

Pragmatic Ajax
A Web 2.0 Primer

Justin Gehtland

Ben Galbraith

Dion Almaer

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-8-5

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, March 2006

Version: 2006-4-27

http://www.pragmaticprogrammer.com

Contents
Acknowledgments vii

1 Building Rich Internet Applications with Ajax 1

1.1 A Tale in Three Acts . 2

1.2 Google Maps: The Missing Spark 4

1.3 What Is Ajax? . 5

1.4 Whither Now? . 8

2 Creating Google Maps 9

2.1 Rocket Scientists? . 10

2.2 Your Own Google Maps 11

2.3 Creating Ajaxian Maps 16

2.4 Conclusion . 47

3 Ajax in Action 48

3.1 Ajaxifying a Web Application 48

3.2 Ajax to the Rescue . 48

3.3 The Grubby Details . 56

3.4 Wrapping Up . 59

4 Ajax Explained 60

4.1 A Review of Client-Side JavaScript 61

4.2 Manipulating the Web Page 67

4.3 Retrieving Data . 73

4.4 Summary . 76

5 Ajax Frameworks 77

5.1 Frameworks, Toolkits, and Libraries 77

5.2 Remoting with the Dojo Toolkit 82

5.3 Remoting with the Prototype Library 90

5.4 Wrapping Up . 92

CONTENTS v

6 Ajax UI, Part I 93

6.1 Ajax and JavaScript for the UI 93

6.2 Conclusion . 121

7 Ajax UI, Part II 122

7.1 Some Standard Usages 122

7.2 It Isn’t All Just Wine and Roses... 137

7.3 Conclusion . 146

8 Debugging Ajax Applications 147

8.1 View Source . 147

8.2 DOM Inspectors . 148

8.3 JavaScript Debugging . 160

8.4 Conclusion . 169

9 Degradable Ajax 170

9.1 What Is Degradable Ajax? 170

9.2 Ensuring Degradable Ajax Applications 172

9.3 Wrapping Up . 183

10 JSON and JSON-RPC 184

10.1 JSON-RPC . 187

11 Server-side Framework Integration 192

11.1 Different Strategies for Integration 193

12 Ajax with PHP 195

12.1 The PHP Frameworks . 195

12.2 Working with Sajax . 196

12.3 XOAD . 204

12.4 Wrapping Up . 209

13 Ajax with Rails 210

13.1 Ruby on Rails . 210

13.2 Ajax Integration . 214

13.3 The Future of Ajax in Rails 227

14 Proxy-Based Ajax with DWR 230

14.1 DWR . 231

14.2 Conclusion . 245

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=v

CONTENTS vi

15 ASP.NET and Atlas 246

15.1 BorgWorX . 247

15.2 Atlas . 249

15.3 Conclusion . 258

16 Ajax in the Future and Beyond 259

16.1 Data Manipulation . 259

16.2 UI Manipulation . 263

16.3 Predictions . 275

16.4 Conclusion . 278

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=vi

Acknowledgments
Writing a book is a lot like (we imagine) flying a spaceship too close

to a black hole. One second you’re thinking “Hey, there’s something

interesting over there” and a picosecond later, everything you know

and love has been sucked inside and crushed.

OK, that’s hyperbole, but the point is that books don’t write themselves.

More to the point, books aren’t even just written by the authors. It takes

the combined efforts of a lot of people to extract information from the

chaos. We’d like to hereby issue the following thanks.

To every single beta purchaser of the book and especially the ones who

sent in all those errata posts. You are a fantastic bunch, and we can’t

thank you enough for your belief in the project and your help in making

it a better book.

To the team at the Pragmatic Programmers (especially you, Dave): you

exhibited endless patience, forbearance, and wisdom during the pro-

cess.

Finally, to the authors of all the wonderful frameworks and tools we

highlight in this book: your work is inspiring and we hope that this

book helps shed just a little more light on the work you’ve done.

From Justin Gehtland

To my coauthors: thanks for thinking of me.

My colleagues are an endless font of inspiration and vexation, both

of which help with the creative process. So, thanks to Stu Hal-

loway, Glenn Vanderburg, Neal Ford, and Ted Neward, all of whom

provided various amounts of both.

I keep telling my family that one day I’ll write a book they’d like

to read. At least this one has an interesting cover. Lisa, Zoe, and

Gabe: thanks for putting up with my office hours.

ACKNOWLEDGMENTS viii

From Ben Galbraith

Thank you to my family, for all your patience while I spent late

nights and early mornings working on this project. I love you.

My sincere gratitude also goes to my publisher Dave Thomas (who

patiently and gracefully watched this project go from early arrival

to, well, somewhat less than early arrival) and my fellow authors,

Justin Gehtland and Dion Almaer, who made many personal sac-

rifices to get across the finish line.

Finally, I thank all of my peers and colleagues who have taught

me throughout the years. The patience and kindness of nearly

everyone in our industry has always been an inspiration to me.

From Dion Almaer

Ah, acknowledgments. This is the moment where you feel like you

are at the podium and don’t want to forget anyone.

Firstly, I would like to thank my fellow Ajaxians: Ben Galbraith,

Justin Gehtland, Stu Halloway, Rob Sanheim, Michael Mahemoff,

and the entire community that visits and contributes to ajax-

ian.com. This book is really for you, the readers.

Secondly, I would like to thank all of the great technical folk who I

have had the pleasure of working with. This includes buddies from

Adigio, the No Fluff Just Stuff tour, and the general blogosphere.

You know who you are.

Finally, I would like to thank my family, especially my wife, Emily,

who lets me work crazy hours without putting me through guilt

trips. You are my best friend, Em.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=viii

Chapter 1

Building Rich Internet
Applications with Ajax

This is a book about developing effective web applications. We’re not

going to dance around this issue. Underneath everything else, this

book is about XHTML, JavaScript, CSS, and standards that have been

around for almost a decade now. Not only do we admit this truth, we

embrace it. Just because these standards have been around for a while

doesn’t mean we can’t build something new and exciting out of them.

Technology, like Jello, takes a while to solidify into something tasty and

satisfying.

Ajax (and Web 2.0) represents the maturation of Internet standards into

a viable application development platform. The combination of stable

standards, better understanding, and a unifying vision amount to a

whole that is greater, by far, than the sum of its parts. With Ajax, you’ll

be able to achieve the double Holy Grail: feature-filled user interfaces

and a no-hassle, no-install deployment story.

It wasn’t long ago that Jesse James Garrett coined the term Ajax. When

he first released the term onto the public consciousness, it stood for

Asynchronous JavaScript And XML. It has since, like SOAP before it,

lost its acronym status and is just a word. However, it is an enormously

powerful word. With this single word, Jesse James was able to harness

an industry-wide trend toward richer, install-free web applications and

give it focus.

Naming a thing is powerful. In this case, it’s not powerful enough to

become a movement, though. A spark was still lacking. It was to be

A TALE IN THREE ACTS 2

provided by an entirely unlikely entity. What follows is the story of

one development team, that spark, and how it changed the way we

approach web software.

1.1 A Tale in Three Acts

Hector is a project manager for a web application development shop.

With a long history of Perl, CGI, ASP, Servlet, and JSP development

under his belt, Hector’s been around the block. For the last year his

team has been building a CRM application for a large Fortune 500 com-

pany with offices all over the world. The application used to be a green-

screen mainframe application; the company wants to take advantage of

the great reach of the Internet to deploy the application to every office.

Hector and his team focus a lot of their energy on the server side of

the application. They have been using one of the modern MVC frame-

works from the Java community to implement the business logic, a

high-performance persistence framework to access the database, and

messaging-based infrastructure to connect to other existing systems.

Yesterday

On the client side, Hector and his team have become masters of CSS.

The look of the pages bends to their will; when the customer wants

rounded corners, they get rounded corners. Rollover colors? That’s

easy. Multiple color schemes? No problem. In fact, Hector and his team

long ago reached a point where they weren’t really worried about the

user interface. See, the Web operates one way: it essentially distributes

static documents. When users want more data, they incur a complete

interface refresh. It isn’t optimal from an efficiency perspective, but it’s

how the Web works, and users have just learned to live with it.

Then, sometime a couple of weeks ago, Hector’s customer came to a

meeting. The customer was usually a polite, accommodating fellow. He

understood the Web, and he understood the restrictions he had to live

with to get the reach of the Internet. In fact, Hector had never seen him

get really angry. Until this meeting.

As soon as he walked in, the team knew something was up. He had his

laptop with him, and he never carried it. As he stormed into the room,

the team glanced around the table: what have we done? The customer

sat down at the table, fired up the laptop, and hammered away at the

keyboard for a minute. While he pounded the keys, he told the team,

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=2

A TALE IN THREE ACTS 3

“Last night, my wife and I were invited to a party at the CEO’s house.”

“Uh oh,” thought the team, “this can’t be good.”

“Well, I certainly jumped at the chance,” he continued. “I’ve never been

before. This project got me on his radar.” (“Double uh-oh,” thought

Hector.) “When I couldn’t figure out how to get there with my city map,

I went to the Internet. I found THIS!” He hissed the last word with

venom and scorn. He flipped the laptop around so the table could see

it. There, quietly couched in his browser window, was Google Maps.

“Why,” he said, through clenched teeth, “can’t I have this?”

Today

Since that meeting, Hector and his team have been rethinking the user

interface. Hector went out to learn how Google could have completely

ignored conventional wisdom and generated such a thing. He came

across an article by Jesse James Garrett describing this thing called

Ajax. He has been digging since then, learning everything he can about

this new way of making Internet applications.

The team has begun reimplementing the UI. They’re using JavaScript

and DHTML techniques to provide a more dynamic experience. Most

of all, they’ve begun taking advantage of a useful object available in

modern browsers called XMLHttpRequest (XHR for short). This handy

little guy lets Hector and his team request and receive fresh data from

the server without reloading everything in the page.

In other words, Hector spearheaded a move from Web 1.0 to Web 2.0.

And his customer is happy again.

Tomorrow

So what comes next for Hector? His team is learning a bunch about

JavaScript, XHTML, and even more about CSS than it ever knew before.

The team is really excited about the results: the user experience is just

like any other application now, except the team doesn’t have to manage

an installer as well as the application itself. But they’ve realized that

there’s a downside to all this.

Now, they are writing a ton of code in JavaScript. It turns out that all

this page manipulation and XHR access requires a lot of real, honest-

to-goodness code. And even though JavaScript looks a lot like Java,

they’ve discovered that it really is a different beast. And now they have

two codebases to manage, test, and maintain.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=3

GOOGLE MAPS: THE MISSING SPARK 4

So Hector is off to find out how to solve these problems. And what

he will see is that most web application development frameworks are

rapidly incorporating Ajax tools into their own suites. Soon, Hector

and his team will be able to leverage Tapestry components, Spring tag

libraries, ASP.NET widgets, Rails helpers, and PHP libraries to take

advantage of Ajax without having to incorporate a second way of work-

ing. The (near) future of Ajax development is total, invisible integration.

And this is exactly what Hector needs.

1.2 Google Maps: The Missing Spark

Google Maps (http://maps.google.com) really ignited the Ajax fire. And

Google was just about the most unlikely candidate to do it. Think

about what made Google an overnight sensation in the first place: bet-

ter search results and the world’s most minimal UI. It was a white page,

with a text box and a button in the middle of it. It doesn’t get any more

minimal than that. If Google had had a soundtrack, it would have been

written by Philip Glass.

When it became obvious that Google was going to enter the online map-

ping space, we all expected something similar: a straightforward, unin-

trusive approach to viewing maps. And this is what we got; just not

the way we expected. Google, through the clever use of XHR callbacks,

provided the first in-page scrollable map. If you wanted to look at the

next grid of map panels, Google went off and retrieved them and just

slid the old ones out of the way. No messy page refresh; no reloading of

a bunch of unchanged text. Particularly, no waiting around for a bunch

of ads to refresh. It was just a map, the way a map ought to work.

Then we clicked on a push pin and got the info bubble. With live text in

it. And a drop shadow. And that was the end of an era. We’ve been told

the same story that you just lived through with Hector again and again.

Somebody’s boss or customer or colleague sees Google Maps and says,

“Why not me?”

As programmers, too, there’s another reaction: “I wish I could work on

that kind of application.” There’s an impression out there that Google

Maps, and applications like it, are rocket science and that it takes a

special kind of team, and a special kind of developer, to make them

happen. This book, if nothing else, will lay to rest that idea. As we’ll

demonstrate in Chapter 2, Creating Google Maps, on page 9, making

web pages sing and dance isn’t all that challenging once you know what

http://maps.google.com
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=4

WHAT IS AJAX? 5

tools are available. It becomes even more impressive once you discover

that Google Maps isn’t really proper Ajax; it doesn’t take advantage of

any of the modern asynchronous callback technology and is really just

dynamic HTML trickery.

1.3 What Is Ajax?

Ajax is a hard beast to distill into a one-liner. The reason it is so hard

is because it has two sides to it:

• Ajax can be viewed as a set of technologies.

• Ajax can be viewed as an architecture.

Ajax: Asynchronous JavaScript and XML

The name Ajax came from the bundling of its enabling technologies:

an asynchronous communication channel between the browser and

server, JavaScript, and XML. When it was defined, it was envisioned

as the following:

• Standards-based presentation using XHTML and CSS

• Dynamic display and interaction using the browser’s Document

Object Model (DOM)

• Data interchange and manipulation using XML and XSLT

• Asynchronous data retrieval using XMLHttpRequest or XMLHTTP (from

Microsoft)

• JavaScript binding everything together

Although it is common to develop using these enabling technologies, it

can quickly become more trouble than reward. As we go through the

book, we will show you how you can do the following:

• Incorporate Ajaxian techniques that do not use formal XML for

data transport

• Bypass the DOM APIs themselves for manipulating the in-memory

page model

• Use synchronous calls to the server, which can be powerful but is

also dangerous

• Abstract away the complexity of XMLHttpRequest

It is for these reasons that the more important definition for Ajax is...

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=5

WHAT IS AJAX? 6

Ajax: The Architecture

The exciting evolution that is Ajax is in how you architect web applica-

tions. Let’s look first at the conventional web architecture:

1. Define a page for every event in the application: view items, pur-

chase items, check out, and so on.

2. Each event, or action, returns a full page back to the browser.

3. That page is rendered to the user.

This seems natural to us now. It made sense at the beginning of the

Web, as the Web wasn’t really about applications. The Web started

off as more of a document repository; it was a world in which you

could simply link between documents in an ad hoc way. It was about

document and data sharing, not interactivity in any meaningful sense.

Picture a rich desktop application for a moment. Imagine what you

would think if, on every click, all of the components on the application

screen redrew from scratch. Seems a little nuts, doesn’t it? On the

Web, that was the world we inhabited until Ajax came along.

Ajax is a new architecture. The important parts of this architecture are:

• Small server-side events: Now components in a web application

can make small requests back to a server, get some information,

and tweak the page that is viewed by changing the DOM. No full

page refresh.

• Asynchronous: Requests posted back to the server don’t cause the

browser to block. The user can continue to use other parts of the

application, and the UI can be updated to alert the user that a

request is taking place.

• onAnything: We can interact with the server based on almost any-

thing the user does. Modern browsers trap most of the same user

events as the operating system: mouseovers, mouse clicks, key-

presses, etc. Any user event can cause an asynchronous request.

In Figure 1.1, on the next page, we illustrate the new life cycle of an

Ajax page.

1. The user makes an initial request against a given URL.

2. The server returns the original HTML page.

3. The browser renders the page as in-memory DOM tree.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=6

WHAT IS AJAX? 7S P A N S P A NH T M LH E A DT I T L E B O D YL I N K D I V D I VS P A N S P A ND I V6 3R e n d e r e d i n B r o w s e r R u n n i n g o n S e r v e rs c r i p t s /s e r v l e t s /p a g e s1 24 5
Figure 1.1: Ajax Page Lifecycle

4. Some user activity causes an asynchronous request to another

URL, leaving the existing DOM tree untouched.

5. The browser returns data to a callback function inside the existing

page.

6. The browser parses the result and updates the in-memory DOM

with the new data. This is reflected on the screen to the user (the

page is redrawn but not “refreshed”).

This all sounds great, doesn’t it? With this change we have to be care-

ful, though. One of the greatest things about the Web is that anybody

can use it. Having simple semantics helps that happen. If we go over-

board, we might begin surprising the users with new UI abstractions.

This is a common complaint with Flash UIs, where users are confronted

with new symbols, metaphors, and required actions to achieve useful

results. Usability is an important topic that we will delve into in Chap-

ter 7, Ajax UI, Part II , on page 122.

Ajax: The Future

Where is Ajax going? What is the future going to hold? This is a vital

question, because Ajax is one of those amorphous terms that seems to

change with the context. Ajax itself is a unifying term for describing

a collection of technologies. We believe that the term itself, as unify-

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=7

WHITHER NOW? 8

ing and rallying as it has been, is likely to disappear from the public

consciousness within the next couple of years.

That’s because the technologies you will learn about in this book will

eventually become the substrate of your favorite web application devel-

opment platform. Instead of representing this brave new world of shiny

gadgets and nifty tricks, it will just be how web apps work. Does this

mean that this book is unimportant? Far from it. You need to under-

stand how this works now to get it done, and you’ll need to understand

it in the future to debug your applications. But you probably won’t

think of those apps as Ajax, just as Web apps. And that’s a good thing.

1.4 Whither Now?

The rest of this book will introduce you to the breadth of the Ajax move-

ment. We’ll walk through the conversion of an application to this new

style and provide deep coverage of the enabling technologies behind

Ajax. We’ll introduce you to commonly available toolsets and frame-

works that make seemingly advanced effects as simple as a single line

of code. You’ll get to see what your favorite development platforms are

doing to take advantage of, and integrate with, this new style of devel-

opment.

Most important, we’ll talk a lot about how to use Ajax effectively, prag-

matically, even. That’s because the only thing worse than being left

behind when the train leaves the station is getting on the wrong train.

We intend this book to be a guide through a new and rapidly evolving

landscape. We want to help you find out how, and even if, Ajax can

help your projects. We’re not trying to sell you anything (except this

book). But we believe that Ajax represents a major event, and we want

to be there to help you make the best of it.

But let’s start with the spark that ignited the fire: Google Maps.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=8

Chapter 2

Creating Google Maps
For many of us, Google Maps (http://maps.google.com) ignited the Ajax

revolution. While Ajaxian techniques had been creeping into main-

stream websites long before Google Maps, nothing in recent memory

presented commodity browsers with such a visually impressive experi-

ence. Google Maps showed the world that a wide world of potential lay

hidden in the technologies we thought we understood so well.

As we said in Chapter 1, Ajax was initially defined as the intersection

of the XMLHttpRequest object and the usage of XML to update a DOM

tree. However, the current definition of Ajax (and Web 2.0) spans much

more. This chapter demonstrates the underpinnings of Google Maps

and how modern browser-based applications can use nothing but stan-

dard HTML and JavaScript to achieve entirely new kinds of web apps.

The purpose of this chapter is to lay bare the techniques that Google

used to wow us all with Google Maps. What we’ll discover here is fas-

cinating and important; it also might be more than you want to bite off

right now. If so, don’t worry about skipping ahead to the rest of the

book and coming back here later; we won’t mind.

This chapter contains a lot of code. It’s all available online, so you

can download the archives containing all the book’s source.1 Alterna-

tively, if you’re reading the PDF version of this book, just click a link to

get to the file. However, if the file you’re fetching contains HTML, it’ll

probably get rendered by your browser. This is good if you want to see

the running application. If instead you want to see the code, use your

browser’s View Source option.

1From http://pragmaticprogrammer.com/titles/ajax/code.html

http://maps.google.com
http://pragmaticprogrammer.com/titles/ajax/code.html

ROCKET SCIENTISTS? 10

2.1 Rocket Scientists?

Shortly after Google Maps launched, entrenched commercial interests

who relied upon the staidness of standard HTML-based web interfaces

to make money were quick to claim that mainstream HTML developers

need not attempt to create web interfaces like Google Maps. The CEO

of Macromedia, maker of the popular Flash browser plug-in, stated

in at least one interview that such non-Flash web interfaces required

the skills of “rocket scientists.” (Ironically, when Macromedia finally

produced a clone of Google Maps in Flash four or five months later, it

failed to function on the two Mac laptops we used to try it out—actually

locking up the browser. Google Maps works just fine on both machines.

We’re actually not anti-Flash; we just found it ironic, that’s all.)

Such statements have added to the general impression many develop-

ers have that creating something like Google Maps is just, well, hard.

In fact, some developers have even felt a little fear and intimidation—

fear that someday soon, they’ll be asked to create something like Google

Maps!

Certainly many of us who have been writing HTML for years might like

to believe that it took a team of rocket scientists to produce a litany of

innovations supporting the technologies behind the Google Maps inter-

face, if nothing else to provide an excuse as to why we haven’t been

writing apps like that all this time. However, we believe all this busi-

ness about rocket science and intimidation is a bit exaggerated.

In fact, after spending ten minutes examining Google Maps a bit deeper,

we realized that, far from being the product of rocket scientists, the

Google Maps interface is actually fairly straightforward to implement.

Perhaps, some might say, easy. Not “same-amount-of-effort-as-a-PHP-

web-form” easy, but we were able to implement something a great deal

like it in about two hours. And this wasn’t just any two hours, mind

you; it was two hours of sitting in a crowded convention center during

a technical conference whilst being interrupted by our friends every few

minutes.

So while there’s no doubt Google has recently hired some of the most

visible computer scientists—perhaps the closest examples of rocket

scientist—like brainpower in our industry, such as Adam Bosworth

(famed Microsoft innovator), Joshua Bloch (famed Java innovator at

Sun Microsystems), and Vint Cerf (famed Internet innovator)—we’re

pretty sure they weren’t involved in the creation of the Google Maps

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=10

YOUR OWN GOOGLE MAPS 11

The Real Rocket Science

OK, OK we admit—it isn’t easy to create something like Google
Maps. The geocoding features behind the scenes that map
addresses to locations on a map, that normalize a maps fea-
tures against satellite imagery to such an amazing degree that
they can be overlaid on top of each other and look relatively
accurate, and the plotting of routes from Point A to Point B are
all incredibly nontrivial.

However, we maintain that it’s not the geocoding features
of Google Maps that is particularly innovative or impressive.
MapQuest and other software packages have been doing this
kind of work for years. No, what’s impressive about Google
Maps is the web interface on top of the geocoding engine.
And it’s that interface that we find easy, not the geocoding
under the covers.

As our good friend Glenn Vanderburg says, though: “Techni-
cally it’s easy, but the conception of this kind of interface is
the really amazing part, just having the idea and then real-
izing that it could be done. So many things are simple once
you’ve seen that they’re possible.” The take-home lesson is that
Google Maps shows that once you have conceived of your
next great UI idea, you can take comfort in knowing that the
technical solution to implementing it might not be so daunting.

interface. (We should say, though, that we stand in awe of Lars Ras-

mussen and his team for being the brains and fingers behind Google

Maps.) The reality is if we can create an interface like Google Maps in

a couple of hours, imagine what a few capable web developers could do

in a few weeks or a month.

2.2 Your Own Google Maps

In fact, we’ll spare you from putting your imagination to the test. Let

us show you firsthand how you can create your own version of Google

Maps. In the next few pages, we’ll walk you through the creation of

Ajaxian Maps, our own derivative of the big GM. We’ll start out by

explaining how the Google Maps user interface works.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=11

YOUR OWN GOOGLE MAPS 12

Figure 2.1: Google Maps

Google Maps Deconstructed

We’re going to break down the elements of Google Maps one by one.

Let’s start out with the most dramatic feature: the big scrolling map,

the heart of the application.

The Map

As you know, the map works by allowing you to interactively move the

map by dragging the map using the mouse. We’ve seen mouse dragging

in browsers for years, but the impressive bit is that the scrolling map

is massive in size, can have the zoom level changed and so forth. How

do they do that?

Of course, the browser could never fit such a large map in memory at

once. For example, a street-level map of the entire world would prob-

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=12

YOUR OWN GOOGLE MAPS 13

More Than A Million Pixels

We say in “The Map” section that a street-level map of the
world would be about a million square pixels. Actually, that
number’s a wild underestimate. At Google’s highest level of
magnification, a square mile consumes about 7,700,000 pixels.
The Earth is estimated to contain 200,000,000 square miles, but
only 30% of that is land, so let’s reduce the number to 60,000,000
square miles.

Multiplying the number of pixels by the number of square miles
in the Earth produces the mind boggling number of 462 million
million pixels, which at 16.7 million colors (the color depth of
any modern home computer) would consume at least three
times that amount of memory in bytes. Of course, most image
viewing programs have some sort of paged memory subsystem
that views a portion of the image at any one time, but you get
the idea....

ably be about a million pixels square. How much memory would it

take to display that map? For the sake of conversation, let’s assume

that the map is displayed with just 256 colors, meaning each pixel

would consume just 1 byte of memory. Such a map would require

1,000,000,000,000 bytes of memory, or roughly 1 terabyte (1000 giga-

bytes) of RAM. So, simply displaying an element just isn’t going

to work.

What the Googlers do to work around the paltry amount of memory our

desktop PCs have is split up the map into various tiles. These tiles are

laid out contiguously to form one cohesive image. Figure 2.2, on the

next page, shows an example of these tiles. While the size of these tiles

has changed, the current size is 250 pixels square.

The tiles themselves are all laid out within a single HTML div element,

and this div element is contained within another div; we’ll call these

two divs the inner and outer divs, respectively.

We mentioned just a moment ago that the browser couldn’t fit the entire

map image in memory. Of course, dividing a single map into an arbi-

trary number of tiles and then displaying all those tiles at once would

consume an equal amount of memory as the entire image. To compen-

sate for memory limitations, Google Maps virtualizes the grid of tiles

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=13

YOUR OWN GOOGLE MAPS 14

Figure 2.2: Google Maps Tiles

in memory and displays only the set of tiles that the user can see, in

addition to a few additional tiles outside of the viewing area to keep the

scrolling smooth.

If this whole grid virtualization mishmash sounds a little complex, don’t

worry; it’s fairly straightforward, though it is the most complicated bit

of the UI.

Zoom Level

Another key feature of Google Maps is the ability to zoom in and out,

enlarging or reducing the size of the map, which lets you get a view

of the entire world at one moment and a view of your street the next.

This is actually the simplest of the features to implement. Changing

the zoom level just changes the size of the tile grid in memory as well

as the URLs of the tile images that are requested.

For example, the URL to one of the tiles in Figure 2.2 is as follows:

http://mt.google.com/mt?v=w2.5&n=404&x=4825&y=6150&zoom=3

By changing the value of the zoom parameter to another value, such as

1, you can retrieve a tile at a different zoom level. In practice, it’s not

quite that simple because the grid coordinates change rather a great

deal with each zoom level and they often become invalid.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=14

YOUR OWN GOOGLE MAPS 15

Figure 2.3: The Google Maps Push Pin and Dialog

How do they get the zoom level to constantly hover over the map in

a constant position? The zoom level widget is an image embedded in

the outer div, and makes use of transparency to blend in with the map

image.

Push Pins and Dialogs

Other neat-o features are the push pins and dialogs that appear after

a search. Figure 2.3 shows these elements. These are especially cool

because they both include rounded edges and shadows that make them

blend in with the background map in a sophisticated fashion.

We said the zoom level was the easiest feature, and frankly, we were

probably wrong. This is ridiculously easy. The push pins and dialogs

are simply a PNG image. The PNG image format is supported by the

major browsers and supports a nice feature called alpha transparency. alpha transparency

Alpha transparency allows for more than just the simple transparency

that GIF images support; it allows a pixel to be one of 254 different

values between fully transparent and fully opaque, and it’s this gradient

transparency support that allows the push pins and dialog to use a

shadow that blends in with the map.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=15

CREATING AJAXIAN MAPS 16

Showing these features is simply a matter of positioning images in the

inner div at an absolute position.

Feature Review

There are other features, of course. But we’ll stick to the set of features

we’ve enumerated; we think these represent the vast majority of the

“ooh, ahh” factors. In review, they were as follows:

• The scrolling map: This is implemented as an outer div containing

an inner div. Mouse listeners allow the inner div to be moved

within the confines of the outer div. Tiles are displayed as img

elements inside the inner div, but only those tiles necessary to

display the viewing area and a buffer area around it are present

in the inner div.

• The zoom level: This is an image embedded in the outer div. When

clicked, it changes the size of the grid representing the tiles and

changes the URL used to request the tiles.

• The push pins and dialogs: These are PNG images with alpha

transparency, placed in absolute positions within the inner div.

Now that we’ve deconstructed Google Maps a bit, let’s set about imple-

menting it.

2.3 Creating Ajaxian Maps

Because Ajaxian Maps won’t bother with all of that geocoding mumbo

jumbo, all of our heavy lifting will be in JavaScript. However, we will

use Java to provide some server features and a few image manipulation

tasks.

IE 6, Firefox 1.x, and Safari 2.x Only

We’ve tested this version of Ajaxian Maps in the three major browsers

but haven’t bothered with older versions and more obscure browsers

(sorry, Opera users). It should work on older platforms, but without

testing, we can’t be sure we’ve caught everything.

Step 1: Create a Map

The first step in displaying a map is, err, creating it. While we could

simply steal the wonderful map that Google Maps uses, Google might

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=16

CREATING AJAXIAN MAPS 17

not appreciate that. So, we’ll go ahead and use a map that is explicitly

open source. The Batik project (http://xml.apache.org/batik), an open-

source Java-based SVG renderer, comes with an SVG map of Spain.

We’ll use that.

Because most browsers don’t provide native support for SVG, we’ll need

to convert the map to a bitmap-based format. Fortunately, Batik can

do that for us. One of the nice features of SVG is that it can scale to

arbitrary sizes, so we could conceivably create a huge image for our

map. However, creating truly huge images is a little tricky; because

of memory limitations, we’d have to render portions of the SVG image,

generate our tiles over the portions, and have some sort of scheme for

unifying everything together. To keep this chapter simple, we’ll just

limit our map to 2,000 pixels in width and 1,400 pixels in height. In

order to implement zooming, we’ll also generate a smaller image that

represents a view of the map in a zoomed-out mode.

The following code excerpt shows how to use Batik to convert the map

of Spain into both a 2000x1400 pixel JPG file and a 1500x1050 pixel

JPG file:

File 31 package com.ajaxian.amaps;

import org.apache.batik.apps.rasterizer.DestinationType;

import org.apache.batik.apps.rasterizer.SVGConverter;

import java.io.File;

public class SVGSlicer {

private static final String BASE_DIR = "resources/";

public static void main(String[] args) throws Exception {

SVGConverter converter = new SVGConverter();

// width in pixels; height auto-calculated

converter.setWidth(2000);

converter.setSources(new String[] { BASE_DIR + "svg/mapSpain.svg" });

converter.setDst(new File(BASE_DIR + "tiles/mapSpain.jpg"));

converter.setDestinationType(DestinationType.JPEG);

converter.execute();

converter.setWidth(1500);

converter.setDst(new File(BASE_DIR + "tiles/mapSpain-smaller.jpg"));

converter.execute();

}

}

To compile the code, you’ll need to put the Batik JARs in your classpath

http://xml.apache.org/batik
http://media.pragprog.com/titles/ajax/code/GoogleMaps/src/com/ajaxian/amaps/SVGSlicer.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=17

CREATING AJAXIAN MAPS 18

Figure 2.4: Batik’s SVG Spain Map

(everything in BATIK_HOME and BATIK_HOME/lib) and place the source code

in the following directory hierarchy: com/ajaxian/amaps. Figure 2.4

shows what either map JPG file should look like. You can also replace

the value of the BASE_DIR variable with whatever is most convenient for

you.

Step 2: Create the Tiles

Now that we have a map at two different zoom levels, we need to slice

it up into tiles. This is pretty easy with the nice image manipulation

libraries available in many programming languages. We’ll demonstrate

how to do that with Java here:

File 30 package com.ajaxian.amaps;

import org.apache.batik.apps.rasterizer.DestinationType;

import org.apache.batik.apps.rasterizer.SVGConverter;

import javax.imageio.ImageIO;

import java.io.File;

import java.awt.*;

http://media.pragprog.com/titles/ajax/code/GoogleMaps/src/com/ajaxian/amaps/ImageTiler.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=18

CREATING AJAXIAN MAPS 19

import java.awt.image.BufferedImage;

public class ImageTiler {

private static final String BASE_DIR = "resources/";

private static final int TILE_WIDTH = 100;

private static final int TILE_HEIGHT = 100;

public static void main(String[] args) throws Exception {

// create the tiles

String[][] sources = { { "tiles/mapSpain.jpg", "0" },

{"tiles/mapSpain-smaller.jpg", "1"} };

for (int i = 0; i < sources.length; i++) {

String[] source = sources[i];

BufferedImage bi = ImageIO.read(new File(BASE_DIR + source[0]));

int columns = bi.getWidth() / TILE_WIDTH;

int rows = bi.getHeight() / TILE_HEIGHT;

for (int x = 0; x < columns; x++) {

for (int y = 0; y < rows; y++) {

BufferedImage img = new BufferedImage(TILE_WIDTH, TILE_HEIGHT,

bi.getType());

Graphics2D newGraphics = (Graphics2D) img.getGraphics();

newGraphics.drawImage(bi, 0, 0, TILE_WIDTH, TILE_HEIGHT,

TILE_WIDTH * x, TILE_HEIGHT * y,

TILE_WIDTH * x + TILE_WIDTH,

TILE_HEIGHT * y + TILE_HEIGHT,

null);

ImageIO.write(img, "JPG", new File(BASE_DIR + "tiles/" +

"x" + x + "y" + y + "z" + source[1] + ".jpg"));

}

}

}

}

}

Note that to make things interesting, we made our tile size a bit smaller

than Google Maps: 100 pixels square. We chose x0y0z0.jpg as the nam-

ing convention for the tiles, where the zeros are replaced with the x

and y grid coordinates (0-based) and the zoom level (0 or 1; 0 is for the

bigger of the two maps).

Step 3: Creating the Inner and Outer Divs

Now that we have the image tiles, we can start building our map UI.

We’ll start with a simple web page, shown here:

File 32 Line 1 <html>

- <head>

- <title>Ajaxian Maps</title>

- <style type="text/css">

5 h1 {

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step3unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=19

CREATING AJAXIAN MAPS 20

Figure 2.5: Humble Beginnings

- font: 20pt sans-serif;

- }

- #outerDiv {

- height: 600px;

10 width: 800px;

- border: 1px solid black;

- position: relative;

- overflow: hidden;

- }

15 </style>

- </head>

- <body>

- <p>

- <h1>Ajaxian Maps</h1>

20 </p>

- <div id="outerDiv">

- </div>

- </body>

- </html>

Figure 2.5 show this page. Pretty simple so far. Let’s get to the good

stuff. The div on line 21 will become what we’ve called the outer div.

The outer div is the visible window into the tiles and will be entirely

contained in the visible space within the browser. The inner div, on

the other hand, will contain all the tiles and be much larger than the

available visible space. Let’s start out by giving it an inner div with

some simple content:

File 33 <html>

<head>

<title>Ajaxian Maps</title>

<style type="text/css">

h1 {

font: 20pt sans-serif;

}

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step3unhbox voidb@x kern z@ char `discretionary {-}{}{}2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=20

CREATING AJAXIAN MAPS 21

#outerDiv {

height: 600px;

width: 800px;

border: 1px solid black;

position: relative;

overflow: hidden;

}

#innerDiv {

position: relative;

left: 0px;

top: 0px;

}

</style>

</head>

<body>

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div id="innerDiv">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

</html>

Now we need to make the inner div large enough to contain all of the

image tiles. We could just set a style on the inner div to make it some

arbitrary size, as in <div style="width: 2000px; height: 1400px">, but

we’ll do this via JavaScript. Why? Well, because we’ll implement the

ability to change zoom levels a little later, we know we’ll have to change

the size of the inner div dynamically anyway, so we might as well start

out that way. We’ll use an onload JavaScript handler to initialize the

size of the inner div once we load the page. Check out the code:

File 34 <html>

<head>

<title>Ajaxian Maps</title>

<style type="text/css">

h1 {

font: 20pt sans-serif;

}

#outerDiv {

height: 600px;

width: 800px;

border: 1px solid black;

position: relative;

overflow: hidden;

}

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step3unhbox voidb@x kern z@ char `discretionary {-}{}{}3.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=21

CREATING AJAXIAN MAPS 22

#innerDiv {

position: relative;

left: 0px;

top: 0px;

}

</style>

<script type="text/javascript">

function init() {

setInnerDivSize(' 2000px' , ' 1400px')

}

function setInnerDivSize(width, height) {

var innerDiv = document.getElementById("innerDiv")

innerDiv.style.width = width

innerDiv.style.height = height

}

</script>

</head>

<body onload="init()">

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div id="innerDiv">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

</html>

OK, now we’ve got an inner div big enough to display the tiles for the

largest of our two maps. Now we need to add the dragging functionality.

Step 4: Dragging the Map

We’ll implement dragging using three different mouse event listeners.

When the user clicks the mouse in the map area, we’ll use a listener to

indicate that a drag operation has started. Now, if the user moves the

mouse, we’ll use a listener to move the inner div along with the user’s

mouse movements to create the dragging effect. Finally, we’ll use a

listener to turn off the dragging operation when the mouse is released.

The following code demonstrates how we implemented the listeners:

File 35 // used to control moving the map div

var dragging = false;

var top;

var left;

var dragStartTop;

var dragStartLeft;

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step4.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=22

CREATING AJAXIAN MAPS 23

function init() {

// make inner div big enough to display the map

setInnerDivSize(' 2000px' , ' 1400px');

// wire up the mouse listeners to do dragging

var outerDiv = document.getElementById("outerDiv");

outerDiv.onmousedown = startMove;

outerDiv.onmousemove = processMove;

outerDiv.onmouseup = stopMove;

// necessary to enable dragging on IE

outerDiv.ondragstart = function() { return false; }

}

function startMove(event) {

// necessary for IE

if (!event) event = window.event;

dragStartLeft = event.clientX;

dragStartTop = event.clientY;

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "-moz-grab";

top = stripPx(innerDiv.style.top);

left = stripPx(innerDiv.style.left);

dragging = true;

return false;

}

function processMove(event) {

if (!event) event = window.event; // for IE

var innerDiv = document.getElementById("innerDiv");

if (dragging) {

innerDiv.style.top = top + (event.clientY - dragStartTop);

innerDiv.style.left = left + (event.clientX - dragStartLeft);

}

}

function stopMove() {

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "";

dragging = false;

}

function stripPx(value) {

if (value == "") return 0;

return parseFloat(value.substring(0, value.length - 2));

}

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=23

CREATING AJAXIAN MAPS 24

If you run the code at this point, you’ll now be able to drag that inner

<div> around.

Step 5: Displaying the Map Tiles

The next step requires us to populate our inner div with the map tiles.

Our approach to this will be fairly simple. The scrolling map effect

is achieved by moving an inner div inside of an outer div; therefore,

the tiles we need to display are calculated by determining the current

position of the inner div relative to the outer div and then working out

which tiles are visible in the portion of the inner div that is visible. We’ll

then add those tiles to the inner div.

It turns out implementing this behavior is not terribly difficult. We’ll

create the function checkTiles() to do all this and call it from within the

processMove() function. processMove() is called when the user drags the

map, so by calling it from within, we’ll be able to load our tiles as the

map moves. The following code excerpt shows how we’ve added these

elements to our JavaScript code; for now, checkTiles() is just stubbed

out with comments:

File 39 function processMove(event) {

if (!event) event = window.event; // for IE

var innerDiv = document.getElementById("innerDiv");

if (dragging) {

innerDiv.style.top = top + (event.clientY - dragStartTop);

innerDiv.style.left = left + (event.clientX - dragStartLeft);

}

checkTiles();

}

function checkTiles() {

// check which tiles should be visible in the inner div

// add each tile to the inner div, checking first to see

// if it has already been added

}

Now, let’s implement our stubbed-out checkTiles() function.

Calculating the Visible Tiles

Calculating the set of tiles that the user can see in the inner <div> is

fairly straightforward. To understand how this works, it will help to

visualize the inner div as a grid where each grid cell is a placeholder of

the tiles that we’ll load. Figure 2.6 illustrates this concept.

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=24

CREATING AJAXIAN MAPS 25

Figure 2.6: The Tile Grid

Because we can’t load all the tiles in the grid up front, we’ll need to

calculate which of these grid cells are visible and load the tiles needed

to fit into these cells. As Figure 2.6 shows, this is accomplished by

calculating which grid cells are visible within the viewport created by

the size of the outer div. In the figure, we see that nine cells are visible

across three rows. Note that those cells that are only partially visible

still count as being visible.

Let’s see how to implement all this behavior we just described. To make

things simple, we’ll encapsulate all of the code to figure out which tiles

are visible in a particular method, which we’ll call getVisibleTiles(). The

first thing we need to figure out in getVisibleTiles() is the position of the

inner div relative to the outer div. This is fairly easy:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=25

CREATING AJAXIAN MAPS 26

function getVisibleTiles() {

var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);

var mapY = stripPx(innerDiv.style.top);

}

The stripPx() function, shown earlier, converts the string value returned

by innerDiv.style.left (such as 100px) to a numeric value (say, 100). Now,

we can divide these positions by the size of the tiles to work out the

starting row and column of the tiles. This is just two lines of code:

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;

var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

Note that we haven’t yet defined the tileSize variable; we’ll do that glob-

ally (at the top of our JavaScript code), and you’ll see it when we show

the entire page in just a few paragraphs. (Or, you can see it now on

the following page.) The call to Math.floor() will round the quotient to an

integer, discarding the remainder (so 1.4 will be rounded down to 1).

This will cause partial tiles to be displayed. Math.abs() converts negative

values to a positive number, which in our case is necessary because the

inner div position will nearly always be negative to the outer div, and

because our tile columns/rows are always positive numbers. Finally,

we subtract 1 from the result to make our map load the tiles a touch

early for a smoother effect.

The final bit of calculation is to determine the number of rows and

columns visible in the viewport:

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;

var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

As with tileSize(), we’ll declare both viewportWidth and viewportHeight as

global variables and show that in just a bit. We use Math.ceil(), the

opposite of Math.floor() (so it rounds the quotient up regardless of the

size of the remainder), to ensure that if any portion of a column or row

is visible, we’ll display it. And, just as we subtracted 1 from the index

of the tiles in the previous lines, we’ll add 1 to the number of columns

and rows to make the scroll effect smooth.

We now have all the data we need to calculate all of the visible tiles

in the viewport plus, as we’ve discussed, a few around the edges that

aren’t immediately visible but will be shortly. Now we’ll build an array

that contains all of the tiles that need to be loaded. To build this array,

we’ll write two for loops, one nested inside the other, that each perform

an iteration for each column and row that is currently visible. Inside

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=26

CREATING AJAXIAN MAPS 27

each loop iteration, we’ll add the column and row number of each tile

to display:

var visibleTileArray = [];

var counter = 0;

for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {

visibleTileArray[counter++] = [x, y];

}

}

return visibleTileArray;

Note that we’re actually creating a two-dimensional array; the value of

each item in our array is another array. We did this because we need

to pass back two values: the column and row index. And now, we’re

done calculating the tiles that are visible in the inner div, and we can

move on and work on the code to actually display them. But first, let’s

review all of the code we’ve written so far:

File 36 function checkTiles() {

// check which tiles should be visible in the inner div

var visibleTiles = getVisibleTiles();

// add each tile to the inner div, checking first to see

// if it has already been added

}

function getVisibleTiles() {

var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);

var mapY = stripPx(innerDiv.style.top);

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;

var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;

var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

var visibleTileArray = [];

var counter = 0;

for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {

visibleTileArray[counter++] = [x, y];

}

}

return visibleTileArray;

}

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=27

CREATING AJAXIAN MAPS 28

Displaying the Visible Tiles

We’ve now coded half of the checkTiles() function, which as you may

recall is the function responsible for both calculating the visible tiles

and displaying them. Now, let’s implement the other half of that func-

tion: displaying the tiles.

All we need to do here is iterate through each element of the array of

visible tiles we returned from the getVisibleTiles() function and for each

array element add a tile image to the inner div. Here’s the new code for

our checkTiles() function:

File 37 Line 1 function checkTiles() {

- // check which tiles should be visible in the inner div

- var visibleTiles = getVisibleTiles();

-

5 // add each tile to the inner div, checking first to see

- // if it has already been added

- var innerDiv = document.getElementById("innerDiv");

- var visibleTilesMap = {};

- for (i = 0; i < visibleTiles.length; i++) {

10 var tileArray = visibleTiles[i];

- var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";

- visibleTilesMap[tileName] = true;

- var img = document.getElementById(tileName);

- if (!img) {

15 img = document.createElement("img");

- img.src = "resources/tiles/" + tileName + ".jpg";

- img.style.position = "absolute";

- img.style.left = (tileArray[0] * tileSize) + "px";

- img.style.top = (tileArray[1] * tileSize) + "px";

20 img.setAttribute("id", tileName);

- innerDiv.appendChild(img);

- }

- }

- }

We start out on line 8 by creating an empty map (map in the JavaScript

sense; a hash that contains key-to-value mappings). We’re going to add

an entry to this map for each visible image; we’ll discuss why we’re

doing this a little later.

On line 9, we start looping through each element in the array we sent

back from getVisibleTiles(). For each element, we build the name of the

image file that will be loaded in. (If you recall, the file-naming conven-

tion we chose in Step 2 was x0y0z0, where the numbers are replaced

with the index of the tile in the tile grid.) We also use this name as the

key in the visibleTilesMap variable, and on lines 13 and 20 you can see

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}3.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=28

CREATING AJAXIAN MAPS 29

that we also use it as the id attribute for each img element that we add

to the inner div. This is so on lines 13 and 14, we can check to see

we’ve already added a given tile to the inner div and, if we have, avoid

adding it again.

Finally, in lines 15 through line 21, we create the element and

add it to the inner div. Note that on line 16 we have to specify the URL

of the image tile. If you have Java installed and executed the code from

Steps 1 and 2 to create your own image tiles, great! Reference them

on line 16, setting the URI to wherever you put them. If not, you can

reference our tiles online.2

You can now enjoy a scrolling map of Spain in your browser! We’ve

placed a copy online at GoogleMaps/step5-3.html. Here’s all the code

we’ve written so far:

File 37 <html>

<head>

<title>Ajaxian Maps</title>

<style type="text/css">

h1 {

font: 20pt sans-serif;

}

#outerDiv {

height: 600px;

width: 800px;

border: 1px solid black;

position: relative;

overflow: hidden;

}

#innerDiv {

position: relative;

left: 0px;

top: 0px;

}

</style>

<script type="text/javascript">

// constants

var viewportWidth = 800;

var viewportHeight = 600;

var tileSize = 100;

// used to control moving the map div

var dragging = false;

2GoogleMaps/resources/tiles/x0y0z0.jpg, where x0y0z0 should be replaced with the tile you

want to load

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5-3.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}3.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/resources/tiles/x0y0z0.jpg
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=29

CREATING AJAXIAN MAPS 30

var top;

var left;

var dragStartTop;

var dragStartLeft;

function init() {

// make inner div big enough to display the map

setInnerDivSize(' 2000px' , ' 1400px');

// wire up the mouse listeners to do dragging

var outerDiv = document.getElementById("outerDiv");

outerDiv.onmousedown = startMove;

outerDiv.onmousemove = processMove;

outerDiv.onmouseup = stopMove;

// necessary to enable dragging on IE

outerDiv.ondragstart = function() { return false; }

checkTiles();

}

function startMove(event) {

// necessary for IE

if (!event) event = window.event;

dragStartLeft = event.clientX;

dragStartTop = event.clientY;

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "-moz-grab";

top = stripPx(innerDiv.style.top);

left = stripPx(innerDiv.style.left);

dragging = true;

return false;

}

function processMove(event) {

if (!event) event = window.event; // for IE

var innerDiv = document.getElementById("innerDiv");

if (dragging) {

innerDiv.style.top = top + (event.clientY - dragStartTop);

innerDiv.style.left = left + (event.clientX - dragStartLeft);

}

checkTiles();

}

function checkTiles() {

// check which tiles should be visible in the inner div

var visibleTiles = getVisibleTiles();

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=30

CREATING AJAXIAN MAPS 31

// add each tile to the inner div, checking first to see

// if it has already been added

var innerDiv = document.getElementById("innerDiv");

var visibleTilesMap = {};

for (i = 0; i < visibleTiles.length; i++) {

var tileArray = visibleTiles[i];

var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";

visibleTilesMap[tileName] = true;

var img = document.getElementById(tileName);

if (!img) {

img = document.createElement("img");

img.src = "resources/tiles/" + tileName + ".jpg";

img.style.position = "absolute";

img.style.left = (tileArray[0] * tileSize) + "px";

img.style.top = (tileArray[1] * tileSize) + "px";

img.setAttribute("id", tileName);

innerDiv.appendChild(img);

}

}

}

function getVisibleTiles() {

var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);

var mapY = stripPx(innerDiv.style.top);

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;

var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;

var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

var visibleTileArray = [];

var counter = 0;

for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {

visibleTileArray[counter++] = [x, y];

}

}

return visibleTileArray;

}

function stopMove() {

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "";

dragging = false;

}

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=31

CREATING AJAXIAN MAPS 32

function stripPx(value) {

if (value == "") return 0;

return parseFloat(value.substring(0, value.length - 2));

}

function setInnerDivSize(width, height) {

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.width = width;

innerDiv.style.height = height;

}

</script>

</head>

<body onload="init()">

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div id="innerDiv">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

</html>

Cleaning Up Unused Tiles

We’ve got some neat scrolling, but this has one glaring inefficiency. We

add tiles to the inner div on demand, but we never remove the tiles that

are no longer visible. Fortunately, we’ve already done some of the work

to accommodate this feature. If you recall, we created a JavaScript map

named visibleTilesMap in the checkTiles() function but never did anything

with it. Now, we’re going to do something.

After we add the image tiles to the inner div, we’ll select all of the img

elements that are present in the inner div, and for each img element,

we’ll check to see whether its id attribute is present in the visibleTilesMap

variable. If so, we know that it’s a currently visible tile and should be

left in the inner div. If not, the is no longer visible and can be

removed. Here’s the additional code in checkTiles() to implement this

functionality:

File 38 function checkTiles() {

// check which tiles should be visible in the inner div

var visibleTiles = getVisibleTiles();

// add each tile to the inner div, checking first to see

// if it has already been added

var innerDiv = document.getElementById("innerDiv");

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}4.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=32

CREATING AJAXIAN MAPS 33

var visibleTilesMap = {};

for (i = 0; i < visibleTiles.length; i++) {

var tileArray = visibleTiles[i];

var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";

visibleTilesMap[tileName] = true;

var img = document.getElementById(tileName);

if (!img) {

img = document.createElement("img");

img.src = "resources/tiles/" + tileName + ".jpg";

img.style.position = "absolute";

img.style.left = (tileArray[0] * tileSize) + "px";

img.style.top = (tileArray[1] * tileSize) + "px";

img.setAttribute("id", tileName);

innerDiv.appendChild(img);

}

}

var imgs = innerDiv.getElementsByTagName("img");

for (i = 0; i < imgs.length; i++) {

var id = imgs[i].getAttribute("id");

if (!visibleTilesMap[id]) {

innerDiv.removeChild(imgs[i]);

i--; // compensate for live nodelist

}

}

}

Figure 2.7, on the next page, shows what this looks like.

Step 6: Zooming

Zooming is wicked easy; in fact, the hardest bit is just getting a zoom

widget to appear floating above the map. First, we need to create some

kind of image that the user can click on to enable zooming. In Google

Maps, it’s a slider (shown in the margin here); for us, we’ll just create

a simple image that toggles between our two zoom levels. You can use

any image you like; ours is at GoogleMaps/resources/images/zoom.png.

Second, to float the image above the map, we have to properly set the

z-index of our inner div. Browsers support layering elements on top

of each other; the z-index CSS property is used to determine how the

layering occurs. The lower the value, the lower in the layer the element

will appear. Because we want to put our zoom widget above the tile

images, we’ll need to set the z-index of the inner div to 0. The z-index of

the zoom widget then needs to be any value greater than 0 (we use 1).

Now, let’s add the zoom widget. We’ll enclose it in a div, place it inside

the outer div as a peer of the inner div, and we’ll set the z-index proper-

ties appropriately:

http://media.pragprog.com/titles/ajax/code/GoogleMaps/resources/images/zoom.png
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=33

CREATING AJAXIAN MAPS 34

Figure 2.7: Ajaxian Maps!

File 40 Line 1 <body onload="init()">

- <p>

- <h1>Ajaxian Maps</h1>

- </p>

5 <div id="outerDiv">

- <div style="position: absolute; top: 10px; left: 10px; z-index: 1">

- <img src="resources/images/zoom.png"

- onclick="toggleZoom()"/>

- </div>

10 <div id="innerDiv" style="z-index: 0">

- The rain in Spain falls mainly in the plains.

- </div>

- </div>

- </body>

That will give us our floating zoom widget; now we need to create the

toggleZoom() function that we referenced on line 8. This will require a

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=34

CREATING AJAXIAN MAPS 35

few minor changes to our code. First, we need to create some sort of

global state that tracks the current zoom level of our map. Second, we

need to reference this state in the various relevant places in our code

(just one, actually).

Let’s start with the global state. We’ll create a variable zoom to track

the current zoom level and while we’re at it add a constant (in the form

of a two-dimensional array) for declaring the two different sizes of the

inner div:

File 40 var zoom = 0;

var zoomSizes = [["2000px", "1400px"], ["1500px", "1050px"]];

Now, in the name of cleanliness, we’ll change the first line of our init

method from this:

File 38 setInnerDivSize(' 2000px' , ' 1400px');

to this:

File 40 setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

There’s just one other place we need to wire in the zoom support: our

checkTiles() function, which creates the img elements for the tiles and

gives them their URL. We need to change this hard-coded zoom-level

code:

File 38 var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";

to this:

File 40 var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z" + zoom;

All that remains is implementing the toggleZoom() function, which we’ve

done here:

File 40 function toggleZoom() {

zoom = (zoom == 0) ? 1 : 0;

var innerDiv = document.getElementById("innerDiv");

var imgs = innerDiv.getElementsByTagName("img");

while (imgs.length > 0) innerDiv.removeChild(imgs[0]);

setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

checkTiles();

}

Nothing too tricky; we swap the value of the zoom variable from 0 to 1,

delete all the elements from the inner div, change the size of the

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}4.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}4.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=35

CREATING AJAXIAN MAPS 36

Figure 2.8: Ajaxian Maps Zoomed Out

inner div based on the zoom level, and invoke checkTiles() to rebuild the

map with the new zoom level’s tiles.

And now, we have zooming in our map application! Cool. The code

for this version is on-line if you need it.3 Figure 2.8 shows the zoom

feature in action, with our map zoomed to the smaller size.

Step 7: Push Pins and Dialogs

The final feature is adding push pins with alpha transparency. When

clicked, these show a dialog that also has alpha transparency. The

3http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=36

CREATING AJAXIAN MAPS 37

hardest part is creating the images.4 These images will not render prop-

erly in IE 6, but see the end of this section for a workaround.

We’re not going to implement a server back end that does searching,

and so on, so just as with zooming we implemented a toggle, we’ll imple-

ment a toggle for our push pin. The graphic for the toggle is available

at GoogleMaps/resources/images/pushpin.png.

We’ll place the push pin toggle right next to the zoom toggle by adding

a new div for it:

File 42 <body onload="init()">

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div style="position: absolute; top: 10px; left: 10px; z-index: 1">

</div>

<div style="position: absolute; top: 10px; left: 87px; z-index: 1">

</div>

<div id="innerDiv" style="z-index: 0">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

Now we need to implement togglePushPin(), which, frankly, is a piece of

cake. We’ll just add an absolutely positioned image with a z-index of 1

to the inner div, add an onclick handler to it, and wire that handler to

display the dialog at an absolute position just above the push pin:

File 42 function togglePushPin() {

var pinImage = document.getElementById("pushPin");

if (pinImage) {

pinImage.parentNode.removeChild(pinImage);

var dialog = document.getElementById("pinDialog");

dialog.parentNode.removeChild(dialog);

return;

}

var innerDiv = document.getElementById("innerDiv");

pinImage = document.createElement("img");

pinImage.src = "resources/images/pin.png";

pinImage.style.position = "absolute";

pinImage.style.left = (zoom == 0) ? "850px" : "630px";

pinImage.style.top = (zoom == 0) ? "570px" : "420px";

4GoogleMaps/resources/images/pin.png and GoogleMaps/resources/images/dialog.png.

http://media.pragprog.com/titles/ajax/code/GoogleMaps/resources/images/pushpin.png
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/resources/images/pin.png
http://media.pragprog.com/titles/ajax/code/GoogleMaps/resources/images/dialog.png
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=37

CREATING AJAXIAN MAPS 38

pinImage.style.zIndex = 1;

pinImage.setAttribute("id", "pushPin");

innerDiv.appendChild(pinImage);

var dialog = document.createElement("div");

dialog.style.position = "absolute";

dialog.style.left = (stripPx(pinImage.style.left) - 90) + "px";

dialog.style.top = (stripPx(pinImage.style.top) - 210) + "px";

dialog.style.width = "309px";

dialog.style.height = "229px";

dialog.style.backgroundImage = "url(resources/images/dialog.png)";

dialog.style.zIndex = 2;

dialog.setAttribute("id", "pinDialog");

dialog.innerHTML = "<table height=' 80%' width=' 100%' >" +

"<tr><td align=' center' >The capital of Spain</td></tr></table>";

innerDiv.appendChild(dialog);

}

There’s just one little problem with this new behavior. Do you remem-

ber the image remover code in checkTiles()? It removes any img element

child of the inner div that has been explicitly added to that function. Of

course, it will clobber our push pin as well, since it is an img child of

the inner div, so we need to modify the function to ignore the push pin:

File 42 var imgs = innerDiv.getElementsByTagName("img");

for (i = 0; i < imgs.length; i++) {

var id = imgs[i].getAttribute("id");

if (!visibleTilesMap[id]) {

if (id != "pushPin") {

innerDiv.removeChild(imgs[i]);

i--; // compensate for live nodelist

}

}

}

We’re done! We’ve implemented all of the features we discussed in the

introduction of this chapter. Let’s wrap up by...err, wait a second.

While Firefox, Safari, and other browsers provide native support for

PNGs with alpha transparency, IE 6 does not. If you’ve been using that

browser to try this sample code, the zoom and push pin buttons as well

as the push pin and dialog itself have looked really awful.

Fortunately, this has an easy (but annoying) fix. Despite not supporting

PNGs out of the box, IE can use some (IE-specific) JavaScript magic

to parse out the alpha channel from a PNG at runtime and display it

correctly. A number of websites document this workaround; in order

to avoid sidetracking our Google Maps story, we’ll just use a JavaScript

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=38

CREATING AJAXIAN MAPS 39

library provided by one of these websites, www.alistapart.com,5 to solve

our problem.

First, we need to include these new JavaScripts in our webpage, which

we’ll do at the top:

File 41 <script language="javascript"

src="resources/js/browserdetect_lite.js"

type="text/javascript">

</script>

<script language="javascript"

src="resources/js/opacity.js"

type="text/javascript">

</script>

Then, because this library requires that the PNGs it fixes be back-

ground images in a div, we need to change our push pin from an img

element to a div, as well as our two toggle buttons, and then finally use

this library to fix all of these divs. We’ll change the toggle button images

to div background images first:

File 41 <body onload="init()">

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div id="toggleZoomDiv" onclick="toggleZoom()">

</div>

<div id="togglePushPinDiv" onclick="togglePushPin()">

</div>

<div id="innerDiv" style="z-index: 0">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

As part of this change, we moved the style attribute settings on the tog-

gle divs into the style sheet we defined at the top of the file (something

we probably should have done anyway):

File 41 #toggleZoomDiv {

position: absolute;

top: 10px;

left: 10px;

z-index: 1;

width: 72px;

height: 30px;

}

5http://www.alistapart.com/articles/pngopacity

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://www.alistapart.com/articles/pngopacity
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=39

CREATING AJAXIAN MAPS 40

#togglePushPinDiv {

position: absolute;

top: 10px;

left: 87px;

z-index: 1;

width: 72px;

height: 30px;

}

We now need to add two lines to our init() method to use our new IE

transparency library with the toggle divs:

File 41 // fix the toggle divs to be transparent in IE

new OpacityObject(' toggleZoomDiv' ,' resources/images/zoom')

.setBackground();

new OpacityObject(' togglePushPinDiv' ,' resources/images/pushpin')

.setBackground();

And finally, we need to reformat the togglePushPin() function to use this

new technique:

File 41 function togglePushPin() {

var pinImage = document.getElementById("pushPin");

if (pinImage) {

pinImage.parentNode.removeChild(pinImage);

var dialog = document.getElementById("pinDialog");

dialog.parentNode.removeChild(dialog);

return;

}

var innerDiv = document.getElementById("innerDiv");

pinImage = document.createElement("div");

pinImage.style.position = "absolute";

pinImage.style.left = (zoom == 0) ? "850px" : "630px";

pinImage.style.top = (zoom == 0) ? "570px" : "420px";

pinImage.style.width = "37px";

pinImage.style.height = "34px";

pinImage.style.zIndex = 1;

pinImage.setAttribute("id", "pushPin");

innerDiv.appendChild(pinImage);

new OpacityObject(' pushPin' ,' resources/images/pin')

.setBackground();

var dialog = document.createElement("div");

dialog.style.position = "absolute";

dialog.style.left = (stripPx(pinImage.style.left) - 90) + "px";

dialog.style.top = (stripPx(pinImage.style.top) - 210) + "px";

dialog.style.width = "309px";

dialog.style.height = "229px";

dialog.style.zIndex = 2;

dialog.setAttribute("id", "pinDialog");

dialog.innerHTML = "<table height=' 80%' width=' 100%' ><tr>" +

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=40

CREATING AJAXIAN MAPS 41

Figure 2.9: Ajaxian Maps Push Pin and Dialog on IE 6

"<td align=' center' >The capital of Spain</td></tr></table>";

innerDiv.appendChild(dialog);

new OpacityObject(' pinDialog' ,' resources/images/dialog')

.setBackground();

}

And now, finally, we are done. Up until the image transparency bit,

our code was really quite clean and had very little in the way of cross-

browser hacks. Now, unfortunately, it has had to undergo a bit of an IE

makeover, but the consolation prize is that IE 7 natively supports PNG

so all of this may someday be unnecessary.

For review, let’s take a look at our entire page:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=41

CREATING AJAXIAN MAPS 42

File 41 <html>

<head>

<title>Ajaxian Maps</title>

<style type="text/css">

h1 {

font: 20pt sans-serif;

}

#outerDiv {

height: 600px;

width: 800px;

border: 1px solid black;

position: relative;

overflow: hidden;

}

#innerDiv {

position: relative;

left: 0px;

top: 0px;

}

#toggleZoomDiv {

position: absolute;

top: 10px;

left: 10px;

z-index: 1;

width: 72px;

height: 30px;

}

#togglePushPinDiv {

position: absolute;

top: 10px;

left: 87px;

z-index: 1;

width: 72px;

height: 30px;

}

</style>

<script language="javascript"

src="resources/js/browserdetect_lite.js"

type="text/javascript">

</script>

<script language="javascript"

src="resources/js/opacity.js"

type="text/javascript">

</script>

<script type="text/javascript">

// constants

var viewportWidth = 800;

var viewportHeight = 600;

var tileSize = 100;

var zoom = 0;

var zoomSizes = [["2000px","1400px"], ["1500px","1050px"]];

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=42

CREATING AJAXIAN MAPS 43

// used to control moving the map div

var dragging = false;

var top;

var left;

var dragStartTop;

var dragStartLeft;

function init() {

// make inner div big enough to display the map

setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

// wire up the mouse listeners to do dragging

var outerDiv = document.getElementById("outerDiv");

outerDiv.onmousedown = startMove;

outerDiv.onmousemove = processMove;

outerDiv.onmouseup = stopMove;

// necessary to enable dragging on IE

outerDiv.ondragstart = function() { return false; }

// fix the toggle divs to be transparent in IE

new OpacityObject(' toggleZoomDiv' ,' resources/images/zoom')

.setBackground();

new OpacityObject(' togglePushPinDiv' ,' resources/images/pushpin')

.setBackground();

checkTiles();

}

function startMove(event) {

// necessary for IE

if (!event) event = window.event;

dragStartLeft = event.clientX;

dragStartTop = event.clientY;

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "-moz-grab";

top = stripPx(innerDiv.style.top);

left = stripPx(innerDiv.style.left);

dragging = true;

return false;

}

function processMove(event) {

if (!event) event = window.event; // for IE

var innerDiv = document.getElementById("innerDiv");

if (dragging) {

innerDiv.style.top = parseFloat(top) +

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=43

CREATING AJAXIAN MAPS 44

(event.clientY - dragStartTop);

innerDiv.style.left = parseFloat(left) +

(event.clientX - dragStartLeft);

}

checkTiles();

}

function checkTiles() {

// check which tiles should be visible in the inner div

var visibleTiles = getVisibleTiles();

// add each tile to the inner div, checking first to see

// if it has already been added

var innerDiv = document.getElementById("innerDiv");

var visibleTilesMap = {};

for (i = 0; i < visibleTiles.length; i++) {

var tileArray = visibleTiles[i];

var tileName = "x" + tileArray[0] + "y" +

tileArray[1] + "z" + zoom;

visibleTilesMap[tileName] = true;

var img = document.getElementById(tileName);

if (!img) {

img = document.createElement("img");

img.src = "resources/tiles/" + tileName + ".jpg";

img.style.position = "absolute";

img.style.left = (tileArray[0] * tileSize) + "px";

img.style.top = (tileArray[1] * tileSize) + "px";

img.style.zIndex = 0;

img.setAttribute("id", tileName);

innerDiv.appendChild(img);

}

}

var imgs = innerDiv.getElementsByTagName("img");

for (i = 0; i < imgs.length; i++) {

var id = imgs[i].getAttribute("id");

if (!visibleTilesMap[id]) {

innerDiv.removeChild(imgs[i]);

i--; // compensate for live nodelist

}

}

}

function getVisibleTiles() {

var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);

var mapY = stripPx(innerDiv.style.top);

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;

var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=44

CREATING AJAXIAN MAPS 45

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;

var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

var visibleTileArray = [];

var counter = 0;

for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {

visibleTileArray[counter++] = [x, y];

}

}

return visibleTileArray;

}

function stopMove() {

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.cursor = "";

dragging = false;

}

function stripPx(value) {

if (value == "") return 0;

return parseFloat(value.substring(0, value.length - 2));

}

function setInnerDivSize(width, height) {

var innerDiv = document.getElementById("innerDiv");

innerDiv.style.width = width;

innerDiv.style.height = height;

}

function toggleZoom() {

zoom = (zoom == 0) ? 1 : 0;

var innerDiv = document.getElementById("innerDiv");

var imgs = innerDiv.getElementsByTagName("img");

while (imgs.length > 0) innerDiv.removeChild(imgs[0]);

setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

if (document.getElementById("pushPin")) togglePushPin();

checkTiles();

}

function togglePushPin() {

var pinImage = document.getElementById("pushPin");

if (pinImage) {

pinImage.parentNode.removeChild(pinImage);

var dialog = document.getElementById("pinDialog");

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=45

CREATING AJAXIAN MAPS 46

dialog.parentNode.removeChild(dialog);

return;

}

var innerDiv = document.getElementById("innerDiv");

pinImage = document.createElement("div");

pinImage.style.position = "absolute";

pinImage.style.left = (zoom == 0) ? "850px" : "630px";

pinImage.style.top = (zoom == 0) ? "570px" : "420px";

pinImage.style.width = "37px";

pinImage.style.height = "34px";

pinImage.style.zIndex = 1;

pinImage.setAttribute("id", "pushPin");

innerDiv.appendChild(pinImage);

new OpacityObject(' pushPin' ,' resources/images/pin')

.setBackground();

var dialog = document.createElement("div");

dialog.style.position = "absolute";

dialog.style.left = (stripPx(pinImage.style.left) - 90) + "px";

dialog.style.top = (stripPx(pinImage.style.top) - 210) + "px";

dialog.style.width = "309px";

dialog.style.height = "229px";

dialog.style.zIndex = 2;

dialog.setAttribute("id", "pinDialog");

dialog.innerHTML = "<table height=' 80%' width=' 100%' ><tr>" +

"<td align=' center' >The capital of Spain</td></tr></table>";

innerDiv.appendChild(dialog);

new OpacityObject(' pinDialog' ,' resources/images/dialog')

.setBackground();

}

</script>

</head>

<body onload="init()">

<p>

<h1>Ajaxian Maps</h1>

</p>

<div id="outerDiv">

<div id="toggleZoomDiv" onclick="toggleZoom()">

</div>

<div id="togglePushPinDiv" onclick="togglePushPin()">

</div>

<div id="innerDiv" style="z-index: 0">

The rain in Spain falls mainly in the plains.

</div>

</div>

</body>

</html>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=46

CONCLUSION 47

2.4 Conclusion

The Ajaxian Maps code we showed you in this chapter has changed

little from our initial seat-of-the-pants version coded in two hours. We

spent another two hours polishing things up, fixing a few bugs, and

introducing compatibility for Internet Explorer 6.0 (which required two

minor changes that we commented in the source code as well as the

transparency issues we just finished discussing).

Imagine how far you could take this code if you had two or three full-

time developers working on it for a few months! Certainly all of the

remaining interface features in Google Maps you could easily accom-

modate in that time period.

Feel free to use the code from this chapter to implement your own

Google Maps interface. Such an application can ultimately be general-

ized for any time you need to display an image too large for the screen

(or available memory) and enable annotations to appear on top of that

image.

And the next time someone tells you Ajax is hard? Tell them you know

better.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=47

Chapter 3

Ajax in Action
In Chapter 1, Hector and his team went on a voyage of discovery about

the possibilities for web applications. They learned that Ajaxian tech-

niques can transform conventional web pages into dynamic web inter-

faces. This chapter is about lifting the veil and showing you how Ajax

really works. To do this, we’ll transform a traditional web page into an

Ajax application right before your eyes.

3.1 Ajaxifying a Web Application

Hector released the first version of their application a few months ago.

As he reviewed the user feedback, he found that some users expressed

frustration with a customer data entry screen. Figure 3.1, on the next

page, shows the current version of the page.

So what’s the problem with this screen? It turns out that the users

of Hector’s application are used to the behavior of the “green-screen”

application it replaced. In the old application, all the users had to

do was enter the customer’s Zip code, and the City and State fields

would autopopulate with the correct values; the users of Hector’s new

web application are frustrated that they now have to enter this data

manually.

3.2 Ajax to the Rescue

With Ajaxian techniques, it is possible for Hector to faithfully re-create

the autopopulation of data enjoyed by users of the old green-screen

application. Let’s look at how this feature can be added to Hector’s

code.

AJAX TO THE RESCUE 49

Figure 3.1: Hector’s Problem Entry Screen

Ajaxifying the CRM Screen

To start, let’s look at the source code for the CRM screen:

File 1 <html>

<head>

<title>Customer Data Screen</title>

</head>

<body>

<h1>Corporate CRM System</h1>

<h2>Enter Customer Data</h2>

<table>

<tr>

<th>Customer Name:</th>

<td><input type="text" name="name"/></td>

</tr>

<tr>

<th>Address:</th>

<td><input type="text" name="address"/></td>

</tr>

<tr>

<th>City:</th>

<td><input type="text" name="city"/></td>

</tr>

<tr>

<th>State:</th>

<td><input type="text" name="state"/></td>

</tr>

<tr>

<th>Zip:</th>

<td><input type="text" name="zip"/></td>

http://media.pragprog.com/titles/ajax/code/AjaxInAction/figure_ed_screen.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=49

AJAX TO THE RESCUE 50

</tr>

<tr>

<th></th>

<td><input type="Submit" value="Add Customer"/></td>

</tr>

</table>

</body>

</html>

We want to add behavior so that when the user enters a value in the Zip

field, we’ll send the ZIP code to the server, receive a response containing

the city and state that correspond to the ZIP, and populate the City and

State fields with those values.

Preparing the HTML

The first step toward this end will be to add an event handler to the event handler

Zip <input> tag. Chances are, if you’ve done any HTML development

before, you’ve dealt with event handlers; they allow you to execute

script code in the web page when certain user interactivity or browser

tasks occur. The second step will be to add id= attributes to the City

and State <input> elements. You may not have had experience with id

attributes; we’ll talk more about those in a bit.

Our revised <input> elements look like this (with the surrounding table

rows shown for context):

File 2 <tr>

<th>Zip:</th>

<td><input onblur="getZipData(this.value)"

type="text" name="zip"/></td>

</tr>

<tr>

<th>City:</th>

<td><input id="city" type="text" name="city"/></td>

</tr>

<tr>

<th>State:</th>

<td><input id="state" type="text" name="state"/></td>

</tr>

The event handler is registered via the onblur= attribute. This causes the

JavaScript function named getZipData() to be invoked when the focus

leaves this element. The parameter passed to this function, this.value,

specifies that the value property of the <input> element will be passed;

the this is a reference to the element on which the event handler has

been registered.

http://media.pragprog.com/titles/ajax/code/AjaxInAction/screenAjax1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=50

AJAX TO THE RESCUE 51

The Back End

We demonstrated how to request city/state data from the
server, but we never showed you how the server processed the
request and generated the response. Unfortunately, this can
be somewhat tricky to do; what programming language should
we use to demonstrate the server process? Later in the book,
starting with Chapter 11, Server-side Framework Integration, on
page 192, we talk fairly extensively about different program-
ming language frameworks for creating server processes that
can interact with Ajax web pages; for now, just take it on faith
that a server is providing data to the page.

We’ve also changed the ordering of the table rows; now the Zip input

comes first. While this new layout is atypical for American addresses, it

reflects a more natural flow for the Ajaxified version of the screen, since

entering the ZIP code will autopopulate the other two fields beneath it.

Communicating with the Server

We’re now done with the first half of our task: wiring the HTML to a

script that will perform our Ajax behavior. Now we need to tackle the

slightly trickier second bit: writing the script.

The key to Ajax is a JavaScript object called XMLHttpRequest, the engine

that can send HTTP requests, receive responses, and parse them as

XML. We’ll use this object in our getZipData() function, which will cre-

ate an instance of XMLHttpRequest and use it to send the ZIP code to

the server. Remember, this function will be invoked whenever the Zip

input loses focus, that is, whenever the user enters the field and then

leaves it, either with the mouse, with the Tab key, or with some other

mechanism. Here’s what it looks like so far:

Line 1 <script type="text/JavaScript">

- var xhr;

- function getZipData(zipCode) {

- xhr = new XMLHttpRequest();

5 xhr.open("GET",

- "/getCityStateFromZip.request?" + zipCode);

- xhr.send(null);

- }

- </script>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=51

AJAX TO THE RESCUE 52

XMLHttpRequest

The syntax we have used so far to create an instance of XML-

HttpRequest is browser-specific. Microsoft Internet Explorer, the
first browser to offer this feature, uses an ActiveX component
to accomplish the same tasks. Creating one requires a differ-
ent syntax, which we will cover later in the book. There is talk
right now that the next major release of IE (as of this writing, IE is
on version 6 with Service Pack 1) will use the syntax described
previously, thus (eventually) eliminating the confusion.

So far, pretty simple, right? On line 4, we create our XMLHttpRequest

instance. On the next line, we configure it using the open() function;

the first parameter indicates the HTTP method to use for the request,

and the second indicates the URL we’ll be requesting. Finally, we invoke

the send() function, which predictably enough sends the request.

Parsing the Response

Now that we’ve demonstrated how to send a request to the server, we

need to add some code that will process the response that the server

sends back. We’ll do that by creating the function processZipData():

Line 1 function processZipData() {

- var data = xhr.responseText;

- var cityState = data.split(' ,');

- document.getElementById("city").value = cityState[0];

5 document.getElementById("state").value = cityState[1];

- }

The first few lines of this function are fairly intuitive; we retrieve the

data sent back from the server—the city and state, formatted as City,

State—and split the string into a two-element string array so that we

can access the city and state values separately.

Lines 4 and 5 demonstrate why we gave id attributes to the City and

State input elements earlier. Web browsers model every web page they

display as XML documents (regardless of how ugly the page’s HTML

markup is). In JavaScript code, we can access this XML document

using the document variable. document has a handy getElementById()

function that can return a reference to any XML element based on the id

attribute. Once we have a reference to the element, we can manipulate

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=52

AJAX TO THE RESCUE 53

it. In this case, we set the value attribute of the elements to the city and

state values returned by the server.

Tying It All Together

We’ve created two JavaScript functions: getZipData() sends a request to

the server, and processZipData() processes the response. However, we

haven’t yet connected them. As our code currently stands, processZip-

Data() will never be invoked.

You might think that we should invoke processZipData() as we do on line

6 of the following example:

Line 1 function getZipData(zipCode) {

- xhr = new XMLHttpRequest();

- xhr.open("GET",

- "/getCityStateFromZip.request?" + zipCode);

5 xhr.send(null);

- processZipData();

- }

Unfortunately, this just doesn’t work. The A in Ajax stands for asyn-

chronous, and asynchronous behavior is exactly what we’re seeing here. asynchronous

It turns out that when we invoke the send() function on line 5, the

invocation returns immediately, and the XMLHttpRequest will make the

request and receive the response on a separate thread. Thus, if we were

to try to process the response from the server on the following line, we

couldn’t—we would not yet have received the response.

The solution is to register a callback handler—a function that will be callback handler

invoked when the XMLHttpRequest has received the response from the

server. Line 3 in the following example demonstrates how to register

processZipData() as a callback handler:

Line 1 function getZipData(zipCode) {

- xhr = new XMLHttpRequest();

- xhr.onreadystatechange=processZipData;

- xhr.open("GET",

5 "/getCityStateFromZip.request?" + zipCode);

- xhr.send(null);

- }

By simply passing the name of the function to the onreadystatechange()

method, we are almost ready. Why is the method named onreadystat-

echange() and not, say, onresponsereceived()? It turns out that XML-

HttpRequest calls back into the function we registered multiple times as

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=53

AJAX TO THE RESCUE 54

readyState

The readyState property has five possible values:

0: (Uninitialized)
The send() method has not yet been invoked.

1: (Loading)
The send() method has been invoked; request in progress.

2: (Loaded)
The send() method has completed; entire response
received.

3: (Interactive)
The response is being parsed.

4: (Completed)
The response has been parsed; is ready for harvesting.

it sends the request and receives the response, each time indicating

that it has made progress. We’re interested in parsing the data only

once the entire process has finished, so we need to check the current

status of the XMLHttpRequest before we attempt to get the response data

in processZipData():

Line 1 function processZipData() {

- if (xhr.readyState == 4) {

- var data = xhr.responseText;

- var cityState = data.split(' ,');

5 document.getElementById("city").value = cityState[0];

- document.getElementById("state").value = cityState[1];

- }

- }

XMLHttpRequest provides a readyState property that indicates its current

status; a state of 4 indicates that the response has been received.

The Big Picture

That’s it, we’re done. Let’s look at the entire web page source code to

see how all these pieces fit together:

File 2 <html>

<head>

<title>Customer Data Screen</title>

http://media.pragprog.com/titles/ajax/code/AjaxInAction/screenAjax1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=54

AJAX TO THE RESCUE 55

<script type="text/javascript">

var xhr;

function getZipData(zipCode) {

xhr = new XMLHttpRequest(); //<label id="code.xhr"/>

xhr.onreadystatechange=processZipData;

xhr.open("GET",

"/getCityStateFromZip.request?" + zipCode);

xhr.send(null);

}

function processZipData() {

if (xhr.readyState == 4) {

var data = xhr.responseText;

var cityState = data.split(' ,');

document.getElementById("city").value = cityState[0];

document.getElementById("state").value = cityState[1];

}

}

</script>

</head>

<body>

<h1>Corporate CRM System</h1>

<h2>Enter Customer Data</h2>

<table>

<tr>

<th>Customer Name:</th>

<td><input type="text" name="name"/></td>

</tr>

<tr>

<th>Address:</th>

<td><input type="text" name="address"/></td>

</tr>

<tr>

<th>Zip:</th>

<td><input onblur="getZipData(this.value)"

type="text" name="zip"/></td>

</tr>

<tr>

<th>City:</th>

<td><input id="city" type="text" name="city"/></td>

</tr>

<tr>

<th>State:</th>

<td><input id="state" type="text" name="state"/></td>

</tr>

<tr>

<th></th>

<td><input type="Submit" value="Add Customer"/></td>

</tr>

</table>

</body>

</html>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=55

THE GRUBBY DETAILS 56

Of course, Ajax is all about interactivity; seeing a code listing doesn’t

quite capture the drama of having the fields autopopulate. If you visit

AjaxInAction/screenAjax1.html you’ll find an online version of this code.

3.3 The Grubby Details

Ajax doesn’t seem that hard, does it? If you have much experience

with HTML and JavaScript, you probably already knew how to do 90%

of what we just explained. Despite what some industry figures have

claimed, Ajax really isn’t rocket science. However, it isn’t quite as sim-

ple as we’ve just demonstrated, either. Before we move on, we really

should stop to explain a few more things.

Cross-browser Issues

The Ajaxified web page we just looked at has at least one rather severe

cross-browser limitation. The way it initializes the XMLHttpRequest object

will function only on Mozilla 1.0+ and Safari 1.2+; it does not function

on Internet Explorer. On IE 5.0+, the way to create it is as follows:

var xhr = new ActiveXObject("Microsoft.XMLHTTP");

On earlier versions of Internet Explorer, the library had a different

name, and the code should read as follows:

var xhr = new ActiveXObject("MSXML2.XMLHTTP");

A common idiom for supporting all major browsers fairly easily is to use

a JavaScript try/catch block to attempt to create the object in different

ways:

File 3 function createXHR() {

var xhr;

try {

xhr = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

try {

xhr = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

xhr = false;

}

}

if (!xhr && typeof XMLHttpRequest != ' undefined') {

xhr = new XMLHttpRequest();

}

return xhr;

}

http://media.pragprog.com/titles/ajax/code/AjaxInAction/screenAjax1.html
http://media.pragprog.com/titles/ajax/code/AjaxInAction/screenAjax2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=56

THE GRUBBY DETAILS 57

Fortunately, these days a multitude of libraries encapsulate all of this

complexity into a simple, single line of code. We’ll discuss some of these

libraries in Chapter 5, Ajax Frameworks, on page 77.1

Handling Errors

Recall the processZipData() function:

File 2 function processZipData() {

if (xhr.readyState == 4) {

var data = xhr.responseText;

var cityState = data.split(' ,');

document.getElementById("city").value = cityState[0];

document.getElementById("state").value = cityState[1];

}

}

This implementation works fairly well—until the server responds with

an error. Because XMLHttpRequest uses the familiar HTTP transport to

make its requests, it uses the same scheme of status codes that web

developers have learned over the ages. For example, a status code of

200 indicates that the request was successfully processed, 404 indi-

cates that the resource could not be found, and so forth.

To make our function a bit more robust, we ought to do something like

this:

File 3 function processZipData() {

if (xhr.readyState == 4) {

if (xhr.status == 200) {

var data = xhr.responseText;

var cityState = data.split(' ,');

document.getElementById("city").value = cityState[0];

document.getElementById("state").value = cityState[1];

document.getElementById("zipError").innerHTML = "";

} else {

document.getElementById("zipError").innerHTML = "Error";

}

}

}

Note the addition of a new element to the page: zipError. This is an

element with an id= attribute set to zipError. When our XMLHttpRequest

fails, the element will display the Zen-like message “Error.”

1The file AjaxInAction/screenAjax2.html contains code that’s compatible with Internet

Explorer 5.0+.

http://media.pragprog.com/titles/ajax/code/AjaxInAction/screenAjax1.html
http://media.pragprog.com/titles/ajax/code/AjaxInAction/screenAjax2.html
http://media.pragprog.com/titles/ajax/code/AjaxInAction/screenAjax2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=57

THE GRUBBY DETAILS 58

Synchronous Ajax?

We’ve misled you a little bit. It turns out that you don’t have to use

XMLHttpRequest asynchronously. When you call the open function, if

you pass a third argument of false, XMLHttpRequest will make its request

without spawning a background thread—thus allowing you to work

with it in a synchronous fashion, such as in this example:

xhr.open("GET", "/myURL", false);

xhr.send(null);

processZipData();

This seems so much simpler than all of that asynchronous callback

mumbo jumbo; why not use XMLHttpRequest this way?

It turns out that when you use XMLHttpRequest in this fashion, the

browser’s user interface becomes nonresponsive for the duration of the

request. If the request takes a few milliseconds, as some do, that’s

really not a big deal. However, when it comes to networks, one should

never make assumptions about latency; if the request takes a second

or two, the user is sure to notice. If it takes five or ten seconds, the

user is sure to become rather annoyed and will perhaps even terminate

the browser.

In short, you should probably never do synchronous Ajax (err, Synjax).

Network Latency

When utilizing the synchronous version of XMLHttpRequest.open, one of

the biggest worries you have is latency. You have to be concerned with latency

the length of time it takes the response to arrive from the server, since

the browser will be blocked and the user will be sitting idle while they

wait.

Less obvious, but just as important, is the effect latency can have

on asynchronous requests. Take, for example, an asynchronous Ajax

request that should autopopulate several form fields. If the background

request takes too long to return, the user might begin populating the

fields by hand, expecting that some kind of error has occurred. When

the results arrive from the server, what should the page do? Overwrite

the user-provided values, or drop the server-returned values? If it has

to drop the server values, should it do so silently or with a warning?

It really doesn’t matter what style of network call you utilize in your

application. Network speed is always an issue on the UI, and it benefits

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=58

WRAPPING UP 59

your users when the code takes possible delays into account. We cover

some ways to handle this in Chapter 7, Ajax UI, Part II , on page 122.

3.4 Wrapping Up

And so, armed with his new Ajax version of the customer screen, Hector

is ready to satisfy his users by giving them the rich interaction they

demanded. There are some ridiculously fancy Ajax websites out there,

to be sure, but what you’ve seen in this chapter forms the foundation

of all Ajaxian techniques: asynchronous JavaScript requesting data

dynamically from the server and doing DOM manipulation of the page

to dynamically update it with the new data.

As this book progresses, we’ll build on this foundation to show you how

to create much more advanced effects and functionality and to do it

more simply with JavaScript helper libraries and sophisticated toolkits

in various programming languages.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=59

Chapter 4

Ajax Explained
As we discussed in previous chapters, Ajax is the technique of using

JavaScript (specifically, the XMLHttpRequest object) to request data asyn-

chronously and then dynamically update a web page with the requested

data. We demonstrated this technique by revamping Hector’s CRM

application to retrieve the city/state values for a ZIP code.

In this chapter, we will provide a crash course in the basic techniques

you’ll need to master in order to implement Ajax effects of all shapes

and sizes in your own applications. Though we will cover the founda-

tional technologies in this chapter, you will likely leverage frameworks

with higher-level abstractions. In future chapters, we will discuss how

third-party frameworks can give you complex effects.

In the following sections, we’ll help you build a foundation of JavaScript

understanding that will help you comprehend the technical portions of

the remainder of this book. Our approach is to assume some program-

ming experience on your part. In fact, we’re betting that you’re already

a capable programmer in your language(s) of choice.

Our agenda for the chapter is as follows:

• Reviewing client-side JavaScript

• Manipulating the web page

• Sending and retrieving data

• Debugging techniques

A REVIEW OF CLIENT -SIDE JAVASCRIPT 61

4.1 A Review of Client-Side JavaScript

Do you hate programming JavaScript? Do you consider JavaScript

code inherently ugly? Do you find any nontrivial JavaScript codebase

to be a maintenance nightmare? You’re certainly not alone. JavaScript

is widely hated and feared by many web developers, especially those

with backgrounds in statically typed languages such as Java and C#.

Why do so many have it in for JavaScript? We believe that JavaScript’s

poor general reputation is not at all because of the syntax or capabili-

ties of JavaScript itself. In fact, the truth of the matter is that modern

JavaScript is actually a very advanced programming language. It sup-

ports continuations, closures, aspect-oriented programming, on-the-fly

type modification, and a host of other features found in languages such

as Python, Ruby, and Lisp. We think that its poor reputation stems

more from its historical misuse in early web applications for cramming

business logic into the view. This chapter, and this book, is about using

JavaScript for its natural purpose: creating a rich user interface.

The Basics of JavaScript

Depending on your background, you may find variables in JavaScript

surprising. Specifically, you don’t need to declare them or define their

type. Instead, you simply reference them, as in this:

myVariable = "What am I? Who made me?"

In this example, the variable myVariable is automatically conjured into

existence for us on the spot. This flexible manner of creating variables

is neat but also a bit confusing. Consider this next example:

Line 1 myVariable = 10

- myOtherVariable = 20

- mySumTotal = myVariable + myOtherVariable

- myVariable = 5

5 myOtherVarable = 10

- mySumTotal = myVariable + myOtherVariable

What do you suppose the value of mySumTotal is at the end of the exam-

ple? If you guessed 15, you’re wrong; it’s actually 25. You see, on line

5, myOtherVariable was misspelled. In a language such as Java or C#,

this would produce some kind of error. In JavaScript, it’s not an error

at all—we’ve simply created a new variable on the fly named myOther-

Varable. Fortunately, JavaScript does consider it an error if you refer-

ence an undefined variable in an expression. If the typo had occurred

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=61

A REVIEW OF CLIENT -SIDE JAVASCRIPT 62

JavaScript, booleans, and You

JavaScript can evaluate numbers and strings as booleans, too;
any nonempty string and any nonzero number evaluate to true.

in line 3 or 6, as in mySumTotal = myVariable + myOtherVarable, an error

would be thrown.

For this reason, we consider it good style to use the optional var keyword

when declaring variables; this makes it explicit whether a variable was

intended to be declared or whether a declaration is a probable typo.

With var, the example looks as follows:

Line 1 var myVariable = 10

- var myOtherVariable = 20

- var mySumTotal = myVariable + myOtherVariable

- myVariable = 5

5 myOtherVarable = 10

- mySumTotal = myVariable + myOtherVariable

JavaScript supports four basic types of values: object, number, string,

and boolean (there are some others, like functions and arrays, but they

aren’t important just now). Unlike most other languages, JavaScript

variable declarations do not declare the type of data they store. Rather,

the type is determined automatically based both on what has been

assigned to the variable and the type of expression in which the variable

is used. What’s more, JavaScript variables change their type automat-

ically as necessary. Consider the following examples:

myVariable = "What am I? Who made me?" // a string

myVariable = 42 // now a number

myVariable = 42 + "The answer" // a string ("42The answer")

myVariable = true // a boolean

Functions

On the surface, functions in JavaScript work much as they do in any

other language. They are declared with the keyword function(), they can

take zero or more parameters, and they can return values:

function addNumbers(one, two) {

return one + two;

}

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=62

A REVIEW OF CLIENT -SIDE JAVASCRIPT 63

Undefined

The undefined value is a first-class type in JavaScript. Most com-
monly, it is the value provided by JavaScript for a variable that
has been declared but whose value has never been assigned.
Some JavaScript implementations also use it for the value of
variables that have never been declared, though this is less
common, since most JavaScript interpreters allow for in-line
variable declaration.

It is important to note that it isn’t merely a value. Though it
has a string representation (undefined), it is actually a first-class
type. This means that the typeof() operator, when applied to a
variable with this value, will return Undefined.

Java and C# developers may find it odd that no return type need be

declared; if a function returns a value, it simply uses the return() key-

word at some point. It is perfectly legal to create functions that branch

and return a value in one path but don’t in another. Variables that

are assigned the result of a nonreturning function contain the special

JavaScript value undefined.

Consider this next example snippet:

Line 1 function myFunction(a) {

- return "Hello";

- }

-

5 function myFunction() {

- return "World";

- }

-

- var myResult = myFunction("aValue");

What do you suppose the value of myResult on line 9 is? If you are used

to a language that supports method overloading, you’d probably expect

the value to be Hello. It’s not. JavaScript doesn’t support overloading;

that is, it doesn’t match function invocations to function definitions

based on both the name and parameters of the function, just the name.

Therefore, there can be only one function with a given name at run-

time. If two or more functions are defined with the same name, the

version that was last processed by JavaScript is invoked. In our exam-

ple, that turns out to be the one defined on line 5.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=63

A REVIEW OF CLIENT -SIDE JAVASCRIPT 64

Because a function’s parameters play no role in defining it, their pres-

ence is entirely optional. In fact, there’s even a way to reference an invo-

cation’s parameters without declaring them—but we’ll return to that in

just a bit.

The Function Type

Earlier, we talked about the four types of values in JavaScript (object,

number, string, and boolean) and hinted that more existed. Functions

are in fact a type in JavaScript.: In fact, once you define a function

using the traditional syntax we saw earlier, a variable exists that refer-

ences the function; the variable takes on the same name as the function

name itself.

Consider this next example:

function myFunction() {

// imagine that this function does something useful

}

alert(typeof myFunction)

If you execute this code in your browser, JavaScript’s built-in alert()

function will cause a dialog to appear that displays the type of the

myFunction variable; the contents of the dialog will be function.

This particular property of JavaScript—having functions as a type—

leads to some pretty interesting behaviors. Consider the following:

function myFunction() { // we' ve created a variable myFunction

return "Hello"; // of the type "function"

}

var myFunction = 10; // we' ve now reassigned myFunction to be a number

var myResult = myFunction(); // an error -- we can' t invoke a number

Yikes! In many languages, code like this would work just fine; variables

and functions are entirely different entities, and their names don’t col-

lide. In JavaScript, because functions are variables, code like this is

nonsense.

In addition to the conventional syntax for defining functions that we’ve

used up to now, there’s another way to define a function:

var a = 10;

var b = 12;

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=64

A REVIEW OF CLIENT -SIDE JAVASCRIPT 65

var myFunction = function() {

return a + b;

}

var result = myFunction(); // result is 22;

In this example, we’ve created a new function named myFunction(). The

cool bit is that the function is able to access the state of its enclosing

block. We can reference the a and b variables from within the func-

tion. This feature is known as a closure, and it’s a powerful feature. closure

Normally, values in the enclosing scope are lost when the scope ter-

minates. A closure retains access to the state of the enclosing block;

when used later, that state is still available to the closure.

JavaScript Events: Binding to the Web Page

Up to now, nothing of what we’ve considered about JavaScript is spe-

cific to web browsers. In fact, many people actually use JavaScript

outside of web browsers. From here on out, however, we will start

to consider properties unique to the JavaScript environment hosted in

modern web browsers.

The first consideration is how web pages interact with JavaScript. If

you’ve ever written JavaScript before, you probably know that most

JavaScript in the web page must be included inside a <script> tag. By

convention, this is typically included in the web page’s <head> section,

as in the following:

<html>

<head>

<script type="text/javascript">

/* javascript code here */

</script>

</head>

<body>

// the web page contents here

</body>

</html>

Actually, you can include <script> elements anywhere in the web page;

their contents will be executed in top-to-bottom order. It is generally

considered bad form to include them anywhere but in the <head>,

however.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=65

A REVIEW OF CLIENT -SIDE JAVASCRIPT 66

JavaScript in a Web Page

We said that most JavaScript in a page should be included
in a <script> tag. The exception is that JavaScript can be
embedded inline as the value of attributes on a tag. Specifi-
cally, instead of referencing JavaScript functions in event han-
dler attributes, you can embed JavaScript directly. There is no
functional difference between the following:

<div id="myDiv" onclick="clickIt();"/>

<script type="text/javascript">

function clickIt() {

alert("You clicked me!");

alert("That tickles!")

}

</script>

and this:

<div id="myDiv" onclick="alert(' You clicked me!');

alert(' That tickles!');"/>

Defining Events

The most common way to launch JavaScript code from a web page

is to use HTML events. These events provide hooks for web pages to HTML events

execute arbitrary JavaScript code when the user interacts in certain

ways with the web page. For example, in the previous chapter, you saw

an example of the onblur event registered on an <input> tag:

<input onblur="getZipData(this.value)" type="text" name="zip"/>

As we explained back then, the onblur event is fired (that is, its contents

are executed) when the user moves the cursor from the input compo-

nent to some other place on the web page. In this example, the contents

of the event attribute is a function invocation. As we’ve shown, you can

place any arbitrary JavaScript code you like here, but it is a good idea

to limit yourself to function invocations to keep your code a bit easier

to maintain.

There are a large number of events available in a web page. These

range from the so-called classic events defined many years ago in the

official HTML 4 specification to some additional de facto events that

have emerged in various browsers in more recent years. There are

numerous resources on the Web for discovering the various types of

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=66

MANIPULATING THE WEB PAGE 67

events possible in browsers; our favorite website is QuirksMode.org.1

QuirksMode offers a very detailed discussion of events and browsers

and offers fairly recent compatibility tables for different browser types.

4.2 Manipulating the Web Page

So far, we’ve covered the basics of JavaScript and discussed how to

get a web page to call JavaScript functions in response to user events.

This covers a third of what you need to know to create an Ajax applica-

tion. The next major piece is knowing how to actually change web page

content from JavaScript.

XML under the Covers

Modern browsers store a copy of every web page you visit in memory

as an XML document, regardless of whether you’re visiting a modern

XHTML site or an old crufty HTML 2.0-era site. (When a web page

isn’t well-formed XML, the browser follows an internal algorithm for

promoting the HTML to XML.) This in-memory XML representation of

the web page can be accessed by JavaScript code to programmatically

determine all kinds of information about the page.

More important, the XML document can be modified, and such modifi-

cations are instantly reflected by the browser’s rendering of that page.

Thus, to achieve animation, dynamic modification, and other effects,

all one has to do is modify the web page’s underlying XML document.

We’ll now consider how to go about making such modifications.

Modifying the XML: The DOM API

The major browsers all implement the same API for exposing the XML

document to JavaScript code; it’s known as the DOM API. Short for

Document Object Model, DOM represents XML elements, attributes,

and other components as objects in memory. The DOM API models an

XML document in memory as a document object.

You can obtain a reference to the document object that represents the

current web page by simply referencing a variable named document.

From this instance, you can retrieve references to individual XML ele-

ments in the web page, which are modeled as Element objects. You can

also modify the attributes of an XML element via an Element object.

1http://www.quirksmode.org

http://www.quirksmode.org
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=67

MANIPULATING THE WEB PAGE 68

Defining Events Outside of HTML

We have so far shown that JavaScript event handler functions
can be wired up to node events through HTML attributes. This is
a fairly common practice, though there is a class of program-
mer (we’ll call them “purists”) who frown upon this usage. Even
though JavaScript is embedded within the web page itself,
many developers like to consider the JavaScript and the HTML
as separate artifacts. Specifically, web designers will want to
work on the HTML and styles, while programmers will want to
focus on the scripting. Directly embedding the JavaScript into
the HTML is too much coupling.

The main alternative is to use JavaScript’s object properties. A
reference to a node of an HTML document exposes its events
as a series of properties. Functions can be directly attached to
those properties. The following:

<div id="mydiv" onclick="myfunc()"/>

is functionally equivalent to this:

<div id="mydiv"/>

<script type="text/javascript">

document.getElementById(' mydiv').onclick = myfunc;

</script>

The value to this technique is that the designer can worry about
HTML, and only HTML. Programmers can hook events trans-
parently. However, the downside is that the scripts that ref-
erence those events must be parsed after the HTML they ref-
erence. Otherwise, the element cannot be found by getEle-

mentById(), and the result is that no event is actually han-
dled. There is a relatively new library out called Behaviour
(http://bennolan.com/behaviour/) that helps programmers by
allowing you to assign behaviors to CSS classes, adding an
extra layer of indirection.

Modern browsers support a new kind of binding. The new
attachEventListener() function takes the name of the event to
handle (minus the “on” part), the function pointer, and a
boolean value called capture mode. The beauty of the new
attachEventListener() method is that it can wire up multiple han-
dlers to the same event, creating a chain of handlers. Using
the direct property access, any subsequent assignments to
a property just override the last assignment. Before using
attachEventListener(), make sure your browser is supported. At
last look, IE5+ for Windows, Firefox 1.0+, and Safari 1.2+ were all
supported, but not IE for the Mac.

http://bennolan.com/behaviour/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=68

MANIPULATING THE WEB PAGE 69

It’s time for an example. This next code excerpt contains a simple web

page that will modify itself when its button is clicked:

<html>

<head>

<script type="text/javascript">

function modifyPage() {

var htmlElement = document.documentElement

var children = htmlElement.childNodes

var bodyElement

for (i = 0; i < children.length; i++) {

if (children[i].nodeName == "BODY") {

bodyElement = children[i]

break;

}

}

children = bodyElement.childNodes

var divElement

for (i = 0; i < children.length; i++) {

if (children[i].nodeName == "DIV") {

divElement = children[i]

break;

}

}

divElement.replaceChild(document.createTextNode("Goodbye, world!"),

divElement.childNodes[0])

}

</script>

</head>

<body>

<div>Hello, world.</div>

<button onclick="modifyPage()">Click Me</button>

</body>

</html>

As you can see, the DOM API is a pleasure to use. Actually, no, it’s not.

The DOM API is actually quite obtuse. You might be expecting some-

thing that models XML in an intuitive and easy fashion. For example,

you might expect to be able to get a reference to the root element in your

web page, the <html> element, and from there say something like:

htmlElement.getElement("BODY");

No such luck, my friend. You see, the DOM API models all of the dif-

ferent types of content in an XML file (elements, attributes, text, com-

ments, and processing instructions) as nodes, and inexplicably, the API

doesn’t provide a way for you to retrieve just the element children from

a parent element. This means navigating through the web page as XML

is excruciating, as you can see for yourself.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=69

MANIPULATING THE WEB PAGE 70

Further, matters get a touch worse. Earlier we explained that browsers

canonicalize all web pages—that is, convert all HTML to XML in a stan-

dard way. As part of this process, certain elements are added. For

example, consider the case of an HTML table:

<table>

<tr>

<td>A table</td>

</tr>

</table>

When the browser converts this HTML to XML, it automatically adds a

<tbody> element as a child of the <table> element. Unexpected things

happen to your HTML when the browser parses it; for this reason, you

should steer clear of literally walking your page using the DOM, as

things may not be where you expect them.

DOM Shortcuts

Fortunately, the DOM API includes a few shortcuts. Document objects

have a method, getElementsByTagName(), that could have come in handy

in our example. Consider this alternate JavaScript function:

function modifyPage() {

var divElements = document.getElementsByTagName("DIV");

var divElement = divElements[0];

divElement.replaceChild(document.createTextNode("Goodbye, world!"),

divElement.childNodes[0])

}

That’s much more palatable. Sure, but we still have the brittle ordering

problem. We’re assuming that the <div> element that we’re interested

in will always occur in the same location relative to other <div> ele-

ments. In our trivial example, this is a safe assumption, but in the real

world, this won’t work at all.

What we really need is a way to easily reference a specific element

in the web page. Fortunately, there is just such an easy and conve-

nient mechanism. If you give an element an id= attribute, you can

then retrieve that element using the getElementById() function on the

document object. Consider this further revised version of the earlier

example:

Line 1 <html>

- <head>

- <script type="text/javascript">

- function modifyPage() {

5 var divElement = document.getElementById("toReplace")

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=70

MANIPULATING THE WEB PAGE 71

- divElement.replaceChild(document.createTextNode("Goodbye, world!"),

- divElement.childNodes[0])

- }

- </script>

10 </head>

- <body>

- <div id="toReplace">Hello, world.</div>

- <button onclick="modifyPage()">Click Me</button>

- </body>

15 </html>

Hey, that’s not looking too bad. Line 5 seems to be a fairly clean way to

get the <div> we’re looking for. Now, if only we could clean up the next

two lines; they still seem a bit complex. And actually, we can.

The official DOM API requires that developers manually manipulate all

of an element’s child nodes and add new ones, in order to change their

contents. Some time ago, Internet Explorer introduced an alternative

mechanism for changing the contents of an element—one that is dra-

matically easier to use. In recent years, Mozilla and Safari have both

implemented support for this feature. Take a look at the revised modi-

fyPage() function:

function modifyPage() {

var divElement = document.getElementById("toReplace")

divElement.innerHTML = "Goodbye, world!"

}

Ahh, finally—something that is easy to write! The innerHTML property

allows you to change the contents of an element by passing it a string

that it will parse as XML and use to replace the current contents of the

element. Nice and easy.

While the prose of these previous few sections has been biased against

the more traditional DOM API methods, you can choose for yourself

which mechanism seems most natural to you. Some folks prefer dealing

with nodes directly and actually enjoy writing code like some of the

previous iterations of our example. In our experience, however, most

people prefer these shortcut mechanisms for retrieving elements and

modifying their contents.

Attributes

So far we’ve talked about dealing with XML elements using JavaScript.

What about attributes? Just as with elements, changes to attributes

take effect immediately in the browser’s view of a web page, so manip-

ulating them can be pretty handy.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=71

MANIPULATING THE WEB PAGE 72

Inner and Outer

The innerHTML() property that we’ve just demonstrated is use-
ful, but it has a rather storied history. It was introduced as a
proprietary addition to Internet Explorer; other browsers have
decided to support it because it has proved fairly useful, for
obvious reasons. There are, though, two related properties:
innerText() and outerHTML().

innerText() accomplishes almost the same thing as innerHTML().
The internal representation of the referenced node is replaced
with the text passed into the method. However, unlike inner-

HTML(), the new text is not parsed as XML. It is, rather, rendered
directly as a textual child node of the containing node. This
performs better than parsing the text as XML and is preferable
for just adding data rather than new elements to the tree.

outerHTML() is a different beast.innerHTML() detaches any and
all existing child nodes of the target node, parses the new text,
and adds the new nodes as children of the target (essentially
replacing everything between the opening and closing tags of
the target node). outerHTML(), on the other hand, replaces the
target node itself. All children of the existing node are lost as a
byproduct of destroying the target node. The node is replaced
with whatever new nodes are created by parsing the input to
the method.

This latter approach is actually much more useful when writing
web pages that are dumb shells that aggregate components.
The server-side code that renders the component can return
the full entity (top-level node and its children), which can be
placed anywhere on the page. Using innerHTML(), the contain-
ing page has to have full control over the layout of the compo-
nents, with specifically designed container nodes to use as tar-
gets. The server endpoints that render the components output
the contents of a node only; if the containing page puts them
in the wrong kind of node, or at the root of the document, the
rendering will most likely be wrong.

Using outerHTML(), however, the server target renders the con-
taining node and its contents, thus ensuring that no matter
where the containing page puts the results, it will be fully con-
tained as designed. That means a real component, not just
component contents. This sounds like an excellent thing—and
it is—-except it’s still a proprietary IE addition. Firefox, for exam-
ple, has not yet adopted it and has no public plans to do so.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=72

RETRIEVING DATA 73

The DOM API has a generic mechanism for manipulating attributes.

Once you have a reference to an element, you can use the getAttribute()

and setAttribute() functions to access and change attribute values, such

as in this example:

var div = document.getElementById("someDiv")

div.setAttribute("style", "background: red") // make the div red

Surprisingly, this is fairly easy stuff. After seeing how the DOM API

treats elements, you might have expected to have to navigate through

some obtuse list of attributes in order to change them. In fact, changing

attribute values can be even easier than this.

Cast your mind back to the CRM application we enhanced for Hector in

the previous chapter. Specifically, let’s review a particular JavaScript

excerpt that powered that application:

Line 1 function processZipData() {

- if (xhr.readyState == 4) {

- var data = xhr.responseText;

- var cityState = data.split(' ,');

5 document.getElementById("city").value = cityState[0];

- document.getElementById("state").value = cityState[1];

- }

- }

Take a look at lines 5 and 6. What’s that .value bit? What that’s actually

doing is changing the value attribute for the City input element. Given

what we just talked about a few paragraphs ago, we ought to accom-

plish that using the setAttribute() function, as in setAttribute("value", "city").

What’s that value property all about?

It turns out that the DOM API also defines a standard for mapping spe-

cific attributes from the HTML grammar directly into a special extended

version of the DOM API that browsers supply. Using these special

extensions, you can set an attribute’s new value by modifying a prop-

erty of the element itself. Thus, when getElementByID("city") returns an

input element, we can change its value attribute just by setting the value

property on the object. Nifty!

4.3 Retrieving Data

We’ve talked about JavaScript and we’ve talked about how to manip-

ulate the web page with the DOM API, so we’re just missing one key

element to explain Ajax: retrieving data. The heart of data retrieval

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=73

RETRIEVING DATA 74

is the XMLHttpRequest object (XHR for short) that we introduced in the

previous chapter. In this section, we’ll discuss more details about XHR.

XMLHttpRequest

In the previous chapter, we saw the basics of how to create an instance

of an XHR and use it to retrieve data. Let’s review that again here,

briefly, in the context of a different example. The following code listing

shows how a simple web page can retrieve a message from a server and

display it:

Line 1 <html>

- <head>

- <script type="text/javascript">

- var xhr;

5

- function modifyPage() {

- try {

- xhr = new ActiveXObject("Msxml2.XMLHTTP");

- } catch (e) {

10 try {

- xhr = new ActiveXObject("Microsoft.XMLHTTP");

- } catch (e) {

- xhr = false;

- }

15 }

-

- if (!xhr && typeof XMLHttpRequest != ' undefined') {

- xhr = new XMLHttpRequest();

- }

20

- xhr.open("GET", "/message");

- xhr.onreadystatechange=function() {

- if (xhr.readyState != 4) return;

-

25 document.getElementById("message").innerHTML = xhr.responseText;

- }

- xhr.send(null);

- }

- </script>

30 </head>

- <body>

- <div id="message"></div>

- <button onclick="modifyPage()">Click Me</button>

- </body>

35 </html>

This HTML will render a very simple web page that presents a button to

the user. Once clicked, the page will display the results of a query to the

server in the page above the button. Line 21 shows the requested URL

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=74

RETRIEVING DATA 75

as "/message"; you could implement this URL using any web-enabled

language. A Java Servlet implementation would look something like

this:

import javax.servlet.http.*;

import javax.servlet.ServletException;

import java.io.IOException;

import java.util.Date;

public class MessageServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.getWriter().println("Hello; the current time is " + new Date());

}

}

But really, you could also implement the message URL as a flat file

containing plain text or an HTML snippet; it really doesn’t matter. XHR

requests the URL just like the browser would and returns the results

just as though you entered the URL in the browser URL field.

XHR in Detail

Let’s talk about some of the other features of XHR that we haven’t cov-

ered thus far.

States

The onreadystatechange property is a key feature of XHR. It lets you

register an asynchronous callback handler that will be invoked as the

state of XHR changes during a request/response communication with

a server. In the previous chapter, we looked at the five possible states

of the readyState property. Generally speaking, the important state is

4 (Completed). The other four states are all different shades of ”incom-

plete.” They are described in more detail in Chapter 3, Ajax in Action,

on page 48.

Headers

In addition to exposing somewhat granular information about its cur-

rent state, XHR also lets you modify or add HTTP headers in the request

and view headers in the response. This is accomplished using the setRe-

questHeader(), getResponseHeader(), and getAllResponseHeaders() func-

tions. In this example, we spoof the browser used to send the XHR:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=75

SUMMARY 76

GET Requests and the Browser Cache

A common gotcha for developers new to the XHR object
is because of the way that IE, and now Firefox 1.5, handles
caching XHR requests. If you use the GET method, then in IE
and FF 1.5, it will dip into the browser cache unless the server
side returned the cache-busting headers (e.g. Pragma: no-
cache, Cache-Control: no-cache, etc.). What does this mean
to you? As you fire off XHR requests, you lose hair wondering
why the same item keeps coming back, and you see only one
hit on the server side.

The solution is to do one of the following:

• Server side: Set the cache control headers to force the
browser to go back.

• Client side: Build a URL that has a changing attribute such
as /message?date=20050101002311 or /message?numreq=5

xhr.setRequestHeader("User-Agent", "My Custom Browser");

Response Data

In the examples, we’ve used the responseText() property to retrieve the

response body from the server. Another property, responseXML(), that

returns the response from the server as a DOM instance. This can be

useful if you want to send structured data back to the web page from

the server; you can use the DOM API to navigate through the data as

XML and update the web page as appropriate based on that data.

4.4 Summary

This chapter dove into the underpinnings of Ajax. You’ve seen the

JavaScript language and DOM model up close and personal. Though

it is certainly possible to write applications using only the constructs

you’ve seen here, programmers generally tend to appreciate tools that

give them more leverage. After we tackle implementing Google Maps,

the next several chapters will look at the frameworks that have sprouted

lately to make the gory details of DOM manipulation, event binding, and

node traversal disappear.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=76

Chapter 5

Ajax Frameworks
Until now, we’ve looked at Ajax either at an abstract architectural level

or from down in the tunnels underneath the structure. The DOM API

and JavaScript’s sometimes tortured interactions with it form the basis

of all other Ajaxian techniques. Though it is vital to understand these

things for when you run into trouble, it is also likely that you’ve been

left scratching your head from time to time. Maybe you wondered who

decided to use magic numbers for all the readyState() values. Or why

the industry-standard way to create an XHR instance is in a try/catch

block that will encounter an exception ~70% of the time. In fact, if

you are anything like us, it probably occurred to you that you could

write a fairly simple wrapper around this stuff to make it more usable

in production code. These wrappers are fairly common; the Internet is

littered with their corpses.

A few library wrappers have survived and flourished to become full-

fledged toolkits. They provide us with much better leverage for using

these Ajaxian techniques to make real applications. In this chapter, we

will look at several of these frameworks at our disposal and will rewrite

Hector’s CRM application using the most mature and popular versions.

5.1 Frameworks, Toolkits, and Libraries

As Ajax has taken off, we’ve been inundated with projects claiming to

have Ajax support. Since the term itself has such a broad meaning in

the popular consciousness, it’s often hard to know exactly what this

means. Does the site perform asynchronous callbacks to the server?

Does it re-render fresh data in-page? Or does it just manipulate the

properties of existing DOM nodes? Figure 5.1, on the following page,

clarifies the distinct layers of Ajax proper.

FRAMEWORKS, TOOLKITS, AND LIBRARIES 78

Figure 5.1: Layers of Ajax Frameworks

Remoting Toolkit

The lowest level of Ajax helpers is a remoting toolkit. If you were to

create your own toolkit, this would probably be where you’d start out:

wrapping XMLHttpRequest with your own API to make life easier. A really

good remoting toolkit should be able to do much more than simply hide

our ugly try/catch XHR instantiation code. What should happen if your

Ajaxian page is loaded into a browser that does not support XMLHttp-

Request? It ought to find a way, if possible, to provide all (or at least

some) of the page’s functionality by other means. For example, some

remoting toolkits will use a hidden iframe to provide fake XHR support

to the page.

Figure 5.1 lists a handful of such frameworks, and shows what each

attempts to provide to developers. The Dojo Toolkit, JSON-RPC, and

Prototype are all pure JavaScript frameworks that are agnostic about

the world of the server side (although Prototype was built with Ruby on

Rails in mind).

Others, such as DWR (Direct Web Remoting), couple a JavaScript client

library with a server-side listener piece written for the Java platform.

JSON-RPC itself has various bindings for many back-end languages.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=78

FRAMEWORKS, TOOLKITS, AND LIBRARIES 79

iframes

Prior to the broad adoption of the XMLHttpRequest object, many
web applications were using a hidden iframe to accomplish
in-page round-trips back to the server. An iframe is just like a
normal HTML frame (a container that can be targeted at a URL
and render the results) except that it is embedded in another
page. These applications simply created an iframe of 0px by
0px and then caused it to refresh against a given URL in order
to pull more data back from the server.

While the technique is valid and worked for many, there were
two inherent problems. The first is, if you wanted multiple asyn-
chronous requests, you had to have multiple iframes. This
became a game of guessing how many you would need and
embedding that many in the page, which is not a tremendous
burden, just somewhat ungainly.

More important is the question of coding intentionally: the
use of iframe is a quintessential kludge. By that, we mean
it’s the repurposing of a technology to do something it wasn’t
quite meant to do. Though it works, it always feels a little like
cheating. XMLHttpRequest, however poorly named, is an object
specifically designed for initiating, monitoring, and harvesting
the results of in-page postbacks. Programming against it feels
natural, and lends itself to more readable (and therefore main-
tainable) code.

A third issue, which affects IE, is that the iframe issues audio
feedback to the user whenever it makes a request. This comes
in the form of a “click” sound, which can be jarring for the user
since they usually have no other indication of ongoing asyn-
chronous behavior.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=79

FRAMEWORKS, TOOLKITS, AND LIBRARIES 80

Toolkit Resources

• Dojo: http://dojotoolkit.com

• Prototype: http://prototype.conio.net/

• Script.aculo.us: http://script.aculo.us

• DWR: https://dwr.dev.java.net/

• Backbase: http://www.backbase.com

• SmartClient: http://www.isomorphic.com

• Ajax.NET: http://ajax.schwarz-interactive.de/

• SAJAX: http://www.modernmethod.com/sajax/

• JSON-RPC: http://json-rpc.org/

DWR, JSON-RPC, Ajax.NET, and SAJAX are all examples of ORB-based

Ajax frameworks. They allow you to map JavaScript methods to back-

end services, treating the client-side JavaScript as though it could

directly access your server-side objects.

UI Toolkit

Above, or potentially alongside, remoting toolkits we find JavaScript

UI libraries. These give us the ability to use rich UI components and

effects out of the box, but they differ in many ways.

Richer UI Components

Toolkits such as Dojo give us rich widgets like trees, tabbed panes and

menus. These are self-contained, instantiable UI components that can

be used to compose a rich, though still very “webish,” application. The

result is still unmistakably an HTML UI.

Web Application Toolkit

Toolkits such as SmartClient aim to give you widgets that build a UI

that looks and feels the same as a native application on Windows or Mac

OS X.These are useful if you are building an application that happens

to be on the Web versus a website that uses a couple of UI effects and

components. SmartClient, for example, features widgets that make the

page look and feel exactly like a Windows NT application.

http://dojotoolkit.com
http://prototype.conio.net/
http://script.aculo.us
https://dwr.dev.java.net/
http://www.backbase.com
http://www.isomorphic.com
http://ajax.schwarz-interactive.de/
http://www.modernmethod.com/sajax/
http://json-rpc.org/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=80

FRAMEWORKS, TOOLKITS, AND LIBRARIES 81

Markup Based

Backbase allows you to add rich components through a markup pro-

gramming API. Your traditional HTML becomes something like this:

File 4 <xmp b:backbase="true" style="display:none;"

xmlns:nav="http://www.backbase.com/site/nav">

<s:event b:on="construct" b:action="show"/>

<!-- everything that is never shown - in here -->

<div style="display:none;">

<s:include b:url="/chrome/bb3/skin.xml"/>

<s:include b:url="/data/navigation.xml"/>

<s:include b:url="/data/forms.xml"/>

<!-- listeners for links to non-BDOC documents... -->

<div id="forum">

<s:event b:on="nav:show-page"

b:action="select"

b:target="id(' forumBuffer')" />

</div>

<div id="/shop/">

<s:event b:on="nav:show-page"

b:action="select"

b:target="id(' shop_main_panel')" />

</div>

<!-- Contains references to protected buffers -->

<!-- Trigger ' command' event to issue bufferdirty on them all -->

<div id="clear_protected_trigger">

<s:event b:on="command">

<s:task b:action="trigger"

b:event="command"

b:target="*" b:test="*" />

</s:event>

</div>

</div>

<!-- Include shop -->

<s:include b:url="/shop/shopIndex.html?cmd=index" />

<!-- ... -->

</xmp>

Such a system could potentially enable a new generation of visual

development tools. Part of the problem with such tools is the con-

flict between markup and code. Traditional JavaScript-based pages

have caused problems for such tools because it is difficult to provide

visual representations of code resources. An all-markup framework, on

the other hand, would provide the right abstractions for these kinds of

development environments. See, for example, the markup-based com-

ponents in ASP.NET, Tapestry, and JavaServer Faces.

http://media.pragprog.com/titles/ajax/code/AjaxJavaScriptLibraries/backbaseunhbox voidb@x kern z@ char `discretionary {-}{}{}example.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=81

REMOTING WITH THE DOJO TOOLKIT 82

Simple JavaScript-Driven Effects

In Chapter 6, Ajax UI, Part I , on page 93, and Chapter 7, Ajax UI, Part II ,

on page 122, we’ll look at several frameworks that use pure JavaScript

and HTML to create extremely complex UI effects. These kinds of frame-

works provide high-level abstractions on top of some meaty JavaScript,

making the effects simple to implement in your application. The results

are often completely cross-browser compatible and fail gracefully to

static HTML in legacy browsers.

Ajaxian Web Frameworks

At the top of the tower are the web frameworks that are aware of Ajax.

This is a growing group and covers all of the platforms. All the major

players are represented: Java, .NET, Ruby, PHP, Python, Perl, etc.

Once again, the various frameworks offer different models for how you

can work with them in an Ajaxian world.

Code Generation

The Ruby on Rails community jumped on Ajax like nobody else. They

offer high-level Ruby helper functions that generate Prototype-based

JavaScript code. WebWork2 is doing the same thing on the Java plat-

form, utilizing the Dojo Toolkit as the base JavaScript framework. Many

other frameworks are following suit, from Spring to CherryPy to PHP.

Component-Based

ASP.NET had Ajaxian components before there was Ajax. Other frame-

works such as JavaServer Faces and Tapestry on the Java platform join

ASP.NET by letting you use components that may happen to use Ajax-

ian techniques. In this world, you drag your DataTableComponent onto

your designer view and start tweaking the property sheet for that com-

ponent. Here you may see a checkbox for autoupdate. Simply checking

that box will put this component in Ajax mode, and the rest is history.

5.2 Remoting with the Dojo Toolkit

Now that we’ve examined the landscape of available helper toolkits, we’ll

port Hector’s CRM application to several of them to see how they work.

Hector’s CRM system is working OK with our low-level XMLHttpRequest

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=82

REMOTING WITH THE DOJO TOOLKIT 83

example from the previous chapter, but we want to move up the stack

and utilize a remoting toolkit to abstract away browser compatibility

issues and give us more options for controlling the remoting calls.

We will first port our application to use the Dojo Toolkit,1 explain-

ing choices that you have along the way and finally discussing more

advanced features.

What Is the Dojo Toolkit?

Dojo is a browser toolkit. It is an open-source project that (to quote its

marketing text) aims to “allow you to easily build dynamic capabilities

into web pages and any other environment that supports JavaScript.

Dojo provides components that let you make your sites more useable,

responsive, and functional. With Dojo you can build degradable user

interfaces more easily, prototype interactive widgets quickly, animate

transitions, and build Ajax-based requests simply.”

It is a full-featured toolkit that has many packages, including the fol-

lowing:

• dojo.io: The core package that we will look at in this chapter, which

makes Ajax requests easy

• dojo.event: Browser-compatible event system

• dojo.lang: Support for mixins and object extension

• dojo.graphics: Support for nifty HTML effects such as fadeIn/Out,

slideTo/By, explode/implode, etc)

• dojo.dnd: Drag-and-drop support

• dojo.animation: Animation effects

• dojo.hostenv: Support for JavaScript packages (think imports and

includes instead of having to create script src="...")

Porting CRM to dojo.io.bind()

This chapter is all about the remoting layer, and in Dojo that means

the dojo.io package. We are going to go from where we left off with the

CRM application and replace the raw XMLHttpRequest object with a call

to dojo.io.bind().

1http://dojotoolkit.org

http://dojotoolkit.org
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=83

REMOTING WITH THE DOJO TOOLKIT 84

autocomplete="off"

As part of cleanup, we added the HTML attribute autocom-

plete="off" on the city and state input values. This stops your
browser from trying to do its own completion, which gets in the
way when the value is being set by a return from Ajax.

Cleaning Up the JavaScript

Before we even get into Dojo, we should clean up the JavaScript a little

and encapsulate the acts of assigning the city and state in the form and

announcing errors. Until now these acts were hidden in the callback

function used by XMLHttpRequest.

First, we create a function that assigns the city and state:

File 11 function assignCityAndState(data) {

var cityState = data.split(' ,');

document.getElementById("city").value = cityState[0];

document.getElementById("state").value = cityState[1];

document.getElementById("zipError").innerHTML = "";

}

Then we have a simple error assignment procedure:

File 11 function assignError(error) {

document.getElementById("zipError").innerHTML = "Error: " + error;

}

With this simple abstraction, we will be able to use any remoting solu-

tion and reuse these functions.

Migrating to dojo.io.bind()

Now we get to the dojo.io package and in particular, a dojo.io.bind()

function that encapsulates remoting. Everything you need to do with

remoting can be done with this simple function. dojo.io.bind() takes a

hash as input, using the values to initialize the underlying XHR object

and register callbacks to other JavaScript functions.

We have to include Dojo in our HTML head element:

<script language="JavaScript" type="text/javascript"

src="../scripts/dojo/dojo.js">

</script>

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=84

REMOTING WITH THE DOJO TOOLKIT 85

Let’s look at the code that now does the Ajax request for the Zip data:

File 11 function getZipData(zipCode) {

dojo.io.bind({

url: url + "?zip=" + zipCode,

load: function(type, data, evt){ assignCityAndState(data); },

error: function(type, error){ assignError(error); },

mimetype: "text/plain"

});

}

The must-have element in the dojo.io.bind() parameter is the url key. In

our example it will become /ajaxian-book-crm/zipService?zip=53711 if you

are looking up a Wisconsin city.

The load key takes a function object as a callback. After the Ajax

request has loaded a response, this function will be called (think of

this as being the callback when the status from an XMLHttpRequest is

the magic 4). In your callback you get access to the following:

• type, which tells you whether the response returned normally

(load) or from an error condition (error).

• data, the response (harvested from XHR.responseText). This is the

payload of the request.

• evt, a DOM event.

The error key handles errors, whereas load handles successful requests.

The function callback gets access to the error message itself in its sec-

ond function parameter.

The mimetype key is important. We have discussed how there are

various styles of remoting and how you can choose to return HTML,

JavaScript, or your own text. Here, we decided to use text/plain, get

back the city/state information as the string Madison,WI, and split up

for our usage.

Changing dojo.io.bind() to Use a Return Type of JavaScript

Now we have our Ajax request encapsulated in one simple dojo.io.bind()

function call. This is a lot more elegant than using the raw XMLHttpRe-

quest API, and we will soon see how we have access to features above

and beyond the simple requesting and retrieving of data.

What if we wanted to talk to a service that responded directly with

JavaScript for us to evaluate, instead of a proprietary string that we

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=85

REMOTING WITH THE DOJO TOOLKIT 86

Generic Handle

Rather than separating the load and error handlers, in theory
you can use one handler named handle. This is when you would
use the type parameter and would probably check against it
to see how you were called. We could have written the same
example as follows:

handle: function(type, data, evt){

if (type == "load") {

assignCityAndState(data);

} else if (type == "error") {

assignError(error);

} else {

// could potentially handle other types!

}

},

needed to parse? For example, instead of returning Madison,WI, the

service could return this:

document.getElementById(' city').value = ' Boulder' ;

document.getElementById(' state').value = ' CO' ;

Making this change is quite trivial with Dojo, and it will simplify our

code even more. We can get rid of the assignCityState() call itself, and

there is no need for a load() function, because Dojo will automatically

load a JavaScript result from the server if we tell it via the MIME type

text/javascript:

File 10 function getZipData(zipCode) {

dojo.io.bind({

url: url + "?zip=" + zipCode + "&type=eval",

error: function(type, error){ assignError(error); },

mimetype: "text/javascript"

});

}

Notice that we added &type=eval to the URL to make sure that the server

sent us back JavaScript this time.

Advanced Features of dojo.io.bind()

We hope at this point you have seen that it makes little sense to use the

low-level API when you have a nice, clean, simple interface that Dojo

gives you. It turns out that dojo.io.bind() can do a lot more for you. For

one, it is able to do browser detection and makes sure that it finds the

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojounhbox voidb@x kern z@ char `discretionary {-}{}{}evalscript.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=86

REMOTING WITH THE DOJO TOOLKIT 87

Transport Enforcement

Sometimes, we don’t want graceful, transparent failover. If, for
some reason, we must mandate that only certain kinds of post-
back transport mechanisms be used, we can pass in our rule
on the dojo.io.bind() call. If we want to enforce one transport
only, we can do so by setting the following

transport: ' XMLHTTPTransport'

in the hash that we pass in.

right XMLHttpRequest object for your browser. If it can’t find one, it can

drop back to iframes to do the deed. All of this happens transparently

to the developer.

Submitting Forms

Dojo can submit a form asynchronously for you as well as access a

given URL. All you need to do to submit your form is tell Dojo about the

form element in your HTML via the following:

dojo.io.bind({

url: "http://your.formsub.url",

load: function(type, obj) { /* use the response */ },

formNode: document.getElementById(' yourForm')

})

What if your form has a file upload as part of it? XMLHttpRequest can’t

do the job here, because it can’t get the file from disk in a reliable way.

Dojo has a solution, though, thanks to the pluggable I/O layer.

Browsers know how to send files, and we piggyback on that by selecting

the IframeIO transport.

So, the simple solution is to place the following piece of code before you

have forms with file uploads:

dojo.require("dojo.io.IframeIO");

Support for Browser Back/Forward Buttons

This feature is a gem. One of the issues with using XMLHttpRequest

versus an iframe is that iframe events are placed in the browser history,

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=87

REMOTING WITH THE DOJO TOOLKIT 88

Uploading a File without a File!

You can actually upload content as though it is a file using the
XMLHttpRequest transport.

In your dojo.io.bind(..) call, pass in a file object to the argument
object itself:

file: {

name: "upload.txt",

contentType: "plain/text",

content: "look ma! no form node!"

}

while XHR events are not. This can cause an issue if a user clicks

something that causes an Ajax request that changes the page, and then

they hit the back button assuming that it will take them to the state

they were in before that request. Instead, they are taken to the page

before the Ajax code (which could be away from your website!).

Dojo allows you to tie into the browser buttons, passing in the work

that you want to do when a user clicks back or forward. In our CRM

example, you could save the current city and state information and

clean it out in the form when the user clicks back. Then, if the user

clicks forward you could reset it into the form without having to go back

to the server.

backButton: function() {

saveCityState();

cleanCityState();

},

forwardButton: function() {

setupCityState();

},

How does Dojo do this? Is there a nice API that Firefox and IE give you

to hook in? No. The actual implementation differs depending on the

browser, but at a high level Dojo creates a hidden iframe, makes it go

forward two requests, and then one back. Now, it is set up ready to

do your bidding. If you click back, the onload event will call into your

backButton callback. Ditto for the forward button.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=88

REMOTING WITH THE DOJO TOOLKIT 89

Bookmarkability

Another UI issue with Ajax applications is making sure that the book-

mark paradigm still works. We have all seen Ajax applications that are

just one page, and hence you can’t bookmark anything (Google’s Gmail

is sometimes bad like this).

Dojo gives you a simple hook to change the URL and hence potentially

allow for bookmarking events that happen within an Ajax world.

To turn on this feature, you have to set the changeURL parameter in

your calls to dojo.io.bind(). You can set it to either of the following:

• true: Changes the URL to the form:

http://yoursite.com/yoururl.html#12345678

where the content after the hash mark is a time stamp.

dojo.io.bind({

url: "http://your.sub.url",

load: function(type, obj) { /* use the response */ },

changeURL: true

})

• yourownvalue: The given string will be added to the URL. If you set

the following:

dojo.io.bind({

url: "http://your.sub.url",

load: function(type, obj) { /* use the response */ },

changeURL: "ajaxian"

})

the URL will be changed to http://yoursite.com/yoururl.html#ajaxian.

Miscellaneous Options: method, content, postContent, sync, and

cache

You can pass other (rarely mentioned) options to dojo.io.bind():

• method: You can set the HTTP method to use for the request (get

or post, for example).

• content and postContent: You can think of these options as the

request parameters that you want to post to the server in a hash

form:

content: { key1: ' value1' , key2: ' value2' }

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=89

REMOTING WITH THE PROTOTYPE LIBRARY 90

postContent is sent only if the method is POST, allowing you to

selectively push certain values on post requests only.

• sync: By default your requests are asynchronous (which is good),

but you can change that with the following setting:

sync: true

• useCache: Dojo can use a cache that you can dip into, allowing

Dojo to manage the XHR objects. To turn this on, you must set

the following:

useCache: true

5.3 Remoting with the Prototype Library

Prototype jumped onto the scene with the rise of the popular Ruby on

Rails web framework. The Prototype library is another open-source

JavaScript toolkit that provides a straightforward wrapper around XHR

and some foundational UI effects. We’ll port Hector’s app to use the

Prototype remoting capabilities in order to contrast it with Dojo.

Porting to Prototype

Since you’ve already seen the port to a remoting framework, this will

probably look familiar. Start with the Prototype library:

<script language="JavaScript" type="text/javascript"

src="../scripts/prototype/prototype-1.3.1.js"/>

Ajax.Request()

The dojo.io.bind() equivalent in Prototype is Ajax.Request(). It works in a

similar way to Dojo in that you pass in most of the information as an

object with callbacks. The CRM example is as follows:

File 14 function getZipData(zipCode) {

new Ajax.Request(url, {

asynchronous: true,

method: "get",

parameters: "zip=" + zipCode,

onSuccess: function(request) {

assignCityAndState(request.responseText);

},

onFailure: function(request) {

assignError(request.responseText);

}

});

}

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototype.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=90

REMOTING WITH THE PROTOTYPE LIBRARY 91

The differences are subtle. First, you pass the URL as the first param-

eter to Ajax.Request() rather than in the object hash itself. You can

also choose between a synchronous or asynchronous request. You will

want to use asynchronous 99.99% of the time, because you don’t want

to freeze the browser while the request happens. You also get to choose

the HTTP method (GET, POST, and so on) and the parameters that we

want to add to the URL itself. Finally, the callback functions get the

XMLHttpRequest object itself, so you can grab responseText, responseXML,

or anything else you need from that object.

Evaluating the Return as JavaScript

If you want to use the model of having the server return JavaScript

for you to run, you can implement this by doing eval() yourself in the

onSuccess callback function:

File 12 function getZipData(zipCode) {

new Ajax.Request(url, {

asynchronous: true,

method: "get",

parameters: "zip=" + zipCode + "&type=eval",

onSuccess: function(request) {

eval(request.responseText);

}

});

}

Returning HTML to the Client

Ruby on Rails favors returning HTML from the server and putting that

HTML into the DOM via the innerHTML property. Since Prototype is a

good sister to Rails, it makes this simple on the JavaScript side.

The trick is that you need to make sure the content that you want

to change has been given an id= attribute. Then, you can use an

Ajax.Updater() that makes the XHR request, gets the output, and writes

it to the element with the given ID.

In our CRM example this is a two-step process. First we tag the city

and state HTML content that we want to replace:

File 13 <tr id="rewrite">

<th>City:</th>

<td><input id="city" type="text" name="city"/></td>

<th>State:</th>

<td><input id="state" type="text" name="state" size=' 3' maxlength=' 2' /></td>

</tr>

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}evalscript.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=91

WRAPPING UP 92

Then we associate an updater with the element that has an id of rewrite

by wiring up the Ajax.Updater():

File 13 function getZipData(zipCode) {

new Ajax.Updater("rewrite", url, {

asynchronous: true,

method: "get",

parameters: "zip=" + zipCode + "&type=html",

onFailure: function(request) {

assignError(request.responseText);

}

});

}

5.4 Wrapping Up

We took the raw XMLHttpRequest version of the CRM application and

showed you how quality JavaScript libraries such as Dojo and Proto-

type can lift up your level of abstraction. There are no more magic state

numbers, odd try/catch blocks, or the like. Dojo even offers advanced

features like back/forward button support, which have largely been

unavailable to JavaScript programmers until now.

Next, we’ll look at the frameworks that provide support for UI manipu-

lation and see how they combine with these techniques to give us real

power over the user experience.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=92

Chapter 6

Ajax UI, Part I
In the previous several chapters, we gave you an earful about what

Ajax is, what it isn’t, and where it came from. By now, you’ve seen

the “asynchronous” and “XML” parts. In this chapter and the next,

we’ll introduce you to the “JavaScript” and flashy UI parts of the frame-

work. You’ll get to see the CRM application grow into a full-fledged rich

client application and learn some of the emerging standard patterns

for Ajaxifying the UI. Perhaps most important, we’ll walk you through a

cautionary tale about going too far and knowing when to say “when.”

6.1 Ajax and JavaScript for the UI

Dynamic HTML. The words roll around your brain and make you think

of Nirvana, Lewinski, and Razorfish. DHTML was so ’97. Most readers

may now be wondering “What’s Ajax got that DHTML didn’t have?” The

answer, it turns out, is fairly complex. But it starts with maturity.

When we did DHTML apps back in the ’90s, browsers were still duking

it out over the best way to render tables. Heck, we didn’t even have

<div> tags until the late ’90s. Cascading Style Sheets were just coming

out, and the language hadn’t settled yet. There were browser-specific

extensions to the DOM and CSS, and browsers couldn’t even be trusted

to render their own extensions properly on a consistent basis.

Fast-forward to 2006. Browsers are still disagreeing about the best

way to render certain tags, and there are still browser-specific exten-

sions to worry about. But the amount of commonality between mod-

ern browsers has grown immensely in the intervening years, leaving a

much greater common ground. Gone are the days when you had to

AJAX AND JAVASCRIPT FOR THE UI 94

have browser-specific rendering of simple CSS styles. We have a much

broader scope of acceptable UI techniques that will work anywhere now.

This kind of common ground, which eliminates the need for vast tracts

of browser-specific JavaScript and CSS, makes the development of rich

client apps much more straightforward and accessible.

Further, when we were developing DHTML applications back then, we

didn’t have the benefit of universal XMLHttpRequest support. Sure, IE 4

had it built in as an ActiveX component, but that can hardly be con-

sidered universal. We remember teaching die-hard Windows web devel-

opers about it in ’99 and getting a lot of odd stares in response, so

even for those developers to whom it was available, it wasn’t widely

used. And without an asynchronous, embedded channel back to the

server, DHTML applications were just about pop and flash. They added

only marginal usability improvements in and of themselves, and if we

wanted to make them talk back to the server, we ended up jumping

through major hoops.

Think of that most ubiquitous of DHTML widgets, the tree nav. It was

easy to write DHTML-based trees. It involved a couple of CSS styles,

some onclick handlers, and some crossed fingers, but it didn’t amount

to much effort. And, in return, we got collapsible, expandable tree nav-

igation. What we didn’t get, unless we put in endless hours of effort,

was a way to update portions of the tree from the server without reload-

ing the whole thing. So we ended up putting the tree in a frame, all by

its lonesome self, and refreshing it en toto whenever the app demanded.

This made for tortured JavaScript and a less than ideal user experience.

We even went so far as to invent the iframe to allow us to execute

background threads of operation. As we saw previously, the iframe

was a convenient, if nonstandard, way to cause a secondary request

to be sent to the server. JavaScript can modify the src= attribute to

cause a new request to be spawned. This seems, at first glance, to

provide everything XHR provides. Dig down, though, and you’ll see

some problems. First, iframes provide no graceful method for checking

on the state of a request; once fired, either the iframe renders its results

or it doesn’t. Second, the iframe automatically renders the response

sent back from the server. If the response isn’t HTML, the iframe must

be navigated, DOM-style, to retrieve the results. All this is effective but

hardly efficient and certainly not elegant.

The ability to exert fine-grained control over pieces of the UI becomes

profound only when we also exert similar fine-grained control over the

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=94

AJAX AND JAVASCRIPT FOR THE UI 95

data we are retrieving from the server. Being able to flash the back-

ground color of a <div> tag as the user mouses over it is pretty; being

able to autoupdate a text search box as the user types into it is an

actual usability improvement. The code to control the UI of the latter

is not appreciably harder than for the former; it is the access to an

asynchronous trip to the server to fetch more information that makes

it special.

Ajax Encourages OO Over DOM

The biggest change from DHTML to Ajax has to do with the way we think

about JavaScript code in the browser. In good old DHTML, we wrote

JavaScript to manipulate the DOM; we treated the DOM as a giant

repository of dumb entities, each with a collection of styles appended

to it. We walked the DOM using nightmarish code like this:

element.parent.parent.sibling.child

and when we got there, we set text properties to be interpreted as style

changes in the rendering engine. We wrote our common code as a series

of functions, devoid of organizing classes or conventions. None of this

looked like the server-side code we were writing; it certainly didn’t feel

modern in any way. JavaScript was an adjunct to our “real work,” and

it showed.

Ajax strives to treat JavaScript in the browser as the first-class pro-

gramming environment it can be. Instead of writing procedural pro-

grams, we write class libraries to encapsulate our behavior. Instead

of treating the DOM as a collection of dumb elements, we treat it as a

hierarchy of types. Instead of thinking of styles as strings to be con-

structed and parsed, we think of them as properties of objects, to be

modified individually. We write modern OO code, complete with error

handling, instance methods static methods and type hierarchies.

Even better, though, we write this modern OO code using a language

more expressive than the statically typed languages we use on the

server. With JavaScript, we can extend types without modifying the

base code. If we want to add functionality to the document object, we

can declare a new function name and supply it with an anonymous def-

inition. This new function has full access to the instance data of docu-

ment, and can be called by any other type contained in our JavaScript.

Functions can be sent around like data objects, invoked without know-

ing the originating instance. In other words, this is metaprogramming

without extraneous reflection syntax.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=95

AJAX AND JAVASCRIPT FOR THE UI 96

We say that Ajax encourages this style of programming. There is noth-

ing inherent about Ajax that mandates this, however. You can hap-

pily write the same old style of procedural, DOM-oriented JavaScript

code and achieve Ajax effects. The frameworks that have sprouted

up around Ajax, though, all eagerly pursue the more modern, object-

oriented style of programming. They supply common APIs and types

through which to modify the look and behavior of elements in the DOM,

and they provide better ways to navigate the DOM to look for for specific

items. Typically, these frameworks use object-oriented libraries and

metaprogramming to achieve this. For example, the Script.aculo.us

library adds a new method, getElementsByClass(), to the document object

at the root of the DOM model. By injecting this method into the existing

class, we get the more convenient method for navigating our DOM tree

through OO methods.

Common UI Frameworks

With the creation of the Ajax moniker, there has been a concomitant

explosion of JavaScript libraries to help users take better advantage

of the technology shift. Instead of making users find their own paths

through the desert to the OOasis, these libraries drastically shorten

the learning and adoption curves for Ajax. We’ve already talked about

them at some length in the previous chapter; there, we focused on

the libraries’ efforts to encapsulate the remoting features of JavaScript.

Here, we’ll discover what they do for our UI code.

The first area is DOM navigation. The DOM model is a beast to get

around in; as much as it seems like navigating an XML infoset should

be a highly standard operation, there can be interesting differences

between navigation commands and their results as you move from

browser to browser and from version to version. Even if there weren’t,

though, navigating the DOM requires too much intimacy with the over-

all hierarchy of the current page. Puttering around the DOM tree using

.parent references and .children collections often leads to finding the

wrong element, or finding no element at all.

The major UI frameworks find ways to help you around this problem.

In addition to the standard getElementByID() method, these frameworks

allow you to discover elements by class, by style, by tag, and by a

variety of other options. They give you ways to treat elements and their

names interchangeably so that you can pass either to a function and

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=96

AJAX AND JAVASCRIPT FOR THE UI 97

get the correct result. Mostly, they provide handy shortcuts to tedious

navigation commands usually with more predictable results.

Affecting the look and style of DOM nodes is a painful exercise in string-

based CSS styles, element property modulation, and general mucking

about trying to get the element to look or act the way you want. Do

you use the visible or hidden property? How do you increase the size:

in pixels or percent? What’s the best way to move an element around

the page? The answers are usually an ungainly mix of techniques that

seem to feel more like guesswork than solid programming.

Good Ajax libraries take the guesswork and pain out of manipulating

element styles. Instead of having to guess what mix of properties you

have to modify to get the desired behavior, certain typical and canonical

effects are canned and supplied to you through a single method call.

Users can modify the default behavior of the effects or combine them in

unique ways to achieve tailored results.

In this chapter, we’ll cover three major frameworks in heavy use today:

Prototype, by Sam Stephenson; Script.aculo.us, by Thomas Fuchs; and

Dojo, by the Dojo Foundation. There are other libraries out there worth

keeping on eye on as well, such as Rico (http://openrico.org/rico/home.page),

which grew out of the development for Sabre Airline Solutions. We’re

sure that between now and when you read this more frameworks will

have popped up, so keep on the lookout.

Remember the figure back in Chapter 5, Ajax Frameworks? That chap-

ter looked at the frameworks that live at the lowest level, the remoting

toolkits. This chapter moves up one layer on the chart to examine the

toolkits that deal directly with UI issues. It turns out there’s plenty of

overlap.

Prototype

The Prototype library is the grandaddy of them all. Other JavaScript

libraries (notably, Script.aculo.us) are built on top of the basic func-

tionality provided here. Prototype is a relatively simple JavaScript file;

clocking in at 1,041 lines of code as of version 1.4.0_pre2, it manages

to pack an enormous punch for dealing with UI issues in the browser.

We’ve already covered what Prototype does for remoting in earlier chap-

ters. Now we’ll examine how it replaces the standard DOM and CSS

idioms for manipulating UI elements.

http://openrico.org/rico/home.page
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=97

AJAX AND JAVASCRIPT FOR THE UI 98

Extensions to Common Types

Prototype adds a series of helpful utility methods to our lexicon, either

by providing globally accessible functions or, in some cases, by extend-

ing existing types in JavaScript or the DOM. Since JavaScript types can

be extended at runtime without modifying the original source (the very

definition of a dynamic language), this is relatively straightforward to

do. The result is that Prototype can provide extremely useful shortcuts

to common functionality but present them in the most natural way pos-

sible: as properties and methods of the types where we would expect

such features to appear.

Prior to the Ajax libraries, the two most common lines of JavaScript

found in DHTML applications were the following:

var myElem = document.getElementById(' some_element');

var myValue = document.getElementById(' some_other_element').value;

Though this code is not particularly glaring, it is difficult to read and

can make even the simplest of functions difficult to scan and under-

stand. Bear in mind, also, that bandwidth is (even today) an expensive

resource. For evidence, we present the current crop of JavaScript com-

pressors with which you can eliminate all the whitespace from your

scripts to provide for quicker downloading. Given that the previous

code is ubiquitous and oft repeated, it would make sense to find a way

to minimize the surface area of these statements. Prototype replaces

them with the following lines:

var myElem = $(' some_element');

var myValue = $F(' some_other_element');

Even better, $() can take an arbitrary number of IDs and return an

array of elements to match them.

var elems = $(' element_one' , ' element_two' , ' element_three');

for(var i=0;i<elems.length;i++) {

elems[i].value = "changed";

}

There is a major caveat to this technique, though. Prototype doesn’t

bother to check whether the ID you passed is valid within the docu-

ment. In the previous case, if there’s no element with ID element_two,

the call still returns an array of length 3. The second element, however,

is null instead of a reference to a DOM node. Also bear in mind that $F()

works only for input elements. If you are looking for the text contained

within an arbitrary DOM node, $F() is useless.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=98

AJAX AND JAVASCRIPT FOR THE UI 99

Prototype also extends the document object to include the new getEle-

mentsByClassName() method. You pass in the string name of a CSS class

and the function will collect all the elements in the DOM that contain

that class in their class list. It doesn’t matter whether the class name

is the first or only entry in the element’s list, Prototype will still find it.

<div id="one" class="class1"/>

<div id="two" class="class2"/>

<div id="three" class="class1"/>

<div id="four" class="class2, class1"/>

<script type="text/javascript">

var classOnes = document.getElementsByClassName('class1').length; // 3

var classTwos = document.getElementsByClassName('class2').length; // 2

var classThrees = document.getElementsByClassName('class3').length; // 0

</script>

This method takes only a single class name, though. It is up to you to

make any sort of union if you are looking for elements implementing

one of a list of classes.

Once you can successfully retrieve nodes from the DOM, the next step

is manipulating them. Among the most common things to do is to sim-

ply change the content of a node by resetting the value of its innerHTML

property. innerHTML is just a string representation of the contents of the

node. If you fill it in with properly formatted HTML, the browser will

render it as such. When you retrieve it, the HTML tags will be embed-

ded in the returned value. Sometimes, you will want to maintain the

tag structure in its original format. Other times, you’ll want to actually

display the tags as strings rather than have them rendered as HTML.

Prototype extends the JavaScript String class with some new methods.

escapeHTML() returns the innerHTML but with any HTML tags escaped so

they can be displayed as text. unescapeHTML() does the exact opposite.

This is useful for displaying HTML source within an HTML page.

A final case is when you want to eliminate the tags altogether. Imag-

ine a div that contains a bibliography entry, rendered so that the title

of the book is underlined and the author’s name is boldfaced. You

want to retrieve that value as data; any embedded style notation (or,

Heaven help us, tags) are extraneous. String now has the stripTags()

method, which eliminates any angle brackets (and what’s inside them)

from the output. Whitespace is otherwise maintained, allowing you to

treat HTML as raw data.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=99

AJAX AND JAVASCRIPT FOR THE UI 100

innerHTML Limitations

According to the IE documentation, the innerHTML property is
read-only for this list of enclosing tags: COL, COLGROUP, FRAME-
SET, HTML, STYLE, TABLE, TBODY, TFOOT, THEAD, TITLE, TR. This
means that, in IE, you cannot use the innerHTML property to set
the contents of a table row. This works fine in all other browsers
but can be a serious limitation to cross-browser effects.

The final set of extensions to cover are Prototype’s extensions to the

collection classes. The Prototype library was written by Sam Stephen-

son, a Rails committer and general Ruby aficionado. Ruby provides a

suite of useful convenience methods on collection types that make it

easier and more direct to manipulate, search, collect, and delete items

from collections. Prototype adds very Rubyesque collection methods to

JavaScript by creating a mixin called Enumerable.

Enumerable adds a bunch of methods that interact with a type’s itera-

tor to provide a more elegant way to achieve standard collection-based

functionality. For example, the mixin adds an each() method to the

target type. Thus, accessing the members of an array could be written

using standard for loop notation:

var prices = [19.99, 29.99. 14.50];

var sum = 0;

for (i=0; i < prices.length(); i++) {

sum += prices[i];

}

With Enumerable, you can now use the arguably more elegant each():

var prices = [19.99, 29.99, 14.50];

var sum = 0;

prices.each(function(price) {

sum += price;

})

The each() method uses the array’s iterator to grab each element in

turn and pass it as the argument to the supplied anonymous function

(the function need not be anonymous, obviously). If you need the cur-

rent index of the current item, the function takes an optional second

parameter, which is the index:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=100

AJAX AND JAVASCRIPT FOR THE UI 101

Mixin

A mixin is just a collection of methods that can be added to
any existing type. In statically typed languages such as Java
and C#, the way to do this is to make a base class with the set
of functionality and then extend it. With a dynamically typed
language such as JavaScript, we can apply this kind of func-
tionality after the type has been defined (and even after it has
been instantiated).

var prices = [19.99, 29.99, 14.50];

var sum = 0;

prices.each(function(price, index) {

sum += price;

alert("Price " + index + ": " + price);

})

each() provides the underpinnings of a variety of other useful methods.

• all(): Takes a comparison function and returns true if all of the

members of the collection pass the comparison.

• any(): Takes a comparison function and returns true if any of the

members of the collection pass the comparison.

• collect(): Allows you to use each element of a collection in turn

to build a new collection. For each iteration, you return a value;

those values are collected into the new result array.

• detect(): Takes a comparison function and returns the first item

in the collection that matches (returns true).

• findAll(): Takes a comparison function and returns the collection

of all items that match it.

• grep(): Takes a regular expression, applies it to each element of

the collection and adds any match to the results array.

• include(): Takes an input object and returns true if the collection

contains that object.

• inject(): Useful for creating sums across numerical collections.

inject() takes an initial value and a function for calculating results

and applies the function across all members of the collection,

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=101

AJAX AND JAVASCRIPT FOR THE UI 102

treating the first input as the first item of the collection. An exam-

ple should help:

var prices = [19.99, 29.99, 14.50];

var sum = prices.inject(0, function(sum, price) {

return sum + price;

})

// sum == 64.48

• invoke(): Takes a function name and invokes it on the collection

object.

• max(): Takes a comparison function and applies it to each item of

the collection, returning the one that is greater than all the rest

(as defined by the comparison function).

• min(): Same as max but returns the item that evaluates to less

than all the other items.

• partition(): Takes a comparison function and divides the elements

of the collection into those that match and those that don’t, and

then returns an array of arrays in the format [[trues], [falses]].

• pluck(): Takes a property name and grabs that property of each

element in the array to create the results array. If you had a col-

lection of items each with a name property, you could use pluck()

to quickly gather all the names into a new array.

• reject(): Takes a comparison function and returns an array with

only those elements that did not match the comparison.

• sortBy(): Allows you to pass in a function that lets you sort the

items in a collection by a specific property.

• toArray(): Returns an array of the elements in a collection.

Element

Prototype introduces a new class, Element, that controls some basic

styling properties of a DOM node. Element is a static class, in that you

need not create an instance of it to access its functionality. Its various

methods all take an element ID or an element itself as a parameter and

perform some action on them.

We spend a lot of time hiding and showing nodes of a DOM tree. Error

messages are invisible unless validation fails, for example, or trees con-

tain collapsible nodes. Most of the dynamic nature of a web page is

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=102

AJAX AND JAVASCRIPT FOR THE UI 103

wrapped up in the mysterious appearance and disappearance of blocks

of data. The standard JavaScript strategy for accomplishing that uses

the .style.display property.

<div id="hideOrShow">

You can turn me on and off.

</div>

<input type="button" value="Toggle" onclick="toggle(' hideOrShow');"/>

<script type="text/javascript">

function toggle(elemName) {

var elem = document.getElementById(elemName);

if(elem.style.display==' none') elem.style.display = ' ' ;

else elem.style.display = ' none' ;

}

</script>

Element provides the .toggle command, which accomplishes the exact

same thing but with the added benefit of being able to pass in as many

element names (or elements) as you like to a single call. .toggle will

iterate over all the arguments, toggling the state of each in turn. This

provides a convenient way to swap the visibility of elements:

<div id="up">

Up

</div>

<div id="down" style="display:none;">

Down

</div>

<input type="button" value="Toggle"

onclick="Element.toggle(' up' , ' down');"/>

To be sure, we don’t always want to toggle. Element also exposes show()

and hide(), which each take a variable number of elements as argu-

ments, and ensures that each has its display property set correctly.

Sometimes, though, toggling isn’t enough. Setting an element’s display

property to none renders the rest of the page layout as though the ele-

ment did not exist in the DOM at all. However, the mere existence of

the element might have other effects. If the hidden element contained

form elements, for example, they would be submitted to the action as

though they were visible. The same is true for scripts that traverse the

DOM elements or manipulate page layout.

Instead of merely setting the div’s display property to none, we can

remove the <div> from the DOM tree entirely. Normally, this would

mean navigating to the <div>’s parent node and removing the div from

the parent’s children. The DOM has a removeChild() method specifically

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=103

AJAX AND JAVASCRIPT FOR THE UI 104

Cross-browser Warning

Not all browsers handle all DOM manipulations equally. For
example, you cannot insert anything into a <table> in IE, or
you will get an error. Once again, refer to www.quirksmode.org

for full treatment of different behaviors in different browsers.

for this purpose. The node is removed from the tree, and the entire tree

re-rendered to keep that block from influencing the flow. Furthermore,

containing elements no longer have any knowledge of the node, and

scripts will not be able to discover it. This is nonreversible, unless

you have cached a copy of the node in another variable and add it

back manually later. Prototype exposes the removeChild() feature as a

function called Element.remove().

Inserting Data

Showing and hiding data is nice, but it implies that we have a nice

container dedicated for displaying that piece of data. Showing an error

message, for example, usually means that we have a hidden div or span

standing by to take that data and then display it to the user. Quite

often, though, what we want to do is add more data to an existing,

visible element. Most commonly, we want to add items to an already-

visible list of items. The standard DHTML way to do this is to re-create a

new version of the list items that includes the addition and then replace

the contents of the list with the new version. With Ajax, this would

mean having a server-side method that you call that sends the list back

with any new items appended. While effective, this might be extremely

inefficient. The code that generates the content of the list might be long

running and, if it involved a database, mandates at least a round trip

to the datastore to refill the list.

Prototype introduces the Insertion class.Insertion allows us to add infor-

mation to an existing container without replacing what currently exists

in the list. Insertion.Top() enters the new data at the beginning of the con-

tainer’s body, while Insertion.Bottom() enters it at the end. This means

you can easily append single lines to a list without re-rendering the

whole list:

www.quirksmode.org
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=104

AJAX AND JAVASCRIPT FOR THE UI 105In B l i n e e l e m e n t sB l o c k e l e m e n t sO p e n t a g I n t e r n a l D a t a C l o s e t a gO p e n t a g I n t e r n a l D a t a C l o s e t a gB e f o r e T o p B o t t o m A f t e rB e f o r e T o p B o t t o mA f t e rl i n e b r e a kl i n e b r e a k
Figure 6.1: Insertion placement possibilities

<ul id="mylist">

one

two

three

<input type="text" id="newval"/>

<input type="button"

value="Add Item"

onclick="new Insertion.Bottom(' mylist' ,

' ' +$F(' newval')+' ');"/>

Keep in mind that you have to provide the full value you want rendered.

In the previous example, we’re appending the text value of the input

field to the bottom of the list. We have to wrap it in the tags in

order to get it to render as a list item; without those tags, the new

value is just pasted as text inside the list, which is rendered without

the bullet and as inline text.

Prototype actually goes a little further and lets you append text around

the container as well. In all, Insertion offers four placements for your

new data: Before(), Top(), Bottom(), and After(). Figure 6.1 demonstrates

where each lives.

This is fairly powerful, since you can modify a section of the page for

which you do not have an ID (or there may be no ID at all).

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=105

AJAX AND JAVASCRIPT FOR THE UI 106

Beware Before() and After()

Don’t get too carried away with Before() and After(). While
each will happily let you insert plain text or renderable markup
into the document at the appropriate point, you cannot use
them to create new containers around an existing item. To do
so, you would have to execute two separate statements: an
Insertion.Before() for the opening tag and an Insertion.After() for
the closing tag. Modern DOM rendering engines will not allow
you to add malformed XML to the document. Therefore, the
first call, containing just the opening tag, will have a matching
closing tag inserted at the end of the value you passed in. The
second call will have the closing tag simply stripped from the
input.

Imagine you have an element containing a new header tag
that you want to surround with a new <div> tag. Your code
would look like this:

<ul id="mylist">

one

two

three

<input type="text" id="newval"/>

<input type="button" value="Add Item"

onclick="wrapList(' mylist');"/>

<script type="text/javascript">

function wrapList(listname) {

new Insertion.Before(listname,

' <div><h2>New Title</h2>');

new Insertion.After(listname, ' </div>');

}

</script>

When you execute this, the resulting rendered DOM tree, if you
could see it using View Source, would look like this:

<div><h2>New Title</h2></div>

<ul id="mylist">

one

two

three

<input type="text" id="newval"/>

<input type="button" value="Add Item"

onclick="wrapList(' mylist');"/>

. . .

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=106

AJAX AND JAVASCRIPT FOR THE UI 107

Forms

Working with forms has historically been a bit of a drag. Forms are use-

ful for only one purpose: collecting data from a user. The input fields

that exist on a form, though varied in style, are essentially identical in

nature. They represent an item that a user can use to tell us some-

thing. Before Ajax and the rethinking of the DOM that it brought with

it, we had to treat forms and inputs just like any other HTML elements,

navigating the DOM to find them and modifying their style properties

to affect their behavior.

Prototype gives us tools to think about forms differently. Instead of rep-

resenting a chunk of HTML that happens to have input boxes embedded

in it, Prototype encourages us to think of forms as collections of data

fields. Using the library, we can manipulate the properties of all the

fields on a form simultaneously when that suits our needs and navi-

gate them as an array of fields, not as scattered children in a subtree

of the DOM.

The vehicles for this change are the new classes Field and Form. Field

provides three major UI-related methods:

• select(): Selects the current value of the field

• focus(): Moves the focus to the field

• activate(): A combination of select() and focus()

For example, you could create a form with certain form fields visible

at all times, a second set of more advanced options visible only when

the user requests them. For convenience, you would want the user to

begin typing into the topmost field immediately upon making it visible,

which you could accomplish with activate:

<form action="postback.jsp" method="post">

First Name: <input type="text" name="firstname"/>

Last Name: <input type="text" name="lastname"/>

<a href="#"

onclick="Element.toggle(' advanced_options');Field.activate(' petsname');">

Advanced Options

<div id="advanced_options" style="display:none;">

Pet' s name: <input type="text" name="petsname"/>

Favorite color: <input type="text" name="favoritecolor"/>

</div>

</form>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=107

AJAX AND JAVASCRIPT FOR THE UI 108

Form offers three more UI-related methods:

• disable(): Disables every input field in the form (sets the back-

ground to gray and disallows changes)

• enable(): Enables every input field in the form

• focusFirstElement(): Sets the focus to the topmost field in the form

These methods allow you to work with the entire form as a single entity.

For example, it is a common pattern to display information to the user

that they may want to edit. Web developers have to decide between

showing them the data as plain HTML then switching to a form view

when the user chooses to edit, or just showing it to them in the form

view from the get-go. With Form.enable and Form.disable, the decision

is easier. You can display the data in a disabled form; when the user

clicks the Edit button, simply enable the entire form.

Position

Prototype contains several methods for understanding the current posi-

tion of elements on a rendered page. Specifically, they allow you to dis-

cover the relative position on an element on a scrollable page, including

whether the element is on the currently visible portion of the page. If

not, you can retrieve the scroll offsets (horizontal or vertical) to the ele-

ment from the visible section. Most developers won’t use these features

directly but instead use frameworks that build on top of them to provide

higher-level features (such as Script.aculo.us, for example).

Script.aculo.us

Thomas Fuchs has built on top of the base Prototype library to dramat-

ically increase the number and kinds of effects that can be created with

JavaScript. Script.aculo.us is the result of his efforts. Where Prototype

is focused on extending the baseline capabilities of JavaScript and the

DOM, Script.aculo.us allows web developers to make HTML look and

act just like any other rich client platform. The kinds of effects range

from simple hiding and showing tricks all the way up to drag-and-drop

functionality and sortability.

Effects

The library is divided into the five core effects and a series of combina-

tion effects built on top of them. The core effects are Opacity, Highlight,

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=108

AJAX AND JAVASCRIPT FOR THE UI 109

MoveBy, Scale, and Parallel. Every effect represents a transition between

two states that occurs over time. The effects all have default values

for start and end points, as well as duration. These defaults can be

overridden for a fully customized effect. The various effects have differ-

ent required parameters (for instance, MoveBy() requires x and y deltas),

and each can accept any of the standard options as well. The general

syntax for launching an effect is:

new Effect.EffectName(element, required-params, {options});

The effects are all asynchronous, which means that if you launch sev-

eral effects simultaneously, they will render simultaneously. This is

true whether the effects target different elements or all target the same

element. Quick-fingered users won’t be surprised by browser lockups

as your <div>s turn yellow and balloon to twice their size, and you can

fade out as many deleted items from your list as you desire at the same

time.

This section will examine all the possible ways to utilize the core effects

from the library. In Chapter 7, Ajax UI, Part II , on page 122, we’ll look

at how to use them effectively to increase the usability of the user inter-

face. For all their cool factor, these kinds of effects can be overused and

become just another <blink> tag, so knowing why you would employ

them is just as useful as knowing how.

The standard options you can pass to the effects are:

• duration: The number of seconds the transition will take, with a

default of 1.0

• fps: Target frames per second rate (default is 25)

• transition: An algorithm for determining how to move from the start-

ing point to the ending point. These are represented as a series of,

essentially, enumerated constants. Can be one of the following:

– sinoidal: Start slow, peak in the middle, and slow down on the

way out

– linear: Constant speed from start to end

– reverse: Constant speed but from end to start

– wobble: Reverse direction several times during transition

– flicker: Jump to random values during transition

– pulse: Progress from start to end, back to start, back to end,

and repeat five times

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=109

AJAX AND JAVASCRIPT FOR THE UI 110

• from: Starting point for transition,from 0.0 to 1.0 (default is 0.0).

See the explanation that follows.

• to: Ending point for transition, from 0.0 to 1.0 (default is 1.0)

• sync: Whether new frames should be rendered automatically (the

default is true)

Think of from and to as percentages. If you are using the MoveBy()

effect to move an element 50px to the right and 50px down, then the

starting point, (0.0), represents the original positions, and the ending

point, (1.0), represents the original position +50px in both directions.

However, if you launch the effect using the following options:

new Effect.MoveBy(' movable_element' , 50, 50, {from: 0.0, to: 0.5});

then the actual endpoint would be the original position plus 25px in

both directions, since your to: option requires the transition to end

halfway through. The transition option just determines what algorithm

to use to progress from the from: option value to the to: option value.

Flicker, for example, uses the following algorithm:

return ((-Math.cos(pos*Math.PI)/4) + 0.75) + Math.random(0.25);

Effects also allow you to bind callbacks to various stages in the tran-

sition cycle. The callbacks are also asynchronous. The only caveat to

this is that, in some browsers, popping up a dialog box through alert or

confirm will allow the effect to progress, but its effects will be invisible

until the user closes the dialog. This means that whatever state the

transition is in when the dialog is closed will suddenly appear. If the

transition’s duration has already passed by the time the user closes the

window, the effect will have finished and the user will never have been

treated to your Ajaxy goodness.

Opacity

The Opacity() effect is straightforward. You can transition between an

opacity of 100% to 0%. There are no specific parameters for the per-

centage opacity: you simply use the from and to options, using 1.0 as

100% opaque and 0.0 as 0%. If you get the element to 0% opaque

(also known as 100% transparent), you have not hidden the element

in the sense that we explained before with Element.hide()—it is simply

invisible. Using the Prototype Element.show() method will not make the

element reappear; to do that, you would need to readjust the opacity

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=110

AJAX AND JAVASCRIPT FOR THE UI 111

to something greater than 0%. Likewise, a 0% opaque element is still

taking up space in the DOM layout.

To make an element fade quietly from sight over two seconds, you could

use the following:

new Effect.Opacity(' some_element' ,

{ duration: 2.0, from: 1.0, to: 0.0 });

If you wanted the element to go out like a lightbulb (flickering on and

off until finally going out), you would use the following:

new Effect.Opacity(' some_element' ,

{ duration: 2.0,

from: 1.0, to: 0.0,

transition: Effect.Transitions.flicker});

To simply flash the element a few times to draw attention to it, you can

fade it in and out:

new Effect.Opacity(' some_element' ,

{ duration: 1.0,

from: 1.0, to: 0.0,

transition: Effect.Transitions.pulse});

Movement

Effect.MoveBy() provides easy control over repositioning elements. The

beauty of Effect.MoveBy() is that it doesn’t require the element to have

any particular placement styles already associated with it. Regardless

of whether it is an inline or block element or whether it is positioned

absolutely or relatively, it can be moved around with the same call to

Effect.MoveBy(). You can even run the element right off the right or bot-

tom edge of the document, causing the page itself to sprout scrollbars

to allow for the new position. Repositioning it off the top or left borders,

of course, removes it from sight without affecting the overall position or

size of the page.

Effect.MoveBy() has two mandatory parameters that must be specified in

addition to the element name and options. They are the X and Y offsets

to calculate the new position. The offsets follow a simple geometry:

positive X means movement to the right, negative X means movement

to the left. Positive Y means down, negative Y is up. Therefore, to raise

an element 100px while moving it to the right by 20, you could use the

following:

new Effect.MoveBy(' some_element' , -100, 20);

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=111

AJAX AND JAVASCRIPT FOR THE UI 112

To shake the element in place to draw attention to it, but have it end

up back at its starting point:

new Effect.MoveBy(' some_element' ,

0, -100,

{ duration: 2.0,

transition: Effect.Transitions.pulse});

One thing to watch out for: in the documentation at Script.aculo.us’

website, as of version 1.0, the API for the call is misrepresented. The

function itself takes the offsets in the order Y, X, but the documentation

lists them as X, Y.

Size and Scale

The Effect.Scale() method allows you to affect the overall size of an ele-

ment. Sizing can be tricky; when the element is a container for other

elements, you have to know whether you want the contents to scale as

well as the container. If the object is going to grow, should the new size

be anchored to the upper-left corner of the element or to its center?

What if the element has parts that are visible only if you scroll to them?

There are six scale-specific options you can use in the {options} part of

the call, if necessary:

• scaleX: should the element scale horizontally (default is true)

• scaleY: should the element scale vertically (default is true)

• scaleContent: should the content of the element scale along with

the container itself (default is true)

• scaleFromCenter: Keeps the center of the object stationary while

expanding the four corners (default is false)

• scaleMode: a value of ’box’ means scale only those parts of the ele-

ment that are current visible on the page without scrolling, while

content means scale everything (default box)

• scaleFrom: a starting percentage of actual size to scale from (default

is 100%)

Scaling a container element is tricky if you also want everything con-

tained inside to scale along with it. Graphical subelements scale auto-

matically with the container except tags. tags must be

scaled independently by applying a scale effect directly to the tag. For

textual contents, the font size in the HTML page must be specified in em

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=112

AJAX AND JAVASCRIPT FOR THE UI 113

Figure 6.2: Elements before scaling

units in order for scaling to work. Unfortunately, em isn’t the default

sizing unit for text in most browsers, so unless you explicitly apply a

style to your text that sets it to em units, Effect.Scale() will ignore the

text and scale the rest of the container around it.

Figure 6.2 shows a <div> with a contained <div> and some text in its

original state:

<div id="window" style="border: solid 1px black;">

<div id="windowbar" style="background-color: red; color: white;">

Window title

</div>

Content body.

</div>

If you run a simple scale against this element, the container elements

will scale but not the text. This call doubles the size of the elements, as

shown in Figure 6.3, on the next page:

new Effect.Scale(' window' , 200);

In order to get the text to scale along with the graphics, we’d need

to apply a style to the original elements to set the text to em units.

Unfortunately, em units are not the standard in any browser. If you

don’t size your text specifically using styles based on em units, scaled

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=113

AJAX AND JAVASCRIPT FOR THE UI 114

Figure 6.3: Elements after simple scaling

elements will look horrible by default:

<div id="window" style="border: solid 1px black; font-size: 1.0em;">

<div id="windowbar" style="background-color: red; color: white;">

Window title

</div>

Content body.

</div>

Applying the same scaling as before, we’d now get the result shown in

Figure 6.4, on the following page.

Highlight

Popularized by the venerable Yellow Fade Technique (or YFT, as it is

more popularly known), this effect simply transitions the background

color of an element from a start color to an end color by moving through

the spectrum between them. The original YFT resets the background

color to a buttery yellow and fades back to white. The effect brings the

eye to an element where a change has occurred but then leaves the

page in a pristine state after the transitions has completed. To enable

this, Effect.Highlight() has three effect-specific options you can use:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=114

AJAX AND JAVASCRIPT FOR THE UI 115

Figure 6.4: Scaling text

• startcolor: Instantly changes background color of element to this

value at the start of the effect

• endcolor: Target end color to transition to

• restorecolor: Sets the background color to this after transition has

completed

The animation transitions between startcolor: and endcolor:, and then

the element is set to restorecolor:. The three color options accept only

hexadecimal color values as strings. The hex values can optionally start

with #. You can not use standardized color descriptors such as red and

khaki nor shortform hex values such as f00. Here are two examples:

// simple Yellow Fade Technique

new Effect.Highlight(' some_element');˚

// fade from red to blue, back to white

new Effect.Highlight(' other_element' ,

{ startcolor: ' #ff0000' ,

endcolor: ' #0000ff' ,

restorecolor: ' #ffffff' });

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=115

AJAX AND JAVASCRIPT FOR THE UI 116

Parallel Effects

These four core effects are all very powerful by themselves. Since they

are asynchronous, though, you can apply multiple effects simultane-

ously to get combined effects. Instead of having to wire up the combined

effects yourself, Script.aculo.us supplies the Parallel() effect that takes

care of it for you. Instead of supplying an element to Effect.Parallel(),

you provide an array of other effects. They don’t necessarily have to all

target the same element. Effect.Parallel() will kick all the child effects off

simultaneously. You could, for example, use Effect.Parallel(), to combine

the Yellow Fade Technique and a pulsating Scale() effect to really draw

attention to something:

new Effect.Parallel(

[new Effect.Highlight(' window' , { sync: true }),

new Effect.Scale(' window' , 200,

{sync: true,

transition: Effect.Transitions.pulse}),

],

{ duration: 2.0});

Combination Effects

Luckily, Script.aculo.us already provides a wide variety of combina-

tion effects using Effect.Parallel() and the four core effects. Once again

proving that you can build great complexity from a few simple building

blocks, the range of available effects is impressive. Using the effects is

no more complicated than using the core effects. The following is the

list of combination affects available as of version 1.0:

• Effect.Appear(): Sets the opacity of the element to 0, fades it up to

100, and ensures that it is visible if it was hidden.

• Effect.Fade(): Sets the opacity of the element to 100, fades it to 0,

then hides it at the end.

• Effect.Puff(): Combines Scale() and Opacity(), growing the element

to 200% while fading it out and hiding it at the end.

• Effect.BlindUp(): Scales the image vertically to 0, without scaling the

contents. Hides it at the end.

• Effect.BlindDown(): Scales the image vertically to full size, without

scaling the contents. Ensures it is visible.

• Effect.SwitchOff(): Turns the element off like an old TV, shuddering

slightly before collapsing. Uses Opacity() with Transitions.flicker to go

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=116

AJAX AND JAVASCRIPT FOR THE UI 117

from 100% to 0% while simultaneously scaling the image down to

0 with scaleFromCenter() set to true.

• Effect.DropOut(): Combines MoveBy() and Opacity(), moving the ele-

ment down while fading it out.

• Effect.SlideDown(): Uses MoveBy() to animate sliding the contents

of a <div> into view. Requires your <div> to be contained by an

outer <div>.

• Effect.SlideUp(): Opposite of SlideDow()n. Hides the element after

the transition.

• Effect.Squish(): Uses Scale() to go from full size to 0, ensures the

element is hidden at the end.

• Effect.Grow(): Sets the size of the element to zero, uses Scale() to

grow the element to full size with scaleFromCenter: set to true.

• Effect.Shrink(): Like Squish(), but with scaleFromContent: set to true.

• Effect.Pulsate(): Uses consecutive Fade()s and Appear()s to blink the

item smoothly.

• Effect.Shake(): Uses consecutive MoveBy() effects to move the item

left and right.

• Effect.Fold(): Combines BlindUp() and Shrink() to give the appearance

that the item is folding up. First shrinks the element vertically,

then horizontally, down to 0.

Advanced Techniques

Script.aculo.us also provides a series of more advanced techniques,

such as drag-and-drop and sorting capabilities. We’ll examine these

in detail in the next chapter.

Dojo

Dojo is a different kind of animal than Prototype and Script.aculo.us.

Whereas those libraries are smaller and more focused on UI goodness

coupled with good XHR support, Dojo is essentially an entire platform

for building client applications. In addition to its XHR and effects mod-

ules, Dojo includes a JavaScript collections library, widgets and widget-

authoring utilities, a logging module, a math module, and lots more. As

we demonstrated in the previous chapter, the beating heart of Dojo is

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=117

AJAX AND JAVASCRIPT FOR THE UI 118

the I/O libraries and the eventing system. We won’t cover that ground

again here. Instead, we’ll introduce you to the idea of animations in

Dojo, and take a look at how they are used to create effects like we saw

in Script.aculo.us.

Animations

A Dojo animation is an object that defines the parameters of a transition

between two states. The states can be anything: opacity levels, position,

color, shape. The animation itself isn’t concerned with the states, only

the properties of the transition itself. When you create an animation,

you supply four parameters:

• curve: A representation of an algorithm for returning values from

0 to 1. Like in Script.aculo.us, this value will be used as a multi-

plier against the current state of the element for creating steps, or

frames, of the animation.

• duration: Number of milliseconds the animation will take.

• acceleration: Whether the animation is accelerating or decelerating

(not implemented at time of writing).

• repeatCount: Number of times to repeat the animation (-1 means

loop forever).

A curve is just an object that exposes a method, getValue(n), where n

is a number from 0 to 1. The return value is an array of numbers

that can be used to calculate current state. For example, you could

create a linear curve to move from [0,0] to [100,100], thereby tracing

a line through a Cartesian plane that creates a 45-degree angle in the

upper-right quadrant. Or, you could create an arc curve to move from

[255,0,0] to [0,0,255], thereby providing a transition from red to blue.

The wiki for Dojo offers the following example of a curve implementa-

tion, representing a linear transition value set:

function Line(start, end) {

this.start = start;

this.end = end;

this.dimensions = start.length;

//simple function to find point on an n-dimensional, straight line

this.getValue = function(n) {

var retVal = new Array(this.dimensions);

for(var i=0;i<this.dimensions;i++)

retVal[i] = ((this.end[i] - this.start[i]) * n) + this.start[i];

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=118

AJAX AND JAVASCRIPT FOR THE UI 119

return retVal;

}

return this;

}

Dojo provides preimplemented curves in the dojo.math.curves module.

They range from the simple Line curve, as shown previously, to Bezier

curves, circles, arcs, and more. The API is simple enough to add your

own implementations. Just make sure you remember your ninth-grade

geometry. You simply provide an array of numbers, and the curve will

be implemented upon each element in the array, with the return value

being an array of the modified values.

To make the animation cause an element to transition, you have to

wire up the events of the animation to the properties of the element you

want to animate. Dojo’s eventing library provides us with this ability.

To create our own fade-out animation, we could use the following code:

function fadeOut(nodename) {

var node = document.getElementById(nodename);

var animation = new dojo.animation.Animation (

new dojo.math.curves.Lin([100],[0]), // linear progression from 100% to 0%

2000, // 2 seconds

0 // not implemented, but must provide

);

dojo.event.connect(animation, "onAnimate", function(e) {

node.style.opacity = e.x;

});

animation.play();

}

We must start the animation ourselves after it has been created. Then,

as the animation progresses through the curve, retrieving values, those

values are sent to the event listener. In this case, onAnimate is called

for every frame in the animation, and it takes a special event argument

that provides information about the status of the animation, including

current values, percentage complete, designated end time, etc. Inside

our anonymous listener for onAnimate, we retrieve the current value

of our linear progression from 100 to 0 and use it as the value for

the node’s style.opacity property. This causes the element to fade out

over two seconds, as per our duration parameter when we created the

animation.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=119

AJAX AND JAVASCRIPT FOR THE UI 120

Effects

Dojo uses this animation system to build its library of effects. Creat-

ing an effect is an exercise in calling the appropriate method from the

dojo.graphics.htmlEffects module. Each effect method returns a reference

to the Animation object itself, so you can append your own listeners or

modify the properties of the animation to suit your specific needs. To

create a fade-out animation, for example, you could use this:

var node = document.getElementById(' some_element');

var fader = dojo.graphics.htmlEffects.fadeOut(node, 2000);

fader.play();

If you wanted the element to be removed from the page after fading all

the way out, you can utilize the optional third parameter to include a

callback function for the onEnd event.

var fader = dojo.graphics.htmlEffects.fadeOut(

node,

2000,

function(e) {node.style.display = ' none' ;})

The effects currently provided by Dojo are as follows:

• fadeOut(): Fades the opacity of the element from 100 to 0.

• fadeIn(): Fades the opacity of the element from 0 to 100.

• fadeHide(): FadeOut, but sets the .display property of the element

to ’none’ at the end.

• fadeShow(): FadeIn, but first guarantees that the item is being

displayed.

• slideTo(): Moves an element to a given position on the screen.

• slideBy(): Moves an element a certain distance on the screen.

• colorFadeIn(): Uses a provided color as the starting point, fades to

the original background color of the element. This effect is also

called highlight (is officially aliased that way).

• colorFadeOut(): Fades from the original background color of the

element to a provided color.

• wipeIn(): Sets the height of the element to 0, then grows it to its

original size.

• wipeOut(): Sets the height of the element to its original size, then

shrinks it to 0.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=120

CONCLUSION 121

• explode(): Takes a from node and a to node, expands the size of

the from node until it matches the to node.

• explodeFromBox(): Takes a set of four starting coordinates and an

end node, grows the node from the starting coordinates to the end

node position.

• implode(): takes a from node and a to node, shrinks the from node

to fill the to node

• implodeToBox(): Takes a from node and a set of target coordinates,

shrinks the from node to the shape specified by the coordinates.

6.2 Conclusion

In this chapter, we’ve exposed you to the basic UI elements of three

different Ajax libraries. While Script.aculo.us and Dojo seem to provide

a lot of overlapping effects, as you can see, the style of use is drastically

different between the two libraries. Which you end up choosing for your

own projects is a matter of both taste and need; Dojo provides a lot

more in terms of functionality than Script.aculo.us, and if you require

those features, then it makes sense to work with Dojo’s effects as well.

However, if you are less interested in those advanced features and just

want the effects, Script.aculo.us is a much lighter-weight alternative.

It has lower overhead from a bandwidth and a learning perspective.

In the next chapter, we’ll use these libraries to reimplement our CRM

application with whizzy UI features. We’ll show server-side validation,

notification techniques, progress indicators, and more. Additionally,

we’ll talk about what not to do with Ajax. There are some big anti-

patterns waiting for you out there; we’ll give you the heads up on how

to keep your app clean.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=121

Chapter 7

Ajax UI, Part II
In the previous chapter, we started to look at using some of the avail-

able Ajax JavaScript libraries to drive the user interface in a browser.

Understanding how these libraries help you more efficiently control the

UI is Step 1. Step 2 is understanding what you should do with your

newfound tools.

This chapter will present some of the standard techniques for utiliz-

ing Ajax on the UI. We’ll talk about validation, notification, and data

management strategies that have proven they increase the utility and

usability of web applications. Later, we’ll talk about some antipatterns,

too, the things you should avoid and the tests you should apply when

Ajaxifying your application. This chapter isn’t an exhaustive treatise.

Our intent is to give you a set of foundational tools for deciding how to

(and when not to) proceed.

7.1 Some Standard Usages

Let’s look at several common applications of Ajax using the libraries we

talked about in the previous chapter: Prototype, Script.aculo.us, and

Dojo.

Server-Side Validation

Web applications face a variety of standard problems. Validation is

one that has spawned an infinite array of potential solutions. We have

learned over time that there is one universal delineation to be taken

into account: the server side versus the client side. Or so we thought.

Client-side validation is handy for our users because they get “instant”

feedback about the correctness of their data entry without having to

SOME STANDARD USAGES 123

wait for the whole page to refresh. Client-side validation is largely use-

less to the application developer, however, since it is trivial for a user to

circumvent client-side JavaScript. Heck, users can ignore our rendered

HTML entirely and craft requests to our system using Telnet. Therefore,

server-side validation is always mandatory. Client-side validation is a

usability enhancement for our users.

Ajax allows us to combine the two techniques for greater usability. The

problem with client-side techniques is that the validation rule itself has

to be portable to the browser. This means you can execute regular

expression matches, required field checking, and even small-scale data

comparisons (for example, is the state abbreviation one of the standard

50 two-letter abbreviations?). You can’t, however, validate the inputs

against your database or against any server-side resident data or rules.

With Ajax, we get the benefits of client-side validation (“instant” feed-

back without a page refresh) but the power of server-side validation

(comparison against server-resident data or rules).

This means we can create web applications with full validation the way

we have historically been able to do only in fat client applications. We

can use a full-fledged rules engine, for example, for validating individ-

ual data fields. But keep in mind that we are still required to re-validate

the data on the final submission, because users can bypass an Ajaxi-

fied web application just as easily as a standard one, which means the

final POST must be checked from top to bottom. So, this pattern gives

us more powerful client-side usability but does not solve the underlying

security problem at all.

We’re going to modify the CRM application from the earlier chapters

with our new Ajax patterns. For this validation example, we have to

start by preparing the UI itself. Here is the original HTML for rendering

the Customer Name and Address fields for input:

File 13 <tr>

<th>Customer Name:</th>

<td><input type="text" name="name"/></td>

</tr>

<tr>

<th>Address:</th>

<td><input type="text" name="address"/></td>

</tr>

It includes a label and an input field for each data value. It doesn’t

have any reasonable place to put an error message when validation

fails. First, error messages should be conveniently colocated with the

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=123

SOME STANDARD USAGES 124

Validation Error Messages

In addition to displaying error messages next to the fields they
are associated with, it is also common (and, dare we say,
appropriate) to include a general message area that provides
a summary of all error messages. Adding one is left as an exer-
cise to the reader.

input fields they describe, so we’ll add a new element directly

beside the input fields. The tags will be marked with a specific

CSS class so that we can control their look (in this case, we’ll just style

the text red). Plus, we’ll update the input fields to each have a unique

ID, which we can use to extract the values at runtime, and the new

 tags also have IDs so we can fill them in with a new innerHTML

after validation.

Second, we’ll need to hook our validation code up to an event on the

input fields. The standard event to hook for this purpose is the onblur

event. This event fires whenever the user changes focus away from the

field, whether by clicking elsewhere or tabbing away from it. We’ll call

a JavaScript method from the onblur event that will perform the valida-

tion. The method is called validateField(), and we’ll examine it more in a

minute. For now, know that the function takes four parameters:

• field id: The ID of the input field being validated

• required: Whether this field is a required field

• validation: The validation rule to execute on the data

• update: The ID of the field used to display the error message

The new version of the UI elements looks like this:

File 8 <tr>

<th>Customer Name:</th>

<td>

<input type="text" id="name" name="name"

onblur="validateField(' name' , ' required' , ' name' , ' nameError')"/>

</td>

<td colspan="2">

<span style="border-bottom: solid 1px red;

color: red;" id="nameError">

</td>

</tr>

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_validation.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=124

SOME STANDARD USAGES 125

<tr>

<th>Address:</th>

<td>

<input type="text" id="address" name="address"

onblur="validateField(' address' , ' required' , ' address' , ' addressError')"/>

</td>

<td colspan="2">

<span style="border-bottom: solid 1px red;

color: red;" id="addressError">

</td>

</tr>

Third, we need to write the method that calls the validation on the

server. Its job is to launch an asynchronous request, passing in enough

information to validate the field, and then update a named display ele-

ment with the error message, if any. Our validateField() method first

constructs a parameter list to append to the validation URL using the

input parameters to the method. It then uses the Prototype library’s

Ajax.Updater to fire the request and fill in the display field with any error

message generated.

File 8 function validateField(fieldname, required, validation, update) {

var params = "type=" + validation +

"&required=" + required +

"&value=" + $F(fieldname);

new Ajax.Updater(update, validationUrl, {

asynchronous: true,

method: "get",

parameters: params

});

}

Finally, we need to create a server-based validation engine. You could

call any standard platform validation engine you want: Struts valida-

tion, dyna-validation, Spring’s Validator, the ASP.NET validation rules,

a rules engine, whatever. Here, we’ve written a custom servlet that

takes a field’s value and the rules to invoke (required or not, plus spe-

cific rule) and returns either an empty string (meaning it succeeded) or

an error message (for failure). Clearly, we’d add things such as i18n

and SQL-injection protection if this were to be released to the public.

The listing of that code, in its entirety, is on the next page.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_validation.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=125

SOME STANDARD USAGES 126

File 6 package ajaxian.book.crm.servlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.ServletConfig;

import java.io.PrintWriter;

import java.io.IOException;

public class ValidationServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

System.out.println(request);

String required = request.getParameter("required");

String type = request.getParameter("type");

String value = request.getParameter("value");

String message = "";

if(required.equals("required")) message += validateRequired(value);

out.println(message);

}

private String validateRequired(String input) {

if (null==input || 0==input.length()) return "Field required";

return "";

}

}

When the user first sees the page, as shown in Figure 7.1, on the next

page, it looks like any standard HTML form, waiting for input.

As the user tabs through the fields, leaving data that breaks the rules,

the page updates without a refresh, giving the user instant feedback,

as shown in Figure 7.2, on the following page.

Request Notification

The asynchronous server-side validation we just created works well.

The user gets a pretty big benefit without too much of a cost. We do

have one problem, though. The user is firing server-side events via a

nonstandard mechanism. Rarely does a web application user expect

the TAB key to establish a connection back to the server. Without

that expectation, they might be surprised to find that bandwidth is

consumed at this point and even more surprised when, a half second

later, the UI suddenly pops up a block of red text next to the field they

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/java/ajaxian/book/crm/servlet/ValidationServlet.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=126

SOME STANDARD USAGES 127

Figure 7.1: Form Waiting for Input

Figure 7.2: Form Displaying Validation Errors

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=127

SOME STANDARD USAGES 128

Figure 7.3: Form Processing Validation Request

just left. If you take into account the expected occurrence of network

latency, suddenly you have the scenario of a user getting all the way

to the bottom of a form before error messages start filling in at the top.

How bad would it be if the error messages popped up in an area of the

screen the user has already scrolled past? Fairly inconvenient, at the

least.

The answer is to include a feedback mechanism that alerts the user that

a request is in progress. Browsers typically accomplish this through a

spinning/jumping/waving graphic in upper-right corner that animates

only while a request is being processed. Ajax techniques can’t take

advantage of this UI convention, though, for two reasons: it is difficult

to impossible to control the browser’s request icon, and it can alert

you to the status of only a single request at a time. With Ajax, and

a technique like the validation described above, there can be multiple

concurrent requests being processed.

The standard solution is to show an animated graphic that indicates

a request in process. This is displayed inline, wherever the results of

the request will be displayed, as shown in Figure 7.3 . If the graphic

pops up immediately, the user knows right away that something is

happening and where to look for the results. Multiple graphics can

be shown simultaneously by embedding them in multiple containers

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=128

SOME STANDARD USAGES 129

in the DOM. The current standard is to use an animated GIF image,

which is quick to load and implies activity without having to actually

poll the current status of the request.

First, we’ll add some s to the page to hold our progress indica-

tors. In this case, the image is an animated GIF called progress.gif, which

is just a spinning wheel. We’ll add them between the input fields and

the associated error message containers; this will place the notification

GIF approximately where the error message will appear, so the eye is

drawn to the appropriate place. We’ll go ahead and make a hard link to

the image, rather than loading it dynamically with JavaScript, though

either would be acceptable. The browser will natively attempt to cache

the image for the first container, and all subsequent containers will use

the cached GIF, preventing needless round-trips to the server for the

same file. We’ll simply place the image in a whose display: style

is set to none. When we want to notify the user, we toggle the .

When the request is complete, we toggle it again. Here’s the code:

File 7 <tr>

<th>Customer Name:</th>

<td>

<input type="text" id="name" name="name"

onblur="validateField(' name' , ' required' , ' name' , ' nameError')"/>

<span id="nameProgress"

style="display:none;">

</td>

<td colspan="2">

<span style="border-bottom: solid 1px red; color: red;"

id="nameError">

</td>

</tr>

<tr>

<th>Address:</th>

<td>

<input type="text" id="address" name="address"

onblur="validateField(' address' , ' required' ,

' address' , ' addressError')"/>

<span id="addressProgress"

style="display:none;">

</td>

<td colspan="2">

<span style="border-bottom: solid 1px red; color: red;"

id="addressError">

</td>

</tr>

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_val_with_progress.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=129

SOME STANDARD USAGES 130

Second, we have to update our request-generating code. In the pre-

vious example, we used the Prototype library’s Ajax.Updater object to

perform our round-trip. We’ll extend that example here. The options

collection contains four event hooks: onLoading,onLoaded,onInteractive,

and onComplete, each corresponding to one of the four readystate val-

ues. Prototype simply implements the onreadystatechange hook and

then publishes the specific events as those values arrive. We’ll trap the

onLoading and onComplete events, which allows us to show the image

when the request begins and hide it once a response has been received.

The values for the two events need to be function calls. Instead of sim-

ply calling Element.show() and Element.hide() directly, we’ll wrap them in

anonymous functions. If you don’t do this, the onLoading call never

completes, the validation result is never received, onComplete is never

called, and the little spinning wheel becomes the only interesting thing

about the page. Here’s the code:

File 7 function validateField(fieldname, required, validation, update) {

var params = "type=" + validation +

"&required=" + required +

"&value=" + $F(fieldname);

new Ajax.Updater(update, validationUrl, {

asynchronous: true,

method: "get",

parameters: params,

onLoading: function(request) {Element.show(fieldname + ' Progress');},

onComplete: function(request) {Element.hide(fieldname + ' Progress');}

});

}

Update Notification

Web surfers are largely trained to believe that something loaded on a

page is static. They understand that in order to update the contents

of a page, the page must be reloaded. The only cognitive exception to

this rule is animations. The web-surfing population understands that

certain graphics are not static but in fact loops of animation. These are

expected to repeat the same set of information over time, though, and

are not actually “dynamic” in any data-centric meaning of the term.

Ajax is all about breaking this particular expectation. That is, in fact,

the core idea of Ajax: break free from the bonds of static information.

But it goes against the foundation of most users’ understanding of how

the web works. This means we have to take special pains to ensure

that when we do break this convention, users don’t miss it.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_val_with_progress.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=130

SOME STANDARD USAGES 131

The primogenitor of this pattern is the famous Yellow Fade Technique,

or YFT. Apparently created (or at least named) by the good folks at

37signals, the YFT is a simple trick. Simply choose a color (canonically

and eponymously yellow), reset the background color of an element to

this new color and then slowly transition it back to the original. The

effect is to highlight an area of the page as though with a highlighter so

as to draw the user’s attention but to have that intrusive effect disap-

pear so as not to detract from the overall look and feel of the page.

To do this, you could write some code that manipulates the background-

color style of an element. In order to return the element to its orig-

inal state at the end of the effect, you’ll need to capture its original

background-color. You’d have to deal with the fact that most browsers

internally store colors in the form rgb(nnn, nnn, nnn). If you would prefer

to work in hex notation (#789abc), then you would have to convert them

yourself. Likewise, you would have to come up with some strategy for

moving from the original value to the target value for each color (red,

green, and blue) simultaneously to get a smooth transition.

Luckily, somebody else has already done that work for you. Previ-

ously, we’ve used the Prototype library to do server-side validation

and progress notification. We’re now going to layer the Script.aculo.us

library on top of that to get the highlight effect.1 We’ll modify the sam-

ple application to use the YFT to alert you when the content of the City

and State fields has been updated.

First, we don’t have to change the HTML at all. We already have a

container element with a unique ID that we can use for the highlight

effect. It’s the <tr> that holds the City and State fields. Its ID is rewrite.

File 9 <tr id="rewrite">

<th>City:</th>

<td>

<input id="city" type="text" name="city"/>

</td>

<th>State:</th>

<td>

<input id="state" type="text" name="state"

size=' 3' maxlength=' 2' />

</td>

</tr>

The second part is to update the getZipData() function to trigger the

effect when the data has been loaded. Remember, XHR features the

1http://script.aculo.us/

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_yft.html
http://script.aculo.us/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=131

SOME STANDARD USAGES 132

onreadystatechange event to alert your code when the status of the

request has changed. In this case, though, Prototype offers us another

option. As we saw in Chapter 6, Ajax UI, Part I , on page 93, the Proto-

type library provides two new events, onSuccess and onFailure, so that we

can write error-aware asynchronous methods. Our current version of

getZipData() already uses onFailure to alert the user if the request fails:

File 13 function getZipData(zipCode) {

new Ajax.Updater("rewrite", url, {

asynchronous: true,

method: "get",

parameters: "zip=" + zipCode + "&type=html",

onFailure: function(request) {

assignError(request.responseText);

}

});

}

When the request fails, the assignError() function is called to display the

message. We’re now going to add a handler to the onSuccess method

to perform the YFT. We use onSuccess instead of onComplete because

onComplete will fire regardless of what’s in the response. This would

lead us to highlight City and State even if their data doesn’t update.

Instead, we use onSuccess, which fires only if the request returned data

that ends up in the display fields:

File 23 function getZipData(zipCode) {

new Ajax.Updater("rewrite", url, {

asynchronous: true,

method: "get",

parameters: "zip=" + zipCode + "&type=html",

onSuccess: function(request) {

new Effect.Highlight(' rewrite');

},

onFailure: function(request) {

assignError(request.responseText);

}

});

}

The effect of this new handler is that the row containing City and State

will go yellow whenever the request succeeds and then fade back to

white over a one-second period. Bear in mind, as you learned in the

previous chapter, you can affect the behavior of the transition by sub-

mitting options to the call. For example, you can change the transition

to go from cornflower blue to white over three seconds with a linear

transition by changing the call to the following:

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxui/figure_ed_screen_yft.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=132

SOME STANDARD USAGES 133

new Effect.Highlight(' rewrite' ,

{ startcolor: ' #92A4E2' ,

duration: 3.0,

transition: Effect.Transitions.linear });

You can also choose the end transition color (endcolor) and the final

color to use after the fade (restorecolor) if you need to.

Autocomplete

One of those things that often sets traditional thick clients apart from

thin clients is the ability to quickly react to what the user is doing. For

example, lots of locally installed applications can react to what a user is

typing and make intelligent guesses about how to complete the word(s)

for the user. Google (once again) showed that the same thing could be

accomplished on the Web with Google Suggest. This feature has come

to be known as autocomplete.

Script.aculo.us provides an amazingly simple-to-use version called the

AutoCompleter. It watches an input field and sends a post parameter

of the same name to a registered server endpoint. The results are ren-

dered in another container node, allowing the user to choose from the

results. The whole effect can be achieved with the addition of one con-

tainer, one line of JavaScript, and a little simple CSS.

Let’s add this feature to the sample CRM application. We’ll prompt the

user with potential Zip code matches based on what they are typing in

the zip field. As they type into the zip field, we’ll compare that against the

list of available Zip codes and return those that are potential matches

(the ones that start with the characters entered so far).

Let’s start with a servlet that implements the autocompletion feature.

Any reasonable production-quality version would use a database of Zip

codes, and the SQL SELECT x WHERE zip LIKE ’y%’ notation to retrieve values.

To keep it simple for the book, the servlet will instead just keep an array

of Zips as strings to compare against. Here’s the servlet:

File 5 package ajaxian.book.crm.servlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.ServletConfig;

import java.io.PrintWriter;

import java.io.IOException;

import java.util.Iterator;

import java.util.ArrayList;

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/java/ajaxian/book/crm/servlet/AutoCompleteServlet.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=133

SOME STANDARD USAGES 134

public class AutoCompleteServlet extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException {

System.out.println(request);

String[] zips = new String[] {

"10010", "11035", "27707", "31000", "32230", "34434",

"45555", "46666", "46785", "46699", "49999", "53711", "53703" };

ArrayList results = new ArrayList();

String val = request.getParameter("zip");

for(int i=0;i<zips.length;i++) {

if(zips[i].startsWith(val)) results.add(zips[i]);

}

String message = "";

Iterator iter = results.iterator();

while(iter.hasNext()) {

message += "" + (String)iter.next() + "";

}

message += "";

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println(message);

}

}

Next, we’ll have to add the Ajax.AutoCompleter and a container <div> to

hold the responses we get from the server. The entire update to the UI

is as follows:

File 22 <tr>

<th>Zip:</th>

<td>

<input autocomplete="off" onblur="getZipData(this.value)"

type="text" name="zip" id="zip"/>

<div class="auto_complete" id="zip_values"></div>

</td>

<script type="text/javascript">

new Ajax.Autocompleter(' zip' , ' zip_values' ,

' /ajaxian-book-crm/autoComplete' , {})

</script>

<td id="zipError" style="color: red"></td>

</tr>

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxui/figure_ed_screen_autocomplete.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=134

SOME STANDARD USAGES 135

First, we had to make a minor change to the zip input field itself. We

added the autocomplete="off" attribute, which prevents the browser from

attempting to fill in the value itself. This would preempt our JavaScript

version and nullify the whole exercise, so we’ll disable it. Next, we have

to add a container to hold the results; that’s the <div> named zip_values.

Finally, we add a <script> block to invoke the Ajax.AutoCompleter. The

first parameter is the id of the input field to be autocompleted, the

second is the ID of the container to display the results, the third is the

server endpoint to send the request to, and the final parameter is a

collection of options.

In our case, we’re not using any of the optional parameters since the

defaults work just fine for this purpose. However, the options you have

to customize the behavior of the AutoCompleter are:

• paramName: A name to use for the value sent to the server. This

defaults to the name of the target input field.

• frequency: How often to check for changes to the input field and

send the request (defaults to 0.4 seconds)

• minChars: How many characters the user has to enter before the

first request is sent (defaults to 1)

• afterUpdateElement: A hook invoked after the values are returned

and set into the target container

Script.aculo.us also provides another object, AutoCompleter.Local, which

uses a locally cached list of values instead of making round-trips to the

server. This would increase speed at the expense of stale data.

To finish the example, we just have to make the results look pretty.

Without any style help, the results will be displayed in a transparent

<div> as a series of bulleted list items, without keyboard navigation.

Clicking on one with the mouse would be the only way to select an

entry from the list. We are using the styles provided by Script.aculo.us

to make our list entries navigable and pretty, as shown here:

File 22 <style>

div.auto_complete {

width: 350px;

background: #fff;

}

div.auto_complete ul {

border:1px solid #888;

margin:0;

padding:0;

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxui/figure_ed_screen_autocomplete.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=135

SOME STANDARD USAGES 136

Figure 7.4: Autocomplete in Action

width:100%;

list-style-type:none;

}

div.auto_complete ul li {

margin:0;

padding:3px;

}

div.auto_complete ul li.selected {

background-color: #ffb;

}

div.auto_complete ul strong.highlight {

color: #800;

margin:0;

padding:0;

}

</style>

Figure 7.4 shows the final result. Notice how the effect is like a drop-

down box. The <div> has a narrow black border, the individual items

are displayed without list bullets, and as you key up and down the

list, the items highlight with (in this case) a pale yellow. Pressing enter

while an item is highlighted, or clicking one with the mouse, causes

that value to be set into the input field.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=136

IT ISN’T ALL JUST WINE AND ROSES... 137

7.2 It Isn’t All Just Wine and Roses...

Ajax is fantastic. It opens the Web to a whole new way of developing and

delivering applications to your users. Largely, it changes the experience

of using a web app from reading to using. As long-time instructors and

trainers, we know firsthand the value of interaction in keeping students

engaged and happy. The same phenomenon applies to applications. If

your application is passive and makes your users passive consumers,

then the application will not capture your users’ attention. An interac-

tive version, however, has the power to excite.

Even though Ajax has this power to change the Web so radically, it

behooves us all as developers to remember why the Web enjoys such

broad acceptance. It is based around certain standards (technical and

visual) that have allowed users of all stripes to take advantage of ser-

vices provided there. Those standards, some written and some simply

understood, are vital to the success of all applications on the Web,

whether or not they use Ajax.

The key to successful Ajaxification is to not ignore important conven-

tions. Certain laws of the land made the Web so popular and acces-

sible, in ways that other applications and technologies never were. As

you add this new technology into your application, think both tactically

and strategically. Ask yourself the following questions:

• “Is what I’m adding increasing the usability of my application, or

the length of my resume?”

• “Does it break an ingrained habit of my users?”

• “Is the value worth the cognitive dissonance such a break will

cause for my users?”

Tactically, the change might increase the usability of this single page

but strategically reduce the usability of the application as a whole.

We’ll walk through some of the biggest antipatterns to watch out for.

This list is not exhaustive. When in doubt about something you are

working on, check it against our previous smell-test questions. And

keep in mind that the key is usability and fun: if it increases both, then

do it!

Watch That Back Button!

Two features set the World Wide Web apart from everything that came

before it: the back button and the bookmark. Applications histori-

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=137

IT ISN’T ALL JUST WINE AND ROSES... 138

cally were guided tours. Users were encouraged to follow certain paths

through the information provided. At best, users might be able to

search for a specific item or screen and navigate directly to it. If they

moved on, the only way to return was to run the search again. And even

this was a rare enough feature for an application. Consider Quicken

circa 1998 or those multimedia encyclopedias we all bought back in

’96. You had tables of contents and search capabilities but no notion

of the history of your actions.

The back button isn’t just a button; it’s a symbol of freedom. It means

that you are free from the shackles of the guided tour. You forge your

own path through the information at your fingertips and can retrace

your steps at your leisure. You become the master of the applica-

tion, instead of the other way around. Don’t believe me? Go into your

browser, turn off the navigation bar, and see how long you go before

having to turn it back on again.

Bearing this in mind, now picture how the back button actually works.

The default behavior for a browser is to cache pages as they are down-

loaded. Clearly, this feature can be overridden at either the browser

level or server level, but the default is to create a local cache. Only the

original state of a page as downloaded from the server is cached. If the

DOM is modified in any way by client-side JavaScript, those changes

are not reflected in the cache at all. Conversely, if the page was not

cached, then the back button merely sends a new request to the server

to request the page, which will return the page in its original state any-

way. The practical upshot of all this is that all your Ajax goodness is

lost when the user navigates away from your page and back again.

It’s even worse than it looks at first glance, as well. If the page has

elements whose value is determined at parse time, then those values

will be cached along with the rest of the page. Clicking the back button

will normally result in a load from cache where possible; if the page

was cached, the elements will contain possibly outdated values since

the server-side parse never takes place a second time. At that point,

only if the user manually refreshes the page will the new values appear.

It becomes incumbent on the designer of the application to distinguish

between information retrieval and navigation. When a user wants to

proceed to a new topic area, they generally want a history of where

they were previously. The back button is the instant access to that his-

tory; navigating to a new subject area via an Ajaxian in-page replace-

ment nullifies the ability of the back button to perform its appointed

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=138

IT ISN’T ALL JUST WINE AND ROSES... 139

duties. Take, for example, the very common practice of online news-

papers splitting its articles up over multiple pages. In standard HTML,

the current page ends with a link to Next Page>>. Clicking that reloads

the browser and shows page 2 of the article. At the bottom are now

links to <<Previous Page and Next Page>>. Users can use either the

link or the back button to navigate backwards. Since the pages are

part of a unified whole, and the user is already trained to use the Next

Page>> link for forward navigation, it wouldn’t be too much of a stretch

to do an Ajax version where the pages are loaded into a <div> on the

fly. Users would use the built-in navigation as before; clicking the back

button would take them away from the article entirely, back to the table

of contents. This seems fairly natural.

Alternatively, imagine the same online newspaper site but with a table

of contents whose links to articles operate in Ajax fashion. Clicking on

the title of an article replaces the table of contents with the text of the

article. Navigating forward and back in the article happens via Ajax

as well. When the user clicks the provided Next and Previous buttons,

new pages are loaded into the same <div>. What happens if the user

clicks the back button now? They don’t end up back at the table of

contents; instead, they end up at whatever website they were at before

coming to the newspaper site. This is because the table of contents was

forced into the same page context as the articles it listed. By doing so,

you have essentially eliminated the history of a topic transition for your

user (TOC → article) that they would normally expect to be maintained

for them.

It is hard to pin down the exact point at which Ajax breaks this rule.

But it is really easy to spot it after you have done it. Just use your

application a few times. Whenever you find yourself annoyed because

you can’t retrace your steps, you have probably found an instance of

this antipattern.

Bookmarking Makes the Web

Bookmarking is the kissing cousin of the back button. It is a user-

controlled metahistory of their browsing exploits. Bookmarking the

index page (the welcome mat) is less useful now than it was in the past.

With Google as our shared bookmarks, most people don’t bother book-

marking the index page anymore. It’s just as easy to run to Google, type

in the page name, and click the resulting link (or even the I’m Feeling

Lucky button, which we almost never are). Instead, we use bookmarks

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=139

IT ISN’T ALL JUST WINE AND ROSES... 140

for deep linking. This means capturing the state of the application or

site at some point after you have begun interacting with it. Perhaps

this is the result of a search at Amazon or the report of your current

holdings at your financial institution, or some particular article at the

New York Times.

Deep linking means that users have the complete ability to pause and

return to your application. If state is maintained (cookies, long-term

sessions, back-end storage, whatever) and users can specify where in

the application flow to resume their work, then they are not chained to

your timetable. We often find ourselves in the middle of something on

an application but forced to take a call or run to a meeting. We want to

know that we can pick up right where we left off at some later time. So

we bookmark the page. If we come back, open the bookmark, and end

up back at the index page instead, we’re displeased.

When a user arrives at an Ajaxified page, the URL that appears in the

address bar is whatever they typed in or clicked on to get there. When a

bookmark is added to a browser, it makes a copy of the current address

in the address bar. If the page has allowed the user to progress through

tens or hundreds of interactions, the URL in the address bar is exactly

the same as it was for the initial request. A user who navigates to the

bookmark will always end up at the original state of the page; Ajax-

based changes will be long forgotten.

Once again, we are faced with the distinction between a major topic

area of the application versus a minor shift in focus. Users will accept

certain limitations on their bookmarking ability; for example, most peo-

ple don’t expect to be able to bookmark a page halfway through the

checkout wizard at an e-commerce site. Clearly, users have come to

learn the difference between static pages and stateful processes that

can’t be captured in a snapshot. Developers now have to come to

the same questions: what transitions can I encapsulate in a nonbook-

markable process, and what requires page transitions in order to allow

pause-and-resume behavior?

GET Is for Getting, POST Is for Doing

In the world of HTTP, browsers communicate with servers using (typi-

cally) either GET or POST requests. A GET request is generated when-

ever you click a hyperlink; the idea is that it gets the next page. A POST

request is sent when you hit the submit button on an HTML form. It

posts the data from that form to the application for processing.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=140

IT ISN’T ALL JUST WINE AND ROSES... 141

In May 2005, the team that created Basecamp (and Ruby on Rails)

learned this really valuable lesson: GET is for getting things and POST

is for doing things. The HTTP specification is pretty specific on this

topic. GETs are for retrieving data. POSTs are for interacting with the

server in a way that might change server state. When you avoid the

recommendations of a specification, bad things can—and often do—

happen. Basecamp’s public tussle with this issue serves as a caution-

ary tale for the rest of us: if these kinds of issues can affect the best

and brightest, we need to be extra careful in our own applications to

avoid similar problems.

Basecamp’s problem was that, at the time, the default method for creat-

ing links back to the server with Rails was a GET. It didn’t matter what

the link was doing: redirecting to a new page, reading a record, or delet-

ing a record. Then, Google released Google Accelerator. Google Accel-

erator installs in your browser and redirects requests through Google’s

servers. If Google has already cached the page, you’ll be rewarded with

the previously cached version, thus speeding up your access time. If

the page has not been cached, then the request is forwarded as nor-

mal. Google Accelerator then walks all the links off of the returned

page, thus caching it and all of its subpages.

For an application whose controls are all provided as simple GET-

method links, Google Accelerator becomes the most efficient destructive

force imaginable. Think of it as the Terminator of web apps. It is single-

minded: fire a request to every link on the page. It is efficient. And it

absolutely will not stop until your app is dead.

37signals didn’t realize there was a problem until data started dis-

appearing from the Basecamp database. As users began reporting

that their data was mysteriously missing, the team finally realized that

the common thread was Google Accelerator. Normally, such a thing

wouldn’t be a terrible problem. After all, Google’s indexing worms fol-

low essentially the same path; find a page, navigate to all the link end-

points, cache, and continue. But with Google Accelerator, the worm

finally has access to information it has never had before: your user-

name and password. Navigate to your Basecamp account, for example,

and log in. Google Accelerator can now follow all the links on your

private page. It then clicks everything it can, as fast as possible. And

some of those links are labeled Delete This Item.

The solution was to change their framework, Rails, to create POST-

method links for update methods. They did this by creating a second

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=141

IT ISN’T ALL JUST WINE AND ROSES... 142

view helper in addition to link_to() that creates a <form> element to

surround a button. The parameters are embedded as hidden <input>s.

The <form> is set to POST as its method. Now, your update-related

links don’t fall prey to Google Accelerator.

When you Ajaxify an application, the temptation to write pages this way

is strong. You present your user with a list of items. You want them to

be able to add new ones or delete existing ones from the page without

a refresh. So you add a link to the bottom, New Record. Embedded

in each item on the list is a link called Delete. You use a simple GET

with a URL such as http://www.mydomain.com/my/app/delete?recId=545.

What could be easier? Of course, Google Accelerator will knock on your

door. “Sarah Connor?” it will ask. And that will be the end of that.

Tell People When Updates are Happening

When browsing a Web 1.0 application, pay careful attention to the feed-

back you get from the application, the browser, and your OS. For exam-

ple, when you click a link to another page and the data has started to

render (but slowly), what feedback are you getting? The refresh icon

in the upper-right corner of your browser begins to spin or jump or

change colors. On the Mac, the cursor turns into the Rainbow Wheel

of Doom and you can’t click anything in the browser window (though

the browser’s menus are usually still accessible). That’s because the

navigation operation is synchronous: you are forced to wait until it has

completed before you can use the contents of the window, or until you

choose File→Print from the menu. The dialog box often takes a second

or two to appear as it scans your network for configured printers. While

this is happening, your cursor might turn into an hourglass, and you

won’t be able to click anything in the browser window or on the menus.

Synchronous operations come with their own feedback. If it is related

to requesting new information, the browser tells you via the refresh

icon. You get feedback in the form of not being able to click resources.

Even your cursor changes to tell you “Quit clicking that.” You know

that the browser is attempting to do work on your behalf. Now, enter

Ajax. The asynchronous part makes everything different. When you

fire an asynchronous request back to the server, there is nothing that

the browser will do for you automatically that provides feedback to the

user that something is going on. It will quietly and invisibly wait for

the response to return and then put it wherever your JavaScript tells it

to go. Suddenly, as if by magic, the rendered HTML is updated. Voila!

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=142

IT ISN’T ALL JUST WINE AND ROSES... 143

Some previously hidden <div> pops into view, filled with useful but

surprising information! Unfortunately, your user has already scrolled

past that part of the page and misses all the fun.

It is up to you to provide adequate warning to your user that some

activity is being performed on their behalf. Because they are able to

continue to work with the page and the browser after firing an asyn-

chronous call, you have to provide visual cues to them to let them know

that something is on the way. Earlier in this chapter, we showed you

a technique for popping up a notification animation. Often, this tech-

nique is enough. But sometimes, you’ll have to do more. Perhaps you

have to change the cursor or perhaps show a full progress bar. Regard-

less of the specific technique, you should always provide a mechanism

to warn your users that clicking that link, pressing that button, or

doing whatever it is, has now fired a request and the browser is waiting

for a response.

Don’t Reinvent the Wheel

We’ve grown accustomed to certain UI conventions. Modern operating

systems and their windowing toolkits all offer us certain abstractions

that have settled in our consciousness. We know what a window is,

for example. Even our parents know that when they see a box on the

screen with an outset border, a header at the top, and some buttons

in upper-left or upper-right corners, that that thing can be dragged

around on the screen and it can be closed. We know what a button

looks like and that the appropriate thing to do is click it, once, to press

it. We’ve been trained that the words along the top edge of a window

are probably menus and that if we hover the mouse over them or click

them, they are likely to spawn little submenus. We’ve actually run this

experiment with our family. They are Microsoft Windows users. If we

put them in front of a Mac, they know how those conventions work even

though the actual graphical look is entirely different. They have no idea

what the Dock is for, but the common abstractions are plain and clear.

Likewise, when they sit at a Gnome or KDE desktop on a Linux box,

everything is fairly straightforward.

The Web has taught us some additional standards. Now, we agree

that text along the top or left edges may be a menu and that hovering

the mouse over a menu is preferable to having to click it to get the

submenu to appear. We know that words underlined and often blue

are hyperlinks that will navigate us to a new page. Square gray boxes

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=143

IT ISN’T ALL JUST WINE AND ROSES... 144

next to words are check boxes, which can be checked and unchecked

individually, while groups of gray circles are radio buttons, and clicking

one affects the others. And when the cursor turns into a little pointing

hand, that means whatever we’re hovering over is clickable.

These conventions enable a common computing experience. They are

the very thing that allows users not to have to RTFM every time they

encounter a new application. They allow us to surf the Web, which

is really just the accumulation of a billion applications designed by a

billion monkeys. Without those conventions, every new web page would

be a new cognitive experience; we’d have to take a day to read the help

before being able to check the Eagles’ score. The Web would be useless.

So don’t be tempted to think you are smarter than the collective. As

programmers and designers, we often suffer from a certain hubris that

says “I can be better than the lowest common denominator.” The prob-

lem isn’t believing that. The problem is mistaking “common” for “lowest

common.” Just because everybody is doing it doesn’t make it bad. That

kind of logic is just counterintuitive enough to appeal to our old high-

school self, whose fascination with The Cure and Metallica was fed by

the belief that Phil Collins couldn’t possibly be any good because so

darn many people listened to his music.

For example, Ajax enables us to create portal sites the right way. Basi-

cally, a portal is a website that displays multiple disparate content

areas on a single page. There could be local weather, last five e-mail

messages, who is currently logged into the site, RSS feeds, etc. Each

content area is self-contained, and they can be added and removed

individually, often minimized, closed entirely, and dragged around and

repositioned. That reminds us of something we were just thinking

about...hmmm, what was it...oh, right, a window! That’s it! A con-

tent area in a portal is just like a window! And we currently have a

convention for drawing a window so that the user knows what to do

with it. This means a really good portal site should look something like

Figure 7.5, on the following page.

The individual portlets clearly are closeable and minimizable, and it

shouldn’t surprise us at all to find out that they are draggable. The

temptation can be strong to reinvent all of this—rounded windows with-

out obvious title bars, little dots in the lower-left corner to click to close

the window, etc. While we’re fans of avant-garde design, we don’t like

struggling with an interface to figure out how it works. We like being

surprised by an interface even less. Stick with what works.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=144

IT ISN’T ALL JUST WINE AND ROSES... 145

Figure 7.5: A Well-Designed Portal

Likewise, launching asynchronous calls to the server based on non-

standard interactions with a page will be disconcerting to your users.

Running your mouse over an obvious menu at the top of the screen and

causing a menu to pop up is fine, even if it involves (quick) round-trips.

Having menus pop up as you mouse over random words in a paragraph

would be alarming. Causing data to refresh when users click buttons

is expected. Causing data to refresh when users click links might be

surprising. And for crying out loud, think very, very carefully before

you start shaking, puffing, and squishing elements on the screen. Ask

yourself whether the effect is something the users will understand in

context or whether they will just be surprised by it.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=145

CONCLUSION 146

7.3 Conclusion

In this chapter, we’ve talked about some common patterns for making

effective use of Ajax in the UI. For the most part, what we’ve shown is

how to use Ajax to make web pages respond more like the rest of the

user interfaces that our customers have grown accustomed to using.

Alerting our user to changes in data, that background processing is

ongoing, or that they have committed errors in their data entry are

all just ways of increasing the responsiveness of the application while

keeping with standard conventions. Techniques like autocompleting

text boxes allow customers to use our applications more efficiently.

Sorting data and drag-and-drop capabilities make the UI more like the

standard “thick” UI components of our desktop systems.

As with anything, though, the trick is knowing when not to do it. The

second half of our chapter was all about keeping ourselves focused on

the most important point: usability. When these techniques make it

easier for our users to accomplish a task, then the technique is suc-

cessful. When they get in the way, when they cause our users to have

to think about what they are doing, then we should reevaluate our deci-

sion. And above all, never surprise the user.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=146

Chapter 8

Debugging Ajax Applications
One of the simple pleasures of software development is the gratification

that comes from writing code and seeing it work right away (or, if you’re

a Java programmer, seeing it work several minutes after you’ve written

it). Of course, this concept can be symmetrically applied to the grief felt

when the code doesn’t work right away.

This chapter discusses the various tools and techniques that you can

use to discover why your code doesn’t work on those (rare?) occasions

when things just aren’t going your way.

8.1 View Source

The time-honored mechanism for debugging web applications is the

View Source mechanism, which is as ubiquitous in modern browsers

as back and forward buttons. In the Ajax world, however, the View

Source function becomes of limited utility.

Consider the following example:

File 24 Line 1 <html>

- <head>

- <script type="text/javascript">

- function init() {

5 document.getElementById("foo").innerHTML = "Goodbye, world!";

- }

- </script>

- </head>

- <body onload="init()">

10 <p id="foo">

- Hello, world!

- </p>

- </body>

- </html>

http://media.pragprog.com/titles/ajax/code/DebuggingAjax/dynamic.html

DOM INSPECTORS 148

Figure 8.1: The Source Can Be Misleading...

Open this page in your browser and you’ll see something like Figure 8.1

.

If you use the your browser’s View Source option, you’ll see the code

as listed in this book. That’s great. The problem is that source is

not in sync with what you actually see in the browser. In the source

code, line 11 says “Hello, world,” but as you can see in Figure 8.1 , the

page displays “Goodbye, world”—obviously because of the JavaScript

we have in the source code that modifies the web page.

For this trivial example, that may not seem like a big deal, but for more

complex Ajaxian applications, this is a major problem. You will often

want to see exactly what the current state of the web page source is.

8.2 DOM Inspectors

Enter the DOM inspector. As we explained earlier, browsers maintain DOM inspector

an XML version of the web pages they display in memory, and this XML

document is available as a DOM tree via the document variable. While

View Source will display only the source code that was originally sent

to the browser, by inspecting the web page’s DOM tree, you can see the

exact current state of the web page.

Firefox and Safari both include built-in DOM inspectors, and Microsoft

makes one available for Internet Explorer as a separate download. Of

these three browsers, Firefox’s is the most powerful, so we’ll take a

look at that one and then discuss the limitations of the DOM inspectors

available in the other browsers.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=148

DOM INSPECTORS 149

Figure 8.2: The Firefox DOM Inspector

Firefox DOM Inspector

The Firefox DOM inspector is available in the Tools pull-down menu.

Figure 8.2 shows it revealing the secrets of our dynamic page. On

the left side is a depiction of the DOM tree, starting with the top-level

document. Beneath this are all the elements that compromise the DOM

tree—our web page, in other words. In this case, the highlighted line

represents the text within the <p> element that our JavaScript created.

On the right side are the properties of the element selected in the tree

on the left side; in this case the contents of the text node that we’ve

highlighted. And here we actually see what the contents of the table

cell are—the phrase “Goodbye, world!”

Figure 8.3, on the following page, shows the properties available if we

select a different type of element; in this case, it shows the <p> element

itself.

The pop-up window on the right side is the context menu that appears

if you right-click the properties table. Most interesting is the ability

to edit any of the properties on the table element or even insert new

properties. In fact, Firefox’s DOM Inspector will also let you cut, copy,

paste, and delete all of the various elements in the DOM on the left side

of the inspector as well.

The properties on the right side of the DOM Inspector are the properties

of the XHTML elements in the DOM tree (actually, the properties of

the DOM API’s representation of the XHTML element, but that’s not a

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=149

DOM INSPECTORS 150

Figure 8.3: A Selected Element in the DOM Tree

terribly important distinction). There are, in fact, other properties you

can view for each of the elements in the DOM tree. You can switch

to these other property sheets by clicking the property sheet icon as

shown in Figure 8.4, on the next page.

The DOM Node sheet is the one we’ve been looking at up to now; it

displays those properties that are defined by the DOM specification as

belonging to the particular element type. The other property sheets are

explained by the following list:

• Box Model: Displays the position, dimensions, margin, border,

and padding information for the box that represents the selected

element (or, if the element does not have a box, the information

for the elements containing box).

• XBL Bindings: Relates to Firefox’s proprietary XUL API; we won’t

discuss this here.

• CSS Style Rules: Displays the CSS rules that are being explicitly

applied to the selected element.

• Computed Style: Lists all of the CSS styles that are being applied

to the selected element. This is different from CSS Style Rules

as all of the styles that this element inherits are displayed, rather

than just those that are explicitly applied to it.

• JavasSript Object: Lists all of the properties on the JavaScript

object that represents the selected element.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=150

DOM INSPECTORS 151

Figure 8.4: The DOM Inspector Property Sheet Icon

Figure 8.5, on the following page, shows a view of each of these sheets

(except the boring XBL Bindings) for the table element we saw earlier.

We’ll discuss one more feature of the DOM Inspector before moving on.

Often times, you can get lost in the tree of nodes on the left side of the

inspector. Actually, to be fair, it’s really much more the opposite; it’s

pretty difficult not to get lost. Fortunately, there’s a handy way to get

your bearings. By right-clicking an element in the DOM tree, you can

blink it, which causes it to be momentarily highlighted on the actual

web page.

There’s more we could say about the DOM Inspector, but we’ve got lots

of other debugging tools to show you yet, so let’s move on—but first,

we’ll say a few words about the DOM inspectors in other browsers.

Safari Debug Menu and DOM Inspector

Here’s a surprise for some readers: Safari actually does have a DOM

inspector, contrary to popular belief, but it is hidden away in a Debug

menu that isn’t visible by default. In fact, as we’ll see throughout the

chapter, Safari’s debugging tools are quite capable. But before we get

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=151

DOM INSPECTORS 152

Figure 8.5: Various DOM Inspector Property Sheets

carried away singing its virtues, let’s first figure out how to get that

invisible Debug menu to show up.

Revealing the Debug Pull-Down Menu

Finding the Safari debug menu requires the use of the OS X Terminal

application. Once open, you need to execute the following command:

$ defaults write com.apple.Safari IncludeDebugMenu 1

After executing that command, the next time you launch Safari, you’ll

see the magical Debug menu, as shown in Figure 8.6, on the next page.

You’ll find that Safari’s debugging capabilities are quite competitive

with Firefox, sporting such niceties as such as a built-in profiler and

some neat helper functions that automatically launch a web page in

all of the browsers installed on your system. Safari’s DOM Inspector is

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=152

DOM INSPECTORS 153

Figure 8.6: Safari’s Debug Menu

best-of-breed, giving you the functionality of Firefox’s in a much more

aesthetic package.

While Figure 8.7, on the following page, doesn’t show it, Safari’s DOM

Inspector is partially transparent and is launched by right-clicking on

an element in the web page. It then floats over the page, highlighting

the element currently being inspected. Leave it to Apple to make a

gorgeous DOM Inspector.

Internet Explorer Developer Toolbar and DOM Inspector

IE does not have a built-in DOM inspector, but Microsoft does provide

a free Developer Toolbar for IE 6+ that comes with a DOM inspector.1

Note that the toolbar is not yet officially released, so the final URL is

1http://www.microsoft.com/downloads/details.aspx?FamilyID=e59c3964-672d-4511-bb3e-

2d5e1db91038

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=153

DOM INSPECTORS 154

Figure 8.7: Safari’s DOM Inspector

likely to change. Actually, with a URL like that, it’s probably guaran-

teed to change; just use Google to find it (“Internet Explorer developer

toolbar”).

Once you’ve installed it (and you’ve restarted IE), you can add the Devel-

oper Toolbar to your IE toolbars using the View -> Toolbars -> Developer

Toolbar pull-down menu, as shown in Figure 8.8, on the next page.

Note that, depending on your system’s configuration, you may need to

reposition the Developer Toolbar to see all of its options (which may

require you to unlock the toolbars before you can move them).

The View DOM button on the Developer Toolbar will produce a DOM

inspector for the current page, as shown in Figure 8.9, on page 156.

While the layout is different from Firefox, most of the functionality

is still present. (The only notable absence is an equivalent for the

JavaScript Object property sheet.) You can see the XHTML proper-

ties set on the elements in the middle area, and on the right side you

can see the explicit styles on the element and, by checking the Show

Default Style Values, all of the inherited CSS properties, too.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=154

DOM INSPECTORS 155

Figure 8.8: Internet Explorer’s Developer Toolbar

Live View Source

DOM inspectors remain the definitive mechanism for exploring the con-

tents of a web page at runtime, allowing you to inspect every detail and

make tweaks to explore alternative options at runtime. Still, none of

the three DOM inspectors we looked at scores any points for revealing

the big picture or giving you a quick view of the runtime document con-

tents. Oftentimes, what you really want is just a View Source facility

that shows you the live copy of document.

Firefox and Safari both provide this capability out of the box through

their DOM inspectors. In Firefox, to view a live copy of the docu-

ment, you can right-click any element in the DOM tree and select Copy

XML. Then, in your favorite text editor, select Paste, and you’ll have a

nicely formatted copy of the source tree, as shown in Figure 8.10, on

page 157.

Firefox has another neat feature. If you select some portion of the

web page in the browser window and right-click, you can select the

View Selection Source option and see the subset of the DOM tree that

is responsible for rendering your selection. You can therefore use the

Control-A key combination to select the entire page and use View Selec-

tion Source to see something very close to a Live View Source option.

As a bonus, Firefox provides syntax highlighting with this view.

In Safari, the DOM Inspector always shows a copy of the live web page

documentation when you select a node in the DOM tree.

Internet Explorer does not provide a mechanism for viewing the live

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=155

DOM INSPECTORS 156

Figure 8.9: Internet Explorer’s DOM Inspector

source of a web page. At least one third-party commercial plug-in pro-

vides this functionality; we recommend Instant Source,2 which displays

a window beneath the current web page that displays the live DOM

source for the page and provides a number of other convenient func-

tions, such as limiting the display to only the select or hovered-over

item and allowing you the edit the source in place.

2http://www.blazingtools.com/is.html

http://www.blazingtools.com/is.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=156

DOM INSPECTORS 157

Figure 8.10: Firefox-Generated Live Source Code

Figure 8.11: The View Rendered Source Chart Plug-In

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=157

DOM INSPECTORS 158

Firefox Plug-ins

The Firefox community has developed at least two plug-ins that pro-

vide useful functionality related to viewing the live source. The View

Rendered Source Chart,3 displays the DOM tree for any web page as

a colorful chart depicting the box model of the web page, as shown in

Figure 8.11, on the preceding page.

View Rendered Source Chart is open-source (though a $1 commercial

version is available that adds a few features).

Another plug-in, View formatted source, displays a syntax-highlighted

view of the live source. As a bonus, this live source view allows individ-

ual elements to be collapsed, like the DOM Inspectors, and when you

mouse-over an element in this source view, a pop-up window displays

the CSS properties that are applied to the element. View formatted

source can also decorate the web page rendering and provide links that

allow you to view only the source for a particular element.

To our knowledge, no third-party plug-ins for Safari provide similar

functionality to either of these plug-ins; the Instance Source plug-in

for IE provides some of this functionality. There are probably other

commercial plug-ins for IE along these lines, but we aren’t familiar with

them.

Mouseover DOM Inspector

The final tool that we find quite useful is compatible with all of the major

browsers: the Mouseover DOM Inspector, or MODI for short. MODI is

a bookmarklet that you can use with any web page; you bookmark a bookmarklet

link from the MODI website4 and then click the bookmark to use it to

examine any site in the future.

When you click the bookmark, you’ll see the MODI pop-up box appear

in the web page, as shown in Figure 8.12, on the next page.

You can click and move the MODI window wherever you like. As you

move the mouse around, the MODI window displays useful DOM infor-

mation about the area of the page the mouse is over, such as the chil-

dren of the element, its ancestry, and various attributes about the ele-

ment.

3http://jennifermadden.com/scripts/ViewRenderedSource.html
4http://slayeroffice.com/tools/modi/v2.0/modi_help.html

http://jennifermadden.com/scripts/ViewRenderedSource.html
http://slayeroffice.com/tools/modi/v2.0/modi_help.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=158

DOM INSPECTORS 159

Figure 8.12: MODI in Action on Ajaxian

Were this all MODI did, it would be pretty interesting. But, there’s more.

MODI lets you modify the DOM as well, through a series of keystroke

listeners it installs. These listeners also provide some additional DOM

inspection functionality that’s pretty neat.

Our favorite feature is the V key—press this while hovering over an

element, and a pop-up window appears that contains the element’s

source code. You can edit the source directly within this pop-up window

and apply it live to the document. MODI also has a sort of clipboard:

press A whilst hovered over an element, and the element is copied into

the clipboard. Press S over another element, and the copied element

will be appended as a child to that element.

MODI does much more than this; we highly recommend that you check

it out.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=159

JAVASCRIPT DEBUGGING 160

Figure 8.13: Internet Explorer Error Icon

8.3 JavaScript Debugging

The live DOM-viewing features we just discussed are absolutely vital

for understanding the current state of a web page, but they’re only half

the story, of course. Any Ajax application will also make extensive use

of JavaScript. Let’s talk about what to do when your JavaScript doesn’t

do what you expect.

Two basic types of errors can occur in your scripts: syntactical and

behavioral. Let’s discuss how to handle both types of errors in your

scripts.

Syntactical Errors

If you are accustomed to using a compiled language, such as Java or

C++, then you’re probably not used to dealing with syntactical errors at

runtime. If you mistype a function names or abuse operators, compiled

languages spit out syntax-related error messages when the compiler

converts source code into a lower-level form. In the case of JavaScript,

however, these errors are detected at runtime. The browsers differ in

how they handle displaying these error messages.

Internet Explorer

In the case of Internet Explorer, the presence of a JavaScript-issued

error message is indicated by a changed icon in the lower-left corner of

the browser window, as shown in Figure 8.13 .

By double-clicking the icon, you’ll see a pop-up dialog that displays

information about the error, as shown in Figure 8.14, on the next page.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=160

JAVASCRIPT DEBUGGING 161

Figure 8.14: Internet Explorer Error Dialog

IE will record every script error that occurs on the current web page

and save them for your review in this dialog; by clicking the next and

previous buttons, you can cycle through these messages. Once you

leave the web page, these errors will be cleared.

It can be easy to overlook IE’s subtle icon-change error indication, but

fortunately, you can configure IE to display a dialog each time an error

occurs, saving you the bother and extra step of dealing with the icon.

The Browsing section of the Advanced tab in IE’s Internet Option’s dia-

log window contains a preference item named “Display a notification

about every script error”; check this, and the dialog will automatically

appear.

Before we move on to the other browsers, we should mention a quirk

in Internet Explorer’s error display mechanism. If you fail to turn on

the “Display a notification about every script error” option, Internet

Explorer will fail to display a notification about errors that occur in the

JavaScript before the page is completely loaded. For example, consider

the following simple web page:

File 25 Line 1 <html>

- <head>

- <script type="text/javascript">

- alerrrrrrrrt("Too many R' s");

http://media.pragprog.com/titles/ajax/code/DebuggingAjax/ie_error.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=161

JAVASCRIPT DEBUGGING 162

Figure 8.15: Firefox JavaScript Console

5 </script>

- </head>

- <body></body>

- </html>

You would expect IE to complain about line 4, but alas, no complaint is

made. It turns out that when IE finishes displaying a page, it clears all

script errors currently tracked, including those caused while the page

was rendered. Bummer.

Firefox

If you find IE’s mechanism for displaying error messages lacking or

annoying, you’re not alone, and fortunately, the other browsers provide

a superior mechanism: the JavaScript console.

Available from Firefox’s Tools menu, the JavaScript console (shown in

Figure 8.15) records every error that occurs during the entire browser

session. Unlike IE’s modal pop-up dialog, the console window may be

kept open during a browsing session.

In addition, you can evaluate JavaScript expressions—a handy way to

test JavaScript expressions without creating an entire web page as a

container for them. The console has access to the various implicit

objects that the browser makes available to the JavaScript environ-

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=162

JAVASCRIPT DEBUGGING 163

ment, such as the document object, but it does not have access to the

variables that are created by the page. When you evaluate an expres-

sion in the console, the result of the evaluation will be displayed as a

message in the console itself.

Safari

Like Firefox, Safari includes a JavaScript console, available from the

Debug menu. It also comes with a helpful bonus feature—the ability

to log your own messages to the console by executing this expression,

passing in the string to log: window.console.log("string to log").

Actually, Firefox also includes the ability for scripts to log messages to

the console, but unlike Safari, this ability is far more difficult to use,

requiring you to delve into native Firefox functionality, which includes

the requirement to request advance script permissions, and so forth.

For more information on using this ability, please go online.5

Safari also allows for interactive script evaluation using the Snippet

Editor, also available from the Debug menu.

MochiKit Interpreter

We should also mention that a popular third-party JavaScript frame-

work, MochiKit, allows you to interactively evaluate JavaScript expres-

sions in any browser.6 If you run Internet Explorer, this provides

a nice alternative to Firefox’s own JavaScript console for evaluating

JavaScript expressions, as shown in Figure 8.16, on the next page.

Behavioral Errors

As we all know too well from personal experience, even when a script

does not contain syntactical errors, it may still fail to do what we want

it to do. The process of discovering and removing these types of errors

from your scripts is often more art than science, but contrary to com-

mon belief, a number of tools enable script debugging.

5http://kb.mozillazine.org/JavaScript_Console
6http://www.mochikit.com/examples/interpreter/index.html

http://kb.mozillazine.org/JavaScript_Console
http://www.mochikit.com/examples/interpreter/index.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=163

JAVASCRIPT DEBUGGING 164

Figure 8.16: MochiKit’s Interactive Interpreter

Alert Stinks

The most common way to debug scripts is by inserting alert() state-

ments through your code, as in the following:

function foo() {

var result = someFunction();

alert(result);

}

This technique is cross-browser and can potentially be used in produc-

tion code with the use of a debugging flag:

var debugging = false;

function foo() {

var result = someFunction();

if (debugging) alert(result);

}

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=164

JAVASCRIPT DEBUGGING 165

However, using alert() this way grows tedious (quickly), because the

resulting JavaScript pop-up dialog forces you to modally process each

and every value you pass to alert() and furthermore gives you no way to

leave a record of each displayed value—even copy-and-paste techniques

don’t work since the dialog doesn’t use a text control to display the

message. There has to be a better way.

MochiKit Logging

While the JavaScript console in Firefox and Safari could provide an

ideal platform for logging arbitrary output from your own scripts, the

omission of such a console from Internet Explorer limits the utility

of such an idea. A number of third-party JavaScript libraries have

emerged to fill the gap by providing logging functionality without the

use of a browser-provided console.

MochiKit contains a useful cross-browser logging feature. It also adds

the concept of multiple logging levels as is so popular in frameworks

such as Java’s log4j and Python’s logging module. The following code

shows an example of using MochiKit’s logging framework:

File 26 Line 1 <html>

- <head>

- <title>MochiKit Logging</title>

- <script type="text/javascript" src="js/MochiKit.js"></script>

5 <script type="text/javascript">

- logDebug("This is a DEBUG level message");

- log("This is an INFO level message");

- logWarning("This is a WARNING level message");

- logError("This is an ERROR level message");

10 logFatal("This is a FATAL level message");

-

- function showLog() {

- createLoggingPane(true);

- }

15 </script>

- </head>

- <body onload="showLog()">

- MochiKit Logging is cool.

- </body>

20 </html>

The code on line 13 causes the logging statements to be displayed in

a div element appended to the bottom of the page, as shown in Fig-

ure 8.17, on the following page.

http://media.pragprog.com/titles/ajax/code/DebuggingAjax/mochikit_logging.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=165

JAVASCRIPT DEBUGGING 166

Figure 8.17: MochiKit’s Logging Pane as a div Region

If you prefer, you can display the logging statements in a separate pop-

up window by passing true to createLoggingPane().

MochiKit’s logging functionality is well documented online.7,8

Step Debugging

The last debugging technique we’ll discuss is step-through debugging:

the ability to step through each line of your scripts whilst examining

the state of the JavaScript environment. Often, this is a much more

efficient than inserting individual logging statements throughout your

code.

Step Debugging in Firefox

The Mozilla foundation created the Venkman JavaScript debugger,9

which integrates very nicely with Firefox. After installing Venkman, you

can launch it from the Tools menu by selecting JavaScript Debugger.

7http://www.mochikit.com/doc/html/MochiKit/Logging.html
8http://www.mochikit.com/doc/html/MochiKit/LoggingPane.html
9http://www.mozilla.org/projects/venkman/

http://www.mochikit.com/doc/html/MochiKit/Logging.html
http://www.mochikit.com/doc/html/MochiKit/LoggingPane.html
http://www.mozilla.org/projects/venkman/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=166

JAVASCRIPT DEBUGGING 167

Figure 8.18: The Venkman Debugger for Mozilla-based Browsers

Venkman is very sophisticated; we’ll cover only the basics here. In the

upper-left corner of the Venkman window, all of the currently loading

scripts from all browser sessions are displayed. By clicking one of the

script items, the source code will be displayed in the upper-right corner.

You may set breakpoints on any of the dashed lines.

After a breakpoint is set, the Venkman debugger will pause the exe-

cution of your script when the breakpoint is reached, allowing you to

examine local variables and interact with the current script. This is the

state displayed in Figure 8.18 .

For more information on Venkman, see the Venkman FAQ.10

10http://www.hacksrus.com/~ginda/venkman/faq/venkman-faq.html

http://www.hacksrus.com/~ginda/venkman/faq/venkman-faq.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=167

JAVASCRIPT DEBUGGING 168

Figure 8.19: 1999 Called; It Wants Its Internet Explorer Script Debug-

ger Back

Step Debugging in Internet Explorer

Microsoft has also created a script debugger for Internet Explorer, imag-

inatively named Script Debugger11 (or, just Google for “microsoft script

debugger”). Once installed, you must enable script debugging in Inter-

net Explorer by unchecking the Disable Script Debugging option.

If you perform these two steps and Internet Explorer encounters a

script error, you will have the option to enter the Script Debugger envi-

ronment, as shown in Figure 8.19 . You can also enter the Script

Debugger at any time through the View -> Script Debugger pull-down

menu.

As with Venkman, the Script Debugger is most useful for setting break-

points that allow you to examine the state of your script at runtime.

While IE’s Script Debugger does not provide a view of all currently

11http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-

dffdf19ccd99

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=168

CONCLUSION 169

defined objects as Venkman does, you can enter arbitrary expressions

in the Command window to discover object properties yourself.

If you buy Microsoft FrontPage 2003 or Visual Studio .NET, you get

powerful script debuggers than we’ve shown here.12

To learn about the Visual Studio .NET Script Debugger, check out the

Microsoft Word document available online.13

Step Debugging in Safari

Unfortunately, no script debugger is available for Safari.

8.4 Conclusion

A number of effective quality tools and techniques exist for debug-

ging your Ajax code. DOM-viewing tools and techniques help you view

the current state of your page; the JavaScript consoles (and pop-up

dialog in IE) can show you what went wrong with your script’s syn-

tax, MochiKit’s logging framework can you help investigate behavioral

problems in your scripts, and when you need a more powerful tool,

Venkman and Microsoft’s Script Debugger can take you further by

enabling step-through debugging.

12http://msdn.microsoft.com/library/en-us/dnfp2k2/html/odc_fpDebugScripts.asp
13http://www.gotdotnet.com/team/csharp/learn/whitepapers/How%20to%20debug

%20script%20in%20Visual%20Studio%20.Net.doc

http://msdn.microsoft.com/library/en-us/dnfp2k2/html/odc_fpDebugScripts.asp
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=169

Chapter 9

Degradable Ajax
One of the first questions that gets asked with respect to Ajax is “Can

I create a cool Ajax application that still works for non-Ajax-enabled

browsers?”. This seemingly simple question is actually quite complex;

what makes a browser “Ajax-enabled?” Is it JavaScript support? CSS

and DHTML capabilities? Secure access to server-side callbacks? And

what do we mean when we say the “application works”? Your definition

of degradable Ajax could be very different from ours. Over the course

of this chapter, we’ll explore various ways of providing graceful failback

in your applications.

9.1 What Is Degradable Ajax?

As we said, defining degradable Ajax is not a simple thing. Different

people might have different ideas about what it means, and a single

person might define it differently in different contexts. At a high level,

most people think that degradable Ajax means your Ajax-based appli-

cation will run with browsers that don’t support Ajax. The problem is

this: what does “run” mean?

Degrading, But Working

We have seen many of techniques that allow your Ajax application to

still work as advertised without sacrificing much, if any, of the benefits

of Ajax. This is where the power of the toolkits that we talked about

(e.g. Dojo Toolkit, Prototype) come into play.

For instance, Dojo will automatically detect whether a given browser

supports XMLHttpRequest or the Microsoft equivalents and replace their

WHAT IS DEGRADABLE AJAX? 171

use with hidden <iframe> tags if not. This is the best form of degrada-

tion, because the user sees the same results as a user with a browser

that supports XHR. Of course, the browser has to support <iframe>

tags, which means IE 4+, Netscape 6+, or newer browsers such as Fire-

fox and Opera.

Refusing to Play at All

Ideally, all of our users would run the latest and greatest browsers, and

this entire chapter would be moot. Unfortunately, this isn’t the case.

We sometimes dream about a world in which autoupdate was embedded

into our PCs many years ago. In that world, the computer was upgrad-

ing the browsers for our user. We wouldn’t see IE 4 or Mac IE 5. Some

applications may choose simply to not support those older browsers at

all. Instead, the application simply renders a warning screen to those

users, in effect telling them to upgrade to more modern software. When

you are creating free Web 2.0 applications to be used by the masses,

this might be acceptable. When you are creating business applications

for a closed environment with strict software control policies, this is

probably a bad choice to make.

Drawing a Line

This brings us to choice. As developers, we need to make the call on

what kind of degradation we will allow. Our company/team/project

will have to support a subset of the browsers out there, and we need

to be explicit about who makes the cut. If you want to support lynx,

Mac IE 5, and that weird browser your uncle whipped together, you will

have to narrow down the features that you can use for your web-based

application. That’s life.

Making the choice isn’t always easy, and it is best done with data. Do

you know what browsers will be coming to your new shiny app? Are

you building an intranet site with a known world, or are you developing

a public-facing application? Are you writing for a government applica-

tion that needs to be accessible? If you can possibly narrow down the

acceptable or expected browsers that will utilize your application, you

can tailor the feature set to the available capabilities of that universe

of browsers. This means having a thorough understanding of what is

possible in what browsers and having the wherewithal to tell your cus-

tomers or team what isn’t going to be in the app.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=171

ENSURING DEGRADABLE AJAX APPLICATIONS 172

Degrade == Perfect || Not Crash

The final choice for degrading your application is deciding how much

you want to degrade. You could take the tack that degrading means the

application needs to work just as well as the full-on Ajax version. Or

you could acknowledge that the app won’t work that well, but it won’t

crash the browser.

Part of this decision is helped by what you want to do with your Ajax

application. If you are building a rich application to replace the Win-

Forms app that your brokers use, it may be asking a lot for a fully

featured experience using lynx. But there are all kinds of interactions

with an application that Ajax makes better that might be acceptable

using older Web 1.0 standard techniques. For example, we’ve explored

the idea of asynchronous validations with dynamic rendering of error

messages; this is a great use of Ajax in an application, making it

more usable to the average user. In the absence of XMLHttpRequest or

advanced DHTML support, it is silly to not just go ahead and use good

ol’ server-side validation on post. This is the kind of degradation that

is most pragmatic but also hardest to provide, because it involves mak-

ing decisions and writing code for lots of special cases all over your

application.

9.2 Ensuring Degradable Ajax Applications

Let’s face it, you have lots of ways to get a degradable Ajax app. How-

ever, the truth is that we are human, and the best way to ensure

that your application truly works without the Ajax magic is to...wait

for it...write it first without Ajax!

That can sound like a lot of work, and it also isn’t as sexy as going

right for the Ajax coolness, but if you get the application working as a

traditional web application first, you will know that any browser can

run it. Once the app or a piece of the app is running, you can go in and

Ajaxify it. Let’s see how to do that.

Ajaxifying a Traditional Web Application

Let’s take a simple form that we want to Ajaxify. Imagine a typical to-do

list that gives you a set of inputs, allowing for you to add them all to a

to-do list, show in Figure 9.1, on the next page.

Nothing earth-shattering here; let’s take a look at the simple HTML:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=172

ENSURING DEGRADABLE AJAX APPLICATIONS 173

Figure 9.1: Traditional To-Do List

File 29 <html>

<head>

<title>Traditional Todo List</title>

</head>

<body>

<h2>Traditional Todo List</h2>

<form method="post" action="/addtotodo">

<table border="0" cellspacing="0" cellpadding="5">

<tr>

<td>Add Item</td>

<td><input type="text" name="add1" value="" /></td>

</tr>

<tr>

<td>Add Item</td>

<td><input type="text" name="add2" value="" /></td>

</tr>

<tr>

<td>Add Item</td>

<td><input type="text" name="add3" value="" /></td>

</tr>

<tr>

<td>Add Item</td>

<td><input type="text" name="add4" value="" /></td>

</tr>

http://media.pragprog.com/titles/ajax/code/DegradableAjax/formunhbox voidb@x kern z@ char `discretionary {-}{}{}traditional.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=173

ENSURING DEGRADABLE AJAX APPLICATIONS 174

<tr>

<td>Add Item</td>

<td><input type="text" name="add5" value="" /></td>

</tr>

</table>

<input type="submit" name="submit" value="Add Todo Items" />

</form>

</body>

</html>

This works, but using it might be painful. Forcing users to enter all of

their items and clicking a button can be slow going. When http://tadalist.com

came up with its Ajax version, everyone cried “Yes!”. This was not nec-

essarily because everyone wants to make lists but because everyone

understands that this is how most people use applications: provide a

little data, the app responds, provide a little more data, etc. So let’s

take this clunky interface and put on an Ajax touch.

Instead of requiring a clunky Web 1.0 submit button, let’s add the list

item when the user tabs out of the text box. JavaScript, and its access

to the DOM, is our ally in this. We can begin to associate new behaviors

with our existing elements without necessarily interfering with how the

original application works.

Cleaning Out the Submit Button

We don’t need no stinking submit button! We’ll want to suppress it

when we are in Ajax mode. To do that, we need to mark up our HTML

view with a CSS ID attribute which will allow us to affect the element

directly in our JavaScript code. Our submit button gets tagged with the

todolist ID:

File 28 <input type="submit" id="todosubmit"

name="submit" value="Add Todo Items" />

Now we have an ID attached, we can make our Ajax-aware folk not

even know it exists via some simple JavaScript/DOM. We will be good

JavaScript citizens and attach the button-suppressing code by putting

it in an onload handler of the DOM window object:

window.onload = function() {

document.getElementById("todosubmit").style.display = "none";

}

Chances are that in real applications, there will be a whole set of but-

tons that we can get rid of in our Ajax applications, and rather than

http://tadalist.com
http://media.pragprog.com/titles/ajax/code/DegradableAjax/formunhbox voidb@x kern z@ char `discretionary {-}{}{}degradable.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=174

ENSURING DEGRADABLE AJAX APPLICATIONS 175

manually putting in each id, we can use one class to tell us that this

shouldn’t be viewable. Unfortunately, the DOM folk didn’t give us

getElementsByClassName(), so we need to use our own. Luckily, libraries

such as Dojo and Prototype add these convenience methods for us.

This is how we could implement nuking all items where the class is

deleteforajax, using Prototype:

getElementsByClassName("deleteforajax").each(function(element) {

element.style.display = "none";

});

This approach requires us to be smart about how we structure our

data, because cleaning out any such element will also suppress that

element’s children.

Stop Submitting My Form!

Our traditional application relies on a standard HTML form. We set this

up to submit to the server (using the action= attribute). But since we

have suppressed the submit button, we feel a false sense of security; if

the user can’t see the submit button, how could they submit the form?

The answer is that the user can hit Enter or Return—in most browsers

the form will still be sent back to the server, which we don’t want. This

means that we need to change the action on the form to do nothing if

the user somehow manages to submit it. First we add id="todoform" to

the form, and then we change the action:

document.getElementById("todoform").action = "javascript:;";

We can do the same trick as with deleteforajax by having a standard

CSS class that defines forms that we will not submit anymore.

Now, How Do I Submit To-Do Items?

All of a sudden we have no way to submit anything to the server, which

means we can’t add to-do list items! To fix this, we need to add events

that will kick off Ajax requests back to the server. We can do this by

adding an onblur event such as the following:

<input type="text" name="add1" onblur="addTodoItem(this);"/>

The addTodoItem() JavaScript function is then responsible for making

an Ajax request, getting back a message from the server (such as “ok,

added it” or the HTML element itself), and then inserting the response

back into the page.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=175

ENSURING DEGRADABLE AJAX APPLICATIONS 176

We already discussed dealing with the returned data in earlier chapters.

We can get HTML, JSON, your own custom format, or whatever you

want. Later in the chapter we will see that using HTML may well be the

best choice.

Putting It All Together

After going through these steps, you will end up with a file that looks

like this:

File 28 <html>

<head>

<title>Degradable Todo List</title>

<script type="text/javascript">

window.onload = function() {

document.getElementById("todosubmit").style.display = "none";

document.getElementById("todoform").action = "javascript:;";

}

function addTodoItem(el) {

// make the ajax call

}

</script>

</head>

<body>

<h2>Degradable Todo List</h2>

<form method="post" action="/addtotodo" id="todoform">

<table border="0" cellspacing="0" cellpadding="5" id="todolist">

<tr id="row1">

<td>Add Item</td>

<td>

<input type="text" name="add1" value=""

onblur="addTodoItem(this);"/>

</td>

</tr>

<tr id="row2">

<td>Add Item</td>

<td>

<input type="text" name="add2" value=""

onblur="addTodoItem(this);"/>

</td>

</tr>

<tr id="row3">

<td>Add Item</td>

<td>

<input type="text" name="add3" value=""

onblur="addTodoItem(this);"/>

</td>

http://media.pragprog.com/titles/ajax/code/DegradableAjax/formunhbox voidb@x kern z@ char `discretionary {-}{}{}degradable.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=176

ENSURING DEGRADABLE AJAX APPLICATIONS 177

Figure 9.2: Degradable Todo List

</tr>

<tr id="row4">

<td>Add Item</td>

<td>

<input type="text" name="add4" value=""

onblur="addTodoItem(this);"/>

</td>

</tr>

<tr id="row5">

<td>Add Item</td>

<td>

<input type="text" name="add5" value=""

onblur="addTodoItem(this);"/>

</td>

</tr>

</table>

<input type="submit" id="todosubmit"

name="submit" value="Add Todo Items" />

</form>

</body>

</html>

And if you open the file in a browser that likes JavaScript, you will see

the submit button has disappeared, as shown in Figure 9.2 .

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=177

ENSURING DEGRADABLE AJAX APPLICATIONS 178

getElementsBySelector

Take a peak in behaviour.js, and you’ll see the wonderful
methoddocument.getElementsBySelector(selector).

You will also see another helpful function,getAllChildren(), which
returns all of the children of a given element, including a
workaround for IE5/Windows:

function getAllChildren(e) {

// Returns all children of element.

// Workaround required for IE5/Windows. Ugh.

return e.all ? e.all : e.getElementsByTagName(' *');

}

Using JavaScript Behaviour to Keep Us Clean

One valid concern with the previous approach is that our HTML starts

to get very ugly, very quickly. Your nose probably turns up like ours

does when we see a lot of JavaScript appearing in our HTML pages. We

don’t mind sprinkling CSS around, though, which is the core piece that

we need for this technique. If only we could make do with just having

CSS information and having our JavaScript out of the way, out of the

view.

It turns out that we are not the first people to think about this issue.

Building on the work of Simon Willison, Ben Nolan created a small

library called Behaviour (http://bennolan.com/behaviour/), which allows

you to attach JavaScript behavior to CSS selectors.

To see this in action, let’s use Behaviour to get rid of the onblur event

handlers from our To-Do list example.

Add Behaviour

We first need to clean out the onblur handlers, and instead we tag the

input elements with a CSS class addtodo:

<input class="addtodo" type="text" name="add1" value=""/>

At this point we can attach our behavior by loading the Behaviour

JavaScript library and then setting up simple rules that attach the

JavaScript method to the onblur event on the given input types:

http://bennolan.com/behaviour/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=178

ENSURING DEGRADABLE AJAX APPLICATIONS 179

File 27 <script type="text/javascript" src="scripts/behaviour.js"></script>

<script type="text/javascript">

var myrules = {

' .addtodo' : function(element) {

element.onblur = addTodoItem(element);

}

};

Behaviour.register(myrules);

</script>

The myrules variable declares an associative array of CSS selectors map-

ping to elements to which we can attach logic. In the previous code, we

look for all addtodo CSS classes via .addtodo, and then we attach the

logic via code such as this:

element.onblur = addTodoItem(element);

We register these rules by calling Behaviour.register(myrules), which parses

out the selector, grabs all elements in the DOM that match the selector,

and applies our callbacks to the appropriate events.

If we change the DOM, we need to let Behaviour know, so it can apply

its rules again. For example, if we append any new children to the

document or replace the innerHTML of any element, we have probably

modified the DOM. To attach the behaviors to the new elements, make

sure you call Behaviour.apply().

We can take this a lot further. Ideally we wouldn’t have multiple text

boxes as we do now. It makes sense in a world where you can’t make

dynamic Ajax calls, but since we can, we should get rid of all but one

of the text inputs and make it look more like TadaLists (Figure 9.3, on

the next page).

We would replace the multiple inputs with one that allows you to type

a to-do item, hit Enter/Return, and have your to-do added to the page.

At that time the input box would move down and clear off to allow you

to type in the next one. Now your data entry becomes as simple as the

following:

• Type in entry.

• Hit Enter/Return.

• Repeat.

Validation would be added here, as shown in the early CRM examples.

http://media.pragprog.com/titles/ajax/code/DegradableAjax/formunhbox voidb@x kern z@ char `discretionary {-}{}{}behaviour.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=179

ENSURING DEGRADABLE AJAX APPLICATIONS 180

Figure 9.3: Degradable Todo List

Using HTML to Enable Degradability

We have discussed the Ajax approach of always returning HTML to the

browser and using innerHTML to apply it to the DOM. Some frameworks,

such as Ruby on Rails, favor this tactic. It has the nice side benefit of

making degradable applications easier to build.

Decorating for non-Ajax

discusses the way that the Ruby framework allows you to call partials,

which are small snippets of HTML. You can think of a page that goes

through a loop of some kind, and calls a partial, which produces the

HTML for each loop. Partials give you a nice way of gaining reuse and

keeping DRY.

The beauty of this reuse is when you make remote Ajax calls that can

access these partials. Your non-Ajax application view can access a full

page load, and Rails will kindly render everything for you, calling into

the partial when needed. An Ajax-enabled view will not need to access

a Rails full controller but can instead offer a remote Ajax call that hits

the partial, gets the same HTML, but just a snippet, and then applies it

dynamically to the DOM via innerHTML.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=180

ENSURING DEGRADABLE AJAX APPLICATIONS 181

Suddenly you find that you can apply the previous rules, starting with

a normal web application, and then apply the Rails magic to have an

application that runs with or without Ajax support in the browser.

This isn’t just for Rails users, though. You can see that this is a com-

mon pattern that we can follow. Your framework can have actions on

the server that are able to render full pages, and for pieces, they chain

calls to subactions that know how to render small pieces. If you then

have Ajax calls, they can directly access the subactions, and now you

get to reuse all of your work!

Filtering Out for Ajax

We can take this approach further too. Most server technologies have

a notion of filters (such as servlet filters in Java). You can set up a

filter that understands and looks for a particular URL token such as

ajaxCall=true. (In Rails, for example, the request object has an xhr?()

method.) When a request comes in, the filter can see this variable and

do one of the following:

• Add site content: If this is an Ajax call, just return the simple

HTML from the action. If this isn’t an Ajax call, then decorate the

HTML that comes back with the full application skeleton.

• Filter out content: If this is an Ajax call, use XQuery to grab just

a small piece of the HTML that the call needs. If this isn’t an Ajax

call, do nothing, and allow the entire page to be sent back.

You will use the technique that fits best for your application.

We can see that if we choose to do most of our Ajax by returning HTML,

it becomes fairly easy for us to reuse our server code and degrade our

application cleanly. However, what if we are returning JSON or some

other kind of data structure?

Degrading with JSON

There is a lot of debate over techniques for building Ajax applications.

A common discussion revolves around what data format to use. Should

we use XML? HTML? JSON? JavaScript? We discussed how HTML fits

in with respect to degrading your application. What about the others?

Let’s take an extreme way of building your Ajax applications.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=181

ENSURING DEGRADABLE AJAX APPLICATIONS 182

Web Services-Driven Ajax

Tools such as TIBCO General Interface, Backbase, and others allow you

to build web services-driven Ajax applications. This means that you can

treat your Ajax apps as you would other rich client applications. In this

model you separate your client and server side:

• Client side: The client side is a rich JavaScript application that

talks to the server tier to gather content and displays it dynami-

cally using JavaScript, HTML, and CSS.

• Server side: On the server side, we develop Web services, which

can be RESTful or WS-* based. This tier responds to requests from

the client side, taking in arguments and returning data. Often we

will return only XML or JSON representations that thus can be

used by any type of client representation. Not every application

has an HTML-based front end, you know.

With this strong separation, the client side and server side teams can

define interface contracts, create mock versions, and get to the races.

With a mocked-out interface the client side could be totally written

without the server-side piece being in place. This approach also allows

you to reuse a lot of your work across projects.

Google has an Ajax widget that offers user feedback on the strength

of passwords (https://www.google.com/accounts/NewAccount). With this

approach, you have a web service that is responsible for taking a pass-

word and returning the strength. This can obviously be reused across

applications.

So, how do you degrade in this world? One way is to bite the bullet

and acknowledge that your Ajax application is so rich that it is not like

a web client, and you have to fork the client side and create a second

version. One client is the Ajax one, and another is the traditional web

one. In this case the web server framework becomes the client itself.

This doesn’t mean you cannot get reuse, though, because you can tie

into the web services just as easily as your Ajax client. This means that

the more you put in the web services tier, the easier your life is.

Remember, though, that for many, many situations, you can take the

hit on not allowing non-Ajax-aware browsers and environments. Time

will be on your side too as people get new computers; they will get new

environments.

https://www.google.com/accounts/NewAccount
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=182

WRAPPING UP 183

Dynamic Web Sites vs. Web Applications

We often talk about the difference between dynamic websites
and web applications. Dynamic websites focus on sending
back HTML content and often have small pieces of Ajax such
as form validation. Web applications are more than this. They
are rich applications that happen to use the Web platform. An
example of this is Yahoo! Mail. It looks like a web page, but it
smells like a rich app.

If you are looking to build web applications, then widget
libraries such as Zimbra AjaxTK, Backbase, TIBCO General Inter-
face, and others in that family make sense. You have IDEs to
drag and drop components, and you end up building some-
thing that looks like VB on the Web. These applications do not
degrade easily because they rely heavily on dynamic DOM
manipulation on the client side to achieve rich UI effects.

9.3 Wrapping Up

Degradable Ajax is not a simple topic. You need to define how much

you are willing to degrade and what you will be willing to support.

The answer to these questions can change the technology and toolset

that you choose for your application and the approach that you take on

items such as return data formats.

Keeping your HTML clean will help out in many ways. Using techniques

such as using Behaviour will help make this happen and will make life

easier when you degrade your Ajax application.

But, if you are building a rich application that makes Yahoo! Mail look

like Squirrel mail, maybe you just tell certain environments “Sorry!”

Spend time working on functionality for the 90%, rather than accessi-

bility for the rest. The key is understanding who your user base is and

providing the maximum value for the maximum number of potential

users.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=183

Chapter 10

JSON and JSON-RPC
In the next few chapters, we’ll introduce you to four server-side web

application development frameworks and the different strategies they

employ for integrating Ajax techniques into their workflow. Before we

get there, we need to stop and look at the integration that’s sweeping

the nation, JavaScript Object Notation (JSON).

JSON is an open format describing how to represent JavaScript objects

in a simple text representation that can be easily created and parsed.

In other words, you can send data to the browser encoding as JSON

objects instead of XML, and the JSON objects can be converted easily

into JavaScript objects.

JSON has two advantages over XML when it comes to receiving data

in JavaScript. First, with JSON, there’s no manual parsing necessary.

JSON objects are typed: values are either strings, numbers, arrays,

booleans, objects, or null. Compare this to XML, which is typeless; all

element values are strings. This loss of types means added complexity

when trying to interpret the values within the XML; you have to adopt

some sort of layer on top of XML (such as the W3C XML Schema typing

system) to impose types on XML. And, chances are, unless you invent

your own typing system to use with XML, you’ll have yet another layer

of complexity because the type system is likely to be an imperfect fit

with JavaScript’s own type system.

Second, JSON frees you from having to parse data. If you’ve spent

too many days writing mind-numbing DOM code, you’ll appreciate this

advantage. Your application data is readily accessible as objects, so

retrieving values is as easy as reading from an object property or invok-

ing a function.

CHAPTER 10. JSON AND JSON-RPC 185

It is better to look at an example. In a CRM application like Hector’s,

maybe you’d like to return a list of addresses for use in printing labels.

On the server, you generate the addresses as an ordered collection of

objects, sorted alphabetically by addressee. You need to transfer this

data to the client tier, where it will be consumed by JavaScript for ren-

dering into an Ajax UI.

Conceptually, the data looks like this:

ADRESSES

DOE, JANE

111 Appian Way

Atlanta

GA

11111

DOE, JOHN

222 Something Street

San Diego

CA

22222

MCKENZIE, DOUG

333 Maple Leaf Avenue

Toronto

ON

L4Z 1X2

This simple structured data could be rendered in XML fairly easily from

most server-side frameworks. Depending on how you are collecting the

data in the first place, it is even possible that your database will render

it directly to XML for you. But consuming it as XML from JavaScript

is tedious at best. At a bare minimum, you have to be very cognizant

of which browser you are using the XML in, because that drives how

you create the document object that will load the XML (one strategy for

IE, another for everyone else). Then, you have to use standard DOM

manipulation code, which we’ve talked about before, to navigate and

consume it. Yuck.

JSON offers a lighter, faster alternative. Rather than rendering the data

as XML, your server could render it as serialized JSON data, which is

to say a string. That string might look like this:

{"addresses" :

[

{ "name": "DOE, JANE", "street": "111 Appian Way",

"city": "Atlanta", "state": "GA", "zip": "11111"},

{ "name": "DOE, JOHN", "street": "222 Something Street",

"city": "San Diego", "state": "CA", "zip": "22222"},

{ "name": "MCKENZIE, DOUG", "street": "333 Maple Leaf Avenue",

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=185

CHAPTER 10. JSON AND JSON-RPC 186

"city": "Toronto", "state": "ON", "zip": "L4Z 1X2"}

]

}

To use this on the client, you would receive this packet as the respon-

seText from an XHR call. It’s just a string at this point, and needs

to be converted into data. Instead of launching some kind of external

parser (a la XML), you can simply evaluate this string, because it is just

idiomatic JavaScript. It conforms to the EcmaScript specification and

when evaluated, becomes an object whose properties you can query to

access the data.

var data = eval(xhr.responseText);

for(i=0; i < data.addresses.length; i++)

{

new Insertion.Bottom(' names' , "" + data.addresses[i].name + "");

}

Immediately after evaluating the string, we have an object with a series

of properties containing the data from the JSON serialized data. To

access any single address, we just use an ordered array called addresses,

accessing them by numerical index. To access the properties of each

address, we just refer to them by name: name, street, city, state, and zip.

JSON is also very flexible. Because that third address is in Canada,

we might want to refer to state as province and zip as postalcode. Just

replace those names in the serialized version:

{"addresses" :

[

{ "name": "DOE, JANE", "street": "111 Appian Way",

"city": "Atlanta", "state": "GA", "zip": "11111"},

{ "name": "DOE, JOHN", "street": "222 Something Street",

"city": "San Diego", "state": "CA", "zip": "22222"},

{ "name": "MCKENZIE, DOUG", "street": "333 Maple Leaf Avenue",

"city": "Toronto", "province": "ON", "postalcode": "L4Z 1X2"}

]

}

Now, as you navigate the data, if you ask for the state property of

addresses[2], you’ll get undefined. Ask for province, and you’ll be told

ON. Because JavaScript allows you to construct objects on the fly and

because requesting a nonexistent property is not an exception, this

behavior is built into the language. Addresses could even have differ-

ent numbers of properties (some might have street2, for example) and it

would be perfectly acceptable.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=186

JSON-RPC 187

JSON is interesting because it is easier to work with than XML and

because it is already ubiquitously available across many server-side

frameworks, from Java to C# to PHP to ActionScript and many more

(see http://www.crockford.com/JSON/ for a list). Most modern browsers

support it in their current version of JavaScript. And deserializing the

data is extremely fast (faster than parsing an XML document) because

it simply involves invoking the JavaScript interpreter.

Another interesting benefit of JSON is that it gets around the JavaScript

sandbox for fetching data from multiple servers. Normally, you can-

not make JavaScript calls to remote servers that aren’t the originating

server unless you have distributed your JavaScripts in signed JARs.

This means you can retrieve data only from your own server. However,

the HTML specification allows you to embed <script> tags that import

JavaScript from any server you’d like through the src attribute. As long

as you point that src at a URL that emits JSON data, it will be automat-

ically evaluated for you. The Yahoo! APIs all provide JSON output that

is used this way.

The biggest problem is one of security: just using eval on any inbound

text might be too trusting (can anyone say “cross-site scripting?”). To

get around that, you can also use a JSON parser, which essentially

is a wrapper around eval that validates the string as JSON (and not

arbitrary executable JavaScript) before evaluating it. This seems rea-

sonable, but it means including a nonstandard library (the parser) in

your client-side code, even though it is just a JavaScript file, but it

also eliminates the cross-site import ability that JSON provides, since

<script> tags are automatically evaluated without the chance to run

them through a custom parser first.

10.1 JSON-RPC

JSON provides another notable benefit: it is the core of a widely avail-

able proxy-based Ajax framework known as JSON-RPC.

JSON-RPC (http://json-rpc.org/) is an emerging standard that builds on

the JSON foundation to standardize how JavaScript applications can

retrieve JSON objects from a server.

While in theory this means you can create a JavaScript client that can

talk to multiple back ends in different programming languages that

implement a JSON-RPC interface, the reality is that this is of specious

benefit. Chances are, a back end implemented in different languages

http://www.crockford.com/JSON/
http://json-rpc.org/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=187

JSON-RPC 188

is going to look rather different from an API perspective. It’s probably

unrealistic to assume that you can code your JavaScript layer once and

simply plug in other back ends.

Having said that, you can of course abstract the code that does the

object remoting and have more general code that works on JavaScript

objects (converted by JSON-RPC), but this is at a higher level than any

particular JavaScript proxy implementation.

James Britt has created an implementation of JSON-RPC for Ruby on

Rails based around the Orbjson library (http://rubyforge.org/projects/orbjson/).

To see what JSON means from a coding perspective, let’s use James’s

library as an example and implement a JSON bridge for a Rails applica-

tion. A JSON-RPC package is available for almost any language/framework

(Perl, Python, PHP, .NET, Smalltalk, etc.). The details will be different,

but the concepts will be nearly identical.

JSON on Rails

Orbjson is the Ruby version of JSON-RPC. Like any JSON-RPC imple-

mentation, its job is to expose methods on server-side objects to client-

side JavaScript through one or more proxies. In this case, the proxy is

a JavaScript object that can marshal JavaScript objects to JSON and

JSON back to JavaScript. In addition, it knows how to wrap the XML-

HttpRequest object for use as the communication pipeline for the JSON

data.

In the Ruby world, you use a program called gems to install libraries.

To get Orbjson, then, you simply have to execute the following:

> gem install orbjson

This installs two important pieces: a Ruby object called Orbjson that is

in charge of receiving JSON from the client and turning it into a call to

a server-side Ruby object, and then serializing the result back to JSON,

and a couple of JavaScript files.

These two script files provide the same facilities (sending data to the

server via JSON and XMLHttpRequest) and differ only in style. json-

rpc.js provides the synchronous implementation, while jsonrpc_async.js

is asynchronous. In general, the only difference from the program-

mer’s perspective is that, when using jsonrpc_async.js, the first parame-

ter to any JSON-RPC call is the callback function which deals with the

results, while the synchronous version just takes the outbound data

parameters.

http://rubyforge.org/projects/orbjson/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=188

JSON-RPC 189

The Server Side

Let’s talk about the server side first. We’ll gloss over some of the under-

lying Rails principles (for more information, see Chapter 13, Ajax with

Rails, on page 210) and focus on what you have to do to get Orbjson

working with your Rails app.

First, you have to pull Orbjson into the project. Following the author’s

style (James Britt), you first create an object in your app that includes

the base JSON-RPC functionality. In the /lib directory, add a file called

hyper-active-orbjson.rb, which pulls in the Orbjson gem and defines a

single class:

File 62 require_gem ' Orbjson'

class HyperActiveOrbjson

include Orbjson::Common

end

Next, you’ll define one or more objects that you want to expose to the

client through the JSON-RPC bridge. Technically, you can put them

anywhere your Rails app can load objects from, but by convention,

they also go in the /lib directory. In our case, we’re going to create an

object that exposes a single method, get_city_state(), which takes a Zip

code and returns an array containing the city and state that maps to

it.

File 63 class Zipdata

def get_city_state(zip)

if(zip == ' 90210')

return ["Beverly Hills", "CA"]

else

return ["Durham", "NC"]

end

end

end

Notice that this class has no base classes and seems to have no specific

features that tell you that it is for use as a remote target. That’s the

point of JSON-RPC; the server objects are just plain old whatever-your-

platform-is.

Finally, you have to tell Rails about Orbjson and your new service.

Rails lets you make global configuration decisions in the environment.rb

file. Here, we have to tell Orbjson which objects we want to wrap up

as remote targets and then pull in the core functionality of the Orbjson

library:

http://media.pragprog.com/titles/ajax/code/RailsCRM/lib/hyperunhbox voidb@x kern z@ char `discretionary {-}{}{}activeunhbox voidb@x kern z@ char `discretionary {-}{}{}orbjson.rb
http://media.pragprog.com/titles/ajax/code/RailsCRM/lib/zipdata.rb
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=189

JSON-RPC 190

File 61 cfg =

' lib/zipdata:

- Zipdata'

Orbjson::System.init(cfg)

require ' hyper-active-orbjson'

ORBJSON = HyperActiveOrbjson.new

The first statement creates the configuration data that tells Orbjson

which objects to wrap. The string itself is just YAML (Yet Another

Markup Language). The second statement consumes the YAML. You

could pass in a string, as seen here, or the path to a stand-alone YAML

file. The third and fourth statements simply instantiate the core Orb

functionality and store it in a global variable.

The final step is to create a Rails controller that can receive the remote

calls and call Orbjson to do the work based on the request payload:

File 52 class ServicesController < ApplicationController

def jsonrpc

post = @request.raw_post

render(:text => ORBJSON.process(post))

end

end

This controller has a single action method, jsonrpc(), whose sole purpose

in life is to grab the raw post payload of the request, send it into the

JSON library, and send the results back as the payload of the outbound

response.

The Client Side

The bulk of the complexity came on the server side. For the client,

you have to pick your RPC strategy (synchronous or asynchronous)

and include the correct JavaScript file. This example will use the syn-

chronous version, which means we put a copy of jsonrpc.js in the pub-

lic/javascripts folder of our Rails application. To include it into our page,

we use the Rails javascript_include_tag() method (again, for more details,

see Chapter 13, Ajax with Rails, on page 210).

File 55 <%= javascript_include_tag ' controls' , ' dragdrop' , ' effects' ,

' prototype' , ' jsonrpc' %>

This line, in addition to pulling down the JSON-RPC library, also pulls

in Prototype and Script.aculo.us.

Next, we include some custom JavaScript to enable our JSON calls:

http://media.pragprog.com/titles/ajax/code/RailsCRM/config/environment.rb
http://media.pragprog.com/titles/ajax/code/RailsCRM/app/controllers/services_controller.rb
http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit_jsonrpc.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=190

JSON-RPC 191

File 55 <script type="text/javascript">

var jsonurl = "http://localhost:3000/services/jsonrpc";

var jsonrpc = null;

function init() {

jsonrpc = new JSONRpcClient(jsonurl);

}

function get_city_state(val) {

var zips = jsonrpc.zipdata.get_city_state(val);

$(' address_city').value = zips[0];

$(' address_state').value = zips[1];

}

</script>

The first two lines simply set up a couple of convenience variables; one

holds the URL to the services controller that we just established, and

the second holds the proxy we’ll use to invoke the services.

The init() method establishes the JSON-RPC proxy to point to the ser-

vice. Underneath, this object uses XMLHttpRequest or its Microsoft equiv-

alent to pass the calls to the server and retrieve the results. In addition,

it has methods for serializing JavaScript objects, strings, arrays, and

dates to JSON notation.

Lastly, we create a function to invoke the proxy and use the results

to modify our page. The get_city_state() method takes a Zip code and

invokes the remote method by calling jsonrpc.zipdata.get_city_state(). The

proxy takes care of taking the JSON results and marshaling them back

to a JavaScript array for us; we can simply peel the data out of the

array and assign it to fields using standard Prototype access.

JSON-RPC is about the seamless interconnection of JavaScript and

your server. In addition to simple arrays, Orbjson will marshal arbi-

trary JavaScript or Ruby objects, arrays, strings, and dates both direc-

tions. However as a general solution, JSON-RPC might be too different

than your current environment. Many platforms have a more tightly

integrated solution for using JSON as a marshalling layer between

the framework and the client (see Chapter 15, ASP.NET and Atlas, on

page 246 and Chapter 14, Proxy-Based Ajax with DWR, on page 230 for

the .NET and Java versions). We view JSON-RPC as it currently stands

as a solid remoting technology for languages that don’t currently have

something better, such as DWR. So while there is a port of JSON-RPC

for Java1 we strongly recommend you pass it by and use DWR instead.

1JSON-RPC-Java, http://oss.metaparadigm.com/jsonrpc/

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit_jsonrpc.rhtml
http://oss.metaparadigm.com/jsonrpc/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=191

Chapter 11

Server-side Framework
Integration

In this chapter and the next four, we’ll introduce four web application

development frameworks and examine the server-side integration tech-

niques they use for incorporating Ajax. This kind of integration can be

valuable for a development team, allowing the members of the team to

focus their efforts on one logical tier (the server) while simultaneously

generating artifacts for two physical tiers (server and client).

To explore these frameworks, we’ll walk Hector’s team through porting

their CRM application to each framework. Along the way, we’ll talk

about the reasons why Hector might consider each port and the relative

strengths and challenges each choice presents. The four frameworks

we’ll examine are as follows:

• PHP: Sajax is the first Ajax integration toolkit for PHP, and we’ll

examine it plus the newer Najax library.

• Ruby on Rails: Rails integrates closely with Script.aculo.us and

Prototype. In fact, the authors of those two frameworks are also

Rails committers.

• Spring (Java): We’ll look at the integration of the DWR framework

with Spring for Java web applications.

• ASP.NET : We’ll look at both Ajax.NET, an open-source Ajax library,

and the upcoming Atlas toolkit from Microsoft.

As we look at these four frameworks and port Hector’s application to

each, bear in mind that we can’t compare and contrast every aspect of

DIFFERENT STRATEGIES FOR INTEGRATION 193

the frameworks. This isn’t a book about comparative web development;

it’s a book about Ajax and how to use it to make applications today.

We hope that these server-side chapters give you the introduction you

need to evaluate how your current platforms are approaching Ajax and

how other frameworks you might not be familiar with are tackling the

same problems with different strategies.

11.1 Different Strategies for Integration

Development teams can choose from several strategies for integrating

Ajax with their framework. The choice largely depends on the philoso-

phy of the framework team: should developers be using visual tools for

assembling the application? Are web applications really about HTML?

Should my server-side code be the primary metaphor for the entire

application? In general, the strategies fall into three major categories:

visual tool support, custom tag libraries (and helpers), and ORB-like

remoting.

Tooling

Some server frameworks are built around the idea of using visual devel-

opment tools for creating the view artifacts. Examples are the ASP.NET

framework with its support in Visual Studio .NET and the JSF toolkit

for Java with support in several Java IDEs. The aim of such frame-

works are to provide developers with drag-and-drop development. To be

brief, the programmer uses components that are in charge of their own

client-side rendering (such as data tables and date pickers). These are

assembled into a unified page. The components themselves are manip-

ulated through a series of declarative properties that affect everything

from their visual style to the component’s life cycle.

These frameworks now integrate Ajax support through these declara-

tive properties. In fact, ASP.NET has had such support for some time

now. The programmer merely selects one of the properties (such as

autoupdating for the data table), which enables in-page callbacks to

the server to refresh data. The programmer might not even be aware

that the result is, in fact, Ajax, just that the component now exhibits

the desired behavior.

Later, in Chapter 15, ASP.NET and Atlas, on page 246, we’ll take a look

at Ajax support in ASP.NET.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=193

DIFFERENT STRATEGIES FOR INTEGRATION 194

Helper Tags

A second approach to Ajax integration is custom tag libraries. Toolk-

its like AjaxAnywhere1 and Ruby on Rails use custom tag libraries (or

similar constructs) as HTML-embedded stand in for server-side func-

tionality. These tag libraries, sometimes referred to as helper tags, are helper tags

parsed by the template engine of the given framework, which in turn

generates client-side artifacts based on the attributes of the custom tag.

The result is a page that looks like HTML, but whose actual content

is determined at parse time. The tags provide a layer of abstraction

for integrating server-side code into client-side templates. This can

be quite a powerful ability, because it allows the developer to focus

on a single artifact (the template) instead of jumping around between

template and alternate code files.

We’ll look at Ruby on Rails’ Ajax integration in Chapter 13, Ajax with

Rails, on page 210.

ORB-like Remoting

Our last category of Ajax integration with a server framework is to use

ORB-like remoting to connect client-side JavaScript to existing server-

side functionality. Using tools such as JSON-RPC, DWR (for Java),

Ajax.NET, or several PHP frameworks, a developer can write JavaScript

code for the browser that can seemingly access the server-side domain

model directly. The effect of these frameworks is that your existing

domain code is now reusable across to the client tier, providing a seam-

less object model for the code on both tiers.

We’ll examine ORB-like remoting in Chapter 12, Ajax with PHP, on the

following page, as we discuss PHP and its Ajax integration. First, we’ll

look at the granddaddy of all the PHP/Ajax integration projects, Sajax.

Next, we’ll compare to a newer player, Najax.

1http://www.ajaxian.com/archives/2005/09/ajaxanywhere_aj.html

http://www.ajaxian.com/archives/2005/09/ajaxanywhere_aj.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=194

Chapter 12

Ajax with PHP
PHP is the framework of choice for many web developers. It is free and

open source, which means it is widely adopted. For those who use

it, they find it is a pragmatic choice, one with a bustling community

of users and developers. The community is so strong, in fact, that

the library of available additions to the framework is quite large. If

you find yourself wanting a piece of functionality that isn’t in the PHP

core, make sure you have Googled around a bit before running off and

implementing it yourself. Chances are, someone in the PHP community

has done that work already.

This is true with the marriage of Ajax and PHP. Several PHP-based

frameworks are available, of various quality and richness of features.

In fact, the first PHP frameworks were announced within days of the

coinage of the term Ajax. In this chapter, we will look at the most pop-

ular of these frameworks and will again rewrite Hector’s CRM applica-

tion. We’ll finally focus on the server side of the application. Server-side

framework integration means that we can utilize the same abstractions

we have available on the server to implement a decidedly client-side

set of features. The JavaScript frameworks we’ve talked about already

(Dojo, Script.aculo.us, etc.), will be put on the back burner for now as

we see what the server side can provide us.

12.1 The PHP Frameworks

Back in Chapter 5, Ajax Frameworks, on page 77, we discussed that

Ajax support has been announced in JavaScript frameworks left, right,

and center. Those frameworks were all written to run on the client,

which in this case means within a browser. Server-side development

WORKING WITH SAJAX 196

frameworks face the same pressures for innovation that client-side

frameworks do.

We’ve long had support for client-side technologies in our server-side

frameworks. From template-based view-rendering technologies such as

JSP, ASP and RHTML, to server-side objects with self-rendering capa-

bilities such as ASP.NET and JSF components, these frameworks use

a wide variety of methods to influence the client view. Now, they are

adding the ability to generate JavaScript for the client to create Ajax

effects and sometimes to hook up that JavaScript to server entities for

data transfer. There are three major categories of Ajax integration sup-

port: visual tool support, tag libraries, and ORB-like remoting.

12.2 Working with Sajax

Let’s return now to Hector and his CRM application. He has decided to

move his team to an open-source platform, namely PHP. He’s convinced

that his team will be able to get more leverage by using an integrated

Ajax framework. This means the team can add these new effects and

callbacks without leaving the confines of PHP. We’ll first port the appli-

cation to Sajax.1

What Is Sajax?

Sajax is one of the earliest Ajaxian web frameworks available, originally

written for PHP. It is an open-source project and allows you to bind

your web UI to server-side functions. It accomplishes this by exporting

client-side JavaScript functions that invoke a Sajax bridge back to the

server-side code that is actually executed, wrapping it all in an XHR

request.

Sajax is an ORB-like remoting layer, which means we will be able to

first write the server-side functions we need (consisting of talking to

the database and returning the correct data) and then bind our HTML

UI directly to these functions. There will be no XMLHttpRequest object to

be found, and you may even be surprised with some of the JavaScript

method calls that we can run, since we will not see them in the PHP

code itself.

There is some tension in the development community surrounding this

kind of object remoting strategy. Some developers are keen on using

1http://www.modernmethod.com/sajax/

http://www.modernmethod.com/sajax/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=196

WORKING WITH SAJAX 197

Sajax Language Support

Sajax started with PHP and ColdFusion support but now also
supports the following:

• ASP

• ColdFusion

• Perl

• PHP

• Python

• Ruby

If you do not see your favorite language, chances are Sajax will
soon support it.

web (XML) services as the primary channel for communicating between

different application tiers. Depending on who you talk to, this can mean

anything from a RESTful, loosely coupled, XML-over-HTTP architecture

all the way to a WSDL, SOAP, and WS-* implementation. What they

have in common is a move away from object (and method) orientation

and to a message transport and service-oriented architecture.

Object brokers, on the other hand, are entirely about enabling remote

communications without disrupting the mental model of the object ori-

ented developer. You can tie client-side methods to server-side objects

as though they were physically colocated, thus giving the illusion that

there are no network calls and round-trips separating the different enti-

ties. While this is a powerful abstraction, it is still just an abstraction.

There are, in fact, network round-trips involved, and if you look at the

messages that are sent, they look surprisingly just like the messages

sent through service-oriented frameworks.

Sajax chooses to expose its functionality through an object broker, thus

placing a higher value on a standard experience for the developer across

the physical application tiers. This might provide more efficiency at

development time but may come at the expense of efficiency at run-

time. This is because any abstraction that hides the underlying remote

nature of an architecture runs the risk of causing developers to forget

about the costs of having such a remote system. It is the responsibility

of developers using such a framework to remember the costs associated

with making remote calls and to program accordingly.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=197

WORKING WITH SAJAX 198

mysqli and PEARDB Interfaces

The service code uses the original mysql PHP library. If you are
running later versions of PHP, you can use libraries such as mysqli
and PEARDB:

• mysqli offers increased functionality such as support
for prepared statements and other performance-related
improvements.

• PEARDB is a DBI/JDBC-like database abstraction layer. This
allows you to easily move between various databases.

Porting CRM to Sajax PHP

In order to port the CRM application to Sajax, we will be changing the

way we think about the application. Back in the chapters on JavaScript

toolkits and frameworks such as Dojo and Prototype, we were very

focused on the front-end HTML and JavaScript code, and little was

mentioned about the back end. Now we will focus behind the scenes

and will use Sajax to generate the front end as much as possible. This

means that instead of writing all of the JavaScript ourselves, we will

have helper functions that do some magic for us.

Building Back-End Functions

Let’s create PHP back-end functions for the Zip to city/state service. We

will build the get_city_state() function that will use a MySQL database

to return the city and state for the given Zip code. We will place this

functionality in its own PHP file, zipService.sajax.php, and will include it

from our web-facing PHP code.

We’ll start with the small things. We define some constants to hold

information on the database itself:

File 19 define(' DB_HOST' , ' localhost');

define(' DB_USER' , ' crmuser');

define(' DB_PASS' , ' crmpasswd');

define(' DB_NAME' , ' crm');

Then we create the get_city_state() method:

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=198

WORKING WITH SAJAX 199

File 19 function get_city_state($zip) {

if (!mysql_connect(DB_HOST, DB_USER, DB_PASS)) {

bail("Could not connect to MySQL");

}

if (!mysql_select_db(DB_NAME)) {

bail("Could not use the " . DB_NAME . " database in MySQL");

}

$q = sprintf("SELECT city,state FROM zips WHERE zip = ' %s' ",

mysql_real_escape_string($zip));

$r = mysql_query($q);

$row = mysql_fetch_assoc($r);

if ($row[' city'] && $row[' state']) {

$return_string = $row[' city'] . "," . $row[' state'];

} else {

$return_string = "Could not find a city or state for this zip code";

}

mysql_free_result($r);

return $return_string;

}

You’ll see quite a few lines of code here, but it should be familiar to

most PHP developers. We start by connecting to MySQL and select-

ing the CRM database with mysql_connect() and mysql_select_db(). We

then build the query, making sure to escape the input via the method

mysql_real_escape_string(). We escape the input string to give our appli-

cation some protection against cross-site scripting and SQL injection

attacks.2 Finally, we fetch a row from the database using the methods

mysql_query() and mysql_fetch_assoc().

After all of this, either we have a matching city and state to return, or

we pass back an error message. Since we are good developers, we don’t

forget to free up our resources with mysql_free_result() before returning

our results. This ensures that any memory being hogged by our results

is eagerly released. We don’t necessarily need to call this for the script

you see here, because the results are automatically released upon ter-

mination of the script, but for the sake of explicitness, we include the

call.

2For more information about these kinds of attacks, see

http://en.wikipedia.org/wiki/Cross-site_scripting and http://en.wikipedia.org/wiki/SQL_injection_attack.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.sajax.php
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/SQL_injection_attack
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=199

WORKING WITH SAJAX 200

You may have noticed the helper function, bail(), that reports errors

to the browser if there are serious system issues (e.g. the database is

down). This is one benefit of integrating Ajax directly into the server-

side implementation framework. When bad things happen during the

server’s execution of an asynchronous callback, it helps to have a built-

in channel for expressing the error information back to the browser:

File 19 function bail($message) {

header(' Content-Type: text/html; charset=utf-8');

echo "<html><head><title>Zip Error</title></head>" .

"<body><h2>$message</h2>" .

mysql_error() . "</body></html>";

die();

}

Migrating to Sajax

Our back-end code is written, so now we move to the client browser

view. We’ll create a PHP file that creates the HTML for display, as well

as exports our server functions to the browser as JavaScript meth-

ods. In figure_ed_screen_sajax.php, we include the main Sajax PHP mod-

ule (Sajax.php), as well as the Zip service code that we created earlier

(zipService.sajax.php). In addition, we have to initialize Sajax and choose

the function that we want to be able to call from the client. We export

the method via sajax_export("get_city_state").

File 15

require_once("sajax/php/Sajax.php");

require_once("zipService.sajax.php");

sajax_init();

//$sajax_debug_mode = 1;

sajax_export("get_city_state");

sajax_handle_client_request();

What about the sajax_handle_client_request()? That is where the magic

happens. If we take a step back and think about what actually happens

at runtime, we realize that for this to work, three things have to be true:

• Something has to generate the client-side Ajax call.

• Something has to be listening on the server for callback from the

generated method.

• The listener must be able to invoke the original server-side method

(with parameters) based on the callback from the client, and then

return the results.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.sajax.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=200

WORKING WITH SAJAX 201

This is the job of sajax_handle_client_request(). Though this is standard

boilerplate code that doesn’t change and that you don’t have to write,

it is still important to understand what is happening here. This is true

both for debugging purposes, and for making appropriate use of the

framework. First, the method harvests the server-side function name

and arguments from specific parameters of the request. Next, it uses

those to dynamically invoke the server-side function. Notice also that

for GET requests, the method makes sure (as much as is possible) to

prevent client-side caching of the results, whereas for POST requests, it

doesn’t bother. This is because the HTTP specification notes that POST

responses are not, by default, cachable, so there is no need to specify

the various no-cache headers as in the GET version.3

File 18

function sajax_handle_client_request() {

global $sajax_export_list;

$mode = "";

if (! empty($_GET["rs"]))

$mode = "get";

if (!empty($_POST["rs"]))

$mode = "post";

if (empty($mode))

return;

if ($mode == "get") {

// Bust cache in the head

header ("Expires: Mon, 26 Jul 1997 05:00:00 GMT"); // Date in the past

header ("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");

// always modified

header ("Cache-Control: no-cache, must-revalidate"); // HTTP/1.1

header ("Pragma: no-cache"); // HTTP/1.0

$func_name = $_GET["rs"];

if (! empty($_GET["rsargs"]))

$args = $_GET["rsargs"];

else

$args = array();

}

else {

$func_name = $_POST["rs"];

if (! empty($_POST["rsargs"]))

$args = $_POST["rsargs"];

else

3http://www.intertwingly.net/blog/2005/03/16/AJAX-Considered-Harmful

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/sajax/php/Sajax.php
http://www.intertwingly.net/blog/2005/03/16/AJAX-Considered-Harmful
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=201

WORKING WITH SAJAX 202

Sajax Debug Mode

By setting $sajax_debug_mode = 1;, Sajax will provide you with
helpful tracing information during the execution of code within
the page. The framework delivers the information via alert()
calls which pop up modal dialog boxes to display the informa-
tion. The type of information you’ll see includes the following:

• Notification of the begin and end of server callback func-
tions

• The name and parameters of the server function to be
called

• The raw result of the callback

Other responses are also possible. Be forewarned that turning
on debug mode will severely hamper a user’s ability to actually
use the application, so use it only for designated testing pur-
poses.

$args = array();

}

if (! in_array($func_name, $sajax_export_list))

echo "-:$func_name not callable";

else {

echo "+:";

$result = call_user_func_array($func_name, $args);

echo $result;

}

exit;

}

With this code in place, the work of the developer is largely complete.

Since so much of the Sajax framework is handled in the bridge code,

your job is largely one of configuration (denoting which methods are to

be exported). However, about 80 or so lines of JavaScript are required

in the browser to wire all this up; one line of PHP code is all that is

required to generate and embed the scripts:

File 15 <?php sajax_show_javascript(); ?>

You can examine the generated JavaScript code by doing a View Source

on the page. In addition to a bunch of standard code for instantiat-

ing the XHR object and wiring up its state callbacks, you will also see

methods generated specifically by your sajax_export() calls from before.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=202

WORKING WITH SAJAX 203

Each method that was exported gets a client-side helper method whose

name is x_[name of original function](). In our case, the function is called

x_get_city_state(), shown here:

function x_get_city_state() {

sajax_do_call("get_city_state",

x_get_city_state.arguments);

}

What is the x_get_city_state.arguments() all about? To allow for a variable

length parameter list, we are packaging up all the inputs to the method

into a single collection of values. These values mimic the server-side

function definition exactly, with one addition. To enable the full Ajax life

cycle of a Sajax method, we have to provide an extra parameter, which

is a function to use as a callback when the request returns without an

error. This method harvests the results of the server call and performs

the client-side work to display and/or utilize the data. The function we

have been using to this point is assignCityAndState(), which we will just

reuse in this context:

File 15 function assignCityAndState(data) {

if (data.indexOf(' ,') > 0) {

var cityState = data.substring(1).split(' ,');

document.getElementById("city").value = cityState[0];

document.getElementById("state").value = cityState[1];

document.getElementById("zipError").innerHTML = "";

} else {

document.getElementById("zipError").innerHTML = "Error: " + data;

}

}

Since we are leaving the main part of our HTML the same as the early

Ajax examples, we can wrap these calls with our faithful getZipData():

File 15 function getZipData(zipCode) {

x_get_city_state(zipCode, assignCityAndState);

}

Gaining and Losing

So there you have it. We have shown how you can use the Sajax frame-

work to export server-side functions. Sajax really is simple to use, but

it has some drawbacks. The main drawback is that you have the abil-

ity to return only simple types from your exported functions. You can’t

return a rich object and have it jump into a JavaScript object (via JSON

or anything else). This means you may often create wrapper functions

around existing server-side code to wrap their return types with simple

string-based information that can be parsed manually on the client.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=203

XOAD 204

Similarly, other frameworks (such as Dojo) offer transparent failover

support for older browsers. For example, Dojo can switch to use iframes

for remoting when the XHR object is not available. Sajax provides no

such support; it is a no-frills framework designed to make it easy to

take advantage of Ajax features in modern browsers. What you gain is

simplicity: a standard programming model with little to no JavaScript

code to be written.

12.3 XOAD

Sajax isn’t the only PHP Ajaxian framework in town. A newer kid on

the block is XOAD. We will port our CRM application from the Sajax

version and get a good view of the similarities and differences between

the two popular frameworks.

From Procedural to OO

XOAD is similar to Sajax in that it also uses an ORB-based remoting

model where you bind your JavaScript layer to your server-side code.

You would think that we would be able to use the same Zip service

that we already created for the Sajax version. This isn’t going to be the

case, because XOAD cares about classes and OO. We will not export

just methods, but will give XOAD objects and classes. This means we

need to change the Zip service to be a class.

Changing the Back End

We can do this in a slightly cheeky manner. We are going to take the

get_city_state() and bail() functions and make them static methods in a

Zip service class. We wrap the code in class ZipService {...}, and we make

the functions static by adding the static keyword before their definitions

(so we have static function get_city_state($zip) {...}).

The one change we need to make to the back end for XOAD is the addi-

tion of metadata to the class that describes what should be exported.

This metadata gets added via a simple instance method on the Zip ser-

vice:

File 20 function xoadGetMeta() {

XOAD_Client::mapMethods($this, array(' get_city_state'));

XOAD_Client::publicMethods($this, array(' get_city_state'));

}

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.xoad.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=204

XOAD 205

Sajax Could Work This Way

At this point in time, Sajax could work with this code too. A
simple way to get it to work is to create a wrapper function
that we utilize like this:

function get_city_state($zip) {

return ZipService::get_city_state($zip);

}

Soon we will change the class more though for XOAD, and it will
no longer work with Sajax.

You have some options on what you want to export. In our example,

we give the map of methods that we want to export, and we assign

the access to public methods. You can access private methods via

XOAD_Client::privateMethods(), and you can access variables using the

methods XOAD_Client::privateVariables() and XOAD_Client::publicVariables().

Any OO purist will tell you that doing so violates the principles of encap-

sulation: namely, private members and data fields should be accessible

only by the defining class or specifically trusted entities. Therefore, be

careful when utilizing these methods and ensure that you are getting

the functionality you actually need.

Back to Front

We start on the client side as we did with Sajax. We load everything we

need and define the base directory for all things XOAD. In this case, we

are using a subdirectory called xoad:

File 16

define(' XOAD_BASE' , ' xoad');

require_once(' xoad/xoad.php');

require_once(' zipService.xoad.php');

XOAD_Server::allowClasses(' ZipService');

if (XOAD_Server::runServer()) {

exit;

}

We will also register the classes we want to be remotable. It is not

technically necessary to do this, but it is considered the polite thing

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_xoad.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=205

XOAD 206

XOAD Serializer

At this point, XOAD uses a serializer object to be able to con-
vert between the two worlds. We found an issue when run-
ning on PHP 5.1 and had to change the Serializer.class.php file so
that the function function serialize(&$var) became function serial-

ize($var) (i.e., we removed the ampersand). PHP 5 has different
rules for handling pass-by-reference semantics. The error we
were receiving was as follows:

PHP Fatal error: Only variables can be passed by reference

in /path/to/xoad/classes/Serializer.class.php on line 294

to do. XOAD keeps two hashes full of classes, one for allowed classes

and one for denied classes. Calling methods on denied classes results

in an error; calls to methods on allowed, or unassigned, methods will

proceed. However, in keeping with suggested usage, we’ll register the

ZipServer class with XOAD_Server::allowClasses().

XOAD sets up XHR requests to come back to the same PHP server page.

This means our PHP page is accessed in two modes. One is to display

the main page, and the other is to access the callback function. The

check in XOAD_Server::runServer() is there to handle the XHR request; it

returns false immediately if the request is not an XHR callback. Other-

wise, this method fires off the bound server methods according to the

request parameters and returns the results.

Once again we are quickly done with the PHP header code, and we

are into the HTML itself. We need to include all of the XOAD helper

JavaScript code, which is done at the top of the HTML head element:

File 16 <?= XOAD_Utilities::header(' xoad') ?>

We mentioned that XOAD is all about classes and objects, not just

functions. To register a class and have access to it via JavaScript, you

just need another helper function:

File 16 var obj = <?= XOAD_Client::register(new ZipService()) ?>;

We are registering a named object from the server, but you can also

register anonymous items such as inline lists. To do that, you would

just do something like the following:

var arr = <?= XOAD_Client::register(array(1, "bob", array("nested"))) ?>;

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_xoad.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_xoad.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=206

XOAD 207

To handle errors that may occur, you follow a naming convention that

allows you to have handlers for every method you call. The format of

the handler in question is obj.on[Name of method]Error(), where the first

character of the method name gets uppercased. We handle errors in

our application with the following:

File 16 obj.onGet_city_stateError = function(error) {

document.getElementById("zipError").innerHTML = "Error: " + error.message;

return true;

}

The final piece of the pie is to wrap getZipData() once again to tie into

our object:

File 16 function getZipData(zipCode) {

obj.get_city_state(zipCode, assignCityAndState);

}

Returning Rich Types

We mentioned that XOAD is able to deal with richer return types than

Sajax. Let’s change our code to try that out for size. To do this, we will

change get_city_state() to return an object of type ZipCityState. This is a

structure that has all of the data needed, instead of having a strange

string representation that you then need to parse on the client side.

The ZipCityState structure is a simple type. We just give it some public

variables that can store and retrieve our data. Why even bother with

accessors and mutators when it is this simple? (We can sense the OO

purists out there squirming).

File 21 class ZipCityState {

var $zip;

var $city;

var $state;

function ZipCityState($theZip, $theCity, $theState) {

$this->zip = $theZip;

$this->city = $theCity;

$this->state = $theState;

}

}

Now we have a rich type to pass around between layers. We can create

an object of this type in get_city_state() using the constructor provided

previously in the ZipCityState class:

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_xoad.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_xoad.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.xoadobject.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=207

XOAD 208

File 21 if ($row[' city'] && $row[' state']) {

$return_object = new ZipCityState($zip, $row[' city'], $row[' state']);

} else {

$return_object = NULL;

}

Our back-end code has now been updated to return the rich object, so

we need to change our browser code to be able to understand this object

when it comes back. Remember, the original version expects a custom

string representation of the data that it has to parse manually. The

best thing about this example is that we are hardly having to change

anything, and in fact we get to delete the string-parsing code. XOAD

is handling the marshaling of the return type for us. It is creating a

ZipCityState JavaScript object that has the same methods as the PHP

version.

This means that the only change we make is to the assignCityAndState()

JavaScript function. XOAD passes the return object from the PHP

get_city_state() to assignCityAndState(). It just so happens that it now

gets the rich ZipCityState, and we can use this object to get the city and

state data by simply using zip.city and zip.state. It looks like this:

File 17 function assignCityAndState(zcs) {

if (zcs.city) {

document.getElementById("city").value = zcs.city;

document.getElementById("state").value = zcs.state;

document.getElementById("zipError").innerHTML = "";

} else {

document.getElementById("zipError").innerHTML = "Error: " + zcs.zip;

}

}

So there we have it. XOAD successfully managed to take a rich return

type and generate a JSON representation to pass down to the client.

This allowed us to map object return types versus simple strings and

the like. You probably don’t want to get too carried away, though. While

it is theoretically possible to create insanely complex return types, with

nested complex structures for data, this can lead down a long road of

debugging, testing, and possibly even modifying the marshaling code

buried inside XOAD. Besides, even if the marshaling code handled the

data structures without a problem, large types still take up a lot of

bandwidth. Keep it simple, and everyone is happy.

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.xoadobject.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_xoad_object.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=208

WRAPPING UP 209

There is More to XOAD

This concludes the port to XOAD, and we have seen how it is an OO-

based system versus the function-based structure of Sajax. The XOAD

serializer allows you to return rich objects that will get converted to

JSON objects that the browser JavaScript engine can consume.

There are other interesting features of the XOAD library that we haven’t

seen in this use case. One of these is XOAD Events which allow you to

fire events from one computer and catch and process them on another.

This is all done by using an observer pattern and having one piece of

code firing events and another listening for them. This is useful for

Ajax applications that need to be very responsive to data being passed

between tiers (such as a chat client, for example).

12.4 Wrapping Up

We have shown you two of the most popular PHP-based Ajax frame-

works. These frameworks amply demonstrate the power of integrated

Ajax code; the simplicity of the model is evident. You never have to

leave the cozy confines of PHP to achieve dramatic Ajax results. In

fact, you don’t even have to look at the JavaScript if you don’t want

to do so. However, just because these frameworks can hide the details

of JavaScript on the client, that doesn’t mean you have to ignore it

yourself. There can be quite a lot of benefit to leveraging a high-

level abstraction layer like Sajax or XOAD but manipulating the DOM

directly with JavaScript to achieve more complex client-side behavior

as well.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=209

Chapter 13

Ajax with Rails
It is easy to talk about the degree of integration between some of the

existing Ajax JavaScript frameworks and the Ruby on Rails platform.

Thomas Fuchs (of Script.aculo.us) and Sam Stephenson (author of Pro-

totype) were both announced as Rails committers in the summer of

2005, which means that integration with their frameworks is a given.

As those Ajax frameworks continue to evolve, you can be guaranteed

that the Rails support for the new features will be the first on the street.

The integration itself takes the form of a series of helper methods that

can be embedded in the RHTML files that make up the view portion of

the application. These helper methods allow you to attach behavior and

logic to DOM elements through the same syntax with which you inter-

act with server-side objects. The result is a clean, consistent RHTML

file without a lot of visible JavaScript to muddy the water.

13.1 Ruby on Rails

Let’s first take a brisk walk through the architecture of Rails itself.

Rails, through its convention-over-configuration strategy, relies on a lot

of naming conventions and simple generators to create the plumbing for

your applications. Understanding how these things interact will allow

us to better understand what the Ajax helpers are doing at runtime and

thus how to better employ them to the benefit of our application.

Controllers and Actions

The logic of a Rails application is centralized in one or more controllers.

These are classes that extend the ApplicationController class provided by

RUBY ON RAILS 211

Rails and that adhere to a specific naming convention. For the exam-

ple of Hector’s CRM application, we would create a controller for the

address functionality called AddressController. The filename for the class

would be address_controller.rb, and it would be found in the app/controllers

folder of the Rails project.

Controllers contain one or more public methods that are referred to as

actions. Any public method of a controller is addressable via a URL.

We’ll add a public method called edit to the AddressController for render-

ing the address page of an application. The URL to reach this page

would then be /address/edit, or the controller name followed by a path

separator and then the action name.

Action methods can access a number of state management resources,

notably the session, request, response, and params objects. Each is rela-

tively self-explanatory; params might be the only exception. Rails takes

any inbound query-string (GET) or form body (POST) parameters and

creates a hash out of them.

Additionally, actions can create values that they can pass to the view

(which we’ll examine in the next section). Specifically, any instance

variables are accessible in the view templates. In Ruby, instance-

scoped variables are just variables prefixed with @. Here is the con-

troller code for our edit page that passes the page title to the view via

an instance variable:

class AddressController < ApplicationController

def edit

@page_title = ' Edit Address'

end

end

Finally, actions have default views that are rendered if the action makes

no alternate specification. The view that gets rendered for the previ-

ous controller and action would be /app/views/address/edit.rthml, again

based on simple naming conventions. However, actions can specify lots

of other options for what to output through the render method. Using

render, the action might directly supply text to display, specify an alter-

nate action to invoke, redirect to an external URL, etc. We’ll see more

about that in a minute.

RHTML

Rails uses a template-parsing engine called ERB as the underlying view

technology. You create templates as .rhtml files, which use standard

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=211

RUBY ON RAILS 212

web template notation to layer server-side code with static HTML. In

this case, the server-side code is Ruby, but it is still separated from

the static HTML through the <% %> constructs. When an action is per-

formed and the render logic causes an RHTML template to be parsed,

the Ruby blocks are evaluated, and any output values are inserted

amongst the static output before rendering.

Though it is possible to interleave real business logic into the view tem-

plates through these code segments, such behavior is considered (in

Rails as in every other web development framework) gauche. Any Ruby

code found in a template should be entirely devoted to making data pre-

sentable in that view, not controlling the application’s core behavior.

Rather, the most common usage of Ruby blocks in an RHTML page is

to render a piece of data using the <%= %> construct. The equals sign

specifies that the result of whatever code is in the Ruby block should be

rendered inline as text for purposes of outputting the view to the user.

Here is the top part of the edit.rhtml template that uses this construct to

place the page title in the header of the HTML page:

File 53 <html>

<head>

<title><%= @page_title %></title>

<style type="text/css">

th { text-align: left; }

</style>

<!-- etc. -->

Helpers

Helpers are special modules that provide methods for injecting HTML

into a view. Helpers can be application-wide or localized to a spe-

cific controller. They are essentially just public methods of a specially

named class whose output is text that can be utilized in a view.

Rails provides a series of helper classes and methods that make creat-

ing complex HTML, especially forms, quite simple. Take, for example,

the FormHelper class provided by Rails. It contains a series of methods

for outputting the various kinds of form elements: text boxes, check

boxes, selection lists, etc. Here’s the whole form for editing an address

in the CRM application:

File 53 Line 1 <%= start_form_tag :action => ' update' %>

- <table>

- <tr>

- <th>Customer Name:</th>

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit.rhtml
http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=212

RUBY ON RAILS 213

5 <td><%= text_field ' address' , ' name' , {:size => 30} %></td>

- </tr>

- <tr>

- <th>Address:</th>

- <td><%= text_field ' address' , ' address' , {:size => 30} %></td>

10 </tr>

- <tr>

- <th>City:</th>

- <td>

- <div id="city">

15 <%= text_field ' address' , ' city' , {:size => 20} %>

- </div>

- </td>

- </tr>

- <tr>

20 <th>State:</th>

- <td>

- <div id="state">

- <%= text_field ' address' , ' state' ,

- {:size => 3, :maxlength => 2} %>

25 </div>

- </td>

- </tr>

- <tr>

- <th>Zip:</th>

30 <td>

- <%= text_field ' address' , ' zip' ,

- {:size => 10, :maxlength => 10} %>

- </td>

- </tr>

35 <tr>

- <th></th>

- <td><%= submit_tag %></td>

- </tr>

- </table>

40 <%= end_form_tag %>

On line 1, you see the first helper we employ: start_form_tag. We’ve

provided only a single parameter, :action, which specifies the action to

invoke on the target controller. We could specifically name the con-

troller as well; in the absence of one, the helper uses the current con-

troller, which in this case is AddressController. When the template is

parsed and the helper is executed, the result is the following line of

HTML:

<form action="/address/update" method="POST">

In the rest of the code, you can see many uses of the text_field helper

to render text boxes within the form. The first two parameters to this

function are the name of the object whose property this field repre-

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=213

AJAX INTEGRATION 214

sents and the name of the property itself. For this example, there is

a model object in @address and the form allows us to edit its proper-

ties. Rails uses the parameters to construct an input field for the data

that matches a specific naming scheme: the id attribute takes the form

object_property, while the name attribute is object[property].

After the two mandatory properties, you can also pass in an optional

hash of values. Each key/value pair in the hash is turned into an HTML

attribute on the form field using the key as the name of the attribute,

and the value as the attribute’s value. Thus, the following helper call:

<%= text_field ' address' , ' city' , {:size => 20} %>

becomes the following HTML after parsing:

<input type="text" id="address_city" name="address[city]" size="20"/>

13.2 Ajax Integration

Ajax integration in Rails generally takes the form of helper methods.

The Ajax helpers are provided in the ActionView::Helpers::JavaScriptHelper

class. These helpers, when parsed, render JavaScript code that utilizes

the Prototype and Script.aculo.us libraries.

The Basics

The following sections highlight the Rails 1.0 way of doing Ajax. In

further sections, we’ll examine some parts of edge Rails as well.

javascript_include_tag

Of course, for any page to use a JavaScript library, it must import

that script library. Rails provides a helper, javascript_include_tag(), that

creates the script import statement for you. The only parameter is one

or more script library names, minus the path or suffix. Rails assumes

that the script files end with .js and are found in the public/javascripts

folder.

Rails ships with Prototype and the core Script.aculo.us scripts already

installed in public/javascripts. To import them all, you could use:

<%= javascript_include_tag ' prototype' , ' effects' , ' controls' %>

Or, you can do it more succinctly:

<%= javascript_include_tag :defaults %>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=214

AJAX INTEGRATION 215

link_to_remote

The link_to_remote() helper method creates an href element that invokes

a JavaScript function when clicked. The JavaScript function uses the

XMLHttpRequest object to create a request back to the server. The helper

creates both the HTML and the JavaScript to make it all happen.

You have to pass several mandatory parameters to the helper to get it to

work: the text of the link, the URL to post to, and either an element to

update with the results or a JavaScript function to invoke upon comple-

tion. If you specify a DOM element to update, the helper will generate

inline JavaScript code on the href’s onclick handler that uses Prototype’s

Ajax.Updater to make an outbound request and set the innerHTML of the

target element to the results. For example, the following:

<%= link_to_remote ' Update A Field' ,

:url => {:controller => ' my_controller' , :action => ' my_action' },

:update => ' an_element'

%>

is rendered as this:

<a href="#" onclick="new Ajax.Updater(' an_element' ,

' /my_controller/my_action' ,

{ asynchronous:true,

evalScripts:true}); return false;">

Update A Field

This construct is useful for situations where the results from the call

are just HTML that can be placed into a single DOM element for ren-

dering. However, this is often not the case, because the results might

need to be spread out among several DOM elements or there might be

more complex post-processing of the results necessary. In such cases,

you would specify a JavaScript function to be called upon completion

of the XHR request. The function should be defined to take the XHR

object itself as its only parameter. The following code:

<%= link_to_remote ' Remote Call' ,

:url => {:controller => ' my_controller' , :action => ' my_action' },

:complete => ' use_results(request)'

%>

<%= javascript_tag <<-END

function use_results(request) {

// harvest the results, parse them,

// distribute them, etc.

}

END

%>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=215

AJAX INTEGRATION 216

becomes the following:

<a href="#"

onclick="new Ajax.Request(' /my_controller/my_action' ,

{ asynchronous:true,

evalScripts:true,

onComplete:function(request){

use_results(request)}}); return false;">

Remote Call

<script type="text/javascript">

//

function use_results(request) {

// harvest the results, parse them,

// distribute them, etc.

}

//

</script>

The helper also allows a series of optional parameters for creating every-

thing from confirmation alerts to readystate callbacks. For example, we

could add a confirmation dialog to the previous request and also update

the user when the response has been fully loaded, by writing the fol-

lowing:

<%= link_to_remote ' Remote Call' ,

:url => {:controller => ' my_controller' ,

:action => ' my_action' },

:complete => ' use_results(request)' ,

:confirm => ' Are you sure?' ,

:loaded => ' show_loaded'

%>

which becomes this:

<a href="#"

onclick="if (confirm(' Are you sure?')) {

new Ajax.Request(' /my_controller/my_action' , {

asynchronous:true,

evalScripts:true,

onComplete:function(request){

use_results(request)

},

onLoaded:function(request){

show_loaded

}

});

}; return false;">

Remote Call

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=216

AJAX INTEGRATION 217

form_remote_tag

Quite often, we use Ajax techniques to take the results of a user’s inter-

action with a form, post them to the server, and render the results

on the page. Think of comments on a blog, where you enter your e-

mail and the comment, you then submit it, and it magically appears

appended to the bottom of the comments list. To accomplish this, you

have to employ some JavaScript wizardry to serialize the elements on

the form into a parameter you can pass via XMLHttpRequest.

With Ajax-enabled forms, you have to be wary of browsers without Ajax

capabilities. A user trying to add a comment to a blog shouldn’t be

required to have a modern browser to accomplish such a simple task;

if XHR is available, your page should take advantage, but you should

provide reasonable failover behavior for older browsers. In the case of

forms, this means allowing the form to be posted the normal HTML

way.

Use the form_remote_tag() helper to create an Ajax-enabled Rails form. It

creates a form tag with an onsubmit event to invoke a custom JavaScript

function that uses Prototype’s Ajax.Request (or Ajax.Updater) to send the

form fields to the server. It takes the same parameters as link_to_remote

apart from the initial text parameter (because the form has no visible

artifact that requires it). The following:

<%= form_remote_tag :url => {:controller => ' my_controller' ,

:action => ' my_action' },

:update => ' my_element' %>

becomes this:

<form action="/my_controller/my_action"

method="post"

onsubmit="new Ajax.Updater(' my_elem' , ' /address/my_action' ,

{ asynchronous:true,

evalScripts:true,

parameters:Form.serialize(this)}

); return false;">

The helper automatically creates failover support to post the form to

the same destination as the Ajax version of the request. If JavaScript

is not enabled, the onsubmit event is never bound, and the Ajax.Updater

is never created. The default action and method are then used to send

the form fields to the server.

Notice also that the helper automatically uses the Prototype method

Form.serialize, which gathers all the input elements on a form into a

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=217

AJAX INTEGRATION 218

single textual representation of a hash, which is then passed as the

parameters value of the request.

You can specify an alternate destination for the non-Ajax version of the

form by providing an optional hash of values to create the HTML version

of the target URL:

<%= form_remote_tag :url => {

:controller => ' my_controller' ,

:action => ' my_action'

},

:update => ' my_element' ,

:html => {

:action => {

:controller => ' other_controller' ,

:action => ' non_ajax'

},

:method => ' post'

}

%>

Also, just like with link_to_remote, you can specify a JavaScript function

to execute upon completion of the request instead of a DOM element

to update with the results if the request requires more complex post-

processing.

Observers and Updaters

The first two helpers we looked at require the user to click on something

to generate the Ajax behavior, either a link or a form submit button. As

we have already seen, this is not always how we want to trigger these

callbacks. Instead, we want to observe elements of the page and either

periodically send their current value to the server or watch for a change

in the value and send the request upon that change.

If you want to watch a single field on a page for changes, you can use

the observe_field helper. It allows you to monitor a field for changes

(either periodically or using event-based semantics) and send those

changes to the server. Periodical polling uses a timer to grab the value

of the target field every n seconds and send it to the server (regardless

of whether the value changed in the intervening interval). Event-based

polling uses the onblur event, which means changes are sent only when

the user shifts focus away from the target field. As such, periodical

polling is useful for things such as autocomplete fields that display a

list of choices based on the current contents of the field (like Google

Suggest). Event-based polling is more useful when you want to wait

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=218

AJAX INTEGRATION 219

until the user has entered a complete value in the field before causing

a round-trip (like Hector’s Zip lookup function).

By default, both versions of the observer send the value of the field as

the raw post data to the server. However, you’ll often want to label that

value as a specifically named parameter. Rails provides the option with

parameter for the observer which allows you to construct the parameter

list for the request using a piece of JavaScript.

Here is an example of using a half-second interval periodic observer to

send the value of a text field to the server, using with to construct the

parameter list:

<%= text_field ' my_object' , ' my_property' %>

<%= observe_field ' my_object_my_property' ,

:url => {:controller => ' my_controller' ,

:action => ' my_action' },

:update => ' display_target' ,

:frequency => 0.5,

:with => "' my_param = ' + value"

%>

The results look like:

<input id="my_object_my_property"

name="my_object[my_property]"

size="30"

type="text" />

<script type="text/javascript">

//

new Form.Element.Observer(

' my_object_my_property' ,

0.5,

function(element, value) {

new Ajax.Updater(' display_target' ,

' /my_controller/my_action' ,

{ asynchronous:true,

evalScripts:true,

parameters:' my_param = ' + value

})

})

//

</script>

Conversely, to create an event-based observer, just leave out the fre-

quency parameter.

If your page requires you to watch an entire form, rather than just a

single field, Rails also provides the observe_form helper. Simply provide

the form’s ID rather than a specific field ID to the helper, and it will

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=219

AJAX INTEGRATION 220

watch all the inputs on the form. The form observer can be periodic or

event-based, just like the field observer. It uses Prototype’s Form.serialize

method to harvest all the form values, and you can use the optional

with parameter to construct the request parameters as before.

Other Assorted Helpers

Rails provides a slew of other minor helpers to make accessing and uti-

lizing Prototype and Script.aculo.us easier and more consistent with the

rest of your RHTML code. For example, we already saw the javascript_tag

helper, which simply creates a <script> block with the contents we

passed into it. Additionally, there are helpers for the Script.aculo.us

visual effects libraries, for creating remote JavaScript functions that

aren’t bound to change events, and for doing even more.

For example, the visual_effect helper takes the name of a DOM element,

a symbol representing the desired effect, and a hash of parameters

for controlling the effect and generates the appropriate JavaScript to

launch it. To cause an element to fade, we could write the following:

<%= visual_effect :fade, ' target_element' %>

This helper is often used in conjunction with other helpers, specifically

to generate the onComplete action for the request:

<%= observe_field ' my_object_my_property' ,

:url => {:controller => ' my_controller' , :action => ' my_action' },

:update => ' display_target' ,

:frequency => 0.5,

:with => "' my_param = ' + value",

:onComplete => visual_effect(:highlight, ' display_target')

%>

If you need to create an XHR round-trip but attach it to a nonstandard

event on the page (anything other than a field’s onblur event), you can

utilize the Rails remote_function helper. It takes all the same parameters

as link_to_remote but is useful for generating the JavaScript in arbitrary

locations on the page.

<input type="text" id="my_text_field"

onfocus="<%= remote_function :url => {:action => ' my_action' },

:update => ' target' %>"/>

becomes the following:

<input type="text" id="my_text_field"

onfocus="new Ajax.Updater(' target' , ' /address/my_action' ,

{asynchronous:true, evalScripts:true})"/>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=220

AJAX INTEGRATION 221

CRM, Again

So, back to Hector’s address entry form again. Let’s see how to uti-

lize these Ajax helpers to create the functionality we’ve already imple-

mented. Then, we’ll go a step further and see how easy the integra-

tion helpers make some seriously advanced Ajax functionality, such as

sortable lists and autocomplete fields.

Observing the Zip Field

Our first thought as we begin adding the Ajax feature to our address

form is that we should utilize the observe_field helper to watch the Zip

field and update the values of the city and state elements when it

changes. We can use the update parameter to specify where to write

the prerendered output, or we can create custom JavaScript to handle

it for us.

Let’s start by using update. First, we need to figure out what DOM ele-

ment to update. It can’t be the city and state fields individually, because

update let’s us specify only a single DOM element to overwrite. The next

option is to pick a container element that contains both address and

city. Given the table structure of our form, we could create a <div>

that wraps just the table rows containing the city and state. This is

a bad idea, since injecting new table rows into an existing table has

radically different effects on different browsers. Internet Explorer will

just ignore the new rows entirely, while Safari will inject them but at

the top of the table (and leave the existing values that you thought you

were overwriting in their original locations).

So, to use update, we would have to overwrite the entire form whenever

we post back the current Zip code value to the server. Here is the form

that accomplishes the goal:

File 57 <html>

<head>

<title>Customer Data Screen</title>

<style type="text/css">

th { text-align: left; }

</style>

<%= javascript_include_tag ' controls' , ' dragdrop' , ' effects' , ' prototype' %>

</head>

<body>

<h1>Corporate CRM System</h1>

<h2>Enter Customer Data</h2>

<div id="whole_form">

<table>

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit_whole_form.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=221

AJAX INTEGRATION 222

<tr>

<th>Customer Name:</th>

<td><%= text_field ' address' , ' name' , {:size => 30} %></td>

</tr>

<tr>

<th>Address:</th>

<td><%= text_field ' address' , ' address' , {:size => 30} %></td>

</tr>

<tr>

<th>City:</th>

<td><%= text_field ' address' , ' city' , {:size => 20} %></td>

</tr>

<tr>

<th>State:</th>

<td>

<%= text_field ' address' , ' state' , {:size => 3, :maxlength => 2} %>

</td>

</tr>

<tr>

<th>Zip:</th>

<td>

<%= text_field ' address' , ' zip' , {:size => 10, :maxlength => 10} %>

</td>

<%= observe_field :address_zip,

:url => {

:action => ' get_city_state_whole_form'

},

:with => "' zip=' + value",

:update => ' whole_form' %>

</tr>

<tr>

<th></th>

<td><%= submit_tag %></td>

</tr>

</table>

</div>

</body>

</html>

Notice that observe_field helper right beneath the Zip field. You have

to place the helper after the definition of the field it watches, or the

generated JavaScript won’t be able to find the target element at run-

time. Here, we’re specifying an event-based observer (no frequency

specified) to watch the Zip field. Upon any change in the value, we

call the get_city_state_whole_form of the current controller, passing in

the Zip field’s value as a parameter called zip.

The controller contains a method called get_city_state_whole_form that

utilizes the Zip code data to create the output:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=222

AJAX INTEGRATION 223

File 51 def get_city_state_whole_form

@zip = @params[:zip]

if(@zip==' 90210')

@city = "Beverly Hills"

@state = "CA"

else

@city = "Durham"

@state = "NC"

end

end

Finally, there is a view called get_city_state_whole_form.rhtml in the file

app/views/address that renders the new form:

File 59 <table>

<tr>

<th>Customer Name:</th>

<td><%= text_field ' address' , ' name' , {:size => 30} %></td>

</tr>

<tr>

<th>Address:</th>

<td><%= text_field ' address' , ' address' , {:size => 30} %></td>

</tr>

<tr>

<th>City:</th>

<td>

<%= text_field ' address' , ' city' , {:size => 20, :value => @city} %>

</td>

</tr>

<tr>

<th>State:</th>

<td>

<%= text_field ' address' ,

' state' ,

{ :size => 3,

:maxlength => 2,

:value => @state} %>

</td>

</tr>

<tr>

<th>Zip:</th>

<td>

<%= text_field ' address' ,

' zip' ,

{ :size => 10,

:maxlength => 10,

:value => @zip} %>

</td>

<%= observe_field :address_zip,

:url => { :action => ' get_city_state_whole_form' },

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/controllers/address_controller.rb
http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/get_city_state_whole_form.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=223

AJAX INTEGRATION 224

:with => "' zip=' + value",

:update => ' whole_form' %>

</tr>

<tr>

<th></th>

<td><%= submit_tag %></td>

</tr>

</table>

Whenever the Zip field changes, the page posts the current Zip value

back to the server, which in turn renders the HTML found in the tem-

plate get_city_state_whole_form.rthml. This HTML is used to overwrite the

entire form table on the page. This technique is remarkably unwieldy

because it duplicates code in the views (edit_whole_form.rhtml duplicates

much of get_city_state_whole_form.rthml).

Observing the Zip Field, Part II

To make this form less unwieldy, we’ll eschew the update parameter of

the observer and instead use custom JavaScript to parse the result data

and assign the returned values to the city and state fields specifically.

We’ll make two simple changes to the original form. First, we’ll modify

the observer to call a custom JavaScript function upon completion of

the request:

File 56 <tr>

<th>Zip:</th>

<td>

<%= text_field ' address' ,

' zip' ,

{ :size => 10, :maxlength => 10} %>

</td>

<%= observe_field :address_zip,

:url => {

:action => ' get_city_state_parse_data'

},

:with => "' zip=' + value",

:complete => ' update_fields(request);' %>

</tr>

In this version, we specify a new action method on our controller,

get_city_state_parse_data. On completion of the remote call, we’ll pass

the XHR object to a function called update_fields. Bear in mind that this

construct means that the update_fields function will be called regardless

of the success of the remote call; if we need to create a different func-

tion for when the call fails, we would use :success and :failure instead of

:complete.

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit_parse_data.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=224

AJAX INTEGRATION 225

The second change to the page is the addition of the JavaScript for

dealing with the results. We use the javascript_tag helper to output the

function:

File 56 <%= javascript_tag <<-END

function update_fields(xhr) {

result = xhr.responseText.split(' ,');

$(' address_city').value = result[0];

$(' address_state').value = result[1];

}

END

%>

This function expects a string composed of a city and state separated

by a comma. We split the result on the comma and assign each value

to its appropriate field.

The action method is largely identical to the previous example; the

biggest difference is the rendered view for returning the data:

File 58 <%= @city -%>,<%= @state -%>

Even this is overkill, though. Since the view is so compact, we can

render it directly from the action method itself. Doing that would elimi-

nate the view file entirely (get_city_state_parse_data.rthml), and the action

method would become as follows:

def get_city_state_parse_data

zip = @params[:zip]

if zip == ' 90210'

render(:text => ' Beverly Hills,CA')

else

render(:text => ' Durham,NC')

end

end

We’ve used the Rails helper methods to add the Ajax functionality to

the address form as we have in our previous examples. Let’s look at

doing something a bit more difficult.

Autocomplete Fields

Let’s use Rails’ Ajax helpers to add an autocomplete feature to the form.

As users type their Zip code into the Zip field, the form will provide

possible results in a drop-down beneath the field. The list of available

results will be based on what has been typed already.

First, we’ll add a <div> tag to hold the autocomplete results. We’ll give

it a particular class name (auto_complete) and place it directly after the

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit_parse_data.rhtml
http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/get_city_state_parse_data.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=225

AJAX INTEGRATION 226

Zip field for which we’ll be providing the functionality. Second, we’ll

add the auto_complete_field helper to create the JavaScript.

File 54 <tr>

<td>Zip:</td>

<td>

<%= text_field ' address' ,

' zip' ,

{:autocomplete => ' off' } %>

<div class="auto_complete" id="address_zip_auto_complete">

</div></td>

<%= auto_complete_field ' address_zip' ,

:url => {:action => ' get_zips' } %>

<%= observe_field :address_zip,

:url => {:action => ' get_city_state_parse_data' },

:with => "' zip=' + value",

:complete => ' update_fields(request);' %>

</tr>

We also have to add a set of styles to the page to allow the autocomplete

block to look and act like a drop-down list. We’ve lifted this style directly

from Script.aculo.us:

File 54 <style type="text/css">

th { text-align: left; }

div.auto_complete {

width: 350px;

background: #fff;

}

div.auto_complete ul {

border:1px solid #888;

margin:0;

padding:0;

width:100%;

list-style-type:none;

}

div.auto_complete ul li {

margin:0;

padding:3px;

}

div.auto_complete ul li.selected {

background-color: #ffb;

}

div.auto_complete ul strong.highlight {

color: #800;

margin:0;

padding:0;

}

</style>

Last, we’ll add the get_zips method to AddressController to take the cur-

rent value of the Zip field and return a list of possible matches:

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit_auto_complete.rhtml
http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/edit_auto_complete.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=226

THE FUTURE OF AJAX IN RAILS 227

File 51 def get_zips

@orig = [' 11111' , ' 11222' , ' 13444' , ' 13555' , ' 13556' ,

' 13557' , ' 22222' , ' 23333' , ' 23444']

zip = @params[:address][:zip]

@zips = @orig.select {|z| z.starts_with?(zip)}

end

And finally here is the RHTML file for rendering the matches:

File 60

<% @zips.each do |zip| %>

<%= zip %>

<% end %>

13.3 The Future of Ajax in Rails

Rails moves fast; version 1.0 was just released while we were writing

this chapter. Features are added all the time. The team has just intro-

duced a new feature called RJS templates that is making Ajax even RJS templates

easier with Rails.

So far, we’ve see the use of helper methods to help automate the genera-

tion and inclusion of JavaScript into the rendered page. With methods

such as javascript_include_tag, we can inject application-global scripts

into our pages. With helpers such as link_to_remote and javascript_tag, we

can add page-specific JavaScript. The missing piece has been reusable

Ajax methods for pages that share behavior and elements but that isn’t

general to every page in the application.

Imagine that your site is based on the idea of group membership; you

may belong to multiple groups, and what you see on some pages is

based on which group is currently “active.” Those pages all have a drop-

down box that lists your current groups. Switching between groups

changes the header of the page (to show the new group name and logo)

and a box that shows how many messages you have waiting from other

members of the group.

Creating the drop-down box and its Ajax callback event is simple. We

simply use the observer, as we saw earlier in this chapter:

<select id="group_select" name="group_select">

<%= options_from_collection_for_select @user.groups,

' id' ,

' name' ,

@user.current_group %>

http://media.pragprog.com/titles/ajax/code/RailsCRM/app/controllers/address_controller.rb
http://media.pragprog.com/titles/ajax/code/RailsCRM/app/views/address/get_zips.rhtml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=227

THE FUTURE OF AJAX IN RAILS 228

</select>

<%= observe_field ' group_select' ,

:url => {:action => ' change_group' },

:with => "' group_id = ' + value"

%>

When this call is made, the change_group action will be invoked back

on the server. This action will retrieve the new group from the selected

ID and make it available to view:

def change_group

@group = Group.find(@params[' value'])

end

The key is the view that gets rendered as a result. Instead of a standard

.rthm template, we’ll use the new .rjs template extension. The template’s

full name would be change_group.rjs, and it looks like this:

page.replace_html ' header' , :partial => ' shared/header'

page.replace_html ' status' , :partial => ' shared/status'

page.visual_effect :highlight, ' status' , :duration => 1

Rails uses this template to create a JavaScript block that is rendered

back to the current page, evaluated, and executed within that page’s

context. It will replace an element called header with the results of pars-

ing the shared _header.rhtml template. It will likewise replace the con-

tents of status with the results of another partial rendering and finally

trigger the highlight effect on status to let the user know that a change

has been made.

The page object is just an instance of the JavaScriptGenerator class, part

of the Prototype integration code. Its purpose is to provide a single

provider of the various standard JavaScript blocks that your Ajax pages

will need. Through the RJS templates, it becomes a conduit for inter-

acting with the DOM elements of the current page. Now, when the drop-

down box for selecting groups will be on a page that wants to react to

its changing value, you can simply link to the appropriate server-side

action (in this case, group_select), and the rest is handled automatically.

The page object exposes two kinds of methods: those that require only

JavaScript on the client, and those that require the Prototype library in

order to execute. The JavaScript methods are as follows:

• alert(): Takes a message and renders a JavaScript alert() call

• redirect_to(): Takes a URL and passes it to window.location.href()

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=228

THE FUTURE OF AJAX IN RAILS 229

• call(): Takes a function name and a list of arguments and creates

a local JavaScript call to the function, passing in the arguments

• assign(): Takes a variable name and a value and creates a local

JavaScript code block to assign the value to the variable

• delay(): Takes a block and a number of seconds and creates a

JavaScript timeout to wait that number of seconds before execut-

ing the block

The Prototype-dependent methods are as follows:

• replace_html(): Takes an element ID and a hash of options, uses

Element.update() to replace the contents of the element

• remove(): Takes one or more IDs and uses Element.remove() to

delete them from the DOM

• show(): Takes one or more IDs and uses Element.show() to make

them visible

• hide(): Takes one or more IDs and uses Element.hide() to make the

invisible

• toggle(): Takes one or more IDs and uses Element.toggle() to toggle

their visible state

To get this feature right now, you’d have to be running what’s called

Edge Rails, which is the trunk of the SubVersion repository. It isn’t

part of any official release as of the time of writing, but it shows you

the speed with which the Rails team is integrating Ajax directly into the

framework and making it easier and easier to provide powerful client-

side actions across your applications.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=229

Chapter 14

Proxy-Based Ajax with DWR
One of the problems with pushing more business code into your web

application’s client-side JavaScript is that most of your application’s

logic is probably tied up back on the server, wrapped up inside of

whatever server-side programming language you prefer—and unless

you’re some kind of freak, chances are that language is not server-

side JavaScript. How, then, can you get at that logic from within your

client-side JavaScript environment? You certainly could create a bunch

of custom endpoints in your application to receive Ajax requests from

web clients, but what a pain! Wouldn’t it be nice if you could just call

your server-side code from your client-side JavaScript?

Enter what we call proxy-based Ajax: frameworks that enable you to

directly invoke arbitrary logic on the server side from your JavaScript

code. More than allowing such calls to take place, these proxy frame-

works make it seamless and natural to call your server-side code using

JavaScript.

For example, consider this JavaScript code sample using DWR, a pop-

ular proxy framework:

Line 1 function submitOrder() {

- return Customer.submitOrder();

- }

Line 2 looks like any other line of JavaScript code. Call it, however,

and the DWR framework will automatically search for an object named

Customer in the server-side environment and invoke the submitOrder()

method on that object, returning the value to the JavaScript environ-

ment.

DWR 231

This behavior has a few implications. First, unless you have a web

application with only one customer, the customer object you interact

with on the server side must be associated with the current web ses-

sion. Many of the proxy frameworks do indeed support the notion of

binding objects that you interact with to the user’s browsing session,

allowing for unique objects for each user.

Second, the proxy framework must also support some way to trans-

fer values returned by server-side methods into some format that the

JavaScript environment can understand.

As you can see with just this simple example, proxy-based Ajax is enor-

mously useful stuff for allowing your web clients to take on a whole new

level of complexity previously reserved for your server-side code.

14.1 DWR

Java developers are blessed to have an excellent proxy Ajax framework

available: Direct Web Remoting (DWR). DWR differentiates itself from

other proxy frameworks by offering much tighter integration with Java

and in being much easier to set up out of the box.

DWR was written by Joe Walker of Getahead, a boutique software con-

sultancy; you can download it at http://getahead.ltd.uk/dwr/. Happily,

DWR breaks from the pack of most other frameworks we discuss in

this book: it is fairly well documented.

Using DWR in your own Java web applications is a simple, three-step

process:

1. Add the DWR servlet to your project.

2. Create a DWR-specific configuration file.

3. Add the DWR JavaScript to your HTML.

Let’s discuss each of these steps.

Adding the DWR Servlet to Your Project

DWR is distributed in two different ways: as a JAR file and as a WAR

file. The JAR file contains all the files necessary to use DWR in your

own web application. The WAR file adds to the JAR file some examples

demonstrating how to use DWR, including a template web.xml file you

can copy for use in your own project. Our discussion of DWR will

be based on the JAR distribution; if you’d like to follow along with

http://getahead.ltd.uk/dwr/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=231

DWR 232

Figure 14.1: DWR Is Up and Running

the chapter as we discuss DWR, download that flavor. And if you do

follow along, you should probably grab DWR version 1.0 to ensure the

examples work properly.

Once you’ve got the JAR, place it in your web app’s WEB-INF/lib directory,

and add the following entries to your web.xml file:

<servlet>

<servlet-name>dwr-invoker</servlet-name>

<servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>true</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>dwr-invoker</servlet-name>

<url-pattern>/dwr/*</url-pattern>

</servlet-mapping>

Once you’ve added the DWR servlet to your web.xml file, you can deploy

your application and access the DWR servlet. Test that it is installed

correctly by visiting the page http://localhost[:port]/[webapp]/DWR/. You

should see a very simple web page, shown in Figure 14.1 . We’ll talk

about how to make that page more useful right now.

Create a DWR-Specific Configuration File

As we’ve mentioned, DWR lets you invoke methods on objects in your

server-side environment. You have quite a few options for tweaking

just how DWR permits such invocations. You can use DWR to allow

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=232

DWR 233

JavaScript code to create object instances (and persist them across

requests by storing them in the session or application context), or you

can integrate it with existing object instances or object management

frameworks such as Spring.

Fortunately, the DWR folks had security on the mind and DWR imposes

a few restrictions. First, you must explicitly expose those classes that

DWR is authorized to interact with. You can even choose to restrict

the methods on the class that may be invoked. Second, though DWR

can convert any arbitrary JavaBean into a JavaScript object, by default

it will convert only basic Java types into JavaScript types (primitives,

primitive wrappers, String, Date and its java.sql subclasses, arrays con-

taining these types, and Collection instances containing these types);

you must explicitly declare which additional types DWR will attempt to

convert when returning the result of a method invocation.

All of these options are controlled in the DWR configuration file, dwr.xml,

which lives in your application’s WEB-INF directory. Let’s start our expla-

nation of dwr.xml with a simple example:

<!DOCTYPE dwr PUBLIC "-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN"

"http://www.getahead.ltd.uk/dwr/dwr10.dtd">

<dwr>

<allow>

<create creator="new" javascript="Validator">

<param name="class" value="org.galbraiths.Validator"/>

</create>

</allow>

</dwr>

This is all the configuration we need to expose org.galbraiths.Validator

and all of its methods for access from JavaScript code. The value of the

javascript attribute, Validator, declares that the JavaScript proxy object

that interacts with the server-side Validator class will also be named

Validator. This class provides two methods that can validate certain

types of data. For completeness, here’s the source code to the class:

File 50 package org.galbraiths;

public class Validator {

private static final String[] CUSTOMER_IDS = { "123456", "654321" };

public static String validateCustomerId(String customerId) {

for (int i = 0; i < CUSTOMER_IDS.length; i++) {

String id = CUSTOMER_IDS[i];

if (customerId.equals(id)) return null;

}

return "Customer number is invalid";

}

http://media.pragprog.com/titles/ajax/code/ProxyAjax/src/org/galbraiths/Validator.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=233

DWR 234

public static String validateTicketNumber(String ticketNumber) {

if (ticketNumber.equals("")) return "Ticket number is required";

try {

Integer.parseInt(ticketNumber);

return null;

} catch (NumberFormatException e) {

return "Ticket number must be a number";

}

}

}

The important bit to take away from this code is that it has two meth-

ods, validateCustomerId() and validateTicketNumber(), that take strings

and return null if the values are valid, and a string error message if

the value is invalid.

Now we’ve added the DWR servlet to our application and we’ve config-

ured DWR to expose our Validator class; the only thing left to do is create

the JavaScript code that will use DWR to communicate with Validator.

Add the DWR JavaScript to your HTML

Now we’ve exposed Validator to DWR, so let’s take another look at DWR’s

debug page. Visit http://localhost[:port]/[webapp]/DWR/ (if you’re following

along, you’ll need to redeploy the application). You should now have a

link named Validator on the resulting web page; click it, and you’ll see

a page that looks like Figure 14.2, on the next page.

This page is genuinely useful for a couple of reasons. First, it lists the

exact lines of HTML you’ll need to drop into your web page to use DWR:

<script type=' text/javascript' src=' /dwr/interface/Validator.js' ></script>

<script type=' text/javascript' src=' /dwr/engine.js' ></script>

These URLs won’t actually exist in your project’s file system, of course;

because the URLs start with dwr, they’ll be mapped to the DWR servlet,

which will stream the JavaScript to your application at runtime.

Second, it actually lets you interact with the object you’ve exposed. It

lists all of the exposed methods and allows you to directly enter an

argument and execute the method; the results will be displayed next to

the Execute button, as shown in Figure 14.3, on the following page.

It’s now a fairly simple task to create a web page that can incorporate

the DWR JavaScript to use the proxy-based Ajax approach. The follow-

ing listing demonstrates a simple web page that we will use in the next

few sections to incorporate DWR for Ajax validation of the customer ID

and ticket number fields. The code appears on page 236.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=234

DWR 235

Figure 14.2: DWR Exposing the Validator Class

Figure 14.3: Using DWR to Interact with the Validator Class

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=235

DWR 236

File 47 <html>

<head>

<title>Form DWR Demo</title>

<style type="text/css">

.error {

color: red;

}

</style>

</head>

<body>

<h1>Data Entry Form</h1>

<form method="post" action="/processForm">

<table>

<tr>

<td>

Customer Number:

</td>

<td>

<input name="customerId" type="text" />

</td>

<td class="error" id="customerIdError"></td>

</tr>

<tr>

<td>

Ticket Number:

</td>

<td>

<input name="ticketNumber" type="text" />

</td>

<td class="error" id="ticketNumberError"></td>

</tr>

</table>

<input type="submit" value="Submit"/>

</form>

</body>

</html>

Adding DWR to the Web Page

To add DWR to the page, we’ll paste the appropriate JavaScript into the

web page’s <head> tag, and we’ll also write some simple JavaScript

that will interact with the server-side Validator class:

File 48 Line 1 <head>

- <title>Form DWR Demo</title>

- <style type="text/css">

- .error {

5 color: red;

- }

- </style>

http://media.pragprog.com/titles/ajax/code/ProxyAjax/form.html
http://media.pragprog.com/titles/ajax/code/ProxyAjax/formDwr.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=236

DWR 237

- <script type="text/javascript" src="/dwr/interface/Validator.js"></script>

- <script type="text/javascript" src="/dwr/engine.js"></script>

10 <script type="text/javascript">

- function validateCustomerId(value) {

- Validator.validateCustomerId(value, customerIdCallback);

- }

-

15 function customerIdCallback(returnValue) {

- document.getElementById("customerIdError").innerHTML = returnValue;

- }

- </script>

- </head>

Doesn’t the method call on line 12 look like a normal Java invocation?

DWR makes it pretty natural to use Java code in JavaScript. But, why

do we pass in two arguments? Doesn’t the Java method take just one?

It does; the second argument is a callback reference. Because Ajax (and

DWR) is asynchronous, we have to provide a function to be invoked

when the response to our request is received. That callback function,

in this case customerIdCallback(), will be passed the returned content of

the response as a string.

Now all we need to do is add a hook that will invoke our validateCus-

tomerId() function at some point. Let’s invoke the function whenever

the customer ID input field loses focus; the HTML to wire this function-

ality together looks like this:

File 48 <input name="customerId" type="text"

onblur="validateCustomerId(this.value)" />

Figure 14.4, on the following page shows the finished product in action;

after the customer ID field loses focus, DWR will pass its value to our

Validator class on the server, which will return either null (which trans-

lates to an empty string in JavaScript) or an error message. In this case,

an error message is displayed because we didn’t enter an appropriate

customer ID number.

DWR Configuration Details

We mentioned earlier that you can configure DWR to expose only a

subset of the methods available in a class; let’s discuss how to do that.

Returning to dwr.xml, we exposed the Validator class thusly:

File 46 <create creator="new" javascript="Validator">

<param name="class" value="org.galbraiths.Validator"/>

</create>

http://media.pragprog.com/titles/ajax/code/ProxyAjax/formDwr.html
http://media.pragprog.com/titles/ajax/code/ProxyAjax/dwr.xml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=237

DWR 238

Figure 14.4: DWR Integrated with the Web Page

As should be clear by now, this definition causes all of Validator’s meth-

ods to be exposed. To refine the set of exposed methods, DWR gives

you two choices: exclude all methods by default and explicitly include

those methods you want exposed or the opposite—include all methods

except for those you explicitly exclude. Using either is quite simple:

File 45 Line 1 <create creator="new" javascript="Validator">

- <param name="class" value="org.galbraiths.Validator"/>

- <include method="validateCustomerId"/>

- </create>

5

- <create creator="new" javascript="Ledger">

- <param name="class" value="org.galbraiths.Ledger"/>

- <exclude method="revealSensitiveFinancialInfo"/>

- <auth method="cheatEmployeesOutOfMoney" role="boss"/>

10 </create>

You can’t mix and match your include/exclude strategy; thus, the pres-

ence of an <include> element on line 3 causes the include mechanism

to be used for Validator, just as <exclude> on line 8 causes the exclude

mechanism to be used for Ledger.

Line 9 illustrates another interesting DWR feature: integration with

JAAS. Because DWR is designed for use within a servlet container, it

can take advantage of the authentication services, specified by the Java

Authentication and Authorization Service (JAAS), that servlet contain-

ers provide. In this case, we specify that only those users who have

been authenticated and been granted the “boss” role can invoke the

method cheatEmployeesOutOfMoney().

http://media.pragprog.com/titles/ajax/code/ProxyAjax/dwrunhbox voidb@x kern z@ char `discretionary {-}{}{}includeunhbox voidb@x kern z@ char `discretionary {-}{}{}exclude.xml
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=238

DWR 239

Method Overloading

Java supports the useful notion of method overloading. This
feature allows you to define multiple methods with the same
name but different arguments, such as foo(String bar) and
foo(String bar, String baz).

JavaScript, however, does not support method overloading,
primarily because the arguments JavaScript passes to a func-
tion are variable in length. That is, you can pass a function
an unlimited number of arguments; those arguments defined
when you declare a function simply assign the passed argu-
ments to variables with those names:

function myFunction(foo) {

// writing foo above is a shortcut for

// writing this JavaScript code:

foo = arguments[0];

}

function callMyFunction() {

// I can pass as many arguments as I like

// to the functions I invoke

myFunction(1, 2, 3, 4, 5);

}

If you declare two functions with the same name in JavaScript,
the most recent definition will overwrite the previous definition.

This means when using DWR, you need to be especially careful
to avoid exposing overloaded methods. Because DWR’s con-
figuration file gives you no mechanism to specify the complete
signature of the methods you expose, the result is that DWR will
expose the first method it finds with the name you’ve specified.
Java reflection does not specify the order in which it discov-
ers methods, so with overloaded methods, you can’t predict
which method it will expose.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=239

DWR 240

Variable Scopes

When you expose a class in the dwr.xml configuration file, DWR will cre-

ate an instance of that class whenever the JavaScript proxy attempts

to interact with it. Actually, that’s not entirely true. When you expose

static methods, DWR will invoke static methods on the class itself with-

out bothering with instances. The first time DWR is used to invoke an

instance method, it will instantiate the class.

This raises some interesting questions:

• How does DWR instantiate the class?

• Once instantiated, what’s the life cycle of the instance?

Good questions; let’s address them.

DWR and Object Instantiation

DWR delegates the creation of a class to a creator object, and of course,

DWR can be extended with your own custom creators. Out of the box,

DWR ships with creators that directly instantiate objects, integrate with

Spring, and allow you to create objects using script code in the dwr.xml

configuration file.

The type of creator you use is defined in the dwr.xml file as the creator=

attribute of the <create> element:

File 46 <!DOCTYPE dwr PUBLIC

"-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN"

"http://www.getahead.ltd.uk/dwr/dwr10.dtd">

<dwr>

<allow>

<create creator="new" javascript="Validator">

<param name="class" value="org.galbraiths.Validator"/>

</create>

</allow>

</dwr>

In this code listing, the new creator is used, which directly instantiates

objects.

The DWR documentation does a good job of defining all the different

types of creators available, how to extend them, and so forth; we won’t

repeat that material here. See http://getahead.ltd.uk/dwr/server/dwrxml/creators

for all of those details.

http://media.pragprog.com/titles/ajax/code/ProxyAjax/dwr.xml
http://getahead.ltd.uk/dwr/server/dwrxml/creators
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=240

DWR 241

Object Life Cycles with DWR

As you probably expect, DWR integrates with the standard notion of

object life cycles in a web application: session, application, request, and

page scopes. You can specify the scope by adding a scope= attribute to

the <create> element:

<create creator="new" javascript="Validator" scope="session">

<param name="class" value="org.galbraiths.Validator"/>

<include method="validateCustomerId"/>

</create>

If you specify session, application, or request scope, DWR will search

for an instance in each of the objects controlling these scopes under a

fairly mangled key it creates. If it fails to find an instance, it will create

a new instance using the appropriate creator and place the instance in

the appropriate scope.

While you might be tempted to place an instance into one of these

scopes yourself for DWR to find or to access the instance that DWR

creates, that’s not a good idea. We’ve read the DWR source code and

could tell you the scheme DWR uses to generate the instance keys, but

we’d rather not tempt you.

However, DWR does provide two mechanisms for passing references

for various servlet objects (such as the HttpSession) to your code. First,

you can use uk.ltd.getahead.dwr.ExecutionContext, a DWR-specific class,

in your own code. ExecutionContext is a singleton that uses a ThreadLocal

variable to return the appropriate instances of the servlet objects, as in

the following:

HttpSession session = ExecutionContext.get().getSession();

The second mechanism is interesting. If you expose a method that has

any one of certain servlet API classes as a parameter, DWR’s JavaScript

proxy objects will ignore that argument and DWR will instead inject

the appropriate servlet API instance into the invocation. These classes

are: HttpServletRequest, HttpServletResponse, HttpSession, ServletConfig, and

ServletContext.

For more information on interacting with servlet objects with DWR, see

http://getahead.ltd.uk/dwr/server/javaapi.

http://getahead.ltd.uk/dwr/server/javaapi
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=241

DWR 242

Remoting Arbitrary Objects with DWR

We explained earlier that, out of the box, DWR is able to remote a lim-

ited set of Java types: primitive types and wrappers, String, Date (and

the java.sql Date subclasses), arrays, collections, BigNumber, and vari-

ous XML DOM formats (W3C DOM, DOM4J, JDOM, and XOM).

However, with a minor configuration tweak, DWR will happily remote

any JavaBean across the wire, creating an equivalent JavaScript object

with properties for each of the JavaBean getters and setters.

Up to now, this hasn’t been an issue because our Validator class simply

returned strings. Now, let us consider a new scenario with a method

that will return a custom type to JavaScript. Let’s start with a different

class:

File 49 package org.galbraiths;

import java.util.Date;

public class CustomType {

private String name;

private int number;

private Date date;

public CustomType() {

name = "John Doe";

number = 42;

date = new Date();

}

public CustomType retrieve() {

return new CustomType();

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public int getNumber() {

return number;

}

public void setNumber(int number) {

this.number = number;

}

http://media.pragprog.com/titles/ajax/code/ProxyAjax/src/org/galbraiths/CustomType.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=242

DWR 243

public Date getDate() {

return date;

}

public void setDate(Date date) {

this.date = date;

}

}

We expose the retrieve() method to DWR, which returns an instance of

CustomType. In order to permit DWR to convert the CustomType instance

to a JavaScript object, we’ll have to add a <converter> to the configu-

ration file:

File 44 Line 1 <!DOCTYPE dwr PUBLIC

- "-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN"

- "http://www.getahead.ltd.uk/dwr/dwr10.dtd">

- <dwr>

5 <allow>

- <create creator="new" javascript="Validator">

- <param name="class" value="org.galbraiths.Validator"/>

- </create>

-

10 <create creator="new" javascript="CustomType">

- <param name="class" value="org.galbraiths.CustomType"/>

- </create>

-

- <convert converter="bean" match="org.galbraiths.*"/>

15 </allow>

- </dwr>

Line 14 shows this new converter entry. The converter= attribute indi-

cates which converter mechanism will be used to convert the custom

type to JavaScript; in this case, we’ll use DWR’s built-in bean converter.

There are other built-in converters, but they’re all predefined for you—

you generally don’t need to worry about configuring them.

The match= attribute signifies which classes this converter is authorized

to convert. In this case, it’s anything in the org.galbraiths package.

Now that we’ve got DWR configured to remote this type, let’s create a

simple web page that demonstrate how easy it is to interact with this

object:

File 43 Line 1 <html>

- <head>

- <script type="text/javascript" src="/dwr/interface/CustomType.js"></script>

- <script type="text/javascript" src="/dwr/engine.js"></script>

5 <script type="text/javascript" src="/dwr/util.js"></script>

http://media.pragprog.com/titles/ajax/code/ProxyAjax/dwrunhbox voidb@x kern z@ char `discretionary {-}{}{}customType.xml
http://media.pragprog.com/titles/ajax/code/ProxyAjax/customType.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=243

DWR 244

- <script type="text/javascript">

- function getCustomType() {

- CustomType.retrieve(function(customType) {

- DWRUtil.setValue("name", customType.name);

10 DWRUtil.setValue("number", customType.number);

- DWRUtil.setValue("date", customType.date);

- });

- }

- </script>

15 </head>

- <body>

- <table>

- <tr>

- <td>Name:</td>

20 <td id="name"></td>

- </tr>

- <tr>

- <td>Number:</td>

- <td id="number"></td>

25 </tr>

- <tr>

- <td>Date:</td>

- <td id="date"></td>

- </tr>

30 </table>

- <button onclick="getCustomType()">Custom Type</button>

- </body>

- </html>

To save space, rather than define a callback function the traditional

way, on line 8 we use an anonymous function to make the DOM manip-

ulations to display the properties of the returned object.

Note also the new JavaScript we’re using on line 5. This lets us use

DWRUtil on line 9. Among other things, it has a handy setValue() func-

tion that will either use the value or innerHTML property, depending on

whether the element referenced by ID is an input field or not.

The resulting web page looks something like the rendering depicted in

Figure 14.5, on the next page.

Of course, you can create your own converters if you have custom

requirements for converting your objects into JavaScript. You can find

more information at http://getahead.ltd.uk/dwr/server/dwrxml/converters.

http://getahead.ltd.uk/dwr/server/dwrxml/converters
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=244

CONCLUSION 245

Figure 14.5: DWR Remoting a Custom Type

14.2 Conclusion

DWR is significant because it abstracts the underlying Ajax complex-

ity and hides it behind a facade that is almost indistinguishable from

direct Java object invocation. This makes the client-side code look

familiar and, more important, straightforward to the developers on your

team. DWR is the Ajax framework of choice for Spring development (see

http://getahead.ltd.uk/dwr/server/spring), and Spring is a rapidly growing

open-source alternative for building J2EE applications.

DWR is a wonderful starting point for Java web application developers

because it exposes the server-side logic in an intuitive way to the client-

side code. However, DWR currently offers little to no help in using the

returned data in interesting ways in the UI. It is strictly about remoting;

to achieve cool UI effects, you will need to write your own JavaScript

or utilize another JavaScript framework, such as Script.aculo.us. It

makes the data retrieval relatively simple, though, allowing your devel-

opers to focus their mental energy on the harder UI code.

http://getahead.ltd.uk/dwr/server/spring
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=245

Chapter 15

ASP.NET and Atlas
When we started writing this book, the idea was to cover two versions of

Ajax for .NET: the open-source Ajax.NET toolkit from Michael Schwarz

and the official Microsoft release for ASP.NET 2.0 called Atlas. While

we were writing the book, though, the Ajax.NET project has been dis-

continued as a stand-alone effort and has been consumed by the com-

mercial project called BorgWorX. We’ve tried hard to make sure that

everything we originally wrote about Ajax.NET is still accurate now

that it is BorgWorX, but we urge readers to check for themselves (at

http://www.borgworx.net).

ASP.NET is a complex web development platform. It easily rivals any-

thing to be had on the Java side, both in terms of complexity and

in terms of features. ASP.NET grew out Microsoft’s desire to make

developing web applications feel as much like developing Visual Basic

GUI applications as possible. To that end, ASP.NET is based around

a visual design environment, self-contained server-side controls with

HTML rendering capabilities, a custom state management solution,

and the idea of post back—HTML forms continuously posting back to a

server-side action as events are triggered on the GUI.

ASP.NET has long had Ajax-style interaction on certain components.

Because Microsoft essentially invented XMLHttpRequest in its MSXML

ActiveX libraries, it’s had access to the asynchronous callback feature

for a long time. ASP.NET has shipped with data and table controls that

use MSXML since before the term Ajax was even coined.

As the movement has grown, though, the need for a more generalized,

feature-rich, and, perhaps above all, extensible framework for doing

Ajax has grown alongside. We need a real toolkit, as opposed to just a

feature set for a couple of components. The first solution to hit the mar-

ket was Ajax.NET, an open-source framework out of Germany. Then,

http://www.borgworx.net

BORGWORX 247

Microsoft announced it would release an official product called Atlas.

We’ll take a brief look at each.

15.1 BorgWorX

BorgWorX is based on a remoting framework similar to DWR. It cre-

ates server-side functions and client-side proxies to them that can be

called from JavaScript. The client-side proxies transparently use XHR

to invoke a broker on the server whose job it is to fire the server-side

function, harvest the results, and return them as the XHR response.

To get this to work, you need the BorgWorX assembly available to your

project. This means installing the file ajax.dll in the \ref folder within

your project space and then adding it as a reference to the project.

Next, you need to configure a broker. The server-side broker is known

as Ajax.PageHandlerFactory. This class extends HttpHandler, the ASP.NET

base class that can be configured to receive requests targeted at specific

URLs. To install this particular HttpHandler, you need to modify your

project’s web.config file:

<configuration>

<system.web>

<httpHandlers>

<add verb="POST,GET" path="ajax/*.ashx"

type="Ajax.PageHandlerFactory, Ajax" />

</httpHandlers>

</system.web>

</configuration>

Note that the handler is configured to listen for requests whose URLa

ends in *.ashx. You will not create any URLs that utilize this extension;

they will be generated for you by the framework later.

After configuring the handler, you have to identify the method(s) that

you want to expose to your client side. The methods of any class can be

used, but typically you would use methods of the current page class.

Declaring a server-side method as Ajax accessible is simple; decorate it

with the [AjaxMethod] attribute:

[AjaxMethod]

public string get_city_and_state(string zip)

{

string results = "";

// look up zip code

return results;

}

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=247

BORGWORX 248

You have now told the framework that you expect this method to be

callable from JavaScript. What does it mean to be callable, though?

It means that your JavaScript code can directly call get_city_and_state()

and receive a string value as a result via an asynchronous callback to

the server.

The results are returned, unsurprisingly, using JSON (see Chapter 10,

JSON and JSON-RPC, on page 184). BorgWorX automatically trans-

lates many values into JSON data: integers, strings, doubles, booleans,

DateTime, DataSets, DataTables, and arrays. In addition, any class

that is designated as [Serialiazable] is a candidate. If your type isn’t

represented here, you can create a custom implementation of IAjaxOb-

jectConverter to hook into the serialization chain and convert arbitrary

types to JSON yourself.

The client-side JavaScript will parse the returned JSON as idiomatic

JavaScript notation to provide access to the features of the returned

value. If the value is a primitive type (integer, boolean, etc.), then

there is no real JSON serialization, just a direct value returned in the

response.

To create the client-side proxies for use by your JavaScript, you must

tell the ASP.NET page to include at least two JavaScript blocks. The

first is the core library of code that wraps the use of XHR, and the sec-

ond is the JavaScript that serves as the proxy to a given server type’s

data. Neither of these JavaScript blocks is a file, but is instead gener-

ated for you by the PageHandlerFactory you installed at the beginning of

this section. To create the JavaScript blocks, you have to tell BorgWorX

which types to worry about:

public class AddressPage : System.Web.UI.Page{

private void Page_Load(object sender, EventArgs e){

Ajax.Utility.RegisterTypeForAjax(typeof(AddressPage));

}

}

All this code does is inject links to the appropriate JavaScript blocks

into the rendered HTML page. The HTML would now contain:

<script language="javascript" src="ajax/common.ashx">

</script>

<script language="javascript" src="ajax/CRMApp.AddressPage,CRMApp.ashx">

</script>

Our PageHandlerFactory is configured to intercept any URLs ending in

.ashx. The handler then constructs and returns the JavaScript code that

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=248

ATLAS 249

proxies any methods of the target type marked with the [AjaxMethod]

attribute.

To use our new proxy, we simply make the method call and use it as

needed:

function retrieve_data() {

result = get_city_and_state(document.getElementById('zip').value);

results = result.split(' ,');

document.getElementById(' city').value = results[0];

document.getElementById(' state').value = results[1];

}

That’s it. This straightforward framework makes it simple to expose all

kinds of server-side functionality to the client, and with its extensible

type conversion feature, it is easy to return all kinds of complex data

to the client. This framework is pretty much the totality of Ajax.NET as

it existed as a stand-alone project. With the acquisition by BorgWorX,

the framework has been expanded to include a host of UI components

that utilize these underpinnings to update their own data. With these

components, you don’t even have to worry about writing the JavaScript;

they generate their own supporting client code, and the Ajax just hap-

pens for you. Check out the BorgWorX feature road map online1 for a

complete list of available components.

15.2 Atlas

Microsoft has, of course, seen the dawning of the Ajax movement and

has decided that it cannot afford to be left behind. Microsoft should

have had a leg up on everyone else in the marketplace on Ajax. They’ve

had two advantages for years: MXSML (and its XMLHTTP object, the pre-

cursor to XMLHttpRequest), and a custom extension of CSS for Internet

Explorer that allows you to associate behaviors with CSS classes or IDs.

These behaviors are just event bindings written as custom CSS syntax,

but they give you the ability to bind to events without using JavaScript

at all.

However, even with these advantages, Microsoft didn’t really under-

stand the power of what it had until the same time the rest of us did:

right about when Jesse James Garrett released his white paper and

Google released Google Maps as a beta. Microsoft has since been on

fire to make Ajax part of its ASP.NET 2.0 plans.

1http://www.jobline.cc/BorgWorX/default.aspx/BorgWorX/RoadMap.html

http://www.jobline.cc/BorgWorX/default.aspx/BorgWorX/RoadMap.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=249

ATLAS 250

Our dear readers, we have to be honest with you. We aren’t big fans of

the resulting framework. Our fervent hope is that when finally realized,

most of what we’re about to show you is hidden beneath Visual Studio

wizardry and you don’t know it is there. Our fear is that developers will

have to code against this framework, and it will simply sour them on

the taste of Web 2.0.

Handlers and Modules

As with BorgWorX, Atlas requires you to install server-side handlers to

intercept certain URLs in order to treat them as Ajax calls. For Atlas,

you need an HttpHandler to intercept the calls to designated server-

side functions and a HttpModule to deal with Ajax call state. Here is

web.config with the registered components:

<system.web>

<httpHandlers>

<remove verb="*"

path="*.asmx"/>

<add verb="*"

path="*.asmx"

type="Microsoft.Web.Services.ScriptHandlerFactory"

validate="false"/>

</httpHandlers>

<httpModules>

<add name="AtlasModule"

type="Microsoft.Web.Services.ScriptModule" />

</httpModules>

</system.web>

Note that the default strategy for enabling server-side calls is to over-

ride the default handling of Microsoft’s web services format, ..asmx.

By removing the default handling of the web services and replacing

it with the ScriptHandlerFactory, it enables the web services to interact

with JavaScript on the client.

To be able to call the web service from JavaScript on your page, you

have to import a JavaScript block that exposes the proxy objects. To

do this, you need to use a custom HTML tag library provided for you by

the Atlas project. To import it, add the following to web.config:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=250

ATLAS 251

<pages>

<controls>

<add namespace="Microsoft.Web.UI"

assembly="Microsoft.Web.Atlas"

tagPrefix="atlas" />

</controls>

</pages>

Next, create the web service class that has the method you want to

export:

public class GetCRMData : System.Web.Services.WebService

{

[WebMethod]

public string GetCityState(string zip)

{

// look up city and state

return results;

}

}

Where you want to asynchronously call this service in the .aspx page,

use the new tag library’s custom tags to import the JavaScript proxy:

<atlas:ScriptManager ID="scriptManager"

runat="server"

EnableScriptComponents="false" >

<Services>

<atlas:ServiceReference Path="GetCRMData.asmx" />

</Services>

</atlas:ScriptManager>

Finally, call the proxy in JavaScript and utilize the returned results.

The data passed back from the server is just JSON. Yes, you read that

correctly. Microsoft uses JSON as the wire format for data transmis-

sion in Atlas. Why? Isn’t Microsoft a devotee of XML? Yes. The decision

is even stranger when you look at the implementation suggestions for

Atlas (as re-created here). Microsoft would have you remove the stan-

dard handling of [WebMethod]s (which normally emit and consume XML

in the form of SOAP) and transparently replace that with JSON.

Don’t get us wrong; we love that Microsoft has chosen to go with JSON

for its data transport layer. It means Microsoft has chosen to run with

an emerging standard built by the community rather than come up

with a unique solution. Kudos, guys! We’re just a little confused by the

conflation of standard [WebMethod]s and JSON emission.

The good news here is that Atlas also provides a way to customize

the serialization of server-side objects and data into the JSON output

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=251

ATLAS 252

M$

Many developers in the open-source community are mad
because Microsoft implemented a $() function as a shortcut
for document.getElementById(), just like Prototype. While we can
understand being a little miffed because Microsoft clearly lifted
the syntax from Prototype, we’re frankly glad of it. Can you
imagine really trying to remember in which context you had
to use $(’zip’) and where you had to use %(’zip’)? We’d rather
have a standard and let Sam Stephenson take personal joy in
knowing that he set a standard Microsoft had to follow.

format. You can create custom subclasses of JavaScriptObjectSerializer

and JavaScriptObjectDeserializer to perform custom serialization on your

types.

The proxy methods expose the parameters of the server-side method

and provide two more parameters at the end of the list: a callback

function for when the call returns and a second for when the call times

out. The registered completion handler takes a parameter called result

that is just the harvested response from the XHR request.

function getCityState() {

zip = $(' zip').value;

getData = CRMApp.GetCRMData.GetCityState(zip, ShowData, ShowTimeOut);

}

function ShowData(result) {

results = result.split(' ,');

$(' city').value = results[0];

$(' state').value = results[1];

}

function ShowTimeOut(result) {

alert("Your method timed out!");

}

Note the use of the CRMApp.GetCRMData.GetCityState namespace in the

getCityState() function. This leads us to our next topic, JavaScript

“improvements.”

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=252

ATLAS 253

JavaScript “Improvements”

If you visit the Atlas tutorial pages on MSDN, you will be treated to

an example of what English professors call unintended irony. Microsoft

has introduced a client-side library to change some of how we write

JavaScript. The heading for the section is Making JavaScript Easier.

We’ll let our readers be the judge of the accuracy of the statement.

The three new features that the libraries included with Atlas add to

JavaScript are namespaces, inheritance, and the ability to define, then

implement, and finally consume interfaces. This sounds eminently rea-

sonable until you realize that JavaScript already has a notion of inheri-

tance, one that matches its definition as a typeless object-oriented lan-

guage, and that one does not need an interface in a dynamically typed

language. Regardless of these two facts, here are the JavaScript sam-

ples posted on the ASP.NET Atlas page demonstrating how JavaScript

is made easier.

This is their suggested improvement to allow for namespaces and inher-

itance:

// namespaces

Type.registerNamespace("Demo");

Demo.Person = function(firstName, lastName, alias)

{

var _firstName = firstName;

var _lastName = lastName;

this.getFirstName = function() {

return _firstName;

}

...

}

Type.registerClass(' Demo.Person' , null, Web.IDisposable);

// inheritance

Type.registerNamespace("Demo");

Demo.Person = function(firstName, lastName, emailAddress) {

var _firstName = firstName;

var _lastName = lastName;

var _emailAddress = emailAddress;

this.getFirstName = function() {

return _firstName;

}

...

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=253

ATLAS 254

this.dispose = function() {

alert(' bye ' + this.getName());

}

}

Type.registerClass(' Demo.Person' , null, Web.IDisposable);

...

Demo.Person.prototype.toString = function() {

return this.getName() + ' (' + this.getEmailAddress() + ')' ;

}

Demo.Employee = function(firstName, lastName, emailAddress, team, title) {

Demo.Employee.initializeBase(this, [firstName, lastName, emailAddress]);

var _team = team;

var _title = title;

this.getTeam = function() {

return _team;

}

this.setTeam = function(team) {

_team = team;

}

...

}

Type.registerClass(' Demo.Employee' , Demo.Person);

Demo.Employee.prototype.toString = function() {

return Demo.Employee.callBaseMethod(this, ' toString') +

' \r\n' + this.getTitle() + ' \r\n' + this.getTeam();

}

This example pretty cleanly demonstrates turning JavaScript into C#

(or Java). Atlas introduces the Type object which allows you to specify

classes and their superclasses. Atlas then makes sure that functions

from the bases are inherited by the subclasses. Notice the use of the

callBaseMethod() call at the end of that code sample; this is the explicit

way that a subclass can make use of its base class functionality.

JavaScript is actually built around the concept of “prototype” inheri-

tance, meaning that an object essentially copies the functionality of its

prototype at the time of implementation. To extend a class, one need

only append new functionality to the prototype before instantiating the

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=254

ATLAS 255

new class based on it. The downside is that it takes effort to extend an

inheritance chain more than one generation; it is not impossible, but

it requires work on the part of the programmer. The Atlas code simply

requires you to register your classes through their framework as above.

But now you have a completely new way to manage your class hierar-

chies that actually competes against the default behavior of JavaScript

(which is the same complaint registered against the inheritance models

built into Prototype and MochiKit, as well).

Next, and perhaps most puzzling, is the introduction of interfaces.

// interfaces

Type.registerNamespace("Demo.Animals");

Demo.Animals.IPet = function() {

this.getFriendlyName = Function.abstractMethod;

}

Type.registerInterface(' Demo.Animals.IPet');

Demo.Animals.Animal = function(name) {

var _name = name;

this.getName = function() {

return _name;

}

}

Type.registerAbstractClass('Demo.Animals.Animal');

Demo.Animals.Animal.prototype.toStringCustom = function() {

return this.getName();

}

Demo.Animals.Animal.prototype.speak = Function.abstractMethod;

Demo.Animals.Pet = function(name, friendlyName) {

Demo.Animals.Pet.initializeBase(this, [name]);

var _friendlyName = friendlyName;

this.getFriendlyName = function() {

return _friendlyName;

}

}

Type.registerAbstractClass('Demo.Animals.Pet' , Demo.Animals.Animal,

Demo.Animals.IPet);

Demo.Animals.Cat = function(friendlyName) {

Demo.Animals.Cat.initializeBase(this, [' Cat' , friendlyName]);

}

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=255

ATLAS 256

Type.registerClass(' Demo.Animals.Cat' , Demo.Animals.Pet);

Demo.Animals.Cat.prototype.speak = function() {

alert(' meow');

}

Demo.Animals.Cat.prototype.toStringCustom = function() {

return ' Pet ' + Demo.Animals.Cat.callBaseMethod(this, ' toStringCustom');

}

Demo.Animals.Felix = function() {

Demo.Animals.Felix.initializeBase(this, [' Felix']);

}

Type.registerClass(' Demo.Animals.Felix' , Demo.Animals.Cat);

Demo.Animals.Felix.prototype.toStringCustom = function() {

return Demo.Animals.Felix.callBaseMethod(this, ' toStringCustom') +

' ... its Felix!' ;

}

Demo.Animals.Dog = function(friendlyName) {

Demo.Animals.Dog.initializeBase(this, [' Dog' , friendlyName]);

}

Type.registerClass(' Demo.Animals.Dog' , Demo.Animals.Pet);

Demo.Animals.Dog.prototype.speak = function() {

alert(' woof');

}

Demo.Animals.Tiger = function() {

Demo.Animals.Tiger.initializeBase(this, [' Tiger']);

}

Type.registerClass(' Demo.Animals.Tiger' , Demo.Animals.Animal);

Demo.Animals.Tiger.prototype.speak = function() {

alert(' grrr');

}

We don’t mean to beat a dead Cat here, but there is essentially no need

whatsoever for an interface in a dynamically typed language. Interfaces

are lightweight constructs that allow compilers to know about the pub-

lished API of a type without the actual runtime executable code being

required. They are tools for circumventing the restrictions of strong

typing; they allow the compiler to bind to the definitions of the method

of a class but allow the programmer to substitute different images of

the code at runtime.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=256

ATLAS 257

In a dynamically typed language, you simply implement the methods

that you want to expose on the types you create. Called duck typing, it

means that you don’t have to make promises you don’t want to keep. In

fact, it means you don’t have to make promises at all. You create a type

and attach behaviors to it that make sense for that type. You can then

pass instances of it to any methods that want to use those features.

Since there is no compiler to whose needs you must attend, there is no

compelling reason to predefine the expected behavior of a type.

While the previous code may supply ample benefits to the underlying

framework, you would be hard-pressed to find any programmers work-

ing with JavaScript who would consider writing it this way. It flies in

the face of the purpose of JavaScript and essentially feels like a contin-

uation of the decade-long argument that scripting languages aren’t real

languages. It does not make JavaScript any clearer, more concise, or

even more powerful (except possibly in the case of namespaces). This

brings us back to a point we made at the beginning of this section: if

the previous JavaScript example is simply the emitted artifact of some

code generator in your toolkit, then it is reasonable. But it is burden-

some if viewed as a necessary syntax extension to idiomatic JavaScript

for programmers who must work directly in the language.

Components

The last major piece of Atlas is the suite of components that render

controls automatically into the HTML document and rig up all the Ajax

callbacks to make those components completely self-contained. This is

where Atlas shines, because the integration with Visual Studio makes

the components a compelling feature for developers who are used to

using visual tools to create web pages.

As we write this, the component library is still being scoped out and

developed. The building blocks are in place: the Atlas development kit

ships with three major components you can use to build on:

• UpdatePanel: Essentially renders a <div> with a collection of

server-side event callbacks autowired and to which you can assign

one or more triggers (the Atlas term for a JavaScript event binding)

• ScriptManager: Lets you specify the external JavaScript files to

include in your page (including both default, autogenerated files

and your own custom files) as well as specify the proxies you want

to use in this page (contained in a collection called Services)

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=257

CONCLUSION 258

• TimerControl: Does what its name says...establishes a JavaScript

single-shot countdown or interval timer to trigger events. Those

events can be client-side effects or server callbacks.

On top of the components themselves, there are also what Atlas calls

control extenders. These are essentially Ajax behaviors that can be

attached to any existing ASP.NET controls to supply callbacks on trig-

ger events. They include autocomplete and drag-and-drop behaviors

that can be attached to the properties of various server controls.

As Atlas grows and matures, we can expect these building blocks to

grow into a complete suite of self-contained Ajax components that will

simply require the user to drop them on their ASP.NET form and check

a few boxes in the properties list. For now, though, you have to use

these pieces to build up your control library yourself.

This collection of components will make or break Atlas. ASP.NET devel-

opers will use the Atlas framework in droves, regardless of complexity

of the client-side JavaScript, as long as that complexity is completely

hidden beneath the toolset. So watch the emerging documentation to

see both how compelling the components really are and how well they

hide the underlying implementation details.

15.3 Conclusion

We really like what we see from both the BorgWorX project and from

Microsoft’s Atlas framework in its support for the visual web developers

who make up the bulk of the ASP.NET web development community.

The component suites being created, and the strategies they use for

providing self-contained, highly dynamic behavior, will help bring Ajax

to the mainstream corporate web application development teams that

are using the .NET platform. We also think that the remoting schemes,

particularly BorgWorX’s straightforward JSON framework with special-

ized callback methods on the server, are both simple and robust enough

for most use cases.

We are somewhat disappointed with what we see as overengineering in

the Atlas framework. From the decision to overload the expected behav-

ior of web service methods to mostly needless additions to JavaScript,

we see a lot of complexity for its own sake and hope, as the platform

matures, that some of that is reduced or eliminated.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=258

Chapter 16

Ajax in the Future and Beyond
So far in this book, we’ve talked about what people believe Ajax is today.

The frameworks that we’ve covered have been built upon widely avail-

able mechanisms and platforms, largely JavaScript, XML, and XHR.

These tools are available on every modern browser, thereby making

them idea carriers for this new technology movement.

This chapter covers what’s coming next. Here, we’ll examine new stan-

dards and specs that are written and exist and will shape the future of

web applications but might not yet be widely available on all platforms.

We’ll look at new tools that largely break down into two camps: tools

for working more efficiently with structured data (and communicating

it more efficiently between tiers) and tools for advanced UI effects and

control.

On the data side, we’ll take a peek at E4X, a strategy for giving devel-

opers direct access to structured data from within JavaScript itself. On

the UI side, we’ll look at the <canvas> tag and Scalable Vector Graph-

ics (SVG). We’ll see what they provide for our UI, and where each is

available today.

16.1 Data Manipulation

So far, we’ve talked about two general strategies for moving data from

the server down to the client. (We’ve really just used the standard HTML

post mechanism, or the query string for GET requests, for pushing data

up from the client). We’ve seen examples of sending custom-formatted

data (usually a string of comma-separated values) as well as using the

more formal, but flexible, XML notation.

DATA MANIPULATION 260

In Chapter 10, JSON and JSON-RPC, on page 184, we examined JSON

and JSON-RPC, a pure JavaScript notation for sending and manipulat-

ing structured data. This is great for teams that eschew sending com-

plex XML packets down to the client tier because the tools for manip-

ulating that data are complex and cumbersome. Using DOM parsing

and navigation tools, XPath or XSLT in JavaScript is certainly possible

but not exactly straightforward and far from easy. Instead, they stick

with JSON and its inherent speed and simplicity.

However, the capabilities inherent in XML for data transfer (hierarchical

data, ordered access, namespaces, etc.) are too powerful to be ignored

for larger applications that have to shove a lot of data down the pipe.

What we need are syntactically minimal tools for accessing and manip-

ulating this kind of data, something that almost looks like the rest

of JavaScript and that doesn’t involve us jumping through too many

hoops. Enter E4X.

E4X

What if your server-side framework is already adept at spitting out

XML? After all, XML has dominated the data transfer space since the

late ’90s. Everything seems to have the ability to serialize to XML, and

XML parsing libraries are ubiquitous. XML also has advanced features,

such as namespaces that make it a more robust data representation

format than, for instance, JSON.

What is needed is a way to interact with XML as though it were a normal

JavaScript object, instead of as a DOM document through a custom

library. E4X, originally conceptualized by BEA and standardized as

ECMA-357,1 is an extension to JavaScript that supports a more natural

way to use XML in script.

Imagine, then, that your server is returning name and address data as

XML:

<addresses>

<address>

<name>DOE, JANE</name>

<street>111 Appian Way</street>

<city>Atlanta</city>

<state>GA</state>

<zip>11111</zip>

</address>

1http://www.ecma-international.org/publications/standards/Ecma-357.htm

http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=260

DATA MANIPULATION 261

<address>

<name>DOE, JOHN</name>

<street>222 Something Street</street>

<city>San Diego</city>

<state>CA</state>

<zip>22222</zip>

</address>

<address>

<name>MCKENZIE, DOUG</name>

<street>333 Maple Leaf Avenue</street>

<city>Toronto</city>

<state>ON</state>

<zip>L4Z 1X2</zip>

</address>

</addresses>

Instead of loading it up through a parser, using E4X, we can simply

assign this to a JavaScript variable and begin navigating the document

using the E4X notation:

var xml = new XML(xhr.responseText);

var num_addresses = xml.address.length(); // == 3

for(i=0; i < xml.address.length(); i++)

{

new Insertion.Bottom(' names' , xml.address[i].name);

}

// alternatively, use .. notation to collect

// just the <name> elements

var names = xml..name;

for(i=0; i < names.length(); i++)

{

new Insertion.Bottom(' names' , names[i]);

}

E4X essentially does for XML what JSON does for JavaScript data

structures: parses the data and creates a series of nested JavaScript

objects whose property names match the names of the data structure’s

element, providing direct access to the underlying values. E4X has the

extra capability of collecting subsets of data based on element name,

through the .. notation we saw previously. Its usage is essentially iden-

tical to XPath’s //, meaning it finds all elements of that name at any

depth in the hierarchy and creates a list out of them.

XML has another distinction over JSON (and structures like it). In

addition to nesting data, XML allows you to use element attributes as

another vector of data storage. Attributes, you’ll recall, are unordered

lists of data associated with a single element, whereas nested elements

are ordered. Let’s modify our previously returned data to include some

attributes:

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=261

DATA MANIPULATION 262

<addresses>

<address id="1" country="US">

<name>DOE, JANE</name>

<street>111 Appian Way</street>

<city>Atlanta</city>

<state>GA</state>

<zip>11111</zip>

</address>

<address id="2" country="US">

<name>DOE, JOHN</name>

<street>222 Something Street</street>

<city>San Diego</city>

<state>CA</state>

<zip>22222</zip>

</address>

<address id="3" country="Canada">

<name>MCKENZIE, DOUG</name>

<street>333 Maple Leaf Avenue</street>

<city>Toronto</city>

<state>ON</state>

<zip>L4Z 1X2</zip>

</address>

</addresses>

We access attributes using the @ notation in our JavaScript:

var xml = new XML(xhr.responseText);

for(i=0;i<xml.address.length();i++)

{

if(xml.address[i].@country == ' US')

{

// treat as a US state

}

else

{

// treat as Canadian province.

}

}

You can likewise grab the entire list of attributes from any single ele-

ment using the @* notation, as in xml.address[0].@*.

E4X isn’t only about reading data. You can use it to add and edit data,

as well. Editing is simple: just set the value of a property to a new

value, and that’s it. Adding is also extremely easy:

var xml = new XML(xhr.responseText);

xml.address += <address id="4" country="UK">

<name>WITHERSPOON, NIGEL</name>

<street>333 Trafalgar Square</street>...

</address>

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=262

UI MANIPULATION 263

On top of all that, E4X offers a builder strategy for constructing XML

documents. Using dynamic properties (the ability to refer to a nonexis-

tent property of an object without generating an exception), E4X allows

you to create this addresses list like so:

var xml = <addresses/>;

xml.address[0].@id = 1;

xml.address[0].@country = "US";

xml.address[0].name = "DOE, JANE";

// ...

xml.address[1].@id = 2;

// ...

xml.address[2].zip = "L4X 2Z1";

The E4X specification also includes support for namespaces and qual-

ified names, as you would expect any XML library to do. In short, you

get the full expressive power of XML for data transport but a direct

and not-too-verbose syntax for reading, editing, and writing XML data

inside your JavaScript.

We see E4X as the perfect storm of XML and client-side scripting. So

many server-side frameworks are already spitting XML out of all their

sockets that it will be easier in the long run to start consuming it using

E4X than to change those servers to emit the customized JSON syntax.

JSON is still faster than E4X because XML parsing will be slower overall

than evaluating JSON, but the benefits of consuming standard XML

cannot be ignored.

16.2 UI Manipulation

In this book, we’ve looked at how to transfer data from the server to the

client. The other half of the equation is: what do we do with it once it

arrives? Looking at the Ajax techniques we’ve covered in this book so

far, the options would appear to be as follows:

• Pull values from the data, and assign them into form fields.

• Create or append new chunks of HTML inside the DOM.

• Apply CSS-based effects to pieces of the DOM.

Without being an absolutely amazing CSS and DOM guru, it would be

difficult if not impossible to use incoming data to draw interesting pic-

tures. Images tend to have to be generated on the server and imported

through the old standby tag. Charts, graphs, icons, and images

of all types need to exist on the server for import into the UI.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=263

UI MANIPULATION 264

But this is Ajax! This is the world where we suck data asynchronously

down to the client! This is where the client side is in charge of the view!

Surely, there must be a way around this. Of course there is. Several

technologies exist today that let you consume raw data and turn it into

graphical representations on the client side. You can do it (and have

been able to for years now) with both Java applets and Flash movies.

Both of these technologies can create graphics live in the browser; both,

however, require an external browser plug-in to work. We’ve talked

about Flash elsewhere in this book, and won’t rehash that now except

to say that just about everything we said about Flash applies to Java

applets as well (except the part about most Flash being pretty).

It would be interesting to have native browser features that let us create

graphics on the client tier. There are two emerging strategies for allow-

ing this: the <canvas> element and Scalable Vector Graphics (SVG).

Canvas

Apple originally released the nonstandard <canvas> tag as part of the

WebKit package for Safari. Since then, it has been rolled into a rec-

ommendation by the Web Hypertext Application Technology Working

Group (WHATWG, http://www.whatwg.org) and implemented in Mozilla,

Firefox and Opera, with third-party support for the tag in IE.

To quote the WHATWG specification, <canvas> is “a resolution-dep-

endent bitmap canvas, which can be used for rendering graphs, game

graphics, or other visual images on the fly.” Its history is controversial,

to say the least, because it competes with the already-standardized

SVG specification (which we’ll look at in a minute) and because it lacks

certain key features. The one most often cited is that artifacts rendered

inside a <canvas> cannot be manipulated or even identified from script

once rendered; they are extra-DOM artifacts.

Regardless, the <canvas> tag gives developers a place to draw, and a

syntax for drawing, entirely client-side graphics. Again, let’s go to an

example. You’ve got a server that returns data about how different peo-

ple answer a given survey question, broken down by party affiliation.

Here’s the data, rendered as XML by our server:

<percs>

<perc id="democrats">.44</perc>

<perc id="republicans">.46</perc>

<perc id="independents">.08</perc>

</percs>

http://www.whatwg.org
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=264

UI MANIPULATION 265

We would capture this value as the result of an XHR callback, parse it

into a local variable, and pass that into a function that could draw the

results. Before we can draw it, though, there has to be a target to draw

into. This would be an instance of the <canvas> tag. Here’s an HTML

page with canvas ready to go:

<html>

<head>

<!-- we' ll fill this in in a sec -->

</head>

<body>

<canvas id="canvas" width="300" height="300"></canvas>

</body>

</html>

When using <canvas>, you are urged to fill in the element itself with

the alternate data for display by browsers that do not support the tag.

If the browser doesn’t support the tag, whatever exists between the

opening and closing tags will be rendered instead, kind of like the alt

attribute on .

Next, we’ll write a draw() function that will take our returned data and

draw a quick graph into the <canvas>. We’ll feed it the XML as an

E4X variable and use E4X’s matching syntax to pull out individual val-

ues. To draw on a <canvas>, you have to retrieve a drawing context.

The standard context provided is the 2d context, for drawing simple 2d

bitmaps. Individual vendors are allowed to supply their own, custom

contexts using vendor-specific prefixes (such as moz-3d). We’ll use the

2d context to draw a simple bar graph.

We’ll simply create a bar for each of the three percentages, in differ-

ent colors, based on the geometry of the <canvas>. Since it is 300px

tall, we need to apply each percentage to 300 to get the height of the

bar. We’ll use the fillRect() method of the context to create the bar. This

method takes four parameters: X coordinate of the first vertex, Y coor-

dinate of the first vertex, width, and height. Before calling fillRect() we

have to tell the <canvas> how to fill in the rectangle, so we first call

fillStyle():

function draw(vals) {

var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");

var dem = vals.perc.(@id=="democrats");

var rep = vals.perc.(@id=="republicans");

var ind = vals.perc.(@id=="independents");

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=265

UI MANIPULATION 266

Figure 16.1: Using canvas tag to draw graphs

ctx.fillStyle = "rgb(0,0,200)";

ctx.fillRect (10, 300-(300*dem), 20, 300*dem);

ctx.fillStyle = "rgb(200,0,0)";

ctx.fillRect(40, 300-(300*rep), 20, 300*rep);

ctx.fillStyle = "rgb(0,200,0)";

ctx.fillRect(70, 300-(300*ind), 20, 300*ind);

ctx.fillStyle = "rgb(0,0,0)";

// draw black lines down left and along bottom for axes

ctx.fillRect(0,0,1,300);

ctx.fillRect(0,299,300,1);

}

Figure 16.1 show the resulting page rendered in Firefox 1.5 on OS X.

Obviously, you can do considerably more complex types of image ren-

dering in the <canvas>. You can draw elliptical objects, draw areas

using lines and curves, carve sections using object intersections, pretty

much anything you can do in any other bitmap-rendering technology.

In addition, you can use live transforms, zooming, alpha transparency,

and animations to create games, windowing frameworks, etc.

The power of canvas to revolutionize web application development is

not yet fully understood, but gradually the revelation is dawning. We

can’t point you to any websites that put canvas to any particularly

interesting business use. But we can discuss a few demos on the Web

that showcase some of what’s possible.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=266

UI MANIPULATION 267

Figure 16.2: Now you can paint on the Web!

Canvas Demos

Rafael Robayna has put together the painting program shown in Fig-

ure 16.2 using canvas. Canvas Painter2 allows you to use two different

brushes and a few basic shapes to draw images. It also records the

drawing process, letting you play back your drawing session.

What’s interesting is how much (or rather, how little) code is behind the

Canvas Painter demo. All of the functionality you see in the demo is

provided by 726 lines of easy-to-understand, well-formatted JavaScript

code (including whitespace), plus some boilerplate HTML/CSS. You

might also find it interesting to know that the JavaScript that responds

to user input to draw shapes, lines, etc., is implemented in only 185

lines; the remainder is concerned with drawing the various widgets

(e.g., the color chooser on the right) and for recording what you draw.

If we offered an award for most visually twisted canvas demo in the

fewest lines of code, it would probably go to Anne van Kesteren. Anne

implemented what is probably a famous drawing in canvas, as shown

in Figure 16.3, on the following page. When you look at this shape

online,3 it feels like the colors are shifting gradually—but they aren’t.

Neat.

The entirety of Anne’s demo is as follows:

2http://caimansys.com/painter
3http://annevankesteren.nl/test/html/canvas/demo/002

http://caimansys.com/painter
http://annevankesteren.nl/test/html/canvas/demo/002
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=267

UI MANIPULATION 268

Figure 16.3: Are those colors shifting?

<!DOCTYPE html>

<title>Canvas demo: with beginPath() and closePath()</title>

<p>Speed:</p>

<canvas width="300" height="300">Your browser does not support canvas.</canvas>

<script>

function drawStuff() {

var phi = 1.61803399;

var canvas = document.getElementsByTagName("canvas")[0];

if(canvas.getContext){

var ctx = canvas.getContext("2d");

ctx.save();

ctx.translate(canvas.width / 2.0, canvas.height / 2.0);

var i = 0;

var then = new Date();

for (var i = 0; i < 300; i++){

var theta = (i * phi * Math.PI * 0.05);

var r = 0.4 * i;

var xc = r * Math.cos(theta);

var yc = r * Math.sin(theta);

var rho = (i / 150.0) * Math.PI;

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=268

UI MANIPULATION 269

var alpha = (i + 50) / 700;

var red = Math.floor(192.0 + (63.0 * Math.sin(rho)));

var green = Math.floor(192.0 + (63.0 * Math.cos(rho)));

var blue = Math.floor(Math.sqrt(red));

ctx.beginPath();

ctx.fillStyle = "rgba(" + red + ", " + green + ", " +

blue + ", " + (1.0 - alpha) + ")";

ctx.arc(xc, yc, alpha * 40.0, 0, 2 * Math.PI, 0);

ctx.fill();

ctx.arc(xc, yc, alpha * 40.0, 0, 2 * Math.PI, 0);

ctx.strokeStyle = "rgba(0, 0, 0, " + alpha + ")";

ctx.stroke();

ctx.closePath();

}

var now = new Date();

document.getElementsByTagName('p')[0].textContent += " "+(now-then)+"ms";

ctx.restore();

}

}

drawStuff();

</script>

The final demo we want to show you foreshadows the games that will

eventually arrive using canvas. It’s an implementation of a 3D shooter

engine (without the shooting) in canvas, as shown in Figure 16.4, on

the next page, Benjamin Joffe, as mentioned in the figure, is attempting

a port of Doom to JavaScript/canvas (we wish him luck).

You should visit the demo4 and check out how smooth the animation

is as you use the keyboard to move around and jump. While this demo

is just a little toy, our bet is that in three to four years, we’re going to

see some very impressive games of this genre emerge.

A simple painting program, a random shape, and the beginnings of a 3D

shooter game; they are not much on the surface, but these represent a

new evolutionary path that will lead us to an entirely new genre of web

applications that are far more complex and visually impressive than

anything we’ve seen before—and Ajax will power those applications,

feeding them the data they need to render the interface.

IE Holds Back the Web, Yet Again

The biggest drawback to <canvas> is the lack of support in Internet

Explorer. With a dominant market share, IE is the limbo bar for most

4http://www.abrahamjoffe.com.au/ben/canvascape/

http://www.abrahamjoffe.com.au/ben/canvascape/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=269

UI MANIPULATION 270

Figure 16.4: Where are the monsters?

corporate applications. If an application doesn’t work in IE, it can’t

be used, so even though it is dead simple to draw complex charts and

graphs completely on the client side using the <canvas> tag in Mozilla,

Firefox, Safari, and Opera, the lack of IE support will make it hard

for <canvas> to become mainstream. There are interesting projects at

work to make something for IE that works (see Emil Eklund’s work,5

which creates a tag that sits on top of IE’s VML support), but we think

Microsoft needs to go ahead and implement this one so everybody can

join the party.

5http://me.eae.net/archive/2005/12/29/canvas-in-ie/

http://me.eae.net/archive/2005/12/29/canvas-in-ie/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=270

UI MANIPULATION 271

SVG

That brings us to SVG. SVG has all the benefits of <canvas>: it is a

client-rendered image technology that can be scripted in the browser

for animations. It has the same major drawback as <canvas>, too, in

that it has no native support in Internet Explorer. (IE supports an older

specification called VML, as we saw in the previous section). But SVG

has two major distinctions:

• SVG is XML. SVG images are just valid XML snippets, with all the

inherent goodness (and badness) that implies.

• SVG can be embedded directly in a page (in XHTML-conformant

browsers) or linked through a variety of elements like <object> or

<embed>.

A third major distinction isn’t as much about the SVG technology itself

as it is about browsers. Some browsers natively support SVG, just like

<canvas>. These browsers are Firefox 1.5, Safari (latest builds), and

Camino. For other browsers, notably IE, there is not much concrete

information available about plans to add native SVG support. However,

you need not worry: Adobe has released an IE-compatible SVG viewer

plug-in that does the trick (http://www.adobe.com/svg/main.html). This

makes SVG a reasonable, cross-browser rendering option today.

Let’s revisit at our graphic example, this time using embedded SVG

instead of <canvas>. Remember, for this to work, your browser must

support rendering XHTML. (We rendered using Firefox 1.5.) First, we

have to define our page as XHTML by adding a namespace to the

<HTML> tag:

<html xmlns="http://www.w3.org/1999/xhtml">

</html>

Next, let’s create the basis of our SVG graph. By default, it will render

the x and y axes and three bars, one for each of our data points. We’re

going to set the bars to a height of 0 for now, since we want to fill

the data in from the results of an Ajax call later. Also, we are using

a 300x300 space for the chart, so all calculations are based on the

upper-left coordinate being (0,0) and not wanting to exceed (300,300).

<div id="chart">

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

version="1.1" baseProfile="full">

<g fill-opacity="0.7" stroke="black" stroke-width="0.1cm">

http://www.adobe.com/svg/main.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=271

UI MANIPULATION 272

Figure 16.5: Empty SVG chart.

<rect id="yaxis" x="0" y="0" width="1" height="300"

fill="black"/>

<rect id="xaxis" x="0" y="300" width="300" height="1"

fill="black"/>

<rect id="dem" x="10" y="10" width="20" height="0"

fill="blue" stroke="blue"/>

<rect id="rep" x="40" y="10" width="20" height="0"

fill="red" stroke="red"/>

<rect id="ind" x="70" y="10" width="20" height="0"

fill="green" stroke="green"/>

</g>

</svg>

</div>

Figure 16.5 , shows the rendering of this empty chart.

Since the embedded SVG graphic is just another part of the XHTML

document, we can write JavaScript that interacts directly with any

named element, just like with HTML. So, let’s write a function that

takes our three data points and adjusts the y coordinate and height

of the three bars based on the data. We are using the old DOM-style

document.getElementById(); method, although if you are using Prototype,

you could also use $().

<script type="text/javascript">

function change_chart(dem, rep, ind) {

var demr = document.getElementById(' dem');

var repr = document.getElementById(' rep');

var indr = document.getElementById(' ind');

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=272

UI MANIPULATION 273

Figure 16.6: Simple SVG chart.

demr.setAttribute(' height' , 300*dem);

demr.setAttribute(' y' , 300-(300*dem));

repr.setAttribute(' height' , 300*rep);

repr.setAttribute(' y' , 300-(300*rep));

indr.setAttribute(' height' , 300*ind);

indr.setAttribute(' y' , 300-(300*ind));

}

</script>

Since the y coordinate and height properties are just XML attributes,

we can use our JavaScript DOM manipulation to adjust them on the

fly. All that remains is setting up some kind of Ajax call to retrieve the

data and, upon completion, to pass the data into our change_chart()

function. This exercise is left to the reader.

Assuming that the resulting data is as follows:

• Democrats: .46

• Republicans: .44

• Independents: .08

then Figure 16.6 shows the final rendered chart.

While it is enormously appealing to be able to embed SVG graphics

directly into the page like this, many browsers are not XHTML compli-

ant yet so this technique won’t work. The good and bad news is that

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=273

UI MANIPULATION 274

the page won’t throw any errors; it just won’t show the SVG graphics.

Users expecting the page to do anything of value for them might be left

a tad confused.

The other option, then, is to link to SVG documents through another

DOM element. You might think that the tag is an ideal candi-

date; it has a src attribute that can point to URLs, and it is meant for

displaying graphics. Unfortunately, this is not currently supported in

any major release of any browser. Instead, you should use either the

<embed> element or the <object> element.

For a full treatment of how and why each tag is useful, see the SVG

wiki, specifically the page on embedding SVG in HTML.6 Briefly, the

prevailing wisdom is that you should wrap an <object> tag around an

<embed> tag. Let’s look at our charting example from this perspective.

In this case, instead of having an Ajax callback that retrieves our three

data points, the Ajax method will return the SVG document itself.

Since SVG is simply valid XML, the server need only craft a docu-

ment and send it back as content-type: text/xml. We’ll make the URL

for this callback take the following form: http://myserver.com/get-svg-

graph?question=2.

To create a linked element that renders this data, we would add the

following to our page:

<object data="http://myserver.com/get-svg-graph?question=2"

type="image/svg+xml"

width="300" height="300">

<embed src="http://myserver.com/get-svg-graph?question=2"

type="image/svg+xml"

width="300" height="300" />

</object>

Any browser that understands the <object> tag (and that means most

modern browsers) will render the data as described by the attributes

of the tag and completely ignore the enclosed <embed>. Conversely,

browsers that don’t understand <object> (namely, Netscape Navigator

2.x and 3.x) will ignore the surrounding <object> tag and render the

<embed> instead.

6http://www.svg-whiz.com/wiki/index.php?title=SVG_and_HTML

http://www.svg-whiz.com/wiki/index.php?title=SVG_and_HTML
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=274

PREDICTIONS 275

SVG versus Canvas

As we’ve described, the major difference between SVG and canvas is

that while SVG exposes all of its paths for manipulation in real-time

using Ajaxian techniques, canvas is a painting surface that exposes no

references to what is drawn on it. But, that doesn’t mean you can’t

create interactive effects with canvas.

http://rig.vlad1.com/~vladimir/canvas/cdemo1.html is an example (Firefox

1.5 only) of using familiar mouseover listeners to create interactivity

by redrawing the canvas as the user moves the mouse over certain

portions. So while SVG makes interacting with graphics very easy, it’s

certainly possible with canvas.

16.3 Predictions

We’ve discussed many times that Ajax is based on technologies that are,

frankly, not new. That’s why Canvas, SVG, and E4X excite us. They

show true innovation on the part of the browser providers—innovation

the web development community hasn’t experienced since Microsoft

achieved dominance in browser market share. While we’re not yet

aware of any websites that put these technologies to any practical use,

we hope what we’ve shown you gives you a taste of what is surely

inevitable in the coming months.

And where does it go from here? Predicting the future is a task folks

much smarter and better connected than us consistently do wrong.

Having said that, a number of developments on the horizon, while still

uncertain, are more probable than apocryphal. In the next few sections,

we’d like to discuss a few of these possible futures.

Browser Local Storage Capabilities

One of the use cases that desktop applications handle much better

than Ajax is an offline mode, the ability to cache data locally and pro-

vide some reasonable subset of functionality. While a number of hacks

permit JavaScript applications to access the local file system, such as

using proprietary browser APIs or Flash, there’s room for tremendous

improvement in this area.

The Firefox team is already discussing plans for implementing some

form of browser storage capability. We believe this will come soon in the

future and that Safari will quickly follow suit. Such a feature should

http://rig.vlad1.com/~vladimir/canvas/cdemo1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=275

PREDICTIONS 276

address both the storage of arbitrary data as well as make it simple for

a page to reliably store itself for offline use.

We expect a true, robust, and reliable offline storage API in the browsers

to be an important and significant step in expanding the possibilities

for Ajax applications.

Offline Storage with Dojo Today

As we mentioned earlier, the Dojo toolkit provides a local storage API

today by wrapping whatever capabilities the browser provides. The nice

benefit of using this API is that when browsers do introduce local stor-

age capabilities, Dojo will wrap those abilities allowing you to continue

using the same basic API.

More on Dojo

While we’re on the subject of Dojo, have we mentioned how much we

like it? We think Dojo, of all the existing JavaScript toolkits, has the

most potential to break away from the pack and become a dominant

player in the space. In fact, we feel so good about Dojo that we believe

it will become obviously more popular than any other Ajax framework.

We believe a popular, stable, and widely used Dojo will do a great deal

to remove much of the confusion in the Ajax space currently and gloss

over many of the limitations of current JavaScript implementations. We

further believe you’d be well advised to track Dojo closely in the coming

months as its capabilities blossom.

Flash Apollo

We respect Flash’s abilities. It’s a very capable platform that offers

some powerful features on top of what they claim is the most widely

deployed piece of software in history—the Flash plug-in. Plagued by

weird editing tools and slow performance in the past, the latest version

of Flash offers some exciting possibilities.

Some of these interesting features include an Eclipse-based editing

environment, a just-in-time JavaScript compiler, and hardware accel-

erated graphics (by layering on top of accelerated graphics APIs in the

operating system). Flash is, in many ways, the JavaScript/SVG envi-

ronment done right.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=276

PREDICTIONS 277

What’s very interesting is that Adobe, the creator of Flash, has plans to

create a version of Flash that targets desktop application development.

This initiative is code-named Apollo. This environment therefore targets

the same developers that Java and .NET are fighting over today, and

unlike those environments, it can provide a web-hosted environment

that’s much more ubiquitous than any other programming platform.

When Apollo comes out and the next-generation Flash 8.5 platform

we’ve described has reached 90%+ penetration (which Adobe claims

will take a little more than a year after its release), Flash will be a

very interesting platform that web developers will find familiar and that

can be used broadly to accomplish great results. This could have a

significant impact on the future of Ajax.

Compiled JavaScript

Ajax applications can retrieve data, draw graphics, and provide all

kinds of rich dynamic effects. But there’s one big problem: they’re

slow. In all of the current browsers, JavaScript is interpreted, and as

such, is slow. Adobe Flash is doing a great job of demonstrating how

the type of just-in-time (JIT) compilation of interpreted JavaScript can

yield enormous benefits (just as Smalltalk, Java, and other interpreted

languages have also used JIT to great effect).

We feel that it’s only a matter of time before one of the major browsers

provides a JIT JavaScript compilation environment, which would in

turn free web pages that use JavaScript to run orders of magnitude

faster than currently.

Let’s be clear, however. For an application that uses JavaScript as

simple glue—an event handler here, an Ajax request there—JIT compi-

lation is not likely to yield perceptible results. But JIT compilation will

open new doors for Ajax applications to be able to take on much more

complex tasks than they are presently capable of tackling. For inter-

esting case studies, just take a look at the reports of JIT compilation

on the performance of Flash applications.

W3C’s New Life

For years, the W3C has been the undisputed shepherd of web stan-

dards. HTML 4, XML, XHTML, and CSS (and more) all came from this

venerable standards body. But times have changed. The WHATWG is

now driving the next generation of web standards, and it’s not entirely

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=277

CONCLUSION 278

clear that the W3C will play any significant role in defining new web

standards.

But that hasn’t stopped the W3C from moving forward with its own

standardization efforts. After failing to see its own Ajax-style standards

catch on, the W3C is spinning up a number of new efforts intended to

codify Ajax technologies into W3C standards and even an entirely new

language for the creation of dynamic web-based applications.

It’s hard to know whether these W3C efforts will ever produce officially

approved specifications, and even harder to guess whether they will

ever be implemented in browsers (well, except for perhaps Amaya, the

W3C’s own browser which is used by exactly no one). One thing that

is for sure: it will be interesting to track these efforts to see what the

eventual outcome will be.

16.4 Conclusion

Throughout this book, we’ve been extolling the virtues of this thing

called Ajax. We’ve talked about how it is transforming the way we view

web applications by providing us with asynchronous data retrieval and

fancy UI effects. The future of Ajax, though, is about the disappear-

ance of Ajax. If this technology is to succeed, it needs to be hidden

underneath a framework that takes care of the dirty work for you.

The web frameworks of the future will seamlessly integrate standard

HTML rendering with complex graphical output, all on the client side.

They will communicate data from the server to the client using struc-

tured data in the form of XML or JSON. And, almost assuredly, they

will hide 95% of the client-side JavaScript and server-side communica-

tion layers from you. Ajax will be how these frameworks work, not what

you do while you are at work.

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=278

Index
Symbols
.NET, see ASP.NET

@ notation (E4X), 262

$() method, 98, 252

$F() method, 98

37signals

TadaList, 174

A
action attribute, 175

activate() method, 107

Adigio, viii

Adobe, see Flash

Ajax

as architecture, 6

asynchronous request, 6, 90

definition, 5

degrading, 170–183, 218

naming of, 1

page lifecycle, 7f

ajax.dll, 247

Ajax.NET, see BorgWorX

Ajax.Request (Prototype), 90

Ajax.Updater (Prototype), 91, 125

AjaxAnywhere toolkit, 194

Ajaxian Maps, see Google Maps,

implementation

[AjaxMethod] attribute (BorgWorX), 247

alert() method, 164

all() method, 101

Alpha transparency, see Transparency

Animated graphic (busy indicator), 128

any() method, 101

Apollo, see Flash

Appear (Scriptaculous effect), 116

Apple, <canvas> tag, 264

.ashx (BorgWorX request extension), 247

.asmx extension, Atlas, 250

ASP.NET (Atlas), 82, 249–258

.asmx extension, 250

components, 257

control extenders, 258

extends JavaScript, 253

handlers, 250

inheritance, 253

interfaces, 253

JSON, 251

namespaces, 253

ScriptManager, 257

TimerControl, 258

UpdatePanel, 257

web service class, 251

Asynchronous, see Ajax,

asynchronoous request

Atlas, see ASP.NET

attachEventListener() method, 68

Attributes

XML, 71

see also Element attribute

autocomplete attribute, 84, 135

Autocomplete field, 133, 225

Autopopulate field, 48

B
Back button (browser), 87, 137

Backbase, 81, 183

Background color, changing, 114

Basecamp (and Google Accelerator),

141

Batik, SVG renderer, 17

Behaviour (library), 178

Black hole, vii

BlindDown (Scriptaculous effect), 116

BlindUp (Scriptaculous effect), 116

Bloch, Joshua, 10

Bookmarks, problems with, 89, 139

Boolean (JavaScript type), 62

BorgWorX, 246–249

BOSWORTH 280 DOJO TOOLKIT

broker, 247

JSON and, 248

Bosworth, Adam, 10

Box model (inpecting), 150

Breakpoint, setting with Venkman, 167

Britt, James, 188

Browser

back button, 87, 137

and bookmarks, 89, 139

caching, 76, 138

compatibility, 171, 221, 269, 271

compatibility with Ajaxian Maps, 16

convert content to XML, 67

disable autocompletion, 84

forward button, 87

hide submit button, 174

inspect DOM with, 148

JavaScript disabled, 170–183

layering in (z-order), 33

local storage in, 275

position elements on, 108

support old versions, 171

view source, 147

live, 155

XMLHttpRequest compatibility, 56,

87

C
Caching

by autocomplete, 135

browser, 76, 138

disabling in Sajax, 201

Callback handler, 53, 237

<canvas>, 264–270

browser compatibility, 269

color demo, 267

Doom demo, 269

paint program, 267

vs. SVG, 275

Canvas Painter, 267

Cat, cruelty to, 256

Cerf, Vint, 10

CherryPy, 82

Closure (JavaScript), 65

Code, downloading, 9

collect() method, 101

Collections (in Prototype), 100

colorFadeeOut (Dojo effect), 120

colorFadeIn (Dojo effect), 120

Combined effects, 116

Component-based framework, 82

Connor, Sarah, 142

Container, scaling, 112

Convention over configuration (Rails),

210

CRM application, 2–4

add validation to, 123

port to Ruby on Rails, 221

port to Sajax, 198

port to XOAD, 204

see also Hector the Project Manager

Cross-site scripting, 187, 199

CSS

attach JavaScript based on ~

selectors, 178, 249

inspecting, 150

Curve, in Dojo animation, 118

D
Data representation, see E4X, JSON,

XML

Data, storing locally via browser, 275

Debug menu, Safari, 152

Debugging, 160–169

interactively, 166

Venkman, 166

see also Document Object Model

(DOM), inspecting

Deep linking, 140

Degrading application (if JavaScript

disabled), see Ajax, degrading

Desktop application, Flash, 276

detect() method, 101

DHTML, see User interface library

Direct Web Remoting, see DWR

disable() method, 108

document variable, 67

Document Object Model (DOM)

insert/remove elements from, 104

inspect with MODI, 158

inspecting, 148–159

manipulating, 67, 95, 96, 103, 105

with Prototype, 98

modify interactively, 159

tables and, 70, 221

document.getElementById() method, 26

Dojo toolkit, 82–90

animations and effects, 117–121

parameters, 118

and bookmarks, 89

changeURL parameter, 89

dojo.oi, 83

DOOM (IN <canvas>) 281 FIREFOX

effects (colorFadeIn, colorFadeOut,

explode, explodeFromBox,

fadeHide, fadeIn, fadeOut,

fadeShow, implode,

implodeToBox, slideBy, slideTo,

wipeIn, wipeOut), 120

enforcing transport, 87

file upload, 87

and forms, 87

htmlEffects, 120

local storage via, 276

mime type, 85

overview, 83

post values with, 89

remoting using, 82

Doom (in <canvas>), 269

Download, source code, 9

Dragging, 22

Drawing, see <canvas>, SVG

Drop-down box, emulating, 136

DropOut (Scriptaculous effect), 117

Duck typing, 257

DWR, 230–245

avoid method overloading, 239

callback, 237

configuration, 233, 237

installing, 231

Java Authentication and

Authorization Service (JAAS), 238

JavaScript, 234

object lifecycle, 240

remoting arbitrary objects, 242

security, 233

dwr.xml, 233, 237

Dynamic HTML, see User interface

library

E
E4X, 260–263

drawing data with, 265

each() method, 100

Edge Rails, 229

Effect, combined, 116

Effects library, see Scriptaculous

Eklund, Emil, 270

Element (Prototype class), 102

Element attribute

action, 175

autocomplete, 84, 135

id, 52, 70, 91

innerHTML, 71

innerText, 72

outerHTML, 72

value, 73

<embed> tag, 274

enable() method, 108

Enter key, disabling, 175

Enumerable mixin (Prototype), 100

ERB, see Ruby on Rails

Error handling, 57

Error messages

timing of, 128

validation, 124

escapeHTML() method, 99

Event handler, 50

HTML, 50

JavaScript, 66

onAnimate, 119

onblur, 50, 66, 124, 218

onComplete, 130, 220

onFailure, 132

onInteractive, 130

onLoaded, 130

onLoading, 130

onreadystatechange, 130

onsubmit, 217

onSuccess, 132

setting on element, 68

Example code, downloading, 9

explode (Dojo effect), 121

explodeFromBox (Dojo effect), 121

F
Fade

Scriptaculous effect, 116

see also Highlight effect;Opacity

effect

fadeHide (Dojo effect), 120

fadeIn (Dojo effect), 120

fadeOut (Dojo effect), 120

fadeShow (Dojo effect), 120

Feedback

on errors, 128

providing, 143

Field classs (Prototype), 107

Field, autopopulate, 48

File upload, 87

Filter, 181

findAll() method, 101

Firefox

inspect DOM, 148–151

JavaScript errors (console), 162

FLASH 282 IFRAME

local storage in, 275

view formatted source plugin, 158

view live source, 155

View Rendered Source Chart plugin,

158

Flash

Apollo, 276

desktop development, 276

map implementation, 10

Flicker effect option, 109

Focus

manage in form, 107

see also onblur event

focus() method, 107

focusFirstElement() method, 108

Fold (Scriptaculous effect), 117

Font, scaling, 113

Ford, Neal, vii

Form

authpopulate field, 48

autocomplete, 133

disabling enter key, 175

and Dojo, 87

field observer in Rails, 218

field value using $F(), 98

focus, 107

helpers in Rails, 212

hide submit button, 174

and Prototype, 107

upload file from, 87

validation on server, 122

Form classs (Prototype), 107

form_remote_tag() method, 217

Forward button (browser), 87

From effect option, 110

Frontpage (script debugger), 169

Fuchs, Thomas, 108, 210

Function (JavaScript type), 64

Functions (JavaScript), 62

G
Garrett, Jesse James, 1, 249

General Interface, 183

GET request

caching and, 76

shouldn’t change state on server,

140

getAllChildren() method, 178

getAllResponseHeaders() method, 75

getAttribute() method, 73

getElementById() method, 52, 70

getElementBySelector() method, 178

getElementsByClass() method, 96

getElementsByClassName() method, 99

getElementsByTagName() method, 70

getResponseHeader() method, 75

Glass, Philip, 4

Google Accelerator (and GET requests),

141

Google Maps

<div> tags, 20

dragging, 22

image size, 13

implementation, 9–47

influence of, 4–5

push pins, 15, 37

Rasmussen, Lars, 11

scroll, 14

scrolling, 12

team behind, 11

tiles

creating, 18

displaying, 24, 28

loading, 25

size, 13, 19

zoom, 14, 15, 33

Google Maps, transparency, see

Transparency

grep() method, 101

Grow (Scriptaculous effect), 117

H
Halloway, Stu, vii, viii

Header, in XMLHttpRequest, 75

Hector the Project Manager, 2–4,

192–194

see also CRM Application

Helper tags, 194

hide() method, 103

Highlight class (Scriptaculous), 114

Hole, black, vii

HTML

dynamic, see User interface library

escaping in Prototype, 99

event, see JavaScript, event; Event

handler

I
id attribute, 52, 70, 91

IDE support, 193

Idempotent GET, 140

iframe, 79

 TAG 283 JAVASCRIPT METHOD

and browser history, 88

problems with, 94

 tag, scaling, 112

implode (Dojo effect), 121

implodeToBox (Dojo effect), 121

Inheritance, added to JavaScript, 253

inject() method, 101

innerHTML attribute, 71

innerHTML attribute

limitations, 100

innerText attribute, 72

Input fields, see Form

Insertion class (Prototype), 104

Instant Source (view live source in IE),

156

Interfaces, added to JavaScript, 253

Internet Explorer

debug with Script Debugger, 168

handling javaScript errors, 160

inspect DOM, 148, 153–154

SVG plugin, 271

and transparency, 38

view live source, 156

invoke() method, 102

J
Java Authentication and Authorization

Service (JAAS), 238

Java framework, 82

Java remoting, see DWR

JavaBean, remoting with DWR, 242

JavaScript

@ notation (E4X), 262

alert(), problems with, 164

closure, 65

compiled, 277

console (Firefox), 162

debugging, see debugging

disabled, making applications work

when, 170–183

document variable, 67

evaluate interactively with Mochikit,

163

events, 66, 67n

functions, 62

improved by Atlas, 253

interactive debugging, 166

interacts with SVG, 272

listener, 22

logging within, 165

manipulate XML with E4X, 260

metaprogramming, 95

method overloading, 63

return (from function), 63

including in Ruby on Rails

applications, 190

runtime errors, 163

send from server to browser, 86

step debugging, 168

syntax, 61

syntax errors, 160

this (current object), 50

truth value, 62

types, 62, 64

undefined value, 63

variable declaration, 61

XMLHttpRequest, see

XMLHttpRequest

JavaScript method

$(), 98, 252

$F(), 98

activate(), 107

alert(), 164

all(), 101

any(), 101

attachEventListener(), 68

collect(), 101

detect(), 101

disable(), 108

document.getElementById(), 26

each(), 100

enable(), 108

escapeHTML(), 99

findAll(), 101

focus(), 107

focusFirstElement(), 108

getAllChildren(), 178

getAllResponseHeaders(), 75

getAttribute(), 73

getElementById(), 52, 70

getElementBySelector(), 178

getElementsByClass(), 96

getElementsByClassName(), 99

getElementsByTagName(), 70

getResponseHeader(), 75

grep(), 101

hide(), 103

inject(), 101

invoke(), 102

Math.ceil(), 26

Math.floor(), 26

Math.round(), 26

JAVASCRIPT OBJECT NOTATION 284 OBSERVER

max(), 102

min(), 102

onload(), 21

onreadstatechange(), 53

partition(), 102

pluck(), 102

reject(), 102

remove(), 104

removeChild(), 103

responseText(), 76

responseXML(), 76

select(), 107

setAttribute(), 73

setRequestHeader(), 75

show(), 103

sortBy(), 102

stripTags(), 99

toArray(), 102

toggle(), 103

unescapedHTML(), 99

JavaScript Object Notation, see JSON

javascript_include_tag() method, 214

JavaServer Faces, 82

Jello, solidifying, 1

Joffe, Benjamin, 269

JSON, 182, 184–191

and Atlas, 251

BorgWorX, 248

on the client, 190

compared to XML, 184

cross-server, 187

data encoding, 185

JSON-RPC, 187

jsonrpc.js and jsonrps_async.js, 188

platform availability, 187

Ruby on Rails, 188

security, 187

on the server, 189

wrapper, 187

and XOAD, 208

see also E4X

K
van Kesteren, Anne, 267

L
Latency, network, 58, 128

Layering (z-order), 33

Lewinski, Monica, 93

Linear effect option, 109

link_to_remote() method, 215

Listener, see JavaScript, listener

Live source view (browser), 155

Local storage, 275

Logging to Safari console, 163

M
Macromedia, see Flash

Mahemoff, Michael, viii

Map, see Google Maps; Flash maps

Markup-based user interface definition,

81

Math.ceil() method, 26

Math.floor() method, 26

Math.round() method, 26

max() method, 102

Metaprogramming JavaScript, 95

Method overloading (JavaScript lack

of), 63

Microsoft, see ASP.NET

Microsoft Frontpage (script debugger),

169

Mime type

Dojo, 85

using to send JavaScript from server,

86

min() method, 102

Mochikit (JavaScript evaluator), 163

logging via, 165

Mouseover DOM Inspector (MODI), 158

MoveBy

moving elements with class

(Scriptaculous), 111

MSXML, 249

mysqli, 198

N
Namespace, added to JavaScript, 253

.NET, see ASP.NET

Network latency, 58, 128

Neward, Ted, vii

Nirvana, 93

No Fluff Just Stuff, viii

Nolan, Ben, 178

Number (JavaScript type), 62

O
<object> tag, 274

Object (JavaScript type), 62

Object broker (ORB), see Remoting

toolkit

Observer, field, 218

ONANIMATE EVENT 285 RUBY ON RAILS

onAnimate event, 119

onblur event, 50, 66, 124, 218

onComplete event, 130, 220

onFailure event, 132

onInteractive event, 130

onload() method, 21

onLoaded event, 130

onLoading event, 130

onreadstatechange() method, 53

onreadystatechange event, 130

onsubmit event, 217

onSuccess event, 132

Opacity class (Scriptaculous), 110

Orbjson (JSON) library, 188

installing, 188

outerHTML attribute, 72

P
Paint program, <canvas> demo, 267

Parallel class (Scriptaculous), 116

Partials, see Ruby on Rails, partials

partition() method, 102

PEARDB, 198

Periodic observer, 219

PHP, 195–209

escaping strings, 199

OO style and XOAD, 204

problems with XOAD and 5.1, 206

Sajax, 196–204

XOAD, 204–209

see also Sajax, XOAD

pluck() method, 102

PNG transparency, see Transparency

Portability, of XMLHttpRequest, 56

Portal site, and window metaphor, 144

POST (vs. GET), 140

Post values using Dojo, 89

Prototype, 90–92, 210

$() and $F(), 98

Ajax.Request, 90

Ajax.Updater, 91, 125

collection handling, 100

Element class, 102

escape HTML, 99

Field classs, 107

focus, managing, 107

Form classs, 107

and forms, 107

Insertion class, 104

manipulate DOM with, 98

onSuccess callback, 91

and RJS in Rails, 228

user interface, 97–108

Proxy-based Ajax, see DWR

Puff (Scriptaculous effect), 116

Pulsate (Scriptaculous effect), 117

Pulse effect option, 109

Push pins, map, see Google Maps,

push pins

Q
QuirksMode, 67n, 104

R
Rasmussen, Lars, 11

Razorfish, 93

readystate property, see

XMLHttpRequest, readystate

reject() method, 102

Remoting toolkits, 78

BorgWorX, 247

Dojo example, 82

DWR, 230–245

Prototype example, 90

Sajax, 196–204

XOAD, 204–209

see also Dojo; DWR; JSON-RPC;

Prototype; Sajax

remove() method, 104

removeChild() method, 103

responseText() method, 76

responseText (XMLHttpRequest), 74

responseXML() method, 76

Reverse effect option, 109

RHTML, see Ruby on Rails

Rich client, see User interface library

RJS template (Rails), 227

Robayna, Rafael, 267

Ruby on Rails, 82, 210–229

actions, 211

Ajax integration through helpers,

214

autocomplete field, 225

controllers, 210

conventions, 210

degrading if JavaScript disabled, 218

Edge Rails, 229

ERB, 211

form helper, 212

form_remote_tag(), 217

helper methods, 194, 212

RUNTIME ERRORS 286 SVG

including JavaScript in applications,

190

javascript_include_tag(), 214

JSON, 188

link_to_remote(), 215

observe field or form, 218, 219

partials, 180

remote_function helper, 220

RHTML, 211

RJS template, 227

Scriptaculous helpers, 220

views, 211

Runtime errors, 163

S
Safari

enable debug menu, 152

inspect DOM, 148, 151–153

JavaScript errors (console), 163

logging by writing to console, 163

view live source, 155

Sajax, 196–204

debug mode, 202

disabling caching, 201

drawbacks, 203

handle client request, 201

languages supported, 197

PHP, 200

see also PHP

Sanheim, Rob, viii

Scale

scaling effects class (Scriptaculous),

112

Schwartz, Michael, 246

Script Debugger (Internet Explorer),

168

Scriptaculous, 108–117, 210

autocomplete, 133

local cache, 135

combined effects (Appear,

BlindDown, BlindUp, DropOut,

Fade, Fold, Grow, Puff, Pulsate,

Shake, SlideDown, SlideUp,

Squish, Shrink, SwitchOff), 116

effect options, 109

effects, 110

highlight (yellow fade) effect, 114,

131

opacity effects, 110

parallel effects, 116

Rails helpers, 220

ScriptManager (Atlas), 257

Scroll, map, see Google Maps, scroll

Security

cross-site scripting, 199

DWR, 233

JSON, 187

need for server-side validation, 123

select() method, 107

Select box, emulating, 136

Server

accessing multiple ~s with JSON,

187

integration using JSON, 184

validation on, 122

see also ASP.NET; JSON; PHP; Ruby

on Rails; Spring

Servlet

DWR, 232

filter, 181

setAttribute() method, 73

setRequestHeader() method, 75

Shake (Scriptaculous effect), 117

show() method, 103

Shrink (Scriptaculous effect), 117

Simultaneous effects, 116

Sinoidal effect option, 109

slideBy (Dojo effect), 120

SlideDown (Scriptaculous effect), 117

Slider, Google Maps, 33

slideTo (Dojo effect), 120

SlideUp (Scriptaculous effect), 117

sortBy() method, 102

Source code, downloading, 9

Spain, map of, 17

Sprint, 82

Squish (Scriptaculous effect), 117

State (capturing application ~ with

bookmarks), 140

Static content (in response to

XMLHttpRequest), 75

status property, see XMLHttpRequest,

status

Stephenson, Sam, 210, 252

String (JavaScript type), 62

stripTags() method, 99

Structured data, see JSON

Submit button, hide when Ajax

enabled, 174

SVG, 271–275

add to page with <embed> or

<object>, 274

SWITCHOFF (SCRIPTACULOUS EFFECT) 287 XOAD

Batik renderer, 17

browser compatibility, 271

interacts with JavaScript, 272

plugin for IE, 271

vs. <canvas>, 275

SwitchOff (Scriptaculous effect), 116

Sync effect option, 110

Synchronous Ajax, 58, 90

Syntax errors, JavaScript, 160

T
<table> and <tbody> tags in the

DOM, 70, 221

TadaList, 174

Tag library, 194

see also Ruby on Rails, helper

Tapestry, 82

Text, scaling, 113

this (JavaScript current object), 50

TIBCO, 183

Tiles, see Google Maps, tiles

TimerControl (Atlas), 258

To effect option, 110

toArray() method, 102

ToDo list example, 172

toggle() method, 103

Transparency, 15, 33

and IE 6, 38

see also Opacity effect

Types, in JavsScript, 62, 64

U
UI library, see User interface library

Undefined value (JavaScript), 63

unescapedHTML() method, 99

UpdatePanel (Atlas), 257

Upload file, 87

User interface issues, 137–145

back button, 137

bookmarks, 139

destructive GETs, 140

poor feedback, 142

use familiar idioms, 143

User interface library, 80

markup based, 81

native look and feel, 80

see also Backbase; Behaviour; Dojo;

Prototype; Scriptaculous;

SmartClient

V
Validation, on the server, 122

value attribute, 73

Vanderburg, Glenn, vii, 11

Variables (JavaScript declaration), 61

Venkman, 166

Visual Studio (script debuggger), 169

W
W3C, 278

Walker, Joe, 231

Web framework, 82

Web Hypertext Application Technology

Workig Group (WHATWG), 264

Web services

use when Ajax disabled, 182

web.config (Atlas), 250

web.xml, 232

WebWork2, 82

Willison, Simon, 178

Window metaphor, 144

window.console.log (Safari), 163

wipeIn (Dojo effect), 120

wipeOut (Dojo effect), 120

Wobble effect option, 109

X
XBL bindings (inspecting), 150

XML

attribute manipulation, 71

browser content as, 67

compared to JSON, 184

manipulate with E4X, 260

sent from server to client, 182

XMLHttpRequest, 51, 73–76

browser compatibility, 56, 87

callback handler, 53

headers, 75

readystate, 130

readystate property, 54, 75

replace with dojo.io.bind, 83

responseText attribute, 74

static content and, 75

status property, 57

XOAD, 204–209

callback, 206

handlers, 207

metadata to control exported data,

204

rich types, 207

XUL 288 ZOOM

serializer, 206

see also PHP

XUL, 150

Y
Yellow fade effect, 114, 131

Z
z-index, 33

Zimbra AjaxTk, 183

Zoom, map, see Google Maps, zoom

	Pragmatic Ajax : A Web 2.0 Primer
	Contents
	1. Building Rich Internet Applications with Ajax
	2. Creating Google Maps
	3. Ajax in Action
	4. Ajax Explained
	5. Ajax Frameworks
	6. Ajax UI, Part I
	7. Ajax UI, Part II
	8. Debugging Ajax Applications
	9. Degradable Ajax
	10. JSON and JSON-RPC
	11. Server-side Framework Integration
	12. Ajax with PHP
	13. Ajax with Rails
	14. Proxy-Based Ajax with DWR
	15. ASP.NET and Atlas
	16. Ajax in the Future and Beyond
	Index

