. GPower Input and Results
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large effect size of r¼ .50. Table 6.14 and Figures 6.31 and 6.32 sum-

marize a power analysis for this study in GPower.

Confidence Intervals

Assuming the aforementioned study, a researcher plans to calculate the

95% CI of an r¼ 0.50. The calculator located at http://faculty.vassar.edu/

lowry/rho.html yielded the following results: r¼ 0.50, n¼ 21, 95%

CI¼ 0.088 to 0.766 (see Figure 6.33).

Table 6.14

Select Type of power analysis A priori

Accuracy mode calculation

One-tailed

Input Effect size r .5

Alpha 0.05

Power 0.80

Result Delta 2.6458

Critical t t (19)¼ 1.7291

Total sample size 21

Actual power 0.8172

Figure 6.31. Selecting a Test in GPower
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Example 13: Regression

Power Analysis

A researcher is planning to study residents of a housing development for

senior citizens. The study seeks to predict the level of physical activity

of residents based on (1) the number of visitors they receive in a week,

(2) their ages, and (3) their years of education. The researcher posits that

there is a positive relationship between level of physical activity, number

of visitors, age, and years of education, with a large effect size of f 2¼ .35.

Table 6.15 and Figures 6.34 and 6.35 summarize a power analysis for

this study in Gpower.

Confidence Intervals

Assuming the aforementioned study, a researcher plans to calculate the

95% CI of an R2¼ 0.60. The calculator at http://www.danielsoper.com/

statcalc/calc28.aspx yields the following output: 95% CI¼ 0.4203 to

0.7797 (see Figures 6.36 and 6.37).

Figure 6.32. GPower Input and Results
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Table 6.15

Select Type of power analysis A priori

Accuracy mode calculation

Hypothesis Global

Input Effect size f 2 .35

Alpha 0.05

Power 0.80

Predictors 3

Result Lambda 2.6458

Critical t F(13,32)¼ 2.9011

Total sample size 36

Actual power 0.8095

Figure 6.34. Selecting a Test in GPower

Figure 6.35. GPower Input and Results
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Figure 6.37. Output from http://www.danielsoper.com

http://www.danielsoper.com


Example 14: Discriminant Function Analysis (DFA)

Power Analysis

Computationally similar to MANOVA, all assumptions for MANOVA

apply to discriminant function analysis (DFA). Therefore, sample size

can be determined with the aforementioned MANOVA strategies.

The principal difference between MANOVA and DFA is the label-

ing of the dependent and independent variables (Stevens, 2002). Re-

searchers will temporarily need to reconceptualize the DFA model

as a MANOVA model by reversing the IVs and the DV. That is, in-

stead of asking: What is the relationship between the IVs and group

membership? ask: What characteristics best distinguish groups A

and B?

For example, a researcher is planning a study to compare agencies

serving homeless people who are less than 20 years old (type A) with

agencies serving homeless people who are more than 20 years old (type

B). Here, the research question for a DFA is what factors (i.e., size of

annual budget, religious versus nonsectarian mission, type of services

provided, and the number of professionally trained social workers em-

ployed) distinguish type A agencies with type B agencies. The researcher

wishes to perform a power analysis to determine sample size and, con-

sequently, she temporarily reframes the question for a MANOVA as

follows: What is the relationship between size of annual budget, reli-

gious versus nonsectarian mission, type of services provided, and

the number of professionally trained social workers employed and type

A versus type B group membership? Table 6.16 and Figures 6.38 and

6.39 summarize her power analysis in Power Analysis and Sample Size

(PASS):
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Example 15: Logistic Regression

Power Analysis

A researcher plans a study to compare the decision-making styles of a

randomly selected group of supervisors in Agency A with employees’

perceptions of being burned out. Supervisors would be categorized as

either ‘‘democratic’’ or ‘‘autocratic’’ based on a standardized scale score.

Workers would be categorized as either being ‘‘burned out’’ or ‘‘not

burned out’’ based on a standardized scale score. The researcher’s model

includes two covariates: age and race of employees. The researcher an-

ticipates a medium effect size of d¼ 0.5.

Table 6.16

Select PASS

Means

Multivariate

Hotelling’s T-squared (because
this design contains two groups;
for three or more groups, select
MANOVA)

Input Solve for N or N1

Groups 2

Response variables 3

Mean differences Ability to detect small
differences¼ .50

K 1

N1 0

Alpha 0.05

N2 Use R

Beta 0.20

R 1.0

Result N1¼N2¼ 18; therefore N¼ 18
in each group
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Hsieh, Bloch, and Larsen (1998) and Vaeth and Skovlund (2004)

recommended modifying a two-sample calculation (i.e., t-test; see ex-

ample 1 for an illustration) by a ‘‘variance inflation factor’’ such asNm¼
N1/(1� p2), where N1 and Nm are the required sample sizes with 1 and

m covariates, respectively, and p2 is the multiple correlation coefficient

between the variable of interest (supervisory style) and the remaining

m�1 covariates. Table 6.17 summarizes a power analysis for this study

in GPower.

Figure 6.38. PASS Input
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The squared multiple correlation coefficient between the covariate

of interest (supervisory style) and the other two covariates (age and

race) was estimated to be .4. Therefore, the final sample size is 102/

(1� .42)¼ 102/(1 �.16)¼ 102/.84¼ 121 (see Figures 6.40 and 6.41).

Confidence Intervals

No practical strategies have emerged in the literature.

Figure 6.39. PASS Results
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Table 6.17

Select t-test (means)

Type of power analysis A priori

Type of test t-test (means), two-tailed

Accuracy mode calculation

Input Effect size d 0.5
Note that to calculate the effect
size from mean A, mean B, and
the pooled standard deviation,
click ‘‘Calc d,’’ insert the means
and the standard deviation, and
click ‘‘Calc & Copy.’’

Alpha .05

Power (1 – beta) .8

Click Calculate

Result Total sample size 102

Actual power .8059

Critical t 1.6602

Delta Noncentrality parameter¼ 2.5249

Figure 6.40. Selecting a Test in GPower



Example 16: Cox Regression

Power Analysis

A study is planned to compare the decision-making styles of a randomly

selected group of supervisors in Agency A and the time to first pro-

motion of employees that they have supervised. Supervisors were cat-

egorized as either ‘‘democratic’’ or ‘‘autocratic’’ based on a standardized

scale score.

When comparing two groups using a Cox regression model, the

sample size can be obtained from the formula for the log-rank test

(Hsieh et al., 1998; Vaeth & Skovlund, 2004). The log-rank test com-

putes a P value that answers this question: If the two populations have

identical survival curves overall, what is the chance that random sam-

pling of participants would lead to as big a difference in survival (or

bigger) as you observed (Hsieh, Lavori, Cohen, & Feussner, 2003)? If

the p-value is small (< .05), then the null hypothesis that the two

populations have identical survival characteristics is rejected (Cox &

Oakes, 2001). After calculating the sample size required for a univariate

Figure 6.41. GPower Input and Results
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analysis to study the effect of X1 on endpoint Y, inflate the sample size as

described for logistic regression. Table 6.18 summarizes a power analysis

for this study in nQuery Advisor.

The squared multiple correlation coefficient between the covari-

ate of interest (supervisory style) and the other two covariates (age

and race) was estimated to be .4. Therefore, the final sample size is

40/(1� .42)¼ 40/(1� .16)¼ 40/.84¼ 48 (see Figures 6.42 and 6.43).

Confidence Intervals

No practical strategies have emerged in the literature.

Example 17: Structural Equation Modeling (SEM)

Power Analysis

A study is planned to examine the relationship between factors

that influence postadoption service utilization and positive adoption

Table 6.18

Select Goal Survival

Number of groups Two

Analysis method Test

Input Alpha .05

One- or two-sided test One

Group 1 proportion 0.90

Group 2 proportion 0.50

Hazard ratio 0.152

Power (%) 80

Click on blank cell adjacent to n to calculate

Result N per group: 20

Total number of events required 7
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Figure 6.43. nQuery Advisor Results

Figure 6.42. Selecting a Test in nQuery Advisor



outcomes. Specifically, the study tests a model that links (1) factors

influencing the utilization of postadoption services (parents’ percep-

tions of self-efficacy, relationship satisfaction between parents, knowl-

edge of available postadoption services, and attitudes toward adoption)

with (2) service utilization (two groups, used versus did not use post-

adoption services), and (3) positive adoption outcomes (satisfaction

with parenting and satisfaction with adoption agency).

As discussed in chapter 2, structural equation modeling (SEM) does

not use raw data. Instead, in SEM the variance (or covariance) matrix is

used. The number of observations in SEM is defined as the num-

ber of covariances in the matrix rather than the number of cases in a

data set. The number of observations or covariances in SEM can be

calculated as follows: v(vþ 1)/2, where v¼ the number of variables in

the model. In the current model, there are seven variables (i.e., the four

instruments measuring factors influencing the utilization of postadop-

tion service, the two instruments measuring adoption outcomes, and

one measure of service utilization). Therefore, the number of variables

in this example is 7(7þ1)/2, or 23.

This example determines sample size by following the approach

proposed by MacCallum, Browne, and Sugawara (1996), which was

described in chapter 2. This approach uses the root mean square error of

approximation to calculate power (RMSEA; see chapter 2, endnote 9;

Browne & Cudeck, 1993; Hu & Bentler, 1999; Steiger, 1990). This index

weighs absolute fit, which declines whenever a parameter is removed

from the model, against model complexity, such that the benefits of

parsimony are considered along with fit (Steiger, 2000). Models fitting

with RMSEA< .05 are usually considered as having a ‘‘close’’ fit, .05 to

.08 as having a ‘‘fair’’ fit, .08 to .10 as having a ‘‘mediocre’’ fit, and above

.10 as having a ‘‘poor’’ fit (MacCallum et al., 1996).

A program called NIESEM performs power analysis according to

the approach proposed by MacCallum et al. (1996). NIESEM is free

and available for download from http://rubens.its.unimelb.edu.au/

~dudgeon/. Table 6.19 and Figures 6.44 and 6.45 summarize a power

analysis for this study in NIESEM.
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Confidence Intervals

MacCallum et al. (1996) suggested that the possibility of a ‘‘good’’ fit is

indicated by a CI that include values between 0 and .05. Table 6.20

summarizes a power analysis for this study in NIESEM:

Because NIESEM yields the value of .0000 to .0553 for the 95% CI

around RMSEA and because this interval includes values between 0 and

.05, it suggests the possibility of good fit (MacCallum et al., 1996).

Table 6.19

Input Power calculations

estimate N for a given power

power equals 0.80

the null hypothesized RMSEA value¼ 0.00

the alternative hypothesized RMSEA value¼ 0.05

the chosen alpha level¼ 0.05

the degrees of freedom (df ) of the model¼ [7(7þ1)]/2¼ 28;
note that df¼ p(pþ 1)/2, where there are p observed variables
in the model

the number of groups in the model¼ 2

Result Estimated sample size¼ 684

Figure 6.44. NIESEM Input
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Figure 6.45. NIESEM Results

Table 6.20

Input RMSEA & ECVI calculations

the discrepancy function value¼ .05

degrees of freedom¼ 28

sample size for all groups combined¼ 684

the number of sample groups¼ 2

required confidence interval percentage¼ 95

the null approximate fit RMSEA test value¼ .05

ML (maximum likelihood estimate)¼ yes

the number of observed variables used in the model¼ 7

Parameters entered directly¼ no

Result RMSEA value is: 0.0253; 95% CI 0.0000 to 0.0553



Through trial and error, the researcher might wish to adjust sample size

until the minimum sample size necessary for a 95% CI around RMSEA

that includes values between 0 and .05 is identified (see Figures 6.46 and

6.47).

Example 18: Multilevel Analysis

Power Analysis

A researcher is planning a study of a state-sponsored domestic violence

treatment program. The program will be offered at four locations in

each of the five regions across the state. Sites will be selected using

stratified random sampling to balance the number of observations

across regions. Participants will be randomly assigned to a treatment

group or a waiting list for the program. A third group, referred to here as

a comparison group, will consist of randomly selected participants in

an existing counseling program for couples. Program effectiveness will

be evaluated by comparing the scores of the treatment, control, and com-

parison groups on a conflict resolution skill scale. The scale measures

Figure 6.46. NIESEM Input
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a person’s ability to suggest solutions to interpersonal conflicts that con-

sider other people’s perspectives. Scores range from 0 to 100, with 55

considered ‘‘moderate’’ and 45 considered ‘‘low.’’

Previous research indicates that the scale has a mean of 50 and

an SD¼ 15. Assuming a moderate effect of f¼ .25, one-tailed alpha

level¼ .05, and power¼ .08, GPower was used to determine sample size.

In GPower, select F-test (ANOVA). Enter effect size, alpha, and power;

indicate that test is one-tailed; and click ‘‘calculate.’’ See example 6 for

screenshots of ANOVA in GPower. Given these specifications, GPower

indicated the need for a sample size of 159 (approximately 53 partici-

pants in each group) in each region.

Confidence Intervals

As discussed in chapter 2, determining the sample size for an ANOVA

design is usually difficult because of the need to specify all of the

treatment means and standard deviations. An alternative is to focus on

the difference between the largest mean and the smallest mean. Al-

though less precise in terms of determining sample size, this minimum

power specification might be more feasible if there is little empirical

experience with a phenomenon. Moreover, this minimum power spec-

ification corresponds to the alternative hypothesis that all means other

Figure 6.47. NIESEM Input
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than the two extreme ones are equal to the grand mean. In this way, the

problem is reduced to calculating a confidence interval for the difference

between two means. Assuming equal group sizes equal to 53 and an SD

of 15, the calculator at http://graphpad.com/quickcalcs/ErrorProp1.cfm

was used to compute the 95% CI around the difference between the

largest (55) and the smallest (45) expected group means. The calculator

yielded the following output: 95% CI¼�15.78 to �4.22. Because the

largest expected difference among the three groups is 10, the researcher

needs to decide whether this is an acceptable level of precision. This CI

seems large, as the interval is equal to largest expected difference among

the three groups. However, it is not unusual to have large CIs associated

with sample size associated with a conventionally acceptable level of

power, such as .80.

Multilevel Analysis

Because stratified sampling is planned, sample size must be adjusted for

design effect. As discussed in chapter 2, the design effect provides a

correction for the loss of sampling efficiency, resulting from the use of

stratified sampling as opposed to simple random sampling. Thus design

effect may be simply interpreted as the factor by which the sample size

for a stratified sample would have to be increased in order to produce

estimates with the same precision as a simple random sample.

The magnitude of design effect depends on two factors: (1) the degree

of similarity or homogeneity of elements within strata and (2) the number

of sample elements to be taken from each stratum. The initial factor, the

homogeneity of elements within strata, is a population characteristic over

which the survey taker has no control. Prior methodological research

indicates that most population characteristics tend to cluster and that it is

prudent to assume that some degree of homogeneity within strata exists.

The second parameter, the number of elementary units chosen per strata,

is largely within the control of the survey taker and is an important

consideration in the sample design for any survey.

The design effect is approximately equal to 1þ (average stratum

size �1)� intra correlation coefficient (ICC). Muthen and Satorra
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(1995) view a design effect of 2 as small. Generally, design effects range

from 1 to 3, but higher values are possible, and a reasonable approach is

to use a design effect of 2 or 3 (Lê & Verma, 1997).

Final sample size, therefore, is calculated as 160�2¼ 320 (approx-

imately 107 in each group statewide). Note that a sample size of 160 is

used here instead of 159 as calculated previously for power and CI

estimation to facilitate calculations in this example. Assuming equal

sample across the four agencies in each region, N¼ 6 participants in

each of the three groups in each agency should provide ample power

for the study. These calculations are summarized as follows: 6 � 3

groups¼ 18; 18 � 4 agencies in each region¼ 64; 64 � 5 regions¼ 320

statewide.

Example 19: CI Around an Effect Size

A researcher is planning a study of a state-sponsored domestic vio-

lence treatment program. The program will be offered at four loca-

tions in each of the five regions across the state. Sites will be selected

using stratified random sampling to balance the number of observa-

tions across regions. Participants will be randomly assigned to a treat-

ment group or a waiting list for the program. A third group, referred

to here as a comparison group, consisted of randomly selected par-

ticipants in an existing counseling program for couples. Program ef-

fectiveness would be evaluated by comparing the scores of the treat-

ment, control, and comparison groups on a conflict resolution skill

scale. The scale measures a person’s ability to suggest solutions to in-

terpersonal conflicts that consider other people’s perspectives. Scores

range from 0 to 100, with 55 considered ‘‘moderate’’ and 45 considered

‘‘low.’’

In addition to a CI around the difference between two means, the

researcher is interested in evaluating the CI around the effect size d. As

discussed in chapter 2, the appropriate probability distribution is

noncentral t; that is, values of t if the null hypothesis of no difference

between the means is false. In the case of the noncentral t, there are an

Worked Examples 131



infinite number of such distributions, one for every possible value of the

parameter (effect size), making tables of little value.

To calculate the CI around d, download NoncT.sav (necessary data

file) and T-d-2samples.sps (syntax file) from http://core.ecu.edu/psyc/

wuenschk/SPSS/SPSS-Programs.htm.

Assuming an expected difference of 10 and a pooled SD of 15, d

equals 10/15¼ .67. The 95% CI around d is calculated as follows:

1. Run an independent-samples t-test. There does not seem to be a

consensus about whether to use a ‘‘separate variances’’ or a ‘‘pooled’’

t and df when computing the CI around d with equal group sizes (cf.

Zimmerman, 2004). The separate-variance t-test tends to be more

conservative and is used in this example. The following calculator

will tell you the Student t-value, given the probability and the de-

grees of freedom: http://www.danielsoper.com/statcalc/calc10.aspx.

For p¼ .05, df¼ 104, t-value¼ 1.98.

2. Open NoncT.sav, which consists of one row of data with 13 vari-

ables.

3. In the column labeled tval, enter the obtained t-value of 1.98.

4. In the df column, enter the degrees of freedom of 104.

5. In the conf column, enter 0.95 for a 95% CI.

6. In the n1 (size of group 1) column, enter 53.

7. In the n2 (size of group 2) column, enter 53.

8. Open the T-D-2sample.sps file.

9. On the command bar, click Run and select ‘‘All.’’

As a result of running the preceding syntax, Nonct.sav now contains

the lower limit of the confidence interval (lowd column) and the upper

limit of the CI (highd column). The 95% CI of d for this example is

�.0007 to .7680. As discussed in chapter 3, CIs around effect sizes tend

to be wider than CIs around nonstandardized values (i.e., the difference

between two means). In part, wider CIs for effect sizes can result from

combining information about raw effects (i.e., mean differences) and

variation (Lenth, 2001; Steiger, 2004).
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Appendix

Annotated Bibliography of Readings and Other Resources

Books and Journal Articles

Chapter 1. Basic Terms and Concepts

Adcock, C. J. (1997). Sample size determination: A review. The Statistician,

46(2), 261–283.

This is a discussion of frequentist and Bayesian methods of sample

size determination. Frequentist methods specify a null and alter-

native hypothesis for the parameter of interest and then find the

sample size by controlling both size and power. These methods

often need to use prior information but cannot allow for the un-

certainty that is associated with it. By contrast, the Bayesian ap-

proach offers a wide variety of techniques, all of which offer the

ability to deal with uncertainty associated with prior information.

Cochran, W. G. (1977). Sampling techniques. New York: Wiley.

This is a classic textbook on the theory of sample surveys, that is,

selection methods, sample size estimation, and analysis of data. A
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calculus background and a first course in mathematical statistics

are recommended to fully comprehend discussion in this book.

Cuddeback, G., Wilson, E., Orme, J. G., & Combs-Orme, T. (2004). Detecting

and statistically correcting sample selection bias. Journal of Social Service

Research, 30(3), 19–33.

Typically, social work researchers use bivariate tests to detect

selection bias (e.g., w2 to compare the races of participants and

nonparticipants). Occasionally multiple regression methods are

used (e.g., logistic regression with participation/nonparticipation

as the dependent variable). Neither of these methods can be used

to correct substantive results for selection bias. Sample selection

models are a well-developed class of econometric models that can

be used to detect and correct for selection bias, but these are rarely

used in social work research. This article argues that sample selec-

tion models can help further social work research by providing

researchers with methods of detecting and correcting sample se-

lection bias.

Fink, A. (2002).How to sample in surveys (Volume 7). Thousand Oaks, CA: Sage

Publications.

This book covers probability and nonprobability sampling meth-

ods, calculating response rates, and dealing with sampling error and

also treats determining sample size and statistical power.

Hoyle, R. H. (1999). Statistical strategies for small sample research. Thousand

Oaks, CA: Sage Publications.

This book describes and illustrates statistical strategies that are

appropriate for analyzing data from small samples of fewer than

150 cases. It covers such topics as ways to increase power when

sample size cannot be increased; strategies for computing effect sizes

and combining effect sizes across studies; how to hypothesis test
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using bootstrapping; and methods for pooling effect size indicators

from single-case studies.

Huberty, C. (1993). Historical origins of statistical testing practices: The treat-

ment of Fisher versus Neyman-Pearson views in textbooks. Journal of Ex-

perimental Education, 61, 317–333.

Twenty-eight books published from 1910 to 1949, 19 books

published from 1990 to 1992, plus 5 multiple-edition books are

reviewed in terms of presentations of coverage of the p-value (i.e.,

Fisher) and fixed-alpha (i.e., Neyman-Pearson) approaches to sta-

tistical testing. Also of interest in the review are issues and concerns

related to the practice and teaching of statistical testing: (a) levels of

significance, (b) importance of effects, (c) statistical power and

sample size, and (d) multiple testing. The author concludes that the

textbook presentations and teaching practices do not always accu-

rately reflect the views of Fisher and Neyman-Pearson.

Kish, L. (1965). Survey sampling. New York: Wiley.

This is a classic textbook on the applied aspects of sample surveys,

particularly in design and analysis. It contains discussion of the

details of multistage sampling that are not discussed in other books

and includes practical guidelines.

Peterson, R. S., Smith, B. D., & Martorana, P. V. (2006). Choosing between a

rock and a hard place when data are scarce and questions important: A reply

to Hooenbeck, DeRue, and Mannor (2006). Journal of Applied Psychology,

9 (1), 6–8.

This article discusses the dilemmas faced in conducting empirical

research in a nascent area and suggests that theory development in

such a situation can be well served by studies that use alternative

or new methods with small samples. Theory development scholar-

ship using small-sample research methods (e.g., case studies and
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Q-sorting from archival sources) can be useful for stimulating ideas,

theory, and research programs that can be tested with large-sample

quantitative research.

Chapter 2. Statistical Power Analysis

Algina, J., & Olejnik, S. (2000). Determining sample size for accurate estimation

of the squared multiple correlation coefficient. Multivariate Behavioral Re-

search, 35(1), 119–137.

This article focuses on the squared multiple correlation coefficient

and presents regression equations that permit determination of

sample size for estimating this parameter for up to 20 predictor

variables. A comparison of the sample sizes reported here with those

needed to test the hypothesis of no relationship between the pre-

dictor and criterion variables demonstrates the need for researchers

to consider the purpose of their research and what is to be reported

when determining the sample size for the study.

Algina, J., & Olejnik, S. (2003). Sample size tables for correlation analysis with

applications in partial correlation and multiple regression analysis. Multi-

variate Behavioral Research, 38 (3), 309–323.

Tables for selecting sample size in correlation studies are presented.

Applications of the tables in partial correlation and multiple re-

gression analyses are discussed. SAS and SPSS computer programs

are provided to permit researchers to select sample size for levels of

accuracy, for probabilities, for parameter values, and for Type I

error rates other than those used in constructing the tables.

Campbell, M. J, Julious, S. A., & Altman, D. G. (1995). Estimating sample sizes

for binary, ordered categorical and continuous outcomes in two group com-

parisons. British Medical Journal, 311, 1145–1148.

The authors outline strategies for calculating sample sizes in two-

group studies for binary, ordered categorical, and continuous
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outcomes. Formulas and worked examples are provided. Maximum

power is usually achieved by having equal numbers in the two

groups. However, this is not always possible, and calculations for

unequal group sizes are suggested.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).

Hillsdale, NJ: Erlbaum.

This is the classic reference for statistical power analysis.

D’Amico, E. J., Neilands T. B., & Zambarano, R. (2001). Power analysis for

multivariate and repeated measures designs: A flexible approach using the

SPSS MANOVA procedure. Behavior Research Methods, Instruments, and

Computers, 33(4), 479–484.

This article presents an SPSS procedure that can be used for cal-

culating power for univariate, multivariate, and repeated-measures

models with and without time-varying and time-constant covari-

ates. Three examples provide a framework for calculating power via

this method: an ANCOVA, a MANOVA, and a repeated-measures

ANOVA with two or more groups. The benefits and limitations of

this procedure are discussed.

Gastonis, C., & Sampson, A. R. (1989). Multiple correlation: Exact power and

sample size calculations. Psychological Bulletin, 106(3), 516–524.

This article discusses power and sample size calculations for ob-

servational studies in which the values of the independent variables

cannot be fixed in advance but are themselves outcomes of the

study. It reviews the mathematical framework applicable when a

multivariate normal distribution can be assumed and describes a

method for calculating exact power and sample sizes using a series

expansion for the distribution of the multiple correlation coeffi-

cient. A table of exact sample sizes for level .05 tests is provided.

Approximations to the exact power are discussed, most notably
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those of Cohen (1977). A rigorous justification of Cohen’s ap-

proximations is given. Comparisons with exact answers show that

the approximations are accurate in many situations of practical

interest.

Hancock, G. R., & Freeman, M. J. (2001). Power and sample size for the root

mean square error of approximation test of not close fit in structural equation

modeling. Educational and Psychological Measurement, 61(5), 741–758.

The authors provide power and sample size tables and interpolation

strategies associated with the root mean square error of approxi-

mation (RMSEA) test of not close fit under standard assumed

conditions. It is hoped that researchers conducting structural

equation modeling will be better informed as to power limitations

when testing a model given a particular available sample size, or,

better yet, that they will heed the sample size recommendations

contained herein when planning their study to ensure the most

accurate assessment of the degree of close fit between data and

model.

Howell, D. C. (2007). Statistical methods for psychology (6th ed.). Belmont, CA:

Wadsworth.

This book is an excellent beginning to intermediate level text. Chap-

ter 8 presents a very readable introduction to power analysis and

provides tables for estimating power of d (see ‘‘Appendix Power’’ at

http://www.uvm.edu/�dhowell/gradstat/psych340/Lectures/Power/

power.html).

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis

and determination of sample size for covariance structure modeling. Psy-

chological Methods, 1(2), 130–149.

This article presents a framework for hypothesis testing and power

analysis in the assessment of fit of covariance structure models. It
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emphasizes the value of confidence intervals for fit indices and

stresses the relationship of confidence intervals to a framework for

hypothesis testing. The approach allows for testing null hypotheses

of not-good fit, reversing the role of the null hypothesis in con-

ventional tests of model fit so that a significant result provides

strong support for good fit. The approach also allows for direct

estimation of power, where effect size is defined in terms of a null

and alternative value of the root-mean-square error of approxima-

tion fit index (RMSEA). It is also feasible to determine minimum

sample size required to achieve a given level of power for any test of

fit in this framework. Computer programs and examples are pro-

vided for power analyses and calculation of minimum sample sizes.

Muller, K. E., LaVange, L. M., Ramey, S. L., & Ramey, C. T. (1992). Power cal-

culations for general linear multivariate models including repeated measures

applications. Journal of the American Statistical Association, 87, 1209–1226.

The authors use the development of a research proposal to dis-

cuss power analysis. Procedures described include MANOVA,

ANOVA, and multiple regression.

Murphy, K., & Myors, B. (2003) Statistical power analysis: A simple and general

model for traditional and modern hypothesis tests (2nd ed.). Mahwah, NJ:

Erlbaum.

This book presents a method for reducing power analysis to the F

distribution.

Whitley, E., & Ball, J. (2002). Statistics review 4: Sample size calculations. Critical

Care, 6, 335–341.

This article provides a worked example of sample size calculation

for a difference between proportions with a nomogram, which is a

two-dimensional diagram designed to allow the approximate graph-

ical computation of power and sample size.
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Chapter 3. Confidence Intervals: Measures of Precision

Algina, J., & Keselman, H. J. (2003). Approximate confidence intervals for effect

sizes. Educational and Psychological Measurement, 63 (4), 537–553.

This article defines an approximate confidence interval for effect

size in correlated (repeated-measures) groups designs. The authors

found that their method was much more accurate than the interval

presented and acknowledged to be approximate by Bird (2002).

That is, the coverage probability over all the conditions investigated

was very close to the theoretical .95 value. By contrast, Bird’s in-

terval could have coverage probability that was substantially below

.95. In addition, the authors’ interval was less likely than Bird’s

method to present an overly optimistic portrayal of the effect. They

also examined the operating characteristics of the Bird (2002) in-

terval for effect size in an independent-groups design and found

that, although it is fairly accurate in its approximation of coverage

probability, the accuracy of the approximation does vary with the

magnitude of the population effect size.

Algina, J., & Moulder, B. C. (2001). Sample sizes for confidence intervals on

the increase in the squared multiple correlation coefficient. Educational and

Psychological Measurement, 61(4), 633–649.

The increase in the squared multiple correlation coefficient asso-

ciated with a variable in a regression equation is a commonly used

measure of importance in regression analysis. The article investi-

gates the probability that an asymptotic confidence interval will

include R2.

Bird, K. D. (2002). Confidence intervals for effect sizes in analysis of variance.

Educational and Psychological Measurement, 62(2), 197–226.

Although confidence interval procedures for analysis of variance

(ANOVA) have been available for some time, they are not well

known and are often difficult to implement with statistical pack-
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ages. This article discusses procedures for constructing individual

and simultaneous confidence intervals on contrasts on parameters

of a number of fixed effects ANOVA models, including multi-

variate analysis of variance (MANOVA) models for the analysis

of repeated measures data. Examples demonstrate how these pro-

cedures can be implemented with accessible software. Confidence

interval inference on parameters of random effects models is also

discussed.

Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and

calculation of confidence intervals that are based on central and noncentral

distributions. Educational and Psychological Measurement, 61(4), 532–574.

Reform of statistical practice in the social and behavioral sciences

requires wider use of confidence intervals (CIs), effect size mea-

sures, and meta-analysis. This article discusses four reasons for

using CIs: They (1) are readily interpretable, (2) are linked to fa-

miliar statistical significance tests, (3) can encourage meta-analytic

thinking, and (4) give information about precision. The authors

discuss calculation of CIs for a basic standardized effect size mea-

sure, Cohen’s d, and contrast these with the familiar CIs for original

score means. CIs for d require use of noncentral t distributions,

which the authors apply also to statistical power and simple meta-

analysis of standardized effect sizes. They provide the ESCI graph-

ical software, which runs under Microsoft Excel, to illustrate the

discussion. Wider use of CIs for d and other effect size measures

should help promote highly desirable reform of statistical practice

in the social sciences.

Fidler, F., & Thompson, B. (2001). Computing correct confidence intervals for

ANOVA fixed- and random-effects effect sizes. Educational and Psychological

Measurement, 61(4), 575–604.

Most textbooks explain how to compute confidence intervals for

means, correlation coefficients, and other statistics using ‘‘central’’
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test distributions (e.g., t, F ) that are appropriate for such statistics.

However, few textbooks explain how to use ‘‘noncentral’’ test dis-

tributions (e.g., noncentral t, noncentral F ) to evaluate power or to

compute confidence intervals for effect sizes. Illustrates the com-

putation of confidence intervals for effect sizes for some ANOVA

applications; the use of intervals invoking noncentral distributions

is made practical by newer software. Greater emphasis on both ef-

fect sizes and confidence intervals was recommended by the Amer-

ican Psychological Association Task Force on Statistical Inference

and is consistent with the editorial policies of the 17 journals that

now explicitly require effect size reporting.

Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-

subject designs. Psychonomic Bulletin & Review, 1(4), 476–490.

The authors argue that to best comprehend many data sets, plotting

judiciously selected sample statistics with associated confidence in-

tervals can usefully supplement, or even replace, standard hypoth-

esis testing procedures. They describe how to compute an analo-

gous confidence interval that can be used in within-subject designs.

Mendoza, J. L., & Stafford, K. L. (2001). Confidence intervals, power calculation,

and sample size estimation for the squared multiple correlation coefficient

under the fixed and random regression models: A computer program and

useful standard tables. Educational and Psychological Measurement, 61(4),

650–667.

This article introduces a computer package written for Math-

ematica, the purpose of which is to perform a number of diffi-

cult iterative functions with respect to the squared multiple cor-

relation coefficient under the fixed and random models. These

functions include computation of confidence interval upper and

lower bounds, power calculation, calculation of sample size re-

quired for a specified power level, and estimating shrinkage in

cross-validating the squared multiple correlation under both the
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random and fixed models. Attention is given to some of the tech-

nical issues regarding selecting and working with these two types of

models, as well as to issues concerning the construction of confi-

dence intervals.

Smithson, M. (2003). Confidence intervals. ThousandOaks, CA: Sage Publications.

The author first introduces the basis of the confidence interval

framework and then provides the criteria for ‘‘best’’ confidence

intervals, along with the tradeoffs between confidence and preci-

sion. Next, using a reader-friendly style with worked examples from

various disciplines, he covers such topics as the relationship be-

tween confidence interval and significance testing frameworks,

particularly regarding power.

Smithson, M. (2001). Correct confidence intervals for various regression effect

sizes and parameters: The importance of noncentral distributions in com-

puting intervals. Educational and Psychological Measurement, 61 (4), 605–632.

This article provides a practical introduction to methods of con-

structing confidence intervals for multiple and partial R2 and re-

lated parameters in multiple regression models based on ‘‘non-

central’’ F and X2 distributions. Until recently, these techniques

have not been widely available due to their neglect in popular

statistical textbooks and software. These difficulties are addressed

here via freely available SPSS scripts and software and illustrations

of their use. The article concludes with discussions of implica-

tions for the interpretation of findings in terms of noncentral con-

fidence intervals, alternative measures of effect size, the relationship

between noncentral confidence intervals and power analysis, and

the design of studies.

Steiger, J. H. (2004). Beyond the F test: Effect size, confidence intervals and tests

of close fit in the analysis of variance and contrast analysis. Psychological

Methods, 9(2), 164–182.
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The author presents confidence intervalmethods for improving on the

standard F tests in the balanced, completely between-subjects, fixed

effects analysis of variance. Exact confidence intervals for omnibus

effect size measures, such as o2 and the root-mean-square standard-

ized effect, provide all the information in the traditional hypothesis

test and more. They allow one to test simultaneously whether overall

effects are (a) zero (the traditional test), (b) trivial (do not exceed some

small value), or (c) nontrivial (definitely exceed some minimal level).

For situations in which single-degree-of-freedom contrasts are of

primary interest, exact confidence interval methods for contrast effect

size measures such as the contrast correlation are also provided.

Tian, L. (2005). On confidence intervals of a common intraclass correlation

coefficient. Statistics in Medicine, 24, 3311–3318.

This article presents a novel approach for the confidence interval

estimation of a common intraclass correlation coefficient derived

from several samples under unequal family sizes. This approach is

developed using the concept of generalized pivots. Comparisons are

made with a large sample procedure on the coverage probabilities.

Chapter 4. Computer-Intensive Methods

Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics.

Scientific American, 48, 116–130.

This is a classic introduction to this topic.

Software for PCs

Free

� Downloads are available at http://www.tulane.edu/%7Edunlap/

psylib.html for the following programs:
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powmr.exe—Computes power for multiple regression

powr.exe—Computes power for simple correlation

power.exe—Computes power for one-way ANOVA

� PINT (Multilevel): http://stat.gamma.rug.nl/Pint_211.zip

� Optimal Design Software (Multilevel): http://sitemaker.umich

.edu/groupbased/files/od156.zip; manual available from: http://

www-personal.umich.edu/�rauden/

� GPower (http://www.psycho.uni-duesseldorf.de/aap/projects/

gpower/), which performs power analyses for some common

statistical tests (t-tests, F-tests, chi-square);

� Mx is a matrix algebra interpreter and numerical optimizer for

structural equation modeling and other types of statistical

modeling of data. The program is available from here: http://

views.vcu.edu/mx/.

� Power and Sample Size (PS) (http://biostat.mc.vanderbilt.edu/

twiki/bin/view/Main/PowerSampleSize);StatisticalPowerAnal-

ysis (http://www.utmb.edu/meo/resource.htm);

� Statistical Power Calculator from: http://www.utmb.edu/meo/

r0000007.exe. Statistical Power Calculator provides statistical

power estimates for a comprehensive range of commonly used

inferential statistics. The package also has utilities for generat-

ing critical values for tests of statistical significance, sequences

of random numbers, random sequences for assignment of

participants to independent groups, and the generation of

Latin squares. Finally, the package contains a program that

allows one to conduct Monte Carlo simulations with single-

factor, factorial, and mixed-model analyses of variance. The

programs are suitable for research purposes and as a teaching

tool for students enrolled in statistics and research methods

courses.

� Sample Size for Means (SPSS Syntax File): http://pages.infinit

.net/rlevesqu/Syntax/SampleSize/SampleSizeForMeans.txt

� Sample Size for Proportions (SPSS Syntax File): http://

pages.infinit.net/rlevesqu/Syntax/SampleSize/SampleSizeFor

Proportions.txt
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� UnifyPow (SAS module for sample size analysis): http://www

.bio.ri.ccf.org/UnifyPow.all/UnifyPow020817a.sas

� Macro-Power and sample size (SAS module for comparing

two proportions): http://support.sas.com/faq/042/FAQ04291

.html.

Commercial

� nQuery Advisor: http://www.statsol.ie/

� Power and Precision (logistic regression): http://www.power-

analysis.com/

� Statistica Power Analysis: http://www.statsoft.com/products/

power_an.html

The program can compute exact confidence intervals on effect

sizes.

� ZumaStat: http://www.zumastat.com/MeansAndANOVA.htm

� PASS: http://www.ncss.com/pass.html

� STATA: http://www.stata.com/

� SAS: http://www.sas.com/

� SPSS: http://www.spss.com/

� S-Plus: http://www.insightful.com/

� SEPATH for STATISTICA software provides SEM with exten-

sive Monte Carlo simulation facilities (http://www.statsoftinc

.com/)

World Wide Web Resources

� Effect size calculator for multiple regression: http://www.

danielsoper.com/statcalc/calc05.aspx

� A priori sample size calculator for multiple regression: http://

www.danielsoper.com/statcalc/calc01.aspx
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� Beta (type II error) calculator: http://www.danielsoper.com/

statcalc/calc03.aspx

� Calculator for confidence intervals of relative risk: http://

www.hutchon.net/ConfidRR.htm

� Power/sample size calculation for logistic regression with bi-

nary covariate(s): http://www.dartmouth.edu/�eugened/power-

samplesize.php

� Sample size calculations for logistic regression with exposure

measurement error: http://biostat.hitchcock.org/Measurement

Error/Analytics/SampleSizeCalculations forLog sticRegression

.asp

� VassarStats: http://faculty.vassar.edu/lowry/VassarStats.html

� The following web page computes power, sample size, or mini-

mum detectable odds ratio (OR) for logistic regression with a

single binary covariate or two covariates and their interaction:

http://www.dartmouth.edu/�eugened/power-samplesize.php

� The following web page provides sample size calculations for

logistic regression with a continuous exposure variable and an

additional continuous covariate or confounding variable:

http://biostat.hitchcock.org/MeasurementError/Analytics/Sample

SizeCalculationsforLogisticRegression.asp

http://faculty.vassar.edu/lowry/VassarStats.html

� A variety of free calculators for determining sample size for two

means are available from:

http://calculators.stat.ucla.edu/powercalc/

http://www.sph.emory.edu/�cdckms/samplesize-mean%20

difference.htm

http://www.changbioscience.com/stat/ssize.html

http://sampsize.sourceforge.net/iface/s2.html#means

http://sampsize.sourceforge.net/iface/index.html

http://www.dssresearch.com/toolkit/sscalc/size.asp

� Sample size for the test of one and two proportions:

http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/Sample

Size.htm#rproptyp

http://calculators.stat.ucla.edu/powercalc/
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http://www.dssresearch.com/toolkit/sscalc/size_p1.asp

http://statpages.org/proppowr.html

� Power analysis for ANOVA designs: http://www.math.yorku

.ca/SCS/Online/power/

This page calculates power or sample size needed to attain a given

power for one effect in a factorial ANOVA design. The program

was designed to calculate power for a main effect in one-way and

two-way factorial designs with fixed effects. However, the pro-

gram can also be used for any fixed effect in any crossed factorial

design by designating the levels of the effect of interest as A and

the levels of all other crossed factors as B.

� Russ Lenth’s web page: http://www.stat.uiowa.edu/�rlenth/

Power.

The ‘‘balanced ANOVA’’ selection provides a dialog with a list of

several popular experimental designs, plus a provision for speci-

fying your own model.

� The following calculator will tell you the effect size f2 given a

value of R2: http://www.danielsoper.com/statcalc/calc05.aspx

� Simple Interactive Statistical Analysis (SISA): http://home

.clara.net/sisa/correl.htm

Power and sample size for a correlation coefficient.
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Notes

Chapter 2

1. The importance of doing a power analysis before beginning a study (pro-

spective power analysis) is universally accepted: such analyses help us to decide

how large a sample is required to have a good chance of getting unambiguous

results. In contrast, the role of power analysis after the data are collected and

analyzed (retrospective power analysis) is controversial. See Baker (1997) and

Hoenig and Heisey (2001) for critiques. See Gillett (1996, 2002) for discussions

of how to increase the accuracy of retrospective power analysis.

2. Effect size (ES) is a name given to a family of indices that measure the

magnitude of a treatment effect. Unlike significance tests, these indices are in-

dependent of sample size (Lipsey & Wilson, 1993; Knottnerus & Bouter, 2001).

There are a variety of measures of effect size, including the (1) standardized

difference between two means (e.g., Cohen’s d), (2) correlation between the

independent variable and the dependent variable (e.g., Pearson’s r), and (3) odds

ratio (Rosnow & Rosenthal, 1996). See Huberty (2002) for a review of the history

of effect-size indices.

3. Additional information about these packages is available online at http://

www.ncss.com/pass.html (PASS); http://www.psycho.uniduesseldorf.de/aap/

projects/gpower/ (GPower); http://www.power-analysis.com/specifications.htm

(Power and Precision); http://www.stata.com/ (Stata); http://www.sas.com/ (SAS);

http://www.insightful.com/ (S-Plus); and http://www.insp.mx/dinf/stat_list.html
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(a comprehensive list of power analysis software for PCs). The following texts

devote separate chapters to power analysis: Howell (2007), Loftus and Loftus

(1988), and Minium and Clarke (1982).

4. There is debate over whether hypothesis testing should focus on accepting

or rejecting, as opposed to failing to reject or failing to accept a null hypothesis.

For brevity, this discussion adopts the former strategy. See Barnett (1999) for a

discussion of alternative approaches to statistical significance.

5. A univariate, normally distributed variable may have either a zero mean

or a nonzero mean. If the mean is zero, then we may say that the variable follows

a central normal distribution. If the mean is nonzero, then the variable follows a

noncentral distribution. Distributions that are derived from normal distribu-

tions with nonzero means are called noncentral distributions. For example, in

the case of a difference between two means, the quantity d is what most text-

books refer to as a noncentrality parameter. If H0 states that m¼m0, and H0 is

true, then

t ¼ w�m0
s=

ffiffiffiffi
N

p

will be centered about 0. If H0 is false, then it will not be distributed around 0

because in subtracting m0 the wrong population mean has been subtracted. In

fact, the distribution will be centered at the point

t ¼ m1�m0
s=

ffiffiffiffi
N

p :

This shift in the mean of the distribution from 0 to d is referred to as the

degree of noncentrality, and d is the noncentrality parameter. The question of

power becomes the question of the probability of finding a noncentral (shifted)

distribution that is greater than the critical value that t would have under H0.

In other words, even though larger-than-normal values of t are expected be-

cause H0 is false, occasionally small values will be observed by chance. The

percentage of these values that lie below the critical value of t is b, the prob-

ability of a type II error; and power is equal to 1 – b. Cohen’s contribution is

splitting the noncentrality parameter d into two parts: sample size and effect

size. One part, g, depends solely on parameters of the populations, whereas the

other depends on sample size. Thus Cohen separated m0, m1, and variance (s),

over which there is relatively little control, from sample characteristics (N),

over which there is greater control. Although this procedure produces no
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change in the underlying theory, it makes the concept d easier to understand

and to use.

6. The terms random and fixed are used in the context of ANOVA and

regression models and refer to assumptions about the independent variable and

the error distribution for the variable (Winer, 1971). A ‘‘fixed effect’’ is one that

is assumed to be measured without error. It is also assumed that the values of a

fixed effect in one study are the same as the values of the fixed variable in another

study. ‘‘Random effects’’ are assumed to be values that are drawn from a larger

population of values and thus will represent them. The values of random effects

represent a random sample of all possible values of that effect. Consequently, the

results obtained with a random effect can be generalized to all other possible

values of that random variable. Because they involve ‘‘inferential leaps,’’ random

effects models are less powerful. Random effects models are sometimes referred

to as ‘‘Model II’’ or ‘‘variance component models.’’ Analyses using both fixed

and random effects are called ‘‘mixed models.’’

7. Odds are defined as the chance, for instance, of being in one group versus

being in another group. Thus, if in group A 80% are male and 20% female, then

the odds of being male versus female equal 4; there are four (4.0) times as many

males as females. If in group B there are 60% males and 40% females, then in

group B the odds of being male versus female equal 1.5. The odds ratio of A over

B equals 2.67 (4.0/1.5), because there are 2.67 more males than females in A than

in B.

8. Root mean square error of approximation, RMSEA, is also called RMS or

RMSE or discrepancy per degree of freedom. By convention, there is good

model fit if RMSEA is less than or equal to .05. There is adequate fit if RMSEA is

less than or equal to .08. More recently, Hu and Bentler (1999) have suggested

RMSEA � .06 as the cutoff for a good model fit. RMSEA is a popular measure

of fit, partly because it does not require comparison with a null model and thus

does not require the author to posit as plausible a model in which there is

complete independence of the latent variables as does, for instance, comparative

fit index (CFI). Also, RMSEA has a known distribution, related to the noncentral

chi-square distribution, and thus does not require bootstrapping to establish

confidence intervals. Confidence intervals for RMSEA are reported by some sta-

tistical packages. It is one of the fit indexes less affected by sample size, though

for smallest sample sizes it overestimates goodness of fit (Fan, Thompson, &

Wang, 1999). RMSEA is computed as ((chisq/((n – 1)df))–(df/((n – 1)df)))*.5,

where chisq is model chi-square, df is the degrees of freedom, and n is number

of participants.
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Chapter 4

1. Information about Resampling Stats is located at http://www.resample

.com/.

2. http://pages.infinit.net/rlevesqu/index.htm for SPSS and http://support

.sas.com/ctx/samples/index.jsp for SAS.

3. For David Howell’s software see: http://www.uvm.edu/�dhowell/StatPages/

Resampling/Resampling.html.
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probability sampling
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power, 21
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ethical acceptability, 69
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frequentist methods, 7

full model, 33
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Kish, L., 1
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power, 28
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MANOVA
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meta-analysis, 73
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multiple regression (continued)

power, 30
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Neyman, J., 14, 38
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Noncentral distribution
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F-distribution, 39

t-distribution, 39, 44

nonprobability sampling

availability, 5–6
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limitations, 74
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snowball, 6

nonrandom sampling.

See probability sampling

nonresponse bias, 7

nonsampling error, 7
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nQuery Advisor software, 146

null hypothesis, 15

odds ratio

confidence intervals, 45–46

defined, 21–22

power, 22
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Orme, J., 14
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Pearson, E., 38
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cluster, 5

defined, 3
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quota sampling. See nonproability

sampling

R2 software, 51
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saturated model, 33

selection bias, 7
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Simstat software, 64

Smithson, M., SPSS macros, 44
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structural equation modeling

defined, 32–33

confidence intervals, 53–54
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worked example, 123–128
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