
Universitext

To Sofi a
 H.S.M.

To my family
 C.M.R.

Henning S. Mortveit

Christian M. Reidys

An Introduction
to Sequential Dynamical
Systems

Henning S. Mortveit
Department of Mathematics and
Virginia Bioinformatics Institute 0477
Virginia Polytechnic Institute and State

University
1880 Pratt Drive
Blacksburg, Virginia 24061
henning.mortveit@gmail.com

Christian M. Reidys
Center for Combinatorics, LPMC
Nankai University
Tianjin 300071
P.R. China
reidys@nankai.edu.cn

ISBN-13: 978-0-387-30654-4

Library of Congress Control Number: 2007928150

Mathematics Subject Classifi cation (2000): Primary: 37B99; Secondary: 05Cxx, 05Axx

©2008 Springer Science+Business Media LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

e-ISBN-13: 978-0-387-49879-9

Preface

The purpose of this book is to give a comprehensive introduction to sequen-
tial dynamical systems (SDS). This is a class of dynamical systems defined
over graphs where the dynamics arise through functional composition of local
dynamics. As such, we believe that the concept and framework of SDS are
important for modeling and simulation of systems where causal dependencies
are intrinsic.

The book is written for mathematicians, but should be readily accessible
to readers with a background in, e.g., computer science or engineering that
are interested in analysis, modeling, and simulation of network dynamics. We
assume the reader to be familiar with basic mathematical concepts at an
undergraduate level, and we develop the additional mathematics needed.

In contrast to classical dynamical systems, the theory and analysis of SDS
are based on an interplay of techniques from algebra, combinatorics, and dis-
crete mathematics in general. To illustrate this let us take a closer look at
SDS and their structure. An SDS is a triple that consists of a finite graph
Y where each vertex has a state taken from a finite set K, a vertex-indexed
sequence of Y -local maps (Fv,Y)v of the form Fv : Kn −→ Kn, and a word
w = (w1, . . . , wk) over the vertex set of Y . The associated dynamical system
is the SDS-map, and it is given by the composition of the local maps Fv,Y in
the order specified by w.

SDS generalize the concept of, for example, cellular automata (CA). Major
distinctions from CA include (1) SDS are considered over arbitrary graphs,
(2) for SDS the local maps can be applied multiple times while with CA the
rules are applied exactly once, and (3) the local maps of an SDS are applied
sequentially while for CA the rules are typically applied in parallel.

Much of the classical theory of dynamical systems over, e.g., R
n is based

on continuity and derivatives of functions. There are notions of derivatives
for the discrete case as well, but they do not play the same central role for
SDS or other finite dynamical systems. On a conceptual level the theory of
SDS is much more shaped by algebra and combinatorics than by the classi-
cal dynamical systems theory. This is quite natural since the main research

vi Preface

questions for SDS involve properties of the base graph, the local maps, and
the ordering on the one hand, and the structure of the discrete phase space
on the other hand. As an example, we will use Sylow’s theorems to prove the
existence of SDS-maps with specific phase-space properties.

To give an illustration of how SDS connects to algebra and combinatorics
we consider SDS over words. For this class of SDS we have the dependency
graph G(w, Y) induced by the graph Y and the word w. It turns out that
there is a purely combinatorial equivalence relation ∼Y on words where equiv-
alent words induce equivalent SDS. The equivalence classes of ∼Y correspond
uniquely to certain equivalence classes of acyclic orientations of G(w, Y) (in-
duced by a natural group action). In other words, there exists a bijection
Wk/ ∼Y −→

⋃̇
ϕ∈Φ

[
Acyc(G(ϕ, Y))/ ∼Fix(ϕ)

]
, where Wk is the set of words of

length k and Φ is a set of representatives with respect to the permutation
action of Sk on words Wk.

The book’s first two chapters are optional as far as the development of
the mathematical framework is concerned. However, the reader interested in
applications and modeling may find them useful as they outline and detail
why SDS are oftentimes a natural modeling choice and how SDS relate to
existing concepts.

In the book’s first chapter we focus on presenting the main conceptual
ideas for SDS. Some background material on systems that motivated and
shaped SDS theory is included along with a discussion of the main ideas of
the SDS framework and the questions they were originally designed to help
answer.

In the second chapter we put the SDS framework into context and present
other classes of discrete dynamical systems. Specifically, we discuss cellular
automata, finite-state machines, and random Boolean networks.

In Chapter 3 we provide the mathematical background concepts required
for the theory of SDS presented in this book. In order to keep the book self-
contained, we have chosen to include some proofs. Also provided is a list of
references that can be used for further studies on these topics.

In the next chapter we present the theory of SDS over permutations. That
is, we restrict ourselves to the case where the words w are permutations of the
vertex set of Y . In this setting the dependency graph G(w, Y) is isomorphic
to the base graph Y , and this simplifies many aspects significantly. We study
invertible SDS, fixed points, equivalence, and SDS morphisms.

Chapter 5 contains a collection of results on SDS phase-space properties
as well as results for specific classes of SDS. This includes fixed-point charac-
terization and enumeration for SDS and CA over circulant graphs based on a
deBruijn graph construction, properties of threshold-SDS, and the structure
of SDS induced by the Boolean nor function.

In Chapter 6 we consider w-independent SDS. These are SDS where the
associated SDS-maps have periodic points that are independent of the choice
of word w. We will show that this class of SDS induces a group and that this

Preface vii

group encodes properties of the phase-space structures that can be generated
by varying the update order w.

Chapter 7 analyzes SDS over words. Equivalence classes of acyclic orien-
tations of the dependency graph now replace acyclic orientations of the base
graph, and new symmetries in the update order w arise. We give several com-
binatorial results that provide an interpretation of equivalence of words and
the corresponding induced SDS.

We conclude with Chapter 8, which is an outline of current and possible
research directions and application areas for SDS ranging from packet routing
protocols to gene-regulatory networks. In our opinion we have only started
to uncover the mathematical gems of this area, and this final chapter may
provide some starting points for further study.

A Guide for the Reader: The first two chapters are intended as background
and motivation. A reader wishing to proceed directly to the mathematical
treatment of SDS may omit these. Chapter 3 is included for reference to make
the book self-contained. It can be omitted and referred to as needed in later
chapters. The fourth chapter presents the core structure and results for SDS
and is fundamental to all of the chapters that follow. Chapter 6 relies on
results from Chapter 5, but Chapter 7 can be read directly after Chapter 4.

Each chapter comes with exercises, many of which include full solutions.
The anticipated difficulty level for each problem is indicated in bold at the
end of the problem text. We have ranked the problems from 1 (easy, routine)
through 5 (hard, unsolved). Some of the problems are computational in the
sense that some programming and use of computers may be helpful. These
are marked by the additional letter ‘C’.

We thank Nils A. Baas, Chris L. Barrett, William Y. C. Chen, An-
ders Å. Hansson, Qing H. Hou, Reinhard Laubenbacher, Matthew Macauley,
Madhav M. Marathe, and Bodo Pareigis for discussions and valuable sugges-
tions. Special thanks to the researchers of the Center of Combinatorics at
Nankai University. We also thank the students at Virginia Tech University
who took the course 4984 Mathematics of Computer Simulations — their
feedback and comments plus the lecture preparations helped shape this book.
Finally, we thank Vaishali Damle, Julie Park, and Springer for all their help
in preparing this book.

Blacksburg, Virginia, January 2007 Henning S. Mortveit
Tianjin, China, January 2007 Christian M. Reidys

Contents

Preface . v

1 What is a Sequential Dynamical System? 1
1.1 Sequential Dynamical Systems: A First Look 1
1.2 Motivation . 4
1.3 Application Paradigms . 7

1.3.1 TRANSIMS . 7
1.3.2 Task Scheduling and Transport Computations 13

1.4 SDS: Characteristics and Research Questions 16
1.4.1 Update Order Dependencies . 16
1.4.2 Phase-Space Structure . 17

1.5 Computational and Algorithmic Aspects 18
1.6 Summary . 20
Problems . 20
Answers to Problems . 22

2 A Comparative Study . 23
2.1 Cellular Automata . 23

2.1.1 Background . 23
2.1.2 Structure of Cellular Automata . 24
2.1.3 Elementary CA Rules . 27

2.2 Random Boolean Networks . 33
2.3 Finite-State Machines (FSMs) . 34
Problems . 35
Answers to Problems . 37

3 Graphs, Groups, and Dynamical Systems 39
3.1 Graphs . 39

3.1.1 Simple Graphs and Combinatorial Graphs 41
3.1.2 The Adjacency Matrix of a Graph 44
3.1.3 Acyclic Orientations . 46

x Contents

3.1.4 The Update Graph . 47
3.1.5 Graphs, Permutations, and Acyclic Orientations 48

3.2 Group Actions . 50
3.2.1 Groups Acting on Graphs . 51
3.2.2 Groups Acting on Acyclic Orientations 52

3.3 Dynamical Systems . 56
3.3.1 Classical Continuous Dynamical Systems 57
3.3.2 Classical Discrete Dynamical Systems 59
3.3.3 Linear and Nonlinear Systems. 61

Problems . 63
Answers to Problems . 66

4 Sequential Dynamical Systems
over Permutations . 69
4.1 Definitions and Terminology . 69

4.1.1 States, Vertex Functions, and Local Maps 69
4.1.2 Sequential Dynamical Systems . 71
4.1.3 The Phase Space of an SDS . 73
4.1.4 SDS Analysis — A Note on Approach and Comments . . 76

4.2 Basic Properties . 77
4.2.1 Decomposition of SDS . 77
4.2.2 Fixed Points . 78
4.2.3 Reversible Dynamics and Invertibility 80
4.2.4 Invertible SDS with Symmetric Functions over Finite

Fields . 84
4.3 Equivalence . 88

4.3.1 Functional Equivalence of SDS . 90
4.3.2 Computing Equivalence Classes . 91
4.3.3 Dynamical Equivalence. 93
4.3.4 Enumeration of Dynamically Nonequivalent SDS 97

4.4 SDS Morphisms and Reductions . 103
4.4.1 Covering Maps . 104
4.4.2 Properties of Covering Maps . 104
4.4.3 Reduction of SDS . 105
4.4.4 Dynamical Equivalence Revisited . 109
4.4.5 Construction of Covering Maps . 110
4.4.6 Covering Maps over Qn

α . 111
4.4.7 Covering Maps over Circn . 119

Problems . 121
Answers to Problems . 122

5 Phase-Space Structure of SDS and
Special Systems . 129
5.1 Fixed Points for SDS over Circn and Circn,r 129
5.2 Fixed-Point Computations for General Graphs 137

Contents xi

5.3 Threshold SDS . 139
5.4 SDS over Special Graph Classes . 140

5.4.1 SDS over the Complete Graph . 141
5.4.2 SDS over the Circle Graph . 143
5.4.3 SDS over the Line Graph . 145
5.4.4 SDS over the Star Graph . 146

5.5 SDS Induced by Special Function Classes 146
5.5.1 SDS Induced by (nork)k and (nandk)k 147
5.5.2 SDS Induced by (nork + nandk)k . 154

Problems . 158
Answers to Problems . 160

6 Graphs, Groups, and SDS . 165
6.1 SDS with Order-Independent Periodic Points 165

6.1.1 Preliminaries . 166
6.1.2 The Group G(Y,FY) . 167
6.1.3 The Class of w-Independent SDS . 171

6.2 The Class of w-Independent SDS over Circn 174
6.2.1 The Groups G(Circ4,FCirc4) . 176

6.3 A Presentation of S35 . 178
Problems . 179
Answers to Problems . 182

7 Combinatorics of Sequential Dynamical Systems over
Words . 185
7.1 Combinatorics of SDS over Words . 187

7.1.1 Dependency Graphs . 187
7.1.2 Automorphisms . 189
7.1.3 Words . 192
7.1.4 Acyclic Orientations . 193
7.1.5 The Mapping OY . 195
7.1.6 A Normal Form Result . 197
7.1.7 The Bijection . 198

7.2 Combinatorics of SDS over Words II . 199
7.2.1 Generalized Equivalences . 199
7.2.2 The Bijection (P1) . 201
7.2.3 Equivalence (P2) . 204
7.2.4 Phase-Space Relations . 206

Problems . 209
Answers to Problems . 210

8 Outlook . 213
8.1 Stochastic SDS . 213

8.1.1 Random Update Order . 214
8.1.2 SDS over Random Graphs . 217

xii Contents

8.2 Gene-Regulatory Networks . 217
8.2.1 Introduction . 217
8.2.2 The Tryptophan-Operon . 218

8.3 Evolutionary Optimization of SDS-Schedules 220
8.3.1 Neutral Networks and Phenotypes of RNA and SDS . . . 220
8.3.2 Distances . 223
8.3.3 A Replication-Deletion Scheme . 226
8.3.4 Evolution of SDS-Schedules . 227
8.3.5 Pseudo-Codes . 228

8.4 Discrete Derivatives . 229
8.5 Real-Valued and Continuous SDS. 231
8.6 L-Local SDS . 233
8.7 Routing . 234

8.7.1 Weights . 234
8.7.2 Protocols as Local Maps . 235

References . 237

Index . 245

1

What is a Sequential Dynamical System?

The purpose of this chapter is to give an idea of what sequential dynamical
systems (SDS)1 are and discuss the intuition and rationale behind their struc-
ture without going into too many technical details. The reader wishing to
skip this chapter may proceed directly to Chapter 4 and refer to background
terminology and concepts from Chapter 3 as needed.

The structure of SDS is influenced by features that are characteristic of
computer simulation systems and general dynamical processes over graphs. To
make this more clear we have included short descriptions of some of the sys-
tems that motivated the structure of SDS. Specifically, we will discuss aspects
of the TRANSIMS urban traffic simulation system, transport computations
over irregular grids, and optimal scheduling on parallel computing architec-
tures. Each of these areas is a large topic in itself, so we have necessarily taken
a few shortcuts and made some simplifications. We have chosen to focus on
the aspects of these systems that apply to SDS.

Enjoy the ride!

1.1 Sequential Dynamical Systems: A First Look

To illustrate what we mean by an SDS, we consider the following example.
First, let Y be the circle graph on the four vertices 0, 1, 2, and 3. We denote this
graph as Circ4—it is shown in Figure 1.1. To each vertex i of the graph we as-
sign a state xi from the state set K = {0, 1}, and we write x = (x0, x1, x2, x3)
for the system state. We also assign each vertex the symmetric, Boolean func-
tion nor3 : K3 −→ K defined by

nor3(x, y, z) = (1 + x)(1 + y)(1 + z) ,

1 We will write SDS in singular as well as plural form. The plural abbreviation
“SDSs” does not seem right from an aesthetic point of view. Note that the ab-
breviation SDS is valid in English, French, German, and Norwegian!

2 1 What is a Sequential Dynamical System?

Fig. 1.1. The circle graph on four vertices, Circ4.

where addition and multiplications are modulo 2. You may recognize nor3 as
the standard logical nor function that returns 1 if all its arguments are zero
and that returns zero otherwise. We next define functions Nori : K4 −→ K4

for 0 ≤ i ≤ 3 by

Nor0(x0, x1, x2, x3) = (nor3(x3, x0, x1), x1, x2, x3),
Nor1(x0, x1, x2, x3) = (x0, nor3(x0, x1, x2), x2, x3),
Nor2(x0, x1, x2, x3) = (x0, x1, nor3(x1, x2, x3), x3),
Nor3(x0, x1, x2, x3) = (x0, x1, x2, nor3(x2, x3, x0)) .

We see that the function Nori may only change the state of vertex i, and
it does so based on the state of vertex i and the states of the neighbors of
i in the graph Circ4. Finally, we prescribe an ordering π = (0, 1, 2, 3) of the
vertices of Circ4. All the quantities are shown in Figure 1.2. This is how the

Fig. 1.2. Core constituents of an SDS: a graph (Circ4), vertex states (x0 through
x3), functions (Nor0 through Nor3), and an update order (π = (0, 1, 2, 3)).

dynamics arise: By applying the four maps Nori to, for example, the state
x = (x0, x1, x2, x3) = (1, 1, 0, 0) in the order given by π, we get (as you should
verify)

(1, 1, 0, 0) Nor0�→ (0, 1, 0, 0) Nor1�→ (0, 0, 0, 0) Nor2�→ (0, 0, 1, 0) Nor3�→ (0, 0, 1, 0) .

In contrast to what would be the case for a synchronous or parallel update
scheme, note that the output from Nor0 is the input to Nor1, the output from
Nor1 is the input to Nor2, and so on. Effectively we have applied the composed
map

Nor3 ◦ Nor2 ◦ Nor1 ◦ Nor0 (1.1)

1.1 Sequential Dynamical Systems: A First Look 3

to the given state (1, 1, 0, 0). This composed function is the SDS-map of
the SDS over the graph Circ4 induced by nor functions with update order
(0, 1, 2, 3).

We will usually write [(Nori,Circ4)i, (0, 1, 2, 3)] or [NorCirc4 , (0, 1, 2, 3)] for
the SDS-map. In other words, we have

[NorCirc4 , (0, 1, 2, 3)](1, 1, 0, 0) = (0, 0, 1, 0) .

If we apply [NorCirc4 , (0, 1, 2, 3)] repeatedly, we get the sequence of points
(1, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (0, 1, 0, 1), (0, 0, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1),
(0, 1, 0, 0), and (0, 0, 1, 0), which then repeats. This is an example of an orbit.
You can see this particular orbit in Figure 1.3. Readers with a background
in classical dynamical systems should be on familiar grounds now and can
probably foresee many of the questions we will address in later chapters.

Although it may be obvious, we want to point out that the new vertex
states xi were calculated in a sequential order. You may want to verify that
(1, 1, 0, 0) maps to (0, 0, 0, 0) if the new vertex states are computed synchro-
nously or “in parallel.” The sequential update order is a unique feature of SDS.
Sequential and synchronous update schemes generally may produce very dif-
ferent dynamical behavior.

The above example is, of course, a very specific and simple instance of an
SDS, but exhibits all core features:

a finite graph Y ,
a state for each vertex v,
a function Fv for each vertex v,
an update order of the vertices.

In general, an SDS is constructed from a graph Y of order n, say, with
vertex states in a finite set or field K, a vertex-indexed family of func-
tions (Fv)v, and a word update order w = (w1, . . . , wk) where wi ∈ v[Y].
The SDS is the triple (Y, (Fv)v, w), and we write the resulting SDS-map as
[FY , w] : Kn −→ Kn. It is given by

[FY , w] = Fwk,Y ◦ · · · ◦ Fw1,Y , (1.2)

and it is a time- and space-discrete dynamical system. Here is some terminol-
ogy we will use in the following: The application of the map Fv is the update
of the state xv, and the application of [FY , w] to x = (xv)v is a system update.
The phase space of the map [FY , w] is the directed graph Γ defined by

v[Γ] = {x ∈ Kn},
e[Γ] = {

(
x, [FY , w](x)

)
|x ∈ v[Γ]} ,

where v[Y] and e[Y] denote the vertex set of Y and the edge set of Y , respec-
tively. Since the number of states is finite, it is clear that the graph Γ is a
finite union of finite, unicyclic, directed graphs. You may want to verify that

4 1 What is a Sequential Dynamical System?

Fig. 1.3. The phase space of the SDS-map [NorCirc4 , (0, 1, 2, 3)].

the directed graph in Figure 1.3 is indeed the phase space of the SDS-map
in the above example. Further instances of SDS phase spaces are displayed
in Figure 1.12. The phase space of an SDS encodes all of its dynamics. The
goal in the study of SDS is to derive as much information about the structure
of the phase space Γ as possible based on the properties of the graph Y , the
functions (Fv)v, and the update order w. Since the global dynamics is gener-
ated by composition of local dynamics, the analysis often has a local-to-global
character.

1.2 Motivation

In this section we provide some motivation for studying sequential dynami-
cal systems. The reader anxious to start exploring the theory may omit the
remainder of this section.

Let us start with the graph Y of an SDS. The graph structure is a natural
way to represent interacting entities, agents, brokers, biological cells, mole-
cules, and so on. A vertex v represents an entity, and an edge {v, v′} encodes
the fact that the entities corresponding to v and v′ can interact in some way.
An example of such a graph is an electrical power network. Physical compo-
nents in this network typically include power generators, distribution stations
or buses, loads (consumers), and lines. The meanings of these terms are self-
explanatory. In such networks generators, buses, and loads are represented
as vertices. Lines connect the other three types of components and naturally
represent edges. Only components connected by an edge can affect each other
directly. A particular (small) power grid is given in Figure 1.4.

Another example of an SDS graph is the social contact network for the
people living in some city or geographical region. In this network the indi-
viduals of the population are the vertices. There are various ways to connect
people by edges. One way that is relevant for epidemiology is to connect any
pair of individuals that were in contact or were at the same location for a
minimal duration on some given day. Clearly, this is a natural structure to
consider for the disease dynamics.

A third example arises in the context of traffic. We will study this in
detail in the next section. Here we just note that one way to represent traffic

1.2 Motivation 5

Fig. 1.4. An example of a small electrical power network. Generators are labeled
G, buses are labeled B, and loads are labeled L. Edges represent physical lines.

by a graph is to consider vehicles as vertices and consider any two that are
sufficiently close on the road to be adjacent. In this particular case the graph
typically varies with time.

The function fv of a vertex v in an SDS abstracts the behavioral charac-
teristics of the corresponding entity. The input to this function is the state of
the entity itself and the state of its neighbors in the graph. In the electrical
power network the vertex state would typically include current and voltage.
A vertex function f uses voltage differences to its neighbors and the respective
currents to compute its new voltage or current level so that Kirchhoff’s laws
are satisfied locally at that vertex.

If we are studying disease propagation across a social contact network,
then the function fv could compute the total exposure to the contagious dis-
ease throughout a day and use that to determine if an uninfected individual
will become infected. Since the infection process inherently has some random
elements, one could think of making fv a random variable and thus obtain a
stochastic system.

For the traffic system the position and velocity are natural quantities to
include in the vertex state. Based on the open space in the lane ahead and
in the neighbor lanes, the function fv may determine if a vehicle will increase
its speed, slow down, change lanes, or move forward.

The update order of an SDS specifies the sequence in which the entities
have their states updated. In this book and for SDS in general, we oftentimes
consider update orders that are permutations or finite words over the vertex
set of the graph Y . Other choices of update schemes include, for example,
parallel update and infinite words. An infinite word corresponds closely to the
structure of event-driven simulations [1, 2]. There are several reasons behind
our choice for the update order of SDS. Having a fixed and finite update order
gives us a dynamical system in a straightforward way: The composition of the
functions Fv as specified by the permutation or word is a map F : X −→ X
and this map can be applied iteratively to states. However, if the update order
is given by some infinite word (wi)∞0 , then it is not so easy to identify such a
map F , and it is not obvious what the phase space should be.

6 1 What is a Sequential Dynamical System?

With a sequential or asynchronous update scheme we can naturally include
causal order. Related events do typically not happen simultaneously—one
event triggers another event, which in turn may trigger more events. With a
parallel or synchronous update scheme all events happen simultaneously. This
may be justified when modeling systems such as an ideal gas, but it is easy to
think of systems where the update order is an essential part that cannot easily
be ignored. Note also that the “sequential” in sequential dynamical system
does not imply a complete lack of parallelism. We will return to this in more
detail in Section 1.3.2. For now simply note that if we use the update order
π = (0, 2, 1, 3) for the SDS over Circ4 in the introductory example, then we
may perform the update of vertices 0 and 2 in parallel followed by a parallel
update of vertices 1 and 3. Informally speaking, the SDS update is typically
somewhere between strictly parallel and strictly sequential.

We are not advocating the use of sequential update orders: It is obvi-
ous that it is crucial to determine what gives the best description of the
system one is trying to describe. Further aspects that potentially influence
the particular choice of model are to encompass efficient analysis and predic-
tion. Simply ignoring the modeling aspect and using a parallel update order
because that may map more easily to current high-performance computing
hardware can easily lead to models where validity becomes more than just a
concern.

Note also that any system that is updated in parallel can be implemented
as a sequential system. This is not a very deep observation and can be thought
of as implementing one-step memory. The principle of “doubling” the graph
as shown in Figure 1.5 can easily be used to achieve this. The process should
be clear from the figure.

Fig. 1.5. Simulating a parallel system with a sequential system through “graph-
doubling.”

Returning to our traffic example, we see that the choice of scheduling
makes a difference for both modeling and dynamics. Consider a highway with
three parallel lanes with traffic going in the same direction. The situation
where two vehicles from the outer lanes simultaneously merge to the same
position in the middle lane requires special implementation care in a parallel
update scheme. With simultaneous lane changes to the left and right it is
easy to get collisions. Unless one has intentionally planned to incorporate
collisions, this typically leads to states that are overwritten in memory and
cars “disappear.” For a sequential update scheme this problem is simply non-
existent. There may, of course, be other situations that favor a parallel update

1.3 Application Paradigms 7

order. However, this just shows one more time that modeling is a nontrivial
process.

Readers familiar with transport computations and sweep scheduling on
irregular grids [3], a topic that we return to in Section 1.3.2, will know how
important scheduling can be for convergence rates. As we will see, choosing
a good permutation order leads to computation convergence rates order of
magnitudes better than poorly chosen update orders. As it turns out, a par-
allel update scheme would in fact give the slowest convergence rate for this
particular class of problems.

1.3 Application Paradigms

In this section we describe two application and simulation frameworks that
motivated SDS and where SDS-based models are used. The first application
we will look at is TRANSIMS, which is a simulation system used for ana-
lyzing traffic in large urban areas. The second application is from transport
computations. This example will show the significance of sequential update
schedules, and it naturally leads to a general, SDS-based study of optimal
scheduling on parallel computing architectures.

1.3.1 TRANSIMS

TRANSIMS [4–8], an acronym for TRansportation AN alysis SIMulation
System, is a large-scale computer simulation system that was developed at
Los Alamos National Laboratory. This system has been used to simulate
and analyze traffic at a resolution level of individual travelers in large U.S.
metropolitan areas. Examples of such urban areas include Houston, Chicago,
and Dallas/Ft.Worth. TRANSIMS was one of the systems that motivated
the design of SDS. In this section we will give a fairly detailed description of
this simulation system with an emphasis on the car dynamics and the driving
rules. Hopefully, this may also serve to demonstrate some of the strengths of
discrete modeling.

TRANSIMS Overview

To perform a TRANSIMS analysis of an urban area, one needs (1) a popula-
tion, (2) a location-based activity plan for each person for the duration of the
simulation, and (3) a network description of all transportation pathways of
the area that is being analyzed. We will not go into details about how these
data are gathered and prepared. It suffices to say that the data in (1) and
(2) are generated based on extensive surveys and other information sources so
as to be statistically indistinguishable from the available data. The network
representation is essentially a complete description of the real transportation

8 1 What is a Sequential Dynamical System?

network of the given urban area, and it includes roadways, walkways, public
transportation systems, and so on.

The TRANSIMS simulation system is composed of two main modules: the
TRANSIMS router and the cellular automaton-based micro-simulator . The
router translates each activity plan for each individual into a detailed travel
route that can include several modes of travel and transportation. The travel
routes are then passed to the micro-simulator, which is responsible for exe-
cuting the travel routes and takes each individual through the transportation
network so that its activity plan is carried out. This is typically done on a
1-second time scale and in such a way that all constraints imposed on indi-
viduals from traffic driving rules, road signaling, fellow travelers, and public
transportation schedules are respected.

For the first iteration this typically leads to travel times that are too high
compared to real travel times as measured by survey data. This is because too
many routes involve common road segments such as highways, which leads to
congested traffic. In the second pass of the simulation a certain fraction of
the individuals that had too high travel times are rerouted. Their new routes
are handed to the micro-simulator, which is then run again. This iterative
feedback loop is repeated until one has realistic and acceptable travel times.
Note that the fraction of individuals that is rerouted decreases with each
iteration pass.

The TRANSIMS Micro-Simulator

The micro-simulator is constructed as a large, finite dynamical system. In
this section we will show some of the details behind this module. Admittedly,
this is a complex model, and we will make some simplifications. For instance,
TRANSIMS can handle many modes of transportation such as car travel,
public transportation, and walking. We will only consider car dynamics. The
vehicles in TRANSIMS can also have different lengths, but for simplicity we
will only consider “standard” vehicles.

We first need to explain the road network representation. The initial de-
scription of the network is in terms of links and nodes. Intersections are typical
examples of nodes, but there are also nodes where there are changes in road
structure such as at a lane merging point. A link is a road segment between
two nodes. A link has a certain length, a certain number of lanes in each traffic
direction, and possibly one or more lanes for merging and turning. For each
node there are a description of lane-link connectivity across nodes and also a
description of traffic signals if there are any. All other components found in
realistic road networks such as reversible lanes and synchronized signals are,
of course, handled too, but again, going into these details is beyond the point
of this overview.

This network description is turned into a cell-network description as fol-
lows. Each lane of every link is discretized into cells. A cell corresponds to a
7.5-meter lane segment, and a cell can have up to four neighbor cells (front,

1.3 Application Paradigms 9

Fig. 1.6. A TRANSIMS cell-network description. The figure shows a link with two
lanes in both directions. Cell i and its immediate neighbor cells are depicted in the
lower link.

Fig. 1.7. Link and lane connectivity across a TRANSIMS node.

left, back, and right) as shown in Figure 1.6. A cell can hold at most one
vehicle. Link connectivity is specified across nodes as in Figure 1.7.

The vehicle dynamics is specified as follows. First, vehicles travel with
discrete velocities that are either 0, 1, 2, 3, 4, or 5 measured in cells per update
time step. Each update time step brings the simulation 1 second forward in
time, and thus the maximal speed of vmax = 5 corresponds to an actual speed
of 5 × 7.5 m/s = 37.5 m/s = 135 kmh, or approximately 83.9 mph.

The micro-simulator executes three functions for each vehicle in every up-
date: (1) lane changing, (2) acceleration, and (3) movement. In the description
here we have ignored intersections and we only consider straight road segments
such as highways. This can be implemented through four cellular automata
(see Chapter 2):

Φ1 — lane change decision,
Φ2 — lane change execution,
Φ3 — acceleration/deceleration,
Φ4 — movement.

10 1 What is a Sequential Dynamical System?

These four cellular automata maps are applied in the order they are listed.
The maps Φ1 and Φ2 that take care of lane changing are, of course, only
applied when there is more than one lane in a given direction. For this reason
we start with the acceleration/deceleration pass, which is always performed.

Velocity Update/Acceleration

A vehicle has limited positive acceleration and can increase its speed by at
most 1 cell per second per second. However, if the road ahead is blocked, the
vehicle can come to a complete stop in 1 second. The map that is applied to
each cell i that has a car can be specified as the following two-step sequence:

1. v := min(v + 1, vmax, Δ(i)) (acceleration),
2. if [UniformRandom() < pbreak] and [v > 0], then v := v − 1 (stochastic

deceleration).

Here Δ(i) is free space in front of cell i measured in cells, and pbreak is a
parameter. The reason for including stochastic deceleration is that this gives
driving behavior that matches real traffic patterns significantly better than
what is the case if this element is ignored. All the cells in the network are
updated synchronously in this pass.

Position Update/Movement

The update pass that handles vehicle movement takes place after the acceler-
ation pass. It is executed as follows:

If cell i has a car with velocity v > 0, then the state of cell i is set to zero.
If cell i is empty and if there is a car δ(i) cells behind cell i with velocity
δ(i) + 1, then this car and its state are assigned to the state of cell i.
In all other cases the cell states are updated using the identity update.

Here δ(i) denotes the free space measured in cells behind cell i. The nature
of the velocity update pass guarantees that there will be no collisions. Again,
all the cells are updated synchronously.

Lane Changing

With multilane traffic, vehicles can change lanes. This is more complex and
requires that we specify rules for passing. Here we will make it simple and
assume that vehicles can pass other vehicles on both the left and the right
sides. The lane changes are done in parallel, and this requires some care. We
want to avoid having two vehicles change lanes with a common target cell.
The way this is handled in TRANSIMS is to only allow lane changes to the
left (right) on odd (even) time steps.

1.3 Application Paradigms 11

In order to describe the lane change in terms of SDS or cellular automata,
we need two stages: the lane-changing decision and the lane-changing execu-
tion. This is because an SDS-map or a cellular automaton rule is only allowed
to change the state of the cell that it is applied to. Of course, in an implemen-
tation these two stages can easily be combined with no change in semantics.

Lane Change Decision. The case where the simulation time t is an odd
integer is handled as follows: If cell i has a car and a left lane change to cell
j is desirable (Δ(i) < vmax and Δ(j) > Δ(i), and thus the car can go faster
in the target lane) and permissible (δ(j) > vmax so that there is sufficient
space for a safe lane change), set this cell’s lane change state to 1 and to 0
otherwise. In all other circumstances the cell’s lane change state is set to 0.
The situation for even-numbered time steps is handled analogously with left
and right interchanged.

Lane Change: The case where the simulation time t is an odd integer is
handled as follows: If there is a car in cell i and this cell’s lane change state
is 1, then set the state of cell i to zero. Otherwise, if there is no car in cell
i, and if the right neighbor cell j of cell i has its lane change state set to 1,
then set the state of cell i to the state of cell j. In all other circumstances the
cell state is updated using the identity map. The case of even time steps t is
handled in the obvious manner with left and right interchanged.

Some of the update rules are illustrated in Figure 1.8 for the cell occupied
by the darker vehicle. Here δ = Δ = 1 and we have Δ(l) = 2 and Δ(r) = 4,
while δ(l) and δ(r) are at least 5. Here l and r refer to the left and right cell
of the given cell containing the darker vehicle, respectively.

Fig. 1.8. Lane changing in the TRANSIMS cell network.

The overall computation performed by the micro-simulator update pass is
the composition of the four cellular automata maps given above and is given
by

Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1 . (1.3)

Notes

The basic structure of sequential dynamical systems is clearly present in the
TRANSIMS micro-simulator. There is a graph where vertices correspond to
cells. Two vertices v and v′ are connected if their lane numbers differ by at
most one and if their position along the road differs by at most vmax cells.

12 1 What is a Sequential Dynamical System?

Each cell has a state that includes a vehicle ID, velocity, and a lane-changing
state. There is a collection of four different functions for each vertex that are
used for the four different update passes.

Although the four update passes are executed sequentially, we note that
there is no sequential update order within each update pass — they are all
done synchronously. So how does this relate to sequential dynamical systems?
To explain this, consider the road configuration shown in Figure 1.9. In Fig-
ure 1.9 a line of vehicles is waiting for the light to turn from red to green at
a traffic light. Once the light turns green, we expect the first row of vehicles
to start, followed by a short delay, then the next row of vehicles starts, and
so on. If we use a front-to-back (as seen from the traffic light) sequential up-
date order, we see that all the vehicles start moving in the first update pass.
This perfect predictive behavior is not realistic. If we use a back-to-front se-
quential update order, we see that this more resembles what is observed in
realistic traffic. Here is the key observation: For this configuration the parallel
update scheme gives dynamics that coincides precisely with the back-to-front
sequential update order dynamics. Thus, even though the implementation of
the model employs a synchronous update scheme, it has the semantics of a
sequential model. This also serves to point out that modeling and implemen-
tation are separate issues.

Fig. 1.9. A line of vehicles waiting for a green light at a traffic light.

Finally, we remark that this is a cell-based description or model of the
traffic system. It is also possible to formulate this as a vehicle-based model.
However, the cell-based formulation has the large advantage that the neigh-
borhood structure of each cell is fixed. This is clearly not the case in a vehicle-
based description where vertices would encode vehicles. In this case the graph
Y would be dynamic.

Discrete Modeling

As we have just seen, TRANSIMS is built around a discrete mathematical
model. In applied mathematics, and in science in general, continuous models
are much more common. What follows is a short overview of why TRANSIMS
uses discrete models and what some application features are that favor such
models.

It is an understatement to say that the PDE- (partial differential equa-
tions) based approach to mathematical modeling has proved itself as an
efficient method for both qualitative and quantitative analysis. Using, for

1.3 Application Paradigms 13

example, conservation laws, one can quickly pass from a system description
to a mathematical description based on PDEs or integral equations. For the
resulting systems there are efficient and well-established mathematical results
and techniques that allow one to analyze the systems both analytically and
numerically. This works very well for describing a wide range of phenomena
such as diffusion processes, fluid flows, or anywhere where the scales or di-
mensions warrant the use of such a macroscopic approach.

Conservation laws and PDEs have been used to study models of traffic
configurations [9]. These models can capture and predict, for example, the
movement of traffic jams as shocks in hyperbolic PDEs. However, for describ-
ing realistic road systems such as those encountered in urban traffic at the
level of detail found in TRANSIMS, the PDE approach is not that useful or
applicable. In principle, even if one could derive the set of all coupled PDEs
describing the traffic dynamics of a reasonably sized urban area, there is, for
example, no immediate way to track the movement of specific individuals.

The interaction between vehicles is more naturally specified in terms of
entity functions as they occur in SDS and cellular automata. As pointed out
in [10], we note that SDS- or cellular automata-based models can be imple-
mented more or less directly in a computational model or computer program.
This is in contrast to the PDE approach, which typically starts by deriving a
PDE or integral formulation of the phenomenon based on various hypotheses.
This is followed by a space and time discretization (i.e., model approximation)
and implementation using various numerical algorithms and error bounds to
compute the final “answer.” This final implementation actually has much in
common with an SDS or cellular automaton model: There is a graph (the
discretization grid), there are states at vertices, and there is a local function
at each vertex.

Some other advantages of discrete models are that they readily map to
software and hardware, they typically scale very well, and they can be imple-
mented on specialized and highly efficient hardware such as in [11].

This discussion on modeling is not meant to imply that discrete models
are “better” than continuous models. The purpose is simply to point out that
there are many phenomena or systems that can be described more naturally
and more efficiently through discrete models than through continuous models.
In the next section we describe a class of systems that naturally incorporate
the notion of update order.

1.3.2 Task Scheduling and Transport Computations

A large class of computational problems has the following structure. The
overall task has a collection T of N subtasks τi that are to be executed.
The subtasks are ordered as vertices in a directed acyclic graph G, and a
task τi cannot be executed unless all tasks that precede it in G have been
executed. The subtasks are executed on a parallel computing architecture
with M processors where each processor can execute zero or one subtask

14 1 What is a Sequential Dynamical System?

per processor cycle. Each subtask is assigned to a processor,2 and the goal
is to minimize the overall number of processor cycles required to complete
the whole task by ordering the subtasks “appropriately” on their respective
processors.

To illustrate the problem, consider the directed acyclic graph in Fig-
ure 1.10. The overall task has four subtasks, and there are two processors.
We have assigned τ1 and τ2 to processor 1 and τ3 and τ4 to processor 2. With

Fig. 1.10. Four tasks to be executed on two processors constrained by the directed
acyclic graph shown.

our assignment it is easy to see that tasks τ3 and τ4 can be ordered any way
we like on processor 2 since these tasks are independent. But it is also clear
that executing τ3 prior to τ4 allows us to cut the total number of processor
cycles needed by one since processor 1 can be put to better use in this case.

τ1,τ2 τ4,τ3
Pass 1 1 —
Pass 2 — 4
Pass 3 — 3
Pass 4 2 —

τ1,τ2 τ3,τ4
Pass 1 1 —
Pass 2 — 3
Pass 3 2 4
Pass 4 — —

Admittedly, this is a trivial example. However, as the number of tasks
grows and the directed acyclic graph becomes more complex, it is no longer
obvious how to order the tasks. In the next section we will see how this problem
comes up in transport computations on irregular grids.

Transport Computations

Here we show an example of how the scheduling problem arises in trans-
port computations . We will also show how the entire algorithm used in the
transport computation can be cast as an SDS. Our description is based on [3].
Without going into too many details we can describe the transport problem to
be solved as follows. We are given some three-dimensional volume or region of
space that consists of a given material. Some form of transport (e.g., photons

2 Here we assume that the processor assignment is given. We have also ignored
interprocess communication costs.

1.3 Application Paradigms 15

or radioactive radiation) is passing through the volume and is being partially
absorbed. The goal could be to find the steady-state levels throughout the
volume.

In one numerical algorithm that is used to solve this problem the region
is first partitioned into a set of tetrahedra {T1, . . . , Tr}. Since the geometry
of the volume can be arbitrary, there is generally no regularity in the tetrahe-
dral partition or mesh. The numerical method used in [3] to solve the problem
uses a set of three-dimensional vectors D = {D0, . . . , Dk} where each Di is
a unit vector in R

3. These vectors are the sweep directions. Each sweep di-
rection Di induces a directed acyclic graph Gi over the tetrahedra as shown
in Figure 1.11.3 Two tetrahedra Ta and Tb that have a common face will be
connected by a directed edge in G. If Ta occur “before” Tb as seen from the
direction Di, then the edge is (Ta, Tb). Otherwise the edge is (Tb, Ta). Each

Fig. 1.11. Induced directed acyclic graphs in transport computations.

iteration of the numerical algorithm makes a pass over all the tetrahedra for
all directions at each execution step. The function f that is evaluated for
a tetrahedron and a direction is basically computing fluxes over the bound-
aries and absorption amounts. The algorithm stops when consecutive itera-
tions give system states that are close enough as measured by some suitable
metric.

For each direction Di the tetrahedra are updated in an order consistent
with the directed acyclic graph Gi induced by the given sweep direction
Di. This is intuitively what one would do in order to have, e.g., radiation
pass through the volume efficiently in the numerical algorithm. If we were
to update the tetrahedron states in parallel, we would expect slower con-
vergence rates. (Why?) If we now distribute the tetrahedra on a set of M
processors, we see that we are back at the situation we described initially on
scheduling.

3 This is almost true. Some degenerate situations can, in fact, give rise to cycles.
These cycles will have to be broken so that we can get an acyclic directed graph.

16 1 What is a Sequential Dynamical System?

It should be clear that one pass of the numerical algorithm for a given
direction Di corresponds precisely to the application of an SDS-map [FY , π]
where Y is the graph obtained from Gi by making Gi undirected, and π
is a linear order or permutation compatible with the directed acyclic graph
Gi induced by Di. In general, there are several permutations π compatible
with Di. As we saw in the previous section, different linear orders may lead
to different execution times. We thus have an optimization problem for the
computation time of the algorithm where the optimization is over all linear
orders compatible with Gi. In Chapters 3 and 4 we will introduce the no-
tion of update graph. The component structure of this graph, which is also
central to the theory and study of SDS, is precisely what we need to un-
derstand for this optimization problem. We note that the optimization prob-
lem can be approached in the framework of evolutionary optimization; see
Section 8.3.

1.1. How does the numerical Gauss–Seidel algorithm relate to SDS and the
transport computation we just described? If you are unfamiliar with this nu-
merical algorithm you may want to look it up in [12] or in a numerical analysis
text such as [13]. [2-]

1.4 SDS: Characteristics and Research Questions

Having constructed SDS from a graph, a sequence of vertex functions, and
a word, it is natural to ask how these three quantities are reflected in the
SDS-map and its phase space. Of course, it is also natural to ask what moti-
vated the SDS axiomatization itself, but we leave that question for the next
section.

1.4.1 Update Order Dependencies

A unique aspect of SDS is the notion of update order, and one of the first
questions we addressed in the study of SDS was when is [FY , w] = [FY , w

′]?
In other words, if we keep the graph and the functions fixed, when do two
different update orders yield the same composed map? In general, the an-
swer to this question depends on the graph, the functions, and the up-
date order. As an example of how the update order may affect the SDS-
map, consider the phase spaces of the four SDS-maps [NorCirc4 , (0, 1, 2, 3)],
[NorCirc4 , (3, 2, 1, 0)], [NorCirc4 , (0, 1, 3, 2)], and [NorCirc4 , (0, 2, 1, 3)], which
are displayed in Figure 1.12. It is clear from Figure 1.12 that the phase space
of [NorCirc4 , (0, 1, 2, 3)] is different from all the other phase spaces. In fact,
no two phase spaces are identical. However, it is not hard to see that the
phase spaces of [NorCirc4 , (0, 1, 2, 3)] and [NorCirc4 , (3, 2, 1, 0)] are the same if
we ignore the states or labels. In this case we say that the two SDS-maps are
dynamically equivalent.

1.4 SDS: Characteristics and Research Questions 17

Fig. 1.12. Phase spaces for SDS-maps over the graph Circ4 where all functions are
given by nor3. The update orders are (0, 1, 2, 3) (upper left), (3, 2, 1, 0) (upper right),
(0, 1, 3, 2) (lower left), and (0, 2, 1, 3) (lower right).

In Chapter 4 we will show that if the update order is a permutation of
the vertices of Circ4, then we can create at most 14 different SDS-maps of
the form [NorCirc4 , π] by varying the update order π. Moreover, we will show
that of these 14 different SDS-maps, there are only 3 non-isomorphic phase
space structures, all of which are represented in Figure 1.12. We leave the
verification of all these statements as Problem 1.2.

1.2. (a) Give a simple argument for the fact that [NorCirc4 , (0, 1, 3, 2)] and
[NorCirc4 , (0, 3, 1, 2)] are identical as functions. Does your argument depend on
the particular choice of nor as vertex function? (b) Prove that the phase spaces
of the SDS-maps [NorCirc4 , (0, 1, 2, 3)] and [NorCirc4 , (3, 2, 1, 0)] are identical
as unlabeled, directed graphs. [1+]

1.4.2 Phase-Space Structure

A question of a different character that often occurs is the following: What
are the states x = (xv)v such that

[FY , w](x) = x ?

Such a state is called a fixed state or a fixed point . Once a system reaches
a fixed point, it clearly will remain there. A fixed point is an example of an
attractor or invariant set of the system. More generally, we may ask for states
x such that

[FY , w]k(x) = x , (1.4)

18 1 What is a Sequential Dynamical System?

where [FY , w]k(x) denotes the k-fold composition of the SDS-map [FY , w]
applied to x. Writing φ = [FY , w], the k-fold composition applied to x is
defined recursively by φ1(x) = φ(x) and φk(x) = φ(φk−1(x)). The points x
that satisfy (1.4) are the periodic points of [FY , w]. Fixed points and periodic
points are of interest since they represent long-term behavior of the dynamical
system. As a particular example, consider SDS over the graph Circ6 where
each vertex function fv is the majority function majority3 : {0, 1}3 −→ {0, 1}.
This function is given by the function table below. Note that the indices are
computed modulo 6.

(xi−1xixi+1) 111 110 101 100 011 010 001 000
majority3 1 1 1 0 1 0 0 0

It is easy to see that the majority function is symmetric. We now ask
for a characterization of all the fixed points of such a permutation SDS. As
we will show later, the fixed points of this class of SDS do not depend on the
update order. It turns out that the labeled graph in Figure 1.13 fully describes
the fixed points. As we will see in Chapter 5, the vertex labels of this graph

Fig. 1.13. Fixed points of majority-SDS-map over the graph Circ6.

correspond to all possible local fixed points, and a closed cycle of length n
corresponds to a unique global fixed point of the SDS-map [MajorityCircn

, π].

1.5 Computational and Algorithmic Aspects

Although the focus of this book is on the mathematical properties of SDS, we
want to point out that there is also a computational theory for SDS and finite
dynamical systems. To do this topic justice would require a book on its own,
and we will not pretend to attempt that here. Nevertheless, we would like to
give a quick view of some of the problems and questions that are studied in
this area.

One of the central questions is the reachability problem [14]. In its basic
form it can be cast as follows: We are given system states x and y and an
SDS-map φ = [FY , π]. Starting from the system state x, can we reach the
system state y? In other words, does there exist an integer r > 0 such that

(000)

(001) (100)

(011) (110)

(111)

1.5 Computational and Algorithmic Aspects 19

φr(x) = y? Of course, one way to find out is to compute the orbit of x and
check if it includes y, but even in the simplest case where we have states in
{0, 1} the running time of this (brute-force) algorithm is exponential in the
number of graph vertices n = |v[Y]|. The worst-case scenario for this is when
all system states are on one orbit and y is mapped to x. For this situation
and with binary states we would need to compute 2n − 1 iterates of φ before
we would get to y. A related problem is the fixed-point reachability problem,
in which case we are given a system state x and the question is if there exists
an integer r > 0 such that φr+1(x) = φr(x).

We would, of course, like to devise algorithms that allow us to answer
these questions more efficiently than by the brute-force approach above. So
are there more efficient algorithms? Yes and no. The reachability problem is
computationally intractable4 even in the special case of SDS with Boolean
symmetric vertex functions. So in the general case we are left with the brute-
force approach. However, more efficient algorithms can be constructed if we,
for example, restrict the classes of graphs and functions that are considered.
For instance, for SDS induced by nor vertex functions [see Eq. (4.9)] it is
known that the reachability problem can be solved by an algorithm with
polynomial running time [14]. The same holds for the fixed-point reachability
problem in the case of linear vertex functions over a finite field or a semi-ring
with unity. We have also indicated efficient ways to determine and count fixed
points in Section 1.4.2 when we have restrictions on the classes of graphs that
we consider.

Other computational problems for SDS include the permutation-existence
problem [16]. In this situation we are given states x and y, a graph Y , and
vertex functions (fv)v. Does there exist a permutation (i.e., update order)
π such that [FY , π] maps x to y in one step? That is, does there exist an
SDS update order π such that [FY , π](x) = y? Naturally, we would also like
to construct efficient algorithms to answer this if possible. The answer to
this problem is similar to the answer for the reachability problem. For SDS
with Boolean threshold vertex functions (see Definition 5.11), the problem is
NP-complete, but for nor vertex functions it can be answered efficiently. Note
that the reachability problem can be posed for many other types of dynamical
systems than SDS, but the permutation existence problem is unique to SDS.

The last computational problem we mention is the predecessor-existence
problem [16]: Given a system state x and an SDS-map φ = [FY , π], does
there exist a system state z such that φ(z) = x? Closely related to this is the
#predecessor problem, which asks for the number of predecessors of a system
state x. This problem has also been studied in the context of cellular automata
(see Section 2.1) in, for example, [17]. Exactly as for the previous problems
the predecessor existence problem is NP-complete in the general case, but can
be solved efficiently for restricted classes of vertex functions and/or graphs.
Examples include SDS where the vertex functions are given by logical And

4 The problem is PSPACE-complete; see, for example, [15].

20 1 What is a Sequential Dynamical System?

functions and SDS where the graphs have bounded tree-width [16]. Locating the
combined function/graph complexity boundary for when such a problem goes
from being polynomially solvable to NP-complete is an interesting research
question.

For more results along the same lines and for results that pertain to
computational universality, we refer the interested reader to, for exam-
ple, [14, 16, 18–20].

1.6 Summary

The notion of geographically or computationally distributed systems of inter-
acting entities calls for models based on dynamical systems over graphs. The
fact that real applications typically have events or decisions that trigger other
events and decisions makes the use of an update sequence a natural choice.
The update order or scheduling component is an aspect that distinguishes
SDS from most other models, some of which are the topic of the next chapter.

A Note on the Problems

You will find exercises throughout the book. Many of them come with full
solutions, and some include comments about how they relate to open problems
or to possible research directions. Inspired by [21] we have chosen to grade the
difficulty level of each problem from 1 through 5. A problem at level 1 should
be fairly easy, whereas the solution to a problem marked 5 could probably
form the basis for a research article.

Some of the exercises are also marked by a “C.” This is meant to indicate
that some programming can be helpful when solving these problems. Com-
puters are particularly useful in this field since in most cases the state values
are taken from some small set of integers and we do not have to worry about
round-off problems. The use of computers allows one to explore a lot more of
the dynamics, and it can be a good source for discovering general properties
that can be turned into proofs. Naturally, it can also be an effective method
for discovering counterexamples. In our work we have used everything from
C++ to Maple, Mathematica, and Matlab. Although we do not have any par-
ticular recommendation for what tools to use, we do encourage you to try the
computational problems.

Problems

1.3. Coupled map lattices (CML) [22,23] are examples of “classical” discrete
dynamical systems that have been used to study spatio-temporal chaos. In
this setting we have n lattice sites (vertices) labeled 0 through n−1, and each

1.6 Summary 21

site i has a state xi ∈ R. Moreover, we have a map f : R −→ R. In, e.g., [22]
the state of each site is updated as

xi(t+ 1) = (1 − ε)f(xi(t)) + (ε/2)
[
f(xi+1(t) + f(xi−1(t))

]
, (1.5)

where ε ≥ 0 is a coupling parameter , and where site labels i and i+n are iden-
tified. This can easily be interpreted as a discrete dynamical system defined
over a graph Y . What is this graph? [1+]

22 1 What is a Sequential Dynamical System?

Answers to Problems

1.1. In their basic forms both the Gauss–Seidel and the Gauss–Jacobi algo-
rithms attempt to solve the matrix equation Ax = b by iteration. For simplic-
ity let us assume that A is a real n × n matrix, that x = (x1, . . . , xn) ∈ R

n,
and that (x0

1, . . . , x
0
n) is the initial value in the iteration. Whereas the Gauss–

Jacobi scheme successively computes

xk
i =

⎛

⎝bi −
∑

j �=i

aijx
k−1
j

⎞

⎠ /aii ,

the Gauss–Seidel scheme computes

xk
i =

⎛

⎝bi −
∑

j<i

aijx
k
j −

∑

j>i

aijx
k−1
j

⎞

⎠ /aii .

In other words, as one pass of the Gauss–Seidel algorithm progresses, the
new values for xk

i are immediately used in the later stages of the pass. For
the Gauss–Jacobi scheme only the old values xk−1

i are used. The Gauss–
Seidel algorithm may therefore be viewed as a real-valued SDS-map over the
complete graph with update order (1, 2, . . . , n).

1.2. (a) The two update orders differ precisely by a transposition of the two
consecutive vertices 1 and 3. Since {1, 3} is not an edge in Circ4, there is no
way that the new value of x1 can influence the update of the state x3, or
vice versa. It is not specific to the particular choice of vertex function. (b)
The map γ : {0, 1}4 −→ {0, 1}4 given by γ(s, t, u, v) = (v, u, t, s) is a bijection
that maps the phase space of [NorCirc4 , (0, 1, 2, 3)] onto the phase space of
[NorCirc4 , (3, 2, 1, 0)]. This means that the two phase spaces look the same up
to relabeling. We will return to this question in Chapter 4.

1.3. The new value of a site is computed based on its own current value and
the current value of its two neighbors. Since site labels are identified modulo
n, the graph Y is the circle graph on n vertices (Circn).

In later work as in, for example, [23] the coupling scheme is more liberal
and the states are updated as

xi(t+ 1) = (1 − ε)f(xi(t)) +
ε

N

N∑

k=1

f(xk(t)),

where k is understood to run over the set of neighbors of site i. As you can
see, this corresponds more closely to a real-valued discrete dynamical system
where the coupling is defined by a graph on n vertices. In [24] real-valued
discrete dynamical systems over arbitrary finite directed graphs are studied.
We will discuss real-valued SDS in Section 8.5.

2

A Comparative Study

As we pointed out in the previous chapter, several frameworks and construc-
tions relate to SDS, and in the following we present a short overview. This
chapter is not intended to be a complete survey — the list of frameworks that
we present is not exhaustive, and for the concepts that we discuss we only pro-
vide enough of an introduction to allow for a comparison to SDS. Specifically,
we discuss cellular automata, random Boolean networks, and finite-state ma-
chines. Other frameworks related to SDS that are not discussed here include
interacting particle systems [25] and Petri nets [26].

2.1 Cellular Automata

2.1.1 Background

Cellular automata, or CA1 for short, were introduced by von Neumann and
Ulam around 1950 [27]. The motivation for CA was to obtain a better for-
mal understanding of biological systems that are composed of many identical
components and where each component is relatively simple, at least as com-
pared to the full system. The design and structure of the first computers were
another motivation for the introduction of CA.

The global dynamics or pattern evolution of a cellular automaton is the
result of interactions of its components or cells. Questions such as to which
patterns can occur for a given CA (computational universality) and which CA
that, in an appropriate sense, can be used to construct descriptions of other
CA (universal construction) were central in the early phases [27,28]. Cellular
automata have been studied from a dynamical systems perspective (see, for
example, [29–33]), from a logic, automata, and language theoretic perspective
(e.g., [28, 34, 35]), and through ergodic theory and in probabilistic settings

1 Just as for SDS we use the abbreviation CA for both the singular and plural
forms. It will be clear from the context which form is meant.

24 2 A Comparative Study

(e.g., [36–39]). Applications of cellular automata can be found, for example,
in the study of biological systems (see [40]), in hydrodynamics in the form
of lattice gases (see, for example, [41–43]), in information theory, and in the
construction of codes [44], and in many other areas. For further details and
overviews of the history and theory of CA, we refer to, e.g., [18, 45–47].

2.1.2 Structure of Cellular Automata

Cellular automata have many features in common with SDS. There is an
underlying cell or lattice structure where each lattice point or cell v has a
state state xv taken from some finite set. Each lattice point has a function
defined over a collection of states associated to nearby lattice points. As a
dynamical system, a cellular automaton evolves in discrete time steps by the
synchronous application of the cell functions.

Notice that the lattice structure is generally not the same as the base graph
of SDS. As we will explain below, the notion of what constitutes adjacent
vertices is determined by the lattice structure and the functions. Note that in
contrast to SDS it is not uncommon to consider cellular automata over infinite
lattices.

One of the central ideas in the development of CA was uniform structure,
and in particular this includes translation invariance. As a consequence of this,
the lattice is typically regular such as, for example, Z

k for k ≥ 1. Moreover,
translation invariance also implies that the functions fv and the state spaces
Sv are the same for all lattice points v. Thus, there are a common function f
and a common set S such that fv = f and Sv = S for all v. Additionally, the
set S usually has some designated zero element or quiescent state s0. Note
that in the study of CA dynamics over infinite structures like Z

k, one considers
the system states2 x = (xv)v where only a finite number of the cell states xv

are different from s0. Typically, S = {0, 1} and s0 = 0.
Each vertex v in Y has a neighborhood n[v], which is some sequence of

lattice points. Again for uniformity reasons all the neighborhoods n[v] exhibit
the same structure. In the case of Z

k the neighborhood is constructed from
a sequence N = (d1, . . . , dm) where di ∈ Z

k, and each neighborhood is given
as n[v] = v + N = (v + d1, . . . , v + dm). A global CA state, system state,
or CA configuration is an element x ∈ SZ

k

. For convenience we write x[v] =
(xv+d1 , . . . , xv+dm) for the subconfiguration associated with the neighborhood
n[v].

Definition 2.1 (Cellular automata over Z
k). Let S,N , and f be as above.

The cellular automaton with states in S, neighborhood N , and function f is
the map

Φf : SZ
k

−→ SZ
k

, Φf ((x))v = f(x[v]). (2.1)

2 For cellular automata a system state x = (xv)v is usually called a configuration.

2.1 Cellular Automata 25

In other words, the cellular automaton dynamics results from the synchronous
or parallel application of the maps f to the cell states xv.

We can also construct CA over finite lattices. One standard way to do this
is by imposing periodic boundary conditions . In one-dimension we can achieve
this by identifying vertices i and i + n in Z for some n > 1. This effectively
creates a CA over Z/nZ. Naturally we can extend this to higher dimensions,
in which case we would consider k-dimensional tori.

Another way to construct a CA over a finite structure is through zero
boundary conditions . In one-dimension this means we would use the line graph
Linen as lattice and add two additional vertices at the ends and fix their states
to zero; see Example 2.2.

Example 2.2 (One-dimensional CA). This example shows the three different
types of graph or grid structures for one-dimensional CA that we discussed in
the text. If we use the neighborhood structure given by N = (−1, 0, 1), we see
that to compute the new state for a cell v the map f only takes as arguments
the state of the cell v and the states of the nearest neighbors of v. For this
reason this class of maps is often referred to as nearest-neighbor rules. The
corresponding lattices are shown in Figure 2.1. 		

Fig. 2.1. From left to right: the lattice of a CA in the case of (a) Z, (b) Z/5Z with
periodic boundary conditions, and (c) Z/5Z with zero boundary conditions.

Two of the commonly used neighborhood structures N are the von Neu-
mann neighborhood and the Moore neighborhood . These are shown in Fig-
ure 2.2. For Z

2 the von Neumann neighborhood is

N = ((0, 0), (−1, 0), (0,−1), (1, 0), (0, 1)) .

The radius of a one-dimensional CA rule f with neighborhood defined by N
is the norm of the largest element of N . The radius of the rule in Example 2.2
is therefore 1.

We see that the lattice and the function of a cellular automaton give us
an SDS base graph Y as follows. For the vertices of Y we take all the cells. A
vertex v is adjacent to all vertices v′ in n[v]. If v itself is included in n[v], we
make the convention of omitting the loop {v, v}.

In analogy to SDS, one central goal of CA research is to derive as much
information as possible about the global dynamics of the CA map Φf based
on known, local properties such as the map f and the neighborhood structure.

26 2 A Comparative Study

Fig. 2.2. The von Neumann neighborhood (left) and the Moore neighborhood
(right) for an infinite two-dimensional CA.

The phase space of a CA is the directed graph with all possible configurations
as vertices, and where vertices x and y are connected by a directed edge (x, y)
if Φf (x) = y. Even in the case of CA over finite lattices, it is impractical to
display the whole phase space, and space-time diagrams (see Section 4.1) are
often used to visualize certain orbits or trajectories.

Example 2.3. The CA rule f90 is given by f90(xi−1, xi, xi+1) = xi−1 + xi+1

modulo 2. This linear function has been studied extensively in, for exam-
ple, [32]. In Figure 2.3 we have shown two typical space-time diagrams for the
CA with local rule f90 over the lattice Circ512. 		

Fig. 2.3. Space-time diagrams for CA with cell function f90. In the left diagram
the initial configuration contains a single state that is 1. In the right diagram the
initial configuration was chosen at random.

CA differ from SDS in several ways. For instance, for CA the graph Y ,
which is derived from the lattice and neighborhood n[v], is regular and trans-
lation invariant, whereas the graph of an SDS is arbitrary, although finite.
Furthermore, CA have a fixed function or rule, associated to every vertex,
while SDS have a vertex-indexed family of functions. Perhaps most impor-
tantly, CA and SDS differ in their respective update schemes. As a result, CA
and SDS differ significantly with respect to, for example, invertibility as we
will show in the exercises.

2.1 Cellular Automata 27

In principle one can generalize the concept of CA and consider them over
arbitrary graphs with vertex-indexed functions. One may also consider asyn-
chronous CA. The dynamics of the latter class of CA depends critically on
the particular choice of update order [48].

In the remainder of this section we will give a brief account of some basic
facts and terminology on CA that will be used in the context of SDS.

2.1.3 Elementary CA Rules

A large part of the research on CA has been concerned with the finite and
infinite one-dimensional cases where the lattice is Z/nZ and Z, respectively.
An example of a phase space of a one-dimensional CA with periodic boundary
conditions is shown in Figure 2.1. The typical setting uses radius-1 vertex
functions with binary states. In other words, the functions are of the form
f : F

3
2 −→ F2 where F2 = {0, 1} is the field with two elements. Whether the

lattice is Z or Z/nZ, we refer to this class of functions as the elementary CA
rules and the corresponding global CA maps as elementary CA.

Example 2.4. Let Φf be the CA with local rule f : F
3
2 −→ F2 given by

f(x, y, z) = (1 + y)(1 + z) + (1 + xyz). In this case we see that the state
(1, 0, 1, 1) maps to (1, 1, 1, 0). The phase space of Φf is shown in Figure 2.4.

		

Fig. 2.4. The phase space of the elementary CA of Example 2.4.

Enumeration of Elementary CA Rules

Clearly, there are |F2||F
3
2| = 28 = 256 elementary CA rules. Any such function

or rule f can be specified as in Table 2.1 by the values a0 through a7. We
identify the triple x = (x2, x1, x0) ∈ F

3
2 with the decimal number k = k(x) =

x2 · 22 + x1 · 2 + x0. Let the value of f at x be ak for 0 ≤ k ≤ 7.3 We can then
encode the map f as the decimal number r = r(f) with 0 ≤ r ≤ 255 through
3 In the literature the ai’s are sometimes ordered the opposite way.

28 2 A Comparative Study

(xi−1, xi, xi+1) 111 110 101 100 011 010 001 000

f a7 a6 a5 a4 a3 a2 a1 a0

Table 2.1. Specification of elementary CA rules.

r = r(f) =
7∑

i=0

ai2i . (2.2)

This assignment of a decimal number in {0, 1, 2, . . . , 255} to the rule f was
popularized by S. Wolfram, and it is often referred to as the Wolfram enu-
meration of elementary CA rules [47, 49]. This enumeration procedure can
be generalized to other classes of rules, and some of these are outlined in
Problem 2.2.

Example 2.5. The map parity3 : F
3
2 −→ F2 given by parity3(x1, x2, x3) = x1 +

x2 + x3 with addition modulo 2 (i.e., in the field F2) can be represented by

(xi−1xixi+1) 111 110 101 100 011 010 001 000
parity 1 0 0 1 0 1 1 0

and thus

r(parity3) = 27 + 24 + 22 + 2 = 150 . 		
A lot of work has gone into the study of this rule [32], and it is often referred
to as the XOR function or the parity function. One of the reasons this rule has
attracted much attention is that the induced CA is a linear CA. As a result
all the machinery from algebra and matrices over finite fields can be put to
work [33, 50].

2.1. What is the rule number of the elementary CA rule in Example 2.4?
[1]

Equivalence of Elementary CA Rules

Clearly, all the elementary CA are different as functions: For different elemen-
tary rules f1 and f2 we can always find a system state x such that the induced
CA maps differ for x. However, as far as dynamics is concerned, many of the
elementary rules induce cellular automaton maps where the phase spaces look
identical modulo labels (states) on the vertices. The precise meaning of “look
identical” is that their phase spaces are isomorphic, directed graphs as in
Section 4.3.3. When the phase spaces are isomorphic, we refer to the corre-
sponding CA maps as dynamically equivalent. Two cellular automata Φf and
Φf ′ with states in F2 are dynamically equivalent if there exists a bijection
h : F

n
2 −→ F

n
2 such that

Φf ′ ◦ h = h ◦ Φf . (2.3)

The map h is thus a one-to-one correspondence of trajectories of Φf and Φf ′ .
Alternatively, we may view h as a relabeling of the states in the phase space.

2.1 Cellular Automata 29

Example 2.6. The phase spaces of the elementary CA with local rules 124
and 193 are shown in Figure 2.5. It is easy to check that the phase spaces
are isomorphic. Moreover, the phase spaces are also isomorphic to the phase
space shown in Figure 2.4 for the elementary CA 110. 		

Fig. 2.5. The phase spaces of the elementary CA 124 (left) and 193 (right).

We will next show two things: (1) there at most 88 dynamically non-
equivalent elementary CA, and (2) if we use a fixed sequential permutation
update order rather than a synchronous update, then the corresponding bound
for the number of dynamically non-equivalent systems is 136.

For this purpose we represent each elementary rule f by a binary 8-tuple
(a7, . . . , a0) (see Table 2.1) and consider the set

R = {(a7, a6, a5, a4, a3, a2, a1, a0) ∈ F
8
2} . (2.4)

Rules that give dynamically equivalent CA are related by two types of
symmetries: (1) 0/1-flip symmetries (inversion) and (2) left-right symmetries.
Let γ : R −→ R be the map given by

γ(r = (a7, a6, a5, a4, a3, a2, a1, a0)) = (ā0, ā1, ā2, ā3, ā4, ā5, ā6, ā7), (2.5)

where ā equals 1 + a computed in F2. With the map invn defined by

invn : F
n
2 −→ F

n
2 , invn(x1, . . . , xn) = (x̄1, . . . , x̄n) (2.6)

(note that inv2
n = id), a direct calculation shows that

Φγ(f) = inv ◦ Φf ◦ inv−1 ;

hence, 0/1-flip symmetry yields isomorphic phase spaces for Φf and Φγ(f).
As for left-right symmetry, we introduce the map δ : R −→ R given by

δ(r = (a7, a6, a5, a4, a3, a2, a1, a0)) = (a7, a3, a5, a1, a6, a2, a4, a0) . (2.7)

The Circn-automorphism i �→ n+ 1 − i induces in a natural way the map

revn : F
n
2 −→ F

n
2 , revn(x1, . . . , xn) = (xn, . . . , x1) (2.8)

(note rev2
n = id), and we have

Φδ(f) = rev ◦ Φf ◦ rev−1 .

30 2 A Comparative Study

Example 2.7 (Left-right symmetry). The map defined by f(x1, x2, x3) = x3

induces a CA that acts as a left-shift (or counterclockwise shift if periodic
boundary conditions are used). It is the rule r = (1, 0, 1, 0, 1, 0, 1, 0) and it has
Wolfram encoding 170. For this rule we have δ(r) = (1, 1, 1, 1, 0, 0, 0, 0), which
is rule 240. We recognize this rule as the map f(x1, x2, x3) = x1, which is the
rule that induces the “right-shift CA” as you probably expected. 		

In order to compute the number of non-equivalent elementary CA, we
consider the group G = 〈 γ, δ〉. Since γ ◦ δ = δ ◦ γ and δ2 = γ2 = 1, we have
G = {1, γ, δ, γ ◦ δ} and G acts on R. The number of non-equivalent rules is
bounded above by the number of orbits in R under the action of G and there
are 88 such orbits.

Proposition 2.8. For n ≥ 3 there are at most 88 non-equivalent phase spaces
for elementary cellular automata.

Proof. By the discussion above the number of orbits in R under the action of
G is an upper bound for the number of non-equivalent CA phase spaces. By
the Frobenius lemma [see (3.18)], this number is given by

N =
1
4

∑

η∈G

|Fix(g)| =
1
4
(|Fix(1)| + |Fix(γ)| + |Fix(δ)| + |Fix(γ ◦ δ)|) . (2.9)

We leave the remaining computations to the reader as Problem 2.2. �
2.2. Compute the terms |Fix(1)|, |Fix(γ)|, |Fix(δ)|, and |Fix(γ ◦ δ)| in (2.9)
and verify that you get N = 88. [1]

Note that we have not shown that the bound 88 is a sharp bound. That is
another exercise — it may take some patience.

2.3. Is the bound 88 for the number of dynamically non-equivalent elemen-
tary CA sharp? That is, if f and g are representative rules for different orbits
in R under G, then are the phase spaces of Φf and Φg non-isomorphic as
directed graphs? [3]

Example 2.9. Consider the elementary CA rule numbered 14 and represented
as r = (0, 0, 0, 0, 1, 1, 1, 0). In this case we haveG(r) = {r, γ(r), δ(r), γ◦δ(r)} =
{r14, r143, r84, r214} using the Wolfram encoding. 		
2.4. (a) What is RG (the set of elements in R fixed by all g ∈ G) for the
action of G on the elementary CA rules R in (2.4)?
(b) Do left-right symmetric elementary rules induce equivalent permutation-
SDS? That is, for a fixed sequential permutation update order π, do we get
equivalent global update maps? What happens if we drop the requirement of
a fixed permanent updates order?
(c) What is the corresponding transformation group G′ acting on elementary
rules in the case of SDS with a fixed update order π? How many orbits are
there in this case?
(d) Show that RG = RG′

. [2-C]

2.1 Cellular Automata 31

Other Classes of CA Rules

In addition to elementary CA rules, the following particular classes of CA
rules are studied in the literature: the symmetric rules , the totalistic rules ,
and the radius-2 rules. Recall that a function f : Kn −→ K is symmetric if
for every permutation σ ∈ Sn we have f(σ ·x) = f(x) where σ · (x1, . . . , xn) =
(xσ−1(1), . . . , xσ−1(n)). Thus, a symmetric rule f does not depend on the or-
der of its argument. A totalistic function is a function that only depends on
(x1, . . . , xn) through the sum

∑
xi (taken in N). Of course, over F2 symmet-

ric and totalistic rules coincide. The radius-2 rules are the rules of the form
f : K5 −→ K that are used to map (xi−2, xi−1, xi, xi+1, xi+2) to the new state
x′i of cell i.

In some cases it may be natural or required that we handle the state of a
vertex v differently than the states of its neighbor vertices when we update the
state xv. If the map f used to update the state v is symmetric in the arguments
corresponding to the neighbor states of cell v, we call fv outer-symmetric.

The classes of linear CA over finite fields and general linear maps over
finite fields have been analyzed extensively in, e.g., [32,33,50,51]. Let K be a
field. A map f : Kn −→ K is linear if for all α, β ∈ K and all x, y ∈ Kn we
have f(αx + βy) = αf(x) + βf(Y). A CA induced by a linear rule is itself a
linear map. Linear maps over rings have been studied in [52].

Example 2.10. The elementary CA rule 90, which is given as f90(x1, x2, x3) =
x1 + x3, is outer-symmetric but not totalistic or symmetric. The elementary
CA rule g(x1, x2, x3) = (1 + x1)(1 + x2)(1 + x3), which is rule 1, is totalistic
and symmetric. Note that the first rule is linear, whereas the second rule is
nonlinear. 		

Example 2.11. A space-time diagram of a radius-2 rule is shown in Figure 2.6.
By using the straightforward extension of Wolfram’s encoding to this class
of CA rules, we see that this particular rule has encoding 3283936144, or
(195, 188, 227, 144) in the notation of [53]. 		

In the case of linear CA over Z/nZ, we can represent the CA map through
a matrix A ∈ Kn×n. This means we can apply algebra and finite field theory
to analyze the corresponding phase spaces through normal forms of A. We will
not go into details about this here — a nice overview can be found in [33].
We content ourselves with the following result.

Theorem 2.12 ([33]). Let K be a finite field of order q and let M ∈ Kn×n.
If the dimension of ker(M) is k, then there is a rooted tree T of size qk such
that the phase space of the dynamical system given by the map F (x) = Mx
consists of qn−k cycle states, each of which has an isomorphic copy of T
attached at the root vertex.

In other words, for a finite linear dynamical system over a field, all the
transient structures are identical.

32 2 A Comparative Study

Fig. 2.6. A space-time diagram for the radius-2 CA over Z/1024Z with rule number
3283936144 starting from a randomly chosen initial state.

2.5. Consider the finite linear dynamical system f : F
4
2 −→ F

4
2 with matrix

(relative to standard basis)

M =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 1 1
0 0 1 0

⎤

⎥
⎥
⎦ .

Show that the phase space consists of one fixed point and one cycle of length
three. Also show that the transient tree structures at the periodic points are
all identical. [1]

2.6. Use the elementary CA 150 over Z/nZ to show that the question of
whether or not a CA map is invertible depends on n. (As we will see in
Chapter 4, this does not happen with a sequential update order.) [1+C]

2.7. How many linear, one-dimensional, elementary CA rules of radius r are
there? Give their Wolfram encoding in the case r = 1. [1+]

2.8. How many elementary CA rules f : F
3
2 −→ F2 satisfy the symmetry

condition
f(xi−1, xi, xi+1) = f(xi+1, xi, xi−1)

and the quiescence condition

f(0, 0, 0) = 0 ?

An analysis of the cellular automata induced by these rules can be found in,
e.g., [32, 49]. [1]

2.2 Random Boolean Networks 33

2.2 Random Boolean Networks

Boolean networks (BN) were originally introduced by S. Kauffman [54] as a
modeling framework for gene-regulatory networks. Since their introduction
some modifications have been made, and here we present the basic setup as
given in, e.g., [55–58], but see also [59].

A Boolean network has vertices or genes V = {v1, . . . , vn} and func-
tions F = (f1, . . . , fn). Each gene vi is linked or “wired” to ki genes as specified
by a map ei : {1, . . . , ki} −→ V . The Boolean state xvi of each gene is updated
as

xvi �→ fi(xei(1), . . . , xei(ki)) ,

and the whole state configuration is updated synchronously. Traditionally, the
value of ki was the same for all the vertices. A gene or vertex v that has state 1
is said to be expressed.

A random Boolean network (RBN) can be obtained in the following ways.
First, each vertex vi is assigned a sequence of maps f i = (f i

1, . . . , f
i
li
). At each

point t in time a function f i
t is chosen from this sequence for each vertex at ran-

dom according to some distribution. The function configuration (f1
t , . . . , f

n
t)

that results is then used to compute the system configuration at time t + 1
based on the system configuration at time t. Second, we may consider for a
fixed function fi over ki-variables the map ei : {1, . . . , ki} −→ V to be ran-
domly chosen. That amounts to choosing a random directed graph in which
vi has in-degree ki.

Since random Boolean networks are stochastic systems, they cannot be
described using the traditional phase-space notion. As you may have expected,
the framework of Markov chains is a natural way to capture their behavior.
The idea behind this approach is straightforward and can be illustrated as
follows.

Let 0 ≤ p ≤ 1.0 and let i ∈ Z/nZ be a vertex of an elementary CA (see
the previous section) with update function f and states in {0, 1}. Let f ′ be
some other elementary CA function. If we update vertex i using the function
f with probability p and with function f ′ with probability (1−p) and use the
function f for all other vertices states, we have a very basic random Boolean
network. This stochastic system may be viewed as a weighted superposition
of two deterministic cellular automata. By this we mean the following: If the
state of vertex i is always updated using the map f , we obtain a phase space
Γ , and if we always update the state of vertex i using the function f ′, we
get a phase space Γ̃ . The weighted sum “pΓ + (1 − p)Γ̃” is the directed,
weighted graph with vertices all states of state space, with a directed edge
from x to y if any of the two phase spaces contains this transition. The weight
of the edge (x, y) is p (respective, 1−p) if only Γ (respective, Γ̃) contains this
transition, and 1 if both phase spaces contain the transition. In general, the
weight of the edge (x, y) is the sum of the probabilities of the configurations
that has an associated phase space, which includes this transition. We may

34 2 A Comparative Study

call the resulting weighted graph the probabilistic phase space. The evolution
of the random Boolean network may therefore be viewed as a random walk on
the probabilistic phase space. The corresponding weighted adjacency matrix
directly and naturally encodes the associated Markov chain matrix of the
RBN.

This Markov chain approach is the basis used for the framework of random
Boolean networks as studied by, e.g., Shmulevich and Dougherty [55]. The
following example provides a specific illustration.

Example 2.13. Let Y = Circ3 and, with the exception of f0, let each function
fi be induced by nor3 : F

3
2 −→ F2. For f0 we use nor3 with probability p = 0.4

and parity3 with probability q = 1−p. In the notation above we get the phase
spaces Γ , Γ̃ , and pΓ + (1 − p)Γ̃ as shown in Figure 2.7. 		

Fig. 2.7. The phase spaces Γ , Γ̃ , and pΓ + (1 − p)Γ̃ of Example 2.13.

The concept of Boolean networks resembles several features of SDS. For
instance, an analogue of the SDS dependency graph can be derived via the
maps ei. However, research on Boolean networks focuses on analyzing the
functions, while for SDS the study of graph properties and update orders is of
equal importance. As for sequential update schemes, we remark that aspects
of asynchronous RBN have been studied in [60].

2.3 Finite-State Machines (FSMs)

Finite-state machines (FSM) [61–63] and their extensions constitute another
theory and application framework. Their use ranges from tracking and re-
sponse of weapon systems to dishwasher logic and all the way to the “AI-
logic” of “bots” or “enemies” in computer games. Finite-state machines are
not dynamical systems, but they do exhibit similarities with both SDS and
cellular automata.

Definition 2.14. A finite-state machine (or a finite automaton) is a five-tuple
M = (K,Σ, τ, x0, A) where K is a finite set (the states), Σ is a finite set (the
alphabet), τ : K × Σ −→ K is the transition function, x0 ∈ K is the start
state, and A ⊂ K is the set of accept states.

2.3 Finite-State Machines (FSMs) 35

Thus, for each state x ∈ K and for each letter s ∈ Σ there is a directed
edge (x, xs). The finite-state machine reads input from, e.g., an input tape. If
the finite-state machine is in state x and reads the input symbol s ∈ Σ, it
will transition to state xs. If at the end of the input tape the current state is
one of the states from A, the machine is said to accept the input tape. One
therefore speaks about the set of input tapes or sequences accepted by the
machine. This set of accepted input sequences is the language accepted by M .
An FSM is often represented pictorially by its transition diagram, which has
the states as vertices and has directed edges (x, τ(x, s)) labeled by s.

If the reading of a symbol and the subsequent state transition take place
every time unit, we see that each input sequence σ generates a time series of
states (Mσ(x0, t))t=0. Here Mσ(x0, t) denotes the state at time t under the
time evolution of M given the input sequence σ. The resemblance to finite
dynamical systems is evident.

Example 2.15. In real applications the symbol may come in the form of events
from some input system. A familiar example is traffic lights at a road inter-
section. The states in this case could be all permissible red–yellow–green con-
figurations. A combination of a clock and vehicle sensors can provide events
that are encoded as input symbols every second, say. The transition function
implements the traffic logic, hopefully in a somewhat fair way and in accord
with traffic rules. 		

Our notion of all finite-state machine is often called a deterministic finite-
state machine (DFSM), see, e.g., [61], where one can find in particular the
equivalence of regular languages and finite-state machines.

Problems

2.9. Enumeration of CA rules
How many symmetric CA rules of radius 2 are there for binary states? How
many outer-totalistic CA rules of radius 2 are there over F2? How many outer-
symmetric CA rules of radius r are there with states in Fp, the finite field with
p elements (p prime)? [1+]

2.10. A soliton is, roughly speaking, a solitary localized wave that propa-
gates without change in shape or speed even upon collisions with other solitary
waves. Examples of solitons occur as solutions to several partial differential
equations. In [64] it is demonstrated that somewhat similar behavior occur in
filter automata.

The state space is {0, 1}Z. Let xt denote the state at time t. For a fil-
tered automaton with radius r and rule f the successor configuration to xt is
computed in a left-to-right (sequential) fashion as

xt+1
i = f(xt+1

i−r , . . . , x
t+1
i−1, x

t
i, x

t
i+1, . . . , x

t
i+r).

36 2 A Comparative Study

Argue, at least in the case of periodic boundary conditions, that a filter au-
tomaton is a particular instance of a sequential dynamical system.

Implement this system as a computer program and study orbits starting
from initial states that contain a small number of states that are 1. Use the
radius-3 and radius-5 functions f3 and f5 where fk : F

2k+1
2 −→ F2 is given by

fk(x−k, . . . , x−1, x0, x1, . . . , xk) =

⎧
⎪⎨

⎪⎩

0 if each xi is zero,
k∑

i=−k

xi otherwise,

where the summation is in F2. Note that these filter automata can be simu-
lated by a CA; see [64]. [1+C]

2.3 Finite-State Machines (FSMs) 37

Answers to Problems

2.1. 110.

2.2. Every rule (a7, . . . , a0) is fixed under the identity element, so |Fix(1)| =
256. For a rule to be fixed under γ it must satisfy (a7, . . . , a0) = (ā0, . . . , ā7),
and there are 24 such rules. Likewise there are 26 rules fixed under δ and 24

rules fixed under γ ◦ δ.

2.4. (b) No. The SDS of the left-right rule is equivalent to the SDS of the
original rule but with a different update order. What is the update order
relation? (c) G′ = {1, γ}. There are 136 orbits.

2.6. Derive the matrix representation of the CA and compute its determinant
(in F2) for n = 3 and n = 4.

2.7. 22r+1.

2.8. 25.

2.9. (i) 26 = 64. (ii) 25 · 25 = 210 = 1024. (iii) (22r+1)p.

2.10. Some examples of orbits are shown in Figure 2.8.

Fig. 2.8. “Solitions” in an automata setting. In the left diagram the rule f3 is used,
while in the right diagram the rule f5 is used.

3

Graphs, Groups, and Dynamical Systems

In this chapter we provide some basic terminology and background on the
graph theory, combinatorics, and group theory required throughout the re-
mainder of the book. A basic knowledge of group theory is assumed — a
guide to introductory as well as more advanced references on the topics is
given at the end of the chapter. We conclude this chapter by providing a
short overview of the “classical” continuous and discrete dynamical systems.
This overview is not required for what follows, but it may be helpful in order
to put SDS theory into context.

3.1 Graphs

A graph Y is a four-tuple Y = (v[Y], e[Y], ω, τ) where v[Y] is the vertex set
of Y and e[Y] is the edge set of Y . The maps ω and τ are given by

ω : e[Y] −→ v[Y] , τ : e[Y] −→ v[Y] . (3.1)

For an edge e ∈ e[Y] we call the vertices ω(e) and τ(e) the origin and ter-
minus of e, respectively. The vertices ω(e) and τ(e) are the extremities of e.
We sometimes refer to e as a directed edge and display this graphically as
ω(e) e �� τ(e) .

Two vertices v and v′ are adjacent in Y if there exists an edge e ∈ e[Y]
such that {v, v′} = {ω(e), τ(e)}. A graph Y is undirected if there exists an
involution

e[Y] −→ e[Y], e �→ e, (3.2)

such that e
= e and τ(e) = ω(e), in which case we have ω(e) = τ(e) = τ(e).
We represent undirected graphs by diagrams — two vertices v1 and v2 and
two edges e and e with the property ω(e) = v1 and τ(e) = v2 are represented
by the diagram v1 v2 . For instance, for the four edges e0, e0, e1, and
e1 with ω(e0) = ω(e1) and τ(e0) = τ(e1), we obtain the diagram

40 3 Graphs, Groups, and Dynamical Systems

represents the graph with vertex v = ω(e) = τ(e) and edges e and e. In
the following, and in the rest of the book, we will assume that all graphs are
undirected unless stated otherwise.

A graph Y ′ = (v[Y ′], e[Y ′], ω′, τ ′) is a subgraph of Y if Y ′ is a graph
with v[Y ′] ⊂ v[Y] and e[Y ′] ⊂ e[Y], such that the maps ω′ and τ ′ are the
restrictions of ω and τ . For any vertex v ∈ v[Y] the graph StarY (v) is the
subgraph of Y given by

e[StarY (v)] = {e ∈ e[Y] | ω(e) = v or τ(e) = v},
v[StarY (v)] = {v′ ∈ v[Y] | ∃e ∈ e[StarY (v)] : v′ = ω(e) or v′ = τ(e)} .

We denote the ball of radius 1 around v ∈ v[Y] and the sphere of radius 1
around v by

BY (v) = v[StarY (v)], (3.3)
B′

Y (v) = BY (v) \ {v} , (3.4)

respectively. A sequence of vertices and edges of the form

(v1, e1, . . . , vm, em, vm+1) where ∀ 1 ≤ i ≤ m, ω(ei) = vi, τ(ei) = vi+1

is a walk in Y . If the end points v1 and vm+1 coincide, we obtain a closed walk
or a cycle in Y . If all the vertices are distinct, the walk is a path in Y . Two
vertices are connected in Y if there exists a path in Y that contains both of
them. A component of Y is a maximal set of pairwise connected Y vertices.
An edge e with ω(e) = τ(e) is a loop. A graph Y is loop-free if its edge set
contains no loops. An independent set of a graph Y is a subset I ⊂ v[Y] such
that no two vertices v and v′ of I are adjacent in Y . The set of all independent
sets of a graph Y is denoted I(Y).

A graph morphism1 ϕ : Y −→ Z is a pair of maps ϕ1 : v[Y] −→ v[Z] and
ϕ2 : e[Y] −→ e[Z] such that the diagram

commutes. A graph morphism ϕ : Y −→ Z thus preserves adjacency.

3.1. In light of ϕ2(e) = ϕ2(e), show that if Y is an undirected graph, then
so is the image graph ϕ(Y). [1]

1 Graph morphisms are also referred to as graph homomorphisms in the literature.

ω(e0)
e0

e1

τ(e0) , and the diagram ve

e[Y]
ϕ2

ω×τ

e[Z]

ω×τ

v[Y] × v[Y]
ϕ1×ϕ1 v[Y] × v[Y]

3.1 Graphs 41

A bijective graph morphism of the form ϕ : Y −→ Y is an automorphism of
Y . The automorphisms of Y form a group under function composition. This
is the automorphism group of Y , and it is denoted Aut(Y).

Let Y and Z be undirected graphs and let ϕ : Y −→ Z be a graph mor-
phism. We call ϕ locally surjective or locally injective, respectively, if all the
restriction maps

ϕ|StarY (v) : StarY (v) −→ StarZ(ϕ(v)) (3.5)

are all surjective or all injective, respectively. A graph morphism that is both
locally surjective and locally injective is called a local isomorphism or a cov-
ering .

Example 3.1. The graph morphism ϕ : Y −→ Z shown in Figure 3.1 is surjec-
tive but not locally surjective. 		

Fig. 3.1. The graph morphism ϕ of Example 3.1.

3.1.1 Simple Graphs and Combinatorial Graphs

An undirected graph Y is a simple graph if the mapping {e, e} �→ {ω(e), τ(e)}
is injective. Accordingly, a simple graph has no multiple edges but may contain
loops. Thus, the graph

is a simple graph. An undirected graph Y is a combinatorial graph if

ω × τ : e[Y] −→ v[Y] × v[Y], e �→ (ω(e), τ(e)), (3.6)

is injective. Thus, an undirected graph is a combinatorial graph if and only if
it is simple and loop-free. In fact, we have [65]:

Lemma 3.2. An undirected graph Y is combinatorial if and only if Y con-
tains no cycle of length ≤ 2.

3.2. Prove Lemma 3.2. [1+]

Y = v v

Y = −→ = Z

42 3 Graphs, Groups, and Dynamical Systems

Combinatorial graphs allow one to identify the pair {e, e} and its set of
extremities {ω(e), τ(e)}, which we refer to as a geometric edge. We denote
the set of geometric edges by ẽ[Y], and identify ẽ[Y] and e[Y] for combinato-
rial graphs.2 Every combinatorial graph corresponds uniquely to a simplicial
complex of dimension ≤ 1; see [66].

For an undirected graph Y there exists a unique combinatorial graph Yc

obtained by identifying multiple edges of Y and by removing loops, i.e.,

v[Yc] = v[Y], (3.7)
ẽ[Yc] = {{ω(e), τ(e)} | e ∈ e[Y], ω(e)
= τ(e)} . (3.8)

Equivalently, we have a well-defined mapping Y �→ Yc. Suppose Y is a combi-
natorial graph and ϕ : Y −→ Z is a graph morphism. Then, in general, ϕ(Y)
is not a combinatorial graph; see Example 3.5.

Example 3.3. Figure 3.2 shows two graphs. The graph on the left is directed
and has two edges e1 and e2 such that ω(e1) = ω(e2) = 1 and τ(e1) = τ(e2) =
2. It also has a loop at vertex 1. The graph on the right is the Peterson
graph, a combinatorial graph that has provided counterexamples for many
conjectures. 		

Fig. 3.2. The graphs of Example 3.3.

The vertex join of a combinatorial graph Y and a vertex v is the combi-
natorial graph, Y ⊕ v, defined by

v[Y ⊕ v] = v[Y] ∪ {v}, (3.9)
e[Y ⊕ v] = e[Y] ∪ {{v, v′} | v′ ∈ v[Y]} .

The vertex join operation is a special case of the more general graph join
operation [12].

Example 3.4 (Some common graph classes). The line graph Linen of order n is
the combinatorial graph with vertex set {1, 2, . . . , n} and edge set {{i, i+1} |
i = 1, . . . , n− 1}. It can be depicted as

2 Graph theory literature has no standard notation for the various graph classes.
The graphs in Definition (3.1) are oftentimes called directed multigraphs. Refer
to [12] for a short summary of some of the terms used and their inconsistency!

3.1 Graphs 43

Linen:
.

The graph Circn is the circle graph on n vertices {0, 1, . . . , n− 1} where two
vertices i and j are connected if i− j ≡ ±1 mod n.

Circn:

.

3.3. (An alternative way to define paths and cycles in graphs) Prove that
for undirected graphs Y a path corresponds uniquely to a graph morphism
Linen −→ Y and a cycle to a graph morphism Circn −→ Y . [1+]

Example 3.5. The map ϕ : Circ6 −→ Circ3 defined by ϕ(0) = ϕ(3) = 0, ϕ(1) =
ϕ(4) = 1, and ϕ(2) = ϕ(5) = 2 is a graph morphism. It is depicted on
the left in Figure 3.3. Let C2 be the graph with vertex set {0, 1} and edge
set {e1, e1, e2, e2}. The graph morphism ψ : Circ4 −→ C2 given by ψ(0) =
ψ(2) = 0, ψ(1) = ψ(3) = 1, ψ({0, 1}) = ψ({2, 3}) = {e1, e1}, and ψ({1, 2}) =
ψ({0, 3}) = {e1, e1} is depicted on the right in Figure 3.3. 		

Fig. 3.3. The graph morphisms ϕ : Circ6 −→ Circ3 (left) and ψ : Circ4 −→ C2 (right)
from Example 3.5.

Using the vertex join operation we can construct other graph classes. For
example, the wheel graph, which we write as Wheeln, is the the vertex join of
Circn and the vertex n so that

v[Wheeln] = {0, 1, . . . , n},
e[Wheeln] = e[Circn] ∪ {{i, n} | i = 0, . . . , n− 1} .

44 3 Graphs, Groups, and Dynamical Systems

Wheeln can be depicted as follows:

Wheeln:

.
Finally, the binary hypercube Qn

2 is the graph where the vertices are
the n-tuples over {0, 1} and where two vertices v = (x1, . . . , xn) and v′ =
(x′1, . . . , x

′
n) are adjacent if they differ in precisely one coordinate. Clearly,

this is a graph with 2n vertices and (2n · n)/2 = n · 2n−1 edges. 		

Q3
2:

3.1.2 The Adjacency Matrix of a Graph

Let Y be a simple undirected graph with vertex set {v1, v2, . . . , vn}. The
adjacency matrix A or AY of Y is the n× n matrix with entries ai,j ∈ {0, 1}
where the entry ai,j equals 1 if Y has {vi, vj} ∈ ẽ[Y] and equals zero otherwise.
Clearly, since Y is undirected, the matrix A is symmetric. The adjacency
matrix of a simple directed graph is defined analogously, but it is generally
not symmetric.

Example 3.6. As an example take the graph Y = Circ4 with vertex set
{1, 2, 3, 4} shown below.

Its adjacency matrix A is given by

A =

⎡

⎢
⎢
⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥
⎥
⎦ .

		

3.1 Graphs 45

The following result will be used in Chapter 5, where we enumerate fixed
points of SDS.

Proposition 3.7. Let Y be a graph with adjacency matrix A. The number of
walks of length k in Y that start at vertex vi and end at vertex vj is [Ak]i,j,
the (i, j) entry of the kth power of A.

The result is proved by induction. Obviously, the assertion holds for k = 1.
Assume it is true for k = m. We can show that it holds for k = m + 1 by
decomposing a walk of length m + 1 from vertex vi to vertex vj into a walk
of length m from the initial vertex vi to an intermediate vertex vk followed
by a walk of length 1 from the intermediate vertex vk to the final vertex vj .
By the induction hypothesis, [Am]i,k counts the number of walks from vi to
vk and A counts the number of walks from vk to vj . By multiplying Ak and
A, we sum up all these contributions for all possible intermediate vertices vk.

Example 3.8. We compute matrix powers of A from the previous example as
follows:

A2 =

⎡

⎢
⎢
⎣

2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

⎤

⎥
⎥
⎦ , A3 =

⎡

⎢
⎢
⎣

0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0

⎤

⎥
⎥
⎦ , and A4 =

⎡

⎢
⎢
⎣

8 0 8 0
0 8 0 8
8 0 8 0
0 8 0 8

⎤

⎥
⎥
⎦ .

For example, there are four walks from 0 to 1 of length 3. Likewise there are
eight closed cycles of length 4 starting at vertex 0. 		

A particular consequence of this result is that the number of closed cycles
of length n in Y starting at vi is [An]i,i. The trace of a matrix A, written Tr A,
is the sum of the diagonal elements of A. It follows that the total number of
cycles in Y of length n is Tr An.

The characteristic polynomial of an n×nmatrix A is χA(x) = det(xI−A),
where I is the n×n identity matrix. We will use the following classical theorem
in the proof of Theorem 5.3:

Theorem 3.9 (Cayley–Hamilton). Let A be a square matrix with entries
in a field and with characteristic polynomial χA(x). Then we have

χA(A) = 0 .

That is, a square matrix A satisfies its own characteristic polynomial. For a
proof of the Cayley–Hamilton theorem, see [67].

Example 3.10. The characteristic polynomial of the adjacency matrix of Circ4

is χ(x) = x4 − 4x2, and as you can readily verify, we have

χ(A) = A4 − 4A2 =

⎡

⎢
⎢
⎣

8 0 8 0
0 8 0 8
8 0 8 0
0 8 0 8

⎤

⎥
⎥
⎦− 4

⎡

⎢
⎢
⎣

2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

⎤

⎥
⎥
⎦ = 0 ,

the 4 × 4 zero matrix. 		

46 3 Graphs, Groups, and Dynamical Systems

3.1.3 Acyclic Orientations

Let Y be a loop-free, undirected graph. An orientation of Y is a map

OY : e[Y] −→ v[Y] × v[Y]. (3.10)

An orientation of Y naturally induces a graph G(OY) = (v[Y], e[Y], ω, τ)
where ω× τ = OY . The orientation OY is acyclic if G(OY) has no (directed)
cycles. The set of all acyclic orientations of Y is denoted Acyc(Y). In the
following we will identify an orientation OY with its induced graph G(OY).

Example 3.11. The four orientations of Z = are

. 		

3.4. Prove that we have a bijection

β : Acyc(Y) −→ Acyc(Yc),

where Yc is defined in Section 3.1.1, Eqs. (3.7) and (3.8). [1+]

Let OY be an acyclic orientation of Y and let P(OY) be the set of all
(directed) paths π in G(OY). Furthermore, let Ω(π), T (π), and �(π) denote
the first vertex, the last vertex, and the length of π, respectively. We consider
the map rnk : v[Y] −→ N defined by

rnk(v) = max
π∈P(OY)

{�(π) | T (π) = v} . (3.11)

Any acyclic orientation OY induces a partial ordering ≤OY by setting

v ≤OY v′ ⇐⇒ [v and v′ are connected in G(OY) and rnk(v) ≤ rnk(v′)] .
(3.12)

Example 3.12. On the left side in Figure 3.4 we have shown a graph Y on five
vertices, and on the right side we have shown one acyclic orientation OY of Y .
With this acyclic orientation we have rnk(1) = rnk(5) = 0, rnk(2) = rnk(4) = 1,

Fig. 3.4. A graph on five vertices (left) and an acyclic orientation of this graph
depicted as a directed graph (right).

and rnk(3) = 2. In the partial order we have 5 ≤OY 3, while 2 and 4 are not
comparable. 		

v1
e2

e1

v2

v1
e2

e1

v2 v1
e2

e1

v2 v1
e2

e1

v2 v1
e2

e1

v2

3.1 Graphs 47

3.1.4 The Update Graph

Let Y be a combinatorial graph with vertex set {v1, . . . , vn}, and let SY be
the symmetric group over v[Y]. The identity element of SY is written id.

Let Y be a combinatorial graph. Two SY -permutations (vi1 , . . . , vin) and
(vh1 , . . . , vhn) are adjacent if there exists some index k such that (a) vil

= vhl
,

l
= k, k+1, and (b) {vik
, vik+1}
∈ e[Y] hold. This notion of adjacency induces a

combinatorial graph over SY referred to as the update graph, and it is denoted
U(Y). The update graph has e[U(Y)] = {{σ, π} | σ, π are adjacent}. We
introduce the equivalence relation ∼Y on SY by

π ∼Y π′ ⇐⇒ π and π′ are connected by a U(Y) path. (3.13)

The equivalence class of π is written [π]Y = {π′ | π′ ∼Y π}, and the set of
all equivalence classes is denoted SY / ∼Y . In the following we will assume
that the vertices of Y are ordered according to vi < vj if and only if i < j.
An inversion pair (vr, vs) of a permutation π ∈ SY is a pair of entries in π
satisfying π(vi) = vr and vs = π(vk) with r > s and i < k. The following
lemma characterizes the component structure of U(Y).

Lemma 3.13. Let Y be a combinatorial graph and let π ∈ SY . Then there
exists a U(Y) path connecting π and the identity permutation id if and only
if all inversion pairs (vr, vs) of π satisfy {vr, vs}
∈ e[Y].

Proof. Let π = (vi1 , . . . , vin)
= id and let (vl, vs) be an inversion pair of
π. If we assume that π and id are connected, then there is a corresponding
U(Y) path that consists of pairwise adjacent vertices π′ and π′′ of the form
π′ = (. . . , v, v′, . . .) and π′′ = (. . . , v′, v . . .). By the definition of U(Y) we
have {v, v′}
∈ e[Y], and in particular this holds for all inversion pairs.

Moreover, if all inversion pairs (v, v′) of π satisfy {v, v′}
∈ e[Y], then it is
straightforward to construct a path in U(Y) connecting π and id, completing
the proof of the lemma. �

Example 3.14. As an example of an update graph we compute U(Circ4). This
graph has 14 components and is shown in Figure 3.5. We see that all the

Fig. 3.5. The graph U(Circ4).

48 3 Graphs, Groups, and Dynamical Systems

isolated vertices in U(Circ4) in Figure 3.5 correspond to Hamiltonian paths in
Circ4. This is true in general. Why? 		

3.1.5 Graphs, Permutations, and Acyclic Orientations

Any permutation π = (vi1 , . . . , vin) ∈ SY induces a linear ordering <π on
{vi1 , . . . , vin} defined by vir <π vih

if and only if r < h, where < is the
natural order. A permutation π of the vertices of a combinatorial graph Y
induces an orientation OY (π) of Y by orienting each of its edges {v, v′} as
(v, v′) if v <π v

′ and as (v′, v), otherwise. It is clear that the orientation OY (π)
is acyclic. For any combinatorial graph Y we therefore obtain a map

f ′
Y : SY −→ Acyc(Y), π �→ OY (π) . (3.14)

In the following proposition, we relate permutations of the vertices of a com-
binatorial graph Y and the set of its acyclic orientations. The result also arises
in the context of the theory of partially commutative monoids and is related
to the Cartier–Foata normal form [68], but see also [69].

Proposition 3.15. For any combinatorial graph Y there exists a bijection

fY : [SY / ∼Y] −→ Acyc(Y) . (3.15)

Proof. We have already established the map f ′
Y : SY −→ Acyc(Y). Our first

step is to show that f ′
Y is constant on each equivalence class [π]Y . To prove

this it is sufficient to consider the case with two adjacent vertices π and π′

in U(Y). The general case will then follow by induction on the length of
the path connecting π and π′. By definition, if π and π′ are adjacent, they
differ in exactly two consecutive entries, and the corresponding entries are not
connected by an edge in Y . Consequently, we must have f ′

Y (π) = f ′
Y (π′), and

we have a well-defined map

fY : [SY / ∼Y] −→ Acyc(Y) .

It remains to show that fY is a bijection. To this end, let OY be an acyclic
orientation and consider the corresponding partition (rnk−1(h))0≤h≤n [Sec-
tion 3.1.3, Eq. (3.11)] of the vertices of Y . Let H = {h | rnk−1(h)
= ∅ }, where
|H | = t + 1. We set rnk−1(h) = (vi1h

, . . . , vi
mh
h

) where vi1h
<π · · · <π vi

mh
h

for
h ∈ H . It is straightforward to verify that

gY : Acyc(Y) → [SY / ∼Y], OY �→ [(vi10
, . . . , vi

m0
0
, . . . , vi1t

, . . . , vi
mt
t

)]Y ,
(3.16)

is a well-defined map satisfying

gY ◦ fY = id and fY ◦ gY = id ,

and the proof of the proposition is complete. �

3.1 Graphs 49

The permutation

π̂ = (vi10
, . . . , vi

m0
0
, . . . , vi1t

, . . . , vi
mt
t

) (3.17)

that we constructed in the above proof is called the canonical permutation of
[π]Y . The element π̂ is a special case of the Cartier–Foata normal form [68].

Example 3.16. Since we have |Acyc(Circ4)| = 14, Proposition 3.15 shows that
U(Circ4) has 14 components (Example 3.14). To find the canonical permuta-
tion of the component containing π = (2, 0, 1, 3), we first construct the acyclic
orientation OY (π):

O(π)({0, 1}) = (0, 1), O(π)({1, 2}) = (2, 1),
O(π)({2, 3}) = (2, 3), O(π)({0, 3}) = (0, 3) .

From this we get rnk−1(0) = {0, 2} and rnk−1(1) = {1, 3}, and therefore
π̂ = (0, 2, 1, 3). 		

The bijection fY allows us to count the U(Y)-components. In Chapter 4 we
will prove that the number of components of U(Y) is an upper bound for the
number of functionally different sequential dynamical systems, obtained solely
by varying the permutation update order. We next show how to compute this
number through a recursion formula for the number of acyclic orientations of
a graph.

Let e be an edge of Y . The graph Y ′
e is the graph that results from Y by

deleting e, and the graph Y ′′
e is the graph that we obtain from Y by contracting

the edge e. Writing a(Y) = |Acyc(Y)|, we now have

a(Y) = a(Y ′) + a(Y ′′) , (3.18)

where we have omitted the reference to the edge e. This recursion can be
found in [70], where acyclic orientations of graphs are related to the chromatic
polynomial χ as

a(Y) = (−1)nχ(−1) .

3.5. Prove the recursion relation (3.18). [2]

Note that a graph with no edges has one acyclic orientation. Any graph
map satisfying the relation (3.18) is called a Tutte-invariant . In Section 8.2.2
we will show how the acyclic orientations of a graph Y and the number a(Y)
are of significance in an area of mathematical biology.

Example 3.17. To illustrate the use of formula (3.18), we will compute the
number of acyclic orientations of Y = Circn for n ≥ 3. Pick the edge e =
{0, n− 1}. Then we have Y ′

e = Linen and Y ′′
e = Circn−1, and thus

a(Circn) = a(Linen) + a(Circn−1) = 2n−1 + a(Circn−1) .

This recursion relation is straightforward to solve, and, using, for example,
a(Circ3) = 6, we get a(Circn) = 2n − 2. This is, of course, not very surprising
since there are 2n orientations of Circn, two of which are cyclic. Problem 3.8
asks for a formula for a(Wheeln). 		

50 3 Graphs, Groups, and Dynamical Systems

3.2 Group Actions

Group actions are central in the analysis of several aspects of sequential dy-
namical systems. Their use in the study of equivalence is one example. Recall
that if X is a set and if G is a finite group, then G acts on X if there is
a group homomorphism of G into the group of permutations of the set X ,
denoted SX , in which case we call X , a G-set. If G acts on X , we have a map

G×X −→ X, (g, x) �→ gx ,

that satisfies (1, x) = x and (gh, x) = (g, (h, x)) for all g, h ∈ G and all x ∈ X .
Let x ∈ X . The stabilizer or isotropy group of x is the subgroup of G given

by
Gx = {g ∈ G | gx = x} ,

and the G orbit of x is the set

G(x) = {gx | g ∈ G} .

For each x ∈ X we have the bijection

G/Gx −→ G(x), gGx �→ gx , (3.19)

which in particular implies that the size of the orbit of x equals the index of
the subgroup Gx in G.

The lemma of Frobenius3 is a classical result that relates the number of
orbits N of a group action to the cardinalities of the fixed sets

Fix(g) = {x ∈ X | gx = x} .

Lemma 3.18 (Frobenius).

N =
1
|G|

∑

g∈G

|Fix(g)| (3.20)

Proof. Consider the set M = {(g, x) | g ∈ G, x ∈ X ; gx = x}. On the one
hand, we may represent M as a disjoint union

M =
⋃̇

g∈G
{(g, x) | x ∈ X ; gx = x} ,

from which |M | =
∑

g |Fix(g)| follows. On the other hand, we can represent
M as the disjoint union

M =
⋃̇

x∈X
{(g, x) | g ∈ G; gx = x} ,

3 This lemma is usually attributed to Burnside.

3.2 Group Actions 51

from which we derive |M | =
∑

x∈X |Gx|. In view of (3.19) we conclude that
|Gx| = |G|/|G(x)|; consequently,

|M | = |G|
∑

x∈X

1
|G(x)| = |G|N ,

and the proof of the lemma is complete. �

Let X be the set {1, 2, . . . , n}, and let G be a group acting on X and on
the set K. Then the group action on X induces a natural group action on the
set of all maps f : {1, 2, . . . , n} −→ K via

{ρ · f}(i) = ρ f(ρ−1(i)). (3.21)

In particular, we may consider f as a n-tuple x = (x1, . . . , xn) = (xj) ∈ Kn.
If G acts trivially on K, we obtain the following action of G on Kn:

· : G×Kn −→ Kn, (ρ, (xj)) �→ ρ · (xj) = (xρ−1(j)). (3.22)

It is clearly a group action: (hg) ·(xj) = (xg−1h−1(j)) = h ·(g ·(xj)). The action
· : G×Kn −→ Kn on n-tuples induces a G-action on maps Φ : Kn −→ Kn by

{ρ • Φ}(xj) = ρ · (Φ(ρ−1 · (xj)) . (3.23)

3.2.1 Groups Acting on Graphs

Let G be a group and let Y be a combinatorial graph with automorphism
group Aut(Y). Then G acts on Y if there exists a homomorphism from G into
Aut(Y). Equivalently, the group G acts on Y if it acts on v[Y] and e[Y], we
have the commutative diagrams

e[X]

g

��

ω �� v[X]

g

��
e[Y] ω �� v[Y]

e[X]

g

��

τ �� v[X]

g

��
e[Y] τ �� v[Y]

, (3.24)

i.e., gω(e) = ω(ge) and gτ(e) = τ(ge). If G acts on Y , then its action induces
the orbit graph G \ Y where

v[G \ Y] = {G(v) | v ∈ v[Y]}, e[G \ Y] = {G(e) | e ∈ e[Y]},

and where ωG\Y × τG\Y : e[G \ Y] −→ v[G \ Y] × v[G \ Y] is given by

G(e) �→ (G(ω(e)), G(τ(e))) .

The canonical map
πG : Y −→ G \ Y, v �→ G(v) (3.25)

is then a surjective and locally surjective morphism.

52 3 Graphs, Groups, and Dynamical Systems

3.6. Let G act on Y and let Gv be the isotropy group of vertex v. Prove that

Gv \ StarY (v) ∼= StarG\Y (G(v)) .

[2]

The following example shows that the orbit graph of a combinatorial graph is
not necessarily a combinatorial graph.

Example 3.19. Consider the 3-cube shown in Figure 3.6. The permutation

Fig. 3.6. The graph Y = Q3
2 and the orbit graph 〈(0, 4)(1, 5)(2, 6)(3, 7)〉 \Q3

2 shown
on the left and right, respectively.

γ = (0, 4)(1, 5)(2, 6)(3, 7) is an automorphism of Q3
2. Of course, since the orbits

of 〈γ〉 coincide with the cycles of γ, we see that the orbit graph Y = 〈γ〉 \Q3
2

has four vertices. If we denote the orbits containing 0, 1, 2, and 3 by a, b, c,
and d, respectively, we get the orbit graph shown on the right in Figure 3.6.

		

3.7. Give an example of a combinatorial graph Y and a group G < Aut(Y)
such that G \ Y is not a simple graph. [1+]

3.2.2 Groups Acting on Acyclic Orientations

Let Y be an undirected, loop-free graph and let G be a group acting on Y .
According to Eq. (3.22), if G acts on the graph Y , then G acts naturally on
the set of acyclic orientations of Y [Section 3.1.3, Eq. (3.10)]

OY : e[Y] −→ v[Y] × v[Y]

via
(gOY)(e) = g(OY (g−1e)) , (3.26)

where G acts on v[Y] × v[Y] via g(v, v′) = (g(v), g(v′)). Furthermore, we set
G(v, v′) = (G(v), G(v′)) and

Acyc(Y)G = {O ∈ Acyc(Y) | ∀g ∈ G; gO = O} .

3.2 Group Actions 53

Suppose we have O(e) = (v, v′). We observe that gO = O is equivalent to

∀ g ∈ G; O(ge) = g(O(e)) = (gv, gv′) . (3.27)

In particular, we note that Fix(g) = Acyc(Y)〈g〉. Our objective is to provide a
combinatorial interpretation for the set Fix(g).

We first give an example.

Example 3.20. Let g = (v1, v3)(v2, v4), i.e., gv1 = v3, gv2 = v4, and g−1 = g,

Y =

v1 v2

v4 v3

and O =

v1 ��

��

v2

v4 v3��

		

.

Then we have O ∈ Acyc(Y)〈g〉:

g(O({v1, v2})) = (v3, v4) = O({v3, v4}) = O({gv1, gv2}),
g(O({v1, v4})) = (v3, v2) = O({v3, v2}) = O({gv1, gv4}) .

The canonical morphism π〈g〉 maps Y as

Y =

v1 v2

v4 v3

−→ {v1, v3} {v2, v4} = 〈g〉 \ Y ,

and O induces the acyclic orientation {v1, v3} ��

��
{v2, v4} . 		

The example illustrates how acyclic orientations of a combinatorial graph
Y fixed by a group G induce acyclic orientations of the orbit graph G \ Y in
a natural way. Let

πG : Y −→ G \ Y, vj �→ G(vj)

be the canonical projection. The map πg is locally surjective, that is, for any
vertex vj of Y the restriction map

πG|StarY (vj) : StarY (vj) −→ StarG\Y (G(vj))

is surjective.

Theorem 3.21. Let Y be a combinatorial graph acted upon by G. Then
(a) If G \ Y contains at least one loop, then Acyc(Y)G = ∅.
(b) If G \ Y is loop-free, then we have the bijection

β : Acyc(Y)G −→ Acyc(G \ Y), O �→ OG, (3.28)

where OG is given by

∀ e ∈ e[G \ Y]; {ω(e), τ(e)} = {G(vi), G(vk)}, OG(e) = G(O({vi, vk})) .

54 3 Graphs, Groups, and Dynamical Systems

Proof. We first note that since Y is combinatorial its orbit graph G \ Y is
undirected.
Ad (a): Suppose G \ Y contains a loop. Then there exists a geometric edge
{vi, vk} such that g′vk = vi for some g′ ∈ G. We consider the subgraph X of
Y with

e[X] = {{gvi, gvk} ∈ e[Y] | g ∈ G },
v[X] = {vj ∈ v[Y] | ∃ vs ∈ v[Y]; {vj , vs} ∈ G({vi, vk}) } .

Any acyclic orientation O of Y induces by restriction an acyclic orientation
O′ of X . Suppose there exists some O ∈ Acyc(Y)G, i.e., gO({vi, vk}) =
O({gvi, gvk}). Without loss of generality we can assume that vi is an origin
of the induced acyclic orientation O′ and in particular O′({vi, vk}) = (vi, vk).
By construction, {g′vi, g

′vk} (note that g{vi, vk} = {gvi, gvk}) is a geometric
X-edge, and we obtain

g′O({vi, vk}) = (g′vi, g
′vk) = O({g′vi, g

′vk}),

which contradicts the fact that vi is an O′-origin. Thus, we have shown that
if G \ Y contains a loop, then O ∈ Acyc(Y)G = ∅.
Ad (b): By (a) we can assume without loss of generality that G\Y is loop-free.
Suppose we are given some O ∈ Acyc(Y)G and that G\Y contains a subgraph
of the form

Z = G(vi) G(vk) .

The graph Z is the πG-image of the subgraph X of Y given by

e[X] = {{vr, vt} ∈ e[Y] | {vr, vt} ∈ G({vi, vk}) ∪G({vi, vs}) },
v[X] = {vj ∈ v[Y] | ∃ vs ∈ v[Y], {vj , vs} ∈ e[X] } .

By construction, O induces a unique orientation on all orbits G({vi, vk}),
{vi, vk} ∈ e[Y] [since O({gvi, gvk}) = gO({vi, vk})] and accordingly an orien-
tation of Z.
Claim 1. Any O ∈ Acyc(Y)G induces exactly one of the following two acyclic
orientations of Z:

G(vi) ��

��
G(vk) G(vi) ��

��
G(vk) . (3.29)

We prove the claim by contradiction. The orientation O induces by restriction
the acyclic orientation O′ of X . We consider

πG|X : X −→ G(vi) G(vk) .

If O′ induces the orientation O1 = G(vi) ��

��
G(vk) , then no vertex of X

can be an O′-origin since πG|X is locally surjective and G(vi) ��
��

G(vk) is

3.2 Group Actions 55

by assumption induced by O′. This contradicts the fact that O′ is an acyclic
orientation of X and the claim follows.

According to Claim 1, we can conclude that O ∈ Acyc(Y)G induces an
orientation OG of G \ Y in which all multiple edges are unidirectional.
Claim 2. We have the bijection

β : Acyc(Y)G −→ Acyc(G \ Y), O �→ OG ,

where

∀ e ∈ e[G \ Y]; {ω(e), τ(e)} = {G(vi), G(vk)}, OG(e) = G(O({vi, vk})) .

We prove that OG is acyclic by contradiction. Suppose there exists a (directed)
cycle in OG. Then there exists a subgraph C of Y given by

C = (G(vi1), e1, . . . , ej−1, G(vij), ej)

with the property

OG(er) =

{
G(O({vir , vir+1})) = (G(vir), G(vir+1)) for r < j,

G(O({vij , vi1})) = (G(vij), G(vi1)) else.
(3.30)

We consider C as a subgraph of G \ Y and introduce the subgraph P of Y
being the preimage of C under πG:

e[P] = {{vr, vs} ∈ e[Y] | G({vr, vs}) ∈ {eh | h = 1, . . . j} },
v[P] = {vj | ∃ vs ∈ v[Y] ; {vj, vs} ∈ e[P] } .

The orientation O induces by restriction the acyclic orientation OP of the
subgraph P . Since πG|P : P −→ C is locally surjective and

G(O({vir , vir+1})) = (G(vir), G(vir+1)),

no vertex of P can be an OP -origin, which is impossible; hence, OG is acyclic.
This proves that β is well-defined. The map β is bijective since each O ∈
Acyc(Y)G is completely determined by its values on representatives of the
edge-orbits G({vr, vs}). Therefore, O �→ OG is a bijection, hence Claim 2,
and the proof of the theorem is complete. �

Example 3.22. As an illustration of Claim 1 we show under which conditions
an orientation of the form G(vi) ��

��
G(vk) is induced. If

Y =

v1 v2

v4 v3

, O =

v1 �� v2

��
v4

		

v3��

,

56 3 Graphs, Groups, and Dynamical Systems

then O is fixed by 〈g = (v1, v3)(v2, v4)〉

gO({v1, v2}) = (v3, v4) = O({v3, v4}) = O({gv1, gv2}),
gO({v1, v4}) = (v2, v3) = O({v3, v2}) = O({gv1, gv4}),

and O induces the orientation {v1, v3} ��

��
{v2, v4} . 		

An immediate consequence of Proposition 3.21 is the objective of this
section: a combinatorial interpretation for the terms Fix(g) in the Frobenius
lemma.

Corollary 3.23. Let Y be a combinatorial graph acted upon by G. Then we
have

N =
1
|G|

∑

g∈G

|Acyc(〈g〉 \ Y)| . (3.31)

Example 3.24. As an illustration of the counting result (3.31), we compute N
for Y = Circ4 and Y = Circ5. First we note that any element γ ∈ Aut(Y)
such that a 〈γ〉-orbit contains adjacent Y -vertices does not contribute to the
sum since the corresponding orbit graph will have a loop and hence does not
allow for any acyclic orientations by Theorem 3.21. The automorphism group
of Circn is the dihedral group Dn with 2n elements. For Circ5 it is clear that
the identity permutation id is the only automorphism that induces loop-free
orbit graphs. Since 〈id〉 \ Y is isomorphic to Y , we derive

N(Circ5) =
1
10

(a(Circ5)) =
1
10

(32 − 2) = 3 .

For Circ4 we leave it to the reader to verify that the only automorphisms that
contribute to the sum in (3.31) are id, (0, 2)(1, 3), (0)(1, 3)(2), and (1)(0, 2)(3)
and their respective orbit graphs are isomorphic to Circ4, Line3, Line3, and
• • . Accordingly we obtain

N(Circ4) =
1
8
((16 − 2) + 22 + 22 + 21) = 3 .

In Chapter 4 we will show that the number N represents an upper bound for
the number of dynamically nonequivalent SDS we can generate by varying the
permutation update order while keeping the graph and the functions fixed. 		

3.3 Dynamical Systems

Classical dynamical system theory is concerned with how the state of a system
evolves as a function of one or more underlying variables. For the purposes of
this section we will always assume that the underlying variable is time.

3.3 Dynamical Systems 57

There are two main classes of classical dynamical systems: continuous sys-
tems where the time evolution is governed by a system of ordinary differential
equations (ODEs) of the form

dx

dt
= f(x), x ∈ E ⊂ R

n,

and discrete systems whose time evolution results from iterating a map

F : R
n −→ R

n .

We can, of course, consider more general state spaces, but we will restrict
ourselves to R

n in the following.
Let us now describe the two main classes of dynamical systems and give

basic terminology and definitions. Continuous and discrete systems differ in
some significant ways. To be able to speak about time evolution of the contin-
uous system we need to know that the ODE actually has a solution. If it has a
solution, it would also be convenient to know if such a solution is unique. For
a discrete system this is not a primary concern — the dynamics is obtained
by iterating the map F .

In light of this, we start by presenting conditions for existence and unique-
ness of solutions for systems of ODEs. We will then present a selection of
theorems for both continuous and discrete dynamical systems. In addition
to giving definitions and background information, the purpose of this is to
illustrate differences between the classical systems and discrete, finite dynam-
ical systems such as sequential dynamical systems (SDS), which is the main
topic of this book. As we will see later, the differences manifest themselves
in tools and analysis techniques and also in the nature of the questions that
are being posed. In contrast to the combinatorial and algebraic techniques
used to study sequential dynamical systems, the techniques used for classical
dynamical systems tend to rely on continuity and differentiability.4

3.3.1 Classical Continuous Dynamical Systems

The classical continuous dynamical systems appear in the context of systems
of ordinary differential equations of the form

x′ = F (x), x ∈ E , (3.32)

where E is some open subset of R
n and F : E −→ R

n is a vector field on
E. Unless otherwise stated, we will assume that F is at least continuously
differentiable on E, which we write as F ∈ C1(E), or smooth (infinitely dif-
ferentiable), which we write as F ∈ C∞(E).

4 Of course, algebraic theory and combinatorial theory play an important part
in classical dynamical systems when analyzed through, for example, symbolic
dynamics.

58 3 Graphs, Groups, and Dynamical Systems

The vector field F gives rise to a flow ϕt : E −→ R
n, where ϕt(x) = ϕ(t, x)

is a smooth function defined for all x ∈ E and all t ∈ I = (a, b) with a < 0 < b.
The flow satisfies (3.32), that is,

d

dt
ϕ(x, t)|t=t′ = F (ϕ(x, t′)) for all x ∈ E, t′ ∈ I .

For x ∈ E and s, t, s+ t ∈ I, the flow has the properties [71]

ϕ0(x) = x and ϕt+s(x) = ϕt(ϕs(x)) .

The system (3.32) is often augmented by an initial condition

x(0) = x0 ∈ E .

In this case the solution of (3.32) — if it exists (actually it does, but more on
that below) — is the map x(t) = ϕ(x0, t) satisfying x(0) = x0. The map x(t)
defines an orbit or solution curve of the system (3.32) that passes through
x0. The geometric interpretation of a solution curve is as a curve in R

n that
is everywhere tangential to F , that is, x′(t) = F (x(t)). The collection of all
solution curves of (3.32) is the phase space. The image of the phase space is
the phase portrait . Locally, the phase space and the phase portrait are given
by flow maps.

Example 3.25. On the left in Figure 3.7 we have shown some of the solution
curves for the two-dimensional system

x′ = x2 + xy, y′ = 1
2y

2 + xy .

On the right we have shown some of the solution curves for the Hamiltonian
system (see, e.g., [72])

x′ = y, y′ = x+ x2 .

		

Fig. 3.7. Solution curves for the systems in Example 3.25.

3.3 Dynamical Systems 59

It is not obvious that (3.32) has a solution or, if it does, that such a
solution is unique. The following theorem summarizes the basic facts on these
questions:

Theorem 3.26. Let E be an open subset of R
n, let x0 ∈ E, and assume that

F ∈ C1(E). Then
(i) There exists a > 0 such that the initial-value problem given by (3.32)

and x(0) = x0 has a unique solution for t ∈ (−a, a).
(ii) There exists a maximal open interval (α, β) for which the solution is

unique.

The standard proof of these statements is based on Picard’s method and
Banach’s fixed-point theorem. The interested reader is referred to, e.g., [72,73].
To be fair, we should state that the condition F be continuously differentiable
is somewhat stronger than what is required. It is enough that F is locally
Lipschitz on E, i.e.,

|f(x) − f(y) | ≤ K |x− y|
for all x, y in some sufficiently small open subset of E, and where K is some
finite constant (the Lipschitz constant).

So where are the dynamical systems? So far there have only been systems
of ordinary differential equations and flows.

Definition 3.27 (Dynamical system). Let E be an open subset of R
n.

A dynamical system is a C1 map satisfying

1. ϕ(0, x) = x for all x ∈ E and
2. ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all s, t ∈ R and all x ∈ E.

As for flows we often write φ(t, x) as φt(x). It is clear that

F (x) =
d

dt
ϕ(t, x) |t=0

defines a C1 vector field on E and that for all x0 ∈ E the map ϕ(t, x0) is a
solution to the initial-value problem

x′ = F (x), x(0) = x0 .

The converse does not hold since the flow of (3.32) is generally only defined
on some finite interval I and not R. The interested reader may look up the
“global existence theorem” in [72] for a way to remedy this.

3.3.2 Classical Discrete Dynamical Systems

The classical discrete dynamical systems arise from iterates of a map

F : R
n −→ R

n , (3.33)

60 3 Graphs, Groups, and Dynamical Systems

which is typically assumed to be continuous. Starting from an initial state
x0 we get the forward orbit of x0 denoted by O+(x0) as the sequence of
points x0, F (x0), F 2(x0), F 3(x0), . . . , that is, O+(x0) = (F k(x0))∞k=0. Here
F k(x0) denotes the k-fold composition defined by F 0(x0) = x0 and F k(x0) =
F (F k−1(x0)). If F is a homeomorphism, which means that F is continuous
with a continuous inverse, we define the backward orbit O−(x0) = (F k(x0))−∞

k=0

and the full orbit as O(x0) = (F k(x0))∞k=−∞.
The concept of flow is in this case captured directly in terms of the map

F . If F is a homeomorphism, we define the corresponding flow as

φ : R
n × Z −→ R

n, φ(x, t) = φt(x) = F t(x) . (3.34)

Again the phase space of the dynamical system induced by F is the collection
of all orbits.

Example 3.28. The map F : R
2 −→ R

2 given by

F (x, y) =
[
a− by − x2

x

]

(3.35)

is the Hénon map. It is a much-studied two-dimensional map [74] exhibiting
many of the properties typically associated with chaotic dynamical systems.
A part of its orbit starting at (0, 0) is shown in Figure 3.8. It is an approxi-
mation of its “strange attractor.” 		

Fig. 3.8. An orbit of the Hénon map of Example 3.28.

The goal of dynamical system theory is to understand as much as possi-
ble about the orbits of (3.32) and (3.33). In practice, certain states, orbits,
and phase-space features have received more research attention than others.
Classical examples include fixed points, periodic points, and limit cycles.

3.3 Dynamical Systems 61

Definition 3.29 (Fixed points, periodic points).
(i) The state x0 of (3.32) or (3.33) is a fixed point if for all t we have φ(x0, t) =
x0. The set of fixed points of φ is denoted Fix(φ).
(ii) The state x0 is a periodic point if there exists 0 < t0 < ∞ such that
φ(x0, t0) = x0. The smallest such value t0 is the prime period of x0. If x0 is
periodic, then the set Γ (x0) = {φ(x0, t)|t} is the periodic orbit containing x0.
The set of all periodic points of φ is denoted Per(φ).

Fixed points and periodic orbits are examples of limit sets . More generally,
a point p is an ω-limit point of x if there exists a sequence (φti(x))i such that
φti(x) −→ p and ti → ∞. The set of all ω-limit points of an orbit Γ is denoted
ω(Γ). The notion of α-limit points is analogous, the only difference being that
ti → −∞. The set ω(Γ)∪α(Γ) is the limit set of Γ . Thus, a periodic orbit is
its own ω-limit set and α-limit set.

A subset E of R
n is a forward invariant set (backward invariant set) if for

all x ∈ E we have φt(x) ∈ E for t ≥ 0 (t ≤ 0).
The notion of invariant sets naturally extends to sequential dynamical

systems. This is not the case for the concept of stability. We say that a periodic
orbit Γ of (3.32) is stable if for each ε > 0 there exists a neighborhood U of
Γ such that for all x ∈ U the distance5 d(φt(x), Γ) < ε for all t > 0. If
we additionally have limt→∞ d(φt(x), Γ) = 0, then Γ is asymptotically stable.
An asymptotically stable periodic orbit is often referred to as a limit cycle.
Asymptotically stable fixed points are defined in the same manner although
they could, of course, be viewed as a special case of a periodic orbit.

3.3.3 Linear and Nonlinear Systems

Whenever the right-hand side in (3.32) or the map (3.33) is a linear function,
we refer to the system as linear . A system that is not linear is nonlinear .
Using matrix notation, linear systems of the form (3.32) and (3.33) can be
written as

dx

dt
= Ax (3.36)

and
F (x) = Ax .

These systems are well-understood. An extensive account of the continuous
linear systems is given in [71]. For a description of linear maps over finite
fields, see [33, 50].

Of course, interesting systems are usually nonlinear, so a natural question
is why one should study linear systems. One reason is the celebrated Hartman–
Grobman theorem, which states that, subject to rather mild conditions, a
nonlinear system can locally be represented by a linear system — the two
systems are locally equivalent. However, before we present the details we first
need to clarify what we mean by equivalence.
5 For definitions see, for example, [72,73].

62 3 Graphs, Groups, and Dynamical Systems

Definition 3.30 (Topological equivalence). Two maps F,G : R
n −→ R

n

are topologically equivalent if there exists a homeomorphism h : R
n −→ R

n

such that
G ◦ h = h ◦ F . (3.37)

We close this chapter with the Hartman–Grobman theorem stated for
discrete dynamical systems.

Theorem 3.31 (Hartman–Grobman). Let F : R
n −→ R

n be a C1 map,
and let x0 be a fixed point of F such that the Jacobian DF (x0) has no eigen-
values of absolute value 1. Then there exists a homeomorphism h defined on
some neighborhood U of x0 such that for all x ∈ U

h ◦ F = DF (x0) ◦ h .

In other words, under the condition of the theorem the phase space of the
linear system and that of the nonlinear system are equivalent in some neigh-
borhood U of x0. A standard application of the Hartman–Grobman theorem
is to determine stability properties of fixed points. The problems at the end
of this chapter elaborates some more on these concepts and the use of Theo-
rem 3.31.

In Chapter 4 we will address the same question of equivalence in the con-
text of sequential dynamical systems. As will become clear, the lack of conti-
nuity and derivatives will make things a lot different.

References

The following is a list of references for the material presented in this chapter
that can be used for further study.

Algebra. There are many good introductory books to this area. Examples
include the books by Fraleigh [75] and Bhattacharya [76], where the latter is
somewhat more advanced. The books by Jacobson [77] and Hungerford [78]
are classical texts, but they are typically considered more demanding. Van
der Waerden’s two volumes [79, 80] based on the lectures of E. Artin and
E. Noether are highly recommended.

Combinatorics and Graph Theory. It can be hard to find good texts on
graph theory. Although written for an entirely different purpose, Serre’s book
on trees [66] contains an excellent section on graphs acted upon by groups.
Dicks’ book [81] is another nice reference on graphs and groups. Diestel’s
book [82] and Godsil and Royle’s book [83] are good choices. In combina-
torics many like Riordan’s book [84]. We have not used this book, but we
can recommend van Lint and Wilson’s book [85]. Stanley’s book [21] is a de-
manding but excellent introductory combinatorics text that you should open
at least once.

3.3 Dynamical Systems 63

Dynamical Systems. For continuous dynamical systems, Hirsch and Smale’s
book [71] is a classic that we recommend. The book by Perko [72] provides an
alternative introduction to continuous dynamical systems. These two books
provide the necessary background for more advanced texts like the ones by
Guckenheimer and Holmes [86] and Coddington and Levinson [87]. Devaney’s
book [88] provides an introduction to discrete dynamical system, and the work
on one-dimensional dynamics presented by de Melo and van Strien [89] can
serve as an advanced followup text.

Problems

3.8. Compute a(Wheeln). [1+]

3.9. Compute a(Q3
2). [2-]

3.10. Characterize U(Kn) and U(En), where En is the empty graph on n
vertices. [2-]

3.11. Show that different solution curves of (3.32) cannot cross. Can a solu-
tion curve of (3.32) cross itself? [2]

3.12. The logistic map is the map Fμ : R −→ R given by

Fμ(x) = μx(1 − x) , (3.38)

with μ > 0. It is also referred to as the quadratic family. Depending on the
value of μ, the associated discrete dynamical system can exhibit fascinating
dynamics; see, e.g., [88]. In this problem we will see how to use Theorem 3.31
to study the stability properties of this dynamical system near its fixed points.

Show that the dynamical system has fixed points x0 = 0 and xμ = 1 − 1/μ.
The linearization of the dynamical system at x0 is given by

xn+1 =
(dF

dx
|x=0

)
x = μx . (3.39)

Use Theorem 3.31 and the linear system (3.39) to discuss the behavior of the
nonlinear dynamical system determined by Fμ around x = 0 as a function of
μ. What is dFμ

dx |x=xμ? Use this to show that xμ is an attracting fixed point
for 1 < μ < 3. [2]

3.13. In this problem we will see how to apply Theorem 3.31 to the two-
dimensional discrete dynamical system from Example 3.28 (the Hénon map).
Recall that the map is given by (3.35):

F (x, y) =
[
a− by − x2

x

]

,

64 3 Graphs, Groups, and Dynamical Systems

with F : R
2 −→ R

2 and a, b > 0. What are the fixed points of this system?
The linearization of this map at (x0, y0) is given by

G(x, y) = J(x0, y0)
[
x
y

]

=
[
−2x0 −b

1 0

] [
x
y

]

. (3.40)

What are the eigenvalues of the matrix J in this case? Use this to determine
the stability properties of the fixed points for the original Hénon map as a
function of a and b. [2]

3.14. This problem illustrates the use of the Hartman–Grobman theorem for
two-dimensional continuous systems. We will elaborate on Example 3.25 and
consider the dynamical system given by

x′ = f(x, y) = y, y′ = g(x, y) = x+ x2 . (3.41)

An equilibrium point for this system is a point (x0, y0) where f and g are
simultaneously zero. What are the equilibrium points for (3.41)?

The linearization of (3.41) at a point (x0, y0) is

[
x′

y′

]

= J(x0, y0) =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

(x0,y0)

. (3.42)

What is the Jacobian matrix J of (3.41) at a general point (x, y)? Compute
its value for the two equilibrium points you just found.

By an extension of Theorem 3.31 (see [71]) to the flow map of (3.41) we
have that the nonlinear system and its linearization at a point (x0, y0) are
topologically equivalent in a neighborhood of (x0, y) if the matrix J(x0, y0)
has no eigenvalues where the real part is zero. Find the eigenvalues of the
Jacobian matrix for both equilibrium points.

The linear system can be diagonalized. Use this to determine the stability
properties of the equilibrium point (0, 0). [2]

3.15. Consider the system of ordinary differential equations given by

x′ = −2y + yz,

y′ = 2x− 2xz, (3.43)
z′ = xy .

It is clear that (0, 0, 0) is an equilibrium point of the dynamical system, but
since

J(0, 0, 0) =

⎡

⎣
0 −2 0
2 0 0
0 0 0

⎤

⎦ (3.44)

3.3 Dynamical Systems 65

has eigenvalues 0 and ±2i, we cannot apply the extension of Theorem 3.31 as
in the previous problem.

Let F be the vector field associated with (3.43), and define the func-
tion V : R

3 −→ R by V (x, y, z) = x2 + y2 + z2. A key observation is that
V (x, y, z) > 0 for (x, y, z)
= (0, 0, 0) and V (0, 0, 0) = 0. Moreover, the inner
product

V̇ = gradV · F = 2x(−2y + yz) + 2y(2x− 2xz) + 2z(xy) = 0 .

What can you conclude from this? The function V is an example of a Liapunov
function. [2]

66 3 Graphs, Groups, and Dynamical Systems

Answers to Problems

3.2. Proof of Lemma 3.2. Suppose we are given the two edges e, e, where
v = ω(e), i.e., ve . Then we have e �→ (v, v) and e �→ (v, v), and Y is not
combinatorial. For a cycle of length 2,

ω(e)
e2

e1

τ(e) ,

we have the two different edges e1, e2 such that e1 �→ (ω(e1), τ(e1)) and e2 �→
(ω(e2), τ(e2)), i.e., Y is not combinatorial. Hence, if Y is combinatorial, it
contains no cycle of length ≤ 2. Suppose Y contains no cycle of length ≤ 2.
Then Y cannot contain multiple edges and has no loops, from which it follows
that ω × τ : e[Y] −→ v[Y] × v[Y] is injective.

3.5. The relation (3.18) can be proved as follows: Consider an acyclic ori-
entation O of Y ′. We observe that O induces at least one and at most two
acyclic orientations of Y . In the case it induces two acyclic orientations we can
conclude that it induces one acyclic orientation of Y ′′, and Eq. (3.18) follows.

3.6. First we observe that Gv acts on StarY (v) and consider the map

f : Gv \ StarY (v) −→ StarG\Y (G(v)), Gv(v′) �→ G(v′) .

By construction, f is a surjective graph morphism. We show that f is injective.
Let e and e′ be two edges of Y with ω(e) = ω(e′) = v, and suppose G(e) =
G(e′). Then there exists some g ∈ G such that ge = e′ holds. We obtain
ω(ge) = gω(e) = ω(e′) = v, and as a result gv = v, i.e., g ∈ Gv. The case
of two edges e, e′ with τ(e) = τ(e′) = v is completely analogous. Hence, we
have proved the following: For any two edges e, e′ of StarY (v), G(e) = G(e′)
implies Gv(e) = Gv(e′); hence, f is injective.

3.7. An example is Y = Circ4 with G the subgroup of Aut(Y) generated by
(0, 2)(1, 3) (cycle form).

3.8. 3n − 3.

3.9. 1862.

3.11. Solution curves cannot cross — this would violate the uniqueness of
solution property.

3.12. By, for example, Banach’s fixed-point theorem [73] we see that the
fixed point x0 = 0 is an attracting fixed point for 0 < μ < 1. It is a repelling
fixed point for μ > 1. One can also show that it is an attracting fixed point
for μ = 1, but Theorem 3.31 does not apply in this situation.

Here dFμ

dx |x=xμ = 2 − μ. For 1 < μ < 3 we have −1 < 2 − μ < 1, and by
Banach’s fixed-point theorem, it follows that xμ is an attracting fixed point
in this parameter range.

3.3 Dynamical Systems 67

3.13. Solving the equation for the fixed points gives

x0 = y0 = (−(1 + b) ±
√

(1 + b)2 + 4a)/2 .

Since a > 0 there are two fixed points. You may want to refer to [88] for more
information on the Hénon map.

3.14. Here f(x, y) = y and g(x, y) = x+ x2 are simultaneously zero at (0, 0)
and (−1, 0). The Jacobian matrix of the system is

J(x, y) =
[

0 1
1 + 2x 0

]

. (3.45)

Here J(0, 0) =
[
0 1
1 0

]

and J(−1, 0) =
[

0 1
−1 0

]

. The matrix J(0, 0) has eigen-

values λ = −1 and λ = 1 and J(0, 0) has eigenvalues λ = −i and λ = i.
The point (0, 0) is therefore an unstable equilibrium point for (3.41). It is an
example of a saddle point, which is also suggested by Figure 3.7. We cannot
apply the Hartman–Grobman theorem to the point (−1, 0), but a symmetry
argument can be used to conclude that this is a center.

3.15. Since V̇ = 0, the solution curves to the system of ordinary differential
equations are tangential to the level surfaces of the function V . The origin is
a stable equilibrium point for this system. If we had V̇ < 0 for (x, y, z)
= 0,
we could have concluded that the origin would also be asymptotically stable
and thus an attracting equilibrium point. See, for example, [71].

4

Sequential Dynamical Systems
over Permutations

In this chapter we will give the formal definition of sequential dynamical
systems (SDS). We will study SDS where the update order is a permutation
of the vertex set of the underlying graph. In Chapter 7 we will extend our
analysis to update orders that are words over the vertex set, that is, systems
where vertices can be updated multiple times within a system update. Since
most graphs in this chapter are combinatorial graphs (Section 3.1.1), we will,
by abuse of terminology, refer to combinatorial graphs simply as graphs unless
ambiguity may arise.

4.1 Definitions and Terminology

4.1.1 States, Vertex Functions, and Local Maps

Let Y be a (combinatorial) graph with vertex set v[Y] = {v1, . . . , vn} and let
d(v) denote the degree of vertex v. We can order the vertices of BY (v) using
the natural order of their indices, i.e., we set vj < vk if and only if j < k and
consequently obtain the (d(v) + 1)-tuple

(vj1 , . . . , vjd(v)+1) .

We can represent the (d(v) + 1)-tuple (vj1 , . . . , vjd(v)+1) via the map

n[v] : {1, 2, . . . , d(v) + 1} −→ v[Y], i �→ vji . (4.1)

For instance, if vertex v2 has neighbors v1 and v5, we obtain

n[v2] = (n[v2](1), n[v2](2), n[v2](3)) = (v1, v2, v5) .

We let K denote a finite set and assign a vertex state xv ∈ K to each vertex
v ∈ v[Y]. In many cases we will assume that K has the structure of a finite
field. For K = F2 we refer to states as binary states. The choice of binary

70 4 Sequential Dynamical Systems over Permutations

states of course represents the minimal number of states we can have, but it
is also a common choice in, for example, the study of cellular automata.

The n-tuple of vertex states (xv1 , . . . , xvn) is called a system state. We
will use x, y, z, and so on to denote system states. When it is clear from the
context whether we mean vertex state or system state, we may omit “vertex”
or “system.” The family of vertex states associated with the vertices in BY (v)
[Eq. (3.3)] induced by n[v] is denoted x[v], that is,

x[v] = (xn[v](1), . . . , xn[v](d(v)+1)) . (4.2)

When necessary, we will reference the underlying graph Y explicitly and write
n[v;Y] and x[v;Y], respectively. In analogy with our notation BY (v) and
B′

Y (v) [Eqs. (3.3) and (3.4)], we will write n′[v;Y] and x′[v;Y] for the corre-
sponding tuples in which v and xv are omitted, i.e.,

n′[v;Y] = (vj1 , . . . , v̂, . . . , vjd(v)+1), (4.3)

x′[v;Y] = (xn[v](1), . . . , x̂v, . . . , xn[v](d(v)+1)), (4.4)

where v̂, x̂v means that the corresponding coordinate is omitted.

Example 4.1. Let Y = Circ4, which has vertex set v[Circ4] = {0, 1, 2, 3} and
edges as shown in Figure 4.1. In this case we simply use the natural order on

Fig. 4.1. The graph Circ4.

v[Y] and obtain, for instance, n[0] = (0, 1, 3) and n[1] = (0, 1, 2). 		

For each vertex v of Y the vertex function is the map

fv : Kd(v)+1 −→ K .

We define the local function Fv : Kn −→ Kn by

Fvi (x) = (xv1 , . . . , xvi−1 , fvi(x[vi]), xvi+1 , . . . , xvn) . (4.5)

Thus, Fvi maps all variables xvj
= xvi identically, and the vith coordinate only
depends on the variables xvj with vj ∈ BY (vi). When we want to emphasize
the graph Y , we refer to a local map as Fv,Y . Finally, we set FY = (Fv)v.

4.1 Definitions and Terminology 71

4.1.2 Sequential Dynamical Systems

As in Section 3.1.4, we let SY denote the symmetric group over the vertex
set of Y . We will use Greek letters, e.g., π and σ, for the elements of SY . A
permutation π = (π1, . . . , πn) ∈ SY naturally induces an order of the vertices
in Y through πi < πj if i < j.

Throughout this book we will use the term family to specify an indexed
set . A family where the index set is the integers is a sequence.

Definition 4.2 (Sequential dynamical system). Let Y = (v[Y], e[Y], ω, τ)
be an undirected graph (Section 3.1), let (fv)v∈v[Y] be a family of vertex func-
tions, and let π ∈ SY . The sequential dynamical system (SDS) is the triple
(Y, (Fv)v, π). Its associated SDS-map is [FY , π] : Kn −→ Kn defined by

[FY , π] = Fπn ◦ Fπn−1 ◦ · · · ◦ Fπ1 . (4.6)

It is important to note that SDS are defined over undirected graphs and not
over combinatorial graphs. The main reason for this is the concept of SDS
morphisms, which involves graph morphisms. Graph morphisms generally do
not map combinatorial graphs into combinatorial graphs (see Section 3.1.1).
However, local maps are defined using the concept of adjacency, which is
independent of the existence of multiple edges, and we therefore obtain

(Y, (Fv)v, π) = (Yc, (Fv)v, π) .

Accordingly, we postulate Y to be undirected for technical reasons arising
from the notion of SDS morphisms, and we may always replace Y by Yc.

The graph Y of an SDS is referred to as the base graph. The application of
the Y -local map Fv is the update of vertex v, and the application of [FY , π] is
a system update. We will occasionally write

∏πn

v=π1
Fv for the right-hand side

of (4.6), where
∏

denotes the composition product of maps as in (4.6).
In Chapter 7, and in some propositions and problems, we also consider

SDS where the update order is a word w = (w1, . . . , wk) over v[Y], that is,
a sequence of Y -vertices. For future reference, we therefore define an SDS
over a word w as the triple (Y, (Fv)v, w), where its associated SDS-map is
[FY , w] : Kn −→ Kn defined by

[FY , w] = Fwk
◦ Fwk−1 ◦ · · · ◦ Fw1 . (4.7)

In this context we use the terminology permutation-SDS and word-SDS to
emphasize this point as appropriate.

Example 4.3. Continuing Example 4.1 with the graph Y = Circ4, we let each
vertex function be the function f : F

3
2 −→ F2 that returns the sum of its

arguments in F2. Thus, x1 is mapped to f(x0, x1, x2) = x0 + x1 + x2. The
corresponding local map F1 : F

4
2 −→ F

4
2 is given by

F1(x0, x1, x2, x3) = (x0, x0 + x1 + x2, x2, x3) .

		

72 4 Sequential Dynamical Systems over Permutations

Let K be a finite field. For a system state x ∈ Kn we sometimes need
to compute the sum of the vertex states in N. Note that we include 0 in the
natural numbers so that N = {0, 1, 2, . . .}. This is done to distinguish this
sum from sums taken in the respective finite field K. We set

suml : K l −→ N, suml(x1, . . . , xl) = x1 + · · ·+xl (computed in N) . (4.8)

Below is a list of vertex functions that will be used throughout the rest of
the book. In these definitions we set x = (x1, . . . , xk).

nork : F
k
2 −→ F2, nork(x) = (1 + x1) · · · (1 + xk) (4.9)

nandk : F
k
2 −→ F2, nandk(x) = 1 + x1 · · ·xk (4.10)

parity : F
k
2 −→ F2, parityk(x) = x1 + · · · + xk (4.11)

ork : F
k
2 −→ F2, ork(x) =

{
1, sumk(x) > 0
0, otherwise

(4.12)

andk : F
k
2 −→ F2, andk(x) = x1 · · ·xk (4.13)

minorityk : F
k
2 −→ F2, minorityk(x) =

{
1, sumk(x) ≤ �k/2�
0, otherwise

(4.14)

majorityk : F
k
2 −→ F2, majorityk(x) =

{
1, sumk(x) ≥ �k/2�
0, otherwise

(4.15)

Note that all these functions are symmetric and Boolean. A function f : K l −→
K is a symmetric function if and only if f(σ · x) = f(x) for all x ∈ K l and
all σ ∈ Sl with σ · x defined in (3.22). This is a natural class to study in the
context of SDS since they induce SDS, which allow for the action of graph
automorphisms.

Example 4.4. Let Y = Circ4 as in Example 4.1. For each vertex we use the
vertex function nor3 : F

3
2 −→ F2 defined in (4.9) with corresponding Y -local

maps

F0(x) = (nor(x0, x1, x3), x1, x2, x3) ,
F1(x) = (x0, nor(x0, x1, x2), x2, x3) ,
F2(x) = (x0, x1, nor(x1, x2, x3), x3) ,
F3(x) = (x0, x1, x2, nor(x0, x2, x3)) .

Consider the system state x = (0, 0, 0, 0). Using the update order π =
(0, 1, 2, 3), we compute in order

F0(0, 0, 0, 0) = (1, 0, 0, 0) ,
F1 ◦ F0(0, 0, 0, 0) = (1, 0, 0, 0) ,

F2 ◦ F1 ◦ F0(0, 0, 0, 0) = (1, 0, 1, 0) ,
F3 ◦ F2 ◦ F1 ◦ F0(0, 0, 0, 0) = (1, 0, 1, 0) .

4.1 Definitions and Terminology 73

Thus, we have (F3 ◦ F2 ◦ F1 ◦ F0)(0, 0, 0, 0) = (1, 0, 1, 0). In other words: The
map of the SDS over the graph Circ4 with nor3 as vertex functions and the
update order (0, 1, 2, 3) applied to the system state (0, 0, 0, 0) gives the new
system state (1, 0, 1, 0). We write this as

[NorCirc4 , (0, 1, 2, 3)](0, 0, 0, 0) = (1, 0, 1, 0) .

Repeated applications of (F3 ◦F2 ◦F1 ◦F0) yield the system states (0, 0, 0, 1),
(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (0, 1, 0, 1), and (0, 0, 0, 0) again. These system
states constitute a periodic orbit, a concept we will define below.

The crucial point to notice here is the importance of the particular order in
which the local maps Fv are applied. This distinguishes SDS from, for example,
generalized cellular automata where the maps Fv are applied synchronously.

		
Let (fv)v∈v[Y] be a family of vertex functions for some graph Y . If all maps

are induced by a particular function, e.g., nor functions, and only vary in their
respective arity, we refer to the corresponding SDS-map as [NorY , π].

A sequence (gl)n
l=1 with gl : K l −→ K induces a family of vertex functions

(fv)v∈v[Y] by setting fv = gd(v)+1. The resulting SDS is then called the SDS
over Y induced by the sequence (gl)n

l=1. Accordingly, an SDS is induced if all
vertices of Y of the same degree l have identical vertex functions induced by gl.
For instance, the SDS in Example 4.4 is induced by the function nor3 : F

3
2 −→

F2.
In this book we use the following conventions:

vertex functions are all denoted in lowercase, e.g., nor3,
local maps have the first letter in uppercase and the remaining letters in
lowercase, e.g., Norv,
the vertex-indexed family of local maps is written in bold where the first
letter is in uppercase and the remaining letters in lowercase, e.g., NorY =
(Norv)v.

4.1.3 The Phase Space of an SDS

Let x be a system state. As in Section 3.3.2 the forward orbit of x under
[FY , π] is the sequence O+(x) given by

O+(x) = (x, [FY , π](x), [FY , π]2(x), [FY , π]3(x), . . .) .

If the SDS-map [FY , π] is bijective, we have the sequence

O(x) = ([FY , π]l(x))l∈Z .

The orbit O+(x) is often referred to as a time series . Since we only consider
finite graphs and the states are taken from finite sets, all orbits are finite.

In the case of binary states we can represent an orbit or time series as a
space-time diagram. A vertex state that is zero is represented as a white square

74 4 Sequential Dynamical Systems over Permutations

and a vertex state that is one is represented as a black square. A system state
x = (x1, x2, . . . , xn) is displayed using the black-and-white box representations
of its vertex states and is laid out in a left-to-right manner. Starting from
the initial configuration each successive configuration is displayed below its
predecessor.

Example 4.5. In Figure 4.2 we have shown an example of a space-time dia-
gram. You may want to verify that [NorCirc5 , (0, 1, 2, 3, 4)] is an SDS-map that
generates this space-time diagram. 		

Fig. 4.2. An example of a space-time diagram.

Example 4.6. A space-time diagram for an SDS over Circ512 induced by
(parityk)k is shown in Figure 4.3. 		

Fig. 4.3. A space-time diagram for the SDS map [(Parityk)k, π] starting from a
randomly chosen initial state x ∈ F

512
2 . The update order is π = (0, 1, . . . , 511).

The phase space of an SDS-map [FY , π] is the directed graph Γ =
Γ ([FY , π]) defined by

v[Γ] = Kn, e[Γ] = {(x, y) | x, y ∈ Kn, y = [FY , π](x)}, (4.16)
ω × τ : e[Γ] −→ v[Γ] × v[Γ], (x, [FY , π](x)) �→ (x, [FY , π](x)) .

4.1 Definitions and Terminology 75

The map ω × τ is injective by construction. As a result we do not have to
reference the maps ω and τ explicitly. As for combinatorial graphs, Γ is com-
pletely specified by its vertex and edge sets. By abuse of terminology, we will
sometimes speak about the phase space of an SDS (Y,FY , π), in which case
it is understood that we refer to its SDS-map.

In view of the definition of orbits and periodic points in Section 3.3.2, we
observe that Γ -vertices contained in cycles are precisely the periodic points
of the SDS-map [FY , π]. The set of periodic points of [FY , π] is denoted
Per([FY , π]). Likewise, the subset of Γ -vertices contained in cycles of length 1
are the fixed points of [FY , π], denoted Fix([FY , π]). The remaining Γ -vertices
are transient system states. By abuse of terminology, we will also speak about
the periodic points and fixed points of an SDS.

Example 4.7. In Figure 4.4 we have shown all the system state transitions for
the SDS-map

[NorCirc4 , π] = Norπ3 ◦ Norπ2 ◦ Norπ1 ◦ Norπ0 : F
4
2 −→ F

4
2 ,

in the case of π = (0, 1, 2, 3) and π = (0, 2, 1, 3). It is easy to see that changing
the permutation update order can lead to SDS with entirely different phase
spaces. We will analyze this in detail in Section 4.3. 		

Fig. 4.4. The phase spaces for the SDS-maps of (Circ4,NorCirc4 , (0, 1, 2, 3)) and
(Circ4,NorCirc4 , (0, 2, 1, 3)) on the left and right, respectively. Clearly, the phase
spaces are different. We also note that the phase spaces are not isomorphic as di-
rected graphs.

As for presenting phases spaces, it is convenient to encode a binary n-tuple
x = (x1, x2, . . . , xn) as the decimal number by

k =
n∑

i=1

xi · 2i−1 . (4.17)

Example 4.8. In Figure 4.5 we have shown the phase space of the SDS
(Circ4,NorCirc4 , (0, 1, 2, 3)) using the regular binary n-tuple labeling and the
corresponding base-10 encoding given by (4.17). 		

76 4 Sequential Dynamical Systems over Permutations

Fig. 4.5. The phase space of (Circ4,NorCirc4 , (0, 1, 2, 3)) with binary states (left)
and base 10 encoded states (right).

4.1. Using the programming language of your choice, write functions that
convert a binary n-tuple to its decimal representation given by (4.17) and a
matching function that converts a decimal number to its corresponding n-
tuple. Are there limitations on this method, and, if so, is it a problem in
practice?

Assume the vertex states are from the finite set K = {0, 1, . . . , q}. We can
view the corresponding n-tuples as (q+ 1)-ary numbers. Write functions that
convert between n-tuples with entries in K and their base-10 representations.
For example, if q = 2, then the 4-tuple (2, 1, 0, 1) has decimal representation
1 ·33+0 ·32+1 ·31+2 ·30 = 27+3+2 = 32. What is the decimal representation
of (3, 1, 2, 0) assuming q = 3? Assuming n = 6 and q = 3, find the base-4,
6-tuple representation of 1234. [1C]

4.1.4 SDS Analysis — A Note on Approach and Comments

SDS analysis is about understanding and characterizing the phase-space struc-
ture of an SDS. Since SDS have SDS-maps that are finite dynamical systems,
we could in principle obtain the entire phase space by exhaustive computa-
tions. However, even small or moderately sized SDS with binary states over
graphs that have 100 vertices, say, would have 2100 > 1030 states. As a re-
sult the main theme of SDS research is to derive phase-space information
based on the structure of the base graph Y , the local maps, and the update
order.

Let K = {0, 1} and v[Y] = {v1, . . . , vn}. First, any SDS-map [FY , π] is a
map from Kn to Kn. So why not study general maps f : Kn −→ Kn? The
reason is, of course, that SDS exhibit an additional structure that allows for
interesting analysis and results. In light of this, a natural question is there-
fore: When does a map f : Kn −→ Kn allow for an SDS representation? A
characterization of this class even for the subset of linear maps would be of
interest.

Let us revisit the definition of an SDS. Suppose we did not postulate the
graph Y explicitly. We can then obtain the base graph Y as follows: As a vertex

4.2 Basic Properties 77

set takes {v1, . . . , vn}, and as edges take all ordered pairs (v, v′) for which the
vertex function fv depends on the vertex state xv′ where v
= v′. As such, the
graph Y is a directed graph, but we can, of course, obtain a combinatorial
graph; see [90]. In other words, for a given family of local maps (Fv)v there
exists a unique minimal graph Y that could serve as the base graph, and in
this sense the graph may be viewed as redundant in the definition of SDS.
We chose to explicitly reference the base graph in the definition since this
allows us to consider varying families of local maps over a given combinatorial
structure. In a way this is also why we did not try to define an SDS as just a
map but as a triple. In principle one could also speculate replacing the local
maps by an algebraic structure, like a ring or monoid, which would result in
a combinatorial version of a scheme [91].

4.2. What is meant by an SDS being induced? For the graph Circ6, what
is n[5]? How is the function Nor5 defined in this case? [1]

4.3. Compute the phase space of [MajorityLine3 , (2, 1, 3)]. [1]

4.2 Basic Properties

In this section we present some elementary properties of SDS.

4.2.1 Decomposition of SDS

As a lead-in to answer the question of SDS decomposition, we pose some
slightly more general questions. How does an SDS-map φ = [FY , π] depend
on the update order π, and under which conditions does [FY , π] = [FY , π

′]
hold? In other words, if we fix Y and the family of local maps (Fv)v, then
when do two permutations give rise to the same SDS-map?

Clearly, the answer depends on both the local maps and the structure of
the graph Y . If the local maps are all trivial, it does not matter what order
we use in the composition, and the same holds if we have a graph with no
edges. Here is a key observation: If we have two non-adjacent vertices v and
v′ in a graph Y , then we always have the commutation relation

Fv ◦ Fv′ = Fv′ ◦ Fv . (4.18)

Equation (4.18) holds for any choice of vertex functions and for any choice
of K. Extending this observation, we see that if we have two permutations π
and π′ that only differ in two adjacent positions, that is,

π = (π1, . . . , πi−1, πi, πi+1, πi+2, . . . , πn) and
π′ = (π1, . . . , πi−1, πi+1, πi, πi+2, . . . , πn) ,

and such that {πi, πi+1} is not an edge in Y , then we have the identity of
SDS-maps [FY , π] = [FY , π

′]. Thus, recalling the definition of the equivalence

78 4 Sequential Dynamical Systems over Permutations

relation ∼Y from Section 3.1.3, we conclude that π ∼Y π′ implies [FY , π] =
[FY , π

′]. This justifies the construction of the update graph U(Y) of a graph
Y in Section 3.1.3. Accordingly, we have proved:

Proposition 4.9. Let Y be a graph and let (Fv)v be a family of Y -local maps.
Then we have

π ∼Y π′ =⇒ [FY , π] = [FY , π
′] .

It is now clear how to decompose an SDS-map in the case when the base graph
Y is not connected.

Proposition 4.10. Let Y be the the disjoint union of the graphs Y1 and Y2

and let πY be an update order for Y . We have

[FY2 , πY2] ◦ [FY1 , πY1] = [FY , πY] = [FY1 , πY1] ◦ [FY2 , πY2] , (4.19)

where πYi is the update order of Yi induced by πY for i = 1, 2.

Proof. Let (πY1 |πY2) denote the concatenation of the two update orders over
Y1 and Y2. Clearly, πY ∼Y (πY1 |πY2) ∼Y (πY2 |πY1), and by Proposition 4.9
we have equality. �

Note that an immediate corollary of Proposition 4.10 is that [FY , πY]k =
[FY1 , πY1]k ◦ [FY2 , πY2]k. Thus, the dynamics of the two subsystems is entirely
decoupled. As a result we may without loss of generality always assume that
the base graph of an SDS is connected.

4.4. Let Y1 and Y2 be graphs and let Γ1 and Γ2 be phase spaces of two
SDS-maps φ1 and φ2 over Y1 and Y2, respectively. The product of these two
dynamical systems is a new dynamical system φ : v[Γ1]×v[Γ2] −→ v[Γ1]×v[Γ2]
where φ(x, y) = (φ1(x), φ2(y)). Characterize the dynamics of the product in
terms of the dynamics of the two SDS φ1 and φ2. [2]

4.2.2 Fixed Points

Fixed points of SDS are the simplest type of periodic orbits. These states have
the property that they do not depend on the particular choice of permutation
update order:

Proposition 4.11. Let Y be a graph and let (Fv)v be Y -local functions. Then
for any π, π′ ∈ SY we have

Fix([FY , π]) = Fix([FY , π
′]) . (4.20)

Proof. If x ∈ Kn is a fixed point of the permutation SDS-map [FY , π], then
by the structure of the Y -local maps we necessarily have Fv(x) = x for all
v ∈ v[Y]. It is therefore clear that x is fixed under [FY , π

′] for any permutation
update order π′. �

4.2 Basic Properties 79

4.5. In Proposition 4.11 we insisted on permutation update orders. What
happens to Proposition 4.11 if the update order is a word over v[Y]? [1+]

It is clear that we obtain the same set of fixed points whether we update our
system synchronously or asynchronously. Why? In Chapter 5 we will revisit
fixed points and show that they can be fully characterized for certain graphs
classes such as, for example, Circn.

You may have noticed already that the Nor-SDS encountered so far never
had any fixed point, and you may even have shown that this true in general:
A Nor-SDS with a permutation update order has no fixed points. The same
holds for Nand-SDS, which are dynamically equivalent to Nor-SDS; see Sec-
tion 4.3.3. If we restrict ourselves to symmetric functions, it turns out that
(nork)k and (nandk)k are the only sequences of functions (gk)k that induce
fixed-point-free SDS for any choices of base graph. For any other sequence
of symmetric functions there exists a graph such that the corresponding SDS
has at least one fixed point.

Theorem 4.12. Let (gk)k with gk : F
k
2 −→ F2 be a sequence of symmetric

functions such that the induced permutation SDS-map [FY , π] has no fixed
points for any choice of base graph Y . Then we have

(gk)k = (nork)k or (gk)k = (nandk)k . (4.21)

Proof. We prove this in two steps: First, we show that each map fv = gd(v)+1

has to be either norv or nandv. In the second step we show that if the sequence
(gk)k contains both nor functions and nand functions, then we can construct
an SDS that has at least one fixed point. For the proof we may assume that
the graphs Y are connected and thus that every vertex has degree at least
1. Recall that since we are considering induced SDS, all vertices of the same
degree d have local functions induced by the same map gd+1. By a slight abuse
of notation we will write fv = norv instead of fv = nord(v)+1.

Step 1. For each k = 1, 2, 3, . . . we have either gk = nork or gk = nandk. It is
easy to see that the statement holds for k = 1. Consider the case of k = 2.
It is clear that for the SDS to be fixed-point-free the symmetric function g2
must satisfy g2(0, 0) = 1 and g2(1, 1) = 0, since we would otherwise have a
fixed point over the graph K2. Moreover, since the gk’s are symmetric, either
we have g2(0, 1) = g2(1, 0) = 1 so that g2 = nand2, or we have g2(0, 1) =
g2(1, 0) = 0, in which case g2 = nor2. This settles the case where k = 2.

Assume next that k > 2, and suppose that gk
= nork and gk
= nandk.
Then there must exist two k-tuples x = (x1, . . . , xk) and y = (y1, . . . , yk)
with l = |{i | xi = 1}| and l′ = |{i | yi = 1}| such that 0 < l, l′ < k and
gk(x) = 1, gk(y) = 0. There are two cases to consider: We have either (i)
g2(0, 1) = 0 or (ii) g2(0, 1) = 1. In case (i) we take Y (l, k− l) to be the graph
with l(k − l) vertices and

(
l
2

)
+ l(k− l) edges constructed from Kl as follows:

For each vertex v of Kl we add k− l new vertices and join these with an edge
to vertex v. The graph Y (4, 3) is shown in Figure 4.6. The state we obtain by

80 4 Sequential Dynamical Systems over Permutations

assigning 1 to each vertex state of the Kl subgraph and 0 to the remaining
vertex states is clearly a fixed point. In case (ii) we use the graph Y (k− l′, l′).
We construct a fixed point by assigning 0 to each Kk−l′ vertex state and by
assigning 1 to the remaining vertex states. We have thus shown that the only
possible vertex functions are norv and nandv. It remains to show that they
cannot occur simultaneously.

Step 2. We will show that either (gk)k = (nork)k or (gk)k = (nandk)k.
Suppose that gl = norl and gl′ = nandl′ . Let Y be the graph union of the
empty graphs Y1 = El−1 and Y2 = El′−1. That is, Y has vertex set v[Y1]∪v[Y2]
and edge set e[Y] = {{v, v′} | v ∈ Y1; v′ ∈ Y2}. Using nandl′ as a function
for each vertex v′ in Y1 and norl for each vertex v in Y2, we construct a fixed
point by assigning 0 to each vertex state in Y2 and 1 to each vertex state in
Y1, and the proof is complete. �

Fig. 4.6. The graph Y (m,n) form = 4 and n = 3 used in the proof of Theorem 4.12.

4.2.3 Reversible Dynamics and Invertibility

In this section we study SDS with bijective SDS-maps. An SDS for which the
SDS-map is a bijection is an invertible SDS. From a dynamical systems point
of view, having an invertible SDS-map means we can go backwards in time in
a unique, well-defined way. For this reason such SDS are sometimes referred
to as reversible and we say that they have reversible dynamics .

4.6. Describe the phase space of an invertible sequential dynamical system.
[1+]

The goal of this section is to derive criteria for an SDS to be invertible. We
first characterize the SDS that are reversible over K = F2. For this purpose
we introduce the maps idk, invk : F

k
2 −→ F

k
2 defined by

invk(x1, . . . , xk) = (1 + x1, . . . , 1 + xk), (4.22)
idk(x1, . . . , xk) = (x1, . . . , xk) . (4.23)

For the following proposition recall the definitions of x[v] and x′[v] [eqs. (4.2)
and (4.4)].

4.2 Basic Properties 81

Proposition 4.13. Let (Y,FY , π) be an SDS with map [FY , π]. Then
(Y,FY , π) is invertible if and only if for each vertex vi ∈ v[Y] and each x′[vi]
the map

gx′[vi] : F2 −→ F2, gx′[vi](xvi) = fvi(x[vi]), (4.24)

is a bijection. If the SDS-map [FY , π] is bijective where π = (π1, π2, . . . , πn),
then its inverse is an SDS-map and is given by

[FY , π]−1 = [FY , π
∗], (4.25)

where π∗ = (πn, πn−1, . . . , π2, π1).

Proof. Consider first the map [FY , π], i.e.,

Fπn ◦ Fπn ◦ · · · ◦ Fπ1 . (4.26)

As a finite product of maps, Fπn ◦ Fπn ◦ · · · ◦ Fπ1 is invertible if and only if
each map Fvi is. (Why?) By definition of Fvi we have

Fvi (x) = (xv1 , . . . , xvi−1 , fvi(x[vi]), xvi+1 , . . . , xvn) .

This map is bijective if and only if the map gx′[vi](xvi) = fvi(x[vi]) is bijective
for any fixed choice of x′[vi]. The only two such maps are inv1 (the inversion
map) and id1 (the identity map), establishing the first assertion.

In both cases, that is, if gx′[vi](xvi) = fvi(x[vi]) is the inversion map or the
identity map, we obtain that F 2

vi
is the identity. From

[FY , π
∗] ◦ [FY , π] = Fπ(1) ◦ · · · ◦ Fπ(n−1) ◦ Fπ(n) ◦ Fπ(n)

︸ ︷︷ ︸
◦Fπ(n−1) ◦ · · · ◦ Fπ(1)

and F 2
vi

= 1 we can conclude that [FY , π
∗] is the inverse map of [FY , π], and

the proof is complete. �

Example 4.14. In this example we will consider the SDS over Circn where all
functions fv are induced by parity3. We claim that the corresponding SDS are
invertible.

Consider the vertex i and fix x′[i] = (xi−1, xi+1). The map gx′[i] : F2 −→ F2

is given by

gx′[i](xi) = fi(xi−1, xi, xi+1) = xi + xi−1 + xi+1.

If xi−1 + xi+1 equals 0, then gx′[i] is the identity map. On the other hand, if
xi−1+xi+1 equals 1, then gx′[i] is the inversion map and Proposition 4.13 guar-
antees that the corresponding SDS are invertible. In Figure 4.7 we have shown
the phase spaces of [ParityCirc4 , (0, 1, 2, 3)] and [ParityCirc4 , (0, 1, 2, 3)]−1 =
[ParityCirc4 , (3, 2, 1, 0)]. 		

The following example illustrates how to use the above proposition in order
to show that a certain map f fails to induce an invertible SDS.

82 4 Sequential Dynamical Systems over Permutations

Fig. 4.7. The phase spaces of [ParityCirc4
, (0, 1, 2, 3)] and its inverse SDS-map

[ParityCirc4
, (0, 1, 2, 3)]−1 = [ParityCirc4

, (3, 2, 1, 0)].

Example 4.15. We claim that SDS over Circn induced by rule 110 (see Sec-
tion 2.1.3) are not invertible. The first thing we need to do is to “decode” rule
110. Since

110 = 0 · 27 + 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 0 · 20,

we obtain the following table for rule 110:

(xi−1, xi, xi+1) 111 110 101 100 011 010 001 000
f110 0 1 1 0 1 1 1 0

Here is the key observation: Since (0, 0, 1) and (0, 1, 1) both map to 1 under
f110, Fi is not injective and f does not induce an invertible SDS. 		

4.7. Identify all maps f : F
3
2 −→ F2 that induce invertible SDS over Y =

Circn. From the previous two examples you see that parity3 is one such map
while f110 does not qualify. Find the remaining maps. How many such maps
are there? What are the rule numbers of these maps? [2]

4.8. So far the examples and problems have mainly dealt with the graph
Y = Circn. Building on Example 4.14, show that any SDS where the vertex
functions fv are induced by (parityk)k is invertible. [1+]

Note: It may be clear already, but we point out that the question of whether
[FY , π] is invertible does not depend on the update order π. Note, however,
that different update orders generally give different periodic orbit structures,
as the organization of the particular system states on the cycles will vary.

The generalization of Proposition 4.13 from F2 to an arbitrary finite set
is straightforward. Note, however, that the inversion formula in Eq. (4.25) is
only valid for F2. The inversion formula in the case of K = Fp is addressed in
Problem 4.10.

4.9. How many vertex functions for a vertex v of degree d induce invertible
SDS in the case of (1) F2 and (2) Fp? [1+]

4.10. Generalize the inversion formula to the case with vertex states in Fp.
[2]

4.2 Basic Properties 83

So far we have considered SDS with arbitrary vertex functions (fv)v. If we
restrict ourselves to symmetric vertex functions, we obtain the following:

Proposition 4.16. Let (Y,FY , π) be an invertible SDS with symmetric vertex
functions (fv)v. Then fv is either (a) parityd(v)+1 or (b) 1 + parityd(v)+1.

Before we prove the proposition, we introduce the notion of an H-class :
The set Hk = {x ∈ F

n
2 | sumn(x) = k} is called H-class k. In the case of F

n
2

there are n+ 1 such H-classes.

Proof. Let v be a vertex of degree dv = k−1 and associated symmetric vertex
function fv. We will use induction over the H-classes 0, 1, . . . in order to show
that fv is completely determined by its value on the state (0).
Induction basis: The value fv(0) determines the value of fv on H-class 1.
To prove this assume fv(0) = y0. Then by Proposition 4.13 we know that
the value of fv on (0, 0, 0, . . . , 0) and the representative (1, 0, 0, . . . , 0) from
H-class 1 must differ and thus

fv(0, 0, . . . , 0) = y0 =⇒ fv(1, 0, . . . , 0) = 1 + y0 . (4.27)

Induction step: The value of fv on Hl determines the value of fv on Hl+1.
Let xl = (0, 1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Hl and assume fv(xl) = yl. Then
in complete analogy to our argument for the induction basis we derive
((1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Hl+1):

fk(0, 1, 1, . . . , 1, 0, 0, . . . , 0) = yl =⇒ fk(1, 1, 1, . . . , 1, 0, 0, . . . , 0) = 1 + yl,
(4.28)

completing the induction step. If y0 = 0, we obtain fv = parityv, and if y0 = 1,
we obtain fv = 1 + parityv, and the proof is complete. �

The following result addresses the dynamics of SDS restricted to their
periodic points. We will use this later in Section 5.3 when we characterize the
periodic points of threshold systems such as [MajorityY , π]. It can be viewed
as a generalization of Proposition 4.13.

Proposition 4.17. Let Y be a graph and let (Y,FY , π) be an SDS over F2 with
SDS-map φ = [FY , π]. Let ψ be the restriction of φ to Per(φ), i.e., ψ = φ|Per(φ).
Then ψ is invertible with inverse ψ∗.

Proof. We immediately observe that the argument in the proof of Proposi-
tion 4.13 holds when restricted to periodic points. �

From a computational point of view it is desirable to have efficient criteria
for determining if a point is periodic. Proposition 4.17 provides the following
necessary (but not sufficient) condition:

Corollary 4.18. Let (Y,FY , π) be an SDS over F
n
2 . Then a necessary condi-

tion for x ∈ Fn
2 to be a periodic point under [FY , π] is [FY , π

∗]◦[FY , π](x) = x.

84 4 Sequential Dynamical Systems over Permutations

In light of our previous results, the proof is obvious. Thus, if we have
[FY , π

∗] ◦ [FY , π](x)
= x, we can conclude that x is not a periodic point. To
derive a sufficient criterion for periodicity is much more subtle. In fact, we
will show later that periodicity in general depends on the particular choice of
permutation or word.

4.2.4 Invertible SDS with Symmetric Functions over Finite Fields

We conclude this section with a characterization of invertible SDS with sym-
metric vertex function over finite fields [93]. In the following we will show how
to explicitly construct invertible (word)-SDS for any choice of graph Y and
word w. To set the stage let [FY , π] be such an SDS-map.

A vertex coloring1 of a (combinatorial) graph Y is a map

c : v[Y] −→ C ,

where C is a finite set (the set of colors) such that for any {v, v′} ∈ e[Y] we
have c(v)
= c(v′). When we want to emphasize the color set C, we refer to c
as a C-coloring of Y .

Generalizing Proposition 4.13 to arbitrary finite fields K, we observe that
Fv,Y (with vertex function fv : Km −→ K) is bijective if and only if the
function

gx′[v] : K −→ K, (xv) �→ fv(x[v]) (4.29)

is a bijection for all x′[v] ∈ Km−1. Consider a generalized m-cube, Qm
κ , whose

vertices are m-tuples (x1, . . . , xm) with xi ∈ K and where K is a finite field
of cardinality κ. Two vertices in Qm

κ are adjacent if they differ in exactly one
coordinate. The adjacency concept in Qm

κ reflects Eq. (4.29), as only varying
one particular coordinate in Qm

κ produces specific Qm
κ -neighbors. This is the

intuition behind the fact that the local map Fv,Y is bijective if and only if
its vertex function fv induces a coloring of an orbit graph (Section 3.2.1) of
Qm

κ . The corresponding group inducing this orbit graph arises naturally from
specific properties of the vertex function such as it being symmetric.

Example 4.19. Let Y = Q3
3. Here S3 acts on Y via

σ(v1, v2, v3) = (vσ−1(1), vσ−1(2), vσ−1(3)) .

The orbit graph S3 \Q3
3 of this action is given in Figure 4.8. 		

Let WY denote the set of words w = (w1, . . . , wq) over v[Y]. In Theo-
rem 4.20 we will show that for arbitrary Y and word w ∈ WY there always
exists an invertible SDS. Furthermore, we will give a combinatorial interpreta-
tion of invertible SDS via κ-colorings of the orbit graphs SdY (v)+1 \QdY (v)+1

κ .
This not only generalizes Proposition 4.16 (see also [94]) but allows for a new
combinatorial perspective.
1 Note that what we call a vertex coloring some refer to as a proper vertex coloring;

see [83].

4.2 Basic Properties 85

Fig. 4.8. The orbit graph S3 \Q3
3 of Example 4.19.

Theorem 4.20. Let Y be a combinatorial graph, K a finite field with κ = |K|,
m = d(v) + 1, w ∈ WY , and (Y,FY , w) a word-SDS induced by symmetric
vertex functions. Then for any v ∈ v[Y] we have the bijection

α : {Fv | Fv is bijective} −→ {cv | cv is a κ-coloring of Sm \Qm
κ } . (4.30)

In particular, for arbitrary Y and w there always exists a family FY such that
the SDS (Y,FY , w) is invertible.

Proof. We first observe

[FY , w] =
k∏

i=1

Fwi,Y is bijective ⇐⇒ ∀ wi; Fwi is bijective. (4.31)

Let Fv,Y be a bijective Y -local map induced by the symmetric vertex function
fv : Km −→ K. Without loss of generality we may assume that Y is connected
and thus m ≥ 2. From

Fv,Y (xv1 , . . . , xvn) = (xv1 , . . . , xvi−1 , fv(x[v]), xvi+1 , . . . , xvn)

we conclude that the map

gx′[v] : K −→ K, xv �→ fv(x[v]) (4.32)

is a bijection for arbitrary x′[v] (Proposition 4.13).
Let x[v] = (xvj1

, . . . , xvjm
). We consider the graph Qm

κ with vertices x =
(xvj1

, . . . , xvjm
), where ji < ji+1 for 1 ≤ i ≤ m− 1. Two vertices are adjacent

in Qm
κ if they differ in exactly one coordinate. The graph Qm

κ is acted upon
by Sm through

σ(xvji
)1≤i≤m = (xσ−1(vji

))1≤i≤m . (4.33)

Since Sm < Aut(Qm
κ), the above Sm-action induces the orbit graph Sm \Qm

κ .
We note that Sm \Qm

κ contains a subgraph isomorphic to the complete graph
of size κ (why?); hence, each coloring of Sm \Qm

κ requires at least κ colors.

86 4 Sequential Dynamical Systems over Permutations

Claim 1. The map fv uniquely corresponds to a κ-coloring of the orbit graph
Sm \Qm

κ .

By abuse of terminology we identify fv with its induced map

f̃v : Sm \Qm
κ −→ K, Sm(xvj1

, . . . , xvjm
) �→ fv(xvj1

, . . . , xvjm
),

which is well-defined since the Sm \Qm
κ -vertices are by definition Sm-orbits,

and fv is a symmetric function. To show that fv is a coloring we use the
local surjectivity of πSm : Qm

κ −→ Sm \ Qm
κ . Without loss of general-

ity we can assume that two adjacent Sm \ Qm
κ -vertices Sm(x) and Sm(x′)

have representatives y[v] and z[v] that differ exactly in their vth coordinate,
that is,

y[v] = (xvj1
, . . . , yv, . . . , xvjm

), z[v] = (xvj1
, . . . , zv, . . . , xvjm

) .

Since gx′[v] : K −→ K, xv �→ fv(x[v]) is bijective for any x′[v] [Eq. (4.32)], we
have

gx′[v](yv) = fv(Sm(y[v]))
= fv(Sm(z[v])) = gx′[v](zv) ,

that is, fv is a coloring of Sm \Qm
κ . Furthermore, the bijectivity of gx′[v] and

the fact that fv is defined over Sm \ Qm
κ imply that fv is a κ-coloring of

Sm \Qm
κ and Claim 1 follows.

Accordingly, we have a map

α : {Fv | Fv is bijective} −→ {cv | cv is a κ-coloring of Sm \Qm
κ } . (4.34)

We proceed by proving that α is a bijection. We can conclude from Claim 1
that α is an injection. To prove surjectivity we show that Sm \ Qm

κ contains
a specific subgraph isomorphic to a complete graph over κ vertices. Consider
the mapping

ϑ : Sm \Qm
κ −→ P (K), ϑ(Sm(x)) = {xvji

| 1 ≤ i ≤ m} , (4.35)

where P (K) denotes the power set of K. For any xvji
∈ ϑ(Sm(x)) there are

κ− 1 different neighbors of the form Sm(xk), where

∀ k ∈ K \ xvji
; xk = (xvj1

, . . . , xvji−1
, k, xvji+1

, . . . , xvjm
) . (4.36)

We denote this set by N(xvji
) = {Sm(xk) | k
= xvi}. By the definition

of Sm \ Qm
κ , any two different vertices Sm(xk) and Sm(xk′) are adjacent.

Accordingly, the complete graph over N(xvji
) ∪ {Sm(x)} is a subgraph of

Sm \Qm
κ . As a result any κ coloring induces a symmetric vertex map fv with

the property that
gx′[v] : K −→ K, xv �→ fv(x[v])

is a bijection for arbitrary x′[v]; hence, α is surjective and the proof of
Eq. (4.30) is complete.

4.2 Basic Properties 87

Claim 2. For any m ∈ N and a finite field K with |K| = κ, there exists a
κ-coloring of Sm \Qm

κ .
To prove Claim 2, we consider

sm : Sm \Qm
κ −→ K, sm(Sm(x)) =

m∑

i=1

xvji
. (4.37)

Since sm is a symmetric function, it is a well-defined map from Sm \ Qm
κ to

K. In order to prove that sm is a coloring, we use once more local surjectivity
of the canonical projection

πSm : Qm
κ −→ Sm \Qm

κ .

Accordingly, for any two Sm(x)-neighbors Sm(ξ) and Sm(ξ′) we can find rep-
resentatives ξ̃ and ξ̃′ in Qm

κ that differ in exactly one coordinate. We then
have

sm(Sm(ξ)) =
m∑

i=1

ξ̃vji

=

m∑

i=1

ξ̃′vji
= sm(Sm(ξ′)) . (4.38)

We conclude from the fact that sm is a mapping over Sm \Qm
κ and Eq. (4.38)

that sm : Sm \Qm
κ −→ K is a κ-coloring of Sm \Qm

κ .
Let Y be a graph and let w be a finite word over v[Y]. Using Claim 2

and the bijection α of Eq. (4.34) for every wi of w, we conclude that
there exists at least one invertible SDS (Y,FY , w), completing the proof of
Theorem 4.20. �

4.11. Show that the degree of a vertex Sm(x) in Sm \Qm
κ can be expressed

as
dSm\Qm

κ
(Sm(x)) = (κ− 1) |ϑ(Sm(x))| . (4.39)

[1+]

4.12. Construct the graph G = S3 \ Q3
3 from Example 4.19. How many

K = F3 colorings does G admit? [1+]

4.13. Let K be the field with four elements. How many vertices does the
graph G = S3 \Q3

4 have? Sketch the graph G. How many K colorings does G
admit? [2]

4.14. How many vertices does the graph G = Sm \Qm
α have? [1+]

Example 4.21. Let K = F3 and let v ∈ v[Y] be a vertex of degree 2. According
to Theorem 4.20, there exists a bijective local map Fv,Y that corresponds to
the proper 3-coloring of the orbit graph S3 \Q3

3;

s3 : S3 \Q3
3 −→ F3, s3(S3(x)) = x1 + x2 + x3.

88 4 Sequential Dynamical Systems over Permutations

We can display the s3-3-coloring of S3 \Q3
3 as follows:

0 2 1 0

1

�������

�������
0

�������

�������
2

�������

�������

2

�������

�������
1

�������

�������

0

�������

�������

		

When K = F2, Theorem 4.20 yields:

Corollary 4.22. Let K = F2. Then a word-SDS (Y,FY , w) is invertible if and
only if for all wi the Y -local map Fwi is induced by either parity or 1+parity.

Proof. For K = F2 the orbit graph Sm \Qm
2 is a line graph of size m+1, that

is, Sm \Qm
2

∼= Linem+1.

(0, . . . , 0) (0, . . . , 0, 1) (0, 1, . . . , 1) (1, . . . , 1)

Each 2-coloring of Linem+1 is uniquely determined by its value on (0, . . . , 0)
and there are two possible choices. Mapping (0, . . . , 0) to 0 yields the par-
ity function, and mapping (0, . . . , 0) to 1 yields the function 1 + parity, and
Corollary 4.22 follows. �

4.3 Equivalence

Equivalence is a fundamental notion in all of mathematics. In this section we
will analyze equivalence concepts of SDS. We begin our study of equivalence by
asking under which conditions are two SDS maps [FY , π] and [GZ , σ] identical
as functions? We refer to this as functional equivalence and address this in
Section 4.3.1.

Example 4.23. In this example we once more consider SDS over the graph
Circ4 where the vertex functions are induced by nor3 : {0, 1}3 −→ {0, 1}.
The four SDS-maps we consider are [NorCirc4 , (0, 1, 2, 3)], [NorCirc4 , (3, 2, 1, 0)],
[NorCirc4 , (0, 1, 3, 2)], and [NorCirc4 , (0, 3, 1, 2)], and they are all shown in Fig-
ure 4.9. The two phase spaces at the bottom in the figure are identical.
The SDS-maps [NorCirc4 , (0, 1, 3, 2)] and [NorCirc4 , (0, 3, 1, 2)] are functionally
equivalent. The top two phase spaces are not identical, but closer inspection
shows that they are isomorphic: If we disregard the states/labels, we see that
they are identical as unlabeled graphs. 		

4.3 Equivalence 89

(0312)

0000

1100

0110

0010
1000

0101

1010
1010

1101

1110
1111

1011

0111

1001 0100 0001

Fig. 4.9. Top left: the phase space of [NorCirc4 , (0, 1, 2, 3)]. Top right: the phase
space of [NorCirc4 , (3, 2, 1, 0)]. Bottom left: the phase space of [NorCirc4 , (0, 1, 3, 2)].
Bottom right: the phase space of [NorCirc4 , (0, 3, 1, 2)].

If two SDS phase spaces are isomorphic as (directed) graphs, we call the
two SDS dynamically equivalent . We will analyze this type of equivalence in
Section 4.3.3.

There are other concepts of equivalences and isomorphisms as well. For
example, [90] considers stable isomorphism: Two finite dynamical systems are
stably isomorphic if there is a digraph isomorphism between their periodic
orbits. In other words, two finite dynamical systems are stably isomorphic if
their multisets of orbit sizes coincide. We refer to Proposition 5.43 in Chap-
ter 5, where we elaborate some more on this notion. The following example
serves to illustrate the concept.

Example 4.24. Figure 4.10 shows the phase spaces of the two SDS-maps
[NorCirc4 , (0, 1, 2, 3)] and [(1+Nor+Nand)Circ4 , (0, 1, 2, 3)]. By omitting the
system state (1, 1, 1, 1), it is easy to see that these dynamical systems have
precisely the same periodic orbits and are thus stably isomorphic. 		

(0123)

0111

1101

1011

1110

0101

1111

1010

1100

0100

1000

0000

0010

1001

0001

0110

0011

Fig. 4.10. The phase space of (Circ4,NorCirc4 , (0, 1, 2, 3)) (right) and the phase
space of (Circ4, (1 + Nor + Nand)Circ4 , (0, 1, 2, 3)) (left).

90 4 Sequential Dynamical Systems over Permutations

The natural framework for studying equivalence is category theory.
Consider categories whose objects are SDS phase spaces. Different choices
of morphisms between SDS phase spaces yield particular categories and are
tantamount to different notions of equivalence. If we, for instance, only con-
sider the identity as morphism, we arrive at the notion of functional equiv-
alence. If we consider as morphisms all digraph isomorphisms, we obtain
dynamical equivalence. A systematic, category theory-based approach is be-
yond the scope of this book, but the interested reader may want to explore
this area further [95].

4.3.1 Functional Equivalence of SDS

In Section 4.2 we already encountered the situation where two SDS-maps
[FY , π] and [GZ , σ] are identical. There we considered the cases Y = Z and
FY = GZ and showed that

π ∼Y π′ =⇒ [FY , π] = [FY , π
′] . (4.40)

In this section we will continue this analysis assuming a fixed base graph Y
and family of Y -local functions (Fv)v.

A particular consequence of Eq. (4.40) is that the number of components
in the update graph U(Y) of Y (Section 3.1.4) is an upper bound for the
number of functionally different SDS that can be generated by only varying
the permutation. In Section 3.1.5 we established that there is a bijection

fY : [SY / ∼Y] −→ Acyc(Y) .

This shows us that [FY , π], viewed as a function of the update order π, only
depends on the acyclic orientation OY (π). We can now state

Proposition 4.25. For any combinatorial graph Y and any family of Y -local
functions (Fv)v we have

|{[FY , π] | π ∈ SY }| ≤ |Acyc(Y)| , (4.41)

and the bound is sharp.

Proof. The inequality (4.41) is clear from (4.40) and the bijection fY . It re-
mains to show that the bound is sharp. To this end we prove the implication

[π]Y
= [σ]Y =⇒ [NorY , π]
= [NorY , σ] . (4.42)

Without loss of generality we may assume that π = id, and Lemma 3.13
guarantees the existence of a pair of Y -vertices v and v′ with {v, v′} ∈ e[Y]
such that

π = (. . . , v, . . . , v′, . . .) and σ = (. . . , v′, . . . , v, . . .) .

4.3 Equivalence 91

We set B<σ

Y (v) = {w | w ∈ BY (v) ∧ w <σ v}. Let

x = (xu)u, xu =

{
1 if u ∈ B<σ

Y (v),
0 otherwise.

(4.43)

Obviously, [NorY , π](x)v = 0 since v′ <σ v and xv′ = 1. But clearly we have
[NorY , σ](x)v = 1; hence, [NorY , π]
= [NorY , σ] and

|{[NorY , π] | π ∈ SY }| = |Acyc(Y)|,

and the proof is complete. �

We remark that Eq. (4.40) and the bound in (4.41) are valid for vertex
functions over, e.g., R

n and C
n, and there are no restrictions on the vertex

functions fv.

4.3.2 Computing Equivalence Classes

In this section we give some remarks on computational issues related to SDS.
Through the bijection fY we can bound the number of functionally nonequiv-
alent SDS by computing a(Y) = |Acyc(Y)|. For the computation of a(Y) we
have from Section 3.1.3 the recursion relation a(Y) = a(Y ′

e)+a(Y ′′
e). However,

the computation of a(Y) is in general of equal complexity as the computation
of the chromatic number of Y .

There are various approaches to bound a(Y). Let α(Y) be the (vertex) in-
dependence number of Y . By definition, there are at most α(Y) independent
vertices, and clearly we have at most n! linear orderings. From this we imme-
diately deduce that n!/α(Y)n ≤ a(Y). In [96] a bound is derived in terms of
the degree-sequence of Y : a(Y) ≥

∏n
i=1(δi + 1)!1/δi+1 For graphs with

(
�
2

)
+ h

edges, it is shown in [97] that for 0 ≤ h < � the inequality a(Y) ≥ �! (h + 1)
holds. In [98,99] the following upper bound for the number of acyclic orienta-
tions is given: a(Y) ≤

∏n
i=1(δi + 1). In [96] an upper bound is given in terms

of the number of spanning trees of Y .

Example 4.26. In Example 3.17 we saw that a(Circn) = 2n − 2. Thus, for the
graph Circn and fixed vertex functions (fv)v we can generate at most 2n − 2
functionally nonequivalent SDS by varying the permutation update order. 		

4.15. Derive a formula for a(Wheeln). [1+]

4.16. For a fixed sequence of vertex functions over Q3
2 show that we can have

at most 1862 functionally nonequivalent permutation SDS. [2]

How sequential is a sequential dynamical system? This may sound like
a strange question. However, if we implement an SDS on a “modern”2

2 Of course, it is dangerous to say “modern” computer in any written work — after
10 years most things in that business are hopelessly dated!

92 4 Sequential Dynamical Systems over Permutations

computer with multiple processors, this question is relevant for efficient
implementations.

In fact, we already encountered this question for permutation SDS in some
form. Consider an SDS over a graph Y with update order π. We call a vertex
of O(π) [identified with the graph G(O(π)), Section 3.1.3] with the property

 ∃ e ∈ e[G(O(π))]; τ(e) = v,

a source. We can now compute the rank layer sets as follows:

Set G = G(OY (π)), let G′
0 = G, and let k = 0.

While v[G′
k]
= ∅ repeat:

Let Lk be the set of sources in G′
k.

Let G′
k+1 be the graph obtained by deleting all vertices in Lk from G′

k

along with their incident edges.
Increment k by 1.

Notice that Lk = rnk−1(k) and that this is also a practical way to construct
the canonical permutation π̂ [Eq. (3.17)] associated with a given acyclic orien-
tation. Here is the key fact: All the vertices in the layer set Lk can have their
states updated simultaneously. This follows since Lk is necessarily an inde-
pendent set of Y . From this it is clear that the smallest number of processor
cycles we need to compute one full update pass of the SDS equals the number
of layers, and this is given by 1 + mink≥0{rnk−1(k)
= ∅}. In general, this is
the best possible result.

Example 4.27. Let Y = Wheel6 and let π = (4, 2, 3, 5, 1, 0, 6). We will compute
the induced acyclic orientation OY (π), find the layer sets (relative to OY (π)),
and compute π̂.

The directed graph representation of the induced acyclic orientation is
shown in Figure 4.11. Here rnk(2) = rnk(4) = 0, rnk(1) = rnk(3) = rnk(5) = 1,
rnk(0) = 2, and rnk(6) = 3. Thus,

π̂ = ̂(4, 2, 3, 5, 1, 0, 6) = (2, 4︸︷︷︸
rnk−1(0)

, 1, 3, 5︸ ︷︷ ︸
rnk−1(1)

, 0︸︷︷︸
rnk−1(2)

, 6︸︷︷︸
rnk−1(3)

) .

What is the smallest number of processor cycles we would need to compute
[FY , π](x)? Since the maximal rank is 3, we see that we would need at least
3 + 1 = 4 cycles to compute [FY , π](x) on a parallel multiprocessor machine.

		

4.17. Let Y = En be the graph on 2n vertices given by

v[En] = {0, 1, . . . , 2n− 1}
e[En] = {{i, i+ 1}, {i, i+ n− 1}, {i, i+ n} | 0 ≤ i < n} ,

where all indices/vertices are computed modulo 2n. The graph E5 is shown
in Figure 4.12.

4.3 Equivalence 93

Fig. 4.11. The acyclic orientation induced by (4, 2, 3, 5, 1, 0, 6) over Wheel6.

Fig. 4.12. The graph E5 of Problem 4.17.

(i) Find the canonical permutation π̂ of π = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). (ii) For
(Y,FE5 , π), what is the smallest number of computation cycles needed to
evaluate the SDS-map [FE5 , π] at some state x on a parallel computer with
at least 10 processors? Here we assume that each processor can evaluate one
vertex function per computation cycle. (iii) For a fixed sequence of vertex
functions (fv)v how many functionally different permutation SDS can we have
over Y = En? [1+]

4.3.3 Dynamical Equivalence

Functional equivalence of SDS distinguishes phase-space graphs as labeled
graphs. Here we may want to classify phase spaces according to the struc-
ture of transients and periodic orbits irrespective of the particular labeling of
the vertices. Accordingly, we call two SDS dynamically equivalent if their
phase spaces are isomorphic as graphs. For finite dynamical systems we have
the following:

Definition 4.28 (Dynamical equivalence). Let E be a finite set. Two fi-
nite dynamical systems given by map H,G : E −→ E are dynamically equiv-
alent if there exists a bijection φ : E −→ E such that

G ◦ φ = φ ◦H . (4.44)

We note that dynamical equivalence becomes a special case of topological
conjugation if we use the discrete topology on E; see Section 3.3.3.

94 4 Sequential Dynamical Systems over Permutations

It is worth spending a moment to reflect on Eq. (4.44). We observe that
the bijection φ maps the phase space of the dynamical system of H into the
phase space of the dynamical system of G. For instance, assume that x is a
fixed point under H so that H(x) = x. Then φ(x) is a fixed point for G since
by Eq. (4.44) we have

G(φ(x)) = φ(H(x)) = φ(x) .

We can generalize this to periodic orbits. Let y be a periodic point of period
2 under H . Since (4.44) implies

G2 ◦ φ = G ◦ (G ◦ φ) = G ◦ φ ◦H = g ◦H ◦H = φ ◦H2 ,

and in general Gk ◦ φ = φ ◦Hk for k ≥ 1, we obtain that φ(y) is a periodic
point of period 2 under G. If x is mapped to y under H , we see that G(φ(x)) =
φ(H(x)) = φ(y). In other words, G maps φ(x) to φ(y), and accordingly, the
phase spaces of G and H can be identified modulo the labeling of system
states.
Example 4.29. In Figure 4.13 we have the isomorphic phase spaces of the
SDS (Circ4,NorCirc4 , (0, 1, 3, 2)) and (Circ4,NandCirc4 , (0, 1, 3, 2)). The map
inv4 : {0, 1}4 −→ {0, 1}4 given by

inv(x0, x1, x2, x3) = (1 + x0, 1 + x1, 1 + x2, 1 + x3)

provides the bijection of Eq. (4.44) in Definition 4.28. 		

Fig. 4.13. Two isomorphic phase spaces. The phase space of [NorCirc4 , (0, 1, 3, 2)]
(left) is mapped to the the phase space of [NandCirc4 , (0, 1, 3, 2)] (right) by the map
inv4.

Recall that if a group G acts on v[Y], then its action induces an action
on system states x = (xv1 , . . . , xvn) ∈ Kn by gx = (xg−1(v1), . . . , xg−1(vn)). In
particular, this holds for Aut(Y) acting on v[Y].

Proposition 4.30. Let Y be a combinatorial graph, let π ∈ SY , and let
(gk)n

k=1 be a sequence of symmetric functions. Then we have for the SDS
(Y,FY , π) and (Y,FY , γπ) induced by (gk)n

k=1

∀ γ ∈ Aut(Y); [FY , γπ] ◦ γ = γ ◦ [FY , π] , (4.45)

where γ(xv1 , . . . , xvn) = (xγ−1(v1), . . . , xγ−1(vn)).

4.3 Equivalence 95

Thus, for any sequence of symmetric functions (gk)k the two induced SDS
(Y,FY , γπ) and (Y,FY , π) are dynamically equivalent.

Proof. Since the SDS are induced, we have fv = gd(v)+1 for all vertices. We
can rewrite Eq. (4.45) as

[FY , γπ] = γ ◦ [FY , π] ◦ γ−1 .

To prove this statement it is sufficient to show that for all v ∈ v[Y] we have

F(γπ)(v) = γ ◦ Fπ(v) ◦ γ−1 .

The result then follows by composition. For the left-hand side we obtain

F(γπ)(vi)(x) = (xv1 , . . . , f(γπ)(vi)(x[γπ(vi)])
︸ ︷︷ ︸

pos. (γπ)(vi)

, . . . , xvn) .

Similarly, for the right side we derive

γ ◦ Fπ(vi),Y ◦ γ−1(x) = γ ◦ Fπ(vi),Y (xγ(v1), . . . , xγ(vn))
= γ(xγ(v1), . . . , fπ(vi)(xw | w ∈ γBY (π(vi)))

︸ ︷︷ ︸
pos. π(vi)

, . . . , xγ(vn))

= (xv1 , . . . , fπ(vi)(xw | w ∈ γBY (π(vi)))
︸ ︷︷ ︸

pos. γπ(vi)

, . . . , xvn) .

Equality now follows since for γ ∈ Aut(Y) we have γBY (π(vi)) = BY (γπ(vi)),
and from fπ(vi) = fγπ(vi) since the SDS are induced and automorphisms
preserve vertex degrees. �

As noted in the proof we may rewrite Eq. (4.45) as

[FY , γπ] = γ ◦ [FY , π] ◦ γ−1 .

Clearly, this equation gives rise to a natural conjugation action of Aut(Y) on
SDS.

4.18. In Proposition 4.30 we made some assumptions that were stronger
than what we needed. Do we need symmetric functions? Do we need to only
consider induced SDS? Does the proposition hold for word-SDS? [2]

Example 4.31. We have already seen simple examples of the relation (4.45).
To be specific take φ = [NorCirc4 , (0, 1, 2, 3)] and ψ = [NorCirc4 , (3, 2, 1, 0)].3

The automorphism group of the Circ4 is D4. We see that γ = (0, 3)(1, 2) (cycle
form) is an automorphism of Circ4 and that (3, 2, 1, 0) = γ(0, 1, 2, 3). Without
any computations we therefore conclude by Proposition 4.30 that the SDS-
maps φ and ψ are dynamically equivalent. Their phase spaces are shown in
Figure 4.14. 		
3 Again, when nothing else is said all permutations are written using the standard

form as opposed to cycle form.

96 4 Sequential Dynamical Systems over Permutations

Fig. 4.14. The phase spaces of the dynamically equivalent SDS
(Circ4,NorCirc4 , (0, 1, 2, 3)) (left) and (Circ4,NorCirc4 , (3, 2, 1, 0)) (right).

In light of Proposition 4.30, it is natural to consider group actions to
characterize dynamically equivalent SDS. This will also allow us to derive
bounds for the number of nonequivalent SDS that we can obtain by varying the
update order while keeping the local functions and the graph fixed. Recall that
gY : Acyc(Y) −→ Sn/∼Y is the inverse of the bijection fY in Proposition 3.15
of Chapter 3.

Lemma 4.32 (Aut(Y)-actions). Let Y be a combinatorial graph. We have
Aut(Y)-actions on the sets (i) Sn/∼Y , (ii) Acyc(Y), and (iii) F = {[FY , π] |
π ∈ SY } given by

(γ, [π]Y) �→ γ[π]Y := [γπ]Y , (4.46)

(γ,OY) �→ γOY = γ ◦ O ◦ γ−1 , (4.47)
(γ, [FY , σ]) �→ γ • [FY , σ] := [FY , γσ] , (4.48)

respectively. Furthermore, the actions on Sn/∼Y and Acyc(Y) are compatible,
i.e., we have

fY (γ[π]Y) = γfY ([π]Y) (4.49)

and
h : Acyc(Y) −→ F , h(OY) = [FY , π], π ∈ gY (OY) (4.50)

is an Aut(Y)-map.

Proof. We first note that the action in (4.46) is well-defined since we have

π ∼Y σ =⇒ γπ ∼Y γσ ,

and hence [σ]Y = [π]Y implies [γσ]Y = [γπ]Y . It is clear that we have a
group action. The maps (4.47) and (4.48) are clearly group actions, but see
Problem 4.19.

Let γ be a graph automorphism and OY (γπ), OY (π) be the acyclic orien-
tations induced by the permutations γπ and π, respectively. Then we have

γOY (π) = OY (γπ); (4.51)

4.3 Equivalence 97

see Problem 4.19. From this we conclude

fY (γ[π]Y) = fY ([γπ]Y) = OY (γπ) = γOY (π) = γfY ([π]Y) .

Using γOY (π) = OY (γπ), we can easily verify that h is an Aut(Y)-map:

h(γOY (π)) = h(OY (γπ))
= [FY , γπ]
= γ • [FY , π] (Proposition 4.30)
= γ • h(OY (π)) ,

and the proof of the lemma is complete. �

4.19. Prove that (4.47) defines a group action, and establish the iden-
tity (4.51). [1+]

The results so far only address the update order aspect of dynamical equiv-
alence — local maps and the base graph are identical for both SDS. Before
we proceed by analyzing the number of dynamically nonequivalent SDS that
can be generated by varying the update order, we remark that two SDS with
identical base graphs, but different vertex functions can also be dynamically
equivalent. For instance, for an arbitrary SDS (Y,FY , π) with vertex states in
K = F2 we obtain a dynamically equivalent SDS where the Y -local functions
are

invn ◦ Fv,Y ◦ invn ,

where invn is the inversion map, (xvi) �→ (xvi + 1). In particular, it follows
that the SDS (Y,NorY , π) and (Y,NandY , π) are dynamically equivalent. See
also Theorem 4.12 and Example 4.29.

4.20. Are the SDS induced by the sequence of vertex functions (parityk)k

and the sequence (1 + parityk)k dynamically equivalent? [1+]

4.3.4 Enumeration of Dynamically Nonequivalent SDS

How many dynamically nonequivalent SDS can be generated for a fixed graph
Y and fixed family of induced local functions FY by varying the permutation
update order? We denote this number by Δ(FY). From Eq. (4.45) it is clear
that Δ(FY) cannot exceed the number of orbits in SY / ∼Y under Aut(Y).
This quantity depends only on Y and is denoted by Δ(Y). Writing a(Y) =
|Acyc(Y)|, we have:

Theorem 4.33. Let Y be a combinatorial graph, and let FY be a family of
Y -local functions induced by symmetric functions. Then

Δ(FY) ≤ Δ(Y) =
1

|Aut(Y)|
∑

γ∈Aut(Y)

a(〈γ〉 \ Y) . (4.52)

98 4 Sequential Dynamical Systems over Permutations

Proof. Since fY (γ[π]Y) = γfY ([π]Y), the number of orbits Δ(Y) in Sn/ ∼Y

induced by the Aut(Y)-action equals the number of Aut(Y)-orbits in Acyc(Y),
and by Frobenius’ lemma (Lemma 3.18) we have

Δ(Y) =
1

|Aut(Y)|
∑

γ∈Aut(Y)

|
(
Fix(γ)Acyc(Y)

)
| .

The inequality (4.52) now follows from Theorem 3.21, which provides a com-
binatorial interpretation of the Fix(g) terms in Frobenius’ lemma via the bi-
jection

β : Acyc(Y)G −→ Acyc(G \ Y), O �→ OG,

which implied Eq. (3.31): N = 1
|G|

∑
g∈G |Acyc(〈g〉 \ Y)|. �

Accordingly, Theorem 4.33 follows from Theorem 3.21 in Chapter 3 and
Lemma 4.32. Example 3.24 from Chapter 3 illustrates how this can be applied
to circle graphs. We will derive a formula for Δ(Circn) below.

4.21. Compute the bound Δ(Y) for Y = Kn, n ≥ 1. Hint. Using the for-
mula (4.52) is going completely overboard in this case. Think about what the
bound Δ(Y) represents, and give your answers in no more than three lines!

[1+]

4.22. Compute the bound Δ(Y) for Y = Wheel4. [1+]

4.23. In Example 4.35 we found that Δ(Y) = 3. Is this bound sharp? Hint.
What can you do to test if the bound is sharp? [2-]

4.24. Is Δ(ParityCirc4) = Δ(Circ4)? [2-]

4.25. How many possible permutation update orders are there for the
graph Y = Q3

2? How many functionally nonequivalent SDS can we obtain
over Q3

2 by only varying the update order? How many dynamically nonequiv-
alent induced SDS can we obtain over Q3

2 by varying only the update order?
Is the bound Δ(Q3

2) sharp? [3-C]

Using formula (4.52), we can now compute the upper bound Δ(Y) for
various classes of graphs.

Proposition 4.34 (Δ(Circn) and Δ(Wheeln)). Let φ be the Euler φ-function.
For n ≥ 3 we have

Δ(Circn) =

{
1
2n

∑
d|n φ(d)

(
2n/d − 2

)
+ 2n/2

/
4, n even,

1
2n

∑
d|n φ(d)

(
2n/d − 2

)
, n odd,

(4.53)

Δ(Wheeln) =

{
1
2n

∑
d|n φ(d)

(
3n/d − 3

)
+ 3n/2

/
2, n even,

1
2n

∑
d|n φ(d)

(
3n/d − 3

)
, n odd.

(4.54)

4.3 Equivalence 99

Proof. First recall that

a(Circn) = 2n − 2 and a(Wheeln) = 3n − 3 (4.55)

and that Aut(Circn) = Dn. This group is given by {τmσk | m = 0, 1, k =
0, 1, . . . , n− 1}, where, using cycle notation, σ = (0, 1, 2, . . . , n − 1) and τ =
∏�(n−1)/2

i=1 (i, n− i). By Theorem 3.21 we need to compute a(〈γ〉 \ Y) for all
γ ∈ Aut(Y). We start by looking at the rotations.
(i) If σk has order n, then the orbit graph 〈σk〉 \ Circn consists of one sin-
gle vertex with a loop attached, and therefore [Theorem 3.21, (a)] we have
Fix(σk) = ∅. Note that there are φ(n) automorphisms of order n.
(ii) If the order of σk is n/2, then the orbit graph 〈σk〉 \Circn is a graph with
two vertices connected by two edges and we obtain (Theorem 3.21, Claim 1)
a(〈σk〉 \ Circn) = 2 = 2n/n/2 − 2. There are φ(n/2) such automorphisms.
(iii) In the case where σk has order n/d with d > 2, we have that 〈σk〉\Circn

∼=
Circd and thus a(〈σk〉 \ Circn) = 2d − 2. There are φ(d) such automorphisms.
(iv) Finally, it is seen that the only case in which 〈τσk〉 \ Circn does not
contain loops [Theorem 3.21, (a)] is when both n and k are even, and in this
case 〈τσk〉 \ Circn

∼= Linen/2+1 and a(〈τσk〉 \ Y) = 2n/2 for all such k. There
are n/2 automorphisms of this form.

Thus, for odd n we have

Δ(Circn) =
1
2n

∑

d|n
φ(n/d) a(Circd) =

1
2n

∑

d|n
φ(d)

(
2n/d − 2

)
,

and for n even we will have to include the additional contribution from auto-
morphisms τσk, which is (1/2n)(n/2)a(Linen/2+1) = 2n/2/4, completing the
proof for Δ(Circn).

Now consider Wheeln. Clearly we also have that Aut(Wheeln) is isomorphic
to Dn. The calculation of Δ(Wheeln) now follows from what we did above and
the following observation. If Y has no vertices of maximal degree (that would
be n−1 for a graph on n vertices), then Aut(Y) and Aut(Y ⊕v) are isomorphic
and G \ (Y ⊕ v) is isomorphic to (G \ Y) ⊕ v′. This observation will allow us
to use our calculations in case of Circn for Wheeln for n > 3.
(i) By the same argument as above, we have that 〈σk〉 \ Wheeln contains a
loop whenever σk has order n.
(ii) When σk has order n/2, then 〈σk〉 \Wheeln ∼= Circ3 and thus the number
of acyclic orientations of the orbit graph is 6 = 3n/(n/2) − 3.
(iii) When the order of σk is n/d with d > 2, we obtain 〈σk〉 \ Wheeln ∼=
Wheeld, and a(〈σk〉 \ Wheeln) = 3d − 3.
(iv) We only get contributions from automorphisms of the form τσk when
n and k are both even. In this case 〈τσk〉 \ Wheeln ∼= Wn/2+1, where Wn is
the graph obtained from Wheeln by deleting the edge {0, n− 1}. We leave it
as an exercise to conclude that a(Wn) = 2 · 3n−1 and consequently a(〈τσk〉 \
Wheeln) = 2 · 3n/2.

100 4 Sequential Dynamical Systems over Permutations

Adding up the terms as before produces the given formula, and the proof
is complete. �

Example 4.35. In Example 3.24 we calculated the bound (4.52) for Y = Circ4

and Y = Circ5 directly. Here we will calculate the bound Δ(Y) for Y = Circ6

and Y = Circ7 using the formula in (4.53).

Δ(Circ6) =
1
12

(φ(1)(26 − 2) + φ(2)(23 − 2) + φ(3)(22 − 2)) + 26/2/4

=
1
12

(62 + 6 + 2 · 2) + 2 = 6 + 2 = 8 .

We also get

Δ(Circ7) =
1
14

(φ(1)(27 − 2)) =
1
14

(126) = 9 .

		

4.26. Compute Δ(Circp) for p a prime with p > 2. [1]

We derived a combinatorial upper bound for the number of dynamically
nonequivalent SDS through the orbits of the Aut(Y)-action on Acyc(Y). It
is natural to ask for which graphs and for which families of local functions
FY this bound is sharp, that is, when do we have Δ(FY) = Δ(Y) (see Prob-
lem 4.25)?

Conjecture 4.36. For any combinatorial graph Y and permutation-SDS in-
duced by (nork)k, the bound Δ(Y) is sharp, i.e.,

Δ(NorY) = Δ(Y) . (4.56)

In the following proposition we study the particular case of the star graph, de-
noted by Starn. The star graph is the combinatorial graph given by v[Starn] =
{0, 1, 2, . . . , n} and e[Starn] = {{0, i} | 1 ≤ i ≤ n}.

Proposition 4.37. We have

Δ(Starn) = Δ(NorStarn) , n ≥ 2 .

Proof. The proof is done by considering all Aut(Starn)-orbits of Sn/∼Starn and
by demonstrating that each orbit gives rise to an SDS with unique phase-space
features.

It is clear that a graph automorphism must fix the center vertex 0.
However, any permutation of the “outer” vertices corresponds to an auto-
morphism. Therefore, the automorphism group of Starn is isomorphic to Sn.
Moreover, each class [π]Starn is characterized by the position of 0. Assume
π(j) = 0. Then we have [π]Starn

= {π′ ∈ SStarn | π′(j) = 0}. We write this
equivalence class as [π]jStarn

. It now follows that

4.3 Equivalence 101

[SStarn/∼Starn] =
n+1⋃

j=1

[π]jStarn
.

It is sufficient to prove that the SDS (Y,NorStarn
, πj) for j = 1, . . . , n+1 have

pairwise non-isomorphic phase spaces Γ (Starn,NorStarn , πj). To this end let
π ∈ Sn+1 be a permutation with π(i) = 0. We also set x = (xπ(1), . . . , xπ(i−1))
and y = (xπ(i+1), . . . , xπ(n+1)). If i
= 1, n+ 1, we obtain the following orbits
in phase space where underline denotes vectors and overbars denote logical
complements.

(x1y) � �� (00ȳ) � �� (10y),
��� y
= 0, (4.57)

(x10) � �� (001) � �� (100),�

�����
���

��
�

x
= 0

(010)
�

����������

(4.58)

(x0y) � �� (x̄0ȳ)
��� x
= 0, 1 (4.59)

In the case i = 1 we obtain

(1y) � �� (0ȳ) � �� (0y)
��� (1ȳ),��� y
= 0, 1 , (4.60)

(11) � �� (00) � �� (10),	

��

(01)
�

����������

(4.61)

and in the case i = n+ 1 we have

(x0) � �� (x̄0),
��� x
= 0, 1 , (4.62)

(x1) � �� (00) � �� (10)

����
��

��
��

x
= 0 .

(01)
�

����������

(4.63)

It is clear from the above diagrams that for any Starn vertex i the associated
digraph has a unique component containing a 3-cycle and on this cycle there
is a unique state vi with indegree(vi) > 1. In the first case indegree(vi) = 2i−1,
in the second case indegree(vi) = 2, and in the third case indegree(vi) = 2n.
The only case in which these numbers are not all different is for i = 2. But
in this case we can use, e.g., the structure in (4.60) to distinguish the corre-
sponding digraphs. It follows that if i
= j the digraphs Γ (Starn,NorStarn

, πi)
and Γ (Starn,NorStarn

, πj) are non-isomorphic, and we have shown that

Δ(NorStarn
) = Δ(Starn) ,

completing the proof of the theorem. �

102 4 Sequential Dynamical Systems over Permutations

The reason why the sharpness proof was fairly clean for Y = Starn is the
large automorphism group of this graph and the clear-cut characterization
of Starn/∼Starn . For Circn, for instance, the situation becomes a lot more
involved.

Let Starl,m denote the combinatorial graph derived from Kl by attaching
precisely m new vertices to each vertex of Kl:

v[Starl,m] = v[Kl] ∪
l⋃

i=1

{ir | 1 ≤ r ≤ m}, (4.64)

e[Starl,m] = e[Kl] ∪
l⋃

i=1

{{i, ir} | 1 ≤ r ≤ m}.

The graph Star3,2 is shown in Figure 4.15.

Fig. 4.15. The graph Star3,2.

Proposition 4.38. For Star2,m we have

Δ(NorStar2,m
) = Δ(Star2,m) . (4.65)

Each permutation SDS (Star2,m,NorStar2,k
, π) has precisely one periodic orbit

of length 3.

The proof of this result goes along the same lines as the proof for Starn, but
it is rather cumbersome. If you feel up to it you may check the details in [100].
We contend ourselves with the following two results that are of independent
interest.

Lemma 4.39. Let m, l ≥ 2. We have

Aut(Starl,m) ∼= Sl
m � Sl . (4.66)

4.27. Prove Lemma 4.39. [2]

For the graph Starl,m it turns out we can also compute the bound
Δ(Starl,m) directly:

4.4 SDS Morphisms and Reductions 103

Proposition 4.40. Let m, l ≥ 2. We have

Δ(Starl,m) = (m+ 1)l . (4.67)

4.28. Verify the bound (4.67) in Proposition 4.40. [2]

4.29. Settle conjecture 4.36. [5]

4.4 SDS Morphisms and Reductions

It is natural to ask for structure-preserving maps between SDS. For dynamical
systems the standard way to relate two systems is through phase-space rela-
tions as we did when studying dynamical equivalence. However, SDS exhibit
additional structure, and it seems natural also to have morphisms relate the
SDS base graphs, vertex functions, and update orders.

What should these structure-preserving maps be? Using the language of
category theory, we are looking for the morphisms in a category where the
objects are SDS. There are choices in this process, and we will be using Defi-
nition 4.41 below [101]. For an alternative approach we refer to [102].

Definition 4.41 (SDS morphism). Let (Y,FY , π) and (Z,GZ , σ) be two
SDS. An SDS-morphism between (Y,FY , π) and (Z,GZ , σ) is a triple

(ϕ, η, Φ) : (Y,FY , π) −→ (Z,GZ , σ) ,

where ϕ : Y −→ Z is a graph morphism, η : SZ −→ SY is a map that satisfies
η(σ) = π, and Φ is a digraph morphism of phase spaces

Φ : Γ (Z,GZ , σ) −→ Γ (Y,FY , π) .

If all three maps ϕ, η, and Φ are bijections, we call (ϕ, η, Φ) an SDS-
isomorphism.

A priori it is not clear that there are any SDS morphisms. The follow-
ing example gives an example of an SDS morphism and also illustrates key
elements of the theory developed in this section.

Example 4.42. The map ϕ : Q3
2 −→ K4 defined by ϕ(0) = ϕ(7) = 1, ϕ(1) =

ϕ(6) = 2, ϕ(2) = ϕ(5) = 3, and ϕ(3) = ϕ(4) = 4 is a graph morphism. It
identifies vertices on spatial diagonals and is depicted in Figure 4.16. Let σ =
(1, 3, 2, 4) ∈ SZ , let π = (0, 7, 2, 5, 1, 6, 3, 4) ∈ SY , and let η : SZ −→ SY be a
map with η(σ) = π. Moreover, we define χ : F

4
2 −→ F

8
2 by χ(x1, x2, x3, x4) =

(x1, x2, x3, x4, x4, x3, x2, x1). If we take x = (0, 1, 0, 0), we get the following
commutative diagram:

(0, 1, 0, 0)
�

χ

��

� [NorK4 ,σ]
�� (0, 0, 0, 1)

�
χ

��
(0, 1, 0, 0, 0, 0, 1, 0) �

[Nor
Q3

2
,π]

�� (0, 0, 0, 1, 1, 0, 0, 0)

104 4 Sequential Dynamical Systems over Permutations

Fig. 4.16. A graph morphism from Q3
2 to K4.

Here is the key observation: We can compute the system state transition
(0, 1, 0, 0, 0, 0, 1, 0) �→ (0, 0, 0, 1, 1, 0, 0, 0) under [NorQ3

2
, π] using [NorK4 , σ].

Therefore, we can obtain information about the phase space of (Q3
2,NorQ3

2
, π)

from the simpler and smaller SDS phase space of (K4,NorK4 , σ).
We invite you to verify that χ induces a morphism of phase spaces

Φ : Γ (Z,FZ , σ) −→ Γ (Y,FY , π). Accordingly, (ϕ, η, Φ) is an SDS morphism.
		

In Section 4.4.3 we will give a more general answer to the question about
existence of SDS morphisms. We will show that any covering map [Eq. (3.5)]
induces an SDS morphism in a natural way.

4.4.1 Covering Maps

In this section we consider covering maps ϕ : Y −→ Z, that is, for all v ∈ v[Y]
the restriction map

ϕ|StarY (v) : StarY (v) −→ StarZ(ϕ(v)) (4.68)

is a graph isomorphism. The graph StarY (v) is the subgraph of Y given by
e[StarY (v)] = {e ∈ e[Y] | ω(e) = v or τ(e) = v} and v[StarY (v)] = {v′ ∈ v[Y] |
v′ = ω(e) ∨ v′ = τ(e), e ∈ e[StarY (v)]}.

4.4.2 Properties of Covering Maps

In later proofs we will need the following lemma, which can be viewed as the
graph equivalent of a basic property of covering maps over topological spaces;
see [103, 104].

Lemma 4.43. Let Y and Z be non-empty, undirected, connected graphs and
let ϕ : Y −→ Z be a covering map. Then we have

∀ x, y ∈ v[Z] : |ϕ−1(x)| = |ϕ−1(y)| . (4.69)

Proof. Let x and y be two Z-vertices and assume |ϕ−1(x)| > |ϕ−1(y)|. Since Z
is connected, we can without loss of generality assume that there exists an edge
e in Z such that ω(e) = x and τ(e) = y. For any ξ ∈ ϕ−1(x) local bijectivity
guarantees the existence of a Y -edge e′ such that ω(e′) = ξ and τ(e′) = η
with η ∈ ϕ−1(y). But this is impossible in view of |ϕ−1(x)| > |ϕ−1(y)| and
the lemma follows by contradiction. �

4.4 SDS Morphisms and Reductions 105

In the context of covering maps the set ϕ−1(x) is usually called the fiber
over x. Since all fibers have the same cardinality, we conclude that the order
of ϕ(Y) divides the order of Y .

The following is another useful fact that is needed later. For the statement
of the result we need the notion of distance of vertices in an undirected graph.
Let v, v′ ∈ v[Y]. The distance between v and v′ in Y is the length of a shortest
path connecting v and v′, or ∞ if no such path exists. We write the distance
between v and v′ in Y as dY (v, v′). It satisfies the usual properties of a metric,
which you can easily verify.

Proposition 4.44. Let Y, Z be undirected graphs and ϕ : Y −→ Z a cover-
ing map. Then for any u ∈ v[Z] and v, v′ ∈ ϕ−1(u) with v
= v′ we have
dY (v, v′) ≥ 3. In particular, the fiber over ϕ(v) is an independent set for any
v ∈ v[Y].

Proof. Let v, v′ ∈ ϕ−1(u) with v
= v′, and suppose dY (v, v′) = 1. Then
ϕ|StarY (v) : StarY (v) −→ StarZ(u) cannot be a bijection. If dY (v, v′) = 2, then
let v′′ ∈ v[Y] be a vertex with dY (v, v′′) = 1 and dY (v′, v′′) = 1. Since both
v and v′ are mapped to u, the restriction map ϕ|StarY (v′′) : StarY (v′′) −→
StarZ(ϕ(v′′)) cannot be a graph isomorphism. The last statement is clear. �

Building on the proof of Lemma 4.43 we also have the following result,
which is a special case of a more general result from [105]. It can be considered
as the graph equivalent of the unique path-lifting property of covering maps
of topological spaces.

Lemma 4.45. Let ϕ : Y −→ Z be a covering map and let v ∈ v[Y]. Then
any subtree T ′ of Z containing ϕ(v) lifts back to a unique subtree T of Y
containing v.

This only holds when T ′ is a subtree of Z but fails to hold for general
subgraphs Z ′ of Z containing ϕ(v). Why?

4.4.3 Reduction of SDS

In this section we prove that a covering map ϕ : Y −→ Z induces an SDS-
morphism in a natural way. Without loss of generality we may assume that
Z is connected. We can then conclude using Lemma 4.45 that ϕ is surjective.
In the following we set n = |v[Y]| and m = |v[Z]|.
Constructing the update order map ηϕ. Let π ∈ SZ . We define s(πk)
to be the sequence of elements from the fiber ϕ−1(πk) ordered by some total
order on v[Y]. As the image of π under ηϕ we take the concatenation of the
sequences s(π1) through s(πm), that is,

ηϕ(π) = (s(π1)|s(π2)| . . . |s(πm)) . (4.70)

The map ηϕ naturally induces a map η̂ϕ : Acyc(Z) −→ Acyc(Y) via the bijec-
tion fY such that the diagram

106 4 Sequential Dynamical Systems over Permutations

SZ

f ′
Y

��

ηϕ �� SY

f ′
Y

��
Acyc(Z)

η̂ϕ �� Acyc(Y)

where σ �→ f ′
Y (σ) = O(σ), is commutative.

4.30. Verify the commutative diagram above. [2-]

Example 4.46. We revisit Example 4.42 and consider the covering map ϕ : Q3
2

−→ K4. We observe that σ = (1, 3, 2, 4) ∈ SZ is mapped to ηϕ(σ) = π =
(0, 7, 2, 5, 1, 6, 3, 4) ∈ SY and the acyclic orientation OZ(σ) is mapped to the
acyclic orientation OY (π). 		

We are now ready to complete the construction by providing the digraph
morphism Φϕ.

Theorem 4.47. Let ϕ : Y −→ Z be a covering map of undirected, connected
graphs Y and Z, and let χ : Km −→ Kn be the map (χ(x))v′ = xϕ(v′). Sup-
pose all vertex functions over Y and Z are induced by the sequence (gk)k of
symmetric functions. Then the map

Φϕ : Γ (Z,FZ , π) −→ Γ (Y,FY , ηϕ(π))

induced by χ is a morphism of directed graphs and

(ϕ, ηϕ, Φϕ) : (Y,FY , ηϕ(π)) −→ (Z,FZ , π) (4.71)

is an SDS morphism.

Proof. We already have our candidates for the two first components ϕ and η
of the SDS morphism. It remains to prove that the map Φϕ induced by χ is a
morphism of (directed) graphs.

According to Lemma 4.45, ϕ is surjective and Proposition 4.44 guarantees
that ϕ−1(v) is an independent set of Y for all v ∈ v[Z]. Therefore, for any
v ∈ v[Z] the (composition) product of local maps

∏

v′∈ϕ−1(v)

Fv′

is independent of composition order and is accordingly well-defined. Moreover,
since ϕ is a covering map, and since the maps gk are symmetric, the vertex
functions fv satisfy

fv(x[v;Z]) = fv′((χ(x))[v′;Y]) (4.72)

for any v ∈ v[Z] and v′ ∈ v[Y] such that ϕ(v′) = v.

4.4 SDS Morphisms and Reductions 107

We claim that the diagram

K |v[Z]| χ ��

Fv,Z

��

K |v[Y]|

v′∈ϕ−1(v)

Fv′,Y

��
K |v[Z]| χ �� K |v[Y]|

(4.73)

commutes, that is,
χ ◦ Fv,Z =

∏

v′∈ϕ−1(v)

Fv′,Y ◦ χ . (4.74)

Let us first analyze

∏

v′∈ϕ−1(v) Fv′,Y ◦ χ. The local map Fv′,Y (χ(x)) updates
the state of v′ via the vertex function fv′ as fv′((χ(x))[v′;Y]). By definition,
we have (χ(x))v′ = xϕ(v′), and since ϕ(BY (v′)) = BZ(v) we can conclude

fv′((χ(x))[v′;Y]) = fv′(x[v;Z]) = fv(x[v;Z]) .

Therefore,
∏

v′∈ϕ−1(v) Fv′,Y is a well-defined product of Y -local maps that
updates the vertices v′ ∈ ϕ−1(v) of Y based on the family of states (xϕ(v′

j) |
ϕ(v′j) ∈ BZ(v)) to the state (Fv′,Y (χ(x)))v′ .

We next compute χ ◦ Fv,Z(x). By definition, Fv,Z(x) updates the state
of the vertex v of Z using the vertex function fv as fv(x[v;Z]). In view of
(χ(x))v′ = xϕ(v′), we obtain for any Y -vertex v′

(χ ◦ Fv,Z(x))v′ = (Fv,Z(x))v .

That is, χ ◦Fv,Z(x) updates the states of the vertices v′ ∈ ϕ−1(v) in Y to the
state (Fv,Z (x))v. Since fv(x[v;Z]) = fv′((χ(x))[v′;Y]), we derive

∀ v′ ∈ ϕ−1(v), (Fv,Z(x))v = (Fv′,Y (χ(x)))v′ ,

from which we conclude

χ ◦ Fv,Z =
∏

v′∈ϕ−1(v)

Fv′,Y ◦ χ .

To prove that the diagram

K |v[Z]| χ ��

[FZ ,π]

��

K |v[Y]|

[FY ,ηϕ(π)]

��
K |v[Z]| χ �� K |v[Y]|

is commutative, we observe that for π = (π1, . . . , πm)

[ηϕ(π)]Y = [(ϕ−1(π1), . . . , ϕ−1(πm))]Y

∏

108 4 Sequential Dynamical Systems over Permutations

holds, where []Y denotes the equivalence class with respect to ∼Y [Sec-
tion 3.1.4, Eq. (3.13)]. This implies that

[FY , ηϕ(π)] =
πm∏

v=π1

⎡

⎣
∏

v′∈ϕ−1(v)

Fv′,Y

⎤

⎦ .

We inductively apply
∏

v′∈ϕ−1(v) Fv,Y ◦ χ = χ ◦ Fv,Z and conclude

πm∏

v=π1

⎡

⎣
∏

v′∈ϕ−1(v)

Fv′,Y

⎤

⎦ ◦ χ = χ ◦
πm∏

v=π1

Fv,Z ,

or
[FY , ηϕ(π)] ◦ χ = χ ◦ [FZ , π] . (4.75)

Hence, the χ-induced map Φϕ is a morphism of (directed) graphs, and the
proof of the theorem is complete. �

From Eq. (4.75) we see that the phase space of the SDS over Z is embedded
in the phase space of the SDS over Y via Φϕ.

Since the graph Z generally has fewer vertices than Y , it is clear that the
Z phase space is smaller than the Y phase space, hence the term reduction.
How much smaller is the Z phase space? If we assume, for instance, binary
states and that ϕ is a double covering, that is, m = n/2 and each fiber has
size 2, the number of states is 2n/2 and 2n, respectively.

Example 4.48. Here we extend Example 4.42. For reference, the covering map
ϕ : Q3

2 −→ K4 is given by ϕ(0) = ϕ(7) = 1, ϕ(1) = ϕ(6) = 2, ϕ(2) = ϕ(5) = 3,
and ϕ(3) = ϕ(4) = 4, and it is illustrated in Figure 4.16.

Here Φϕ maps x = (x1, x2, x3, x4) into (x1, x2, x3, x4, x4, x3, x2, x1). Fur-
ther let σ = (1, 2, 3, 4) ∈ SZ . The corresponding update order over Y is
π = ηϕ(σ) = (0, 7, 1, 6, 2, 5, 3, 4).

Theorem 4.47 now gives us an embedding of the phase space of the SDS
(K4,MinorityK4

, σ) into the phase space of (Q3
2,MinorityQ3

2
, π). As you can

easily verify, (K4,MinorityK4
, σ) has precisely two periodic orbits of length

five and no fixed points. The two 5-orbits are shown in the left column of
Figure 4.17. Note that for representational purposes we have encoded binary
tuples as decimal numbers using (4.17), e.g., (1, 1, 0, 0) is represented as the
decimal number 3. Figure 4.17 shows that Γ (K4,MinorityK4

, σ) is embedded
in Γ (Q3

2,MinorityQ3
2
, π). 		

Example 4.49. As another illustration of Theorem 4.47, we consider SDS
with vertex functions induced by nor3 and nor4 over the graphs Y and Z
shown in Figure 4.18(a) on the top and bottom, respectively. Note that in
this case the graphs are not regular. The map ϕ that identifies the ver-
tices v and v′ for v = a, b, c, d, e is clearly a covering map and by Theo-
rem 4.47 we have an SDS morphism where the two other maps are ηϕ and

4.4 SDS Morphisms and Reductions 109

Fig. 4.17. Example 4.48: The left column shows the phase space of
(K4,MinorityK4

, σ). The middle column shows the image of Γ (K4,MinorityK4
, σ)

under the embedding map Φϕ. The right column shows the components of
Γ (Q3

2,MinorityQ3
2
, π) that embed Γ (K4,MinorityK4

, σ). Note that binary tuples
are encoded as decimal numbers.

Φϕ. Figure 4.18(b) illustrates the map ηϕ and Figure 4.18(c) shows how the
unique component containing a 3-cycle of Γ (Z,FZ , (a, b, c, d, e)) embeds into
Γ (Y,FY , (a, a′, b, b′, c, c′, d, d′, e, e′)). In fact, Γ (Z,FZ , (a, b, c, d, e)) contains
four 2-cycles and one 3-cycle, while Γ (Y,FY , (a, a′, b, b′, c, c′, d, d′, e, e′)) has
fourteen 2-cycles, one 3-cycle, two 4-cycles, two 6-cycles and eight 8-cycles.

		

4.31. What is the most general class of functions (fk)k for which Theo-
rem 4.47 still holds? Extend Theorem 4.47 to word-SDS. [2-]

4.4.4 Dynamical Equivalence Revisited

In Proposition 4.30 we proved the conjugation formula

[FY , γπ] = γ ◦ [FY , π] ◦ γ−1 .

Using Theorem 4.47, we can derive the above conjugation formula directly
since every graph automorphism is in particular a covering map. In fact, we
can reframe the entire concept of equivalence of SDS using SDS morphisms.

Corollary 4.50. Let Y be an undirected graph, let γ ∈ Aut(Y), and let π ∈
SY . For any sequence of symmetric functions (gk)k with gk : Kk −→ K and

110 4 Sequential Dynamical Systems over Permutations

Fig. 4.18. An illustration of Theorem 4.47. The maps ηϕ and Φ are shown for the
covering map ϕ of Example 4.49.

any pair of induced SDS of the form [FY , π] and [FY , ηγ(π)], we have an SDS
isomorphism

(γ, ηγ , Φ) : [FY , ηγ(π)] −→ [FY , π] , (4.76)

where ηγ(π) = γ−1π.

Proof. The proof is immediate since any graph automorphism is in particular
a covering map. �

4.4.5 Construction of Covering Maps

Theorem 4.47 shows that covering maps naturally induce SDS morphisms,
and it thus motivates the study of covering maps over a given graph Y . This
is similar, for instance, to group representation theory, where a given group
is mapped into automorphism groups of vector fields. Here a given SDS is
“represented” via its morphisms. To ask for all graphs that are covering images
of a fixed undirected graph Y is a purely graph-theoretic question motivated
by SDS and complements the research on graph covering maps which typically
revolves around the problem of finding a common graph covering Y for a
collection of graphs {Zi} as in [106].

In this section we will analyze covering maps from the generalized n-cube
and the circle graph.

4.4 SDS Morphisms and Reductions 111

Cayley Graphs

Cayley graphs encode the structure of groups and play a central role in combi-
natorial and geometric group theory. There are more general definitions than
the one we give below, but this will suffice here. We largely follow [107].

Definition 4.51. Let G be a group with generating set S. The Cayley graph
Cay(G,S) is the directed graph with vertex set the elements of G and where
(g, g′) is an edge if and only if there exists s ∈ S such that g′ = gs.

If g′ = gs, it is common to label the edge (g, g′) with the element s.

Example 4.52. The group S3 has generating set {(1, 2), (1, 2, 3)}. Let a =
(1, 2, 3) and b = (1, 2). The Cayley graph Cay(S3, {a, b}) is shown in Fig-
ure 4.19. What is the group element a2ba2b? This is easy to answer using the

Fig. 4.19. The Cayley graph Cay(S3, {a = (1, 2, 3), b = (1, 2)}.

Cayley graph. The directed walk starting at the identity element following the
edges labeled a, a, b, a, a, and b in this order gives us the answer: 1. 		
Example 4.53. The cube Q3

2 from the earlier examples is the Cayley graph
of F

3
2 viewed as an additive group G with generating set S = {e1, e2, e3}

and the obvious relations, e.g., 2ei = 0 and ei + ej = ej + ei. The subgroup
H = {(0, 0, 0), (1, 1, 1)} < G acts on G by translation. This action naturally
induces the orbit graph H \Q3

2 given by

v[H \Q3
2] = {H(0, 0, 0) := 0, H(1, 0, 0) := 1, H(0, 1, 0) := 2, H(0, 0, 1) := 3},

e[H \Q3
2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}} ,

that is, (a graph isomorphic to) the complete graph on four vertices. Accord-
ingly, we have obtained the covering map from Example 4.42 as the projection
map πH induced by the subgroup H . 		

4.4.6 Covering Maps over Qn
α

We now proceed to the general setting. Let F be the finite field with |F | =
α = pk. Recall that the generalized n-cube is the combinatorial graph Qn

α

defined by

112 4 Sequential Dynamical Systems over Permutations

v[Qn
α] = {x = (x1, . . . , xn) ∈ Fn},

e[Qn
α] = {{x, y} | x, y ∈ Fn, dH(x, y) = 1} , (4.77)

where dH(x, y) is the Hamming distance of x, y ∈ Fn, i.e., the number of
coordinates in which x and y differ. The automorphism group of the gener-
alized n-cube is isomorphic to the semidirect product of Sn and Fn, that is,
Aut(Qn

α) ∼= Fn
� Sn. The subgroup Aut0(Qn

α) = {γ ∈ Aut(Qn
α) | γ(0) = 0}

of Aut(Qn
α) is isomorphic to Sn. Accordingly, any element γ ∈ Aut0(Qn

α) is
F -linear and we can consider Aut0(Qn

α) as a subgroup of GL(Fn).
We can now generalize what we saw in Example 4.53. First, any sub-

vectorspace H < Fn can be considered as a subgroup of Aut(Qn
α), and we

have the morphism
πH : Qn

α −→ H \Qn
α .

In Theorem 4.54 below we give conditions on the sub-vectorspace H < Fn

such that πH : Qn
α −→ H \Qn

α is a covering map. In this construction a vertex
v ofQn

α is, of course, mapped to v+H under πH . We note that if the projection
map is to be a covering map, then any vertex v and its neighbor vertices v+kei

in Qn
α where k ∈ F× and i = 1, . . . , n must be mapped to distinct vertices.

Here F× denotes the multiplicative group of F . Clearly, a necessary condition
for πH : Qn

α −→ H \Qn
α to be a covering map is

|Fn/H | ≥ 1 + n|F×| , (4.78)

since otherwise it would be impossible for πH to be a local injection. By
construction the projection map πH is a local surjection, so if we can show that
for all k ∈ F× and for all v, v′ ∈ {0, kei} with v
= v′ : (v+H)∩(v′+H) = ∅,
then it would follow that πH is also a local injection and thus a covering
map. However, H may not satisfy this condition but may still satisfy (4.78).
If this is the case, then Theorem 4.54 ensures that we can find a subspace
H ′ isomorphic to H such that πH′ is a covering map. Even though this is
an existence theorem, the proof also gives an algorithm for constructing the
covering maps. We outline the algorithm after the proof.

Theorem 4.54. Let G < Fn be a sub-vectorspace of Fn that satisfies

|Fn/G| ≥ 1 + n |F×| .

Then there exists a vectorspace H isomorphic to G such that the projection
map πH : Qn

α −→ H \Qn
α is a covering.

The proof of Theorem 4.54 will follow from Lemmas 4.55 and 4.56 below.
Let us begin by introducing some notation. For a subspace H < Fn we define
the property (#) by

(#) ∀k ∈ F× ∀x
= y, x, y ∈ {0, ke1, . . . , ken} : (x+H) ∩ (y +H) = ∅ .
(4.79)

Clearly, this is the condition a sub-vectorspace H needs to satisfy in order for
πH to be a local injection.

4.4 SDS Morphisms and Reductions 113

Lemma 4.55. For any subspace G′ < Fn we have

|Fn/G′| ≥ 1 + n |F×| ⇐⇒ ∃ G, G ∼= G′ ; G has property (#). (4.80)

Proof. Assume |Fn/G′| ≥ 1 + n |F×|. We claim that the vectorspace Fn/G′

contains n|F×| distinct elements of the form kϕi + G′, i = 1, . . . , n, where
{ϕ1, . . . , ϕn} is a basis for Fn and k ∈ F×.

To prove this we take an arbitrary basis {v1, . . . , vs} of G′ and extend it to
a basis {v1, . . . , vs, vs+1, . . . , vn} of Fn. Since |Fn/G′| ≥ 1 + n |F×|, we have

|Fn/G′ \ { k vi +G′ | i = s+ 1, . . . , n, k ∈ F }| ≥ s |F×| . (4.81)

The (Abelian) group F× acts on Fn/G′ via the restriction of scalar multipli-
cation; hence,

Fn/G′ = {0 +G′} ∪
⋃̇n

j=s+1
F×(vj +G′) ∪

⋃̇t

j=1
F×(wj +G′),

and (4.81) guarantees that t ≥ s. From this we conclude

∃ t ≥ s; Fn/G′\{ k vi+G′ | i = s+1, . . . , n, k ∈ F } =
⋃̇t

j=1
F×(wj +G′) .

We next define the sequence (ϕi)1≤i≤n as follows:

ϕi = vi + wi for i = 1, . . . , s,
ϕi = vi for i = s+ 1, . . . , n .

In view of
∑

i λiϕi =
∑

i λivi +
∑s

i=1 λiwi, any linear relation of the form∑
i λiϕi = 0 implies that for i = 1, . . . , s we have λi = 0, since

∑s
i=1 λiwi is

generated by {vs+1, . . . , vn}. Therefore, we obtain
∑s

i=1 λiwi = 0 and conse-
quently we have λi = 0 for i = s+ 1, . . . , n. Accordingly, {ϕ1, . . . , ϕn} forms
a basis of Fn. Since {wi +G′ | i = 1, . . . , s} is a set of representatives for the
group action of F× on Fn/G′, we get

|{kϕi +G′ | k ∈ F×, i = 1, . . . , n }| = |F×| n ,

and the claim follows.
Let f be the Fn-isomorphism defined by f(ϕi) = ei, for i = 1, . . . , n.

Clearly, the set {kei + f(G′) | k ∈ F×, i = 1, . . . , n } has the property

|{kei + f(G′) | k ∈ F×, i = 1, . . . , n }| = n |F×|

and the proof is complete. �

Lemma 4.56. For each sub-vectorspace H < Fn with property (#) the graph
H \Qn

α is connected, undirected, and loop-free, and the natural projection

πH : Qn
α −→ H \Qn

α, v �→ H(v) = v +H

is a covering map.

114 4 Sequential Dynamical Systems over Permutations

Proof. The projection map πH is linear and is a local surjection by con-
struction. Property (#) ensures that πH is locally injective. It remains to
prove that πH is a graph morphism. Since Aut(Qn

α) ∼= Fn
� Sn, H is a

subgroup of Aut(Qn
α) and acts on Qn

α-edges; thus, πH is a covering map
(e[H \ Qn

α] = {H({v, v + ei}) | i = 1, . . . , n, v ∈ v[Qn
α]}). Since πH is lo-

cally injective, H \Qn
α is loop-free. �

Here is an algorithm for computing the sub-vectorspaceH in Theorem 4.54
and for deriving the covering map πH .

Algorithm 4.57 (Construction of Qn
α covering maps). Assume G < Fn

satisfies the conditions in Theorem 4.54. Using the same notation we can
derive covering maps, and hence reduced dynamical systems, as follows:

1. Pick a basis {v1, . . . , vs} for G.
2. Extend this basis to a basis {v1, . . . , vs, vs+1, . . . , vn} for Fn.
3. The action of F× on Fn/G by scalar multiplication allows us to con-

struct a collection of s vectors (wi)s
1 (orbit representatives) contained in

Span(vs+1, . . . , vn) that are not scalar multiples of each other or any of
the vectors vi for s + 1 ≤ i ≤ n. The set of s such vectors wi can easily
be “guessed,” at least for small examples.

4. Define φi by

φi =

{
vi + wi if i = 1, . . . , s,
vi otherwise.

5. Let f be the Fn-isomorphism given by f(φi) = ei for 1 ≤ i ≤ n.
6. The isomorphic vectorspace H is given by H = f(G), and the covering

map is given by πH : Qn
α −→ H \Qn

α.

The following examples illustrate the above algorithm.

Example 4.58. Consider the graph Y = Q4
3. Let G be the two-dimensional

subspace of F 4 = F
4
3 spanned by v1 = (1, 0, 0, 0) and v2 = (0, 1, 0, 0). Clearly,

G is not a distance-3 subspace. We have

|F 4/G| = 9 ≥ 1 + 4 · 2 = 1 + 4|F×|,

so by Theorem 4.54 there exists a subspace H isomorphic to G for which πH

is a covering map. By Proposition 4.44 we must have that H is a set with
minimal Hamming distance 3. Attempting to construct the subspace H by
trial and error may take some time and patience. However, with the help of
the algorithm above it now becomes more or less mechanical. Here is how it
can be done:

We extend the basis of G consisting of v1 = (1, 0, 0, 0) and v2 = (0, 1, 0, 0)
to a basis for F 4 using the vectors v3 = (0, 0, 1, 0) and v4 = (0, 0, 0, 1). We
need to find two vectors in Span{v3, v4} that are not scalar multiples of each
other or of v3 or v4. Two such vectors are w1 = (0, 0, 1, 2) and w2 = (0, 0, 1, 1).
By the algorithm we obtain

4.4 SDS Morphisms and Reductions 115

v1 = (1, 0, 0, 0) w1 = (0, 0, 1, 2) φ1 = (1, 0, 1, 2)
v2 = (0, 1, 0, 0) w2 = (0, 0, 1, 1) φ2 = (0, 1, 1, 1)
v3 = (0, 0, 1, 0) — φ3 = (0, 0, 1, 0)
v4 = (0, 0, 0, 1) — φ4 = (0, 0, 0, 1)

The F 4-isomorphism f satisfying f(φi) = ei is straightforward to compute,
and it has standard matrix representation

fM =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
2 2 1 0
1 2 0 1

⎤

⎥
⎥
⎦ ,

which you should verify for yourself. The subspace H is now given as H =
f(G), and we get

H =

⎧
⎨

⎩

(0, 0, 0, 0), (1, 0, 2, 1), (2, 0, 1, 2),
(0, 1, 2, 2), (1, 1, 1, 0), (2, 1, 0, 1),
(0, 2, 1, 1), (1, 2, 0, 2), (2, 2, 2, 0)

⎫
⎬

⎭
.

You should verify that H = f(G) is a distance-3 set. What is the graph
H \Q4

3? It is a combinatorial graph, it is connected, it is regular of degree 8,
and it has size 9. It follows that H \Q4

3 equals K9 (up to isomorphism). 		

When you compute the map f , it can be helpful to write the equations
f(φi) = ei in matrix form. If Φ denotes the matrix with the φi’s as column
vectors, we get

fΦ = In×n ,

and it is clear that f is the inverse of the matrix Φ.

Example 4.59. As another illustration of Theorem 4.54, we take the graph
Y = Q3

3 and ask if we can find a subspace H < F 3 = F
3
3 with dim(F 3/H) = 2

such that its induced orbit graphs H \Q3
3 are graphs of degree 6. If this is the

case, then H must satisfy dQ3
3
(h, h′) ≥ 3 for any h, h′ ∈ H with h′
= h. Since

a one-dimensional subspace G satisfies F 3/G = 9 ≥ 1 + 3 · 2, Theorem 4.54
guarantees that we can find such a subspace. In this case it is easy, and you can
verify that H = {(000), (111), (222)} is a distance-3 subset. Here H induces
the covering map πH : Q3

3 −→ K3,3,3, where K3,3,3 is a complete 3-partite
graph in which all vertex classes have cardinality 3.

We label the H-induced co-sets as follows:

(0, 0): {(0, 0, 0), (1, 1, 1), (2, 2, 2)} (1, 0): {(1, 0, 0), (2, 1, 1), (0, 2, 2)}
(1, 2): {(0, 1, 2), (1, 2, 0), (2, 0, 1)} (0, 1): {(0, 1, 0), (1, 2, 1), (2, 0, 2)}
(2, 1): {(0, 2, 1), (1, 0, 2), (2, 1, 0)} (2, 2): {(0, 0, 1), (1, 1, 2), (2, 2, 0)}
(2, 0): {(2, 0, 0), (0, 1, 1), (1, 2, 2)} (0, 2): {(0, 2, 0), (1, 0, 1), (2, 1, 2)}
(1, 1): {(0, 0, 2), (1, 1, 0), (2, 2, 1)}

116 4 Sequential Dynamical Systems over Permutations

Obviously, these labels correspond to Q2
3-vertices, and it is straightforward to

verify that {(0, 0), (1, 2), (2, 1)}, {(1, 0), (0, 1), (2, 2)} and {(2, 0), (0, 2), (1, 1)}
are exactly the vertex classes of K3,3,3. Hence, K3,3,3 contains Q2

3 as a
subgraph as it should according to Proposition 4.60 stated below. 		

The Orbit Graphs H \ Qn
α

In this section we study the orbit graphs H \Qn
α.

Proposition 4.60. Let H be an Fn-subspace and let πH : Qn
α −→ H \Qn

α be
the covering map induced by H with dim(Fn/H) = r. Then

Qr
α < H \Qn

α , (4.82)

that is, H \Qn
α contains a subgraph isomorphic to Qr

α.

Proof. Let S = {fei | f ∈ F×, i = 1, . . . , n}. Then Qn
α = (Fn, S), i.e., the

Cayley graph over the group Fn with generating set S. The map πH can then
be written as

πH : (Fn, S) −→ (Fn/H, S/H) .

Since S generates Fn, S/H generates Fn/H , and S/H contains a set of the
form S0/H = {fb | f ∈ F×, b ∈ B} where B is a basis of Fn/H . Clearly,
we have an isomorphism η : Fn/H −→ F r and set S′ = η(S/H) and S′

0 =
η(S0/H). Without loss of generality we may assume that S′

0 is of the form
S′

0 = {kei | k ∈ F×, i = 1, . . . , r} from which we immediately conclude
(F r, S′

0) ∼= Qr
α. In view of S′

0 ⊂ S′, the embedding

(F r, S′
0) −→ (F r, S′) (x1, . . . , xr) �→ (x1, . . . , xr) ,

is a graph morphism, and the proposition follows. �

The following result shows that if H is a subspace of Fn with property
(#) and if H ′ = η(H) where η ∈ Aut0(Qn

α), then the resulting orbit graphs
are isomorphic.

Proposition 4.61. Let H < Fn be a (#)-sub-vectorspace. Then for any η ∈
Aut0(Qn

α),
πη(H) : Qn

α −→ η(H) \Qn
α

is a covering map and
H \Qn

α
∼= η(H) \Qn

α . (4.83)

Furthermore, for two (#)-vectorspaces H,H ′ < Fn with H \ Qn
α
∼= H ′ \ Qn

α

there is in general no element η ∈ Aut0(Qn
α) with the property H ′ = η(H).

4.4 SDS Morphisms and Reductions 117

Proof. For any η ∈ Aut0(Qn
α) the vectorspace η(H) has property (#), so by

Theorem 4.54 the map πη(H) is a covering map. Consider the map

η̂ : H \Qn
α −→ η(H) \Qn

α, η̂(x +H) = η(x) + η(H) .

Since η is F -linear, we have η̂((x+h1)+H1) = η(x)+ η(h1)+ η(H1), proving
that η̂ is well-defined. It is clear that the map is injective, and the fact that
it is a surjection is implied by η being surjective. It remains to show that η̂ is
a graph morphism. Let {x, y} +H = {{x+ h, y + h} | h ∈ H} be an edge in
H \Qn

α. We have

η̂({x, y} +H) = {η(x), η(y)} + η(H);

hence, η̂ maps H \Qn
α-edges into η(H) \Qn

α-edges.
To prove the final statement, consider the two sub-vectorspaces H =

〈(0, 0, 0), (1, 2, 2)〉 and H ′ = 〈(0, 0, 0), (1, 1, 1)〉 of F 3 = F
3
3. Since Aut0(Qn

α) ∼=
Sn there exists no η ∈ Aut0(Q3

3) such thatH ′ = η(H), but it is straightforward
to verify that

〈(0, 0, 0), (1, 2, 2)〉 \Q3
3
∼= 〈(0, 0, 0), (1, 1, 1)〉 \Q3

3
∼= K3,3,3,

and the proposition follows. �

Example 4.62. We will find all the covering maps of the form πH : Q4
2 −→

H \ Q4
2. We first note that if H has dimension 2, then H has size 4. With

F = F2 this leads to |F 4/H | = 16/4 = 4
≥ 1 + n|F×| = 1 + 4 = 5. In other
words, if H has dimension 2, then we cannot get a covering map. If H has
dimension 1, we have |F 4/H | = 16/2 > 5 and obtain covering maps.

There are five distance-3 subspaces. These are spanned by (1111), (0111),
(1011), (1101), and (1110), respectively. Since the four last subspaces differ by
an element of Aut0(Q4

2) (e.g., a permutation), the corresponding orbit graphs
are all isomorphic by Proposition 4.61. Since the dimension of F 4/H is 3, it
follows from Proposition 4.60 that H \Q4

2 contains Q3
2 as a subgraph. We set

H1 = {0000, 1111} and H2 = {0000, 1110} .

We invite you to verify that the graph H1 \Q4
2 is isomorphic to Q3

2 with the
four diagonal edges added. The graph H2 \Q4

2 is isomorphic to Q3
2 with four

additional edges as shown on the right in Figure 4.20. Again, the significance
of the map πH1 is that it allows us to study dynamics over Q4

2 in terms of
dynamics over the smaller graph H1 \Q4

2. However, we can only study those
SDS over Q4

2 that have an update order appearing as an image of ηπH1
and for

which the vertex functions on v ∈ v[H1 \Q4
2] and v′ ∈ π−1

H1
(v) are identical. 		

4.32. Show that the orbit graphs H1 \Q4
2 and H2 \Q4

2 in Example 4.62 are
not isomorphic. [1]

4.33. Show that the two orbit graphs in Example 4.62 are the only covering
images of Q4

2. [2C]

118 4 Sequential Dynamical Systems over Permutations

Fig. 4.20. The orbit graphs of Example 4.62.

Covering Maps into the Complete Graph

From the point of view of phase-space reductions, the best we can hope for
is to have a covering map ϕ : Qn

α −→ Km, where Km is a complete graph
over m vertices. (Why?) Note that Aut(Km) ∼= Sm and that in view of the
group action γ • [FY , π] = [FY , γπ] (Section 4.3.3, Lemma 4.32) all SDS over
Km induced by symmetric functions are dynamically equivalent. As a special
case of Theorem 4.54 we present a necessary and sufficient condition for the
existence of covering maps ϕ : Qn

α −→ Km.

Proposition 4.63. There exists a covering map

ϕ : Qn
p −→ K1+(p−1)n (4.84)

if and only if pn ≡ 0 mod 1 + (p− 1)n holds.

Proof. Assume ϕ : Qn
p −→ K1+(p−1)n is a covering map. Clearly, we have

|Qn
p | = pn and |K1+(p−1)n| = 1+(p−1)n, and Lemma 4.43 guarantees pn ≡ 0

mod 1 + (p− 1)n.
Assume next that pn ≡ 0 mod 1+ (p− 1)n. Corollary 4.64 below guaran-

tees that there exists a subspace G < F
n
p with the property

F
n
p = G(0) ∪

⋃̇n

i=1

⋃̇

f∈F
×
p

G(fei) .

We observe that the mapping ϕ : Qn
p −→ G \Qn

p given by

∀ f ∈ F
×
p , i = 1, . . . , n : ξ ∈ G(fei); ϕ(ξ) = G(fei) (4.85)

is a covering map. Clearly, K1+(p−1)n
∼= G \ Qn

p since by construction the
graph G\Qn

p is (p−1)n-regular and contains exactly 1+(p−1)n vertices. �
The corollary below follows immediately from Lemma 4.55:

Corollary 4.64. Let n > 2 be an integer and let p be a prime. Then we have
pn ≡ 0 mod 1 + (p − 1)n if and only if there exists a subspace G < F

n
p with

the property

F
n
p = G(0) ∪

⋃̇n

i=1

⋃̇

f∈F
×
p

G(fei) .

4.4 SDS Morphisms and Reductions 119

Proof. Suppose we have pn ≡ 0 mod 1 + (p − 1)n. Obviously, there exists
a subspace H < F

n
p with |Fn

p/H | = 1 + (p − 1)n. The proof of Lemma 4.55
immediately shows that there exists some set of Fn/H-elements {fϕi + H |
i = 1, . . . , n; f ∈ F

×
p } such that {ϕi | i = 1, . . . , n} is an F

n
p -basis. Let f ′ be

the Fp-morphism defined by f ′(ϕi) = ei for i = 1, . . . , n. Clearly, G = f ′(H)
has the property

F
n
p = G(0) ∪

⋃̇n

i=1

⋃̇

f∈F
×
p

G(fei) ,

and the corollary follows. �

Example 4.65. We have already seen the example ϕ : Q3
2 −→ K4. Here 23 is

congruent to 0 module 3 + 1 = 4. Also, since 34 is congruent to 0 modulo
1 + 4 · 2 = 9, we have a covering map ϕ′ : Q4

3 −→ K9; see Example 4.58. 		

4.34. Is there a covering map φ : Q4
5 −→ K17? What is the smallest integer

n > 1 such that there is a covering map of the form ψ : Qn
5 −→ Kr? What is

r in this case? [1]

There is a relation between covering maps ϕ : Qn
p −→ Z and algebraic

codes. Any covering map ϕ : Qn
p −→ Z yields a 1-error-correcting code, and in

particular, any perfect, 1-error-correcting code C inQn
p induces a covering map

into K1+(p−1)n, see [108]. We note that there are perfect, 1-error-correcting
Hamming codes that are not groups as we ask you to show in Problem 4.35
below.

4.35. Let ϕ : Qn
α −→ Z be a covering map. Show that ϕ−1(ϕ(0)) is in general

not a subspace of Fn. [3]

4.4.7 Covering Maps over Circn

In this section we will study covering maps ϕ : Circn −→ Z where Z is con-
nected. We will show that there exists a bijection between covering maps
γ : Circn −→ Z where Z is connected, and subgroups 〈σm〉 < Aut(Circn),
m ≥ 3, n ≡ 0 mod m and σ = (0, 1, . . . , n− 1). In fact, even more is true: If
ϕ : Circn −→ Z is a covering map and Z is connected, then Z ∼= 〈σm〉 \ Circn.
Accordingly, covering maps over Circn are entirely determined by certain sub-
groups of Aut(Y).

Example 4.66. We have covering maps ϕ : Circ12 −→ Circ3, ϕ1 : Circ12 −→
Circ6, and ϕ2 : Circ6 −→ Circ3. Let σ12 = (0, 1, 2, . . . , 11) and σ6 = (0, 1, . . . , 5)
where we use cycle notation for permutations. The map ϕ is induced by σ3

12

while ϕ1 is induced by σ6
12 and ϕ2 is induced by σ3

6 . See Figure 4.21. 		

Elements of Aut(Circn) are of the form τσk where σ = (0, 1, . . . , n−1) and
τ =

∏�n/2�
i=1 (i, n − i). The covering maps from Circn are characterized by the

following result:

120 4 Sequential Dynamical Systems over Permutations

Fig. 4.21. Covering maps from Circ12 and Circ6.

Proposition 4.67. If γ : Circn −→ Z is a covering map, where Z is con-
nected, then Z ∼= Circm where n ≡ 0 mod m. Accordingly, for any γ there is
a subgroup H < Aut(Circn) such that

Circn
γ�→ H \ Circn

∼= Z (4.86)

holds. In particular, there are no nontrivial covering maps for n < 6.

Proof. Assume γ : Circn −→ Z is a covering map and that Z is connected.
Then γ : Circn −→ Z is surjective. Since γ : Circn −→ Z is locally bijective,
any vertex i in Z has degree 2. Thus, Z is a connected regular graph of degree
2, i.e., Z ∼= Circm. Lemma 4.43 implies n ≡ 0 mod m and m ≥ 3. The
subgroup H = 〈σm〉 satisfies Z ∼= H \ Circn and gives us the desired covering
map by γ = πH ,

π〈σm〉 : Circn −→ 〈σm〉 \ Circn
∼= Z .

The last statement of the proposition follows from Lemma 4.43 and the fact
that for every covering we have d(i, j) ≥ 3 for any i, j ∈ Y with i
= j and
i, j ∈ γ−1(γ(i)). �

There are various ways to construct covering maps from given covering
maps. The following two problems illustrate the idea.

4.36. Let ϕi : Yi −→ Zi for i = 1, 2 be covering maps. Show how to construct
a covering map from Y1×Y2 to Z1×Z2 where × is the direct product of graphs.
(Note that there are several types of possible graph products.) [1+]

4.37. Let ϕ : Y −→ Z be a covering map. Let Y ′ and Z ′ be the graphs
obtained from Y and Z, respectively, by inserting a vertex on every edge. Show
how to construct a covering map ϕ̂ : Y ′ −→ Z ′. The process is illustrated in
Figure 4.22. [1+]

4.4 SDS Morphisms and Reductions 121

Fig. 4.22. An extension of the covering map ϕ : Q3
2 −→ K4.

Problems

4.38. In this problem we will consider covering maps of the form φ : Q7
2 −→

H \Q7
2 where H is a sub-vectorspace of F 7 = F

7
2. (i) Show that there are at

most five non-isomorphic covering image graphs of the form ZH = H \Q7
2 of

order 64. (ii) Show that there exists a covering map φ′ : Q7
2 −→ K8 and give

a four-dimensional, distance-3 sub-vectorspace H that induces the covering
map φ′. [2]

122 4 Sequential Dynamical Systems over Permutations

Answers to Problems

4.1. (3, 1, 2, 0) has the representation 2 · 42 + 1 · 41 + 3 · 40 = 32 + 4 + 3 = 39.
Since 1234 = 45 + 3 · 43 + 42 + 2 · 40, we get (2, 0, 1, 3, 0, 1).

4.2. For Circ6 we have n[5] = (0, 4, 5) (where we have used the standard
convention of ordering in the natural way).

The function Nor5 is in this case given as

Nor5(x0, x1, x2, x3, x4, x5) = (x0, x1, x2, x3, x4, nor3(x4, x5, x0)) .

4.3. The phase space of [MajorityLine3 , (2, 3, 1)] is shown in the figure below:

4.4. See, for example, R. A. Hernández Toledo’s article “Linear finite dy-
namical systems” [33].

4.5. Proposition 4.11 does not hold for SDS with word update orders. For
instance, in the somewhat pathological case where the word w equals the
empty word, all states are fixed. Even if we restricted our attention to fair
words, which are words where every vertex of the graph Y appears at least
once, Proposition 4.11 does not hold. For instance, if a permutation-SDS with
update order π has a period-2 orbit {x, y}, then the corresponding word-SDS
with update order w = (π|π) has x and y as fixed points.

4.6. The phase space is a union of cycles.

4.7. The solution follows by inspecting the function table. For the map f to
induce invertible SDS over Circn, we must have that a7 = 1 + a5, a6 = 1+ a4,
a3 = 1 + a1, and a2 = 1 + a0 (where additions are modulo 2). Thus, we can
freely assign values to four of the ai’s, and thus there are 16 such maps.

If such a function is to be symmetric, it must have the same value for
(001), (010), and (100). It must also have the same value on (011), (101), and
(110). We see that this comes down to a6 = a5 = a3 and a4 = a2 = a1. If
a0 = 0, we get a1 = a2 = a4 = 1. Furthermore, we have a6 = 1 + a4 and
a3 = 1+ a1 so that a6 = a5 = a3 = 0. Finally, a7 = 1+ a5 = 1. You can verify
that the function we get is parity3, which is rule 128 + 16 + 4 + 2 = 150. If
a0 = 1, we get the function 1 + parity3 with rule number 105.

The rule numbers according to the Wolfram encoding of all the functions
inducing invertible SDS are 51, 54, 57, 60, 99, 102, 105, 108, 147, 150, 153,
156, 195, 198, 201, and 204 .

You may have noticed that the functions come in pairs that add to 255.
By flipping zeros and ones in the function table, we get rules with isomorphic

4.4 SDS Morphisms and Reductions 123

phase-space digraphs. It is clear that if one function gives invertible SDS, then
so must the “255 complement function.”

4.8. For each degree d in the graph Y , the argument is virtually identical to
the argument in Example 4.14.

4.9. (p!)pd

.

4.10. NA

4.11. Consider the mapping ϑ of Eq. (4.35):

ϑ : Sm \Qm
κ −→ P (K), ϑ(Sm(x)) = {xvji

| 1 ≤ i ≤ m} .

We show that if ϑ contains two different elements xvjw

= xvjq

, then we have
N(xvjw

) ∩ N(xvjq
) = ∅ [Eq. (4.36)]. Suppose x contains xvjw

and xvjq
mjw

and mjq times, respectively. Any element of N(xvjw
) contains xvjq

at least
mjq times and any element of N(xvjq

) contains xvjw
at least mjw times. An

element ξ ∈ N(xvjw
)∩N(xvjq

) would therefore contain xvjw
and xvjq

at least
mjw and mjq times, respectively. In addition, ξ is a neighbor of x, obtained
by altering exactly one of the coordinates xvjw

or xvjq
, which is impossible.

4.12. The graph G = S3\Q3
3 is shown in Figure 4.8. We have three choices for

the “color” of the vertex [000] and two choices for the color of [001]. With these
values set the remaining

(
5
2

)
− 2 = 8 vertex colors are fixed. Thus, there are

six such vertex colorings and therefore six symmetric functions f : F
3
3 −→ F3

that induce invertible local functions. Clearly, s3 is the coloring that assigns
0 to [000] and 1 to [001].

4.13. The graph G = S3 \Q3
4 is shown in Figure 4.23. (We have labeled the

elements of the field 0, 1, 2, and 3.) The graph G has
(
3+4−1

3

)
= 20 vertices.

Fig. 4.23. The graph G = S3 \Q3
3.

4.14.
(
α+m−1

α−1

)
.

124 4 Sequential Dynamical Systems over Permutations

4.15. a(Wheeln) = 3n − 3. Pick e = {(0, (n − 1)}. Observe that the graph
Y ′′

e is isomorphic to Wheeln−1. Let W ′
n be the graph obtained from Wheeln

by deleting e. Use the recursion relation for a(Y) to find a recursion relation
for a(W ′

n) and find an explicit expression. Use this in the original recursion
relation for a(Wheeln).

4.16. NA

4.17. (i) π̂ = (0, 1, 2, 5, 3, 6, 4, 7, 8, 9). (ii) We need six computation cycles as
there are six rank layers, and we have (iii) a(En) = 3n(2n − 2).

4.18. We only need the functions to be “outer-symmetric” or symmetric in
the “neighbor” arguments. A graph automorphism maps 1-neighborhoods to
1-neighborhoods and preserves the center vertex. The SDS does not need to
be induced, but all functions fv′ with v′ ∈ Aut(Y)(v) must be the same. The
proposition also holds for any pair of words w and w′ that are “related” by a
graph automorphism. We will get back to what “related” means in Chapter 7.

4.19. Let γ, η ∈ Aut(Y). We need to show that (ηγ)O = η(γO). To this end
let e be an edge of Y . By definition we have

(ηγ)O(e) = (ηγ)O((ηγ)−1(e)) .

We also have

(η(γO))(e) = η((γO)(η−1(e)))

= η(γ(O(γ−1(η−1(e)))))

= (ηγ)(O((ηγ)−1(e)) .

Clearly, id O = O for any acyclic orientation, and we have established that
we have a group action.

It remains to show that γOY (π) = OY (γπ). Note that OY (π) is defined
for combinatorial graphs Y . Let {v, v′} ∈ e[Y]. We have

(γOY (π))({v, v′}) = γ(OY (π)(γ−1{v, v′}))

=

{
(v, v′) if γ−1(v) <π γ

−1(v′),
(v′, v) otherwise.

Again by definition we have

OY (γπ)({v, v′}) =

{
(v, v′) if v <γπ v

′,
(v′, v) otherwise.

But it is clear that

v <γπ v
′ ⇐⇒ v = γπ(k), v′ = γπ(k′) with k < k′

⇐⇒ γ−1(v) = π(k), γ−1(v′) = π(k′) with k < k′

⇐⇒ γ−1(v) <π γ
−1(v′)

and equality follows.

4.4 SDS Morphisms and Reductions 125

4.20. In general the answer is no, but there are special cases/graphs where
it does hold. We leave it to you to identify the conditions.

4.21. The bound Δ(Y) is the number of orbits in Sn/∼Y under the action
of Aut(Y). We have Aut(Kn) = Sn and we therefore have only one orbit, so
Δ(Kn) = 1.

4.22. NA

4.23. The bound is sharp. One way to see this is to pick representative update
orders from the three Aut(Circ4)-orbits and show that the three SDS induced
by nor-functions have pairwise non-isomorphic phase spaces.

4.24. No, the bound is not sharp. If you do the math, you will find that
Δ(ParityCirc4) = 2.

4.25. There are 8! different permutation update orders, we can get 1862
functionally different permutation SDS since a(Q3

2) = 1862, and we can get
Δ(Q3

2) = 54 dynamically nonequivalent induced SDS; see [109]. The bound
is sharp. To show this requires a lot of tedious comparisons of phase spaces,
unless you find an approach that we are not aware of.

4.26. For p > 2 a prime the sum in (4.53) has only one term:

Δ(Circp) =
1
2p
φ(1)(2p − 2) = (2p−1 − 1)/p .

4.27. An element γ of Aut(Starl,m) necessarily mapsKl vertices in Starl,m into
Kl vertices since automorphisms are degree-preserving. Since γ also preserves
adjacency, the vertices of degree 1 attached to vertex i can only be permuted
among themselves and moved such that they are adjacent to γ(i). Thus, we
see that Aut(Starl,m) = KH = HK where H,K < Sl(1+m) are the groups

K =
{(1

1
| 11

σ1,1
. . .

1m

σ1,m
| . . . | l1

σl,1
. . .

lm
σl,m

)
| σi ∈ S(i1, . . . , im)

}
(4.87)

and

H = {σ ∈ Sl(m+1) | σ(i) = j ⇒ ∀k ∈ Nm : σ(ik) = jk } . (4.88)

We must show that K is normal in G. Let k ∈ K and g = h ·k1 ∈ Aut(Starl,m).
Then we have

g · k · g−1 = h · k1 · k · k−1
1 · h−1

= h · k2 · h−1,

where k2 = k1 · k · k−1
1 . In view of h · k2 · h−1 ∈ K, we derive K � G, and

consequently G = K �H follows. Since K ∼= Sl
m and H ∼= Sl, we are done.

4.28. We will establish Eq. (4.67) by computing the sum in (3.31) directly.
First, we know from Lemma 4.39 that |Aut(Starl,m)| = l! × m!l. We write

126 4 Sequential Dynamical Systems over Permutations

automorphisms as γ = (σl, π1, . . . , πl), where σl is the permutation of the
vertices of the Kl subgraph and πi denotes the permutation of the vertices
i1, . . . , im. We observe that γ ∈ Aut(Starl,m) does only contribute to the sum
in (3.31) when σl = id since the graph 〈γ〉 \ Starl,m would otherwise contain
at least one loop and would thus not allow for any acyclic orientations. Now
with σl = id it is clear that 〈γ〉 \ Starl,m will be the graph Kl with c(πi)
vertices attached to vertex i of Kl. Here c(γ) denotes the number of cycles in
the the cycle decomposition of γ where cycles of length 1 are included. Thus,
the number of acyclic orientations of the reduced graph 〈γ〉 \ Starl,m in this
case is l! × 2c(γ). We now get

Δ(Starl,m) =
1

|Aut(Starl,m)|
∑

γ∈Aut(Starl,m)

a(〈γ〉 \ Starl,m)

=
1

|Aut(Starl,m)|
∑

γ

a(〈γ = (id, π1, . . . , πl)〉 \ Starl,m)

=
1

l! ×m!l
· l! ·

(∑

γ∈Sm

2#(γ)
)l

=
(∑

γ∈Sm
2#(γ)

m!

)l

= (m+ 1)l,

where the last equality follows by induction, and we are done.

4.29. Any interesting results here would probably make for a research paper.

4.31. As for dynamical equivalence the functions fk need to be outer-
symmetric. The extension to words is clear — all that needs to be done
is to modify the map ηϕ. If w = (w1, . . . , wk) is a word over v[Z], then
ηϕ(w) = (s(w1) | . . . s(wk)).

4.32. One way to see this is that the graph H2 \Q4
2 contains triangles, which

is not the case for H1 \Q4
2.

4.33. NA

4.34. There is no covering map φ since, for example, 54 is not divisible by
17. A necessary and sufficient condition for the covering map φ to exist is that
r − 1 = 4n and that r divides 5n. Thus, we have to have 4n + 1|5n, which
happens for n = 6 in which case r = 25.

4.35. We show this by constructing a covering map ϕ : Q15
2 −→ K16 where

ϕ−1(ϕ(0)) is not a subspace of F
15
2 .

According to Proposition 4.63, there exists a covering map πH : Q7
2 −→ K8

for a (#)-sub-vectorspace H < F
7
2 such that |H | = 24 holds. Let f : H −→

F2 be defined by f(0) = 0 and f(h) = 1 otherwise. Using a well-known

4.4 SDS Morphisms and Reductions 127

construction from coding theory (see, e.g., [108]), we introduce the set

H ′ =

{(

x, x+ h,
∑

i

xi + f(h)

)

| x ∈ F
7
2, h ∈ H

}

.

We claim that F
15
2 = H ′ ∪

(⋃15
i=1 ei +H ′

)
. To prove the claim we first show

∀h′1, h′2 ∈ H ′ : d(h′1, h
′
2) ≥ 3 . (4.89)

Each H ′-element is of the form h′i = (xi, xi + hi, zi) with xi ∈ F
7
2, hi ∈ H and

zi ∈ F2. Suppose now h1 = h2. Obviously, z1 = z2 implies x1 = σ(x2) where
σ(x2) = ((x2)σ(1), . . . , (x2)σ(7)) and accordingly d(x1, x2) = d(x1 + h1, x2 +
h2) ≥ 2. For z1
= z2 we obtain d(x1, x2) = d(x1 + h1, x2 + h2) ≥ 1; hence,
d(h′1, h

′
2) > 2.

Assume next that h1
= h2 holds and observe that then d(h1 − h2, 0) ≤
d(h1 −h2, x2 −x1)+ d(x2 −x1, 0). In view of d(h1 −h2, 0) = d(h1, h2), d(h1 −
h2, x2 − x1) = d(h1 + x1, h2 + x2), and d(x2 − x1, 0) = d(x1, x2), we have
established (4.89). Clearly, (4.89) implies (ei +H ′) ∩ (ej +H ′) = ∅ for i
= j,
i, j = 1, . . . , 15, and since |H ′| = 211 and the claim follows.

It remains to show that H ′ is not a group. We consider h′1 = (x, x+h1, z1)
and h′2 = (x, x + h2, z2) with h1
= h2, h1
= 0, and h2
= 0. Then we have

h′1 + h′2 = (0, h2 + h1, f(h1) + f(h2))
= (0, h1 + h2, f(h1 + h2)) ,

i.e., the sum of h′1 and h′2 is not contained in H ′, which is therefore not a
group. Accordingly, the map

ϕ : Q15
2 −→ K16, ϕ(x) =

{
0 if and only if x ∈ H ′,
i if and only if x ∈ ei +H ′, i = 1, . . . , 15,

is a well-defined covering map for which ϕ−1(ϕ(0)) is not a vectorspace.

4.36. NA

4.37. NA

4.38. (i) If ZH has order 64, then the sub-vectorspace H must be one-
dimensional. Additionally,H has to be a distance-3 set. Since sub-vectorspaces
differing by a permutation give isomorphic covering images, we see that there
are precisely five covering images of the form ZH , and five representative sub-
vectorspaces are H1 = {0000000, 1110000}, H2 = {0000000, 1111000}, H3 =
{0000000, 1111100},H4 = {0000000, 1111110}, andH5 = {0000000, 1111111}.

(ii) For p = 2 we know there exists a covering map φ : Qn
2 −→ K1+n

if and only if 2n is divisible by n + 1. Here n + 1 equals 8 so we have a
covering map φ : Q7

2 −→ K8. Here H must be a four-dimensional, distance-3
sub-vectorspace. The algorithm 4.57 leads us to choose a basis consisting of
vi = ei with i = 1, . . . , 4 for H ′, and this basis is extended to a basis for

128 4 Sequential Dynamical Systems over Permutations

F
7
2 by adding the vectors vi = ei with i = 5, 6, 7. We now need to pick four

vectors wi in Span{v5, v6, v7} that are not scalar multiples of each other nor
scalar multiples of v5, v6, or v7. We see that w1 = v5 + v6, w2 = v5 + v7,
w3 = v6 + v7, and w4 = v5 + v6 + v7 is one such choice. We set φi = vi + wi

for i = 1, . . . , 4 and φi = vi for i = 5, 6, 7. The linear map f is the map given
by f(φi) = ei or, using matrix notation, fΦ = I where Φ is the matrix with
the φi’s as columns. We see that Φ is its own inverse so f = Φ and we get
H = f(H ′).

Explicitly, we have

H ′ =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0, 0),
(0, 1, 1, 0, 0, 0, 0), (0, 1, 0, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0), (1, 1, 1, 0, 0, 0, 0),
(1, 1, 0, 1, 0, 0, 0), (1, 0, 1, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0, 0), (1, 1, 1, 1, 0, 0, 0)

⎫
⎪⎪⎬

⎪⎪⎭

,

f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and H = f(H ′) is given as
⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 1, 0), (0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 1, 1),
(0, 0, 0, 1, 1, 1, 1), (1, 1, 0, 0, 0, 1, 1), (1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 0, 0, 1),
(0, 1, 1, 0, 1, 1, 0), (0, 1, 0, 1, 0, 1, 0), (0, 0, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 0, 0),
(1, 1, 0, 1, 1, 0, 0), (1, 0, 1, 1, 0, 1, 0), (0, 1, 1, 1, 0, 0, 1), (1, 1, 1, 1, 1, 1, 1)

⎫
⎪⎪⎬

⎪⎪⎭
.

5

Phase-Space Structure of SDS and
Special Systems

In this chapter we will study the phase spaces of special classes of SDS. The
first part is concerned with computing the fixed-point structure of sequential
dynamical systems and cellular automata over a subclass of the circulant
graphs [83]. We then proceed to analyze SDS over special graph classes such
as the complete graph, the line graph, and the circle graphs. We will also see
that the periodic points of SDS induced by (nork)k and (nork + nandk)k do
not depend on the choice of update order. This fact is needed in Chapter 6,
where we will study groups associated to a certain class of SDS.

5.1 Fixed Points for SDS over Circn and Circn,r

The fixed points of a dynamical system are usually easier to obtain than the
periodic points of period p ≥ 2. However, determining all the fixed points of an
SDS is in general a computationally hard problem, and brute-force checking
is the best approach. However, for certain graph classes we can characterize
all fixed points efficiently. Here we will demonstrate this for Y = Circn and
the more general class of graphs Circn,r, r ∈ N, defined below in the case
of permutation-SDS. For similar constructions in the context of cellular au-
tomata, see, for example, [110]. The advantage of the approach here is that
our construction extends directly to general graphs.

The permutation-SDS we consider here will be over the graph Circn, or
more generally Circn,r, and the functions fv will all be induced by a common
function φ. The graph Circn,r, r ∈ N, is given by

v[Circn,r] = v[Circn] = {0, 1, 2, . . . , n− 1}, (5.1)
e[Circn,r] = {{i, j}| − r ≤ i− j ≤ r} .

The graph Circ6,2 in shown in Figure 5.1. In the case of Circn the function φ
is of the form φ : F

3
2 −→ F2 and for Circn,r it is of the form φ : F

2r+1
2 −→ F2.

As for cellular automata we call r the radius of the rule φ. Here we assume

130 5 Phase-Space Structure of SDS andSpecial Systems

Fig. 5.1. The graph Circ6,2.

that 2r+ 1 < n since there are only n vertex states. The state of each vertex
i is updated as

xi �→ φ(xi−2r , . . . , xi−1, xi, xi+1, . . . , xi+2r) ,

where all subscripts are taken modulo n. The idea in our approach works for
any graph. Refer to Figure 5.2. We can construct a local fixed point at vertex 1
as a 5-tuple (x1, x2, x5, x6, x9) that satisfies f1(x1, x2, x5, x6, x9) = x1. We can
do the same for vertex 2, that is, we can find a 5-tuple (x′1, x

′
2, x

′
3, x

′
4, x

′
5) such

that f2(x′1, x′2, x′3, x′4, x′5) = x′2. The idea is to patch local fixed points together
to create global fixed points for the full SDS. In order to patch together local
fixed points, we need them to be compatible wherever they overlap. In the
example this means that we must have x1 = x′1, x2 = x′2 and x5 = x′5. We
formalize this idea as follows in the special case of the graph Circn,r.

Fig. 5.2. The graph Y is shown in the upper left, n[2] = (1, 2, 3, 4, 5) and n[1] =
(1, 2, 5, 6, 9) are highlighted in the lower left and upper right, respectively. In the
lower right the vertices contained in both n[1] and n[2] are highlighted.

Definition 5.1 (Compatible, local fixed points for Circn,r). Let r be a
positive integer and let x, x′ ∈ F

2r+1
2 . Then x = (x1, . . . , x2r+1) is compatible

5.1 Fixed Points for SDS over Circn and Circn,r 131

with x′ if xi+1 = x′i, 1 ≤ i ≤ 2r, which we write as x � x′. A sequence
C = (xi ∈ F

2r+1
2)n−1

i=0 is a compatible covering of Circn,r if

x0 � x1 � · · · � xn−1 � x0 .

Let φ : F
2r+1
2 −→ F2. A compatible covering C = (xi)n−1

i=0 of Circn,r is a
compatible fixed-point covering with respect to φ if φ(xi) = xi

r+1 for 0 ≤ i ≤
n − 1. The set of all compatible fixed-point coverings of Circn,r with respect
to φ is denoted Cφ(n, r).

For Circn,r we can organize the local fixed points in a directed graph. Since
each function φ gives such a graph we have a map G : Map(F2r+1

2 ,F2) −→
Graph that assigns to each map φ the directed graph G = G(φ) given by

v[G] = {x ∈ F
2r+1
2 | φ(x) = xr+1} , (5.2)

e[G] = {(x, x′) | x, x′ ∈ v[G] : x � x′} .

Thus, G has vertices all local fixed points, and the directed edges encode
compatibility.

Example 5.2. Let r = 1 and let φ = majority3 : F
3
2 −→ F2. Recall that

majority3 returns 1 if two or more of its arguments are 1 and returns 0 other-
wise. We will compute the local fixed points of the form (xi−1, xi, xi+1). For ex-
ample, with xi−1 = 0, xi = 0, and xi+1 = 1 we get majority3(xi−1, xi, xi+1) =
0 = xi so that (0, 0, 1) is a local fixed point. On the other hand, if xi−1 = 0,
xi = 1, and xi+1 = 0, we have majority3(xi−1, xi, xi+1) = 0
= xi and we
conclude that (0, 1, 0) is not a local fixed point. You should verify that the
local fixed points are as given in Table 5.1.

(xi−1, xi, xi+1) majority3 Local fixed point?

(0, 0, 0) 0 Yes
(0, 0, 1) 0 Yes
(0, 1, 0) 0 No
(0, 1, 1) 1 Yes
(1, 0, 0) 0 Yes
(1, 0, 1) 1 No
(1, 1, 0) 1 Yes
(1, 1, 1) 1 Yes

Table 5.1. Local fixed points for SDS over Circn induced by majority3.

From the table it is clear that there are six local fixed points. Consider the
local fixed point (0, 0, 0). The local fixed points x such that (0, 0, 0) � x are
(0, 0, 0) and (0, 0, 1) since the two last coordinates of (0, 0, 0) must agree with
the first two coordinates of x. Therefore, in the graph G there are a directed
edge from (0, 0, 0) to itself, and a directed edge from (0, 0, 0) to (0, 0, 1). You
should check that the graph G is as shown in Figure 5.3. 		

132 5 Phase-Space Structure of SDS andSpecial Systems

(000)
��

����
(001)

��
(100)��

����

(011)
����

�� (110)

		

(111)

��

��

Fig. 5.3. The local fixed-point graph for majority3.

The fixed-point graph G has at most 22r+1 vertices. By definition, a cycle
of length n in G corresponds to a compatible fixed-point covering of Circn,r

for a given function φ. Each C ∈ Cφ(n, r) corresponds uniquely to a fixed
point of a corresponding permutation-SDS. To make this clear, we define the
one-to-one map ψ by

ψ : Cφ(n, r) −→ Fix[FCircn,r , π] , (5.3)

ψ(x0, x1, . . . , xn−1) = (x0
r+1, x

1
r+1, . . . , x

n−1
r+1) .

In other words, the map ψ extracts the center state of each local fixed point
of a compatible fixed-point covering to create a fixed point for the SDS.

We can enumerate and characterize the fixed points of permutation-SDS
induced by a function φ over Circn,r through the graph G.

Theorem 5.3. Let φ : F
2r+1
2 −→ F2, let Ln be the number of fixed points of a

permutation-SDS over Circn,r induced by φ, and let A be the adjacency matrix
of the graph G(φ). Then we have

Ln = |Cφ(n, r)| = Tr An . (5.4)

Let χA(x) =
∑k

i=0 aix
k−i be the characteristic polynomial of A. The number

of fixed points Ln satisfies the recursion relation

k∑

i=0

aiLn−i = 0 . (5.5)

Proof. The first equality in Eq. (5.4) follows since ψ is one-to-one. The second
equality follows from Proposition 3.7 since [An]ii is the number of cycles of
length n starting at vertex i. The last part of (5.4) can be rewritten as

Ln = Tr An =
k∑

i=1

[An]ii =
k∑

i=1

eiA
neT

i ,

5.1 Fixed Points for SDS over Circn and Circn,r 133

where ei is the ith unit vector. The left-hand side of (5.5) now becomes

k∑

i=0

aiLn−i =
k∑

i=0

ai(
k∑

j=1

ejA
n−ieT

j)

=
k∑

j=1

(
k∑

i=0

ejaiA
n−ieT

j)

=
k∑

j=1

ej(a0A
n + a1A

n−1 + · · · + akA
n−k)eT

j

=
k∑

j=1

ejχA(A)An−keT
j

= 0,

where the last equality follows from the Hamilton–Cayley theorem (see The-
orem 3.9, page 45). �
Example 5.4. Let r = 1 and let φ = parity3 : F

3
2 −→ F2. Recall that

parity3(x1, x2, x3) = x1 + x2 + x3 (mod 2) .

In this case it is actually easy to see what the fixed points are, so let us do
that as a sanity check before we start up the machinery from Theorem 5.3.
First the state x with all 0’s is fixed, that is, x = (0, 0, . . . , 0). We also see
that the state with all 1’s is fixed. Otherwise, if we have a fixed point such
that xi = 0 that does not consist entirely of zeros, we must have xi−1 = 1
and xi+1 = 1. But if xi+1 = 1, then we must have xi+2 = 0 to have a fixed
point. So we see that there are two other fixed-point candidates, namely the
states with alternating 0’s and 1’s, but we need an even number of states to
get these. Thus, we always have two fixed points, and when n is even we have
two additional fixed points. Let’s see what we get using the theorem.

You should first check that we get the local fixed points given in the table
below:

(xi−1, xi, xi+1) parity3 Local fixed point?
(0, 0, 0) 0 Yes
(0, 0, 1) 1 No
(0, 1, 0) 1 Yes
(0, 1, 1) 0 No
(1, 0, 0) 1 No
(1, 0, 1) 0 Yes
(1, 1, 0) 0 No
(1, 1, 1) 1 Yes

From the local fixed points we construct the graph G shown in Figure 5.4.
We see that the three components in G encode the fixed points we found

134 5 Phase-Space Structure of SDS andSpecial Systems

(000)
��

(010) �� (101)�� (111)��

Fig. 5.4. The local fixed-point graph G for parity3.

earlier. Now, we need the adjacency matrix of G, so let’s index the four local
fixed points as 1 : (0, 0, 0), 2 : (0, 1, 0), 3 : (1, 0, 1), and 4 : (1, 1, 1). The
adjacency matrix A is then ⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

and the characteristic polynomial is χA(x) = det(xI − A) = (x − 1)(x −
1)(x2 − 1) = (x2 − 2x + 1)(x2 − 1) = x4 − 2x3 + 2x − 1. We can write this
as χA(x)

∑4
i=0 aix

4−i where a0 = 1, a1 = −2, a2 = 0, a3 = 2, and a4 = −1.
We therefore have the recursion relation a0Ln +a1Ln−1 +a2Ln−2 +a3Ln−3 +
a4Ln−4 = 0, so that, after rearranging,

Ln = 2Ln−1 − 2Ln−3 + Ln−4 . (5.6)

As initial values for this recursion we have (from our initial discussion) L3 = 2,
L4 = 4, L5 = 2, and L6 = 4. Note that we do not want to involve L2 or L1

since we want n ≥ 3 in the circle graph. Based on this we can compute L7

and L8 as
L7 = 2L6 − 2L4 + L3 = 2 · 4 − 2 · 4 + 2 = 2

and
L8 = 2L7 − 2L5 + L4 = 2 · 2 − 2 · 2 + 4 = 4 ,

which is consistent with our above findings. 		

This was a pretty detailed example. In the next example we omit some of
the details and consider the case with r = 2 and the function parity5.

Example 5.5 (Parity). We want to enumerate the fixed points over Circn,2

for SDS induced by parity5. We proceed exactly as in the previous ex-
ample, the only difference being that here we have to consider 5-tuples
(xi−2, xi−1, xi, xi+1, xi+2) for the local fixed points. You should verify that we
get the local fixed-point graph G shown in Figure 5.5. By inspection you will
now find that an SDS induced by parity5 over Circn,2 has 16 fixed points when
n ≡ 0 (mod 6), 8 fixed points if n ≡ 0 (mod 3) and n
≡ 0 (mod 2), 4 fixed
points if n ≡ 0 (mod 2) and n
≡ 0 (mod 3), and 2 fixed points otherwise.

5.1 Fixed Points for SDS over Circn and Circn,r 135

(10010)
�����

(00100) �� (01001)

�����

(11000) �� (10001) �� (00011)
��

(00000)
��

(00111)

		

(01110)�� (11100)��

(01010) �� (10101)�� (11111)��

(10110) �� (01101)
�����

(11011)

�����

Fig. 5.5. The graph G(parity5).

The adjacency matrix is a 16 × 16 matrix so you may want to use some
suitable software to compute the characteristic polynomial and derive the
recursion relation. 		

The next example is more involved. In this case we have r = 2 and we use
the function majority5.

Example 5.6 (Majority). For an SDS over Circn,2 induced by majority5 we get
the following vertices for Gmajority5

, which the reader should verify. (We have
grouped the local fixed points by H-class. The elements of H-class k are all
the tuples with exactly k entries that are 1.)

H-class Vertices
0 (00000)
1 (00001), (00010), (01000), (10000)
2 (11000), (10010), (10001), (01010), (01001), (00011)
3 (11100), (10101), (00111), (01110), (01101), (10110)
4 (11110), (11101), (10111), (01111)
5 (11111)

The graph G(majority5) is shown in Figure 5.6. By carefully inspecting the
graph G, we see that the states (01000), (00010), (11101), (10111), (10010),
(01001), (10110), and (01101) cannot be a part of a cycle in G. They are
“absorbing” or “repelling.” We can therefore omit these nodes from G for
the purpose of counting cycles of length n. You can check that the graph
G′ obtained from G by deleting these vertices has adjacency matrix with
characteristic polynomial χ(r) = r14 − 2r13 + 2r11 − r10 − r8 + r6. Thus,
the number of fixed points Ln of an SDS over Circn,2 induced by majority5

satisfies the recursion relation

Ln = 2Ln−1 − 2Ln−3 + Ln−4 + Ln−6 − Ln−8 ,

136 5 Phase-Space Structure of SDS andSpecial Systems

(00000)
��

����������

(10000)

���������� �� (00001)
 ���

!!�
��

��
��

(01000)

""���

##���
(00010)

(11000)

$$�������
�� (10001)

%%���
�� (00011)

��
(11100)

		

(01110)��
 ���

(00111)��

&&��
��

��
�

(11101) (10111)

""���

##���

(11110)

''������� %%���
(01111)��

((��������

(11111)��

))��������

(10010) (01001)�� (10110) �� (01101)

(01010) �� (10101)��

Fig. 5.6. The graph G(majority5).

and we have L5 = 2, L6 = 10, L7 = 16, L8 = 28, L9 = 38, L10 = 54, L11 = 68,
L12 = 94, and L13 = 132. Note that finding these initial values is probably
best done looking at the right powers of the adjacency matrix and by using
the Tr-formula in Eq. (5.4). 		

5.1. Why did we only consider the graph Circn,r and not arbitrary graphs?
What goes wrong in the case of, for example, Wheeln? [1+]

In Section 4.2.2 we have already seen that permutation-SDS induced by
the nor or nand function never has fixed points. For r = 1 Theorem 5.3
reestablishes this for the special case:

Corollary 5.7. Let K = F2, let Y = Circn, and let f be a symmetric function
f : K3 −→ K. If the permutation SDS over Y induced by f is fixed-point-free
for any n ≥ 3, then f = nor3 or f = nand3.

Proof. Let [FCircn
, π] be an SDS induced by f : K3 −→ K. From Theorem 5.3

we have that the non-existence of fixed points for any n is equivalent to Gf

having no cycles or loops. Let ai be the value of f on H-class i. Clearly, a0 = 1
and a3 = 0, since otherwise Gf would have loops. Now, a1 = 1 implies a2 = 1.
Likewise, a1 = 0 implies a2 = 0. In the latter case we see that f = nor3, and
in the former case we have f = nand3, and the proof is complete. �

We call a fixed point without any predecessors an isolated fixed point . From
a computational point of view, such a fixed point is a “practically invisible”

5.2 Fixed-Point Computations for General Graphs 137

attractor in the sense that the probability of realizing such a particular state is
1/qn for a graph on n vertices and with a state space of size q. Clearly, for the
identity map all states are isolated fixed points. However, there are nontrivial
examples of systems with such fixed points, as the following corollary shows.

Corollary 5.8. Let K = F2. Then the permutation-SDS [MajorityCircn
, π]

has isolated fixed points if and only if n ≡ 0 mod 4.

Proof. From the graph G(majority3) of Circn we see that the fixed points of
an SDS [MajorityCircn

, π] are all points without isolated zeros or ones, that
is, if xi = 0, then xi−1 = 0 or xi+1 = 0, and similarly for xi = 1. If a fixed
point x has three or more consecutive zeros, we can easily find a permutation
such that there is a preimage of x different from x itself. To be explicit assume
xi−1 = xi = xi+1 = 0. Pick σ ∈ Sn such that i <σ i− 1 and i <σ i+ 1. Let x̂
be the point obtained from x by setting xi to 1. Clearly, x̂ is a preimage of x
under [MajorityCircn

, σ]. The case with three or more consecutive states that
are one is dealt with in the same way. Thus, the only candidates for isolated
fixed points are points where two zeros are followed by two ones that again
are followed by two zeros, and so on. These points clearly have no preimage
apart from themselves. It is clear that n ≡ 0 mod 4 is necessary and sufficient
for such points to exist, and the proof is complete. �

From the proof it is also clear that there are precisely four isolated fixed
points when n ≡ 0 mod 4.

5.2. (a) Derive a recursion relation for the number of fixed points Ln of
[MajorityCircn

, π]. (b) Give an asymptotic formula for Ln as a function of n.
(c) Characterize the fixed points. [2+]

5.2 Fixed-Point Computations for General Graphs

It is natural to ask to what extent the fixed-point characterization and enu-
meration for Circn,r can be generalized. The key features that we implicitly
used were that (1) the graph is regular, (2) it has a Hamiltonian cycle, and
(3) neighborhoods overlap in an identical, local manner along the Hamiltonian
cycle. If any of these conditions fail to hold, then it is clear that we cannot
construct the compact graph description G(φ) that we had for Circn,r. A quick
look at, for example, Q3

2 or Wheeln should clarify what goes wrong.
However, we can still consider local fixed points as well as compatible

fixed-point coverings. Compatibility of two local fixed points x and x′ still
means that x and x′ agree on the states that belong to the same vertex state
in the graph Y . As before we can show that a compatible fixed-point covering
corresponds to a fixed point. Although this may seem clear it takes a little
bit of mathematical machinery to prove this rigorously. We will not do that
here and will contend ourselves with the example below. The computationally

138 5 Phase-Space Structure of SDS andSpecial Systems

inclined reader may not be that surprised to learn that computing all the fixed
points of a finite dynamical system map F : Kn −→ Kn, even in the case of
K = F2, is computationally intractable [20]. Note, however, that there are
efficient algorithms for SDS if we restrict ourselves to special graph classes
such as tree-width bounded graphs or to special function classes such as linear
functions [20].

Example 5.9. We will compute all the fixed points for CA/SDS over the cube
Q3

2 induced by

xor4 : F
4
2 −→ F2, xor4(x) =

{
1 if sum(xi)i = 1,
0 otherwise,

(5.7)

by exhaustive enumeration. Here we have encoded the vertices ofQ3
2 in decimal

such that, e.g., (1, 1, 0) ↔ 3. We set V = {0, 4, 5, 7} ⊂ v[Q3
2]. Note that V

is a dense subset of v[Y] in the sense that every vertex in Y is in V or is
adjacent to a vertex in V . Since Q3

2 is regular, and since we have the same
local function for each vertex, the local fixed points are the same for each
vertex. In the following we write the family of states of the vertices contained
in BY (v) such that the state of v is the first coordinate, for instance,

(1|000), (0|000), (0|011) and (0|111).

The construction of fixed-point covers and the verification that the vertices
in v[Y] \ V have fixed-point covers are given in Table 5.2. We get the table
by starting at vertex 0, computing all of its local fixed points. For each such
local fixed point we compute all possible local fixed points at vertex 4 that
are compatible with the initial fixed point. We then branch to vertex 5 and
vertex 7. Finally, we verify that the vertex state configurations around the
vertices contained in v[Y] \ V are local fixed points. Note that by applying

(x0x1x2x4) (x4x0x5x6) (x5x1x4x7) (x7x3x5x6) 1 2 3 6 Fixed point

(1000) (0110) (1000) (0110) y y y y (10010100)
(0101) (0000) (0101) y y y y (10010010)
(0111) (1000) (0011) y y y y (10000110)

(0111) y y y y (10010110)

(0000) (0000) (0000) (0000) y y y y (00000000)
(0011) (1000) (0110) y y y y (00010110)

(0111) (1000) (0111) (1000) y y y y (01101001)
(0110) (0000) y y y y (01101000)

(0011) (1000) (0011) (1000) y y y y (00101001)
(0101) (1000) (0111) (1000) y y y y (01001001)
(0110) (0000) (0101) (1000) y y y y (01100001)

Table 5.2. The fixed-point computation for Q3
2 with xor4 as local functions.

5.3 Threshold SDS 139

the Q3
2 automorphisms σ = (0)(124)(365)(7) (cycle form) and σ2 to the last

fixed point we obtain the second-to-last and third-to-last fixed points. Note
that in this case Aut(Y) acts on the set of fixed points. 		

5.3. Show that, under suitable conditions that you will need to identify,
Aut(Y) acts on Fix[FY , π]. [2]

Remark 5.10. In general, fixed points can be derived by considering a sheaf
(of local fixed points) and computing its cohomology. This approach is based
on category theory and generalized cohomology theories and is beyond the
scope of this book.

5.3 Threshold SDS

Some SDS only have fixed points and no periodic points of period p > 1.
While it is not the goal of this section to identify all such SDS, we will show
that the class of threshold SDS has this property.

Definition 5.11. A function f : F
k
2 −→ F2 is a threshold function if it is

symmetric and there exists 0 ≤ m ≤ k such that f(x) = 0 for all x in H-
classes Hi(x) with 0 ≤ i ≤ m, and f(x) = 1 otherwise. An SDS is a threshold
SDS if each function Fv is induced by a threshold function f .

An inverted threshold function is defined in exactly the same way but
with the function values 0 and 1 interchanged. The two SDS (Y,AndY , π)
and (Y,MajorityY , π) are examples of threshold SDS, while (Y,NorY , π) is
an example of an inverted threshold SDS.

Proposition 5.12. A threshold SDS has no periodic points of period p ≥ 2.

The following lemma is a consequence of the inversion formula (4.25).

Lemma 5.13. Let x be a periodic point of the permutation SDS-map [FY , π]
over F

n
2 with (prime) period p > 1. There is an index v that is maximal with

respect to the ordering π for which

([FY , π](x))v′ = xv′ , v′ >π v,

([FY , π](x))v = 1 + xv,

(Fv,Y ◦ [FY , π](x))v = xv.

Proof. By assumption x is periodic with period p > 1, so there is at least
one vertex v′ such that [FY , π](x)v′
= xv′ , and thus there is a maximal (with
respect to the order given by π) index v such that ([FY , π])(x)u = xu for
u >π v. The last statement follows from the fact that restricted to an orbit
[FY , π] is invertible with inverse [FY , π

∗] and by using [FY , π
∗] ◦ [FY , π] = id

on such an orbit. �

140 5 Phase-Space Structure of SDS andSpecial Systems

Proof (Proposition 5.12). Let [FY , π] be a threshold SDS-map, and assume
that x is a periodic point of period p > 1. Clearly, property 3 of Lemma 5.13
cannot hold for threshold systems and a contradiction results. �
5.4. In Proposition 5.12 we can do better than threshold SDS: Let A =
{a1, . . . , am} be linearly ordered by a1 < a2 < · · · < am. This gives us a partial
order � on An by x � y if xi ≤ yi for i = 1, . . . , n. For example, (0, 1, 0, 0, 0) �
(0, 1, 1, 0, 0), but (0, 1, 0, 0, 0) and (1, 0, 0, 0, 0) are not comparable. A function
f : An −→ A is monotone if x � y implies f(x) ≤ f(y).
(a) Show that threshold functions are monotone. (b) Prove that permutation
SDS where each vertex function fv is monotone has no periodic points of
period p ≥ 2. (c) Does the statement in (b) hold for word-SDS? [1+]

We next show that threshold systems can have long transient orbits:

Proposition 5.14. For a given integer m > 0 there is a graph Y with |v[Y]| ≤
2m and a permutation ordering π such that [MajorityY , π] has points with
transient length m.

Proof. Let Y be the combinatorial graph with vertex set v[Y] = {1, 2, . . . , 2m}
and edge set e[Y] = {{1, 2}, . . .{m,m + 1}, {2, 2 + m}, . . . , {m, 2m}}. Let x
be the initial state with xi = 0 for 1 ≤ i ≤ m and xi = 1 for m + 1 ≤
i ≤ 2m and let π = (1, 2, . . . , 2m). By direct calculation, it is clear that
[MajorityY , π]l(x)
= (1, 1, . . . , 1) for 1 ≤ l < m and [MajorityY , π]m(x) =
(1, 1, . . . , 1). �

For further information on transient lengths of threshold systems see, for
example, [14].

The following problem shows how the construction of potential functions
can be used to conclude that certain threshold SDS only have fixed points.

5.5. Let sign: R −→ R be the function defined by sign(x) = 1 if x ≥ 0
and sign(x) = −1 otherwise. In this problem we use the state space K =
{−1, 1} and vertex functions given by fv(x) = sign(

∑
v′∈B′

1(v) xv′). Let Y be
a combinatorial graph and let π ∈ SY . We define a potential function (or
energy function) E : Kn −→ R by

E = −
∑

{u,v}∈e[Y]

xuxv . (5.8)

(i) Show that whenever the application of a Y -local map Fv leads to a change
in the system state then the potential either stays the same or decreases.
(ii) Based on (i) show that this SDS has no periodic points of period p > 1.

[2]

5.4 SDS over Special Graph Classes

We have seen many examples of SDS over Circn and the binary n-cubes. In
this section we present a more systematic collection of results on the structure
of SDS over special graphs classes. We start with the complete graph.

5.4 SDS over Special Graph Classes 141

5.4.1 SDS over the Complete Graph

It is intuitively clear that for induced SDS the particular choice of permutation
update order is not essential for dynamical equivalence when Y = Kn. This
follows since we are free to relabel the vertices in any manner we like. More
precisely, by the fact that Aut(Kn) = Sn and from Proposition 4.30 it follows
that the induced SDS-maps [FKn , σ] and [FKn , σ

′] are dynamically equivalent
for any choice of σ and σ′. To see this just choose γ ∈ Aut(Kn) such that
σ′ = γσ (we can always do this — why?) and conclude that

[FKn , σ
′] = [FKn , γσ] = γ ◦ [FKn , σ] ◦ γ−1 .

In light of this, it is clearly enough to consider SDS with the identity update
order id = (1, 2, 3, . . . , n) in the case of Y = Kn. Again, note that this is gen-
erally only true for induced SDS. To start we make the following observation.

Lemma 5.15. Let [FKn , id] be the map of a permutation SDS induced by the
symmetric Boolean function fn : F

n
2 −→ F2. Let O be an orbit of [FKn , id] and

let resO fn denote the restriction of fn to O. Suppose (a) that resO fn satisfies
the functional relation

φ(x1, . . . , xn−1, φ(x1, . . . , xn)) = xn (5.9)

and (b) that we have the commutative diagram

O
[FY ,id] ��

ιf

��

O

F̂
n
2

σn+1 ��
F̂

n
2

proj

		 (5.10)

where F̂
n
2 = {x ∈ F

n+1
2 | xn+1 = ιf (x1, x2, . . . , xn)} and

proj(x1, . . . , xn, xn+1) = (x1, . . . , xn),
ιf (x1, . . . , xn) = (x1, . . . , xn, f(x1, . . . , xn)),

σn+1(x1, x2, . . . , xn+1) = (xn+1, x1, . . . , xn) .

Then we have n+ 1 ≡ 0 (mod |O|).

Proof. Clearly, the commutative diagram implies [FY , id]� = (proj◦ σn+1◦ιf)�

and from the functional equation (5.9) we conclude (proj ◦ σn+1 ◦ ιf)2 =
(proj ◦ σ2

n+1 ◦ ιf), and by induction

[FY , id]� = proj ◦ σ�
n+1 ◦ ιf .

In particular, for � = n+ 1 we get [FY , id]n+1 = proj ◦ ιf = id. �

142 5 Phase-Space Structure of SDS andSpecial Systems

We also have

Lemma 5.16. Let [FKn , id] be the SDS-map induced by the symmetric func-
tion fn. Let Hk = {x = (x1, . . . , xn) | sum(x) = k} and let O be an orbit of
the system. Suppose that for x ∈ O

l∏

i=1

Fi,Kn(x) ∈ Hk ∪Hk+1, 1 ≤ l ≤ n, (5.11)

and that there exists at least one integer l1 with
∏l1

i=1 Fi,Kn(x) ∈ Hk and at
least one integer l2 with

∏l2
i=1 Fi,Kn(x) ∈ Hk+1. Then n+ 1 ≡ 0 (mod |O|).

Proof. First, note that the conditions above imply that fn(x1 . . . , xn) = 1 for
x ∈ O ∩Ak and fn(x1 . . . , xn) = 0 for x ∈ O ∩Ak+1. The lemma now follows
from the following two observations: First, for x ∈ O one has

f(x1, . . . , xn−1, f(x1, . . . , xn)) = xn, (5.12)

and second,
∀ 1 ≤ k ≤ n− 1 ([FKn , π](x))k+1 = (x)k. (5.13)

From this we conclude that (5.10) commutes, and the lemma follows. �

5.6. Verify (5.12) and (5.13) in the proof of Lemma 5.16. [1+]

In the following we describe the dynamics of SDS induced by the functions
nor, parity, majority, and minority over Kn. We will use ek to denote the kth
unit vector, that is, the state ek ∈ F

n
2 with (ek)k = 1 and (ek)j = 0 for k
= j.

We set 〈x, y〉 =
∑
xiyi.

Proposition 5.17 (Nor). Consider the SDS-map [NorKn , id]. The states x
for which 〈x, en〉 = 1 are mapped to zero. If 〈x, en〉
= 1, then x is mapped to
ek where k = 1+max{i | xi = 1}. The set L = {0, e1, e2, . . . , en} is the unique
periodic orbit of [NorKn , id].

Proof. Clearly, all points are mapped into L. Also, 0 is mapped to e1, ek is
mapped to ek+1 for 1 ≤ k ≤ n− 1, and en is mapped to 0. �

Proposition 5.18 (Parity). For the SDS-map [ParityKn
, id] all states are

contained in periodic orbits O and we have n+ 1 ≡ 0 (mod |O|).

Proof. By Problem 4.8, which is a straightforward corollary of Proposi-
tion 4.13, an SDS-map [ParityY , π] is bijective for any graph Y , and all
states are periodic. It is clear that any orbit that contains at least two points
satisfies the conditions in (5.11) in Lemma 5.16 for some odd integer k, and
the last statement follows. �

Proposition 5.19 (Minority). For any periodic orbit O of the SDS-map
[MinorityKn

, id] we have n+ 1 ≡ 0 (mod |O|).

5.4 SDS over Special Graph Classes 143

Proof. A periodic orbit for this system satisfies Eq. (5.11) for k = �n/2� and
the proposition follows. �
Proposition 5.20 (Majority). For the SDS-map [MajorityKn

, id] every state
is fixed or eventually fixed. The only fixed points are (0, 0, . . . , 0) and
(1, 1, . . . , 1).

Proof. Obviously, (0, 0, . . . , 0) and (1, 1, . . . , 1) are fixed points. By definition,
the application of majorityn to a state x containing an equal number of vertex
states that are 1 and 0 yields 1 as outcome, and hence such a state x is mapped
to the fixed point (1, 1, . . . , 1). Clearly, any other point will be mapped to
either (0, 0, . . . , 0) or (1, 1, . . . , 1) by a single application of [MajorityKn

, id].
�

The following result is not over the complete graph, but on the complete
bipartite graph of order (m,n) written Km,n. This graph is the graph union
of Em and En, the empty graphs on m and n vertices, respectively.

Proposition 5.21. For [MajorityKm,n
, π] all states are fixed or eventually

fixed. There are
(

m
�m/2�

)(
n

�n/2�
)

+ 2 fixed points.

Proof. Recall that the function majorityn yields 1 when applied to a state x
containing an equal number of 0’s and 1’s. Let the vertex classes of Km,n be
Vm and Vn. Call a state x balanced if the states contained in Vm have exactly
�m/2� zeros and the states contained in Vn has exactly �n/2� zeros. Clearly,
all balanced states are fixed and all other points eventually map to either
(0, 0, . . . , 0) or (1, 1, . . . , 1). �

Obviously a balanced state has no preimage apart from itself. The dynam-
ics of this system is thus fully understood.

Remark 5.22. Note that for a majority-SDS over Km,n with n = 2 one has
states with a minority of zeros that are mapped to (0, 0, . . . , 0) for some update
orders and that are mapped to (1, 1, . . . , 1) for other update orders. In the
context of a voting game with opportunistic voters we thus see that the right
update order can completely change the outcome of the election based on the
initial inclination of a small set of voters. (An opportunistic voter is a voter
who votes the same as the majority of his contacts have voted already or are
planning to vote.)

5.4.2 SDS over the Circle Graph

The circle graph has helped us illustrate many concepts so far. As we have
seen in Chapter 2, this is also the graph that is frequently used in the studies of
one-dimensional cellular automata in the case of periodic boundary conditions.
Here we will give results on invertible dynamics on the circle graph. After the
next section where we consider line graphs, we conclude with a problem that
points to one of the central questions in analysis of graph dynamical systems:
How can we relate the dynamics over two graphs that only differ by one edge?

144 5 Phase-Space Structure of SDS andSpecial Systems

Proposition 5.23. The SDS-map [ParityCircn
, id] : F

n
2 −→ F

n
2 is conjugate to

a right-shift of length n− 2 on a subset of F
2n−2
2 . In particular,

|Per(x)| ≡
{

0 mod n− 1, n even,
0 mod 2n− 2, n odd,

(5.14)

for all x ∈ F
n
2 . The same statement holds for the corresponding SDS induced

by (1 + parity3).

Proof. Define the embedding ι : F
n
2 −→ F

2n−2
2 by

ι(x0, . . . , xn−1)
= (x0, . . . , xn−1, xn−1 + x0 + x1, xn−1 + x0 + x2, . . . , xn−1 + x0 + xn−2) ,

and set F̂
2n−2
2 = ι(Fn

2). A direct calculation shows that the diagram

F
n
2

[ParityCircn
,id]

��

ι

��

F
n
2

ι

��
F̂

2n−2
2

σn−2 ��
F̂

2n−2
2

(5.15)

commutes. Here σn−2 : F̂
2n−2
2 −→ F̂

2n−2
2 is defined by σn−2(x0, . . . , x2n−3) =

(xn, . . . , x2n−3, x0, . . . , xn−1). It is well-defined. Note that ι : F
n
2 −→ F̂

2n−2
2 is

a bijection. Thus, the map σ and [ParityCircn
, id] are topologically conjugate

(discrete topology) under ι.
Explicitly, we have

[ParityCircn
, id](x0, x1, . . . , xn−1)

= (xn−1 + x0 + x1, xn−1 + x0 + x2, . . . , xn−1 + x0 + xn−2, x0, x1) ,

and then

ι(xn−1 + x0 + x1, xn−1 + x0 + x2, . . . , xn−1 + x0 + xn−2, x0, x1)
= (xn−1 + x0 + x1, xn−1 + x0 + x2, . . . , xn−1

+ x0 + xn−2, x0, x1, x2, . . . , xn−1) .

On the other hand, this also equals (σn−2 ◦ ι)(x0, . . . , xn−1), verifying the
commutative diagram.

From the conjugation relation it is clear that the size of a periodic orbit
under [ParityCircn

, id] must be a divisor of (2n − 2)
/
gcd(n− 2, 2n− 2). The

statement of the proposition follows from the fact that

gcd(n− 2, 2n− 2) =

{
1, n ≡ 0 mod 2,
2, else.

The proof for [(1+Parity)Circn
, id] : F

n
2 −→ F

n
2 and the details are left for the

reader. �

5.4 SDS over Special Graph Classes 145

In analogy with the case of Kn we obtain that the phase space of
[ParityCircn

, id] can be embedded in the phase space of the (n−2)th power of
the elementary cellular automaton Φ : F

2n−2
2 −→ F

2n−2
2 induced by φ : F

3
2 −→

F2, φ(xi−1, xi, xi+1) = xi−1 (rule 240), i.e.,

Γ [ParityKn
, id] ↪→ Γ (Φn−2

240,(2n−2)). (5.16)

For a followup to Proposition 5.23 see Problem 5.8.

5.4.3 SDS over the Line Graph

The graph Linen differs from Circn by one edge, but as you may have expected
the dynamics of SDS over these two graphs can be significantly different.

Proposition 5.24. The SDS-map [ParityLinen
, id] : F

n
2 −→ F

n
2 is conjugate

to the composition τ ◦ σ−1 where τ : F
n+1
2 −→ F

n+1
2 is given by

τ(x = (x1, . . . , xn+1)) = (xn+1 + xi)i

and σ−1 : F
n+1
2 −→ F

n+1
2 is given by

σ−1(x1, . . . , xn+1) = (x2, x3, . . . , xn+1, x1) .

In particular, |Per(x)| ≡ 0 mod (n + 1) for all x ∈ F
n
2 . The same statement

holds for the corresponding SDS induced by (1 + parity3).

Proof. We have the embedding ι : F
n
2 −→ F

n+1
2 given by

ι(x1, . . . , xn) = (x1, . . . , xn, 0) .

A direct computation gives

(ι ◦ [ParityLinen
, id])(x1, . . . , xn) = ι(x1 + x2, . . . , x1 + xn, x1)

= (x1 + x2, . . . , x1 + xn, x1, 0)

and

τ ◦ σ−1 ◦ ι(x1, . . . , xn) = τ ◦ σ−1(x1, . . . , xn, 0)
= τ(x2, x3, . . . , xn, 0, x1)
= (x1 + x2, x1 + x3, . . . , x1 + xn, x1, 0) .

The rest is now clear. The proof of the last statement is left to the reader. �

5.7. Investigate the dynamics of [NorLinen
, id]. [2+]

146 5 Phase-Space Structure of SDS andSpecial Systems

5.8. Let Y and Y ′ be combinatorial graphs that differ by exactly one edge
e. Clearly, SDS over Y and Y ′ cannot have the same vertex functions (fv)v

since there are two vertices where the degrees do not match. However, we may
consider induced SDS. For a fixed set of functions it would be very desirable
to relate the dynamics of the two SDS. The addition or deletion of an edge is
a key operation, and it would allow us to relate systems over different graphs
by successive edge removals and additions. Using Propositions 5.23 and 5.24,
what can be said about this problem in the particular case of SDS induced by
parity functions over Circn and Linen? [3]

5.9. What can be said about Problem 5.8 in the general case or in interesting
special cases? That is, relate induced SDS over graphs that differ by precisely
one edge. [5]

5.4.4 SDS over the Star Graph

We have already considered SDS over Starn induced by nor functions when
we showed that the bound Δ(Starn) is sharp. The graph Starn often provides
interesting examples since it has a large automorphism group. Here we will
consider SDS induced by parity functions.

Proposition 5.25. Let Y = Starn, let π ∈ SY , and set φ = [ParityY , π].
Then for all x ∈ F

n
2 we have |Per(x)| ≡ 0 mod 3 for n even and |Per(x)| ≡ 0

mod 4 for n odd.

Proof. Since Aut(Starn) ∼= Sn, each orbit in U(Y)/ ∼Y under Aut(Starn) is
fully characterized by the position of the center vertex 0 in the underlying
permutations. It is now straightforward to verify that in all the n + 1 cases
the statement of the proposition holds. We leave the details to the reader. �

5.10. Characterize the dynamics of [MinorityStarn , π] for π ∈ SStarn up to
dynamical equivalence. [2]

5.11. Determine the fixed points of permutation SDS over Starn induced by
the 2-threshold functions. Show that the number of fixed points is exponential
in n. Let x ∈ F

n+1
2 , and let ω(x) denote the set of fixed points that can be

reached from x for all fixed choices of permutation update order. Show that
there exists a state x′ such that ω(x′) has size that is exponential in n. (See
also [111].) [3]

5.5 SDS Induced by Special Function Classes

In this section we study systematically several SDS that we encountered be-
fore. For instance, we analyze SDS induced by nor functions, which proved to
be helpful in establishing that the bound |Acyc(Y)| in Section 4.3.1 is sharp.

5.5 SDS Induced by Special Function Classes 147

Here we will study the phase-space structure of SDS induced by nor and enu-
merate some of these configurations. Note that some of the results are valid
only for permutation update orders and that some results are valid in the
more general context of word update orders.

5.5.1 SDS Induced by (nork)k and (nandk)k

Here we will characterize properties of SDS induced by (nork)k or (nandk)k

more systematically. Our description will start at a general level and finish
with some properties that apply for these systems for special graph classes
such as Circn. To begin, recall the following fact:

Proposition 5.26. Let Y be an combinatorial graph, let w be a word over
v[Y], and let K = F2. Then

[NandY , w] ◦ inv = inv ◦ [NorY , w] , (5.17)

where the function inv is the inversion map (4.22).

Thus, whatever we can derive for SDS induced by nor functions applies to
SDS induced by nand functions up to dynamical equivalence. For this reason
we will omit the obvious statements for SDS induced by nand functions in the
following.

Fixed Points and Periodic Points

As you have seen in the examples so far, permutation-SDS induced by nor
functions never have any fixed points.

Proposition 5.27. Let Y be a combinatorial graph. A permutation-SDS over
Y induced by (nork)k has no fixed points.

The proof of this is straightforward and is left as an exercise.

5.12. Give the proof of Proposition 5.27. [1]

5.13. Proposition 5.27 does not hold for word update orders. Why? [2-]

We next establish what the periodic points are for Nor-SDS. It turns out
that the periodic points only depend on the graph structure and not on the
update order, a property we will need later when we study certain groups
that describe the actual dynamics on the set of periodic points in Chapter 6.
Moreover, this characterization of periodic points is also valid for fair words .
Recall that a fair word over v[Y] is a word that contains each element of v[Y]
at least once.

148 5 Phase-Space Structure of SDS andSpecial Systems

Theorem 5.28. Let Y be a combinatorial graph on n vertices, let w be a fair
word over v[Y], and let K = F2. Then the set of periodic points of [NorY , w]
is

Per[NorY , w] = {x ∈ F
n
2 | ∀v : xv = 1 ⇒ ∀v′ ∈ B′

1(v) : xv′ = 0} . (5.18)

In particular, Per[NorY , w] is independent of w and is in a bijective corre-
spondence with I(Y), the set of independent sets of Y .

Proof. Let w = (w1, . . . , wk) be fair word over v[Y] and introduce the set

P(Y) = {(xv1 , . . . , xvn) ∈ F
n
2 | ∀v : xv = 1 ⇒ ∀v′ ∈ B′

1(v) : xv′ = 0} .

We will execute the proof in three steps. The first step is to show that
Per[NorY , w] ⊂ P(Y). Let x ∈ F

n
2 . We observe that the only circumstance

in which xv is mapped to 1 by Norv is when the state of all vertices in BY (v)
is 0. Since w is a fair word, it is clear that the image of x under [NorY , w] is
contained in P(Y), and therefore that Per[NorY , w] ⊂ P(Y).

The next step is to show that the maps Norv : P(Y) −→ P(Y) are well-
defined and invertible. Let x ∈ P(Y). There are three cases to consider. As-
sume xv = 1. Then by construction all states xv′ with v′ ∈ B′

1(v) satisfy
xv′ = 0. Thus, Norv(x)v = 0 and consequently (Nor2v)(x)v = 1. If xv = 0,
there are two cases to consider. In the first case all xv′ with v′ ∈ B′

1(v) are
zero. Clearly, in this case xv is mapped to 1 under Norv, which is then mapped
back to 0 by a subsequent application of Norv. The final case with xv = 0
and where one or more neighbor vertex v′ has xv′ = 1 is clear. There are two
things to be learned from this. First, the map Norv maps P into P and is thus
well-defined. Second, we have seen that for all v ∈ v[Y]

(Norv)2 : P(Y) −→ P(Y) = id : P(Y) −→ P(Y) . (5.19)

We next show that P(Y) ⊂ Per[NorY , w]. By definition, Per[NorY , w] is the
maximal subset of F

n
2 over which [NorY , w] is invertible. By our previous

argument, each map Norv is invertible over P(Y), and consequently all SDS

[NorY , w] =
k∏

j=1

Norw(j) : P(Y) −→ P(Y)

are invertible maps. We therefore conclude that

P(Y) ⊂ Per[NorY , w]

and hence that P(Y) = Per[NorY , w].
It only remains to verify that we have a bijective correspondence between

Per[NorY , w] and I. To this end define β : Per[NorY , w] −→ I by

β(xv1 , . . . xvn) = {vk | xvk
= 1} . (5.20)

The map is clearly well-defined, and it is clear that β is a bijection. �

5.5 SDS Induced by Special Function Classes 149

As a part of the proof of Theorem 5.28 we saw that

Per[NorY , w] = [NorY , w](Fn
2) .

This fact translates into the following corollary for transients states of Nor-
SDS:

Corollary 5.29. Let Y be a combinatorial graph and let w be a fair word over
Y . The maximal transient length of any state under [NorY , w] is 1.

Example 5.30. Let φ = [NorCirc4 , w]. In accord with Theorem 5.28 we have
the following seven order-independent periodic points:

Per[NorCirc4 , w] = {(0, 0,0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0),
(1, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1)} ,

where w is a fair word. Clearly, |Per[NorCircn
, w]| ≡ 0 mod 7. Later in Chap-

ter 6 we will see that for any configuration of these seven points into cycles we
can find a word w such that the corresponding Nor-SDS has exactly this cycle
configuration as its periodic orbits. In particular, this means that we can find
a word w′ ∈WY such that the [NorCirc4 , w

′] has exactly one periodic orbit of
length 7 and another word w′′ such that [NorCirc4 , w

′′] has exactly seven fixed
points. For example, a straightforward computation shows that the SDS

[NorCirc4 , (0, 1, 2, 3)]

has exactly one periodic orbit of length 7. 		

Enumeration of Periodic Points

Here we illustrate how to obtain information about P (Y) = |Per[NorY , w]|
for w ∈ W ′

Y in the special case of Y = Circn through a recursion relation. Here
W ′

Y denotes the fair words over v[Y]. We will later find an explicit expression
for Pn.

Proposition 5.31. Let n ≥ 3. Then we have the Fibonacci recursion

Pn+1 = Pn + Pn−1 . (5.21)

Proof. Set φn = [NorCircn
, w] with w ∈ W ′

Y . Since any periodic point x of
φn can be extended to a periodic point of φn+1 by x �→ (x, 0), we have a
well-defined injection

a : Per(φn) −→ Per(φn+1), x �→ (x, 0) .

Moreover, we see that an element x ∈ Per(φn) can be extended to two periodic
points (x, 0) and (x, 1) of φn+1 if and only if we have x0 = xn−1 = 0. Let

150 5 Phase-Space Structure of SDS andSpecial Systems

p(a, b, c) = |{x ∈ Per(φn+1) | xn−1 = a, xn = b, x0 = c}| .

We then have

Pn+1 = p(0, 1, 0) + p(1, 0, 0) + p(0, 0, 1) + p(0, 0, 0) + p(1, 0, 1) . (5.22)

The three first terms on the right in (5.22) add up to Pn. To give an interpre-
tation of the last two terms in (5.22), we see that the map

b : Per(φn−1) −→ Per(φn+1), x �→
{

(x, 1, 0) if x0 = 1 ,
(x, 0, 0) if x0 = 0 ,

(5.23)

is a well-defined injection with image size p(0, 0, 0)+p(1, 0, 1). Equation (5.22)
therefore becomes

Pn+1 = Pn + Pn−1 ,

and the proposition follows. �
Example 5.32. The values of Pn for small n are given in the table below.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P (Circn) 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207

		

Here is an alternative approach for computing the number of periodic points
of a Nor-SDS over Y = Circn. It also gives an explicit formula for Pn as well
as Ln, which is the number of periodic points of [NorLinen , w].

Proposition 5.33. The number of periodic points of an SDS induced by nor
functions on Linen is Ln = Fn+1 where Fn denotes the nth Fibonacci number
(F0 = 1, F1 = 1, and Fn = Fn−1 + Fn−2, n ≥ 2). The number of periodic
points of an SDS induced by nor functions on Circn is Pn = rn + (−1/r)n,
where r = (1 +

√
5)/2 (the golden ratio).

Proof. The case of Linen follows from the observation that for the periodic
points with xn = 1 one must have xn−1 = 0. Clearly, for the remaining coordi-
nates there are as many choices as there are periodic points for [NorLinen−2 , π].
Thus, the number of periodic points of [NorLinen

, π] with x1 = 1 is Ln−2. Sim-
ilarly, we get that the number of periodic points of [NorLinen , π] with xn = 0
equals Ln−1. Thus, we have Ln = Ln−1 + Ln−2 for n ≥ 3 where L1 = 2,
L2 = 3, and thus Ln = Fn+1 as claimed.

For the case of Circn we see that the number of periodic points with x0 = 1
equals Ln−3 while the number of periodic points with x0 = 0 equals Ln−1,
and we conclude that Pn = Ln−1 + Ln−3 = Fn + Fn−2 for n ≥ 4. Using the
formulas for the nth Fibonacci number gives Pn = rn + (−1/r)n for n ≥ 4.
The formula also holds for n = 3, so we are done. �
5.14. Derive the recursion relation (5.21) from Proposition 5.33. [1]

5.15. Derive a recursion relation for the number of periodic points of a Nor-
SDS over Wheeln. [1+]

5.5 SDS Induced by Special Function Classes 151

Further Characterization of Phase Space

In the remainder of this section we include some more results on the structure
of the phase space of Nor-SDS. The proofs here are somewhat more technical
and were derived as a part of the research that investigated whether or not
the bound Δ(Y) is sharp.

Proposition 5.34. Let Y be a combinatorial graph, let π ∈ SY , and let K =
F2. The state zero has maximal indegree in Γ [NorY , π].

The proof is a direct consequence of the following lemma:

Lemma 5.35. Let Y be a combinatorial graph, let π ∈ SY , and let K = F2.
For x
= 0 let M(x) = {v ∈ v[Y] | xv = 1}, and for S ⊂ M(x) let xS be the
state with xS

v = xv for v
∈ S and xS
v = 0 for v ∈ S. We then have

∀x ∈ F
n
2 ∀S ⊂M(x) : |[NorY , π]−1(x)| ≤ |[NorY , π]−1(xS)| , (5.24)

and in particular |[NorY , π]−1(x)| ≤ |[NorY , π]−1(0)|.
Proof. Assume |v[Y]| = n and let x ∈ F

n
2 . The inequality (5.24) clearly holds

for any x with [NorY , π]−1(x) = ∅, so without loss of generality we may
assume that [NorY , σ]−1(x)
= ∅. Since we have a Nor-SDS, this assumption
implies that x is a periodic point.

Let x ∈ F
n
2 be a periodic point such that x
= 0 with xv = 1. Without

loss of generality we may assume that v is maximal with respect to π such
that xv = 1. From the characterization of the periodic points in Theorem 5.28
we know that xu = 0 for all u ∈ B′

1(v). Moreover, any y ∈ [NorY , π]−1(x)
satisfies yu = 0 for all v
= u ∈ B≥π

Y (v). Let x̂ be the state defined by x̂v = 0
and x̂u = xu for u
= v. We can now define a map

rv : [NorY , π]−1(x) −→ [NorY , π]−1(x̂) (5.25)

by (rv(z))v = 1 and (rv(z))u = zu otherwise. Clearly, this map is well-defined.
Moreover, it is an injection, which in turn implies

|[NorY , π]−1(x)| ≤ |[NorY , π]−1(x̂)| .

Equation (5.24) now follows by induction on |{v | xv = 1}| by successively
replacing coordinates for which xv = 1 by 0 and by working in decreasing order
as given by π. Clearly, (5.24) implies that |[NorY , π]−1(x)| ≤ |[NorY , π]−1(0)|
as this corresponds to choosing S = M(x). �

The next result is a further characterization of phase spaces of Nor-SDS.
It turns out that the image of the state zero under [NorY , π] has zero as its
unique predecessor. For some graph classes the state zero is the unique state
of maximal indegree for which its successor has this property. It is convenient
to introduce the set M(Y, π) as

M(Y, π) = {x ∈ F
n
2 | indegree(x) is maximal in Γ [NorY , π] (5.26)

and [NorY , π]−1([NorY , π](x)) = {x}} .

152 5 Phase-Space Structure of SDS andSpecial Systems

Proposition 5.36. Let Y be a combinatorial graph, let [NorY , π] be a per-
mutation SDS, and let M(Y, π) be as in (5.26). Then

(i) for any connected graph Y we have 0 ∈M(Y, π),
(ii) for Y = Linen or Y = Circn we have M(Y, π) = {0}, and

(iii) there exist graphs Y such that |M(Y, π)| > 1.

Thus, if we have two phase spaces of Nor-SDS over Circn (or Linen) where
the preimage sizes of the zero states are different, then we are guaranteed
that the phase spaces are nonisomorphic as directed graphs. Proposition 5.36,
when applicable, gives us a local criterion for determining the nonequivalence
of Nor-SDS.

Proof. It is clear from Lemma 5.35 that the state 0 has maximal in-degree
in Γ [NorY , π] for any π ∈ SY . Thus, to prove statement (i) we only need
to show that [NorY , π]−1([NorY , π](0)) = {0}. Let z = [NorY , π](0) and
assume there exists y
= 0 such that [NorY , π](y) = [NorY , π](0) = z. Since
y
= 0 there exists some vertex v with yv = 1 and hence [NorY , π](0)v = 0.
By assumption we have [NorY , π

∗] ◦ [NorY , π](0) = 0, and since zv = 0 we
are forced to conclude that there exists a vertex v
= v′ ∈ B<π

Y (v) such that
zv′ = 1. But this is clearly impossible since yv = 1 implies that [NorY , π](y)v′ ,
and thus zv′ equals 0. Thus, there exists no y
= 0 that maps to z, and
statement (i) follows.

For the proof of statements (ii) and (iii) we first prove two auxiliary
results. Assume there exists x ∈ M = M(Y, π) with x
= 0, and let v be a
vertex such that xv
= 0. Without loss of generality we can assume that v is
minimal with respect to the order <π such that xv = 1.

Claim 1. For all v′ ∈ B′
Y (v) we have v′ <π v.

We prove this by contradiction. Suppose there exists v′ ∈ B′
Y (v) such that

v′ >π v, and let xv be the n-tuple defined by xv
v = 1 and xv

u = 0 otherwise.
By Lemma 5.35 we conclude that |[NorY , π]−1(xv)| = |[NorY , π]−1(0)| since
x ∈ M(Y, π). Moreover, in this case the map rv in (5.25) is a bijection, and
therefore the preimages of 0 correspond uniquely to the preimages z′ of xv,
which have the property z′v = 1. Define z = (zu)u by zv = 0 and zu = 1 other-
wise. Since there exists v′ >π v, we derive [NorY , π](z) = 0. But since zv = 0,
we have created an additional preimage of zero, which contradicts Lemma 5.35
since |[NorY , π]−1(xv)| = |[NorY , π]−1(0)|, and the claim follows.

Since Y is connected, it follows that there exists v′ adjacent to v with
v′ <π v. Moreover:

Claim 2. If degree(v′) > 1, then there exists k ∈ B′
1(j) with k <π v

′.

Assume that for all k ∈ B′
1(v′) we have v′ <π k. Then we define x′ = (x′u)u

by

x′u =

{
1 u = v′,
xu u
= v′ .

(5.27)

5.5 SDS Induced by Special Function Classes 153

Since xv = 1, we have xv′ = 0, so clearly x
= x′. By the assumption that
for all k ∈ B′

1(v
′) we have v′ <π k, we can conclude that [NorY , π](x′) =

[NorY , π](x), which is impossible by the same argument as in Claim 1, and
Claim 2 follows.

Since v is minimal with respect to the ordering <π with the property
xv = 1, we have xk = 0, and thus there exists no s <π k with xs = 1.

To prove the second statement of the proposition, assume that there ex-
ists x ∈ M with x
= 0. For Y = Linen or Y = Circn we can conclude
from xk = 0 that for any y ∈ [NorY , π]−1(x) we have yv′ = 1. Again since
|[NorY , π]−1(x)| = |[NorY , σ]−1(0)|, we can construct a bijection r′ analogous
to rv in (5.25):

r′ : [NorY , π]−1(x) −→ [NorY , π]−1(0) (5.28)

with the property r′(y)v′ = 0. We now derive a contradiction by showing that
there exists a preimage y′ = (y′u)u of 0 with the property y′v′ = 0. For this
purpose we define y′ by

y′u =

{
0 u = v′,
1 u
= v′ .

(5.29)

Clearly, we have [NorY , π](y′) = 0 and (ii) follows.

For statement (iii) consider the graph Y and the orientation OY as shown
below.

t i t i

Y = s

��
��

��
�� v′

��������
OY = s v′

		 $$��������

k k

''��������

		

Let x be the 5-tuple x = (xk, xs, xv′ , xt, xi) = (0, 0, 0, 0, 1), and let π ∈ SY be
an update order for which Oπ

Y = OY . Then z = [NorY , π](x) = (1, 0, 0, 1, 0).
For any y ∈ [NorY , π]−1(x) we have ys = yt = 1 and yi = 0 while yk and
yv′ may take any value. For y′ to be in the preimage of the state 0 we must
have ys = yt = yi = 1 while yk and yv′ are arbitrary. We see that we have a
bijection

ρ : [NorY , π]−1(x) −→ [NorY , π]−1(0), ρ(z)h =

{
zh for h
= i,

1 for h = i.
(5.30)

This is a particular instance of the map rv in (5.25). Now let η∈ [NorY, π]−1(x).
Clearly, we have ηk = ηt = 0 and since zk = 1 we have ηr = ηv′ = 0. Finally,

154 5 Phase-Space Structure of SDS andSpecial Systems

since zi = 0, we must have ηi = 1. Thus, x is the only preimage of z under
[NorY , π], and we conclude that

[NorY , π]−1([NorY , π](x)) = x ,

which proves statement (iii). �

Again, the background of Proposition 5.36 is the analysis of the bound
Δ(Y). The bound is conjectured to be sharp and to be realized if the ver-
tex functions are induced by (nork)k. The reader interested in pursuing this
problem may want to refer to [100,109,112].

5.16. Let Y = Star5 and let φ be the sequential dynamical system in-
duced by nor functions with update order (1, 2, 0, 3, 4). Construct the sets
φ−1(0, 0, 0, 0, 0) and φ−1(0, 0, 0, 1, 0). We know that φ(0) has in-degree 1. What
is the in-degree of φ(0, 0, 0, 1, 0)? Based on this, what can you say about the
set M(Y, π)? What is the bijection r : φ−1(0, 0, 0, 1, 0) −→ φ−1(0, 0, 0, 0, 0) in
this case? [1+]

5.17. Research the dynamics of permutation SDS over Circn induced by nor
functions. Use your analysis to decide if Δ(NorCircn) equals Δ(Circn). [5-]

5.18. Describe the phase space of [NorLinen
, π]. Is Δ(NorCircn

) = Δ(Circn)?
[5-]

5.5.2 SDS Induced by (nork + nandk)k

We just saw that the SDS induced by (nork)k or (nandk)k have periodic points
that depend only on the graph Y . Perhaps somewhat surprisingly it turns out
that the same holds for SDS induced by the sum of these functions, that is,
SDS induced by (nork + nandk)k.

5.19. The previous statement may lead one to speculate if the function se-
quences that induce SDS with periodic points independent of the update or-
der are a closed set under addition. This is, however, not the case. Give a
counterexample proving this claim. Hint. You will find all you need using
symmetric functions over Circ4. We will return to this problem in Chapter 6.

[2]

Example 5.37. In Figure 5.7 we have shown the phase spaces of SDS over
Y = Circ4, and Y = Circ5 using the update orders (0, 1, 2, 3) and (4, 3, 2, 1, 0)
induced by the function h3 = nor3 + nand3. Note that h3 only returns 0 if its
argument consists entirely of 0’s or entirely of 1’s. 		

It turns out that the periodic points of SDS induced by nor functions and
the SDS induced by nor + nand functions essentially coincide. Again, the set
W ′

Y denotes the fair words over v[Y].

5.5 SDS Induced by Special Function Classes 155

Fig. 5.7. The phase space Γ [(Nor + Nand)Circ4 , (0, 1, 2, 3)] (left) and the phase
space Γ [(Nor + Nand)Circ5 , (4, 3, 2, 1, 0)] (right).

Proposition 5.38. Let Y be a combinatorial graph and let [FY , w] be an SDS
over Y induced by (nork + nandk)k with a word w ∈ W ′

Y . We then have

Per[FY , w] = {0} ∪ {x ∈ F
n
2 | ∀v : xv = 0 ⇒ ∀ v′ ∈ B′

1(v) : xv′ = 1} . (5.31)

We will show that the set M

M = {0} ∪ {x ∈ F
n
2 | ∀v : xv = 0 ⇒ ∀v′ ∈ B′

1(v) : xv′ = 1} (5.32)

is a maximal, invariant set for all the SDS φ induced by (nork +nandk)k such
that the restriction of φ to M is a bijection.

Proof. Let M be as in (5.32). We first show that M ⊂ Per[FY , w], and to
prove this we verify that

Fv,Y : M −→M

is a well-defined map. Clearly, Fv,Y (0) = 0. If 0
= x ∈M has xv = 0, then by
definition we have xv′ = 1 for all v′ ∈ B′

1(v). Hence, we have

Fv,Y (x)v = (nork + nandk)(x[v]) = 1 , (5.33)

where k = d(v) + 1, and thus Fv,Y (x) ∈ M . If xv = 1, there are two cases
two consider. If x′v = 1 for all v′ ∈ B′

v(Y), then Fv,Y (x)v = 0, and if there is
(precisely) one v′ ∈ B′

1(Y) with xv′ = 0, then Fv,Y (x)v = 1. In either case we
see that Fv,Y (x) ∈M and in summary that Fv,Y : M −→M is well-defined.

We claim that the composed map F 2
v,Y : M −→M satisfies

F 2
vi,Y = id .

This follows by an identical three-case argument like the one we did in the
proof for the periodic points of Nor-SDS in Theorem 5.28. We leave the verifi-
cation of this to the reader. By a straightforward extension of Proposition 4.13
to words, we conclude that [FY , w] : M −→M is invertible.

156 5 Phase-Space Structure of SDS andSpecial Systems

Since M is invariant under all SDS induced by (nork + nandk)k and fair
words, it is clear that M ⊂ Per[FY , w]. We next show that we have the
inclusion Per[FY , w] ⊂ M as well. Let x ∈ F

n
2 with x
= (0, 0, . . . , 0). We see

that

Fv,Y (x)v =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xv
when (∀ v′ ∈ B′

1(v); xv′ = 0)∨
(xv = 1 ∧ ∃ v′ ∈ B′

1(vi); xv′ = 0) ,

1 + xv
when (∀ v′ ∈ B′

1(v); xv′ = 1)∨
(xv = 0 ∧ ∃ v′ ∈ B′

1(v); xv′ = 1) .

From this it follows that an x-coordinate with xv = 0 is mapped to 1 if
and only if at least one Y -neighbor has state 1, and an x-coordinate with
xv = 1 changes into 0 if and only if all its Y -neighbor states are 1. Since by
assumption x
= (0, . . . , 0) and Y is connected, we conclude that there exists
h ∈ N such that

[FY , w]h(x) ∈M .

In particular this holds for any nonzero periodic point p of period, say r.
That is, there exists h such that q = [FY , w]h(p) ∈M . Moreover, there exists
0 ≤ t < r such that [FY , w]t(q) = p since q and p are on the same orbit. Since
M is an invariant set, it follows that p ∈ M as well, and Proposition 5.38
follows. �

If we conjugate the function nor + nand (we omit the subscript k here)
with the inversion map inv, we obtain the relation

inv ◦ (nor + nand) ◦ inv = 1 + nor + nand = or + nand = nor + and , (5.34)

which leads to

Corollary 5.39. Let Y be a combinatorial graph and let w ∈ W ′
Y . Then we

have

Per[(1 + Nand + Nor)Y , w] = inv(Per[(Nand + Nor)Y , w]) . (5.35)

We can now also state precisely what we mentioned earlier about the relation
to periodic points of Nor-SDS:

Corollary 5.40. Let Y be a combinatorial graph and let w ∈ W ′
Y . Then the

periodic points of [(1 + Nand + Nor)Y , w] of period p > 1 are precisely the
periodic points of [(Nor)Y , w].

Proof. From Corollary 5.39 it is clear that in addition to the fixed point
(1, 1, . . . , 1) the periodic points of [(1+Nand+Nor)Y , w] are all x ∈ F

n
2 with

the property that for all v we have xv = 1 implies xv′ = 0 for all v′ ∈ B′
Y (v),

but this is precisely the periodic points of [(Nor)Y , w]. �

Even though we have the same set of periodic points, the transient struc-
ture of the two types of SDS are different. For example, (nor+nand)-SDS can
have transients lengths exceeding 1, as illustrated in Figure 5.7.

5.5 SDS Induced by Special Function Classes 157

Enumeration of Periodic Points

It is now straightforward to derive a recursion relation for P ′
n(Y) = |Per[(Nor+

Nand)Y , w]| for Y = Circn.

Proposition 5.41. Let w ∈W ′
Y . Then P ′

n = P ′
n(Circn) satisfies the recursion

P ′
n = P ′

n−1 + P ′
n−2 − 1 . (5.36)

Proof. From Proposition 5.38 it is clear that P ′
n(Y) = Pn(Y) + 1 where

Pn(Y) = |Per[NorY , w]|. Specializing to the graph Y = Circn and substi-
tuting into the recursion relation Pn = Pn−1 + Pn−2 from Proposition 5.31,
we get (5.36). �

Example 5.42. As an illustration of Proposition 5.41 we get the number of
periodic points in the table below. 		

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P ′(Circn) 5 8 12 19 30 48 77 124 200 323 522 844 1365 2208

Orbit Equivalence

In, e.g., [90] the concept of stable isomorphism is introduced. Two finite dy-
namical systems are stably isomorphic if they are dynamically equivalent when
restricted to their respective periodic points, which is the case if there exists
a digraph isomorphism between their periodic orbits. Orbit equivalence may
therefore be a more descriptive term for this notion.

The notion of orbit equivalence is a little coarse. It is occasionally desirable
to distinguish between what we would call functional orbit equivalence and
dynamical orbit equivalence: There is a functional orbit equivalence between
two finite dynamical systems if their periodic orbits coincide. There is a dy-
namical equivalence between two systems if they are dynamically equivalent
when restricted to their periodic orbits. The following proposition illustrates
the distinction.

Proposition 5.43. Let Y be a combinatorial graph, let w ∈ W ′
Y , let M = F

n
2 \

{(1, 1, . . . , 1)}, and let N = F
n
2 \{(0, 0, . . . , 0)}. We let φ = [NorY , w] : M −→

M , ψ = [(1 + Nor + Nand)Y , w] : M −→M and η = [(Nor + Nand)Y , w] :
N −→ N . Then we have

(i) The dynamical systems φ and ψ are functionally orbit equivalent.
(ii) The dynamical systems φ and η are dynamically orbit equivalent.

Proof. Restricted to the periodic points of φ the functions nor and 1 + nor +
nand coincide and (i) follows. It is clear that (ii) follows from (i). �

Example 5.44. Figure 4.10 on page 89 shows the phase spaces of the SDS
[NorCirc4 , (0, 1, 2, 3)] and [(1 + Nor + Nand)Circ4 , (0, 1, 2, 3)]. It is easy to see
that the orbits are dynamically equivalent. 		

158 5 Phase-Space Structure of SDS andSpecial Systems

Problems

5.20. We have seen that threshold SDS have no periodic points of period
p > 1. This is generally not true for a parallel update order. Give an example
of a threshold system updated in parallel that has a periodic orbit of length 2.

[1]

5.21. A Nor-SDS is an example of inverted threshold SDS. As we know, per-
mutation Nor-SDS never have fixed points. Is this true in general for inverted
threshold permutation SDS? Give a proof or a counterexample. [1]

5.22. Let Y = Wheel4 and let w = W ′
Y . How many periodic points does the

SDS [(Nor + Nand)Y , w] have? [1]

5.23. Let Y = K4,3 be the complete, bipartite graph with vertex classes
V1 = {1, 2, 3, 4} and V2 = {5, 6, 7} where each vertex v ∈ V1 has vertex
function induced by or: F

4
2 −→ F2 and each vertex v ∈ V2 has vertex function

induced by majority : F
5
2 −→ F2. Show that the induced SDS map [FY , π]

has no periodic points of period p > 1 for any π ∈ SY . (The graph is shown
below.) [1]

5.24. Figure 5.8 shows a space-time diagram of an SDS map starting at the
state (1, 0, 0, 0, 0) at t = 0. The graph Y is a connected graph on five vertices.

(i) What state is reached at time t = 3, and what type of state is this?

Fig. 5.8. The space-time diagram of Problem 5.24.

(ii) Which of the following SDS-maps can not generate this space-time
diagram? (There may be more than one correct answer.)
A) [NorY , (0, 1, 2, 3, 4)] B) [MajorityK4

, (1, 2, 4, 3)]
C) [NorCirc5 , (1, 0, 2, 3, 4)] D) [MajorityY , (1, 5, 4, 2, 3)]
E) [OrY , (1, 5, 4, 2, 3)]. [1+]

5.5 SDS Induced by Special Function Classes 159

5.25. (Dynamics of [ParityKn
, π]) Let β : Sn −→ Sn+1 be the function

that maps π = (π1, . . . , πn) (standard form) to the (n+ 1)-cycle

β(π) = (π1, π2, . . . , πn, n+ 1) .

Define F̂
n
2 ⊂ F

n+1
2 by F̂

n
2 = {x ∈ F

n+1
2 | xn+1 = parity(x1, x2, . . . , xn)} and

the maps proj : F̂
n
2 −→ F

n
2 , ι : F

n
2 −→ F̂

n
2 and σ : F̂

n
2 −→ F̂

n
2 by

proj(x1, . . . , xn, xn+1) = (x1, . . . , xn),
ι(x1, . . . , xn) = (x1, . . . , xn, parityn(x1, . . . , xn)),

σn+1(x1, x2, . . . , xn+1) = (xn+1, x1, . . . , xn) .

(a) Prove that the set F̂
n
2 in invariant under the permutation action of any

π ∈ Sn+1, and that ι and proj are inverse maps, that is,

proj ◦ ι = idF
n
2

and ι ◦ proj = id
F̂

n
2
. (5.37)

(b) Prove that the SDS-map [ParityKn
, π] : F

n
2 −→ F

n
2 is dynamically equiv-

alent to the permutation action of β(π) on F̂
n
2 . [3]

160 5 Phase-Space Structure of SDS andSpecial Systems

Answers to Problems

5.2. (a) Ln = 2Ln−1 − Ln−2 + Ln−4. Initial values are L3 = 2, L4 = 6,
L5 = 12, and L6 = 20. (c) The fixed points can be characterized as all states
x ∈ F

n
2 with no isolated 0’s or 1’s.

5.3. One needs fv = fγ(v) for all v ∈ v[Y] and all γ ∈ Aut(Y) to have an
action. The statement follows easily from Proposition 4.30.

5.4. (a) Easy. (b) All the arguments we used for threshold SDS apply directly
to permutation-SDS with monotone vertex functions.

5.5. You need to compute ΔE for the case when xv is mapped from −1 to 1
and for the case when xv is mapped from 1 to −1.

5.9. Interesting results should probably be considered for publication.

5.12. Any state containing a vertex state that is 1 cannot be fixed. The only
remaining candidate for a fixed point is x = (0, 0, . . . , 0), but this state is
clearly not fixed.

5.13. Consider a permutation SDS φ = [FY , π] induced by nor functions. If,
for example, φ has a periodic orbit of size 2, then the SDS [FY , w] where w is
the concatenation of π with itself clearly has two fixed points.

5.14. The proof of Proposition 5.33 shows that Pn = Ln−1 +Ln−3, and from
Ln = Fn+1 it follows that

Pn+1 − Pn − Pn−1 = Ln + Ln−2 − Ln−1 − Ln−3 − Ln−2 − Ln−4

= Fn+1 − Fn − Fn−2 − Fn−3

= Fn + Fn−1 − Fn − Fn−2 − Fn−3

= Fn−1 − (Fn−2 + Fn−3) = Fn−1 − Fn−1 = 0 .

5.16. For a state x = (x0, x1, x2, x3, x4) to be mapped to 0 when the update
order is π = (1, 2, 0, 3, 4), we must have x3 = x4 = 1. This leaves us with two
choices for x0. If x0 = 0, we must have x1 = x2 = 1, and if x0 = 1, then x1

and x2 are always mapped to 0. Thus,

φ−1(0, 0, 0, 0, 0) = {(0, 1, 1, 1, 1), (1, 0, 0, 1, 1), (1, 1, 0, 1, 1),
(1, 0, 1, 1, 1), (1, 1, 1, 1, 1)} .

Similarly, for a point y to be mapped to (0, 0, 0, 1, 0), we see that y3 = 0 and
y4 = 1. The last condition follows from the fact that at the time y4 is to be
updated we have that the state of vertex 0 is 0. As before, if y0 = 0, then
y1 = y2 = 1, and if y0 = 1, then y1 and y2 are always mapped to 0. Thus, we
have

φ−1(0, 0, 0, 1, 0) = {(0, 1, 1, 0, 1), (1, 0, 0, 0, 1), (1, 1, 0, 0, 1),
(1, 0, 1, 0, 1), (1, 1, 1, 0, 1)} .

5.5 SDS Induced by Special Function Classes 161

We have z = φ(0, 0, 0, 1, 0) = (0, 1, 1, 0, 1), and we see that a predecessor y of
z must have y0 = y1 = y2 = 0. For y3 to be mapped to 0, we must have y3 = 1
and for y4 to be mapped to 1, we must have y4 = 0. This gives us (0, 0, 0, 1, 0)
as the only preimage of z, and therefore z = φ(0, 0, 0, 1, 0) has indegree 1.
From this it follows that M(Y, π) contains at least the points (0, 0, 0, 0, 0) and
(0, 0, 0, 1, 0) and thus has cardinality at least 2. The bijection r is the map
that assigns to x ∈ φ−1(0, 0, 0, 1, 0) the state r(x) obtained from x by setting
x3 to 1 and mapping all other coordinates identically.

5.17. You should consider submitting your answer to a journal.

5.20. Let Y = Circ4 and let each vertex function be majority3. Using a
parallel update scheme we see that x = (0, 1, 0, 1) is mapped to y = (1, 0, 1, 0),
which in turn is mapped back to x, and we have our periodic orbit of length 2.

5.21. The minority function is an inverted threshold function. If we take Y =
Circ4, we see that, for example, (0, 1, 0, 1) is a fixed point for [MinorityY , π]
for any permutation update order.

5.24. (i) The state reached at time t = 3 is (1, 1, 1, 1, 1), which is a fixed
point. (ii) The correct answer is A, B, C, and D. A nor-SDS never have fixed
points. That gives A and C. Alternative B is an SDS over a graph with four
states so this map cannot have this space-time diagram. For a connected graph
a state containing a single vertex state 1 cannot map to a state containing
more 1’s for a majority SDS. (Why?) The remaining alternative E could have
produced the given diagram. (Provide an example graph.)

5.25. (a) If πn+1 = n + 1, the statement clearly holds. Otherwise, assume
that (π(x))n+1 = xi. Then the sum (i.e., parity) of the first n coordinates of
β(x) is

parity(x1, . . . , xn) + x1 + x2 + · · · + xi−1 + xi+1 + · · · + xn = xi,

and the first part of the lemma follows. The statements in (5.37) are obvious.

(b) The map parityn : F
n
2 −→ F2 satisfies the functional relation

parityn(x1, x2, . . . , xi−1, parityn(x1, . . . , xn), xi+1, . . . , xn)

=
n∑

j=1,j �=i

xj +
n∑

j=1

xj = xi (5.38)

for any 1 ≤ i ≤ n. Writing i�→ for the application of Parityi to a given state
x = (x1, . . . , xn), we get through repeated application of (5.38)

162 5 Phase-Space Structure of SDS andSpecial Systems

x = (x1, x2, . . . , xn) 1�→ (parityn(x), x2, x3, . . . , xn)
2�→ (parityn(x), parityn(parityn(x), x2, . . . , xn), x3, . . . , xn)
= (parityn(x), x1, x3, . . . , xn)
...
n�→ (parityn(x), x1, x2, . . . , xn−1) .

The above computation gives us the commutative diagram

F
n
2

[ParityKn
,id]

��

ι

��

F
n
2

F̂
n
2

σn+1 ��
F̂

n
2

proj

		 (5.39)

that is, [ParityKn
, id] = proj◦σn+1 ◦ ι. Since ι and proj are inverses, it follows

that [ParityKn
, id] is dynamically equivalent to the shift map on F̂

n
2 . Since

Aut(Kn) = Sn, we have [ParityKn
, π] = π◦[ParityKn

, id]◦π−1 for all π ∈ Sn.
Consequently, diagram (5.39) can be extended to

F
n
2

[ParityKn
,π]

��

π−1

��

F
n
2

F
n
2

[ParityKn
,id]

��

ι

��

F
n
2 .

π

		

F̂
n
2

σn+1 ��
F̂

n
2

proj

		

(5.40)

Let π ∈ Sn and define π̄ ∈ Sn+1 by π̄i = πi for 1 ≤ i ≤ n (and thus
π̄n+1 = n+ 1.) It is straightforward to verify the identities

ι ◦ π−1 = (π̄)−1 ◦ ι and π ◦ proj = proj ◦ π̄ .

Consequently, we derive from (5.40) the commutative diagram

F
n
2

[ParityKn
,π]

��

ι

��

F
n
2

F̂
n
2

β(π) ��
F̂

n
2

proj

		 (5.41)

where

π̄ ◦ σn+1 ◦ (π̄)−1 = (π(1), π(2), . . . , π(n), n+ 1) = β(π) . (5.42)

5.5 SDS Induced by Special Function Classes 163

The identity on the left in (5.42) can be verified by first representing σn+1 as
the permutation action of σ̄ = (1, 2, . . . , n + 1) (using cycle form) and using
the properties of group actions: The permutation π̄σ̄(π̄)−1 maps πi to πi+1.
Again, since ι and proj are inverse maps, we conclude that [ParityKn

, π] is
dynamically equivalent to the permutation action of β(π) on F̂

n
2 .

6

Graphs, Groups, and SDS

6.1 SDS with Order-Independent Periodic Points

In this section we show that a certain class of SDS induces a group that
encodes the dynamics over periodic points that can be obtained by varying
the word update order [93, 113]. Through this construction we can use group
theory to prove the existence of certain types of phase-space structures.

In general, neither an SDS nor its Y -local maps are invertible, and there-
fore we cannot consider the obvious construction: the group generated by the
Y -local maps under function composition. Instead we will consider the re-
striction of an SDS map [FY , w] to its periodic points. If the set of periodic
points is independent of the word update order, we can conclude, under mild
assumptions on the update word, that the Y -local maps through restrictions
induce bijective maps

Fv,Y |P : P −→ P ,

where P = Per[FY , w] and Fv,Y |P denotes the restriction of Fv,Y to P. The
group generated by the restriction maps Fv,Y |P encodes the different configu-
rations of periodic points that can obtained by varying the word update order.

The assumption on the update schedule is a technical condition to avoid
special situations where some Y -local maps are not being applied. That is, we
consider fair words over v[Y] defined by

W ′
Y = {w ∈WY | ∀ v ∈ v[Y], ∃ wi; v = wi} . (6.1)

We can now introduce w-independent SDS:
Definition 6.1 (w-independent SDS [93, 113]). An SDS (Y,FY , w) with
state space Kn is w-independent if there exists P ⊂ Kn such that for all
w ∈W ′

Y we have Per[FY , w] = P.
Note that in the case ofw-independent SDS the set P is the unique maximal

subset of Kn such that [FY , w]|P : P −→ P is bijective. We point out that w-
independence does not imply that the periodic orbits are the same for all
update orders w. The structure of the SDS phase space critically depends on
the update order w.

166 6 Graphs, Groups, and SDS

6.1.1 Preliminaries

We start by analyzing why the periodic points of an SDS generally depend on
the update order.

Lemma 6.2. Let [FY , w] =
∏k

i=1 Fwi,Y be an SDS-map, let M ⊂ Kn, and set

Mj =

{
M for j = 1,
∏j−1

i=1 Fwi,Y (M) otherwise.
(6.2)

Then we have

(
k∏

i=1

Fwi,Y)|M is bijective ⇐⇒ ∀ 1 ≤ j ≤ k; Fwj ,Y |Mj is bijective, (6.3)

where

Fwj ,Y :
j−1∏

i=1

Fwi,Y (M) −→
j∏

i=1

Fwi,Y (M) . (6.4)

The proof of Lemma 6.2 is straightforward and indicates that the ques-
tion of bijectivity of an SDS restricted to some set M ⊂ Kn is generally not
reducible to the question of bijectivity of its local functions

Fwj ,Y :
j−1∏

i=1

Fwi,Y (M) −→
j∏

i=1

Fwi,Y (M)

alone. According to Lemma 6.2, the map Fwj ,Y is bijective restricted to the
set Mj , which reflects the role of the word update order w of the SDS.
A consequence of Lemma 6.2 is that the set of periodic points of an SDS
(Y, (Fwi,Y)i, w) generally depends on the particular choice of update order w.

Proposition 6.3. There exist a graph Y , a field K, and a family FY of Y -
local functions such that the set of periodic points of [FY , w] depends on w.

Proof. Let K = F2, let Y = Circ4, and let Fi,Y (x1, . . . , x4) for i = 1, . . . , 4 be
Y -local maps induced by the symmetric, Boolean function

b : F
3
2 −→ F2, b(x, y, z) =

{
1 for sumN(x, y, z) = 1,
0 otherwise.

Consider the two words w = (v4, v3, v2, v1) and w′ = (v4, v2, v3, v1). For the
state (1, 0, 0, 0) we obtain

(1, 0, 0, 0)

[FY ,w] ����������

(0, 0, 1, 1) �� (1, 1, 1, 0)

""���������� (1, 0, 0, 0)
[FY ,w′]�� (0, 1, 0, 1) .

Since (0, 1, 0, 1) is a fixed point for [FY , w] and [FY , w
′], we conclude that

(1, 0, 0, 0) is a periodic point for [FY , w] but not for [FY , w
′]. �

6.1 SDS with Order-Independent Periodic Points 167

6.1.2 The Group G(Y, FY)

In Proposition 6.4 we show that a w-independent SDS (Y,FY , w) naturally
induces the finite group G(Y,FY). In Theorem 6.5 we show that this group
contains information about the structure of the periodic orbits of all phase
spaces generated by varying the word update order. In the following we will, by
abuse of notation, sometimes write [FY , w] instead of [FY , w]|P. It is implicitly
understood that the map [FY , w] induces the map [FY , w]|P by restriction.

Proposition 6.4. Let Y be a graph, K a finite field, w ∈W ′
Y , and (Y,FY , w)

a w-independent SDS. Then for any v ∈ v[Y] the local maps Fv,Y : Kn −→ Kn

induce the bijections
Fv,Y |P : P −→ P ,

and the SDS (Y,FY , w) induces the finite group

G(Y,FY) = 〈{Fv,Y |P | v ∈ v[Y]}〉, (6.5)

which acts naturally as a permutation group on P.

Proof. By assumption we have Per[FY , w] = P for all w ∈ W ′
Y . Let w =

(w1, . . . , wk) ∈ W ′
Y and v ∈ v[Y], and set wv = (w1, . . . , wk, v). Since

w,wv ∈ W ′
Y , we conclude that both the SDS-maps [FY , w] : P −→ P and

[FY , wv] : P −→ P are bijections. Furthermore, we have

[FY , wv] = Fv,Y ◦ [FY , w] : P −→ P, (6.6)

from which follows that Fv,Y |P : P −→ P is a well-defined bijection. Therefore,
the groupG(Y,FY) obtained by composition of the maps Fv,Y |P is well-defined
and Proposition 6.4 follows. �

According to Proposition 6.4, we have the mapping

FY = (Fvi,Y)1≤i≤n �→ G(Y,FY) = 〈{Fvi,Y |P | vi ∈ v[Y]}〉 , (6.7)

which allows us to utilize a group-theoretic framework for analyzing SDS
phase spaces. Recall that Fix[FY , w] denotes the set of fixed points of the
SDS (Y,FY , w). An example of how Proposition 6.4 opens the door for group-
theoretic arguments is provided by

Theorem 6.5. Let Y be a graph and let (Y,FY , w) be a w-independent SDS
with periodic points P and associated group G(Y,FY). Then we have
(a) G(Y,FY) = 1 if and only if all periodic points of (Y,FY , w) are fixed
points.
(b) Suppose G(Y,FY) acts transitively on P, and let p be a prime number such
that |P| ≡ 0 mod p. Then there exists a word w0 ∈ W such that

(i) |Fix[FY , w0]| ≡ 0 mod p, (6.8)
(ii) all periodic orbits of [FY , w0] have length p. (6.9)

168 6 Graphs, Groups, and SDS

In particular, if [FY , w0] has no fixed points, it has at least one periodic orbit
of length p, and if [FY , w0] has no periodic orbits of length greater than 1,
then it has at least p fixed points.

Proof. Ad (a). Obviously, if G(Y,FY) = 1, then all local maps restricted to
P are the identity, and any SDS (Y,FY , w) only has fixed points as periodic
points. Suppose next that G(Y,FY)
= 1. By definition, we conclude from
G(Y,FY)
= 1 that there exist g ∈ G(Y,FY) and ξ ∈ P such that g(ξ)
= ξ. We
can write g =

∏h
i=1 Fwi,Y and observe that ξ is not a fixed point of the SDS-

map [FY , (w1, . . . , wh)). Hence, we have shown that G(Y,FY)
= 1 implies
that there exists an SDS with periodic points that are not all fixed points and
(a) follows.
Ad (b). Since G(Y,FY) acts transitively on P, there exists some q ∈ P such
that

|G(Y,FY)| = |P||Gq| , (6.10)

where Gq = {g ∈ G(Y,FY) | gq = q}, i.e., the subgroup consisting of all
elements of G(Y,FY) that fix the periodic point q. Let k ∈ N be the highest
power for which we have |P| ≡ 0 mod pk. Equation (6.10) implies

|G(Y,FY)| ≡ 0 mod pk,

and we can conclude from Sylow’s theorems that there exists a subgroup
H < G(Y,FY) such that |H | = pk. As a p-group H is solvable, whence there
exists a cyclic subgroup Hp < H < G(Y,FY).

Let g =
∏k

j=1 Fwj be a generator of Hp, that is, Hp = 〈g〉 and w0 =
(w1, . . . , wk). We consider the group action of Hp on P and obtain

|P| =
∑

ξ∈Ξ

|〈g〉(ξ)| , (6.11)

where Ξ is a set of representatives of the 〈g〉-action. We have

|〈g〉(ξ)| = [〈g〉 : 〈g〉ξ] ,

where 〈g〉ξ is the fixed group of ξ. Since 〈g〉 is a cyclic group of order p, we
have the alternative

|〈g〉(ξ)| =

{
1 if and only if ξ is fixed by 〈g〉,
p if and only if ξ is contained in an 〈g〉-orbit of length p.

(6.12)
We conclude from |P| ≡ 0 mod p and Eq. (6.11) that

|{ξ | ξ is fixed by 〈g〉}| ≡ 0 mod p .

Furthermore, each nontrivial orbit of (Y,FY , w0) corresponds exactly to an
orbit 〈g〉(ξ) for some ξ ∈ P. The proof of Theorem 6.5 now follows from
Eq. (6.12). �

6.1 SDS with Order-Independent Periodic Points 169

Example 6.6. Here we will compute the group G(K3,Nor). There are four
periodic points labeled 0 through 3 as given in Table 6.1. Each map Nori can

Periodic point Label Nor1 Nor2 Nor3
(0, 0, 0) 0 (1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 0, 0) 1 (0, 0, 0) (1, 0, 0) (1, 0, 0)
(0, 1, 0) 2 (0, 1, 0) (0, 0, 0) (0, 1, 0)
(0, 0, 1) 3 (0, 0, 1) (0, 0, 1) (0, 0, 0)

Table 6.1. Periodic points of Nor-SDS over K3.

be represented as a permutation ni of the periodic points. Using the labeling
from Table 6.1, we get n1 = (0, 1), n2 = (0, 2), and n3 = (0, 3). There are
four periodic points, so G(K3,Nor) (when viewed as a group of permutations)
must be a subgroup of S4, that is,G(K3,Nor) < S4. On the other hand, we see
that n3n2n1 = (0, 1, 2, 3), and since it is known that S4 = 〈{(0, 1), (0, 1, 2, 3)}〉
it follows that S4 < G(K3,Nor). We conclude that G(K3,Nor) is isomorphic
to S4.

What does G(K3,Nor) ∼= S4 imply? It means we can organize the periodic
points in any cycle configuration we like by a suitable choice of the update
order word. For instance, we could choose to have a Nor-SDS where the first
and last periodic points are fixed points and the remaining two periodic points
are contained in a two-cycle. The fact that G is isomorphic to S4 guarantees
that it is possible. It does not tell us how to find the update order, though,
but it is easily verified that the update order w = (1, 2, 1) does the trick. 		

In Theorem 6.5 we have seen that a transitive G(Y,FY) action and |P| ≡ 0
mod p allow us to design SDS with specific phase-space properties. We next
show that G(Y,FY) acts transitively if the Y -local maps are Nor functions.
Recall that an action of a group G on a set X is transitive if for any pair
x, y ∈ X there exists g ∈ G such that y = gx.

Lemma 6.7. Let Y be a combinatorial graph and let w ∈ W ′
Y . The SDS

(Y,NorY , w) is w-independent and G(Y,NorY) acts transitively on P =
Per[NorY , w].

Proof. Let p = (pv1 , . . . , pvn) and p′ = (p′v1
, . . . , p′vn

) be two periodic points
with corresponding independent sets β(p) and β(p′) where

β(xv1 , . . . xvn) = {vk | xvk
= 1}

(Theorem 5.28). We observe that

g =
[∏

v∈β(p′)

Norv

]
◦
[∏

v∈β(p)

Norv

]

170 6 Graphs, Groups, and SDS

is a well-defined element of G without referencing a particular order within
the sets β(p) and β(p′) since for any two v, v′ ∈ β(p) and v, v′ ∈ β(p′) we have

Norv ◦ Norv′ = Norv′ ◦ Norv .

We proceed by proving g(p) = p′. We observe that

[∏

v∈β(p)

Norv

]
(p) = (0, . . . , 0), (6.13)

[∏

v∈β(p′)

Norv

]
(0, . . . , 0) = p′ , (6.14)

from which it follows that

g(p) =
[∏

v∈β(p′)

Norv

]
◦
[∏

v∈β(p)

Norv

]
(p) = p′,

and the proof of Lemma 6.7 is complete. �

From the proof of Lemma 6.7 we conclude that one possible word w that
induces the element

g =
[∏

v∈β(p′)

Norv

]
◦
[∏

v∈β(p)

Norv

]

is given by w = (wvj1
, . . . , wvjq

, wvi1
, . . . , wvir

), where wvjh
∈ β(p) and

wvih
∈ β(p′). Obviously, w is in general not a permutation. Lemma 6.7 and

Theorem 6.5 imply

Corollary 6.8. For any prime p such that |Per[NorY , w]| ≡ 0 mod p there
exists an SDS of the form (Y,NorY , w) with the property |Fix[NorY , w]| ≡ 0
mod p, and all periodic orbits have length p.

Example 6.9. Let Y0 be the graph on four vertices shown in Figure 6.1. We
use nor as vertex functions and derive the following table.

Fig. 6.1. The graph used in Example 6.9.

6.1 SDS with Order-Independent Periodic Points 171

Label State Nor1 Nor2 Nor3 Nor4
1 0000 1000 0100 0010 0001
2 1000 0000 1000 1000 1001
3 1001 0001 1001 1001 1000
4 0100 0100 0000 0100 0101
5 0101 0101 0001 0101 0100
6 0010 0010 0010 0000 0010
7 0001 1001 0101 0001 0000

From this we derive the permutation representations n1 = (1, 2)(3, 7),
n2 = (1, 4)(5, 7), n3 = (1, 6), and n4 = (1, 7)(2, 3)(4, 5). Each ni is an element
of S7, so the group G(Y0,NorY0) must be a subgroup of S7. However, we
note that n = n1n2n3n4 = (1, 6, 5, 2, 7, 4, 3). Since n and n3 generate S7, we
must have S7 < G(Y0,NorY0), that is, G(Y0,NorY0) (viewed as a group of
permuations) equals S7. 		

6.1.3 The Class of w-Independent SDS

The characterization of w-independent SDS requires one to check the set W ′
Y ,

which makes the verification virtually impossible. In the following we provide
an equivalent condition for w-independence that only requires the consider-
ation of the set SY ⊂ W ′

Y . In other words, the subset of fair words that are
permutations completely characterizes w-independence.

Lemma 6.10. Let (Y,FY , w) be an SDS with state space Kn. If there exists
P ⊂ Kn such that

∀w ∈ SY ; Per[FY , w] = P , (6.15)

then (Y,FY , w) is w-independent.

Proof. By assumption we have

∀w ∈ SY ; [FY , w]|P : P −→ P is bijective, (6.16)

and P = Per[FY , w] is maximal and unique with respect to this property. Since
the SDS-map [FY , w] = Fwn,Y ◦ · · · ◦ Fw1,Y is a finite composition of Y -local
maps, we can conclude that Fw1,Y |P : P −→ Fw1,Y (P) is bijective. Since this
holds for any w ∈ SY , we derive

∀ v ∈ v[Y]; Fv,Y |P : P −→ Fv,Y (P) is bijective. (6.17)

Let v ∈ v[Y]. We choose w∗ ∈ SY such that w1 = v, that is,

[FY , w
∗] = (

n∏

i=2

Fwi,Y) ◦ Fv,Y .

The next step is to show that Fv,Y (P) = P holds. Setting Φ =
∏n

i=2 Fwi,Y , we
have by associativity

172 6 Graphs, Groups, and SDS

Fv,Y ◦ (
n∏

i=2

Fwi,Y ◦ Fv,Y) = (Fv,Y ◦
n∏

i=2

Fwi,Y) ◦ Fv,Y . (6.18)

Equation (6.18) can be expressed by the commutative diagram

P

Fv,Y

��

Φ◦Fv,Y �� P

Fv,Y

��
Fv,Y (P)

Fv,Y ◦Φ �� Fv,Y (P)

,

from which [in view of Eq. (6.17)] we obtain that

Fv,Y ◦ Φ : Fv,Y (P) −→ Fv,Y (P) is bijective.

We next observe that w = (w2, . . . , wn, v) ∈ SY and

Fv,Y ◦ Φ = [FY , w] .

Using Eq. (6.16) we can conclude that Fv(P) ⊂ P since P is the unique max-
imal set for which [FY , w] : P −→ P is bijective. Since Fv,Y |P is bijective
[Eq. (6.17)], the inclusion Fv(P) ⊂ P implies Fv,Y (P) = P. Therefore, we have

∀ v ∈ v[Y]; Fv,Y : P −→ P is bijective. (6.19)

As a result, (Y,FY , w) is w-independent, and the lemma follows. �

Let (Y,FY , w) be an SDS. We next show, under mild assumptions on the
local maps in terms of the action of Aut(Y), that for any γ ∈ Aut(Y) we
have γ(Per[FY , w]) = Per[FY , γ(w)]. As a consequence, if (Y,FY , w) is w-
independent, then Aut(Y) acts naturally on P by restriction of the natural
action γ(xvi) = (xγ−1(vi)).

Proposition 6.11. Let Y be a graph, K a finite field, and (Y,FY , w) an SDS
with the property

∀ γ ∈ Aut(Y); ∀ v ∈ v[Y]; fv = fγ(v) , (6.20)

that is, the vertex functions on any 〈γ〉-orbit are identical. Then we have

∀ γ ∈ Aut(Y); p ∈ Per[FY , w] =⇒ γ(p) ∈ Per[FY , γ(w)] . (6.21)

Furthermore, if (Y,FY , w) is w-independent, then Aut(Y) acts on P in a nat-
ural way via γ(xvi)i = (xγ−1(vi))i.

Proof. Using the same argument as in the proof of Proposition 4.30 and
Eq. (6.20), we have

∀ γ ∈ Aut(Y), vi ∈ v[Y]; γ ◦ Fvi,Y ◦ γ−1 = Fγ(vi),Y , (6.22)

6.1 SDS with Order-Independent Periodic Points 173

from which it follows that

γ ◦ [FY , w] ◦ γ−1 = [FY , γ(w)] where γ(w) = (γ(w1), . . . , γ(wk)) .

Hence, we have the commutative diagram

γ(P)

γ−1

��

γ◦[FY ,w]◦γ−1

�� γ(P)

P
[FY ,w] �� P

γ

		
(6.23)

from which we conclude that if P is a periodic point of [FY , w], then γ(P) is
a periodic point of [FY , γ(w)], proving (6.21).

To prove the second assertion it suffices to show that Aut(Y)(P) = P
holds. Clearly, we have w ∈ W ′

Y if and only if γ(w) ∈ W ′
Y . The commu-

tative diagram (6.23) proves that [FY , γ(w)] : γ(P) −→ γ(P) is bijective.
Since (1) P = Per[FY , w] is the unique, maximal subset of Kn for which
[FY , w] : P −→ P with w ∈ W ′

Y is bijective and (2) w ∈ W ′
Y is equivalent to

γ(w) ∈W ′
Y , we derive

∀ γ ∈ Aut(Y); γ(P) ⊂ P .

Since γ is an automorphism, we obtain γ(P) = P and the proof of the propo-
sition is complete. �

We proceed by showing that the class of monotone maps induces w-
independent SDS. Let x = (xvj)j ∈ F

n
2 and set

xr = (xr
vj

)j =

{
1 for j = r,

xvj otherwise.

A Y -local map Fv,Y : F
n
2 −→ F

n
2 is monotone if and only if

∀ vj ∈ v[Y]; r = 1, . . . , n Fv,Y (x)vj = 1 =⇒ Fv,Y (xr)vj = 1 . (6.24)

The SDS (Y,FY , w) is monotone if all Fv,Y , v ∈ v[Y] are monotone local
maps.

Proposition 6.12. Let Y be a graph, K = F2, and (Y,FY , w) a monotone
SDS. Then (Y,FY , w) is w-independent and we have

G(Y,FY) = 1 .

Proof. It suffices to prove that periodic points of (Y,FY , w) with w =
(wi)1≤i≤k are necessarily fixed points. For this purpose we note that the in-
verse of [FY , w] restricted to the periodic points is given by [FY , w

∗], where

174 6 Graphs, Groups, and SDS

w∗ = (wk+1−i)i. Suppose ξ = (ξv1 , . . . , ξvn) is a periodic point of [FY , w]. We
then have

k∏

i=1

Fwk+1−i,Y ◦
k∏

i=1

Fwi,Y (ξ) = ξ .

Hence, for an arbitary index 1 ≤ j ≤ k

F 2
wj ,Y (

j−1∏

i=1

Fwi,Y (ξ)) =
j−1∏

i=1

Fwi,Y (ξ) .

By induction over the index j, it follows from (6.24) that Fwj ,Y (ξ) = ξ for
1 ≤ j ≤ k. Therefore, all periodic points are necessarily fixed points. The
fixed points are independent of update order w, and G(Y,FY) = 1. �

6.2 The Class of w-Independent SDS over Circn

In this section we study all w-independent SDS over Circn that are induced
by symmetric Boolean functions. We then compute all groups G(Circn,FCircn

)
for n = 4. In the following we will use the notion of H-class. A state x ∈ F

m
2

belongs to H-class k if x has exactly k coordinates that are 1, and we write
this as x ∈ Hk,m.

Theorem 6.13. For Y = Circn, n ≥ 3, there are exactly 11 symmetric
Boolean functions that induce w-independent SDS. They are

nor3 and nand3,
(nor3 + nand3) and (1 + nor3 + nand3),
the non-constant, monotone maps, i.e., and3, or3 and majority3,
the maps inducing invertible SDS, i.e., parity3 and 1 + parity3,
the constant maps 0̂, 1̂.

Proof. Theorem 5.28 and Proposition 5.38 imply that nor3, nand3, (nor3 +
nand3), and (1 + nor3 + nand3) induce w-independent SDS. From Proposi-
tion 5.12 we conclude that or3, and3, and majority3 induce w-independent
SDS. The case of the constant Boolean functions 0̂3 and 1̂3 is obvious, but we
note that this case also follows from the fact that these SDS are monotone.
From Proposition 4.16 we know that parity3 and (1 + parity3) are the only
symmetric, Boolean functions that induce invertible SDS, so in particular we
have that these maps induce w-independent SDS.

It remains to prove that the five symmetric functions from Map(F3
2,F2)

that do not appear in the list induce w-dependent SDS. Our strategy is to
find points that are periodic for one update order and transient for other
update orders.

6.2 The Class of w-Independent SDS over Circn 175

Consider the Boolean function

b1 : F
3
2 −→ F2, b1(x, y, z) =

{
1 for (x, y, z) ∈ H1,3,

0 otherwise.

Let Y = Circ4, and consider the two words w = (3, 2, 1, 0), w′ = (2, 0, 3, 1),
and the state (0, 0, 0, 1). We compute

(0, 1, 1, 1)

[FY ,w] ����������

(1, 1, 0, 0) �� (0, 0, 0, 1)

""���������� (0, 0, 0, 1)
[FY ,w′]�� (1, 0, 1, 0)

and observe that (1, 0, 1, 0) is a fixed point for [FY , w] and [FY , w
′], respec-

tively. Therefore, (0, 0, 0, 1) is a periodic point for [FY , w] but not for [FY , w
′].

We conclude that b1 induces w-dependent SDS.
For the function

b2 : F
3
2 −→ F2, b2(x, y, z) =

{
0 for (x, y, z) ∈ H2,3,

1 otherwise ,

we have
inv ◦ b1 ◦ inv = b2 , (6.25)

which implies that b2 induces w-dependent SDS.
Next let

b3 : F
3
2 −→ F2, b3(x, y, z) =

{
1 for (x, y, z) ∈ H0,3 ∪H1,3,

0 otherwise.

For Y = Circ4, w = (0, 1, 2, 3) and w′ = (0, 2, 1, 3), we have

(1, 1, 1, 0)

[FY ,w] ����������

(0, 0, 1, 1) �� (1, 0, 0, 0)

""���������� (1, 0, 0, 0)
[FY ,w′]�� (1, 0, 1, 0)

and observe that (1, 0, 1, 0) is a fixed point for (Circ4,FY , w
′). Since (1, 0, 0, 0)

is a periodic point for (Circ4,FY , w) and a transient point for (Circ4,FY , w
′),

it follows that b3 induces w-dependent SDS.
Next we consider

b4 : F
3
2 −→ F2, b4(x, y, z) =

{
1 for (x, y, z) ∈ H2,3,

0 otherwise,

and take Y = Circ4, w = (0, 1, 2, 3), and w′ = (0, 1, 3, 2). For the SDS
(Circ4,FY , w) all periodic points are fixed points. Explicitly, we have

176 6 Graphs, Groups, and SDS

Per[FY , w] = {(0, 0, 0, 0), (0, 0, 1, 1), (1, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0)} .

In contrast, the SDS (Circ4,FY , w
′) has two additional orbits of length 2. For

the state (1, 1, 1, 1) we obtain

[FY , w
′](1, 1, 1, 1) = (0, 1, 0, 1) and [FY , w

′](0, 1, 0, 1) = (1, 1, 1, 1) ,

which prove that (1, 1, 1, 1) is a transient point for w = (0, 1, 2, 3) and a
periodic point for w′ = (0, 1, 3, 2); hence, b4 induces w-dependent SDS.

Since the function

b5 : F
3
2 −→ F2, b5(x, y, z) =

{
0 for (x, y, z) ∈ H1,3,

1 otherwise

satisfies
inv ◦ b4 ◦ inv = b5,

it also induces w-dependent SDS for n = 4, and the proof of the theorem is
complete. �

6.2.1 The Groups G(Circ4, FCirc4)

Here we compute the group G(Y,FY) for all w-independent SDS over Circ4.

Proposition 6.14. Let Y = Circ4, and let Gb denote the group generated by
the Y -local maps induced by b over Y restricted to the periodic points. We
then have

Gnor
∼= A7 and Gnand

∼= A7,
Gnor+nand

∼= A7 and G1+nor+nand
∼= A7,

Gor = 1, Gand = 1 and Gmajority = 1,
Gparity

∼= G1+parity
∼= GAP(96, 227),

G0̂ = 1 and G1̂ = 1.

Here A7 is the alternating group on seven elements, and GAP(96, 227) is the
(unique) group with GAP index (96, 227); see [114].

Proof. The SDS induced by nor functions has seven periodic points, which we
label as 0 ↔ (0, 0, 0, 0), 1 ↔ (1, 0, 0, 0), 2 ↔ (0, 1, 0, 0), 3 ↔ (0, 0, 1, 0), 4 ↔
(1, 0, 1, 0), 5 ↔ (0, 0, 0, 1), and 6 ↔ (0, 1, 0, 1). Rewriting the corresponding
maps Nori for 0 ≤ i ≤ 3 as permutations ni of S7 (using cycle form) gives
n0 = (0, 1)(3, 4), n1 = (0, 2)(5, 6), n2 = (0, 3)(1, 4), and n3 = (0, 5)(2, 6).
Next, note that the group A7 has a presentation

〈x, y |x3 = y5 = (xy)7 = (xy−1xy)2 = (xy−2xy2) = 1〉

and that a = (0, 1, 2) and b = (2, 3, 4, 5, 6) are two elements of S7 that will gen-
erate A7. Now, a′ = n2(n0n3n1)2 = (0, 4, 1, 6, 3) and b′ = (n3n2)2(n2n1)2 =

6.2 The Class of w-Independent SDS over Circn 177

(2, 5, 3), and after relabeling of the periodic points using the permutation
(0, 3, 2)(1, 5) we transform a′ into a and b′ into b. With Gnor viewed as a
permutation group we therefore have A7 ≤ Gnor. Since every generator ni is
even, we also have Gnor ≤ A7, proving the statement for Gnor. Since nor and
nand induce dynamically equivalent SDS, it follows that

Gnand
∼= Gnor

∼= A7 .

The proof for Gnor+nand and G1+nor+nand is completely analogous, so we
only give the labeling of the periodic points and the corresponding generator
relations as 0 ↔ (0, 0, 0, 0), 1 ↔ (1, 0, 1, 0), 2 ↔ (1, 1, 1, 0), 3 ↔ (0, 1, 0, 1),
4 ↔ (1, 1, 0, 1), 5 ↔ (1, 0, 1, 1), 6 ↔ (0, 1, 1, 1), and 7 ↔ (1, 1, 1, 1). The
generators are n0 = (3, 4)(6, 7), n1 = (1, 2)(5, 7), n2 = (3, 6)(4, 7), and n3 =
(1, 5)(2, 7). If we simply relabel the periodic points using the permutation
(0, 7)(1, 6)(2, 5)(3, 4), the generators are mapped into the generators of Gnor,
which, along with equivalence, proves

Gnor+nand
∼= G1+nor+nand

∼= A7 .

Since monotone SDS only have fixed points as periodic points, the corre-
sponding groups are trivial (Proposition 6.12).

The final cases are Gparity and G1+parity. In both cases all points are pe-
riodic, so we simply use the decimal encoding of each point as its label us-
ing (4.17), which in the case of Gparity (viewed as a permutation group) gives
us the generators n0 = (2, 3)(6, 7)(8, 9)(12, 13), n1 = (1, 3)(4, 6)(9, 11)(12, 14),
n2 = (2, 6)(3, 7)(8, 12)(9, 13), and n3 = (1, 9)(3, 11)(4, 12)(6, 14). (Note that
there are four fixed points.)

A straightforward but tedious computation shows that Gparity has order
96 = 25 · 3. From [115,116] it is known that there are 231 groups of order 96.
Explicit computations show that Gparity is non-Abelian since, for example,
n0n2
= n2n0, that it has 16 Sylow 3-subgroups, and that its center and its
Frattini subgroups are trivial. These properties uniquely identify Gparity as
the group with GAP [114] index (96, 227).

The four generators for G1+parity (viewed as a permutation group) are

n0 = (0, 1)(4, 5)(10, 11)(14, 15),
n1 = (0, 2)(5, 7)(8, 10)(13, 15),
n2 = (0, 4)(1, 5)(10, 14)(11, 15),
n3 = (0, 8)(2, 10)(5, 13)(7, 15) .

Using the relabeling
(

0 1 2 4 5 7 8 10 11 13 14 15
3 2 1 7 6 4 11 9 8 14 13 12

)

,

the generators for G1+parity are transformed into the generators for Gparity;
hence, G1+parity

∼= Gparity, and the proof is complete. �

178 6 Graphs, Groups, and SDS

6.1. Write a program to identify the maps f : F
3
2 −→ F2 that do not induce

w-independent SDS over Circn. Prove that the remaining maps induce w-
independent SDS. [3+C]

6.3 A Presentation of S35

We conclude this chapter by showing that the symmetric group S35 is isomor-
phic to the group of (Q3

2, (Nor + Nand)Q3
2
, w).

Proposition 6.15. Let Y = Q3
2 and let π ∈ S8; then any SDS of the form

(Q3
2, (Nor+Nand)Q3

2
, π) has precisely 35 periodic points of period 2 ≤ p ≤ 17

and precisely 1 fixed point. Furthermore, we have

G(Q3
2, (Nor + Nand)Q3

2
) ∼= S35 .

Proof. From Proposition 5.38 we know that the periodic points of an arbitrary
SDS induced by (nork +nand)k are w-independent. A straightforward analysis
of the phase space of the SDS

[(Nor + Nand)Q3
2
, (0, 1, 2, 3, 4, 5, 6, 7)]

shows that

there exists exactly one fixed point,
exactly 35 points of period p ≥ 2.

The second part of the first statement (p ≤ 17) follows by inspection of the
SDS phase spaces induced by all Δ(Q3

2) = 54 representatives of the Aut(Y)-
action on S8/ ∼Y .

We consider the periodic points as binary numbers and order them in the
natural order. Then we obtain for the restrictions of the local maps Fi,Q3

2
,

0 ≤ i ≤ 7, to the periodic points of period p ≥ 2:

g0 = (0, 1)(5, 6)(12, 13)(15, 16)(17, 18)(20, 21)(22, 23)(24, 25)(26, 27) ,
g1 = (0, 2)(3, 4)(7, 8)(9, 10)(17, 19)(26, 28)(29, 30)(31, 32)(33, 34) ,
g2 = (0, 3)(2, 4)(7, 9)(8, 10)(12, 14)(26, 29)(28, 30)(31, 33)(32, 34) ,
g3 = (0, 5)(1, 6)(7, 11)(12, 15)(13, 16)(17, 20)(18, 21)(22, 24)(23, 25) ,
g4 = (0, 7)(2, 8)(3, 9)(4, 10)(5, 11)(26, 31)(28, 32)(29, 33)(30, 34) ,
g5 = (0, 12)(1, 13)(3, 14)(5, 15)(6, 16)(17, 22)(18, 23)(20, 24)(21, 25) ,
g6 = (0, 17)(1, 18)(2, 19)(5, 20)(6, 21)(12, 22)(13, 23)(15, 24)(16, 25) ,
g7 = (0, 26)(1, 27)(2, 28)(3, 29)(4, 30)(7, 31)(8, 32)(9, 33)(10, 34) .

(6.26)

Since there are 35 periodic points of period p ≥ 2, it is clear that G < S35.
We next observe that a 35-cycle can be generated as follows:

6.3 A Presentation of S35 179

α1 = g6 g4 g7 g2 g1 g5 g7 g3 g2 g6 g4 g0 g1 g6 g1 g7 g2 g1 g5 g7 g3 g2 g6 g4 g0 g5

= (1, 13, 0, 4, 24, 8, 16, 9, 27, 31, 21, 29, 33, 11, 6, 17, 10, 20,
28, 22, 34, 30, 14, 12, 2, 15, 5, 19, 25, 3, 18, 26, 32, 23, 7) (6.27)

Next, a 2-cycle can be generated from

α2 = g4 g7 g1 g2 g6 g7 g3 g1 g5 g4 g0

= (1, 3, 0, 25, 34, 32, 19, 11, 22, 6, 4, 2, 5, 23, 33, 31, 17,
16, 10, 8, 20, 13, 9, 12, 21, 14, 7, 24, 27, 29, 26, 18, 15)(28, 30) (6.28)

as α′ = α33
2 = (28, 30). Since gcd(4, 35) = 1, we see that β′ = α4

1 is a 35-cycle
where 28 and 30 are consecutive elements. Since it is known that α = (1, 2)
and β = (1, 2, . . . , 35) generate S35, and since we can transform α′ and β′ into
α and β by relabeling, we conclude that G is isomorphic to S35. �

By the above proposition, an SDS of the form (Q3
2, (Nor + Nand)Q3

2
, π)

with π ∈ S8 has a maximal orbit length 17. With arbitrary words as update
orders, additional periodic orbits can be obtained:

Corollary 6.16. For any 1 ≤ p ≤ 35 there exists a word w such that
(Q3

2, (Nor + Nand)Q3
2
, w) has a periodic orbit of length p. In particular, for

any bijection β over a set of 35 elements there exists some w such that

β = [(Nor + Nand)Q3
2
, w]|P .

Problems

6.2. Determine the periodic points for Nor-SDS over Line2, and give permu-
tation representations n0 and n1 of the restriction of Nor0 and Nor1 to the
set of periodic points. What is the group G2 = G(Line2, (Nor)) = 〈{n0, n1}〉?
Interpret your result in terms of periodic orbit structure and update orders.

[1]

6.3. What is the group G3 = G(Line3, (Norv)v)? [2]

6.4. Show that G4 = G(Circ4, (Nor)) ∼= A7, the alternating group on seven
letters. Hint. The group A7 has a presentation

〈x, y |x3 = y5 = (xy)7 = (xy−1xy)2 = (xy−2xy2) = 1〉.

Check that (0, 1, 2) and (2, 3, 4, 5, 6) are two such generators, and use this to
solve the problem. [2]

6.5. Show that G5 = G(Circ5, (Nor)) = S11. Hint. Use the fact that Sn is
generated by (0, 1) and (0, 1, 2, . . . , n− 1). [2]

180 6 Graphs, Groups, and SDS

Fig. 6.2. The square with a diagonal edge.

6.6. Let Y be the graph shown in Figure 6.2, let the vertex functions be
induced by (nork)4k=3, and let w be a fair word over the vertex set. Let m be
the number of periodic points of the SDS (Y,NorY , w). (i) What is m? (ii)
Give the periodic points.

Label the periodic points 1 through m by viewing them as binary numbers
such that they are given in increasing order. For each v ∈ v[Y] let Nor′v be
the restriction of Norv to the periodic points and let nv be the permutation
encoding of Nor′v based on your labeling of the periodic points. (iii) What are
the nv’s? (iv) Explain why the group G = 〈{nv}〉 is well-defined.

(v) What is the group G?

(vi) Interpret your answer in (v) in the context of update orders and periodic
orbit structure. [2]

6.7. (Subgroups of G(Kn,ParityKn
) [117]) From Problem 5.25, and as

shown in its solution, the invertible permutation SDS-map [ParityKn
, π] is

dynamically equivalent to the permutation action of the (n+ 1)-cycle

β(π) = (π(1), π(2), . . . , π(n), n+ 1)

on F̂
n
2 . Refer to Problem 5.25 and its solution for notation and definitions.

(a) Show that
Hn = 〈{[ParityKn

, π] | π ∈ SKn}〉 (6.29)

is a subgroup of G(Kn, (Parityi)i). Find a representation of the identity ele-
ment in Hn in terms of the generators of Hn.

(b) For n ≥ 3 show that

(i) the n-cycles in Sn generate An when n is odd,
(ii) the n-cycles in Sn generate Sn when n is even.

(c) Define the map φ : Hn −→ Sn+1 for n odd and φ : Hn −→ An+1 for n
even by φ([ParityKn

, π]) = β(π) with π ∈ Sn, and φ([ParityKn
, πk] ◦ · · · ◦

[ParityKn
, π1]) = φ(πk) · · ·φ(π1) with πi ∈ Sn, 1 ≤ i ≤ k. Show that φ is a

well-defined group homomorphism.

(d) Argue that any (n+ 1)-cycle can be represented as β(π) for some π ∈ Sn.
Use the results from (b) and (c) to conclude that the map φ is an isomorphism,
and hence that

6.3 A Presentation of S35 181

Hn
∼=

{
Sn+1, n odd ,
An+1, n even .

(6.30)

[3]

6.8. The construction of Hn in Problem 6.7 can be done over any graph
Y . Determine the order of the group H generated by permutation SDS in-
duced by parity functions in the case of Y = Circ4. Verify that |H | divides
|G(Circ4, (Parity)Circ4)|. Identify the group H . [2C+]

6.9. Let φ be a w-independent SDS over a graph Y with Y -local functions
(Fv,Y)v and periodic points P ⊂ Kn. Let F ′

v,Y denote the restriction of Fv,Y

to P . Argue that

H(Y, (Fv,Y)v) = 〈{[(Fv,Y)v, π] : P −→ P | π ∈ SY }〉

is a well-defined subgroup of G = G(Y, (Fv,Y)v). What is H if Y = Circ4 for
SDS induced by nor functions? [2C+]

182 6 Graphs, Groups, and SDS

Answers to Problems

6.2. The periodic points are (0, 0), (1, 0), and (0, 1). With the chosen labeling

periodic point label Nor0 Nor1
(0, 0) 0 (1, 0) (0, 1)
(0, 1) 1 (0, 1) (0, 0)
(1, 0) 2 (0, 0) (1, 0)

in the table we have n0 = (0, 2) and n1 = (0, 1) as permutation representations
of Nor0 and Nor1, respectively. Clearly, we have G2 ≤ S3. Since n0n1 =
(0, 1, 2) and n1 = (0, 1) and since we know (0, 1) and (0, 1, 2) generate S3, we
also have G2 ≥ S3, so G2 = S3.

6.3. Using the labeling from the table below, we have n0 = (0, 1), n1 = (0, 2),

periodic point label Nor0 Nor1 Nor2
(0, 0, 0) 0 (1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 0, 0) 1 (0, 0, 0) (1, 0, 0) (1, 0, 0)
(0, 1, 0) 2 (0, 1, 0) (0, 0, 0) (0, 1, 0)
(0, 0, 1) 3 (0, 0, 1) (0, 0, 1) (0, 0, 0)

and n3 = (0, 3). From n2n1n0 = (0, 1, 2, 3) and S4 = 〈{(0, 1), (0, 1, 2, 3)}〉 ≤
G3 ≤ S4, we see that G3 = S4.

6.4. Here we use the labeling 0 ↔ (0, 0, 0, 0), 1 ↔ (1, 0, 0, 0), 2 ↔ (0, 1, 0, 0),
3 ↔ (0, 0, 1, 0), 4 ↔ (1, 0, 1, 0), 5 ↔ (0, 0, 0, 1), and 6 ↔ (0, 1, 0, 1) of the
periodic points. You can verify that n0 = (0, 1)(3, 4), n1 = (0, 2)(5, 6), n2 =
(0, 3)(1, 4), and n3 = (0, 5)(2, 6). Note that, for example, a = n2(n0n3n1)2 =
(0, 4, 1, 6, 3) and b = (n3n2)2(n2n1)2 = (2, 5, 3). If we relabel the periodic

points by
(

0 1 2 3 4 5 6
3 5 0 2 4 1 6

)

, we get a = (0, 1, 2) and b = (2, 3, 4, 5, 6). By the

hint we know that G4 contains A7. However, since every generator of G4 is
an even permutation and since G4 is contained in S7, we must have G4 = A7.

6.5. There are 11 periodic points, which we initially label as in the table:
You can now verify that n0n1n4 = (0, 9, 1)(2, 8)(3, 10, 4)(5, 7, 6). By using the
transpositions (n1n0n2)3 = (1, 3), (n2n1n3)3 = (2, 5) and (n3n2n4)3 = (3, 8),
we construct the 11-cycle

a = (n3n2n4)3(n2n1n3)3(n1n0n2)3(n0n1n4) = (0, 9, 8, 5, 7, 6, 2, 3, 10, 4, 1).

We also have b = (n4n0n1)3 = (0, 9). Using the problem hint, it is now easy
to see that G5 = S11.

6.3 A Presentation of S35 183

Label Point Label Point

0 (0, 0, 0, 0, 0) 1 (1, 0, 0, 0, 0)
2 (0, 1, 0, 0, 0) 3 (0, 0, 1, 0, 0)
4 (1, 0, 1, 0, 0) 5 (0, 0, 0, 1, 0)
6 (1, 0, 0, 1, 0) 7 (0, 1, 0, 1, 0)
8 (0, 0, 0, 0, 1) 9 (0, 1, 0, 0, 1)
10 (0, 0, 1, 0, 1)

Challenge: In terms of the number of generators, find a minimal 11-cycle.

6.7. (a) Since parity-SDS are invertible, and since everything is finite, every
element of Hn can be written as [ParityKn

, w] for some finite, fair word
w. Thus, Hn is a subset of G(Kn,ParityKn

), and Hn is a group by con-
struction. Let π = (1, 2, . . . , n), i.e., the identity permutation. The inverse
of [ParityKn

, π] is [ParityKn
, π∗]; thus, the identity element in Hn has a

representation in terms of generators as [ParityKn
, π∗] ◦ [ParityKn

, π].

(b) Let Cn denote the subgroup of Sn generated by the n-cycles. We always
have (using cycle-form)

(a, b, c) = (a, c, b, αn−3, αn−4, . . . , α1)(a, c, α1, α2, . . . , αn−3, b) ,

and since An is generated by the three-cycles it follows that An ≤ Cn. When
n ≡ 1 mod 2, every element of Cn is an even permutation and consequently
Cn = An, giving the first statement. When n ≡ 0 mod 2, we also have

(1, 2) = (1, 2, 3, . . . , n)2(1, n, n− 2, . . . , 4, 2, n− 1, n− 3, . . . , 3) .

The fact that (1, 2) and (1, 2, 3, . . . , n) generate Sn shows that Sn = Cn.
Alternatively, Sn : An = 2 and since Cn contains an odd permutation when
n ≡ 0 mod 2, we deduce from An ≤ Cn ≤ Sn that Cn = Sn in this case.

(c) For 1 ≤ i ≤ l set hi = [ParityKn
, πi] with πi ∈ Sn, and let h = hl ◦

· · · ◦ h1. Using the second commutative diagram (5.41) from the solution of
Problem 5.25, and using the fact that the maps ι : F

n
2 −→ F̂

n
2 and proj : F̂

n
2 −→

F
n
2 (defined in Problem 5.25) are inverses of one another, we obtain

φ(h) = φ(hl)φ(hl−1) · · ·φ(h2)φ(h1) (6.31)
= [ι ◦ hl ◦ proj] [ι ◦ hl−1 ◦ proj] · · ·

· · · [ι ◦ h2 ◦ proj] [ι ◦ h1 ◦ proj]
= ι ◦ h ◦ proj .

Thus, if an element g ∈ Hn has two different representations, say g =
∏
gi =∏

g′i, it is clear from (6.31) that φ(
∏
gi) = φ(

∏
g′i). The map φ is thus well-

defined. It is a homomorphism by construction. Note that β(π)β(π∗) = id, as
it should.

184 6 Graphs, Groups, and SDS

(d) An (n+ 1)-cycle element of Sn+1 can always be shifted cyclically so that
the element n + 1 occurs in the last position — it still represents the same
permutation. In light of this, it is clear that any (n + 1)-cycle of Sn+1 has
a cycle representation β(π) for some π ∈ Sn. From (6.31) it follows that
φ(g) = φ(g′) if and only if g = g′ for any g, g′ ∈ Hn. The map φ is thus an
injection. From (b) it follows that φ(Hn) = An+1 for odd n and φ(Hn) = Sn+1

for even n. Thus, φ is surjective. We conclude that φ is an isomorphism.

6.8. |H | = 48, and 48 | 96 = |G|.

6.9. The subgroup H is isomorphic to A7 and thus equals G.

7

Combinatorics of Sequential Dynamical
Systems over Words

In Chapter 4 we introduced SDS over permutations, that is, SDS for which
each Y -local map is applied exactly once. A combinatorial result of SDS over
permutations developed in Chapter 4 based on Eq. (3.15) allowed us to identify
identical SDS via the acyclic orientations of the base graph Y through

OY : Sk/ ∼Y −→ Acyc(Y) , (7.1)

where we identify SY with Sk, the symmetric group over k letters, and where
σ1 ∼Y σ2 if and only if they can be transformed into each other by suc-
cessive transpositions of consecutive letters that are pairwise non-adjacent
Y -vertices. Let us recall how this equivalence relation ∼Y ties to SDS: Two
local maps Fv and Fv′ commute if v and v′ are not adjacent since in this case
Fv′(xv1 , . . . , xvn) does not depend on xv and Fv(xv1 , . . . , xvn) does not depend
on xv′ in the coordinate functions corresponding to v′ and v, respectively. As
a result two SDS-maps are identical if their underlying permutation update
orders belong to the same ∼Y -equivalence class.

In this chapter we generalize SDS over permutations to SDS over general
words as in [118, 119]. This allows us to analyze and model much broader
classes of systems. For instance, SDS over words can be used to study discrete
event simulations where agents are typically updated multiple times [121]. We
will simplify notation as follows: If vi is a vertex in Y and {vi, vj} is an edge
of Y , we write vi ∈ Y and {vi, vj} ∈ Y , respectively.

This chapter is organized into two sections. In the first section we derive
an analogue of Eq. (7.1) by introducing a new combinatorial object: the undi-
rected, loop-free graph G(w, Y), which has vertex set {1, . . . , k} and edge set
{{r, s} | {ws, wr} ∈ Y }. It is evident that G(w, Y) is much too “fine” since
it uses the indices of the word instead of its letters. The key idea consists of
identifying a suitable equivalence relation over acyclic orientations of G(w, Y)
in order to obtain the invariance of the resulting class under transpositions
of non-adjacent letters in w. We will show that this equivalence relation ∼w

over acyclic orientations is induced by a new group action: the subgroup of

186 7 Combinatorics of Sequential Dynamical Systems over Words

G(w, Y)-automorphisms that fix the word w denoted Fix(w). Obviously, the
fixed group of a permutation-word is trivial, and accordingly Fix(w) did not
appear in the framework of permutations-SDS. The orbits of Fix(w) allow us
to generalize Eq. (7.1) to SDS over words as follows:

O′
Y : Wk/ ∼Y −→

⋃̇

ϕ∈Φ
[Acyc(G(ϕ, Y))/ ∼ϕ] , (7.2)

where Φ is a set of representatives of the natural Sk-action on Wk (words of
length k) given by

σ · w = (wσ−1(1), . . . , wσ−1(k)) .

In analogy with permutation-SDS, the above correspondence is not only of
combinatorial interest but also relevant for SDS-maps since for w ∼Y w′ the
SDS-maps of (Y,FY , w) and (Y,FY , w

′) are identical.
In the second section we introduce a generalized equivalence relation over

words. Let A(w) be the automorphism group of G(w, Y), and let N(w) be the
normalizer of Fix(w) in A(w), that is,

N(w) = {α ∈ A(w) | αFix(w)α−1 = Fix(w)} .

Then the short exact sequence

1 −→ Fix(w) −→ N(w) −→ Aut(Y)

(Theorem 7.6) allows one to define a new equivalence relation over words
denoted by ∼N(w). This relation is directly induced by the group N(w) and
arises in the context of the question of whether it is possible to replace Fix(w)
by a larger group G of G(w, Y)-automorphisms. As in the case of Fix(w) the
group G should give rise to a new equivalence relation “∼G” that has the
property that w ∼G w′ implies that the SDS-maps associated to (Y,FY , w)
and (Y,FY , w

′) are equivalent. The main result of this section is that G =
N(w) induces such an equivalence relation ∼N(w). Explicitly ∼N(w) has the
properties that

(P1) ON(ϕ)
Y : Sk(ϕ)/ ∼N(ϕ) −→

[
Acyc(ϕ)/ ∼N(ϕ)

]
,

ON(ϕ)
Y ([σ · ϕ]N(ϕ)) = [OY (σ)]N(ϕ)

is a bijection and

(P2) w ∼N(ϕ) w
′ =⇒ [FY , w] ∼ [FY , w

′] .

The equivalence relation ∼N(w) can differ significantly from ∼Y . In this
chapter we will show in Lemma 7.21 that w ∼N(ϕ) w

′ implies that there exist
g, g′ ∈ N(ϕ) such that ϑ(g) ◦ w ∼Y ϑ(g′) ◦ w′, where ϑ : N(w) −→ Aut(Y) is
given by ϑ(α)(wi) = wα−1(i) (Theorem 7.6). This result connects the actions
of the groups A(w) and Aut(w).

7.1 Combinatorics of SDS over Words 187

7.1 Combinatorics of SDS over Words

7.1.1 Dependency Graphs

Let us begin by introducing two basic group actions. First, we have Sk, the
symmetric group over k letters, {1, . . . , k}, which acts on the set of all words
of length k, denoted Wk, via σ ·w = (wσ−1(1), . . . , wσ−1(k)). The orbits of this
action induce the partition

Wk =
⋃̇

ϕ∈Φ
Sk(ϕ) , (7.3)

where Φ is a corresponding set of representatives. Second, the automorphism
group of Y acts on Wk via γ ◦w = (γ(w1), . . . , γ(wk)) and ◦ has by definition
the property

γ(ws) = (γ ◦ w)s .

Lemma 7.1. Let σ ∈ Sk and γ ∈ Aut(Y). Then we have

γ ◦ (σ · w) = σ · (γ ◦ w) . (7.4)

Proof. To prove the lemma, we compute

γ ◦ (σ · w) = (γ(wσ−1(1)), . . . , γ(wσ−1(k)))
= ((γ ◦ w)σ−1(1), . . . , (γ ◦ w)σ−1(k))
= σ · (γ ◦ w) .

�

We next define the dependency graph of a word w and a combinatorial
graph Y .

Definition 7.2. A word w ∈ Wk and a combinatorial graph Y naturally
induce the combinatorial graph G(w, Y) with vertex set {1, . . . , k} and edge
set {{r, s} | {ws, wr} ∈ Y }. We call G(w, Y) the dependency graph of w
and Y .

Example 7.3. Let w = (v1, v2, v1, v2, v3) and Y = v1 v2 v3 . Then
we have

G(w, Y) =

1 2

��
��

��
�

��
��

��
��

3 4

�������
5 .

In the following we will use the notation A(w) for the group of graph automor-
phisms of G(w, Y), and we denote the set of acyclic orientations of G(w, Y)
by Acyc(w). For w ∈ Wk we set Fix(w) = {ρ ∈ Sk | ρ · w = w}. 		

188 7 Combinatorics of Sequential Dynamical Systems over Words

Proposition 7.4. Let Y be a combinatorial graph, w ∈ Wk, γ ∈ Aut(Y), and
σ ∈ Sk. Then

σ : G(w, Y) −→ G(σ · w, Y), r �→ σ(r) (7.5)

is a graph isomorphism. In particular, Fix(w) is a subgroup of A(w) and

A(σ · w) = σ A(w) σ−1 and Fix(σ · w) = σ Fix(w) σ−1 . (7.6)

For any γ ∈ Aut(Y) we have G(w, Y) ∼= G(γ ◦w, Y) and Fix(γ ◦w) = Fix(w).

Proof. We set w′ = (wσ(1), . . . , wσ(k)) = σ−1·w and show that σ : G(w′, Y) −→
G(w, Y) is an isomorphism of graphs. Let {r, s} ∈ G(w′, Y). By definition of
w′ = (wσ(1), . . . , wσ(k)), we have wσ(h) = w′

h for h = 1, . . . , k and obtain

{w′
s, w

′
r} ∈ Y ⇐⇒ {wσ(s), wσ(r)} ∈ Y ;

hence, {σ(s), σ(r)} ∈ G(w, Y) and (7.5) follows. Next we prove that Fix(w) is
a subgroup of A(w). Let ρ ∈ Fix(w), that is, ρ · w = w and we immediately
observe ρ : G(w, Y) −→ G(ρ · w, Y) = G(w, Y), and ρ ∈ A(w). In order to
prove (7.6) we consider the diagrams

G(w, Y)

α

��

σ �� G(σ · w, Y)

��
G(w, Y) σ �� G(σ · w, Y) ,

G(w, Y)

��

σ �� G(σ · w, Y)

β

��
G(w, Y) σ �� G(σ · w, Y) ,

with α ∈ A(w) and β ∈ A(σ · w), respectively. It is clear that each α induces
a unique G(σ · w, Y)-automorphism via σασ−1, and similarly each β its re-
spective G(w, Y)-automorphism via σ−1βσ, and (7.6) follows. According to
Lemma 7.1, we have ρ ·(γ◦w) = γ◦(ρ ·w), and Fix(w) = Fix(γ◦w). Finally, we
observe that {ws, wr} ∈ Y is equivalent to {γ(ws), γ(wr)} ∈ Y , from which
G(w, Y) ∼= G(γ ◦ w, Y) follows. �

7.1. Let w and w′ be the words w = (v1, v2, v3, v1) and w′ = (v1, v1, v3, v2),
and let Y = v1 v3 v2 . Draw G(w′, Y) and G(w′, Y) and show
that G(w′, Y) ∼= G(w, Y). [1]

7.2. Let Y = K3 be the complete graph with vertex set {v1, v2, v3},
w = (v1, v1, v2, v3), w′ = (v3, v2, v2, v1), and w′′ = (v2, v2, v3, v1). Show that
G(w, Y) ∼= G(w′, Y) ∼= G(w′′, Y) (Proposition 7.4). [1]

One immediate consequence of Proposition 7.4 is that for permutations
the graph G(w, Y) can naturally be identified with Y .

Corollary 7.5. Let w ∈ SY . Then we have

G(w, Y) ∼= Y . (7.7)

Proof. We have {r, s} ∈ G(w, Y) if and only if {wr, ws} ∈ Y . In view of
Proposition 7.4, we may without loss of generality assume that w = id =
(v1, v2, v3, . . . , vn) and derive G(w, Y) ∼= G((v1, . . . , vn), Y) = Y . �

7.1 Combinatorics of SDS over Words 189

7.1.2 Automorphisms

In this section we study the normalizer of Fix(w) in A(w). We prove a
short exact sequence that relates it to the groups Fix(w) and Aut(Y) (Theo-
rem 7.6). Before we state the main result, let us have a closer look at G(w, Y)-
automorphisms.
Observation 1. We first present a G(w, Y)-automorphism α that is not
contained in Fix(w). Let Y = v1 v2 and set w = (v1, v1, v2, v2).
Then α = (1, 4)(2, 3) is an automorphism of G(w, Y). Furthermore, we have
α · w = (v2, v2, v1, v1) and α
∈ Fix(w). That is,

G(w, Y) =

1

��
��

��
� 2

��
��

��
�

3 4

−→
4

��
��

��
� 3

��
��

��
�

2 1

= G(α · w, Y) = G(w, Y) .

Observation 2. Second, we show that Fix(w) is in general not a normal
subgroup of A(w). For this purpose, let Y = v1 v2 v3 v4
and w = (v1, v1, v2, v3, v4, v4). Then we have Fix(w) = 〈(1, 2), (5, 6)〉. We set
α = (1, 5)(3, 4), that is, α · w = (v4, v1, v3, v2, v1, v4) and observe

α ∈ A(w); αFix(w)α−1 = Fix(α · w) = 〈(6, 1), (5, 2)〉
= Fix(w) .

Since we will use G(w, Y)-automorphisms to obtain equivalence classes of
acyclic G(w, Y)-orientations, we first study Fix(w) in A(w) and set

N(w) = {α ∈ A(w)) | αFix(w)α−1 = Fix(w)} . (7.8)

Recall that 〈γ〉 is the cyclic group generated by γ and 〈γ〉(vj) = {γhvj | h ∈ N}
denotes the orbit of 〈γ〉 that contains vj .

Theorem 7.6. Let G(w, Y) be the dependency graph of the fair word w and
Y . Then there exists a group homomorphism

ϑ : N(w) −→ Aut(Y), ϑ(α)(wi) = wα−1(i), (7.9)

and we have the short exact sequence

1 −→ Fix(w) −→ N(w) −→ Aut(Y) , (7.10)

or equivalently, Ker(ϑ) = Fix(w). Furthermore, we have

Im(ϑ) = {γ ∈ Aut(Y) | ∀ r ∈ Nk; ∀ ws ∈ 〈γ〉(wr); |Fix(w)(r)| = |Fix(w)(s)|} .
(7.11)

Proof. Let α ∈ N(w) and set

ϑ(α)(xi) = xα−1(i), xi ∈ Y .

190 7 Combinatorics of Sequential Dynamical Systems over Words

In particular, we have ϑ(α)(wi) = wα−1(i). By definition of G(w, Y), we have

{r, s} ∈ G(w, Y) ⇐⇒ {wr, ws} ∈ Y,

and accordingly obtain

{α(i), α(j)} ∈ G(w, Y) ⇐⇒ {wα−1(i), wα−1(j)} ∈ Y . (7.12)

We conclude from Eq. (7.12) that for any α ∈ N(w), ϑ(α) induces mappings
such that

i�

��

� α �� α(i)
�

��
wi

� ϑ(α) �� wα−1(i) ,

{i, j}
�

��

� α �� {α(i), α(j)}
�

��
{wi, wj} � ϑ(α)�� {wα−1(i), wα−1(j)}

are commutative diagrams.
Claim. For any α ∈ N(w) the mapping

ϑ(α) : Y −→ Y, ϑ(α)(wi) = wα−1(i)

is well-defined and an automorphism of Y .

We first show that ϑ(α) is well-defined. By assumption every Y -vertex wi

is contained in w, and we conclude that ϑ(α) is defined over Y . By construc-
tion, ϑ(α) maps Y -edges into Y -edges. For arbitrary ρ ∈ Fix(w) we have the
following situation:

ρ(i)
�

��

� α �� α(ρ(i))
�

��
wρ(i)

� ϑ(α)�� wα−1(ρ(i))

Since α ∈ N(w) = {α ∈ A(w) | αFix(w)α−1 = Fix(w)}, we have

∀ ρ ∈ Fix(w), ∃ ρ′ ∈ Fix(w); ρ′α−1 = α−1ρ ,

from which we derive wα−1(ρ(i)) = wρ′α−1(i) and wα−1(ρ(j)) = wρ′α−1(j). Fur-
thermore, for ρ′, ρ ∈ Fix(w) and r ∈ Nk we have wρ(r) = wr and wρ′(r) = wr ,
respectively, that is,

wρ(i) = wi, wρ(j) = wj , wρ′(α−1(i)) = wα−1(i), and wρ′(α−1(j)) = wα−1(j) .

Accordingly, we have shown

∀ ρ ∈ Fix(w), ϑ(α)(wρ(i)) = ϑ(α)(wi), ϑ(α)({wρ(i), wρ(j)}) = ϑ(α)({wi, wj}) ,

which proves that ϑ(α) is well-defined over Y .

7.1 Combinatorics of SDS over Words 191

Next we show injectivity. Note that ϑ(α)(wr) = ϑ(α)(ws) is equivalent to
wα−1(r) = wα−1(s), that is, there exists some ρ′ ∈ Fix(w) such that ρ′α−1(r) =
α−1(s). Since α is in the normalizer of Fix(w), ρ′α−1(r) = α−1(s) guarantees
that α−1(ρ(r)) = α−1(s), and since α−1 is bijective we conclude ρ(r) = s.
Hence, ϑ(α) is injective and the claim follows.
Claim. The map ϑ : N(w) −→ Aut(Y) is a group homomorphism.

To prove this we observe ϑ(α2α1)(wi) = w(α2α1)−1(i) = wα−1
1 α−1

2 (i). We
next set yi = ϑ(α1)(wi) for i = 1, . . . , k and compute

ϑ(α2) ◦ ϑ(α1)(wi) = ϑ(α2)(ϑ(α1)(wi))
= yα−1

2 (i)

= ϑ(α1)(wα−1
2 (i))

= wα−1
1 α−1

2 (i)

= ϑ(α2α1)(wi) ,

proving the claim.
Next we prove that Fix(w) = Ker(ϑ). For ρ ∈ Fix(w) we obtain ϑ(ρ)(wi) =

wρ−1(i) = wi, and Fix(w) ⊂ Ker(ϑ). Now let β ∈ Ker(ϑ), i.e., ϑ(β)(wi) =
wβ−1(i) = wi for i ∈ Nk, which is equivalent to β · w = w, that is, β ∈ Fix(w).
Claim. Im(ϑ) = {γ ∈ Aut(Y) | ∀ r ∈ Nk; ∀ ws ∈ 〈γ〉(wr); |Fix(w)(r)| =
|Fix(w)(s)|}.

To prove the claim we consider γ ∈ Aut(Y). By assumption, every Y -
vertex vi is contained in w at least once, and we may choose, modulo Fix(w),
some index a ∈ Nk such that

wa = γ(wi) .

In order to define αγ ∈ N(w), we consider the diagrams below and define αγ

in two steps.

i�

��

� αγ �� αγ(i)
�

��
wi

� γ �� γ(wi) = wa

ρ(i)
�

��

� αγ �� αγ(ρ(i))
�

��
wρ(i)

� γ �� γ(wρ(i)) = γ(wi) = wa

Step 1. By assumption we can select a subset of indices V = {k1, . . . , kn} ⊂ Nk

such that {wk1 , . . . , wkn} = Y and define

∀ s ∈ Nn, α−1
γ (ks) = a(ks) .

Step 2. In view of the diagram on the right we compute γ(wρ(ks)) = wa(ks),
that is, wα−1

γ (ρ(ks)) = wα−1
γ (ks). Therefore, we define

∀ s ∈ Nn, ∀ ρ ∈ Fix(w), α−1
γ (ρ(ks)) = ρ(a(ks)) . (7.13)

192 7 Combinatorics of Sequential Dynamical Systems over Words

Claim. Suppose any two Y -vertices that belong to the same 〈γ〉-orbit have
the same multiplicity in w. Then αγ ∈ N(w) and ϑ(αγ) = γ.

In view of (7.13) we observe that αγ is bijective if and only if any two
Y -vertices that belong to the same 〈γ〉-orbit have the same multiplicity in w,
i.e., |Fix(w)(ks)| = |Fix(w)(a(ks))|. We consider the diagram

{ρ(kr), ρ(ks)}�

��

� αγ �� {αγ(ρ(kr)), αγ(ρ(s))}
�

��
{wkr , wks}

� γ �� {wa(kr), wa(ks)} = {wα−1
γ (ρ(kr)), wα−1

γ (ρ(ks))} ,

from which we conclude that αγ maps G(w, Y)-edges into G(w, Y)-edges. We
observe

∀ s ∈ Nn, ∀ ρ, ρ1 ∈ Fix(w); αγρ1α
−1
γ (ρ(ks)) = ρ1(ρ(ks)),

and finally compute

ϑ(αγ)(wρ(ks)) = wα−1
γ (ρ(ks)) = wa(ks) = γ(wks) = γ(wρ(ks)) ,

proving the claim, and the proof of the theorem is complete. �
Corollary 7.7. Suppose w is a fair word over Y and that for any ws ∈
Aut(Y)(wr) the elements ws and wr have the same multiplicity in w. Then
we have the long exact sequence

1 −→ Fix(w) −→ N(w) −→ Aut(Y) −→ 1 . (7.14)

Equivalently, Ker(ϑ) = Fix(w) and ϑ is surjective.

Proof. Equation (7.14) follows immediately from Theorem 7.6 since then, by
assumption, any two Y -vertices that belong to the same Aut(Y)-orbit have
the same multiplicity and we have Im(ϑ) = Aut(Y). �

7.1.3 Words

We begin this section by endowing the set of words of length k, denoted Wk,
with a graph structure. As in the case of permutation-word Section 4.2, the
following notion of adjacency is a consequence of the fact that two local maps
indexed by non-adjacent Y -vertices commute, that is, Fvi ◦ Fvj = Fvj ◦ Fvi if
either vj = vi or {vi, vj}
∈ Y .

Let Uk be the graph over words of length k defined as follows: Two different
words w,w′ ∈ Wk are adjacent in Uk if and only if there exists some index
1 ≤ i < k such that

∀ j
= i, i+ 1; wj = w′
j , wi = w′

i+1, wi+1 = w′
i ∧ {wi, wi+1}
∈ Y . (7.15)

That is, two words w and w′ are adjacent in Uk if and only if they can be
transformed into each other by flipping exactly one pair of consecutive letters
{wi, wi+1} such that {wi, wi+1} is not an edge in Y .

7.1 Combinatorics of SDS over Words 193

7.3. Identify the components of the graph W3 over Y = v1 v2 v3.

[1+]

As a result two words within a given component of Uk induce not only
equivalent but identical SDS-maps:

Proposition 7.8. Let (Y,FY , w) and (Y,FY , w
′) be two SDS. Then we have

w ∼Y w′ =⇒ [FY , w] = [FY , w
′] . (7.16)

7.4. Prove Proposition 7.8. [2]

Two words w,w′ ∈ Sk(ϕ) are called ∼Y equivalent if they belong to the
same Uk-component. We denote the ∼Y -equivalence class by [w] = {w′ |
w′ ∼Y w}. We proceed by showing that for any two ∼Y -nonequivalent words
w,w′ ∈ Sk(ϕ) there exists some family of Y -local maps FY such that [FY , w]
and [FY , w

′] are different as mappings.

Proposition 7.9. Let Y be a graph with non-empty edge set and let w,w′ ∈
Sk(ϕ). Then we have

w
∼Y w =⇒ ∃ (Fvi); [FY , w]
= [FY , w
′] . (7.17)

7.5. Prove Proposition 7.9. [3]

7.1.4 Acyclic Orientations

Next we present some results on acyclic orientations which we need for the
proof of Theorem 7.17 ahead. Any subgroup of G(w, Y)-automorphisms, H <
A(w), acts on the acyclic orientations of G(w, Y) via

h • O({r, s}) = h(O({h−1(r), h−1(s)})) . (7.18)

In this section we will utilize this action for the particular case of H = Fix(w)
in order to obtain equivalence classes of acyclic orientations of G(w, Y).

Definition 7.10. Let O and O′ be two G(w, Y)-orientations. We call O and
O′ equivalent and write O ∼w O′ if and only if we have

∃ ρ ∈ Fix(w); ρ(O({r, s})) = O′({ρ(r), ρ(s)}), (7.19)

or equivalently,
∃ ρ ∈ Fix(w); O′ = ρ • O ,

and we have the commutative diagram

r

O
��

ρ �� ρ(r)

O′

��
s

ρ �� ρ(s)

.

We denote the equivalence class of O with respect to ∼w by [O]w.

194 7 Combinatorics of Sequential Dynamical Systems over Words

7.6. Let Y = v1 v2 v3 and w = (v1, v2, v1, v2, v3). Determine
G(w, Y) and the equivalence class [O]w. [2]

In Lemma 7.13 we will show how to map words w ∈ Sk(ϕ), for a fixed repre-
sentative ϕ ∈ Φ, into ∼ϕ-equivalence classes of acyclic orientations of G(ϕ, Y).
For the construction of this mapping the following class (Section 3.1.5) of
acyclic orientations will be central.

Definition 7.11. Let σ ∈ Sk and w ∈ W ; then we set

OY (σ)({r, s}) =

{
(r, s) iff σ(r) < σ(s),
(s, r) iff σ(r) > σ(s) .

We continue by proving basic properties of OY -orientations.

Lemma 7.12. Let σ′, σ ∈ Sk and λ ∈ A(w) be such that σ′λ = σ. Then we
have

λ(OY (σ)({r, s})) = OY (σ′)({λ(r), λ(s)}) . (7.20)

In particular, for ρ ∈ Fix(w) and OY (σ′ρ),OY (σ′) ∈ Acyc(G(w, Y)) we have

OY (σ′ρ) ∼w OY (σ′) ,

and furthermore

[OY (σ′)]w = {OY (σ′ρ) | ρ ∈ Fix(w)} . (7.21)

Proof. For {r, s} ∈ G(w, Y) we compute

OY (σ)({r, s}) = (r, s) ⇐⇒ σ(r) < σ(s),
OY (σ′)({λ(r), λ(s)}) = (λ(r), λ(s)) ⇐⇒ σ(r) = σ′λ(r) < σ′λ(s) = σ(s),

from which we conclude

λ(OY (σ)({r, s})) = OY (σ′)({λ(r), λ(s)}) .

By Definition 7.10, OY (σ′ρ) ∼w OY (σ′) follows from Eq. (7.20) with λ = ρ
and σ = σ′ρ.

In view of OY (σ′ρ) ∼w OY (σ′) it suffices in order to prove Eq. (7.21):

[OY (σ′)]w ⊂ {OY (σ′ρ) | ρ ∈ Fix(w)} .

Let OY ∈ [OY (σ′)]w . Using Eq. (7.20), we obtain

∃ ρ ∈ Fix(w); ρ(OY ({r, s})) = OY (σ′)({ρ(r), ρ(s)})
= ρ(OY (σ′ρ)({r, s})) .

Since ρ ∈ Fix(w) is aG(w, Y)-automorphism, we conclude that OY = OY (σ′ρ)
holds, and the proof of the lemma is complete. �

7.1 Combinatorics of SDS over Words 195

7.1.5 The Mapping OY

The orbits of the Sk-action σ ·w = (wσ−1(1), . . . , wσ−1(k)) induce the partition
Wk =

⋃̇
ϕ∈ΦSk(ϕ) where Φ is a set of representatives. The set Wk is the

disjoint union of its Sk orbits, and any w is contained in exactly one orbit
Sk(ϕ) where w = σ · ϕ, for σ ∈ Sk.

Lemma 7.13. For any ϕ ∈ Φ we have the the surjective mapping

OY : Sk(ϕ) −→ [Acyc(ϕ)/ ∼ϕ] , σ · ϕ �→ OY (σ · ϕ) = [OY (σ)]ϕ . (7.22)

Proof. We first show that OY : Sk(ϕ) −→ [Acyc(ϕ)/ ∼ϕ] is well-defined. Sup-
pose we have σ ·ϕ = σ′ ·ϕ. We set ρ = σ′−1σ and have ρ ·ϕ = ϕ. For ρ ∈ Fix(ϕ)
we obtain by Lemma 7.12 that OY (σ) ∼ϕ OY (σ′) and

[OY (σ)]ϕ = [OY (σ′)]ϕ .

We next prove that OY : Sk(ϕ) −→ [Acyc(ϕ)/ ∼ϕ] is surjective.
Claim. For any O ∈ Acyc(ϕ) there exists some σ ∈ Sk with the property
O = OY (σ).

Since O is acyclic, there exists some σ ∈ Sk such that

∀ {r, s} ∈ G(ϕ, Y), O({r, s}) = (r, s); σ(r) < σ(s) , (7.23)

which proves O = OY (σ). �

In the following we investigate under which conditions for σ, σ′ ∈ Sk OY (σ·
ϕ) = OY (σ′ ·ϕ), holds. In Section 7.1.7 this will allow us to prove the bijection
between equivalence classes of words and ∼ϕ-equivalence classes of acyclic
orientations of G(ϕ, Y).

Lemma 7.14. Suppose σ · ϕ, σ′ · ϕ ∈ Wk. Then we have

σ · ϕ ∼Y σ′ · ϕ =⇒ OY (σ · ϕ) = OY (σ′ · ϕ) . (7.24)

Proof. We set w = σ · ϕ and w′ = σ′ · ϕ. By induction on the Uk-distance
between w and w′, we may without loss of generality assume that w and w′

are adjacent in Uk, that is, we have the following situation:

τ · w = w′, τ = (i, i+ 1), {wi, wi+1}
∈ Y .

Claim. Without loss of generality we may assume τσ = σ′.

We have σ′−1τσ · ϕ = ϕ, and ρ = σ′−1τσ ∈ Fix(ϕ) together with
Lemma 7.12 implies for σ′ and σ′ρ: OY (σ′) ∼ϕ OY (σ′ρ). Thus, we obtain
[OY (σ′)]ϕ = [OY (σ′ρ)]ϕ and the claim follows.
Claim. Suppose τσ = σ′ holds, then we obtain OY (σ) = OY (σ′).

196 7 Combinatorics of Sequential Dynamical Systems over Words

By definition, we have for OY (σ),OY (σ′) ∈ Acyc(ϕ)

OY (σ)({r, s}) = (r, s) ⇐⇒ σ(r) < σ(s),
OY (τσ)({r, s}) = (r, s) ⇐⇒ τσ(r) < τσ(s) .

Claim. {σ−1(i), σ−1(i+ 1)}
∈ G(ϕ, Y).

We have the following commutative diagram of graph isomorphisms:

G(ϕ, Y)

σ
 ����������

σ′
##�����������

G(σ · ϕ, Y) τ �� G(σ′ · ϕ, Y)

By definition of G(ϕ, Y), we have

{σ−1(i), σ−1(i+ 1)} ∈ G(ϕ, Y) ⇐⇒ {ϕσ−1(i), ϕσ−1(i+1)} ∈ Y .

Since σ · ϕ = w, we obtain wi = ϕσ−1(i) and hence {ϕσ−1(i), ϕσ−1(i+1)} =
{wi, wi+1}
∈ Y , and the claim follows.

Obviously, σ−1(i), σ−1(i + 1) are the only two indices for which i =
σ(σ−1(i)) < σ(σ−1(i+1)) = i+1 and i+1 = τσ(σ−1(i)) > τσ(σ−1(i+1) = i
holds, and

∀ {r, s} ∈ G(ϕ, Y) : { σ(r) < σ(s) ⇐⇒ τσ(r) < τσ(s) } . (7.25)

Equation (7.25) is equivalent to

∀ {r, s} ∈ G(ϕ, Y); OY (σ)({r, s}) = OY (σ′)({r, s}) ;

thus,
OY (σ · ϕ) = [OY (σ)]ϕ = [OY (σ′)]ϕ = OY (σ′ · ϕ) ,

and the lemma follows. �

We give an illustration of Lemma 7.14:

Example 7.15. Let ϕ = (v1, v2, v3, v2), τ · ϕ = (v1, v3, v2, v2) where τ = (2, 3)
and Y = v1 v2 v3 . Then we have OY (τ)({1, 2}) = (1, 2) since
τ(1) = 1 < 3 = τ(2) and OY (τ)({1, 4}) = (1, 4) since τ(1) = 1 < 4 = τ(4).

OY (id) =

1 ��

��

2

4 3

and OY (τ) =

1 ��

��

2

4 3 .

		

7.1 Combinatorics of SDS over Words 197

7.1.6 A Normal Form Result

In this section we prove a lemma that will be instrumental in the proof of
our main correspondence, which is Theorem 7.17. Its proof is based on a con-
struction related to the Cartier–Foata normal form in partially commutative
monoids [68].

Lemma 7.16. Let σ, σ′ ∈ Sk, w ∈ Wk, and OY (σ),OY (σ′) ∈ Acyc(w). Then
we have

OY (σ) = OY (σ′) =⇒ σ · w ∼Y σ′ · w . (7.26)

Proof. By definition, wj has index σ(j) in σ · w and index σ′(j) in σ′ · w,
respectively. We observe that OY (σ) = OY (σ′) is equivalent to

∀{i, j} ∈ G(w, Y), (σ(i) < σ(j)) ⇐⇒ (σ′(i) < σ′(j)) . (7.27)

Now let σ(j1) = 1. By definition, wj1 has index 1 in σ · w. According to
Eq. (7.27), there is no {i, j1} ∈ G(w, Y) with σ′(i) < σ′(j1), and as a result
there exists no wh in position s < σ′(j1) in σ′ · w such that {wh, wj1} ∈ Y .
Hence, we can move wj1 in σ′ ·w to first position by successive transpositions of
consecutive, non-adjacent letters. Setting σ1 ·w = (wj1 , wσ′−1(1), . . . , wσ′−1(k)),
we obtain

∃ σ1 ∈ Sk; [σ1(j1) = σ(j1) = 1] ∧ [σ′ · w ∼Y σ1 · w] . (7.28)

We observe further that OY (σ) = OY (σ1) holds, that is,

∀{i, j} ∈ G(w, Y), (σ(i) < σ(j)) ⇐⇒ (σ1(i) < σ1(j)) . (7.29)

We proceed by induction. By the induction hypothesis, we have for σm · w =
(wj1 , wj2 , . . . , wjm , . . .),

∃ σm ∈ Sk; ∀ r ∈ Nm; [σm(jr) = σ(jr) = r] ∧ [σ′ · w ∼Y σm · w]

and OY (σ) = OY (σm) or, equivalently,

∀{i, j} ∈ G(w, Y), σ(i) < σ(j)) ⇐⇒ (σm(i) < σm(j) . (7.30)

Let σ(jm+1) = m + 1. If there exists some index σm(i) with the property
σm(i) < σm(jm+1) and {i, jm+1} ∈ G(w, Y), we obtain from Eq. (7.30):
σ(i) < σ(jm+1) = m + 1, i.e., ∈ {j1, . . . , jm}. In view of σm(jr) = σ(jr) = r
for 1 ≤ r ≤ m, we derive 1 ≤ σm(i) ≤ m. Hence, we can move wjm+1 in σm ·w
to position m + 1 by successive transpositions of consecutive, non-adjacent
letters. Accordingly, we have for σm+1 · w = (wj1 , . . . , wjm+1 , . . .)

∃ σm+1 ∈ Sk; ∀ r ∈ Nm+1; [σm+1(jr) = σ(jr) = r] ∧ [σ′ · w ∼Y σm+1 · w]

and
OY (σ) = OY (σm+1) ,

and the lemma follows. �

198 7 Combinatorics of Sequential Dynamical Systems over Words

7.1.7 The Bijection

Now we are prepared to combine our results in order to prove

Theorem 7.17. Let k ∈ N and Φ be a set of representatives of the Sk-action
on Wk. Then for each w ∈ Wk there exist some σw ∈ Sk and ϕw ∈ Φ such
that w = σw · ϕw and we have the bijection

O′
Y : Wk/ ∼Y −→

⋃̇

ϕ∈Φ
[Acyc(ϕ)/ ∼ϕ] , where O′

Y ([w]ϕ) = OY (σw · ϕw) .

(7.31)

Proof. According to Lemma 7.13, we have the well-defined and surjective
mapping

OY : Sk(ϕ) −→ [Acyc(ϕ)/ ∼ϕ] , σ · ϕ �→ OY (σ · ϕ) = [OY (σ)]ϕ,

and according to Lemma 7.14, we have for σ · ϕ, σ′ · ϕ ∈Wk

σ · ϕ ∼Y σ′ · ϕ, =⇒ OY (σ · ϕ) = OY (σ′ · ϕ) .

Since Wk =
⋃̇

ϕ∈ΦSk(ϕ), we have the mapping over ∼Y -equivalence classes

O′
Y : Wk/ ∼Y −→

⋃̇

ϕ∈Φ
[Acyc(ϕ)/ ∼ϕ] , O′

Y ([w]ϕ) = OY (σw · ϕw) .

According to Lemmas 7.14 and 7.13, for any fixed representative ϕ the map-
ping

O′
Y |Sk(ϕ) : Sk(ϕ)/ ∼Y −→ [Acyc(ϕ)/ ∼ϕ] , [σ · ϕ] �→ OY (σ · ϕ)

is surjective. In view of Uk =
⋃̇

ϕ∈ΦSk(ϕ), we conclude that O′
Y is surjective.

It remains to prove that O′
Y is injective.

Claim. Let w = σ · ϕ and w′ = σ′ · ϕ. Then we have

σ · ϕ
∼Y σ′ · ϕ =⇒ OY (σ · ϕ)
= OY (σ′ · ϕ) . (7.32)

Let OY (σ),OY (σ′) ∈ Acyc(ϕ) be representatives for OY (σ · ϕ) and
OY (σ′ · ϕ); respectively. By Proposition 7.4 we have the following commu-
tative diagram:

G(ϕ, Y)

σ
 ����������

σ′

�����������

G(σ · ϕ, Y) σ′σ−1
�� G(σ′ · ϕ, Y) .

Suppose now [OY (σ)]ϕ = [OY (σ′)]ϕ, that is, OY (σ) ∼ϕ OY (σ′). Then there
exists some ρ ∈ Fix(ϕ) such that ρ (OY (σ)({r, s})) = OY (σ′)({ρ(r), ρ(s)}).
According to Lemma 7.12, we obtain

7.2 Combinatorics of SDS over Words II 199

OY (σ′)({ρ(r), ρ(s)}) = ρ (OY (σ′ρ)({r, s})) ,

and since ρ is an G(ϕ, Y)-automorphism, OY (σ) = OY (σ′ρ). In view of ρ ·ϕ =
ϕ, Lemma 7.16 implies

σ · ϕ ∼Y (σ′ρ) · ϕ = σ′ · ϕ ,

which is a contradiction. Thus, we have proved [OY (σ)]ϕ
= [OY (σ′)]ϕ, which
is exactly Eq. (7.32), and the proof of the theorem is complete. �

We proceed by revisiting the bijection

OY : Sk/ ∼Y −→ Acyc(Y)

of Eq. (3.15) from Chapter 3. In the context of Theorem 7.17 the result be-
comes a corollary:

Corollary 7.18. Let w be a permutation and identify Sk(id) with Sk. We
have the bijection

OY : Sk/ ∼Y −→ Acyc(Y) . (7.33)

7.7. Prove Corollary 7.18. [2]

7.2 Combinatorics of SDS over Words II

7.2.1 Generalized Equivalences

We call two G(w, Y)-orientations O and O′ G-equivalent and write O ∼G O′

if and only if there exists some g ∈ G such that O = g • O′ holds. The G-
equivalence class of O with respect to ∼G is denoted by [O]G. As in Section 7.1
we have

∀σ ∈ Sk, OY (σ)({r, s}) =

{
(r, s) iff σ(r) < σ(s),
(s, r) iff σ(r) > σ(s),

(7.34)

and for σ′, σ ∈ Sk, λ ∈ A(w) such that σ′λ = σ Lemma (7.12) guarantees

λ(OY (σ)({r, s})) = OY (σ′)({λ(r), λ(s)}) . (7.35)

Lemma 7.19. Suppose σ′, σ, λ ∈ Sk and λ ∈ A(w) such that σ′λ = σ. Then
for g ∈ N(w) and OY (σ′g),OY (σ′) ∈ Acyc(w) and

OY (σ′g) ∼N(w) OY (σ′)

holds. Furthermore, we have

[OY (σ′)]N(w) = {OY (σ′g) | g ∈ N(w)} . (7.36)

200 7 Combinatorics of Sequential Dynamical Systems over Words

Proof. By definition OY (σ′g) ∼N(w) OY (σ′) follows directly from (7.35) upon
setting λ = g and σ = σ′g. In view of OY (σ′g) ∼N(w) OY (σ′), it suffices in
order to prove Eq. (7.36):

[OY (σ′)]N(w) ⊂ {OY (σ′g) | g ∈ N(w)} .

Let O ∈ [OY (σ′)]N(w). Using Eq. (7.35) we obtain

∃ g ∈ N(w); g(O({r, s})) = OY (σ′)({g(r), g(s)}) = g(OY (σ′g)({r, s})) .

Since g ∈ N(w) is a G(w, Y)-automorphism, we conclude that O = OY (σ′g)
and the proof of the lemma is complete. �

Let Uk be the graph over Wk [Eq. (7.15)]. We set Φ′ to be the set of
words of length k in which each Y -vertex occurs at least once (Φ′ is needed
to satisfy the conditions of Theorem 7.6) since only words contained in Φ′

yield Y -automorphisms via Theorem 7.6. It is clear that Φ′ equipped with
this notion of adjacency forms a subgraph of Uk since flips of consecutive
coordinates preserve Φ′.

We now introduce the equivalence relation ∼N(ϕ) by

σ · ϕ ∼N(ϕ) σ · ϕ ⇐⇒ (∃ g, g ∈ N(ϕ); σg · ϕ ∼Y σ′g′ · ϕ) , (7.37)

and refer to [w] = {w′ | w′ ∼Y w} and [w]N(ϕ) = {w′ | w′ ∼N(ϕ) w} as the
equivalence classes of w with respect to ∼Y and ∼N(ϕ), respectively.

Remark 7.20. In this notation the equivalence relation ∼Y equals ∼Fix(w) .
Indeed, we observe

σ · ϕ ∼Fix(ϕ) σ
′ · ϕ ⇐⇒ ∃ ρ, ρ′ ∈ Fix(ϕ); σρ · ϕ ∼Y σρ′ · ϕ ,

where σρ ·ϕ = σ ·ϕ and σρ′ ·ϕ = σ ·ϕ. In particular we have Sk(ϕ)/ ∼Fix(ϕ)=
Sk(ϕ)/ ∼Y . Replacing N(w) by Fix(w) in Eq. (7.37), we obtain [w] = [w]Fix(w).

The following result shows how the equivalence relation ∼N(ϕ) relates
to Y -automorphisms. As mentioned earlier, a result of the action of Y -
automorphisms is that ∼N(w) and ∼Fix(w) can differ significantly:

Let Kn be the complete graph, over n vertices, and permutation-words.
Clearly, Fix(w) = 1 and N(w) ∼= Sn and there is exactly one ∼N(w)-equivalence
class of words in contrast to ∼Y , where [using Eq. (7.1)] each equivalence
class contains exactly one element. In case of K2

∼= v1 v2 , for in-
stance, we have exactly the two permutation-words (v1, v2) and (v2, v1). Since
{v1, v2} is a K2-edge, we have (v1, v2)
∼Y (v2, v1) but [(v1, v2)]N((v1,v2)) =
{(v1, v2), (v2, v1)} since the map g : K2 −→ K2, where g(v1) = v2 and
g(v2) = v1 is a K2-automorphism and g ◦ (v1, v2) = (gv1, gv2) = (v2, v1)
holds.

7.2 Combinatorics of SDS over Words II 201

Lemma 7.21. Let ϕ ∈ Φ′ and w,w′ ∈ Sk(ϕ). Then we have

w ∼N(ϕ) w
′ ⇐⇒ ∃ g, g′ ∈ N(ϕ); ϑ(g) ◦ w ∼Y ϑ(g′) ◦ w′ . (7.38)

Furthermore, ∼N(ϕ) is independent of the choice of representative in the orbit
Sk(ϕ):

∀ w,w′ ∈ Sk(ϕ), λ ∈ Sk; w ∼N(ϕ) w
′ ⇐⇒ w ∼N(λ·ϕ) w

′ . (7.39)

Proof. By definition, w = σ · ϕ ∼N(ϕ) σ
′ · ϕ = w′ is equivalent to σg · ϕ ∼Y

σ′g′ · ϕ for some g, g′ ∈ N(ϕ). Using Theorem 7.6 we obtain

σg · ϕ = σ · (ϑ(g) ◦ ϕ) and σ′g′ · ϕ = σ′ · (ϑ(g′) ◦ ϕ)

and derive, using the compatibility of the two group actions,

σ · ϑ(g) ◦ ϕ = ϑ(g) ◦ σ · ϕ and σ′ · ϑ(g′) ◦ ϕ = ϑ(g′) ◦ σ′ · ϕ .

Hence, we have

w ∼N(ϕ) w
′ ⇐⇒ ϑ(g) ◦ w ∼Y ϑ(g′) ◦ w′ .

We next show that

∀ w,w′ ∈ Sk(ϕ), λ ∈ Sk; w ∼N(ϕ) w
′ ⇐⇒ w ∼N(λ·ϕ) w

′ . (7.40)

Indeed, with w = σ · ϕ and w′ = σ′ · ϕ we have by definition of ∼N(ϕ)

σ · ϕ ∼N(ϕ) σ
′ · ϕ ⇐⇒ ∃ g, g′ ∈ N(ϕ); σg · ϕ ∼Y σ′g′ · ϕ .

Since N(λ · ϕ) = λN(ϕ)λ−1, we observe that σ · ϕ ∼λN(ϕ)λ−1 σ′ϕ is equivalent
to

∃ g, g′ ∈ N(ϕ); (σλ−1)(λgλ−1) · (λ · ϕ) ∼Y (σ′λ−1)(λg′λ−1) · (λ · ϕ) . (7.41)

Equation (7.41) is immediately identified as σg ·ϕ ∼Y σ′g′ ·ϕ, and Eq. (7.39)
follows, completing the proof of the lemma. �

7.2.2 The Bijection (P1)

In this section we prove a bijection between N(ϕ)-equivalence classes of words
and N(ϕ)-orbits of acyclic orientations.

Theorem 7.22. Let k ∈ N, ϕ ∈ Φ′, the set of all words that contain each
Y -vertex at least once and N(ϕ) the normalizer of Fix(ϕ) in A(ϕ). Then we
have the bijection

ON(ϕ)
Y : Sk(ϕ)/ ∼N(ϕ) −→

[
Acyc(ϕ)/ ∼N(ϕ)

]
,

where ON(ϕ)
Y ([σ · ϕ]N(ϕ)) = [OY (σ)]N(ϕ) .

202 7 Combinatorics of Sequential Dynamical Systems over Words

Proof. We begin by showing that there exists the surjective mapping

ÕN(ϕ)
Y : Sk(ϕ) −→

[
Acyc(ϕ)/ ∼N(ϕ)

]
, ÕN(ϕ)

Y (σ · ϕ) = [OY (σ)]N(ϕ) . (7.42)

We first prove that ÕN(ϕ)
Y is well-defined. Suppose we have σ · ϕ = σ′ · ϕ. We

set ρ = σ′−1σ and have ρ · ϕ = ϕ. Hence, we have ρ ∈ Fix(ϕ) ⊂ N(ϕ) and
obtain from Lemma 7.19:

OY (σ) ∼N(ϕ) OY (σ′), i.e., [OY (σ)]N(ϕ) = [OY (σ′)]N(ϕ) .

Lemma 7.21 shows that ∼N(ϕ) is independent of the choice of representative of
ϕ ∈ Sk(ϕ); hence, ÕN(ϕ)

Y is well-defined. Next we show that ÕN(ϕ)
Y is surjective.

For this purpose we observe that for any O ∈ Acyc(ϕ) there exists some σ ∈ Sk

with the property O = OY (σ). Clearly, since O is acyclic there exists some
σ ∈ Sk such that

∀ {r, s} ∈ G(ϕ, Y), O({r, s}) = (r, s); σ(r) < σ(s) , (7.43)

which proves O = OY (σ), and [O]N(ϕ) = [OY (σ)]N(ϕ) follows. We proceed by
establishing independence of the choice of representatives within [σ · ϕ]N(ϕ):

σ · ϕ ∼N(ϕ) σ
′ · ϕ =⇒ ÕN(ϕ)

Y (σ · ϕ) = ÕN(ϕ)
Y (σ′ · ϕ). (7.44)

By definition of the equivalence relation ∼N(ϕ) [Eq. (7.37)], we have

σ · ϕ ∼N(ϕ) σ
′ · ϕ ⇐⇒ ∃ g, g′ ∈ N(ϕ); σg · ϕ ∼Y σ′g′ · ϕ .

According to Lemma 7.14 (using induction on the Uk-distance of words), we
have

σ · ϕ ∼Y σ′ · ϕ =⇒ [OY (σ)]Fix(ϕ) = [OY (σ′)]Fix(ϕ) , (7.45)

and using (7.45) we observe that σ · ϕ ∼N(ϕ) σ
′ϕ implies

∃ g, g′ ∈ N(ϕ); ÕN(ϕ)
Y (σg · ϕ) = [OY (σg)]N(ϕ)

= [OY (σ′g′)]N(ϕ)

= ÕN(ϕ)
Y (σ′g′ · ϕ) .

Lemma 7.19 guarantees OY (σg) ∼N(ϕ) OY (σ) and OY (σ′g′) ∼N(ϕ) OY (σ′),
and we obtain

ÕN(ϕ)
Y (σ · ϕ) = [OY (σ)]N(ϕ)

= [OY (σg)]N(ϕ)

= [OY (σ′g′)]N(ϕ)

= [OY (σ′)]N(ϕ)

= ÕN(ϕ)
Y (σ′ · ϕ) ,

7.2 Combinatorics of SDS over Words II 203

and Eq. (7.44) is proved. Therefore, we have for any ϕ ∈ Φ′ the surjective
mapping

ON(ϕ)
Y : Sk(ϕ)/ ∼N(ϕ)−→

[
Acyc(ϕ)/ ∼N(ϕ)

]
, ON(ϕ)

Y ([σ·ϕ]N(ϕ)) = [OY (σ)]N(ϕ) .

It remains to prove injectivity

Let OY (σg),OY (σ′g′) ∈ Acyc(ϕ). Then, according to Lemma 7.16, we have

OY (σg) = OY (σ′g′) =⇒ σg · ϕ ∼ σ′g′ · ϕ ,

which is equivalent to

OY (σg) = OY (σ′g′) =⇒ σ · ϕ ∼N(ϕ) σ
′ · ϕ . (7.46)

Suppose we have w = σ · ϕ and w′ = σ′ · ϕ. Then the following implication
holds:

σ · ϕ
∼N(ϕ) σ
′ · ϕ =⇒ ON(ϕ)

Y ([σ · ϕ]N(ϕ))
= ON(ϕ)
Y ([σ′ · ϕ]N(ϕ)) . (7.47)

Let OY (σ),OY (σ′) ∈ Acyc(ϕ) be representatives for ON(ϕ)
Y ([σ · ϕ]N(ϕ)) and

ON(ϕ)
Y ([σ′ · ϕ]N(ϕ)), respectively. We will prove Eq. (7.32) by contradiction

using (7.46). Suppose we have

ON(ϕ)
Y ([σ · ϕ]N(ϕ)) = ON(ϕ)

Y ([σ′ · ϕ]N(ϕ)), i.e., OY (σ) ∼N(ϕ) OY (σ′) .

Then there exists some g ∈ N(ϕ) such that

g (OY (σ)({r, s})) = OY (σ′)({g(r), g(s)}) .

According to Lemma 7.19, we have

OY (σ′)({g(r), g(s)}) = g (OY (σ′g)({r, s})) ,

and since g is a G(ϕ, Y)-automorphism, OY (σ) = OY (σ′g) follows. Equa-
tion (7.46) guarantees

OY (σ) = OY (σ′g) =⇒ σ · ϕ ∼N(ϕ) σ
′ · ϕ ,

which is a contradiction. Thus, we have proved that [σ · ϕ]N(ϕ)
= [σ′ · ϕ]N(ϕ)

implies [OY (σ)]N(ϕ)
= [OY (σ′)]N(ϕ), and the proof of the theorem is complete.
�

Corollary 7.23. Let k ∈ N and Φ be a set of representatives of the Sk-action
on Wk. Then we have the bijection

O′
Y : Wk/ ∼Y −→

⋃̇

ϕ∈Φ

[
Acyc(ϕ)/ ∼Fix(ϕ)

]
,

where O′
Y ([w]Fix(ϕ)) = OFix(ϕ)

Y ([σ · ϕ]Fix(ϕ)) .

204 7 Combinatorics of Sequential Dynamical Systems over Words

Proof. We first observe that in the case of Fix(w) the condition that ϕ con-
tains each Y -vertex at least once becomes obsolete. In complete analogy with
Theorem 7.22, we derive for fixed ϕ ∈ Φ the bijection

OFix(ϕ)
Y : Sk(ϕ)/ ∼Fix(ϕ)−→

[
Acyc(ϕ)/ ∼Fix(ϕ)

]
.

Since Wk =
⋃̇

ϕ∈ΦSk(ϕ), each w ∈ Wk is contained in exactly one orbit
Sk(ϕ), and O′

Y is well-defined. Since the equivalence relation ∼Fix(w) equals
∼Y , Corollary 7.23 follows from Theorem 7.22. �

7.2.3 Equivalence (P2)

In this section we address (P2), that is, we prove that w ∼N(w) w
′ implies

the equivalence equivalence of the SDS-maps [FY , w] ∼ [FY , w
′]. We recall

(Definition 4.28, Chapter 4) that two SDS-maps [FY , w] and [FY , w
′] are

equivalent if and only if there exists a bijection β such that

[FY , w
′] = β ◦ [FY , w] ◦ β−1 .

Hence, (P2) is equivalent to the statement that, up to equivalence of dynamical
systems, an SDS-map depends only on the combinatorial equivalence class
∼N(ϕ) of its underlying word [w]Fix(w).

Theorem 7.24. Let (Y,FY , w) be an SDS with the properties that the vertex
functions fv : Kd(v)+1 −→ K are symmetric, and that for any γ ∈ Aut(Y),
vj ∈ 〈γ〉(vi) we have fvj = fvi . Furthermore, let ϕ ∈ Φ′, N(ϕ) be the normal-
izer of Fix(ϕ) in A(w), and w,w′ ∈ Sk(ϕ). Then we have

w ∼N(ϕ) w
′ =⇒ [FY , w] ∼ [FY , w

′] . (7.48)

Proof. According to Eq. (4.5) of Chapter 4, a Y -local map is a mapping
Fvi : Kn −→ Kn,

Fvi(x) = (x1, . . . , xvi−1 , fvi(x[vi]), xvi+1 , . . . , xvn),

where x[v] = (xn[v](1), . . . , xn[v](d(v)+1)) and n[v] : {1, 2, . . . , d(v)+1} −→ v[Y]
(Section 4.1). Since vj ∈ 〈γ〉(vi) holds for any γ ∈ Aut(Y), we derive

∀ γ ∈ Aut(Y), ∀vj ∈ 〈γ〉(vi); Fvi = Fvj , (7.49)

where 〈γ〉(vi) denotes the orbit of the cyclic group 〈γ〉 containing vi. Lemma 7.21
guarantees

w ∼N(ϕ) w
′ ⇐⇒ ∃ g, g ∈ N(ϕ); ϑ(g) ◦ w ∼Y ϑ(g′) ◦w′ ,

where ϑ : N(w) −→ Aut(Y) is given by ϑ(α)(wi) = wα−1(i) (Theorem 7.6). For
two non-adjacent Y -vertices wi and wi+1 we observe that

7.2 Combinatorics of SDS over Words II 205

Fwi ◦ Fwi+1 = Fwi+1 ◦ Fwi (7.50)

since the Y -local functions Fwi and Fwi+1 depend only on the states of their
nearest neighbors. By induction on the Uk-distance between ϑ(g) ◦ w and
ϑ(g′) ◦ w′, we conclude from Eq. (7.50) that

ϑ(g) ◦ w ∼Y ϑ(g′) ◦ w′ =⇒ [FY , ϑ(g) ◦ w] = [FY , ϑ(g′) ◦ w′] . (7.51)

We proceed by showing

[FY , w] ∼ [FY , ϑ(g) ◦ w] and [FY , w
′] ∼ [FY , ϑ(g′) ◦ w′] .

Let xvi be the state of the vertex vi of Y . The group Aut(Y) acts naturally
on (xv1 , . . . , xvn) via

γ · (xv1 , . . . , xvn) = (xγ−1(v1), . . . , xγ−1(vn)) . (7.52)

Claim.

ϑ(g) ◦ [FY , w] ◦ ϑ(g)−1 = [FY , ϑ(g) ◦ w], i.e., [FY , w] ∼ [FY , ϑ(g) ◦ w].
(7.53)

We set γ = ϑ(g) and first prove what amounts to a version of the claim for a
single Y -local function Fvi ,

∀ γ ∈ Aut(Y), vi ∈ Y ; γ ◦ Fvi ◦ γ−1 = Fγ(vi) . (7.54)

To prove this we imitate the proof of Proposition 4.30:

γ ◦ Fvi ◦ γ−1((xvj)) = γ · (Fvi(γ
−1 · (xvj)))

and for arbitrary γ ∈ Aut(Y), we have γ(B1(vi)) = B1(γ(vi)). In view of

(γ−1 · (xvj))vi = xγ(vi) and (γ · (yvj))γ(vi) = yvi ,

we derive

γ · (Fvi(γ
−1 · (xvj))) = γ · (xγ(v1), . . . , fvi((xγ(vk))vk∈B1(vi))

︸ ︷︷ ︸
vith-position

, . . . , xγ(vn))

= (xv1 , . . . , fvi((xγ(vk))vk∈B1(vi))︸ ︷︷ ︸
γ(vi)th position

, . . . , xvn),

Fγ(vi)((xvj)) = (xv1 , . . . , fγ(vi)((xγ(vk))γ(vk)∈B1(γ(vi)))︸ ︷︷ ︸
γ(vi)th-position

, . . . , xvn) .

Equation (7.54) now follows from the fact that the functions fv : Kd(v)+1 −→
K are symmetric, Eq. (7.49), and

fvi(xγ(vs) | γ(vs) ∈ B1(γ(vi))) = fvi(xγ(vs) | vs ∈ B1(vi))) .

206 7 Combinatorics of Sequential Dynamical Systems over Words

Obviously, Eq. (7.53) follows by composing the corresponding local maps ac-
cording to the word w as

ϑ(g) ◦
(

k∏

i=1

Fwi,Y

)

◦ ϑ(g)−1 =
k∏

i=1

(
ϑ(g) ◦ Fwi ◦ ϑ(g)−1

)
=

k∏

i=1

Fϑ(g)(wi) ,

and the claim follows. Accordingly, we obtain

[FY , w] ∼ [FY , ϑ(g)◦w] = [FY , ϑ(g′)◦w′] ∼ [FY , w
′] i.e. [FY , w] ∼ [FY , w

′] ,

and the proof of the theorem is complete. �

7.2.4 Phase-Space Relations

Next we will generalize Theorem 4.47 of Section 4.4.3 originally proved in the
context of permutation-SDS to word-SDS.

Let Y and Z be connected combinatorial graphs and let h : Y −→ Z be
a graph morphism. For a given word w′ = (w′

1, . . . , w
′
r) we set h−1(w′

j) =
(vj1 , . . . , vjs(j)), where ji < ji+1, and observe that h and w′ induce the family

(v11 , . . . , v1s(1) , v21 , . . . , v2s(2) , . . . , vr1 , . . . , vrs(r)) .

We set wt+ q<j s(q) = vjt and obtain the word

h−1(w′) = (w1, . . . , w r
q=1 s(q)) . (7.55)

We now observe that h induces a morphism between dependency graphs

h1 : G(h−1(w′), Y) −→ G(w′, Z), where h1(i) satisfies w′
h1(i) = h(wi) .

(7.56)
The relation between the dependency graphs G(h−1(w′), Y) and G(w′, Z)
in (7.56) motivates the study of phase-space relations between the SDS
(Y,FY , h

−1(w′)) and (Z,FZ , w).

Lemma 7.25. Let Y and Z be connected combinatorial graphs, and h : Y −→
Z a surjective graph morphism. Further let w′ = (w′

1, . . . , w
′
k′) ∈ Wk′ be a

word over Z, and (Y,FY , h
−1(w′)) and (Z,FZ , w) two SDS. Furthermore we

introduce
H : K |Z| −→ K |Y |, H(x)t = xh(t) .

Suppose that we have the commutative diagram

K |v[Z]| H ��

FZ,w′
j

��

K |v[Y]|

wjs
∈h−1(w′

j
) FY,wjs

��
K |v[Z]| H �� K |v[Y]|

(7.57)
∏

∑

∑

7.2 Combinatorics of SDS over Words II 207

i.e., we have
H ◦ FZ,w′

j
=

∏

wjs∈h−1(w′
j)

FY,wjs
◦ H .

Then
H : Γ (Z,FZ , w

′) −→ Γ (Y,FY , h
−1(w′))

is a digraph-morphism.

Proof. We first observe that h−1(w′
j) is a Y -independence set since Z is loop-

free by assumption. Hence, the product of local maps
∏

wjs∈h−1(w′
j)

FY,wjs

is independent of the ordering of its factors. We next claim that we have the
commutative diagram

K |v[Z]| H ��

[FZ,w′]
��

K |v[Y]|

[FY ,h−1(w′)]
��

K |v[Z]| H �� K |v[Y]| .

(7.58)

By definition of h−1(w′) [Eq. (7.55)] and since
∏

wjs∈h−1(w′
j)
FY,wjs

is inde-
pendent of the ordering of its factors, whence

[FY , h
−1(w′)] =

k′
∏

j=1

⎡

⎣
∏

wjs∈h−1(w′
j)

FY,wjs

⎤

⎦ .

According to Eq. (7.57), we obtain by induction, composing the local maps
FY,wjs

,
k′
∏

j=1

⎡

⎣
∏

wjs∈c−1(w′
j)

FY,wjs

⎤

⎦ ◦ H = H ◦
k′
∏

j=1

FZ,w′
j
,

whence Eq. (7.58), and the proof of the lemma is complete. �

In this context it is of interest to analyze under which conditions the local
maps of the SDS (Y,FY , h

−1(w′)) and (FZ , w
′) satisfy

H ◦ FZ,w′
j

=
∏

wjs∈h−1(w′
j)

FY,wjs
◦ H .

We next show that locally bijective graph morphisms c induce such a relation
between the SDS (Y,FY , c

−1(w′)) and (Z,FZ , w) if the local functions asso-
ciated to the Z-vertex w′

j and the Y -vertices wjs ∈ c−1(w′
j) are identical and

induced by symmetric vertex functions fv.

208 7 Combinatorics of Sequential Dynamical Systems over Words

Theorem 7.26. Let Y and Z be connected combinatorial graphs, c : Y −→ Z
be a locally bijective graph morphism, and w′ = (w′

1, . . . , w
′
k′) ∈ Wk′ a word

over Z. Suppose the local functions of the SDS (Y,FY , c
−1(w′)) and (Z,FZ , w)

are induced by symmetric vertex functions and satisfy

∀ wjs ∈ c−1(w′
j); FY,wjs

= FZ,w′
j
. (7.59)

Then there exists an injective digraph morphism

C : Γ (Z,FZ , w
′) −→ Γ (Y,FY , c

−1(w′)), where C(x)t = xc(t) .

Proof. We first observe that Lemma 4.45 implies that c : Y −→ Z is surjec-
tive and prove the theorem in two steps. First, we show that we have the
commutative diagram

K |v[Z]| C ��

FZ,w′
j

��

K |v[Y]|

wjs
∈c−1(w′

j
) FY,wjs

��
K |v[Z]| C �� K |v[Y]|

(7.60)

or equivalently
C ◦ FZ,w′

j
=

∏

wjs∈c−1(w′
j)

FY,wjs
◦ C ,

and second, we apply Lemma 7.25. We first analyze
∏

wjs∈c−1(w′
j)
FY,wjs

◦ C.
The map FY,wjs

(C(x)) updates the state of wjs as a function of C(x)v , v ∈
B1,Y (wjs)). Since C(x)v = xc(v), we have

(C(x)v | v ∈ B1,Y (wjs)) = (xc(v) | v ∈ B1,Y (wjs)) ,

and local bijectivity implies

c(B1,Y (wjs)) = B1,Z(w′
j) .

As Z is by assumption a loop-free graph, c−1(w′
j) is a Y -independence set.

Accordingly, we have a well-defined mapping

FY,w′
j

=

⎡

⎣
∏

wjs∈c−1(w′
j)

FY,wjs

⎤

⎦ ,

since the product is independent of the ordering of its factors. The local map
FY,w′

j
updates all Y -vertices wjs ∈ c−1(w′

j) based on (xc(v) | c(v) ∈ B1,Z(w′
j))

to the state FY,wjs
(C(x))wjs

.

∏

7.2 Combinatorics of SDS over Words II 209

Next we compute C ◦ FZ,w′
j
(x). By definition, FZ,w′

j
(x) updates the state

of the Z-vertex w′
j as a function of (xv′ | v′ ∈ B1,Z(w′

j)) and we obtain

(C ◦ FZ,w′
j
(x))wjs

= FZ,w′
j
(x)w′

j
,

i.e., C ◦ FZ,w′
j
(x) updates the states of every Y -vertex wjs ∈ c−1(w′

j) to the
state FZ,w′

j
(x)w′

j
and the diagram in Eq. (7.60) is indeed commutative.

From Lemma 7.25 we have the commutative diagram

K |v[Z]| C ��

[FZ ,w′]
��

K |v[Y]|

[FY ,c−1(w′)]
��

K |v[Z]| C �� K |v[Y]| ,

and the theorem is proved. �

Problems

7.8. Let Y = Circ4, w = (0, 1, 0, 2, 3), and w′ = (0, 0, 1, 2, 3). Derive the
graphs G(w, Y) and G(w′, Y). [1]

210 7 Combinatorics of Sequential Dynamical Systems over Words

Answers to Problems

7.1. For the words w = (v1, v2, v3, v1) and w′ = (v1, v1, v3, v2), and the graph
Y = v1 v3 v2 with τ = (2, 4), we have wτ = w′,

G(w, Y) =

1

��
��

��
� 2

��
��

��
�

4 3

, G(w′, Y) =

1

��
��

��
� 4

��
��

��
�

2 3

,

and τ : G(w′, Y) −→ G(w, Y) is a graph isomorphism.

7.2. In view of Aut(Y) = S3, we obtain w′ = γ ◦ σ · w and w′′ = γ′ ◦ w, and

G(w, Y) =

4

��
��

��
� 2

1 3

, G(w′, Y) =

1

��
��

��
� 2

3 4

, G(w′′, Y) =

4

��
��

��
� 2

1 3

,

where σ′ = 〈1, 3, 4〉〈2〉 : G(w, Y) −→ G(w′, Y) is a graph isomorphism and
G(w, Y) = G(w′′, Y).

7.4. (Proof of Proposition 7.8) Obviously, w,w′ ∈ Wk and w ∼Y w′ implies
w,w′ ∈ Sk(ϕ). For two non-adjacent Y -vertices wi, wi+1 we observe

Fwi ◦ Fwi+1 = Fwi+1 ◦ Fwi ,

from which we immediately conclude using induction on the Uk-distance be-
tween w and w′:

∀ w ∼Y w′ =⇒ [FY , w] = [FY , w
′] .

7.5. (Proof of Proposition 7.9) We set w = σ · ϕ and w′ = σ′ · ϕ. Since
w
∼Y w′, Lemma 7.16 guarantees

∀ ρ, ρ′ ∈ Fix(ϕ); OY (σρ)
= OY (σ′ρ′) . (7.61)

Let σ(j1) = 1 and let t be the minimal position of ϕj1 in w′ = σ′ · ϕ. In
case of t = 1, we are done; otherwise we try to move ϕj1 to first position by
successively transposing consecutive indices of Y -independent letters. In case
we were able to move ϕj1 to the first position, we continue the procedure with
ϕj2 and proceed inductively. In view of Eq. (7.61) we have

∀ ρ, ρ′ ∈ Fix(ϕ), ∃ {i, j} ∈ G(ϕ, Y), OY (σρ)({i, j})
= OY (σ′ρ′)({i, j}) ,

and our inductively defined procedure must fail. Let us assume it fails after
exactly r steps, that is, we have

7.2 Combinatorics of SDS over Words II 211

w′ ∼Y (ϕj1 , ϕj2 , . . . , ϕjr , . . . , ϕj , . . . , ϕi, . . .) = w′′ ,

and there exists some ϕj preceding ϕi in w′′ such that {ϕi, ϕj} ∈ Y . We now
define the family of Y -local maps FY as follows:

Fϕj (xv1 , . . . , xvn)ϕj = xϕj + 1,

Fϕi(xv1 , . . . , xvn)ϕi =

{
xϕj for xϕj ≤ m,

max{xϕi ,m} + 1 for xϕj > m,

Fϕs(xv1 , . . . , xvn)ϕs = 0 for s
= i, j .

Suppose the word (ϕj1 , ϕj2 , . . . , ϕjr) contains ϕj exactly q times. We choose
m = q and claim

([FY , w](0, 0, . . . , 0, 0))ϕi
+ 1 ≤ ([FY , w

′](0, 0, . . . , 0, 0))i .

We have the following situation:

w = (ϕj1 , . . . , ϕjr , ϕi, . . . , ϕj , . . .), (7.62)
w′ ∼Y (ϕj1 , ϕj2 , . . . , ϕjr , . . . , ϕj , . . . , ϕi, . . .) = w′′ . (7.63)

Let us first compute ([FY , w](0, 0, . . . , 0, 0))ϕi. We observe that ϕi being at
index r + 1 updates into state xϕi = q, regardless of u1, the number of times
(ϕj1 , ϕj2 , . . . , ϕjr) contains ϕi. Let u be the number of times ϕi appears in
the word w. In view of Eqs. (7.62) and (7.63), we observe that w exhibits at
most [u− u1 − 1] ϕi-updates under the condition xϕj > q, and we obtain

([FY , w](0, 0, . . . , 0, 0))ϕi
≤ [q + (u− u1 − 1)] .

Next we compute ([FY , w
′](0, 0, . . . , 0, 0))ϕi . By assumption ϕj precedes ϕi in

w′′, and ϕi has some index s > r+1 and updates into the state q+1, regardless
of how many positions r + 1 ≤ l ≤ s, ϕj occurred in w′′. Accordingly, we
compute, in view of Eq. (7.62), Eq. (7.63) and Proposition 7.8:

([FY , w
′](0, 0, . . . , 0, 0))ϕi

= [q + (u− u1)] ,

and the proof is complete.

7.6. For Y = v1 v2 v3 , w = (v1, v2, v1, v2, v3), and ρ =
(3, 1)(2, 4) we have

G(w, Y) =

1 2

��
��

��
�

��
��

��
�

3 4

�������
5

and with O =

1 �� 2

&&��
��

��
�

!!�
��

��
��

3 4��

''�������
�� 5

.

The equivalence class [O]w of O ∈ Acyc(G(w, Y)) is given by

212 7 Combinatorics of Sequential Dynamical Systems over Words

[O]w =

⎧
⎪⎪⎨

⎪⎪⎩

1 �� 2

&&��
��

��
��

**�
��

��
��

�

3 4��

''��������
�� 5 ,

3 �� 2

&&��
��

��
��

**�
��

��
��

�

1 4��

''��������
�� 5 ,

1 �� 4

&&��
��

��
��

**�
��

��
��

�

3 2��

''��������
�� 5 ,

3 �� 4

&&��
��

��
�

!!�
��

��
��

1 2��

''�������
�� 5

⎫
⎪⎪⎬

⎪⎪⎭

.

7.7. (Proof of Corollary 7.18) By Corollary 7.5 we have G(w, Y) ∼= Y . With
ϕ = id = (1, 2, . . . , n) we note that Fix(id) = 1, and

[OY (σ)]ϕ = {OY (σ)} ,

that is, the ϕ-equivalence class consists exclusively of the acyclic orientation
induced by σ itself.

8

Outlook

In the previous chapters we gave an account of the SDS theory developed
so far. This final chapter describes a collection of ongoing work and possible
directions for future research in theory and applications of SDS. This is, of
course, not an exhaustive list, and some of what follows is in an early stage.
The material presented here reflects, however, what we currently consider
interesting and important and what has already been identified as useful for
many application areas.

8.1 Stochastic SDS

When modeling systems one is often confronted with phenomena that are
known only at the level of distributions or probabilities. An example is the
modeling of biological systems where little data are available or where we
only know the empirical statistical distributions. Another example is a physi-
cal device that occasionally fails such as a data transmission channel exposed
to electromagnetic fields. In this case we typically have an error rate for the
channel, and coding theory is used as a framework. In fact, there are also sit-
uations where it is possible to show that certain deterministic systems can be
simulated by stochastic models such that the corresponding stochastic model
is computationally more tractable than the original system. Sampling meth-
ods like Monte Carlo simulations [122] are good examples of this. Accordingly,
stochasticity can be an advantageous attribute of the model even if it is not
an inherent system property.

For SDS there are many ways by which probabilistic elements can be
introduced, and in this section we discuss some of these along with associated
research questions.

214 8 Outlook

8.1.1 Random Update Order

Stochastic update orders emerge in the context of, for example, discrete event
simulations . A discrete event simulation is a system basically organized as
follows: It consists of a set of agents that are mutually linked through the
edges of an interaction graph and where each agent initially has a list of time-
stamped tasks to execute at given points in time. When an agent executes a
certain task, it may affect the execution of tasks of its neighbors. For this rea-
son an event is sent from the agent to its neighbors whenever it has processed
a task. Hence, neighboring agents have to respond to this event, and this
may cause new tasks to be created and executed, which in turn may cause
additional events to be passed around. All the tasks are executed in chrono-
logical order. From an implementation point of view this computation can be
organized through, for instance, a queue of tasks. The tasks are executed in
order, and the new tasks spawned by an event are inserted into the queue as
appropriate.

In general, there is no formal guarantee that such a computation will
terminate. If events following tasks trigger too many new tasks, the queue
will just continue to grow and it will become impossible (at least in practice)
to complete all tasks. Moreover, if the time progression is too slow, there is
no guarantee that the computation will advance to some prescribed time.

8.1. What reasons do you see for organizing computations using the discrete
event simulation setup? Note that the alternative (a time-stepped simulation)
would often be to have every agent check its list of tasks at every time step of
the computation. If only a small fraction of the agents execute tasks at every
time step, it seems like this could lead to a large amount of redundant testing
and processing. [1]

Distributed, Discrete Event Simulations

For efficient computation discrete event simulations are frequently imple-
mented on multiprocessor architectures. In this case each processor (CPU)
will be responsible for a subset of the agents and their tasks. Since some
CPUs may have fewer agents or a lighter computational load, it can easily
happen that the CPU’s local times advance at different rates. The resulting
CPU misalignment in time can cause synchronization problems. As tasks trig-
ger events, and events end up being passed between CPUs, we can encounter
the situation where a given CPU receives events with a time stamp that is
“in the past” according to its current time. If the CPU has been idle in the
interim, this presents no problem. However, if it has executed tasks that would
have been affected by this new event, the situation is more involved.

One way to ensure correct computation order is through roll-back ; see,
e.g., [1, 2]. In this approach each CPU keeps track of its history of tasks,
events, and states. When an event from “the past” appears and it spawns

8.1 Stochastic SDS 215

new tasks, then time is “rolled back” and the computation starts up at the
correct point in time. It is not hard to see that at least in theory this allows
one to compute the tasks in the “right” order. However, it is also evident
that this scheme can have some significant drawbacks as far as bookkeeping,
processor memory usage, and computation speed are concerned.

Local Update Orders

As an alternative to costly global synchronization caused by, e.g., roll-
back, [123] has discussed the following approach: Each CPU is given a set
of neighbor CPUs, where neighbor could mean being adjacent in the current
computing architecture. This set is typically small compared to the total num-
ber of processors. Additionally, there is the notion of time horizon, which is
some time interval Δt.

Starting at time t0 no processor is allowed to compute beyond the time
horizon and there is a global synchronization barrier at t0 +Δt. Throughout
the time interval Δt each processor will only synchronize with its neighbors,
for instance, through roll-back. The idea is that this local synchronization
combined with a suitable choice of time horizon leads to a global system
update that satisfies mutual dependencies. Obviously, this update is bound to
execute faster, and it is natural to ask how closely it matches the results one
would get by using some roll-back-induced global update. This is precisely
where SDS with stochastic update orders offer conceptual insight.

An SDS Model

From the discussion above we conclude that the update derived from local
computations will have tasks computed in an order π′ that could possibly
be different from the a priori update, π. Of course, the actual set of tasks
executed could also be different, but we will restrict ourselves to the case
where the set of tasks remains the same. We furthermore stipulate that the
extent to which the update orders π and π′ differ will be a function of the
choice of the synchronization of the neighbors and the size of the time horizon.

SDS provide a natural setting to study this problem: Let [FY , π] be an
SDS-map. If we are given another update order π′ such that d(π, π′) < k for
some suitable measure of permutation distance, then we ask: How similar or
different are the phase spaces Γ [FY , π] and Γ [FY , π

′]? To proceed it seems
natural to introduce a probability space P of update orders and an induced
probability space of SDS. As described in Section 2.2, this leads to Markov
chains or what we may call a probabilistic phase space, the probabilistic
phase space being the weighted combination of the phase spaces Γ [FY , σ] with
σ ∈ P .

Example 8.1. We consider the dependency graph Star3 with vertex function
induced by the function I1,k : Fk

2 −→ F2, which returns 1 if exactly one of

216 8 Outlook

its inputs is 1, and returns 0 otherwise. We obtain two SDS maps φ and ψ
by using the update orders (0, 1, 2, 3), respectively (1, 0, 2, 3). If we choose the
probability p = 1/2, then we obtain a probabilistic phase space as shown in
Figure 8.1. 		

0000

11011110

1010 0001 10010010

0110 0101

0011

0100

1000

1111

1011
1100

0111

Fig. 8.1. The probabilistic phase space for Example 8.1 (shown on the right) induced
by the two deterministic phase spaces φ (left) and ψ (middle). For simplicity the
weights of the edges have been omitted.

One particular way to define a distance measure on permutation update
orders is through acyclic orientations as in Section 3.1.3. The distance between
two permutations π and π′ is then the number of edges for which the acyclic
orientations OY (π) and OY (π′) differ. This distance measure captures how
far apart the corresponding components are in the update graph. Assume
that we have π as reference permutation. We may construct a probability
space P = P(π) by taking all possible permutation update orders and giving
each permutation a probability inversely proportional to the distance to the
reference permutation π. Alternatively, we may choose the probability space
to consist of all permutations of distance less than k, say, to π and assign
them uniform probability.

Random updates should be studied systematically for the specific classes
of SDS (Chapter 5). For instance, for SDS induced by threshold functions
and linear SDS w-independent SDS are particularly well suited since in this
case we have a fixed set of periodic points for all update orders. If we restrict
ourselves to the periodic points, it is likely that we can reduce the size of the
Markov chain significantly.

From Section 5.3 we know that all periodic points of threshold SDS are
fixed points. One question in the context of random updates is then to ask
which sets Ω of fixed points can be reached from a given initial state x (see
Proposition 4.11 in this context). Note that the choice of update order may
affect the transients starting at x. Let ωπ(x) be the fixed point reached under
system evolution using the update order π starting at x. The size of the set
Ω = ∪π∈Pωπ(x) is one possible measure for the degree of update order insta-
bility. Clearly, this question of stability is relevant to, for example, discrete
event simulations. See also Problem 5.11 for an example of threshold systems
that exhibit update order instability.

8.2 Gene-Regulatory Networks 217

8.1.2 SDS over Random Graphs

In some applications the graph Y may not be completely known or may change
at random as time progresses, as, for instance, in stationary radio networks
where noise is present. Radios that are within broadcast range may send
and receive data. A straightforward way to model such networks is to let
radios or antennas correspond to the vertices of a graph and to connect each
antenna pair that is within communication range of one another. Noise or
other factors may temporarily render a communication edge between two
antennas useless. In the setting of SDS we can model this through a probability
space of graphs Y (i.e., a random graph [107]) whose elements correspond to
the various realizations of communication networks. We can now consider, for
example, induced SDS over these graphs with induced probabilities. Just as
before this leads to Markov chains or probabilistic phase spaces. Through this
model we may be able to answer questions on system reliability and expected
communication capacities.

We conclude this section by remarking that probabilistic analysis and tech-
niques (ergodic theory and statistical mechanics) have been used to analyze
deterministic, infinite, one-dimensional CA [36, 37]. The area of probabilistic
cellular automata (PCA) deals with cellular automata with random variables
as local update functions [38, 124]. PCA over Circn have been studied in [39]
focusing on conservation laws. The use of Markov chains to study PCA was
established in the 1970s; see, e.g., [125,126]. Examples of applications of PCA
(finite and infinite) include hydrodynamics/lattice gases [41] and traffic mod-
eling [6, 7, 39]. In addition, both random Boolean networks (Section 2.2) and
interacting particle systems [25] are stochastic systems. These frameworks
may provide guidance in the development of a theory of stochastic SDS.

8.2 Gene-Regulatory Networks

8.2.1 Introduction

A gene-regulatory network (GRN) is a network composed of interacting genes.
Strictly speaking, it does not represent the direct interactions of the involved
genes since there are in fact three distinct biochemical layers that factor in
those interactions: the genes, the ribonucleic acids (RNA), and the proteins.
RNA is created from the genes via transcription, and proteins are created
from RNA via the translation process. However, when we speak of a GRN in
the following, we identify these three biochemical layers. After completing the
sequencing of basically the entire human genome, it has become apparent that
more than the knowledge about single, isolated genes is necessary in order to
understand their complex regulatory interactions. The purpose of this section
is to show that SDS-modeling is a natural modeling concept, as it allows one
to capture asynchronous updates of genes.

218 8 Outlook

Fig. 8.2. Schematic representation of a GRN.

8.2.2 The Tryptophan-Operon

In this section we discuss a GRN that is typical for the regulation of the
tryptophan- (trp) operons or asparagin (asn) system in E. coli : Below we have

Fig. 8.3. The repressible GRN.

the binary input parameters x6, x7, x8, and x9, the binary system parameters
g13, g15, g43, and g45, and the intracellular components: effector -mRNA x1,

8.2 Gene-Regulatory Networks 219

enzyme x2, product x3, regulator -mRNA x4, and regulator protein x5 with
the following set of equations:

x1(t+ 1) = (g13 + x3(t)) · x6(t) · (g15 + x5(t)) ,
x2(t+ 1) = x1(t) · x7(t) ,
x3(t+ 1) = x2(t) · (1 + x3(t)) · x8(t) · x9(t) ,
x4(t+ 1) = (g43 + x3(t)) · x6(t) · (g45 + x5(t)) ,
x5(t+ 1) = x4(t) · x7(t) .

Figure 8.4 shows the phase spaces of four specific system realizations.

(a) (b)

(c) (d)

Fig. 8.4. In (a) and (b) all system parameters are 1. In (c) and (d) g45 = 0 while
all other system parameters are 1.

It is interesting to rewrite the above relations in the SDS-framework: the
graph Y expressing the mutual dependencies of the variables relevant for the
time evolution (x1, . . . , x5):

Ỹ =

v1

�������������� v2

v5 v3

v4

��������

��������

220 8 Outlook

and the associated family of Y -local functions FỸ given by (Fvi(x1, . . . , x5))vi

= xi(t + 1) with i = 1, . . . , 5. In the following we will restrict ourselves to
permutation-words where the bijection

S5/ ∼Ỹ −→ Acyc(Ỹ)

provides an upper bound on the number of different system types (Corol-
lary 7.18). Clearly, we have |Acyc(Ỹ)| = 42.

The system size allows for a complete classification of system dynamics
obtained through exhaustive enumeration. Explicitly, we proceed as follows:
We ignore transient states and consider the induced subgraph of the periodic
points. In fact there are exactly 12 different induced subgraphs over the peri-
odic points, each of which is characterized by the quintuple (z1, . . . , z5) where
zi denotes the number of cycles of length i. We detail all system types in
Table 8.1.

An ODE modeling ansatz for the network in Figure 8.3 yields exactly
one fixed point, which, depending on system parameters, can be either stable
or unstable. This finding is reflected in the observation that the majority
of the SDS-systems exhibits exactly one fixed point. There are, however, 11
additional classes of system dynamics, which are missed entirely by the ODE-
model. These are clearly a result of the asynchronous updates of the involved
genes, and there is little argument among biologists about the fact that genes
do update their states asynchronously.

8.3 Evolutionary Optimization of SDS-Schedules

8.3.1 Neutral Networks and Phenotypes of RNA and SDS

In theoretical evolutionary biology the evolution of single-stranded RNA mole-
cules has been studied in great detail. The field was pioneered by Schuster
et al., who systematically studied the mapping from RNA molecules into their
secondary structures [127–132]. Waterman et al. [133–135] did seminal work
on the combinatorics of secondary structures. A paradigmatic example for
evolutionary experiments with RNA is represented by the SELEX method
(systematic evolution of ligands by exponential enrichment), which allows
one to create molecules with optimal binding constants [136]. The SELEX
experiments have motivated our approach for studying the evolution of SDS.
SELEX is a protocol that isolates high-affinity nucleic acid ligands for a given
target such as a protein from a pool of variant sequences. Multiple rounds
of replication and selection exponentially enrich the population that exhibits
the highest affinity, i.e., fulfills the required task. Paraphrasing the situation,
SELEX is a method to perform molecular computations by white noise.

One natural choice for an SDS-genotype is its word update order w whose
structure as a linear string has an apparent similarity to single-stranded RNA
molecules. We have seen several instances where a variety of update orders

8.3 Evolutionary Optimization of SDS-Schedules 221

Table 8.1. System classification.

222 8 Outlook

produced either an identical or an equivalent dynamical system. Our find-
ings in Section 3.1.4 provide us with a notion of adjacency: Two SDS update
orders are adjacent if they differ exactly by a single flip of two consecutive
coordinates. We call the set of all update orders producing one particular
system its neutral network . In the case of RNA we have a similar situation:
Two RNA sequences are called adjacent if they differ in exactly one position
by a point mutation, and a neutral network consists of all molecules that
fold into a particular coarse-grained structure. In this section we will inves-
tigate the following aspects of SDS evolution: (1) the fitness-neutral [137],
stochastic transitions between two SDS-phenotypes [138] and (2) critical mu-
tation rates originally introduced in [139] and generalized to phenotypic level
in [131,138,140].

Let us begin by discussing phenotypes as they determine our concept of
neutrality. RNA exhibits generic phenotypes by forming 2D or 3D structures.
One example of RNA phenotypes is their secondary structures [133], which
are planar graphs over the RNA nucleotides and whose edges are formed by
base pairs subject to specific conditions [141]. Choosing minimum free en-
ergy as a criterion, we obtain (fold) a unique secondary structure for a given
single-stranded RNA sequence. The existence of phenotypically neutral muta-
tions is of relevance for the success of white noise computations as it allows
for the preservation of a high average fitness level of the population while
simultaneously reproducing errorproneously. In Section 7.1.3 we have indeed
encountered one particular form of neutral mutations of SDS-genotypes. In
Proposition 7.8 we have shown that for any two ∼ϕ-equivalent words w and
w′ (w � w′) we have the identity of SDS-maps [FY , w] = [FY , w

′]. Adopt-
ing this combinatorial perspective we observe that SDS over words exhibit
phenotypes that are in fact very similar to molecular structures. To capture
these observations we consider the dependency graph G(w, Y) as introduced
in Section 7.1.1. The phenotype in question will now be the equivalence class
of acyclic orientations of G(w, Y) induced by ∼w (Section 7.1.4). That is, the
equivalence is induced by G(w, Y)-automorphisms that fix w and two acyclic
orientations O and O′ are w-equivalent (O ∼w O′) if and only if

∃ ρ ∈ Sk; (wρ−1(1), . . . , wρ−1(k)) = w; ρ(O({r, s})) = O′({ρ(r), ρ(s)}) .

As for neutral networks, Theorem 7.17 of Chapter 7

O′
Y : Wk/ ∼Y −→

⋃̇

ϕ∈Φ
[Acyc(G(ϕ, Y))/ ∼ϕ]

shows that w ∼Y w′ if and only if the words w and w′ can be transformed
into each other by successive transpositions of consecutive pairs of letters
that are Y -independent. In other words ∼Y is what amounts to the transitive
closure of neutral flip-mutations “�”. Accordingly, the ∼Y -equivalence class
of the word w, denoted by [w], is the neutral network of O′

Y (w), which is the
equivalence class of acyclic orientations.

8.3 Evolutionary Optimization of SDS-Schedules 223

8.3.2 Distances

The goal of this section is to introduce a distance measure D for words w
and w′ that captures the distance of the associated SDS-maps [FY , w] and
[FY , w

′]. In our construction the distance measure D is independent of the
particular choice of family of Y -local functions (Fv)v∈v[Y].

Let σ · w = (wσ−1(1), . . . , wσ−1(k)) be the Sk-action on Wk as defined in
Section 7.1.1. Its orbits induce the partition Wk =

⋃̇
ϕ∈ΦSk(ϕ) where Φ is a

set of representatives. Let w,w′ ∈ Sk(ϕ) and let σ, σ′ ∈ Sk such that w = σ ·ϕ
and w′ = σ′ ·ϕ. We consider OY (σ1) and OY (σ2) [as defined in Eq. (7.20)] as
acyclic orientations of G(ϕ, Y) and define their distance d as

d(OY (σ1),OY (σ2)) = | {{i, j} | OY (σ1)({i, j})
= OY (σ2)({i, j})} | . (8.1)

According to Theorem 7.17 each word naturally induces an equivalence class
OY (w) = [OY (σ)]ϕ of acyclic orientations of G(ϕ, Y), and Lemma 7.12 de-
scribes this class completely by [OY (σ)]ϕ = {OY (σρ) | ρ ∈ Fix(ϕ)}. Based
on the distance d between acyclic orientations [Eq. (8.1)], we introduce
D : Sk(ϕ) × Sk(ϕ) −→ Z by

D(w,w′) = min
ρ,ρ′∈Fix(ϕ)

{d(OY (σρ),OY (σ′ρ′))} . (8.2)

In the following we will prove that D naturally induces a metric for ∼Y -
equivalence classes of words. For RNA secondary structures similar distance
measures have been considered in [138,142].

According to Proposition 7.8, we have the equality

[FY , w] = [FY , w
′]

for any two ∼Y -equivalent words w ∼Y w′. In Lemma 8.2 we show that D does
indeed capture the distance of SDS since for any two ∼Y -equivalent words w
and w′ we have D(w,w′) = 0.

Lemma 8.2. For w,w′ ∈ Sk(ϕ)

w ∼Y w′ ⇐⇒ D(w,w′) = 0 (8.3)

holds.

Proof. Suppose we have w = σ · ϕ ∼Y σ′ · ϕ = w′. By induction on the Wk-
distance (Section 7.1.3) between w and w′, we may without loss of generality
assume that w and w′ are adjacent in Wk, that is, we have τ · w = w′ with
τ = (i, i+1). Since we have σ′−1τσ·ϕ = ϕ, or equivalently ρ = σ′−1τσ ∈ Fix(ϕ)
and σ′ ·w = (σ′ρ) ·w, we can replace σ′ by σ′ρ. Without loss of generality we
may thus assume τσ = σ′.

224 8 Outlook

In Lemma 7.14 we have shown that for τσ = σ′ we have the equality
OY (σ) = OY (σ′). Hence, we have

D(w,w′) = min
ρ,ρ′∈Fix(ϕ)

{d(OY (σρ),OY (σ′ρ′))} = d(OY (σ),OY (σ′)) = 0 .

Suppose now D(w,w′) = 0, that is, there exist ρ, ρ′ ∈ Fix(ϕ) such that
OY (σρ) = OY (σ′ρ′). In Lemma 7.16 we have proved

OY (σρ) = OY (σ′ρ′) =⇒ (σρ) · ϕ ∼Y (σ′ρ′) · ϕ, (8.4)

and since (σρ) ·ϕ = σ ·ϕ = w and (σ′ρ′)ϕ = σ′ ·ϕ = w′, the lemma follows.�

Proposition 8.3 shows that D satisfies the triangle inequality and will lay
the foundations for Proposition 8.4, where we prove that D induces a metric
over word equivalence classes or neutral networks. Its proof hinges on the
facts that (1) Fix(ϕ) is a group and (2) the OY (σ) orientations have certain
compatibility properties (see Lemma 7.12). As for the proof, Eq. (8.5) is key
for being able to derive Eq. (8.6) from (8.8).

Proposition 8.3. Let w = σ · ϕ and w′ = σ′ · ϕ. Then we have

D(w,w′) = min
ρ∈Fix(ϕ)

{d(OY (σρ),OY (σ′))} . (8.5)

Furthermore for any three words w,w′, w′′ ∈ Sk(ϕ)

D(w,w′) ≤ D(w,w′′) + D(w′′, w′) (8.6)

holds.

Proof. We first prove Eq. (8.5) and claim

min
ρ,ρ′∈Fix(ϕ)

{d(OY (σρ),OY (σ′ρ′))} = min
ρ∈Fix(ϕ)

{d(OY (σρ),OY (σ′))} . (8.7)

Suppose that for some {i, j} ∈ G(w, Y): OY (σρ)({i, j})
= OY (σ′ρ′)({i, j})
holds. Since ρ : G(ϕ, Y) −→ G(ϕ, Y) is an automorphism, we may replace
{i, j} by {ρ−1(i), ρ−1(j)} and obtain

OY (σρ)({ρ−1(i), ρ−1(j)}) = ρ−1(O(σ)({i, j})),
OY (σ′ρ′)({ρ−1(i), ρ−1(j)}) = ρ−1(O(σ′ρ′ρ−1)({i, j})) .

Hence, we have proved

OY (σρ)({ρ−1(i), ρ−1(j)})
= OY (σ′ρ′)({ρ−1(i), ρ−1(j)})
⇐⇒ O(σ)({i, j})
= O(σ′ρ′ρ−1)({i, j}) ,

8.3 Evolutionary Optimization of SDS-Schedules 225

and, accordingly,

d(OY (σρ),OY (σ′ρ′)) = d(OY (σ),OY (σ′ρ′ρ−1)) .

Equation (8.7) now follows from the fact that Fix(ϕ) is a group. For arbitrary,
fixed ρ, ρ′ ∈ Fix(ϕ) we have

d(OY (σρ),OY (σ′ρ′)) ≤ d(OY (σρ),OY (σ′′)) + d(OY (σ′′),OY (σ′ρ′)) . (8.8)

We now use D(w,w′) = minρ∈Fix(ϕ) {d(OY (σρ),OY (σ′))} and Eq. (8.5), and
choose ρ and ρ′ such that

d(OY (σρ),OY (σ′′)) = min
ρ∈Fix(ϕ)

{d(OY (σρ),OY (σ′′))} = D(w,w′′),

d(OY (σ′′),OY (σ′ρ′)) = min
ρ∈Fix(ϕ)

{d(OY (σ′′),OY (σ′ρ′))} = D(w′′, w′) .

Obviously, we then have

D(w,w′) = min
ρ,ρ′∈Fix(ϕ)

{d(OY (σρ),OY (σ′ρ′))} ≤ d(OY (σρ),OY (σ′ρ′)) .

�

Proposition 8.4. The map

D′ : Sk(ϕ)/ ∼Y ×Sk(ϕ)/ ∼Y −→ Z, where D′([w], [w′]) = D(w,w′), (8.9)

is a metric.

Proof. We first show that D′ is well-defined. For this purpose we choose w1 ∼Y

w and w′
1 ∼Y w′ and compute using Eq. (8.6) of Proposition 8.3

D(w,w′) ≤ D(w,w1) + D(w1, w
′),

D(w1, w
′) ≤ D(w1, w) + D(w,w′),

from which, in view of D(w,w1) = D(w1, w) = 0, we obtain D(w,w′) =
D(w1, w

′). Clearly, D(w1, w
′) = D(w1, w

′
1) follows in complete analogy and we

derive D(w,w′) = D(w1, w
′
1); thus, D′ is well-defined.

D′ consequently has the following properties: (a) for any w,w′ ∈ Sk(ϕ) we
have D′([w], [w′]) ≥ 0; (b) D′([w], [w′]) = 0 implies w ∼Y w′ (by Lemma 8.2);
(c) for any w,w′ ∈ Sk(ϕ) we have D′([w], [w′]) = D′([w′], [w]), and finally
(d) for any w,w′, w′′ ∈ Sk(ϕ)

D′([w], [w′]) ≤ D′([w], [w′′]) + D′([w′′], [w′])

holds according to Proposition 8.3, and it follows that D′ is a metric. �

226 8 Outlook

8.3.3 A Replication-Deletion Scheme

It remains to specify a replication-deletion process for the SDS genotypes.
We will choose a process based on the Moran model [143] that describes the
time evolution of populations. A population M over a graph X is a mapping
from vertices of X into natural numbers, and we call a vertex of X an el-
ement “present” in M if its multiplicity M(x) satisfies M(x) > 0. We call
the quantity s(M) =

∑
xM(x) the size of M and define M[m] to be the

set of populations of size m. A replication-deletion scheme R is a mapping
R : M[m] −→ M[m], and we call the mapping μ : X −→ [0, 1] the fitness land-
scape. The mapping μ assigns fitness values to elements of the population.

The specific replication-deletion scheme R0 : M[m] −→ M[m] that we will
use in the following sections basically consists of the removal of an ordered pair
(w,w′) of elements from M and its replacement by the ordered pair (w, w̃):

For w we pick an M -element with probability M(x) ·μ(x)/[
∑

x M(x)μ(x)].
The word w is subsequently subject to a replication event that maps w
into w̃.
For w′ we select an M -element with probability M(x)/s(M).

The replication-map, which maps w into w̃, is obtained by the following pro-
cedure: With probability q we independently select each index-pair of the
form

∀ i; 1 ≤ i ≤ k − 1; τi = (i, i+ 1), (8.10)

of w = (w1, . . . , wk) and obtain the sequence (τi1 , . . . , τim) of transpositions
where it ≤ it+1. We then set

w̃ = (τi1 , . . . , τim)(w) . (8.11)

Accordingly, M and R0(M) differ exactly in that the element w′ of M is
replaced by w̃.

So far there is no notion of time in our setup. We consider the applications
of R0 to be independent events. The time interval Δt which elapses between
two such events is assumed to be exponentially distributed, that is,

Prob(Δt > τ) = exp

[

−τ
∑

x

M(x)μ(x)

]

. (8.12)

Intuitively,
∑

x M(x)μ(x) can be interpreted as a mean fitness of the pop-
ulation M at time t, which can only change after application of R0, since
new elements in the population potentially emerge and others are being re-
moved. According to Eq. (8.12), the population undergoes mutational changes
in shorter periods of time if its mean fitness is higher.

8.3 Evolutionary Optimization of SDS-Schedules 227

8.3.4 Evolution of SDS-Schedules

In this section we study the evolution of SDS-schedules. We limit ourselves to
presenting a few aspects of SDS-evolution, a detailed analysis can be found
in [144]. In the following we consider the base graphs Y to be sampled from
the random graph Gn,p, and we assume that the word w is a fixed word in
which each vertex of Y occurs at least once, i.e., w is a fair word. Transitions of
word populations between two phenotypes are obviously of critical importance
to understand SDS evolution as they constitute the basic evolutionary steps.
They are a result of the stochastic drift and can occur even when the two
phenotypes in question have identical fitness. In [144] we investigated neutral
evolution of SDS schedules. Explicitly, we selected a random fair word w0 and
generated a random mutant wi in distance class i [i.e., D(w0, wi) = i]. We set
the fitness of all words on the neutral network of w0 and wi to be 1 and to
0.1 for those words that are not on the neutral network. The protocol for the
computer experiments is presented in Sections 8.3.5 and 8.5.

We monitored the fractions of the population on the neutral networks of
w0 and wi. It turned out that for a wide spectrum of parameter sets the
population is concentrated almost entirely on one of the two neutral networks
and then switches between them.

The findings can be categorized as follows:
Case (a): The two neutral networks are “close,” that is, the population at al-
most all times has some large fraction on both neutral networks. This scenario
is generic (i.e., typically occurs for extended parameter ranges) in case D = 1.
Case (b): The population is almost always on either one of the two neutral
networks for extended periods of time (epochs). Then rapid, fitness-neutral
transitions between the two neutral networks are observed. This scenario is
generic in case D = 2.
Case (c): The population is almost entirely on either one of the neutral net-
works, but transitions between the nets are very rare. This situation is generic
for D > 2.

Accordingly, the distance measure D captures the closeness of neutral net-
works of words and appears to be of relevance to describe and analyze the
time evolution of populations.

Next let us study the role of the mutation rate q. For this purpose we con-
sider single-net-landscapes (of ratio r > 1), which is a mapping μw0 : Wk −→
[0, 1] such that every word w with w ∼Y w0 satisfies μw0(w) = μw0(w0) = x,
and μw0(w′) = x′ otherwise where x/x′ = r. We set x = 1 and x′ = 0.1, that
is, r = 10.

In the following we show that there is a critical mutation rate q∗(n, k, p, s)
characterized as follows: In a single-net landscape a word-population replicat-
ing with error probability q > q∗ is essentially randomly distributed, and a
population replicating with q < q∗ remains localized on its neutral network.
We refer to words that are on the neutral network of w0 as “masters” and set
their fitness to be 1, while any other word has fitness 0.1. We now gradually

228 8 Outlook

increase the mutation probability q of the replication event and study the
parts of the population in the distance classes Di(w0), where w ∈ Di(w0) if
and only if D(w0, w) = i holds. Similar studies for RNA sequences as genomes
and RNA secondary structures as phenotypes can be found in [131,138]. That
particular analysis was motivated by the seminal work of Eigen et al. on the
molecular quasi-species in [139]. Clearly, for q = 0 the population consists
of m identical copies of w0, but as q increases, mutations of higher distance
classes emerge. It is evident from Figure 8.5 that there exists a critical mu-
tation probability q∗(n, k, p, s) at which the population becomes essentially
randomly distributed. The protocol for the computer experiments is given in
Sections 8.3.5 and 8.6.

Fig. 8.5. The critical mutation rate for p = 0.50. The x-axis gives p and the y-
axis denotes the percentage of the population in the respective distance classes. The
parameters are n = 25, and k = 51. In the figure on the left a fixed random fair
word was used for all samples, and in the figure on the right a random fair word
was used for each sample point.

8.3.5 Pseudo-Codes

Algorithm 8.5. (Parameters: n = 52, k = 103, q = 0.0625, p, D, s)

Generate a random fair word w 0.

Generate a random mutant w i of w 0 with Distance(w 0, w i) = i.

Generate an element Y of G n,p.

Initialize a pool with s copies of w i all with fitness 1.

Repeat

Compute average fitness lambda.

Sample Delta T from exponential distribution with

parameter lambda and increment time by Delta T.

Pick w a at random from the pool weighted by fitness.

Pick w b at random from pool minus w 1.

Replace w b by a copy of w a.

Mutate the copy of w a with probability q.

8.4 Discrete Derivatives 229

Update fitness of mutated copy.

At every 100th iteration step output fractions of pool with

(i) distance 0 to w 0, and (ii) distance 0 to w i.

Algorithm 8.6. (Parameters: n = 25, k = 51, p = 0.50)

The line preceeded by [fix] is only used for the runs with a fixed

word, the line preceeded by [vary] is only used for the run with a

varying word.

[fix] Generate a fair word w of length k over Y

for q = 0.0 to 0.2 using stepsize 0.02 do

{
repeat 100

generate a random graph Y in G(n,p)

[vary] Generate a fair word w of length k over Y

initialize pool with 250 copies of w

perform 10000 basic replication/mutation steps

accumulate distance distribution relative to w

output average fractions of distance class 0, 1, 2, and 3.

}

8.4 Discrete Derivatives

The concept of derivatives is of central importance for the theory for clas-
sical dynamical systems. This motivates the question of whether there are
analogue operators in the context of sequential dynamical systems and finite
discrete dynamical systems in general. In fact, various definitions of discrete
derivatives have been developed. In case of binary states the notion of Boolean
derivatives [145, 146] has been introduced.

Definition 8.7. Let f : F
n
2 −→ F2, and let x = (x1, x2, . . . , xn) ∈ F

n
2 . The

partial Boolean derivative of f with respect to xi at the point x is

Dif(x) =
∂f

∂xi
(x) = f(x̄i) + f(x) , (8.13)

where x̄i = (x1, . . . , 1 + xi, . . . , xn).

Thus, Dif(x) can be viewed as to measure the sensitivity of f with respect
to the variable xi at the point x.

Example 8.8. Consider f = parity3 : F
3
2 −→ F2 given by f(x1, x2, x3) = x1 +

x2 + x3. In this case we see

D2f(x) = f(x̄2) + f(x)
= (x1 + (1 + x2) + x3) + (x1 + x2 + x3) = 1 .

		

230 8 Outlook

Basic Properties

Note first that Dif(x) does not depend on xi in the sense that

D2
i f(x) ≡ 0 .

This is straightforward to verify by applying the preceding definition. The
Boolean derivative has similarities with the “classical” derivative. For ex-
ample, it is easy to see that it is a linear operator in the sense that for
c1, c2 ∈ {0, 1} we have

Di(c1f1 + c2f2) = c1D1f1 + c2D2f2 ,

and that partial derivatives commute:

∂2F

∂xi∂xj
=

∂2F

∂xj∂xi
.

In addition, if f : F
n−1
2 −→ F2 and g : F

n
2 −→ F2 where g(x1, . . . , xn) =

xnf(x1, . . . , . . . , xn−1), then as a special case we have

∂g

∂xn
(x) = f(x1, . . . , xn−1) .

The product rule or Leibniz’s rule differs from the classical form since

∂(fg)
∂xi

=
∂f

∂xi
g + f

∂g

∂xi
+
∂f

∂xi

∂g

∂xi
.

We give a detailed derivation of this formula since it nicely illustrates what it
implies not to have the option of taking limits:

∂(fg)
∂xi

(x) = f(x̄i)g(x̄i) + f(x)g(x)

= f(x̄i)g(x̄i) + f(x)g(x̄i) + f(x)g(x̄i) + f(x)g(x)

=
∂f

∂xi
(x)g(x̄i) + f(x)

∂g

∂xi
(x)

=
∂f

∂xi
(x)g(x̄i) +

∂f

∂xi
(x)g(x) +

∂f

∂xi
(x)g(x) + +f(x)g(x)

=
∂f

∂xi
(x)g(x) + f(x)

∂g

∂xi
(x) +

∂f

∂xi
(x)

∂g

∂xi
(x).

The last term is the “O((Δh)2)” term that would vanish when taking the limit
in the continuous case. For the generalized chain rule and Boolean derivatives
the number of such additional terms becomes excessive. To illustrate this let
F,G, fi : F

n
2 −→ F2 for 1 ≤ i ≤ n with G(x) = F (f1(x), . . . , fn(x)), and let

P = {k1, . . . , kl} ⊂ Nn = {1, 2, . . . , n}. Using multi-index-style notation,

DPH =
[∏

i∈P

Di

]
H,

8.5 Real-Valued and Continuous SDS 231

we have the chain rule

∂G

∂xi
(x) =

∑

∅�=P⊂Nn

[∂|P |F
∂Pxi

(f1(x), . . . , fn(x))
∏

k∈P

∂fk

∂xi
(x)

]
. (8.14)

Note that the sum over singleton subsets P ⊂ Nn gives

n∑

k=1

∂F

∂xk
(f1(x), . . . , fn(x))

∂fk

∂xi
(x) ,

which has the same structure as the classical chain rule.

8.2. Write explicit expressions for the chain rule when F,G, fi : F
3
2 −→ F2.

[1]

For more details on the derivation of the chain rule, see, for example, [147].
In [148] you can also find results on Boolean Lie algebras.

Computing the Boolean partial derivatives even for a small discrete fi-
nite dynamical system is nontrivial. For SDS matters get even more involved:
Because of the compositional structure of SDS, the chain rule will typically
have to be applied multiple times in order to compute the partial derivative
[FY , w]j/xi. Even computing a relatively simple partial derivatives such as
D1([NorWheel4 , (1, 0, 2, 4, 3)]) is a lengthy process. The notion of a Boolean
derivative in its current form may be conceptually useful, but it is challenging
to put it to effective use for, e.g., SDS. The identification of operators aiding
the analysis of finite dynamical system would be very desirable.

8.5 Real-Valued and Continuous SDS

Real-valued SDS allow for the use of conventional calculus. Some versions
of real-valued SDS have been studied in the context of coupled map lattices
(CML) in [149]. As a specific example let Y = Circn, and take vertex states
xi ∈ R. We set

fi(xi−1, xi, xi+1) = εxi−1 + f(xi) + εxi+1 ,

where f : R −→ R is some suitable function and ε ≥ 0 is the coupling parame-
ter. For ε = 0 the dynamics of each vertex evolves on its own as determined
by the function f . As ε increases the stronger the dynamics of the vertices are
coupled. For CML the vertex functions are applied synchronously and not in
a given order as for SDS. This particular form of a CML may be viewed as an
elementary cellular automaton with states in R rather than {0, 1}. The work
on CML over circle graphs have been extended to arbitrary directed graphs
in, e.g., [24] — for an ODE analogue see [150]. By considering real-valued dif-
ferentiable vertex functions, it seems likely that the structure of the Y -local
maps should allow for interesting analysis and insight.

232 8 Outlook

8.3. Show that without loss of generality a real-valued permutation SDS over
Y = Line2 can be written as

x1 �→ f1(x1, x2),
x2 �→ f2(f1(x1, x2), x2) .

What can you say about this system? You may assume that f1 and f2 are
continuously differentiable or smooth. Can you identify interesting cases for
special classes of maps f1 and f2? What if f1 and f2 are polynomials of degree
at most 2? What is the structure of the Jacobian of the composed SDS? [3]

We close this section with an example of a real-valued SDS. It is an SDS
version of the Hénon map [74] arising in the context of chaotic classical discrete
dynamical systems.

Example 8.9 (A real-valued SDS). In this example we consider the SDS over
Circ3 with states xi ∈ R.

F1(x1, x2, x3) = (1 + x2 − a x2
1, x2, x3),

F2(x1, x2, x3) = (x1, b x3, x3),
F3(x1, x2, x3) = (x1, x2, x1),

(8.15)

where a, b > 0 are real parameters. We use the update order π = (3, 1, 2) and
set a = 1.4 and b = 0.3 with initial value (0.0, 0.0, 0.0). The projection onto
the first two coordinates of the orbit we obtain is shown in Figure 8.6. 		

Fig. 8.6. The projection of the orbit of Example 8.9.

This example also illustrates the fact that any system using a parallel up-
date order with maps Fi can be embedded in a sequential system as illustrated
in Figure 1.5.

8.6 L-Local SDS 233

8.6 L-Local SDS

In the cases of sequentially updated random Boolean networks, asynchronous
cellular automata, and SDS, exactly one vertex state is potentially altered per
vertex update, and this is done based on the states of the vertices in the asso-
ciated ball of radius 1. It is clear, for instance, in the case of communication
networks where discrete data packets are exchanged, that simultaneous state
changes occur. That is, two or more vertex states are altered at one update
step. Parallel systems represent an extreme case in which all vertex states may
change at a single update step. The framework described in the following is
a natural generalization of SDS and it allows one to consider hybrid systems,
which may be viewed to certain degrees as sequential and parallel at the same
time. In Section 8.7 we will show in detail how to model routing protocols via
L-local SDS .

Let
L : Y −→ {X | X is a subgraph of Y }, vi �→ L(vi), (8.16)

be a mapping assigning to each vertex of Y a subgraph of Y , and let λ(vi)
denote the cardinality of the vertex set of the subgraph L(vi). Furthermore,
we define the vertex functions as

fvi : Kλ(vi) −→ Kλ(vi) . (8.17)

For each vertex vi ∈ Y we consider the sequence

(xvj1
, . . . , xvjs

, xvjs+1
= xvi , xvjs+2

, . . . , xvjr
), (8.18)

where jt < jt+1 and vjh
∈ L(vi). We next introduce the map

nL[vi] : {1, . . . , λ(vi)} −→ v[Y], t �→ vjt , (8.19)

and define the L-local map of vi, F L
vi

: Kn −→ Kn:

F L
vi

(x) = (yv1 , . . . , yvn), yvh
=

{
(fvi(nL[vi]))vh

for vh ∈ L(vi),
xvh

otherwise.
(8.20)

We are now prepared to define an L-local SDS over a word:

Definition 8.10. Let w be a word and L : Y −→ {X < Y } be a map assigning
Y -vertices to Y -subgraph. The triple (Y, (Fvi)vi∈Y , w) is the L-local SDS. The
composition of the L-local maps F L

vi
according to w,

[(Fvi)vi∈v[Y], w] =
1∏

i=k

Fwi : Kn −→ Kn, (8.21)

is the L-local SDS-map.

234 8 Outlook

8.7 Routing

The scope of this section is to cast packet-switching problems arising in the
context of ad hoc networks in the framework of SDS. We believe that such
a formulation has the potential to shed new light on networking in general,
and routing at the networking layer in particular. We restrict ourselves to
presenting only some of the core ideas of how to define these protocols as L-
local maps. The interested reader can find a detailed analysis of these protocols
in [151–153].

In the following we adopt an end-to-end perspective: The object of study
is the flow of data packets “hopping” from node to node from a source to
a given destination. In contrast to the common approach where perceived
congestion is a function of the states of all nodes along a path, we introduce
SDS-based protocols, which are locally load-sensing. We assume that all links
are static and perfectly reliable (or error-free) with zero delay. Furthermore,
packets can only be transmitted from one vertex v to another vertex v′ if v
and v′ are adjacent in Y .

Our main objective is to describe the dynamical evolution of the data-
queue sizes of the entire system. We consider unlabeled packets, that is, pack-
ets do not contain explicit routing information in their headers and cannot
be addressed individually. We assume that some large number of packets is
injected into the network via the source vertex and that the destination has
enough capacity to receive all data packets. The source successively loads the
network and after some finite number of steps the system reaches an orbit in
phase space. Particular observables we are interested in are the total number
of packets located at the vertices (total load) and the throughput, which is
the rate at which packets arrive at the destination.

8.7.1 Weights

We will refer to vertex vi ∈ v[Y] by its index i. Let Qk denote the number of
packets located at vertex k, let mk be the queue capacity for packets located
at vertex k, and let m{k,i} be the edge capacity of the edge {k, i}. We assume
uniform edge capacities, i.e., m{k,i} = μ. Clearly, we have Qk ∈ Z/mkZ since
Qk cannot exceed the queue-capacity mk, and we take Qk as the state of
vertex k. Suppose we want to transmit packets from vertex k to its neighbors.
In the following we introduce a procedure by which we assign weights to the
neighbors of k. Our procedure is generic, parameterized, and in its parame-
terization location-invariant. Its base parameters are (1) the distance to the
destination, δ, (2) the relative load, and (3) the absolute queue size.

Let k be a vertex of degree d(k) and B′
1(k) = {i1, . . . , id(k)} be the set of

neighbors of k. We set

ch = {ij ∈ B′
Y (k) | d(ij , δ) = h } .

8.7 Routing 235

Let (h1, . . . , hs) be the tuple of indices such that chj
= ∅ and hj < hj+1. In
view of B′

Y (k) =
⋃̇

hch, we can now define the rank of a k-neighbor:

rnk : B′
Y (k) −→ N, rnk(ij) = r, where ij ∈ chr , hr = (h1, . . . , hs)r .

(8.22)
The weight wij of vertex ij is given by

w(ij) = e−a rnk(ij)

[

1 −
Qij

mij

]b [
mij

mmax

]c

, where a, b, c > 0 (8.23)

and w∗(ij) = w(is)/(
∑

j∈B′
1(k) w(j)).

8.7.2 Protocols as Local Maps

Suppose we have Qk packets at vertex k and the objective is to route them via
neighbors of k. For this purpose we first compute for B′

Y (k) = {i1, . . . , id(k)}
the family

W ∗(k) = (w∗(i1), . . . , w∗(id(k)))

of their relative weights. Without loss of generality we may assume that w∗
i1

is maximal and set

yir =

{
�Qk · w∗(ir)� for r
= 1,
Qk −

∑d(k)
r=2�Qk · w∗(ir)� for r = 1 .

(8.24)

The yir can be viewed as idealized flow rates, that is, where edge capacities and
buffer sizes of the neighbors are virtually infinite. However, taking into account
the edge-capacity μ, the queue-capacity and actual queue-size of vertex ir, we
observe that

sir = min{yir , μ, (mir −Qir)} (8.25)

is the maximal number of packets that can be forwarded to vertex ir. This
is based on the system state and W ∗(k). We are now prepared to update the
states of the vertices contained in BY (k) in parallel as follows:

Q̃a =

{
Qk −

∑d(k)
r=1 sir for a = k,

Qa + sa for a ∈ B′
1,Y (k) .

(8.26)

That is, vertex k sends the quantities sir [Eq. (8.25)] in parallel to its neighbors
and consequently

∑d(k)
r=1 sir packets are subtracted from its queue. Instantly,

the queue size of each neighbor ir increases by exactly sir . It is obvious that
this protocol cannot lose data packets.

In view of Eq. (8.26), we can now define the L-local map (Section 8.6) F L
k

as follows:

F L
k :

∏

k∈Y

(Z/mkZ) −→
∏

k∈Y

(Z/mkZ) , F L
k ((Qh)h) = (Q̃h)h , (8.27)

236 8 Outlook

where

Q̃a =

⎧
⎪⎨

⎪⎩

Qk −
∑d(k)

r=1 sir for a = k,

Qa + sa for a ∈ B′
1,Y (k),

Qa for a
∈ BY (k) .

Indeed, F L
k is a L-local map as defined in Eq. (8.20) of Section 8.6: it (1) po-

tentially alters the states of all vertices contained in BY (k) in parallel and
(2) it does so based exclusively on states associated to vertices in BY (k).

References

1. David R. Jefferson. Virtual time. ACM Transactions on Programming Lan-
guages and Systems, 7(3):404–425, July 1985.

2. J. Misra. Distributed discrete-event simulation. ACM Computing Surveys,
18(1):39–65, March 1986.

3. Shawn Pautz. An algorithm for parallel sn sweeps on unstructured meshes.
Nuclear Science and Engineering, 140:111–136, 2002.

4. K. Nagel, M. Rickert, and C. L. Barrett. Large-scale traffic simulation. Lecture
Notes in Computer Science, 1215:380–402, 1997.

5. M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic
simulations using cellular automata. Physica A, 231:534–550, October 1996.

6. K. Nagel, M. Schreckenberg, A. Schadschneider, and N. Ito. Discrete stochastic
models for traffic flow. Physical Review E, 51:2939–2949, April 1995.

7. K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic.
Journal de Physique I, 2:2221–2229, 1992.

8. Kai Nagel and Peter Wagner. Traffic Flow: Approaches to Modelling and Con-
trol. John Wiley & Sons, New York, 2006.

9. Randall J. LeVeque. Numerical Methods for Conservation Laws, 2nd ed.
Birkhauser, Boston, 1994.

10. Tommaso Toffoli. Cellular automata as an alternative to (rather than an ap-
proximation of) differential equations in modeling physics. Physica D, 10:117–
127, 1984.

11. Justin L. Tripp, Anders Å. Hansson, Maya Gokhale, and Henning S. Mortveit.
Partitioning hardware and software for reconfigurable supercomputing appli-
cations: A case study. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (SC|05), September 2005. Accepted for inclusion in proceed-
ings.

12. Eric Weisstein. Mathworld. http://mathworld.wolfram.com, 2005.
13. Anthony Ralston and Philip Rabinowitz. A First Course in Numerical Analy-

sis, 2nd ed. Dover Publications, 2001.
14. C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz,

and R. E. Stearns. On some special classes of sequential dynamical systems.
Annals of Combinatorics, 7:381–408, 2003.

15. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Francisco, 1979.

238 References

16. C. L. Barrett, H. H. Hunt, M. V. Marathe, S. S. Ravi, D. Rosenkrantz, and
R. Stearns. Predecessor and permutation existence problems for sequential
dynamical systems. In Proc. of the Conference on Discrete Mathematics and
Theoretical Computer Science, pages 69–80, 2003.

17. K. Sutner. On the computational complexity of finite cellular automata. Jour-
nal of Computer and System Sciences, 50(1):87–97, 1995.

18. Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer
Science, 334:3–33, 2005.

19. Jarkko Kari. Reversibility of 2D CA. Physica D, 45–46:379–385, 1990.
20. C. L. Barrett, H. H. Hunt, M. V. Marathe, S. S. Ravi, D. Rosenkrantz,

R. Stearns, and P. Tosic. Gardens of Eden and fixed point in sequential dynam-
ical systems. In Discrete Models: Combinatorics, Computation and Geometry,
pages 95–110, 2001. Available via LORIA, Nancy, France.
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/
dmAA0106/839.

21. Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Uni-
versity Press, New York, 2000.

22. Kunihiko Kaneko. Pattern dynamics in spatiotemporal chaos. Physica D,
34:1–41, 1989.

23. York Dobyns and Harald Atmanspacher. Characterizing spontaneous irregular
behavior in coupled map lattices. Chaos, Solitions and Fractals, 24:313–327,
2005.

24. Chai Wah Wu. Synchronization in networks of nonlinear dynamical systems
coupled via a directed graph. Nonlinearity, 18:1057–1064, 2005.

25. Thomas M. Liggett. Interacting Particle Systems. Classics in Mathematics.
Springer, New York, 2004.

26. Wolfgang Reisig and Grzegorz Rozenberg. Lectures on Petri Nets I: Basic
Models: Advances in Petri Nets. Number 1491 in Lecture Notes in Computer
Science. Springer-Verlag, New York, 1998.

27. John von Neumann. Theory of Self-Reproducing Automata. University of
Illinois Press, Chicago, 1966. Edited and completed by Arthur W. Burks.

28. E. F. Codd. Cellular Automata. Academic Press, New York, 1968.
29. G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical

system. Math. Syst. Theory, 3:320–375, 1969.
30. Erica Jen. Aperiodicity in one-dimensional cellular automata. Physica D,

45:3–18, 1990.
31. Burton H. Voorhees. Computational Analysis of One-Dimensional Cellular

Automata, volume 15 of A. World Scientific, Singapore, 1996.
32. O. Martin, A. Odlyzko, and S. Wolfram. Algebraic properties of cellular au-

tomata. Commun. Math. Phys., 93:219–258, 1984.
33. René A. Hernández Toledo. Linear finite dynamical systems. Communcations

in Algebra, 33:2977–2989, 2005.
34. Mats G. Nordahl. Discrete Dynamical Systems. PhD thesis, Institute of The-

oretical Physics, Göteborg, Sweden, 1988.
35. Kristian Lindgren, Christopher Moore, and Mats Nordahl. Complexity of two-

dimensional patterns. Journal of Statistical Physics, 91(5–6):909–951, 1998.
36. Stephen J. Willson. On the ergodic theory of cellular automata. Mathematical

Systems Theory, 9(2):132–141, 1975.
37. D. A. Lind. Applications of ergodic theory and sofic systems to cellular au-

tomata. Physica D, 10D:36–44, 1984.

References 239

38. P. A. Ferrari. Ergodicity for a class of probabilistic cellular automata. Rev.
Mat. Apl., 12:93–102, 1991.

39. Henryk Fukś. Probabilistic cellular automata with conserved quantities. Non-
linearity, 17:159–173, 2004.

40. Michele Bezzi, Franco Celada, Stefano Ruffo, and Philip E. Seiden. The tran-
sition between immune and disease states in a cellular automaton model of
clonal immune response. Physica A, 245:145–163, 1997.

41. U. Frish, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-
Stokes equations. Physical Review Letters, 56:1505–1508, 1986.

42. Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Bolz-
mann Models: An Introduction, volume 1725 of Lecture Notes in Mathematics.
Springer-Verlag, New York, 2000.

43. J.-P. Rivet and J. P. Boon. Lattice Gas Hydrodynamics, volume 11 of Cam-
bridge Nonlinear Science Series. Cambridge University Press, New York,
2001.

44. Parimal Pal Chaudhuri. Additive Cellular Automata. Theory and Applications,
volume 1. IEEE Computer Society Press, 1997.

45. Palash Sarkar. A brief history of cellular automata. ACM Computing Surveys,
32(1):80–107, 2000.

46. Andrew Ilichinsky. Cellular Automata: A Discrete Universe. World Scientific,
Singapore, 2001.

47. Stephen Wolfram. Theory and Applications of Cellular Automata, volume 1 of
Advanced Series on Complex Systems. World Scientific, Singapore, 1986.

48. B. Schönfisch and A. de Roos. Synchronous and asynchronous updating in
cellular automata. BioSystems, 51:123–143, 1999.

49. Stephen Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys.,
55:601–644, 1983.

50. Bernard Elspas. The theory of autonomous linear sequential networks. IRE
Trans. on Circuit Theory, 6:45–60, March 1959.

51. William Y. C. Chen, Xueliang Li, and Jie Zheng. Matrix method for linear
sequential dynamical systems on digraphs. Appl. Math. Comput., 160:197–212,
2005.

52. Ezra Brown and Theresa P. Vaughan. Cycles of directed graphs defined
by matrix multiplication (mod n). Discrete Mathematics, 239:109–120,
2001.

53. Wentian Li. Complex Patterns Generated by Next Nearest Neighbors Cellular
Automata, pages 177–183. Elsevier, Burlington, MA, 1998. (Reprinted from
Comput. & Graphics Vol. 13, No 4, 531–537, 1989.)

54. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22:437–467, 1969.

55. I. Shmulevich and S. A. Kauffman. Activities and sensitivities in Boolean
network models. Physical Review Letters, 93(4):048701:1–4, 2004.

56. E. R. Dougherty and I. Shmulevich. Mappings between probabilistic Boolean
networks. Signal Processing, 83(4):799–809, 2003.

57. I. Shmulevich, E. R. Dougherty, and W. Zhang. From Boolean to probabilistic
Boolean networks as models of genetic regulatory networks. Proceedings of the
IEEE, 90(11):1778–1792, 2002.

58. I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean
networks: A rule-based uncertainty model for gene regulatory networks. Bioin-
formatics, 18(2):261–274, 2002.

240 References

59. Carlos Gershenson. Introduction to random Boolean networks.
arXiv:nlin.AO/040806v3-12Aug2004, 2004. (Accessed August 2005.)

60. Mihaela T. Matache and Jack Heidel. Asynchronous random Boolean network
model based on elementary cellular automata rule 126. Physical Review E,
71:026231:1–13, 2005.

61. Michael Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, Boston, 1997.

62. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA, 1979.

63. Mohamed G. Gouda. Elements of Network Protocol Design. Wiley-Interscience,
New York, 1998.

64. J. K. Park, K. Steiglitz, and W. P. Thruston. Soliton-like behavior in automata.
Physica D, 19D:423–432, 1986.

65. N. Bourbaki. Groupes et Algebres de Lie. Hermann, Paris, 1968.
66. J. P. Serre. Trees. Springer-Verlag, New York, 1980.
67. Sheldon Axler. Linear Algebra Done Right, 2nd ed. Springer-Verlag, New York,

1997.
68. P. Cartier and D. Foata. Problemes combinatoires de commutation et

reárrangements, volume 85 of Lecture Notes in Mathematics. Springer-Verlag,
New York, 1969.

69. Volker Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1990.

70. Richard P. Stanley. Acyclic orientations of graphs. Discrete Math., 5:171–178,
1973.

71. Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical Sys-
tems, and Linear Algebra. Academic Press, New York, 1974.

72. Lawrence Perko. Differential Equations and Dynamical Systems. Springer-
Verlag, New York, 1991.

73. Erwin Kreyszig. Introductory Functional Analysis with Applications. John
Wiley and Sons, New York, 1989.

74. Michael Benedicks and Lennart Carleson. The dynamics of the Hénon map.
Annals of Mathematics, 133:73–169, 1991.

75. John B. Fraleigh. A First Course in Abstract Algebra, 7th ed. Addison-Wesley,
Reading, MA, 2002.

76. P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul. Basic Abstract Algebra,
2nd ed. Cambridge University Press, New York, 1994.

77. Nathan Jacobson. Basic Algebra I, 2nd ed. W.H. Freeman and Company, San
Francisco, 1995.

78. Thomas W. Hungerford. Algebra, volume 73 of GTM. Springer-Verlag, New
York, 1974.

79. B. L. van der Waerden. Algebra Volume I. Springer-Verlag, New York, 1971.
80. B. L. van der Waerden. Algebra Volume II. Springer-Verlag, New York, 1971.
81. Warren Dicks. Groups Trees and Projective Modules. Springer-Verlag, New

York, 1980.
82. Reinhard Diestel. Graph Theory, 2nd ed. Springer-Verlag, New York, 2000.
83. Chris Godsil and Gordon Royle. Algebraic Graph Theory. Number 207 in

GTM. Springer-Verlag, New York, 2001.
84. John Riordan. Introduction to Combinatorial Analysis. Dover Publications,

Mineola, NY, 2002.

References 241

85. J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge
University Press, New York, 1992.

86. John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynami-
cal Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York,
1983.

87. Earl A. Coddington and Norman Levinson. Theory of Ordinary Differential
Equations. McGraw-Hill, New York, 1984.

88. Robert L. Devaney. An Introduction to Chaotic Dynamical Systems, 2nd ed.
Reading, MA, Addison-Wesley, 1989.

89. Welington de Melo and Sebastian van Strien. One-Dimensional Dynamics.
Springer-Verlag, Berlin, 1993.

90. Reinhard Laubenbacher and Bodo Paraigis. Equivalence relations on finite
dynamical systems. Adv. Appl. Math., 26:237–251, 2001.

91. J. S. Milne. Étale Cohomology. Princeton University Press, Princeton, NJ,
1980.

92. Reinhard Laubenbacher and Bodo Pareigis. Update schedules of sequential
dynamical systems. Discrete Applied Mathematics, 154(6):980–994, 2006.

93. C. M. Reidys. The phase space of sequential dynamical systems. Annals of
Combinatorics. Submitted in 2006.

94. C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation II: Sequential dynamical systems. Appl. Math. Comput., 107(2–
3):121–136, 2000.

95. Saunders Mac Lane. Category Theory for the Working Mathematician, 2nd ed.
Number 5 in GTM. Springer-Verlag, 1998.

96. N. Kahale and L. J. Schulman. Bounds on the chromatic polynomial and
the number of acyclic orientations of a graph. Combinatorica, 16:383–397,
1996.

97. N. Linial. Legal colorings of graphs. Proc. 24th Symp. on Foundations of
Computer Science, 24:470–472, 1983.

98. U. Manber and M. Tompa. The effect of number of Hamiltonian paths on the
complexity of a vertex-coloring problem. SIAM J. Comp., 13:109–115, 1984.

99. R. Graham, F. Yao, and A. Yao. Information bounds are weak in the shortest
distance problem. J. ACM, 27:428–444, 1980.

100. C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of sim-
ulation IV: Fixed points, invertibility and equivalence. Appl. Math. Comput.,
134:153–172, 2003.

101. C. M. Reidys. On certain morphisms of sequential dynamical systems. Discrete
Mathematics, 296(2–3):245–257, 2005.

102. Reinhard Laubenbacher and Bodo Pareigis. Decomposition and simulation of
sequential dynamical systems. Adv. Appl. Math., 30:655–678, 2003.

103. William S. Massey. Algebraic Topology: An Introduction, volume 56 of GTM.
Springer-Verlag, New York, 1990.

104. William S. Massey. A Basic Course in Algebraic Topology, volume 127 of GTM.
Springer-Verlag, New York, 1997.

105. Warren Dicks and M. J. Dunwoody. Groups Acting on Graphs. Cambridge
University Press, New York, 1989.

106. F. T. Leighton. Finite common coverings of graphs. Journal of Combinatorial
Theory, 33:231–238, 1982.

107. Béla Bollobás. Graph Theory. An Introductory Course, volume 63 of GTM.
Springer-Verlag, New York, 1979.

242 References

108. J. H. van Lint. Introduction to Coding Theory, 3rd ed. Number 86 in GTM.
Springer-Verlag, New York, 1998.

109. C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation III, equivalence of SDS. Appl. Math. Comput., 122:325–340, 2001.

110. Erica Jen. Cylindrical cellular automata. Comm. Math. Phys., 118:569–590,
1988.

111. V.S. Anil Kumar, Matthew Macauley, and Henning S. Mortveit. Update order
instability in graph dynamical systems. Preprint, 2006.

112. C. M. Reidys. On acyclic orientations and sequential dynamical systems. Adv.
Appl. Math., 27:790–804, 2001.

113. A. Å. Hansson, H. S. Mortveit, and C. M. Reidys. On asynchronous cellular
automata. Advances in Complex Systems, 8(4):521–538, December 2005.

114. The GAP Group. Gap — groups, algorithms, programming — a system for
computational discrete algebra. http://www.gap-system.org, 2005.

115. G. A. Miller. Determination of all the groups of order 96. Ann. of Math.,
31:163–168, 1930.

116. Reinhard Laue. Zur konstruktion und klassifikation endlicher auflösbarer grup-
pen. Bayreuth. Math. Schr., 9, 1982.

117. H. S. Mortveit. Sequential Dynamical Systems. PhD thesis, NTNU, 2000.
118. C. M. Reidys. Sequential dynamical systems over words. Annals of Combina-

torics, 10, 2006.
119. C. M. Reidys. Combinatorics of sequential dynamical systems. Discrete Math-

ematics. In press.
120. Luis David Garcia, Abdul Salam Jarrah, and Reinhard Laubenbacher. Se-

quential dynamical systems over words. Appl. Math. Comput., 174(1):500–510,
2006.

121. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill,
Singapore, 1991.

122. Christian P. Robert and George Casella. Monte Carlo Statistical Methods, 2nd
ed. Springer Texts in Statistics. Springer-Verlag, New York, 2005.

123. G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai, and P. A. Rikvold. Sup-
pressing roughness of virtual times in parallel discrete-event simulations. Sci-
ence, 299:677–679, January 2003.

124. P.-Y. Louis. Increasing coupling of probabilistic cellular automata. Statist.
Probab. Lett., 74(1):1–13, 2005.

125. D. A. Dawson. Synchronous and asynchronous reversible markov systems.
Canad. Math. Bull., 17(5):633–649, 1974.

126. L. N. Vasershtein. Markov processes over denumerable products of spaces
describing large system of automata. Problemy Peredachi Informatsii, 5(3):64–
72, 1969.

127. Walter Fontana, Peter F. Stadler, Erich G. Bornberg-Bauer, Thomas Gries-
macher, Ivo L. Hofacker, Manfred Tacker, Pedro Tarazona, Edward D. Wein-
berger, and Peter K. Schuster. RNA folding and combinatory landscapes. Phys.
Rev. E, 47:2083–2099, 1993.

128. W. Fontana and P. K. Schuster. Continuity in evolution: On the nature of
transitions. Science, 280:1451–1455, 1998.

129. W. Fontana and P. K. Schuster. Shaping space: The possible and the attainable
in RNA genotype-phenotype mapping. J. Theor. Biol., 1998.

References 243

130. Christoph Flamm, Ivo L. Hofacker, and Peter F. Stadler. RNA in silico: The
computational biology of RNA secondary structures. Advances in Complex
Systems, 2(1):65–90, 1999.

131. C. M. Reidys, C. V. Forst, and P. Schuster. Replication and mutation on
neutral networks. Bulletin of Mathematical Biology, 63(1):57–94, 2001.

132. C. M. Reidys, P. F. Stadler, and P. Schuster. Generic properties of combina-
tory maps: Neutral networks of RNA secondary structures. Bull. Math. Biol.,
59:339–397, 1997.

133. W. R. Schmitt and M. S. Waterman. Plane trees and RNA secondary structure.
Discr. Appl. Math., 51:317–323, 1994.

134. J. A. Howell, T. F. Smith, and M. S. Waterman. Computation of generating
functions for biological molecules. SIAM J. Appl. Math., 39:119–133, 1980.

135. M. S. Waterman. Combinatorics of RNA hairpins and cloverleaves. Studies in
Appl. Math., 60:91–96, 1978.

136. C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrich-
ment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249:505–
510, 1990.

137. M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge University
Press, Cambridge, 1983.

138. C. V. Forst, C. M. Reidys, and J. Weber. Lecture Notes in Artificial Intelli-
gence V 929, pages 128–147. Springer-Verlag, New York, 1995. Evolutionary
Dynamics and Optimization: Neutral Networks as Model Landscapes for RNA
Secondary Structure Landscapes.

139. M. Eigen, J. S. McCaskill, and P. K. Schuster. The molecular quasi-species.
Adv. Chem. Phys., 75:149–263, 1989.

140. M. Huynen, P. F. Stadler, and W. Fontana. Smoothness within ruggedness:
The role of neutrality in adaptation. PNAS, 93:397–401, 1996.

141. I. L. Hofacker, P. K. Schuster, and P. F. Stadler. Combinatorics of
RNA secondary structures. Discrete Applied Mathematics, 88:207–237,
1998.

142. C. M. Reidys and P. F. Stadler. Bio-molecular shapes and algebraic structures.
Computers and Chemistry, 20(1):85–94, 1996.

143. U. Göbel, C. V. Forst, and P. K. Schuster. Structural constraints and neutrality
in RNA. In R. Hofestädt, editor, LNCS/LNAI Proceedings of GCB96, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1997.

144. H. S. Mortveit and C. M. Reidys. Neutral evolution and mutation rates of
sequential dynamical systems over words. Advances in Complex Systems, 7(3–
4):395–418, 2004.

145. André Thayse. Boolean Calculus of Differences, volume 101 of Lecture Notes
in Computer Science. Springer-Verlag, New York, 1981.

146. Gérard Y. Vichniac. Boolean derivatives on cellular automata. Physica D,
45:63–74, 1990.

147. Fülöp Bazsó. Derivation of vector-valued Boolean functions. Acta Mathematica
Hungarica, 87(3):197–203, 2000.

148. Fülöp Bazsó and Elemér Lábos. Boolean-Lie algebras and the Leib-
niz rule. Journal of Physics A: Mathematical and General, 39:6871–6876,
2006.

149. Kunihiko Kaneko. Spatiotemporal intermittency in couple map lattices.
Progress of Theoretical Physics, 74(5):1033–1044, November 1985.

244 References

150. M. Golubitsky, M. Pivato, and I. Stewart. Interior symmetry and local
bifurcations in coupled cell networks. Dynamical Systems, 19(4):389–407,
2004.

151. S. Eidenbenz, A. Å. Hansson, V. Ramaswamy, and C. M. Reidys. On a new
class of load balancing network protocols. Advances in Complex Systems, 10(3),
2007.

152. A. Å. Hansson and C. M. Reidys. A discrete dynamical systems framework for
packet-flow on networks. FMJS, 22(1):43–67, 2006.

153. A. Å. Hansson and C. M. Reidys. Adaptive routing and sequential dynamical
systems. Private communication.

Index

G(w, Y), 185
acyclic orientation, 193
automorphism, 193

k-fold composition, 60

function
symmetric, 72

acyclic orientation, 185, 193
OY , 194

adjacency matrix, 132
algorithm

Gauss–Jacobi, 22
Gauss–Seidel, 16

asymptotic stability, 61
attractor, 17

backward invariant set, 61
ball, 40
bijection, 201
Boolean network, 33

random, 33
boundary conditions

periodic, 25
zero, 25

CA
definition, 24
linear, 28
neighborhood, 24
phase space, 26
radius, 25
rule elementary, 27
state, 24

category theory, 90
chaos, 60
CML, 20
coding theory, 213
coloring

vertex, 84
compatible

group actions, 201
coupled map lattice, 20, 231
coupling parameter, 21
covering

compatible, 131

degree sequence, 91
derivative

Boolean, 229
destination, 234
DFSM, 35
diagram

commutative, 190, 207
discrete dynamical system

classical, 59
distance, 223

Hamming, 112
dynamical system

continuous, 59
dynamics

reversible, 80

edge
extremities, 39
geometric, 42
origin, 39
terminus, 39

246 Index

equivalence
dynamical, 89, 93
functional, 88
orbit, 157

equivalence class
[w]N(ϕ), 200
∼ϕ, 194
acyclic orientation, 189
words, 193

equivalence relation, 185
∼Y , 204
∼Fix(w), 200
∼N(ϕ), 200
∼G, 199

Euler φ-function, 98
exact sequence

long, 192
short, 186, 189

family, 71
filter automaton, 35
finite-state machine, 34
fixed point, 17, 61, 78

global, 130
isolated, 136
local, 130

fixed-point covering
compatible, 131

flow, 58
forward invariant set, 61
FSM, 34
function

inverted threshold, 139
local, 70
monotone, 140
potential, 140
threshold, 139
vertex, 70

function table, 18

graph
automorphism, 41
binary hypercube, 44
Cayley, 111
circle graph, 43
circulant, 129
combinatorial, 41
complete bipartite, 143
component, 40

connected, 206
covering map, 41
cycle, 40
definition, 39
generalized n-cube, 111
homomorphism, see graph morphism
independent set, 40
isomorphism, 188
line graph, 42
local isomorphism, 41
locally injective morphism, 41
locally surjective morphism, 41
loop, 40
loop-free, 40
morphism, 40
orbit graph, 51
orientation, 46
over words, 192
path, 40
random, 227
simple, 41
star, 100
subgraph, 40
union, 80
update graph, 47
vertex join, 42
walk, 40
wheel graph, 43

group
action, 50, 186
automorphism, 41, 186
Frattini, 177
homomorphism, 189
isotropy, 50
normal subgroup, 189
orbit, 50, 187
solvable, 168
stabilizer, 50
subgroup, 188
Sylow, 168, 177
symmetric, 187

H-class, 83
Hamiltonian system, 58
homeomorphism, 60

independence
w, 165

index

Index 247

GAP, 177
induction, 210
initial condition, 58
interacting particle systems, 23
inversion pair, 47
involution, 39
isomorphism

SDS, 103
stable, 89, 157

landscape, 227
language

regular, 35
limit cycle, 60, 61
limit set, 61
linear ordering, 48
linear system, 61
Lipschitz condition, 59

map
covering, 104

mapping
surjective, 195

Markov chain, 33
matrix

adjacency, 44
trace, 45

metric, 223
model validity, 6
morphism

digraph, 207
locally bijective, 207
SDS, 103

multigraph, 42

neighborhood
Moore, 25
von Neumann, 25

network
ad hoc, 234

neutral network, 222
nonlinear system, 61
normal form

Cartier–Foata, 197
normalizer, 186, 189

ODE, 57
orbit

backward

discrete, 60
continuous, 58
forward

discrete, 60
full

discrete, 60
vertex multiplicity, 192

orbit stability, 61
orientation

acyclic, 46, 222

packet switching, 234
partial ordering, 46
partially commutative monoid, 48, 197
partition, 195
periodic orbit, 61
periodic point, 61
permutation

canonical, 49
petri nets, 23
phase portrait

continuous, 58
phase space, 3, 60, 206

continuous, 58
probabilistic, 34

point mutation, 222
polynomial

characteristic, 45
population, 226
prime period, 61
probability, 213
problem

permutation existence, 19
predecessor existence, 19
reachability, 18

protocol
locally load-sensing, 234

quiescent state, 24

rank layer sets, 92
recursion, 49
RNA, 220
routing

throughput, 234
vertex load, 234

rule
outer-symmetric, 31
radius, 129

248 Index

symmetric, 31
totalistic, 31

scheduling, 13
scheme

replication-deletion, 226
SDS, 57

L-local, 233
base graph, 71
computational, 18
dependency graph, 187
evolution, 222
forward orbit, 73
induced, 73
invertible, 80
local map, 204
periodic point, 75
permutation, 71
phase space, 74
system update, 71
threshold, 139
transient state, 75
word, 71

secondary structure, 220
sequence, 71
set

indexed, 71
invariant, 17
words, 187

short exact sequence, 189
simulation

discrete event, 185, 214
event-driven, 5

soliton, 35
source, 234
space-time diagram, 26, 73

sphere, 40
stability, 61
state

system, 70
vertex, 69

strange attractor, 60
structure

coarse grained, 222
secondary, 222

sweep scheduling, 13
synchronization

global, 215
local, 215

time horizon, 215
time series, 73
TRANSIMS, 7

micro-simulator, 8
router, 8

transport computation, 14
transport computations, 14
Tutte-invariant, 49

update
multiple, 185
system state, 3
vertex state, 3

vector field, 57
vertex

source, 92
voting game, 143

Wolfram enumeration, 28
word, 185

fair, 122, 147, 149
permutation, 185, 220

Universitext

Aguilar, M.; Gitler, S.; Prieto, C.: Algebraic
Topology from a Homotopical Viewpoint

Aksoy, A.; Khamsi, M. A.: Methods in Fixed Point
Theory

Alevras, D.; Padberg M. W.: Linear Optimization
and Extensions

Andersson, M.: Topics in Complex Analysis

Aoki, M.: State Space Modeling of Time Series

Arnold, V. I.: Lectures on Partial Differential
Equations

Audin, M.: Geometry

Aupetit, B.: A Primer on Spectral Theory

Bachem, A.; Kern, W.: Linear Programming
Duality

Bachmann, G.; Narici, L.; Beckenstein, E.: Fourier
and Wavelet Analysis

Badescu, L.: Algebraic Surfaces

Balakrishnan, R.; Ranganathan, K.: A Textbook of
Graph Theory

Balser, W.: Formal Power Series and Linear
Systems of Meromorphic Ordinary Differential
Equations

Bapat, R.B.: Linear Algebra and Linear Models

Benedetti, R.; Petronio, C.: Lectures on Hyperbolic
Geometry

Benth, F. E.: Option Theory with Stochastic
Analysis

Berberian, S. K.: Fundamentals of Real Analysis

Berger, M.: Geometry I, and II

Bhattacharya, R.; Waymire, E.C.: A Basic Course
in Probability Theory

Bliedtner, J.; Hansen, W.: Potential Theory

Blowey, J. F.; Coleman, J. P.; Craig, A. W. (Eds.):
Theory and Numerics of Differential Equations

Blowey, J.; Craig, A.: Frontiers in Numerical
Analysis. Durham 2004

Blyth, T. S.: Lattices and Ordered Algebraic
Structures

Börger, E.; Grädel, E.; Gurevich, Y.: The Classical
Decision Problem

Böttcher, A; Silbermann, B.: Introduction to Large
Truncated Toeplitz Matrices

Boltyanski, V.; Martini, H.; Soltan, P. S.: Excursions
into Combinatorial Geometry

Boltyanskii, V. G.; Efremovich, V. A.: Intuitive
Combinatorial Topology

Bonnans, J. F.; Gilbert, J. C.; Lemaréchal, C.;
Sagastizábal, C. A.: Numerical Optimization

Booss, B.; Bleecker, D. D.: Topology and Analysis

Borkar, V. S.: Probability Theory

Bridges, D.S.; Vita, L.S.: Techniques of Construc-
tive Analysis

Brunt B. van: The Calculus of Variations

Bühlmann, H.; Gisler, A.: A Course in Credibility
Theory and Its Applications

Carleson, L.; Gamelin, T. W.: Complex Dynamics

Cecil, T. E.: Lie Sphere Geometry: With
Applications of Submanifolds, Second Ed.

Chae, S. B.: Lebesgue Integration

Chandrasekharan, K.: Classical Fourier Transform

Charlap, L. S.: Bieberbach Groups and Flat
Manifolds

Chern, S.: Complex Manifolds without Potential
Theory

Chorin, A. J.; Marsden, J. E.: Mathematical
Introduction to Fluid Mechanics

Cohn, H.: A Classical Invitation to Algebraic
Numbers and Class Fields

Curtis, M. L.: Abstract Linear Algebra

Curtis, M. L.: Matrix Groups

Cyganowski, S.; Kloeden, P.; Ombach, J.: From
Elementary Probability to Stochastic Differential
Equations with MAPLE

Dalen, D. van: Logic and Structure

Das, A.: The Special Theory of Relativity: A
Mathematical Exposition

Debarre, O.: Higher-Dimensional Algebraic
Geometry

Deitmar, A.: A First Course in Harmonic Analysis,
Second Ed.

Demazure, M.: Bifurcations and Catastrophes

Devlin, K. J.: Fundamentals of Contemporary Set
Theory

DiBenedetto, E.: Degenerate Parabolic Equations

Diener, F.; Diener, M.(Eds.): Nonstandard Analysis
in Practice

Dimca, A.: Sheaves in Topology

Dimca, A.: Singularities and Topology of
Hypersurfaces

DoCarmo, M. P.: Differential Forms and Applications

Duistermaat, J. J.; Kolk, J. A. C.: Lie Groups

Dumortier, F.; Llibre, J.; Artés, J.C.: Qualitative
Theory of Planar Differential Systems

Dundas, B.I.; Levine, M.; Østvær, P.A.; Röndigs, O.;
Voevodsky, V.; Jahren, B.: Motivic Homotopy
Theory

Edwards, R. E.: A Formal Background to Higher
Mathematics Ia, and Ib

Edwards, R. E.: A Formal Background to Higher
Mathematics IIa, and IIb

Emery, M.: Stochastic Calculus in Manifolds

Emmanouil, I.: Idempotent Matrices over
Complex Group Algebras

Endler, O.: Valuation Theory

Engel, K.; Nagel, R.: A Short Course on Operator
Semigroups

Erez, B.: Galois Modules in Arithmetic

Everest, G.; Ward, T.: Heights of Polynomials and
Entropy in Algebraic Dynamics

Farenick, D. R.: Algebras of Linear Transfor-
mations

Foulds, L. R.: Graph Theory Applications

Franke, J.; Härdle, W.; Hafner, C. M.: Statistics of
Financial Markets: An Introduction

Frauenthal, J. C.: Mathematical Modeling in Epi-
demiology

Freitag, E.; Busam, R.: Complex Analysis

Friedman, R.: Algebraic Surfaces and Holomor-
phic Vector Bundles

Fuks, D. B.; Rokhlin, V. A.: Beginner’s Course in
Topology

Fuhrmann, P. A.: A Polynomial Approach to
Linear Algebra

Gallot, S.; Hulin, D.; Lafontaine, J.: Riemannian
Geometry

Gardiner, C. F.: A First Course in Group Theory

Gårding, L.; Tambour, T.: Algebra for Computer
Science

Godbillon, C.: Dynamical Systems on Surfaces

Godement, R.: Analysis I, and II

Goldblatt, R.: Orthogonality and Spacetime
Geometry

Gouvêa, F. Q.: p-Adic Numbers

Gross, M. et al.: Calabi-Yau Manifolds and
Related Geometries

Gustafson, K. E.; Rao, D. K. M.: Numerical Range:
The Field of Values of Linear Operators and
Matrices

Gustafson, S. J.; Sigal, I. M.: Mathematical
Concepts of Quantum Mechanics

Hahn, A. J.: Quadratic Algebras, Clifford
Algebras, and Arithmetic Witt Groups

Hájek, P.; Havránek, T.: Mechanizing Hypothesis
Formation

Heinonen, J.: Lectures on Analysis on Metric
Spaces

Hlawka, E.; Schoißengeier, J.; Taschner, R.: Geometric
and Analytic Number Theory

Holmgren, R. A.: A First Course in Discrete
Dynamical Systems

Howe, R.; Tan, E. Ch.: Non-Abelian Harmonic
Analysis

Howes, N. R.: Modern Analysis and Topology

Hsieh, P.-F.; Sibuya, Y. (Eds.): Basic Theory of
Ordinary Differential Equations

Humi, M.; Miller, W.: Second Course in Ordinary
Differential Equations for Scientists and
Engineers

Hurwitz, A.; Kritikos, N.: Lectures on Number
Theory

Huybrechts, D.: Complex Geometry: An Intro-
duction

Isaev, A.: Introduction to Mathematical Methods
in Bioinformatics

Istas, J.: Mathematical Modeling for the Life
Sciences

Iversen, B.: Cohomology of Sheaves

Jacob, J.; Protter, P.: Probability Essentials

Jennings, G. A.: Modern Geometry with Appli-
cations

Jones, A.; Morris, S. A.; Pearson, K. R.: Abstract
Algebra and Famous Inpossibilities

Jost, J.: Compact Riemann Surfaces

Jost, J.: Dynamical Systems. Examples of Complex
Behaviour

Jost, J.: Postmodern Analysis

Jost, J.: Riemannian Geometry and Geometric
Analysis

Kac, V.; Cheung, P.: Quantum Calculus

Kannan, R.; Krueger, C. K.: Advanced Analysis on
the Real Line

Kelly, P.; Matthews, G.: The Non-Euclidean
Hyperbolic Plane

Kempf, G.: Complex Abelian Varieties and Theta
Functions

Kitchens, B. P.: Symbolic Dynamics

Kloeden, P.; Ombach, J.; Cyganowski, S.: From
Elementary Probability to Stochastic Differential
Equations with MAPLE

Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical
Solution of SDE Through Computer Experi-
ments

Kostrikin, A. I.: Introduction to Algebra

Krasnoselskii, M. A.; Pokrovskii, A. V.: Systems
with Hysteresis

Kurzweil, H.; Stellmacher, B.: The Theory of Finite
Groups: An Introduction

Kuo, H.-H.: Introduction to Stochastic Integration

Kyprianou, A.: Introductory Lectures on Fluc-
tuations of Levy Processes with Applications

Lang, S.: Introduction to Differentiable Mani-
folds

Lefebvre, M.: Applied Stochastic Processes

Lorenz, F.: Algebra, Volume I

Luecking, D. H.; Rubel, L. A.: Complex Analysis.
A Functional Analysis Approach

Ma, Zhi-Ming; Roeckner, M.: Introduction to the
Theory of (non-symmetric) Dirichlet Forms

Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry
and Logic

Marcus, D. A.: Number Fields

Martinez, A.: An Introduction to Semiclassical
and Microlocal Analysis

Matoušek, J.: Using the Borsuk-Ulam Theorem

Matoušek, J.: Understanding and Using Linear
Programming

Matsuki, K.: Introduction to the Mori Program

Mazzola, G.; Milmeister G.; Weissman J.: Compre-
hensive Mathematics for Computer Scientists 1

Mazzola, G.; Milmeister G.; Weissman J.: Com-
prehensive Mathematics for Computer
Scientists 2

Mc Carthy, P. J.: Introduction to Arithmetical
Functions

McCrimmon, K.: A Taste of Jordan Algebras

Meyer, R. M.: Essential Mathematics for Applied
Field

Meyer-Nieberg, P.: Banach Lattices

Mikosch, T.: Non-Life Insurance Mathematics

Mines, R.; Richman, F.; Ruitenburg, W.: A Course in
Constructive Algebra

Moise, E. E.: Introductory Problem Courses in
Analysis and Topology

Montesinos-Amilibia, J. M.: Classical Tessellations
and Three Manifolds

Morris, P.: Introduction to Game Theory

Mortveit, H.S.; Reidys, C. M: An Introduction to
Sequential Dynamical Systems

Nicolaescu, L.I.: An Invitation to Morse Theory

Nikulin, V. V.; Shafarevich, I. R.: Geometries and
Groups

Oden, J. J.; Reddy, J. N.: Variational Methods in
Theoretical Mechanics

Øksendal, B.: Stochastic Differential Equations

Øksendal, B.; Sulem, A.: Applied Stochastic
Control of Jump Diffusions

Orlik,P.; Welker, V.; Floystad, G.: Algebraic Combi-
natorics

Procesi, C.: An Approach through Invariants and
Represen tations

Poizat, B.: A Course in Model Theory

Polster, B.: A Geometrical Picture Book

Porter, J. R.; Woods, R. G.: Extensions and Absolutes
of Hausdorff Spaces

Radjavi, H.; Rosenthal, P.: Simultaneous Triangu-
larization

Ramsay, A.; Richtmeyer, R. D.: Introduction to
Hyperbolic Geometry

Rautenberg, W.: A Concise Introduction to Mathe-
matical Logic

Rees, E. G.: Notes on Geometry

Reisel, R. B.: Elementary Theory of Metric
Spaces

Rey, W. J. J.: Introduction to Robust and Quasi-
Robust Statistical Methods

Ribenboim, P.: Classical Theory of Algebraic
Numbers

Rickart, C. E.: Natural Function Algebras

Roger G.: Analysis II

Rotman, J. J.: Galois Theory

Rubel, L. A.: Entire and Meromorphic Functions

Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to
Tensors

Runde, V.: A Taste of Topology

Rybakowski, K. P.: The Homotopy Index and
Partial Differential Equations

Sagan, H.: Space-Filling Curves

Samelson, H.: Notes on Lie Algebras

Schiff, J. L.: Normal Families

Sengupta, J. K.: Optimal Decisions under Uncer-
tainty

Séroul, R.: Programming for Mathematicians

Seydel, R.: Tools for Computational Finance

Schirotzek, W.: Nonsmooth Analysis

Shafarevich, I. R.: Discourses on Algebra

Shapiro, J. H.: Composition Operators and
Classical Function Theory

Simonnet, M.: Measures and Probabilities

Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves,
W.: An Invitation to Algebraic Geometry

Smith, K. T.: Power Series from a Computational
Point of View

Smoryński, C.: Logical Number Theory I. An
Introduction

Smoryński, C.: Self-Reference and Modal Logic

Stichtenoth, H.: Algebraic Function Fields and
Codes

Stillwell, J.: Geometry of Surfaces

Stroock, D. W.: An Introduction to the Theory of
Large Deviations

Sunder, V. S.: An Invitation to von Neumann
Algebras

Tamme, G.: Introduction to Étale Cohomology

Tondeur, P.: Foliations on Riemannian Mani-
folds

Toth, G.: Finite Möbius Groups, Minimal
Immersions of Spheres, and Moduli

Tu, L.: An Introduction to Manifolds

Verhulst, F.: Nonlinear Differential Equations
and Dynamical Systems

Weintraub, S.H.: Galois Theory

Wong, M. W.: Weyl Transforms

Xambó-Descamps, S.: Block Error-Correcting
Codes

Zaanen, A. C.: Continuity, Integration and Fourier
Theory

Zhang, F.: Matrix Theory

Zong, C.: Sphere Packings

Zong, C.: Strange Phenomena in Convex and
Discrete Geometry

Zorich, V. A.: Mathematical Analysis I

Zorich, V. A.: Mathematical Analysis II

	Preface
	Contents
	What is a Sequential Dynamical System?
	A Comparative Study
	Graphs, Groups, and Dynamical Systems
	Sequential Dynamical Systemsover Permutations
	Phase-Space Structure of SDS andSpecial Systems
	Graphs, Groups, and SDS
	Combinatorics of Sequential DynamicalSystems over Words
	Outlook

	References
	Index

