Universitext

To Sofia
H.S.M.
To my family
C.M.R.

Henning S. Mortveit
Christian M. Reidys

An Introduction
to Sequential Dynamical
Systems

@ Springer

Henning S. Mortveit Christian M. Reidys

Department of Mathematics and Center for Combinatorics, LPMC
Virginia Bioinformatics Institute 0477 Nankai University
Virginia Polytechnic Institute and State Tianjin 300071
University PR. China
1880 Pratt Drive reidys @nankai.edu.cn

Blacksburg, Virginia 24061
henning.mortveit@ gmail.com

ISBN-13: 978-0-387-30654-4 e-ISBN-13: 978-0-387-49879-9
Library of Congress Control Number: 2007928150
Mathematics Subject Classification (2000): Primary: 37B99; Secondary: 05Cxx, 05Axx

©2008 Springer Science+Business Media LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper.
987654321

springer.com

Preface

The purpose of this book is to give a comprehensive introduction to sequen-
tial dynamical systems (SDS). This is a class of dynamical systems defined
over graphs where the dynamics arise through functional composition of local
dynamics. As such, we believe that the concept and framework of SDS are
important for modeling and simulation of systems where causal dependencies
are intrinsic.

The book is written for mathematicians, but should be readily accessible
to readers with a background in, e.g., computer science or engineering that
are interested in analysis, modeling, and simulation of network dynamics. We
assume the reader to be familiar with basic mathematical concepts at an
undergraduate level, and we develop the additional mathematics needed.

In contrast to classical dynamical systems, the theory and analysis of SDS
are based on an interplay of techniques from algebra, combinatorics, and dis-
crete mathematics in general. To illustrate this let us take a closer look at
SDS and their structure. An SDS is a triple that consists of a finite graph
Y where each vertex has a state taken from a finite set K, a vertex-indexed
sequence of Y-local maps (F, y), of the form F,: K™ — K", and a word
w = (w1,...,wg) over the vertex set of Y. The associated dynamical system
is the SDS-map, and it is given by the composition of the local maps F, y in
the order specified by w.

SDS generalize the concept of, for example, cellular automata (CA). Major
distinctions from CA include (1) SDS are considered over arbitrary graphs,
(2) for SDS the local maps can be applied multiple times while with CA the
rules are applied exactly once, and (3) the local maps of an SDS are applied
sequentially while for CA the rules are typically applied in parallel.

Much of the classical theory of dynamical systems over, e.g., R™ is based
on continuity and derivatives of functions. There are notions of derivatives
for the discrete case as well, but they do not play the same central role for
SDS or other finite dynamical systems. On a conceptual level the theory of
SDS is much more shaped by algebra and combinatorics than by the classi-
cal dynamical systems theory. This is quite natural since the main research

vi Preface

questions for SDS involve properties of the base graph, the local maps, and
the ordering on the one hand, and the structure of the discrete phase space
on the other hand. As an example, we will use Sylow’s theorems to prove the
existence of SDS-maps with specific phase-space properties.

To give an illustration of how SDS connects to algebra and combinatorics
we consider SDS over words. For this class of SDS we have the dependency
graph G(w,Y’) induced by the graph Y and the word w. It turns out that
there is a purely combinatorial equivalence relation ~y on words where equiv-
alent words induce equivalent SDS. The equivalence classes of ~y correspond
uniquely to certain equivalence classes of acyclic orientations of G(w,Y") (in-
duced by a natural group action). In other words, there exists a bijection
Wi/ ~y— U¢€¢ [Acyc(G(¢,Y))/ ~Fix(p)], Where Wy, is the set of words of
length k£ and @ is a set of representatives with respect to the permutation
action of Sy on words Wj.

The book’s first two chapters are optional as far as the development of
the mathematical framework is concerned. However, the reader interested in
applications and modeling may find them useful as they outline and detail
why SDS are oftentimes a natural modeling choice and how SDS relate to
existing concepts.

In the book’s first chapter we focus on presenting the main conceptual
ideas for SDS. Some background material on systems that motivated and
shaped SDS theory is included along with a discussion of the main ideas of
the SDS framework and the questions they were originally designed to help
answer.

In the second chapter we put the SDS framework into context and present
other classes of discrete dynamical systems. Specifically, we discuss cellular
automata, finite-state machines, and random Boolean networks.

In Chapter 3 we provide the mathematical background concepts required
for the theory of SDS presented in this book. In order to keep the book self-
contained, we have chosen to include some proofs. Also provided is a list of
references that can be used for further studies on these topics.

In the next chapter we present the theory of SDS over permutations. That
is, we restrict ourselves to the case where the words w are permutations of the
vertex set of Y. In this setting the dependency graph G(w,Y") is isomorphic
to the base graph Y, and this simplifies many aspects significantly. We study
invertible SDS, fixed points, equivalence, and SDS morphisms.

Chapter 5 contains a collection of results on SDS phase-space properties
as well as results for specific classes of SDS. This includes fixed-point charac-
terization and enumeration for SDS and CA over circulant graphs based on a
deBruijn graph construction, properties of threshold-SDS, and the structure
of SDS induced by the Boolean nor function.

In Chapter 6 we consider w-independent SDS. These are SDS where the
associated SDS-maps have periodic points that are independent of the choice
of word w. We will show that this class of SDS induces a group and that this

Preface vii

group encodes properties of the phase-space structures that can be generated
by varying the update order w.

Chapter 7 analyzes SDS over words. Equivalence classes of acyclic orien-
tations of the dependency graph now replace acyclic orientations of the base
graph, and new symmetries in the update order w arise. We give several com-
binatorial results that provide an interpretation of equivalence of words and
the corresponding induced SDS.

We conclude with Chapter 8, which is an outline of current and possible
research directions and application areas for SDS ranging from packet routing
protocols to gene-regulatory networks. In our opinion we have only started
to uncover the mathematical gems of this area, and this final chapter may
provide some starting points for further study.

A Guide for the Reader: The first two chapters are intended as background
and motivation. A reader wishing to proceed directly to the mathematical
treatment of SDS may omit these. Chapter 3 is included for reference to make
the book self-contained. It can be omitted and referred to as needed in later
chapters. The fourth chapter presents the core structure and results for SDS
and is fundamental to all of the chapters that follow. Chapter 6 relies on
results from Chapter 5, but Chapter 7 can be read directly after Chapter 4.

Each chapter comes with exercises, many of which include full solutions.
The anticipated difficulty level for each problem is indicated in bold at the
end of the problem text. We have ranked the problems from 1 (easy, routine)
through 5 (hard, unsolved). Some of the problems are computational in the
sense that some programming and use of computers may be helpful. These
are marked by the additional letter ‘C’.

We thank Nils A. Baas, Chris L. Barrett, William Y. C. Chen, An-
ders A. Hansson, Qing H. Hou, Reinhard Laubenbacher, Matthew Macauley,
Madhav M. Marathe, and Bodo Pareigis for discussions and valuable sugges-
tions. Special thanks to the researchers of the Center of Combinatorics at
Nankai University. We also thank the students at Virginia Tech University
who took the course 4984 Mathematics of Computer Simulations — their
feedback and comments plus the lecture preparations helped shape this book.
Finally, we thank Vaishali Damle, Julie Park, and Springer for all their help
in preparing this book.

Blacksburg, Virginia, January 2007 Henning S. Mortveit
Tianjin, China, January 2007 Christian M. Reidys

Contents

Preface v
1 What is a Sequential Dynamical System? 1
1.1 Sequential Dynamical Systems: A First Look................ 1

1.2 Motivationo. i 4

1.3 Application Paradigms 7
1.3.1 TRANSIMS ..t e 7

1.3.2 Task Scheduling and Transport Computations 13

1.4 SDS: Characteristics and Research Questions 16
1.4.1 Update Order Dependencies 16

1.4.2 Phase-Space Structure 17

1.5 Computational and Algorithmic Aspects 18

1.6 SUMIATY . . o vttt e 20
Problems 20
Answers to Problems 22

2 A Comparative Study 23
2.1 Cellular Automata. i, 23
2.1.1 Background 23

2.1.2 Structure of Cellular Automata 24

2.1.3 Elementary CARules.........., 27

2.2 Random Boolean Networks 33

2.3 Finite-State Machines (FSMs)............. 34
Problems 35
Answers to Problems 37

3 Graphs, Groups, and Dynamical Systems 39
3.1 Graphs.o 39
3.1.1 Simple Graphs and Combinatorial Graphs 41

3.1.2 The Adjacency Matrix of a Graph 44

3.1.3 Acyclic Orientationscouiiiinnneenn... 46

Contents

3.1.4 The Update Graph
3.1.5 Graphs, Permutations, and Acyclic Orientations.
3.2 Group Actionsiiii
3.2.1 Groups Acting on Graphs
3.2.2 Groups Acting on Acyclic Orientations...............
3.3 Dynamical Systems i
3.3.1 Classical Continuous Dynamical Systems
3.3.2 Classical Discrete Dynamical Systems
3.3.3 Linear and Nonlinear Systems.
Problems
Answers to Problems

Sequential Dynamical Systems

over Permutations L.
4.1 Definitions and Terminology oov....
4.1.1 States, Vertex Functions, and Local Maps
4.1.2 Sequential Dynamical Systems
4.1.3 The Phase Space of an SDS

4.1.4 SDS Analysis — A Note on Approach and Comments . .
4.2 Basic Properties.. ...

4.2.1 Decomposition of SDS
422 Fixed Points i
4.2.3 Reversible Dynamics and Invertibility
4.2.4 Invertible SDS with Symmetric Functions over Finite
Fields.o
4.3 Equivalence........
4.3.1 Functional Equivalence of SDS
4.3.2 Computing Equivalence Classes
4.3.3 Dynamical Equivalence..............
4.3.4 Enumeration of Dynamically Nonequivalent SDS
4.4 SDS Morphisms and Reductions
4.4.1 Covering Maps oottt
4.4.2 Properties of Covering Mapso ..
4.4.3 Reduction of SDS
4.4.4 Dynamical Equivalence Revisited
4.4.5 Construction of Covering Maps
4.4.6 Covering Maps over QF
4.4.7 Covering Maps over CirCp,ovviiniiineinn ..
Problems
Answers to Problems

Phase-Space Structure of SDS and

Special Systems
5.1 Fixed Points for SDS over Circ,, and Circppr oo oottt
5.2 Fixed-Point Computations for General Graphs

Contents

5.3 Threshold SDS
5.4 SDS over Special Graph Classes
5.4.1 SDS over the Complete Graph
5.4.2 SDS over the Circle Graph
5.4.3 SDS over the Line Graph
5.4.4 SDS over the Star Graph
5.5 SDS Induced by Special Function Classes...................
5.5.1 SDS Induced by (norg)s and (nandg)gco.nnn.
5.5.2 SDS Induced by (nory +nandg)g ««ovvvvvvennnnnnnnnn
Problems
Answers to Problems
Graphs, Groups, and SDS,
6.1 SDS with Order-Independent Periodic Points
6.1.1 Preliminaries i
6.1.2 The Group G(Y,Fy) ... i
6.1.3 The Class of w-Independent SDS
6.2 The Class of w-Independent SDS over Circ,,
6.2.1 The Groups G(Circa, Fire,) «««vvvveneninnaaa
6.3 A Presentation of S35 ...
Problems
Answers to Problems

Combinatorics of Sequential Dynamical Systems over

Words . ..o
7.1 Combinatorics of SDS over Words
7.1.1 Dependency Graphs,
7.1.2 Automorphisms i i
T.1.3 Words ..ot
7.1.4 Acyclic Orientations
7.1.5 The Mapping Oy .. .o vii i
7.1.6 A Normal Form Result.............................
7.1.7 The Bijection
7.2 Combinatorics of SDS over Words IT
7.2.1 Generalized Equivalences
7.2.2 The Bijection (P1) i
7.2.3 Equivalence (P2)
7.2.4 Phase-Space Relations
Problems
Answers to Problems
Outlook
8.1 Stochastic SDS
8.1.1 Random Update Order.............

8.1.2 SDS over Random Graphs

xii Contents
8.2 Gene-Regulatory Networks 217
8.2.1 Introduction i 217
8.2.2 The Tryptophan-Operon 218
8.3 Evolutionary Optimization of SDS-Schedules................ 220
8.3.1 Neutral Networks and Phenotypes of RNA and SDS ...220
8.3.2 Distances..........ouiiiiii 223
8.3.3 A Replication-Deletion Scheme...................... 226
8.3.4 Evolution of SDS-Schedules.............. 227
8.3.5 Pseudo-Codes......... ..., 228
8.4 Discrete Derivatives. 229
8.5 Real-Valued and Continuous SDS.......................... 231
8.6 L-Local SDS 233
8.7 Routing 234
8.7.1 Weights 234
8.7.2 Protocols as Local Maps 235
References 237
Index . ..o 245

1

What is a Sequential Dynamical System?

The purpose of this chapter is to give an idea of what sequential dynamical
systems (SDS)! are and discuss the intuition and rationale behind their struc-
ture without going into too many technical details. The reader wishing to
skip this chapter may proceed directly to Chapter 4 and refer to background
terminology and concepts from Chapter 3 as needed.

The structure of SDS is influenced by features that are characteristic of
computer simulation systems and general dynamical processes over graphs. To
make this more clear we have included short descriptions of some of the sys-
tems that motivated the structure of SDS. Specifically, we will discuss aspects
of the TRANSIMS urban traffic simulation system, transport computations
over irregular grids, and optimal scheduling on parallel computing architec-
tures. Each of these areas is a large topic in itself, so we have necessarily taken
a few shortcuts and made some simplifications. We have chosen to focus on
the aspects of these systems that apply to SDS.

Enjoy the ride!

1.1 Sequential Dynamical Systems: A First Look

To illustrate what we mean by an SDS, we consider the following example.
First, let Y be the circle graph on the four vertices 0, 1, 2, and 3. We denote this
graph as Circy—it is shown in Figure 1.1. To each vertex i of the graph we as-
sign a state x; from the state set K = {0, 1}, and we write = (z¢, z1, T2, T3)
for the system state. We also assign each vertex the symmetric, Boolean func-
tion nors: K3 — K defined by

nors(z,y,z) = (1+z)(1+y)(1+ 2),

1 We will write SDS in singular as well as plural form. The plural abbreviation
“SDSs” does not seem right from an aesthetic point of view. Note that the ab-
breviation SDS is valid in English, French, German, and Norwegian!

2 1 What is a Sequential Dynamical System?

0 1

3 2
Fig. 1.1. The circle graph on four vertices, Circy.

where addition and multiplications are modulo 2. You may recognize nors as
the standard logical nor function that returns 1 if all its arguments are zero
and that returns zero otherwise. We next define functions Nor;: K* — K*
for 0 <4 <3 by

Norg(zg, 1, x2, T3 nors(xs, To, 1), T1, T2, T3),
(
(
(

Nors(zo, 1, %2, 73

Nory (zo, 1, 2, T3

Nora(zo, 21,22, T3 To, T1,n0r3(T1, T2, 23), T3

)

) =
w3) =
w3) =
) =

o~ o~ o~ o~

)
To,nors(xg, 1, T2), T, L3),
)
)

Zo, X1, l’27n0r3($27933, l’o)

We see that the function Nor; may only change the state of vertex ¢, and
it does so based on the state of vertex ¢ and the states of the neighbors of
i in the graph Circy. Finally, we prescribe an ordering 7 = (0,1, 2,3) of the
vertices of Circy. All the quantities are shown in Figure 1.2. This is how the

Nor, Nor,

e T x,
n=(0,1,2,3)

b x,

Nor, Nor,

Fig. 1.2. Core constituents of an SDS: a graph (Circy), vertex states (zo through
x3), functions (Norg through Nors), and an update order (7 = (0,1, 2, 3)).

dynamics arise: By applying the four maps Nor; to, for example, the state
x = (xg,21,22,23) = (1,1,0,0) in the order given by 7, we get (as you should
verify)

(1,1,0,0) ¥%° (0,1,0,0) ¥ (0,0,0,0) T2 (0,0,1,0) ¥%* (0,0,1,0) .

In contrast to what would be the case for a synchronous or parallel update
scheme, note that the output from Norg is the input to Nory, the output from
Nory is the input to Nors, and so on. Effectively we have applied the composed
map

Nors o Nors o Nor; o Norg (1.1)

1.1 Sequential Dynamical Systems: A First Look 3

to the given state (1,1,0,0). This composed function is the SDS-map of
the SDS over the graph Circy induced by nor functions with update order
(0,1,2,3).

We will usually write [(Nor; circ,)i, (0,1,2,3)] or [Norcire,, (0,1,2,3)] for
the SDS-map. In other words, we have

[Norcir,, (0,1,2,3)](1,1,0,0) = (0,0,1,0) .

If we apply [Norcie,, (0,1,2,3)] repeatedly, we get the sequence of points
(1,1,0,0), (0,0,1,0), (1,0,0,0), (0,1,0,1), (0,0,0,0), (1,0,1,0), (0,0,0,1),
(0,1,0,0), and (0,0, 1,0), which then repeats. This is an example of an orbit.
You can see this particular orbit in Figure 1.3. Readers with a background
in classical dynamical systems should be on familiar grounds now and can
probably foresee many of the questions we will address in later chapters.

Although it may be obvious, we want to point out that the new vertex
states x; were calculated in a sequential order. You may want to verify that
(1,1,0,0) maps to (0,0,0,0) if the new vertex states are computed synchro-
nously or “in parallel.” The sequential update order is a unique feature of SDS.
Sequential and synchronous update schemes generally may produce very dif-
ferent dynamical behavior.

The above example is, of course, a very specific and simple instance of an
SDS, but exhibits all core features:

a finite graph Y,

a state for each vertex v,

a function F, for each vertex v,
an update order of the vertices.

In general, an SDS is constructed from a graph Y of order n, say, with
vertex states in a finite set or field K, a vertex-indexed family of func-
tions (Fy)y, and a word update order w = (wi,...,wy) where w; € v[Y].
The SDS is the triple (Y, (Fy)s,w), and we write the resulting SDS-map as
[Fy,w]: K™ — K™. It is given by

[FYaw]:meYO”'Ole,Yv (1'2)

and it is a time- and space-discrete dynamical system. Here is some terminol-
ogy we will use in the following: The application of the map F;, is the update
of the state x,, and the application of [Fy,w] to = (x,), is a system update.
The phase space of the map [Fy,w] is the directed graph I" defined by

viI'l = {z € K"},
e[l = {(z, [Fy,w](z)) |z € v[I},
where v[Y] and e[Y] denote the vertex set of Y and the edge set of Y, respec-

tively. Since the number of states is finite, it is clear that the graph I' is a
finite union of finite, unicyclic, directed graphs. You may want to verify that

4 1 What is a Sequential Dynamical System?

(0123) 1000
=~ 1100
0101 0010 “«

0011
0111\\: {
1011——> 0000 0100 «—1001
1101

1l 1010 0001

Fig. 1.3. The phase space of the SDS-map [Norcic,, (0,1, 2, 3)].

the directed graph in Figure 1.3 is indeed the phase space of the SDS-map
in the above example. Further instances of SDS phase spaces are displayed
in Figure 1.12. The phase space of an SDS encodes all of its dynamics. The
goal in the study of SDS is to derive as much information about the structure
of the phase space I as possible based on the properties of the graph Y, the
functions (F),),, and the update order w. Since the global dynamics is gener-
ated by composition of local dynamics, the analysis often has a local-to-global
character.

1.2 Motivation

In this section we provide some motivation for studying sequential dynami-
cal systems. The reader anxious to start exploring the theory may omit the
remainder of this section.

Let us start with the graph Y of an SDS. The graph structure is a natural
way to represent interacting entities, agents, brokers, biological cells, mole-
cules, and so on. A vertex v represents an entity, and an edge {v,v'} encodes
the fact that the entities corresponding to v and v’ can interact in some way.
An example of such a graph is an electrical power network. Physical compo-
nents in this network typically include power generators, distribution stations
or buses, loads (consumers), and lines. The meanings of these terms are self-
explanatory. In such networks generators, buses, and loads are represented
as vertices. Lines connect the other three types of components and naturally
represent edges. Only components connected by an edge can affect each other
directly. A particular (small) power grid is given in Figure 1.4.

Another example of an SDS graph is the social contact network for the
people living in some city or geographical region. In this network the indi-
viduals of the population are the vertices. There are various ways to connect
people by edges. One way that is relevant for epidemiology is to connect any
pair of individuals that were in contact or were at the same location for a
minimal duration on some given day. Clearly, this is a natural structure to
consider for the disease dynamics.

A third example arises in the context of traffic. We will study this in
detail in the next section. Here we just note that one way to represent traffic

1.2 Motivation 5

L,

Fig. 1.4. An example of a small electrical power network. Generators are labeled
G, buses are labeled B, and loads are labeled L. Edges represent physical lines.

by a graph is to consider vehicles as vertices and consider any two that are
sufficiently close on the road to be adjacent. In this particular case the graph
typically varies with time.

The function f, of a vertex v in an SDS abstracts the behavioral charac-
teristics of the corresponding entity. The input to this function is the state of
the entity itself and the state of its neighbors in the graph. In the electrical
power network the vertex state would typically include current and voltage.
A vertex function f uses voltage differences to its neighbors and the respective
currents to compute its new voltage or current level so that Kirchhoft’s laws
are satisfied locally at that vertex.

If we are studying disease propagation across a social contact network,
then the function f, could compute the total exposure to the contagious dis-
ease throughout a day and use that to determine if an uninfected individual
will become infected. Since the infection process inherently has some random
elements, one could think of making f, a random variable and thus obtain a
stochastic system.

For the traffic system the position and velocity are natural quantities to
include in the vertex state. Based on the open space in the lane ahead and
in the neighbor lanes, the function f, may determine if a vehicle will increase
its speed, slow down, change lanes, or move forward.

The update order of an SDS specifies the sequence in which the entities
have their states updated. In this book and for SDS in general, we oftentimes
consider update orders that are permutations or finite words over the vertex
set of the graph Y. Other choices of update schemes include, for example,
parallel update and infinite words. An infinite word corresponds closely to the
structure of event-driven simulations [1,2]. There are several reasons behind
our choice for the update order of SDS. Having a fixed and finite update order
gives us a dynamical system in a straightforward way: The composition of the
functions F), as specified by the permutation or word is a map F: X — X
and this map can be applied iteratively to states. However, if the update order
is given by some infinite word (w;)§°, then it is not so easy to identify such a
map F', and it is not obvious what the phase space should be.

6 1 What is a Sequential Dynamical System?

With a sequential or asynchronous update scheme we can naturally include
causal order. Related events do typically not happen simultaneously—one
event triggers another event, which in turn may trigger more events. With a
parallel or synchronous update scheme all events happen simultaneously. This
may be justified when modeling systems such as an ideal gas, but it is easy to
think of systems where the update order is an essential part that cannot easily
be ignored. Note also that the “sequential” in sequential dynamical system
does not imply a complete lack of parallelism. We will return to this in more
detail in Section 1.3.2. For now simply note that if we use the update order
m = (0,2,1,3) for the SDS over Circy in the introductory example, then we
may perform the update of vertices 0 and 2 in parallel followed by a parallel
update of vertices 1 and 3. Informally speaking, the SDS update is typically
somewhere between strictly parallel and strictly sequential.

We are not advocating the use of sequential update orders: It is obvi-
ous that it is crucial to determine what gives the best description of the
system one is trying to describe. Further aspects that potentially influence
the particular choice of model are to encompass efficient analysis and predic-
tion. Simply ignoring the modeling aspect and using a parallel update order
because that may map more easily to current high-performance computing
hardware can easily lead to models where validity becomes more than just a
concern.

Note also that any system that is updated in parallel can be implemented
as a sequential system. This is not a very deep observation and can be thought
of as implementing one-step memory. The principle of “doubling” the graph
as shown in Figure 1.5 can easily be used to achieve this. The process should
be clear from the figure.

o2 3

Fig. 1.5. Simulating a parallel system with a sequential system through “graph-
doubling.”

Returning to our traffic example, we see that the choice of scheduling
makes a difference for both modeling and dynamics. Consider a highway with
three parallel lanes with traffic going in the same direction. The situation
where two vehicles from the outer lanes simultaneously merge to the same
position in the middle lane requires special implementation care in a parallel
update scheme. With simultaneous lane changes to the left and right it is
easy to get collisions. Unless one has intentionally planned to incorporate
collisions, this typically leads to states that are overwritten in memory and
cars “disappear.” For a sequential update scheme this problem is simply non-
existent. There may, of course, be other situations that favor a parallel update

1.3 Application Paradigms 7

order. However, this just shows one more time that modeling is a nontrivial
process.

Readers familiar with transport computations and sweep scheduling on
irregular grids [3], a topic that we return to in Section 1.3.2, will know how
important scheduling can be for convergence rates. As we will see, choosing
a good permutation order leads to computation convergence rates order of
magnitudes better than poorly chosen update orders. As it turns out, a par-
allel update scheme would in fact give the slowest convergence rate for this
particular class of problems.

1.3 Application Paradigms

In this section we describe two application and simulation frameworks that
motivated SDS and where SDS-based models are used. The first application
we will look at is TRANSIMS, which is a simulation system used for ana-
lyzing traffic in large urban areas. The second application is from transport
computations. This example will show the significance of sequential update
schedules, and it naturally leads to a general, SDS-based study of optimal
scheduling on parallel computing architectures.

1.3.1 TRANSIMS

TRANSIMS [4-8], an acronym for TRansportation ANalysis SIMulation
System, is a large-scale computer simulation system that was developed at
Los Alamos National Laboratory. This system has been used to simulate
and analyze traffic at a resolution level of individual travelers in large U.S.
metropolitan areas. Examples of such urban areas include Houston, Chicago,
and Dallas/Ft. Worth. TRANSIMS was one of the systems that motivated
the design of SDS. In this section we will give a fairly detailed description of
this simulation system with an emphasis on the car dynamics and the driving
rules. Hopefully, this may also serve to demonstrate some of the strengths of
discrete modeling.

TRANSIMS Overview

To perform a TRANSIMS analysis of an urban area, one needs (1) a popula-
tion, (2) a location-based activity plan for each person for the duration of the
simulation, and (3) a network description of all transportation pathways of
the area that is being analyzed. We will not go into details about how these
data are gathered and prepared. It suffices to say that the data in (1) and
(2) are generated based on extensive surveys and other information sources so
as to be statistically indistinguishable from the available data. The network
representation is essentially a complete description of the real transportation

8 1 What is a Sequential Dynamical System?

network of the given urban area, and it includes roadways, walkways, public
transportation systems, and so on.

The TRANSIMS simulation system is composed of two main modules: the
TRANSIMS router and the cellular automaton-based micro-simulator. The
router translates each activity plan for each individual into a detailed travel
route that can include several modes of travel and transportation. The travel
routes are then passed to the micro-simulator, which is responsible for exe-
cuting the travel routes and takes each individual through the transportation
network so that its activity plan is carried out. This is typically done on a
1-second time scale and in such a way that all constraints imposed on indi-
viduals from traffic driving rules, road signaling, fellow travelers, and public
transportation schedules are respected.

For the first iteration this typically leads to travel times that are too high
compared to real travel times as measured by survey data. This is because too
many routes involve common road segments such as highways, which leads to
congested traffic. In the second pass of the simulation a certain fraction of
the individuals that had too high travel times are rerouted. Their new routes
are handed to the micro-simulator, which is then run again. This iterative
feedback loop is repeated until one has realistic and acceptable travel times.
Note that the fraction of individuals that is rerouted decreases with each
iteration pass.

The TRANSIMS Micro-Simulator

The micro-simulator is constructed as a large, finite dynamical system. In
this section we will show some of the details behind this module. Admittedly,
this is a complex model, and we will make some simplifications. For instance,
TRANSIMS can handle many modes of transportation such as car travel,
public transportation, and walking. We will only consider car dynamics. The
vehicles in TRANSIMS can also have different lengths, but for simplicity we
will only consider “standard” vehicles.

We first need to explain the road network representation. The initial de-
scription of the network is in terms of links and nodes. Intersections are typical
examples of nodes, but there are also nodes where there are changes in road
structure such as at a lane merging point. A link is a road segment between
two nodes. A link has a certain length, a certain number of lanes in each traffic
direction, and possibly one or more lanes for merging and turning. For each
node there are a description of lane-link connectivity across nodes and also a
description of traffic signals if there are any. All other components found in
realistic road networks such as reversible lanes and synchronized signals are,
of course, handled too, but again, going into these details is beyond the point
of this overview.

This network description is turned into a cell-network description as fol-
lows. Each lane of every link is discretized into cells. A cell corresponds to a
7.5-meter lane segment, and a cell can have up to four neighbor cells (front,

1.3 Application Paradigms 9
€“— >75mlk—

cell i
?

]

—

Fig. 1.6. A TRANSIMS cell-network description. The figure shows a link with two
lanes in both directions. Cell ¢ and its immediate neighbor cells are depicted in the
lower link.

Fig. 1.7. Link and lane connectivity across a TRANSIMS node.

left, back, and right) as shown in Figure 1.6. A cell can hold at most one
vehicle. Link connectivity is specified across nodes as in Figure 1.7.

The wvehicle dynamics is specified as follows. First, vehicles travel with
discrete velocities that are either 0, 1, 2, 3, 4, or 5 measured in cells per update
time step. Each update time step brings the simulation 1 second forward in
time, and thus the maximal speed of viyax = 5 corresponds to an actual speed
of 5 x 7.5m/s = 37.5m/s = 135 kmh, or approximately 83.9 mph.

The micro-simulator executes three functions for each vehicle in every up-
date: (1) lane changing, (2) acceleration, and (3) movement. In the description
here we have ignored intersections and we only consider straight road segments
such as highways. This can be implemented through four cellular automata
(see Chapter 2):

®; — lane change decision,

®5 — lane change execution,
®3 — acceleration/deceleration,
®, — movement.

10 1 What is a Sequential Dynamical System?

These four cellular automata maps are applied in the order they are listed.
The maps ®; and ®- that take care of lane changing are, of course, only
applied when there is more than one lane in a given direction. For this reason
we start with the acceleration/deceleration pass, which is always performed.

Velocity Update/Acceleration

A vehicle has limited positive acceleration and can increase its speed by at
most 1 cell per second per second. However, if the road ahead is blocked, the
vehicle can come to a complete stop in 1 second. The map that is applied to
each cell 7 that has a car can be specified as the following two-step sequence:

1. vi=min(v+ 1, Umax, A(%)) (acceleration),
2. if [UniformRandom() < ppreax] and [v > 0], then v := v — 1 (stochastic
deceleration).

Here A(i) is free space in front of cell ¢ measured in cells, and ppreax is a
parameter. The reason for including stochastic deceleration is that this gives
driving behavior that matches real traffic patterns significantly better than
what is the case if this element is ignored. All the cells in the network are
updated synchronously in this pass.

Position Update/Movement

The update pass that handles vehicle movement takes place after the acceler-
ation pass. It is executed as follows:

If cell 4 has a car with velocity v > 0, then the state of cell i is set to zero.
If cell 7 is empty and if there is a car 6(¢) cells behind cell ¢ with velocity
0(i) + 1, then this car and its state are assigned to the state of cell i.

In all other cases the cell states are updated using the identity update.

Here 6(7) denotes the free space measured in cells behind cell ¢. The nature
of the velocity update pass guarantees that there will be no collisions. Again,
all the cells are updated synchronously.

Lane Changing

With multilane traffic, vehicles can change lanes. This is more complex and
requires that we specify rules for passing. Here we will make it simple and
assume that vehicles can pass other vehicles on both the left and the right
sides. The lane changes are done in parallel, and this requires some care. We
want to avoid having two vehicles change lanes with a common target cell.
The way this is handled in TRANSIMS is to only allow lane changes to the
left (right) on odd (even) time steps.

1.3 Application Paradigms 11

In order to describe the lane change in terms of SDS or cellular automata,
we need two stages: the lane-changing decision and the lane-changing execu-
tion. This is because an SDS-map or a cellular automaton rule is only allowed
to change the state of the cell that it is applied to. Of course, in an implemen-
tation these two stages can easily be combined with no change in semantics.

Lane Change Decision. The case where the simulation time ¢ is an odd
integer is handled as follows: If cell ¢ has a car and a left lane change to cell
j is desirable (A(i) < Umax and A(j) > A(i), and thus the car can go faster
in the target lane) and permissible (6(j) > Umax so that there is sufficient
space for a safe lane change), set this cell’s lane change state to 1 and to 0
otherwise. In all other circumstances the cell’s lane change state is set to 0.
The situation for even-numbered time steps is handled analogously with left
and right interchanged.

Lane Change: The case where the simulation time ¢ is an odd integer is
handled as follows: If there is a car in cell ¢ and this cell’s lane change state
is 1, then set the state of cell i to zero. Otherwise, if there is no car in cell
i, and if the right neighbor cell j of cell ¢ has its lane change state set to 1,
then set the state of cell ¢ to the state of cell j. In all other circumstances the
cell state is updated using the identity map. The case of even time steps t is
handled in the obvious manner with left and right interchanged.

Some of the update rules are illustrated in Figure 1.8 for the cell occupied
by the darker vehicle. Here § = A = 1 and we have A(l) = 2 and A(r) = 4,
while 6(1) and §(r) are at least 5. Here [and r refer to the left and right cell
of the given cell containing the darker vehicle, respectively.

\AAJ

> |EE > |[E5E
e =D

L
e > |

Fig. 1.8. Lane changing in the TRANSIMS cell network.

The overall computation performed by the micro-simulator update pass is
the composition of the four cellular automata maps given above and is given
by

@40@30@20@1 . (13)

Notes

The basic structure of sequential dynamical systems is clearly present in the
TRANSIMS micro-simulator. There is a graph where vertices correspond to
cells. Two vertices v and v’ are connected if their lane numbers differ by at
most one and if their position along the road differs by at most vyax cells.

12 1 What is a Sequential Dynamical System?

Each cell has a state that includes a vehicle ID, velocity, and a lane-changing
state. There is a collection of four different functions for each vertex that are
used for the four different update passes.

Although the four update passes are executed sequentially, we note that
there is no sequential update order within each update pass — they are all
done synchronously. So how does this relate to sequential dynamical systems?
To explain this, consider the road configuration shown in Figure 1.9. In Fig-
ure 1.9 a line of vehicles is waiting for the light to turn from red to green at
a traffic light. Once the light turns green, we expect the first row of vehicles
to start, followed by a short delay, then the next row of vehicles starts, and
so on. If we use a front-to-back (as seen from the traffic light) sequential up-
date order, we see that all the vehicles start moving in the first update pass.
This perfect predictive behavior is not realistic. If we use a back-to-front se-
quential update order, we see that this more resembles what is observed in
realistic traffic. Here is the key observation: For this configuration the parallel
update scheme gives dynamics that coincides precisely with the back-to-front
sequential update order dynamics. Thus, even though the implementation of
the model employs a synchronous update scheme, it has the semantics of a
sequential model. This also serves to point out that modeling and implemen-
tation are separate issues.

_ >

.%I%EIQ9

Fig. 1.9. A line of vehicles waiting for a green light at a traffic light.

Finally, we remark that this is a cell-based description or model of the
traffic system. It is also possible to formulate this as a wehicle-based model.
However, the cell-based formulation has the large advantage that the neigh-
borhood structure of each cell is fixed. This is clearly not the case in a vehicle-
based description where vertices would encode vehicles. In this case the graph
Y would be dynamic.

Discrete Modeling

As we have just seen, TRANSIMS is built around a discrete mathematical
model. In applied mathematics, and in science in general, continuous models
are much more common. What follows is a short overview of why TRANSIMS
uses discrete models and what some application features are that favor such
models.

It is an understatement to say that the PDE- (partial differential equa-
tions) based approach to mathematical modeling has proved itself as an
efficient method for both qualitative and quantitative analysis. Using, for

1.3 Application Paradigms 13

example, conservation laws, one can quickly pass from a system description
to a mathematical description based on PDEs or integral equations. For the
resulting systems there are efficient and well-established mathematical results
and techniques that allow one to analyze the systems both analytically and
numerically. This works very well for describing a wide range of phenomena
such as diffusion processes, fluid flows, or anywhere where the scales or di-
mensions warrant the use of such a macroscopic approach.

Conservation laws and PDEs have been used to study models of traffic
configurations [9]. These models can capture and predict, for example, the
movement of traffic jams as shocks in hyperbolic PDEs. However, for describ-
ing realistic road systems such as those encountered in urban traffic at the
level of detail found in TRANSIMS, the PDE approach is not that useful or
applicable. In principle, even if one could derive the set of all coupled PDEs
describing the traffic dynamics of a reasonably sized urban area, there is, for
example, no immediate way to track the movement of specific individuals.

The interaction between vehicles is more naturally specified in terms of
entity functions as they occur in SDS and cellular automata. As pointed out
in [10], we note that SDS- or cellular automata-based models can be imple-
mented more or less directly in a computational model or computer program.
This is in contrast to the PDE approach, which typically starts by deriving a
PDE or integral formulation of the phenomenon based on various hypotheses.
This is followed by a space and time discretization (i.e., model approximation)
and implementation using various numerical algorithms and error bounds to
compute the final “answer.” This final implementation actually has much in
common with an SDS or cellular automaton model: There is a graph (the
discretization grid), there are states at vertices, and there is a local function
at each vertex.

Some other advantages of discrete models are that they readily map to
software and hardware, they typically scale very well, and they can be imple-
mented on specialized and highly efficient hardware such as in [11].

This discussion on modeling is not meant to imply that discrete models
are “better” than continuous models. The purpose is simply to point out that
there are many phenomena or systems that can be described more naturally
and more efficiently through discrete models than through continuous models.
In the next section we describe a class of systems that naturally incorporate
the notion of update order.

1.3.2 Task Scheduling and Transport Computations

A large class of computational problems has the following structure. The
overall task has a collection 7 of N subtasks 7; that are to be executed.
The subtasks are ordered as vertices in a directed acyclic graph G, and a
task 7; cannot be executed unless all tasks that precede it in G have been
executed. The subtasks are executed on a parallel computing architecture
with M processors where each processor can execute zero or one subtask

14 1 What is a Sequential Dynamical System?

per processor cycle. Each subtask is assigned to a processor,? and the goal
is to minimize the overall number of processor cycles required to complete
the whole task by ordering the subtasks “appropriately” on their respective
processors.

To illustrate the problem, consider the directed acyclic graph in Fig-
ure 1.10. The overall task has four subtasks, and there are two processors.
We have assigned 71 and 75 to processor 1 and 73 and 74 to processor 2. With

Fig. 1.10. Four tasks to be executed on two processors constrained by the directed
acyclic graph shown.

our assignment it is easy to see that tasks 73 and 74 can be ordered any way
we like on processor 2 since these tasks are independent. But it is also clear
that executing 73 prior to 74 allows us to cut the total number of processor
cycles needed by one since processor 1 can be put to better use in this case.

T1,T2 T4,T3 T1,T2 T3,T4
Pass1 1 — Pass1 1 —
Pass 2 — 4 Pass 2 — 3
Pass3 — 3 Pass3 2 4
Pass4 2 — Pass4 — —

Admittedly, this is a trivial example. However, as the number of tasks
grows and the directed acyclic graph becomes more complex, it is no longer
obvious how to order the tasks. In the next section we will see how this problem
comes up in transport computations on irregular grids.

Transport Computations

Here we show an example of how the scheduling problem arises in trans-
port computations. We will also show how the entire algorithm used in the
transport computation can be cast as an SDS. Our description is based on [3].
Without going into too many details we can describe the transport problem to
be solved as follows. We are given some three-dimensional volume or region of
space that consists of a given material. Some form of transport (e.g., photons

2
Here we assume that the processor assignment is given. We have also ignored
interprocess communication costs.

1.3 Application Paradigms 15

or radioactive radiation) is passing through the volume and is being partially
absorbed. The goal could be to find the steady-state levels throughout the
volume.

In one numerical algorithm that is used to solve this problem the region
is first partitioned into a set of tetrahedra {T4,...,T,}. Since the geometry
of the volume can be arbitrary, there is generally no regularity in the tetrahe-
dral partition or mesh. The numerical method used in [3] to solve the problem
uses a set of three-dimensional vectors D = {Dy, ..., Dy} where each D; is
a unit vector in R®. These vectors are the sweep directions. Each sweep di-
rection D; induces a directed acyclic graph G; over the tetrahedra as shown
in Figure 1.11.3 Two tetrahedra T}, and T}, that have a common face will be
connected by a directed edge in G. If T, occur “before” Tj as seen from the
direction D;, then the edge is (T,,T}p). Otherwise the edge is (Tp,T,). Each

S
¥ NN
S—

Unstructured Mesh Induced Digraph

Fig. 1.11. Induced directed acyclic graphs in transport computations.

iteration of the numerical algorithm makes a pass over all the tetrahedra for
all directions at each execution step. The function f that is evaluated for
a tetrahedron and a direction is basically computing fluxes over the bound-
aries and absorption amounts. The algorithm stops when consecutive itera-
tions give system states that are close enough as measured by some suitable
metric.

For each direction D; the tetrahedra are updated in an order consistent
with the directed acyclic graph G; induced by the given sweep direction
D,. This is intuitively what one would do in order to have, e.g., radiation
pass through the volume efficiently in the numerical algorithm. If we were
to update the tetrahedron states in parallel, we would expect slower con-
vergence rates. (Why?) If we now distribute the tetrahedra on a set of M
processors, we see that we are back at the situation we described initially on
scheduling.

3 This is almost true. Some degenerate situations can, in fact, give rise to cycles.
These cycles will have to be broken so that we can get an acyclic directed graph.

16 1 What is a Sequential Dynamical System?

It should be clear that one pass of the numerical algorithm for a given
direction D; corresponds precisely to the application of an SDS-map [Fy, 7]
where Y is the graph obtained from G; by making G; undirected, and =«
is a linear order or permutation compatible with the directed acyclic graph
G; induced by D;. In general, there are several permutations 7 compatible
with D;. As we saw in the previous section, different linear orders may lead
to different execution times. We thus have an optimization problem for the
computation time of the algorithm where the optimization is over all linear
orders compatible with G;. In Chapters 3 and 4 we will introduce the no-
tion of update graph. The component structure of this graph, which is also
central to the theory and study of SDS, is precisely what we need to un-
derstand for this optimization problem. We note that the optimization prob-
lem can be approached in the framework of evolutionary optimization; see
Section 8.3.

1.1. How does the numerical Gauss—Seidel algorithm relate to SDS and the
transport computation we just described? If you are unfamiliar with this nu-
merical algorithm you may want to look it up in [12] or in a numerical analysis
text such as [13]. [2-]

1.4 SDS: Characteristics and Research Questions

Having constructed SDS from a graph, a sequence of vertex functions, and
a word, it is natural to ask how these three quantities are reflected in the
SDS-map and its phase space. Of course, it is also natural to ask what moti-
vated the SDS axiomatization itself, but we leave that question for the next
section.

1.4.1 Update Order Dependencies

A unique aspect of SDS is the notion of update order, and one of the first
questions we addressed in the study of SDS was when is [Fy,w] = [Fy,w']?
In other words, if we keep the graph and the functions fixed, when do two
different update orders yield the same composed map? In general, the an-
swer to this question depends on the graph, the functions, and the up-
date order. As an example of how the update order may affect the SDS-
map, consider the phase spaces of the four SDS-maps [Norci.,, (0, 1,2, 3)],
[Norcir,, (3,2,1,0)], [Norcie,,(0,1,3,2)], and [Norcie,,(0,2,1,3)], which
are displayed in Figure 1.12. It is clear from Figure 1.12 that the phase space
of [Norcie,, (0,1,2,3)] is different from all the other phase spaces. In fact,
no two phase spaces are identical. However, it is not hard to see that the
phase spaces of [Norcice,, (0, 1,2, 3)] and [Norci.,, (3,2,1,0)] are the same if
we ignore the states or labels. In this case we say that the two SDS-maps are
dynamically equivalent.

1.4 SDS: Characteristics and Research Questions 17

0123
(0123) 1000 1100 (3210) 000l 0011
0101 0010 1010 0100
0011 1100
0111\\: ,/ \ 1001 1110\\¢
1011— 0000 0100 «— 1101 — 0000 0010 <1001
1101/ \ / 1011/
111 1010 0001 nn 0101 1000
o11p 1110 o1rp Ol
0132)

1001—> 0100 0001 «—1100 (0213) 1001y~ O\ L0110

NG, 1011— 0100 0001 E—1110
0011-7 \-/ <1100

0110

0101
1(?1131\\‘* ¥ (\ /\0101
1011—> 0000 1010 1000 011l

1110 NG 0010___A 1101—> 0000 1000 0010

111 v -
161 N\, 1010

Fig. 1.12. Phase spaces for SDS-maps over the graph Circ4 where all functions are
given by nors. The update orders are (0, 1,2, 3) (upper left), (3,2, 1,0) (upper right),
(0,1,3,2) (lower left), and (0,2, 1,3) (lower right).

In Chapter 4 we will show that if the update order is a permutation of
the vertices of Circy, then we can create at most 14 different SDS-maps of
the form [Norcie,, 7] by varying the update order m. Moreover, we will show
that of these 14 different SDS-maps, there are only 3 non-isomorphic phase
space structures, all of which are represented in Figure 1.12. We leave the
verification of all these statements as Problem 1.2.

1.2. (a) Give a simple argument for the fact that [Norge,, (0,1, 3,2)] and
[Norcir,, (0,3, 1,2)] are identical as functions. Does your argument depend on
the particular choice of nor as vertex function? (b) Prove that the phase spaces
of the SDS-maps [Norcir,, (0,1,2,3)] and [Norci.,, (3,2,1,0)] are identical
as unlabeled, directed graphs. [14]

1.4.2 Phase-Space Structure

A question of a different character that often occurs is the following: What
are the states = (z,), such that

[Fy,wl(z) =z 7

Such a state is called a fized state or a fized point. Once a system reaches
a fixed point, it clearly will remain there. A fixed point is an example of an
attractor or invariant set of the system. More generally, we may ask for states
x such that

[Fy,w)*(z) =z, (1.4)

18 1 What is a Sequential Dynamical System?

where [Fy,w]*(x) denotes the k-fold composition of the SDS-map [Fy,w]
applied to z. Writing ¢ = [Fy,w], the k-fold composition applied to x is
defined recursively by ¢'(z) = é(x) and ¢*(z) = #(¢*~1(x)). The points z
that satisfy (1.4) are the periodic points of [Fy,w]. Fixed points and periodic
points are of interest since they represent long-term behavior of the dynamical
system. As a particular example, consider SDS over the graph Circg where
each vertex function f, is the majority function majoritys: {0,1}% — {0, 1}.
This function is given by the function table below. Note that the indices are
computed modulo 6.

majorityy 1 1 1 0 1 0 0 0

It is easy to see that the majority function is symmetric. We now ask
for a characterization of all the fixed points of such a permutation SDS. As
we will show later, the fixed points of this class of SDS do not depend on the
update order. It turns out that the labeled graph in Figure 1.13 fully describes
the fixed points. As we will see in Chapter 5, the vertex labels of this graph

)

(000)
VRN
(001) <—— (100)
Y A
(011) —— (110)
N
(111)

Fig. 1.13. Fixed points of majority-SDS-map over the graph Circg.

correspond to all possible local fized points, and a closed cycle of length n
corresponds to a unique global fixed point of the SDS-map [Majority ., ,7].

1.5 Computational and Algorithmic Aspects

Although the focus of this book is on the mathematical properties of SDS, we
want to point out that there is also a computational theory for SDS and finite
dynamical systems. To do this topic justice would require a book on its own,
and we will not pretend to attempt that here. Nevertheless, we would like to
give a quick view of some of the problems and questions that are studied in
this area.

One of the central questions is the reachability problem [14]. In its basic
form it can be cast as follows: We are given system states x and y and an
SDS-map ¢ = [Fy,n|. Starting from the system state x, can we reach the
system state y? In other words, does there exist an integer » > 0 such that

1.5 Computational and Algorithmic Aspects 19

¢"(x) = y? Of course, one way to find out is to compute the orbit of z and
check if it includes y, but even in the simplest case where we have states in
{0,1} the running time of this (brute-force) algorithm is exponential in the
number of graph vertices n = |v[Y]|. The worst-case scenario for this is when
all system states are on one orbit and y is mapped to z. For this situation
and with binary states we would need to compute 2™ — 1 iterates of ¢ before
we would get to y. A related problem is the fized-point reachability problem,
in which case we are given a system state x and the question is if there exists
an integer r > 0 such that ¢"+1(x) = ¢"(x).

We would, of course, like to devise algorithms that allow us to answer
these questions more efficiently than by the brute-force approach above. So
are there more efficient algorithms? Yes and no. The reachability problem is
computationally intractable? even in the special case of SDS with Boolean
symmetric vertex functions. So in the general case we are left with the brute-
force approach. However, more efficient algorithms can be constructed if we,
for example, restrict the classes of graphs and functions that are considered.
For instance, for SDS induced by nor vertex functions [see Eq. (4.9)] it is
known that the reachability problem can be solved by an algorithm with
polynomial running time [14]. The same holds for the fixed-point reachability
problem in the case of linear vertex functions over a finite field or a semi-ring
with unity. We have also indicated efficient ways to determine and count fixed
points in Section 1.4.2 when we have restrictions on the classes of graphs that
we consider.

Other computational problems for SDS include the permutation-existence
problem [16]. In this situation we are given states z and y, a graph Y, and
vertex functions (fy),. Does there exist a permutation (i.e., update order)
7 such that [Fy,n] maps to y in one step? That is, does there exist an
SDS update order 7 such that [Fy,n|(z) = y? Naturally, we would also like
to construct efficient algorithms to answer this if possible. The answer to
this problem is similar to the answer for the reachability problem. For SDS
with Boolean threshold vertex functions (see Definition 5.11), the problem is
NP-complete, but for nor vertex functions it can be answered efficiently. Note
that the reachability problem can be posed for many other types of dynamical
systems than SDS, but the permutation existence problem is unique to SDS.

The last computational problem we mention is the predecessor-existence
problem [16]: Given a system state z and an SDS-map ¢ = [Fy,], does
there exist a system state z such that ¢(z) = 2? Closely related to this is the
#predecessor problem, which asks for the number of predecessors of a system
state x. This problem has also been studied in the context of cellular automata
(see Section 2.1) in, for example, [17]. Exactly as for the previous problems
the predecessor existence problem is NP-complete in the general case, but can
be solved efficiently for restricted classes of vertex functions and/or graphs.
Examples include SDS where the vertex functions are given by logical And

4 The problem is PSPACE-complete; see, for example, [15].

20 1 What is a Sequential Dynamical System?

functions and SDS where the graphs have bounded tree-width [16]. Locating the
combined function/graph complexity boundary for when such a problem goes
from being polynomially solvable to NP-complete is an interesting research
question.

For more results along the same lines and for results that pertain to
computational universality, we refer the interested reader to, for exam-
ple, [14,16,18-20].

1.6 Summary

The notion of geographically or computationally distributed systems of inter-
acting entities calls for models based on dynamical systems over graphs. The
fact that real applications typically have events or decisions that trigger other
events and decisions makes the use of an update sequence a natural choice.
The update order or scheduling component is an aspect that distinguishes
SDS from most other models, some of which are the topic of the next chapter.

A Note on the Problems

You will find exercises throughout the book. Many of them come with full
solutions, and some include comments about how they relate to open problems
or to possible research directions. Inspired by [21] we have chosen to grade the
difficulty level of each problem from 1 through 5. A problem at level 1 should
be fairly easy, whereas the solution to a problem marked 5 could probably
form the basis for a research article.

Some of the exercises are also marked by a “C.” This is meant to indicate
that some programming can be helpful when solving these problems. Com-
puters are particularly useful in this field since in most cases the state values
are taken from some small set of integers and we do not have to worry about
round-off problems. The use of computers allows one to explore a lot more of
the dynamics, and it can be a good source for discovering general properties
that can be turned into proofs. Naturally, it can also be an effective method
for discovering counterexamples. In our work we have used everything from
C++ to Maple, Mathematica, and Matlab. Although we do not have any par-
ticular recommendation for what tools to use, we do encourage you to try the
computational problems.

Problems
1.3. Coupled map lattices (CML) [22,23] are examples of “classical” discrete

dynamical systems that have been used to study spatio-temporal chaos. In
this setting we have n lattice sites (vertices) labeled 0 through n — 1, and each

1.6 Summary 21

site ¢ has a state x; € R. Moreover, we have a map f: R — R. In, e.g., [22]
the state of each site is updated as

zi(t+1) = (1 —e)f(@i(t) + (¢/2) [f(@ira (t) + f(zia(1))] (1.5)

where € > 0 is a coupling parameter, and where site labels ¢ and i +n are iden-
tified. This can easily be interpreted as a discrete dynamical system defined
over a graph Y. What is this graph? [1+4]

22 1 What is a Sequential Dynamical System?

Answers to Problems

1.1. In their basic forms both the Gauss—Seidel and the Gauss—Jacobi algo-
rithms attempt to solve the matrix equation Ax = b by iteration. For simplic-
ity let us assume that A is a real n x n matrix, that = (z1,...,2,) € R™,
and that (z9,...,20) is the initial value in the iteration. Whereas the Gauss—
Jacobi scheme successively computes

k k-1
x; = | bi — E Qi T [aii s
J#i

the Gauss—Seidel scheme computes

[Lk k=1 -
x; = b — E aijr; — E aijT; [ai; .

7<i J>1

In other words, as one pass of the Gauss—Seidel algorithm progresses, the
new values for z¥ are immediately used in the later stages of the pass. For
the Gauss—Jacobi scheme only the old values 1’571 are used. The Gauss—
Seidel algorithm may therefore be viewed as a real-valued SDS-map over the
complete graph with update order (1,2,...,n).

1.2. (a) The two update orders differ precisely by a transposition of the two
consecutive vertices 1 and 3. Since {1,3} is not an edge in Circy, there is no
way that the new value of x; can influence the update of the state x3, or
vice versa. It is not specific to the particular choice of vertex function. (b)
The map v: {0,1}* — {0, 1}* given by (s, t,u,v) = (v,u,t, s) is a bijection
that maps the phase space of [Norcie,, (0,1,2,3)] onto the phase space of
[Norcir,, (3,2,1,0)]. This means that the two phase spaces look the same up
to relabeling. We will return to this question in Chapter 4.

1.3. The new value of a site is computed based on its own current value and
the current value of its two neighbors. Since site labels are identified modulo
n, the graph Y is the circle graph on n vertices (Circ,,).

In later work as in, for example, [23] the coupling scheme is more liberal
and the states are updated as

N
it +1) = (1= Of @) + > Flanlt),
k=1

where k is understood to run over the set of neighbors of site i. As you can
see, this corresponds more closely to a real-valued discrete dynamical system
where the coupling is defined by a graph on n vertices. In [24] real-valued
discrete dynamical systems over arbitrary finite directed graphs are studied.
We will discuss real-valued SDS in Section 8.5.

2

A Comparative Study

As we pointed out in the previous chapter, several frameworks and construc-
tions relate to SDS, and in the following we present a short overview. This
chapter is not intended to be a complete survey — the list of frameworks that
we present is not exhaustive, and for the concepts that we discuss we only pro-
vide enough of an introduction to allow for a comparison to SDS. Specifically,
we discuss cellular automata, random Boolean networks, and finite-state ma-
chines. Other frameworks related to SDS that are not discussed here include
interacting particle systems [25] and Petri nets [26].

2.1 Cellular Automata

2.1.1 Background

Cellular automata, or CA! for short, were introduced by von Neumann and
Ulam around 1950 [27]. The motivation for CA was to obtain a better for-
mal understanding of biological systems that are composed of many identical
components and where each component is relatively simple, at least as com-
pared to the full system. The design and structure of the first computers were
another motivation for the introduction of CA.

The global dynamics or pattern evolution of a cellular automaton is the
result of interactions of its components or cells. Questions such as to which
patterns can occur for a given CA (computational universality) and which CA
that, in an appropriate sense, can be used to construct descriptions of other
CA (universal construction) were central in the early phases [27,28]. Cellular
automata have been studied from a dynamical systems perspective (see, for
example, [29-33]), from a logic, automata, and language theoretic perspective
(e.g., [28,34,35]), and through ergodic theory and in probabilistic settings

! Just as for SDS we use the abbreviation CA for both the singular and plural
forms. It will be clear from the context which form is meant.

24 2 A Comparative Study

(e.g., [36-39]). Applications of cellular automata can be found, for example,
in the study of biological systems (see [40]), in hydrodynamics in the form
of lattice gases (see, for example, [41-43]), in information theory, and in the
construction of codes [44], and in many other areas. For further details and
overviews of the history and theory of CA, we refer to, e.g., [18,45-47].

2.1.2 Structure of Cellular Automata

Cellular automata have many features in common with SDS. There is an
underlying cell or lattice structure where each lattice point or cell v has a
state state x, taken from some finite set. Each lattice point has a function
defined over a collection of states associated to nearby lattice points. As a
dynamical system, a cellular automaton evolves in discrete time steps by the
synchronous application of the cell functions.

Notice that the lattice structure is generally not the same as the base graph
of SDS. As we will explain below, the notion of what constitutes adjacent
vertices is determined by the lattice structure and the functions. Note that in
contrast to SDS it is not uncommon to consider cellular automata over infinite
lattices.

One of the central ideas in the development of CA was uniform structure,
and in particular this includes translation invariance. As a consequence of this,
the lattice is typically regular such as, for example, ZF for k > 1. Moreover,
translation invariance also implies that the functions f, and the state spaces
S, are the same for all lattice points v. Thus, there are a common function f
and a common set S such that f, = f and S, = S for all v. Additionally, the
set S usually has some designated zero element or quiescent state sg. Note
that in the study of CA dynamics over infinite structures like Z*, one considers
the system states® z = (), where only a finite number of the cell states z,
are different from sg. Typically, S = {0,1} and so = 0.

Each vertex v in Y has a neighborhood nlv], which is some sequence of
lattice points. Again for uniformity reasons all the neighborhoods n[v] exhibit
the same structure. In the case of ZF the neighborhood is constructed from
a sequence N = (dy,...,d,,) where d; € Z*, and each neighborhood is given
asnfv] = v+ N = (v+dyi,...,v+dp). A global CA state, system state,
or CA configuration is an element z € S%°. For convenience we write zfv] =
(Tytdys - - - » Totd,) for the subconfiguration associated with the neighborhood
nlv).

Definition 2.1 (Cellular automata over Z*). Let S, N, and f be as above.
The cellular automaton with states in S, neighborhood N, and function f is
the map

Bp: S% — S5 bp((@))y = f(a0]). (2.1)

2 For cellular automata a system state z = (1), is usually called a configuration.

2.1 Cellular Automata 25

In other words, the cellular automaton dynamics results from the synchronous
or parallel application of the maps f to the cell states x,,.

We can also construct CA over finite lattices. One standard way to do this
is by imposing periodic boundary conditions. In one-dimension we can achieve
this by identifying vertices ¢ and i + n in Z for some n > 1. This effectively
creates a CA over Z/nZ. Naturally we can extend this to higher dimensions,
in which case we would consider k-dimensional tori.

Another way to construct a CA over a finite structure is through zero
boundary conditions. In one-dimension this means we would use the line graph
Line,, as lattice and add two additional vertices at the ends and fix their states
to zero; see Example 2.2.

Ezample 2.2 (One-dimensional CA). This example shows the three different
types of graph or grid structures for one-dimensional CA that we discussed in
the text. If we use the neighborhood structure given by N = (—1,0, 1), we see
that to compute the new state for a cell v the map f only takes as arguments
the state of the cell v and the states of the nearest neighbors of v. For this
reason this class of maps is often referred to as nearest-neighbor rules. The
corresponding lattices are shown in Figure 2.1. o

4 1

3 2

Fig. 2.1. From left to right: the lattice of a CA in the case of (a) Z, (b) Z/5Z with
periodic boundary conditions, and (c¢) Z/5Z with zero boundary conditions.

Two of the commonly used neighborhood structures N are the von Neu-
mann neighborhood and the Moore neighborhood. These are shown in Fig-
ure 2.2. For Z? the von Neumann neighborhood is

N = ((070)a (713 0)7 (Ov 71)3 (170)v (07 1)) .

The radius of a one-dimensional CA rule f with neighborhood defined by N
is the norm of the largest element of N. The radius of the rule in Example 2.2
is therefore 1.

We see that the lattice and the function of a cellular automaton give us
an SDS base graph Y as follows. For the vertices of Y we take all the cells. A
vertex v is adjacent to all vertices v in n[v]. If v itself is included in n[v], we
make the convention of omitting the loop {v,v}.

In analogy to SDS, one central goal of CA research is to derive as much
information as possible about the global dynamics of the CA map @ based
on known, local properties such as the map f and the neighborhood structure.

26 2 A Comparative Study

j+1 . o | o | @
J SRR o | e | e
j-1 . HERE)
i-1 i i+1 i-1 i i+1

Fig. 2.2. The von Neumann neighborhood (left) and the Moore neighborhood
(right) for an infinite two-dimensional CA.

The phase space of a CA is the directed graph with all possible configurations
as vertices, and where vertices x and y are connected by a directed edge (z, y)
if ¢(x) = y. Even in the case of CA over finite lattices, it is impractical to
display the whole phase space, and space-time diagrams (see Section 4.1) are
often used to visualize certain orbits or trajectories.

Ezample 2.3. The CA rule fgo is given by foo(zi—1, i, Tit1) = Ti—1 + Tig1
modulo 2. This linear function has been studied extensively in, for exam-
ple, [32]. In Figure 2.3 we have shown two typical space-time diagrams for the
CA with local rule fgo over the lattice Circsio. o

Fig. 2.3. Space-time diagrams for CA with cell function foo. In the left diagram
the initial configuration contains a single state that is 1. In the right diagram the
initial configuration was chosen at random.

CA differ from SDS in several ways. For instance, for CA the graph Y,
which is derived from the lattice and neighborhood n[v], is regular and trans-
lation invariant, whereas the graph of an SDS is arbitrary, although finite.
Furthermore, CA have a fixed function or rule, associated to every vertex,
while SDS have a vertex-indexed family of functions. Perhaps most impor-
tantly, CA and SDS differ in their respective update schemes. As a result, CA
and SDS differ significantly with respect to, for example, invertibility as we
will show in the exercises.

2.1 Cellular Automata 27

In principle one can generalize the concept of CA and consider them over
arbitrary graphs with vertex-indexed functions. One may also consider asyn-
chronous CA. The dynamics of the latter class of CA depends critically on
the particular choice of update order [48].

In the remainder of this section we will give a brief account of some basic
facts and terminology on CA that will be used in the context of SDS.

2.1.3 Elementary CA Rules

A large part of the research on CA has been concerned with the finite and
infinite one-dimensional cases where the lattice is Z/nZ and Z, respectively.
An example of a phase space of a one-dimensional CA with periodic boundary
conditions is shown in Figure 2.1. The typical setting uses radius-1 vertex
functions with binary states. In other words, the functions are of the form
f: F3 — Fy where Fo = {0,1} is the field with two elements. Whether the
lattice is Z or Z/nZ, we refer to this class of functions as the elementary CA
rules and the corresponding global CA maps as elementary CA.

Ezample 2.4. Let ®; be the CA with local rule f: F3 — Fy given by

flz,y,z2) = 1+ y)(1 + 2) + (1 + zyz). In this case we see that the state

(1,0,1,1) maps to (1,1,1,0). The phase space of @ is shown in Figure 2.4.
S

1111 —> 0000 <O

1000—1001—1011 1110<—0110<—0010

(D

0100 —1100—1101 0111 <—0011<—0001

C

Fig. 2.4. The phase space of the elementary CA of Example 2.4.

Enumeration of Elementary CA Rules

Clearly, there are |IF2||F§| = 28 = 256 elementary CA rules. Any such function
or rule f can be specified as in Table 2.1 by the values ag through a;. We
identify the triple z = (22,71, 70) € F3 with the decimal number k = k(z) =
2o - 22+ 2124 9. Let the value of f at x be ai, for 0 < k < 7.3 We can then
encode the map f as the decimal number » = r(f) with 0 < r < 255 through

3 In the literature the a;’s are sometimes ordered the opposite way.

28 2 A Comparative Study

(mi_l,mi,mi+1) 111 110 101 100 011 010 001 000
f a7 as a5 a4 a3z a2 a1 Qo

Table 2.1. Specification of elementary CA rules.

7
r=r(f)= Zaﬂi . (2.2)
=0

This assignment of a decimal number in {0,1,2,...,255} to the rule f was

popularized by S. Wolfram, and it is often referred to as the Wolfram enu-
meration of elementary CA rules [47,49]. This enumeration procedure can
be generalized to other classes of rules, and some of these are outlined in
Problem 2.2.

Ezample 2.5. The map paritys: F3 — Fy given by paritys(z1, 22, x3) = 1 +
29 + x3 with addition modulo 2 (i.e., in the field Fs) can be represented by

(xj—1252541) 111 110 101 100 011 010 001 000
parity 1 0 o0 1 0 1 1 0

and thus
r(paritys) =27 + 24 +22 +2=150. o

A lot of work has gone into the study of this rule [32], and it is often referred
to as the XOR function or the parity function. One of the reasons this rule has
attracted much attention is that the induced CA is a linear CA. As a result
all the machinery from algebra and matrices over finite fields can be put to
work [33,50].

2.1. What is the rule number of the elementary CA rule in Example 2.47

[1]

Equivalence of Elementary CA Rules

Clearly, all the elementary CA are different as functions: For different elemen-
tary rules f1 and fy we can always find a system state x such that the induced
CA maps differ for . However, as far as dynamics is concerned, many of the
elementary rules induce cellular automaton maps where the phase spaces look
identical modulo labels (states) on the vertices. The precise meaning of “look
identical” is that their phase spaces are isomorphic, directed graphs as in
Section 4.3.3. When the phase spaces are isomorphic, we refer to the corre-
sponding CA maps as dynamically equivalent. Two cellular automata @ and
&y with states in Fp are dynamically equivalent if there exists a bijection
h: Fy — F3 such that

Prroh=hody. (2.3)

The map h is thus a one-to-one correspondence of trajectories of ®; and P4 .
Alternatively, we may view h as a relabeling of the states in the phase space.

2.1 Cellular Automata 29

Ezxample 2.6. The phase spaces of the elementary CA with local rules 124
and 193 are shown in Figure 2.5. It is easy to check that the phase spaces
are isomorphic. Moreover, the phase spaces are also isomorphic to the phase

space shown in Figure 2.4 for the elementary CA 110. o
o010~ /N 010~ N
oIl 1101 C 1100 <—0100 30100 0001 C 0011 <—1011
10107 NI 1110 N
0110 1000 1010 o111
0001~y /»}10 ' ! 0101\10(@10 1001—>0000—> 1111 >
11— —>0000—
Lo~ 101 0101—= 1111 —> 0000 O 1Y
0011 1100

Fig. 2.5. The phase spaces of the elementary CA 124 (left) and 193 (right).

We will next show two things: (1) there at most 88 dynamically non-
equivalent elementary CA, and (2) if we use a fized sequential permutation
update order rather than a synchronous update, then the corresponding bound
for the number of dynamically non-equivalent systems is 136.

For this purpose we represent each elementary rule f by a binary 8-tuple
(az,...,ap) (see Table 2.1) and consider the set

R = {(az, ag, as, as, az, az, a1, ap) € F3} . (2.4)

Rules that give dynamically equivalent CA are related by two types of
symmetries: (1) 0/1-flip symmetries (inversion) and (2) left-right symmetries.
Let v: R — R be the map given by

~v(r = (az,as, a5, as, as, az,a1,a9)) = (o, a1, az, as, s, as, ag, az), (2.5)
where a equals 1 + a computed in Fy. With the map inv,, defined by
inv,: F3 — F5, invy(21,...,25) = (T1,...,%p) (2.6)
(note that inv? = id), a direct calculation shows that
Dyp)y=invodyso inv=!;

hence, 0/1-flip symmetry yields isomorphic phase spaces for ¢ and @.,y).
As for left-right symmetry, we introduce the map §: R — R given by

§(r = (a7, ap, a5, aq, as, az,a1,a0)) = (az,as, as, a1, ag, az,aq,a9) . (2.7)
The Circ,-automorphism 7 — n + 1 — 4 induces in a natural way the map
rev,: Fy — Fo, revp(21,...,20) = (T, ..., 21) (2.8)
(note revZ = id), and we have

@5“) =revoPyo rev!.

30 2 A Comparative Study

Ezample 2.7 (Left-right symmetry). The map defined by f(z1,z2,23) = x3
induces a CA that acts as a left-shift (or counterclockwise shift if periodic
boundary conditions are used). It is the rule r = (1,0,1,0, 1,0, 1,0) and it has
Wolfram encoding 170. For this rule we have 6(r) = (1,1,1,1,0,0,0,0), which
is rule 240. We recognize this rule as the map f(z1,z2,23) = x1, which is the
rule that induces the “right-shift CA” as you probably expected. o

In order to compute the number of non-equivalent elementary CA, we
consider the group G = (+,6). Since yod = §o~v and §? = 42 = 1, we have
G ={1,7,d,704d} and G acts on R. The number of non-equivalent rules is
bounded above by the number of orbits in R under the action of G and there
are 88 such orbits.

Proposition 2.8. Forn > 3 there are at most 88 non-equivalent phase spaces
for elementary cellular automata.

Proof. By the discussion above the number of orbits in R under the action of
G is an upper bound for the number of non-equivalent CA phase spaces. By
the Frobenius lemma [see (3.18)], this number is given by

N = Z |Fix(g) \le()| + |Fix(y)] + [Fix(8)| + [Fix(y 0 8)]) . (2.9)
nEG

We leave the remaining computations to the reader as Problem 2.2. O

2.2. Compute the terms |Fix(1)|, [Fix(y)|, |Fix(d)|, and |Fix(y o §)| in (2.9)

and verify that you get N = 88. [1]

Note that we have not shown that the bound 88 is a sharp bound. That is
another exercise — it may take some patience.

2.3. Is the bound 88 for the number of dynamically non-equivalent elemen-
tary CA sharp? That is, if f and g are representative rules for different orbits
in R under G, then are the phase spaces of &y and ¢, non-isomorphic as
directed graphs? [3]

Ezample 2.9. Consider the elementary CA rule numbered 14 and represented
asr = (0,0,0,0,1,1,1,0). In this case we have G(r) = {r,v(r), d(r), y0d(r)} =
{r14,7143, 84,7214 } using the Wolfram encoding. o

2.4. (a) What is RY (the set of elements in R fixed by all g € G) for the
action of G on the elementary CA rules R in (2.4)7

(b) Do left-right symmetric elementary rules induce equivalent permutation-
SDS? That is, for a fixed sequential permutation update order m, do we get
equivalent global update maps? What happens if we drop the requirement of
a fixed permanent updates order?

(c) What is the corresponding transformation group G’ acting on elementary
rules in the case of SDS with a fixed update order 77 How many orbits are
there in this case?

(d) Show that RS = RY". [2-C]

2.1 Cellular Automata 31

Other Classes of CA Rules

In addition to elementary CA rules, the following particular classes of CA
rules are studied in the literature: the symmetric rules, the totalistic rules,
and the radius-2 rules. Recall that a function f: K™ — K is symmetric if
for every permutation o € S,, we have f(o-x) = f(z) where - (z1,...,2,) =
(To-1(1)s -+ Te-1(ny). Thus, a symmetric rule f does not depend on the or-
der of its argument. A totalistic function is a function that only depends on
(21, ...,xy) through the sum > x; (taken in N). Of course, over Fy symmet-
ric and totalistic rules coincide. The radius-2 rules are the rules of the form
f: K% — K that are used to map (z;_2,Z;_1,Ti, Tit1, Ti1+2) to the new state
x} of cell 1.

In some cases it may be natural or required that we handle the state of a
vertex v differently than the states of its neighbor vertices when we update the
state x,. If the map f used to update the state v is symmetric in the arguments
corresponding to the neighbor states of cell v, we call f, outer-symmetric.

The classes of linear CA over finite fields and general linear maps over
finite fields have been analyzed extensively in, e.g., [32,33,50,51]. Let K be a
field. A map f: K™ — K is linear if for all o, 8 € K and all z,y € K™ we
have f(axz + By) = af(z) + Bf(Y). A CA induced by a linear rule is itself a
linear map. Linear maps over rings have been studied in [52].

Ezample 2.10. The elementary CA rule 90, which is given as foo(21, 22, 23) =
r1 + 3, is outer-symmetric but not totalistic or symmetric. The elementary
CA rule g(x1,z2,23) = (1 + 21)(1 + 22)(1 + x3), which is rule 1, is totalistic
and symmetric. Note that the first rule is linear, whereas the second rule is
nonlinear. o

Example 2.11. A space-time diagram of a radius-2 rule is shown in Figure 2.6.
By using the straightforward extension of Wolfram’s encoding to this class
of CA rules, we see that this particular rule has encoding 3283936144, or
(195,188,227,144) in the notation of [53]. o

In the case of linear CA over Z/nZ, we can represent the CA map through
a matrix A € K™*™. This means we can apply algebra and finite field theory
to analyze the corresponding phase spaces through normal forms of A. We will
not go into details about this here — a nice overview can be found in [33].
We content ourselves with the following result.

Theorem 2.12 ([33]). Let K be a finite field of order q and let M € K™*".
If the dimension of ker(M) is k, then there is a rooted tree T of size q* such
that the phase space of the dynamical system given by the map F(x) = Mz
consists of " cycle states, each of which has an isomorphic copy of T
attached at the root vertez.

In other words, for a finite linear dynamical system over a field, all the
transient structures are identical.

32 2 A Comparative Study

&

Fig. 2.6. A space-time diagram for the radius-2 CA over Z/10247Z with rule number
3283936144 starting from a randomly chosen initial state.

2.5. Consider the finite linear dynamical system f: F3 — F3 with matrix
(relative to standard basis)

0100
0000
0011
0010

Show that the phase space consists of one fixed point and one cycle of length
three. Also show that the transient tree structures at the periodic points are
all identical. [1]

2.6. Use the elementary CA 150 over Z/nZ to show that the question of
whether or not a CA map is invertible depends on n. (As we will see in
Chapter 4, this does not happen with a sequential update order.) [1+C]

2.7. How many linear, one-dimensional, elementary CA rules of radius r are
there? Give their Wolfram encoding in the case r = 1. [1+]

2.8. How many elementary CA rules f: F3 — Fy satisfy the symmetry
condition
fwicy,mi,2i1) = f(@igr, T4, 2i1)

and the quiescence condition
£(0,0,00=07

An analysis of the cellular automata induced by these rules can be found in,
e.g., [32,49]. [1]

2.2 Random Boolean Networks 33

2.2 Random Boolean Networks

Boolean networks (BN) were originally introduced by S. Kauffman [54] as a
modeling framework for gene-regulatory networks. Since their introduction
some modifications have been made, and here we present the basic setup as
given in, e.g., [55-58], but see also [59].

A Boolean network has vertices or genes V. = {vy,...,v,} and func-
tions F' = (f1, ..., fn). Each gene v; is linked or “wired” to k; genes as specified
by amap e;: {1,...,k;} — V. The Boolean state x,, of each gene is updated
as

Loy; = fi(mei(l)’ s 7xei(ki)) 3

and the whole state configuration is updated synchronously. Traditionally, the
value of k; was the same for all the vertices. A gene or vertex v that has state 1
is said to be expressed.

A random Boolean network (RBN) can be obtained in the following ways.
First, each vertex v; is assigned a sequence of maps f* = (f{,..., f/.). At each
point ¢ in time a function f; is chosen from this sequence for each vertex at ran-
dom according to some distribution. The function configuration (f},...,)
that results is then used to compute the system configuration at time ¢ + 1
based on the system configuration at time ¢. Second, we may consider for a
fixed function f; over k;-variables the map e;: {1,...,k;} — V to be ran-
domly chosen. That amounts to choosing a random directed graph in which
v; has in-degree k;.

Since random Boolean networks are stochastic systems, they cannot be
described using the traditional phase-space notion. As you may have expected,
the framework of Markov chains is a natural way to capture their behavior.
The idea behind this approach is straightforward and can be illustrated as
follows.

Let 0 < p < 1.0 and let i € Z/nZ be a vertex of an elementary CA (see
the previous section) with update function f and states in {0,1}. Let f’ be
some other elementary CA function. If we update vertex i using the function
f with probability p and with function f’ with probability (1 — p) and use the
function f for all other vertices states, we have a very basic random Boolean
network. This stochastic system may be viewed as a weighted superposition
of two deterministic cellular automata. By this we mean the following: If the
state of vertex i is always updated using the map f, we obtain a phase space
I', and if we always update the state of vertex i using the function f/, we
get a phase space I". The weighted sum “pI" + (1 — p)f’” is the directed,
weighted graph with vertices all states of state space, with a directed edge
from x to y if any of the two phase spaces contains this transition. The weight
of the edge (z,v) is p (respective, 1 —p) if only I" (respective, I') contains this
transition, and 1 if both phase spaces contain the transition. In general, the
weight of the edge (z,y) is the sum of the probabilities of the configurations
that has an associated phase space, which includes this transition. We may

34 2 A Comparative Study

call the resulting weighted graph the probabilistic phase space. The evolution
of the random Boolean network may therefore be viewed as a random walk on
the probabilistic phase space. The corresponding weighted adjacency matrix
directly and naturally encodes the associated Markov chain matrix of the
RBN.

This Markov chain approach is the basis used for the framework of random
Boolean networks as studied by, e.g., Shmulevich and Dougherty [55]. The
following example provides a specific illustration.

Example 2.13. Let Y = Circg and, with the exception of fy, let each function
fi be induced by norz: F3 — Fa. For f, we use norz with probability p = 0.4
and parity,; with probability ¢ = 1 —p. In the notation above we get the phase
spaces I, I, and pl+ (1 — p)f as shown in Figure 2.7. o

001 —100=~—111

100 f 1o "
01o\>‘ 010 1?1\'2 % \:)‘6
/N 011 === 000 «——— 100 0.6

S~
110—000 111 50— 7~ X\ 06
0174 X _/ 101/'0(30_/011 1014(&0,3%6

001

Fig. 2.7. The phase spaces I, I', and pI" + (1 fp)f of Example 2.13.

The concept of Boolean networks resembles several features of SDS. For
instance, an analogue of the SDS dependency graph can be derived via the
maps e;. However, research on Boolean networks focuses on analyzing the
functions, while for SDS the study of graph properties and update orders is of
equal importance. As for sequential update schemes, we remark that aspects
of asynchronous RBN have been studied in [60].

2.3 Finite-State Machines (FSMs)

Finite-state machines (FSM) [61-63] and their extensions constitute another
theory and application framework. Their use ranges from tracking and re-
sponse of weapon systems to dishwasher logic and all the way to the “Al-
logic” of “bots” or “enemies” in computer games. Finite-state machines are
not dynamical systems, but they do exhibit similarities with both SDS and
cellular automata.

Definition 2.14. A finite-state machine (or a finite automaton) is a five-tuple
M = (K, X, 1,x9, A) where K is a finite set (the states), X is a finite set (the
alphabet), 7: K x ¥ — K is the transition function, xg € K is the start
state, and A C K is the set of accept states.

2.3 Finite-State Machines (FSMs) 35

Thus, for each state x € K and for each letter s € X' there is a directed
edge (x,xs). The finite-state machine reads input from, e.g., an input tape. If
the finite-state machine is in state z and reads the input symbol s € X, it
will transition to state xs. If at the end of the input tape the current state is
one of the states from A, the machine is said to accept the input tape. One
therefore speaks about the set of input tapes or sequences accepted by the
machine. This set of accepted input sequences is the language accepted by M.
An FSM is often represented pictorially by its transition diagram, which has
the states as vertices and has directed edges (z,7(x, s)) labeled by s.

If the reading of a symbol and the subsequent state transition take place
every time unit, we see that each input sequence ¢ generates a time series of
states (My(xo,t))i=0. Here M, (zo,t) denotes the state at time ¢ under the
time evolution of M given the input sequence o. The resemblance to finite
dynamical systems is evident.

Example 2.15. In real applications the symbol may come in the form of events
from some input system. A familiar example is traffic lights at a road inter-
section. The states in this case could be all permissible red—yellow—green con-
figurations. A combination of a clock and vehicle sensors can provide events
that are encoded as input symbols every second, say. The transition function
implements the traffic logic, hopefully in a somewhat fair way and in accord
with traffic rules. o

Our notion of all finite-state machine is often called a deterministic finite-
state machine (DFSM), see, e.g., [61], where one can find in particular the
equivalence of reqular languages and finite-state machines.

Problems

2.9. Enumeration of CA rules

How many symmetric CA rules of radius 2 are there for binary states? How
many outer-totalistic CA rules of radius 2 are there over Fo? How many outer-
symmetric CA rules of radius r are there with states in Iy, the finite field with
p elements (p prime)? [1+]

2.10. A soliton is, roughly speaking, a solitary localized wave that propa-
gates without change in shape or speed even upon collisions with other solitary
waves. Examples of solitons occur as solutions to several partial differential
equations. In [64] it is demonstrated that somewhat similar behavior occur in
filter automata.

The state space is {0,1}%. Let x' denote the state at time ¢. For a fil-
tered automaton with radius r and rule f the successor configuration to z? is
computed in a left-to-right (sequential) fashion as

t+1 t+1 t+1 ot .t t
€ = (Ii—m-'-vgji—laziazﬂrla'-'aIiJrr)'

36 2 A Comparative Study

Argue, at least in the case of periodic boundary conditions, that a filter au-
tomaton is a particular instance of a sequential dynamical system.
Implement this system as a computer program and study orbits starting
from initial states that contain a small number of states that are 1. Use the
radius-3 and radius-5 functions f3 and f5 where f: ngﬂ — F5 is given by

0 if each z; is zero,

fe(@ogy . 221,20, 21, ..., 2) = k i
> x; otherwise,

i=—k

where the summation is in Fo. Note that these filter automata can be simu-
lated by a CA; see [64]. [14+C]

2.3 Finite-State Machines (FSMs) 37

Answers to Problems

2.1. 110.

2.2. Every rule (ar,...,ap) is fixed under the identity element, so |Fix(1)| =
256. For a rule to be fixed under ~ it must satisty (a7, ...,a0) = (ao, ..., ar),
and there are 2% such rules. Likewise there are 25 rules fixed under § and 2*
rules fixed under v o §.

2.4. (b) No. The SDS of the left-right rule is equivalent to the SDS of the
original rule but with a different update order. What is the update order
relation? (¢) G’ = {1,~}. There are 136 orbits.

2.6. Derive the matrix representation of the CA and compute its determinant
(in Fy) for n = 3 and n = 4.

2.7, 22r+l
2.8. 25
2.9. (i) 26 = 64. (i) 2° - 2° = 210 = 1024. (i74) (227 F1)P.

2.10. Some examples of orbits are shown in Figure 2.8.

&

Fig. 2.8. “Solitions” in an automata setting. In the left diagram the rule f3 is used,
while in the right diagram the rule fs is used.

3

Graphs, Groups, and Dynamical Systems

In this chapter we provide some basic terminology and background on the
graph theory, combinatorics, and group theory required throughout the re-
mainder of the book. A basic knowledge of group theory is assumed — a
guide to introductory as well as more advanced references on the topics is
given at the end of the chapter. We conclude this chapter by providing a
short overview of the “classical” continuous and discrete dynamical systems.
This overview is not required for what follows, but it may be helpful in order
to put SDS theory into context.

3.1 Graphs

A graph Y is a four-tuple Y = (v[Y],e[Y],w, 7) where v[Y] is the vertex set
of Y and e[Y] is the edge set of Y. The maps w and 7 are given by

w:elY] — v[Y], 7:elY] — v[Y]. (3.1)

For an edge e € e[Y] we call the vertices w(e) and 7(e) the origin and ter-
minus of e, respectively. The vertices w(e) and 7(e) are the extremities of e.
We sometimes refer to e as a directed edge and display this graphically as
wle) © >7(e).

Two vertices v and v’ are adjacent in Y if there exists an edge e € e[Y]
such that {v,v'} = {w(e),7(e)}. A graph Y is undirected if there exists an

involution
e[Y] — e[Y], e e, (3.2)

such that e # e and 7(e) = w(e), in which case we have w(e) = 7(e) = 7(e).
We represent undirected graphs by diagrams — two vertices v; and vy and
two edges e and e with the property w(e) = v; and 7(e) = vy are represented
by the diagram v1 v2 . For instance, for the four edges eg, e, e1, and
e1 with w(eg) = w(e1) and 7(ep) = 7(e1), we obtain the diagram

40 3 Graphs, Groups, and Dynamical Systems

/—61\ —~
w(eo) 7(eo) , and the diagram L
\60'—/

represents the graph with vertex v = w(e) = 7(e) and edges e and e. In
the following, and in the rest of the book, we will assume that all graphs are
undirected unless stated otherwise.

A graph Y/ = (v[Y'],e[Y'],0',7') is a subgraph of Y if Y’ is a graph
with v[Y’] C v[Y] and e[Y’'] C e[Y], such that the maps v’ and 7’ are the
restrictions of w and 7. For any vertex v € v[Y] the graph Stary (v) is the
subgraph of Y given by

e[Stary (v)] = {e € e[Y] | w(e) = v or 7(e) = v},
v[Stary (v)] = {v' € v[Y] | Je € ¢[Stary (v)] : v =w(e) or v' =17(e)} .

We denote the ball of radius 1 around v € v[Y] and the sphere of radius 1
around v by

By (v) = v[Stary (v)], (3.3)
By (v) = By (v) \ {v}, (3.4)

respectively. A sequence of vertices and edges of the form
(V1,€1,+ -, U, €m, Umg1) where V1 <i<m, w(e)=wvs, 7(e;) = vig1

is a walk in Y. If the end points v; and v,,+1 coincide, we obtain a closed walk
or a cycle in Y. If all the vertices are distinct, the walk is a path in Y. Two
vertices are connected in Y if there exists a path in Y that contains both of
them. A component of Y is a maximal set of pairwise connected Y vertices.
An edge e with w(e) = 7(e) is a loop. A graph Y is loop-free if its edge set
contains no loops. An independent set of a graph Y is a subset I C v[Y] such
that no two vertices v and v’ of I are adjacent in Y. The set of all independent
sets of a graph Y is denoted Z(Y').

A graph morphism' p: Y — Z is a pair of maps ¢;: v[Y] — v[Z] and
pa2: e[Y] — e[Z] such that the diagram

QT] = e[f]
VY] x v[Y] —222 o VY] x v]Y]

commutes. A graph morphism ¢: Y — Z thus preserves adjacency.

3.1. In light of ¢3(e) = @a(e), show that if Y is an undirected graph, then
so is the image graph ¢(Y). [1]

! Graph morphisms are also referred to as graph homomorphisms in the literature.

3.1 Graphs 41

A bijective graph morphism of the form ¢: Y — Y is an automorphism of
Y. The automorphisms of Y form a group under function composition. This
is the automorphism group of Y, and it is denoted Aut(Y).

Let Y and Z be undirected graphs and let ¢: ¥ — Z be a graph mor-
phism. We call ¢ locally surjective or locally injective, respectively, if all the
restriction maps

@‘Stary(v): Stal’y(’U) B StarZ(‘P(U)) (35)

are all surjective or all injective, respectively. A graph morphism that is both
locally surjective and locally injective is called a local isomorphism or a cov-
ering.

Ezxample 3.1. The graph morphism ¢: Y — Z shown in Figure 3.1 is surjec-

tive but not locally surjective. o
Vi Vs Vi Vs
Y = vV, Vy — V2,4 =7
Vs Vs

Fig. 3.1. The graph morphism ¢ of Example 3.1.

3.1.1 Simple Graphs and Combinatorial Graphs

An undirected graph Y is a simple graph if the mapping {e, e} — {w(e), 7(e)}
is injective. Accordingly, a simple graph has no multiple edges but may contain
loops. Thus, the graph

Y = C v

is a simple graph. An undirected graph Y is a combinatorial graph if

/

wx 71:elY] — v[Y] x v[Y], e— (w(e), 7(e)), (3.6)

is injective. Thus, an undirected graph is a combinatorial graph if and only if
it is simple and loop-free. In fact, we have [65]:

Lemma 3.2. An undirected graph Y is combinatorial if and only if Y con-
tains no cycle of length < 2.

3.2. Prove Lemma 3.2. [1+4]

42 3 Graphs, Groups, and Dynamical Systems

Combinatorial graphs allow one to identify the pair {e,e} and its set of
extremities {w(e),7(e)}, which we refer to as a geometric edge. We denote
the set of geometric edges by €[Y], and identify €[Y] and e[Y] for combinato-
rial graphs.? Every combinatorial graph corresponds uniquely to a simplicial
complex of dimension < 1; see [66].

For an undirected graph Y there exists a unique combinatorial graph Y,
obtained by identifying multiple edges of Y and by removing loops, i.e.,

v[Ye] = v[Y], (3.7)
eYe] = {{w(e), 7(e)} | e € e[Y], w(e) # 7(e)} - (3.8)

Equivalently, we have a well-defined mapping Y +— Y.. Suppose Y is a combi-
natorial graph and ¢: Y — Z is a graph morphism. Then, in general, ¢(Y)
is not a combinatorial graph; see Example 3.5.

FEzample 3.3. Figure 3.2 shows two graphs. The graph on the left is directed
and has two edges e; and ey such that w(e;) = w(ez) = 1 and 7(e1) = 7(e2) =
2. It also has a loop at vertex 1. The graph on the right is the Peterson
graph, a combinatorial graph that has provided counterexamples for many
conjectures. o

1

= W

4 3
Fig. 3.2. The graphs of Example 3.3.

The vertex join of a combinatorial graph Y and a vertex v is the combi-
natorial graph, Y @ v, defined by

vlY @ v] = v[Y]U {v}, (3.9)
elY @v] =elY]U {{v,v'} | v € v[Y]}.

The vertex join operation is a special case of the more general graph join
operation [12].

Ezxample 3.4 (Some common graph classes). The line graph Line,, of order n is
the combinatorial graph with vertex set {1,2,...,n} and edge set {{i,i+1} |
i=1,...,n—1}. It can be depicted as

2 Graph theory literature has no standard notation for the various graph classes.
The graphs in Definition (3.1) are oftentimes called directed multigraphs. Refer
to [12] for a short summary of some of the terms used and their inconsistency!

3.1 Graphs 43

Line,: e—eo—@---- -- *—e
1 2 3 n—-1 n
The graph Circ,, is the circle graph on n vertices {0,1,...,n — 1} where two

vertices i and j are connected if i — j = £1 mod n.

3.3. (An alternative way to define paths and cycles in graphs) Prove that
for undirected graphs Y a path corresponds uniquely to a graph morphism
Line, — Y and a cycle to a graph morphism Circ,, — Y. [1+]

Ezample 3.5. The map ¢: Circg — Circg defined by ¢(0) = ¢(3) =0, ¢(1) =
v(4) = 1, and p(2) = ¢(5) = 2 is a graph morphism. It is depicted on
the left in Figure 3.3. Let Cy be the graph with vertex set {0,1} and edge
set {e1,e1,€2,e2}. The graph morphism v: Circy — Co given by ¥(0) =
P(2) =0, 9(1) = ¢(3) = 1, ({0,1}) = ¥({2,3}) = {e, ea}, and P({1,2}) =
¥({0,3}) = {e1,e1} is depicted on the right in Figure 3.3. o

9 1 0
(il 0 i
5 v
—>
5 0 |_)
4 5 2 3 2 1

Fig. 3.3. The graph morphisms ¢: Circe — Circz (left) and ¢: Circa — Cs (right)
from Example 3.5.

Using the vertex join operation we can construct other graph classes. For
example, the wheel graph, which we write as Wheel,,, is the the vertex join of
Circ,, and the vertex n so that

v[Wheel,] = {0,1,...,n},
e[Wheel,,] = e[Circ, U {{i,n}|i=0,....,n—1}.

44 3 Graphs, Groups, and Dynamical Systems

Wheel,, can be depicted as follows:

Wheel,,:
n-2
3 .

Finally, the binary hypercube Q5 is the graph where the vertices are
the n-tuples over {0,1} and where two vertices v = (x1,...,z,) and v/ =
(a},...,x)) are adjacent if they differ in precisely one coordinate. Clearly,
this is a graph with 2" vertices and (2" -n)/2 = n -2"~! edges. o

001 111
o
000 110

100

3.1.2 The Adjacency Matrix of a Graph

Let Y be a simple undirected graph with vertex set {vi,vs,...,v,}. The
adjacency matriz A or Ay of Y is the n x n matrix with entries a; ; € {0,1}
where the entry a; ; equals 1 if Y has {v;,v;} € &[Y] and equals zero otherwise.
Clearly, since Y is undirected, the matrix A is symmetric. The adjacency
matrix of a simple directed graph is defined analogously, but it is generally
not symmetric.

Example 3.6. As an example take the graph Y = Circy with vertex set
{1,2, 3,4} shown below.

3 2

Its adjacency matrix A is given by

0101
1010
0101
1010

3.1 Graphs 45

The following result will be used in Chapter 5, where we enumerate fixed
points of SDS.

Proposition 3.7. Let Y be a graph with adjacency matrix A. The number of
walks of length k in'Y that start at vertex v; and end at vertex v; is [Ak]m-,
the (i,7) entry of the kth power of A.

The result is proved by induction. Obviously, the assertion holds for k = 1.
Assume it is true for £ = m. We can show that it holds for k = m + 1 by
decomposing a walk of length m + 1 from vertex v; to vertex v; into a walk
of length m from the initial vertex v; to an intermediate vertex vy followed
by a walk of length 1 from the intermediate vertex vy to the final vertex v;.
By the induction hypothesis, [A™]; ; counts the number of walks from v; to
v, and A counts the number of walks from v, to v;. By multiplying A* and
A, we sum up all these contributions for all possible intermediate vertices vy.

Ezxample 3.8. We compute matrix powers of A from the previous example as
follows:

2020 0404 8080
. |0202 s l4040 . losos
A =19020] " A = |oa0a| ™A= 15050

0202 4040 0808

For example, there are four walks from 0 to 1 of length 3. Likewise there are
eight closed cycles of length 4 starting at vertex 0. o

A particular consequence of this result is that the number of closed cycles
of length n in Y starting at v; is [A"]; ;. The trace of a matrix A, written Tr A,
is the sum of the diagonal elements of A. It follows that the total number of
cycles in Y of length n is Tr A™.

The characteristic polynomial of an nxn matrix Ais x4(z) = det(xI—A),
where [is the nxn identity matrix. We will use the following classical theorem
in the proof of Theorem 5.3:

Theorem 3.9 (Cayley—Hamilton). Let A be a square matriz with entries
in a field and with characteristic polynomial x a(xz). Then we have

XA(A) =0.

That is, a square matrix A satisfies its own characteristic polynomial. For a
proof of the Cayley—Hamilton theorem, see [67].

Ezxample 3.10. The characteristic polynomial of the adjacency matrix of Circy
is x(x) = 2* — 422, and as you can readily verify, we have

8080 2020
e losos| lo2o2|
X(A) =47 —4A7= 1000l “4 2020 =0

0808 0202

the 4 x 4 zero matrix. o

46 3 Graphs, Groups, and Dynamical Systems
3.1.3 Acyclic Orientations
Let Y be a loop-free, undirected graph. An orientation of Y is a map
Oy : elY] — v[Y] x v[Y]. (3.10)

An orientation of Y naturally induces a graph G(Oy) = (v[Y],e[Y],w,T)
where w X 7 = Oy . The orientation Oy is acyclic if G(Oy) has no (directed)
cycles. The set of all acyclic orientations of Y is denoted Acyc(Y). In the
following we will identify an orientation Oy with its induced graph G(Oy).

/61\

Ezample 3.11. The four orientations of Z = 4, vy are
~eo—
—C1= £C1~ P T e1
V1 v vy va g v2 oy T = vy - o
~~eax7 ~-ep— ~eo—7 ~ey—

3.4. Prove that we have a bijection
B+ Acye(Y) — Acyc(Ye),
where Y. is defined in Section 3.1.1, Egs. (3.7) and (3.8). [14]

Let Oy be an acyclic orientation of Y and let P(Oy) be the set of all
(directed) paths 7 in G(Oy). Furthermore, let £2(w), T'(7), and ¢(7) denote
the first vertex, the last vertex, and the length of 7, respectively. We consider
the map rnk: v[Y] — N defined by

rmk(v) = Werge(xgy){f(ﬂ) | T(m) =v} . (3.11)

Any acyclic orientation Oy induces a partial ordering <o, by setting

v <o, v\ <= [vand v are connected in G(Oy) and rnk(v) < rnk(v')] .
(3.12)

Example 3.12. On the left side in Figure 3.4 we have shown a graph Y on five
vertices, and on the right side we have shown one acyclic orientation Oy of Y.
With this acyclic orientation we have rnk(1) = rnk(5) = 0, rnk(2) = rnk(4) = 1,

Fig. 3.4. A graph on five vertices (left) and an acyclic orientation of this graph
depicted as a directed graph (right).

and rnk(3) = 2. In the partial order we have 5 <p, 3, while 2 and 4 are not
comparable. o

3.1 Graphs 47
3.1.4 The Update Graph

Let Y be a combinatorial graph with vertex set {v,...,v,}, and let Sy be
the symmetric group over v[Y]. The identity element of Sy is written id.

Let Y be a combinatorial graph. Two Sy-permutations (v;,, ..., v;,) and
(Vnys-- -, Un,) are adjacent if there exists some index & such that (a) v;, = vp,,
I # k,k+1,and (b) {v;,,vi,,, } € e[Y]hold. This notion of adjacency induces a
combinatorial graph over Sy referred to as the update graph, and it is denoted
U(Y). The update graph has e[U(Y)] = {{o,n} | o,7 are adjacent}. We
introduce the equivalence relation ~y on Sy by

m~y m <= mand 7 are connected by a U(Y) path. (3.13)

The equivalence class of 7 is written [r]y = {7’ | #’ ~y 7}, and the set of
all equivalence classes is denoted Sy/ ~y. In the following we will assume
that the vertices of Y are ordered according to v; < v; if and only if ¢ < j.
An inversion pair (v.,vs) of a permutation m € Sy is a pair of entries in 7
satisfying m(v;) = v, and vy = 7(vg) with r > s and ¢ < k. The following
lemma characterizes the component structure of U(Y).

Lemma 3.13. Let Y be a combinatorial graph and let 1 € Sy . Then there
exists a U(Y') path connecting m and the identity permutation id if and only
if all inversion pairs (v, vs) of m satisfy {vr,vs} & e[Y].

Proof. Let m# = (vi,,...,v;,) # id and let (v;,vs) be an inversion pair of
7. If we assume that 7 and id are connected, then there is a corresponding
U(Y) path that consists of pairwise adjacent vertices 7' and 7 of the form
7 = (..,vv,...)and 7 = (...,v,v...). By the definition of U(Y") we
have {v,v'} € e[Y], and in particular this holds for all inversion pairs.
Moreover, if all inversion pairs (v,v’) of 7 satisfy {v,v'} & e[Y], then it is
straightforward to construct a path in U(Y") connecting 7 and id, completing
the proof of the lemma. O

Ezample 3.14. As an example of an update graph we compute U(Circy). This
graph has 14 components and is shown in Figure 3.5. We see that all the

0,123) e o (123,00 (321,00 «(21,03)
23,0,1)s (3012 (1,032 s (0321)

(0,1,3,2) e—= (0,3,1.2) (1,0,2,3) e—= (1,2,0.3)
(2,1,3,0) e (2,3,1,0) (3,0,2,1) =—= (3.2,0,])
(0,2,1,3) 0,2,3,1) (1,3,0,2) (1,3,2,0)
(2,0,1,3) (2,03.1) (1,3,0,2) (3,1,2,0)

Fig. 3.5. The graph U(Circy).

48 3 Graphs, Groups, and Dynamical Systems

isolated vertices in U(Circy) in Figure 3.5 correspond to Hamiltonian paths in
Circy. This is true in general. Why? o

3.1.5 Graphs, Permutations, and Acyclic Orientations

Any permutation 7 = (v4,,...,v;,) € Sy induces a linear ordering <, on
{viy,...,v;, } defined by v;, <r v;, if and only if r < h, where < is the
natural order. A permutation 7 of the vertices of a combinatorial graph Y
induces an orientation Oy (7) of Y by orienting each of its edges {v,v'} as
(v,0") if v < v and as (v',v), otherwise. It is clear that the orientation Oy ()
is acyclic. For any combinatorial graph Y we therefore obtain a map

fy: Sy — Acyc(Y), 7 Oy(m). (3.14)

In the following proposition, we relate permutations of the vertices of a com-
binatorial graph Y and the set of its acyclic orientations. The result also arises
in the context of the theory of partially commutative monoids and is related
to the Cartier-Foata normal form [68], but see also [69].

Proposition 3.15. For any combinatorial graph Y there exists a bijection
fy: [Sy/ Ny] — Acyc(Y) . (315)

Proof. We have already established the map fi: Sy — Acyc(Y). Our first
step is to show that f{, is constant on each equivalence class [r]y. To prove
this it is sufficient to consider the case with two adjacent vertices m and 7’
in U(Y). The general case will then follow by induction on the length of
the path connecting w and /. By definition, if = and «’ are adjacent, they
differ in exactly two consecutive entries, and the corresponding entries are not
connected by an edge in Y. Consequently, we must have f{-(7) = fi-(7'), and
we have a well-defined map

fy: [Sy/ ~y] — Acyc(Y) .

It remains to show that fy is a bijection. To this end, let Oy be an acyclic
orientation and consider the corresponding partition (k™' (h))o<n<n [Sec-
tion 3.1.3, Eq. (3.11)] of the vertices of Y. Let H = {h | rnk™'(h) # @ }, where
|H| =t + 1. We set k™ *(h) = (U,L‘}L7...7’U,L-;th) where v <z -+ <p v;ma for
h € H. It is straightforward to verify that

gy : ACyC(Y) - [SY/ NY]a OY = [(U'L(1)7 ey ’Uiglo sy /Uitl/ PR 7vi:"'t)]Y7
(3.16)
is a well-defined map satisfying
gyofy=id and fyogy =id,

and the proof of the proposition is complete. O

3.1 Graphs 49

The permutation

%:(vié,...,vigno,...,vi%,...,vi:nt) (3.17)

that we constructed in the above proof is called the canonical permutation of
[7]y. The element 7 is a special case of the Cartier—Foata normal form [68].

Ezample 3.16. Since we have |Acyc(Circy)| = 14, Proposition 3.15 shows that
U(Circy) has 14 components (Example 3.14). To find the canonical permuta-
tion of the component containing m = (2,0, 1, 3), we first construct the acyclic
orientation Oy (7):

O(m)({0,1}) = (0,1), (m)({1,2}) = (2,1),
0(7'()({2, 3}) = (27 3)’ (7‘[‘)({0, 3}) = (07 3) :

From this we get mk~'(0) = {0,2} and mk~'(1) = {1,3}, and therefore
7=(0,2,1,3). o

The bijection fy allows us to count the U(Y')-components. In Chapter 4 we
will prove that the number of components of U(Y) is an upper bound for the
number of functionally different sequential dynamical systems, obtained solely
by varying the permutation update order. We next show how to compute this
number through a recursion formula for the number of acyclic orientations of
a graph.

Let e be an edge of Y. The graph Y/ is the graph that results from Y by
deleting e, and the graph Y. is the graph that we obtain from Y by contracting
the edge e. Writing a(Y") = |Acyc(Y')|, we now have

aY)=alY")+aY"), (3.18)

(@)
(@]

where we have omitted the reference to the edge e. This recursion can be
found in [70], where acyclic orientations of graphs are related to the chromatic
polynomial x as

a(Y) = (=1)"x(=1) .
3.5. Prove the recursion relation (3.18). 2]

Note that a graph with no edges has one acyclic orientation. Any graph
map satisfying the relation (3.18) is called a Tutte-invariant. In Section 8.2.2
we will show how the acyclic orientations of a graph Y and the number a(Y)
are of significance in an area of mathematical biology.

Ezample 3.17. To illustrate the use of formula (3.18), we will compute the
number of acyclic orientations of Y = Circ,, for n > 3. Pick the edge e =
{0,n — 1}. Then we have Y/ = Line,, and Y. = Circ,,_1, and thus

a(Circ,) = a(Line,,) + a(Circ,,—1) = 2"~ ! + a(Circ,,_1) .

This recursion relation is straightforward to solve, and, using, for example,
a(Circg) = 6, we get a(Circ,,) = 2™ — 2. This is, of course, not very surprising
since there are 2™ orientations of Circ,, two of which are cyclic. Problem 3.8
asks for a formula for a(Wheel,,). o

50 3 Graphs, Groups, and Dynamical Systems

3.2 Group Actions

Group actions are central in the analysis of several aspects of sequential dy-
namical systems. Their use in the study of equivalence is one example. Recall
that if X is a set and if G is a finite group, then G acts on X if there is
a group homomorphism of G into the group of permutations of the set X,
denoted Sx, in which case we call X, a G-set. If G acts on X, we have a map

GxX—X, (g9,2)—gx,

that satisfies (1,z) = z and (gh,x) = (g, (h,z)) for all g,h € G and all x € X.
Let x € X. The stabilizer or isotropy group of x is the subgroup of G given
by
Go={9€G|gx=x},

and the G orbit of x is the set
G(z) ={gz|g e G} .
For each x € X we have the bijection
G/G, — G(x), ¢G,w— gz, (3.19)

which in particular implies that the size of the orbit of x equals the index of
the subgroup G, in G.

The lemma of Frobenius® is a classical result that relates the number of
orbits N of a group action to the cardinalities of the fized sets

3

Fix(g) ={z € X | gz ==z} .

Lemma 3.18 (Frobenius).

1 .
N = ¢ > [Fix(g)| (3.20)

geG

Proof. Consider the set M = {(g9,z) | g € G,z € X;gz = z}. On the one
hand, we may represent M as a disjoint union

=, Ao0) |2 € X5 go=a}

from which [M| = 3" [Fix(g)| follows. On the other hand, we can represent
M as the disjoint union

M=) _Alg.2)g€G gr=a},

3 This lemma is usually attributed to Burnside.

3.2 Group Actions 51

from which we derive [M| =) .+ |G.|. In view of (3.19) we conclude that
|Gz| = |G|/|G(z)|; consequently,

1
M| =|G = |GIN ,
MI=1613 0y =16

and the proof of the lemma, is complete. O

Let X be the set {1,2,...,n}, and let G be a group acting on X and on
the set K. Then the group action on X induces a natural group action on the
set of all maps f: {1,2,...,n} — K via

{o- f}1(@) = p f(p~'(2))- (3.21)

In particular, we may consider f as a n-tuple z = (21,...,2,) = (z;) € K".
If G acts trivially on K, we obtain the following action of G on K™:

GX K" — K", (p,(5)) = p- (25) = (2p-1(5))- (3.22)

It is clearly a group action: (hg)-(z;) = (x4-14-1(jy) = h-(g-(x;)). The action
-1 G x K™ — K™ on n-tuples induces a G-action on maps ¢: K™ — K" by

{po@}(wj) =p- (P(p~" - (27)) - (3.23)

3.2.1 Groups Acting on Graphs

Let G be a group and let Y be a combinatorial graph with automorphism
group Aut(Y"). Then G acts on Y if there exists a homomorphism from G into
Aut(Y). Equivalently, the group G acts on Y if it acts on v[Y] and e[Y], we
have the commutative diagrams

, (3.24)

i.e., gw(e) = w(ge) and g7(e) = 7(ge). If G acts on Y, then its action induces
the orbit graph G \'Y where

VIGAY]={G(v) [vev[Y]}, e[G\Y]={G(e)|eee[Y]},
and where wa\y X Ta\y : e[G \ Y] — v[G'\ Y] x v[G \ Y] is given by
Gle) = (G(w(e)), G(r(e))) -

The canonical map
mq: Y — G\Y, v— G®) (3.25)

is then a surjective and locally surjective morphism.

52 3 Graphs, Groups, and Dynamical Systems
3.6. Let G act on Y and let G, be the isotropy group of vertex v. Prove that
G, \ Stary (v) = Starg\y (G(v)) .
2]

The following example shows that the orbit graph of a combinatorial graph is
not necessarily a combinatorial graph.

Example 3.19. Consider the 3-cube shown in Figure 3.6. The permutation

4 8 7 Q O
¢ b
0 3 a d

| Jg 0

Fig. 3.6. The graph Y = Q3 and the orbit graph ((0,4)(1,5)(2,6)(3,7))\ Q3 shown
on the left and right, respectively.

= (0,4)(1,5)(2,6)(3,7) is an automorphism of Q3. Of course, since the orbits
of () coincide with the cycles of 7y, we see that the orbit graph Y = (v) \ Q3
has four vertices. If we denote the orbits containing 0, 1, 2, and 3 by a, b, ¢,
and d, respectively, we get the orbit graph shown on the right in Figure 3.6.
o

3.7. Give an example of a combinatorial graph Y and a group G < Aut(Y')
such that G\ 'Y is not a simple graph. [1+]

3.2.2 Groups Acting on Acyclic Orientations

Let Y be an undirected, loop-free graph and let G be a group acting on Y.
According to Eq. (3.22), if G acts on the graph Y, then G acts naturally on
the set of acyclic orientations of Y [Section 3.1.3, Eq. (3.10)]

Oy : e[Y] — v[Y] x v[Y]

(90y)(e) = g(Oy (g7 'e)) (3.26)

where G acts on v[Y] x v[Y] via g(v,v") = (g(v), g(v")). Furthermore, we set
G(v, ') = (G(v),G(v')) and

Acyc(Y)® = {0 € Acyc(Y) | Vg € G; gO = O} .

3.2 Group Actions 53

Suppose we have O(e) = (v,v"). We observe that gO = O is equivalent to
VgeG; O(ge) =g(O(e)) = (gv, gv") - (3.27)

In particular, we note that Fix(g) = Acyc(Y){?). Our objective is to provide a
combinatorial interpretation for the set Fix(g).

We first give an example.

Example 3.20. Let g = (v1,v3)(v2,v4), i.e., gu1 = v3, gva = v4, and g~ = g,

U1 V2 U1 > Vo
A
Y = and O =
\
V4 V3 V4 < V3

Then we have O € Acyc(Y)'9):
9(O({v1,v2})) = (vs,v4) = O({vs, va}) = O({gu1, gva}),
9(O({v1,v4})) = (vs,v2) = O({vs, v2}) = O({gv1, gva}) -

The canonical morphism 7, maps Y as

g
vy v
Y = — {v1,vs} {vz,va} =(@)\ Y,
V4 v3
~
and O induces the acyclic orientation {vq,v3} {va,v4} . o
-

The example illustrates how acyclic orientations of a combinatorial graph
Y fixed by a group G induce acyclic orientations of the orbit graph G\ 'Y in
a natural way. Let

mg:Y — G\Y, v — G(v;)

be the canonical projection. The map 7, is locally surjective, that is, for any
vertex v; of Y the restriction map

7TG|Stary(vj): Stary(vj) — Starg\y(G(vj))
is surjective.

Theorem 3.21. Let Y be a combinatorial graph acted upon by G. Then
(a) If G\'Y contains at least one loop, then Acyc(Y)¢ = @.
(b) If G\ 'Y is loop-free, then we have the bijection

B: Acyc(Y)Y — Acyc(G\Y), O~ Og, (3.28)
where O¢ is given by

VecelG\Y]; {w(e), m(e)} = {G(vi),G(vr)}, Ocle) = G(O{vi, vk })) -

54 3 Graphs, Groups, and Dynamical Systems

Proof. We first note that since Y is combinatorial its orbit graph G \ Y is
undirected.

Ad (a): Suppose G\ 'Y contains a loop. Then there exists a geometric edge
{vi, v} such that g'vy, = v; for some g’ € G. We consider the subgraph X of
Y with

e[X] = {{gvi,gur} €e[Y] | g€ G},
viX] = {v; € v[Y]| Jus € v[Y]; {vj,vs} € G({vi,vx}) } -

Any acyclic orientation O of Y induces by restriction an acyclic orientation
O of X. Suppose there exists some O € Acyc(Y)Y, ie., gO({vi,v1}) =
O({gvi, gvr}). Without loss of generality we can assume that v; is an origin
of the induced acyclic orientation @’ and in particular O’ ({v;, v }) = (vs, vg).
By construction, {¢'v;, g'vx} (note that g{v;,vp} = {gvi, guk}) is a geometric
X-edge, and we obtain

9'O({vi, i }) = (9'vi, g've) = O({g'vi, g'vr}),

which contradicts the fact that v; is an O’-origin. Thus, we have shown that
if G\ 'Y contains a loop, then O € Acyc(Y)% = 2.

Ad (b): By (a) we can assume without loss of generality that G\Y is loop-free.
Suppose we are given some O € Acyc(Y)“ and that G\ Y contains a subgraph
of the form

Z= G G(vr) -
The graph Z is the mg-image of the subgraph X of Y given by

e[X] = {{vr, v} € e[Y] [{vr, v} € G({visvi}) U G({vi, vs}) },
viX] = {v; € v[Y]| Jus € v[Y], {v;,vs} € e[X]}.

By construction, O induces a unique orientation on all orbits G({v;,vg}),
{vi,vp} € elY] [since O({gvi, gvi}) = gO({vi, vx})] and accordingly an orien-
tation of Z.
Claim 1. Any O € Acyc(Y)% induces exactly one of the following two acyclic
orientations of Z:

AN £

G(v;) G(vg) G(vi) G(vg) - (3.29)

7 X

We prove the claim by contradiction. The orientation O induces by restriction
the acyclic orientation O of X. We consider

malx : X — G(v;) G(vg) -

P
If @ induces the orientation 01 = G(v;) G(vg) , then no vertex of X
- G(Uk) is

7
C . L <
can be an @’-origin since 7| x is locally surjective and G(v;)

3.2 Group Actions 55

by assumption induced by O'. This contradicts the fact that O’ is an acyclic
orientation of X and the claim follows.

According to Claim 1, we can conclude that O € Acyc(Y)Y induces an
orientation Og of G\ Y in which all multiple edges are unidirectional.
Claim 2. We have the bijection

B: Acyc(Y)¢ — Acyc(G\Y), O — O,
where

VeeelG\Y]; {w(e),7(e)} = {G(v:), G(vk)}, Ocle) = GO{wi, vx})) -

We prove that O is acyclic by contradiction. Suppose there exists a (directed)
cycle in O¢g. Then there exists a subgraph C' of Y given by

C = (G(Uil), €1,..., 6]',1, G(Uij)7 6]')
with the property
Ouler) = {Gw({vmvw}) = (G(03,). G(vi,)) forr <
' G(O{vi;,vi}) = (G(vy;), G(viy) else.

We consider C' as a subgraph of G \ Y and introduce the subgraph P of Y
being the preimage of C' under wg:

e[P] = {{vr,vs} €e[Y] | G{vr,vs}) €{en | h=1,...5} },
v[P] = {v; | Jvs € v[Y] ; {vj,vs} € e[P]} .

(3.30)

The orientation O induces by restriction the acyclic orientation Op of the
subgraph P. Since mg|p: P — C is locally surjective and

GO{vi,, vy })) = (G(vi,), G(viy,),

no vertex of P can be an Op-origin, which is impossible; hence, Og is acyclic.
This proves that 3 is well-defined. The map 3 is bijective since each O €
Acyc(Y)% is completely determined by its values on representatives of the
edge-orbits G({v,,vs}). Therefore, O — Og¢ is a bijection, hence Claim 2,
and the proof of the theorem is complete. O

Ezxample 8.22. As an illustration of Claim 1 we show under which conditions
an orientation of the form G(v;) = _ G(vg) 1is induced. If

U1 (%) U1 > Vg
Y =

V4 V3 Vg4 < V3

56 3 Graphs, Groups, and Dynamical Systems

then O is fixed by (g = (v1,v3)(v2,v4))

gO({v1,v2}) = (v3,v4) = O({vs, va}) = O({gv1, gva}),
gO({v1,v4}) = (v2,v3) = O({vs, v2}) = O({gv1, gva}),

NS

and O induces the orientation {vi,vs} {vo,v4} . o
<

An immediate consequence of Proposition 3.21 is the objective of this
section: a combinatorial interpretation for the terms Fix(g) in the Frobenius
lemma.

Corollary 3.23. Let Y be a combinatorial graph acted upon by G. Then we
have

N = gy O Aeyella) \ V). (331)

geqG

Ezample 3.24. As an illustration of the counting result (3.31), we compute N
for Y = Circy and Y = Circs. First we note that any element v € Aut(Y)
such that a (y)-orbit contains adjacent Y-vertices does not contribute to the
sum since the corresponding orbit graph will have a loop and hence does not
allow for any acyclic orientations by Theorem 3.21. The automorphism group
of Circ,, is the dihedral group D,, with 2n elements. For Circy it is clear that
the identity permutation id is the only automorphism that induces loop-free
orbit graphs. Since (id) \ Y is isomorphic to Y, we derive

N(Circs) = 110 (a(Circs)) = 110(32 _9)=3.

For Circy we leave it to the reader to verify that the only automorphisms that
contribute to the sum in (3.31) are id, (0,2)(1,3), (0)(1, 3)(2), and (1)(0,2)(3)
and their respective orbit graphs are isomorphic to Circy, Lines, Lines, and
° e . Accordingly we obtain

1
N(Circy) = 8((16 —2)+22 422421 =3.
In Chapter 4 we will show that the number N represents an upper bound for
the number of dynamically nonequivalent SDS we can generate by varying the
permutation update order while keeping the graph and the functions fixed. <
3.3 Dynamical Systems
Classical dynamical system theory is concerned with how the state of a system

evolves as a function of one or more underlying variables. For the purposes of
this section we will always assume that the underlying variable is time.

3.3 Dynamical Systems 57

There are two main classes of classical dynamical systems: continuous sys-
tems where the time evolution is governed by a system of ordinary differential
equations (ODEs) of the form

dzx

&t = f(z), xz€ECR",

and discrete systems whose time evolution results from iterating a map
F:R" — R".

We can, of course, consider more general state spaces, but we will restrict
ourselves to R” in the following.

Let us now describe the two main classes of dynamical systems and give
basic terminology and definitions. Continuous and discrete systems differ in
some significant ways. To be able to speak about time evolution of the contin-
uous system we need to know that the ODE actually has a solution. If it has a
solution, it would also be convenient to know if such a solution is unique. For
a discrete system this is not a primary concern — the dynamics is obtained
by iterating the map F.

In light of this, we start by presenting conditions for existence and unique-
ness of solutions for systems of ODEs. We will then present a selection of
theorems for both continuous and discrete dynamical systems. In addition
to giving definitions and background information, the purpose of this is to
illustrate differences between the classical systems and discrete, finite dynam-
ical systems such as sequential dynamical systems (SDS), which is the main
topic of this book. As we will see later, the differences manifest themselves
in tools and analysis techniques and also in the nature of the questions that
are being posed. In contrast to the combinatorial and algebraic techniques
used to study sequential dynamical systems, the techniques used for classical
dynamical systems tend to rely on continuity and differentiability.*

3.3.1 Classical Continuous Dynamical Systems

The classical continuous dynamical systems appear in the context of systems
of ordinary differential equations of the form

¥ =F(x), z€FE, (3.32)

where FE is some open subset of R™ and F: E — R™ is a vector field on
E. Unless otherwise stated, we will assume that F' is at least continuously
differentiable on E, which we write as F' € C*(E), or smooth (infinitely dif-
ferentiable), which we write as F' € C*°(FE).

4 Of course, algebraic theory and combinatorial theory play an important part
in classical dynamical systems when analyzed through, for example, symbolic
dynamics.

58 3 Graphs, Groups, and Dynamical Systems

The vector field F' gives rise to a flow p;: E — R™, where () = ¢(t,)
is a smooth function defined for allz € Fand allt € I = (a,b) witha < 0 < b.
The flow satisfies (3.32), that is,

d
dt

For x € E and s,t,s+t € I, the flow has the properties [71]

o(z,)= = F(p(x,t')) forallze E, t' €.

po(x) =z and @io(x) = @i(ps()) -
The system (3.32) is often augmented by an initial condition
I(O) =x9 € FE.

In this case the solution of (3.32) — if it exists (actually it does, but more on
that below) — is the map z(t) = p(xo,t) satisfying 2(0) = xz¢. The map x(t)
defines an orbit or solution curve of the system (3.32) that passes through
xo. The geometric interpretation of a solution curve is as a curve in R™ that
is everywhere tangential to F, that is, 2/(t) = F(z(t)). The collection of all
solution curves of (3.32) is the phase space. The image of the phase space is
the phase portrait. Locally, the phase space and the phase portrait are given
by flow maps.

Ezxample 3.25. On the left in Figure 3.7 we have shown some of the solution
curves for the two-dimensional system

/

o = vy, Y=y +ay.
On the right we have shown some of the solution curves for the Hamiltonian
system (see, e.g., [72])

/

xr =y, y’:x+z2.

S
=

Fig. 3.7. Solution curves for the systems in Example 3.25.

3.3 Dynamical Systems 59

It is not obvious that (3.32) has a solution or, if it does, that such a
solution is unique. The following theorem summarizes the basic facts on these
questions:

Theorem 3.26. Let E be an open subset of R™, let xg € E, and assume that
F € CYE). Then
(i) There exists a > 0 such that the initial-value problem given by (3.32)
and z(0) = xo has a unique solution for t € (—a,a).
(i) There exists a mazimal open interval (o, B) for which the solution is
unique.

The standard proof of these statements is based on Picard’s method and
Banach’s fixed-point theorem. The interested reader is referred to, e.g., [72,73].
To be fair, we should state that the condition F' be continuously differentiable
is somewhat stronger than what is required. It is enough that F' is locally
Lipschitz on E, i.e.,

|f(z) = fy) | < K|z -yl

for all x,y in some sufficiently small open subset of F, and where K is some
finite constant (the Lipschitz constant).

So where are the dynamical systems? So far there have only been systems
of ordinary differential equations and flows.

Definition 3.27 (Dynamical system). Let E be an open subset of R".
A dynamical system is a C! map satisfying

1. ¢(0,z) = z for all x € E and
2. 0(t,p(s,2)) = p(t+ s,x) for all s, € R and all z € E.

As for flows we often write ¢(¢,z) as ¢:(x). It is clear that

Flz) =2

dtw(t .’I}) |t:O

defines a C' vector field on E and that for all xg € E the map o(t,z0) is a
solution to the initial-value problem

¥ =F(z), x(0)=ux.

The converse does not hold since the flow of (3.32) is generally only defined
on some finite interval I and not R. The interested reader may look up the
“global existence theorem” in [72] for a way to remedy this.

3.3.2 Classical Discrete Dynamical Systems

The classical discrete dynamical systems arise from iterates of a map

F:R" —R", (3.33)

60 3 Graphs, Groups, and Dynamical Systems

which is typically assumed to be continuous. Starting from an initial state
xo we get the forward orbit of xy denoted by OT(xg) as the sequence of
points xo, F(z0), F?(z0), F3(20),..., that is, OF (z0) = (F*(20))22,. Here
F*(xq) denotes the k-fold composition defined by F(xq) = z¢ and F¥(zq) =
F(F*1(z0)). If F is a homeomorphism, which means that F is continuous
with a continuous inverse, we define the backward orbit O~ (z¢) = (F*(20)),25
and the full orbit as O(wo) = (F*(20))3_ .-

The concept of flow is in this case captured directly in terms of the map
F. If F is a homeomorphism, we define the corresponding flow as

¢: R" x Z — R", ¢(x,t) = ¢y(x) = F'(x) . (3.34)

Again the phase space of the dynamical system induced by F' is the collection
of all orbits.

Ezample 3.28. The map F: R? — R? given by

F(z,y) = [a - b‘z - ﬂ (3.35)

is the Hénon map. It is a much-studied two-dimensional map [74] exhibiting
many of the properties typically associated with chaotic dynamical systems.
A part of its orbit starting at (0,0) is shown in Figure 3.8. It is an approxi-
mation of its “strange attractor.” o

Fig. 3.8. An orbit of the Hénon map of Example 3.28.

The goal of dynamical system theory is to understand as much as possi-
ble about the orbits of (3.32) and (3.33). In practice, certain states, orbits,
and phase-space features have received more research attention than others.
Classical examples include fixed points, periodic points, and limit cycles.

3.3 Dynamical Systems 61

Definition 3.29 (Fixed points, periodic points).

(i) The state xo of (3.32) or (3.33) is a fized point if for all t we have ¢(z,t) =
xo. The set of fixed points of ¢ is denoted Fix(¢).

(ii) The state xg is a periodic point if there exists 0 < ty < oo such that
¢(xo,t0) = xo. The smallest such value t(is the prime period of xg. If x¢ is
periodic, then the set I'(xg) = {¢(x0,t)|t} is the periodic orbit containing xg.
The set of all periodic points of ¢ is denoted Per(¢).

Fixed points and periodic orbits are examples of limit sets. More generally,
a point p is an w-limit point of x if there exists a sequence (¢, (x)); such that
¢t,(x) — p and t; — co. The set of all w-limit points of an orbit I" is denoted
w(I"). The notion of a-limit points is analogous, the only difference being that
t; — —o00. The set w(I") U (") is the limit set of I'. Thus, a periodic orbit is
its own w-limit set and a-limit set.

A subset E of R™ is a forward invariant set (backward invariant set) if for
all z € E we have ¢(z) € E for t > 0 (t <0).

The notion of invariant sets naturally extends to sequential dynamical
systems. This is not the case for the concept of stability. We say that a periodic
orbit I' of (3.32) is stable if for each € > 0 there exists a neighborhood U of
I" such that for all z € U the distance® d(¢y(z),I’) < ¢ for all t > 0. If
we additionally have lim; o d(¢¢(z),I") = 0, then I' is asymptotically stable.
An asymptotically stable periodic orbit is often referred to as a limit cycle.
Asymptotically stable fixed points are defined in the same manner although
they could, of course, be viewed as a special case of a periodic orbit.

3.3.3 Linear and Nonlinear Systems

Whenever the right-hand side in (3.32) or the map (3.33) is a linear function,
we refer to the system as linear. A system that is not linear is nonlinear.
Using matrix notation, linear systems of the form (3.32) and (3.33) can be
written as

dx
= A .
gt x (3.36)
and
F(z) = Ax .

These systems are well-understood. An extensive account of the continuous
linear systems is given in [71]. For a description of linear maps over finite
fields, see [33,50].

Of course, interesting systems are usually nonlinear, so a natural question
is why one should study linear systems. One reason is the celebrated Hartman—
Grobman theorem, which states that, subject to rather mild conditions, a
nonlinear system can locally be represented by a linear system — the two
systems are locally equivalent. However, before we present the details we first
need to clarify what we mean by equivalence.

5 For definitions see, for example, [72,73].

62 3 Graphs, Groups, and Dynamical Systems

Definition 3.30 (Topological equivalence). Two maps F,G: R* — R"
are topologically equivalent if there exists a homeomorphism A: R® — R”
such that

Goh=hoF. (3.37)

We close this chapter with the Hartman—Grobman theorem stated for
discrete dynamical systems.

Theorem 3.31 (Hartman—Grobman). Let F': R" — R" be a C' map,
and let xo be a fixed point of F such that the Jacobian DF (xo) has no eigen-
values of absolute value 1. Then there exists a homeomorphism h defined on
some neighborhood U of x¢ such that for all x € U

hoF = DF(xg)oh.

In other words, under the condition of the theorem the phase space of the
linear system and that of the nonlinear system are equivalent in some neigh-
borhood U of . A standard application of the Hartman—Grobman theorem
is to determine stability properties of fixed points. The problems at the end
of this chapter elaborates some more on these concepts and the use of Theo-
rem 3.31.

In Chapter 4 we will address the same question of equivalence in the con-
text of sequential dynamical systems. As will become clear, the lack of conti-
nuity and derivatives will make things a lot different.

References

The following is a list of references for the material presented in this chapter
that can be used for further study.

Algebra. There are many good introductory books to this area. Examples
include the books by Fraleigh [75] and Bhattacharya [76], where the latter is
somewhat more advanced. The books by Jacobson [77] and Hungerford [78§]
are classical texts, but they are typically considered more demanding. Van
der Waerden’s two volumes [79,80] based on the lectures of E. Artin and
E. Noether are highly recommended.

Combinatorics and Graph Theory. It can be hard to find good texts on
graph theory. Although written for an entirely different purpose, Serre’s book
on trees [66] contains an excellent section on graphs acted upon by groups.
Dicks’ book [81] is another nice reference on graphs and groups. Diestel’s
book [82] and Godsil and Royle’s book [83] are good choices. In combina-~
torics many like Riordan’s book [84]. We have not used this book, but we
can recommend van Lint and Wilson’s book [85]. Stanley’s book [21] is a de-
manding but excellent introductory combinatorics text that you should open
at least once.

3.3 Dynamical Systems 63

Dynamical Systems. For continuous dynamical systems, Hirsch and Smale’s
book [71] is a classic that we recommend. The book by Perko [72] provides an
alternative introduction to continuous dynamical systems. These two books
provide the necessary background for more advanced texts like the ones by
Guckenheimer and Holmes [86] and Coddington and Levinson [87]. Devaney’s
book [88] provides an introduction to discrete dynamical system, and the work
on one-dimensional dynamics presented by de Melo and van Strien [89] can
serve as an advanced followup text.

Problems
3.8. Compute a(Wheel,). [14]
3.9. Compute a(Q3). [2-]

3.10. Characterize U(K,) and U(FE,), where E, is the empty graph on n
vertices. [2-]

3.11. Show that different solution curves of (3.32) cannot cross. Can a solu-
tion curve of (3.32) cross itself? 2]

3.12. The logistic map is the map F,,: R — R given by
Fu(w) = pa(1—), (3.38)

with u > 0. It is also referred to as the quadratic family. Depending on the
value of u, the associated discrete dynamical system can exhibit fascinating
dynamics; see, e.g., [88]. In this problem we will see how to use Theorem 3.31
to study the stability properties of this dynamical system near its fixed points.

Show that the dynamical system has fixed points g = 0 and z, =1 —1/p.
The linearization of the dynamical system at xg is given by

dF
Tyl = (dx lo=0)z = pa . (3.39)

Use Theorem 3.31 and the linear system (3.39) to discuss the behavior of the

nonlinear dynamical system determined by F), around = 0 as a function of

w. What is dﬂb z=z, ! Use this to show that z, is an attracting fixed point

for 1 < p < 3. [2]

3.13. In this problem we will see how to apply Theorem 3.31 to the two-
dimensional discrete dynamical system from Example 3.28 (the Hénon map).
Recall that the map is given by (3.35):

F(x,y) = {aby"ﬂ,

T

64 3 Graphs, Groups, and Dynamical Systems

with F: R? — R? and a,b > 0. What are the fixed points of this system?
The linearization of this map at (zo, yo) is given by

B x| | —2x9 —b| |2
What are the eigenvalues of the matrix J in this case? Use this to determine
the stability properties of the fixed points for the original Hénon map as a
function of a and b. [2]

3.14. This problem illustrates the use of the Hartman—Grobman theorem for
two-dimensional continuous systems. We will elaborate on Example 3.25 and
consider the dynamical system given by

= f(ry) =y, ¥ =glay) =z+a”. (3.41)

An equilibrium point for this system is a point (xg,yo) where f and g are
simultaneously zero. What are the equilibrium points for (3.41)7

The linearization of (3.41) at a point (zg, yo) is

2! of of
ox 8y (130;110)

What is the Jacobian matrix J of (3.41) at a general point (z,y)? Compute
its value for the two equilibrium points you just found.

By an extension of Theorem 3.31 (see [71]) to the flow map of (3.41) we
have that the nonlinear system and its linearization at a point (xg,yo) are
topologically equivalent in a neighborhood of (xg,y) if the matrix J(xo,yo)
has no eigenvalues where the real part is zero. Find the eigenvalues of the
Jacobian matrix for both equilibrium points.

The linear system can be diagonalized. Use this to determine the stability
properties of the equilibrium point (0, 0). [2]

3.15. Consider the system of ordinary differential equations given by

a' =2y +yz,
y' =2z — 2z, (3.43)
2 =uxy.

It is clear that (0,0,0) is an equilibrium point of the dynamical system, but
since
0-20
J(0,0,0)= |2 0 0 (3.44)
000

3.3 Dynamical Systems 65

has eigenvalues 0 and +2i, we cannot apply the extension of Theorem 3.31 as
in the previous problem.

Let F' be the vector field associated with (3.43), and define the func-
tion V: R?* — R by V(z,y,2) = 22 +y? + 22. A key observation is that
V(z,y,z) > 0 for (z,y,z) # (0,0,0) and V(0,0,0) = 0. Moreover, the inner
product

V =gradV - F = 2x(—2y + yz) + 2y(2z — 222) + 22(zy) =0 .

What can you conclude from this? The function V' is an example of a Liapunov
function. [2]

66 3 Graphs, Groups, and Dynamical Systems

Answers to Problems

3.2. Proof of Lemma 3.2. Suppose we are given the two edges e, e, where
v =w(e), i.e., e v . Then we have e — (v,v) and e — (v,v), and Y is not
combinatorial. For a cycle of length 2,

€1

w(e) 7(e),

€2

we have the two different edges e, e2 such that e; — (w(ey),7(e1)) and ez —
(w(ea),(e2)), ie., Y is not combinatorial. Hence, if Y is combinatorial, it
contains no cycle of length < 2. Suppose Y contains no cycle of length < 2.
Then Y cannot contain multiple edges and has no loops, from which it follows
that w x 7 : e[Y] — v[Y] x v[Y] is injective.

3.5. The relation (3.18) can be proved as follows: Consider an acyclic ori-
entation O of Y’'. We observe that O induces at least one and at most two
acyclic orientations of Y. In the case it induces two acyclic orientations we can
conclude that it induces one acyclic orientation of Y, and Eq. (3.18) follows.

3.6. First we observe that G, acts on Stary (v) and consider the map
f: Gy)\ Stary (v) — Starg\y (G(v)), G, (V') — G(v') .

By construction, f is a surjective graph morphism. We show that f is injective.
Let e and e’ be two edges of Y with w(e) = w(e’) = v, and suppose G(e) =
G(e'). Then there exists some g € G such that ge = ¢’ holds. We obtain
w(ge) = gw(e) = w(e’) = v, and as a result gv = v, i.e., g € G,. The case
of two edges e, e’ with 7(e) = 7(¢’) = v is completely analogous. Hence, we
have proved the following: For any two edges e, e’ of Stary (v), G(e) = G(¢’)
implies G, (e) = G,(€’); hence, f is injective.

3.7. An example is Y = Circy with G the subgroup of Aut(Y") generated by
(0,2)(1,3) (cycle form).

3.8. 3" —3.
3.9. 1862.

3.11. Solution curves cannot cross — this would violate the uniqueness of
solution property.

3.12. By, for example, Banach’s fixed-point theorem [73] we see that the
fixed point xg = 0 is an attracting fixed point for 0 < g < 1. It is a repelling
fixed point for g > 1. One can also show that it is an attracting fixed point
for p = 1, but Theorem 3.31 does not apply in this situation.

Here d;;"bzxu =2—pu. Forl < pu<3wehave -1 <2—pu <1, and by
Banach’s fixed-point theorem, it follows that x, is an attracting fixed point
in this parameter range.

3.3 Dynamical Systems 67
3.13. Solving the equation for the fixed points gives
20 =yo = (~(1+) £ /(1 +0)* + 4a)/2.

Since a > 0 there are two fixed points. You may want to refer to [88] for more
information on the Hénon map.

3.14. Here f(z,y) = y and g(z,y) = x + 22 are simultaneously zero at (0, 0)
and (—1,0). The Jacobian matrix of the system is

T(z,y) = [1 f% (ﬂ . (3.45)

(1)(1)} and J(—1,0) = {_01(1)
values A = —1 and A = 1 and J(0,0) has eigenvalues A = —i and A = 1.
The point (0,0) is therefore an unstable equilibrium point for (3.41). It is an
example of a saddle point, which is also suggested by Figure 3.7. We cannot
apply the Hartman—Grobman theorem to the point (—1,0), but a symmetry
argument can be used to conclude that this is a center.

Here J(0,0) = {] The matrix J(0,0) has eigen-

3.15. Since V = 0, the solution curves to the system of ordinary differential
equations are tangential to the level surfaces of the function V. The origin is
a stable equilibrium point for this system. If we had V < 0 for (z,y,z) # 0,
we could have concluded that the origin would also be asymptotically stable
and thus an attracting equilibrium point. See, for example, [71].

4

Sequential Dynamical Systems
over Permutations

In this chapter we will give the formal definition of sequential dynamical
systems (SDS). We will study SDS where the update order is a permutation
of the vertex set of the underlying graph. In Chapter 7 we will extend our
analysis to update orders that are words over the vertex set, that is, systems
where vertices can be updated multiple times within a system update. Since
most graphs in this chapter are combinatorial graphs (Section 3.1.1), we will,
by abuse of terminology, refer to combinatorial graphs simply as graphs unless
ambiguity may arise.

4.1 Definitions and Terminology

4.1.1 States, Vertex Functions, and Local Maps

Let Y be a (combinatorial) graph with vertex set v[Y] = {v1,...,v,} and let
d(v) denote the degree of vertex v. We can order the vertices of By (v) using
the natural order of their indices, i.e., we set v; < vy, if and only if j < k and
consequently obtain the (d(v) + 1)-tuple

(Vj1s s Vjagoysn) -
We can represent the (d(v) + 1)-tuple (vjy,...,vj,, ,,) via the map
nvl: {1,2,...,d(v) + 1} — v[Y], i— vy, . (4.1)
For instance, if vertex vy has neighbors v; and vy, we obtain
nfve] = (nfv2](1), n[v2](2), n[v2](3)) = (vi,v2, vs5) -

We let K denote a finite set and assign a vertex state z,, € K to each vertex
v € v[Y]. In many cases we will assume that K has the structure of a finite
field. For K = F5 we refer to states as binary states. The choice of binary

70 4 Sequential Dynamical Systems over Permutations

states of course represents the minimal number of states we can have, but it
is also a common choice in, for example, the study of cellular automata.

The n-tuple of vertex states (zy,,..., %y,) is called a system state. We
will use z, y, z, and so on to denote system states. When it is clear from the
context whether we mean vertex state or system state, we may omit “vertex”
or “system.” The family of vertex states associated with the vertices in By (v)
[Eq. (3.3)] induced by n[v] is denoted z[v], that is,

z[v] = (Znj)(1)s - - - Tnfo](d@w)+1)) - (4.2)

When necessary, we will reference the underlying graph Y explicitly and write
n[v; Y] and x[v; Y], respectively. In analogy with our notation By (v) and
By (v) [Egs. (3.3) and (3.4)], we will write n'[v; Y] and a'[v; Y] for the corre-
sponding tuples in which v and z, are omitted, i.e.,

n'[v;Y] = (Vjis oy Dy ee ey Vg0) (4.3)
0 Y] = (Znf)(1)s - Bos - Lol (d(v)41))
where 0, Z,, means that the corresponding coordinate is omitted.

Ezample 4.1. Let Y = Circg, which has vertex set v[Circy] = {0,1,2,3} and
edges as shown in Figure 4.1. In this case we simply use the natural order on

3 2
Fig. 4.1. The graph Circ4.

v[Y] and obtain, for instance, n[0] = (0,1, 3) and n[1] = (0,1, 2). o
For each vertex v of Y the vertex function is the map
fo: KIOF K
We define the local function F,: K™ — K" by
Fo(x) = (g, ooy @,y fo, (X[V5])s Togyrs ooy @0y) - (4.5)

Thus, F,, maps all variables x,, # ., identically, and the v;th coordinate only
depends on the variables x,; with v; € By (v;). When we want to emphasize
the graph Y, we refer to a local map as F, y. Finally, we set Fy = (F,),.

4.1 Definitions and Terminology 71

4.1.2 Sequential Dynamical Systems

As in Section 3.1.4, we let Sy denote the symmetric group over the vertex
set of Y. We will use Greek letters, e.g., m and o, for the elements of Sy. A
permutation m = (71, ...,m,) € Sy naturally induces an order of the vertices
in Y through m; < 7; if i < j.

Throughout this book we will use the term family to specify an indexed
set. A family where the index set is the integers is a sequence.

Definition 4.2 (Sequential dynamical system). Let Y = (v[Y],e[Y],w, T)
be an undirected graph (Section 3.1), let (f,),ev[y] be a family of vertex func-
tions, and let m € Sy. The sequential dynamical system (SDS) is the triple
(Y, (Fy)y, 7). Its associated SDS-map is [Fy,7|: K™ — K™ defined by

[Fy,n]=F; oFy, ,o0---0F; . (4.6)

n—1

It is important to note that SDS are defined over undirected graphs and not
over combinatorial graphs. The main reason for this is the concept of SDS
morphisms, which involves graph morphisms. Graph morphisms generally do
not map combinatorial graphs into combinatorial graphs (see Section 3.1.1).
However, local maps are defined using the concept of adjacency, which is
independent of the existence of multiple edges, and we therefore obtain

(Y7 (FU)Uv 77) = ()/07 (Fv)vv 77) :

Accordingly, we postulate Y to be undirected for technical reasons arising
from the notion of SDS morphisms, and we may always replace Y by Y.

The graph Y of an SDS is referred to as the base graph. The application of
the Y-local map F), is the update of vertex v, and the application of [Fy, x| is
a system update. We will occasionally write H:lm F, for the right-hand side
of (4.6), where [] denotes the composition product of maps as in (4.6).

In Chapter 7, and in some propositions and problems, we also consider
SDS where the update order is a word w = (w1,...,wy) over v[Y], that is,
a sequence of Y-vertices. For future reference, we therefore define an SDS
over a word w as the triple (Y, (F,),,w), where its associated SDS-map is
[Fy,w]: K™ — K" defined by

[Fy’w]:kaonk—lo...onl' (47)
In this context we use the terminology permutation-SDS and word-SDS to
emphasize this point as appropriate.

Ezxample 4.3. Continuing Example 4.1 with the graph Y = Circy, we let each
vertex function be the function f: F3 — Fa that returns the sum of its
arguments in Fo. Thus, z; is mapped to f(zo,x1,22) = zo + 1 + 2. The
corresponding local map Fy : F3 — 3 is given by

Fi(zo, 21,22, 23) = (x0, 20 + 21 + 22,22, 73) .

72 4 Sequential Dynamical Systems over Permutations

Let K be a finite field. For a system state x € K™ we sometimes need
to compute the sum of the vertex states in N. Note that we include 0 in the
natural numbers so that N = {0,1,2,...}. This is done to distinguish this
sum from sums taken in the respective finite field K. We set

sum;: K' — N, sumy(zy,...,2;) =21 +---+2; (computed in N) . (4.8)

Below is a list of vertex functions that will be used throughout the rest of

the book. In these definitions we set = (x1, ..., zk).
nory: F5 — Ty, norg(x) = (1+21) - (1 +) (4.9)
nandy: Fy — Fo, nandg(z) =1+ --- a3 (4.10)
parity: F5 — Fo, parity, (z) = 21 + - - - + x4 (4.11)
1 0
org: FY — Fy, orp(z) =4 sumk(x.) ~ (4.12)
0, otherwise
andy: Fy — Fy, andy(z) = x1--- 2 (4.13)
1 < |k/2
minority, : F5 — Fy, minority, (z) = { sumk(x') = k/2) (4.14)
0, otherwise
> [k/2
majority,,: Fy — Fo, majority, (z) = { ’ sumk(x') = [k/2] (4.15)
0, otherwise

Note that all these functions are symmetric and Boolean. A function f: K! —
K is a symmetric function if and only if f(o - z) = f(x) for all x € K' and
all o € S} with o - z defined in (3.22). This is a natural class to study in the
context of SDS since they induce SDS, which allow for the action of graph
automorphisms.

Ezample 4.4. Let Y = Circy as in Example 4.1. For each vertex we use the
vertex function norz: F§ — Fy defined in (4.9) with corresponding Y-local
maps

Fy(x) = (nor(wo, x1,23), ¥1, T2, T3) ,
Fy(x) = (0, nor(zo, 21, 72), T2, 73) ,
Fy(z) = (zo, 71, n0r(x1, T2, 73), T3) ,
F3(x) = (29,71, T2, nor(z0, 22, 73)) .

Consider the system state z = (0,0,0,0). Using the update order 7 =
(0,1,2,3), we compute in order

Fy(0,0,0,0) =

Fy 0 Fy(0,0,0,0) =

Fy o0 Fy 0 Fy(0,0,0,0) =

F50 Fyo Fy 0 Fy(0,0,0,0) =

1,0,0,0),
1,0,0,0),
1,0,1,0),
1,0,1,0) .

~ o~ o~ o~

4.1 Definitions and Terminology 73

Thus, we have (F3 o F» o F; o F)(0,0,0,0) = (1,0, 1,0). In other words: The
map of the SDS over the graph Circy with nors as vertex functions and the
update order (0, 1,2,3) applied to the system state (0,0,0,0) gives the new
system state (1,0, 1,0). We write this as

[Norcie,, (0,1,2,3)](0,0,0,0) = (1,0,1,0) .

Repeated applications of (F3o Fy o F; o Fy) yield the system states (0,0,0,1),
(0,1,0,0), (0,0,1,0), (1,0,0,0), (0,1,0,1), and (0,0, 0,0) again. These system
states constitute a periodic orbit, a concept we will define below.

The crucial point to notice here is the importance of the particular order in
which the local maps F,, are applied. This distinguishes SDS from, for example,
generalized cellular automata where the maps F,, are applied synchronously.

o

Let (fu)vev[y] be a family of vertex functions for some graph Y. If all maps
are induced by a particular function, e.g., nor functions, and only vary in their
respective arity, we refer to the corresponding SDS-map as [Nory, 7).

A sequence (g;)1, with g;: K!' — K induces a family of vertex functions
(fo)vevly] by setting f, = gq(v)+1. The resulting SDS is then called the SDS
over Y induced by the sequence (g;)j'_,. Accordingly, an SDS is induced if all
vertices of Y of the same degree [have identical vertex functions induced by g;.
For instance, the SDS in Example 4.4 is induced by the function nors: F3 —
Fs.

In this book we use the following conventions:

vertex functions are all denoted in lowercase, e.g., nors,

local maps have the first letter in uppercase and the remaining letters in
lowercase, e.g., Nor,,,

the vertex-indexed family of local maps is written in bold where the first
letter is in uppercase and the remaining letters in lowercase, e.g., Nory =
(Nory)y-

4.1.3 The Phase Space of an SDS

Let = be a system state. As in Section 3.3.2 the forward orbit of x under
[Fy, 7] is the sequence O (z) given by

O"(z) = (z, [Fy,7|(z), [Fy,n)*(z), [Fy,n]*(z),...) .
If the SDS-map [Fy, 7] is bijective, we have the sequence
O(z) = ([Fy, 7' ())iez -

The orbit O (x) is often referred to as a time series. Since we only consider
finite graphs and the states are taken from finite sets, all orbits are finite.

In the case of binary states we can represent an orbit or time series as a
space-time diagram. A vertex state that is zero is represented as a white square

74 4 Sequential Dynamical Systems over Permutations

and a vertex state that is one is represented as a black square. A system state
x = (z1,22,...,2,) is displayed using the black-and-white box representations
of its vertex states and is laid out in a left-to-right manner. Starting from
the initial configuration each successive configuration is displayed below its
predecessor.

Example 4.5. In Figure 4.2 we have shown an example of a space-time dia-
gram. You may want to verify that [Norci.,, (0, 1,2, 3,4)] is an SDS-map that

generates this space-time diagram. o
cell
x=ioon 70 m
AARR t=2
Il B
t=4|
tr

Fig. 4.2. An example of a space-time diagram.

Example 4.6. A space-time diagram for an SDS over Circsio induced by
(parityy,)x is shown in Figure 4.3. o

Fig. 4.3. A space-time diagram for the SDS map [(Parity,)x, 7] starting from a
randomly chosen initial state = € F3'2. The update order is 7 = (0,1, ...,511).

The phase space of an SDS-map [Fy,w] is the directed graph I' =
I'([Fy,n]) defined by

VI = K", elll={(z,y) [z,y € K", y = [Fy,7](x)}, (4.16)
wxTell —v[[xv[[], (x[Fy,r](x))— (z,[Fy,r](x)).

4.1 Definitions and Terminology 75

The map w X 7 is injective by construction. As a result we do not have to
reference the maps w and 7 explicitly. As for combinatorial graphs, I" is com-
pletely specified by its vertex and edge sets. By abuse of terminology, we will
sometimes speak about the phase space of an SDS (Y, Fy,7), in which case
it is understood that we refer to its SDS-map.

In view of the definition of orbits and periodic points in Section 3.3.2, we
observe that ['-vertices contained in cycles are precisely the periodic points
of the SDS-map [Fy,n|. The set of periodic points of [Fy, x| is denoted
Per([Fy, 7). Likewise, the subset of I'-vertices contained in cycles of length 1
are the fixed points of [Fy, 7], denoted Fix([Fy,7]). The remaining I'-vertices
are transient system states. By abuse of terminology, we will also speak about
the periodic points and fixed points of an SDS.

Ezample 4.7. In Figure 4.4 we have shown all the system state transitions for
the SDS-map

[Norcire,, 7] = Nory, o Nory, o Nory, o Nory,: F3 — F3 |,

in the case of m = (0,1,2,3) and # = (0,2, 1, 3). It is easy to see that changing
the permutation update order can lead to SDS with entirely different phase

spaces. We will analyze this in detail in Section 4.3. o
0123
o 1000 1100 (0213) 1001~ O\ 0110
0101 0010 1011—>0100 0001 F_ 1110
0011 00117 N __A 1100
0111\\:
1011;;0000 0100 <1001
1101 0101
- \ / 0111 /_\
101 oo 1101—> 0000 1000 0010

AN 111"
OHE 1110 N, 1010

Fig. 4.4. The phase spaces for the SDS-maps of (Circa, Norcir,, (0,1,2,3)) and
(Circa, Norcir,, (0,2,1,3)) on the left and right, respectively. Clearly, the phase
spaces are different. We also note that the phase spaces are not isomorphic as di-
rected graphs.

As for presenting phases spaces, it is convenient to encode a binary n-tuple
x = (x1,22,...,%,) as the decimal number by

k= w270 (4.17)
=1

Example 4.8. In Figure 4.5 we have shown the phase space of the SDS
(Circg, Norcir,, (0,1,2,3)) using the regular binary n-tuple labeling and the
corresponding base-10 encoding given by (4.17). o

76 4 Sequential Dynamical Systems over Permutations

(0123)

1
el AN 3
(0123) 1000 1100 10 4 &
0101 doto < lzll\v/ \
0011
0111\\: f \ 13:: 0 2«9
1011— 0000 0100 <1001]477 \ /
1101 % \ 15 A
1l 1010 0001 S e > x
~_ T 7
o110 1110 6

Fig. 4.5. The phase space of (Circa, Norcir,, (0,1,2,3)) with binary states (left)
and base 10 encoded states (right).

4.1. Using the programming language of your choice, write functions that
convert a binary n-tuple to its decimal representation given by (4.17) and a
matching function that converts a decimal number to its corresponding n-
tuple. Are there limitations on this method, and, if so, is it a problem in
practice?

Assume the vertex states are from the finite set K = {0,1,...,¢}. We can
view the corresponding n-tuples as (g + 1)-ary numbers. Write functions that
convert between n-tuples with entries in K and their base-10 representations.
For example, if ¢ = 2, then the 4-tuple (2,1,0,1) has decimal representation
1-3340-3241-3'42-3% = 27+ 3+2 = 32. What is the decimal representation
of (3,1,2,0) assuming ¢ = 3? Assuming n = 6 and ¢ = 3, find the base-4,
6-tuple representation of 1234. [1C]

4.1.4 SDS Analysis — A Note on Approach and Comments

SDS analysis is about understanding and characterizing the phase-space struc-
ture of an SDS. Since SDS have SDS-maps that are finite dynamical systems,
we could in principle obtain the entire phase space by exhaustive computa-
tions. However, even small or moderately sized SDS with binary states over
graphs that have 100 vertices, say, would have 219 > 1030 states. As a re-
sult the main theme of SDS research is to derive phase-space information
based on the structure of the base graph Y, the local maps, and the update
order.

Let K ={0,1} and v[Y] = {v1,...,v,}. First, any SDS-map [Fy,n] is a
map from K™ to K™. So why not study general maps f: K™ — K"? The
reason is, of course, that SDS exhibit an additional structure that allows for
interesting analysis and results. In light of this, a natural question is there-
fore: When does a map f: K" — K" allow for an SDS representation? A
characterization of this class even for the subset of linear maps would be of
interest.

Let us revisit the definition of an SDS. Suppose we did not postulate the
graph Y explicitly. We can then obtain the base graph Y as follows: As a vertex

4.2 Basic Properties 7

set takes {v1,...,v,}, and as edges take all ordered pairs (v,v’) for which the
vertex function f, depends on the vertex state x,» where v # v'. As such, the
graph Y is a directed graph, but we can, of course, obtain a combinatorial
graph; see [90]. In other words, for a given family of local maps (F), there
exists a unique minimal graph Y that could serve as the base graph, and in
this sense the graph may be viewed as redundant in the definition of SDS.
We chose to explicitly reference the base graph in the definition since this
allows us to consider varying families of local maps over a given combinatorial
structure. In a way this is also why we did not try to define an SDS as just a
map but as a triple. In principle one could also speculate replacing the local
maps by an algebraic structure, like a ring or monoid, which would result in
a combinatorial version of a scheme [91].

4.2. What is meant by an SDS being induced? For the graph Circg, what
is n[5]? How is the function Nors defined in this case? [1]

4.3. Compute the phase space of [Majority, .., (2,1,3)]. [1]

4.2 Basic Properties

In this section we present some elementary properties of SDS.

4.2.1 Decomposition of SDS

As a lead-in to answer the question of SDS decomposition, we pose some
slightly more general questions. How does an SDS-map ¢ = [Fy, 7] depend
on the update order m, and under which conditions does [Fy,n] = [Fy,n]
hold? In other words, if we fix Y and the family of local maps (F,),, then
when do two permutations give rise to the same SDS-map?

Clearly, the answer depends on both the local maps and the structure of
the graph Y. If the local maps are all trivial, it does not matter what order
we use in the composition, and the same holds if we have a graph with no
edges. Here is a key observation: If we have two non-adjacent vertices v and
v’ in a graph Y, then we always have the commutation relation

F,0Fy =FyoF,. (4.18)

Equation (4.18) holds for any choice of vertex functions and for any choice
of K. Extending this observation, we see that if we have two permutations 7
and 7’ that only differ in two adjacent positions, that is,

7T:(71'1,...,7TZ',177T1'77T1'+1,7TZ'+2,...,7Tn) and

7T/ = (7T1, ey Ty T 1, Ty TT34-2, « v ,7Tn) 5

and such that {m;,m11} is not an edge in Y, then we have the identity of
SDS-maps [Fy,n| = [Fy,n’]. Thus, recalling the definition of the equivalence

78 4 Sequential Dynamical Systems over Permutations

relation ~y from Section 3.1.3, we conclude that m ~y 7’ implies [Fy, 7] =
[Fy,n']. This justifies the construction of the update graph U(Y) of a graph
Y in Section 3.1.3. Accordingly, we have proved:

Proposition 4.9. Let Y be a graph and let (F,), be a family of Y -local maps.
Then we have
T~y = [Fy,n| = [Fy,7'].

It is now clear how to decompose an SDS-map in the case when the base graph
Y is not connected.

Proposition 4.10. Let Y be the the disjoint union of the graphs Y1 and Ys
and let my be an update order for' Y. We have

[FY277TY2] o [FY177TY1] = [FYa ﬂ'Y] = [FY157TY1] o [FY277TY2]) (419)
where Ty, is the update order of Y; induced by my fori=1,2.

Proof. Let (my, |Ty,) denote the concatenation of the two update orders over
Y7 and Y;. Clearly, 7y ~y (7y, |7y,) ~v (7, |7y,), and by Proposition 4.9
we have equality. O

Note that an immediate corollary of Proposition 4.10 is that [Fy,my]* =
[Fy,, Ty,]¥ o [Fy,, Ty,]*. Thus, the dynamics of the two subsystems is entirely
decoupled. As a result we may without loss of generality always assume that
the base graph of an SDS is connected.

4.4. Let Y7 and Y5 be graphs and let Iy and I be phase spaces of two
SDS-maps ¢1 and ¢o over Y7 and Y3, respectively. The product of these two
dynamical systems is a new dynamical system ¢: v[I1|xXv[I3] — v[I1]XxV[I3]
where ¢(z,y) = (¢1(x), ¢2(y)). Characterize the dynamics of the product in
terms of the dynamics of the two SDS ¢; and ¢s. [2]

4.2.2 Fixed Points

Fixed points of SDS are the simplest type of periodic orbits. These states have
the property that they do not depend on the particular choice of permutation
update order:

Proposition 4.11. Let Y be a graph and let (F,), be Y -local functions. Then
for any w, ' € Sy we have

Fix([Fy, 7)) = Fix([Fy, 7']) . (4.20)

Proof. If x € K™ is a fixed point of the permutation SDS-map [Fy, 7], then
by the structure of the Y-local maps we necessarily have F,(z) = z for all
v € v[Y]. It is therefore clear that z is fixed under [Fy, 7'] for any permutation
update order 7’. O

4.2 Basic Properties 79

4.5. In Proposition 4.11 we insisted on permutation update orders. What
happens to Proposition 4.11 if the update order is a word over v[Y]? [14]

It is clear that we obtain the same set of fixed points whether we update our
system synchronously or asynchronously. Why? In Chapter 5 we will revisit
fixed points and show that they can be fully characterized for certain graphs
classes such as, for example, Circ,,.

You may have noticed already that the Nor-SDS encountered so far never
had any fixed point, and you may even have shown that this true in general:
A Nor-SDS with a permutation update order has no fixed points. The same
holds for Nand-SDS, which are dynamically equivalent to Nor-SDS; see Sec-
tion 4.3.3. If we restrict ourselves to symmetric functions, it turns out that
(nory), and (nandy)y are the only sequences of functions (gx); that induce
fixed-point-free SDS for any choices of base graph. For any other sequence
of symmetric functions there exists a graph such that the corresponding SDS
has at least one fixed point.

Theorem 4.12. Let (gi.) with gip: F5 — Fy be a sequence of symmetric
functions such that the induced permutation SDS-map [Fy,n| has no fized
points for any choice of base graph Y. Then we have

(9k)k = (nor)x or (gk)r = (nandy)y . (4.21)

Proof. We prove this in two steps: First, we show that each map f, = g4(v)+1
has to be either nor,, or nand,. In the second step we show that if the sequence
(g9x)x contains both nor functions and nand functions, then we can construct
an SDS that has at least one fixed point. For the proof we may assume that
the graphs Y are connected and thus that every vertex has degree at least
1. Recall that since we are considering induced SDS, all vertices of the same
degree d have local functions induced by the same map gq+1. By a slight abuse
of notation we will write f, = nor, instead of f, = nory(,)41-

Step 1. For each k = 1,2,3,... we have either gy = nory or gy = nandy. It is
easy to see that the statement holds for k¥ = 1. Consider the case of k = 2.
It is clear that for the SDS to be fixed-point-free the symmetric function g
must satisfy ¢2(0,0) = 1 and g2(1,1) = 0, since we would otherwise have a
fixed point over the graph Ks. Moreover, since the g’s are symmetric, either
we have ¢g2(0,1) = ¢2(1,0) = 1 so that go = nands, or we have g2(0,1) =
92(1,0) = 0, in which case go = nory. This settles the case where k = 2.
Assume next that & > 2, and suppose that g; # nory and gx # nandy.
Then there must exist two k-tuples x = (21,...,2x) and y = (y1,...,Yx)
with { = |{i | 2; = 1}| and ' = |{i | y; = 1}| such that 0 < [,I’ < k and
g:(z) = 1, gr(y) = 0. There are two cases to consider: We have either (7)
92(0,1) = 0 or (ii) g2(0,1) = 1. In case (i) we take Y (I, k —1) to be the graph
with I(k — 1) vertices and (1) +1(k — 1) edges constructed from K; as follows:
For each vertex v of K; we add k — [new vertices and join these with an edge
to vertex v. The graph Y (4, 3) is shown in Figure 4.6. The state we obtain by

80 4 Sequential Dynamical Systems over Permutations

assigning 1 to each vertex state of the K; subgraph and 0 to the remaining
vertex states is clearly a fixed point. In case (i7) we use the graph Y (k—1',1).
We construct a fixed point by assigning 0 to each Kj_; vertex state and by
assigning 1 to the remaining vertex states. We have thus shown that the only
possible vertex functions are nor, and nand,. It remains to show that they
cannot occur simultaneously.

Step 2. We will show that either (gi)r = (norg)r or (gx)r = (nandg)g.
Suppose that g; = nor; and gy = nand;. Let Y be the graph union of the
empty graphs Y1 = F;_; and Y2 = Ej 1. That is, Y has vertex set v[Y7]Uv[Y3]
and edge set e[Y] = {{v,v'} | v € Y1;0' € Ya}. Using nand; as a function
for each vertex v’ in Y7 and nor; for each vertex v in Y5, we construct a fixed
point by assigning 0 to each vertex state in Y2 and 1 to each vertex state in
Y1, and the proof is complete. O

Fig. 4.6. The graph Y (m, n) for m = 4 and n = 3 used in the proof of Theorem 4.12.

4.2.3 Reversible Dynamics and Invertibility

In this section we study SDS with bijective SDS-maps. An SDS for which the
SDS-map is a bijection is an invertible SDS. From a dynamical systems point
of view, having an invertible SDS-map means we can go backwards in time in
a unique, well-defined way. For this reason such SDS are sometimes referred
to as reversible and we say that they have reversible dynamics.

4.6. Describe the phase space of an invertible sequential dynamical system.

[1+]

The goal of this section is to derive criteria for an SDS to be invertible. We

first characterize the SDS that are reversible over K = Fs. For this purpose
we introduce the maps idy, invg: F5 — F5 defined by

invg(x1,...,2x) = 1+ x1,..., 1+ k), (4.22)

idk(xh...,xk):(a:l,...,a:k). (423)

For the following proposition recall the definitions of z[v] and z'[v] [egs. (4.2)
and (4.4)].

4.2 Basic Properties 81

Proposition 4.13. Let (Y,Fy,n) be an SDS with map [Fy,n|. Then
(Y, Fy,m) is invertible if and only if for each vertex v; € v[Y] and each x'[v;]
the map

Ga'[v;] : Fo — Fa, gm/[vi](xvi) = fu:(2[vi]), (4.24)

is a bijection. If the SDS-map [Fy, x| is bijective where 1 = (71,72, ..., Tn),
then its inverse is an SDS-map and is given by

[Fy,n|™' = [Fy, 7], (4.25)
where T = (Tp, Tn—1,...,T2,T1).
Proof. Consider first the map [Fy, 7], i.e.,

Fr, 0F,; o 0F,, . (4.26)

As a finite product of maps, Fy o Fr o---o Fp, is invertible if and only if
each map F,, is. (Why?) By definition of F,, we have

F'Ui (:r) = (I'Ul’ tte 7xvi—17f’vi (I[U'L])7xvi+l7' R Ivn) N

This map is bijective if and only if the map g,(,,)(%v,) = fu,(z[vi]) is bijective
for any fixed choice of #’[v;]. The only two such maps are inv; (the inversion
map) and id; (the identity map), establishing the first assertion.

In both cases, that is, if gg/[y,)(2v,) = fo, (x[v]) is the inversion map or the
identity map, we obtain that Ffi is the identity. From

[Fy, ﬂ'*] o [Fy, 7T] = Fﬂ"(l) o---0 Fw(nfl) o Fﬂ'(n) o Fﬂ'(n) OFw(nfl) O---0 Fﬂ"(l)
~ ~

4

and F2 =1 we can conclude that [Fy,7*] is the inverse map of [Fy,n], and
the proof is complete. O

Ezxample 4.14. In this example we will consider the SDS over Circ,, where all
functions f, are induced by paritys;. We claim that the corresponding SDS are
invertible.

Consider the vertex i and fix 2'[i] = (z;—1,zi11). The map g, : Fo — Fa
is given by

gaa'[i](xi) = fi(Ti—1,®i, Tig1) = Ty + Tim1 + Tig1.

If 2,1 + @41 equals 0, then g,(; is the identity map. On the other hand, if
Ti—1+Tit+1 equals 1, then g,/(; is the inversion map and Proposition 4.13 guar-
antees that the corresponding SDS are invertible. In Figure 4.7 we have shown
the phase spaces of [Parityc.,,(0,1,2,3)] and [Parityc.,,(0,1,2,3)]"! =
[Parityc.,, (3,2,1,0)]. o

The following example illustrates how to use the above proposition in order
to show that a certain map f fails to induce an invertible SDS.

82 4 Sequential Dynamical Systems over Permutations

(0123) (3210
1001\ 0111\ /1001\7 /70111\\v
1010 1111 ‘/ 0100 / 1100 10101111 0010 9199 0001 109
0019 0 ooor 1 * v !
[1101\ (oon\ /1101\ /70011\1
0101 0000 0110 1900 1110 0101 0000 1011 1000
o7 0, 0110 1o

Fig. 4.7. The phase spaces of [Parityc,.,,(0,1,2,3)] and its inverse SDS-map
[Parityc.,,(0,1,2,3)]"" = [Parity¢,.,, (3,2,1,0)].

Ezample 4.15. We claim that SDS over Circ,, induced by rule 110 (see Sec-
tion 2.1.3) are not invertible. The first thing we need to do is to “decode” rule
110. Since

110=0-2"41-2641-2°40-2* +1-284+1-224+1-2' 4+0-2°,
we obtain the following table for rule 110:
(1,2, 241) 111 110 101 100 011 010 001 000

f110 0o 1 1 0 1 1 1 0
Here is the key observation: Since (0,0,1) and (0,1,1) both map to 1 under
f110, F; is not injective and f does not induce an invertible SDS. o

4.7. Identify all maps f: F3 — Fo that induce invertible SDS over Y =
Circ,,. From the previous two examples you see that parity; is one such map
while f119 does not qualify. Find the remaining maps. How many such maps
are there? What are the rule numbers of these maps? [2]

4.8. So far the examples and problems have mainly dealt with the graph
Y = Circ,,. Building on Example 4.14, show that any SDS where the vertex
functions f, are induced by (parityy,)x is invertible. [1+4]

Note: It may be clear already, but we point out that the question of whether
[Fy,n] is invertible does not depend on the update order 7. Note, however,
that different update orders generally give different periodic orbit structures,
as the organization of the particular system states on the cycles will vary.

The generalization of Proposition 4.13 from Fs to an arbitrary finite set
is straightforward. Note, however, that the inversion formula in Eq. (4.25) is
only valid for IF;. The inversion formula in the case of K = I, is addressed in
Problem 4.10.

4.9. How many vertex functions for a vertex v of degree d induce invertible
SDS in the case of (1) Fy and (2) F,? [1+4]

4.10. Generalize the inversion formula to the case with vertex states in F,,.

[2]

4.2 Basic Properties 83

So far we have considered SDS with arbitrary vertex functions (fy),. If we
restrict ourselves to symmetric vertex functions, we obtain the following:

Proposition 4.16. Let (Y, Fy,m) be an invertible SDS with symmetric vertex
functions (fy)v. Then f, is either (a) parityy 41 or (b) 1+ parity).

Before we prove the proposition, we introduce the notion of an H-class:
The set Hy, = {x € Fy | sum,(x) = k} is called H-class k. In the case of F}
there are n + 1 such H-classes.

Proof. Let v be a vertex of degree d, = k— 1 and associated symmetric vertex
function f,. We will use induction over the H-classes 0,1, ... in order to show
that f, is completely determined by its value on the state (0).

Induction basis: The value f,(0) determines the value of f, on H-class 1.
To prove this assume f,(0) = yo. Then by Proposition 4.13 we know that
the value of f, on (0,0,0,...,0) and the representative (1,0,0,...,0) from
H-class 1 must differ and thus

f2(0,0,...,0) =y = [fu(1,0,...,0) =141y . (4.27)
Induction step: The value of f, on H; determines the value of f, on Hj;.
Let 2, = (0,1,1,...,1,0,0,...,0) € H; and assume f,(z;) = y;. Then
in complete analogy to our argument for the induction basis we derive

((1,1,...,1,0,0,...,0) € Hy1):

fe(0,1,1,...,1,0,0,...,0) =y, = fr(1,1,1,...,1,0,0,...,0) =1 +y,

(4.28)
completing the induction step. If yy = 0, we obtain f, = parity,, and if yo = 1,
we obtain f, = 1 4+ parity,,, and the proof is complete. O

The following result addresses the dynamics of SDS restricted to their
periodic points. We will use this later in Section 5.3 when we characterize the
periodic points of threshold systems such as [Majorityy-, 7. It can be viewed
as a generalization of Proposition 4.13.

Proposition 4.17. Let Y be a graph and let (Y, Fy,) be an SDS over Fy with
SDS-map ¢ = [Fy,7|. Let 1 be the restriction of ¢ to Per(¢), i.e., ¥ = ¢|per(e)-
Then v 1is invertible with inverse ™.

Proof. We immediately observe that the argument in the proof of Proposi-
tion 4.13 holds when restricted to periodic points. O

From a computational point of view it is desirable to have efficient criteria
for determining if a point is periodic. Proposition 4.17 provides the following
necessary (but not sufficient) condition:

Corollary 4.18. Let (Y, Fy,x) be an SDS over FY. Then a necessary condi-
tion for x € FY to be a periodic point under [Fy, x| is [Fy,n*]o[Fy,7](z) = x.

84 4 Sequential Dynamical Systems over Permutations

In light of our previous results, the proof is obvious. Thus, if we have
[Fy,n*] o [Fy,n]|(x) # x, we can conclude that z is not a periodic point. To
derive a sufficient criterion for periodicity is much more subtle. In fact, we
will show later that periodicity in general depends on the particular choice of
permutation or word.

4.2.4 Invertible SDS with Symmetric Functions over Finite Fields

We conclude this section with a characterization of invertible SDS with sym-
metric vertex function over finite fields [93]. In the following we will show how
to explicitly construct invertible (word)-SDS for any choice of graph Y and
word w. To set the stage let [Fy, 7] be such an SDS-map.

A wvertex coloring! of a (combinatorial) graph Y is a map

c:v[Y] — C,

where C' is a finite set (the set of colors) such that for any {v,v'} € e[Y] we
have c¢(v) # ¢(v"). When we want to emphasize the color set C, we refer to ¢
as a C-coloring of Y.

Generalizing Proposition 4.13 to arbitrary finite fields K, we observe that
F,y (with vertex function f,: K™ — K) is bijective if and only if the
function

G K — K, (zy) — fo(z[v]) (4.29)
is a bijection for all '[v] € K™~!. Consider a generalized m-cube, Q™, whose
vertices are m-tuples (x1,...,%;,) with z; € K and where K is a finite field

of cardinality k. Two vertices in @)} are adjacent if they differ in exactly one
coordinate. The adjacency concept in Q" reflects Eq. (4.29), as only varying
one particular coordinate in Q)}' produces specific Q}*-neighbors. This is the
intuition behind the fact that the local map F, y is bijective if and only if
its vertex function f, induces a coloring of an orbit graph (Section 3.2.1) of
Q7. The corresponding group inducing this orbit graph arises naturally from
specific properties of the vertex function such as it being symmetric.

Ezample 4.19. Let Y = Q3. Here S3 acts on Y via

0‘(’01, V2, U3) = (’UU—l(l)7 UU—1(2)7 ’0071(3)) .
The orbit graph Ss \ Q3 of this action is given in Figure 4.8. o

Let Wy denote the set of words w = (wy,...,w,) over v[Y]. In Theo-
rem 4.20 we will show that for arbitrary Y and word w € Wy there always
exists an invertible SDS. Furthermore, we will give a combinatorial interpreta-
tion of invertible SDS via r-colorings of the orbit graphs Sy, (v)4+1 \Qiy(v)ﬂ.
This not only generalizes Proposition 4.16 (see also [94]) but allows for a new
combinatorial perspective.

! Note that what we call a vertex coloring some refer to as a proper vertex coloring;
see [83].

4.2 Basic Properties 85
222 122 112 111

000
Fig. 4.8. The orbit graph S3 \ Q3 of Example 4.19.

Theorem 4.20. Let Y be a combinatorial graph, K a finite field with k = | K|,
m =dw)+1, w € Wy, and (Y,Fy,w) a word-SDS induced by symmetric
vertex functions. Then for any v € v[Y] we have the bijection

a: {F, | F, is bijective} — {cy | ¢y is a k-coloring of Sy, \ Q') . (4.30)

In particular, for arbitrary Y and w there always exists a family Fy such that
the SDS (Y, Fy,w) is invertible.

Proof. We first observe

k
[Fy,w] = Hsz:,Y is bijective <=V w;; F,, is bijective. (4.31)
i=1

Let F,y be a bijective Y-local map induced by the symmetric vertex function
fo: K™ — K. Without loss of generality we may assume that Y is connected
and thus m > 2. From

Fvyy(xvu' . 7931)71) = (IUU e 7931)1'713 fv(x[v])7xvi+1a e 7xvn)
we conclude that the map
Gx'v] * K—K, z,~ fU(QT[U]) (432)

is a bijection for arbitrary z’[v] (Proposition 4.13).

Let x[v] = (2o, ;- -;Tv;,). We consider the graph Q" with vertices x =
(xvjl R), where j; < j;41 for 1 <4 < m —1. Two vertices are adjacent
in Q7" if they differ in exactly one coordinate. The graph @} is acted upon
by Sy, through

0 (@,)1<icm = (To-1(v;,))1<i<m - (4.33)
Since Sy, < Aut(Q™), the above Sy,-action induces the orbit graph S,, \ Q7.

We note that Sy, \ Q7 contains a subgraph isomorphic to the complete graph
of size k£ (why?); hence, each coloring of S,, \ Q7" requires at least x colors.

86 4 Sequential Dynamical Systems over Permutations

Claim 1. The map f, uniquely corresponds to a k-coloring of the orbit graph

Sm \ Q-
By abuse of terminology we identify f, with its induced map

fv: Sm\QZL — K, Sm(xvhw“axvjm) = fv(xvj17~-~7xvjm)7

which is well-defined since the S,, \ Q7'-vertices are by definition S,,-orbits,
and f, is a symmetric function. To show that f, is a coloring we use the
local surjectivity of mg : Q7 — S, \ Q. Without loss of general-
ity we can assume that two adjacent Sy, \ Q7'-vertices S,,(x) and Sy, (z')
have representatives y[v] and z[v] that differ exactly in their vth coordinate,
that is,

y[’U] = (I’Uj17"'7y’l)7"'7'r’0jm)7 Z[U] - (xvj17"'7z’l)?"'7zvjm) .

Since gy : K — K, 2, +— fy(x[v]) is bijective for any z'[v] [Eq. (4.32)], we
have

gm’[v](yv) = fU(Sm(y[U])) 7é fv(sm(z[v])) = gm’[v](zv))

that is, f, is a coloring of Sy, \ Q7. Furthermore, the bijectivity of g,[,) and
the fact that f, is defined over Sy, \ Q" imply that f, is a k-coloring of
S \ @ and Claim 1 follows.

Accordingly, we have a map

a: {F, | F, is bijective} — {c¢, | ¢, is a k-coloring of S, \ Q1'} . (4.34)

We proceed by proving that « is a bijection. We can conclude from Claim 1
that « is an injection. To prove surjectivity we show that S, \ Q7" contains
a specific subgraph isomorphic to a complete graph over x vertices. Consider
the mapping

9: Sy \ Q) — P(K), 9(Sm(z)) = {my,, | 1 <i<m}, (4.35)

where P(K') denotes the power set of K. For any x,; € 9(Sm(z)) there are
k — 1 different neighbors of the form S, (x), where

Vke K\wy,; k= (To,, - %0, kK, Lo,y Ty,) (4.36)

We denote this set by N(z,,) = {Sm(zx) | & # x,,}. By the definition
of Sy \ Q, any two different vertices Sp,(zx) and Sp,(zx) are adjacent.
Accordingly, the complete graph over N(z,,) U {Sn(z)} is a subgraph of
Sm \ Q™. As a result any k coloring induces a symmetric vertex map f, with
the property that

G K — K, 2y fy(z[v])

is a bijection for arbitrary 2'[v]; hence, « is surjective and the proof of
Eq. (4.30) is complete.

4.2 Basic Properties 87

Claim 2. For any m € N and a finite field K with |K| = &, there exists a
k-coloring of Sy, \ Q1.
To prove Claim 2, we consider

Sm: Sm \ QI — K, sp(Sm(x)) =Y _ a0, - (4.37)
=1

Since s, is a symmetric function, it is a well-defined map from Sy, \ @7 to
K. In order to prove that s,, is a coloring, we use once more local surjectivity
of the canonical projection

WsmyiQ;n—>Sm\QZL.

Accordingly, for any two S,,(z)-neighbors S,,,(£) and S, ({') we can find rep-
resentatives £ and & in @} that differ in exactly one coordinate. We then

have
m

S (Sm (€)) = le # Zl v = Sm(Sm(€)) . (4.38)
We conclude from the fact that s, is a mapping over Sy, \ Q7" and Eq. (4.38)
that s;,: S \ @ — K is a k-coloring of S, \ Q.

Let Y be a graph and let w be a finite word over v[Y]. Using Claim 2
and the bijection a of Eq. (4.34) for every w; of w, we conclude that
there exists at least one invertible SDS (Y, Fy,w), completing the proof of
Theorem 4.20. O

4.11. Show that the degree of a vertex Sy, (x) in Sy, \ Q7" can be expressed
as

ds,\qp (Sm(x)) = (k= 1) [9(Sm(z))| . (4.39)

[1+]

4.12. Construct the graph G = S3 \ Q3 from Example 4.19. How many
K =TFj3 colorings does G admit? [1+4]

4.13. Let K be the field with four elements. How many vertices does the
graph G = S3\ Q3 have? Sketch the graph G. How many K colorings does G
admit? [2]

4.14. How many vertices does the graph G = S,,, \ Q™ have? [1+4]

Ezample 4.21. Let K = F3 and let v € v[Y] be a vertex of degree 2. According
to Theorem 4.20, there exists a bijective local map F, y that corresponds to
the proper 3-coloring of the orbit graph S3 \ Q3;

S3: Sg\Qg H]Fg, 53(53(13)) =T +I2+QZ3.

88 4 Sequential Dynamical Systems over Permutations

We can display the s3-3-coloring of S3 \ Q3 as follows:
0 2 1 0
NSNS\
1 0 2
NSNS
2 1
NS
0

When K = Fy, Theorem 4.20 yields:

Corollary 4.22. Let K = Fy. Then a word-SDS (Y, Fy, w) is invertible if and
only if for all w; the Y -local map F,, is induced by either parity or 1+ parity.

Proof. For K = Fy the orbit graph S,,, \ @%" is a line graph of size m + 1, that
is, Sy, \ Q%" = Liney41.

(0,...,0) 0,...,0,1) «eees 0,1,...,1) (1,...,1)

Each 2-coloring of Line,,+1 is uniquely determined by its value on (0,...,0)
and there are two possible choices. Mapping (0,...,0) to 0 yields the par-
ity function, and mapping (0, ...,0) to 1 yields the function 1 + parity, and
Corollary 4.22 follows. U

4.3 Equivalence

Equivalence is a fundamental notion in all of mathematics. In this section we
will analyze equivalence concepts of SDS. We begin our study of equivalence by
asking under which conditions are two SDS maps [Fy, 7] and [Gz, o] identical
as functions? We refer to this as functional equivalence and address this in
Section 4.3.1.

Ezxample 4.23. In this example we once more consider SDS over the graph
Circy where the vertex functions are induced by nors: {0,1}3 — {0,1}.
The four SDS-maps we consider are [Norcir,, (0, 1,2, 3)], [Norcire,, (3,2, 1, 0)],
[Norcir,, (0,1, 3,2)], and [Norcie,, (0,3,1,2)], and they are all shown in Fig-
ure 4.9. The two phase spaces at the bottom in the figure are identical.
The SDS-maps [Norci,, (0,1, 3,2)] and [Norcir,, (0,3, 1,2)] are functionally
equivalent. The top two phase spaces are not identical, but closer inspection
shows that they are isomorphic: If we disregard the states/labels, we see that
they are identical as unlabeled graphs. o

4.3 Equivalence

89

0123
(0123) 1000 1100 (3210) 0001 o011
0101 0010 1010 0100
0011 1100
0111 \ (00 1110 \
1011—» 0000 0100 <1001 1101—3 0000 0010 <1001
01—
1111/ *](1)“1
Tolg_— o001 o0 1000
o110 1110 o110 0111
(0312)
(0132) 1001%0100 0001 <—1100
1001—> 0100 0001 <—1100
0110 0101
0110 0111
o111 \ otot 1010 \ (
1010— 2 ¥ 1011—'-> 0000 1010 1000
1011—> OOU'O 1000 1110 / 0010\-/'
1110 0010 111
””/ B 1101

1101

Fig. 4.9. Top left: the phase space of [Norcir,, (0,1,2,3)]. Top right: the phase
space of [Norcie,, (3,2,1,0)]. Bottom left: the phase space of [Norcir,, (0,1, 3,2)].
Bottom right: the phase space of [Norcic,, (0, 3,1, 2)].

If two SDS phase spaces are isomorphic as (directed) graphs, we call the
two SDS dynamically equivalent. We will analyze this type of equivalence in
Section 4.3.3.

There are other concepts of equivalences and isomorphisms as well. For
example, [90] considers stable isomorphism: Two finite dynamical systems are
stably isomorphic if there is a digraph isomorphism between their periodic
orbits. In other words, two finite dynamical systems are stably isomorphic if
their multisets of orbit sizes coincide. We refer to Proposition 5.43 in Chap-
ter 5, where we elaborate some more on this notion. The following example
serves to illustrate the concept.

Example 4.2/. Figure 4.10 shows the phase spaces of the two SDS-maps
[Norcie,, (0,1,2,3)] and [(1+ Nor + Nand)cir,, (0,1, 2, 3)]. By omitting the
system state (1,1,1,1), it is easy to see that these dynamical systems have

precisely the same periodic orbits and are thus stably isomorphic. o
(©0123) 1101
1000
1100
0101 0010 0123 1000 1100
LN 0101 0010
0011
1011 —> 0000 0100 <— 1001 o111
7 1011—> 0000 0100 <1001
o011 1010 0001 1101—
T " *
0110 1010\/0001
e 1110 .
o110 1110

Fig. 4.10. The phase space of (Circs, Norcir,, (0,1,2,3)) (right) and the phase
space of (Circs, (1 + Nor + Nand)cir,, (0,1,2,3)) (left).

90 4 Sequential Dynamical Systems over Permutations

The natural framework for studying equivalence is category theory.
Consider categories whose objects are SDS phase spaces. Different choices
of morphisms between SDS phase spaces yield particular categories and are
tantamount to different notions of equivalence. If we, for instance, only con-
sider the identity as morphism, we arrive at the notion of functional equiv-
alence. If we consider as morphisms all digraph isomorphisms, we obtain
dynamical equivalence. A systematic, category theory-based approach is be-
yond the scope of this book, but the interested reader may want to explore
this area further [95].

4.3.1 Functional Equivalence of SDS

In Section 4.2 we already encountered the situation where two SDS-maps
[Fy,n] and [Gz, o] are identical. There we considered the cases Y = Z and
Fy = Gz and showed that

™~y 7T, — [Fy,ﬂ'] = [Fy,ﬂ'/] . (440)

In this section we will continue this analysis assuming a fixed base graph Y
and family of Y-local functions (F,),.

A particular consequence of Eq. (4.40) is that the number of components
in the update graph U(Y) of Y (Section 3.1.4) is an upper bound for the
number of functionally different SDS that can be generated by only varying
the permutation. In Section 3.1.5 we established that there is a bijection

fy: [Sy/ ~y] — Acyc(Y) .

This shows us that [Fy, 7|, viewed as a function of the update order m, only
depends on the acyclic orientation Oy (7). We can now state

Proposition 4.25. For any combinatorial graph Y and any family of Y -local
functions (F,), we have

{[Fy,n] | ™€ Sy} <[Acyc(Y)], (4.41)
and the bound is sharp.

Proof. The inequality (4.41) is clear from (4.40) and the bijection fy. It re-
mains to show that the bound is sharp. To this end we prove the implication

[ﬂ]y 7£ [O’]Y — [NOI‘y,ﬂ'] 7£ [Nory,a] . (442)

Without loss of generality we may assume that 7 = id, and Lemma 3.13
guarantees the existence of a pair of Y-vertices v and v' with {v,v'} € e[Y]
such that

7=(..,v,...,0,...) and o=(..,v,...,v,...).

4.3 Equivalence 91

We set By (v) = {w | w € By(v) A w <, v}. Let

1 if Bse
Tr = (xu)tu Ty = e . Y (U)7 (443)
0 otherwise.

Obviously, [Nory, 7](z), = 0 since v’ <, v and z,» = 1. But clearly we have
[Nory, o](x), = 1; hence, [Nory, 7] # [Nory, o] and

{[Nory, 7] | 7 € Sy}| = [Acyc(Y)],
and the proof is complete. O

We remark that Eq. (4.40) and the bound in (4.41) are valid for vertex
functions over, e.g., R™ and C”, and there are no restrictions on the vertex
functions f,.

4.3.2 Computing Equivalence Classes

In this section we give some remarks on computational issues related to SDS.
Through the bijection fy we can bound the number of functionally nonequiv-
alent SDS by computing a(Y") = |Acyc(Y')|. For the computation of a(Y) we
have from Section 3.1.3 the recursion relation a(Y') = a(Y?)+a(Y."). However,
the computation of a(Y) is in general of equal complexity as the computation
of the chromatic number of Y.

There are various approaches to bound a(Y). Let a(Y") be the (vertex) in-
dependence number of Y. By definition, there are at most a(Y) independent
vertices, and clearly we have at most n! linear orderings. From this we imme-
diately deduce that n!/a(Y)™ < a(Y). In [96] a bound is derived in terms of
the degree-sequence of Y: a(Y) > [, (d; + 1)!1*/%+! For graphs with (g) +h
edges, it is shown in [97] that for 0 < h < £ the inequality a(Y) > ¢! (h + 1)
holds. In [98,99] the following upper bound for the number of acyclic orienta-
tions is given: a(Y) < [],(d; +1). In [96] an upper bound is given in terms
of the number of spanning trees of Y.

Ezample 4.26. In Example 3.17 we saw that a(Circ,,) = 2" — 2. Thus, for the
graph Circ,, and fixed vertex functions (f,), we can generate at most 2™ — 2
functionally nonequivalent SDS by varying the permutation update order. <

4.15. Derive a formula for a(Wheel,,). [1+]

4.16. For a fixed sequence of vertex functions over Q3 show that we can have
at most 1862 functionally nonequivalent permutation SDS. [2]

How sequential is a sequential dynamical system? This may sound like
a strange question. However, if we implement an SDS on a “modern”?

2 Of course, it is dangerous to say “modern” computer in any written work — after
10 years most things in that business are hopelessly dated!

92 4 Sequential Dynamical Systems over Permutations

computer with multiple processors, this question is relevant for efficient
implementations.

In fact, we already encountered this question for permutation SDS in some
form. Consider an SDS over a graph Y with update order w. We call a vertex
of O(m) [identified with the graph G(O(w)), Section 3.1.3] with the property

Ae€elG(O(m))); 7(e) = v,
a source. We can now compute the rank layer sets as follows:
Set G = G(Oy (7)), let G = G, and let k = 0.

While v[G},] # @ repeat:
Let Ly be the set of sources in GY,.
Let G}, be the graph obtained by deleting all vertices in L;, from G,
along with their incident edges.
Increment k£ by 1.

Notice that L, = rnk™*(k) and that this is also a practical way to construct
the canonical permutation 7 [Eq. (3.17)] associated with a given acyclic orien-
tation. Here is the key fact: All the vertices in the layer set Ly can have their
states updated simultaneously. This follows since Lj is necessarily an inde-
pendent set of Y. From this it is clear that the smallest number of processor
cycles we need to compute one full update pass of the SDS equals the number
of layers, and this is given by 1 + ming>o{rmk™'(k) # @}. In general, this is
the best possible result.

Ezample 4.27. Let Y = Wheelg and let 7 = (4,2, 3,5,1,0,6). We will compute
the induced acyclic orientation Oy (7), find the layer sets (relative to Oy (7)),
and compute 7.

The directed graph representation of the induced acyclic orientation is
shown in Figure 4.11. Here rnk(2) = rk(4) = 0, rnk(1) = rnk(3) = mk(5) = 1,
rk(0) = 2, and rnk(6) = 3. Thus,

—

7=(4,2,3,5,1,0,6) =

(24,135, 0 , 6).
N - -~ d -~ e
rmk=1(0) rnk=1(1) rmk=%(2) rnk=1(3)
What is the smallest number of processor cycles we would need to compute
[Fy,](z)? Since the maximal rank is 3, we see that we would need at least
34+ 1 =4 cycles to compute [Fy,n]|(x) on a parallel multiprocessor machine.

o
4.17. Let Y = E,, be the graph on 2n vertices given by
v[E,] ={0,1,...,2n — 1}
elEn] = {{i,i+ 1}, {i,i+n—1}{i,i+n} | 0<i<n},

where all indices/vertices are computed modulo 2n. The graph Es is shown
in Figure 4.12.

4.3 Equivalence 93

Fig. 4.12. The graph Es of Problem 4.17.

(¢) Find the canonical permutation 7 of 7 = (0,1,2,3,4,5,6,7,8,9). (i) For
(Y,Fpg,,7), what is the smallest number of computation cycles needed to
evaluate the SDS-map [Fg,, 7] at some state x on a parallel computer with
at least 10 processors? Here we assume that each processor can evaluate one
vertex function per computation cycle. (ii¢) For a fixed sequence of vertex
functions (f,), how many functionally different permutation SDS can we have
over Y = E,7 [1+4]

4.3.3 Dynamical Equivalence

Functional equivalence of SDS distinguishes phase-space graphs as labeled
graphs. Here we may want to classify phase spaces according to the struc-
ture of transients and periodic orbits irrespective of the particular labeling of
the vertices. Accordingly, we call two SDS dynamically equivalent if their
phase spaces are isomorphic as graphs. For finite dynamical systems we have
the following;:

Definition 4.28 (Dynamical equivalence). Let E be a finite set. Two fi-
nite dynamical systems given by map H,G: F — FE are dynamically equiv-
alent if there exists a bijection ¢: E — FE such that

Gogp=¢oH. (4.44)

We note that dynamical equivalence becomes a special case of topological
conjugation if we use the discrete topology on FE; see Section 3.3.3.

94 4 Sequential Dynamical Systems over Permutations

It is worth spending a moment to reflect on Eq. (4.44). We observe that
the bijection ¢ maps the phase space of the dynamical system of H into the
phase space of the dynamical system of GG. For instance, assume that x is a
fixed point under H so that H(x) = z. Then ¢(z) is a fixed point for G since
by Eq. (4.44) we have

G(o(z)) = ¢(H(z)) = o(x) .
We can generalize this to periodic orbits. Let y be a periodic point of period
2 under H. Since (4.44) implies

G*op=Go(Gogp)=GopoH=goHoH =¢oH?,

and in general G¥ o ¢ = ¢ o H* for k > 1, we obtain that ¢(y) is a periodic
point of period 2 under G. If z is mapped to y under H, we see that G(¢(z)) =
d(H(z)) = ¢(y). In other words, G maps ¢(z) to ¢(y), and accordingly, the
phase spaces of G and H can be identified modulo the labeling of system
states.

Ezample 4.29. In Figure 4.13 we have the isomorphic phase spaces of the
SDS (Circq, Norgir,, (0,1,3,2)) and (Circy, Nandci,, (0,1, 3,2)). The map
invg: {0,1}* — {0,1}* given by

inv(zg, 21,2, 23) = (1 + 20, 1 + 21,1 + 22,1 + 23)

provides the bijection of Eq. (4.44) in Definition 4.28. o

0132) P 0132)
1001—> 0100 0001 «—1100 0110 —> 1011 1110 <—0011

0110 1001

0101
0111 \ ('\ 1000 \
1010 " oo ¥~ N\
1011—3 0000 1010 1000 0100—3 1111 olol o111
no—— N_A oA 0001//vy N o~
1111 11({ 0000

0070

Fig. 4.13. Two isomorphic phase spaces. The phase space of [Norci,, (0,1, 3,2)]
(left) is mapped to the the phase space of [Nandcir,, (0,1, 3,2)] (right) by the map
invy.

Recall that if a group G acts on v[Y], then its action induces an action
on system states © = (Ty,,..., %0,) € K" by g2 = (Tg-1(0,)5 -+, Tg-1(v,))- I
particular, this holds for Aut(Y") acting on v[Y].
Proposition 4.30. Let Y be a combinatorial graph, let m € Sy, and let
(gr)i_, be a sequence of symmetric functions. Then we have for the SDS
(Y,Fy,m) and (Y,Fy,ym) induced by (gi)}_,

VyeAut(Y); [Fy,yrjoy=rvyo[Fy,], (4.45)

where (T, s -, To,) = (Ty=1(01)s -+ s Ty=1(0,))-

4.3 Equivalence 95

Thus, for any sequence of symmetric functions (g) the two induced SDS
(Y,Fy,~m) and (Y, Fy,m) are dynamically equivalent.

Proof. Since the SDS are induced, we have f, = gg(.,)+1 for all vertices. We
can rewrite Eq. (4.45) as

[Fy,ym] =vo [Fy,mjoy™".

To prove this statement it is sufficient to show that for all v € v[Y] we have

-1
Fiymyw) =70 Frwy 0y

The result then follows by composition. For the left-hand side we obtain

F(,Yﬂ,)(vl)(.r) = (Q?vl goeay f(,y,r)(vi)(a:['yﬁ(vi)“ N 7.’L‘Un) .
~ ~ -
pos. (ym)(vi)

Similarly, for the right side we derive

Yo Fw(vi),Y © 771(‘7") =7° Fﬂ'(vi),Y(x'y(vl)v s 7x7(vn))
= 'y(aj,y(vl), . ,fw(w)(l‘w | w e ’yBy(W(Ui))l7 . 73;‘7(1)11))

~
pos. m(v;)

= (‘T'Ulﬁ cey fﬂ'(v,y)(xw | w e ’YBY(TF(UZ'))% cee 7xvn) .
N~ ~ -
pos. ym(v;)
Equality now follows since for v € Aut(Y") we have vBy (m(v;)) = By (ym(v;)),
and from frw,) = fyr(v;) since the SDS are induced and automorphisms
preserve vertex degrees. O

As noted in the proof we may rewrite Eq. (4.45) as

[Fy,yn] =vo[Fy,mloy™".

Clearly, this equation gives rise to a natural conjugation action of Aut(Y") on
SDS.

4.18. In Proposition 4.30 we made some assumptions that were stronger
than what we needed. Do we need symmetric functions? Do we need to only
consider induced SDS? Does the proposition hold for word-SDS? 2]

Ezxample 4.31. We have already seen simple examples of the relation (4.45).
To be specific take ¢ = [Norcire,, (0,1,2,3)] and ¢ = [Norcie,, (3,2,1,0)].3
The automorphism group of the Circy is Dy. We see that v = (0, 3)(1, 2) (cycle
form) is an automorphism of Circy and that (3,2,1,0) = v(0, 1,2, 3). Without
any computations we therefore conclude by Proposition 4.30 that the SDS-
maps ¢ and 1 are dynamically equivalent. Their phase spaces are shown in
Figure 4.14. o

3 Again, when nothing else is said all permutations are written using the standard
form as opposed to cycle form.

96 4 Sequential Dynamical Systems over Permutations

0123
(0123) 1000~ 1100 (3210) 0001~ 0011

0101 0010 1010 0100
0011 1100
0111\\¢ ,/ \ 1001 1110\\¢
1011——> 0000 0100 < 1101——> 0000 0010 <1001
11017 \ / 1011/
1 1010 0001 1l 0101 1000

~— S~
o110 1110 o110 0111

Fig. 4.14. The phase spaces of the dynamically equivalent SDS
(Circs, Norcire,, (0,1,2,3)) (left) and (Circs, Norcie,, (3,2,1,0)) (right).

In light of Proposition 4.30, it is natural to consider group actions to
characterize dynamically equivalent SDS. This will also allow us to derive
bounds for the number of nonequivalent SDS that we can obtain by varying the
update order while keeping the local functions and the graph fixed. Recall that
gy : Acyc(Y) — S, /~y is the inverse of the bijection fy in Proposition 3.15
of Chapter 3.

Lemma 4.32 (Aut(Y)-actions). Let Y be a combinatorial graph. We have
Aut(Y)-actions on the sets (i) Sp/~y, (i3) Acyc(Y), and (iii) F = {[Fy, 7] |
m € Sy} given by

(v, [7ly) = Alrly = [y7]y, (4.46)
(7,0y) =70y =y0OQon", (4.47)
(7, [FY’ U]) e [FY’ U] = [FY7 70]) (4'48)

respectively. Furthermore, the actions on Sy, /~y and Acyc(Y) are compatible,
i.e., we have

fy(VIrly) = vfy ([7ly) (4.49)

and
h: ACyC(Y) —]:, h(@y) = [Fy,ﬂ'], ™ e gy(@y) (450)

is an Aut(Y')-map.
Proof. We first note that the action in (4.46) is well-defined since we have
T~y 0 == YT ~y Y0 ,

and hence [o]y = [n]y implies [yo]ly = [y7]y. It is clear that we have a
group action. The maps (4.47) and (4.48) are clearly group actions, but see
Problem 4.19.

Let v be a graph automorphism and Oy (y7), Oy (7) be the acyclic orien-
tations induced by the permutations vy and 7, respectively. Then we have

7Oy (7)) = Oy (y); (4.51)

4.3 Equivalence 97

see Problem 4.19. From this we conclude

Iy (YIrly) = fy([ymly) = Oy (ym) = vOy (7) = v fy ([7]y) -

Using vOy (1) = Oy (y7), we can easily verify that h is an Aut(Y")-map:

h(yOy ()) = h(Oy (7))
= [Fy, 7]
=~ve[Fy,n] (Proposition 4.30)
— e h(Oy (7))

and the proof of the lemma is complete. O

4.19. Prove that (4.47) defines a group action, and establish the iden-
tity (4.51). [1+4]

The results so far only address the update order aspect of dynamical equiv-
alence — local maps and the base graph are identical for both SDS. Before
we proceed by analyzing the number of dynamically nonequivalent SDS that
can be generated by varying the update order, we remark that two SDS with
identical base graphs, but different vertex functions can also be dynamically
equivalent. For instance, for an arbitrary SDS (Y, Fy, m) with vertex states in
K = T3 we obtain a dynamically equivalent SDS where the Y-local functions
are

inv, o Iy, y oinvy, ,

where inv,, is the inversion map, (z,,) — (2, + 1). In particular, it follows
that the SDS (Y, Nory, 7) and (Y, Nandy, 7) are dynamically equivalent. See
also Theorem 4.12 and Example 4.29.

4.20. Are the SDS induced by the sequence of vertex functions (parity,)
and the sequence (1 + parity;,), dynamically equivalent? [1+4]

4.3.4 Enumeration of Dynamically Nonequivalent SDS

How many dynamically nonequivalent SDS can be generated for a fixed graph
Y and fixed family of induced local functions Fy by varying the permutation
update order? We denote this number by A(Fy). From Eq. (4.45) it is clear
that A(Fy) cannot exceed the number of orbits in Sy/ ~y under Aut(Y).
This quantity depends only on Y and is denoted by A(Y'). Writing a(Y) =
|Acyc(Y)|, we have:

Theorem 4.33. Let Y be a combinatorial graph, and let Fy be a family of
Y -local functions induced by symmetric functions. Then

AFY)SAW) = iy 2 AV @)
vyEAut(Y)

98 4 Sequential Dynamical Systems over Permutations

Proof. Since fy (y[r]y) = vfy ([7]y), the number of orbits A(Y) in S,/ ~y
induced by the Aut(Y')-action equals the number of Aut(Y")-orbits in Acyc(Y),
and by Frobenius’ lemma (Lemma 3.18) we have

A(Y) = |Aut1(Y)| Z | (Fix(’y)Acyc(Y)) | .

vyEAuUt(Y)

The inequality (4.52) now follows from Theorem 3.21, which provides a com-
binatorial interpretation of the Fix(g) terms in Frobenius’ lemma via the bi-
jection

B: Acyc(Y)E — Acyc(G\Y), O+ Og,

which implied Eq. (3.31): N = ‘é,‘ > gec |Acyc({g) \ Y)I. O

Accordingly, Theorem 4.33 follows from Theorem 3.21 in Chapter 3 and
Lemma 4.32. Example 3.24 from Chapter 3 illustrates how this can be applied
to circle graphs. We will derive a formula for A(Circ,,) below.

4.21. Compute the bound A(Y) for Y = K,,, n > 1. Hint. Using the for-
mula (4.52) is going completely overboard in this case. Think about what the
bound A(Y") represents, and give your answers in no more than three lines!

[1+]
4.22. Compute the bound A(Y") for Y = Wheely. [14]
4.23. In Example 4.35 we found that A(Y') = 3. Is this bound sharp? Hint.
What can you do to test if the bound is sharp? [2-]
4.24. Is A(Parityc,.,) = A(Circy)? [2-]

4.25. How many possible permutation update orders are there for the
graph Y = Q3? How many functionally nonequivalent SDS can we obtain

3 . ? . .
over 3 by only varying the update order? How many dynamically nonequiv
alent induced SDS can we obtain over Q3 by varying only the update order?
Is the bound A(Q3) sharp? [3-C]

Using formula (4.52), we can now compute the upper bound A(Y) for
various classes of graphs.

Proposition 4.34 (A(Circ,) and A(Wheel,,)). Let ¢ be the Euler ¢-function.
For n > 3 we have

1 n/d _ n/
A(Circy,) = {2171 Zd|n o(d) (2 2) + 2 2/4, n even, (4.53)
2n Zd|n ¢(d) (2n/d - 2)) n Odd,
A(Wheel,,) = on > apn 9(d) (374 —3) + 3"/2/2, n even, (4.54)
on 2odin @(d) (371 -3), n odd.

4.3 Equivalence 99
Proof. First recall that
a(Circ,,) =2" —2 and a(Wheel,,) =3" -3 (4.55)

and that Aut(Circn) = D,,. This group is given by {r™c* | m = 0,1, k =
0,1,. — 1}, where, using cycle notation, o = (0,1,2,...,n—1) and 7 =
H((n) /2](—1). By Theorem 3.21 we need to compute a({y) \ Y) for all
v € Aut(Y). We start by looking at the rotations.
(i) If o* has order n, then the orbit graph (o*) \ Circ, consists of one sin-
gle vertex with a loop attached, and therefore [Theorem 3.21, (a)] we have
Fix(c*) = @. Note that there are ¢(n) automorphisms of order n.
(ii) If the order of o* is n/2, then the orbit graph (c*)\ Circ,, is a graph with
two vertices connected by two edges and we obtain (Theorem 3.21, Claim 1)
a({o®) \ Circ,) = 2 = 2%/™/2 — 2. There are ¢(n/2) such automorphisms.
(4i1) In the case where o* has order n/d with d > 2, we have that (¢*)\ Circ,, =
Circy and thus a({c*) \ Circ,) = 2¢ — 2. There are ¢(d) such automorphisms.
(iv) Finally, it is seen that the only case in which (ro*) \ Circ, does not
contain loops [Theorem 3.21, (a)] is when both n and k are even, and in this
case (ta*) \ Circ,, = Llnen/QH and a((ra®) \ Y) = 2"/2 for all such k. There
are n/2 automorphisms of this form.

Thus, for odd n we have

A(Circy,) = Zqﬁ n/d) a(Circg) = Zd) (2"/‘172) ,

d|n d\n

and for n even we will have to include the additional contribution from auto-
morphisms 76", which is (1/2n)(n/2)a(Line,/o41) = 27/2 /4, completing the
proof for A(Circy,).

Now consider Wheel,,. Clearly we also have that Aut(Wheel,,) is isomorphic
to D,,. The calculation of A(Wheel,,) now follows from what we did above and
the following observation. If Y has no vertices of maximal degree (that would
be n—1 for a graph on n vertices), then Aut(Y") and Aut(Y @wv) are isomorphic
and G\ (Y & v) is isomorphic to (G\Y) @ v'. This observation will allow us
to use our calculations in case of Circ,, for Wheel,, for n > 3.

(i) By the same argument as above, we have that (o*) \ Wheel,, contains a
loop whenever ¢” has order n.

(ii) When o* has order n/2, then (%) \ Wheel,, = Circ3 and thus the number
of acyclic orientations of the orbit graph is 6 = 37/("/2) — 3,

(4ii) When the order of o* is n/d with d > 2, we obtain (") \ Wheel,, =
Wheely, and a({c*) \ Wheel,,) = 3¢ — 3.

(iv) We only get contributions from automorphisms of the form 7¢* when
n and k are both even. In this case (") \ Wheel, = W, /o.1, where W, is
the graph obtained from Wheel,, by deleting the edge {0,n — 1}. We leave it
as an exercise to conclude that a(W,,) = 2-3"~! and consequently a((ra*) \
Wheel,,) = 2 - 37/2.

100 4 Sequential Dynamical Systems over Permutations

Adding up the terms as before produces the given formula, and the proof
is complete. O

Ezample 4.35. In Example 3.24 we calculated the bound (4.52) for Y = Circy
and Y = Circs directly. Here we will calculate the bound A(Y) for Y = Circg
and Y = Circy using the formula in (4.53).

A(Cires) = | (9(1)(2° —2) + 6(2)(2° ~ 2) + 9(3)(2” — 2)) +2°2/4
1
= 12(62+6+2~2)+2=6+2=8-
We also get
A(Circy) = 114(¢(1)(27 —2)) = 114(126) =9.
&
4.26. Compute A(Circy) for p a prime with p > 2. 1]

We derived a combinatorial upper bound for the number of dynamically
nonequivalent SDS through the orbits of the Aut(Y')-action on Acyc(Y). It
is natural to ask for which graphs and for which families of local functions
Fy this bound is sharp, that is, when do we have A(Fy) = A(Y) (see Prob-
lem 4.25)?

Conjecture 4.36. For any combinatorial graph Y and permutation-SDS in-
duced by (norg)y, the bound A(Y) is sharp, i.e.,

A(Nory) = A(Y) . (4.56)

In the following proposition we study the particular case of the star graph, de-
noted by Star,,. The star graph is the combinatorial graph given by v[Star,| =
{0,1,2,...,n} and e[Star,] = {{0,i} | 1 <i <n}.

Proposition 4.37. We have
A(Stary,) = A(Norstar,,), n>2.

Proof. The proof is done by considering all Aut(Star,,)-orbits of .S, /~star, and
by demonstrating that each orbit gives rise to an SDS with unique phase-space
features.

It is clear that a graph automorphism must fix the center vertex O.
However, any permutation of the “outer” vertices corresponds to an auto-
morphism. Therefore, the automorphism group of Star,, is isomorphic to S,.
Moreover, each class [7]star, is characterized by the position of 0. Assume
7(j) = 0. Then we have [7]star, = {7" € Sstar, | 7'(j) = 0}. We write this

equivalence class as [7]§,,, . It now follows that

4.3 Equivalence 101

n+1)
[Sstar,, /~star,,] = U [ﬂ-]%tarn :

j=1

It is sufficient to prove that the SDS (Y, Norsiar, , 7;) for j =1,...,n+1 have
pairwise non-isomorphic phase spaces I'(Star,, Norsi,r, ,7;). To this end let
7 € Sp11 be a permutation with (i) = 0. We also set © = (71, - - -, Tr(i-1))
and ¥ = (Zr(i4+1), -+ Tr(nt1))- If # # 1,n + 1, we obtain the following orbits
in phase space where underline denotes vectors and overbars denote logical
complements.

(zly)1 > (00y) = ! (10y), y#0, (4.57)

(z10)1 > (001) > (100), z#0 (4.58)
(010)

(z0y) = <! (207) x#0,1 (4.59)

In the case i = 1 we obtain

(Iy)r >0y = Sy < 1(1y), y#0,1, (4.60)

(1)1 > (00) 1 > (10),
\(01)

and in the case ¢ = n + 1 we have

(z0) = (z0), x#0,1, (4.62)

> (00) | /(10)
\(01)

It is clear from the above diagrams that for any Star,, vertex i the associated
digraph has a unique component containing a 3-cycle and on this cycle there
is a unique state v; with indegree(v;) > 1. In the first case indegree(v;) = 271,
in the second case indegree(v;) = 2, and in the third case indegree(v;) = 2™.
The only case in which these numbers are not all different is for ¢ = 2. But
in this case we can use, e.g., the structure in (4.60) to distinguish the corre-
sponding digraphs. It follows that if ¢ # j the digraphs I'(Star,, Norsar, , ;)
and I'(Star,,, Norsiar, , 7;) are non-isomorphic, and we have shown that

A(Norstar,) = A(Stary,) ,

(z1) 1 x#0. (4.63)

completing the proof of the theorem. O

102 4 Sequential Dynamical Systems over Permutations

The reason why the sharpness proof was fairly clean for Y = Star,, is the
large automorphism group of this graph and the clear-cut characterization
of Star,/ ~star, . For Circ,, for instance, the situation becomes a lot more
involved.

Let Star; ,, denote the combinatorial graph derived from K; by attaching
precisely m new vertices to each vertex of Kj:

l

v[Star,] = v[KJ U [J{ir |1 <7 <m}, (4.64)
l

e[Star;] = e[K)] U | J{{i,i,} |1 <7 <m}.

i=1

The graph Stars 5 is shown in Figure 4.15.

1l 22
\1 /
1, 2 2,

3! 3,

Fig. 4.15. The graph Stars».

Proposition 4.38. For Stars ,,, we have
A(Norsiar, ,,) = A(Starg) - (4.65)

Each permutation SDS (Stara m, Norstar, , ,) has precisely one periodic orbit
of length 3.

The proof of this result goes along the same lines as the proof for Star,,, but
it is rather cumbersome. If you feel up to it you may check the details in [100].
We contend ourselves with the following two results that are of independent
interest.

Lemma 4.39. Let m,l > 2. We have
Aut(Star;,,) = S! xS . (4.66)
4.27. Prove Lemma 4.39. 2]

For the graph Star;,, it turns out we can also compute the bound
A(Starg) directly:

4.4 SDS Morphisms and Reductions 103

Proposition 4.40. Let m,l > 2. We have

A(Stary) = (m+1)". (4.67)
4.28. Verify the bound (4.67) in Proposition 4.40. [2]
4.29. Settle conjecture 4.36. [5]

4.4 SDS Morphisms and Reductions

It is natural to ask for structure-preserving maps between SDS. For dynamical
systems the standard way to relate two systems is through phase-space rela-
tions as we did when studying dynamical equivalence. However, SDS exhibit
additional structure, and it seems natural also to have morphisms relate the
SDS base graphs, vertex functions, and update orders.

What should these structure-preserving maps be? Using the language of
category theory, we are looking for the morphisms in a category where the
objects are SDS. There are choices in this process, and we will be using Defi-
nition 4.41 below [101]. For an alternative approach we refer to [102].

Definition 4.41 (SDS morphism). Let (Y,Fy,n) and (Z,Gz,0) be two
SDS. An SDS-morphism between (Y,Fy,7) and (Z,Gz,0) is a triple

(@7773@): (KFYaﬂ') - (Za GZ7U) 5

where ¢: Y — Z is a graph morphism, n: Sz — Sy is a map that satisfies
n(c) =, and @ is a digraph morphism of phase spaces

¢:I'(Z,Ggz,0) — T'(Y,Fy,7).

If all three maps ¢, n, and @ are bijections, we call (¢,n,®) an SDS-
isomorphism.

A priori it is not clear that there are any SDS morphisms. The follow-
ing example gives an example of an SDS morphism and also illustrates key
elements of the theory developed in this section.

Ezample 4.42. The map ¢: Q3 — K, defined by ¢(0) = ¢(7) = 1, ¢(1) =
©(6) = 2, ¢(2) = p(5) = 3, and ¢(3) = ¢(4) = 4 is a graph morphism. It
identifies vertices on spatial diagonals and is depicted in Figure 4.16. Let 0 =
(1,3,2,4) € Sz, let 7 = (0,7,2,5,1,6,3,4) € Sy, and let n: Sz — Sy be a
map with 7(c) = 7. Moreover, we define x: F3 — F§ by (21, 72, 23,24) =
(x1, 22,23, Tq,Xq, T3, T2, x1). If we take 2 = (0,1,0,0), we get the following
commutative diagram:

(0,1,0,0) 1 Nerenel - (0,0,0,1)
X X
\ [Norg3,m] \
(0,1,0,0,0,0,1,0)1 *>(0,0,0,1,1,0,0,0)

104 4 Sequential Dynamical Systems over Permutations

2

Fig. 4.16. A graph morphism from Q3 to Kj.

Here is the key observation: We can compute the system state transition
(0,1,0,0,0,0,1,0) — (0,0,0,1,1,0,0,0) under [NorQ%m] using [Norg,, o].
Therefore, we can obtain information about the phase space of (Q3, Norg;,)
from the simpler and smaller SDS phase space of (K4, Norg,, o).
We invite you to verify that x induces a morphism of phase spaces
&: I'(Z,Fz,0) — I'(Y,Fy, 7). Accordingly, (p,n,®) is an SDS morphism.
o

In Section 4.4.3 we will give a more general answer to the question about
existence of SDS morphisms. We will show that any covering map [Eq. (3.5)]
induces an SDS morphism in a natural way.

4.4.1 Covering Maps

In this section we consider covering maps ¢: Y — Z, that is, for all v € v[Y]
the restriction map

©lstary (v) : Stary (v) — Starz(p(v)) (4.68)

is a graph isomorphism. The graph Stary (v) is the subgraph of Y given by
e[Stary (v)] = {e € e[Y] | w(e) = v or 7(e) = v} and v[Stary (v)] = {v’ € v[Y] |
v =w(e) Vv =7(e), e € e[Stary (v)]}.

4.4.2 Properties of Covering Maps

In later proofs we will need the following lemma, which can be viewed as the
graph equivalent of a basic property of covering maps over topological spaces;
see [103,104].

Lemma 4.43. Let Y and Z be non-empty, undirected, connected graphs and
let p:' Y — Z be a covering map. Then we have

Va,yevlZ] : g7 (@) =l ()l (4.69)

Proof. Let x and y be two Z-vertices and assume |~ (z)| > |¢~*(y)|. Since Z
is connected, we can without loss of generality assume that there exists an edge
e in Z such that w(e) = x and 7(e) = y. For any ¢ € ¢~ !(x) local bijectivity
guarantees the existence of a Y-edge e’ such that w(e’) = £ and 7(e/) = n
with 77 € p~1(y). But this is impossible in view of [~ (z)| > |¢~(y)| and
the lemma follows by contradiction. O

4.4 SDS Morphisms and Reductions 105

In the context of covering maps the set ¢ ~!(x) is usually called the fiber
over z. Since all fibers have the same cardinality, we conclude that the order
of p(Y) divides the order of Y.

The following is another useful fact that is needed later. For the statement
of the result we need the notion of distance of vertices in an undirected graph.
Let v,v" € v[Y]. The distance between v and v' in Y is the length of a shortest
path connecting v and v’, or oo if no such path exists. We write the distance
between v and v" in Y as dy (v, v"). It satisfies the usual properties of a metric,
which you can easily verify.

Proposition 4.44. Let Y, Z be undirected graphs and p: Y — Z a cover-
ing map. Then for any u € v[Z] and v,v' € @~ (u) with v # v we have
dy (v,v") > 3. In particular, the fiber over p(v) is an independent set for any
v e v[Y].

Proof. Let v,v' € ¢~ (u) with v # ¢/, and suppose dy (v,v’) = 1. Then
©lstary (v) : Stary (v) — Starz(u) cannot be a bijection. If dy (v,v’) = 2, then
let v" € v[Y] be a vertex with dy (v,v”) =1 and dy (v,v”) = 1. Since both
v and v' are mapped to wu, the restriction map ¢|sar, (v): Stary (v") —
Starz(p(v")) cannot be a graph isomorphism. The last statement is clear. O

Building on the proof of Lemma 4.43 we also have the following result,
which is a special case of a more general result from [105]. It can be considered
as the graph equivalent of the unique path-lifting property of covering maps
of topological spaces.

Lemma 4.45. Let ¢: Y — Z be a covering map and let v € v[Y]. Then
any subtree T' of Z containing @(v) lifts back to a unique subtree T of Y
containing v.

This only holds when T” is a subtree of Z but fails to hold for general
subgraphs Z’ of Z containing ¢(v). Why?

4.4.3 Reduction of SDS

In this section we prove that a covering map ¢: Y — Z induces an SDS-
morphism in a natural way. Without loss of generality we may assume that
Z is connected. We can then conclude using Lemma 4.45 that ¢ is surjective.
In the following we set n = |v[Y]| and m = |v[Z]|.

Constructing the update order map 7,. Let 7 € Sz. We define s(my)
to be the sequence of elements from the fiber ¢~1(7;) ordered by some total
order on v[Y]. As the image of 7 under 7, we take the concatenation of the
sequences s(m1) through s(mp,), that is,

() = (s(m1)]s(m2)] .. - [s(mm)) - (4.70)

The map 7, naturally induces a map 7, : Acyc(Z) — Acyc(Y) via the bijec-
tion fy such that the diagram

106 4 Sequential Dynamical Systems over Permutations

Tle

Sz > Sy

Iy Iy
\ 7 \
Acyc(2) T > Acyc(Y)

where o — f{,(0) = O(0), is commutative.

4.30. Verify the commutative diagram above. [2-]

Ezample 4.46. We revisit Example 4.42 and consider the covering map ¢: Q3
— K4. We observe that o = (1,3,2,4) € Sz is mapped to n,(0) = 7 =
(0,7,2,5,1,6,3,4) € Sy and the acyclic orientation Oz (o) is mapped to the
acyclic orientation Oy (). o

We are now ready to complete the construction by providing the digraph
morphism P.

Theorem 4.47. Let ¢: Y — Z be a covering map of undirected, connected
graphs Y and Z, and let x: K™ — K™ be the map (X(2))v = (). Sup-
pose all vertex functions over Y and Z are induced by the sequence (gi)r of
symmetric functions. Then the map

Dy: I'(Z,Fz,m) — ['(Y,Fy,ny(m))
induced by x is a morphism of directed graphs and
(310, @) (Y, Fy,mp(m)) — (Z,Fz,7) (4.71)
is an SDS morphism.

Proof. We already have our candidates for the two first components ¢ and 7
of the SDS morphism. It remains to prove that the map @, induced by x is a
morphism of (directed) graphs.

According to Lemma 4.45, ¢ is surjective and Proposition 4.44 guarantees
that ¢ ~1(v) is an independent set of Y for all v € v[Z]. Therefore, for any
v € v[Z] the (composition) product of local maps

=
v'€p~1(v)

is independent of composition order and is accordingly well-defined. Moreover,
since ¢ is a covering map, and since the maps g; are symmetric, the vertex
functions f, satisfy

fo(@lv; Z]) = for((x(2)[v';Y]) (4.72)

for any v € v[Z] and v € v[Y] such that ¢(v') = v.

4.4 SDS Morphisms and Reductions 107

We claim that the diagram

K V2| X kv
o vedL o (4.73)
KIVZ]| X s g
commutes, that is,
xoFy,z= H Fyyox. (4.74)
v'Ep~1(v)

Let us first analyze Hv,eg),l(v) Fy y o x. The local map F,r y(x(z)) updates
the state of v’ via the vertex function f, as f,((x(z))[v';Y]). By definition,
we have (x(2))o = Zy(v), and since p(By (v')) = Bz(v) we can conclude

Fo((x (@) Y]) = for(2v; Z]) = fol(alv; Z]) -

Therefore, [[, cp-1(1)
updates the vertices v’ € p~1(v) of Y based on the family of states (:L’g,(v;) |
@(v}) € Bz(v)) to the state (Fyry (x(7)))vr-

We next compute x o F, z(x). By definition, F, z(z) updates the state
of the vertex v of Z using the vertex function f, as f,(z[v; Z]). In view of
(X(%))v = T 401y, We obtain for any Y-vertex v’

Fyy is a well-defined product of Y-local maps that

(x o Fyz() = (Fu,z(2))o -

That is, x o F,,, z(x) updates the states of the vertices v’ € ¢! (v) in Y to the
state (Fy, z(x))y. Since f,(x[v; Z]) = fuor ((x(x))[v";Y]), we derive

Vo' € o (v), (Fuoz(@))y = (Foy(x(@)))w,
from which we conclude

xoF, z= Foyox.
v'Ep~1(v)

To prove that the diagram

K2 X vV
[Fz,m] [Fy,ne(m)]
\ x \
K2 = F VY]]
is commutative, we observe that for m = (m1,...,mm)

o (@ly = [~ (), 7 (mm)ly

108 4 Sequential Dynamical Systems over Permutations

holds, where [|y denotes the equivalence class with respect to ~y [Sec-
tion 3.1.4, Eq. (3.13)]. This implies that

TTm,

[FYv 7790(71')] = H H Fv/,Y

v=m1 | v'ep-1(v)

We inductively apply Hv,eg),l(v) F,y ox=xoF,z and conclude

H H Fv’,Y OX:XOHF’U,Z7
v=m1 [v'Ep—1(v) V=Tr1
or
[Fy,ng(m)]ox =xo[Fz,7]. (4.75)
Hence, the x-induced map P, is a morphism of (directed) graphs, and the
proof of the theorem is complete. O

From Eq. (4.75) we see that the phase space of the SDS over Z is embedded
in the phase space of the SDS over Y via &,,.

Since the graph Z generally has fewer vertices than Y, it is clear that the
Z phase space is smaller than the Y phase space, hence the term reduction.
How much smaller is the Z phase space? If we assume, for instance, binary
states and that ¢ is a double covering, that is, m = n/2 and each fiber has
size 2, the number of states is 2"/2 and 2", respectively.

Example 4.48. Here we extend Example 4.42. For reference, the covering map
p: Q3 — Kyis given by p(0) = ¢(7) = 1, ¢(1) = ¢(6) = 2, ¢(2) = ¢(5) = 3,
and ¢(3) = ¢(4) = 4, and it is illustrated in Figure 4.16.

Here @, maps « = (21,22, 23,24) into (1,22, 23, T4, T4, T3, T2, 21). Fur-
ther let ¢ = (1,2,3,4) € Sz. The corresponding update order over Y is
T =n,(c) =1(0,7,1,6,2,5,3,4).

Theorem 4.47 now gives us an embedding of the phase space of the SDS
(K4, Minority . , o) into the phase space of (Q3, Minority gz, 7). As you can
easily verify, (K4, Minority ,o) has precisely two periodic orbits of length
five and no fixed points. The two 5-orbits are shown in the left column of
Figure 4.17. Note that for representational purposes we have encoded binary
tuples as decimal numbers using (4.17), e.g., (1,1,0,0) is represented as the
decimal number 3. Figure 4.17 shows that I"(K4, Minority . , o) is embedded
in I'(Q3, Minority o3, 7). o

Example 4.49. As another illustration of Theorem 4.47, we consider SDS
with vertex functions induced by nors and nory over the graphs Y and Z
shown in Figure 4.18(a) on the top and bottom, respectively. Note that in
this case the graphs are not regular. The map ¢ that identifies the ver-
tices v and v’ for v = a,b,c,d,e is clearly a covering map and by Theo-
rem 4.47 we have an SDS morphism where the two other maps are 7, and

4.4 SDS Morphisms and Reductions 109

0 1128
0 0 \/
l l 195
3 195
et . Yt N 129 102
1 6 129 102 \ /
24 60
\ \ e
8 12 24 60 230
~ — 61,62,63,124,125, 103
\7 / 231 126,127,188,189,190,
13,14,15 126,189,255 191,252,253,254,255
/ 2 \ / 66 \ / 66 \
9 5 153 165 153 165
\ 10’/ \36 90/ \36 90
1 219 218 519

Fig. 4.17. Example 4.48: The left column shows the phase space of
(K4, Minority,, o). The middle column shows the image of I"(K4, Minority ., o)
under the embedding map @,. The right column shows the components of
r(Qs, Minoritng,Tr) that embed I'(K4, Minority g, , o). Note that binary tuples
are encoded as decimal numbers.

&,,. Figure 4.18(b) illustrates the map n, and Figure 4.18(c) shows how the
unique component containing a 3-cycle of I'(Z,Fz, (a,b,¢,d, e)) embeds into
I'(Y,Fy, (a,d',b,V,c,d,d,d e e)). In fact, I'(Z,Fz,(a,b,c,d,e)) contains
four 2-cycles and one 3-cycle, while I'(Y,Fy, (a,a’,b,b ¢, ,d,d’,e,e’)) has
fourteen 2-cycles, one 3-cycle, two 4-cycles, two 6-cycles and eight 8-cycles.
o

4.31. What is the most general class of functions (fz); for which Theo-
rem 4.47 still holds? Extend Theorem 4.47 to word-SDS. [2-]

4.4.4 Dynamical Equivalence Revisited

In Proposition 4.30 we proved the conjugation formula
[Fy,ya] =70 [Fy,njoy~".

Using Theorem 4.47, we can derive the above conjugation formula directly

since every graph automorphism is in particular a covering map. In fact, we

can reframe the entire concept of equivalence of SDS using SDS morphisms.

Corollary 4.50. Let Y be an undirected graph, let v € Aut(Y'), and let m €
Sy . For any sequence of symmetric functions (gx)r with gr: K¥ — K and

110 4 Sequential Dynamical Systems over Permutations

A\

«— (0000000000) (1100011000)

(0011100111)

P

A

(a,a’,b,b' ¢, d,d e e)

A

, (a,b,c,d,e) = (00000) (11000)
\ (00111) /
@) (b) (©)

Fig. 4.18. An illustration of Theorem 4.47. The maps 7, and & are shown for the
covering map ¢ of Example 4.49.

any pair of induced SDS of the form [Fy, 7] and [Fy,ny(7)], we have an SDS
isomorphism
(’77 77’)'7 é) : [FYa ’I’]’Y(ﬂ')] B [FY7 7T] 3 (476)
1

where 0y (7) =y~ 7.

Proof. The proof is immediate since any graph automorphism is in particular
a covering map. 0

4.4.5 Construction of Covering Maps

Theorem 4.47 shows that covering maps naturally induce SDS morphisms,
and it thus motivates the study of covering maps over a given graph Y. This
is similar, for instance, to group representation theory, where a given group
is mapped into automorphism groups of vector fields. Here a given SDS is
“represented” via its morphisms. To ask for all graphs that are covering images
of a fixed undirected graph Y is a purely graph-theoretic question motivated
by SDS and complements the research on graph covering maps which typically
revolves around the problem of finding a common graph covering Y for a
collection of graphs {Z;} as in [106].

In this section we will analyze covering maps from the generalized n-cube
and the circle graph.

4.4 SDS Morphisms and Reductions 111
Cayley Graphs

Cayley graphs encode the structure of groups and play a central role in combi-
natorial and geometric group theory. There are more general definitions than
the one we give below, but this will suffice here. We largely follow [107].

Definition 4.51. Let G be a group with generating set S. The Cayley graph
Cay(G, S) is the directed graph with vertex set the elements of G and where
(g,¢") is an edge if and only if there exists s € S such that ¢’ = gs.

If ¢’ = gs, it is common to label the edge (g,g’) with the element s.

Ezample 4.52. The group Ss has generating set {(1,2),(1,2,3)}. Let a =
(1,2,3) and b = (1,2). The Cayley graph Cay(Ss,{a,b}) is shown in Fig-
ure 4.19. What is the group element a?ba?b? This is easy to answer using the

Fig. 4.19. The Cayley graph Cay(Ss,{a = (1,2,3),b= (1,2)}.

Cayley graph. The directed walk starting at the identity element following the
edges labeled a, a, b, a, a, and b in this order gives us the answer: 1. o

Ezample 4.53. The cube Q3 from the earlier examples is the Cayley graph
of F3 viewed as an additive group G with generating set S = {e1,e2,e3}
and the obvious relations, e.g., 2¢; = 0 and ¢; 4+ ¢; = ¢; + ¢;. The subgroup
H ={(0,0,0),(1,1,1)} < G acts on G by translation. This action naturally
induces the orbit graph H \ Q3 given by

v[H\ Q3] = {H(0,0,0) := 0, H(1,0,0) := 1, H(0,1,0) := 2, H(0,0,1) := 3},
o[H \ Q3] = {{0,1},{0,2},{0,3},{1,2}, {1, 3}, {2,3}} ,

that is, (a graph isomorphic to) the complete graph on four vertices. Accord-
ingly, we have obtained the covering map from Example 4.42 as the projection
map 7y induced by the subgroup H. o

4.4.6 Covering Maps over Q7

We now proceed to the general setting. Let F' be the finite field with |F| =
a = p*. Recall that the generalized n-cube is the combinatorial graph Q7
defined by

112 4 Sequential Dynamical Systems over Permutations

viQ] ={z = (x1,...,2,) € F"},
Q[QZ] = {{3&‘7:{/} | x,y € an dH(xay) = 1}) (477)

where dy(z,y) is the Hamming distance of z,y € F™, i.e., the number of
coordinates in which x and y differ. The automorphism group of the gener-
alized m-cube is isomorphic to the semidirect product of S,, and F™, that is,
Aut(Q?) = F™ % S,,. The subgroup Auto(Q?) = {y € Aut(Q") | v(0) = 0}
of Aut(Q?) is isomorphic to S,. Accordingly, any element v € Auty(Q?) is
F-linear and we can consider Autg(Q7) as a subgroup of GL(EF™).

We can now generalize what we saw in Example 4.53. First, any sub-
vectorspace H < F™ can be considered as a subgroup of Aut(Q?), and we
have the morphism

T QL — H\ Q.

In Theorem 4.54 below we give conditions on the sub-vectorspace H < F"
such that mp: Q" — H\ QT is a covering map. In this construction a vertex
v of Q7 is, of course, mapped to v+ H under mg. We note that if the projection
map is to be a covering map, then any vertex v and its neighbor vertices v+ ke;
in Q7 where k € F* and ¢ = 1,...,n must be mapped to distinct vertices.
Here F'* denotes the multiplicative group of F'. Clearly, a necessary condition
for mg: QF — H \ QO to be a covering map is

|F"/H| > 1+n|F*]|, (4.78)

since otherwise it would be impossible for 7y to be a local injection. By
construction the projection map 7y is a local surjection, so if we can show that
for all k € F* and for all v,v" € {0, ke;} withv #v" : (v+H)N(W' +H) = o,
then it would follow that 7y is also a local injection and thus a covering
map. However, H may not satisfy this condition but may still satisfy (4.78).
If this is the case, then Theorem 4.54 ensures that we can find a subspace
H'’ isomorphic to H such that wg is a covering map. Even though this is
an existence theorem, the proof also gives an algorithm for constructing the
covering maps. We outline the algorithm after the proof.

Theorem 4.54. Let G < F™ be a sub-vectorspace of F™ that satisfies
|F"/G| > 1+n|F*].

Then there exists a vectorspace H isomorphic to G such that the projection
map T QL — H\ QF is a covering.

The proof of Theorem 4.54 will follow from Lemmas 4.55 and 4.56 below.
Let us begin by introducing some notation. For a subspace H < F™ we define

the property (#) by

(#) Vke F*Vax#y, x,y € {0,ker,....ken} : (x+H)N(y+H)=9.
(4.79)
Clearly, this is the condition a sub-vectorspace H needs to satisfy in order for
mg to be a local injection.

4.4 SDS Morphisms and Reductions 113

Lemma 4.55. For any subspace G' < F™ we have
|[F"/G'| > 1+n|F*| < 3G, G=G; G has property (#). (4.80)

Proof. Assume |F™/G'| > 1+ n |F*|. We claim that the vectorspace F™/G’
contains n|F*| distinct elements of the form kp; + G', i = 1,...,n, where
{©1,...,¢n} is a basis for F™ and k € F*.

To prove this we take an arbitrary basis {v1,...,vs} of G’ and extend it to
a basis {v1,..., Vs, Vs41,.-.,0n} of F™. Since |[F"/G'| > 1+ n |F*|, we have

IF")G\ { kv +G |i=s+1,....n, ke F}| >s|F|. (4.81)

The (Abelian) group F* acts on F /G’ via the restriction of scalar multipli-
cation; hence,

n -t
Fr/G={0+G}Yul) F*w+G)uU szlFX(wj—&—G’),

Jj=s+1

and (4.81) guarantees that ¢ > s. From this we conclude
t
Jt>s; F'/G\{kvi+G |i=s+1,....n, ke F}=|] X (w+G").
]:

We next define the sequence (p;)1<i<n as follows:

pi=v;+w; fori=1,... s,

i = V; fori=s+1,...,n.

In view of Y . Aipi = >, Aivi + Z;l Aiw;, any linear relation of the form
> Aip; = 0 implies that for ¢ = 1,...,s we have \; = 0, since Y_;_; N\jw; is

generated by {vs41,...,v,}. Therefore, we obtain Y ;_; A\;w; = 0 and conse-
quently we have \; =0 for i = s+ 1,...,n. Accordingly, {¢1,...,p,} forms
a basis of F. Since {w; + G’ |i=1,...,s} is a set of representatives for the

group action of F'* on F™/G’', we get
(ki + G K€ FX, i=1,...,n}| = |F~|n,

and the claim follows.
Let f be the F™-isomorphism defined by f(y;) = e;, for i = 1,...,n.
Clearly, the set {ke; + f(G') | k € F*, i=1,...,n } has the property

Hkei+ f(G) | ke F* i=1,...,n}| =n|F*]
and the proof is complete. O

Lemma 4.56. For each sub-vectorspace H < F™ with property (#) the graph
H\ Q" is connected, undirected, and loop-free, and the natural projection

T Qr — H\ Q2 v H) = v+ H

1S G COVETing map.

114 4 Sequential Dynamical Systems over Permutations

Proof. The projection map mpy is linear and is a local surjection by con-
struction. Property (#) ensures that g is locally injective. It remains to
prove that mgy is a graph morphism. Since Aut(Q") = F™ % S,, H is a
subgroup of Aut(Q") and acts on Q"-edges; thus, 7y is a covering map
(e[H\Q?] = {H{v,v+e}) | i=1,...,n, v € v[QZL]}). Since my is lo-
cally injective, H \ Q7 is loop-free. O

Here is an algorithm for computing the sub-vectorspace H in Theorem 4.54
and for deriving the covering map 7p.

Algorithm 4.57 (Construction of Q" covering maps). Assume G < F"
satisfies the conditions in Theorem 4.54. Using the same notation we can
derive covering maps, and hence reduced dynamical systems, as follows:

1. Pick a basis {v1,...,v} for G.

2. Extend this basis to a basis {v1,...,vs,Vs41,..., 0, for F™.

3. The action of F* on F"/G by scalar multiplication allows us to con-
struct a collection of s vectors (w;)5 (orbit representatives) contained in
Span(vsy1,...,v,) that are not scalar multiples of each other or any of
the vectors v; for s +1 < i < n. The set of s such vectors w; can easily
be “guessed,” at least for small examples.

4. Define ¢; by

b1 =

v +w; ifi=1,...,s,
V; otherwise.

5. Let f be the F"-isomorphism given by f(¢;) =e; for 1 <i <n.
6. The isomorphic vectorspace H is given by H = f(G), and the covering
map is given by 7y : Q2 — H \ Q7.

The following examples illustrate the above algorithm.

Ezample 4.58. Consider the graph Y = Q3. Let G be the two-dimensional
subspace of F* = F3 spanned by v; = (1,0,0,0) and v2 = (0,1,0,0). Clearly,
G is not a distance-3 subspace. We have

|IFY/G|=9>1+4-2=1+4|F%|,

so by Theorem 4.54 there exists a subspace H isomorphic to G for which 7g
is a covering map. By Proposition 4.44 we must have that H is a set with
minimal Hamming distance 3. Attempting to construct the subspace H by
trial and error may take some time and patience. However, with the help of
the algorithm above it now becomes more or less mechanical. Here is how it
can be done:

We extend the basis of G consisting of v1 = (1,0,0,0) and v = (0,1,0,0)
to a basis for F* using the vectors vz = (0,0,1,0) and vy = (0,0,0,1). We
need to find two vectors in Span{uvs,vs} that are not scalar multiples of each
other or of vz or vs. Two such vectors are wy; = (0,0, 1,2) and wy = (0,0, 1,1).
By the algorithm we obtain

4.4 SDS Morphisms and Reductions 115

=(1,0,0,0) wy = (0,0,1,2) ¢ =(1,0,1,2)
=(0,1,0,0) =(0,0,1,1) éo = (0,1,1,1)
=(0,0,1,0) — b3 = (0,0,1,0)
114—(0 0,0,1) — ¢4 =(0,0,0,1)

The F*-isomorphism f satisfying f(¢;) = e; is straightforward to compute,
and it has standard matrix representation

1000
lot1o0
f]W* 2910|

1201

which you should verify for yourself. The subspace H is now given as H =
f(G), and we get

(0,0,0,0), (1,0,2,1), (2,0,1,2),
H=1(0,1,2,2),(1,1,1,0), (2,1,0,1),
(07 2’ 17]‘)’ (]‘3 2703 2)7 (27 25 27 0)

You should verify that H = f(G) is a distance-3 set. What is the graph
H \ Q37 It is a combinatorial graph, it is connected, it is regular of degree 8,
and it has size 9. It follows that H \ Q3 equals Ky (up to isomorphism). ¢

When you compute the map f, it can be helpful to write the equations
f(@;) = e; in matrix form. If ¢ denotes the matrix with the ¢;’s as column
vectors, we get

f¢ = Inxn 5
and it is clear that f is the inverse of the matrix &.

Example 4.59. As another illustration of Theorem 4.54, we take the graph
Y = Q3 and ask if we can find a subspace H < F? = F} with dim(F?/H) = 2
such that its induced orbit graphs H \ Q3 are graphs of degree 6. If this is the
case, then H must satisfy dgs(h, h') > 3 for any h,h' € H with h' # h. Since
a one-dimensional subspace G satisfies F?/G = 9 > 1 + 3 - 2, Theorem 4.54
guarantees that we can find such a subspace. In this case it is easy, and you can
verify that H = {(000), (111),(222)} is a distance-3 subset. Here H induces
the covering map mg: Q3 — K333, where K333 is a complete 3-partite
graph in which all vertex classes have cardinality 3.
We label the H-induced co-sets as follows:

116 4 Sequential Dynamical Systems over Permutations

Obviously, these labels correspond to Q3%-vertices, and it is straightforward to
verify that {(0,0), (1,2), (2.1)}, {(1,0), (0, 1), (2,2)} and {(2,0), (0,2), (1,1)}
are exactly the vertex classes of K333. Hence, K333 contains Q% as a
subgraph as it should according to Proposition 4.60 stated below. o

The Orbit Graphs H \ Q7

In this section we study the orbit graphs H \ Q5.

Proposition 4.60. Let H be an F"-subspace and let g : QF — H \ Q7 be
the covering map induced by H with dim(F™/H) =r. Then

Qo <H\Qg, (4.82)
that is, H \ Q7 contains a subgraph isomorphic to Q..

Proof. Let S = {fe; | f € F*, i =1,...,n}. Then Q7 = (F",S5), i.e., the
Cayley graph over the group F™ with generating set S. The map 7wy can then
be written as

wy: (F",S) — (F"/H,S/H) .

Since S generates F™, S/H generates F"/H, and S/H contains a set of the
form So/H = {fb| f € F*, b € B} where B is a basis of F""/H. Clearly,
we have an isomorphism n: F"/H — F” and set S’ = n(S/H) and S) =
1(So/H). Without loss of generality we may assume that Sj is of the form
Sy = {kei | k € F*, i = 1,...,r} from which we immediately conclude
(F7,8)) =2 Q7. In view of S C 5, the embedding

(F",Sy) — (F", 8" (z1,...,20) = (T1,...,2)
is a graph morphism, and the proposition follows. O

The following result shows that if H is a subspace of F™ with property
(#) and if H' = n(H) where 1 € Auto(Q"), then the resulting orbit graphs
are isomorphic.

Proposition 4.61. Let H < F™ be a (#)-sub-vectorspace. Then for any n €
Auto(Q7),
Ty Qo — n(H) \ Qn
is a covering map and
H\ Qg =n(H)\Qy - (4.83)

Furthermore, for two (#)-vectorspaces H,H' < F™ with H\ Q7 = H'\ Q%
there is in general no element n € Auto(QT) with the property H' = n(H).

4.4 SDS Morphisms and Reductions 117

Proof. For any n € Auto(Q") the vectorspace n(H) has property (#), so by
Theorem 4.54 the map () is a covering map. Consider the map

n:H\Qy —n(H)\Qy, 7+ H)=mn(x)+n(H).

Since 7 is F-linear, we have f((xz + h1) + H1) = n(z) + n(h1) + n(H1), proving
that 7 is well-defined. It is clear that the map is injective, and the fact that
it is a surjection is implied by 7 being surjective. It remains to show that 7 is
a graph morphism. Let {z,y} + H = {{z + h,y+ h} | h € H} be an edge in
H\ Q7. We have

n{z,y} + H) = {n(x),n(y)} +n(H);

hence, 7j maps H \ Q"-edges into n(H) \ Q"-edges.

To prove the final statement, consider the two sub-vectorspaces H =
((0,0,0),(1,2,2)) and H' = {(0,0,0), (1,1,1)) of F? = F3. Since Auto(Q") =
S, there exists no n € Auto(Q3) such that H' = n(H), but it is straightforward
to verify that

((0,0,0),(1,2,2)) \ @3 = ((0,0,0),(1,1,1)) \ Q3 = K3 3,3,
and the proposition follows. O

Ezample 4.62. We will find all the covering maps of the form 7g: Q3 —
H \ Q3. We first note that if H has dimension 2, then H has size 4. With
F = Fy this leads to |F*/H| = 16/4 =4 * 1 + n|F*| = 1+ 4 = 5. In other
words, if H has dimension 2, then we cannot get a covering map. If H has
dimension 1, we have |F*/H| = 16/2 > 5 and obtain covering maps.

There are five distance-3 subspaces. These are spanned by (1111), (0111),
(1011), (1101), and (1110), respectively. Since the four last subspaces differ by
an element of Autg(Q3) (e.g., a permutation), the corresponding orbit graphs
are all isomorphic by Proposition 4.61. Since the dimension of F*/H is 3, it
follows from Proposition 4.60 that H \ Q3 contains Q3 as a subgraph. We set

Hy = {0000,1111} and Hy = {0000,1110} .

We invite you to verify that the graph H; \ Q3 is isomorphic to Q3 with the
four diagonal edges added. The graph H, \ Q3 is isomorphic to Q3 with four
additional edges as shown on the right in Figure 4.20. Again, the significance
of the map 7y, is that it allows us to study dynamics over Q3 in terms of
dynamics over the smaller graph H; \ Q3. However, we can only study those
SDS over Q4 that have an update order appearing as an image of 7, w, and for

which the vertex functions on v € v[H;\ Q3] and v’ € ﬁ,}} (v) are identical. ©

4.32. Show that the orbit graphs H; \ Q3 and Hs \ Q3 in Example 4.62 are
not isomorphic. [1]

4.33. Show that the two orbit graphs in Example 4.62 are the only covering
images of Q3. [2C]

118 4 Sequential Dynamical Systems over Permutations

Fig. 4.20. The orbit graphs of Example 4.62.

Covering Maps into the Complete Graph

From the point of view of phase-space reductions, the best we can hope for
is to have a covering map ¢ : Q% — K,,, where K,, is a complete graph
over m vertices. (Why?) Note that Aut(K,,) = S,, and that in view of the
group action vy e [Fy, 7] = [Fy, 7] (Section 4.3.3, Lemma 4.32) all SDS over
K,, induced by symmetric functions are dynamically equivalent. As a special
case of Theorem 4.54 we present a necessary and sufficient condition for the
existence of covering maps ¢: Q7 — K.

Proposition 4.63. There exists a covering map

P QZ — Kii(p-1)n (4.84)
if and only if p* =0 mod 1+ (p — 1)n holds.

Proof. Assume ¢: Q) — Kiy(p—1)n is a covering map. Clearly, we have
|Qp| =p" and |K1 1 (p—1)n| = 1+ (p—1)n, and Lemma 4.43 guarantees p" = 0
mod 1+ (p — 1)n.

Assume next that p” =0 mod 14 (p— 1)n. Corollary 4.64 below guaran-
tees that there exists a subspace G < F; with the property

Fp = G(0) U Uizlufmc(fei) .
We observe that the mapping ¢: Q) — G \ Q) given by

VieF,,i=1,...,n : £€G(fei); (&) =G(fei) (4.85)

is a covering map. Clearly, K1), = G \ QZ since by construction the
graph G'\ @} is (p— 1)n-regular and contains exactly 14 (p —1)n vertices. [

The corollary below follows immediately from Lemma 4.55:

Corollary 4.64. Let n > 2 be an integer and let p be a prime. Then we have
p" =0 mod 1+ (p— 1)n if and only if there exists a subspace G < F with
the property

= G(0) U U;Ufe@c(fei) .

4.4 SDS Morphisms and Reductions 119

Proof. Suppose we have p" = 0 mod 1 + (p — 1)n. Obviously, there exists
a subspace H < Fy with [F)/H| = 1+ (p — 1)n. The proof of Lemma 4.55
immediately shows that there exists some set of F"/H-elements {fp; + H |
i=1,...,n; f€F;}such that {¢; | i =1,...,n} is an F}-basis. Let f be
the Fp-morphism defined by f'(¢;) = e; for i =1,...,n. Clearly, G = f'(H)
has the property

F = G(0) U U;UKF;G(fer)

and the corollary follows. O

Example 4.65. We have already seen the example ¢: Q3 — K. Here 23 is
congruent to 0 module 3 + 1 = 4. Also, since 3* is congruent to 0 modulo
1+4-2=29, we have a covering map ¢’: Q3 — Ko; see Example 4.58. o

4.34. Ts there a covering map ¢: Q3 — K177 What is the smallest integer
n > 1 such that there is a covering map of the form 9: Qf — K,? What is
r in this case? [1]

There is a relation between covering maps ¢: (), — Z and algebraic
codes. Any covering map ¢: @) — Z yields a l-error-correcting code, and in
particular, any perfect, 1-error-correcting code C'in Q;’ induces a covering map
into K4 (p—1)n, See [108]. We note that there are perfect, 1-error-correcting
Hamming codes that are not groups as we ask you to show in Problem 4.35
below.

4.35. Let ¢: Q" — Z be a covering map. Show that ¢ ~1(p(0)) is in general
not a subspace of F™. [3]

4.4.7 Covering Maps over Circ,

In this section we will study covering maps ¢: Circ, — Z where Z is con-
nected. We will show that there exists a bijection between covering maps
v: Circ, — Z where Z is connected, and subgroups (c™) < Aut(Circ,),
m>3,n=0 modmand o =(0,1,...,n—1). In fact, even more is true: If
¢: Circ, — Z is a covering map and Z is connected, then Z = (¢™) \ Circ,,.
Accordingly, covering maps over Circ,, are entirely determined by certain sub-
groups of Aut(Y).

Example 4.66. We have covering maps ¢: Circio — Circz, ¢1: Circio —
Circg, and ¢y : Circg — Circs. Let 012 = (0,1,2,...,11) and 06 = (0,1,...,5)
where we use cycle notation for permutations. The map ¢ is induced by o3,
while ¢; is induced by 09, and 5 is induced by o§. See Figure 4.21. o

Elements of Aut(Circ,,) are of the form 7o* where o = (0,1,...,n—1) and
T = H}E{QJ (¢,m — 4). The covering maps from Circ,, are characterized by the
following result:

120 4 Sequential Dynamical Systems over Permutations

0
1
2
3
l(bz
1
0 2

Fig. 4.21. Covering maps from Circi2 and Circg.

Proposition 4.67. If v: Circ, — Z is a covering map, where Z is con-
nected, then Z = Circ,, where n =0 mod m. Accordingly, for any ~ there is
a subgroup H < Aut(Circ,,) such that

Circ, %> H \ Circ, = Z (4.86)
holds. In particular, there are no nontrivial covering maps for n < 6.

Proof. Assume ~: Circ, — Z is a covering map and that Z is connected.
Then ~: Circ, — Z is surjective. Since v: Circ, — Z is locally bijective,
any vertex ¢ in Z has degree 2. Thus, Z is a connected regular graph of degree
2, i.e., Z = Circy,. Lemma 4.43 implies n = 0 mod m and m > 3. The
subgroup H = (oc™) satisfies Z 2 H \ Circ,, and gives us the desired covering
map by v =7,

Tgmy: Circ, — (™) \ Circ,, = Z .

The last statement of the proposition follows from Lemma 4.43 and the fact
that for every covering we have d(i,j) > 3 for any i,j € Y with ¢ # j and

i,j €77 ((D). 3

There are various ways to construct covering maps from given covering
maps. The following two problems illustrate the idea.

4.36. Let p;: Y; — Z; for i = 1,2 be covering maps. Show how to construct
a covering map from Y7 X Y5 to Z1 X Zs where X is the direct product of graphs.
(Note that there are several types of possible graph products.) [1+4]

4.37. Let ¢: Y — Z be a covering map. Let Y’ and Z’ be the graphs
obtained from Y and Z, respectively, by inserting a vertex on every edge. Show
how to construct a covering map ¢: Y’ — Z’. The process is illustrated in
Figure 4.22. [1+]

4.4 SDS Morphisms and Reductions 121

110,

100,
100 011

Fig. 4.22. An extension of the covering map ¢: Q3 — K.

Problems

4.38. In this problem we will consider covering maps of the form ¢: Q} —
H \ QF where H is a sub-vectorspace of F'7 = F3. (i) Show that there are at
most five non-isomorphic covering image graphs of the form Zy = H \ Q3 of
order 64. (i) Show that there exists a covering map ¢': Q3 — Kz and give
a four-dimensional, distance-3 sub-vectorspace H that induces the covering

map ¢'. [2]

122 4 Sequential Dynamical Systems over Permutations
Answers to Problems

4.1. (3,1,2,0) has the representation 2-42 +1-41 +3-4% =32+ 4+ 3 = 39.
Since 1234 = 4% +3-43 + 42 +2.4° we get (2,0,1,3,0,1).

4.2. For Circg we have n[5] = (0,4,5) (where we have used the standard
convention of ordering in the natural way).
The function Nory is in this case given as

Nors(xo, 1, X2, X3, T4, x5) = (To, T1, T2, T3, T4, 00r3(T4, T5,Z0)) -

4.3. The phase space of [Majority, .., (2,3, 1)] is shown in the figure below:

G 0
100 001

110—111<—011
lfn 010—> 000

4.4. See, for example, R. A. Hernandez Toledo’s article “Linear finite dy-
namical systems” [33].

4.5. Proposition 4.11 does not hold for SDS with word update orders. For
instance, in the somewhat pathological case where the word w equals the
empty word, all states are fixed. Even if we restricted our attention to fair
words, which are words where every vertex of the graph Y appears at least
once, Proposition 4.11 does not hold. For instance, if a permutation-SDS with
update order 7 has a period-2 orbit {z,y}, then the corresponding word-SDS
with update order w = (7|7) has z and y as fixed points.

4.6. The phase space is a union of cycles.

4.7. The solution follows by inspecting the function table. For the map f to
induce invertible SDS over Circ,,, we must have that a7 = 1+ a5, ag = 1+ ay,
as =1+ ay, and aa = 1 + ap (where additions are modulo 2). Thus, we can
freely assign values to four of the a;’s, and thus there are 16 such maps.

If such a function is to be symmetric, it must have the same value for
(001), (010), and (100). It must also have the same value on (011), (101), and
(110). We see that this comes down to ag = a5 = ag and ag = az = a;. If
ag = 0, we get a1 = a2 = a4 = 1. Furthermore, we have ag = 1 + a4 and
a3 = 1+ aq so that ag = a5 = az = 0. Finally, a; = 1+ a5 = 1. You can verify
that the function we get is parity;, which is rule 128 + 16 +4 + 2 = 150. If
ap = 1, we get the function 1 4 parity, with rule number 105.

The rule numbers according to the Wolfram encoding of all the functions
inducing invertible SDS are 51, 54, 57, 60, 99, 102, 105, 108, 147, 150, 153,
156, 195, 198, 201, and 204 .

You may have noticed that the functions come in pairs that add to 255.
By flipping zeros and ones in the function table, we get rules with isomorphic

4.4 SDS Morphisms and Reductions 123

phase-space digraphs. It is clear that if one function gives invertible SDS, then
so must the “255 complement function.”

4.8. For each degree d in the graph Y, the argument is virtually identical to
the argument in Example 4.14.

4.9. (pH".
4.10. NA
4.11. Cousider the mapping ¥ of Eq. (4.35):

9: Sy \ Q' — P(K), 9(Sn(x)) ={z0, |1 <i<m}.

We show that if) contains two different elements x,, # Lo, s then we have
N(zv,;,) N N(zy,;,) = @ [Eq. (4.36)]. Suppose x contains z, and z,, m;,
and my, times, respectively. Any element of N(z,,) contains Ty, at least
mj, times and any element of N(z,,) contains z,; at least m;, times. An
element £ € N(zy,,) N N(zy,,) would therefore contain z,;, and z,; at least
mj, and m;, times, respectively. In addition, § is a neighbor of z, obtained
by altering exactly one of the coordinates z,; —or T, which is impossible.

4.12. The graph G = S3\ Q3 is shown in Figure 4.8. We have three choices for
the “color” of the vertex [000] and two choices for the color of [001]. With these
values set the remaining (g) — 2 = 8 vertex colors are fixed. Thus, there are
six such vertex colorings and therefore six symmetric functions f: F3 — F3
that induce invertible local functions. Clearly, s3 is the coloring that assigns

0 to [000] and 1 to [001].

4.13. The graph G = S3\ QF is shown in Figure 4.23. (We have labeled the
elements of the field 0, 1, 2, and 3.) The graph G has (3+§71) = 20 vertices.

Fig. 4.23. The graph G = S3 \ Q3.

4.14. (“T7.

a—1

124 4 Sequential Dynamical Systems over Permutations

4.15. a(Wheel,) = 3™ — 3. Pick e = {(0, (n — 1)}. Observe that the graph
Y is isomorphic to Wheel,,_1. Let W), be the graph obtained from Wheel,
by deleting e. Use the recursion relation for a(Y") to find a recursion relation

for a(W}) and find an explicit expression. Use this in the original recursion

relation for a(Wheel,,).

4.16. NA

4.17. (i) 7 =(0,1,2,5,3,6,4,7,8,9). (ii) We need six computation cycles as
there are six rank layers, and we have (iii) a(E,) = 3™(2" — 2).

4.18. We only need the functions to be “outer-symmetric” or symmetric in
the “neighbor” arguments. A graph automorphism maps 1-neighborhoods to
1-neighborhoods and preserves the center vertex. The SDS does not need to
be induced, but all functions f,» with v' € Aut(Y)(v) must be the same. The
proposition also holds for any pair of words w and w’ that are “related” by a
graph automorphism. We will get back to what “related” means in Chapter 7.

4.19. Let v,n € Aut(Y). We need to show that (77)O = n(yO). To this end
let e be an edge of Y. By definition we have

(m)O(e) = (m)O((my) " (e)) -
We also have
(n(v0))(e) = n((vO)(n~'(e)))
=n(v(O(y " (n""(e)))))
= (M) (O((my) " (e)) .

Clearly, id O = O for any acyclic orientation, and we have established that
we have a group action.

It remains to show that yOy (1) = Oy (y7). Note that Oy (7) is defined
for combinatorial graphs Y. Let {v,v'} € e[Y]. We have

(YOy (m)({v,v'}) = 7(Oy (m)(v ™ {v,v'}))
_ {(«w') if 7 (0) <x v (),
(v',v) otherwise.
Again by definition we have
Oy (ym)({v,v'}) = {EZ;Z:; ftﬁej;;:_l’
But it is clear that
U <yr V' = v =m(k), v =ym(k') with k < k'
— vy) =n(k), v (') = 7(K) with k < &
=77 (v) <z 77 (V)

and equality follows.

4.4 SDS Morphisms and Reductions 125

4.20. In general the answer is no, but there are special cases/graphs where
it does hold. We leave it to you to identify the conditions.

4.21. The bound A(Y) is the number of orbits in S,,/~y under the action
of Aut(Y). We have Aut(K,,) = S,, and we therefore have only one orbit, so
A(K,) =1

4.22. NA

4.23. The bound is sharp. One way to see this is to pick representative update
orders from the three Aut(Circy)-orbits and show that the three SDS induced
by nor-functions have pairwise non-isomorphic phase spaces.

4.24. No, the bound is not sharp. If you do the math, you will find that
A(Parityc;.,) = 2.

4.25. There are 8! different permutation update orders, we can get 1862
functionally different permutation SDS since a(Q3) = 1862, and we can get
A(Q3) = 54 dynamically nonequivalent induced SDS; see [109]. The bound
is sharp. To show this requires a lot of tedious comparisons of phase spaces,
unless you find an approach that we are not aware of.

4.26. For p > 2 a prime the sum in (4.53) has only one term:

L@ -2 =@ -1/,

A(Circy) = 5
P

4.27. An element v of Aut(Star; ,,,) necessarily maps K; vertices in Star; ,,, into
K vertices since automorphisms are degree-preserving. Since -y also preserves
adjacency, the vertices of degree 1 attached to vertex i can only be permuted
among themselves and moved such that they are adjacent to ~(i). Thus, we
see that Aut(Star;,,) = KH = HK where H, K < Sj(14.,) are the groups

1 1 1 l1 lm . .
K= : e im 4.
{q o e) o€ S b8
and
H={oc€ Sl(m+1) |o(i)=7=VkeN, :0(ix) =jk } - (4.88)

We must show that K is normal in G. Let k € K and g = h-k1 € Aut(Star).
Then we have
g~k-g_1:h~k1~k~k1_1-h_1
=h-ky-h1,

where ky = ki - k- k' In view of h- kg - h™' € K, we derive K <1 G, and
consequently G = K x H follows. Since K 2 S! and H = S;, we are done.

4.28. We will establish Eq. (4.67) by computing the sum in (3.31) directly.
First, we know from Lemma 4.39 that |Aut(Star;,,)| = I! x m!\. We write

126 4 Sequential Dynamical Systems over Permutations

automorphisms as v = (oy,m1,...,m), where o; is the permutation of the
vertices of the K; subgraph and m; denotes the permutation of the vertices
i1,...,0m. We observe that v € Aut(Star;) does only contribute to the sum
in (3.31) when o; = id since the graph (v) \ Star; ., would otherwise contain
at least one loop and would thus not allow for any acyclic orientations. Now
with o; = id it is clear that (v) \ Star;,, will be the graph K; with c(m;)
vertices attached to vertex i of K. Here ¢(7y) denotes the number of cycles in
the the cycle decomposition of v where cycles of length 1 are included. Thus,
the number of acyclic orientations of the reduced graph (v) \ Star;,, in this
case is 1! x 2¢(7). We now get

AfStar) = S al(y)\ Stari)

|Aut(Stary .,)| S eAuEar)

|Aut(Starl |Z (y = (id, 71, ..) \ Stari,m)

. #)
llell ! 22 K

YESum

B (Zwesm 2#(7))1
m!
= (m+1),

where the last equality follows by induction, and we are done.
4.29. Any interesting results here would probably make for a research paper.

4.31. As for dynamical equivalence the functions f; need to be outer-
symmetric. The extension to words is clear — all that needs to be done
is to modify the map n,. If w = (wy,...,wy) is a word over v[Z], then

np(w) = (s(w1) | ... s(wp)).

4.32. One way to see this is that the graph Hy \ Q3 contains triangles, which
is not the case for Hy \ Q3.

4.33. NA

4.34. There is no covering map ¢ since, for example, 5¢ is not divisible by
17. A necessary and sufficient condition for the covering map ¢ to exist is that
r —1 = 4n and that r divides 5™. Thus, we have to have 4n + 15", which
happens for n = 6 in which case r = 25.

4.35. We show this by constructing a covering map ¢: Q3% — K¢ where
¢ H(¢(0)) is not a subspace of Fi5.

According to Proposition 4.63, there exists a covering map 7z : Q% — Kg
for a (#)-sub-vectorspace H < F% such that |[H| = 2% holds. Let f: H —
Fy be defined by f(0) = 0 and f(h) = 1 otherwise. Using a well-known

4.4 SDS Morphisms and Reductions 127

construction from coding theory (see, e.g., [108]), we introduce the set

H’:{(m,aﬁ—&—h,Zmi—i-f(h)) | x € F, hEH} .

We claim that F3° = H' U (U;; e + H’). To prove the claim we first show

VhY, by € H' - d(h},hb) >3 . (4.89)

Each H'-element is of the form h} = (z;, z; + h;, 2;) with 2; € F}, h; € H and
z; € Fg. Suppose now hy = hge. Obviously, z; = zo implies z1 = o(z2) where
o(x2) = ((x2)e(1)- -+ (¥2)o(7y) and accordingly d(z1,r2) = d(x1 + hy, 2 +
he) > 2. For z1 # zo we obtain d(z1,22) = d(z1 + h1, 22 + ha) > 1; hence,
d(hy, hb) > 2.

Assume next that h; # he holds and observe that then d(h; — ha,0) <
d(hl - hg, To — Il) + d(:l?g — 1, 0) In view of d(hl — hg, 0) = d(hh hg), d(hl —
hg,l’g — 1’1) = d(hl + Il,hg + 1’2)7 and d(:l?g — Il,O) = d(:l?l,ilig), we have
established (4.89). Clearly, (4.89) implies (e; + H') N (e; + H') = @ for i # 7,
i,j=1,...,15, and since |H'| = 21! and the claim follows.

It remains to show that H' is not a group. We consider hj = (x,x+ hq, 21)
and hl, = (z,x + ha, 22) with hy # ho, by # 0, and hg # 0. Then we have

hy + hy = (0, ha + ha, f(h1) + f(h2)) # (0, h1 + ha, f(h1 + h2)) ,

i.e., the sum of A} and h) is not contained in H’, which is therefore not a
group. Accordingly, the map
. 0 if and only if x € H’,
¢: Q) — K, o(x) =% | . .
¢t ifandonlyifxee;+H'i=1,...,15,

is a well-defined covering map for which ¢~!(¢(0)) is not a vectorspace.
4.36. NA
4.37. NA

4.38. (i) If Zy has order 64, then the sub-vectorspace H must be one-
dimensional. Additionally, H has to be a distance-3 set. Since sub-vectorspaces
differing by a permutation give isomorphic covering images, we see that there
are precisely five covering images of the form Zy, and five representative sub-
vectorspaces are H; = {0000000, 1110000}, H, = {0000000,1111000}, H3 =
{0000000,1111100}, H4 = {0000000, 1111110}, and Hs = {0000000,1111111}.

(it) For p = 2 we know there exists a covering map ¢: QF — Kiip
if and only if 2™ is divisible by n + 1. Here n + 1 equals 8 so we have a
covering map ¢: Q5 — Kg. Here H must be a four-dimensional, distance-3
sub-vectorspace. The algorithm 4.57 leads us to choose a basis consisting of
v; = e; with ¢ = 1,...,4 for H’, and this basis is extended to a basis for

128 4 Sequential Dynamical Systems over Permutations

F? by adding the vectors v; = e; with i = 5,6,7. We now need to pick four
vectors w; in Span{vs, vg, v7} that are not scalar multiples of each other nor
scalar multiples of vs, vg, or v7. We see that wy = vs + vg, we = v5 + vr,
w3 = vg + v7, and wy = v5 + vg + vy is one such choice. We set ¢; = v; + w;
fori=1,...,4 and ¢; = v; for i = 5,6,7. The linear map f is the map given
by f(¢:) = e; or, using matrix notation, f@ = I where @ is the matrix with
the ¢;’s as columns. We see that @ is its own inverse so f = @ and we get
H = f(H").
Explicitly, we have

(0,0,0,0,0,0,0), (1,0,0,0,0,0,0), (0,1,0,0,0,0,0), (0,0,1,0,0,0,0),
sy — 1 (0,0,0,1,0,0,0), (1,1,0,0,0,0,0), (1,0,1,0,0,0,0), (1,0,0,1,0,0,0),
~(0,1,1,0,0,0,0), (0,1,0,1,0,0,0), (0,0,1,1,0,0,0), (1,1,1,0,0,0,0),
(1,1,0,1,0,0,0), (1,0,1,1,0,0,0), (0,1,1,1,0,0,0), (1,1,1,1,0,0,0)

[1000000]

0100000

0010000

f=1lo0001000] ,

1101100

1011010

0111001

and H = f(H’) is given as

5

Phase-Space Structure of SDS and
Special Systems

In this chapter we will study the phase spaces of special classes of SDS. The
first part is concerned with computing the fixed-point structure of sequential
dynamical systems and cellular automata over a subclass of the circulant
graphs [83]. We then proceed to analyze SDS over special graph classes such
as the complete graph, the line graph, and the circle graphs. We will also see
that the periodic points of SDS induced by (norg); and (nory + nandy), do
not depend on the choice of update order. This fact is needed in Chapter 6,
where we will study groups associated to a certain class of SDS.

5.1 Fixed Points for SDS over Circ,, and Circ,, ,

The fixed points of a dynamical system are usually easier to obtain than the
periodic points of period p > 2. However, determining all the fixed points of an
SDS is in general a computationally hard problem, and brute-force checking
is the best approach. However, for certain graph classes we can characterize
all fixed points efficiently. Here we will demonstrate this for Y = Circ,, and
the more general class of graphs Circy, ., 7 € N, defined below in the case
of permutation-SDS. For similar constructions in the context of cellular au-
tomata, see, for example, [110]. The advantage of the approach here is that
our construction extends directly to general graphs.

The permutation-SDS we consider here will be over the graph Circ,, or
more generally Circy, ,, and the functions f, will all be induced by a common
function ¢. The graph Circ,, ,, 7 € N, is given by

v[Circ,] = v[Circ,] = {0,1,2,...,n — 1}, (5.1)
e[Circpr] = {{i,j} —r<i—j<r}.
The graph Circg 2 in shown in Figure 5.1. In the case of Circ,, the function ¢

is of the form ¢: F3 — Fy and for Circ,, . it is of the form ¢: Fgr"'l — Fo.
As for cellular automata we call r the radius of the rule ¢. Here we assume

130 5 Phase-Space Structure of SDS andSpecial Systems
0 1

4 3
Fig. 5.1. The graph Circg 2.

that 2r + 1 < n since there are only n vertex states. The state of each vertex
1 is updated as

T4 — ¢(xi—2T7 oy =1, Ly L1y - - 7xi+27‘) 5

where all subscripts are taken modulo n. The idea in our approach works for
any graph. Refer to Figure 5.2. We can construct a local fized point at vertex 1
as a b-tuple (21, z2, 5, Te, Tg) that satisfies fi1(x1, x2, x5, 6, T9) = 1. We can
do the same for vertex 2, that is, we can find a 5-tuple (z}, %, z§, 2}, %) such
that fo(a), xh, x5,), xf) = x%. The idea is to patch local fixed points together
to create global fized points for the full SDS. In order to patch together local
fixed points, we need them to be compatible wherever they overlap. In the
example this means that we must have x; = 2, o = z}, and x5 = 25. We
formalize this idea as follows in the special case of the graph Circ,, ;.

6 3 6. p
\ " \ # \\ P
7 1 K T '.I -/
5 2 < 2
\ 3 - 3
.
8 8

6\ / 4 6_,_/ \ o

7. . . T
~/ " 32 L P
9 = 9 \
3 3

.
8 8

5 5
A

Fig. 5.2. The graph Y is shown in the upper left, n[2] = (1,2,3,4,5) and n[l] =
(1,2,5,6,9) are highlighted in the lower left and upper right, respectively. In the
lower right the vertices contained in both n[1] and n[2] are highlighted.

Definition 5.1 (Compatible, local fixed points for Circ,). Let r be a
positive integer and let x, 2’ € F2" ™!, Then x = (z1,...,29,41) is compatible

5.1 Fixed Points for SDS over Circ,, and Circy,, 131

with o’ if x,11 = 2}, 1 < i < 2r, which we write as x > a’. A sequence
C = (2* € F5" ™12 1 is a compatible covering of Circ,, . if

S S S

Let ¢: F3'*' — Fy. A compatible covering C' = (azi);-zol of Circ,,, is a
compatible fixed-point covering with respect to ¢ if ¢(x?) = ¢ 4 for0<i <
n — 1. The set of all compatible fixed-point coverings of Circ,, , with respect
to ¢ is denoted Cy(n, 7).

For Circy, » we can organize the local fixed points in a directed graph. Since
each function ¢ gives such a graph we have a map G: Map(F3" ™! Fy) —
Graph that assigns to each map ¢ the directed graph G = G(¢) given by

v[G] = {z € F | 6(2) = 2741} (5.2)
elG] = {(z,2') | z,2’ €v[G] : z>2'}.

Thus, G has vertices all local fixed points, and the directed edges encode
compatibility.

Ezample 5.2. Let r = 1 and let ¢ = majority;: F3 — Fy. Recall that
majoritys returns 1 if two or more of its arguments are 1 and returns 0 other-
wise. We will compute the local fixed points of the form (z;_1, z;, x;+1). For ex-
ample, with ;1 =0, 2; = 0, and x;11 = 1 we get majoritys(x;—1,x;, Tiy1) =
0 = x; so that (0,0, 1) is a local fixed point. On the other hand, if z;—; = 0,
x; = 1, and x;41 = 0, we have majoritys(z;—1,%;, Ti+1) = 0 # x; and we
conclude that (0,1,0) is not a local fixed point. You should verify that the
local fixed points are as given in Table 5.1.

(Tie1, T, Tit1) majority 5 Local fixed point?
(0,0,0) 0 Yes
(0,0,1) 0 Yes
(0,1,0) 0 No
(0,1,1) 1 Yes
(1,0,0) 0 Yes
(1,0,1) 1 No
(1,1,0) 1 Yes
(1,1,1) 1 Yes

Table 5.1. Local fixed points for SDS over Circ,, induced by majority.

From the table it is clear that there are six local fixed points. Consider the
local fixed point (0,0,0). The local fixed points z such that (0,0,0) > = are
(0,0,0) and (0,0, 1) since the two last coordinates of (0,0,0) must agree with
the first two coordinates of x. Therefore, in the graph G there are a directed
edge from (0,0,0) to itself, and a directed edge from (0,0,0) to (0,0,1). You
should check that the graph G is as shown in Figure 5.3. o

132 5 Phase-Space Structure of SDS andSpecial Systems

I3
(000)
¥ AN
(001) < (100)
\% A
(011) > (110)
N 7
(111)
N

Fig. 5.3. The local fixed-point graph for majority.

The fixed-point graph G has at most 22”1 vertices. By definition, a cycle
of length n in G corresponds to a compatible fixed-point covering of Circ,, ,
for a given function ¢. Each C' € Cy4(n,r) corresponds uniquely to a fixed
point of a corresponding permutation-SDS. To make this clear, we define the
one-to-one map 1 by

(UK C¢(n,r) — FiX[FCircn,r;ﬂ'] s (53)
Y2t) = (x2+17x$+1, ... 735;:11))
In other words, the map v extracts the center state of each local fixed point
of a compatible fixed-point covering to create a fixed point for the SDS.
We can enumerate and characterize the fixed points of permutation-SDS
induced by a function ¢ over Circy, , through the graph G.

Theorem 5.3. Let ¢: F§T+1 — [y, let L, be the number of fixed points of a
permutation-SDS over Circ, » induced by ¢, and let A be the adjacency matriz
of the graph G(¢). Then we have

Lo = [Co(n,7)| = Tr A" . (5.4)

Let xa(x) = Z?:o a;x*~" be the characteristic polynomial of A. The number
of fized points L, satisfies the recursion relation

k
> ailn,i=0. (5.5)
=0

Proof. The first equality in Eq. (5.4) follows since 1 is one-to-one. The second
equality follows from Proposition 3.7 since [A™];; is the number of cycles of
length n starting at vertex ¢. The last part of (5.4) can be rewritten as

k k

L,=TrA" = Z[An]“ = Z eiAnelT7

i=1 i=1

5.1 Fixed Points for SDS over Circ,, and Circy,, 133

where e; is the ith unit vector. The left-hand side of (5.5) now becomes

k K K
> aiLo—i =2 ai}_e;A"e])
i=0

i=0 j=1
k k
= Z(Z ejaiAnfief)
j=1 i=0
k
= Z ej(apA™ + a A" akA"_k)ejT
j=1

k
=Y exa(A)An el
j=1

:O’

where the last equality follows from the Hamilton—Cayley theorem (see The-
orem 3.9, page 45). O

Example 5.4. Let r = 1 and let ¢ = parity;: F3 — Fa. Recall that
paritys(z1, 22, 23) = 1 + 22 + 3 (mod 2) .

In this case it is actually easy to see what the fixed points are, so let us do
that as a sanity check before we start up the machinery from Theorem 5.3.
First the state x with all 0’s is fixed, that is, x = (0,0,...,0). We also see
that the state with all 1’s is fixed. Otherwise, if we have a fixed point such
that x; = 0 that does not consist entirely of zeros, we must have x;_1 = 1
and z;11 = 1. But if ;41 = 1, then we must have z;,9 = 0 to have a fixed
point. So we see that there are two other fixed-point candidates, namely the
states with alternating 0’s and 1’s, but we need an even number of states to
get these. Thus, we always have two fixed points, and when n is even we have
two additional fixed points. Let’s see what we get using the theorem.

You should first check that we get the local fixed points given in the table
below:

(Ti—1, Tiy Tit1) paritys Local fixed point?
(0,0,0) 0 Yes
(0,0,1) 1 No
(0,1,0) 1 Yes
(0,1,1) 0 No
(1,0,0) 1 No
(1,0,1) 0 Yes
(1,1,0) 0 No
(1,1,1) 1 Yes

From the local fixed points we construct the graph G shown in Figure 5.4.
We see that the three components in G encode the fixed points we found

134 5 Phase-Space Structure of SDS andSpecial Systems

(000) (010) < > (101) (111)

Fig. 5.4. The local fixed-point graph G for parity;.

earlier. Now, we need the adjacency matrix of G, so let’s index the four local
fixed points as 1 : (0,0,0), 2 : (0,1,0), 3 : (1,0,1), and 4 : (1,1,1). The
adjacency matrix A is then

1000

0010

0100}’

0001

and the characteristic polynomial is xa(z) = det(xl — A) = (z — 1)(z —
(2% —1) = (22 =20+ 1)(2% — 1) = 2* — 223 + 22 — 1. We can write this
as xa(x) Z?:o a;z*"" where ag =1, a1 = —2, a2 =0, az = 2, and ag = —1.
We therefore have the recursion relation agL, +a1L,_1+asLy_o+asl,_3+
asLy—4 = 0, so that, after rearranging,

Ly =201 —2Lp_3+ Loy . (5.6)

As initial values for this recursion we have (from our initial discussion) L3 = 2,
Ly =4, Ls = 2, and Lg = 4. Note that we do not want to involve Lo or L,
since we want n > 3 in the circle graph. Based on this we can compute Ly
and Lg as

Ly =2Lg—2L4+L3=2-4—-2-442=2

and
Lg=2L; —2Ls+L4=2-2—2-24+4=4,

which is consistent with our above findings. o

This was a pretty detailed example. In the next example we omit some of
the details and consider the case with » = 2 and the function paritys.

Ezample 5.5 (Parity). We want to enumerate the fixed points over Circy, o
for SDS induced by paritys. We proceed exactly as in the previous ex-
ample, the only difference being that here we have to consider 5-tuples
(Ti—2,Ti—1, Ti, Tit1, Ti+2) for the local fixed points. You should verify that we
get the local fixed-point graph G shown in Figure 5.5. By inspection you will
now find that an SDS induced by parity; over Circ,, 2 has 16 fixed points when
n =0 (mod 6), 8 fixed points if n = 0 (mod 3) and n £ 0 (mod 2), 4 fixed
points if n =0 (mod 2) and n # 0 (mod 3), and 2 fixed points otherwise.

5.1 Fixed Points for SDS over Circ,, and Circy,, 135

(10010)
= ~~
(00100) > (01001)
I3
(11000) > (10001) > (00011) (00000)
A \
(00111) < (01110) < (11100)
(01010) < > (10101) (11111)
N
(10110) > (01101)
~~ =
(11011)

Fig. 5.5. The graph G(parityy).

The adjacency matrix is a 16 x 16 matrix so you may want to use some
suitable software to compute the characteristic polynomial and derive the
recursion relation. o

The next example is more involved. In this case we have r = 2 and we use
the function majoritys.

Ezample 5.6 (Magority). For an SDS over Circ,, 2 induced by majority; we get
the following vertices for Gmajority,, Which the reader should verify. (We have
grouped the local fixed points by H-class. The elements of H-class k are all
the tuples with exactly k entries that are 1.)

H-class Vertices
0 (00000)
1 (00001), (00010), (01000), (10000)
2 (11000), (10010), (10001), (01010), (01001), (00011)
3 (11100), (10101), (00111), (01110), (01101), (10110)
4 (11110), (11101), (10111), (01111)
5 (11111)

The graph G(majoritys) is shown in Figure 5.6. By carefully inspecting the
graph G, we see that the states (01000), (00010), (11101), (10111), (10010),
(01001), (10110), and (01101) cannot be a part of a cycle in G. They are
“absorbing” or “repelling.” We can therefore omit these nodes from G for
the purpose of counting cycles of length n. You can check that the graph
G’ obtained from G by deleting these vertices has adjacency matrix with
characteristic polynomial y(r) = r!* — 2713 4 2911 — 10 98 4 6 Thys,
the number of fixed points L,, of an SDS over Circ, > induced by majoritys
satisfies the recursion relation

Ln = 2Ln71 - 2Ln73 + Ln74 + Ln76 - Ln78)

136 5 Phase-Space Structure of SDS andSpecial Systems

y
(00000)

(10000 00001)
////% 01000 00010 \\\\&
11000) (10001) > (00011)
(11100) < (01110) (00!11)
11101 10111
(11110 01111)

(11111)

(10010) < (01001) " (10110) > (01101)
(01010) < > (10101)

Fig. 5.6. The graph G(majorityy).

and we have Ls = 2, Lg = 10, Ly = 16, Lg = 28, Lg = 38, L19 = 54, L11 = 68,
Lis = 94, and L3 = 132. Note that finding these initial values is probably
best done looking at the right powers of the adjacency matrix and by using
the Tr-formula in Eq. (5.4). o

5.1. Why did we only consider the graph Circ, , and not arbitrary graphs?
What goes wrong in the case of, for example, Wheel,,? [1+4]

In Section 4.2.2 we have already seen that permutation-SDS induced by
the nor or nand function never has fixed points. For r = 1 Theorem 5.3
reestablishes this for the special case:

Corollary 5.7. Let K =Ty, let Y = Circ,, and let f be a symmetric function
f: K3 — K. If the permutation SDS over Y induced by f is fized-point-free
for any n > 3, then f = nors or f = nands.

Proof. Let [Fcir,,) be an SDS induced by f: K3 — K. From Theorem 5.3
we have that the non-existence of fixed points for any n is equivalent to Gy
having no cycles or loops. Let a; be the value of f on H-class i. Clearly, ag = 1
and ag = 0, since otherwise Gy would have loops. Now, a; = 1 implies as = 1.
Likewise, a; = 0 implies as = 0. In the latter case we see that f = nors, and
in the former case we have f = nands, and the proof is complete. O

We call a fixed point without any predecessors an isolated fixed point. From
a computational point of view, such a fixed point is a “practically invisible”

5.2 Fixed-Point Computations for General Graphs 137

attractor in the sense that the probability of realizing such a particular state is
1/¢™ for a graph on n vertices and with a state space of size ¢. Clearly, for the
identity map all states are isolated fixed points. However, there are nontrivial
examples of systems with such fixed points, as the following corollary shows.

Corollary 5.8. Let K = Fy. Then the permutation-SDS [Majorityc;. , 7]
has isolated fized points if and only if n = 0 mod 4.

Proof. From the graph G(majoritys) of Circ,, we see that the fixed points of
an SDS [Majorityc,;. ,7] are all points without isolated zeros or ones, that
is, if ; = 0, then z;_; = 0 or x;4+1 = 0, and similarly for x; = 1. If a fixed
point x has three or more consecutive zeros, we can easily find a permutation
such that there is a preimage of x different from z itself. To be explicit assume
Ti—1 =x; = ;41 = 0. Pick 0 € S, such that i <, i—1and i <, i+ 1. Let &
be the point obtained from x by setting z; to 1. Clearly, & is a preimage of x
under [Majorityc,. ,o]. The case with three or more consecutive states that
are one is dealt with in the same way. Thus, the only candidates for isolated
fixed points are points where two zeros are followed by two ones that again
are followed by two zeros, and so on. These points clearly have no preimage
apart from themselves. It is clear that n = 0 mod 4 is necessary and sufficient
for such points to exist, and the proof is complete. O

From the proof it is also clear that there are precisely four isolated fixed
points when n = 0 mod 4.

5.2. (a) Derive a recursion relation for the number of fixed points L, of
[Majorityc;. ,7]. (b) Give an asymptotic formula for L,, as a function of n.
(c) Characterize the fixed points. [2+]

5.2 Fixed-Point Computations for General Graphs

It is natural to ask to what extent the fixed-point characterization and enu-
meration for Circ,, , can be generalized. The key features that we implicitly
used were that (1) the graph is regular, (2) it has a Hamiltonian cycle, and
(3) neighborhoods overlap in an identical, local manner along the Hamiltonian
cycle. If any of these conditions fail to hold, then it is clear that we cannot
construct the compact graph description G(¢) that we had for Circ,, . A quick
look at, for example, Q3 or Wheel,, should clarify what goes wrong.
However, we can still consider local fixed points as well as compatible
fixed-point coverings. Compatibility of two local fixed points x and z’ still
means that z and 2’ agree on the states that belong to the same vertex state
in the graph Y. As before we can show that a compatible fixed-point covering
corresponds to a fixed point. Although this may seem clear it takes a little
bit of mathematical machinery to prove this rigorously. We will not do that
here and will contend ourselves with the example below. The computationally

138 5 Phase-Space Structure of SDS andSpecial Systems

inclined reader may not be that surprised to learn that computing all the fixed
points of a finite dynamical system map F': K™ — K", even in the case of
K = Ty, is computationally intractable [20]. Note, however, that there are
efficient algorithms for SDS if we restrict ourselves to special graph classes
such as tree-width bounded graphs or to special function classes such as linear
functions [20].

Ezample 5.9. We will compute all the fixed points for CA/SDS over the cube
3 induced by

(5.7)

xory: Fy — Ty, xory(x) =)
0 otherwise,

{1 if sum(z;); =1,
by exhaustive enumeration. Here we have encoded the vertices of Q3 in decimal
such that, e.g., (1,1,0) < 3. We set V = {0,4,5,7} C v[Q3]. Note that V'
is a dense subset of v[Y] in the sense that every vertex in Y is in V or is
adjacent to a vertex in V. Since Q3 is regular, and since we have the same
local function for each vertex, the local fixed points are the same for each
vertex. In the following we write the family of states of the vertices contained
in By (v) such that the state of v is the first coordinate, for instance,

(1/000), (0/000), (0[011) and (0[111).

The construction of fixed-point covers and the verification that the vertices
in v[Y]\ V have fixed-point covers are given in Table 5.2. We get the table
by starting at vertex 0, computing all of its local fixed points. For each such
local fixed point we compute all possible local fixed points at vertex 4 that
are compatible with the initial fixed point. We then branch to vertex 5 and
vertex 7. Finally, we verify that the vertex state configurations around the
vertices contained in v[Y]\ V are local fixed points. Note that by applying

(zor1z2x4a) (Tazowswe) (T5212427) (T7232526) 1 2 3 6 Fixed point
(1000) (0110) (1000) (0110) yyyy (10010100)

(0101) (0000) (0101) yyyy (10010010)

(0111) (1000) (0011) yyyy (10000110)

(0111) yyyy (10010110)

(0000) (0000) (0000) (0000) yyyy (000O0000O)
(0011) (1000) (0110) yyyy (00010110)

(0111) (1000) (0111) (1000) yyyy (01101001)
(0110) (0000) yyyy (01101000)

(0011) (1000) (0011) (1000) yyyy (00101001)
(0101) (1000) (0111) (1000) yyyy (01001001)
(0110) (0000) (0101) (1000) yyyy (01100001)

Table 5.2. The fixed-point computation for Q3 with xors as local functions.

5.3 Threshold SDS 139

the Q3 automorphisms o = (0)(124)(365)(7) (cycle form) and o2 to the last
fixed point we obtain the second-to-last and third-to-last fixed points. Note
that in this case Aut(Y’) acts on the set of fixed points. o

5.3. Show that, under suitable conditions that you will need to identify,
Aut(Y') acts on Fix[Fy,]. [2]

Remark 5.10. In general, fixed points can be derived by considering a sheaf
(of local fixed points) and computing its cohomology. This approach is based
on category theory and generalized cohomology theories and is beyond the
scope of this book.

5.3 Threshold SDS

Some SDS only have fixed points and no periodic points of period p > 1.
While it is not the goal of this section to identify all such SDS, we will show
that the class of threshold SDS has this property.

Definition 5.11. A function f: F§ — Ty is a threshold function if it is
symmetric and there exists 0 < m < k such that f(z) = 0 for all z in H-
classes H;(x) with 0 < ¢ < m, and f(z) = 1 otherwise. An SDS is a threshold
SDS if each function F}, is induced by a threshold function f.

An inverted threshold function is defined in exactly the same way but
with the function values 0 and 1 interchanged. The two SDS (Y, Andy,)
and (Y, Majority, , 7) are examples of threshold SDS, while (Y, Nory,) is
an example of an inverted threshold SDS.

Proposition 5.12. A threshold SDS has no periodic points of period p > 2.
The following lemma is a consequence of the inversion formula (4.25).

Lemma 5.13. Let ¢ be a periodic point of the permutation SDS-map [Fy, 7
over By with (prime) period p > 1. There is an index v that is maximal with
respect to the ordering w for which

(Fy, (@) =20, V' >z,
([Fy,7](@)y =1+ @y,
(Fv.,Y o [FYvTr](aj))v = Ty-

Proof. By assumption z is periodic with period p > 1, so there is at least
one vertex v’ such that [Fy, 7](x), # ., and thus there is a maximal (with
respect to the order given by) index v such that ([Fy,n])(z), = x, for
u >, v. The last statement follows from the fact that restricted to an orbit
[Fy,n] is invertible with inverse [Fy,7*] and by using [Fy,7n*] o [Fy,n] =id
on such an orbit. 0

140 5 Phase-Space Structure of SDS andSpecial Systems

Proof (Proposition 5.12). Let [Fy, x| be a threshold SDS-map, and assume
that x is a periodic point of period p > 1. Clearly, property 3 of Lemma 5.13
cannot hold for threshold systems and a contradiction results.

5.4. In Proposition 5.12 we can do better than threshold SDS: Let A =
{ai,...,an} belinearly ordered by a; < ag < -+ < a,. This gives us a partial
order < on A" by x <y ifx; <y, fori=1,...,n. For example, (0,1,0,0,0) <
(0,1,1,0,0), but (0,1,0,0,0) and (1,0,0,0,0) are not comparable. A function
f+ A" — Ais monotone if x <y implies f(x) < f(y).

(a) Show that threshold functions are monotone. (b) Prove that permutation
SDS where each vertex function f, is monotone has no periodic points of
period p > 2. (¢) Does the statement in (b) hold for word-SDS? [1+]

We next show that threshold systems can have long transient orbits:

Proposition 5.14. For a given integer m > 0 there is a graph Y with |[v[Y]| <
2m and a permutation ordering ™ such that [Majorityy,n| has points with
transient length m.

Proof. Let Y be the combinatorial graph with vertex set v[Y] = {1,2,...,2m}
and edge set e[Y] = {{1,2},...{m,m + 1},{2,2 4+ m},...,{m,2m}}. Let z
be the initial state with z; = 0 for 1 < i < mand z; = 1 for m +1 <
i < 2m and let 7 = (1,2,...,2m). By direct calculation, it is clear that
[Ma _]orltyy, m)l(x) # (1,1,...,1) for 1 <1 < m and [Majorityy, 7|™(z) =
1,1

(1, 1,...,1). B

For further information on transient lengths of threshold systems see, for
example, [14].

The following problem shows how the construction of potential functions
can be used to conclude that certain threshold SDS only have fixed points.

5.5. Let sign: R — R be the function defined by sign(z) = 1 if 2 > 0
and sign(z) = —1 otherwise. In this problem we use the state space K =
{—1,1} and vertex functions given by f,(z) = sign(zv,eBi(v) Xy). Let Y be
a combinatorial graph and let m € Sy. We define a potential function (or
energy function) F: K™ — R by

E=— Z Ty - (5.8)
{u,v}€e[Y]

(7) Show that whenever the application of a Y-local map F;, leads to a change
in the system state then the potential either stays the same or decreases.
(#4) Based on (i) show that this SDS has no periodic points of period p > 1.

[2]

5.4 SDS over Special Graph Classes

We have seen many examples of SDS over Circ,, and the binary n-cubes. In
this section we present a more systematic collection of results on the structure
of SDS over special graphs classes. We start with the complete graph.

5.4 SDS over Special Graph Classes 141
5.4.1 SDS over the Complete Graph

It is intuitively clear that for induced SDS the particular choice of permutation
update order is not essential for dynamical equivalence when Y = K,,. This
follows since we are free to relabel the vertices in any manner we like. More
precisely, by the fact that Aut(K,) = S, and from Proposition 4.30 it follows
that the induced SDS-maps [Fg, , 0| and [Fg, , o'] are dynamically equivalent
for any choice of o and ¢’. To see this just choose v € Aut(K,) such that
o' = o (we can always do this — why?) and conclude that

[Fx,,o'] = [Fg,,v0] =70 [Fg,,0]loy .
In light of this, it is clearly enough to consider SDS with the identity update
order id = (1,2,3,...,n) in the case of Y = K,,. Again, note that this is gen-
erally only true for induced SDS. To start we make the following observation.

Lemma 5.15. Let [Fg, ,id] be the map of a permutation SDS induced by the
symmetric Boolean function f,: F3 — Fy. Let O be an orbit of [Fg, ,id] and
let reso fr denote the restriction of f,, to O. Suppose (a) that resp f,, satisfies
the functional relation

¢($17...,Jjn_h(ﬁ(a?l,...,a?n)) = Tn (59)
and (b) that we have the commutative diagram

[Fy,id]

@ >0 (5.10)
A
Lf proj
AV On41 ~
3 -y
where B3 = {z € T3 | 2,01 = tp(x1, 22, ..., 2n)} and
pl'Oj(.’I}17 vy Ty xn-‘rl) = (.’1717 e 7.’1771)7
tp(xe, o) = (21,0 Ty (T2, -, 20))s
Ont1(T1, T2, o, 1) = (Tpg1, 15+, Tn) -

Then we have n+1 =0 (mod |O)).

Proof. Clearly, the commutative diagram implies [Fy,id]* = (projo o,+10¢/)"
and from the functional equation (5.9) we conclude (projo o411 0 tf)? =
(proj o U?H_l otr), and by induction

[Fy,id]" = projo b, oty

In particular, for £ = n + 1 we get [Fy,id]"™! = projo ¢y = id. O

142 5 Phase-Space Structure of SDS andSpecial Systems

We also have

Lemma 5.16. Let [Fg, ,id] be the SDS-map induced by the symmetric func-
tion fn. Let Hy, = {x = (x1,...,2y) | sum(z) = k} and let O be an orbit of
the system. Suppose that for x € O

l
[[Fix. (@) € HeUHn, 1<1<n, (5.11)
=1

and that there exists at least one integer 1y with Hilzl F; i, (z) € Hy and at
least one integer ly with Hiil Fik,(x) € Hey1. Then n+1=0 (mod |O)).

Proof. First, note that the conditions above imply that f,,(x1...,2,) =1 for
x € ONAgand fr(z1...,2,) =0 for z € ON Agt1. The lemma now follows
from the following two observations: First, for x € O one has

f('r17-'-7xn717f(x17"'azn)):Ina (5]‘2)

and second,
V1i<k<n-1 ([Fg,,7(2))k+1 = (2). (5.13)
From this we conclude that (5.10) commutes, and the lemma follows. O
5.6. Verify (5.12) and (5.13) in the proof of Lemma 5.16. [1+4]

In the following we describe the dynamics of SDS induced by the functions
nor, parity, majority, and minority over K,,. We will use e; to denote the kth
unit vector, that is, the state e € Fy with (ex)r = 1 and (ex); = 0 for k # j.
We set (z,y) = > x;y;.

Proposition 5.17 (Nor). Consider the SDS-map [Norg, ,id]. The states x
for which {x,e,) =1 are mapped to zero. If (x,e,) # 1, then x is mapped to
er where k =14+ max{i | x; = 1}. The set L = {0,e1,ea,...,en} is the unique
periodic orbit of [Norg, ,id].

Proof. Clearly, all points are mapped into L. Also, 0 is mapped to ej, ey is
mapped to exyq for 1 <k <n—1, and e, is mapped to 0. 0

Proposition 5.18 (Parity). For the SDS-map [Parityy ,id] all states are
contained in periodic orbits O and we have n+1 =0 (mod |O|).

Proof. By Problem 4.8, which is a straightforward corollary of Proposi-
tion 4.13, an SDS-map [Parityy,n] is bijective for any graph Y, and all
states are periodic. It is clear that any orbit that contains at least two points
satisfies the conditions in (5.11) in Lemma 5.16 for some odd integer k, and
the last statement follows. 0

Proposition 5.19 (Minority). For any periodic orbit O of the SDS-map
[Minority - ,id] we have n+1 =0 (mod |O|).

5.4 SDS over Special Graph Classes 143

Proof. A periodic orbit for this system satisfies Eq. (5.11) for k = [n/2] and
the proposition follows. O

Proposition 5.20 (Majority). For the SDS-map [Majority . ,id] every state
is fized or eventually fixed. The only fized points are (0,0,...,0) and
(1,1,...,1).

Proof. Obviously, (0,0,...,0) and (1,1,...,1) are fixed points. By definition,
the application of majority,, to a state containing an equal number of vertex
states that are 1 and 0 yields 1 as outcome, and hence such a state x is mapped
to the fixed point (1,1,...,1). Clearly, any other point will be mapped to
either (0,0,...,0) or (1,1,...,1) by a single application of [Majority . , id].

O

The following result is not over the complete graph, but on the complete
bipartite graph of order (m,n) written K,, . This graph is the graph union
of E,, and E,, the empty graphs on m and n vertices, respectively.

Proposition 5.21. For [Majority, 7| all states are fized or eventually

fized. There are (Lm”/L?J) (Ln72j) + 2 fized points.

Proof. Recall that the function majority,, yields 1 when applied to a state x
containing an equal number of 0’s and 1’s. Let the vertex classes of K, , be
Vi and V,,. Call a state x balanced if the states contained in V,,, have exactly
[m/2] zeros and the states contained in V;, has exactly [n/2] zeros. Clearly,

all balanced states are fixed and all other points eventually map to either
(0,0,...,0) or (1,1,...,1). O

Obviously a balanced state has no preimage apart from itself. The dynam-
ics of this system is thus fully understood.

Remark 5.22. Note that for a majority-SDS over K, ,, with n = 2 one has
states with a minority of zeros that are mapped to (0,0, .. .,0) for some update
orders and that are mapped to (1,1,...,1) for other update orders. In the
context of a voting game with opportunistic voters we thus see that the right
update order can completely change the outcome of the election based on the
initial inclination of a small set of voters. (An opportunistic voter is a voter
who votes the same as the majority of his contacts have voted already or are
planning to vote.)

5.4.2 SDS over the Circle Graph

The circle graph has helped us illustrate many concepts so far. As we have
seen in Chapter 2, this is also the graph that is frequently used in the studies of
one-dimensional cellular automata in the case of periodic boundary conditions.
Here we will give results on invertible dynamics on the circle graph. After the
next section where we consider line graphs, we conclude with a problem that
points to one of the central questions in analysis of graph dynamical systems:
How can we relate the dynamics over two graphs that only differ by one edge?

144 5 Phase-Space Structure of SDS andSpecial Systems

Proposition 5.23. The SDS-map [Parityc,., ,id]: F§ — F4 is conjugate to
a right-shift of length n — 2 on a subset of]an_g' In particular,

dn-—1
IPer(z)| = 0 modn , n even, (5.14)
0 mod 2n —2, n odd,

for all x € FY. The same statement holds for the corresponding SDS induced
by (1 + paritys).

Proof. Define the embedding ¢: Fy — F3"~2 by

(Zoy ey Tp—1)

= (s -+ s Tn—1,Tn—1 + T + X1, Tp—1 + To + T2, ..., Tn—1 + To + Tn—2) ,
and set ﬁ%”fz = ((F%). A direct calculation shows that the diagram

[Paritycyc,, .id]

F% > T2 (5.15)
L L
\ S \
Son—2 n- Son—2
commutes. Here o, _o: ﬁg”d — I@%”fz is defined by 0,2 (z0, ..., Tan—3) =
(Tpy -y Tan—3,T0, - - -, Tn—1). It is well-defined. Note that ¢: Fy — F%”fz is

a bijection. Thus, the map o and [Parity;. ,id] are topologically conjugate
(discrete topology) under ¢.

Explicitly, we have

[ParityCircn, Id](ﬂjo7 Tlyeo- ,l‘nfl)

= (-Tn—l +20+21,Tp—1 +2o+2X2,...,Tp—1+ X0+ xn—2;$0;$1) 5
and then

(Tp—1 + X0 + T1,Tn—1 + To + T2, ..., Tn-1 + To + Tn—2, To, T1)
= (Tp-1+ 20+ T1,Tpn—1 + To + T2,..., Tp-1
+ 20 + Tn—2,T0, T1,T2s - -, Tn—1) -
On the other hand, this also equals (oy,—2 o ¢)(zo,...,2n—1), verifying the
commutative diagram.

From the conjugation relation it is clear that the size of a periodic orbit
under [Parityc., ,id] must be a divisor of (2n — 2)/ged(n — 2,2n — 2). The
statement of the proposition follows from the fact that
1
2, else.

n=0 mod 2,

)

ged(n —2,2n— 2) = {

The proof for [(1 + Parity)cir, ,id]: F3 — F5 and the details are left for the
reader. O

5.4 SDS over Special Graph Classes 145

In analogy with the case of K, we obtain that the phase space of
[Parity ;. ,id] can be embedded in the phase space of the (n —2)th power of
the elementary cellular automaton @: F3"~? — F3"~2 induced by ¢: F3 —
Fo, ¢(xi—1,xi, ig1) = i—1 (rule 240), i.e.,

[[Parity g ,id] — I'(@5% 0,)- (5.16)

For a followup to Proposition 5.23 see Problem 5.8.

5.4.3 SDS over the Line Graph

The graph Line,, differs from Circ,, by one edge, but as you may have expected
the dynamics of SDS over these two graphs can be significantly different.

Proposition 5.24. The SDS-map [Parity ;.. ,id]: F§ — F3 is conjugate
to the composition T o 0_1 where T:]F;H'1 —]F;H'1 is given by

T(r = (21, Tpg1)) = (Tng1 +)i
and o_1: T3P — T s given by
Jfl(xla e 793n+1) = (I27I33 ceey Tntl, 'Il) .

In particular, |Per(z)] =0 mod (n+ 1) for all x € F3. The same statement
holds for the corresponding SDS induced by (1 4 paritys).

Proof. We have the embedding ¢: F} — F2*! given by
vz1, .y xn) = (X1, .., 2n,0) .

A direct computation gives

(¢o [Parity e, ,id])(z1,...,20) = t(x1 + 22,..., 21 + Tp, 21)
= (x1+ 22,...,21 + Tp,x1,0)
and
Too_10u(x1,...,Tn) =T0o0o_1(T1,...,2,,0)
= T(.’EQ,I‘?,, LR 7.’177“0,1‘1)
= (x1 4+ x2,21 + x3,...,21 + Ty, 21,0) .

The rest is now clear. The proof of the last statement is left to the reader. O

5.7. Investigate the dynamics of [Norgine,, id]. [2+]

146 5 Phase-Space Structure of SDS andSpecial Systems

5.8. Let Y and Y’ be combinatorial graphs that differ by exactly one edge
e. Clearly, SDS over Y and Y’ cannot have the same vertex functions (fy),
since there are two vertices where the degrees do not match. However, we may
consider induced SDS. For a fixed set of functions it would be very desirable
to relate the dynamics of the two SDS. The addition or deletion of an edge is
a key operation, and it would allow us to relate systems over different graphs
by successive edge removals and additions. Using Propositions 5.23 and 5.24,
what can be said about this problem in the particular case of SDS induced by
parity functions over Circ,, and Line,? [3]

5.9. What can be said about Problem 5.8 in the general case or in interesting
special cases? That is, relate induced SDS over graphs that differ by precisely
one edge. [5]

5.4.4 SDS over the Star Graph

We have already considered SDS over Star,, induced by nor functions when
we showed that the bound A(Star,,) is sharp. The graph Star,, often provides
interesting examples since it has a large automorphism group. Here we will
consider SDS induced by parity functions.

Proposition 5.25. Let Y = Star,, let 7 € Sy, and set ¢ = [Parityy,).
Then for all x € F§ we have |Per(xz)| =0 mod 3 for n even and |Per(z)| =0
mod 4 for n odd.

Proof. Since Aut(Star,,) = S, each orbit in U(Y)/ ~y under Aut(Star,) is
fully characterized by the position of the center vertex 0 in the underlying
permutations. It is now straightforward to verify that in all the n + 1 cases
the statement of the proposition holds. We leave the details to the reader. (J

5.10. Characterize the dynamics of [Minoritys,,, ,7]| for 7 € Sstar, up to
dynamical equivalence. [2]

5.11. Determine the fixed points of permutation SDS over Star,, induced by
the 2-threshold functions. Show that the number of fixed points is exponential
in n. Let 2 € F3™, and let w(z) denote the set of fixed points that can be
reached from x for all fixed choices of permutation update order. Show that
there exists a state x’ such that w(z’) has size that is exponential in n. (See
also [111].) [3]

5.5 SDS Induced by Special Function Classes

In this section we study systematically several SDS that we encountered be-
fore. For instance, we analyze SDS induced by nor functions, which proved to
be helpful in establishing that the bound |Acyc(Y)| in Section 4.3.1 is sharp.

5.5 SDS Induced by Special Function Classes 147

Here we will study the phase-space structure of SDS induced by nor and enu-
merate some of these configurations. Note that some of the results are valid
only for permutation update orders and that some results are valid in the
more general context of word update orders.

5.5.1 SDS Induced by (norg)x and (nandg)x

Here we will characterize properties of SDS induced by (nory) or (nandy)g
more systematically. Our description will start at a general level and finish
with some properties that apply for these systems for special graph classes
such as Circ,,. To begin, recall the following fact:

Proposition 5.26. Let Y be an combinatorial graph, let w be a word over
v[Y], and let K = Fy. Then

[Nandy,w] oinv = inv o [Nory,w]| , (5.17)

where the function inv is the inversion map (4.22).

Thus, whatever we can derive for SDS induced by nor functions applies to
SDS induced by nand functions up to dynamical equivalence. For this reason
we will omit the obvious statements for SDS induced by nand functions in the
following.

Fixed Points and Periodic Points

As you have seen in the examples so far, permutation-SDS induced by nor
functions never have any fixed points.

Proposition 5.27. Let Y be a combinatorial graph. A permutation-SDS over
Y induced by (nory)r has no fized points.

The proof of this is straightforward and is left as an exercise.

5.12. Give the proof of Proposition 5.27. [1]
5.13. Proposition 5.27 does not hold for word update orders. Why? [2-]

We next establish what the periodic points are for Nor-SDS. It turns out
that the periodic points only depend on the graph structure and not on the
update order, a property we will need later when we study certain groups
that describe the actual dynamics on the set of periodic points in Chapter 6.
Moreover, this characterization of periodic points is also valid for fair words.
Recall that a fair word over v[Y] is a word that contains each element of v[Y]
at least once.

148 5 Phase-Space Structure of SDS andSpecial Systems

Theorem 5.28. Let Y be a combinatorial graph on n vertices, let w be a fair
word over v[Y], and let K =Fy. Then the set of periodic points of [Nory , w]
18

Per[Nory,w| = {z € Fy |Vv : 2, =1=W' € B{(v) : z,, =0}. (5.18)

In particular, Per[Nory,w| is independent of w and is in a bijective corre-
spondence with Z(Y'), the set of independent sets of Y.

Proof. Let w = (wx, ..., wy) be fair word over v[Y] and introduce the set
PY)={(@pys...,@0,) EFY |Vv : 7, =1 =W € B{(v) : z,y =0} .

We will execute the proof in three steps. The first step is to show that
Per[Nory,w] C P(Y). Let « € F5. We observe that the only circumstance
in which z, is mapped to 1 by Nor, is when the state of all vertices in By (v)
is 0. Since w is a fair word, it is clear that the image of x under [Nory,w] is
contained in P(Y'), and therefore that Per[Nory,w] C P(Y).

The next step is to show that the maps Nor,: P(Y) — P(Y) are well-
defined and invertible. Let « € P(Y'). There are three cases to consider. As-
sume z, = 1. Then by construction all states z,» with v' € Bj(v) satisfy
z, = 0. Thus, Nor,(z), = 0 and consequently (Nor?)(z), = 1. If , = 0,
there are two cases to consider. In the first case all x,» with v' € Bj(v) are
zero. Clearly, in this case z, is mapped to 1 under Nor,,, which is then mapped
back to 0 by a subsequent application of Nor,. The final case with =, = 0
and where one or more neighbor vertex v’ has x,» = 1 is clear. There are two
things to be learned from this. First, the map Nor, maps P into P and is thus
well-defined. Second, we have seen that for all v € v[Y]

(Nor,)?: P(Y) — P(Y) = id: P(Y) — P(Y). (5.19)

We next show that P(Y') C Per[Nory, w]. By definition, Per[Nory,w] is the
maximal subset of Fy over which [Nory,w] is invertible. By our previous
argument, each map Nor, is invertible over P(Y"), and consequently all SDS

[Nory, w H Nor,;y: P(Y) — P(Y)

are invertible maps. We therefore conclude that
P(Y) C Per[Nory, w]

and hence that P(Y) = Per[Nory, w].
It only remains to verify that we have a bijective correspondence between
Per[Nory,w] and Z. To this end define 3: Per[Nory,w| — Z by

B(xyy,y . y,) = {vg | 20y, =1} . (5.20)

The map is clearly well-defined, and it is clear that (3 is a bijection. O

5.5 SDS Induced by Special Function Classes 149
As a part of the proof of Theorem 5.28 we saw that
Per[Nory,w] = [Nory, w](F3) .

This fact translates into the following corollary for transients states of Nor-
SDS:

Corollary 5.29. Let Y be a combinatorial graph and let w be a fair word over
Y. The mazimal transient length of any state under [Nory,w] is 1.

Ezample 5.30. Let ¢ = [Norcie,,w]. In accord with Theorem 5.28 we have
the following seven order-independent periodic points:

Per[Norci.,, w] = {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,1,0,0),
(1,0,0,0),(1,0,1,0),(0,1,0,1)},

where w is a fair word. Clearly, |Per[Norcir,,w]| =0 mod 7. Later in Chap-
ter 6 we will see that for any configuration of these seven points into cycles we
can find a word w such that the corresponding Nor-SDS has exactly this cycle
configuration as its periodic orbits. In particular, this means that we can find
a word w’ € Wy such that the [Norcj.,,w’] has exactly one periodic orbit of
length 7 and another word w” such that [Norci,, w”] has exactly seven fixed
points. For example, a straightforward computation shows that the SDS

[NOI'Cich (07 1) 27 3)]

has exactly one periodic orbit of length 7. o

Enumeration of Periodic Points

Here we illustrate how to obtain information about P(Y) = |Per[Nory, w]|
for w € W4, in the special case of Y = Circ,, through a recursion relation. Here
Wy, denotes the fair words over v[Y]. We will later find an explicit expression
for P,.

Proposition 5.31. Let n > 3. Then we have the Fibonacci recursion
Poy1=P,+P,_1. (5.21)

Proof. Set ¢, = [Norgie,,w] with w € Wy,. Since any periodic point z of
¢n can be extended to a periodic point of ¢, 1 by x — (z,0), we have a
well-defined injection

a: Per(¢,) — Per(¢pnt1), «+— (x,0).

Moreover, we see that an element 2 € Per(¢,,) can be extended to two periodic
points (x,0) and (z,1) of ¢,,41 if and only if we have xy = 2,1 = 0. Let

150 5 Phase-Space Structure of SDS andSpecial Systems

p(a,b,c) = [{z € Per(¢ppn41) | ©n—1 = a, x, = b, g = c}| .
We then have
P41 =p(0,1,0) + p(1,0,0) + p(0,0,1) + p(0,0,0) + p(1,0,1) . (5.22)

The three first terms on the right in (5.22) add up to P,. To give an interpre-
tation of the last two terms in (5.22), we see that the map

(33,170) if$0:17

5.23
(2,0,0) ifzg=0, ()

b: Per(¢p—1) — Per(¢pt1), z=+— {

is a well-defined injection with image size p(0,0,0)+p(1,0,1). Equation (5.22)
therefore becomes
PnJrl :Pn“i’Pnfl y

and the proposition follows. O

Example 5.32. The values of P, for small n are given in the table below.

n 345 6 78 9 10 11 12 13 14 15 16

P(Circ,,) 471118294776 123 199 322 521 843 1364 2207
<

Here is an alternative approach for computing the number of periodic points
of a Nor-SDS over Y = Circ,,. It also gives an explicit formula for P, as well
as Ly, which is the number of periodic points of [Nor|ine,, , w].

Proposition 5.33. The number of periodic points of an SDS induced by nor
functions on Line,, is L, = F,4+1 where F,, denotes the nth Fibonacci number
(Fo =1, Fi =1, and F,, = F,_1 + F,_2, n > 2). The number of periodic
points of an SDS induced by nor functions on Circ,, is P, = ™ + (=1/r)",
where r = (14 /5)/2 (the golden ratio).

Proof. The case of Line, follows from the observation that for the periodic
points with z,, = 1 one must have z,,_1 = 0. Clearly, for the remaining coordi-
nates there are as many choices as there are periodic points for [Noriine, _,, 7.
Thus, the number of periodic points of [Nor(ine, , 7] with 21 = 1is L,,_. Sim-
ilarly, we get that the number of periodic points of [Noryipe, , 7] with z,, =0
equals L,_1. Thus, we have L, = L,_1 + L,,_o for n > 3 where L1 = 2,
Ly =3, and thus L,, = F, 41 as claimed.

For the case of Circ,, we see that the number of periodic points with zg = 1
equals L,_3 while the number of periodic points with ¢ = 0 equals L,_1,
and we conclude that P, = L,,—1 + L,—3 = F,, + F},_o for n > 4. Using the
formulas for the nth Fibonacci number gives P, = r™ + (=1/r)" for n > 4.
The formula also holds for n = 3, so we are done. O

5.14. Derive the recursion relation (5.21) from Proposition 5.33. 1]

5.15. Derive a recursion relation for the number of periodic points of a Nor-
SDS over Wheel,,. [1+]

5.5 SDS Induced by Special Function Classes 151

Further Characterization of Phase Space

In the remainder of this section we include some more results on the structure
of the phase space of Nor-SDS. The proofs here are somewhat more technical
and were derived as a part of the research that investigated whether or not
the bound A(Y) is sharp.

Proposition 5.34. Let Y be a combinatorial graph, let m € Sy, and let K =
Fy. The state zero has maximal indegree in I'[Nory, 7).

The proof is a direct consequence of the following lemma:

Lemma 5.35. Let Y be a combinatorial graph, let m € Sy, and let K = Fs.
For x # 0 let M(z) = {v € v[Y] | #, = 1}, and for S C M(x) let ° be the
state with x5 =z, forv & S and x5 =0 for v € S. We then have

Vo e FY VS € M(z) : |[Nory,n] (z)| < |[Nory, x| 1 (z®)|, (5.24)
and in particular |[Nory, 7)1 (z)| < |[Nory, 7] ~1(0)].

Proof. Assume |[v[Y]| = n and let € F4. The inequality (5.24) clearly holds
for any x with [Nory,n]~!(z) = @, so without loss of generality we may
assume that [Nory,o]~!(z) # @. Since we have a Nor-SDS, this assumption
implies that x is a periodic point.

Let © € F} be a periodic point such that x # 0 with x, = 1. Without
loss of generality we may assume that v is maximal with respect to 7 such
that z, = 1. From the characterization of the periodic points in Theorem 5.28
we know that z,, = 0 for all u € B/ (v). Moreover, any y € [Nory, 7| !(z)
satisfies y,, = 0 for all v # u € B%"(’U). Let Z be the state defined by &, =0
and &, = x, for u # v. We can now define a map

7y: [Nory, 7]~ (z) — [Nory, 7]~ (%) (5.25)

by (ry(2))y = 1 and (r,(2))y = 2z, otherwise. Clearly, this map is well-defined.
Moreover, it is an injection, which in turn implies

[[Nory, 7]~} ()| < [[Nory, x|~ (2)] .

Equation (5.24) now follows by induction on |[{v | z, = 1}| by successively
replacing coordinates for which x,, = 1 by 0 and by working in decreasing order
as given by 7. Clearly, (5.24) implies that |[Nory, 7]~ (x)| < |[Nory, 7]~ (0)|
as this corresponds to choosing S = M(z). O

The next result is a further characterization of phase spaces of Nor-SDS.
It turns out that the image of the state zero under [Nory,n| has zero as its
unique predecessor. For some graph classes the state zero is the unique state

of maximal indegree for which its successor has this property. It is convenient
to introduce the set M (Y,) as

M(Y,7) = {x € F} | indegree(z) is maximal in I'[Nory, 7] (5.26)
and [Nory, 7] ([Nory, 7](z)) = {z}} .

152 5 Phase-Space Structure of SDS andSpecial Systems

Proposition 5.36. Let Y be a combinatorial graph, let [Nory, 7] be a per-
mutation SDS, and let M(Y,) be as in (5.26). Then
(i) for any connected graph Y we have 0 € M (Y, 7),
(#4) for Y = Line, orY = Circ,, we have M (Y,w) = {0}, and
(ii1) there exist graphs Y such that |M (Y,)| > 1.

Thus, if we have two phase spaces of Nor-SDS over Circ,, (or Line,) where
the preimage sizes of the zero states are different, then we are guaranteed
that the phase spaces are nonisomorphic as directed graphs. Proposition 5.36,
when applicable, gives us a local criterion for determining the nonequivalence
of Nor-SDS.

Proof. Tt is clear from Lemma 5.35 that the state 0 has maximal in-degree
in I'Nory, 7] for any m € Sy. Thus, to prove statement (i) we only need
to show that [Nory,n] !([Nory,n](0)) = {0}. Let 2 = [Nory,n](0) and
assume there exists y # 0 such that [Nory,7](y) = [Nory, 7](0) = z. Since
y # 0 there exists some vertex v with y, = 1 and hence [Nory, 7](0), = 0.
By assumption we have [Nory, 7*] o [Nory, 7|(0) = 0, and since z, = 0 we
are forced to conclude that there exists a vertex v # v’ € By™(v) such that
zy» = 1. But this is clearly impossible since y,, = 1 implies that [Nory, 7](y),
and thus z,, equals 0. Thus, there exists no y # 0 that maps to z, and
statement (¢) follows.

For the proof of statements (ii) and (iii) we first prove two auxiliary
results. Assume there exists © € M = M(Y,w) with ¢ # 0, and let v be a
vertex such that z, # 0. Without loss of generality we can assume that v is
minimal with respect to the order <, such that z, = 1.

Claim 1. For all v' € B{,(v) we have v/ < v.

We prove this by contradiction. Suppose there exists v' € Bj,(v) such that
v' >, v, and let 2V be the n-tuple defined by z = 1 and z¥ = 0 otherwise.
By Lemma 5.35 we conclude that |[Nory, 7]~ (z?)| = |[Nory, 7]~1(0)| since
x € M(Y, 7). Moreover, in this case the map r, in (5.25) is a bijection, and
therefore the preimages of 0 correspond uniquely to the preimages z’ of z?,
which have the property z,, = 1. Define z = (zy)y by 2, = 0 and z,, = 1 other-
wise. Since there exists v’ >, v, we derive [Nory, 7](z) = 0. But since z, = 0,
we have created an additional preimage of zero, which contradicts Lemma 5.35
since |[Nory, 7] 71 (z¥)| = |[Nory, n]71(0)], and the claim follows.

Since Y is connected, it follows that there exists v’ adjacent to v with
v' <, v. Moreover:

Claim 2. If degree(v') > 1, then there exists k € B{(j) with k < v'.
Assume that for all k € B (v') we have v' <, k. Then we define 2’ = (x,)
by

1 — /
%:{ L= (5.27)

Ty uFv .

5.5 SDS Induced by Special Function Classes 153

Since x, = 1, we have x,» = 0, so clearly x # z’. By the assumption that
for all k € B{(v") we have v/ <, k, we can conclude that [Nory,7|(z') =
[Nory, w](x), which is impossible by the same argument as in Claim 1, and
Claim 2 follows.

Since v is minimal with respect to the ordering <, with the property
x, = 1, we have x; = 0, and thus there exists no s <, k with =5 = 1.

To prove the second statement of the proposition, assume that there ex-
ists x € M with x # 0. For Y = Line, or Y = Circ,, we can conclude
from zr = 0 that for any y € [Nory, 7| !(z) we have y,» = 1. Again since
|[Nory,7]~!(z)| = |[Nory, o] ~1(0)|, we can construct a bijection r’ analogous
to r, in (5.25):

' [Nory, 7] ' (x) — [Nory, 7] 1(0) (5.28)

with the property 7’(y),» = 0. We now derive a contradiction by showing that
there exists a preimage y' = (y,,). of 0 with the property y,, = 0. For this

purpose we define 3’ by
0 u=1
yy=4. " (5.29)
1 u#v.
Clearly, we have [Nory,7|(y’) = 0 and (i%) follows.

For statement (i4i) consider the graph Y and the orientation Oy as shown
below.

/
N
.
N\

Let x be the 5-tuple © = (xg, Ts, Ty, ¢, ;) = (0,0,0,0,1), and let 7 € Sy be
an update order for which OF = Oy. Then z = [Nory, 7](x) = (1,0,0,1,0).
For any y € [Nory, 7] !(z) we have ys = y; = 1 and y; = 0 while y; and
ypr may take any value. For 3’ to be in the preimage of the state 0 we must
have ys = y¢ = y; = 1 while y and y,» are arbitrary. We see that we have a
bijection

p: [Nory, 7] ™! (z) — [Nory,7]71(0), p(2)n = {Zh for 1 # Z_’ (5.30)

1 for h=1.

This is a particular instance of the map r, in (5.25). Now let n € [Nory, 7]~ (z).
Clearly, we have iy = n; = 0 and since 2z = 1 we have 1, = 1, = 0. Finally,

154 5 Phase-Space Structure of SDS andSpecial Systems

since z; = 0, we must have 7; = 1. Thus, z is the only preimage of z under
[Nory, n], and we conclude that

[Nory, 7] ! ([Nory, 7](z)) = z ,
which proves statement (4i4). U

Again, the background of Proposition 5.36 is the analysis of the bound
A(Y). The bound is conjectured to be sharp and to be realized if the ver-
tex functions are induced by (nory)r. The reader interested in pursuing this
problem may want to refer to [100,109,112].

5.16. Let Y = Star; and let ¢ be the sequential dynamical system in-
duced by nor functions with update order (1,2,0,3,4). Construct the sets
#71(0,0,0,0,0) and ¢—1(0, 0,0, 1,0). We know that ¢(0) has in-degree 1. What
is the in-degree of ¢(0,0,0,1,0)? Based on this, what can you say about the
set M(Y,7)? What is the bijection r: ¢~1(0,0,0,1,0) — ¢1(0,0,0,0,0) in
this case? [1+]

5.17. Research the dynamics of permutation SDS over Circ,, induced by nor
functions. Use your analysis to decide if A(Norgir,) equals A(Circy,). [5-]

5.18. Describe the phase space of [Noriine, , 7]. Is A(Norcire,) = A(Circ,)?

[5-]

5.5.2 SDS Induced by (norg + nandyg)g

We just saw that the SDS induced by (norg) or (nandy) have periodic points
that depend only on the graph Y. Perhaps somewhat surprisingly it turns out
that the same holds for SDS induced by the sum of these functions, that is,
SDS induced by (nory + nandyg)g.

5.19. The previous statement may lead one to speculate if the function se-
quences that induce SDS with periodic points independent of the update or-
der are a closed set under addition. This is, however, not the case. Give a
counterexample proving this claim. Hint. You will find all you need using
symmetric functions over Circy. We will return to this problem in Chapter 6.

[2]

Ezxample 5.37. In Figure 5.7 we have shown the phase spaces of SDS over
Y = Circy, and Y = Circs using the update orders (0,1,2,3) and (4,3,2,1,0)
induced by the function h3 = nors + nands. Note that Az only returns 0 if its
argument consists entirely of 0’s or entirely of 1’s. o

It turns out that the periodic points of SDS induced by nor functions and
the SDS induced by nor + nand functions essentially coincide. Again, the set
Wi, denotes the fair words over v[Y].

5.5 SDS Induced by Special Function Classes 155

11001
(43210) o 00100
10011
013 0010 01100 ol— ¥y
01¢11 11110
0011
o o s o0t 11010 tiont
1000 (01010\ 10§01
W 10000
0100— 1111 1011 <0110 00001)11 1 1L 10170 jélmoo
o \ / 01001 /v 01111 10010
1100 dio1 110 ootot / oL < 10001
) 11101
00011
oono o001 1001 11100 ’R
001101 00111
010/(:0 0.8 00000

Fig. 5.7. The phase space I'[(Nor + Nand)cir,, (0,1,2,3)] (left) and the phase
space I'[(Nor + Nand)cics, (4, 3,2,1,0)] (right).

Proposition 5.38. Let Y be a combinatorial graph and let [F'y,w] be an SDS
over Y induced by (nory + nandg), with a word w € Wy,. We then have

Per[Fy,w] = {0} U{z € Fy |Vv:2z, =0= Vo' € Bj(v) : 2y =1}. (5.31)
We will show that the set M
M={0}U{zeFy |Vw:z, =0 = W € B{(v): 2, =1} (5.32)

is a maximal, invariant set for all the SDS ¢ induced by (norg + nandg)g such
that the restriction of ¢ to M is a bijection.

Proof. Let M be as in (5.32). We first show that M C Per[Fy,w], and to
prove this we verify that
Foy: M —M

is a well-defined map. Clearly, F}, y(0) = 0. If 0 # « € M has z, = 0, then by
definition we have x,, = 1 for all v' € Bj(v). Hence, we have

F,y(z)y, = (norg +nandy)(z[v]) =1, (5.33)

where k = d(v) + 1, and thus F, y(z) € M. If x, = 1, there are two cases

two consider. If 2/ =1 for all ' € B} (Y), then F, y(z), = 0, and if there is

(precisely) one v' € Bi(Y) with z,» = 0, then F, y(x), = 1. In either case we

see that F, y(z) € M and in summary that F, y: M — M is well-defined.
We claim that the composed map Ff’yz M — M satisfies

F,y=id.

This follows by an identical three-case argument like the one we did in the
proof for the periodic points of Nor-SDS in Theorem 5.28. We leave the verifi-
cation of this to the reader. By a straightforward extension of Proposition 4.13
to words, we conclude that [Fy,w]: M — M is invertible.

156 5 Phase-Space Structure of SDS andSpecial Systems

Since M is invariant under all SDS induced by (nory + nandg), and fair
words, it is clear that M C Per[Fy,w]. We next show that we have the
inclusion Per[Fy,w] C M as well. Let « € Fy with z # (0,0,...,0). We see
that

when (Vo' € Bi(v); 2y =0)V

I’U
(xy =1 A 3V € Bi(v;); &,y =0),
FU,Y("I:)U =
- when (Vo' € Bi(v); a2y =1)V
Ty
(y =0 A TV € B{(v); zw =1) .
From this it follows that an z-coordinate with x, = 0 is mapped to 1 if

and only if at least one Y-neighbor has state 1, and an z-coordinate with
x, = 1 changes into 0 if and only if all its Y-neighbor states are 1. Since by
assumption x # (0,...,0) and Y is connected, we conclude that there exists
h € N such that

[Fy,w]"(z) € M .

In particular this holds for any nonzero periodic point p of period, say 7.
That is, there exists h such that ¢ = [Fy,w])"(p) € M. Moreover, there exists
0 <t < r such that [Fy,w]*(q) = p since ¢ and p are on the same orbit. Since
M is an invariant set, it follows that p € M as well, and Proposition 5.38
follows. g

If we conjugate the function nor 4+ nand (we omit the subscript k here)
with the inversion map inv, we obtain the relation

inv o (nor + nand) o inv = 1 4+ nor + nand = or + nand = nor + and , (5.34)

which leads to

Corollary 5.39. Let Y be a combinatorial graph and let w € Wy,. Then we
have

Per[(1 + Nand + Nor)y, w] = inv(Per[(Nand + Nor)y, w]) . (5.35)

We can now also state precisely what we mentioned earlier about the relation
to periodic points of Nor-SDS:

Corollary 5.40. Let Y be a combinatorial graph and let w € W{.. Then the
periodic points of [(1 + Nand 4+ Nor)y,w] of period p > 1 are precisely the
periodic points of [(Nor)y,w].

Proof. From Corollary 5.39 it is clear that in addition to the fixed point
(1,1,...,1) the periodic points of [(14+Nand + Nor)y, w] are all z € F} with
the property that for all v we have x, = 1 implies z,» = 0 for all v/ € By, (v),
but this is precisely the periodic points of [(Nor)y, w]. O

Even though we have the same set of periodic points, the transient struc-
ture of the two types of SDS are different. For example, (nor +nand)-SDS can
have transients lengths exceeding 1, as illustrated in Figure 5.7.

5.5 SDS Induced by Special Function Classes 157
Enumeration of Periodic Points

It is now straightforward to derive a recursion relation for P/ (Y') = |Per[(Nor+
Nand)y, w]| for Y = Circ,,.

Proposition 5.41. Let w € W{,. Then P}, = P} (Circ,,) satisfies the recursion
P =P _+P _,—1. (5.36)

Proof. From Proposition 5.38 it is clear that P, (Y) = P,(Y) + 1 where
P,(Y) = |Per[Nory,w]|. Specializing to the graph Y = Circ,, and substi-
tuting into the recursion relation P, = P,_1 + P,,—2 from Proposition 5.31,
we get (5.36). O

Example 5.42. As an illustration of Proposition 5.41 we get the number of
periodic points in the table below. o

n 345 6 78 9 10 11 12 13 14 15 16
P’(Circ,,) 5812193048 77 124 200 323 522 844 1365 2208

Orbit Equivalence

In, e.g., [90] the concept of stable isomorphism is introduced. Two finite dy-
namical systems are stably isomorphic if they are dynamically equivalent when
restricted to their respective periodic points, which is the case if there exists
a digraph isomorphism between their periodic orbits. Orbit equivalence may
therefore be a more descriptive term for this notion.

The notion of orbit equivalence is a little coarse. It is occasionally desirable
to distinguish between what we would call functional orbit equivalence and
dynamical orbit equivalence: There is a functional orbit equivalence between
two finite dynamical systems if their periodic orbits coincide. There is a dy-
namical equivalence between two systems if they are dynamically equivalent
when restricted to their periodic orbits. The following proposition illustrates
the distinction.

Proposition 5.43. Let Y be a combinatorial graph, let w € Wy, let M = F3\
{(1,1,...,1)}, and let N = F3\ {(0,0,...,0)}. We let ¢ = [Nory,w]: M —
M, ¢ =[(1+ Nor + Nand)y,w|: M — M and n = [(Nor + Nand)y, w]:

N — N. Then we have
(1) The dynamical systems ¢ and i are functionally orbit equivalent.

(i) The dynamical systems ¢ and 1 are dynamically orbit equivalent.

Proof. Restricted to the periodic points of ¢ the functions nor and 1 4 nor +
nand coincide and (7) follows. It is clear that (i¢) follows from (4). O

Ezample 5.44. Figure 4.10 on page 89 shows the phase spaces of the SDS
[Norcir,, (0,1,2,3)] and [(1 + Nor + Nand)cir,, (0,1, 2, 3)]. It is easy to see
that the orbits are dynamically equivalent. o

158 5 Phase-Space Structure of SDS andSpecial Systems
Problems

5.20. We have seen that threshold SDS have no periodic points of period
p > 1. This is generally not true for a parallel update order. Give an example
of a threshold system updated in parallel that has a periodic orbit of length 2.

[1]
5.21. A Nor-SDS is an example of inverted threshold SDS. As we know, per-

mutation Nor-SDS never have fixed points. Is this true in general for inverted
threshold permutation SDS? Give a proof or a counterexample. [1]

5.22. Let Y = Wheel, and let w = WY{,. How many periodic points does the
SDS [(Nor + Nand)y, w| have? [1]

5.23. Let Y = Ky 3 be the complete, bipartite graph with vertex classes
Vi = {1,2,3,4} and Vo = {5,6,7} where each vertex v € V; has vertex
function induced by or:]F‘Q1 — F5 and each vertex v € V5 has vertex function
induced by majority: F§ — Fy. Show that the induced SDS map [Fy, 7]
has no periodic points of period p > 1 for any m € Sy. (The graph is shown

below.) | [1]
5
2
6
3
7
4

5.24. Figure 5.8 shows a space-time diagram of an SDS map starting at the
state (1,0,0,0,0) at t = 0. The graph Y is a connected graph on five vertices.
(i) What state is reached at time ¢t = 3, and what type of state is this?

cell

Fig. 5.8. The space-time diagram of Problem 5.24.

(79) Which of the following SDS-maps can not generate this space-time
diagram? (There may be more than one correct answer.)
A) [Nory, (0,1,2,3,4)] B) [Majority ., (1,2,4,3)]
C) [Norgjr,, (1,0,2,3,4)] D) [Majorityy, (1,5,4,2,3)]
E) [Ory,(1,5,4,2,3)]. [1+4]

5.5 SDS Induced by Special Function Classes 159

5.25. (Dynamics of [Parity ,7]) Let 3: S, — S,41 be the function
that maps 7 = (71, ...,m,) (standard form) to the (n + 1)-cycle

B(m) = (w1, 72, ..., Tn,n+1).

Define F2 FZAH by 2 = {z Fgfl | Zpt1 = parity(zy, 22,...,2n)} and
the maps proj: Fy — F3, v: F§ — F3 and o: F5 — F5 by

proj(z1, ..., Tn, Tny1) = (T1,...,Tn),
x1y. .y xn) = (21, .., @, parity, (1, ..., Zn)),
On+1(T1, %2, .o, Tpt1) = (Tpg1, 21, -+, Tp) -

(a) Prove that the set ng in invariant under the permutation action of any
T € Sp+1, and that ¢ and proj are inverse maps, that is,

projor =idpy and o proj =idg, . (5.37)

(b) Prove that the SDS-map [Parity ;- ,7]: F§ — F4 is dynamically equiv-
alent to the permutation action of S(r) on F. [3]

160 5 Phase-Space Structure of SDS andSpecial Systems

Answers to Problems

5.2. (a) L, = 2L,—1 — Lyp—2 + L,—4. Initial values are Ly = 2, Ly = 6,
L5 =12, and Lg = 20. (c¢) The fixed points can be characterized as all states
x € F§ with no isolated 0’s or 1’s.

5.3. One needs f, = fyq) for all v € v[Y] and all v € Aut(Y') to have an
action. The statement follows easily from Proposition 4.30.

5.4. (a) Easy. (b) All the arguments we used for threshold SDS apply directly
to permutation-SDS with monotone vertex functions.

5.5. You need to compute AE for the case when z, is mapped from —1 to 1
and for the case when x, is mapped from 1 to —1.

5.9. Interesting results should probably be considered for publication.

5.12. Any state containing a vertex state that is 1 cannot be fixed. The only
remaining candidate for a fixed point is z = (0,0,...,0), but this state is
clearly not fixed.

5.13. Consider a permutation SDS ¢ = [Fy, n| induced by nor functions. If,
for example, ¢ has a periodic orbit of size 2, then the SDS [Fy, w]| where w is
the concatenation of 7 with itself clearly has two fixed points.

5.14. The proof of Proposition 5.33 shows that P, = L,_1+ L,_3, and from
L, = F, 41 it follows that
Pn+1 - Pn - Pnfl == Ln + Ln72 - Lnfl - Ln73 - Ln72 - Ln74
— I'n+1 _Fn_Fn—Q_Fn—?)
=F+F 1-F,—-F, o—F, 3
= L'n-1 *(Fn72+Fn73) =F,1—-F,1=0.
5.16. For a state z = (z¢, x1, T2, T3, 24) to be mapped to 0 when the update
order is 7 = (1,2,0, 3,4), we must have x3 = x4 = 1. This leaves us with two
choices for xzq. If g = 0, we must have 1 = 25 = 1, and if zg = 1, then x
and o are always mapped to 0. Thus,
¢(0,0,0,0,0) = {(0,1,1,1,1),(1,0,0,1,1),(1,1,0,1,1),
(1,0,1,1,1),(1,1,1,1,1)} .
Similarly, for a point y to be mapped to (0,0,0,1,0), we see that y3 = 0 and
ys = 1. The last condition follows from the fact that at the time y4 is to be
updated we have that the state of vertex 0 is 0. As before, if yg = 0, then
y1 = y2 = 1, and if yg = 1, then y; and yo are always mapped to 0. Thus, we
have
¢71(07 07 07 17 0) = {(0’ 17]" 07 1)’ (17 0’ 07 0’ 1)7 (1’ 17 07 07 1)7
(1,0,1,0,1),(1,1,1,0,1)} .

5.5 SDS Induced by Special Function Classes 161

We have z = ¢(0,0,0,1,0) = (0,1,1,0,1), and we see that a predecessor y of
z must have yp = y1 = y2 = 0. For y3 to be mapped to 0, we must have y3 = 1
and for y4 to be mapped to 1, we must have y4 = 0. This gives us (0,0,0,1,0)
as the only preimage of z, and therefore z = ¢(0,0,0,1,0) has indegree 1.
From this it follows that M (Y,) contains at least the points (0,0, 0,0, 0) and
(0,0,0,1,0) and thus has cardinality at least 2. The bijection r is the map
that assigns to z € $71(0,0,0,1,0) the state r(z) obtained from = by setting
x3 to 1 and mapping all other coordinates identically.

5.17. You should consider submitting your answer to a journal.

5.20. Let Y = Circy and let each vertex function be majoritys. Using a
parallel update scheme we see that = (0, 1,0, 1) is mapped to y = (1,0, 1,0),
which in turn is mapped back to x, and we have our periodic orbit of length 2.

5.21. The minority function is an inverted threshold function. If we take Y =
Circy, we see that, for example, (0,1,0,1) is a fixed point for [Minorityy-, 7]
for any permutation update order.

5.24. (i) The state reached at time ¢ = 3 is (1,1,1,1,1), which is a fixed
point. (#4) The correct answer is A, B, C, and D. A nor-SDS never have fixed
points. That gives A and C. Alternative B is an SDS over a graph with four
states so this map cannot have this space-time diagram. For a connected graph
a state containing a single vertex state 1 cannot map to a state containing
more 1’s for a majority SDS. (Why?) The remaining alternative E could have
produced the given diagram. (Provide an example graph.)

5.25. (a) If mp41 = n + 1, the statement clearly holds. Otherwise, assume
that (7(2))n4+1 = 2;. Then the sum (i.e., parity) of the first n coordinates of

B(z) is
parity (z1,...,Tn) + T1 + @2 + -+ Tyl + Tig1 + - + Ty = T4,

and the first part of the lemma follows. The statements in (5.37) are obvious.

(b) The map parity,,: F§ — Fo satisfies the functional relation

parity,, (€1, X2, ..., Z;—1, parity, (1, ..., Tn), Tit1y .-, Tn)
n n

= Z r; + ij =x; (538)
J=1#i j=1

for any 1 < ¢ < n. Writing s for the application of Parity, to a given state
x = (x1,...,2,), we get through repeated application of (5.38)

162 5 Phase-Space Structure of SDS andSpecial Systems

1 .
x = (x1,22,...,2n) — (parity,, (z), ze,xs,...,Ty)
2 . . .
e (parltYn(I)v parltYn(parltYn(I)a e P In), Z3, ... 7In)
= (parity,, (z), 21,23, ..., Zn)
W (parity,, (), £1, T2, ..., Tn_1) .

The above computation gives us the commutative diagram

[Parity x ,id]

F2 ~F? (5.39)
A

L proj

Av Ont1 ~

frp > frp

that is, [Parity z ,id] = projo oy, 10t Since ¢ and proj are inverses, it follows

that [Parity ,id] is dynamically equivalent to the shift map on]ﬁg Since
Aut(K,) = S,, we have [Parity ;. , 7] = mo[Parity 5 ,idjor~! for all 7 € S,,.
Consequently, diagram (5.39) can be extended to

[Parity . 7]

F2 ~F2 (5.40)
A
m1 ™
YV [Parity, ,id]
Fy s 2
A
L proj
\
e Oni1 .
F5 >y

Let 7 € S, and define @ € S,41 by 7y = m; for 1 < ¢ < n (and thus
Tnt+1 = n + 1.) Tt is straightforward to verify the identities

tor ' =(@)"tor and 7oproj=projon.
Consequently, we derive from (5.40) the commutative diagram

[Parity . 7]

F ~F2 (5.41)
A

L proj

\

~ B(m) ~

frp > [y

where

Toopi1o (@)t = (n(1),7(2),...,m(n),n+1) = B(x) . (5.42)

5.5 SDS Induced by Special Function Classes 163

The identity on the left in (5.42) can be verified by first representing 0,41 as
the permutation action of 6 = (1,2,...,n 4+ 1) (using cycle form) and using
the properties of group actions: The permutation 77 (7)~! maps m; to 1.
Again, since ¢ and proj are inverse maps, we conclude that [Parity ,7] is
dynamically equivalent to the permutation action of 8(w) on IAFEL

6
Graphs, Groups, and SDS

6.1 SDS with Order-Independent Periodic Points

In this section we show that a certain class of SDS induces a group that
encodes the dynamics over periodic points that can be obtained by varying
the word update order [93,113]. Through this construction we can use group
theory to prove the existence of certain types of phase-space structures.

In general, neither an SDS nor its Y-local maps are invertible, and there-
fore we cannot consider the obvious construction: the group generated by the
Y-local maps under function composition. Instead we will consider the re-
striction of an SDS map [Fy,w] to its periodic points. If the set of periodic
points is independent of the word update order, we can conclude, under mild
assumptions on the update word, that the Y-local maps through restrictions
induce bijective maps

F,ylp: P—P,
where P = Per[Fy,w|] and F, y|p denotes the restriction of Fj y to P. The
group generated by the restriction maps F, y |p encodes the different configu-
rations of periodic points that can obtained by varying the word update order.

The assumption on the update schedule is a technical condition to avoid
special situations where some Y-local maps are not being applied. That is, we
consider fair words over v[Y] defined by

Wy ={we Wy |Vvev[Y], Jw; v=uw}. (6.1)
We can now introduce w-independent SDS:
Definition 6.1 (w-independent SDS [93,113]). An SDS (Y, Fy,w) with
state space K™ is w-independent if there exists P C K™ such that for all
w € Wy, we have Per[Fy,w] = P.
Note that in the case of w-independent SDS the set P is the unique maximal
subset of K™ such that [Fy,w]|p: P — P is bijective. We point out that w-
independence does not imply that the periodic orbits are the same for all

update orders w. The structure of the SDS phase space critically depends on
the update order w.

166 6 Graphs, Groups, and SDS

6.1.1 Preliminaries

We start by analyzing why the periodic points of an SDS generally depend on
the update order.

Lemma 6.2. Let [Fy,w] = H?Zl Fy, v be an SDS-map, let M C K", and set

M i—1
Mj =91yt fory =1 (6.2)
[I}Z] Fu, vy (M) otherwise.

Then we have
k
w;.Y)M 18 biljective <= <3< k; Fy. v|m, 1s bijective, .
Fy,, is bijecti V1i<ji<k F],]'b" i 6.3
i=1

where
Jj—1 J
Fu,v: [] FuiyM) — [[Fury(M) . (6.4)
i=1 i=1

The proof of Lemma 6.2 is straightforward and indicates that the ques-
tion of bijectivity of an SDS restricted to some set M C K™ is generally not
reducible to the question of bijectivity of its local functions

Jj—1 J
ij7y: HmeY(M) - HFwi,Y(M)
i=1 i=1

alone. According to Lemma 6.2, the map F),; v is bijective restricted to the
set M;, which reflects the role of the word update order w of the SDS.
A consequence of Lemma 6.2 is that the set of periodic points of an SDS
(Y, (Fuw,,v)i, w) generally depends on the particular choice of update order w.

Proposition 6.3. There exist a graph Y, a field K, and a family Fy of Y -
local functions such that the set of periodic points of [Fy,w] depends on w.

Proof. Let K = Fgq, let Y = Circy, and let F; y(x1,...,24) fori=1,...,4 be

Y-local maps induced by the symmetric, Boolean function

{1 for sumy(z,y,2) =1,

b:FS — Fy, b(z,y,2)=
2 2 (z,9.2) 0 otherwise.

Consider the two words w = (v4,v3,v2,v1) and w’ = (v4, ve,vs3,v1). For the
state (1,0,0,0) we obtain
(1,0,0,0)
Fy,w’
/Fy,w] \ (1,0,0,0)[Y >](0,170,1).
(0,0,1,1) ~(1,1,1,0)

Since (0,1,0,1) is a fixed point for [Fy,w] and [Fy,w’], we conclude that
(1,0,0,0) is a periodic point for [Fy,w] but not for [Fy,w']. O

6.1 SDS with Order-Independent Periodic Points 167
6.1.2 The Group G(Y,Fy)

In Proposition 6.4 we show that a w-independent SDS (Y, Fy,w) naturally
induces the finite group G(Y,Fy). In Theorem 6.5 we show that this group
contains information about the structure of the periodic orbits of all phase
spaces generated by varying the word update order. In the following we will, by
abuse of notation, sometimes write [Fy, w] instead of [Fy, w]|p. It is implicitly
understood that the map [Fy,w] induces the map [Fy,w]|p by restriction.

Proposition 6.4. Let Y be a graph, K a finite field, w € W, and (Y, Fy,w)
a w-independent SDS. Then for any v € v[Y] the local maps Fy, y : K™ — K"
induce the bijections

Fy,ylp: P—P,

and the SDS (Y, Fy,w) induces the finite group
G(Y,Fy)={Foyle|vevlY]}), (6.5)
which acts naturally as a permutation group on P.

Proof. By assumption we have Per[Fy,w] = P for all w € Wy,. Let w =
(wi,...,wx) € Wy and v € v[Y], and set w, = (wy,...,wg,v). Since
w,w, € Wy, we conclude that both the SDS-maps [Fy,w]: P — P and
[Fy,w,]: P — P are bijections. Furthermore, we have

[Fy,w,| = F,y o [Fy,w|: P— P, (6.6)

from which follows that F, y'|p: P — P is a well-defined bijection. Therefore,
the group G(Y, Fy) obtained by composition of the maps F, y |p is well-defined
and Proposition 6.4 follows. O

According to Proposition 6.4, we have the mapping
Fy = (Fo,.v)icicn — G(Y,Fy) = ({Fy, vlp | vi € v[Y]}) , (6.7)

which allows us to utilize a group-theoretic framework for analyzing SDS
phase spaces. Recall that Fix[Fy,w] denotes the set of fixed points of the
SDS (Y, Fy,w). An example of how Proposition 6.4 opens the door for group-
theoretic arguments is provided by

Theorem 6.5. Let Y be a graph and let (Y,Fy,w) be a w-independent SDS
with periodic points P and associated group G(Y,Fy). Then we have

(a) G(Y,Fy) = 1 if and only if all periodic points of (Y,Fy,w) are fized
points.

(b) Suppose G(Y,Fy) acts transitively on P, and let p be a prime number such
that |P| =0 mod p. Then there exists a word wy € W such that

(3) [Fix[Py, wol| =0 mod p, (6.8)
(#4) all periodic orbits of [Fy,wp] have length p. (6.9)

168 6 Graphs, Groups, and SDS

In particular, if [Fy,wo] has no fized points, it has at least one periodic orbit
of length p, and if [Fy,wo] has no periodic orbits of length greater than 1,
then it has at least p fized points.

Proof. Ad (a). Obviously, if G(Y,Fy) = 1, then all local maps restricted to
P are the identity, and any SDS (Y, Fy,w) only has fixed points as periodic
points. Suppose next that G(Y,Fy) # 1. By definition, we conclude from
G(Y,Fy) # 1 that there exist g € G(Y,Fy) and £ € P such that g(§) # & We
can write g = H?Zl F, v and observe that £ is not a fixed point of the SDS-
map [Fy, (wi,...,wp)). Hence, we have shown that G(Y,Fy) # 1 implies
that there exists an SDS with periodic points that are not all fixed points and
(a) follows.
Ad (b). Since G(Y,Fy) acts transitively on P, there exists some ¢ € P such
that

GV, Fy)| = IPIIG,| (6.10)

where Gy = {g € G(Y,Fy) | g¢ = ¢}, i.e., the subgroup consisting of all
elements of G(Y, Fy) that fix the periodic point ¢. Let & € N be the highest
power for which we have |P| =0 mod p*. Equation (6.10) implies

|G(KFY)| =0 mod pk7

and we can conclude from Sylow’s theorems that there exists a subgroup
H < G(Y,Fy) such that |H| = p*. As a p-group H is solvable, whence there
exists a cyclic subgroup H, < H < G(Y,Fy).

Let g = H§:1 F,; be a generator of H,, that is, H, = (g) and wg =

(w1, ...,ws). We consider the group action of H, on P and obtain
Pl=>" 9@l (6.11)
§eE

where = is a set of representatives of the (g)-action. We have

()] =[g) : (9)e]

where (g)¢ is the fixed group of £. Since (g) is a cyclic group of order p, we
have the alternative
1 if and only if £ is fixed by (g),

p if and only if £ is contained in an (g)-orbit of length p.
(6.12)

[{9)(€)] ={

We conclude from |P| =0 mod p and Eq. (6.11) that
[{¢ | € is fixed by ()} =0 mod p.

Furthermore, each nontrivial orbit of (Y,Fy,wg) corresponds exactly to an
orbit (g)(§) for some & € P. The proof of Theorem 6.5 now follows from
Eq. (6.12). O

6.1 SDS with Order-Independent Periodic Points 169

Ezample 6.6. Here we will compute the group G(Ks3,Nor). There are four
periodic points labeled 0 through 3 as given in Table 6.1. Each map Nor; can

Periodic point Label Nor; Nora Nors

(0,0,0) 0 (1,0,0) (0,1,0) (0,0,1)
(1,0,0) 1 (0,0,0) (1,0,0) (1,0,0)
(0,1,0) 2 (0,1,0) (0,0,0) (0,1,0)
(0,0,1) 3 (0,0,1) (0,0,1) (0,0,0)

Table 6.1. Periodic points of Nor-SDS over K.

be represented as a permutation n; of the periodic points. Using the labeling
from Table 6.1, we get ny = (0,1), na = (0,2), and ng = (0,3). There are
four periodic points, so G(K3, Nor) (when viewed as a group of permutations)
must be a subgroup of Sy, that is, G(K3, Nor) < S;. On the other hand, we see
that ngneny = (0,1,2,3), and since it is known that Ss = ({(0,1),(0,1,2,3)})
it follows that Sy < G(K3, Nor). We conclude that G(K3, Nor) is isomorphic
to S4.

What does G(K3, Nor) 2 S, imply? It means we can organize the periodic
points in any cycle configuration we like by a suitable choice of the update
order word. For instance, we could choose to have a Nor-SDS where the first
and last periodic points are fixed points and the remaining two periodic points
are contained in a two-cycle. The fact that G is isomorphic to S; guarantees
that it is possible. It does not tell us how to find the update order, though,
but it is easily verified that the update order w = (1,2, 1) does the trick. ¢

In Theorem 6.5 we have seen that a transitive G(Y, Fy) action and |P| =0
mod p allow us to design SDS with specific phase-space properties. We next
show that G(Y,Fy) acts transitively if the Y-local maps are Nor functions.
Recall that an action of a group G on a set X is transitive if for any pair
x,y € X there exists g € G such that y = gz.

Lemma 6.7. Let Y be a combinatorial graph and let w € Wy,. The SDS
(Y,Nory,w) is w-independent and G(Y,Nory) acts transitively on P =
Per[Nory, w].

Proof. Let p = (py,,...,Pv,) and p’ = (p,,,...,p,) be two periodic points
with corresponding independent sets 8(p) and 3(p’) where

BTy m0,) = {vk | T0y, = 1}

(Theorem 5.28). We observe that

170 6 Graphs, Groups, and SDS

is a well-defined element of G without referencing a particular order within
the sets 5(p) and B(p') since for any two v,v" € B(p) and v,v" € B(p’) we have

Nor,, o Nor,» = Nor,s o Nor, .

We proceed by proving g(p) = p’. We observe that

[I1 Norv} () = (0,...,0), (6.13)

veB(p)

[II Norv} 0,...,0)=p', (6.14)

veB(p’)

from which it follows that

g(p) = | T Nor,|o| T Nor.|() =¥

veB(p’) veB(p)
and the proof of Lemma 6.7 is complete. O

From the proof of Lemma 6.7 we conclude that one possible word w that
induces the element

g:[H Norv}o{ H Norv}

veB(p’) veB(p)

is given by w = (W, ..., Wy, W, s, Wy,), where w,, € B(p) and
wy, € B(p'). Obviously, w is in general not a permutation. Lemma 6.7 and
Theorem 6.5 imply

Corollary 6.8. For any prime p such that |Per[Nory,w]| =0 mod p there
exists an SDS of the form (Y, Nory,w) with the property |Fix[Nory,w]| = 0
mod p, and all periodic orbits have length p.

Example 6.9. Let Yy be the graph on four vertices shown in Figure 6.1. We
use nor as vertex functions and derive the following table.

2
Fig. 6.1. The graph used in Example 6.9.

6.1 SDS with Order-Independent Periodic Points 171

Label State Nor; Nors Nors Nory

1 0000 1000 0100 0010 0001
1000 0000 1000 1000 1001
1001 0001 1001 1001 1000
0100 0100 0000 0100 0101
0101 0101 0001 0101 0100
0010 0010 0010 0000 0010
7 0001 1001 0101 0001 0000

O O W N

From this we derive the permutation representations n; = (1,2)(3,7),
ng = (1,4)(5,7), n3g = (1,6), and ns = (1,7)(2,3)(4,5). Each n; is an element
of S7, so the group G(Yp, Nory,) must be a subgroup of S7. However, we
note that n = ninangng = (1,6,5,2,7,4,3). Since n and ns generate S7, we
must have S; < G(Yp, Nory,), that is, G(Yp, Nory,) (viewed as a group of
permuations) equals S7. o

6.1.3 The Class of w-Independent SDS

The characterization of w-independent SDS requires one to check the set W7y,
which makes the verification virtually impossible. In the following we provide
an equivalent condition for w-independence that only requires the consider-
ation of the set Sy C W4 . In other words, the subset of fair words that are
permutations completely characterizes w-independence.

Lemma 6.10. Let (Y, Fy,w) be an SDS with state space K™. If there exists
P C K™ such that
Vw € Sy; Per[Fy,w] =P, (6.15)

then (Y, Fy,w) is w-independent.
Proof. By assumption we have
VYw e Sy; [Fy,w]lp: P — P is bijective, (6.16)

and P = Per[Fy, w] is maximal and unique with respect to this property. Since
the SDS-map [Fy,w] = Fy, y o---0o F,, y is a finite composition of Y-local
maps, we can conclude that F,, y|p: P — F,, y(P) is bijective. Since this
holds for any w € Sy, we derive

VvevlY]; Fyylp: P— F,y(P) is bijective. (6.17)

Let v € v[Y]. We choose w* € Sy such that wy = v, that is,
Fy,w] = (] Fuiy) o Foy -
i=2

The next step is to show that F, y (P) = P holds. Setting & = [, Fu, v, we
have by associativity

172 6 Graphs, Groups, and SDS

Fv’y o (H Fwi,Y o Fvyy) = (Fv’y o HFwi’y) o Fv’y . (618)

=2 1=2

Equation (6.18) can be expressed by the commutative diagram

PoFy y
P >~ P
Fv,Y Fv,Y)
\% \%
Fy, yod
F,y(P) Y S F,y(P)

from which [in view of Eq. (6.17)] we obtain that
F,yo®: F,y(P) — F,y(P) is bijective.
We next observe that w = (ws, ..., w,,v) € Sy and
F,yo®=[Fy,uw| .

Using Eq. (6.16) we can conclude that F,(P) C P since P is the unique max-
imal set for which [Fy,w]: P — P is bijective. Since F, y|p is bijective
[Eq. (6.17)], the inclusion F,,(P) C P implies F, y (P) = P. Therefore, we have

Vv evlY]; Foy: P— P is bijective. (6.19)
As a result, (Y,Fy,w) is w-independent, and the lemma follows. O

Let (Y,Fy,w) be an SDS. We next show, under mild assumptions on the
local maps in terms of the action of Aut(Y), that for any v € Aut(Y) we
have v (Per[Fy,w]) = Per[Fy,~v(w)]. As a consequence, if (Y,Fy,w) is w-
independent, then Aut(Y') acts naturally on P by restriction of the natural
action y(zy,) = (Ty-1(y,))-

Proposition 6.11. Let Y be a graph, K a finite field, and (Y,Fy,w) an SDS
with the property
VyeAut(Y); Vo evlY], fo= fyw) (6.20)

that is, the vertex functions on any (y)-orbit are identical. Then we have

Vv €Aut(Y); p € Per[Fy,w] = ~(p) € Per[Fy,y(w)] . (6.21)
Furthermore, if (Y, Fy,w) is w-independent, then Aut(Y') acts on P in a nat-
ural way via ¥(Ty,)i = (Ty-100,))i-
Proof. Using the same argument as in the proof of Proposition 4.30 and

Eq. (6.20), we have

Vy€eAut(Y), v; ev[Y]; yoFu,yov ' =F)y (6.22)

6.1 SDS with Order-Independent Periodic Points 173
from which it follows that
volFy,woy™! = [Fy,y(w)] where ~(w)=(y(wi),...,y(w))-
Hence, we have the commutative diagram

Yo[Fy ,wloy ™!

v(P) >~(P)
A
-1 " (6.23)
Y [FY!w]
P ~P

from which we conclude that if P is a periodic point of [Fy,w], then v(P) is
a periodic point of [Fy,~y(w)], proving (6.21).

To prove the second assertion it suffices to show that Aut(Y)(P) = P
holds. Clearly, we have w € Wy, if and only if v(w) € Wy,. The commu-
tative diagram (6.23) proves that [Fy,~y(w)]: v(P) — ~(P) is bijective.
Since (1) P = Per[Fy,w] is the unique, maximal subset of K™ for which
[Fy,w]: P — P with w € WY is bijective and (2) w € W5, is equivalent to
~v(w) € Wy, we derive

VyeAut(Y); y(P)CP.

Since « is an automorphism, we obtain «(P) = P and the proof of the propo-
sition is complete. O

We proceed by showing that the class of monotone maps induces w-
independent SDS. Let 2 = (2,,); € F3 and set

o= () = 1 for j :.7’,
J xy; otherwise.

A Y-local map F,y: Fy — FZ is monotone if and only if
VojevlY;r=1,....n F,y(x)y, =1 = F,y(@"),, =1. (6.24)

The SDS (Y,Fy,w) is monotone if all F,y, v € v[Y] are monotone local
maps.

Proposition 6.12. Let Y be a graph, K = Fa, and (Y,Fy,w) a monotone
SDS. Then (Y,Fy,w) is w-independent and we have

G(Y,Fy)=1.

Proof. Tt suffices to prove that periodic points of (V,Fy,w) with w =
(wi)1<i<k are necessarily fixed points. For this purpose we note that the in-
verse of [Fy,w] restricted to the periodic points is given by [Fy,w*], where

174 6 Graphs, Groups, and SDS

w* = (Wit1-4):. Suppose &€ = (&y, ..., &,) is a periodic point of [Fy, w]. We

then have
k k

H ka+171‘7y o H mey(g) =<
i=1 i=1

Hence, for an arbitary index 1 < j < k

j—1 j—1
F2 (] Fuiv(©) =[] Fuuv (&) -
=1 =1

By induction over the index j, it follows from (6.24) that Fy, y(§) = & for
1 < j < k. Therefore, all periodic points are necessarily fixed points. The
fixed points are independent of update order w, and G(Y,Fy) = 1. O

6.2 The Class of w-Independent SDS over Circ,,

In this section we study all w-independent SDS over Circ,, that are induced
by symmetric Boolean functions. We then compute all groups G(Circ,, Fcire,,)
for n = 4. In the following we will use the notion of H-class. A state x € F}’
belongs to H-class k if « has exactly k coordinates that are 1, and we write
this as x € H, .

Theorem 6.13. For Y = Circ,, n > 3, there are exactly 11 symmetric
Boolean functions that induce w-independent SDS. They are

nors and nands,

(nors + nands) and (1 4 nors 4+ nands),

the non-constant, monotone maps, i.e., andg, ors and majoritys,
the maps inducing invertible SDS, i.e., parity; and 1 + paritys,
the constant maps 0, 1.

Proof. Theorem 5.28 and Proposition 5.38 imply that nors, nands, (nors +
nands), and (1 + nors + nands) induce w-independent SDS. From Proposi-
tion 5.12 we conclude that ors, ands, and majority; induce w-independent
SDS. The case of the constant Boolean functions 03 and 15 is obvious, but we
note that this case also follows from the fact that these SDS are monotone.
From Proposition 4.16 we know that parity; and (1 + paritys) are the only
symmetric, Boolean functions that induce invertible SDS, so in particular we
have that these maps induce w-independent SDS.

It remains to prove that the five symmetric functions from Map(F3,Fs)
that do not appear in the list induce w-dependent SDS. Our strategy is to
find points that are periodic for one update order and transient for other
update orders.

6.2 The Class of w-Independent SDS over Circ, 175

Consider the Boolean function

1 for (z,y,2) € H1 3,

by: F3 Fa, bi(z,y,2) =
1t 1(@:9,2) {0 otherwise.

Let Y = Circy, and consider the two words w = (3,2,1,0), v’ = (2,0,3,1),
and the state (0,0,0,1). We compute

(0,1,1,1)

/[Fy,w] \ (0,0,0,1)""(1,0,1,0)

(1,1,0,0) >(0,0,0,1)

and observe that (1,0,1,0) is a fixed point for [Fy,w] and [Fy,w'], respec-
tively. Therefore, (0,0, 0, 1) is a periodic point for [F'y, w] but not for [Fy, w'].
We conclude that by induces w-dependent SDS.

For the function

0 for (z,y,2) € Hag3,

by: Fs — Fa, bao(z,y,2) =
22 2 2(2,9,2) {1 otherwise ,

we have

invoby oinv=by, (6.25)
which implies that by induces w-dependent SDS.
Next let
1 for (I,y,Z) €H073UH1737

bs: F3 F b =
3142 T A 3(@,y,2) {O otherwise.

For Y = Circy, w = (0,1,2,3) and w’ = (0,2, 1, 3), we have

(1,1,1,0)

/[Fy,w] \ (1507070) LS w](l 0,170)

(0,0,1,1) > (1,0,0,0)

and observe that (1,0, 1,0) is a fixed point for (Circy, Fy,w’). Since (1,0,0,0)
is a periodic point for (Circy, Fy,w) and a transient point for (Circy, Fy, w'),
it follows that bz induces w-dependent SDS.

Next we consider

1 for (x,y,2) € Ha 3,

by: F3 Fo, by(x,y,2) =
S 1(2,9,7) {0 otherwise,

and take Y = Circy, w = (0,1,2,3), and w’ = (0,1,3,2). For the SDS
(Circy, Fy, w) all periodic points are fixed points. Explicitly, we have

176 6 Graphs, Groups, and SDS
Per[FY’ w] = {(07 07 07 0)7 (07 07 17 1)7 (17 07 0’ 1)7 (1’ 17 07 0)7 (0’ 17 17 0)} *

In contrast, the SDS (Circy, Fy,w’) has two additional orbits of length 2. For
the state (1, 1,1,1) we obtain

[Fy,w'](1,1,1,1) = (0,1,0,1) and [Fy,w'](0,1,0,1)=(1,1,1,1),

which prove that (1,1,1,1) is a transient point for w = (0,1,2,3) and a
periodic point for w’ = (0, 1, 3,2); hence, by induces w-dependent SDS.
Since the function

0 for (z,y,2) € Hy 3,

bs: Fs — Fa, bs(z,y,2) =
o2 2 3@, 9:2) {1 otherwise
satisfies

invobyoinv = bs,

it also induces w-dependent SDS for n = 4, and the proof of the theorem is
complete. O

6.2.1 The Groups G(Circy, Fcir,)

Here we compute the group G(Y,Fy) for all w-independent SDS over Circy.

Proposition 6.14. Let Y = Circy, and let Gy denote the group generated by
the Y -local maps induced by b over Y restricted to the periodic points. We
then have

CTVnor = A7 and Gnand = A7,

Ghor4nand = A7 and G1qnortnand = Az,
Gor - 1, Gand =1 and Gmajority = 17
Gparity = G1+parity = GAP(QG7 227),
Gyg=1and G; =1.

Here A7 is the alternating group on seven elements, and GAP(96,227) is the
(unique) group with GAP index (96,227); see [114].

Proof. The SDS induced by nor functions has seven periodic points, which we
label as 0 < (0,0,0,0), 1 < (1,0,0,0), 2 < (0,1,0,0), 3 < (0,0,1,0), 4 <
(1,0,1,0), 5 « (0,0,0,1), and 6 < (0,1,0,1). Rewriting the corresponding
maps Nor; for 0 < ¢ < 3 as permutations n; of S7 (using cycle form) gives
ng = (0,1)(3,4), n1 = (0,2)(5,6), na = (0,3)(1,4), and n3 = (0,5)(2,6).
Next, note that the group A7 has a presentation

(my]a® =y° = (zy)" = (ay 'ay)® = (zy 2xy®) = 1)

and that a = (0, 17 2) and b = (2, 3,4, 5,6) are two elements of S7 that will gen-
erate A7. Now, a’ = na(nonsni)? = (0,4,1,6,3) and b’ = (nznz2)?(nani)? =

6.2 The Class of w-Independent SDS over Circ, 177

(2,5,3), and after relabeling of the periodic points using the permutation
(0,3,2)(1,5) we transform o' into a and b’ into b. With Gy viewed as a
permutation group we therefore have A7 < Gp,,. Since every generator n; is
even, we also have Gy < A7, proving the statement for G,,. Since nor and

nand induce dynamically equivalent SDS, it follows that
Gnand = Gnor = A7 .

The proof for Ghortnand and G14nor4+nand is completely analogous, so we
only give the labeling of the periodic points and the corresponding generator
relations as 0 < (0,0,0,0), 1 < (1,0,1,0), 2 < (1,1,1,0), 3 < (0,1,0,1),
4 < (1,1,0,1), 5 < (1,0,1,1), 6 < (0,1,1,1), and 7 < (1,1,1,1). The
generators are ng = (3,4)(6,7), n1 = (1,2)(5,7), ne = (3,6)(4,7), and n3 =
(1,5)(2,7). If we simply relabel the periodic points using the permutation
(0,7)(1,6)(2,5)(3,4), the generators are mapped into the generators of Gpor,
which, along with equivalence, proves

Gnor+nand = G1+nor+nand = A7 .

Since monotone SDS only have fixed points as periodic points, the corre-
sponding groups are trivial (Proposition 6.12).

The final cases are Gparity and Giyparity- In both cases all points are pe-
riodic, so we simply use the decimal encoding of each point as its label us-
ing (4.17), which in the case of Gparity (viewed as a permutation group) gives
us the generators ng = (2,3)(6,7)(8,9)(12,13), n; = (1,3)(4,6)(9,11)(12, 14),
ny = (2,6)(3,7)(8,12)(9,13), and ng = (1,9)(3,11)(4,12)(6,14). (Note that
there are four fixed points.)

A straightforward but tedious computation shows that Gparity has order
96 = 2° - 3. From [115,116] it is known that there are 231 groups of order 96.
Explicit computations show that Gparity is non-Abelian since, for example,
none # nong, that it has 16 Sylow 3-subgroups, and that its center and its
Frattini subgroups are trivial. These properties uniquely identify Gparity as
the group with GAP [114] index (96, 227).

The four generators for G4 parity (Viewed as a permutation group) are

,1)(4,5)(10,11)(14, 15),
7)(8,10)(13,15),
5)(10,14)(11, 15),
10)(5,13)(7,15) .

0,2)(
0,4)(
0,8)(2,

7

/\/\/\/\

Using the relabeling

012457 8 1011131415
32176411 9 8 141312

the generators for G yparity are transformed into the generators for Gparity;
hence, G'14parity = Gparity, and the proof is complete. O

178 6 Graphs, Groups, and SDS

6.1. Write a program to identify the maps f: F3 — Fy that do not induce
w-independent SDS over Circ,,. Prove that the remaining maps induce w-
independent SDS. [3+C]

6.3 A Presentation of Sss

We conclude this chapter by showing that the symmetric group Sss is isomor-
phic to the group of (Q3, (Nor + Nand) s, w).

Proposition 6.15. Let Y = Q3 and let m € Sg; then any SDS of the form
(Q3, (NOI‘+Nal’ld)Qg7ﬂ') has precisely 35 periodic points of period 2 < p < 17
and precisely 1 fized point. Furthermore, we have

G(Q3, (Nor + Nand)gs) = S35 -

Proof. From Proposition 5.38 we know that the periodic points of an arbitrary
SDS induced by (nory +nand) are w-independent. A straightforward analysis
of the phase space of the SDS

[(Nor + Nand) s, (0,1,2,3,4,5,6,7)]

shows that

there exists exactly one fixed point,
exactly 35 points of period p > 2.

The second part of the first statement (p < 17) follows by inspection of the
SDS phase spaces induced by all A(Q3) = 54 representatives of the Aut(Y)-
action on Sg/ ~y-.

We consider the periodic points as binary numbers and order them in the
natural order. Then we obtain for the restrictions of the local maps Fj s,
0 < <7, to the periodic points of period p > 2:

go = (0,1)(5,6)(12, 13)(15,16)(17, 18)(20, 21)(22, 23)(24, 25)(26, 27) ,

g1 = (0,2)(3,4)(7,8)(9,10)(17, 19)(26, 28)(29, 30)(31, 32) (33, 34) ,

g2 = (0,3)(2,4)(7,9)(8, 10)(12, 14)(26, 29)(28, 30)(31, 33) (32, 34) ,

g3 = (0,5)(1,6)(7,11)(12,15)(13, 16)(17, 20)(18, 21)(22, 24)(23, 25) , (6.26)
g2 = (0,7)(2,8)(3,9)(4, 10)(5, 11)(26, 31)(28, 32)(29, 33)(30, 34) , '
g5 = (0,12)(1,13)(3,14)(5, 15)(6, 16)(17, 22)(18, 23)(20, 24)(21, 25) ,

g6 = (0,17)(1,18)(2,19)(5,20)(6,21)(12, 22)(13,23)(15, 24)(16, 25) ,

g7 = (0,26)(1,27)(2,28)(3,29)(4, 30)(7, 31)(8, 32)(9, 33)(10, 34) .

Since there are 35 periodic points of period p > 2, it is clear that G < Sss.
We next observe that a 35-cycle can be generated as follows:

6.3 A Presentation of S35 179

a1 = g6 94 97 92 91 95 97 93 92 96 94 9o 91 ge g1 gv g2 g1 gs g7 93 g2 ge 94 9o 9s
= (17 13,0,4,24,8,16,9,27,31,21,29,33,11,6,17, 10, 20,
28,22,34,30,14,12,2,15,5,19, 25, 3, 18, 26, 32, 23, 7) (6.27)

Next, a 2-cycle can be generated from

Q2 = ga g7 91 92 ge g7 93 g1 gs g4 go
= (1,3,0,25,34,32,19,11,22,6,4,2, 5,23, 33,31, 17,
16,10,8,20,13,9,12,21,14,7,24,27,29,26,18,15)(28,30) (6.28)

as o/ = a3® = (28, 30). Since ged(4, 35) = 1, we see that 8/ = af is a 35-cycle
where 28 and 30 are consecutive elements. Since it is known that o = (1, 2)
and 8= (1,2,...,35) generate S35, and since we can transform o’ and 3’ into
« and 3 by relabeling, we conclude that G is isomorphic to Sss. O

By the above proposition, an SDS of the form (Q3, (Nor + Nand)Qg,)
with w € Sg has a maximal orbit length 17. With arbitrary words as update
orders, additional periodic orbits can be obtained:

Corollary 6.16. For any 1 < p < 35 there erists a word w such that
(Q3, (Nor + Nand)Qg,w) has a periodic orbit of length p. In particular, for
any bijection 3 over a set of 35 elements there exists some w such that

B = [(Nor + Nand) gz, wl[p .

Problems

6.2. Determine the periodic points for Nor-SDS over Liney, and give permu-
tation representations ng and ny of the restriction of Norg and Nor; to the
set of periodic points. What is the group G2 = G(Lineg, (Nor)) = ({ng,n1})?
Interpret your result in terms of periodic orbit structure and update orders.

[1]
6.3. What is the group Gs = G(Lineg, (Nory,),)? 2]

6.4. Show that G4 = G(Circy, (Nor)) = A7, the alternating group on seven
letters. Hint. The group A7 has a presentation

(z,y]2® =9° = (zy)" = (ay 'ay)® = (zy*ay®) = 1).

Check that (0,1,2) and (2, 3,4,5,6) are two such generators, and use this to
solve the problem. [2]

6.5. Show that G5 = G(Circs, (Nor)) = Sy1. Hint. Use the fact that S, is
generated by (0,1) and (0,1,2,...,n—1). [2]

180 6 Graphs, Groups, and SDS

1 2

4 3
Fig. 6.2. The square with a diagonal edge.

6.6. Let Y be the graph shown in Figure 6.2, let the vertex functions be
induced by (nory);_s, and let w be a fair word over the vertex set. Let m be
the number of periodic points of the SDS (Y, Nory,w). (i) What is m? (i4)
Give the periodic points.

Label the periodic points 1 through m by viewing them as binary numbers
such that they are given in increasing order. For each v € v[Y] let Nor! be
the restriction of Nor, to the periodic points and let n, be the permutation
encoding of Nor/, based on your labeling of the periodic points. (i4i) What are
the n,’s? (iv) Explain why the group G = ({n,}) is well-defined.

(v) What is the group G?
(vi) Interpret your answer in (v) in the context of update orders and periodic

orbit structure. 2]

6.7. (Subgroups of G(K,,Parityy) [117]) From Problem 5.25, and as
shown in its solution, the invertible permutation SDS-map [ParityKnmr] is
dynamically equivalent to the permutation action of the (n + 1)-cycle

B(m) = (w(1),7(2),...,m(n),n+1)

on I@'g Refer to Problem 5.25 and its solution for notation and definitions.

(a) Show that
H, = ({[Parity . ,7]| 7€ Sk, }) (6.29)

is a subgroup of G(K,, (Parity,);). Find a representation of the identity ele-
ment in H,, in terms of the generators of H,.

(b) For n > 3 show that

() the n-cycles in S,, generate A, when n is odd,
(9) the n-cycles in S,, generate S,, when n is even.

(c¢) Define the map ¢: H,, — Sp41 for n odd and ¢: H, — A, 41 for n
even by ¢([Parity ;. ,7]) = 8(m) with 7 € Sy, and ¢([Parityx ,7*]o-- o
[Parity ;. ,7']) = ¢(x*)--- ¢(n') with 7* € S,,, 1 < i < k. Show that ¢ is a
well-defined group homomorphism.

(d) Argue that any (n + 1)-cycle can be represented as §(r) for some 7 € S,,.
Use the results from (b) and (c) to conclude that the map ¢ is an isomorphism,
and hence that

6.3 A Presentation of S35 181

{Sn+17 n odd)

Hy
Apt1, neven.

Il

(6.30)

[3]

6.8. The construction of H, in Problem 6.7 can be done over any graph
Y. Determine the order of the group H generated by permutation SDS in-
duced by parity functions in the case of Y = Circy. Verify that |H| divides
|G (Circy, (Parity)circ,)|- Identify the group H. [2C+]

6.9. Let ¢ be a w-independent SDS over a graph Y with Y-local functions
(Fy.y)v and periodic points P C K™. Let Fé,y denote the restriction of F, y
to P. Argue that

H(Y, (Foy)o) = {[(Foy)o,n]: P— P [m e Sy})

is a well-defined subgroup of G = G(Y, (Fy, v)v). What is H if Y = Circy for
SDS induced by nor functions? [2C+]

182 6 Graphs, Groups, and SDS

Answers to Problems

6.2. The periodic points are (0,0), (1,0), and (0, 1). With the chosen labeling

periodic point label Norg Nor;

(0,0) 0 (1,0) (0,1)
(0,1) 1 (0,1) (0,0)
(1,0) 2 (0,0) (1,0)

in the table we have ng = (0,2) and ny = (0, 1) as permutation representations
of Norg and Norj, respectively. Clearly, we have G2 < Ss. Since ngn; =
(0,1,2) and n; = (0, 1) and since we know (0,1) and (0, 1, 2) generate Ss, we
also have G3 > S3, so Go = S3.

6.3. Using the labeling from the table below, we have ng = (0, 1), ny = (0, 2),

periodic point label Norg Nor; Nors

(0,0,0) 0 (1,0,0) (0,1,0) (0,0,1)
(1,0,0) 1 (0,0,0) (1,0,0) (1,0,0)
(0,1,0) 2 (0,1,0) (0,0,0) (0,1,0)
(0,0,1) 3 (0,0,1) (0,0,1) (0,0,0)

and n3 = (0,3). From naning = (0,1,2,3) and Sy = ({(0,1),(0,1,2,3)}) <
G3 < 84, we see that Gz = Sy.

6.4. Here we use the labeling 0 < (0,0,0,0), 1 < (1,0,0,0), 2 < (0,1,0,0),
3 < (0,0,1,0), 4 < (1,0,1,0), 5 < (0,0,0,1), and 6 < (0,1,0,1) of the
periodic points. You can verify that ng = (0,1)(3,4), n1 = (0,2)(5,6), ny =
(0,3)(1,4), and n3 = (0,5)(2,6). Note that, for example, a = na(ngnsni)? =
(0,4,1,6,3) and b = (nzng)?(n2ni)? = (2,5,3). If we relabel the periodic
points by <g ;) (2) g i i) g), we get a = (0,1,2) and b = (2,3,4,5,6). By the
hint we know that G4 contains A;. However, since every generator of G4 is
an even permutation and since G4 is contained in S7, we must have G4 = A7.

6.5. There are 11 periodic points, which we initially label as in the table:
You can now verify that noning = (0,9,1)(2,8)(3,10,4)(5,7,6). By using the
transpositions (n1ngng)® = (1,3), (naninz)® = (2,5) and (nznang)® = (3,8),
we construct the 11-cycle

a = (nznang)®(naninz)®(ninenz)®(noning) = (0,9,8,5,7,6,2,3,10,4,1).

We also have b = (n4ngni)® = (0,9). Using the problem hint, it is now easy
to see that G5 = Si1.

6.3 A Presentation of S35 183

Label Point Label Point

0 (0,0,0,0,0) 1 (1,0,0,0,0)
2 (0,1,0,0,0) 3 (0,0,1,0,0)
4 (1,0,1,0,0) 5 (0,0,0,1,0)
6 (1,0,0,1,0) 7 (0,1,0,1,0)
8 (0,0,0,0,1) 9 (0,1,0,0,1)
10 (0,0,1,0,1)

Challenge: In terms of the number of generators, find a minimal 11-cycle.

6.7. (a) Since parity-SDS are invertible, and since everything is finite, every
element of H, can be written as [Parity ,w| for some finite, fair word
w. Thus, Hy, is a subset of G(K,,Parity,), and H, is a group by con-
struction. Let 7 = (1,2,...,n), i.e., the identity permutation. The inverse
of [Parity ,7] is [Parityy ,7*]; thus, the identity element in H, has a
representation in terms of generators as [Parity ;; ,7*] o [Parity . ,7].

(b) Let C), denote the subgroup of S,, generated by the n-cycles. We always
have (using cycle-form)

(a7 ba C) = (a7 c, b7 Op—3,0p—4,..., al)(aa C,(x1,Q2,...,0n_3, b))

and since A,, is generated by the three-cycles it follows that A, < C,. When
n =1 mod 2, every element of C), is an even permutation and consequently
C, = A,, giving the first statement. When n =0 mod 2, we also have

(1,2) = (1,2,3,...,n)*(1,n,n —2,...,4,2,n—1,n—3,...,3) .

The fact that (1,2) and (1,2,3,...,n) generate S,, shows that S, = C,.
Alternatively, S, : A, = 2 and since C,, contains an odd permutation when
n =0 mod 2, we deduce from A, < C, < S, that C,, = S,, in this case.

(c) For 1 < i <1 set h; = [Parityy 7] with 7* € Sy, and let h = hy o
-++ 0 hy. Using the second commutative diagram (5.41) from the solution of

Problem 5.25, and using the fact that the maps ¢: F§ — ng and proj: ng —
F% (defined in Problem 5.25) are inverses of one another, we obtain

p(h) = d(h)p(hi-1) - - - ¢(h2)p(h1) (6.31)
= [to0hyoproj][tohi_1 oproj] ---
-+ [t 0 hg o proj] [t o hy o proj]

=(10hoproj.

Thus, if an element g € H,, has two different representations, say g = [[¢; =
[1g:, it is clear from (6.31) that ¢([]g:) = &(I]g;). The map ¢ is thus well-
defined. It is a homomorphism by construction. Note that 3(7)8(7*) = id, as
it should.

184 6 Graphs, Groups, and SDS

(d) An (n 4+ 1)-cycle element of Sy, can always be shifted cyclically so that
the element n + 1 occurs in the last position — it still represents the same
permutation. In light of this, it is clear that any (n + 1)-cycle of S,,+1 has
a cycle representation () for some © € S,. From (6.31) it follows that
#(g) = ¢(¢') if and only if g = ¢ for any g,¢9’ € H,,. The map ¢ is thus an
injection. From (b) it follows that ¢(H,) = Ap+1 for odd n and ¢(Hy) = Sp+1
for even n. Thus, ¢ is surjective. We conclude that ¢ is an isomorphism.

6.8. |H| =48, and 48 | 96 = |G|.
6.9. The subgroup H is isomorphic to A7 and thus equals G.

7

Combinatorics of Sequential Dynamical
Systems over Words

In Chapter 4 we introduced SDS over permutations, that is, SDS for which
each Y-local map is applied exactly once. A combinatorial result of SDS over
permutations developed in Chapter 4 based on Eq. (3.15) allowed us to identify
identical SDS via the acyclic orientations of the base graph Y through

Oy: Sk/ ~Ny — ACyC(Y) s (71)

where we identify Sy with Si, the symmetric group over k letters, and where
01 ~y o9 if and only if they can be transformed into each other by suc-
cessive transpositions of consecutive letters that are pairwise non-adjacent
Y -vertices. Let us recall how this equivalence relation ~y ties to SDS: Two
local maps F,, and F,, commute if v and v’ are not adjacent since in this case
Fy(xy,,...,x,,) does not depend on x,, and F,(zy,, . .., Ty,) does not depend
on z, in the coordinate functions corresponding to v’ and v, respectively. As
a result two SDS-maps are identical if their underlying permutation update
orders belong to the same ~y-equivalence class.

In this chapter we generalize SDS over permutations to SDS over general
words as in [118,119]. This allows us to analyze and model much broader
classes of systems. For instance, SDS over words can be used to study discrete
event simulations where agents are typically updated multiple times [121]. We
will simplify notation as follows: If v; is a vertex in Y and {v;,v;} is an edge
of Y, we write v; € Y and {v;,v,;} € Y, respectively.

This chapter is organized into two sections. In the first section we derive
an analogue of Eq. (7.1) by introducing a new combinatorial object: the undi-
rected, loop-free graph G(w,Y"), which has vertex set {1,...,k} and edge set
{{r, s} | {ws,w,} € Y}. It is evident that G(w,Y") is much too “fine” since
it uses the indices of the word instead of its letters. The key idea consists of
identifying a suitable equivalence relation over acyclic orientations of G(w,Y")
in order to obtain the invariance of the resulting class under transpositions
of non-adjacent letters in w. We will show that this equivalence relation ~,,
over acyclic orientations is induced by a new group action: the subgroup of

186 7 Combinatorics of Sequential Dynamical Systems over Words

G(w,Y)-automorphisms that fix the word w denoted Fix(w). Obviously, the
fixed group of a permutation-word is trivial, and accordingly Fix(w) did not
appear in the framework of permutations-SDS. The orbits of Fix(w) allow us
to generalize Eq. (7.1) to SDS over words as follows:

Oy Wi/ ~y— U, IAYe(Gle, YD)/ ~] (72)

where @ is a set of representatives of the natural Si-action on W (words of
length k) given by
o-w = (w6—1(1)7 .o ,wgfl(k)) .

In analogy with permutation-SDS, the above correspondence is not only of
combinatorial interest but also relevant for SDS-maps since for w ~y w’ the
SDS-maps of (Y, Fy,w) and (Y,Fy,w’) are identical.

In the second section we introduce a generalized equivalence relation over
words. Let A(w) be the automorphism group of G(w,Y), and let N(w) be the
normalizer of Fix(w) in A(w), that is,

N(w) = {a € A(w) | aFix(w)a™ = Fix(w)} .
Then the short exact sequence
1 — Fix(w) — N(w) — Aut(Y)

(Theorem 7.6) allows one to define a new equivalence relation over words
denoted by ~p(y). This relation is directly induced by the group N(w) and
arises in the context of the question of whether it is possible to replace Fix(w)
by a larger group G of G(w,Y)-automorphisms. As in the case of Fix(w) the
group G should give rise to a new equivalence relation “~¢” that has the
property that w ~g w’ implies that the SDS-maps associated to (Y, Fy,w)
and (Y,Fy,w’) are equivalent. The main result of this section is that G =
N(w) induces such an equivalence relation ~y,). Explicitly ~y(,) has the
properties that

(P1) OV Su(9)/ ~ie) — [Acyele)/ ~nio)]
Oy (o - @) = Oy (@)
is a bijection and

(P2) W ~N(p) w' — [Fy,w] ~ [Fy,w/] .

The equivalence relation ~(,) can differ significantly from ~y. In this
chapter we will show in Lemma 7.21 that w ~y(,) w’ implies that there exist
g,9" € N(yp) such that 9(g) o w ~y 9(g’) o w’, where 9 : N(w) — Aut(Y) is
given by ¥(a)(w;) = wa-1(;) (Theorem 7.6). This result connects the actions
of the groups A(w) and Aut(w).

7.1 Combinatorics of SDS over Words 187

7.1 Combinatorics of SDS over Words

7.1.1 Dependency Graphs

Let us begin by introducing two basic group actions. First, we have Sj, the
symmetric group over k letters, {1,...,k}, which acts on the set of all words
of length k, denoted Wy, via 0w = (w,-1(1), . . 7wo-—1(k)). The orbits of this
action induce the partition

W=, _,5u0) (73)

where @ is a corresponding set of representatives. Second, the automorphism
group of Y acts on Wy, via yow = (y(wy),...,v(wg)) and o has by definition
the property

Y(ws) = (yow)s .

Lemma 7.1. Let 0 € Si, and v € Aut(Y'). Then we have
vyo(o-w)=0-(yow). (7.4)
Proof. To prove the lemma, we compute
vo(o-w) =V (We-101));-- s V(Wo-1(1))

= ((’7010)071(1)7.) (’YOw)ofl(k))
=0-(yow).

O

We next define the dependency graph of a word w and a combinatorial
graph Y.

Definition 7.2. A word w € W) and a combinatorial graph Y naturally
induce the combinatorial graph G(w,Y’) with vertex set {1,...,k} and edge
set {{r,s} | {ws,w.} € Y}. We call G(w,Y) the dependency graph of w
and Y.

Ezample 7.3. Let w = (v1,v2,v1,v2,v3) and Y = 01 U2 vs . Then
we have
1 2
Gw,Y) =
3 4 5.

In the following we will use the notation A(w) for the group of graph automor-
phisms of G(w,Y’), and we denote the set of acyclic orientations of G(w,Y")
by Acyc(w). For w € W}, we set Fix(w) ={p € Sk | p- w = w}. o

188 7 Combinatorics of Sequential Dynamical Systems over Words

Proposition 7.4. Let Y be a combinatorial graph, w € Wy, v € Aut(Y), and
o €S;. Then

o: Gw,Y) — Glo-w,Y), r—o(r) (7.5)
is a graph isomorphism. In particular, Fix(w) is a subgroup of A(w) and
A(o-w) =0 A(w) o' and Fix(c - w) = o Fix(w) o~ . (7.6)
For any v € Aut(Y") we have G(w,Y) =2 G(yow,Y) and Fix(yow) = Fix(w).
Proof. Weset w' = (wy(1), .., W) = o~ Lw and show that o: G(w',Y) —
G(w,Y) is an isomorphism of graphs. Let {r,s} € G(w',Y"). By definition of
W' = (We(1), -+ Wo(k)), We have wy(p) = wy, for h =1,...,k and obtain

{wiw.}eY <= {wy(s),Wom} €Y ;

hence, {o(s),0(r)} € G(w,Y) and (7.5) follows. Next we prove that Fix(w) is
a subgroup of A(w). Let p € Fix(w), that is, p - w = w and we immediately
observe p: G(w,Y) — G(p-w,Y) = G(w,Y), and p € A(w). In order to
prove (7.6) we consider the diagrams

G(w,Y) 7 >Glo-w,Y) G(w,Y) 7 >Go-w,Y)
a B
v \ v v
G(w,Y) 7 >G(o-wY), G(w,Y) 7 >G(o-wY),

with a € A(w) and 8 € A(o - w), respectively. It is clear that each a induces
a unique G(o - w,Y)-automorphism via cao~™!, and similarly each 3 its re-
spective G(w,Y)-automorphism via o=, and (7.6) follows. According to
Lemma 7.1, we have p-(yow) = yo(p-w), and Fix(w) = Fix(yow). Finally, we
observe that {ws,w,} € Y is equivalent to {y(ws),y(w,)} € Y, from which

G(w,Y) 2 G(yow,Y) follows. O
7.1. Let w and w’ be the words w = (v1,v2,vs3,v1) and w’ = (v1,v1,v3,v2),
and let Y = v U3 v2 . Draw G(w',Y) and G(w’,Y) and show
that G(vw',Y) 2 G(w,Y). [1]

7.2. Let Y = K3 be the complete graph with vertex set {vi,ve,vs},
w = (v1,v1,v2,v3), W = (v3,v2,v2,v1), and w” = (ve,ve,vs,v1). Show that

Gw,Y)2Gw,Y)=Gw",Y) (Proposition 7.4). [1]

One immediate consequence of Proposition 7.4 is that for permutations
the graph G(w,Y’) can naturally be identified with Y.

Corollary 7.5. Let w € Sy. Then we have

Gw,Y)x2Y. (7.7)
Proof. We have {r,s} € G(w,Y) if and only if {w,,ws} € Y. In view of
Proposition 7.4, we may without loss of generality assume that w = id =

(v1,v2,vs,...,0,) and derive G(w,Y) =2 G((v1,...,v,),Y) =Y. O

7.1 Combinatorics of SDS over Words 189
7.1.2 Automorphisms

In this section we study the normalizer of Fix(w) in A(w). We prove a
short exact sequence that relates it to the groups Fix(w) and Aut(Y) (Theo-
rem 7.6). Before we state the main result, let us have a closer look at G(w,Y')-
automorphisms.

Observation 1. We first present a G(w,Y)-automorphism « that is not
contained in Fix(w). Let ¥ = w01 v2 and set w = (v1,v1,v2,02).
Then o = (1,4)(2,3) is an automorphism of G(w,Y’). Furthermore, we have
a-w = (vg,v2,v1,v1) and « & Fix(w). That is,

Observation 2. Second, we show that Fix(w) is in general not a normal
subgroup of A(w). For this purpose, let Y = v1 V2 U3 Vg
and w = (v1, v1, V2, V3,04, v4). Then we have Fix(w) = ((1,2),(5,6)). We set
a = (1,5)(3,4), that is, a - w = (v4, v1,v3,v2,v1,v4) and observe

a € A(w); aFix(w)a™ = Fix(a - w) = {(6,1),(5,2)) # Fix(w) .

Since we will use G(w,Y)-automorphisms to obtain equivalence classes of
acyclic G(w,Y)-orientations, we first study Fix(w) in A(w) and set

N(w) = {a € A(w)) | aFix(w)a™* = Fix(w)} . (7.8)

Recall that (v) is the cyclic group generated by v and (v)(v;) = {y"v; | h € N}
denotes the orbit of (v) that contains v;.

Theorem 7.6. Let G(w,Y) be the dependency graph of the fair word w and
Y. Then there exists a group homomorphism

91 N(w) — Aut(Y), 9(0)(w;) = wani (s, (7.9)
and we have the short exact sequence

1 — Fix(w) — N(w) — Aut(Y) , (7.10)
or equivalently, Ker(¢) = Fix(w). Furthermore, we have

Im(¥) = {y € Aut(Y) |V r € N; YV ws € () (w,); |Fix(w)(r)| = |Fix(w)(s)|} .
(7.11)

Proof. Let a € N(w) and set

19(01)(%) =Tq-1(;), Ti€ Y.

190 7 Combinatorics of Sequential Dynamical Systems over Words
In particular, we have ¥(a)(w;) = wq-1(;)- By definition of G(w,Y’), we have
{r,s} € G(w,Y) <= {w,,ws} €Y,
and accordingly obtain
{a(i),a(j)} € G(w,Y) <= {wa-13), Wa-1(j)} €Y . (7.12)

We conclude from Eq. (7.12) that for any o € N(w), 9¥(«) induces mappings
such that

i =al) fdd = {a().a()

\ I v v I v
wi | @ wai s {wi,wjt é{wwl(i),wwl(j)}

are commutative diagrams.
Claim. For any o € N(w) the mapping

Ia): Y — Y, d(a)(wi) =wa-13
is well-defined and an automorphism of Y.

We first show that J(«) is well-defined. By assumption every Y-vertex w;
is contained in w, and we conclude that ¥(«) is defined over Y. By construc-
tion, ¥(«) maps Y-edges into Y-edges. For arbitrary p € Fix(w) we have the
following situation:

\ 9(a) \
Wo(s) | > Wa=1(p(i))

Since o € N(w) = {a € A(w) | aFix(w)a™t = Fix(w)}, we have
V p € Fix(w), 3 p’ € Fix(w); pdat=a"1p,

from which we derive wa71(p(i)) = ’wp/a71(i) and wafl(p(j)) = wp/a71(j). Fur-
thermore, for p', p € Fix(w) and r € Ny we have w,,) = w, and wy ;) = wy,
respectively, that is,

Wp(i) = Wiy Wp(j) = Wiy Wyt (a=1(i)) = Wa1(i), AN Wy (a-1(j)) = Wa=1(j) -
Accordingly, we have shown
vV p € Fix(w), d(a)(wp)) = da)(wi), Ha)({wp), wo)}) = Ha)({wi, w;})

which proves that ¥(«) is well-defined over Y.

7.1 Combinatorics of SDS over Words 191

Next we show injectivity. Note that ¥(«)(w,) = () (ws) is equivalent to
We—1(r) = Wy-1(s), that is, there exists some p’ € Fix(w) such that p'a~!(r) =
a~1(s). Since « is in the normalizer of Fix(w), p'a™1(r) = a~1(s) guarantees
that a=1(p(r)) = a~!(s), and since a1 is bijective we conclude p(r) = s.
Hence, ¥(«) is injective and the claim follows.

Claim. The map ¥: N(w) — Aut(Y) is a group homomorphism.

To prove this we observe ¥(aa1)(wi) = Wiayar)-1(:) = Wostaz1(y)- We

next set y; = J(aq)(w;) for i = 1,..., k and compute

J(az) o F(ar)(w;) = d(az)(I(ar)(w;))
~ Yo'
= 19(0[1)(wa;1(i))

=W _ -1 _—1;.
oy ay (i)

= V(agan)(wi) ,

proving the claim.

Next we prove that Fix(w) = Ker(¢J). For p € Fix(w) we obtain 9(p)(w;)
wy-1(;y = w;, and Fix(w) C Ker(d). Now let 3 € Ker(9), ie., 9(8)(w;) =
wg-1(;y = wj for i € Ny, which is equivalent to 8- w = w, that is, 3 € Fix(w).
Claim. Im(9) = {y € Aut(Y) | V r € Ng; V ws € {(y)(w,); |[Fix(w)(r)] =
Fix(w)(s)]}.

To prove the claim we consider v € Aut(Y). By assumption, every Y-
vertex v; is contained in w at least once, and we may choose, modulo Fix(w),
some index a € N such that

we = y(w;) .

In order to define o, € N(w), we consider the diagrams below and define a,
in two steps.

il ~ay(i) i) = o (p(i))
v ~ v v . \
Wi | > y(w;) = w, Wo(i) | > V(Wp(i)) = y(w;) = w,

Step 1. By assumption we can select a subset of indices V' = {ky,...,k,} C Ny
such that {wg,,...,wk, } =Y and define

VseN,, ozt (ks) = a(ks) .

Step 2. In view of the diagram on the right we compute y(w,,)) = Wa(k,),
that is, Wt (p(ks)) = Yar (ko) Therefore, we define

Vs eN,, VpeFix(w), a;l(p(ks)) = pla(ks)) . (7.13)

192 7 Combinatorics of Sequential Dynamical Systems over Words

Claim. Suppose any two Y-vertices that belong to the same (y)-orbit have
the same multiplicity in w. Then ay € N(w) and d(ay) = 7.

In view of (7.13) we observe that a. is bijective if and only if any two
Y -vertices that belong to the same (7y)-orbit have the same multiplicity in w,
i.e., |Fix(w)(ks)| = |Fix(w)(a(ks))|. We consider the diagram

{p(kr), p(ks)}1 T = {ay(p(kn) oy (p())}
\ - \
{w,, wr, } 1 > {Wa(k,) Waka) } = {Was 1 (pk)) Wait (oo} >

from which we conclude that o, maps G(w, Y)-edges into G(w, Y)-edges. We
observe
Vs €Ny, Vp,p1€Fix(w); aypias(p(ks)) = pa(p(ks)),

and finally compute

(ay) (Wp(k,)) = Wo1(p(ks)) = Walks) = Y(wk,) = Y(Wpk.)) »
proving the claim, and the proof of the theorem is complete. O

Corollary 7.7. Suppose w is a fair word over Y and that for any ws €
Aut(Y)(w,) the elements ws and w, have the same multiplicity in w. Then
we have the long exact sequence

1 — Fix(w) — N(w) — Aut(Y) — 1. (7.14)
Equivalently, Ker(9) = Fix(w) and ¥ is surjective.

Proof. Equation (7.14) follows immediately from Theorem 7.6 since then, by
assumption, any two Y-vertices that belong to the same Aut(Y')-orbit have
the same multiplicity and we have Im(¢) = Aut(Y). O

7.1.3 Words

We begin this section by endowing the set of words of length k, denoted Wi,
with a graph structure. As in the case of permutation-word Section 4.2, the
following notion of adjacency is a consequence of the fact that two local maps
indexed by non-adjacent Y-vertices commute, that is, F, o F,, = F,; o Fy, if
either v; = v; or {v;,v;} €Y.

Let U be the graph over words of length k defined as follows: Two different
words w,w’ € W}, are adjacent in Uy if and only if there exists some index
1 <4 < k such that

Vi#di+ 1 wy=wj, wi=wi, w1 =w; A {w,wip} €Y. (7.15)

That is, two words w and w’ are adjacent in Uy if and only if they can be
transformed into each other by flipping exactly one pair of consecutive letters
{w;, wi4+1} such that {w;, w; 1} is not an edge in Y.

7.1 Combinatorics of SDS over Words 193

7.3. Identify the components of the graph W3 over Y = v1 U2 v3.
[1+]

As a result two words within a given component of Uy induce not only
equivalent but identical SDS-maps:

Proposition 7.8. Let (Y, Fy,w) and (Y,Fy,w') be two SDS. Then we have
we~yw = [Fy,w] = [Fy,u]. (7.16)
7.4. Prove Proposition 7.8. [2]

Two words w,w’ € Sk(p) are called ~y equivalent if they belong to the
same Ug-component. We denote the ~y-equivalence class by [w] = {w' |
w’ ~y w}. We proceed by showing that for any two ~y-nonequivalent words
w,w" € Sk(p) there exists some family of Y-local maps Fy such that [Fy,w]
and [Fy,w'] are different as mappings.

Proposition 7.9. Let Y be a graph with non-empty edge set and let w,w' €
Sk(¢). Then we have

woayw = 3I(F,); [Fy,w]#[Fy,w']. (7.17)
7.5. Prove Proposition 7.9. [3]

7.1.4 Acyclic Orientations

Next we present some results on acyclic orientations which we need for the
proof of Theorem 7.17 ahead. Any subgroup of G(w, Y)-automorphisms, H <
A(w), acts on the acyclic orientations of G(w,Y") via

heO({r,s}) =hO{h (r),h"1(s)})) . (7.18)

In this section we will utilize this action for the particular case of H = Fix(w)
in order to obtain equivalence classes of acyclic orientations of G(w,Y").

Definition 7.10. Let O and O’ be two G(w, Y)-orientations. We call O and
O’ equivalent and write O ~,, O’ if and only if we have

3 p € Fix(w); p(O({r,s})) = O'({p(r), p(s)}), (7.19)

or equivalently,
dp € Fix(w); O ' =peO,

and we have the commutative diagram

r "= p(r)

o o -
V V
s s p(s)

We denote the equivalence class of O with respect to ~,, by [O].

194 7 Combinatorics of Sequential Dynamical Systems over Words

7.6. Let Y = v U v3 and w = (v1,v9,v1,v2,v3). Determine
G(w,Y) and the equivalence class [O]s,. [2]

In Lemma 7.13 we will show how to map words w € Sy (¢), for a fixed repre-
sentative ¢ € @, into ~,-equivalence classes of acyclic orientations of G(p,Y).
For the construction of this mapping the following class (Section 3.1.5) of
acyclic orientations will be central.

Definition 7.11. Let ¢ € S, and w € W; then we set

(r,s) iff o(r) <o(s),
(s,r) iff o(r) >o(s).

Oy (0)({r,s}) = {

We continue by proving basic properties of Oy-orientations.

Lemma 7.12. Let 0',0 € Sy, and A € A(w) be such that o'\ = o. Then we
have

ANOy (0)({r,s})) = Oy (¢")({A(r), A(s)}) - (7.20)
In particular, for p € Fix(w) and Oy (0'p), Oy (¢’) € Acyc(G(w,Y")) we have
Oy (0'p) ~w Oy (0')
and furthermore
[Oy (6")]w ={Oy ('p) | p € Fix(w)} . (7.21)
Proof. For {r,s} € G(w,Y) we compute

Oy (o)({r,s}) = (r,s) — o(r)<
Oy ("){A(r), M(5)}) = (A(r),A(s)) <= o(r) =

from which we conclude
MOy (a)({r,s})) = Oy (a")({A(r), A(5)}) -

By Definition 7.10, Oy (¢’p) ~ Oy (¢’) follows from Eq. (7.20) with A = p
and o = o’p.

In view of Oy (¢'p) ~,, Oy (c’) it suffices in order to prove Eq. (7.21):
[Oy (0")]w € {Oy(c'p) | p € Fix(w)} .
Let Oy € [Oy(0')]w. Using Eq. (7.20), we obtain

3 p € Fix(w); p(Oy({r,s})) = Oy (o"){p(r), p(s)})
= p(Oy(a'p)({r,s})) -

Since p € Fix(w) is a G(w, Y')-automorphism, we conclude that Oy = Oy (¢’p)
holds, and the proof of the lemma is complete. O

/

7.1 Combinatorics of SDS over Words 195
7.1.5 The Mapping Oy

The orbits of the Si-action o -w = (wy-1(1), . .., Ws-1(1)) induce the partition

Wi, = UweéSk(go) where & is a set of representatives. The set W}, is the
disjoint union of its S orbits, and any w is contained in exactly one orbit
Sk(p) where w = o - p, for o € Sk.

Lemma 7.13. For any ¢ € & we have the the surjective mapping
Oy : Sk(p) — [Acyc(p)/ ~p], 0 9= Oy(o-) =[0y(0)], . (7.22)

Proof. We first show that Oy : Si(p) — [Acyc(p)/ ~,] is well-defined. Sup-
pose we have o-¢ = o’ p. We set p = 0’ ~to and have p-¢ = ¢. For p € Fix(¢)
we obtain by Lemma 7.12 that Oy (¢) ~, Oy (¢’) and

[0y (o)) =[Oy ()], -

We next prove that Oy : Si(p) — [Acyc(yp)/ ~] is surjective.
Claim. For any O € Acyc(p) there exists some o € Sy with the property
0= Oy (0’)

Since O is acyclic, there exists some o € Si such that
Virst e G(pY), O({rs})=(rs); o) <als), (7.23)
which proves O = Oy (o). O

In the following we investigate under which conditions for 0,0’ € S, Oy (o-
) = Oy (0’ p), holds. In Section 7.1.7 this will allow us to prove the bijection
between equivalence classes of words and ~-equivalence classes of acyclic
orientations of G(p,Y).

Lemma 7.14. Suppose o - @, 0" - ¢ € Wy. Then we have
ocpr~y oo = Oy(o-p)=0y(c"¢). (7.24)

Proof. We set w = o - ¢ and w’ = ¢’ - p. By induction on the Ug-distance
between w and w’, we may without loss of generality assume that w and w’
are adjacent in Uy, that is, we have the following situation:

Trw=w, 7=(0i+1), {w,wi1}g€Y .

Claim. Without loss of generality we may assume 70 = o”’.

We have o'~ 170 - ¢ = ¢, and p = o'7l70 € Fix(p) together with
Lemma 7.12 implies for ¢’ and o'p: Oy (¢’) ~, Oy(c'p). Thus, we obtain
Oy (d')]e =[Oy (c’p)], and the claim follows.

Claim. Suppose 7o = ¢’ holds, then we obtain Oy (¢) = Oy (¢').

196 7 Combinatorics of Sequential Dynamical Systems over Words
By definition, we have for Oy (0), Oy (¢') € Acyc(yp)

Oy(o)({r.s}) =(r,s) <= o(r) <o(s),
Oy (ro){r,s}) =(r,s) <= 710(r) <70(s).

Claim. {o=(i),0 (i + 1)} € G(p,Y).
We have the following commutative diagram of graph isomorphisms:

Glp,Y)

G(o-9,Y) T ~ G0 ¢, Y)
By definition of G(¢,Y"), we have

{o7@0), 0 i+)} €Glp,Y) = {Po1(), o1t} EY
Since o - ¢ = w, we obtain w; = @,-1¢;y and hence {Y,-13;y, Po-1(i11)} =

{w;, wit1} €Y, and the claim follows.

Obviously, 0=1(i),01(i + 1) are the only two indices for which i =
o(c71(@) <o(c7l(i+1)=i+landi+1=70(c"1(i)) > r0(c " (i+1) =1
holds, and

V{r,s} € G(p,Y): {o(r)<o(s) < 71o(r) <7o(s)} . (7.25)
Equation (7.25) is equivalent to

V{rs} € Glp,Y); Oy(o)({r s}) = Oy(o"){r,s});

thus,
Oy (0 ¢) =[Oy (0)]p =[Oy ()], = Oy (' -),

and the lemma follows. 0
We give an illustration of Lemma 7.14:

Ezample 7.15. Let ¢ = (v1,v2,v3,v2), T - ¢ = (v1,v3,v2,v2) where 7 = (2,3)
and Y = v V2 v3 . Then we have Oy (7)({1,2}) = (1,2) since
7(1) =1<3=17(2) and Oy (7)({1,4}) = (1,4) since 7(1) =1 < 4 = 7(4).

1 >2 1 >2

Oy (id) = and Oy(7) =
\ \
4 3 4 3.

7.1 Combinatorics of SDS over Words 197
7.1.6 A Normal Form Result

In this section we prove a lemma that will be instrumental in the proof of
our main correspondence, which is Theorem 7.17. Its proof is based on a con-
struction related to the Cartier—Foata normal form in partially commutative
monoids [68].

Lemma 7.16. Let 0,0’ € S, w € Wy, and Oy (0), Oy (¢') € Acyc(w). Then
we have

Oy(0)=0y(d') = oc-w~yd w. (7.26)
Proof. By definition, w; has index o(j) in o - w and index o'(j) in o’ - w,
respectively. We observe that Oy (o) = Oy (¢') is equivalent to

Wi, jy € Gw,Y), (o(i)<o(i)) <= (d'(i)<d'(G)). (7.27)

Now let ¢(ji) = 1. By definition, w;, has index 1 in ¢ - w. According to
Eq. (7.27), there is no {i,j1} € G(w,Y) with ¢’(i) < ¢/(j1), and as a result
there exists no wy, in position s < ¢’(j1) in o’ - w such that {wp,w;, } € Y.
Hence, we can move wj, in o’-w to first position by successive transpositions of
consecutive, non-adjacent letters. Setting o1-w = (wj, , Wer—1(1), - - -, Wor—1(k)),
we obtain

Joy € Sk; [01(j1) =0(j1) =1 A [0/ -w ~y o1 -w] . (7.28)
We observe further that Oy (o) = Oy (01) holds, that is,

Wi, jt € Gw,Y), (o(i)<o(j)) <= (o1(i)<o(j)). (7.29)
We proceed by induction. By the induction hypothesis, we have for o, - w =
(wjl,wj,“,...,wjm,...),

Jom €Sk Vr €Ny [om(r) =0(r) =7] A [o" - w~y o - w]
and Oy (o) = Oy (o) or, equivalently,
Y{i,j} € G(w,Y), o(i)<o(j)) = (on() <on(j) - (7.30)

Let 0(jm4+1) = m + 1. If there exists some index o, (¢) with the property
om(1) < om(fm+1) and {i,jm+1} € G(w,Y), we obtain from Eq. (7.30):
0(i) < 0(jm+1) =m+1, ie, € {j1,...,dm}. In view of o, (jr) = 0(jr) =7
for 1 <7 < m, we derive 1 < 0,,(7) < m. Hence, we can move wj, ., in oy, -w
to position m + 1 by successive transpositions of consecutive, non-adjacent
letters. Accordingly, we have for o1 -w = (W), ..., Wjpys---)

3 0ma1 € Sk; V7 € Nppyas [omi1(Gr) = o) =7 A [‘7/ WY Tyt W)

and
Oy (o) = Oy (om+1) »

and the lemma follows. O

198 7 Combinatorics of Sequential Dynamical Systems over Words
7.1.7 The Bijection

Now we are prepared to combine our results in order to prove

Theorem 7.17. Let k € N and @ be a set of representatives of the Sk-action
on Wy. Then for each w € Wy there exist some oy, € Sk and @, € D such
that w = 0y, - pyw and we have the bijection

Oy We/ my— U, IAye(9)/], where 0% ([wl,) = Oy (0 - pu)
(7.31)

Proof. According to Lemma 7.13, we have the well-defined and surjective
mapping

Oy : Sk(p) — [Acyc(p)/ ~o], 09— Oy(o-¢) =[Oy (o)ly,
and according to Lemma 7.14, we have for o - p,0" - ¢ € Wy

oo~y o, = Oy(oc-p)=0y(dp).

Since Wi = U, c5Sk(¢), we have the mapping over ~y-equivalence classes

Oy Wef oy — Uy ASKele)) ~ol O (ul,) = Or(0u-0u)

According to Lemmas 7.14 and 7.13, for any fixed representative ¢ the map-
ping

Oy ls.(p): Sk(@)/ ~y— [Acyc(p)/ ~y], [0-¢] = Oy(o-¢)

is surjective. In view of Uy = J,cgSk(9), we conclude that Oy is surjective.
It remains to prove that O} is injective.
Claim. Let w = 0 - ¢ and w’ = ¢’ - p. Then we have

ocrptya o = Oy(o-9)#0y(d y). (7.32)

Let Oy (0),0y(c’) € Acyc(p) be representatives for Oy (o -) and
Oy (0’ - ¢); respectively. By Proposition 7.4 we have the following commu-
tative diagram:

G(U 52 Y) 7 = G(OJ 2 Y) .

Suppose now [Oy ()], = [Oy(0')]e, that is, Oy () ~, Oy (c’). Then there
exists some p € Fix(¢) such that p(Oy(0)({r,s})) = Oy (a"){p(r), p(s)}).
According to Lemma 7.12; we obtain

7.2 Combinatorics of SDS over Words 11 199

Oy (0")({p(r), p(s)}) = p (Oy (o'p)({r, })) ,

and since p is an G(¢, Y')-automorphism, Oy (o) = Oy (0’p). In view of p-¢ =
¢, Lemma 7.16 implies

oo~y (0p)-p=0"-¢,

which is a contradiction. Thus, we have proved [Oy (0)], # [Oy (¢')],, which
is exactly Eq. (7.32), and the proof of the theorem is complete. O

We proceed by revisiting the bijection
Oy : Si/ ~y— Acyc(Y)

of Eq. (3.15) from Chapter 3. In the context of Theorem 7.17 the result be-
comes a corollary:

Corollary 7.18. Let w be a permutation and identify Si(id) with Si. We
have the bijection

Oyt Sk/ ~Ny — Acyc(Y) . (733)

7.7. Prove Corollary 7.18. 2]

7.2 Combinatorics of SDS over Words 11

7.2.1 Generalized Equivalences

We call two G(w, Y)-orientations O and O’ G-equivalent and write O ~g O’
if and only if there exists some g € G such that @ = g e O’ holds. The G-
equivalence class of O with respect to ~ is denoted by [O]¢. As in Section 7.1
we have

w

(r,s) iff o(r) <o(s),

(s,r) iff o(r) > a(s), (7:34)

Yo e Sk, Oy (o){r,s}) = {

and for o/, € Sk, A € A(w) such that ¢’\ = ¢ Lemma (7.12) guarantees

AOy (o)({r,5})) = Oy (") ({A(r), A(s)}) - (7.35)

Lemma 7.19. Suppose o’,0,\ € S, and A € A(w) such that c'X\ = o. Then
for g € N(w) and Oy (0'g), Oy (0’) € Acyc(w) and

Oy (0'g) ~Nw) Oy (d')
holds. Furthermore, we have

[Oy (0")Inw) = {Ov(c'g) | g € N(w)} . (7.36)

200 7 Combinatorics of Sequential Dynamical Systems over Words

Proof. By definition Oy (0'g) ~nw) Oy (0') follows directly from (7.35) upon
setting A = g and 0 = o’g. In view of Oy (0'g) ~n(w) Oy (0'), it suffices in
order to prove Eq. (7.36):

[Oy (6")Inw) € {Oy(0'g) | g € N(w)} .

Let O € [Oy (0")]nw)- Using Eq. (7.35) we obtain

dg eN(w); g(O({r,s})) = Oy (0")({g(r), 9(s)}) = g(Oy ("g)({r,s})) .

Since g € N(w) is a G(w, Y)-automorphism, we conclude that O = Oy (0'g)
and the proof of the lemma is complete. O

Let Uy be the graph over Wy [Eq. (7.15)]. We set &' to be the set of
words of length & in which each Y-vertex occurs at least once (¢’ is needed
to satisfy the conditions of Theorem 7.6) since only words contained in ¢’
yield Y-automorphisms via Theorem 7.6. It is clear that &' equipped with
this notion of adjacency forms a subgraph of U since flips of consecutive
coordinates preserve &'.

We now introduce the equivalence relation ~y,) by

TNy T = (Fg,9eN(p); a9 o~y g p), (737

and refer to [w] = {w' | v’ ~y w} and [w]n() = {w' | W ~n) w} as the
equivalence classes of w with respect to ~y and ~y,), respectively.

Remark 7.20. In this notation the equivalence relation ~y equals ~Ffix(w) -
Indeed, we observe

T 9 ~Eixp) 0 = 3p,p €Fix(p); op-p~yop -,

where op-p =0 -¢ and 0p’ - ¢ = 0 - . In particular we have Si(©)/ ~Fix(p)=
Sk(¢)/ ~y. Replacing N(w) by Fix(w) in Eq. (7.37), we obtain [w] = [w]Fix(w)-

The following result shows how the equivalence relation ~y,) relates
to Y-automorphisms. As mentioned earlier, a result of the action of Y-
automorphisms is that ~n,) and ~Fiy() can differ significantly:

Let K, be the complete graph, over n vertices, and permutation-words.
Clearly, Fix(w) = 1 and N(w) = S,, and there is exactly one ~y,)-equivalence
class of words in contrast to ~y, where [using Eq. (7.1)] each equivalence
class contains exactly one element. In case of Ky & v3 vg , for in-
stance, we have exactly the two permutation-words (v1,vs) and (ve, v1). Since
{v1,v2} is a Ks-edge, we have (vy,v2) %y (v2,v1) but [(vi,v2)]N((wi,0)) =
{(v1,v2), (v2,v1)} since the map g: Ko — Ks, where g(v;) = vy and
g(ve) = v1 is a Ka-automorphism and g o (vi,v2) = (gv1, gva) = (ve,v1)
holds.

7.2 Combinatorics of SDS over Words 11 201
Lemma 7.21. Let ¢ € &' and w,w’ € Si(p). Then we have
weng W = 3g,9 €N(@); Ig)ow~y Ig)ow . (7.38)

Furthermore, ~y(,) is independent of the choice of representative in the orbit

Sk(p):
Vw,w € Sk(p), X € Sk; Wy W = w Ny w . (7.39)

Proof. By definition, w = o - ¢ ~(y) 0’ - = w' is equivalent to og - ¢ ~y
a'g’ - for some g, g’ € N(¢). Using Theorem 7.6 we obtain

og-p=0-(9(g)op) and o'g"-p=0"-(I(g)0p)

and derive, using the compatibility of the two group actions,

o-dg)op=1(g)oo ¢ and o I(g)op="1(g")o0" ¢.
Hence, we have

w Ny W = P(g)ow ~y V(g ow' .
We next show that
Vw,w € Sk(p), X € Sk; Wen) W = w Ny w' . (7.40)

Indeed, with w = 0 - ¢ and w’ = o’ - ¢ we have by definition of ~y(,)

oo 0 e = Fg,gd eN(p); og-p~yayg .

Since N(A- @) = AN(p)A™", we observe that o - ¢ ~\n(p)a-1 0@ is equivalent
to

39,9 €N(p); (GATH(AGAT) - (A=) ~y (@ ATH(AGAT!) - (M-) . (7.41)
Equation (7.41) is immediately identified as og-¢ ~y o’¢g’ - ¢, and Eq. (7.39)

follows, completing the proof of the lemma. O

7.2.2 The Bijection (P1)

In this section we prove a bijection between N(y)-equivalence classes of words
and N(p)-orbits of acyclic orientations.

Theorem 7.22. Let k € N, o € &', the set of all words that contain each
Y -vertex at least once and N(p) the normalizer of Fix(y) in A(p). Then we
have the bijection

o}'\‘,(“’) :Sk(9)/ ~Nie) — [Acyc(9)/ ~N()] -
where O;\',(gp)([a-go]m(@)) = [0y (0)Iny) -

202 7 Combinatorics of Sequential Dynamical Systems over Words

Proof. We begin by showing that there exists the surjective mapping
AN AN
OV - Sy () — [Acyc(9)/ ~niwy)] s OV (- 9) =[Oy (0)Ing - (7.42)

We first prove that (’N)')\I,(q’) is well-defined. Suppose we have o - p = o’ - . We
set p = 0’7o and have p- ¢ = p. Hence, we have p € Fix(p) C N(¢) and
obtain from Lemma 7.19:

Oy(O’) ~N(p) Oy(O‘l), i.e., [Oy(O’)]N(@) = [Oy(O’l)]N(Lp) .

Lemma 7.21 shows that ~y(,,) is independent of the choice of representative of

© € Si(p); hence, (’N)L\:(‘P) is well-defined. Next we show that (’N)L\:(‘P) is surjective.
For this purpose we observe that for any O € Acyc(yp) there exists some o € S,
with the property O = Oy (o). Clearly, since O is acyclic there exists some
o € Si such that

V{r,s} € G(p,Y), Or,s})=(rs); o(r) <o(s), (7.43)

which proves O = Oy (o), and [O]n(,) = [Oy (0)]n(y) follows. We proceed by
establishing independence of the choice of representatives within [o - p]n(y):

CoQNg O e = (7)1'\:(“0)(0 ©) =0 (¢)(0'). (7.44)
By definition of the equivalence relation ~y, [Eq. (7.37)], we have
TN o e = 39,9 €N(p); ogp~yagp.

According to Lemma 7.14 (using induction on the Ug-distance of words), we
have

oo~y oo =[Oy (0)]rix) = [Ov(0")]Fix() » (7.45)
and using (7.45) we observe that o - ¢ ~y(,) 0@ implies
39,9 €N(); OF¥(ag-9) =[Oy (09)In)

=[Oy (09)N
=0y o'y -) .

Lemma 7.19 guarantees Oy (0g) ~n(p) Oy (o) and Oy (0'g’) ~n(p) Oy (0'),
and we obtain

OV (o - ¢) = [0y ()
=[Oy (79)In(p
= [OY(O'Q')] N(e)
=[Oy (0")In(y)

=0V p),

7.2 Combinatorics of SDS over Words 11 203

and Eq. (7.44) is proved. Therefore, we have for any ¢ € &' the surjective
mapping

OYD: S1(9)/ ~nie)— [Acye(®)/ ~nigy] s OFF ([o-¢lnie)) = [Ov (0)Ing) -

It remains to prove injectivity

Let Oy (0g), Oy (c'g’) € Acyc(p). Then, according to Lemma 7.16, we have
Oy(og) =Oy(d'g) = og-p~dg o,
which is equivalent to
Oy(0g) =0y (d'g") = o-prngd . (7.46)

Suppose we have w = o - p and w’ = ¢’ - p. Then the following implication
holds:

TN T = OV (o gl # OV (o ln) - (7.47)

Let Oy (o), 0y (c’) € Acyc(p) be representatives for OQI,(‘P)([U “¢In(p)) and

(91'\:(@)([0’ - ©IN(p)), respectively. We will prove Eq. (7.32) by contradiction
using (7.46). Suppose we have

O)'\;(SO)([O. - FIng)) = OQI,W)([UI ‘N), 1e, Oy (0) ~ney) Oy (d') .

Then there exists some g € N(p) such that

9Oy (o)({r,s})) = Oy (¢"){g(r), 9(s)}) -
According to Lemma 7.19, we have

Oy (a')({9(r),9(s)}) = g (Ox (a"g)({r, 5})) ,

and since g is a G(y,Y)-automorphism, Oy (0) = Oy (c’g) follows. Equa-
tion (7.46) guarantees

Oy(o)=0y(d'g) = o-¢p ~N(p) o v,

which is a contradiction. Thus, we have proved that [0 - ¥n() 7 [0 @In(y)
implies [Oy (0)]n(p) 7# [Oy (07)In(y), and the proof of the theorem is complete.
O

Corollary 7.23. Let k € N and @ be a set of representatives of the Sy -action
on Wy. Then we have the bijection

O = Wi/ ~y — |, [Aeye(@)/ ~rice)] -

where Oy ([Wlrip) = OF ([0 @lriy) -

204 7 Combinatorics of Sequential Dynamical Systems over Words

Proof. We first observe that in the case of Fix(w) the condition that ¢ con-
tains each Y-vertex at least once becomes obsolete. In complete analogy with
Theorem 7.22, we derive for fixed ¢ € @ the bijection

OV 510}/ ~rixtoy— [Acyel)/ ~rin(e)] -

Since Wy, = U¢e¢5k(¢)7 each w € Wy is contained in exactly one orbit
Sk(p), and Oy is well-defined. Since the equivalence relation ~fiy(,,) equals
~y, Corollary 7.23 follows from Theorem 7.22. O

7.2.3 Equivalence (P2)

In this section we address (P2), that is, we prove that w ~N(w) w’ implies
the equivalence equivalence of the SDS-maps [Fy,w] ~ [Fy,w']. We recall
(Definition 4.28, Chapter 4) that two SDS-maps [Fy,w] and [Fy,w'] are
equivalent if and only if there exists a bijection 3 such that

[Fyﬂl}l] = 6 o [Fyﬂl}] O/Bi1 .

Hence, (P2) is equivalent to the statement that, up to equivalence of dynamical
systems, an SDS-map depends only on the combinatorial equivalence class
~nN(p) of its underlying word [w]Fix(w)-

Theorem 7.24. Let (Y,Fy,w) be an SDS with the properties that the vertex
functions f,: K4+t — K are symmetric, and that for any v € Aut(Y),
vj € (v)(vs) we have f,, = fy,. Furthermore, let p € &', N(¢) be the normal-
izer of Fix(p) in A(w), and w,w’ € Sk(y). Then we have

weng w = [Fy,uw] ~ [Fy,uw]. (7.48)

Proof. According to Eq. (4.5) of Chapter 4, a Y-local map is a mapping
F,,: K" — K",
sz(x) = (21, .. y L1 fvi(m[vi])vxvuv R xUn)’

where z[v] = (mn[v](1)7 ey In[v](d(v)+1)) and nfv]: {1,2,...,d(v)+1} — v[Y]
(Section 4.1). Since v; € {y)(v;) holds for any v € Aut(Y"), we derive

VyeAu(Y), Yo; € (7)(vi); Fo, = Fy, (7.49)

where (7)(v;) denotes the orbit of the cyclic group () containing v;. Lemma 7.21
guarantees

/

weny W = 39,9 €N(p); F(g)ow~y I(g)ouw,

where ¥: N(w) — Aut(Y") is given by ¥(a)(w;) = wa-1(;) (Theorem 7.6). For
two non-adjacent Y-vertices w; and w;+1 we observe that

7.2 Combinatorics of SDS over Words 11 205

Fy, 0 Fu,,, = F,

Wi+1

o F, (7.50)

since the Y-local functions F,, and F,, , depend only on the states of their

nearest neighbors. By induction on the Ug-distance between ¥(g) o w and
9(g’) o w’, we conclude from Eq. (7.50) that

dg)ow ~y Ig')ow' = [Fy,d(g)ow] =[Fy,d(¢")ow]. (7.51)
We proceed by showing
[Fy,w]~ [Fy,d(g9)ow] and [Fy,w']~ [Fy,d(g")ow].

Let x,, be the state of the vertex v; of Y. The group Aut(Y) acts naturally
on (Zy,,..., &y,) via
Yo @y ooy Toy) = (Ty=1(uy)s oo s Ty-1(0,)) - (7.52)
Claim.
9(g) o [Fy, w]od(g)™! = [Fy,d(g)ow], ie, [Fy w]~ [Fy,d(g)ou]
(7.53)

We set v = ¥(g) and first prove what amounts to a version of the claim for a
single Y-local function F,,

VyeAut(Y), v; €Y; ~yoF, oy = Fy) - (7.54)
To prove this we imitate the proof of Proposition 4.30:

yoFy 0™ ((xy,) =7 (Fuo,(y™" - (20,)))

and for arbitrary v € Aut(Y'), we have v(B1(v;)) = B1(v(v;)). In view of

(7_1 : (mvj))vi =Ty and (v (y'Uj))’Y('Ui) = Yui»

we derive

Y Fo (V7 (@0,)) =7 @y o ((By))oneBiwn) -0 o)
~ ~ -
v;th-position

= (Ivl PR fvi((x'y(vk))vk651(qu))7 LR zvn)7
~ ~ -
~(v;)th position

Fon(my)) = (xmv'-'7f'y(vi)((‘r'y(vk))’y(vk)EBl('y(vi)))a e Ty)

~ i
7 (v;)th-position

Equation (7.54) now follows from the fact that the functions f,: K4+ —
K are symmetric, Eq. (7.49), and

foi(@y) | 7(vs) € B1(v(v3))) = fo, (Ty(0,) | vs € B1(vi))) -

206 7 Combinatorics of Sequential Dynamical Systems over Words

Obviously, Eq. (7.53) follows by composing the corresponding local maps ac-
cording to the word w as

k k
O(HFUH,Y> H OFw Oﬂ HFﬁg)wl)
=1

=1

and the claim follows. Accordingly, we obtain
[Fyﬂl)] ~ [Fy,ﬂ(g)ow] = [FYaﬂ(gl)owl] ~ [Fy,w/] Le. [Fyﬂl)] ~ [FY,’LU/])

and the proof of the theorem is complete. O

7.2.4 Phase-Space Relations

Next we will generalize Theorem 4.47 of Section 4.4.3 originally proved in the
context of permutation-SDS to word-SDS.

Let Y and Z be connected combinatorial graphs and let h: Y — Z be
a graph morphism. For a given word v’ = (w},...,w.) we set hfl(w;-) =
(Vjis- -1V,), Where j; < jit1, and observe that h and w’ induce the family

(VL5 s VL0, V255 V200005 ooy Uy e oo Upyyy) -

., and obtain the word

We set WeyS o slg) = Ui

h=t(w') = (w1, ... Wy s(q)) - (7.55)
We now observe that h induces a morphism between dependency graphs

hi: G(h'(w'),Y) — G(w', Z), where hy(i) satisfies wj,, ;y = h(w;) .
(7.56)
The relation between the dependency graphs G(h~!(w’),Y) and G(w', 2)
n (7.56) motivates the study of phase-space relations between the SDS
(Y,Fy,h=1(w')) and (Z,Fz,w).

Lemma 7.25. Let Y and Z be connected combinatorial graphs, andh: Y —
Z a surjective graph morphism. Further let w' = (w,...,w}) € Wi be a
word over Z, and (Y,Fy,h=Y(w")) and (Z,F z,w) two SDS. Furthermore we
introduce

H: K12 — KV H(z), = Thp) -

Suppose that we have the commutative diagram

H

Kz > VYl
FZ«w;- ijseh—l(w;> Fyw;, (7-57)
Y Y
Kzl o s vl

7.2 Combinatorics of SDS over Words 11 207

i.e., we have

Ho FZ,w; = H Fyysz oH.

wj, €h=1(w))

Then
H: ['(Z,Fz,w') — I(Y,Fy,h™(uw))

is a digraph-morphism.

Proof. We first observe that h’l(w;-) is a Y-independence set since Z is loop-

free by assumption. Hence, the product of local maps

H FY,ij

w, €1 (w))

is independent of the ordering of its factors. We next claim that we have the
commutative diagram

K2l o o gyl
[F 2] [Fyh~' ()] (7.58)
Y \%
Kzl o s vl

By definition of h™'(w’) [Eq. (7.55)] and since [, cp-1(ur) Fy,u,, is inde-
pendent of the ordering of its factors, whence

k'

[Fy.h'(w")] =[] I .

§=1 [w;, eh=1(w})

According to Eq. (7.57), we obtain by induction, composing the local maps
FY,’LUJ'S)

K K
1T II Fw.|oH=Ho]] Fru,
J=1 | wj, €c™H(w}) J=1
whence Eq. (7.58), and the proof of the lemma is complete. O

In this context it is of interest to analyze under which conditions the local
maps of the SDS (Y, Fy,h~}(w’)) and (Fz,w’) satisfy

Ho FZ,w; = H 1*—'3/710].S oH.

wj, €h=1(w))

We next show that locally bijective graph morphisms c induce such a relation
between the SDS (Y, Fy,c ! (w’)) and (Z,Fz,w) if the local functions asso-
ciated to the Z-vertex w’; and the Y-vertices w;, € c~!(w}) are identical and
induced by symmetric vertex functions f,,.

208 7 Combinatorics of Sequential Dynamical Systems over Words

Theorem 7.26. Let Y and Z be connected combinatorial graphs, c: Y — Z
be a locally bijective graph morphism, and w' = (wi,...,wy,) € Wi a word
over Z. Suppose the local functions of the SDS (Y, Fy,c 1 (w')) and (Z,F 7, w)
are induced by symmetric vertex functions and satisfy

Vw;, € cHw)); Fru, = Fzuw . (7.59)
Then there exists an injective digraph morphism
C:I'(Z,Fz,w') — ['(Y,Fy,c ' (w')), where C(z);= Te(t) -

Proof. We first observe that Lemma 4.45 implies that c: Y — Z is surjec-
tive and prove the theorem in two steps. First, we show that we have the
commutative diagram

KIvIZll > KIVIY]]
Fg [, ety Fywj, (7.60)
\ C \
KIvIZ]l > KIVIY]]
or equivalently
Conyw; = H Fy,y; oC,

wj, €1 (w))

and second, we apply Lemma 7.25. We first analyze], cc—1(w)) Fyy;, oC.
Js J s

The map Fy,, (C(r)) updates the state of w;, as a function of C(x),,v €
Bi,y(wy,)). Since C(z), = 2¢(y), we have

(C(z)y | v € Bry(wy,)) = (Tc) | v € Bry(wy,)) ,
and local bijectivity implies
o(Bry (wj,)) = By,z(w}) .

As Z is by assumption a loop-free graph, cfl(w;) is a Y-independence set.
Accordingly, we have a well-defined mapping

FY,w; = H FY,ij)

wjs €CT ! (w_;)

since the product is independent of the ordering of its factors. The local map
Fy,., updates all Y-vertices w;, € ¢! (w}) based on (zc(y | c(v) € By z(w)))
to the state Fyu; (C())w,, -

7.2 Combinatorics of SDS over Words 11 209

Next we compute Co Fgz (). By definition, Fzuw (x) updates the state

of the Z-vertex wj as a function of (z,/ | v' € B1,z(w})) and we obtain

(C o FZ,w; (.T))sz = FZ,w; (x)w; 5

Le., Co Fzuy (z) updates the states of every Y-vertex w;, € ¢c~!(w}) to the
state Fiz (r)w; and the diagram in Eq. (7.60) is indeed commutative.
From Lemma 7.25 we have the commutative diagram

Kzl C s Y
[Fzw'] [Fy.c (w)]
\ \
K2l C s g
and the theorem is proved. O

Problems

7.8. Let Y = Circy, w = (0,1,0,2,3), and v’ = (0,0,1,2,3). Derive the
graphs G(w,Y) and G(w',Y). [1]

210 7 Combinatorics of Sequential Dynamical Systems over Words

Answers to Problems

7.1. For the words w = (v1,v2,v3,v1) and w’ = (v1, v1, V3, v2), and the graph
Y=mun U3 v2 with 7 = (2,4), we have w, = w’,

1 2 1 4
G(U},Y) = \ / ,G’(w',Y) = \ / 3
4 3 2 3

and 7: G(w',Y) — G(w,Y) is a graph isomorphism.

7.2. In view of Aut(Y) = S3, we obtain w’' = yoo - w and w” =+ o w, and

4 2 1 2 4 2

Glw,Y) = \ G, Y) = \ G, Y) = \ ,

1 3 3 4 1 3

where o/ = (1,3,4)(2): G(w,Y) — G(w',Y) is a graph isomorphism and
Gw,Y)=GW",Y).

7.4. (Proof of Proposition 7.8) Obviously, w, w’ € W), and w ~y w’ implies
w,w’ € Sk(p). For two non-adjacent Y-vertices w;, w;+1 we observe
Fy, o F,

Wi+1 = quy+1 o Fwi)

from which we immediately conclude using induction on the Ug-distance be-
tween w and w':

Vw~y w' = [Fy,w] =[Fy,u'].

7.5. (Proof of Proposition 7.9) We set w = o - ¢ and w' = o’ - . Since
w by w', Lemma 7.16 guarantees

Y p,p' € Fix(p); Oy(op) # Oy(a'p'). (7.61)

Let o(j1) = 1 and let ¢ be the minimal position of ¢;, in w’' = ¢’ - ¢. In
case of t = 1, we are done; otherwise we try to move ¢;, to first position by
successively transposing consecutive indices of Y-independent letters. In case
we were able to move ¢;, to the first position, we continue the procedure with
©;, and proceed inductively. In view of Eq. (7.61) we have

V p.p' € Fix(p), 3{i,j} € G(p,Y), Oy(op)({i,j}) # Ov(o'p)({i,5}) ,

and our inductively defined procedure must fail. Let us assume it fails after
exactly r steps, that is, we have

7.2 Combinatorics of SDS over Words 11 211

!
w ~y (@j17g0j27'"7%0]'7«?'"790]'7"'780’&5"'):w)

and there exists some ¢; preceding ¢; in w” such that {¢;,p;} € Y. We now
define the family of Y-local maps Fy as follows:

Foi(@oy, .o To,), = Ty, + 1,
Ty, for xz,, <m,
FSOi (mv1 e 7xvn)80i =
1 forz, >m
max{z,,, m} + Y ,

Foo(Toyse 3@,)p, =0 fors##i,j.

Suppose the word (¢j,, ¢j,, - .-, ®;,.) contains ¢; exactly ¢ times. We choose
m = q and claim

([Fy,w](0,0,...,0,0)),, +1 < ([Fy,w'](0,0,...,0,0))
We have the following situation:

w = (‘pjn'-'awjrawiw'-v@jw"% (762)
W Ny (Qg1y Pins e v s Piryeves@iyeveyPiyenn) =w" . (7.63)

Let us first compute ([Fy,w](0,0,...,0,0)),,. We observe that ¢; being at
index r + 1 updates into state z,, = ¢, regardless of u;, the number of times
(©j1sPjas - - - j,.) contains ¢;. Let u be the number of times ¢; appears in
the word w. In view of Egs. (7.62) and (7.63), we observe that w exhibits at
most [u — u1 — 1] p;-updates under the condition z,; > ¢, and we obtain

([Fy,w](0,0,...,0,0)), < [¢g+ (u—u;—1)] .

Pi

Next we compute ([Fy,w'](0,0,...,0,0)),,. By assumption ¢; precedes ¢; in
w”, and ¢; has some index s > r+1 and updates into the state g+1, regardless
of how many positions r +1 < [< s, ¢; occurred in w”. Accordingly, we
compute, in view of Eq. (7.62), Eq. (7.63) and Proposition 7.8:

([FYvw/](anv""070))% = [Q+(u_u1)]’

and the proof is complete.

7.6. For Y = v V2 v3, w = (v1,v2,v1,v2,03), and p =
(3,1)(2,4) we have

>2

1 2 1
G(w,Y) = >< \ and with O = >< \
3 4)

< 4 >5

The equivalence class [O],, of O € Acyc(G(w,Y)) is given by

212 7 Combinatorics of Sequential Dynamical Systems over Words

LN ><4\

4 =5, 1<
1 \
2 =5, 1< 2

7.7. (Proof of Corollary 7.18) By Corollary 7.5 we have G(w,Y) 2 Y. With
v =1id=(1,2,...,n) we note that Fix(id) = 1, and

Oy (9)le = {0y (0)},

that is, the p-equivalence class consists exclusively of the acyclic orientation
induced by o itself.

8
Outlook

In the previous chapters we gave an account of the SDS theory developed
so far. This final chapter describes a collection of ongoing work and possible
directions for future research in theory and applications of SDS. This is, of
course, not an exhaustive list, and some of what follows is in an early stage.
The material presented here reflects, however, what we currently consider
interesting and important and what has already been identified as useful for
many application areas.

8.1 Stochastic SDS

When modeling systems one is often confronted with phenomena that are
known only at the level of distributions or probabilities. An example is the
modeling of biological systems where little data are available or where we
only know the empirical statistical distributions. Another example is a physi-
cal device that occasionally fails such as a data transmission channel exposed
to electromagnetic fields. In this case we typically have an error rate for the
channel, and coding theory is used as a framework. In fact, there are also sit-
uations where it is possible to show that certain deterministic systems can be
simulated by stochastic models such that the corresponding stochastic model
is computationally more tractable than the original system. Sampling meth-
ods like Monte Carlo simulations [122] are good examples of this. Accordingly,
stochasticity can be an advantageous attribute of the model even if it is not
an inherent system property.

For SDS there are many ways by which probabilistic elements can be
introduced, and in this section we discuss some of these along with associated
research questions.

214 8 Outlook
8.1.1 Random Update Order

Stochastic update orders emerge in the context of, for example, discrete event
simulations. A discrete event simulation is a system basically organized as
follows: It consists of a set of agents that are mutually linked through the
edges of an interaction graph and where each agent initially has a list of time-
stamped tasks to execute at given points in time. When an agent executes a
certain task, it may affect the execution of tasks of its neighbors. For this rea-
son an event is sent from the agent to its neighbors whenever it has processed
a task. Hence, neighboring agents have to respond to this event, and this
may cause new tasks to be created and executed, which in turn may cause
additional events to be passed around. All the tasks are executed in chrono-
logical order. From an implementation point of view this computation can be
organized through, for instance, a queue of tasks. The tasks are executed in
order, and the new tasks spawned by an event are inserted into the queue as
appropriate.

In general, there is no formal guarantee that such a computation will
terminate. If events following tasks trigger too many new tasks, the queue
will just continue to grow and it will become impossible (at least in practice)
to complete all tasks. Moreover, if the time progression is too slow, there is
no guarantee that the computation will advance to some prescribed time.

8.1. What reasons do you see for organizing computations using the discrete
event simulation setup? Note that the alternative (a time-stepped simulation)
would often be to have every agent check its list of tasks at every time step of
the computation. If only a small fraction of the agents execute tasks at every
time step, it seems like this could lead to a large amount of redundant testing
and processing. [1]

Distributed, Discrete Event Simulations

For efficient computation discrete event simulations are frequently imple-
mented on multiprocessor architectures. In this case each processor (CPU)
will be responsible for a subset of the agents and their tasks. Since some
CPUs may have fewer agents or a lighter computational load, it can easily
happen that the CPU’s local times advance at different rates. The resulting
CPU misalignment in time can cause synchronization problems. As tasks trig-
ger events, and events end up being passed between CPUs, we can encounter
the situation where a given CPU receives events with a time stamp that is
“in the past” according to its current time. If the CPU has been idle in the
interim, this presents no problem. However, if it has executed tasks that would
have been affected by this new event, the situation is more involved.

One way to ensure correct computation order is through roll-back; see,

, [1,2]. In this approach each CPU keeps track of its history of tasks,
events, and states. When an event from “the past” appears and it spawns

8.1 Stochastic SDS 215

new tasks, then time is “rolled back” and the computation starts up at the
correct point in time. It is not hard to see that at least in theory this allows
one to compute the tasks in the “right” order. However, it is also evident
that this scheme can have some significant drawbacks as far as bookkeeping,
processor memory usage, and computation speed are concerned.

Local Update Orders

As an alternative to costly global synchronization caused by, e.g., roll-
back, [123] has discussed the following approach: Each CPU is given a set
of neighbor CPUs, where neighbor could mean being adjacent in the current
computing architecture. This set is typically small compared to the total num-
ber of processors. Additionally, there is the notion of time horizon, which is
some time interval At.

Starting at time ¢y no processor is allowed to compute beyond the time
horizon and there is a global synchronization barrier at tg + At. Throughout
the time interval At each processor will only synchronize with its neighbors,
for instance, through roll-back. The idea is that this local synchronization
combined with a suitable choice of time horizon leads to a global system
update that satisfies mutual dependencies. Obviously, this update is bound to
execute faster, and it is natural to ask how closely it matches the results one
would get by using some roll-back-induced global update. This is precisely
where SDS with stochastic update orders offer conceptual insight.

An SDS Model

From the discussion above we conclude that the update derived from local
computations will have tasks computed in an order ' that could possibly
be different from the a priori update, m. Of course, the actual set of tasks
executed could also be different, but we will restrict ourselves to the case
where the set of tasks remains the same. We furthermore stipulate that the
extent to which the update orders m and 7’ differ will be a function of the
choice of the synchronization of the neighbors and the size of the time horizon.

SDS provide a natural setting to study this problem: Let [Fy, 7] be an
SDS-map. If we are given another update order 7’ such that d(w, ') < k for
some suitable measure of permutation distance, then we ask: How similar or
different are the phase spaces I'[Fy,n] and I'[Fy,7n’]? To proceed it seems
natural to introduce a probability space P of update orders and an induced
probability space of SDS. As described in Section 2.2, this leads to Markov
chains or what we may call a probabilistic phase space, the probabilistic
phase space being the weighted combination of the phase spaces I'[F'y, o] with
oeP.

Ezample 8.1. We consider the dependency graph Stars with vertex function
induced by the function I : F§ — Fo, which returns 1 if exactly one of

216 8 Outlook

its inputs is 1, and returns 0 otherwise. We obtain two SDS maps ¢ and ¢
by using the update orders (0, 1,2, 3), respectively (1,0, 2, 3). If we choose the
probability p = 1/2, then we obtain a probabilistic phase space as shown in

Figure 8.1. N
0111
/
1100
& 0000 < 0000 < oou \1000\ 1011 ©
1010 ~— 0110-— 0001 ~—1101 1010 — 1110 -— 0001 — 0101 \ 0100
1001 ——0101-—0010-—1110 1001 —1101-—0010-— 0110 & 0000 1]_11/
C 0011 ~— 1111-—1000 ~— 0100 0011 — 0111 -— 1000 — 1100
0110 ~__-0101
G 1011 — 0111—1100 S 1011 — 1111 ~—0100 | |
101§ 00107 ool 3001
1110 101

Fig. 8.1. The probabilistic phase space for Example 8.1 (shown on the right) induced
by the two deterministic phase spaces ¢ (left) and v (middle). For simplicity the
weights of the edges have been omitted.

One particular way to define a distance measure on permutation update
orders is through acyclic orientations as in Section 3.1.3. The distance between
two permutations 7 and 7’ is then the number of edges for which the acyclic
orientations Oy () and Oy (x') differ. This distance measure captures how
far apart the corresponding components are in the update graph. Assume
that we have 7 as reference permutation. We may construct a probability
space P = P(m) by taking all possible permutation update orders and giving
each permutation a probability inversely proportional to the distance to the
reference permutation w. Alternatively, we may choose the probability space
to comnsist of all permutations of distance less than k, say, to m and assign
them uniform probability.

Random updates should be studied systematically for the specific classes
of SDS (Chapter 5). For instance, for SDS induced by threshold functions
and linear SDS w-independent SDS are particularly well suited since in this
case we have a fixed set of periodic points for all update orders. If we restrict
ourselves to the periodic points, it is likely that we can reduce the size of the
Markov chain significantly.

From Section 5.3 we know that all periodic points of threshold SDS are
fixed points. One question in the context of random updates is then to ask
which sets 2 of fixed points can be reached from a given initial state x (see
Proposition 4.11 in this context). Note that the choice of update order may
affect the transients starting at x. Let w,(z) be the fixed point reached under
system evolution using the update order m starting at z. The size of the set
2 = Urpepwy () is one possible measure for the degree of update order insta-
bility. Clearly, this question of stability is relevant to, for example, discrete
event simulations. See also Problem 5.11 for an example of threshold systems
that exhibit update order instability.

8.2 Gene-Regulatory Networks 217
8.1.2 SDS over Random Graphs

In some applications the graph Y may not be completely known or may change
at random as time progresses, as, for instance, in stationary radio networks
where noise is present. Radios that are within broadcast range may send
and receive data. A straightforward way to model such networks is to let
radios or antennas correspond to the vertices of a graph and to connect each
antenna pair that is within communication range of one another. Noise or
other factors may temporarily render a communication edge between two
antennas useless. In the setting of SDS we can model this through a probability
space of graphs) (i.e., a random graph [107]) whose elements correspond to
the various realizations of communication networks. We can now consider, for
example, induced SDS over these graphs with induced probabilities. Just as
before this leads to Markov chains or probabilistic phase spaces. Through this
model we may be able to answer questions on system reliability and expected
communication capacities.

We conclude this section by remarking that probabilistic analysis and tech-
niques (ergodic theory and statistical mechanics) have been used to analyze
deterministic, infinite, one-dimensional CA [36,37]. The area of probabilistic
cellular automata (PCA) deals with cellular automata with random variables
as local update functions [38,124]. PCA over Circ,, have been studied in [39]
focusing on conservation laws. The use of Markov chains to study PCA was
established in the 1970s; see, e.g., [125,126]. Examples of applications of PCA
(finite and infinite) include hydrodynamics/lattice gases [41] and traffic mod-
eling [6,7,39]. In addition, both random Boolean networks (Section 2.2) and
interacting particle systems [25] are stochastic systems. These frameworks
may provide guidance in the development of a theory of stochastic SDS.

8.2 Gene-Regulatory Networks

8.2.1 Introduction

A gene-regulatory network (GRN) is a network composed of interacting genes.
Strictly speaking, it does not represent the direct interactions of the involved
genes since there are in fact three distinct biochemical layers that factor in
those interactions: the genes, the ribonucleic acids (RNA), and the proteins.
RNA is created from the genes via transcription, and proteins are created
from RNA via the translation process. However, when we speak of a GRN in
the following, we identify these three biochemical layers. After completing the
sequencing of basically the entire human genome, it has become apparent that
more than the knowledge about single, isolated genes is necessary in order to
understand their complex regulatory interactions. The purpose of this section
is to show that SDS-modeling is a natural modeling concept, as it allows one
to capture asynchronous updates of genes.

218 8 Outlook

P2= /\P4<,,_
complex :

3:4 P3
P1<———\\/ N T

Protein

mRNS2 . mRNS4

mRNST 7 mRNS3
' , RNA

Gene

Fig. 8.2. Schematic representation of a GRN.

8.2.2 The Tryptophan-Operon

In this section we discuss a GRN that is typical for the regulation of the
tryptophan- (¢rp) operons or asparagin (asn) system in E. coli: Below we have

Xy——— >

Fig. 8.3. The repressible GRN.

the binary input parameters xg, 7, g, and xg, the binary system parameters
913, 915, g43, and gy45, and the intracellular components: effector-mRNA 1,

8.2 Gene-Regulatory Networks 219

enzyme o, product x3, requlator-mRNA x4, and regulator protein xs with
the following set of equations:

z1(t+1) = (913 + 23(t)) - 26(t) - (915 + 5(t))
xo(t+1) = z1(t) - x7(t)

z3(t + 1) = 22(t) - (1 + 23(t)) - w5(t) - 2o(¢) ,
z4(t +1) = (ga3 + 23(t)) - 26(t) - (945 + 5(t))
x5(t+1) = 24(t) - 27(t) .

Figure 8.4 shows the phase spaces of four specific system realizations.

(12543) (12534) 11110, 11111, 11011, 10110,
01000, 10000, 00110, 00111, 10111, 10011,
11000 00011, 01110, 01111, 01011
00011, 00110, 00111,
o 01011, 01110, 01111,
10011, 10110, 10111,
00100, 00101, 00100, 00001, 00101,
01100,01101 g oL ototo, 01001, 01100, 01101
Y S ——> 11101 00010 , , ,
10100.To101 00060 1o “7 10001, 10100, 10101,
11001, 11100
11101/00010
01001, 10001,
11001 00000, 01000,
01010, 10010, 11010 10000, 11000

(a) (b)

(12534) 00110, 00111, 01011, (2543)
00011 01110, 01111, 10011,
10110, 10111, 11011, 00011 <—— 01011, 10011, 11011
1110, 11111
01000, 11101, 00100, 00101
11000 00001, 00100, 00101, 10000, 11100 00000 01001, 01100, 01101,
10000——> 11100 00000 01001, 01100, 01101, 11000 10001, 10100, 10101,
01000 10001, 10100, 10101, 11001, 00001
11001, 11101

01111, 00110, 00111,
?ggig’ (1)118{8’% 11111, 10110, 10111,
’ 11110, 01110

00010, 01010,
10010, 11010

(c) (d)

Fig. 8.4. In (a) and (b) all system parameters are 1. In (¢) and (d) g4s = 0 while
all other system parameters are 1.

It is interesting to rewrite the above relations in the SDS-framework: the
graph Y expressing the mutual dependencies of the variables relevant for the
time evolution (z1,...,x5):

U1

V2

U3

220 8 Outlook

and the associated family of Y-local functions Fy given by (Fy, (21,...,25))v,
= x;(t + 1) with ¢ = 1,...,5. In the following we will restrict ourselves to
permutation-words where the bijection

S5/ ~y— Acyc(Y)

provides an upper bound on the number of different system types (Corol-
lary 7.18). Clearly, we have |Acyc(Y)| = 42.

The system size allows for a complete classification of system dynamics
obtained through exhaustive enumeration. Explicitly, we proceed as follows:
We ignore transient states and consider the induced subgraph of the periodic
points. In fact there are exactly 12 different induced subgraphs over the peri-
odic points, each of which is characterized by the quintuple (z1,. .., 25) where
z; denotes the number of cycles of length i. We detail all system types in
Table 8.1.

An ODE modeling ansatz for the network in Figure 8.3 yields exactly
one fixed point, which, depending on system parameters, can be either stable
or unstable. This finding is reflected in the observation that the majority
of the SDS-systems exhibits exactly one fixed point. There are, however, 11
additional classes of system dynamics, which are missed entirely by the ODE-
model. These are clearly a result of the asynchronous updates of the involved
genes, and there is little argument among biologists about the fact that genes
do update their states asynchronously.

8.3 Evolutionary Optimization of SDS-Schedules

8.3.1 Neutral Networks and Phenotypes of RNA and SDS

In theoretical evolutionary biology the evolution of single-stranded RNA mole-
cules has been studied in great detail. The field was pioneered by Schuster
et al., who systematically studied the mapping from RNA molecules into their
secondary structures [127-132]. Waterman et al. [133-135] did seminal work
on the combinatorics of secondary structures. A paradigmatic example for
evolutionary experiments with RNA is represented by the SELEX method
(systematic evolution of ligands by exponential enrichment), which allows
one to create molecules with optimal binding constants [136]. The SELEX
experiments have motivated our approach for studying the evolution of SDS.
SELEX is a protocol that isolates high-affinity nucleic acid ligands for a given
target such as a protein from a pool of variant sequences. Multiple rounds
of replication and selection exponentially enrich the population that exhibits
the highest affinity, i.e., fulfills the required task. Paraphrasing the situation,
SELEX is a method to perform molecular computations by white noise.

One natural choice for an SDS-genotype is its word update order w whose
structure as a linear string has an apparent similarity to single-stranded RNA
molecules. We have seen several instances where a variety of update orders

8.3 Evolutionary Optimization of SDS-Schedules 221

Table 8.1. System classification.

Systems with Only Fixed Points Systems with Orbits of Length > 1
SCHEDULE SCHEDULE SCHEDULE
INDEPENDENT SYSTEMS DEPENDENT SYSTEMS| DEPENDENT SYSTEMS

Crass 1 Crass II
No. of |P(S) Fixed P(8)| No. of P(8) No. of
Systems| 2 Points Label|z; 22| Systems [Label|z; 22 23 24 25|Systems
185 1 00000 195 [0 2 42 241 (1 1 0 0 0] 16
12 1 00010 199 |0 2 42 10000 26
12 1 10000 203 |0 2 42 24310 1 0 0 0 31
4 1 10010 207 |0 2 42 02000 11
6 1 11000 211 |0 2 42 244 (1 1 0 0 0] 27
7 1 00000, 00011 | 215 |0 2 42 1 0000 15
3 1 00000, 11011 | 219 |0 2 42 245 (1 0 0 0 O] 31
3 1 00011, 11000 | 223 |0 2 42 11000 11
227 |0 2 42 246 12 1 0 0 0] 27
231 |0 2 42 2000 0] 15
235 |0 2 42 247 10 2 0 0 O] 16
239 |0 2 42 01000 26
2499 (1 0 0 0 0] 16
1010 0 17
1 0010 1
11000 8
251 (0 01 0 0] 23
00010 11
000O0T1 1
01 00O 7
25210 01 0O 27
01 000 15
253 10 O 1 0 0O 24
00010 11
01000 7
254 11 01 0 0f 27
11000 15
25510 001 0] 15
0010 0 12
00110 1
01000 8
00001 6

222 8 Outlook

produced either an identical or an equivalent dynamical system. Our find-
ings in Section 3.1.4 provide us with a notion of adjacency: Two SDS update
orders are adjacent if they differ exactly by a single flip of two consecutive
coordinates. We call the set of all update orders producing one particular
system its neutral network. In the case of RNA we have a similar situation:
Two RNA sequences are called adjacent if they differ in exactly one position
by a point mutation, and a neutral network consists of all molecules that
fold into a particular coarse-grained structure. In this section we will inves-
tigate the following aspects of SDS evolution: (1) the fitness-neutral [137],
stochastic transitions between two SDS-phenotypes [138] and (2) critical mu-
tation rates originally introduced in [139] and generalized to phenotypic level
in [131,138,140].

Let us begin by discussing phenotypes as they determine our concept of
neutrality. RNA exhibits generic phenotypes by forming 2D or 3D structures.
One example of RNA phenotypes is their secondary structures [133], which
are planar graphs over the RNA nucleotides and whose edges are formed by
base pairs subject to specific conditions [141]. Choosing minimum free en-
ergy as a criterion, we obtain (fold) a unique secondary structure for a given
single-stranded RNA sequence. The existence of phenotypically neutral muta-
tions is of relevance for the success of white noise computations as it allows
for the preservation of a high average fitness level of the population while
simultaneously reproducing errorproneously. In Section 7.1.3 we have indeed
encountered one particular form of neutral mutations of SDS-genotypes. In
Proposition 7.8 we have shown that for any two ~-equivalent words w and
w’ (w ~ w') we have the identity of SDS-maps [Fy,w] = [Fy,w’]. Adopt-
ing this combinatorial perspective we observe that SDS over words exhibit
phenotypes that are in fact very similar to molecular structures. To capture
these observations we consider the dependency graph G(w,Y’) as introduced
in Section 7.1.1. The phenotype in question will now be the equivalence class
of acyclic orientations of G(w,Y") induced by ~,, (Section 7.1.4). That is, the
equivalence is induced by G(w, Y)-automorphisms that fix w and two acyclic
orientations O and O’ are w-equivalent (O ~,, O') if and only if

3p € ki (Wp-r(1ys - wpmry) =ws p(O({r,s})) = O'({p(r), p(s)}) -

As for neutral networks, Theorem 7.17 of Chapter 7

Oy We/ ~y— |, IAYe(Gl, Y))/ ~]

shows that w ~y w’ if and only if the words w and w’ can be transformed
into each other by successive transpositions of consecutive pairs of letters
that are Y-independent. In other words ~y is what amounts to the transitive
closure of neutral flip-mutations “~~”. Accordingly, the ~y-equivalence class
of the word w, denoted by [w], is the neutral network of O} (w), which is the
equivalence class of acyclic orientations.

8.3 Evolutionary Optimization of SDS-Schedules 223
8.3.2 Distances

The goal of this section is to introduce a distance measure D for words w
and w’ that captures the distance of the associated SDS-maps [Fy,w] and
[Fy,w']. In our construction the distance measure D is independent of the
particular choice of family of Y-local functions (F%)yev[y]-

Let 0w = (Wy-1(1),---,Ws-1(k)) be the Sp-action on W}, as defined in
Section 7.1.1. Its orbits induce the partition Wy, = U¢e¢5k (¢) where @ is a
set of representatives. Let w, w’ € Si(¢) and let 0,0’ € Sy such that w = o -
and w' = ¢’ - ¢. We consider Oy (¢1) and Oy (02) [as defined in Eq. (7.20)] as
acyclic orientations of G(¢,Y") and define their distance d as

d(Oy (01), Oy (02)) = [{{i,j} | O (01)({i, }) # Oy (o2)({i, s} . (8.1)

According to Theorem 7.17 each word naturally induces an equivalence class
Oy (w) = [Oy(0)], of acyclic orientations of G(g,Y), and Lemma 7.12 de-
scribes this class completely by [Oy(0)], = {Oy(op) | p € Fix(¢)}. Based
on the distance d between acyclic orientations [Eq. (8.1)], we introduce
D: Sk(¢) x Sk(p) — Z by

D(w,w') = i {d(Oy (0p), Oy (0'p'))} - (8.2)

In the following we will prove that D naturally induces a metric for ~y-
equivalence classes of words. For RNA secondary structures similar distance
measures have been considered in [138,142].

According to Proposition 7.8, we have the equality

[FY7 w] = [FYv w,]

for any two ~y-equivalent words w ~y w’. In Lemma 8.2 we show that D does
indeed capture the distance of SDS since for any two ~y-equivalent words w
and w’ we have D(w,w’) = 0.

Lemma 8.2. For w,w' € Sk(y)
w~y w = D(w,w)=0 (8.3)
holds.

Proof. Suppose we have w = 0 - ¢ ~y ¢’ - ¢ = w'. By induction on the Wy-
distance (Section 7.1.3) between w and w’, we may without loss of generality
assume that w and w’ are adjacent in Wy, that is, we have 7 - w = w’ with
7 = (i,i+1). Since we have 0’ "7 = ¢, or equivalently p = 0’170 € Fix(¢)
and o’ -w = (¢’p) - w, we can replace o’ by o’p. Without loss of generality we
may thus assume 70 = ¢”.

224 8 Outlook

In Lemma 7.14 we have shown that for 70 = ¢’ we have the equality
Oy (o) = Oy (0’). Hence, we have

D(wu)= min {d(Oy(op). Oy (0's)} = d(Or(0). 0y (0") =0.

Suppose now D(w,w’) = 0, that is, there exist p,p’ € Fix(¢) such that
Oy (op) = Oy (c’p'). In Lemma 7.16 we have proved

Oy(op) = Oy (d'p') = (op) 0~y (d'p) ¢, (8.4)
and since (op) -9 =09 =w and (¢’'p')p = o’ - p = W', the lemma follows.OI

Proposition 8.3 shows that D satisfies the triangle inequality and will lay
the foundations for Proposition 8.4, where we prove that D induces a metric
over word equivalence classes or neutral networks. Its proof hinges on the
facts that (1) Fix(y) is a group and (2) the Oy (¢) orientations have certain
compatibility properties (see Lemma 7.12). As for the proof, Eq. (8.5) is key
for being able to derive Eq. (8.6) from (8.8).

Proposition 8.3. Let w = o - ¢ and w' = o’ - ¢. Then we have

D(w,w') = ein {d(Oy (0p), 0y (")} . (8.5)

Furthermore for any three words w,w’',w"” € Sk ()
D(w,w") < D(w,w”) + D(w",w") (8.6)
holds.

Proof. We first prove Eq. (8.5) and claim

L {d(Oy (o), Oy (o'p))} = duin {d(Oy (0p),0v(a")} . (8.7)

Suppose that for some {i,j} € G(w,Y): Oy(op)({i,j}) # Oy (d'p")({i,5})
holds. Since p: G(¢,Y) — G(p,Y) is an automorphism, we may replace
{i,5} by {p='(i),p~"(j)} and obtain
Oy (ap)({p™ (1), p™*(7)}) = p~ 1 (O(0)({i, 4})),
Oy (o' Y {p™ (@), p7H(1)}) = p~H(O(" '™ 1) ({is 5})) -

Hence, we have proved

Oy (ep)({p~" (1), p"(N}) # Ov (' PN {p™ (1), p ' (1)})
= 0(0)({i,j}) # 0’0 ™) {i,3}) .

8.3 Evolutionary Optimization of SDS-Schedules 225

and, accordingly,
d(Oy (0p), Oy (') = d(Oy (0), Oy (a"p'p™")) .

Equation (8.7) now follows from the fact that Fix(y) is a group. For arbitrary,
fixed p, p’ € Fix(p) we have

d(Oy (0p), Oy (0'p")) < d(Oy (0p), Oy (0”)) +d(Oy (¢"), Oy (o'p')) . (8.8)

We now use D(w,w’) = min,erix(y) {d(Oy (op), Oy (0'))} and Eq. (8.5), and
choose p and p’ such that

d(Oy (0p), 0y (0")) = min {d(Oy(op), Oy (0"))} = D(w,w"),

peFix(p)
d(Oy(¢"),0y(d'p")) = min {d(Oy(0"),Oy(d'p'))} = D(w",w') .

peFix(p)

Obviously, we then have

D(w,w') = oo {d(Oy (0p), Oy (0'p"))} < d(Oy (o), Oy (0'p")) -

Proposition 8.4. The map
D': Sk(p)/ ~y xSk(p)/ ~y— Z, where D'([w],[w']) =D(w,w’), (8.9)
18 a metric.

Proof. We first show that D’ is well-defined. For this purpose we choose wy ~y
w and w] ~y w’ and compute using Eq. (8.6) of Proposition 8.3

D(w,w") < D(w,w;
D(wl,) S D(wl,

) + D ’LU17)7

w) + D(w,w"),

from which, in view of D(w,w;) = D(wy,w) = 0, we obtain D(w,w’) =
D(w1,w’). Clearly, D(wy,w’") = D(wy, w}) follows in complete analogy and we
derive D(w, w’) = D(wy,w}); thus, D" is well-defined.

D’ consequently has the following properties: (a) for any w,w’ € Si(¢) we
have D'([w], [w']) > 0; (b) D’([w], [w']) = 0 implies w ~y w’ (by Lemma 8.2);
(c) for any w,w’ € Si(p) we have D'([w], [w']) = D'([w'], [w]), and finally
(d) for any w,w’,w"” € Sk(p)

D'([w], [w']) < D'([w], [w"]) + D'([w"], [w'])

holds according to Proposition 8.3, and it follows that D’ is a metric. g

226 8 Outlook
8.3.3 A Replication-Deletion Scheme

It remains to specify a replication-deletion process for the SDS genotypes.
We will choose a process based on the Moran model [143] that describes the
time evolution of populations. A population M over a graph X is a mapping
from vertices of X into natural numbers, and we call a vertex of X an el-
ement “present” in M if its multiplicity M (z) satisfies M (z) > 0. We call
the quantity s(M) = > M(z) the size of M and define M[m] to be the
set of populations of size m. A replication-deletion scheme R is a mapping
R: M[m] — M[m], and we call the mapping p: X — [0, 1] the fitness land-
scape. The mapping p assigns fitness values to elements of the population.
The specific replication-deletion scheme Rg: M[m] — M[m] that we will
use in the following sections basically consists of the removal of an ordered pair
(w,w’) of elements from M and its replacement by the ordered pair (w,0):

For w we pick an M-element with probability M (x)-pu(x)/[>", M(x)u(x)].
The word w is subsequently subject to a replication event that maps w
into w.
For w’ we select an M-element with probability M (z)/s(M).
The replication-map, which maps w into w, is obtained by the following pro-
cedure: With probability ¢ we independently select each index-pair of the

form
Vi, 1<i<k—-1; 7=(ii+1), (8.10)

of w = (wy,...,w;) and obtain the sequence (7;,,...,7;,,) of transpositions
where i; < 3;41. We then set

W= (Tiyy-oy 7,) (W) . (8.11)

Accordingly, M and Ro(M) differ exactly in that the element w’ of M is
replaced by w.

So far there is no notion of time in our setup. We consider the applications
of Ry to be independent events. The time interval At which elapses between
two such events is assumed to be exponentially distributed, that is,

Prob(At > 7) = exp l—TZM(m)u(m)] . (8.12)

Intuitively, Y M (x)u(x) can be interpreted as a mean fitness of the pop-
ulation M at time ¢, which can only change after application of Ry, since
new elements in the population potentially emerge and others are being re-
moved. According to Eq. (8.12), the population undergoes mutational changes
in shorter periods of time if its mean fitness is higher.

8.3 Evolutionary Optimization of SDS-Schedules 227

8.3.4 Evolution of SDS-Schedules

In this section we study the evolution of SDS-schedules. We limit ourselves to
presenting a few aspects of SDS-evolution, a detailed analysis can be found
in [144]. In the following we consider the base graphs Y to be sampled from
the random graph G, ,, and we assume that the word w is a fixed word in
which each vertex of Y occurs at least once, i.e., w is a fair word. Transitions of
word populations between two phenotypes are obviously of critical importance
to understand SDS evolution as they constitute the basic evolutionary steps.
They are a result of the stochastic drift and can occur even when the two
phenotypes in question have identical fitness. In [144] we investigated neutral
evolution of SDS schedules. Explicitly, we selected a random fair word wqy and
generated a random mutant w; in distance class i [i.e., D(wp, w;) = i]. We set
the fitness of all words on the neutral network of wy and w; to be 1 and to
0.1 for those words that are not on the neutral network. The protocol for the
computer experiments is presented in Sections 8.3.5 and 8.5.

We monitored the fractions of the population on the neutral networks of
wo and w;. It turned out that for a wide spectrum of parameter sets the
population is concentrated almost entirely on one of the two neutral networks
and then switches between them.

The findings can be categorized as follows:

Case (a): The two neutral networks are “close,” that is, the population at al-
most all times has some large fraction on both neutral networks. This scenario
is generic (i.e., typically occurs for extended parameter ranges) in case D = 1.
Case (b): The population is almost always on either one of the two neutral
networks for extended periods of time (epochs). Then rapid, fitness-neutral
transitions between the two neutral networks are observed. This scenario is
generic in case D = 2.

Case (c): The population is almost entirely on either one of the neutral net-
works, but transitions between the nets are very rare. This situation is generic
for D > 2.

Accordingly, the distance measure D captures the closeness of neutral net-
works of words and appears to be of relevance to describe and analyze the
time evolution of populations.

Next let us study the role of the mutation rate ¢. For this purpose we con-
sider single-net-landscapes (of ratio r > 1), which is a mapping fiy,, : Wi —
[0, 1] such that every word w with w ~y wq satisfies fiw, (W) = fiw, (Wo) = =,
and fiy, (w') = 2’ otherwise where x /2’ = r. We set z = 1 and 2’ = 0.1, that
is, r = 10.

In the following we show that there is a critical mutation rate q.(n,k,p, s)
characterized as follows: In a single-net landscape a word-population replicat-
ing with error probability ¢ > g. is essentially randomly distributed, and a
population replicating with ¢ < ¢. remains localized on its neutral network.
We refer to words that are on the neutral network of wg as “masters” and set
their fitness to be 1, while any other word has fitness 0.1. We now gradually

228 8 Outlook

increase the mutation probability g of the replication event and study the
parts of the population in the distance classes D;(wp), where w € D;(wyg) if
and only if D(wq,w) = ¢ holds. Similar studies for RNA sequences as genomes
and RNA secondary structures as phenotypes can be found in [131,138]. That
particular analysis was motivated by the seminal work of Eigen et al. on the
molecular quasi-species in [139]. Clearly, for ¢ = 0 the population consists
of m identical copies of wg, but as ¢ increases, mutations of higher distance
classes emerge. It is evident from Figure 8.5 that there exists a critical mu-
tation probability ¢.(n,k,p,s) at which the population becomes essentially
randomly distributed. The protocol for the computer experiments is given in
Sections 8.3.5 and 8.6.

1 — 1 —
0.8 0.8
0.6 0.6
0.4 0.4
// \\\
0.2 /" TN 0.2
fi 7 \ .
(1] 54 AP LR (195 - . — |
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 02 025

Fig. 8.5. The critical mutation rate for p = 0.50. The z-axis gives p and the y-
axis denotes the percentage of the population in the respective distance classes. The
parameters are n = 25, and £ = 51. In the figure on the left a fixed random fair
word was used for all samples, and in the figure on the right a random fair word
was used for each sample point.

8.3.5 Pseudo-Codes

Algorithm 8.5. (Parameters: n = 52, k = 103, q = 0.0625, p, D, s)

Generate a random fair word w O.
Generate a random mutant w i of w O with Distance(w 0, wi) = i.
Generate an element Y of G n,p.
Initialize a pool with s copies of w i all with fitness 1.
Repeat
Compute average fitness lambda.
Sample Delta T from exponential distribution with
parameter lambda and increment time by Delta T.
Pick w a at random from the pool weighted by fitness.
Pick wb at random from pool minus w 1.
Replace wb by a copy of w a.
Mutate the copy of w a with probability q.

8.4 Discrete Derivatives 229

Update fitness of mutated copy.
At every 100th iteration step output fractions of pool with
(i) distance O to w0, and (ii) distance O to wi.

Algorithm 8.6. (Parameters: n = 25, k = 51, p = 0.50)
The line preceeded by [fix] is only used for the runs with a fixed
word, the line preceeded by [vary] is only used for the run with a
varying word.

[fix] Generate a fair word w of length k over Y
for q = 0.0 to 0.2 using stepsize 0.02 do

{
repeat 100
generate a random graph Y in G(n,p)
[vary] Generate a fair word w of length k over Y
initialize pool with 250 copies of w
perform 10000 basic replication/mutation steps
accumulate distance distribution relative to w
output average fractions of distance class 0, 1, 2, and 3.
}

8.4 Discrete Derivatives

The concept of derivatives is of central importance for the theory for clas-
sical dynamical systems. This motivates the question of whether there are
analogue operators in the context of sequential dynamical systems and finite
discrete dynamical systems in general. In fact, various definitions of discrete
derivatives have been developed. In case of binary states the notion of Boolean
derivatives [145,146] has been introduced.

Definition 8.7. Let f: F} — Ty, and let = (x1,22,...,2,) € Fy. The
partial Boolean derivative of f with respect to x; at the point z is

Dif() =) (@)= @) + 7@ (813)
where 7' = (z1,...,1+ 2, ..., 7).

Thus, D; f(x) can be viewed as to measure the sensitivity of f with respect
to the variable x; at the point z.

Ezample 8.8. Consider f = parity;: F3 — Fy given by f(x1,72,23) = 71 +
To + x3. In this case we see

D f(x) = f(z°) + f ()
=@+ (1+z2)+as)+(x1+a2+x3)=1.

230 8 Outlook

Basic Properties
Note first that D; f(z) does not depend on z; in the sense that
D?f(x)=0.

This is straightforward to verify by applying the preceding definition. The
Boolean derivative has similarities with the “classical” derivative. For ex-
ample, it is easy to see that it is a linear operator in the sense that for
c1,¢2 € {0,1} we have

Di(c1fr + caf2) = ecxDifi + c2Dafa
and that partial derivatives commute:
0*F B 0*F
amiﬁxj B 83@8@ '

In addition, if f: Fi~! — Fy and g: F} — Fy where g(21,...,2,) =

Tnf(x1,...,...,2n_1), then as a special case we have
0
afn (37) = f(mla v 7xn—1) .
The product rule or Leibniz’s rule differs from the classical form since
Afa) _ 0f ;00 O 09

We give a detailed derivation of this formula since it nicely illustrates what it
implies not to have the option of taking limits:

WD @) = ragle) + s)gta)
=)93 + 1)@) + F@)g@) + f(@)o(x)
= ol @@+ @) @
= oL @t + 57 <m>g<x> + o7 (@gle) ++72)g(a)

af g
= oL @) + 1)) @+) @), @,

The last term is the “O((Ah)?)” term that would vanish when taking the limit
in the continuous case. For the generalized chain rule and Boolean derivatives
the number of such additional terms becomes excessive. To illustrate this let
F.G, fi: F3 — Fy for 1 < i < n with G(z) = F(fi(z),..., fu(z)), and let
P=Aky,....,k} CN, ={1,2,...,n}. Using multi-index-style notation,

DpH = [[[Di|H

ieP

8.5 Real-Valued and Continuous SDS 231

we have the chain rule

|P|
= 2 0. @ @) @) s
! P#£PCN,, ¢ kep "

Note that the sum over singleton subsets P C N,, gives

" OF Ofi
] 8:% (fl(x)v . afn(x)) azZ (37))

which has the same structure as the classical chain rule.

8.2. Write explicit expressions for the chain rule when F,G, f;: F3 — F.
[1]
For more details on the derivation of the chain rule, see, for example, [147].
In [148] you can also find results on Boolean Lie algebras.

Computing the Boolean partial derivatives even for a small discrete fi-
nite dynamical system is nontrivial. For SDS matters get even more involved:
Because of the compositional structure of SDS, the chain rule will typically
have to be applied multiple times in order to compute the partial derivative
[Fy,w];/x;. Even computing a relatively simple partial derivatives such as
D1 (INorwheel, ; (1,0,2,4,3)]) is a lengthy process. The notion of a Boolean
derivative in its current form may be conceptually useful, but it is challenging
to put it to effective use for, e.g., SDS. The identification of operators aiding
the analysis of finite dynamical system would be very desirable.

8.5 Real-Valued and Continuous SDS

Real-valued SDS allow for the use of conventional calculus. Some versions
of real-valued SDS have been studied in the context of coupled map lattices
(CML) in [149]. As a specific example let Y = Circ,, and take vertex states
z; € R. We set

fil@iz1, @i, 1) = eximy + f(x;) + €xiga

where f: R — R is some suitable function and € > 0 is the coupling parame-
ter. For € = 0 the dynamics of each vertex evolves on its own as determined
by the function f. As € increases the stronger the dynamics of the vertices are
coupled. For CML the vertex functions are applied synchronously and not in
a given order as for SDS. This particular form of a CML may be viewed as an
elementary cellular automaton with states in R rather than {0,1}. The work
on CML over circle graphs have been extended to arbitrary directed graphs
in, e.g., [24] — for an ODE analogue see [150]. By considering real-valued dif-
ferentiable vertex functions, it seems likely that the structure of the Y-local
maps should allow for interesting analysis and insight.

232 8 Outlook

8.3. Show that without loss of generality a real-valued permutation SDS over
Y = Line; can be written as

x1 — f1(z1,22),

xo = fa(f1(x1,22), 22)

What can you say about this system? You may assume that f; and f, are
continuously differentiable or smooth. Can you identify interesting cases for
special classes of maps f1 and fo? What if f; and f5 are polynomials of degree
at most 27 What is the structure of the Jacobian of the composed SDS? [3]

We close this section with an example of a real-valued SDS. It is an SDS
version of the Hénon map [74] arising in the context of chaotic classical discrete
dynamical systems.

Ezample 8.9 (A real-valued SDS). In this example we consider the SDS over
Circg with states z; € R.

Fi(21,29,23) = (1 + 22 — azi, z2, 23),
F2($1,£E2,l’3) = (1’17b1’3,l’3)a (8-15)
FB(I17$27I3) = (I17I27I1)7

where a,b > 0 are real parameters. We use the update order 7 = (3,1,2) and
set @ = 1.4 and b = 0.3 with initial value (0.0,0.0,0.0). The projection onto
the first two coordinates of the orbit we obtain is shown in Figure 8.6. N

-1.3 -07 -0.1 0.5 1.1
Fig. 8.6. The projection of the orbit of Example 8.9.

This example also illustrates the fact that any system using a parallel up-
date order with maps F; can be embedded in a sequential system as illustrated
in Figure 1.5.

8.6 L-Local SDS 233

8.6 L-Local SDS

In the cases of sequentially updated random Boolean networks, asynchronous
cellular automata, and SDS, exactly one vertex state is potentially altered per
vertex update, and this is done based on the states of the vertices in the asso-
ciated ball of radius 1. It is clear, for instance, in the case of communication
networks where discrete data packets are exchanged, that simultaneous state
changes occur. That is, two or more vertex states are altered at one update
step. Parallel systems represent an extreme case in which all vertex states may
change at a single update step. The framework described in the following is
a natural generalization of SDS and it allows one to consider hybrid systems,
which may be viewed to certain degrees as sequential and parallel at the same
time. In Section 8.7 we will show in detail how to model routing protocols via
L-local SDS .
Let
L:Y — {X | X isasubgraphof Y }, wv; — L(v;), (8.16)

be a mapping assigning to each vertex of Y a subgraph of Y, and let A(v;)
denote the cardinality of the vertex set of the subgraph L(v;). Furthermore,
we define the vertex functions as

for s KAV s A0 (8.17)
For each vertex v; € Y we consider the sequence
(T 5y Ty, Lo,y = Bugs Tuy - Loy,), (8.18)
where j; < ji41 and vj;, € L(v;). We next introduce the map
nefvi]: {1, A ()} — v[Y], t—vy,, (8.19)
and define the L-local map of v;, FJI K" — K™

(foi (n[vi]))wy, for on € L(vs),

x otherwise.
Vh

F'Llj_i (37) = (yU17' .. 7yvn)7 Yvy, = { (820)

We are now prepared to define an L-local SDS over a word:

Definition 8.10. Let w be awordand L: Y — {X < Y} be a map assigning
Y -vertices to Y-subgraph. The triple (Y, (F,,)v;ey,w) is the L-local SDS. The
composition of the L-local maps FJ;} according to w,

1
[(F'Ui)vieV[Y]?w] = H Fy,: K" — K", (8.21)
i=k

is the L-local SDS-map.

234 8 Outlook

8.7 Routing

The scope of this section is to cast packet-switching problems arising in the
context of ad hoc networks in the framework of SDS. We believe that such
a formulation has the potential to shed new light on networking in general,
and routing at the networking layer in particular. We restrict ourselves to
presenting only some of the core ideas of how to define these protocols as L-
local maps. The interested reader can find a detailed analysis of these protocols
in [151-153).

In the following we adopt an end-to-end perspective: The object of study
is the flow of data packets “hopping” from node to node from a source to
a given destination. In contrast to the common approach where perceived
congestion is a function of the states of all nodes along a path, we introduce
SDS-based protocols, which are locally load-sensing. We assume that all links
are static and perfectly reliable (or error-free) with zero delay. Furthermore,
packets can only be transmitted from one vertex v to another vertex v’ if v
and v’ are adjacent in Y.

Our main objective is to describe the dynamical evolution of the data-
queue sizes of the entire system. We consider unlabeled packets, that is, pack-
ets do not contain explicit routing information in their headers and cannot
be addressed individually. We assume that some large number of packets is
injected into the network via the source vertex and that the destination has
enough capacity to receive all data packets. The source successively loads the
network and after some finite number of steps the system reaches an orbit in
phase space. Particular observables we are interested in are the total number
of packets located at the vertices (total load) and the throughput, which is
the rate at which packets arrive at the destination.

8.7.1 Weights

We will refer to vertex v; € v[Y] by its index i. Let Q) denote the number of
packets located at vertex k, let my be the queue capacity for packets located
at vertex k, and let my;, ;1 be the edge capacity of the edge {k,i}. We assume
uniform edge capacities, i.e., my ;3 = p. Clearly, we have Qx € Z/myZ since
Qr cannot exceed the queue-capacity my, and we take ()r as the state of
vertex k. Suppose we want to transmit packets from vertex k to its neighbors.
In the following we introduce a procedure by which we assign weights to the
neighbors of k. Our procedure is generic, parameterized, and in its parame-
terization location-invariant. Its base parameters are (1) the distance to the
destination, d, (2) the relative load, and (3) the absolute queue size.

Let k be a vertex of degree d(k) and Bj(k) = {i1,...,iq)} be the set of
neighbors of k. We set

cn = {i; € By (k) | d(i;,6) = h} .

8.7 Routing 235

Let (h1,...,hs) be the tuple of indices such that c,; # @ and h; < hj;1. In
view of B (k) = Uhch, we can now define the rank of a k-neighbor:

mk: By (k) — N, rk(i;) =r, where i; € cp,, hy = (h1,..., hs)r .
(8.22)
The weight w;; of vertex i; is given by

) b) c
w(ij) = e k() [1 - Q”} { i } , where a,b,c >0 (8:23)

m; j Mmax

and w*(i;) = w(is)/(zjeB{(k) w(j)).

8.7.2 Protocols as Local Maps

Suppose we have Qi packets at vertex k and the objective is to route them via
neighbors of k. For this purpose we first compute for By (k) = {i1,...,iq)}
the family

W*(k) = (w*(i1), ..., w" (iaq)))
of their relative weights. Without loss of generality we may assume that wy,
is maximal and set

N {LQk w*(i,)] for r # 1,
T Qe - N Qk - w (i) forr=1.

The y;, can be viewed as idealized flow rates, that is, where edge capacities and
buffer sizes of the neighbors are virtually infinite. However, taking into account
the edge-capacity u, the queue-capacity and actual queue-size of vertex i,, we
observe that

(8.24)

s, = min{y;,, 1, (ms, — Qi,)} (8.25)
is the maximal number of packets that can be forwarded to vertex i,. This

is based on the system state and W* (k). We are now prepared to update the
states of the vertices contained in By (k) in parallel as follows:

~ f =
O = Qr Zr | s, fora k:,, (8.26)
Qa + a4 fora € Bljy(k) .

That is, vertex k sends the quantities s;, [Eq. (8.25)] in parallel to its neighbors
and consequently fol) s;, packets are subtracted from its queue. Instantly,
the queue size of each neighbor i, increases by exactly s;.. It is obvious that
this protocol cannot lose data packets.

In view of Eq. (8.26), we can now define the L-local map (Section 8.6) Ff
as follows:

F: [[@/miz) — []@/miz), FE(@Qun) = (@, (8.27)

key key

236 8 Outlook

where
Qu— XM s fora=k,
Qo =1 Qo+ 54 for a € Biyy(k)7
Q. for a & By (k) .

Indeed, F} is a L-local map as defined in Eq. (8.20) of Section 8.6: it (1) po-
tentially alters the states of all vertices contained in By (k) in parallel and
(2) it does so based exclusively on states associated to vertices in By (k).

References

10.

11.

12.

13.

14.

15.

David R. Jefferson. Virtual time. ACM Transactions on Programming Lan-
guages and Systems, 7(3):404—425, July 1985.

J. Misra. Distributed discrete-event simulation. ACM Computing Surveys,
18(1):39-65, March 1986.

Shawn Pautz. An algorithm for parallel s, sweeps on unstructured meshes.
Nuclear Science and Engineering, 140:111-136, 2002.

K. Nagel, M. Rickert, and C. L. Barrett. Large-scale traffic simulation. Lecture
Notes in Computer Science, 1215:380-402, 1997.

M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic
simulations using cellular automata. Physica A, 231:534-550, October 1996.
K. Nagel, M. Schreckenberg, A. Schadschneider, and N. Ito. Discrete stochastic
models for traffic flow. Physical Review E, 51:2939-2949, April 1995.

K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic.
Journal de Physique I, 2:2221-2229, 1992.

Kai Nagel and Peter Wagner. Traffic Flow: Approaches to Modelling and Con-
trol. John Wiley & Sons, New York, 2006.

Randall J. LeVeque. Numerical Methods for Conservation Laws, 2nd ed.
Birkhauser, Boston, 1994.

Tommaso Toffoli. Cellular automata as an alternative to (rather than an ap-
proximation of) differential equations in modeling physics. Physica D, 10:117—
127, 1984.

Justin L. Tripp, Anders A. Hansson, Maya Gokhale, and Henning S. Mortveit.
Partitioning hardware and software for reconfigurable supercomputing appli-
cations: A case study. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (SC|05), September 2005. Accepted for inclusion in proceed-
ings.

Eric Weisstein. Mathworld. http://mathworld.wolfram.com, 2005.

Anthony Ralston and Philip Rabinowitz. A First Course in Numerical Analy-
sis, 2nd ed. Dover Publications, 2001.

C. L. Barrett, H. B. Hunt IIT, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz,
and R. E. Stearns. On some special classes of sequential dynamical systems.
Annals of Combinatorics, 7:381-408, 2003.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Francisco, 1979.

238

16

17

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

References

. C. L. Barrett, H. H. Hunt, M. V. Marathe, S. S. Ravi, D. Rosenkrantz, and
R. Stearns. Predecessor and permutation existence problems for sequential
dynamical systems. In Proc. of the Conference on Discrete Mathematics and
Theoretical Computer Science, pages 69-80, 2003.

. K. Sutner. On the computational complexity of finite cellular automata. Jour-

nal of Computer and System Sciences, 50(1):87-97, 1995.

Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer

Science, 334:3-33, 2005.

Jarkko Kari. Reversibility of 2D CA. Physica D, 45-46:379-385, 1990.

C. L. Barrett, H. H. Hunt, M. V. Marathe, S. S. Ravi, D. Rosenkrantz,

R. Stearns, and P. Tosic. Gardens of Eden and fixed point in sequential dynam-

ical systems. In Discrete Models: Combinatorics, Computation and Geometry,

pages 95-110, 2001. Available via LORIA, Nancy, France.
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/
dmAA0106/839.

Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Uni-

versity Press, New York, 2000.

Kunihiko Kaneko. Pattern dynamics in spatiotemporal chaos. Physica D,

34:1-41, 1989.

York Dobyns and Harald Atmanspacher. Characterizing spontaneous irregular

behavior in coupled map lattices. Chaos, Solitions and Fractals, 24:313-327,

2005.

Chai Wah Wu. Synchronization in networks of nonlinear dynamical systems

coupled via a directed graph. Nonlinearity, 18:1057-1064, 2005.

Thomas M. Liggett. Interacting Particle Systems. Classics in Mathematics.

Springer, New York, 2004.

Wolfgang Reisig and Grzegorz Rozenberg. Lectures on Petri Nets I: Basic

Models: Advances in Petri Nets. Number 1491 in Lecture Notes in Computer

Science. Springer-Verlag, New York, 1998.

John von Neumann. Theory of Self-Reproducing Automata. University of

Illinois Press, Chicago, 1966. Edited and completed by Arthur W. Burks.

E. F. Codd. Cellular Automata. Academic Press, New York, 1968.

G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical

system. Math. Syst. Theory, 3:320-375, 1969.

Erica Jen. Aperiodicity in one-dimensional cellular automata. Physica D,

45:3-18, 1990.

Burton H. Voorhees. Computational Analysis of One-Dimensional Cellular

Automata, volume 15 of A. World Scientific, Singapore, 1996.

O. Martin, A. Odlyzko, and S. Wolfram. Algebraic properties of cellular au-

tomata. Commun. Math. Phys., 93:219-258, 1984.

René A. Herndndez Toledo. Linear finite dynamical systems. Communcations

in Algebra, 33:2977-2989, 2005.

Mats G. Nordahl. Discrete Dynamical Systems. PhD thesis, Institute of The-

oretical Physics, Goteborg, Sweden, 1988.

Kristian Lindgren, Christopher Moore, and Mats Nordahl. Complexity of two-

dimensional patterns. Journal of Statistical Physics, 91(5-6):909-951, 1998.

Stephen J. Willson. On the ergodic theory of cellular automata. Mathematical

Systems Theory, 9(2):132-141, 1975.

D. A. Lind. Applications of ergodic theory and sofic systems to cellular au-

tomata. Physica D, 10D:36-44, 1984.

38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

References 239

. P. A. Ferrari. Ergodicity for a class of probabilistic cellular automata. Rev.
Mat. Apl., 12:93-102, 1991.

Henryk Fuks. Probabilistic cellular automata with conserved quantities. Non-
linearity, 17:159-173, 2004.

Michele Bezzi, Franco Celada, Stefano Ruffo, and Philip E. Seiden. The tran-
sition between immune and disease states in a cellular automaton model of
clonal immune response. Physica A, 245:145-163, 1997.

U. Frish, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-
Stokes equations. Physical Review Letters, 56:1505—-1508, 1986.

Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Bolz-
mann Models: An Introduction, volume 1725 of Lecture Notes in Mathematics.
Springer-Verlag, New York, 2000.

J.-P. Rivet and J. P. Boon. Lattice Gas Hydrodynamics, volume 11 of Cam-
bridge Nonlinear Science Series. Cambridge University Press, New York,
2001.

Parimal Pal Chaudhuri. Additive Cellular Automata. Theory and Applications,
volume 1. IEEE Computer Society Press, 1997.

Palash Sarkar. A brief history of cellular automata. ACM Computing Surveys,
32(1):80-107, 2000.

Andrew Ilichinsky. Cellular Automata: A Discrete Universe. World Scientific,
Singapore, 2001.

Stephen Wolfram. Theory and Applications of Cellular Automata, volume 1 of
Advanced Series on Complex Systems. World Scientific, Singapore, 1986.

B. Schoénfisch and A. de Roos. Synchronous and asynchronous updating in
cellular automata. BioSystems, 51:123—-143, 1999.

Stephen Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys.,
55:601-644, 1983.

Bernard Elspas. The theory of autonomous linear sequential networks. IRE
Trans. on Circuit Theory, 6:45—-60, March 1959.

William Y. C. Chen, Xueliang Li, and Jie Zheng. Matrix method for linear
sequential dynamical systems on digraphs. Appl. Math. Comput., 160:197-212,
2005.

FEzra Brown and Theresa P. Vaughan. Cycles of directed graphs defined
by matrix multiplication (mod n). Discrete Mathematics, 239:109-120,
2001.

Wentian Li. Complex Patterns Generated by Next Nearest Neighbors Cellular
Automata, pages 177-183. Elsevier, Burlington, MA, 1998. (Reprinted from
Comput. € Graphics Vol. 13, No 4, 531-537, 1989.)

S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22:437-467, 1969.

I. Shmulevich and S. A. Kauffman. Activities and sensitivities in Boolean
network models. Physical Review Letters, 93(4):048701:1-4, 2004.

E. R. Dougherty and I. Shmulevich. Mappings between probabilistic Boolean
networks. Signal Processing, 83(4):799-809, 2003.

I. Shmulevich, E. R. Dougherty, and W. Zhang. From Boolean to probabilistic
Boolean networks as models of genetic regulatory networks. Proceedings of the
IEEE, 90(11):1778-1792, 2002.

I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean
networks: A rule-based uncertainty model for gene regulatory networks. Bioin-
formatics, 18(2):261-274, 2002.

240

59

60.

61.
62.
63.
64.
65.
66.
67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.
83.

84.

References

. Carlos Gershenson. Introduction to random Boolean networks.
arXiv:nlin.AO/040806v3-12Aug2004, 2004. (Accessed August 2005.)

Mihaela T. Matache and Jack Heidel. Asynchronous random Boolean network
model based on elementary cellular automata rule 126. Physical Review E,
71:026231:1-13, 2005.

Michael Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, Boston, 1997.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA, 1979.
Mohamed G. Gouda. Elements of Network Protocol Design. Wiley-Interscience,
New York, 1998.

J. K. Park, K. Steiglitz, and W. P. Thruston. Soliton-like behavior in automata.
Physica D, 19D:423-432, 1986.

N. Bourbaki. Groupes et Algebres de Lie. Hermann, Paris, 1968.

J. P. Serre. Trees. Springer-Verlag, New York, 1980.

Sheldon Axler. Linear Algebra Done Right, 2nd ed. Springer-Verlag, New York,
1997.

P. Cartier and D. Foata. Problemes combinatoires de commutation et
redrrangements, volume 85 of Lecture Notes in Mathematics. Springer-Verlag,
New York, 1969.

Volker Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1990.

Richard P. Stanley. Acyclic orientations of graphs. Discrete Math., 5:171-178,
1973.

Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical Sys-
tems, and Linear Algebra. Academic Press, New York, 1974.

Lawrence Perko. Differential Equations and Dynamical Systems. Springer-
Verlag, New York, 1991.

Erwin Kreyszig. Introductory Functional Analysis with Applications. John
Wiley and Sons, New York, 1989.

Michael Benedicks and Lennart Carleson. The dynamics of the Hénon map.
Annals of Mathematics, 133:73—-169, 1991.

John B. Fraleigh. A First Course in Abstract Algebra, Tth ed. Addison-Wesley,
Reading, MA, 2002.

P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul. Basic Abstract Algebra,
2nd ed. Cambridge University Press, New York, 1994.

Nathan Jacobson. Basic Algebra I, 2nd ed. W.H. Freeman and Company, San
Francisco, 1995.

Thomas W. Hungerford. Algebra, volume 73 of GTM. Springer-Verlag, New
York, 1974.

B. L. van der Waerden. Algebra Volume I. Springer-Verlag, New York, 1971.
B. L. van der Waerden. Algebra Volume II. Springer-Verlag, New York, 1971.
Warren Dicks. Groups Trees and Projective Modules. Springer-Verlag, New
York, 1980.

Reinhard Diestel. Graph Theory, 2nd ed. Springer-Verlag, New York, 2000.
Chris Godsil and Gordon Royle. Algebraic Graph Theory. Number 207 in
GTM. Springer-Verlag, New York, 2001.

John Riordan. Introduction to Combinatorial Analysis. Dover Publications,
Mineola, NY, 2002.

References 241

85. J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge
University Press, New York, 1992.

86. John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynami-
cal Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York,
1983.

87. Earl A. Coddington and Norman Levinson. Theory of Ordinary Differential
Equations. McGraw-Hill, New York, 1984.

88. Robert L. Devaney. An Introduction to Chaotic Dynamical Systems, 2nd ed.
Reading, MA, Addison-Wesley, 1989.

89. Welington de Melo and Sebastian van Strien. One-Dimensional Dynamics.
Springer-Verlag, Berlin, 1993.

90. Reinhard Laubenbacher and Bodo Paraigis. Equivalence relations on finite
dynamical systems. Adv. Appl. Math., 26:237-251, 2001.

91. J. S. Milne. Etale Cohomology. Princeton University Press, Princeton, NJ,
1980.

92. Reinhard Laubenbacher and Bodo Pareigis. Update schedules of sequential
dynamical systems. Discrete Applied Mathematics, 154(6):980-994, 2006.

93. C. M. Reidys. The phase space of sequential dynamical systems. Annals of
Combinatorics. Submitted in 2006.

94. C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation II: Sequential dynamical systems. Appl. Math. Comput., 107(2—
3):121-136, 2000.

95. Saunders Mac Lane. Category Theory for the Working Mathematician, 2nd ed.
Number 5 in GTM. Springer-Verlag, 1998.

96. N. Kahale and L. J. Schulman. Bounds on the chromatic polynomial and
the number of acyclic orientations of a graph. Combinatorica, 16:383-397,
1996.

97. N. Linial. Legal colorings of graphs. Proc. 24th Symp. on Foundations of
Computer Science, 24:470-472, 1983.

98. U. Manber and M. Tompa. The effect of number of Hamiltonian paths on the
complexity of a vertex-coloring problem. STAM J. Comp., 13:109-115, 1984.

99. R. Graham, F. Yao, and A. Yao. Information bounds are weak in the shortest
distance problem. J. ACM, 27:428—-444, 1980.

100. C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of sim-
ulation IV: Fixed points, invertibility and equivalence. Appl. Math. Comput.,
134:153-172, 2003.

101. C. M. Reidys. On certain morphisms of sequential dynamical systems. Discrete
Mathematics, 296(2-3):245-257, 2005.

102. Reinhard Laubenbacher and Bodo Pareigis. Decomposition and simulation of
sequential dynamical systems. Adv. Appl. Math., 30:655-678, 2003.

103. William S. Massey. Algebraic Topology: An Introduction, volume 56 of GTM.
Springer-Verlag, New York, 1990.

104. William S. Massey. A Basic Course in Algebraic Topology, volume 127 of GTM.
Springer-Verlag, New York, 1997.

105. Warren Dicks and M. J. Dunwoody. Groups Acting on Graphs. Cambridge
University Press, New York, 1989.

106. F. T. Leighton. Finite common coverings of graphs. Journal of Combinatorial
Theory, 33:231-238, 1982.

107. Béla Bollobas. Graph Theory. An Introductory Course, volume 63 of GTM.
Springer-Verlag, New York, 1979.

242

108

109.

110.

111.

112.

113.

114.

115.

116.

117.
118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

References

. J. H. van Lint. Introduction to Coding Theory, 3rd ed. Number 86 in GTM.
Springer-Verlag, New York, 1998.

C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation ITI, equivalence of SDS. Appl. Math. Comput., 122:325-340, 2001.
Erica Jen. Cylindrical cellular automata. Comm. Math. Phys., 118:569-590,
1988.

V.S. Anil Kumar, Matthew Macauley, and Henning S. Mortveit. Update order
instability in graph dynamical systems. Preprint, 2006.

C. M. Reidys. On acyclic orientations and sequential dynamical systems. Adv.
Appl. Math., 27:790-804, 2001.

A. A. Hansson, H. S. Mortveit, and C. M. Reidys. On asynchronous cellular
automata. Advances in Complex Systems, 8(4):521-538, December 2005.

The GAP Group. Gap — groups, algorithms, programming — a system for
computational discrete algebra. http://www.gap-system.org, 2005.

G. A. Miller. Determination of all the groups of order 96. Ann. of Math.,
31:163-168, 1930.

Reinhard Laue. Zur konstruktion und klassifikation endlicher auflésbarer grup-
pen. Bayreuth. Math. Schr., 9, 1982.

H. S. Mortveit. Sequential Dynamical Systems. PhD thesis, NTNU, 2000.

C. M. Reidys. Sequential dynamical systems over words. Annals of Combina-
torics, 10, 2006.

C. M. Reidys. Combinatorics of sequential dynamical systems. Discrete Math-
ematics. In press.

Luis David Garcia, Abdul Salam Jarrah, and Reinhard Laubenbacher. Se-
quential dynamical systems over words. Appl. Math. Comput., 174(1):500-510,
2006.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill,
Singapore, 1991.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods, 2nd
ed. Springer Texts in Statistics. Springer-Verlag, New York, 2005.

G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai, and P. A. Rikvold. Sup-
pressing roughness of virtual times in parallel discrete-event simulations. Sci-
ence, 299:677-679, January 2003.

P.-Y. Louis. Increasing coupling of probabilistic cellular automata. Statist.
Probab. Lett., 74(1):1-13, 2005.

D. A. Dawson. Synchronous and asynchronous reversible markov systems.
Canad. Math. Bull., 17(5):633-649, 1974.

L. N. Vasershtein. Markov processes over denumerable products of spaces
describing large system of automata. Problemy Peredachi Informatsii, 5(3):64—
72, 1969.

Walter Fontana, Peter F. Stadler, Erich G. Bornberg-Bauer, Thomas Gries-
macher, Ivo L. Hofacker, Manfred Tacker, Pedro Tarazona, Edward D. Wein-
berger, and Peter K. Schuster. RNA folding and combinatory landscapes. Phys.
Rev. E, 47:2083-2099, 1993.

W. Fontana and P. K. Schuster. Continuity in evolution: On the nature of
transitions. Science, 280:1451-1455, 1998.

W. Fontana and P. K. Schuster. Shaping space: The possible and the attainable
in RNA genotype-phenotype mapping. J. Theor. Biol., 1998.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

References 243

Christoph Flamm, Ivo L. Hofacker, and Peter F. Stadler. RNA in silico: The
computational biology of RNA secondary structures. Advances in Complex
Systems, 2(1):65-90, 1999.

C. M. Reidys, C. V. Forst, and P. Schuster. Replication and mutation on
neutral networks. Bulletin of Mathematical Biology, 63(1):57-94, 2001.

C. M. Reidys, P. F. Stadler, and P. Schuster. Generic properties of combina-
tory maps: Neutral networks of RNA secondary structures. Bull. Math. Biol.,
59:339-397, 1997.

W. R. Schmitt and M. S. Waterman. Plane trees and RNA secondary structure.
Discr. Appl. Math., 51:317-323, 1994.

J. A. Howell, T. F. Smith, and M. S. Waterman. Computation of generating
functions for biological molecules. SIAM J. Appl. Math., 39:119-133, 1980.
M. S. Waterman. Combinatorics of RNA hairpins and cloverleaves. Studies in
Appl. Math., 60:91-96, 1978.

C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrich-
ment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249:505—
510, 1990.

M. Kimura. The Neutral Theory of Molecular Fvolution. Cambridge University
Press, Cambridge, 1983.

C. V. Forst, C. M. Reidys, and J. Weber. Lecture Notes in Artificial Intelli-
gence V 929, pages 128-147. Springer-Verlag, New York, 1995. Evolutionary
Dynamics and Optimization: Neutral Networks as Model Landscapes for RNA
Secondary Structure Landscapes.

M. Eigen, J. S. McCaskill, and P. K. Schuster. The molecular quasi-species.
Adv. Chem. Phys., 75:149-263, 19809.

M. Huynen, P. F. Stadler, and W. Fontana. Smoothness within ruggedness:
The role of neutrality in adaptation. PNAS, 93:397-401, 1996.

I. L. Hofacker, P. K. Schuster, and P. F. Stadler. = Combinatorics of
RNA secondary structures. Discrete Applied Mathematics, 88:207-237,
1998.

C. M. Reidys and P. F. Stadler. Bio-molecular shapes and algebraic structures.
Computers and Chemistry, 20(1):85-94, 1996.

U. Gobel, C. V. Forst, and P. K. Schuster. Structural constraints and neutrality
in RNA. In R. Hofestadt, editor, LNCS/LNAI Proceedings of GCB96, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1997.

H. S. Mortveit and C. M. Reidys. Neutral evolution and mutation rates of
sequential dynamical systems over words. Advances in Complex Systems, 7(3—
4):395-418, 2004.

André Thayse. Boolean Calculus of Differences, volume 101 of Lecture Notes
in Computer Science. Springer-Verlag, New York, 1981.

Gérard Y. Vichniac. Boolean derivatives on cellular automata. Physica D,
45:63-74, 1990.

Fiilop Bazsé. Derivation of vector-valued Boolean functions. Acta Mathematica
Hungarica, 87(3):197-203, 2000.

Filop Bazs6 and Elemér Labos. Boolean-Lie algebras and the Leib-
niz rule. Journal of Physics A: Mathematical and General, 39:6871-6876,
2006.

Kunihiko Kaneko. Spatiotemporal intermittency in couple map lattices.
Progress of Theoretical Physics, 74(5):1033-1044, November 1985.

244

150.

151.

152.

153.

References

M. Golubitsky, M. Pivato, and I. Stewart. Interior symmetry and local
bifurcations in coupled cell networks. Dynamical Systems, 19(4):389-407,
2004.

S. Eidenbenz, A. A. Hansson, V. Ramaswamy, and C. M. Reidys. On a new
class of load balancing network protocols. Advances in Complex Systems, 10(3),
2007.

A. A. Hansson and C. M. Reidys. A discrete dynamical systems framework for
packet-flow on networks. FMJS, 22(1):43-67, 2006.

A. A. Hansson and C. M. Reidys. Adaptive routing and sequential dynamical
systems. Private communication.

Index

G(w,Y), 185
acyclic orientation, 193
automorphism, 193
k-fold composition, 60

function
symmetric, 72

acyclic orientation, 185, 193
Oy, 194
adjacency matrix, 132
algorithm
Gauss—Jacobi, 22
Gauss—Seidel, 16
asymptotic stability, 61
attractor, 17

backward invariant set, 61

ball, 40

bijection, 201

Boolean network, 33
random, 33

boundary conditions
periodic, 25
zero, 25

CA
definition, 24
linear, 28
neighborhood, 24
phase space, 26
radius, 25
rule elementary, 27
state, 24

category theory, 90
chaos, 60
CML, 20
coding theory, 213
coloring

vertex, 84
compatible

group actions, 201
coupled map lattice, 20, 231
coupling parameter, 21
covering

compatible, 131

degree sequence, 91
derivative
Boolean, 229
destination, 234
DFSM, 35
diagram
commutative, 190, 207
discrete dynamical system
classical, 59
distance, 223
Hamming, 112
dynamical system
continuous, 59
dynamics
reversible, 80

edge
extremities, 39
geometric, 42
origin, 39
terminus, 39

246 Index

equivalence
dynamical, 89, 93
functional, 88
orbit, 157
equivalence class
[wlny), 200
~y, 194
acyclic orientation, 189
words, 193
equivalence relation, 185
~y, 204
~Fix(w)> 200
~N(p); 200
~a, 199
Euler ¢-function, 98
exact sequence
long, 192
short, 186, 189

family, 71
filter automaton, 35
finite-state machine, 34
fixed point, 17, 61, 78
global, 130
isolated, 136
local, 130
fixed-point covering
compatible, 131
flow, 58
forward invariant set, 61
FSM, 34
function
inverted threshold, 139
local, 70
monotone, 140
potential, 140
threshold, 139
vertex, 70
function table, 18

graph
automorphism, 41
binary hypercube, 44
Cayley, 111
circle graph, 43
circulant, 129
combinatorial, 41
complete bipartite, 143
component, 40

connected, 206
covering map, 41
cycle, 40
definition, 39
generalized n-cube, 111
homomorphism, see graph morphism
independent set, 40
isomorphism, 188
line graph, 42
local isomorphism, 41
locally injective morphism, 41
locally surjective morphism, 41
loop, 40
loop-free, 40
morphism, 40
orbit graph, 51
orientation, 46
over words, 192
path, 40
random, 227
simple, 41
star, 100
subgraph, 40
union, 80
update graph, 47
vertex join, 42
walk, 40
wheel graph, 43

group
action, 50, 186
automorphism, 41, 186
Frattini, 177
homomorphism, 189
isotropy, 50
normal subgroup, 189
orbit, 50, 187
solvable, 168
stabilizer, 50
subgroup, 188
Sylow, 168, 177
symmetric, 187

H-class, 83
Hamiltonian system, 58
homeomorphism, 60

independence
w, 165
index

GAP, 177
induction, 210
initial condition, 58
interacting particle systems, 23
inversion pair, 47
involution, 39
isomorphism

SDS, 103

stable, 89, 157

landscape, 227
language

regular, 35
limit cycle, 60, 61
limit set, 61
linear ordering, 48
linear system, 61
Lipschitz condition, 59

map

covering, 104
mapping

surjective, 195
Markov chain, 33
matrix

adjacency, 44

trace, 45
metric, 223
model validity, 6
morphism

digraph, 207

locally bijective, 207

SDS, 103
multigraph, 42

neighborhood

Moore, 25

von Neumann, 25
network

ad hoc, 234
neutral network, 222
nonlinear system, 61
normal form

Cartier—Foata, 197
normalizer, 186, 189

ODE, 57
orbit
backward

Index 247

discrete, 60
continuous, 58
forward
discrete, 60
full
discrete, 60
vertex multiplicity, 192
orbit stability, 61
orientation
acyclic, 46, 222

packet switching, 234
partial ordering, 46
partially commutative monoid, 48, 197
partition, 195
periodic orbit, 61
periodic point, 61
permutation
canonical, 49
petri nets, 23
phase portrait
continuous, 58
phase space, 3, 60, 206
continuous, 58
probabilistic, 34
point mutation, 222
polynomial
characteristic, 45
population, 226
prime period, 61
probability, 213
problem
permutation existence, 19
predecessor existence, 19
reachability, 18
protocol
locally load-sensing, 234

quiescent state, 24

rank layer sets, 92

recursion, 49

RNA, 220

routing
throughput, 234
vertex load, 234

rule
outer-symmetric, 31
radius, 129

248 Index

symmetric, 31
totalistic, 31

scheduling, 13
scheme
replication-deletion, 226
SDS, 57
L-local, 233
base graph, 71
computational, 18
dependency graph, 187
evolution, 222
forward orbit, 73
induced, 73
invertible, 80
local map, 204
periodic point, 75
permutation, 71
phase space, 74
system update, 71
threshold, 139
transient state, 75
word, 71
secondary structure, 220
sequence, 71
set
indexed, 71
invariant, 17
words, 187
short exact sequence, 189
simulation
discrete event, 185, 214
event-driven, 5
soliton, 35
source, 234
space-time diagram, 26, 73

sphere, 40
stability, 61
state
system, 70
vertex, 69
strange attractor, 60
structure
coarse grained, 222
secondary, 222
sweep scheduling, 13
synchronization
global, 215
local, 215

time horizon, 215

time series, 73

TRANSIMS, 7
micro-simulator, 8
router, 8

transport computation, 14

transport computations, 14

Tutte-invariant, 49

update
multiple, 185
system state, 3
vertex state, 3

vector field, 57
vertex

source, 92
voting game, 143

Wolfram enumeration, 28
word, 185
fair, 122, 147, 149
permutation, 185, 220

Universitext

Aguilar, M.; Gitler, S.; Prieto, C.: Algebraic
Topology from a Homotopical Viewpoint

Alksoy.A.; Khamsi, M.A4.: Methods in Fixed Point
Theory

Alevras, D.; Padberg M. W.: Linear Optimization
and Extensions

Andersson, M.: Topics in Complex Analysis
Aoki, M.: State Space Modeling of Time Series

Arnold, V. I.: Lectures on Partial Differential
Equations

Audin, M.: Geometry
Aupetit, B.: A Primer on Spectral Theory

Bachem, A.; Kern, W.: Linear Programming
Duality

Bachmann, G.; Narici, L.; Beckenstein, E.: Fourier
and Wavelet Analysis
Badescu, L.: Algebraic Surfaces

Balakrishnan, R.; Ranganathan, K.: A Textbook of
Graph Theory

Balser, W.: Formal Power Series and Linear
Systems of Meromorphic Ordinary Differential
Equations

Bapat, R.B.: Linear Algebra and Linear Models

Benedetti, R.; Petronio, C.: Lectures on Hyperbolic
Geometry

Benth, F E.: Option Theory with Stochastic
Analysis

Berberian, S. K.: Fundamentals of Real Analysis
Berger, M.: Geometry 1, and IT

Bhattacharya, R.; Waymire, E.C.: A Basic Course
in Probability Theory

Bliedtner, J.; Hansen, W.: Potential Theory

Blowey. J. E: Coleman, J. P;: Craig, A. W. (Eds.):
Theory and Numerics of Differential Equations
Blowey, .J.; Craig, A.: Frontiers in Numerical
Analysis. Durham 2004

Blyth, T S.: Lattices and Ordered Algebraic
Structures

Birger, E.; Gridel, E.; Gurevich, Y.: The Classical
Decision Problem

Béttcher, A;Silbermann, B.: Introduction to Large
Truncated Toeplitz Matrices

Boltyanski, V.; Martini, H.; Soltan, P S.: Excursions
into Combinatorial Geometry
Boltyanskii, V. G.: Efremovich, V. A.:
Combinatorial Topology

Bonnans, J. F: Gilbert, J. C.; Lemaréchal, C.:
Sagastizibal, C.A.: Numerical Optimization

Intuitive

Booss, B.; Bleecker, D. D.: Topology and Analysis
Borkar, V. S.: Probability Theory

Bridges, D.S.;Vita, L.S.: Techniques of Construc-
tive Analysis

Brunt B.van: The Calculus of Variations
Biihlmann, H.; Gisler, A.: A Course in Credibility
Theory and Its Applications

Carleson, L.; Gamelin, T W.: Complex Dynamics
Cecil, T E.: Lie Sphere Geometry: With
Applications of Submanifolds, Second Ed.
Chae, S.B.: Lebesgue Integration
Chandrasekharan, K.: Classical Fourier Transform

Charlap, L. S.: Bieberbach Groups and Flat
Manifolds

Chern, S.: Complex Manifolds without Potential
Theory

Chorin, A. J.; Marsden, J. E.:
Introduction to Fluid Mechanics

Mathematical

Cohn, H.: A Classical Invitation to Algebraic
Numbers and Class Fields

Curtis, M. L.: Abstract Linear Algebra

Curtis, M. L.: Matrix Groups

Cyganowski. S.; Kloeden, P: Ombach, J.: From
Elementary Probability to Stochastic Differential
Equations with MAPLE

Dalen, D.van: Logic and Structure

Das, A.: The Special Theory of Relativity: A
Mathematical Exposition

Debarre, O.:
Geometry

Higher-Dimensional Algebraic

Deitmar; A.: A First Course in Harmonic Analysis,
Second Ed.

Demazure, M.: Bifurcations and Catastrophes

Devlin, K. J.: Fundamentals of Contemporary Set
Theory

DiBenedelto, E.: Degenerate Parabolic Equations

Dienes; F; Diener, M. (Eds.): Nonstandard Analysis
in Practice

Dimca, A.: Sheaves in Topology

Dimea, A.: Singularities
Hypersurfaces

and Topology of

DoCarmo, M. P: Differential Forms and Applications
Duistermaat, J. J.: Kolk, J.A. C.: Lie Groups
Dumortier, F.; Llibre, J.; Artés, J.C.: Qualitative
Theory of Planar Differential Systems

Dundas, B.1.; Levine, M.; Ostveer; PA.; Rondigs, O.;
Voevodsky, V.; Jahren, B.: Motivic Homotopy
Theory

Edwards, R. E.: A Formal Background to Higher
Mathematics Ia, and Ib

Edwards, R. E.: A Formal Background to Higher
Mathematics Ila, and IIb

Emery, M.: Stochastic Calculus in Manifolds

Idempotent Matrices
Complex Group Algebras

Emmanouil, 1I.: over
Endles;, O.: Valuation Theory

Engel, K.; Nagel, R.: A Short Course on Operator
Semigroups

Erez, B.: Galois Modules in Arithmetic

Everest, G.; Ward, T.: Heights of Polynomials and
Entropy in Algebraic Dynamics

Farenick, D. R.: Algebras of Linear Transfor-
mations

Foulds, L. R.: Graph Theory Applications

Franke, J.; Hirdle, W.; Hafner, C. M.: Statistics of
Financial Markets: An Introduction

Frauenthal, J. C.: Mathematical Modeling in Epi-
demiology

Freitag. E.; Busam, R.: Complex Analysis

Friedman, R.: Algebraic Surfaces and Holomor-
phic Vector Bundles

Fuks, D. B.; Rokhlin, V. A.: Beginner’s Course in
Topology

Fulrmann, P A.: A Polynomial Approach to
Linear Algebra

Gallot, S.; Hulin, D.; Lafontaine, J.: Riemannian
Geometry

Gardiner, C. F: A First Course in Group Theory

Fdarding, L.; Tambour, T': Algebra for Computer
Science

Godbillon, C.: Dynamical Systems on Surfaces
Godement, R.: Analysis I, and IT

Joldblatt, R.: Orthogonality and Spacetime
Geometry

Gouvéa, F Q.: p-Adic Numbers

Gross, M. et al.: Calabi-Yau Manifolds and
Related Geometries

Gustafson, K. E.; Rao, D. K. M.: Numerical Range:
The Field of Values of Linear Operators and
Matrices

Gustafson, S. J.: Sigal. 1. M.:
Concepts of Quantum Mechanics
Hahn, A. J.: Quadratic Algebras,
Algebras, and Arithmetic Witt Groups

Mathematical
Clifford

Hdjek, P; Havrdnek, T': Mechanizing Hypothesis
Formation

Heinonen, J.: Lectures on Analysis on Metric
Spaces

Hlawka, E.; Schoiffengeier; J.: Taschner, R.: Geometric
and Analytic Number Theory

Holmgren, R. A.: A First Course in Discrete
Dynamical Systems

Howe, R.; Tan, E. Ch.: Non-Abelian Harmonic
Analysis

Howes, N. R.: Modern Analysis and Topology
Hsieh, P-E: Sibuya. Y. (Eds.): Basic Theory of
Ordinary Differential Equations

Humi, M.; Millex; W.: Second Course in Ordinary
Differential Equations for Scientists and
Engineers

Hurwitz, A.; Kritikos, N.: Lectures on Number
Theory

Huybrechts, D.: Complex Geometry: An Intro-
duction

Isaev, A.: Introduction to Mathematical Methods
in Bioinformatics

Istas, J.. Mathematical Modeling for the Life
Sciences

Iversen, B.: Cohomology of Sheaves
Jacob, .J.; Protter; P: Probability Essentials

Jennings, G. A.: Modern Geometry with Appli-
cations

Jones, A.; Morris, S. A.; Pearson, K. R.: Abstract
Algebra and Famous Inpossibilities

Jost, J.: Compact Riemann Surfaces

Jost, J.: Dynamical Systems. Examples of Complex
Behaviour

Jost, J.: Postmodern Analysis

Jost, J.: Riemannian Geometry and Geometric
Analysis

Kac,V.; Cheung, P: Quantum Calculus

Kannan, R.; Krueger, C. K.: Advanced Analysis on
the Real Line

Kelly, P; Matthews, G.: The Non-Euclidean

Hyperbolic Plane

Kempf, (I.: Complex Abelian Varieties and Theta
Functions

Kitchens, B. P: Symbolic Dynamics

Kloeden, P; Ombach, J.; Cyganowski, S.: From
Elementary Probability to Stochastic Differential
Equations with MAPLE

Kloeden, P E.; Platen; E.: Schurz, H.: Numerical
Solution of SDE Through Computer Experi-
ments

Kostrikin, A. I.: Introduction to Algebra
Krasnoselskii, M. A.; Pokrovskii, A. V.: Systems
with Hysteresis

Kurzweil, H.; Stellmacher, B.: The Theory of Finite
Groups: An Introduction

Kuo, H.-H.: Introduction to Stochastic Integration

Kyprianou, A.: Introductory Lectures on Fluc-
tuations of Levy Processes with Applications

Lang, S.: Introduction to Differentiable Mani-
folds

Lefebure, M.: Applied Stochastic Processes
Lorenz, F: Algebra, Volume I

Luecking, D. H.; Rubel, L. A.: Complex Analysis.
A Functional Analysis Approach

Ma, Zhi-Ming; Roeckner, M.: Introduction to the
Theory of (non-symmetric) Dirichlet Forms

Mac Lane, S.; Moerdijk. I.: Sheaves in Geometry
and Logic

Marcus, D.A.: Number Fields

Martinez, A.: An Introduction to Semiclassical
and Microlocal Analysis

Matousek, .J.: Using the Borsuk-Ulam Theorem

Matousek, J.: Understanding and Using Linear
Programming

Matsuki, K.: Introduction to the Mori Program

Mazzola, G.; Milmeister G.; Weissman .J.: Compre-
hensive Mathematics for Computer Scientists 1

Mazzola, G.;: Milmeister G.: Weissman .J.: Com-
prehensive Mathematics for Computer
Scientists 2

Mc Carthy, P J.: Introduction to Arithmetical
Functions

McOrimmon, K.: A Taste of Jordan Algebras

Meyer, R. M.: Essential Mathematics for Applied
Field

Meyer-Nieberg, P: Banach Lattices

Mikosch, T.: Non-Life Insurance Mathematics

Mines, R.; Richman, F.; Ruitenburg, W.: A Course in
Constructive Algebra

Moise, K. E.: Introductory Problem Courses in
Analysis and Topology

Montesinos-Amilibia,.J.M.: Classical Tessellations
and Three Manifolds

Morris, P: Introduction to Game Theory
Mortveit, H.S.; Reidys, C. M: An Introduction to
Sequential Dynamical Systems

Nicolaescu, L.1.: An Invitation to Morse Theory
Nikulin, V. V.; Shafarevich, I. R.: Geometries and
Groups

Oden, J. J.; Reddy, J. N.: Variational Methods in
Theoretical Mechanics

Oksendal, B.: Stochastic Differential Equations
Oksendal, B.; Sulem, A.: Applied Stochastic
Control of Jump Diffusions

Orlik, P ;Welker,V.; Floystad, Gi.: Algebraic Combi-
natorics

Procesi, C.: An Approach through Invariants and
Representations

Poizat, B.: A Course in Model Theory

Polster, B.: A Geometrical Picture Book
PorterJ.R.; Woods, R.(i.: Extensions and Absolutes
of Hausdorff Spaces

Radjavi, H.: Rosenthal, P: Simultaneous Triangu-
larization

Ramsay, A.; Richtmeyer, R. D.: Introduction to
Hyperbolic Geometry

Rautenberg,W.: A Concise Introduction to Mathe-
matical Logic

Rees, E. G.: Notes on Geometry

Reisel, R. B.:
Spaces

Rey, W. J. J.: Introduction to Robust and Quasi-
Robust Statistical Methods

Elementary Theory of Metric

Ribenboim, P: Classical Theory of Algebraic
Numbers

Rickart, C. E.: Natural Function Algebras

Roger G.: Analysis 11

Rotman, .J. J.: Galois Theory

Rubel, L.A.: Entire and Meromorphic Functions

Ruiz-Tolosa, .J. R.; Castillo E.: From Vectors to
Tensors

Runde, V.: A Taste of Topology

Rybakowski, K. P: The Homotopy Index and
Partial Differential Equations

Sagan, H.: Space-Filling Curves

Samelson, H.: Notes on Lie Algebras
Schiff. J. L.: Normal Families

Sengupta, J. K.: Optimal Decisions under Uncer-
tainty

Séroul, R.: Programming for Mathematicians
Seydel, R.: Tools for Computational Finance
Schirotzek, W.: Nonsmooth Analysis
Shafarevich, I. R.: Discourses on Algebra

Shapiro, J. H.: Composition Operators and
Classical Function Theory

Simonnet, M.: Measures and Probabilities
Smith, K. E.: Kahanpii, L.; Kekdldinen, P; Traves,
WW.: An Invitation to Algebraic Geometry

Smith,K. T: Power Series from a Computational
Point of View

Smorynski, C.: Logical Number Theory 1. An
Introduction
Smorynski, C.: Self-Reference and Modal Logic

Stichtenoth, H.: Algebraic Function Fields and
Codes

Stillwell, .J.: Geometry of Surfaces

Stroock, D. W.: An Introduction to the Theory of
Large Deviations

Sunder, V. S.: An Invitation to von Neumann
Algebras

Tamme. G.: Introduction to Etale Cohomology

Tondeur, P: Foliations on Riemannian Mani-
folds

Toth, @.: Finite Mobius Groups, Minimal
Immersions of Spheres, and Moduli

Tu, L.: An Introduction to Manifolds

Verhulst, F: Nonlinear Differential Equations
and Dynamical Systems

Weintraub, S.H.: Galois Theory
Wong. M. W.: Weyl Transforms

Xambo-Descamps, S.:
Codes

Block Error-Correcting

Zaanen,A. C.: Continuity, Integration and Fourier
Theory

Zhang. F.: Matrix Theory
Zong. C.: Sphere Packings

Zong. C.: Strange Phenomena in Convex and
Discrete Geometry

Zorich, V.A.: Mathematical Analysis 1
Zorich, V.A.: Mathematical Analysis II

	Preface
	Contents
	What is a Sequential Dynamical System?
	A Comparative Study
	Graphs, Groups, and Dynamical Systems
	Sequential Dynamical Systemsover Permutations
	Phase-Space Structure of SDS andSpecial Systems
	Graphs, Groups, and SDS
	Combinatorics of Sequential DynamicalSystems over Words
	Outlook

	References
	Index

