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Preface

Why write yet another book on the thermodynamics of materials? The traditional
approach to such a text has been to focus on the phenomenology and mathematical
concepts of thermodynamics, while the use of examples demonstrating the thermo-
dynamic behaviour of materials has been less emphasized. Moreover, the few
examples given have usually been taken from one particular type of materials
(metals, for example). We have tried to write a comprehensive text on the chemical
thermodynamics of materials with the focus on cases from a variety of important
classes of materials, while the mathematical derivations have deliberately been
kept rather simple. The aim has been both to treat thermodynamics macroscopi-
cally and also to consider the microscopic origins of the trends in the energetic
properties of materials that have been considered. The examples are chosen to
cover a broad range of materials and at the same time important topics in current
solid state sciences.

The first three chapters of the book are devoted to basic thermodynamic theory
and give the necessary background for a thermodynamic treatment of phase dia-
grams and phase stability in general. The link between thermodynamics and phase
diagrams is covered in Chapter 4, and Chapter 5 gives the thermodynamic treat-
ment of phase stability. While the initial chapters neglect the effects of surfaces, a
separate chapter is devoted to surfaces, interfaces and adsorption. The three next
chapters on trends in enthalpy of formation of various materials, on heat capacity
and entropy of simple and complex materials, and on atomistic solution models,
are more microscopically focused. A special feature is the chapter on trends in the
enthalpy of formation of different materials; the enthalpy of formation is the most
central parameter for most thermodynamic analysis, but it is still neglected in most
thermodynamic treatments. The enthalpy of formation is also one of the focuses in
a chapter on experimental methods for obtaining thermodynamic data. Another
special feature is the final chapter on thermodynamic and materials modelling,
contributed by Professor Neil Allan, University of Bristol, UK — this is a topic not
treated in other books on chemical thermodynamics of materials.

Xi



Xii Preface

The present text should be suitable for advanced undergraduates or graduate stu-
dents in solid state chemistry or physics, materials science or mineralogy. Obvi-
ously we have assumed that the readers of this text have some prior knowledge of
chemistry and chemical thermodynamics, and it would be advantageous for stu-
dents to have already taken courses in physical chemistry and preferably also in
basic solid state chemistry or physics. The book may also be thought of as a source
of information and theory for solid state scientists in general.

We are grateful to Neil Allan not only for writing Chapter 11 but also for reading,
commenting on and discussing the remaining chapters. His effort has clearly
improved the quality of the book. Ole Bjgrn Karlsen, University of Oslo, has also
largely contributed through discussions on phase diagrams and through making
some of the more complex illustrations. He has also provided the pictures used on
the front cover. Moreover, Professor Mari-Ann Einarsrud, Norwegian University
of Science and Technology, gave us useful comments on the chapter on surfaces
and interfaces.

One of the authors (TG) would like to acknowledge Professor Kenneth R.
Poeppelmeier, Northwestern University, for his hospitality and friendship during
his sabbatical leave during the spring semester 2002. One of the authors (S2)
would like to express his gratitude to Professor Fredrik Grgnvold for being an
inspiring teacher, a good friend and always giving from his great knowledge of
thermodynamics.

Svein Stglen
Tor Grande
Oslo, October 2003
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Thermodynamic
foundations

1.1 Basic concepts

Thermodynamic systems

A thermodynamic description of a process needs a well-defined system. A thermo-
dynamic system contains everything of thermodynamic interest for a particular
chemical process within a boundary. The boundary is either a real or hypothetical
enclosure or surface that confines the system and separates it from its surroundings.
In order to describe the thermodynamic behaviour of a physical system, the interac-
tion between the system and its surroundings must be understood. Thermodynamic
systems are thus classified into three main types according to the way they interact
with the surroundings: isolated systems do not exchange energy or matter with their
surroundings; closed systems exchange energy with the surroundings but not matter;
and open systems exchange both energy and matter with their surroundings.

The system may be homogeneous or heterogeneous. An exact definition is difficult,
but it is convenient to define a homogeneous system as one whose properties are the
same in all parts, or at least their spatial variation is continuous. A heterogeneous
system consists of two or more distinct homogeneous regions or phases, which are sepa-
rated from one another by surfaces of discontinuity. The boundaries between phases are
not strictly abrupt, but rather regions in which the properties change abruptly from the
properties of one homogeneous phase to those of the other. For example, Portland
cement consists of a mixture of the phases B-Ca;SiO4, Ca3SiOs;, Ca3Al,O¢ and
CayAlpFey0q. The different homogeneous phases are readily distinguished from each
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other macroscopically and the thermodynamics of the system can be treated based
on the sum of the thermodynamics of each single homogeneous phase.

In colloids, on the other hand, the different phases are not easily distinguished
macroscopically due to the small particle size that characterizes these systems. So
although a colloid also is a heterogeneous system, the effect of the surface thermo-
dynamics must be taken into consideration in addition to the thermodynamics of
each homogeneous phase. In the following, when we speak about heterogeneous
systems, it must be understood (if not stated otherwise) that the system is one in
which each homogeneous phase is spatially sufficiently large to neglect surface
energy contributions. The contributions from surfaces become important in sys-
tems where the dimensions of the homogeneous regions are about 1 wm or less in
size. The thermodynamics of surfaces will be considered in Chapter 6.

A homogeneous system — solid, liquid or gas — is called a solution if the compo-
sition of the system can be varied. The components of the solution are the sub-
stances of fixed composition that can be mixed in varying amounts to form the
solution. The choice of the components is often arbitrary and depends on the pur-
pose of the problem that is considered. The solid solution LaCr_,Fe,O3 can be
treated as a quasi-binary system with LaCrO3 and LaFeO3 as components. Alterna-
tively, the compound may be regarded as forming from La;03, Fe;0O3 and CryO3 or
from the elements La, Fe, Cr and O, (g). In LapO3 or LaCrO3, for example, the ele-
ments are present in a definite ratio, and independent variation is not allowed.
Lay0O3 can thus be treated as a single component system. We will come back to this
important topic in discussing the Gibbs phase rule in Chapter 4.

Thermodynamic variables

In thermodynamics the state of a system is specified in terms of macroscopic state
variables such as volume, V, temperature, 7, pressure, p, and the number of moles of
the chemical constituents i, n;. The laws of thermodynamics are founded on the con-
cepts of internal energy (U), and entropy (S), which are functions of the state variables.
Thermodynamic variables are categorized as intensive or extensive. Variables that are
proportional to the size of the system (e.g. volume and internal energy) are called
extensive variables, whereas variables that specify a property that is independent of
the size of the system (e.g. temperature and pressure) are called intensive variables.

A state function is a property of a system that has a value that depends on the
conditions (state) of the system and not on how the system has arrived at those con-
ditions (the thermal history of the system). For example, the temperature in a room
at a given time does not depend on whether the room was heated up to that tempera-
ture or cooled down to it. The difference in any state function is identical for every
process that takes the system from the same given initial state to the same given
final state: it is independent of the path or process connecting the two states.
Whereas the internal energy of a system is a state function, work and heat are not.
Work and heat are not associated with one given state of the system, but are defined
only in a transformation of the system. Hence the work performed and the heat
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adsorbed by the system between the initial and final states depend on the choice of
the transformation path linking these two states.

Thermodynamic processes and equilibrium

The state of a physical system evolves irreversibly towards a time-independent state in
which we see no further macroscopic physical or chemical changes. This is the state of
thermodynamic equilibrium, characterized for example by a uniform temperature
throughout the system but also by other features. A non-equilibrium state can be
defined as a state where irreversible processes drive the system towards the state of equi-
librium. The rates at which the system is driven towards equilibrium range from
extremely fast to extremely slow. In the latter case the isolated system may appear to
have reached equilibrium. Such a system, which fulfils the characteristics of an equilib-
rium system but is not the true equilibrium state, is called a metastable state. Carbon in
the form of diamond is stable for extremely long periods of time at ambient pressure and
temperature, but transforms to the more stable form, graphite, if given energy sufficient
to climb the activation energy barrier. Buckminsterfullerene, Cgg, and the related Cyq
and carbon nanotubes, are other metastable modifications of carbon. The enthalpies of
three modifications of carbon relative to graphite are given in Figure 1.1 [1, 2].
Glasses are a particular type of material that is neither stable nor metastable.
Glasses are usually prepared by rapid cooling of liquids. Below the melting point the
liquid become supercooled and is therefore metastable with respect to the equilib-
rium crystalline solid state. At the glass transition the supercooled liquid transforms
to a glass. The properties of the glass depend on the quenching rate (thermal history)
and do not fulfil the requirements of an equilibrium phase. Glasses represent non-
ergodic states, which means that they are not able to explore their entire phase space,
and glasses are thus not in internal equilibrium. Both stable states (such as liquids
above the melting temperature) and metastable states (such as supercooled liquids
between the melting and glass transition temperatures) are in internal equilibrium
and thus ergodic. Frozen-in degrees of freedom are frequently present, even in crys-
talline compounds. Glassy crystals exhibit translational periodicity of the molecular

40¢

L 30}
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o g —Ee .
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Figure 1.1 Standard enthalpy of formation per mol C of Cgq [1], C7¢ [2] and diamond rela-
tive to graphite at 298 K and 1 bar.
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centre of mass, whereas the molecular orientation is frozen either in completely
random directions or randomly among a preferred set of orientations. Strictly
spoken, only ergodic states can be treated in terms of classical thermodynamics.

1.2 The first law of thermodynamics

Conservation of energy
The first law of thermodynamics may be expressed as:

Whenever any process occurs, the sum of all changes in energy, taken over all
the systems participating in the process, is zero.

The important consequence of the first law is that energy is always conserved. This
law governs the transfer of energy from one place to another, in one form or another:
as heat energy, mechanical energy, electrical energy, radiation energy, etc. The
energy contained within a thermodynamic system is termed the internal energy or
simply the energy of the system, U. In all processes, reversible or irreversible, the
change in internal energy must be in accord with the first law of thermodynamics.

Work is done when an object is moved against an opposing force. It is equivalent
to a change in height of a body in a gravimetric field. The energy of a system is its
capacity to do work. When work is done on an otherwise isolated system, its
capacity to do work is increased, and hence the energy of the system is increased.
When the system does work its energy is reduced because it can do less work than
before. When the energy of a system changes as a result of temperature differences
between the system and its surroundings, the energy has been transferred as heat.
Not all boundaries permit transfer of heat, even when there is a temperature differ-
ence between the system and its surroundings. A boundary that does not allow heat
transfer is called adiabatic. Processes that release energy as heat are called exo-
thermic, whereas processes that absorb energy as heat are called endothermic.

The mathematical expression of the first law is

D dU =) dg+) dw=0 (1.1)

where U, g and w are the internal energy, the heat and the work, and each summa-
tion covers all systems participating in the process. Applications of the first law
involve merely accounting processes. Whenever any process occurs, the net energy
taken up by the given system will be exactly equal to the energy lost by the sur-
roundings and vice versa, i.e. simply the principle of conservation of energy.

In the present book we are primarily concerned with the work arising from a change
in volume. In the simplest example, work is done when a gas expands and drives back
the surrounding atmosphere. The work done when a system expands its volume by an
infinitesimal small amount dV against a constant external pressure is

dw = —peg dV (1.2)
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Table 1.1 Conjugate pairs of variables in work terms for the fundamental equation for the
internal energy U. Here fis force of elongation, / is length in the direction of the force, ois
surface tension, Ag is surface area, @; is the electric potential of the phase containing spe-
cies i, g; is the contribution of species i to the electric charge of a phase, E is electric field
strength, p is the electric dipole moment of the system, B is magnetic field strength (mag-
netic flux density), and m is the magnetic moment of the system. The dots indicate scalar
products of vectors.

Type of work Intensive variable Extensive variable  Differential work in dU
Mechanical

Pressure—volume -p 1% —pdV

Elastic f l fdl

Surface o Ag odAg
Electromagnetic

Charge transfer D; qi Ddg;

Electric polarization  E P E-dp

Magnetic polarization B m B-dm

The negative sign shows that the internal energy of the system doing the work
decreases.

In general, dw is written in the form (intensive variable)-d(extensive variable) or
as a product of a force times a displacement of some kind. Several types of work
terms may be involved in a single thermodynamic system, and electrical, mechan-
ical, magnetic and gravitational fields are of special importance in certain applica-
tions of materials. A number of types of work that may be involved in a
thermodynamic system are summed up in Table 1.1. The last column gives the form
of work in the equation for the internal energy.

Heat capacity and definition of enthalpy
In general, the change in internal energy or simply the energy of a system U may
now be written as

dU =dg +dw,y +dwpe, e (1.3)

where dw ,y and dw,,_. are the expansion (or pV) work and the additional non-
expansion (or non-pV) work, respectively. A system kept at constant volume
cannot do expansion work; hence in this case dw ,;; =0. If the system also does not
do any other kind of work, then dw,,_. =0. So here the first law yields

dU =dgqy (1.4)

where the subscript denotes a change at constant volume. For a measurable change,
the increase in the internal energy of a substance is
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AU =gy (1.5)

The temperature dependence of the internal energy is given by the heat capacity
at constant volume at a given temperature, formally defined by

oU
c, =| & 1.
% (a jv ( 6)

For a constant-volume system, an infinitesimal change in temperature gives an
infinitesimal change in internal energy and the constant of proportionality is the
heat capacity at constant volume

dU =CydT (1.7)

The change in internal energy is equal to the heat supplied only when the system
is confined to a constant volume. When the system is free to change its volume,
some of the energy supplied as heat is returned to the surroundings as expansion
work. Work due to the expansion of a system against a constant external pressure,
Pext» gives the following change in internal energy:

dU =dg +dw =dgq — peydV (1.8)

For processes taking place at constant pressure it is convenient to introduce the
enthalpy function, H, defined as

H=U+pV (1.9)
Differentiation gives

dH =dU + pV)=dg + dw + Vdp + pdV (1.10)
When only work against a constant external pressure is done:

dw =—pexdV (1.11)
and eq. (1.10) becomes

dH =dqg + Vdp (1.12)
Since dp = 0 (constant pressure),

dH =dg, (1.13)
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and

AH =g, (1.14)

The enthalpy of a substance increases when its temperature is raised. The tem-

perature dependence of the enthalpy is given by the heat capacity at constant
pressure at a given temperature, formally defined by

OH
Cc =| == 1.15
, (aij (115

Hence, for a constant pressure system, an infinitesimal change in temperature gives
an infinitesimal change in enthalpy and the constant of proportionality is the heat
capacity at constant pressure.

dH =C,dT (1.16)

The heat capacity at constant volume and constant pressure at a given tempera-
ture are related through

o> VT
Kt

C,-Cy = (1.17)

where o and x 7 are the isobaric expansivity and the isothermal compressibility
respectively, defined by

a=1(5"j (1.18)
vier ),
and
ey ——1| Y (1.19)
V\adp )y

Typical values of the isobaric expansivity and the isothermal compressibility are
given in Table 1.2. The difference between the heat capacities at constant volume
and constant pressure is generally negligible for solids at low temperatures where
the thermal expansivity becomes very small, but the difference increases with tem-
perature; see for example the data for Al,O3 in Figure 1.2.

Since the heat absorbed or released by a system at constant pressure is equal to
its change in enthalpy, enthalpy is often called heat content. If a phase transforma-
tion (i.e. melting or transformation to another solid polymorph) takes place within
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Table 1.2 The isobaric expansivity and iso-
thermal compressibility of selected compounds at

300 K.
Compound o /105 K-1 Kp/10-12 Pa
MgO 3.12 6.17
Al,O4 1.62 397
MnO 3.46 6.80
Fe304 3.56 4.52
NaCl 11.8 41.7
C (diamond) 0.54 1.70
C (graphite) 2.49 17.9
Al 6.9 13.2
-5
130} Com
T 120 T Cyml - e, 1072 Pa 4
g s T
T 110F /7
M [
= /
~ 100t
O
90t
AlLO,
80

500 1000 1500 500 1000 1500
T/K

Figure 1.2 Molar heat capacity at constant pressure and at constant volume, isobaric
expansivity and isothermal compressibility of AloO3 as a function of temperature.

the system, heat may be adsorbed or released without a change in temperature. At
constant pressure the heat merely transforms a portion of the substance (e.g. from
solid to liquid — ice—water). Such a change is called a first-order phase transition
and will be defined formally in Chapter 2. The standard enthalpy of aluminium rel-
ative to 0 K is given as a function of temperature in Figure 1.3. The standard
enthalpy of fusion and in particular the standard enthalpy of vaporization con-
tribute significantly to the total enthalpy increment.

Reference and standard states

Thermodynamics deals with processes and reactions and is rarely concerned with
the absolute values of the internal energy or enthalpy of a system, for example, only
with the changes in these quantities. Hence the energy changes must be well
defined. It is often convenient to choose a reference state as an arbitrary zero.
Often the reference state of a condensed element/compound is chosen to be at a
pressure of 1 bar and in the most stable polymorph of that element/compound at the
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400 —
Al
T 300 AyapHr =294 kJ mol ™! 1
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=
2 200} 1
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0 500 1000 1500 2000 2500 3000

T/'K

Figure 1.3 Standard enthalpy of aluminium relative to O K. The standard enthalpy of fusion
(ApgHyy) is significantly smaller than the standard enthalpy of vaporization (Avaprr’1 ).

temperature at which the reaction or process is taking place. This reference state is
called a standard state due to its large practical importance. The term standard
state and the symbol © are reserved for p = 1 bar. The term reference state will be
used for states obtained from standard states by a change of pressure. It is impor-
tant to note that the standard state chosen should be specified explicitly, since it is
indeed possible to choose different standard states. The standard state may even be
a virtual state, one that cannot be obtained physically.

Let us give an example of a standard state that not involves the most stable
polymorph of the compound at the temperature at which the system is considered.
Cubic zirconia, ZrO,, is a fast-ion conductor stable only above 2300 °C. Cubic zir-
conia can, however, be stabilized to lower temperatures by forming a solid solution
with for example Y,03 or CaO. The composition—temperature stability field of this
important phase is marked by Css in the ZrO,—CaZrO3 phase diagram shown in
Figure 1.4 (phase diagrams are treated formally in Chapter 4). In order to describe
the thermodynamics of this solid solution phase at, for example, 1500 °C, it is con-
venient to define the metastable cubic high-temperature modification of zirconia
as the standard state instead of the tetragonal modification that is stable at 1500 °C.
The standard state of pure ZrO, (used as a component of the solid solution) and the
investigated solid solution thus take the same crystal structure.

The standard state for gases is discussed in Chapter 2.

Enthalpy of physical transformations and chemical reactions

The enthalpy that accompanies a change of physical state at standard conditions is
called the standard enthalpy of transition and is denoted A ,H °. Enthalpy changes
accompanying chemical reactions at standard conditions are in general termed stan-
dard enthalpies of reaction and denoted A H °. Two simple examples are given in
Table 1.3. In general, from the first law, the standard enthalpy of a reaction is given by
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Figure 1.4 The ZrO,—CaZrO3 phase diagram. Mss, Tss and Css denote monoclinic,
tetragonal and cubic solid solutions.

Table 1.3 Examples of a physical transformation and a chemical reaction and their respec-
tive enthalpy changes. Here Ag Hy, denotes the standard molar enthalpy of fusion.

Reaction Enthalpy change
Al (s) = Al (liq) ApsHe = Ay Heyy = 10789 J mol-! at Ty,
3Si0; (s) + 2N, (g) = SizNy () + 30, () A H® =1987.8 k] mol-! at 298.15 K
AH® =3 viHR ()= viH () (1.20)
j i

where the sum is over the standard molar enthalpy of the reactants i and products j
(vi and v; are the stoichiometric coefficients of reactants and products in the chem-
ical reaction).

Of particular importance is the standard molar enthalpy of formation, A(H ),
which corresponds to the standard reaction enthalpy for the formation of one mole
of a compound from its elements in their standard states. The standard enthalpies
of formation of three different modifications of Al;SiOs are given as examples in
Table 1.4 [3]. Compounds like these, which are formed by combination of
electropositive and electronegative elements, generally have large negative
enthalpies of formation due to the formation of strong covalent or ionic bonds. In
contrast, the difference in enthalpy of formation between the different modifica-
tions is small. This is more easily seen by consideration of the enthalpies of forma-
tion of these ternary oxides from their binary constituent oxides, often termed the
standard molar enthalpy of formation from oxides, A¢ . H ), which correspond
to A Hy, for the reaction

Si0; (s) + AlpO3 (s) = Al»SiOs5 (s) (1.21)
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Table 1.4 The enthalpy of formation of the three polymorphs of Al»,SiOs5, kyanite, andalu-
site and sillimanite at 298.15 K [3].

Reaction AsHP 1 KJ mol-1
2 Al (s) + Si () + 5/2 O, (g) = Al,SiOs (kyanite) -2596.0
2 Al (s) + Si (s) + 5/2 O, (g) = Al,SiO5 (andalusite) -2591.7
2 Al (s) + Si (s) + 5/2 O, (g) = Al,SiO5 (sillimanite) —2587.8

These are derived by subtraction of the standard molar enthalpy of formation of
the binary oxides, since standard enthalpies of individual reactions can be com-
bined to obtain the standard enthalpy of another reaction. Thus,

AgoxHm (Al SiO5) = A¢H g (Al SiOs) — A H g (Al O3) (1.22)

—A¢H (Si0y)

This use of the first law of thermodynamics is called Hess’s law:

The standard enthalpy of an overall reaction is the sum of the standard
enthalpies of the individual reactions that can be used to describe the overall
reaction of Al»SiOs.

Whereas the enthalpy of formation of Al,SiO5 from the elements is large and
negative, the enthalpy of formation from the binary oxides is much less so.
A oxHy, 1s furthermore comparable to the enthalpy of transition between the dif-
ferent polymorphs, as shown for Al;SiO5 in Table 1.5 [3]. The enthalpy of fusion is
also of similar magnitude.

The temperature dependence of reaction enthalpies can be determined from the
heat capacity of the reactants and products. When a substance is heated from 7' to
T, at a particular pressure p, assuming no phase transition is taking place, its molar
enthalpy change from AH , (T) to AH , (T, ) is

Table 1.5 The enthalpy of formation of kyanite, andalusite and sillimanite from the binary
constituent oxides [3]. The enthalpy of transition between the different polymorphs is also
given. All enthalpies are given for 7= 298.15 K.

Reaction A Hp = Ag o Hy / kI mol-!
Al,O3 (s) + SiO; (s) = Al,SiO5 (kyanite) -9.6

Al)O3 (s) + SiO, (s) = Al,SiO5 (andalusite) =53

Al,O3 (s) + SiO; (s) = Al,SiOs (sillimanite) -1.4

Al,S105 (kyanite) = Al,SiO5 (andalusite) 43

Al,Si05 (andalusite) = Al,Si05 (sillimanite) 3.9
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T,
AH o (Ty) = AH (1)) + [ € dT (1.23)
T;

This equation applies to each substance in a reaction and a change in the standard
reaction enthalpy (i.e. p is now p° = 1 bar) going from T to T, is given by

T,
A HO(Ty)=AHO(Ty) + [AC) o dT (1.24)
7,

where Ang’m is the difference in the standard molar heat capacities at constant
pressure of the products and reactants under standard conditions taking the

stoichiometric coefficients that appear in the chemical equation into consideration:

ArCpm =2iCpmD =2 viCpm (@ (1.25)
J i

The heat capacity difference is in general small for a reaction involving con-
densed phases only.

1.3 The second and third laws of thermodynamics

The second law and the definition of entropy

A system can in principle undergo an indefinite number of processes under the con-
straint that energy is conserved. While the first law of thermodynamics identifies
the allowed changes, a new state function, the entropy S, is needed to identify the
spontaneous changes among the allowed changes. The second law of thermody-
namics may be expressed as

The entropy of a system and its surroundings increases in the course of a
spontaneous change, AS ; >0.

The law implies that for a reversible process, the sum of all changes in entropy,
taken over all the systems participating in the process, AS ., is zero.

Reversible and non-reversible processes

Any change in state of a system in thermal and mechanical contact with its sur-
roundings at a given temperature is accompanied by a change in entropy of the
system, dS, and of the surroundings, dSgy;:

dS +dSg, =20 (1.26)

sur —
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The sum is equal to zero for reversible processes, where the system is always
under equilibrium conditions, and larger than zero for irreversible processes. The
entropy change of the surroundings is defined as

dg
sur —

T

ds (1.27)

where dgq is the heat supplied to the system during the process. It follows that for
any change:

ds = % (1.28)

which is known as the Clausius inequality. If we are looking at an isolated system
ds >0 (1.29)

Hence, for an isolated system, the entropy of the system alone must increase when
a spontaneous process takes place. The second law identifies the spontaneous
changes, but in terms of both the system and the surroundings. However, it is pos-
sible to consider the specific system only. This is the topic of the next section.

Conditions for equilibrium and the definition of Helmholtz and Gibbs
energies

Let us consider a closed system in thermal equilibrium with its surroundings at a
given temperature 7, where no non-expansion work is possible. Imagine a change
in the system and that the energy change is taking place as a heat exchange between
the system and the surroundings. The Clausius inequality (eq. 1.28) may then be
expressed as

ds—%zo (1.30)

If the heat is transferred at constant volume and no non-expansion work is done,

dS—%gzo (1.31)

The combination of the Clausius inequality (eq. 1.30) and the first law of thermo-
dynamics for a system at constant volume thus gives

7dS = dU (1.32)
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Correspondingly, when heat is transferred at constant pressure (pV work only),
17dS = dH (1.33)

For convenience, two new thermodynamic functions are defined, the Helmholtz
(A) and Gibbs (G) energies:

A=U-TS (1.34)
and
G=H-TS (1.35)
For an infinitesimal change in the system
dA =dU —-TdS - SdT (1.36)
and
dG =dH -TdS - SdT (1.37)
At constant temperature eqs. (1.36) and (1.37) reduce to
dA=dU -TdS (1.38)
and
dG =dH -TdS (1.39)
Thus for a system at constant temperature and volume, the equilibrium condition is
dAry =0 (1.40)
In a process at constant 7'and V'in a closed system doing only expansion work it
follows from eq. (1.32) that the spontaneous direction of change is in the direction
of decreasing A. At equilibrium the value of A is at a minimum.
For a system at constant temperature and pressure, the equilibrium condition is
dGr , =0 (1.41)
In a process at constant 7'and p in a closed system doing only expansion work it fol-

lows from eq. (1.33) that the spontaneous direction of change is in the direction of
decreasing G. At equilibrium the value of G is at a minimum.
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Equilibrium conditions in terms of internal energy and enthalpy are less appli-
cable since these correspond to systems at constant entropy and volume and at con-
stant entropy and pressure, respectively

dUg y =0 (1.42)
dHg , =0 (1.43)

The Helmholtz and Gibbs energies on the other hand involve constant tempera-
ture and volume and constant temperature and pressure, respectively. Most experi-
ments are done at constant 7'and p, and most simulations at constant 7’and V. Thus,
we have now defined two functions of great practical use. In a spontaneous process
at constant p and 7 or constant p and V, the Gibbs or Helmholtz energies, respec-
tively, of the system decrease. These are, however, only other measures of the
second law and imply that the total entropy of the system and the surroundings
increases.

Maximum work and maximum non-expansion work

The Helmholtz and Gibbs energies are useful also in that they define the maximum
work and the maximum non-expansion work a system can do, respectively. The
combination of the Clausius inequality 7dS > dg and the first law of thermody-
namics dU =dq + dw gives

dw 2 dU -TdS (1.44)

Thus the maximum work (the most negative value of dw) that can be done by a
system is

dw pax =dU —=TdS (1.45)
At constant temperature dA = dU — 7dS and
Wmax =AA (1.46)

If the entropy of the system decreases some of the energy must escape as heat in
order to produce enough entropy in the surroundings to satisfy the second law of
thermodynamics. Hence the maximum work is less than | AU |. AA is the part of the
change in internal energy that is free to use for work. Hence the Helmholtz energy
is in some older books termed the (isothermal) work content.

The total amount of work is conveniently separated into expansion (or pV) work
and non-expansion work.

dw=dw o, —pdV (1.47)
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For a system at constant pressure it can be shown that

dwyon-emax =dH —TdS (1.48)
At constant temperature dG = dH — 7dS and

Wnon-emax = AG (1.49)

Hence, while the change in Helmholtz energy relates to the total work, the change
in Gibbs energy at constant temperature and pressure represents the maximum
non-expansion work a system can do.

Since A G ° for the formation of 1 mol of water from hydrogen and oxygen gas at
298 K and 1 bar is —237 kJ mol~!, up to 237 kJ mol~! of ‘chemical energy’ can be
converted into electrical energy in a fuel cell working at these conditions using
H»(g) as fuel. Since the Gibbs energy relates to the energy free for non-expansion
work, it has in previous years been called the free energy.

The variation of entropy with temperature

For a reversible change the entropy increment is dS =dq/T. The variation of the
entropy from T to T» is therefore given by

— dQl‘eV
S(Ty) = S(Ty) + iT (1.50)
1

For a process taking place at constant pressure and that does not involve any non-
pV work

d ey =dH =C,dT (1.51)
and
BC,dr
S(T,)=S(T)) + IT (1.52)
T

The entropy of a particular compound at a specific temperature can be determined
through measurements of the heat capacity as a function of temperature, adding
entropy increments connected with first-order phase transitions of the compound:

Ttrs C T T
ST)=SO+ | P D DS + |
0 r T,

trs

C,(T)

dr (1.53)
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Figure 1.5 Standard entropy of aluminium relative to 0 K. The standard entropy of fusion
(Agys Spy) is significantly smaller than the standard entropy of boiling (Avap So).

The variation of the standard entropy of aluminium from 0 K to the melt at 3000 K
is given in Figure 1.5. The standard entropy of fusion and in particular the standard
entropy of vaporization contribute significantly to the total entropy increment.

Equation (1.53) applies to each substance in a reaction and a change in the stan-
dard entropy of a reaction (p is now p° = 1 bar) going from 7 to T, is given by
(neglecting for simplicity first-order phase transitions in reactants and products)

BA.CO. (T
A S°(Ty)=A,S°(T)) + jwdT

1

(1.54)

where A, C ) ., (T)is given by eq. (1.25).

The third law of thermodynamics
The third law of thermodynamics may be formulated as:

If the entropy of each element in some perfect crystalline state at 7= 0 K is taken
as zero, then every substance has a finite positive entropy which at 7= 0 K
become zero for all perfect crystalline substances.

In a perfect crystal at 0 K all atoms are ordered in a regular uniform way and the
translational symmetry is therefore perfect. The entropy is thus zero. In order to
become perfectly crystalline at absolute zero, the system in question must be able
to explore its entire phase space: the system must be in internal thermodynamic
equilibrium. Thus the third law of thermodynamics does not apply to substances
that are not in internal thermodynamic equilibrium, such as glasses and glassy
crystals. Such non-ergodic states do have a finite entropy at the absolute zero,
called zero-point entropy or residual entropy at 0 K.
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Figure 1.6 Heat capacity of rhombic and monoclinic sulfur [4,5] and the derived entropy of
transition between the two polymorphs.

The third law of thermodynamics can be verified experimentally. The stable
rhombic low-temperature modification of sulfur transforms to monoclinic sulfur at
368.5 K (p = 1 bar). At that temperature, Ty, the two polymorphs are in equilib-
rium and the standard molar Gibbs energies of the two modifications are equal. We
therefore have

AtrSGI(I)l :A[I‘SHI’OH _TtrsAtrsSI(;l =0 (1.55)

It follows that the standard molar entropy of the transition can be derived from the
measured standard molar enthalpy of transition through the relationship

AtI'SSI?I :Atrer(;l ™ (1.56)

Calorimetric experiments give A . Hy =401.66 J mol~! and thus A (S5 =1.09
J K- mol~![4]. The entropies of the two modifications can alternatively be derived
through integration of the heat capacities for rhombic and monoclinic sulfur given
in Figure 1.6 [4,5]. The entropy difference between the two modifications, also
shown in the figure, increases with temperature and at the transition temperature
(368.5 K) itis in agreement with the standard entropy of transition derived from the
standard enthalpy of melting. The third law of thermodynamics is thereby con-
firmed. The entropies of both modifications are zero at 0 K.

The Maxwell relations

Maxwell used the mathematical properties of state functions to derive a set of
useful relationships. These are often referred to as the Maxwell relations. Recall
the first law of thermodynamics, which may be written as

dU =dg + dw (1.57)



1.3 The second and third laws of thermodynamics 19

For areversible change in a closed system and in the absence of any non-expansion
work this equation transforms into

dU =TdS - pdV (1.58)

Since dU is an exact differential, its value is independent of the path. The same
value of dU is obtained whether the change is reversible or irreversible, and eq.
(1.58) applies to any change for a closed system that only does pV work. Equation
(1.58) is often called the fundamental equation. The equation shows that the
internal energy of a closed system changes in a simple way when S and V are
changed, and U can be regarded as a function of S and V. We therefore have

dU = ou ds + ou dv (1.59)
oS )y oV )g
It follows from eqs. (1.58) and (1.59) that
ou =T (1.60)
oS )y
and that
ou
bt (R (1.61)
(av ]5 s

Generally, a function f(x,y) for which an infinitesimal change may be expressed
as

df = gdx + hdy (1.62)

1s exact if

32
), \ox),

Thus since the internal energy, U, is a state function, one of the Maxwell relations
may be deduced from (eq. 1.58):

5,
ov)s \as )y
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Table 1.6 The Maxwell relations.

Thermodynamic Differential Equilibrium Maxwell’s relations
function condition
U(s,V) dU =T1dS - pdV dU)gy=0 (6Tj _ [ap)
oS
H (S, p) dH = TdS + Vdp (dH)5,=0 ( j
S
A(T,V) dA =-8dT - pdv (dA)7y =0 (ai] [ )
ov)r
G (T, p) dG = -SdT + Vdp (dG)7, =0 E J
)y
14 A T
U G
S H p

Figure 1.7 The thermodynamic square. Note that the two arrows enable one to get the right
sign in the equations given in the second column in Table 1.6.

Using H =U + pV,A=U —TS and G = H — TS the remaining three Maxwell rela-
tions given in Table 1.6 are easily derived starting with the fundamental equation (eq.
1.58). A convenient method to recall these equations is the thermodynamic square
shown in Figure 1.7. On each side of the square appears one of the state functions
with the two natural independent variables given next to it. A change in the internal
energy dU, for example, is thus described in terms of dS and dV. The arrow from S to
T implies that 7dS is a positive contribution to dU, while the arrow from p to V
implies that pdV is a negative contribution. Hence dU =TdS — pdV follows.

Properties of the Gibbs energy

Thermodynamics applied to real material systems often involves the Gibbs energy,
since this is the most convenient choice for systems at constant pressure and tem-
perature. We will thus consider briefly the properties of the Gibbs energy. As the
natural variables for the Gibbs energy are T and p, an infinitesimal change, dG, can
be expressed in terms of infinitesimal changes in pressure, dp, and temperature, d7.

dG = oG d +(8GJ dr (1.65)
op oT »
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The Gibbs energy is related to enthalpy and entropy through G = H — TS. For an
infinitesimal change in the system

dG =dH -TdS - SdT (1.66)
Similarly, H=U + pV gives
dH =dU + pdV +Vdp (1.67)

Thus in the absence of non-expansion work for a closed system, the following
important equation

dG =Vdp - SdT (1.68)

is easily derived using also eq. (1.58). Equations (1.65) and (1.68) implies that the
temperature derivative of the Gibbs energy at constant pressure is —S:

oG
=— 1.6
(8 jp S (1.69)

and thus that

T;
G(T)=G(Ty) - | SdT (1.70)
T

1

where i and f denote the initial and final p and T conditions. Since S is positive for a
compound, the Gibbs energy of a compound decreases when temperature is
increased at constant pressure. G decreases most rapidly with temperature when S
is large and this fact leads to entropy-driven melting and vaporization of com-
pounds when the temperature is raised. The standard molar Gibbs energy of solid,
liquid and gaseous aluminium is shown as a function of temperature in Figure 1.8.
The corresponding enthalpy and entropy is given in Figures 1.2 and 1.5. The
melting (vaporization) temperature is given by the temperature at which the Gibbs
energy of the solid (gas) and the liquid crosses, as marked in Figure 1.8.
Equation (1.70) applies to each substance in a reaction and a change in the stan-
dard Gibbs energy of areaction (p is now p°® = 1 bar) going from 7j to T¢is given by

Ty
ArGO(Tf):ArGO(Ti)—JArSOdT (1.71)
T
A, S° is not necessarily positive and the Gibbs energy of a reaction may increase
with temperature.
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Figure 1.8 Standard Gibbs energy of solid, liquid and gaseous aluminium relative to the
standard Gibbs energy of solid aluminium at 7= 0 K as a function of temperature (at p = 1
bar).

The pressure derivative of the Gibbs energy (eq. 1.68) at constant temperature is

V.
(aGJ =V (1.72)
op )r

and the pressure variation of the Gibbs energy is given as

P
G(pr)=G(p) + [Vdp (1.73)
Pi

Since V is positive for a compound, the Gibbs energy of a compound increases
when pressure is increased at constant temperature. Thus, while disordered phases
are stabilized by temperature, high-density polymorphs (lower molar volumes) are
stabilized by pressure. Figure 1.9 show that the Gibbs energy of graphite due to its
open structure increases much faster with pressure than that for diamond. Graphite
thus transforms to the much denser diamond modification of carbon at 1.5 GPa at
298 K.

Equation (1.73) applies to each substance in a reaction and a change in the Gibbs
energy of a reaction going from p;j to pr is given by

D
ALG(pg) =AG(py) + [ A Vdp (1.74)
Pi
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Figure 1.9 Standard Gibbs energy of graphite and diamond at 7 = 298 K relative to the
standard Gibbs energy of graphite at 1 bar as a function of pressure.
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Figure 1.10 The standard Gibbs energy of formation from the binary constitutent oxides of
the kyanite, sillimanite and andalusite modifications of Al»Si0O5 as a function of pressure at
800 K. Data are taken from [3]. All three oxides are treated as incompressible.

A,V is not necessarily positive, and to compare the relative stability of the different
modifications of a ternary compound like Al;SiO5 the volume of formation of the
ternary oxide from the binary constituent oxides is considered for convenience.
The pressure dependence of the Gibbs energies of formation from the binary con-
stituent oxides of kyanite, sillimanite and andalusite polymorphs of Al,SiOj5 are
shown in Figure 1.10. Whereas sillimanite and andalusite have positive volumes of
formation and are destabilized by pressure relative to the binary oxides, kyanite
has a negative volume of formation and becomes the stable high-pressure phase.
The thermodynamic data used in the calculations are given in Table 1.7 [3].!

1 Note that these three minerals, which are common in the Earth’s crust, are not stable at

ambient pressure at high temperatures. At ambient pressure, mullite (3A103-2Si0y), is
usually found in refractory materials based on these minerals.
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Table 1.7 Thermodynamic properties of the kyanite, sillimanite and andalusite poly-
morphs of AlSiO5 at 800 K [3].

Compound AfHI(I)l Sr[1)1 Vn(; Ag OXHI’(I)I Af ox S[(1)1 Ag oxGr% Af,oxvn(i
kImol-l  JK-I cm3 mol-! kJ mol-1  JK-1 J mol-1 cm3 mol-1
mol-! mol-!

Sillimanite -2505.57 252.4 50.4 -3.32 0.1 -3400 1.3
Kyanite -2513.06  240.1 44.8 -10.81 -12.2 -1050 —4.3
Andalusite -2509.08  248.8 522 -6.83 -3.5 -4030 3.1
Al,O4 -1622.62 1522 25.8

SiO, -879.63  100.1 23.3

1.4 Open systems

Definition of the chemical potential

A homogeneous open system consists of a single phase and allows mass transfer
across its boundaries. The thermodynamic functions depend not only on tempera-
ture and pressure but also on the variables necessary to describe the size of the
system and its composition. The Gibbs energy of the system is therefore a function
of T, p and the number of moles of the chemical components i, n;:

G =G(T,p.n;) (1.75)

The exact differential of G may be written

dG :[OGJ dr +(6GJ dp +[8G] dn; (1.76)
oT P op T, on; T.pns

The partial derivatives of G with respect to T'and p, respectively, we recall are —S
and V. The partial derivative of G with respect to n; is the chemical potential of
component i, U;

oG
u; = [J (1.77)
on; T.pnjs

Equation (1.68) can for an open system be expressed as

dG =-SdT +Vdp+Y_ p;dn; (1.78)
i
The internal energy, enthalpy and Helmholtz energy can be expressed in an analo-
gous manner:
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dU =TdS — pdV + ) p;dn; (1.79)
i

dH =TdS +Vdp + Y p;dn; (1.80)
i

dA =-SdT - pdV +Y_ p;dn; (1.81)

1

The chemical potential is thus defined by any of the following partial derivatives:

H(@G] (%J (GHJ (avj (1.82)
ani T,p,nj¢i ani T,V,nj,_l- ani S,p,nj¢i ani S,V,nj,:i

Conditions for equilibrium in a heterogeneous system
Recall that the equilibrium condition for a closed system at constant 7 and p was
given by eq. (1.41). For an open system the corresponding equation is

(dG)T,p’nl. =0 (183)

For such a system, which allows transfer of both heat and mass, the chemical poten-
tial of each species must be the same in all phases present in equilibrium; hence

u =pf=pr = (1.84)

Here o, 8 and ydenote different phases in the system, whereas i denotes the dif-
ferent components of the system.

Partial molar properties

In open systems consisting of several components the thermodynamic properties
of each component depend on the overall composition in addition to 7 and p.
Chemical thermodynamics in such systems relies on the partial molar properties
of the components. The partial molar Gibbs energy at constant p, T'and n; (eq. 1.77)
has been given a special name due to its great importance: the chemical potential.
The corresponding partial molar enthalpy, entropy and volume under the same
conditions are defined as

73 :[aHJ (1.85)
al’li T
y

J#i

S =[65j (1.86)
an[ T’p’njii
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V= [avj (1.87)
ani T’p’njii

Note that the partial molar derivatives may also be taken under conditions other
than constant p and T.

The Gibbs-Duhem equation

In the absence of non pV-work, an extensive property such as the Gibbs energy of a
system can be shown to be a function of the partial derivatives:

oG —
G=Zn,~[j =>n,G; =Y n;lu (1.88)
i anl T’p’nj¢i i i

In this context G itself is often referred to as the integral Gibbs energy.
For a binary system consisting of the two components A and B the integral Gibbs

energy eq. (1.88) is

GZI’IA/JA +ngUpg (189)
Differentiation of eq. (1.89) gives

dGznAduA +dl’lA,LLA +an‘uB +dnB,uB (1.90)
By using eq. (1.78) at constant T and p, G is also given by

dGz,LLAdnA +,UBdI’lB (191)

By combining the two last equations, the Gibbs—Duhem equation for a binary
system at constant 7 and p is obtained:

nadp +ngdug =0 ie. D n;du; =0 (1.92)
i

In general, for an arbitrary system with i components, the Gibbs—Duhem equa-
tion is obtained by combining eq. (1.78) and eq. (1.90):

SAT —Vdp + Y n;du; =0 (1.93)
i
Expressions for the other intensive parameters such as V, S and H can also be
derived:

D n;dV; =0 (1.94)
i
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D n;dS; =0 (1.95)
i
D n;dH; =0 (1.96)
i

The physical significance of the Gibbs—Duhem equation is that the chemical
potential of one component in a solution cannot be varied independently of the
chemical potentials of the other components of the solution. This relation will be
further discussed and used in Chapter 3.
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Single-component systems

This chapter introduces additional central concepts of thermodynamics and gives
an overview of the formal methods that are used to describe single-component sys-
tems. The thermodynamic relationships between different phases of a single-com-
ponent system are described and the basics of phase transitions and phase diagrams
are discussed. Formal mathematical descriptions of the properties of ideal and real
gases are given in the second part of the chapter, while the last part is devoted to the
thermodynamic description of condensed phases.

2.1 Phases, phase transitions and phase diagrams

Phases and phase transitions

In Chapter 1 we introduced the term phase. A phase is a state that has a particular
composition and also definite, characteristic physical and chemical properties. We
may have several different phases that are identical in composition but different in
physical properties. A phase can be in the solid, liquid or gas state. In addition,
there may exist more than one distinct crystalline phase. This is termed polymor-
phism, and each crystalline phase represents a distinct polymorph of the substance.

A transition between two phases of the same substance at equilibrium is called a
first-order phase transition. At the equilibrium phase transition temperature the
equilibrium condition eq. (1.84) yields

u® =pf @.1)

where oand f denote the two coexisting phases. In this chapter we are only consid-
ering single component systems (i = 1) and for simplicity eq. (2.1) is expressed as

29
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u® =uf (2.2)

Thus the molar Gibbs energies of the two phases are the same at equilibrium.

Typical first-order phase transitions are for example melting of ice and vaporization of
water at p = 1 bar and at 0° and 99.999 °C, respectively. First-order phase transitions
are accompanied by discontinuous changes in enthalpy, entropy and volume. H, S and V
are thermodynamically given through the first derivatives of the chemical potential with
regard to temperature or pressure, and transitions showing discontinuities in these func-
tions are for that reason termed first-order. By using the first derivatives of the Gibbs
energy with respect to p and 7, defined in egs. (1.69) and (1.72), the changes in the slopes
of the chemical potential at the transition temperature are given as

ouP ou’
[g _[ g ] =Vr€ _Vlflf =AusVim (2.3)
P T P T
M — atu’lx :_S:B +Sa :_A S :_AtrsHm (24)
T or , m m trs X m T
p

Here A Vi, AysSm and Ay H,, are the changes in the molar volume, entropy
and enthalpy connected with the phase transition. Phases separated by a first-order
transition can be present together with a distinct interface, and the phases are thus
coexistent under certain conditions. For a single component system like H,O, ice
and water are coexistent at the melting temperature. The same is true at the first-
order transition between two crystalline polymorphs of a given compound. The
changes in heat capacity at constant pressure, enthalpy, entropy and Gibbs energy
at the first-order semi-conductor—metal transition in NiS [1] are shown in Figure
2.1. The heat capacity at constant pressure is the second derivative of the Gibbs
energy and is given macroscopically by the temperature increment caused by an
enthalpy increment; Cj, = AH/AT. Since the first-order transition takes place at con-
stant temperature, the heat capacity in theory should be infinite at the transition
temperature. This is obviously not observed experimentally, but heat capacities of
the order of 107108 J K- mol~! are observed on melting of pure metals [2].

Transformations that involve discontinuous changes in the second derivatives of
the Gibbs energy with regard to temperature and pressure are correspondingly
termed second-order transitions. For these transitions we have discontinuities in
the heat capacity, isothermal compressibility and isobaric expansivity:

P?uf ) (Pu®) _ [osh [osa
oT? oT? oT oT (2.5)
P p p P

= _(Cg,m _Cg,m)/T =—AysC

/T

p.m
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Figure 2.1 The temperature variation of the heat capacity, enthalpy, entropy, and Gibbs
energy close to the first-order semiconductor to metal transition in NiS [1].

o*ub _(a%ﬂ} favE) (avg
2 2
o )r " )y b ). o ), (2.6)
= —V(K'g —K7)=-VA K7
uP ) (2u*) (avE ) [ovg
oTop oTop oT oT 2.7

p p
=Vl -a®) =VA o

where k7 and o are the isothermal compressibility (eq. 1.19) and isobaric
expansivity (eq. 1.18).

Modifications separated by a second-order transition can never be coexistent.
One typical second-order transition, the displacive structural transition, is charac-
terized by the distortion of bonds rather than their breaking, and the structural
changes that occur are usually small. Typically, there is continuous variation in the
positional parameters and the unit cell dimensions as a function of temperature.
The structural changes in the system occur gradually as the system moves away
from the transition point. As well as a structural similarity, a symmetry relationship
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Figure 2.3 The temperature variation of the Gibbs energy [5], unit-cell volume [4]
enthalpy and heat capacity [5] at the second-order o- to B-quartz transition of SiOj.
Second-order derivatives of the Gibbs energy like the heat capacity have discontinuities at
the transition temperature.

exists between the two modifications.! The - to B-quartz transition may serve as an
example, and the two modifications of SiO; are illustrated in Figure 2.2. a-quartz is
most easily considered as a distorted version of high-temperature 3-quartz. When f3-
quartz is cooled below 573 °C at 1 bar the framework of the structure collapses to the
denser a-configuration. The mean Si—O bond distances hardly change, but the
Si—0-Si bond angle decreases from 150.9° at 590 °C to 143.61° at room temperature
[3]. The variations of the unit cell volume [4], heat capacity, enthalpy, and Gibbs
energy with temperature in the transition region [5] are given in Figure 2.3. While the

1 Second-order transitions have certain restrictions concerning the symmetry of the space group for
each of the two modifications. A second-order transition can only occur between two modifications
where the space group of the first is a sub-group of the space group of the second. First-order phase
transitions do not have any restrictions concerning the symmetries of the two phases.
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transition is barely seen in the Gibbs energy, it gives rise to a change of slope in
enthalpy and volume and to a discontinuity in the heat capacity.

It is possible that both the first and second derivatives of the Gibbs energy are
continuous, and that the discontinuous changes occur in the third-order derivatives
of the Gibbs energy. The corresponding transition would be of third order. In prac-
tice, it is difficult to decide experimentally whether or not there is a discontinuity in
the heat capacity, thermal expansivity or isothermal compressibility at the transi-
tion temperature. Even small jumps in these properties, which are difficult to verify
experimentally, will signify a second-order transition. Hence it is common to call
all transitions with continuous first-order derivatives second-order transitions.
Similarly, it may be difficult to distinguish some first-order transitions from
second-order transitions due to kinetics.

Slopes of the phase boundaries

A phase boundary for a single-component system shows the conditions at which
two phases coexist in equilibrium. Recall the equilibrium condition for the phase
equilibrium (eq. 2.2). Let p and T change infinitesimally but in a way that leaves the
two phases awand fin equilibrium. The changes in chemical potential must be iden-
tical, and hence

du® =du® 2.8)

An infinitesimal change in the Gibbs energy can be expressed as dG = Vdp — SdT
(eq. 1.68) and eq. (2.8) becomes

~S%4r +v&dp=-sBar +vPap (2.9)

Equation (2.9) can be rearranged to the Clapeyron equation:

%=Atrssm
dT AV

trs ¥ m

(2.10)

Atequilibrium A S, =AH, / Ty and the Clapeyron equation may be written

9 _ Ausllm (2.11)
dT TtrsAtrst

The variation of the phase transition temperature with pressure can be calculated
from the knowledge of the volume and enthalpy change of the transition. Most
often both the entropy and volume changes are positive and the transition tempera-
ture increases with pressure. In other cases, notably melting of ice, the density of
the liquid phase is larger than of the solid, and the transition temperature decreases
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Figure 2.4 The initial d7/dp slope of selected first-order phase transitions relative to the
transition temperature at p = 1 bar. Data taken from [6,7].

with pressure. The slope of the pT boundary for some first-order transitions is
shown in Figure 2.4.

It should be noted that the boiling temperature of all substances varies more rap-
idly with pressure than their melting temperature since the large volume change
during vaporization gives a small dp/dT. For a liquid—vapour or solid—vapour
boundary the volume of gas is much larger than the volume of the condensed phase,
and A ,,Vy, = V5 is a reasonable approximation. For an ideal gas (see eq. 2.23),
VE® = RT/pand equation (2.11) rearrange to the Clausius—Clapeyron equation:

dinp AvapHn
dr RT?2

(2.12)

The vapour pressure of Zn as a function of temperature, which implicitly also shows
the variation of the boiling temperature with pressure, is shown in Figure 2.5.

Zn

800 1000 1200 1400
T/K
Figure 2.5 The vapour pressure of pure Zn as a function of temperature. The standard

boiling (or vaporization) temperature is defined by the temperature at which the pressure of
Zn is 1 bar.
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Second-order transitions do not involve coexisting phases but are transitions in
which the structural properties gradually change within a single phase. The low-
and high-temperature modifications are here two modifications of the same phase.
Hence, although these transitions often are represented in phase diagrams, they are
not heterogeneous phases and do not obey Gibbs’ phase rule (see below). There is
no discontinuous change in the first derivatives of the Gibbs energy at the transition
temperature for a second-order transition, and the volumes of the two phases are
thus equal. The change in volume, dV, must be equal for both modifications if the
transition is to remain continuous. Taking into account that V is a function of tem-
perature and pressure and by using the definitions of the isobaric expansivity and
the isothermal compressibility:

dv = v dT + v dp=VodT —Vkydp (2.13)
oTr » op )r

Thus the pT slope is for a second-order transition is given as

dp _ Ao

ap (2.14)
dT" AKr

Some selected examples of the variation with pressure of the transition tempera-
tures of second-order transitions are shown in Figure 2.6.
Phase diagrams and Gibbs phase rule

A phase diagram displays the regions of the potential space where the various
phases of the system are stable. The potential space is given by the variables of the
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Figure 2.6 The initial d7/dp slope of selected second-order transitions relative to the tran-
sition temperature at p = 1 bar; o~ to B-quartz (SiOp) [8], the Néel temperature (7N) of
Fe _,0O [9] and the Néel temperature of Lag 7Cap.3MnO3 [10].
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Figure 2.7 The p,T phase diagram of HoO (the diagram is not drawn to scale).

system: pressure, temperature, composition and, if applicable, other variables such
as electric or magnetic field strengths. In this chapter we are considering single
component systems only. For a single-component system the phase diagram dis-
plays the regions of pressure and temperature where the various phases of this com-
ponent are stable. The lines separating the regions — the phase boundaries — define
the p,T conditions at which two phases of the component coexist in equilibrium.

Let us initially consider a single-component phase diagram involving a solid, a
liquid and a gaseous phase. The p, T phase diagram of H>O is given as an example in
Figure 2.7. The transformations between the different phases are of first order. The
liquid—vapour phase boundary shows how the vapour pressure of the liquid varies
with temperature. Similarly, the solid—vapour phase boundary gives the tempera-
ture variation of the sublimation vapour pressure of the solid.

The temperature at which the vapour pressure of a liquid is equal to the external
pressure is called the boiling temperature at that pressure. The standard boiling
temperature is the boiling temperature at 1 bar. Correspondingly, the standard
melting temperature is the melting temperature at 1 bar. Boiling is not observed
when a liquid is heated in a closed vessel. Instead, the vapour pressure increases
continuously as temperature is raised. The density of the vapour phase increases
while the density of the liquid decreases. At the temperature where the densities of
the liquid and the vapour become equal, the interface between the liquid and the
gas disappears and we have reached the critical temperature of the substance, 7.
This is visualized by using volume (or if preferred, density) as a third variable in a
three-dimensional (p,T,V) phase diagram — see Figure 2.8. The vapour pressure at
the critical temperature is called the critical pressure. A single uniform phase, the
supercritical fluid, exists above the critical temperature.

For a single-component system p and T can be varied independently when only
one phase is present. When two phases are present in equilibrium, pressure and
temperature are not independent variables. At a certain pressure there is only one
temperature at which the two phases coexist, e.g. the standard melting temperature
of water. Hence at a chosen pressure, the temperature is given implicitly. A point
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Pressure .

Figure 2.8 Three-dimensional p,T,V representation of a single component phase diagram
visualizing the critical point.

where three phases coexist in equilibrium is termed a triple point; three phases are
in equilibrium at a given temperature and pressure. Ice, water and water vapour are
in equilibrium at 7=273.16 K and p = 611 Pa. None of the intensive parameters can
be changed. The observer cannot affect the triple point.

The relationship between the number of degrees of freedom, F, defined as the
number of intensive parameters that can be changed without changing the number
phases in equilibrium, and the number of phases, Pk, and components, C, in the
system is expressed through Gibbs phase rule:

F=C-Ph+2 (2.15)

In Chapter 4 the determination of the number of components in complex systems
will be discussed in some detail. In this chapter we shall only consider single-com-
ponent systems. For a single-component system, such as pure HyO, C=1and F=3
— Ph. Thus, a single phase (Ph = 1) is represented by an area in the p,T diagram and
the number of degrees of freedom F is 2. A line in the phase diagram represents a
heterogeneous equilibrium between two coexisting phases (Ph = 2) and F = 1,
while three phases (Ph = 3) in equilibrium are located at a point, F = 0.

Field-induced phase transitions

Various types of work in addition to pV work are frequently involved in experi-
mental studies. Research on chemical equilibria for example may involve surfaces
or phases at different electric or magnetic potentials [11]. We will here look briefly
at field-induced transitions, a topic of considerable interest in materials science.
Examples are stress-induced formation of piezoelectric phases, electric polariza-
tion-induced formation of dielectrica and field-induced order—disorder transitions,
such as for environmentally friendly magnetic refrigeration.

Magnetic contributions to the Gibbs energy due to an internal magnetic field are
present in all magnetically ordered materials. An additional energetic contribution
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arises in a magnetic field with field strength or magnetic flux density B. This contribu-
tion is proportional to the magnetic moment, m, of the system and thus is B-dm. An
important additional complexity of external fields is that the field has a direction; the
field can be applied parallel to any of the three principal axes of a single crystal. The
magnetic moment and the magnetic field are thus vectors and represented by bold
symbols. The fundamental equation for the internal energy for a system involving
magnetic polarization is when the pV work is negligible (constant volume):

dU=TdS +B-dm (2.16)
The corresponding equation for the Helmholtz energy is
dA=-8SdT+B-dm (2.17)

In order to focus on the driving force for phase transitions induced by a magnetic
field it is advantageous to use the magnetic flux density as an intensive variable.
This can be achieved through what is called a Legendre transform [12]. A trans-
formed Helmholtz energy is defined as

A'=A-Bm=0 (2.18)
Taking the differential of A’ and substituting for dA in eq. (2.17):
dA'=dA-B-dm-m-dB =-SdT-m-dB (2.19)

Assuming an isotropic system, the following Maxwell relation can be derived from
eq. (2.19), since dA' is an exact differential:

5,

The entropy of a ferromagnetically ordered phase decreases with increasing
magnetic field strength. The decrease is equal to the change in the magnetic
moment with temperature and hence is large close to the order—disorder tempera-
ture. This implies that a larger change in the magnetic moment with temperature at
constant field strength gives a higher entropy change connected with a field change
at constant temperature. The effect of a magnetic field on the Helmholtz energy of a
magnetic order—disorder transition thus clearly affects phase stability.

The application of n additional thermodynamic potentials (of electric, magnetic
or other origin) implies that the Gibbs phase rule must be rewritten to take these
new potentials into account:

F+Ph=C+2+n (2.21)
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Figure 2.9 The B-T phase diagram of MnP [13] with the magnetic field along the b-axis.
Three different magnetically ordered phases — ferro, fan and screw — are separated by first-
order phase transitions. The transitions to the disordered paramagnetic state are of second
order and given by a dashed line.

The isobaric (1 bar) T,B-phase diagram of MnP with magnetic field parallel to
the crystallographic b-axis [13] is given in Figure 2.9. At isobaric conditions,
where one degree of freedom is lost, the number of phases and the number of
degrees of freedom are related by F + Ph = 3. Thus areas in the 7,B diagram corre-
spond to a single phase; a line corresponds to two phases in equilibrium; and three
phases may exist in equilibrium at an invariant point, the triple point. It should be
noted that the fact that a magnetic field can be applied parallel to any of the three
principal axes of a single crystal implies that different phase diagrams will result in
each case for a non-cubic crystal.

2.2 The gas phase

Ideal gases

The thermodynamic properties of gases are given through equations of state (EoS)
which in general may be given as

p=f(T.V.n) (2.22)
For an ideal gas the equation of state is known as the ideal gas law:

_nRT
Vv

(2.23)

where R is the gas constant and #n is the number of moles of gas. The Gibbs energy
of a gas at one pressure (ps) relative to that at another pressure (p;) is at constant
temperature given through
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143
G(pp)=G(p;) + [ Vdp (2.24)
Pi

Using the ideal gas law the Gibbs energy expression becomes

M ap (Pfj
G(pr) =G(p;) +nRT [ L =G(p;) +nRT In| P& (2.25)
p

Pi Pi

For any single-component system such as a pure gas the molar Gibbs energy is
identical to the chemical potential, and the chemical potential for an ideal gas is
thus expressed as

u(p)=u°(p°)+RT h{po}:u" +RT Inp (2.26)
p

where the standard chemical potential (1) is the standard molar Gibbs energy of
the pure ideal gas at the standard pressure 1 bar (p°).

The value of this standard molar Gibbs energy, u°(T), found in data compila-
tions, is obtained by integration from O K of the heat capacity determined by the
translational, rotational, vibrational and electronic energy levels of the gas. These
are determined experimentally by spectroscopic methods [14]. However, contrary
to what we shall see for condensed phases, the effect of pressure often exceeds the
effect of temperature. Hence for gases most attention is given to the equations of
state.

Real gases and the definition of fugacity

Real gases do not obey the ideal gas law, but the ideal gas law is often a very good
approximation. The largest deviation from ideal gas behaviour is observed at high
pressures and low temperatures. Figure 2.10 displays schematically the pressure
dependence of the chemical potential. For practical reasons, it is advantageous to
have an expression for the chemical potential of the real gas, which resembles that
used for perfect gases. In order to obtain a simple expression for the chemical
potential we replace the ideal pressure in the expression for the chemical potential
(eq. 2.26) with the effective pressure, the fugacity, f, and we have

u(p)=u°(p°)+RT ln{fOJ:uo +RT Inf (2.27)

p

The standard state for a real gas is thus a hypothetical state in which the gas is at a
pressure of p® = 1 bar and behaving ideally.
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Figure 2.10 Schematic illustration of the pressure dependence of the chemical potential of
a real gas showing deviations from ideal gas behaviour at high pressures.
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Figure 2.11 Fugacity of Np(g) at 273.15 K as a function of pressure [15].

Most applications in materials science are carried out under pressures which do
not greatly exceed 1 bar and the difference between fand p is small, as can be seen
from the fugacity of Nj(g) at 273.15 K [15] given in Figure 2.11. Hence, the
fugacity is often set equal to the partial pressure of the gas, i.e. f~p. More accurate
descriptions of the relationship between fugacity and pressure are needed in other
cases and here equations of state of real, non-ideal gases are used.

Equations of state of real gases

Purely phenomenological as well as physically based equations of state are used to
represent real gases. The deviation from perfect gas behaviour is often small, and
the perfect gas law is a natural choice for the first term in a serial expression of the
properties of real gases. The most common representation is the virial equation of
state:

PV =RT(+Bp+C'p* +...) (2.28)
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An alternative formulation is

Vi =RT(1+B+C2+...J (2.29)

m Vg

The coefficients B and C are the second and third virial coefficients, respectively,
the first virial coefficient being 1.
The compressibility factor of a gas is defined as

7 - PVm (2.30)
RT

For an ideal gas Z = 1. Departures from the value of unity indicate non-ideal behav-
iour. Z < 1 can be related to dominating attractive forces, whereas Z > 1 relates to
repulsive forces being dominant.

The simplest physically based equation of state for real gases, the van der Waals
equation, is based on two assumptions. As pressure is increased, the number of
atoms per unit volume also increases and the volume available to the molecules in
total is reduced, since the molecules themselves take up some space. The volume
taken up by the molecules is assumed to be proportional to the number of mole-
cules, n, and the volume occupied per atom, b. The equation of state is accordingly
modified initially to

nRT
= 2.31
p e ( )

Secondly, since the frequency and force of the collisions with the walls of the
container give the pressure, the change in these two factors with concentration
must be taken into account. The attractive forces working between the molecules
reduce both factors, the reduction being approximately proportional to the molar
concentration (n/V). The pressure is hence reduced by a factor proportional to the
square of this concentration and is then given as

2
nRT n
= —al — 2.32
P V —nb [Vj ( )

The equation can be written in a form resembling the ideal gas law (eq. 2.23):

2
p+a(3j (V — nb) = nRT (2.33)
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For 1 mol of gas, n = 1:
( p+aj(v by=RT (2.34)
V2

The constants a and b can be related to the pressure (p.) temperature (7.) and
volume (V) at the critical point by noting that at the critical point, by definition
(see Section 5.2)

2
P[P (2.35)
v Jr, ov? T

The following three equations are obtained:

8a
T.=— 2.36
© =57 ( )
Pc = a2 (2.37)

27b
V.=3b (2.38)

Hence there must be one relation involving p., T and V. which is independent of
the parameters a and b. This relation defines the critical compressibility factor Z:

_pVe _(@l21b*)Bb) _4 ¢
RT,  (8a/27b)

Z

(2.39)

C

If p, T and V are measured in units of p., T, and V., the van der Waals equation
becomes

(p+3)(3v—1) =8T (2.40)
VZ

where p=p/p., T =T/T, and V =V/V,. This is a remarkable equation because it
does not explicitly contain any free parameter characteristic of the substance and
illustrates the law of corresponding states. All real gases should, according to this
equation, behave in the same manner. The van der Waals equation of state evidently
represents an approximation only, and although it works reasonably well for gases
composed of spherical molecules it fails in many other cases.
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Even though the van der Waals equation is not as accurate for describing the
properties of real gases as empirical models such as the virial equation, it has been
and still is a fundamental and important model in statistical mechanics and chem-
ical thermodynamics. In this book, the van der Waals equation of state will be used
further to discuss the stability of fluid phases in Chapter 5.

2.3 Condensed phases

For condensed phases (liquids and solids) the molar volume is much smaller than
for gases and also varies much less with pressure. Consequently the effect of pres-
sure on the chemical potential of a condensed phase is much smaller than for a gas
and often negligible. This implies that while for gases more attention is given to the
volumetric properties than to the variation of the standard chemical potential with
temperature, the opposite is the case for condensed phases.

Variation of the standard chemical potential with temperature

The thermodynamic properties of single-component condensed phases are tradi-
tionally given in tabulated form in large data monographs. Separate tables are
given for each solid phase as well as for the liquid and for the gas. In recent years
analytical representations have been increasingly used to ease the implementation
of the data in computations. These polynomial representations typically describe
the thermodynamic properties above room temperature (or 200 K) only.

Polynomial expressions are conveniently used to represent a condensed phase
which is stable in the whole temperature range of interest and which does not
undergo any structural, electronic or magnetic transformations. The Gibbs energy
of a compound is in the CALPHAD approach represented relative to the elements
in their defined standard state at 298.15 K as a power series in terms of temperature
in the form of [16]:

i
GAT)~HIR =a+bT +cTIn(T)+ Y d, T" (2.41)
n=2

Here H I%ER is the sum (in the stoichiometric ratio of the compound in question) of
A%98_15 H fl’] of the elements in their defined standard state. a, b, ¢ and d,, are coeffi-
cients and n integers. This form of expression is useful for storing thermodynamic
information in databases. A number of such expressions are often required for a
given phase to cover the whole temperature range of interest. From eq. (2.41) all
other thermodynamic functions can be derived, e.g.

STy =~b—c—cn() - nd,T"" (2.42)

n
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Table 2.1 Thermodynamic properties of AIN at selected temperatures (data are taken from
NIST-JANAF tables [17]). Enthalpy reference temperature = 7 = 298.15 K; p® = 1 bar.

I Cpom Sm AbosisHm  ArHp AiGy log Ky
K JK ' mol™ JK ' mol™" kJmol”' Kmol”'  kImol™
0 0. 0. -3.871 -312.980 -312.980 INFINITE
100 5.678 2.164 -3.711 -314.756 -306.283 159.986
200 19.332 10.267 -2.463 -316.764 -296.990 77.566
298.15 30.097 20.142 0. -317.984 -286.995 50.280
300 30.254 20.329 0.056 -318.000 -286.803 49.937
400 36.692 29.987 3.428 -318.594 -276.301 36.081
500 40.799 38.647 7.317 -318.808 -265.697 27.757
600 43.538 46.341 11.541 -318.811 -255.072 22.206
700 45.434 53.201 15.994 -318.727 -244.455 18.241
800 46.791 59.361 20.608 -318.648 -233.850 15.269
900 47.792 64.932 25.339 -318.647 -223.252 12.957
1000 48.550 70.008 30.158 -329.363 -211.887 11.068
2000 51.290 104.790 80.490 -328.119 -94.810 2.476
Hy(T)=a—-cT =) (n-1d,T" (2.43)
n
COmT) === n(n-d,T"" (2.44)

n

These thermodynamic functions implicitly given in analytical representations are
given numerically at selected temperatures in monographs, as shown for AIN in
Table 2.1 [17]. The analytical approach is exemplified by descriptions of three
modifications of aluminium in Table 2.2 [18]. The stable face-centred cubic modi-
fication of crystalline aluminium (FCC-AI) melts at 933.473 K. Hexagonal close-
packed aluminium is unstable at all temperatures, as evident from the graphical
representation of the Gibbs energy relatively to FCC-Al in Figure 2.12. The ther-
modynamic properties may still be needed to describe alloys with hexagonal
closed-packed structure where aluminium is a solute.

Representation of transitions

Thermodynamic representation of transitions often represents a challenge. First-
order phase transitions are more easily handled numerically than second-order
transitions. The enthalpy and entropy of first-order phase transitions can be calcu-
lated at any temperature using the heat capacity of the two phases and the enthalpy
and entropy of transition at the equilibrium transition temperature. Small pre-tran-
sitional contributions to the heat capacity, often observed experimentally, are most
often not included in the polynomial representations since the contribution to the
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Table 2.2 CALPHAD-type representation of the thermodynamic properties of face-cen-
tred cubic (FCC), liquid and hexagonal close-packed (HCP) aluminium of the form (after
Dinsdale [18]):

G(T)~HyR(29815K) =a + bT + T In(T) + ».d, T"
n

with H5PR(29815 K) = A3 HE (FCC_ Al = 4540 J mol 1.

FCC_Al

(298.15 < T/K < 700)

—7976.15 + 137.093038 T — 24.3671976T In(T) — 1.884662E-3 T2 — 0.877664E-6 T3 + 74092 T-!
(700 < T/K < 933.473)

—11276.24 + 223.048446 T - 38.5844296 T In (T) + 18.531982E-3 T2 — 5.764227E-6 T3 + 74092 T-!
(933.473 < T/K < 2900)

-11278.378 + 188.684153 T—31.748192 T'In (T) — 1.231E28 79

Liquid relatively to FCC_Al

(298.15 < T/K < 933.473)

11005.029 — 11.841867 T + 7.934E-20 77
(933.473 < T/K < 2900)

10482.382 — 11.253974 T + 1.231E28 -9

HCP_AI relative to FCC_Al
(298.15 < T/K < 2900)

5481 - 18T

0
|
E
= 3 HCP |
<
Z 0
<
8| FCC
z Sr 1
g
S ol ]
e Al liquid
-15 . . .

500 1000 1500 2000

T/K

Figure 2.12 G5, -Gy, (Al_FCC) of hexagonal closed-packed (HCP) aluminium and alu-
minium melt relative to that of face-centred cubic aluminium [18].

Gibbs energy is small. This contribution is instead incorporated empirically in the
enthalpy and entropy of transition.

It is more difficult to describe second-order transitions. Considerable short-range
order is in general present far above the transition temperature. Correspondingly,
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Figure 2.13 Heat capacity of wiistite around the Néel temperature [19]. O: Feg 990O; ®:

Fep.9470; V: Fe(.9380; +: Feg.9250. Reproduced by permission of the Mineralogical
Society of America.

considerable disordering has taken place already far below the disordering temperature.
The magnetic order—disorder transition in non-stoichiometric wiistite, Fe;_,O, may
serve as an example. The magnetic transition is largely dependent on the stoichiometry
of the compound (see Figure 2.13), and is for the oxygen-rich compositions spread over
a considerable temperature range [19]. The disordering is far from abrupt.

The Inden model [20] is frequently used to describe second-order magnetic
order—disorder transitions. Inden assumed that the heat capacity varied as a loga-
rithmic function of temperature and used separate expressions above and below the
magnetic order—disorder transition temperature (7%s) in order to treat the effects of
both long- and short-range order. Thus for 7= (T/Ty) < 1:

3
C;,nag :KLRln(1+’L' )

T (2.45)
Fort>1
5
cme _ gSplnd+77) (2.46)
b In(1-1%)

The two coefficients KL and KS are derived empirically. They are related through
the entropy of transition and constrained to reproduce the total enthalpy and
entropy increments accompanying the phase transition. Since, the Inden model
demands a series expansion in order to calculate the entropy, a simpler related
equation by Hillert and Jarl [21] is used in many computer programs.
Second-order structural transitions are less frequently represented in applied
thermodynamic calculations. Still, the Landau approach for determination of
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Gibbs energy changes connected with second-order transitions has a long tradi-
tion. The central concept of the Landau theory is the order parameter, I, which
describes the course of the transition. The order parameter is related to the change
in some macroscopic property like strain, average site occupancy or crystallo-
graphic distortion through the phase transition. The measured physical property is,
however, not necessarily directly proportional to I', but most often scales as either
TorI'?. The relationship between the order parameter and the measured physical
property is defined by the differences in symmetry between the high- and low-tem-
perature polymorphs [22].

We will consider a phase transition between two crystal structures with different
symmetry and where the space group of the low-symmetry structure is a sub-group
of the space group of the high-symmetry structure. Hence all symmetry elements of
the high-symmetry structure are present in the low-symmetry structure. An order
parameter, I, is used to describe the thermodynamic state of the low-symmetry
phase. The contribution from the phase transition to the total Gibbs energy, here
termed the transitional Gibbs energy AG, is now given as a function of 7, p and I
as

AyG =AyG(T,p,T) (2.47)

I'is scaled such that it is assigned the value 0 in the high-temperature modification
and 1 in the low-temperature form at 0 K. Thus, A¢G = 0 for the high-temperature
polymorph. The variation of the order parameter with temperature describes the
transition thermodynamically. In general [23]:

A G :ar+%bl"2 +%cl"3 +%d1‘4 +.. (2.48)

Here q, b, ¢, d etc. are coefficients that in general are functions of temperature and
pressure. The equilibrium behaviour of I through the phase transition is deter-
mined by minimizing Ay¢G with respect to I'. Furthermore, at equilibrium the
AysG(I) surface is concave upwards (discussed thoroughly in Section 5.2), hence

2

AusG _g ang TAuwl g (2.49)

or or?
These criteria can be used to get information on the coefficients of eq. (2.48). In the
high-symmetry phase, stable above the transition temperature, the order parameter
I'=0 and the equilibrium conditions imply that the two first constants in the poly-
nomial expansion are restricted to a = 0 and b > 0. If we assume that b < 0, the low-
symmetry phase is stable since I'? >0 then implies that AsG < 0. The transitional
Gibbs energy is thus reduced to
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A G :%bl"z +%cl"3 +idl‘4 ... (2.50)

The Landau theory predicts the symmetry conditions necessary for a transition to
be thermodynamically of second order. The order parameter must in this case vary
continuously from 0O to 1. The presence of odd-order coefficients in the expansion
gives rise to two values of the transitional Gibbs energy that satisfy the equilibrium
conditions. This is not consistent with a continuous change in I" and thus corre-
sponds to first-order phase transitions. For this reason all odd-order coefficients
must be zero. Furthermore, the sign of » must change from positive to negative at the
transition temperature. It is customary to express the temperature dependence of b as
a linear function of temperature:

b=BT —T,) 2.51)

Here B is a constant independent of temperature and pressure. The transitional
Gibbs energy is thus

A G :%B(T ~ Ty ) +idl“4 +éﬂ“6 +... (2.52)

where d, f and higher-order coefficients all are assumed to be independent of tem-
perature and pressure. Normally two or three terms of this expression give a satis-
factory description of the transitional Gibbs energy using experimentally
determined values for the temperature variation of the order parameter.

When d > 0 the expansion describes a thermodynamic second-order transition.
The equilibrium condition neglecting higher order terms is

BuwsG _por ) +dr? =o (2.53)

or

which gives
r? :—S(T “Ty,) for T<Tys (2.54)

The form of the order parameter is given implicitly since by definition I'=1 at 0 K
and hence

. (2.55)
Ttrs

SHESY

and thus
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T T 172
F:{trs } (2.56)

The transitional Gibbs energy is for 7 < Ty

2 2 2
B B B
AygG=— (r _Ttrs)2 + r _Ttrs)2

=2 (T -T,.)? 2.57
2d 4d 4d( trs) ( )

The transitional entropy and heat capacity are readily derived by differentiation
with respect to temperature. For T < Ty

B? 1 2
Ay S =§(T —Ttrs)=—53-r (2.58)
2
B
cis=2_ (2.59)
P o4

The contribution of the transition to the thermodynamic functions can be evalu-
ated once the coefficients B and d have been determined. Experimental determina-
tion of the transition temperature and one additional thermodynamic quantity at
one specific temperature is sufficient to describe the transition thermodynamically
using this model.

It is easily shown that a first-order phase transition is obtained for cases were
d < 0, whereas behaviour at the borderline between first- and second-order transi-
tions, tricritical behaviour, is obtained for d = 0. In the latter case the transitional
Gibbs energy is

A G =%B(T Y o +éﬂ“6 +.. (2.60)

Minimization of the transitional Gibbs energy with respect to I" gives
T T 1/4
I“={trS } (2.61)

The variation of the order parameter with temperature thus distinguishes second-
order transitions from tricritical behaviour. In general the variation of the order
parameter with temperature for a continuous transition is described as

B
= {T“S -7 } (2.62)
Ttrs
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where f is the critical exponent. For our two ideal cases, second-order and
tricritical transitions, =2l (eq. 2.56) and i (eq. 2.61), respectively.

The transitional entropy, enthalpy and heat capacity for a tricritical transition is
for T < Tiyg:

Ay S :—%B-FZ (2.63)

Ay H =—%B-Ttrs .r? +éf .t (2.64)
BT _

Ch =Ty -T) (2.65)

trs

Orientational disordering of the carbonate groups in CaCOj3 above 1260 K may
serve as an example of application of Landau theory. Below the transition tempera-
ture, alternate layers of planar CO3 groups point in opposite directions. In the high-
temperature modification they are free to rotate and become equivalent. The sym-
metry reduction on ordering is from space group R3m to R3c with doubling of the
c-axis length. Thus the transition gives rise to superlattice reflections in the diffrac-
tion patterns of the low-temperature phase. The intensities of these reflections are
according to symmetry considerations proportional to I'2. It has been shown by
neutron diffraction that the order parameter is proportional to (T, —7) 4 and thus
that the transition is tricritical [24]. Ty and the excess enthalpy determined by
drop calorimetry characterize the transition thermodynamically [25]. The contri-
bution from the transition to the total Gibbs energy and entropy (using B = 24 J
mol~! K-1 and f= 30 kJ mol~!) are given in Figure 2.14.

0,
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| o
S 3t g
g o
= M
3 =
4] A

< -6t 2
<

12

300 600 900 1200 300 600 900 1200
T/K

Figure 2.14 The contribution from the order—disorder transition of CaCO3(s) to the total
Gibbs energy and entropy [25].



52 2 Single-component systems

Equations of state

Equations of state of condensed materials are seldom used in materials science but
are frequently used in geophysics and to an increasing degree also in solid state sci-
ences for high-pressure studies of phase transitions. A considerable amount of
work on equations of state of minerals has been reported in the geophysical and
geochemical literature. In the Earth’s mantle the pressure is several orders of mag-
nitude higher than ambient since pressure and temperature increase with
increasing depth within the Earth. Thus equation of state data is essential for ther-
modynamic calculations of phase equilibria in the Earth’s interior.

Equations of state for solids are often cast in terms of the bulk modulus, K7,
which is the inverse of the isothermal compressibility, k7, and thus defined as

Ky =1=—V(6pj (2.66)
K7 ov )r

The two most usual equations of state for representation of experimental data at
high pressure are the Murnaghan and Birch—-Murnaghan equations of state. Both
models are based on finite strain theory, the Birch—-Murnaghan or Eulerian strain
[26]. The main assumption in finite strain theory is the formal relationship between
compression and strain [27]:

Y _+20)32 (2.67)
Vo

The Murnaghan equation of state is given by

K K'r o
_ 810 | Vo -1 (2.68)
KrollV

while what is termed the third-order Birch-Murnaghan equation of state is given
by

7/3 5/3 2/3
3 Vo Vo 3 Vo
=Kol 22| -2 |1-2@-kro) || 22| -1+

(2.69)

where K7 o and K7 ( are the isothermal bulk modulus and its pressure derivative at
T = 298 K at zero pressure, respectively. The third-order Birch—-Murnaghan EoS
reduces to second order when K7 o =4 and
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Figure 2.15 Pressure—volume data for diamond, SiOj-stishovite, MgSiO3 and SiO»-
quartz based on third order Birch—-Murnaghan equation of state descriptions. The iso-
thermal bulk modulus at 1 bar and 298 K are given in the figure.

7/3 5/3
3 Vo Vo
Crad Yol (Yo (2.70)

Volumetric data for four different substances represented by the third-order
Birch—Murnaghan equation of state are shown in Figure 2.15.

The equations discussed above are reliable for phases where the compressibility
does not change too fast with pressure, more specifically for 3.4 < K7 o < 7.
The equations are thus suitable for a large range of crystalline substances but
not for liquids or low-dimensional materials, where K7  is often larger than 7.
In the latter cases the universal Vinet equation of state seems more appropriate
[28].

The effect of temperature on the equation of state is introduced through the iso-
baric thermal expansivity. It is generally assumed that isobaric expansivity and iso-
baric compressibility work independently of each order and the volume as a
function of 7 and p is then expressed as

V(p.T) =V, f(PE(T) (2.71)

Finally, it should be noted that the effect of the compressibility on the
thermodymanics of solids is small even at relatively high pressures. The molar
volume of magnetite, Fe304, at 1000 K is 46.0 cm3 mol-! and VAp at p = 1 GPa is
46 kJ mol~! if the compressibility of the compound is neglected. Taking compress-
ibility into account reduces this contribution to 45.88 kJ mol-! [29].
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Solution thermodynamics

So far we have discussed the thermodynamic properties of materials, which have
been considered as pure and to consist of only a single component. We will now
continue with systems containing two or more components and thereby solutions.
Solutions are thermodynamic phases with variable composition, and are common
in chemical processes, in materials and in daily life. Alloys — solutions of metallic
elements — have played a key role in the development of human civilisation from
the Bronze Age until today. Many new advanced materials are also solutions.
Examples are tetragonal or cubic ZrO,, stabilized by CaO or Y03, with high
toughness or high ionic conductivity, and piezoelectric and dielectric materials
based on BaTiO3 or PbZrOs. In all these cases the mechanical or functional proper-
ties are tailored by controlling the chemical composition of the solid solution. The
chemical and thermal stability of these complex materials can only be understood
if we know their thermodynamic properties.

The understanding of how the chemical potential of a component is changed by
mixing with other components in a solution is an old and fascinating problem. The
aim of this chapter is to introduce the formalism of solution thermodynamics.
Models in which the solution is described in terms of the end members of the solu-
tion, solution models, are given special attention. While the properties of the end
members must be described following the methods outlined in the previous
chapter, the present chapter is devoted to the changes that occur on formation of the
solutions. In principle one could describe the Gibbs energy of a mixture without
knowing the properties of the end members, but since it is often of interest to apply
a solution model in thermodynamic calculations involving other phases, the solu-
tion model often is combined with descriptions of the Gibbs energies of the end
members to give a complete thermodynamic description of the system.

57
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3.1 Fundamental definitions

Measures of composition

The most important characteristic of a solution is its composition, i.e. the concen-
tration of the different components of the phase. The composition of a solution is
best expressed by the ratio of the number of moles of each component to the total
number of moles. This measure of the composition is the mole fraction of a com-
ponent. In the case of a binary solution consisting of the components A and B, the
mole fractions of the two components are defined as

n n
XA =—"A  and XB =_ "B (3.1)
I’lA +nB I’lA +I’lB
and it is evident that
xp +xg=1 (3.2)

For an infinitesimal change in composition of a binary solution the differentials of
the two mole fractions are related as

d)CA :—de (33)

In dealing with dilute solutions it is convenient to speak of the component
present in the largest amount as the solvent, while the diluted component is called
the solute.

While the mole fraction is a natural measure of composition for solutions of
metallic elements or alloys, the mole fraction of each molecule is chosen as the
measure of composition in the case of solid or liquid mixtures of molecules.! In
ionic solutions cations and anions are not randomly mixed but occupy different
sub-lattices. The mole fractions of the atoms are thus an inconvenient measure of
composition for ionic substances. Since cations are mixed with cations and anions
are mixed with anions, it is convenient for such materials to define composition in
terms of ionic fractions rather than mole fractions. In a mixture of the salts AB and
AC, where A is a cation and B and C are anions, the ionic fractions of B and C are
defined through

Xp=—"TB —1-Xc (3.4)
ng +ngc

1 Note that volume fraction rather than mole fraction is recommended in mixtures of molecules
with significant different molecular mass. This will be discussed in Chapter 9.
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In a binary solution AB—AC, the ionic fractions of B and C are identical to the
mole fractions of AB and AC. It may therefore seem unnecessary to use the ionic
fractions. However, in the case of multi-component systems the advantage of ionic
fractions is evident, as will be shown in Chapter 9.

Mixtures of gases

The simplest solution one can imagine is a mixture of ideal gases. Let us simplify
the case by assuming only two types of ideal gas molecules, A and B, in the mix-
ture. The total pressure in this case is the sum of the partial pressures of the two
components (this is termed Dalton’s law). Thus,

Piot =PA TPB (3.5)

where p and pp are the partial pressures of the two gases and py; is the total pres-
sure. By applying the ideal gas law (eq. 2.23), the volume of the gas mixture is

Viot = nAVm,A + nBVm,B (3.6)

where np and np are the number of moles of A and B in the mixture and Vi, A and
Vm,B are the molar volumes of pure A(g) and B(g). In this case, where both A and B
are ideal gases, Viy oA = Vi B. It follows that, for a mixture of ideal gases

PA = XA Prot (3.7)

The chemical potential of an ideal gas A is given by eq. (2.26) as

.UA(PA)ZNZ +RT In p—‘g :“Z +RT In py (3.8)
Pa

where /.LZ is the standard chemical potential of the pure ideal gas A at pg =1 barat
a given temperature 7. For a mixture of the ideal gases A and B at constant pressure
(Prot = pz =1bar) the chemical potential of A for a given composition of the solu-
tion, x4, is, by using eq. (3.7)

XA Prot

0
Ha(xpa)=p, +RT In) —=—
Pa

= Uy +RT Inxy (3.9)

The difference between the chemical potential of a pure and diluted ideal gas is
simply given in terms of the logarithm of the mole fraction of the gas component.
As we will see in the following sections this relationship between the chemical
potential and composition is also valid for ideal solid and liquid solutions.
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In mixtures of real gases the ideal gas law does not hold. The chemical potential
of A of a mixture of real gases is defined in terms of the fugacity of the gas, fa. The
fugacity is, as discussed in Chapter 2, the thermodynamic term used to relate the
chemical potential of the real gas to that of the (hypothetical) standard state of the
gas at 1 bar where the gas is ideal:

a(xp)=py +RT In Sa =u$ +RT In(fy) (3.10)

Pa
Solid and liquid solutions - the definition of activity

In the solid or liquid state the activity, a, is introduced to express the chemical
potential of the components of a solution. It is defined by

uA:uZ+RT1naA (3.11)
where uz is the chemical potential of A in the reference state. For p = 1 bar ,u: = yg.

One of the most important tasks of solution thermodynamics is the choice of an appro-
priate reference state, and this is the topic of one of the following sections.

3.2 Thermodynamics of solutions

Definition of mixing properties

The volume of an ideal gas mixture is given by eq. (3.6). Let us now consider only
solid or liquid mixtures. Our starting point is an arbitrary mixture of na mole of
pure A and ng mole of pure B. The mixing process is illustrated in Figure 3.1. We

p, T constant

IUNZWN ngVmB

mixing

nA‘_/A + I’ZB‘_/B

Figure 3.1 Mixing of np moles of A and ng moles of B at constant p and 7. The molar vol-
umes of pure A and B are V and Vp. The partial molar volumes of A and B in the solution
are V and Vp, respectively.
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will first derive the expressions for the volume of the system before and after the
mixing. The volume before mixing is

V(before) = ”AVm,A + nBmeB (3.12)

where V) 5 and Vy, g are the molar volumes of pure A and B. We now mix A and B
at constant pressure p and temperature 7 and form the solution as illustrated in
Figure 3.1. The expression for the volume of the solution is then

V (after) = nA\7A + HBVB (3.13)

where V, and Vy represent the partial molar volumes of A and B (defined by eq.
1.87) in the solution. These partial molar volumes may be seen as apparent vol-
umes that when weighted with the number of A and B atoms give the observed total
volume of the solution. The difference in the volume of the solution before and
after mixing, the volume of mixing, is designated A ;;, V:

A ixV = V(after) — V(before) =n s (Vo —Va) +ng(Vg —Vp) (3.14)

The volume of mixing for one mole of solution is termed the molar volume of
mixing, A ;. V,,, and is derived by dividing eq. (3.14) by the total number of moles
(np +np) in the system

A mixVm :MZXAAmixVA +xBAmixVB (3.15)
(np +ng)

The molar volume of mixing of two binary systems is shown in Figure 3.2.
Pb-Sn shows positive deviation from the ideal behaviour at 1040 K [1] while the
volume of mixing of Pb—Sb at 907 K is negative, with a minimum at xpy, # 0.5 and
asymmetric with respect to the composition [2].

I
=y
S

-0.04

-0.08

-0.12

Apix Vi /10° m> mol™!

-0.16

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2 Molar volume of mixing of molten Pb—Sn at 1040 K [1] and Pb—Sb at 907 K [2]
as a function of composition.
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The phenomenology described above can be applied to any thermodynamic
extensive function, Y;, for a solution. The integral molar enthalpy, entropy and
Gibbs energy of mixing are thus

AmixHpy =XAAmixﬁA +XBAmixﬁB (3.16)
ApixSm :xAAming +xBAmix§B (3.17)
AmixGm = XaAAmixG A + XA nixGp (3.18)

The three functions are interrelated by
AnixOm =AnixHm —TA 1ixSm (3.19)

Since A ,ixG A =HUp — ,uZ, the integral molar Gibbs energy of mixing can alterna-
tively be expressed in terms of the chemical potentials as

AmixGm =Xa(ta — M) +xp(lp — 1y) =RT (x5 Inay +xglnag)
(3.20)

where ,uz and ,ug are the chemical potentials of pure A and B, whereas y5 and ug
are the chemical potentials of A and B in the given solution. Using G = H — TS, the
partial molar Gibbs energy of mixing is given as

AmixCTA :AmixﬁA _TAming =Ua —‘LLZ =RT lnaA (3.21)

The partial molar entropy, enthalpy or volume of mixing can be derived from eq.
(3.21) and are given by the relations

A Sa =—(6Algi;GAJ =—Rlna, —RT(algTaA j (3.22)
)4 p
— GlnaA
A Hx =R 3.3
mix ‘A (G(VT) JP ( )
A Va =(0AmixGAj =RT(alnaA j (3.24)
op T op T

Corresponding equations can be derived for the partial molar properties of B.
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Ideal solutions

In Section 3.1 we showed that the chemical potential of an ideal gas in a mixture
with other ideal gases is simply given in terms of a logarithmic function of the mole
fraction. By comparing eqs. (3.9) and (3.10) we see that the fugacity/activity of the
ideal gas is equal to the mole fraction. A solution (gas, liquid or solid) is in general
called ideal if there are no extra interactions between the different species in addi-
tion to those present in the pure components. Thermodynamically this implies that
the chemical activity is equal to the mole fraction, a; = x;, over the entire composi-
tion range. The molar Gibbs energy of mixing for an ideal solution then becomes

A G =RT(xp Inxp +xplnxg) (3.25)

The Gibbs energy of mixing of an ideal solution is negative due to the positive
entropy of mixing obtained by differentiation of AlriixGm with respect to
temperature:

a oA G,
Al Sm=-— 1217; =—R(xp Inxp +xglnxg) (3.26)
p

In the absence of additional chemical interactions between the different species
that are mixed the solution is stabilized entropically; the solution is more disor-
dered than a mechanical mixture of the components. The origin of the entropy con-
tribution is most easily understood by considering the distribution of two species
on a crystalline lattice where the number of lattice sites is equal to the sum of the
number of the two species A and B. For an ideal solution, a specific number of A
and B atoms can be distributed randomly at the available sites, i.e. in a large
number of different ways. This gives rise to a large number of different structural
configurations with the same enthalpy and thus to the configurational entropy
given by eq. (3.26). This will be discussed further in Chapter 9.

Two other characteristic properties of ideal solutions are

id _ Aid id _
A Hpy =AC Gy +TAY . S, =0 (3.27)
. oAl G
Alrcrllixvm = mix "M | _q (3.28)
op
T

Or in words: in the absence of additional chemical interactions between the two
types of atom, the enthalpy and volume of mixing are both zero.

The partial molar properties of a component i of an ideal solution are readily
obtained:
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= [oAY G
A G, =] mix T = RT In x; (3.29)
mix anl
p’T’njii
= [oAd s, oA G,
AT S = % =— % =—Rlnux; (3.30)
n.
' T o0 Do ji

The thermodynamic properties of an ideal binary solution at 1000 K are shown in
Figure 3.3. The integral enthalpy, entropy and Gibbs energy are given in Figure
3.3(a), while the integral entropy of mixing and the partial entropy of mixing of
component A are given in Figure 3.3(b). Corresponding Gibbs energies are given
in Figure 3.3(c). The largest entropic stabilization corresponds to the minimum
Gibbs energy of mixing, which for an ideal solution is RT ln(zi) or —RT In 2, or
about 0.7 times the thermal energy (RT) at 1000 K.

Excess functions and deviation from ideality

Most real solutions cannot be described in the ideal solution approximation and it
is convenient to describe the behaviour of real systems in terms of deviations from
the ideal behaviour. Molar excess functions are defined as

ATC Y, =AY —AY Y, (3.31)

mix mix
The excess molar Gibbs energy of mixing is thus

A?l);;:XGm =AixGm —RT (x5 In x5 + xgInxp) (3.32)

:RT()CA lnaA +xBlnaB)—RT(xA lnxA +)CB hle)

The activity coefficient of component i, y;, is now defined as a measure of the
deviation from the ideal solution behaviour as the ratio between the chemical
activity and the mole fraction of i in a solution.

a .

l

Yi=— Oor a;=Y;x; (3.33)

X

For an ideal solution y; =1
The partial molar Gibbs energy of mixing of a component i in a non-ideal mix-
ture can in general be expressed in terms of activity coefficients as

AmixGi=RTIna; =RT Inx; +RT Iny; (3.34)
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Figure 3.3 Thermodynamic properties of an arbitrary ideal solution A-B at 1000 K. (a)
The Gibbs energy, enthalpy and entropy. (b) The entropy of mixing and the partial entropy
of mixing of component A. (c) The Gibbs energy of mixing and the partial Gibbs energy of

mixing of component A.

Using eq. (3.34) the excess Gibbs energy of mixing is given in terms of the mole
fractions and the activity coefficients as

id
AmixGm =RT(xp Inap +xglnag)=AT. Gy +ASS G

=RT(xpInxp +xglnxg)+RT(xpx Inyp +xglnyp)

(3.35)
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Implicitly:
AGXC Gm :RT(XA In YA tXB In yB) (336)

mix

Since A4 H, = Ald Vm =0(egs. 3.27 and 3.28), the excess molar enthalpy and
mix mix
volume of mixing are simply

Aemxfxvm =AnixVm (3.37)
A?lfom =AnmixH m (3.38)

The excess molar entropy of mixing is the real entropy of mixing minus the ideal
entropy of mixing. Using a binary A—B solution as an example, Aemxicx S is

A% S =AmixSm —R(xy Inxp +xpInxp) (3.39)

For a large number of the more commonly used microscopic solution models it is
assumed, as we will see in Chapter 9, that the entropy of mixing is ideal. The dif-
ferent atoms are assumed to be randomly distributed in the solution. This means
that the excess Gibbs energy is most often assumed to be purely enthalpic in nature.
However, in systems with large interactions, the excess entropy may be large and
negative.

As shown above, the activity coefficients express the departure from ideality and
thus define the excess Gibbs energy of the solution. Deviation from ideality is said
to be positive when ¥ >1(In y is positive) and negative when y < 1(In ¥ is negative).
A negative deviation implies a negative contribution to the Gibbs energy relatively
to an ideal solution and hence a stabilization of the solution relative to ideal solu-
tion behaviour. Similar arguments imply that positive deviations from ideality
result in destabilization relative to ideal solution behaviour.

The activities of Fe and Ni in the binary system Fe—Ni [3] and the corresponding
Gibbs energy and excess Gibbs energy of mixing are shown in Figures 3.4 and 3.5,
respectively. The Fe—Ni system shows negative deviation from ideality and is thus
stabilized relative to an ideal solution. This is reflected in the negative excess
Gibbs energy of mixing. The activity coefficients y;, defined by eq. (3.33) as a;/x;,
are readily determined from Figure 3.4. yy; for the selected composition xn; = 0.4
is given by the ratio MQ/PQ. At the point of infinite dilution, x; = 0, the activity
coefficient takes the value y;°. y;° is termed the activity coefficient at infinite
dilution and is, as will be discussed in Chapter 4, an important thermodynamic
characteristic of a solution. The activity coefficient of a given solute at infinite
dilution will generally depend on the nature of the solvent, since the solute atoms at
infinite dilution are surrounded on average by solvent atoms only. This determines
the properties of the solute in the solution and thus y;°.
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Figure 3.4 The activity of Fe and Ni of molten Fe—Ni at 1850 K [3]. At xyjj = 0.4 the activity
coefficient of Ni is given by MQ/PQ.
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Figure 3.5 The molar Gibbs energy of mixing and the molar excess Gibbs energy of mixing
of molten Fe—Ni at 1850 K. Data are taken from reference [3].

The formalism shown above is in general easily extended to multi-component
systems. All thermodynamic mixing properties may be derived from the integral
Gibbs energy of mixing, which in general is expressed as

id
ApixGm =A'. Gy +A% G =RT ) x; Ina;
i (3.40)
= RTin In x; +RTle- Iny;

1 l

3.3 Standard states

In solution thermodynamics the standard or reference states of the components of
the solution are important. Although the standard state in principle can be chosen
freely, the standard state is in practice not taken by chance, but does in most cases
reflect the type of model one wants to fit to experimental data. The choice of
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standard state is naturally influenced by the data available. In some cases the
vapour pressure of one of the components is known in the whole compositional
interval. In other cases the activity of the solute is known for dilute solutions only.

In the following, the Raoultian and Henrian standard states will be presented.
These two are the far most frequent standard states applied in solution thermody-
namics. Before discussing these standard states we need to consider Raoult’s and
Henry’s laws, on which the Raoultian and Henrian standard states are based, in
some detail.

Henry's and Raoult’s laws

In the development of physical chemistry, investigations of dilute solutions have
been very important. A dilute solution consists of the main constituent, the solvent,
and one or more solutes, which are the diluted species. As early as in 1803 William
Henry showed empirically that the vapour pressure of a solute i is proportional to
the concentration of solute i:

Pi =Xiky (3.41)

where x; is the mole fraction solute and ky; ; is known as the Henry’s law constant.
Here we have used mole fraction as the measure of the concentration (alternatively
the mass fraction or other measures may be used).

More than 80 years later Francois Raoult demonstrated that at low concentra-
tions of a solute, the vapour pressure of the solvent is simply

pi=xip] (3.42)

where x; is the mole fraction solvent and p? is the vapour pressure of the pure
solvent.

Raoult’s and Henry’s laws are often termed ‘limiting laws’. This use reflects that
real solutions often follow these laws at infinite dilution only. The vapour pressure
above molten Ge—Si at 1723 K [4] is shown in Figure 3.6 as an example. It is evi-
dent that at dilute solution of Ge or Si, the vapour pressure of the dominant compo-
nent follows Raoult’s law. Raoult’s law is expressing that a real non-ideal solution
approaches an ideal solution when the concentration of the solvent approaches
unity. In the corresponding concentration region Henry’s law is valid for the solute.
The Ge-Si system shows positive deviation from ideality and the activity coeffi-
cients of the two components, given as a function of x; in Figure 3.6(b), are thus
positive for all compositions (using Si and Ge as standard states).

Raoult’s law is obeyed for a solvent at infinite dilution of a solute. Mathemati-
cally this implies

(daA/dxA)xA—)l =1 (343)
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Figure 3.6 (a) The vapour pressure above molten Si—-Ge at 1723 K [4]. (b) The corre-
sponding activity coefficients of the two components.

In terms of activity coefficients eq. (3.43) can be transformed to

(dwwj {“HA‘WAJ =1 (3.44)
dra )y o dxa Jy, 1

Since Yy, — 1when x, —1the expression for Raoult’s law becomes

(dm J -0 (3.45)
dxy x5 —1

This is a necessary and sufficient condition for Raoult’s law.
A solute B obeys Henry’s law at infinite dilution if the slope of the activity curve
ag versus xg has a nonzero finite value when xg — 0:

(dag/dxg) . 50 = VB (3.46)
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The finite value of the slope when x5 —0, yg , is the activity coefficient at infi-
nite dilution defined earlier. In terms of activity coefficients eq. (3.46) becomes

(CKXBVB)J :(yBHB‘WB] _yz (3.47)
d’xB XB—)O B XB—)O

It follows that if Henry’s law behaviour is obeyed at infinite dilution:

d

(xB 73] =0 (3.48)
de XB—>O

Equation (3.48) is a necessary consequence of Henry’s law, but it is not a sufficient

condition. It can be shown that Raoult’s law behaviour of the solvent follows as a

consequence of Henry’s law behaviour for the solute, while the reverse does not

follow.

Raoultian and Henrian standard states

The Raoultian standard state is the most frequently used standard state for a com-
ponent in a solution. The Raoultian standard state implies that all thermodynamic
properties are described relative to those of the pure component with the same
structure as the solution. For liquids the specification of the structure seems artifi-
cial, but for solid solutions, which may have different crystal structures, this is of
great importance. The activity of Ni in molten Fe—Ni at 1850 K using the Raoultian
standard state is given in Figure 3.7 (ordinate given on the left-hand y-axis). The
activity of pure Ni is set as standard state and is thus unity. While the Raoultian
standard state represents a real physical reachable state, the Henrian standard state
is a hypothetical one. The Henrian standard state for Ni in the Fe—Ni solution is
found by extrapolation of the Henrian law behaviour at xy;_y( to xn; =1; see Figure

1.0 . . . .
0.8F
41 1.0
0.6+
R ,/'/ aH.
aNi Ni
0.4+ . 0.5
0.2+
0.0 . . : : 0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.7 The activity of Ni of molten Fe-Ni at 1850 K using both a Raoultian and a
Henrian standard state. Data are taken from reference [3].
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3.7. The activity of Ni in molten Fe—Ni at 1850 K using the Henrian standard state
is also given in the figure (ordinate given on the right-hand y-axis).

If an arbitrary standard state is marked with *, a formal definition of a Raoultian
standard state for component A of a solution is

ta =pk (3.49)

It follows that the activity coefficient with this standard state:

R
a
YR =4 (3.50)
XA

approaches 1 when the mole fraction x, approaches 1 or

(7 D)xy 1 =1 (3.51)

Correspondingly, a formal definition of a Henrian standard state for component
B of a solution is

g =y (3.52)
The activity coefficient with this standard state:
H
a
yh =2 (3.53)
*B
approaches 1 when xpg approaches 0 or
H
(750 =1 (3.54)

The activities on the two standard states are related since

f;=p} +RTIna’ =p’ +RT Ina} (3.55)

which gives

R _ H
’H =exp —iiui) (3.56)
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The ratio of two activities defined on the basis of two different standard states is
constant and does not vary with the composition of the solution:

R R R
a Yr x Y
73 :73 2B :7E (3.57)
ag Yg B Tp

For the present case this constant can be deduced by using the conditions at infinite
dilution as a constraint, thus:

R R R,
%: y—ﬁ =LB1 (3.58)
"8 7B )50
R
Y
Th = e (3.59)
7B

Whereas the total Gibbs energy of the solution is independent of the choice of the
standard state, the standard state must be explicitly given when it comes to the
mixing properties of a solution. The molar Gibbs energy of mixing of the Fe—Ni
system for which the activity of Ni is shown in Figure 3.7 is given in Figure 3.8.
The solid and dashed lines represent Gibbs energies of mixing based on the
Raoultian and Henrian standard states for Ni, respectively.
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Figure 3.8 The molar Gibbs energy of mixing of molten Fe—Ni at 1850 K using both the
Raoultian (solid line) and Henrian (dashed line) standard states for Ni as defined in Figure
3.7. The Raoultian standard state is used for Fe. Data are taken from reference [3].
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3.4 Analytical solution models

Dilute solutions

Binary solutions have been extensively studied in the last century and a whole
range of different analytical models for the molar Gibbs energy of mixing have
evolved in the literature. Some of these expressions are based on statistical
mechanics, as we will show in Chapter 9. However, in situations where the inten-
tion is to find mathematical expressions that are easy to handle, that reproduce
experimental data and that are easily incorporated in computations, polynomial
expressions obviously have an advantage.

Simple polynomial expressions constitute the most common analytical model
for partial or integral thermodynamic properties of solutions:

n .
Y(xg)=Qp +Q1xp + 0y x5 +...+ 0, xp = > 0;xk (3.60)
i=0
or
n . n .
Y(xg)=xpxp ) Ri(xp —xp)’ =xp(l—xp) Y R;(1-2xp)’ (3.61)
i=0 i=0

The variable x is usually the mole fraction of the components. The last expression
was first introduced by Guggenheim [5]. Equation (3.60) is a particular case of the
considerably more general Taylor series representation of ¥ as shown by Lupis [6].
Let us apply a Taylor series to the activity coefficient of a solute in a dilute binary
solution:

2
Inyg=Inyg J{@lr;yB] Xp o1 8811127/3 x]23+...
B xg—0 XB 2550 (3.62)
i .
+.l 0 h'l"J/B x]lg
i ox!
B xB—>0

The derivatives of the Taylor series are all finite. It is not necessary to expand the
series at xg = 0, but it is most common and convenient for dilute solutions. The
Taylor series expansion of In ¥y g may be expressed in a different notation as

1 .
Inyg=)J x (3.63)
i=0
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Figure 3.9 An illustration of low-order terms in the Taylor series expansion of Iny; for
dilute solutions using In7yp, for the binary system TI-Hg at 293 K as example. Here
Inyg =-2.069, slTl =10.683 and JZTI =—14.4. Data are taken from reference [8].

where

JB :l 8l lnj/B

;= . (3.64)
i! @xlla

xg—0

The coefficients J B are called interaction coefficients of order i. The coefficient of
zeroth order is just the value of In y g at infinite solution. The first-order coefficient
is the most used and is often designated by EF [7]. This coefficient is a measure of
how an increase in the concentration of B changes In y 5, which explains why it is
called the self-interaction coefficient. The expression for In yg with only three
coefficients is

Inyp=Inyg +&’xg +J ) xp, (3.65)

The orders of magnitude of the coefficients depend very much on the system
studied. Generally stronger atomic interactions give larger interaction coefficients.
An illustration of low order terms in the Taylor series expansion of In y; in the
binary system Tl-Hg is given in Figure 3.9 [8].

The same type of polynomial formalism may also be applied to the partial molar
enthalpy and entropy of the solute and converted into integral thermodynamic
properties through use of the Gibbs—Duhem equation; see Section 3.5.

Solution models

The simplest model beyond the ideal solution model is the regular solution model,
first introduced by Hildebrant [9]. Here A ;x S, 1S assumed to be ideal, while
A nixH iy 18 not. The molar excess Gibbs energy of mixing, which contains only a
single free parameter, is then
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A?)ichm =QXxpXp (3.66)

where Q is named the regular solution constant or the interaction coefficient.
The molar Gibbs energy is in this approximation

Gm:XA,UZ'F)CB‘Ug'FRT()CA lnxA +)CB11'1)CB)+£2.XA)CB (367)

The molar Gibbs energy of mixing
AnixGm =RT(xa Inxp +xgInxg) +Qxpxp (3.68)
thus consists of one entropic and one enthalpic contribution:
AnixSm =—R(xa Inxp, +xglnxg) (3.69)
A mixHp =Qx xp (3.70)

For ideal solutions € is zero and there are no extra interactions between the spe-
cies that constitute the solution. In terms of nearest neighbour interactions only, the
energy of an A—B interaction, uap, equals the average of the A—A, upa, and B-B,
ugp, interactions or

Q:ZL|:MAB _%(MAA +uBB):| (371)

where z is the coordination number and L is Avogadro’s number. For the general
case of a non-ideal solution Q < 0 gives an increased stability of the solution rela-
tive to an ideal solution, while Q > 0 destabilizes the solution. It follows that Q <0
and € > 0 are usually interpreted as attraction and repulsion, respectively, between
the A and B atoms. Repulsion between the different atoms of the solution will
imply that the atoms do not mix at absolute zero, where the entropic contribution is
zero. Complete solubility will be obtained when the temperature is raised suffi-
ciently so that the entropy gain due to randomization of the atoms is larger than the
positive enthalpic contribution to the Gibbs energy. The integral Gibbs energies of
systems with Q/RT larger and smaller than zero are shown in Figure 3.10.
The regular solution model can be extended to multi-component systems, in
which case the excess Gibbs energy of mixing is expressed as
m=1m
A Gy = D > X%, Qy (3.72)

X
i=1j>1

Thus for a ternary system
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Figure 3.10 The molar Gibbs energy of mixing of a regular solution A-B for different
values of Q/RT.

ATHGm = X100 Qp +x1x3Q3 + 1y x3Q)3 (3.73)

An additional ternary interaction term, {2123, may be incorporated.

The regular solution model (eq. 3.68) is symmetrical about x, =xg =0.5. In
cases where the deviation from ideality is not symmetrical, the regular solution
model is unable to reproduce the properties of the solutions and it is then necessary
to introduce models with more than one free parameter. The most convenient poly-
nomial expression with two parameters is termed the sub-regular solution model.

AT G = X7 xp(Ag1xp + Ay Xp) (3.74)

If more than two parameters are necessary a general polynomial expression may be
applied:

m_n . .
exc
A G =58 g, @75)
i=1j=1

The Redlich-Kister expression
2
A?‘l);;:XGm :xAxB[Q+A1(xA _XB)+A2(xA _XB) (376)
+Ay(xp —xp)° +...]

is a frequently used special case of this general polynomial approach. While the
first term is symmetrical about x = 0.5, the second term changes sign for x = 0.5.
The compositional variation of the third and fourth terms is given in Figure 3.11. In
all these models the entropy of mixing is assumed to be ideal and the excess Gibbs
energy is an analytical model for the enthalpy of mixing.

The entropy of mixing of many real solutions will deviate considerably from the
ideal entropy of mixing. However, accurate data are available only in a few cases.
The simplest model to account for a non-ideal entropy of mixing is the quasi-reg-
ular model, where the excess Gibbs energy of mixing is expressed as
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Figure 3.11 Contributions to the molar excess Gibbs energy of mixing from the four first
terms of the Redlich—Kister expression (eq. 3.76). For convenience Q = A; = Ay = A3 =1.

AT G =xAxBQ(1—7;) (3.77)
Thus
OA% G )
A% S :—(H;;m:xAxB(?) (3.78)

The sign of the excess entropy is given by the sign of 7.

Derivation of partial molar properties

The partial molar properties of binary solutions may be determined by both analyt-
ical and graphical methods. In cases where analytical expressions for integral
extensive thermodynamic quantities are available, the partial molar quantities are
obtained by differentiation, but graphical determination of partial molar properties
also has a long history in thermodynamics. The molar Gibbs energy of mixing of
molten Si—Ge at 1500 K is given as a function of the mole fraction of Ge in Figure
3.12. Pure solid Si and pure liquid Ge are chosen as standard states. If we draw a
tangent to the curve at any composition, the intercept of this tangent upon the ordi-
nate xg; =1equals Ug; and the intercept for x5, =1equals L.

In mathematical terms the partial molar properties of a binary system will in gen-
eral be given through

Yo =Y, — xp i (3.79)

and



78 3 Solution thermodynamics

/kJ mol ™!

Gm

Figure 3.12 The integral molar Gibbs energy of liquid Ge-Si at 1500 K with pure liquid Ge

and solid Si as standard states. Data are taken from reference [4].

_ ay
Y=Y, +(1-xp)—m
B

(3.80)

Application to the Gibbs energy of the two components of a binary solution there-

fore gives

dG
dxp

HA =G —xp

dG
Hp ZGm +(1—)CB) dxm

B

Taking the excess Gibbs energy of a regular solution as an example:

A% G, =Qxpxp

mix

the partial excess Gibbs energies of the two components are

exec ~
AIl)iix(;A =1 _ Q >
“mXCR Iny, =
RT RT
exec ~
AII);iXGB_l _ Q >
2 S Inyg = xy
RT RT

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

In general, the chemical potential of species i for a multi-component system is

given as
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« dG
B =Gy + 2 (8; —x;)—2 (3.86)
> dx

J
where §;; =0fori# jand §;; =1fori=j.

3.5 Integration of the Gibbs-Duhem equation

In experimental investigations of thermodynamic properties of solutions, it is
common that one obtains the activity of only one of the components. This is in par-
ticular the case when one of the components constitutes nearly the complete
vapour above a solid or liquid solution. A second example is when the activity of
one of the components is measured by an electrochemical method. In these cases
we can use the Gibbs—Duhem equation to find the activity of the second
component.

We have already derived the Gibbs—Duhem equation in Chapter 1.4. At constant
pand T:

nadu, +ngdug =0 (3.87)

In terms of activity and mole fractions this yields

xAdlnaA +delnaB =0 (3.88)
or
xAdlnxA +xAdln}/A +de1an+deln}/B =0 (389)
Since
xadlnxy +xpdlnxg =xp T 4o PB_qr 4 deg =0 (3.90)
XA XB

eq. (3.89) may be rewritten
xAdlnyA +XBd1H'}/B =0 (391)

or by integration

A dny, (3.92)

XB
Inyg —Inyg(xg=D=- J-
XB

xg=1
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Figure 3.13 xy;/xg. versus In yy; of molten Fe—Ni at 1850 K. Data are taken from reference

(3]

If a Raoultian reference state is chosen for both A and B, In yg =0 when xg =1
Now by plotting x o /xg against In ¥ 4, as done for the activity coefficient of Fe of
molten Fe—Ni at 1850 K in Figure 3.13, the Gibbs—Duhem equation may be inte-
grated graphically by determining the area between the limits. The challenge in our
case is that when xg, =0, xn;/Xge. = o0 and In yp; — 0. It may therefore be diffi-
cult to evaluate the integral accurately since this demands a large amount of experi-
mental data for xg, —0.

We may also integrate the Gibbs—Duhem equation using an Henrian reference
state for B:

B
Inyg—Inygrp=0)=— | );—Adln n (3.93)
B

XB:O
Henry’s law for B leads to In yg =0 when xg =0.
An alternative method of integrating the Gibbs—Duhem equation was developed
by Darken and Gurry [10]. In order to calculate the integral more accurately, a new
function, ¢, defined as

o, = Y i_AorB) (3.94)

was introduced for binary solutions, since this gave a convenient expression for the
much used regular solution model. An expression for dlny, is obtained by
differentiation:

dIny, =d(as x5) =204 xpdxg + xpday (3.95)
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By substituting eq. (3.95) into the Gibbs—Duhem equation (eq. 3.92) we obtain
B B

Inyg=-— jzanAde— ijdeaA (3.96)

xg=1 xg=1

Integrating by parts the second integral, we obtain

X X XB
X
J.xA'deaA :[anAxB]x§:1 - J.OchAde + J.OchdeB (3.97)
xg=l xg=1 xg=1

which gives the following expression for In Y5 (eq. 3.96):

XB XB
lnyB:_anAxB_ J(XA(XA +xB)de=—anAxB— J-aAde (3.98)
xg=1 xg=1

Integration of the Gibbs—Duhem equation applying the method by Darken and
Gurry is illustrated by using the Fe—Ni system as an example: see Figure 3.14. ayj
plotted against xge gives a curve that is more easily integrated.

A graphical integration of the Gibbs—Duhem equation is not necessary if an ana-
lytical expression for the partial properties of mixing is known. Let us assume that
we have a dilute solution that can be described using the activity coefficient at infi-
nite dilution and the self-interaction coefficients introduced in eq. (3.64).

B

Dxg + 07 (3.99)

Inyg=Inypg +¢&

15+ 1

1.0+ 8

—OlNi

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Fe

Figure 3.14 oy plotted versus xpe for molten Fe—Ni at 1850 K. Data are taken from refer-
ence [3]. The area under the curve represents integration from xgpe = 1.0 to 0.1.
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The Gibbs—Duhem equation can be modified to

(=xg)On7a OV _ (3.100)
GxB GxB

and thus if the first- and second-order terms in the Taylor series for the solvent are
A A L. _7A A 2.
termed J " and J,* (ie. Inyp =J " xg +J, xp):

(- xp)(J > +273 xp) + xp(e] +2J) xp) =0 (3.101)
Hence this implies that

I =0 (3.102)
and

A B
. (3.103)

We are thus able to express the activity coefficient of the second component, A,
in terms of 8;3:

&

f (3.104)

2
B

N | —

ln]/A =—

All other properties follow. For example, the excess Gibbs energy of mixing is

Azichm =RT(xglnyg + %SFXZB +higher order terms) (3.105)
The relationship between the different self-interaction coefficients of component
A and B, JlA and JZB, may in general be obtained in a similar way.

Although the Gibbs—Duhem equation due to the development of versatile and
user-friendly thermodynamic software packages is less central than before, it is
still of great value, for example for testing the consistency of experimental data and
also for systematization of thermodynamic data. The order of magnitude of the
major interaction coefficients discussed above may for alloy systems, for instance,
be estimated with a fair degree of confidence by looking at trends and by compar-
ison with data on similar systems.
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Phase diagrams

Thermodynamics in materials science has often been used indirectly through phase dia-
grams. Knowledge of the equilibrium state of a chemical system for a given set of condi-
tions is a very useful starting point for the synthesis of any material, for processing of
materials and in general for considerations related to material stability. A phase diagram
is a graphical representation of coexisting phases and thus of stability regions when
equilibrium is established among the phases of a given system. A material scientist will
typically associate a ‘phase diagram’ with a plot with temperature and composition as
variables. Other variables, such as the partial pressure of a component in the system, may
be given explicitly in the phase diagram; for example, as a line indicating a constant par-
tial pressure of a volatile component. In other cases the partial pressure may be used as a
variable. The stability fields of the condensed phases may then be represented in terms of
the chemical potential of one or more of the components.

The Gibbs phase rule introduced in Section 2.1 is an important guideline for the
construction and understanding of phase diagrams, and the phase rule is therefore
referred to frequently in the present chapter. The main objective of the chapter is to
introduce the quantitative link between phase diagrams and chemical thermody-
namics. With the use of computer programs the calculation of phase diagrams from
thermodynamic data has become a relatively easy task. The present chapter focuses
on the theoretical basis for the calculation of heterogeneous phase equilibria with
particular emphasis on binary phase diagrams.

4.1 Binary phase diagrams from thermodynamics
Gibbs phase rule

In chemical thermodynamics the system is analyzed in terms of the potentials
defining the system. In the present chapter the potentials of interest are 7 (thermal

85
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potential), p (mechanical potential) and the chemical potential of the components
Ui, Uy ,..., Uy . We do not consider other potentials, e.g. the electrical and magnetic
potentials treated briefly in Section 2.1. In a system with C components there are
therefore C + 2 potentials. The potentials of a system are related through the
Gibbs—Duhem equation (eq. 1.93):

SAT —Vdp+ > n;du; =0 (4.1)
i

and also through the Gibbs phase rule (eq. 2.15):
F+Ph=C+2 4.2)

The latter is used as a guideline to determine the relationship between the number
of potentials that can be varied independently (the number of degrees of freedom,
F) and the number of phases in equilibrium, Ph. Varied independently in this con-
text means varied without changing the number of phases in equilibrium.

For a single-component system, the Gibbs phase rule reads F + Ph = C + 2 = 3,
and we can easily construct a p,7-phase diagram in two dimensions (see Figure 2.7,
for example). To apply the Gibbs phase rule to a system containing two or more
components (C > 1) it is necessary to take into consideration the nature of the dif-
ferent variables (potentials), the number of components, chemical reactions and
compositional constraints. Initially we will apply the Gibbs phase rule to a binary
system (C = 2). The Gibbs phase rule is then F' + Ph = C + 2 = 4, and since at least
one phase must be present, F'is at most 3. Three dimensions are needed to show the
phase relations as a function of 7, p and a compositional variable (or a chemical
potential). Here, we will use the mole fraction as a measure of composition
although in some cases the weight fraction and other compositional variables are
more practical. When a single phase is present (F' = 3), T, p and the composition
may be varied independently. With two phases present (F =2) a set of two intensive
variables can be chosen as independent; for example temperature and a composi-
tion term, or pressure and a chemical potential. With three phases present only a
single variable is independent (F = 1); the others are given implicitly. Finally, with
four phases present at equilibrium none of the intensive variables can be changed.
The observer cannot affect the chemical equilibrium between these four phases.

It is sometimes convenient to fix the pressure and decrease the degrees of
freedom by one in dealing with condensed phases such as substances with low
vapour pressures. Gibbs phase rule then becomes

F=C—Ph+1 (4.3)

often called the reduced or condensed phase rule in metallurgical literature.

For a binary system at constant pressure the phase rule gives F =3 — Ph and we need
only two independent variables to express the stability fields of the phases. It is most
often convenient and common to choose the temperature and composition, given for
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example as the mole fraction. An example is the phase diagram of the system Ag—Cu
shown in Figure 4.1 [1]. There are only three phases in the system: the solid solutions
Cu(ss) and Ag(ss) and the Ag—Cu liquid solution. Cu(ss) and Ag(ss) denote solid solu-
tions with Cu and Ag as solvents and Ag and Cu as solutes, respectively. When a single
phase is present, for example the liquid, F = 2 and both composition and temperature
may be varied independently. The stability fields for the liquid and the two solid solu-
tions are therefore two-dimensional regions in the phase diagram. With two phases in
equilibrium, the temperature and composition are no longer independent of each other.
It follows that the compositions of two phases in equilibrium at a given temperature are
fixed. In the case of a solid-liquid equilibrium the composition of the coexisting
phases are defined by the solidus and liquidus lines, respectively. This is illustrated in
Figure 4.1 where the composition of Cu(ss) in equilibrium with the liquid (also having
a distinct composition) for a given temperature, Ty, is indicated by open circles. Since
F =1 this s called a univariant equilibrium. Finally, when three phases are present at
equilibrium, F = 0 and the compositions of all three phases and the temperature are
fixed. In this situation there are no degrees of freedom and the three phases are there-
fore present in an invariant equilibrium. In the present example, the system Ag—Cu,
the two solid and the liquid phases coexist in an invariant eutectic equilibrium at 1040
K. The eutectic reaction taking place is defined in general for a two-component
system as one in which a liquid on cooling solidifies under the formation of two solid
phases. Hence for the present example the eutectic reaction is

liquid — Cu(ss) + Ag(ss) 4.4)

The temperature of the eutectic equilibrium is called the eutectic temperature and
is shown as a horizontal line in Figure 4.1.

It should be noted that we have here considered the system at constant pressure.
If we are not considering the system at isobaric conditions, the invariant equilib-
rium becomes univariant, and a univariant equilibrium becomes divariant, etc. A

1400 T T T T

1300

1200

T/K

1100

1000

900
0.

Figure 4.1 Phase diagram of the system Ag—Cu at 1 bar [1].



88 4 Phase diagrams

consequence is that the eutectic temperature in the Ag—Cu system will vary with
pressure. However, as discussed in Section 2.3, small variations in pressure give
only minor variations in the Gibbs energy of condensed phases. Therefore minor
variations in pressure (of the order of 1-10 bar) are not expected to have a large
influence on the eutectic temperature of a binary system.

One of the useful aspects of phase diagrams is that they define the equilibrium
behaviour of a sample on cooling from the liquid state. Assume that we start at high
temperatures with a liquid with composition x in the diagram shown in Figure 4.1.
On cooling, the liquidus line is reached at 7. At this temperature the first crystal-
lites of the solid solution Cu(ss) are formed at equilibrium. The composition of
both the liquid and Cu(ss) changes continuously with temperature. Further cooling
produces more Cu(ss) at the expense of the liquid. If equilibrium is maintained the
last liquid disappears at the eutectic temperature. The liquid with eutectic compo-
sition will at this particular temperature precipitate Cu(ss) and Ag(ss) simulta-
neously. The system is invariant until all the liquid has solidified. Below the
eutectic temperature the two solid solutions Cu(ss) and Ag(ss) are in equilibrium,
and for any temperature the composition of both solid solutions can be read from
the phase diagram, as shown for the temperature 73.

The relative amount of two phases present at equilibrium for a specific sample is
given by the lever rule. Using our example in Figure 4.1, the relative amount of
Cu(ss) and Ag(ss) at T3 when the overall composition is x, , is given by the ratio

A
OP Xcu ~ xcf(“)

07: Cu(ss) _ . Ag(ss)
Q XCU xCu

4.5)

where xg”(ss) and x229) denote the mole fractions of Cu in the two coexisting

solid solutions. The lines OP and OQ are shown in the figure. An isothermal line in
a two-phase field, like the line OQ, is called a tieline or conode. As the overall
composition is varied at constant temperature between the points O and Q, the
compositions of the two solid phases remain fixed at O and Q; only the relative
amount of the two phases changes.

Conditions for equilibrium

Phase diagrams show coexistent phases in equilibrium. We have seen in Chapter 1
that the conditions for equilibrium in a heterogeneous closed system at constant
pressure and temperature can be expressed in terms of the chemical potential of the
components of the phases in equilibrium:

pe =pf =yt = fori=1,2,...C (4.6)

Here ¢, fand y denote the different phases, whereas i denotes the different components
of the system and C the total number of components. The conditions for equilibrium



4.1 Binary phase diagrams from thermodynamics 89

between two phases o and 3 in a binary system A-B (at a given temperature and
pressure) are thus

% () =l () (4.7)
and

HE ) =uh (k) (4.8)
where x% and xﬁ are the mole fractions of A in the phases « and f at equilibrium

A . !
(remember that x 2 + xl’3 =1).

At a given temperature and pressure eqs. (4.7) and (4.8) must be solved simulta-
neously to determine the compositions of the two phases azand 3 that correspond to
coexistence. At isobaric conditions, a plot of the composition of the two phases in
equilibrium versus temperature yields a part of the equilibrium 7, x-phase diagram.

Equations (4.7) and (4.8) may be solved numerically or graphically. The latter
approach is illustrated in Figure 4.2 by using the Gibbs energy curves for the liquid
and solid solutions of the binary system Si—Ge as an example. The chemical poten-
tials of the two components of the solutions are given by eqs. (3.79) and (3.80) as

dG
Hge =G +(—xge) = (4.9)
Ge
dG
Usi =G — XGe — (4.10)
Ge

Here G, is the Gibbs energy of the given solution at a particular composition xge.
The equilibrium conditions can now be derived graphically from Gibbs energy
versus composition curves by finding the compositions on each curve linked by a
common tangent (the common tangent construction). In the case shown in Figure
4.2(a) the solid and liquid solutions are in equilibrium; they are not in the case
shown in Figure 4.2(b). The compositions of the coexisting solid and liquid solu-
tions are marked by arrows in Figure 4.2(a).

The relationship between the Gibbs energy of the phases present in a given system
and the phase diagram may be further illustrated by considering the variation of the
Gibbs energy of the phases in the system Si—Ge with temperature. Similar common
tangent constructions can then be made at other temperatures as well using thermo-
dynamic data by Bergman et al. [2]. The phase diagram of the system is given in
Figure 4.3(a). A sequence of Gibbs energy—composition curves for the liquid and
solid solutions are shown as a function of decreasing temperature in Figures
4.3(b)—(f). The two Gibbs energy curves are broad and have shallow minima and the
excess Gibbs energies of mixing are small since Ge and Si are chemically closely
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Figure 4.2 Gibbs energy curves for the liquid and solid solution in the binary system Si—Ge
at 1500 K. (a) A common tangent construction showing the compositions of the two phases
in equilibrium. (b) Tangents at compositions that do not give two phases in equilibrium.
Thermodynamic data are taken from reference [2].

related. This is often termed near-ideal behaviour. At high temperatures, e.g. at 77,
where the liquid solution is stable over the whole composition region, the Gibbs
energy of the liquid is more negative than that of the solid solution for all composi-
tions (Figure 4.3(b)). On cooling, the Gibbs energy of the solid solution, having
lower entropy than the liquid solution, increases more slowly than that of the liquid
solution. At T», the Gibbs energies of pure liquid Si and pure solid Si are equal, and
the melting temperature of pure Si is reached (Figure 4.3(c)). For xg; < 1 the liquid
solution is more stable than the crystalline phase. Further cooling gives situations
corresponding to 73 or T4, where the solid solution is stable for the Si-rich composi-
tions and the liquid solution for the Ge-rich compositions. The Gibbs energy curves
at these two temperatures are shown in Figures 4.3(d) and (e). The compositions of
the two phases in equilibrium at these temperatures are given by the common tangent
construction, as illustrated in Figure 4.3(d). At T5 the liquid has been cooled down to
the melting temperature of pure Ge (see Figure 4.3(f)). Below this temperature the
solid solution is stable for all compositions. Since Ge and Si are chemically closely
related, Si—Ge forms a complete solid solution at low temperatures. The resulting
equilibrium phase diagram, shown in Figure 4.3(a), is a plot of the locus of the
common tangent constructions and defines the compositions of the coexisting
phases as a function of temperature. The solidus and liquidus curves here define the
stability regions of the solid and liquid solutions, respectively.

Ideal and nearly ideal binary systems

Let us consider a binary system for which both the liquid and solid solutions are
assumed to be ideal or near ideal in a more formal way. It follows from their near-
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Figure 4.3 (a) Phase diagram for the system Si—Ge at 1 bar defining the five temperatures
for the Gibbs energy curves shown in (b) T1; (c) Tp; (d) T3; (e) T4; (f) T5 . Thermodynamic
data are taken from reference [2].

ideal behaviour that the two components must have similar physical and chemical
properties in both the solid and liquid states. Two systems which show this type of
behaviour are the Si—Ge system discussed above and the binary system
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FeO-MnO!-2, However, we will initially look at a general A-B system. The chem-
ical potentials of component A in the liquid and solid states are given as

Wy =p° +RT Inayy 4.11)
phd =pk® + RT Inal (4.12)

Similar expressions are valid for the chemical potential of component B of the two
phases. According to the equilibrium conditions glven by eqs 4. 7) and (4 8), the
solid and liquid solutions are in equilibrium when /.LA = u 9 and ,uB = ,uB , giving
the two expressions

T +RTlna“—/,L +RT1na (4.13)

A
ui° +RT Inay =ul® +RT Ina (4.14)

which may be rearranged as

li 1
a/;q Auo(s—))

In = (4.15)
aZS RT
and
liq o(s—l)
a A
wl B |__2HB (4.16)
a¥ RT
Here A/.to(s_’l) is the change in chemical potential or Gibbs energy on fusion of

pure i. By using G = H — TS we have

A.UQ(SHI) :'u},o —,LL AfusG =ApH TAfusSO (4.17)

1

At the melting temperature we have AfusG. =0, which implies thatAfusS
AquH ITgys;- If the heat capacity of the solid and the liquid are assumed to be
equal, the enthalpy of fusion is independent of temperature and eq. (4.17) becomes

1 The FeO-MnO system is in principle a three-component system, but can be treated as a two-
component system. This requires that the chemical potential of one of the three elements is
constant.

2 The fact that FeO is non-stoichiometric is neglected.
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ApSCD = A g HO —TA g, S? :AfusH;’[l— TT J (4.18)
fus,i

Substitution of eq. (4.18) into eqgs. (4.15) and (4.16) gives

liq o(s—l1) o
a A ApH
o fa (L _BHa o Arsfaf 1 1 (4.19)
afi RT R T Tfus,A
and
liq o(s—l) [
a A ArH
m 4B o _SHs T Amsfpl 1] (4.20)
alsBs RT R T Teyp

If we furthermore assume that the solid and liquid solutions are ideal the activi-
ties can be replaced by mole fractions and eqs. (4.19) and (4.20) rearrange to

. Ap H®
qu = x/sf exp| — sl 11 (4.21)
R T Tfus,A
and
. Ae HS
B s [ 11 (4.22)
R T Tfus,B

Analytical equations for the solidus and liquidus lines can now be obtained from
these equations by noting that xkq + xll;q =land x0 +xy’ =1, giving

o o
1S exp _AfusHA l_ 1 T+ Ss exp _AfUSHB l_ 1 =1
A R \T Tga B R \T Tip

(4.23)

and

. A H® . A HS
xgq exp ShsHall_ 1 + x)q exp fusp| 1 _ 1 =1
R T Tfus,B

(4.24)
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Figure 4.4 Phase diagram for the system Si—Ge at 1 bar. The solid lines represent experi-
mental observations [2] while the dotted and dashed lines represent calculations assuming
that the solid and liquid solutions are ideal with AC,, # 0 and AC,, =0, respectively.

In this particular case of ideal solutions the phase diagram is defined solely by the
temperature and enthalpy of fusion of the two components.

Using the analytical equations derived above, we are now able to consider the
phase diagrams of the two nearly ideal systems mentioned above more closely. In
the calculations we will initially use only the melting temperature and enthalpy of
fusion of the two components as input parameters; both the solid and liquid solu-
tions are assumed to be ideal. The observed (solid lines) and calculated (dashed
lines) phase diagrams for the systems Si—Ge [2] and FeO-MnO [3] are compared in
Figure 4.4 and 4.5. Although the agreement is reasonable, the deviation between
the calculated and observed solidus and liquidus lines is significant.

2200 T T T T

2000

T/K

1800

1600 : : : :
00 02 04 06 08 1.0

*MnO

Figure 4.5 Phase diagram of FeO-MnO at 1 bar. The solid lines represent experimental
observations [3]. The activity of iron is kept constant and equal to 1 by equilibration with
liquid Fe. Dashed lines represent calculations assuming that the solid and liquid solutions
are ideal.
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Figure 4.6 Gibbs energy of fusion of Ge and Si. The solid lines represent experimental data
[4] while the broken lines are calculated neglecting the heat capacity difference between
liquid and solid.

Let us now consider the effect of a difference between the heat capacity of pure
liquid i and pure solid i on the enthalpy and entropy of fusion and subsequently on
the phase diagram. This effect is easily taken into consideration by using egs.
(1.24) and (1.54). A,u?(s_)l) is now given as

| T T AC°.

, i

A = Ap HO + IAC;’idT—T | TpdT (4.25)
Tfus,i Tfus,i

where AC ) = C;;O —C ;°. We will use the system Si-Ge as example. A,ulf)(s_)l) for
Si and Ge with (solid lines) and without (dashed lines) taking the heat capacity dif-
ference into consideration are shown in Figure 4.6 [4], while the effect of AC 2 on
the calculated liquidus and solidus lines is shown in Figure 4.4 (dotted lines). In
this particular case, the liquids and solidus lines are shifted some few degrees up
and down in temperature, respectively, and the resulting two-phase field is only
slightly broader than that calculated without taking the heat capacity difference
between the liquid and the solid into consideration. The lack of quantitative agree-
ment between the experimentally observed phase diagram and the calculated ones
shows that significant excess Gibbs energies of mixing are present for one or both
of the solution phases in the Si—-Ge system. This indicates what is in general true:
non-ideal contributions to the solution energetics in general have a much larger
effect on the calculated phase diagrams than the heat capacity difference between
the liquid and solid. This is reflected in the phase diagram for the binary system
KCl-NaCl shown in Figure 4.7(a) [5]. This system is characterized by negative
deviation from ideal behaviour in the liquid state and positive deviation from
ideality in the solid state (see the corresponding G—x curves for the solid and liquid
solutions in Figure 4.7(b)). In general a negative excess Gibbs energy of mixing
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Figure 4.7 (a) Phase diagram of the system KCI-NaCl. (b) Gibbs energy curves for the
solid and liquid solutions KCI-NaCl at 1002 K. Thermodynamic data are taken from refer-
ence [5].

corresponds to a stabilization of the solution and a deeper curvature of the G—x
curve compared to ideal solution behaviour. Correspondingly, a positive deviation
from ideal behaviour destabilizes the solution and the G—x curve becomes shal-
lower. These features affect the resulting phase diagrams and the liquidus and sol-
idus lines may show maxima or minima for intermediate compositions, as evident
for the KCI-NaCl system in Figure 4.7(a).

Simple eutectic systems

Ag—Cu (Figure 4.1) and many other inorganic systems give rise to simple eutectic
phase diagrams. In these systems the two solid phases have such different chemical
and physical properties that the solid solubility is limited. The phases may have dif-
ferent structures and hence be represented by different Gibbs energy curves, or
they may take the same structure but with a large positive enthalpic interaction
giving rise to phase separation or immiscibility at low temperatures. The latter situ-
ation, where two solid solutions are miscible at high temperatures, is more usual
for alloys and less usual in inorganic material systems. It is, however, a very useful
situation for illustrating the link between thermodynamics and phase diagrams, as
we will see in the next section on regular solution modelling. It is worth noting that
two components that have different properties in the solid state still may form a
near-ideal liquid solution.

The system MgO-Y,O3 [6] can be used to exemplify the link between Gibbs
energy curves and the characteristic features of a simple eutectic phase diagram.
The MgO-Y;,03 phase diagram is shown in Figure 4.8(a). MgO and Y,0O3 have dif-
ferent crystal structures and the solid solubility of the two oxides is therefore lim-
ited. Furthermore, Y,O3 is found in both hexagonal and cubic polymorphs. Gibbs
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Figure 4.8 (a) Phase diagram of the binary system Y,03-MgO at 1 bar defining the five
temperatures for the Gibbs energy curves shown in (b) T1; (c) To; (d) T3; (e) T4; (f) Ts. Ther-
modynamic data are taken from reference [6].

energy representations for the selected temperatures given in the phase diagram are
shown in Figures 4.8(b)—(f). At T the liquid is stable at all compositions (Figure
4.8(b)). At T, solid MgO(ss) has become stable for MgO-rich compositions
(Figure 4.8(c)) and the two-phase field between MgO(ss) and the liquid is
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established by the common tangent construction. At 73 solid MgO(ss) is stable
for MgO-rich compositions, while the cubic polymorph of Y,03(ss) is stable
for Y,O3-rich compositions. At intermediate compositions the liquid is stable.
The compositions of the liquid coexisting with MgO(ss) and Y,Os3(ss) are
again defined by common tangent constructions. Cubic Y,O3(ss) transforms to
the hexagonal polymorph at the phase transition temperature given by the hori-
zontal line at T = 2540 K. This transition will be further considered below. At the
eutectic temperature, T4, three phases are in equilibrium (see Figure 4.8(e))
according to

liquid = h-Y,05(ss) + MgO(ss) (4.26)

At an even lower temperature, 75, a sample in equilibrium will consist of the
crystalline phase h-Y,03(ss), MgO(ss) or a two-phase mixture of these (see Figure
4.8(f)). The compositions of the two phases in equilibrium are again given by the
common tangent construction.

Regular solution modelling

The examples focused on so far have demonstrated that phase diagrams contain
valuable information about solution thermodynamics. We will illustrate this fur-
ther by using the regular solution model, introduced in Section 3.4, to calculate a
range of phase diagrams. Although the regular solution model may represent a very
crude approximation for a large number of real solutions, it has proven to be very
efficient in many respects.

The equilibrium conditions given by eqs. (4.15) and (4.16) can in general be
expressed through the activity coefficients. Using a solid-liquid phase equilibrium
as an example we obtain

liq liq ,, liq o(s—1)
a X A
0 N R N N e (4.27)
SS SS SS
ap AT A RT
and
lig lig ,, lig o(s—1)
a X A
In I:S =In Bssyfs __ i (4.28)
ag ‘B 7B RT

These expressions can be simplified since the activity coefficient in the particular
case of a regular solution can be expressed by the regular solution constant
through eqs. (3.84) and (3.85):
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the regular solution model. (b) Gibbs energy of mixing curve of the solid solution at the
temperatures marked in the phase diagram. Thermodynamic data are taken from reference

[7].

. (s—1)
. 0 liq lig2 QSs ) Au?
In(1 — x19) 4 A2 o )2 2o TTA L (409
d—-xg") RT (xg™) d-xg) RT (xg) T (4.29)
. (s—1)
. O lia lig <2 ss ) Au?
Inxld 425 - xlay?2 _qp e 22 xS =— "B 4.30
B TR d=xg") B RT( B) RT (4.30)

These two simultaneous equations can then be solved numerically to calculate the
solidus and liquidus lines.

It should be remembered that if we assume that a solution phase in a hypothetical
A-B system is regular, a positive interaction parameter implies that the different
types of atom interact repulsively and that if the temperature is not large enough
phase separation will occur. Let us first consider a solid solution only. The
immiscibility gap of the solid solution in the binary system V,03—CryO3 [7] given
in Figure 4.9(a) can be described by a regular solution model and thus may be used
as an example. The immiscibility gap is here derived by using the positive interac-
tion parameter reported for the solid solution [7]. There is no solubility at absolute
zero. As the temperature is raised, the solubility increases with the solubility limits
given by the interaction coefficient, 2, and by temperature. Figure 4.9(b) show the
Gibbs energy curves for the solid solution and the common tangent constructions
defining the compositions of the coexisting solid solutions at different selected
temperatures.

Let us now return to our hypothetical system A-B where we also consider the
liquid and where the solid and liquid solutions are both regular (following Pelton and
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Thompson [8]). Pure A and B are assumed to melt at 800 and 1000 K with the
entropy of fusion of both compounds set to 10 J K- mol-! (this is the typical entropy
of fusion for metals, while semi-metals like Ga, In and Sb may take quite different
values — in these three specific cases 18.4, 7.6 and 21.9 J K~! mol-1, respectively).
The interaction coefficients of the two solutions have been varied systematically in
order to generate the nine different phase diagrams given in Figure 4.10.

In the diagram in the middle (Figure 4.10(e)), both the solid and liquid solutions
are ideal. Changing the regular solution constant for the liquid to —15 or +15 kJ
mol-!1, while keeping the solid solution ideal evidently must affect the phase dia-
gram. In the first case (Figure 4.10(d)), the liquid is stabilized relative to the solid
solution. This is reflected in the phase diagram by a shift in the liquidus line to
lower temperatures and in this particular case a minimum in the liquidus tempera-
ture is present for an intermediate composition. Correspondingly, the positive
interaction energy for the liquid destabilizes the liquid relative to the solid solution
and the liquidus is in this case shifted to higher temperatures: see Figure 4.10(f).
For the composition corresponding to the maximum or minimum in the liquidus/
solidus line, the melt has the same composition as the solid. A solid that melts and
forms a liquid phase with the same composition as the solid is said to melt congru-
ently. Hence the particular composition that corresponds to the maximum or min-
imum is termed a congruently melting solid solution.

Positive deviations from ideal behaviour for the solid solution give rise to a mis-
cibility gap in the solid state at low temperatures, as evident in Figures 4.10(a)—(c).
Combined with an ideal liquid or negative deviation from ideal behaviour in the
liquid state, simple eutectic systems result, as exemplified in Figures 4.10(a) and
(b). Positive deviation from ideal behaviour in both solutions may result in a phase
diagram like that shown in Figure 4.10(c).

Negative deviation from ideal behaviour in the solid state stabilizes the solid solu-
tion. 5= —10kJ mol~!, combined with an ideal liquid or a liquid which shows pos-
itive deviation from ideality, gives rise to a maximum in the liquidus temperature for
intermediate compositions: see Figures 4.10(h) and (i). Finally, negative and close to
equal deviations from ideality in the liquid and solid states produces a phase diagram
with a shallow minimum or maximum for the liquidus temperature, as shown in
Figure 4.10(g).

The mathematical treatment can be further simplified in one particular case, that
corresponding to Figure 4.10(a). As we saw in the previous section, in some binary
systems the two terminal solid solution phases have very different physical proper-
ties and the solid solubility may be neglected for simplicity. If we assume no solid
solubility (i.e. @} =ay =1) and in addition neglect the effect of the heat capacity
difference between the solid and liquid components, eqs. (4.29) and (4.30) can be
transformed to two equations describing the two liquidus branches:

. lig Ae H®
el o 2 e A1 @31)
RT R T Tfus,A
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The two branches intersect at the eutectic point and the phase diagram thus relies
on a single interaction parameter, Qliq, only.

In the present section we have focused on the calculation of phase diagrams from
an existing Gibbs energy model. We can turn this around and derive thermody-
namic information from a well-determined phase diagram. Modern computational
methods utilize such information to a large extent to derive consistent data sets for
complex multi-components systems using both experimental thermodynamic data
and phase diagram information. Still, it should be remembered that the phase dia-
gram data does not give absolute values for the Gibbs energy, but rather relative
values. A few well-determined experimental data points are, however, enough to
‘calibrate the scale’, and this allows us to deduce a large amount of thermodynamic
data from a phase diagram.

Invariant phase equilibria

In the examples covered so far several invariant reactions defined by zero degrees
of freedom have been introduced. For a two-component system at isobaric condi-
tions, F = 0 corresponds to three phases in equilibrium. Eutectic equilibria have
been present in several of the examples. Also, congruent melting for the solid solu-
tions with composition corresponding to the maxima or minima in the liquidus
lines present in Figures 4.10(f) and (d), for example, corresponds to invariant reac-
tions. At the particular composition corresponding to the maximum or minimum,
the system can be considered as a single-component system, since the molar ratio
na/ng = x5 /xg remains constant in both the solid and liquid solutions. The molar
ratio between the two components is a stoichiometric restriction that reduces the
number of components from two to one. A third invariant reaction is the hexagonal
to cubic phase transition of pure Y03 represented in Figure 4.8(a). While pure
Y,03 is clearly a single-component system, the solid solubility of the component
MgO in h-Y;03(ss) and c-Y,O3(ss) increases the number of components by one
relative to pure Y;0O3. Two coexisting condensed phases give one degree of
freedom and the solid—solid transition is no longer an invariant reaction according
to the phase rule, but occurs over a temperature interval. The two-phase region is,
however, narrow and not visible in Figure 4.8(a).

Several other invariant equilibria may take place. A peritectic reaction is
defined as a reaction between a liquid and a solid phase under the formation of a
second solid phase during cooling. Such an invariant reaction is seen in Figure
4.10(c), where the reaction

B(ss) + liquid —> A(ss) (4.33)

takes place at T = 837 K. It is possible for a solid solution to play the role of the
liquid in a similar reaction. Equilibria of this type between three crystalline phases
are termed peritectoid. Similarly, eutectic reactions, where the liquid is replaced
by a solid solution (hence involving only solid phases), are termed eutectoid.
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Figure 4.11 Phase diagram of the hypothetical binary system A-B consisting of regular
solid and liquid solutions. Q119 = 20 kJ mol~! and Q50! = 15 kJ mol~!. Thermodynamic data
for components A and B as in Figure 4.10.

A miscibility gap in the liquid state in general results in another invariant reac-
tion in which a liquid decomposes on cooling to yield a solid phase and a new
liquid phase

liq; — B(ss) +1iqy (4.34)
in a monotectic reaction.

Finally, a phase diagram showing phase separation in both the liquid and solid

states is depicted in Figure 4.11. Here a syntectic reaction (liq; +lig, — a(ss))
takes place at 1115 K.

Formation of intermediate phases

The binary systems we have discussed so far have mainly included phases that are
solid or liquid solutions of the two components or end members constituting the
binary system. Intermediate phases, which generally have a chemical composi-
tion corresponding to stoichiometric combinations of the end members of the
system, are evidently formed in a large number of real systems. Intermediate
phases are in most cases formed due to an enthalpic stabilization with respect to the
end members. Here the chemical and physical properties of the components are dif-
ferent, and the new intermediate phases are formed due to the more optimal condi-
tions for bonding found for some specific ratios of the components. The stability of
a ternary compound like BaCOj3 from the binary ones (BaO and CO»(g)) may for
example be interpreted in terms of factors related to electron transfer between the
two binary oxides; see Chapter 7. Entropy-stabilized intermediate phases are also
frequently reported, although they are far less common than enthalpy-stabilized
phases. Entropy-stabilized phases are only stable above a certain temperature,
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K. 4¢a0 =Mty o =0. TSZ is not included for clarity. (b) Calculated phase diagram of the
system ZrO,—CaO. Thermodynamic data are taken from reference [9].

where the entropy contribution to the Gibbs energy exceeds the enthalpy difference
between this phase and the phase or phase assemblage stable at lower tempera-
tures. One example is wiistite, Fei_,0, which forms eutectoidally from Fe and
Fe;04 at 850 K. The formation of intermediate phases will naturally significantly
influence the phase diagram of a given system.

Before we give some examples of phase diagrams involving intermediate phases,
it is useful to discuss the compositional variation of the Gibbs energy of such
phases. Some intermediate phases may be regarded as stoichiometric. Here the
homogeneity range or the compositional width of the single-phase region is
extremely narrow. This reflects the fact that the Gibbs energy curves rise extremely
rapidly on each side of the minimum, which is located at exactly the stoichiometric
composition of the phase. This is illustrated in Figure 4.12(a) for CaZrO3, which
may be seen as an intermediate phase of the system CaO-ZrO; [9].3 The sharpness
of the G—x curve implies that CaZrOj is represented by a vertical line in the
Ca0O-ZrO; phase diagram shown in Figure 4.12(b). The fact that the solid solu-
bility or non-stoichiometry of CaZrOs is negligible is understood by considering
the crystal structures of the compounds involved; CaZrOj3 takes a perovskite-
related crystal structure, while the two end members ZrO, and CaO have the fluo-
rite and rock salt structures, respectively. In the perovskite structure there are

3 The system Ca—Zr-O is principally a ternary system. However, as long as the oxidation state
of Zr and Ca are the same in all phases, the system can be redefined as a two-component
system consisting of CaO and ZrO».
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Figure 4.13 Phase diagram of the system Si—Ti [10].

unique lattice sites for both Ca and Zr, and neither interchange of Zr and Ca nor the
generation of vacant sites are thermodynamically favourable for CaZrO5.# In opti-
mization of thermodynamic properties of stoichiometric compounds, the
compositional variation is often neglected and the Gibbs energy is simply given as
a function of temperature (and possibly pressure).

CaZrO3 melts congruently, i.e. the coexisting liquid and solid phases have the
exact same composition and CaZrO3 may hence be considered as a single-compo-
nent system. Here two phases present in equilibrium at constant pressure give zero
degrees of freedom. The congruent melting of CaZrOj3 is therefore an invariant
equilibrium. Correspondingly, an incongruently melting compound melts under
the formation of a new solid phase and a liquid with composition different from the
original compound.

The phase diagram of the binary system Si—Ti shown in Figure 4.13 [10] is even
more complex. In this system several intermediate phases are formed. Solid solu-
bility is present for the intermediate phase TisSi3, while the other intermediate
phases Ti3Si, Ti5Sig, TiSi and TiSij all have very narrow homogeneity ranges. The
G—x curve for ‘Ti;Si3’ should therefore display a shallow minimum at the Ti5Si3
composition, while the G—x curve for the other intermediate phases should possess
sharp minima at the exact composition of the phases. In the thermodynamic
description of the Gibbs energy of the non-stoichiometric phase Ti5Si3, the varia-
tion of the Gibbs energy with composition must be taken into account explicitly in
order to calculate the homogeneity range. In this particular case, the Gibbs energy
model may contain several different sub-lattices (see Chapter 9) so that the distri-
bution of different species on the relevant sub-lattices is represented.

4 Tt should be mentioned that oxygen vacancies are often formed in the perovskite-type
structure ABO3 in cases where the B atom is a transition metal that readily exists in more than
one oxidation state.
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The intermediate phases in the system Si—Ti display also a variety of other fea-
tures. While TiSi, and Ti5Si3 are congruently melting phases, Ti5Si4 and TiSi melt
incongruently. Finally, Ti3Si decomposes to 3-Ti and TisSiz at 7= 1170 K, in a
peritectoid reaction while 5-Ti decomposes eutectoidally on cooling forming o-Ti
+ TizSi at T= 862 K.

Melting temperature: depression or elevation?

While until now we have considered relatively simple phase diagrams and the fun-
damentals of the connection between phase diagrams and thermodynamics, we are
here going to consider a somewhat more complex example, but only briefly.

The calculation of phase diagrams is possible if the equilibrium between the dif-
ferent phases can be evaluated as a function of the variables of the system. A rela-
tively simple case is obtained by considering the effect of impurities on the melting
temperature of a ‘pure metal’ following Lupis’s treatment of the calculation of the
phase boundaries in the vicinity of invariant points [11]. The impurity may be
solved both in the solid and liquid phases and the presence of impurities in a ‘pure’
metal leads to interval freezing. The fusion interval is generally offset towards
higher or lower temperatures depending on the nature of the impurity. These alter-
natives are discussed here with reference to binary phase diagrams exemplifying
either a eutectic-type or peritectic-type behaviour in the composition range
adjoining the pure metal. The term eutectic-like behaviour is used for all diagrams
with the liquidus line sloping downwards, and peritectic-like is used for all those
with the liquidus line sloping upwards. Monotectic diagrams, as well as those
that include intermediate phases decomposing peritectically below the fusion tem-
perature of the pure metal (e.g. SnSb in the phase diagram of the Sn—Sb system
in Figure 4.14) are presently classed in the eutectic-like category. Nearly ideal
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Figure 4.14 Phase diagrams of the systems (a) Sn—Bi [13] and (b) Sn—Sb [14]. Reprinted
from [12]. Copyright (1999), with permission from Elsevier.
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systems, with complete solid and liquid solubility, are categorized as peritectic if
the impurity fuses at a higher temperature than the pure metal.

The equilibrium compositions of an impurity B, xg and xg, in the two phases &
and f3 at a given temperature are given by eqgs. (4.27) and (4.28), which may be
rewritten as

1— x% Auo(a—)ﬂ)
In B lilny® —mmyP -CA 9 4.35
B
e A o(oe—>P)
Inf 2. sy -myf 2B (4.36)
N RT

Here Raoultian standard states are used for both the pure metal and the impurity.
The slope dxg/dT of the phase boundaries can now be derived by differentiation
with respect to temperature. Let f(xg) denote the left-hand side of eq. (4.35) or
(4.36); then (see Lupis, Further reading)

[df(xB)J (oo | [0f |, [orem | [ v +(8f(xs)j
eq xF B

dr axg ) 4T ox” ar T )8

=0
(4.37)

where dxg/dT and dxg/dT are the slopes of the two phase boundaries [11]. Equa-
tion 4.37 is identical to zero since f(xp) is zero along the boundaries. The slope of
the phase boundaries can now be evaluated using eqs. (4.35) and (4.36). Further
treatment [11] gives the following equations for the slopes of the phase boundaries
— using a solid-liquid transition (melting) as an example:

Ii
dx]sgs _ 7/;0’ “ (Afussz /RTfus,A) (4.38)
oo, li o, ’
dT xiigs_)o YB - ’)/B - exp(—A quG](; /RTqu,A)
and
dx]13iq B yl‘;osss (A quSZ /RTfu&A)exp(—A fusGl(; /RTfllS,A) (4 39)

o,liq 0,8S o
X450 14 — 75 exp(-A fusGB ! RTgy5,0)
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Here }/;”Hq and y =% are the activity coefficients of component B in the liquid and
solid solutions at infinite dilution with pure solid and liquid taken as reference
states. A g SZ is the standard molar entropy of fusion of component A at its fusion
temperature T'g o and AfusGlg is the standard molar Gibbs energy of fusion of
component B with the same crystal structure as component A at the melting tem-
perature of component A.

The melting temperature depression or enhancement may now be expressed in
terms of the melting temperature and the entropy of fusion of component A, the
activity coefficients of impurity B in the liquid and solid solutions at infinite dilu-
tion, and the total concentration of the impurity B, xg [12]:

AT =T =Tpsp =— (4.40)

xBRTfus,A|: 1 :|
AfusSZ F-k

where Fis the fraction of the sample melted at AT departure from T'g o , and K is an
interaction coefficient. If the liquid standard state is used for the activity coeffi-
cient of component B in both solid and liquid solutions:

0,liq
K- B~ (4.41)

o, li 0,88
Ve o~ Vg

In this case the equations are greatly simplified and the ratio of the slopes of the
two phase boundaries at x, =11is given by the activity coefficients of B at infinite
dilution in the liquid and solid phases [11]:

-0

MT/M“)“ 0,5
_ B (4.42)

AT 1) Ly 75

Eutectic behaviour persists for 0 > K > — oo, that is for y -1 — ~ 7y <0. Peritectic

behaviour is obtained for 1 < K < o, that is for y” lig g >0.

The phase diagrams of the Sn—Bi and Sn—Sb systems are shown in Figure 4.14,
and they illustrate the effect of Bi and Sb on the melting temperature of pure Sn.
Experimental thermodynamic data for the Sn-Bi system gives A5:™ =7.5 and
Ay i — 1.3 [13]; the slope of the Sn solidus is steeper than for the Sn liquidus,
K = —0.2, and a eutectic type behaviour is expected. For the Sn-Sb system
Ag™ =0.12 and /”L?l;hq =0.27[14], the slope of the Sn liquidus is steeper than that
for the Sn solidus, K = 1.8, and a peritectic-type behaviour is suggested. Both
results are in agreement with the experimental phase diagrams.

Activity coefficients at infinite dilution are in general very important and fre-
quently used in thermodynamic analyses. Examples are analyses of trace element
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partitioning between solids and melts in geological systems [15] and analyses of
the distribution of long-lived chemicals throughout the environment [16].

Minimization of Gibbs energy and heterogeneous phase equilibria

The heterogeneous phase equilibria considered in the preceding sections have
implicitly been derived by finding the phase or phase assemblage with the lowest
Gibbs energy. Heterogeneous phase equilibria in general are calculated by mini-
mizing the Gibbs energy, and computer software has been available for several
decades to perform similar calculations in multi-component systems consisting of
any number of components and phases. Generally, the Gibbs energy in a system
consisting of the components A, B, C, ..., the stoichiometric phases &, 3, 7, ...and
the solution phases 1, 2, 3, ... can be expressed as

G=nyuA¢Gy +nﬂAfGB +ny ApGy +...

+ Y > nj(u;?+RT1naj)
i=123,. j=A,B,C,...

(4.43)

For a given set of constraints (for example temperature, pressure and overall
composition), the algorithm identifies the phases present and the relative amounts
of these phases, as well as the mole fraction of all the components in all phases. The
global minimum evidently must obey the Gibbs phase rule, and not all phases need
to be present at the global equilibrium.

A thorough description of strategies and algorithms for minimization of Gibbs
energy in multi-component systems is outside the scope of the present text. The
monograph by Smith and Missen (see Further reading) gives an excellent over-
view of the topic.

4.2 Multi-component systems

Ternary phase diagrams

For three-component (C = 3) or ternary systems the Gibbs phase rule reads Ph + F =
C +2=35.In the simplest case the components of the system are three elements, but
a ternary system may for example also have three oxides or fluorides as compo-
nents. As a rule of thumb the number of independent components in a system can
be determined by the number of elements in the system. If the oxidation state of all
elements are equal in all phases, the number of components is reduced by 1. The
Gibbs phase rule implies that five phases will coexist in invariant phase equilibria,
four in univariant and three in divariant phase equilibria. With only a single phase
present F =4, and the equilibrium state of a ternary system can only be represented
graphically by reducing the number of intensive variables.
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Figure 4.15 Equilateral composition triangle for defining composition in a ternary system
A-B-C.

It is sometimes convenient to fix the pressure and decrease the degrees of
freedom by one in dealing with condensed phases such as substances with low
vapour pressure. The Gibbs phase rule for a ternary system at isobaric conditions is
Ph + F =C + 1 =4, and there are four phases present in an invariant equilibrium,
three in univariant equilibria and two in divariant phase fields. Finally, three
dimensions are needed to describe the stability field for the single phases; e.g. tem-
perature and two compositional terms. It is most convenient to measure composi-
tion in terms of mole fractions also for ternary systems. The sum of the mole
fractions is unity; thus, in a ternary system A-B—C:

XA txg+txc =1 (4.44)

and there are two independent compositional variables. A representation of com-
position, symmetrical with respect to all three components, may be obtained from
the equilateral composition triangle as shown for the system A-B—C in Figure
4.15. The three corners of the triangle correspond to the three pure components.
Along the three edges are found the compositions corresponding to the three binary
systems A-B, B—C and A-C. Lines of constant mole fraction of component A are
parallel to the B-C edge (exemplified by the broken line for x, =0.2), while lines
of constant mole fraction of B and C are parallel to the A—C and A-B binary edges
respectively (exemplified by broken lines for xg =0.2 and x¢ =0.6). The three
lines intersect at the point marked X, which thus have the composition x, =0.2,
xg =0.2, x¢c =0.6. Note that the sum of the lengths of the perpendiculars from any
composition point to the three edges is constant (using the point X as an example
once more, the perpendiculars are given by bold lines in the figure). It is upon this
property that the representation is based and the three perpendiculars are measures
of the mole fractions of the three components.
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Figure 4.16 (a) Triangular prism phase diagram for a ternary system A—B—C with the equi-
lateral triangular base giving composition. Temperature is given along the vertical axis
[17]. (b) Projection of the liquidus surface onto the ternary composition triangle. The bold
line is the intersection between the primary crystallization fields of C and the solid solution
a. The dashed line represents the extension of the solid solution ¢. Reprinted with permis-
sion of The American Ceramic Society, www.ceramics.org. Copyright [1984]. All rights
reserved.

To represent a ternary system at constant pressure completely, the effect of tem-
perature must be incorporated in the phase diagram. Such a ternary tempera-
ture—composition phase diagram at constant pressure may be plotted as a three-
dimensional space model using a triangular prism. The ternary composition tri-
angle would then form the base while temperature is given along the vertical axes
as shown in Figure 4.16(a) for a hypothetical ternary system A-B—C [17]. On
the three faces of the prism we find the phase diagrams of the three binary
systems A-B, B—C and A-C. In the hypothetical system illustrated in Figure
4.16(a) complete solid solubility is present in the close to ideal binary system A—B
(the solid solution phase is denoted ¢), while the two other binary systems B—C and
A-C are eutectic systems with a limited solubility of C in the solid solution phase
a.

Recall that the Gibbs phase rule gives F + Ph = C + 1 = 4 for a ternary system at
constant pressure. Within the prism two liquidus surfaces are shown: one descending
from the melting temperature of pure C and the other from the liquidus of « in the
binary A-B system. Compositions on the two surfaces corresponds to compositions
of the liquid in equilibrium with one of the two solid phases, C or a. For an equilib-
rium between a solid and the liquid, Pk = 2 and thus F = 2; the two surfaces are
divariant. The two liquidus surfaces intersect along the univariant line (F = 1)
starting from one of the binary eutectics (E{) and ending in the other (E,). The inter-
section of adjoining liquidus surfaces in a ternary phase diagram is generally termed
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a common boundary line. Along the univariant common boundary line three phases
(lig, C and o) are in equilibrium.

In the present case there are no ternary invariant equilibria in the system, partly
due to the complete solid solubility of the A—B system. In a ternary system com-
posed from three binary eutectic sub-systems, three univariant lines would meet in
a ternary eutectic equilibrium:

lig. <> A(ss) + B(ss) + C(ss) (4.45)

which is an invariant equilibrium at isobaric conditions.

Phase diagrams based on the triangular prism give an illustrative representation
of isobaric ternary systems, but the construction of the diagram is very time-con-
suming and of less convenience. A more convenient two-dimensional representa-
tion of the ternary liquidus surface may be obtained by an orthogonal projection
upon the base composition triangle. This is shown for the system A—B—C in Figure
4.16(b) [17]. The lines of constant temperature are called liquidus isotherms. In
Figure 4.16(b) the bold line shows the common boundary line of the two liquidus
surfaces descending from the melting temperature of pure C and from the liquidus
of o in the binary A-B system discussed above. Often an arrow is used to indicate
the direction of decreasing temperature along univariant lines.

We will now apply Figure 4.16 to find the equilibrium behaviour of a sample
with overall composition marked P in the diagrams, when it is cooled from above
the liquidus surface to below the solidus temperature for the given overall composi-
tion. The point marked P lies within the primary crystallization field of ¢. That
is, it lies within the composition region in which « will be the first solid to precipi-
tate during cooling. When cooling the liquid, o will start to precipitate when
the liquidus temperature is reached just below 700 °C; see Figure 4.16(b). During
further cooling the amount of solid o will increase at the expense of the amount of
liquid. It is important to note that the composition of ¢ is not constant during the
crystallization.

Two selected isothermal sections of the phase diagram that show relevant two-
phase equilibria are given in Figure 4.17 [17]. The thin lines illustrate the tielines
between the compositions of two phases in equilibrium (o + liq.) or (C + liq). The
tieline going through the overall composition point P in Figure 4.17(a) defines the
composition of the two conjugate phases, o and liquid, at that particular tempera-
ture. During cooling the composition of ¢ is enriched on A and also the composi-
tion of the liquid changes. The two phases remain in equilibrium until the liquid
reaches the intersection of the primary crystallization fields of & and phase C. At
this temperature, the second solid phase, denoted phase C, will start to precipitate
in addition to . On further cooling, the composition of the liquid is defined by the
common boundary line from E; to E; in Figure 4.16, where the liquid is in equilib-
rium with o and C. The compositions of the three phases in equilibrium are given
by a triangle in an isothermal section. This is illustrated for the temperature corre-
sponding to that where the liquid phase disappears, i.e. when P reaches the edge of
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Figure 4.17 Isothermal sections of the ternary phase diagram A—B—C shown in Figure 4.16
at (a) 650 °C and (b) 450 °C [17]. Here L denotes liq. Reprinted with permission of The
American Ceramic Society, www.ceramics.org. Copyright [1984]. All rights reserved.

the three-phase triangle in Figure 4.17(b). On further cooling the two solid phases
remain in equilibrium. Since the solubility limit of & decreases with decreasing
temperature, the relative amounts of the two phases in equilibrium also change.

A sample in the primary crystallization field of phase C will behave differently
during crystallization. Here phase C precipitates with composition identical to C
(no solid solubility) during cooling keeping the A:B ratio in the melt constant until
the melt hits the intersection of the two primary crystallization fields. At this tem-
perature o will start to precipitate together with further C and from this point on the
cooling process corresponds to that observed for the sample with overall composi-
tion P after this sample reaches the same stage of the crystallization path.

The relative amount of the different phases present at a given equilibrium is
given by the lever rule. When the equilibrium involves only two phases, the calcu-
lation is the same as for a binary system, as considered earlier. Let us apply the
lever rule to a situation where we have started out with a liquid with composition P
and the crystallization has taken place until the liquid has reached the composition
2 in Figure 4.17(a). The liquid with composition 2 is here in equilibrium with ¢
with composition 2'. The relative amount of liquid is then given by

2'P
22
where 2'P denotes the distance between 2’ and P and 2"2 that from 2’ to 2. The
amount of solid (@) y,, is given by I - yy;q. With three phases in equilibrium, the
relative amounts of the three phases are also given by the lever rule, but its use is
slightly more complex. In this case the relative amounts of the three phases are
determined in terms of a triangle defined by the composition of the three phases in
equilibrium. A line from each of the three corners is drawn through the point repre-
senting the overall composition of the sample to the opposite edge. The relative

yliq = (446)
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Figure 4.18 Phase diagram for the ternary system NaF-MgF,—CaF, [18]. Reprinted with
permission © 2001 by ASM International and TMS (The Minerals, Metals and Materials
Society).

amount of a given phase (represented as a corner in the diagram) is defined as the
length of the line from the overall composition to the opposite edge divided by the
total length from the corner to the edge. This is illustrated in Figure 4.15. Here
the relative amount of phase B for a sample with overall composition X is equal to
QX/QP. Similar procedures for the two other components give the relative amount
of all three phases in equilibrium.

Let us now consider two real ternary systems to illustrate the complexity of ter-
nary phase diagrams in some detail. While the first is a system in which the solid
state situation is rather simple and attention is primarily given to the liquidus sur-
faces, the solid state is the focus of the second example.

The phase diagram of the ternary system NaF-MgF,—CaF, is shown in Figure
4.18 [18]. Of the three binary sub-systems NaF—CaF, and MgF,—CaF, are simple
eutectic systems, while an intermediate phase, NaMgF3, is formed in the third
system, NaF-MgF,. The latter can however be divided into two simple eutectic
subsystems: NaF-NaMgF3; and NaMgF3;-MgF,. The overall system consists of
the four solid phases described above, all with their own primary crystallization
field and all four phases melt congruently. The borderline between the primary
crystallization fields of the phases are shown as bold lines. Two ternary eutectics
are shown with the eutectic compositions within the two ternary subsystems
NaF-CaF,-NaMgF3; and CaF,-MgF,-NaMgF3. The binary join between CaF,
and NaMgFj3 is termed a true Alkemade line defined as a join connecting the com-
positions of two primary phases having a common boundary line. This Alkemade
line intersects the boundary curve separating the primary phases CaF, and
NaMgF3. The point of intersection represents the temperature maximum on the
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Figure 4.19 Isothermal sections of the ternary system C-Si-Ti at (a) 1400 °C and (b) 1800°C

[10]. Reprinted with permission of The American Ceramic Society, www.ceramics.org. Copy-
right [2000]. All rights reserved.

boundary curve, while the liquidus along the Alkemade line has a minimum at the
same composition; hence the intersection represents a saddle point. If the
Alkemade line does not intersect the boundary curve, then the maximum on the
boundary curve is represented by that end which if prolonged would intersect the
Alkemade line. The binary join NaF-MgF, is not an Alkemade line since these two
solid phases are not coexistent. Finally, the o—f CaF; phase transition at 1151 °Cis
shown as a bold line in the figure.

For ternary systems with complex phase behaviour in the solid state it is more
convenient to use only isothermal sections. This is shown for two temperatures for
the ternary system Ti—Si—C in Figure 4.19 [10]. In this system several binary and
ternary intermediate phases are stable, and the system is divided into several ter-
nary sub-systems. Tielines for two-phase equilibria are also shown in the two iso-
thermal sections.

Quaternary systems

In a quaternary system, three dimensions are required to represent composition and
a fourth dimension is needed for the temperature if the temperature dependence is
to be displayed. Since we live in a three-dimensional world this is awkward. The
dilemma is partly overcome by constructing a diagram, which is analogous to the
plane projection made for ternary systems. This is shown for the system A—-B—C-D
in Figure 4.20. The phase diagram is a tetrahedron, and the four corners of the tetra-
hedron correspond to the four components. The four faces of the tetrahedron corre-
spond to the plane projections of the four limiting ternary systems. The Gibbs
phase rule for the quaternary system at isobaric conditions is Ph + F=C + 1 =5.
With only a single phase present and for a given temperature, three composition
variables may be varied (i.e. F' = 3), and the stability field for each phase is thus a
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c

Figure 4.20 Tetrahedron space model for the phase diagram of the quaternary system
A-B-C-D. The isotherms T, T», T3 are shown for the primary phase volume of component
A [17]. Reprinted with permission of The American Ceramic Society, www.ceramics.org.
Copyright [1984]. All rights reserved.

volume in the tetrahedron. Two phases are in equilibrium along surfaces, three
phases are present in univariant equilibria and finally there are four phases in
invariant equilibria.

The addition of further components makes the presentation of the phase dia-
grams increasingly complex. The principles are general, however, and calculation
of a vertical section in a quinternary system like Fe—Cr—-Mo-W-C [19], for
example, is fairly easily done by the use of large computer programs for calculation
of phase diagrams based on thermodynamics.

Ternary reciprocal systems

A ternary reciprocal system is a system containing four components, but where
these components are related through a reciprocal reaction. One example is the
system LiCl-LiF-KCI-KF. Solid LiCl, LiF, KCI and KF are highly ionic materials
and take the rock salt crystal structure, in which the cations and anions are located
on separate sub-lattices. It is therefore convenient to introduce ionic fractions (X;)
for each sub-lattice as discussed briefly in Section 3.1. The ionic fractions of the
anions and cations are not independent since electron neutrality must be fulfilled:

Xp +Xo =X o + X =1 (4.47)

For this reason, the system is defined by the four neutral components LiCl, LiF,
KC1 and KF, which in addition can be related by the reciprocal reaction
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Figure 4.21 Calculated phase diagram of the ternary reciprocal system LiCl-LiF-KC]1-KF
[20]. Reprinted with permission © 2001 by ASM International and TMS (The Minerals,
Metals and Materials Society).

LiCl+ KF=LiF + KCl (4.48)

The sign of the Gibbs energy of this reciprocal reaction determines which of the
two pairs of compounds are coexistent at a given temperature (and pressure). In our
specific case, the Gibbs energy of the reciprocal reaction is negative and the prod-
ucts are coexistent phases, while the reactants are not. A reciprocal ternary phase
diagram is in general constructed by the combination of two ternary systems that
both contain the two coexistent phases. Thus in the present case the ternary phase
diagrams of the systems LiF-KCI-LiCl and LiF-KCI-KF are combined. The cal-
culated phase diagram of the ternary reciprocal system considered is shown in
Figure 4.21 [20]. Here the sign of the reciprocal reaction is reflected in that the
stable diagonal in the system is LiF-KCI and not LiCI-KF.

Both the ternary systems are simple eutectic ones and the composition of the
system is represented by the ionic fraction of one of the cations and one of the
anions. In Figure 4.21 the ionic fraction of Li* is varied along the X-axis, while the
ionic fraction of F~ is varied along the Y-axis.

4.3 Predominance diagrams

In the preceding sections the phase diagrams have been represented in terms of
composition. Alternatively, the chemical potential of one or more of the compo-
nents may be used as variables. This gives rise to a range of similar diagrams that
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Figure 4.22 log pp, versus T predominance phase diagram for the binary system Fe-O.
Thermodynamic data are taken from reference [21].

have many applications in materials science. These will here be termed predomi-
nance diagrams. They are of great importance for understanding materials’ sta-
bility under hostile conditions (for example hot corrosion) and in planning the
synthesis of materials; for example for chemical vapour deposition. In addition to
being of great practical value, they also further illustrate the principles of Gibbs
energy minimization and the Gibbs phase rule.

In predominance diagrams one or more base elements are defined which must be
present in all the condensed phases. A predominance diagram for the binary system
Fe—O is shown in Figure 4.22. The diagram is divided into areas or domains of sta-
bility of the various solid phases of the Fe—O system. In this simple binary case the
base element is iron, which is present in all five condensed phases in the system:
three oxides and two solid modifications of Fe. The Gibbs phase rule reads Ph + F =
C + 2 =4 if the pressure of oxygen is considered as the mechanical potential p.
Alternatively, p;ot may be considered to be constant e.g. 1 bar. In the latter case, a
third component, an inert gas, must be added to the system to maintain the isobaric
condition. Thus Pk + F = C + 1, which for C = 3 again gives Ph + F' = 4. In conclu-
sion, we may have a maximum of four phases in equilibrium: three condensed
phases and a gas phase. A univariant line (¥ = 1) is for this two component system a
phase boundary separating the domains of two condensed phases, for instance
Fe304 and Fe;O3. These univariant lines are defined by heterogeneous phase
equilibria like

4/3 Fe304(s) + 1/3 0x(g) = 2 Fe,05(s) (4.49)

The stability fields for the condensed phases correspond to F =2, which means that
both temperature and the partial pressure of O, can be varied independently.

In order to derive the phase boundaries in Figure 4.22 we need the Gibbs energy
of formation of the oxides. This type of data is conveniently given in an Ellingham
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Figure 4.23 Ellingham diagram for various metal oxides. Thermodynamic data are taken
from reference [21].

diagram [22,23] where the Gibbs energy ‘of formation’ of various oxides is
plotted versus the temperature, as shown in Figure 4.23. Note that the Gibbs energy
of formation is given per mole O,, which is not in accordance with the definition of
the energies of formation given in Chapter 1 and used frequently thereafter.

For a binary oxide like Fe,O3 the reaction in question is

4/3 Fe(s) + O2(g) =2/3 Fe03(s) (4.50)

Assuming that the metal and oxygen are in their standard states, the equilibrium
constant corresponding to reaction (4.50) is given as

K =Vpo, =exp(-A,G °/RT) (4.51)

If the oxygen partial pressure is lower than pg =VK the reactant (in our case Fe) is
stable. If it is higher, the product (in our case Fe,03) is formed.

The slopes of the lines in the Ellingham diagram are given by the entropy change
of the formation reaction: —A . S . The entropy changes are in general negative due
to the consumption of gas molecules with higher entropy and the slopes are thus
positive. In the large scale of the plot the lines appear to be linear, suggesting
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constant entropies of the reactions (or in other words that the difference in heat
capacity between the reactants and products is zero). On a different scale the curva-
ture of the Gibbs energy curves is visible. Furthermore, it should be noted that the
breaks in the slopes of the curves are due to first-order phase transitions of the
metal or the oxide.

The Ellingham diagram contains a lot of useful information. By drawing a line
from the point P that intersects the Gibbs energy curve of a particular compound at
a temperature of interest, the partial pressure that corresponds to decomposition/
formation of the oxide from pure metal and gas at that particular temperature can
be derived. The partial pressure of oxygen is obtained by extrapolation to the
log Po, scale on the right-hand side of the diagram. For example, at 1000 K the par-
tial pressure of oxygen corresponding to equilibrium between Zn and its mon-
oxide, ZnO, is 10-26 bar. From the diagram in Figure 4.23 it is evident that the
oxides with the more negative Gibbs energies of formation have the highest sta-
bility and are harder to reduce to the elemental state.

In materials science, the controlled partial pressure of oxygen is often obtained
by using gas mixtures. Here the ratio of the partial pressures of e.g. Hp(g) and
H»>O(g) or CO(g) and CO,(g) are varied to give the desired Po, ata given tempera-
ture. The ratios py, /py,0 and pco/pco, are related to the partial pressure of O by
the reactions

2H>0(g) =2Hs(g) + 02(g2) (4.52)
2C0,(g) =2C0(g) + O2(g) (4.53)

Calculated ratios pco/pco, and py,/py,o for selected partial pressures of oxygen
at a total pressure of 1 bar are given in Figure 4.24.

The equilibrium between a metal and an oxide in a CO—CO, atmosphere can then
be obtained by combining the formation reaction of the oxide with reaction (4.53).
As an example the equilibrium between Co, O, and CoO combined with reaction
(4.53) gives

Co(s) + CO,(g) =CO(g) + CoO(s) (4.54)

After finding the partial pressure of oxygen at a given temperature through Figure
4.23, the composition of the gas mixture is obtained from Figure 4.24(a).

Let us now include an additional component to the Fe—O system considered
above, for instance S, which is of relevance for oxidation of FeS and for hot corro-
sion of Fe. In the Fe—S—O system iron sulfides and sulfates must be taken into con-
sideration in addition to the iron oxides and ‘pure’ iron. The number of components
C is now 3 and the Gibbs phase rule reads Ph + F = C + 2 =5, and we may have a
maximum of four condensed phases in equilibrium with the gas phase. A two-
dimensional illustration of the heterogeneous phase equilibria between the pure
condensed phases and the gas phase thus requires that we remove one degree of
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Figure 4.24 Relationship between the partial pressure of oxygen and the composition of
CO-CO7 and Hp-H»O gas mixtures at 1 bar. (a) PCO/PC02 versus temperature and (b)
PH,/Pu, 0 versus temperature at selected partial pressures of oxygen. Thermodynamic data

are taken from reference [21].

freedom. This can be done by keeping either the temperature or a chemical poten-
tial constant. To exemplify the former choice, the isothermal predominance dia-
gram for the Fe—S—O system at 800 K is shown in Figure 4.25. Here the partial
pressures of SO, and O are used as variables. An univariant line (F = 1) or phase
boundary separates domains of two different condensed phases. For Fe,O3 and
FeSOQOy this line is defined by the heterogeneous phase equilibrium

2k FeS, i
. Fe,(SOy4)3
5
S of
o)
%]
S
)
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4tk
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Figure 4.25 log pso, versus log po, predominance diagram for the system Fe-S-O at
527 °C. Thermodynamic data are taken from reference [21].
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lee203(s) +S0s(g) + iOz(g) =FeSOy4(s) (4.55)
Since
A,G° =—RT InK =—RT In ;]/4 (4.56)
Pso, P,

the phase boundary is given by the line log K = —log Pso, ~ i log Po, s where K is
the equilibrium constant for reaction (4.55). The domain of stability for each of the
condensed phases corresponds to two degrees of freedom (F = 2), while three con-
densed phases are in equilibrium with the gas phase at an invariant point (¥ = 0).
Three lines corresponding to three different univariant phase equilibria meet at an
invariant point.

As indicated above, rather than keeping the temperature constant, we can replace
the partial pressure of one of the gas components with the temperature as a variable.
Figure 4.26 is a diagram of the Fe—S—O system in which In Po, is plotted versus tem-
perature. Here pgq, is fixed in order to allow a two-dimensional representation.

There are in principle no restrictions on the number of components in a predomi-
nance diagram and examples of four- and five-component systems are shown in
Figure 4.27. In Figure 4.27(a) the predominance diagram of the system Si—C—O-N
at 1500 K is given as a function of log Po, and log PN, - The system has four compo-
nents, and Si and C are the two base elements. The amount of Si is assumed to be in
excess relative to SiC. At constant temperature, the Gibbs phase rule gives Ph + F =
C + 1 =5. Thus at an invariant point four condensed phases are in equilibrium with
the gas phase. Two such invariant points are evident in Figure 4.27(a). Three con-
densed phases are in equilibrium along the lines in the diagram (F = 1), whereas

1200 T T

100 - pe, Fes(l)
Fe;04

1000 |

900 +

T/°C

800 Fe 03 1

Fey(S04); %

-20 -15 -10 -5 0
log (py,/ bar)

700

Figure 4.26 T versus log po, predominance diagram for the Fe-S-O system at pgo, =01
bar. Thermodynamic data are taken from reference [21].
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Figure 4.27 (a) Predominance diagram for the system Si—-C—O-N at 1500 K, Ng; > N. (b)
Predominance diagram for the system Al-Si—-C-O-N at 1700 K and PN, = 05 bar,
Ng; > 0.25N ;. Thermodynamic data are taken from reference [21].

two condensed phases are coexistent in the two-dimensional phase fields. Si3Ny
and SiC, which are often present in ceramic composites, are only thermodynami-
cally coexistent in a narrow log py, range at low partial pressures of O,. Thermo-
dynamic data for the oxynitride phase SipON; are not available, but at 1500 K it has
a narrow stability region between SiO; and Si3Ny.

In Figure 4.27(b) the predominance diagram of the five-component system
Si—Al-C—O-N is shown as a function of log Pco, and log pcq at a constant partial
pressure of Nj equal to 0.5 bar at 1700 K. The two base elements of the plot are Si
and Al (ng; >025n 4;). The Gibbs phase rule reads Ph+ F = C+2 =7, which at con-
stant temperature and constant partial pressure of Ny gives Ph + F'=5. The predom-
inance diagram shown in Figure 4.27(b) is therefore analogous to the one shown in
Figure 4.27(a), in that the same number of phases is present for a certain degree of
freedom. Aluminium nitride is only stable at low partial pressures of CO and CO;.

Note that the gas mixture in the lower right corner in Figure 4.27(b) is unstable
due to the Boudouard reaction

C(s) + COy(g)=2CO(g) (4.57)

At 1700 K the equilibrium constant for this reaction is
2
K =6946 = py/pco, (4.58)

The CO-CO, gas mixture is therefore unstable at conditions below the line defined
by eq. (4.57) and will here lead to formation of graphite. It may be useful to note
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Figure 4.28 (a) Three-dimensional chemical potential diagram for the system Co-Ti—O at
1000 K. (b) Two-dimensional chemical potential diagram at the same conditions [24].
Reprinted with permission of The American Ceramic Society, www.ceramics.org. Copy-
right [1989]. All rights reserved.

that in many commercial thermodynamic software packages it is not prohibited to
calculate phase equilibria for unstable gas compositions, and care should be taken.
In cases where ternary compounds, e.g. oxides, are being investigated, other
related types of diagrams may be more efficient. The thermodynamic stability of
ternary oxides at constant pressure, for example, is visually well represented in
three-dimensional chemical potential diagrams [24]. In Figure 4.28(a) the phase
relations in the system Co—Ti—O are plotted as a function of the chemical potential
of the three elements. At constant temperature, the Gibbs phase rule gives Ph + F =
3 + 1 =4, and an invariant point corresponds to three condensed phases in equilib-
rium with the gas phase. The stability field of each single phase is given as a plane,
while two phases are in equilibrium along univariant lines. The same phase equi-
libria may also be represented in two dimensions, as exemplified by Figure 4.28(b).
Here the stability of the metallic elements and their binary oxides and double
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oxides are presented as areas in a log(a 5 /ap) versus log po, plot (at constant tem-
perature). Complex phase relations for double oxides are in this way visualized in a
clear and compact manner.
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Phase stability

When referring to a phase as stable in thermodynamics we usually mean the phase
that has the lowest Gibbs or Helmholtz energy at the given conditions. In Section
1.1 the concept of metastability was introduced. Both stable and metastable phases
are in local equilibrium, but only the thermodynamically stable phase is in global
equilibrium; a metastable state has higher Gibbs energy than the true equilibrium
state. We may also have unstable phases, and here, as will be described further
below, the nature of the instability is reflected in the second derivative of the Gibbs
energy with regard to the thermodynamic potentials defining the system.

Both stable and metastable states are in internal equilibrium since they can
explore their complete phase space, and the thermodynamic properties are equally
well defined for metastable states as for stable states. However, there is a limit to
how far we can extend the metastable region with regard to temperature, pressure
and composition. If we use temperature as a variable, there is a limit to super-
heating a crystal above its melting temperature or cooling a liquid below its
freezing temperature. A supercooled liquid will either crystallize or transform to a
glass. Glasses are materials out of equilibrium or in other words non-ergodic
states; glasses cannot explore their complete phase space and some degrees of
freedom are frozen in.

An analogous situation is obtained if we consider pressure as variable instead of
temperature. Some crystals may exist, as metastable phases, far above the pressure
where thermodynamically they should transform to a denser high-pressure
polymorph. However, there is a limit for ‘superpressurizing’ a crystal above its
transformation pressure. The phase will either recrystallize (in a non-equilibrium
transition) to the more stable phase, or transform to an amorphous state with higher
density. To make the analogy with superheating and supercooling complete, high-
pressure phases may remain as metastable states when the pressure is released.

127
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However, at some specific pressure the high-density polymorph becomes mechani-
cally unstable. This low-pressure limit is seldom observed, since it often corre-
sponds to negative pressures. When the mechanical stability limit is reached the
phase becomes unstable with regard to density fluctuations, and it will either crys-
tallize to the low-pressure polymorph or transform to an amorphous phase with
lower density.

Phases may also become unstable with regard to compositional fluctuations, and
the effect of compositional fluctuations on the stability of a solution is considered
in Section 5.2. This is a theme of considerable practical interest that is closely con-
nected to spinodal decomposition, a diffusion-free decomposition not hindered by
activation energy.

Since the formation of a stable phase may be kinetically hindered, it is of interest
to calculate phase diagrams without the presence of a particular phase. This is an
exercise easily done using thermodynamic software for phase diagram analysis,
but the general effects can be understood based on Gibbs energy rationalizations.
Closely related to this topic is the thermal evolution of metastable states with time.
The reactivity of a metastable phase is governed by both thermodynamic and
kinetic factors. Although the transformation toward equilibrium is irreversible, the
direction is given, and the rate of transformation influenced, by the Gibbs energy
associated with the transformation. Finally, kinetic factors are also of great impor-
tance in many other applications of materials and kinetic demixing, and decompo-
sition of materials in potential gradients are briefly described in the last section of
the chapter.

5.1 Supercooling of liquids - superheating of crystals

Itis well known that a liquid can be cooled below its equilibrium freezing tempera-
ture. The crystallization of the stable crystalline phase is hindered due to an activa-
tion barrier caused by the surface energy of the crystal nuclei. In some cases, such
as B,03, stable crystals barely form, and the supercooled liquid turns into a glass
even at very slow cooling rates. In other cases high cooling rates are needed to pro-
duce glasses, notably metallic glasses where cooling rates of the order of 109 K s~!
might be needed. The supercooled liquid passes through a transition to a glass at
the glass transition temperature, Ty, which is typically 2 of the melting tempera-
ture, Tty At this transition some degrees of freedom are frozen in and the sample
becomes non-ergodic. Since, the transition is an out-of-equilibrium transition, the
properties of the resulting glass depend on its thermal history (see Section 8.5).

The entropy difference between the supercooled liquid and the crystal is given
by

T o
o o AC?
At S (1) =Agus Sin (Trug) + | —-dr (5.1)
7}115
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where A g S (Trys) 18 the standard entropy of fusion at the melting temperature
and ACS is the difference between the standard heat capacity of the supercooled
liquid and the stable crystalline phase. Many supercooled liquids possess heat
capacities that substantially exceed those of the corresponding crystals, as in the
case of selenium shown in Figure 5.1(a) [1-3]. The entropy difference between a
crystal and the corresponding liquid, which is positive at the fusion temperature, is
reduced with decreasing temperature and become zero at some temperature below
the equilibrium freezing temperature. Although helium-3 melts exothermally [4], a
negative entropy of fusion is in general considered to be a paradox since the
entropy of the disordered phase then becomes lower than the entropy of the ordered
phase. This argument was first put forward by Kauzman [5] and is often referred to
as the Kauzmann paradox. By extrapolation of the heat capacity of the super-
cooled liquid below its T, the temperature at which the entropy of fusion becomes
zero can be calculated. This temperature is called the Kauzmann temperature,
Tk, or the ideal glass transition temperature. The entropy of crystalline and
liquid selenium is shown as an example in Figure 5.1(b). Here the entropy of the
supercooled liquid crosses the entropy of crystalline Se at around 7 = 180 K.
Kauzmann proposed that this paradox is avoided through a non-equilibrium transi-
tion above the ideal glass transition temperature where a glass is formed. Experi-
ments have confirmed this prediction and all known glass-forming liquids display
a glass transition at temperatures above Tk. For our example, Se, the glass transi-
tion temperature is approximately 120 K above the Kauzmann temperature.
Unlike supercooling of liquids, superheating of crystalline solids is difficult due
to nucleation of the liquid at surfaces. However, by suppressing surface melting,
superheating to temperatures well above the equilibrium melting temperature has
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Figure 5.1 (a) Heat capacity of crystalline, liquid and supercooled liquid Se as a function
of temperature [1-3]. (b) Entropy of crystalline, liquid and supercooled liquid Se as a func-
tion of temperature.
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been achieved. As for many other phenomena in physical sciences, superheating is
discussed using both kinetic and thermodynamic arguments. Of the early models,
those by Lindemann [6] and Born [7] are the most important. Lindemann [6] pro-
posed that bulk melting is caused by a vibrational instability in the crystal lattice
when the root mean displacement of the atoms reaches a critical fraction of the dis-
tance between them. Somewhat later, Born [7] proposed that a ‘rigidity catastro-
phe’ caused by a vanishing elastic modulus determines the melting temperature of
the bulk crystal in the absence of surfaces.

The conditions for mechanical instability can be derived from a set of criteria for
the stability of equilibrium systems put forward by Gibbs [8]. Considering insta-
bility with regard to temperature and pressure, the criteria for stability are

2

aig; =[6VJ <0 (5.2)
or° Jr oD )r

2

o°G =_(55j <0 (5.3)
or? oT »

Equation (5.2) requires that the bulk modulus is positive.

KT=L=—7V >0
kp  ©@V/dpr

(5.4)
When this criterion is fulfilled the compound is stable with respect to the sponta-
neous development of inhomogeneities in the average atomic density. The phase is
in other words stable with regard to infinitesimal density fluctuations. Equation
(5.3) requires that the heat capacity is positive.

Equation (5.2) also implies that a crystalline solid becomes mechanically
unstable when an elastic constant vanishes. Explicitly, for a three-dimensional
cubic solid the stability conditions can be expressed in terms of the elastic stiffness
coefficients of the substance [9] as

Cll +2C12 >0 (5.5)
C44 >0 (5.6)
Cl] —C12 >0 (5.7)

The complexity of the stability conditions increases the lower the symmetry of
the crystal. For an isotropic condensed phase, such as a liquid or fluid the criteria
can be simplified. Here, C{; — C|, = 2C44 and the stability conditions reduce to
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3K =2Cy4 +3C15 >0 (5.8)
C44 >0 (59)

where Kt is the bulk modulus and Cy44 is the shear modulus.

The temperature dependences of the isothermal elastic moduli of aluminium are
givenin Figure 5.2 [10]. Here the dashed lines represent extrapolations for 7> Tyg.
Tallon and Wolfenden found that the shear modulus of Al would vanish at T =
1.67T5ys and interpreted this as the upper limit for the onset of instability of
metastable superheated aluminium [10]. Experimental observations of the extent
of superheating typically give 1.1Tg,5 as the maximum temperature where a crys-
talline metallic element can be retained as a metastable state [11]. This is consider-
ably lower than the instability limits predicted from the thermodynamic arguments
above.

In recent years other types of thermodynamic arguments for the upper limit for
superheating a crystal have also been proposed. One argument is based on the fact
that the heat capacity of the solid increases rapidly with temperature above the
melting temperature due to vacancy formation. Inspired by the Kauzmann paradox,
Fecht and Johnson [12] argued that the upper limit for superheating is defined by
the isoentropic temperature, at which the entropies for a superheated crystal and
the corresponding liquid become equal. The argument is thus the superheating
equivalent of the Kauzmann paradox. The temperature corresponding to this ‘en-
tropy catastrophe’ is again calculated using eq. (5.1) except that we now have to
extrapolate the heat capacity of the solid above the melting temperature. The
resulting entropies for liquid and solid aluminium [12] are shown in Figure 5.3.
Here, the temperature at which the entropy of supercooled liquid aluminium
reaches that of crystalline aluminium, the ideal glass transition temperature, is
0.24T#ys. Correspondingly, the temperature at which the entropy of the crystal on
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Figure 5.2 Temperature dependence of the isothermal elastic stiffness constants of alu-
minium [10].
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Figure 5.3 Entropy of liquid and crystalline aluminium in stable, metastable and unstable
temperature regions [12]. The temperatures where the entropy of liquid and crystalline alu-
minium are equal are denoted Tk and Tljy cryst, respectively.

heating again becomes as large as that of the liquid is 1.387y,s. The latter is far
lower than 1.67Ty,g, obtained from the Born stability criteria [10]. The vacancy
concentration at the stability limit is approximately 10% and the volume effect of
this amount of vacancies corresponds to the volume change of melting at T¢q. It
has therefore been argued that the isentropic temperature in general may coincide
with the temperature at which the volume of the superheated crystal becomes equal
to the volume of the liquid.

Finally, Tallon [13] has suggested another instability point where the entropy of
the superheated crystal becomes equal to that for a superheated diffusionless liquid
(a glass) rather than that of the liquid. Since the glass has lower entropy than the
liquid, this instability temperature is lower than that predicted by Fetch and
Johnson [12].

5.2 Fluctuations and instability

The driving force for chemical reactions: definition of affinity

The equilibrium composition of a reaction mixture is the composition that corre-
sponds to a minimum in the Gibbs energy. Let us consider the simple chemical
equilibrium A < B, where A and B could for example be two different modifica-
tions of a molecule. The changes in the mole numbers dna and dng are related by
the stoichiometry of the reaction. We can express this relation as —dna = dng = d&
where the parameter d& represents an infinitesimal change in the extent of the reac-
tion and expresses the changes in mole numbers due to the chemical reaction. The
rate of reaction is the rate at which the extent of the reaction changes with time. The
driving force for a chemical reaction is called affinity and is defined as the slope of
the Gibbs energy versus the extent of reaction, £ The differential of the Gibbs
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Figure 5.4 Gibbs energy as a function of the extent of reaction.

energy at constant 7 and p is (taking into consideration the Gibbs—Duhem equa-
tion, eq. (1.93))

d,G =ppdny +pupdng =—ppdS+pupds=(ug — tp)dS (5.10)

The affinity of the reaction, Ay, is defined as the difference between the chemical
potential of the reactant and the product at a particular composition of the reaction
mixture:

Ay =Up —Hp (5.11)

Since the chemical potential varies with the fraction of the two molecules, the
slope of the Gibbs energy against extent of reaction changes as the reaction pro-
ceeds. Thereaction A — B is spontaneous when ti 5 > g, whereas the reverse reac-
tion, B — A, is spontaneous when tig > 1 o . The different situations are illustrated
in Figure 5.4. The slope of the Gibbs energy versus the extent of the reaction is zero
when the reaction has reached equilibrium. At this point we have

Mp =Up (5.12)

and the equilibrium criteria for a system at constant temperature and pressure given
by eq. (1.84) are thus fulfilled.

Stability with regard to infinitesimal fluctuations

In general, the first derivative of the Gibbs energy is sufficient to determine the
conditions of equilibrium. To examine the stability of a chemical equilibrium, such
as the one described above, higher order derivatives of G are needed. We will see in
the following that the Gibbs energy versus the potential variable must be upwards
convex for a stable equilibrium. Unstable equilibria, on the other hand, are
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Figure 5.5 Ball in a gravitational field; illustration of (a) stable, (b) unstable, (c) spinodal
and (d) metastable equilibria.

characterized by a downward convex Gibbs energy versus the potential variable.
This is illustrated in Figure 5.5 where we have used a ball in a gravitational field as
an example. In example (a) the ball is in a stable equilibrium and is stable against
fluctuations in both directions. In (b) the ball is unstable towards fluctuations in
both directions and it follows that this is an unstable equilibrium. In (c) the ball is
stable for fluctuations to the left but unstable for fluctuations to the right. This is
defined as a spinodal equilibrium. Finally, in (d) the ball is located in a locally
stable but globally metastable equilibrium.

Let us assume the existence of a Taylor series for the Gibbs energy at the equilib-
rium point. This implies that the Gibbs energy and all its derivatives vary continu-
ously at this point. The Taylor series is given as

0G 0°G 2 1{0"G
(-Ay) :(J +— [ J 4 +...+[ J " (5.13)
k/{—0 oC £ 21 6§2 n!l ocn o

where { is an infinitesimal fluctuation. In principle, the fluctuation could be a
fluctuation in concentration, temperature or pressure. Equilibrium is identified
when the aff1n1ty is zero, which means that the first derlvatlve oG/ GC ) =0 =0. If
©°G /GC )¢=0 #0 the sign of (- Ak)§—>0 is the sign of (0%G /8C2)§ OC Since {2
is always positive, the equilibrium is stable if

2
"G 50 (5.14)
o )y

The equilibrium is unstable if this second derivative is negative. If

2
961 ) (5.15)
o )y
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Table 5.1 The criteria for stability of solutions with regard to infinitesimal fluctuations.

Criteria Equilibrium state Comment
%G Stable or metastable
— >0
o¢ =0
G Unstable
— <0
o¢ )
%G 0 Spinodal point Separates a stable region from an unstable region.
— =
o¢ =0

we have to examine higher order derivatives. The affinity is then given as

3 4
(—Ak)§_>0=l' a—g §3+i' aif s (5.16)
3! o _ 4! o £=0

If(6°G / 6&3)520 #0,itis possible to choose the sign of {'so that (—Ay )¢, is nega-
tive. Hence the equilibrium is unstable since small compositional fluctuations can
have any sign. The stability criteria are summarized in Table 5.1.

The correspondence with a ball in a gravitational field illustrated in Figure 5.5 is
evident. The stable and unstable regions are defined as the regions where the
second derivative of the Gibbs energy with regard to { are positive and negative,
respectively, and correspond to upward and downward convexity of the Gibbs
energy with respect to {. When the second derivative is zero we have a situation
corresponding to the inflection point which separates the regions of instability and
stability with regard to small fluctuations. This inflection point represents a
spinodal equilibrium and is called a spinodal point.

Compositional fluctuations and instability

The criterion given in Table 5.1 may be used to consider the stability of different
compositions of a liquid or solid solution by looking at the variation of the Gibbs
energy with composition. As discussed in Section 4.1, the miscibility gap of a solu-
tion is usually due to a positive enthalpy of mixing balanced by the entropy incre-
ment obtained when a disordered solution is formed. The enthalpy is here a
segregation force, whereas the entropy is an opposing mixing force. At low temper-
atures the TAS term of the Gibbs energy is less important than Ap,;xH, and segrega-
tion occurs. At high temperatures, the entropy gained by distributing different
species on a given lattice is large and complete solubility is obtained. If we start
from the absolute zero, the miscibility gap decreases with increasing temperature
until a certain temperature, called the critical temperature, 7.. Above the critical
temperature complete solubility in the liquid or solid state is obtained.
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Let us initially consider the Gibbs energy of the solid solution Al,O3—Cr,03 at
1200 K [14] given in Figure 5.6. The solution is partly miscible and the composi-
tion of the two coexisting solutions acand f1is given by the equilibrium condition

a _ B a _ B
.uA1203 —/JAle3 and /.LCr203 —Ncr203 (5.17)

The phase boundaries at this specific temperature are given by the points x| and x;
in Figure 5.6(a), defined by the common tangent (the dotted line). Three different
situations for the variation of the Gibbs energy of the solution with composition are
marked by the points A, B and C/C'. A solution with composition A is stable with
regard to fluctuations in composition, while one with composition B is unstable. At
the two spinodal points (C and C’) the second derivative of the Gibbs energy with
regard to composition changes sign (see Figure 5.6(b)) and in general

°G

2
6xB

=0 (5.18)

_.S
XB=XB

where xg is the composition at the spinodal point. The samples with composition C
and C' are stable with regard to fluctuations in composition in one direction, but not
with regard to fluctuations in composition in the other direction. The compositions
of the two spinodal points vary with temperature and approach each other as the tem-
perature is raised, and the two points finally merge at the critical temperature, where
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Figure 5.6 (a) Gibbs energy of mixing of the system Al,03-CrpO3 at 1200 K [14]. A, B
and C/C' correspond to stable, unstable and spinodal points. The points x1 and xp give the

compositions of the two coexisting solutions. (b) The compositional dependence of
(%A, Gy 1d%5).
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3G,

3
8xB

=0 (5.19)

C
XB=XB

Here x% is the composition at the critical point. Let us now calculate the
immiscibility gap and the spinodal line for a regular solution A-B:

Gm:XA,UZ'F)CB‘Ug'FRT(XA lnxA +)CB11'1)CB)+£2.XA)CB (520)

Let us for simplicity assume that ug = ', =0, for which case the immiscibility
gap is given by

Gle

XB

=RT(Inxg —Inx,) +Q(1—-2xp) =0 (5.21)

An analytical expression that defines the compositions of the two coexisting solu-
tions is easily derived:

mB oy (5.22)
XA RT

The spinodal line is correspondingly given using eq. (5.18) as

2
0°G,
8x123

:RT(I +1]—2Q:0 (5.23)
XA  XB

and it follows that the spinodal line for a regular solution is a parabola:

XAXB Z(I—XB)XB Z% (524)

At the critical point xp = xg = 0.5 and the critical temperature and the interaction
coefficient are related through

T.=Q/2R (5.25)

Both the binodal line, defining the immiscibility gap, and the spinodal line are
for a regular solution symmetrical about x4 = xg = 0.5. This is shown in Figure
5.7(a), where theoretical predictions of the miscibility gaps in selected semicon-
ductor systems are given [15].
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Figure 5.7 (a) Theoretical predictions of the unstable regions (miscibility gap) of the solid
solutions in the systems AIN-GaN, InN-GaN and AIN-InN [15]. For the system InN-GaN
both the phase boundary (binodal) and spinodal lines are shown. (b) Gibbs energy of mixing
for the solid solution InN-GaN at 1400 K.

Physically, the spinodal lines separate two distinct regions in a phase diagram.
Between the binodal and the spinodal lines (i.e. the compositional regions between
x1 and C'" and between C and x in Figure 5.7(b)) the solution is in a metastable
state. Between the spinodal points or in the spinodal region (i.e. the compositional
regions between C' and C in Figure 5.7(b)), the solution is unstable. Samples with
overall composition within the metastable regions and within spinodal regions are
expected to behave differently on cooling from high temperatures where complete
solid solubility prevails.

Let us consider a portion of the Gibbs energy curve for a composition within and
outside the spinodal region in some detail. In Figure 5.8(a), we consider the Gibbs

(@) (b)

x extent of reaction, &

Figure 5.8 (a) Gibbs energy curve for an unstable system. (b) Gibbs energy of the unstable
system as a function of the extent of reaction during spinodal decomposition of a sample
with composition indicated by the arrow in figure (a).
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energy in the vicinity of a composition that is well within the spinodal region.
Assume that a sample with the overall composition marked with an arrow is cooled
to below the critical temperature. Below the critical temperature, small fluctua-
tions in composition lead to a continuous decrease in the Gibbs energy, as illus-
trated in Figure 5.8(b), and the separation of the original homogeneous solution
occurs without nucleation of a new phase. Instead, two different regions with dif-
ferent composition emerge. As the system approaches equilibrium the difference in
the composition increases and approaches the difference between the two equilib-
rium compositions. The decomposition occurs without any thermal activation and
with continuous changes in composition. The decomposition of a homogeneous
solution resulting from infinitesimal concentration fluctuations is called spinodal
decomposition.

The decomposition of a solution with composition outside the spinodal region
but within the metastable region can be analyzed in a similar way. Let us assume
that a sample with composition in this region is cooled to low temperatures. Small
fluctuations in composition now initially lead to an increase in the Gibbs energy
and the separation of the original homogeneous solution must occur by nucleation
of a new phase. The formation of this phase is thermally activated. Two solutions
with different composition appear, but in this case the composition of the nucleated
phase is well defined at all times and only the relative amount of the two phases
varies with time.

Both decomposition mechanisms are used actively in the design of materials.
The two important commercial glasses in the system Na;BgO(3—SiO,, Pyrex and
Vycor, represent striking examples. Figure 5.9 shows the relevant phase diagram
for the system NayBgO(3-SiO; [16]. Here the liquid shows immiscibility below
the liquidus temperature of the system. On supercooling liquids with compositions
given by the arrows the immiscibility dome at some point is reached. The super-
cooled liquids are here still in internal equilibrium since the glass transition
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Figure 5.9 Phase diagram showing liquid immiscibility in the NapyBgO13-SiO system
below the liquidus [16].
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temperatures are even lower. On cooling the liquid further partial immiscibility is
obtained and the composition of the two liquids in metastable equilibrium at dif-
ferent temperatures are given by the dotted line in the figure.!

While Vycor has a composition within the spinodal region of the system, Pyrex
lies outside the spinodal region but within the binodal region. In Vycor, the
spinodal mechanism secures a complete connectivity of the two metastable liquid/
glass phases throughout the matrix. The Na;BgOq3-rich phase can be etched out
with acid and a ‘close to pure’ silica glass is produced. Since the original
Na,BgO;3-rich melt can be homogenized at relatively low temperatures compared
with pure SiO this secures a rather low production cost.

For Pyrex the composition of the melt is outside the spinodal region and the
NayBgO13 phase is formed by nucleation and growth. Complete connectivity is not
obtained and spherical particles of an NayBgO3-rich melt forms a minority phase
within the SiO,-rich matrix. A glass with low softening and melting temperatures
is thus produced.

The van der Waals theory of liquid-gas transitions

In Section 2.2 we introduced the van der Waals equation of state for a gas. This
model, which provides one of the earliest explanations of critical phenomena, is
also very suited for a qualitative explanation of the limits of mechanical stability of
a homogeneous liquid. Following Stanley [17], we will apply the van der Waals
equation of state to illustrate the limits of the stability of a liquid and a gas below
the critical point.

The van der Waals equation of state for one mole of gas is expressed in terms of
the critical pressure, temperature and volume by eq. (2.40) as

(p +V32J(3V—1)=8T (5.26)

where p=p/p., T =T/ T, andV =V/V,.

For a simple gas comprised of spherical molecules, eq. (5.26) is fairly well
obeyed at low density or high temperature. At higher density the equation of state
become less accurate in describing real systems. Some p—V isotherms of the van
der Waals equation of state for HyO are shown in Figure 5.10(a). At high tempera-
tures the volume of the gas falls near asymptotically with increasing pressure, as
expected from the ideal gas law. At a particular temperature, corresponding to the
temperature at the critical point, the first derivative (Op/0V)y =0 becomes zero
for a given value of V. This is an inflection point where not only (82G/8p2)T =0,

1 In practice the glasses are made by first quenching the liquid. The phase separation takes
place by reheating and annealing the glass between the glass transition and the critical
temperature.
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but also (83G/6p3)T =0. This critical point is analogous to the critical point for the
miscibility gap of solutions that phase separate into two phases of different compo-
sition. In the present case, the supercritical fluid separates into a liquid and a gas
with different density.

For sub-critical isotherms (T < T, ), the parts of the isotherm where (Op/0V) 7 <0
become unphysical, since this implies that the thermodynamic system has nega-
tive compressibility. At the particular reduced volumes where (Op/0V)y =0,
(62 G/(’ip2 )7 =0 and we have spinodal points that correspond to those discussed for
solutions in the previous section. This breakdown of the van der Waals equation of
state can be bypassed by allowing the system to become heterogeneous at equilib-
rium. The two phases formed at T < T, liquid and gaseous H>O, must have the
same temperature and pressure in order to obey the equilibrium criteria.

The variation of the Helmholtz energy of the van der Waals equation of state for
H,O with volume can be calculated by

0A
=—p 5.27

Integration gives

Vi
A(V)=~ pav (5.28)
Vi

The Helmholtz energy curves for three different isotherms are given in Figure
5.10(b). The volume of the two phases in equilibrium at a given temperature can be
derived in at least two different ways. In the first approach, we can apply a common
tangent construction to the Helmholtz energy curve as shown for T =08 in Figure
5.10(b). The dashed line is tangent to the Helmholtz energy curve at the ‘high-den-
sity’ point A and at the ‘low-density’ point B. These volumes define the volumes of
the two phases (liquid and gas) in equilibrium. At a specific temperature, the pres-
sure is implicitly defined by these two volumes. Alternatively, the equilibrium
pressure for the coexistence of liquid and gas can be determined using what is
called the Maxwell equal-area construction. In practice, this is done by adjusting
the horizontal line in Figure 5.10(a), so that the areas marked C and D become
equal.

The equilibrium pressure for which liquid and gas are in equilibrium is given as a
function of temperature for the van der Waals equation of state for H,O in Figure
5.11(a). The corresponding equilibrium densities of the coexisting liquid and gas
are given in Figure 5.11(b). In these two figures the spinodal lines defining the
mechanical stability limits of the liquid and gas phases are shown as dotted curves.
The stable regions of the potential space for the liquid and gas phases are separated
by the equilibrium line for the heterogeneous phase equilibrium, while the
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Figure 5.10 (a) p-V isotherms of the van der Waals equation of state for HoO at T/T. = 1.1,
1.0 and 0.9. (b) The Helmholz energy A(T,V) for the van der Waals equation of state of HyO

as a function of V/V  at T/T, = 1.2, 1.0 and 0.8.

spinodal lines define the maximum extension of the metastable regions for the
liquid and gas phase, respectively. For example, the liquid can be extended to nega-
tive pressure (liquid under tension) if nucleation of gas can be avoided. However,
below the spinodal line the liquid becomes mechanically unstable.

The T—p plot shown in Figure 5.11(b) resembles the 7—x plot of a binary solution.
The equilibrium between the two phases is, as we have seen above, given by a sim-
ilar set of equilibrium conditions in both cases. Within the spinodal regions of the
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Figure 5.11 The p-T (a) and the T-p (b) phase diagrams of HoO calculated using the van der
Waals equation of state.
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potential space, phase separation in the binary solution system is driven by concen-
tration fluctuations, while the formation of the stable state in the single-component
system is driven by density fluctuations.

Pressure-induced amorphization and mechanical instability

Pressure-induced amorphization of solids has received considerable attention
recently in physical and material sciences, although the first reports of the phenom-
enon appeared in 1963 in the geophysical literature (actually amorphization on
reducing the pressure [18]). During isothermal or near isothermal compression,
some solids, instead of undergoing an equilibrium transition to a more stable high-
pressure polymorph, become amorphous. This is known as pressure-induced
amorphization. In some systems the transition is sharp and mimics a first-order
phase transition, and a discontinuous drop in the volume of the substance is
observed. Occasionally it is strictly not an amorphous phase that is formed, but
rather a highly disordered denser nano-crystalline solid. Here we are concerned
with the situation where a true amorphous solid is formed.

The report of the pressure-induced amorphization and amorphous—amorphous
transition of porous Si captures most of the current understanding of this phenom-
enon [19]. In Figure 5.12(a) the p, T phase diagram of Si is shown. Three phases are
present: the four-coordinated low-pressure modification (diamond-type) and the
six-coordinated high-pressure modification (f-Sn-type) of crystalline Si, as well
as liquid Si. The behaviour of crystalline Si under compression is most easily
understood by considering the melting line, which is extended into the metastable
pressure region in Figure 5.12(a). This melting line has been extrapolated by using
a simple two-species lattice model for the liquid, first introduced by Rapoport [20,
21]. In this model the liquid is seen to consist of atoms that are all in one of two dif-
ferent possible states. These two states are described as two different species A and
B that, for the given liquid, are assumed to be in chemical equilibrium at any given
temperature and pressure. Thus,

Sip=Sip (5.29)
The Gibbs energy of reaction (5.29) is
A.G=Ggip—Ggsia =AH-TA, S +pA,V (5.30)

Here Ggj o and Gg;p are the Gibbs energy of the ‘pure’ species A and B.
ArH=Hgig—Hgia, A S=Sgp—Ssia and AV =Vg g —Vg; o are the corre-
sponding enthalpy, entropy and volume changes of reaction (5.29). The integral
Gibbs energy of the liquid is determined by the relative population of the two states
or in other words by the equilibrium constant for the reaction. We will deduce an
expression for this below.
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Figure 5.12 (a) The p-T phase diagram of Si. The melting lines for the low-pressure
polymorph of Si and the liquid-liquid phase transition are calculated by using the two-state
model and the parameters given in Table 5.2. (b) Iso-concentration lines for species B in the

p-T plane. (c)) The fraction of species B as a function of temperature at constant pressure p
=2 GPa.

In the two-state model [20, 21] the two different species interact and the interac-
tion can be expressed using the regular solution model. Thus the Gibbs energy of
the liquid is

I
G™ = x5iAGsia * ¥siBGsip + RT [xsia Inxgia + xsip Inxsipl (537
+Qxgi A Xsi B

Table 5.2 Model parameters used in the thermo-
dynamic description of liquid Si.

AV = Vg g —Vgi o =—2.6 cm? mol-!

A H = Hgj g — Hg; o = 30 kJ mol-!

A;S = Sgig — Ssi.a =217 K- mol-!

Q = 24kJ mol-!

AgpysHsi o = Hgi o —H*°! =26.4kJ mol-!
Aty Ssip = Ssia = S = 9T K1 mol-!
ApysVaia = Voia =V =0.95cm? mol-!




5.2 Fluctuations and instability 145

Here € is the regular solution constant and xg; g the fraction of Si atoms in silicon
state B. By noting that xg; , =1- xg; g, equation (5.31) becomes

Gha = Gsia +x5iB(Gsip —Gsia)
+RT[(1_xSi,B)ln(1_'xSi,B) (5.32)

+xgip Inxgigl+ Q- xgig)xsip

Equation (5.32) looks like the Gibbs energy for a regular binary solution. However,
it is important to note that xg; g for the two-state model has a slightly different
interpretation than xg for a binary regular solution. In the latter case, xg is an
external parameter that describes the composition of the solution. For the two-state
model, on the other hand, xg; g is an internal parameter describing the relative pop-
ulation of the two states present in the single-component system. The equilibrium
value of xg; g is determined by minimizing G 9" with respect to XsiB:

liq Ye
0G —Ggp—Gsia +Q-2xgp)+RT In—>"2

XSi,B

= A,G +Q(1-2xg ) +RT In =0

1-xsip

Equation (5.33) can alternatively be written in terms of the equilibrium constant
for reaction (5.29) as

A Xj
K559 :exp(— rGJ Si.B

Q
= exp| — (1 —2xg; 5.34
RT ) 1-xgig p[RT ( s"B)} 3%

The relative populations of the two states vary with temperature and pressure.
The species A which dominates at low temperature and low pressure has the larger
molar volume, while the denser species B becomes increasingly more favoured at
high pressures.

We are now able to use this model for the Gibbs energy of the liquid to calculate
the melting line for four-coordinated Si by using the Clapeyron equation (eq. 2.10):

dl:AfLV (5.35)
dp AgyS

When Q is assumed to be independent of temperature and pressure the entropy
and volume of the liquid is given as
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liq

I oG

s Z—E ] =xsiASsiA T XsiBSSiB
p

or (5.36)
— R[(l — xSi,B) h’l(l — xSi,B) + xSi,B In xSi,B]
and
it
li oG ™
v :[6;7 ] =XsiAVsi,a T *siBVsiB (5.37)
T

The slope of the melting curve follows:

dr Vliq _Vsol
d7p_ Sliq _Ssol

sol
xsi,AVsia +XsiBVsip —V

B sol
xsiASsia +XsiBSsiB — RI(1—xg; ) In(l — xg; g) + xg; g In x5 g1 —
AfsVsia +xsiAV

AfysSsia +xsipArS — Rl - xgip) In(l — xg; g) + xgi g In xgi 5]
(5.38)

The parameters of the model, given in Table 5.2, are obtained by fitting expres-
sion (5.38) to the experimental melting line. The extensions of the melting line to
negative pressures and beyond the triple point between the liquid and the two solid
polymorphs are given by dotted lines in Figure 5.12(a). Note that the model is pre-
dicting a melting temperature maximum for Si at negative pressure (—3 GPa).

We are now in a position to analyze the behaviour of Si under compression. Com-
pression of crystalline Si at temperatures above that of the triple point will lead to
conventional melting of four-coordinated Si. Compression at temperatures
between that of the triple point and the glass transition temperature will also cause
melting of four-coordinated Si, but this melting is not an equilibrium reaction. The
reason is that the transformation of four-coordinated Si to the six-coordinated
polymorph (denoted B-Sn type in the figure) is kinetically hindered. Following this
argument, four-coordinated Si melts at the pressure corresponding to the extrapo-
lated melting line for the melting of four-coordinated Si, but with subsequent crys-
tallization of the stable six-coordinated high-pressure polymorph. Under
compression at temperatures below the glass transition, an ergodic liquid can no
longer be produced, since the thermal energy is too low for the needed structural
rearrangements. Still, at some given pressure four-coordinated crystalline Si
becomes unstable towards density fluctuations and an amorphous, non-ergodic
solid is formed. It follows that the pressure-induced amorphization at ambient
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temperature occurs at pressures exceeding those of the extension of the melting
line for four-coordinated crystalline Si. The amorphization is therefore not a two-
phase melting process, but occurs at the mechanical stability limit for the low-
pressure modification of crystalline Si.

On decompression, amorphous Si formed by mechanical amorphization under-
goes an amorphous—amorphous transition. The volume change associated with the
transition is large, reflecting a change in coordination of Si from six to four. Transi-
tions of this type between two different amorphous states have been reported in
other cases as well. One of the more studied transitions is that between low- and
high-pressure amorphous ice [22]. The existence of more than one amorphous
modification for a given substance has been given the name polyamorphism [23],
by analogy with polymorphism used for crystalline compounds.

A closely related topic is that of liquid-liquid transitions. The possible coexis-
tence of two modifications of a given liquid with the same chemical composition
but with different densities has been much discussed. While two coexisting chemi-
cally identical liquids with different densities have been reported in quenched
Y,03-Al,03 melts [24], a first-order-like liquid-liquid transition has been
reported in an in situ high-temperature—high-pressure study of liquid phosphorous
[25]. At ambient pressure molten phosphorus is a molecular liquid consisting of P4
molecules, while at high pressures molecular units with low density become
unstable and a denser liquid is formed [25].

The regular solution-type two-state model for the liquid induces two coexisting
liquids under certain p,T conditions when the interaction parameter, €2, is positive.
Transitions between two amorphous states have for that reason been rationalized in
terms of the model. One example is the analysis of the transition between low and
high-density amorphous ice by Ponyatovsky et al. [26]. We will now consider the
transition between low- and high-density amorphous Si in a similar analysis. In the
following discussion we disregard the fact that the liquid becomes a glass below
the glass transition and thereby transforms to a non-ergodic state.

Below the critical temperature, G liq (xgip) has two minima that are interpreted
as representing two different liquids. The deeper minimum in Gibbs energy corre-
sponds to the equilibrium phase at a given temperature and pressure. Hence the two
different phases are stable in different parts of the p,T potential space. At the partic-
ular conditions where the Gibbs energies of the two minima are equal, the two lig-
uids coexist. Using the two-state model based on the regular solution expression,
the relative populations of state B in the two coexisting phases are related by
xlslqul + xlslqu? =1 since the regular solution expression is symmetrical aboutx =0.5.

Let us now return to the relative population of the two states of the liquid given
by eq. (5.34). Iso-concentration lines (xg; g = constant) in the p-T potential space
are shown in Figure 5.12(b) (data are taken from Table 5.2). At low temperature
and pressure (or even negative pressure) species A with high molar volume and low
entropy relatively to the denser polymorph is favoured and xg;p is low. At
increasing pressure species B become increasingly more favoured and xg; g is high
at high pressures irrespective of the temperature.
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Furthermore, Figure 5.12(b) illustrates the temperature—pressure conditions where
two liquids coexist in equilibrium. The temperature and pressure of both phases must
be equal at the transition point. In addition, the relative population of state B of the two
liquids in equilibrium must be related through x 2?]; + xé‘ﬁg =1since we use a regular
solution-type two-state model. This implies (using a specific example) that two liquids
coexist at the intersection point of the iso-concentration lines for xg; g = 0.2 and 0.8.
On heating the liquid at the pressure corresponding to this intersection point (along the
dotted line in the figure), the population of state B, xg; p, increases continuously until
reaching the temperature where the two liquids coexist in equilibrium. Here, xg;
jumps discontinuously from the value in the low temperature phase, xs; g = 0.2, to that
of the high temperature phase, xs; g = 0.8. Further heating results in a slow increase in
xs;i - The variation of the population of state B with temperature for p =2 GPa s given
in Figure 5.12(c). The dashed lines in the figure give the concentration of B for the two
liquids in the metastable regions limited by the spinodals (see below).

The equilibrium line for the liquid-liquid transition given in Figure 5.12(a) is
also given in Figure 5.12(b). This line goes through the intersections of all pairs of
lines that satisfy xlslﬁﬁl + xlslfgz =1, e.g. the intersection of the lines for xgj g = 0.1
and 0.9 and that for xg; g = 0.2 and 0.8. These two specific examples represent two
discrete points on the equilibrium curve.

It can be shown that the equilibrium temperature for the liquid-liquid transition
is given as

Q(l - 2XB,Si )/R

= (5.39)
ln(xB’Si/(l - xB,Si ))

trs

This equilibrium line terminates at the critical point where the critical tempera-
ture is given by the two-state regular model as T, = €Q/2R. The pressure corre-
sponding to a given equilibrium temperature is given by

:TtrsArS—ArH (5.40)
AV

We have now derived the phase boundary between the two liquids. By analogy
with our earlier examples, the two phases may exist as metastable states in a certain
part of the p,T potential space. However, at some specific conditions the phases
become mechanically unstable. These conditions correspond to the spinodal lines
for the system. An analytical expression for the spinodals of the regular solution-
type two-state model can be obtained by using the fact that the second derivative of
the Gibbs energy with regards to xg; g is zero at spinodal points. Hence,

2~ lig.
%G _ 90 RT

2 el xe )
O , si,s(l — xsip)

(5.41)
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The calculated spinodal lines are given together with the equilibrium phase
boundary in Figure 5.12(a). All three lines terminate at the critical point. The amor-
phous—amorphous transition observed during decompression of amorphous Si can
now be understood in terms of crossing the spinodal line for the high-pressure
amorphous phase on reducing pressure. Finally, it should be noted that a transition
similar to that shown in Figure 5.12(c) may illustrate what is observed during flash
heating of amorphous Si at ambient pressure [27]. Amorphous Si shows a ‘first-
order-like’ transition to supercooled liquid Si when crystallization of amorphous Si
is suppressed by a high heating rate. In spite of the apparent success of the two state
model, the model used gives a very simplistic description of a liquid and further
experimental and theoretical evidence is needed to confirm the very existence of
liquid-liquid transitions.

5.3 Metastable phase equilibria and kinetics

Metastable materials are becoming increasingly important as the use of extreme
far-from-equilibrium conditions during preparation is expanding. The formation
of a large fraction of these phases cannot be rationalized using thermodynamic
arguments. Most zeolites for example are kinetically stabilized through the use of
templates during synthesis. Another and more specific example is YMnOj3, which
takes the perovskite structure under equilibrium conditions, but crystallizes in a
different structure as a thin film or powder prepared from precursors [28, 29].
While thermodynamic arguments may fail in cases like this, thermodynamic anal-
yses can in other cases be used to predict synthesis routes to new compounds, and
there are numerous examples of metastable alloys formed when the nucleation of
the stable phases is suppressed. In these cases the metastable phase equilibria can
be analysed thermodynamically, and may even be represented in phase diagrams.

Phase diagrams reflecting metastability

One of the classical examples of metastable heterogeneous phase equilibria occurs
in the system Fe—C. The eutectic between y-Fe and graphite shown in Figure
5.13(a) is important for many cast irons. If the C-level is low, as in steels, solidifi-
cation directly to &- or y-Fe may occur. On cooling, these steels become unstable
with regard to the formation of graphite. Although there is a driving force for pre-
cipitation of graphite, the volume change for this precipitation reaction in the solid
state is high and nucleation becomes difficult. For many conditions the metastable
phase Fe3C, cementite, is formed instead. Hence for practical purposes the
metastable Fe—-Fe3C phase diagram is more important than the equilibrium Fe—C
phase diagram. In the section of the binary phase diagram Fe—C shown in Figure
5.13(a), both the stable phase boundaries and phase boundaries corresponding to
metastable phase equilibria involving cementite, FezC, are given. The stability
field of -Fe when »-Fe is in metastable equilibrium with cementite is slightly
larger than when J-Fe is in the stable equilibrium with graphite [30]. This can be
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Figure 5.13 (a) Phase diagram of the Fe—C system. Solid lines represent the stable phase
diagram where y-Fe is in equilibrium with graphite. Dotted lines represent the metastable
phase diagram where §-Fe is in equilibrium with cementite, Fe3C. (b) Schematic Gibbs
energy rationalization of the effect of a metastable equilibrium on solid solubility.

rationalized for a general situation through the schematic Gibbs energy diagram
given in Figure 5.13(b). The Gibbs energy of a metastable phase is higher than that
of the mixture of 7-Fe and the stable phase. The result is that the common tangent
construction that determines the extension of the phase field of y-Fe touches the
Gibbs energy curve of y-Fe at a higher mole fraction of carbon for the metastable
case than is the case for the stable phase equilibrium. Cementite is marginally
metastable, and it follows that the effect on the phase boundaries is small.

Thermodynamic representations of phase diagrams may reveal such and more
complex metastable situations. The phase relations in the Sn—Sb system are shown
in Figure 5.14 [31]. The diagram on the right-hand side represent a metastable situ-
ation where the non-stoichiometric phase SnSb is considered as kinetically hin-
dered from formation. The terminal solid solubility of Sn in Sb and of Sb in Sn
increases; furthermore, Sn3Sby will in this case be apparently stable even at low
temperatures. Diagrams of this type may correspond to situations high in Gibbs
energy that are of little practical importance. In other situations they correspond to
phase equilibria close in Gibbs energy to the stable situation. Such situations may
be observed as metastable equilibria under certain conditions.

Thermal evolution of metastable phases

Although the formation of a large number of metastable materials that are far from
equilibrium cannot be explained thermodynamically, thermodynamics predicts
that they will with time transform to the stable phase or phase mixture, often via
intermediate phases. More than one hundred years ago, Ostwald pointed out that



5.3 Metastable phase equilibria and kinetics 151

(@) T (b)

800 800

~ 600 600
&~

SnSb,+ Sb

400F Sn+SnSb 400

'Sn + Sn,Sb,

00 02 04 06 08 1.0 10 08 06 04 02 00
Xsb Xsn

Figure 5.14 Calculated (a) stable and (b) metastable phase diagrams for the Sn—Sb system.

non-equilibrium thermodynamic systems appear to evolve through a sequence of
states of progressively lower Gibbs energy [32]. In this rationalization scheme, it is
not the most stable form of the material with the lowest Gibbs energy that is
obtained as the initial product, but the least stable that is nearest to the original in
Gibbs energy. If several metastable phases, or mixtures of phases, are possible,
they will follow one another in the order of a stepwise decrease in Gibbs energy.
Ostwald’s step rule has considerable value in materials science. This will be illus-
trated here by considering crystallization of metallic glasses in the system Fe—B
[33] and diffusional amorphization in the system Ni—Zr [34].

The glass formation ability in the system Fe—B is largest for alloys close to the
eutectic where a melt with xg = 0.20 on cooling solidifies under the formation of Fe
and Fe,B. The crystallization sequence observed depends on the composition of
the glass and often involves the metastable compound Fe3B [33]. A large portion of
the experimental observations can be rationalized using the schematic Gibbs
energy representation given in Figure 5.15. For an alloy with composition given by
the point A, primary crystallization of Fe(ss) is observed. The glass/supercooled
liquid near Ty is simultaneously enriched in B. On further thermal evolution, the
metastable phase equilibrium between Fe(ss) and Fe3B is reached. Only in a third
and final stage is the stable phase equilibrium between Fe(ss) and Fe,B obtained.
The three stages of the crystallization are marked in Figure 5.15 by arrows. In this
simple rationalization of the experimental observations, the fact that Fe can crys-
tallize in different structures which are close in Gibbs energy is not taken into con-
sideration. It has for example been shown that molten droplets of certain Fe—Ni
alloys crystallize in a bee-type structure before transforming to the more stable fcc
structure [35]. Although the Gibbs energy rationalization can often predict the
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Figure 5.15 Schematic Gibbs energy rationalization of the crystallization of metallic
glasses in the system Fe-B.

phase sequence formed, some phases may be kinetically hindered from formation,
as in the case of graphite in the system Fe—C described above.

Thermodynamic rationalization of diffusional amorphization similarly relies on
Ostwald’s step rule. One example is the formation of amorphous Ni—Zr alloys on
interdiffusion in stacks of thin —Ni—Zr—Ni—Zr- foils [34]. Since, the kinetics is
slow, the formation of intermetallic phases is prevented. The thermodynamic sta-
bility of the liquid determines whether or not a glass is formed. The Gibbs energy
of formation of the liquid must be intermediate in Gibbs energy between the Gibbs
energy of the mixture of the elements and the mixture of different intermetallic
compounds. Glass formation and growth in diffusion couples like this was first
observed for Ni—Zr in 1983, but has subsequently also been seen in a large number
of other intermetallic systems [36].

Materials in thermodynamic potential gradients

A last example of kinetic effects is given by the behaviour of materials in thermo-
dynamic potential gradients [37]. Materials are often applied in situations where
they are not in equilibrium with their immediate surroundings. Gradients in tem-
perature, chemical or electrical potential act as driving forces on atoms in a crystal-
line material, and fluxes of atoms across an initially homogeneous solid solution
result. This effect tends to separate the components if they have different mobilities
and is a phenomenon of practical significance. Materials subject to thermodynamic
potential gradients in general may demix or even decompose. One example is engi-
neering components subject to large temperature gradients like turbine blades
(Ludvig—Soret effect).

Let us initially look at a semiconducting binary oxide A;_sO in a chemical gra-
dient; an oxygen potential gradient. Reduction takes place on the low oxygen
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Figure 5.16 Schematic illustration of demixing in a binary oxide Aj_gO in a gradient in the
chemical potential of Oj.

activity side with the result that the oxide loses oxygen at the surface. Oxygen mol-
ecules leave the oxide while the cations left behind move toward the higher oxygen
potential side; see Figure 5.16. Oxidation takes place at the high oxygen activity
side were cations are recombined with oxygen atoms from the gas and the oxide
grows. Both the oxide/gas surfaces move in the direction of the high oxygen
activity side (indicated by arrows in Figure 5.16) relative to the immobile oxygen
lattice. The composition, the vacancy concentration, of the binary oxide will vary
across the oxide due to the oxygen potential gradient.

For ternary mixed cation oxides like (A,B){_sO more pronounced effects may be
encountered in addition to growth at the high pg, surface at the expense of the low
po, surface [37, 38]. Demixing of the different cations will occur in an applied
oxygen potential gradient in cases where the two cations have different mobility.
The result of these transport processes is concentration gradients and a material is
usually enriched in the more mobile cation species at the high oxygen potential
side. The degree of demixing increases with increasing difference in mobility
between the cations and with decreasing thickness of the material.

The segregation or demixing is a purely kinetic effect and the magnitude
depends on the cation mobility and sample thickness, and is not directly related to
the thermodynamics of the system. In some specific cases, a material like a spinel
may even decompose when placed in a potential gradient, although both potentials
are chosen to fall inside the stability field of the spinel phase. This was first
observed for CoySiOy4 [39]. Formal treatments can be found in references [37] and
[38].
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Surfaces, interfaces and
adsorption

In Chapter 1, heterogeneous systems were described as a set of homogeneous
regions separated by surfaces or interfaces. The surface or interface is chemically
different from the bulk material and the surface or interface energy represents an
excess energy of the system relative to the bulk. When considering the macro-
scopic thermodynamic properties of a system the surface/interface contribution
can be neglected as long as the homogeneous regions are large. ‘Large’ in this con-
text can be identified from Figure 6.1. Here the enthalpy of formation of NaCl is
shown as a function of the size of single crystals formed as cubes where a is the

-300 . . . .
_ =330+ :
|
S
=
2 360 F -
=
=
< 390} .
_420 1 1 1 1
0.01 0.1 1 10 100 1000

a/pum

Figure 6.1 The molar enthalpy of formation of NaCl as a function of the cube edge a of the
NacCl crystal cubes.
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length of a cube edge. The enthalpy of formation of NaCl becomes less negative as
the cube size decreases because the surface energy is positive (energy is required to
form surfaces), and the relative contribution from the surface increases with
decreasing size of the cubes. However, the number of surface atoms is significant
only for very small cubes and the contribution from the surface energy becomes
measurable only when the cubes are smaller than ~1 pm. A thermodynamic system
can therefore be analyzed in terms of the bulk properties of the system when the
homogeneous regions are larger than roughly 1 pm.

Although the surface energy may be neglected in considering macroscopic sys-
tems, it is still very important for the kinetics of atomic mobility and for kinetics in
heterogeneous systems. Nucleation and crystal growth in solid or liquid phases and
sintering or densification in granular solids are largely influenced by the surface or
interface thermodynamics. In these cases the complexity of the situation further
increases since the curvature of the surfaces or interfaces is a key parameter in
addition to surface energy. Moreover, materials science is driven towards smaller
and smaller dimensions, and the thermodynamics of surfaces and interfaces are
becoming a key issue for materials synthesis and for understanding the properties
of nano-scale materials. For a cube containing only 1000 atoms, as many as 50% of
the atoms are at the surface and the surface energy is of great importance.

The purpose of this chapter is to introduce the effect of surfaces and interfaces on
the thermodynamics of materials. While interface is a general term used for
solid—solid, solid-liquid, liquid-liquid, solid—gas and liquid—gas boundaries, sur-
face is the term normally used for the two latter types of phase boundary. The ther-
modynamic theory of interfaces between isotropic phases were first formulated by
Gibbs [1]. The treatment of such systems is based on the definition of an isotropic
surface tension, o, which is an excess surface stress per unit surface area. The
Gibbs surface model for fluid surfaces is presented in Section 6.1 along with the
derivation of the equilibrium conditions for curved interfaces, the Laplace
equation.

Surfaces of crystals, which are inherently anisotropic in nature, are also briefly
treated. Gibbs’ treatment of interfaces was primarily related to fluid surfaces, and
the thermodynamic treatment of solid surfaces was not fully developed before the
second half of the 20th century [2]. While the thermodynamics of surfaces and
interfaces in the case of isotropic systems are defined in terms of the surface ten-
sion, surface energy is the term used for non-isotropic systems. The surface
energy, ¥, is defined as the energy of formation of a new equilibrium surface of unit
area by cutting a crystal into two separate parts. The surface energy according to
this definition cannot be isotropic since the chemical bonds broken due to the
cleavage depend on the orientation of the crystal. The consequences of surface
energy anisotropy for the crystal morphology are discussed. Trends in surface ten-
sion and average surface energy of the elements and some salt systems are
reviewed and finally the consequences of differences in surface energy/tension
between different phases in equilibrium on the morphology of the interface are
considered generally.
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In the last two sections the formal theory of surface thermodynamics is used to
describe material characteristics. The effect of interfaces on some important heter-
ogeneous phase equilibria is summarized in Section 6.2. Here the focus is on the
effect of the curvature of the interface. In Section 6.3 adsorption is covered. Phys-
ical and chemical adsorption and the effect of interface or surface energies on the
segregation of chemical species in the interfacial region are covered. Of special
importance again are solid—gas or liquid—gas interfaces and adsorption isotherms,
and the thermodynamics of physically adsorbed species is here the main focus.

6.1 Thermodynamics of interfaces

Gibbs surface model and definition of surface tension

A real interface region between two homogeneous phases o and is schematically
illustrated in Figure 6.2(a). A hypothetical geometric surface termed the Gibbs
dividing surface, X, is constructed lying in the region of heterogeneity between
the two phases cvand 3, as shown in Figure 6.2(b). In the Gibbs surface model [1], 2
has no thickness and only provides a geometrical separation of the two homoge-
neous phases. At first sight this simple description may seem to be inadequate for a
real interface, but in the following we will show the usefulness of the model. The
energetic contribution of the interface is obtained by assigning to the bulk phases
the values of these properties that would pertain if the bulk phases continued uni-
formly up to the dividing surface. The value of any thermodynamic property for the
system as a whole will then differ from the sum of the values of the thermodynamic
properties for the two bulk phases involved. These excess thermodynamic proper-
ties, which may be positive or negative, are assigned to the interface.

Let us now consider an interface between two isotropic multi-component phases.
The number of moles of a component i in the two phases adjacent to the interface
are given as nf‘ and n Z’B . Since the mass balance of the overall system must be
obeyed, it is necessary to assume that the dividing surface contains a certain

/_\/ /_\/
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surface
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Figure 6.2 (a) Illustration of a real physical interface between two homogeneous phases o
and B. (b) The hypothetical Gibbs dividing surface X.
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number of moles of species i, n?, such that the total number of moles of i in the real
system, n;, is equal to

niznf‘+nlﬁ+nl.0 (6.1)

The surface excess moles or the number of moles of species i adsorbed or present
at the surface is then defined as

n? =n; —n;x —niﬁ (6.2)

l

n? divided by the area A of X yields the adsorption of i:
I; = nf/As (6.3)

I'; may become positive or negative, depending on the particular interface in ques-
tion. Other surface excess properties, such as the surface internal energy and sur-
face entropy, are defined similarly:

U® =u-U%*-uF (6.4)
SO=§5-85%-gh (6.5)

Recall that the Gibbs dividing surface is only a geometrical surface with no thick-
ness and thus has no volume:

ve—v-ve_yB_p (6.6)

It follows that the surface excess properties are macroscopic parameters only.

In order to define the surface tension we will consider the change in internal
energy connected with a reversible change in the system. For an open system dU is
given by eq. (1.79) as

dU =TdS - pdV + ) u;dn; (6.7)
i

For a reversible process, where the interfaces remain fixed, the volumes of the two
phases remain constant and eq. (6.7) becomes

dU =TdS +)_p;dn; (6.8)

l

An infinitesimal change in the surface internal energy

AU =dU —dU®* —duP (6.9)
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can be expressed in terms of the changes in internal energy of the two homoge-
neous phases separated by the fixed boundary

C
dU% =TdS* + ) u;dn (6.10)
i=1

C
dUP =1asP + u;dnf (6.11)

i
i=1

Here C is the number of components in the system. Combination of eqgs. (6.9),
(6.10) and (6.11) yields

C
dU° =T(dS —dS* —dSP)+> p;(dn; —dn® —dn?) (6.12)
i=1

The expressions in the two parentheses can be identified as the surface excess
moles and surface excess entropy defined by eqs. (6.2) and (6.5). Equation (6.12)
thus reduces to

C
dU® =TdS® +) u;dn? (6.13)
i=1

The exact position of the geometrical surface can be changed. When the location
of the geometrical surface X is changed while the form or topography is left unal-
tered, the internal energy, entropy and excess moles of the interface vary. The ther-
modynamics of the interface thus depend on the location of the geometrical surface
X. Still, eq. (6.13) will always be fulfilled.

The effect of variations in the form of the geometrical interface on the energy can
be deconvoluted into two contributions: changes in energy related to changes in the
area of the interface and changes in energy related to changes in the curvatures of
the interface [3]. The two principal curvaturesc; andc, atapoint Q on a arbitrary
surface are indirectly illustrated in Figure 6.3. Two planes normal to the surface at
Q are defined by the normal at point Q and the unit vectors in the two principal
directions, u and v. A circle can be constructed in each of the two planes which just
touches the surface at point Q. The radii r; and r, of the two circles are the two
principal radii at point Q and the two principle curvatures are defined as the recip-
rocal radii ¢y =1/rj and ¢, =1/r,. For systems where the thickness of the real phys-
ical interface is much smaller than the curvature of the interface, Gibbs [1] showed
that the dividing surface could be positioned such that the contribution from the
curvature of the interface is negligible. Assuming the surface to have such a posi-
tion, only the term related to a change in the interfacial area needs to be considered.
An infinitesimal change in the surface internal energy is
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Figure 6.3 Illustration of the curvature of a geometrical surface.
dU® =TdS® +) u;dn? +0dA, (6.14)
i

where ois the partial derivative of U with respect to the area A;. We are now going
to investigate the significance of the variable o. For a reversible process dU is

AU =dU° +dU® +duP (6.15)

The change in internal energy for the two phases adjacent to the interface is now

C
dU% =TdS®* + ) u;dn¥ — p*dv® (6.16)
i=1

C
duP =1asP + > p;dn — pPav’ (6.17)
i=1

Incorporating these two equations in eq. (6.15) yields the following expression for
the change in internal energy for the system:

dU =T(dSC +ds® +dsh)
C (6.18)
+ 3 1i(@n% +dn® +dnPy - pPav® —pPavP +oaa,
i=1

or

C
dU =TdS + 3 p;dn; — p*dv® - pPavF + o da, (6.19)
i=1
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where the surface tension, o, is

. :(‘WJ (6.20)
0Ag SVeVhoa,

This is the definition of the surface tension according to the Gibbs surface model
[1]. According to this definition, the surface tension is related to an interface,
which behaves mechanically as a membrane stretched uniformly and isotropically
by a force which is the same at all points and in all directions. The surface tension is
given in J m~2. It should be noted that the volumes of both phases involved are
defined by the Gibbs dividing surface X that is located at the position which makes
the contribution from the curvatures negligible.

Equilibrium conditions for curved interfaces

The equilibrium conditions for systems with curved interfaces [3] are in part iden-
tical to those defined earlier for heterogeneous phase equilibria where surface
effects where negligible:

7o 7B _70 (6.21)

and
_yB_
ul =pg =yl (6.22)

Note that the chemical potential of a given component at the interface is equal to
that in the two adjacent phases. This is important since this implies that adsorption
can be treated as a chemical equilibrium, as we will discuss in Section 6.3.

To establish the equilibrium conditions for pressure we will consider a move-
ment of the dividing surface between the two phases ovand . The dividing surface
moves a distance d/ along its normal while the entropy, the total volume and the
number of moles n; are kept constant. An infinitesimal change in the internal
energy is now given by

dU =—p®dv® - pPavP 1+ 5aa, (6.23)
The changes in the volume of the two phases are related by
AV = A dl =-dvP (6.24)

and also the change in area of the surface is related to d/. dAg can be expressed in
terms of the two principal curvatures c¢; and ¢, of the interface [3]:
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dAg =(cy +cp)Aqdl (6.25)

Substitution of eqs. (6.24) and (6.25) into eq. (6.23) yields

dU =(pﬁ —po‘)ASdl +0(cq +c2)Asdl=[(pﬁ —pa)+o'(c1 +c¢y)]A dl
(6.26)

At equilibrium (dU) Vo, = 0, which leads to the equilibrium condition for pres-
sure expressed in terms of the two principal curvatures or alternatively in terms of
the two principal radii of curvature:

P = p* =0o(c, +c2):0'[1+1J (6.27)

non

Equation (6.27) is the Laplace equation, or Young-Laplace equation, which
defines the equilibrium condition for the pressure difference over a curved surface.
In Section 6.2 we will examine the consequences of surface or interface curvature
for some important heterogeneous phase equilibria.

For planar surfaces the pressure difference over the interface becomes zero and
the equilibrium condition for pressure, eq. (6.27) reduces to

pP =p® (6.28)

The surface tension for a planar surface thus is

o :(an (6.29)
0As )s v,

and here only the total volume needs to be kept constant. The position of the geo-
metrical surface X no longer affects the definition of o, as for curved surfaces.

The surface energy of solids

The surface tension defined above was related to an interface that behaved mechan-
ically as a membrane stretched uniformly and isotropically by a force which is the
same at all points on the surface. A surface property defined this way is not always
applicable to the surfaces of solids and the surface energy of planar surfaces is
defined to take anisotropy into account. The surface energy is often in the literature
interchanged with surface tension without further notice. Although this may be
useful in practice, it is strictly not correct.

The surface energy can be derived by an alternative treatment. Let us initially
consider a large homogeneous crystal that contains N atoms and that has a planar
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surface. The change in energy on forming solid surfaces is often deconvoluted into
two contributions. The first contribution is due to a change in the surface area that
does not disturb the structural arrangement of the atoms and which thus leaves the
surface structure identical to that of the bulk. The second contribution is elastic in
nature, and relates to the deformation of the surface when relaxed or reconstructed.
To create a new surface we have to break bonds and remove the superfluous
atoms. At equilibrium at constant pressure and temperature the work demanded to
increase the surface area of a one-component system by an amount dAg is given as

AWy, = ydA, (6.30)

where yis the surface energy (J m=2). This energy is the excess energy relative to
the bulk and depends on the number of bonds per unit area and the strength of these
bonds. The reversible work is equal to the change in Gibbs energy due to the forma-
tion of a surface, and the change in the Gibbs energy of a one-component system
can now be written as

dG =-8dT +Vdp + ydA, (6.31)

where

y:(éK;J (6.32)
oA, )y,

For an isotropic phase there are no differences between surface energy and surface
tension. However, for crystals, which are anisotropic in nature, the relationship
between these two quantities is significant and also theoretically challenging, see
e.g. the recent review by Rusanov [2].

It is important to note that the formation of a surface always leads to a positive
Gibbs energy contribution. This implies that smaller particles are unstable relative
to larger particles and that the equilibrium shape of crystals is determined by the
tendency for surfaces of higher energy to be sacrificed while those of lower Gibbs
energy grow. This is the topic of the next section.

Anisotropy and crystal morphology

Basically, the surface energy is given by the number of bonds per unit surface area
and by the bond strength. Different crystal surfaces have different numbers of
bonds per unit surface area and the measured surface energies for crystals are often
an average value over many different crystal surfaces. Using a face-centred cubic
structure as an example, the density of atoms in specific planes generally decreases
with increasing Miller indices [hkl]. The exception is the close-packed [111] plane.
For a [111] plane there are six nearest neighbours in the plane, three above and
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three below the plane. Hence three bonds are broken for each surface atom when
the crystal is cut in two along [111]. For the [100] and [110] planes there are four
and six broken bonds respectively, and thus taking only nearest neighbours into
consideration the surface energies for these planes are larger. The different surface
energies for different types of crystal surfaces control the equilibrium shape of a
crystal, as first discussed by Wolf [11]. This important phenomenon occurs not
only for solid—gas interfaces but also for all other interfaces. For liquid—gas inter-
faces the surface tension is independent of orientation and the equilibrium shape is
a sphere. This represents the smallest surface area for a body of a given size. Exper-
imental studies indicate that spheres become energetically favourable also for
solids at high temperatures. Hence the difference in surface energy between
different surfaces is less important at high temperatures.

The equilibrium shape of a crystal can be constructed using the Wulff construc-
tion [4]. Consider a one-component system in which only the solid and gas phases
are present. Assume that the phases have their equilibrium volumes and can only
change their shape. Hence we need to be able to describe the volume of the crystal.
Let us start looking at a single crystal in the form of a polyhedron of some kind.
This is shown for a two-dimensional case in Figure 6.4. From some point O in the
interior of a crystal, normals to all crystal faces are drawn. The distance between O
and the face vis i, If a straight line is drawn from O to each corner of the body, the
crystal will be divided into N pyramids of height #,, base A, and volume 1/2A 4.
Using a similar analysis, the volume of a three-dimensional crystal can be
expressed as

1 N
V=->A,h, (6.33)
3 v=1

For a reversible change at constant temperature and volume of both phases and
for a constant number of moles of the components, the equilibrium shape can be

A;

f“

Figure 6.4 Geometric parameters describing a two-dimensional crystal.
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found by minimization of the Helmholtz energy of the system. It can be shown that
the equilibrium morphology of a single crystal is given by [3]

n_r_ _¥N (6.34)
hy  hy hy

Here 7y; is the surface energy of the crystal surface i. The equilibrium shape of a
crystal is thus a polyhedron where the area of the crystal facets is inversely propor-
tional to their surface energy. Hence the largest facets are those with the lowest sur-
face energy.

Equation (6.34), defining the equilibrium shape of crystals, is only relevant for
crystals of a certain size. For large crystals changes in shape involve diffusion of
large numbers of atoms and the driving force may not be sufficient, since the sur-
face contribution is small compared with the bulk. Hence metastable crystal shapes
are more likely to be reached. But even for small crystals the Wulff relationship
may break down. Here twinning may lead to configurations which lower the Gibbs
energy of the crystal, and this results in a different crystal morphology. Herring
[5, 6] and Mullins [7] give extended discussions of the topic.

The Laplace equation (eq. 6.27) was derived for the interface between two iso-
tropic phases. A corresponding Laplace equation for a solid—liquid or solid—gas
interface can also be derived [3]. Here the pressure difference over the interface is
given in terms of the factor that determines the equilibrium shape of the crystal:

LT AR R AR N4 (6.35)
hy  h, hy

p
Comparing this expression with eq. (6.27), we see that y,/h, for each crystal face
represents o divided by the radius of curvature for an isotropic spherical phase. As
a first approximation we may replace y,/h, with y/r for near-spherical crystals. In
this case yrepresents an average surface energy of all possible crystal faces.

In the remaining part of the chapter we will use the term 7 for interfaces that
involve solids. It should then implicitly be understood that we are here considering
bulk solids that are treated as isotropic systems and that the surface energy thus
defined is the average value of the surface energies for different crystal surfaces.
Furthermore, we will consistently use superscripts to denote the phases adjacent to
the interface in the rest of Section 6.1 and in Section 6.2.

Trends in surface tension and surface energy

Periodic variations in the surface tension of liquid metals, o1&, are shown in Figure
6.5. The much higher surface tension of d-block metals compared to the s- and p-
block metals suggests that the surface tension relates to the strength of interatomic
bonding. Similar periodic trends can be found also for the melting temperature and
the enthalpy of vaporization, and the surface tension of liquid metals is strongly
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Figure 6.5 Periodic trends in the surface tension of selected liquid elements in periods 2—6
at their melting temperature [8].
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Figure 6.6 Surface tension of the liquid elements at Ty, o't (open squares), and surface
energy of the solid elements at 0 K, 758 (filled circles), versus A H,, V2> [8].

correlated with these and other physical properties that depend on the strength of
the interatomic bond. The correlation between the surface tension of the liquid
metals and their enthalpy of vaporization, in the form of A ., H o Vn:2/ 3 first dis-
cussed by Shapski [9] and Grosse [10], is shown in Figure 6.6. Data for the average
surface energy of solid metals, y58, are also included in this figure. It can be noted
that the average surface energy of solids has also been shown to correlate with
other cohesion-related properties like Young’s modulus and the Debye temperature
[11]. Surface tension and average surface energies for selected inorganic
compounds are given in Table 6.1.

In Figure 6.7, different interfacial tensions or energies of metals are correlated
with the fusion temperature in the form Tfus-Vm_Z/ 3. In general the ratio of the
average surface energy of the solid to the surface tension of the liquid is around 1.2
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Table 6.1 Surface tension or average sur-
face energy of some solid and liquid sub-

stances [12, 13].

Substance

o2 /I m2

NaCl(1) (1000 °C)
AlLO5(1) (2050 °C)
SiO4(1) (1800 °C)
P,05(1) (100 °C)
Cu,S(1) (1200 °C)
NiS(1) (1200 °C)
PbS(1)(1200 °C)
Sb,S5(1) (1200 °C)
H,0(I) (25 °C)

LiF(s) (25 °C)

CaF(s) (25 °C)
NaCl(s) (25 °C)
MgO(s) (25 °C)

0.098
0.69
0.307
0.06

0.4

0.577

0.2

0.094
0.072
ys&/J m2

0.34
0.45
0.227
1.2

2.5

2.0

1.5

c70rj//Jm_2

1.0

0.5

150 200 250 300 350 400 450 500 550

V237K em™

Figure 6.7 Average grain boundary energy, y8b, surface energy of crystals at 0 K, 58, and
surface tension o € of liquid Al, Ag, Au, Ni and Pt as a function of melting temperature

TrusVen2 > [8, 11].

at a given temperature. € for Al and Pt at 0 K are 1.2 and 2.55 J m~2 respectively,
while o 12 at the melting temperature of the metals are 0.865 and 1.86 J m~2 [8].
Although less pronounced, similar trends can be found also for molten salts, as

shown in Figure 6.8 [14, 15].

yslis as a first estimate proportional to the enthalpy of fusion and separate pro-
portionality coefficients are reported for metallic and semi-metallic elements [16].
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Figure 6.8 Surface tension of fused salts as a function of melting temperature normalized
with the molar volume T, V.-2/3 [14, 15].

vap’m

The average interfacial energy between the solid and liquid forms of a given ele-
ment is generally lower than y5¢ and ¢'!8, e.g. 0.093 and 0.24 J m~2 for Al and Pt.
For materials which change coordination number upon melting 5! is larger.

Solid-solid interface energies are normally termed grain boundary energies,
y$$ = y&b, and they are comparable to solid-liquid interfacial energies. Average
grain boundary energies for some f.c.c. metals are given in Figure 6.7. Again a cor-
relation with 7' - Vn_IZ/3 is observed.

We have now treated surface and interfacial energies without considering the
effect of temperature. The excess Gibbs energy of a surface is expected to decrease
with temperature since the excess entropy of the surface compared to the bulk is
expected to be positive. Intuitively, the surface atoms have more degrees of
freedom than atoms in the bulk and thus higher vibrational entropy. In addition, the
formation of vacancies and disorder in general at the surface gives a positive con-
figurational contribution to the entropy. Typically (dy%/dT ) is —45 mJ m~—2 K~! for
pure solid elements and slightly less for liquid elements. A semi-empirical equa-
tion for predicting the temperature variation of the surface energy of liquids was
proposed by van der Waals [17] and Guggenheim [18]. The surface tension is here
given as

n
o'e :o}f[l—f} (6.36)

C

The equation implies that the surface tension becomes zero at the critical tempera-
ture, T, where the two phases become indistinguishable. The exponent n has been
determined to be around 1.2 for metals [11].
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ﬁ O.(xﬁt of

Figure 6.9 Two-dimensional projection of equilibrium at a plane of contact between three
phases o, B and y where the angles between the three two-phase boundaries meeting in a
line of contact are denoted 8%, 6P and 7.

Morphology of interfaces

The equilibrium shape of a crystal is, as described above, a polyhedron where the
size of the crystal facets is inversely proportional to their surface energy, 7 *¢. In the
present section we will consider other types of interfaces as well and we will show
that the interface energies determine the equilibrium morphology of interfaces in
general.

A two-dimensional illustration of three phases «, f and y in equilibrium is
shown in Figure 6.9. Two phases coexist in equilibrium in planes perpendicular to
the lines indicated in the two-dimensional figure and all three phases coexist along
a common line also perpendicular to the plane of the drawing. Each of the three
two-phase boundaries, which meet at the point of contact, has a characteristic inter-
facial tension, e.g. O_aﬁ for the o—f interface, which tends to reduce the area of the
boundary. Here we assume the interfacial tensions to be independent of the orienta-
tion and that the surface forces are the only ones present. The three forces for the
three boundaries are in mechanical equilibrium if

BB L PP | goxsox — (6.37)

where ¢V is a unit vector tangent to the i—j boundary at the point of contact. Using
the three angles defined in Figure 6.9, the equilibrium condition becomes

af Bx oy
°c_ __9 ° 0 (6.38)

sinf%  sin@% singP

If the three interfacial tensions are equal, the three angles are also equal: 8 i=120°.
The conditions for mechanical equilibrium can now be applied to a simple

case of great practical importance. Let us consider the interfaces that occur

when a liquid phase is brought into equilibrium with a solid surface in a gaseous
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solid

Figure 6.10 Contact angle 8of aliquid drop resting on a solid surface. The definition of the
forces used in the figure eliminates the contribution from gravity.

atmosphere. The wetting of a solid by a liquid drop is characterized by the contact
angle, 0, defined in Figure 6.10. The condition for mechanical equilibrium can be
rearranged to give the surface energy balance:

7 =y 4512 cos0 =0 (6.39)

Equation (6.39) was first derived by Young, and is often referred to as the
Young-Dupré equation. We usually distinguish between full (68 < 90°) and partial
wetting (0>90° and an alternative measure of the same property is given by the
wetting coefficient:

sg 8l
k=t "~V _oso (6.40)
cle

A solid is not wetted if k < —1, partly wetted for —1< k< 1 and fully wetted for k> 1.
Wetting is favoured when the difference (75 — y5!) approaches and becomes larger
than o2, In this case the interaction between the droplet and the substrate increases
and the contact angle decreases. It follows that materials with high surface energy
are better substrates for deposition of another phase than substrates with low sur-
face energy. One consequence is that metal surfaces are often readily wetted while
polymeric surfaces often are not.

The sessile drop technique for determination of interfacial energies is based on
the configuration shown in Figure 6.10. If the surface tension of the liquid is
known, the difference between the interfacial energies of the solid—gas and
solid-liquid interfaces can be determined directly by measurement of the contact
angle. Experimentally it is difficult to obtain reproducible data on wetting because
of two factors: the influence of the surface roughness and the sensitivity of the
interfacial energies to the presence of surface-active species. These species may be
introduced through contaminations from the surrounding atmosphere or they may
be present in the materials used.
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Interfacial tensions also play an important role in the distribution of phases in
polycrystalline solids. The presence of secondary phases is quite typical, since as grain
growth proceeds non-soluble impurities accumulate, usually at the grain boundaries.
In other cases the secondary phases may become embedded in the majority phase if the
grain boundaries are not pinned at the inclusions. In powder metallurgy and ceramic
technology secondary phases are often introduced on purpose in order to enhance
sintering or inhibit grain growth. Generally, an equilibrium situation is difficult to
obtain due to slow kinetics when governed by solid (bulk or grain boundary) diffusion.
When a secondary liquid phase is present the kinetics is governed by liquid diffu-
sion and equilibrium situations are more likely to be reached.

The distribution of the liquid is determined by the interfacial energy between the
liquid and the solid matrix relatively to the grain boundary energy. An example is
shown in Figure 6.11(a), where an important characteristic of grain boundaries, the

(b)
o
o
o 180°
o
o
“ 135°
o
o
o 0°

Figure 6.11 (a) Definition of the dihedral angle, ¢, at a junction of three grain boundaries
in a polycrystalline solid. (b) Schematic illustration of the shape of an inclusion phase for
different dihedral angles.
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dihedral angle ¢, is defined. The dihedral angle at the point O is at equilibrium
defined through

yo —2y% cos@):O (6.41)

Depending on the value of the two interfacial energies the dihedral angle can take
any value from 0 to 180°. The shapes taken by the secondary phase for different
dihedral angles are illustrated in Figure 6.11(b). Since the dihedral angle governs
the distribution of secondary phases, the mechanical properties of polycrystalline
solids are to a great extent determined by the interfacial energies, although itis also
evident that the amount of the secondary phase is important. In composites the
strength of the material can be modified by changing the interfacial tension and
thereby the distribution of phases. The fracture toughness of the material is here to
a large degree determined by the mechanical strength of the interface between the
two phases.

Our final example of the effect of interfacial energies relates to microscopic
studies of grain sizes and grain distributions in sintered materials. The materials
are typically polished and then thermally etched (annealing in air or an inert atmo-
sphere at temperatures significantly below the sintering temperature). After pol-
ishing, the grain boundaries are not easily seen by electron microscopy. On thermal
annealing the surface relaxes and the surface microstructure become modified. A
schematic illustration of the effect of thermal etching on a grain boundary is given
in Figure 6.12. The dihedral angle defines the microstructure after etching and the
relaxed surface microstructure is much more visible; the grain boundaries are
easily seen. The surface of the ceramic material Lag 5Srg sFeg 5Cog 503 shown in
Figure 6.13 constitutes an excellent example.

In cases where the interfacial energy is dependent on orientation, the equilibrium
condition (6.41) does not hold [19]. Some grain boundaries will then represent
higher Gibbs energies than others, and if kinetics allow for reorientation, certain
grain boundaries will become dominant. However, in most cases the kinetics of

solid grain A solid grain B solid grain A solid grain B

Figure 6.12 Grain boundary after polishing (a) and after the subsequent thermal etching
(b).
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Figure 6.13 Surface of thermally etched Lag 5Srg 5Fep 5Cog 503, a polycrystalline
ceramic material .

reorientation of the crystal lattice in order to reduce the interfacial energy is slow
and the distribution of grain boundaries is thus not determined by thermodynamics.

6.2 Surface effects on heterogeneous phase equilibria

For small particles with large curvature the surface has, as previously stated, a sig-
nificant effect on the thermodynamics, and the concepts developed apply to all
types of interfaces between solid, liquid and gas.

The fact that the curvature of the surface affects a heterogeneous phase equilib-
rium can be seen by analyzing the number of degrees of freedom of a system. If two
phases « and [ are separated by a planar interface, the conditions for equilibrium
do not involve the interface and the Gibbs phase rule as described in Chapter 4
applies. On the other hand, if the two coexisting phases o and f are separated by a
curved interface, the pressures of the two phases are no longer equal and the
Laplace equation (6.27) (eq. 6.35 for solids), expressed in terms of the two prin-
cipal curvatures of the interface, defines the equilibrium conditions for pressure:

p* —pP =6%(c; +cy) (6.42)

Equation (6.42) introduces a new independent variable of the system: the mean
curvature ¢ =21(c1 +c, ). This variable must be taken into account in the Gibbs
phase rule, which now reads F + Ph = C + 2 + 1. The number of degrees of freedom
(F) of a two-phase system (Ph = 2) with a curved interface is given by

F=C+1 (6.43)
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Effect of particle size on vapour pressure

In this first example, a single-component system consisting of a liquid and a gas
phase is considered. If the surface between the two phases is curved, the equilib-
rium conditions will depart from the situation for a flat surface used in most equi-
librium calculations. At equilibrium the chemical potentials in both phases are
equal:

ul=pt (6.44)
For any reversible change

du' =dut (6.45)
At constant temperature du = Vdp and eq. (6.45) becomes

Vedpe =v'dp! (6.46)

Here V& and V! are the molar volume of the two phases, but the subscript m is not
used for simplicity. The pressure of the two phases is related by the Laplace equa-
tion (6.27), which for a spherical liquid droplet surrounded by its own vapour
becomes, in differential form,

r

Ig
d(p® - phy= d[zc ] (6.47)
Here 2/r =[(I/r;) + (I/r, )] since r; =r, . Combining eqs. (6.46) and (6.47) yields

g _yl Ig
udpg =d 20—7 (6.48)
v! r

Assuming the gas to be ideal (V& =RT/p?) and noting that V& V! 2 V& we
obtain

g Ig
RT dp” _ 4 20 (6.49)
Vl pg r

If the pressure dependence of the molar volume of the liquid is neglected, inte-
gration from a flat interface (r = «) yields
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Figure 6.14 The vapour pressure of Zn over a spherical droplet of molten Zn at the melting
temperature as a function of the droplet radius. pg, =2 1074 bar, 02 =0.78 I m™2 and p=
6.58 g cm™ [8].

Pt _V! 20k
pé RT r

r=00

In (6.50)

Equation (6.50) is often referred to as the Thomson’s (or Kelvin’s) equation. As
an example of the effect of this equation, the vapour pressure of a spherical droplet
of molten Zn at the melting temperature is shown as a function of the droplet radius
in Figure 6.14.

A consequence of the decreasing vapour pressure with increasing size of the
droplet is that in a distribution of droplets the larger droplets will grow at the
expense of the smaller ones; a fact that will be discussed more thoroughly below.

Effect of bubble size on the boiling temperature of pure substances

We now return to the equilibrium condition (eq. 6.44), and assume that the liquid is
subjected to a constant pressure, pl. For reversible changes eq. (6.44) becomes

—S&dT +Vedpe =-sldT 6.51)

which may be rearranged to

ngpg:(sg—sl)dT:(Hg—H')dT—T (6.52)

Let us consider a spherical bubble of vapour inside its coexisting liquid. Again
the gas phase is assumed to be ideal, and eq. (6.52) becomes
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ar R dpf
T2 AvpHm pt

vap

(6.53)

The pressure can be substituted by the mean curvature through the Laplace equa-
tion, for which

dr _ R dQo'¢/r) (6.54)

T2 Avapl—lm (pl +[20'1g/r])

If the enthalpy of vaporization is assumed to be independent of the curvature, inte-
gration of eq. (6.54) from a flat surface (r = ) yields (7 constant)

lg
(1) _(lj __ R 1+2"1/r (6.55)
T r=00 T r AVapI{m P

The boiling temperature of molten Na is plotted versus the radius of the vapour
bubble in Figure 6.15. The boiling temperature is increased by several hundred
degrees for a gas bubble with radius 1 um relative to a flat gas—liquid interface. If
the liquid is free of impurities and heterogeneous interfaces, substantial super-
heating of the liquid above its bulk boiling temperature is possible, as also dis-
cussed in Chapter 5.

The effect of curvature is much more pronounced for the thermodynamics of a
gas bubble than for the liquid droplet. The curvature is a pressure effect, which is
much larger for gases than for condensed phases, reflecting the much larger molar
volume of the gas.
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Figure 6.15 The boiling temperature of Na as a function of the radius of a vapour bubble
surrounded by molten Na. Ay,pHm = 101.3 kJ mol~! and ¢! =0.19 J m™2 [8].
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Solubility and nucleation

We will now consider a case where a spherical crystal with radius r of a single com-
ponent solid phase is surrounded by a liquid with more than one component. The
differential of the Laplace equation (6.27) is

sl
d(p® —pl):d(zyj (6.56)

r

We will consider a reversible change in the system at constant temperature and
pressure of the liquid phase pl. Furthermore, we will assume that the equilibrium
concentration of all components in the liquid, except for the single component, i, of
the solid phase, is fixed. The equilibrium condition yields

du! =du’ =vsdp® =v*d 27" 6.57
/'li_‘ui_ip_i r ( )

Assuming that Vl.S is independent of pressure we obtain

27/51
r

W)y =Wy =V (6.58)

where (‘ug)r is the chemical potential of i in the liquid in equilibrium with a solid
phase of radius . By expressing the chemical potential in terms of activity (eq.
3.11), eq. (6.58) can be rewritten as

1 S
a. V Sl
In (ll)’ _ i 2y (6.59)

Furthermore, if the liquid is assumed to be ideal the activity of a component is
equal to the mole fraction of the component. Now the mole fraction of i in the liquid
phase can be derived as a function of the radius of the solid phase:

1 S
X)), V! sl
Gidr Vi 2y (6.60)

In . =
(xi)r:oo RT r

The important consequence of eq. (6.60) is that the solubility of the solid increases
with decreasing radius of crystal. Although the effect is small this illustrates the
need for super-saturation on homogeneous nucleation in a liquid. Super-saturation
is necessary in order to obtain nucleation since the solubility of the nuclei is higher
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than for the bulk. In addition, the interface energy is also important for the kinetics
of nucleation, as illustrated below by classical nucleation theory.

In classical nucleation theory the Gibbs energy of a nucleus is considered as the
sum of contributions from the bulk and the surface. Let us consider nucleation of a
spherical crystal from its liquid below its melting temperature at 1 bar. The differ-
ence in Gibbs energy between a nucleus with radius r and its liquid is

A_G :_;‘m{AZJAme +4mr? y ¥ (6.61)

where A ;G ,, is the molar Gibbs energy of melting, (M/p) is molar volume (M is
molar mass and p is density), %n’r3 is the volume of the spherical nuclei and y8!is
the surface energy of the solid-liquid interface. Here the effect of curvature has
been neglected and the surface of the nucleus is assumed to be planar. Since the two
terms in eq. (6.61) have opposite sign, the Gibbs energy goes through a maximum
as a function of 7, the surface term dominating for small r and the bulk term at large
. This maximum corresponds to the thermodynamic barrier to nucleation. The
critical radius corresponding to a maximum in Gibbs energy is determined by dif-
ferentiating eq. (6.61) with respect to r:

dA_G 2 sl
7(11; =—4nr []\li[ JA fsGm +87mry?® (6.62)
At the maximum dA ;_ G/dr =0and the critical radius is r* = [2(M/p)y 1A fusGm -

Finally, by substituting r = * into eq. (6.61) the thermodynamic barrier for nucle-
ation is obtained:

_167t(7/51)3M2

Al 2 2
3/) AfusGm

G* (6.63)

=S

Since A, G, increases with decreasing temperature, the critical radius and the
thermodynamic barrier decrease with decreasing temperature. At the same time the
thermodynamic driving force for nucleation is increasing. This is illustrated for
crystallization of aluminium in Figure 6.16(a). The Gibbs energy of a nucleus of
aluminium is given as a function of the radius of the nucleus in Figure 6.16(b) (at
T/Tg,s =095). For small nuclei the surface term dominates. Above the critical
radius the bulk contribution will stabilize the nuclei.

Ostwald ripening

During sintering of granular solids (for example ceramics or hard metals) grain
growth may occur by a dissolution—precipitation mechanism if a secondary liquid
phase is present. The chemi