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Preface

What would science be without measurement, and what would social
science be without social measurement? Social measurement belongs
to the widely accepted and fruitful stream of the empirical-analytic
approach. Statistics and research methodology play a central role, and
it is difficult to ascertain precisely when it all started in the social
sciences. An important subfield of social measurement is the quanti-
fication of human behavior—that is, using measurement instruments
of which educational and psychological tests are the most prominent
representatives. The intelligence test, for example, was developed in
the early 20th century in France thanks to the research in school
settings by Alfred Binet and Henri Simon. Actually, they were pioneers
in social measurement at large. What applies to psychological and
educational tests, also applies to social measurement procedures at
large: measurement instruments must be valid and reliable in the first
place. Many requirements of tests in education and psychology are
also essential for social measurement.

We will thoroughly discuss the concepts of reliability and validity.
In classical test theory, the test score is a combination of a true score
and measurement error. It is possible to define the measurement error
in several ways depending on the way one would like to generalize to
other testing situations. Generalizability theory, developed from 1963
onward by Cronbach and his coworkers, effectively deals with this
problem. It gives a framework in which the various aspects of test
scores can be dealt with. Of much importance to test theory has been
the development of item response theory, or IRT for short. In an item
response model, or IRT model, the item is the unit of analysis instead
of the test. In IRT models, the variance of measurement errors is a
function of the level or ability of the respondent, an important char-
acteristic that in most classical test theory models is not available in
a natural way. IRT has resulted in improvements in test theoretical



applications and in new applications as well, for example, in compui-
erized adaptive testing, CAT for short.

This manuscript has been written for advanced undergraduate
and graduate students in psychology, education, and other behavioral
sciences. The prerequisites are a working knowledge of statistics
including the basic concepts of the analysis of variance and regression
analysis and some knowledge of estimation theory and methods. Of
course, the more background in research methodology and statistical
data analysis the reader has, the more he or she can profit. This text
is also meant for researchers in the field of measurement and testing,
not typically specialized in test theory. It portends not merely a broad
overview but also a critical survey with hopefully knowledgeable
comments and criticism on the test theories. An attempt is made to
follow recent developments in the field. As aids in instruction, study-
ing, and reading, each chapter concludes with exercises, the answers
of which are given at the end of the book. Examples and exhibits are
also included where they seemed useful.

There are some great books on mental test theory. Gulliksen (1950)
and Lord and Novick (1968) should be mentioned first and with great
deference. These are the godfathers of classical test theory, and they
were the ones to codify it. Would generalizability theory have been
developed without the work of Lee J. Cronbach (see, e.g., Cronbach
Gleser, Nanda, and Rajaratnam, 1972). As in many fields of science,
inventions and developments are not one man’s achievement. So it is
with item response theory, and therefore, being aware of doing injus-
tice to other authors, we mention only Rasch (1960), Birnbaum (1968),
Lord and Novick (1968), and Lord (1980). The Standards for Educa-
tional and Psychological Testing (American Psychological Association
[APA], American Educational Research Association [AERA], and the
National Council on Measurement in Education [NCME]) served as
guidelines, and ample reference is made to them. For a more in-depth
treatment of the psychometrical topics in this book, the reader is
referred to volume 26 of the Handbook of Statistics (2007), Psycho-
metrics, edited by Rao and Sinharay.

Information on test theory can readily be obtained from the World
Wide Web. Wikipedia is one source of information. There certainly are
other useful sites, but it is not always clear whether they remain
available and if the presented information is of good quality. We
decided to refer to only a few sites for software.



Previous versions of this book have been used in one-semester
courses in test theory for advanced undergraduate and graduate
students of psychology and education. Comments from our students
were helpful in improving the text.

Dato N. M. de Gruijter

Leo J. Th. Van der Kamp
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CHAPTER 1

Measurement and Scaling

1.1 Introduction

In behavioral sciences in general, and in education and psychology in
particular, the use of measurement procedures or tests and assess-
ments is ubiquitous. Measurement instruments are used for all kinds
of assessments. The main types of psychological and educational tests
are intelligence tests, aptitude tests, achievement tests, personality
tests, interest inventories, behavioral procedures, and neuropsycho-
logical tests. The use of such tests is not restricted to psychology and
education but stretches over other disciplines of the behavioral
sciences, and even beyond (e.g., in the field of psychiatry). Using tests
involves some kind of measurement procedure and, in addition, sta-
tistical theories for characterizing the results of the measurement
procedures—that is, for modeling test scores.

In this chapter we will first give a broad and generally accepted
definition of a test. Then a sketchy introduction will be given into
measurement and scaling. Measurement not only pervades daily life,
it is also the cornerstone of scientific inquiry. After defining the concept
of measurement, scales of measurement and the relation between
measurement and statistics will be presented. Some remarks will be
made on scales of measurement in relation to the test theory models
given later, while the concept of dimensionality of tests will also be
discussed.

1.2 Definition of a test

A test is best defined as a standardized procedure for sampling behav-
ior and describing it with categories or scores. Essentially, this defini-
tion includes systematic measurement in all fields of the behavioral
sciences. This broad definition includes also checklists, rating scales,
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and observation schemes. The essential features of a test are that it
is as follows:

+ A standardized procedure, which means that the procedure
1s administered uniformly over a group of persons.

+ A focused behavioral sample, which means that the test is
focused on a well-defined behavioral domain. Examples of
domains in educational measurement are achievement in
arithmetic, or language performance. Psychological tests
may also be targeted to constructs or theoretical variables
(e.g., depression, extraversion, quality of life, emotionality,
and the like), so, at variables that are not directly observable.
In other words, such a measurement approach assumes that
there exists a psychological attribute to measure. Such a psy-
chological attribute is usually a core element of a nomological
network, which maps its relations with other constructs, and
also clarifies its relations with observables (i.e., relevant
behavior in the empirical world).

+ A description in terms of scores or mapping into categories.
Using tests implies a form of measurement whereby perfor-
mances, characteristics, and traits are represented in terms
of numbers or classifications.

In addition to these features, once a test score is obtained, norms or
standards of a relevant group of persons are necessary for the inter-
pretation of the score of a given person. Finally, collecting test scores
is seldom an aim in itself, the function of testing is ultimately decision
making in a narrow as well as in a broad sense. This includes classi-
fication, selection and placement, diagnosis and treatment planning,
self-knowledge, program evaluation, and research.

1.3 Measurement and scaling

Stevens defined measurement as “the assignment of numbers to
aspects of objects or events according to one or another rule or con-
vention” (Stevens, 1968, p. 850). Other, sometimes broader, sometimes
more refined and more sophisticated definitions are around, but for
our purpose Stevens’ definition suffices. In addition to what is called
psychometric measurement, considered here, representational mea-
surement has been formulated. More can be found in Judd and
McClelland (1998) and the references mentioned by them, or in Michell
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(1999, 2005), who provides a critical history of the concept, and in
McDonald (1999), who discusses measurement and scaling theory in
the context of a unified treatment of test theory.

Usually a test consists of a number of items. The simplest item
type is when only two answers are possible (e.g., Yes or No, correct or
incorrect).

After a test has been administered to a group of persons, we gen-
erally have a score for each person. The simplest example of a test
score is the total score on a multiple-choice test, where one point is
given for a correct answer to an item and zero points are given for an
incorrect answer or skipped item. Some persons have higher scores
than others, and we expect that these differences are relevant.

We speak of a measurement once a score has been computed. The
measurement refers to a property or aspect of the person tested. A
well-known classification of measurement scales is given by Stevens
(1951). These measurement scales are as follows:

1. The nominal scale—On the nominal scale, objects are class-
ified according to a characteristic (e.g., a person can be class-
ified with respect to sex, hair color, etc.).

2. The ordinal scale—On the ordinal scale, objects are ordered
according to a certain characteristic (e.g., the Beaufort scale
of wind force).

3. The interval scale—On the interval scale, equal scale differ-
ences imply equal differences in the relevant property. (For
example, the Celsius and Fahrenheit scales for temperature
are interval scales; a difference of 1° at the freezing point is
as large as a difference of 1° at the boiling point of water.)

4. The ratio scale—The ratio scale has a natural origin as well
as equal intervals. Length in meters and weight in kilograms
are defined on a ratio scale, as is temperature on the Kelvin
scale. Ratio scales are relatively rare in psychology because
of the difficulty of defining a zero point. Can a person have
zero intelligence?

Most researchers do not regard the use of the nominal scale as
measurement. One should at least be able to make a statement about
the amount of the property in question. Many researchers use an even
narrower definition of measurement: they restrict themselves to scales
that at least have interval properties.

With interval measurements of temperature, two scales are in use:
the Celsius scale and the Fahrenheit scale. The scales are related to
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each other through a linear transformation: °F = (9/5)°C + 32. The
linear transformation is a permissible transformation. With a linear
transformation, the interval properties of the scale are maintained.
When we have a ratio scale, a general linear transformation is not
permissible while such a transformation effects a change of the origin
(0). With a ratio scale, only multiplication with a constant is permitted.
For example, one can measure length in centimeters instead of meters.
With an ordinal scale, all monotonously increasing transformations
are permitted.

The scale properties are relevant when one wants to compute mea-
sures characterizing distributions and apply statistical tests. When an
ordinal scale is used, one generally is not interested in the average
score. The median seems more appropriate and useful. On the other
hand, statistics seldom is interested in the measurement level of a
variable (Anderson, 1961). When a statistical test is used, it is impor-
tant to know whether the distributional assumptions hold. Even if the
assumptions are not fully met, statistical tests may be used if they are
robust against violations of the assumptions.

The interpretation of the outcome of a statistical test, however,
depends on the assumption with respect to the measurement level
(Lord, 1954). And, as in some cases a nonlinear transformation might
reverse the order of two means, we should decide which kind of trans-
formations we are prepared to apply and which kind of transformations
we judge as too extreme to be relevant. More on measurement scales
and statistics is presented in Exhibit 1.1.

Exhibit 1.1 On measurement scales or “what to do
with football numbers”

How devoted must a researcher be to Stevens’ measurement-directed
position? Is it permitted to calculate means and standard deviations on
scores on an ordinal scale? Lord (1953) relates a story about a professor
who retired early because of feelings of guilt for calculating means and
standard deviations of test scores. The university gave this professor the
concession for selling cloth with numbers for football players, and a
vending machine, to assign numbers randomly. The team of freshmen
football players protested after a while, because the numbers given to
them were too low. The professor consulted a statistician. What should
be done in the dispute with the complaining members of the freshman
football team? Are their football numbers indeed too low? The daring
and realistic statistician, without any hesitation whatsoever, turned to
compute all kinds of measures, including means and standard deviations
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of football numbers. The professor protested that these football numbers
did not even constitute an ordinal scale. The statistician, however,
retorted: “The numbers don’t know that. Since the numbers don’t re-
member where they come from, they always behave just the same way
regardless” (Lord, 1953, p. 751). The statistician concluded that it was
highly implausible that the numbers of the team were a random sample.
Needless to say, Lord’s professor turned out to be convinced and lost his
feelings of guilt. He even took up his old position.

Lord’s narrative is basic to the so-called measurement-independent
position. However, “the utmost care must be exercised in interpreting
the results of arithmetic operations upon nominal and ordinal numbers;
nevertheless, in certain cases such results are capable of being rigorously
and usefully interpreted, at least for the purpose of testing a null
hypothesis” (Lord, 1954, p. 265).

In practice we may generally assume that the score scales of psy-
chological and educational tests are not interval scales. Nevertheless,
researchers frequently act as if the score scale is an interval scale. One
might say that no harm is done as long as the predictions from this
way of interpreting test results are useful. When difference scores are
used as an indication of a learning result or an improvement and these
scores are related to other variables, certainly the interval property is
invoked. In other test theoretical applications, for example in nonlinear
equating of tests—here tests differing in difficulty level and other scale
aspects are scaled to the same scale—the interval property is implicitly
rejected. In item response models, scores on different tests are nonlin-
early related to each other. With these models, scores can be computed
on a latent scale, and within the context of a particular model, the scale
has the interval property. The remaining question is whether this
interval property is a fundamental property of the characteristic or just
a property that is a consequence of the scale representation chosen.
The Rasch model, for example, has two representations of the charac-
teristic measured: one representation on an additive scale (which is a
special case of the interval scale) and another representation with a
multiplicative model.

In many applications it is assumed that one dimension underlies
the responses to the items of the test in question (see Exhibit 1.2). In
principle, in intelligence testing, for example, various abilities interplay
in the process of responding to the test item. Take the following as an
example. In order to be able to respond correctly to mathematics items,
the persons or examinees in the target population must be able to read
the test instructions. Reading ability is needed, but it can be ignored
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because it does not play a role in the differences between persons tested.
Some authors, however, argue that responses are always determined
by more than one factor. In ability testing factors like speed, accuracy,
and continuance have a role (Furneaux, 1960; Wang and Zhang, 2006;
Wilhelm and Schulze, 2002).

Exhibit 1.2 Dimensionality of tests and items

Once measurement became common practice in scientific research in the
behavioral sciences, the concept of dimensionality, or more specifically
the concept of unidimensionality, emerged as a crucial requirement for
measurement.

Two early psychometricians, Thurstone and Guttman, already stressed
the importance of unidimensionality for constructing good measures,
without using the term though:

“The measurement of any object or entity describes only one attribute
of the object measured. This is a universal characteristic of all measure-
ment” (Thurstone, 1931, p. 257).

“We shall call a set of items of common content a scale if (and only if) a
person with a higher rank than another person is just as high or higher
on every item than the other person” (Guttman, 1950, p. 62).

Definitions of dimensionality abound. Gessaroli and De Champlain
(2005) focus their attention on definitions based on the principle of local
independence, a principle that will be discussed more extensively within
the context of item response models. Gessaroli and De Champlain
describe methods to assess dimensionality and also list relevant software
packages.

In classical test theory, no explicit assumption is made with respect
to the dimensionality of tests. Some tests are useful just because the
items are not restricted to a small domain of unidimensional items
but belong to a broader, more articulated domain of interest. In gen-
eralizability theory, the possibility to generalize to a heterogeneous
domain of reactions is explicitly present. In an anxiety questionnaire
one might, for example, ask whether anxiety is raised in a number of
different situations, and it is assumed that for respondents anxiety
is partly situational. But if a researcher is interested in growth or
change, test dimensionality is an important issue. For if the test
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responses are determined by more than one dimension, it is not clear
which dimension is responsible for a change in the test responses.

Even when it can be deduced from test results that the test is
unidimensional, one should not conclude that one trait or character-
istic determines the responses. One should not mistakenly conclude
from a consistency in responses that respondents actually possess a
particular trait. When we speak here of abilities or (latent) traits, this
is meant for the sake of succinctness; the responses can be described
as if the respondents possess a certain latent trait.

In the one-dimensional item response models that will be discussed,
the responses to the different test items are a measure for an under-
lying latent trait—that is, the expected score is an increasing function
of the underlying trait. In this context the test items as well as the
persons are positioned on the underlying trait or dimension. This is
also called the scaling or mapping of items and persons on the same
underlying dimension.

Exercises

1.1 Two researchers evaluate the same educational program.
Researcher A uses an easy test as a pretest and posttest,
researcher B uses a relatively difficult test. Is it likely that
their results will differ? If that is the case, in which way
are the results expected to differ?

1.2 In a tennis tournament, five persons play in all different
combinations. Player A wins all games; B wins from C, D,
and E; C wins from D and E; and D wins from E. The number
of games won is taken as the total score. Which property
has this score in terms of Stevens’ classification?






CHAPTER 2

Classical Test Theory

2.1 Introduction

It is a trite observation that all human endeavors are replete with error.
And the human endeavor of science is no exception. We err in our mea-
surements—that is to say, how hard we may try, never will our measure-
ments be perfect. “O heaven! Were man but constant, he were perfect.
That one error fills him with faults; makes him run through all the sins.
Inconstancy falls off ere it begins” (Shakespeare: The Two Gentlemen of
Verona, Act v. iv. 110-114). Inconsistency is not the only error.

There are many possible ways to err in measurement. In other words,
there are many sources of errors. These sources may vary depending on
the particular branch of science involved. The question now is to tackle
the problem of errors of measurement. The answer to this question
appears to be simple—develop a theory of errors, or some would say, set
up an error model. Indeed, this is an approach that has been followed
for more than a century. And the earliest theory around is classical test
theory.

Classical test theory is presented in this chapter. By defining true
score, an explicit, abstract formulation of measurement error is given.
This will be the theme of the next section. In Section 2.3 further details
will be given on the population of subjects or persons, a topic relevant
for further developing test theory, more specifically, for deriving reli-
ability estimates. The central assumptions of classical test theory will
also be given. These are relevant for reliability, and for considering
various types of equivalence or comparability of test forms.

2.2 True score and measurement error

Suppose that we obtained a measurement x,; on person p with mea-
surement instrument i. Let us assume, for example, that we read
the weight of this person from a particular weighing machine and
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registered the outcome. Next, we take a new measurement and we
notice a difference from the first. The obtained measurements can
be thought of as arising from a probability distribution for measure-
ments X, with realizations x,.

With measurement in the behavioral sciences, we have a similar
situation. We obtain a measurement and we expect to find another
outcome from the measuring procedure if we would be able to repeat
the procedure and replicate the measurement result. However, in the
behavioral sciences we frequently are not able to obtain a series of
comparable measurement results with the same measurement instru-
ment because the measurements may have their impact on the person
from whom measurements are taken. Memory effects prevent indepen-
dent replications of the measurement procedure. We might, however,
administer a second test constructed for measuring the same construct
and notice that the person obtains a different score on this test than on
the first test. So, here comes in the development of an appropriate theory
of errors or error model. The simplest is the following. The underlying
idea is that the observed test score is contaminated by a measurement
error. The observed score is considered to be composed of a true score
and a measurement error (see also Figure 2.1):

xX,=1T,+e, (2.1)

If the measurement could be repeated many times under the condition
that the different measurements are experimentally independent, then
the average of these measurements would give a reasonable approxi-
mation to t,. In formal terms, true score is defined as the expected
value of the variable X (x, from Equation 2.1 is a realization of the
random variable X)):

1, = EX, 2.2)

where E represents the expectation over independent replications.

Observed score x |<_

1 Error e;
Observed score x, Iq— Error e,
Observed score x3 |4_ Error eg

Figure 2.1 The decomposition of observed scores in classical test theory.
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The definition of true score as an expected value seems obvious if
the measurements to be taken can be considered exchangeable. In
other words, this definition seems obvious if we do not know anything
about a particular measurement. But consider the situation in which
different measurement instruments are available and we have infor-
mation on these instruments. For example, assume we have some
raters as measurement instruments. Assume also that the raters differ
in leniency, a fact known to occur. Does the definition of true score as
an expected value do justice to this situation? Should we not correct
the scores given by a rater with a known constant bias? The answer
is that we can correct the scores without rejecting the idea of a true
score, for it is possible to use the score scale of a particular rater and
define a true score for this rater. Scores obtained on this scale can be
transformed to another scale, comparable to the transformation of
degrees Fahrenheit into degrees Celsius. The transformation of scores
to scales defined by other measurement instruments will be discussed
in Chapter 11.

In other situations, the characteristics of a particular rater are
unknown. It is not necessary to have information on this rater, because
the next measurement is likely to be taken by another rater. Then the
rater effect can be considered part of the measurement error. In
Exhibit 2.1, more information on multiple sources of measurement
error is given.

The foregoing means that the definition of measurement error and,
consequently, the definition of true score depend on the situation in
which measurements are taken and used. If a particular aspect of the
measurement situation has an effect on the measurements and if this
aspect can be considered as fixed, one can define true score so as to
incorporate this effect. This is the case when one tries to minimize
noise in the data to be obtained through the testing procedure by
standardization. In other cases, one is not able or not prepared to fix
an aspect, and the variation due to fluctuations in the measurement
context is considered part of the measurement error.

Exhibit 2.1 Measurement error: Systematic
and unsystematic

Classical test theory assumes unsystematic measurement errors. Sys-
tematic measurement error may occur when a test consistently measures
something other than the test purports to measure. A depression inventory,
for example, may not merely tap depression as the intended trait to
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measure, but also anxiety. In this case, a reasonable decomposition of
observed scores on the depression inventory would be

where X is the observed score, T is the true score, K, is the systematic
error due to the anxiety component, and E; is the combined effect of
unsystematic error.

Clearly, the decomposition of observed score according to classical test
theory is the most rudimentary form of linear model decomposition.
Generalizability theory (see Chapter 5) has to say more on the decom-
position of observed scores. Structural equation modeling might be used
to unravel the components of observed scores.

Classical test theory can deal with only one true score and one mea-
surement error. Therefore, the test researcher or test user must formu-
late precisely which aspects belong to the true score and which are due
to measurement error. This choice also restricts the choice of methods to
estimate reliability, which is the extent to which obtained score differ-
ences reflect true differences. Suppose we want to measure a character-
istic that fluctuates from day to day, but which also is relatively stable
in the long term. We might be interested in the momentary state, or in
the expectation on the long term. If we are interested in measuring the
momentary state, the value of the test—retest correlation does not have
much relevance. A systematical framework for the many aspects of mea-
surement errors and true scores was developed in generalizability theory.

From the definition of true score, we can deduce that the measure-
ment error has an expected value equal to zero:

EE,=0 2.3)
The variance of measurement errors equals
o%(E,) = 6%(X)) (2.4)

The square root from the variance in Equation 2.4 is the standard
error of measurement for person p, the person-specific standard error
of measurement.

2.3 The population of persons

To this point, we have treated measurements restricted to one person.
In practice, we usually deal with groups of persons. If a person is
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tested, the test score is always interpreted within the context of
measurements previously obtained from other persons. Test theory is
concerned with measurements defined within a population or subpop-
ulation of persons. An intelligence test, for example, is meant to be
used for persons within a given age range, able to understand the test
instructions. A population can be large or small.

Selecting a person randomly from the population, we have, analo-
gous to Equation 2.1,

X=T+E (2.5)

where T (the Greek capital tau) designates the true-score random
variable.

From the definitions given, the four central assumptions of classical
test theory are as follows:

I The expected measurement error equals O (we take the expec-
tation of the person-specific distribution of measurement
errors over the population):

E,E, =0 (2.6)

II The correlation p between measurement error and true score
is 0 in the population:

p(LE) =0 2.7)

This follows from the fact that the expected measurement
error is equal (equal to 0) for all values t.

We also assume that two measurements i and j are exper-
imentally independent. From this assumption (actually from
the weaker assumption of linearly experimental indepen-
dence), we can deduce III and IV.

III For two measurements i and j holds that the true score on
one measurement is uncorrelated with the measurement
error on the second measurement:

p(T,E) =0 (2.8)

IV Moreover, the measurement errors of the two measurements
are uncorrelated:

p(E,E) = 0 2.9)
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For the population of persons, we can also deduce the equality of
the observed population mean and the true-score population mean:

The result in Equation 2.10 is obvious as well as important. In Equa-
tion 2.10, expectations are involved. The observed mean of a small
(sub)population certainly is not equal to the true-score mean. The
average measurement error may be small but is unlikely to be exactly
equal (0).

The variance of measurement errors can be written as

2 2
=E E
6, =E o (E)
and the variance of observed scores can be written as

2 _ 2 2
6y =0,+0,+26,6.p .
The correlation between true score and error is equal to zero, so
we can write the variance of observed scores as

2 _ 2 2
6,=0,+0, (2.11)

The observed-score variance equals the sum of the variance of true
scores and the variance of measurement errors.

Exercises

2.1 A large testing agency administers test X to all candidates
at the same time in the morning. Other test centers organize
sessions at different moments. Give alternative definitions
of true score.

2.2 Two intelligence tests are administered close after one
another. What kind of problem do you expect?



CHAPTER 3

Classical Test Theory and Reliability

3.1 Introduction

Classical test theory gives the foundations of the basic true-score model,
as discussed in Chapter 2. In this chapter, we will first go into some
properties of the classical true-score model and define the basic concepts
of reliability and standard error of measurement (Section 3.2). Then
the concept of parallel tests will be discussed. Reliability estimation
will be considered in the context of parallel tests (Section 3.3). Defining
the reliability of measurement instruments is theoretically straightfor-
ward; estimating reliability, on the other hand, requires taking into
account explicitly the major sources of error variance. In Chapter 4,
the most important reliability estimation procedures will be discussed
more extensively.

The reliability of tests is, among others, influenced by test length
(i.e., the number of parts or items in the test) and by the homogeneity
of the group of subjects to whom the test is administered. This is the
subject of Sections 3.4 and 3.5. Section 3.6 is concerned with the esti-
mation of subject’s true scores. Finally, we could ask ourselves what the
correlation between two variables X and Y would be “ideally” (i.e., when
errors of measurement affect neither variable). In Section 3.7 the cor-
rection for attenuation is presented.

3.2 The definition of reliability and the standard
error of measurement

An important development in the context of the classical true-score
model is that of the concept of reliability. Starting from the variances
and covariances of the components of the classical model, the concept
of reliability can directly be defined. First, consider the covariance
between observed scores and true scores. The covariance between
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observed and true scores, using the basic assumptions of the classical
model discussed in Chapter 2, is as follows:

— _ 2 _ 2
6,,=0(T+E,T)=0,+0(T,E)=0]

Now the formula for the correlation between true scores and observed
scores can be derived as

— GXT — GT

Pxr = T

GXGT GX
the quantity also known as the reliability index. The reliability of a
test is defined as the squared correlation between true scores and
observed scores, which is equal to the ratio of true-score variance to
observed-score variance:

2 2
c c
pr =T =_T (3.1)
XT 02 62 +02
X T E

The reliability indicates to which extent observed-score differences
reflect true-score differences. In many test applications, it is important
to be able to discriminate between persons, and a high test reliability
1s prerequisite. A measurement instrument that is reliable in a par-
ticular population of persons is not necessarily reliable in another
population. From Equation 3.1, it is clear that the size of the test
reliability is population dependent. In a population with relatively
small true-score differences, reliability is necessarily relatively low.

Estimation of test reliability has always been one of the important
issues in test theory. We will discuss reliability estimation extensively
in the next chapter. For the moment, we assume that reliability is
known. Now we can define the concept of standard error of measure-
ment. We derive the following from Equation 3.1:

62 =p% c° (3.2)

and

2

_~2 2
Oy =04 PxiOx
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The standard error of measurement is defined as

G, =0, \1-p%; (3.3)

The reliability coefficient of a test and the standard error of mea-
surement are essential characteristics (cf. Standards, APA, AERA, and
NCME, 1999, Chapter 2). From the theoretical definition of reliability
(Equation 3.1), and taking into account that variances cannot be neg-
ative, the upper and lower limits of the reliability coefficient can easily
be derived as

0<p%. <10

and piT = 0 if all observed-score variance equals error variance. If no
errors of measurement occur, observed-score variance is equal to true-
score variance and the measurement instrument is perfectly reliable
(assuming that there is true-score variation).

The observed-score variance is population or sample dependent, as
is the reliability coefficient. Reporting only the reliability coefficient of
a test is insufficient—the standard error of measurement must also
be reported.

3.3 The definition of parallel tests

Generally speaking, parallel tests are completely interchangeable.
They are perfectly equivalent. But how can equivalence be cast in
statistical terms? Parallel tests are defined as tests that have identical
true scores and identical person-specific error variances. Needless to
say, parallel tests must measure the same construct or underlying
trait.

For two parallel tests X and X', we have, as defined,

1, =T, for all persons p from the population (3.4a)

and

2 _ 2
o, —GE,p for all p (3.4Db)

p



18 STATISTICAL TEST THEORY FOR THE BEHAVIORAL SCIENCES

Using the definition of parallel tests and the assumptions of the
classical true-score model, we can now derive typical properties of two
parallel tests X and X":

Uy = Uy (3.5a)
6} =0, (3.5b)
ol =02, (3.5¢)
¢ =07, (3.5d)

and
Pxy = pxy for all tests Y different from tests X and X’ (3.5€)

In other words, strictly parallel tests have equal means of observed
scores; equal observed-score, true-score, and error-score variances; and
equal correlations with any other test Y.

Now working out the correlation between two parallel tests X and
X', it follows that

_ S _i_ 2 (36)
pXX'_GXGX,_G _pXT :

H
— o

N[\')

A second theoretical formulation of test reliability is that it is the
correlation of a test with a parallel test. With this result, we obtained
the first possibility to estimate test reliability: we can correlate the test
with a parallel test. A critical note with this method, however, is how
we should verify whether a second test is parallel. Also, parallelism is
not a well-defined property: a test might have different sets of parallel
tests (Guttman, 1953; see also Exhibit 3.1). Further, if we do not have
a parallel test, we must find another way to estimate reliability.

Exhibit 3.1 On parallelism and other types
of equivalence

To be sure, a certain test may have different sets of parallel tests (Guttman,
1953). Does it matter, for all practical purposes, if a test has different
sets of parallel forms? An investigator will always look for meaningful-
ness and interpretability of the measurement results. If certain parallel
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forms do not suit the purpose of an investigator using a specific test,
this investigator might well choose the most appropriate form of parallel
test. Appropriateness may be checked against criteria relevant for the
study at issue.

Parallel tests give rise to equal score means, equal observed-score and
error means, and equal correlations with a third test. Gulliksen (1950)
mentions the Votaw—Wilks’ tests for this strict parallelism. These tests,
among others, are also embedded in some computer programs for what
is known as confirmatory factor analysis. “Among others” implies that
other types of equivalence can also be tested statistically by confirmatory
factor analysis.

3.4 Reliability and test length

In general, to obtain more precise measurements, more observations
of the same kind have to be collected. If we want a precise measure of
body weight, we could increase the number of observations. Instead of
one measurement, we could take ten measurements, and take the mean
of these observations. This mean is a more precise estimate of body
weight than the result of a single measurement. This is what elemen-
tary statistics teaches us. If we have a measurement instrument for
which two or more parallel tests are available, we might consider the
possibility of combining them into one longer, more reliable test.
Assume that we have k parallel tests. The variance of the true scores
on the test lengthened by a factor & is

var(kT) = k26i

Due to the fact that the errors are uncorrelated, the variance of
the measurement errors of the lengthened test is

var(E, +E,+ +E,)=ko’,

The variance of the measurement errors has a lower growth rate
than the variance of true scores.
The reliability of the test lengthened by a factor % is

k2Gi kG

2
p = = T
XYW T 1262 L he?  ko® 40

2 2
X cST
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After dividing numerator and denominator of the right-hand side
by 6%, we obtain

kp

Pxiyxrry = 1+(k—-1p . (3.7)

This is known as the general Spearman—Brown formula for the reli-
ability of a lengthened test.

It should be noted that, as mentioned earlier, the lengthened test
must measure the same characteristic, attribute, or trait as the initial
test. That is to say, some form of parallelism is required of the sup-
plemented parts with the initial test. Adding a less-discriminating item
might lower test reliability. For (partly) speeded tests, adding items
to boost reliability has its specific problems. Lengthening a partly
speeded multiple-choice test might also result in a lower reliability
(Attali, 2005).

3.5 Reliability and group homogeneity

A reliability coefficient depends also on the variation of the true scores
among subjects. So, the homogeneity of the group of subjects is an
important characteristic to consider in the context of reliability. If a
test has been developed to measure reading skill, then the true scores
for a group of subjects consisting of children of a primary school will
have a wider range, or a larger true-score variance, than the true scores
of, for example, the fifth-grade children only. If we assume, as is fre-
quently done, that the error-score variance is equal for all relevant
groups of subjects, we can compute the reliability coefficient for a target
group from the reliability in the original group:

c> ci(1-p..
GU GU

2 . . .
where 6, is the variance of the observed scores in the target group, oi

its counterpart in the original group, and pyy the reliability in the
original group.

It is, however, advised to verify whether the size of the error variance
varies systematically with the true-score level. One method for the
computation of the conditional error variance, an important issue for
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reporting errors of measurement of test scores (see Standards, APA et al.,
1999, Chapter 2) has been suggested by Woodruff (1990). At several
places in this book we will pay attention to the subject of conditional
error variance.

3.6 Estimating the true score

The true score can be estimated by the observed score, and so it is done
frequently. Assuming that the measurement errors are approximately
normally distributed, we can construct a 95% confidence interval:

x -1960, <t <x +1.960, (3.9)

Unfortunately, the point estimate and the confidence interval in
Equation 3.9 are misleading for two reasons. The first reason is that
we can safely assume that the variance of measurement errors varies
from person to person. Persons with a high or low true score have a
relatively low error variance due to a ceiling and a floor effect, respec-
tively. So, we should estimate error variance as a function of true score.

We will discuss the second reason in more detail. We start with a
simple demonstration. Suppose all true scores are equal. Then the
true-score variance equals zero. So, the observed-score variance equals
the variance of measurement errors. We know this because we have
obtained a reliability equal to zero. Which estimate of a person’s true
score seems most adequate? In this case, the best true-score estimate
for all persons is the population mean y.

More generally, we might estimate T using an equation of the form
ax, + b, where a and b are chosen in such a way that the sum of the
squared differences between true scores T and their estimates are
minimal. The resulting formula is the formula for the regression of
true score on observed score:

. Op
T=—TA T (x—py ) U,
X

This formula can be rewritten as follows:

T=p X+ (1P iy (3.10)



22 STATISTICAL TEST THEORY FOR THE BEHAVIORAL SCIENCES

with a standard error of estimation (for estimating true score from
observed score) equal to

6, =0 \1-p%; :GX\/pXX,\/l—pm, :\/pXX,GE (3.11)

Formula 3.10 is known as the Kelley regression formula (Kelley,
1947). From Equation 3.11, it is clear that the Kelley estimate is better
than the observed score as an estimate of true score.

The use of the Kelley formula can also be criticized:

1. The standard error of estimation (Equation 3.11) also sup-
poses a constant error variance.

2. The true regression might be nonlinear.

3. The Kelley estimate of the true score depends on the popula-
tion. Persons with the same observed score coming from dif-
ferent populations might have different true-score estimates
and might consequently be treated differently.

4. The estimator is biased. The expected value of the Kelley
formula equals 1, only when the true score equals the popu-
lation mean.

5. The regression formula is inaccurately estimated in small
samples.

Under a few distributional assumptions, the Kelley formula can be
derived from a Bayesian point of view. Assume that we have a prior
distribution of true scores N(uy, Gi )—that is, the distribution is normal
with mean i, and variance Gi. Empirical Bayesians take the estimated
population distribution of T as the prior distribution of true scores.
Also assume that the distribution of observed score given true score T
equals N(t, 02). Under these assumptions, the mean of the posterior
distribution of T given observed score x equals Kelley’s estimate with
Ly replaced by p;. When a second measurement is taken, it is averaged
with the first measurement in order to obtain a refined estimate of
the true score. After a second measurement, the variance of measure-
ment errors is not equal to 67, but is equal to 6% /2. After k£ measure-
ments, we have

2 2

(y+ O (3.12)
o2 +02/k Ha '

jal T

T= x
2 2

GT+GE/k
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where x(k) 1s the average score after £ measurements, as the estimate
of true score, and as k becomes larger, the expected value of Equation
3.12 gets closer to the value 1. So, the bias of the estimator does not
seem to be a real issue.

3.7 Correction for attenuation

The correlation between two variables X and Y, pyy, is small if the two
true-score variables are weakly related. The correlation can also be
small if one or both variables have a large measurement error. With
the correlation being weakened or attenuated due to measurement
errors, one might ask how large the correlation would be without errors
(i.e., the correlation between the true-score variables). This is an old
problem in test theory, and the answer is simple. The correlation
between the true-score variables is

GTXTY Oxy Pxy
Prr = = = (3.13)
XY GTXGTY \/p)Q(’GX\/rWGY \/pXX\/a

Formula 3.13 is the correction for attenuation. In practice, the
problem is to obtain a good estimate of reliability. Frequently, only an
underestimate of reliability is available. Then the corrected coefficient
(Equation 3.13) can have a value larger than one in case the correlation
between the true-score variables is high.

When data are available for several variables X, Y, Z, and so forth,
we can model the relationship between the latent variables underlying
the observed variables. In structural equation modeling, the fit of the
structure that has been proposed can be investigated. So, structural
equation modeling produces information on the true relationship
between two variables.

Exercises

3.1 The reliability of a test is 0.75. The standard deviation of
observed scores is 10.0. Compute the standard error of mea-
surement.

3.2 The reliability of a test is 0.5. Compute test reliability if the
test is lengthened with a factor k = 2, 3, 4,..., 14 (k = 2(1)14,
for short).
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3.3

3.4

3.5
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Compute the ratio of the standard error of estimation and
the standard error of measurement for p,,,= 0.5 and p,,=0.9.
Compute the Kelley estimate of true score for an observed
score equal to 30, and py =40, p,,. = 0.5, respectively, p..=0.9.
The reliability of test X equals 0.49. What is the maximum
correlation that can be obtained between test X and a crite-
rion? Explain your answer. Suggestion: Use the formula for
the correction for attenuation.

Let pyy be the validity of test X with respect to test Y. Write
the validity of test X lengthened by a factor &, in terms of pyy,
Oy, Oy, and pyy. What happens when & becomes very large?



CHAPTER 4

Estimating Reliability

4.1 Introduction

In this chapter, the major approaches to reliability estimation will be
discussed. In Chapter 3, we noticed that test reliability is equal to the
correlation between a test and a parallel test. The moment of admin-
istration of the second test, however, is of crucial importance, as it may
have an influence on error variance. If there is a long time interval
between the administration of the first and the second test, the factor
of time may play an important role—persons may change in the time
between testing. On the other hand, when tests are administered con-
secutively, fatigue is to be expected to come into play. Therefore, with
test administration in one session, it is advisable to split the persons
into two groups, one of which is administered test X first, followed by
test Y, and the other is given the two tests in reverse order.

As the parallel-test method is not without its problems (see again
Guttman, 1953), an alternative method for reliability estimation would
be to administer the test twice. This method is the test-retest method.
With a small time interval between test sessions, the risk is large that
on the second test occasion persons remember their answers given on
the first occasion. This would be a violation of the assumption of exper-
imental independence. This violation would have a negative effect on
the quality of the reliability estimate. With a larger time interval,
persons might be changed on the characteristic of interest. Therefore,
the test—retest method is useful only when a relatively stable charac-
teristic is to be measured. The resulting reliability coefficient is called
a stability coefficient for this reason.

There are also estimation methods based on data from a single
administration of a test. These methods can be used when a test
consists of several components, as most tests do. With these methods,
the momentary level of achievement of a respondent is taken as the
true score of interest. Consequently, a reliability coefficient obtained
from the test at one occasion can differ from the stability coefficient.
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Table 4.1 Major approaches to reliability estimation.
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coefficient from test and form k& correlation
form to test
form
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coefficient test and
heterogeneity Spearman—
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correction
b) Coefficient
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d) Other

An overview of the major approaches to reliability estimation is given
in Table 4.1.

In Section 4.2 estimation methods will be discussed based on a
single administration of a test, in Sections 4.3 and 4.4 methods with
parallel tests and test—retest approaches, in Section 4.5 reliability
and factor analysis, in Section 4.6 the estimation of true scores and
score profiles, and in Section 4.7 the conditional standard error of
measurement.

4.2 Reliability estimation from a single
administration of a test

When a test is composed of several parts, we might try to split the
test into two parallel subtests. Then we might compute the correlation
between the two halves. This correlation would give us an estimate of
the reliability of a test with half the length of the original test. An
estimate of the reliability of the original test can be obtained by
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applying the Spearman—Brown formula for a lengthened test. A weak-
ness of the method is the arbitrary division of the test into two halves.
This could easily be remedied by taking all possible splits into two
halves. Should we confine ourselves to splits into two halves, however?
The answer is no. Several coefficients have been proposed based on a
split of a test into more than two parts (see Feldt and Brennan, 1989).
We will discuss a method in which all parts or components play the
same role.

Let test X be composed of k parts X.. The observed score on the
test can be written as

X=X + X+ -+ X,
and the true score as
T=T, +Ty+--+T,
The reliability coefficient of the test is
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The covariances between the true scores on the parts in the formula
above equal the covariances between the observed scores on the parts.
The true-score variances of the components are unknown. They can
be approximated as described below.

While (6, -0, )’ >0, we have

i j

We also have

that is, the correlation coefficient does not exceed one, so
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From this, we obtain
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Now we obtained a lower bound to the reliability, under the cus-
tomary assumption of uncorrelated errors (for correlated errors, see
Rae, 2006; Raykov, 2001). The coefficient is referred to as coefficient o

= (4.1)

Coefficient o is also called a measure for internal consistency. We
can elucidate the reason for this designation with an example. Let us
take an anxiety questionnaire. Assume that different persons experi-
ence anxiety in different situations. Test reliability as estimated by
coefficient o might be low, although anxiety might be a stable charac-
teristic. The test—retest method might have given a much higher reli-
ability estimate.

The popularity of coefficient o is due to Cronbach (1951). The
coefficient was proposed earlier by Hoyt (1941) on the basis of an
analysis of variance (see Chapter 5), and by Guttman (1945) as one of
a series of lower bounds to reliability. Therefore, McDonald (1999,
p. 95) refers to this coefficient as Guttman—Cronbach alpha. Following
the Standards (APA et al., 1999), however, we will stick to calling it
Cronbach’s alpha. For dichotomous items, the item variance of item i
can be simplified to p,(1 — p,) if we divide by the number of persons N
in the computation of the variances instead of N — 1. Here p, is the
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proportion of correct responses to the item. The resulting coefficient
is called Kuder—Richardson formula 20, KR20 for short (Kuder and
Richardson, 1937). Kuder and Richardson proposed a further simpli-
fication, KR21. In KR21 all p, are replaced by the average proportion
correct. When the item difficulties are unequal, KR21 is lower than
KR20. KR21 is discussed further in Chapter 6.

Under certain conditions, coefficient o is not a lower bound to
reliability but an estimate of reliability. This is the case if all items
(components) have the same true-score variance and if the true scores
of the items correlate perfectly. In this case, the two inequalities in
the derivation of the coefficient become equalities. Items or tests that
satisfy this property are called (essentially) tau equivalent. The defi-
nition of essentially tau-equivalent tests i and j is

Tip = ij + bl] (42)

If true scores are equal (i.e., if the additive constant b; equals 0),
we have tau-equivalent measurements. Tau-equivalent tests with
unequal error variances have unequal reliabilities. If true scores and
error variances are equal, we have parallel tests. In the case of parallel
test items, coefficient o can be rewritten in the form of the Spearman—
Brown formula for the reliability of a lengthened test (Equation 3.7),
where the reliability at the right-hand side of the equals sign (=) in
the formula is replaced by the common intercorrelation between items.

A further relaxation of Equation 4.2 would be if the true scores of
tests i and j are linearly related—that 1is, if

Tp = T, + by 4.3)

In this case, we have the model of congeneric tests—true-score vari-
ances, error variances, as well as population means can be different.
The congeneric test model is the furthest relaxation of the classical test
model.

Let us have a further look at Equation 4.3. In Equation 4.3, the
true score on test i is defined in terms of the true score on test j. An
alternative and preferable formulation would be to write true scores
on test i as well as test j in terms of a latent variable. So,

Tip = aiTP + bi (4.4&)
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and

Tip

The true-score variances are a;? 6> and a? 62, Without loss of gen-
erality, we can set (Si equal to one. For, if o, has a value u unequal to
one, we can define a new latent score T and new coefficients a* with
% = 1/u and a* = a X u, and the new latent score has a variance equal

to one. The variances of the congeneric tests can be written as

cl=a’+c’, (4.5)

i

and the covariances as
c.=aa. (4.6)

With three congeneric tests, there are three observed-score vari-
ances and three different covariances. There are six unknown param-
eters: three coefficients a and three error variances. The unknown
parameters can be computed from the observed-score variances and
covariances. With two congeneric tests, we have more unknowns than
observed variances and covariances. In this case, we cannot estimate
the coefficients a and the error variances. With more than three tests,
more variances and covariances are available than unknown param-
eters. Then a statistical estimation procedure is needed in order to
estimate the parameters from the data according to a specified crite-
rion. Such a procedure is computer implemented in software for struc-
tural equation modeling (see Chapter 8).

It is important to have more than three tests when the congeneric
test assumption is to be verified. (Three tests are enough to verify
whether the stronger assumption of parallelism is satisfied.) The advan-
tage of the exact computation of the coefficients a and the error variances
in the case of three tests is apparent. Even when tests are not congeneric,
it is possible to compute three values a for three tests, and in most cases,
realistic error variances (with nonnegative values) are also obtained.
With more than three tests, the assumption that tests are congeneric
can be tested (Joreskog, 1971). If the congeneric test model fits, we can
also verify whether a more restrictive model—the (essentially) tau-
equivalent test model or the model with parallel tests—fits the data. If
a simpler, more restrictive model adequately fits the data, this model is
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to be preferred. It is also possible that the congeneric model does not
fit. Then we can try to fit a structural model with more than one
dimension (Joreskog and Sérbom, 1993).

The administration of a number of congeneric tests is practically
unfeasible. However, an existing test might be composed of subtests
that are congeneric, tau-equivalent, or even parallel. In such a situa-
tion, the method for estimating coefficients a for congeneric measure-
ments can be used for the estimation of test reliability. If we have
congeneric subtests, the estimate of reliability is

S

=1

=/ 4.7)

X

If coefficients a and error variances of the subtests are available,
it is possible to use them for computing weights that maximize reli-
ability. Joreskog (1971; see also Overall, 1965) demonstrated that with
congeneric measurements, optimal weights are proportional to

w, =—2 (4.8)

In other words, the optimal weight is smaller for a large error
variance and higher in case the subtest contributes more to the true
score of the total test. More information on weighting is given in
Exhibit 4.1.

Exhibit 4.1 Weighting responses and variables

A total score is obtained by adding item scores. The total score can be
an unweighted sum of the item scores or a weighted sum score. Two
kinds of weights are in use: a priori weights and empirical weights.
Empirical weights are somehow based on data. Many proposals for
weighting have been done. Among these proposals are the optimal
weights for congeneric measurements and weights that are defined with-
in the context of item response theory.

We mention one other proposal for weights here—the weighting of item
categories and items on the basis of a homogeneity analysis. Homogeneity
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analysis is used for scaling variables that are defined on an ordinal scale.
Weights are assigned to the categories of these variables. The weights
and scores have symmetrical roles. A person’s score is defined as the
average of the category weights of the categories that were endorsed. The
category weight of a variable is proportional to the average score of the
persons who chose the category. Actually, one of the algorithms to obtain
weights and scores is to iterate between computing scores on the basis
of the weights and weights on the basis of the scores until convergence
has been reached.

Lord (1958) has demonstrated that homogeneity analysis weights maxi-
mize coefficient alpha. In the sociological literature, coefficient alpha with
optimally weighted items is known as theta reliability (Armor, 1974).
Further information on alpha and homogeneity analysis can be found in
Nishisato (1980). A more readable introduction into homogeneity analysis
(or dual scaling, optimal scaling, correspondence analysis) is provided by
Nishisato (1994).

The so-called maxalpha weights are optimal weights within the context
of homogeneity analysis. In other approaches other weights are found to
be optimal. A general treatment of weighting is given by McDonald (1968).
When items are congeneric, the weights that maximize reliability are
obviously optimal, and these weights are not identical to the maxalpha
weights. The ultimate practical question is this: Is differential weighting
of responses and variables worth the trouble? In the context of classical
test theory, the answer is “seldom.” Usually, items are selected that are
highly correlated. Then the practical significance is limited (cf. Gifi, 1990,
p. 84).

Let us now return to coefficient oo and the question of alpha as a
lower bound to the reliability of a test. For a test composed of a
reasonably large number of items that are not too heterogeneous,
coefficient o slightly underestimates reliability. On the other hand, it
1s possible for coefficient o to have a negative value, although reliabil-
ity—being defined as the ratio of two variances—cannot be negative.
Better lower bounds than coefficient o are available. Guttman (1945)
derived several lower bounds. One of these, called A,, is always equal
to or larger than coefficient a. The formula for this coefficient is

A =1 jei (4.9)
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An example of reliability estimation with a number of coefficients
is presented in Exhibit 4.2.

Exhibit 4.2 An example with several reliability
estimates

Lord and Novick (1968, p. 91) present the variance—covariance matrix
for four components, based on data for the Test of English as a Foreign
Language. Their data are replicated in the table below. From the table,
we can read that the variance of the first component equals 94.7; the
covariance between components 1 and 2 equals 87.3.

C, C, C, C,

C, 94.7 87.3 63.9 58.4
C, 87.3 212.0 138.7 128.2
C, 63.9 138.7 160.5 109.8
C 58.4 128.2 109.8 115.8

N

We use the data in the table for the computation of several reliability
coefficients. First, let us compute split-half coefficients with a Spearman—
Brown correction for test length. The total test can be split into two half
tests in three different ways. We compute all three possible reliability
estimates.

Split(a,b)  Var(a) Var(b) Cov(a,b) r r(2)

12-34 481.30  495.90 389.20 0.797 0.887
13-24 383.00  584.20 394.20 0.833 0.909
14-23 327.30 649.90 389.20 0.844 0.915

The estimates vary from 0.887 to 0.915. An alternative approach on the
basis of the split of the test into two halves would have been to use
coefficient alpha with two components.

Next we compute coefficient alpha. The total score variance is equal to
the sum of all cell values in the table: 1755.6. The sum of the component
variances equals 583.0. Coefficient alpha equals o = (4/3) (1 — 583.0/
1755.6) = 0.891.

The value of o is lower than the highest estimate based on a split into
two parts. Coefficient alpha is guaranteed a lower bound to reliability,
the split-half coefficient is not. The most adequate estimate based on
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splitting the test into halves seems to be the first, because the split 12—34
seems to produce more or less comparable halves.

Finally, we compute A,. We need the square root of the average value of
the squared covariances: 102.3426. We obtain A, = (1755.6 — 583.0 + 4 X
102.3426)/1755.6 = 0.901.

The value of A, is higher than the value of o.

It is worthwhile to discuss two other lower bounds. The first is the
g.lb., the “greatest lower bound”; its definition will be discussed in
Section 4.5. The second is coefficient o, the stratified coefficient o
(Rajaratnam, Cronbach, and Gleser, 1965).

First, let us rewrite coefficient o as

kzave(cij)

o= (4.10)

2
GX

where ave denotes average and 6, is shorthand for the covariance
between item i and item j. Figure 4.1 illustrates the situation for a
four-item test. The diagonal entries in the figure represent the item
variances. The off-diagonal entries represent the covariances between
items. The sum of the entries equals the variance of the total test, the
denominator in Equation 4.10. The numerator of coefficient o accord-
ing to Equation 4.10 is obtained by replacing all diagonal values in
the figure by the average covariance and, next, summing all entries.

0'12 O O13 O14
2
021 ) 033 024
o o 2 o
31 32 O3 34
2
Oy Oy 043 Oy

Figure 4.1 The variance—covariance matrix for a four-item test.
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Stratum 1 Stratum 2
0'12 012 013 014
Stratum 1
2
021 Oy Oa3 04
2
031 O3; O3 O34
Stratum 2
2
Oy Oy Ou3 Oy

Figure 4.2 The variance—covariance matrix of a four-item test with two
strata.

Now suppose that we can classify the items into two relatively
homogeneous clusters or strata. We can use this stratification in the
computation of the estimated total true-score variance. We can replace
the item variances within a stratum by the average covariance between
items belonging to this stratum instead of by the average covariance
computed over all item pairs. So, in the example in Figure 4.2, the
variances of items 1 and 2 are replaced by 6,5, (= Gy).

The stratified coefficient alpha can be written as

q q q
N 2
20‘@% +22°Ym
_ =1 =1 j#i
o = o (4.11)
X

where ¢ is the number of strata, Y;the observed score in stratum i,
and o(i) coefficient oo computed over the items in stratum i. A more
general reliability formula from test theory is obtained if we replace
o(i) in Equation 4.11 by a possibly different reliability estimate for
subtest i.

Reliability estimation based on a measure of internal consistency
1s problematic in case the item responses cannot be considered exper-
imentally independent. This might happen, for example, if the test is
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answered under a time limit and some persons do not reach the items
at the end of the test.

We always estimate reliability in a sample from the population of
interest. With a small sample we must be alert to the risk that the
reliability estimate in the sample deviates notably from the value in the
population. An impression of the extent to which the sample estimates
might vary can be obtained by splitting the sample into two halves and
computing the reliability coefficient in both (a procedure that gives an
impression of the variability in samples half the size of the sample in
the investigation). We also can obtain an estimated sampling distribution
on the basis of some distributional assumptions. Distributional results
for coefficient o can be found in Pandey and Hubert (1975), among others.
One might also obtain sampling results with the bootstrap (Efron and
Tibshirani, 1993). Raykov (1998) reports a study using the bootstrap for
obtaining the standard error for a reliability coefficient.

4.3 Reliability estimation with parallel tests

Interchangeable test forms in terms of the definition of parallelism
are used for the parallel-forms or alternate-forms method of assessing
reliability. It has been noticed that parallel tests are not uniquely
defined. The same test could belong to more than one set of parallel
tests, leading, in general, to more than one reliability coefficient.

A practical problem of the parallel-forms approach is that the
instruments might not satisfy the requirements of parallel tests. Then
alternative equivalence models as given in Section 4.2 could be con-
sidered.

In estimating reliability for, say, test forms X and Y, special atten-
tion must be paid to the design of the reliability study. We must take
refuge in balanced designs to eradicate as best as we can possible order
effects. In addition, we may consider what the time interval should be
between the presentation of the first and the second test forms.

4.4 Reliability estimation with the test-retest method

This method for assessing reliability is straightforward enough: present
the test at two occasions to the same group of subjects and correlate
the outcomes.

Assessing reliability with the test—retest method has its problems.
What, for example, occurred between occasions 1 and 2? Are subgroups
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perhaps affected differentially by influences (e.g., in educational test-
ing where the test is administered in several classes and classes are
treated differently)? Also, memory effects may influence reliability
estimates.

Table 4.1 lists the reliability coefficient of the test—retest method
as a stability coefficient, but what about the test—retest approach for
the measurement of change? To be sure, the measurement of change
is a legitimate research subject of its own.

Retesting would perhaps be the most appropriate method for the
estimation of the reliability of speeded tests. With speeded tests, internal
consistency estimates of reliability are inappropriate.

4.5 Reliability and factor analysis

The analysis with congeneric measurements in Section 4.2 is an example
of a linear factor analysis—to be precise, a factor analysis with one
common factor. While there are no replications, the possible contribu-
tion of unique factors to observed scores is subsumed under the error
component. Generally, one hopes for one dominant common factor,
indicating that one is measuring a single construct. Frequently, how-
ever, a factor analysis results in more than one common factor. Then
the true score can be written as a weighted sum of factor scores (see
Chapter 8, especially Figure 8.4).

In a factor analysis, several choices have to be made that influence
the sizes of the estimated error variances of the variables and, conse-
quently, the size of the reliability coefficient that can be computed.
After all, reliability equals one minus the sum of the error variances
divided by the observed-score variance.

The greatest lower bound (g.1.b.) to reliability can be obtained from
a special kind of factor analysis, constrained minimum trace factor
analysis, in which the sum of the error variances is as large as possible
given the variances of the subtests and their covariances. The deter-
mination of the g.1.b. is a complicated problem (Ten Berge and So6can,
2004).

4.6 Score profiles and estimation of true scores

Sometimes a test is heterogeneous, and on the basis of a factor analysis
several subtests can be discerned. If subtests are defined, we can com-
pute a total score as well as a separate score for each of the subtests.
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The higher the correlation between subtests and the less reliable sub-
tests are, the less useful it is to compute subtest scores in addition to
a total score. With reliable subtests that do not correlate too strongly,
it makes sense to compute subtest scores in addition to or instead of
total test score.

With subtest scores, we can compute a score profile for each person
tested. We can verify whether a person has relatively strong and rela-
tively weak points. We can determine to what extent the score profile
of a person is deviant. For a solid interpretation of the profile of scores,
it is important to standardize the subtests so that they have the same
score distribution in the relevant population of persons. The subtests
should have identical means and standard deviations (for norms with
respect to the estimation of means see Angoff, 1971; for sampling
techniques, see Kish, 1987). Only then is it relatively simple to notice
whether a person scores relatively high on one subtest and relatively
low on another (e.g., relatively high on a verbal subtest and relatively
low on a mathematical subtest). When subtest reliabilities vary notably,
the advantage of this way of scaling the subtests is limited however,
for then there are large differences between the true-score scales
(Cronbach et al., 1972).

The observed score on a subtest is an obvious estimate of the true
score on the particular subtest. In a previous section it was demon-
strated that the observed score was not optimal: the Kelley estimate
performs better than the observed score. For profile scores one can
think of generalizing Kelley’s formula.

Let us take a profile with two subtests X and Y as an example. We
are interested in the true score of a person p on subtest X, 1,(X). If we
knew the true scores on test X, we would certainly consider the pos-
sibility to “predict” these scores from observed scores x and y using
multiple regression. There is no reason not to use the multiple regres-
sion formula in case the criterion T is unknown. The formula with
which we “predict” the true score on subtest X is

Srx) Praxx ~ PraoyPxy (x

'Ep(X):uT(X)-i- s 1 p? L~y
Xy
(4.12)
n Srx) Py ~ PreaoxPxy (y —.)
o, 1-p%, P Y

In this formula several correlations with true scores on X are involved,
and these correlations are unknown. Also unknown is the standard
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deviation of true scores on subtest X. However, all the unknowns can
be estimated:

Srx) S VPxxOx
Prxyx =VPxx

and, analogous to the correction for attenuation for two variables X
and Y,

I
T(X)Y \/g

We can conclude that the best estimate (in the least squares sense)
of the true score on subtest X makes use of the score on subtest Y as
well. With reliable X, the score on subtest X gets a high weight. The
weight of test X is also relatively high in case the scores on subtest Y
are nearly uncorrelated with those on subtest X. In case true scores
(and observed scores) on test Y are uncorrelated with those on X, the
formula can be simplified to the Kelley formula. With congeneric sub-
tests X and Y, the obtained weights equal the optimal weights for
congeneric measurements (Equation 4.8). In case true scores on sub-
tests X and Y are strongly correlated and subtest X is relatively
unreliable, it is possible to have a smaller weight for X than for Y in
the formula for the prediction of the true score on X.

It is instructive to write Equation 4.12 in terms of variances and
covariances:

2_

(0) (¢} o (o}
A T(X)X Y T(X)Y ° XY
1, (X)=py + T (x, —Hy)
040y = Oy
(4.13)
2
Orxyy%x ~ GT(X)XGXY
+ PSR (v, —uy)
GxOy = Ok

We can rewrite this equation as follows:

2 2 2
A _x Orx) _GT(X)Y/GY A
T,(X)=1,(X)ly, + (-1 (X)ly,) (414

2 _ 2
X CTx)y/ Y
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where

A _ Sraxyy
Tp(X)|yp—HX+672(yp—My) (4.15)
Y

In other words, the optimal prediction formula for predicting the
true score on X given observed scores on X and Y can be viewed as a
two-step process. First, we estimate the true score on X given the
observed score on Y. Next, we improve this estimate using the infor-
mation given by the observed score on X. This way of viewing the
estimation procedure would be quite logical if we take different mea-
surements at different occasions. For example, Y might be the first
measurement with a measurement instrument and X the second. In
the Kalman filter, the estimate of true score on time ¢ is based on test
data obtained at time ¢ and the true-score estimate at time ¢ — 1 (Oud,
Van den Bercken, and Essers, 1990).

The estimation of profile scores with Equation 4.12 can evoke sim-
ilar objections as the application of Kelley’s formula in connection with
a single test. The estimate of a person’s true score depends on the
population that serves as a reference. Certainly, when we use profile
scores, it 1s obvious that we compare the outcomes for a person with
results for a reference population whether we use Kelley’s formula or
not. The subtests are scaled in such a way that they have the same
mean in some population. And when more than one relevant popula-
tion exists, there is nothing against making separate norms for these
different populations.

Another disadvantage of the use of a formula like Equation 4.12
seems to be the detection of persons with deviant score patterns. Let
two subtests correlate strongly. The estimation formula then gives
similar estimates of the two true scores. The relevant information that
the pattern of scores is deviant is likely to be missed.

We can find out whether a score pattern is aberrant. We will dem-
onstrate this with observed scores on two tests X and Y. The prediction
of the score on test Y, given the score on test X, is given by the regression
equation:

Y=0,p,,(X-u,)o,+u, (4.16)

with a standard error of prediction equal to

6, =06,,1-p%, (4.17)
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We can compute the predicted value on test Y and construct a 95%
confidence interval using the assumption of normally distributed pre-
diction errors. If the observed score on test Y lies outside this interval,
we have an argument to consider the score pattern as aberrant. We
might also evaluate the raw score difference x — y. Then we evaluate
the difference irrespective of the correlation between X and Y. The
relevant standard deviation for the raw-score difference is

2 2 2 2
Oy = \/GE(X) 102, =0l (-py)+0i(1-py)  (4.18)

With Equation 4.18 we can construct a 95% confidence interval for the
difference between true scores on tests X and Y. When the true scores
on tests X and Y have a correlation smaller than one, then more,
perhaps much more than 5%, of the observed differences fall outside
of this interval.

A special application of profiles is that in which scores X and Y are
two measurements on the same measurement instrument, taken at
two different occasions. Now we might be interested in the possibility
of a true-score change or a true-score gain. The simplest way to esti-
mate the true difference is to use the difference score. However, dif-
ference scores have a bad reputation. They can be quite unreliable
even in case the separate measurements are highly reliable. Difference
scores are used when the two measurements are related. So, we may
assume that the true scores on both measurements are strongly cor-
related. Suppose that we have a situation in which the true scores on
both measurements are equal. Then the true change is zero, and the
reliability of difference scores is zero, too.

On the other hand, a low reliability does not imply that there are
no changes. It is possible that all persons have changed the same
amount between testing occasions. On the group level, the measure-
ment of change is useful even with a low reliability for difference
scores.

The presence of measurement error affects change in a special way.
Let us analyze this in a simple situation in which the mean and
variance of scores are equal in a pretest and a posttest. We will notice
that there are changes although there is no overall change. The persons
with better-than-average scores on the pretest will on the average have
lower scores on the posttest. Persons with lower-than-average scores
on the pretest will on the average show some score gain. The scores
regress to the mean. This effect appears even if there is no true change.
The effect is due to measurement error. Among the high scores on the
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pretest, there are always some scores that are high due to measurement
error. Among the low scores on the pretest, there are always low scores
due to measurement error. The difference score (posttest—pretest) is
negatively correlated with the measurement error on the pretest. The
true difference is better estimated by equations like Equation 4.12
(Lord and Novick, 1968, pp. 74-76).

Due to the regression to the mean, the use of difference scores in
research is problematic. For research, alternatives are available (see
Burr and Nesselroade, 1990; Cronbach and Furby, 1970). Rogosa, Brandt,
and Zimowski (1982) discuss the possibility of modeling growth in case
of more than two occasions.

4.7 Reliability and conditional errors of measurement

The 1985 as well as the 1999 Standards emphasized to report reliabil-
ity as well as the standard errors of measurement. And, in addition,
Standard 2.2 of the 1999 edition states:

The standard error of measurement, both overall and conditional
(if relevant), should be reported both in raw scores or original scale units
and in units of each derived score recommended for use in test interpre-
tations. (Standards, APA et al., 1999, p. 31)

The standard error of measurement can vary with true-score level.
Conditional standard errors of measurement are standard errors of
measurement conditional on true-score level. Such standard errors of
measurement can be used as an alternative approach to convey reli-
ability information, by constructing a confidence interval for an exam-
inee’s true score, universe score (to be discussed in Chapter 5), or
percentile rank. Earlier, three types of standard errors were discussed:
the standard error of measurement (Equation 3.3), the standard error
of estimate of true score (Equation 3.11), and the standard error of
prediction (Equation 4.17).

Woodruff (1990) studied the conditional standard error of measure-
ment for assessing the precision of a test on its score scale. He proposed
to split a test into two parallel halves X and X'. ANOVA is used to
estimate values 6%(E’| X) as substitutes of 62(E£'| T). Then the outcomes
are corrected for the fact that the test was split into two halves (using
the customary assumption that the error variance doubles for a test
lengthened by a factor 2).

Feldt and Qualls (1996) proposed a method for the estimation of
the conditional error variance based on a split of the test into a number



ESTIMATING RELIABILITY 43

of essentially tau-equivalent subtests. It is possible to use a split of
the test into two halves, but it proves to be better to split the test in
many subtests as long as all subtests can be considered as essentially
tau-equivalent measurement instruments. Let there be n subtests. For
person p, the estimated error variance of the subtests is

n

2[(xpi —x, )= (x,—x )

2 _im
g = —] 4.19)

where the scores are corrected for the test effects x; — x . In the
terminology of ANOVA, two-way interactions are used in Equation
4.19. Suppose that the subtests have equal score ranges. Then the
consequence of the assumption of essentially tau-equivalent subtests
on which Equation 4.19 is based, is that the error variance associated
with a perfect score is nonzero when the subtests differ in difficulty
level. In a nonlinear true-score model, a model based on item response
theory (IRT), such a strange effect does not occur.

Again, we must multiply the estimate with a constant in order to
obtain the error variance on the total test. When the n subtests add
up to the total test, total test length is n times the length of the subtests
and the result in Equation 4.19 must be multiplied by n.

Next, the error variances for all persons with the same total score
can be averaged. This produces the estimated relationship between
the size of the conditional error variance and total score. Feldt and
Qualls suggest to reduce sampling variation further by smoothing the
empirical relationship between error variance and total score. This
can be achieved by a polynomial regression, where the error variance
is regressed on powers of X (X, X2, etc.).

It might be interesting to compare Equation 4.19 with a formula
for the conditional error variance developed within the context of
generalizability theory. For this purpose, Equation 4.19 is rewritten as

2 _ .2 2 _
Sy =5 (%, 1p)+5°(x)—2cov(x x| p) (4.20)

which 1s comparable to Equation 5.41.

More methods for estimating conditional standard errors of mea-
surement are described by Lee, Brennan, and Kolen (2000). Methods
for obtaining conditional error variances have been proposed specifi-
cally within the context of generalizability theory (Chapter 5) and for
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dichotomous items (Chapter 6). In IRT, the problem of the conditional
standard error of measurement is approached in another way (see
Section 6.4).

Exercises

4.1 A test X is given with three subtests, X;, X,, and X;. The
variance—covariance matrix for the subtests is given in the
table below. Estimate reliability with coefficient o.

X X, X
X, 8.0 6.0 8.0
X, 6.0 120 120
X, 80 120  17.0

4.2 Use the variance—covariance matrix from Exercise 4.1 for
estimating test reliability according to the model of conge-
neric tests. Use Equation 4.6 for the estimation of the a;.

4.3 Prove that for parallel test items coefficient alpha equals the
Spearman—Brown formula for the reliability of a lengthened
test.

4.4 Two tests X, and X, are congeneric measurement instruments.
Their correlations with other variables Y;, Y,, and so on, differ.
Is there a pattern to be found in the correlations?

4.5 Given are two tests X and Y with Gi. = 16.0, Gi =16.0, pxx =
Pyy = 0.8, and pxy = 0.7.

a. Compute the observed-score variance, the true-score vari-
ance, and the reliability of the difference scores X — Y.

b. Compare the variance of the raw score differences
with GZE(XJ) of Equation 4.18.

4.6 In a test, several items cover the same subject. Which
assumption of classical test theory might be violated? What
should we do when we want to estimate reliability with co-
efficient o?

4.7 We have three tests X;, X,, and X; measuring the same con-
struct. Their correlations with test Y equal 0.80, 0.70, and
0.60. Their covariances with Y are equal to 0.20. The means
of the tests are 16.0, 16.0, and 20.0, respectively. Are these
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4.8

4.9

tests parallel tests, tau-equivalent, essential tau-equivalent,
or congeneric? Discuss your answer.

A test has a mean score equal to 40.0, a standard deviation
equal to 10.0, and a reliability equal to 0.5. Which difference
score do you expect after a retest when the first score of a
person equals 30?

Two tests X and Y are available. The tests have equal observed-
score variances: 05 = 0 = 25.0. The reliability of test X is 0.8,
the reliability of test Y is 0.6. Their intercorrelation is zero.
Compute the reliability of the composite test X + Y. Also, com-
pute the reliability of the composite after doubling the test
length.
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CHAPTER 5

Generalizability Theory

5.1 Introduction

An observed score obtained with a measurement instrument is just
one of many possible scores that could have been obtained, because
an alternative context, other measurement conditions, and varying
circumstances may lead to other observed scores. In other words, an
observed score is usually obtained for a particular test form. Another
equivalent test form, however, may have been as appropriate for our
measurement purpose but might have led to a different observed test
score. Consequently, if one wants to model observed scores, one has to
take into account many sources of variation (including error variation).
This also applies if one considers the reliability of scores obtained from
a measurement instrument. Classical reliability provides a decompo-
sition of the observed score into a true score and only one type of error.
Theoretically, this error is undifferentiated. Several reliability estima-
tion procedures lead to specific conceptualizations of error: parallel
test forms reliability e.g., considers the lack of equivalence between
the forms as the source of error, test—retest reliability the time of
testing, and internal consistency reliability the variability in test
items.

Generalizability theory or G theory (Cronbach, Rajaratnam, and
Gleser, 1963; Cronbach et al., 1972; Brennan, 2001), in contrast to clas-
sical test theory, provides a decomposition of an observed score taking
into account more sources of variation, dependent upon the specific mea-
surement situation. G theory also recognizes that multiple sources of
error may operate in a measurement, implying that there is no unitary
definition of reliability. This is, basically, a consequence of the view that
a specific test score or any other particular behavioral measurement, for
that matter (e.g., a job performance score or an expert’s performance
assessment of student achievement), is conceived of as a sample from a
universe of admissible or suitable observations. Such a universe is char-
acterized by one or more sources of variation, the facets. In Section 5.2
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an overview of the basic concepts of G theory will be given. In view of
how a particular behavioral measurement is conceived, the designs used
to collect the measurements come in focus. In Sections 5.3 and 5.4, some
of the more simple one- and two-facet designs will be given, together
with the corresponding decomposition of the observed score into a com-
ponent for the true score, viz. the universe score, and one or more error
components. We will see that with each of the components, variances, or
rather variance components, are associated. In Section 5.5 an extensive
example will be described from a study by Webb, Shavelson, Kim, and
Chen (1989) on the reliability of job performance measurements. In
Sections 5.6 and 5.7, two-facet nested designs are introduced. In Section
5.8 designs with fixed facets are discussed, and in Section 5.9 kinds of
measurement errors. In Section 5.10 attention is paid to conditional
errors of measurement. Finally, in Section 5.11 some concluding remarks
are made.

5.2 Basic concepts of G theory

A particular behavioral measurement is conceived of as a sample from
a universe of admissible observations, or a domain of suitable or appro-
priate observations. The universe or domain is characterized by one or
more sources of error variation, called facets. In a study where students’
performance is rated by judges on performance criteria, judges and
performance criteria are the facets of a measurement, and each facet
consists of a set of conditions. Usually the facets are assumed to be
indefinitely large. The universe, then, is defined as all possible condi-
tions of the facets. Ideally, a person’s universe score is his or her average
score over all conditions. In a measurement situation, however, error is
at stake, and this calls for the estimation of variance components. These
estimates of variance components are highly informative, whereas the
so-called generalizability coefficients—the G theory counterparts of clas-
sical reliability coefficients—are straightforward ratios of appropriate
universe-score variances to total-score variances. In addition to variance
components, standard errors are considered as appropriate indicators of
uncertainty of, for example, performance assessments of student achieve-
ment or school effectiveness (Cronbach, Linn, Brennan, Haertel, 1997).
The purpose of G theory is to generalize from an observation at
hand (i.e., the observed score) to the appropriate universe of observa-
tions. This domain or universe is defined by all possible conditions of
the facets of the study. It should be noticed that the object of measure-
ment (e.g., the persons to whom a test is presented) is not a facet.
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Judge 1 Judge 2 Judge 1 Judge 2
Item 1|Item 2 |Item 1 |Item 2 Item 1 |[Item 2 |Item 3 |Item 4
Person 1 | x X X X Person1 |x X X X
Person 2 | x X X X Person2 |x X X X
pXixj px (i)

Figure 5.1 A crossed p x i X j design and a nested p X (i : j) design with the
same number of measurements for each person.

The measurements in a study are obtained according to a particular
design. A one-facet example of a measurement design is an n-item test
presented to a number of persons. In this example, we have a crossed
design with all combinations of items (i) and persons (p); this crossed
design is denoted as p x i. If different sets of items are presented to
different persons, we have a nested i : p (read i within p) design instead.
With two facets, several (partially) nested designs are possible. Let us
take a study with items (i) and raters or judges (j). In this study all
persons (p) have answered all items. This part of the study is a crossed
p X i design. The items have been distributed among the judges. In
other words, each judge had another set of items to rate: Items are
nested within judges. Judges have been crossed with persons: If an
item has been allocated to a judge, he or she has rated the answers
of all persons to this item. This partially nested design is denoted as
p X (i :J). A representation of a nested p x (i : j) design and that of a
crossed p X i X j design with the same number of measurements for
each person is given in Figure 5.1.

In G theory two types of facets are distinguished: random facets
and fixed facets. In a random facet the number of conditions is thought
to be infinite. That 1s, the conditions of a facet that are selected for a
particular measurement procedure or test are assumed to be a random
sample from a very large number of possible conditions. And we would
like to generalize over all admissible or suitable observations from the
universe. Over fixed facets no generalization is sought, as the number
of conditions in a fixed facet is equal to the number of conditions in
the study or measurement procedure. A combination of a random facet
and a fixed facet leads to a mixed-facet generalizability study.

In G theory a distinction is made between a generalizability or G
study, and a decision or D study. A G study investigates the influence
of the sampling of conditions from various facets on observed scores.
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So the purpose of a G study is to collect as much information on the
sources of variation as possible. A D study provides information for
substantive decisions. It decides on the specific design that is most
suitable for typical applications. Clearly, such a decision depends upon
several factors. First, the relevant universe of generalization must be
defined. Second, it must be decided whether the purpose of the study
involves relative or absolute decisions. Relative decisions refer to the
comparison of a person’s achievement (e.g., relative to other persons’
achievements). Absolute decisions are made when one is interested in
a person’s universe score, per se. With relative decisions go relative
errors, and absolute errors are associated with absolute decisions. A
third factor upon which the choice of a D study depends is the size of
the various sources of variation. In addition, practical considerations
such as the availability of judges (e.g., in a rating study) and costs
associated with gathering the data are criteria for deciding on a specific
measurement design. As in a D study, alternative possibilities can be
tried out with respect to the number of conditions of the facets involved.
A D study can be regarded as a generalization of the Spearman—Brown
formula for test length.

5.3 One-facet designs, the p x i design
and the i : p design

5.3.1 The crossed design

Let us have a universe with one facet, the facet items. We assume that
the facet is a random facet. For person p, the observed score on item i
is X, When we want to generalize over the facet, we must take the
expectation of X ; over items. This expectation defines the universe score:
w,=EX, (5.1)

The universe score is comparable to the true score in classical test
theory. In generalizability theory, it is assumed that the persons are

a random sample from a large population (formally: N, = ). Analogous
to Equation 5.1, we can define the population mean of item i as

w=EX, (5.2)

The expectation of the universe scores is |1. This universe mean is also
the expectation of the population means p,.
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Figure 5.2 Venn diagram representation of the p X i design.

With these definitions, we can decompose the observed score X,;
into a number of components:

X,. MU Grand mean
- Person effect (5.3)
+W U Item effect

+ X, — M, — 4, + 1 Residual

So, the observed score can be written as the sum of the grand mean,
a person effect, an item effect, and a residual. The residual can be thought
of as a combination of pure measurement error and the interaction
between the item and the person. But, for lack of replications, these two
sources of variation are confounded.

In Figure 5.2 a Venn diagram representation is given of the p x i
design. An advantage of such a representation is that it visualizes the
variance components involved in the decomposition of the observed
scores. The interaction can be found in the segment where the circles
for persons and items overlap.

The population variance of universe scores or person effects is
called the variance component for persons and is written as ¢>. We also
have a variance component for items, Gf , and a residual variance compo-
nent, O-ii,e' The notation of the residual reflects the confounding of the
random error and the interaction. The variance of X,; over p and i,
E, (X, — w?*is

2 _ 2 2 2
o (Xpi) =0 +0,+0 (5.4)

The three variance components can be estimated from an analysis
of variance (ANOVA) of a two-way design. Statistical packages are avail-
able for ANOVA analyses and the estimation of variance components
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x11 X1i X1n; *1.
Xp1 Xpi Xpn; *p.
X, X, i X, . x
npl My nph; np
X1 x; X, x

Figure 5.3 Observations in a crossed p x i design with n, persons and n; items.

(e.g., SAS, www.sas.com; SPSS, www.spss.com). There also is a suit of
computer programs for generalizability analyses, Genova, which can be
obtained for free from the University of Iowa, College of Education
(Brennan, 2001).

It should be noticed that in the ANOVA terminology, two ways are
distinguished: one represents the units of measurements (i.e., the
persons in G theory), and the other the facet, items. So, a two-way
ANOVA design is equivalent to or rather leads to a one-facet G study.
The observations in a crossed design can be written as in Figure 5.3.
In the rightmost column, we have the averages for persons, averaging
over items. In the bottom row, we have the average scores for items,
averaging over persons.

In order to compute the variance components for this p x i design,
we use the ANOVA machinery. We start with calculating the sums of
squares for persons and items, respectively. For the computation of
the sum of squares for persons, we replace each entry x,in the row
for a person by the average score for this person. Next we take the
squared deviations from the grand mean and sum these squared devi-
ations. The sum of squares for persons is

SSp = zp‘ni(xp. - xu)2 (5.5)

p=1

The mean squares for persons is obtained by dividing the sum of
squares for persons by the degrees of freedom corresponding to this
sum of squares, n, — 1. The mean squares for persons is equal to n,
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Table 5.1 ANOVA of the crossed p x i design.

Source of Sum of Degrees of Mean Square  Expected Mean

Variation Squares (SS) Freedom (df) (MS) Square (EMS)
Persons (p) SS, n,-1 MS, = SS,/df, Gii,e + nici
Items (7) SS; n,—1 MS;= SS/df; Giia + npg?
Residual SS,;. (n, -D)(n;— 1) MS,, =SS, Jdf,, Gii,e
Total 2X(x, — x..)?

times the variance of the mean scores and is equal to the total-score
variance divided by n;.

The sum of squares for items is obtained in a similar way. The
simplest way to obtain the sum of squares for the residual is to compute
the total sum of squares and to subtract the sum of squares for persons
and the sum of squares for items. The complete ANOVA is summarized
in Table 5.1. The rightmost column in this table gives the expected
mean squares for the random-effects model. In the expected mean
squares for persons, all variance components related to persons are
included as well as the random error. This is due to the fact that the
model is a random model. In a model with fixed effects, the interactions
for a particular person would have summed to 0. In the model with
random effects, the n; interactions are a random sample from all
possible interactions for the person. The coefficient of the variance
component for persons is n;. This coefficient is equal to the number of
observations in which the person effect is involved.

1;/ISpi,e estimates Giie' From the above table we obtain an estimate
of 6%: ’

p

o
&% =(MS -MS,, )in, (5.6)

The generalizability coefficient for the n;-item test—universe-score
variance divided by observed variance—is

Epl =2 (5.7)
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also known as the stepped-up intraclass correlation. The expectation
sign indicates that in this formula an approximation is given to the
expected squared correlation of observed scores and universe scores.
The coefficient is the generalizability counterpart of the reliability
coefficient. Its size gives information on the accuracy with which com-
parisons between persons can be made. The coefficient concerns rela-
tive measurements, and this is denoted by Rel (Shavelson and Webb,
1991). The estimate of Equation 5.7 in terms of mean squares is

5 MSp - MSW
EpRel = T (58)
P

The mean squares in Equation 5.8 can be written in terms of the total-
score variance and the item variances. If we do so, we can derive that
Equation 5.8 is identical to coefficient o, the coefficient known as a
lower bound to reliability. This implies that in case of congeneric items,
generalizability theory underestimates generalizability or reliability.
The problem is due to the fact that the true-scale differences between
congeneric measurements are taken up into the interaction term in
the score composition (Equation 5.3).

5.3.2 The nested i : p design

In the one-facet i : p design, each person is presented with a different
set of items. This situation is schematized in Figure 5.4. It is clear
from the figure that the data matrix is incomplete.

p
Items
1 2 3 4 5 6
21| x X
5 X X
&3 X X
(a) Data Matrix i: p (b) Venn Diagram

Figure 5.4 Data matrix and Venn diagram for the nested i : p design.
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Table 5.2 ANOVA of the nested i : p design.

Source of Sum of Degrees of Mean Square Expected Mean

Variation Squares (SS) Freedom (df) (MS) Square (EMS)
Persons (p) SS, n,—1 M%;S SSI{dfp G?,pi,e +nici
Residual SS; i n,(n;— 1) S Smij&efm’e cipi,e
Total ZX(x,; — x..)?

Only two variance components can be estimated. The ANOVA for
the nested design is given in Table 5.2.
With n; items the generalizability coefficient is

T (5.9)
c>+0” In '
i,pie i
which 1s estimated by
2 MSp B MSL pie
PRel =T Ms = (5.10)
p

Notice the difference between the left-hand sides of Equation 5.7 and
Equation 5.9. In the nested design the ratio of variance components

equals the generalizability coefficient. For more on this design see
Jackson (1973).

5.4 The two-facet crossed p x i x j design

Now two facets define our universe. Consider a universe with items and
judges as facets. We have n, persons, n; items, and n, judges. All persons
answer all items. Each judge rates the answer of each person to each
item. All combinations of n, persons, n; items, and n; judges occur. We
have a fully crossed p x i x j design. The Venn diagram for this design
appears in Figure 5.5. The ANOVA for this design with random effects
is given in Table 5.3. Now we have a residual consisting of random error
and the three-way interaction. There are three two-way interactions
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>

Figure 5.5 Venn diagram for the two-facet crossed p x i x j design.

and three main effects. Again the coefficients for the variance compo-
nents in the expected mean squares are equal to the number of times
an effect is present in the study. For each person n;n; observations are
available; therefore, the coefficient for the variance component for per-
sons equals n;n;.

Table 5.3 ANOVA of the crossed p x i x j design.

Source of Degrees of Expected Mean
Variation Freedom (df) Square (EMS)
Persons (p) n,—1
’ 6% +no’ +nc’ +nnc?
py.e 1 p J p tJ p
Items (7) n,—1 ) 9 9 g
6° +n o:+noc: +nno:
py.e by J D b J
Judges (j) n—1 ) g g )
6° +n o0:+noc +n no-
py.e Py 1y p v
Interaction pi (n, - D(mn; - 1) y y
. +n.o".
py.e J p
Interaction pj (n, - D(m; - 1) 5 )
. +no’.
py.e 1 p
Interaction ij (n, - D(n; - 1) 5 y
. +n o
py.e p Yy

Residual (n, - D@, - 1))n; - 1) 2

pije
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Analogous to Formula 5.7, we obtain a generalizability coefficient:

02
p

Ep?, = (5.11)

o2+0%/n+0%/n +0 Inn.
D y 2 12 r J py.e tJ

When we set the expected mean squares in Table 5.3 equal to the
observed mean squares, we can solve the seven equations for the seven
variance components. We start in the bottom row of the table; the
residual component is set equal to the observed residual mean squares.
Next, we compute the variance component for the interaction between
items and judges and so forth. It is possible that while doing so
negative estimates of variance components are obtained. The best one
can do is to compute all components using possibly negative values.
After all components have been computed, we set negative values equal
to zero. This is the way estimation proceeds in the simultaneous
estimation procedure of some software packages. Brennan (2001) dis-
cusses the handling of negative estimates of variance components.

The generalizability estimate in terms of mean squares is

MS -MS -MS +MS .
p pi i pije (5.12)

2 _
EpRel - MS
p

Formula 5.12 can also be rewritten in terms of variances and covari-
ances. Let us first examine the structure of the variance—covariance
matrix in the crossed design. We do this with the help of Figure 5.6.

Judge 1 Judge 2
Item 1 Item 2 Item 1 Item 2
Judge 1 Item 1 0'12(1) O1(1)2(1) O1(1)1(2) O1(1)22)
Item 2 Ca1)101) 0'22(1) Oy1)1(2) 02(1)2(2)
Judge 2 Item 1 Ci21(1) O12)2(1) ot 01(2)2(2)
Item 2 Oa2)1(1) O22)2(1) 022)1(2) 0'22(2)

Figure 5.6 Variances and covariances in the crossed design with 2 judges
and 2 items.
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Only the covariances G, and o)y, are “pure” covariances—
covariances between different items, rated by different judges. If we
denote pure covariances by o,;;s, then we can write the following
reliability coefficient (cf. Equation 4.10):

° +Z Yo
nZnZG nn z l(])

_ i TG i =1 j=1

P ci C(n.- D(n, - 1) o>

(5.13)

where 6 is the total score variance for item i, and G is the total score
variance for judge j. The coefficient of Equation 5. 13'is identical to the
generalizability coefficient (Equation 5.12).

In generalizability theory, the emphasis is not so much on the
estimation of reliability or, better, generalizability, as on the estimation
of the variance components. The relative size of a component gives us
information on the influence that this component has on measurement
error. After the components have been estimated we can do a D study.
We are then able to compute the generalizability coefficient for a number
of items or a number of judges different from that in the G study. We
are also able to estimate the effect of using another design to obtain
observations. Let us restrict ourselves to the application of the crossed
design. Let n] be an arbitrary number of items and n] an arbitrary
number of judges, then the following formula gives the generalizability
coefficient that will be obtained for these numbers of items and judges:

02

Ep: = 12 (5.14)

0 +G /n +0 /n +o0% Inn’
pij e 12

This formula is a generalization of the Spearman—Brown formula for
a lengthened test. With the formula we can investigate the effect on
generalizability of increasing the number of items and the effect of
increasing the number of judges.

Generalizability theory is not the only possibility for reliability
estimation with more than one facet. A crossed design might also be
analyzed with structural equation modeling; for examples, see Blok
(1985) and Werts, Breland, Grandy, and Rock (1980).
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5.5 An example of a two-facet crossed p x i x j design:
The generalizability of job performance
measurements

Webb, Shavelson, Kim, and Chen (1989) studied the reliability of scores
of job performance of Navy machinist mates in the perspective of G
theory. Three raters (supervisor, peer, and self) rated the machinist mates
on four measures of job performance: a hands-on performance test, a
paper-and-pencil job knowledge test, job task performance ratings, and
global ratings. G theory was utilized to estimate the reliability of the
measures (G study) and to improve the measurement design (D study).

Let us look at one part of the study—the ratings on the hands-on
performance tests. Two examiners or raters observed each machinist
on 11 tasks in the engine room. Details of the procedure are given by
Webb et al. (p. 97-98).

Table 5.4 gives some results of a G study and a D study of the
hands-on performance tests in terms of estimated variance components
and the generalizability coefficients for relative errors. From the esti-
mated variance components, we see that examiner was a negligible
source of variation. This also holds for the interaction effects of persons
and examiners, and tasks and examiners. It may be concluded that
examiners rank machinist mates highly similarly on the hands-on
performance tests. The main effect for tasks, however, is relatively

Table 5.4 Estimated variance components
and generalizability coefficients for hands-on
performance tests (G study and D study).

Source of Variation Variance Components
Persons 0.00626
Examiners 0.00000
Tasks 0.00970
Persons x examiners 0.00000
Persons x tasks 0.02584
Examiners x tasks 0.00003
Residual 0.00146

Size of Design

Number of examiners 1 1 2 1
Number of tasks 1 11 11 17
G coefficient (relative) 0.19 0.72 0.72 0.80
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high. This means that tasks differ in difficulty. The variance compo-
nent for the interaction between persons and tasks also is relatively
large. It accounts for 60% of the variability of the scores X . Differ-
ences between persons were greater for some tasks than for others.
This all has important implications for further improving the mea-
surement of job performance using a variety of tasks. Most influential
for reliability or generalizability is to introduce more tasks. From
Table 5.4 it can be seen what the influence on the G coefficient would
be with 17 tasks given only one examiner. Also, the generalizability for
absolute decisions, a subject that will be discussed in another section,
would be largely improved with an increase in the number of tasks.
How would a classical reliability study on the data be carried out?
Researchers may differ on which reliability coefficient to calculate. Is a
reliability coefficient as such informative in the study described in the
example? The answer is no. Estimated variance components are the pre-
ferred statistics to compute (cf. Standards, APA et al., 1999, Chapter 2).
Not only can everybody then calculate his or her own reliability or
generalizability coefficient, there are also clear indications of how to
improve measurement by varying the “size of the study design.”

5.6 The two-facet nested p x (i : j) design

In Section 5.3 the crossed p x i design and the nested i : p design were
discussed. A counterpart of the crossed p x i x j design is the partially
nested design p X (i : j). The crossed and the partially nested design
have been presented in Figure 5.1, with the same number of observa-
tions for each person. In the crossed design, each judge rated all answers
to all items. In the nested design, each judge had another set of items
at his or her disposal to judge the persons.

Apparently, the nested design is less informative than the crossed
design. In the crossed design, judges can be compared; they judge the
same items answered by the same persons. This comparison is not
possible in the nested design. The nested design has, however, an unex-
pected advantage. Each person answers more items in this design. This
suggests that the design might result in a higher reliability and, conse-
quently, might be more efficient. We will demonstrate that this is the
case. First, we will analyze the nested p x (i : j) design.

Let us have n;judges. Each judge rates another set of n; items;
items are randomly allocated to judges. (When each judge is expert
on one subject area and rates only answers to questions pertaining to
that particular subject area, the universe can be regarded as nested,
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Figure 5.7 The Venn diagram for the p x (i : j) design.

and the variance components are interpreted in a slightly different
way.) Each person answers n;n; items.

We can use the Venn diagram in Figure 5.7 as a means of finding
which variance components are confounded. Because p and j are
crossed, their circles intersect in the diagram. The circles for p and i
also intersect. The circle for i lies entirely within the circle for j,
visualizing the nesting of i within j. In the diagram i and ij are found
in the same segment, from which we may conclude that these effects
are confounded. Also, pi is confounded with the residual pij,e. The
ANOVA of the nested p x (i : j) design is given in Table 5.5.

We write the generalizability coefficient as

02

Ep2 = p (5.15)
Rl 52462 /n.+062  Inn.
P o J pL,py.e )

Table 5.5 ANOVA of the nested p x (i : j) design.

Source of Degrees of Expected Mean
Variation Freedom (df) Square (EMS)
Persons (p) n,—1 62  +noc’+nnc’
pi,pij.e i p i p
Judges (j) n—1 62  +no’ +no’+n no
pL,py.e b uy vop p v
Interaction pj (n,-D(n,-1) o>  +no’
bL,py.e Lop
Items within judges ( : j) ni(n; — 1) 62  +n o’
pL,py.e p uy
3 —_ o P 2
Residual (n,— Dngn,—1) O i ie
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The generalizability coefficient for the nested p x (i : j) design with n;
items per judge and n; judges also can be obtained from the results of
an analysis with the crossed design. The generalizability coefficient
for the nested design, written in terms of the variance components
from a crossed analysis, equals

02

Ep2 = p (5.16)
Rl 52462 /n +02/nn.+0>. Inn.
P o J b ] py.e [}

The contribution of the variance component for the interaction persons x
items to the observed variance for persons is smaller than in the
crossed design. In the crossed design only n; items are involved, in the
nested design n;n;. Consequently, the denominator in Equation 5.16 is
smaller than the denominator in Equation 5.11 for the crossed design
with the same number of observations, and the generalizability co-
efficient for the nested design is higher than that for the crossed design.

5.7 Other two-facet designs

Four other types of nested designs with two facets can be distin-
guished:

1 X (:p)
J:(@xp)
@xj):p
jii:p

The i x (j : p) design is formally identical to the p x (i : j) design. In
the i x (j : p) design, the persons and one of the two facets have changed
places. So, also in the i X (j : p) design, five variance components can
be estimated. An example of the i X (j : p) design is the design in which
the responses to a set of items are judged by a group of judges, and
the group of judges differs from person to person.

The j : (i x p) design and the (i xj) : p design are not equal formally.
These two designs are similar in that in both designs four variance
components can be estimated. Let us consider the o : (i x p) design,
where o designates occasions. An example of the o : (i X p) design is a
design where each person responds to the same tasks, but the mea-
surement occasions differ, for persons as well as for tasks. In the (o x
J) : p design, a group of judges rates the performance of a person, and
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each person is rated at different occasions and by a different group of
judges. For example, person 1 is judged at occasions 1, 2, and 3, by
judges 1 and 2; person 2 is judged at occasions 4, 5, and 6, by judges
3 and 4; and so on.

Finally, an example of a fully nested i : j : p design is the situation
where each person’s work is judged by a different group of judges, and
each judge uses another set of tasks i. In the i : j : p design, only three
variance components can be estimated, due to the confounding of many
effects.

Cronbach et al. (1972) mention another type of design—a design in
which the nested effect j in the combination (j : i) occurs only once (i.e.,
n; = 1). In this case, the notation (i,j) for “ joint with j” is used. There
are two two-facet designs with “I joint with j”: the (i) X p design and
the (i,)) : p design. In the (i,j) X p design, three variance components can
be estimated and in the (i,j) : p design, only two. If facet j is considered
to have no influence on the score variation, the designs can be simplified:
the (i,j)) X p becomes the one-facet i X p design, and the (i,)) : p design
becomes the one-facet i : p design.

The Venn diagrams for the four (partially) nested two-facet designs
are presented in Figure 5.8.

(@ix(j:p)
p
(©) @xj):p d)j:i:p

Figure 5.8 Venn diagrams for four nested designs.
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5.8 Fixed facets

The definition of measurement error and universe score depends on
the extent to which one is willing to generalize over measurement
conditions. Let us take the crossed design with facet items and judges.
Perhaps we are not interested in generalizing over the judges in the
study to a hypothetical universe of judges. Maybe the judges in the
study are the only judges available for a long period of time. If we do
not generalize over judges, we can redefine the effects in such a way
that the interactions with judges total to zero. For example, the sum
of the person x judge interactions for a particular person equals zero.
An alternative way of saying this is that the average person X judge
interaction for a particular person is taken up into the universe score
for that person. The variance component for the person x judge inter-
action also becomes part of the universe score variance. The general-
izability coefficient for a fixed facet judges can be written in terms of
the initial variance components as

|:(52 +02./n,]
Ep2 — 14 P J
o’ +0 _/n}+([02_+62__/n}+02/n_)/n,
D r J y 2 by J e J 12

(5.17)

Generalizability is higher when a facet is fixed. The numerator in
Equation 5.17 is larger than the numerator in Equation 5.11, while
the denominator remains the same. This is understandable because
generalization over a more limited universe is easier.

The estimated generalizability for the crossed p x i X j design with
judges fixed equals

MS - MS
p pi
MS

p

Ep?, = (5.18)

which not only looks similar to the corresponding coefficient in the
crossed p X i design, but which in fact gives the same outcome as
Equation 5.8. So, if judges in the crossed p x i X j design are fixed, we
can neglect the facet judges. We total over judges and analyze the
resulting crossed p x i design. Why should we analyze the observations
as a crossed p X i X j design? An argument in this particular case to
analyze the observations for the full model is that without much
difficulty more information is obtained with respect to the relevant
variance components.
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Table 5.6 ANOVA of the nested p x (i : s) design.

Source of Variation Expected Mean Square (EMS)
Persons (p) o’ +no’ +nno?
pis,e i ps i's p
Subtests (s) 62 +n o’ +no’ +n no’
piss,e p is i ps p i s
Interaction ps 62 +no’
piss,e i ps

2 2
.. +hn O,
piss,e pis

Items within subtests i :s) o

Residual o?

pis,e

Also in a nested design facets can be fixed. Let us consider an
example. A test has been constructed with a number of subtests. The
subtests might be tests of different aspects of the subject matter or
various scales that can be distinguished. In a test on test theory,
subtests might be classical test theory and generalizability theory. Mul-
tiple forms of the test can be constructed, but all tests are to be
constructed with the same division into subtests. The facet Subtests
is fixed; no generalization is sought over subtests. Items are nested
within subtests and persons are crossed with items. The design is a
nested p x (i : s) design. Table 5.5 has been repeated as Table 5.6. The
mean squares in Table 5.6 are still specified according to the fully
random design. There is a difference between both tables. In Table
5.6, the notation i : s is used, instead of i,is. This is done in order to
indicate that the nesting is not a result of a design decision, but the
result of a nesting of the universe. Items belong to a specific subtest.

When Subtests is a fixed facet, the variance components must be
redefined. The variance components for the model with fixed facet
Subtests are

izzci+44£ (5.19)

o2 =¢? (5.20)
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and

¢  =¢? (5.21)

pie pis,e

One might use the results in Table 5.6 to obtain a generalizability
coefficient. Unfortunately, the resulting formulas are not very useful
when a different number of items are allowed for each subtest or
stratum. The generalizability coefficient for a test with fixed subtests
or, rather, strata was derived by Rajaratnam et al. (1965). They pro-
posed an alternative estimate of the generalizability coefficient that
is also valid when the number of items varies from stratum to stratum.
In the derivation of the formula, they used the total-score variance and
a weighted sum of the residuals MS, , for the various strata s (s =

1,...,n,). The generalizability coefficient they derived is

n
s

2
Ox~ Z ni(S)MSpi,e(S)

2 s=1
PR = 5 (5.22)
GX

where n, is the number of items in stratum s. This coefficient can
be rewritten as coefficient o, the coefficient that was introduced in
Chapter 4 (Equation 4.11).

In the analysis above, the scores on the subtests are averaged.
Shavelson and Webb (1991) argue that separate analyses for the sub-
tests should also be done. If the results differ strongly between sub-
tests, it might be profitable to use scores on the subtests instead of,
or in addition to, a total score. When scores on the subtests are
obtained, we can apply multivariate generalizability theory in order
to obtain estimated universe scores defined on the subtests. Cronbach
et al. (1972) mention the application of the multivariate approach in
connection with the estimation of universe scores for the Wechsler
Performance and Verbal scales. Their results are the generalizability
theory equivalent of Equation 4.12.

There are two other designs in which a fixed effect makes sense:
the i X (j : p) design and the j : (i X p) design. In both designs, i can
be fixed. In both designs, the variance component for the interaction
between i and p is considered to be part of the universe-score variance.
It makes no sense to consider a facet as fixed when this facet is nested
within a random facet. Fixing both effects in a two-facet design means
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that one does not want to generalize; only pure measurement error is
considered to contribute to the error variance in the generalizability
coefficient. Generalizability cannot be estimated when both effects are
fixed, because pure error variance and at least one interaction variance
are confounded.

5.9 Kinds of measurement errors

Until this moment, the variance components for the main effects of the
facets have not played a role in the estimation of generalizability for
the crossed design. We have argued that in a crossed p x i design all
persons answer the same items, so the differences between items do
not play a role when persons from the same crossed study are compared
to each other. In comparing the persons from the same study, we are
interested in relative measurement.

The size of the item effects is relevant when we have a nested study
in which each person responds to a different set of items. The size of
the item effects is also relevant if we want to compare the persons in
a crossed study with other persons who have taken a different test, or
if we want to compare all persons to a standard of performance. In
those situations, the variation in difficulty level is an interfering factor,
to be regarded as part of the measurement error—we have absolute
measurement errors.

So far, we used the variance for the relative measurement:

2 _ .2
Op = Gpi,e/ni (5.23)

With absolute errors, we have an error variance equal to

2 _ 2 2
G, =0;/n + opi,e/ni (5.24)

Instead of the generalizability coefficient (Equation 5.7) for relative
measurement errors, we can define a coefficient for absolute measure-
ment errors as

02

= 2 5.25
¢ Gi+6f/ni+ciie/ni (5.25)
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The coefficient is estimated by

MS -MS
- MS +(MS.-MS . )in
p i ple p

(5.26)

-S>

or by the biased estimator

n.
i

sz— E sf
n

o=— L 5.27
o n—-1 si+nfscz/(ni—1) el

where si is the total-score variance (with denominator n,), sf the vari-
ance of condition i (with denominator n,), and sf the variance of the
condition means (with denominator n;) (Rajaratnam, 1960).

We denote coefficient ¢ the index of dependability following the
suggestion by Brennan and Kane (1977). This coefficient cannot be
regarded as a correlation except in the nested design. In the nested i : p
design, relative errors and absolute errors are identical. For a com-
parison of the designs and coefficients, see Exhibit 5.1.

Exhibit 5.1 The one-facet crossed p x i design
and the nested i : p design

DESIGNp x i

Estimated variance components:
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Index of dependability given n; items (absolute decisions):

~2
(¢}
_ »p  smeeeeeeaaaaa N

6> +6%/n.+6> In,
P i i pie i

DESIGN i:p

Estimated variance components:

2
i,pie

62,0 (= estimate of 62 + 62 )
p i pie

Generalizability coefficient given n; items:

In this nested design there is no difference between absolute and relative
decisions.

The index of dependability for the crossed design estimates the gener-
alizability for the nested i : p design.

The index of dependability has a lower value than the coefficient
for relative measurement errors because more variance components
contribute to the absolute error. The variance component for items in
the crossed p x i design is based on the assumption of random sampling
of items. If items vary in difficulty level, we probably are not prepared
to sample items randomly from the universe. We will stratify the
universe and use a stratified random sampling scheme instead. Within
strata, items will vary less in difficulty. When items are sampled from
a stratified universe, the absolute error variance is overestimated with
Equation 5.24.

The relative and absolute errors might be viewed as two extreme
possibilities to think about when discussing errors and decision mak-
ing. When using absolute errors, we implicitly assume that the scores
are not corrected for measurement bias. We might, for example, use
a test known to be relatively difficult without correcting the test scores.
The alternative is, of course, to use score corrections wherever possible.
In many situations, enough knowledge with respect to the relative
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difficulty of alternative tests is available in order to correct scores at
least partially.
Let us take the following model:

X,i- M Grand mean
- Person effect (5.28)
+ - Condition effect

+ X, — M, — 4 + 1 Residual

The score x,; obtained under condition i can be corrected for the con-
dition effect u;, — U, giving

x;)i = Xpi — - (5.29)

Suppose that two tests X and Y have been administered to two large
random samples from the population. Then the condition means L,
the population means of the two tests, are known and scores on both
tests can be corrected by taking deviation scores x, — W So, test
scores are made comparable with a relative measurement approach—
an approach that makes use of the results obtained by a group of
examinees on a test. In Chapter 11 the conditions under which
scores on different tests can be made equivalent are discussed more
extensively.

The correction in Equation 5.29 is an ideal, however. In practice,
the effects p; — U needed for the correction are imperfectly estimated.
If the number of persons tested under condition i is very small, we
have little information on the size of the value ;. Then it is sensible
not to correct, and the absolute error is the relevant error for absolute
decision making. With a larger number of persons, the condition mean
x.; contains useful information on the value of y,. But the influence of
measurement error may still be so large that we should not estimate
|; by the mean condition score. However, if some information on the
variation of condition effects is available, one might estimate the con-
dition effect ; using a Kelley formula. Such a procedure was suggested
by De Gruijter and Van der Kamp (1991), based on work by Lindley
(1971) on what is to be regarded as a very simple multilevel model
(Snijders and Bosker, 1999). The equation for the estimation of condi-
tion mean p; based on the results of n; persons is

fi, = px, +(1-p)id (5.30)
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where x; is the observed mean for condition i,

and

An estimate of the within-condition variance is

m

Z Z(xpj - x'j )2

~2 _ Jj=1 p=1

p.res m

E n.—m
J

J=1

The variance component for conditions can be estimated as

_ 1
E (x . —x)* E —
~ _ i=1 ~
G2 = 7t N\t T )~
b m—1 m p.res

with

(Jackson, 1973).
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(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)
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The formulas allow for conditions with different numbers of per-
sons. The weight of an observed condition mean for the computation
of the estimate of the universe mean is relatively high when the
number of persons who have been measured under that condition is
large. From Equation 5.30 and Equation 5.32, we see that in this case
the observed mean score for the condition is close to the true condition
mean.

Now scores can be corrected for the condition effect. But, for an
optimal estimate of a person’s universe score, Kelley’s formula can be
used. So, an estimate of the universe score is

=t —i)+i 5.3
where p?g,, is the reliability of condition i. The error associated with
the procedure obviously differs from the absolute error. It also differs
from the relative error unless the condition mean and universe mean
are perfectly estimated.

The estimation formula can be rewritten as

fi, =i+ Pl (x, — )+, — D) (5.39)

where o is the product of the generalizability coefficient and 1—pi2.
Jarjoura (1983; see also Longford, 1994) discusses the optimal estima-
tion of universe scores on the basis of a n-item test without taking the
intermediate step of estimating the condition mean ;. When items are
randomly selected for test forms, Equation 5.38 is identical to his
formula (39).

Related to the sampling approach in generalizability theory is
matrix sampling (for an overview see Lord and Novick, 1968, and
Sirotnik and Wellington, 1977). In matrix sampling from a population
of persons and a one-faceted universe, the restrictions in the choice
among designs used in generalizability theory can be dropped. In large-
scale testing programs, program evaluation and the measurement of
group performance matrix sampling is applied. Here the term matrix
sampling refers to a measurement format in which a large set of test
items is organized into relatively short item sets, each of which is
randomly assigned to a subsample of test takers, so avoiding the
administration of all items to all examinees (Standards, APA et al.,
1999, p. 178).

Other designs than the crossed design and the nested design allow
us to efficiently estimate condition effects. Figure 5.9 shows a design
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Group 1 Group 2 Group 3 Group 4
Judge 1 X X
Judge 2 X X
Judge 3 X X
Judge 4 X X

Figure 5.9 A judgmental design with overlap between judges.

where judges overlap. So, judge 1 and judge 2 have group 2 in common,
but only judge 1 rates the persons from group 1, and only judge 2 rates
persons in group 3. Through the overlap, all judges are connected and
the relative leniency of judges can be estimated. With a design like
the design in Figure 5.9, we have already left the domain of general-
izability theory. For an overview of methods to estimate judgmental
effects, see the contribution by Braun (1988).

5.10 Conditional error variance

Another important issue in summarizing reliability data and errors
of measurement, not yet discussed in this chapter, is the reporting
of conditional error variance (see Standards, APA et al., 1999, p. 27).
Generalizability theory allows for a conditional standard error of mea-
surement and a conditional error variance (i.e., the error variance
varies over particular levels of scores). It is more likely that the error
variance is not constant than that it is constant. Brennan (1998) gives
information on the estimation of the conditional error variance, for
absolute as well as for relative measurements.

Let us consider the single-facet design. The estimate of the absolute
error variance for person p is

Z(x ~x )’

~2
S g T (5.39)

This estimate of the conditional error variance is valid for the crossed
p X i design as well as the nested i : p design. When the items are
scored dichotomously, the relevant model is the binomial model, and
Equation 5.39 can be simplified to Equation 6.3 divided by the square
of the number of items.
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The estimation of the conditional relative error variance for the
p X i design by Brennan is based on work by Jarjoura (1986). The
conditional relative error variance, the variance of §,, can be written as

2

O e = VAX , —1 )=, —wlp]

_ 2 2
=0 +0; /ni—2cov(XpI—up,},LI—u|p) (5.40)

Abs(p)

_ <2 _~2 _ _ _ _
=0 () G, /n, —2cov(y, u,Xpi H, W +ulp)n,

where X ;and u; are means over n-item sets. Averaged over persons,
the latter covariance term is zero, and the relation between absolute
errors and relative errors as given in Equation 5.23 and Equation 5.24
is obtained. The conditional relative error variance is estimated as

(5.41)
n.

13

.y n, +1 ., . n, cov(xpi,x_i | p)
c =—+—o¢ +06%/n. —2
Rel(p) n -1 Abs(p) i i n -1
p p

Brennan considers other designs as well. One of these designs is the
design in which a table of specifications is used for the stratification
of items. The estimated conditional absolute error variance for the
stratified design is a generalization of the conditional error variance
derived by Feldt (1984) for dichotomous items and mentioned in the
next chapter.

5.11 Concluding remarks

After more than a century testing, a broadening of measurement, and
at the same time a development in sophistication, is visible. In addition
to traditional measurement, so-called assessments become more impor-
tant (cf. the Standards, APA et al., 1999). A broadening of applications
in practice goes hand in hand with the development of more sophisti-
cated statistical models for test scores obtained in all kinds of assess-
ments and also in program evaluation. G theory can be used in the
analysis of sources of variation of assessments. Examples of the use of
G theory in the assessment of student achievement and school effective-
ness have been given by Cronbach et al. (1997). Looking back at more
than four decades of G theory, however, one must come to the conclusion
that G theory is underutilized, in spite of recent work in the field.
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Applications and developments in specific theoretical areas are the
analyses of quantitative behavioral observational data (Suen and Ary,
1989; see also Rogosa and Ghandour, 1991). G theory in the context
of repeated measurements is only incidentally mentioned (Shavelson
Webb, and Rowley, 1989). Every now and then authors are propagating
G theory for designing, assessing, and improving the dependability of
measurement procedures (e.g., Marcoulides, 1999): hardly to any avail.
There are rays of hope for the future, however. The relevance of the
use of G theory and G coefficients have found ample place in the 1999
Standards for Educational and Psychological Testing (APA et al., 1999,
Chapter 2).

Exercises

5.1 We have the following table:

Item
Person 12345678910

1 1101100110
2 1010110000
3 0001110101
4 1101000001
5 1111010000
6 1100000101
7 1010100011
8 0000110000
9 1111101110
10 1111111100
11 1111100101
12 1110011111
13 1111101100
14 0111001011
15 1011111110
16 1001011010
17 1101101110
18 1111110111
19 1111111101

DO
(e}

1111111101
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5.2

5.3

5.4

STATISTICAL TEST THEORY FOR THE BEHAVIORAL SCIENCES

Compute the item variances and the variance of total scores.
Next, compute coefficient o.

Compute the mean squares for items, persons, and interac-
tion. Compute the variance components and discuss the
implications of the values of these components. Finally,
compute the generalizability coefficient. Use statistical
software if you want to.

A test consisting of 15 open-answer items is given to 500

examinees. The responses are judged by four judges in a

completely crossed design. The mean squares from an ANOVA

are given in the table below. Compute the variance compo-

nents and the generalizability coefficient for 15 items and 4

judges.

Source of  Mean Square Source of Mean Square

Variation (MS) Variation (MS)
Persons (p) 17.30 pj 0.80
Ttems () 1051.65 ij 45.65
Judges (j) 420.80 pij,e 0.65
pi 6.65

Compute the generalizability coefficient for (a) 30 items and
4 judges and (b) 60 items and 2 judges, using the estimated
variance components from Exercise 5.2.

The following table gives the expected mean squares for the
nested j : (i X p) design. Give the coefficients of the variance
components in terms of n,, n;, and n;.

EMS of the Nested j : (i X p) Design

EMS, o’ . +ac’ +bc’
J>PIY,pye p p

EMS,; 6 +co? +do?
J,P1Y,py.e p i

EMS,; 62 . +ec®
J>PIY,py.e Dl

EMS 2

j.pjij.pije co o
1PLYPY J,PIY,py.e
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5.5

5.6

5.7

Derive the formula for the correlation between two judges
who both judge the responses to n; items. Use the notation
of the variance components from generalizability theory
(cf. Maxwell and Pilliner, 1968).

Derive the formulas for the relative and absolute error vari-
ance for the crossed p x i x j design.

Three judges rated 50 examinees each. The variances of the
ratings are practically equal for all three judges. The pooled
within-judges variance equals 100.0. The judges have differ-
ent means. Judge 1 has a mean equal to 32.0, judge 2 has a
mean equal to 35.0, and judge 3 has a mean equal to 38.0. Is
a correction for the difference in leniency indicated? If so, how
should we correct the scores?
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CHAPTER 6

Models for Dichotomous Items

6.1 Introduction

The simplest items in achievement testing have only two different
outcomes, correct and incorrect. These items are dichotomous. If an
examinee does not answer an item, we evaluate the nonresponse as
incorrect. A correct answer can be assigned a score 1, and an incorrect
answer can be assigned a score 0 (see Exhibit 6.1). Dichotomous items
are frequently used in tests. For example, achievement, aptitude, and
intelligence tests with multiple-choice items are frequently scored
dichotomously. For dichotomous and dichotomized items, test models
have been developed to account for the scores of persons on such tests.

Exhibit 6.1 On the existence of dichotomous items

Dichotomous items as such do not exist, dichotomous scoring does. The
responses to items do not fall naturally into two categories, “correct” and
“Incorrect.” It takes a decision to code nonresponse and incorrect re-
sponse(s) all in the same category.

In tests with multiple-choice items, sometimes a scoring formula is used
in order to suppress pure guessing. The possible scores are 1 (correct),
0 (omit, not reached), and 1/(k — 1), where %k is the number of response
options. When a test is not speeded, a “deterrent” against guessing is
not likely to be very effective: a person should always respond to an item
if he or she has some partial knowledge.

Items also can be weighted. A correct answer on one item might, for
example, result in a score of one point, whereas a correct answer to another
item might result in two score-points. Empirical weighting of dichotomous
items will be discussed in connection with maximum likelihood estimation
of person parameters (Chapter 9). Formula scoring implicitly weights two-
choice items heavier than four-choice items, even though two-choice items
are less accurate in the lower score range than four-choice items.
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The first model to be discussed (in Section 6.2) is the binomial
model. This model is relevant for the nested i : p design. It is also the
adequate model if items are psychometrically exchangeable. In Section
6.3 the generalized binomial model for items with varying difficulties
is introduced. The generalized binomial model is the unidimensional
model for dichotomous items within the context of true-score test
theory. This model spans the bridge to item response models, which
are discussed in Chapter 9. Section 6.4 relates the generalized binomial
model to the item response models. In Section 6.5 the relevance of
item statistics for item analysis and item selection is clarified.

6.2 The binomial model

If we throw an unbiased dice, the probability of obtaining the outcome
five or six equals one third. When we throw the dice again, the prob-
ability again equals one third. The probability of having x times the
outcome five or six in n throws is given by the binomial distribution
with parameter { = 1/3:

n

f(xIC)=[ ]Cx(l—C)H (6.1)

X

where

nl o nl
X  (n-x)x!

is the binomial coefficient with n! = n(n — 1)...1.

In this section we will develop the binomial model, assuming the
existence of a large item pool. The items are assumed to be indepen-
dent: the correct answer to one item does not give away the correct
response to another item. We randomly select one item from the item
pool and ask a person to answer this item. The probability that this
person answers a randomly selected item correctly is called his or
her domain score {. In other words, when we repeat the testing
procedure, the expected value of the proportion correct answers
equals .
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Let us administer not one, but n randomly selected items. The
probability of a correct answer is equal to { for each of the randomly
selected items. The probability of exactly x items correct out of n is given
by the binomial model presented in Formula 6.1 (actually, the binomial
model is an approximation for n smaller than infinity if we use item
selection without replacement). With a large number of repeated selec-
tions of n-item tests, the empirical distribution of the number correct
will approximate the distribution defined by Equation 6.1.

The result of our exercise is that we have a strong true-score model
with respect to the distribution of observed scores (and errors) on the
basis of a few weak assumptions. The model is called strong because
the error distribution given the domain score is known. There are no
assumptions besides the assumption of a large item pool, and the
random selection of items from this pool. It is possible for a person to
know some of the items from the pool and to answer those items
correctly. He or she may not know the correct answer to other items
and guess correctly or not when answering these items. It might even
be possible for the test administrator to know which items will be
answered correctly and which will not be answered correctly. To illus-
trate this, suppose that a person has to respond to items on addition
and subtraction. All addition items are correctly answered and none
of the subtraction items. If the next item is presented and this item
turns out to be an addition item, we assume that the person will
answer this item correctly. Nevertheless, whether we have some infor-
mation or not, over replications of n-item tests, the distribution of total
score will be the binomial distribution.

Now let us consider the situation of a large item pool with more
persons. If we give these persons the same selection of n items, it is
unlikely that the binomial model holds. From the responses, it will
become clear that the items have different psychometric characteris-
tics. For one thing, they are likely to differ in difficulty level.

When more persons are tested, the binomial model still holds if for
every person a separate random selection of items from the item pool is
drawn. In terms of generalizability theory, we have a nested i : p design.

The binomial model has been popular in educational testing
(Hambleton and Novick, 1973). In educational testing, frequently a
large domain of real or hypothetical items can be constructed and a
test can be viewed as a random item selection from this item pool. The
purpose of testing is to obtain an estimate of the domain score (uni-
verse score in terms of generalizability theory). Relevant questions are
to which extent the person has achieved mastery of the domain, and
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whether the amount of mastery is enough to pass the person on the
examination. In terms of generalizability theory, one is interested in
absolute measurement.

An alternative to random selection of items is using a stratified
sampling scheme. In relatively heterogeneous item domains, we are
likely to prefer this sampling scheme. In a relatively homogeneous
item domain, we might actually be prepared to select items randomly
from an item pool. We will elaborate this latter possibility.

6.2.1 The binomial model in a homogeneous item domain

In the binomial model, the variance of measurement errors given test
length n and domain score {, which is the variance of observed scores
given n and {, equals

0%, =n1-0) 6.2)

With an n-item test, the true score of person p is 1, = n(,. However,
in this case, it is more convenient to keep using the true-proportion
correct scale . An application of the binomial model with the observed-
score variance (Equation 6.2) is given in Exhibit 6.2.

Exhibit 6.2 Minimum test length

Consider the following problem. We have an ability level {, that is consid-
ered as a definitely high level and another ability level {, that is low. We
want to classify an examinee as a high-ability examinee when x > x, and
as low otherwise. We want to have an error probability P(x < x,|{,) < o
for a specified high ability {,. We also want to have an error probability
P(x 2 x,1 ) < B for a specified low ability {,, How many items are needed
to achieve the specified accuracy, and for which cut score x,? We will
discuss the simpler problem with B = a.

The minimum test length is the smallest number of items n for which
mjnxo{max[P(x <x, 18, ) Plx2x 1)} <o

When 7 is not too small and the ability { not too extreme, the distribution
of x can be approximated by a normal distribution with mean { and stan-
dard deviation n'?c, = n'2[{(1 - {)]'2. Let z, be the z-score corresponding
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to the cumulative probability o in the normal distribution. Then x,and
n can be obtained from the equations

x, =1k, .
o

n
%,

and

nCl—xO _

Ao,
&
The minimum test length is

2
_ (Ggh +6Cz)

¢ @,-5)

and the corresponding cut score

~ cgh§1+c€l§h
X =n————

0
G, +0
9 9]

Birnbaum (1968, pp. 448-449) and Fhanér (1974) give a more general
treatment of the subject. Unfortunately, the normal approximation does
not always give the correct result because the minimum number of items
tends to be underestimated. Part of the problem is that x, in the ap-
proximation is a continuous variable. For better results, the cut score
should take on an integer value minus a continuity correction equal to
one half. Wilcox (1976) demonstrated that an exact solution for the
binomial model is feasible. In Chapter 10, another solution to the prob-
lem of minimum test length is discussed, within the framework of IRT.

The error variance of person p can be estimated from the number
correct score x, as

62 =6

2
. X, n(xp/n) _ xp(n xp)
E(p) ~ U X(p) n—1 n—1

(6.3)
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The error variance is small for domain scores close to 0 and 1, and
high for domain scores close to one half. It is clear that the assumption
of an error variance independent of the true score level is untenable.
The estimated conditional standard error of measurement on the pro-
portion correct scale—the square root of Equation 6.3 divided by
n—can be used to construct a confidence interval for {,. Due to the
fact that the binomial errors are asymmetrically distributed around C,
and that the size of the variance varies with {, the construction of a
confidence interval for { unfortunately is not straightforward (see
Pearson and Hartley, 1970). For not too extreme proportions correct
X =x, /n and for not too small test sizes n a normal distribution can
be used for the computation of a confidence interval around x X

There is a second reason not to trust a confidence interval based
on the observed proportion correct blindly. When we are dealing with
a population of persons, such a confidence interval may well be mis-
leading. We have to take the population distribution into account in
the construction of such an interval. For a comparable situation, we
refer to the discussion around the Kelley formula in Chapter 3.

What are the characteristics of the procedure with randomly selected
n-item tests? How do we express reliability for the procedure in terms
of the ratio of true-score variance and observed-score variance for a
particular population of persons? Let us first estimate the average error
variance. Using Equation 6.3, we can estimate the error variance related
to observed scores X through averaging the estimated error variances
for all persons. We obtain

N

GZE=%26§(W ni [nu (1-p)-o J (6.4)

p=1

if, in the computation of the observed-score variance, the numerator
is divided by the number of persons N instead of the usual N — 1. In
the above formula, u_ equals the proportion correct averaged over per-
sons. This results in reliability coefficient:

KRa1 = nl[l—nux(l_ux)] (6.5)

2
n-— o
This coefficient is known as the Kuder—Richardson Formula 21

(Kuder and Richardson, 1937), in a crossed design a lower lower bound
to reliability than KR20 (coefficient o). Here, in the nested design, the
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formula does not give a lower bound but is exact, apart from sampling
fluctuations.

The Kelley formula for the estimation of the domain score is given
by

A

{,=KRux +(1-KRayu, (6.6)

The regression of domain scores on observed scores or proportions
is linear if the population distribution is given by a beta distribution
(see Novick and Jackson, 1974). We have a linear regression with
unequal error variances. In Chapter 3, linear regression of true scores
on observed scores was obtained for equal error variances. If the
domain scores have a beta distribution, we not only have an exact
point estimate of {, (Formula 6.6), but the complete posterior distri-
bution (see Exhibit 6.3).

Exhibit 6.3 The beta-binomial complex

The beta distribution for domain scores is defined by

fQ)e<'1-¢)"", with a,b>0

Let us assume that the population distribution of domain scores is the
beta distribution with parameters a and b. A person from the population
answers x items from an n-item test correctly. The probability of x correct
out of n for a particular value of { is given by

n

f(x10) =[ ]C"(l—C)”

X

Notice the similarity of the beta distribution and the binomial distribu-
tion. We can derive that the posterior distribution of { given the test
score is

f(c | x) oc Caﬂc—l (1 _ Q)bJrn—x—l

which is a beta distribution as well. A confidence interval for { given
the observed score can be obtained; in the literature this kind of
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confidence interval has been designated a credibility interval or a
tolerance interval.

In the figure, the distribution with the larger variation is the beta
distribution with a = 13 and b = 10; its mean equals 0.57. A person
answers 16 out of 20 items correctly; the proportion correct is 0.8. The
more peaked distribution gives the posterior distribution of { given the
score on the 20-item test. Its mean equals 0.67.

The beta distribution is also used for the construction of the exact
“classical” confidence interval for { (Pearson and Hartley, 1970).

The nested design in which for each examinee a different random
sample of items is selected, is easily implemented on the computer.
With computerized testing, it is also easy to adapt the test length. If,
after the administration of a number of items, the estimate of the
domain score is accurate enough, testing can be stopped. A very simple
stopping rule was suggested by Wilcox (1981). Wilcox assumed that
there is a test procedure with a fixed test length of n items. An
examinee passes the test if at least n,. items are answered correctly.
This procedure can be adapted as follows:

Stop after n, correct responses
Stop after n — n, + 1 incorrect responses

With this procedure, test length can be much shorter than n for
most examinees. The flexibility of test length is not the only charac-
teristic of the suggested procedure, however. The procedure also
assumes that each presented item has been answered. It is not possible
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to skip an item temporarily or to change the response to an item.
Another adaptive procedure, a procedure with an optimal selection of
items instead of random sampling, is discussed in Chapter 10.

6.2.2 The binomial model in a heterogeneous item domain

In a large heterogeneous item bank, the procedure for estimating the
domain score, error variance, and reliability is as follows. Instead of
sampling items randomly from this item bank, we randomly select
items from various strata. With g strata, we randomly select n; items
from stratum i. The domain score of interest is then given by

L= niin 6.7)

with

g

n= ET’L
i

=1

that is, the domain score ¢. is a weighted average of the domain scores
for the various strata (for a more general approach, see Jarjoura and
Brennan, 1982). This domain score generally differs from the domain
score in Equation 6.1. To illustrate the point, assume that the strata
differ in average item difficulty. Also assume that for all strata the
same number of items n; is selected. When the strata sizes are equal,
the domain score from Equation 6.7 equals the domain score under
random sampling. The sizes of the strata are arbitrary, however. Some
strata might contain more items than other strata (e.g., it might be
easier to construct many items for some strata than for other strata).
When strata differ in size, the domain score based on stratified sam-
pling can deviate from the domain score under random sampling.
Under these circumstances an analysis based on the stratified sam-
pling plan is indicated.
The error variance in the stratified sampling approach equals

g

Oy = 2nGA-L) (6.8)

=1
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which is generally smaller than the variance that we obtain under
random sampling. The estimated error variance for person p equals

L x (n.—x )
2 _ pl 1 pl
SE(p) _Z (6.9)

: n—1
i=1 i

(Feldt, 1984). The relevant reliability coefficient is the stratified ver-
sion of KR21:

q 9 _q
E 2 § § 2
KR21(L)GYi + GYlY]_

KRaip = = PR (6.10)
GX

where KR21(i) is the reliability estimate for the subtest of stratum i,
and Y, designates subtest i. We should keep in mind here that each
subtest contains different items for different examinees.

6.3 The generalized binomial model

We start again with an n-item test, and this time the n-item test is
presented to a group of persons. Assuming that the number of items
n and the number of persons N are relatively large, we are going to
do some computations. We compute the correlation of an item, say
item i, with the other items (see Section 6.5), and this correlation is
positive. We also compute the observed proportion correct for this item
within each score group on the test. Next we plot these proportions
against the test scores x. The proportion correct increases with increas-
ing test score x. The result will look like the plot in Figure 6.1. We
can do the same thing for a second item, item j. It may turn out that
items i and j are practically uncorrelated within each score group. We
then conclude that the answers to these items are determined by one
common factor (if this is the case, one actually should expect a slightly
negative correlation between the two items in each score group, for
the scores on the items must add to x in score group x); see Stout
(1987) for a nonparametric test of unidimensionality. The common
factor or latent trait score is represented by the true score on the test,
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Figure 6.1 Item-test regression as might be obtained in practice.

and for a long test this true score may be reasonably well approximated
by the observed score.

Again we use the true proportion correct on the test and denote
this proportion correct by {. The proposition that there is one factor
underlying the responses to the test items can be formalized as follows:

+ The probability of a correct answer on item i is Py({).

+ The true score on the proportion scale is { = n'Z Py(0).

+ Given the true score { the responses to items are independent.
This is the property of local independence.

For two items i and j, local independence means

P(X,=x,X =x,10)=P(X,=x1)P(X,=x,10)
1 (6.11)
= PQ)"[1- PO PP~ P

where x; equals 1 for a correct answer on item i and O otherwise.
Formula 6.11 is shorthand for: the probability on items i and j correct
is equal to the probability that i is correct times the probability that
J is correct, and so forth.
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Tacitly, but inevitably, we seem to have introduced a strong
assumption concerning the process of answering items. From the idea
that responses are locally independent, it seems to be implied that
answering the items is probabilistic. This conclusion is, however, not
so inevitable as it appears. Whether or not the answer process is
probabilistic can only be verified in a replication study with the same
test (cf. the confounding of interaction and error in Chapter 5). For
reasons of convenience, we will speak of probabilities.

The model introduced above is the generalized binomial test model
(Lord and Novick, 1968). The error variance given { defined on the
scale of total scores is

O = 2 EON-PQI=n1-0 = Y[R~ =n{1-{) ~nc),

(6.12)

If the item difficulties in the generalized binomial model differ
slightly for each level of {, the generalized binomial model can be
approximated well by the binomial model. This is clear from Equation
6.12. With small differences between items, the rightmost factor in
Equation 6.12 can be dropped. The more items differ with respect to
difficulty, leading to a larger item variance given {, the smaller the
error variance in the generalized binomial model is relative to the
error variance of the binomial model. Does this mean that for accurate
testing tests should be used with spread item difficulties? This question
is not easy to answer because a different choice of items results in
another true-score scale. Actually, later in this chapter it is argued
that the answer should be “no” in most cases.

The error variance in the generalized binomial model varies
strongly with true score. Can a reasonable estimate of error variance
(Equation 6.12) be obtained for various levels of {? For extreme values
of { (values close to 0 or 1) the value of Equation 6.12 is close to 0. It
seems acceptable to approximate Equation 6.12 by

oiqc ~nk{(1-{) (6.13)

with 0 < k& < 1. Keats (1957) proposed to choose the factor & so as to
be able to reproduce the reliability coefficient ryy that has been
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obtained for the test. In this case, the estimate of the error variance
of person p equals

625(,3) =kx (n-x )/(n-1) (6.14)
with
1-r .,
k= l—KXI){(m (6.15)

Feldt, Steffen, and Gupta (1985) compared various methods for the
estimation of the variance of measurement errors as a function of true
score, including the method proposed by Keats. We will discuss one of
the other methods in the next section. Another discussion of conditional
standard errors of measurement and conditional error variances can
be found in Lee, Brennan, and Kolen (2000).

6.4 The generalized binomial model and item
response models

The generalized binomial model in Equation 6.11 is a general one-
factor model for dichotomous items. The probability of a correct answer
to an item increases as a function of true score in a way that is not
specified. True score is a function of the items and, therefore, is arbi-
trary. If we would consider including an item, say item i, in a different
test, we would have another true score {’, monotonously related to
the true score of the present test. The function P({’) would have
another form than the function P;(0).

The true-score scales of the different tests can be considered func-
tions of one underlying latent trait. Let us denote the latent trait
value by the symbol 6. Now we can write the probability of a correct
response to item i as P/(0). The function P,(0) does not depend on the
test form in which item i happens to be included. It is assumed that
the function P,(0) depends on a number of item parameters. Several
one-factor models for dichotomous items have been proposed, like the
Rasch model (Rasch, 1960), and the two-parameter and three-parameter
logistic models (Birnbaum, 1968). These models are examples of
unidimensional item response models (IRT models); there are also
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multidimensional item response models and models for more than
two response categories (some examples will be given in Chapter 9).

The probability of occurrence of a particular response pattern on
a n-item test given the latent trait score 0 can be written as the product

P(X,=x,...X, =x 18)= [ [ (X, =x,10)
o (6.16)
3§ EEORIE IO
i=1

where x; = 1 for a correct response, and x; = 0 for an incorrect response.

We can estimate the item parameters of the item characteristic
curve (ICC), Py(0), of item i from responses to the test. Next, we can
compute the true score for a given value of 6 as:

r:iPi(G) (6.17)

The conditional error variance for a given true score can be com-
puted as

o2 =02 =Y P(O)[1-P(0) 6.18)

i=1

where 0 is the latent ability that corresponds with the true score.
Further, it is possible to estimate the population distribution of 6

(Bock and Aitkin, 1981). When an estimate of the population distribu-

tion is available, we can compute a Bayesian point estimate of 0.

6.5 Item analysis and item selection

In traditional item analysis, the most common indexes that are com-
puted are those for item difficulty and item discrimination power. We
can do likewise for a nested design as well as for a crossed design.
Here, we discuss the computation of item statistics within the context
of a crossed design with N persons and n items.
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For each item, we can compute the mean item score. For dichoto-
mous items, the mean score is equal to the proportion correct, or item
difficulty index p;. The higher the value of the item difficulty index is,
the easier the item. The variance for item i is

Np(1 = p)/(N = 1) = p(1 - p) (6.19)

The extent to which the item discriminates between high-scoring
persons and low-scoring persons, the item’s discriminating power, is
approximated by the item-test correlation r, With relatively large
tests, total test score is close to the true score, and the item-test
correlation gives a fair impression of the item discriminating power.
With small tests we have a problem. The correlation between item and
test, r,, is spurious: The measurement errors of the item and the test
are correlated because the item is part of the total test. In this situa-
tion, it is better to use r;, the correlation between the item and the
rest score, the total score minus the item score. This coefficient can be
written as

Sr. —S.
L o s T (6.20)

-
Ls 2 2
,/st 23istrit+si

When in the computation of the variances the numerator is divided
by N, the item-rest correlation r;, of dichotomous items can be written
as

M(i) _ M(i) D
. o i (6.21)
4 \/sf —2ss7,+ si2 1-p,

where p, = the item proportion correct or item difficulty of item i, M® =
the average score on the test minus item i, and MY, = the average
score on the test minus item i for the subgroup with item i correct.

A coefficient corrected for spuriousness and attenuation was sug-
gested by Henrysson (1963), with coefficient o as estimator of test
reliability.

In a homogeneous test, the two item indexes, item difficulty and
item—rest correlation, give us information on the quality of the item.
If necessary, screening of items can be done using these two indexes,
at least when the sample is large enough to give relatively accurate
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sample estimates of these indexes. In a heterogeneous test, a test
from which several subtests can be constructed, the item—rest corre-
lation is less informative. With heterogeneous tests consisting of sev-
eral subtests, factor analysis methodology and possibly structural
equation modeling, are approaches that might be useful for test con-
struction and test development in general, and item analysis and item
selection in particular. This, however, is beyond the scope of the
present chapter (see, e.g., McDonald, 1999).

The item—rest correlation r;, should have at least a positive value,
the higher the values of the correlation, the better. An item with a
value close to 0 may suppress reliability when included in the test, if
an unweighted sum score is used. The advantage of unweighted scores
is that they are simple, easy to defend, and not sensitive to sample
fluctuations. Optimal weights might be obtained from an IRT analysis.
Items with a low discriminating power might be rejected for selection
in a final test version.

Although IRT models are discussed in Chapters 9 and 10, here
some remarks will be made about some of the dichotomous IRT models
in the context of item analysis and item selection.

In the Rasch model, all items are assumed to be equally discrimi-
nating. Item selection within the Rasch model involves selecting items
with similar item discriminations. In item selection, relatively undis-
criminating items are deleted from the test, because they do not fit
the model. However, an item with a better than average discrimination
will be rejected in a Rasch analysis. Is this desirable from a practical
point of view?

What is the optimal difficulty level of test items? Is it good to have
items that differ strongly in difficulty level or not? The answer to this
question depends on the purpose of the test and the discriminating
power of the items. Let us assume that the purpose is to discriminate
well in a population of persons. Let us also assume that the items are
strongly discriminating. Then the probability of a correct answer shows
a large increase at a particular level of the latent trait. In Figure 6.2
we have two such items. The probability of a correct answer on item
1 is close to 1 for levels of the latent trait for which the probability of
a correct answer on item 2 is still close to zero. These two items define
a Guttman scale as long as no other items of intermediate difficulty
are chosen for inclusion in the scale. In the perfect Guttman scale, the
probability of a correct answer is zero or one: at a particular level of
the latent trait the probability jumps from zero to one. That is to say,
the Guttman model, leading to the perfect Guttman scale, is a patho-
logical probability model or deterministic model for dichotomous item



MODELS FOR DICHOTOMOUS ITEMS 95

0.8 1 Persons with
response
pattern
0.6 1
z
&
0.4 - 0,0} (1,0} L1
0.2 4 Item 1 Item 2
0

Figure 6.2 Two strongly discriminating items.

responses. The Guttman model can also be conceived of as a typical
proto-IRT model.

For comparison with Figure 6.2, two less-discriminating items are
displayed in Figure 6.3.

If we want to discriminate between persons within a broad range of
0, we better choose items of distinct difficulty levels when we have highly
discriminating items like those in Figure 6.2. Each item then contributes

0.8 1

0.6

P(6)

0.4 1

0.2 1

Figure 6.3 Two items with a moderate discriminating power.
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to a finer discrimination within a group of persons. The group of persons
with two items correct out of two can be divided into two subgroups by
including a third item that is more difficult than item 2.

In practice, most items are more similar in discriminating power
to the items in Figure 6.3 than to the items in Figure 6.2. An impression
of the discriminating power of items can be obtained by plotting the
item-test regression in a figure like Figure 6.1. In case all items would
have been Guttman items, the item-test regression would have looked
quite differently from the regression in Figure 6.1.

With more moderately discriminating items, it proves to be better
to select items with comparable difficulties. If we want to discriminate
between persons in a population an item difficulty of about 0.50 is
optimal unless guessing plays a role (Cronbach and Warrington, 1952).
A test with this kind of items is less accurate for persons with very
high and very low latent trait values, but for most persons the test is
more accurate than a test with spread item difficulties. Some item
selection procedures, however, automatically select items with spread
difficulties. In a procedure for scale construction proposed by Mokken
(1971), the scale is not formed by deleting items that are not satisfac-
tory, but by step-wise adding items that satisfy certain criteria. The
procedure starts with the selection of the items most different in
difficulty if the items do not differ with respect to discriminating power
(see Mokken, Lewis, and Sijtsma, 1986); see Croon (Croon, 1991) for
an alternative procedure. More information on procedures for test
construction is presented in Exhibit 6.4.

Exhibit 6.4 Item selection in test construction:
Some practical approaches

Traditional test construction relies heavily on the indexes for item diffi-
culty and item discriminating power. In addition, item correlations can
be taken into account in the construction of tests. Also, if some external
criterion is available, item validity (i.e., the correlation of item and
criterion scores) can be used.

Several methods have been proposed to construct a relatively homoge-
neous test from a pool of items. One possible classification of methods
is the following:

1. Step-wise elimination of single items or subsets of items. Eliminate
those items that do not correlate with the other items (e.g., set a
certain threshold for an acceptable item—rest correlation). Repeat
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the procedure after elimination of items until the desired standard
is reached. The contribution of the item to test reliability can also
serve as a criterion for elimination of an item.

2. Step-wise addition of single items or subsets of items. The construc-
tion of the scale starts with the two items that have the strongest
relationship according to a particular index. Next, the item with the
strongest relation to the items in the scale in formation is added if
certain conditions are satisfied. The process is repeated until no
further items are eligible for inclusion. The whole process can be
repeated with the construction of the next scale from the remaining
items. Another technique in this class of procedures is hierarchical
cluster analysis, based on, for example, the average intercorrelation
between clusters (see also Nandakumar, Yu, Li, and Stout, 1998). In
hierarchical cluster analysis, scales are constructed simultaneously.

3. Item selection can be based on item correlation with an external
criterion. The external criterion can be a classification in a diagnostic
category (e.g., people with schizophrenia). Although this procedure
produces a useful instrument for diagnostic purposes, it does not
guarantee the construction of a homogeneous scale.

4. Factor analysis of item intercorrelations. Usually this approach is
applied when several factors are thought to underlie item responses.
Traditional factor analysis is sometimes difficult to apply with
dichotomous items. An obvious way out is to use one of the proce-
dures of nonlinear factor analysis (Panter, Kimberly, and Dahlstrom,
1997). Nonlinear factor analysis can be viewed as a multidimen-
sional IRT analysis. IRT will be outlined in Chapters 9 and 10.

If guessing plays a role, we should take that into account. Let us
have a test with multiple-choice items. An item has k response options
and one of these is correct. Let us further assume that a person knows
the answer to an item and responds correctly or does not know the
answer and guesses randomly. The probability of a correct response
under random guessing equals ¢ = 1/k. Then the relation between p’,
the item of difficulty under guessing, and p, the item difficulty without
guessing, equals

p=c+(1-cp (6.22)

From this it follows that the optimal difficulty for a multiple-choice
item with four options is about 0.625. Actually, the optimal value is
likely to be somewhat higher (Birnbaum, 1968).

In case we are interested not so much in discriminating between
persons as in comparing persons with a standard, the answer to the
question of optimal item difficulty is a different one. Assuming that
we are interested in a fine discrimination in the neighborhood of a
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true-score level equal to 1,, an item has an optimal difficulty if at T,
the probability of a correct answer equals ¢;+ (1 — ¢;) x 0.5 for ¢; equal
to 0 and a bit higher if ¢; is larger than 0.

This result is obtained with an IRT analysis (Birnbaum, 1968).
Such an analysis is to be preferred to an analysis within the context
of classical test theory. The true-score scale is defined in terms of the
items that constitute the test. If one item is dropped from the test, the
true score on the test changes as well as the value of 1,. Later we will
discuss test construction more fully in terms of IRT (see Chapter 10).

The outcome of an item analysis in classical test theory not only
depends on the test that includes the item. The sample of persons who
have answered the test determines the estimates of item discriminat-
ing power and item difficulty. It is important to remember this when
evaluating test results from different groups of examinees. The groups
might differ with respect to performance level, and, consequently, an
item might have a different estimate of difficulty level in each group.
Item selection and test construction on the basis of test statistics such
as proportion correct is not justified when the estimates for different
items come from incomparable groups.

Exercises

6.1 Compute the probability that a person with a domain score
equal to 0.8 answers at least 8 out of 10 items correct, assum-
ing that the items have been randomly selected from a large
item pool.

6.2
a. Compute the proportion correct and the item—rest correla-

tion of item 8 in the table of Exercise 5.1. Compute the
item-test regression of this item.

b. Compute the item—rest correlations of the remaining items
as well. Which item should be dropped first when a scale
is constructed by a step-wise elimination of items?

6.3 In a testing procedure, each examinee responds to a different
set of ten items, randomly selected from a large item pool.
The test mean equals 7.5, and standard deviation equals 1.5.
What might be concluded about the test reliability?

6.4 For a person p the probability of a correct answer to two items
is Pi(§,) = 0.7 and Py({,) = 0.8, respectively. Compute the
probabilities of all possible response patterns.
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6.5

6.6

6.7

What information would you like to obtain in order to verify
whether the assumptions made by Keats, see Equation 6.14
and Equation 6.15, are realistic?

A test consists of three items. The probabilities correct for
person p are P,({,) = 0.6, P,((,) =0.7, and P,({,) = 0.8. Compute
the error variance on the total score scale. Also compute the
error variance under the binomial model assumption. Com-
ment on the difference.

Compare r;, and r;, for tests with all item variances equal to
0.25 and all interitem covariances equal to 0.05. Compute the
correlations for test lengths 10, 20, and 40.
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CHAPTER 7

Validity and Validation of Tests

7.1 Introduction

In scientific inquiry, validity of statements refers to the degree to which
there is empirical evidence to support the adequacy and appropriate-
ness of these statements. More specifically, a measure is valid to the
extent that it measures what is intended to measure. How vague this
description may be, it makes clear that validity is not a property of a
measurement instrument, but rather the interpretation of test scores
and their use. In other words, how adequate and appropriate are the
interpretations and uses of test scores, taking into account empirical
evidence and, eventually, theoretical rationales. Validation, then, is
the process through which the validity of the proposed interpretation
of scores is investigated. The process of validation amounts to collect-
ing empirical evidence to provide stable and generally accepted theo-
retically based interpretations of test scores (and other modes of
assessment, for that matter).

In the present chapter we will first go into the problem of validity
as a specific term—that is, validity of test scores or other assessments.
Following the developments in the conceptualization of validity, validity
as a unitary concept will be highlighted. Unified validity integrates
earlier forms of validity of test scores by focusing on the various sources
of evidence that might be used in evaluating a proposed interpretation
of test scores for particular purposes. To date, Kane (2006) provides a
relevant overview of validity and validation of tests and other measure-
ment instruments in the social and behavioral sciences. In Exhibit 7.1
a sketch will be given with respect to validity and the Standards, in
Section 7.2 the various sources of evidence are provided. How impor-
tant these sources may be, in the present monograph it is impossible
to deal with them extensively. We stick to the statistical aspects of
validity and validation. In Section 7.3 selection effects in validation
studies are outlined, in Sections 7.4 and 7.5 classification, and in
Section 7.6 on what has been coined the evidence-based approach
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using analyses of the relationship of test scores to variables external
to the test (Standards, APA et al., 1999, pp. 13-14). Some remarks
will be made on validation and item response theory (IRT) in Section
7.7, while research validity, a form of validity not typical for test
scores, appears in Section 7.8. An important topic that is not included
is validity generalization. Suffice it to mention The Handbook of
Research Synthesis (1994) edited by Cooper and Hedges, Methods of
Meta-Analysis (1990) by Hunter and Schmidt, and Van den Noortgate
and Onghena (2005), who include references to software in their
overview of the field.

Exhibit 7.1 The many faces of validity and the
standards

Where it all started is not easy to trace. Validity, it seems, has been and
will be a perennial theme to scrutinize and discuss for test theorists and
practitioners in the field of psychological and educational testing. Let us
only mention a few highlights in the history of the conceptualization,
operationalization, and periodic canonization of test validity.

In the 1950s, diverse forms of validity were proposed to fit different
situations. The APA (1954) and the AERA (1955) mention four types of
validity: content, predictive, concurrent, and construct. Although there
was consensus, there were dissidents: Anastasi (1954) added face valid-
ity, factorial validity, and various types of empirical validity, Mosier
(1947) analyzed face validity into validity by assumption, validity by
definition, the appearance of validity, and validity by hypothesis. Inter-
estingly, Ebel (1961) already stressed the evidence base of validity (more
explicitly formulated decades later in the 1999 Standards). The seminal
paper of the 1950s, with the benefit of hindsight, is L. J. Cronbach and
P. E. Meehl’s Construct Validity of Psychological Tests (1955).

In 1966 the APA published the Standards for Educational and Psycho-
logical Tests and Manuals, explicitly using the term standard (i.e., level
or degree of quality that is considered proper or acceptable) (APA, 1966).
Later editions of the Standards provide a frame of reference to assure
that relevant issues are addressed. Also in the 1974 Standards (APA,
AERA, and NCME 1974), the distinction in four types of validity men-
tioned above remains, now also endorsed by AERA and NCME.

A next step in the long march toward a unified view of validity is the
1985 Standards (APA, AERA, and NCME, 1985), greatly expanding the
formalization of professional standards for test use. No longer are types
of validity distinguished, but rather categories of validity evidence called



VALIDITY AND VALIDATION OF TESTS 103

content-related, criterion-related, and construct-related evidence of va-
lidity. Messick (1989, pp. 18-20) sketches the historical trends in con-
ceptions of validity, and again, in 1994 made his last public plea for a
unified view of validity (Messick, 1995), culminating in the 1999
Standards (APA et al., 1999).

The later codification of 1999 is still very useful today. But we must keep
in mind that although a unified view of validity is surely a great stride
in the long march, and although a listing of sources of validity evidence
(see Section 7.2 and Standards 1999, pp. 11-17) is illuminating and
useful, a validation study is always an empirical piece of research ac-
cording to general rules of research methodology. Apart from the fact
that the purpose of the Standards is to provide criteria for the evaluation
of tests, testing practices, and the effects of test use, it is not a manual
for how to set up a validation study with explicit consideration of specific
designs and statistical analyses.

There are also researchers who are critical of the codification. Borsboom,
Mellenbergh, and Van Heerden (2004), for example, complain that it
focuses on epistemology, meaning, and correlation rather than on ontol-
ogy, reference, and causality. Validation research should be directed at
response processes and should be driven by a theory of these processes.
Study of response processes has also been stressed by the 1999 Stan-
dards. One may question whether there are generally accepted theories
of response processes around.

7.2 Validity and its sources of evidence

“Validity refers to the degree to which evidence and theory support
the interpretation of test scores entailed by proposed uses of tests.”
This is the opening sentence of the chapter on validity in the latest
edition of the Standards (APA et al., 1999, p. 9). It is no definition in the
Aristotelian sense (i.e., per genum proximum et differentiam specifi-
cam). Neither is it an operational definition: it does not explicitly refer
to the relevant operations to ensure validity. The Standards therefore
proceed by stating: “The process of validation involves accumulating
evidence to provide a sound scientific basis for the proposed score
interpretations” (l.c., p. 9). Fortunately, this is an explicit statement:
the unified view of validity entails that validity is evidence based, and
the sources of evidence are:

* test content
* response processes
* internal structure
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+ relations to other variables

+ information on the consequences of testing;

+ the latter evidence has to do also with social policy and deci-
sion making.

The evidence based on test content can be obtained by analyzing the
relationship between a test’s content and the construct it is intended to
measure. Response processes refer to the detailed nature of performance.
It generally comes from analyses of individual responses (e.g., do test
takers use performance or response strategies; are there deviant
responses on certain items, etc.). The evidence based on internal struc-
ture comes from the analysis of the internal structure of a test (e.g., can
the relationships among test items be accounted for by a single dimen-
sion of behavior?). In Chapter 3 we already met the analysis of the
internal structure of test items in the context of internal consistency
reliability. And the latter form of reliability is worked out (and liberal-
ized, so to say, from the assumptions of classical test theory) in the
broader framework of generalizability theory. G theory, therefore, bridges
the gap between reliability and validity (cf. Cronbach et al., 1972). Per-
formance assessment is generally thought to have the right content, but
it needs further validation (Messick, 1994; Lane and Stone, 2006).

The largest category of evidence is evidence based on relations to
other variables. This category of evidence analyzes the relationship of
test scores to external variables (e.g., measures of the same or similar
constructs, measures of related and different constructs, performance
measures as criteria). Instead of using the old-fashioned label of con-
current validity (e.g., the concept of validity in the unified view refers
to the way evidence can be obtained for validity). The category based
on relations to other variables includes the following:

+ Convergent and discriminant evidence
+ Test-criterion relationships
+ Validity generalization

The first subcategory of convergent and discriminant evidence has
its early beginnings with Cronbach and Meehl (1955) and, most impor-
tantly, with Campbell and Fiske (1959). This subcategory of what was
called construct-related validity is presented in Section 7.5. Test-
criterion relationships studies what has been called criterion-related
validity, and still earlier, predictive validity. Validity generalization
is the evidence obtained by giving a summing-up of earlier findings
with respect to similar research questions (e.g., of the findings of
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criterion-related correlation studies, with the same or comparable
dependent and independent variables). Validity generalization is also
known under the terms meta-analysis, research synthesis, or cumu-
lation of studies. A new development that should be mentioned is the
argument-based approach to validity. One could call this the herme-
neutic or interpretative argument as Kane (2006, pp. 22—-30) has it.
This development is too fresh to include it in the present chapter.

So far, it is all rather abstract. How can it be made more concrete?
How do we proceed in the validation of a test? Ironically, to make it
clear how we study validity empirically, we do better to go back to the
1985 Standards trichotomy of test validity.

The following are the three validities in the 1985 Standards:

1. Content-related validity: In general, content-related evidence
demonstrates the degree to which the sample of items, tasks,
or questions on a test is representative of some defined uni-
verse or domain of content.

2. Criterion-related validity: Criterion-related evidence demon-
strates that scores are systematically related to one or more
outcome criteria. In this context, the criterion is the variable
of primary interest, as is determined by a school system, the
management of a firm, or clients, for example. The choice of
the criterion and the measurement procedures used to obtain
criterion scores are of central importance. Logically, the value
of the criterion-related study depends on the relevance of the
criterion measure that is used.

3. Construct-related validity: The evidence classed in the con-
struct-related category focuses primarily on the test score as
a measure of the characteristics of interest. Reasoning ability,
spatial visualization, and reading comprehension are con-
structs, as are personality characteristics such as sociability
and introversion. Such characteristics are referred to as con-
structs because they are theoretical constructions about the
nature of human behavior (APA et al., 1985, pp. 9-11).

Each of these validities leads to methods for obtaining evidence for
the specific type of validity. The methods for content-related validity,
for example, often rely on expert judgments to assess the relationship
between parts of the test and the defined universe. This line of thinking
or approach is embedded in generalizability theory as discussed earlier.
In addition, certain logical and empirical procedures can be used (see,
e.g., Cronbach, 1971).
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Methods for expressing the relationship between test scores and
criterion measures vary. The general question is always: how accurate
can criterion performance be predicted from test scores? Depending
on the context, a given degree of accuracy is judged high or low, or
useful or not useful. Two basic designs can be distinguished for obtain-
ing information concerning the accuracy of test data. One is the pre-
dictive study where test data are compared (i.e., its relationships are
studied with criterion scores obtained in the future). The second type
of study is the so-called concurrent study in which test data and
criterion data are obtained simultaneously.

The value or utility of a predictor test can also be judged in a decision
theory framework. This will be exemplified in a later section. There,
errors of classification will be considered as evidence for criterion-
related validity.

Empirical evidence for the construct interpretation of a test may be
obtained from a variety of sources. The most straightforward procedure
would be to use the intercorrelations among items to support the asser-
tion that a test measures primarily or substantially a single construct.
Technically, quite a number of analytical procedures are available to do
so (e.g., factor analysis, multidimensional scaling (MDS), IRT models).
Another procedure would be to study substantial relationships of a test
with other measures that are purportedly of the same construct, and
the weaknesses of the relationships to measures that are purportedly
of different constructs. These relationships support both the identifica-
tion of constructs and the distinctions among them. This quite abstract
formulation is taken from the Standards (APA et al., 1985, p. 10). In a
later section the so-called multitrait—-multimethod approach to construct
validation will be considered more concretely and in more detail.

Before going into certain aspects and procedures for validation stud-
ies, it 1s important to consider the problem of selection and its effects
on the correlation between, for example, test X and criterion Y—that
is, the (predictive) validity of test X with respect to criterion Y. Essen-
tially, this is applying statistics in the field of psychometrics: What is
the influence of restriction of range on the value of the validity of a test?

7.3 Selection effects in validation studies

Suppose we want to study the validity of test X with respect to criterion
Y. We already use the test for selection. Only persons with a score x
larger than or equal to score X, on the test are admitted or selected,
and we have criterion scores Y only for these selected persons. We are
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interested in the correlation between X and Y within the total popu-
lation, but we can compute the correlation only for the subpopulation
of selected persons. Is it possible to estimate the correlation within
the total population?

We will derive the relation between the correlation in the subpop-
ulation and the correlation in the total population following a practice
suggested by Gulliksen (1950). Lower-case characters designate sta-
tistics in the subpopulation, and capitals designate statistics in the
total population. We assume that the regression of Y on X is linear
and that the regressions are identical in the total population and the
subpopulation. In addition, we assume that the variances of estimation
errors (i.e., the variances around the regression line of Y on X) are
identical. These two assumptions can be expressed mathematically as

SY R = 5y
Si xy = ?rxy (71)
X x
and
St(1-R2, )=52(1-2) (7.2)

Now we have two equations with two unknowns, the criterion
variance in the total population S?, and the correlation between pre-
dictor X and criterion Y in the total population.

We can solve Equation 7.1 for S?y and substitute the result in
Equation 7.2. Next, we can solve this equation for Ry, The result is

r2
R =" (7.3)

2 s2 2

r +—x(1—r )
xy g2 xy
X

Selection on test X not only depresses the correlation of this test
with the criterion, but due to incidental selection on other variables,
the correlations of other variables are affected as well. The pattern of
correlations differs between the subpopulation and the total popula-
tion; see Gulliksen (1950) or Sackett and Yang (2000) for the case of
more than two variables in selection. The lowering of the correlation
of the explicit selection variable X sets this test at a disadvantage
when it is compared with a competing test in the selected group.
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The value of the correlation between two measurement instru-
ments in a subpopulation can be smaller than the correlation in the
total population, even though no explicit selection has taken place.
Self-selection of persons has a similar effect as selection to the extent
to which two variables are correlated. Let us give an example of a
situation where both selection and self-selection might operate.
Assume that mathematical ability is an important ability for a partic-
ular study. It is reasonable to assume that there is a relationship
between mathematical ability and achievement in the study. We corre-
late achievement with an ability measure only to find a low correlation.
The low value does not invalidate the hypothesis of a relationship. The
low correlation might be due to the combined effects of selection and
self-selection.

7.4 Validity and classification

The size of the correlation between a predictor and a criterion some-
times says very little about the utility of the predictor (Taylor and
Russell, 1939). We will discuss this using Figure 7.1.

Assume that we want to hire a fixed percentage of applicants on the
basis of their scores on a predictor X. For a high score on the predictor
we accept the applicant, for a low score we reject the applicant. We have
a criterion Y with the categories satisfactory and unsatisfactory.
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Figure 7.1 Classification into satisfactory/unsatisfactory and rejected/accepted.
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We have four different outcomes of the selection procedure with
corresponding proportions:

+ The proportion A is accepted and satisfactory.

+ The proportion B is accepted but is unsatisfactory.

+ The proportion C is correctly rejected.

+ The proportion D is rejected although these applicants are
satisfactory.

For the sake of simplicity, we will not bother about the way in
which we can make the distinction between the two groups of rejected
applicants. The proportion A + B is called the selection ratio; this
proportion was assumed to be fixed in the example. The proportion
A+ D is known as the base rate; naturally, the base rate is fixed. The
proportion (A + C) is called classification accuracy.

Taylor and Russell assumed that a bivariate normal distribution
underlies the double dichotomy satisfactory/unsatisfactory and
rejected/accepted. The correlation between the continuous variables
X and Y is denoted by ryy Given a base rate equal to 0.50, a selection
ratio equal to 0.30, and a validity coefficient ry, of the underlying
continuous variables equal to 0.50, a success ratio R = A/(A + B)
equal to 0.74 is obtained. We might compare this outcome with the
expected outcome if we had not used predictor X. If we had selected
the persons randomly, we would have obtained a success ratio equal
to the base rate (0.50). We might compare the success ratio with the
success ratio that we would have obtained with a perfect predictor.
In the present case, the success ratio with a perfect predictor would
have been equal to 1.00. The utility of the test as a selection instru-
ment is higher than we might have expected from the size of the
validity coefficient.

The results obtained by Taylor and Russell depended very much
on their choice of the success ratio as a measure of test efficiency and
the fact that the selection ratio was fixed. We have two kinds of errors:
incorrectly accepting persons and incorrectly rejecting persons. In the
Taylor and Russell approach, only one kind of classification error
counted: incorrectly accepting applicants. In many other applications,
both kinds of classification errors should be considered and then the
utility of the test may be quite different. Let us from now on assume
that both kinds of classification errors are relevant and that the selec-
tion ratio is not fixed.

Taylor and Russell divided persons from a single population into
two groups on the basis of criterion performance. Sometimes we are
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Relative frequency

Test score
Population I ------- Population II

Figure 7.2 The distribution of test scores within two populations.

dealing with two or more different populations and we have to decide
to which population a person belongs. For this purpose, we might use
a predictor X. In its most simple form the problem comes down to
deciding on a cut score on the predictor. Persons with a score equal to
the cut score or higher are classified as belonging to one of the popu-
lations, the others are classified as belonging to the other population.
In Figure 7.2 the classification problem is illustrated for the case of
two populations.

Let us assume that we have two populations: population I and
population II. The purpose of the test is to detect population-II persons
or type-II persons, as they need treatment. Let us assume that we
have a cut score X.. All persons with a score equal to the cut score or
higher than the cut score are classified as type-II persons. We make
classification errors. Some persons are incorrectly classified as type-I
persons, others are incorrectly classified as type-II persons. With a
low cut score we have a relatively large number of false positives,
persons who do not belong to population II, but are incorrectly clas-
sified as type-II persons. The term positive originates from medicine
where it indicates the presence of a condition (illness) for which it is
screened. In our example positive is associated with relatively high
test scores. For a high cut score we have, in contrast, a relatively
large number of false negatives, persons for whom the diagnosis
“type-II” has been missed. At the score X at which the curves for the
two distributions meet, the two kinds of errors are in balance. We
might choose this value of X as X..

The point X at which the probability of belonging to population II
given the observed score, the posterior probability P(II|x), equals the
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Figure 7.3 Classification tables for two base rates.

posterior probability of belonging to population I depends on the base
rate P(IT). The way base rate influences the posterior probabilities is
easily seen by applying Bayes’ theorem:

P(X |IPAL) P(X |T)P(ID)

P X)= P(X)  PXIDPOD+P(X|IMPD

(7.4)

One might imagine that it is difficult to detect type-II persons when
the base rate is low. The accuracy of the measurement instrument
with respect to the detection of type-II persons is called its sensitivity.
Sensitivity is defined as the proportion of persons with a disorder for
whom the diagnosis is correctly made. Not only the sensitivity of the
measurement instrument is important, but also its specificity. The
specificity of a measurement instrument is defined as the proportion
of healthy persons for which the diagnosis is correctly rejected. The
definitions of the two concepts can be illustrated with the data in
Figure 7.3. On the left-hand side of this figure the base rate is 0.20.
The diagnosis (+) is correctly made in 14 of the 20 cases. So, the
sensitivity of the procedure is 0.70. The diagnosis is correctly rejected
in 72 of the 80 cases. So, the specificity of the procedure is 0.90. On
the right-hand side of the figure the base rate is 0.50. The sensitivity
is 0.80. The specificity is also 0.80.

What should we do when missing the diagnosis “type-II” is consid-
ered to be worse than the incorrect classification of type-I persons?
When the difference between the losses associated with the classifica-
tion errors is small, the same cut score might be optimal: the cut score
might be robust against a small change in the losses. For a larger
difference the cut score should be adapted.

Missing a type-II person might be twice as serious as misclassifying
a type-I person. In that case, we are ready to categorize a subject as
a type-II person as long as twice the posterior probability of type-II
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exceeds the posterior probability of type-I—that is, as long as P(II|X)
exceeds one third. The general classification rule is

IPAI|X) > PA|X) or PAI|X) > 1/(I + 1) = classify as type-II
(7.5a)

IP(I1|X) < PI|X) = classify as type-I (7.5b)

where [ is the ratio of the loss associated with misclassifying a type-
II person and the loss associated with misclassifying a type-I person.

When classification errors are serious or when many classification
errors are made, one might decide to use test X only as the first
screening device. In that case, two cut scores might be used. If a person
scores high or low a final classification is made. Scores in between fall
in the category yet undecided (Cronbach and Gleser, 1965). For other
and more difficult classification problems see Hand (1997).

Let us now return to the original example with the classification
accepted/rejected and satisfactory/unsatisfactory. Instead of two pop-
ulations there is only one population. Persons with a criterion score
equal to or larger than Y, are considered to be satisfactory; persons
with lower scores are considered unsatisfactory. The utility of the test
depends on the cut score between accept and reject, X.. With a high
cut score more persons are incorrectly rejected; with a low cut score
more persons are incorrectly accepted. The situation is comparable to
that discussed in connection with two populations. In this case deci-
sions must be made on the basis of posterior distributions P(Y|X).

Which cut score is optimal depends on the seriousness of the clas-
sification errors. To simplify matters, we might consider a discrete loss.
Accepting an applicant who is unsatisfactory is equally serious for all
those applicants. Rejecting applicants is equally serious for all those
applicants incorrectly rejected. One possibility is that incorrectly
accepting an applicant is equally serious as incorrectly rejecting an
applicant. But it is also possible that one kind of classification error
is considered to be more serious than the other kind of classification
error. We should first determine the losses associated with the two
kinds of errors or rather the ratio of these two losses. When we have
the loss ratio it is possible to obtain the optimal cut score for a given
bivariate distribution of test and criterion scores. For bivariate nor-
mally distributed test and criterion scores the optimal cut score is
given by Alf and Dorfman (1967). If the two kinds of errors are equally
serious, the optimal cut score is the value X for which the expected
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Y equals Y,, the value of Y on the border between satisfactory and
unsatisfactory. This is easily verified. For this score X the proportion
of satisfactory Y equals the proportion of unsatisfactory Y due to the
normality of the distribution of Y given score X.

It might seem too simple to regard all decisions where persons are
incorrectly accepted as equally serious. It might seem more adequate
if the seriousness of the classification error depends on the value on
the criterion. Van der Linden and Mellenbergh (1977) introduced a
linear loss function with decisions on passing and failing examinees.
Cronbach and Gleser (1965) gave a systematical treatment of decision
making using tests. Petersen and Novick (1976) discussed decisions
in the context of culture-fair selection.

In criterion-referenced measurement (Hambleton and Novick,
1973; Popham and Husek, 1969), we are interested in the domain score
of an examinee. It is assumed that the examinee has mastered the
subject matter if the domain score is at least as high as a standard
set on the domain score scale. A test X is used to verify whether an
examinee has mastered the subject matter. When the test score is high,
the examinee passes the test; when the test score is low, the examinee
fails the test. Now, we may look again at Figure 7.1. Instead of criterion
Y we have the domain score. Instead of the dichotomies satisfac-
tory/unsatisfactory and rejected/accepted we have the dichotomies
mastery/nonmastery and pass/fail.

In criterion-referenced measurement, it is possible to have a homo-
geneous population of examinees with a high mastery level. For a
reasonable test length, reliability is low with such a population. There
is a strong regression effect: The expected true score given a low
observed score is strongly shifted toward the mean.

As a consequence of the strong regression effect, the optimal cut
score for “pass” might be relatively low when the average performance
on the test exceeds the standard (for standard setting, see Exhibit 7.2).
Then the question arises whether we should use the low “optimal” cut
score and risk a negative effect on the study commitment of new groups
of examinees. In criterion-referenced measurement, the problem of low
test reliability due to the homogeneity of the population has led to
suggestions of alternative coefficients. For example, coefficient kappa
(Cohen, 1960; for standard errors: Fleiss, Cohen, and Everitt, 1969)
has been suggested as an index for decision consistency (Subkoviak,
1984). It should be noted, however, that decision consistency also might
be low when the average mastery level of a homogeneous population
is close to the standard of performance.
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Exhibit 7.2 Standard setting for performance

In educational assessment, the uses and interpretations of standards
are essential; hence, attention has to be paid to standard setting methods
for test performance. Performance standards may be defined as the
scores that must be achieved by examinees to be classified as, say,
proficient. Consequently, a critical step in the use of an assessment
procedure is to establish cut points dividing the score range into catego-
ries that are meaningful for the educational community (cf. Standards,
APA et al., 1999, p. 53). An example is how to classify students on the
basis of their score on National Assessment of Educational Progress
(NAEP) Math Assessments into categories (a) basic, (b) proficient, and
(c) advanced. A plethora of standard-setting methods have been devel-
oped. Different methods lead to different results. It is not likely that
repeated application of the same method in connection with different
tests gives equivalent results. Standard setting is an important and
inevitable activity, but also an activity that remains based on the best
subjective judgment of experts. A recent survey of standard-setting
methods is presented by Hambleton and Pitoniak (2006).

When a new test version is introduced, a standard for this test version
must be set. There are several possibilities to set the standard on a new
test form, for example, using the standard-setting methods again. When
the old test and the new test have items in common, one of the procedures
for test equating (Chapter 11) might be applied.

The computation of coefficient kappa can be illustrated with Figure
7.4. In this figure the crosstabulation is given of the outcomes of two
tests. Decision consistency, the proportion of identical decisions, is the
sum of the proportions p;; and py,. In coefficient kappa this proportion

Test 2
- +
t | Po P P
—
3
=
— | Poo Po1 Po.
Py ba 1.00

Figure 7.4 Decisions on two parallel tests.
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is corrected for chance agreement. The coefficient for the two-by-two
table is defined as

K= (pu +p00)—(pr'1 + po.pAo)
1_(prJ +poApAo)

(7.6)

The decision consistency can be computed with the parallel-test
method. In most applications, however, taking a parallel measurement
is not practical or possible, and the proportions p;; and p,, must be
estimated from the single administration of a test. The proportions p
and p, are set equal to the marginal proportions of the test. Theoret-
ically, the best procedure for the estimation of the proportions p,; and
Doo 1s the following (Huynh, 1978):

Estimate the distribution of domain scores f({).

Estimate the conditional error distribution.

Compute the probabilities p, . and py,.

Compute the proportions p; ¢ = py¢ X p1¢ and pyg ¢ = Poj¢ X
Poj¢

5. Compute p1.:p.1sz1\§f(Qd€, Po=DPo=1-pi, pu= Ipumf(Qdc

and DPoo= .[poomf(z;)dc-
6. Compute x.

-~ oo

Alternatively, the computations might be based on latent ability 6 (Lee,
Hanson, and Brennan, 2002).

7.5 Selection and classification with more than
one predictor

When the quality of the classification or diagnosis based on a single
measurement X is too low, other measurement instruments should be
considered for inclusion in a test battery used for selection and clas-
sification purposes. What characteristics should potential additional
tests have? In general, it seems wise to select tests that give new
information useful for making the classification or diagnosis. Added
tests should correlate with the criterion and have a low correlation
with other predictors.

We will first demonstrate the point using a classical procedure of
an unweighted sum of predictor scores. We will use the argument that
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has been used by Gulliksen (1950) with respect to the selection of items
for a test. The validity of the sum of n scores X, X, with respect to
criterion Y can be written as

n

E S,S.T.
Y iy
r. = i=1 _ aVe(siriY)
XY n

ave(sr,)
Sy ) STy

=1

(7.7)

where s; is the standard deviation of the scores on test X;. Let us
assume that the variances of the tests do not differ much. In that case,
a test that highly correlates with the criterion and not so much with
the other predictors adds to the numerator and not to the denominator.
When we select items for a test in order to maximize validity, items
are selected that may decrease the reliability of the test.

The unweighted sum of predictor scores does not give the optimal
combination of measurements. The obvious method is to use a
weighted combination of scores. Optimal weights can be obtained from
a multiple-regression analysis, where optimality is operationalized in
terms of a least-square loss function. With scores on two predictors X;
and X,, and a criterion Y, the formula for the regression has the
following form:

Y, = +ax +ax, (7.8)

The linear regression approach exemplifies the so-called compen-
satory model for selection. In this model the minimum requirement
on the criterion is achieved by an additive combination of abilities. A
low level of achievement for one ability can be compensated for by a
high level for another ability. The compensatory model for selection
with two predictors is displayed in Figure 7.5a. With errorless vari-
ables X; and X,, the straight line gives all combinations of x; and x,
that result in the critical criterion level. So, the straight line is the
border between combinations of abilities x; and x, that correspond to
a satisfactory criterion level (+), and combinations x; and x, that cor-
respond to an unsatisfactory criterion level (). The linear regression
formula is adequate for the compensatory model of Figure 7.5a. The
linear regression formula can be adapted to a degree of nonlinearity
in the relation between the criterion and the predictors: powers of the
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X3

X
(a) Compensatory Model

Xy

-

X1
(b) Conjunctive Model

Figure 7.5 Classification with two predictors.

predictor scores (x12, etc.) can be added as predictors in the multiple
regression formula.

Two other models may be discussed in the context of selection: the
conjunctive model and the disjunctive model (Coombs, 1964). The
conjunctive model requires persons to satisfy a minimum level of
achievement on each of the relevant abilities. There is no possibility
of compensation. The conjunctive model with two abilities X; and X,
is illustrated in Figure 7.5b. The conjunctive model seems to ask for
multiple cut scores as in the figure. Actually, the classification of
examinees in the conjunctive model is more complicated than that
when the predictors have reliabilities less than one. Then the score on
one measurement instrument contains information with respect to the
achievement on another measurement instrument, assuming that the
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measurement instruments are correlated. Lord (1962) demonstrated
that the prediction of criterion performance is increased when some
amount of compensation between the fallible measurements is allowed.

In the third model, the disjunctive model, persons may satisfy the
criterion by having at least one sufficient ability. With two abilities X;
and X,, only the quadrant with both low X; and low X, is associated
with unsatisfactory criterion performance.

7.6 Convergent and discriminant validation: A strategy
for evidence-based validity

Evidence for construct-related validity can be obtained in quite a
number of ways (i.e., using several research designs and corresponding
statistical methods for data analysis). These methods in construct
validation, proposed already by Cronbach and Meehl (1955) and more
specifically by Campbell and Fiske (1959), may be summarized as
follows:

* The study of group differences: If we expect two or more
groups to differ on the test purportedly measuring a con-
struct, this expectation may be tested directly resulting in
evidence for construct-related validity.

* The study of correlations between tests and factor analysis:
If two or more tests are presumed to measure some construct,
then a factor analysis of the correlation matrix must reveal
one underlying factor as an indicator of the common con-
struct.

+ Studies of internal structure: For many constructs, evidence
of homogeneity within the test is relevant in judging validity.

+ Studies of change over occasions: The stability of test scores
(i.e., retest reliability) may be relevant to construct validation.

+ Studies of process: Observing a person’s process of perfor-
mance is one of the best ways of determining what accounts
for variability on a test (see, e.g., Cronbach and Meehl, 1955;
Cronbach, 1990). In addition, judgment and logical analysis
are recommended in interpretations employing constructs (cf.
Cronbach, 1971, p. 475).

*  An important elaboration and extension of the study of cor-
relations between tests is Campbell and Fiske’s convergent
and discriminant validation by the multitrait-multimethod
matrix.



VALIDITY AND VALIDATION OF TESTS 119

7.6.1 The multitrait-multimethod approach

Suppose we have a few different measurement instruments of a trait.
We might expect that these measurements correlate. If there really is
an underlying trait, the correlations should not be too low. On the
other hand, correlations between measurement instruments for differ-
ent traits should not be too high; otherwise it makes no sense to make
a distinction between the traits. In many investigations, several traits
are measured using the same kind of instrument, for example, a
questionnaire. This might pose a problem. When there is a correlation
between two traits measured with the same method, we might wonder
to which extent the correlation is due to the covariation of the traits
and to which extent it is due to the use of a single measurement
method. Campbell and Fiske (1959) proposed to use the multitrait—
multimethod matrix research design in order to study the convergence
of trait indicators and the discriminability of traits in validation stud-
ies. A hypothetical example with three traits and three methods is
given in Figure 7.6.

The main diagonal contains the reliabilities. We might call these
entries monotrait—-monomethod correlations. In the first diagonal

Method a Method b Method ¢

Trait1 Trait2 Trait3 Trait1 Trait2 Trait3 Trait1 Trait2 Trait3

Method a Trait1 ryj(aa) riy(aa) riz(aa) ri(ab) rip(ab) ris(ab) rii(ac) ripac) rislac)

Trait 2 ry(aa) ryz(aa) ry(ab) ryy(ab) ryz(ab) ryi(ac) rop(ac) royz(ac)
Trait 3 rag(aa) r3(ab) ryy(ab) rys(ab) ry(ac) rylac) rz(ac)
Method b Trait1 r11(bb) 1o(bb) ri5(bb) riy(be) ris(be) rislbe)
Trait 2 Poo(bb) 193(bb) 1y1(bc) Fyn(be)  roy3(bc)
Trait 3 r33(bb) 131(bc) rap(be) r33(be)
Method ¢ Trait1 rplee) rplee) rpslee)
Trait 2 roglcc)  ryz(cc)
Trait 3 ra3(cc)

Figure 7.6 The multitrait-multimethod correlation matrix with three meth-
ods and three traits.
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entry, for example, we have ry;(aa), the reliability of the measurement
instrument which measures trait 1 by means of method a. Adjacent
to the main diagonal we have triangles with heterotrait—-monomethod
correlations. We also have blocks with correlations involving two dif-
ferent methods. Within these blocks, we have diagonals with correla-
tions involving one trait. These monotrait—heteromethod values are
the so-called validity diagonals; a gray background in the figure indi-
cates the monotrait—heteromethod entrees.

According to Campbell and Fiske, a validation process is satisfac-
tory if the following take place:

1. Correlations between measurements of the same trait with
different methods are significantly larger than 0. Then we
have convergence.

2. Correlations between measurements of a trait with different
methods are higher than the correlations of different traits
measured with the same method. The validity diagonals
should be higher than the correlations in the monomethod—
heterotrait triangles. In that case, we have discriminant
validity.

3. A validity coefficient r; (ab) is larger than the correlations
r{ab) and r;(ab).

4. In the heterotrait triangles of the monomethod blocks and
the heteromethod blocks, the pattern of correlations is the
same.

Campbell and Fiske considered only informal analysis and eye-
balling techniques for the study of multitrait—multimethod matrices.
Such matrices, however, may also be analyzed with generalizability
theory (Cronbach et al., 1972). An alternative approach is to use confir-
matory factor analysis. It belongs to the class of structural equation
modeling (SEM), and is, among others, a promising procedure to obtain
evidence of construct-related validation where more constructs are
involved in a nomological network. Also, with more than one measure,
confirmatory factor analysis with so-called structured means can be used
to test hypotheses with respect to the tenability of equivalence condi-
tions (e.g., strictly parallel measures, tau-equivalent measures) of a set
of measures. Last but not least, this type of confirmatory factor analysis
offers a fruitful approach to test validation. Technical details of the
analysis of the multitrait-multimethod matrix by confirmatory factor
analysis can be found in Kenny and Kashy (1992), while general details
on alternative approaches can be found in Schmitt, Coyle, and Saari
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(1977) and Schmitt and Stults (1986). The reader should, however, be
warned: routine applications of SEM for the analysis of multitrait—
multimethod matrices are doomed to fail due to all the pitfalls in the
use of SEM. The lesson from all this is that none of the analytic appro-
aches to multitrait-multimethod matrices should be done routinely. A
thoughtful and well-balanced review of approaches to the multitrait—
multimethod matrix has been given by Crano (2000).

Test manuals should provide information on reliability, validity,
and test norms. The manuals cannot be exhaustive, however. After
publication of a test, new research adds to the validation of test uses.
Summaries of research and critical discussions of tests are needed.
The Mental Measurement Yearbooks fulfill such a function. Let us take
the Beck Depression Inventory (BDI), a frequently cited inventory. The
BDI is reviewed by two reviewers in the Thirteenth Mental Measure-
ment Yearbook, Carlson (1998) and Waller (1998). The BDI is a brief
self-report inventory of depression symptoms. It has 21 items, scored
on a four-point scale. The test is used for psychiatric patients. It also
is frequently used as a screening device in healthy populations. The
manual gives information on reliability, validity, and test norms. But,
the reviewers argue that the manual is too short. Much useful infor-
mation must be found in other published sources. Several aspects of
validity are discussed by the reviewers. The inventory has face validity;
the items are transparent. The high face validity makes the inventory
vulnerable to faking. Correlations with other tests have been computed
and a factor analysis has been done. The inventory discriminates
patients from healthy persons. Waller notes that the information with
respect to discrimination validity is lacking. What is, for example, the
correlation of the BDI with an anxiety measure, a measure of a dif-
ferent construct?

7.7 Validation and IRT

Item response theory (IRT) provides models in which the responses of
subjects on the individual test items are modeled. IRT models not only
allow for the estimation of person and item parameters, but are also
a statistical test for how good the model fits the data. So when a
unidimensional IRT model is assumed, the test of model fit informs
us about the existence of a single construct or latent trait underlying
the observed item responses. IRT models are discussed in later chapters,
so here it suffices to state in general terms the nature of the construct-
related validation using IRT. To date, this is a promising terrain of
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research (more can be found in Embretson and Prenovost, 1999, and
the references mentioned there).

Considering construct-related validity in the context of IRT does
not exhaust the validity issue in psychometrics at large. In the next
section, research validity will be discussed in the broad context of
empirical behavioral research.

7.8 Research validity: Validity in empirical
behavioral research

Empirical behavioral research is a broader context of research than
test research and development (R&D). Therefore, more general aspects
of validation are involved, and the type of validity in this broader
context has been coined research validity (see, e.g., Shadish, Cook, and
Campbell, 2002).

The tenability of theories and the generalizability of findings from
empirical research are influenced by four classes of validation:

1. Statistical conclusion validity: This is defined as the extent to
which the design of the study is sufficiently sensitive or powerful
to detect outcome effects. It addresses the question whether the
relationship(s) observed in the sample are due to chance.

2. Internal validity: This is the extent to which detected outcome
effects, viz. test scores, are due to the operationalized cause
rather than to other rivaling causes. The question of internal
validity is often rephrased as: Are there no alternative expla-
nations for the detected effects in terms of, for example,
changes in test scores?

3. External validity: This is defined as the extent to which the
detected outcome effects (test scores for that matter) can be
generalized to theoretical constructs, subjects, occasions, and
situations other than those specified in the original study. In
most instances, this type of validity is used to refer to the
question of whether the test scores or other effect measures
that were found in the sample can be assumed to exist in the
population (or, a certain, well-defined population) as well.

4. Construct validity: This type of validity is defined similarly
as in the trichotomy above, as the extent to which the theo-
retical constructs in a study have been successfully opera-
tionalized. In other words, does the measurement on a certain
variable represent the phenomenon or propensity it is sup-
posed to measure?
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These and similar definitions of research validities can be found
in textbooks on research methodology. Elaborations have been pro-
posed; a succinct overview is given by Cook and Shadish (1994; see
also Cook, Campbell, and Peracchio, 1990).

Although research validities are generally not to be considered as
part of test theory per se, it is important and relevant to point out that
each of the above four types of research validity may be under threat
of one sort or another. Among these threats are history, maturation,
testing, instrumentation, statistical regression toward the mean, and
mortality. One approach to circumvent one or more of these threats is
to choose the appropriate design of the study and proceed along the road
of performing a generalizability study. So here we see that the demar-
cation of psychometric reliability and validity is blurred. Earlier, gen-
eralizability studies were treated as a liberalization of classical test
reliability. It also serves as a vehicle for validation studies.

Exercises

7.1 In a study, test X is administrated to all persons. Test Y is
administrated to a selection of persons. Within each group
with the same score on X persons are randomly chosen for
selection into the group that is administered test Y. The
correlation between X and Y equals 0.8. The variance of the
scores on X within the selection equals 36.0. The variance on
X in the total group equals 16.0. Estimate the correlation
between X and Y in the total group.

7.2 Given is a ten-item test with the following frequency distri-
bution in two groups A and B:

Score 0 1 2 3 4 5 6 7 8 9 10

fa 0.043 0.109 0.130 0.174 0.217 0.174 0.087 0.043 0.022 0.0 0.0
fs 00 00 00 0.0 0.045 0.091 0.136 0.182 0.227 0.182 0.136

We want to use the test in order to classify persons in the
future. Both kinds of errors are equally serious. At what test
score should we take the decision to classify a person as a “B
person” assuming that population A has four times the size
of population B? Can you comment on your result?

7.3 What happens if the base rate of belonging to group B in
Exercise 7.2 is 0.5 instead of 0.2?
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7.4 We have a test with a mean equal to 75.0, a standard devi-
ation equal to 8.0, and a reliability equal to 0.25. With the
test we want to decide which examinees are masters and who
are nonmasters. The criterion of mastery is 70.0 on the true-
score scale. The errors of classifying masters and nonmasters
incorrectly are equally serious. Compute the optimal cut score
under the assumption that the observed scores and true
scores have a bivariate normal distribution.

7.5 Compute coefficient k for the data in the following table:

+ 10 60
- 20 10
- +




CHAPTER 8

Principal Component Analysis, Factor
Analysis, and Structural Equation
Modeling: A Very Brief Introduction

8.1 Introduction

More than one century of factor analysis, an approach to data analysis
quite relevant for test theory, has resulted in a tremendously large
volume of publications. In this chapter only a tip of the veil is lifted.
Nevertheless, it is hoped what is unveiled serves its purpose in sta-
tistical test theory, and also whets the reader’s appetite.

As principal component analysis is a basic technique similar to
factor analysis proper, more attention will be paid to this type of
analysis in Section 8.2. In Section 8.3 exploratory factor analysis is
introduced. Section 8.4 discusses confirmatory factor analysis and
structural equation modeling.

8.2 Principal component analysis (PCA)

Essentially, principal component analysis (PCA) is a data-reduction
technique based on mathematical operations on relations between
(many) variables in order to get more insight into the data. Data
reduction means that a new representation of the relationship between
variables is sought that is more parsimonious than the initial one, but
without loss of relevant information.

What are principal components? This is illustrated in the simple
case where we have two variables. In Figure 8.1 the relationship
between two standardized variables X; and X, with a correlation
r(X;,X,) equal to 0.61 is presented by an ellipse. The first axis Z; =
\/ 12X, + \ 1/2X, represents the first principal component with a variance
equal to 1.61 (1/2var(X;) + cov(X},X,) + 1/2var(X,)), the second axis
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)
2 z;

X1

Figure 8.1 The ellipse representing the data for variables X; and X, with
r=0.61.

Z, =1/2X, —\1/2X, represents the second principal component, orthog-
onal to the first, with a variance equal to 0.39. The variances of Z; and
Z, are referred to as eigenvalues and are denoted A, and A,. The sum
of the eigenvalues is equal to 2.0, the sum of the variances of the original

variables X; and X,.
The subject scores on X; and X, can be written as

Xl = allﬁl + a12I72
XZ = a21F'1 + a22F12

where F, and F, are the principal components after standardization,
and a;;= 0.897, a,, = —0.442, a,,;= 0.897, and a,, = 0.442. Notice that

2 2 _ _
a; +a; = 7»1 =1.61
and
2 2 _ _
a, +a,, = 7‘2 =0.39.

The correlation matrix is perfectly reproduced; the correlation
between X, and X, is

r(X,, X,) =0, var(F) +(a,,a,, +a,a, ) cov(F,, F)) + a,,a,, var(F,)

=q,a, ta,a, = 0.61.
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In the general case with m variables, we have an m-dimensional
space with an ellipsoid with m mutually perpendicular axes. There
are r < m eigenvalues larger than 0, in decreasing order. Data reduc-
tion is obtained when the data can be represented as parsimonious as
possible and without loss of information by less than r principal com-
ponents. In this way, more insight is obtained into the relationships of
the variables. Basic references to PCA are Jolliffe (2002) and Ramsay
and Silverman (2002).

8.3 Exploratory factor analysis

A generally accepted definition of factor analysis (FA) is a set of sta-
tistical methods of describing the interrelationships of a set of vari-
ables by statistically deriving new variables, called factors, that are
fewer in number than the original set of variables. Many FA methods
have been proposed, and thousands of publications have been written
on the subject of FA. Only the basic idea behind FA can be given here;
more information on factor analysis can be found in, for example,
Gorsuch (1983). We illustrate FA with the principal factor factor anal-
ysis or principal axis factor analysis of a correlation matrix, because
of its resemblance to PCA.

We start with an m by m correlation matrix. The underlying model
is

Xl. = OLilF1 + aiZF2 + airFr + aiUi (8.1)

where U is a unique factor plus random error. The factors are stan-
dardized and uncorrelated so the variance of variable 1 equals

1=a’+2 + a’+a’=h’+ad? (8.2)
i1 02 r i i i

where hi2 is the communality of variable i, variance based on the com-
mon factor space. In FA the variances in the correlation matrix (1), are
replaced by estimated communalities. In principal factor factor analysis
a PCA is done on the correlation matrix with estimated communalities
in the diagonal. The outcome is a matrix with loadings a;, and with
the factors ordered according to the percentage of variance they
“explain.” One of the problems that confronts the researcher is the
number of factors to retain in the final factor solution. One approach
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to the number-of-factors problem is a visual examination of the decrease
of the eigenvalues from an analysis of the original correlation matrix,
the scree test. In the scree test one stops adding factors when the
decrease in eigenvalues levels off. Another criterion is to stop factoring
when the eigenvalues drop below 1. Other procedures can be found in
the literature.

The final result of the factor analysis with the principal factor factor
analysis remains arbitrary. The obtained factors are orthogonal and
ordered according to their contribution to explained variance. There
is no reason for this solution to have relevance to the field of investi-
gation. There is a fundamental indeterminacy in factor analysis: the
data can be described by a multitude of factor solutions with the same
number of factors. We demonstrate this with a factor analysis of ten
variables from a study with 24 tests by Holzinger and Swineford
(1939), data that have been used by other authors as well. The inter-
correlations for the ten tests and their names are given in Table 8.1.

A two-factor solution was deemed to be adequate, convenient
because a two-factor solution can adequately be represented in a figure.
The factor loadings from the analysis with principal factors are pre-
sented in Figure 8.2. All tests load on the first factor. The loadings on
the second factor range from positive to negative. The dashed lines
represent another possible solution; in fact, the alternative solution
was obtained from the original by an orthogonal varimax rotation.
Clearly, the alternative representation has an advantage in that some
tests load notably on only one factor. A still better solution is obtained
with an oblique rotation. With an angle smaller than 90° between the
two axes, more tests have small loadings on one of the factors. A
positive correlation between factors better reflects the fact that all
tests correlate positively. Now, we may with some prudence try to
interpret the results. One of the rotated factors, the factor on which
the variables 1 though 5 load, corresponds to verbal ability, the other
is defined by numerical tests. Series completion loads on both factors.
Finally, factor scores can be estimated from the test scores and the FA
solution chosen.

Exploratory factor analysis is relevant in, for example, item anal-
ysis. With factor analysis one can find out which dimensions underlie
the responses to items and which items are good indicators for a certain
factor. In this way, meaningful, homogeneous tests can be constructed
from a larger pool of items. Linear factor analysis is the subject of this
chapter. Nonlinear factor analysis is a subject of the chapter on item
response theory.
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Figure 8.2 A two-factor solution for ten tests from the Holzinger and Swine-
ford study; the dashed lines show the two-factor solution after varimax rotation.

8.4 Confirmatory factor analysis and structural
equation modeling

Exploratory factor analysis is an approach to find a model that best
fits the correlations or covariances in terms of common factors. The
number of common factors and the relationships between these factors
and the variables are obtained from the analysis. Confirmatory factor
analysis (CFA), in contrast, is used when the researcher has some
substantive knowledge such that a structure for factors can be hypoth-
esized and tested (Bryant and Yarnold, 1995), for example, a factor
model in which several loadings are set equal to zero. CFA merges
into structural equation modeling (SEM), in which models for latent
variables and manifest variables are hypothesized and tested.

In SEM and CFA the model can be represented in two ways: by a
graphical specification of the model, and by a structural equation
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Figure 8.3 Simple regression as a path diagram.

specification of the model. The models are portrayed as path diagrams.
These diagrams originate from path analyses used in the pursuit of
causal inference with nonexperimental data. Figure 8.3 depicts the path
diagram for the regression model Y= 56X+ E. In the figure the measured
or observed variables are depicted in rectangles, and the arrows depict
the direction of the effect. £ is the prediction error (not standardized
as in Equation 8.1).

In a model with latent variable, there are two basic assumptions.
The first is that the responses on the measured variables are the result
of a person’s position on the latent variables. The second is that after
controlling for the latent variables, the measured variables have noth-
ing in common. The latter assumption is known as the principle of
local independence, a principle discussed in more detail in Chapter 9.

Latent variables are represented with a surrounding circle or oval-
like element. Figure 8.4 represents a structure with errors and observed

Figure 8.4 A two-factor model with correlated factors and true scores.
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scores for six (sub)tests, true scores for these tests, and two underlying
common factors F; and F,. The common factors are correlated. From
the figure we can obtain the variances and covariances of observed
scores:

2 _ 2 2 2
o,=a, + Ay + 2a41a42r12 + GE4

G14 = a11a41 + a11a42r12

and so forth.

There are several softare packages for SEM analyses, like AMOS
(www.spss.com, www.assess.com), EQS (www.mvsoft.com), and LIS-
REL (www.ssicentral.com). For basic concepts and information on how
to build the equations in SEM, the reader is referred to Byrne (1998,
2001, 2006). Statistical model testing with SEM follows a number of
steps: check whether the statistical assumptions are satisfied, estimate
the model parameters, and evaluate model fit. When a model does not
fit, alternative models should be investigated.

SEM plays an important role in test theory. In Chapter 7, for
example, the use of SEM in validation research was mentioned. IRT,
to be discussed in Chapter 9, has been included in SEM. The interdis-
ciplinary journal Structural Equation Modeling reports about the
progress in the field.

Exercises

8.1 Perform a PCA on the correlation matrix of Table 8.1. What
is the size of the first four components? How much variance
is accounted for by the first two principal components? Does
it seem reasonable to retain two components?

8.2 Replicate the principal axis solution with two factors. Which
subtest has the smallest communality? Relate the commu-
nality of this item to the representation of the factor loadings
in Figure 8.2.

8.3 Present a SEM model with simple structure for the variance—
covariance matrix of the Holzinger and Swineford tests 2, 5,
6, 7, and 9.



CHAPTER 9

Item Response Models

9.1 Introduction

Item response theory is a general term for a family of models, the item
response or IRT models that share some fundamental ideas. These
ideas are that IRT models persons’ responses on individual items. The
response of a person on a test item is conceived of as a function of
person characteristics and item characteristics. The response of a
person (i.e., the performance of an examinee) is assumed to depend
upon one or more factors called (latent) traits or abilities. Each item
of a set of items is assumed to measure the underlying trait or traits.
An example of a simple IRT model is that a person’s performance on
an item depends only on one underlying trait, and that the relationship
between persons’ performance on an item and the trait underlying
item performance can be described by a monotonically increasing func-
tion. The latter function is commonly called item trace line, item char-
acteristic function (ICF), or item characteristic curve (ICC). It specifies
how the probability of a correct response to an item increases as the
level of the trait increases. In contrast to classical test theory and
generalizability theory discussed earlier, IRT consists of a class of
mathematical models for which estimation procedures exist for model
parameters (i.e., person and item parameters) and other statistical
procedures for investigating to what extent the model at hand fits the
data or persons’ responses to a set of items.

IRT research and developments not only pervade scholarly jour-
nals, in the latest edition of the Standards for Educational and Psy-
chological Testing (APA et al., 1999), ample space is given to IRT.

In Section 9.2 the basic concepts of IRT will be discussed, and
several unidimensional models for dichotomous data will be intro-
duced. Apart from the types of IRT models in terms of a specification
of the ICC, models can also be distinguished as to the number of
response options modeled, and also more than one latent trait can be
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postulated, leading to multidimensional IRT models (see also Section 9.3).
In Section 9.4 item-test regression will be considered and compared
to IRT item-trait regression. It has already been said that IRT leads
to the estimation of model parameters; the estimation of item param-
eters 1s introduced in Section 9.5. In Section 9.6 the joint maximum
likelihood (JML) estimation procedure for item as well as person
parameters is discussed. To what JML leads in the Rasch model can
be found in Section 9.7. Other estimation methods with their charac-
teristic properties will be discussed in Sections 9.8 through 9.10. In
Section 9.11 some specific problems will be discussed with respect to
the estimation of item parameters. Section 9.12 is on maximum like-
lihood (ML) estimation of person parameters. This does not exhaust
the possibilities for the estimation of person parameters. In Section
9.13 Bayesian estimation is mentioned.

The IRT concepts of item information and test information break
away from the concept of the variance of measurement errors being
constant over the whole range of scores. These information concepts
are elaborated in Section 9.14. As IRT gives a statistical model
approach to measurement, model fit is also a central theme (Section
9.15). Finally, for the interested reader, maximum likelihood estima-
tion in the context of the Rasch model is discussed in an appendix
(Section 9.16).

9.2 Basic concepts

In a unidimensional model, we assume that the responses can be des-
cribed by a model with one latent dimension (i.e., as if only one dimen-
sion ability or, more generally, latent trait accounts for the responses).
The latent ability 0 is defined in most models on a scale of minus infinity
to plus infinity (—oo, «). The probability of a particular response to a
dichotomous item is a monotonous and nonlinear function of the ability.
The probability of a correct response increases with increasing ability
or latent trait value (for an exception in connection with a model involv-
ing guessing behavior see Samejima, 1979). The conditional probability
correct, the probability of a correct response given ability, might be
interpreted as the probability of a correct response for a randomly
selected person with the given ability (Holland, 1990).

The assumption of unidimensionality implies that the responses to
different items are independent given the latent trait. We have local
independence. If we did not have local independence, one dimension
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Figure 9.1 Item characteristic curves for two Rasch items.

would not be enough to account for the responses. In that case, local
independence would be obtained given all relevant latent traits.

9.2.1 The Rasch model

In Figure 9.1 the probability of a correct response as a function of
latent ability 0 is given for two hypothetical items. The two items are
Rasch items (i.e., they satisfy the Rasch model assumption of equal
discriminability for items with correct—incorrect scoring). That is to
say, Rasch curves are parallel.

In the Rasch model, the probability of a correct response on item
1, given ability or person parameter 0, is equal to

(e_bi) exp(0— bl.)

0-b.) _
+e( L) 1+exp(6 bi)

P(6)=P(x,=1]0)= 9.1)

1

where b, is the item difficulty parameter of item i (Rasch, 1960). The
probability varies from 0.0 for 6 = —o to 1.0 for 6 = . Most of the
variation in probability lies in the interval from 6 = b, — 4.0 to 6 = b,
+ 4.0. For 0 equal to b; the probability equals one half. In Figure 9.1
the curve on the left is the curve of a Rasch item with b, = 0; the curve
on the right belongs to a Rasch item with b, = 1.0.
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The person parameter 6 and the item parameter b appear in Equa-
tion 9.1 only in the combination 6 — b. When we take log-odds (i.e., the
natural logarithm of the ratio of the probability of a correct response
and the probability of an incorrect response), we obtain the logit:

N A
1-P®) )

We conclude from this that the probability of a correct response
(Equation 9.1) remains invariant if we increase the value of 0 to 6* =6
+ d and simultaneously increase the value of b to b* = b + d. The
parameters of the Rasch model are defined on an additive scale, a
special case of the interval scale. The consequence is that in an appli-
cation of the model, one restriction on the parameters is always needed
to fix the latent scale. We might, for example, set the item parameter
of one of the items equal to 0.0. Another possible restriction is to set
the mean of the item parameters equal to 0.0.

9.2.2 Two- and three-parameter logistic models

The Rasch model is a one-parameter model. The model has one item
parameter: the item difficulty parameter. In many tests the items differ
not only with respect to difficulty but also with respect to discriminat-
ing power. The two-parameter logistic model (Birnbaum, 1968), 2PL
model for short, has a second item parameter, item discrimination.
The model is given by the following equation:

expla,(0-5)]

HO= 1) expla0-b)]

13

(9.2)

where q; is the discrimination parameter of item i. The term logistic
refers to the fact that the right-hand side of Equation 9.2 is equal to
the cumulative logistic distribution function. The slope of the ICC at
0 is equal to a;P,(0)[1 — P,(0)]. At 6 = b, the slope is equal to 0.25a;. So
the slope at 8 = b, is steeper for higher values of a,.

The person parameters in the 2PL. model are defined on an interval
scale. The probability of a correct response does not change if we
transform 0 into 6* = dO + e under simultaneous transformations b*
=db + e and a* = a/d. In order to fix the latent scale, we need two
restrictions, for example, the mean 0 can be set equal to 0.0 and the
standard deviation of the 0’s can be set equal to 1.0.
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Figure 9.2 Item characteristic curves for two items with different discrimi-
nation parameters.

In Figure 9.2 two item characteristic curves are displayed: one with
a; = 1.0, the other with a; = 10.0. One can imagine what will happen
to the ICC if the discrimination parameter of an item increases indef-
initely. The item characteristic curve approximates a jump function
with a value equal to O for 6 smaller than b,, and a value equal to 1
for 0 larger than b, We then have a Guttman item with a perfect
discrimination at the value 6 = b;, and no discriminating power to the
left and to the right of this point.

The item characteristic curves in Figure 9.2 cross. In the Rasch
model, item characteristic curves do not cross, but run parallel. The
Rasch model is not the only probabilistic model with nonintersecting
item characteristic curves. Another model with this property is the
nonparametric Mokken model of double monotonicity (Mokken,
1971).

With items of the multiple-choice type, guessing is possible and
cannot be excluded. If an examinee does not know the answer on a
four-choice item, he or she might correctly guess the answer with a
probability equal to one fourth. With this kind of item, one better
introduces a lower asymptote larger than O for the item characteristic
curve. The three-parameter logistic model is obtained:

P®)=c,+(1-c) exp(a,(0-b)]

“1+expla.(0-b) ©-3)
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Figure 9.3 Item characteristic curves for two items with different pseudo-
chance-level parameters.

where c; is the lower asymptote. The third parameter is called the
pseudo-chance-level parameter. This parameter is not set equal to the
inverse of the number of response alternatives, but it is estimated
along with the other item parameters. Figure 9.3 displays two items:
one with ¢; equal to one fourth, and the other with ¢, equal to 0.0. The
influence of the third item parameter at the lower level of 6 is clear.

The 2PL model is a special case of the 3PL model with ¢,= 0.0 for
all items. The 1PL model is obtained if all item discrimination param-
eters are set equal. In the Rasch model (Equation 9.1), this common
discrimination parameter is set equal to 1.0. The differences between
the models seem to be very clear. Meredith and Kearns (1973), how-
ever, demonstrated that a special case of the 3PL model can be refor-
mulated in terms of the Rasch model.

In addition to the logistic model, we have the normal ogive model.
It has an ICC with the form of the cumulative normal distribution.
This model was the first to be used in test theory (see Lord, 1952).
The two-parameter normal ogive model is given by

a;(6-b) a;(6-b))

PO=®la0-b)= | etdt-

—co —oo

\/;_ exp{—;tﬂdt 9.4)
T

The normal ogive plays a role in some models with more dimensions
or more than two response categories (Bock, Gibbons, and Muraki, 1988;
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Muraki and Carlson, 1995; Muthén, 1984). The application of the model
to polytomous, multidimensional data will be discussed in Section 9.3.

The normal ogive model and the logistic model give practically the
same probabilities if a scaling factor D= 1.7 is introduced in the logistic
model:

exp[Dai(e - bi)]
®la,(0-0)1~ 1+exp[Da,(6-b)]

For this reason, the factor D is frequently part of the logistic model
as described in the literature. If the parameters of the logistic model
are given by Equation 9.2 or Equation 9.3, the parameters are defined
in the “logistic metric.” They can be transformed to the “normal metric”
through a division of the discrimination parameters by the scaling
factor 1.7.

9.2.3 Other IRT models

Fischer (1983) extended the Rasch model with linear constraints on
the item parameters. Mislevy (1983) applied IRT to grouped data.
Patz, Junker, Johnson, and Marino (2002) suggested an IRT approach
for constructed response items where answers are rated by several
raters.

Other extensions of the models have been proposed: extensions to
more than two response categories and extensions to more than one
latent trait dimension. Bock (1972) proposed a general nominal
response model. In this model the probability of a response to item
option & from m available options is given by

P (@ 015, 0=8,)

Y expla, 0-b,)]

h=1

(9.5)

Extensions to items with more than two categories have been
formulated notably for the Rasch model (e.g., Andersen, 1977). Two
closely related Rasch models for items with more than two categories
are well known: the rating scale model (Andrich, 1978, 1999) and the
partial credit model (Masters, 1982, 1999). The rating scale model can
be obtained as a submodel of the partial credit model by a reparame-
trization of the parameters. The models differ in their substantive
interpretations, however.
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The partial credit model models partial understanding in problems
with multiple steps. In the partial credit model with categories O,...,
m, the probabilities for categories other than category 0 are given by

k
exp 2(6 - 81‘,')
j=1

1+zm:exp zh:(e—sij)

h=1 j=1

P,(0)= (9.6)

The model parameters §; are “step” difficulties governing the “step”
probabilities P,/(P;+ P;,_;), which have the form of Rasch model items.
The model is, for example, applied when several dichotomous items
are related and form an item cluster. Huynh (1994) demonstrated the
applicability of the PCM model for a testlet composed of independent
Rasch items. When the steps of an item are scored sequentially
(all steps after the first error in a chain of steps are evaluated as failed),
the model is not suitable. Sequentially scored items must be modeled
by a set of binary items with missing observations after the first failure
(Akkermans, 2000).

In the rating scale model, thresholds are modeled for the different
categories in items with ordinal response categories (for example, poor,
fair, good, excellent). In the rating scale model for m + 1 score catego-
ries (0,..., m), the probability of choosing category k of item i can be
written as

k
exp| k(O-b)- D T,

j=0
P,(6)=— = 9.7)
D exp| h0-b)- D1,
h=0 Jj=0

where 7)., are threshold parameters for all items with a common
number of m + 1 categories, with T, = 0.

An exemplary rating scale item with five categories, b = 0.0, and
threshold parameters —1.8, —0.8, 0.8, and 1.8 is given in Figure 9.4.
As can be seen from Figure 9.4a, the option probabilities for categories
Jjand j— 1 are equal at 6 =1; + b.
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Figure 9.4 The rating scale model.

Samejima (1969) published on a graded response model for items
with ordered response options. For the logistic model the probability
of choosing option % or a higher option equals

. expla,(0-b,)]

F.(6)= 1+exp[a,(6-b,)] ©-8)

where the option parameter b, increases with k. In this model, the
probability of option £ as a function of latent ability, the option char-
acteristic function, is

P,(6)=P;(0)- F,, ,(6) 9.9)

with P*,,(6) = 1.0, P’;,,.,(6) = 0.0. An example of an item in the graded
response model is given in Figure 9.5 (with parameters a = 1.0, b; =
-2.0, by,=-0.75, b, = 0.75 and b, = 2.0). The probability of category 0O
decreases with 0, the probability of category m increases with 6, and
the probabilities of the intermediate categories have their peaks in the
order of the categories. A submodel of this model is the model where
b;; can be partitioned into an item parameter b, and a scale parameter
T; (Muraki, 1990).
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Figure 9.5 The graded response model.

In the graded response model, the probability of a response in
category k or k + 1 is

P(©)+ P, O)=[F©)- P, O] +(P,,©)- P, 0
- P,®)- P, ,®)

which has the same form as the original probabilities. The response
categories poor and fair, and the response categories good and excellent
of the four response categories poor, fair, good, excellent might, for
example, be combined for the analysis of the response data. The graded
response model allows a dichotomization of the response categories,
and—at the cost of losing some information—an analysis with an IRT
model for dichotomous data. Combining categories is not possible with
the Rasch models for polytomous data without violation of the model
(Jansen and Roskam, 1986). So, in case the combining of categories is
an obvious possibility with the data that are to be analyzed with an
IRT model, the graded response model is the more realistic model
despite the statistical advantages of the polytomous Rasch models.
However, the partial credit model (or the equivalent rating scale model)
might give comparable results.

Molenaar presented a generalization of the Mokken model to the case
of more than two categories (Molenaar, 1997). Rossi, Wang, and Ramsay
(2002) also suggested nonparametric IRT modeling. An introduction to
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nonparametric modeling is given by Molenaar and Sijtsma (2002). Rasch
developed a Poisson model (see also Lord and Novick, 1968) for the
number of mistakes in a test. Models for speeded and time-limit tests
can be found in Roskam (1997).

The other extension is to more dimensions. Item response models are
actually factor-analytic models with a nonlinear relationship between
factor and expected scores. Most models proposed are compensatory:
a low-ability i can be compensated by a high-ability j (like in Equation
8.1). A factor-analytic approach to a multidimensional latent space was
given by Bock, Gibbons, and Muraki (1988), McDonald (1997, 1999)
with NOHARM (Fraser, 1988), Muraki and Carlson (1995), Reckase
(1997), and Muthén (1984) with LISCOMP (and Mplus, see Muthén,
2002; www.statmodel.com). Shi and Lee (1997) discussed the estima-
tion of latent abilities for the nonlinear factor model. For multidimen-
sional Rasch models, see Adams, Wilson, and Wang (1997). De la Torre
and Patz (2005) discuss a special case of multidimensional IRT in
which the items exhibit a simple structure (i.e., each item loads on
one latent trait only). This situation may arise when a test battery
with several subtests is administered in one test session. A noncom-
pensatory multidimensional model in which cognitive processes are
modeled was proposed by Embretson (1984).

9.3 The multivariate normal distribution
and polytomous items

In the factor analytic model, z;,, the observed score of person p on item

i, can be written as a weighted sum of factor scores plus error:

Ziy = 00, + 04505, + - + 0,0, + E; (9.10)
In this equation, the additive constant was dropped. This can be done
without consequences for the generality of our argument.

In this chapter, the Z,, are not observed; they describe response
processes. When Z;, exceeds a certain threshold, a score in a given
category of polytomous item i is observed. For item ¢ with m + 1
categories, we have

Xip =0 if Zip <Y,
Xipzk ifyi,k—lszip<’yik
Xip =m if Vima < Zw (9.11)
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Let us write P*;(0) for the probability P(Z;> v,,.,18,,...,8,). Then
the probability of a response in category k can be written as

P,(8)=P,(6)-F, (6) (9.12)

a generalization of the graded response model, which was introduced
for one-dimensional latent space.

The next step is to define the distribution of errors E,,. In this
section we assume that the errors are normally distributed with vari-
ance G?. It follows that

Z aijej Vg

P (6)= “G— (9.13)

For a one-dimensional model, the probability P*,(0) is a normal ogive
curve. The relation between Equation 9.13 and the normal ogive model
for dichotomous data (Equation 9.4) is discussed in Exhibit 9.1.

Exhibit 9.1 The relationship between model 9.13
and the normal ogive model for dichotomous data
and one-dimensional latent space

What is the relationship between the model discussed in this section and
Model 9.4 for a one-dimensional latent space and dichotomously scored
items?

With dichotomous data, we can write the threshold model with normally
distributed errors as

Z =0 +E.
p 'y

g

X =0 if Z <b
ip p i

X =1if Z 2b

» »
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and

0-b
zz.(e>=<1>[ = l]=®[ai(e—bi)1

i

where

a.=1/o,
13 13

Without loss of generality, we can assume that 6 has a mean equal to
zero and a variance equal to one. The variance of Z; is equal to

2 _ 2 2 _ -2
GZ _Ge+0i —1+ai

i

The correlation between Z; and 6 is

G2

pi:pez" c \/G +0 \/1+a

Let us now assume that 6 is normally distributed. The correlation p; can
be approximated by the biserial correlation between the item and the
total test or rest-test, if the test is long. The biserial correlation estimates
the correlation of a normally distributed variable assumed to underlie
the dichotomous scores on a variable, with a continuous variable. The
proportion correct of item i is equal to

-b.
n.=® J

: ,l1+oti’2

It is clear that the item parameters a; and b; can be obtained from p;
and T,

Now, let the latent variables as well as the item scores be stan-
dardized; the thresholds are assumed to be defined in this metric. If
we assume that the latent variables 6 have a multivariate normal
distribution, the response processes Z are multivariate normally
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distributed. The marginal distribution of Z; is the standard normal
distribution. Then

P(Z, 2 Yi,k—l) = (D(_Yi,k-1)

Also, the joint distribution of any two variables Z; and Z; has the shape
of a bivariate normal distribution. If the variables Z had been observed,
we would have used linear factor analysis to obtain the item param-
eters o. Now we have the joint frequencies for pairs of variables X;
and X

The marginal frequencies of the variables X; and the joint frequen-
cies for pairs of variables can be used for the estimation of the factor
loadings and the thresholds (Muthén, 1984). The maximum likelihood
approach, which is discussed in more detail in this chapter, can also be
used for the estimation of the item parameters. The maximum likelihood
approach (Muraki and Carlson, 1995) uses the information of all answer
patterns and, therefore, is called full-information factor analysis.

The model does not have a pseudo-guessing parameter. In case
guessing plays a role, some adaptations of the procedure are necessary.
Bock et al. (1988) apply full-information factor analysis to dichotomous
data. They discuss the effect of guessing and present analyses of a
section of the LSAT uncorrected and corrected for guessing.

9.4 Item-test regression and item response models

Consider Figure 9.6. It depicts the item-test regressions for two items
of a ten-item test. The regressions do not correspond to fixed item
characteristics. We would have obtained different regressions with
different total tests and different examinee groups.

Let us now look at Figure 9.7. We have the same items as in Figure
9.6. However, the abscissa is redefined. We have, for example, enlarged
the difference between “8 correct” and “9 correct” in comparison to the
difference between “5 correct” and “6 correct” (the first interval is nearly
a factor 1.7 larger than the second interval). We chose different units
and relabeled the axis as the latent trait dimension 6. In addition, we
fitted curves to the empirical regressions. The curves fit adequately. The
curves are identical apart from a translation along the horizontal axis.

How did we proceed? We fitted the Rasch model to the data from
the ten-item test. We used an estimation method in which the trans-
formed total score is used as a proxy to 0. Is it correct to state that
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Figure 9.6 Item-test regression for two items from a ten-item test.
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Figure 9.7 Estimated item-trait regressions (ICCs) for the two items from
Figure 9.6.
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fitting the Rasch model or any other IRT model boils down to fitting
item-test regressions?

Fitting an IRT model is not just fitting curves to item-test regres-
sions for the following reasons:

* The item parameters are thought to be invariant item char-
acteristics for the relevant population. The same ICCs should
be obtained with different tests and examinee groups because
of the invariance property.

+ Item parameters can be estimated even in case no examinee
takes the same test. Also, in applications we do not have to
think in terms of fixed tests. In computerized adaptive testing
(CAT), examinees respond to different items.

We mention some other relevant points:

* The estimation method used does not minimize a sum of
weighted squared differences between the empirical regres-
sion and the curve. But such a weighted sum is used in one
approach to determine item fit (see Section 9.15).

+ The total score is used only for estimation in the Rasch model
(i.e., the total score is a sufficient statistics for the estimation
of in the Rasch model).

* Determining item fit is just one aspect of model fit. We must
assess, for example, whether the data are unidimensional.
Within a given score group, the responses to two items should
be independent. (To be more precise, we expect a small neg-
ative correlation between the responses due to the fact that
the item scores within a score group sum to a constant value.)

+ The estimation method used (JML, see Section 9.7) is statis-
tically faulty. Examinees with the same total score do not have
the same value for 0. As a result of the incorrect simplification
in JML, the item parameter estimates are biased and the ICCs
in the figure are farther apart than they should be.

9.5 Estimation of item parameters

In a model with one latent trait, the response probabilities given the
latent trait are locally independent, as defined in Equation 6.16. In
case the responses are known, we call Equation 6.16 the likelihood of
the given response pattern instead of the probability. The likelihood
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of the responses x;, of N persons (p = 1,..., N) on n dichotomous items
(i=1,..., n)is given by

L =ﬁ ﬁP(Xm:xmlep) =ﬁﬁg(ep)xw[1—g(ep)]”w (9.14)

p=1 i=1

where x;, =1 for a correct response, and x;, = 0 for an incorrect response.

The main method for the estimation of the item parameters is the
maximum likelihood method. There are four alternative maximum
likelihood methods:

* In joint maximum likelihood (JML) estimation, person and
item parameters are estimated jointly.

* In marginal maximum likelihood (MML) estimation, the per-
son parameters are eliminated from the estimation process
by integration over the distribution of person parameters.

+ In Markov chain Monte Carlo MCMC) estimation, parameter
estimates as well as posterior distributions of parameters are
obtained through a sampling approach. MCMC is very suit-
able for estimation in the context of complex (hierarchical)
models.

* In conditional maximum likelihood (CML) estimation, the
person parameters are eliminated from the estimation pro-
cess by conditioning on the total scores. The method is avail-
able for the logistic model with only a difficulty parameter.
So, CML is possible with the Rasch model. Andersen (1983;
see also Verhelst and Glas, 1995) demonstrated that CML is
also possible when in the two-parameter model the slopes are
assumed to be known.

Each of these methods will be discussed: JML in Sections 9.6 and
9.7, MML in Section 9.8, MCMC in Section 9.9, and CML in Section
9.10. More information on estimation techniques is given in Baker and
Kim (2004).

Cohen (1979; see also Wright and Stone, 1979) proposed a simple
approximation for the estimation of parameters in the Rasch model,
assuming normally distributed item and person parameters. His appro-
ximation is based on the similarity between the logistic model and the
cumulative normal distribution function. Urry (1974) suggested to esti-
mate item parameters in the three-parameter normal ogive model from
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item indexes under the assumption of normally distributed person
parameters (see also Lord and Novick, 1968). The approximations
might produce good starting estimates of parameters for the likelihood
procedures.

For the multivariate normal distribution of latent abilities, not only
MML has been proposed, but also the analysis of marginals for items
and item pairs (see Section 9.3).

9.6 Joint maximum likelihood estimation for item
and person parameters

In the JML method for dichotomous data, person and item parameter
estimates are obtained that maximize the likelihood in Equation 9.14.
First, starting values for the parameters are computed. Then, person
parameters are computed that maximize the likelihood given the item
parameter estimates. Next, new item parameter estimates are
obtained on the basis of the current estimates of the person parame-
ters. One cycles through this process until the estimates from both
sets of parameters are stable (i.e., until the changes in the estimates
fall below a threshold).

Actually the natural logarithm of the likelihood, the log likelihood,
1s maximized. Maximizing the log likelihood is easier than maximizing
Equation 9.14, and it produces the same estimates. Before the process
1s started, persons with O responses correct and persons with perfect
scores are eliminated; the maximum likelihood estimate of 6 is —oo for
a total score equal to 0 and « for a total score equal to the number of
items n. On similar grounds, items that are answered correctly by all
persons or by no persons are removed.

The estimation procedure makes use of the fact that at its maxi-
mum a function has a zero slope. So, new parameter estimates are
obtained by taking derivatives of the log likelihood with respect to
these parameters, setting the results equal to zero, and solving for the
parameters (see Section 9.16). The estimation equation for person
parameter 0,, the equation from which the new estimate of 6, is to be
obtained, can be written as

A AN

b6, 1-P©,)] %, 019

i=1

where dP,(6,)/00, is the derivative of P,(6,) with respect to 6,.
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The estimation equation for an item parameter of item i is

Y, x -P P
3 ©,) L6 _, 9.16)

P@®,[1-P®,)] o,

p=1

where v, is the item parameter of item i in question.

There are N estimation equations for person parameters and n
(Rasch model), 2n (2PL model), or 3n (3PL model) equations for item
parameters. There is also one scale restriction (Rasch model) or two
scale restrictions (2PL and 3PL model).

The estimation of parameters in the 2PL model and the 3PL model
is not free of problems. In the 3PL model there are response patterns
for which no unique maximum for 0 exists (Samejima, 1973). Estima-
tion of the lower asymptote c¢; might also give problems. In the 2PL
model and the 3PL model, the a;-parameter estimates might be unsta-
ble. For that reason, the change in parameter estimates from one
iteration to the other is restricted in estimation programs. One way
of restraining change is to introduce prior distributions for the param-
eters (Swaminathan and Gifford, 1986).

9.7 Joint maximum likelihood estimation
and the Rasch model

The Rasch model is the simplest model and for this reason very suit-
able for the introduction of JML. For the Rasch model, the sets of
equations for person parameters (Equation 9.15) and item parameters
(Equation 9.16) can be simplified to

t =Y PO) p=1..,N 9.17)
i=1

where ¢, is the total score of person p, and

N
s, :213(ep), i=1,..,n (9.18)

p=1
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where s; is the total number of correct responses to item i. In Equation
9.17, the total score of a person is set equal to its expected value; in
Equation 9.18, the item total score is set equal to its expectation.
Equations 9.17 and 9.18 have to be solved iteratively for the parame-
ters. One restriction must be added in order to fix the additive scale
of the Rasch model.

From Equation 9.17 it follows that all persons with the same total
score have the same estimated 0. The total score is a sufficient statistic,
a result that is valid only for the Rasch model. The implication is that
JML estimation for the Rasch model can be viewed as a logistic regres-
sion problem with total scores and items as levels of two categorical
variables.

In JML estimation, the item parameter estimates depend on the
person parameter estimates and vice versa. This causes an estimation
problem of biased parameter estimates. The bias in the item param-
eters does not disappear if the number of persons N increases. With
large tests the bias is negligible (see Exhibit 9.2).

Exhibit 9.2 Where JML goes wrong

Suppose we have one latent trait value, with 6 = 0.0, and two Rasch
items, with b; = 0.0 and b, = 0.5.

The probability of a correct response to the items is p; = P;(6 = 0) = 0.5
and p, = P,(0 = 0) = 0.37754.

We obtain the following probabilities:

P(1 correct; 2 incorrect) = p;(1 — p,) = 0.31123

P(1 incorrect, 2 correct) = p,(1 — p;) =0.18877

P(t(total score) = 1) =0.5

P(1 correct |t = 1) = P(1 correct; 2 incorrect)/P(t = 1) = 0.62246
P(2 correct|t = 1) = P(1 incorrect; 2 correct)/ P(t = 1) = 0.37754

In JML we estimate the item parameters from the probabilities correct
given the estimates of abilities. With two items we have only one ability
estimate, for ¢ = 1; this ability estimate can be set equal to 0.0 (which
fixes the latent scale). We solve b; from P(1 correct|t = 1), and b, from
P(2 correct|t = 1):

=-0.5

b = _1n P(1 correct|t=1)
1 1- P(1 correct|t=1)
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and

b——In P(2 correct|t=1) —05
2 1-P(2 correct|t=1)

The difference between the estimated b parameters is twice the true
difference. The problem with the JML method is that it incorrectly
equates the empirical regressions P(i correct|f) with P,(0).

Andersen (1972) demonstrated that with two Rasch items the difference
between the JML estimates is always twice the true value. For a test
with n > 2 Rasch items, a correction factor (n — 1)/n seems adequate for
all practical purposes (Wright, 1988).

9.8 Marginal maximum likelihood estimation

In MML person parameters are eliminated by integration over a dis-
tribution of 6. The mean of this distribution is set equal to 0.0. The
standard deviation of the distribution is set equal to 1.0. This is
permitted for the 2PL and the 3PL models, models defined on an
interval scale. So, for a Rasch analysis, we start with the 1PL model
(i.e., the 2PL model with a common discrimination parameter). The
final MML difficulty parameter estimates are transformed to the scale
with a common discrimination parameter equal to 1.0.

We do not know the population distribution of person parameters.
We have to make some assumptions with respect to the distributional
form. The choice we make has an effect on the values of the item param-
eter estimates. This dependency seems to be the weak spot in MML.
Fortunately, it is possible to estimate properties of the latent distribution
along with the item parameters when enough data are available.

In case we do not have any information on the distribution of person
parameters, a natural choice is a more or less bell-shaped distribution.
Traditionally the obvious choice is the normal distribution. A disad-
vantage is, however, that the distribution leads to awkward computa-
tions. This problem can be overcome—we can approximate the normal
distribution by a discrete distribution with any degree of accuracy.

Let us consider a discrete distribution of 6 with g latent classes.
The relative frequencies of 6, (k = 1,...,q) are denoted by g(6,). When
the values 0, and g(8,) are chosen for an optimal approximation of a
continuous distribution, they are called quadrature points and quadra-
ture weights, respectively.
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The probability of response pattern x = (x4,..., x,,..., X,,) given 0,
is written as P(x|96,). If a randomly chosen person from the popu-
lation makes the n-item test, the probability of response pattern x
equals

P(x)= ) P(x16,)2(0,) (9.19)
k=1

Now we administer the test. S response patterns occur. Response
pattern [ (I = 1,...,S) occurs r, times.
In MML we maximize the natural logarithm of

S
Ly =C[ [P 9.20)
=1

where C is independent of the parameters (Bock and Aitkin, 1981).
The resulting estimation equations can be written as

Z 1y, — 1, E6,) aPi(ek)=
P(6,[1-PO,)] a,

g
0 (9.21)

R=1 TiNCk
where v; is one of the item parameters of item i, n,, is the posterior
expectation of the number correct on the item in latent class k, and
n, 1s the posterior “size” of latent class k.

In the EM algorithm, we solve iteratively for maximum likelihood
estimates and update values n;, and n, in the “Expectation” step until
convergence is reached.

9.9 Markov chain Monte Carlo

MCMC resembles JML in as far as in both approaches item and person
parameters are estimated together. MCMC, however, is based on the
use of prior distributions for all parameters. MCMC estimation makes
use of posterior distributions.
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The posterior distribution of 6, can be written as

p®,1B.6, 6,6, .6,.X)=CoX|0B)p®O.8)  (9.22)

i+1’

where X is the data matrix, 0 is the vector with N person parameters,
B is the vector with all item parameters, and C is the normalizing
constant. When we sample from the posterior distribution, we can use
the sample data in order to compute characteristics of this distribution
(e.g., the posterior mean and standard deviation). The sampling process
can also be used to obtain the final person parameter estimates as well
as the final item parameter estimates. This is done using a Markov
chain Monte Carlo technique (Gelman, Carlin, Stern, and Rubin, 2004).

We begin with starting values for item and person parameters.
Next we sample new parameters from the posterior distributions. This
process is repeated. In cycle k& + 1 we draw, for example, a new value
0, from the distribution:

peftIghert, erher , ,67,X)

-1

At the end of the cycle, all parameter estimates have been updated.
When the process stabilizes (i.e., when the posterior distribution does
not change with new cycles), sampling is continued in order to obtain
the aforementioned characteristics of the posterior distributions. When
the person parameters are estimated this way as posterior means, the
estimates for equal answer patterns can differ slightly due to sampling
variation (Kim, 2001).

The procedure described here is known as the Gibbs sampler. The
Gibbs sampler requires the computation of the normalizing constant.
This may not be an easy task. Sometimes one works around this
problem by a process called data augmentation in which missing data
are created (Albert, 1992). Other MCMC methods have been developed
that do not depend on the computation of the normalizing constant.
An overview of MCMC methods in the context of IRT modeling is given
by Patz and Junker (1999). Many researchers use the BUGS software
for MCMC estimation (Spiegelhalter, Thomas, Best, and Lunn, 2003).
Sinharay, Johnson, and Stern (2006) discuss model checking with the
Bayesian posterior predictive model-checking method.
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9.10 Conditional maximum likelihood estimation
in the Rasch model

In the Rasch model we also can apply the conditional maximum like-
lihood (CML). It turns out that in discussing CML another model
representation is preferable. We rewrite the Rasch model as

P©) exp(0-b) &g

= = 9.23
i l1+exp(0-0) 1+E&¢ (9.23)

where & = exp(0) and €, = exp(-b,).

Assume that we have two items with item parameters €; and &,.
The probability that item 1 is correctly answered, given one correct
response on the two-item test is equal to the probability of the score
pattern (1,0), divided by the sum of the probabilities of the score
patterns (1,0) and (0,1). The probability is

G, 1
1+¢e. 1+Ce €
P(x, =1lx +x,=1,8)= %, %€, =—1
&81 1 1 a€2 € +E,

X + X
1+8, 1+8&, 1+&, 1+&e,
(9.24)

The probability in Equation 9.24 is independent of the value of the
person parameter &. The comparison between items can be made inde-
pendent of the value of the person parameters (and vice versa the
comparison between person parameters can be made independent of
the items). The measurements are specific objective.

With three items we can do the same thing as with two items. The
probability that item 1 is correct given a total score £ = 1 on the three-
item test is P(x; =1, x,=0, x3= 0]t = 1) = &,/(g; + €, + €).

The probability that item 1 is correct given a total score equal to
218 P(x; =1, x5=1, 23=01t =2) + Pl;=1, x,=0, x3=11¢ = 2) = (g,&,
+ €,85)/(€,84 + €,€5 + €5€3).

This result can be generalized to a test with n Rasch items. First,
some notation is introduced. In the denominator of P(x;= 11t = 2), all
combinations €g; appear; in the numerator only the combinations with
the parameter of item i, €, are entered. The sum of the products is
called an elementary symmetric function. The elementary symmetric
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function for four items and a total score equal to 2, the elementary
symmetric function of order 2, is v, (€,,€5,€5,€,) = Yo(€) = €,85 + €165 + €€,
+ €585 + €58, + €5,

The denominator of P(x;= 1|t = 2) can be written as y,(e). For the
numerator of P(x;= 1|t = 2) 7,V(g), the elementary symmetric function
of order 1 exclusive item 1, is needed. The numerator can be written
as &;7,9(g). The elementary symmetric function of order O is defined
to be equal to one.

In the general case there are n items. The number of correct res-
ponses s; to item i (I = 1,...,n) is based on the group of NN persons with
0 <t < n responses correct. The conditional likelihood is equal to

Prob(s, ,s.t, .t,)

19,04

Prob(z, ,¢,)

LCML=Prob(sl, ,snltl, ,tN)=

n

H e (9.25)
C i=1
ﬁ Y, (€)

where C is a factor independent of the item and person parameters.
The estimation equation for the estimation of g; is

n-1 n—1 (1)
ey, (e)
= NP(x.=1|t)=)y N i1~ 9.26
s, ;1 Px =111) ;1 (@) (9.26)

where N, denotes the number of persons with score ¢ (¢ = 1,...,n 1).
So, in CML the item score s; is set equal to the expected item score
based on the conditional probabilities correct for the various total
scores. The estimation equations (Equation 9.26) for the item param-
eters g; (i = 1,...,n) are solved iteratively under one constraint needed
in order to fix the latent scale.

9.11 More on the estimation of item parameters

Special attention must be given to the presence of missing values when
item parameters are estimated. There are two cases to consider: data
can be missing by design or not. Data are missing by design when, for
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example, the number of items is too large to present all items to an
examinee. Then subtests can be administered to different examinee
groups. The subtests must have common items in order to obtain item
and person parameter estimates on a common scale (see Chapter 11).
All maximum likelihood methods can be generalized to incorporate
values missing by design. For the MML approach, the consequence is
that latent distributions for multiple groups must be defined. Data
also can be missing because items are skipped. In achievement testing,
skipped items sometimes are treated as incorrect responses. Another,
more adequate approach to deal with skipped items with the multiple-
choice format is suggested by Lord (1980). When the presence of
missing values correlates with latent ability, data are not missing at
random (Little and Rubin, 1987). MML estimation of item parameters
is affected. This is the case when the test is speeded—that is, when
some examinees do not reach the items at the end of the test, or when
the time limit on the test stimulates strategic answer behavior and
examinees rapid-guess on (more difficult) items (Wang and Zhang,
2006; Wise and DeMars, 2006). Then blind application of, for example,
the 3PL model is inadequate.

For accurate estimation of a difficulty parameter, it is important
that the group of persons that took the test has an average ability
level comparable to the item difficulty. In the 2PL model and the 3PL
model, discrimination parameters must be estimated. These parame-
ters define the slopes of the ICCs. Information on the steepness of a
slope is available only when the latent abilities are reasonably well
spread. The Rasch model does not have a discrimination parameter.
In the Rasch model, item parameter estimation can be accurate even
if all persons have the same ability. This advantage is of limited value,
however. If all abilities are equal, there is no way of discriminating
between alternative models. The estimation of ¢ in the 3PL model is
more accurate when we have more relatively low abilities. Inaccurate
estimation of the pseudo-chance-level parameter has an impact on the
estimation of the discrimination parameter and the difficulty param-
eter as well, for the estimates of the item parameters are correlated.
For known abilities the inverse of the matrix of error variances and
covariances of the item parameter estimates, the information matrix
of the item parameters, is given in Lord (1980).

The CML estimation procedure for the Rasch model has a clear
statistical advantage above the other estimation procedures as was
discussed in the previous section. For the Rasch model, software was
developed for the estimation of item parameters with CML; CML
estimation also can be done with a special kind of log-linear analysis
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(Heinen, 1996; Kelderman, 1984). CML is, however, computationally
demanding. This problem might be avoided by using MML in which
the characteristics of the population distribution are estimated along
with the item parameters (De Leeuw and Verhelst, 1999). There is
another disadvantage of using software for the Rasch model. If the
Rasch model does not fit the data very well, one could consider fitting
other models and in that case other software is needed. The Rasch
model can be viewed as a submodel of the 2PL; model and the 3PL
model. There is much to say for using the same software to compute
item parameter estimates for alternative models and to compare the
outcomes of these models.

Software for the analysis of item responses is commercially avail-
able, for well-known item response models like the IRT models for
dichotomous data discussed here as well as for other models. Informa-
tion on software can be found in books and articles that describe appli-
cations or research with the software, from software houses, and from
software review sections of journals like Applied Psychological Measure-
ment. Embretson and Reise (2000), who introduce many of IRT models,
discuss a selection of the commercially available computer programs:

TESTFACT (Wilson, Wood, and Gibbons, 1991; www.ssicentral.
com) for the full-information factor analysis of dichotomous
data with the two- and three-parameter normal ogive models
(with fixed values c)

BILOG (Mislevy and Bock, 1990) for the estimation of the 1PL,
2PL, and 3PL models, and BILOG-MG (Zimowski, Muraki,
Mislevy, and Bock, 1996; www.ssicentral.com) for the analysis
of multiple groups (BILOG is no longer available; see BILOG-
MGS3 of Assessment Systems Corporation)

MULTILOG (Thissen, 1991; www.ssicentral.com) and PAR-
SCALE (Muraki and Bock, 1997; www.ssicentral.com) for
dichotomous as well as polytomous items

XCALIBRE (Assessment Systems Corporation, 1996;
www.assess.com) for the estimation of parameters in the 2PL
and 3PL model

RUMM (Andrich, Sheridan, and Luo, 2000; www.rummlab.com)
for the estimation of parameters of various Rasch models

The authors notice the fact that no final review of software is
possible, because programs have been revised and will be revised con-
tinually. They also notice that alternative programs may unexpectedly
produce different results although model specifications are identical.
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So, more comparative studies on IRT programs and possible flaws of
certain programs have to be done. It is to be hoped that this leads to
improvements of the IRT software.

For WINSTEPS and information on other software packages for
Rasch analyses, see www.winsteps.com.

9.12 Maximum likelihood estimation of person
parameters

Once item parameters have been estimated, with CML or MML, person
parameters can be estimated by maximum likelihood given the esti-
mated item parameters (i.e., in a way similar to estimation in JML).
In this section we will discuss the estimation of person parameters by
ML (for bias in ML estimation, see Warm, 1989).

The person parameter in each of the models can be obtained by
solving Equation 9.15 for 6. We rewrite this equation as

D w,0)x,= Y w(6)F6) 9.27)
i=1 i=1
with
P(®)
w(0)=— 9.28)

P©O[1-P®)

where P{(6)= 0P (0)/06.

In the equation a weighted total score is set equal to the weighted
sum of the expected item scores. The weight in Equation 9.28 can
be compared to the optimal weight in Equation 4.8 for congeneric
measurements.

In the 3PL model the size of the weight w,(0) depends on the value
of 6. For ¢; > 0, the weight decreases as 6 becomes smaller; at 6 = —oo
the weight is zero. In the 3PL model, one must verify whether the
solution to Equation 9.27 is a maximum. Equation 9.27 is always
solved by setting 6 equal to —o, but in some aberrant cases there is a
maximum of the likelihood at 6 = —«~. In some cases, with aberrant
response patterns two maxima exist, one for 0 = —oo,

For the 2PL model, optimal weight (Equation 9.28) is equal to
the discrimination parameter a,. In the Rasch model, in which the
discrimination parameters are equal, all weights are equal to 1. In
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the Rasch model the left-hand side of Equation 9.27 reduces to the
total score; the total score is sufficient for the estimation of 6 (see
Equation 9.17).

Several applications of IRT models presuppose the ML approach.
The use of the information function as a measure of precision presup-
poses maximum likelihood estimation of 6. In computerized adaptive
testing (Chapter 10), either the maximum likelihood estimate of 6 or
a Bayesian estimate, the subject of the next section, is used.

In some applications, such as the scoring of a group of examinees
on the same test, there is no obligation to use maximum likelihood.
Then the question arises whether to use optimal scoring weights or
not. For the Rasch model, this question is easily answered. In this
model, the maximum likelihood estimator is a nonlinear transforma-
tion of the unweighted total score on the test. So, total score can be
computed and reported either on the observed score scale or on a
transformation of this scale. Things are different with respect to the
3PL model and the 2PL model.

With the 2PL model, the optimal item weights are equal to the
item discrimination parameters a;. One might wonder how much gain
in accuracy is obtained by using these weights instead of the
unweighted total score. This is of some importance, for the unweighted
total score has the advantage that the scoring rule needs not much
explaining to the examinees. There is a second reason to be careful
with using the optimal weights. The optimality of the weights is based
on the assumption that the item parameters are accurately estimated
and that the IRT model fits the data.

It is easy to imagine that in many situations the gain from using
optimal weights is only apparent. If the discrimination parameters q;
differ moderately, the gain in accuracy when using weighted scores is
limited. An additional problem can be inaccuracy of the item parameter
estimates. Using “optimal” weights based on inaccurate parameter esti-
mates might result in less accurate estimates of abilities than unit weight-
ing. Then it is advisable to use unit weights just for statistical reasons.

In the 3PL model there is a further complication in connection with
the differential weighting of items: the optimal item weight does not
depend only on the item parameters, but also on the unknown person
parameter. Fortunately in some applications optimal weights can be
chosen that do not depend on ability level. This is the case when
differentiation between ability levels is really needed only near a
particular ability level, 6,. In that case, weights w,(0,) are appropriate
for all values of 6 (Lord, 1980, p. 170) and the problem of weighted
scores 1s equal to the problem of weighting in the 2PL model.
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Tests have been scored with unit item weights even though meth-
ods for weighting items have been proposed many times, frequently
for good reasons. An IRT analysis remains very useful even when it
has been decided to use unit weights for the combination of the item
scores. In Chapter 6 it was demonstrated that the outcome of an IRT
analysis can be used for the computation of the conditional standard
error of measurement.

9.13 Bayesian estimation of person parameters

In MML we work with a distribution of 0, with characteristics fixed
beforehand or estimated from the test data. Prior knowledge of the
distribution can be used to obtain a Bayesian estimate of 6.

With a discrete distribution of 6 we can write the posterior proba-
bility distribution for 6 given the responses to the items as

_P(x16,)g(06,)  P(x16,)26,)
P(x) : ’
T Y P, g6,)

h=1

k=1,..q (9.29)

P(®, |x)

where g(0,) is the prior probability of 6, and P(x|0) = L(x|0) is the
likelihood of the observed scores x = (x;,..., x,) given 6.

There are two alternative Bayesian estimators of 0, the posterior
mean or EAP estimator (expected a posteriori estimator) and the pos-
terior mode. With a discrete distribution the EAP estimator is the
obvious choice. The estimator is

EAP(6)= ) 0,P(0, %) (9.30)

k=1

The posterior mean is very easy to compute: no iterations are needed
in order to obtain it. The posterior variance can be computed as a
measure of uncertainty.

9.14 Test and item information

In classical test theory the variance of measurement errors was a
relevant concept. The inverse of the error variance is an indicator of
the precision with which statements about persons can be made. In
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IRT it appears advantageous to start with the precision of measure-
ments. The two central concepts are test information and item infor-
mation.

The test information at a level of latent ability 0, 1(0), gives, under
some conditions, the precision with which 6 can be estimated at this
ability level. The conditions are as follows:

—_

. We have chosen the adequate model.

. The item parameters are accurately estimated.

3. We use maximum likelihood estimation—that is, we use opti-
mal weights for the estimation of ©; with other estimation
methods (e.g., with number right scoring) we speak of the
information of a scoring formula (Birnbaum, 1968); the latter
information cannot exceed the test information.

4. The test is not too short.

[\

The test information has a very convenient property. It is the sum
of the item informations (Birnbaum, 1968). So, the contribution of each
item to the accuracy of a test may be considered apart from the
contributions of other items. The test information is

2

[Zwi@)li'(e)
1(8)= i Yo
2%(6)23(9)[1_ P(o)] Z i

13

(9.31)

13

where w,(0) is the optimal item weight from Equation 9.28, P',(0) is
the derivative of P,(8) with respect to 6, and I,(0) is the item information
of item i,

P16y’

L0 poN-Po)

i

(9.32)

The item information is equal to the square of the slope of the ICC at
0 divided by the local error variance, which is the item variance given
0. For polytomous items, results are given in Exhibit 9.3.
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Exhibit 9.3 Optimal weights and information
of polytomous items

Optimal weight (Equation 9.28) and item information (Equation 9.32)
cannot directly be generalized to the case of polytomous items. With
polytomous items, each option has an optimal option weight. Let P,,(0)
be the option characteristic curve. Then the optimal weight associated
with option % is

dInP,(6) P;(6)
0  P(9)

ik

wik (e) =

The sum of the weights of the chosen options equals zero at the maximum
likelihood estimate. The option weights function in quite a different way
than the weights for dichotomous items. The reason for the difference is
that the weight for a dichotomous item is an item weight: the options
correct and incorrect are not weighted separately, as the score for incor-
rect is set equal to zero. The item weight is the difference between the
option weight for correct and the option weight for incorrect.

For the two models in Equation 9.6 and Equation 9.7, the score weight

of category k can be written as & plus a factor independent of k. The
option score k can be written as

k=w, (0)-w, ()

While % does not depend on the item and option parameters, the polyt-
omous Rasch models have a sufficient statistic for the estimation of
6—the sum of the category numbers of the options chosen.

The item information, the sum of the option informations, is

m Pr2(e)
1(0)= 2 &
' £ P, (6)

Samejima (1969) proved that under the graded response model the item
information increases if categories are split into more categories.

It is easily demonstrated that the item information of a dichotomous
item, as given by Equation 9.32, is a special case of the item information
for polytomous items.
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In the 3PL model, the item information is

2 Ci
I(0)=a pi<e>[1—pi<e>][1— Pi(e)] 9.33)

where p;(0) equals the probability of a correct response to the item if
¢; would have been equal to 0. In the 2PL model, the item information
equals o times the item variance given 0, and in the Rasch model the
item information equals the item variance given 0, the error variance
on the true-score scale.

In Figure 9.8 information functions are displayed for three items.
The information of the item with ¢ = 0.0 and a = 2.0 exceeds the
information of the item with the lower discrimination parameter for
a large range of the latent ability. With increasing a, the information
at 0 = b increases, while the information at more distant abilities
decreases. A perfect Guttman item discriminates at only one point—it
discriminates between persons with 6 smaller than b and persons with
0 larger than b.

The information of the item with ¢ = 0.25 and a = 2.0 is lower than
the information of the item with the same value of a and ¢ = 0.0. The
reduction is lowest at high values of 0; for low values of 6 the reduction
is large due to guessing. From the figure, we can infer that the highest

1(6)

0.5 - N N

Figure 9.8 Information functions for three items (b = 0).
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information is obtained at 6 = b, unless ¢ is larger than 0. When ¢
exceeds 0, the highest information value is obtained for a value of 6
somewhat higher than b. Birnbaum (1968) gives the relationship
between ¢ and the value of 6 at which the highest information is
obtained.

The value of the item information and, consequently, the value of
the test information, depend on the choice of the latent scale. In the
2PL model and 3PL model a linear scale transformation is allowed.
We can multiply all 6 and b with 2 and divide all a by 2. Then the
item information and test information decrease by a factor 4 (see
Equation 9.33). And, when nonlinear scale transformations are also
considered—for example, a transformation to the true-score scale—the
form of the information function can change dramatically.

Information is not an invariant item property. The ratio of the item
informations of two items is, however, invariant:

1) 1)
I0)

J
for all monotone transformations 6" of 6.

The relative efficiency of two tests, the ratio of the test informations
of two tests, remains unchanged with a change of scale. This means
that the comparison of the accuracy of two tests does not depend on
the chosen latent scale.

The estimated value of 1(6) can be used (asymptotically) for the
construction of a confidence interval for 6. The variance of 0 equals the
inverse of the test information, 1/1(0), assuming accurate item param-
eter estimates (otherwise the error variance is larger; see, e.g., De

Gruijter, 1988). Under the assumption that 0 is normally distributed,
the approximate 95% confidence interval is

0-1.96/\/I(6) <0<0+1.96/1/1(8) (9.34)

With this confidence interval we might err in case a population of
abilities is involved. Then we better use the EAP estimator instead of
the ML estimator. With EAP we can also compute the posterior vari-
ance of 0. This variance is smaller than the inverse of the test infor-
mation. These results are comparable to those discussed in connection
with the application of the Kelley formula within the context of clas-
sical test theory. Also, test reliability is of foremost importance within
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the context of IRT. A test is useful for differentiating between persons
in as far as the error variation is relatively small compared to the true
variation in 6.

9.15 Model-data fit

An important question is whether the chosen IRT model fits the data.
If the model does not fit, we have to find a less restrictive model that
fits the data or we have to drop nonfitting items. The investigation of
model fit has two aspects:

1. A statistical test of model fit
2. An analysis of residuals, in order to get an idea of the seri-
ousness of the model violations

With a small number of data, it is difficult to reject a particular model.
With a large number of data, a model is easily rejected even if the
deviations of the data from the model are small for all practical pur-
poses. For this reason, both statistical testing and the analysis of
residuals are necessary in the study of model fit.

In the models we discussed so far, we have one general model
assumption: the assumption of unidimensionality or local indepen-
dence. For each model we also have assumptions regarding the specific
shape of the item response curves. The assumption of unidimension-
ality can be verified in several ways.

A factor analysis might reveal whether the data are unidimen-
sional. A factor analysis of phi coefficients—ordinary product moment
correlations—is not suitable when the item discriminations are high.
The analysis of phi coefficients would produce spurious factors. A
multidimensional IRT analysis, which is a nonlinear factor analysis,
is called for. A factor analysis of tetrachoric correlations—correlations
of bivariate normal distributions assumed to underlie the responses
to pairs of dichotomous items—might be appropriate when the latent
distribution is normal and there is no guessing.

We can examine the item variances and covariances after the elimi-
nation of the model effects. A positive correlation between residuals
indicates violation of model assumptions. Stout (1987) presented a non-
parametric test for unidimensionality based on a split of the test into
two subtests (see also Roussos, Stout, and Marden,1998). The research
by Stout and his coworkers resulted in programs like (POLY-) DIMTEST
and DIMTEST. An overview of the work can be found in Stout (2002; for
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software like DETECT and DIMTEST, see www.assess.com). A compar-
ison of several nonparametric approaches to dimensionality checking is
presented by Bouwmeester and Sijtsma (2004).

Specific model assumptions can be verified in various ways. Varying
values of item-test correlations might indicate different discrimination
parameters. The study of item-test regressions can reveal whether
guessing is likely to play a role. We also can do an analysis of residuals
by item, after having completed an IRT analysis. First we group the
estimated 0’s in a number of sufficiently large groups. Next in each
group the (standardized) difference between the observed proportion
correct p and the model probability is computed. Yen’s (1981) statistic
Q, is based on the squared differences. The statistic she proposed is
a Pearson chi-square. For item i the statistic can be written as

& Np, PO &
i ZPf =P~ 2 059

=1 l =1

where P,(0)) stands for the average probability correct in ability group
[ and N, is the size of ability group /. @;; is approximately distributed
as a chi-square with m — k degrees of freedom, where m equals the
number of score groups and k is the number of item parameters. A
likelihood ratio statistic has been proposed by McKinley and Mills
(1985). This statistic can be written as

1-p.
G:—zm 2[ ] P(e>+(N il)]nl_Pi(ell)] (9.36)

where L; is the likelihood given the model, L, the likelihood without
model restrictions, and IV; the number of correct responses to item i
in group /. This statistic is also approximately chi-square distributed.
A problem with the @; and G statistics is that the grouping of persons
is based on estimated values 6. In a simulation study on new tests of
fit and the G statistic from Equation 9.36 by Glas and Falcén (2003),
it was demonstrated that this G statistic has an inflated type I error
rate.

Figure 9.9 shows the fit of an item of the verbal analogies test, a
subtest of a Dutch intelligence test, the NDT or Netherlands Differ-
entiation Test, using the likelihood ratio fit test (Equation 9.36). The
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Item Response Function and Observed Percent Correct
Subtest 1: PC1; Item 14: A30
a=1.27; b=0.73; ¢=0.00; chi-sq=18.41; df=9.00; prob < 0.031

0.9 4
0.8 A
0.7 A
0.6 A
0.5 1
0.4 4
0.3 A
0.2 4

0.1 A b
e S —
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Scale score Metric Type
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PROB (correct)

Figure 9.9 Item fit for an item of a Verbal Analogies Test of the NDT, the
Netherlands Differentiation Test (BILOG output).

figure includes the item response curve and the empirical regression
of the item.

Other chi-square statistics, on the item and the test levels, have
been proposed for the Rasch model, based on the CML approach
(Andersen, 1973; Kelderman, 1984; Molenaar, 1983).

In MML an overall test to compare nested models seems to be
possible (Reise, Widaman, and Pugh, 1993).

The residuals used for the computation of item fit statistics might
also be plotted. Graphical model control might add useful information
on the cause of item misfit. For other checks on model fit, graphical
methods are useful. An example is given in Figure 9.10 where Rasch
item parameters have been estimated in a group with high scores (H)
and a group with low scores (L). The item parameter estimates are
not invariant. In the low scoring group, the range of values of the item
parameter estimates is smaller. This is due to the fact that guessing
played a role in the (simulated) data. A good overview of graphical
methods is given by Hambleton, Swaminathan, and Rogers (1991).
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b in group L
o
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b in group H

Figure 9.10 Rasch item parameter estimates, a low-scoring group versus a
high-scoring group.

9.16 Appendix: Maximum likelihood estimation
of 0 in the Rasch model

In this appendix we give an example of the way maximum likelihood
parameter estimation proceeds. For simplicity, we chose the estimation
of the person parameter in the Rasch model.

The likelihood of a score pattern x = (x;,..., x,,) in the Rasch model
can be written as

L(x|0)= Hlefep(p 6-5) exp(e)‘l;[exp(—bi)xil;[[1+exp(e—bi)]‘l

(9.37)

where t is the total score. We want to find the value of © that maximizes
Equation 9.37. Maximizing the likelihood is equivalent to maximizing
the logarithm of the likelihood. So, instead of maximizing Equation
9.37, we maximize its logarithm:

InL(x10)=t6— Y x5~ Y In[1+exp(6-b,)] 9.38)

i=1 i=1
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where In is the natural logarithm. When In L(x|6) has obtained its
maximum as a function of 0, the derivative of In L(x|0) with respect
to 6 is equal to 0. So we can find the ML estimate of 6 by differentiating
Equation 9.38 with respect to 6 and setting the result equal to 0 (we
must check whether we have obtained a maximum of the function and
not a minimum).

Differentiating Equation 9.38 with respect to 6 and setting the
result equal to 0 gives the equation

~ - exp(6-b) B = i
g(e)_t—;mw_t—;g(e)_o 9.39)

This equation is identical to Equation 9.17.

In Figure 9.11, the likelihood, the logarithm of the likelihood, and
the derivative of In L(x|06) are displayed for a simple example. In
Figure 9.11a, we can see that two response patterns with identical
total scores have very different values for the likelihood, but also that
for both response patterns the maximum is obtained for the same value
of 6 (0.721). In Figure 9.11b, In L(x|0) is given. From Figure 9.11a
and Figure 9.11b, it is clear that the value of 0 that maximizes L(x|0)
also maximizes In L(x|0). For this value of 0, g(6) in Figure 9.11c
equals 0.0. In Figure 9.11c, we see that the slope of g(0) is negative.
This shows that we obtained a maximum instead of a minimum of In
L(x|6).

We find 0 by solving Equation 9.39. We have a maximum in Equa-
tion 9.39 if g(0) decreases with increasing 0 in the neighborhood of g(0)
= 0.0. In other words, the derivative of g(0) with respect to 0, the
second-order derivative of In L, must be negative. The derivative of
2(0), g'(0), can be used in the estimation procedure. This is done in the
Newton—Raphson procedure.

Let us demonstrate the estimation procedure. We approximate the
function g(0) at the value of the estimated 0 in iteration k&, 0%, by a straight
line. This line goes through the point (6%, g(6%)) and has a slope equal to
g'(0%). The equation of this line is

8(0) = g(6") + g'(6") (6 — 69 (9.40)
Setting g(0) equal to 0 gives us the next estimate of 0:

051 = 0k — g(8%)/ g'(0%) (9.41)
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(a) L(x|0); The likelihoods of two of the three response
patterns with a total score equal to 2 are given
0
-1 4 . . : . . .
-15 -1 -0.5 0 0.5 1 1.5
3 21
=)
—
)
~
£ -3
_4 J
(b) In L(x|8) for score pattern 110
2 -
1 4
e
0
0 T .
-15 -1 -0.5 0 0.5 1\1.5
0
_1 J
(c) g(0)

Figure 9.11 The likelihood L(x |6), In L(x|6), and the derivative of In L(x |6)
with respect to 0 for a test with b, = -0.5, b, = 0.0, b;= 0.5, and a total score
equal to 2.
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In the Newton—Raphson method, we need g’(8), the derivative of
£(0) in Equation 9.39:

2©)=- P©)[1-F(0) 9.42)

=1

The derivative of g(0) is equal to minus the test information. This
relation between the second-order derivative of the log likelihood, g’(6),
and the test information does not hold for the 3PL model. With this
model, the test information only equals minus the expected value of
g’(0) (Kendall and Stuart, 1961, pp. 8-9). In the 3PL model, the test
information is easier to compute than the second-order derivative g’(0),
so with this model we replace the second derivative in Equation 9.40
by minus the test information (using Fisher’s method of scoring instead
of the Newton—Raphson procedure).

The iterative procedure for the estimation of 6 in the Rasch model
is as follows:

A. We compute a starting value for 0, 6°.
B. We compute a new value 6! by application of Equation 9.41:

o
[—ﬁme(’)[l—zz(e%]]

i=1

0l =90°- (9.43)

C. We compute |6 — 09|, the absolute value of the difference
between the two consecutive estimates of .

D. If the value obtained in step C is below a chosen threshold
value €, we stop. The obtained value 0! is our final ML esti-
mate. If the difference exceeds the threshold, we replace 6°
by 6! and repeat steps B and C. This process is repeated until
we reach convergence (by the way, with an inadequate start-
ing value, the procedure may fail to converge).

Let us give a numerical example of the method. We have three
items, with b, = -0.5, b, = 0.0; and b, = 0.5. The total score ¢ equals
2. As the starting value, we choose 6 = 0.0. The final estimate of 0 is
0.721, obtained in the second iteration. The data of the iteration
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Table 9.1 Iteration history.

Iteration 0k g(8%) g’(6%) Okt

k=0 0.0 0.5 -0.72001  0.69444
k=1 0.69444 0.01706 -0.64820 0.72075
k=2 0.72075  0.00007 -0.64304 0.72086

process are given in Table 9.1. You might want to verify these figures
yourself using a spreadsheet.

Exercises

9.1 Compute the probability of a correct response for a Rasch
item with item parameter equal to 0.0 and person parameter
6 =-2.0 (0.5) 2.0.

9.2 We have the responses of two homogeneous groups of persons
on two items. The response probabilities are P,(6,) = 0.3775,
P,(6,) = 0.6225, P,(6,) = 0.4378, and P,(0,) = 0.7112. Estimate
the person parameters 6; and 6, on the basis of the response
probabilities for the first item, assuming that the Rasch model
fits. Use the response probabilities for the second item for
verifying whether the Rasch model really fits.

9.3 Given is a test with three Rasch items. The item parameters
are b, = -0.5, b, = 0.0, and b, = 0.5. A person has answered
items 1 and 2 correctly, and item 3 incorrectly. Compute the
likelihood for 6 = -1.0, —0.5, 0.0, 0.5, 1.0.

a. Consider the four intervals defined by the five values of 0
for which the likelihood has been computed. In which inter-
val lies the maximum likelihood estimate of 6?

b. Assume that we have a population distribution with five
latent classes: 6, = -1.0, 6, = 0.5, 6, = 0.0, 6, = 0.5, 6; =
1.0. Also assume that these latent classes have the same
relative frequencies: g(0,) = 0.2 for £ = 1,..., 5. Compute
the EAP estimate of 0.

9.4 We have three items with item parameters:

b,=0.5,a,=1.0,¢,=0.0
b, =0.5, a,=2.0, ¢, =0.0
b;=0.5, a;=2.0, c;=0.25
Compute the item informations at 6 = 0.0.
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9.5 We have a discrete distribution of 6 with values —1, —0.5, 0.0,
0.5, and 1. The following is known:

Value 0 Frequency f(0) 1(0)
-1.0 0.1 7.864
-0.5 0.2 9.400

0.0 0.4 10.000
0.5 0.2 9.400
1.0 0.1 7.864

Compute the reliability of the test when maximum likelihood
is used for the estimation of 6.






CHAPTER 10

Applications of Item Response Theory

10.1 Introduction

Item response theory (IRT) can be used to analyze a test and to perform
an item analysis. In Section 10.2, item analysis with IRT will be
discussed. There is more to IRT. The development of IRT has opened
new ways for test applications and research with tests. This is true
especially for the parametric IRT models. Nonparametric models may
be less restrictive than parametric models, but they are also less
informative.

An important application of IRT is test equating, or bringing test
scores to the same scale. IRT equating has greatly extended the pos-
sibilities of equating. Large-scale testing programs also profit from
developments in IRT. Different persons may get different, partially
overlapping tests. Test results from all persons and all items can be
brought to the same scale using IRT. We will devote the next chapter
to equating with and without IRT.

Item banking is an important tool with IRT-based testing. Assume
that a new test is administered that contains old items, items with
known item parameters, and also a number of new items. After the
test administration we can estimate the item parameters of the new
items on the common latent scale as well. By repeatedly applying this
procedure, we are building a large pool of items with known item
parameters. As long as the item characteristics do not change due to,
for example, educational change (the phenomenon of item drift; Dono-
ghue and Isham, 1998), we have an item bank from which we may
choose items with known item parameters at will.

One application of item banks is with test construction. In the
application of standard test-development techniques of classical test
theory to the construction of tests, items are selected on the basis of
two statistical characteristics: item difficulty and item discrimination.
What IRT has to offer for test development in general, and item
selection in particular, is described in Section 10.3.
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IRT enables us also to investigate item bias (Section 10.4) and
Iinappropriate response patterns (Section 10.5) in a better way than
classical test theory.

Another important application of IRT is in so-called computerized
adaptive testing. Because under ML scoring items can be viewed as
the building blocks of tests, an item bank enables us to administer
computerized adaptive tests (CAT), the subject of Section 10.6.

The use of IRT in the measurement of change is discussed in
Section 10.7. Finally, IRT makes it possible to tackle various problems
by doing simulation studies. An example, discussed in Exhibit 10.1, is
the determination of the optimal number of options in multiple-choice
items. In Section 10.8, some concluding remarks on IRT applications
are made. Software for some of the applications mentioned in this
chapter can be obtained from, for example, www.assess.com.

Exhibit 10.1 On the optimal number of options
in multiple-choice items

Items with four answer options are more accurate than items with three
or two options, ceteris paribus—the effect of guessing is smaller with
these items. On the other hand, more two-option items can be answered
in the same testing time than four-option items. So, it is a sensible
question to investigate whether one should administer a test with, say,
two-option items rather than a test with four-option items. There have
been studies on this topic from both a theoretical as well as an empirical
perspective. Let us follow Lord’s (1977) line of reasoning.

First, we must decide how many items with a particular number of
options can be administered within a given testing time. Lord assumed
that the reading time depends on the number of options alone (i.e., the
number of items times the number of options is fixed for a given testing
time). This assumption is testable for a particular application.

Lord also assumed that item characteristics do not change with a change
of the number of choices, except the value of the pseudo-chance-level
parameter. The pseudo-chance-level parameter c¢ is set equal to the
inverse of the number of options, although this decision is not supported
by the outcome of IRT research.

Lord showed that three-option items provide the most information at
the midrange of the scale score, whereas the two-option item works best
at the upper range. When pass—fail decisions must be made, tests with
two or three options are optimal given optimal item difficulties and the
validity of the assumptions mentioned above.
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The bulk of the research on the optimal-number-of-options problem is
done from an empirical perspective. One such study is the study by
Rogers and Harley (1999). Their overall conclusion is that tests consist-
ing of three-option items are at least equivalent to tests composed of
four-option items in terms of internal consistency. Haladyna (1999)
strongly recommends three-option items instead of four- or five-option
items. His recommendations, however, fell on deaf men’s ears. The bulk
of test constructors and item writers stick to four or five options with
multiple-choice items.

10.2 Item analysis and test construction

IRT can be used to investigate the dimensionality of a test and to
screen the items of the test. Some remarks with respect to item anal-
ysis have been made in Chapter 6. In this section, we proceed by giving
two examples of IRT analyses of tests.

IRT modeling is frequently used with achievement testing. Our
first example is about the IRT analysis of measurement instrument
from another domain. The instrument is a personality questionnaire,
the Multidimensional Personality Questionnaire (Tellegen, 1982), and
the IRT analysis done by Reise and Waller (1990).

Reise and Waller did several analyses of the scales of the MPQ.
They did, for example, a factor analysis on the tetrachoric correlations.
They concluded that the responses on each scale could be accounted
for by one dominant dimension. The responses of two samples of 1000
persons were analyzed with the one- and two-parameter logistic mod-
els. The overall fit of the two-parameter model was adequate, although
some items did not fit well. Reise and Waller concluded that the IRT
analysis gave more information on the psychometric properties of the
scales and the items than would have been possible with an analysis
based on the classical test model.

The second example is about the application of IRT in the construc-
tion of a test to measure early mathematical competence. Van der Rijt,
Van Luit, and Pennings (1999) describe the construction of two ver-
sions or scales of the Utrecht Early Mathematical Competence Scales.
The scales were developed in order to assess the developmental level
of early mathematical competence in children ages 4 to 7 years. First,
items were written for eight aspects of numerical and nonnumerical
knowledge of quantity. This resulted in a pool of 120 items, from which
two 40-item scales had to be constructed.

The total test of 120 was too large to be presented to the children
participating in the investigation. So, several test booklets were
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constructed. Common items would make it possible to obtain item
parameters on a common scale. First, item difficulties were computed
and a factor analysis was done on the scores of the eight aspects. The
results of the factor analysis suggested that there is one underlying
dimension of mathematical competence.

The data were analyzed with the Rasch model. This model was
rejected. Next, an analysis was done with the two-parameter model in
which the values of the discrimination parameters a were fixed. With
fixed discrimination parameters, the item difficulty parameters could
be obtained with a CML analysis (Verhelst and Glas, 1995). Some
items did not fit well. Among the nonfitting items were items that were
frequently guessed correctly. The nonfitting items were eliminated
from the item pool, and the two 40-item scales were composed of items
from the pool.

10.3 Test construction and test development

In this section, it is assumed that a large set or pool of items is available
for test construction (Vale, 2006), and that accurate item parameter
estimates of these items were obtained. This could have been achieved
by an analysis of the responses of examinees to different test forms
with common items.

When good estimates of the item parameters are available, we can
compute the item information. The item information has the additivity
property under ML scoring of persons. The sum of the item informa-
tions produces the test information. This entails that we can compute
test characteristics beforehand from the characteristics of the items
that we choose for the test. So, we can construct the shortest test that
at a certain ability level has a test information exceeding a specified
minimum value. To simplify matters, we assume that there are no
additional restrictions on the test composition.

Suppose that we want to construct a test that has an error variance
of maximally the value d at ability level 6,. Then the test information
at that point, 1(6,), should have at least the value 1/d. We construct
the shortest test as follows. We take as first item in the test the item
with the highest value of the item information at 6,. As second item
we choose the item that has the highest item information among the
remaining items. We go on with selecting items until the sum of the
item informations at 6, is at least equal to 1/d. Unfortunately, param-
eter estimates are not free from error. So, when selecting on item
information, we might err a bit, and the computed test information
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might be somewhat higher than the true test information. The proce-
dure is simple. The largest problem is the determination of the value
d. When an old test is available, we could use the value d of that test.

Another possibility is that we want to specify a minimum value of
the test information for two (cf. Exhibit 6.2) or more values of 6. With
this conceptually simple extension, the solution becomes quite difficult.

Let us take the case where we want to discriminate for a range of
0 values, and where a minimum value of 1(6) must be specified for an
interval of 6. In this case, we replace the interval by some well-chosen
values of 6. Next, for each of these values 0, a minimum value for the
test information is specified. Now, we need to find the shortest test for
which at each of these values 6 the test information is at least as large
as the minimum specified. This problem can be defined as an optimi-
zation problem, to be solved with linear or integer programming tech-
niques (Theunissen, 1985; Van der Linden and Boekkooi-Timminga,
1989).

We formulate the problem as follows. Determine the minimum level
for the information at 0,, 1(8,) (k = 1,..., m). Minimize test length:

N

n= in (10.1)

i=1

where N is the number of items in the item pool and x; = 1 if the item
is included in the test and O otherwise, subject to the constraints

N

D 510,216, (:=1,..m) (10.2)

13

Also, in this case, the specification of the target value of the test
information might appear the most difficult part of the problem. In
Chapter 6 we referred to an investigation by Cronbach and Warrington
(1952), one of the first IRT-based simulation studies. They demon-
strated that in most cases the highest average test accuracy is obtained
with items of a similar difficulty, at the cost of a loss in accuracy at
the higher and lower abilities. This is demonstrated in Figure 10.1.
In Figure 10.1, the test information of two five-item tests with mod-
erately discriminating items (all a equal to 1) are contrasted. One test
1s a peaked test, a test in which all b parameters are equal. In the
second test, the difficulty parameters are spread, with b =-1.5, -0.5, 0.0,
0.5, and 1.5. The first test is optimal in a large interval around b = 0.
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1.5 1

-3.5 0 3.5
0

Peaked - - - - Spread

Figure 10.1 The test information of a peaked and a spread test.

The study by Cronbach and Warrington suggests that we might set
the target information lower for the relatively high and low abilities.

An interesting example of the possibilities of optimal test construc-
tion is presented by Van der Linden and Reese (1998). They demon-
strated the possibilities of test construction with extra constraints on,
for example, subject matter coverage in the context of computerized
adaptive testing using the “shadow test” approach. In this approach,
at each selection step a whole test is generated that satisfies the
constraints. It is quite possible that the item bank is not large enough
to produce a solution to the problem under the given constraints—the
problem is infeasible. There are several approaches to find the causes
of the infeasibility and to force a solution nonetheless (Huitzing,
Veldkamp, and Verschoor, 2005). Belov and Armstrong (2005) proposed
to assemble tests using a random search approach; this approach also
provides information on the most restrictive constraints.

10.4 Item bias or DIF

A test and the use of test scores are meant for a well-defined population
or several distinct populations. Test takers from a population can
generally be classified into several subgroups, according to, for exam-
ple, gender or ethnicity, and inferences from the test scores should be
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Figure 10.2 Two examples of differential item functioning (DIF); the item
characteristic curves (ICCs) of one item in two different subgroups a and b.

equally valid for members of all subgroups. Bias is defined by Cole
and Moss as differential validity of a given interpretation of a test score
for any definable, relevant subgroup of test takers (1989, p. 205).

Bias can be studied in various ways. A possibility that frequently
is considered is that a test is potentially biased because of the presence
of biased items. So, bias can be studied by investigating the internal
structure of a test.

In terms of IRT, we speak of item bias if the probability of a correct
response to the item given latent ability differs between relevant sub-
groups. Figure 10.2a and Figure 10.2b illustrate item bias. In
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Figure 10.2a, we have uniform item bias. One subgroup has a disad-
vantage at each level of 6—the ICC for this subgroup lies below the
ICC for the other subgroup at each level of 0. Figure 10.2b illustrates
the second possibility of item bias. In this figure, the ICCs cross. At
the left of their intersection one subgroup has the advantage, at the
right the other subgroup has the advantage.

To date, the more neutral term differential item functioning (DIF)
is used in connection with group differences. In the 1999 Standards
(APA et al., 1999), DIF is defined as a statistical property of a test
item in which different groups of test takers who have the same total
test score have different average item scores, or in some cases, different
rates of choosing various item options (p. 175). Technically, and in
IRT specifically, DIF is a special kind of violation of the unidimension-
ality assumption. A single latent trait (i.e., the value of 0), is not
sufficient to predict the probability of a correct response; in addition,
latent ability group membership is necessary in order to correctly
predict the probability. This is most easily seen when in the Rasch
model the biased item is shifted f units to the right for one subgroup,
say subgroup 2:

__exp®,-b,)
P& 1+exp(®, ~b, )

P

i

where b,y = b, + f.
An alternative way of writing the ICCs for both subgroups is as
follows:

-b)
-b)

exp(elp + 92(g)
,0 =
1p(g)’ "2p(g) 1 + exp(elp + 6

C

2(8)

where 0,) = 0.0, 0y = —f.

If DIF is observed, it is important to identify the causes of the
effect. Is the item less familiar in the focal group, the group we are
interested in, than in the reference group? If so, is the differential
familiarity unrelated to the ability of interest? If the difference
between the performance of two groups is really due to irrelevant
factors, we can conclude that the item is biased, which, of course, is
undesirable. An example of research into the causes of DIF is the study
by Allalouf, Hambleton, and Sireci (1999). These investigators
addressed the causes of DIF in a test translated from Hebrew into
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Russian. Several sources of DIF were found: changes in word difficulty,
changes in item format, differences in cultural relevance, and changes
in context.

Many methods for the detection of DIF have been proposed. Let us
review some of them in an IRT context. Rudner, Getson, and Knight
(1980) proposed to look at the size of the deviation between the ICCs in
both subgroups over the relevant range of 6. In several proposals for
measuring item bias, the differences between the ICCs are counted only
for values of 6 found in the study (Shepard, Camilli, and Williams, 1985).

In their study on item bias, Linn and Harnisch (1981) computed
the item parameters on the basis of the results of all subjects in the
study. For each person, they could compute the probability of a correct
response given the estimate of ability. They compared the average
model proportion correct for a range of values 6 to the observed pro-
portion correct in the target group. They also proposed to compute
standardized differences. In this respect, their approach is similar to
Yen’s approach to item fit. Linn and Harnisch did not propose to use
a y?statistic, however. Thissen, Steinberg, and Wainer (1988) proposed
a likelihood ratio statistic for an item suspected to be biased. First,
they proposed to estimate the item parameters for both groups simul-
taneously. The resulting likelihood for this model, M, is L,. Next, the
item parameters can be estimated again, but the item parameters of
the item under investigation are allowed to take on different values
in the two groups. The likelihood for this alternative model, M;, is L.
The likelihood ratio statistic equals

L
LR=-2In (10.3)

1

LR is approximately y? distributed under the null hypothesis (equal
item parameters in different groups). The degrees of freedom are equal
to the number of parameters set equal in both groups in model M,, but
are allowed to vary between groups in model M;. More information on
this approach is given by Kim and Cohen (1998), who use the LR test
in connection with the graded response model. A factor analytic
approach is discussed by Finch (2005).

Some methods for the detection of DIF are not based on the IRT
approach. Two of these methods deserve our attention: STD P-DIF
(see Exhibit 10.2), and the Mantel-Haenszel measure and chi-square
statistic (see Exhibit 10.3).
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Exhibit 10.2 A simple index for DIF: STD P-DIF

We administered a test and for one item computed the item-test regres-
sion, both for the reference group, group R, as for the focal group, group
F. The latter group is the group of interest. We obtained the values in
the table below for the item-test regressions (proportions correct given
total score k) and score frequencies n.

Total Score Drr gy, Prx Nk
0 0.0 0 0.0 0
1 0.3000 10 0.2500 4
2 0.4000 30 0.3333 3
3 0.4588 85 0.4286 7
4 0.4818 110 0.4667 15
5 0.5133 150 0.4444 9
6 0.7143 140 0.6667 12
7 0.8538 130 0.8125 16
8 0.8800 100 0.8182 22
9 0.9556 45 0.9167 12
Total 0.6575 800 0.6600 100

STD P=DIF = 1y, (Dy, = Pyy)! D My = Py D Py P 12 = —0.0452
k k

k

We see from the table that four persons from the focal group have a total
score equal to 1, and that one of them (a proportion equal to 0.25) has
the item correct. In the reference group, the proportion correct given a
total score equal to 1 is 0.3.

With STD P-DIF (shorthand for “standardized P-difference”), we com-
pute the weighted mean difference between the proportions correct for
the focal group and those for the reference group. As weights we use the
proportions of persons from the focal group with the respective total
scores. Index STD P-DIF has been proposed as a DIF index by Dorans
and Kulick (1986; see also Dorans and Holland, 1993). STD P-DIF can
be used to detect uniform bias. In the example above, we obtained the
index for a very short test; this has been done in order to keep the
computational burden small. The value of the index is —0.0452. The item
is more difficult for the focal group. The proportions correct in the total
groups are 0.6575 for the reference group and 0.66 for the focal group.
So, in this example, the focal group has a higher overall achievement on
the item, but nevertheless the item seems to be biased against this group.
Actually, the effect is small. Even with large groups only standardized
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differences larger than 0.05 and smaller than —0.05 are considered for
further inspection.

Total score has been used in the computations for the index as an
indicator of ability for members of both groups. Notice too that the item
that possibly displays DIF is included in the computation of the total
score.

Total score is sufficient for the estimation of ability under the assump-
tions of the Rasch model. More importantly, in the Rasch model, the item
proportion correct given total score does not depend on characteristics
of the latent trait distribution.

Exhibit 10.3 The Mantel-Haenszel Procedure

At score level &, the probability of a correct response to an item is p,,,
in the reference group and p,; in the focal group, the group we are
interested in. In the Rasch model, the odds in the reference group, p;,./
(1 = p1,) = P1,#/Dor 18 equal to the odds in the focal group, pis/pos. So,
the odds ratio is equal to 1. The Mantel-Haenszel measure estimates
the extent to which the odds ratio deviates from 1. The Mantel-Haenszel
estimator for the item is

S

anrknofk /nk

k=1
MH S

D s,

k=1
where n,,, is the number of persons at score level k belonging to the
reference group and having a correct response to the item, and so forth.

In practice, a logarithmic rescaling of o is used as a measure of effect size.

The Mantel-Haenszel chi-square statistic with 1 df (dropping a conti-
nuity correction) is

2

S S
PRIEDICN
= k=1

) Var(n,,)
k=1

2 _
XMH_
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where
_
Enlfk
n,
and
n.n . n.n
Var(nlﬂe)= 1k2 0k rk " fk
n,(n,—1)

Both approaches are based on an analysis of the two-by-two tables
of group membership and correct versus incorrect responses for the
various total score levels. The Mantel-Haenszel statistic is easily
extended to the case of more categories by replacing numbers correct
by sums over persons of scores (see, e.g., Wang and Su, 2004).

Both approaches can be related to the IRT approach, with observed
score as an indicator of latent ability. The Mantel-Haenszel method
works well in case all items are Rasch items and the investigated
item 1s the only biased item (Zwick, 1990).When the items are not
Rasch items and the ability distributions of the focal and reference
groups differ, one better takes another procedure for the detection of
DIF. The procedure SIBTEST (Shealy and Stout, 1993) corrects for
the fact that the raw score indicates different expected true scores in
both groups.

When several items are biased, the detection of DIF becomes more
difficult. The biased items have too much influence on the latent ability
estimate. Therefore, Kok, Mellenbergh, and Van der Flier (1985) pro-
posed an iterative method for the detection of DIF. Millsap and Everson
(1993), Camilli and Shepard (1994), and Scheuneman and Bleistein
(1999) give overviews of methods for the detection of item bias. Cole
and Moss (1989) make some critical remarks with respect to DIF
methodology and the interpretation of the outcomes of DIF studies.

Finally, an interesting approach related to DIF research is the
mixed model approach proposed by Rost (1990, 1991). In this approach,
a person does not belong to a group defined on the basis of an external
criterion (e.g., female, male), but to a latent class. In each latent class,
a unidimensional model is assumed to hold, but the item parameters
differ between latent classes. The analysis might reveal the existence
of classes of respondents who solve the test problems according to
different strategies, resulting in different item difficulties. When there
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are two latent classes, a big one and a small one, the small latent class
generates deviant response patterns, the subject of the next section.

10.5 Deviant answer patterns

Not only items may show deviations from the model specifications, but
also persons can have responses that deviate from the pattern expected
in the IRT model. An example is a low-scoring person who copies part
of the answers of a high-scoring neighboring examinee (Wollack and
Cohen, 1998). Wollack and Cohen, using the nominal response model,
defined the following index for the similarity between the responses
of an alleged copier and a source:

Pes —ZP(uiC =ugl6.)
i=1

o= (10.4)

\/Z P(u, =ug10,)1- Plu, =ug16,)]

i=1

where n = number of items, C = copier, S = source, u;, = response of
C to item i, u;q = response of S to item i, and h g = number of identical
responses.

A high value of ® indicates that copying probably occurred. Several
other copying detecting approaches were suggested. A recent sugges-
tion by Sotaridona, Van der Linden, and Meijer (2006) is not based on
IRT. More information on answer copying and cheating in general can
be found in Cizek (1999).

Various general methods have been proposed for the detection of
deviant answer patterns or the analysis of person fit, as it is also
known in the literature.

Rudner (1983) suggested the F2 statistic as a generalization of a
fit statistic used in connection with the Rasch model. The F2 statistic is

n

Y [u, - POF

Fo=—i= (10.5)
Y P®)[1-P©)
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Drasgow, Levine, and Williams (1985; see also Drasgow, Levine,
and McLaughlin, 1987) introduced z;, the standardized /;index for
dichotomous items and a similar index for polytomous items, Index /,
1s the logarithm of the likelihood evaluated at the maximum likelihood
estimate of 0. An atypical response pattern is indicated by a low log
likelihood of the response pattern u,...u, given the estimated ability
parameter ({,). But, what is a relatively low log likelihood? For an
appropriate interpretation of the log likelihood, the expected value and
the standard deviation of the log likelihood given the estimated person
parameter are needed. The standardized index is

= Lo~ MO) (10.6)
s(0)
with
o= X [, 0 P©®)+(1-u)In[(1- PO)]] (10.7)

=1

The mean and variance of the log likelihood given the estimated
value of 6 are

M@= Y [P(®)In P©)+[1- B@)]In[(1- PO)] (10.8)

i=1

and

s°(6)= Y P©O[1-P@)in P®)-In[1- PO (10.9)

i=1

Molenaar and Hoijtink (1990) noticed that ¢, does not have a normal
distribution. They proposed to use a chi-square distribution for the
evaluation of deviant answer patterns. Another approach to the dis-
tributional problem is to generate the distribution. This approach was
suggested by Glas and Meijer (2003) using the computationally inten-
sive MCMC technique. Glas and Meijer obtained results for L, and
several other indexes.

A review of many person fit indexes was given by Meijer and
Sijtsma (2001).
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10.6 Computerized adaptive testing (CAT)

Tests can be computer administered. A wide variety of item formats
is available in computer-based tests, both items with a forced item
response as well as items with open-response formats. Computerized
testing makes it possible to allow different examinees to take a test
on different occasions. For each examinee a different test can be com-
posed, in order to avoid the risk that items become known among other
things. Tests frequently are composed using a stratified random selec-
tion procedure. In that case, results can be analyzed with generaliz-
ability theory, and, when items are scored dichotomously, with
approaches discussed in Chapter 6.

With computerized testing more is possible. It is possible, for exam-
ple, to use a sequential testing design. One example of such an
approach is the closed sequential procedure mentioned in Chapter 6.

With item response theory, computerized testing can be made even
more flexible. First, consider a traditional test. Such a test is meant
for measurements in a population of persons—the target population.
No test can be equally accurate for all persons from the target popu-
lation. However, with computerized adaptive testing, we have the
possibility to administer each person a test in such a way that the test
score is as accurate as possible.

If we knew the ability of a person, we could administer a test
tailored to the ability level of this person. However, we do not know
the ability level of a person; if we knew there would be no need for
testing. Using item response theory, a testing strategy can be used
such that step by step a person’s ability is estimated. At each consec-
utive step, the estimate is more precise. The choice of the item or
subset of items at each step is tailored to the estimated ability at the
previous step. This calls for items for which item parameters have
already been estimated. All the items are stored in an item bank, and
for this large set of items IRT item parameter estimates are known.

More technically, for the administration of the first item, we can
start with the not unreasonable assumption that a person to be tested
is randomly chosen from the target population. The population distri-
bution can be regarded as the prior distribution for the ability of this
person. After each response, we can compute the posterior distribution
of 6 from the prior distribution g(0) and the likelihood of all responses
L(x10) (cf. Equation 9.29). This distribution can be used as the new
prior distribution for the ability of the person. We choose a new item
optimal with respect to this prior. We might, for example, after a
response to an item, compute the posterior mean, the EAP estimate,
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and select a new item that has the highest item information at the
level of the EAP estimate. After a correct response, the estimated
ability is higher than after an incorrect response. Therefore, a more
difficult item is administered after a correct response than after an
incorrect response. We might stop when the error variance is smaller
than some criterion. When the EAP estimate is used, the relevant
error variance is the posterior variance of 6 (Bock and Mislevy, 1982).
This CAT procedure is illustrated in Figure 10.3. For practical reasons,
another stopping rule is frequently used: the test length of the CAT
procedure is fixed. Test length is variable, however, in applications
where a decision about mastery must be made (i.e., when it must be
decided whether an examinee has an ability level equal to or higher
than a minimum proficiency level 0, ) (Chang, 2005).

Sometimes it is profitable to redefine the unit of presentation in
CAT and to group items into testlets. One argument for grouping could
be that several items are based on the same subject or the same text,
but there might be other reasons for grouping items as well (Wainer
and Kiely, 1987). With a redefinition of the unit of presentation, a
different choice of item response model might be in order (Li, Bolt,
and Fu, 2006; Wainer and Wang, 2000).

Another approach to CAT is exemplified by the ALEKS software
used for learning in highly structured knowledge domains like basic
math (www.aleks.com). An early psychometric contribution to this
approach is by Falmagne (1989). Another contribution to flexible test-
ing has been made by Williamson, Almond, Mislevy, and Levy, (2006).

Computerized adaptive testing (CAT) can be very efficient in com-
parison to traditional testing (Sands, Waters, and McBride, 1997; Van
der Linden and Glas, 2000). With a relatively short test length, we
already obtain a highly accurate ability estimate. This removes the
objection to the use of a prior distribution. With an accurate test, the
weight of the prior in the final ability estimate is very small. CAT can
also be used in connection with multidimensional traits. Li and Schafer
(2005) discuss multidimensional CAT in which the items have a simple
structure (i.e., load on only one of the latent trait dimensions).

In practice, concessions have to be made in order to make CAT
feasible. If we would use only items with maximum information given
the estimated ability, then we would probably use a limited number
of items from a large item pool frequently and other items would never
be used. Several methods have been proposed to deal with this problem
(Revuelta and Ponsoda, 1998). Van der Linden and Veldkamp (2004)
used the concept of shadow tests for constraining item exposure.
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Figure 10.3 Flowchart of computerized adaptive testing (CAT) with a stop-
ping rule based on estimation accuracy.

When CAT is to be introduced, a few aspects of testing with CAT
must be attended to. Answering the CAT test is different from answer-
ing a traditional test. The items must be answered consecutively;
skipping items is not allowed. Therefore, it is sound practice to study
the validity of the test procedure. We should be alert to the possibility
that the validity of the test changes with a change in procedure.

The interest in CAT is growing tremendously, especially because of
its prospects in educational assessment. The future of testing will be
determined, among others, by CAT (see, e.g., Standards, APA et al., 1999).
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In 1995 the American Council on Education published the Guidelines
for Computer-Adaptive Test Development and Use in Education.

10.7 IRT and the measurement of change
The measurement of change is beset with problems:

+ The first problem has to do with measurement error that
gives rise to the phenomenon of the regression to the mean.

* The second problem has to do with the question of whether
change can be interpreted as change along one dimension—can
scores before and after a change be interpreted in terms of the
same underlying construct?

* The third problem has to do with the limitations of the mea-
surement instruments used. When the standing of a person
on a latent scale increases, a higher score can be expected on
the measurement instrument. A person with an intermediate
score can have a large observed score gain. A person with a
relatively high initial score cannot have a large observed gain:
There is a maximum score on the test. In the measurement
of change, a ceiling effect is to be expected.

It is clear that IRT cannot solve all problems associated with the
measurement of change. Using estimated scores on a latent scale
defined by an IRT model can at least eliminate the problem of ceiling
effects. An early proposal with respect to the use of IRT for the mea-
surement of change was made by Fischer (1976). Fischer did more
than propose to use the latent ability scale for measuring change, he
also proposed to model the amount of change for each individual as a
weighted sum of effects. Other models for the measurement of change
over several occasions have been proposed by Embretson (1991) and
Rijmen, De Boeck, and Van der Maas (2005).

Here, we present only the simplest linear logistic test model dis-
cussed by Fischer. Let us assume that from time ¢,, several treatments
are given. At time ¢, the dichotomous Rasch model holds with abilities
0, and item parameters b, At time ¢, the probability of a correct
response is described by

exp(ep + 8p - bi)
1+ exp(Gp + 8p -b)

P(®, It,)= (10.10)
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with

5 =2qunj+r (10.11)
j=1

where g,; is the “dose” of treatment j as applied to person p, 1, is the
treatment effect for persons who took the whole treatment, and T mea-
sures a general trend or development independent of the treatments.
In the simplest case, the dose is 0 or 1, with 0 designating no treatment.
Persons who took the same combination of treatments show the same
change 6. An alternative interpretation is that the item difficulties
have decreased by the same amount § in this group of persons. So, in
the subgroup of persons with the same combination of treatments, the
n items at the first test administration together with the same n items
at the second test administration must conform to the Rasch model.

10.8 Concluding remarks

The state of the art at the end of the 20th century is given in the
Handbook of Modern Item Response Theory (1997), edited by Van der
Linden and Hambleton. Not only are many IRT models presented by
experts in the field, but also examples are provided (although limited
in number). Most of these models have been included in the previous
chapter of the present monograph. Interestingly, the models can be
classified according to roughly the following criteria:

+ Response format (dichotomous, polytomous items; ordered
versus unordered categorical data, open-end items)

+ Response time or number of successful attempts as responses
on test items

* Unidimensional or multidimensional items in a test

+ Type of response function (monotonous versus nonmonoto-
nous; type of the response function [e.g., normal ogive, logis-
tic, hyperbolic cosine, Cauchy])

+ Single versus multiple-group analysis.

Combining these five criteria maps a whole gamut of IRT models,
giving work for a whole army of research workers for decades to come.
And if the application of IRT models is taken seriously, then not only
1s cooperation between basic and applied researchers a prerequisite,
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but also a selection of the applied fields necessary (e.g., performance
assessment, test fairness, setting standards, certification, and the like
in educational testing; the measurement of human abilities, measure-
ment in personality, clinical and health psychology, developmental
psychology, attitude measurement, personnel psychology). In the con-
text of applied measurement, more attention should be paid to the
interpretation of model parameters, in addition to more technical mat-
ters as model identification and parameter estimation.

But where are we now? What are the achievements and blessings
of IRT? Is it a fair assessment by, for example, Goldstein and Wood
(1989) or Blinkhorn (1997) that, to rephrase Horace, a mountain of
IRT models gave birth to a silly little mouse of insight?

IRT has led to some fruitful results in the field of equating or
research on the comparability of measures, on fairness in testing and
test use (DIF research), and last but not least computerized adaptive
testing (CAT). Specifically, in the field of CAT, IRT is indispensable.
One of the major developments of educational and psychological testing
is CAT, and CAT is nigh to impossible without taking refuge in IRT.
Daniel (1999) argues that IRT is indispensable for improving the
adaptive administration of intelligence tests.

It is not all roses, however, with IRT. One class of problems with
IRT is methodological and technical in nature. For example, what does
it really mean when assumptions are violated, and then, how to proceed?
Surely, when the unidimensionality assumption is violated, we can take
refuge in multidimensional IRT. But what is the nature of those multiple
dimensions? How do we interpret them? How stable are the results on
the item information function under deviations of ICCs from the normal
ogive and logistic models (see Bickel, Buyske, Chang, and Ying, 2001)?
What does IRT contribute to test validation? Problems of a technical
nature have to do with estimation of model parameters, and with model
testing. The three-parameter logistic model, for example, requires sam-
ple sizes of at least 1000 for a moderate number of items (say 40) in a
test to achieve stable parameter estimates. And with more elaborated
models, the estimation problems become more complicated.

A second class of problems has to do with the implementation of
IRT, for example, for personality assessment. In personality assess-
ment, a wide variety of constructs exist. Can all these constructs be
modeled appropriately by an IRT measurement framework? Reise
(1999, pp. 237-238) argues that most available IRT models are too
restrictive for personality assessment.

Of course, it is no excuse of applied research workers and practi-
tioners in testing to shun the use of IRT procedures because these are
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tedious to apply and difficult to understand. On the other hand,
research workers would be ill advised if all should climb on the IRT
bandwagon and leave classical and neoclassical (i.e., generalizability)
test theory behind. These major test theories and their corresponding
procedures for test development, validation, and evaluation must con-
tinue to exist side by side, but cross-fertilization should be enhanced.

Exercises

10.1

10.2

10.3

Two test items were administered to a reference group R and
a focal group F. The proportions correct are

Diw = 0.70
P = 0.65
Daw) = 0.70
Do = 0.60

Is the second item biased against the focal group?

We have five Rasch items with b, = -0.5, b, =-0.3, b, = 0.0,
b, = 0.25, and b; = 0.5. We want to construct a two-item test
that discriminates relatively well at 8; = —-0.5 and at 6, = 0.5.
Which combination of two items from the item bank with five
items is best, given the criterion that the largest of the error
variances at 0, and 6, should be as small as possible?

In an item bank we have items conforming to the 2PL model.
The items have the item parameters: b; = -0.5, a, = 1.0, b, =
-0.25, a, = 2.0, b;=0.0, a3 = 0.7, b, = 0.25, a, = 1.0, b; = 0.5,
and a; = 1.5. We test a person and the present point estimate
of ability 6 is 0.20. Which item should be presented next to
this person?
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CHAPTER 11

Test Equating

11.1 Introduction

In many test situations, multiple forms of a test are made available to
assess ability, achievement, performance, or whatever. When persons
are administered several test forms meant to measure the same ability,
we want to be able to compare these persons’ test scores. With parallel
tests this can be done straightforwardly. Parallel tests measure the
same content and share statistical specifications (equal means, stan-
dard deviations, and reliabilities). That is to say, scores on parallel tests
are completely exchangeable. No comparison problem occurs with par-
allel forms of a test. More often than not, multiple forms of a test that
measure the same attribute are not parallel, and a comparison of scores
1s not straightforward, because test forms may differ in several respects
(unequal means, unequal variances, unequal reliability, and the like).
So, before comparing persons’ or examinees’ scores on multiple forms
of the same test, it is necessary to establish, as nearly as possible, an
effective equivalence between raw scores on the multiple forms of a
test. This is the problem of equating, a problem that is different from
the problem of developing test norms as elucidated in Exhibit 11.1.

Exhibit 11.1 Equating and norming

For many test applications, it is necessary to know the distribution of
test scores in a particular population. This means that norms for the
test have to be developed. Norming means that an adequate sample from
the population is approached, most frequently using stratified sampling
from the relevant population. Two different tests supposed to measure
the same characteristic can be normed for the same population. Can
these two tests also be equated on the basis of the norming data?

When different researchers construct tests measuring, say, intelligence,
their conception of what intelligence entails may differ. The constructs
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that are measured are likely to be dissimilar. Researchers also may use
different sampling plans, and for this reason, norms cannot be equated.
Finally, norms obtained at different times can differ because of changes
in the characteristics of the relevant population. Flynn (1987; see also
Dickens and Flynn, 2001) showed that there have been large gains in
scores on intelligence tests over time. Such changes imply that old norms
become obsolete after some time and new norms have to be developed.

Before going into the equating problem, we must keep in mind that
in general the process of associating numbers with the performance of
persons or examinees on tests is called scaling. This process leads to
scale scores (raw scores, normalized scores, stanines, and the like). The
process of scaling must be distinguished from the process of equating.
Equating procedures are used to insure that scores from the adminis-
tration of multiple forms of a test can be used interchangeably. Test
theorists and practicians differ in opinion, however, on what conditions
should be met for equated scores (i.e., the scores obtained after apply-
ing equating methods). Not only can interchangeability refer to alter-
native and weaker forms of strict parallelism of measurement instru-
ments, as discussed in Chapters 3 and 4, but also to test content and
to the target population for which the test is intended. To be more
precise, the following four conditions or properties of equated test
scores are pertinent:

1. Same ability (i.e., alternative test forms must measure the
same characteristic—ability, achievement, or performance)

2. Equity (i.e., for every group of persons or examinees given
the same ability, the conditional frequency distribution of
scores on one of the test forms, say test Y, is the same after
transformation as the conditional frequency distribution of
untransformed scores on the other test, test X)

3. Population invariance (i.e., the transformation is the same
irrespective of the sample or group of persons from which it
is derived)

4. Symmetry (i.e., the transformation is reversible; transform-
ing the scores of form X to form Y is the same as transforming
the scores of form Y to form X)

The explicit definition of condition 2 is given by Lord (1980, Chapter
13). If complete equity after equating or transformation of scores on
test forms X and Y is observed, then both forms of the test are strictly
parallel in the sense of classical test theory. Complete equity according



TEST EQUATING 201

to the definition by Lord is hardly feasible in practice, be it for the
simple reason that very often reliabilities differ. Low-ability examinees
have an advantage with a relatively low reliability, whereas high-
ability examinees have an advantage with an accurate measurement
of their ability, in other words, with a relatively reliable test. So, it
should be clear how important it is to make tests as comparable as
possible with respect to reliability.

After equating, at least the expected score or true score on one test
should be equal to the true score on the other test. In terms of true
scores of two tests X and Y, we should obtain

T,Y =Ty

in other words, after equating test Y with test X the true score on test
Y is equal to the true score on test X. As already mentioned, meeting
all four conditions or desirable equating properties is nigh to impos-
sible. In actual equating practice, they can only—hopefully as close as
possible—be approximated. And as investigators in testing programs
differ in opinion on what closeness of approximation entails, one or
more of the conditions or properties are aimed at. Specifically, the
conditions or desirable properties of equated scores are discussed in
more detail by Lord (1980), Kolen (1999), and Petersen, Kolen, and
Hoover (1989).

Test equating is an empirical enterprise. It boils down to establish-
ing a relationship between raw scores or scale scores in general on
two or more test forms: data on multiple test forms have to be collected,
and then appropriate equating methods have to be applied for trans-
forming the scores. In Section 11.2 three basic equating designs for
collecting data are outlined. In Section 11.3, equipercentile equating
is introduced, in Section 11.4 linear equating. Linear equating methods
that make use of an anchor test are presented in Section 11.5. Section
11.6 introduces the kernel method of observed score equating. In Sec-
tion 11.7 IRT-based equating methods are presented on an elementary
level, without losing the gist and flavor of them, however. In the final
Section 11.8 some concluding comments are made.

We mention some of the important publications here. Angoff (1971,
1984 published as a separate monograph) gave one of the first extensive
treatments, a chapter in Educational Measurement (second edition). In
the third edition of Educational Measurement, Petersen, Kolen, and
Hoover (1989) coined their contribution “Scaling, norming, and equat-
ing.” There is a special issue of Applied Psychological Measurement
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(Brennan, 1987), and a special issue of Applied Measurement in Edu-
cation (Dorans, 1990) to give overviews of research and development
in this field. More specifically, Skaggs and Lissitz (1986) review IRT
equating, and Cook and Petersen (1987) discuss problems related to
the use of conventional and IRT equating in less-than-optimal circum-
stances. One of the books on equating is the monograph by Kolen and
Brennan (1995). There is another book, by Von Davier, Holland and
Thayer (2004), in which a unified approach to observed test equating
is proposed. Last, but not least, the new Standards for Educational
and Psychological Testing (APA et al., 1999) should be mentioned. The
importance and relevance of the equating of tests is exemplified by
including a special chapter in the Standards on scales, norms, and
score comparability or equating.

11.2 Some basic data collection designs
for equating studies

There are several methods that can be used to equate scores on
multiple test forms. These equating methods are tuned to the partic-
ular data collection design. Here we will discuss only three basic data
collection designs. A more extended list, including section pre-equat-
ing (Holland and Wightman, 1982) can be found in Petersen et al.
(1989).

11.2.1 Design 1: Single-group design (Figure 11.1a)

In this design, forms X and Y are both given to one group of persons
or examinees. A disadvantage of this design is that much time is
needed for the administration of the tests. Fatigue might play a role
when persons answer the items of the second test. Therefore, the
best thing to do is to administer the tests in a different order to part
of the persons. Technically speaking, this design is a counterbalanced
random-groups design. The single group is split into two random-
half samples and both half-samples are administered test forms X
and Y in counterbalanced order (e.g., the first half-sample takes form
X first, while the second half-sample takes form Y first). This is
realized by administering the tests in rotation to a group of persons
who are present at the test session. When the design is the counter-
balanced random-groups design, there are several alternative esti-
mation approaches.
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Total group Test X Test Y

(a) Design 1: Single-Group Design

Group A random | act ¥

Group B random Test Y

(b) Design 2: Random-Groups Design

Group A Test X

Group B Test Y

(c) Design 3: Anchor-Test Design (internal anchor test)

Figure 11.1 Designs for obtaining data in equating studies.

11.2.2 Design 2: Random-groups design (Figure 11.1b)

In this design, test forms X and Y are administered to different random
samples from the population.

With large-scale examinations, one of the tests, say test X, is the
old test and the other test, test Y, is a new test to be equated to the
old test. An equating study using Design 1 or Design 2 is not possible
in this situation because the contents of the new test would become
available prematurely. Design 3 does not have this disadvantage.

11.2.3 Design 3: Anchor-test design (Figure 11.1c)

In this design, all persons are given a test V that is functionally equal
to tests X and Y. So, test X and test V are administered to one sample
of persons, and test Y and test V to another sample of persons. The
two samples may differ from each other in a nonrandom way. The
common test V is called the anchor test. Test V may be a common
subtest of test forms X and Y, in that case, we talk of an internal
anchor test. Test V might also be a third test in which case we have
an external anchor test. Tests X and Y can be related to each other by
means of the common or anchor test V.

Design 3 can also be used with two random samples of persons.
An advantage of Design 3 in comparison to Design 2 is that eventual
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differences between the two random groups of respondents can be
corrected for. Lord (1955) proposed a statistical correction. For this
correction, it is not necessary that test V measures the same construct
as tests X and Y, but, of course, the correction is better with a higher
correlation between V and test forms X and Y.

The items from an internal anchor test should, of course, be insen-
sitive to context. Also, the common items should have the same func-
tionality in both test forms X and Y (i.e., the items need to behave
similarly). Assume that test X has been administered a long time
before test Y. Items from test X might have become obsolete and
therefore have become more difficult at the time test Yis administered.
Such obsolete items are not suitable as anchor items: inclusion in the
anchor test would not result in equivalent scales after application of
an equating procedure.

11.3 The equipercentile method

The property of population invariance of equating can only be approx-
imated in practice, especially when raw scores on two test forms are
used. So, it is important to define the population for which the rela-
tionship between two tests X and Y has to be obtained. In equipercentile
equating, raw scores on test forms X and Y are considered to be equated
if they correspond to the same percentile rank in the population.

Suppose that we administered two forms X and Y of a test to a large
group of persons from the relevant population (Design 1). The tests
have the same reliability and there are no context effects. Then two
scores x and y are equivalent—apart from measurement error—if the
two scores have an identical percentile rank, in other words, if equal
percentages of persons have these scores or lower scores on the tests.
With Design 2, in principle, the same definition of score equivalence
can be used. The difference with Design 1 is that sample fluctuations
introduce more error in the estimated relationship between the tests.
The equating process for equating with the equipercentile method is
demonstrated with Table 11.1 and Figure 11.2 and Figure 11.3.

In Table 11.1 the percentile scores of two 40-item test forms X and
Y are given. The percentile score associated with a particular raw
score y on test form Y equals the percentage of persons with score
y — 1 or a lower score plus half the percentage of persons with score .
In the table, we find that raw score 20 on form Y corresponds to a
percentile score equal to 30.3. In test form X, raw score 20 corresponds
to a percentile score equal to 45.3. The score on test form X that is
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Table 11.1 Percentile scores of two test forms X and Y, and scores
X equated to scores Y.

Score X

Score X

Raw Percentile Percentile Equated Raw Percentile Percentile Equated

Score Score Y  Score X toY Score Score Y Score X toY
0 0.0 0.0 0.0 21 35.3 51.6 18.3
1 0.0 0.0 1.0 22 40.6 57.5 19.3
2 0.0 0.0 2.0 23 45.3 63.9 20.0
3 0.0 0.0 3.0 24 50.7 69.8 20.9
4 0.0 0.0 4.0 25 56.9 74.2 21.9
5 0.0 0.1 4.0 26 62.4 78.0 22.8
6 0.0 0.2 4.0 27 67.2 81.4 23.6
7 0.2 0.5 6.0 28 72.2 85.0 24.5
8 0.6 1.2 7.1 29 77.1 88.3 25.8
9 1.0 2.0 7.7 30 81.7 90.8 27.1

10 1.5 3.3 8.3 31 85.7 93.0 28.2

11 2.2 5.0 9.2 32 89.5 95.6 29.5

12 3.3 6.8 10.0 33 92.8 97.3 30.9

13 4.7 9.2 10.8 34 95.2 98.3 31.9

14 6.5 12.7 11.8 35 97.5 99.2 33.2

15 9.1 16.9 13.0 36 99.1 99.5 34.9

16 12.2 21.6 13.9 37 99.6 99.9 36.3

17 15.9 27.5 14.8 38 99.7 100.0 36.5

18 20.7 33.4 15.8 39 99.9 100.0 37.0

19 25.8 39.0 16.7 40 100.0 100.0 40.0

20 30.3 45.3 17.5

equivalent to score 20 on test form Y must have the same percentile
score: 30.3. There is no raw score on X with this percentile score. The
equated score on X must have a value between 17 and 18. Linear
interpolation gives the value 17.5 as the equated score on test X. In
this way, we can find equated scores x for all scores y. Those values
are given in the table. Not in the table are the scores y equated to
the raw scores 0 up to and including 40 on test form X.

The procedure of equipercentile equating of the raw scores on test
forms X and Y is depicted in Figure 11.2. In Figure 11.3 the obtained
relation between scores on test form X and scores on form Y is

displayed.
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100

Percentile score
n
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!

Raw score

Test form Y - - - - Test form Xl

Figure 11.2 The percentile scores of test forms X and Y, and the construction
of equated scores.

Equipercentile equating is extremely sensitive to sampling fluctu-
ations. This is especially the case at the low and high ends of the score
scales where the computation of percentile scores rests on small num-
bers of observations. Several approaches have been suggested to dim-
inish the influence of sampling fluctuations. All methods are based on
smoothing. In presmoothing methods, the score distributions of x and y
are smoothed before equating the tests. In postsmoothing, the obtained

40
35 1 Lo
30 4
25 A
X 20+
15 4
10 A
5 L

0 5 10 15 20 25 30 35 40

Figure 11.3 The equated scores on forms X and Y, obtained with the equi-
percentile method; also a linear approximation of the relation between the
scores on X and Y is shown.
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relationship between X and Y is smoothed (Kolen and Brennan, 1995,
Chapter 3).

When test forms X and Y are approximately linearly related, the
obvious smoothing technique is to equate tests by means of a linear
equating method. As Figure 11.3 shows, linear equating might be
adequate for a large range of scores.

The equipercentile method for equating can be applied to data
obtained with all the designs discussed earlier in Section 11.2. How
equating proceeds in practice is given by Kolen and Brennan (1995),
among others. Also, standard errors of equipercentile equating are
presented there.

11.4 Linear equating

If tests have about the same score distribution apart of their means
and standard deviations, a linear equating method is sufficient. In
linear equating, a transformation is chosen such that scores on two
test forms are considered equated if they correspond to the same
number of standard deviations above or below the mean in the same
group of persons. Because of the typical character of linear equating,
we must take some measures for equating at high and low scores
because linear equating inevitably leads to impossible transformed
scores, negative scores, and scores higher than the maximum score.
For linear equating in Design 1 or Design 2, the following equation is
used:

X=X _y=J (11.1)

where x and y refer to the scores on the test forms to be equated. Using
Equation 11.1, we can write the score on Y after transformation to the
scale of X, v/, as

y=Ay+B (11.2)
where
A=x (11.3)
S
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and

B=x-Ay (11.4)

In Design 2, two random samples of persons are needed. Test form
X 1s administered to one of these samples, group A. The mean and
standard deviation of scores on X are obtained from this group. Test
Y is administered to the second sample, group B. Group B gives a
mean and standard deviation for scores on Y. If groups A and B cannot
be regarded as random samples from the same population, equating
1s not possible with Design 2. An anchor test is needed to make a
correction for group differences possible, in which case the data
collection design for linear equating of scores is Design 3.

11.5 Linear equating with an anchor test

In Design 3 we have an internal or external anchor test V that has
the same function as test forms X and Y. By means of the common
anchor test, tests X and Y can be equated. First, we must define the
population for which the equating relation is to hold. This population,
the so-called synthetic population, might be defined by combined group
A+ B, but other population definitions are possible (Kolen and Brennan,
1995, pp. 106-111). Using data for test X and V, and test Y and V, we
can estimate means and standard deviations of X and Y in the syn-
thetic population. Next, Equation 11.2 through Equation 11.4 are used
to define the equivalence relationship between tests X and Y. Several
methods for estimating means and standard deviations of tests X and
Y in the synthetic population are available. Tucker proposed a method
for linear equating that can be used if groups A and B do not differ
much in ability. The resulting equating equation is formally identical
to a result obtained by Lord under the assumption of random groups
A and B. Levine developed two methods for samples that may differ
widely in ability. The first method can be used with equally reliable
tests. The second method is suitable when the test forms differ in
reliability. In the second case, the true scores can be scaled to the same
scale, but obviously raw scores cannot be equated.

The first method is described in Exhibit 11.2. The second method
is easier to derive than the first Levine method or the Tucker method
(for linear observed score equating approaches, see Von Davier and
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Kong, 2005). Due to the fact that the second Levine method is defined
for true scores, the computation of means and standard deviations of
test scores for the synthetic population can be avoided.

Exhibit 11.2 Levine’s first method: Equally
reliable tests

With equally reliable tests, the mean and standard deviation of test
forms X and Y are estimated for a synthetic group. Here, we estimate
the mean and variance of X and Y for the total group T = A + B. The
procedure is illustrated for test form X.

Two assumptions are made with respect to test form X and the common
test V. The first assumption is that the true scores of X and V are linearly
related. This assumption leads to two equations:

s s
= (D= = Ty =
(2) TX(T) s TV(T) _TX(A) s TV(A)
Ty (T) Ty, (A)

and

s s

T, (T T (A
®) XM _ Ty

S s
T, (T) Ty (A)

that is, the intercept and the slope of the relation of the true scores of
X and V is the same in groups A and T.

The second assumption is that the variance of measurement errors for
test form X is the same in group A and group T,

© sh (1T

— o2 _
X(T) XX’(T>)_ (l T

Sx(a) XX’(A))

Using (a) and (b) and substituting the observed mean for the true score
mean, we obtain
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Using (b) and (c), we obtain

2

S
2 =g Tx(D) [ 2 _ &2
X(T) ~ °X(A) & V(T)  °V(A)
Ty (T)

The observed-score variance of test form X in the total group can be
obtained when the ratio between the true-score variance of X and the
true-score variance of Vis known. An estimate of this ratio is presented
in the main text.

Next, the mean and variance of test form Y in the total group are
estimated. Finally, Equations 11.2 through 11.4 are used to equate test
forms X and Y.

In the second Levine method, it is assumed that the true scores on
X and V are linearly related, and similarly that the true scores on Y
and V are linearly related. A true score on test X, Ty is equivalent to
a true score on test V, Ty, if the two scores have the same z-score within
the same group, say group A, of persons:

T, — T —
P (1L1.5)
Or.® Or, @
This equation can be rewritten as follows:
T, :yXV(TV—5<A))+7c® (11.6)

where observed-score means are substituted for true-score means. In
the equation, vy, denotes the ratio between the true-score standard
deviation on X and the true-score standard deviation on V. This ratio
is assumed to be group independent. A similar equation can be
obtained for the relation between true scores on Y and true scores on
V. Coefficients for the equation relating Y and V can be obtained from
group B:

T, =(Ty = )/ Vyy + Ty (11.7)
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Substitution of T, from Equation 11.7 in Equation 11.6 produces
the following relationship between the true-score scales of tests X
and Y:

Vw5 o
T, = Yor [TY—y(B)]+yXV[v(B)—U(A)]+x(A) (11.8)

Next, raw scores on X and Y are equated as if they were true scores.
The correction for the difference in ability level between groups A and B
is one of the differences with Equation 11.2 through Equation 11.4.
The second difference has to do with . Angoff (1971) called the ratio
of true-score standard deviations vy effective test length. He assumed
that test X can be regarded as a combination of vy, tests parallel to
anchor test V. Similarly, test Y might be regarded as a test composed
of yyy tests parallel to test V. This is a stronger requirement than the
requirement that the three tests X, Y, and V have linearly related true
scores. With Angoff’s assumption, the coefficients y can easily be deter-
mined. In case test Vis included in test X, yyy is computed as follows:

S
x (11.9)

sr
v xv

Vo =

In this case, factor y equals the inverse of the regression coefficient
for the regression of Von X (Angoff, 1953). The coefficient is estimated
from responses in group A. The factor vy, is estimated from the
responses in group B. If Vis an external test, another equation than
Equation 11.9 is needed. Standard errors for the Levine procedure are
given by Hanson, Zeng, and Kolen (1993).

When the common test V does not have the same function as test
forms X and Y, equating is possible when the two groups A and B are
random samples, using the method proposed by Lord (1955). If this is
not the case, equating is not possible, but it is still possible to obtain
comparable scores for test forms X and Y. Scores on X and Y might be
defined as comparable if they are predicted by the same score on V.
The definition of comparable scores as scores that are predicted by the
same score on a third test is not the only definition possible. There
are other definitions of comparability. The issue of comparability of
scores is discussed at some length by Angoff (1971, pp. 590-597).



212 STATISTICAL TEST THEORY FOR THE BEHAVIORAL SCIENCES

11.6 A synthesis of observed score equating
approaches: The kernel method

Previously, it was argued that linear equating is an approximation to
equipercentile equating. The relationship between linear and nonlinear
approaches to observed score equating has been described in more
precise terms by Von Davier et al. (2004). These authors proposed a
general approach to equipercentile-like equating with linear equating
as a special case. They start with presmoothing data using log-linear
modeling. Next, they estimate the score distributions in the synthetic
population on the tests X and Y that are to be equated. Gaussian
kernel equating is used to transform these discontinuous distributions
into continuous distributions, which makes linear interpolation obso-
lete. The results depend on the value of a “bandwidth” parameter,
with large values leading to linear equating. In the next step, the
equating function is obtained. Finally, standard errors of equating are
computed.

11.7 IRT models for equating

Instead of the equipercentile method or the linear method of equating,
a method that is based on IRT can be used. Equating with IRT has a
large advantage over equating with the classical approach. With an
IRT model that fits, the nonlinearities inherent in equating do not
present a problem. IRT models can be used in horizontal equating as
well as in vertical equating. In horizontal equating, different tests are
meant for persons of similar abilities; equating as discussed so far is
horizontal equating. In vertical equating, tests are constructed for
target groups of different ability levels. The difference in test difficulty
is planned, but for score interpretation, scores should be brought to
the same scale. It is still necessary that all items be relevant for all
examinees. Equating is not achieved if younger examinees have not
been exposed to material tested in the unique items of the higher-level
test tailored to the ability of a group of older examinees (Petersen
et al., 1989). It should also be clear that in vertical equating, tests are
not equated in the sense that they may be used interchangeably after
equating.

In principle, three equating approaches for two test forms X and
Y sharing a common set of items are possible within the IRT context
(Petersen, Cook, and Stocking, 1983):
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A. Simultaneous scaling: The item parameters of both tests are
estimated jointly in one analysis. For this approach, we need
software that allows for incomplete data—each person has
answered only a subset of all items.

B. The responses to tests X and Y are analyzed separately. In
the analysis of the second test, the item parameters of the
common items are fixed to their values obtained in the
analysis of the first test. The scales of X and Y can be related
to each other by means of the scale values of the common
items.

C. The responses to tests X and Y are analyzed separately. The
difference with approach B is that the parameter values of
the common items are not fixed to their values obtained in
the analysis of the first test. Again, the scales of tests X and
Y can be related to each other by means of the scale values
of the common items.

When approach A is chosen and MML is the estimation method, char-
acteristics of the latent ability distributions involved should be allowed
to differ. Alternative C seems easiest to implement. Let us consider
this approach in the context of the three most popular IRT models:
the Rasch model, 2PL model, and 3PL model.

11.7.1 The Rasch model

With the Rasch model, the third approach is very straightforward. We
need the averages of the b parameters of the common items in test X
and in test Y. Suppose that we have k common items with the following
averages:

k k
_ 1 - 1
bX<C> - %ZbiX(c)’ bY(c) = N ZbiY(c) (11.10)
i=1 i=1

The b parameters of both tests would be on a common scale if the
average parameter value for the common items would be equal for
both tests. So, the b values and 6 values of test Y can be brought on
the same scale as those of test X with the following transformation:

b =b-by,, +by,, 08 =6-0

i Y X(c)’ Y

© +b, (11.11)

X(c)
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We do not have the parameter values of the difficulty parameters,
but only estimated values. The estimated values are not equally accu-
rate. So we might consider using weighted averages instead of the
unweighted average in Equation 11.11. Such a method has been pro-
posed by Linn, Levine, Hastings, and Wardrop (1981).

11.7.2 The 2PL model

In the 2PL model, equating is a bit more complicated because the
parameters are defined on an interval scale. The common items can
have different a values as well as different b values. Because of the
interval character of the latent scale, b parameter values of the
common items of test Y are linearly related to the values for test X:

b =db  +e (11.12)

i(X) iY)

and the values of the a parameters are related through

%y, =ai(y)/d (11.13)

The coefficients d and e must be obtained in order to bring the param-
eters of the common items, and consequently the parameters of all
items, to the same scale.

The simplest solution is to find the transformation by which the
average b value of the common items and the standard deviation of
the b values of the common items are equal in both tests. This is the
mean and sigma method. With this method, the value of d is

Sp

d=—* (11.14)
S

)
that is, the ratio of the standard deviation of the common b values in
test form X to the standard deviation of the common b values in test

form Y, and the value of e is

e=b. db, (11.15)

X(@) 7Y

A robust alternative is the previously mentioned weighted method.
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We have two sets of parameter estimates for the common items.
One set is computed along with the other item parameters in test X.
The other set is computed along with the other item parameters in
test Y. We also can compute two test characteristic curves—the sums
of the ICCs of the items in the tests—for the subset of common items.
After test equating, these two test characteristic curves should be
similar. In the characteristic curve methods (Haebara, 1980; Stocking
and Lord, 1983), coefficients d and e are obtained for which these test
characteristic curves are as similar as possible.

11.7.3 The 3PL model

The 3PL model is also defined on an interval scale, but the presence
of a pseudo-chance-level parameter ¢ complicates the equating of tests.
When we analyze two tests X and Y separately, the estimated ¢ of a
common item can have one value in test Y and another in test X. This
difference is related to differences in the other parameter estimates
of the particular item. The errors in the pseudo-chance-level para-
meters can have a disturbing effect on the relationship between the b
parameters and the a parameters of the common items. In other words,
we may expect a disturbing influence on the linear relationship
between the item difficulties in test X and those in test Y. Equating
tests X and Y is not simply achieved by using a linear transformation
for the b values of the common items. With the 3PL model, more steps
are needed. In a preliminary analysis, we obtain estimates of the
parameters c¢. For a common item, one value for ¢ is chosen on the
basis of the two different values obtained in the analyses of tests X
and Y. The chosen value can be the average of the two estimates. In
the final analysis, the ¢ parameter of a common item is fixed to this
value for both tests.

After scaling the two test forms on a common latent scale, the
relation between the true scores of both test forms can be computed.
For each value of 0, the corresponding true score of test form X and
the corresponding true score of test form Y can be computed:

1, =GO)= Y F(6) (11.16)
and

T, =H®)= Y P(0) (11.17)

€Y
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The two true scores corresponding to the same 6 are equated with the
following formula:

1, =G(H (1)) (11.18)

that is, we take the true score on test form Y, compute the corresponding
value of 0, and, next, compute the true score on form X for this value
of 0. True-score equating does not work in the 3PL model for equating
observed scores below the chance level. One obvious procedure to obtain
the relation between the tests below the level of the pseudo-chance level
is to use (linear) interpolation. Lord (1980) suggested an alternative, a
raw-score adaptation of the IRT-equating method. In this procedure, the
distribution of 0 is estimated for some group. Given this distribution,
the marginal distributions of x and y can be estimated. Next, X and Y
can be equated through equipercentile equating. The outcome depends
to some extent on the group.

11.7.4 Other models

The equating methodology can be extended to the linking of tests with
polytomous items. Cohen and Kim (1998) present an overview of link-
ing methods under the graded response model. This model sometimes
is used in connection with the judgment by raters of constructed
responses. The fact that judges play a role complicates the linking
process. For, it is by no means sure that judges have, for example, a
stable year-to-year severity of judgment (Ercika et al., 1998; Tate,
1999).

11.8 Concluding remarks

At a certain moment, a new test form Y, equated with an old test form
X, is replaced on its turn by a more recent test form Z. So, we are not
ready after equating the two test forms. After some time, we obtained
a chain of multiple test forms equated to each other. With more than
two test forms, we can use alternative equating designs. In Figure
11.4, the three possible designs with three different tests X, Y, and Z
are displayed. For more information on flexible equating designs, see
Exhibit 11.3.
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Figure 11.4 The three equating designs with three test forms X, Y, and Z.

Exhibit 11.3 A history of equating

The Test of English as a Foreign Language (TOEFL) has had a history
of a frequent introduction of new test forms. These tests should yield
scores that can be used exchangeably. Equating has been used to elim-
inate possible differences between the test forms. First, conventional
equating methods were used. From 1978 equating tests has been based
on IRT, using the three-parameter logistic model.

Cowell (1982) describes the history of this change in practice. He also
notes the change that IRT equating makes possible. With IRT equating,
data can be obtained from different previous tests. This allows us to try
out items in pretests given to relatively small groups of persons. This
means an improvement in test security.

With IRT equating, it is possible to have a new test that entirely consists
of previously administered items with item characteristics estimated on
a common scale—that is, items selected from an item bank. This “pre-
equating” of items fastens the process of scoring.

If tests can be made from an existing pool of items, adaptive testing
comes into reach, a fact also mentioned by Cowell. Two sections of the
computer-based version of the TOEFL are adaptive.

One alternative is to equate test form Y with test form X using a
common subtest of Y and X, and next test form Z with Y using a
common subtest of Z and Y (Figure 11.4a). Test Z has no items in
common with X, but test Z and test X are on the same scale as well
through test Y. A weakness of the design is the risk that the inevitable
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equating errors cumulate. That risk is avoided in the design of Figure
11.4b. In this design, both test forms Y and Z are directly equated
with form X. Herewith, test form X has become a standard. This
solution has a disadvantage, too. Items from X may become obsolete.
Items from X might also become known, so that many examinees can
learn these items by heart. The third design (Figure 11.4c) is more
balanced. In this design, test form Z has common items with both
forms X and Y. We may verify whether direct equating of test forms
Z and X results in the same score transformation as equating forms
Z and X through test Y. So, this design has a control mechanism.
Another advantage of this design in comparison with the design in
Figure 11.4b is that a limited number of items from test form X is
needed in later test forms.

When IRT is used, an adequate choice of the model is very impor-
tant. If guessing occurs or is highly likely, then we prefer to use a
model with a pseudo-chance-level parameter, otherwise equating
errors are bound to be made, especially in the low score range and
with vertical equating.

In this chapter, we took the position that equating is necessary.
However, whether one should equate test forms is something that has
to be decided. In the final exhibit, Exhibit 11.4, this problem is discussed.

Exhibit 11.4 To equate or not to equate

How do we decide whether or not to equate multiple test forms? So
far, no systematic study answering this question has been performed.
It is clear that the equating of test scores is a prerequisite for large
programs of educational and psychological testing where multiple test
forms are involved of, for example, scholastic aptitude. The criteria to
decide whether or not to equate forms depend at least on the following
objectives:

Choosing the optimal design for data on the forms to be equated

Selecting the best equating procedure that meets the conditions or
desirable properties for equating

Minimizing statistical errors when conducting an equating study

These objectives, however, are intertwined. Minimizing statistical errors,
systematic as well as random, depends on the study design and the
equating procedure used. In design considerations, sample size plays a
crucial role and sample size affects statistical error. To be sure, minimiz-
ing equating error is a major goal when deciding whether or not to equate
forms, when designing equating studies, and when conducting equating.
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No conclusive answer on the question of this exhibit can be given. Kolen
(1999, pp. 171-174) has a number of relevant comments to make on the
equating methodology to date. He also briefly describes some testing
programs with equating studies. Of course, much can be learned from
the relevant research reports on testing programs where equating is a
must, or at least an essential standard.

Exercises

11.1 We have two tests forms X and Y. In a large random selection
of persons, the mean score on Y is 60.0 and the standard
deviation is 16.0. In a second random selection, the mean
score on X is 55.0 and the standard deviation is 17.0. We want
to equate Y with X. With which score on X does the score
y = 50 correspond according to the linear equating method?

11.2 We have two groups of persons. One group is administered
test form Y, the other is administered test form X. Suppose
we know that the group that answered test form Y is some-
what better than the other group. What can you say about
the x score equivalent to y = 50 in Exercise 11.1? Explain your
answer.

11.3 V is a subtest of test X. Assume that test X is the sum of
subtest V and k& — 1 tests parallel to subtest V. Prove that &
(= Opw/Ory) ) = 65/0xy (Equation 11.9).

11.4 We have two test forms, X and Y, each with five items. Both
tests are analyzed with the Rasch model. The items are num-
bered consecutively in the table below. We notice that two
items, items 3 and 5, are common to X and Y.

Item 1 2 3 4 5 6 7 8
btestY -1.5 -1.0 0.0 0.5 20
b test X -0.5 1.5 -05 -0.5 0.0

Compute the estimated item parameters of the items of Y on
the scale defined by test form X. Give the relationship
between true scores for X and Y for 6 = —4.0 (0.5) 4.0.

11.5 In a study, test X has been administered to a group of high-
ability examinees, and test Y to a low-ability group. Both
groups also have been tested with test V. In a second study,
all examinees have been tested with test V. The examinees



220 STATISTICAL TEST THEORY FOR THE BEHAVIORAL SCIENCES

with relatively high scores on V have been tested with test
X, the other examinees have been tested with test Y. All three
tests are supposed to measure the same characteristic. Test
X is relatively difficult, and test Y relatively easy, but we do
not know how much the tests differ in difficulty level. What
is the characteristic difference between the two studies and
what are the consequences of this difference?



Answers

1.1

1.2

2.1

2.2

3.1
3.2

Researcher A probably will obtain a lower gain for the best
pupils than will researcher B. On the raw score scale, the score
cannot exceed the maximum score. In the study by researcher
A there is a ceiling effect.

Imagine what might happen to the ranks if a player was
added. The score scale is a typical example of an ordinal scale.
The test center compares the persons with other persons who
have been tested at the same moment of the day. For the test
center, a fixed moment is part of the definition of the true
score. The persons who are tested may have another point of
view. They might compare their results with those of other
persons who were tested by other centers at different
moments. In that case, one should generalize accidental vari-
ation in test administration times when defining true score.
If the outcome of a test is notably influenced by the moment
of the day on which the test is administered, it is relevant to
know how the test developer dealt with moment of the day
in the norming study.

It is possible that persons get used to the test format or that
fatigue plays a role when the persons take the second test.
In that case, the condition of experimental independence is
not satisfied. In a study with two tests X and Y, the role of
fatigue can be controlled to a certain extent by using a test
design in which one group of persons is administered test X
first and test Y next, and another group of persons is admin-
istered the tests in reverse order.

Application of Formula 3.3 gives 5.0.

The result of the computations is presented in the table below.
The reliability increases strongly at first. For larger values
of k, the increase becomes smaller. For large values of k, the
reliability approaches the limiting value of one.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P 0.50 0.67 0.75 0.80 0.83 0.86 0.88 0.89 0.90 0.91 0.92 0.92 0.93 0.93

3.3 The standard error of estimation equals the standard error
of measurement times the square root of the reliability coef-
ficient. For p,.. = 0.5, the square root equals 0.71; for p,, =
0.9, it equals 0.95. So, for p,. = 0.5, the ratio of standard
errors equals 0.71; for p,. = 0.9, the ratio equals 0.95. The
Kelley estimate of true score is equal to 35.0 for p,, = 0.5,
and equal to 31.0 for p,, = 0.9. For low reliability, confidence
intervals for the true score based on the observed score and
the standard error of measurement deviate strongly from
confidence intervals obtained using the Kelley point estimate
of true score and the standard error of estimation. For high
reliabilities, the difference between the two approaches is
relatively small.

3.4 Use the formula for the correction for attenuation. From this
formula, it can be deduced that

Prr =P P P

Clearly, the correlation with a criterion cannot exceed the
square root of the reliability. In other words, the correlation
of the observed scores with their true scores gives an upper
limit to the correlation of a measurement instrument with
other variables. The maximum correlation for reliability
equal to 0.49 is 0.7.

3.5

_cov(X(k)Y) _ COV[("’TX ’ ZEX@)’Y}

XY~ g5 o 2,2 2
Y2 X(k) GY\/k GTX + kGEX

B kcov(T,,Y) B kp .
Oy O + (L= )0% [k +R(1—p )
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When £ goes to infinity, the formula can be simplified to

Pxy

Px(ey =
\Pxx
(assuming pyx- > 0).

4.1 The variance of total scores—the sum of entries in the
table—equals 89. The sum of the variances of the subtests
equals 37. Coefficient o is equal to 0.88.

4.2 Inorder to be able to apply Formula 4.7, we have to determine
the values of the factor loadings a;, a,, and a;. The factor
loading a,; equals the square root of (6,,0;5)/Gy; (see Formula
4.6). The factor loading a, equals the square root of
(04,053)/0,5. The factor loading a, equals the square root of
(05,059)/015. The computation of these factor loadings results
in a; = 2.0, a, = 3.0, and a; = 4.0. The reliability according to
Formula 4.7 is 9.0%/89.0 = 0.91, a value that is a bit higher
than the reliability estimated with coefficient o.

4.3
o= n’ave(cov) B n’ave(cov)
o5 nave (G? ) +n(n —1)ave(cov)
n’r* np

- n+n(n-1r* - 1+(n-1)p

where ave stands for average; r* = ave(cov)/ave(c?). Because
the items are parallel, r* is equal to the common value of
the inter-item correlation p. The result is identical to the
Spearman-Brown formula.

4.4 The correlation between X; (I = 1, 2) and an arbitrary third
test Y is given by

B cov(X.,Y) _a; cov(T,Y) _ cov(T,Y)
= = =\Px X 5

pX.Y
i 0xOy O c c

X, Y ' Y

where T is the true score on the common true-score scale
defined by pu;=0.0 and Gi =1.0. So, congeneric measurements
have identical patterns of correlations with other variables.
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4.5 a. The observed score variance 6 is equal to 63 + G} —26x0yPxy-
This gives us the value 9.6 for the observed variance of the

difference scores. The true-score variance Gi(D) is equal to
2 2 :
Orx) T Oriyry ~201001(1PreoT(y: The true-score variances

are obtained by multiplying the observed-score variances
with the reliabilities. The covariance of the true differ-
ences, OpxOryPrary, 1S equal to the covariance of the
observed differences, 6x0ypxy. This gives us the value 3.2
for (5,2F D" The reliability of the difference scores is low:
3.2/9.é =0.33. The low value is due to the high correlation
between the true scores of the two tests.

b. The variance of the differences is 9.6. This is much larger
than 6.4, the value of the error variance obtained from
Equation 4.18. The variance of the differences is larger
because the true scores on X and Y differ.

4.6 The condition of experimental independence might be violated.
This can affect the reliability estimate as well as reliability.
The violation of experimental independence can be eliminated
through a redefinition of the items. Items belonging together
might be treated as a single item when reliability is estimated
from responses to the items. This redefinition of the item level
might produce a new problem. The true-score variance of an
item consisting of many subitems can be much larger than the
true-score variances of other items. In this case, oo would under-
estimate the reliability. The effect of large differences between
true-score variances can be avoided by grouping all items in
item clusters before reliability is estimated.

4.7 The inequality of means and correlations indicates that the
tests are not parallel or tau-equivalent. The equal covariances
indicate equal true-score variances. So, the three tests are
essentially tau-equivalent.

4.8 When no specific effect like a learning effect is expected, we
may assume that the true scores on both occasions are equal.
The expected observed score on both occasions equals the true
score. The expected true score on the second occasion given an
observed score equal to 30 at the first occasion is 35.0, under
the assumption that the regression of true score on observed
score is linear (application of the Kelley formula). The expected
difference score equals 5 (35 — 30). This is the regression effect.

4.9 The true-score variance of the composite is 0.8 x 25.0 + 0.6 x
25.0. The observed-score variance of the composite is 25.0 +
25.0. The reliability is 0.7; see also Equation 4.11. For the
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5.1

5.2

reliability of the lengthened test, we use the Spearman—Brown
formula. We obtain 0.824 as the reliability of the lengthened
test. We see that the reliability of a test composed of noncor-
relating subtests can be high. Of course, it makes no sense
to combine noncorrelating subtests into one test.
In the computation of the variance, we divide the numerator
by the number of persons minus one. The item variances are
0.1342, 0.2211, 0.2395, 0.1974, 0.2211, 0.2605, 0.2632, 0.2395,
0.2605, and 0.2632. The sum of the variances equals 2.300.
The variance of the total scores is 4.011. Coefficient o is
(10/9)(1 — 2.300/4.011) = 0.47.

The results of the analysis of variance are given in the
following table:

Source of Sum of Degrees of Mean

Variation Squares Freedom Squares
Persons 7.620 19 0.4011
Items 2.920 9 0.3244
Residual 36.080 171 0.2110
Total 46.620

The variance component for persons equals (0.4011 — 0.2110)/
10 = 0.019. The variance component for items equals 0.006. The
residual (0.211) is by far the largest component, more than ten
times as large as the variance component for persons. Measure-
ment errors as well as the interaction between persons and
items are part of this component. Due to the fact that there are
no replications, the error and interaction components cannot be
separated. The interaction component must be larger than zero
because the items, which differ in difficulty level, cannot be
essential tau-equivalent measurements of the underlying trait.

The generalizability coefficient for a test of ten items is equal
to 0.47. This value is the same as the value of coefficient o (as
it should be—the coefficients are mathematically identical).

The example was chosen only to keep the computational
burden low. It should be clear that the estimated variance
components are unreliable due to the small number of persons
and items.

The estimated residual component equals 0.65. The variance
component for the interaction items X judges (5 is (45 65
—-0.65)/500 = 0. 090 The (estimated) Varlance component G

equal to 0.010, G cequals 1.500, 0 equals 0.050, G equals

225
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0.50, and ci equals 0.175. The residual component is the
largest component. The variance components involving
judges are relatively small: judges seem to be reasonably well
exchangeable. The generalizability coefficient for 15 items
and 4 judges equals 0.61 (Formula 5.11 or 5.12).
5.3 See Formula 5.14.

a. n’; = 30; n’; = 4; the estimate of Ep? is 0.75.

b. n’; = 60; n’; = 2; the estimate of Ep?is 0.83.

In (a) as well as in (b) the total number of observations per
person is twice the number used in the generalizability study.
An increase of the number of items has a strong effect on gen-
eralizability, even if the number of judges decreases. One might
have expected this result in view of the outcome of Exercise 5.2.
The variance components in which judges are involved are rel-
atively small; the judges are relatively well exchangeable.

5.4 The number of observations for a particular combination of
p and i is n;. This is the coefficient of the variance component
for the interaction of p and i: @ = ¢ = e = n;. The other
coefficients are b = n;n; and d = n,n;.

5.5 When the correlation between judges is computed, the test
items are regarded as fixed. The correlation can be written
as the generalizability coefficient:

[02 +02,/nA]
D pi i

o2 + 62./n}+([02. + 02.,/n}+ Gz/n.)/n.
D p 12 o py 12 e i J

Epiel = [

with n; equal to 1.

5.6 The relative error variance is the error variance that plays a
role in the generalizability coefficient for the crossed p x i X j
design. The error variance is equal to

62 =c%/n+0/n.+02 Inn.

Rel pioi o pje U

For the absolute error variance, the variance components in

which p is not involved are also relevant. The absolute error

variance 1s
Gib =c’/n.+0%/n. +ci/nn. +0%/n.+06>/n +6> Inn.
S 12 14 J J y tJ pt i o J py.e 12

5.7 In this exercise, we have a design in which persons are nested

within judges. The variance of the mean score for a judge, for
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random samples of 50 persons, equals 2.0 (the person variance
within judges divided by sample size, i.e., the number of per-
sons). If there are no differences between judges, a variance
between judges equal to 2.0 is expected. The variance between
judges is higher: 9.0. Obviously judges are not equally lenient.
One might consider the possibility to correct psychometrically
for the differences in leniency. A full correction for the obtained
mean differences between judges does not seem appropriate
because some of the differences might be due to differences
between the random samples of persons. The reliability of the
effects of the judges equals 7.0 (observed variance for judges
minus error variance) divided by 9.0 (observed variance).
Application of Kelley’s formula gives an estimated effect for
judge 1 equal to (7.0/9.0) x (32.0 — 35.0) = —2.33. The effect for
judge 2 is estimated as 0.0, and the estimated effect for judge
3 is 2.33. Judge 1 is too harsh. One might correct for this by
adding 2.33 to all judgments by this judge.

The analysis is not fully satisfactory. The estimation of the
true variation between judges is based on just three judges.
The compromise between no correction for judges and a full
correction is, however, attractive. One might use the outcome
not only for the purpose of statistically correcting scores, but
also to stimulate the reorientation of the training of judges
and the reformulation of judgmental instructions.

6.1 In this exercise, the binomial model is to be used with param-
eters { = 0.8 and n = 10. The probabilities of 8, 9, and 10
correct responses have to be summed. The probability of 8
correct is 0.3020, the probability of 9 correct 0.2684, and the
probability of 10 correct 0.1074. The probability of 8 or more
items correct equals 0.678.

6.2 a. The proportion of correct responses for item 8 is 0.65, the
item-rest correlation is 0.543. The item-test regression is
given in the table below. For this particular item with a
high item-rest correlation, the proportion of correct
responses as a function of total score increases strongly in
the score range 3 to 7.

Total Score 0o 1 2 3 4 5 6 7 8 9 10

Proportion Correct — — 0.0 — 0.33 0.25 0.50 1.0 1.0 1.0 —

b. Item 6 has the lowest item—rest correlation. The correla-
tion is unsatisfactory (it is negative!). So, item 6 should be
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eliminated first. Also, when item 6 is dropped, the increase
in coefficient alpha is highest.

6.3 We can estimate the reliability with KR21. The average pro-
portion correct equals 0.75, and the test variance equals 2.25.
The resulting estimate equals 0.185.

6.4 Here we have an application of Equation 6.11.

Px,=1,x,=110) =0.56
Px,=1,x,=0]{) =0.14
Px,=0,x,=110)=0.24
P(x, =0, x,=01]0) =0.06

6.5 Keats’ solution assumes that the variance of item means
given true score is relatively high in the middle score range.
We can compute the item-test regressions like in Figure 6.1.
When many item-test regressions cross each other in the
middle score range, this assumption is untenable.

6.6 The error variance is 0.6 x 0.4 + 0.7 x 0.3 + 0.8 x 0.2 = 0.61.

The true proportion correct {, is equal to 0.7. The binomial
error variance is slightly higher: 3 x 0.7 x (1 — 0.7) = 0.63.

The variance of the item difficulties at { =, is (0.1% + 0.0% +
0.12)/3 = 0.02/3. The difference between the binomial error
variance and the variance in the generalized binomial model
is equal to 3 x 0.02/3.

6.7 The covariance between the item and the total test is (n — 1)
cov + 82, where n is the number of items, cov is the covariance
between the items, and s? is the variance of the item. The
variance of the test scores is ns? +n(n — 1)cov. The item—total
correlation can be computed from the covariance and the
variances. The item-rest correlation can be computed using
Equation 6.20. The results are given in the following table.

n Tit Tiy
10 0.529 0.372
20 0.490 0.406
40 0.469 0.426

The r;, is spuriously high. The effect of the item as part of
the total test strongly diminishes as test length increases.
The value of r;, decreases. The value r;. depends only on the
reliability of the rest-test. The reliability increases with test
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length; so, r;, increases with test length. The difference
between the two indexes of item discrimination power
decreases with increasing test length.

7.1 The fact that persons have been selected does not imply that
the variance diminishes. In the exercise we have an example
of selection which results in a higher variance in the selected
group. Application of Formula 7.3 gives the value of 0.66 for
the correlation in the total group.

7.2 We compare the relative frequencies of A and B for each score
level. In order to obtain these relative frequencies, we mul-
tiply the frequencies of group A by four.

Score 0 1 2 3 4 5 6 7 8 9 10

4 x fy 0.172 0.436 0.520 0.696 0.868 0.696 0.348 0.172 0.088 0.0 0.0
fg 00 00 0.0 00 0.045 0.091 0.136 0.182 0.227 0.182 0.136

From this table the posterior probabilities can be obtained.
For score level 7, for example, the posterior probability for A
equals 0.172/(0.172 + 0.182), and the posterior probability for
B equals 0.182/(0.172 + 0.182). From score 7 onward, the
(posterior) probability of dealing with a B person is higher
than the probability of dealing with an A person. From score
7 through score 10 we therefore classify a person as belonging
to group B. With persons who belong to B we make a wrong
classification in 27.2% of the cases (all B persons with a score
lower than 7). With persons belonging to population A we
make a mistake in only 6.5% of the cases (all A persons with
a score equal to or higher than 7). In 1 out of the 5 cases a
B person is involved and then we make a wrong classification
in 27.2% of the cases, in 4 out of the 5 cases we have an A
person and then we make a wrong classification in 6.5% of
the cases (see the frequency distribution f,). On average, we
make a mistake in 100 x (0.2 x 0.272 + 0.8 x 0.065) = 10.6%
of the cases. The relatively large error with respect to popu-
lation B i1s due to the fact that this population is so much
smaller than population A.

7.3 The posterior probability of belonging to group B increases
for every score level, as might be inferred from Figure 7.2
and Equation 7.4. Therefore, the critical score for allocation
to B instead of A moves to the left. The data in the table of
Exercise 7.2 are relevant for a base rate equal to 0.5. We notice
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that the probability of belonging to B exceeds the probability
of belonging to A at a score equal to or higher than 6. Persons
with a score equal to or higher than 6 can be classified as
belonging to group B. Many more persons are classified as B
persons.

7.4 The optimal cut score is the score for which the expected true
score equals the criterion of mastery, 0.70. The expected true
score for a given score x is given by Kelley’s formula. With
the given criterion, mean score, and reliability, we find that
the value for the optimal cut score is 55.0 (from 70.0 = 0.25x
+ (1 — 0.25) x 75), well below the criterion on the true score
scale. This is due to the low test reliability.

7.5 The proportion of correct classifications is 0.80. The propor-
tion of correct classifications expected by chance is 0.72 + 0.32
= 0.58. The value of k is 0.524.

8.1 The eigenvalues are A, = 4.818, A, = 1.658, and A; = 0.746. The
first two components are the only eigenvalues larger than 1.
The first two components account for 100 x (4.4818 + 1.658)/
10 = 64.8% of the total variance; the third factor increases
the percentage of variance accounted for with only 7.5%; and
the fourth factor adds another 6.1%. These two findings sup-
port the decision to keep two components.

8.2 The eighth test, numerical puzzles, has the smallest commu-
nality: 0.356 (0.51372 + 0.30422). Its distance to the origin in
Figure 8.2 1s h = 0.597.

8.3 There are two latent variables, F; and F,; it is arbitrary which
one is called the first.

12
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9.1 The answers to Exercise 9.1 are given in the table below.

0 -20 -15 -10 -05 00 05 1.0 15 20
P@®) 0.12 0.18 0.27 0.38 050 0.62 0.73 0.82 0.88

9.2 In the Rasch model, one restriction is needed in order to fix
the latent scale. We take the restriction b; = 0. Next, we
estimate 0; using the logarithm of P,(0,)/[1 — P;(6,)]. This
logarithm equals 6, — b; = 6, The value of 6, is =0.5. In a
similar way, we obtain 6,; 6, equals 0.5.

Knowing 6,, we can compute the item parameter of the
second item, b, = —In{P,(0,)/[1 — P,(0,)]} + 6; The value of b, is
—0.25. The value of b, can also be obtained from the equation
by, = —In{Py(0,)/[1 — Py(6,)]} — 6, Using this equation, we obtain
—0.40 as the value of b,. The second computation of the item
parameter is not in agreement with the first computation. This
means that the Rasch model cannot describe the probabilities.

9.3 The values of the likelihood for the different levels of 6 from
the exercise are given in the fifth column in the table below.

Qs(6) = P(x10) = P,(0) 0P(x | 8)g(8)/
0 P,(0) Py6) 1-Py0) P,(6)Q;(6) P(x)
-1.0 0.3775 0.2689 0.8176 0.0830 —0.0957
-0.5 0.5000 0.3775 0.7311 0.1380 -0.0795
0.0 0.6225 0.5000 0.6225 0.1937 0.0
0.5 0.7311 0.6225 0.5000 0.2275 0.1311
1.0 0.8176 0.7311 0.3775 0.2257 0.2600

P(x) = 0.8679 x 0.20 EAP = 0.2159

a. The maximum value of the likelihood P(x|6) is obtained
in the table for 6 = 0.5. The ML estimate of 6 must lie in
the neighborhood of this value of 6 (i.e., between 0.0 and
1.0). For a value of 0 slightly above 0.5, the likelihood
exceeds the likelihood at 6 = 0.5. (The derivative of the log
likelihood [Equation 9.39] is positive at 6 = 0.5.) So, the
ML estimate lies in the interval 0.5 to 1.0.

b. Due to the equality of the latent classes, the computation
of P(x) can be simplified. The value of the EAP is 0.22.
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This estimate is closer to the population mean than the
ML estimate.
9.4 The information values (see Equation 9.33) for the items are
given in the rightmost column of the following table.

Item  p®)  PO) pO)I1-p@®)] 106)

1 0.378 0.378 0.235 0.235
2 0.269 0.269 0.197 0.786
3 0.269  0.452 0.197 0.351

9.5 The true variance equals 0.300. The error variance for each
level of 0 is obtained by taking 1/I(8). The average error
variance equals 0.108. The reliability (true variance divided
by the sum of the true variance and the average error vari-
ance) equals 0.735.

10.1 The question itself is biased. It is possible that the second
item is biased against the focal group, but it is equally pos-
sible that item 1 is biased against the reference group. There
is not enough evidence to choose between these two rival
hypotheses and the third hypothesis of no bias. The difference
between the outcomes of the two items might also be due to
a higher discrimination of item 2.

10.2 We are looking for a two-item test for which the minimum of
1(6,) and I(8,) is maximal. The test information equals the
sum of the item informations. The item informations for the
two levels of 0 are as in the table below.

bi ACH 16,

-0.50 0.2500 0.1966
-0.30 0.2475 0.2139
0.0 0.2350 0.2350
0.25 0.2179 0.2461
0.50 0.1966 0.2500

For the combination of items 2 and 4, min{l(0,),1(0,)} equals
0.46, obtained at 0,. All other item combinations have a
smaller value for the minimum of 1(6,) and 1(6,). The combi-
nation of items 2 and 4 is optimal.

10.3 The next item to be presented is the item with the highest
item information at 6 = 0.20. The item informations for this
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value of 6 are 0.22, 0.82, 0.12, 0.25, and 0.53. The second item
has the highest item information (0.82). Therefore, item 2 is
the item to be presented next.

11.1 From Formulas 11.2 through 11.4, we obtain ¥’ = 1.0625y —
8.75. The score y = 50 is equivalent to x score 44.375.

11.2 If the group that made test Y is a bit better, then the average
score on this test is somewhat too high in comparison to the
average x score. The factor B from Formula 11.4 is too low,
as well as the equivalent score on X, obtained in this way.
The equivalent score x should be higher than 44.375, the
value obtained in Exercise 11.1. The correction that is needed
can be provided by information on an anchor test V. The
average score v in the group persons to which test Y was
administered, is higher than the average score v in the group
to which test X was administered. This results in a higher
value for the equivalent score x in Formula 11.8.

11.3 In order to obtain test X, subtest V must be lengthened by a
factor k. The observed-score variance of test X can be written
as

2 _ 122 2
(a) o, =k0 +ko},

where Gi 1s the true-score variance of subtest V and GZ the
error variance of subtest V. Let Vbe the first of the k subtests.
The covariance between test X and subtest Vis

k
(®) Oy :cov{kT+2Ei,T+ElJ=ko§+ozE

i=1

If we divide the result of (a) by the result of (b), we obtain
factor k.

11.4 The average b of the common items is equal to 1.0 for test Y
and 0.5 for test X. In order to bring the b parameters from
test Y to the scale of test X, the following transformation is
to be applied: b,* = by — 1.0 (average parameter value of item
3 and 5 in Y) + 0.5 (average parameter value of item 3 and
5in X): by* = by — 0.5.

The item parameters of the items from test Y on the scale of
X are 2.0, —1.5, —0.5, 0.0, and 1.5. The true scores on tests X
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and Y for a given value of 6 are computed by means of
Equation 6.17.

The relation between the true score for 6 = —4.0 (0.5) 4.0 is
as shown in the table.

0 Ty Tx
-4.0 0.25 0.11
-3.5 0.39 0.18
-3.0 0.59 0.29
-2.5 0.86 0.45
-2.0 1.21 0.70
-1.5 1.62 1.04
-1.0 2.08 1.48
-0.5 2.55 2.00

0.0 3.00 2.55
0.5 3.43 3.08
1.0 3.80 3.56
1.5 4.12 3.96
2.0 4.38 4.28
2.5 4.58 4.51
3.0 4.72 4.68
3.5 4.82 4.80
4.0 4.89 4.87

For all true scores on Y, the corresponding true scores on X
are lower. Test form Y is the easier test form.

11.5 In the first study, the two examinee groups are defined on
the basis of an external criterion. In the second study (the
study with two-stage testing), the group definition is based
on the common routing test V. Due to the fact that test Vis
not perfectly reliable, we have a regression effect on the test
given as the second test. Study 1 presents the design of a
vertical equating study with common or anchor test V. In
study 1, unbiased item parameter estimates for all three tests
can be obtained. This is not the case in study 2 unless the
regression effect is effectively dealt with. Application of the
mean and sigma method would not result in correct estimates
on a common scale.
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specific objectivity, 156

specificity, 111

stability coefficient, 25

standard error of estimation, 22

standard error of measurement,
12, 17

conditional, 42, 73, 88, 91

standard of performance, 114

STD P-DIFF, 186

stratification, 34, 87

structural equation modeling,
23, 30, 58, 120, 130

success ratio, 109

sufficient statistic, 152

synthetic population, 208

T

tau-equivalent tests, 29
essentially, 29

test construction, 96, 179

test information, 163, 181

test length, 19, 82, 181, 186, 192

TESTFACT, 159

testlet, 192

tetrachoric correlation, 167

theta reliability, 32

threshold, 143

tolerance interval, 86

true score, 10
estimation of, 38
Tucker method of equating, 208
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Unidimensionality, 6, 134
universe, 47
universe score, 48

v

validity
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construct, 102, 105, 118, 122
content, 102, 105
convergent, 120
criterion-related, 105
discriminant, 120
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internal, 122
predictive, 102
statistical conclusion, 122
variance component, 51
vertical equating, 212
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weight
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optimal, 31, 32, 39, 160, 164
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