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Preface

It is commonly assumed that computers process information. But what is infor-
mation? In a technical, important, but nevertheless rather narrow sense, Shan-
non’s information theory gives a first answer to this question. This theory focuses
on measuring the information content of a message. Essentially this measure is
the reduction of the uncertainty obtained by receiving a message. The uncer-
tainty of a situation of ignorance in turn is measured by entropy. This theory
has had an immense impact on the technology of information storage, data com-
pression, information transmission and coding and still is a very active domain
of research.

Shannon’s theory has also attracted much interest in a more philosophic look
at information, although it was readily remarked that it is only a “syntactic”
theory of information and neglects “semantic” issues. Several attempts have
been made in philosophy to give information theory a semantic flavor, but still
mostly based on or at least linked to Shannon’s theory. Approaches to semantic
information theory also very often make use of formal logic. Thereby, information
is linked to reasoning, deduction and inference, as well as to decision making.

Further, entropy and related measure were soon found to have important
connotations with regard to statistical inference. Surely, statistical data and
observation represent information, information about unknown, hidden parame-
ters. Thus a whole branch of statistics developed around concepts of Shannon’s
information theory or derived from them. Also some proper measurements ap-
propriate for statistics, like Fisher’s information, were proposed.

Algorithmic information theory introduced by Kolmogorov, Solomonoff and
Chaitin provides a new look at the concept of information. It is again basically
a theory of measuring information content. Here the information content of an
information object, for instance, a binary string, is measured by the length of the
shortest program which computes this object. It is based on Turing machines. A
main result of this approach to information is the clarification of the concept of
randomness and probability. Therefore it is not too surprising that algorithmic
information theory reproduces Shannon’s results although in a rather different
context.

Not too long ago it was noted that information is related to questions. Infor-
mation represents answers to such questions. Or it was remarked that pieces of
information shed light on a given context, and that this information might pos-
sibly also be transported through channels to other contexts. The problems of
questions and of information related to questions were considered by Groenendijk
and Stockhoff. Further, the flow of information between different contexts was
studied by Barwise and Seligman. From quite a different point of view, similar
issues were captured by the Fribourg school which introduces the concept of
information algebras. Pieces of information come from different sources, concern
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different questions, can be combined or aggregated and focused on the questions
of interest. These algebraic structures also provide a rigorous foundation for a
theory of uncertain information based on probability theory. Furthermore they
offer sufficient conditions for efficient generic methods of inference covering di-
verse domains such as relational databases, probability networks, logic systems,
constraint programming, discrete transforms and many more.

Under the title “Information and Knowledge,” research groups of the Com-
puter Science departments of the universities of Berne, Fribourg and Neuchtel
collaborated over several years on issues of logic, probability, inference and de-
duction. Given the different approaches to the concept of information and its
basic nature, one of the traditional Muenchenwiler seminars in May 2006 was
devoted to an exchange of views between experts from the different schools men-
tioned above. The goal was to examine whether there is some common ground
between these different formal theories. The contributions of the invited par-
ticipants (with the exception of Robert van Roij, who was afterwards invited
to contribute) are collected in this volume. The volume editor, Giovanni Som-
maruga, discusses the question of whether there are one or several concepts of
information as a first attempt to summarize the results of the seminar. It is up
to the reader to continue in the direction of a possible unification of the different
theories.

As the organizer of the May 2006 Muenchenwiler seminar, I would like to
thank the authors for their participation in the seminar, their contributions to
this volume and the patience they had to exercise during the editing process.
My sincere thank goes to the editor of this volume, Giovanni Sommaruga, for
all the work this implied and especially for his effort to compare the different
approaches to information in search of a common thread. Thanks to Cris Calude
for establishing the contacts with Springer for the publication of the volume. I
am grateful to Cesar Schneuwly for the final typesetting preparations. Finally I
thank the Swiss National Foundation for supporting several research projects on
the subject of “logic and probability” and “information and knowledge,” as well
as the Swiss Confederation which supported the collaboration project between
the universities of Berne, Fribourg and Neuchtel under the title of “deduction
and inference.” The Muenchenwiler seminar of May 2006, as well as many others,
and the present volume are fruits of this encouragement.

Jürg Kohlas
Department of Computer Science

University of Fribourg (Switzerland)
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Introduction

Giovanni Sommaruga

Part I

This book’s topic are formal theories of information. It may be useful to start
explaining this topic a little further, and then to say what the structure of the
book is like and what motivates it, and finally how this book compares with
other works grappling with the same or a similar topic.

What is meant by the term ‘formal’ in ‘formal theories of information’? All
of the formal theories presented or discussed in the sequel either have a strongly
mathematical or logical flavor or are downright mathematical. And how should
the term ‘information’ be understood in the expression ‘formal theories of infor-
mation’? A first clarification of this term is provided by L. Floridi’s introductory
philosophical considerations in this book; a second attempt at a clarification is
made by G. Sommaruga’s concluding remarks.

What is the structure of this book? This book’s structure could be repre-
sented by some sort of a circular model: The innermost circle will be called the
syntactical one: it constitutes the basic skeleton or the set of essential compo-
nents of any formal theory of information. The second, larger circle is called
the semantical one: it adds the crucial feature of meaning to the information-
theoretical consideration of mere signs (or well-structured data) in the smallest,
innermost circle. The third, even larger, outermost circle might be called the
pragmatic one: it adds the crucial feature of real-life usage of meaningful signs
by humans to the information-theoretical consideration of mere meaningful signs
in the intermediate circle.

This structure is motivated by a doubly unificatory purpose: on the one hand
by the question of ‘unification’ of different approaches inside a given circle; on
the other hand by the question of ‘unification’ underlying the various circles: is
it possible to think of one unique concept of information which is gradually built
up, developed over several stages represented by the different circles?1

K. Kornwachs and K. Jacoby’s Information. New Questions to a Multidisci-
plinary Concept(1996) seems to pursue a similar unificatory purpose. The two
editors reason in the introduction to their book as follows: There appear to be
1 An alternative structure of this volume could have been the result of interchanging

its second (‘the syntactical approach’) and its third part (‘the semantical approach’)
for the following reasons: as argued for in sect. 3.3 of my contribution to this volume,
the center concept of information is the semantical one which can be phrased in terms
of questions and answers. A very sensible way of presenting the following articles
would have been to start with the contributions to this center concept and to carry
on with two extensions of it: the technical extensions of this center concept (i.e. the
syntactical approach) and a pragmatical extension of it (i.e. beyond the semantical
approach). I owe this interesting suggestion to Jürg Kohlas.

G. Sommaruga (Ed.): Formal Theories of Information, LNCS 5363, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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only the following three kinds of concept of information: a) Shannon’s (syntac-
tical) concept modified in many different but not essential ways. It is so limited
as to be almost uninteresting (according to a comment by E.U. v. Weizsäcker).
b) a very vague concept in everyday language. It is so broad that it is just
about meaningless. c) an economical concept of information as a commodity
which, however, until now defied any attempt to define it. Thus, Kornwachs
and Jacoby reach the following conclusion: The search for a unified concept of
information is a hopeless endeavor; information is a multidisciplinary concept,
i.e. every scientific discipline has its own concept of information. (1996:1ff) They
carry on with the following observation: Scarce applications of Shannon’s, i.e.
statistical information theory could be made in cognitive science (psychology),
biology, system theory, philosophy of science, linguistics and the social sciences.
Therefore, all these sciences have started developing their own concept of in-
formation. That is why there is no unified concept of information available.
Kornwachs and Jacoby continue by making a claim which seems to contradict
their earlier conclusion. Claim: A unified concept of information can be reached
by a multidisciplinary approach only. What does that claim mean? Does it mean
that a unified concept of information has to account for the different concepts
of information used in the different scientific disciplines? Is this what is meant
by a multidisciplinary approach being a necessary condition for a unified con-
cept? And what does the expression ‘account for’ imply in this context? Their
explanations following their claim are by no means illuminating. Kornwachs and
Jacoby’s book amounts eventually to presenting various aspects of the concept
of information and discussing various uses of the term ‘information’ in physics,
biology, system theory, philosophy of science, philosophy and linguistics, all of
this in agreement with their original conclusion, namely that information is (and
cannot be but) a multidisciplinary concept.

Another weighty attempt at providing a unified theory of information is
provided by W. Hofkirchner’s The Quest for a Unified Theory of Information.
Proceedings of the Second International Conference on the Foundations of In-
formation Science(1999). In his introduction to this volume Hofkirchner raises
several questions. The first of these questions is: Which are ‘the philosophical
and/or formal scientific suppositions [that] seem best suited to serve as a ba-
sis for a unified theory of information (UTI)’? (1999:xxi) Hofkirchner answers
this question as follows: a UTI ought to be conceived of as a general theory of
information-generating systems. (1999:xxii) This answer appears unsatisfactory
for at least two reasons: First, in order to identify and construct theories about
information-generating systems one has to know what information is, i.e. one has
to know the concept of information. Hence Hofkirchner’s answer is somewhat vi-
ciously circular. Second, these information-generating systems are (according to
Hofkirchner) to be considered as particular kinds of systems, as physical, chem-
ical, biotical etc. systems, depending on the material context. This means that
UTI has to be conceived as a ‘material’ theory of information. And this con-
ception implies that the underlying concept of information will at best be an
analogous one and at worst equivocal. This consequence is hardly in the spirit of
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a UTI. Hofkirchner seems to point at a way out of these difficulties: A concept of
information should be flexible enough to perform two functions: ‘It must relate to
the most various manifestations of information, thus enabling all scientific disci-
plines to use a common concept; at the same time, it must be precise enough to fit
the unique requirement of each individual branch of science.’ (1999:xxii) No the-
ory can fulfil these two requirements other than a formal (mathematical) theory
of information. The term ‘formal’ should not be understood in a purely formal-
istic sense, but at most in a sense that S. Shapiro calls deductivist. (cf. (Shapiro
2000:ch.6.2)) It is a logical mathematical theory of information, expressing or
incorporating a formal concept of information and applicable to a wide range of
scientific disciplines. It thus comes as no surprise when Hofkirchner writes: ‘[ ] the
conference was unable to answer unambiguously the question of whether a UTI
is possible at all, and, if so, if a theory of evolutionary systems represents suitable
foundations for this; in which way different properties of information-generating
self-organizing systems can be subsumed;. . . ’ (1999:xxiii).2,3

2 D.F. Flückiger distinguishes in his ph.d. thesis Beiträge zur Entwicklung eines verein-
heitlichten Informations-Begriffs(1995) two types of information theory: the so-called
structural-attributive ones whose prototype is D. MacKay’s descriptive information
theory, and the so-called functional-cybernetic ones whose prototype is Shannon’s
statistical information theory. (1995:2,69; cf. also his (1999)) He makes an attempt
at combining two essential perspectives on information, namely the perspective of in-
formation transmission (Shannon) and the perspective of information accumulation
(Nauta). Flückiger’s goal is to find a (consistent) concept of information underlying
both these perspectives (1995:63). On the way to finding such a concept, he makes
extensive use of modern brain biology. Flückiger’s approach has a similar objective
as the Barwise-Seligman theory of information and information flow, but unlike the
latter one, it suffers from the same flaw as Hofkirchner’s approach, namely from not
being a really formal theory.

3 The objectives of P. Keller’s thesis Information Flow. Logics for the (r)age of infor-
mation(2002) are somewhat similar to those of this book: (i) ‘to give a conceptual
analysis of the notions of information, data and knowledge and their interrelations’
– where in this book the concept of knowledge plays no role whatsoever –, and (ii)
‘to apply this analysis to the theory of information flow’ (2002:I) – where in this
book, the analysis is partially applied, partially extracted from the theory of infor-
mation flow and other formal theories of information –. Keller carries out task (i) by
comparing different theories of information with each other, such as Dretske’s philo-
sophical theory of information, situation-theoretic information theory and epistemic
modal logic of information. He mentions three possible reasons for the apparent fact
that the different theories of information considered by him are incommensurable.
(2002:VII/VIII) One may be tempted to add a fourth reason, namely that Keller’s
choice of theories to be compared with each other wasn’t particularly fortunate, or
say, too heterogeneous. His conclusion at the end of his thesis is disappointed and
delusive: ‘the concept [of information, G.S.] is elusive and there is not much to be
hoped from a ‘philosophy’ of information’ (2002:240), and by no means shared by
the editor of this book. It is one among other objectives of this book that the reader
may come, after reading this book, to the opposite conclusion.
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Part II: The Individual Contributions

In his contribution Philosophical Conceptions of Semantic Information,
L. Floridi sets out to explore and clarify the wide and messy conceptual field
surrounding the concept of information. Even though he starts by declaring that
there is a considerable number of concepts of information depending on the level
of abstraction and the requirements of one’s perspective, he essentially zooms in
on three fundamental concepts: information as (well-structured) data, informa-
tion as meaningful well-structured data (meaningful content), and information
as truthful meaningful well-structured data. He then provides a philosophical
discussion of the nature of (well-structured) data. After a brief philosophical
presentation of statistical information theory (called MTC by Floridi), he ex-
amines the concept of information as semantic content and especially the one
he calls factual semantic content (factual information) and he presents a sketch
of the debate on whether factual information ought to be truthful or not in
order to correctly be called information. At the end, he considers the relation-
ship between MTC and a semantic theory of information, thereby continuing
the previous sketch on the level of theories: for the weakly semantic theories
of information, information as semantic content is alethically neutral, whereas
for the strongly semantic theories, information as semantic content has to be
truthful.

The canonical measure of probabilistic uncertainty is Shannon’s entropy (1948),
whose properties and applications constitute Information Theory. In Information
Theory, the entropy of a message limits its minimum coding length, in the same
way that, more generally, the complexity of the message determines its compress-
ibility in the Kolmogorov-Chaitin-Solomonov Algorithmic Information Theory.
In his contribution Information Theory, relative Entropy and Statistics,
F. Bavaud summarizes and revisits the classical Shannonian framework from a
statistical inferential perspective: besides coding and compressibility interpreta-
tions, the relative entropy K(f ||g) (or Kullback-Leibler divergence) possesses a
direct probabilistic meaning, and measures the badness-of-fit between an empiri-
cal distribution f and a model distribution g - a theme first explored by authors
such as Kullback, Sanov, Jaynes, Billingsley, Csiszár, and Cover among others.
Through about twenty examples, Bavaud illustrates a few formal properties of
the functional K(f ||g), rich enough to capture the various aspects of the con-
frontation between models (= what we believe) and data (=what we observe),
that is the art of classical statistical inference, including Popper’s falsificationism
as a special case. In particular, the asymmetry of K(f ||g) nicely matches the epis-
temological asymmetry between data and models, as illustrated by Fisher’s sin-
gle hypothesis testing, the Neyman-Pearson testing between two hypotheses, and
Bayesian model selection. Also, the exact additive decomposition of the relative
entropy holds in two dual contexts, namely for convex families of empirical dis-
tributions, or for exponential families of model distributions. Moreover, the prin-
ciples of Maximum Likelihood and Maximum Entropy clearly emerge as dual to
each other, which clarifies the (often misunderstood) epistemological meaning of
the former, namely as a method of reconstructing under incomplete observation
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the most likely data under some prior model - which is highlighted in the so-called
EM algorithm consisting of an alternating use of both principles. In the last sec-
tion, Bavaud demonstrates how the relative entropy formalism extends beyond
independence models, and can be used to test independence or to test the order
of a Markov chain. His conclusion, in the spirit of convex and exponential models,
illustrates the heating and cooling of texts by a few textual simulations, and the
mixing (in an additive or multiplicative way) of English and French texts.

C.S. Calude’s contribution Information: The Algorithmic Paradigm has
almost the form of a dialogue: questions are raised, answers are given which
in turn may raise new questions etc. Moreover, a central theme of Calude’s
with variations is incompleteness. After introducing bits, i.e. binary digits, and
bits-strings, Calude raises the question: How efficiently can all the non-negative
numbers be coded? In order to answer this question, he introduces a special
type of Turing machine, namely the self-delimiting universal Turing machine
U , and he also explains the following coding problem: If one considers all Tur-
ing machines of length at most n, i.e. 2n+1 − 1 Turing machines, some Turing
machines halt on a certain input x, others don’t. If all the Turing machines of
length n are ordered lexicographically and for each Turing machine, one asks
whether it stops or not, one gets a bit-string of length 2n+1 − 1 encoding the
whole information. Can the same amount of information be encoded with fewer
bits? The answer is yes, and expressed by the Omega number ΩU whose binary
expansion is 0.ω1ω2 . . . ωm . . .. The halting information for all Turing machines
p s.t. n ≥ |p| can then be compressed into a string of length n : ω1ω2 . . . ωn. It is
now possible to answer the original question: The most efficient coding of all the
non-negative numbers is provided by the domain of a self-delimiting universal
Turing machine. Calude continues showing that many problems in mathemat-
ics can be rephrased in terms of the halting/non-halting status of appropriately
constructed self-delimiting Turing machines. The next question to be discussed
is whether computers can produce new information? The amount of information
HU (x) contained in a bit-string x is the smallest length of a Turing machine
by means of which a self-delimiting universal Turing machine U produces x.
To produce new information then means to start with an input x and produce
an output y s.t. HU (x) < HU (y). The question just asked becomes: Is there
any computable process which can produce infinitely many outputs each hav-
ing more information than its corresponding input? Calude demonstrates that
the answer is essentially negative: a computer cannot create much new informa-
tion. The ensuing question is: But how much can one expect to be created? If
a Gödelian theory is roughly speaking a formal theory for which Gödel’s incom-
pleteness theorems hold, such a theory can be used to prove theorems having
a bit more information than the theory itself. The next point raised concerns a
link between algorithmic and statistical information theory: Calude presents an
algorithmic version of Shannon’s noiseless coding theorem. Next, he treats the
relationship between algorithmic randomness and incompleteness: An infinite
sequence x1x2 . . . xn . . . is algorithmically random if there exists a positive con-
stant c s.t. HU (x1x2 . . . xn) ≥ n− c. It has then been proved that (the sequence
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of bits of) ΩU is algorithmically random. Questions: i) Are there other natural
algorithmically random sequences? And ii) Are there any computably enumer-
able and algorithmically random numbers other than ΩU? The answer to the
first question is positive: If ζU is the so-called zeta number of a self-delimiting
universal Turing machine U , ζU can be shown to be algorithmically random.
The answer to the second question, however, is negative: for one can prove that
a real number α ∈ (0, 1) is computably enumerable and algorithmically random
iff there exists a self-delimiting universal Turing machine U s.t. α = ΩU . The
link to incompleteness is establised by the following result: A Gödelian theory
cannot determine more than finitely many digits of ΩU . Calude also comes back
to incompleteness in his last point: If one expresses the property of ΩU being
algorithmically random as the uncertainty relation Δs · Δ(ω1 . . . ωs) ≥ 1, one
can derive from it Gödel’s incompleteness theorem, that is, uncertainty implies
incompleteness.

J. Kohlas starts his article Information Algebra by explaining intuitively
the basic components and ideas of his algebraic theory of information. In the
second section, he gives an axiomatic presentation of the algebra of information
which he motivates by showing that the relational algebra associated with re-
lational databases is its prototype. In the following subsections, he reinterprets
the projection operation of an information algebra in two ways: by interpret-
ing it as variable elimination, he points to the connection between information
algebra and logic; by interpreting it as a transport operation, he prepares the
ground for the definition of an interesting equivalent version of the information
algebra, i.e. the so-called domain-free one. The third section is dedicated to a
variety of examples, non-logical and logical, of information algebras: fuzzy set
theory (or parts thereof) can be conceived of as an information algebra, and
as for the logical examples, propositional logic, first order logic, and so-called
contexts can equally be conceived of as information algebras. The contexts are
designed as a more general logical framework for obtaining information algebras.
The fourth and last section links information algebra to statistical information
theory. The first subsection explains how information algebra gives rise to a nat-
ural partial order of information content. In the second subsection, attention
is drawn to the fact that in a relational (information) algebra, the information
content of a relation depends on the question of one’s interest. Since this fact is
related to the Boolean character of a relational algebra, the so-called Boolean
information algebras are introduced.The next subsection shows how this par-
tial order of information content can be used to define particular information
algebras based on basic, finest information pieces, called atoms; these algebras
are subsequently called atomic information algebras. The fourth and last sub-
section deals with the measurement of information content in the case of atomic
information algebras, using Hartley’s measure. This quantitative information
measure measures the reduction of uncertainty by an information element of
an atomic information algebra and it also respects the qualitative, partial or-
der of information content. Despite these connections between information al-
gebra and statistical information theory, Kohlas keeps emphasizing that atomic
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information algebra is not a statistical information theory as entropy doesn’t
develop its full power in it.

In information algebra, information is represented by an algebraic structure
in which pieces of information refer to precise questions and can be combined
and focussed on other questions. Uncertain information arises when a piece of
information is known to be true under certain assumptions which themselves are
not necessarily known to be true. Varying these assumptions leads to different
information by means of assumption-based reasoning. If the likelihood of differ-
ent assumptions is varied and described by a probability measure, it is possible
to measure the degree of support of a piece of information in terms of the proba-
bility of those assumptions supporting this piece of information. This is the basic
tenet of J. Kohlas and Ch. Eichenbergers approach Uncertain Information.
Section two starts off with a presentation of functional models describing the
process whereby a data (an answer) is generated from a parameter (question)
and some random element (an assumption). The basic idea of assumption-based
reasoning is to suppose that a random element generated some data and then
to determine the consequences of this supposition on the parameter (and to de-
termine these consequences in terms of the probabilities of the resp. random
element(s)). The last technical term introduced in this section is the one of a
hint: A hint is essentially a mapping from a probability space into a certain set,
and, more precisely, a mapping of an assumption to the smallest set of possible
answers to a given question, containing for sure the right answer. Intuitively, a
hint represents a piece of information concerning the right answer to some ques-
tion, if this answer depends on certain assumptions. Section three introduces a
generalisation of the hints, namely random variables with values in an informa-
tion algebra: A (simple) random variable is a mapping from a (finite) probability
space whose elements represent uncertain assumptions into an information alge-
bra. Since it is shown that (simple) random variables form themselves an infor-
mation algebra, they are on the hand information, and, due to their relation to
a probability space, they are on the other hand uncertain information. Section
four associates random variables with probability distributions: These probabil-
ity distributions arise from the probabilities of the assumptions supporting the
answers to some question. A degree of support of an answer to some question,
as well as a degree of possibility (or plausibility) of some answer are defined
by means of the random variables. The support and the possibility function ac-
tually represent distribution functions of the random variables and can, in the
case of simple random variables, be defined in terms of basic probability assign-
ments. In the basically last section five, the fact is exploited that uncertain, i.e.
assumption-based, information is also information, i.e. constitutes an informa-
tion algebra of random variables. This fact allows for the definition of an order
between the elements of this information algebra. This order is induced by the
algebra and reflects a comparison of random variables w.r.t. information content
taking into account that this information content is also related to assumptions.
If the information algebra of random variables is Boolean, it can be generalised
in such a way as to admit also of varying probability spaces of assumptions. In
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this latter case, a measure of information content can be introduced in a way
analogous to the one presented in the article Information Algebra provided the
respective Boolean information algebra is atomic. This measure of information
content can be regarded as the reduction of uncertainty by the random variable
w.r.t. full ignorance (where uncertainty is measured by Shannon’s concept of
entropy adapted to the information algebra of random variables). Thereby, a
link to Shannon’s theory of information is established.

The general theme of R. van Rooij’s article Comparing Questions and
Answers: A bit of Logic, a bit of Language, and some bits of Infor-
mation is the informative value of questions and answers and its measurement.
Van Rooij’s contribution is set up in a dialectical way: He begins with a first
definition of this informational value and then points out its limitations. He goes
on giving a second definition which takes into account the crtiticism of the first,
but then he points out the limitations of this second attempt. And so he carries
on presenting a third definition etc. Van Rooij starts (in the second section) by
explaining the meaning of questions as well as the entailment relation between
questions within the framework of Groenendijk and Stokhof’s partition seman-
tics. In the third section, he first discusses Groenendijk and Stokhof’s semantic
comparison of (relevant) answers and questions and then observes that the state
of information of a questioner influences the relevance of questions and answers.
This observation leads to a pragmatic comparison of questions relevant w.r.t. an
information state K as well as a comparison of relevant answers to a question
w.r.t. K. Van Rooij ends this section by pointing out that the qualitative no-
tion of relevance in the pragmatic comparions is too rough, and that the partial
ordering relations between questions and answers should be extended to total
orderings by measuring the informativity and relevance of answers and questions
in a quantitative way. The next fourth section sets out to explain how this could
be achieved. Van Rooij follows the lead of Carnap and Bar-Hillel by defining the
informational value of an answer (a proposition) A, inf(A), as the negative loga-
rithm (base 2) of its probability. As the inf-function is monotone increasing w.r.t.
the entailment relation between propositions, the total ordering relation induced
by the inf-function is exactly an extension of the partial ordering induced by the
entailment relation. He then defines the informational value (or entropy) of a
question in a formally analogous way to Shannon’s definition of the entropy of a
coding system as the average informational value of its answers. This definition
allows likewise to extend the partial ordering on questions mentioned earlier to
a total ordering. Let B be the question (partition) an answer to which provides
total information about the world; B has a certain entropy. Van Rooij now de-
fines the informational value of an answer q to question B as the reduction of
entropy of B upon learning q, and the informational value of question Q w.r.t.
question B as the average reduction of entropy of B upon learning an answer to
Q. As soon as question B is replaced by a mutually exclusive and exhaustive set
of hypotheses H (a partition), the use of Shannon’s conditional entropy becomes
unavoidable. The informational value of question Q w.r.t. question H serves to
define the informational usefulness of Q w.r.t. H , which in turn is important
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when an agent is faced with the decision problem which of the hypotheses to
choose. Something analogous can be done for answers. But then van Rooij points
out the limitations of this approach: the measure of usefulness of questions and
answers w.r.t. a decision problem is reasonable only for those kinds of decision
problem where the decisions depend alone on the probabilities involved. As soon
as desirabilities or utilities influence the actions to be chosen, the approach fol-
lowed up to now is not appropriate any longer. To take into consideration not
only probabilities, but also desirabilities is the approach presented in the fifth
and last section. Suppose an agent has to deal with a decision problem. W.r.t.
assertions (answers), van Rooij distinguishes between the highest expected util-
ity according to the original decision problem and the utility value of making
an informed decision conditional on learning a certain assertion, and defines the
utility value of the assertion by the difference between these two values. The
expected utility value of a question can then be defined in terms of the utility
values of the possible answers. He carries on quoting a theorem according to
which measuring the expected utility value of a question w.r.t. a decision prob-
lem corresponds to the qualitative ‘measurement’ of the resp. question. It might
now be expected that something similar holds w.r.t. assertions. This, however,
is not the case: the utility value of an assertion or answer resp. does not only not
behave monotone increasing w.r.t. the entailment relation between propositions,
it also doesn’t behave monotone increasing w.r.t. the informational value of an
assertion w.r.t. a set of hypotheses. The last subsection’s starting point is the
observation that not only is there in general no connection between the utility
value of an assertion and the informational value of an assertion w.r.t. a set of
hypotheses, there is in general no connection between the expected utility value
of a question and the expected informational value of a question (w.r.t. the most
fine-grained partition) either.

J. Seligman starts in his article Channels: from Logic to Probability
from the assumption that information arises in conditions of uncertainty: uncer-
tainty is reduced by gaining information. Essential for any mathematical model
of information is the representation of a state of uncertainty and the change
of state induced by the acquisiton of a piece of information. Probability theory
provides one such model: Shannon showed how this theory can be used to give
a precise measure of uncertainty and to model the movement of information in
a system of communication channels. Dretske tried to extend Shannon’s model
to an information-based semantics and epistemology, which was developed by
Barwise, Perry and others as ‘situation semantics’ and ‘situation theory’. For-
mal logic provides another such model: Barwise and Seligman worked out an
account of information flow using a more abstract model of channels and based
on formal logic. This account is called the Barwise-Seligman theory. Seligmans
aim is to adapt the Barwise-Seligman theory in order to give a similarly abstract
account of Dretske’s conception of information. The Barwise-Seligman theory of
information and information flow makes use of various structures called ‘classi-
fications’, maps between classifications called ‘infomorphisms’ and combinations
of infomorphisms called ‘channels’. In sect. 1, Seligman presents all these basic
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structures as well as different types of channel related to different fields. If two
classifications combined by two infomorphisms satisfying certain conditions are
probability spaces, the resulting binary channel is called a ‘Shannon channel’;
if the two classifications similarly combined by two infomorphisms are formal
language classifications, the resulting channel is called a ‘Tarski channel’; and
if the tokens of classifications are actual concrete events rather than possible
configurations, the channel constructed from them is called a ‘concrete event
channel’. After a brief review in sect. 2 of Shannon’s definition of information
flow in Shannon channels and Dretske’s information-based account of knowledge
and belief, Seligman points out a structural similarity between information flow
in Shannon channels and information flow in Tarski channels, but he also demon-
strates i) that this similarity cannot be formulated within the Barwise-Seligman
theory in terms of strong information flow: the infinite Shannon channels elude
this attempt (the Strength Problem); and ii) that the model underlying this sim-
ilarity cannot simply be adapted to information flow in concrete event channels
(required for Dretske’s epistemological project)(the Modality and the Context
Problem). To solve the Modality and the Context Problem, Seligman needs on
the one hand a suitable ‘linking relation’ between sets of types in the core of
a concrete event channel to model the regularities on which information flow
depends, and on the other hand a suitable set of ‘normal tokens’ to characterise
the contextual connections between particular events: this linking relation and
this set of normal tokens are used to define the concept of link on that classifica-
tion, and ultimately to define information flow relative to a link. At the level of
types and tokens this means: There is information flow relative to a link if both
components are given: a receiver event type ‘indicates’ a source event type, and
a particular receiver event ‘signals’ a particular source event within a (core of a)
channel C. Sect. 3 serves to determine the value of the link, introduced in the
previous sect. The ultimate philosophical goal is to actually find a definition of
information flow relative to a link determined by any theory whatsoever, while
avoiding the 3 just mentioned problems. Now, a set of pairs of subsets of the
set of types of a formal language classification A satisfying certain conditions
is called a theory or Tarski theory of A. If the classification is of a probability
space P, the resp. theory is called a Dretske theory of P. Seligman then axiomat-
ically characterises the so-called ‘Gentzen theories’ and shows that all Tarski
and all Dretske theories are Gentzen theories, and he succeeds in characterising
the Tarski theories. He subsequently raises the question whether the relationship
between Gentzen, Tarski and Dretske theories is duplicated w.r.t. the links they
determine and he answers it in a negative way: the reason being that a link can
be determined by more than one theory. In sect.s 4 and 5, Seligman sets out to
find a characterisation of the Dretske theories, both axiomatically and situation
semantically. In sect. 4, he characterises the Dretske theories as the theories of
extensional Barwise structures satisfying the principle of No Countable Mystery.
In sect. 5, he discovers a few properties characterising the class of Dretske the-
ories of a probability space P. In the last sect. 6, Seligman calls his analysis of
information flow developed throughout the sections 2-5 the signalling/indicating
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model of information flow, and he compares it to a model presented in his joint
book with J. Barwise (1997), which he calls the logic-movement model of infor-
mation flow. He notes that in this book, information flow is not modelled as a
relation between individual types (or tokens) in the source and receiver, but as
a movement of local logics around a network of classifications, whereby a local
(Tarski) logic is roughly speaking a Tarski theory on a classification A restricted
to a subset (of normal tokens) of the set of tokens of A. Local logics on a classi-
fication represent information about the regularities within it. Seligman finally
observes that movement of local logics yields a more coherent model of informa-
tion flow in concrete event channels than the signalling/indicating model, which
can be seen as a special case.

In his contribution Modeling Real Reasoning K. Devlin sets out to de-
velop a mathematical model for real-life logical reasoning analogous to classical
formal logic as a mathematical model for formal reasoning in pure mathematics.
He starts off by presenting a couple of reasons why such a model cannot con-
sist of an application of classical formal logic or simple modifications thereof.
Next, Devlin treats the topic of information which is related to real-life logical
reasoning (and also to other forms of reasoning) in the following way: reasoning
is a specific and very important form of purposeful information gathering and
information processing. In virtue of the following general observations concern-
ing information, namely that information can arise by virtue of regularities in
the world, and that anything can be used to represent information, two tasks
have to be tackled with: first, provide a precise, representation-free definition
of information, and second, study the nature of the regularities whereby things
in the world represent information. These two tasks have been the main focus
of attention and the main subject of situation theory (or situation-theoretical
information theory). Next, Devlin provides a concise and elegant survey of parts
of situation-theory. In the following section, he uses situation theory to model
real-life logical reasoning. The basic evidential reasoning element in his model
is reminiscent of a proposition in the situation-theoretical sense, and the evi-
dential reasoning process of a proof in the formal logical sense. An evidential
reasoning process is constituted by a certain number of evidential reasoning el-
ements some of which are the result of basic reasoning steps. Devlin presents
and explains several of these basic reasoning steps. By making explicit in the
model the features of the context situation that provide direct support for the
items of information considered in the reasoning, and by accounting for various
aspects of the reasoning process, Devlin’s model clearly goes beyond situation
theory and makes it possible to obtain a finer-grained analysis of a specific rea-
soning process than could be obtained by situation theory. Next, Devlin applies
his situation-theoretic model of real-life logical reasoning to three special cases,
namely to mathematical reasoning, to reasoning from a common source, and to
Bayesian reasoning. In the last section, Devlin motivates on the one hand his
model against the background of situation theory, and on the other he briefly
discusses ways other than understanding and analysing real reasoning processes
that his model could be used for.
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In his article One or Many Concepts of Information? G. Sommaruga
carries on the conceptual work already carried out by L. Floridi, but at the same
time trying to take stock of the articles on the various formal theories of informa-
tion. In his first section, he introduces the distinction between ordinary language
concepts, informal theoretical concepts and formal theoretical concepts and he
applies this distinction to the concept of information and to the title question
in particular. The second section consists of applying the conceptual apparatus
developed in the first part to the formal theories of information. This application
leads up to an information-theoretical analogue (T) to Church’s Thesis (CT).
The remainder of section two is devoted to a philosophical reflection on (T) and
to an attempt to provide evidence for (T). The third and last section draws a
few conclusions from the previous conceptual analyses and considerations: The
most appropriate point of view w.r.t. the title question may very well be a cen-
tralized (but not a reductionist) one, and adopting such a point of view may
also provide some directions for future work on formal theories of information.
As I vaguely recall having read in one of Donald Davidson’s articles: It’s good
to know that we won’t run out of work.
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Philosophical Conceptions of Information
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1 Introduction

I love information upon all subjects that come in my way, and espe-
cially upon those that are most important.

Thus boldly declares Euphranor, one of the defenders of Christian faith in
Berkley’s Alciphron (Berkeley, (1732), Dialogue 1, Section 5, Paragraph 6/10).
Evidently, information has been an object of philosophical desire for some time,
well before the computer revolution, Internet or the dot.com pandemonium (see
for example Dunn (2001) and Adams (2003)). Yet what does Euphranor love,
exactly? What is information? The question has received many answers in dif-
ferent fields. Unsurprisingly, several surveys do not even converge on a single,
unified definition of information (see for example Braman 1989, Losee (1997),
Machlup and Mansfield (1983), Debons and Cameron (1975), Larson and Debons
(1983)).

Information is notoriously a polymorphic phenomenon and a polysemantic
concept so, as an explicandum, it can be associated with several explanations,
depending on the level of abstraction adopted and the cluster of requirements
and desiderata orientating a theory. The reader may wish to keep this in mind
while reading this article, where some schematic simplifications and interpreta-
tive decisions will be inevitable. Claude E. Shannon, for one, was very cautious:

The word ‘information’ has been given different meanings by various
writers in the general field of information theory. It is likely that at least
a number of these will prove sufficiently useful in certain applications
to deserve further study and permanent recognition. It is hardly to be
expected that a single concept of information would satisfactorily account
for the numerous possible applications of this general field. (italics added)
(Shannon (1993), p. 180).

Thus, following Shannon, Weaver (1949) supported a tripartite analysis of
information in terms of (1) technical problems concerning the quantification of
information and dealt with by Shannon’s theory; (2) semantic problems relating
to meaning and truth; and (3) what he called “influential” problems concern-
ing the impact and effectiveness of information on human behaviour, which he
thought had to play an equally important role. And these are only two early
examples of the problems raised by any analysis of information.

G. Sommaruga (Ed.): Formal Theories of Information, LNCS 5363, pp. 13–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Indeed, the plethora of different analyses can be confusing. Complaints about
misunderstandings and misuses of the very idea of information are frequently
expressed, even if to no apparent avail. Sayre (1976), for example, criticised the
“laxity in use of the term ‘information”’ in Armstrong (1968) (see now Armstrong
(1993)) and in Dennett (1969) (see now Dennett (1986), despite appreciating
several other aspects of their work. More recently, Harms (1998) pointed out
similar confusions in Chalmers (1996), who

seems to think that the information theoretic notion of information
[see section 3, my addition] is a matter of what possible states there are,
and how they are related or structured ... rather than of how probabilities
are distributed among them (p. 480).

In order to try to avoid similar pitfalls, this article has been organised into
three main parts.

Section two attempts to draw a map of the main senses in which one may speak
of semantic information, and does so by relying on the analysis of the concept
of data (Fig. 1). Sometimes the several concepts of information organised in the
map can be variously coupled together. This should not be taken as necessarily a
sign of confusion, for in some philosophers it may be the result of an intentional
bridging. The map is not exhaustive and it is there mainly in order to avoid some
obvious pitfalls and to narrow the scope of this article, which otherwise could
easily turn into a short version of the Encyclopedia Britannica. Its schematism
is only a starting point for further research.

After this initial orientation, section three provides a brief introduction to in-
formation theory, that is, to the mathematical theory of communication (MTC).
MTC deserves a space of its own because it is the quantitative approach to the
analysis of information that has been most influential among several philoso-
phers. It provides the necessary background to understand several contempo-
rary theories of semantic information, especially Bar-Hillel and Carnap (1953),
Dretske (1981) and Floridi (2004b)).

Section four focuses entirely on the philosophical understanding of semantic
information, what Euphranor really loves.

The reader must also be warned that an initial account of semantic informa-
tion as meaningful data will be used as yardstick to outline other approaches.
Unfortunately, even such a minimalist account is open to disagreement. In favour
of this approach one may say that at least it is less controversial than others. Of
course, a conceptual analysis must start somewhere. This often means adopting
some working definition of the object under scrutiny. But it is not this com-
monplace that one needs to emphasize here. The difficulty is rather more daunt-
ing. Philosophical work on the concept of (semantic) information is still at that
lamentable stage when disagreement affects even the way in which the problems
themselves are provisionally phrased and framed. Nothing comparable to the
well-polished nature of the Gettier problem is yet available, for example. So the
“you are here” signal provided in this article might be placed elsewhere by other
philosophers. The whole purpose is to put the concept of semantic information
firmly on the philosophical map. Further adjustments will then become possible.
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2 An Informational Map

Information is a conceptual labyrinth, and in this section we shall begin to have a
look at a general map of one of its regions, with the purpose of placing ourselves
squarely in the semantic area. Fig. 1 summarises the main distinctions that are
going to be introduced.

Fig. 1. An informational map

Clearly, percolating through the various points in the map will not make for a
linear journey. Using a few basic examples, to illustrate the less oblivious steps,
will also help to keep our orientation. So let me introduce immediately the one
to which we shall return more often.

2.1 An Everyday Example of Information

Monday morning. You turn on the ignition key of your car, but nothing hap-
pens: the engine does not even cough. The silence of the engine worries you.
Unsurprisingly, you also notice that the red light of the low battery indicator
is flashing. After a few more attempts, you give up and ring the garage. You
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explain that your husband forgot to switch off the lights of the car last night it
is a lie, you did, but you are too ashamed to confess it and now the battery is
flat. The mechanic tells you that the instruction manual of your car explains how
to use jump leads to start the engine. Luckily, your neighbour has everything
you need. You read the manual, look at the illustrations, follow the instructions,
solve the problem and finally drive to the office.

This everyday episode will be our “fruit fly”. Although it is simple and intu-
itive, it provides enough details to illustrate the many ways in which we under-
stand one of our most important resources: information.

2.2 The Data-Based Definition of Information

It is common to think of information as consisting of data. It certainly helps,
if only to a limited extent. For, unfortunately, the nature of data is not well-
understood philosophically either, despite the fact that some important past
debates - such as the one on the given and the one on sense data - have provided
at least some initial insights. There still remains the advantage, however, that
the concept of data is less rich, obscure and slippery than that of information,
and hence easier to handle. So a data-based definition of information seems to
be a good starting point.

Over the last three decades, several analyses in Information Science, in Infor-
mation Systems Theory, Methodology, Analysis and Design, in Information (Sys-
tems) Management, in Database Design and in Decision Theory have adopted
a General Definition of Information (GDI) in terms of data + meaning (see
Floridi 2005b) for an extended bibliography). GDI has become an operational
standard, especially in fields that treat data and information as reified entities
(consider, for example, the now common expressions “data mining” and “infor-
mation management”). Recently, GDI has begun to influence the philosophy of
computing and information (Floridi (1999) and Mingers (1997)).

A clear way of formulating GDI is as a tripartite defintion (Fig. 2):

Fig. 2. The General Definition of Information (GDI)

GDI requires a definition of data. This will be provided in the next section.
Before, a brief comment on each clause is in order.

According to (GDI.1), data are the stuff of which information is made. We
shall see that things can soon get more complicated.

In (GDI.2), “well-formed” means that the data are clustered together
correctly, according to the rules (syntax ) that govern the chosen system, code or
language being analysed. Syntax here must be understood broadly (not just lin-
guistically), as what determines the form, construction, composition or
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Fig. 3. How to jump start your car c©Copyright Bosh 2005

structuring of something (engineers, film directors, painters, chess players and
gardeners speak of syntax in this broad sense). For example, the manual of your
car may show (see Fig. 3) a two dimensional picture of the two cars placed one
near the other, not one on top of the other.

This pictorial syntax (including the linear perspective that represents space by
converging parallel lines) makes the illustrations potentially meaningful to the
user. Using the same example, the actual battery needs to be connected to the
engine in a correct way to function: this is still syntax, in terms of correct physical
architecture of the system (thus a disconnected battery is a syntactic problem).
And of course the conversation you carry on with your neighbour follows the gram-
matical rules of English: this is syntax in the ordinary linguistic sense.

Regarding (GDI.3), this is where semantics finally occurs. “Meaningful” means
that the data must comply with the meanings (semantics) of the chosen system,
code or language in question. However, let us not forget that semantic information
is not necessarily linguistic. For example, in the case of the manual of the car, the
illustrations are such as to be visually meaningful to the reader.

2.3 A Definition of Data

According to GDI, information cannot be dataless but, in the simplest case, it
can consist of a single datum (d). Now a datum is reducible to just a lack of
uniformity (diaphora is the Greek word for “difference), so a general definition
of a datum is (Fig. 4):

Depending on philosophical inclinations, the diaphoric definition of data can
be applied at three levels:

1. data as diaphora de re, that is, as lacks of uniformity in the real world out
there. There is no specific name for such “data in the wild”. A possible sug-
gestion is to refer to them as dedomena (“data” in Greek; note that our word
“data comes from the Latin translation of a work by Euclid entitled Dedom-
ena). Dedomena are not to be confused with environmental data (see section
2.7.1). They are pure data or proto-epistemic data, that is, data before they
are epistemically interpreted. As “fractures in the fabric of being” they can
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Fig. 4. The diaphoric definition of data

only be posited as an external anchor of our information, for dedomena are
never accessed or elaborated independently of a level of abstraction (more
on this in section 4.2.2). They can be reconstructed as ontological require-
ments, like Kant’s noumena or Locke’s substance: they are not epistemically
experienced but their presence is empirically inferred from (and required
by) experience. Of course, no example can be provided, but dedomena are
whatever lack of uniformity in the world is the source of (what looks to
information systems like us as) as data, e.g. a red light against a dark back-
ground. Note that the point here is not to argue for the existence of such
pure data in the wild, but to provide a distinction that (in section 2.6) will
help to clarify why some philosophers have been able to accept the thesis
that there can be no information without data representation while rejecting
the thesis that information requires physical implementation;

2. data as diaphora de signo, that is, lacks of uniformity between (the percep-
tion of) at least two physical states, such as a higher or lower charge in a
battery, a variable electrical signal in a telephone conversation, or the dot
and the line in the Morse alphabet; and

3. data as diaphora de dicto, that is, lacks of uniformity between two symbols,
for example the letters A and B in the Latin alphabet.

Depending on one’s position with respect to the thesis of ontological neu-
trality (section 2.6) and the nature of environmental information (section 2.7.1)
dedomena in (1) may be either identical with, or what makes possible signals in
(2), and signals in (2) are what make possible the coding of symbols in (3).

The dependence of information on the occurrence of syntactically well-formed
data, and of data on the occurrence of differences variously implementable phys-
ically, explain why information can so easily be decoupled from its support. The
actual format, medium and language in which semantic information is encoded
is often irrelevant and hence disregardable. In particular, the same semantic in-
formation may be analog or digital, printed on paper or viewed on a screen, in
English or in some other language, expressed in words or pictures. Interpreta-
tions of this support-independence can vary quite radically. For Dd (see Fig. 4
above) leaves underdetermined

– the classification of the relata (taxonomic neutrality);
– the logical type to which the relata belong (typological neutrality);
– the kind of support required for the implementation of their inequality (on-

tological neutrality); and
– the dependence of their semantics on a producer (genetic neutrality).

We shall now look at each form of neutrality in turn.
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2.4 Taxonomic Neutrality

A datum is usually classified as the entity exhibiting the anomaly, often be-
cause the latter is perceptually more conspicuous or less redundant than the
background conditions. However, the relation of inequality is binary and sym-
metric. A white sheet of paper is not just the necessary background condition
for the occurrence of a black dot as a datum, it is a constitutive part of the
[black-dot-on-white-sheet] datum itself, together with the fundamental relation
of inequality that couples it with the dot. Nothing seems to be a datum per se.
Rather, being a datum is an external property. So GDI endorses the following
thesis:

TaN) a datum is a relational entity.
The slogan is “data are relata”, but GDI is neutral with respect to the identifi-
cation of data with specific relata. In our example, GDI refrains from identifying
either the red light or the white background as the datum. To understand why
there cannot be “dataless information”, we shall now look at the typological
neutrality of GDI.

2.5 Typological Neutrality

According to GDI, information can consist of different types of data as relata
(δ). Five classifications are quite common, although the terminology is not yet
standard or fixed (but see Floridi (1999)). They are not mutually exclusive, and
one should not understand them as rigid: depending on circumstances, on the
sort of analysis conducted and on the level of abstraction adopted, the same
data may fit different classifications.

δ1 Primary data. These are the principal data stored e.g. in a database, for
example a simple array of numbers. They are the data an information-
management system such as the one used in the car to indicate that the
battery needs to be charged is generally designed to convey (in the form of
information) to the user in the first place. Normally, when speaking of data,
and of the corresponding information they constitute, one implicitly assumes
that primary data/information is what is in question. So, by default, the red
light of the low battery indicator flashing is assumed to be an instance of
primary data conveying primary information.

δ2 Secondary data. These are the converse of primary data, constituted by their
absence (one could call them anti-data). Recall how you first suspected that
the battery was flat: the engine failed to make any of the usual noise. Like-
wise, in Silver Blaze, Sherlock Holmes solves the case by noting something
that has escaped everybody else: the unusual silence of the dog. Clearly,
silence may be very informative. This is a peculiarity of information: its ab-
sence may also be informative. When it is, the point is stressed by speaking
of secondary information.

δ3 Metadata. These are indications about the nature of some other (usually
primary) data. They describe properties such as location, format, updating,
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availability, usage restrictions, and so forth. Correspondingly, metainforma-
tion is information about the nature of information. “’The battery is flat’ is
encoded in English” is a simple example.

δ4 Operational data. These are data regarding the operations of the whole data
system and the systems performance. Correspondingly, operational informa-
tion is information about the dynamics of an information system. Suppose
the car has a yellow light that, when flashing, indicates that the car check-
ing system is malfunctioning. The fact that the light is on may indicate
that the low battery indicator is not working properly, thus undermining
the hypothesis that the battery is flat.

δ5 Derivative data. These are data that can be extracted from some data when-
ever the latter are used as indirect sources in search of patterns, clues or
inferential evidence about other things than those directly addressed by the
data themselves, e.g. for comparative and quantitative analyses (ideome-
try). As it is difficult to define this category precisely, a familiar example
may be helpful to convey the point. Credit cards notoriously leave a trail of
derivative information. From someones credit card bill, concerning e.g. the
purchase of petrol in a certain petrol station, one may derive the informa-
tion of her whereabouts at a given time. Again, derivative information is not
something new. Hume provides a beautiful example in these days of global
warming. In the Essays oral, Political, and Literary (Part II, Essay 11. Of
the Populousness of Ancient Nations, Para. 155/186 mp. 448 gp. 432, see
now Hume (1987)) he reports that

It is an observation of LAbbe du Bos, that Italy is warmer at
present than it was in ancient times. The annals of Rome tell us,
says he, that in the year 480 ab U.C. the winter was so severe that
it destroyed the trees. [. . . ] Many passages of Horace suppose the
streets of Rome full of snow and ice. We should have more certainty
with regard to this point, had the ancients known the use of ther-
mometers: But their writers, without intending it, give us informa-
tion, sufficient to convince us, that the winters are now much more
temperate at Rome than formerly.

Hume has just extracted some derivative information from some primary
information provided by LAbbe du Bos.

Let us now return to our question: can there be dataless information? GDI
does not specify which types of data constitute information. This typological
neutrality is justified by the fact that, when the apparent absence of data is not
reducible to the occurrence of negative primary data, what becomes available
and qualifies as information is some further non-primary information μ about σ
constituted by some non-primary data δ.2-δ.5. For example, if a database query
provides an answer, it will provide at least a negative answer, e.g. “no documents
found”. This is primary negative information. However, if the database provides
no answer, either it fails to provide any data at all, in which case no specific
information σ is available so the rule “no information without data” still applies
or it can provide some data δ to establish, for example, that it is running in a
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loop. Likewise, silence, this time as a reply to a question, could represent negative
primary information, e.g. as implicit assent or denial, or it could carry some non-
primary information μ, e.g. about the fact that the person has not heard the
question, or about the amount of noise in the room.

2.6 Ontological Neutrality

By rejecting the possibility of dataless information, GDI also endorses the fol-
lowing modest thesis of ontological neutrality:

ON) no information without data representation.
Following Landauer and Bennett (1985, and Landauer (1987), (1991), (1996),
ON is often interpreted materialistically, as advocating the impossibility of phys-
ically disembodied information, through the equation “representation = physical
implementation”, that is:

ON.1) no information without physical implementation.
ON.1 is an inevitable assumption, when working on the physics of computation,
since computer science must necessarily take into account the physical proper-
ties and limits of the data carriers. Thus, the debate on ON.1 has flourished
especially in the context of the philosophy of quantum information and com-
puting (see Deutsch (1985);(1997) and Di Vincenzo and Loss (1998); Steane
(1998) provides a review). ON.1 is also the ontological assumption behind the
Physical Symbol System Hypothesis in AI and Cognitive Science (Newell and
Simon (1976). But ON, and hence GDI, does not specify whether, ultimately,
the occurrence of every discrete state necessarily requires a material implemen-
tation of the data representations. Arguably, environments in which all entities,
properties and processes are ultimately noetic (e.g. Berkeley, Spinoza), or in
which the material or extended universe has a noetic or non-extended matrix
as its ontological foundation (e.g. Pythagoras, Plato, Descartes, Leibniz, Fichte,
Hegel), seem perfectly capable of upholding ON without necessarily embracing
ON.1. The relata in Dd could be dedomena, such as Leibnizian monads, for ex-
ample. Indeed, the classic realism debate on the ultimate nature of “being” can
be reconstructed in terms of the possible interpretations of ON.

All this explains why GDI is also consistent with two other popular slogans,
this time favourable to the proto-physical nature of information and hence com-
pletely antithetic to ON.1:

ON.2) “It from bit”. Otherwise put, every “it” every particle, every field
of force, even the space-time continuum itself derives its function,
its meaning, its very existence (even if in some contexts indirectly)
from the apparatus-elicited answers to yes-or-no questions, binary
choices, bits. “It from bit” symbolizes the idea that every item of
the physical world has at bottom a very deep bottom, in most
instances an immaterial source and explanation; that which we call
reality arises in the last analysis from the posing of yes-no questions
and the registering of equipment-evoked responses; in short, that all
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things physical are information-theoretic in origin and that this is a
participatory universe (Wheeler (1990), 5);

ON.3) [information is] a name for the content of what is exchanged with
the outer world as we adjust to it, and make our adjustment felt
upon it. (Wiener (1954), 17).

Information is information, not matter or energy. No materialism
which does not admit this can survive at the present day (Wiener
(1961, 132).

ON.2 endorses an information-theoretic, metaphysical monism: the universe’s
essential nature is digital, being fundamentally composed of information as
data/dedomena instead of matter or energy, with material objects as a com-
plex secondary manifestation (a similar position has been defended more re-
cently in physics by Frieden (1998), whose work is based on a loosely Platonist
perspective). ON.2 may but does not have to endorse a computational view of
information processes. ON.3 advocates a more pluralistic approach along similar
lines. Both are compatible with GDI.

A final comment concerning GDI.3 can be introduced by discussing a fourth
slogan:

ON.4) In fact, what we mean by information - the elementary unit of in-
formation - is a difference which makes a difference. (Bateson (1973),
428).

ON.4 is one of the earliest and most popular formulations of GDI (see for example
Franklin (1995), 34 and Chalmers (1996 ), 281). The formulation in Mackay
(1969) - that is ”information is a distinction that makes a difference” - predates
Batesons but it is slightly different from it in that, by speaking of “distinction”
instead of “difference”, it has an epistemological rather than an ontological twist.
A “difference” (a “distinction”) is just a discrete state, namely a datum, and
“making a difference” simply means that the datum is “meaningful”, at least
potentially.

2.7 Genetic Neutrality

Finally, let us consider the semantic nature of the data. How data can come
to have an assigned meaning and function in a semiotic system in the first
place is one of the hardest problems in semantics. Luckily, the point in question
here is not how but whether data constituting information as semantic content
can be meaningful independently of an informee. The genetic neutrality (GeN)
supported by GDI states that:

GeN) δ can have a semantics independently of any informee.
Before the discovery of the Rosetta Stone, Egyptian hieroglyphics were already
regarded as information, even if their semantics was beyond the comprehension
of any interpreter. The discovery of an interface between Greek and Egyptian
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did not affect the semantics of the hieroglyphics but only its accessibility. This
is the weak, conditional-counterfactual sense in which GDI.3 speaks of meaning-
ful data being embedded in information-carriers informee-independently. GeN
supports the possibility of information without an informed subject, to adapt a
Popperian phrase. Meaning is not (at least not only) in the mind of the user.
GeN is to be distinguished from the stronger, realist thesis, supported for ex-
ample by Dretske (1981), according to which data could also have their own
semantics independently of an intelligent producer/informer. This is also known
as environmental information, a concept sufficiently important to deserve a brief
presentation before we close this first part.

Environmental information. One of the most often cited example of envi-
ronmental information is the series of concentric rings visible in the wood of
a cut tree trunk, which may be used to estimate its age. Yet “environmental”
information does not need to be natural. Going back to our example, when you
turned the ignition key, the red light of the low battery indicator flashed. This
signal too can be interpreted as an instance of environmental information.

Environmental information is defined relative to an observer (an information
agent), who is supposed to have no direct access to pure data in themselves. It
requires two systems a and b to be coupled in such a way that a’s being (of type,
or in state) F is correlated to b being (of type, or in state) G, thus carrying for
the observer the information that b is G (this analysis is adapted from Barwise
and Seligman (1997), who improve on a similar account by Dretske (1981)).

Fig. 5. Environmental information

The correlation in Fig. 5 is usually nomic (it follows some law). It may be
engineered as in the case of the low battery indicator (a) whose flashing (F ) is
triggered by, and hence it is informative about, the battery (b) being flat (G).
Or it may be natural, as when litmus - a natural colouring matter from lichens
- is used as an acid-alkali indicator because it turns red in acid solutions and
blue in alkaline solutions. Other typical examples include the correlation between
fingerprints and personal identification.

One may be so used to see the low battery indicator flashing as carrying the
information that the battery is flat to find it hard to distinguish, with sufficient
clarity, between environmental and semantic information. However, it is impor-
tant to stress that environmental information may require or involve no semantics
at all. It may consist of (networks or patterns of) correlated data understood as
mere differences or constraining affordances. Plants (e.g., a sunflower), animals
(e.g., an amoeba) and mechanisms (e.g., a photocell) are certainly capable of
making practical use of environmental information even in the absence of any
(semantic processing of) meaningful data.
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2.8 Summary of the First Part

To summarise, GDI defines information, broadly understood, as syntactically
well-formed and meaningful data. Its four types of neutrality (TyN, TaN, ON
and GeN) represent an obvious advantage, as they make GDI perfectly scalable
to more complex cases and reasonably flexible in terms of applicability and
compatibility. Indeed, philosophers have variously interpreted and tuned these
four neutralities according to their theoretical needs.

Our next step is to check whether GDI is satisfactory when discussing the
most important type of semantic information, namely factual information. Before
addressing this issue, however, we need to pause and look at the mathematical
theory of communication (MTC).

MTC is not the only successful mathematical approach to the concept of
information. Fisher information (Frieden (1998) and the algorithmic information
theory (Chaitin (1987)) provide two other important examples. However, MTC
is certainly the most widely known among philosophers. As such, it has had a
profound impact on philosophical analyses of semantic information, to which it
has provided both the technical vocabulary and at least the initial conceptual
frame of reference. One needs to grasp its main gist if one wishes to make sense
of the issuing philosophical debate.

3 Information as Data Communication

Some features of information are intuitive. We are used to information being
encoded, transmitted and stored. One also expects it to be additive (information
a + information b = information a + b) and non-negative, like other things
in life, such as probabilities and interest rates. If you ask a question, the worst
scenario is that you receive no answer or a wrong answer, which will leave you
with zero new information.

Similar properties of information are quantifiable. They are investigated by
the mathematical theory of communication (MTC) with the primary aim of
devising efficient ways of encoding and transferring data.

The name for this branch of probability theory comes from Shannon’s seminal
work (Shannon and Weaver (1949 )). Shannon pioneered this field and obtained
many of its principal results, but he acknowledged the importance of previous
work done by other researchers and colleagues at Bell laboratories, most notably
Nyquist and Hartley (see Cherry (1978) and Mabon (1975)). After Shannon,
MTC became known as information theory, an appealing but unfortunate label,
which continues to cause endless misunderstandings. Shannon came to regret its
widespread popularity, and we shall avoid using it in this context.

This second part of the article outlines some of the key ideas behind MTC,
with the aim of understanding the relation between MTC and some philosophi-
cal theories of semantic information. The reader with no taste for mathematical
formulae may wish to go directly to section 3.2, where some conceptual implica-
tions of MTC are outlined. The reader interested in knowing more may start by
reading Weaver (1949), Pierce (1980), Shannon and Weaver (1949), then Jones
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(1979), and finally Cover and Thomas (1991). The latter two are technical texts.
Floridi (2003a) provides a simplified analysis oriented to philosophy students.

3.1 The Mathematical Theory of Communication

MTC has its origin in the field of electrical engineering, as the study of commu-
nication limits. It develops a quantitative approach to information as a means to
answer two fundamental problems: the ultimate level of data compression (how
small can a message be, given the same amount of information to be encoded?)
and the ultimate rate of data transmission (how fast can data be transmitted
over a channel?). The two solutions are the entropy H in equation [9] (see below)
and the channel capacity C. The rest of this section illustrates how to get from
the problems to the solutions.

To have an intuitive sense of the approach, let us return to our example. Recall
the telephone conversation with the mechanic. In Fig. 6, the wife is the informer,
the mechanic is the informee, “the battery is flat” is the (semantic) message (the
informant), there is a coding and decoding procedure through a natural language
(English), a channel of communication (the telephone system) and some possible
noise. Informer and informee share the same background knowledge about the
collection of usable symbols (technically known as the alphabet ; in the example
this is English).

MTC is concerned with the efficient use of the resources indicated in
Fig. 6. Now, the conversation with the mechanic is fairly realistic and hence

Fig. 6. Communication model (adapted from Shannon and Weaver [1949 rep. 1998])
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more difficult to model than a simplified case. We shall return to it later but,
in order to introduce MTC, imagine instead a very boring device that can pro-
duce only one symbol. Edgar Alan Poe wrote a short story in which a raven can
answer only “nevermore” to any question. Poe’s raven is called a unary device.
Imagine you ring the garage and your call is answered by Poe’s raven. Even at
this elementary level, Shannons simple model of communication still applies. It
is obvious that the raven (a unary device) produces zero amount of information.
Simplifying, we already know the outcome of the communication exchange, so
our ignorance (expressed by our question) cannot be decreased. Whatever the
informational state of the system is, asking appropriate questions (e.g. “will I
be able to make the car start?”, “can you come to fix the car?”) of the raven
does not make any difference. Note that, interestingly enough, this is the ba-
sis of Platos famous argument in the Phaedrus against the value of semantic
information provided by written texts:

[Socrates]: Writing, Phaedrus, has this strange quality, and is very
like painting; for the creatures of painting stand like living beings, but if
one asks them a question, they preserve a solemn silence. And so it is with
written words; you might think they spoke as if they had intelligence,
but if you question them, wishing to know about their sayings, they
always say only one and the same thing [they are unary devices, in our
terminology]. And every word, when [275e] once it is written, is bandied
about, alike among those who understand and those who have no interest
in it, and it knows not to whom to speak or not to speak; when ill-treated
or unjustly reviled it always needs its father to help it; for it has no power
to protect or help itself.

As Plato well realises a unary source answers every question all the time with
only one message, not with silence or message, since silence counts as a message,
as we saw in 2.5, when discussing the nature of secondary information. It follows
that a completely silent source also qualifies as a unary source. And if silencing
a source (censorship) may be a nasty way of making a source uninformative, it
is well known that crying wolf is a classic case in which an informative source
degrades to the role of uninformative unary device.

Consider now a binary device that can produce two symbols, like a fair coin
A with its two equiprobable symbols {h, t}; or, as Matthew 5:37 suggests, “Let
your communication be Yea, yea; Nay, nay: for whatsoever is more than these
cometh of evil”. Before the coin is tossed, the informee (for example a computer)
is in a state of data deficit greater than zero: the informee does not “know”
which symbol the device will actually produce. Shannon used the technical term
“uncertainty” to refer to data deficit. In a non-mathematical context this can be
a very misleading term because of the strong epistemological connotations of this
term. Remember that the informee can be a simple machine, and psychological,
mental or doxastic states are clearly irrelevant.

Once the coin has been tossed, the system produces an amount of information
that is a function of the possible outputs, in this case 2 equiprobable symbols,
and equal to the data deficit that it removes.
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Let us now build a slightly more complex system, made of two fair coins A and
B. The AB system can produce 4 ordered outputs: 〈h, h〉 , 〈h, t〉 , 〈t, h〉 , 〈t, t〉 It
generates a data deficit of 4 units, each couple counting as a symbol in the source
alphabet. In the AB system, the occurrence of each symbol 〈−,−〉 removes a
higher data deficit than the occurrence of a symbol in the A system. In other
words, each symbol provides more information. Adding an extra coin would
produce a 8 units of data deficit, further increasing the amount of information
carried by each symbol in the ABC system, and so on.

We are now ready to generalise the examples. Call the number of possible
symbols N. For N = 1, the amount of information produced by a unary device
is 0. For N = 2, by producing an equiprobable symbol, the device delivers 1 unit
of information. And for N = 4, by producing an equiprobable symbol the device
delivers the sum of the amount of information provided by a device producing
one of two equiprobable symbols (coin A in the example above) plus the amount
of information provided by another device producing one of two equiprobable
symbols (coin B), that is, 2 units of information, although the total number of
symbols is obtained by multiplying As symbols by Bs symbols. Now, our informa-
tion measure should be a continuous and monotonic function of the probability
of the symbols. The most efficient way of satisfying these requirements is by
using the logarithm to the base 2 of the number of possible symbols (the loga-
rithm to the base 2 of a number n is the power to which 2 must be raised to give
the number n, for example log2 = 3, since 23 = 8). Logarithms have the useful
property of turning multiplication of symbols into addition of information units.
By taking the logarithm to the base 2 (henceforth log simply means log2) we
have the further advantage of expressing the units in bits. The base is partly a
matter of convention, like using centimetres instead of inches, partly a matter of
convenience, since it is useful when dealing with digital devices that use binary
codes to represent data.

Given an alphabet of N equiprobable symbols, we can now rephrase some
examples more precisely (Fig. 7) by using equation [1]:

average informativeness per symbol (or “uncertainty”)

= log2(N)bits of information per symbol (1)

The basic idea is all in equation [1]. Information can be quantified in terms of
decrease in data deficit (Shannon’s “uncertainty”). Unfortunately, real coins are
always biased. To calculate how much information they produce one must rely on
the frequency of the occurrences of symbols in a finite series of tosses, or on their
probabilities, if the tosses are supposed to go on indefinitely. Compared to a fair
coin, a slightly biased coin must produce less than 1 bit of information, but still
more than 0. The raven produced no information at all because the occurrence of
a string S of “nevermore” was not informative (not surprising, to use Shannon’s
more intuitive, but psychologistic vocabulary), and that is because the probability
of the occurrence of “nevermore” was maximum, so overly predictable. Likewise,
the amount of information produced by the biased coin depends on the average
informativeness (also known as average surprisal, another unfortunate term to
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Fig. 7. Examples of communication devices and their information power

refer to the average statistical rarity) of the string S of h and t produced by
the coin. The average informativeness of the resulting string S depends on the
probability of the occurrence of each symbol. The higher the frequency of a
symbol in S, the less information is being produced by the coin, up to the point
when the coin is so biased to produce always the same symbol and stops being
informative at all, behaving like the raven or the boy who cries wolf.

So, to calculate the average informativeness of S we need to know how to
calculate S and the informativeness of the ith symbol in general. This requires
understanding what the probability of the ith symbol (Pi) to occur is.

The probability Pi of the ith symbol can be “extracted” from equation [1],
where it is embedded in log(N), a special case in which the symbols are equiprob-
able. Using some elementary properties of the logarithmic function, we have:

log (N) = −log
(
N−1

)
= −log

(
1
N

)
= −log (P ) (2)

The value of 1
N = P can range from 0 to 1. If Poe’s raven is our source, the

probability of it saying “good morning” is 0. In the case of the coin, P (h)+P (t) =
1, no matter how biased the coin is. Probability is like a cake that gets sliced more
and more thinly depending on the number of guests, but never grows beyond its
original size and, in the worst case scenario, can at most be equal to zero, but
never become “negative”. More formally, this means:

N∑

i=1

Pi = 1 (3)

The sigma notation in [3] is simply a shortcut that indicates that if we add
all probabilities values from i = 1 to i = N their sum is equal to 1.

We can now be precise about the raven: “nevermore” is not informative at
all because Pnevermore = 1. Clearly, the lower the probability of occurrence
of a symbol, the higher is the informativeness of its actual occurrence. The
informativeness u of the ith symbol can be expressed by analogy with −log (P )
in equation [2]:



Philosophical Conceptions of Information 29

ui = −log (Pi) (4)

Next, we need to calculate the length of a general string S. Suppose that the
biased coin, tossed 10 times, produces the string: 〈h, h, t, h, h, t, t, h, h, t〉. The
(length of the) string S (in our case equal to 10) is equal to the number of times
the h type of symbol occurs added to the numbers of times the t type of symbol
occurs.

Generalising for i types of symbols:

S =
N∑

i=1

Si (5)

Putting together equations [4] and [5] we see that the average informativeness
for a string of S symbols is the sum of the informativeness of each symbol divided
by the sum of all symbols: ∑N

i=1 Siui
∑N

i=1 Si

(6)

Term [6] can be simplified thus:

N∑

i=1

S

Si
ui (7)

Now
Si
S is the frequency with which the ith symbol occurs in S when S is

finite. If the length of S is left undetermined (as long as one wishes), then the
frequency of the ith symbol becomes its probability Pi. So, further generalising
term [7], we have:

N∑

i=1

Piui (8)

Finally, by using equation [4] we can substitute for ui and obtain

H = −
N∑

i=1

PilogPi (bits per symbol) (9)

Equation [9] is Shannon’s formula for H = uncertainty, which we have called
data deficit (actually, Shannon’s original formula includes a positive constant K
which amounts to a choice of a unit of measure, bits in our case; apparently,
Shannon used the letter H because of R.V.L. Hartley’s previous work).

Equation [9] indicates that the quantity of information produced by a device
corresponds to the amount of data deficit erased. It is a function of the average
informativeness of the (potentially unlimited) string of symbols produced by the
device. It is easy to prove that, if symbols are equiprobable, [9] reduces to [1] and
that the highest quantity of information is produced by a system whose symbols
are equiprobable (compare the fair coin to the biased one).
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To arrive at [9] we have used some very simple examples: a raven and a hand-
ful of coins. Things in life are far more complex, witness our Monday morning
accident. For example, we have assumed that the strings of symbols are ergodic:
the probability distribution for the occurrences of each symbol is assumed to be
stable through time and independently of the selection of a certain string. Our
raven and coins are discrete and zero-memory sources. The successive symbols
they produce are statistically independent. But in real life occurrences of sym-
bols are often interdependent. Sources can be non-ergodic and have a memory.
Symbols can be continuous, and the occurrence of one symbol may depend upon
a finite number n of preceding symbols, in which case the string is known as
a Markov chain and the source an n-th order Markov source. Consider for ex-
ample the probability of hearing “n” (followed by the string “ing”) after having
received the string of letters “Good mor-” over the phone, when you called the
garage. And consider the same example through time, in the case of a child (the
son of the mechanic) who is learning how to answer the phone instead of his
father. In brief, MTC develops the previous analysis to cover a whole variety
of more complex cases. We shall stop here, however, because in the rest of this
section we need to concentrate on other central aspects of MTC.

The quantitative approach just sketched plays a fundamental role in coding
theory (hence in cryptography) and in data storage and transmission techniques.
MTC is primarily a study of the properties of a channel of communication and
of codes that can efficiently encipher data into recordable and transmittable sig-
nals. Since data can be distributed either in terms of here/there or now/then,
diachronic communication and synchronic analysis of a memory can be based on
the same principles and concepts (our coin becomes a bistable circuit or flip-flop,
for example). Two concepts that play a pivotal role both in communication anal-
ysis and in memory management are so important to deserve a brief explanation:
redundancy and noise.

Consider our AB system. Each symbol occurs with 0.25 probability. A simple
way of encoding its symbols is to associate each of them with twodigits, as in Fig. 8:

Fig. 8. Code 1

Call this Code 1. In Code 1 a message conveys 2 bits of information, as
expected. Do not confuse bits as bi-nary units of information (recall that we
decided to use log2 also as a matter of convenience) with bits as bi-nary digits,
which is what a 2-symbols system like a CD-ROM uses to encode a message.
Suppose now that the AB system is biased, and that the four symbols occur
with the following probabilities (Fig. 9):

Fig. 9. A biased system
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This biased system produces less information, so by using Code 1 we would
be wasting resources. A more efficient Code 2 (Fig. 10) should take into account
the symbols probabilities, with the following outcomes:

Fig. 10. Code 2 (Fano Code)

In Code 2, known as Fano Code, a message conveys 1.75 bits of information.
One can prove that, given that probability distribution, no other coding system
will do better than Fano Code.

In real life, a good codification is also modestly redundant. Redundancy refers to
the difference between the physical representation of a message and the
mathematical representation of the same message that uses no more bits than nec-
essary. Compression procedures work by reducing data redundancy, but redun-
dancy is not always a bad thing, for it canhelp to counteract equivocation (data sent
but never received) and noise (data received but unwanted). A message + noise
contains more data than the original message by itself, but the aim of a communi-
cation process is fidelity, the accurate transfer of the original message from sender
to receiver, not data increase. We aremore likely to reconstruct a message correctly
at the end of the transmission if some degree of redundancy counterbalances the
inevitable noise and equivocation introduced by the physical process of commu-
nication and the environment. Noise extends the informee’s freedom of choice in
selecting a message, but it is an undesirable freedomand some redundancy can help
to limit it. That is why the manual of your car includes both verbal explanations
and pictures to convey (slightly redundantly) the same information.

We are now ready to understand Shannons two fundamental theorems. Sup-
pose the 2-coins biased system AB produces the following message:

〈t, h〉 〈h, h〉 〈t, t〉 〈h, t〉 〈h, t〉
Using Fano Code we obtain: 11001111010. The next step is to send this string
through a channel. Channels have different transmission rates (C), calculated in
terms of bits per second (bps). Shannons fundamental theorem of the noiseless
channel states that there is no method of encoding which gives an equivocation
less than H C, as explained in Fig. 11.

Fig. 11. Shannon’s fundamental theorem of the noiseless channel
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Fig. 12. Shannon’s fundamental theorem for a discrete channel

In other words, if you devise a good code you can transmit symbols over a
noiseless channel at an average rate as close to C/H as one may wish but, no
matter how clever the coding is, that average can never exceed C/H. We have
already seen that the task is made more difficult by the inevitable presence of
noise. However, the fundamental theorem for a discrete channel with noise comes
to our rescue, as explained in Fig. 12.

Roughly, if the channel can transmit as much or more information than the
source can produce, then one can devise an efficient way to code and transmit
messages with as small an error probability as desired. These two fundamental
theorems are among Shannon’s greatest achievements. They are limiting results
in information theory that constrain any conceptual analysis of semantic infor-
mation. They are thus comparable to Gdel’s Turing’s and Church’s theorems in
logic and computation. With our message finally sent, we may close this section
and return to a more philosophical approach.

3.2 Conceptual Implications of the Mathematical Theory
of Communication

For the mathematical theory of communication (MTC), information is only a
selection of one symbol from a set of possible symbols, so a simple way of grasp-
ing how MTC quantifies information is by considering the number of yes/no
questions required to determine what the source is communicating. One ques-
tion is sufficient to determine the output of a fair coin, which therefore is said to
produce 1 bit of information. A 2-fair-coins system produces 4 ordered outputs:
〈h, h〉, 〈h, t〉, 〈t, h〉, 〈t, t〉, and therefore requires at least two questions, each out-
put containing 2 bits of information, and so on. This erotetic (the Greek word
for “question”) analysis clarifies two important points.

First, MTC is not a theory of information in the ordinary sense of the word. In
MTC, information has an entirely technical meaning. Consider some examples.
According to MTC, two equiprobable “yes”’s contain the same quantity of infor-
mation, no matter whether their corresponding questions are “have the lights of
your car been left switched on for too long, without recharging the battery?” or
“would you marry me?”. If we knew that a device could send us, with equal prob-
abilities, either this article or the whole Stanford Encyclopedia of Philosophy, by
receiving one or the other we would receive very different amounts of bytes of data
but actually only one bit of information in the MTC sense of the word. On June 1
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1944, the BBC broadcasted a line from Verlaine’s Song of Autumn: “Les sanglots
longs des violons de Autumne”. The message contained almost 1 bit of informa-
tion, an increasingly likely “yes” to the question whether the D-Day invasion was
imminent. The BBC then broadcasted the second line “Blessent mon coeur d’une
longueur monotone”. Another almost meaningless string of letters, but almost an-
other bit of information, since it was the other long-expected “yes” to the question
whether the invasion was to take place immediately. German intelligence knew
about the code, intercepted those messages and even notified Berlin, but the high
command failed to alert the Seventh Army Corps stationed in Normandy. Hitler
had all the information in Shannons sense of the word, but failed to understand
(or believe in) the crucial importance of those two small bits of data. As for our-
selves, we were not surprised to conclude in the previous section that the maxi-
mum amount of information (again, in the MTC sense of the word) is produced by
a text where each character is equally distributed, that is by a perfectly random
sequence. According to MTC, the classic monkey randomly pressing typewriter
keys is indeed producing a lot of information.

Second, since MTC is a theory of information without meaning (not in the
sense of meaningless, but in the sense of not yet meaningful), and since we
have seen that [information - meaning = data], “mathematical theory of data
communication” is a far more appropriate description of this branch of proba-
bility theory than “information theory”. This is not a mere question of labels.
Information, as semantic content (more on this shortly), can also be described
erotetically as data + queries. Imagine a piece of (propositional) information
such as “the earth has only one moon”. It is easy to polarise almost all its
semantic content by transforming it into a [query + binary answer], such as
[does the earth have only one moon? + yes]. Subtract the “yes” - which is at
most 1 bit of information, in the equiprobable case of a yes or no answer - and
you are left with virtually all the semantic content, fully de-alethicised (from
aletheia, the Greek word for truth; the query is neither true nor false). To use
a Fregean expression, semantic content is unsaturated information, where the
latter is semantic information that has been “eroteticised” and from which a
quantity of information has been subtracted equal to logP (yes), with P being
the probability of the yes-answer.

The datum “yes” works as a key to unlock the information contained in the
query. MTC studies the codification and transmission of information by treating
it as data keys, that is, as the amount of details in a signal or message or memory
space necessary to saturate the informees unsaturated information. As Weaver
(1949) remarked

the word information relates not so much to what you do say, as to
what you could say. The mathematical theory of communication deals
with the carriers of information, symbols and signals, not with informa-
tion itself. That is, information is the measure of your freedom of choice
when you select a message (p.12).

Since MTC deals not with semantic information itself but with the data that
constitute it, that is, with messages comprising uninterpreted symbols encoded in
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well-formed strings of signals, it is commonly described as a study of information
at the syntactic level. MTC can be successfully applied in ICT (information and
communication technologies) because computers are syntactical devices. What
remains to be clarified is how H in equation [9] should be interpreted.

H is also known in MTC as entropy. It seems we owe this confusing label to
John von Newman, who recommend it to Shannon:

You should call it entropy for two reasons: first, the function is al-
ready in use in thermodynamics under the same name; second, and more
importantly, most people don’t know what entropy really is, and if you
use the word entropy in an argument you will win every time (quoted
by Golan (2002)).

Von Newman proved to be right on both accounts, unfortunately.
Assuming the ideal case of a noiseless channel of communication, H is a

measure of three equivalent quantities:

a) the average amount of information per symbol produced by the informer, or
b) the corresponding average amount of data deficit (Shannons uncertainty)

that the informee has before the inspection of the output of the informer, or
c) the corresponding informational potentiality of the same source, that is, its

informational entropy.

H can equally indicate (a) or (b) because, by selecting a particular alphabet,
the informer automatically creates a data deficit (uncertainty) in the informee,
which then can be satisfied (resolved) in various degrees by the informant. Recall
the erotetic game. If you use a single fair coin, I immediately find myself in a 1
bit deficit predicament: I do not know whether it is head or tail. Use two fair
coins and my deficit doubles, but use the raven, and my deficit becomes null.
My empty glass (point (b) above) is an exact measure of your capacity to fill it
(point (a) above). Of course, it makes sense to talk of information as quantified
by H only if one can specify the probability distribution.

Regarding (c), MTC treats information like a physical quantity, such as mass
or energy, and the closeness between equation [9] and the formulation of the con-
cept of entropy in statistical mechanics was already discussed by Shannon. The
informational and the thermodynamic concept of entropy are related through
the concepts of probability and randomness (“randomness” is better than “dis-
order” since the former is a syntactical concept whereas the latter has a strongly
semantic value, that is, it is easily associated to interpretations, as I used to try
to explain to my parents when I was young). Entropy is a measure of the amount
of “mixedupness” in processes and systems bearing energy or information. En-
tropy can also be seen as an indicator of reversibility: if there is no change of
entropy then the process is reversible. A highly structured, perfectly organised
message contains a lower degree of entropy or randomness, less information in
Shannon sense, and hence it causes a smaller data deficit, which can be close to
zero (remember the raven). By contrast, the higher the potential randomness of
the symbols in the alphabet, the more bits of information can be produced by
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the device. Entropy assumes its maximum value in the extreme case of uniform
distribution, which is to say that a glass of water with a cube of ice contains
less entropy than the glass of water once the cube has melted, and a biased coin
has less entropy than a fair coin. In thermodynamics, we know that the greater
the entropy, the less available the energy. This means that high entropy corre-
sponds to high energy deficit, but so does entropy in MTC: higher values of H
correspond to higher quantities of data deficit.

4 Information as Semantic Content

We have seen that, when data are well-formed and meaningful, the result is also
known as semantic content (Bar-Hillel and Carnap (1953; Bar-Hillel (1964). In-
formation, understood as semantic content, comes in two main varieties: factual
and instructional. In our example, one may translate the red light flashing into
semantic content in two senses:

a) as a piece of factual information, representing the fact that the battery is
flat; and

b) as a piece of instructional information, conveying the need for a specific
action, e.g. the re-charging or replacing of the flat battery.

In this third part of the article we shall be concerned primarily with (a), so it
is better to clear the ground by considering (b) first. It is the last detour in our
journey.

4.1 Instructional Information

Instructional information is a type of semantic content. An instruction booklet,
for example, provides instructional information, either imperatively - in the form
of a recipe: first do this, then do that - or conditionally, in the form of some
inferential procedure: if such and such is the case do this, otherwise do that.

Instructional information is not about a situation, a fact, or a state of affairs
w and does not model, or describe or represent w. Rather, it is meant to (help
to) bring about w. For example, when the mechanic tells one over the phone to
connect a charged battery to the flat battery of ones car, the information one
receives is not factual, but instructional.

There are many plausible contexts in which a stipulation (“let the value of
x = 3” or “suppose we discover the bones of a unicorn”), an invitation (“you
are cordially invited to the college party”), an order (“close the window!”), an
instruction (“to open the box turn the key”), a game move (“1.e2-e4 c7-c5” at the
beginning of a chess game) may be correctly qualified as kinds of instructional
information. The printed score of a musical composition or the digital files of a
program may also be counted as typical cases of instructional information.

All these instances of information have a semantic side: they have to be at
least potentially meaningful (interpretable) to count as information. Moreover,
instructional information may be related to factual (descriptive) information in
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performative contexts, such as christening - e.g. “this ship is now called HMS
The Informer” - or programming - e.g. as when deciding the type of a variable.
The two types of semantic information (instructional and factual) may also come
together in magic spells, where semantic representations of x may be (wrongly)
supposed to provide some instructional power and control over x. Nevertheless,
as a test, one should remember that instructional information does not qualify
alethically (cannot be correctly qualified as true or false). In the example, it
would be silly to ask whether the information “only use batteries with the same
rated voltage” is true. Stipulations, invitations, orders, instructions, game moves,
and software cannot be true or false. As Wittgenstein remarks “The way music
speaks. Do not forget that a poem, even though it is composed in the language
of information, is not used in the language-game of giving information.” (Zettel,
§160, see Wittgenstein (1981).

4.2 Factual Information

In the language game that Wittgenstein seems to have in mind, the notion
of “semantic information” is intended in a declarative or factual mode. Fac-
tual information may be true or untrue (false, in case one adopts a binary
logic). True semantic content is the most common sense in which information
seems to be understood (Floridi (2004b)). It is also one of the most impor-
tant, since information as true semantic content is a necessary condition for
knowledge. Some elaboration is in order, and in the following sub-sections we
shall briefly look at the concept of data as constraining affordances, at the role
played by levels of abstraction in the transformation of constraining affordances
into factual information, and finally at the relation between factual information
and truth.

4.2.1 Constraining Affordances
The data that constitute factual information allow or invite certain constructs
(they are affordances for the information agent that can take advantage of them)
and resist or impede some others (they are constraints for the same agent),
depending on the interaction with, and the nature of, the information agent that
processes them. For example, the red light flashing repetitively and the engine
not starting allow you (or any other information agent like you) to construct the
information that (a) the battery is flat, while making it more difficult to you (or
any other information agent like you) to construct the information that (b) there
is a short circuit affecting the proper functioning of the low battery indicator,
where the engine fails to start because there is no petrol in the tank, a fact not
reported by the relevant indicator which is affected by the same short circuit.
This is the sense in which data are constraining affordances for (an information
agent responsible for) the elaboration of factual information.

4.2.2 Levels of Abstraction
In section 2.3, we saw that the concept of pure data in themselves (dedomena)
is an abstraction, like Kant’s noumena or Locke’s substance. The point made
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was that data are never accessed and elaborated (by an information agent) inde-
pendently of a level of abstraction (LoA). The time has come to clarify what a
LoA is.

A LoA is a specific set of typed variables, intuitively representable as an in-
terface, which establishes the scope and type of data that will be available as a
resource for the generation of information (Floridi and Sanders (forthcoming).
This concept of LoA is purely epistemological, and it should not be confused with
other forms of “levellism” that are more or less explicitly based on an ontological
commitment concerning the intrinsic architecture, syntax or structure of the sys-
tem discussed (Dennett (1971), Marr (1982) , Newell (1982), Simon (1969), see
now Simon (1996) ; Poli (2001) provides a reconstruction of ontological levellism;
more recently, Craver (2004) has analysed ontological levellism, especially in bi-
ology and cognitive science, see also Craver (forthcoming)). Ontological levellism
has come under increasing attack. Heil (2003) and Schaffer (2003) have seriously
and convincingly questioned its plausibility. However, epistemological levellism
is flourishing, especially in computer science (Roever et al. (1998), Hoare and
Jifeng (1998)), where it is regularly used to satisfy the requirement that systems
constructed in levels (in order to tame their complexity) function correctly.

Through a LoA, an information agent (the observer) accesses a physical or
conceptual environment, the system. LoAs are not necessarily hierarchical and
they are comparable. They are interfaces that mediate the epistemic relation be-
tween the observed and the observer. Consider, for example, a motion detector
(Fig. 13). In the past, motion detectors caused an alarm whenever a movement
was registered within the range of the sensor, including the swinging of a tree
branch (object a in Fig. 13). The old LoA1 consisted of a single typed variable,
which may be labelled MOVEMENT. Nowadays, when a PIR (passive infrared)
motion detector registers some movement, it also monitors the presence of an in-
frared signal, so the entity detected has to be something that also emits infrared
radiation usually perceived as heat before the sensor activates the alarm. The
new LoA2 consists of two typed variables: MOVEMENT and INFRARED RA-
DIATION. Clearly, your car (object b in Fig. 13) leaving your house is present
for both LoAs; but for the new LoA2, which is more finely grained, the branch of
the tree swinging in the garden is absent. Likewise, a stone in the garden (object
c in Fig. 13) is absent for both the new and the old LoA, since it satisfies no
typed variable of either one.

The method of LoA is an efficient way of making explicit and managing the
ontological commitment of a theory. In our case, “the battery is what provides
electricity to the car” is a typical example of information elaborated at a drivers
LoA. An engineers LoA may output something like “12-volt lead-acid battery
is made up of six cells, each cell producing approximately 2.1 volts”, and an
economists LoA may suggest that “a good quality car battery will cost between
$50 and $100 and, if properly maintained, it should last five years or more”.

Data as constraining affordances - answers waiting for the relevant questions
- are transformed into factual information by being processed semantically at a
given LoA (alternatively: the relevant question is associated to the right answer
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Fig. 13. An example of Levels of Abstraction

at a given LoA). Once data as constraining affordances have been elaborated into
factual information at a given LoA, the next question is whether truth values
supervene on factual information.

4.2.3 Information and Truth
Does some factual content qualify as information only if it is true? Defenders of
the alethic neutrality of semantic information (Fetzer (2004) and Dodig-Crnkovic
(2005), who criticises Floridi (2004b) ; Colburn (2000) , Fox (1983), and, among,
situation theorists, Devlin (1991)) argue that meaningful and well-formed data
already qualify as information, no matter whether they represent or convey a
truth or a falsehood or indeed have no alethic value at all. Opponents, on the
other hand, object that “[. . . ] false information and mis-information are not
kinds of information - any more than decoy ducks and rubber ducks are kinds
of ducks” (Dretske (1981), 45) and that “false information is not an inferior
kind of information; it just is not information” (Grice (1989), 371; other philoso-
phers who accept a truth-based definition of semantic information are Barwise
and Seligman (1997) and Graham (1999)). The result is a definition of factual
semantic information as well-formed, meaningful and truthful data (defended
in Floridi (2004b), (2005b)), where “truthful” is only a stylistic choice to be
preferred to “true” because it enables one to say that a map conveys factual
information insofar as it is truthful.

Once again, the debate is not about a mere definition, but concerns the possible
consequences of the alethic neutrality thesis, three of which can be outlined here,
whereas a fourth requires a longer analysis and will be discussed in section 5.1.

If the thesis “meaningful and well-formed data already qualify as information”
is correct then

i) false information (including contradictions) would count as a genuine type of
semantic information, not as pseudo-information;

ii) all necessary truths (including tautologies) would qualify as information (on
this issue see Bremer (2003)); and
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iii) “it is true that p” - where p is a variable that can be replaced by any instance
of genuine semantic information - would not be a redundant expression; for
example, “it is true” in the conjunction “‘the earth is round’ qualifies as
information and it is true” could not be eliminated without semantic loss.

All these new issues are grafted to some old branches of the philosophical tree.
Whether false information is a genuine type of information has important

repercussions on any philosophy and pragmatics of communication.
The question about the informative nature (or lack thereof) of necessary

truths, tautologies, equations or identity statements is an old one, as it runs
through Hume, Kant, Frege and Wittgenstein. The latter, for example, interest-
ingly remarked:

Another expression akin to those we have just considered is this: ‘Here
it is; take it or leave it!’ And this again is akin to a kind of introductory
statement which we sometimes make before remarking on certain alter-
natives, as when we say: ‘It either rains or it doesn’t rain; if it rains we’ll
stay in my room, if it doesn’t . . . ’. The first part of this sentence is no
piece of information (just as ‘Take it or leave it’ is no order). Instead of,
‘It either rains or it doesn’t rain’ we could have said, ‘Consider the two
cases . . . ’. Our expression underlines these cases, presents them to your
attention (The Blue and Brown Books, The Brown Book, II, p. 161, see
Wittgenstein (1960)).

The solution of the problem of hyperintensionality (how one can draw a se-
mantic distinction between expressions that are supposed to have the same mean-
ing according to a particular theory of meaning that is usually model-theoretic or
modal in character) depends on how one can make sense of the relation between
truth and informativeness in the case of logically equivalent expressions.

Finally, the possibly redundant qualification of information as true is also
linked with the critique of the deflationary theories of truth (DTT), since one
could accept a deflationary T-schema as perfectly correct, while rejecting the
explanatory adequacy of DTT. “It is true that” in “it is true that p” could be
redundant in view of the fact that there cannot be factual information that is
not true, but DTT could mistake this linguistic or conceptual redundancy for
unqualified dispensability. “It is true that” could be redundant because, strictly
speaking, information is not a truth-bearer but already encapsulates truth as
truthfulness. Thus, DTT may be satisfactory as theories of truth-ascriptions
while being inadequate as theories of truthfulness.

Once information is available, knowledge can be built in terms of justifiable or
explainable semantic information. An information agent knows that the battery
is flat not by merely guessing rightly, but because e.g. it perceives that the red
light of the low battery indicator flashing and/or that the engine does not start.
In this sense, information provides the basis of any further scientific investigation.
Note, however, that the fact that data may count as resources for (i.e. inputs an
agent can use to construct) information, and hence for knowledge, rather than
sources, may lead to constructionist arguments against mimetic theories that
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interpret information as some sort of picture of the world. The point requires
some elaboration.

Whether empirical or conceptual, data make possible only a certain range of
information constructs, and not all constructs are made possible equally easily.
An analogy may help here. Suppose one has to build a shelter. The design and
complexity of the shelter may vary, but there is a limited range of “realistic”
possibilities, determined by the nature of the available resources and constraints
(size, building materials, location, weather, physical and biological environment,
working force, technical skills, purposes, security, time constraints, etc.). Not any
shelter can be built. And the type of shelter that will be built more often will
be the one that is more likely to take close-to-optimal advantage of the available
resources and constraints. The same applies to data. Data are at the same time
the resources and constraints that make possible the construction of informa-
tion. The best information is that better tuned to the constraining affordances
available. Thus informational coherence and adequacy do not necessarily entail
nor support nave or direct realism, or a correspondence theory of truth as this
is ordinarily presented. Ultimately, information is the result of a process of data
modelling; it does not have to represent or photograph or portray or photocopy,
or map or show or uncover or monitor or . . . the intrinsic nature of the system
analysed, no more than an igloo describes the intrinsic nature of snow or the
Parthenon indicates the real properties of stones.

When semantic content is false, this is a case of misinformation (Fox (1983)).
And if the source of misinformation is aware of its nature, one may speak of
disinformation, as when one says to the mechanic “my husband forgot to turn
the lights on”. Disinformation and misinformation are ethically censurable but
may be successful in achieving their purpose: tell the mechanic that your husband
left the lights on last night, and he will still be able to provide you with the right
advice. Likewise, information may still fail to be successful; just imagine telling
the mechanic that your car is out of order.

5 Philosophical Approaches to Semantic Information

What is the relation between MTC and the sort of semantic information that
we have called factual? The mathematical theory of communication approaches
information as a physical phenomenon. Its central question is whether and how
much uninterpreted data can be encoded and transmitted efficiently by means
of a given alphabet and through a given channel. MTC is not interested in
the meaning, “aboutness”, relevance, reliability, usefulness or interpretation of
information, but only in the level of detail and frequency in the uninterpreted
data, being these symbols, signals or messages. Philosophical approaches differ
from MTC in two main respects.

First, they seek to give an account of information as semantic content, inves-
tigating questions like “how can something count as information? and why?”,
“how can something carry information about something else?”, “how can seman-
tic information be generated and flow?”, “how is information related to error,
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truth and knowledge?”, “when is information useful?”. Wittgenstein, for exam-
ple, remarks that “One is inclined to say: ‘Either it is raining, or it isn’t - how
I know, how the information has reached me, is another matter.’ But then let
us put the question like this: What do I call information that it is raining’?
(Or have I only information of this information too?) And what gives this ‘in-
formation’ the character of information about something? Doesn’t the form of
our expression mislead us here? For isn’t it a misleading metaphor to say: “My
eyes give me the information that there is a chair over there”? (Philosophical
Investigations, I. §356, see now Wittgenstein (2001)).

Second, philosophical theories of semantic information also seek to connect it
to other relevant concepts of information and more complex forms of epistemic,
mental and doxastic phenomena. For instance, Dretske (1981) and Barwise and
Seligman (1997) attempt to ground information, understood as factual seman-
tic contents, on environmental information. The approach is also known as the
naturalization of information. A similar point can be made about Putnams twin
earths argument, the externalization of semantics and teleosemantics.

Philosophical analyses usually adopt a propositional orientation and an epis-
temic outlook, endorsing, often implicitly, the prevalence or centrality of factual
information within the map outlined in Fig. 1. They tend to base their analyses
on cases such as “Paris is the capital of France” or “The Bodleian Library is in
Oxford”. How relevant is MTC to similar researches?

In the past, some research programs tried to elaborate information theories
alternative to MTC, with the aim of incorporating the semantic dimension. Don-
ald M. Mackay (1969) proposed a quantitative theory of qualitative information
that has interesting connections with situation logic (see below). According to
MacKay, information is linked to an increase in knowledge on the receiver’s side:

Suppose we begin by asking ourselves what we mean by information.
Roughly speaking, we say that we have gained information when we
know something now that we didn’t know before; when ‘what we know’
has changed. (Mackay (1969), p. 10).

Around the same years, Doede Nauta (1972) developed a semiotic-cybernetic
approach. Nowadays, few philosophers follow these lines of research. The ma-
jority agrees that MTC provides a rigorous constraint to any further theorising
on all the semantic and pragmatic aspects of information. The disagreement
concerns the crucial issue of the strength of the constraint.

At one extreme of the spectrum, any philosophical theory of semantic-factual
information is supposed to be very strongly constrained, perhaps even overdeter-
mined, by MTC, somewhat as mechanical engineering is by Newtonian physics.
Weavers optimistic interpretation of Shannons work is a typical example.

At the other extreme, any philosophical theory of semantic-factual informa-
tion is supposed to be only weakly constrained, perhaps even completely under-
determined, by MTC, somewhat as tennis is constrained by Newtonian physics,
that is in the most uninteresting, inconsequential and hence disregardable sense
(see for example Sloman (1978) and Thagard (1990)).
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The emergence of MTC in the 1950s generated earlier philosophical enthu-
siasm that has gradually cooled down through the decades. Historically, philo-
sophical theories of semantic-factual information have moved from “very strongly
constrained” to “only weakly constrained”. Recently, we find positions that care-
fully appreciate MTC for what it can provide in terms of a robust and well-
developed statistical theory of correlations between states of different systems
(the sender and the receiver) according to their probabilities. This can have
important consequences in mathematically-friendly contexts, such as some ap-
proaches to naturalised epistemology (Harms (1998)) or scientific explanation
(Badino (2004)).

Although the philosophy of semantic information has become increasingly au-
tonomous from MTC, two important connections have remained stable between
MTC and even the most recent philosophical accounts:

1. the communication model, explained in section 3.1 (see Fig. 6); and
2. what Barwise labelled the “Inverse Relationship Principle” (IRP).

The communication model has remained virtually unchallenged, even if nowadays
theoretical accounts are more likely to consider as basic cases multiagent and dis-
tributed systems interacting in parallel, rather than individual agents related by
simple, sequential channels of communication. In this respect, the philosophy of
information (Floridi (2002);(2004a)) is less Cartesian than “social”.

IRP refers to the inverse relation between the probability of p - which may
range over sentences of a given language (as in Bar-Hillel and Carnap) or events,
situations or possible worlds (as in Dretske) - and the amount of semantic in-
formation carried by p (recall that Poe’s raven, as a unary source provides no
information because its answers are entirely predictable). It states that informa-
tion goes hand in hand with unpredictability. Popper (1935) is often credited as
the first philosopher to have advocated IRP explicitly. However, systematic at-
tempts to develop a formal calculus involving it were made only after Shannons
breakthrough.

We have seen that MTC defines information in terms of probability space dis-
tribution. Along similar lines, the probabilistic approach to semantic information
defines the semantic information in p in terms of logical probability space and the
inverse relation between information and the probability of p. This approach was
initially suggested by Bar-Hillel and Carnap (1953) (see also Bar-Hillel (1964))
and further developed by Kemeny (1953), Smokler (1966), Hintikka and Suppes
(1970) and Dretske (1981). The details are complex but the original idea is sim-
ple. The semantic content (CONT) in p is measured as the complement of the
a priori probability of p:

CONT (p) = 1 − P (p) (10)

CONT does not satisfy the two requirements of additivity and conditional-
ization, which are satisfied by another measure, the informativeness (INF) of p,
which is calculated, following equations [9] and [10], as the reciprocal of P (p),
expressed in bits, where P (p) = 1 − CONT (p):
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INF (p) = log
1

1 − CONT (p)
= −logP (p) (11)

Things are complicated by the fact that the concept of probability employed
in equations [10] and [11] is subject to different interpretations. In Bar-Hillel and
Carnap (1953), the probability distribution is the outcome of a logical construc-
tion of atomic statements according to a chosen formal language. This introduces
a problematic reliance on a strict correspondence between observational and for-
mal language. In Dretske, the solution is to make probability values refer to the
observed states of affairs (s), that is:

I (s) = −logP (s) (12)

The modal approach further modifies the probabilistic approach by defining
semantic information in terms of modal space and in/consistency. The informa-
tion conveyed by p becomes the set of all possible worlds, or (more cautiously)
the set of all the descriptions of the relevant possible states of the universe, that
are excluded by p.

The systemic approach, developed especially in situation logic (Barwise and
Perry 1983, Israel and Perry 1990, Devlin (1991); Barwise and Seligman (1997 )
provide a foundation for a general theory of information flow) also defines infor-
mation in terms of states space and consistency. However, it is less ontologically
demanding than the modal approach, since it assumes a clearly limited domain of
application. It is also compatible with Dretske’s probabilistic approach, although
it does not require a probability measure on sets of states. The informational
content of p is not determined a priori, through a calculus of possible states
allowed by a representational language, but in terms of factual content that p
carries with respect to a given situation. Information tracks possible transitions
in a system’s states space under normal conditions. Both Dretske and situation
theorists require some presence of information already immanent in the envi-
ronment (environmental information), as nomic regularities or constraints. This
“semantic externalism” can be controversial.

The inferential approach defines information in terms of entailment space:
information depends on valid inference relative to an information agent’s theory
or epistemic state.

Each of the previous extensionalist approaches can be given an intentionalist
interpretation by considering the relevant space as a doxastic space, in which
information is seen as a reduction in the degree of personal uncertainty, given
a state of knowledge of the informee. Wittgenstein addressed this distinction in
his Remarks on the Philosophy of Psychology I §817 (Wittgenstein (1980))

The important insight is that there is a language-game [Wittgen-
stein seems to have in mind here the information game we have already
encountered above] in which I produce information automatically, infor-
mation which can be treated by other people quite as they treat non-
automatic information only here there will be no question of any ‘lying’
- information which I myself may receive like that of a third person. The
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‘automatic’ statement, report etc. might also be called an ‘oracle’. - But
of course that means that the oracle must not avail itself of the words ‘I
believe . . . ’.

5.1 The Bar-Hillel-Carnap Paradox

Insofar as they subscribe to the Inverse Relationship Principle, the extensionalist
approaches outlined in the previous section can be affected by what has been
defined, with a little hyperbole, as the Bar-Hillel-Carnap Paradox (BCP, Floridi
(2004b)).

In a nutshell, we have seen that, following IRP, the less probable or possible
p is the more semantic information p is assumed to be carrying. This explains
why most philosophers agree that tautologies convey no information at all, for
their probability or possibility is 1. But it also leads one to consider contradic-
tions - which describe impossible states, or whose probability is 0 - as the sort
of messages that contain the highest amount of semantic information. It is a
slippery slope. Make a statement less and less likely and you gradually increase
its informational content, but at certain point the statement “implodes” (in the
quotation below, it becomes “too informative to be true”).

Bar-Hillel and Carnap (1953) were among the first to make explicit this prima
facie counterintuitive inequality. Note how their careful wording betrays the
desire to defuse the problem:

BCP)
It might perhaps, at first, seem strange that a self-contradictory sen-

tence, hence one which no ideal receiver would accept, is regarded as
carrying with it the most inclusive information. It should, however, be
emphasized that semantic information is here not meant as implying
truth. A false sentence which happens to say much is thereby highly
informative in our sense. Whether the information it carries is true or
false, scientifically valuable or not, and so forth, does not concern us. A
self-contradictory sentence asserts too much; it is too informative to be
true (p. 229).

Since its formulation, BCP has been recognised as an unfortunate, yet per-
fectly correct and logicall inevitable consequence of any quantitative theory of
weakly semantic information (TWSI; “weakly” because truth values play no role
in it). As a consequence, the problem has often been either ignored or tolerated
(Bar-Hillel and Carnap (1953)) as the price of an otherwise valuable approach.
Sometimes, however, attempts have been made to circumscribe its counterintu-
itive consequences. This has happened especially in Information Systems Theory
(Winder et al. (1997)) - where consistency is an essential constraint that must re-
main satisfied for a database to preserve data integrity - and in Decision Theory,
where inconsistent information is obviously of no use to a decision maker.

In these cases, whenever there are no possible models that satisfy a state-
ment or a theory, instead of assigning to it the maximum quantity of semantic
information, three strategies have been suggested:
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1. assigning to all inconsistent cases the same, infinite information value (Lozin-
skii (1994)). This is in line with an economic approach, which defines x as
impossible if and only if x has an infinite price;

2. eliminating all inconsistent cases a priori from consideration, as impossible
outcomes in decision-making (Jeffrey (1990)). This is in line with the syn-
tactic approach developed by MTC;

3. assigning to all inconsistent cases the same zero information value (Mingers
(1997 ), Aisbett and Gibbon (1999).

The latter approach is close to the strongly semantic approach, to which we
shall now turn.

5.2 The Strongly Semantic Approach to Information

The general hypothesis is that BCP indicates that something has gone essen-
tially amiss with TWSI. TWSI is based on a semantic principle that is too weak,
namely that truth-values are independent of semantic information. A semanti-
cally stronger approach, according to which information encapsulates truth, can
avoid the paradox and is more in line with the ordinary conception of what
generally counts as factual information, as we have seen in section 4.2.3. MTC
already provides some initial reassurance. MTC identifies the quantity of infor-
mation associated with, or generated by, the occurrence of a signal (an event
or the realisation of a state of affairs) with the elimination of possibilities (re-
duction in uncertainty) represented by that signal (event or state of affairs).
In MTC, no counterintuitive inequality comparable to BCP occurs, and the
line of argument is that, as in the case of MTC, a theory of strongly seman-
tic information (TSSI), based on alethic and discrepancy values rather than
probabilities, can also successfully avoid BCP (Floridi (2004b ); (2005b ), see
Bremer and Cohnitz (2004 ) chap. 2 for an overview). The idea is to define
semantic-factual information in terms of data space, as well-formed, meaning-
ful and truthful data. This constrains the probabilistic approach introduced
above, by requiring first a qualification of the content as truthful. Once the
content is so qualified, the quantity of semantic information in p is calculated
in terms of distance of p from the situation/resource w that p is supposed to
model. Total distance is equivalent to a p true in all cases (all possible worlds
or probability 1), including w and hence minimally informative, whereas maxi-
mum closeness is equivalent to the precise modelling of w at the agreed level of
abstraction.

Suppose there will be exactly three guests for dinner tonight. This is our
situation w. Imagine we are told that

T) there may or may not be some guests for dinner tonight; or
V) there will be some guests tonight; or
P) there will be three guests tonight.

The degree of informativeness of T is zero because, as a tautology, T applies
both to w and to ¬ w. V performs better, and P has the maximum degree of
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informativeness because, as a fully accurate, precise and contingent truth, it
“zeros in” on its target w. Generalising, the more distant some semantic-factual
information σ is from its target w, the larger is the number of situations to which
it applies, the lower its degree of informativeness becomes. A tautology is a true
σ that is most “distant” from the world.

Let us now use the letter ϑ to refer to the distance between a true σ and
w. Using the more precise vocabulary of situation logic, ϑ indicates the degree
of support offered by w to σ. We can now map on the x axis of a Cartesian
diagram the values of ϑ given a specific σ and a corresponding target w. In our
example, we know that ϑ (T ) = 1 and ϑ (P ) = 0. For the sake of simplicity, let us
assume that ϑ (V ) = 0.25 (see Floridi (2004b) on how to calculate ϑ values). We
now need a formula to calculate the degree of informativeness ι of σ in relation
to ϑ (σ). It can be shown that the most elegant solution is provided by the
complement of the square value of ϑ (σ), that is y = 1 − x2. Using the symbols
just introduced, we have:

ι (σ) = 1 − ϑ (σ)2 (13)

Fig. 14 shows the graph generated by equation [13] when we include also
negative values of distance for false σ ( ϑ ranges from −1 = contradiction to 1 =
tautology).

If σ has a very high degree of informativeness ι (very low ϑ) we want to be
able to say that it contains a large quantity of semantic information and, vice

Fig. 14. Degree of informativeness
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Fig. 15. Maximum amount of semantic information α carried by σ

versa, the lower the degree of informativeness of σ is, the smaller the quantity
of semantic information conveyed by σ should be. To calculate the quantity of
semantic information contained in σ relative to ι (σ) we need to calculate the
area delimited by equation [13], that is, the definite integral of the function
ι (σ) on the interval [0, 1]. As we know, the maximum quantity of semantic
information (call it α) is carried by P, whose ϑ = 0. This is equivalent to the
whole area delimited by the curve. Generalising to σ we have:

∫ 1

0

ι (σ) dx = α =
2
3

(14)

Fig. 15 shows the graph generated by equation [14]. The shaded area is the
maximum amount of semantic information α carried by σ.

Consider now V, “there will be some guests tonight”. V can be analysed as a
(reasonably finite) string of disjunctions, that is V = [“there will be one guest
tonight” or “there will be two guests tonight” or . . . “there will be n guests
tonight”], where n is the reasonable limit we wish to consider (things are more
complex than this, but here we only need to grasp the general principle). Only
one of the descriptions in V will be fully accurate. This means that V also con-
tains some (perhaps much) information that is simply irrelevant or redundant.
We shall refer to this “informational waste” in V as vacuous information in V.
The amount of vacuous information (call it β) in V is also a function of the
distance ϑ of V from w, or more generally
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∫ ϑ

0

ι (σ) dx = β (15)

Since ϑ(V) = 0.25, we have

∫ 0.25

0

ι (σ) dx = 0.24479 (16)

Fig. 16 shows the graph generated by equation [16]. The shaded area is the
amount of vacuous information β in V. Clearly, the amount of semantic in-
formation in V is simply the difference between α (the maximum amount of
information that can be carried in principle by σ) and β (the amount of vacuous
information actually carried by σ), that is the clear area in the graph of Fig. 16.
More generally, and expressed in bits, the amount of semantic information γ in
σ is:

γ (σ) = log (α − β) (17)

Note the similarity between [14] and [15]. When ϑ (σ) = 1, that is, when the
distance between σ and w is maximum, then α = β and γ (σ) = 0. This is
what happens when we consider T. T is so distant from w as to contain only
vacuous information. In other words, T contains as much vacuous information
as P contains relevant information.

Fig. 16. Amount of semantic information γcarried by σ
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6 Conclusion

Philosophical theories of semantic information have recently contributed to a
new area of research in itself, the philosophy of information (Adams (2003),
Floridi (2002), (2003b), (2004a)). The two special issue volumes of Minds and
Machines on the philosophy of information (Floridi (2003c)) provide an overview
of the scope and depth of current work in the field. Information seems to have
become a key concept to unlock several philosophical problems. “The most valu-
able commodity I know of is information”, boldly declares Gordon Gekko in
Oliver Stones Wall Street (1987). Euphranor would probably have concurred.
The problem is that we still have to agree about what information is exactly.
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1 Introduction: The Relative Entropy as an
Epistemological Functional

Shannon’s Information Theory (IT) (1948) definitely established the purely
mathematical nature of entropy and relative entropy, in contrast to the pre-
vious identification by Boltzmann (1872) of his “H-functional” as the physical
entropy of earlier thermodynamicians (Carnot, Clausius, Kelvin). The following
recounting is attributed to Shannon (Tribus and McIrvine 1971):

My greatest concern was what to call it. I thought of calling it “information”,
but the word was overly used, so I decided to call it “uncertainty”. When I dis-
cussed it with John von Neumann, he had a better idea. Von Neumann told me,
“You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already has
a name. In the second place, and more important, nobody knows what entropy
really is, so in a debate you will always have the advantage.”
In IT, the entropy of a message limits its minimum coding length, in the same
way that, more generally, the complexity of the message determines its com-
pressibility in the Kolmogorov-Chaitin-Solomonov algorithmic information the-
ory (see e.g. Li and Vitanyi (1997)).

Besides coding and compressibility interpretations, the relative entropy also
turns out to possess a direct probabilistic meaning, as demonstrated by the
asymptotic rate formula (4). This circumstance enables a complete exposition of
classical inferential statistics (hypothesis testing, maximum likelihood, maximum
entropy, exponential and log-linear models, EM algorithm, etc.) under the guise
of a discussion of the properties of the relative entropy.

In a nutshell, the relative entropy K(f ||g) has two arguments f and g, which
both are probability distributions belonging to the same simplex. Despite for-
mally similar, the arguments are epistemologically contrasted: f represents the
observations, the data, what we see, while g represents the expectations, the
models, what we believe. K(f ||g) is an asymmetrical measure of dissimilarity
between empirical and theoretical distributions, able to capture the various as-
pects of the confrontation between models and data, that is the art of classical
statistical inference, including Popper’s refutationism as a particulary case. Here
lies the dialectic charm of K(f ||g), which emerges in that respect as an episte-
mological functional.

G. Sommaruga (Ed.): Formal Theories of Information, LNCS 5363, pp. 54–78, 2009.
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We have here attempted to emphasize and synthetize the conceptual signifi-
cance of the theory, rather than insisting on its mathematical rigor, the latter
being thoroughly developped in a broad and widely available litterature (see e.g.
Cover and Thomas (1991) and references therein). Most of the illustrations bear
on independent and identically distributed (i.i.d.) finitely valued observations,
that is on dice models. This convenient restriction is not really limiting, and can
be extended to Markov chains of finite order, as illustrated in the last part on
textual data with presumably original applications, such as heating and cooling
texts, or additive and multiplicative text mixtures.

2 The Asymptotic Rate Formula

2.1 Model and Empirical Distributions

D = (x1x2 . . . xn) denotes the data, consisting of n observations, and M denotes
a possible model for those data. The corresponding probability is P (D|M), with

P (D|M) ≥ 0
∑

D

P (D|M) = 1.

Assume (dice models) that each observation can take on m discrete values, each
observation X being i.i.d. distributed as

fM
j := P (X = j) j = 1, . . . , m.

fM is the model distribution. The empirical distribution, also called type (Csiszár
and Körner 1980) in the IT framework, is

fD
j :=

nj

n
j = 1, . . . , m

where nj counts the occurences of the j-th category and n =
∑m

j=1 nj is the
sample size.

Both fM and fD are discrete distributions with m modalities. Their collection
form the simplex Sm (figure 1)

S ≡ Sm := {f | fj ≥ 0 and

m∑

j=1

fj = 1}.

2.2 Entropy and Relative Entropy: Definitions and Properties

Let f, g ∈ Sm. The entropy H(f) of f and the relative entropy K(f ||g) between
f and g are defined (in nats) as

H(f) := −
m∑

j=1

fj ln fj = entropy of f

K(f ||g) :=
m∑

j=1

fj ln
fj

gj
= relative entropy of f with respect to g .
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Fig. 1. The simplex S3, where fU = ( 1
3
, 1

3
, 1

3
) denotes the uniform distribution. In the

interior of Sm, a distribution f can be varied along m− 1 independant directions, that
is dim(Sm) = m − 1.

H(f) is concave in f , and constitutes a measure of the uncertainty of the outcome
among m possible outcomes (proofs are standard):

0 ≤ H(f) ≤ ln m

where

• H(f) = 0 iff f is a deterministic distribution concentrated on a single modal-
ity (minimum uncertainty)

• H(f) = lnm iff f is the uniform distribution (of the form fj = 1/m) (max-
imum uncertainty).

K(f ||g), also known as the Kullback-Leibler divergence, is convex in both ar-
guments, and constitutes a non-symmetric measure of the dissimilarity between
the distributions f and g, with

0 ≤ K(f ||g) ≤ ∞
where

• K(f ||g) = 0 iff f ≡ g
• K(f ||g) < ∞ iff f is absolutely continuous with respect to g, that is if gj = 0

implies fj = 0.

Let the categories j = 1, . . . , m be coarse-grained, that is aggregated into
groups of super-categories J = 1, . . . , M < m. Define

FJ :=
∑

j∈J

fj GJ :=
∑

j∈J

gj .

Then

H(F ) ≤ H(f) K(F ||G) ≤ K(f ||g) . (1)
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2.3 Derivation of the Asymptotic Rate (i.i.d. Models)

On one hand, straightforward algebra yields

P (D|fM) := P (D|M) = P (x1x2 . . . xn|M)
=

∏n
i=1(f

M
j )nj = exp[−nK(fD||fM ) − nH(fD)]. (2)

On the other hand, each permutation of the data D = (x1, . . . , xn) yields the
same fD. Stirling’s approximation n! ∼= nn exp(−n) (where an

∼= bn means
limn→∞ 1

n ln(an/bn) = 0) shows that

P (fD|M) =
n!

n1! · · ·nm!
P (D|M) ∼= exp(nH(fD)) P (D|M). (3)

(2) and (3) imply the asymptotic rate formula:

P (fD|fM ) ∼= exp(−n K(fD||fM )) asymptotic rate formula . (4)

Hence, K(fD||fM ) is the asymptotic rate of the quantity P (fD|fM ), the proba-
bility of the empirical distribution fD for a given model fM , or equivalently the
likelihood of the model fM for the data fD. Without additional constraints, the
model f̂M maximizing the likelihood is simply f̂M = fD (section 3). Also, with-
out further information, the most probable empirical distribution f̃D is simply
f̃D = fM (section 4).

2.4 Asymmetry of the Relative Entropy and Hard Falsificationism

K(f ||g) as a dissimilarity measure between f and g is proper (that is K(f ||g) = 0
implies f ≡ g) but not symmetric (K(f ||g) �= K(g||f) in general). Symmetrized
dissimilarities such as J(f ||g) := 1

2 (K(f ||g)+K(g||f)) or L(f ||g) := K(f ||12 (f +
g)) + K(g||12 (f + g)) have often been proposed in the literature.

The conceptual significance of such functionals can indeed be questioned: from
equation (4), the first argument f of K(f ||g) should be an empirical distribution,
and the second argument g a model distribution. Furthermore, the asymmetry
of the relative entropy does not constitute a defect, but perfectly matches the
asymmetry between data and models. Indeed

• if fM
j = 0 and fD

j > 0, then K(fD||fM ) = ∞ and, from (4), P (fD|fM ) = 0
and, unless the veracity of the data fD is questioned, the model distribution
fM should be strictly rejected

• if on the contrary fM
j > 0 and fD

j = 0, then K(fD||fM ) < ∞ and P (fD|fM )
> 0 in general: fM should not be rejected, at least for small samples.

Thus the theory “All crows are black” is refuted by the single observation of
a white crow, while the theory “Some crows are black” is not refuted by the
observation of a thousand white crows. In this spirit, Popper’s falsificationist
mechanisms (Popper 1963) are captured by the properties of the relative entropy,
and can in the present IT framework be further extended to probabilistic or
“soft falsificationist” situations, beyond the purely logical true/false context (see
section 3.1).
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2.5 The Chi-Square Approximation

Most of the properties of the relative entropy are shared by another func-
tional, historically anterior and well-known to statisticians, namely the chi-
square χ2(f ||g) := n

∑
j(fj − gj)2/gj. As a matter of fact, the relative entropy

and the chi-square (divided by 2n) are identical up to the third order:

2K(f ||g) =
m∑

j=1

(fj − gj)2

gj
+ O(

∑

j

(fj − gj)3

g2
j

) =
1
n

χ2(f ||g) + O(||f − g||3) (5)

Example: coin (m = 2). The values of the relative entropy and the chi-square
read, for various fM and fD, as :

fM fD K(fD||fM) χ2(fD||fM )/2n
a) (0.5, 0.5) (0.5, 0.5) 0 0
b) (0.5, 0.5) (0.7, 0.3) 0.0823 0.08
c) (0.7, 0.3) (0.5, 0.5) 0.0822 0.095
d) (0.7, 0.3) (0.7, 0.3) 0 0
e) (0.5, 0.5) (1, 0) 0.69 0.5
f) (1, 0) (0.99, 0.01) ∞ ∞

3 Maximum Likelihood and Hypothesis Testing

3.1 Testing a Single Hypothesis (Fisher)

As shown by (4), the higher K(fD||fM ), the lower the likelihood P (fD|fM ).
This circumstance permits to test the single hypothesis H0 : “the model dis-
tribution is fM”. If H0 were true, fD should fluctuate around its expected
value fM , and fluctuations of too large amplitude, with occurrence probability
less than α (the significance level), should lead to the rejection of fM . Well-
known results on the chi-square distribution (see e.g. Cramer (1946) or Saporta
(1990)) together with approximation (5) shows 2nK(fD||fM ) to be distributed,
under H0 and for n large, as χ2[df] with df = dim(Sm) = m − 1 degrees of
freedom.

Therefore, the test consists in rejecting H0 at level α if

2 n K(fD||fM ) ≥ χ2
1−α[m−1] . (6)

In that respect, Fisher’s classical hypothesis testing appears as a soft falsification-
ist strategy, yielding the rejection of a theory fM for large values of K(fD||fM ).
It generalizes Popper’s (hard) falsificationism which is limited to situations of
strict refutation as expressed by K(fD||fM ) = ∞.
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3.2 Testing a Family of Models

Very often, the hypothesis to be tested is composite, that is of the form H0 :
“fM ∈ M”, where M ⊂ S = Sm constitutes a family of models containing a
number dim(M) of free, non-redundant parameters.

If the observed distribution itself satisfies fD ∈ M, then there is obviously
no reason to reject H0. But fD /∈ M in general, and hence

min
f∈M

K(fD||f) = K(fD||f̂M) is strictly positive, where f̂M := arg min
f∈M

K(fD||f).

f̂M is known as the maximum likelihood estimate of the model, and depends on
both fD and M. We assume f̂M to be unique, which is e.g. the case if M is
convex.

If fM ∈ M, 2nK(fD||f̂M) follows a chi-square distribution with dim(S) −
dim(M) degrees of freedom. Hence, one rejects H0 at level α if

2nK(fD||f̂M) ≥ χ2
1−α[dim(S)−dim(M)] . (7)

If M reduces to a unique distribution fM , then dim(M) = 0 and (7) reduces to
(6). In the opposite direction, M = S defines the saturated model, in which case
(7) yields the undefined inequality 0 ≥ χ2

1−α[0].

Example: coarse grained model specifications. Let fM be a dice model,
with categories j = 1, . . . , m. Let J = 1, . . . , M < m denote groups of categories,
and suppose that the model specifications are coarse-grained (see (1)), that is

M = { fM |
∑

j∈J

fM
j

!= FM
J J = 1, . . . , M }

where FM is fixed. Let J(j) denote the group to which j belongs. Then the
maximum likelihood (ML) estimate is simply

f̂M
j = fD

j

FM
J(j)

FD
J(j)

, where FD
J :=

∑

j∈J

fD
j and K(fD||f̂M) = K(FD||FM ). (8)

Example: independence. Let X and Y two categorical variables with modal-
ities j = 1, . . . , m1 and k = 1, . . . , m2. Let fjk denote the joint distribution
of (X, Y ). The distribution of X alone (respectively Y alone) obtains as the
marginal fj• :=

∑
k fjk (respectively f•k :=

∑
j fjk). Let M denote the set of

independent distributions, i.e.

M = {f ∈ S | fjk = ajbk} .

The corresponding ML estimate f̂M ∈ M is

f̂M
jk = fD

j• fD
•k where fD

j• :=
∑

k

fD
jk and fD

•k :=
∑

j

fD
jk
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with the well-known property (where HD(X) denotes the entropy associated to
the empirical distribution of the variable X)

K(fD||f̂M) = I(X :Y ) =
1
2

∑

jk

(fD
jk − f̂M

jk )2

f̂M
jk

+ 0(||fD − f̂M||3) (9)

where the mutual information I(X : Y ) := HD(X) + HD(Y ) − HD(X, Y ) is
the information-theoretical measure of dependence between X and Y . Inequal-
ity HD(X, Y ) ≤ HD(X) + HD(Y ) insures its non-negativity. By (9), the corre-
sponding test reduces to the usual chi-square test of independence, with dim(S)−
dim(M) = (m1m2 − 1)− (m1 +m2 − 2) = (m1 − 1)(m2 − 1) degrees of freedom.

3.3 Testing between Two Hypotheses (Neyman-Pearson)

Consider the two hypotheses H0 : “ fM = f0 ” and H1 : “ fM = f1 ”, where
f0 and f1 constitute two distinct distributions in S. Let W ⊂ S denote the
rejection region for f0, that is such that H1 is accepted if fD ∈ W , and H0 is
accepted if fD ∈ W c := S \ W . The errors of first, respectively second kind are

α := P (fD ∈ W | f0) β := P (fD ∈ W c | f1) .

For n large, Sanov’s theorem (18) below shows that

α ∼= exp(−nK(f̃0||f0)) f̃0 := argminf∈W K(f ||f0)
β ∼= exp(−nK(f̃1||f1)) f̃1 := argminf∈W c K(f ||f1).

(10)

The rejection region W is said to be optimal if there is no other region W ′ ⊂
S with α(W ′) < α(W ) and β(W ′) < β(W ). The celebrated Neyman-Pearson
lemma, together with the asymptotic rate formula (4), states that W is optimal
iff it is of the form

W = {f | P (f |f1)
P (f |f0)

≥ T } = {f | K(f ||f0) − K(f ||f1) ≥ 1
n

lnT := τ} . (11)

One can demonstrate (see e.g. Cover and Thomas (1991) p.309) that the dis-
tributions (10) governing the asymptotic error rates coincide when W is optimal,
and are given by the multiplicative mixture

f̃0
j = f̃1

j = fj(μ) :=
(f0

j )μ(f1
j )1−μ

∑
k(f0

k )μ(f1
k )1−μ

(12)

where μ is the value insuring K(f(μ)||f0)−K(f(μ)||f1) = τ . Finally, the overall
probability of error, that is the probability of occurrence of an error of first or
second kind, is minimum for τ = 0, with rate equal to

K(f(μ∗)||f0) = K(f(μ∗)||f1) = − min
0≤μ≤1

ln(
∑

k

(f0
k )μ(f1

k )1−μ) =: C(f0, f1)

where μ∗ is the value minimising the third term. The quantity C(f0, f1) ≥ 0,
known as Chernoff information, constitutes a symmetric dissimilarity between
the distributions f0 and f1, and measures how easily f0 and f1 can be discrim-
inated from each other. In particular, C(f0, f1) = 0 iff f0 = f1.



Information Theory, Relative Entropy and Statistics 61

Example 2.5, continued: coins. Let f := (0.5, 0.5), g := (0.7, 0.3), h :=
(0.9, 0.1) and r := (1, 0). Numerical estimates yield (in nats) C(f, g) = 0.02,
C(f, h) = 0.11, C(g, h) = 0.03 and C(f, r) = ln 2 = 0.69.

3.4 Testing a Family within Another

Let M0 and M1 be two families of models, with M0 ⊂ M1 and dim(M0) <
dim(M1). Consider the test of H0 within H1, opposing H0 : “fM ∈ M0” against
H1 : “fM ∈ M1”.

By construction, K(fD||f̂M0) ≥ K(fD||f̂M1) since M1 is a more general
model than M0. Under H1, their difference can be shown to follow asymptoti-
cally a chi-square distribution. Precisely, the nested test of H0 within H1 reads:
“under the assumption that H1 holds, rejects H0 if

2n [K(fD||f̂M0) − K(fD||f̂M1)] ≥ χ2
1−α[dim(M1)−dim(M0)] ”. (13)

Example: quasi-symmetry, symmetry and marginal homogeneity. Flows
can be represented by a square matrix fjk ≥ 0 such that

∑m
j=1

∑m
k=1 fjk = 1, with

the representation “fjk = proportion of units located at place j at some time and
at place k some fixed time later”.

A popular model for flows is the quasi-symmetric class QS (Caussinus 1966),
known as the Gravity model in Geography (Bavaud 2002a)

QS = {f | fjk = αjβkγjk with γjk = γkj}
where αj quantifies the “push effect”, βk the “pull effect” and γjk the “distance
deterrence function”.

Symmetric and marginally homogeneous models constitute two popular alterna-
tive families, defined as

S = {f | fjk = fkj} MH = {f | fj• = f•j} .

Symmetric and quasi-symmetric ML estimates satisfy (see e.g. Bishop and al.
(1975) or Bavaud (2002a))

f̂S
jk =

1
2
(fD

jk + fD
kj) f̂ QS

jk + f̂ QS
kj = fD

jk + fD
kj f̂QS

j• = fD
j• f̂ QS

•k = fD
•k

from which the values of f̂ QS can be obtained iteratively. A similar yet more
involved procedure permits to obtain the marginal homogeneous estimates f̂ MH.

By construction, S ⊂ QS, and the test (13) consists in rejecting S (under the
assumption that QS holds) if

2n [K(fD||f̂S) − K(fD||f̂ QS)] ≥ χ2
1−α[m−1] . (14)

Noting that S = QS∩MH, (14) actually constitutes an alternative testing procedure
for QS, avoiding the necessity of computing f̂ MH (Caussinus 1996).
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Example 3.4 continued: inter-regional migrations. Relative entropies as-
sociated to Swiss inter-regional migrations flows 1985-1990 (m = 26 cantons; see
Bavaud (2002a)) are K(fD||f̂ S) = .00115 (with df = 325) and K(fD||f̂ QS) =
.00044 (with df = 300). The difference is .00071 (with df = 25 only) and in-
dicates that flows asymmetry is mainly produced by the violation of marginal
homogeneity (unbalanced flows) rather than the violation of quasi-symmetry.
However, the sheer size of the sample (n = 6′039′313) leads, at conventional
significance levels, to reject all three models S , MH and QS.

3.5 Competition between Simple Hypotheses: Bayesian Selection

Consider the set of q simple hypotheses “Ha : fM = ga ”, where ga ∈ Sm for
a = 1, . . . , q. In a Bayesian setting, denote by P (Ha) = P (ga) > 0 the prior
probability of hypothesis Ha, with

∑q
a=1 P (Ha) = 1. The posterior probability

P (Ha|D) obtains from Bayes rule as

P (Ha|D) =
P (Ha) P (D|Ha)

P (D)
with P (D) =

q∑

a=1

P (Ha) P (D|Ha) .

Direct application of the asymptotic rate formula (4) then yields

P (ga|fD) ∼= P (ga) exp(−n K(fD||ga))
P (fD)

(Bayesian selection formula) (15)

which shows, for n → ∞, the posterior probability to be concentrated on the
(supposedly unique) solution of

ĝ = argmin
ga

K(f∗||ga) where f∗ := lim
n→∞ fD .

In other words, the asymptotically surviving model ga minimises the relative
entropy K(ga||f∗) with respect to the long-run empirical distribution f∗, in
accordance with the ML principle.

For finite n, the relevant functional is K(fD||ga)) − 1
n lnP (ga), where the

second term represents a prior penalty attached to hypothesis Ha. Attempts to
generalize this framework to families of models Ma (a = 1, . . . , q) lie at the heart
of the so-called model selection procedures, with the introduction of penalties (as
in the AIC, BIC, DIC, ICOMP, etc. approaches) increasing with the number
of free parameters dim(Ma) (see e.g. Robert (2001)). In the alternative min-
imum description length (MDL) and algorithmic complexity theory approaches
(see e.g. MacKay (2003) or Li and Vitanyi (1997)), richer models necessitate a
longer description and should be penalised accordingly. All those procedures, to-
gether with Vapnik’s Structural Risk Minimization (SRM) principle (1995), aim
at controlling the problem of over-parametrization in statistical modelling. We
shall not pursue any further those matters, whose conceptual and methodological
unification remains yet to accomplish.
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Example: Dirichlet priors. Consider the continuous Dirichlet prior g ∼ D(α),
with density ρ(g|α) = Γ (α)∏

j Γ (αj)

∏
j g

αj−1
j , normalised to unity in Sm, where α =

(α1, . . . , αm) is a vector of parameters with αj > 0 and α :=
∑

j αj . Setting
πj := αj/α = E(gj |α), Stirling approximation yields ρ(g|α) ∼= exp(−αK(π||g))
for α large.

Alfter observing the data n = (n1, . . . , nm), the posterior distribution is
well-known to be D(α + n). Using fD

j = nj/n, one gets ρ(g|α + n)/ρ(g|α) ∼=
exp(−nK(fD||g)) for n large, as it must from (15). Hence

ρ(g|α + n) ∼= exp[−αK(π||g) − nK(fD||g)] ∼= exp[−(α + n)K(f post||g)] (16)

where fpost
j = E(gj |α + n) = λ πj + (1 − λ)fD

j with λ :=
α

α + n
. (17)

(16) and (17) show the parameter α to measure the strength of belief in the prior
guess, measured in units of the sample size (Ferguson 1974).

4 Maximum Entropy

4.1 Large Deviations: Sanov’s Theorem

Suppose data to be incompletely observed, i.e. one only knows that fD ∈ D,
where D ⊂ S is a subset of the simplex S, the set of all possible distributions
with m modalites. Then, for an i.i.d. process, a theorem due to Sanov (1957)
says that, for sufficiently regular D, the asymptotic rate of the probability that
fD ∈ D under model fM decreases exponentially as

P (fD ∈ D|fM ) ∼= exp(−n K(f̃D||fM )) where f̃D := arg min
f∈D

K(f ||fM ).(18)

f̃D is the so-called maximum entropy (ME) solution, that is the most probable
empirical distribution under the prior model fM and the knowledge that fD ∈ D.
Of course, f̃D = fM if fM ∈ D.

4.2 On the Nature of the Maximum Entropy Solution

When the prior is uniform (fM
j = 1/m), then

K(fD||fM ) = ln m − H(fD)

and minimising (over f ∈ D) the relative entropy K(f ||fM) amounts in max-
imising the entropy H(fD) (over f ∈ D).

For decades (ca. 1950-1990), the “maximum entropy” principle, also called
“minimum discrimination information (MDI) principle” by Kullback (1959), has
largely been used in science and engineering as a first-principle, “maximally
non-informative” method of generating models, maximising our ignorance (as
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represented by the entropy) under our available knowledge (f ∈ D) (see in
particular Jaynes (1957), (1978)).

However, (18) shows the maximum entropy construction to be justified from
Sanov’s theorem, and to result form the minimisation of the first argument of
the relative entropy, which points towards the empirical (rather than theoretical)
nature of the latter. In the present setting, f̃D appears as the most likely data
reconstruction under the prior model and the incomplete observations (see also
section 5.3).

Example: unobserved category. Let fM be given and suppose one knows
that a category, say j = 1, has not occured. Then

f̃D
j =

{
0 for j = 1

fM
j

1−fM
1

for j > 1
and K(f̃D||fM ) = − ln(1 − fM

1 ),

whose finiteness (for fM
1 < 1) contrasts the behavior K(fM ||f̃D) = ∞ (for

fM
1 > 0). See example 2.5 f).

Example: coarse grained observations. Let fM be a given distribution with
categories j = 1, . . . , m. Let J = 1, . . . , M < m denote groups of categories, and
suppose that observations are aggregated or coarse-grained, i.e. of the form

D = { fD |
∑

j∈J

fD
j

!= FD
J J = 1, . . . , M } .

Let J(j) denote the group to which j belongs. The ME distribution then reads
(see (8) and example 3.2)

f̃D
j = fM

j

FD
J(j)

FM
J(j)

where FM
J :=

∑

j∈J

fM
j and K(f̃D||fM ) = K(FD||FM ). (19)

Example: symmetrical observations. Let fM
jk be a given joint model for

square distributions (j, k = 1, . . . , m). Suppose one knows the data distribution
to be symmetrical, i.e.

D = {f | fD
jk = fD

kj } .

Then f̃D
jk =

√
fM

jk fM
kj

Z
where Z :=

∑

jk

√
fM

jk fM
kj

which contrasts the result f̂M
jk = 1

2 (fD
jk + fD

kj) of example 3.4 (see section 5.1).

4.3 “Standard” Maximum Entropy: Linear Constraint

Let D be determined by a linear constraint of the form
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D = {f |
m∑

j=1

fjaj = ā } with min
j

aj ≤ ā ≤ max
j

aj .

In other words, one knows the empirical average of some quantity {aj}m
j=1 to be

fixed to ā. Minimizing over f ∈ S the functional

K(f ||fM) + θA(f) A(f) :=
m∑

j=1

fjaj (20)

yields f̃D
j =

fM
j exp(θaj)

Z(θ)
Z(θ) :=

m∑

k=1

fM
k exp(θak) (21)

where the Lagrange multiplier θ is determined by the constraint
ā(θ) :=

∑
j f̃D

j (θ) aj
!= ā (see figure 2).

Example: average value of a dice. Suppose one believes a dice to be fair
(fM

j = 1/6), and one is told that the empirical average of its face values is
say ā =

∑
j fD

j j = 4, instead of ā = 3.5 as expected. The value of θ in (21)
insuring

∑
j f̃D

j j = 4 turns out to be θ = 0.175, insuring
∑

j f̃D
j j = 4, as well

as f̃D
1 = 0.10, f̃D

2 = 0.12, f̃D
3 = 0.15, f̃D

4 = 0.17, f̃D
5 = 0.25, f̃D

6 = 0.30 (Cover
and Thomas (1991) p. 295).

a( )

Fig. 2. Typical behaviour of ā(θ)

Example: Statistical Mechanics. An interacting particle system can occupy
m >> 1 configurations j = 1, . . . , m, a priori equiprobable (fM

j = 1/m), with
corresponding energy Ej . Knowing the average energy to be Ē, the resulting ME
solution (with β := −θ) is the Boltzmann-Gibbs distribution

f̃D
j =

exp(−βEj)
Z(β)

Z(β) :=
m∑

k=1

exp(−βEk) (22)

minimising the free energy F (f) := E(f) − TH(f), obtained (up to a constant
term) by multiplying the functional (20) by the temperature T := 1/β = −1/θ.
Temperature plays the role of an arbiter determining the trade-off between the
contradictory objectives of energy minimisation and entropy maximisation:
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• at high temperatures T → ∞ (i.e. β → 0+), the Boltzmann-Gibbs distri-
bution f̃D becomes uniform and the entropy H(f̃D) maximum (fluid-like
organisation of the matter).

• at low temperatures T → 0+ (i.e. β → ∞), the Boltzmann-Gibbs distri-
bution f̃D becomes concentrated on the ground states j− := argminj Ej ,
making the average energy E(f̃D) minimum (crystal-like organisation of the
matter).

Example 3.4, continued: quasi-symmetry. ME approach to gravity mod-
elling consists in considering flows constrained by q linear constraints of the
form

D = {f |
m∑

j,k=1

fjkaα
jk = āα α = 1, . . . , q}

such that, typically

1) ajk := djk = dkj (fixed average trip distance, cost or time djk)
2) aα

jk := δjα (fixed origin profiles, α = 1, . . . , m )
3) aα

jk := δαk (fixed destination profiles, α = 1, . . . , m)
4) ajk := δjk (fixed proportion of stayers)
5) ajk := δjα − δαk (balanced flows, α = 1, . . . , m)

Constraints 1) to 5) (and linear combinations of them) yield all the “classical
Gravity models” proposed in Geography, such as the exponential decay model
(with fM

jk = aj bk):

f̃D
jk = αjβk exp(−βdjk)

Moreover, if the prior fM is quasi-symmetric, so is f̃D under the above con-
straints (Bavaud 2002a).

5 Additive Decompositions

5.1 Convex and Exponential Families of Distributions

Definition: A family F ⊂ S of distributions is a convex family iff

f, g ∈ F ⇒ λf + (1 − λ)g ∈ F ∀ λ ∈ [0, 1]

Observations typically involve the identification of merged categories, and the
corresponding empirical distributions are coarse grained, that is determined
through aggregated values FJ :=

∑
j∈J fj only. Such coarse grained distribu-

tions form a convex family (see table 1). More generally, linearly constrained
distributions (section 4.3) are convex. Distributions (11) belonging to the opti-
mal Neyman-Pearson regions W (or W c), posterior distributions (17) as well as
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Table 1. Some convex and/or exponential families

Family F characterization remark convex exponential

deficient f1 = 0 yes yes

deterministic f1 = 1 yes yes

coarse grained
∑

j∈J fj = FJ yes no

mixture fj = f(Jq) = ρqh
q
J {hq

J} fixed yes yes

mixture fj = f(Jq) = ρqh
q
J {hq

J} adjustable no yes

independent fjk = ajbk no yes

marginally homogeneous fj• = f•j square tables yes no

symmetric fjk = fkj square tables yes yes

quasi-symmetric fjk = ajbkcjk, cjk = ckj square tables no yes

marginally homogeneous distributions (example 3.4) provide other examples of
convex families.

Definition: A family F ⊂ S of distributions is an exponential family iff

f, g ∈ F ⇒ fμg1−μ

Z(μ)
∈ F where Z(μ) :=

m∑

j=1

fμ
j g1−μ

j ∀ μ ∈ [0, 1]

Exponential families are a favorite object of classical statistics. Most classical
discrete or continuous probabilistic models (log-linear, multinomial, Poisson,
Dirichlet, Normal, Gamma, etc.) constitute exponential families. Amari (1985)
has developed a local parametric characterisation of exponential and convex
families in a differential geometric framework.

5.2 Factor Analyses

Independence models are exponential but not convex (see table 1): the weighted
sum of independent distributions is not independent in general. Conversely, non-
independent distributions can be decomposed as a sum of (latent) independent
terms through factor analysis. The spectral decomposition of the chi-square pro-
ducing the factorial correspondence analysis of contingency tables turns out to
be exactly applicable on mutual information (9) as well, yielding an “entropic”
alternative to (categorical) factor analysis (Bavaud 2002b).

Independent component analysis (ICA) aims at determining the linear trans-
formation of multivariate (continuous) data making them as independent as
possible. In contrast to principal component analysis, limited to the second-
order statistics associated to gaussian models, ICA attempts to take into ac-
count higher-order dependencies occurring in the mutual information between
variables, and extensively relies on information-theoretic principles, as developed
in Lee et al. (2000) or Cardoso (2003) and references therein.

5.3 Pythagorean Theorems

The following results, sometimes referred to as the Pythagorean theorems of IT,
provide an exact additive decomposition of the relative entropy:
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Decomposition theorem for convex families: if D is a convex family, then

K(f ||fM) = K(f ||f̃D) + K(f̃D||fM ) for any f ∈ D (23)

where f̃D is the ME distribution for D with prior fM .

Decomposition theorem for exponential families: if M is an exponential
family, then

K(fD||g) = K(fD||f̂M) + K(f̂M||g) for any g ∈ M (24)

where f̂M is the ML distribution for M with data fD.

Sketch of the proof of (23) (see e.g. Simon 1973): if D is convex with
dim(D) = dim(S) − q, its elements are of the form D = {f | ∑

j fja
α
j =

aα
0 for α = 1, . . . , q}, which implies the maximum entropy solution to be of

the form f̃D
j = exp(

∑
α λαaα

j )fM
j /Z(λ). Substituting this expression and us-

ing
∑

j fja
α
j =

∑
j f̃D

j aα
j proves (23).

Sketch of the proof of (24) (see e.g. Simon 1973): if M is exponential with
dim(M) = r, its elements are of the form fj = ρj exp(

∑r
α=1 λαaα

j )/Z(λ) (where
the partition function Z(λ) insures the normalisation), containing r free non-
redundant parameters λ ∈ R

r. Substituting this expression and using the opti-
mality condition

∑
j f̂M

j aα
j =

∑
j fD

j aα
j for all α = 1, . . . , r proves (24).

Equations (23) and (24) show that f̃D and f̂M can both occur as left and
right arguments of the relative entropy, underlining their somehow hybrid nature,
intermediate between data and models (see section 4.2).

Example: nested tests. Consider two exponential families M and N with
M ⊂ N . Twofold application of (24) demonstrates the identity

K(fD||f̂M) − K(fD||f̂N ) = K(f̂N ||f̂M)

occuring in nested tests such as (14).

Example: conditional independence in three-dimensional tables. Let
fD

ijk := nijk/n with n := n••• be the empirical distribution associated to the
nijk = “number of individuals in the category i of X, j of Y and k of Z ”.
Consider the families of models

L = {f ∈ S | fijk = aijbk} = {f ∈ S | ln fijk = λ + αij + βk}
M = {f ∈ S | f•jk = cidk} = {f ∈ S | ln f•jk = μ + γj + δk}
N = {f ∈ S | fijk = eijhjk} = {f ∈ S | ln fijk = ν + εij + ηjk} .

Model L expresses that Z is independent from X and Y (denoted Z ⊥ (X, Y )).
Model M expresses that Z and Y are independent (Y ⊥ Z). Model N expresses
that, conditionally to Y , X and Z are independent (X ⊥ Z|Y ). Models L and N
are exponential (in S), and M is exponential in the space of joint distributions
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on (Y, Z). They constitute well-known examples of log-linear models (see e.g.
Christensen (1990)).

Maximum likelihood estimates and associated relative entropies obtain as (see
example 3.2)

f̂L
ijk = fD

ij•f
D
••k ⇒ K(fD||f̂L) = HD(XY ) + HD(Z) − HD(XY Z)

f̂M
ijk =

fD
ijk

fD
•jk

fD
•j• fD

••k ⇒ K(fD||f̂M) = HD(Y ) + HD(Z) − HD(Y Z)

f̂N
ijk =

fD
ij• fD

•jk

fD
•j•

⇒ K(fD||f̂N ) = HD(XY ) + HD(Y Z) − HD(XY Z) − HD(Y )

and permit to test the corresponding models as in (7). As a matter of fact,
the present example illustrates another aspect of exact decomposition, namely

L = M∩N fD
ijk f̂L

ijk = f̂M
ijkf̂N

ijk

K(fD||f̂L) = K(fD||f̂M) + K(fD||f̂N ) dfL=dfM+dfN

where df denotes the appropriate degrees of freedom for the chi-square test (7).

5.4 Alternating Minimisation and the EM Algorithm

Alternating minimisation. Maximum likelihood and maximum entropy are
particular cases of the general problem

min
f∈F

min
g∈G

K(f ||g) . (25)

Alternating minimisation consists in defining recursively

f (n) := arg min
f∈F

K(f ||g(n)) (26)

g(n+1) := arg min
g∈G

K(f (n)||g) . (27)

Starting with some g(0) ∈ G (or some f (0) ∈ F), and for F and G convex,
K(f (n)||g(n)) converges towards (25) (Csiszár (1975); Csiszár and Tusnády,
1984).

The EM algorithm. Problem (26) is easy to solve when F is the coarse grained
family {f | ∑

j∈J fj = FJ}, with solution (19) f
(n)
j = g

(n)
j FJ(j)/G

(n)
J(j) and the

result K(f (n)||g(n)) = K(F ||G(n)) (see example 4.2).
The present situation describes incompletely observed data, in which F only

(and not f) is known, with corresponding model G(g) in M := {G | GJ =∑
j∈J gj and g ∈ G}. Also

min
G∈M

K(F ||G) = min
g∈G

K(F ||G(g)) = min
g∈G

min
f∈F

K(f ||g)

= lim
n→∞K(f (n)||g(n)) = lim

n→∞K(F ||G(n))
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which shows G(∞) to be the solution of minG∈M K(F ||G). This particular ver-
sion of the alternating minimisation procedure is known as the EM algorithm in
the literature (Dempster et al. 1977), where (26) is referred to as the “expectation
step” and (27) as the “maximisation step”.

Of course, the above procedure is fully operational provided (27) can also
be easily solved. This occurs for instance for finite-mixture models determined
by c fixed distributions hq

J (with
∑m

J=1 hq
J = 1 for q = 1, . . . , c), such that the

categories j = 1, . . . , m read as product categories of the form j = (J, q) with

gj = g(Jq) = ρq hq
J ρq ≥ 0

c∑

q=1

ρq = 1 GJ =
∑

q

ρqh
q
J

where the “mixing proportions” ρq are freely adjustable. Solving (27) yields

ρ(n+1)
q =

∑

J

f
(n)
(Jq) = ρ(n)

q

∑

J

hq
J FJ

∑
r hr

J ρ
(n)
r

which converges towards the optimal mixing proportions ρ
(∞)
q , unique since G is

convex. Continuous versions of the algorithm (in which J represents a position
in an Euclidean space) generate the so-called soft clustering algorithms, which
can be further restricted to the hard clustering and K-means algorithms. How-
ever, the distributions hq

J used in the latter cases generally contain additional
adjustable parameters (typically the mean and the covariance matrix of normal
distributions), which break down the convexity of G and cause the algorithm to
converge towards local minima.

6 Beyond Independence: Markov Chain Models
and Texts

As already proposed by Shannon (1948), the independence formalism can be
extended to stationary dependent sequences, that is on categorical time series
or “textual” data D = x1x2 . . . xn =: xn

1 , such as

D=bbaabbaabbbaabbbaabbbaabbaabaabbaabbaabbaabbaabbaabbaabbaab
aabbaabbbaabaabaabbbaabbbaabbaabbaabbaabaabbbaabbbaabbaabaabaa
bbaabaabbaabbaabbbaabbaabaabaabbaabbbbaabbaabaabaabaabaabaabaa
bbaabbaabbaabbbbaab .

In this context, each occurence xi constitutes a letter taking values ωj in a
state space Ω, the alphabet, of cardinality m = |Ω|. A sequence of r letters
α := ω1 . . . ωr ∈ Ωr is an r-gram. In our example, n = 202, Ω = {a, b}, m = 2,
Ω2 = {aa, ab, ba, bb}, etc.

6.1 Markov Chain Models

A Markov chain model of order r is specified by the conditional probabilities

fM (ω|α) ≥ 0 ω ∈ Ω α ∈ Ωr
∑

ω∈Ω

fM (ω|α) = 1 .
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fM(ω|α) is the probability that the symbol following the r-gram α is ω. It obtains
from the stationary distributions fM (αω) and fM (α) as

fM (ω|α) =
fM (αω)
fM (α)

.

The set Mr of models of order r constitutes an exponential family, nested as
Mr ⊂ Mr+1 for all r ≥ 0. In particular, M0 denotes the independence models,
and M1 the ordinary (first-order) Markov chains.

The corresponding empirical distributions fD(α) give the relative proportion
of r-grams α ∈ Ωr in the text D. They obtain as

fD(α) :=
n(α)

n − r + 1
with

∑

α∈Ωr

fD(α) = 1

where n(α) counts the number of occurrences of α in D. In the above example,
the tetragrams counts are for instance:

α n(α) α n(α) α n(α)
aaaa 0 aaab 0 aaba 16
aabb 35 abaa 16 abab 0
abba 22 abbb 11 baaa 0
baab 51 baba 0 babb 0
bbaa 35 bbab 0 bbba 11
bbbb 2 total 199

6.2 Simulating a Sequence

Under the assumption that a text follows a r-order model Mr, empirical dis-
tributions fD(α) (with α ∈ Ωr+1) converge for n large to fM (α). The latter
define in turn r-order transition probabilities, allowing the generation of new
texts, started from the stationary distribution.

Example. The following sequences are generated form the empirical probability
transitions of the Universal declaration of Human Rights, of length n = 8′149
with m = 27 states (the alphabet + the blank, without punctuation):

r = 0 (independent process)
iahthire edr pynuecu d lae mrfa ssooueoilhnid nritshfssmo nise yye

noa it eosc e lrc jdnca tyopaooieoegasrors c hel niooaahettnoos rnei
s sosgnolaotd t atiet

r = 1 (first-order Markov chain)
erionjuminek in l ar hat arequbjus st d ase scin ero tubied pmed

beetl equly shitoomandorio tathic wimof tal ats evash indimspre tel
sone aw onere pene e ed uaconcol mo atimered
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r = 2 (second-order Markov chain)
mingthe rint son of the frentery and com andepent the halons hal

to coupon efornitity the rit noratinsubject will the the in priente
hareeducaresull ch infor aself and evell

r = 3 (third-order Markov chain)
law socience of social as the right or everyone held genuinely

available sament of his no one may be enties the right in the cons as
the right to equal co one soveryone

r = 4 (fourth-order Markov chain)
are endowed with other means of full equality and to law no one is

the right to choose of the detent to arbitrarily in science with pay
for through freely choice work

r = 9 (ninth-order Markov chain)
democratic society and is entitled without interference and to

seek receive and impartial tribunals for acts violating the
fundamental rights indispensable for his

Of course, empirical distributions are expected to accurately estimate model
distributions for n large enough, or equivalently for r small enough, typically for

r < rmax :=
1
2

ln n

lnm
.

Simulations with r above about rmax (here roughly equal to 2) are over-parame-
terized: the number of parameters to be estimated exceeds the sample abilities to
do so, and simulations replicate fragments of the initial text rather than typical
r-grams occurences of written English in general, providing a vivid illustration
of the curse of dimensionality phenomenon.

6.3 Entropies and Entropy Rate

The r-gram entropy and the conditional entropy of order r associated to a (model
or empirical) distribution f are defined by

Hr(f) := −
∑

α∈Ωr

f(α) ln f(α) = H(X1, . . . , Xr)

hr+1(f) :=−
∑

α∈Ωr

f(α)
∑

ω∈Ω

f(ω|α) ln f(ω|α) = Hr+1(f)−Hr(f) = H(Xr+1|Xr
1 ).

The quantity hr(f) is non-neagtive, and non-increasing in r. Its limit defines the
entropy rate, measuring the conditional uncertainty on the next symbol knowing
the totality of past occurrences:

h(f) := lim
r→∞hr(f) = lim

r→∞
Hr(f)

r
entropy rate.
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By construction, 0 ≤ h(f) ≤ ln m, and the so-called redundancy R := 1 −
(h/lnm) satisfies 0 ≤ R ≤ 1.

The entropy rate measures the randomness of the stationary process: h(f) =
ln m (i.e. R = 1) characterizes a maximally random process is, that is a dice
model with uniform distribution. The process is ultimately deterministic iff
h(f) = 0 (i.e. R = 0).

Shannon’s estimate of the entropy rate of the written English on m = 27
symbols is about h = 1.3 bits per letter, that is h = 1.3 × ln 2 = 0.90 nat,
corresponding to R = 0.73: hundred pages of written English are in theory
compressible without loss to 100−73 = 27 pages. Equivalently, using an alphabet
containing exp(0.90) = 2.46 symbols only (and the same number of pages) is in
principle sufficient to code the text without loss.

Example: entropy rates for ordinary Markov chains. For a regular Markov
chain of order 1 with transition matrix W = (wjk) and stationary distribution πj ,
one gets

h1 = −
∑

j

πj lnπj ≥ h2 = h3 = . . . = −
∑

j

πj

∑

k

wjk lnwjk = h .

Identity h1 = h holds iff wjk = πk, that is if the process is of order r = 0. Also,
h → 0 iff W tends to a permutation, that is iff the process becomes deterministic.

6.4 The Asymptotic Rate for Markov Chains

Under the assumption of a model fM of order r, the probability to observe D is

P (D|fM ) ∼=
n∏

i=1

P (xi+r |xi+r−1
i ) ∼=

∏

ω∈Ω

∏

α∈Ωr

fM (ω|α)n(αω)
∑

ω∈Ω

∑

α∈Ωr

n(αω) = n

where finite “boundary effects”, possibly involving the first or last r symbols of
the sequence, are here neglected. Also, noting that a total of n(α)!/

∏
ω n(αω)!

permutations of the sequence generate the same fD(ω|α), taking the logarithm
and using Stirling approximation yields the asymptotic rate formula for Markov
chains

P (fD|fM ) ∼= exp(−n κr+1(fD||fM )) , where

κr+1(f ||g) := Kr+1(f ||g) − Kr(f ||g)) =
∑

α∈Ωr f(α)
∑

ω∈Ω f(ω|α) ln f(ω|α)
g(ω|α)

and Kr(f ||g)) :=
∑

α∈Ωr f(α) ln f(α)
g(α) .

(28)
Setting r = 0 returns the asymptotic formula (4) for independence models.

6.5 Testing the Order of an Empirical Sequence

For s ≤ r, write α ∈ Ωr as α = (βγ) where β ∈ Ωr−s and γ ∈ Ωs. Consider
s-order models of the form fM (ω|βγ) = fM (ω|γ). It is not difficult to prove the
identity (see e.g. Billingsley (1961))
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minfM∈Ms
κr+1(fD||fM ) = −Hr+1(fD) + Hr(fD) + Hs+1(fD) − Hs(fD)

= hs+1(fD) − hr+1(fD) ≥ 0 .
(29)

As an application, consider, as in section 3.4 , the log-likelihood nested test of
H0 within H1, opposing H0 : “fM ∈ Ms” against H1 : “fM ∈ Mr”. Identities
(28) and (29) lead to the rejection of H0 if

2n [hs+1(fD) − hr+1(fD)] ≥ χ2
1−α[(m−1)(mr−ms)] . (30)

Example: test of independence. For r = 1 and s = 0, the test (30) amonts
in testing independence, and the decision variable

h1(fD) − h2(fD) = H1(fD) + H1(fD) − H2(fD)
= H(X1) + H(X2) − H(X1, X2) = I(X1 : X2)

is (using stationarity) nothing but the mutual information between two consec-
utive symbols X1 and X2, as expected from example 3.2.

Example: sequential tests. For r = 1 and s = r − 1, inequality (30) implies
that the model at least of order r. Setting r = 1, 2, . . . , rmax (with df = (m −
1)2mr−1) constitutes a sequential procedure permitting to detect the order of
the model, if existing.

For instance, a binary Markov chain of order r = 3 and length n = 1024 in
Ω = {a, b} can be simulated as Xt := g(1

4 (Zt + Zt−1 + Zt−2 + Zt−3)), where Zt

are i.i.d. variables uniformly distributed as ∼ U(0, 1), and g(z) := a if z ≥ 1
2 and

g(z) := b if z < 1
2 . Application of the procedure at significance level α = 0.05 for

r = 1, . . . 5 = rmax is summarised in the following table, and shows to correctly
detect the order of the model:

r hr(fD) 2n[hr(fD) − hr+1(fD)] df χ2
0.95[df]

1 0.692 0.00 1 3.84
2 0.692 2.05 2 5.99
3 0.691 110.59 4 9.49
4 0.637 12.29 8 15.5
5 0.631 18.02 16 26.3

6.6 Heating and Cooling Texts

Let f(ω|α) (with ω ∈ Ω and α ∈ Ωr) denote a conditional distribution of order
r. In analogy to formula (22) of Statistical Mechanics, the distribution can be
“heated” or “cooled” at relative temperature T = 1/β to produce the so-called
annealed distribution

fβ(ω|α) :=
fβ(ω|α)∑

ω′∈Ω fβ(ω′|α)
.
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Sequences generated with the annealed transitions hence simulate texts possess-
ing a temperature T relatively to the original text.

Example: simulating hot and cold English texts. Conditional distribu-
tions of order 3, retaining tetragram structure, have been calibrated from Jane
Austen’s novel Emma (1816), containing n = 868′945 tokens belonging to m = 29
types (the alphabet, the blank, the hyphen and the apostrophe). A few annealed
simulations are shown below, where the first trigram was sampled from the sta-
tionary distribution (Bavaud and Xanthos, 2002).

β = 1 (original process)
feeliciousnest miss abbon hear jane is arer that isapple did ther

by the withour our the subject relevery that amile sament is laugh in
’ emma rement on the come februptings he

β = 0.1 (10 times hotter)
torables - hantly elterdays doin said just don’t check comedina inglas

ratefusandinite his happerall bet had had habiticents’ oh young most
brothey lostled wife favoicel let you cology

β = 0.01 (100 times hotter): any transition having occurred in the original text
tends to occur again with uniform probability, making the heated text maximally
unpredictable. However, most of the possible transitions did not occur initially,
which explains the persistence of the English-like aspect.

et-chaist-temseliving dwelf-ash eignansgranquick-gatefullied georgo
namissedeed fessnee th thusestnessful-timencurves - him duraguesdaird
vulgentroneousedatied yelaps isagacity in

β = 2 (2 times cooler) : conversely, frequent (rare) transitions become even
more frequent (rare), making the text fairly predictable.

’s good of his compassure is a miss she was she come to the of his
and as it it was so look of it i do not you with her that i am superior
the in ther which of that the half - and the

β = 4 (4 times cooler): in the low temperature limit, dynamics is trapped in
the most probable initial transitions and texts properly become crystal-like, as
expected from Physics (see example 4.3):

ll the was the was the was the was the was the was the was the was
the was the was the was the was the was the was the was the was the
was the was the was the was the was the was the

6.7 Additive and Multiplicative Text Mixtures

In the spirit of section 5.1, additive and multiplicative mixtures of two conditional
distributions f(ω|α) and g(ω|α) of order r can be constructed as

hλ(ω|α) := λf(ω|α)+(1 − λ)g(ω|α) hμ(ω|α) :=
fμ(ω|α) g(1−μ)(ω|α)∑

ω′∈Ω fμ(ω′|α) g(1−μ)(ω′|α)
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where 0 < λ < 1 and 0 < μ < 1. The resulting transition exists if it exists in at
least one of the initial distributions (additive mixtures) or in both distributions
(multiplicative mixtures).

Example: additive mixture of English and French. Let g denote the em-
pirical distribution of order 3 of example (6.6), and define f as the corresponding
distribution estimated on the n = 725′001 first symbols of the French novel La
bête humaine from Emile Zola. Additive simulations with various values of λ
read (Bavaud and Xanthos, 2002):

λ = 0.17
ll thin not alarly but alabouthould only to comethey had be the sepant

a was que lify you i bed at it see othe to had state cetter but of i
she done a la veil la preckone forma feel

λ = 0.5
daband shous ne findissouservait de sais comment do be certant she

cette l’ideed se point le fair somethen l’autres jeune suit onze muchait
satite a ponded was si je lui love toura

λ = 0.83
les appelleur voice the toodhould son as or que aprennel un revincontait

en at on du semblait juge yeux plait etait resoinsittairl on in and
my she comme elle ecreta-t-il avait autes foiser

showing, as expected, a gradual transformation from English- to French-
likeness with increasing λ.

Example: multiplicative mixture of English and French. Applied now on
multiplicative mixtures, the procedure described in example 6.7 yields (Bavaud
and Xanthos, 2002)

μ = 0.17
licatellence a promine agement ano ton becol car emm*** ever ans

touche-***i harriager gonistain ans tole elegards intellan enour bellion
genea***he succept wa***n instand instilliaristinutes

μ = 0.5
n neignit innerable quit tole ballassure cause on an une grite chambe

ner martient infine disable prisages creat mellesselles dut***grange
accour les norance trop mise une les emm***

μ = 0.83
es terine fille son mainternistonsidenter ing sile celles tout a

pard elevant poingerent une graver dant lesses jam***core son luxu***que
eles visagemensation lame cendance materroga***e

where the symbol *** indicates that the process is trapped in a trigram oc-
curing in the English, but not in the French sample (or vice versa). Again, the
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French-likeness of the texts increases with μ. Interestingly enough, some simu-
lated subsequences are arguably evocative of Latin, whose lexicon contains an
important part of the forms common to English and French.

From an inferential point of view, the multiplicative mixture is of the form
(12), and hence lies at the boundary of the optimal Neyman-Pearson decision
region, governing the asymptotic rate of errors of both kinds, namely confounding
French with English or English with French.
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1 Introduction

Information has a diversity of meanings, from everyday usage to a variety of
technical settings. There is no single theory of information, but several theories,
Shannon’s information theory [16, 27, 28], semantic theories [2], logic of informa-
tion [18], information algebra [21], philosophy of information [19], information
flow [3], quantum information theory [24], evolutionary information [30], algo-
rithmic information theory [4, 15], to name just a few. Each theory focuses on
some specific aspects of information, and overlaps are minimal. Information is
context-sensitive and heavily dependent on the adopted coding.

In this paper we will present, through a sequence of examples, some ideas and
results of the algorithmic approach to information. In this approach information
is measured by counting bits encoding computations.

2 Counting Bits

Information, in a broad sense, can be measured in various units, from bits to
dollars. In this paper we shall confine ourselves to bits. The bit, short for binary
digit, was first used in 1946 by John Tukey. A single bit can hold only one of
two values: 0 or 1. More information is obtained by combining consecutive bits
into larger units, bit-strings (shortly, strings): 00, 01,10,11, 000, 001,. . . , 111,
0000,. . . Sometimes it is useful to consider the empty string denoted by λ.

Strings have length: the number of characters of a string. For example, the
length of 0 is 1, the length of 1110111 is 7, the length of the empty string is 0.
Strings can be concatenated: the concatenation of the strings x and y is xy. The
length of xy is the sum of the lengths of x and y.

Bits can be very useful to measure information. The power of bits can be
illustrated with the information which can be encoded in, say, 20 bits. With a
simple strategy, twenty questions/answers elicit 20 bits of information, which
correspond to a single choice among 220 = 1, 048, 576 equally probable alter-
natives. For example, with the information in a bit-string of length 20 one can
identify any town in USA. The limit of this approach is most visible at the level
of semantics: No meaning is captured! For example, translated in binary, ’happy
birthday’, ’ya dirthbppayh’ have the same information content.

The following guessing game is a more interesting example illustrating the
power of bits: one person chooses a (secret) natural number and another person

G. Sommaruga (Ed.): Formal Theories of Information, LNCS 5363, pp. 79–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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tries to guess it. The person who guesses is only allowed to ask questions of the
following form: “Is your number less than n?” for every natural n ≥ 0; the other
person truthfully answers yes or no. The aim is to guess the number as fast as
possible, that is, with as few questions as possible.

As an example consider the following questions:

1. Is your number less than 1?
2. Is your number less than 2?
3. Is your number less than 3?
4. Is your number less than 4?
. . .

and so on until the first yes comes out.
To guess the number 10 we need to ask the first 11 questions; in general, to

guess the number n we have to ask the first n + 1 questions. This solution leads
to an encoding of all naturals numbers: with a bit-string of length n + 1 we
encode the number n.

Can we do it better? Certainly. For example, we start asking the questions “Is
your number less than 2i?” for i = 1, 2, . . . till we get the answer “yes”. This will
happen at a value i such that 2i−1 ≤ n < 2i. Then, we continue by halving the
length of the interval. For example, to guess the number 10 we need 8 questions
(corresponding to i = 1, 2, 4, 8, 16, 12, 9, 10). In general, to guess the number n
we have to ask the first 2 log n + 1 questions (here log n is the integer part of
log2 n, the base-2 logarithm of n). Note that this approach is better than the
first one for n > 3.

Still, can we do it better? This is possible if we consider large enough num-
bers n: we can design better and better solutions. Does there exist an optimal
solution? An answer will be given in the next section.

3 The Halting Problem

The halting problem (for Turing machines) is the problem to decide whether an
arbitrary Turing machine eventually halts on an arbitrary input:

Does there exist a Turing machine Thalt which given the code code(T )
of a Turing machine T , and the input x, eventually stops and produces
1 if T (x) stops and 0 if T (x) does not stop?

Turing’s result states that the halting problem cannot be solved by any Turing
machine, i.e. there is no such Thalt. Here is an information-theoretical proof,
[4, 14]. Instead of Turing machines we will deal with the informal notion of
“program”. We assume that programs incorporate inputs—which are coded as
natural numbers. So, a program may run forever (does not halt) or may eventu-
ally stop, in which case it prints a natural number.

Assume that there exists a halting program deciding whether an arbitrary
program will ever halt. Construct the following program, called P :
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1. read a natural N;
2. generate all programs up to N bits in size;
3. use the halting program to check for each generated program whether it

halts;
4. simulate the running of the above generated programs, and
5. output a number different from each output produced by the

above programs.

The program P halts for every natural N . How long is P? Answer: log N +
constant bits. Reason: to code N we need about log2 N bits and the rest of the
program P is constant.

For large N , the program P belongs to the set of programs having less than N
bits (because log N + constant < N). Accordingly, for such an N , the program
P will be generated by itself at some stage of the computation. We have got
a contradiction since P outputs a natural number different from the output
produced by itself!

Consider now all programs of length at most n, i.e. 2n+1 − 1 programs. Some
programs halt, some do not halt. If we order lexicographically all programs of
length n and ask, for each such program, whether it halts or not, we get a bit-
string of length 2n+1−1 encoding the whole information. Is it possible to encode
the same amount of information with fewer bits?

The answer is affirmative and a solution will be presented in what follows.
We need more technical details. We revert our discussion to Turing machines,
but of a very special type, self-delimiting Turing machines. The domain of a
Turing machine T—dom(T )—is the set of strings where T halts; if dom(T ) is
prefix-free, i.e. no string in dom(T ) is a proper extension of another string in
dom(T ), then T is called a self-delimiting Turing machine. An important result
is the universality theorem:

There effectively exists a self-delimiting Turing machine U , called univer-
sal, such that for every self-delimiting Turing machine T we can compute
a constant c, depending only on U and T , satisfying the following prop-
erty: if T (x) stops, then U(x′) = T (x), for some string x′ with length no
longer than the length of x plus c.

In the framework of self-delimiting Turing machines the above coding problem
can be stated as follows: given a universal self-delimiting Turing machine U and
an integer n > 0, find an encoding via a bit-string shorter than 2n from which one
can check which program x of length less than n stops on U . This encoding was
discovered by Chaitin in 1975 who introduced the Omega number, see [4, 15]:

ΩU =
∑

{x|U(x)halts}
2−|x|, (1)

where |x| denotes the length of x. We consider the binary expansion of ΩU

ΩU = 0.ω1ω2 · · ·ωm · · · (2)
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Given the first n bits of the binary expansion (2) of ΩU , ω1ω2 · · ·ωn, we can
decide which programs x of length less than n halt on U : we enumerate enough
elements p1, p2, . . . , pk in the domain of U till the sum

∑k
i=1 2−|pi| becomes larger

than or equal to 0.ω1ω2 · · ·ωn. We have:

{x | |x| ≤ n, U(x) halts} ⊆ {p1, p2, . . . , pk},
so the halting programs x with |x| ≤ n can be obtained by eliminating from the
set {p1, p2, . . . , pk} all programs of length larger than n. Indeed,

ΩU < 0.ω1ω2 · · ·ωn + 2−n,

and for every halting program q �∈ {p1, p2, . . . , pk} with |q| ≤ n we then have:

k∑

i=1

2−|pi| + 2−|q| ≥ 0.ω1ω2 · · ·ωn + 2−n > ΩU ,

a contradiction.
We have shown that the halting information for all programs of length less

than or equal to n (a set containing 2n+1 − 1 elements) can be compressed into
a string of length n: ω1ω2 · · ·ωn.1

We are now in the position to give an answer to the question posed at the end
of the section 2. Recall, we are interested in constructing an infinite prefix-free
set of bit-strings to code as efficiently as possible all non-negative integers. The
domain of a universal self-delimiting Turing machine is such a code (cf. [1]):

Let A be a set of bit-strings. The following two conditions are equivalent:

a) The set A is the domain of a universal self-delimiting Turing machine.

b) For every computable one-one function g : {0, 1, 2, . . .} → Σ∗

having a prefix-free range, there exist a computable one-one function
f : {0, 1, 2, . . .} → Σ∗ and a constant k ≥ 0 such that

a. f({0, 1, . . .}) ⊆ A,

b. |f(n)| ≤ |g(n)| + k, for every n ≥ 0.

The good news is that coding with programs in the domain of a universal
self-delimiting Turing machine is optimal up to an additive constant (and one
can show that a better coding does not exist). The bad news is that this coding
is computably enumerable, but not computable.

Finally, we ask the question: which problems can be solved knowing finitely
many bits of ΩU (see 2)? To answer this question we will present an implementa-
tion of a specific universal self-delimiting Turing machine U based on a register
machine program, see [6]. A register machine has a finite number of registers,
1 The converse implication is not true: we may know exactly which programs of length

less than n halt and still not know any bit of ΩU , cf. [5].
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each of which may contain an arbitrarily large non-negative binary integer. The
register machine U (labelled) instructions are:

L: EQ R1 R2 R3
L: SET R1 R2
L: ADD R1 R2
L: READ R1
L: HALT

The names of the above instructions are self-explanatory. For instance, the
first instruction is the classical if-then-else condition. In all cases R2 denotes
either a register or a binary constant of the form 1(0 + 1)∗ + 0, while R1 and R3
must be register variables.

A register machine program consists of a finite list of labelled instructions
from the above list, with the restriction that the HALT instruction appears only
once, as the last instruction of the list. The input data (a binary string) follows
immediately after the HALT instruction. A program not reading the whole data
or attempting to read past the last data-bit results in a runtime error. Some
programs have no input data.

It is perhaps surprising that many problems in mathematics can be refor-
mulated in terms of the halting/non-halting status of appropriately constructed
self-delimiting Turing machines. For example, consider Fermat’s Last Theorem,
stating that there are no integers x, y, z, n > 3 such that xn + yn = zn. We
can construct a self-delimiting Turing machine TFermat which systematically
enumerates all possible integers (for example, written in binary) x, y, z, n > 3,
checks whether xn + yn = zn, and stops if for some values x, y, z, n the rela-
tion is true (which would mean that the program has found a counter-example);
otherwise, T generates a new 4-tuple x, y, z, n and repeats the above procedure.
Fermat’s Last Theorem is equivalent with the statement “TFermat never halts”,
hence knowing that Fermat’s Last Theorem is true we know that TFermat never
halts.

In this way we can measure the difficulty of Fermat’s Last Theorem by the
complexity of TFermat, for example, by the number of bits necessary to spec-
ify TFermat in some fixed formalism (say, U). Of course, there are many self-
delimiting Turing machines equivalent to TFermat, so a natural way to evaluate
the complexity is to consider the least complex such machine. And, of course,
this extends to any problem Π for which we can construct a self-delimiting Tur-
ing machine TΠ such that Π is false if and only if U(TΠ) halts (if such a program
exists): the difficulty of such a problem Π is the minimal number of bits of ΩU

necessary to test whether CΠ stops on U .
Here are three important open questions that can be analysed with this

method (cf. [6]):

– Goldbach’s Conjecture:2 the program TGoldbach has 135 instructions to-
talling 3,484 bits.

2 The conjecture was tested up to 4 × 1017, see [25].
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– Riemann Hypothesis:3 the program TRiemann consists of 290 instructions
totalling 7,780 bits.

– Collatz’ Conjecture:4 there is a non-constructive way to prove that there
exists a program TCollatz which never stops iff the Collatz’ Conjecture is
true.

Are the numbers specified above the exact difficulties of the corresponding
problems? Definitely not, they are upper bounds! The bad news is that, as ex-
pected, the problem of computing the difficulty of a problem is not computable.
The good news is one can work with upper bounds: changing U will result in
a change of upper bounds, but the order of difficulty will be preserved, namely
if Π1 is more difficult than Π2 for U , the same relation will be true for any
other universal self-delimiting Turing machine U∗. Specifically, the above anal-
ysis shows that the Riemann Hypothesis is more difficult than the Goldbach’s
Conjecture. For Collatz’ Conjecture we cannot even evaluate an upper bound
for the difficulty as the proof is not constructive.

4 Can Computers Create Information?

Can computation produce new information? To answer this question we will
introduce a measure of information based on counting bits encoding computa-
tions. The motivation for this complexity measure may be rooted in Leibniz’s
work (1686): “A theory must be simpler than the data is explains ”. Hence, a
bit-string for which there is no theory is “unexplainable”, “incomprehensible”
except as ‘a thing in itself’ (Ding an sich in Kant’s terminology).

Bearing in mind these facts we say that if a self-delimiting Turing machine
T with program p produces the bit-string x, then p generates x via T , and the
amount of information T extracts from x is

HT (x) = min{|p| | T (p) = x}.

It is possible that T (p) = x is false for any program p; in this case HT (x) = ∞.
This definition heavily depends on T , but using the universality theorem we can
make H as independent as possible on the underlying Turing machine because
HU is optimal up to an additive constant in the class of all possible HT :

For every self-delimiting Turing machine T there exists a constant c
(depending on U and T ) such that for all strings x:

HU (x) ≤ HT (x) + c.

So, for now on we shall fix a universal self-delimiting Turing machine U and
write H instead of HU .

3 One of the Clay Mathematical Institute Millennium Problems, see [17, 31].
4 See more in [23]; the conjecture was tested and proved true up to 10 · 258, see [26].
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If H(x) > H(y), then the complexity of x is larger than the complexity of
y, that is, x encodes more information than y. In this framework, to create
information means to start with an input x and produce an output y which has
more information than x, that is, H(x) < H(y). Our initial question becomes:
is there any computable process capable of producing infinitely many outputs
each of which has more information than its corresponding input? The problem
is trivial for finitely many inputs.

One possible way to answer the above question is to assume that we have
a one-to-one self-delimiting Turing machine T that halts on infinitely many in-
puts x, each of which having H(x) ≤ |x| − c/2, where c is a fixed constant.
Is it possible that T produces infinitely many outputs with the property that
H(T (x)) ≥ |T (x)|+c/2, that is, T produces a fixed amount (c bits) of newly cre-
ated information5)? The answer is negative: no T is capable of such performance.
Indeed, this is not possible because otherwise T would generate an infinite com-
putably enumerable set of strings y with H(y) ≥ |y| + c/2, an impossibility
(because the set {z | H(z) ≥ |z| + c} is immune, see [4]).

The above result suggests that a computer cannot create too much new in-
formation. Then the next question is: how much information can we expect to
be created by computation?

A “Gödelian theory” is a finitely-specified, arithmetically sound, consistent
theory strong enough to formalize arithmetic. For example, ZFC—Zermelo-
Fraenkel set theory with choice, the classical axiomatic system in which virtually
all current mathematics can be formalised—is a Gödelian theory. Define a new
complexity measure

δ(x) = H(x) − |x|.
The motivation in working with δ instead of H is the following. The complexity
measures H and δ are similar as δ is defined from H and a simple computable
function; for example, both measures are uncomputable. But H and δ differ in an
essential way: given a positive N , the set {x | H(x) ≤ N} is finite while the set
{x | δ(x) ≤ N} is infinite. A sentence with a large δ-complexity has also a large
H-complexity, but the converse is not true. For example, the H-complexity of
(true) sentences of the form “1+n = n+1” tends to infinity as n → ∞; however,
their δ-complexity is bounded.

We can now state the main result in [9]:

For every Gödelian theory there exists a constant N , such that the theory
proves no statement x with δ(x) > N .

Any Gödelian theory can be used to prove theorems which have a bit more
information than the theory itself, but not too much: everything is “hard-
wired” into the theory, there is very little room for “creativity” to produce more
information.

The above result is a form of Gödel’s incompleteness:

Any statement x with δ(x) > N cannot be proved by the Gödelian theory.
5 This is a very small increase in information.
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Even more, the set of statement which cannot be either proved or disproved
by the Gödelian theory is large.

5 The Algorithmic Coding Theorem

Shannon’s coding theorem [27] says that the minimal average code string length
is about equal to the entropy of the source string set. The coding theorem plays
an important role in Shannon’s information theory [16, 27, 28]. In what follows
we will briefly present an algorithmic version of Shannon’s coding theorem.

Self-delimiting Turing machines have a prefix-free domain. Prefix-free sets S
satisfy Kraft’s inequality, [16]:

∑

p∈S

2−|p| ≤ 1.

The following (more general) converse result, known as Kraft-Chaitin theorem
(see [4]), is frequently used to build self-delimiting Turing machines:

Given a computable list of “requirements” (ni, si), (si are strings, ni ≥ 1)
such that

∑
i 2−ni ≤ 1, we can effectively construct a self-delimiting Tur-

ing machine T and a computable one-to-one enumeration x0, x1, x2, . . .
of strings xi of length ni such that T (xi) = si, for all i, and T (x) is
undefined if x �∈ {xi | i ≥ 1}.

Let Σ∗ be the set of all binary strings. A function P : Σ∗ → [0, 1] such that∑
x P (x) ≤ 1 is called a semi-distribution over the strings. In case

∑
x P (x) = 1,

P is a distribution. A semi-distribution P is semi-computable from below (above)
in case the set {(x, r) | x ∈ Σ∗, r ∈ Q, P (x) > r} ({(x, r) | x ∈ Σ∗, r ∈
Q, P (x) < r}) is computably enumerable (Q is the set of rationals). A semi-
distribution P is computable if it is semi-computable from below and from above.
For example, the probability6 that the self-delimiting Turing machine T produces
the output x,

PT (x) =
∑

T (u)=x

2−|u|,

is a semi-distribution semi-computable from below. The function P (x) =
2−2|x|−1 is a computable distribution.

A prefix-code for strings is a one-to-one function C : Σ∗ → Σ∗ such that
C(Σ∗) is prefix-free. If C(x) = u, then u is a code for x. The injectivity of C
implies unique decodability.

For every self-delimiting Turing machine T and string x such that PT (x) > 0,
we denote by

x∗
T = min{u | T (u) = x},

where the minimum is taken according to the quasi-lexicographical ordering of
strings (λ < 0 < 1 < 00 < 01 < 10 < 11 < 000 < · · ·); x∗

T is called the
6 See more about the underlying probability space in [4].
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minimal (canonical) program of x with respect to T . For every surjective self-
delimiting Turing machine T , CT (x) = x∗

T is a prefix-code; universal machines
are surjective.

The average code-string length of a prefix-code C with respect to a semi-
distribution P is

LC,P =
∑

x

P (x) · |C(x)|,

the minimal average code-string length with respect to a semi-distribution P is

LP = inf {LC,P | C prefix-code},

and the entropy of a semi-distribution P is

HP = −
∑

x

P (x) · log P (x).

Shannon’s classical (noiseless) coding theorem [16, 27] can be expressed in the
language of semi-distributions as follows:

The following inequalities hold true for every semi-distribution P :

HP − 1 ≤ HP +

(
∑

x

P (x)

)
log

(
∑

x

P (x)

)
≤ LP ≤ HP + 1.

If P is a distribution, then log(
∑

x P (x)) = 0, so we get the classical in-
equality HP ≥ LP , cf. [16]. However, this inequality is not true for every semi-
distribution. For example, take P (x) = 2−2|x|−3 and C(x) = x1x1 . . . xnxn01. It
follows that LP ≤ LC,P = HP − 1

4 .
Under which conditions, given a semi-distribution P , can we find a (universal)

self-delimiting Turing machine T such that HT (x) is equal, up to an additive
constant, to − logP (x), i.e. the complexity is equal up to an additive constant
to entropy? An answer is given by the following general result proved in [8]:

Assume that P is a semi-distribution such that P (x) > 0, for every x,
and there exist a computably enumerable set S ⊂ Σ∗ × {0, 1, . . .} and a
constant c ≥ 0 such that the following two conditions are satisfied for
every x ∈ Σ∗:

(i)
∑

(x,n)∈S 2−n ≤ P (x),

(ii) if P (x) > 2−n, then (x, m) ∈ S, for some m ≤ n + c.

Then, there exists a machine T (depending upon S) such that for all x,

− log P (x) ≤ HT (x) ≤ (1 + c) − log P (x).
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The above result makes no direct computability assumptions on P . To get
sharper consequences we will introduce the halting probability of a self-delimiting
Turing machine T, ΩT

7, and the minimal (canonical) programs with respect to
T . First, in analogy with (1) we define

ΩT =
∑

{x|T (x)halts}
2−|x|.

Specialising P we show that minimal programs are almost optimal for P .
Minimal programs of universal machines are almost optimal for every semi-
computable semi-distribution P :

Assume that P is a semi-distribution semi-computable from below. Then,
there exists a machine T (depending upon P ) such that for all x,

− log P (x) ≤ HT (x) ≤ 2 − log P (x).

Consequently, minimal programs for T are almost optimal: the code CT

satisfies the inequalities:

0 ≤ LCT ,P −HP ≤ 2.

When the semi-distribution P is given, an optimal prefix-code can be found for
P . However, that code may be far from optimal for a different semi-distribution.
For example, let C be a prefix-code such that |C(x)| = 2|x|+2, for all x. Let
α > 0 and consider the distribution

Pα(x) = (1 − 2−α) 2−(α+1)|x|.

If α ≤ 1, then
LC,Pα −HPα = ∞,

but if α > 1, then
LC,Pα −HPα < ∞.

So, C is asymptotical optimal for every distribution Pα with 1 < α, but C is
far away from optimality if 0 < α ≤ 1. Clearly, Pα is computable provided α is
computable.

Minimal programs are asymptotical optimal for every semi-distribution semi-
computable from below:

Let P be a semi-distribution semi-computable from below, and U a uni-
versal self-delimiting Turing machine. Then, there exists a constant cP

(depending upon P ) such that

0 ≤ LCU ,P −HP ≤ 1 + cP .

7 The reader may recall the number ΩU introduce in section 1.
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The next result establishes a tight relation between complexity (HT ) and
entropy (− log PT ):

Let T be a machine and c ≥ 0. The following statements are equivalent:

(a) for all x, HT (x) ≤ (1 + c) − log PT (x),

(b) for all non-negative n, if PT (x) > 2−n, then HT (x) ≤ n + c.

In particular we get the algorithmic coding theorem (Chaitin–Gács):

There exists a constant c ≥ 0 such that for all strings x,

|HU (x) + log PU (x)| ≤ 1 + c.

6 Algorithmic Randomness and Incompleteness

Defining randomness is very tricky. There are many proposals, among them
the algorithmic one which equates randomness with incompressibility, and then
proves other natural properties of “algorithmic randomness”: stochasticity, un-
predictability, etc. Algorithmic randomness comes into two forms, for finite bit-
strings and for infinite sequences.

An infinite sequence x = x1x2 . . . , xn . . . is algorithmically random if there
exists a positive constant c > 0 such that H(x1x2 . . . , xn) ≥ n − c. Chaitin’s
theorem (see [13]) states

The sequence of bits of ΩU (i.e. the sequence ω1ω2 . . . ωn . . . in (2)) is
algorithmically random.

We say that the real ΩU is algorithmically random.
Two questions come naturally: a) are there any other “natural” algorithmi-

cally random sequences?, b) ΩU is not only algorithmically random, but also
computably enumerable, that is, ΩU is the limit of a computable increasing se-
quence of rationals; are there other computably enumerable and algorithmically
random numbers?

The answer to the first question is affirmative while the second question has
a negative answer.

Let bin : {1, 2, . . .} → Σ∗ be the bijection which associates to every n ≥ 1 its
binary expansion without the leading 1,

n n2 bin(n) |bin(n)|
1 1 λ 0
2 10 0 1
3 11 1 1
4 100 00 2
...

...
...

...
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If A ⊂ Σ∗, then we define Υ [A] = {n ≥ 1 | bin(n) ∈ A}. In other terms, the
binary expansion of n is n2 = 1bin(n). The zeta number of the Turing machine
M ,8 denoted ζM , is defined by

ζM =
∑

n∈Υ [dom(M)]

1
n

.

In [10] one proves the following result:

The zeta number ζU of a universal self-delimiting Turing machine U is
algorithmically random.

In fact, the above theorem is true for a larger class of Turing machines. A
convergent Turing machine is a Turing machine V whose zeta number is finite,
ζV < ∞.9 Every self-delimiting Turing machine is convergent, but the converse
is not true. The universality theorem holds true for convergent Turing machines
as well. We can now state a more general result, [10]:

The zeta number ζV of a universal convergent Turing machine V is al-
gorithmically random.

The answer to the second question is provided by the following theorem (cf.
[7, 22], see also [4]):

A real α ∈ (0, 1) is computably enumerable and algorithmically random
iff there exists a universal self-delimiting Turing machine U such that
α = ΩU .

Algorithmic randomness is intimately related to incompleteness in Gödel’s
sense. Here are two results:

Chaitin’s theorem [13]: Every Gödelian theory cannot determine more
than finitely many digits of ΩU .

Solovay’s theorem [29]: Fix a Gödelian theory. We can construct uni-
versal self-delimiting Turing machines U such that the theory cannot
determine any digit of ΩU .

Generalised Solovay’s theorem [5]: Fix a Gödelian theory and a univer-
sal self-delimiting Turing machine U . Assume that ΩU = 0.11 · · ·10 · · ·.
Then, we can effectively construct a universal self-delimiting Turing ma-
chine U ′ such that ΩU ′ = ΩU and the theory can determine at most the
digits of ΩU before the first 0.

8 M is not necessarily self-delimiting; of course, ζM could be infinite.
9 Clearly, ΩV < ∞ iff ζV < ∞, so convergence can be equally defined in terms of zeta

or Omega.
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7 Algorithmic Randomness and Halting

In this section we answer the question: Can a program stop at an algorithmically
random time?

First we introduce yet another complexity measure, the natural complexity, cf.
[11]. The natural complexity of the string x (with respect to the Turing machine10

M) is ∇M (x) = min{n ≥ 1 | M(bin(n)) = x}. Using ∇ the universality theorem
has the following form:

One can effectively construct a (universal) Turing machine V such that
for every machine M , there is a constant ε > 0 (depending on V and
M) such that ∇V (x) ≤ ε · ∇M (x), for all strings x.

We fix the universal Turing machine V and write ∇ instead of ∇V . A binary
string x is algorithmically random if ∇(x) ≥ 2|x|/|x|.11 One can prove (see [4, 15])
that algorithmically random strings have many properties one naturally associate
with randomness, among them strong uncomputability:

No Turing machine is capable of enumerating an infinity of algorithmi-
cally random strings.

Most binary strings of a given length n are algorithmically random because
they have high density:

density(n) = #{x ∈ Σ∗ : |x| = n,∇(x) ≥ 2n/n} · 2−n ≥ 1 − 1/n,

hence
lim

n→∞ density(n) = 1.

We are interested in the properties of the exact times programs stop. A time t
will be called algorithmically random if bin(t) is algorithmically random. In [12]
one proves the following result:

Let V be a universal Turing machine. One can effectively compute a
constant c (depending on V ) such that the following is true: if an N -bit
program p has not stopped on V by the time 22N+2c+1, where N ≥ 2,
then V (p) cannot exactly stop at any algorithmically random time t ≥
22N+2c+1.

In other words, given V and a program p of length N we can compute the
time θV,N = 22N+2c+1 with the following property: either V (p) stops before the
time θV,N , or if it has not stopped by that time, then either V (p) will never

10 Not necessarily self-delimiting.
11 In the language of the complexity H , the string x is algorithmically random if H(x) ≥

|x| − log |x|. Algorithmically randomness for strings is a matter of degree, so we can
set various bounds on the complexity; see [4].



92 C.S. Calude

stop or V (p) will stop at a non-algorithmically random time t ≥ θV,N . Because
non-algorithmically random times have effectively zero density, “chances” that
an N -bit program p that has not stopped on V by the time θV,N will eventually
stop effectively approach zero:

For every length N , we can effectively compute a threshold time θV,N

(which depends on V and N) such that if a program of length N runs for
θV,N steps without halting, then the density of times greater than θV,N at
which the program can stop has effective zero density. More precisely, if
an N -bit program runs for T > max{θN , 22+5·2k} steps, then the density
of times at which the program can stop is less than 2−k.

8 Incompleteness and Uncertainty

Gödel’s hostility to any suggestion regarding possible connections between his
incompleteness theorem and physics, particularly, Heisenberg’s uncertainty re-
lation, is well-known: J. Wheeler was thrown out of Gödel’s office for asking
the question “Professor Gödel, what connection do you see between your incom-
pleteness theorem and Heisenberg’s uncertainty principle?”

Still, there is a huge interest in the relations between these two statements.
For example, Hawking’s view (see [20]) is that

“a physical theory is self-referencing, like in Gödel’s theorem . . . Theo-
ries we have so far are both inconsistent and incomplete”.12

In [12] a relation between incompleteness and uncertainty is established. To
present it we will use the natural complexity ∇ = ∇U induced by a universal
self-delimiting Turing machine U ; recall that H = HU . One can see that

2H(x) ≤ ∇(x) < 2H(x)+1,

hence, Δ(x) = 2H(x), the uncertainty in the value ∇(x), is the difference between
the upper and lower bounds given.

Finally let Δs = 2−s. The property of Ω = ΩU to be algorithmically random
can be expressed in the following way:

Δs · Δ(ω1 . . . ωs) ≥ 1, (3)

In (3), an uncertainty relation, the complexity measures the uncertainty in the
total information. One can prove that the relation (3) implies Chaitin’s theorem
(presented at the end of section 6), hence, Gödel’s incompleteness.

Of course, this is a formal approach and much more is required to check its
“physical” base (see more in [12]).

12 It is worth noting that a theory which is inconsistent is not necessarily complete,
although in many cases this is true.
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1 Introduction

According to Shannon’s classical information theory [19] information is measured
by the reduction of uncertainty and the latter is measured by entropy. This
theory is concerned with the transmission of symbols from a finite alphabet.
The uncertainty concerns the question which symbol is sent and the information
is given by a probabilistic model of the transmission channel and the symbol
observed at the output of the channel. This leads to a statistical communication
theory which is still the main subject of communication theory today.

There are some important elements in Shannon’s approach that will be picked
up and reconsidered here, although in another direction and with other goals
than in Shannon’s work. The first ingredient is that information relates to ques-
tions. In Shannon’s case the question is fixed: what symbol is sent? In information
processing in general several questions, whole systems of interrelated questions,
will be considered. A piece of information may relate to a determined domain
and must then be focussed on the question or questions of interest. Further,
several pieces of information on related domains or questions may be available
and must be aggregated to get the overall picture. These elements introduce an
algebraic flavor into an extended information theory.

The theory proposed here can be sketched as follows: Questions can be repre-
sented by the possible answers they allow. There may be finer or coarser answers,
which corresponds to a finer or coarser granularity of questions. This can be cap-
tured by a partial order between questions or the domains of possible answers.
It will even be supposed that the system of questions or domains forms a lat-
tice, such that two domains have a supremum or join representing the combined
question, i.e. the possible answers to both questions. Two domains have also
an infimum or meet representing the common part, the intersection, of both
questions. Associated with this lattice of domains is a system of information
consisting of pieces of information, each piece bearing on a determined domain
from the lattice. Within this system the operations of combination of informa-
tion, representing aggregation, and of projection to a given domain, representing
� Research supported by grant No. 200020–109510 of the Swiss National Foundation
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information extraction, are defined. This leads to a certain two-sorted algebra
which is called an information algebra and which is the subject of this chapter.

First, in Section 2.1 the classical relational algebra associated with relational
databases will be presented as a prototype of an information algebra. This serves
as a motivation, since databases are surely depositories of information. In Sec-
tion 2.2 the abstract axiomatic definition of information algebra is given. It is
shown how information in this framework can be transported to arbitrary do-
mains and thus relate to any question of the system considered. Further two
equivalent variants of the algebraic structure are discussed: In Section 2.3 it is
shown how focussing of information may in some cases be replaced by variable
elimination. This positions information algebra in the context of logics and re-
lates information extraction with existential quantification. The latter relation
is elaborated in Section 3, especially in Subsections 3.2 and 3.3. The transport
operation of information shows that the same piece of information may be rep-
resented equivalently relative to different domains. This leads to an equivalent
domain-free version of the information algebra (Section 2.5). This variant may
be better suited for some discussions than the original labeled version.

In Section 3 several instances or examples of information algebras are
presented. They are mostly related to different systems of logic which provide
besides databases a second basic form of representation of information. In par-
ticular the classical systems of propositional and predicate logic are presented
as information algebras. This is clearly related to algebraic theories of logic as
proposed for instance by [6, 7, 8]. The concept of contexts is proposed as a more
general framework related to logic for obtaining information systems (Section
3.4). This concept is motivated by and related to classifications [1]. It is also
connected to concept analysis [3]. Outside logic, a further example in Section 3.5
is linked to fuzzy set theory and possibility theory. These few examples should
suffice to convince the reader about the justification and the interest of informa-
tion algebras.

The last Section 4 establishes a first link of the theory of information algebras
with Shannon’s information measure, although it must be stressed that the alge-
braic theory so far is not a statistical theory. First we show how a natural partial
order of information content arises from the algebra of information. It allows to
compare information content both in an absolute way as well as with respect to
a given question or domain. This order permits also to define particular algebras
built form basic, finest information elements, called atoms. In those cases it will
be possible to define a quantitative information measure using Hartley’s measure
(or entropy of uniform distributions) to quantify the reduction of uncertainty by
an information element out of an information algebra. This measure is shown
to respect the qualitative, partial order of information content. It is defined rel-
ative to any given domain, and there is also a relative information measure of
a piece of information given another one. Several interesting properties of this
measure are discussed. Again this is not a statistical theory of information, such
that entropy displays not yet its full power. Motivated by relational algebra,
dual information algebra and related measures in Boolean information algebra
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will also be considered in Section 4.2 and 4.4. Both measures have their proper
interpretation and application.

Where do information algebras originate from? For Bayesian networks [14]
proposed a so-called local propagation algorithm, which solved the dimensional-
ity and efficiency problem of the naive solution problems. Based on this work
[20] proposed a system of simple axioms which were sufficient for permitting
local propagation and which were also sufficient for several formalisms of artifi-
cial intelligence. In [9] the algebraic theory of these, so-called valuation algebras
was developed into some depth. And in particular, information algebras were
proposed as valuation algebras which satisfy in addition the idempotency prop-
erty. It is this property which allows the development of the information theory
proposed here. So, whereas Shannon’s theory is a theory of communication, re-
sulting in efficient coding schemes, the theory of information algebra is a theory
of computation, leading to efficient generic algorithms for important problems of
query processing.

2 The Algebra of Information

2.1 A Prototype: Relational Algebra

Relational databases surely contain information. Therefore they may serve as a
prototype example for the algebraic structure and theory we want to propose
and discuss here. So let’s summarize the basic elements of relational database
theory.

Let A be a set of symbols, called attributes. For each α ∈ A let Dα be a
non-empty set, the set of possible values for attribute α. For example, if A =
{name,age,income}, then Dname could be the set of strings, whereas Dage and
Dincome are both the set of nonnegative integers.

Let x ⊆ A. A x-tuple is a function f with domain x and values f(α) ∈ Dα

for each α ∈ x. The set of all x-tuples is denoted by Ex. For any x-tuple f
and a subset y ⊆ x the restriction f [y] is defined to be the y-tuple g such that
g(α) = f(α) for all α ∈ y.

A relation R over x is a set of x-tuples, i.e. a subset of Ex. The set of attributes
x is called the domain of R and denoted by d(R). For y ⊆ d(R) the projection
of R onto y is defined as follows:

πy(R) = {f [y] : f ∈ R}.
The join of a relation R over x and a relation S over y is defined by

R �� S = {f : f ∈ Ex∪y, f [x] ∈ R, f [y] ∈ S}.
It is easy to see that the relations satisfy the following properties:

1. The join is an associative and commutative operation, and Ex is a neutral
element for relations over x, i.e. R �� Ex = R if d(R) = x,

2. d(R �� S) = d(R) ∪ d(S),
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3. If x ⊆ d(R), then d(πx(R)) = x,
4. If x ⊆ y ⊆ d(R), then πx(πy(R)) = πx(R),
5. If d(R) = x and d(S) = y, then πx(R �� S) = R �� πx∩y(S),
6. If x ⊆ y, then πx(Ey) = Ex,
7. If x ⊆ d(R), then R �� πx(R) = R.

In fact, this algebraic system is part of relational algebra as defined in rela-
tional database theory [15]. Besides join and projection there are further opera-
tions like complement, union and difference. Relational algebra is used for query
processing in relational databases. The operations of join and projection, and
especially property (5) above, play a particularly important role [2]. There is
even a special term for the formula R �� πx∩y(S) occurring in (5). It is called a
semijoin.

We propose in the next section to abstract an algebraic system from this exam-
ple, which we claim covers important aspects of a general theory of information.

2.2 The Axioms

Relations R as defined in the previous section can be thought of as representing
pieces of information indicating which tuples f ∈ Ed(R) describe possible tuples
of values of the attributes α ∈ d(R). A relation R with domain d(R) = x answers
the question, which of the elements of the cartesian space

Dx = ×α∈d(R)Dα (1)

represent the true values of the variables. A relation is however only a partial
answer since it does not fix a unique, precise element as an answer. So, any piece
of information R refers to a determined domain d(R), which in turn represents a
question related to the attributes in x, asking what are the possible elements of
Dx. Further the join serves to combine or aggregate two pieces of information,
represented by two relations R and S. The combined information, represented
by the join R �� S refers to domain d(R) ∪ d(S), according to property (2) in
the previous section. Projection serves to extract the information relative to a
part y ⊆ d(R) of the domain of an information R. It results in an information
relative to domain y, see property (3) in the previous section.

Thus, in a general way, we assume a set D of elements which are called
domains and which are thought to represent in an abstract sense questions.
Domains may have different granularity, i.e. a domain x ∈ D may be coarser
than another domain y ∈ D, meaning that y represents a more precise question
than x. This is modelled by a partial order in D. Thus, x ≤ y means that x
is a coarser domain than y, or that domain y is finer than x. Moreover, given
two domains x and y, there should be a coarsest domain, finer than both x and
y, i.e. the join x ∨ y should exist within D. It represents the combined question
composed of questions x and y. In the same way a finest domain coarser than
both x and y should exist, i.e. the meet x∧ y should exist within D. This means
that D is assumed to be a lattice [3].
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In relational algebra the domains are represented by subsets x of the attribute
set A. The partial order is defined by set inclusion, x ≤ y if x ⊆ y. Join and
meet of domains correspond to set union and intersection, i.e. x∨ y = x∪ y and
x ∧ y = x ∩ y. This is a distributive lattice [3]. In many applications we will use
subsets of attributes or variables as domains. We call this multivariate domains.

Alternatively, but equivalently, we could consider the domains Dx defined
in equation (1). Then we have Dx ≤ Dy if x ⊆ y and Dx ∨ Dy = Dx∪y and
Dx ∧ Dy = Dx∩y. A cartesian product Dx induces a partition of the universe
DA. In fact, another, more general and interesting class of domain lattices are
given by lattices of partitions of a universe S [4]. We remark that such partition
lattices are in general no more distributive.

Further we consider a set Φ of elements, called pieces of information whose
generic elements we denote by φ, ψ, . . . etc. Each information φ concerns a certain
domain d(φ) ∈ D, which is attached to φ as a label or mark. The combination of
information is defined by a binary operation Φ× Φ→ Φ, which will be denoted
by (φ, ψ) 
→ φ⊗ψ. If x is a domain out of D and φ ∈ Φ an information such that
x ≤ d(φ), then φ↓x denotes the part of information φ which concerns domain x.
This operation of projection (sometimes also called marginalization) is defined
as a partial mapping Φ×D → Φ.

Formally, we have thus a two-sorted algebra (Φ,D) with the following
operations:

1. Meet, Join: D ×D → D, (x, y) 
→ x ∧ y, x ∨ y,
2. Combination: Φ× Φ→ Φ, (φ, ψ) 
→ φ⊗ ψ,
3. Projection: Φ×D → Φ, (φ, x) 
→ φ↓x, defined for x ≤ d(φ).

We impose the following axioms on this two-sorted algebra:

1. Lattice: D is a lattice with respect to the operations of meet and join.
2. Semigroup: Φ is associative and commutative under combination.
3. Labeling: d(φ⊗ ψ) = d(φ) ∨ d(ψ).
4. Neutrality: For all x ∈ D there is a neutral element ex such that d(ex) = x

and for all φ ∈ Φ with d(φ) = x, φ ⊗ ex = φ; and for all y ∈ D, x ≥ y, we
have e↓yx = ey.

5. Nullity: For all x ∈ D there is a null element zx such that d(zx) = x and for
all φ ∈ Φ with d(φ) = x, φ ⊗ zx = zx; and for all y ∈ D, y ≥ x, we have
zx ⊗ ey = zy.

6. Projection: If φ ∈ Φ, x ∈ D, x ≤ d(φ), then d(φ↓x) = x.
7. Transitivity: If x ≤ y ≤ d(φ), then (φ↓y)↓x = φ↓x.
8. Combination: If d(φ) = x, d(ψ) = y, then (φ⊗ ψ)↓x = φ⊗ ψ↓x∧y.
9. Idempotency: If x ≤ d(φ), then φ⊗ φ↓x = φ.

A two-sorted algebra (Φ,D) satisfying these axioms is called an information
algebra [9]. That D is a lattice means that the operations of meet and join are
both associative and commutative, idempotent (i.e. a ∧ a = a ∨ a = a) and
absorbing (i.e. a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a). Axiom (2) says that Φ
is a commutative semigroup under combination. The sequence of how pieces of
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information are combined does not matter. The labeling axiom (3) states that
the combination of pieces of information relative to domains x and y relates to
the combined question x ∨ y. Axiom (4) establishes the existence of a neutral
element, which represents vacuous information. It is stable, in the sense that
projection vacuous information yields vacuous information. Similarly, axiom (5)
establishes the existence of null elements, representing contradiction. Axiom (6)
means that if the part relative to domain x is extracted from an information,
then the resulting information relates to domain x. Transitivity (axiom (7)) says
that projection can be done in steps. The combination axiom (8) tells us, that, in
order to extract the part relative to domain x from a combined information on x
and y, we can as well first extract the part relative to x∧y from the information
on y and then combine the two pieces of information. Finally, idempotency
means that combining a piece of information with a part of it, gives nothing
new. These seem reasonable properties to assume for an algebra of information.
For relational algebra, these axioms correspond to the properties derived in the
previous section. Relational algebra is thus an information algebra.

The next three assertions are immediate consequences of the axioms:

Lemma 1. 1. If d(φ) = x, then φ↓x = φ.
2. φ⊗ φ = φ.
3. ex ⊗ ey = ex∨y.

Proof. (1) Let x = d(φ). Then, by the combination and stability axioms, we
have φ↓x = (φ⊗ ex)↓x = φ⊗ e↓xx = φ⊗ ex = φ.

(2) Using (1) and idempotency, we obtain φ⊗ φ = φ⊗ φ↓x = φ.
(3) By the labeling axiom, stability and idempotency we conclude that ex ⊗

ey = ex ⊗ ey ⊗ ex∨y = e↓xx∨y ⊗ e↓yx∨y ⊗ ex∨y = ex∨y. 
�
A central problem in applications can be formulated as follows: Given a number
of pieces of information φ1, . . . , φn with domains d(φi) = xi and a goal domain
x. The part relating to domain x of the total combined information is to be
computed. Formally stated, we want to compute

(φ1 ⊗ · · · ⊗ φn)↓x.

This is the projection problem. If this is computed as written here, then by the
labeling axiom, an information on the possibly very large domain x1 ∨ · · · ∨ xn
has to be computed and then projected. This may be computationally infea-
sible. Instead, based in particular on the combination axiom, methods can be
devised where ideally never information on larger domains than x1 to xn must
be computed. These are called local computation methods [9, 12]. They were first
proposed by [14] for probabilistic networks. Later [21] noted that these local com-
putation methods can be used, if the elements satisfy some abstract axioms. The
axioms of an information algebra are modelled after the Shenoy-Shafer system.
In particular the idempotency axiom is added, which is not essential for local
computation. But we shall see below that this axiom is essential for the theory
of information presented here.
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2.3 Variable Elimination

If we consider information algebras with multivariate domains, then an interest-
ing variant of information algebras can be formed. Let V be a finite or countable
set of variables, denoted by X,Y, . . . etc. Consider an information algebra (Φ,D),
whereD is the lattice of subsets of V . Using projection we define a new operation
called variable elimination for X ∈ d(φ):

φ−X = φ↓d(φ)−{X}.

The following properties hold for variable elimination:

1. If X ∈ d(φ), then d(φ−X) = d(φ) − {X}.
2. If X,Y ∈ d(φ), then (φ−X)−Y = (φ−Y )−X .
3. If X ∈ d(ψ), X �∈ d(φ), then (φ⊗ ψ)−X = φ⊗ ψ−X .
4. If X ∈ d(φ), then φ⊗ φ−X = φ.
5. If X ⊆ z ∈ D, then e−Xz = ez−{X}.

(1) follows immediately from the projection axiom, if the definition of variable
elimination is used. Similarly, (2) follows directly from the transitivity axiom,
(4) is the idempotency axiom and (5) follows from the neutrality axiom. Only
(3) is a little bit more involved. We have (φ ⊗ ψ)−X = (φ ⊗ ψ)↓(x∪y)−{X} if
d(φ) = x and d(ψ) = y. Note that x ⊆ z = (x∪ y)−{X} ⊆ x∪ y. We claim that

(φ⊗ ψ)↓z = φ⊗ ψ↓y∩z. (2)

Since y ∩ z = y ∩ ((x∪ y)−{X}) = y−{X} because X ∈ y and X �∈ x, we have
then φ⊗ ψ↓y∩z = φ ⊗ ψ−X which proves (3). In order to prove equation (2) we
note that z ∩ (x ∪ y) = z. The labeling and combination axioms permit then to
derive

(φ ⊗ ψ)↓z = (φ ⊗ ψ)↓z ⊗ ez
= (φ ⊗ ψ ⊗ ez)↓z
= (φ ⊗ ez)⊗ ψ↓y∩z

= (φ ⊗ ψ↓y∩z)⊗ ez.
The first term in this combination has domain x ∪ (y ∩ z) = z. This shows then
that equation (2) holds indeed.

We may take properties (1) to (5) above for variable elimination as new axioms
instead of axioms (4), (6), (7), (8) and (9) together with the remaining axioms
(1), (2), (3) and (5). This gives a variant of an information algebra. In this
system, property (2) above allows to define unambiguously the elimination of
several variables X1, . . . , Xn ∈ d(φ) by

φ−{X1,...,Xn} = (· · · ((φ−X1 )−X2) · · ·)−Xn .

According to property (2) the actual elimination sequences does not matter.
Variable elimination is only defined for finite sets of variables. Therefore, in

general, it is less powerful than projection. If D in an information algebra (Φ,D)
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is the lattice of finite subsets of a set of variables, then, for x ∈ D, projection
may be defined in terms of variable elimination as follows:

φ↓x = φ−(d(φ)−x).

It can easily be verified that, with this definition, the axioms of an information
algebra are satisfied, if variable elimination satisfies properties (1) to (4) above.
Thus, for multivariate systems with pieces of information always relating to
finite sets of variables, the algebras with projection and variable elimination are
equivalent.

2.4 Transport of Information

So far, information can only be projected to subdomains of its domain. However,
transport of information from one domain to another one can be defined more
generally. Let (Φ,D) be an information algebra. Then, for y ≥ d(φ), we define a
new operation

φ↑y = φ⊗ ey,
called the vacuous extension of φ to domain y. This term is justified, since, for
d(φ) = x,

(φ↑y)↓x = (φ⊗ ey)↓x = φ⊗ e↓xy = φ⊗ ex = φ

by the combination and stability axioms. So, vacuous extension indeed does not
add or change otherwise information. Now, more generally, for d(φ) = x and
y ∈ D arbitrary, we define the operation

φ→y = (φ↑x∨y)↓y.

This is called the transport operation; it permits to transport a piece of in-
formation from its original domain to any other domain. Note that projection
and vacuous extension are just special cases of this transport operation, namely
for y ≤ d(φ) or y ≥ d(φ) respectively. Note further that φ↑x∨y = φ ⊗ ex∨y =
φ⊗ ey ⊗ ex∨y = φ⊗ ey, hence

φ→y = (φ ⊗ ey)↓y = φ↓x∧y ⊗ ey = (φ↓x∧y)↑y.

In the following lemma we collect some properties of the transport operation.

Lemma 2. 1. (φ→y)→z = (φ→y∧z)→z.
2. If d(φ) = x, then (φ ⊗ ψ)→x = φ⊗ ψ→x.
3. If d(φ) = x, then φ→x = φ.
4. If d(φ) = x, then φ⊗ φ→y = φ↑x∨y.

Proof. (1) If y ≤ z, then we claim that φ→y = (φ→z)→y . In fact, assume d(φ) =
x, then

(φ→z)→y = ((φ↑x∨z)↓z)↓y = (φ↑x∨z)↓y

= (((φ↑x∨y)↑x∨z)↓x∨y)↓y = (φ↑x∨y)↓y = φ→y .
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In order to prove (1) we apply this result and obtain

(φ→y∧z)→z = ((φ→y)→y∧z)→z = ((φ→y)↓y∧z)↑z = (φ→y)→z .

(2) This follows from the combination axiom

(φ⊗ ψ)→x = (φ ⊗ ψ)↓x = φ⊗ ψ↓x∧y = φ⊗ ex ⊗ ψ↓x∧y

= φ⊗ (ψ↓x∧y)↑x = φ⊗ ψ→x.

(3) This follows since φ→x = φ↓x = φ.
(4) Here we have, using the idempotency axiom,

φ⊗ φ→y = φ⊗ (φ↓x∧y)↑y = φ⊗ φ↓x∧y ⊗ ey = φ⊗ ey = φ↑x∨y. 
�
These properties of transport are similar to the transitivity, combination, pro-
jection and idempotency axioms of the information algebra. In fact, they could
replace them.

2.5 Domain-Free Information Algebras

Assume that, in an information algebra (Φ,D), for two elements φ, ψ ∈ Φ with
domains d(φ) = x and d(ψ) = y it holds that

φ→y = ψ, ψ→x = φ. (3)

Then φ and ψ represent in some sense the same information, in particular
φ↓x∧y = ψ↓x∧y and φ↑x∨y = ψ↑x∨y. We write φ ≡ ψ if (3) holds. This is clearly
an equivalence relation. Moreover it is a congruence in the information algebra
(Φ,D) in the following sense [9]: First φ1 ≡ φ2 and ψ1 ≡ ψ2 imply

φ1 ⊗ ψ1 ≡ φ2 ⊗ ψ2,

and secondly, also for any z ∈ D,

φ→z
1 ≡ φ→z

2 .

In fact in the last relation equality holds.
Let then Φ/ ≡ denote the equivalence classes [φ] of this congruence in Φ.

Then, in this quotient algebra the following two operations are well defined:

1. Combination: [φ]⊗ [ψ] = [φ⊗ ψ].
2. Focussing: [φ]⇒x = [φ→x].

In the two-sorted algebra (Φ/ ≡, D) with the two operations just defined, the
following properties hold:

Theorem 1. Let Ψ = Φ/ ≡ and denote generic elements of Ψ by ψ, η, . . . etc.
Then

1. Semigroup: Ψ is associative and commutative under combination.
2. Support: If ψ ∈ Ψ , then there is a x ∈ D such that ψ = ψ⇒x.
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3. Neutrality: There is a neutral element e such that ψ ⊗ e = ψ for all ψ ∈ Ψ
and e⇒x = e.

4. Nullity: There is a null element z such that ψ ⊗ z = z for all ψ ∈ Ψ and
z⇒x = z.

5. Transitivity: If ψ ∈ Ψ and x, y ∈ D, then (ψ⇒x)⇒y = ψ⇒x∧y.
6. Combination: If ψ, η ∈ Ψ and x ∈ D, then (ψ⇒x ⊗ η)⇒x = ψ⇒x ⊗ η⇒x.
7. Idempotency: If ψ ∈ Ψ and x ∈ D, then ψ ⊗ ψ⇒x = ψ.

Proof. (1) Associativity and commutativity of combination in Ψ is inherited from
Φ.

(2) By Lemma 2 (3) we have [φ] = [φ→x] = [φ]⇒x if d(φ) = x.
(3) The equivalence class [ey] is the neutral element and [ey]⇒x = [e→x

y ] = [ex]
proves that the neutral element is stable under focussing.

(4) The equivalence class [zy] is the null element, and [zy]⇒x = [z→x
y ] = [zx]

proves the stability of the null element under focussing.
(5) By Lemma 2 (1) we have (φ→x)→y = (φ→x∧y)→y. Since (φ→x∧y)→y ≡

φ→x∧y we obtain ([φ]⇒x)⇒y = [(φ→x)→y] = [φ→x∧y] = [φ]⇒x∧y.
(6) Since d(φ→x) = x, we obtain, using Lemma 2 (2)

([φ]⇒x ⊗ [ψ])⇒x = [(φ→x ⊗ ψ)→x] = [φ→x ⊗ ψ→x]
= [φ]⇒x ⊗ [ψ]⇒x.

(7) This follows from Lemma 2 (4). In fact, if d(φ) = y, then [φ] ⊗ [φ]⇒x =
[φ⊗ φ→x] = [φ↑x∨y] = [φ]. 
�
A two-sorted algebra (Ψ,D) with the operations of combination and focussing,
satisfying the properties of Theorem 1, is called a domain-free information alge-
bra. Theorem 1 says that any information algebra induces a domain-free infor-
mation algebra. In order to distinguish the original algebra form the domain-free
one, we call it a labeled information algebra.

In a domain-free information algebra (Ψ,D) a domain x ∈ D is called a
support of ψ ∈ Ψ , if ψ = ψ⇒x. This means that no information is lost, when φ
is focussed on domain x or, in other words, the whole information in φ is carried
by domain x. According to the support property (2) in Theorem 1 any element
of Ψ has a support. Here are a few properties of supports:

Lemma 3. 1. x is a support of ψ⇒x.
2. If x and y are supports of ψ, then x ∧ y is a support of ψ.
3. If x is a support of ψ and x ≤ y, then y is a support of ψ.
4. If x is a support of ψ, y a support of η, then x ∨ y is a support of ψ ⊗ η.

Proof. (1) By transitivity (Theorem 1 (5)) we have (ψ⇒x)⇒x = ψ⇒x∧x = ψ⇒x.
(2) Again, by (5) of Theorem 1, we obtain ψ⇒x∧y = (ψ⇒x)⇒y = ψ⇒y = ψ.
(3) If x ≤ y, then x = x ∧ y. So, once more by Theorem 1 (5), we conclude

that ψ⇒y = (ψ⇒x)⇒y = ψ⇒x∧y = ψ⇒x = ψ.
(4) By (6) of Theorem 1, and (3) just proved, we see that (ψ ⊗ η)⇒x∨y =

ψ⇒x∨y ⊗ η⇒x∨y = ψ ⊗ η. 
�
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If (Ψ,D) is a domain-free information, then define Ψ∗ to be the set of all pairs
(ψ, x), where ψ ∈ Ψ and x is a support of ψ. We define then the following
operations:

1. Labeling: d(ψ, x) = x.
2. Combination: (ψ, x)⊗ (η, y) = (ψ ⊗ η, x ∨ y).
3. Projection: (ψ, x)↓y = (ψ⇒y, y) for y ≤ x.

It is easy to verify that the two-sorted algebra (Ψ∗, D) with these operations
forms a labeled information algebra. It has been shown elsewhere [9] that its
domain-free version (Ψ∗/ ≡, D) is then essentially identical to the original alge-
bra (Ψ,D). Conversely, if (Ψ,D) = (Φ/ ≡, D) for a labeled algebra (Φ,D), then
(Ψ∗, D) is essentially identical to (Φ,D) (in fact, isomorph, [9]). Thus labeled
and domain-free algebras are different versions of the same structure. We may
switch at our convenience between the two forms.

3 Some Examples

3.1 Propositional Logic

At the beginning we have shown that relational algebra is an example of a (la-
beled) information algebra. In this section we want to discuss further examples,
especially systems related to logic. In the view proposed here, logic offers a lan-
guage to describe information which refers to models or structures. We illustrate
this first with propositional logic as a prototype case.

The vocabulary of propositional logic is formed by a countable set of variables
P = {p1, p2, . . .}, the constants ⊥,� and the the connectors ¬,∧. Formulae of
the language are:

1. Each element of P , ⊥ and � are formulae (atomic formulae).
2. If f and g are formulae, then so are ¬f , f ∧ g.
3. All formulae are generated from atomic formulae by finitely often applying

rule 2.

A valuation is a mapping v : P → {f , t} which assigns each propositional
variable a truth value f (false) or t (true). A valuation assigns a truth value v̂(f)
to any formula f by the following inductively defined process:

1. If f is a propositional variable, then v̂(f) = v(f).
2. v̂(⊥) = f and v̂(�) = t.

3. v̂(¬f) =
{

f if v̂(f) = t,
t if v̂(f) = f .

4. v̂(f ∧ g) =
{

t if v̂(f) = v̂(g) = t,
f otherwise.

A valuation v, under which a formula f evaluates to true, i.e for which v̂(f) = t,
is said to satisfy the formula, or to be a model of the formula, which is denoted
as v |= f . Let M(f) be the set of all models of a propositional formula f . Since
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a valuation can also be seen as a sequence v1, v2, . . . of elements of {f , t}, the set
of models M(f) can be considered to be a subset of {f , t}∞.

In a given problem or context one may assume that there is some true but
unknown truth assignment in the real world. The elements of {f , t}∞ are then
possible worlds. A formula f of propositional logic can then be seen as an infor-
mation about the unknown real world in that it postulates that the real world
must be among its models M(f). We are now going to associate an information
algebra of models to propositional formulae.

Let D be the lattice of finite subsets of ω = {1, 2, . . .}. For any valuation
v ∈ {f , t}∞ and any finite subset x ∈ D, we define v↓x to be the x-tuple v(i), i ∈
x. We define an x-equivalence between two valuations v and w by v ≡x w if
v↓x = w↓x. The equivalence classes of this x-equivalence are denoted by [v]x. For
any subset A of {f , t}∞ let

A⇒x =
⋃
v∈A

[v]x.

A subset φ ⊆ {f , t}∞ is called cylindric over x, if φ = φ⇒x. Let then Φx be the
family of x-cylindric subsets of {f , t}∞ and

Φ =
⋃
x∈D

Φx.

We claim then that (Φ,D) with intersection as combination ⊗ and the focussing
operation ⇒ defined above is a (domain-free) information algebra.

Let f be a propositional formula and var(f) the set of propositional vari-
ables occurring in f . Then its set of models M(f) belongs to Φvar(f). So, any
propositional formula f determines an element φ = M(f) of the information
algebra Φ, its set of models M(f) is the information it describes. Note that
M(f ∧ g) = M(f) ∩M(g), conjunction corresponds to combination. Focussing
is more complicated. If g is a formula such that M(g) = M(f)⇒x, then g is ob-
tained form f by variable forgetting or existential quantification, we refer to [11]
for more details on this algebra. Two formulae f and g are logically equivalent,
if M(f) = M(g). Equivalent formulae describe the same information. Below, in
Subsection 3.4, it will also be shown to be an instance of a more general logic
system related to information algebras.

3.2 Quantifier Algebras

If Φ is a Boolean algebra with minimal element ⊥, then an existential quantifier
is a mapping ∃ : Φ→ Φ subject to the following conditions:

1. ∃⊥ = ⊥,
2. φ ∧ ∃φ = φ,
3. ∃(φ ∧ ∃ψ) = ∃φ ∧ ∃ψ.

More generally, let D be a lattice of subsets of some set I. Assume that there is
an existential quantifier ∃(J) for every subset J ∈ D on the Boolean algebra Φ,
and that
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1. ∃(∅)φ = φ,
2. if J,K ∈ D, then ∃(J ∪K)φ = ∃(J)(∃(K)φ).

Then (Φ,D) is termed a quantifier algebra over D. If we take the meet operation
of the Boolean algebra for combination and define φ⇒I−J = ∃(J)φ, then (Φ,Dc)
is a domain-free information algebra. Here Dc is the lattice of subsets I − J for
all J ∈ D.

If, for all i ∈ I, ∃(i) is a an existential quantifier, and ∃(i)∃(j) = ∃(j)∃(i), if
i �= j, one can define ∃(J) = ∃(i1) · · · ∃(im) if J = {1, . . . ,m} and ∃(∅)(φ) = φ.
Then (Φ,D) is a quantifier algebra.

For instance, let Φ be the powerset of some cartesian product of a family of
sets Ui for i ∈ I and D a lattice of subsets of I. The mapping ∃(J) is defined by

∃(J)A = {b ∈
∏
i∈I

Ui : ∃a ∈ A such that bi = ai, ∀i�∈ J}.

It can be shown that this is an existential quantifier and (Φ,D) forms a quantifier
algebra [17]. It is clear that the operation ∃({i}) is similar to variable elimination.
More generally, existential quantification is related to focussing, as we be seen
in the next example (Section 3.3). Note also that it is sufficient for Φ to be
a semilattice in order to define existential quantification and then a quantifier
algebra (Φ,D).

3.3 Predicate Logic

Another information algebra is associated with predicate logic. The vocabulary of
predicate logic consists of a countable set of variablesX1, X2, . . . and a countable
set of predicate symbols P1, P2, . . ., the logical constants ⊥,� and ∧,¬, ∃. Each
predicate symbol has a definite rank ρ = 0, 1, 2, . . .. We refer to a predicate with
rank ρ as a ρ-place predicate. Formulae of predicate logic are built using the
following rules:

1. PiXi1 . . .Xiρ , where ρ is the rank of Pi, ⊥ and � are (atomic) formulae.
2. If f is a formula, then ¬f and ∃Xif are formulae.
3. If f and g are formulae, then f ∧ g is a formula.

The predicate language L consists of all formulae which are obtained by applying
a finite number of times these rules.

In order to define an interpretation of formulae of predicate logic, we choose
a relational structure R = (U,R1, R2, . . .) where U is a non-empty set, the
universe, and Ri are relations among elements of U with the arity equal to the
rank ρ of Pi, i.e. subsets of Uρ. A valuation is a mapping v : ω → U , which assigns
each variable Xi a value v(i) ∈ U for i ∈ ω = {1, 2, . . .}. The set of valuations
is Uω, i.e. the set of sequences v(1), v(2), . . .. We define for a valuation v and an
index i ∈ ω

v⇒i = {u ∈ Uω : u(j) = v(j) for j �= i}.
Valuations are used to assign a truth value v̂(f) to each formula f ∈ L. This
truth assignment is defined inductively as follows:
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1. v̂(⊥) = f , v̂(�) = t
2. v̂(PiXi1 . . . Xiρ) = t, if (v(i1), . . . , v(iρ)) ∈ Ri, and v̂(PiXi1 . . .Xiρ) = f

otherwise.
3. v̂(¬f) = f , if v̂(f) = t, and v̂(¬f) = t, if v̂(f) = f .
4. v̂(∃Xif) = t, if there is a valuation u ∈ v⇒i such that û(f) = t, and
v̂(∃Xif) = f otherwise.

5. v̂(f ∧ g) = t, if v̂(f) = v̂(g) = t, and v̂(f ∧ g) = f otherwise.

A valuation v is called a model of a formula f in the structure R, if v̂(f) = t.
We write then v |=R f . Given a structure R, we assign finally to each formula
f ∈ L the set of its models,

r̂R(f) = {v ∈ Uω : v |=R f}.
We consider this set as the information relative to the unknown values of the
variables X1, X2, . . . expressed by the formula f . Let Φ be the family of all sets
r̂R(f) for all f ∈ L. If we define as usual f ∨ g = ¬(¬f ∧ ¬g), then it is easy to
see that

r̂R(f ∧ g) = r̂R(f) ∩ r̂R(g),
r̂R(f ∨ g) = r̂R(f) ∪ r̂R(g),
r̂R(¬f) = (r̂R(f))c.

The family Φ is thus a Boolean algebra. Further we see that

r̂R(∃Xif) =
⋃

v∈r̂R(f)

v⇒i.

We may denote the right hand side as ∃(i)r̂R(f). Clearly, for all i ∈ ω this
is a quantifier on the Boolean algebra Φ in the sense of the previous example.
Hence we may derive an existential quantifier ∃(J) for any finite subset of ω.
If D is the lattice of finite subsets of ω, then (Φ,D) is a quantifier algebra and
so a domain-free information algebra. Combination is intersection, focussing is
related to existential quantification, as explained in the previous example.

Two formulae f and g of predicate logic are said to be equivalent relative to the
structure R, written f ≡R g, if r̂R(f) = r̂R(g). So, equivalent formulae describe
the same information. This induces an equivalence relation on L. We may then
introduce combination and existential quantification in L/ ≡R as follows: if [f ]R
denotes the equivalence classes,

[f ]R ⊗ [g]R = [f ∧ g]R,
∃(J)[f ]R = [∃(J)f ]R,

where ∃(J)f = ∃Xi1(. . . ∃Xik) . . .) if J = {i1, . . . , ik}. Then (L/ ≡R, D) inherits
the properties of an information algebra from (Φ,D). So, the information algebra
of structures is reflected in a corresponding information algebra of formulae.
These algebras are reducts of cylindric algebras [8] or polyadic or also Halmos
algebras [6, 17] introduced for the algebraic study of predicate logic.
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3.4 Contexts

Here we consider a general system, which captures the two previous logic exam-
ples as well as many other logic and related systems. It is also closely related
to the work of [1] on information flow. A context is a triple (L,M, |=), where
L can be thought of as a set of sentences, a language, M a set of structures
or models and |=⊆ L ×M is a binary relation between sentences and models.
This corresponds to classifications in [1], where the terms types and tokens are
used instead of sentences and models. Finally, in formal concept analysis the
elements are considered as attributes and objects [3]. We write m |= s instead
of (s,m) ∈|=. The idea is of course that models m satisfy sentences s, and thus
give some semantics to the language L. An example is provided by propositional
logic, where L is a propositional language, the elements ofM are valuations, and
m |= s means that m satisfies s or m is a model of s. Similarly, predicate logic,
together with a structure to interpret the formulae, provides another example of
a context.

In a context a set of sentences X ⊆ L determines a set of possible models,
namely the set of models satisfying all sentences of X ,

r̂(X) = {m ∈M : ∀s ∈ X,m |= s}.
If we define also similarly for a subset A ofM,

ř(A) = {s ∈ L : ∀m ∈ A,m |= s},
then ř(A) is the set of all sentences whose models contain A.

The following dual pairs of properties of these operators are well known [3]:

X ⊆ ř(r̂(X)), A ⊆ r̂(ř(A)),
X ⊆ Y ⇒ r̂(X) ⊇ r̂(Y ), A ⊆ B ⇒ ř(A) ⊇ ř(B),

r̂(X) = r̂(ř(r̂(X))), ř(A) = ř(r̂(ř(A))),

r̂(
⋃
j∈J

Xj) =
⋂
j∈J

r̂(Xj), ř(
⋃
j∈J

Aj) =
⋂
j∈J

ř(Aj).

We define further for X ⊆ L and A ⊆M,

C|=(X) = ř(r̂(X)), C|=(A) = r̂(ř(A)).

It follows from the properties above that C|= and C|= are closure or consequence
operators, i.e.

1. X ⊆ C|=(X),
2. C|=(C|=(X)) = C|=(X),
3. If X ⊆ Y , then C|=(X) ⊆ C|=(Y ),

and similarly for C|=. Sets X ⊆ L and A ⊆M are called |=-closed if X = C|=(X)
or A = C|=(A) respectively. We obtain then

r̂(X) = C|=(r̂(X)), ř(A) = C|=(ř(A)).
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So, any set of sentences X determines a |=-closed set r̂(X) of models as infor-
mation. In the same way, any set of models A determines a |=-closed set ř(A) of
sentences, which could be called the theory of A. In particular, |=-closed sets of
models and theories are in a one-to-one relation, i.e. if A = r̂(X) and X = ř(A),
then both A and X must be |=-closed.

In the case of propositional logic, C|=(X) is the set of all logical consequences of
X or the theory of X . In this case, as in predicate logic and in many other cases,
all subsets of models are closed. This is not the case in the following example:
Let Xi, i ∈ ω = {1, 2, . . .}, be a countable family of variables, F a field and let
L be the family of linear equations of the form∑

i∈I
aiXi = a0, I a finite subset of ω and a0, ai ∈ F .

Further, let M = Fω. Define m |= s, for m ∈ M and s ∈ L, if m satisfies the
linear equations s, i.e. if ∑

i∈I
aimi = a0.

Then, for a subset X of L the closed set r̂(X) is the linear solution manifold of
the system of equations X in M. So here, |=-closed sets are linear manifolds,
and C|=(A) is the linear manifold spanned by A ⊆ M. If linear inequalities in
an ordered field, instead of linear equations are considered, then, in the same
way, the |=-closed sets are convex polyhedra.

Consider the set of all |=-closed subsets of M. For two elements φ = r̂(X)
and ψ = r̂(Y ) we define then a combination operation

φ⊗ ψ = r̂(X ∪ Y ) = r̂(X) ∩ r̂(Y ) = φ ∩ ψ. (4)

In fact, this operation could be defined for arbitrary families of sets Xi ∈ L. So,
information is combined either by the union of the sentences which define the
information or by intersection of their model sets.

If we want to extend this semigroup to an information algebra, we must add
a domain structure and a corresponding focussing operation. Let D be a lattice
and, for any x ∈ D, let ≡x be an equivalence relation in M such that

x ≤ y ⇒≡x⊇≡y . (5)

A triple (M, D,≡x∈D), where D is a lattice and ≡x are equivalence relations in
M satisfying the condition above, is called a similarity model structure in [23].
For any model m ∈ M and x ∈ D, define

m⇒x = {n ∈ M : n ≡x m}.
Further, for a subset A ofM let

A⇒x =
⋃
m∈A

m⇒x. (6)

A set of models A such that A = A⇒x is called cylindric over x or x-closed. We
require now two additional conditions:
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1. Closure: If A is |=-closed and x ∈ D, then A⇒x is |=-closed.
2. Independence: If for two models m,n it holds that m ≡x∧y n, then there is

a model l such that l ≡x m and l ≡y n.

The closure property implies that the family of |=-closed sets is closed under
the focussing operation ⇒. The independence property guarantees that indeed
a (domain-free) information algebra can be associated with contexts, as we shall
show below.

In propositional and predicate logic, as in many other cases, the language L
is defined over a set of variables X1, X2, . . . with domains U1, U2, . . .. Models are
valuations v(i) ∈ Ui. A similarity model structure is then defined for instance
for finite subsets x of variables by v ≡x u if v(i) = u(i) for all i ∈ x. It can
be verified that this structure satisfies the closure and independence properties
above. This corresponds essentially to a multivariate domain.

Let Φ be the set of all cylindric sets which are |=-closed. The following lemma
collects two important properties of cylindric, |=-closed sets.

Lemma 4. For x, y ∈ D and φ, ψ ∈ Φ, the following holds:

1. If φ is x-closed and ψ is y-closed, then φ⊗ ψ is x ∨ y-closed.
2. If φ is x-closed, then φ⇒y is x ∧ y-closed.

Proof. (1) We claim that if x ≤ y, then φ is x-closed implies φ is y-closed. In
fact, suppose φ = φ⇒x = ∪n∈φn⇒x. Then

φ⇒y =
⋃
m∈φ

m⇒y =
⋃
n∈φ

⋃
m∈n⇒x

m⇒y

=
⋃
n∈φ

n⇒x = φ⇒x = φ.

Therefore, if φ and ψ are x- and y-closed respectively, both are x∨ y-closed and
so is φ⊗ ψ = φ ∩ ψ.

(2) We claim that (m⇒x)⇒y = m⇒x∧y, which then implies property 2 imme-
diately. In fact, if n ≡x∧y m, then, by the independence property above, there
is an l such that l ∈ m⇒x and n ∈ l⇒y. But this means that n ∈ (m⇒x)⇒y .
Conversely, if n ∈ (m⇒x)⇒y , then there is a l such that n ≡y l ≡x m. By the
monotonicity property (5) it follows that n ≡x∧y l ≡x∧y m, hence n ∈ m⇒x∧y.


�
After this preparation it can be shown that (Φ,D) forms an information algebra.

Theorem 2. The two-sorted algebra (Φ,D) with combination ⊗ and focussing
⇒ defined above by (4) and (6) respectively, is a domain-free information algebra
if the closure and independence properties are satisfied.

Proof. We verify properties (1) to (7) of Theorem 1 above. The semigroup prop-
erties holds for intersection, hence for combination andM is the neutral element
of combination, whereas the empty set is the null element. Transitivity follows
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from property 2 of Lemma 4 above, because φ⇒x is x-closed. Combination is
verified as follows:

(φ⇒x ⊗ ψ)⇒x =
⋃

m∈(φ⇒x∩ψ)

m⇒x

=

⎛
⎝ ⋃
m∈φ⇒x

m⇒x

⎞
⎠ ∩

⎛
⎝ ⋃
m∈ψ

m⇒x

⎞
⎠

= φ⇒x ⊗ ψ⇒x.

The support axiom holds since the elements of Φ are cylindric, and the idempo-
tency axioms is evident. 
�
We have represented the information algebra associated with a context in terms
of models. But we could also represent it in terms of theories. If φ = r̂(X) and
ψ = r̂(Y ), then we could consider the associated theories C|=(X) and C|=(Y )
and define combination by

C|=(X)⊗ C|=(Y ) = ř(φ ⊗ ψ)
= C|=(X ∪ Y )
= C|=(C|=(X) ∪ C|=(Y )).

Further focussing could be defined as follows:

C|=(X)⇒x = ř(r̂(X)⇒x).

This gives then a domain-free information algebra of theories associated to the
algebra of models. Predicate logic provides an example with the algebra of struc-
tures and the algebra of formulae.

For any x ∈ D we define

Mx = {m⇒x : m ∈ M}, Lx = {s ∈ L : r̂({s}) = (r̂({s}))⇒x}.
Furthermore, we define a relation |=x between Mx and Lx by m⇒x |=x s if
m |= s for all m ∈ m⇒x. Then (Lx,Mx, |=x) is a context. Note that cylindric
sets A⇒x over x can, in a natural way, also be considered as a subset of Mx,
namely the set consisting of elements m⇒x for all m ∈ A. Further, by the closure
property, if A is |=-closed, then A⇒x is |=x-closed.

Consider two elements x, y ∈ D such that x ≤ y. Then it follows from (5) that
m⇒x ⊇ m⇒y and Lx ⊆ Ly. We define now a contravariant pair of mappings

g :My →Mx

Ly ← Lx : f

by g(m⇒y) = m⇒x, and f(s) = s. It can be verified, that this pair of mappings
satisfies the following condition

g(m⇒y) |=x s⇔ m⇒y |=y f(s).
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A contravariant pair of mappings between two contexts (Lx,Mx, |=x) and
(Ly,My, |=y) satisfying this condition is termed a context morphism. It corre-
sponds in essence to the infomorphism introduced in [1]. If we consider contexts
(Lx,Mx, |=x) and (Ly ,My, |=y) together with the context (Lx∨y,Mx∨y, |=x∨y),
and add the context morphisms between the first two contexts and the third
one, then we have what is called a channel in [1]. In fact, it allows to trans-
port information (in the sense discussed in Section 2.4) from (Lx,Mx, |=x) to
(Ly,My, |=y) and vice versa.

3.5 Lattice Induced Algebras

Let A be a distributive, complete lattice with supremum (join) and infimum
(meet) denoted as usual by ∨ and ∧. Let further r denote a finite set of variables
X1, X2, . . . and Ui the domain of variable Xi. To a set s ⊆ r of variables the
cartesian product

Us =
∏
i∈r

Ui

is assigned as domain. The elements of Us are tuples with domain s. We adopt
the convention that the domain of the empty set of variable U∅ consists of a
single tuple, denoted by �. We use lower case, bold-face letters such as x,y, . . .
to denote tuples. In order to emphasize the decomposition of a tuple x with
domain s into components belonging to two disjoint subsets t and s− t of s, we
write x = (x↓t,x↓s−t). A valuation φ with domain s is a mapping φ : Us → A.
The domain of a valuation φ is denoted by d(φ). The set of all valuations with
domain s is denoted by Φs. Let then

Φ =
⋃
s⊆r

Φs.

Further let D be the lattice of subsets of r. We now use the lattice operations
in A to define two operations in the pair (Φ,D):

1. Combination: ⊗ : Φ× Φ→ Φ defined for x ∈ Ud(φ)∪d(ψ) by

φ⊗ ψ(x) = φ(x↓d(φ)) ∧ ψ(x↓d(ψ)).

2. Projection: ↓: Φ×D → Φ defined for all φ ∈ Φ and t ⊆ d(φ) for x ∈ Ut by

φ↓t(x) =
∨

z∈Ud(φ):z↓t=x

φ(z).

It has been shown elsewhere that (Φ,D) with the two operations defined above
is a (labeled) information algebra [13]. Examples for the lattice A include the
Boolean lattice {0, 1} (in which case valuations describe constraints or subsets),
or the interval [0, 1] with max,min as lattice operations. This is used in fuzzy
set theory. More general distributive lattices can be used to express qualitative
membership of elements to fuzzy sets.
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4 Order and Measure of Information

4.1 Partial Orders of Information Content

In an information algebra, the elements may be ordered by information content.
The idea is that a piece of information is more informative than another one,
if their combination yields the first. More precisely, let (Φ,D) be a domain-free
information algebra. Then, for φ, ψ ∈ Φ we define φ ≥ ψ if φ ⊗ ψ = φ, i.e. φ is
more informative than ψ, if combining the latter with the first one gives nothing
new. It can easily be verified that this relation is a partial order in Φ. Here are
are a few elementary properties of this order which are proven in [9]:
1. e ≤ φ,
2. φ, ψ ≤ φ⊗ ψ,
3. φ⇒x ≤ φ,
4. φ ≤ ψ implies φ⇒x ≤ ψ⇒x,
5. φ ≤ ψ implies φ⊗ η ≤ ψ ⊗ η,
6. φ⇒x ⊗ ψ⇒x ≤ (φ⊗ ψ)⇒x,
7. x ≤ y implies φ⇒x ≤ ψ⇒y .

In particular, it can also be verified that φ ⊗ ψ = sup{φ, ψ}. Therefore, Φ is
also a semilattice and we write sometimes φ ⊗ ψ = φ ∨ ψ, if we want to stress
order-theoretic issues.

This order reflects the absolute information content of the elements of Φ. It is
also interesting to compare the information contents of the elements of Φ with
respect to a determined question, i.e. a given domain x ∈ D. For this purpose
we define φ ≤x ψ, if φ⇒x ≤ ψ⇒x. So, φ is less informative than ψ, relative
to a domain x, if its part relating to x is less informative than the part of ψ
relating to x. The relation ≤x is a preorder (reflexive and transitive, but not
antisymmetric) on Φ. This is equivalent to a similar order defined on labeled
information algebras, where again φ ≥ ψ if φ ⊗ ψ = φ. Then, for x ∈ D, we
define φ ≤x ψ, if φ→x ≤ ψ→x.

In the case of propositional logic, a propositional formula f is more informative
than a formula g, if M(f) ⊆M(g), since combination is intersection. This means
that f is more informative than g, if, and only if, the latter is a logical consequence
of the former, i.e. if f |= g. Similarly in predicate logic, a predicate formula f is
more informative than g, relative to a structure R, if r̂R(f) ⊆ r̂R(g), i.e. again
if g is a logical consequence of f , i.e. f |=R g. In a lattice-induced information
algebra, a valuation v with domain x is more informative than another valuation
u with the same domain, if v(x) ≤ u(x) for all x ∈ Ux. This is a kind of fuzzy
subset relation, generalizing the ordinary subset relation.

These partial orders describe qualitative comparisons of information content
between pieces of information. We may also try to measure quantitatively the
content of an information. This is discussed below in Section 4.4.

4.2 Boolean Information Algebras

In the case of a relational algebra, for two relations R and S with the same
domain x, R is more informative than S, if R ⊆ S. This makes sense in many
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cases: For instance if somebody is expected in Zurich on a flight from London,
and information on possible flights is given by a list of flights from London
to Zurich, then the smaller the list, the more information is obtained, the less
uncertainty remains. If however we look for a flight we could take from London
to Zurich, then obviously we feel to dispose of more information the longer the
list of possible flights we obtain. So, information content of a relation seems
to depend on the question we are interested in. This is related to the Boolean
nature of the relational algebra. In order to elucidate this issue we introduce
Boolean information algebra in this section.

Let (Φ,D) be a domain-free information algebra, such that in particular Φ
is a semilattice relative to the partial order on information content. We assume
now in addition that Φ is not only a semilattice but a Boolean algebra. This
means that Φ has a bottom and a top element e and z and is a distributive
lattice, where not only the supremum φ∨ψ exists relative to the order, but also
the infimum φ∧ ψ and the distributive laws hold between these two operations.
Further there is a complement φc for each element φ ∈ Φ such that φ ∧ φc = e
and φ∨φc = z. Then (Φ,D) is called a Boolean information algebra. For instance
the information algebras associated with propositional and predicate logic are
Boolean.

In a Boolean algebra there exists a well known duality which carries over to
Boolean information algebras. If (Φ,D) is a Boolean information algebra, then
we define the following dual operations of combination and focussing:

1. Dual Combination: φ⊗d ψ = (φc ⊗ ψc)c,
2. Dual Focussing: φ⇒dx = ((φc)⇒x)c.

Note that by de Morgan’s law φ ⊗d ψ = φ ∧ ψ. Similar relations hold also in
the labeled version of the Boolean information algebra. It can be verified that
(Φ,D) with these dual operations is still a Boolean information algebra and the
mapping φ→ φc is an isomorphism between dual Boolean information algebras.

Now, in the dual algebra, the partial order ≤d is defined as usual. Then,
clearly, φ ≤d ψ if, and only if, φ ≥ ψ.

From a domain-free Boolean algebra we may derive in the usual way (see
Section 2.5) the associated labeled information algebra. This algebra as a whole
is no more a Boolean algebra. Only the elements associated with a support x ∈ D
form still Boolean algebras. More precisely, a labeled information algebra (Φ,D)
is called Boolean, if the following two properties hold:

1. ∀x ∈ D, the semilattice Φx is Boolean.
2. ∀x, y ∈ D and φ, ψ ∈ Φx is holds that

(φ ∧ ψ)⊗ ey = ((φ ⊗ ey) ∧ (ψ ⊗ ey)).
The labeled algebra derived from a domain-free Boolean algebra certainly sat-
isfies these properties. So does for example relational algebra, seen as a labeled
information algebra.

Although Φ itself is not a Boolean algebra, it is still possible to define a dual
algebra, using duality within the Boolean algebras Φx. So dual combination is
defined for φ, ψ ∈ Φ as
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φ⊗d ψ = (φc ⊗ ψc)c.
Similarly, dual marginalization is defined for φ ∈ Φ and x ≤ d(φ) as

φ↓dx = ((φc)↓x)c.

Note that the dual neutral elements are the original null elements zx. So, dual
vacuous extension is defined as follows for x ≥ d(φ),

φ↑dx = φ⊗d zx = (φc ⊗ ex)c = ((φc)↑x)c.

This allows finally the introduction of a dual transport operation, for φ ∈ Φ,
with d(φ) = y,

φ→dx = (φ↑dx∨y)↓dx = ((φc)↑x∨y)↓x)c = ((φc)→x)c.

This results in a dual labeled information algebra, which is isomorph to the
original one by the mapping φ 
→ φc. We warn that the dual partial order ≤d
induced in this dual algebra is not the inverse of the order ≤ in the original alge-
bra. However, the dual order accounts for the issue addressed at the beginning
of the section: according to the question one is interested in, one should either
consider the one or the other of the dual algebras.

4.3 Atomic Algebras

In many cases there are for every domain x most informative information pieces
representing the finest possible answers to the question posed by the domain. In
relational algebra for example the one-tuple relations over a domain x represent
such atomic information. In this section we study more generally information
algebras with atomic information pieces.

For this purpose it is more convenient to work with a labeled information
algebra (Φ,D). Remember now that the algebra has null elements, i.e. for all
x ∈ D there is a (necessarily unique) element zx such that φ→x⊗ zx = zx for all
φ ∈ Φ. We further have z→y

x = zy. These null elements represent contradictory
information. In fact, if φ ⊗ ψ = zx, the combination of this pieces of infor-
mation with further pieces yields again the contradiction. In relational algebra
these null elements are represented by the empty relations, in propositional and
predicate logic the logical constant ⊥ (falsity), which has no models, represents
contradiction.

Now, an atom in a domain x is a maximal element different form zx among
the elements Φx with domain x:

Definition 1. An element α ∈ Φx is called an atom on x if

1. α�= zx,
2. for all φ ∈ Φx, α ≤ φ implies either α = φ or φ = zx.
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Here are a few elementary properties of atoms which are proven in [9]:

1. If α is an atom on x, and y ≤ x, then α↓y is an atom on y.
2. If α is an atom on x, and d(φ) = x, then either φ ≤ α or α⊗ φ = zx.
3. If α and β are atoms on x, then either α = β or α⊗ β = zx.

Denote the set of all atoms in Φx by Atx(Φ) and the set of all atoms in Φ by
At(Φ). Furthermore let for any φ ∈ Φ

At(φ) = {α ∈ At(Φ) : d(α) = d(φ), φ ≤ α}.

If α ∈ At(φ) we say also that α is an atom of φ or contained in φ. This termi-
nology will be justified below.

We are now especially interested in information algebras, where each element
is composed by all the atoms it contains. The following definition gives a more
precise meaning to this idea:

Definition 2. A labeled information algebra (Φ,D) is called atomic, if for all
φ ∈ Φ, φ�= zd(φ),

φ = ∧At(φ),

i.e. each information is the infimum of the atoms it contains.

The labeled versions of the information algebras associated with propositional
logic and predicate logic are atomic: In the case of propositional logic, the ele-
ments of Φx can be considered as subsets of the Boolean cube {t, f}|x| and the
atoms are tuples t : x → {t, f}. Therefore each element of Φx is simply the set
of the tuples it contains. Similarly, in the case of predicate logic, the elements of
Φx can be considered as subsets of the cartesian product U |x| and the atoms are
tuples t : x→ U . In the case of information algebras related to contexts, atoms
exist, if m⇒x is |=-closed for all m ∈M and x ∈ D. Then, if a cylindric set A is
|=-closed,

A = A⇒x =
⋃
m∈A

m⇒x.

Hence, again, each element of Φx is simply the set of the atoms it contains. The
example of linear manifolds shows however that not every set of atoms forms
necessarily an element of Φ.

These examples reflect in fact a more general situation: We claim that the
set At(Φ) of all atoms of an atomic information algebra (Φ,D) forms itself an
information algebra, very similar to a relational algebra. We note first, that atoms
behave with respect to projection like ordinary tuples in relational algebra. In
fact, the following lemma summarizes the basic properties of atoms:

Lemma 5. If a labeled information algebra (Φ,D) is atomic, then its atoms α, β
in At(Φ) satisfy the following properties:
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1. If x ≤ d(α), then α↓x ∈ At(Φ) and d(α↓x) = x.
2. If x ≤ y ≤ d(α), then (α↓y)↓x = α↓x.
3. If d(α) = x, then α↓x = α.
4. If d(α) = x, d(β) = y and α↓x∧y = β↓x∧y, then there exists a γ ∈ At(Φ)

with d(γ) = x ∨ y and γ↓x = α, γ↓y = β.
5. If d(α) = x and x ≤ y, then there exists a β ∈ At(Φ) such that d(β) = y and

β↓x = α.

Proof. Properties (1) to (3) follow from the axioms of an information algebra,
since atoms are elements of the algebra.

Let γ = α ⊗ β. Then γ↓x = α by the combination and idempotency axioms,
considering that α↓x∧y = β↓x∧y. Similarly, γ↓y = β. Assume that γ = zx∨y. But
then α = zx, which is excluded, since α is an atom. Hence we conclude that
γ �= zx∨y. Therefore, since (Φ,D) is atomic, At(γ) is not empty. Let η ∈ At(γ).
Then it follows from γ ≤ η, that α = γ↓x ≤ η↓x. But since α is an atom, either
α = η↓x or η↓x = zx. The latter case is excluded, since η is an atom. Similarly
β = η↓y. So property (4) is satisfied by η.

Further, At(α↑y) is not empty either. Thus, let β ∈ At(α↑y). Then d(β) = y
and α↑y ≤ β. This implies α = (α↑y)↓x ≤ β↓x. Since α is an atom, it holds that
either α = β↓x or β↓x = zx. But the latter case is excluded because β is an atom.
So property (5) is satisfied by β. 
�
Of course, ordinary tuples in relational algebra satisfy these properties too. That
is why we may consider atoms as generalized tuples. As with relational algebra,
we define generalized relations over x to be subsets R ofAt(Φ) such that d(α) = x
for all α ∈ R. The domain of α is supposed to be attached to R. It is denoted
by d(R). For a generalized relation R and x ≤ d(R), the projection of R onto x
is defined as

πx(R) = {α↓x : α ∈ R}.

The join of a generalized relation R over x and a generalized relation S over y
is defined as follows:

R �� S = {α ∈ At(Φ) : d(α) = x ∨ y, α↓x ∈ R,α↓y ∈ S}.

It is easily possible that the set on the right hand side is empty. We attach the
empty set with the domain x ∨ y and call it Zx∨y, the empty relation on x ∨ y.
We assign it the domain d(Zx∨y) = x ∨ y. Finally, for x ∈ D, the full relation
over x is

Ex = {α ∈ At(Φ) : d(φ) = x} = Atx(Φ).

This is the neutral element for the join operation between generalized relations
on x. Note that R �� S = R ∩ S if R and S are relations over the same domain.

Let RΦ be the set of all generalized relations of atoms of the information alge-
bra (Φ,D). Then these generalized relations form a labeled information algebra.
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Theorem 3. The two-sorted algebra (RΦ, D) with the operations of projection
and join defined above forms a labeled information algebra.

This can easily be verified. In fact, it satisfies the same properties as an ordinary
relational algebra summarized in Section 2.1. Furthermore, just as ordinary re-
lational algebra, it forms the labeled version of a Boolean information algebra.
It turns out that the atomic algebra (Φ,D) is part of its associated generalized
relational algebra.

Assume the labeled information algebra (Φ,D) to be atomic.

Theorem 4. The mapping At : Φ→RΦ defined by φ 
→ At(φ) is an embedding
of (Φ,D) into (RΦ, D).

Proof. We have first to show the following:

1. At(φ⊗ ψ) = At(φ) �� At(ψ),
2. At(φ↓x) = πx(At(φ)).
3. At(ex) = Ex.
4. At(zx) = Zx.

(1) Let d(φ) = x and d(ψ) = y. Consider an atom α ∈ At(φ ⊗ ψ). Then it
follows that φ ≤ φ⊗ ψ ≤ α, hence φ = φ↓x ≤ α↓x. Thus α↓x ∈ At(φ). Similarly
α↓y ∈ At(ψ), hence α ∈ At(φ) �� At(ψ). Conversely, assume α ∈ At(φ) �� At(ψ).
Then d(α) = x ∨ y and φ ≤ α↓x ≤ α and ψ ≤ α↓y ≤ α, hence φ⊗ ψ ≤ α, which
means that α ∈ At(φ⊗ ψ). This proves (1).

(2) Let α ∈ At(φ↓x), such that d(α) = x and φ↓x ≤ α. We have φ ≤ φ ⊗ α.
Suppose that φ⊗ α = zy, if d(φ) = y ≥ x. Then

α = φ↓x ⊗ α = (φ⊗ α)↓x = zx.

But this is excluded, because α is an atom. Therefore φ ⊗ α �= zy. Since Φ is
atomic there is a β ∈ At(φ ⊗ α) with d(β) = y and φ ≤ β, hence β ∈ At(φ).
But we have also α = (φ ⊗ α)↓x ≤ β↓x. Since β↓x is also an atom, we must
have α = β↓x and therefore α ∈ πx(At(φ)). Conversely, if β ∈ πx(At(φ)), then
β = γ↓x for some atom γ ∈ At(φ). But φ ≤ γ, hence φ↓x ≤ β and therefore
β ∈ At(φ↓x). So (2) holds.

(3), (4) follow directly from the definition of At.
It remains to show that the mapping At is one-to-one. Assume At(φ) = At(ψ).

Then φ = ∧At(φ) = ∧At(ψ) = ψ. 
�
The information algebras associated with propositional logic, for instance, co-
incide with their relational version. But this is not the case in general. The
information algebras associated with predicate logic are proper subalgebras of
the relational information algebra of relations over U .

In the case of an atomic Boolean information algebra (Φ,D) there is also a
dual notion of the concept of an atom. A dual atom on x is a maximal element
on x with respect to the dual order ≤d. Let Atd(Φ) denote the set of dual atoms.
If α ∈ Atd(Φ) and d(α) = x, then α�= zcx = ex, hence αc �= zx. Further, assume
αc ≤ φ for a φ ∈ Φx. Then α ≤d φc, hence either φc = α, i.e. φ = αc, or φc = zcx,
i.e. φ = zx. Thus if α is a dual atom, then αc is an atom.
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Lemma 6. Let (Φ,D) be an atomic Boolean information algebra. Then the fol-
lowing holds:
1. At(φ) ∩At(φc) = ∅.
2. If d(φ) = x, then At(φ) ∪At(φc) = Atx(Φ).

Proof. (1) Suppose there is an atom α on x such that φ ≤ α and φc ≤ α. Taking
the join of both sides we obtain zx ≤ α, which is impossible.

(2) If α ∈ Atx(Φ), and d(φ) = x, then either φ ≤ α and α ∈ At(φ) or
α ∨ φ = zx. But in the latter case φc ≤ α and α ∈ At(φc). 
�
Note further that α ∈ At(φ), i.e. φ ≤ α, implies φc ≤d αc, hence αc ∈ Atd(φc)
and vice versa. Hence the cardinality of the two sets At(φ) and Atd(φc) are the
same. This implies also that the sets of all atoms on x, Atx(Φ) = At(ex) and
Atd,x(Φ) = Atd(zx) have the same cardinality.

4.4 Measure of Information Content

Shannon, in his information theory, introduces a quantitative measure of informa-
tion. He measures the information about a transmitted symbol by the reduction
of uncertainty, when the transmitted symbol becomes known. So, in our con-
text, we may say that Shannon considers a fixed question, namely what symbol
out of a (finite) alphabet is selected for transmission. The uncertainty is mea-
sured by the entropy of the alphabet [19]. Once the symbol to be transmitted is
known, the uncertainty is reduced to zero. Therefore the entropy measures the
information gained by knowing the symbol.

This basic idea can be applied in our context too, if the labeled information
algebra (Φ,D) is atomic. The first point to stress is that the information content
of an element φ ∈ Φ is measured relative to its domain d(φ), i.e. relative to
the question it refers to. We assume further that for all domains x ∈ D the
total number At(ex) of atoms of the domain is finite. An atom of a domain x
is the finest, i.e. the maximal information one may obtain about the domain.
Assuming the number of atoms finite means that this information can be coded
by a number of bits bounded by �log2 |At(ex)|�, whereas an infinite number of
atoms would mean that the information in an atom cannot be coded into a finite
memory. Then the total uncertainty associated with a domain x can be measured
by log |At(ex)|, the Hartley measure. This corresponds to the entropy of At(ex)
under an assumed uniform probability distributions over the atoms. However, we
shall avoid here probabilistic considerations, since there is no random experiment
involved in our discussion. Usually the logarithm is taken to base 2, but any
other base serves our purpose too, since it involves only a shift of scale in the
measurement of uncertainty and information. Once information φ with d(φ) = x
is given, the uncertainty concerning the possible atoms is reduced to log |At(φ)| ≤
log |At(ex)|. So, the information content of φ relative to the domain (question)
x can be defined as the reduction of uncertainty obtained by φ with respect to
knowing nothing (i.e. knowing only the vacuous information ex),

i(φ) = log |At(ex)| − log |At(φ)| = − log
|At(φ)|
|At(ex)| . (7)



Information Algebra 121

We may consider

p(φ) =
|At(φ)|
|At(ex)|

as the probability of φ, or, more precisely, the probability that an atom in At(φ)
is selected out of the atoms of At(ex), when all atoms have the same chance
to be selected. Then we obtain i(φ) = − log p(φ), which corresponds to an of-
ten proposed definition of the information content of an “event” observed in
a random experiment. But, once more, we prefer at this place to not refer to
probabilistic considerations, since, in our view, information, in the first place at
least, has nothing to do with probability, although in applications probability
may play an important role (as for example in communication theory). We note
that i(ex) = 0, the vacuous information carries no information. Further we ob-
tain i(zx) = ∞ by (7) since At(zx) = ∅. Note that zx is in fact not really an
information about a possible atom, since it contains no atom at all. We could as
well convene that the information content of zx is not defined.

More generally, any element φ ∈ Φ contains possibly information about any
other domain y �= d(φ). In fact, it is natural to define the information content
of φ relative to domain y by

i(φ; y) = i(φ→y).

Clearly and consistently we see that i(φ;x) = i(φ), if d(φ) = x. Further, if
[φ] is the class of equivalent information elements (see Section 2.5), then all
elements of the class have the same information content i(φ; y) with respect to
any domain y. This means that we may assign a measure of information content
by defining i([φ]; y) = i(φ; y) also to the elements of the domain-free version of
an information algebra.

The next theorem shows that our quantitative measure of information respects
the qualitative orders of information introduced above (Section 4.1):

Theorem 5. Let (Φ,D) be an atomic information algebra, with finite sets of
atoms Atx(Φ). Then, for all x ∈ D and φ, ψ ∈ Φ, the inequalities φ ≤ ψ,
[φ] ≤ [ψ] and φ ≤x ψ imply i(φ;x) ≤ i(ψ;x).

Proof. Both φ ≤ ψ and [φ] ≤ [ψ] imply φ ≤x ψ. The latter implies At(φ→x) ⊇
At(ψ→x), hence |At(φ→x)| ≥ |At(ψ→x)|, and therefore i(φ;x) = i(φ→x) ≤
i(ψ→x) = i(ψ;x). 
�
From this theorem a number of simple results may be derived, which follow from
the properties of the partial order: For all x, y, z ∈ D and φ, ψ ∈ Φ:

1. i(φ;x), i(ψ;x) ≤ i(φ⊗ ψ;x),
2. i(φ→y;x) ≤ i(φ;x),
3. φ ≤ ψ implies i(φ→y;x) ≤ i(ψ→y ;x),
4. φ1 ≤ φ2 and ψ1 ≤ ψ2 imply i(φ1 ⊗ ψ1 : x) ≤ i(φ2 ⊗ ψ2 : x),
5. i(φ→y ⊗ ψ→y;x) ≤ i((φ⊗ ψ)→y;x),
6. x ≤ y implies i(φ→x; z) ≤ i(φ→y; z).
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When the partial order in the domain-free algebra is considered, similar re-
sults are obtained. So far we measure the information content of an element φ on
a domain x by the reduction of the uncertainty with respect to initial ignorance,
i.e. vacuous information. More generally, we may also measure the relative in-
formation content of a piece of information relative to another, previous piece
of information ψ. If information ψ is already given, the remaining uncertainty is
log |At(ψ)|. When a new information φ arrives, the total information is ψ ⊗ φ,
and the remaining uncertainty log |At(ψ⊗φ)|. If φ and ψ have the same domain
d(φ) = d(ψ) = x, then the relative information content of φ relative to ψ relating
to the domain x can then be measured by

i(φ|ψ) = log |At(ψ)| − log |At(ψ ⊗ φ)| = − log
|At(ψ ⊗ φ)|
|At(ψ)| .

Since by Theorem 4 in this case At(ψ⊗φ) = At(φ)∩At(ψ), we may also consider
i(φ|ψ) = − log p(φ|ψ), i.e. as the negative logarithm of the conditional probability
of φ given ψ, with the usual assumption of uniform probability distribution
over the atoms of At(ex). As before we may extend this definition of relative
information measure to any domain y and information elements ψ and φ on any
domains

i(φ|ψ;x) = log |At(ψ→x)| − log |At((ψ ⊗ φ)→x)| = − log
|At((ψ ⊗ φ)→x)|
|At(ψ→x)| .

Note however that in general i(φ|ψ;x) �= i(φ→x|ψ→x). Further, ψ ≤ ψ ⊗ φ
implies also ψ→x ≤ (ψ⊗ φ)→x; therefore we conclude that i(φ|ψ;x) ≥ 0. It may
be that ψ⊗φ = zy, which means that φ and ψ are incompatible or contradictory
pieces of information. Correspondingly we obtain in this case i(φ|ψ;x) = ∞
for all domains x. This is simply the mathematical expression for the fact that
such two pieces of information can not hold at the same time. Note further that
i(φ;x) = i(φ|ex;x).

The following result shows that the measure of a combined information can
be obtained as the sum of the measure of the first information and the relative
information of the second relative to the first one. This is called the chaining
theorem.

Theorem 6. For all x ∈ D and φ, ψ ∈ Φ it holds that

i(φ⊗ ψ;x) = i(φ;x) + i(ψ|φ;x).

Proof. We have

i(φ⊗ ψ;x) = log |At(ex)| − log |At(φ ⊗ ψ)→x|
= (log |At(ex)| − log |At(φ→x)|)

+(log |At(φ→x)| − log |At(φ ⊗ ψ)→x|)
= i(φ;x) + i(ψ|φ;x). 
�
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This result can easily be generalized to the combination of n ≥ 2 information
elements.

Corollary 1. For all x ∈ D and φ1, . . . , φn ∈ Φ,

i(φ1 ⊗ · · · ⊗ φn;x) = i(φ1;x) + i(φ2|φ1;x) + · · ·+ i(φn|φ1 ⊗ · · · ⊗ φn−1;x).

Here are a few simple results about relative information.

Lemma 7. For all x ∈ D and φ, ψ ∈ Φ
1. If φ ≥ ψ, then i(φ|ψ;x) ≤ i(φ;x).
2. φ1 ≤ φ2 implies i(φ1|ψ;x) ≤ i(φ2|ψ;x).
3. φ ≤ ψ implies i(φ|ψ;x) = 0.

Proof. (1) We note that At(ex) ⊇ At(ψ→x) and At((φ ⊗ ψ)→x) = At(φ→x).
Then

i(φ|ψ;x) = log |At(ψ→x)| − log |At((φ ⊗ ψ)→x)|
≤ log |At(ex)| − log |At(φ→x)|
= i(φ;x).

(2) follows since (φ1⊗ψ)→x ≤ (φ2⊗ψ)→x, hence At((φ1⊗ψ)→x) ⊇ At((φ2⊗
ψ)→x).

(3) follows because in this case φ⊗ ψ = ψ. 
�
Suppose i(φ|ψ;x) = i(φ;x) and i(ψ|φ;x) = i(ψ;x). In this case, knowing ψ
contributes nothing to the information represented by φ and, similarly, knowing
φ contributes nothing to the information represented by ψ. Therefore we say that
φ and ψ are independent pieces of information relative to x and we write φ||ψ;x.
In this case, by the Chaining Theorem 6, the following additivity property holds,

i(φ⊗ ψ;x) = i(φ;x) + i(ψ;x).

Independent information simply adds up.
An important special case are atomic Boolean information algebras. We may

define there a dual information measure for an element φ ∈ Φ with d(φ) = x,

id(φ) = log |Atd(zx)| − log |Atd(φ)|,
since zx is the dual neutral element, hence the dual vacuous information. This
dual measure makes sense: In relational databases for instance, if a relation
indicates all the flights by which a person can arrive, then the first measure
applies, the smaller the relation the more information is available. When however
the relations represents all the flights which a person may select for her trip, then
the dual measure applies, the larger the relation, the more information is given.
We have seen that |Atd(φ)| = |At(φc)| (Section 4.3), hence

id(φ) = log |At(ex)| − log |At(φc)| = i(φc).
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This duality relation between the dual information measures holds also for the
general information measure relative to a domain

id(φ;x) = id(φ→dx) = i((φ→dx)c) = i((φc)→x) = i(φc;x).

It holds also for relative information. By the dual chaining theorem,

id(φ|ψ;x) = id(φ ⊗d ψ;x)− id(ψ;x)
= i((φ⊗d ψ)c;x)− i(ψc;x)
= i(φc ⊗ ψc;x)− i(ψc;x)
= i(φc|ψc;x).

We illustrate these concepts in the important case of information algebras
with multivariate domains, where the results can be considerably sharpened.
Assume thus that (Φ,D) is an atomic information algebra, where D is a lattice
of subsets of some set r such that x, y ∈ D implies x − y ∈ D. This is the case
for instance for the lattice of finite subsets of an arbitrary set r. We introduce
two further assumptions:

– Every atom α ∈ Atx∪y(Φ) on the domain x ∪ y has a decomposition of the
form

α = α↓x ⊗ α↓y . (8)

– For every η ∈ Φt we have

η↓∅ =
{
e∅, if η �= zt,
z∅, else. (9)

Note that the combination of atoms is, in the general case, not necessarily
an atom. This condition is satisfied, whenever Φ contains subsets of cartesian
products, i.e. in the case of propositional and predicate logic, relational al-
gebra and linear manifolds. As before we assume that the atom sets Atx(Φ)
are finite for all x ∈ D. This is the case for propositional logic, predicate
logic and relational algebra with finite domains and linear manifolds over prod-
uct spaces of finite (or Galois) fields. In this case the following basic result
holds:

Lemma 8. Let (Φ,D) is an atomic information algebra, where D is a lattice of
subsets of some set r, and such that conditions (8) and (9) hold. Then, if for
x, y ∈ D with x ∩ y = ∅, and

φ = φ↓x ⊗ φ↓y, (10)

it holds that

i(φ) = i(φ↓x) + i(φ↓y).
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Proof. From (10) and Theorem 4 it follows that

At(φ) = At(φ↓x) �� At(φ↓y)
= {α ∈ Atx∪y(Φ) : α = α↓x ⊗ α↓y, α↓x ∈ At(φ↓x), α↓y ∈ At(φ↓y)}.

From this we conclude that |At(φ)| = |At(φ↓x)| · |At(φ↓y)|. Similarly, it follows
that |At(ex∪y)| = |At(ex)| · |At(ey)|. Therefore we obtain

i(φ) = log |At(ex∪y)| − log |At(φ)|
= (log |At(ex)|+ log |At(ey)|)− (log |At(φ↓x)|+ log |At(φ↓y)|)
= (log |At(ex)| − log |At(φ↓x)|) + (log |At(ey)| − log |At(φ↓y)|)
= i(φ↓x) + i(φ↓y). 
�

This result allows to introduce an absolute information measure into the domain-
free version of the information algebra. In fact, if φ ≡ ψ, then φ↑x∪y = ψ↑x∪y,
if d(φ) = x and d(ψ) = y. Let z = x ∪ y − x. Then, since φ↑x∪y = φ ⊗ ez =
(φ↑x∪y)↓x ⊗ (φ↑x∪y)↓z , by the previous Lemma 8 i(φ↑x∪y) = i(φ). Similarly we
obtain i(ψ↑x∪y) = i(ψ), hence i(φ) = i(ψ). Define then the absolute information
measure i([φ]) = i(φ). The absolute information measure respects the partial
information order in the domain-free information algebra Φ/ ≡. Indeed, if [φ] ≤
[ψ], then [φ]⊗ [ψ] = [φ⊗ ψ] = [ψ]. We have then i([φ]) = i(φ↑x∪y) ≤ i(φ⊗ ψ) =
i(ψ↑x∪y) = i([ψ]), if d(φ) = x and d(ψ) = y.

In a similar way we define the relative information measure

i([φ]|[ψ]) = log |At(ψ↑x∪y)| − log |At(φ ⊗ ψ)| = i([φ]⊗ [ψ])− i([ψ]) ≥ 0.

Thus the absolute chaining theorem holds too,

i([φ]⊗ [ψ]) = i([φ]) + i([ψ]|[φ]).

As before, we may call [φ] and [ψ] independent, if the addition property

i([φ]⊗ [ψ]) = i([φ]) + i([ψ])

or, equivalently, i([φ]) = i([φ]|[ψ]) and i([ψ]) = i([ψ]|[φ]) hold. This is the case if
there are supports x and y of [φ] and [ψ] respectively, such that x ∩ y = ∅.

5 Conclusion

Information algebras represent a structure which captures essential features of
any concept of “information”. The presentation here focuses on its basic theory.
There are many more aspects: One is computation: How are pieces of informa-
tion combined and focussed on the domains of interest? This is the problem of
query processing where local computation methods can be applied. A lot of work
has been done with respect to this problem. In particular domains like query
processing in relational algebra, solving linear equations, for instance in coding
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theory, consequence finding in logic, etc have been studied extensively. Whereas
each of these domains has its particularities which can and must be explored,
information algebra offers a common background on which generic methods can
be developed [9, 12] . In this respect we refer to [18] which describes a generic
software for local computation, permitting instantiations with any information
(or rather valuation) algebra.

Another issue is approximation of ‘infinite” information by “finite” informa-
tion. This is modeled by compact information algebras [9]. More precisely, the
question arises when an information algebra is effective, i.e. when the opera-
tions of combination and focussing can effectively be computed on a computer.
Similar questions arise in domain theory, a theory which has close links to com-
pact information algebras, see for instance [22]. In this same context, one can
ask how information and its algebra is related to deduction. One is used that
information may allow the inference of further information; in fact projection is
a deduction procedure. Particularly in logic, i.e. in contexts, this became clear.
In fact, it turns out that, similar to domain theory, information algebra may be
equivalently be replaced by a system based on entailment, similar to information
systems in the sense of Scott [22]. This means that logic in a wider sense is a
general way to express and treat information. In a similar way, it can also be
shown that any information algebra, in some precise sense, is part of generalized
relational algebra. Thus, there are two general and complementary ways to see
information in general, as (generalized) relations or as logic. These relations are
discussed in [9].

Finally comes up the idea of “uncertain information”, a term often used, but
rarely, if ever, precisely defined. In the framework of information algebras, un-
certain information can be represented by random variables taking values in an
information algebra [9, 10]. This is closely related to probabilistic argumentation
systems [5, 9]. Here, probability theory is combined with logic, in the way that the
latter serves to prove hypotheses under certain assumptions and the former per-
mits to compute the probability that those assumptions are valid. This brings the
theory more into the realm of Shannon’s entropy based information theory. Also
it generalizes the concept of random sets [16], which are usually considered as ran-
dom variables taking values in an algebra of closed sets of some topological space.

References

1. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.
Cambridge Tracts in Theoretical Computer Science, vol. 44. Cambridge University
Press, Cambridge (1997)

2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. Journal of the ACM 30(3), 479–513 (1983)

3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (1990)

4. Grätzer, G.: General Lattice Theory. Academic Press, London (1978)



Information Algebra 127

5. Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumentation systems. In:
Kohlas, J., Moral, S. (eds.) Handbook of Defeasible Reasoning and Uncertainty
Management Systems. Algorithms for Uncertainty and Defeasible Reasoning,
vol. 5, pp. 221–287. Kluwer, Dordrecht (2000)

6. Halmos, P.R.: Algebraic Logic. Chelsea, New York (1962)
7. Paul, R.: Halmos and Steven Givant. Logic as Algebra. Dolciani Mathematical

Expositions No. 21, Mathematical Association of America (1998)
8. Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras. North-Holland, Amsterdam

(1971)
9. Kohlas, J.: Information Algebras: Generic Structures for Inference. Springer, Hei-

delberg (2003)
10. Kohlas, J.: Uncertain information: random variables in graded semilattices. Int. J.

Approx. Reason. (2007) doi:10.1016/j.ijar.2006.12.005
11. Kohlas, J., Haenni, R., Moral, S.: Propositional information systems. Journal of

Logic and Computation 9(5), 651–681 (1999)
12. Kohlas, J., Shenoy, P.P.: Computation in valuation algebras. In: Kohlas, J., Moral,

S. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems.
Algorithms for Uncertainty and Defeasible Reasoning, vol. 5, pp. 5–39. Kluwer,
Dordrecht (2000)

13. Kohlas, J., Wilson, N.: Exact and approximate local computation in semiring in-
duced valuation algebras. Technical Report 06-06, Department of Informatics, Uni-
versity of Fribourg (2006)

14. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. of Royal Stat.
Soc. 50(2), 157–224 (1988)

15. Maier, D.: The Theory of Relational Databases. Pitman, London (1983)
16. Molchanov, I.: Theory of Random Sets. Springer, London (2005)
17. Plotkin, B.I.: Universal Algebra, Algebraic Logic, and Databases. Mathematics and

its applications, vol. 272. Kluwer Academic Publishers, Dordrecht (1994)
18. Pouly, M.: Nenok 1.1 user guide. Technical Report 06-02, Department of Informat-

ics, University of Fribourg (2006)
19. Shannon, C.E.: A mathematical theory of communications. The Bell System Tech-

nical Journal 27, 379–432 (1948)
20. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function proagation.

In: Shachter, R.D., Levitt, T.S., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in
Artificial Intelligence 4. Machine intelligence and pattern recognition, vol. 9, pp.
169–198. Elsevier, Amsterdam (1990)

21. Shenoy, P.P., Shafer, G.: Axioms for probability and belief function propagation.
In: Lemmer, J.F., Shachter, R.D., Levitt, T.S., Kanal, L.N. (eds.) Uncertainty in
Artif. Intell. 4, pp. 169–198. North-Holland, Amsterdam (1990)

22. Stoltenberg-Hansen, V., Lindstroem, I., Griftor, E.: Mathematical Theory of Do-
mains. Cambridge University Press, Cambridge (1994)

23. Wilson, N., Mengin, J.: Logical deduction using the local computation framework.
In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS, vol. 1638, pp. 386–396.
Springer, Heidelberg (1999)



Uncertain Information�

Jürg Kohlas and Christian Eichenberger

University of Fribourg
Department of Informatics DIUF
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1 Introduction

In the previous chapter Information Algebra, an algebraic structure capturing
the idea that pieces of information refer to precise questions and that they can
be combined and focussed on other questions is presented and discussed. A pro-
totype of such information algebras is relational algebra. But also various kind
of logic systems induce information algebras. In this chapter, this framework
will be used to study uncertain information. It is often the case that a piece
of information is known to be valid under certain assumptions, but it is not
altogether sure that these assumptions really hold. Varying the assumptions
leads to different information. Given such an uncertain body of information,
assumption-based reasoning permits to deduce certain conclusions or to prove
certain hypotheses under some assumptions. This kind of assumption-based in-
ference can be carried further if the varying likelihood of different assumptions
is described by a probability measure on the assumptions. Then, it is possible
to measure the degree of support of a hypothesis by the probability that the
assumptions supporting the hypothesis hold. A prototype system of such a prob-
abilistic argumentation system based on propositional logic is described in [3].
Another example will be described in Section 2 of this chapter. It is shown that
this way to model uncertain information leads to a theory which generalizes the
well-known Dempster-Shafer theory [6, 19].

Such probabilistic assumption-based information can be represented in a gen-
eral way by random variables taking values in an information algebra, i.e. map-
pings from a probability space, whose elements represent uncertain assumptions,
into an information algebra. In order to avoid measure-theoretic complications,
we shall assume finite sample spaces, that is finite sets of possible assumptions.
The random variables are then called simple. More general random variables
are discussed in [6, 8]. In Section 3, simple random variables are defined. It is
shown that they form themselves an information algebra. This emphasizes the
fact that assumption-based information is information, although uncertain infor-
mation. Next, in Section 4, the probability distributions associated with random
� Research supported by grant No. 200020–109510 of the Swiss National Foundation
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variables are introduced. They arise from the probabilities of the assumptions
supporting hypotheses. This defines support functions mapping the elements of
the underlying information algebra to degrees of support, that is numbers in the
interval [0, 1]. Related to support functions are possibility functions, which mea-
sure the probability that a hypothesis cannot be rejected, thus remains possible,
although not asserted. These functions representing distribution functions of the
random variables can, in the case of simple random variables, also be defined in
terms of basic probability assignments (bpa). This relates the present theory of
random variables in information algebras to the Dempster-Shafer theory [19]. It
turns out that an algebra of bpas can be defined, which satisfies all axioms of an
information algebra, except the idempotency axiom. Finally, it is discussed how
the algebraic properties of uncertain information is linked to Bayesian theorems.

Uncertain assumption-based information being information, that is part of
an information algebra of random variables, implies that an order between its
elements can be defined. This order is induced by the algebra and reflects a
comparison of random variables with respect to information content. This is a
general issue in information algebras (see the previous chapter Information Al-
gebra). But, in the case of assumption-based information, the information is not
only related to the elements of the underlying information algebra, the range of
the mapping, but also to the assumptions. This is explained in Section 5. Based
on this observation, the algebra of random variables can be extended or gener-
alized admitting also varying spaces of assumptions, although only in the case
where the underlying information algebra is Boolean. This then also permits to
introduce a measure of information content already proposed along general lines
in the chapter Information Algebra, first neglecting the probability measure on
assumptions. However, the particular semantics of assumption-based informa-
tion needs to be taken into account. It turns out that this measure respects the
order of information among random variables. The probability measure on the
assumptions is additional information and can also be incorporated into the in-
formation measure. This quantitative measure of information content is defined
as the reduction of uncertainty by the random variable with respect to full ig-
norance. Uncertainty is measured by Shannon’s concept of entropy, adapted to
random variables with values in an information algebra. This finally establishes
the link of the theory of information algebra with Shannon’s information the-
ory. In particular, lossy channels and decoding could be described in terms of
uncertain information. But this is not developed in detail in this chapter.

2 Probabilistic Assumption-Based Inference

2.1 Functional Models

In this section, we examine, by means of an introductory example, a particular
way of how uncertain information can arise. This should serve as a motivation
and illustration for the general, abstract model presented in the subsequent sec-
tions. The example is drawn from statistics. Based on a functional model, which
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describes how data is generated in some experiment or process, an assumption-
based inference approach is presented. This represents the logical part of the
inference. On top of this inference, a probability analysis allows to measure the
likelihood of the possible deductions. The inference can be captured in an object
called a hint, which represents the information drawn from the experiment.

Functional models describe the process by which a data x is generated from
a parameter θ and some random element ω. The set of possible values, i.e. the
domain of the data x, is denoted by X , whereas the domain of the parameter
θ is denoted by Θ, and the domain of the random element ω is denoted by Ω.
Unless otherwise stated, we assume that the sets X , Θ and Ω are finite. This
is in order to simplify the mathematics, but is not a necessary assumption. The
data generation process is specified by a function

f : Θ ×Ω → X, (1)

which relates the data with the perturbation and the parameter. In other words,
if θ ∈ Θ is the correct value of the parameter and the random element ω ∈ Ω
occurs, then the data x is uniquely determined by the function f according to
the equation

x = f(θ, ω). (2)

We assume that the function f is known, and we also assume that the probability
distribution of the random element ω is known. This probability distribution is
denoted by p(ω) and the corresponding probability measure on Ω is denoted by
P . Note that the probability measure P does not depend on θ. The function
f together with the probability measure P constitute a functional model for a
statistical experiment.

In a functional model, if we assume a parameter θ, then, from the probabilities
p(ω), we can compute the probabilities for the data x, namely

pθ(x) =
∑

ω:x=f(θ,ω)

p(ω).

This shows that a functional model induces a parametric family of probabil-
ity distributions on the sample space X , an object which is usually assumed a
priori in modelling statistical experiments. These probability measures are the
statistical specification associated with the functional model. As shown in [17],
we emphasize that different functional models may induce the same statistical
specification pθ(x). This means that functional models contain more information
than the family of distributions pθ(x).

We illustrate the idea of functional models by two examples.

Example 1 (Sensor). Consider a sensor which supervises a dangerous event e. If
this event occurs, it sends an alarm signal a. However, there is the possibility
that the sensor fails, a possibility denoted by ω. To complete the notation, we
denote the non-occurrence of the event e by ¬e, the non-occurrence of the alarm
signal by ¬a and, finally, the case of an intact sensor by ¬ω. Now we may assume
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that, if the event e occurs and the sensor is intact, then the alarm sounds. On
the other hand, if the event e has not occurred and the sensor is intact, then
no alarm occurs. Finally, if the sensor fails, no alarm is possible. If we consider
the observation space X = {a,¬a}, the parameter space Θ = {e,¬e} and the
disturbance space Ω = {ω,¬ω}, then these assumptions can be captured in the
following functional model:

f(e,¬ω) = a, f(¬e,¬ω) = ¬a, f(e, ω) = f(¬e, ω) = ¬a.

If we assume a probability p for the failure of the sensor, p(ω) = p, then the
functional model is complete.

Example 2 (Poisson Process). Suppose that traffic is observed at a given point
over time. Cars are passing at an average number of λ ·Δt during a time interval
Δt. This corresponds to a Poisson process where the time interval between two
subsequent cars is distributed exponentially with parameter λ. In order to get
information about the unknown parameter λ, we may fix a time interval of some
given length, say Δt, and then observe the number of cars passing in this time
interval. Here, we have already two ingredients of a functional model describing
this process, namely the parameter and the observation. The random elements
ω are responsible for the random time intervals between passing cars. In fact,
if ω is a random variable distributed according to the exponential distribution
with unit parameter, given by the density function

e−t, (3)

then μ = ω/λ is a random variable with exponential distribution with parameter
λ, which means a mean time of 1/λ between two subsequent cars. So the count
of cars passing during the time interval Δt is given by the largest value i such
that

i∑

k=1

μi ≤ Δt. (4)

Here, the μi are stochastically independent random variables, each with exponen-
tial distribution with parameter λ. Thus, we may define the following functional
model for the counting x of passing cars in a Poisson process:

x = i, if
1
λ

i∑

k=1

ωk ≤ Δt <
1
λ

i+1∑

k=1

ωk, for i = 0, 1, . . . . (5)

Here, the ωk are assumed to be stochastically independent and exponentially
distributed with parameter 1. This model explains how the counts in a time
interval of length Δt are generated. In fact, in this model, the random element
is given by an infinite sequence of random variables ω1, ω2, . . ..
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2.2 Assumption-Based Reasoning

Consider an experiment represented by a functional model x = f(θ, ω) with
given probabilities p(ω) for the random elements. Suppose that the outcome of
the experiment is observed to be x. Given this data x and the experiment, what
can be inferred about the value of the unknown parameter θ ? To answer this
question, we use the principles of assumption-based reasoning. The basic idea of
assumption-based reasoning is to assume that a random element ω generated the
data and then determine the consequences of this assumption on the parameter.
The consequences about θ are then evaluated according to the probabilities p(ω)
of the assumptions ω in Ω.

Some random elements ω in Ω may become impossible after x has been ob-
served. In fact, if, for an ω ∈ Ω, there is no θ ∈ Θ such that x = f(θ, ω), then
this ω is clearly impossible: It cannot have generated the actual observation x.
Therefore, the observation x induces an event in Ω, namely the event

vx = {ω ∈ Ω : there is a θ ∈ Θ such that x = f(θ, ω)}. (6)

Since it is known that vx has occurred, we need to condition the probability
measure P on the event vx, which leads to the revised probabilities

p′(ω) =
p(ω)
P (vx)

for all ω ∈ vx. These probabilities define a probability measure P ′ on vx given
by the equation

P ′(A) =
∑

ω∈A
p′(ω)

for all subsets A ⊆ vx. It is still unknown which random element ω in vx gen-
erated the observation x, but p′(ω) is the probability that this element is ω.
Nevertheless, let us assume for the time being that ω caused the observation
x. Then, according to the function f relating the parameter and the random
element with the data, the possible values for the parameter θ can be logically
restricted to the set

Tx(ω) = {θ ∈ Θ : x = f(θ, ω)}. (7)

Note that, in general, Tx(ω) may contain several elements, but it could also be
a one-element subset of Θ. It is also possible that Tx(ω) = Θ, in which case the
observation x does not carry any information about θ, assuming that ω caused
the observations x. Therefore, in general, even if the chance element generating
the observation x were known, it would still not be possible to identify the value
of the parameter unambiguously. This analysis shows that an observation x in
a functional model generates the structure

Hx = (vx, P ′, Tx, Θ), (8)

which we call a hint.
This approach to inference can be illustrated by the two examples introduced

at the end of Section 2.1.
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Example 3 (Sensor). Assume that, in the sensor described in Example 1, an
alarm a sounds. Then, we may use the functional model specified there to judge
how likely it is that the event e occurred. First, it is clear that the sensor must
be intact since, otherwise, there would be no alarm. Hence, we have va = {¬ω}.
But then, Ta(¬ω) = {e}, hence the event e has occurred for sure. So this is a
very reliable inference.

If, on the other hand, no alarm sounds, how sure can we be that the event
e has not occurred? We remark that the observation ¬a is compatible both
with ω (sensor failed) as well as with ¬ω (sensor intact). Hence, we have v¬a =
Ω = {ω,¬ω}. If we assume that the system is intact, then we conclude that
e has not occurred, i.e. T¬a(¬ω) = {¬e}. If we assume, on the other hand,
that the sensor failed, then both possibilities, e and ¬e, remain possible, whence
T¬a(ω) = {e,¬e}. So, in this case, we do not arrive at a unique and clear
conclusion. We remark, however, that we may assume that a reliable sensor was
with high probability functioning correctly, so we have some guarantee that the
event e did not occur. This informal consideration will be made more precise
below.

Example 4 (Inference for a Poisson Process). We refer to the functional model
(5) defined in Example 2 for the counting of passing cars. Although in this
case neither the parameter space nor the space of disturbances ω is finite, the
inference can nevertheless be carried out in the way described in this section. If
we observe a given value x, then, according to (5), we must have

x∑

k=1

ωk ≤ Δt · λ <
x+1∑

k=1

ωk.

First, we note that the observation x excludes no sequence ω1, ω2, . . ., hence
no conditioning of the underlying probabilities is needed. If we assume a given
sequence ω = ω1, ω2, . . . we then conclude that the unknown parameter must be
in the interval

Tx(ω) = [
x∑

k=1

ωk,

x+1∑

k=1

ωk). (9)

Below, we shall see that these findings can be used to quantify the support for
certain hypotheses about the unknown parameter.

2.3 Hints

The hint defined in (8) is an instance of a more general concept of a hint. In
general, if Θ denotes the set of possible answers to a question of interest, then a
hint on Θ is a quadruple of the form

H = (Ω,P, Γ,Θ),
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where Ω is a set of assumptions, P is a probability measure on Ω reflecting the
probability of the different assumptions and Γ is a mapping from the assumptions
to the power set of Θ,

Γ : Ω −→ 2Θ.

For an assumption ω ∈ Ω, the subset Γ (ω) is the smallest subset of Θ that is
known for sure to contain the correct answer to the question of interest. In other
words, if the assumption ω is correct, then the answer is certainly within Γ (ω).
The theory of hints is presented in detail in [12]. Intuitively, a hint represents a
piece of information regarding the correct value in Θ. It can be used to evaluate
the validity of certain hypotheses regarding Θ. A hypothesis is a subset H of Θ
and it is true if, and only if, it contains the correct answer to the question of
interest.

The most important concept for the evaluation of the hypothesis H is the
degree of support of H , which is defined by

sp(H) = P ({ω ∈ Ω : Γ (ω) ⊆ H}). (10)

If the assumption ω is correct and Γ (ω) ⊆ H , then H is necessarily true because
the correct answer is in Γ (ω) by definition of the mapping Γ . The degree of
support of H is the probability of the assumptions that are capable of proving
H . Such assumptions are called arguments for the validity of H and sp(H)
measures the strength of these arguments. The arguments represent the logical
evaluation of H , whereas sp(H) represents the quantitative evaluation of H .

Similarly, the degree of plausibility of H , which is defined as

pl(H) = P ({ω ∈ Ω : Γ (ω) ∩H �= ∅}), (11)

measures the level of compatibility between the hypothesis H and the assump-
tions. Obviously, degrees of support and plausibility for hypotheses lead to the
functions

sp : 2Θ −→ [0, 1], pl : 2Θ −→ [0, 1],

which are called the support and plausibility functions associated with the hint.
It can easily be shown that

pl(H) = 1 − sp(Hc) (12)

and sp is a belief function in the sense of the Dempster-Shafer theory of evidence
[19].

We are going to reconsider the examples above for an illustration.

Example 5 (Sensor). Let p be the probability that the sensor fails, that is the
probability of the event ω. If there is an alarm, then ¬ω must hold, as we have
seen above (see Example 1), hence p′(¬ω) = 1. The event e has occurred for
sure since T (¬ω) = {e}. Hence, we conclude that sp({e}) = pl({e}) = 1. On
the other hand, if there is no alarm, then the assumption that the sensor is
intact supports the hypothesis that the event e has not occurred. Hence, we
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have sp({¬e}) = 1 − p. There is no support for the hypothesis that event e
occurred, hence sp({e}) = 0. Both assumptions, that the sensor is intact, as
well as that it failed, are compatible with the hypothesis that the event e has
not occurred. This implies that pl({¬e}) = 1. However, only the assumption
that the sensor failed is compatible with the hypothesis of an event e; therefore,
pl({e}) = p. So, if the sensor is reliable, i.e. if the probability p of failure is small,
then, by (12), we have a lot of support for the hypothesis ¬e that no dangerous
event e occurred, whereas the alternative e has only small plausibility.

Example 6 (Inference for a Poisson Process). In Example 4, we determined that,
for a given observation of x cars passing and a sequence ωk of disturbances, the
unknown parameter must be in the interval Tx(ω) as given in (9). This now
allows to determine the degree of support for intervals by

spx(u ≤ λ ≤ v) = P

(
u ≤

x∑

k=1

ωk <

x+1∑

k=1

ωk ≤ v

)
.

It is convenient to introduce the distribution function

Qx(u, v) = P

(
x∑

k=1

ωk ≤ u ≤ v ≤
x+1∑

k=1

ωk

)

=
1
x!
uxe−v for 0 ≤ u ≤ v.

This distribution function has the density function

qx(u, v) =
∂2

∂u∂v
Qx(u, v) = −Qx−1(u, v) for x ≥ 1.

For x = 0, we have Q0(u, v) = e−v with a density q0(u, v) = e−v. Further, we
define

Fx(u) = P

(
x∑

k=1

ωk ≤ u

)
,

Gx(v) = P

(
v ≤

x∑

k=1

ωk

)
.

Both these functions have densities too, namely

fx(u) =
∂

∂u
Qx(u, v)|v=u = qx(u, u),

gx(v) =
∂

∂v
Qx(u, v)|u=v = qx+1(v, v).

This permits to compute spx(u ≤ λ ≤ v), since

spx(u ≤ λ ≤ v) = 1 − (Fx(u) +Gx+1(v) −Qx(u, v)) .
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Similarly, we compute the degree of plausibility for the unknown parameter as

plx(u ≤ λ ≤ v) = 1 − (P

(
v <

x∑

k=1

ωk

)
+ P

(
x+1∑

k=1

ωk < u

)
)

= 1 − ((1 − Fx(v)) + (1 −Gx+1(u))
)

= Fx(v) +Gx+1(u) − 1.

In particular, we may determine the plausibility of singletons,

plx(u ≤ λ ≤ u) = P

(
x∑

k=1

ωk ≤ u ≤
x+1∑

k=1

ωk

)
=

1
x!
uxe−u.

This could be used to determine the most plausible estimate of the unknown
parameter λ, i.e. for maximum likelihood estimation.

When there are several hints relative to the same domain Θ, we may ask how
we should combine these hints in order to obtain a single hint reflecting the
pooled information contained in all the hints? For the sake of simplicity, we only
consider the combination of two hints; the generalization to more than two hints
is straightforward. So let

H1 = (Ω1, P1, Γ1, Θ), H2 = (Ω2, P2, Γ2, Θ) (13)

be two hints on Θ. If the assumptions of the two hints are independent, then the
prior probability of a pair of assumptions (ω1, ω2) in Ω1 ×Ω2 is P1(ω1) ·P2(ω2).
If the intersection Γ1(ω1) ∩ Γ2(ω2) is empty, then this pair of assumptions is
called contradictory because, by construction of the mappings Γ1 and Γ2, it is
impossible that both ω1 and ω2 are correct. Therefore, if

C = {(ω1, ω2) ∈ Ω1 ×Ω2 : Γ1(ω1) ∩ Γ2(ω2) = ∅}

denotes the set of contradictory pairs of assumptions, then the correct pair must
be in the set

Ω = (Ω1 ×Ω2) − C. (14)

Since the correct pair of assumptions is in Ω, we must condition the product
probability measure P1P2 on the set Ω, which we assume non-empty; if Ω = ∅,
then the two hints cannot be combined. Specifically, if we define

K =
∑

(ω1,ω2)∈C
P1(ω1)P2(ω2),

then the conditioning operation results in a new probability space (Ω,P ) where

P (ω1, ω2) =
P1(ω1)P2(ω2)

1 −K
(15)
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for all (ω1, ω2) ∈ Ω. Furthermore, if (ω1, ω2) is the correct pair of assumptions,
then the correct value in Θ must necessarily be in the set

Γ (ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2). (16)

This is the smallest subset of Θ that is known for sure to contain the correct
answer if both ω1 and ω2 are assumed to be the respective correct assumptions.
Therefore, we define the combination of the two hints H1 and H2 as the hint

H1 ⊕H2 = (Ω,P, Γ,Θ),

where Ω is defined in (14), P is defined in (15) and Γ is defined in (16).
There is another notion regarding hints that we need to introduce, namely

the operation of marginalization of a hint. Consider a hint on a domain that is
the Cartesian product of two domains, namely a hint of the form

H = (Ω,P, Γ,Θ1 ×Θ2).

In order to evaluate hypotheses regarding the domainΘ1, we define the marginal-
ization of H to Θ1 as the hint

H↓Θ1 = (Ω,P, Γ1, Θ1)

where
Γ1(ω) = {θ1 ∈ Θ1 : ∃ θ2 ∈ Θ2 such that (θ1, θ2) ∈ Γ (ω)}.

The set Γ1(ω) is the projection of Γ (ω) to the domain Θ1. The definition of
the mapping Γ1 is justified by the fact that the projection Γ1(ω) is the smallest
subset of Θ1 that is known for sure to contain the correct value in Θ1 when we
know for sure that the correct joint value is in Γ (ω). The marginalized hint H↓Θ1

can then be used as usual to evaluate hypotheses H that are subsets of Θ1.
We refer to [13] for a systematic presentation of the theory of hints. The ap-

proach of assumption-based reasoning to statistical inference as indicated here
is developed in detail in [10]. Here, we hint at two further applications of prob-
abilistic assumption-based reasoning in order to complete the picture.

In statistics, often, linear equations with stochastic disturbance terms are
considered, systems like

m∑

j=1

aijxj + ωi = zi, for i = 1, . . . , n.

This can be considered as a particular functional model, where real-valued pa-
rameters x = (x1, . . . , xm) together with stochastic disturbance terms ω =
(ω1, . . . , ωn) determine outcomes z = (z1, . . . , zn). Without going into details,
we remark that, given observed outcomes z, the resulting hint about the param-
eters x contains a mapping Tz(ω), which maps disturbances ω to linear affine
subspaces of the m-dimensional real vector space. These subspaces form an in-
formation algebra [6]. Here, we have an example of a random variable with values
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in an information algebra, a subject which we take up in the following sections
as a generalization of the concept of hints presented above. For the analysis of
this kind of linear systems with assumption-based reasoning, we refer to [10].

A further popular example is related to propositional logic. Information is
described by formulae of a propositional language, where some propositional
symbols are declared as assumptions. This permits to express uncertainty about
facts or relations and leads to hints which map into subsets of Boolean cubes
{0, 1}n, representing models of propositional formulae, which, again, form an
information algebra. We refer to [3] for a detailed presentation of propositional
argumentation systems.

3 Random Variables in Information Algebras

3.1 Simple Random Variables

In this section, we are proposing a generalization of the concept of a hint in the
framework of information algebras. Note that a hint can be seen as a random
set, i.e. a random variable with values in the power set of some set Θ. In this
spirit, we may, more generally, consider random variables with values in an in-
formation algebra. We refer to the chapter Information Algebra for the theory
of information algebras.

We consider a domain-free information algebra (Φ,D). Uncertain information
can be represented by random variables taking values in such an information
algebra. For example, probabilistic, propositional assumption-based systems as
discussed in the previous Section 2 lead to random sets in the information algebra
of subsets of Boolean cubes. Therefore, we develop in this section the elements
of a theory of such random variables. For a more complete presentation, we refer
to [6, 8].

Let (Ω,A, P ) be a probability space. It is well known that a mapping from
such a space to any algebraic structure inherits this structure [4]. This will be
exploited here.

Let B = {B1, . . . , Bn} be any finite partition of Ω such that all Bi belong to
A. A mapping Δ : Ω → Φ such that

Δ(ω) = φi ∀ω ∈ Bi, i = 1, . . . , n,

is called a simple random variable in (Φ,D). Among simple random variables in
(Φ,D), we can define the operations of combination and focussing:

1. Combination: Let Δ1 and Δ2 be simple random variables in (Φ,D). Then,
let Δ1 ⊗Δ2 be defined by

(Δ1 ⊗Δ2)(ω) = Δ1(ω) ⊗Δ2(ω).

2. Focussing: Let Δ be a simple random variable in (Φ,D) and x ∈ D, then let
Δ⇒x be defined by

(Δ⇒x)(ω) = (Δ(ω))⇒x.
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Clearly, both Δ1 ⊗Δ2 and Δ⇒x are simple random variables in (Φ,D). Let Rs

denote the set of simple random variables in (Φ,D). With these operations of
combination and focussing, (Rs, D) is an information algebra. The axioms are
simply inherited from (Φ,D) and easily verified. The neutral element of this
algebra is the random variable E(ω) = e for all ω ∈ Ω, the vacuous random
variable. Further, since for any φ ∈ Φ, the mapping Δφ(ω) = φ for all ω ∈ Ω is a
simple random variable, the algebra (Φ,D) is embedded in the algebra (Rs, D).
A random variable like Δφ(ω) = φ, which takes a fixed value φ with probability
one, is called deterministic or degenerate. We remark that Δ1 ≤ Δ2 in Rs if,
and only if, for all ω ∈ Ω it holds that Δ1(ω) ≤ Δ2(ω).

Since simple random variables form themselves an information algebra con-
taining the original one, it follows that simple random variables are pieces of
information in this same sense. We remark that more general random variables
can be defined [6, 8]. However, for our our discussion of uncertain information,
simple random variables suffice.

There are two important special cases of simple random variables: If, for a
random variable Δ defined relative to a partition B = {B1, . . . , Bn}, it holds
that φi �= φj for i �= j, then the variable is called canonical. It is a simple matter
to transform any random variable Δ into an associated canonical one: Take the
union of all elements Bi ∈ B with the same value φj , which yields a new partition
B′ of Ω. Define Δ′(ω) = Δ(ω). Then, Δ′ is the canonical version of Δ, and we
write Δ→ = Δ′. We may consider the set of canonical random variables, Rs,c,
and define combination and focussing in this set as follows:

Δ1 ⊗c Δ2 = (Δ1 ⊗Δ2)→,
Δ⇒cx = (Δ⇒x)→.

Then, (Rs,c, D) is still an information algebra under these modified operations.
We remark also that (Δ1 ⊗Δ2)→ = (Δ→

1 ⊗Δ→
2 )→ and ((Δ→)⇒x)→ = (Δ⇒x)→.

Secondly, if Δ(ω) �= z for all ω ∈ Ω, then Δ is called normalized. We can
associate a normalized random variable Δ↓ with any simple random variable Δ
provided that P ({ω ∈ Ω : Δ(ω) = z}) > 0. In fact, let Ω↓ = {ω ∈ Ω : Δ(ω) �=
z}. This is a set with probability P (Ω↓) = 1 − P ({ω ∈ Ω : Δ(ω) = z}) > 0. We
then consider the new probability space (Ω,A, P ′), where P ′ is the probability
measure on A defined by

P ′(A) =
P (A ∩Ω↓)
P (Ω↓)

. (17)

On this new probability space, define Δ↓(ω) = Δ(ω). Clearly, it holds that
(Δ→)↓ = (Δ↓)→.

The idea behind normalization becomes clear when we consider the combina-
tion of (normalized) random variables Δ1 and Δ2, which represents some (un-
certain) information with the following interpretation: One of the ω ∈ Ω must
be the correct, but unknown assumption of the information; if ω happens to be
the correct assumption, then, under the first random variable, the information
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Δ1(ω) can be asserted, and, under the second variable, the information Δ2(ω).
Thus, together, still under the assumption ω, the information Δ1(ω) ⊗ Δ2(ω)
can be assumed. However, it is possible that Δ1(ω)⊗Δ2(ω) = z even if both Δ1

and Δ2 are normalized. Since the null information z represents a contradiction,
in view of the information given by the variables Δ1 and Δ2, the assumption ω
cannot hold, can (and must) be excluded. This amounts to normalizing the ran-
dom variable Δ1 ⊗Δ2, by excluding all ω ∈ Ω for which the combination results
in a contradiction, and then to condition (i.e. normalize) the probability on the
non-contradictory assumptions. This is a generalization of the combination rule
introduced in the previous Section 2.3.

A simple random variable Δ takes a finite number of different values, say
{φ1, . . . , φn}, and thus induces a finite partition PΔ with blocks Bi = {ω :
Δ(ω) = φi} ∈ A of Ω. We call two partitions P1 and P2 stochastically indepen-
dent, and write P1⊥P2, if every block B1,i of P1 has a non-empty intersection
with every block B2,j of P2 and if, furthermore, for any such pair of blocks,

P (B1,i ∩B2,j) = P (B1,i) · P (B2,j).

Similarly, two random variables Δ1 and Δ2 are called stochastically independent,
written Δ1⊥Δ2, if their partitions are stochastically independent, PΔ1⊥PΔ2 .
This is an important property of random variables.

3.2 Labeled Random Variables

To the domain-free information algebra (Rs, D), we may associate a labeled
information algebra (see the chapter Information Algebra). Its elements are pairs
(Δ,x), where x is a support ofΔ, i.e. it holds that Δ⇒x(ω) = Δ(ω) for all ω ∈ Ω.
This means that x is support for all possible values φi of Δ. Therefore, a labeled
element (Δ,x) can as well be considered as a mapping Δx between Ω and the
labeled version of the information algebra (Φ,D), where Δx(ω) = (φi, x) for
ω ∈ Bi. The operations of combination and projection in the labeled algebra are
then defined as follows, in correspondence with the usual approach:

(Δ1, x) ⊗ (Δ2, y)(ω) = (Δ1(ω) ⊗Δ2(ω), x ∨ y),
(Δ,x)↓y(ω) = (Δ⇒x(ω), y), for y ≤ x.

For some purposes, we need to work with the labeled version of simple random
variables.

If (Φ,D) is a domain-free information algebra and (Φ∗, D) the associated
labeled algebra, i.e. the algebra of pairs (φ, x) with x a support of φ, then the
labeled simple random variables (Δ,x) can also be considered as mappings Δ∗ :
Ω → Φ∗

x, where Φ∗
x is the set of all (φ, x) ∈ Φ∗. The mapping is defined by

Δ∗(ω) = (Δ(ω), x). This is well defined since x being a support of Δ means that
x is a support of Δ(ω) for all ω ∈ Ω.

This observation indicates that we may define labeled random variables also
directly: Let (Φ,D) be a labeled information algebra and Φx the members of Φ
with label d(φ) = x. A simple random variable with label x is then a mapping
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Δ : Ω → Φx such that there is a finite decomposition of B = {B1, . . . , Bn} such
that all Bi belong to A and

Δ(ω) = φi ∈ Φx ∀ω ∈ Bi, i = 1, . . . , n.

The label of such a random variable is d(Δ) = x. As before, it is easily verified
that such labeled random variables form themselves a labeled information alge-
bra. In fact, define the operations of combination and projection in the natural
way as follows:

1. Combination: Let Δ1 and Δ2 be simple random variables in (Φ,D). Then,
let Δ1 ⊗Δ2 be defined by

(Δ1 ⊗Δ2)(ω) = Δ1(ω) ⊗Δ2(ω).

2. Projection: Let Δ be a simple random variable in (Φ,D) and x ∈ D such
that x ≤ d(Δ), then let Δ↓x be defined by

(Δ↓x)(ω) = (Δ(ω))↓x.

In the same way as the domain-free version of the algebra (Φ,D) is obtained,
the domain-free version of the algebra of labeled simple random variables can
be obtained. We abstain from presenting the details. Important is only that we
may switch between the two equivalent versions of simple random variables, the
domain-free and the labeled version, as conveniently as with any other infor-
mation algebra. Some issues are more conveniently discussed in the domain-free
version; for others the labeled version is better adapted.

3.3 Variables in Atomic Information Algebras

In Section 4.3 of the chapter Information Algebra in this volume, we have intro-
duced the concept of an atom in a domain x of a labeled information algebra:
It is a finest non-zero piece of information in domain x. An atom α in a domain
x is contained in some piece of information φ ∈ Φ of the same domain if φ ≤ α.
Let At(φ) denote the set of atoms α contained in φ; we also write α ∈ φ for
α ∈ At(φ). The labeled information algebra (Φ,D) is called atomic if, for all
φ ∈ Φ,

φ = ∧At(φ).

In the chapter Information Algebra in this volume, we have seen that the atoms
can be considered as generalized tuples and that the set of atoms RΦ of Φ forms
a generalized relational algebra, that is essentially a subset algebra. By replacing
φ by its set of atoms At(φ), the algebra (Φ,D) is embedded into the relational
algebra (RΦ, D). Note that the algebra (RΦ, D) is in fact an atomic Boolean
information algebra. In particular, any element of RΦ has a complement. We
refer to the chapter Information Algebra for more details on Boolean information
algebras.
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If Δ is now a labeled simple random variable with values in a domain x of an
atomic labeled information algebra, then Δ(ω) may be replaced by At(Δ(ω)).
This means that the mapping Δ : Ω → Φx can be changed to the mapping
Δ′ : Ω → Atx(Φ), where Atx(Φ) is the set of atoms in domain x, defined by

Δ′(ω) = At(Δ(ω)).

Thus, any simple random variable in an atomic information algebra (Φ,D) can
as well be considered as a random variable in the associated atomic Boolean
information algebra (RΦ, D). This is essentially a random set in the set Atx(Φ) =
At(ex), the set of all atoms in domain x.

Of particular interest are random variables Δ whose values are either zx or
atoms, Δ(ω) ∈ Atx(Φ) for all ω ∈ Ω. Such variables are called precise since,
for each possible assumption ω, a most precise piece of information in domain
x is given. As we shall see later, these variables have a number of interesting
properties. For instance, let Δ be a precise simple random variable defined on
a partition B = {B1, . . . , Bn} such that its value on Bi is αi ∈ Atx(Φ), and let
Γ any other random variable on the domain x. Then, for the combined variable
Δ⊗ Γ , we obtain, for ω ∈ Bi, i = 1, . . . , n,

(Δ⊗ Γ )(ω) =
{
αi if αi ∈ At(Γ (ω)),
zx otherwise.

Thus, the combined variable is still precise: Within a fixed domain x, the precise
random variables are absorbing, i.e. their combination with any other variable
on the same domain results in a precise variable. Furthermore, the combined
variable has the same values as the precise one. This remarkable result has some
far reaching consequences, as we shall see later in Section 4.4.

4 Probability Distributions in Information Algebras

4.1 Support and Possibility

This section is devoted to the study of the probability distribution of simple
random variables. The starting point is the following question: Given a random
variable Δ on a domain-free information algebra (Φ,D) and an element φ ∈ Φ,
under which assumptions can the information φ be asserted? And how likely is
it that these assumptions hold?

If ω ∈ Ω is an assumption such that Δ(ω) ≥ φ, then Δ(ω) implies φ. In
this case we say that ω is an assumption which supports φ given Δ. Supporting
assumptions are arguments in favor of φ. Therefore, we define for every φ ∈ Φ
the set

qsΔ(φ) = {ω ∈ Ω : φ ≤ Δ(ω)}
of assumptions supporting φ. However, if Δ(ω) = z, then ω supports every φ ∈ Φ
since φ ≤ z. The null element z represents the contradiction, which implies every-
thing. In a consistent theory, contradictions must be excluded. Thus, assuming
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that our information is consistent, we may conclude that assumptions such that
Δ(ω) = z are not really possible assumptions and must be eliminated. This cor-
responds, of course, to the normalization of the random variable Δ. Once more,
we refer to Section 2 for an illustration and justification. Let

qsΔ(z) = {ω ∈ Ω : Δ(ω) = z}.

We assume that qsΔ(z) is not equal to Ω; otherwise Δ is called the null variable
representing a contradiction. In other words, we assume that proper information
is never fully contradictory. If we eliminate the contradictory assumptions from
qsΔ(φ), we obtain the support set

sΔ(φ) = {ω ∈ Ω : φ ≤ Δ(ω) �= z} = qsΔ(φ) − qsΔ(z)

of φ, which is the set of assumptions properly supporting φ, and the mapping
sΔ : Φ → 2Ω is called the allocation of support induced by Δ. The set qs(φ)
will be called quasi-support set to underline that it may contain contradictory
assumptions. This set has little interest from a semantic point of view, but it
has some importance for technical and especially for computational purposes.
These concepts capture the essence of probabilistic argumentation systems, as
exemplified in the context of propositional logic in the previous Section 2, where
further references can be found.

Here are the basic properties of allocations of support:

Theorem 1. If Δ is a simple random variable in an information algebra (Φ,D),
then the following holds for the associated allocation of support sΔ:

1. qsΔ(e) = Ω, sΔ(z) = ∅;
2. if Δ is normalized, then qsΔ(z) = ∅;
3. for any pair φ, ψ ∈ Φ,

qsΔ(φ⊗ ψ) = qsΔ(φ) ∩ qsΔ(ψ),
sΔ(φ⊗ ψ) = sΔ(φ) ∩ sΔ(ψ).

Proof. (1) and (2) follow immediately from the definition of the allocation of sup-
port. (3) follows since φ⊗ψ ≤ Δ(ω) if, and only if, φ ≤ Δ(ω) and ψ ≤ Δ(ω). ��

Knowing the assumptions supporting a hypothesis φ is already interesting and
important. It is the part logic can provide. On top of this, it is important to know
how likely it is that a supporting assumption holds. This is the part probability
adds. If we know or may assume that the information is consistent, then we
should condition the original probability measure P in Ω on the event qscΔ(z).
This then leads to the probability space (qscΔ(z),A∩qscΔ(z), P ′), where P ′(A) =
P (A)/P (qscΔ(z)). The likelihood of the assumptions supporting φ ∈ Φ can then
be measured by

spΔ(φ) = P ′(sΔ(φ)).
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The value spΔ(ω) is called degree of support of φ associated with the random
variable Δ. The function sp : Φ → [0, 1] is called the support function of Δ. It
corresponds to the distribution function of ordinary random variables.

It is, for technical reasons, convenient to define also the degree of quasi-support
by

qspΔ(φ) = P (qsΔ(φ)).

Then, the degree of support can also be expressed in terms of degrees of quasi-
support by

spΔ(φ) =
qspΔ(φ) − qsp(z)

1 − qspΔ(z)
.

This is the form which is usually used in applications [9].
Alternatively, we can also ask under which assumptions ω ∈ Ω a hypothesis φ

is possible givenΔ, i.e. not excluded, although not necessarily supported. IfΔ(ω)
is such that, combined with φ, it leads to a contradiction, i.e. if Δ(ω) ⊗ φ = z,
then, under ω, the information φ is excluded by a consistency consideration as
above. So we define the set

pΔ(φ) = {ω ∈ Ω : Δ(ω) ⊗ φ �= z}.

This is the set of assumptions under which φ is not excluded. Therefore, we call
it the possibility set of φ. Again, pΔ(φ) is a measurable set, and we can define
the degree of possibility, also sometimes called degree of plausibility (e.g. in [19]),

plΔ(φ) = P ′(pΔ(φ)).

If ω ∈ pcΔ(φ), then, under this assumption, φ is impossible, is excluded. So the
set pcΔ(φ) contains arguments against φ and

doΔ(φ) = P ′(pcΔ(φ)) = 1 − plΔ(φ).

can be called the degree of doubt about φ. Note that sΔ(φ) ⊆ pΔ(φ) since
φ ≤ Δ(ω) �= z implies φ⊗Δ(ω) = Δ(ω) �= z. Hence, we see that, for all φ ∈ Φ,
we have that spΔ(φ) ≤ plΔ(φ).

In the particular case of a Boolean information algebra, we have φ ≤ ψ if, and
only if, φc ⊗ ψ = z. This implies that qsΔ(φ) = pcΔ(φc), hence,

plΔ(φ) = 1 − spΔ(φc). (18)

A piece of information is the more plausible, the less its negation or complement
is supported.

In particular, we are going to consider the case of precise random variables (see
Section 3.3): These are variables Δ with values in an atomic, labeled information
algebra (Φ,D) such that for all ω ∈ Ω the value Δ(ω) is either an atom of Φx
(i.e. Δ(ω) ∈ Atx(Φ)) or Δ(ω) = zx. In such a case, we remark that sΔ(φ) =
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{ω ∈ Ω : Δ(ω) ∈ At(φ)} for any φ ∈ Φx. On the other hand, for any atom α of
domain x and φ ∈ Φx, it holds that either α ∈ At(φ) or α⊗φ = zx. This implies
that Δ(ω)⊗φ �= zx holds if, and only if, Δ(ω) ∈ At(φ). Therefore, it follows that
for precise random variables sΔ(φ) = pΔ(φ) and hence spΔ(φ) = plΔ(φ) for all
φ ∈ Φx. Further, we note that

plΔ(φ) = P ′(pΔ(φ)) =
∑

α∈At(φ)

plΔ(α).

So the support or plausibiliy of atoms is sufficient to determine the support and
plausibility of any other element φ ∈ Φx. Since, in the case of a normalized
variable Δ,

∑

α∈Atx(Φ)

plΔ(α) = plΔ(ex) = 1,

it follows that the plausibilities of atoms determine in this case a probability
measure on the set of atoms in domain x.

If the information algebra (Φ,D) is in addition Boolean, then (18) shows that
spΔ(φ) = 1 − spΔ(φc) and this implies that spΔ = plΔ is a probability measure
on the Boolean information algebra.

4.2 Basic Probability Assignments

Consider the canonical version Δ→ of a random variable Δ. Let B = {B1, . . . ,
Bn} be its associated partition of Ω. Then, we define the probabilities

mΔ(φi) = P (Bi), for i = 1, . . . , n.

ThemΔ(φi) are called basic probability assignments (bpa). This term comes from
the Dempster-Shafer theory of evidence (DS theory) [19], which corresponds to
our theory of random variables when the information algebra of subsets of a
finite set is considered. It then immediately follows that

qspΔ(φ) =
∑

i:φ≤φi

mΔ(φi).

So it is sufficient to know the bpas of a random variable to determine its support
function. In many applications, people only work with the bpas and do not
care about the underlying random variables [19]. However, implicitly, it is then
generally assumed that the underlying variables are stochastically independent,
although this is often not rigorously and explicitly stated.

We may also consider normalized bpas, corresponding to the normalized
variable Δ↓,

mΔ↓(φ) =
mΔ(φ)

1 −mΔ(z)
.
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In terms of this normalized bpa, the degrees of support become

spΔ(φ) =
∑

i:φ≤ψi

mΔ↓(ψi).

Similarly, the degree of plausibility may also be obtained from the normalized
bpa,

plΔ(φ) =
∑

i:φ⊗ψi�=z
mΔ↓(ψi).

The bpas, as the degrees of quasi-support, are not important semantically, but
convenient concepts especially for computational purposes [3].

Assume that the two random variables Δ1 and Δ2 are stochastically indepen-
dent. Then, it is evident that Δ→

1 and Δ→
2 are also stochastically independent.

The following theorem shows how the bpa of the combined random variable
Δ1 ⊗Δ2 can be computed from the bpas of the individual variables.

Theorem 2. Let mΔ1(φ1,i) for i = 1, . . . ,m and mΔ2(φ2,j) for j = 1, . . . , n
be the bpas of the two stochastically independent random variables Δ1 and Δ2.
Then, the bpa of Δ1 ⊗Δ2 is given by

mΔ1⊗Δ2(φ) =
∑

i,j:φ1,i⊗φ2,j=φ

mΔ1(φ1,i) ·mΔ2(φ2,j). (19)

Proof. The canonical version of the combined random variables (Δ1 ⊗Δ2)→ =
(Δ→

1 ⊗ Δ→
2 )→ has as possible values the combinations φ1,i ⊗ φ2,j . Each such

combination has assigned the probability mΔ1(φ1,i)·mΔ2(φ2,j) of the underlying
intersection B1,i ∩B2,j of the blocks of the two orthogonal partitions associated
with Δ→

1 and Δ→
1 . So, when the canonical version of Δ→

1 ⊗Δ→
2 is taken, these

probabilities sum up over all pairs i, j such that φ1,i ⊗ φ2,j takes the same
value φ. ��
Of course, in (19), only a finite number of φs have a non-empty sum on the
right. The method of combining the bpas proposed in Theorem 2 is called the
(non-normalized) Dempster rule since it has first been proposed in the context
of multivalued mappings in [2]. More precisely, Dempster proposed a normalized
version of this rule, where the combined variable is normalized, (Δ1 ⊗ Δ2)↓.
Then, the rule is

m(Δ1⊗Δ2)↓(φ) =

∑
i,j:φ1,i⊗φ2,j=φmΔ1(φ1,i) ·mΔ2(φ2,j)∑
i,j:φ1,i⊗φ2,j�=zmΔ1(φ1,i) ·mΔ2(φ2,j)

. (20)

Here, the combinations which result in a contradiction are eliminated and the
probability is renormalized.

A particular case is the combination of a random variable with a degenerate
variable Δφ associated with an element φ ∈ Φ. Let Δ be a random variable on
Φ with bpa mΔ(φi) for i = 1, . . . ,m, and φ ∈ Φ. To φ corresponds a degenerate
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random variable Δφ with bpa m(φ) = 1 and m(ψ) = 0 for all ψ �= φ. Then, by
(19), we get

mΔ⊗Δφ
(ψ) =

∑

i:φi⊗φ=ψ

mΔ(φi). (21)

This is Dempster’s (non-normalized) rule of conditioning. In the normalized case,
the rule becomes

mΔ⊗Δφ
(ψ) =

∑
i:φi⊗φ=ψmΔ(φi)∑
i:φi⊗φ�=zmΔ(φi)

. (22)

We can also compute the bpas of a focussed random variable from the bpas of
the original variable. This is shown in the next theorem.

Theorem 3. Let mΔ(φi) for i = 1, . . . ,m, be the bpas of a random variable Δ.
Then, the bpas of Δ⇒x are given by

mΔ⇒x(φ) =
∑

i:φ⇒x
i =φ

mΔ(φi). (23)

Proof. This follows since the partition of (Δ⇒x)→ contains the unions of the
blocks Bi of the partition of Δ→ for which φ⇒x

i = φ. ��
Again, in (23), only a finite number of φs have a non-empty sum on the right. So
we see that the operations with simple random variables are reflected by their
associated bpas. In fact, in the next section, we shall consider an algebra of bpas,
similar to an information algebra, based on these operations.

4.3 Algebra of Bpas

On a domain-free information algebra (Φ,D), we may define bpas as functions
m : Φ→ [0, 1] such that m(φ) > 0 only for a finite number φ ∈ Φ, and such that

∑

φ∈Φ
m(φ) = 1.

The elements φ ∈ Φ for which m(φ) > 0 are called focal elements of m. If further
m(z) = 0, we call the bpa normalized. Clearly, we may always associate with
a bpa a simple random variable: If m(φ) > 0 for φ = φ1, . . . , φm, then define
Ω = {1, . . . ,m} and by p(i) = m(φi) a probability measure P is determined
on Ω. If Δ(i) = φi, then Δ becomes a simple random variable whose bpa is
exactly m.

Let M be the family of bpas on Φ. In M, we define the operations of combi-
nation and focussing following the pattern of Dempster’s rule (Theorem 2) and
of (23):

1. Combination: for m1,m2 ∈ M, let m1 ⊗m2 be defined by

m1 ⊗m2(φ) =
∑

φ1⊗φ2=φ

m1(φ1) ·m2(φ2);
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2. Focussing: for m ∈ M and x ∈ D, let m⇒x be defined by

m⇒x(φ) =
∑

ψ⇒x=φ

m(ψ).

Clearly, both m1⊗m2 and m⇒x are bpas on Φ. Combination is modelled accord-
ing to the combination of stochastically independent random variables. Often, in
applications, people work with bpas according to these, or equivalent, opera-
tions. It is then implicitly assumed that combined bpas are “independent”, a
concept whose rigorous meaning is defined by stochastic independence of under-
lying random variables, as shown in the previous Section 4.2. In fact, using these
operations, we operate in an algebra which satisfies all axioms of an information
algebra, except the idempotency axiom. Such an algebra is called a valuation
algebra in [6, 14].

Theorem 4. The two-sorted algebra (M, D), with the operations of combina-
tion and focussing defined above, satisfies all axioms of a domain-free informa-
tion algebra, except the idempotency axiom.

For a proof of this theorem, we refer to [6].
The properties of a valuation algebra, as those of information algebras, permit

efficient computation methods for solving query problems. In fact, the axioms of
valuation algebras were proposed in [21] as sufficient for local computation algo-
rithms similar to those known for probability networks [15]. See [6] for a discus-
sion of several architectures of local computation based on valuation algebras.
Usually however, the labeled version of the algebra is used for computational
purposes. We remark that the algebra has also a null element, given by the bpa
m(z) = 1.

So far, we have defined combination by the non-normalized Dempster rule.
We could also have used the normalized version and still obtained a valuation
algebra [6].

4.4 Bayesian Theorems

Dempster’s rule of combination becomes especially simple in the setting of pre-
cise random variables in a labeled information algebra. Let therefore (Φ,D) be
a labeled atomic information algebra, Δ a precise random variable with focal
elements α1, . . . , αn ∈ Atx(Φ) and Γ an arbitrary random variable with values
φ1, . . . , φm ∈ Φx. In Section 3.3, we have shown that the combination Δ ⊗ Γ is
still a precise variable with α1, . . . , αn as possible values. Further, we have seen
in Section 4.1 that the plausibility or support of any element φ ∈ Φx is deter-
mined by the plausibilities of atoms in domain x. The following theorem shows
how the plausibilities of atoms for the combination Δ⊗ Γ can be obtained.

Theorem 5. Let Δ a precise random variable with values α1, . . . , αn ∈ Atx(Φ)
and Γ an arbitrary random variable. If these two random variables are stochas-
tically independent, then

plΔ⊗Γ (αi) = plΔ(αi) · plΓ (αi)
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for the unnormalized combination ⊗.

Proof. We first note that in the case of a precise random variable the bpa corre-
sponds to the plausibilities of atoms, that is mΔ(αi) = plΔ(αi). Further, for an
arbitrary random variable Γ with focal elements φ1, . . . , φm in Φx, we have

mΓ (αi) =
∑

j:αi∈At(φj)

mΓ (φj).

Note that mΓ (αi) �= 0 if, and only if, there is a j such that αi ∈ At(φj). Then,
by Dempster’s rule (19),

plΔ⊗Γ (αi) = mΔ⊗Γ (αi)

=
∑

j:αi∈At(φj)

mΔ(αi) ·mΓ (φj)

= mΔ(αi) ·
∑

j:αi∈At(φj)

mΓ (φj)

= plΔ(αi) · plΓ (αi).

This concludes the proof. ��
It is remarkable that in this particular form of Dempster’s rule of combination
only the plausibilities of atoms of the random variable Γ are required, and noth-
ing more. Of course, we can also consider the normalized version of Dempster’s
rule for combination. This then gives the plausibilities of the normalized version
of the combination, and, by Theorem 5 and (22), we obtain

pl(Δ⊗Γ )↓(αi) = K−1 · plΔ(αi) · plΓ (αi),

with

K =
n∑

i=1

plΔ(αi) · plΓ (αi).

Of course, this is valid only if K > 0. Otherwise, the two random variables
are incompatible, the information they represent is contradictory. This result 5
reproduces in some important cases the famous Bayes theorem of probability
theory.

5 Information Order and Measure

5.1 Order between Random Variables

Random variables represent uncertain information, as has been argued in
Section 3. They represent information since they form an information algebra;
the information is uncertain since, depending on uncertain assumptions, differ-
ent information elements in an underlying information algebra are selected. Since
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random variables form an information algebra (domain-free or labeled, according
to convenience), there exists a partial order between random variables. However,
we have to be careful if we want to interpret this order as a comparison of infor-
mation content. In fact, if the random variable is not normalized, then there are
assumptions which imply z, the contradiction. It has been argued in the chapter
Information Algebra that z is not to be considered as information. Therefore,
we propose here a more subtle point of view: Assumptions which map to z are
to be considered as not possible; i.e. a random variable Δ contains information
about possible assumptions, namely those in Ω↓ = {ω : Δ(ω) �= z}. This point of
view is supported by the discussion and the examples in Section 2. This means
that a non-normalized random variable carries not only information about Φ,
but also about the space of assumptions Ω. On the other hand, this interpreta-
tion destroys the idea that the partial order induced by the information algebra
of random variables represents a comparison of information content on the side
of the information algebra only. This has important consequences and will be
elaborated in this section.

To simplify the discussion and focus on the important points, we assume
that Ω is a finite set. The probability measure P is then simply determined by
the probabilities p(ω) of the assumptions ω ∈ Ω. Consider two simple random
variables Δ1 and Δ2 in the information algebra (Rs, D) and assume that Δ1 ≤
Δ2. This means, by definition (see the chapter Information Algebra), that Δ1 ⊗
Δ2 = Δ2, hence, for all ω ∈ Ω, it holds that Δ1(ω) ⊗Δ2(ω) = Δ2(ω). Finally,
this implies that, for all ω ∈ Ω, we have Δ1(ω) ≤ Δ2(ω). If we now compare the
normalized variables Δ↓

1 and Δ↓
2, then we see that the following holds:

1. Ω↓
1 ⊇ Ω↓

2 ;

2. for all ω ∈ Ω↓
2 , it holds that p↓1(ω) ≤ p↓2(ω);

3. for all ω ∈ Ω↓
2 , it holds that Δ1(ω) ≤ Δ2(ω).

The first point follows since Δ2(ω) �= z implies Δ1(ω) �= z. The second point
holds because Ω↓

1 ⊇ Ω↓
2 implies P (Ω↓

1 ) ≤ P (Ω↓
2 ) and, therefore,

p↓1(ω) =
p(ω)

P (Ω↓
1)

≤ p(ω)

P (Ω↓
2 )

= p↓2(ω).

Thus, more information means in this context of uncertain information, first,
that there are less possible assumptions, second, that these assumptions become
more probable and, third, imply more information in Φ. This makes the idea
more precise that random variables contain information both with respect to as-
sumptions as well as with respect to the domainsD of the underlying information
algebra (Φ,D).

However, this information order is not necessarily reflected in a corresponding
order of degrees of support and plausibility. In fact, only the relations given in
the following theorem hold:
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Theorem 6. Assume Δ1 ≤ Δ2, and let K1 = P (Ω↓
1 ), K2 = P (Ω↓

2). Then, for
all φ ∈ Φ,

spΔ1(φ) ≤ K2

K1
· spΔ2(φ) +

1 −K2

K1
,

plΔ1(φ) ≥ K2

K1
· plΔ2(φ).

If Δ1 ≤ Δ2, but Ω↓
1 = Ω↓

2 = Ω, then K1 = K2 = 1 and

[spΔ2(φ), plΔ2 (φ)] ⊆ [spΔ1(φ), plΔ1 (φ)].

Proof. Note first that

sΔ1(φ) = {ω : φ ≤ Δ1(ω) �= z} ⊆ {ω : φ ≤ Δ2(ω) �= z} ∪ {ω : Δ2(ω) = z}
= sΔ2(φ) ∪ (Ω↓

2 )c.

From this, we deduce that

spΔ1(φ) =
P (sΔ1(φ))

K1
≤ P (sΔ2(φ)) + (1 −K2)

K1

=
K2

K1
· spΔ2(φ) +

1 −K2

K1
.

Further, we have

pΔ1(φ) = {ω : Δ1(ω) ⊗ φ �= z} ⊇ {ω : Δ2(ω) ⊗ φ �= z} = pΔ2(φ).

From this, it follows that

plΔ1(φ) =
P (pΔ1(φ))

K1
≥ P (pΔ2(φ))

K1
=
K2

K1
· plΔ2(φ).

The last part of the theorem is an immediate consequence of these inequalities.
��

This theorem reflects a certain non-monotonicity of uncertain reasoning: Al-
though Δ1 ⊗Δ2 has more information content than Δ1, it is well possible that
the support of a certain hypothesis φ decreases. New information may shed new
doubt on something which was strongly supported before. This issue will be also
disussed in the next section with relation to information measure.

We remark that these considerations carry over to the derived information
order relative to a domain x ∈ D. We remind that, according to the general
theory of information algebras (see the chapter Information Algebra), Δ1 ≤x Δ2

means that Δ⇒x
1 ≤ Δ⇒x

2 . The same ideas also apply to the labeled version of
random variables. In fact, we shall here propose a slight generalization of an
algebra of random variables, which underlines the fact that a random variable
carries information not only about the pieces of information in the information
algebra (Φ,D), but also on the assumptions in Ω.
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We consider a labeled Boolean information algebra (Φ,D). This means in par-
ticular that, for every domain x ∈ D, the algebra Φx of information pieces with
domain x is a Boolean algebra. Besides combination or join, there is also a meet
or infimum φ ∧ ψ defined between two elements φ, ψ ∈ Φx. Furthermore, let
r = {1, . . . , n} be an index set and Ωi a finite set associated with index i ∈ r,
the frame of the assumption i. For any subset s ⊆ r, define

Ωs =
∏

i∈s
Ωi.

The elements of Ωs will be denoted by ω, which can also be considered as a
mapping ωs → ∪i∈sΩi such that ω(i) ∈ Ωi. Thus, ω is called an s-tuple and
ω(i) is called the i-component of ω. For an s-tuple ω and t ⊆ s, we define the
projection ω↓t to be the restriction of the mapping ω to t, that is, ω↓t(i) = ωi
for all i ∈ t.

Let then Pr be a probability measure on Ωr, defined by the element probabil-
ities pr(ω) for all ω ∈ Ωr. Further, let Ps be the associated marginal distribution
on the set Ωs, defined by

ps(ω) =
∑

ν∈Ωr :ν↓s=ω

pr(ν).

Often, the probabilities on the individual assumption frames Ωi for i ∈ r are
assumed to be stochastically independent. Then,

pr(ω) =
∏

i∈r
pi(ω(i)),

and, for a subset s of r, the probabilities

ps(ω) =
∏

i∈s
pi(ω(i))

define the marginal probability measure Ps. This holds in particular for s = r.
An assumption-based information in this context is a labeled random variable

Δ : Ωs → Φx. As long as the domain s of the assumptions remains fixed, this
is just as discussed in Section 3. But now we not only consider varying domains
x ⊆ s, but also varying domains s of assumptions. So we consider the product
lattice P ×D of the subset lattice of r with the lattice D. The label of Δ is then
defined to be d(Δ) = (s, x).

Let the set of all such labeled random variables be denoted by R. We are
now going to introduce the operations of combination of random variables as
well as projection and shall then verify that they form an information algebra.
This then gives more substance to the claim above: Random variables represent
information not only with respect to Φ, but also with respect to the assumptions
in Ωs. Here are the definitions:

1. Combination: LetΔ1 andΔ2 be two random variables with domains d(Δ1) =
(s, x) and d(Δ2) = (t, y). Then, Δ1 ⊗Δ2 is, for ω ∈ Ωs∪t, defined by

Δ1 ⊗Δ2(ω) = Δ1(ω↓s) ⊗Δ2(ω↓t).



Uncertain Information 153

Note that the combination on the right operator is the one of the algebra Φ.
2. Projection: Let Δ be a random variable with domain d(Δ) = (s, x) and let
t ⊆ s, y ≤ x. Then, Δ↓t,y is defined for ω ∈ Ωt by

Δ↓t,y(ω) =
∧

ν∈Ωs:ν↓t=ω

Δ↓y(ν).

The idea behind this definition of the projection is that, for a given ω ∈ Ωt, we
must consider the possible information pieces Δ(ν) for all ν which are compat-
ible with ω, this is, projected to ω. Since in ω we lose information about the
possible assumption, we associate with ω the infimum of all compatible pieces
of information in Φx. This piece of information is then projected to the domain
y. Note that (φ ∧ ψ)↓y = φ↓y ∧ ψ↓y (see the chapter Information Algebra). This
then justifies the definition above.

With these definitions, the axioms of a labeled information algebra (see the
chapter Information Algebra) can be easily verified. Commutativity and associa-
tivity of combination follow from the corresponding properties in the algebra Φ
and from the property (ω↓t)↓u if u ⊆ t. The neutral element of the combination
in the domain (s, x) is the mapping Es,x(ω) = ex for all ω ∈ Ωs, where ex is
the neutral element in Φx; and the null element is Zs,x(ω) = zx ∈ Φx, where zx
is the null element in Φx. The neutrality and nullity axioms are easily verified.
The labeling axiom holds by definition. A bit more involved is the verification
of the projection, the combination and the idempotency axioms. For the projec-
tion axiom, assume that d(Δ) = (s, x) and u ⊆ t ⊆ s and z ≤ y ≤ x. Then,
by repeated application of the definition of projection, by the distributivity of
projection over meet in the algebra Φx, and, by the projection axiom of Φx,

(Δ↓t,y)↓u,z(ω) =
∧

μ∈Ωt:μ↓u=ω

⎛

⎝
∧

ν∈Ωs:ν↓t=μ

(Δ(ν))↓y

⎞

⎠
↓z

=
∧

μ∈Ωt:μ↓u=ω

⎛

⎝
∧

ν∈Ωs:ν↓t=μ

(Δ(ν))↓y)↓z

⎞

⎠

=
∧

μ∈Ωt:μ↓u=ω

⎛

⎝
∧

ν∈Ωs:ν↓t=μ

(Δ(ν))↓z

⎞

⎠ .

At this point, we invoke the associativity of the meet operation in Φx and obtain

(Δ↓t,y)↓u,z(ω) =
∧

ν:(ν↓t)↓u=ω

(Δ(ν))↓z

=
∧

ν:ν↓u=ω

(Δ(ν))↓z

= Δ↓u,z(ω).

This proves the projection axiom.
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In order to prove the combination axiom, assume d(Δ1) = (s, x) and d(Δ2) =
(t, y). Then, by definition of combination and projection, it follows that, for
ω ∈ Ωs, using the combination axiom in Φ,

(Δ1 ⊗Δ2)↓s,x(ω) =
∧

ν:ν↓s=ω

(Δ1(ν↓s) ⊗Δ2(ν↓t))↓x

=
∧

ν:ν↓s=ω

Δ1(ω) ⊗ (Δ2(ν↓t))↓x∧y.

Now we invoke the distributive law in the Boolean algebra Φ and the
idempotency of ∧ and conclude

(Δ1 ⊗Δ2)↓s,x(ω) = Δ1(ω) ⊗
(

∧

ν:ν↓s=ω

Δ2(ν↓t)↓x∧y
)

= Δ1(ω) ⊗
⎛

⎝
∧

ν:ν↓s=ω,ν↓t=μ

Δ2(μ)↓x∧y

⎞

⎠

= Δ1(ω) ⊗
⎛

⎝
∧

μ∈Ωt:∃ν∈Ωs∪t,ν↓s=ω,ν↓t=μ

Δ2(μ)↓x∧y

⎞

⎠

= Δ1(ω) ⊗
⎛

⎝
∧

μ∈Ωt:μ↓s∩t=ω↓s∩t

Δ2(μ)↓x∧y

⎞

⎠ .

Then, it follows from the definition of projection,

(Δ1 ⊗Δ2)↓s,x(ω) = Δ1(ω) ⊗Δ↓s∩t,x∧y
2 (ω↓s∩t)

= Δ1 ⊗Δ↓s∩t,x∧y
2 (ω↓s∩t).

This shows that the combination axiom holds in the algebra (Rs,P ×D).
Finally, consider d(Δ) = (s, x) and t ⊆ s and y ≤ x. Then, using the

idempotency in Φ,

Δ⊗Δ↓t,y(ω) = Δ(ω) ⊗Δ↓t,y(ω↓t)

= Δ(ω) ⊗
⎛

⎝
∧

μ:μ↓t=ω↓t

(Δ(μ))↓y

⎞

⎠

=
∧

μ:μ↓t=ω↓t

(
Δ(ω) ⊗ (Δ(μ))↓y

)

=
∧

μ:μ↓t=ω↓t

Δ(ω)

= Δ(ω)

since Δ(ω) ⊗ (Δ(μ))↓y ≥ Δ(ω). This then proves idempotency, Δ⊗Δ↓t,y = Δ.
Altogether, this shows that the algebra of assumption-based information is really
an information algebra.
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Theorem 7. The algebra (Rs,P × D) with the operation of labeling,
combination and projection as defined above is an information algebra.

In fact, (Rs,P × D) is a Boolean information algebra. The meet between two
random variables Δ1 and Δ2 with the same domain (s, x) is defined by Δ1 ∧
Δ2(ω) = Δ1(ω) ∧ Δ2(ω). If Δ is a random variable with label (s, x), then Δc,
defined for ω ∈ Ωs by Δc(ω) = (Δ(ω))c, is clearly the complement of Δ: It
holds that Δ ⊗ Δc = Zs,x and Δ ∧ Δc = Es,x. So the random variables for a
fixed domain (s, x) form a Boolean algebra. The property (Δ1 ∧ Δ2) ⊗ Et,y =
(Δ1 ⊗Et,y) ∧ (Δ2 ⊗ Et,y) is inherited from the underlying Boolean information
algebra (Φ,D). The instance of assumption-based information worked out so far
in depth is the case of propositional assumption-based information systems [3].
An application of this framework to statistical inference sketched along general
lines in Section 2 is given in [10].

So the information algebra (Rs,P × D) underlines the fact that random
variables, representing assumption-based information, contain information both
with respect to the algebra Φ, as well as to the assumptions in Ω. And, as
explained above, the order induced in (Rs,P × D) reflects the corresponding
information content. With respect to Ωs, the information is given by the set
Ω↓
Δ = {ω ∈ Ωs : Δ(ω) �= zx}. Neglecting the probability measure on the assump-

tions or, equivalently, assuming uniform probability distributions, the discussion
in Section 4.4 in the chapter Information Algebra carries over to the algebra
(Rs,P ×D). This will be worked out in the following section.

Before we turn to this issue, we remark that the domain-free version of the
algebra (Rs,P × D) can be obtained by extending a random variable Δ with
domain (s, x) to a mapping [Δ] : Ωr → Φ/ ≡, where Φ/ ≡ is the domain-free
version of the labeled algebra (Φ,D), as follows: [Δ](ω) = [Δ(ω↓s)].

5.2 Information Measures

In the chapter Information Algebra, we have seen that the information content
of a piece of information can be quantitatively measured if the algebra is as-
sumed to be finitely atomic, that is if each of its elements is represented by the
finite set of atoms it contains. The algebra then essentially becomes a set or
relational algebra. This can be extended to the information algebra (Rs,P ×D)
of random variables introduced above. Assume (Φ,D) finitely atomic and let
At(φ) ⊆ At(ex) denote the set of atoms in φ, where At(ex) is the set of all atoms
in Φx. What are then the atoms in (Rs,P×D)? Select an assumption μ ∈ Ωs in
the domain (s, x) and an atom in α in At(ex). Define the mapping A : Ωs → Φx

A(ω) =
{
α if ω = μ,
zx otherwise.

Clearly, the variable A is an atom in the algebra (Rs,P × D), that is either
A ⊗ Δ = A, in which case we write A ∈ Δ, or A ⊗ Δ = Zs,x for all random
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variables Δ with label (s, x). In the first case, we have μ ∈ Ω↓
Δ and A(μ) ∈

At(Δ(μ)). Also, the property
∧

A∈Δ
A = Δ

is inherited from the atomic algebra (Φ,D) as is easily verified. Thus, the infor-
mation algebra (Rs,P ×D) is atomic, so we may carry over the considerations
in Section 4.4 of the chapter on Information algebras to the present case.

Thus, the information content of an uncertain assumption-based information,
represented by a random variable Δ ∈ Rs, is measured in terms of the numbers
of atoms in Δ. However, there are, at first sight, two ways of doing this: The first
one, which directly carries over from ordinary information algebras, is to measure
the uncertainty contained in Δ by the logarithm of the number of its atoms:

log
∑

ω∈Ω↓
Δ

|At(Δ(ω))|.

However, this neglects the semantic idea behind assumption-based information:
Given a possible assumption ω ∈ Ω↓, the measure of uncertainty remaining in
the piece of information Δ(ω) is log |At(Δ(ω))|. Thus, the expected conditional
uncertainty of Δ(ω) is

∑

ω∈Ω↓
Δ

1

|Ω↓
Δ|

log |At(Δ(ω))|.

To this is added the uncertainty about the possible assumptions, measured by
log |Ω↓

Δ|. Thus, in the spirit of the chaining theorem for entropies, the total
uncertainty remaining in Δ can be measured by

log |Ω↓
Δ| +

∑

ω∈Ω↓
Δ

1

|Ω↓
Δ|

log |At(Δ(ω))|. (24)

The original uncertainty, before the assumption-based information Δ arises, is
log (|Ω| · |At(ex)|). Thus, the information contained in Δ can be defined as

i(Δ) = log (|Ω| · |At(ex)|) − log |Ω↓
Δ| −

∑

ω∈Ω↓
Δ

1

|Ω↓
Δ|

log |At(Δ(ω))|

= − log
|Ω↓
Δ|

|Ω| −
∑

ω∈Ω↓
Δ

1

|Ω↓
Δ|

log
|At(Δ(ω))|
|At(ex)| .

The fractions p(Ω↓
Δ) = |Ω↓

Δ|
|Ω| and q(Δ(ω)) = 1

|Ω↓
Δ| log |At(Δ(ω))|

|At(ex)| can be interpreted

as probabilities p(Ω↓
Δ) and q(Δ(ω)). Then, the information in Δ can also be

written as

i(Δ) = − log p(Ω↓
Δ) −

∑

ω∈Ω↓
Δ

1

|Ω↓
Δ|

log q(Δ(ω)).



Uncertain Information 157

The first term represents the part of the information on the assumptions and
the second one the part on the information algebra Φ.

As in the case of deterministic information, discussed in Section 4.4, the mea-
sure of information introduced above respects the order between assumption-
based information:

Theorem 8. Let (Rs,P ×D) be the algebra of assumption-based information.
Then, for all Δ1, Δ2 ∈ Rs, with the same domain d(Δ1) = d(Δ2), the inequality
Δ1 ≤ Δ2 implies i(Δ1) ≤ i(Δ2).

Proof. The claim follows since Δ1 ≤ Δ2 implies Ω↓
Δ1

⊇ Ω↓
Δ2

, hence |Ω↓
Δ1

| ≥
|Ω↓
Δ2

| and also |At(Δ1(ω))| ≥ |At(Δ2(ω))| for all ω ∈ Ω↓
Δ2

. ��

In particular, this theorem implies that the combination of information Δ1⊗Δ2

increases information content. More generally, we may define the information
in an assumption-based information Δ with respect to any domain (t, y) by
i(Ω→t,y), where the transport operation Ω→t,y is defined as usual (see Section
2.4 in the chapter Information Algebra). Then, similiar monotonicity properties
with respect to these more general information measures hold as in the theorem
above.

So far, we have not considered the probability measure on the assumptions
in Ωr. This is additional information, which reduces the uncertainty associated
with a piece of assumption-based information Δ : Ωs → Φx. In fact, the con-
sideration above can be extended to this case of probabilistic information. As
explained above (Section 5.1), the random variables Δ contain information both
with respect to the domain x and the elements in Ω. Relevant for this is the
normalized variable Δ↓, where the impossible assumptions ω leading to the con-
tradiction Δ(ω) = zx are eliminated. So we consider the possible assumptions in
Ω↓ = {ω ∈ Ω : Δ(ω) �= z} and the conditional probabilities

p′(ω) =
p(ω)
K

, where K =
∑

ω∈Ω↓
p(ω),

for all ω ∈ Ω↓. The uncertainty in the information represented by Δ can be
obtained from formula (24) by simply substituting the entropy of the probability
distribution p′(ω) for the uniform probability 1/|Ω↓

Δ| in the expected uncertainty
on At(ex), which gives

H(Δ) = −
∑

ω∈Ω↓
Δ

p′(ω) log p′(ω) +
∑

ω∈Ω↓
Δ

p′(ω) log |At(Δ(ω))|. (25)

The information contained in Δ, including the probability information, is again
measured by the difference between the uncertainty associated with full
ignorance and the uncertainty left in Δ:

ip(Δ) = log |Ω| + log |At(ex)| −H(Δ)

=
∑

ω∈Ω↓
p′(ω) log (p′(ω) · |Ω|) +

∑

ω∈Ω↓
p′(ω) log

|At(ex)|
|At(Δ(ω))| .
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The first line here shows that i(Δ) is nonnegative, since log (|Ω| · |At(ex)|) is the
maximum entropy, hence at least as large as H(Δ). We define

p(ω, α) =

{
p′(ω)

|At(Δ(ω))| if α ∈ Δ(ω),
0 otherwise.

Then, we can also write

ip(Δ) = log (|Ω| · |At(ex)|) −
∑

ω,α

p(ω, α) log p(ω, α)

=
∑

(ω,α):α∈At(Δ(ω))

p′(ω)
|At(Δ(ω))| log

p′(ω)
|At(Δ(ω))| |Ω| · |At(ex)|.

The last line is the Kullback-Leibler divergence or the relative entropy between
the probability distribution p(ω, α) and the uniform distribution on Ω×At(ex).

6 Conclusion

Random variables with values in an information algebra represent uncertain
assumption-based information, which forms itself an information algebra. In this
chapter, the situation is a little bit simplified from a mathematical point of view
since only finite sets of assumptions or sample spaces are considered. This covers
for example the case of propositional argumentation systems [3]. More general
situations have been studied from the point of view of an application to statis-
tical inference in [10, 17]. In this respect, especially linear systems of equations
with Gaussian disturbances have been considered. In an abstract setting, the
framework has been discussed in [5, 6, 7, 8, 11]. The theory resembles and is
related to random set theory [16, 18], where random variables with values in
certain set algebras are studied, especially in certain topological spaces.

From a practical point of view, a language is needed to describe the uncertain,
assumption-based information. This can be a logical language, like propositional
logic [3], or predicate logic. It can be the language of linear algebra, as in the
case of linear systems of equalities with stochastic disturbances [10, 17]. In both
cases, the formalism behind the language permits the derivation of supports and
the computation of degrees of support for given hypotheses. In the case of logic,
this will be deduction schemes. In the case of linear systems, matrix algebra can
be used. In the case of stochastically independent simple random variables, the
structure of the valuation algebra of bpas (Section 4.3) allows for efficient local
computation schemes, just as for ordinary information algebras [6, 20].

So, whereas a theory of random variables with values in an information algebra
provides a general setting to study uncertain, assumption-based information, for
practical applications, a particular framework must be selected, appropriate for
the given problem. Only within such a specific framework can the computations
be performed which lead to practically useful results in domains like reliability
and diagnostics [1]. Once more, this underlines that the theory of information
algebra is a theory of computation, in contrast to Shannon’s information theory,
which is a theory of communication.
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1 Introduction

Notions like ‘entropy’ and ‘(expected) value of observations’ are widely used in
science to determine which experiment to conduct to make a better informed
choice between a set of scientific theories that are all consistent with the data.
But these notions seem to be almost equally important for our use of language
in daily life as they are for scientific inquiries.

I will make use of these notions to measure how ‘good’ particular questions and
answers are in particular circumstances. In doing so, I will extend and/or refine
the qualitative approach towards such measurements proposed by Groenendijk &
Stokhof (1984). The refinements are due to the fact that I also take into account
(i) probabilities, (ii) utilities, and (iii) the idea that we ask questions to resolve
decision problems.

In this paper I will first explain Groenendijk & Stokhof’s partition based
analysis of questions, and then discuss their qualitative method of measurement.
Next, I will take also probabilities into account, and show how a natural quanti-
tative measure of informativity can be defined in terms of it. Following the lead
of Communication Theory and Inductive Logic, I will then show that we can
also describe a natural measure of the informative value of questions and an-
swers in terms of conditional entropy, when we take into account that questions
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2 The Semantics of Declaratives and Interrogatives

The perhaps most ‘natural’ conception of ‘meaning’, at least in its point of de-
parture, identifies ‘meaning’ with naming. The meaning of an expression is that
what the expression refers to, or is about. What meaning does is to establish
a correspondence between expressions in a language and things in the (model
of the) world. For simple expressions like proper names and simple declarative
sentences, this view of meaning is natural and simple. The meaning of John is
the object it refers to, while the meaning of a simple declarative sentence like
John is sick could then be the fact that John is sick. Beyond this point of depar-
ture, things are perhaps less natural. What, for example, should be the things
out in the world that a negated sentence like John is not sick is about, and
what should John is sick be about if the sentence is false? Notice that to be a
competent speaker of English one has to know what it means for John is sick
to be true or false. So a minimal requirement for any theory of meaning would
be that one knows the meaning of a declarative sentence if one knows under
which circumstances it is, or would be, true. The proposal of formal semanticists
to solve our above conceptual problems is to stick to this minimal requirement:
identify the meaning of a declarative sentence with the conditions, or circum-
stances under which the sentence is true. These circumstances can, in turn, be
thought of as the ways the world might have been, or possible worlds. Thus, the
meaning of a sentence can be thought of as the set of circumstances, or possible
worlds, in which it is true. This latter set is known in possible worlds semantics
as the proposition expressed by the sentence. We will denote the meaning of any
declarative sentence A by [[A]], and identify it with the set of worlds in which A
is true (where W is the set of all possible worlds):1

[[A]] = {w ∈ W : A is true in w}.

Just as it is standard to assume that you know the meaning of a declarative
sentence when you know under which circumstances this sentence is true, Ham-
blin (1958) argues that you know the meaning of a question when you know
what counts as an appropriate answer to the question. Because we answer a
question by making a statement that expresses a proposition, this means that
the meaning of a question as linguistic object (interrogative sentence) can be
equated with the set of propositions that would be expressed by the appropriate
linguistic answers. This gives rise to the problem what an appropriate linguistic
answer is to a question.

For a yes/no-question like Is John sick? it is widely agreed that it has only one
appropriate true answer; Yes in case John is sick, and No when John is not sick.
This means that with respect to each world a yes/no-question simply expresses
a proposition; the proposition expressed by the true appropriate answer in that
world. If we represent a yes/no-question simply by a formula like ?A, where A

1 Here, and elsewhere in this paper, I will assume that we analyze sentences with
respect to a fixed intensional model.
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is a sentence, and assume that [[A]]w denotes the truth value of A in w, the
proposition expressed by question ?A in world w is:

[[?A]]w = {v ∈ W : [[A]]v = [[A]]w}.

Given this analysis of polar interrogative sentences, the question arises what the
meaning of a wh-question is; i.e. what counts in a world as an appropriate true
answer to questions like Who is sick? and Who kissed whom?

Groenendijk & Stokhof (1984) have argued on the basis of linguistic phenom-
ena that not only yes/no-questions, but also (multiple) wh-questions can in each
world only have one true (complete) answer. They argue that for John to know
the answer to the question Who is sick?, for instance, John must know of each
(relevant) individual whether he or she is sick.2

Representing questions abstractly by ?P , where P is an n-ary predicate, John
gives in w the true and complete answer to the above question just in case he
gives an answer that entails the following proposition, where [[P ]]v denotes the
extension of predicate P in world v:

[[?P ]]w = {v ∈ W | [[P ]]v = [[P ]]w }.

If P is a 1-ary predicate like is sick, [[P ]]w denotes the set of individuals that are
sick in w, and [[?P ]]w denotes the set of worlds where P has the same extension
as in world w. If P is a binary predicate like kissed, [[P ]]w denotes the set of
ordered pairs 〈d, d′〉 such that d kissed d′ in w, and [[?P ]]w denotes the set of
worlds where the same individuals kissed each other as in world w. An interesting
special case is when P is a zero-ary predicate, i.e., when P is a sentence and when
the question is thus a yes/no-question. In that case the proposition expressed by
the question in a world will be exactly the same as the proposition determined
via our second equation. Thus, according to Groenendijk & Stokhof’s (1982)
proposal, we should not only treat single and multiple wh-questions in the same
way, but we should analyze yes/no-questions in a similar way, too.

Suppose, contrary to Hamblin’s suggestion, that we equate the meaning of
a question with the meaning of its true answer. This would immediately allow
us to define an entailment relation between questions.3 We can just say that
one question entails another, just in case the proposition expressed by the true
answer to the first question entails the proposition expressed by the true answer
to the second question. And given an entailment relation between questions, it
seems only natural to say that one question is ‘better’, or ‘more informative’
than another exactly when the former question entails the latter.

However, the above suggested entailment-relation between questions, and the
thus induced ‘better than’-relation, doesn’t seem to be very natural. Suppose
2 This doesn’t mean that everybody agrees. For a discussion of some problems, and

alternative analyses of questions, see Groenendijk & Stokhof (1997).
3 In this paper I will use the term ‘question’ not only for interrogative sentences, but

also for the meanings they express. Something similar holds for the term ‘answer’. I
hope this will never lead to confusion.
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that in fact both John and Mary are sick. In that case it holds that the true
answer to the question Are John and Mary sick? entails the true answer to
the question Is John sick?, and thus it is predicted that the first question also
entails the second. But this prediction seems to be wrong; the first question
does intuitively not entail the second question because when Mary were in fact
not sick (although John still is), the true answer to the first question would
no longer entail the true answer to the second question. What this suggests is
that the entailment-relation between questions does not just depend on how the
world actually is, but also on how the world could have been.

Above, we have defined the proposition expressed by a question with respect
to the real world, w. The above discussion suggests that to define an entailment
relation between propositions, we should abstract away from how the actual
world looks like. We should say that one question entails another just in case
knowing the true answer to the former means that you also know the true answer
to the latter, however the world looks like. Thus, ?P1 entails ?P2, ?P1 |=?P2, just
in case it holds for every world w that [[?P1]]w is a subset of [[?P2]]w:

?P1 |=?P2 iff ∀w : [[?P1]]w ⊆ [[?P2]]w.

We might also define this entailment relation between questions more directly
in terms of their meanings. In order to do this, we should think of the meaning
of a question itself no longer simply as a proposition, but rather as a function
from worlds to propositions (answers):

[[?P ]] = λw.{v ∈ W | [[P ]]v = [[P ]]w }.

Notice that this function from worlds to propositions is simply equivalent to the
following set of propositions:

{{v ∈ W | [[P ]]v = [[P ]]w }| w ∈ W}.

and, due to the assumption that a question has in each world only one true
answer, this set of propositions partitions the set of worlds W . A partition of
W is a set of mutually exclusive non-empty subsets of W such that their union
equals W . In fact, the partition that is induced in this way by a question is exactly
what Groenendijk & Stokhof (1984) have proposed to call the semantic meaning,
or intension, of a question, and they distinguish it from the extension a question
has, [[?P ]]w = [[?P ]](w), in the particular world w. Notice that Groenendijk &
Stokhof’s account is in accordance with Hamblin’s proposal: the meaning of a
question is represented by its set of possible appropriate answers.

We have seen that the partition semantics of questions is based on the assump-
tion that every question can in each world have at most one semantic answer.
Thus, if you ask me Who of John and Mary are sick?, I can only resolve the
question according to this analysis by giving an exhaustive answer where I tell
for both John and Mary whether they are sick or not. It might, however, be the
case that I only know whether John is sick, and that I just respond by saying
(At least) John is sick. This response will obviously not resolve the whole issue,
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and thus will not count as a complete, or semantic, answer to the question. Still,
it does count as an answer to the question, although only a partial one. We
can say that an assertion counts as a partial answer to the question iff it is a
non-contradictory proposition that is incompatible with at least one cell of the
partition induced by the question. In our above example, for instance, the re-
sponse (At least) John is sick counts as a partial answer to the question, because
it is incompatible with 2 of the 4 cells of the partition induced by the question.
Observe that according to our characterization of partial answerhood, it holds
that a complete, semantic, answer to the question also is incompatible with at
least one cell of the partition, and thus also counts as a partial answer. So we
see that some partial answers are more informative, and better, than others.

Suppose that Q and Q′ are two partitions of the logical space that are induced by
two interrogative sentences. Let us also assume for simplicity that we can equate
the meaning of an interrogative sentence with the question itself. Making use of
the fact that every question has according to their semantics (at most) one answer
in each world, Groenendijk & Stokhof (1984) can define the entailment-relation
between questions directly in terms of their meanings making use of a generalized
subset-relation, ‘�’, between partitions. Remember that according to our above
requirement, for question Q to entail question Q′, Q |= Q′, it must be the case
that knowing the true answer to Q means that you also know the true answer to Q′,
however the world looks like. In terms of Groenendijk & Stokhof’s (1984) partition
semantics this comes down to the natural requirement that for every element of Q
there must be an element of Q′ such that the former entails the latter, i.e. Q � Q′:

Q |= Q′ iff Q � Q′ iff ∀q ∈ Q : ∃q′ ∈ Q′ : q ⊆ q′.

According to this definition it follows, for instance, that the wh-question Who
of John and Mary are sick? entails the yes/no-question Is John sick?, because
every (complete) answer to the first question entails an answer to the second
question. And indeed, when you know the answer to the first question, the second
question can no longer be an issue. Something similar is the case for the multiple
wh-question Who kissed whom? and the single wh-question Who kissed Mary?;
learning the answer to the first question is more informative than learning the
answer to the second question.

3 Comparing Questions and Answers Qualitatively

3.1 A Semantic Comparison

If somebody asks you who murdered Smith, he would not be satisfied with an
answer like The murderer of Smith. Although this answer will obviously be true,
it is unsatisfactory because the answer will not be informative. Indeed, it is
generally agreed that in normal circumstances the utterance of an interrogative
sentence is meant as a means to acquire information.

If the aim of the question is to get some information, it seems natural to say
that Q is a better question than Q′, if it holds that whatever the world is, knowing
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the true answer to question Q means that you also know the true answer to Q′,
i.e. Q � Q′. As we have seen above, this would mean that the question Who of
John and Mary are sick? is a ‘better’ question than Is John sick?, because the
former question entails the latter. Notice that by adopting this approach, the
value, or goodness, of a question is ultimately reduced to the pure informativity
of the expected answer.

Not only can we compare questions to each other with respect to their ‘good-
ness’, the same can be done for answers. We have seen in the previous section
that complete answers are special kinds of partial answers; the most informative
partial answers that are true in the worlds of just one cell of a partition. This
suggests, perhaps, the following proposal; say that one answer is ‘better’ than
another, just in case the former entails the latter. But this would be mistaken,
for it would wrongly predict that we prefer overinformative answers to answers
that are just complete. If I ask you, for instance, whether John is sick, I would
be very puzzled by your answer Yes, John is sick, and it is warm in Africa. The
second conjunct to the answer seems to be completely irrelevant to the issue,
and thus should not be mentioned.

So it seems that we should measure the ‘goodness’ of an answer mostly in
terms of the partition induced by the question. And indeed, this is exactly what
Groenendijk & Stokhof (1984) propose. Define AQ as the set of cells of partition
Q that are compatible with answer A:4

AQ = {q ∈ Q : q ∩ A 
= ∅}.

Notice now that one partial answer can be more informative than another one
because it is incompatible with more cells of the partition than the other one.
Remember that the answer A = (At least) John is sick counts as a partial answer
to the question Q = Who of John and Mary are sick?, and is incompatible with
2 of the 4 cells of the partition. The answer B = If Mary is not sick, then
neither is John also counts as a partial answer to the question, because it is
incompatible with 1 cell of the partition. But it is a weaker answer than (At
least) John is, because it is entailed by the latter and incompatible with less
cells of the partition than the former one, i.e. AQ ⊂ BQ. Groenendijk & Stokhof
propose that when answer A is incompatible with more cells of the partition
than answer B, i.e. AQ ⊂ BQ, the former should be counted as a better answer
to the question than the latter.

But what if two answers are incompatible with the same cells of the partition,
i.e. if AQ = BQ? It is possible that when two partial answers to a question
are incompatible with, for example, just one cell of the partition, one of them
can be more informative than the other because the former entails the latter.
In our above example, for instance, not only (At least) John is sick, but also
John is sick, and it is warm in Africa is an answer that is incompatible with
just two cells of the partition induced by the question. As we have suggested
above already, the former counts in that case as a better answer than the latter,
4 From now on I tend to use the same notation both for a declarative sentence and

the proposition it expresses. I hope this will never lead to confusion.
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because it doesn’t give extra irrelevant information. Thus, in case AQ = BQ, A
is a better answer than B iff A ⊃ B.

Combining both constraints, Groenendijk & Stokhof (1984) propose that A
is (quantitatively) a better semantic answer to question Q than B, A >Q B, by
defining the latter notion as follows:

A >Q B iff either (i) AQ ⊂ BQ, or
(ii) AQ = BQ, and A ⊃ B.

Lewis (1988) and Groenendijk (1999) defined a notion of aboutness in terms of
which answers can be compared in a more direct way.5 They say that answer A
is about question Q just in case the following condition is satisfied:

A is about Q iff ∀q ∈ Q : q ⊆ A or q ∩ A 
= ∅.

Thus, when A is true/false in a world w, it should be the case that A is also
true/false in any world v that is an element of the same cell of the partition Q
as w is. Notice that because Q is a partition, the above definition of aboutness
is equivalent to the following condition:

A is about Q iff
⋃

AQ = A.

This notion of aboutness intuitively corresponds with the second condition in
the definition of >Q that no extra irrelevant information should be given. Using
the standard Stalnakerian (1978) assertion conditions, we might say that with
respect to a certain question, an assertion is relevant if it is (i) consistent, (ii)
informative, and (iii) is about the question. In terms of such a notion of relevance,
we can re-define the above ‘better than’ relation, A >Q B, between relevant
answers A and B to question Q simply as follows:

A >Q B iff A ⊂ B.

Notice that according to the above analysis, any contingent proposition satisfies
the first two constraints of the above definition of relevance. But some contin-
gent propositions are, of course, intuitively irrelevant because they are already
entailed by, or inconsistent with, what is already believed by the participants of
the conversation. It is only natural to expect that what is believed also influ-
ences the comparative goodness relation of answers to questions. And indeed,
that turns out to be the case.

3.2 A Pragmatic Comparison

Although the above defined comparative notion of goodness of answers is quite
appealing, it still can be the case that certain answers to a question can be
better than others, although they are according to the above ordering relations
predicted to be worse. It can even be the case that some responses to questions
are predicted to be semantically irrelevant, because they do not even give a

5 In Groenendijk (1999) the notion is called ‘licencing’.
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partial semantic answer to the question, but still completely resolve the issue.
If I ask you, for instance, What are the official languages spoken in Belgium?,
you can intuitively resolve the issue by saying The official languages of its major
neighboring countries. The reason is, of course, that the relevance of an answer
should always be determined with respect to what is believed/known by the
questioner. The above answer would completely resolve my question, because I
know what the major neighboring countries of Belgium are (France, Germany,
and the Netherlands), and I know which official languages are spoken in those
countries (French, German, and Dutch, respectively).6

The relevance of a question, too, depends on the relevant information state.
Although the question What is the official language of the Netherlands? gives se-
mantically rise to a non-trivial partition, I wouldn’t learn much when you told me
the answer. We can conclude that we should relativize the definitions of relevance
and goodness of questions and answers to particular information states.

In comparing the ‘goodness’ of questions to one another, and in comparing
answers, we have until now neglected what is already known or believed by the
agent who asks the question. When we denote the relevant information state of
the questioner by K, which is represented by a set of possible worlds, we can
redefine the relevant notions. First, we can define the meaning of question ?P
with respect to information state K, [[?P ]]K :

[[?P ]]K = {{v ∈ K| [[P ]]v = [[P ]]w }| w ∈ K}.

Then we can say that question Q is relevant with respect to information state
K just in case QK is a non-singleton set. To determine whether A is a relevant
answer to Q with respect to information state K, we first define AQ,K , which
denotes the set of cells of QK compatible with proposition A:

AQ,K = {q ∈ QK : q ∩ A 
= ∅}.

Now we can say that A is about Q with respect to K, just in case
⋃

AQ,K =
(K ∩ A). Then we call A a relevant answer to Q w.r.t. K iff it is contingent
with respect to K and about Q with respect to K. Now we are ready to compare
questions and answers with respects to information states. First questions:

Question Q is at least as good w.r.t. K as Q′ iff QK � Q′
K .

Determining the ordering relation for answers A and B that are relevant with
respect to Q and K is equally straightforward:

A ≥Q,K B iff (K ∩ A) ⊆ (K ∩ B).

If we want, we might also follow Groenendijk & Stokhof (1984) by also comparing
answers that express the same proposition with respect to our state K.They pro-
pose that in that case one answer is better than another one, if it is semantically
better, i.e. if it is higher on the ‘>Q’-scale than the other one.
6 Neglecting the claim of some that Frisian is an official language of the Netherlands, too.
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3.3 Limitations of Qualitative Comparisons

When we would relate questions and answers with respect to the relations ‘�K ’
and ‘≥Q,K ’, respectively, both relations would give rise to partial orderings.
This is not very surprising giving our qualitative method used to define them.
These qualitative methods are rather coarse grained, and this also holds for the
criterium an answer should satisfy, according to the above method, to count as
a relevant answer. Remember that according to the proposal above, answer A
can only be relevant with respect to question Q and information state K if it is
inconsistent with at least one cell of the partition induced by question QK , i.e.
if AQ,K � QK and AQ,K 
= QK .

Although the definition of relevance given in the previous subsection is quite
appealing, it seems that we have more intuitions about ‘relevance’ than this
qualitative notion can capture. An answer can, intuitively, sometimes be rele-
vant, although it is consistent with all cells of the partition. When I would ask
you Will John come?, and you answer by saying Most probably not, this response
counts intuitively as a very relevant answer, although it does not rule out any of
the cells induced by the question. In this case the answer changes the probability
distribution of the cells of the partition, but our problem also shows up when
probability doesn’t play a (major) role. When I ask you the yes/no-question Are
John and Mary sick?, your answer At least John is is compatible with both an-
swers, but still felt to be very relevant. This suggests that the notion of relevance
of answers should be determined with respect to a more fine-grained ordering
relation than our above ‘≥Q,K ’.

There is also a more direct reason why the ordering relation between answers
should be defined in a more fine-grained way. It is possible that one answer that
is consistent with all elements of a partition can be more relevant than another
(relevant) answer that is consistent with all elements of a partition, even if the
one does not entail the other: The answer (At least) John and Mary are sick
is normally felt to be a more relevant, or informative, answer to the question
Who of John, Mary and Sue are sick? than the answer (At least) Sue is sick,
although less relevant than the complete answer to the question that Only Sue is
sick. These examples suggest that we want to determine a total ordering relation
between answers and that we should compare answers to one another in a more
quantitative way. When probability doesn’t play a role (or when all worlds have
equal probability), this can simply be done by counting the numbers of cells of the
partition the answers are compatible with, or the number of worlds compatible
with what is expressed by the answers. I won’t discuss such a proposal further
in this paper, and turn in the next section straightaway to probabilities.

Above I have argued that we should define a more fine-grained ordering re-
lation between answers. Something similar also holds for questions. If I want to
find out who of John, Mary and Sue are sick, the question Who of John and
Mary are sick? is felt to be more informative, or relevant, than the question Is
Sue sick?, although none of the complete answers to the first question will solve
the second issue. What this example suggests is that (i) also questions should be
compared to each other with respect to a quantitative ordering relation, but also



170 R. van Rooij

that (ii) to compare the usefulness of two questions with each other, we should
relate the questions to (something like) a third question. Later in this paper, this
third question, or problem, will show up again as a decision problem.

We have suggested to extend our partial ordering relations between questions
and answer to total orderings by measuring the informativity and relevance of
propositions and questions in a more quantitative way. But how can we do that?

4 Information and Communication Theory

4.1 The Amount of Information of a Proposition

There turns out to be a standard way to determine the informativity of propo-
sitions that give rise to a total ordering, such that this total ordering is an
extension of the ordering induced by entailment. Notice that if one proposition
entails another, it is more informative to learn the former than to learn (only)
the latter. That is, it would be more surprising to find out that the former
proposition is true, than to find out that the latter is. But it doesn’t seem to be
a necessary condition for proposition A to be more surprising than proposition
B that A entails B. All what counts, intuitively, is that the probability that A
is true is smaller or equal than the probability that B is true. Assuming that
an information state should be modeled by a probability function, P , we might
say that for each proposition A, its measure of surprise can be defined as either
1 − P (A), or 1/P (A).7 Both measures will induce the same total ordering of
propositions with respect to their informativity. For reasons that will become
clear later, however, we will follow Bar-Hillel & Carnap (1953),8 and define the
informativity of proposition A, inf(A), as the logarithm with base 2 of 1/P (A),
which is the same as the negative logarithm of the probability of A:9

inf(A) = log2 (1/P (A)) = −log2 P (A).

Also in terms of this notion of informativity we can totally order the propositions
by means of their informativity, or measure of surprise, and it turns out that the
so induced ordering corresponds exactly with the ones suggested earlier.10

7 In this paper I will assume that probabilities are assigned to worlds, and not (pri-
marily) to propositions. Thus, a probability function, P , is a function in [W → [0, 1]],
such that

∑
w∈W P (w) = 1. Notice that this allows lots of worlds to have a proba-

bility of 0. A proposition, A, is represented by a set of worlds, and the probability
of such a proposition, P (A), is defined as

∑
w∈A P (w).

8 Who in turn take over Hartley’s (1928) proposal for what he calls the ‘surprisal
value’ of a proposition.

9 The ‘inf’-value of a proposition is a function of its probability; for different probabil-
ity functions, the ‘inf’-value of a proposition might be different. In the text I won’t
mention, however, the particular probability function used.

10 To determine this ordering it is also irrelevant what we take as the base of the loga-
rithm. But certainly in our use of the informational value of propositions for deter-
mining the informational value of questions, the chosen base 2 will be most appealing.
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To explain the ‘inf’-notion, let us consider again the state space where the
relevant issues are whether John, whether Mary, and whether Sue are sick or
not. The three issues together give rise to 23 = 8 relevantly different states of
the world, and assuming that it is considered to be equally likely for all of them
to be sick or not, and that the issues are independent of one another, it turns out
that all 8 states are equally likely to be true. In that case, the informativity of
proposition A equals the number of the above 3 binary issues solved by learning
A. Thus, in case I learn that John is sick, one of the above three binary issues, i.e.
yes/no-questions, is solved, and the informativity of the proposition expressed
by the sentence John is sick = J , inf(J), is 1. Notice that proposition J is
compatible with 4 of the 8 possible states of nature, and on our assumptions
this means that the probability of J , P (J), is 1

2 . To determine the informational
value of a proposition, we looked at the negative logarithm of its probability,
where this logarithmic function has a base of 2. Recalling from high-school that
the logarithm with base 2 of n is simply the power to which 2 must be raised to
get n, it indeed is the case that inf(J) = 1, because −log P (J) = −log 1

2 = 1,
due to the fact that 2−1 = 1

2 . Learning that both Mary and Sue are sick however,
i.e. learning proposition M ∧ S, has an informative value of 2, because it would
resolve 2 of our binary issues given above. More formally, only in 2 of the 8 cases
it holds that both women are sick, and thus we assume that the proposition
expressed, M ∧ S, has a probability of 1

4 . Because 2−2 = 1
4 , the amount of

information learned by M ∧ S, inf(M ∧ S), is 2.
What if a proposition does not resolve a single one of our binary issues, like

the proposition expressed by At least one of the women is sick, i.e. M ∨ S ?
Also such propositions can be given an informative value, and in accordance
with our above explanation the informative value of this proposition will be less
than 1, because it does not resolve a single of the relevant binary issues. Notice
that the proposition is true in 6 of the 8 states, and thus has a probability
of 3

4 . Looking in our logarithm-table from high-school again, we can find that
−log 3

4 = 0.415, which is thus also the amount of information expressed by the
proposition according to Bar-Hillel & Carnap’s proposed measure.

In our above examples we have only looked at the special case where each of
the 8 states were equally likely, and thus limited ourselves to a rather specific
probability function.11 But it should be clear that the informative value of a
proposition can also be determined in case the states are not equally probable.
Bar-Hillel & Carnap prove that their value function has a number of properties,
and here I want to mention only the most important ones.

11 The kind of probability function we used is closely related to Carnap’s (1950) ob-
jective probability function, and also used in Bar-Hillel & Carnap (1953), to define
an objective notion of amount of the semantic information of a proposition. But the
way they define the informativity of a proposition does obviously not demand the
use of such an objective probability function. The informative value of a proposition
is always calculated with respect to a particular probability function, and this prob-
ability function might well be subjective in the sense that it represents the beliefs of
a particular agent.
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They note that when proposition A is already believed by the agent, i.e. when
P (A) = 1, the amount of information gained by learning A is 0, inf(A) = 0,
which is a natural measure for the lower bound. The higher bound is reached
when proposition A is ‘learned’ of which the agent believes that it cannot be
true, P (A) = 0. In that case it holds that inf(A) = ∞. The ‘inf’-value of all
‘contingent’ propositions, i.e. of all propositions A such that 0 < P (A) < 1, will
be finite, and higher than 0.

Let us say that two propositions A and B are independent with respect to
probability function P when P (A∧B) = P (A)×P (B), that is, when P (B/A) =
P (B). In that case it holds that inf(B/A) = inf(B), where inf(B/A) measures
the amount of information of B given that A holds, and defined as the difference
between inf(A ∧ B) and inf(A):

inf(B/A) = inf(A ∧ B) − inf(A)
= −log2P (B/A).

When A and B are independent, conjunction behaves informationally additive,
i.e. inf(A ∧ B) = inf(A) + inf(B). And indeed, in our above example M and S
– the propositions that Mary and Sue are sick, respectively – are independent,
and both have the same ‘inf’-value as J , namely 1. Thus, inf(M) + inf(S) = 2,
which is exactly the ‘inf’-value of M ∧ S, as we have observed above.

An important property of the ‘inf’-function for our purposes is that it is
monotone increasing with respect to the entailment relation. That is, if A ⊆ B,
it holds that inf(A) ≥ inf(B). And indeed, in our above example we saw that
inf(M ∧ S) ≥ inf(M ∨ S). Exactly because the ‘inf’-function behaves monotone
increasing with respect to the entailment relation, the total ordering relation
induced by the ‘inf’-function has the nice property that it is an extension of
the partial ordering relation induced by the entailment relation. The entailment
relation and the ordering relation induced by the ‘inf’-function are even closer
related to each other: if with respect to every probability function it holds that
inf(A) ≥ inf(B), then it will be the case that A semantically entails B. What
this suggests is that the semantic entailment relation is an abstraction from the
more pragmatically oriented amount-of-information relation.12

12 Of course, the semantic entailment relation (a partial ordering) is defined in terms
of meaning, while the total ordering relation is defined in terms of a different kind
of concept. Some early proponents of communication theory, however, didn’t make
a great effort to keep the concepts separate. Norbert Wiener (1950), for instance,
takes amounts of information and amount of meaning to be equivalent. He says, “The
amount of meaning can be measured. It turns out that the less probable a message
is, the more meaning it carries, which is entirely reasonable from the standpoint
of common sense.” But, to quote Dretske (1999, p. 42) “It takes only a moment’s
reflection to realize that this is not ‘entirely reasonable’ from the standpoint of com-
mon sense. There is no simple equation between meaning (or amount of meaning)
and information (or amount of information) as the latter is understood in the math-
ematical theory of information. The utterance There is a gnu in my backyard does
not have more meaning than There is a dog in my backyard because the former is,
statistically, less probable.”
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4.2 The Entropy of a Question

Now that we have extended the ordering relation between propositions with
respect to their information values to a total relation, the question arises whether
something similar can be done for questions. As before, I will think of questions
as semantic objects, and in particular as partitions of the state space.

To determine the informative value of a question, we will again follow the lead
of Bar-Hillel & Carnap (1953). They discuss the problem how to determine the
estimated amount of information conveyed by the outcome of an experiment to
be made. They equate the value of an experiment with its estimated amount of
information, and they assume that the possible outcomes denote propositions
such that the set of outcomes are mutually exclusive and jointly exhaust the
whole state space. In other words, they assume that the set of possible outcomes
partitions the set of relevant states. This suggests, obviously, that we can also
equate the informative value of a question with the estimated amount of informa-
tion conveyed by its (complete) answers. The estimated amount of information
of the answers will simply be the average amount of information of the answers.
For reasons that will become clear soon, I will denote the informative value of
question Q by E(Q), which will be defined as follows:

E(Q) =
∑

q∈Q

P (q) × inf(q).

To strengthen our intuitions, let us look again at the case where we have 8
relevantly different states of the world, such that each of the states are equally
likely to be true. Consider now the question Who of John, Mary and Sue are sick?
Notice that any complete answer to this question will reduce our 8 possibilities
to 1. Thus, any complete answer, qi, will have an ‘inf’-value of 3, i.e. it will
resolve all three of the relevant binary issues. But if each answer to the question
has an informative value of 3, the average amount of information conveyed by
the answers, and thus the informative value of the question, E(Q), should also
be 3. And indeed, because each of the complete answers has a probability of 1

8 to
be true, the informative value of the question is according to the above formula
equated with (1

8 ×3)+ ...+(1
8 × 3) = 8× (1

8 × 3) = 3. In general it will hold that
when we have n mutually exclusive answers to a question, and all the answers
are considered to be equally likely true, the informative value of the question
can simply be equated with the informative value of each of its answers, which
is −log2

1
n = log2 n. The informative value of the question Will the outcome of

the flipping of an unbiased coin be heads?, for instance, will be 1, because the
question has 2 answers, which are by assumption equally likely to be true.

What if not all of the n answers are equally likely to be true? In that case some
answers have a higher informative value than log2 n, and others have a lower one.
It turns out, however, that the average amount of information conveyed by the
answers will in that case be lower than in case the answers are equally likely to be
true. Consider for instance the flipping of a biased coin, whose chance to come up
heads after flipping is 3

4 . Because the ‘inf’-value of outcome/answer Heads is in
that case −log2

3
4 = 0.415, and the ‘inf’-value of answer Tails is −log2

1
4 = 2, the

average amount of information of the answers is (3
4 ×0.415)+(1

4 ×2) = 0.811 < 1.
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Thus, although one of the answers has an informative value that is 2 times as
high as the informative values of the outcomes/answers in case of an unbiased
coin, the average amount of information of the answers turns out to be lower.

This is in general the case; the informative value of question Q defined as above
is maximal just in case the answers are all equally likely to be true. And this seems
to confirm our intuitions. If you want to be sure to find out after 3 yes/no-questions
which of the 8 states of our toy-example actually obtains, we should ask the three
yes/no-questions which have maximal E-value. That is, we should ask for each
individual separately whether he or she is sick, which all have an ‘inf’-value of 1,
and we should not ask risky questions that might, but need not, convey more in-
formation, like Are John and Mary the ones who are sick? In fact, we might even
define the risk of question Q which has n different possible answers, as (a func-
tion of) the difference between the E-value of the n-ary question with maximal
informative value, i.e. with an E-value of log2 n, and E(Q).

Having defined when a question has its maximal informative value, we now
would like to know under which circumstances it reaches its minimal value.
Intuitively, a question is (at least) valueless in case you already know the answer
to the question. And, unsurprisingly, this is what comes out; E(Q) = 0 just in
case only one answer has a positive probability (and thus has the probability 1),
and for all other cases the question has a value strictly higher than 0.

Our aim was to define a value of questions (partitions) that allows us to extend
the partial ordering on questions induced by the ‘�’ relation to a total ordering.
We have succeeded in doing that: it always will be the case that when Q � Q′,
it will also be the case that E(Q) ≥ E(Q′). Moreover, as a special case of a
theorem stated in section 5 it will be the case that if EP (Q) ≥ EP (Q′) with
respect to all probability functions P , it holds that Q � Q′.

We have defined the informative value of questions in the same way as Bar-
Hillel & Carnap (1953) defined the value of doing an experiment. As they have
noted themselves, the way this value is defined is formally exactly analogous to
the way the entropy of a source, i.e. coding system, is defined by Shannon (1948)
in his Communication Theory. This is why we denoted the informative value of
question Q by E(Q), and from now on I will call the informative value of a ques-
tion simply its entropy. In Communication Theory ‘entropy’ is the central notion,
because engineers are mostly interested in the issue how to device a coding system
such that it can transmit on average as much as possible information via a partic-
ular channel. Although we have defined the entropy of a question formally in the
same way as Shannon defined the entropy of a source, there is an important dif-
ference between Shannon’s original use of the formalism within Communication
Theory on the one hand, and Bar-Hillel & Carnap’s and our application of it on
the other: Shannon looked at things from a purely syntactic point of view while we
interpret notions like ‘informativity’ and ‘entropy’ in a semantic/pragmatic sense.

4.3 Conditional Entropy, and the Informative Value of Expressions

Although we have followed Bar-Hillel & Carnap in making a different use of the
formalism Shannon invented than originally intended, this doesn’t mean that
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we are not allowed to ‘borrow’ some mathematical results Shannon proved for
his theory of entropy. In particular, we can make use of what in Communica-
tion Theory is known as conditional entropy, and of what is sometimes called
Shannon’s inequality, to determine the estimated reduction of uncertainty due
to getting an answer to a question.

To use those notions, we first have to say what the joint entropy is of two
questions, Q and Q′, E(Q, Q′), is, where both Q and Q′ are as usual represented
by partitions:

E(Q, Q′) =
∑

q∈Q

∑

q′∈Q′

P (q ∩ q′) × Inf(q ∩ q′).

It should be clear that this joint entropy of Q and Q′ is equivalent to the entropy
of Q � Q′, E(Q � Q′), where Q � Q′ def

= {q ∩ q′ : q ∈ Q & q′ ∈ Q′ & q ∩ q′ 
= ∅}.
Until now we have defined the entropy of a question with respect to a set of

ways the world might be. Notice that the set of worlds consistent with what is
believed, {w ∈ W : P (w) > 0}, corresponds itself also to a partition, namely the
most fine-grained partition {{w} : P (w) > 0}. Calling this latter partition B,
also this partition can be thought of as a question that has a certain entropy,
E(B).

Let us now assume that the agent learns answer q to question Q. What is
then the entropy of B conditional on learning q, Eq(B)? The definition of this
conditional entropy can be easily given:

Eq(B) =
∑

b∈B

P (b/q) × inf (b/q),

and measures the entropy of, or uncertainty in, B when it is known that the
answer to Q is q. In terms of this notion we might now define the entropy of B
conditional on Q, EQ(B). This is defined as the average entropy of B conditional
on learning an answer to question Q:

EQ(B) =
∑

q∈Q P (q) × Eq(B)
=

∑
q∈Q P (q) ×

∑
b∈B P (b/q) × inf (b/q)

=
∑

q∈Q

∑
b∈B P (q ∧ b) × inf (b/q).

Now it can be shown that for any two partitions X and Y of the same set of
worlds, it holds that E(X, Y ) − E(X) = EX(Y ):

E(X, Y ) − E(X) = −
∑

x∈X

∑
y∈Y P (x ∧ y) × logP (x ∧ y) +∑

x∈X P (x) × logP (x)
=

∑
x∈X

∑
y∈Y P (x ∧ y) × logP (x) −∑
x∈X

∑
y∈Y P (x ∧ y) × logP (x ∧ y)

=
∑

x∈X

∑
y∈Y P (x ∧ y) × [logP (x) − logP (x ∧ y)]

=
∑

x∈X

∑
y∈Y P (x ∧ y) × log P (x)

P (x∧y)
=

∑
x∈X

∑
y∈Y P (x ∧ y) × inf(y/x)

= EX(Y ).
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A similar calculation shows that E(X, Y ) − E(Y ) = EY (X), and thus that
EX(Y )+E(X) = EY (X)+E(Y ). Notice that thus in particular it holds for our
two partitions Q and B that EQ(B) = E(Q, B) − E(Q). I will just state, and
not show, Shannon’s inequality, which says that for any two partitions X and Y
of the same state space, it holds that

EX(Y ) ≤ E(Y ),

where the two values are the same exactly when the two issues are completely
orthogonal to one another, i.e. when the issues are independent. Notice that this
means that the entropy of Q�Q′ only equals the entropy of Q plus the entropy of
Q′ in case the partitions are fully independent. That the entropy of the combined
question is only in these special cases equal to the sum of the entropies of the
questions separately, conforms to our intuition that on average we learn less by
getting an answer to the combined question Who of John and Mary will come
to the party?, than by getting two separate answers to both questions Will John
come to the party? and Will Mary come to the party?, when John only, but not
if and only, comes when Mary comes.

Shannon’s inequality will turn out to be a nice property of what I will call the
average information gained from the answer to a question. To define this notion,
let us first define what might be called the Informational Value of answer q, with
respect to partition B, IVB(q), as the reduction of entropy, or uncertainty, of B
when q is learned:13

IVB(q) = E(B) − Eq(B).

Because learning q might flatten the distribution of the probabilities of the el-
ements of B, it should be clear that IVB(q) might have a negative value. Still,
due to Shannon’s inequality, we might reasonably define the informational value
of question Q, the Expected Informational Value with respect to partition B,
EIVB(Q), as the average reduction of entropy of B when an answer to Q is
learned:

EIVB(Q) =
∑

q∈Q P (q) × IVB(q)
=

∑
q∈Q P (q) × [E(B) − Eq(B)]

= E(B) − [
∑

q∈Q P (q) × Eq(B)]14

= E(B) − EQ(B)

The difference between E(B) and EQ(B) is also known as the mutual information
between B and Q, I(B, Q). Shannon’s inequality tells us now that our average
uncertainty about B can never be increased by asking a question, and it remains
the same just in case Q and B are orthogonal to each other. In the latter case
we might call the question irrelevant.
13 A similar notion was used by Lindley (1956) to measure the informational value of

a particular result of an experiment.
14 This step is allowed because the unconditional entropy of B, E(B), does not depend

on any particular element of Q.
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To strengthen our intuitions, let us look at our toy-example again. Recall
that 8 worlds were at stake, and all the 8 worlds had the same probability. In
that case, learning which element of B obtains, i.e. learning what the actual
world is, gives us 3 bits of information, and thus E(B) = 3. Remember also that
learning the answer to the yes/no-question Is John sick? will give us 1 bit of
information, i.e. E(Sick(j)?) = E(Q) = 1, because each answer to the question is
equally likely true, and from both answers we would gain 1 bit of information. It’s
almost equally easy to see that for both answers to the question, the entropy of B
conditional on learning this answer q, Eq(B), is also 1, and thus that the average
reduction of uncertainty due to an answer to Q, EB(Q) is 1, too. It follows that
thus the expected information value, EIVB(Q), is E(B) − EQ(B) = 3 − 1 = 2.
The same result is achieved when we determine EIVB(Q) by taking the average
difference between E(B) and Eq(B) for both answers q, because both answers
are equally likely, and for both it holds that E(B) − Eq(B) = IVB(q) = 2.

We have defined the expected informational value of question Q with respect
to partition B, EIVB(Q), as the average reduction of entropy of B when an
answer to Q is given, i.e. as the difference between E(B) and the conditional
entropy EQ(B). And to make sure that this is always positive, we have made
use of Shannon’s inequality. But notice that the entropy of B conditional on Q,
EQ(B), is simply the same as the entropy of Q, E(Q), itself. But this means
that the expected informational value of Q with respect to B, EIVB(Q), can
also be defined as the difference between the entropy of B and the entropy of Q,
E(B)−E(Q). Notice also that we don’t have to make use of Shannon’s inequality
to see that for any question Q it holds that EIVB(Q) will never be negative.
The reason is that for any question Q it holds that B � Q, and we have noted
already that in that case it will hold that the entropy of B will be at least as high
as the entropy of Q: E(B) ≥ E(Q). But if we can assure that the informational
value of a question is non-negative without making use of Shannon’s inequality,
why did we define the value of a question in such a roundabout way via the
conditional entropy of B given Q?

4.4 Deciding between Hypotheses

The reason is that we don’t want to restrict ourselves to the special case where
in the end we want to have total information about the world, where we have
completely reduced all our uncertainty. Remember that partition B was the most
fine-grained partition possible; the elements of B were singleton sets of worlds.
Because the entropy of Q measures the average uncertainty about how the world
looks like when we’ve got an answer to Q, this measure, E(Q), is only the same
as the entropy of B conditional on Q, EQ(B), because the elements of our special
partition B correspond one-to-one to the worlds.15

But now suppose that we need not to know how exactly the world looks like,
but rather just want to find out which of the mutually exclusive and exhaustive
set of hypotheses in the set H = {h1, ..., hn} is true, where the hi’s denote
15 More in general, it holds that for two partitions Q and Q′, if Q � Q′, then EQ(Q′) =

E(Q′).
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arbitrary propositions. The problem now is to determine the value of question
Q with respect to this other partition H , EIVH(Q), and this is in general not
equal to E(H) − E(Q). To determine the value EIVH(Q), we need to make use
of the conditional entropy of H given (an answer to) Q.

Notice that Shannon’s inequality tells us now also something informative;
EIVH(Q) will never be negative, although it need not be the case that H �
Q. And not only for our special partition B, but also for any other issue H
we can determine when question Q is informationally relevant. Question Q is
informationally relevant with respect to a set of hypotheses H just in case the
true answer to Q is expected to reduce the uncertainty about what the true
hypothesis of H is, i.e. EIVH(Q) > 0.

This notion of ‘informational relevance’ is important when an agent is fronted
with the decision problem which of the mutually exclusive hypotheses {h1, ..., hn}
he should choose. In case the agent only cares about the issue which of the hy-
potheses is true, and that all ways of choosing falsely are equally bad, the risk of
choosing depends only on the uncertainty about what the right hypothesis is. It
seems natural to advice him in these circumstances always to choose that hypoth-
esis that has the highest prior probability. But this means that the risk of choosing
depends entirely on the entropy of H , E(H). And indeed, the flatter the distribu-
tion of the probabilities of the hypotheses is, the more risky the choice will be.

Notice that asking a question, and thereby expecting to get an answer (that
is true), might reduce the entropy of H , i.e. the uncertainty about which hy-
pothesis is true, and thus also the risk of the decision, even if all answers to
the question are compatible with all hypotheses. But this means that even if no
answer to the question will eliminate a single hypothesis, it might still be useful,
or relevant, to ask the question. Indeed, at this point it seems only natural to
equate the usefulness of question Q with respect to the decision problem which of
the hypotheses of H should be chosen, with the reduction of uncertainty about
H due to Q, i.e. EIVH(Q). Moreover, we can say that question Q is relevant
with respect to H just in case EIVH(Q) is strictly higher than 0.

Thus, instead of the partial order between questions induced by the relation
‘�’, we can now determine a total order. We say that if Q 
= Q′, question Q is
better than question Q′ with respect to hypotheses H , Q >H Q′, just in case the
expected information value of Q is higher than the value of Q′, or, if both are
the same, the former is less fine-grained than the latter:16

Q >H Q′ iff (i) EIVH(Q) > EIVH(Q′), or
(ii) EIVH(Q) = EIVH(Q′) and Q � Q′.

Just as the usefulness, and relevance, of question Q with respect to decision
problem H can be defined in terms of EIVH(Q), we can also define the usefulness,
16 As before, I assume always a particular probability function. If we don’t do that, the

following general fact can be proved: Denote the expected utility value of Q with
respect to H and probability function P : If Q � Q′, then for all P : EIV P

H (Q) ≥
EIV P

H (Q′). We will see in section 5 what is needed to strengthen this fact to the
stronger if and only if statement.
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and relevance, of assertion A with respect to decision problem H in terms of the
information values of answers. That is, we can propose to equate the usefulness of
assertion A with respect to issue H with IVH(A), and we can say that assertion
A is relevant just in case IVH(A) > 0. Notice that the thus defined notion of
relevance predicts that many assertions are relevant, although they are (falsely)
predicted to be irrelevant according to the qualitative notion of relevance used
above. Moreover, our newly defined notion of relevance still has the nice property
that it can explain why an assertion is felt to be irrelevant although it still is
informative. For instance, if the issue is who of John and Mary are sick, and we
look at our toy-example again where the sickness of John, Mary and Sue are
independent of each other, the assertion Sue is sick is rightly predicted to be
irrelevant, although it does eliminate some possible worlds.

Now we can also turn our partial order between answers induced by the rela-
tion ‘>Q’, to a total order (although it is not an extension of it). We say that
assertion A is better than assertion B with respect to hypotheses H , A >H B,
just in case the informational value of A, IVH(A), is higher than the correspond-
ing value of B, IVH(B), or, in case both are the same, the former should be less
surprising than the latter:

A >H B iff (i) IVH(A) > IVH(B), or
(ii) IVH(A) = IVH(B) and inf(A) < inf(B).

Thus, if A reduces the entropy of H more than B does, it is a better answer to
‘question’ H than B.

Notice that according to our definition of the relevance of an assertion, an
assertion is predicted to be irrelevant when it flattens the probability distribution
of the hypotheses. In such cases the assertion indeed has the effect that it doesn’t
make the decision any easier. Intuitively, however, this doesn’t mean that thus
the assertion is felt to be irrelevant. The assertion seems to be relevant exactly
because it makes the decision more risky. This wrong prediction can, fortunately,
be removed easily. Just say that A is relevant with respect to H exactly when
the acceptance of A changes the probability distribution of the hypotheses, i.e.
when IVH(A) 
= 0.

4.5 Limitations of the Analysis in Terms of Entropy

The measure of usefulness and relevance of questions and assertions with respect
to a decision problem that we have defined above is, I think, reasonable for
some, but also only reasonable for some kinds of decision problems. First, in our
description of decision problems, we only looked at problems where the choice
between a set of hypotheses is at stake. We would like to extend the analysis from
the choice between hypotheses, to choices between more general kinds of actions.
Extending our analysis from decisions between hypotheses to decisions between
actions need not yet worry us. It doesn’t seem to be completely unreasonable to
represent actions as propositions; an action is true in a world just in case the
result of the action is true in that world. Indeed, in the well respected decision
theory of Jeffrey (1965), actions are represented by propositions.
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What is more problematic for the way we have analyzed the usefulness of
questions and answers in this section is that once we think of a decision problem
as consisting of a set of actions, it seems only natural to assume that the decision
depends not only on the probabilities involved, but also on the desirabilities, or
utilities, of the states that result when the various actions would be chosen.
But once desirabilities enter the picture, it is obvious that our analysis of the
usefulness of questions and answers can no longer be defined simply in terms
of the dependencies between certain probability distributions, i.e. in terms of
conditional entropies.

Consider, for instance, the decision problem faced by airpilot Smith who won-
ders whether he should drop the bomb, with the reasonable chance to trigger a
world-war, or not dropping the bomb, and thereby missing an excellent chance
to strike a potential future enemy in war, and getting a scolding for this by
his commanding officer. It is clear that Smith’s desirabilities of the expected
outcomes of the relevant actions will heavily influence his decision.

Even if the relevant actions just involve a choice between a set of hypotheses,
the most probable hypothesis is not always the one that intuitively is preferable.
The reason is that choosing this hypothesis might give rise to very nasty con-
sequences. Consider, for instance, scientist Jones who is facing the dilemma be-
tween choosing the generally accepted theory h1 and working in this framework,
or choosing the alternative theory h2 that he thinks is somewhat more likely
to be true, but that has a very bad reputation among his fellow researchers.
Because Jones knows that choosing h2 will turn him into a black sheep of his
family whose papers will never be read, even the more purists among us could
understand Jones’ choice for theory h1.

Let me give a simple example showing that the reduction of entropy of the rel-
evant set of hypotheses/actions does not always measure the usefulness of ques-
tions and assertions in a satisfying way. Consider John, who wonders whether
he should go to the party tonight, or not. His decision depends almost entirely
on whether Mary will go, because he is secretly in love with Mary, and believes
that going to the party is his only chance to meet her. He prefers meeting her
tonight, to not meeting her, but if Mary won’t go, he prefers to stay home. But
going to the party when Mary comes too obviously involves a risk; perhaps Mary
will turn him down when he makes his advances. We might say that in this sit-
uation 4 different states (worlds) are involved: one world, w1, where Mary goes
to the party, John will go, too, he will try his luck, and is successful; a world,
w2, where Mary goes, John goes, he tries his luck, and is unsuccessful; world w3,
where Mary won’t go to the party, and thus neither does John, but where the
counterfactual statement holds that when John would try his luck, he would be
successful, and w4 which is similar to w3 except that in this world the counter-
factual would be false. On the additional assumption that John thinks all worlds
are equally likely to come out true, that he doesn’t care about what Mary would
do if they don’t go to the party, and that John has a negative attitude towards
taking risks, we might represent his decision problem by the following table:
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World Probability Desirability
w1 1/4 12
w2 1/4 2
w3 1/4 8
w4 1/4 8

In this case, it is relevant, intuitively, for John to learn that the above men-
tioned counterfactual statement is true. It is, however, easily seen that learning the
proposition expressed by this statement, {w1, w3} = A, does not change the en-
tropy of the decision problem that can be represented by {{w1, w2}, {w3, w4}} =
H . That is, IVH(A) = E(H) − EA(H) = 0, because learning A does not change
the probability distribution of the elements of H , i.e. both E(H) and EA(H) have
a value of 1.

In a similar way, it also seems relevant for John to know the answer to the
question whether he would be successful if he tried, that is, to learn which
element of the partition {{w1, w3}, {w2, w4}} is true. It is straightforward to
check, however, that not only the positive answer to the question, A, but also
the negative answer, ¬A, has no effect on the probability distribution of the
elements of H . Representing the question whether the counterfactual is true or
not by Q, it is thus predicted that also EIVH(Q) = E(H)−EQ(H) = 0. We can
conclude that the value EIVH(Q) is at least not always the proper measure to
determine the relevance of a question with respect to a decision problem.

What we need, or so it seems, is a measure that not only looks at the proba-
bilities, but also at the desirabilities involved. In the next section we will define
such a measure by looking seriously at statistical decision theory.

5 Utility Values of Questions and Answers

5.1 Utilies of Answers and Expected Utilities of Questions

In Savage’s (1954) decision theory, actions are taken to be primitives, and if we
assume that the utility of performing action a in world w is U(a, w), we can say
that the expected utility of action a, EU(a), with respect to probability function
P is

EU(a) =
∑

w

P (w) × U(a, w).

Let us now assume that our agent, John, faces a decision problem, i.e. he wonders
which of the alternative actions in A he should choose. A decision problem of
an agent can be modeled as a triple, 〈P, U, A〉, containing (i) the agent’s proba-
bility function, P , (ii) his utility function, U , and (iii) the alternative actions he
considers, A. You might wonder why we call this a decision problem; shouldn’t
the agent simply choose the action with the highest expected utility? Yes, he
should, if he chooses now. But now suppose that John doesn’t have to choose
now, but that he has the opportunity to first receive some useful information by
asking question Q.
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Before we can determine the utility of Q, we first have to say how to determine
the expected utility of an action conditional on learning some new information.
For each action a ∈ A, its conditional expected utility with respect to new
proposition C, EU(a, C) is

EU(a, C) =
∑

w

P (w/C) × U(a, w).

When John learns proposition C, he will of course choose that action in A which
maximizes the above value. Then we can say that the utility value of making an
informed decision conditional on learning C, UV (Learn C, choose later), is the
expected utility conditional on C of the action that has highest expected utility:

UV (Learn C, choose later) = maxa∈AEU(a, C).

In terms of this notion we can determine the value, or relevance, of the assertion
C. Referring to a∗ as the action that has the highest expected utility according
to the original decision problem, 〈P, U, A〉, i.e. maxa∈AEU(a) = EU(a∗), we
can determine the utility value of the assertion C, UV (C), as follows:

UV (C) = maxa∈AEU(a, C) − EU(a∗, C).

This value, which in statistical decision theory (cf. Raiffa & Schlaifer, 1961) is
known as the value of sample information C, V SI(C), can obviously never be
negative. In fact, it predicts that an assertion only has a positive utility value in
case it influences the action that John will perform. And indeed, it seems natu-
ral to say that a cooperative participant of the dialogue only makes a relevant
assertion in case it makes John change his mind with respect to which action he
should take. It also seems not unreasonable to claim that in a cooperative dia-
logue one assertion, A, is ‘better’ than another, B, just in case the utility value
of the former is higher than the utility value of the latter, UV (A) > UV (B).

In terms of the utility value of assertions/answers, we can now determine
the utility values of questions. Suppose that question Q is represented by the
partition {q1, ..., qn}. Just like in section 4 we defined the informative value,
or entropy, of a question as the expected, or average, informative value of its
answers, in this case we can determine the expected utility value of a question,
EUV (Q) as the average utility value of the possible answers:

EUV (Q) =
∑

q∈Q

P (q) × UV (q).

Notice that this value, which in statistical decision theory is known as the ex-
pected value of sample information, EV SI, will never be negative. In fact, the
value will only be 0 in case no answer to the question would have the result
that the agent will change his mind about which action to perform, i.e. for each
answer q ∈ Q it will be the case that maxa∈AEU(q, a) = EU(q, a∗). In these
circumstances the question really seems irrelevant, and it thus seems natural to
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say that question Q is relevant just in case EUV (Q) > 0. It should be obvious
that this measure function also totally orders all questions with respect to their
expected utility value.

It is of some interest to see that we can determine the expected utility value of
questions also in another way. According to this alternative way of determining
the value of questions, we first have to determine the utility value of choosing
now. The utility value of choosing now is defined as the expected utility of the
action which has the highest expected utility according to the original decision
problem, i.e. with respect to the original probability function:

UV (Choose now) = maxa∈AEU(a).

Now we can determine the expected utility value of choosing after you learn the an-
swer, EUV (Learn answer, choose later), in terms of UV (Learn q, choose later),
by averaging over the answers to the question:

EUV (Learn answer, ch. later) =
∑

q∈Q P (q) × UV (Learn q, ch. later)
=

∑
q∈Q P (q) × maxa∈AEU(a, q).

The expected utility value of question Q, EUV †(Q), is now defined as the dif-
ference between the expected utility value of choosing after you got the answer,
and the utility value of choosing now:

EUV †(Q) = EUV (Learn answer, choose later) − UV (Choose now).

It can be easily shown that the second way of determining the expected utility
value of a question gives rise to the same result as determining the expected
utility value of a question according to the first way, i.e. EUV †(Q) = EUV (Q):17

EUV †(Q) = EUV (Learn answer, choose later) − UV (Choose now)
= [

∑
q∈Q P (q) × UV (Learn q, choose later)] − UV (Choose now)

= [
∑

q∈Q P (q) × maxa∈AEU(a, q)] − EU(a∗)
= [

∑
q∈Q P (q) × maxa∈AEU(a, q)] − [

∑
q∈Q P (q) × EU(a∗, q)]

=
∑

q∈Q P (q) × [maxa∈AEU(a, q) − EU(a∗, q)]
=

∑
q∈Q P (q) × UV (q)

= EUV (Q).

According to the qualitative comparison method of section 3, one question, Q, is
better than another question, Q′, just in case the former entails the latter, that is,
in case the partition Q is finer than the partition Q′: ∀q ∈ Q : ∃q′ ∈ Q′ : q ⊆ q′.
We have seen in section 4 that measuring the expected informational value of
questions, EIVH(Q), in terms of reduction of entropy of the set of hypothe-
ses H , accords with the qualitative measurement, in the sense that when Q
is a finer partition than Q′, it also holds that Q will have a greater expected
17 Where a∗ is again the action which maximizes expected utility in the original decision

problem.
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informational value, EIVQ(H) ≥ EIVQ′(H), whatever the set of hypotheses
is. Now we can ask a similar question with respect to the question’s expected
utility value. Denoting by EUVDP (Q) the expected utility value of Q with re-
spect to decision problem DP , Marschak & Radner (1972) have proved as a
special case of Blackwell’s (1953) theorem the following strong, but also very
appealing theorem:

Theorem Q � Q′ iff ∀DP : EUVDP (Q) ≥ EUVDP (Q′).

The ‘only if’ part is natural, and shows that it is never irrational (if collecting
evidence is cost free) trying to get more information to solve one’s decision
problem. This part was already implicitly assumed by Savage (1954) and Raiffa
& Schlaifer (1961), and was explicitly proved by Good (1966) to follow from the
Bayesian principle of maximizing expected utility.18

The ‘if’ part is more surprising, and it suggests that the semantic entailment
relation between questions is an abstraction from the more pragmatic usefulness
relation of questions. The proof is based on the idea that when two partitions
are qualitatively incomparable, one can always find a pair of decision problems
such that the first partition has a higher expected utility value than the second
one according to one decision problem, and a lower expected utility value than
the second one according to the other decision problem.

Given this result for questions, one might expect that something similar holds
for assertions. We have seen in section 4.1 that whenever A ⊆ B, it also holds
that inf(A) ≥ inf(B). In section 4.3, however, we saw that in such circumstances
it still might be that IVH(B) > IVH(A), i.e. the informational value of a proposi-
tion does not behave monotone increasingly with respect to the (ordering induced
by the) classical entailment relation between propositions. Still, it might be the
case that stronger propositions always do have a higher utility value. But in
fact, they do not. The utility value of choosing now, UV (Choose now), might be
higher than the utility value of first learning proposition C, and then choosing
later, UV (Learn C, choose later), because from learning C I might learn that
my worst nightmare has come out true, and that I have to perform an action
that I otherwise never would have performed.

If neither the informative value of proposition A, IVH(A), nor its utility value,
UV (A), behaves monotone increasing with respect to the ‘⊆’-relation, perhaps
they do behave monotone increasing with respect to one another. But also that
is in general not the case, as it should be according to our argumentation in
section 4.5.

First, it might be the case that learning a proposition that doesn’t change
the entropy, still effects a change of mind. Look at the following matrix for the
example discussed in section 4.5, but now for a Savage-style decision theory:

18 But see Skyrms (1990), who traces this result back all the way to an unpublished
manuscript of Ramsey.
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World Prob John goes doesn’t go
Mary comes w1 1/4 12 0
Mary comes w2 1/4 2 0

Mary doesn’t come w3 1/4 0 8
Mary doesn’t come w4 1/4 0 8

Looking at the matrix, we can equate the action John goes with the worlds
where this action has a higher utility than the alternative action. Thus, the ac-
tion corresponds in this case with the proposition {w1, w2}. The decision prob-
lem which action John should perform can thus be represented by the partition
{{w1, w2}, {w3, w4}} = H . Note that due to the fact that all worlds have an equal
probability, the informational value of proposition {w1, w3} = A is 0, IVH(A) =
0. Still, learning the proposition has a positive utility value, i.e. UV (A) > 0,
because learning the proposition would have the result that John changes his
mind. Facing his original decision problem, John would decide not to go to the
party, because that action has the highest expected utility, UV (Choose now) =
maxiEU(ai) = EU(doesn’t go) = 4. When he would learn proposition A =
{w1, w3}, however, John would change his mind, because EU(John goes, A)
= 6 > EU(doesn’t go, A) = 4. Due to this latter inequality, together with the
fact that the action doesn’t go is the one that would originally have been chosen,
it follows that also UVH(A) = 2 > 0. This shows that information can be useful
with respect to a decision problem, although it doesn’t reduce the problem’s
entropy.

With the help of the same matrix we can also show that a proposition might
reduce the entropy of a decision problem, although it doesn’t have a positive
utility value. We just have to find a proposition that strengthens the choice
for the action/hypothesis that would have been chosen anyway, in our case for
action/hypothesis {w3, w4}. Of course, any subset of this action/hypothesis will
do this trick.

5.2 Decision between Hypotheses

In section 4 our problem was to choose an hypothesis from set H , and base this
decision only on the probabilities involved. A decision problem can in such cases
be modeled by a pair like 〈P, H〉. As for all kinds of decision problems, we are
interested in two kinds of questions: (i) What is the hypothesis the agent should
go for? and (ii) What kind of question should the agent ask to make a better
informed decision concerning the hypotheses? The answer to the first question
seems obvious; the hypothesis the agent should choose is the hypothesis which
is most likely to be true, i.e. the hypothesis with the greatest probability. The
second question is somewhat more difficult to answer. Let me now show, following
Marschak (1974a), that this is a special case where the decision problem should
be modeled by a triple like 〈P, U, A〉, as in the previous section.

We have assumed in the previous section that a decision problem partly con-
sists of a set of alternative actions, and that each action a ∈ A has a utility in
a world w, U(a, w). Let us now assume that the set of alternative actions, A, is
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such that for each world w there is always exactly one action a ∈ A such that
∀a′ ∈ (A − {a}) : U(a, w) > U(a′, w). This means that the set of alternative
actions partitions the set of worlds; to each action a ∈ A there corresponds a
cell of the partition, and in each world of this cell a is the unique best action
to do. This set corresponds of course exactly to a set of mutually exclusive and
jointly exhaustive hypotheses, H = A∗, that we used in section 4 to measure the
informational values of questions and answers when we define this partition as
follows:

H = A∗ = {{w ∈ W | ∀a′ ∈ (A − {a}) : U(a, w) > U(a′, w)}| a ∈ A}.

For each action a ∈ A we will denote the cell corresponding with a by a∗, and
this, again, is exactly a hypothesis in the original set H . This shows that choosing
a hypothesis can be thought of as a special kind of action.

But to show that a decision problem of the form 〈P, H〉 = 〈P, A∗〉 is a special
case of a problem of the form 〈P, U, A〉, we also have to eliminate the utility
function in a natural way. The most natural way in which this can be done is to
assume that for this case the utility function is the utility function of someone
who cares about the truth, and nothing but the truth.

Suppose that there are only two units of utilities, u1 and u2, such that u1
is strictly higher than u2. In combination with the foregoing assumption this
means that the actions taken in a world can be counted as being either wrong
or right, i.e. having a utility of either 1 or 0; action a has utility 1 in a world iff
hypothesis a∗ is true in that world, and has utility 0 otherwise. Thus, the utility
function is nothing else but a truth-value function. The utility value of choosing
now is in these special circumstances the same as the probability value of the
hypothesis with the highest utility:

UVH(Choose now) = maxa∈AEU(a)
= maxa∈A

∑
w P (w) × U(a, w)

= maxa∗∈A∗ [(
∑

w∈a∗ P (w) × 1) + (
∑

w�∈a∗ P (w) × 0)]
= maxa∗∈A∗

∑
w∈a∗ P (w)

= maxa∗∈A∗P (a∗).

Now we can determine for each action a ∈ A its conditional expected utility
with respect to new proposition C:

EU(a, C) =
∑

w P (w/C) × U(a, w)
= P (a∗/C).

Thus, in these special cases the expected utility of action a after learning C is
the same as the probability of a∗ conditional on C. As a result it also follows that
the action a which maximizes the expected utility conditional on learning new
proposition C, is the proposition a∗ which has the highest probability conditional
on C. Now we can also determine the utility value of choosing after learning C:

UVH(Learn C, choose later) = maxa∈AEU(a, C)
= maxa∗∈A∗P (a∗/C).
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In terms of this notion we can define a utility value of learning proposition
C, UV ∗

A∗(C), that slightly differs from the one defined in the previous section,
UV (C), in that according to the new function we immediately subtract the
utility value of choosing now.

UV ∗
A∗(C) = UVH(Learn C, choose later) − UVA∗(Choose now)

= maxa∈AEU(a, C) − maxa∈AEU(a)
= maxa∗∈A∗P (a∗/C) − maxa∗∈A∗P (a∗).

Thinking of A∗ again as the set of hypothesis H , one can see that UV ∗
H(C), in

distinction with UVH(C), can have a negative value, but also a positive one in
case C only strengthens the initially already preferred hypothesis.

Given our new definition of the utility value of assertions, UV ∗
H(C) it is, under

the special circumstances sketched in this subsection, true that

UV ∗
H(A) ≥ UV ∗

H(B) iff maxh∈HP (h/A) ≥ maxh∈HP (h/B).

Thus, we have shown the utility value of an assertion is the larger, according
to this measure function, the larger the probability of the hypothesis that has
maximal posterior probability derived from it.

Notice that when maxh∈HP (h/A) ≥ maxh∈HP (h/B), it also holds that learn-
ing A reduces the entropy of H more than B does, in case H consists of 2 hy-
potheses, because in these cases EA({h, ¬h}) ≤ EB({h, ¬h}). We can conclude
that at least in these very special cases, utility values of assertions behave similar
to their informational values: UV ∗

H(A) ≥ UV ∗
H(B) iff IVH(A) ≥ IVH(B). How-

ever, when H contains more than 2 hypotheses the result doesn’t go through
anymore. The reason is, intuitively, that to determine UV ∗

H(A) we only look at
the optimal hypothesis, while to determine IVH(A) we also look at the various
sub-optimal hypotheses.

Let us now, finally, look at proposition C that completely resolves the issue.
That is, let us look at the case where for each h ∈ H , it either holds that C = h,
or C ∩ h = ∅. Notice that in that case the value maxh∈HP (h/C) will always be
1, and the utility value of C, UV ∗

H(C), depends only on the prior probability of
h∗.19 Let us now look at the question that completely corresponds with decision
problem H , i.e. let us look at question H itself. We might evaluate the ex-
pected gain from this question, EUV ∗

H(H), by averaging over the corresponding
expected values of the answers:

EUV ∗
H(H) =

∑

h∈H

P (h) × UV ∗
H(h),

because for each h ∈ H it holds that UV ∗
H(h) = −P (h∗), we can conclude that

for these special cases the expected gain from question H , EUV ∗
H(H), decreases

as the prior probability of the least surprising message, i.e. h∗, increases.
19 Of course, this does not mean that the utility values of propositions are thus always

independent of the propositions themselves. This is only the case when we only
compare the utility values of different propositions that all fully resolve the issue.
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5.3 Questioning Procedures

We ended section 5.1 with a negative result: even if we can represent the actions
of a decision problem by a set of propositions, i.e. by a partition like H , there still
exists in general no connection between the informational value of a propositionA,
IVH(A), and its utility value, UVH(A). Something similar is the case for questions:
EIVQ(Q′) is in general no special case of EUV (Q). Let us assume that for every
action ai of our decision problem A there corresponds a set of worlds a∗

i in which
ai is the unique best action to perform. Assume A = {a1, ..., a5} and that the
corresponding A∗ = {a∗

1, ..., a
∗
5} partitions the set of worlds compatible with what

our agent believes. According to the prior probability function, all ‘worlds’ a∗
i are

equally likely. Suppose, moreover that the utility function is as follows:

U(ai, a
∗
j ) = 1, if i = j, 0 otherwise.

In this case one should pick the ai whose corresponding proposition has the
maximal probability. Suppose we have two questions, Q = {q1, q2} and Q′ =
{q′1, q

′
2}. The following table gives the probabilities of a∗

i given that we learn an
answer to one of these questions:

EIVA∗(Q) 
= EUVA(Q) :

q1 q2 q′1 q′2
a∗
1 0.4 0.3 0.5 0.2

a∗
2 0.3 0.4 0.2 0.5

a∗
3 0.1 0.1 0.1 0.1

a∗
4 0.1 0.1 0.1 0.1

a∗
5 0.1 0.1 0.1 0.1

Because maxa∈AEU(a, q′i) = 0.5 > 0.4 = maxa∈AEU(a, qi), it is obviously
the case that EUVA(Q) < EUVA(Q′). However, it turns out that EQ(A∗) <
EQ′(A∗) and thus that EIVA∗(Q) > EIVA∗(Q′). Thus, in general EUV (Q) and
EIV (Q) do not behave monotone increasing with respect to one another.

However, as shown by Sneed (1967), in the following special case they do.20

Suppose our agent wants to know which of the elements of X0 = {x1, ...xN} is
true. Our agent may partition X0 into n ≤ N disjoint, non-void subsets.

X1
1 , X1

2 , ..., X1
n.

Now he is given the choice to pay a fee r to be told which member of the partition
contains the true member of X . Say he is told X1

1 . If N(X1
1 ) ≥ n he may then

partition X1
1 and pay r to be reliably told which member of this new partition

contains the true member of X0. The agent can go on in this way until every
answer to a new question contains only elements of one of the elements of X0.

For any number n and N there is a finite number v of different questioning
procedures of this sort that the agent could employ in attempting to discover
which member of X is true. Call these n-ary questioning procedures for X at
constant rate r. Let
20 For other special cases, see van Rooij (2004a).
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QPX = {p1, p2, ..., pv}

be the mutually exclusive and jointly exhaustive propositions describing the
employment of these different n-ary questioning procedures to discover which
member of X0 is true. The decision problem is now which questioning procedure
to follow: A = QPX .

To determine the utility of new information with respect to a questioning
procedure, we have to determine the utility of a questioning procedure for the
remaining set of possibilities X ′. We will assume that this depends completely on
the costs of the questioning procedure, C(p), and that this is measured in terms of
the number of n-ary questions of procedure p that still has to be asked before the
member of X0 can be determined for certain. But this means that in the optimal
case maxa∈AEU(a) = −minp∈QPX C(p) = −En(X) and maxa∈AEU(a, q) =
−minp∈QPX C(p, q) = −En

q (X).21

To make life easier, we will make use of a decision rule that assigns a unique
action to every possible answer to Q. Because Q is a partition, Q(w) is simply
the element of Q that has to be answered if w is the case. Now we can determine
the utility value of the decision rule d with respect to question Q, EU(d, Q) =∑

w P (w)×U(d(Q(w)), w). In terms of the utility of a decision rule, we can now
show in a simple way that the expected utility value of a question with respect
to the decision problem which questioning procedure to adopt if you want to
know which member of X is true reduces to the expected informativity value of
this question with respect to ‘question’ X :

EUVQPX (Q) = maxdEU(d, Q) − maxp∈QPX EU(p)
= −mindC(d, Q) − −minp∈QPX C(p)
= −

∑
q∈Q P (q) × Eq(X) − −E(X)

= E(X) − EQ(X)
= EIVX(Q).

6 Conclusions and Outlook

In this paper I have shown how we can measure the usefulness, or relevance, of
questions and answers using Stochastic Communication Theory, Inductive Logic
and Statistical Decision Theory, and I have suggested that some of these mea-
sures are of greater value than others. In other papers I have used these notions
for linguistic purposes to account for (i) the meaning of questions and assertions
(van Rooij, 2003a,b); (ii) conversational implicatures (van Rooij, 2003c), and
(iii) the licensing of polarity items (van Rooij, 2003d). In Van Rooij (2003a), for
instance, I argue that measuring the relevance, or value, of questions and answers
is of importance for linguistic theory, because it helps the answerer to determine
what is actually expressed by an interrogative sentence, and the questioner to cal-
culate which proposition is expressed by a declarative answer. What is expressed
21 From Shannon’s noiseless coding theorem it follows that in general En(X) ≤

minp∈DPX C(p) < (En(X) + 1).
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by interrogative and declaratively used sentences is very context-dependent, and
depends heavily on the decision problem of the questioner. Assuming that both
participants know what the decision problem of the questioner is, I propose that
what is expressed by an interrogative sentence is that question that would be
most relevant with respect to the questioner’s decision problem.

In this paper I have implicitly assumed that the participants of a dialogue are
always cooperative. In particular, that it can never do any harm for the questioner
to make her decision problem public, and that the answerer will always help the
questioner as much as he can to solve her decision problem by giving complete
answers. Although cooperativity is standardly assumed in Gricean (1989) prag-
matics, the participants of a dialogue do not always behave accordingly. It has
been argued by Merin (1999), for instance, that for linguistic purposes we should
base our notion of relevance on the assumption that the two participants of a dia-
logue try to win an argument. Adopting Anscombre & Ducrot’s (1983) conjecture
that by making assertions we always want to argue for particular hypotheses, he
suggests to measure the relevance of an assertion in terms of its argumentative
function. Assuming that the two participants of a dialogue always argue for mu-
tually exclusive hypotheses, he proposes to determine the relevance of assertion
A with respect to hypothesis h in terms of Good’s (1950) measure of the weight of
evidence: rh(A) = log(P (h/A)/P (¬h/A)). It is, perhaps, reassuring that adopt-
ing such a radically non-cooperative view on language use doesn’t make our
whole investigation useless. It turns out that rh(A) can also be defined as the
difference between inf(A/¬h) and inf(A/h), i.e. rh(A) = inf(A/¬h) − inf(A/h),
and it is easily seen that rh(A) = 0 just in case the informative value of A with
respect to yes/no-question {h, ¬h}, IV{h,¬h}(A) = E({h, ¬h})−EA({h, ¬h}), is
0, too. Thus, Merin (1999) takes a proposition to be a relevant argument with
respect to an hypothesis, just in case we (in section 4) say it is relevant with
respect to the corresponding yes/no-question. This doesn’t mean that our no-
tions of relevance are, thus, the same. It might well be that rh(A) < 0 although
IV{h,¬h}(A) > 0, and the other way around, due to the fact that Merin measures
the relevance of assertions with respect single hypotheses, while we measure them
with respect to questions, or decision problems.

Only very recently it has become clear that an analysis of relevance in terms
of the hearer’s decision problem is not quite appropriate to account for conver-
sational implicatures: the speaker’s beliefs and preferences should be taken into
account as well. The proper way to do this would be to embed our information-
and decision theoretic analyses into a more general game theoretic one. It would
be beyond the scope of the present paper to discuss this embedding, though.
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Information arises in conditions of uncertainty. When we are unsure of what has
happened, our uncertainty is reduced by gaining information. Central to any
mathematical model of information is the representation of a state of uncertainty
and the change of state brought about by the acquisition of a new piece of
information.

Probability theory provides such a model, starting with a set of possible out-
comes, and representing an event as the set of outcomes compatible with the
event’s occurrence. A state of uncertainty is represented by a function measur-
ing the probability each event’s occurrence. When we are fairly sure what has
happened, some events will have a high probability and others a low probability;
when we are very uncertain, the probabilities are more evenly distributed. The
acquisition of new information results in a change in the probability distribu-
tion and, possibly, a reduction of uncertainty. I’ll call this cluster of modelling
assumptions ‘Information Via Probability.’

Formal logic supplies an alternative. The possible configurations of an un-
known situation are represented by relational structures and a state of uncer-
tainty is represented by a set of such structures. Information is modelled by
expressions of a formal language. Each formal proposition (formula) represents
the information that the unknown situation has a structure satisfying the for-
mula. Formal reasoning can then be shown to be related to information content:
if formula ψ is a deductive consequence of formula ϕ then the information rep-
resented by ψ is contained in the information represented by ϕ. I’ll call this
approach ‘Information Via Logic.’

Shannon’s groundbreaking work on the mathematics of communication, [1],
showed how Information Via Probability can be used to give a precise mea-
sure of uncertainty and to model the movement of information in a system of
communication ‘channels’. Each channel connects an informational ‘source’ to a
‘receiver’. From the perspective of the receiver, the state of the source is uncer-
tain but information transmitted along the channel reduces this uncertainty by
a quantifiable amount. When channels are connected in a network, the move-
ment of information is measured by tracking the relative reduction in uncertainty
between different points in the network.1

1 More precisely, Shannon’s theory tracks the average reduction in uncertainty, which
is all that is required for determining ‘channel capacity’, and other technologically
significant quantities. It has proved more difficult to adapt the model to provide an
account of the informational content of individual events, but as Shannon famously
noted, this ‘is irrelevant to the engineering problem’,[1, p.3].

G. Sommaruga (Ed.): Formal Theories of Information, LNCS 5363, pp. 193–233, 2009.
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In [2], Jon Barwise and I developed an account of information flow using a
more abstract model of channels, which I’ll call the Barwise-Seligman frame-
work. Although inspired by Information Via Logic, we made no use of de-
tails concerning the structure of formal languages or deductive calculi.2 Our
aim was to provide an algebraic model of information flow that captured gen-
eral features common to any system of representation, including linguistic and
diagrammatic forms, and even the non-representational information flow of nat-
ural signs such as the information carried by a thermometer about the tem-
perature and the information carried by the sight of smoke pouring out of the
window of a house. Ultimately, this is a contribution to the mathematical foun-
dations of a semantics and epistemology of the kind proposed by Dretske in
[6] and developed by Barwise, Perry, and others as ‘situation semantics’ and
‘situation theory’.

The present article aims to consider various problems involved in adapting the
Barwise-Seligman framework to provide a similarly abstract account of Informa-
tion Via Probability. Dretske framed his definition of information flow using
probability rather than logic and returning to this point has been a 10-year la-
cuna in the development of the theory. Section 1 is an introduction to models
of channels using logic and probability, and introducing the central concepts
of the Barwise-Seligman framework from [2]: classifications, infomorphisms and
channels. Section 2 looks in detail at the problem of modelling Dretske’s ac-
count of information flow using Shannon channels and comparing these to an
Information-Via-Logic analogue (Tarski channels). Particular attention is given
to three problems involved in applying these models to information flow among
real-world events: the Strength Problem, the Modality Problem and the Context
Problem. The concept of a link is introduced as a parameter for solutions to these
problems. Section 3 investigates how links are determined by theories derived
from logic (Tarski theories) and probability (Dretske theories) and compares
them to links derived from a more general class of theories that encompasses
both (Gentzen theories). In Section 4, the three kinds of theory are related to
ideas from situation semantics, culminating in the equivalence of Gentzen the-
ories with certain models of situation semantics (Barwise structures). Section 5
takes steps toward a philosophical and mathematical analysis of Dretske theories.
From an epistemological perspective, they are characterised by properties con-
cerning the existence of answers to questions and the degrees of coherence. From
a mathematical perspective, the same properties are shown to relate closely to re-
cent work in algebraic measure theory. Finally, Section 6 introduces the account
of information flow from [2], which is quite different from Dretske’s account, and

2 Early formulations of Information Via Logic by Bar-Hillel and Carnap [3] focused
on the definition of information content rather than the dynamics of information
flow. Dynamic logic, especially dynamic epistemic logic [4], also provides a well-
developed framework for modelling information flow but one that preserves a feature
of Information Via Logic that we drop: the use of expressions in a formal language
to represent content. Connections between the two approaches are explored in [5].
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shows how they are related. Open problems and directions for future research
are indicated.

1 Classifications, Infomorphisms, and Channels

The Barwise-Seligman approach to modelling information and information flow
uses structures called ‘classifications,’ maps between them, called ‘infomorphisms,’
and various constructions, one of which is the ‘channel.’ This section will introduce
these three concepts with examples drawn from formal logic, abstract probability
theory and applications to more concrete epistemological situations.

Definition 1.1. A classification A consists of a binary relation �A between sets
tok(A) and typ(A). The elements of tok(A) are called ‘tokens’ and the elements
of typ(A) are called ‘types’; a �A α represents a being of type α. Types are
equivalent if they have the same tokens; tokens are equivalent if they are of
the same types. A classification is type-extensional if there are no two distinct
equivalent types and is token-extensional if there are no two distinct equivalent
tokens.

The paradigm example of a classification is given by a formal language L whose
formulas are evaluated in semantic structures according to a relation of satis-
faction. Define typ(L) to be the set of formulas of L, tok(L) to be the set of
semantic structures of L, and let m �L ϕ iff m satisfies ϕ.3 For formulas to
be equivalent as types is for them to be logically equivalent. For structures
to be equivalent as tokens is for them to satisfy the same formulas.4 Typi-
cally, L is neither type-extensional (because of logically equivalent but syntacti-
cally distinct formulas) nor token-extensional (because of equivalent but distinct
structures).

The paradigm example from probability theory is the classification of possible
outcomes by events. A probability space P = 〈Ω,Σ, p〉 consists of a set Ω, whose
elements represent ‘possible outcomes,’ a σ-algebra Σ on Ω, whose elements
represent ‘events,’ and a probability measure p on Σ representing the probability
of the occurrence each event.5 So define tok(P ) to be Ω, typ(P ) to be Σ and

3 The class of semantic structures for a formal language is usually taken to be a
proper class not a set, but this is not essential. If the number of propositions is κ
then there are at most 2κ non-equivalent structures and so for most purposes the
class of structures can be restricted a set of representative members. Keeping track
of caveats concerning size is an unnecessary headache and so here it will be assumed
from the outset that the class of structures is a set.

4 With languages of first-order predicate logic, for example, token equivalence is ele-
mentary equivalence; with languages of modal logic, it is bisimilarity.

5 A σ-algebra over Ω is a set Σ of subsets of Ω such that ∅ ∈ Σ, Ω − e ∈ Σ for
each e ∈ Σ, and

⋃
E ∈ Σ for each countable set E ⊆ Σ. p is a probability measure

on Σ iff it satisfies the Kolmogorov axioms: p(∅) = 0, p(Ω − e) = 1 − p(e), and
p(

⋃
E) =

∑
e∈E p(e) if E is countable and p(e1 ∩ e2) = 0 for all e1 �= e2 ∈ E.
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let ω �P e iff ω ∈ e. The classification is type-extensional because the types are
just sets of tokens, and typically it is also token-extensional.6

More concretely, classifications arise whenever specific objects or events are
classified into kinds or types. The classification of stars by astronomical predi-
cates (‘white dwarf’, ‘red-shifted’ etc.), people by height, daily events by diary
entries, and thermometers by temperature readings (‘22◦ C’) are all appropri-
ately modelled as classifications. When classifying events, the distinction between
tokens and types is the usual distinction between token events and event types.
A token event, such as my going for a swim this morning, is something that
occurs at a particular time in a particular place, whereas the event type of my
going for a morning swim may occur more than once or not at all. Information
flow, as considered by Shannon and Dretske, concerns a relationship between
events and so event classifications will be the primary focus of this article.

The concept of an ‘infomorphism’ is best illustrated by considering the rela-
tionship between event classifications and the more abstract classifications used
to reason about them. Consider a game of chess, observed and analysed by a
group of experts. The observations can be represented by an event classification
G in which the actual moves of the game are classified by the experts into types
of varying precision: “White now has a one-pawn advantage,” ”Black has control
of the centre,” “White’s queen side is looking weak,” and so on. A more abstract
classification C, representing a theoretical conception of the games of chess, can
be defined by taking the tokens to be abstract representations of each possible
configuration of pieces on the board, classified into three types: ‘W’ if there is a
winning strategy for white, ‘B’ if there is a winning strategy for black, and ‘D’
if either side can force a draw.7

The two classifications are related by asking how to classify an actual move
m of the game (token of G) by a theoretically ideal outcome (type of C). There
are two approaches to answering this question. From an epistemic perspective,
in which the final outcome of the game is unknown, our only hope is to associate
the outcome types W, B, and D with observational descriptions f∧(W), f∧(B)
and f∧(D) and then classify an actual move m as, for example, a predicted
win for white if m �G f∧(W).8 From a metaphysical perspective – or, for the

6 Token-extensionality corresponds to the topological concept of T0-separability, which
is satisfied by all the spaces usually considered by probability theorists. In fact, most
ordinary probability spaces satisfy the stronger separation property, known as T2

(Hausdorff), which is equivalent to the condition that any two tokens are of two
distinct types: if a �= b then there are α and β such that a � α, a � α, b � β, and
b � β. The algebra of classifications, in a much more general form than considered
here, was first studied as generalisations of topological spaces in [7], where they are
known as Chu spaces. They have since been applied widely in theoretical computer
science. A good introduction is Pratt’s [8] and material on the website [9].

7 In a seminal work on the mathematics of chess in 1913, Zermelo proved that in chess
either white can force a win, or black can force a win, or both sides can force at least
a draw. See [10].

8 For this to work, the observations in G should be assumed to be closed under some
form of aggregation. Boolean conjunction is sufficient but not necessary.
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metaphysically squeamish, from a less epistemically disadvantaged perspective,
in which all possible outcomes of the game are computed – each move m can be
mapped to the resulting board configuration f∨(m) and then classified as a win
for white if f∨(m) �C W. When these two ways of constructing the classification
agree, the pair of functions 〈f∧, f∨〉 is an informational coupling between the two
classifications, called an ‘infomorphism.’

Definition 1.2. An infomorphism f : A→←B from classification A to classifica-
tion B consists of functions f∧ : typ(A) → typ(B) and f∨ : tok(B) → tok(A)
such that for each α ∈ typ(A) and b ∈ tok(B), b �B f∧(α) iff f∨(b) �A α.

The existence of an infomorphism represents an ideal informational situation for
chess commentary. At each stage of the game, the expert’s descriptions in G de-
termine precisely who has the advantage, in the theoretically precise sense given
by classification C. No human or computer expert is currently able to classify all
actual moves in such a way that an infomorphism to C exists but the existence
of an infomorphism from the expert classification of some parts of some games
is feasible. Excluding the opening moves from the classification and observing
games between players of unmatched ability increase the chances of their being
an infomorphism (and, consequently, the reputation of the commentator).

An infomorphism between formal language classifications is an interpretation
of one language in the other. To take an example familiar to logicians, let A
be the language of arithmetic, and let Z be the language of set theory. Each
model V of set theory determines a model of arithmetic VA with domain Vω and
with addition and multiplication suitably defined. Each formula ϕ of LA can be
mapped to an equivalent formula ϕZ of the language of set theory. The sense in
which ϕ is ‘equivalent’ to ϕZ is given by the infomorphism condition: V �Z ϕZ

iff VA �A ϕ.
An infomorphism between probability spaces is a continuous function, in the

topological sense.9 Not every continuous function preserves probability measure,
and so infomorphisms are too crude to capture the measure-theoretic structure
9 The condition for f to be an infomorphism between spaces P1 and P2 is equivalent

to the statement that f∧ is the set-inverse of f∨, i.e., that f∧(e) = {ω|f∨(ω) ∈ e}.
This ensures that f∧ is uniquely determined by f∨ and exists iff f∨ is continuous.
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of probability. Nonetheless, the boundaries of what can be expressed in terms
of classifications and infomorphisms is less clear-cut than first appearances sug-
gest. For example, not every classification can be assigned a sensible measure of
probability.10

The third concept to be introduced is the channel. The paradigm exam-
ple is given by a telegraph wire connecting two telegraph stations, depicted in
Figure 2. The source consists of the events occurring when the operator at one
station types out a message. Events at the source are represented by an event
classification, S. The receiver consists of the events occurring as the message is
received at the other station, and this is represented by another event classifi-
cation, R. A third classification, C, represents the chain of events connecting
the source to the receiver, from the click of a key at the source to the sound
of the dots and dashes at the receiver and including all the electrical activity
along the wire that runs between the two. Each particular connection event c
begins with a particular source event f∨(c) and ends with a particular receiver
event g∨(c). Each source event type α determines a connection event type f∧(α),
which can be understood as the type of connection event that starts with key
clicks of type α, and likewise, each receiver event type β determines a connection
event type g∧(β), which can be understood as the type of connection event that
ends with dots and dashes of type β. This interpretation of f and g is justified
by the conditions required for f and g to be infomorphisms. More generally, any
pair of infomorphisms into a common classification is called a ‘channel’.

Definition 1.3. A (binary) channel from classification S to classification R

consists of a classification C and infomorphisms f : C→←S and g : C→←R. Clas-
sification C is called the core of the channel.

Shannon [1] models communication channels using a probability space C whose
outcomes are pairs 〈s, r〉 consisting of the state s of the source and the state r of
10 A real-valued function on typ(A) can be considered a ‘sensible’ measure of probability

if it obeys the Kolmogorov axioms with respect to the corresponding sets tok(α) =
{a ∈ tok(A) | a �A α} of tokens. Classifications that can be assigned probability in
this way have been studied by Allwein et al in [11]. But if tok(A) is infinite and each
subset X ⊆ tok(A) has a type α, with tok(α) = X, then there is no such function.
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the receiver. In the examples Shannon considers, C determines probability spaces
S on the set of states of the source and R on the set states of the receiver.11 The
projection functions 〈s, r〉 �→ s and 〈s, r〉 �→ r are continuous, and so provide
infomorphisms from S and R to C, respectively. I’ll call a channel of this kind a
Shannon channel. A distinctive property of Shannon channels is that every token
of S is connected to every token of R. This certainly does not hold in concrete
event channels such as the telegraph channel shown in Figure 2. Although a
Shannon channel can be used to model telegraphic communication, it is a model
of something slightly different than the telegraph channel because its tokens
represent possible states of the source and receiver rather than the actual events
occurring in the two places.
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11 In the finite case, this is straightforward because ΣS and ΣR can be taken to consist
of inverse-images of events in C, with pS(e) = p(e × ΩR) and pS(e) = p(e × ΩS).
In the infinite case more care is needed because not every σ-algebra on C can be
projected to σ-algebras on S and R. Even when this can be done, further conditions
are required for the analysis of information flow. Shannon’s definition of uncertainty
requires that the probability spaces are sufficiently well-behaved to have a probability
density function over a suitable measure, as given, for example, by the conditions of
the Radon-Nikodym theorem. See, for example, Fremlin [12, Vol. 2, Ch.23].
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Channels between formal language classifications are given by interpreting
them in an ‘interlingua’. At the level of tokens, structures satisfying interlin-
gua formulas are mapped to corresponding structures for the component lan-
guages. The language and models of Zermelo-Fraenkel set theory provide the
canonical example of an interlingua classification for interpreting between dif-
ferent branches of mathematics. So long as any new branch of mathematics is
interpretable in set theory, its practitioners are able to communicate with other
mathematicians and use results from other fields (in principle if not in practice).
I’ll call a channel of this kind a Tarski channel. Tarski channels differ from Shan-
non channels (and are similar to event channels) in that not every structure of
one language is ‘connected’ to every other structure of the other language. But
they are similar to Shannon channels (and differ from event channels) in that
their tokens represent possible configurations rather than actual occurrences.

When channels are seen as pairings of infomorphisms, it is natural to ask
for interpretations of other ways of combining infomorphisms. There are clearly
many possibilities, but for one example, I’ll return to the chess game commentary.
The classification C of board configurations by the outcome types W, B, and
D is an idealised one in that it provides no insight into the way in which these
outcomes can be inferred from the board configuration. So suppose instead that
there is a classification A of abstract representations of entire games of chess,
using a more sophisticated language, of the kind used to reason mathematically
about chess strategy. Among the sentences of the language will be translations of
g∧(W) of W, g∧(B) of B and g∧(D) of D. Likewise, each abstract representation
a of a game of chess can be mapped to its initial board configuration g∨(a). The
correctness of the model is captured by the condition that g = 〈g∧, g∨〉 is an
infomorphism. Not all board configurations need be represented, and so models
of chess end-game or of the theory of particular openings can be represented
in this way. Combining the two infomorphisms we get a complex of a slightly
different kind.

The reversal of the direction of the arrows make 〈f, g〉 a simple co-channel
rather than a channel. The relationship between a theoretical model and a series
of observations can often be seen as forming a co-channel, in which the mediating
classification represents a common underlying subject matter. An analysis of this
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situation using probability spaces can also be given. If P is a probability space
over chess game structures with an appropriate σ-algebra of events then we can
define h∨ = g∨ and h∧(W ) = {a|g∨(a) � W} (and similarly for B and D), to get
a co-channel 〈f, h〉 from G to P .

More generally, the informational coupling of a variety of concrete and more
abstract classifications, in large networks and using a variety of representa-
tional systems, can be represented by combinations of infomorphisms. The cat-
egory (in the sense of Category Theory) of classifications and infomorphism is
well behaved, allowing many constructions with classifications, channels and co-
channels. Channels can be linked together in chains: a channel from A1 to A2

and a channel from A2 to A3 can be combined in sequence to produce a channel
from A1 to A3, which behaves in the expected way. More generally, any net-
work of infomorphisms between classifications has a ‘limit’ classification which
minimally combines all the information in the network into one classification
with ‘projection’ infomorphisms to each of the component classifications. The
construction of the composition of channels is a special case of such a limit.
Dually, there is also a ‘co-limit’ classification with infomorphisms from each of
the component classifications, which contains all of the information common to
different parts of the network.12

2 Information Flow via Probability and via Logic

Shannon’s analysis of information flow in communication channels was inspira-
tion for Dretske’s information-based analysis of knowledge and belief in [6]. This
section will review first Shannon’s and then Dretske’s accounts and show how
the latter can be modelled in the Barwise-Seligman framework, at least in out-
line. I’ll identify three problems for filling in the outline, and show how solutions
to these problems require sensitivity to a type/token ambiguity in discussions of
information flow.13

Information flow in Shannon channels is defined as the reduction of uncer-
tainty, which is inversely related to probability. The more likely an event is to
occur, the less uncertain we are about it occurring. Logarithms are taken to en-
sure that the resulting measure is additive. Thus our uncertainty about an event
of type e is log(1/p(e)), which is just − log p(e).14 In the finite case, uncertainty

12 An account of the category of classifications and infomorphisms is given in [2]. Much
more of the mathematics, in greater detail, can be found in the literature on Chu
spaces, [8,9], and the ‘institutions’ of Goguen and Burstall, in [13] but also in [14],
which explains the connection to the Barwise-Seligman framework. The category
of classifications with infomorphisms is mathematically identical to the category
Chu(2) of binary matrices, which has been used in computer science as a model for
concurrent processes and, in logic, as an algebraic semantics for linear logic.

13 The different but related account of information flow given in [2], is postponed to
Section 6.

14 − log p(e) is also known as the ‘surprisal’ or ‘self-information’ of e.
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about a source is defined as the sum of our uncertainties about the source states,
weighted according to their probability:15

H(S) = −
n∑

i=1

p({si}) log p({si})

This quantity is reduced by observation of the receiver. If we know that an
event of type e has occurred at the receiver then our uncertainty about whether
an event of type e′ has occurred at the source is reduced from − log p(e′) to
− log p(e′|e).16 The new level of uncertainty about the source is

H(S|e) = −
n∑

i=1

p({si}|e) log p({si})

and so the amount by which our uncertainty is reduced is

I(S; e) = H(S)−H(S|e)
The idea that information gain is uncertainty reduction is fundamental to Shan-
non’s analysis but the quantity I(S; e), which measures the reduction of uncer-
tainty brought about by an occurrence of event e, cannot be interpreted as the
information content of e.17 Its value to the qualitative analysis of information
flow is less clear, largely because of the possibility that I(S; e) is negative, in-
dicating information loss. Observation of an event at the receiver may make us
more uncertain about the source, despite telling us something new.18

Dretske proposes to identify the information content of a receiver event, not
by the reduction of uncertainty but simply by the resulting probability of source
events. For information to be carried, this must be sufficiently high. His require-
ment can be stated as follows:

Threshold Condition: For a receiver event of type e to carry the in-
formation that a source event of type e′ has occurred, the conditional
probability p(e′|e) must reach a threshold θ.

15 Uncertainty is also widely known as ‘entropy’ or ‘Shannon entropy’ because of the
formal similarity with Boltzmann’s definition of entropy in thermodynamics.

16 The expression p(e′|e) is an abuse of notation because e′ and e are in different spaces
— that of the source and receiver, respectively – and so must first be mapped into
the connection space. The correct expression is pC(π−1

S (e′)|π−1
R (e)), where πS and

πR are the projection functions from C to S and to R.
17 Shannon’s analysis does not use I(S; e) but rather the expected value of this quantity,

which is the weighted average of I(S|{rj}) for each receiver state rj , written I(S; R),
and known as the ‘mutual information’ of the channel because it is symmetrical:
I(S;R) = I(R;S). Unlike I(S; e), mutual information is non-negative and zero if
and only if S and R are probabilistically independent.

18 For example, if the source has 8 states, one with a very high probability (0.93) and
the others with equal low probability (0.01), then we are fairly sure that it is in
the high-probability state (uncertainty 0.53). But if we learn that it is not in the
high-probability state, we are highly uncertain about which of the remaining states
the source is in (uncertainty 2.81) and so there is a large information loss (of 2.28).
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He argues that the threshold θ can be no less than 1 by considering the possi-
bility of constructing a sequence of channels and events e1, . . . , en such that ei

is deemed to carry the information that ei+1, for each i. The requirement that
p(ei+1|ei) ≥ θ only ensures that p(en|e1) ≥ θn which is arbitrarily small for large
n. Dretske takes this to be unacceptable and proposes the following “regulative
principle:”

“Xerox Principle: If A carries the information that B, and B carries the
information that C, then A carries the information that C.” [6, p.57]

The Xerox Principle requires that information flow works like an ideal photo-
copying machine, in which the quality of the copies is so good that repeatedly
copying copies will never spoil the image. If the Threshold Condition is taken to
be both necessary and sufficient for information flow, the Xerox Principle implies
that θ is either 1 or 0, with the latter value clearly absurd.19 His final definition
of information flow is slightly more complicated:

“Informational content : A signal r carries the information that s is F
= The conditional probability of s’s being F , given r (and k) is 1 (but,
given k alone, less than 1)” [6, p.65]

Here, the Threshold Condition (with θ = 1) is conjoined with a requirement that
excludes information about events that are certain. The parameter k, represents
an agent’s knowledge.20

In the simplest case, this can be taken to be knowledge of the occurrence of
an event and Dretske’s conception of information flow can be modelled using a

19 Caveat: Dretske’s arguments to justify his definition are more wide-ranging than
this simplified summary suggests, and he does not explicitly state the Threshold
Condition, which stands here in lieu of his other arguments.

20 The inclusion of k in the definition raises significant questions about the relation-
ship between the agent’s knowledge and the sense in which ‘probability’ is used by
Dretske. Whereas Shannon’s model is abstract, in the mathematical sense of ap-
plying to whatever satisfies Kolmogorov’s axioms, Dretske needs a more substantial
interpretation of probability if he is to reach his philosophical goal of explaining epis-
temology in ultimately non-epistemic terms. The bearing of an agent’s knowledge
on the determination of channel probabilities would have to be part of such an inter-
pretation. Dretske does not say much about this, and it remains a significant gap in
his project which some – such as Loewer in [15] – take to be a fatal flaw. Ultimately,
I believe that for an information-based epistemology to work, it must be based on
a subjective conception of probability, resulting in a perspectival epistemology, ac-
cording to which we can know about what an agent knows in the same sense as we
can know about the stars and human history, but that there is always the possibility
of shifting to a more (or a less) demanding epistemic perspective. Dretske’s remarks
on skepticism and channel conditions in [6, pp. 111-133] suggest that he would agree
with something like this, although it is difficult to square with the naturalistic tone
of the rest of the book, and quite out of tune with later developments in situation
semantics, which tend to be proudly realist in orientation. A good but highly critical
study of Dretske’s project is Chater’s [16].
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Shannon channel C with projection πS into source S and πR into receiver R, as
follows:21

Information flow in a Shannon channel : Given C, the occurrence of e1 in
R carries the information that e2 has occurred in S, given the knowledge
that k has occurred, iff p(π−1

S (e2)|π−1
R (e1)∩k) = 1 but p(π−1

S (e2)|k) < 1
and p(π−1

R (e1) ∩ k) > 0.22

That C, the channel, is a parameter of the definition is important. In [6, pp. 111-
133], as part of a response to skepticism, Dretske claims that all channels have
prerequisite “channel conditions,” which must be met if information is to flow.
For example, and simplifying a little, when an electrical instrument such as an
ammeter is used to make inferences about current flow in some particular circuit
component, a particular reading of the meter, ‘200’ say, carries the information
that the current flowing through the component is 200mA only if the conditional
probability of a 200mA current given the meter reading is 1 (given k). But this con-
dition presupposes the accuracy of a probabilistic model of the channel connecting
the ammeter and component. If there is a poor connection between the ammeter
and the circuit, or the needle is sticky, or any of a wide variety of other calamities
occurs, the meter reading may not carry information about the current at all.

Dretske claims that factual knowledge is an absolute notion, not admitting
of degrees, and he “traces the absolute character of knowledge to the absolute
character of the information on which it depends” [6, p. 108]. But to retain the
absolute character of information, the conditions on which a channel depends
must be recognised as a parameter of the account. Skeptical doubts about a
specific claim to knowledge can then be diverted as doubts about whether the
conditions of the underlying channels are met.23

21 Slightly less simply, the agent’s knowledge can be represented as a σ-subalgebra of
the probability space, adapting the definition of conditional probability accordingly.
See, for example, Fremlin [12, Vol. 2,§233].

22 It is unclear how to interpret Dretske’s definition in the case that p(π−1
R (e1)∩k) = 0

because the definition of conditional probability presupposes that it doesn’t happen.
I have assumed that in this case, no information flows, although not much depends on
this decision and the theory could easily be developed with the opposite assumption.

23 The possibility of a mismatch between model and reality is one that faces any appli-
cation of mathematics. Every model presupposes conditions under which the model
is expected to work and is excused when those conditions are not met. But a model
suitable for Dretske’s project has to reflect these conditions in the model itself. A Shan-
non channel or even a network of Shannon channels is not sufficient for this purpose.
There must be some explanation within the model of how channels fail to operate
when their conditions are not met. A proper treatment of channel conditions eluded
many attempts to formalise Dretske’s ideas in the theory of situations developed by
Barwise, Perry and others in the 1990s. In the literature, this is known as the problem
of modelling ‘conditional constraints,’ which are regularities between situations that
do not hold universally. The topic is introduced in [17] and [18] gives a more extensive
vision of the role of constraints. [19] gives a good sense of the state of range of questions
and options and [20] argues for the need to model ‘exceptions’ to regularities explicitly
using an approach that is close to the Barwise-Seligman framework of [2].
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Following Information Via Logic instead of Information Via Probability, a
similar model of information can be stated using Tarski channels. In a Tarski
channel, information flows from one language to the other via interpretation
in a common language (the interlingua). Given a message in the language of
L2 we can learn about events as described in L1 by translating between the two
languages. To determine what information is carried by a formula ϕ2 of L2, it can
be translated into L1. The information expressed by formulas ϕ1 of L1 is carried
if it is entailed by a translation of ϕ2. Translation in a Tarski channel occurs using
the interlingua, by interpreting both ϕ2 and ϕ1 into the interlingua and then
seeing whether there is an entailment between them. By analogy with Dretske’s
definition, consideration can be given to the agent’s knowledge, which can be
represented as a set K of interlingua formulas, and the borderline cases in which
ϕ2 is already known or ϕ1 contradicts current knowledge can both be deemed
not to count as cases of information flow. Summarising: in a Tarski channel,
formula ϕ2 of language L2 can be said to carry the information expressed by
formula ϕ1 (given K) if and only if the interlingua translation of ϕ1 is entailed
by K together with the translation of ϕ2, excluding the case that ϕ1 is already
a consequence of K and the case that ϕ2 contradicts K.

The role played by probability in a Shannon channel is now played by entail-
ment, which is defined semantically: ϕ entails ψ iff every structure m of type ϕ
is also of type ψ. The definition of entailment depends only on the satisfaction
relation �, and so can be formulated in the language of classifications alone.

Definition 2.1. A constraint of classification A is a pair of subsets 〈Γ,Δ〉 of
typ(A). Token a ∈ tok(A) violates 〈Γ,Δ〉 iff every type of a is in Γ and no type
of a is in Δ; otherwise, a respects the constraint. The set of constraints respected
by every token of A is a relation 
A between subsets of typ(A), called the ‘theory
of A’: Γ 
A Δ iff every token of A respects 〈Γ,Δ〉.
A constraint in a formal language classification is a sequent, in the sense of
Gentzen’s sequent calculus, and the relation 
L is Gentzen’s entailment rela-
tion, defined semantically in the Tarskian manner: Γ 
L Δ iff every token that
satisfies every formula in Γ also satisfies at least one formula in Δ.24 With this
notation, an information flow in a Tarski channel with interpretations f and g
from languages L1 and L2, each into interlingua L, can also be characterised as
follows:

Information flow in a Tarski channel Formula ϕ2 of language L2 carries
the information expressed by formula ϕ1 of L1 (givenK) iff K, g∧(ϕ2) 
L

f∧(ϕ1) but neither K 
L f∧(ϕ1) nor Kg∧(ϕ2) 
L.

Information flow in Shannon and Tarski channels share a structural similarity.
To make this explicit, I’ll extend Dretske’s definition of information carrying to
apply to sets of events.

24 Logicians’ standard abuse of notation is permitted. We write Γ1, Γ2 �A Δ, α for
Γ1 ∪ Γ2 �A Δ ∪ {α} and �A α, β for �A {α} ∪ {β}.
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Definition 2.2. A constraint 〈Γ,Δ〉 in the classification of a probability space
P is violated by an event type e iff e ⊆ ⋂

Γ − ⋃
Δ; otherwise, e respects the

constraint. The set of constraints respected by every non-null event type is a
relation ∼P between sets of event types, called the ‘Dretske theory of P ’: Γ ∼PΔ
iff every non-null event type respects 〈Γ,Δ〉.
Theorem 2.1. In Shannon channel C with projections πR to R and πS to S, the
occurrence of e2 in R carries the information that e1 has occurred in S, given the
knowledge that events in the set K have also occurred, iff K,π−1

R (e2)∼Pπ
−1
S (e1)

but neither K ∼Pπ
−1
S (e1) nor K,π−1

R (e2)∼P .

Theorem 2.1 shows a clear parallel between information flow in Shannon and
Tarski channels. What is not clear is whether the common structure can be
formulated in the Barwise-Seligman framework and whether any of this can
be adapted to model information flow in concrete event channels, of the kind
required for Dretske’s epistemological project. One feature that distinguishes
information flow in a Tarski channel is that it is defined in terms of its classifica-
tion relation alone and so can be generalised to arbitrary classifications, including
concrete event classifications. So in any channel C with infomorphisms f : C→←A

and g : C→←B, a form of information flow can be defined:

Definition 2.3. Type β of classification B strongly indicates type α of clas-
sification A (given a subset K ⊆ typ(C) ) iff K, g∧(β) 
C f∧(α) but neither
K 
C f∧(α) nor K, g∧(β) 
C .

If information flow in Tarski and Shannon channels were both forms of strong
indication, I would have a unified account of the two kinds of flow within the
Barwise-Seligman framework. The following can thus be seen as a partial success.

Theorem 2.2. In a Tarski channel with interlingua L, formula ϕ2 carries the
information expressed by formula ϕ1 (given K) iff ϕ2 strongly indicates formula
ϕ1 (given K). In a finite Shannon channel C, the occurrence of e carries the
information that e′ occurs in (given k) iff e strongly indicates e′ (given {k}) in
the channel C+, which is obtained from C by removing all states of probability
zero.25

But the theorem leaves a gap containing the infinite Shannon channels, which
include channels built from quite ordinary probability spaces, such as the uniform
distribution on [0, 1]. The strategy of excluding states of probability zero does not
work for such spaces because all states have probability zero. Strong indication
is therefore too strong to account for flow in all Shannon channels. I’ll call this
the Strength Problem.

One response to the Strength Problem is simply to ignore it. Although Dretske’s
account of information flow is framed in the language of probability, he does not
25 The part concerning Tarski channels is obvious. For the second part, it is enough to

notice that the following are equivalent: p(B|A) = 1; p(A− B) = 0; no outcome in
A−B is also in C+; every outcome in C+ respects the constraint 〈A,B〉; A �C+ B.
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explicitly require the resources of continuous mathematics and it may turn out
that his epistemological project can be completed using only finite or countable
probability spaces. I will not be ignoring the problem, which is addressed in Sec-
tions 3 to 5, but I’ll put it aside for now because there are other problems to con-
sider when applying the definition of strong information flow to concrete event
classifications. The tokens of event classifications are actual events whereas the
tokens of formal language classifications and probability spaces represent mere
possibilities. Whereas actual events are expected to respect logical or probabilis-
tic constraints between types, they cannot be used to define them if, as we should
expect, there are unactualised possibilities. I’ll call this the Modality Problem.26

A third but related problem is that information flow in concrete event chan-
nels depends on conditions being just right. Every channel presupposes that its
‘channel conditions’ are met. But actual events can violate these presupposi-
tions. If the telegraph wire is cut, events will continue to occur at the source
and receiver but they will not respect the same constraints as are presupposed
in a model of a working telegraph channel. Strong information flow requires all
connection events to respect all constraints, and so cannot allow these anomalies.
I’ll call this the Context Problem.

A solution to the Modality Problem requires the provision of a suitable re-
lation ⇒ between sets of types in the core of a concrete channel to model the
regularities on which information flow depends. In general, α ⇒ β is not im-
plied by α 
C β because it may have counterexamples that have not actually
occurred or are simply not part of the channel. Likewise, a solution of the Con-
text Problem requires the provision of a suitable set N of tokens to characterise
the contextual connections between particular events. These will be called the
‘normal’ tokens, allowing some tokens to be ‘abnormal’. Only normal tokens are
required to respect ⇒ and so, in general, α ⇒ β does not imply α 
C β. The
desiderata are captured in the following definition:

Definition 2.4. A link 〈N,⇒ 〉 on a classification A consists of a subset N of
tok(A) and a binary relation ⇒ between types of A such that if α⇒ β then every
token of N respects the constraint 〈α, β〉.
To model information flow in a concrete channel, a link on the channel core is
needed. This is shown in Figure 6. In general, the Modality and Strength Prob-
lems prevents defining⇒ in terms of 
C (for different reasons) and the Context
Problem prevents the taking N to be the whole of tok(C). But schematically,
at least, a link on the channel core provides an account of information flow in
concrete event channels:

26 David Lewis’s modal realism can be seen as one solution to the Modality Problem in
which possibilities are taken to be multiple actualities (‘possible worlds’) and counter-
factual constraints are defined by quantifying over them. This solution is not available
for Dretske because the events occurring in a concrete communication channel are lo-
calised. Information flow in a concrete channel depends on contextual factors which
are eliminated when moving to the global perspective of possible worlds. The contrast
is one of the motivations for the term ‘local logic’ in [2], and to be reintroduced below.
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Fig. 6. Information flow in a concrete channel

Information flow relative to a link For a receiver event r to carry infor-
mation about a source event s there must be a (normal) connection event
c that connects them (f∨(c) = r and g∨(c) = s). Then r’s being of type
α carries the information that s is of type β if the type of connection
correlated with α is linked to the type of connection correlated with β,
i.e., f∧(α)⇒ g∧(β).

To illustrate the analysis, I’ll take Dretske’s example of his experience of hear-
ing a ringing doorbell carrying information that there is someone on the porch
pressing the button.27 The receiver consists of Fred’s auditory perceptions when
inside his house, classified into experiences of the sound of a doorbell ringing and
the rest. Source events occur on the porch outside the front door, classified by
whether or not there is a person standing there. Simultaneous events in the two
locations are connected by a chain of events loosely described as ‘the doorbell’
and classified according to various electrical properties such as the state of the
button switch (open or closed) and the battery, whether there is current flowing
through the bell, and so forth. Not every perception is connected to a porch event
by a doorbell event. Fred may have the stereo on too loud or there may be a per-
son on the porch who hasn’t yet pushed the button. For there to be a ‘doorbell
event’ the chain linking the porch event to his perception must be complete. But
this is not to assume that the doorbell itself is working properly. When it is, the
doorbell event is ‘normal’ and so in the set N of normal connections. A linking
relation ⇒ describes the workings of the doorbell, so that, for example, there
being current flowing through the bell is linked to the switch being closed. The
pair 〈N,⇒ 〉 is required to be a link, which implies that every normal doorbell
event respects the constraints of a working doorbell. Abnormal doorbell events
involving shorts or breaks in the electrical circuit are not required to respect
these constraints, although they may do ‘accidentally’ as when a break in the
circuit occurs while the switch is open.

The channel modelled by infomorphisms f and g relates Fred’s perceptual
events to those on the porch via the doorbell events that connect them. Each
27 The doorbell is a running example in [6] and is used to make a number of points.

Here I am using it only as an example of information flow in a concrete event channel.
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such doorbell event is mapped by f∨ and g∨ to the simultaneous perception and
porch event, respectively. At the level of types, f∧ maps his hearing a doorbell
ringing to the current flowing through the bell and the presence of a person on
the porch to the closure of the switch. The infomorphism conditions capture the
requirement that the connecting events are genuine connections. If the stereo
is on too loud or the person on the porch doesn’t know how to use a doorbell,
the simultaneous doorbell event is prevented from being in the set of token
connections by the infomorphism condition of f or of g.28

Information flows between perception and porch event when they are con-
nected by a normal doorbell event and then Fred’s hearing a ringing bell indi-
cates there really is someone at the door. The doorbell constraints, modelled
by ⇒ , include the constraint linking current flowing through the bell (which
is correlated with Fred’s hearing a bell) to the switch being closed (which is
correlated with there being someone on the porch). But information can fail to
flow for a variety of reasons. The doorbell connection may be abnormal (when
there is a short or a circuit break) or there may be no connection between Fred’s
perception and the simultaneous event on the porch (when the stereo is too loud
or the person hasn’t pressed the button). Failure will also occur if the linking
relation is too weak. A reasonable linking relation may include the constraint
linking current not flowing through the bell and the battery being fully charged
to the switch being open but may not include a constraint linking the lack of
current directly to the switch being open. Some condition implying that the
battery isn’t flat is needed. This prevents information flowing from Fred’s not
hearing a bell to their not being a person on the porch. But now suppose that all
normal doorbell events happen to be ones in which the battery is not flat. This
is not enough for information to flow. In this way, the model incorporates an
epistemic element. The doorbell linking relation represents what must be known
about the doorbell channel for information to flow.

To get further insight into the model, it is helpful to introduce terms to
distinguish between what happens at the level of types and tokens.29

Definition 2.5. In a channel C with infomorphisms f : C→←A and g : C→←B,
and a link 〈N,⇒ 〉 on C,

1. for types α ∈ typ(A) and β ∈ typ(B), α indicates β if f∧(α)⇒ g∧(β);
2. for tokens a ∈ tok(A) and b ∈ tok(B), a signals b if there is a connection

c ∈ N such that f∨(c) = a and g∨(c) = b

That one event carries information about another event can now be analysed
into the two components of indicating and signalling. Fred’s hearing a bell
28 The infomorphism conditions also limit how many types can be used to describe

Fred’s perceptions and the events on the porch. To include more discriminating
types, such as those identifying the person on the porch, an extra channel would be
required.

29 The metaphysics of information flow is difficult to pin down in a way directly related
to the notorious confusion between tokens and types in discussions of events. See
[20] for further discussion.
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indicates that someone is at the door (event type) because it is a hearing of
a bell and signals someone being at the door (event token) because it is appro-
priately connected to that particular event on the porch. Both signalling and
indicating must occur for information to flow. That someone is on the porch
may be indicated without there being anyone there and Fred’s perception may
signal someone being at the door without his gaining the information that there
is someone there.30

Both signalling and indicating satisfy Dretske’s Xerox Principle in the follow-
ing sense:

Theorem 2.3. Given two composable channels C1 and C2, tokens a1 (in the
receiver of C1), a2 (in the source of C1, which is also the receiver of C2) and a3

(in the source of C2), and types α1 (in the receiver of C1), α2 (in the source of
C1, which is also the receiver of C2) and α3 (in the source of C2),

1. if a1 signals a2 in C1 and a2 signals a3 in C3 then a1 signals a3 in C1;C2,
2. if α1 indicates α2 in C1 and α2 indicates α3 in C3 then α1 indicates α3 in

C1;C2.

3 Deriving Links from Theories

Section 2’s analysis of information flow in concrete channels is schematic in that
it does not provide a particular solution to the Strength, Modality and Context
Problems. Instead, the concept of a link was introduced as a parameter, whose
value may be determined by further considerations. In this section, more will be
said about how to assign this value using ideas from both Information Via Logic
and Information Via Probability.

In Tarski channels and Shannon channels, the link defining information flow
is constructed from the core of the channel using either 
L or ∼P . To see what
these constructions have in common requires a closer look at the two relations
and what they have in common. Given a set Σ, a relation 
 between subsets of
Σ is a theory on Σ. Given a classification A, a theory on the typ(A) determines
a link 〈N� ,⇒�〉 on A with N� defined to be the set of tokens that respect 
 and
⇒� defined by: α ⇒� β iff α 
 β but neither α 
 nor 
 β. To account for the
role of background knowledge, a theory 
 can be conditioned by a set of types
K to get a new theory 
K defined by Γ 
|K Δ iff Γ,K 
 Δ.

Theorem 3.1. Information flow in a Tarski channel C (given K) is informa-
tion flow relative to the link determined by 
C|K.31 Information flow in a Shan-
non channel C (given K) is information flow relative to the link determined
by ∼C|K.
30 Perhaps the best way of understanding this situation is that the concept of infor-

mation flow involves an ambiguity of mutually presupposing assertions. To say that
event a of type α carries the information that event b is of type β is either to as-
sert that α indicates β presupposing that a signals b, or to assert that a signals b
presupposing that α indicates β.

31 More precisely, ϕ2 carries the information that ϕ1 given K in C iff ϕ2 carries the
information that ϕ1 given K in the link 〈N�C|K ,⇒�C|K 〉.
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Theorem 3.1 shows what is common between information flow in Tarski and
Shannon channels and suggests a generalisation to information flow relative to
the link determined by any theory. The ultimate philosophical objective is to
find such a theory, while avoiding the various problems indicated in the previous
section. But by way of groundwork, more can be done to understand the possible
theories to choose from. In particular, it is useful to try to understand what it is
that theories on Tarski and Shannon channels have in common, some of which
can be characterised axiomatically.

Definition 3.1. A theory 
 on Σ is a Gentzen theory if for all α ∈ Σ and
Γ, Γ ′, Δ,Δ′ ⊆ Σ,

(Identity) α 
 α
(Weakening) if Γ 
 Δ then Γ, Γ ′ 
 Δ,Δ′

(Cut) if Γ 
 α,Δ and Γ, α 
 Δ then Γ 
 Δ
Both 
L and ∼P are easily shown to be Gentzen theories, so a better general-
isation of information flow in Tarski and Shannon channels is to say that both
are information flow relative to links determined by Gentzen theories.

Further progress can be made by finding more properties that theories of the
form 
L and ∼P have in common. To do this, I’ll first define classes of theories
that behave in ways similar to those of these two forms.

Definition 3.2. Given a theory 
1 on Σ1 and a theory 
2 on Σ2, a function
f : Σ1 → Σ2 is an interpretation of 
1 in 
2 if for all Γ,Δ ⊆ Σ1, Γ 
1 Δ iff
f [Γ ] 
2 f [Δ].32 Theory 
1 is interpretable in theory 
2 iff there is an interpre-
tation of 
1 in 
2.

Theory interpretations are discussed in more detail in [2, Ch. 9]. Here they are
needed merely to define the following kinds of theory:

Definition 3.3. A theory is a Tarski theory iff it is interpretable in the theory

L of some formal language classification L. A theory is a Dretske theory iff it
is interpretable in the theory ∼P of some probability space P .

Theorem 3.2. The classes of Gentzen, Tarski, and Dretske theories are closed
under interpretability and conditioning. In other words, any theory that is inter-
pretable in a Gentzen/Tarski/Dretske theory is a Gentzen/Tarski/Dretske and
the result of conditioning a Gentzen/Tarski/Dretske theory is again a Gentzen/-
Tarski/Dretske theory.33

Theorem 3.3. Every Tarski theory and every Dretske theory is a Gentzen
theory.34

32 f [Γ ] is the image of Γ under f , i.e., the set {f(α) |α ∈ Γ}.
33 The proof is straightforward. For conditioning, use conditional probability.
34 It is easy to show that if f is an interpretation of � in a Gentzen theory, then �

is also a Gentzen theory. But ∼P and �L are Gentzen theories and so the theorem
follows.
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Theorem 3.3 is the only positive thing that can be said about inclusion between
these three classes of theories. It can be shown that there are Gentzen theories
that are neither Tarski theories nor Dretske theories, and that there are Tarski
theories that are not Dretske theories and Dretske theories that are not Tarski
theories. There are also theories that are both Dretske theories and Tarski the-
ories. Most of these results are consequences of the following characterisation of
Tarski theories:

Theorem 3.4. Suppose 
 is a Gentzen theory on Σ. The following are
equivalent:35

1. 
 is a Tarski theory
2. 
 is the theory 
A of some classification A
3. 
 satisfies the Partition rule:36

(Partition) if Γ ′ 
 Δ′ for each partition 〈Γ,Δ〉 such that Γ ′ ⊇ Γ and
Δ′ ⊇ Γ then Γ 
 Δ.

The characterisation of Dretske theories is more difficult and will take up much
of the next two sections. First note that there are Dretske theories that are
also Tarski theories. The theory of any finite probability space is an example.37

There are also Dretske theories that do not satisfy Partition (and so are not
Tarski theories). An example is given by uniform Borel measure on [0, 1].38 Some
light is shed on this difference by showing that Partition lies at the far end of a
hierarchy of principles, one for each cardinal κ and one with κ = ∞, involving
no restriction of size:

(κ-Cut Left) If Θ is of cardinality ≤ κ and Γ 
 α,Δ for each α ∈ Θ and
Γ,Θ 
 Δ then Γ 
 Δ
(κ-Cut Right) If Θ is of cardinality ≤ κ and Γ 
 Θ,Δ and Γ, α 
 Δ for each
α ∈ Θ then Γ 
 Δ

If κ1 ≤ κ2 then κ2-Cut implies κ1-Cut so the weakest of these principles is
1-Cut, which is the ordinary Cut principle. The strongest is ∞-Cut but even
this is weaker than Partition, which can be restated in a form that shows its
resemblance to the other principles in the hierarchy:
35 Tarski theories are known as ‘regular theories’ in [2] and the theorem follows from

results proved there, especially Proposition 9.5, p. 119 and Theorem 9.33, p.130.
The construction giving the implication from 3 to 2 is worth noting here because it
will be adapted to situation semantics in Section 4. A Gentzen theory � on Σ that
satisfies Partition can be used to construct a classification A whose tokens are the
partitions 〈Γ, Δ〉 such that Γ � Δ, and with types Σ and 〈Γ, Δ〉 �A α iff α ∈ Γ (or,
equivalently, α �∈ Δ).

36 〈Γ, Δ〉 is a partition of Σ if Γ ∩Δ = ∅ and Γ ∪Δ = Σ.
37 See Theorem 2.2.
38 This is because for every partition 〈Γ, Δ〉, ⋂

Γ −⋃
Δ is either empty or a singleton,

which is has zero probability, and so Γ ∼Δ. Yet [0, 1] �∼[0, 1
2
] and so Partition cannot

hold. In general, ∼P is a Tarski theory iff P is atomic; most useful non-discrete spaces
are not.
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(Global Cut) if Γ,Σ0 
 Δ,Σ1 for each partition 〈Σ0, Σ1〉 of Θ, then Γ 
 Δ.39

The strongest cut principle known to apply to all Dretske theories is ℵ0-Cut,
otherwise known as ‘Countable Cut’.40 But there are clearly Gentzen theories
that don’t satisfy any of the cut principles other than Cut, and these cannot
therefore be either Tarski theories or Dretske theories.

Before going any further in trying to characterise Dretske theories, it is worth
pausing to ask whether the relationship between Gentzen, Tarski and Dretske
theories is duplicated with respect to the links they determine. Surprisingly, the
answer is no. The reason this is possible is that a link can be determined by more
than one theory. For a simple finite example of this, consider the set {2, 3, 6}with
m⇒ n iff m is divisible by n. This can be extended to two Tarski theories 
1 and

2 such that 2, 3 
1 6 but 2, 3 �2 6.41 In fact, the links determined by Dretske
theories are all also determined by Tarski theories, but not conversely. To see
this, some properties of links derived from Dretske theories must be identified.

Theorem 3.5. The link determined by the Dretske theory ∼P has the following
properties:

(Transitivity) if α⇒ β and β ⇒ γ then α⇒ γ
(Quasi-reflexivity) if α⇒ β then α⇒ α and β ⇒ β

And there is a function α �→ ¬α, such that

(Involution) ¬¬α = α
(Contraposition) if α⇒ β then ¬β ⇒ ¬α
(Contingency) α � ¬α

Any relation ⇒ with these properties can be used to construct a classification
A with the same types as are related by ⇒ , tokens of the form 〈α, β〉 for which
α � β, and a classification relation defined by

〈α, β〉 � σ iff either α⇒ σ or ¬β ⇒ σ

39 Taking Θ = Σ gives Partition, the strongest; taking Θ = {α} gives Cut; and size
restrictions on Θ give the others. See [2, 9.1,9.2] for more on these principles, such
as their relationship to compactness.

40 For example, with Borel measure on [0, 1], take Δ = {{x}|x ∈ [0, 1]}, then ∼Δ and
x∼ for each {x} ∈ Δ, but ∅ �∼∅ and so ∼ does not satisfy 2ℵ0 -Cut. This is enough,
assuming the Continuum Hypothesis.

41 For example, the first can be given by Γ �1 Δ iff the greatest common multiple of
the numbers in Γ is divisible by the lowest common divisor of the numbers in Δ.
This corresponds to a classification with two tokens, one of type 2 and the other of
type 3. The other relation can given by Γ �2 Δ iff at least one of the numbers in Γ
is divisible by at least one of the numbers in Δ. This corresponds to a classification
with three tokens: the two previous tokens plus one that is both of type 2 and of
type 3.



214 J. Seligman

The Tarski theory 
A of this classification can then be shown to determine a
link with linking relation ⇒ .42 This proves:

Theorem 3.6. Every link determined by a Dretske theory is also determined by
a Tarski theory.

Only the first two of the listed properties (transitivity and quasi-reflexivity) are
shared by all links determined by Tarski theories. The existence of a ‘negation’
with the remaining properties is a special feature of the link determined by a
Dretske theory of the form ∼P , and is not even present in all links determined
by Dretske theories. Moreover, not all links determined by Tarski theories are
also determined by Dretske theories. A simple counterexample is obtained from
the theory of the classification of [0, 1] by arbitrary subsets.43

4 Modelling Dretske Theories with Situation Semantics

Theorem 3.4 gives a complete characterisation of Tarski theories, both axiomat-
ically, and in terms of the Barwise-Seligman framework. Tarski theories are just
the theories of classifications. The picture of Dretske theories is much more
sketchy. Axiomatically, the previous section shows that they are Gentzen theo-
ries satisfying Countable Cut, but no more powerful cut principles. They are also
known (by definition) to be interpretable in theories of the form ∼P , but this
falls short of a characterisation in the Barwise-Seligman framework, because it
involves reference to probability measures. The aim of this section and the next
is to understand Dretske theories from the perspective of Information Via Logic,
to the fullest extent possible. This section explores (non-probabilistic) models
for Dretske theories and the next examines various axioms.

The theory of any classification is a Tarski theory and not all Dretske theories
are Tarski theories. So models of Dretske theories will have to be found elsewhere.
I’ll start by showing how to model any Gentzen theory (because all Dretske
theories are Gentzen theories) and then look for properties of Dretske theories
that narrow down the field. The inspiration for classifications and their theories
comes from semantics and logic. The inspiration for these new models again
comes from semantics, but this time from situation semantics, principally [17]
and [21].
42 It must be shown that α⇒ β iff α �A β and neither α �A nor �A β. There is no type

β for which �A β so this part can be ignored. Also note that (�) α �A iff α � α.
Now if α ⇒ β then α ⇒ α by quasi-reflexivity, and so α �A. And for any token
〈α1, β1〉 of type α, either α1 ⇒ α or ¬β1 ⇒ α, so by transitivity, either α1 ⇒ β or
¬β1 ⇒ β, and so 〈α1, β1〉 is also of type β. Thus α �A β, which is enough to show
that α is linked to β by the link determined by �A. Conversely, if α � β then 〈α, β〉
is a token of A so by (�), either α �A or α⇒ α and so 〈α, β〉 �A α. But in the latter
case, 〈α, β〉 �A β because neither α ⇒ β (assumption) nor ¬β ⇒ β (contingency).
Thus either α �A or α �A β, and in either case, α is not linked to β by in the link
determined by �A.

43 There is no measure p with the required property that p(β − α) = 0 iff α ⊆ β. For
a counterexample, just pick α and β to differ by any nonempty set of measure zero.
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A specification of the vocabulary of a formal language L provides a definition
of what counts as a structure for evaluating the truth of sentences of L. If for
example, L has just a unary predicate letter P and a binary relation symbol R,
an L-structure is a triple 〈m,Pm,Rm〉 of a set m together with a subset Pm ⊆ m
and a subset Rm ⊆ m2. The same information can be represented using ‘infons’.
An L-infon is a triple 〈〈r,a, p〉〉 consisting of a predicate symbol r (in this case
‘P’ or ‘R’) a sequence a whose length depends on r (in this case, 1 if r is ‘P’
and 2 if r is ‘R’) and p, known as a ‘polarity’, which is either ‘+’ or ‘−’. An
L-situation is a set of L-infons. The L-structure m can be represented by the
following situation, sm:

〈〈P, a,+〉〉 for each a ∈ Pm

〈〈P, a,−〉〉 for each a ∈ m− Pm

〈〈R, 〈a, b〉,+〉〉 for each 〈a, b〉 ∈ Rm

〈〈R, 〈a, b〉,−〉〉 for each 〈a, b〉 ∈ m2 − Rm

A definition of satisfaction for formulas of L can be given in terms of L-situations
instead of L-structures, but this requires a separation of the satisfaction rela-
tion � into a positive �+ and a negative �− part. For atomic formulas (with
assignment function g) the definition is as follows:

s �+ Px iff 〈〈P, g(x),+〉〉 ∈ s
s �− Px iff 〈〈P, g(x),−〉〉 ∈ s
s �+ Rxy iff 〈〈R, 〈g(x), g(y)〉,+〉〉 ∈ s
s �− Rxy iff 〈〈R, 〈g(x), g(y)〉,−〉〉 ∈ s

The relations �+ and �− are extended to the rest of the language according to
the rules of a system of partial logic, of which there are a number of candidates.44

But if sm is the situation representing structure m, then the definitions agree:

m � ϕ iff sm �+ ϕ iff sm �
− ϕ

Of course, there are many situations that do not represent L-structures. Some of
these are incomplete, in that for some ϕ neither s �+ ϕ nor s �− ϕ and some are
incoherent, in that for some ϕ both s �+ ϕ and s �− ϕ. A relation of entailment
is defined by isolating a set S of situations that are sufficiently well-behaved.45

Again, there are a number of choices here but the definition I’ll use is as follows:

Γ 
S Δ iff there is no situation s ∈ S such that s �+ ϕ for all ϕ ∈ Γ
and s �− ϕ for all ϕ ∈ Δ

If S0 is the set of situations of the form sm for some L-structure m then this
agrees with the ordinary Tarskian entailment on the classification of situations
in S by sentences that they satisfy. But if S0 contains an incomplete situation,

44 For example, Kleene’s strong 3-valued logic. The details are of interest to situation
semantics but are of minor concern here. All that matters is the correspondence
shown.

45 Asbefore, I’m making the simplifying assumption that the class of L-structures is a set.



216 J. Seligman

there will be a ϕ for which �S ϕ,¬ϕ, and if it contains an incoherent situation,
there will be a ϕ for which ϕ,¬ϕ �S . Situations are therefore suitable to model
semantic theories of truth-value gaps and gluts.46

A problem arises in saying what it is for one situation to be part of another.
As sets of infons, situations are naturally ordered by ⊆ but this has some unfor-
tunate properties. Say that a formula ϕ is ‘persistent’ if s �+ ϕ implies s′ �+ ϕ
and s �− ϕ implies s′ �− ϕ for all s ⊆ s′. In a first-order language with standard
semantics, atomic formulas and their Boolean combinations are all persistent,
but universally quantified formulas are problematic because a situation does not
contain the information that there are no more elements in its domain. Conse-
quently, the semantic theory of quantification has a choice: either assume that
the domain of s is just the set of elements that occur in infons in s or allow the
possibility that there may be more. The second option implies that universally
quantified formulas are never +-vely satisfied (and existentially quantified formu-
las are never −-vely satisfied) whereas the first option makes quantified formulas
non-persistent. A lack of persistence is an indication that the ⊆ ordering is not
really representing an information ordering.

This can be redressed by adding such an ordering to the model, and using
that ordering in the semantic theory. An L-situation order is a partial order
(reflexive, transitive and antisymmetric relation) � on a set S together with an
L-situation s∗ for each element s of S such that for all s1, s2 in S, if s1 � s2
then s∗1 ⊆ s∗2. Now define s �+ ϕ iff there is no s′ such that s � s′ and s′∗ �− ϕ.
Likewise s �− ϕ iff there is no s′ such that s � s′ and s′∗ �+ ϕ.47 The new
model ensures that all formulas are persistent. It allows a distinction between
a complete situation sm with a closed domain (so nothing above it in the �
ordering) and a situation with exactly the same infons but the possibility that
the domain can be enlarged.

Just as ordinary Tarskian semantics was generalised to give classifications and
their regular entailment relations, so situation semantics can be generalised to
provide a representation of Dretske theories.

Definition 4.1. A situation structure S consists of binary relations �+
S and �−

S ,
each between set tok(S) and typ(S), together with a partial order �S on tok(S)
such that

(Persistence) for s1, s2 ∈ tok(S) if s1 �S s2 then for all σ ∈ typ(S), if
s1 �+

S σ then s2 �+
S σ and if s1 �−

S σ then s2 �−
S σ

S is extensional if the converse of Persistence also holds, and in this case, �
is definable from �+

S and �−
S . Tokens of S are referred to as ‘situations’ and

types as ‘infons’. A situation s determines σ if either s �+
S σ or s �−

S σ, and

46 In the literature on situation semantics, situations are typically required to be coher-
ent, but the literature on relevant and paraconsistent logic makes use of incoherent
situation.

47 Essentially, this is how Kripke models for intuitionistic predicate logic are
constructed.
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over-determines σ if both s �+
S σ or s �−

S σ. It is coherent if it does not over-
determine any infon. The following three conditions are of interest:

(Coherence) Every situation in S is coherent.
(Completeness) Every situation in S determines every infon.
(No Mystery) For every situation s in S and every infon σ there is a

situation s′ that determines σ and s � s′.
The situation structure determined by an L-situation order satisfies No Mystery
if it satisfies Coherence, so with the standard assumption of Coherence in situa-
tion semantics, No Mystery is implied. Completeness, however, is only satisfied
in the case that all situations are equivalent to ordinary L-structures. The clos-
est generalisation of situation semantics is therefore to the following situation
structures:

Definition 4.2. A Barwise structure is a situation structure satisfying Coher-
ence and No Mystery.

Now the situation semantic definition of entailment can be carried over directly
to the more general setting of situation structures:

Γ 
S Δ iff there is no situation s ∈ S such that s �+ ϕ for all ϕ ∈ Γ
and s �− ϕ for all ϕ ∈ Δ

A situation structure satisfying Coherence and Completeness is essentially just
a classification because s �− σ iff s �

+ σ, and in this case 
S agrees with the
Tarskian definition. So every Tarski theory is the theory of a Barwise struc-
ture. More generally, there is a correspondence between conditions on situation
structures and conditions on their theories:

Theorem 4.1. For any situation structure S,

1. 
S satisfies Weakening
2. 
S satisfies Identity iff S satisfies Coherence
3. 
S satisfies Cut if S satisfies No Mystery
4. 
S satisfies No Mystery if S is extensional and satisfies Cut.48

The theorem gets us almost half way to the following characterisation of Barwise
structures.

Theorem 4.2. A theory is a Gentzen theory iff it is the theory of a Barwise
structure.

48 The proof is straightforward but as an illustration of the method consider the case of
showing that Cut follows from No Mystery. Suppose that Γ �S Δ, σ and σ, Γ �S Δ.
If Γ �S Δ then there is a situation s ∈ S such that s �+ ϕ for all ϕ ∈ Γ and
s �− ϕ for all ϕ ∈ Δ. By No Mystery, there is a situation s′ that determines σ and
s � s′. Then by Persistence, s′ �+ ϕ for all ϕ ∈ Γ and s′ �− ϕ for all ϕ ∈ Δ, which
contradicts either Γ �S Δ, σ or σ, Γ �S Δ.
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Proof. That theory of a Barwise structure is a Gentzen theory is given by The-
orem 4.1. In the other direction, the construction is similar to the one used for
Theorem 3.6. Define a Barwise structure S to have as infons the elements of
X and as situations the pairs 〈Γ,Δ〉 of subsets of X for which Γ � Δ. Define
〈Γ,Δ〉 �+ α iff α ∈ Γ and 〈Γ,Δ〉 �− α iff α ∈ Δ. Finally, let 〈Γ1, Δ1〉 � 〈Γ2, Δ2〉
iff Γ1 ⊆ Γ2 and Δ1 ⊆ Δ2. Weakening ensures that Γ 
 Δ iff Γ 
S Δ and Identity
and Cut ensure that S satisfies Coherence and No Mystery (by Theorem 4.1,
since the constructed situation structure is extensional). ��
Now one of the ways in which Dretske theories are distinguished from other
Gentzen theories is by satisfying Countable Cut. This, and the whole hierarchy
of cut principles, corresponds to a suitable generalisation of the No Mystery
condition on Barwise structure:

(No κ-Mystery, +ve) For every situation s in S and every set Γ of infons of
cardinality ≤ κ, there is a situation s′ such that s � s′ and either s′ �+ σ
for all σ ∈ Γ or s′ �− σ for some σ ∈ Γ .
(No κ-Mystery, -ve) For every situation s in S and every set Γ of infons of
cardinality ≤ κ, there is a situation s′ such that s � s′ and either s′ �− σ
for all σ ∈ Γ or s′ �+ σ for some σ ∈ Γ .

An easy adaption of the argument for Cut and No Mystery shows the corre-
spondence between κ-Cut and No κ-Mystery. It follows that the extensional
Barwise structures representing Dretske theories also satisfy the principle of No
Countable Mystery.

5 Characterising Dretske with Questions and Coherence

To progress further, two new concepts are required.49

The first new concept comes from a generalisation of structures already im-
plicit in Shannon’s understanding of information flow. Recall that uncertainty
of a probability space was defined for discrete spaces. The standard approach
to extending this concept to non-discrete spaces applied only in those cases in
which a probability density function can be defined. It does not depend on gen-
eral concepts from measure theory or algebra. Another approach is to look at
ways of reducing the space to a discrete space.

Suppose that P is a non-discrete space and P0 is a discrete space of outcomes
ω1, ω2, . . ., related to P by a continuous, measure-preserving transformation, f .
The uncertainty H(P0) of the resulting space P0 can be used to measure of
our uncertainty about P . This quantity depends on which the transformation
applied, and so is not an invariant of P , but it is an invariant of P of certain
49 The new concepts arose from close consideration of relevant results in algebraic

measure theory, especially Kelley’s seminal paper, [22], and Fremlin’s treatment of
Kelley’s work in [12]. Despite the purely technical origin of these concepts, their ap-
plication to information theory is well-motivated and yields a surprising connection
between Information Flow Via Probability and Information Flow Via Logic.
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question about P : which of the events f−1[ωn] occurred? This question, and our
uncertainty about its answer depends only on the event types f−1[ωn] and P , not
on f . In this way Shannon’s concept of uncertainty can be applied straightfor-
wardly to any scenario in which a question is posed about a stochastic system, so
long as the question admits of at most a countable number of mutually exclusive
and exhaustive answers.50

The conditions of exhaustivity and mutual disjointness, imposed by the struc-
ture of the function f , can be relaxed a bit. It is only necessary that the proba-
bility of getting exactly one answer is 1. More precisely, say that a question in a
probability space is a countable set Q of non-null events, called ‘answers’, such
that Ω − ⋃

Q and the intersection of any two distinct answers is negligible.51

The uncertainty of Q is defined by

H(Q) = −
∑

e∈Q

p(e) log p(e)

The uncertainty of a question with just one answer is zero, and the uncertainty
of a question of size 2, such as whether a particular event e occurs, is at most
1, with this maximum value achieved only for events of probability 1

2 . More
generally, question Q with #(Q) = n has a maximum uncertainty of log n when
each answer has probability 1

n .52 A countably infinite question (#(Q) = ℵ0)
with probabilities 1

2n has uncertainty 2.
Shannon’s model of communication between a finite source and receiver can

now be framed in arbitrary probability spaces, as a relationship between two
questions. The conditional uncertainty of question Q2 given question Q1 is de-
fined by

H(Q2|Q1) = −
∑

e1∈Q1

∑

e2∈Q2

p(e2|e1) log p(e2|e1)

This is the expected uncertainty aboutQ2 given that Q1 is answered. The mutual
information I(Q1;Q2) is calculated as H(Q2)−H(Q2|Q1), the amount by which
the uncertainty of Q1 is expected to be reduced. It is symmetric: I(Q1;Q2) =
I(Q2;Q1).

Now suppose 
 is the Dretske theory given by an interpretation f into a
probability space. Then f [Q] is a question iff the following conditions all hold:

(Exhaustive Answers) 
 Q
(Coherent Answers) α � for each α in Q
(Incompatible Answers) α1, α2 � for each distinct pair α1, α2 in Q

50 Any set Q of mutually disjoint and exhaustive event types in P , determines a con-
tinuous, measure-preserving transformation f from P to a discrete space P0 such
that Q is the set of inverse-images of the outcomes of P0.

51 A subset of Ω is null if it has probability zero; it is negligible if it is contained in a
null set. In complete measures, all negligible sets are null, but not all useful measures
are complete (although they can be completed).

52 #(Q) is the cardinality of Q, i.e., its number of answers.
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These three conditions make no mention of probability or countability, because
all the probability required is already packaged into the definition of 
 and every
set Q satisfying these conditions is countable. This motivates a purely formal
definition of questions for theories in general and a specific property of Dretske
theories.

Definition 5.1. A question is a set of types with Exhaustive, Coherent, and
Incompatible Answers.

Theorem 5.1. Every question in a Dretske theory is countable.53

Questions can also be understood semantically, using classifications (for Tarski
theories) and Barwise structures (for Gentzen theories). For a classification, A,
say a function f from tokens to types is an ‘experiment’ if maps each token a to
an ‘observed’ type f(a), i.e., a � f(a). Then a set Q is a question in the Tarski
theory 
A iff Q is the range of some experiment in A. In a Barwise structure, S,
say that a situation s ‘answers’ Q with α if s �+ α for some α ∈ Q and s �− β
for all β �= α ∈ Q. A set Q is a question in the theory of S iff each α in Q
is resolved by some situation and each situation can be extended to resolve Q.
Although the concept of mutual information has no direct correlate for theories
other than Dretske theories, it can be approximated in various useful ways. First,
note that I(Q1;Q2) is maximal (for a given Q2) when H(f [Q2]|f [Q1]) = 0, and
in the Dretske theory given by interpretation f ,

H(f [Q2]|f [Q1]) = 0 iff for each α1 ∈ Q1 there is an α2 ∈ Q2 such that
α1 
 α2.

So here is another invariant of Dretske theories: the maximal information about
one question that can be obtained by answering another.

Definition 5.2. Question Q1 is a strong refinement of question Q2 if Q2 is
non-trivial, i.e., #(Q2) > 1, and for every answer α1 in Q1 there is an α2 in
Q2 such that α1 
 α2.54

The above remarks establish that Q1 is a strong refinement of Q2 iff I(Q;Q2) is
maximal when Q = Q1. The Dretske theory of a probability space, has various
nice properties that can be expressed using the concept of strong refinement.

Theorem 5.2. Given a probability space, P ,

53 The proof of countability is easy. Let Qn = {α ∈ Q | p(fα) > 1
n
}. The event types

in f [Qn] are pairwise incompatible, so the probability of its union is
∑

α∈Qn
p(fα)

which is greater than #(Qn)/n and less than 1; and so Qn is finite. As the countable
union of finite sets, Q is therefore countable. Questions in Tarski theories and other
non-Dretske Gentzen theories are not all countable.

54 If #(Q2) = 1 then it already has an answer.
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1. Every non-null event type e is an answer to some question of ∼P .55
2. For any two questions of ∼P , there is a question that is a strong refinement

of both.56
3. If Q =

⋃
n∈N

Qn is question of ∼P with the Qn disjoint, then there is a
question {en}n∈N strongly refined by Q in such a way that e∼P en for each
e ∈ Qn.57

Despite part 2 of Theorem 5.2, there may not be a strong refinement of an
infinite set of questions, even if that set is countable, and even if each question
in the set is finite.58 One diagnosis is that H(Q2|Q1) = 0 is too demanding. A
better notion of refinement is obtained by staying closer to Shannon’s definition
of mutual information, which allows a question to make some progress toward
answering another question without guaranteeing to provide a definite answer in
all cases. Define the restriction Q|β of question Q to β to be the set of answers
to Q remaining after discovering β, i.e.,

Q|β = {α ∈ Q |α, β �}
Now question Q1 is guaranteed to make progress by reducing the size of Q2 if
each answer α to Q1 results restricts Q2 to a smaller question Q2|α. 59

Definition 5.3. Question Q1 is a refinement of question Q2 if for every answer
α to Q1, #(Q2|α) < #(Q2).

Refinements are easier to achieve than strong refinements, and this is reflected
in the following result:

Theorem 5.3. For every countable set K of non-trivial questions in a proba-
bility space, there is a question Q that refines every question in K.60

55 Specifically, {e, Ω − e} if �∼P e, and the trivial question {e} if ∼P e.
56 This fact relies on the countability of questions in a Dretske theory. To see why, let

Q1 ∩ Q2 = {e1 ∩ e2 | e1 ∈ Q1, e2 ∈ Q2} and let Q = {e ∈ Q1 ∩Q2 | e �∼P }. Now for
each e1 ∈ Q1 and e2 ∈ Q2, e1, e2 ∼P e1 ∩ e2 so e1, e2 ∼P Q1 ∩Q2 by Weakening. But
for each e ∈ Q1 ∩Q2 −Q, e ∼P , so by Countable Cut e1, e2 ∼P Q for each e1 ∈ Q1

and e2 ∈ Q2. Now ∼P Q1 and ∼P Q2 so by two more application of Countable Cut,
∼P Q. The argument does not work for Gentzen theories, which conform only to
the ordinary finite Cut. It also doesn’t work for Tarski theories, which can have
uncountable questions, but which also have stronger versions of Cut. The existence
of a finite conjunction is also required.

57 Take en =
⋃

Qn.
58 Consider for example, a random variable X marking the position of a point on the

interval [0, 1] with uniform probability, and measure the position of X with a series
of rulers of ever greater precision. The nth ruler has marks at 1

2n , . . . , 2n−1
2n . There

is no refinement of the sequence of questions, “between which two marks of the nth
ruler is X?” The answers to any putative refinement would have to be of the form
“X=r” so as to inform us of the answers to all the questions, but p(X = r) = 0.

59 Q|α is not a question in the theory � (unless it is equal to Q, in which case no
progress is made) but it is a question in the theory �|β, which is also a Dretske
theory, by Theorem 3.2.

60 The proof of Theorem 5.3 is in the Appendix.
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A quick application of Theorem 5.3 shows that the concept of refinement can be
extended to sets that are not questions, in the following sense:

Corollary 5.1. Given any countable set Γ of questions in a probability space
P , there is a question Q such that for every e ∈ Γ and every answer e′ in Q,
either e′ ∼P e or e′, e∼P .61

Theorem 5.3 gives a distinctive and epistemologically significant property of
theories of the form ∼P that is not shared by all Gentzen theories, nor by all
Tarski theories. Yet, for current purposes, it is less than ideal because it applies
only to those Dretske theories of the form ∼P not to all Dretske theories.

The second new concept for the study of Dretske theories is coherence. The
reliability of information sources can be bounded by their coherence. Suppose
that a source provides answers to questions in a language L, whose logic is given
by a theory 
. If the source is 100% reliable, then any set of Γ of answers
obtained from the source must at least be coherent, i.e., Γ �. A newspaper with
the editorial line ‘we only print the truth’ fails to meet its own standards if there
is any set Γ of printed sentences for which Γ 
. But an editorial claim that ‘most
of what we print is true’ is less easily undermined. It must be shown that there
is a set Γ of printed sentences for which there is no coherent subset containing a
majority of the sentences. If the paper passes the test then I’ll say that Γ has a
‘coherence bound’ of 50%. More generally, the bounds on coherence are defined
as follows:

Definition 5.4. δ is a coherence bound of a finite set Γ if there is a coherent
subset Γ0 of Γ for which #(Γ0)/#(Γ ) ≥ δ.
For example, Γ has a coherence bound of 90% if it has a coherent subset con-
taining 90% of the elements of Γ . Information sources providing an indefinitely
large amount of information, such as daily newspaper presumed to continuation
publication into the future, can be represented by infinite sets, whose coherence
can be bounded as follows:

Definition 5.5. δ is a uniform coherence bound of a set Γ if δ is a coherence
bound of every finite subset of Γ .

For a newspaper to have a uniform coherence bound of 90%, any sample of
sentences taken from (possibly different editions of) the paper must have a co-
herence bound of 90%; that is, it must be possible to remove no more than 10%
of the sample and obtain a coherent set.62

In a Dretske theory, coherence bounds are closely related to probability.
61 To prove this, let K be the set of questions {e, Ω−e} for each e ∈ Γ . The Theorem 5.3

gives the question Q which refines each of the questions in K. Since each has size 2,
Q must be a strong refinement, and so either e′ ∼P e or e′ ∼P Ω− e (and so e′, e∼P )
for each e′ ∈ Q.

62 Every uniform coherence bound of a finite set is a coherence bound but not all
coherence bounds are uniform. For example, using propositional logic, {p, q,¬p} has
a coherence bound of 2/3 but this is not a uniform coherence bound because the
largest coherence bound of the subset {p,¬p} is only 1

2
.
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Theorem 5.4. If Γ is a set of events, each of which has probability at least δ,
then δ is a uniform coherence bound on Γ .63

The existence of a probability measure allows us to compare events that are
unrelated logically, according to how likely they are to occur. This extra-logical
structure casts a shadow on the theories defined on a probability space, by
allowing partitions of the set of all events into classes ranked by their probability.
For example, take Σn = {e ∈ Σ | 1

n+1 < p(e) ≤ 1
n}, together with Σ∞ the set

of null events. More generally, coherence bounds are of little use in comparing
individual events, but they can be used to describe the possibility of dividing
the set of all events into ranked classes.

Definition 5.6. A theory is has uniform coherence ranks if there is a partition
of the set of all types into classes Σ1, . . . , Σ∞ such that Σn has uniform coherence
bound of 1

n and all types in Σ∞ are incoherent.

Then Theorem 5.4 can be applied to show:

Corollary 5.2. The Dretske theory of a probability space has uniform coherence
ranks.

The condition given by Corollary 5.2 is the last in a series of conditions satisfied
by Dretske theories of probability spaces that are jointly sufficient to characterise
the class, up to equivalence of theories.64

Theorem 5.5. A Gentzen theory with the following properties is equivalent to
the Dretske theory of a probability space:

1. For countable Σ,
if Γ 
 e,Δ for each e ∈ Σ and Γ,Σ 
 Δ then Γ 
 Δ
if Γ 
 Σ,Δ and Γ, e 
 Δ for each e ∈ Σ then Γ 
 Δ

2. Every question is countable.
3. Every coherent event is an answer to some question.
4. If Q =

⋃
n∈N

Qn is question with the Qn disjoint, then there is a question
{αn}n∈N strongly refined by Q in such a way that α 
 αn for each α ∈ Qn.

5. For every countable set K of non-trivial questions, there is a question Q that
refines every question in K. (And if K is finite or consists of finite questions,
then Q strongly refines every question in K.)

6. The theory has uniform coherence ranks.

Theorem 5.5, which is proved in the Appendix, gives sufficient but not necessary
conditions for a Barwise theory to be a Dretske theory. Conditions 1,2 and 6 are
necessary but those that require the existence of particular questions (conditions
3,4 and 5) are not. A precise characterisation of Dretske theories is therefore still
an open problem. Moreover, recent work in algebraic measure theory (especially
[23] and [24]) suggest alternative approaches.
63 The proof of Theorem 5.4 is in the Appendix.
64 Theories �1 and �2 are equivalent if there are functions f and g such that α �1 gβ

iff fα �2 β and gα �1 β iff α �2 fβ. Essentially, this amounts to an isomorphism
between the quotients of the two theories under equivalence (e � e′ and e′ � e.
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6 Logics on the Move

In this final section, I’ll return to the model of information flow introduced in Sec-
tion 2 and reflect on an alternative approach used in [2]. The general conditions for
information to flow in a concrete channel were depicted in Figure 6, repeated here:
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Dretske’s definition of information flow was separated into two components.
At the level of types, a receiver event type α ‘indicates’ a source event type
β if f∧(α) ⇒ g∧(β), and at the level of tokens, a particular receiver event r
‘signals’ a source event s if there is a ‘normal’ connection event c such that
f∨(c) = r and g∨(c) = s. This provides the closest analog to Dretske’s account
of information flow within the Barwise-Seligman framework, although it differs
from the account offered in [2] in several respects. Firstly, the linking relation
⇒ was distinguished from the theory that determines it, in order to allow
comparison with Dretske’s definition of information flow, which deems that what
is logically necessary or already known is not information. This is a minor point.
Secondly, the concept of a link 〈N,⇒ 〉 was introduced to provide an umbrella for
different ways of deriving the linking relation, especially from theories that are
not Tarski theories such as theories of continuous probability spaces and theories
arising from situation semantics (such as the theories of Barwise structures). And
lastly, the account of information flow in [2] has a quite different view of what
happens when information flows. It is this point that I will now address.

The Tarski theory 
A of a classification A represents information about the
structure of A by specifying all the constraints respected by tokens of a. But
this is not all the information that can be had about A. Unless A is completely
uniform (all tokens having the same types), there will be constraints that are
satisfied by some tokens but not by others. This information can be represented
by restricting attention to a subset of ‘normal’ tokens.

Definition 6.1. Given a classification A, a local (Tarski) logic L on A is a
pair 〈NL,
L〉 consisting of a set NL ⊆ tok(A) of tokens, all of which respect the
constraints of the (Tarski) theory 
L. 65

The set NL of normal tokens represents the part of the the classification that the
logic is ‘about’–its focus. The theory 
L represents patterns in the distribution
65 The ‘local logic’ of [2, p. 150] is a local Tarski logic, and I’ll continue to use ‘local

logic’ to refer to local Tarski logics throughout this section. The generalisation to local
Dretske logics and local Gentzen logics, is an interesting project for future research.
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of types among these tokens. Some terminology for describing local logics carries
over directly from formal logic classifications, in which 
L is a deductively pre-
sented theory and NL is a class of structures under consideration. A local logic
is complete if all constraints satisfied by the normal tokens are in the theory
(
NL⊆
L), and is co-complete if every token that satisfies all the constraints of
the theory is normal (
L⊆
NL).66 It is sound if every token is normal (implying

L⊆
A), and so sound logics are also co-complete.

In [2], information flow is modelled not as a relation between individual types
(or tokens) in the source and receiver, but as a movement of local logics around a
network of classifications. The logics represent information content that is local to
a particular classification in the network but in a way that is portable: the effect of
acquiring that informationonother classifications in thenetwork canbe calculated.

Local logics on a classification represent information about the regularities
within it. But the information may be partial in two respects. First, the set
of normal tokens may satisfy constraints not represented in the theory. A logic
is complete if this doesn’t happen. Second, the set of normal tokens may be
smaller or larger. A complete logic L with just one normal token a represents
total information about a, so that a � α iff 
L α. But such a logic provides
no information about other tokens. At the other extreme, a logic that is both
sound and complete has information about all the tokens but only with respect
to what they have in common. Except in trivial cases, there is no local logic that
allows the classification relation to be fully recovered. An ordering relation on
local logics that conforms to these remarks about partiality is the following:

Definition 6.2. If L1 and L2 are local logics on the same classification then L1

is contained in L2, written L1 ≤ L2, iff NL1 ⊆ NL2 and for all Γ,Δ, if Γ 
L1 Δ
then Γ 
L2 Δ.67

A local logic is maximal among local logics in the ≤ order iff it is both complete
and co-complete. In general, there are many maximal local logics but only one for
each set of normal tokens. A maximal local logic L represents all the regularities
exhibited by tokens in the set NL. Each set of logics has a meet (greatest lower
bound) but has a join (least upper bound) only if it is bounded above.68 The

66 The distinction between complete logics that are co-complete and those that are not
is important in modal logic. For example, if K is the class of transitive and converse
well-founded frames and �L is the modal logic generated by (�(�ϕ ≡ ϕ) ⊃ �ϕ),
then 〈K,�L〉 is co-complete but not complete; by contrast, if �GL is the modal
logic generated by (�(�ϕ ⊃ ϕ) ⊃ �ϕ), then 〈K,�GL〉 is both co-complete and
complete. Incomplete modal logics were first discovered in the 1970s. Until then, it
was implicitly assumed that co-complete logics were also complete.

67 The order ≤ is not the same as the order � defined in [2] (p. 158), in which the
inclusion between the sets of normal tokens is reversed.

68 Given a set S of logics,
∧

S has normal tokens
⋂{NL |L ∈ S} and Γ �Δ iff Γ �L Δ

for each L ∈ S, and
∨

S has normal tokens
⋃{NL |L ∈ S} and Γ �Δ iff Γ �L Δ

for some L ∈ S. But
∨

S is a local logic only if S is bounded above by a local logic,
which is the case iff every token that is normal in at least one of the logics satisfies
the constraints of all of the logics.
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existence of meets is very useful. For example, it shows that for any link 〈N,⇒ 〉,
there is a smallest local logic L such that N ⊆ NL and α ⇒ β implies α 
L β.
Call this the local logic extension of the link. Also any logic L can be focused on
a set X of tokens to give a logic L|X , which is the largest local logic contained
in L whose normal tokens are all in X .69 L|X represents the part of L that is
about X , and this provides a way of combining logics even when they lack a
join. For any two logics, L1 and L2, the logics L1|NL2 and L2|NL1 always have
an upper bound and so can be joined. This is called the merge of L1 and L2,
written L1 � L2.70

Now for any infomorphism f : A→←B, say that a logic L1 on A is f -equivalent
to logic L2 on B if they agree on what counts as a normal token and what is
entailed by what; that is,

1. b ∈ NL2 iff f∨(b) ∈ NL1

2. Γ 
L1 Δ iff f∧[Γ ] 
L1 f
∧[Δ]

The basic idea for moving local logics across infomorphisms is to move a logic
from one classification to an equivalent logic in the other classification, but there
may be more than one equivalent logic and so the smallest is selected.71

Definition 6.3. Suppose f : A→←B is an infomorphism. The image f [L] of local
logic L on A is the smallest f -equivalent local logic on B. The inverse image
69 I choose these operations to indicate a connection with Kohlas’s information algebra

in [25] and this volume. For any local logic, L, the set of local logics contained in
L form an information algebra whose domain is the powerset of tok(L) (ordered
by ⊆), with the focusing operation just defined, and with monoid operation given
by join. Mathematically, the construction is not particularly interesting. It is of a
very general kind, in which a lattice can be regarded as an information algebra
with itself as domain, using meet as focusing. (To make this work precisely, a set
X of tokens must be represented by the complete local logic with X as its set of
normal tokens.) Nonetheless, the interpretation of normal tokens as being what a
logic is ‘about’ coincides well with the motivating intuitions of information algebra.
Another example of this kind can be obtained by ‘focusing’ a question Q to Q|e.
The construction cannot be extended to all local logics on a classification because
only directed joins exist.

70 L1�L2 has normal tokens NL1∩NL2 and a theory that is the smallest regular theory
containing both �L1 and �L2 . It is the join in the � ordering, and also defines an
information algebra, with focusing, as above.

71 There may be more than one f -equivalent logic when either A has too many tokens

or B has too many types. For example, if f : A→←B is given by f∨(b) = b and

f∧(α) = α where
A α

a 1
b 1

B α β

b 1 1

Let �1 be the smallest regular theory on typ(A) with �1 α, and let �2 be the
smallest regular theory on typ(B) with �2 α, and let �2′ be the smallest regular
theory on typ(B) with �2′ α and �2′ α. Then both 〈{b},�1〉 and 〈{a, b},�1〉 on A
are f -equivalent to both 〈{b},�2}〉 and 〈{b},�2′}〉 on B.
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f−1[L] of local logic L on B is the smallest local logic on A that is f -equivalent
to B.72

Movement of local logics provides a much more coherent model of information
flow in concrete channels than the two-part signalling/indicating analysis of Sec-
tion 2, which can be seen as a special case. In the concrete channel depicted in
Figure 6, the information provided by the observation that a particular receiver
event r is of type α is represented by the local logic Lα

r whose set of normal tokens
is the singleton {r} and whose entailment relation is the smallest regular theory
for which 
 α. The logic Lr can be moved along the infomorphism f to get the
logic f [Lα

r ] on the core of the channel. The image logic f [Lα
r ] can then be merged

with LC , a conservative extension of the link on the core, and moved to the source
classification to get g−1[f [Lα

r ] � LC ]. An observation about the source, that an
event s occurs and is of type β is represented as the local logic Lβ

s . Then the
logic-movement model of information flow and the signalling/indicating model
are related as follows:

Theorem 6.1. r signals s and α indicates β iff

Lβ
s ≤ g−1[f [Lα

r ] � LC ]

But the logic g−1[f [Lα
r ] � LC ] captures more about the classification B than

just observations about particular events at the source. To see this, define the
signalling-and-indicating content of the observation that r is of type α to be the
logic73

∨
{Lβ

s | r signals s and α indicates β}
That this is no greater than the moved logic g−1[f [Lα

r ] � LC ] is given by Theo-
rem 6.1. Yet it is possible for the signalling-and-indicating content to be strictly
smaller. Suppose, for example, that gβ1, fα 
LC gβ2 but fα �LC gβ2. Then
β1 
 β2 holds in the moved logic but it is not in the signalling-and-indicating
content. The two models coincide when the core logic is the smallest logic con-
servatively extending the link.

Theorem 6.2. If LC is the smallest conservative extension of 〈N,⇒〉 then
∨
{Lβ

s | r signals s and α indicates β} = g−1[f [Lα
r ] � LC ]

72 The image and inverse image are defined by explicit construction in [2] but the con-
cepts presented there and here are the same. With respect to the � ordering used
in [2], the inverse image f−1L is the largest such logic on. See Theorem 13.7, p.167.
This reveals a degree of incoherence in taking � to be modelling information contain-
ment while claiming that movement of local logics preserves information content. It
is resolved by using the ≤ order, which gives a better account of information content
in concrete classifications.

73 Thereom 6.1 shows that set {Lβ
s | r signals s and α indicates β} is bounded above

and so that this join exists.
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Fig. 7. A network of infomorphisms

The logic movement model of information flow and aggregation can easily be
extended to networks of infomorphisms. Given the network of infomorphisms
shown in Figure 7, logics L1 on classification A and L2 on classification G may
be combined by moving them to a common classification. For example, L1 could
be moved to C along the path ABC and L2 could be moved to C via GC.74

At C, the images of L1 and L2 can be merged. Many other paths are possible,
however, and there is no guarantee that the same result will be achieved.

When the results of moving logics is independent of the path taken, it is pos-
sible to construct a classification M and a logic K on it, together with canonical
infomorphisms from each of the classifications of the network into M . This gives
a binary channel between any two classifications in the network, with core M , so
that the result of moving a logic from any one classification to any other is done
in the same way as considered above. For example, if f : A→←M and g : G→←M

are the canonical infomorphisms from A and G into M , then a logic L on A is
moved to G as g−1[f [L] �K].75

To extend the movement model to apply other classes of Gentzen theories, es-
pecially Dretske theories, the conditions that enable movement and combination
of content must be separated from the assumption that content is represented
by local logics. This is one direction for further research, related closely to the
provision of a full axiomatisation of Dretske theories, extending the results of
Section 5. A semantic characterisation of Dretske theories using Barwise struc-
tures could be used to similar effect, as well as being of independent interest in
building a bridge between early work on situation semantics and the Barwise-
Seligman framework of [2]. The 1980s fascination with building an epistemology
and semantics based on information and information flow, today seems grandly
ambitious. The details of Dretske’s account have been widely criticised, and
the somewhat amorphous collection of ideas known as ‘situation semantics’ is
no longer in vogue.76 But information-based approaches in analytic philosophy
74 Specifying movements by listing the classifications on the path works in this exam-

ple but is not sufficient if there is more than one infomorphism between any two
classifications.

75 This and similar constructions are given in detail in Ch. 15 of [2].
76 See [26] for a review and prospects.
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continue to attract attention, and still lack a precise mathematical toolbox of
the kind provided by Kripke semantics in the analysis of modality. There is good
reason to continue to look for one.
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APPENDIX

Some details of the proofs of theorems from Section 5 are given here.

Theorem 5.3 For every countable set K of non-trivial questions in a probability
space, there is a question Q that refines every question in K.

Proof. By cases of increasing difficulty. Let P = 〈Ω,Σ, p〉 be the probability
space.

1. K is finite. Any two questions of ∼P have a common refinement, by The-
orem 5.2, and the ‘is a refinement of’ relation is transitive, so there is a
question Q that strongly refines every question in K. Any strong refinement
is also a refinement.

2. Every question in K is finite and they can be arranged in a sequence Q1,
Q2, . . . such that Qn+1 is a strong refinement of Qn. Define a sequence
β1, β2, . . . as follows. Pick β1 ∈ Q1 so that p(β1) ≤ 1

2 . (This can be done
because Q1 is non-trivial). Pick βn+1 such that βn+1 ∈ Qn+1|βn and ei-
ther p(βn+1) = p(βn) or 2p(βn+1) ≤ p(βn).77 Now let α1 = ¬β1 and
αn+1 = ¬βn+1 − αn if 2p(βn+1) ≤ p(βn), otherwise αn+1 = αn. Finally,
let Q be the set of all the αn. For each n it can be shown (by induction)
that {βn, α1, . . . , αn} is a question. Now consider the limit δ of p(βn) (a non-
increasing sequence) as n increases. If δ = 0 then the limit of p(α1∪. . .∪αn) is

77 This can be done because βn �∼P and ∼P Qn+1 so by Countable Cut, Qn+1|βn is
nonempty. Moreover, each β ∈ Qn+1|βn has probability ≤ p(βn) because β ∼P βn

(strong refinement). If it has more than one element then choose βn+1 to be one of
those with smallest probability so that p(βn+1 ≤ p(βn)/2. If it has only one element
then choose this to be βn+1 and p(βn) = p(βn+1) because βn ∼P βn+1 (Countable
Cut, again, noting that βn, β ∼P for all β ∈ Qn+1 − {βn+1}).
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1 and p(
⋃
Q) = 1. If δ > 0 then p(βn) is constant for n greater than some suf-

ficiently largeN . But then αn = αN for n > N and so Q = {α1, . . . , αN} and
again, p(

⋃
Q) = 1. Thus ∼PQ and so Q is a question. Q refines each Qn be-

causeQn|αn does not contain βn, which is inQn, and so #(Qn|αn) < #(Qn).
3. Every question in K is finite (but maybe case 2 doesn’t apply). Enumerate

the questions in K as P1, P2, . . .. Let Q1 = P1 and let Qn+1 be a strong
refinement of Qn and Pn+1. Now Q1, Q2, . . . is a sequence of the kind covered
by case 2 and so has a refinement Q. By transitivity of refinement, Q is also
a refinement of each Pn.

4. If the previous cases do not apply, then K is a countably infinite set of count-
ably infinite questions. Enumerate K as Q1, Q2, . . .. The following lemma is
required:

For any question Q of ∼P and any ε > 0, there is an event e such
that Q|e is finite and p(e) > 1− ε.78

Then, for each n and m, there is an event en
m such that p(en

m) > 1 − 1
m2n+2

and Qn|en
m is finite. Let em =

⋂
n∈N

en
m. Then p(em) > 1− 1

m and Qn|em is
finite for each n. Without loss of generality, assume that the em are ordered
by strictly increasing probability, removing elements of equal probability
from the sequence if necessary. Now let Q = {β1, β2, . . .} where β1 = e1
and βm+1 = em+1 − (β1 ∪ . . . ∪ βm). Then (1) β1 �∼P because p(β1) > 0
and βm+1 �∼P for each m because p(em+1) > p(em). Also (2) βm, βk �∼P for
m �= k. And (3) ∼PQ because p(

⋃
Q) = p(

⋃
m∈N

βm) = p(
⋃

m∈N
em) ≥

limm→∞ p(em) = 1. Thus, Q is a question. Finally, Q is a refinement of each
Qn in K because the restricted question Qn|βm is a subset of Qn|em, which
is finite, and so strictly smaller than the countably infinite question Qn. ��

Theorem 5.4 If Γ is a set of events, each of which has probability at least δ,
then δ is a uniform coherence bound on Γ .

Proof. Suppose {e1, . . . , en} is a finite subset of Γ and let Q be the question that
determines the status of Γ , as given by Corollary 5.1, so that for each e ∈ Q and
ei either e∼ei or e, ei ∼. For each e ∈ Q, let me be the number of elements of
Γ entailed by e, i.e.,

me = #({ei | e∼ei i ≤ n})
For each ei, Q = {e ∈ Q | e∼ei}∪{e ∈ Q | e, ei ∼} and ∼Q, so by Cut, ei ∼{e ∈
Q | e∼ei}. Thus

p(ei) ≤ p(
⋃
{e ∈ Q | e∼ei})

Q is mutually exclusive so p(
⋃{e ∈ Q | e∼ei}) =

∑
e∈Q

e∼ei

p(e), and so

n∑

i=1

p(ei) ≤
n∑

i=1

∑

e∈Q

e∼ei

p(e) =
∑

e∈Q

∑

e∼ei

p(e) =
∑

e∈Q

mep(e)

78 Proof: Q is countable and so can be enumerated as α1, α2, . . .. Now Q =⋃
n∈N
{α1, . . . , αn} so limn→∞ p(α1 ∪ . . . ∪ αn) = p

⋃
Q = 1 and so there is an n

such that p(α1∪ . . .∪αn) > 1− ε. Take e = α1∪ . . .∪αn so that Q|e = {α1, . . . , αn}.
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Now let m be the size of the largest coherent subset of {e1, . . . , en}. Then m
is the maximum value of me, and so

∑
e∈Qmep(e) ≤ m

∑
e∈Q p(e). But Q is a

question, so
∑

e∈Q p(e) = 1, and so

n∑

i=1

p(ei) ≤ m

Finally, δ ≤ p(ei), so nδ ≤∑n
i=1 p(ei), and so δ ≤ m/n, as required. ��

Theorem 5.5 A Gentzen theory with the following properties is a Dretske theory:

1. For countable Σ,
if Γ 
 α,Δ for each α ∈ Σ and Γ,Σ 
 Δ then Γ 
 Δ
if Γ 
 Σ,Δ and Γ, α 
 Δ for each α ∈ Σ then Γ 
 Δ

2. Every question is countable.
3. Every coherent event is an answer to some question.
4. If Q =

⋃
n∈N

Qn is question with the Qn disjoint, then there is a question
{αn}n∈N strongly refined by Q in such a way that α 
 αn for each α ∈ Qn.

5. For every countable set K of non-trivial questions, there is a question Q that
refines every question in K. (And if K is finite or consists of finite questions,
then Q strongly refines every question in K.)

6. The theory has uniform coherence ranks.

Proof. First map each type α to its equivalence class [α] = {α′ |α 
 α′, α′ 
 α}.
Let B be the set of equivalence classes, ordered by [α1] ≤ [α2] iff α1 
 α2. B is a
complete Boolean algebra. It is enough to show how to construct complements
and joins.

– (Complement) Suppose b = [α]. there is a question Q containing α (by 3).
Let Q′ = Q−{α}. Then (by 4), there is a question {α1, α2} such that α 
 α1

and α′ 
 α2 for each α′ ∈ Q′. Q′ is countable (by 2), so α, α2 
 and 
 α, α2

(by 1). Define ¬b = [α2].
– (Countable Join) Suppose b1, b2, . . . is a countable sequence in B and bn =

[αn]. Let ¬bn = [βn] so that Qn = {αn, βn} is a question. There is a question
Q that strongly refines each Qn (by 5). Let Pn = {α ∈ Q |α 
 αn}. By
various cuts, αn 
 Pn for each n.79 Let Q′ =

⋃
n∈N

Pn and let Q′′ = Q−Q′.
Then (by 4) there is a question {γ1, γ2} such that α 
 γ1 for each α ∈ Q′

and α 
 γ2 for each α ∈ Q′′. But Pn ⊆ Q′ so (by 1), αn 
 γ1 for each n, and
by a few more cuts γ1 
 {αn}n∈N.80 Define

∨
n∈N

bn = [γ1].
– (Complete) B has no uncountable antichains (by 2) and all countable joins

(above) and so is complete: all joins exist.

79 For each α ∈ Q − Pn, α � βn because Q strongly refines Qn, and so αn, α � (by
Cut) because αn, βn �. But � Pn, Q− Pn so αn � Pn (by 1).

80 � Q′, Q′′ and α � {αn}n∈N for each α ∈ Q′, so (by 1) � {αn}n∈N, Q′′. But α � γ2 for
α ∈ Q′′, so (also by 1), � {αn}n∈N, γ2. Then since γ1, γ2 � (by Cut), γ1 � {αn}n∈N.
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Now to complete the proof, we need a probability measure on B.81 This ensures
that the Stone space of B is a probability space. We can then define f(α) to
be the event[α]∗ in the Stone space corresponding to [α] so that Γ 
 Δ iff∧

[Γ ] ≤ ∨
[Δ] iff p(

⋂
[Γ ]∗ −⋃

[Δ]∗) = 0. And so 
 is a Dretske theory.82

Necessary and sufficient conditions for the existence of a probability measure
on a Boolean algebra were first given by Kelley (in [22]). They are the following:

– (Weakly Distributive) For any sequence {Pn}n∈N of maximal antichains in
B, there is a maximal antichain P such that {a ∈ Pn | a∧ b �= 0} is finite for
every n ∈ N and b ∈ P .83

– (Kelley’s Intersection Condition) B+, the set of non-zero elements of B is a
countable union of sets, each of which have a positive intersection number.
The intersection number of subset A of B is defined as follows.84 For each
finite sequence a = 〈a1, . . . , nn〉 of members of A, let n(a) = n, the length
of the sequence, and let i(a) be the maximum number of elements of the
sequence with a non-void intersection, i.e.,

i(a) = max{#(J) | J ⊆ {1, . . . , n};
∧

j∈J

aj �= 0}

Then the intersection number I(A) is defined to be

inf{i(a)/n(a) |a is a finite sequence in A}

Galvin and Prikry (in [27]) have shown an equivalent condition is obtained
by when the intersection number I(A) is replaced by the weak intersection
number W (A) defined as85

inf{i(a)/n(a) |a is a finite sequence in A with no repeats}

It only remains to show that B satisfies these two conditions. That B is weakly
distributive follows from 5, given that {[α] |α ∈ A} is a maximal antichain in B
iff A is a question, and that if Q refines P then {α ∈ P |α, β �} is finite for all
β ∈ Q. For Kelley’s condition, note that a finite set {α1, . . . , αn} has coherence
bound δ iff i(〈[α1], . . . , [αn]〉) ≥ nδ and so that a set Γ has uniform coherence
bound δ if W ({[α] |α ∈ Γ}) ≥ δ. Moreover, α is coherent iff [α] ∈ B+, and so
Kelley’s condition follows from 6. ��

81 A probability measure on a Boolean algebra B is a function m : B → [0, 1] such that
m(0) = 0, m(b) > 0 if b �= 0, m(1) = 1, and m(

∨
n∈N

bn) =
∑

n∈N
m(bn) whenever

bn ∧ bm = 0 for all n �= m.
82 Where [Γ ] = {[α] |α ∈ Γ} and [Γ ]∗ = {[α]∗ |α ∈ Γ}.
83 There are many equivalent ways of defining weak distributivity. This one is from

Fremlin [12, §316G, p.63].
84 Following [22, p.1166].
85 W (A) and I(A) are not, in general, equal B+ is a countable union of sets A with

positive W (A) iff B+ is a countable union of sets A with positive I(A).
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This paper is dedicated to my former colleague and good friend, the logician
Kenneth Jon Barwise (1942–2000). The work presented here is very much in
the spirit of his approach to logic, a theme I pick up in my closing remarks.

1 Introduction

In this article we set out to develop a mathematical model of real-life human
reasoning. The most successful attempt to do this, classical formal logic, achieved
its success by restricting attention on formal reasoning within pure mathematics;
more precisely, the process of proving theorems in axiomatic systems. Within
the framework of mathematical logic, a logical proof consists of a finite sequence
σ1, σ2, . . . , σn of statements, such that for each i = 1, . . . , n, σi is either an
assumption for the argument (possibly an axiom), or else follows from one or
more of σ1, . . . , σi−1 by a rule of logic.

The importance of formal logic in mathematics is not that mathematicians
write proofs in the system. To do so would in general be far too cumbersome.
Rather, the theory provides a framework for analyzing the notion of mathemat-
ical proof. This has led to several benefits. One is a deeper understanding of
mathematical proof. Another is the development of techniques for proving that
certain statements are in fact not provable. A third is the development of com-
puter tools to carry out automated proof procedures and to assist the human
user construct proofs. Still another benefit is that the study of formal logic has
educational value for the apprentice mathematician. Generally speaking, those
are our goals in trying to develop a model for what we shall call real-life logical
reasoning.

Of course, one obvious approach to modeling reasoning is to apply formal
logic itself, or simple modifications thereof, and this has been attempted on a
number of occasions. The most recent significant attempt was in the early work
in artificial intelligence in the second half of the twentieth century. By and large,
all such attempts have failed. There are various explanations as to why this
failure occurred (we outline our own particular take on this in our book [4]), but
for the present purpose we need focus only on two issues.
� Many of the ideas presented in this paper were developed over several years, during

which time my research was based at CSLI. Some of the research was supported by
an award from the Advanced Research Development Agency, under a subcontract
to General Dynamics Advanced Information Systems, as part of ARDA’s NIMD
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The first issue is that real-life reasoning is rarely about establishing “the
truth” about some state of affairs. Rather it is about marshalling evidence to
arrive at a conclusion. If the reasoner wants to attach a reliable degree of con-
fidence to their conclusion, she or he must keep track of the sources of all the
evidence used, the nature and reliability of those sources, and the reliability of
the reasoning steps used in the process. As such, reasoning is better modeled as
a process of gathering and processing information.

When you think about it, however, this observation does not amount to a sig-
nificant departure from the standard model of formal logic, even insofar as logic
is viewed as a model of mathematical reasoning. Although proofs, both those
expressed in formal logic and the kind you find in professional mathematical
journals, are often couched in terms of truths established, what any mathemat-
ical proof really amounts to is an accumulation of evidence — of information
that leads to the stated conclusion. Moreover, that conclusion, by virtue of being
shown to be true, is of interest precisely because it provides us with information!
Talk of truth is, then, just a manner of description — one that is often appro-
priate when discussing proofs of theorems in mathematics (but on few other
occasions, courts of law being the most obvious exception where talk of truth is
pertinent).

Our second issue (actually a whole list of issues) is considerably more signif-
icant, however, and comes not from philosophical reflections on the nature of
proof, but on empirical studies of people reasoning in real-life situations. The
following set of features are characteristic of much everyday “logical reasoning,”
yet formal logic embodies none of them:

1. Reasoning is often context dependent. A deduction that is justifiable under
one set of circumstances may be flat wrong in a different situation.

2. Reasoning is not always linear.
3. Reasoning is often holistic.
4. The information on which the reasoning is based is often not known to be

true. The reasoner must, as far as possible, ascertain and remember the
source of the evidentiary information used and maintain an estimation of its
likelihood of being reliable.

5. Reasoning often involves searching for information to support a particular
step. This may involve looking deeper at an existing source or searching for
an alternative source.

6. Reasoners often have to make decisions based on incomplete information.
7. Reasoners sometimes encounter and must decide between conflicting

information.
8. Reasoning often involves the formulation of a hypothesis followed by a search

for information that either confirms or denies that hypothesis.
9. Reasoning often requires backtracking and examining your assumptions.

10. Reasoners often make unconscious use of tacit knowledge, which they may
be unable to articulate.
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The above list is taken from Richards J. Heuer, Jr.’s classic book Psychology of
Intelligence Analysis [5]1, popularly known as the “intelligence analyst’s bible.”

Because of the nature of intelligence analysis, in particular the need to reach
concrete conclusions, to document reasoning, and to supply adequate supporting
evidence, this activity provides one of the best examples of “real life” logical
reasoning outside of mathematics and science. Moreover, in order to improve
its intelligence analysis capabilities, the United States intelligence communities
have, over the years, carried out several in-depth studies of the way professional
analysts work.2 Heuer was involved in such a study. An intelligence analyst for
many years, he returned to university to work on the doctoral dissertation that
became his book. It provides an excellent summary of formal reasoning processes
outside of mathematics as conducted by a body of professionals trained to do
just that. We shall base our model on Heuer’s findings.

2 How Does Information Arise?

Since we are approaching reasoning as a specific form of purposeful information
gathering and processing, a fundamental question to start with is, how is it
possible for something in the world, say a book or a magnetic disk, to store,
or represent, information? This question immediately generalizes. For, although
we generally think of information as being stored (by way of representations)
in things such as books and computer databases, any physical object may store
information. In fact, during the course of a normal day, we acquire information
from a variety of physical objects, and from the environment. For example, if we
see dark clouds in the sky, we may take an umbrella as we leave for work, the
state of the sky having provided us with the information that it might rain.

Staying for a moment with that example, how exactly does it come about
that dark clouds provide information that it is likely to rain? The answer is that
there is a systematic regularity between dark clouds in the sky and rain. Human
beings (and other creatures) that are able to recognize that systematic regularity
can use it in order to extract information.

In general, then, information can arise by virtue of systematic regularities in
the world. People (and certain animals) learn to recognize those regularities,
either consciously or subconsciously, possibly as a result of repeated exposure
to them. They may then utilize those regularities in order to obtain information
from aspects of their environment.
1 Re-published by the United States Central Intelligence Agency in 1999, this book is

currently available only in download form from the CIA’s website.
2 Incidentally, it would be unwise to judge the quality of US intelligence analysis by what

appear to be some spectacular and costly — in terms of money, human life, and global
stability — failures of intelligence decisions by the United States government in the last
few years. In all those cases, the problem was not the intelligence analysis, which was
in fact highly accurate; rather that, for reasons of political ideology, the government of
the day chose to ignore or distort the analysts’ recommendations, just as they did with
many reports on other issues from the scientific community. That’s what can happen
when the inmates are put in charge of the most powerful asylum in the world.
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What about the acquisition of information from books, newspapers, radio,
etc., or from being spoken to by fellow humans? This too depends on systematic
regularities. In this case, however, those regularities are not natural in origin like
dark clouds and rain. Rather they depend on regularities created by people, the
regularities of human language.

In order to acquire information from the words and sentences of English, you
have to understand English — you need to know the meanings of the English
words and you need a working knowledge of the rules of English grammar. In ad-
dition, in the case of written English, you need to know how to read — you need
to know the conventions whereby certain sequences of symbols denote certain
words. Those conventions of word meaning, grammar, and symbol representation
are just that: conventions. Different countries have different conventions: differ-
ent rules of grammar, different words for the same thing, different alphabets,
even different directions of reading — left to right, right to left, top to bottom,
or bottom to top.

At an even more local level, there are the conventional information encoding
devices that communities establish on an ad hoc basis. For example, a school
may designate a bell ring as providing the information that the class should end,
or a factory may use a whistle to signal that the shift is over.

The fact is, anything can be used to store information. All it takes to store
information by means of some object — or more generally a configuration of
objects — is a convention that such a configuration represents that informa-
tion. In the case of information stored by people, the conventions range from
ones adopted by an entire nation (such as languages) to those adopted by a
single person (such as a knotted handkerchief). For a non-human example, DNA
encodes the information required to create a lifeform (in an appropriate envi-
ronment).

To make precise these general observations about information, we need to
provide a precise, representation-free3 definition of information, and, second, to
examine the regularities, conventions, etc. whereby things in the world represent
information. This is what two Stanford University researchers, Jon Barwise and
John Perry, set out to do in the late 1970s and early 1980s. The mathematical
framework they developed to do this they named Situation Theory, initially
described in their book Situations and Attitudes [2], with a more developed
version of the theory subsequently presented by Devlin in [3]. We shall provide
an extremely brief summary of part of situation theory in the following section.

3 Situation Theory

In situation theory, recognition is made of the partiality of information due
to the finite, situated nature of the agent (human, animal, or machine) with

3 Of course, our theoretical framework will have to have its own representations. The
theory we will use adopts the standard application-domain-neutral representation
used in science, namely mathematics.
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limited cognitive resources. Any agent must employ necessarily limited infor-
mation extracted from the environment in order to reason and communicate
effectively.

The theory takes its name from the mathematical device introduced in order
to take account of that partiality. A situation can be thought of as a limited
part of reality. Such parts may have spatio-temporal extent, or they may be
more abstract, such as fictional worlds, contexts of utterance, problem domains,
mathematical structures, databases, or Unix directories. The distinction between
situations and individuals is that situations have a structure that plays a sig-
nificant role in the theory whereas individuals do not. Examples of situations of
particular relevance to the subject matter of this paper will arise as our devel-
opment proceeds.

The basic ontology of situation theory consists of entities that a finite, cog-
nitive agent individuates and/or discriminates as it makes its way in the world:
spatial locations, temporal locations, individuals, finitary relations, situations,
types, and a number of other, higher-order entities.

The objects (known as uniformities) in this ontology include the following:

– individuals — objects such as tables, chairs, tetrahedra, people, hands, fin-
gers, etc. that the agent either individuates or at least discriminates (by its
behavior) as single, essentially unitary items; usually denoted in situation
theory by a, b, c, . . .

– relations — uniformities individuated or discriminated by the agent that hold
of, or link together specific numbers of, certain other uniformities; denoted
by P, Q, R, . . .

– spatial locations, denoted by l, l′, l′′, l0, l1, l2, etc. These are not necessarily
like the points of mathematical spaces (though they may be so), but can
have spatial extension.

– temporal locations, denoted by t, t′, t0, . . . . As with spatial locations, tem-
poral locations may be either points in time or regions of time.

– situations — structured parts of the world (concrete or abstract) discrimi-
nated by (or perhaps individuated by) the agent; denoted by s, s′, s′′, s0, . . .

– types — higher order uniformities discriminated (and possibly individuated)
by the agent; denoted by S, T, U, V, . . .

– parameters — indeterminates that range over objects of the various types;
denoted by ȧ, ṡ, ṫ, l̇, etc.

The intuition behind this ontology is that in a study of the activity (both physical
and cognitive) of a particular agent or species of agent, we notice that there are
certain regularities or uniformities that the agent either individuates or else
discriminates in its behavior.4

4 This is true not only of individuals but also of groups, teams, communities. If A and
B are engaged in a dialogue or a conversation, or indeed any other form of joint
action, they recognize uniformities as individuals in a similar ways. Socially, they
negotiate the precise meanings of these, so that they can agree the exact shape of
the uniformities that apply in the situation they are in.
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For instance, people individuate certain parts of reality as objects (‘individuals’
in our theory), and their behavior can vary in a systematic way according to
spatial location, time, and the nature of the immediate environment (‘situation
types’ in our theory).

We note that the ontology of situation theory allows for the fact that different
people may discriminate differently. For instance, Russians discriminate as two
different colors what Americans classify as merely different shades of blue.

Information is always taken to be information about some situation, and is
taken to be in the form of discrete items known as infons. These are of the form

� R, a1, . . . , an, 1 � , � R, a1, . . . , an, 0 �
where R is an n-place relation and a1, . . . , an are objects appropriate for R (often
including spatial and/or temporal locations). These may be thought of as the
informational item that objects a1, . . . , an do, respectively, do not, stand in the
relation R.

Infons are items of information. They are not things that in themselves are
true or false. Rather a particular item of information may be true or false about
a certain part of the world (a situation).5

Given a situation, s, and an infon σ, we write

s |= σ

to indicate that the infon σ is made factual by the situation s, or, to put it
another way, that σ is an item of information that is true of s. The official name
for this relation is that s supports σ.

It should be noted that this approach treats information as a commodity.
Moreover a commodity that does not have to be true. Indeed, for every positive
infon there is a dual negative infon that can be thought of as the opposite
informational item, and both of these cannot be true (in the same situation).

A fundamental assumption underlying the situation-theoretic approach to in-
formation is that information is not intrinsic to any signal or to any object or
configuration of objects in the world; rather information arises from interactions
of agents with their environment (including interactions with other agents). The
individuals, relations, types, etc. of the situation-theoretic ontology are (third-
party) theorist’s inventions. For an agent to carry out purposeful, rational activi-
ties, however, and even more so for two or more agents to communicate effectively,
there must be a substantial agreement first between the way an agent carves up
the world from one moment to another, and second between the uniformities of
two communicating agents. For instance, if Alice says to Bob, “My car is dirty,”
5 One of the advantages of the framework and notation provided by situation theory is

that it allows us to express partial information about complex relations. For example,
the relation eat presupposes agent, object, instrument, place, time, but much of this
information can remain implicit, as in “I’m eating.” This makes it possible to choose
which aspect of the structure to emphasize in a given instance of interaction. And
this choice of emphasis also carries information in its own right, since it is recognized
and interpreted as attitude or intent.
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and if this communicative act is successful, then the words Alice utters must mean
effectively the same to both individuals. In order for a successful information flow
to take place, it is not necessary that Alice and Bob share exactly the same concept
of “car” or of “dirty,” whatever it might mean (if anything) to have or to share an
exact concept. Rather, what is required is that their two concepts of “car” and of
“dirty” overlap sufficiently. The objects in the ontology of situation theory are in-
tended to be theorist’s idealized representatives — prototypes — of the common
part of the extensions of individual agent’s ontologies. In consequence, the infons
are theoretical constructs that enable the theorist to analyze information flow.

Situation theory provides various mechanisms for defining types. The two
most basic methods are type-abstraction procedures for the construction of two
kinds of types: situation-types and object-types.

Situation-types. Given a SIT-parameter, ṡ, and a compound infon σ, there is
a corresponding situation-type

[ṡ | ṡ |= σ],

the type of situation in which σ obtains.
This process of obtaining a type from a parameter, ṡ, and a compound infon,

σ, is known as (situation-) type abstraction.
For example,

[SIT1 | SIT1 |= 〈〈running, ṗ,LOC1,TIM1, 1〉〉]

Object-types. These include the basic types TIM, LOC, IND, RELn, SIT,
INF, TYP, PAR, and POL, as well as the more fine-grained uniformities de-
scribed below.

Object-types are determined over some initial situation.
Let s be a given situation. If ẋ is a parameter and σ is some compound infon

(in general involving ẋ), then there is a type

[ẋ | s |= σ],

the type of all those objects x to which ẋ may be anchored in the situation s,
for which the conditions imposed by σ obtain.

This process of obtaining a type [ẋ | s |= σ] from a parameter, ẋ, a situation,
s, and a compound infon, σ, is called (object-) type abstraction.

The situation s is known as the grounding situation for the type. In many
instances, the grounding situation, s, is the world or the environment we live in
(generally denoted by w).

For example, the type of all people could be denoted by

[IND1 | w |= 〈〈person, IND1, l̇w, ṫnow, 1〉〉]
Again, if s denotes Jon’s environment (over a suitable time span), then

[ė | s |= 〈〈sees, Jon, ė,LOC1,TIM1, 1〉〉]
denotes the type of all those situations Jon sees (within s).
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This is a case of an object-type that is a type of situation.
This example is not the same as a situation-type. Situation-types classify sit-

uations according to their internal structure, whereas in the type

[ė | s |= 〈〈sees, Jon, ė,LOC1,TIM1, 1〉〉]
the situation is typed from the outside.

Types and the type abstraction procedures provide a mechanism for cap-
turing the fundamental process whereby a cognitive agent classifies the world.
Applying the distinction between situation types and object types to interac-
tion phenomena, we may say that we all recognize that the relationship between
situation-type fire and the situation-type smoke obtains only if both are in the
same place at the same time. This is then a part of the shared knowledge among
members of the same group or community that is often assumed and therefore
rarely articulated. Situation theory offers a mechanism for articulating these as-
sumptions by means of defined constraints. Constraints provide the situation
theoretic mechanism that captures the way that agents make inferences and act
in a rational fashion. Constraints are linkages between situation types. They
may be natural laws, conventions, logical (i.e., analytic) rules, linguistic rules,
empirical, law-like correspondences, etc.

For example, humans and other agents are familiar with the constraint:

Smoke means fire.

If S is the type of situations where there is smoke present, and S′ is the type
of situations where there is a fire, then an agent (e.g. a person) can pick up
the information that there is a fire by observing that there is smoke (a type S
situation) and being aware of, or attuned to, the constraint that links the two
types of situation.

This constraint is denoted by

S ⇒ S′

(This is read as “S involves S′.”)
Another example is provided by the constraint

Fire means fire.

This constraint is written
S′′ ⇒ S′

It links situations (of type S′′) where someone yells the word fire to situations
(of type S′) where there is a fire.

Awareness of the constraint

fire means fire

involves knowing the meaning of the word fire and being familiar with the rules
that govern the use of language.
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The three types that occur in the above examples may be defined as follows:

S = [ṡ | ṡ |= 〈〈smokey, ṫ, 1〉〉]
S′ = [ṡ | ṡ |= 〈〈firey, ṫ, 1〉〉]
S′′ = [u̇ | u̇ |= 〈〈speaking, ȧ, ṫ, 1〉〉 ∧ 〈〈utters, ȧ,fire, ṫ, 1〉〉]

Notice that constraints link types, not situations. However, any particular in-
stance where a constraint is utilized to make an inference or to govern/influence
behavior will involve specific situations (of the relevant types). Constraints func-
tion by capturing various regularities across actual situations.

A constraint
C = [S ⇒ S′]

allows an agent to make a logical inference, and hence facilitates information
flow, as follows. First the agent must be able to discriminate the two types S
and S′. Second, the agent must be aware of, or behaviorally attuned to, the
constraint. Then, when the agent finds itself in a situation s of type S, it knows
that there must be a situation s′ of type S′. We may depict this diagrammatically
as follows:

S
C=⇒ S′

s : S ↑ ↑ s′ : S′

s
∃−→ s′

For example, suppose S ⇒ S′ represents the constraint smoke means fire.
Agent A sees a situation s of type S. The constraint then enables A to conclude
correctly that there must in fact be a fire, that is, there must be a situation s′

of type S′. (For this example, the constraint S ⇒ S′ is most likely reflexive, in
that the situation s′ will be the same as the encountered situation s.)

A particularly important feature of this analysis is that it separates clearly the
two very different kinds of entity that are crucial to the creation and transmission
of information: one the one hand the abstract types and the constraints that link
them, and on the other hand the actual situations in the world that the agent
either encounters or whose existence it infers.

For further details of situation theory, the reader should consult [3], upon
which the above account was based.

4 A Situation-Theoretic Model of Human Reasoning

Our framework views reasoning as a temporal cognitive process that acts not on
statements σ (as in the model of a mathematical proof) but on entities of the
form

s |=τ1,τ2,... σ
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where:

1. σ is a statement (or fact);
2. s is a situation which provides support or context of origin for σ; and
3. τ1, τ2, . . . are the indicators6 of σ, i.e., the specific items of information in s

that the reasoner takes as justification of σ.

We call an entity of the form s |=τ1,τ2,... σ a basic reasoning element.
Within our framework, a process of reasoning to decide an issue I can be

represented like this:
I

s1 |=τ1,... σ1

s2 |=τ2,... σ2

s3 |=τ3,... σ3

...

s |=τ1,...,τ2,...,τ3,...σ

where each basic reasoning element either supplies evidence for the reasoning or
else follows from one or more previous elements by a logical deduction rule.

Analogous to the concept of a mathematical proof (sequence), we define (sub-
ject to some technical modifications) an evidential reasoning process as a finite
sequence ρ1, ρ2, . . . , ρn of entities of the above form such that each ρi is either
evidential (i.e., an input to the reasoning process) or else the result of applying
some logical rule of reasoning to one or more of ρ1, . . . , ρi−1. Here is the formal
development of this notion.

By an evidential reasoning element we mean a 1 × 3 matrix of the form

fact support indic(1), indic(2), . . .

such that
support |=indic(1), indic(2), ... fact

By an evidential reasoning step we shall mean a finitary array of the form

operator fact1 support1 indic1(1), indic1(2), . . .
fact2 support2 indic2(1), indic2(2), . . .

. . .
factk supportk indick(1), indick(2), . . .

output factk+1 supportk+1 indick+1(1), indick+1(2), . . .

where each row

facti supporti indici(1), indici(2), . . .

is an evidential reasoning element. The index k depends on the operator oper-
ator, and is called the arity of the operator.
6 Our use of the term “indicators” with this meaning comes from social science.
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The idea is that a basic evidential reasoning step consists of the application
of the logical operator to one or more constituents of the evidential reasoning
elements in its scope (the first k elements listed) to produce the output element
in the final row.

An evidential reasoning process is a finite sequence ρ1, . . . ρn of basic reasoning
steps such that each element is either evidential (i.e., an input to the reasoning
process) or else the output of some previous (in the sequence) evidential reason-
ing step, or else is the special element stop, which is the final element in the
process. (stop is a failure condition; we describe it later.)

The sequence of elements in an evidential reasoning process are not intended to
provide a temporal model of the actual steps carried out by a reasoner. Rather,
an evidential reasoning process models the logical flow of the reasoning as it
leads to the conclusion. As we mentioned earlier, much real-life reasoning is not
linear. However, our model is such that any linear progression of steps in the
actual reasoning a human carries out will be mapped to a linear ordering of the
corresponding basic reasoning elements in the model.

The actual operators that arise in any particular instance of reasoning will
depend on the specific circumstances that pertain in that application. In this
document we simply indicate the general form of some of the more generic op-
erations that are likely to be used in any instance.

For example, among the operators are some that correspond to classical logic.
Since classical logic ignores context, we have to exercise care in porting classical
logic operators into our calculus. This means that our rules all have restrictions
on when they may be applied. We start with the following two rules, each of
which involves a binary reasoning operator:

Evidential Conjunction Rule

conjoin σ s τ1, τ2, . . .
θ t γ1, γ2, . . .

output σ ∧ θ s ∪ t ∪ {δ} δ, τ1, τ2, . . . , γ1, γ2, . . .

where δ = Con{τ1, τ2, . . . , γ1, γ2, . . .}, the assertion that the set {τ1, τ2, . . . , γ1,
γ2, . . .} is logically consistent (i.e., has no internal contradictions), and where
the rule may be applied only if δ is valid. The restriction that δ is called the
indicator consistency condition for the rule. If this condition is not satisfied, the
rule produces the output stop. (We consider later what happens when the stop
element is generated.)

Evidential Modus Ponens Rule

mp σ s τ1, τ2, . . .
σ → θ t γ1, γ2, . . .

output θ s ∪ t ∪ {δ} δ, τ1, τ2, . . . , γ1, γ2, . . .

where δ = Con{τ1, τ2, . . . , γ1, γ2, . . .}, and where the rule may be applied only if
δ. If this condition is not satisfied, the rule produces the output stop.
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We need to exercise care in using these two rules. If the supports s and t
are identical, there is in general no problem, nor if one support is contained
within the other. In either of these cases, the indicator consistency condition
can generally be assumed to be automatically satisfied, since reasoning generally
proceeds under the tacit assumption that each individual source is internally
consistent. (If, however, the reasoner suspects — or comes to suspect — that
one of the supports used in the reasoning is internally inconsistent, then resolving
that inconsistency becomes part of the reasoning process. This is a particular
case of the following general observation concerning reasoning.)

The idea behind our approach is this. Coupling a fact σ with its support s
in our framework does two things: (i) it acknowledges that σ does come from a
particular source, and (ii) it provides a record of that source. Explicitly listing
the indicators τ1, τ2, . . . with σ and s puts on record the particular items of
information in s that the reasoner believes are salient in supporting σ, and uses
to justify making use of σ in the reasoning. When an unexpected or troublesome
conclusion is reached, or when the reasoning fails to yield a conclusion, it may be
necessary to re-examine the veracity of some of the facts used in the reasoning,
and that may involve reconsideration of the indicator already identified, or a
search for indicators hitherto ignored. In an extreme case, the reasoner may
have to question an entire source, perhaps rejecting it and looking for evidence
elsewhere.

There are two unary reasoning operators associated with the indicators in a
reasoning element: eval-indic, which checks the indicators already identified
for veracity, and factorize, which identifies new items of information in the
support that are salient to the use of the fact in the reasoning process. The rules
associated with these operators are:

Indicator Evaluation Rule

eval-indic σ s τ1, τ2, . . .
output:: σ s τ1, τ2, . . .

stop

where the notation here (note the double-colon after output) indicates that the
output of the rule is exactly one of the two elements

σ s τ1, τ2, . . .

and
stop

The former output is obtained if the evaluation of τ1, τ2, . . . affirms their veracity;
the output is stop if the evaluation determines that one of these indicators is
in fact not valid, or at least is in doubt.

Thus, the evidential reasoning step generated by an application of the Indi-
cator Evaluation Rule is of one of the two forms:
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eval-indic σ s τ1, τ2, . . .
output σ s τ1, τ2, . . .

eval-indic σ s τ1, τ2, . . .
output stop

Indicators Extension Rule

extend-indics σ s τ1, τ2, . . .
output σ s τ1, τ2, . . . , γ1, γ2, . . .

where γ1, γ2, . . . ∈ s.
This rule implies that

s |=τ1,τ2,...,γ1,γ2,... σ

The intuition is that the reasoner identifies additional information (additional
indicators) that she or he judges to contribute to the acceptance of the fact σ
under consideration.

Use of the following rule, which involves the unary operator eval-support,
indicates a suspicion that the reasoning process has a serious flaw.

Support Evaluation Rule

eval-support σ s τ1, τ2, . . .
output:: σ s τ1, τ2, . . .

stop

The former output is obtained if the evaluation of s affirms its internal consis-
tency and reliability; the output is stop if the evaluation determines that s is
inconsistent or unreliable, or at least that the consistency or reliability of s is in
serious doubt.

Thus, the evidential reasoning step generated by an application of the Support
Evaluation Rule is of one of the two forms:

eval-support σ s τ1, τ2, . . .
output σ s τ1, τ2, . . .

eval-support σ s τ1, τ2, . . .
output stop

When a reasoning step produces the output stop, the reasoner has to back-
track and examine the process so far. If it is not possible to make any changes
to any previous steps, then the reasoning process breaks down. In such a case,
the available information is either contradictory or else simply not adequate to
resolve the target issue.

A common step in reasoning is to decide between two or more different possi-
bilities, which may or may not be mutually exclusive. The exact mechanism by
which the comparison is made will vary from case to case, but functionally such
an operation produces the following basic reasoning step:
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Selection Rule

select σ1 s1 τ1(1), τ1(2), . . .
σ2 s2 τ2(1), τ2(2), . . .

. . .
σn sn τn(1), τn(2), . . .

output σi si ∪ s γ, δ, τi(1), τi(2), . . .

for some i, 1 ≤ i ≤ n, where s is the very reasoning process the agent is carrying
out (and which we are capturing with our calculus), γ ∈ s is the fact that this
particular selection has been made, and δ ∈ s is the criterion for making the
selection.

Note that the output of a selection step carries a record of the selection having
been made and of how it was made.

In practice, making a selection may involve examination of the supports and
the indicators associated with the facts being compared, possibly leading to
additional factorization for some facts or other operations. Such factorizations,
or other steps, will be captured in our model by being represented explicitly as
earlier steps in the process sequence.

Sometimes during the course of reasoning, the reasoner believes it is necessary
to expand the scope of the domain from which particular facts were obtained,
perhaps with a view to finding additional indicators to strengthen confidence
in the fact or to replace the fact with a stronger version. This is captured by
the following rules, often used in successively in conjunction, together with the
indicators extension rule.

Support Expansion Rule

expand-support σ s τ1, τ2, . . .
output σ s′ τ1, τ2, . . .

where s ⊆ s′.

Strengthen Fact Rule

strengthen-fact σ s τ1, τ2, . . .
output σ′ s τ1, τ2, . . .

where s |=τ1,τ2,... σ′ → σ.

Multiple Views Uniformization Rule
Reasoners sometimes view more than one data source in order to use their ex-
perience and tacit knowledge to synthesize a conclusion that may not follow
directly from the different sources by logical reasoning. To capture such actions,
we could add an operator that provides some form of merge or unification for si-
multaneous views of information from different sources. However, the evidential
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conjunction rule that we already have will handle many cases of multiple views
of data.

In circumstances where two views of a data item σ can be regarded as pro-
viding two indicator sets for the same fact within the same context:

s |=τ1,τ2,... σ and s |=γ1,γ2,... σ

we can apply the following operator:

mv unif σ s τ1, τ2, . . .
σ s γ1, γ2, . . .

output σ s δ, τ1, τ2, . . . , γ1, γ2, . . .

where δ is the fact that this unification has taken place.

Subtasking
Reasoners often need to break a particular task into subtasks. Typically, this
entails defining a set of subtasks that together will complete the given task, and
then working on each subtask in turn. Alternatively, the reasoner may decide
to abandon (perhaps just for the time being) the current goal and concentrate
solely on some subtask, which then becomes the new goal.

The framework as described so far can handle the individual steps in each sub-
task analysis, and can track choices of subtasks as localized reasoning contexts.
But we have not introduced an operator for subtask selection or for breaking a
task into a sufficient group of subtasks. Instead, we have left this as a meta-level
operation. We did so in order to avoid making our technical machinery more
complicated than it already is. Since our primary aim is to provide a framework
to aid human reasoners, not a blueprint for an automated reasoning system, we
feel this is a reasonable choice. But before moving on let’s take a brief look at
what would be required to modify our framework to incorporate subtasking.

Within our current framework, a process reasoning to decide an issue I is
represented like this:

I
s1 |=τ1,... σ1

s2 |=τ2,... σ2

s3 |=τ3,... σ3

...

s |=τ1,...,τ2,...,τ3,...σ

The issue I is kept constant throughout our development. In order to incorporate
subtask selection, we could introduce a mechanism to represent the selection of a
subtask J of I or else the division of I into a collection of subtasks J1, J2, . . . ,
Jn. The framework would need to keep track of the supports and the indicators,
both when the subtask(s) is (are) selected and when the completion of all the
tasks in a subdivision results in the completion of the original task. This is all
very straightforward.
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5 Some Special Cases

To get a sense of how our framework operates, we show how it applies to some
familiar special cases or models for reasoning

Mathematical reasoning. First of all, let’s take the case of mathematics,
where σ1, . . . , σn are statements about some mathematical structure M, say
a group or a field. We may assume that σ1, . . . , σn are written in the first-
order language for M. In that case, each of the expressions si |= σi denotes a
standard proposition of classical Tarski-based model theory. In this case, by the
Completeness Theorem of first-order predicate logic, s = M and the deduction
takes the form

I
M |= σ1

M |= σ2

...
M |= σn

M |= σ

If this reasoning is valid, then we must have

I = ![M |= σ]?

where an expression of the form !P? for some proposition P denotes the goal
“Determine whether P true or false.” That is, the goal is to determine whether
or not σ is true of M.

The completeness theorem also tells us that (if the deduction is valid), σ
follows from σ1, . . . , σn by the rules of logic alone.

Reasoning from a common source. Another special case is where all of the
information σ1, . . . , σn comes from the same source, S. In this case the conclusion
support s is also S, and the deduction takes the form:

I
S |= σ1

S |= σ2

...
S |= σn

S |= σ

For a valid process, we must have

I = ! σ?

(Determine whether to do σ, or else determine whether σ is true.)

Bayesian inference. In some cases, knowledge of the source of each data item
σi may be converted into a numerical probability of the reliability of σi, i.e. the
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probability that σi is true. In such a situation, we may be able to apply Bayes’
Theorem repeatedly in order to obtain a conclusion σ and assign a probability
to σ. In this case, the function F is a numerical function based upon Bayes’
Theorem and the function H is an instance of Bayesian inference. This kind of
reasoning is quite common, particularly in intelligence gathering.

We may represent a Bayesian reasoning process using the original notation

I
s1 |= σ1

s2 |= σ2

...
sn |= σn

s |= σ

with the understanding that each of s1,, . . . , sn, s is a number between 0 and
1 inclusive, and each expression si |= σi should be interpreted as a probability
statement p(σi) = si, and similarly for s |= σ.

6 Summary and Discussion

The basis for our method is to view reasoning as a temporal cognitive process
that acts on entities of the form

s |=τ1,τ2,... σ

where σ is a statement (or fact), s is its support or context of origin, and τ1,
τ2, . . . are its indicators, the specific items of information in s that the reasoner
takes as justification of σ.

We analyze reasoning so described in terms of a number of basic reasoning
steps, an illustrative example being the Evidential Modus Ponens Rule:

mp σ s τ1, τ2, . . .
σ → θ t γ1, γ2, . . .

output θ s ∪ t ∪ {δ} δ, τ1, τ2, . . . , γ1, γ2, . . .

where δ = Con{τ1, τ2, . . . , γ1, γ2, . . .}, and where the rule may be applied only if δ.
We list a number of such rules, but acknowledge that many applications will

involve rules not listed here. Our framework is designed to allow for such addi-
tional rules to be incorporated.

Readers familiar with situation theory will have observed that our present
framework amounts to making explicit in the model the features of the context
situation — our indicators — that provide direct support for the items of in-
formation considered in the reasoning — what we call the facts. Moreover, we
model (aspects of) the process of reasoning, not just the sequence of facts and
their situational supports. By making this additional salient information explicit
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in the model, we can obtain a finer grained analysis than is possible in situation
theory, that requires much less ad hocing when we carry out an analysis of a
specific reasoning process. In our framework, the Evidential Modus Ponens rule
performs the task that was handled by constraints in situation theory. Our deci-
sion to ignore much of the machinery for handling situation-theoretic constraints
was based on pragmatic grounds, with a view to the kinds of reasoning we are
attempting to model.

Although our primary goal is to develop a framework that aids understand-
ing, we are aware that any enterprise such as ours has the potential of forming
the basis for the specification of reasoning protocols or the design of reasoning
support tools. The model we have developed would result in protocols or support
tools that:

1. Force explicit identification and tracking of sources.
2. Force explicit identification and tracking of supporting information (the in-

dicators).
3. Force regular reconsideration of the reasoning process itself.
4. Allow for backtracking when a problem is encountered, without the necessity

of starting over afresh.

Above all, our framework makes it clear that reasoning involves three compo-
nents: facts, sources, and indicators. Real-life reasoning typically involves all
three. Any protocol or tool developed in line with our model should provide
the user with regular prompts to check all three components. Many examples of
failures in human reasoning and analysis have resulted from a neglect of one or
more of the three basic components.

Jon Barwise

I think it is appropriate to end with a quotation from my former friend and
colleague Jon Barwise, whose untimely death in 2000 deprived the world of one
of the most innovative logicians of the twentieth century. In his collected work
The Situation in Logic [1], Barwise wrote [pp.xv–xvi]:

Back in the days before I became interested in the situated aspects of
logic, I sometimes used to wonder how logicians felt in the first quarter
of this century. Did they feel confused. Reading the literature of that
period, one senses the extent to which they were groping toward the
view of logic that eventually emerged, but also the extent to which they
were still in the dark about what was central and what was peripheral.
One also realizes that they were just missing certain key distinctions. In
other words, they were confused. It was only with the pioneering work of
Gödel, Church, Turing, Tarski, and Kleene in the 1930’s that the modern
conception of logic really took hold.

I now feel I have some idea of how logicians must have felt in that
period before the really seminal work, since I feel we are in an analogous
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stage now . . . As we try to let go of some of the simplifying idealizations
made in standard logic, we too are groping for the key notions, and
probably missing some key distinctions. In giving up these simplifying
assumptions, there are many things to be rethought, many choices to
be made, and many things to be tried. It is an exciting time, if you
have the patience for that sort of thing, and a taste for the basic task of
conceptual clarification. But it is also frustrating . . .
. . . There is only one point about which I am really certain. That is that
the view of language and logic as situated activities is an important one,
and that situating logic is a task that must be carried out if we are to
come to grips with some of the problems that currently vex the field.

I say Amen to that.
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1 Conceptual Considerations

One of the purposes of this paper is to inquire whether the theoretical (mathe-
matical - logical) study of information can be tracked down to a single concept
of information, or whether this study infallibly leads to several distinct concepts
(of information). The philosophical interest of this inquiry is, to use an old and
slightly infamous concept, self-evident.

1.1 A Few Distinctions to Start with

Let me start by distinguishing 3 kinds of concepts:

a) ordinary language concepts
b) informal theoretical concepts
c) formal theoretical concepts

How does one get from a) to b) or c)? By means of an explication, that is, by a
certain way of making the meaning of an ordinary language expression precise
(according to Carnap, this way has to satisfy certain well-known criteria).

What is the relationship between b) and c)? There are at least 2 ways to
conceive of it:

1. b) is an informal description of a concept embodied in a formal (mathe-
matical) theory. In this case, the relationship between b) and c) is totally
unproblematic.

2. c) is to be the formalisation of b). In this case, the relationship is more
problematic. (More about it later.)

1.2 Reflections on Informal Theoretical Concepts of Information

How many Concepts of Information? The not entirely unserious question
to be answered here is:

(Q) How many informal theoretical concepts of information are there?
� I dedicate this paper to my good friend, the economist, computer scientist and

philosopher Ambros Lüthi.

G. Sommaruga (Ed.): Formal Theories of Information, LNCS 5363, pp. 253–267, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



254 G. Sommaruga

Floridi distinguishes 3 types of answer (‘approaches’) to this question:1

−→ the reductionist answer : 1
−→ the antireductionist answer : many very different ones
−→ the nonreductionist answer : here 3 subcases are to be distinguished
−→−→ the centralized answer : essentially 1
−→−→ the multicentered answer : few
−→−→ the completely decentralized answer : quite a few

There is a question analogous to (Q) regarding the ordinary language concepts
of information, namely:

(Q+) How many ordinary language concepts of information are there?

What do the 3 types of answer to question (Q) imply concerning this latter
question (Q+)? Are there at least as many ordinary language concepts of in-
formation as there are informal theoretical explicata? Or is it rather the other
way round (are there at most as many)? These questions won’t be followed up
in the sequel.

Floridi’s point of view. Floridi’s own point of view is a nonreductionist epis-
temically centralized type of answer (Floridi 2003b:42). What this point of view
amounts to, can well be illustrated by something he calls ‘an informational map’:2

Within the network of concepts called ‘information’, the central concept is
the one of factual or epistemically oriented (semantic) information. It is defined
by the following

Special Def. of (factual) Information (SDI):
σ is an instance of truthful (factual) information iff σ is mwfd + t.
This definition presupposes in turn the
General Def. of Information (GDI):
σ is an instance of information (in the sense of objective semantic content) iff

σ is wfd + m.
As a matter of fact, there seems to be a certain ambiguity in Floridi’s point of

view:3 it appears that sometimes semantic information (content) is the central
concept, sometimes factual semantic information, and at times it is truthful (fac-
tual) semantic information. As will be seen in sect. 3.2, some kind of propensity
towards a certain ambiguity is fairly common in this context.

According to the informational map above, factual information is alethically
neutral, i.e. neutral w.r.t. truth-values. Floridi points out that this is a point of
controversy among information theorists: some take information to be truthful
by definition, others take it to be true or false and, at any rate, the truth-value
not to be part of the definition of information (Floridi 2003b:45f).

1 (Floridi 2003b:40f) and (Floridi 2005a: ).
2 Cf. Floridi’s article in this volume, sect. 2.
3 At least in 2 of his articles, but not in his article (Floridi 2005b).
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"information"

environmental meaningful (semantic content)

instructional
factual

truthful
untruthful

wellformed (wf) data (d)

An informational map (Floridi)

Floridi’s thesis If I have understood Floridi’s point of view correctly, he up-
holds something like the following thesis:

(FT) The concept of semantic (factual) truthful information is the most appro-
priate informal theoretical concept of information.

He appears to justify (FT) as follows:

i) This informal theoretical concept explicates or corresponds the best to the
most frequent common sense understanding of the word ‘information’.

ii) It plays a very important epistemological role, since it provides a necessary
condition for knowledge (it is actually sometimes downright confused with
knowledge).

As a consequence of (FT), the concept of semantic (factual) truthful information
serves as a standard for the ‘measurement’ or rather assessment of the relative
appropriateness of other informal theoretical concepts of information such as:

Examples

– the algorithmic concept of information (as the size of a computer program
necessary to generate certain wellformed data)
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– the situation-theoretical concept of information (e.g. as the information con-
tent carried by a fact and relative to a constraint)

– the algebraic concept of information (as the information content relative to
a question)

– the theoretical concepts of information in the modal or inferential approach
(the information content of a sentence as the class of possible states of the
universe (possible worlds) which are excluded by the resp. sentence)

These observations suggest another diagram of concepts:

wellformed data (Shannon)

meaningful (Devlin)

truthful (Barwise & Seligman, Dretske, Floridi)

...........

(+)

(+)

(+)

(+)

an additive conceptual diagram

As this diagram shows the intension of the informal theoretical concept gets
increasingly larger or richer. And (FT) allows to assess the degree of deviation
of one of these concepts from the most appropriate one.

1.3 Reflections on Formal Theoretical Concepts of Information

The formal theoretical concept of information of statistical IT (information the-
ory) as well as the one of algorithmic IT both simply refer to well-formed data
(which needn’t be meaningful).4 What does that mean? The formal theoretical
4 The term ‘well-formed’ might actually be misleading and ought then to be replaced

by the term ‘formed’ or rather ‘structured’ if ‘well-formed’ should imply ‘inductively
generated’.
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concept of information of strongly semantical IT as well as the one of algebraic
IT both refer to truthful meaningful well-formed data. What does that mean?

This indicates - what comes as no surprise - that the just mentioned infor-
mal theoretical concepts of information (e.g. as well-formed data or as truthful
meaningful well-formed data) are underdetermined: they allow for different for-
malisations. In other words, different formal theoretical concepts can correspond
to one and the same informal theoretical concept of information. And what does
that mean?

In order to simplify things, let’s make the following assumption:

(A) To every formal theory of information corresponds or in every formal the-
ory of information is embodied a unique formal theoretical concept of in-
formation. (This presumably means that the resp. formal theories are what
logicians call categorical (or monomorphical).)

Possible relations between two formal theories of information. Let us ask
a (Q)-type question with regards to formal theoretical concepts of information:

(Q*) How many formal theoretical concepts of information are there?

To answer (Q*) let’s distinguish the following ways 2 formal theories of infor-
mation can relate to each other:

Let 2 formal theories be called totally coextensional if they have the same
extension, i.e. they have the same (set of) theorems; let them be called partially
coextensional, if they share some of their extension, but not the whole one; let
them be non-coextensional if their extensions are disjoint. Let 2 formal theories
be compatible if the union of their extensions is consistent; o.w. they are called
incompatible. The following 6 relations are possible, where case 0 is completely
uninteresting (and therefore ‘zero’ – it is plain inconsistency):

totally partially non-
coextensional coextensional coextensional

incompatible 0 2 4
compatible 1 3 5

2 Application of This Conceptual Apparatus to Theories
of Information

Applying this conceptual apparatus to the 2 mathematical theories of statistical
and algorithmic IT, one can ask the question: Which category do these 2 theories
belong to (or in which type of relation do they stand)?

Likewise one can ask the questions: Which category do the 2 formal theories
of algebraic IT5 and (strongly) semantical IT6 belong to? or Which category do
5 Cf. Kohlas’ and Schneuwly’s contribution to this volume.
6 E.g. in the form of van Rooij’s logic of questions and answers, cf. his article in this

volume.
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the 3 formal theories of (strongly) semantical IT, situation-theoretical IT and
Barwise-Seligman IT belong to?7

2.1 A Digression on Facts and ‘Wishful Thinking’

So far there has been talk about questions and facts. Lets turn for a moment to
‘wishful thinking’:

Suppose we formulate the following thesis:

(T) The ‘essential’ meaning of ‘information’ as truthful meaningful wellformed
data is captured by the algebraic IT which is totally coextensional with the
(strongly) semantical, (veridical) situation-theoretical and Barwise-Seligman
ITs (and possibly other ITs).8

(T) is some kind of an information-theoretical analogue to Church’s Thesis (CT).
Its handicap or one of its handicaps is that the informal theoretical concept of
information as truthful meaningful wellformed data is still much vaguer than the
analogous one of effectively computable function in (CT). A consequence of this is
that (T) might not or won’t be suitable for use in informal arguments and proofs
in information theory the way (CT) is in recursion theory.

What is the appeal, the wishfulness (or rather desirability) of such a
thesis (T)?

The appeal is first and foremost a philosophical one: (T) would most likely
show that the various equivalent (or totally coextensional) formalisations are
appropriate formalisations of the informal theoretical concept of information as
truthful meaningful wellformed data. It would mean that there is one formal the-
oretical concept only corresponding to the just mentioned informal theoretical
concept and that the former is clearly a sharpening of the latter. To thesis (T)
applies what Chaitin wrote about a useful theory: it is a compression of data.
And, as he added: comprehension is compression (and at least often, I’d say,
vice versa). (T) would equally point in the direction of a unification of ‘informa-
tion theory’ by connecting similar or related ideas and approaches which have
to a great extent been discovered or developed independently from each other
and which undoubtedly all have to do with information as truthful meaningful
wellformed data.

Needless to add, ‘totally coextensional’ doesn’t mean ‘cointensional’, and that
is why the different totally coextensional theories of information would still re-
flect or highlight different aspects or features of the informal theoretical concept
(as is the case with (CT)).
7 This is a bit of a loose way of writing: The term ‘situation-theoretical IT’ can refer to

Barwise and Perry’s original veridical version or to Devlin’s and Barwise and Perry’s
later alethically neutral version of this IT.

8 J. Seligman drew my attention to the point that there is a descriptive and a nor-
mative understanding of (T). Its primary understanding here is descriptive. Should
there be or show up a formal IT which doesn’t fit in with thesis (T), its understand-
ing might become normative (in the sense of leading to the question: What is wrong
with this new formal IT that it doesn’t fit thesis (T)?).
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2.2 Digression Continued

Suppose thesis (T) is wishful but not true; i.e. it can be falsified by proving that
2 of the relevant formal theories of information belong to one of the categories
2-5 rather than to 1.

This could mean lots of things. It could e.g. mean that there is a family of
meanings of ‘information’ and one could invoke Wittgenstein’s term of family-
resemblance (rather than e.g. claim downright ambiguity of the word ‘informa-
tion’). Family-resemblance of a concept means that the concept consists ‘of a
complex network of overlapping and criss-crossing similarities, just as the dif-
ferent members of a family resemble each other in different respects’ (but there
isn’t one common single feature) (Glock 1996:121). Invoking family-resemblance
could be done for good reasons: According to Wittgenstein some branches of a
family-resemblance concept allow for an analytical definition, or alternatively, for
a formalisation. Another reason is, that even the informal theoretical term of in-
formation (as meaningful well-formed data) might refer, just like Wittgenstein’s
own examples of family-resemblance concepts ‘language’ and ‘proposition’, to a
variety of different but related phenomena.(cf. Glock 1996:120-124)

2.3 Another Digression on Facts and ‘Wishful Thinking’

Even the situation of formal concepts of information as wellformed data (wd)
is of considerable interest: The original concept is no doubt the one of Shan-
non entropy H(X) of the random variable X , i.e. the amount of uncertainty
and information of the scheme of choice presented by a random variable X
(where a random variable presents a probabilistic scheme of choice where one
of its possible values xi ∈ S = {x1, . . . , xm} is chosen with probability PX(xi)
(
∑m

i=1 PX(xi) = 1 and 0 ≤ PX(xi) ≤ 1, for i = 1, . . . ,m)):

H(X) = −
m∑

i=1

PX(xi) log2 PX(xi) = E [− log2 PX(X)]

Cover & Thomas note that in a certain sense, log2
1

PX(xi)
is the descriptive

complexity of the eventX = xi, since �log2
1

PX(xi)
� is the number of bits required

to describe xi by a Shannon code. They observe that the descriptive complexity
of such an object xi depends on the probability distribution PX , it is thus a
relative concept (Cover and Thomas 1991:144).

Another famous concept is of course the one of Kolmogorov complexity (plain
or prefix) of an object x (x ∈ {0, 1}∗), also called the algorithmic complexity of
x by Cover & Thomas, which is the shortest binary computer program p which
describes or rather produces x by means of a universal computer U :

KU (x) = min{l(p)|U(p) = x}
And the conditional Kolmogorov complexity KU(x|y) is defined by

KU(x|y) = min{l(p)|U(p, y) = x}
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where y is taken to be the length l(x) of x (Cover and Thomas 1991:147ff).9

Cover & Thomas observe that in the definition of Kolmogorov complexity of
an object x, a probability distribution P plays no role whatsoever; it is thus
an absolute concept (unlike the one of descriptive complexity). Moreover, the
definition of Kolmogorov complexity is also computer independent - this provides
for the universality of Kolmogorov complexity (Cover and Thomas 1991:144).

Now, there is the following remarkable relationship between the entropyH(X)
of the random variable X and the expectation of the (conditional) Kolmogorov
complexity KU (xn|n) of an object xn: the expectation of KU(xn|n) differs from
H(X) merely by a constant cP depending on the probability distribution P .

Let xn be a string of length n of elements xi ∈ S; and let PX(xn) =
∏n
i=1

PX(xi). Then there exists a constant cP s.t.10

H(X) =
1
n

n∑

i=1

PX(xn)KU(xn|n) − cP

In other terms, the expected value of Kolmogorov complexity of a random se-
quence tends to its Shannon entropy (Cover and Thomas 1991:154f).

As a matter of fact, there exists another universal complexity measure, i.e.
another formal concept of information as wellformed data, which serves as sort of
an intermediate between Kolmogorov complexity and Shannon entropy, namely
the universal probability of an object (a string) x: on the one hand universal
probability is essentially equivalent to Kolmogorov complexity, on the other hand
it exhibits the same basic form as Shannon entropy.

Cover & Thomas define the universal probability Pr of an object (string) x
as the probability that a computer program p randomly drawn as a sequence of
fair coin flips p1, p2, . . . produces x by means of a universal computer U :

Pr(U(p) = x) =
∑

p : U(p) = x2−l(p) = PU (x)

They observe that the concept of universal probability is essentially determined
by the one of Kolmogorov complexity: There exists a constant c, independent of
x, s.t. for all strings x:

PU (x) = c · 2−KU(x) or KU(x) = log2

1
PU (x)

+ c′

Cover & Thomas show that Pr is – just as Kolmogorov complexity – a uni-
versal probability distribution and it is thus likewise an absolute concept (i.e.
independent of any particular probability distribution P ) (Thomas and Cover
1991:160ff, 169f).

9 It is somewhat confusing that Cover & Thomas use K to denote plain Kolmogorov
complexity (which Li & Vitanyi denote by C), while Li & Vitanyi use the same letter
to denote prefix Kolmogorov complexity. Cf. (Li and Vitanyi 1997:194)

10 There actually exists a constant c′P s.t. cP =
|S| log2 n+c′P

n
.
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From all of this, the following conclusions can be drawn:
First, even though the concepts of Shannon entropy and Kolmogorov complexity
have been introduced and developed in different contexts (the theory of com-
munication and algorithmic complexity theory resp.) and for different purposes,
it is a fortunate coincidence that they both are equivalent up to an additive
constant (reflecting the choice of the reference machine).11

The third formal concept of information as wellformed data, namely the uni-
versal probability of an object, is a concept derived from the one of Kolmogorov
complexity. The fact that there are three formal concepts of information as
wellformed data, all essentially equivalent with each other, provides a certain
evidence for the view that there might be a thesis (T’) about the concept of
information as wellformed data analogous to thesis (T).12

The second conclusion is due to the following observations by Cover & Thomas:
They draw attention to a striking similarity between H(X) and log 1

PX(x) in in-
formation theory13, and KU (x) and log2

1
PU (x) in algorithmic complexity theory.

The Shannon code length assignment l(xi) = �log2
1

PX(xi)
� achieves an average

description lengthH(X); while in Kolmogorov complexity theory log2
1

PU (x) is al-
most equal to the algorithmic complexityKU(x) of x. From this they conclude that
log2

1
P (x) looks like the fundamental or natural form of the descriptive complexity

of a string x in algorithmic as well as probabilistic settings (Cover and Thomas
1991:170). That is, log2

1
P (x) might be the fundamental form of the coextensional

formal concepts of information as well-formed data.
A third and last conclusion is also due to Cover & Thomas: Chronologically,

the concept of Shannon entropy is prior to the one of Kolmogorov complexity.14

However, as was mentioned earlier on, the concept of Kolmogorov complexity is
an absolute concept (unlike the one of Shannon entropy), independent of any, or
equivalently, universally good for all probability distributions P . Shannon’s rela-
tive concept of descriptive complexity of an object can therefore be considered as
a relativization of the concept of Kolmogorov complexity to particular probabil-
ity distributions. In this sense, the formal concept of Kolmogorov complexity is
conceptually prior to the one of Shannon entropy (Cover and Thomas 1991:144).

2.4 A Third Digression on Facts and ‘Wishful Thinking’

Since thesis (T) is about meaningful well-formed data mwd, or what is often
called semantical information, the proof of some sort of an equivalence of a
11 Li & Vitanyi just notice that it would have been troublesome had this not been so, as

both are intended to express the content of information (Li and Vitanyi 1997:190).
And Cover & Thomas call this approximate equality an amazing fact (Cover and
Thomas 1991:144) Indeed, if one restricts the theory of Kolmogorov complexity to
prefix-free programs (cf. the concept of prefix Kolmogorov complexity), the entire
theory is formally equivalent to or coextensional with Shannon’s information theory.

12 For a hint in this direction, cf. (Li and Vitanyi 1997:525).
13 Remember H(X) = E[log2

1
PX (X)

].
14 (Shannon 1948), (Kolmogorov 1965, 1968).
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(strongly) semantical IT with the algebraic IT is of particular interest. It might
provide evidence that our wishful thinking is not without at least a grain of
truth.

One variant of a semantical IT is van Rooij’s logic of questions and answers
or at least the starting point of his logic.15 The demonstration of this sort of
equivalence will be carried out by demonstrating that it as well as the first-order
predicate logic as information algebra (an algebraic IT) both are examples of
a more general structure, exhibited by Jeremy Seligman, namely the Gentzen-
theory-based information algebra, or GTBIA for short. The so-called Gentzen
theories and the links determined by Gentzen theories are a fundamental com-
ponent in Seligman’s signalling/indicating model of information flow.16 Thus,
there might be something like an embedding of van Rooij’s logic of questions
and answers and Kohlas’ information algebra in the Barwise-Seligman theory of
information and its signalling/indicating model in particular.17

As a first step, the structure of a Gentzen-theory-based information algebra
GTBIA will be introduced.18

Let 〈Σ,�〉 be a Gentzen theory (i.e., closed under Identity, Weakening and
Cut). And suppose that it is extensional: if σ � τ and τ � σ then σ = τ . For
σ, τ ∈ Σ, say σ&τ ∈ Σ is the conjunction of σ and τ iff for all Γ,Δ ⊆ Σ,

(&L) σ&τ, Γ � Δ iff σ, τ, Γ � Δ
(&R) Γ � Δ,σ and Γ � Δ, τ iff Γ � Δ,σ&τ

(Note that conjunctions, if they exist, are unique, by extensionality.)
A question of the theory is a subset q ⊂ Σ such that � q and σ, τ � for each

σ �= τ ∈ q. Say that q1 is a strong refinement of q2, written q1 
 q2, iff for each
σ ∈ q1 there is a τ ∈ q2 such that σ � τ . (This is a partial order.) The restriction
of q to σ, written q|σ is the set {τ ∈ q | σ, τ ��}.

Now say that [q]σ ∈ Σ is the answer that σ gives to q iff for all Γ,Δ ⊆ Σ,

([q]L) [q]σ, Γ � Δ iff τ, Γ � Δ for each τ ∈ q|σ
([q]R) Γ � Δ, [q]σ iff Γ � Δ, q|σ

(Again, answers, if they exist, are unique, by extensionality.)
Now suppose that Q is a set of questions closed under joins (least upper

bounds in the 
 order) and A is a subset of Σ closed under conjunctions and
answers to questions in Q, i.e., if σ, τ ∈ A and q ∈ Q then both σ&τ and [q]σ
are in A.
15 His logic actually starts off as a semantical IT and soon turns into some sort of a

pragmatical IT large parts of which at least can however still be accomodated within
a semantical framework. i.e. in terms of a semantical IT.

16 Cf. Seligman’s contribution to this volume, sect. 3.
17 This latter speculative remark won’t be elaborated in the sequel.
18 I owe the following comments to Jeremy Seligman. Since this point (namely the

relationship of the Barwise-Seligman theory to Kohlas’ information algebra and to
van Rooij’s logic of questions and answers) is of considerable importance for my ar-
gument, I’m very grateful to him for these comments and his very generous support.
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Proposition. By defining σ ⊗ τ to be the conjunction σ&τ and σ⇒q to be the
answer [q]σ, we get an information algebra 〈A,⊗, Q,
,⇒〉.
This proposition is demonstrated by a fairly straightforward verification that
〈A,⊗, Q,
,⇒〉 satisfies the axioms of an information algebra.19

Call any information algebra of this form a ‘Gentzen-theory-based information
algebra’, or GTBIA for short. This algebra interprets the conjunction of the
Gentzen theory as combination of information, as expected, and uses questions
as a filtering mechanism: σ⇒q = τ⇒q just in case any difference between σ and
τ is irrelevance to the answering of q.

Two examples of GTBIAs:

1. For a language L of first-order predicate logic with a set V of individual
variables, and a model M with domain D, let Σ = ℘(DV ), the powerset of
the set of assignment functions, and let Γ � Δ iff

⋂
Γ ⊆ ⋃

Δ, which is an
extensional Gentzen theory. For each formula ϕ of L, let [[ϕ]] be the set of
assignments that satisfy ϕ in M . For each set X ⊆ V of individual variables
and α, β ∈ DV , define the equivalence relation α ∼X β iff for each x ∈ X ,
α(x) = β(x), and let qX be the set of ∼X-equivalence classes, which is a
question in 〈Σ,�〉.

Now, let A be the set of [[ϕ]] for each formula ϕ in L and let Q be
the set of qX for each finite set of variables X . Then Q is closed under
joins because qX � qY = qX∩Y . Also A is closed under conjunction because
[[ϕ ∧ ψ]] = [[ϕ]]&[[ψ]], and under answers because [qX ][[ϕ]] = [[∃Xϕ]] where X
is the set of free variables of ϕ not in X . Then 〈{[[ϕ]] | ϕ ∈ L},∧, {qX |
finite X ⊂ V },
, ∃〉 is a GTBIA and shows first-order predicate logic to be
a GTBIA.20

2. The language LQ of van Rooij’s logic of questions and answers extends L
by recursively adding a modal operator ?ϕ for each formula ϕ.21 Evaluate
ψ ∈ LQ in a modal model with possible worlds W and constant domain D,
and with ?ϕ interpreted by the following accessibility relation

u ∼ϕ v iff for each assignment function α ∈ DV , α satisfies ϕ in
world u iff α satisfies ϕ in world v22

This is clearly an equivalence relation, so ?ϕ is an S5 diamond. Now let
Σ = ℘(W ) and let Γ � Δ iff

⋂
Γ ⊆ ⋃

Δ, which is an extensional Gentzen
19 Cf. Kohlas and Schneuwly’s article in this volume, sect. 2.
20 In (J. Langel and J. Kohlas 2007), the language L of first-order logic is taken to be

the language of a many-sorted first-order predicate logic. Technically, this is of no
significance whatsoever.

21 This is a sloppy or even a not entirely correct claim: LQ is closely related to the
language of van Rooij’s logic, but it isn’t its language (its language doesn’t involve
modalities; LQ rather is a natural extension of van Rooij’s language). It looks like
everything van Rooij says about questions and answers can be said in LQ. But
LQ allows iteration of the question-forming modality which is something, van Rooij
doesn’t consider.

22 In other words, u |=?ϕψ [α] iff there is a v ∈ W such that u ∼ϕ v and v |= ψ [α]. If
van Rooij presented the Kripke semantics of his logic as explicitly as it is presented
here, he (presumably) would have an equivalent definition.
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theory. For each sentence ϕ of L, let [[ϕ]] be the set of worlds at which ϕ is
satisfiable. For each ϕ, let qϕ be the set of ∼ϕ-equivalence classes, which is a
question in 〈Σ,�〉. Then, as before, let A be the set of [[ϕ]] for each formula ϕ
in LQ and let Q be the set of qϕ for each formula ϕ in LQ. Then Q is closed
under joins because qϕ � qψ = qϕ∩ψ. Also A is closed under conjunction
because [[ϕ ∧ ψ]] = [[ϕ]]&[[ψ]], as before, and under answers because [qϕ][[ψ]]
is the union of those ∼ϕ equivalence classes that intersect with [[ψ]], which
is [[?ϕψ]] and so in A. Then the construction above yields a GTBIA, that is,
〈{[[ϕ]] | ϕ ∈ LQ},∧, {qϕ | ϕ ∈ LQ},
,∪〉 is a GTBIA and shows van Rooij’s
logic of questions and answers (or something close to it) to be a GTBIA.

3 Some Conclusions from These Conceptual Analyses
and Considerations

3.1 The Upshot

The upshot of these conceptual analyses is the following. An examination of
the possibility to make out a reductionist approach in the theoretical study of
information yields a negative result: There is no such reductionist way. Thus,
the answer to the initial question (Q) [How many informal theoretical concepts
of information are there?] is: several. The answer to question (Q*) [How many
formal theoretical concepts of information are there?] is: at least several.

Now, the nonreductionist approach appears to be the right one, as the an-
tireductionist approach is just a lazy answer to the question: how many; since it
abstains from any consideration of connections, similarities, networks between
different concepts of information. And the next question is, following Floridi’s
scheme of options, whether it is a centralized or multi-centered approach.23

3.2 Further Evidence for These Conclusions

The first prima facie conclusion seems to be what might be called a multi-
centralized approach. Evidence for this prima facie conclusion is provided by
the fact – already alluded to earlier on – that there is hardly one formal theory
of information based on a single informal theoretical concept of information.
However, a second look at this conclusion and a closer inspection and analysis of
the resp. concepts should or will show that this multi-centralized approach can
actually be so to speak ‘reduced’ to a centralized one.

3 examples:

i) The situation-theoretical IT: In (Israel and Perry 1990) the term ‘informa-
tion’ is used ambiguously meaning

23 The completely decentralized one drops out for the same reason as that speaking
against the antireductionist approach. As a matter of fact, the difference between
the antireductionist approach and the completely decentralized nonreductionist one
is not entirely clear.
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a) information content carried by a fact and relative to a constraint.
b) (just) information content.

(Devlin 1991) distinguishes 3 meanings of the term ‘information’, namely

a) true infonic proposition
b) infonic proposition (i.e. information content)
c) parameterfree infon

ii) the algebraic IT: (Kohlas 2003) distinguishes 2 informal theoretical concepts
of information, namely

a) a relative one: an information item relative to a domain (question)
b) an absolute one: a domainfree information item (which is an equivalence

class of information items relative to a domain)

This example is insofar less telling as the two concepts are shown to be formally
equivalent; and moreover, Kohlas makes it clear that the relative concept is the
primary one, whereas the absolute concept is derivative and secondary.

There is, however, a more telling ambiguity, namely whether the term ‘infor-
mation’ refers to

a) a ‘body of information’ (i.e. a set of information items)
or
b) an individual information item

And if it is taken to refer to an individual information item, there appears to be
another ambiguity: since an information item is conceived of as an answer to a
question, the term ‘information item’ can either be taken to refer to

b1) something like an ordered pair of question and answer (remember: informa-
tion is a relative concept)

or
b2) to one member of this pair, namely to the answer

iii) The statistical IT: In (Shannon and Weaver 1949) one can find at least two
meanings of ‘information’ which obviously cannot be said to be the same:

a) information (from the point of view of the communication engineer) is con-
ceived of as a choice of one message from a set of possible messages

b) information is the decrease (or change) of (in) uncertainty induced by the
production of a particular event

3.3 Final Conclusion

Lets come back to question (Q) or rather ask a question following from it:

(Qf) Is the multi-centered or the centralized answer to question (Q) the more
appropriate one?
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For the multi-centered answer one might argue as follows: There appears to
be something like a center at the syntactical level (cf. thesis (T’)). And there
might be something like a center on the semantical level (cf. thesis (T)). One
could even be tempted to speculate about the existence of a further center on a
‘higher’, pragmatical level, a level including epistemic, social, political or other
considerations.24

It is possible to argue for the centralized answer, and more seems to speak in
favor of this latter answer: The center on the syntactical level (e.g. Shannon’s
statistical IT) is an integrated part of probably every formal IT on the semantical
level (i.e. it doesn’t just exist side by side and unrelated with a center conjectured
on the semantical level).25 The same line of thought as before could be carried on
in the following way: it is possible that, due to the development of information
science and information philosophy, a new center of formal ITs will be formed on
some sort of pragmatical level and that the center of formal ITs on the semantical
level will be an integrated part of this new center. Furthermore, one could add
the observation – already contained in a philosophical statement by Seligman –
that a center concept on the semantical level is the reduction of uncertainty by
gaining information. If uncertainty is conceptually related or tied to (asking a)
question, another way of phrasing this center concept is in terms of questions
and answers. Again, the model of question and answer plays a crucial role in
Kohlas’, van Rooij’s and Seligman’s contribution to this volume.

All this of course is ‘information science fiction’. But it is a philosophical-
speculative attempt to not only understand where the research on information
in the form of formal ITs comes from, but also where it may be heading to.
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