Building Scalable
Jnd Hig h-Perfnrmance

Web Applications
Using JZEE‘ Technology

Greg Barish

Building Scalable and High-Performance Java™ Web Applications Using
J2EE™ Technology

By Greqg Barish

Publisher: Addison Wesley
Pub Date: December 27, 2001

Table of ISBN: 0-201-72956-3
" Contents Pages: 416
e Examples .
Slotsl

Building Scalable and High-Performance Java(TM) Web Applications Using
J2EE(TM) Technology provides the concise roadmap Java developers and Web
engineers need to build high-performance and scalable enterprise Web applications. It
is unique in its focus on building efficient end-to-end solutions based on the widely
adopted J2EE specification. Each of the relevant technologies is summarized and
analyzed in terms of its scalability and performance implications. Special attention is
also given to those parts of Web application design that extend beyond the J2EE
specification, including strategies for efficient networking and database design.

Packed with general system architecture tips and balanced with succinct examples for
each technology, this book allows you to focus on practical strategies for effective
application design without getting overwhelmed with useless detail. As a result, you
will quickly and easily be able to understand how to use J2EE technologies to build
application systems that deliver scalability and high performance.

Preface

When it comes to building Web applications, there are two fundamental problems. One is that
there are flat-out too many choices in terms of how to develop them. These days, one can choose
from literally hundreds of languages and technologies that claim to make Web application
development easier. The other problem is that there is a lack of common knowledge about how to
deploy them in a way that yields high performance and scalability—traits essential to anything
accessible over the Internet.

Fortunately, there are now some unifying application infrastructures that not only simplify Web
application development but also encourage efficient deployment. One of the most popular
approaches is proposed by the Java 2 Enterprise Edition (J2EE) specification. The J2EE spec
leverages and extends the existing foundation of Java technology so that engineers can build Web
applications that encourage high performance and scalability. One of the most compelling features
of J2EE is its built-in support for key low-level platform services such as transaction management,
naming, and security, each of which normally requires substantial engineering time and expertise.

Although it unifies much of Web application development and deployment, comprehending J2EE
is daunting. To understand it, you need to read either the spec itself or a lot of books on each
specific J2EE technology (e.g., Servlets, EJBs, and JDBC). The spec itself is dry and not meant to
be a practical resource. And the problem with reading books about each technology is that they
tend to be overly long—some EJB-only books exceed 1000 pages. Such books also tend to be full
of irrelevant details and appendices that you don't need or could have found easily online. Finally,
most of them do not address the unspoken parts of Web application design—for example,
database design and networking efficiency.

Goals

Building Scalable and High-Performance Java™ Web Applications Using J2EE™ Technology
was written to fill the need for an applied summary of how to build high-performance and scalable
Web applications using J2EE technology. This called for a delicate balance—introduce a set of
new technologies and their relationships and provide enough examples so you can actually see
how things work. The objective was not to go too far overboard to produce an overly long book
that lacked focus (or one that could cause injury when lifted). Thus, the goal was to produce a
concise but practical summary.

We'll cover all the key elements of J2EE—the spec itself, servlets, JSP, EJBs, messaging, JDBC,
and more. Along the way, there will be plenty of examples. Many will be presented with
deliberate brevity, the idea being that it is better to cut to the chase of how to use a technology
rather than to show so many gory details that the readers' eyes start to glaze over. As we already
know, there are plenty of books that address such details. When you've decided which parts of
J2EE are relevant to you, you might consult those books as a complement to this one.

In addition to being a well-rounded summary, another purpose is to fill in the holes about Web
application design that the J2EE specification simply does not address. Although the specification
shows how to connect different Java technologies and APIs to build an enterprise application
infrastructure, it does not address related issues such as networking and database design. For
example, even though the specification describes how HTTP is used to communicate with a J2EE
system and how JDBC can be used to communicate to a relational database from a J2EE system, it
contains no details about HTTP or relational databases. As any seasoned Web application designer
knows, understanding both is critical when designing your system for high performance and
scalability.

In summary, this book has the following goals:

e To define and identify the challenges associated with building scalable and high-
performance Web applications.

e To provide you with a J2EE technology roadmap for designing Web applications.

e Todescribe concisely key J2EE technologies, emphasizing details related to high
performance and scalability.

e Tofill in the gaps of Web application design that the J2EE spec leaves out, such as
important details related to HTTP and database design—two of the most common J2EE-
related technologies.

e To demonstrate the benefits of various specific J2EE design decisions, illustrating these
differences with real performance graphs and charts.

This last item is targeted at making the suggestions in this book more compelling. For example, it
is only somewhat comforting to say things like "connection pooling is good," which is the
approach that many books take. It is more convincing and clear if real performance charts and
graphs back up these claims. This book aims to achieve that goal.

Audience

Building Scalable and High-Performance Java™ Web Applications Using J2EE™ Technology is
written for any engineer or architect who is proficient with Java and wants to build Java-based
Web applications for performance and scalability, but does not yet understand how J2EE can be
used toward that goal or how all of its underlying technologies work.

This book is also for those who want to see beyond the J2EE spec, in particular, to consider
current issues in efficient networking and database design in addition to future issues related to
Web services technologies such as XML and SOAP.

Finally, this book is for those already familiar with some parts of J2EE technology (e.g., Java
Servlets), but not others (e.g., the Java Message Service).

A Note about Performance Measurements

Throughout this book, there are various performance measurements and comparisons. Although
the same general trends apply to nearly every architecture (because the performance trends
illustrated are architecture-independent), it may be useful to list the details of the system used for
testing.

All tests were conducted on a Dell Latitude running a single 833 MHz Pentium 111 with 256 KB
RAM. The operating system and application software consisted of:

Windows 2000, Professional Edition

Apache Web server, version 1.3.14

Java Runtime Environment and Development Kit, version 1.3
J2EE SDK and reference implementation, version 1.3 (Beta)
Apache Jakarta/Tomcat servlet container, version 3.2.1
Oracle database system, version 8.1.6

The CD-ROM

The CD-ROM that accompanies this book contains most of the source code in this book. This
supplement is intended for use on Windows 95/98/NT/2000 machines running Java 1.3, the
Cygwin BASH shell and accompanying utilities, and Oracle 8.1.6. For more details about the
desired reference system, see the preceding list.

Using the CD-ROM is straightforward: Simply insert the disk into your CD-ROM drive and then
use your Web browser to open the index.html file that resides at the top-level directory. From this
initial file, you will be able to get to other parts of the included documentation, as well as the
source code.

Note that to compile and run some of the source code, first you need to copy the contents of the
desired directories to your local hard drive and then compile everything there. More detail about
this and the requirements for compilation can be found in the top-level index . html file.

Onward!

My hope is that this book acts as an ongoing reference for you as your J2EE application evolves.
You will need to continually make choices in terms of how to provide application functionality to
your consumers, both individuals and other businesses. You will have to address questions like,
"Do | place the business logic in the database or the application server?" and "Should our batch
data transfer go through a Web server or a messaging server?" Independent of the details
associated with each of these choices, you will want to enable such features in a way that
promotes performance and scalability. This book will help you understand the tradeoffs, both
general and specific, in Web application design that can help you achieve that goal.

Acknowledgments

The folks at Addison-Wesley did a wonderful job of helping me publish this book. Mary O'Brien,
my editor, was an excellent source of creativity, support, encouragement, and understanding right
from the start. Mary put up with my rocky schedules and, though | tried my best to disrupt the
process more than once, ensured a smooth path for publication. Alicia Carey was a great

coordinator and put up with my endless barrage of large-attachment-bearing e-mails. Marilyn
Rash deftly led production, despite a very tight schedule. And Joan Flaherty worked tirelessly to
ensure that the result was of professional quality, all the while making the process surprisingly
enjoyable.

I'd also like to thank the semi-anonymous reviewers of earlier versions of the manuscript that
provided constructive feedback. In particular, Scott Miller and Tripp Lilley identified a number of
important areas to improve on—their attention to detail made a difference.

I could not have completed this book without the support of a wonderful family: my mom and dad
(Tina and Frank), Lisa and Chris, Heather, Max, and now... Jack! Words alone cannot describe
how lucky | am to have their love and encouragement.

And finally, there is Seong Rim. She suffered through my unfair schedules and constant
complaining, somehow always being able to pick me up and say just the right thing. Without her
in my life, | could not imagine wanting to write anything at all.

Chapter 1. Scalable and High-Performance Web
Applications

The Emergence of Web Applications

Performance and Scalability

The Internet Medium

Measuring Performance and Scalability

wScalability and Performance Hints

Summary

The Emergence of Web Applications

In the span of just a few years, the Internet has transformed the way information is both provided
and consumed throughout the world. Its hardware and software technologies have made it possible
for anyone not only to be an information consumer, but also for nearly anyone to be an
information provider. Although the Internet—specifically the World Wide Web (the Web)—has
been treated seriously as a platform for information sharing among the mass public for only a
short time, many organizations have managed to create useful Web applications that provide
significant value to consumers.

These Web applications allow consumers to buy books and compact discs online. They enable
businesses to use the Internet for secure data transactions. Workers use Web applications to find
jobs; employers use them to find employees; stocks are bought and sold using online applications
provided by brokerages; and travelers book flight and hotel reservations using Web applications.
The list goes on and on. Obviously, many useful Web applications are available on the public
Internet as well as within countless corporate intranets today.

This book describes general techniques for building high-performance and scalable enterprise
Web applications. Generally speaking, this means building applications that are reasonably and
consistently fast and have a strong, gradual tolerance for rising user and request demands.
Although we will spend a lot of time considering this topic in general, the core of our discussion
will be phrased in terms of a solution built around the Java 2 Enterprise Edition (J2EE)
specification. Now, before we dive into the details of building these kinds of applications, it is
important to identify and understand the overall problem. More specifically, it is important to
define Web applications and scalability.

Basic Definitions

In this book, Web application has a very general definition—client/server software that is
connected by Internet technologies to route the data it processes. "By Internet technologies, |
mean the collection of hardware and software that comprises the network infrastructure between
consumers and providers of information. Web applications can be made accessible by specific
client software or by one or more related Web pages that are logically grouped for a specific
productive purpose. That purpose can be one of any number of things, for example, to buy books,
to process stock orders, or to simply exist as content to be read by the consumer.

Notice that our discussion is about Web applications, not just "Web sites.” In truth, the difference
between the two is essential to understanding one of the key themes of this book. Most
nonengineers do not make a distinction between a Web site and a Web application. Regardless of
the term, it's the thing that allows them to buy their books online, to make plane reservations, to
purchase tickets, and so forth.

If you're an engineer, however, there is a difference. For you, it's likely that when someone talks
about, say, the performance of a Web site, you start thinking of back-end details. And so do I.
Your mind begins to consider if it's running an Apache or 11S and whether it works using Java
servlets, PHP, or CGl-bin Perl scripts. This difference in thinking between engineers and
nonengineers could be confusing. Engineers, by habit, tend to associate "Web site” with the server
side. However, as we all know, there is more to a Web application than just the server side; there's
the network and the client. So, based on just that, a Web site (server) is not the same thing as a
Web application (the client, network, and server).

While this book emphasizes server-side solutions, it is also concerned with client-side and
networking topics because they have a fundamental impact on how end users perceive Web
applications. That is, we will be concerned with the end-to-end interaction with a Web site, which
simply means from client to server and back to client. This is a reasonable focus. After all, most
people who use the Web are concerned with its end-to-end behavior. If it takes them a while to
buy concert tickets online, it doesn't matter if the problem is caused by a slow modem, an
overtaxed server, or network congestion. Whatever the reason(s), the effect is the same—a slow
application that's eating up time. As engineers, we are concerned not only that such applications
might be slow for one user, but also that the system becomes slower as more users access it.

Now that we have a better fix on the scope of a Web application, let us review its core components.
These are the major pieces of any online application and each represents an opportunity—a
problem or a challenge, depending on how you look at it. Although you're probably familiar with
the components, it doesn't hurt to make sure everyone is on the same page, especially since these
terms appear throughout the book. Let's start with the client side.

We will say that Web applications are used by consumers via client software (i.e., Web browsers
or applications that use the Web to retrieve or process data) running on client hardware (i.e., PCs,
PDAS). Application data is provided and processing is handled by producers via server software
(i.e., Web server, server-side component software, database) running on server hardware (i.e.,
high-end multiprocessor systems, clusters, etc.). Connecting the client to the server (from the
modem or network port on the client device to the networking equipment on the server side) is the

networking infrastructure. Figure 1-1 shows the client/server relationship graphically. Notice that
the server side is bigger; in general, we assume that the server side has more resources at its
disposal.

Figure 1-1. Client, network, and server
Server Hardware

Client Hardware

Network
Client - Server
Software Software

At this point, it is important to distinguish one piece of server software, the Web server, because it
nearly always plays a central role in brokering communication (HTTP traffic) between client and
server. In this book, when | refer to the "server side," | am nearly always including the Web server.
When it is necessary to distinguish it from the rest of the software on the server side, I will do so
explicitly.

The Nature of the Web and Its Challenges

Although Web applications have rapidly made the Internet a productive medium, the nature of the
Internet poses many engineering puzzles. Even the most basic of challenges—engineering how a
provider can quickly and reliably deliver information to all who want it—is neither simple nor
well understood. Like other challenges, this problem's complexity has to do with the nature of the
medium. The Internet is different from the information-sharing paradigms of radio, television, and
newspapers for several reasons. Perhaps two of the most important reasons are its incredibly wide
audience (unpredictable number of customers) and the potential at any time for that wide audience
to request information from any given provider (unpredictable work demands).

Unlike in other media, Internet information providers simply do not have the ability to know their
audience in advance. Newspapers, for example, know their circulation before they print each
edition. They also have the advantage of being able to control their growth, making sure they have
enough employees to deliver the paper daily, and have the resources and time to go from deadline
on the previous night to delivery on the next morning. Furthermore, newspapers do not have to
deal with sudden jumps in circulation. Compared to the Internet, the growth of big newspapers in
metropolitan areas seems far more gradual. For example, when the Washington Post was founded
in 1877, it had a circulation of 10,000. By 1998, that circulation had reached nearly 800,000 for its
daily edition and more than that for its Sunday edition.”! That's an average growth rate of just over
6,500 subscribers per year, or 17 per day.

T Source: http://www.thewashingtonpost.com.

Deployers of Web applications have a love/hate relationship with their growth rates. In one sense,
they would love the gradual growth of 17 new users per day. How nice life would be if you had to
worry about scaling at that rate! You could finally go home at 5 p.m., not 9:30 p.m. At the same
time, such growth rates are the reason that people are so excited about Web applications—because
you can potentially reach the whole world in a matter of seconds. Your growth rate out of the gate
could be hundreds of thousands of users. Although this bodes well for the business side of the
things, it creates a tremendous challenge in terms of dealing with such demands.

On the Internet, circulation is akin to page hits, that is, the number of requests for a given
document. Page hits can jump wildly overnight. A favorite example in the Web-caching
community is the popularity of the online distribution of the Starr report. As most Americans
know, this report was put together by the Office of the Independent Counsel during the Clinton
administration. Let us just say that, while it was not flattering by any means, it was eagerly
awaited by both the American public and the international press corps.

When the Starr report was released online in the summer of 1998 at government Web sites, tens of
thousands of people tried to download it. A representative for Sprint, Inc., one of the Internet's
backbone providers, reported a surge in bandwidth demand that ranged between 10 and 20 percent
above normal; a representative of AOL reported an "immediate 30 percent spike"; and NetRatings,
a Nielsen-like Internet content popularity company, estimated that at one point, more than one in
five Web users was requesting the report or news about it. CNET.COM ran a number of stories
about the event and its ramifications for Internet scalability in the Fall of 1998.1

[Source: http://news.cnet.com/news/0-1005-204-332427.html.

The conclusion among network administrators and engineers was universal. There were simply
too many requests to be handled at once, and the distribution mechanisms were unable to scale to
demand. It was a real test of the scalability of the Internet itself. Not only were the Web servers
that provided this information overloaded, but the networking infrastructure connecting consumers
to providers became heavily congested and severely inefficient. The effect was much like that of a
traffic jam on a freeway.

This phenomenon was unique because it demonstrated the effects of sudden popularity as well as
the short-lived nature of that popularity. For example, it is unlikely that you or anyone else
remembers the URL(s) where the report was first available. And it is unlikely that you have it
bookmarked. Thus, even had those sites been able to accommodate the demands of the time by
buying bigger and faster machines, it would likely have been money wasted because the need for
those resources dropped dramatically after the public lost interest in the report.

Other media, such as radio and television, are broadcast and do not need to worry about the size of
their audience affecting their ability to deliver information. Consider television or radio programs,
such as the national and local news. Their programmers know in advance when they are scheduled
to broadcast. They have the luxury of being able to prepare ahead of time. Even when live radio or
television beckons, the fact that both media are broadcast means that there is only one audience to
address. Cable companies and good old TV antennae are already in place to facilitate the transport
of that information. If we all watch or listen to the same channel, we all see or hear the same
program. This is not the case with Internet audiences, where it is usually impossible to prepare for
every request, where every consumer of information requires a unique response, and where there
is a continual need for new virtual links (HTTP connections) between consumer and provider to
be both created and then destroyed.

Have you ever gone to a Web site, clicked on a link, and really waited for a response? Of course
you have; we all have. It's annoying and frustrating. Worst are those content-laden sites that are
meant to be read like newspapers. You want to jump from link to link, but every time you click,
you have to wait seconds (not milliseconds) for the page and the ads and the embedded applets to

download. You almost begin to hate clicking on a link because you know you will have to wait.
You've learned to classify this kind of site as slow.

Then there are sites that are suspiciously slow. In these cases, you have reason to believe that
bazillions of people are trying to connect, and this mass, not the technology, is responsible for the
slowness. Say you're ordering a book at a site that has just announced a 50%-off sale. Or suppose
tickets for a really hot concert have just gone on sale. When you're able to connect, the site seems
unresponsive. When it does respond, it crawls. You guess that the site is buckling under the
demand caused by the event. You've learned to classify this kind of site as not scalable.

As users, we have learned what poor performance and scalability are because we have
experienced them. As engineers, we would like to understand these faults better so that our own
users don't experience them. Because that is the focus of this book, let's start our discussion of
performance and scalability by defining our terms.

Performance

Performance can be described simply as the raw speed of your application in terms of a single
user. How long does a single application-level operation take? How long does it take to search for
a book? How long does it take to confirm an online registration once we click Confirm? How long
does it take to check out and pay at an online store? Notice that some of these examples describe
atomic operations and some don't. When describing performance, we have to be clear if we are
talking about one application operation or an entire session.

Consider the user interaction required to buy an airline ticket in Figure 1-2: In this session, there
are three application operations, each consisting of a roundtrip between client and server. The
operations are listed in Table 1-1 with their code names.

Figure 1-2. Application operations associated with buying an airline ticket

User requests search.

—-

Search results are returned,

Flight is chosen.

- —

Confirmation is generated.

Conlirmation is given,

o

Ticket is purchased.

When we are talking about the performance of an operation, such as selection, we are interested in
the end-to-end time required to complete that operation. In other words, the clock starts ticking
when the user clicks the button and stops ticking when the user sees the information delivered.
Why all this focus on end-to-end performance?

Table 1-1. Application Operations

Code Name User Action Server Action
Search Criteria specified Search based on criteria
Selection Flight chosen Confirmation for that flight generated
Confirmation Flight confirmed Confirmation processed

We could, of course, judge performance by measuring the speed of the Web server's response, of
the network, of our database retrievals, and so on. But we know that all of these performance
marks are irrelevant when compared to the overall time for a logical operation. Although unit
performance numbers make us happy or proud (especially if we designed that piece of the
application!), end-to-end performance is the one that really counts—this is the metric that either
scares users off or wins their loyalty. And thus, this is the one that can spell life or death for your
application.

Addressing end-to-end performance means making operations faster for the user. To do that, we
can improve the unit performance of some of the components involved in the operation(s). For
example, we can improve the performance of the Web server, the database, or the application
servers. The exact solution (e.g., better algorithms, more efficient queries, etc.) depends on the
unit being tuned. The point is that measuring performance should be a top-down process: Start
with the user, move to the components, and then to parts in the components. Look for trends and
ask if a single instance of poor performance can be traced to a larger, general problem.

Scalability

Informally, engineers describe the challenge of dealing with large audiences and high demand as a
problem of scalability. More specifically, we say that a Web appli cation can scale if it continues
to be available and functional at consistent speeds as the number of users and requests continues to
grow, even to very high numbers. A provider's inability to deliver a document, such as the Starr
report, because of server overload was thus a problem of scalability. Note that this definition has
nothing to do with performance. As long as a slow application continues to provide consistent
performance in the wake of rising demand, it is classified as scalable!

Now, although scalability is commonly defined strictly as a measurement of resiliency under ever-
increasing user load, nobody expects a single instance of an application server on a single machine
to accommodate millions of users. Often people consider how well an application can scale up" by
describing how effective it is to add resources, such as more CPUs, more memory, or more disks.
An application is considered to scale up well if it requires additional resources at a low rate. For
example, if we need to add 300MB RAM per 10 concurrent users on our system, we are in trouble.
As | discuss later, this scale-up attribute is often represented as a cost, for example, a cost per
concurrent transaction.

Generally, three techniques can be employed to improve scalability:

e Increase the resources (bigger machines, more disk, more memory).
e Improve the software.
e Increase the resources and improve the software.

Although the long-term answer is the third technique, our bias is toward the second. Good design
at the beginning of a project is the most cost-effective way to improve scalability. No doubt you
will need greater resources to deal with higher demands, but this is never the whole story.
Although it can take the purchaser part of the distance, throwing money at the problem cannot

ensure scalability. | don't deny the need to spend money at certain points in the process. Rather, |
suggest strategic places to spend and strategic opportunities during the design that can give
application designers the biggest bang for their buck, thereby reducing their need to purchase
more resources than necessary.

The Internet Medium

Six attributes of the Internet as a medium compound the challenge of delivering performance and
scalability. The better we understand and appreciate these attributes, the more strategic we can be
in meeting the challenge to build Web applications that perform and scale well.

First, as mentioned earlier, there is potentially a wide audience for Web application providers to
manage—wider than in any other medium. Second, the Web is an interactive medium: Consumers
not only receive information, they also submit it. Third, the Internet is dynamic in the sense that a
given user request does not always result in the same server-side response. Fourth, the Internet as
a utility is always on and providers have no guarantees about when and how often their
information will be accessed. Fifth, providing information over the Internet is an integrated
process that often depends on the coordination of multiple provider subsystems to deliver
information. And sixth, providers lack complete control in terms of the delivery of information to
consumers: There are many networking elements that exist between provider and consumer, most
of which are not controlled by the provider.

Some of these attributes may seem obvious; some may not. In either case, thinking about the
details and their implications will prepare you for the solutions part of this book.

Wide Audience

I'm not going to beat you over the head with the fact that millions of people use the Internet every
day. That is obvious and the increasing numbers are the primary reason that application architects
worry about things like scalability in the first place. However, | will inform you of a few things
that you may not know—or just may not appreciate, yet.

One is that there is another Internet "audience" to consider, one that is not often addressed. This
quieter, hidden, but rapidly growing group of Web clients are better known as "bots.” If you are
familiar with search engine technology, you already know that search engines use automated
softbots to "spider" (recursively traverse) the Web and update search engine indices. This process
has been going on since search engines were first deployed; bots are a simple example of one type
of information agent.

Today's bots are just the tip of the iceberg. More sophisticated information agents are just around
the corner that will allow users to monitor multiple sites continuously and automatically. For
example, instead of using the Web interactively to watch and participate in online auctions (like
those at eBay and Yahoo), users will configure information agents to watch continuously and bid
automatically. This is an inevitable and obvious future direction for the Web: People want to do
more than sit around watching their monitors all day, manually hunting for information.

Bots and information agents are particularly fond of things like data feeds, which are information
sources that continually change and require monitoring. When the Internet was first being
commercialized, it was popular to connect real-time data feeds (such as the newswire services)
and build access methods to them via Web applications. This trend shows no sign of slowing; in
fact, it threatens to become much greater as Web applications gradually become data feeds in
themselves.

I've avoided boring, albeit frightening, statistics about the growing number of human Internet
users. Instead, I've reminded you that there are and will be new types of application clients, not

just those with two eyes. An increasing number of information agents will automate Web querying
and a growing trend will be to treat Web applications like data feeds. In short, the Web's audience
is definitely growing, not to mention changing, and so are its demands. What's more, this newer
audience is persistent and regular, and does not mind testing the 24x7 feature of the Web and its
applications!

Interactive

On the Internet, consumers query providers for information. Unlike in other media, information is
not distributed at the whim of the provider. Instead, consumers request information via queries,
which consist of a series of interactions between the client and server.

In addition to querying, consumer requests can contain submitted information that must be
processed. This submission mechanism can be explicit or implicit. Explicit submission is the
user's deliberate transmission of information to the provider, such as a completed HTML form. In
contrast, implicit submission is the provision of data through the user's Web session. Cookies are a
good example of this, in that they consist of data that is chosen by either the provider (e.g., for
page tracking) or the consumer (e.g., for personalization).

Regardless of how the information is submitted, the application's processing must often be based
on this information. Thus, the Internet is not simply a library where clients request items that exist
on shelves; rather, requests involve calculations or processing, sometimes leading to a unique
result. Furthermore, the interactive nature of the Web means that a request cannot be fulfilled in
advance—instead, the application must respond at the time the request is made, even though
substantial processing may be associated with that request.

Dynamic

Web applications present information that depends on data associated with the user or session. As
far as the user goes, countless demographic and historical session attributes can make a difference
in how an application responds. The response may also depend on things unrelated to the user,
such as a temporal variable (e.g., the season or the day or the week) or some other external real-
time data (e.g., the current number of houses for sale). In any case, the data being generated by a
Web application is often dynamic and a function based on user and/or session information.

The main problem that a dynamic Web application creates for the designer is the inability to use
the results of prior work. For example, if you use a Web application to search for a house online,
searching with the same criteria one week from the date of the first search may very well return
different results. Of course, this is not always the case. If you conduct the same house search 10
minutes after the first one, you will very likely get the same results both times. Obviously, the
designer must know when it is safe to reuse results and when it is not.

There is a subtle relationship between interactive and dynamic application behavior. To avoid
confusion, keep the following in mind: Interactivity has to do with the Web application executing
in response to a user, whereas dynamism has to do with the response being a product of the user,
her response, or some temporal or external variable. Thus, dynamic behavior is the more general
notion: An application response is the product of a set of variables, some user-specified, some not.
Interactivity is simply one means to achieve a dynamic response. Put another way, interactivity
describes a cause; dynamism describes an effect.

Always On

This Internet is never supposed to sleep. Banks advertise Web banking 24 hours a day, 7 days a
week. This 24x7 mentality is part of what makes the Internet so enticing for users. People
naturally assume that, at any time, it exists as an available resource. However nice this feature is

for users, it is equally daunting for Web application designers. A good example of what can
happen when an application is not available 24x7 is the trouble users had with eBay, the online
auctioneer, in late 1999 and 2000.

During various system or software upgrades over that time, eBay suffered intermittent problems
that made it unavailable to users. In June of 1999, it was unavailable for 22 hours. Since the
purpose of eBay's service is to manage millions of time-limited auctions, its core business was
directly affected. Instead of selling to the highest bidder, some sellers were forced to sell to the
"only bidder." Users complained, demanding a reduction in fees. The problems made the news,
and the company was forced to issue apologies in addition to refunding some fees. This is not to
say that eBay is not a scalable service or that the system is always unstable; indeed, eBay is one of
the most trafficked sites on the Internet, and except in rare instances, has done a tremendous
amount of successful 24x7 processing.

However, this simple example does underscore the importance of 24x7 when it comes to Web
applications. Nobody will write news stories about how well you perform 24x7 service, but they
will definitely take you to task for glitches when you don't. These problems can affect your whole
company, especially if part of its revenue comes via the Web.

Observant readers might argue that failure to provide 24x7 service is not a question of scalability
but of reliability. True, the inability to provide service because of a system failure is a question of
reliability and robustness. From the practical standpoint of the user, however, it does not matter.
Whether the application is unavailable because of a power problem with the site's Internet service
provider (as was the case in one of eBay's outages) or because the system can't handle a million
simultaneous users, the result is the same: The application is unavailable.

Integrated

When consumers request information, providers often refer to multiple local and remote sources to
integrate several pieces of information in their responses. For example, if you use the Internet to
make an airline reservation, it is common for multiple systems (some of which are not directly
connected to the Internet) to be indirectly involved in the processing of your reservation. The
"confirmation code" you receive when the reservation is made comes only after all steps of the
transaction have been completed successfully.

Integration on the server side is common for most Web applications. To some extent, this is a
medium-term problem. The Web is a young technology and most of its important processing still
involves some legacy or intermediate proprietary systems. These systems have proved reliable and
have seemed scalable. Certainly, they are still part of the loop because organizations believe in
their ability to handle workloads, but the question is whether these systems are ready for Internet-
level scale.

Consider an airline that migrates its ticketing to the Web. To do so, server-side processing is
required to connect to a remote, proprietary invoice database for each request. In the past,
hundreds of phone-based human agents had no trouble using such a system to do processing. But
it may be the case that, for example, there are some hard limits to the number of concurrent
connections to this database. When there were never more than a few hundred agents, these limits
were never exposed. However, putting such a system in the server-side mix may turn out to be the
bottleneck in a Web application.

Lack of Complete Control

To a provider of information, one of the most frustrating aspects about the Web is the fact that, no
matter how much money is thrown at improving application scalability, it does not mean that the
application will become scalable. The culprit here is the Internet itself. While its topology of

interconnected networks enables information to be delivered from anywhere to anywhere, it
delivers very few quality of service (QoS) guarantees. No matter how much time you spend tuning
the client and server sides of a Web application, no authority is going to ensure that data will
travel from your server to your clients at quality or priority any better than that of a student
downloading MP3 files all night. And despite your best efforts, an important client that relies on a
sketchy ISP with intermittent outages may deem your application slow or unreliable, though no
fault of your own.

In short, the problem is decentralization. For critical Web applications, designers want complete

control of the problem, but the reality is that they can almost never have it unless they circumvent
the Web. This is another reminder that the solution to scalable Web applications consists of more
than writing speedy server-side code. Sure, that can help, but it is by no means the whole picture.

When we talk about the lack of control over the network, we are more precisely referring to the
inability to reserve bandwidth and the lack of knowledge or control over the networking elements
that make up the path from client to server. Without being able to reserve bandwidth between a
server and all its clients, we cannot schedule a big event that will bring in many HTTP requests
and be guaranteed that they can get through. Although we can do much to widen the path in
certain areas (from the server side to the ISP), we cannot widen it everywhere.

In terms of lack of knowledge about networking elements, we have to consider how clients reach
servers. On the Internet, the mechanism for reaching a server from a client involves querying a
series of routing tables. Without access or control over those tables, there is no way that designers
can ensure high quality of service.

Techniques like Web caching and content distribution allow us to influence QoS somewhat, but
they don't provide guarantees. As it turns out, the lack of control over the underlying network
represents the biggest question mark in terms of consistent application performance. We simply
cannot understand or address the inefficiencies of every path by which a client connects to our
application. The best we can do is design and deploy for efficiency and limit our use of the
network, and thus limit performance variability, when possible.

Measuring Performance and Scalability

Thus far, | have defined the problem of performance and scalability in the context of Web
applications, but | have not said much about their measurement. The measurement of performance
and scalability is a weighty subject, and is different from the focus of this book. However, as you
apply the various techniques that we cover here to your systems, you will want some simple
measurements of the success of your efforts. In this section, we'll cover a few metrics that will tell
you if your application is fast and scalable.

Measuring Performance

It's fairly easy to measure performance. We can use the application being tested or we can design

an automatic benchmark and observe the original speed of the application against it. Then we can

make changes to the software or hardware and determine if the execution time has improved. This
is a very simple approach, but by far the most common metric we will use in our study.

It is important that, when measuring performance in this way, we identify the complete path of
particular application operation. That is, we have to decompose it into its parts and assign values
to each. Let us return to an earlier example, that of buying airline tickets online, and imagine that
we're analyzing the performance of the "confirmation" process, which takes 2.8 seconds. Table 1-
2 shows one possible set of results.

The way to read this table is to consider that completing the operation in the first (far left) column
occurs at some point in time offset by the user's click (shown in the second column) and thus some
percentage of time (shown in the third column) of the end-to-end execution. Some of this requires
interpretation. For example, "Web server gets request” does not mean that the single act of getting
of the request is responsible for over 6 percent of the execution time. It means that 6 percent of the
execution time is spent between the initial user's click and the Web server's getting the request;
thus, 6 percent was essentially required for one-way network communication. Building these kinds
of tables is useful because it allows you to focus your efforts on the bottlenecks that count. For
example, in Table 1-2, we can clearly see that the database query is the bottleneck.

To build accurate tables requires two important features. One is that your system be instrumented
as much as possible; that is, all components should have logging features that allow them to be
debugged or benchmarked. Web servers, become familiar with how these systems allow logging
to be turned on and off. Make sure that you turn on logging for benchmark testing but turn it off
when resuming deployment; if it's on, logging will slow down your application. Also, your code is
actually the least likely place to be instrumented. Thus, it can be good to place some well-chosen
logging statements in your code. For example, if an application server makes three queries (as part
of a single transaction) before replying, it would be useful to put logging statements before each

query.

Table 1-2. Confirmation Process

Unit Action Elapsed Time of Action (ms) End-to-End Time (%)

User clicks 0 N/A
Web server gets request 170 6.07
Servlet gets request 178 0.29
EJB server gets request 1.68

Database query starts 440 7.68
Database query ends 2250 64.64
EJB server replies 2280 1.07
Servlet replies 2360 2.86
User gets information 2800 15.71

The second important requirement is clock synchronization. The components being measured may
be on different machines and without synchronizing your clocks, you can mistakenly assess too
little or too much blame to an action that is actually much faster than you thought. Exact
synchronization of clocks is a bit unrealistic, but as long as you know the clocks' relative drifts,
you should be able to compensate in your calculations. Don't overdo synchronization or
calibration—for example, being off by less than a hundred milliseconds for an entire operation is
not a big deal because it won't be perceptible.

Beyond Benchmarking

In addition to benchmarking, there are other types of performance measurements that are well-
suited to certain classes of problems. For example, suppose your Web applications are very CPU
bound. To improve performance, you can add multiple processors to your system or process the
problem over a cluster of workstations. Both approaches assume that it is possible to either
automatically parallelize your computations or leverage explicit parallelization (i.e., thread use)

and allocate parallel blocks of instructions to different CPUs/workstations. Whichever solution
you choose, you will need to measure its net effect. If you don't, then you're shooting in the dark.

When trying to assess improvement in pure computational performance, we can measure the
speedup associated with that computation. Speedup is generally defined as:

SpECdup = I‘IHJ{ ?-I‘IE'].'..'

where Tqq is the execution time under the previous computational scenario and T is the
execution time under the new scenario.

The term scenario is general because there are two general ways to investigate speedup: at the
software level and at the hardware level. At the software level, this means changing the program
code: If a program takes 10 seconds to run with the old code and 5 seconds to run with the new
code, the speedup is obviously 2. At the hardware level, this means adding processors or cluster
nodes. Correspondingly, for multi processor or cluster-based systems, the speedup metric is
commonly redefined as:

Speedup = 7,/ T,

where T is the execution time with one processor and T is the execution time when the program
iS run on p processors.

Ideally, speedup increases linearly, as processors are added to a system. In reality, however, this is
never the case. All sorts of issues—processor-to-processor communication cost, program data
hazards, and the like—contribute to an overall overhead of computing something on p processors
instead of one.

Measuring Scalability

Scalability is almost as easy to measure as performance is. We know that scalability refers to an
application's ability to accommaodate rising resource demand gracefully, without a noticeable loss
in QoS. To measure scalability, it would seem that we need to calculate how well increasing
demand is handled. But how exactly do we do this?

Let's consider a simple example. Suppose that we deploy an online banking application. One type
of request that clients can make is to view recent bank transactions. Suppose that when a single
client connects to the system, it takes a speedy 10 ms of server-side time to process this request.
Note that network latency and other client or network issues affecting the delivery of the response
will increase the end-to-end response time; for example, maybe end-to-end response time will be
1,000 ms for a single client. But, to keep our example simple, let's consider just server-side time.

Next, suppose that 50 users simultaneously want to view their recent transactions, and that it takes
an average of 500 ms of server-side time to process each of these 50 concurrent requests.
Obviously, our server-side response time has slowed because of the concurrency of demands. That
is to be expected.

Our next question might be: How well does our application scale? To answer this, we need some
scalability metrics, such as the following:

e Throughput— the rate at which transactions are processed by the system

e Resource usage— the usage levels for the various resources involved (CPU, memory,
disk, bandwidth)

e Cost— the price per transaction

A more detailed discussion of these and other metrics can be found in Scaling for E-Business:
Technologies, Models, Performance, and Capacity Planning (Menasce and Almeida, 2000).
Measuring resource use is fairly easy; measuring throughput and cost requires a bit more
explanation.

What is the throughput in both of the cases described, with one user and with 50 users? To
calculate this, we can take advantage of something called Little's law, a simple but very useful
measure that can be applied very broadly. Consider the simple black box shown in Figure 1-3.
Little's law says that if this box contains an average of N users, and the average user spends R
seconds in that box, then the throughput X of that box is roughly

X=NR

Figure 1-3. Little's law

— R —»

X

Throughput = X = N/R.

Little's law can be applied to almost any device: a server, a disk, a system, or a Web application.
Indeed, any system that employs a notion of input and output and that can be considered a black
box is a candidate for this kind of analysis.

Armed with this knowledge, we can now apply it to our example. Specifically, we can calculate
application throughput for different numbers of concurrent users. Our N will be transactions, and
since R is in seconds, we will measure throughput in terms of transactions per second (tps). At the
same time, let's add some data to our banking example. Table 1-3 summarizes what we might
observe, along with throughputs calculated using Little's law. Again, keep in mind that this is just
an example; | pulled these response times from thin air. Even so, they are not unreasonable.

Based on these numbers, how well does our application scale? It's still hard to say. We can quote
numbers, but do they mean anything? Not really. The problem here is that we need a
comparison—something to hold up against our mythical application so we can judge how well or
how poorly our example scales.

Table 1-3. Sample Application Response and Throughput Times

Concurrent Users Average Response Time (ms) Throughput (tps)
1 10 100
50 500 100
100 1200 83.333
150 2200 68.182
200 4000 50

One good comparison is against a "linearly scalable" version of our application, by which | mean
an application that continues to do exactly the same amount of work per second no matter how
many clients use it. This is not to say the average response time will remain constant—no way. In
fact, it will increase, but in a perfectly predictable manner. However, our throughput will remain
constant. Linearly scalable applications are perfectly scalable in that their performance degrades at
a constant rate directly proportional to their demands.

If our application is indeed linearly scalable, we'll see the numbers shown in Table 1-4. Notice
that our performance degrades in a constant manner: The average response time is ten times the
number of concurrent users. However, our throughput is constant at 100 tps.

To understand this data better, and how we can use it in a comparison with our original mythical
application results, let's view their trends in graph form. Figure 1-4 illustrates average response
time as a function of the number of concurrent users; Figure 1-5 shows throughput as a function of
the number of users. These graphs also compare our results with results for an idealized system
whose response time increases linearly with the number of concurrent users.

Figure 1-4. Scalability from the client's point of view

4,500
4,000
£ 3500 -
5 3,000
= 2,500 - —— Sample application
-]
é 2,000 —8— Theoretical
& 1,500 -
I~
5 1,000 —
.
E 500 -
o
=]

] [00 200 300

MNumber of Users

Figure 1-5. Scalability from the server's point of view

1,200 -

|.00h

Bl
Sample application
600 _ e e app
== Theoretical
00 =

200

Transactions per Second

{ 100 200 300

Number of Users

Figure 1-4 shows that our application starts to deviate from linear scalability after about 50
concurrent users. With a higher number of concurrent sessions, the line migrates toward an
exponential trend. Notice that I'm drawing attention to the nature of the line, not the numbers to
which the line corresponds. As we discussed earlier, scalability analysis is not the same as
performance analysis; (that is, a slow application is not necessarily unable to scale). While we are
interested in the average time per request from a performance standpoint, we are more interested
in performance trends with higher concurrent demand, or how well an application deals with
increased load, when it comes to scalability.

Figure 1-5 shows that a theoretical application should maintain a constant number of transactions
per second. This makes sense: Even though our average response time may increase, the amount
of work done per unit time remains the same. (Think of a kitchen faucet: It is reasonable that even
though it takes longer to wash 100 dishes than to wash one, the number of dishes per second
should remain constant.) Notice that our mythical application becomes less productive after 50
concurrent users. In this sense, it would be better to replicate our application and limit the number
of concurrent users to 50 if we want to achieve maximum throughput.

Table 1-4. Linearly Scalable Application Response and Throughput Times

Concurrent Users Average Response Time (ms) Throughput (tps)
1 10 100
50 500 100
100 1000 100
150 1500 100
200 2000 100

Analyzing response time and throughput trends, as we have done here, is important for gauging
the scalability of your system. Figures 1-4 and 1-5 show how to compare an application and its
theoretical potential. Figure 1-4 illustrates the efficiency from the client's point of view, where the
focus is on latency; Figure 1-5 shows application efficiency from the server's point of view, where
the focus is on productivity (work done per time unit).

Throughput and Price/Performance

In measuring throughput, we have ignored the cost of the systems we are analyzing. If a system
costing $100 can handle 1,000 transactions per second and a system costing $500,000 can handle
1,200 transactions per second, the latter obviously has better throughput—Dbut it's gained at a much
higher cost. The idea of measuring throughput and its relationship to price is something that has
been popularized by the Transaction Processing Council (TPC), which has created database
benchmarks, better known as the TPC-style benchmarks.

There are three TPC benchmarks: TPC-A, TPC-B, and TPC-C. The most recently developed (as
of this writing) is the TPC-C. It measures database transaction processing in terms of how
efficiently it supports a mythical ordering system. Specifically, it measures how many "new order"
transactions can be handled while the system is busy handling four other types of order-related
transactions (payment, status, etc.). While the TPC specification is meant to measure database
throughput, you can use the same principle with your systems. After all, Web application
transactions are at their core a set of database transactions.

Although it is unlikely that you will benchmark your system against another, you can measure
how well your system is improving or lagging over its own evolution. For example, if release 1 of
your application requires $100,000 worth of hardware and software and nets 10,000 transaction
per second, you can calculate a price/performance index by dividing the price by the performance:

100,000/10,000 = $10 per transaction.

This doesn't mean that it costs $10 to execute a transaction on your system. It is simply a measure
of throughput as it relates to the overall cost of the system. Suppose that a year later, release 2 of
your application requires $150,000 worth of hardware and handles 40,000 transactions per second.
The release 2 price/performance index would be:

150,000/40,000 = $3.75 per transaction.

Obviously, release 2 is more efficient than release 1 by evidence of its lower price/ performance
figure.

My interest in price/performance in this section is a reminder of the more general bias throughout
this book: Favor architectural strategies over resources when developing your application. Once
the application is deployed, you can always buy more resources to meet demand. On the other
hand, rewriting code, changing designs, or re-architecting your application after deployment
comes at a much higher cost. The best solution is obviously good design at the outset for
scalability and performance. Not only does this eliminate the need for massive design changes
after deployment, but it also typically leads to more cost-efficient resource acquisitions. CPUs,
memory, disk, and other resources are purchased less frequently for applications that are
inherently fast and scalable. In short, well-designed systems adapt and evolve much better than
poorly designed ones do.

mScalability and Performance Hints

Nearly all of the chapters in this book include a section on hints for scalability and performance.
The idea is to provide some conclusions or suggestions that have to do with the material presented
in the chapter. Since we've just started our journey, there is nothing terribly complicated to
conclude. However, we can remind ourselves of a few useful things covered earlier.

Think End-to-End

If nothing else, this chapter should have made clear that scalability and performance are end-to-
end challenges. Don't just focus on the server; consider client and network issues as well.
Spending all your time optimizing your server and database is not going to help if one part of your
solution doesn't scale. You will always be hampered by your weakest link, so spend more time
thinking about all of the parts involved in an application session, not just the ones you suspect or
the ones you read articles about. Keep an open mind: While many applications face similar
dilemmas, not all have the same clients, the same growth rate, or the same 24x7 demands.

Scalability Doesn't Equal Performance

Another thing you should have gotten out of this chapter is that scalability is not the same as
performance. The two have different metrics and measure distinct things.

Performance has to do with the raw speed of the application, perhaps in a vacuum where only one
user is using it. When we talk about performance, we mean response time—it's as simple as that.
Optimizing performance has to do with improving the performance for that one user. If we
measure average response time of 100 concurrent users, our performance challenge is to improve
the average response time of the same 100 concurrent users.

Scalability, on the other hand, has to do with the ability to accommaodate increasing demand. A
primary metric for scalability is throughput, which measures transactions or users per second.
There is no such thing as infinite scalability—the ability to handle arbitrary demand. Every
application has its limits. In fact, for many deployments it is satisfying to achieve just linear
scalability, although the optimizer in all of us wants to achieve much better than that. Not
unexpectedly, the most successful examples of scalability are those that simply minimize the rate
at which new resources are required.

Measure Scalability by Comparison

Scalability is difficult to ensure because its metrics don't allow you to compare it easily to an
average (nonlinearly scalable) baseline and make some conclusions. One thing you can do,
however, is measure how the scalability of your application evolves. First, define what kind of
throughput is reasonable: Create (or buy) an automated stress-testing system that identifies
whether your current system achieves that goal for a reasonable number of users. Then, as the
application evolves, periodically retest and determine if it's improving relative to past scalability—
this is without a doubt something that even your end users will notice.

Another strategy is to measure throughput as the number of users increases and
identify important trends. For example, measure the throughput of your applications
with 100 concurrent transactions, then with 1,000, and then with 10,000 transactions.
Look at how your throughput changes and see how it compares with linear scalability.

This comparison will likely give you a better sense for whether your application
architecture is inherently scalable.

Summary

In this first chapter, we focused on defining Web applications and the nature of their deployment
on the Internet. We also defined and discussed performance and scalability—two important
concepts that will remain our focus throughout this book—and described their related metrics.

One very important subtheme of this chapter was the focus on the entire application, not just its
parts. Although it may be academically interesting to optimize our bandwidth or CPU use, the end
user does not care about such things. Instead, he or she thinks only in terms of time, that is,
whether the application is fast. And he or she wants that same response time regardless of how
many other users are on the system at the same time. Now that we are focused on the goal of end-
to-end performance and scalability, let's move on to talk in more detail about application
architectures and the specific challenges that lie ahead.

Chapter 2. Web Application Architecture

In a very general sense, this book is about designing efficient Web application architectures.
Before we can think about designing an architecture, however, we need to establish some
requirements. In this chapter, | propose some very general application requirements, essential to
many types of applications. Based on these requirements, we will be able to envision an abstract
Web application architecture. Later, we will ground that abstract architecture in something more
realistic, in particular to various parts of the Java 2 Enterprise Edition (J2EE) solution. My
intention is to gradually define and describe the parts of an application in increasing levels of
detail so that we can maintain an end-to-end view throughout our journey.

Although it is tempting, | resist the urge to center this book on a single example, such as online
trading, auctions, or portal services. Unfortunately, each of these examples has traits that do not
lend themselves to all the performance and scalability challenges we want to cover. For example,
an online brokerage application has real-time features, but it is not necessarily a good example of
a 24x7 application because its usage varies widely when normal trading hours are over. Portal
services, on the other hand, are a better 24x7 example, but they lack the real-time demands of an
online brokerage.

For these reasons, | use a prototypical architecture and then relate examples as they become
relevant throughout the text. These details are established to set boundaries on solving the
problems of scalability and high performance. Although there are many ways to design a Web site,
we will focus on the most common current trends while giving a nod to alternative and future
paths.

Web Application Terminology

To start, let's introduce a few terms related to Web applications that we will be using throughout
our discussion.

As already discussed, a Web application is provided by a server and used by a client, and it spans
the network distance between those two points. To use an application, clients are required to
establish one or more connections with the server so that the data to be processed can be routed.
In conversing with the server, a client makes a request that is typically answered by a server

reply.

A transaction at the Web application level is a request-and-reply dialogue that corresponds to a
single logical application behavior. That is, the request made by the client leads to the invocation
of application logic on the server side and then eventually a reply to the client. For example, when
you use an online application to purchase a book, you click the Buy button. Clicking that button
starts a series of activities that refer to the general application notion of "adding a book to your
shopping cart." When you are ready to purchase the books selected, clicking a Check Out button
corresponds to "adding up your bill." It is important to note that by use of the word transaction, |
am not equating an application-level and a database-level transaction. The former occurs at a
higher level than the latter; in fact, application-level transactions typically consist of a set of
database transactions. Despite this, however, application-level transactions and traditional
database-level transactions are the same in the sense that a logical higher-level "handle™ is used to
group a series of related lower-level operations.

Let's distinguish between transactions and isolated requests that require no application logic. For
example, if we are browsing a list of books before purchasing, we may be simply accessing static
Web pages. Clicking a hyperlink does not require corresponding application logic. While such
scenarios are common within any application, we make a distinction between this type of behavior
and transactions. Obviously, the difference is that transactions are dynamic, involve more server-
side resources, are more likely to affect overall resources or act as a bottleneck, and thus have
greater impact on the application’s scalability requirements. Serving static Web pages is a less
complex problem, although serving many static large objects (such as pictures) is a challenge in its
own right. Still, static requests are different from dynamic requests. Unless otherwise specified,
we will focus on the latter.

Finally, a session is the use of an application by a client over some time period. Sessions are
composed of one or more of the transactions we have defined. Thus, just as transactions
correspond to a series of application operations, sessions correspond to a series of transactions.
However, unlike transactions, this list is not necessarily logically related. For example, we may
want to transfer $100 from our bank savings account to make payments on two loans that we have
at the bank. On Saturday night, we might log in to our online bank, take care of the first transfer,
update our mailing address information, and then log out. On Sunday we might complete the
second transfer and log out. Thus, sessions are more about a series of transactions within a well-
defined time frame, not necessarily a series of related transactions. For our discussion, sessions are
initiated by the user logging on to an application or otherwise opening a connection to the
application and then terminated by the user explicitly logging off or by the expiration of a session
lifetime.

As an example, suppose you need to make plane reservations for three trips later in the year. You
access some online travel application at 6 p.m. and spend 15 minutes configuring your options for
the first trip. After choosing from several options, you click Submit and receive your confirmation
code. Then you do the same thing for the second trip. Realizing that it's 6:30 and time for dinner,
you shut down the machine and head out for Chinese food. A few hours later, you come back and
realize that you still need to make the third plane reservation. So you go back to the same online
travel application and do so. By the time you're finished, you've conducted two sessions; one at 6
p.m. and one a few hours later. During the first session, you conducted at least two transactions
(purchasing each ticket).

Application Requirements

Every application has requirements that specify the functionality it must support. Web
applications are no different in that they must provide the features necessary to achieve a
productive goal. Obviously, business requirements are part of any application, but there are two
other classes of requirements worth discussing—data management and interface. We'll look at all
three in turn.

Business Logic

The business logic requirements are the most important part of any Web application. These
requirements specify which business processes should be captured (in some way) by the
application. For example, a banking application is typically required to support the ability to
transfer funds and view account history. How these requirements are met—in terms of the user
interface—is a separate issue. For example, whether account management is accomplished though
a Java applet or a set of HTML pages is irrelevant. Generally speaking, if key business
requirements are not met, the application has little value.

Applications obviously vary wildly when it comes to these business requirements. Banking
applications have one set of requirements; event-ticketing applications have another. Still, there
are some general observations that can be made, regardless of industry and processes.

First, application code that corresponds directly to any normally manual business practice (such as
transferring funds from one bank account to another) is typically referred to as business logic.
Thus, business logic is the set of operations required to provide the advertised service. In its most
basic form, this logic is simply a collection of functions, each composed of a sequence of steps
with some meaningful purpose, such as the transfer of funds from one account to another.

Second, business logic should be dynamic or customizable. We should be able to replace or
modify it without having to rebuild the entire application. In fact, for many applications, dynamic
business logic is a requirement. For example, news-filtering applications have filtering criteria and
employee benefits management applications have eligibility rules. Having customizable business
logic means that the logic itself (or its parameters) might need to be stored in a database.

Data Management

Think of business logic as the pipes of a Web application, and the data associated with the
application as the water that flows through them. That is, business logic and application data go
hand in hand. For example, a ticket reservation system is meaningless without tickets to reserve,
just as a banking application is meaningless without bank customers. While data may not actually
be part of the business logic, its existence gives the business logic a purpose and provides
evidence of the value of that logic.

Data management has to do with reliable, fair, secure, and efficient access to the data. We want to
be able to store lots of data, access it quickly, and relate it to each other. As we will discuss shortly,
databases are the primary mechanism used to meet these requirements. They enable the modeling
of data (representation) and its persistence (reliability); they support transactions on that data
(fairness and order); they provide security; and they are typically fast (efficiency).

Interface

Users of an application will access it via Web browsers, standard telephones, cell phones, or
personal digital assistants (PDASs). Typically, all application functionality is accessible from Web
browsers, but limited parts of the application can be accessible from the other interfaces as well.
We will focus on Web browsers, since nearly every application needs to deal with them, and will
give selected attention to the other interface technologies. All the while, our goal will be to avoid
situations where we have to develop copies of either application data or functionality. For example,
we don't want to discuss how to build a great Web application whose functionality cannot be
reused by a different interface such as a wireless or voice-response technology.

Although it's not a major focus of this book, there are ways to optimize your site so that it works
better with one browser than with another. Also, different levels of support for browser-dependent
technologies, such as JavaScript, Cascading Style Sheets (CSS), and dynamic HTML (DHTML)

can have ramifications for server-side scalability. For example, if we can be sure that a certain
level of JavaScript/CSS/DHTML compatibility is supported by all of our clients, we might be able
to implement a stylish user interface at a fraction of the normal cost, thereby reducing our server-
side data transfer levels.

There are two major browsers at the time of this writing: Microsoft Internet Explorer (IE) and
AOL/Netscape Navigator. In mid-1998, the Gartner Group and others studied the browser market
and found that IE and Navigator had roughly equal shares of the market. This was a major shift
from what was previously Netscape-dominated territory, so it was big news. Since then, Netscape
has rapidly lost ground and the company has been purchased by America Online. Nevertheless,
despite missing an entire version (Netscape 5), Navigator continues to exist in the form of
Netscape 6. The most recent results from BrowserWatch.com (although unscientific) indicate that
IE has at least 85 percent of the browser market. The rest is made up of Netscape and a collection
of more recent browsers, such as Opera.

It is not worthwhile to spend time discussing how to code for one browser over another. There are
plenty of books out there on such topics, and it is a landscape that will continue to change. Instead,
we'll take a simpler-is-better approach. Since browser differences are likely to persist for years to
come, it is better to know how to build Web applications that speak the most common version of
the language of Web layout and presentation (i.e., HTML and XML).

Thus, our interface requirements will simply be sufficiency, clarity, optimization for low-
bandwidth as much as generically possible, and browser independence.

Web Requirements

Generally speaking, the core requirements of an application can be divided into interface, business
logic, and data management. Meeting these basic needs can lead to an application that is:

e Usable— can be accessed and operated without error
e Capable— emulates real business practices
e Useful— operates on real data, achieves some productive or logical purpose

But there is something missing, namely, accessibility. Traditional computer applications can be
usable, capable, and useful. But they are meant to be installed, used, and managed on one machine,
with no sharing of data, limited dynamic application responses, and no user-to-user interaction.
Also, every user must purchase the software and install it locally. What makes Web applications
truly different is that many limitations of traditional applications are lifted once they are deployed
online. User collaboration is possible, applications can be seamlessly and automatically upgraded,
client machine requirements are eased, and so on. Of course, all of this is made possible because
the application is accessible in a different way—uvia the network.

It is unclear exactly where the network endpoints are in our picture, but we know that they exist
somewhere between the user and the underlying centralized data. Somehow, the client connects to
the server side of the application and to the database. The details about which parts of a Web
application the network spans is a debate we will get into shortly. For now, though, let's propose
some basic network connectivity requirements.

Network Connectivity

Like the Web browser issue, network connectivity is a moving target, albeit one subject to a
slower evolution. Designing an application for a single, known connection speed (such as 56 Kbps
or LAN speeds) is challenging enough. Designing an application for a range of connection
speeds—something that most Web applications have to tackle— is even more challenging because
client bandwidth directly influences how much style (HTML or XML) and substance (underlying

data) you can pack into an application. If you have to support a range of connection speeds, what
is the right amount?

Until recently, home users were stuck with bandwidth that only allowed data to trickle in and out.
Even now, the vast majority of Internet home-based clients are confined to bandwidths of between
28.8 and 56 Kbps. However, in recent years, residential consumers have been able to purchase
higher bandwidth to the Web in the form of digital subscriber lines (DSL) and cable modems.
These alternative connections yield speeds in the hundreds (or thousands) of kilobits per second:;
for example, many DSL lines can support speeds from 384 Kbps to 1.5 Mbps and higher. In the
far future, the majority of Web users will have high-bandwidth access, even those in rural
communities. For now, we will assume that most home consumers have access of 56 Kbps. Many
of the applications written for this group of users are referred to as business-to-consumer (B2C)
applications because they involve consumers interacting with businesses.

At the same time, most businesses that need information technology have high bandwidth
connections. They can support heavyweight applications that contain lots of applets, images, and
animations and seem to download in a split second. While there are many fewer business users of
remote Web applications than home users (business users tend to use local software and
information sources), businesses also need to use applications provided by other businesses. These
applications are often referred to as business-to-business (B2B) applications.

With two general connection speeds (low and high) and two general application types (B2C and
B2B), what is the best approach? Certainly, you can always support both; how many times have
you visited a site that said something like "Click here for the high-bandwidth version!"? You can
also generalize—B2C tends to be low-bandwidth and B2B tends to be high-bandwidth. Or you
can be futuristic and declare "Everyone will eventually have high bandwidth, so let's not care."

Throughout our discussions, we are going to take the conservative approach and strive for
applications that assume low bandwidth, whether the application is B2B or B2C. It won't matter
which because our assumptions are that users favor substance over style and that it is better to
focus on the performance and scalability for one bandwidth than to juggle support for two very
different levels. Yahoo and Google are our prime examples here. These Web-based applications
have become successful despite their visual simplicity. Their low-bandwidth approach does not
mean that they sacrifice the ability to provide things like pictures or videos or music; just look at
some of Yahoo's vertical sites.

In short, we will always be concerned with bandwidth since our client base could comprise anyone
from the home consumer to the business user. In choosing to minimize our use of bandwidth, we
are assuming that our users will not be offended since the same functionality will be there.
Meanwhile, we are helping to achieve our own scalability goals by keeping things simple and
conserving server-side bandwidth where possible, so that we can deal with the millions of users
that we expect to come knocking.

Abstract Web Application Architecture

Independent of its specifics, an application architecture must be capable of capturing the business
logic, data, interface, and network requirements just described. In fact, in describing a prototypical
application architecture, it is best to start with a very general design. Then, progressively, we can
fill in some of the details, such as where the Web server fits. The important thing here is to not get
lost in specifics. Times will change, technology will change, but customer requirements, by and
large, will remain constant.

From Client to Server: Thin and Fat Clients

Starting at the 10,000 foot level, Figure 2-1 shows the composition of a very abstract application.
We see that the user directly interacts with the interface. Thus, this is where interface requirements
should be met. An interface is a proxy to the core business logic of an application, which is
composed of the operations that correspond to the business process(es) at hand. As this logic is
executed, it typically requires the need to interact with and manage data, specifically, to store and
query it.

Figure 2-1. Abstract application architecture

We can now add some more detail. Generally speaking, we know that Web applications consist of
a user that interacts with an application over a network. The execution of business logic can be
local or remote. In lay terms, this means that the client can be "fat" (local logic) or "thin" (remote
logic). In either case, at the very least the interface needs to be near each user and the data needs to
be centralized at some server. Figures 2-2 and 2-3 show the difference between a fat client and a
thin client. Notice that the interface always remains on the client side and the data management
always remains on the server side.

Figure 2-2. Client/server application architecture (fat client)

Business Duata

Interface +— :
Logic | Management

Client Server

Finally, Figure 2-4 shows that a hybrid design is possible. In practice, such designs are more
common than you might suppose. One example is data validation, such as ensuring that phone
numbers look like "123-456-7890." Although it is normally considered a business logic chore,
such validation is frequently executed on the client side via technologies like JavaScript.

Figure 2-4. Client/server architecture (hybrid design)

Interface a—

L]
Business Data
Logic Management :

Client Server

M

Persistent Data Management

Before we continue, let's spend a moment to understand some of the data management aspects of
our abstract application. The applications we will be concerned with rely heavily on transaction
processing using a standard relational database. There are five types of data that these applications
typically store:

e Application data: This refers to the data that is core to the application domain itself. For
example, if we are developing a portal application, it would include the news stories. If
we are developing an application for selling some set of products online, it would be the
product catalogs.

e Personalization information: This is data about the users of the application. For example,
it might include information about the user name and interests. Data related to
personalization can be secure (credit card numbers) and can also be modifiable by the
user (i.e., name and address information) or it can be read-only (i.e., history of user
purchases).

e Application metadata: This is data about the application data. For example, the list of
product catalog tables in the database might be stored in a table called
PRODUCT_CATALOG_TABLES. This information is thus analogous to the data-
dictionary type of metadata that most databases have. It exists in the database because it is
dynamic, easier to manage (i.e., it is an alternative to the file-system), or needs to be
gueried.

e Application logic: Databases can store code that is accessed and executed via the
application components. As we will discuss later, storing code in the database typically
yields applications that have better performance.

e Report data: Obviously, it is important to generate reports on sales at a product site.
Likewise, information about page views and user interest are important. This type of
information is gleaned either from automated reports that summarize existing information
in the database or via data mining, which aims to identify trends in data. Reporting is
necessary but confounding because it steals resources away from the application back end
and can thus affect overall performance.

Now that we have some idea of the underlying data and how it is divided, let's return to
understanding the client, network, and server pieces discussed earlier.

N-tier Application Architecture

Although Figures 2-2 through 2-4 show different ways to split up the business logic, they all
contain three basic components: the client, the server, and the network (which is not shown but is
implied by the arrows).

The Client

We want to cover two types of client: the human one and the automated, or software-based, one.
Let's start with the human type. The client in this case involves a machine with an operating
system and network access. He typically uses a Web browser to access the Web application,
although custom interfaces are also possible. This browser speaks the HTTP protocol. One of the
unique things about this kind of client is that its sessions with the server do not demand constant
servicing; there is plenty of "think time" that allows the server to use its resources for clients
requesting service.

The automated client probably runs on a more powerful machine than the human client uses. The
automated client may use HTTP or a lower-level or proprietary protocol. This kind of client may
also communicate using technologies like messaging, which may not involve the Web server but
can certainly involve the rest of the server-side software (application servers and database). An
automated client does not need "think time" and could continually pound a server with requests.

The Network

The network between client and server is more commonly known as the Internet. As we all know,
the Internet is made up of many machines and subnetworks distributed across the world.

When machines communicate with each other, their packets travel through a variety of hardware
and software systems en route to their final destination. For our purposes, most of their messages
are communicated using the TCP/IP protocol. IP stands for Internet Protocol and TCP stands for
Transmission Control Protocol. TCP/IP is a connection-oriented protocol that provides quality
of service guarantees. Basically, it ensures that bytes can be reliably delivered to parties, even if
the underlying network is unreliable.

TCP/IP is our prime concern because the Internet represents an unreliable network, and this
protocol has become its default language. However, we should note that there are other transport-
layer protocols, most notably the Unreliable Datagram Protocol (UDP). This protocol is not
connection-oriented and does not have the same QoS guarantees. However, because it does not
have such features, it performs better than TCP. Although UDP is largely unacceptable for
Internet applications, it does make sense for certain types of high-performance Intranet
applications.

Client-Side Network Elements

There are three parts of the network worth addressing. One is near the client, who is usually not
directly connected to the Internet. Most have Internet access through a provider service (called an
internet service provider, or ISP). Before having a request resolved at the original source on the
Internet, clients typically access their browser cache to see if they already have the desired
document. The browser cache is simply the filesystem on the client machine. When a page is
requested, if it is not already in the local filesystem, the browser fetches it. The page is rendered
and, if the page is cacheable, a copy of it is kept in the local filesystem for future access. This
leads to better client performance, since future access requires network roundtrip time. Pages are
not cached forever: There are expiration dates and protocols for checking on the updates to a
particular Web object. The concept of a browser cache, or any cache, to store remote Web page
data locally (the avoiding the cost of contacting the originating server for that content) is known as
Web caching.

A proxy cache is either software or hardware that is designed to cache frequently requested Web
pages so that an ISP does not have to repeatedly fetch the same pages for its clients. When client
A fetches Web page X for the first time, the proxy cache requests the page from the original server
and stores a copy of the page in its cache (assuming the page is cacheable; more about that later)

as well as providing a copy to client A. When client B requests page X, the proxy cache can
simply fetch the page from storage without accessing the network again. This leads to better client
performance, and what's more, the effect can be shared among clients. Figure 2-5 shows the
relationship between the client Web browser and the intermediate client-side caches. Later, we
will discuss more about Web caching and how you can design an application to leverage client-
side browser and proxy caches.

Figure 2-5. Client-side network infrastructure

Weh e DBrowser — Proxy -
Browser -—— Cache =4—— Cache
Client ISP Server

Server-Side Network Elements

The second part of the network that interests us is the server side. Like the client, the server side
has an ISP; however, the ISP choice here is one we can control. It is important, when designing an
application, that you know the bandwidth limits and the backbone network access available to
your provider.

Another important aspect of the server-side part of the network is the way incoming connections
are distributed to server resources. Local load balancers provide both simple and sophisticated
techniques for sharing the workload among multiple machines. Requests can be routed based on
Web server availability or on the nature of the request. For example, image requests can be routed
one way and static page requests can be routed another. A typical-load balancing hardware device
is the Cisco Local Director.

The balanced load is often distributed among Web server farms. Each farm consists of a set of
Web servers designed to access the same kind of content. Each Web server typically resides on a
separate machine, a redundancy that increases Web site reliability.

Finally, a reverse proxy cache can be set up on the server side to reduce the demand on the server
by providing quick access to frequently accessed objects. A reverse proxy cache works just like
the proxy cache on the client side: It stores frequently requested objects. It is useful on the server
side because it allows frequently accessed content to be cached even though clients may not share
an ISP. Figure 2-6 shows one type of deployment strategy that involves a load balancer, a reverse
proxy cache, and a Web server farm.

Figure 2-6. Server-side network infrastructure

Heverse Weh

Proxy Cache Server

Client Load Reverse Web
Balancer Proxy Cache Server

Reverse Wb
Proxy Cache Server

Server Machines

Between Client-Side and Server-Side

The third part of the network is the unpredictable mesh of routers and switches that separate client
and server. We cannot control this mesh any more than we can control the client-side of the
network. However, like the client side, intermediate caches are strewn along this path. They do not
exist specifically to help you or your clients; rather, they are trying to provide a general cost-
effective service by reducing congestion for heavily demanded resources. However, if you know
how intermediate caches work and how the HTTP protocol works, you can at least inform the
network of the nature of your data. With enough information, the intermediate network elements
can help you by significantly reducing load on your site for static Web pages and the like.

In general terms, the communication between client and server sides consists of the client ISP,
capable of T1 and T3 speeds, forwarding requests through its backbone network service provider
(NSP), which speaks in terms of OC-1 and OC-3 speeds. These NSPs provide access to network
access points (NAPs), which are public exchange facilities where ISPs can reach each other
through a process known as 1SP-peering. NAPs are distributed across the world; collectively, they
represent the points where the Internet backbone is "stitched™ together. Communication at NAPs
occurs at very high speeds—for example, OC-12 (622 Mbps)—and in a point-to-point manner.

To get a feel for the connection between client and server, see Listing 2-1, output from
traceroute, a diagnostic network tool that tracks a packet from client to server. This packet
goes from Carnegie Mellon University to Yahoo.

Listing 2-1 traceroute output describing the route from CMU to Yahoo

1 CAMPUS-VLAN4_GW.CMU_NET (128.2.4.1) 1.744 ms 1.052 ms
0.992 ms
2 RTRBONE-FA4-0-0.GW.CMU.NET (128.2.0.2) 37.317 ms 54.990
ms 75.095 ms
3 nssb.psc.net (198.32.224.254) 2.747 ms 1.874 ms 1.557 ms
4 12.124.235.73 (12.124.235.73) 11.408 ms 22.782 ms 21.471
ms
5 gbrl-pl00.wswdc.ip.att.net (12.123.9.42) 17.880 ms 21.404
ms 23.662 ms
6 gbr4-pO0.wswdc.ip.att.net (12.122.1.222) 13.569 ms 10.793
ms 11.525 ms
7 ggrl-p370.wswdc.ip.att.net (12.123.9.53) 11.814 ms 10.948
ms 10.540 ms
8 1br01-p5-0.stng0l1.exodus.net (216.32.173.185) 12.872 ms
20.572 ms

20.885 ms
9 dcr02-g9-0.stng0l1.exodus.net (216.33.96.145) 29.428 ms
10.619 ms

10.550 ms

10 csr21-ve240.stng0l.exodus.net (216.33.98.2) 10.998 ms
32.657 ms

19.938 ms
11 216.35.210.122 (216.35.210.122) 11.231 ms 20.915 ms
32.128 ms
12 www7.dcx.yahoo.com (64.58.76.176) 36.600 ms 10.768 ms
12.029 ms

We see that CMU is connected to Yahoo through the backbone providers AT&T and Exodus
Communications.

In recent years, there has also been focus on one approach to optimizing the area between client
and server. Content distribution has emerged from the Web-caching community as a way for
providers to replicate their content through providers that act as reverse proxy caches. Content
distributors such as Akamai strategically replicate their hosted content so that client access is very
fast and does not involve the originating server. Content distribution is often a solution for
bandwidth-heavy objects, such as images, which quickly clog up server-side bandwidth even
though they don't require server-side application logic.

The Server

The server-side application architecture is both the most complex and the most interesting. While
you can tune your application to some extent by understanding and playing to the features of the
client and network pieces of the application, your efforts will have a much larger effect on the
server side. This is also where the greatest scalability and performance challenges lie. Figure 2-7
shows the major pieces of this part of the architecture. Moving from left to right, the request
processor is usually the first component an incoming application request reaches.

Figure 2-7. Server-side organization

Application

Application
Request

server \
Processor ,// Databa:

Application
Server

One example of a request processor is a Web server. The Web server has two roles: to resolve
requests it can handle and reroute those it cannot. For static Web pages, the Web server can
resolve requests locally by accessing the filesystem to get the desired page. As a request router,
the Web server determines the kind of request and dispatches it to the proper handler, which in
this book, typically means a Java servlet engine or servlet container. The servlet container
invokes the proper servlet instance, that is, a method on a Java class. The servlet takes care of
unpacking request arguments and will likely play a role in constructing the HTML reply. In the
middle, it may do many things, such as contact an application server or the database for query
processing.

The job of the request processor is to identify the nature of the request and route it to an instance
of functionality that can execute the desired business logic. This mechanism is generally referred
to as an application server. For example, an application server is typically used to locate an
instance of an application logic. This logic could be in the form of a Java class implemented as an
Enterprise JavaBeans (EJB) or a CORBA object. These technologies, EJB and CORBA, are

middleware technologies that make application logic robust, scalable, and interoperable by the
application server (which manages them).

In a well-designed system, this is all done behind the scenes. The application logic is coded
independently of the application server. They are obviously two distinct things: One provides
access and the other provides business functionality. The trick is to give the application server the
ability to automatically manage the deployment of business logic in a way that gives maximum
flexibility to the server mechanism while remaining invisible to the underlying code. Later in this
book, we will see how EJB containers and EJBs themselves enable engineers to build real
application servers.

To resolve an application request in terms of existing application data, the data must be accessed
from its persistent storage, which is typically a database. At a minimum, the database stores
information about the state of the application, including users, orders, profiles—anything that is
part of the application data. However, in addition to data about the application state, the database
can store a good deal of business logic. It does so in the form of stored procedures, triggers, and
database constraints. The data in the database is organized according to a data model, a logical
specification for how the data is to be stored. Physically, data is associated with tables. Table data
(as well as other structures) is written to disk, just like data in the filesystem.

At this point, it is good to remind ourselves that there are other clients to the application server
and the database. These can be messaging or legacy systems that communicate using technologies
such as electronic data interchange (EDI). These clients are typically other businesses, not
individual users, and they often interact with server-side software in batch mode.

Tier-Based Designs

The many layers through which a client request has to pass before it is resolved are called tiers.
Each tier is associated with one or more types of logic: presentation, business, or data access.
Two-tier applications typically consist of combined presentation and data layers—for example, a
client applet that directly accesses a server-side database. A three-tier application takes this one
step further: A thinner client contacts a servlet or CGI program, which then contacts a database.
Presentation and data are more clearly separated, and the server side distinguishes business logic
from data access logic. An n-tier application consists of three or more levels of request
progression, including the database. One example is a client who contacts a servlet that contacts a
set of application servers, each of which can access the database. Many of today's Web application
systems are n-tier.

You might wonder, Are n-tier designs really desirable? What's the payoff? Intuitively, it seems
that client/server connectivity becomes more complicated. The communication path now consists
of client-to-serverl-to-server2-to-...-serverN-to-database. This seems like a route that requires
more hops, which means more latencies and more chances for error or crashes. That can't be good,
can it? YES, if it's done right.

Increased Modularization and Component Reusability

Having multiple tiers means dividing the work and routing the parts of the problem at hand to
independent modules. But what if we didn't do this? What if everything were handled in a single
server-side program?

For example, suppose you need to build a server-side module that enables Web users to order
books. In writing the module, you need to make sure that the following events occur when a Web
user presses Confirm on his order:

e Receipt of the interactive client request

Credit card check

Creation of a work order

Updating of the customer's profile

Updating of the book inventory

Generation of the interactive client response

You could bundle all of these operations in the Confirm-and-Pay-for-a-Book module. But suppose
two months later application requirements change and you need to handle DVD orders. Guess
what? You need to create a new module; call it the Confirm-and-Pay-for-a-DVD module. And
here are its necessary operations:

Receipt of the interactive client request
Credit card check

Creation of a work order

Updating of the customer's profile

Updating of the DVD inventory

Generation of the interactive client response

It looks familiar, doesn't it? Too bad you can't reuse the functionality in the book module. Maybe
you can create a more generic module called Confirm-and-Pay-for-a-Product.

Now suppose you are asked to support a mechanism for the bulk ordering of products. For
example, suppose a reseller communicates its orders to you nightly and you need to process those
orders. In this case, you just can't reuse your generic product module because the request type is
fundamentally different. Once again, you need to create a new module, which must include the
following operations:

e Receipt of batch requests
e For each request:

- Credit card check
- Creation of a work order
- Updating of the customer's profile
- Updating of the product inventory
e Generation of a batch summary response

You should have the idea by now. We have been unable to reuse the independent operations
involved in coarse modules or components. Just as in programming, poor modularization allows
little reuse. Instead, you get code bloat, replication of functionality, and potentially inconsistent
application behavior.

What's worse is the scalability angle to all of this. By failing to reuse functionality and replicating
it among coarser modules, you unnecessarily eat up memory on your server machines. Instead, if
you break these modules into finer-grained components, you will be able to not only reuse
functionality but also more efficiently iron out performance bottlenecks.

Better Distributed Processing and Task Parallelism

With increased modularization come more options. Assuming that we have the technology (such
as Java RMI or CORBA) to connect the modules, it is possible to deploy each of the smaller
modules on different machines. For example, we could have all of the credit card checking done

on one host and all of the database updating on another host. This is an attractive solution because
it allows us to distribute the processing load to different machines.

In some cases, modularization leads to significantly better performance because one operation is
independent of all other operations. Consider the updating of the customer profile operation in our
earlier example. Updating a profile conceptually returns no useful information. It is just a
necessary procedure. Updating product inventory, which follows profile updating, need not wait
for it to be completed. Theoretically, it could execute in parallel with the profile updating process.

By being able to farm out the processing of the independent modules to different machines, we

can increase parallelism during execution, and better parallelism translates into better performance.
Of course, to effectively parallelize these tasks, we have to build communication solutions that are
asynchronous, that is, that do not require an immediate response. Still, once we learn to do that,

we can make a real difference in application performance by increasing the level of task
parallelism.

More Efficient Service Replication

Along with the luxury of being able to deploy components across multiple machines, we have the
opportunity to tackle scalability and performance challenges with a finer level of control. That is,
we can target our solutions and potentially address a very specific system problem. A common
problem in any application system is that one or more subtasks in a larger task are slow and
become bottlenecks.

Let's go back to the book-ordering example. Suppose that credit card checking takes 3 seconds per
request, and that we need to process 100 book orders at once. Assume for now that we have only
one copy of our application service running on our server machine, and assume that this service is
single-threaded. This means that:

e The fastest credit check will take at least 3 seconds.
e The slowest credit check will take at least (100 « 3) = 300 seconds (5 minutes).
e The average credit check will take at least (50 ¢ 3) = 150 seconds (2.5 minutes).

This is unacceptable. Perhaps we can replicate the service 100 times and service all 100 clients at
once. Then the fastest, slowest, and average times will all be at least 3 seconds.

For the sake of example, suppose that each copy of the large Confirm-and-Pay-for-a-Product
module requires 5 Mb (the code requires much less, but the code to have it function as an
application service might very well require that much). Replicating the larger module 100 times—
even if we have enough hardware to support it—means that we need 500 Mb of memory just to
deal with 100 clients that want to use this one piece of functionality simultaneously!

In contrast, suppose that the credit-check operation itself requires only 1 Mb of that 5 Mb. By
splitting the Confirm-and-Pay-for-a-Product module into smaller independently distributed
components, and making things like credit checking into distinct components, we can limit our
replication to those parts that need it. For example, we can replicate the credit-check operation 100
times, requiring only 100 Mb, not 500 Mb, of space.

Clearly, the space-efficiency advantage to finer-grained business logic processing makes n-tier
deployment attractive. If there are bottlenecks in the application, we can identify the components
responsible and replicate them as necessary (much like increasing the number of lanes on a
freeway). If our components are more fine grained, the cost of this replication (in terms of
memory) is less and thus our application will be able to scale better.

Multithreaded Application Servers

If you have experience with application servers, you're probably wondering why I'm talking so
much about replicating code. Actually, the reason goes back to an earlier assumption | made—that
our application servers are single-threaded. Now, let's assume that we can build multithreaded
application servers.

First, think about why we want to do this. As you probably know, threads are lightweight
processes—mechanisms for execution that share an address space. By "mechanisms for
execution," | mean that they are scheduled by the operating system and can use the CPU (when
their turn comes up) to execute program code. In their most simple form, threads consist of a
program counter, registers, and a stack. Generally speaking, threads maintain bookkeeping
information about their state of execution, sharing other common program resources with other
threads.

Thread-scheduling policies vary, but by far the most common is round-robin, in which one thread
at a time has access to the CPU. Later, we'll talk about upcoming processors that are specifically
designed to run multiple threads efficiently in a truly parallel manner.

Since multiple program threads share an address space, it is possible to have them access a
common block of code in that address space. This means that multiple threads can execute the
same instructions (regardless of what other threads are doing). Taking this one step further,
threads can be managed by yet other threads and used as "workers" to service incoming requests.
The idea is that when multiple clients want to access the same piece of code, they can be assigned
to an available thread and have that thread execute the code they want.

Figure 2-8 shows three concurrent requests to a program that has five threads. All three requests
want to execute the same block of code called myPopularProc(). As the figure shows, each
one of these threads can execute this code at the same time (since the CPU runs one thread at a
time, this is not quite true, but it's very close depending on the function). In fact, each thread is
currently executing a different line of code, as the figure shows. Thus, threads do not have to wait
in line to execute the same piece of code. They can be interleaved so that the execution is very
nearly parallel.

Figure 2-8. A multi-threaded application server

Client 1

winid |'||-,-I'-*q_|;_|'.||._|||-'r|_;~;_, (K|

\ daThis () ;

Chient 3 daThat [} ;
\- doTheOtherThing ()
i)

Client 2

Threads

All of this means that we don't need to replicate code; we just need to make our programs
multithreaded and assign threads to individual client connections as they arrive. This is exactly
what most application servers do today. They separate the logic from its access mechanism and,
instead of replicating code, they assign threads to service requests. Later on, we'll see that EJB
containers do the same thing.

One note of caution here: | have quietly avoided the main problem associated with writing
multithreaded code; namely, synchronization. If some portion of code must be executed serially,
we need to identify that part and make sure that access to it is synchronized. Fortunately, Java
makes this very easy, by allowing us to synchronize at the function level or create synchronized
blocks as necessary. As long as we know what we are doing, Java gives us the tools to make sure
that it is done safely. For an in-depth discussion of synchronization and writing highly concurrent
code, see Concurrent Programming in Java: Design Principles and Patterns (Lea, 1999).

The Challenge of Efficient Middleware

Everything is not all roses in the land of n-tier applications. Though we have increased our ability
to reuse components and our potential for parallel execution, and produced an environment that
can be fine-tuned for scalability, there are costs we have so far ignored.

Certainly, an obvious cost is the increased complexity of development: engineers need to know
how to build and deploy n-tier applications. A second cost is the greater thought required:
Application designers have to spend longer thinking about which parts of an application should be
independent and which should be bundled. These are not really scalability or performance
issues—they just require more design time.

One issue that does have efficiency implications is increased communication among application
components. Think about it: Now that we have split up our business logic into finer-grained, more
independent component services, more interapplication communication is required to process each
application task. For example, communication is no longer limited to clients talking to servers.
Now, servers are talking to each other. Granted, much of their communication occurs at high-
bandwidth LAN-like speeds (or exists as interprocess communication among services on one
machine). But extra work is still necessary and the associated costs must be considered overhead.

As we discussed earlier, the technology that ties together our fine-grained component services so
that they can contact each other easily, regardless of whether they exist on different machines, is
called middleware. EJB and CORBA are middleware technologies that use techniques such as
Java Remote Method Invocation (RMI), Internet Inter-ORB Protocol (1IOP), and remote
procedure call (RPC) to achieve the goals of connecting objects or programs, even across network
boundaries. Thus, they allow programs to communicate as if they were making a local function
call—except that the call travels beyond the boundaries of the process address space.

Since this communication happens frequently, it is important to understand its costs and to
optimize its usage where possible. It is also important to choose the most efficient middleware
technology—synchronous or asynchronous. As we will see, these two approaches have very
different performance implications. Finally, we can of course reduce our middleware demands by
bundling functionality and having fewer components. But taken to an extreme, this puts us right
back at square one and the problem of an unwieldy application service! Clearly, the solution is to
identify a middle ground that allows functionality to be modularized ("componentized") and
distributed as needed.

mScalability and Performance Hints

Based on our discussion about general Web application architecture, thin and fat clients,
multithreading, and component granularity, let's now consider some relevant scalability and
performance hints.

Don't Always Starve Thin Clients

For maximum portability, you may think it is wise to take the thin-client approach when designing
your application. After all, this allows you not only to reach out to clients with limited resources
(i.e., memory and CPU) but also to avoid developing a Java client (which may be slow to
download) or designing some other kind of custom client. Even better, putting all of the
application logic on the server side can give you the most flexibility as far as extending your
application architecture to wireless or very low bandwidth deployments.

However, embracing the thin-client approach too tightly has important implications. First of all,
think about what you're sacrificing. You have, say, 100,000 clients that access your Web
application and do so with fully packed, powerful desktop computers. Having them interact with
your application through a very thin interface wastes the opportunity to really do some distributed
processing—that is, to put some of the computational work on the client side. Instead, clients sit
idle, just passing network packets back and forth. Of more concern is that all of the computational
burden is on the server side. If the computational requirements for your application are high,
accommodating sudden bunches of concurrent clients can lead to serious CPU contention.

There may be a compromise here, one that at least leans less heavily on the server. Consider the
common application need for client data validation. Things like phone numbers and e-mail
addresses need to be matched against a template to see if they conform to the right general
"picture.” Or numeric fields need to be checked to see that they contain numeric data, that their
lengths are respected, and so on. For these tasks, it's not unreasonable to use something like
JavaScript or to put some thought into the HTML you're generating so the client does the work.
Admittedly, this may be a small amount of computation to push onto the client, but for sites with
many forms or many clients the cycles saved can add up. Never underestimate the leverage of
100,000 remote machines doing your processing for you. Also keep in mind that things like client-
side data validation not only save server-side CPU; they also cause fewer request/reply HTTP
dialogues between client and server, thus allowing the Web server or request processor to handle
the rest of its workload.

Still, there are problems with putting things even as minor as data validation on the client side.
One is that you might be replicating business logic. For example, if you use the same application
architecture to process batch transactions other than through your interactive Web site, all of a
sudden you'll need to code the data validation logic in two places (batch transactions will never
execute your JavaScript data validation logic). Now what?

There's no one answer that fits all situations. It depends on your application, your client base, and
your mode of client interaction. The main message here is not to blindly design your application
with the "thinnest of clients” mindset, but to think carefully about the following issues when
deciding how much (if any) business logic to put on the client side:

Does your application consist of many forms with data fields that need validation?
Avre there some calculations you can do on the client side (e.g., totaling an order)?
Avre interactive Web application users your only type of client?

Do your data validation rules remain static for the most part?

e How costly is it to replicate certain parts of the business logic? Is the gain in performance
worth that cost?

If the answer to any of these questions is yes, you should think about fattening up your clients a bit.
Again, this doesn't mean putting all of your logic there, just certain small parts of it.

Use or Build Multithreaded Application Servers

As we discussed, the main advantage of using multithreaded application servers is that multiple
clients can concurrently access a single copy of program code. This is obviously more scalable
than spawning a separate process for every incoming client request, which is what happens with
CGl-bin program execution. Because server-side application programs are invoked by multiple
clients at once, using a thread to service their requests allows you to add the minimum of overhead
(one thread) per request.

Some application technologies, such as EJBs, provide this kind of infrastructure for free. As we'll
see in later chapters, EJBs allow you to focus on writing the business logic while they handle the
thread management for you. All clients have to do is locate the EJB they want and make their
requests. EJB containers manage the concurrency demands. Some types of CORBA deployment
(depending on the vendor and infrastructure included) can provide similar support.

If you're writing multithreaded application servers (or if your needs exceed the functionality of
EJBs), keep in mind these general points:

e Make sure you write thread-safe code. The Java synchronized keyword provides a
very easy way to identify blocks of code that are not thread-safe. If you're using any of
the Java Collections classes or any other Java data structure that you did not write, make
sure that you understand its thread safety issues, if any.

e Instead of spawning one thread per request, consider pooling threads. If you have 1,000
clients per minute, is it worthwhile to spawn 1,000 threads? Can your machine handle the
memory demands (1000 thread_overhead), not to mention the context-switching needs?
Not likely. Using n threads does not mean you'll enjoy n degrees of parallelism.
Remember, you still have only one CPU (or at least fewer CPUs than threads). There will
be a point of diminishing returns, based on the computational demands of your
application. It's wise to pool threads and use a single dispatcher to assign work to pool
members. This enables concurrent request processing while providing an upper bound on
number of threads in use.

e Take care when using external resources, such as a database. Remember, just because
you write thread-safe code does not mean that external resources, such as databases, will
be protected in all cases. These resources will maintain state and, if you access them
concurrently, all kinds of unexpected behavior might occur. It is often wise to wrap
access to an external resource (especially one that requires serial access) in a separate
Java class and make sure the access methods are synchronized.

Find the Right Granularity

Earlier we talked about the advantages of breaking application logic into self-contained objects or
components. The idea was that by modularizing this functionality better, we could have more
control over the distribution and replication of our functionality because modularization improves
reusability and allows us to iron out bottlenecks more precisely. However, there is a tradeoff: The
finer the granularity of components, the more overhead required to tie them all together—
especially if they are distributed.

From this, you can glean the following lessons:

Design your systems in an object-oriented way.

Make your functions as "functional™ as possible (no side effects).
Use procedures judiciously.

Write modular code.

Code that consists of small, tight modules can be separated easily in distinct containers (not
necessarily the same as J2EE containers) and deployed as needed across a distributed network of
machines.

Before you get into the business of distributing your objects, it is often wise to start with a very
coarse level of granularity, then deploy your application and see what testing reveals. Through
good testing, you'll be able to spot the bottlenecks in an application's execution and break them up
by isolating the modules at the root of the problem and either distributing them across different
machines, replicating them, or both.

If you break up your objects too much, you may incur the overhead of remote communication and
marshalling for no good reason. In fact, this was one of the problems of an earlier incarnation of
the EJB spec (i.e., the problems of fine-grained entity beans). The principle of "doing it only if
you need to" really applies here. Coarse granularity followed by an evolution of selected
granularity modifications frequently leads to the best of both worlds. By making sure that you
follow the listed points, you'll give yourself the most flexibility in coupling and decoupling your
application internals.

Summary

In this chapter, we've talked a lot about abstract application architecture and only grounded
ourselves here and there. As abstract as we're being, it is all relevant not only to J2EE application
designs but to other distributed object technologies (e.g., CORBA) as well.

We started our discussion by describing the three basic parts of any application—the client, the
network, and the server. We then broke up the server into its two distinct parts—business or
application logic and persistent data—and discussed where to put the business logic. As it turns
out, a good case can be made for sprinkling a little of it on the client side and dumping as much of
it as possible in the database.

As we will see, the J2EE specification doesn't force you into anything, but it does strongly suggest
that you keep your application logic at the EJB level. As a default choice, this makes reasonable
sense and avoids the problems of replicating code and possibly causing inconsistent behavior.
However, when optimizing performance and scalability, you may find that, just as selectively
denormalizing data models can be useful, selectively replicating logic has its advantages, despite
the maintenance costs and the inconsistency involved.

Finally, we discussed the merits of tier-based design and why some Web applications have n-tier
architectures. The basic message is that multiple tiers allow deployment flexibility—we can
replicate and distribute functionality as appropriate. Also, we saw the tradeoffs associated with
different levels of component granularities and suggested a conservative approach to granularizing
your deployments that takes into account these tradeoffs.

As we move on to more specific aspects of Web application design, particularly J2EE, we will see
how these techniques are implicitly promoted by the specification as well as the practical forms
they take.

Chapter 3. The J2EE Specification

Sun Microsystem's Java 2 Platform, Enterprise Edition (J2EE) specification is the proposed Java-
based solution to the problem of building n-tier applications. J2EE focuses on defining client- and
server-side technologies that make these applications not only easier to build but also easier to
integrate. The J2EE spec encompasses all kinds of client/server types and interactions: It deals
with Web clients, Web-based information servers, pure application servers, applets, and both
synchronous and asynchronous solutions.

Although J2EE specifies many complex and powerful technologies, it is still just a specification. It
requires vendors to actually develop what it proposes. Several have: BEA offers its WebLogic
suite of products and IBM offers WebSphere, just to name the two most well-known. Sun has also
released a reference implementation, which is a very useful and cost-effective way to get started
with J2EE. Vendors differ on some important details, as we'll see later, but they must all
implement the specification correctly or they won't be certified.

In this chapter, | provide a brief overview of J2EE and highlight the key component- and
platform-level technologies it defines.

Overview of the Specification

The J2EE specification (version 1.3) describes a set of technologies designed to address the
presentation, business logic, and persistent storage needs of n-tier applications. Generally speaking,
a J2EE environment consists of several types of components that communicate with each other

and a persistent storage device (a database). There are four categories of components:

e Java applets, which typically execute in a Web browser on a client machine

e Java applications, which execute on a local or remote client machine

e Java servlets, JavaServer Pages (JSPs), filters, and Web event listeners, which execute
on a server machine

e Enterprise JavaBeans (EJBs), which are application objects that execute on a server
machine

Each of these component categories is associated with a specific type of J2EE container:

Applet containers, which host applet components
Application containers, which host application components
Web containers, which host servlets and JSPs

EJB containers, which host EJBs

Containers manage their components. Component developers can assume that the containers exist
and manage the components per a specified contract (agreement). In plain terms, this means that
components must obey certain interface guidelines and that containers rely on interface-
guaranteed functionality in the course of their management duties.

From the component perspective, a container is used to access the rest of the J2EE services. Thus,
the container acts as the layer (or API) that makes the rest of the system visible to the component
being contained. Through this layer, components can access other components or resources, such
as an external database.

Each container type is targeted toward a particular style of deployment:

e Applet containers are the most limited. They simply act as proxies to the other types of
container. Applets run in a Web browser and can contact Web containers in order to
access the underlying business logic.

e Application containers run as standalone programs and can access Web containers, EJB
containers, or the database.

e Web containers receive requests and format replies for Web clients. They enable a J2EE
system to be accessed via HTTP.

e EJB containers represent the heart of the J2EE architecture: They manage the underlying
business logic of the application. This is where operations like order processing occur or
new accounts are created. EJBs are constructed based on the language of your business.
They consist of a number of built-in features to enable reliability, availability, security,
scalability, and robustness.

Figure 3-1 shows the general relationships of the different types of containers. The purpose of
each of four J2EE containers is to permit access to underlying J2EE services (local or remote)
through a set of common APIs. These APIs allow the containers to do things such as conduct
transactions, manage security, and pool resources. The APIs and their basic purposes are listed in
Table 3-1. Figure 3-2, a more detailed version of Figure 3-1, indicates where the various APIs and
services fit into the different J2EE containers.

Figure 3-1. Relationships among J2EE containers

Client Side Server Side
Epplet Contalner Wab Container
Applaet -‘-i
Servlsk JEP

-. l
EJE Container i
—h_

EJB

Application Conta
7 Dat

Application

Figure 3-2. APIs supported by J2EE containers

Client Side Server Side

Epplet Container Wb Container
...... - oy P
4 o 2oy g §ig
H EXCE B R R
£
5

|
EJB Container
By : < £y £ '.:.|| - 6

A
SHI
d3%L

TTEMEAED

-------- = HTTP/SSL-based communicatlon
based communication

There is considerable opportunity for J2EE containers to interoperate with technologies that live
outside a J2EE environment. For example, a Web container can use the HTTP, HTTPS, or IIOP
protocols for communicating with other objects and systems. Table 3-2 summarizes the basic
interoperability capabilities of the four types of containers.

There are many details of the J2EE spec that we could cover at this point. Rather than discuss all

of them, we will focus on those that will play a role later in our discussions about scalability and
performance.

Table 3-1. J2EE Services and APIs

Service Purpose

HTTP Message-based Web communication

HTTPS Message-based secure Web communication
protocol

RMI-1IOP RMI accessibility for CORBA objects

Java Database Connectivity Database management

Java Naming and Directory Resource identification and state management

Interface

Java Message Service Asynchronous messaging between containers

Java Interface Definition Language Access to CORBA objects outside of a J2EE
deployment

JavaMail Notification via e-mail

JavaBeans Application Framework (Required by Java Mail)

Java Transaction API Transaction management

Table 3-1. J2EE Services and APlIs

Service Purpose
Java API for XML Parsing Parsing XML
Java Connectors Container access to Enterprise Information Systems
Java Authentication and Security within J2EE containers
Authorization

Table 3-2. J2EE Container Interoperability

Container Type Inbound Protocols Outbound Protocols
Application HTTP, SSL, IIOP, JRMP
Applet HTTP, SSL, IIOP, JRMP
Web HTTP, SSL HTTP, SSL, IOP, JRMP
EJB EJB, 1IOP, SSL HTTP, SSL, IOP, JRMP

Deployment Issues

In this book, we will not be covering things like how to run a certain implementation of the J2EE
or the exact details of variations of J2EE across vendors. In fact, we'll generally ignore detailed
deployment issues, because they tend to be highly vendor specific and relate more to J2EE
operation than architecture and design. Nevertheless, it is useful at this point to say a few things
about how a J2EE application is packaged and deployed. Later, when I refer to something as being
a deployment issue, it is often related to one or more of the aspects that I'm going to cover here.

Packaging

In terms of packaging, a J2EE application is stored in a file with an . ear extension (hereafter
called an EAR file). An EAR file is the same as a . jar (JAR) file, except that it refers to an
enterprise Java application archive, not just to a Java application archive. Another important type
of file is the Web application archive, or .war (WAR) file, which archives files related to
servlets and their JSP pages.

An EAR file can contain one or more of the following:

e JAR files for each EJB component
e JAR files for each application client (if any)
e WAR files for each servlet and set of related JSPs

The EJB and application client JARs contain the relevant . c lass files, any related files, and
something called a deployment descriptor (more about this in a moment). The WAR files contain
servlet . class files, static Web resources such as GIF files, a set of related files (i.e., utility
Java classes), and a deployment descriptor file.

To get a feel for what an EJB JAR file looks like, consider a JAR file for a sample EJB called
BenefitSession (this EJB will appear in a later example). Here are its contents:

BenefitSession/

EjbBenefitSessionbean.class
EjbBenefitSessionRemote.class
EjbBenefitSessionHome.class

META-INF/
ejb-jar._.xml

The relationship between what is assembled and what is deployed is shown in Figure 3-3. As you
can see, WAR and JAR files are the guts of a J2EE application EAR file, which is deployed as a
J2EE server.

Figure 3-3. J2EE service packaging and deployment

Assembly 5 Deplovment
EIB JAR File(s)

12EE Server

J2EE EAR File

Application Client JAR File(s)

—_—

Web Apphication WAR File(s)

Deployment Descriptor Files

A deployment descriptor file is simply an XML file that typically contains structural, assembly,
and runtime information about J2EE components. A J2EE application consists of a deployment
descriptor for the application as a whole and specific deployment descriptor files for each
component as necessary. The information in a descriptor file has to do with the component
assembly (e.g., the names of EJB interface classes), security information (e.g., definitions and
applications of roles), and other runtime dependencies and information.

Part of a sample EJB deployment descriptor file is shown here. This snippet indicates something
about the structure of the object (i.e., its attributes and relationships) and its resource dependencies
(i.e., database information):

<persistence-type>Container</persistence-type>

<cmp-field><field-name>first_name</field-name></cmp-field>
<cmp-field><field-name>last_name</field-name></cmp-field>
<cmp-Ffield><field-name>hire_date</field-name></cmp-field>

<resource-ref>
<res-ref-name>employee</res-ref-name>
<res-type>javax.sgl .DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Without going into the details of what a deployment descriptor is made of, we can observe that it
is simply an XML file that contains metadata about the EJB or the application component being
deployed. As an XML file, the deployment descriptor helps to ensure the portability of
deployment—independent of the deployment platform, the same set of properties can be used. The
XML file is, after all, just a text file that is independent of the operating system and CPU. If you
are new to XML, you may find it helpful to skip ahead to the first part of Chapter 12.

To illustrate how deployment descriptors can contain information about security roles and
privileges, consider the following example.

Listing 3-1 Sample deployment descriptor
<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>MyBean</ejb-name>
<ejb-class>MyEntityBean.class</ejb-class>
<security-role-ref>
<role-name>entity-admin</role-name>
<role-link>administrator</role-1i1nk>
</security-role-ref>
</entity>
</enterprise-beans>
<assembly-descriptor>
<security-role>
<description>The Admin Role</description>
<role-name>administrator</role-name>
</security-role>
</assembly-descriptor>

</ejb-jar>
Notice that new security roles can be both defined and linked, as well as applied to various

application components such as EJBs.

The entire XML DTD for J2EE deployment descriptors can be found at
http://java.sun.com/dtd/application_1 3.dtd. Taken almost directly from the J2EE specification,
Figure 3-4 is a graphical summary of this DTD, which may help you visualize how a J2EE
application breaks down and organizes its assembly and deployment information.

Figure 3-4. J2EE deployment descriptor XML DTD

application

con displav-name description? module+ security-rofe®
small-icon large-icon connector | ¢jb | java | web alt-dd? deseription? role-name
Oipticnal element
o Ferooor more elemens :
S iy webeuri context-root?

e or myore elements

As the figure shows, a deployment descriptor contains information about all types of application
information, including its modules. Note that this DTD is relevant for the entire application (i.e.,
the EAR file). Individual elements of the application, such as the EJB JAR file and the WAR file,
have their own deployment discriptor DTDs.

Again, we won't consider the detailed modifications of the deployment descriptor file for each
component. Books devoted to specific J2EE technologies like JMS and EJBs already offer such
information. They are often the best resource because there are so many possible deployment
descriptor settings, many of which are independent. The J2EE vendor documentation is also a
good source; it will provide the most comprehensive information about deployments. Finally,
continual comments about deployment descriptor settings would be tedious and a distraction. We
are occasionally interested in what kind of information is stored in a file for a given component—
not so much in how it is actually specified.

Platform Technologies and Services

One of the benefits of building your application on top of the J2EE infrastructure is that doing so
allows you to inherit key technologies that facilitate scalable deployment. In this section, we visit
some of the key platform technologies and services J2EE infrastructures provide. These
technologies are related to simplifying and empowering distributed application components to
coordinate and communicate. Providing this type of transparency in a distributed system allows
application designers to focus on the business logic of their applications, rather than waste their
time tuning the replication and distribution of components that implement that logic.

Component Communication via RMI-IIOP

A large part of J2EE centers around the idea of making sure that business logic is accessible from
many types of clients and from other middleware standards, particularly the Common Object
Request Broker Architecture (CORBA). CORBA and the Internet Inter-ORB Protocol (1IOP)
specify how distributed objects can be deployed and can communicate across network boundaries.

CORBA has its own huge specification, which consists of many core services (e.g., naming) and
the Interface Definition Language (IDL). IDL is a platform-neutral language for specifying
services. Its compilers generate "stub" and "skeleton" code in languages such as C++ and COBOL,
which allow the functionality in those languages to be deployed as accessible (i.e., CORBA
objects). Using the generated stub/skeleton code, objects can communicate with each other (more
about this in Chapter 8).

An object request broker (ORB) is the mechanism by which objects locate and bind to each
other. 11OP is simply a protocol for CORBA objects to communicate over a network. If you're
somewhat familiar with RMI (Remote Method Invocation) and EJB, but new to CORBA, you're
perhaps beginning to sense a similarity.

In the Java 2 Standard Edition (J2SE) version 1.3, RMI was fused with I1OP to create RMI-110P.
Although it uses I1OP as its means of communication, RMI-11OP retains an RMI-style API. This
enables 110P-style communication without forcing Java developers to learn yet another API.

For a J2EE system, RMI-I1OP is the primary method of communication across tiers. In addition, it
essentially allows Java developers to construct CORBA services without having to learn IDL. In
the old days, you had to buy a CORBA product produced by companies such as Visigenic or
IONA. Now J2SE comes with a fully functional CORBA ORB and support for stub code
generation through its RMI compiler.

What all this means for the application system architect is that Java developers can easily access
existing CORBA application systems and vice versa. Thus, it allows legacy functionality to be
incorporated easily in a J2EE deployment.™ Figure 3-5 shows Java objects communicating with
remote CORBA objects over RMI-110P, and Figure 3-6 shows how 11OP works. Notice that it's
simply a layer through which objects associated with different ORBs can be coupled.

1 An important restriction, which we don't address in detail here, has to do with legacy CORBA objects,
which must be deployed by vendors who support the recent Objects-by-Value extension of the CORBA
specification. More about this at http://cgi.omg.org/cgi-bin/doc?formal/99-10-07.

Figure 3-5. Integrating Java and C++ CORBA objects

I2EE System Existing CORBA System

RMIIOP

Employee_var getEmployes(const char * a_id)

Employee e = {
EmployeeLocator. getEmployee (id) ; Employee_var emp ;
. emp -
Java Code return emp ;

]
C++ Code

Figure 3-6. IIOP among ORBs

I2EE System Existing CORBA System

Hnop

ORB

Y

ORB

Figures 3-5 and 3-6 show a J2EE system talking to an existing CORBA System. | do this to show
why you would connect CORBA objects written in two languages—in this case, something new (a
J2EE application system written using Java)—to something that already exists (a CORBA
application system written in, say, C++ or Smalltalk and deployed using a different ORB vendor).
In reality, however, these are two CORBA systems. J2EE and RMI-I1OP allow Java programmers
to represent their services as CORBA objects, without the additional work of coding an IDL file,
and so on.

The main message here is that in addition to allowing you to use RMI to communicate easily with
existing Java-based RMI objects, RMI-I110P allows you to extend object sets to include CORBA
objects. Since RMI-I1OP is the language spoken between components in J2EE containers, it's
important to be aware of what it is, and how it generally works.

Transaction Management Using the Java Transaction API

A J2EE transaction enables a series of operations, perhaps distributed, to be executed in an
orderly way that guards against errors with any one of them. It also protects the integrity of these
operations across program boundaries.

For example, suppose your server-side application system is an automatic conference organizer
that allows one-touch registration. A user enters her name, address, conference options (i.e.,
tutorials she wants to enroll in), and travel options. She provides a credit card account number and
the system does the rest. The conference organizer, in turn, does the following:

Register participant for conference
Register participant for hotel

Register participant for rental car

Debit user's credit card for the total amount

Each operation may be handled by a different application server. There's no telling what can
happen with any one operation; for example, the hotel registration may fail or return an error. If
there are errors, we certainly don't want to continue the series of operations and we want to undo
actions that occurred in earlier operations. This is just the kind of thing transactions are good at.

With transactions, there are two important terms to remember: commit and rollback. When one
operation is completed, it is still not finalized. Instead, all such operations wait until the last one
has completed. At that point, the transaction can explicitly issue a commit operation, which
finalizes all of them. If an error or failure occurred during the execution of any of these operations,

a rollback can be issued to signal to the other operations that finalization will never occur and that
uncommitted actions should be undone.

The Java Transaction API (JTA) supports transaction management among various J2EE
containers. The operations that take place during a transaction are typically JDBC or JMS related,
although the J2EE spec also supports external adapters that conform to the XA transaction
standard. Note that the Javax . transaction package specifies a very general form of
transactions that has nothing directly to do with using JDBC or JMS in isolation—it merely ties
together operations for a logical operation, including those (e.g., database updates) that involve
external resources.

The J2EE platform offers transaction services because of the complexity and possibility of errors
when developers code their own transaction logic, especially between tiers. In fact, a single client
interaction might cause many components in many tiers to be invoked and create confusion about
who starts the transaction and who is responsible for committing or rolling back that transaction.
By offering transaction services at the platform level, J2EE allows a collection of distributed
components to easily coordinate execution common to a single, logical client operation.

Transactions and Web Components

When designing Web components, such as Java servlets, you can always get a handle to the
current transaction. This is guaranteed by the specification and is a responsibility of the platform.
In particular, the spec states that Web components can obtain access to a transaction that
implements the Javax.transaction.UserTransaction inter face. Web components
are allowed this access via the JNDI API, which we discuss in more detail shortly.

Transactions in Web components don't span client sessions. More specifically, for servlets, they
are started in the servlet's service() method and must be completed (committed or rolled
back) before this method returns. If not, the Web component is in an error state.

Web components can consist of multiple threads, but transaction resource objects should not be
shared by threads. This means that threads should not use associate transaction resources with
common memory addresses. Thus, resource objects should not be stored in static variables or in
instance variables.

Since servlets often interact with EJBs, which interact with the database, it is important to know
how a transaction propagates. The specification declares that when a Web component contacts an
EJB, the platform must be responsible for propagating that transaction to the EJB's context.

Transactions and EJBs

Transaction management gets a bit more complicated when it comes to EJBs, partially because
J2EE assumes that the bulk of application logic resides in EJBs. It's also because management of
persistent data in the application is abstracted by EJBs, specifically in the form of entity beans. In
contrast, session and message-driven beans (the other two types of EJBS) represent session logic,
not data.

It's useless to speak about the details of EJBs and transactions here, since we haven't discussed
EJBs in detail. For now, the important things to remember about EJBs and transactions are:

e For some types of bean (session and message-driven beans), transaction management may
be handled by the bean itself; that is, the developer writes the logic to start, commit, and
possibly roll back a transaction.

e Session and message-driven beans can be configured so that transaction management is
automatic—~by the container. In fact, details about their transaction management (e.g.,

does a transaction get passed from one bean to another when the first calls the second?)
can be defined per method.

e In contrast to session and message-driven beans, entity beans can't manage transactions
explicitly. Everything is handled by the container, regardless of whether that bean
interacts with the database (bean-managed persistence) or the container does (container-
managed persistence).

Many of these details, especially the types of EJBs that can be developed, are covered in Chapter
8.

JNDI for Resource Location

Although J2EE supposes a distributed application system, it's often necessary to maintain a
common state among the system's components. For example, resources, hames, or addresses may
be common among components (i.e., location independent). Access and management of this state
are provided by the Java Name and Directory Interface (JNDI).

For those familiar with directory services, JNDI is the means with which to access such services
as LDAP. For most other J2EE developers, JNDI is simply an easy way to manage resources
shared by tiers.

From a component standpoint, INDI gives location-independent access to a common application
state, or context. The J2EE specification also views the JNDI context as a mechanism for making
application components dynamic. Instead of altering the source code for a component, it bases a
conditional part of component execution on the values obtained by access to the context. Then, at
runtime, when the component accesses its context, such variable settings (i.e., variable values or
rules) are resolved. This can be done on a deployment basis. That is, the deployer can set the
proper value in the deployment descriptor, and the component can obtain that value via the JNDI.
All of this occurs without recompilation.

For example, suppose we wanted to customize the multiple to use as the basis for salary raises. If
we assume that this value is deployment specific or otherwise dynamic, then our application
component needs to read this value from the JNDI and act appropriately.

The following snippet of application code does just that for a mythical function called
calculateNewSalary (). The method shown requires the prior salary value as a parameter
and uses the value of raiseMultiple to determine the new salary.

public double calculateNewSalary(double a_origSalary) {

/* Obtain handle to our naming context. */
Context initCtx = new InitialContext();
Context localCtx =

(Context) initCtx. lookup(*'java:comp/env');

/* Look up the salary multiple */
double raiseMultiple = ((Double)
localCtx. lookup(“'raise_multiple™)).doubleValue();

/* Raise salary per the multiple */
return raiseMultiple * a origSalary;

Thus, we first initialize the context and locate the desired node within the context tree structure.
Once found, we read one leaf of that directory tree—raise_multiple—for its value. Thus,
for example, a 10 percent raise means that this value is 1.10. We then use that value as the basis
for calculating the new salary.

In the deployment descriptor, raise_multiple might be stored as follows:

<env-entry>
<env-entry-name>raise_multiple</env-entry-name>
<env-entry-type>java.lang.Double</env-entry-
type>
<env-entry-value>1.10</env-entry-value>
</env-entry>

Another use of the JNDI is to provide access to various shared J2EE resources, such as the
following:

Databases
Message queues
EJBs
Transactions
Mail servers
URLs

Using the JNDI to locate these objects provides a simple and consistent interface for obtaining
access to a common resource.

As an example of how these other objects can be fetched from the context via the JNDI, consider
how a well-known Java Message Service (JMS) message queue is located. Although its name is
known (i.e., the queue was registered to JNDI under that name), its location is not. This is the
value of the JNDI: Instead of forcing every application component to know where every resource
is physically located, J2EE provides a logical handle to that distributed resource. This makes
coding application components simpler and allows the component to be relocated without having
to recode or recompile the application components that use that resource.

The following code is an example of how to obtain a handle to a well-known message queue using
the JNDI, the following code might suffice:

/* Obtain handle to our naming context. */

Context initCtx = new InitialContext();

Context localCtx = (Context)initCtx. lookup(*'jJava:comp/env');
/* Look up the message queue we want */

Queue myQueue = (Queue)localCtx.lookup(*'Jms/MyQueue™);

Just as the raise_multiple value was defined in the deployment descriptor, so too is the
information corresponding to the JMS MyQueue object. Notice that in both cases, the resource
type and description can be included in the descriptor entry, thus making the environment self-
describing.

<resource-env-ref>
<description>
My message queue

</description>

<resource-env-ref-name>jms/MyQueue</resource-env-ref-
name>

<resource-env-ref-type>javax. jms.Queue</resource-env-
ref-type>
</resource-env-ref>

J2EE and Your Architecture

At this point, you may be wondering, do | need to use all of J2EE? If not, how much of its
technology should I use? The answer is, as much as you want.

To be sure, most Java development efforts already use popular parts of the J2EE architecture, such
as servlets, JSPs, and EJBs. JDBC has already become a popular mechanism for integrating
databases into Java applications. More recently, JMS is gaining converts as people (re)discover
the joys of asynchronous communication. However, one of the nice things about the J2EE model
is that you don't have to embrace all of it to use some of it. For example, you don't have to use
EJBs; you can simply use servlets and JSPs. Or, you can use servlets and EJBs, but not JSPs. With
the exception of the platform technologies, which tie everything together, the component
technology you use depends on your needs.

When you do use J2EE, however, it means choosing a vendor. Again, the J2EE is merely a
specification. Unless you are planning to implement it yourself, you should settle on a vendor that
is not only J2EE compliant but offers an implementation that suits your needs. For example, as we
will discuss in Chapter 8, vendors differ on how they implement container-managed persistence
(automatic data management) for EJB entity beans. This is the kind of detail you should know
before choosing a vendor.

Finally, regardless of your path, if you're interested in building highly scalable Web applications,
you should strongly consider an n-tier approach. In building those tiers, you may find that part or
all of the J2EE specification fits your needs and plans.

Summary

In this chapter, we learned that the J2EE specification describes how n-tier applications can be
built and deployed. Although these applications are often thought of as Web applications, they
don't need to be. In fact, Web integration is only one facet of the specification.

J2EE is a set of application components, containers to manage those components, and integration
or platform "glue" to tie everything together in a secure, location-independent manner. Component
management is enforced via interface contracts. Simply put, a container has guarantees that the
component has certain methods (i.e., lifecycle methods), so that it can be managed as necessary.

We covered the key services provided by the J2EE platform and gave special attention to
transactions and resource management. From the component perspective, the container provides
APIs that not only allow access to these technologies, but also enable other J2EE functionality—
such as Java Mail—to be easily accessed.

It's unlikely that you will use every J2EE feature in a single application. For example,
your application may be such that messaging services, such as that provided by JMS,
do not make sense. Still, I strongly suggest that if you plan on deploying any
application system for the Web, you consider J2EE. It is portable and is integrated
with a number of Web/non-Web, asynchronous/synchronous technologies that give a
great flexibility and freedom to the architect designing an application solution. For

our purposes, J2EE provides a great example of how some scalability and
performance techniques (e.g., caching and redundancy) have crept into a practical and
enterprise-level application system.

Chapter 4. Scalability and Performance Techniques

Throughout this book, we'll discuss techniques for addressing scalability and performance in all
phases of an application. Our discussion will range from the HTTP protocol to J2EE technologies,
such as EJBs and Java servlets, to relational databases. Although some techniques will be relevant
to only one type of technology, a few general scalability and performance strategies will permeate
most, if not all, of them.

Many of these techniques were originally developed for the then-revolutionary distributed systems
designed a couple of decades ago. However, they continue to be relevant today and will likely
remain so for years to come. They include:

Caching/replication
Parallelism

Redundancy

Asynchrony
Resource pooling

We'll discuss why each is generally useful and provide real examples that demonstrate its benefits.

Caching and Replication

A cache is a structure that contains a copy of information that originates at some source.
Generally speaking, a cache consists of a table of key/value pairs. For each pair, a key represents a
question and the corresponding value represents an answer.

Table 4-1. Sample California City/County Cache

City County
Pleasanton Alameda
Santa Clara Santa Clara
Livermore Alameda
Palo Alto Santa Clara
Marina del Rey Los Angeles
Garden Grove Orange

For example, to look up the California county that contains the city of Marina del Rey, we ask a
question—What county is Marina del Rey located in?—and obtain an answer—Los Angeles.
Table 4-1 shows this information in a sample cache of cities and counties.

The keys and values in a cache can be more complex objects and are not limited to strings; the
only requirement is that the key object support some sort of equality test so that we can
successfully test its membership when we query the cache.

Caches typically hold much less information than that in the originating source. For example,
there may be thousands (or hundreds of thousands) of city/county pairs, even though only a
fraction of them are contained in the cache. There are a variety of techniques to determine what
information should be retained in the cache and what should be eliminated or “flushed."

Generally speaking, when information not in the cache is requested, the system fetches it from its
original source, returns it to the requestor, and adds it to the cache. Of course, a cache has limited
size and eventually it must be decided which information to flush. Obviously, it's desirable to keep
those pieces of information that will be the most frequently queried because that will provide the
best system speedup. Keep in mind, however, that | just said "will be the most frequently queried."
Since there's no way to predict the future with 100 percent accuracy, part of the challenge in
designing a caching system is identifying a good cache flush policy.

One example of such a policy is least recently used (LRU), which keeps only the most recently
queried information. For example, consider the sample city cache and assume that it can store only
six key/value pairs, as shown. Also, assume that the table shows the order of information access—
thus, Garden Grove was the last city queried. Now, if the county for San Ramon is queried, the
system fetches the answer (Alameda) from the originating source and replaces the least-recently-
used pair—Pleasanton / Alameda—from the cache.

Table 4-2. City/County Cache with Access Counts

City County Accessed
Pleasanton Alameda 100
Santa Clara Santa Clara 1
Livermore Alameda 1
Palo Alto Santa Clara 1
Marina del Rey Los Angeles 1
Garden Grove Orange 1

Although there are many cases where LRU ends up being the best or close-enough-to-the-best
policy, this is not always the case. For example, suppose that we also keep track of how many
times information is accessed. Our table might be amended as shown in Table 4-2.

As you can see, even though Pleasanton was queried 100 times, it wasn't the object of the last five
queries. Then, when San Ramon was queried, LRU forced out Pleasanton because it hadn't been
requested recently. Since the cost of accessing information from its originating source can be very
high, it can be better in the long term if things like access counts are taken into consideration.

Using caches to duplicate information can improve performance if the cache is more physically
proximate, naturally quicker to access, or both. The speed of light guarantees that a more
proximate structure is always quicker to contact than a remote source. That's just a rule of physics,
and there is no getting around it. Network optimizations aside, if I'm in San Francisco and | have
to access my e-mail, it's going to take longer if the e-mail database is in New York than if it's in
San Francisco.

On your computer, a CPU maintains a cache so that a memory request doesn't need to travel along
the system bus to the actual static RAM chips. Similarly, Web browsers maintain a cache so that
they don't have to send a request over a network and withstand network latencies for a reply from
the originating source. Figure 4-1 illustrates this similarity. In both cases, the reasoning is the
same: It's physically faster to query a more proximate source.

Figure 4-1. Caching to reduce latencies caused by distance

2 RAM
CPL
: System Bus
Execution S8 L1,L2 Bl.ceececsncncaage
Uit B Cache RU---"===wm=smmmeod
Relative
Communication
Speeds
Originating Web Site Faster
5P
— Slower
— i e o
—
Wb Browser -
—
=
ISP Internet
Browser ———p= Proxy B """ T
Cill..']'ll..‘ -‘_{‘-w.h;‘. L L LT

There's another compelling reason for caching: better access time. If the access time of a cache is
quicker than that for the same information on the originating source, the cache may be more
efficient, even if it's more remote. You see this all the time on the Web. Suppose there's a great
Web site hosted in your city but its server is slow or the network infrastructure connecting it to an
Internet backbone is lightweight. A content distributor like Akamai or a publicly available cache
like Google may have a copy of that information that, although remotely located (perhaps it's even
more remote than the original source), is still quicker to access because the servers are snappier
and the bandwidth for clients is higher.

Then there's what | call the cut-to-the-chase aspect of querying that makes a cache quicker to
access. Suppose | want to find out the vice president of an employee's division. | have the
employee 1D, but to get the VP information | need to query an EMPLOYEE table to find the
department ID for that employee, query a DEPARTMENT table to find the division ID for that
department, and finally query a DIVISION table to find the division information | want. In
contrast, a cache can simply map employee IDs to department VP information, as shown in Figure
4-2. The effect is the same: Caches can provide faster access than the original source.

Figure 4-2. Caching to reduce access time

Time [Naw [Departnent
e R y = i ssssssssscccscape | 10 |Phil Thonas]
Ciet depariment 11 based on employee [, teeeeennenneases [T0L|TaNINE Cora g
102 | Greg Amat E
L Kasa Mrivision |
Ciet division 113 based on department ([, 7777777777770 = | 3 | Recrviting &
lfeeeecannannaaes | |MoBiTe Agent 2
I Training [
| I 1 Name VP
" "o . ' s=aa= as= = - i] 1
Crct dirviseon mio based on division 113, & | VRIS RAaGURCeS. | h 1L Mg |
¥ el I 1 | Sales Ken Dornan |
a1 Consulting Abbice Green

Time
[m] VP
e - _IEI.'IE 1i11 Heang
= ——— 101 Ken Dorman
[102] Abbie Green |

Look up ¥P information via cache,

In summary, there's a tradeoff in the caching benefit equation, which can be shown as

ﬂT]mE (per ﬂb_]ECt] = {R}:riga = R:‘ri"m'lu'\—] +: {:ACC;JHH w ACQ'&IL"I‘HJ

RT= Roundtrip time

ACC = Access time.

Thus, response time is a function of cache proximity as well as cache efficiency, both relative to
the originating source.

As the equation indicates, that's just the performance benefit. Caching can also provide scalability
benefits because it reduces demand for server resources in the forms of less bandwidth, fewer
CPUs, and fewer connections to manage. By copying information to a more local or more efficient
source, we delegate the rising resource demands in an effort to provide consistent performance.
Generally speaking, then, caching improves both performance and scalability.

Caching is not without its problems. The most obvious among them is guaranteeing data
consistency: ensuring that the cache contains the same information as the server contains and that
multiple caches are kept in sync. For example, if your application maintains a main memory cache
of session data (such as user information) normally stored in a database, it's important that any
changes to the data be reflected in both. It's even worse if you have multiple caches and/or
multiple databases; then you need to make sure that the data is consistent across all sources.

Clearly, this can get tricky. Suppose you have a banking application that keeps track of checking
and savings accounts. For improved performance, the application caches account data in memory
as accounts are accessed. So, while Joe Smith (an account holder) is logged in, his checking
balance of $100 and savings balance of $0 are kept in a memory cache.

Let's say that this is a write-through cache, meaning that it forwards all updates to the database as
they're made. Now, what will happen if—at the same time that Joe is online—the bank processes a
check he's written for $50? Check processing has nothing do with the online application (or so it
would seem), so some sort of check-processing software updates the database with Joe's new
balance. Of course, if Joe uses his online session to transfer money from checking to savings,
there can be a serious problem because the cache is unaware of the changes made directly to the
database.

This isn't as unlikely as you might think. Valuable data often has many interfaces and problems
like this can occur unless these interfaces share a process for interacting with the database. The
extent of the damage in this example may depend on the write-through nature of the cache. Are
two SQL UPDATE statements taking place, blindly ignoring the current database values and
trusting the cache alone? If not, where's the logic that ensures that Joe won't have a negative
balance? In any case, either Joe will get an error or the bank will give him some money back!
Obviously, neither of these is a satisfactory solution.

The consistency problem gets even worse as we try to make our application more scalable. Say an
organization provides scalable access to its information by deploying its application across several
servers and uses load balancing to distribute the load among Web servers and application hosts.
(Figure 4-3 shows this deployment.) Now, suppose that the application uses a memory cache to
retain account information; however, as Figure 4-4 shows, since the application is distributed there
are multiple caches.

Figure 4-3. Load balancing for scalability

Host A

Host B

Host C

Figure 4-4. Cache consistency

Host A

1D Ll
100 3411 isang
101 Earl Smith
Load 102 |parey Timmins
Balancer

P Host B

In WP

|100] Jack Sneed |
101 Earl Smith l
102 .I'_'u's.-.- 1'rrr||.'|r..

Even if the organization has somehow ensured that the cached information will be consistent with
the database, how do they ensure consistency among caches? If two users share volatile data—
load-balanced and directed to an available server—we can encounter this type of inconsistency
between caches. Figure 4-4 shows that the first entry for each of the two host-based caches is
different. To prevent this, some additional consistency mechanism must be built in or added to the
system.

In short, caching solves some problems but creates others. Inconsistency is merely one of several
risks. Another is the security or ethical issue of caching: Should Web proxies be allowed to cache
content (is that legal?)? Should you cache usernames and passwords in memory? Probably not,
unless you can guarantee their protection. The same may be true of very personal data, such as
medical records. Back to Web caching, what happens when intermediate caches don't obey your
HTTP cache directives? Are you liable?

Still another problem is cache reliability. What happens when caches without write-through
policies crash? To illustrate, let's take a look at the Oracle high-performance database management
system (DBMS).

Oracle uses multiple processes (or multiple threads, depending on platform and database version)
not only to cache query results but also to implement what might be called a "delayed write-
through" policy regarding data updates. It avoids writing updates immediately to disk because disk
1/0 is slow and because permanent updates to data files shouldn't be made until the corresponding
transaction is committed. However, Oracle still must ensure that system failure doesn't cause
transactions to be lost. To solve this problem, it logs transactions so that if the server fails all
committed transactions are saved, even those in memory awaiting update on disk.

Parallelism

Conceptually, parallelism is the notion of doing more than one task at once. Many parallel
machines exist and have been used for research and for processing scientific data sets, but it's
probably safe to say that the majority of Web applications don't run on parallel infrastructures.
Nevertheless, many can benefit from parallelism on several levels. The key challenge is to
understand what aspects of a particular application demand parallelism and what the options are.

We'll visit techniques for increasing parallelism later in this book, but first let's define the types of
parallelism that exist.

First, there are two parts of any application where parallelism can be extracted —in hardware and
in software—and each offers a variety of ways to exploit it. At the hardware level, there are
architectures that, by design, are parallel. The major ones relevant today are

e Massively parallel processors (MPP), which consist of processing nodes that don't share
data (i.e., shared-nothing) but compute by routing data between nodes.

e Symmetric multiprocessing (SMP) machines, which consist of multiple processors that do
share the same data. Basically, any processor is free to use any data.

e Clustered computing systems, which consist of multiple computers that typically don't
share the same data but route it between computers over a network.

The trend that emerges from the list is the growing distance between processor nodes. More
distant nodes mean higher latencies, but closer nodes mean increased cost and complexity. For
example, programming for MPP architectures is expensive and not something just any developer
can do well. MPP architectures are likely nonexistent for Web applications (although some
technologies, such as those for video streaming, may use them); however, many applications do
run on SMP machines and clusters.

In addition to these basic architectures, there's the notion of on-chip parallelism, which has to do
with the ability to extract parallelism from a set of instructions or concurrent processes or threads.
Most CPUs today do an excellent job of exploiting instruction-level parallelism (ILP), using
techniques such as multiple issue, pipelining, and speculative execution to intelligently schedule
and predict low-level machine instructions.

However, as processors have become more powerful, ILP techniques have actually leveled off.
For example, the deeply pipelined processors of today can schedule many instructions at once.
The problem is, which ones? Studies show that branches typically occur once every five machine
instructions. Branch prediction and speculative execution can be employed, but they become less
relevant as the size of the pipeline increases. For example, if a deeply pipelined processor allows
many concurrent instructions, CPUs are forced to engage in highly speculative behavior, making
predictions based on predictions of predictions of ... and so on. You get the idea: the deeper you
go in a pipeline, the less valuable its contents become.

Newer architectures promote the trading of deeper pipelines for multiple pipelines and the
increased use of multithreading. This trend is a direct response to the limits of ILP as the size of
processor pipelines increase. The increased use of multiple threads gives rise to a new category of
parallelism—thread-level parallelism (TLP). Note that the emergence of TLP does not spell the
death of ILP. Instead, it is widely envisioned that hybrid processor designs, reaping the benefits
from both ILP and TLP, will yield the best performance. Finding the optimal tradeoff between ILP
and TLP will likely remain an important issue in processor architecture research for years to come.

You may wonder: Why did multithreading emerge and why has it become a popular means for
achieving parallelism? In fact, there has always been the need for parallelism in computing.
Computer architecture research and scientific programming have generated interest in parallel
architectures since the 1960s. As you probably know, a great many mathematical operations and
problems naturally lend themselves to parallel computation. Matrix multiplication is a good
example; it is one of many complex operations that consist of a natural set of independent internal
subproblems that can be computed in parallel.

However, parallelism for mass-market, consumer-oriented software (which typically consists of
less scientific computations) is a relatively new phenomenon. There are two major reasons for this.
One has to do with the recent increase in computer networking. Prior to the rise of the Internet,
most consumers bought shrink-wrapped software that operated on only local data (i.e., data on

disk). Of course, most applications today (in fact, all Web applications) involve a network.
Increased network use yields applications that tend to be I/0-bound, and can thus significantly
benefit from increased parallelism.

Another reason has to do with the phenomenon of Web applications and the need for concurrent
request processing. Instead of traditional (local) applications that execute only on the machine
owned by the client, more recent (Web) applications contain logic that executes on a remote server.
This remote server often needs to handle hundreds, if not thousands, of simultaneous requests.
Since each request is independent, there is great interest in parallelizing as much of this request
processing as possible.

Advances in programming languages have also made threads more attractive. The Java
phenomenon is probably the primary example. Only recently, programmers who could write
threaded code were few and far between. Java changed all that by making threads accessible, easy
to manage, and relatively safe. The result: more threaded software, which demands more TLP.

When you use Java threads for parallelism, you should carefully assess their value against the cost
of the overhead involved. This isn't to say that Java threads are expensive—they aren't. It can be
more expensive not to create them. However, it's important to understand when to use them—
specifically, the conditions in which they tend to improve efficiency.

Let's see how two threads compare to one for two very different tasks. The first task will be a
CPU-bound activity. Suppose an application server needs to increment multiple counters
10,000,000 times each. Is it faster to increment them by proceeding sequentially, incrementing
each counter 10,000,000 times, or by proceeding in parallel? Of course, there may be hundreds of
concurrent transactions that a given application server processes—as you'll see, however, the
effects of parallel versus sequential approaches becomes clear in the early going.

To answer our counting question, we can write two Java programs, one that counts sequentially
and one that counts in parallel. The results are shown in Figure 4-5. Clearly, sequential counting is
more efficient.

Figure 4-5. Sequential versus concurrent counting (CPU-bound activity)

4,500
= 4000 _
= 3,500
= 3,000
£ 2500 —4— DPanalle]
E 2 000 {multithreaded)
¥ ¥ o
= _ —m— Scguential
—“ 1,500 _ (single threaded)
20 .00 _
=
= 500
=T,

1]
1 | | | |

0 5 10 15 20 25 30 35 40 45 50 55
MNumber of
Sequential/Parallel Counters

Now consider the task of fetching a page over the network. Suppose we need to fetch a set of 200
K Web pages. Is it faster to fetch one page at a time or fetch in parallel? Again, we can write two
Java programs: one that fetches each copy sequentially and one that performs all fetches in

parallel using threads. The results are shown in Figure 4-6. In short, parallel fetching is more
efficient. Thus, a simple rule of thumb is to use threads when

e Your processing is at least somewhat I/O bound. For a single processor, multiple threads
don't yield extra parallelism if you're entirely CPU bound (and you may adversely affect
performance).

e You have multiple processors or an architecture that encourages TLP.

Figure 4-6. Sequential versus concurrent fetching (I/O-bound activity)

25,000
- 22,500
';r‘-.
220,000
o
£ 17500
= 15,000 S
= 12,500 - {multithreaded)
; 10,000 —l— -‘l.:qlll'.‘l'l-rii'”
[(simgle threaded)
1 1500
=]
5 5000
-
< 2500 —

0 v | | | | [|
0 5 10 15 20 25 30 35 40 45 50 355

MNumber of
Sequential/Parallel Fetches

Especially for Web applications, it's rare that all processing is CPU bound. After all, some of the
time will be spent accessing remote functionality, remote databases, and the like. Thus, threads
often make sense. However, if your application does engage in serious computation, don't overdo
it—or avoid writing multithreaded code altogether. The overhead may very well not be worth it.
Also, if you have the flexibility of choosing which processes (i.e., application servers) to run on
which machine, try to mix 1/O- and CPU-bound processes so that you get better efficiency.

Redundancy

Redundancy typically refers to the duplication of hardware or software so that more resources are
available for execution. For example, it's possible to have redundant Web servers or redundant
disk drives, such as RAID. With either, the redundancy not only increases the ability of a system
to scale, it also increases reliability—if one of several Web servers crashes, a Web site remains
accessible.

Note that redundancy, as used here, is not the same as replication. The former refers to the
duplication of resources, the latter refers to the duplication of data.

There can be a performance benefit to redundancy, depending on the resource involved. Consider
a Web server farm. By replicating the number of Web servers, we can effectively increase the
parallelism of request processing. We can achieve near-linear speedups for environments that
normally have very busy Web servers, which is why server farms are such a popular scalability
solution.

The only real drawbacks to redundancy are its deployment cost and the data consistency challenge.
Cost increases not only for the duplicate resources but for the added hardware/software to employ

them. Redundant Web servers, for example, require not only more machines to run them but a
load balancer or redirector to control workload distribution. Dealing with this extra cost is simply
a matter of money: Either you have it or you don't. While throwing money at a Web application is
generally not the best way to improve scalability, this is one case where it literally pays off.

Data consistency can be a more complex issue. As we discussed previously in greater detail in the
section on caching, maintaining consistency requires careful planning and synchronization
techniques. This can be such an arduous and vexing problem that, in some cases, it demonstrates
how the costs of redundancy can outweigh its gains.

To see how, let's return to our example of caching user account information, this time with
redundant write-through caches. Initially, the caches were used to reduce the time to access the
database—accessing a cache located in the same address space is faster than communicating with
another process (the database server). However, as Figure 4-4 showed, if we have redundant
caches on different machines, we have to update cache B whenever cache A is updated (in
addition to eventually updating the database).

In short, the round-trip time we saved by not having to access the database server is erased by the
round-trip time required for redundant cache synchronization. And, as the number of redundant
caches increases, the problem obviously gets worse. Essentially, when we create a redundant
cache we cause the access time to balloon, transforming simple updates into completed
transactions.

The trick with redundancy is knowing when its costs outweigh its benefits. In almost all cases
where redundancy is successful, the hardware or software is stateless. This is why redundant Web
serving works so well: HTTP is by nature stateless, and thus Web servers don't need to cache
anything and can be reproduced at will. Incidentally, Web serving here refers to resolving static
pages, not application request. As we'll see in later chapters, certain application technologies can
cause this stateless deployment strategy to become stateful and thus limit the redundancy of
certain application components.

Remember, redundancy refers to "providing additional independent instances" of hardware or
software, whereas replication/caching refers to data "copying.” This distinction is important and
underscores how replication affects redundancy. For example, in revisiting the data consistency
issue previously discussed, we see that it isn't the redundancy that causes problems so much as it's
the replication of data.

Asynchrony

Dictionaries define the word synchronous to mean "happening at the same time." For software and
hardware systems, asynchronous has a different (but related) meaning: "happening independently
of one another.”

We frequently encounter instances of synchrony throughout computer science. For example,
clocks are said to be synchronous if they keep the same time (more specifically, if neither moves
ahead of the other). Communication is said to be synchronous if one process makes a request of
another and waits for a reply. In this sense, the exchange is considered synchronous because
events happen in a dependent manner—a reply always follows a request. Similarly, code
execution is synchronous: The next instruction comes after the previous one terminates. In each of
these cases, synchrony is necessary to ensure reasonable activity; for example, if code really did
execute out of order, we would get unpredictable results.”

y Although modern CPUs actually support out-of-order execution, committal of results remains in order.

Synchronous communication is a part of almost all distributed computing systems. Web
applications, being distributed, are inherently synchronous when the user is involved. When you
use your Web browser to download a Web page, the download is a synchronous process: An
HTTP request is issued and an HTTP response follows shortly thereafter. In most server-side
application systems, servers contact each other synchronously (for example, using RMI, CORBA,
or COM) as well as the database. All of this makes sense given that queries must be answered for
the application to continue.

However, while synchronous behavior may be necessary in certain scenarios, it's never desirable
from a performance or scalability standpoint because it effectively serializes execution.
Synchronous communication means that a requestor is idle while its reply is being constructed. A
called function or an instruction must complete before execution proceeds.

In many situations, asynchronous methods may be applicable and can dramatically improve
parallelism and thus performance. For example, suppose you develop a Web application that
broadcasts live pitch-by-pitch baseball coverage in which the user downloads some graphical
client that shows the play by play. Under a synchronous model, the deploying Web site would
have to keep track of all clients and contact them individually—waiting for their replies—
whenever a pitch was thrown. But this seems inefficient. Since client replies don't really mean
anything, why waste server-side time waiting for them? If it were possible to asynchronously
communicate or broadcast this information to the clients, server-side performance would improve
substantially. For example, the server could write the updated data to some public data source that
clients could access at will. Since there would be no value in their replies (other than that they got
the message), the server wouldn't need to wait for them to receive the data.

Asynchrony doesn't apply only to communication between remote pieces of functionality. If
single-threaded synchronous execution is recast as multithreaded, asynchronous execution within
a given program can yield important efficiency benefits. Consider a Web application that
downloads a set of URLSs, and inserts their contents into a database db.

A simple way to accomplish this task would involve the following pseudo-code:
for each url u in the list of URLS to be downloaded

page +—FeTcH-PAGE(U)

DataBAse-INserT(db, page)

This means that, after the first download, each successive download occurs only after the
DATABASE-INSERT of the previous one. It seems like a waste. We know that fetching the page
is an 1/0-bound activity, while database insertion is generally CPU-bound. It would seem optimal
to request the next page be downloaded while the database insertion of the previous one is taking
place. Thus, both activities would be occurring in parallel. Now, the only thing one needs to do is
identify a way for data (i.e., the downloaded page) to be passed between them.

For this type of parallel, asynchronous solution, we might create two threads—one for
downloading and one for database insertion. In doing so, suppose that the threads are able to
communicate over a common thread-safe queue g. Given these assumptions, consider sample
pseudo-code related to the first thread, which is in charge of downloading the content:

for each url u in the list of URLs to be downloaded
page +—FeTcH-PAGE(U)

ENQuUEUE(Q, page)

ENquEUE(qg, End-Of-Stream)

Next, consider sample pseudo-code related to the second thread, which is in charge of inserting
the extracted information i into a database d as it becomes available:

object +—DEeQUEUE(Q)

while object FEnd-Of-Stream
DaTaBAse-INserT(db, object)
object +—DeqQuEUE(Q)

Thus, by allowing multiple threads to communicate asynchronously via a global data structure, we
increase overall processing parallelism.

In this example, idle CPU cycles were put to more efficient use at the expense of a slightly more
complex implementation. When applicable, asynchronous designs such as this perform well and
are easier to scale because of the more efficient use of resources. The main challenge is in
implementation—uwriting correct multithreaded code and ensuring serialization (when necessary)
for certain important operations on shared data structures. Later in Chapter 9, we'll also discuss
how technologies like the Java Message Service (JMS) make distributed asynchronous solutions
very easy.

Resource Pooling

Popular Web applications have to deal with hundreds or thousands of requests in parallel, many of
which rely on application and database resources. The overhead of providing access to these
resources can balloon quickly as parallelism demands rise. Consider highly concurrent database
access. Each client that wants to use the database will require a database connection. Each
connection requires the overhead of memory to store its state and also the overhead to create and
initialize it. When you're talking about hundreds or thousands of database clients, this overhead
can become unmanageable.

One very common technique to reduce overhead is resource pooling—in this case, pooling
database connections. The idea here is that it's cheaper to create a fixed pool of connections that
are shared among many clients than to create one connection per client. By cheaper, we're talking
about the cost of memory and the cost of thread initialization. Does resource pooling actually
work and provide these benefits? Let's see.

Suppose we have some number r of concurrent application server requests and that each request
makes five JDBC calls. We're interested in the throughput of requests as their number increases.
Our example has two types of application server: one that uses a connection for each of the five
queries made per request and one that borrows from a connection pool whenever it makes a JDBC
guery. For the sake of simplicity, our pool is small—say 10 connections.

The code for our example is shown in Listings 4-1 through 4-5 that follow. The five important
classes are: the client test (Pool Test. java), our connection pool (ConnPool . Java), the
shared connection (SharedConnection. java), the JDBC query executor
(RequestRunnable. java), and finally the barrier for test synchronization

(Barrier . java). Because this isn't a book about Java or synchronization, we'll skip an
exhaustive discussion of the code. Instead, we'll simply describe the overall flow and identify
selected interesting parts. Here's the general flow:

PoollTest. java takes in client input on the number of concurrent accesses to
simulate (i.e., Java PoolTest 100) and creates the proper number of threads.
Barrier.Java makes sure that we start all of the threads at once—this may seem a
bit unfair if we don't make sure all threads are initialized before starting the test
RequestRunnable. java simulates each client request and deploys it as a thread.
Each RequestRunnab I e performs five JDBC queries when it runs.

To access the database, All RequestRunnab I e instances draw from the same
connection pool (ConnPooll), which was initialized in Pool Test. java.
RequestRunnab e objects "loan out" a SharedConnection object (they don't
own it) and return it when they're done with each query.

Listing 4-1 Class PoolTest. java
1 import java.sql.*;

2

3 /* Connection pool test client */

p
{

O©oo~NO O A~

26
27 }

ublic class PoolTest

public static void main(String[] args) throws Exception

{

}

/* Register JDBC driver - Oracle used for example */
Class.forName("'oracle.jdbc.driver.OracleDriver');

/* ldentify number of concurrent threads for test */
int numThreads = args.length > 0 ?
Integer.parselnt(args[0]) : 1;

/* Initialize connection pool */
ConnPool p = new ConnPool(10);

/* Initialize and setup thread barrier for test */
Barrier b = new Barrier(numThreads);
for (int i=0; i<numThreads; i1++)

(new Thread(new RequestRunnable(i, p, b))).start();

/* Let all threads attempt to execute at once */
b.release();

Listing 4-2 Class RequestRunnable. java
1 import java.sql.™;

2

3 /* Simulates a single request that requires 5 JDBC
queries */

4

5 public class RequestRunnable
implements Runnable

6
7 {
8
9

10

private ConnPool m_pool;
private Barrier m_barrier;
private int m_id;

11
12

public RequestRunnable(int a_id, ConnPool a_pool,

Barrier a barrier)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

}

L i
m_id = a_id;
m_barrier = a barrier;
m_pool = a_pool;

}

public void run(Q)

{

m_barrier_enter();
/* Run 5 queries */

PreparedStatement ops;
ResultSet rset;

for (int 1=0; i<5; i++)
{

try {
Connection oconn = m_pool.loanConn();

ops = oconn.prepareStatement(
"SELECT count(*) FROM EMPLOYEE');

rset = ops.executeQuery();
m_pool . returnConn(oconn) ;

}

catch (Exception e) {
System.err.printIn("’'ERROR during querying.');
System.exit(1l);

s

s
ks

Listing 4-3 Class ConnPool . java
1 import java.sql.*;

H
CQOVWoO~NOUR~AWN

11
12
13
14
15
16
17

/* A very simple connection pool class */

public class ConnPool

{

private SharedConnection[] m_list;

public ConnPool(int num) {
m_list = new SharedConnection[num];
try {
for (int 1=0; i<num; i++) {
m_list[i] = new SharedConnection(
DriverManager .getConnection(
"jdbc:oracle:thin:@mydb™))

18 catch (Exception e) {

19 System.err._printIn("Error when allocating
connections.™);

20 System.exit(1l);

21 }

22

23}

24

25 /* Distribute a connection i1f/when we have one */
26

27 public synchronized Connection loanConn() {

28 Connection conn = null;

29

30 while (true) {

31 for (int i1=0; i<m_list._length; i++) {
32 iIT (Im_list[i].inUse()) {

33 m_list[i].-markBusy(Q);

34 conn = m_list[i].getConn();

35 break;

36 }

37 }

38 it (conn !=null)

39 break;

40 try {

41 wait(Q);

42 }

43 catch (Exception e) {

44 System.err.printIn("'Error when waiting for a
connection.™);

45 System.exit(l);

46 }

47 }

48

49 return conn;

50 }

51

52 /* Gather a connection back */

53

54 public synchronized void returnConn(Connection a_conn)
{

55 for (int i1=0; i<m_list.length; i++) {
56 iT (n_list[i1].getConn() == a_conn) {
57 m_list[i].-markAvailable();

58 notify(Q);

59 }

60 }

61 }

62 }

Listing 4-4 Class SharedConnection. java

1 import java.sql.*;
2

3 /* Same as a normal database connection except that it is
shared */

4

5 public class SharedConnection

6 {

7 private Connection m_conn;

8 private boolean m_inUse;

9

10 public SharedConnection(Connection a_conn)

11 {

12 m_conn = a_conn;

13 markAvailable();

14 3}

15

16 public Connection getConn() { return m_conn; }

17

18 /* Keeps track of shared status */

19 public synchronized void markAvailable() { m_inUse =
false; }

20 public synchronized void markBusy() { m_inUse = true; }
21 public synchronized boolean inUse() { return m_inUse; }
22 }

Listing 4-5 Class Barrier. java
1 /* A very simple barrier class */

public class Barrier

2
3
4 {

5 /* Local class for synchronization bookkeeping */
6

7

8

9

private class Marker {
private boolean m_locked = true;
public synchronized void setDone() {
10 m_locked = false; notify(Q);
11 }
12 public synchronized void waitbDone() {
13 it (n_locked) try { wait(); } catch(Exception e)

17 1nt m_num;
18 Marker m_marker;

19

20 public Barrier(int a_num) {
21 m_marker = new Marker();
22 m_num = a_num;

23 }

24

25 /* Add a thread to the barrier holding tank */

27 public synchronized void enter() {
28 m_num—;

29 try {

30 it (n_num == 0)

31 m_marker.setDone();
32 wait(Q);

33 }

34 catch (Exception e) {

35 System.err.printIn(C'Error when entering barrier.");
36 System.exit(1l);

37 }

38 }

39

40

41 /* Notify all listeners */
42

43 public void release() {

44 m_marker .waitDone();

45 synchronized (this) {
46 notifyAll();

47 }

48 }

49

50 }

Executing the code demonstrates the effect of connection pooling. Figure 4-7 shows how long it
takes under both approaches (connection pool and no connection pool) to process various numbers
of concurrent client requests.

Figure 4-7. Pooling

60,000

50,000

40,000

—p— COnmection per quersy
=8 Connection pool (10

30,000

20,000

10,000

Time Reguired to Execule
All Requests (ms)

” B | |
0 50 100 150

MNumber of Concurrent Requesis

Summary

In this chapter, we have focused on some of the most important general techniques for ensuring
scalability and performance in Web applications. In fact, these techniques and concepts also apply
to distributed systems in general, of which the Internet is but one. No matter how the Internet
evolves in terms of specific new technologies (e.g., Web services), its continued existence as a
distributed system ensures that the material covered here will continue to be relevant.

To recap, here are some of the key points of this chapter:

e Caching and data replication involve copying data for the sake of improving performance.
Such techniques work because they reduce the latency between the requestor and the data
(i.e., data locality is increased), they summarize the translation of request to response
(fewer operations in between), or both. Although both caching and replication are useful
techniques, the issue of data consistency sometimes makes their implementation difficult.

e Parallelism increases the amount of work done at one time. In an environment where
processing power and bandwidth are unlimited, parallel execution can dramatically
improve performance. In most practical environments, however, local resources are
limited and it is simply not feasible to parallelize everything. Doing so could exhaust
resources or create a situation where a great deal of time is spent context switching and
communicating among multiple threads or processes. Nevertheless, there is a middle
ground here. Understanding where your application is I/0O-bound and where it is CPU-
bound enables you to identify the best opportunities for parallel execution and to design
accordingly.

e Redundancy enables better application scalability. As the number of concurrent requests
rises, redundant software or hardware architectures allow those requests to be attended to
without noticeable degradation of service. Well-designed redundant systems make very
high scalability achievable by making it easy for operations staff to deploy new machines
or new software instances to meet increased demand. One important key to a successful
architecture for redundancy is the effectiveness related to balancing the request or
processing load.

e Asynchrony encourages parallel execution; thus, it can be considered complementary to
such architectures. Typically, asynchronous solutions decouple the execution of one
component from the execution of another. Instead of having a consumer wait for the
producer to finish producing everything, effective asynchronous solutions allow the
producer to stream results to the consumer and to have the latter start executing (in
parallel) as soon as possible.

e Resource pooling bounds the overhead required to serve concurrent demand to specific
resources, such as a database. By pooling objects such as connections or threads, the cost
to create each instance is bounded by the maximum size of the pool. This allows
concurrent execution without skyrocketing overhead costs. However, the obvious
challenge is to size the pool correctly (or to grow it effectively) and to reduce the
synchronization overhead required to manage the pool (i.e., issue and reclaim resource
instances).

Effective use of all the techniques can lead to very efficient systems. The key is to understand the
demands on your application, and then to choose your battles accordingly during the design phase.
Fortunately, as we saw in Chapter 3 and as we will see in greater detail in future chapters, J2EE
embraces these techniques and makes them available to application deployments as part of an
underlying platform. By understanding how such features are offered by J2EE and how they can
be leveraged, you can build applications that are generally scalable and encourage high
performance.

Chapter 5. HTTP Client/Server Communication

The language of the Web is the Hypertext Transfer Protocol (HTTP). HTTP is an application-level
protocol that forms the basis of all directives we issue from our browsers (as well as many other
standalone applications and software agents). You may believe or have heard that certain aspects
of HTTP are inefficient. As it turns out, HTTP (especially its more recent versions) has evolved to
become a very fast protocol, thanks to careful analysis of its weaknesses by the Web infrastructure
community. Still, although HTTP can be used efficiently, just setting up and starting a Web server
doesn't guarantee that you'll be using its optimizing features.

Since HTTP is the basis for most of the network communication we're interested in, it's definitely
worthwhile to understand it better and also understand just how efficient (or inefficient) it can be.
In particular, it's useful to know which aspects of the protocol to be concerned about and what

options you, as a Web application engineer or architect, have for producing high-performance and
scalable communication.

We'll explore HTTP in this chapter, but, as with other chapters in the book, we're going to resist
getting lost in all of the gory details and instead focus mostly on HTTP's efficiency.

To start, let's quickly review what HTTP is and look at the major scenarios under which
communication via this protocol makes sense.

The HTTP Protocol

HTTP is a request/reply protocol that is the basis for most communication on the Internet. It has
evolved into a de facto standard of network-independent communication, much like Java is a
language for platform-independent computing. Through HTTP, two programs can communicate
without having to worry about the complexities of the lower-level network protocols and the
physical infrastructure that connects them.

HTTP is a message-based protocol in the sense that communication between client and server
consists of readable text (i.e., plain text). Instead of directives being phrased in ones and zeroes
(bits), as in binary protocols (such as Java RMI and CORBA [10P), HTTP requests and replies
look like brief, readable notes. Here's a sample request to fetch the Web page at
http://www.example.com/index.html:

GET /index_html HTTP/1.1
Host: www.example.com

Here's a sample reply:

HTTP/1.1 200
Date: Sun, 01 Jul 2001 12:00:01 GMT
Content-Type: text/html

<HTML>
<HEAD></HEAD>
<BODY>
Hello World!
</BODY>
</HTML>

The obvious disadvantage of a message-based protocol versus a binary one is increased message
size. Since the individual letters must be sent over the wire as ones and zeroes, the resulting
message is longer. For example, it takes 3 ¢ 8 bits/byte = 24 bits to say GET; in a binary protocol,
it would require far fewer. However, notice the key advantage of a message-based protocol—it's
easy to see what's happening, so it's easier to debug. As it turns out, the readability and debug-
capability of a message-based protocol is one of the common justifications for another recently
proposed B2B protocol, Simple Object Access Protocol (SOAP), which is winning converts from
established, more cryptic protocols like Electronic Data Interchange (EDI).

Now that we've seen an example of how HTTP works, let's step back and describe the general
model of its request/reply behavior. In the most general form of HTTP, a client sends a request to
the server composed of

e Arequest method
e A Universal Resource Identifier (URI)

e The protocol version
e A MIME-like message, consisting of request modifiers, client information, and,
potentially, a body component

The server responds with

e Astatus line

e The protocol version and a success or error code

e A MIME-like message, consisting of server information, some meta-information, and,
potentially, a body component

MIME (Multipurpose Internet Mail Extension) was originally based on RFC 822. Later, RFCs
2045, 2046, 2047, 2048, and 2049 extended and formalized it. Generally speaking, the MIME
RFCs describe how text messages and message bodies are formatted—for example, these RFCs
describe how everything from simple text messages to richer media, like audio and video, are
transmitted using a message-based protocol.

Keep in mind that HTTP is an application-level protocol. According to the OSI model of network
programming, that means it exists above session-level protocols like TCP, so its deployment is an
option. That's right—there's nothing that prevents it from being deployed over a non-TCP session-
level protocol such as ATM AAL-5. Nevertheless, since we're talking about Web applications in
this book, it's best to assume the model where HTTP is deployed over TCP/IP.

There are currently two versions of HTTP in existence: 1.0 and 1.1. The latter was developed in
1997 and includes some important changes that affect overall network bandwidth consumption
and caching. It became an Internet Engineering Task Force (IETF) draft standard in 1999, and it
will eventually become the dominant version. Complete descriptions of both versions can be
found in two Internet RFCs: HTTP 1.0 in RFC 1945 and HTTP 1.1 in RFC 2616. Instead of trying
to deal with both versions at once, we'll limit our discussion to HTTP 1.1 and only refer to HTTP
1.0 for comparison or to discuss backward compatibility.

Deployment Paradigms

When considering Web applications, there are two basic deployment paradigms to consider—
those that involve Web browsers as application clients and those that don't.

Applications with Browser Clients

Most interactive Web applications assume that a Web browser interface will be used to view and
navigate their content. A browser has two primary jobs: to communicate with a Web server based
on user directives and to render the content it receives from that server in response. Here we're
interested in the efficiency of browser-to-server communication, not in its rendering details.

With regard to this efficiency, it is important to note the version of HTTP that your client browsers
speak. Today most browsers, including current versions of Microsoft Internet Explorer, speak
HTTP 1.1. A few older browsers, such as Netscape 4.75, speak HTTP 1.0. Depending on the
nature of your client base and the platforms they use, you may not be able to assume that everyone
speaks HTTP 1.1. Thus, it is important to develop a profile of your clients and their connectivity
technologies.

Knowing what version of HTTP is supported by the client browsers of your application, as well as
what versions are relevant to any additional intermediate network hardware such as routers and
switches, is important in understanding whether optimizations associated with a particular
protocol version will have an impact on scalability or performance. Right now, things are pretty
simple because HTTP 1.1 has been adopted widely. But, if a new version of HTTP is developed, it

will be important to understand which parts of your architecture are affected and how.
Nevertheless, to keep things simple in this chapter, our discussion will focus on HTTP 1.1.

Applications with Nonbrowser Clients

Web servers don't always have Web browsers as clients. This can be true if your application
involves a special client that retrieves information from a Web server or if you have multiple
clients for your data (Web browsers, other software agents, etc.) and you want to consolidate your
data serving. If that's the case, you may be concerned about data transfer rates. Again, the question
arises: Why a message-based protocol instead of a binary protocol?

Since HTTP is deployed on top of TCP/IP, you may be tempted to think that its overhead is too
costly for such scenarios. Depending on the application, you may be right. Certainly, there's no
need to shovel data between client and server using HTTP just for the fun of it. For example, if the
communication doesn't have to be synchronous (i.e., it's not interactive), a synchronous approach
like HTTP can often yield worse performance. Also, TCP provides guaranteed delivery; yet there
are many application design scenarios where such guarantees aren't really necessary.

For other kinds of deployment, the primary clients aren't browsers—instead, they're wireless
PDAs, integrated voice response (IVR) systems, or even software agents running on remote
machines. Just like Web browsers, these types of client want to provide access to data (often the
same data that's delivered to Web browser clients). However, given their limited resources or
specific nature, you might be tempted to use an alternative (possibly binary) protocol. Again, this
may turn out to work best. We can't dissect every possible protocol and every possible
client/server relationship, so it's difficult to evaluate.

Still, the performance difference between a non-HTTP protocol and HTTP may be less than you
think. This is particularly true given how the most recent version of HTTP 1.1 works in terms of
its support for caching and persistent connections. Keep in mind that, if you don't use something
like HTTP, you may need to develop not only a custom protocol but also a custom server to
process requests. For HTTP serving, both free and commercial products already exist that have
proven to be efficient and scalable. However, if you choose to use your own protocol for your
application needs, the request processing will then be in your hands and you'll have to develop a
novel solution from the ground up.

Before you go down that path, it may be wise to reconsider what you're giving up. In fact, as we'll
discuss in greater detail later in the chapter, there are at least three major scalability/performance
reasons for using HTTP 1.1 as the basis for communication between Web servers and nonbrowser
clients. Here they are now, in a nutshell:

e Connection management: The Web server already provides a fast and scalable way to
give access to the data objects you want to make public. It takes care of issuing
connections to clients (i.e., assigning a thread to an incoming request), persisting them
when directed, and tearing them down when done (or returning them to a thread pool).
Thus, it handles basic network connection management (and then some). Instead of
spending your time reinventing the wheel—and possibly having the result compete with
the Web server for resources, locks, and the like—it's typically better to let the Web
server own the job of connection management and find a way to integrate your back-end
software so that the server directs application requests to it ASAP.

e Intermediate network support: Network communication on the Internet is centered around
HTTP. Correspondingly, many intermediate network ele-ments (i.e., routers) have a great
deal of built-in HTTP-based caching support. Although a proprietary protocol might
traverse the same network path as an HTTP request, it can't benefit from reusing cached
HTTP data.

e Concurrent request processing: The majority of Web servers already support parallel
request processing (derived from either pipelined requests or concurrent sessions).

Increasingly, they're handling massive numbers of concurrent connections with highly
multithreaded deployments and so enjoy significant parallelism without significant
overhead.

HTTP Efficiency

If you're an application programmer, you may be tempted to skip this discussion. After all,
application designers won't be changing or extending the protocol (although extensions are
considered by the IETF. Furthermore, since Web browsers are the primary generators of HTTP
requests and Web servers are the primary handlers of these requests, it may not seem worthwhile
to understand HTTP details because there's no opportunity to directly interact with it.

As it turns out, this is simply not the case. For one thing, as the deployer of an application you
have the ability to choose your Web server and how to deploy it (e.g., Web server farms). You
also have the ability to configure certain parameters of deployment. Understanding the
implications of the knobs and dials made available to you by the server configuration files (e.g.,
the http.conf file for Apache Web servers) can help you deploy your server better.

During the initial stages of Web application design, it can be very useful to understand how HTTP
works and the efficiency features it offers. Armed with this knowledge, you'll be able to:

e Architect your application in a way that encourages caching.

o Identify key settings of an HTTP server that affect scalability and performance.

e Understand important efficiency-related parameters of a typical HTTP API, such as that
provided by Java.

Such knowledge encourages good design from the outset of a project, instead of being shoved in
once testing and benchmarking begin.

Finally, understanding the key efficiency features of HTTP may cause you to rethink your strategy
for Internet communication that does not involve a Web browser (e.g., such as that related to batch
and B2B-style processing). Despite its earlier reputation (or your intuition) about its inherent
overhead, the HTTP protocol has matured into an efficient means for communicating among
systems linked by the Internet. Its built-in optimizations related to caching, connection
management, and security are often convincing reasons to abandon more cryptic, proprietary
protocols that might have seemed more efficient.

HTTP Details

The HTTP 1.1 protocol as specified by RFC 2616 includes information about the following:

Overall protocol semantics
Supported methods (e.g., GET and POST)

e Connection management (i.e., persistent connections)

e Caching support

e Security

e Request/reply status codes (e.g., HTTP 200), header fields, protocol parameters, and so
on

e Content negotiation and other miscellaneous topics

In our discussion, we'll be primarily concerned with the HTTP aspects that have the most impact
in terms of scalability and performance for Web applications—the request methods (GET and
POST), caching, and connection management. But first we'll start out with a review of how the
protocol works.

Semantics

As we saw earlier, when HTTP is deployed on TCP/IP its requests and replies are delivered over
TCP channels that are established by the client and the server. Since TCP (Transmission Control
Protocol)—not UDP (Universal Datagram Protocol)—is employed, delivery of packets is
guaranteed. While beneficial in some respects, this guarantee has performance implications as
well. To understand why, consider a typical HTTP connection scenario in which a client requests
a simple HTML page from a Web server at http://www.example.com:

<HTML>
<HEAD></HEAD>
<BODY>
Hello world
</BODY>
</HTML>

Figure 5-1 shows how this request is fulfilled. Notice that the following steps occur:

The client requests a TCP connection to the server.

The server agrees to the connection and acknowledges that to the client.

The client sends an HTTP request on the open channel.

The server receives the request and responds to it (in our example, with the HTML file
above).

Figure 5-1. Normal communications required for Web page fetch

P.‘ir.'lur! Emporium
Open TCP connection _i

TCP connection opened HE-

HTTP request

] | -y
- I
R RN P2
HTTP response
-1]] =
L =

-

These steps show that two client/server TCP roundtrips are required: one full trip for the initial
connection establishment, a half trip for the client HTTP request, and a half trip for the beginning
part of the returned data (the file). The entire transfer process can be summarized by

(2+RT) + T,

RT = Roundtrip time between client/server
T, = Time to transfer the actual bytes of content

If we consider a more typical HTML file, we may be dealing with a page that contains JavaScript,
Java applets, and /or images. Transferring applets and images for a page requires separate HTTP
connections, and this means that a given URL may represent many HTTP request/replies—and
even more TCP request/replies. If the network latencies between client and server are high, or if

the bandwidth between them is narrow, the client sees a slow application. If you want a reminder
of this, fire up a 56K dial-up connection, navigate to your favorite advertising-driven commercial
site, and watch and wait while all of the image-based advertisements download.

Obviously, there's another, darker, side to application sessions that require a high number of
HTTP connections: They can exhaust servers, particularly their available socket descriptors. Also,
if the data being passed along these connections is sizable, the resulting bandwidth demand
quickly rises. The sad part of this is that many of these connections are established simply to
perform what are in fact redundant retrievals. At the same time, a greater number of Web
applications packed with graphical and animated content (e.g., Flash animations) are starting to
appear. Both trends lead to more HTTP connections, raising the scalability bar for servers in terms
of connection and bandwidth management.

We know that, from the presentation (GUI) perspective, there are ways to reduce the number of
HTTP connections. For example, we can design pages that use fewer images, reuse objects, use
style sheets, and employ dynamic HTML techniques for things like menus and other navigation
structures. On the server side, we can deal with excessive connections with an HTTP 1.1 feature
called persistent connections. We'll talk more about these later in the chapter as well as other
server-side alternatives (caching, content distribution, load balancing, etc.) that can be employed.

Application architects should always take the implications of their interfaces seriously. The
number of HTTP connections demanded by a Web interface makes scalability and performance
more problematic during deployment as the client base grows. Lots of images, dynamic pages, and
unproductive HTML forms can result in many more requests—and thus greater scalability
challenges—than might otherwise be necessary.

HTTP Requests

Although there are nine possible HTTP request methods specified by RFC 2616, the ones of most
interest to us are the two that you're probably already familiar with: GET and POST. Most people
know them as the methods that allow an HTTP client to look up some information on the server.

Once a TCP connection has been established between client and server, the client can issue an
HTTP request, such as GET or POST, and receive an HTTP reply. In HTTP 1.1, multiple HTTP
requests can be made on the same connection.

HTTP requests and replies contain a header and a body. The header is a series of name/value
pairs—the metadata of the communication. The body contains the application-level content, such
as an HTML file. For a better feel for the request/reply dialogue between client and server, I'll
describe something similar to our city example (from Chapter 4) and discuss it in more detail.

Suppose a user wants to retrieve http://www.example.com/cities.html. As shown in Figure 5-2,
this page lists all of the cities in the world, with their corresponding countries and populations
(quite a big list!). When the user types the URL into the Web browser's location field, the browser
establishes a connection to the server and issues an HTTP request to retrieve the information.
Since the user typed the location into the browser location field, this request will be an invocation
of the HTTP GET method.

Figure 5-2. Web page listing city populations

World City Populations
Eat.
| population
Mamie | Country A(in milkions)

[1. frokye [apan [148
2. [Mew Yo [usa 207
[3[5ecul [South Kerea [15.9

4 [Mosco City |Medeo [198
| 5 [sie Pavlo [Brazil [17.9
[6 [Bombay (Mumbai) Tndia 17%
[7 [Cvaks [Japan 172
['& [Los Angeles |UsA 162
[%. [Caire [Egypt 14.4
10, Manida [rritippines 125

11 lﬂuenns Hares !m;mhn; [12.5 |
12 Moscow [Russia 2z | i
[13 [Lagos [Magens 121 |
14, [Calentta [Ind:a 129
[15, [ekens [edonena 12.3
16, [Faracki [Paxisan 12.1 |
17, [London v [11e |
[12, [shanghai [chine [118 '
[19. [Doelba [Tedia [125
20, [Rso de Janerse [Braml [16.7
21 [ehenin [Tran 10.4
2. [rstanbul futkey 103
23 [Paris [— 102 |
24, [Dihaka Eangladesh [o.6 |

The GET Method

The HTTP GET method is used to retrieve the specified URI from the Web server. In our example,
the browser might make the following request in order to resolve
http://www.example.com/cities.html from www.example.com:

GET /cities.html HTTP/1.1
Host: www.example.com

This is the actual content of the message being transferred from client to server. A corresponding
reply from the server might contain

HTTP/1.1 200
Date: Sun, 01 Jul 2001 19:54:02 GMT
Content-Type: text/html

<HTML>
<HEAD>World City Populations</HEAD>
<BODY>
<H1>World City Populations</H1>
... (rest of the web page HTML)...
</BODY>
</HTML>

The semantics of a GET request are such that clients can assume that no side effects occur when
such a request is processed. Thus, GET is a "safe” HTTP method in this sense and has important

implications as far as the caching model of HTTP is concerned. It's also distinct from the other
popular way to process application requests—POST. More about HTTP POST shortly, but for
now let's preface this discussion with this simple message: If you've been lumping POST and
GET together and using either arbitrarily, think again. Even though they appear similar to many
Web programmers writing applications to fetch data from remote Web sites, they contain very
different assumptions in terms of their potential impact on server-side resources.

Caching Static GET Requests

One of the interesting things about the GET method is that it can be considered conditional if the
HTTP request also contains one of these optional header fields:

e [If-Modified-Since
e If-Unmodified-Since

e If-Match
e IT-None-Match
e If-Range

These fields express certain conditions about the object being requested. Based on how the
conditions evaluate, a local copy of the object may be sufficient and the original won't have to be
retransferred. Thus, a cached version of the object can be used. This is an important aspect of the
GET method because it directly affects overall server-side application load, available network
bandwidth, and network latency involved in server replies. If an intermediary between the client
and the server caches the server's responses, it can use these fields to update its caches only when
necessary.

To understand how the header fields are used, let's consider an example—the commonly used
IT-Modified-Since field. Suppose a user requests the static page

verylongpage . html from www.example.com. We'll assume that the client machine is
located at a residence, and to keep things simple for now, that there are no intermediary proxy
servers involved in the network transfers. When the client attempts to retrieve the page for the first
time, the following happens:

e The client browser requests the information from the original server via an unconditional
GET request.

e The originating Web server resolves the request and returns the document to the user's
browser.

Since the GET had no conditions associated with it, when the same client requests this document,
the same costly process takes place. Thus, the example.com Web servers not only have to serve
everyone who wants the very longpage . html file, but they have to serve the same clients
who make multiple requests for it!

However, if the browser sets the 1 F-Mod i Fied-Since request header when communicating
with the originating server, a needless data transfer can be avoided. For example, during step 2 it
can amend the GET request by indicating the date that the currently cached object was last
transferred:

GET /cities.html HTTP/1.1
IT-Modified-Since: Mon, 3 Apr 2001 18:00:00 GMT

If the originating server determines that the requested object has been modified since this date, it
sends the object to the client, just as if it had been requested for the first time. If the requested

object hasn't been modified, the originating server can return an HTTP 304 message, indicating
that the cached object is still up-to-date, and thus avoid a redundant data transfer:

HTTP/1.1 304 OK

Subsequently, the browser can use its cached copy to resolve the request, which is what the most
recent versions of the Netscape and Microsoft browsers do today.

The other conditional GET header fields act in a similar or predictable fashion. For example, 1 -
Unmodified-Since works in reverse of 1 T-Modified-Since: If the document
requested has been modified since the time specified, the specified operation (GET in our case)
shouldn't be performed. Obviously, this is of much less use than 1 F-Modified-Since from
the GET perspective, and it actually makes more sense when it comes to HTTP update requests
(perform the requested update only if the document hasn't changed since this time).

If-Match and 1 f-None-Match are similar to I f-Modified-Since and I -
Unmodified-Since and will be discussed in detail later in this chapter. The main point is
that the GET request can be augmented with these parameters to leverage intermediate caches.

We should note the part that proxy servers (both client-side and server-side) play in brokering
client/server communication. In general, they can extend the client-side caching model so that
multiple users can benefit from the same local cache. In this way, the proxies act as intermediate
caches and obey caching logic just as a browser might (because they're shared, RFC 2616 does
make some important distinctions about how they handle certain cache directives).

Content distribution networks also play a role in reducing the latencies associated with the transfer
of static content by replicating and distributing relatively static and bandwidth-hungry content
(such as images). While such replication obviously benefits the client because it reduces latencies
and improves the perception of server availability, it also greatly benefits the server because
dramatically fewer connections and server-side bandwidth are required.

Caching Dynamic GET Requests

As we've seen, the GET method requests that the Web server return the information specified.
Often this is simply a static page, in which case it's always an exact copy of the page stored on the
server. Sometimes the specified URI is a so-called "data-producing process” (i.e., a CGI program),
in which case the information produced by this process is returned. In such a scenario, it's also
possible to pass parameters from the client to the server. The primary mechanism for this is the
HTML FORM element, which enables client input to be sent to the server. Based on the URI
requested (the process) and the client-side parameters, a custom HTTP reply (Web page) is
generated.

To understand this more clearly, let's return to our earlier example of a Web page that lists the
cities of the world. We'll extend it to include an initial page that displays a list box containing the
major cities and their countries. On this page, shown in Figure 5-3, the user chooses a particular
city from the list box. A server-side CGI-bin program called cityquery.cgi processes this
request to return dynamic results. When the user clicks the Submit button, the following GET
request is sent to the server:

GET /cityquery.cgi?city=Paris%2C+France HTTP/1.1

Figure 5-3. Querying a specific city

World City Populations

Choose a city:

| Pasis, France |

_Findpopulstion _ |

Y FY

Thus, we see that the request that the client made is a combination of the FORM target and the
data associated with the list box selection. We can also see that there's some encoding and
reformatting of the data when the request is made. The main point here, however, is that a
dynamic page can be generated through a GET request.

You probably already know how GET requests are constructed from HTML forms and how
parameters are encoded. But did you realize that the responses to GET requests with parameters
can be cached? In fact, they can, and this has obvious important performance implications. As
long as the server properly indicates it as cacheable, a dynamically generated GET response can
be delivered faster to the requestor, without incurring additional server load. This support is built
into HTTP 1.1. As an application designer, all you need to do is make sure that the HTTP
responses include the proper header information to indicate to the client and the intermediate
network elements that the data can be cached.

The way to do this is with the Exp i res HTTP header field. For example, a server can return a
result that includes the following information:

HTTP/1.1 200 OK
<... other header fields ...>
Expires: Fri, 1 Jan 2010 00:00:00 GMT

<HTML>
<HEAD></HEAD>
<BODY>

<... data ...>
</BODY>
</HTML>

which indicates that the response is valid until Friday, January 1, 2010. If the user bookmarks this
page and returns to it, he'll get the cached copy. Or he can type the same URL into the browser
location bar (this works for IE 5.5 and Netscape 4.x on Windows). It's only if he clicks on the
browser Reload button that he'll get a refreshed copy.

There's a very important difference between Last-Modified and Expires for caching
Web content. With the Last-Mod i fied approach, the browser always checks with the server
to see if a new copy of the requested document has been generated. If there are networking
problems at the client site, Last-Mod i fied won't work (it won't be able to contact the server)
and the user will notice the hanging. However, with the EXp i res approach the cached copy of
the document is reused, independent of network availability. There's a very important
consequence to this: Once a document has an Exp i res tag associated with it, there's no
requirement that the client refetch it until that EXp i res date is reached. This means that, even if
we make an important change to the document, we have no right to request that the client refetch
it—we're stuck with our original date.

We've seen how the HTTP GET method can be used to fetch static and dynamically generated
content from the server. We've also seen that careful use of additional optional header fields can
prevent redundant data transfers and use information already in a cache. Later, we'll see that
HTTP 1.1 caching model is even more complex than we've discussed thus far and contains
additional mechanisms to encourage caching of information at several levels. Before we get into
that topic, let's look at the second most popular way Web clients interface with servers.

The POST Method

If you're not familiar with the HTTP standard, you might be surprised to learn that POST isn't just
a more sophisticated form of GET. It's convenient to think of it this way, since most developers
who have a basic understanding of GET and POST know that GET has limitations, such as the
size of the URL, whereas POST seems like a more general mechanism for passing name/value
information when requesting an object.

As it turns out, the HTTP standard views the POST request as the way to create the requested
entity on the server, as a subordinate of the request URI. Upon a POST request, the server can
simply respond with an acknowledgment (HTTP 200 or 204) and provide no other data. Or it
can indicate that the entity has been created (HTTP 201) and provide information corresponding
to this creation. "Information corresponding to this creation” is what makes POST appear to us
like GET.

That POST is a mutable operation on the server is a key reason why it's less efficient than GET
for certain types of dynamic content. As stated in the HTTP 1.1 specification, the HTTP methods
PUT, DELETE, and POST must cause a cache to invalidate its entry.

In our cities example, an HTML form that performs a POST when the user selects a country from
which to view a list of cities has no chance of having that response cached by any intermediate
cache, including the client agent itself. Just from the standpoint of what is cacheable, then, POST
is less efficient (on average) than GET as means for processing things like HTML forms.

HTTP 1.1 Caching

As we discussed, some static and dynamic GET responses can be cached. Careful compliance of
the Exp i res header field on an HTTP GET response and use of the I f-Modified-Since
header field on an HTTP GET request can affect performance and scalability.

While the Expires, IT-Modified-Since, and Last-Modified headers apply to
both HTTP 1.0 and 1.1, version 1.1 actually goes much further in terms of cache control with
several important header field additions.

Before diving into the details, let's step back a moment and review the roles client and server play,
at least from the standpoint of caching. Although caching mechanisms can be employed by the
client or the server, in many cases both need to take an active role for the process to be effective.

Generally speaking, the server can indicate the following information about the content in its
response:

Dates associated with content expiration

Tags for ensuring cache consistency

Whether or not the response should explicitly be cached

What type of cache (private or shared) should cache the response

In contrast, clients can request the entire contents of a resource:

e Conditionally, if the content is more recent than the date indicated by the client
e Conditionally, if the content tag is different from the one indicated by the client
e Unconditionally, ignoring any server-based caching suggestions

Date-Based Validation

We saw how dates are used in the Expires and Last-Mod i fied header fields. Browsers
and intermediate caches use these dates to know when to refresh cached information. This style of
validation is known as date-based because dates are the basis for object freshness determination.

HTTP 1.1 has a simple and obvious date-based validation model that causes a document to be
refetched if its age exceeds its freshness lifetime. The EXp i res tag is one variable that affects
the value of this lifetime. A few other important HTTP response fields can do so as well. One is
the Date response header field. This is required by HTTP 1.1 and indicates the date on which the
document was generated. It can be used to calculate the document's age. However, an Age header
field can also be generated by the server. This field actually takes priority over calculated age, for
good reason.

The HTTP 1.1 expiration model assumes that other intermediate caches can be in the path of
client/server communication; it allows them (if HTTP 1.1 compliant) to augment the Age header
to better represent the document age, taking into account things like cache-to-server response time.
Thus, intermediate caches set the Age value based on estimations of network latency to make it as
accurate as possible. There's also a Max—Age field, which indicates at what age a document
becomes stale.

The overall age calculation algorithm can be summarized as follows:

e The apparent age of the document is the maximum of either zero or the document Date
header value minus the server response time.

e The corrected received age is the maximum of either the apparent age or the Age header
field value. Intermediate caches not HTTP 1.1 compliant won't forward this Age value.

e The response delay is the local time difference between the client request and receipt of
the response from the network (server or intermediate cache).

e The corrected initial age is the corrected received age added to the response delay.

e The resident time is the difference between the response time and the current time.

e The current age of the document is the sum of the corrected initial age and the resident
time.

Once the current age of the document is determined, it can be compared to the value of the Max -
Age field. If there's no Max—Age field, the Exp i res field is used—note that accurate use of
Expires requires that client and server have their clocks synchronized. Finally, if no
Expires field is present and no other caching control information is included, the document
will be refetched in response to any duplicate queries that follow.

As you can tell, the purpose of the Age and Max-Age fields is to improve the accuracy of
document freshness determination. Simply doing the math to get the age of the document based on
local clocks, without taking into account response times, isn't very precise. Unlike HTTP 1.0,
which doesn't consider intermediate caches, HTTP 1.1 is a more sophisticated, intermediate-
cache-aware expiration model.

Tag-Based Validation

Date-based validation can sometimes be problematic. One of its assumptions is that client and
server clocks will be synchronized, but, if the client (or some intermediary) has an incorrect clock
there is not much a server can do about it. Similarly, if the server clock is incorrect for some
reason, that may lead to problems for clients. What can also be troubling about date-based
validation is its "genie-out-of-the-bottle" aspect. For example, once a server has replied to an
HTTP GET with a response that includes an Exp i res field set to some time in the future, it
can't expect clients to check back, even if it realizes later that the content will indeed change.

As an alternative to date-based validation, HTTP 1.1 supports tag-based validation. The idea is
that servers can construct responses with one or more tags that summarize a response. These tags
are commonly referred to as opaque because they have no meaning to the client, only to the server.
When requests are made for previously viewed content, clients and intermediaries can determine
whether their cached response is stale by comparing its entity tag to the entity tag of the currently
served response. To associate a response with a tag, the server amends it with the ETag header
field.

For example, when requesting http://www.example.com/foo.html, a server would include

ETag: "0-90-3ad8c299"

A client or intermediate cache could then associate the URL with this tag so that, when future
requests were issued (from the same or another client), the intermediate cache could check with
the server to see if the cached copy was still valid. In doing so, the client or intermediate would
construct a GET request and include the header field 1 ¥-Match or IT-None-Match.

The I T-Match field tells the server to construct a full response if the tag(s) it lists are the same
as those on the server-side resource. The client can thus amend its request to have the following
HTTP field:

If-Match: "0-90-3ad8c299"

From the standpoint of caching, I F-Match isn't as relevant as I F-None-Match, which
allows the client to conditionally request the resource. With 1 F-None-Match, the client can

request that the resource be re-sent by the server if any of the listed tags fail to match those on the
server side.

To continue with our example, if the client issues

GET /foo.html HTTP/1.1
Host: www.example.com
IT-None-Match: "0-90-3ad8c299"

the server will return the entire content only if I F-None-Match fails to match the
corresponding server-side tag. In this sense, | F-None-Match is used very similarly to 1 -
Modified-Since. Both make an HTTP GET conditional, but one is based on dates whereas
the other is based on tags.

Cache-Control Headers

The HTTP 1.1 Cache-Control header field can be very useful because it offers more control
over what can be cached as well as which party (client or intermediate system) performs the
caching. In general, the presence of this header field serves as evidence that the HTTP standard
has begun to recognize the existence of the internetwork between client and server, and the
important role intermediate network elements can play in terms of overall communication
efficiency.

Cache-Control specifies that the response be classified as

e public: Client or intermediary (shared) cache can attempt to cache the response.

e private: Only client can cache the response.

e no-cache: Client and intermediary cache(s) should not cache the response.

e no-store: Intermediate caches (private and shared) can't store document text for
security reasons.

e Mmax-age: Maximum age of the document (used with calculated age).

e S-maxage: Overrides max-age, but only for a shared cache.

e must-reval idate: Requires clients to always revalidate their cached copy.

e proxy-revalidate: Same as must-val idate, but applies only to
intermediate shared proxy caches.

As an example, we can limit the caching of foo . html from example.com to client caches and
set Cache-Control as follows:

HTTP/1.1 200 OK
Cache-Control: private

This prevents intermediate caches from storing the response, but allows the client's private cache
to do so. This is a reasonable way to encourage both security and performance. Notice that I say
"encourage"—in no way do these techniques enforce security. Unless encrypted, documents that
pass through intermediaries are always subject to RFC violations and possible tracking or
rebroadcast.

There are a number of other parameters to the Cache-Control field that have to do with
requests, but since these are actually important for security or in relation to the implementation of

an intermediary cache, we won't address them here. If you're interested, Section 14.9 of RFC 2616
makes for interesting reading.

Connection Management

Earlier, we discussed the semantics of HTTP. Recall that a single HTTP connection using TCP
can require two roundtrips: one to establish the connection and one to transfer the content. The
designers of HTTP 1.0 and 1.1 realized early on that this was going to be a problem. As the
popularity of the Web grew and Web pages and sites became more complex, with lots of graphics,
it became clear that the number of HTTP connections generated at any one time was going to raise
major scalability and bandwidth issues.

What's more, there seemed to be a lot of waste in the process of transferring Web objects
composed of even a single page. For example, when a user connected to a single logical Web page,
such as http://www.cnn.com, separate HTTP connections were required for downloading the page,
each image, and any applets. Given that a user had already established a connection with cnn.com,
couldn't there be some batch-style transfer?

To remedy this situation, protocol designers came up with the notion of persistent connections.
The initial idea was to leverage the TCP connection already established with a server to transfer
other objects associated with the site or page. To understand how this feature improves
performance, consider what happens when a user has to download any Web page that includes
several embedded objects (e.g., images or graphics), such as the one shown in Figure 5-4. Suppose
that, in addition to the basic HTML for this page, there are some 50 images embedded within.

Figure 5-4. A Web page with several embedded images

Picture Emporium

— =

Weleome to Picture Empodum| If you'd like to order any of them, just dick on the ORDER
button right next to each picture. All pictures are §5. Thankis for visiting!

Without persistent connections, Web browsers would use one HTTP connection to fetch the
HTML page and then one for each image, leading to a rough total of

transfer time = (2« (50 + 1) « R7) + T,
=102 - RT+ T,

With persistent connections, this could be reduced to

transfer time = (2 « R7) + (50 « RT) + T
=52+ RT+ T,

The practical effect of this difference is noticeable. Let's assume that the total content required to
transfer this page (including images) is about 75 K, that it takes 100 ms to transfer the content, and
that it takes 15 ms to send a packet between our client and the sample Web site (the RTT is thus
30 ms). This means that the total transfer time for both scenarios will be

e 10215+ 100 = 1630 ms without persistent connections
e 52+ 15+ 100 = 880 ms with persistent connections

By using persistent connections, we've reduced the transfer rate about 50 percent. Convincing,
isn't it? In addition to better end-to-end transfer times, there are a number of other advantages to
persistent connections, among them:

e Less CPU and memory demand of routers and servers (fewer TCP connections).

e Less bandwidth required to transfer a set of related objects (i.e., a Web page plus its
images).

e Better network congestion control— as more time is given to an established TCP
connection, the built-in congestion control features of TCP have more time to improve
overall network throughput.

Support for persistent connections actually started in HTTP 1.0 with use of the Keep-Alive
header. By constructing an HTTP request that included Keep-Al 1ve, HTTP 1.0 clients could
request that the connection be persistent. However, it was discovered that the Keep-Al 1ve
approach led to undesirable effects when proxy servers existed on the client/server path.

HTTP 1.1 doesn't use the Keep—Al 1 ve approach. Instead, its exchanges assume that all
connections are kept persistent unless the server or client explicitly indicates otherwise. For
example, a server can close a connection by including the following in its response header:

Connection: close

Persistent connections also require the server to notify the client of the message length. They can
do so by including either a Transfer-Encoding or a Content-Length header to
indicate the size of the content being delivered. Transfer-Encoding represents a special
self-describing method for encoding the data being transferred; Content-Length simply
indicates the length of the entire message. Both let the client know when a logical object has been
completely transferred.

Note that HTTP 1.1 and 1.0 clients differ on how they use these header fields. For example,
suppose that a server includes the following in its transfer:

Transfer-Encoding: chunked
Content-Length: 8192

Many HTTP 1.0 clients don't understand the Transfer-Encoding field and instead use the
Content-Length field. However, HTTP 1.1 clients are required to ignore Content-
Length and use Transfer-Encoding. If only the Content-Length field is returned
(i.e., by an HTTP 1.1 server), HTTP 1.1 clients use that information.

The reason that HTTP 1.1 supports Transfer-Encoding is that it's not always possible to
determine content size in advance. This is typically true with dynamic content. Instead of
committing to a specified length at the beginning of the transfer, the units of data being transferred
can be self-describing. With the “"chunked" style of Transfer-Encoding, the client
receives a series of chunks (each with a self-describing size) and knows that it has read everything
when the size of the current chunk is less than zero.

Persistent connections provide another important feature: request pipelining. This allows a client
to transfer a series of requests over an HTTP connection instead of waiting for each response to
arrive before distributing the next request. Obviously, this is useful for pages that refer to
additional objects, such as images. When the page is read, the client can identify a list of images to
be transferred and pipeline its requests for them to the server. In effect, this asynchronous style of
request/reply improves the overall parallelism of the transfer process.

wScalability and Performance Hints

With a survey of HTTP and its efficiency features under our belts, it's now time to consider
specific strategies that encourage scalability and high performance for any Web application.

Use GET and POST Judiciously

An application designer has the ability to determine how data queries and updates are processed.
As we've discussed, its best to require POST requests only when there are going to be side effects
of the communication—that is, data will be updated on the server. If not, you are strongly
encouraged to code your HTML input forms for GET requests because of GET's tight integration
with the HTTP 1.1 caching model.

A good default strategy is

e Use GET requests for queries or views of your data.
e Use POST requests for updates to your data.

Keep in mind that things like updating session tracking data can be considered "updates," even
though they may have no bearing on core application purpose or behavior. Thus, you'll find it
difficult to track detailed client behavior if you don't force all session requests to be implemented
as POSTs. I'm not saying that tracking client browsing behavior is important or even ethical.
Nevertheless, it does happen on the Web, many times for well-intentioned reasons. Ask yourself
which is more important—to track your clients' browsing behavior (which they might object to) or
conserve resources and improve your overall scalability. Unless tracking your clients' every move

is fundamental to your application, you might want to loosen up a bit and reward your clients with
a quicker application.

Consider HTTP for Nonbrowser Clients

As we discussed, HTTP might seem inefficient because it's message based and inherently leads to
bulkier communication between client and server. For nonbrowser clients, you may be tempted to
use another protocol. In truth, however, HTTP support for caching and persistent connections buys
a lot of performance improvement. What's more, a different or custom protocol may involve using
a less efficient server. Web servers have become highly efficient request processors, so it may be
in your interest to have your nonbrowser clients use HTTP because of its built-in performance and
scalability features.

This isn't to say that all nonbrowser clients should use HTTP. In particular, those client/server
relationships that are very different from the browser/Web-server relationship might consider an
alternative. I'm talking primarily about asynchronous processing models, such as those used in
messaging or broadcast paradigms. The synchronous nature of HTTP data transfers may result in
worse performance for normally asynchronous scenarios, even with some of the features described
throughout this chapter.

Promote HTTP Response Caching

In deploying your site, you'll rarely (if ever) have any direct control over whether or how clients
cache your content. You won't know what browser they're using or what kind of intermediate
caching systems exist between you and them. How, then, should you annotate the content you
serve? Should you use the Last-Modified or the Expires field? Maybe the ETag field
instead?

As usual, it depends on the particulars of your deployment. However, | highly suggest that you

e Assume the potential for some caching between you and the client.

e Attempt to support both HTTP 1.0 and 1.1 caching models. To do that, you should
construct your responses so that they contain valid values for the Expires or the
Last-Modified field, the ETag field, and the Cache-Control field.

One tricky issue is choosing the Expires or the Last-Mod i Tied field. It can be argued
that Last-Modified is safer than EXp i res because it limits the server's commitment to the
consistency scheme. It places the burden on the client to validate the content, and the nature of
conditional GET requests is such that the overhead for this validation is insignificant (compared to
the content, which may be substantial).

True, this approach requires an HTTP request and response and is therefore not as scalability
friendly as the ExXp i res approach. However, it provides a safe way to encourage caching by
both HTTP 1.0 and 1.1 clients. In contrast, the EXp i res approach suffers from the genie-out-of-
the-bottle syndrome: Once you release an object with ExXp i res, you have to wait the specified
time before assuming that clients will update their copy. Such a risk may be too costly depending
on the nature of your application.

Of course, there are clear advantages to ExXp i res. First of all, it eliminates the need to make
even a conditional request on a resource. A smart client or an intermediary can use an Expires
tag set to a future date to avoid the need to have the server validate its content.

Expires is really the only option for dynamic content. Recall that it's possible for clients and
intermediaries to cache GET responses—even if they're dynamically generated (from CGI scripts,

servlets, etc.). However, if that dynamically generated content contains only a Last-
Modified field, HTTP clients might need to generate an I f-Mod i Fied-Since request to
check and validate its consistency. This seems to indicate that the server needs to regenerate the
content and then compare the dates. But, as stated in RFC 2616, HTTP 1.1 avoids this problem by
explicitly stating (in section 13.9) that clients shouldn't assume that cached URIs containing a *?"
are fresh unless the originating server has explicitly indicated an expiration date.

It should be mentioned that there are smart ways to use Exp i res. Realize that, if you simply
change the name of the resource that has an Exp i res tag, it won't be in the client or
intermediary cache and will thus have to be downloaded. So, if you serve a page named
Too.html that contains a dynamic image called image . gi T, you simply need to change the
name of image.gifto imagel.giT. Butbe very careful here. Remember that the
foo.html static page may itself be cached and that your updates to it to include a pointer to
imagel.gi T may not be seen immediately. In this sense, it can be smarter to use a Last-
Mod 1 fied approach on the foo . html page but an EXp i res approach on the image.

As far as entity tags are concerned, using the ETag validation method is encouraged because
HTTP 1.1 clients will choose it over the I F-Mod i Fied-Since approach. Since clock
synchronization may be an issue between client and server, ETag is a cheaper and more accurate
way to ensure consistency. Unfortunately, its scope is limited to HTTP 1.1 clients. Also, it has the
same problem that I f-Mod i Fied-Since has when it comes to dynamic content that's
expensive to generate.

Cache-Control directives may be in order if the content delivered is personalized. Since
there may be many intermediate caching systems between client and server, an explicit Cache-
Control directive is the best way for a server to specify whether and how responses should be
cached. For example, if an HTTP GET-based dynamic response is personalized and you want to
limit who caches it, you can set the Cache-Control to Private.

Support Persistent Connections

The pipelining and reduced TCP connections encouraged by persistent connections have been
shown to make a difference.

One of the more important quantifications of improvement was documented by Nielsen and
colleagues (1997). They found that using persistent connections with pipelining significantly
improves performance over HTTP 1.0. Interestingly, an HTTP 1.1 transfer without pipelining or
persistent connections requires fewer packets than an equivalent HTTP 1.0 transfer, but proved to
be slower! So, while HTTP 1.1 is more bandwidth friendly than HTTP 1.0 in general, it's only the
use of persistent connections and pipelining that allows it to perform faster.”

[It should be noted that Nielsen and colleagues tuned the buffering behavior of both client and server
and avoided the effects of the TCP Nagle algorithm (from the client) by turning that option off during
socket communication.

In order to support both HTTP 1.0 and 1.1 clients, it's wise to use both the Transfer-
Encoding and the Content-Length header. It's a few bytes of extra overhead, but it buys
you HTTP 1.0 compatibility. Your HTTP 1.1 clients will ignore Content-Length anyway
(per the RFC).

Summary

The network is one of the three basic parts of any client/server application. Since our focus here is
on Web applications, that usually means understanding HTTP over TCP/IP. One of the more
interesting things about the HTTP part of the Web application equation is that it's not an API like
JDBC that you program with. Instead, it's something that you use—it's the basis of communication
between your application and its browser clients (and potentially its nonbrowser clients as well).
Knowing how to use it can have dramatic effects on performance and scalability.

We saw that there are significant differences between HTTP 1.0 and 1.1. It's still important to
understand and support both and even more important to know what your client base uses. In
terms of differences, HTTP 1.1 has some important new efficiency features, such as persistent
connections and sophisticated cache control, that address the performance and scalability concerns
with HTTP 1.0. We spent a considerable amount of time addressing some of the important HTTP
cache-related header fields and how to use them.

Finally, we learned that the two most popular HTTP requests—GET and POST—have important
assumptions and implications that many engineers simply don't know or take for granted. GET
requests, in particular, are encouraged for read-only data, and by nature they can leverage some
key caching features (especially in terms of HTTP 1.1 communication). POST requests,
meanwhile, are associated with data updates. While they can't leverage GET's caching features,
they should be used when client requests (such as database updates) can cause application side
effects.

Chapter 6. Request Processing

For n-tier Web applications, the request processor plays a key role in the client/ server exchange.
It acts as the intermediary between the two and thus has a major influence on performance and
scalability. No matter how well designed and well oiled the server side of the equation is, a slow
or less-than-scalable client request handler will reflect poorly on the whole application.

During the writing of this book, it was announced that an interesting database containing
information about American immigration was soon to be made available to the public via the Web.
It would contain detailed records of foreign immigrants who arrived at Ellis Island, New York, in
the early 1900s.

The museum at Ellis Island attracts tens of thousands of visitors each year, many of whom are
interested in tracing their historical roots. Given such public interest in the place, news that
immigration records were to be made available over the Web spread quickly. To make the
situation more interesting, a number of well-known organizations were advertising the site. A
commentator for a major network radio station, unaffiliated with the site, described and advertised
it the day before it was launched. Given all the attention and my own interest—my ancestors had
come through Ellis Island—I was curious to see how well the site would hold up to what |
expected to be a lot of initial attention.

Because it was in fact a ".org" site, it was unlikely that big money was being thrown at making it
highly scalable. | didn't expect much, but | hoped it would do better than earlier launches of
similar "hot spot" sites. Also, | figured that there were now a number of turnkey Web application
systems available, most of them providing for reasonable efficiency and scalability. In short, |
thought that maybe a do-it-yourself, out-of-the-box approach would not prove to be that bad.

Unfortunately, this didn't turn out to be the case. | tried logging on to the site on April 17, the day
| heard it advertised on the radio. It was there, with nice graphics, but it contained a very brief
notice that it wasn't going to launch until April 18. Since the notice was pretty terse, my first

thoughts were that either they tried to launch it on April 17 and it buckled under the demand or
they already had a number of public inquiries about when it would launch. Anyway, | waited until
the morning of April 18 and logged on. At 9 a.m. PST, | attempted to connect—alas, | was greeted
instead with an HTTP 503 error (service unavailable).

| kept trying to connect over the next few minutes, but kept getting the same response. As a techie,
I immediately guessed that the site was being hammered with requests. Suppose the problem had
occurred on a day other than the launch day. Would the problem have been just as clear? Most
likely not. You might have wondered: Is the site down? Their database? The network? Is your ISP
slow?

But let's assume for a moment that the problem was purely one of a Web server that couldn't
handle enough incoming connections (it ran out of memory, file descriptors, etc.). This can be a
problem for many Web sites that suddenly become popular. Now let's consider the irony of such a
situation. Although the application may have been broken up into tiers (Web server and
application system at a minimum) to make it more scalable, the failure of one tier, which
contained no core application logic, ended up disrupting everything.

Unfortunately, this is the case for many overtaxed Web applications. No matter how sleek or
efficient the back-end system may be, a Web server unable to handle its connections is all it takes
for a site to be terribly slow, unable to scale, or just plain unusable. Incidentally, a few hours later
I was still unable to access the Ellis Island site (but at least | received a friendlier message).

By the way, the purpose of this example is not to criticize one particular Web site or the Web
server software they used. Obviously, this same scenario plays out frequently and is experienced
by many online users. Instead, the purpose is twofold:

e To underscore the importance of request processing—specifically, its important
middleman role in the overall client/server exchange

e To show how the inefficiency of only one small task can easily misrepresent an otherwise
efficient application system

That said, this chapter is about request processing, which, though it involves the execution of code
not related to core application logic, nevertheless plays a major role in Web application execution.
The inefficiencies associated with request processing can be responsible for a slow application,
one that's unable to scale, or both.

The General Problem

As you probably know, client/server relationships aren't limited to the end user and the Web
server but in fact exist throughout many parts of any n-tier application architecture. For example,
the Web server itself may also be a client to various other server-side application components, like
CORBA or EJB objects, and these components, in turn, may be clients to each other (i.e., EJB
session beans communicating with entity beans). Still others may be clients to a database server.

In short, all of these interactions require request processing. We'll touch on the important details of
each scenario as we go along in later chapters. However, as they all have so many things in
common, it's useful to step back and examine the problem from a very general perspective.

To reduce confusion, I'm going to make things simple here and just refer to clients and servers.
Obviously, there are some interactions that scream out “client and server"”; however, there are
others that aren't so obvious.

As an example of the latter, consider applications that monitor information feeds, such as applets
or screen savers (like the old PointCast ones), and consume information pushed out at periodic

intervals. In fact, they're not necessarily making requests. Such applications are typically called
"consumers"; those providing the information are referred to as "producers." Still, just like clients
getting replies from servers, both are getting data they're interested in. It's just that the mode and
duration of the request are different.

Our general goal, then, is to understand what makes a good request-processing strategy. That is,
we want to understand what types of question and answer techniques allow client/server
communication to be as fast and scalable as possible. Let's start by breaking down the general
problem into its underlying subproblems and look at each one in a bit more detail.

Specific Challenges

To really focus on the pieces of the request-processing puzzle, we need to look first at the
deceptively simple and pretty picture and then zoom in on the ugly details. Let's consider an
example where a client requests and receives data from a server. We won't assume anything about
client/server proximity. In fact, we'll consider the worst case—that they're not in the same address
space (like threads in a common program) and communicate over a network.

For this example, consider a client that makes a simple request of a server: Return all of the pizza
restaurants in Chicago. Figure 6-1 represents the "pretty picture" view of this request. In contrast,
Figure 6-2 illustrates the ugly details.

Figure 6-1. The pretty picture of request processing

QUERY:
Return all pizza
restaurants in Chicago

-

Client Server
i}

ANSWER:

Joe’s House of Pizza
Glenda’s Ultimate Slice
Pepperoni Now!
Deep Deep Deep Dish

Figure 6-2. The ugly details of request processing

Connection Management

- o
Client ./ ﬁ\-] |’—|H Server -
|| s |
[Data Marshalling Request Servicing

From Figure 6-2, we see that the following requirements need to be met for the communication to
be successful:

e Connection management: Clients need to be able to establish connections to servers, and
servers need to be able to distribute and manage client connections.

e Data marshalling: Requests and replies need to be converted to a suitable form for
transmission over a network.

e Request servicing: In a client/server communication, the primary job of the server is to
service requests. This process can be CPU intensive or I/O intensive, the latter when the
server needs to access an external resource such as another component or the database
system.

Just to remind you: Throughout our discussion of request processing, we'll be interested primarily
in issues with important scalability and performance implications. Other issues, such as
identifying a server that can service a client request or dealing with communication or processing
errors, are unquestionably important and should be part of any general discussion. However, they
have few (if any) associated scalability and performance concerns, so we won't discuss them in
any detail here.

Connection Management

Perhaps chief among the requirements of any request processor is that it efficiently manage
connections and scale in terms of concurrent client requests. The inability to handle large numbers
of concurrent connections can result in a scenario similar to that of the Ellis Island Web site,
which we saw earlier in this chapter.

Meanwhile, the failure to efficiently provide new connections or to manage those that already
exist can make the overall application seem sluggish. For example, if a client has to continually
wait a noticeable amount of time for a connection to be issued by a Web server, every interaction
he has with the application will seem slow. He won't blame the server but the application itself.

There are two aspects of connection management to address. One is the availability of connections
as a resource. When one client wants to connect to a server, connections must be available.
Likewise, when thousands or tens of thousands of connection requests come in at once,
connections must be available. Unlike other request-processing issues, the failure to perform
connection management not only affects scalability, but directly affects the ability of transactions
(some of which are critical) to proceed and can easily anger existing users and scare off potential
new ones.

Consider what happens if connections are unavailable for a stock-trading system. A user places an
order, clicks Submit, and then gets back an error message similar to the HTTP 503 message |
described earlier: No connections available. What is the user to think? Have you lost her order?

Has it been submitted? Should she call customer support? One thing is for sure: You've just given
her a good reason to abandon your application for good.

In this example, having insufficient connections not only revealed the inability of the application
to scale but also exposed embarrassing application behavior and confused the user. If the
application were just slow, that would be one thing—it would at least be functional. But to have it
respond with an "out of connections" error is cause for serious concern—it can cost you serious
business.

Another connection management issue has to do with the efficient use of connections once they're
established. For example, when we discussed the HTTP protocol in Chapter 5, we saw that
downloading a single logical Web page can result in hundreds of TCP connections because of the
extensive dialogue required per HTTP connection. We also saw how persistent connections can
alleviate this problem and result in more efficient use of file descriptors, lower bandwidth
demands, and lower resulting latencies. But under what circumstances are persistent connections
most important? How long does persistent mean? More generally, how long should connections
between client and server be maintained?

Data Marshalling

Another request-processing issue relates to how the request processor and client speak to each
other over the wire (network hardware) that connects them. In particular, there's the problem of
deconstructing the client request so that it can be sent over the connection infrastructure and then
reconstructing it in terms of the objects the server-side handler can understand. Obviously, when it
comes to hardware-level network communication between the client and the server, only ones and
zeroes—no higher level data structures—are allowed.

The process of unpacking client requests and then converting them into objects for transmission to
back-end application servers (or to the database itself) is referred to as marshalling. Those who
have used RMI or are familiar with middleware solutions like CORBA will recognize the term,
since it's typically used in those domains to describe the transposing of language-level data
structures to those suitable for network transmission.

To be more precise, however, marshalling data is said to involve the transfer of data across
application boundaries, most of the time over a network. Since network latency is one of the
biggest factors in performance, and since the size of the data being transferred plays a direct role
in this latency, our interest is in reducing the amount of data being marshalled and/or the
complexity of marshalling.

Another factor is the cost of serialization, which is the process of converting complex objects into
ones and zeroes. Obviously, it has to be done in order to send the data over the network. Also,
upon receipt of the zeroes and ones, the callee reinterprets them into the types sent by the caller.
This is true in most RPC implementations as well as in Java RMI.

As it turns out, however, Java serialization is actually less efficient than other forms of remote
communication. One reason is that it also attempts to support polymorphism. Specifically, RMI
allows the caller to send over arguments that may be defined only on the caller's side. Thus, RMI
requires more class metadata to be sent per call so that the server can adequately reconstruct the
object received. Also, because of the way Java deals with system memory, there's excessive data
copying under RMI's hood and thus a decrease in performance.

In short, the process of data marshalling, especially in Java, and particularly in RMI, is a costly
phase of request processing that should be considered when constructing remote method
signatures.

Request Servicing

Request servicing isn't another way to say "request processing." The latter is concerned with all of
the issues involved when a client wants to obtain an answer from a server. The former is merely
one part of this process: the details of how a server, once it receives the request, arrives at an
answer.

The request servicing can involve (a) performing some computation, (b) querying some local or
external resource, or (c) both. Generally, I'll refer to (a) as CPU bound (lots of computation
required) and to (b) as 1/0 bound (lots of time waiting for the external query to be answered).
We're interested in reducing the amount of time it takes to accomplish both. Not only do we want
them to be fast so that clients get their responses ASAP, but we also want to reduce the contention
for resources that can be caused by slow request servicing.

This last point might not be obvious, so let's discuss it briefly. When a server agrees to answer a
request from a client, it allocates resources to the answering process. For example, with
multithreaded application servers it allocates a worker thread for executing server code. It also
allocates things like file descriptors and memory to that connection and the session or transaction
associated with it. In fact, the memory demands may not be known until runtime since object
creation within a server-side method may be conditional or variable.

In the simplest case, when state is not maintained between client and server, server-side resources
are returned after a response is sent to the client. These freed resources can then be used for new
incoming connections. By the way, notice that things get worse when servers aren't stateless:
Many of the resources involved won't be returned until after the logical session or transaction
completes. Regardless of server state, request servicing should be as fast as possible to ensure that
resource pools are adequately stocked.

CPU-Bound Servicing

When the process of servicing a request is CPU bound, the server is spending the bulk of its time
performing calculations that will produce the client's answer. This is the simpler of the two
request-servicing scenarios: If servicing requires lots of computation, the obvious challenge is
making that computation more efficient.

There are two general subchallenges of more efficient computation:

e Making your algorithms more efficient
e Making your Java code more efficient

The two may be related, but they don't have to be. Making your algorithms more efficient can
involve things like tuning loops and identifying sources of parallelism. Making your Java code
more efficient involves understanding how Java works and knowing which platform
classes/approaches are more efficient than others.

There's not enough room in this book to tackle either subchallenge in great detail; plus, it would
cause us to lose our focus. Fortunately, a number of excellent resources are already out there. For
algorithmic efficiency, try Introduction to Algorithms (Cormen et al., 2001). This is a modern
favorite in computer science circles for data structures and algorithms, and you won't regret its
purchase. For optimizing Java code, try Java™ Performance Tuning (Shirazi, 2000) and Java™
Performance and Scalability, Volume 1: Server-Side Programming Techniques (Bulka, 2000).

I/O-Bound Servicing

To say that request servicing is 1/O bound means that it spends the bulk of its time "waiting" on
data (or, more generally, on an answer) that's not local. It can refer to many cases, including those
where the server is

Issuing its own request to a second server

Reading or modifying shared data that requires synchronized access

Accessing data on disk

Accessing data from a database system

Accessing data from some other kind of external cache (beyond application boundaries)

Notice that | consider serialization of data access to be an 1/0-bound process. In reality, depending
on how an operating system implements this serialization, it can be either CPU or 1/O bound. For
example, the Java Virtual Machine (JVM) allows synchronized access to be implemented via
wait() and notify() mechanisms. Typically, when multiple threads want access to the
same synchronized object, one thread waits until another's exclusive access is over. Then one of
the waiting threads is notified that it can now have exclusive access.

Under this scheme, however, the waiting thread doesn't pummel the CPU with polling activity;
that is, it does not engage in "busy-waiting." Instead, the JVM simply reschedules that thread
when it has been notified. Thus, for threads in the state of waiting there exists 1/O-style blocking
behavior very similar to what happens when a program is waiting for a reply from a remote server.

Except for those involving synchronized access to a common data structure, many 1/0-bound
dilemmas can be addressed by caching. For example, instead of querying a remote data provider,
the answer can be retained locally (as described in our definition of caching in Chapter 4). The
issue then becomes choosing a good caching policy and deciding what parts of the data (including
intermediate data) to cache. Another issue has to do with placing the cache. Is there only one
application component interested in the cached data? If not, is it better to have multiple
independent caches or to have a single, unified cache? We'll get into that question in a bit more
detail in a moment.

Incidentally, keep in mind that resource references themselves can be cached. Connections to
databases, references to EJBs, and file handles are all costly to establish and can potentially be
reused. We've already discussed resource pooling as a way to address this issue. Another way is to
create a global resource cache or context, much like what JNDI provides. (Or, we can just use
JNDI properly?!)

Data Locality in Caching Environments

Interestingly, solutions to some request processing problems create new problems. Such is the
case with the kind of caching we've been discussing. To understand how, consider load balancing,
one popular solution for connection management in Web servers today, and its effect on data
locality.

The basic idea of load balancing is to spread the work around in terms of incoming requests. As
requests arrive, they're farmed out to handlers (servers) using some distribution policy (such as
round-robin). This helps reduce the load on any one server, but it creates a new problem if the
application maintains state or establishes local caches. Specifically, by effectively spreading the
application over multiple machines, load balancing suddenly makes cache consistency an issue for
all mutable data. It also creates a new challenge: How can cached information be shared between
request processors? That is, how can the caching by one server be leveraged by another?

To illustrate, let's look at a farm of Web or application servers managed by a collection of load-
balancing hardware and software for a human resources application. With this application,
administrators can change employee addresses, phone numbers, titles, and the like.

To make the application faster, we can design it so that employee data is cached on the local
machine that services a given request. For example, if a client calls up information on "Jane Hill,"
the application caches all of that employee's information so that future requests for it will be faster.
When the user modifies some part of that data (say, Jane Hill's address), the cache is updated and
S0 is the database.

Now consider how that method of write-through caching affects our server farm. Unless we
change the architecture, replicating our application across multiple machines will cause multiple
independent caches to be created. And now, suddenly, we're forced to make sure that these
independent caches are consistent.

Related to this is the new challenge | referred to: sharing cached data. Generally speaking, we're
interested in how work done by one server (to look up the data) can be leveraged by the other
servers. Of course, we don't have to share data between caches—if it's read-only, nothing forces us
to do this. However, consider the inefficiency involved: We're effectively wasting our aggregate
memory by replicating data. Also, we're looking up data repeatedly, even though it has already
been looked up once.

Dealing with this challenge as well as the consistency issue makes things increasingly complex.
We'll certainly have to do a lot of thinking during the design stages to make the system both
correct and efficient. And, if we don't design our system correctly, the problem of managing
distributed cached data will turn out to be bigger than that of dealing with the normal disk
latencies associated with retrieving this data in the first place.

Request-Processing Modes

It's tempting to think of request processing as something only a Web server does. In fact, there are
infinite request-processing scenarios—any client can, conceivably, make a request of any other
server or subsystem. For all of these scenarios, there are in fact only two modes of request
processing: synchronous and asynchronous. We now turn our attention to understanding the pros
and cons of both.

Synchronous Communication

Synchronous request processing involves a mode of communication in which the client contacts a
server and waits for a reply. Typically, the reply will contain meaningful information in the sense
that the value contained in the reply is important to the client. For example, when users click on a
Web page link, the Web browser makes an HTTP request of the Web server that contains the
associated document. The corresponding HTTP response is required by the client to render the
corresponding Web page.

The main advantage of synchronous communication is that, when things are working well, a
request is answered with a timely response. There's almost no guesswork involved, and the results
are known right away. | say "almost no guesswork" because sometimes a client contacts a server
and waits for long periods before getting a reply (or never gets one) and has to decide when to
time-out. This is one of the disadvantages of synchronous communication, but it affects
asynchronous forms as well, so it's an unavoidable reality. Outside of this situation, there's no
guesswork: The client can be sure that the server processed its request because ... it got a reply!

Many times synchronous communication is mandatory or at least desirable. It's mandatory if the
application semantics require an immediate reply. For example, if the user of an online mail
application sees that he has new mail in his virtual mailbox and asks to see it, it's not reasonable to
say "Come back later for your new mail." Synchronous communication is also typically necessary
for tasks that require order, such as distributed transactions. Consider a bank application
comprising several components, distributed across a network of machines. When a request to

transfer funds between one account and another arrives, we typically need to be sure that the funds
have been successfully withdrawn from the source account before we attempt to deposit them in
the destination account. Thus, the second operation is dependent on a confirmation of the first.

In fact, most programming languages (including Java) force engineers into this way of thinking
because the default coding style involves declaring a list of sequential instructions. This is just a
by-product of von Neumann computing, where an instruction counter (physical or logical) drives
execution. As it turns out, there are alternative-programming models that don't pigeon-hole
engineers into this style of coding (a dataflow model comes to mind).

There are several examples of synchronous communication related to building Web applications.
In addition to the dialogue between browser and server, there's the notion of a remote procedure
call (RPC), which can occur in many forms. The most common is the straight-no-chaser RPC
available on many operating systems as a linkable library. RPC has a long history and represents
the first logical, abstract approach to remote function execution, one that doesn't force the coder to
worry about the low-level socket details associated with the underlying network communication.

There are also distributed object technologies based on RPCs. Java RMI, CORBA, and DCOM are
perhaps the best known. Of the three, CORBA is the most generic, for two reasons. One, its
protocol (110P) is open and thus nonproprietary. Two, it allows communication not only between
disparate systems but between different programming languages. It's possible, for example, to use
CORBA as a means of communication between a C++ client and a Java-based server. As we
discussed in Chapter 3, RMI-11OP is the Java solution to this problem; it attempts to combine the
advantages of RMI (simplicity) and 1HOP (interoperability).

Asynchronous Communication

Although a key advantage of synchronous communication is that a requestor receives a reply as
part of the process, this feature can actually be viewed as a major disadvantage. Not only can there
be a long latency involved in a reply (which may lead to confusion or time-out), but any time
spent waiting for a reply is less efficient than not waiting for it. Also, in many cases a reply is
either not needed or not needed immediately. The mode of communication in which a request
receives a reply at some later time (or receives no reply at all) is referred to as asynchronous.

It helps to visualize the difference between synchronous and asynchronous communication to
understand why waiting for a reply can be considered a disadvantage. Suppose that company A
and company B have established a partnership where B resells some of A's products. They
develop a B2B-style notification system where A uses software to automatically refigure and
determine prices on its products (it can do this monthly, for example) and notifies B about such
changes.

Figure 6-3 shows how A and B might accomplish their goals by communicating synchronously. It
assumes that each computation takes one second and disregards any network latency.

Figure 6-3. Synchronous price update processing

Time (sec)

Updates wrench
price, replies to A

|

Computes wrench
price. sends it to B

2 ... - ——
Updates hammer
price, replies to A
----- —
Computes hammer
price, sends it to B
Company A’s Company B's
Application Application

We see that company A needs 1 second to calculate the price of a hammer and then stalls for 1
second while communicating the price to B. This is because B requires 1 second to update that
price in its own database. After receiving a reply from B that it has updated the hammer price, A
determines the new price on a wrench, which again requires 1 second. Notice that there is an
arrow at the top of the figure—this lets A know that its request was fulfilled. The total time to
process these price updates is at least 4 seconds because the communication is synchronous and so
A needs to receive a reply from B.

Figure 6-4 shows how the same process might occur asynchronously. Since company A doesn't
require any reply from B (perhaps later it will want to know that B received the price changes, but
this isn't immediately necessary), it can calculate the price of a hammer, communicate it to some
gueue that B can access—without waiting for a reply. Instead, it can go on to calculate the price
for the wrench. On its own time, B will eventually visit the queue and process the information A
has left for it there. Instead of wasting a cycle waiting for B to do its work, A moves right along to
the next task, which makes it 50 percent more productive in this example! It completes its work in
2 seconds instead of 4. Notice that B isn't slowed down because A was waiting on its first update.
It's only active for 2 seconds as well, not the original 3.

Figure 6-4. Asynchronous price update processing

Time (sec)

A
R | R Sy o R oy gy S SRy
< e RN ST YR LR S I SEe o
Updates wrench
price, replies to A
2 __________________________________ _h - -
Computes wrench Updates hammer
price, sends it to B price, no reply to A
I ---------------------------------- _.-......._.__....._......____----
Computes hammer
price, sends it to B
Company A’s Company B’s
Application Application

Performance improvement from asynchronous communication varies, of course, because it
depends on the network latency, the time B requires to do its work, and the amount of work A has
to complete. It also has a lot to do with the application itself and its business requirements. For
example, why can't A simply do all of its work first and then send all of the updated product prices
to B at once? Also, is it really necessary for B to commit the change to its database before
acknowledging A? Can't it simply hold the data in some temporary memory, respond to A, and
then commit the data at some later time?

There are many ways to construct asynchronous communication solutions, but all of them use
some sort of queuing approach. This is fundamental to asynchrony: If the consumer is unavailable,
the producer needs some way to log his request so that he can continue with another activity. The
queue represents this logical log file.

For example, Figure 6-4 shows organization A using software to communicate requests at some
future time to a queue that's accessible by software run by organization B. Without a queue, there's
no place to temporarily store requests while they await processing. Thus, behavior has to be
synchronous or the data will be lost.

Messaging Systems

Probably the most popular form of asynchronous communication today is the one associated with
messaging systems. Not to be confused with e-mail, messaging allows applications from different
organizations or companies to integrate easily and efficiently. Most of these systems are based on
an asynchronous communication model.

In addition, messaging systems provide a consistent interface that doesn't force either side to learn
new proprietary APIs or change existing ones. There's no need for two companies to worry about

what language their application(s) are written in and on what operating systems they're deployed.

Just like HTTP and the JVM, messaging systems implicitly define a region of platform

independence so that, instead of worrying about the ugly details of software integration between
disparate machines and programming languages, companies can focus on the more interesting and
pressing business problems related to the data they exchange.

Messaging systems are so named because they rephrase client/server communication between
systems in the form of text messages. As in the HTTP protocol, normalizing communication
between the two parties in this way is necessary to achieve platform independence. And like
HTTP, there's a nice side effect to messaging: It's far easier to debug than a binary, possibly
proprietary, protocol. This makes it a more attractive approach to application integration than
more cryptic methods such as Electronic Data Interchange (EDI).

What's more, message-based integration schemes are perfectly positioned to work on top of HTTP,
since this protocol is itself message-based. This allows them to

e Leverage the network optimizations of HTTP (such as persistent connections)
e Leverage security features (such as SSL)
e Avoid many of the firewall issues that can hamper non-HTTP approaches

One distinction between normal synchronous communication and asynchronous messaging is that
the former is associated with the client/server model, whereas the latter is typically associated with
the peer-to-peer model. In client/server systems, one party requests information and one party
provides it. In peer-to-peer systems, both parties produce and consume information.

Still as | said earlier, the difference between these two approaches is smaller than it sounds. Even
under a messaging scheme, there's going to be a provider and a consumer. The difference is that
the consumer doesn't have to request the information in order to get it; rather, the information is
subscribed to so that it can be received if and when it's published by the provider.

Scalability and Performance Tradeoffs

Now that we've clarified the two basic forms of communication between systems, how do we
decide which is the best one to use?

Although each has some performance and scalability tradeoffs, the most important factor
obviously has to do with the business requirements of a given situation. Certainly, interactive Web
applications need to operate in a mostly synchronous manner. They have many processes
(transferring money, purchasing a product, etc.) where synchronous communication is simply
mandatory because a user needs to be assured that the operation just requested has been performed.
However, there may be opportunities to solve problems asynchronously as well. Let's look at

some of these tradeoffs in the context of the challenges we outlined earlier.

Connection Management

Synchronous communication brings with it a difficult connection management issue. Interactive
Web applications must be able to maintain a large number of available connections at all times to
service high demand and to handle longer usage times per connection. For example, the HTTP 1.1
persistent connections feature improves performance for a series of HTTP exchanges, but it also
frees connections at a lower rate than nonpersistent connections.

In contrast, asynchronous communication has to worry only about providing enough connections
to ensure highly available queuing. These connections are typically short-lived and don't sit idle
during periods of client think time, as a persistent connection might.

Caching and Data Locality

Synchronous communication has much stricter requirements for efficient memory management
than does asynchronous communication. This has to do with the difference in processing between
the two. Synchronous clients, by definition, must wait for an answer. Good caching schemes can
translate into shorter average latencies; bad caching schemes (or none at all) obviously can result
in the opposite. Shorter latencies mean better request processing performance and thus better
throughput.

Although caching can also improve the efficiency of asynchonrous communication models, it is
not always a necessary feature. For example, many asynchronous solutions involve large "pushes”
of data (i.e., batch loads) that—with or without caching—take hours (not milliseconds) to
complete. While businesses generally strive to build efficient systems, waiting 3 hours for the
consumption of data instead of the 2 that a caching solution might yield may not be a major
problem. The point at which a delay becomes unacceptable depends on the nature of the
application.

Some asynchronous applications may in fact require good consumer caching. Consider a stock
market information system that works using a broadcast paradigm. Suppose that a client receives
stock quotes from an information producer and must flash the ticker symbols on the user screen
along with some other data (such as the name of the company). Caching this "other data" is going
to be very important in this scenario or else the lag time between when the message is produced
and when it's consumed and processed will be too great to be useful (i.e., the report of a price drop
or rise will arrive too late for the user to do anything about it). In such cases, data is changing fast
and client/listener processing needs to be as quick as possible.

In short, caching and data locality are usually more critical for synchronous systems because the
client can't make progress until he receives a reply. However, they can also be critical for some
highly dynamic asynchronous scenarios. One thing is for sure: Good caching improves the
performance of both approaches as long as the complexity in implementing it isn't unreasonable.

Data Marshalling

Here's a case where synchronous systems are often more efficient, for two reasons. First, a
messaging intermediary represents yet another layer in the communication between two parties,
which potentially means

e Another level of reconstructing and deconstructing serialized forms into an intermediate
data structure

e Possibly another level of request comprehension (so that the right consumer can be
contacted)

In addition, the actual application data may need to be converted to another format. This is very
common in messaging systems, many of which support transformation rule building so that
deployers can easily customize just how data is to be translated between producer and consumer.

Consider the transfer of records that consist of several codes that indicate employee history
information. These codes may mean something to the producer but mean nothing to the consumer,
who has his own codes. The producer's codes may need to be translated to make sense in the
consumer's application or data model.

In contrast, synchronous systems usually have fewer data transformations and don't have to worry
about this intermediate hop in the request-processing network flow. Still, keep in mind that the
client is waiting in the synchronous case, so the lack of efficient data marshalling has a greater
impact here than it does in the asynchronous case.

Request Processing and J2EE

Various parts of J2EE system design relate to request processing. Some are synchronous, some are
asynchronous, and some provide options for both modes. In this section, we'll describe how these
parts are used and which modes of processing they support.

Web Serving

For most Web applications, a standalone Web server is essential. However, although J2EE
supports the notion of a "Web container" (which is responsible for Java servlets and JSP
generation), there's little mention of the role of a Web server. The specification merely
acknowledges that HTTP requests are handled by Web containers and routed to the application
objects (the Enterprise JavaBeans) or to the database. Although Sun supports the Java Web Server,
it is not necessary for a J2EE deployment. As long as a vendor's Web containers handle and route
HTTP requests, that vendor's implementation of J2EE has met the requirements of the spec. In fact,
this is one of the nicer aspects of the spec in that it provides flexibility in terms of how tightly the
Web server and servlet container are coupled.

Another probable reason why the J2EE spec does not address Web serving specifically is because
existing systems, such as Apache Server and Microsoft Internet Information Server (11S), are well-
established and do a very good job of efficient request handling. These systems have focused on
optimizing the serving of static documents and provided several options that allow clients to reach
server-side application programs and databases.

Although it doesn't address static Web page processing, the J2EE spec does include support for
HTTP processing at the application level. That is, as shown in Chapter 3, the Web container
handles HTTP requests. In practice, however, these requests are only for a subset of all application
requests. Most Web applications are composed of both static pages and forms that are processed
by the server-side application system. Thus, HTTP support by the Web container really addresses
the latter, not the former, need.

Synchronous Processing with Java Servlets and JavaServer Pages

J2EE envisions synchronous request processing as handled by Java servlets and JavaServer Pages
(JSPs). The idea is that client applications connect to servlets directly (or are routed there by the
Web server) and provide a Java interface to the rest of the application system. Servlets are
typically responsible for unmarshalling the structures in the HTTP request and repackaging them
as Java objects, which are then sent either to the database or to application-level objects such as
EJBs. Thus, they act as true request processors, that is, as the intermediary between the client and
the application system.

Servlets represent an alternative to Web server API extensions as well as to request processing by
Common Gateway Interface (CGI) programs such as those written in Perl or C. Unlike CGI
programs, which are usually implemented as processes created for each request made, servlets are
Java classes that execute by associating a pooled thread with an incoming client request and then
using that thread to execute the corresponding class methods. Normal CGI programs are
inherently inefficient in that execution time is spent on forking a process, repetitive initialization
of expensive data structures (such as database connections), and exhaustion of memory when
processing many concurrent requests.

In contrast, the use of threads and the idea of thread pooling in the Java servlet specification
encourage fast, scalable, and resource-efficient servlet execution. Servlet threads share the same
address space (and can span multiple machines for better reliability) and can share/pool expensive
data structures to be used between invocations and by concurrent invocations.

JSPs are an alternative to coding HTML pages and allow a page designer to interact directly with
servlets. They clearly separate the visual representation of data from the business logic that
computes it. Motivated by the fact that generating HTML had become a bulky, unwieldy part of
the servlet development process, JSPs make the HTML and servlet code smaller and more focused.
However, they have nothing to do with the servlet execution model but are simply a development
methodology. Servlets, with or without JSP front-ends, are still mechanisms for synchronous
request processing.

Asynchronous Processing with the Java Message Service

If servlets form the backbone of synchronous request processing in J2EE, the Java Message
Service (JMS) does the same for asynchronous request processing. Unlike servlets, messaging
technology was not introduced by Java effort. As middleware solutions, they have been around for
a while, traditionally associated with the need to handle enterprise application integration—that is,
to easily and reliably connect applications from different organizations (i.e., companies). However,
in the past two years or so, messaging has undergone a rebirth, at least in terms of the Java and
Web application community.

Messaging solutions such as JMS are seeing increased support by other application-level
components. For example, the J2EE specification describes how EJBs can be designed to integrate
with JMS (i.e., message-driven beans). This makes sense: Even though messaging clients and
servlet clients are typically very different (one is a company; the other, a single user), they both
want access to the same business logic. Under the J2EE model, that logic is associated with EJBs,
so it makes sense to enable them to handle both synchronous and asynchronous requests.

JMS acts as a thin API layer that exists on both the producer and the consumer sides of the
communication. As shown in Figure 6-5, the producer uses the API to communicate with a
messaging system that conforms to the JMS while a consumer uses the JMS to access the
transmitted messages. JMS thus acts like JDBC. Instead of abstracting database access, however,
it abstracts messaging behavior. As long as it conforms to the JMS, a messaging solution from any
vendor can be integrated into your application scheme.

Figure 6-5. JIMS messaging architecture

Producer Consumer

Application

Application

Metwork

IMS APl
. Messaging queue element

mScalability and Performance Hints

Although we have been discussing request processing paradigms and design tradeoffs at a fairly
abstract level, we can nevertheless identify some practical suggestions in terms of overall Web
application design.

Build Asynchronous Solutions

As we've seen, asynchronous communication is inherently faster than synchronous
communication. The bottom line is that parallelism is better exploited under an asynchronous
model—at the cost of complexity or flexibility if the return value (if any) has any meaning.

In Chapter 9, I'll discuss the Java Message Service—the primary J2EE technology for building
asynchronous solutions. However, before you can even begin to consider how to use JMS, you
must be able to identify asynchronous opportunities. Toward that end, let's consider one common
task that system designers often (mistakenly) assume can only be handled synchronously.

Generating Highly Dynamic Web Pages

Highly dynamic Web pages are those where the data changes (or may change) frequently. They're
all over the place and include

e "Live" sports scores or sports event statistics (e.g., baseball box scores, like those
provided by the Yahoo or ESPN Web sites)

Current weather conditions

Flight status for a particular airline or airport

Newswire stories

Concert/event seating availability

The problem is that readers of these pages know they change frequently and tend to request them
more often (to get the latest information). This means that request-processing demands rise.
Another unfortunate thing is that data that's looked up or computed isn't shared between clients,
which causes a lot of repetition resulting in a significant waste of server-side resources.

However, there's an asynchronous way to approach this problem. Notice that our Web page
delivery is reactive (and synchronous)—when a client wants an updated page version, we have to
generate a new copy (even if it contains the same data). However, suppose that we instead have a
proactive application server that periodically generates a static page, called, say,
http://www.example.com/current_results.html.

Instead of dynamically fulfilling client requests on a demand basis, we can change our strategy
and have all clients access a single static page. Rather than dynamically generate HTML per
request, we can generate dynamic HTML only when the data changes. This is an approach that, by
itself, scales beautifully.

Admittedly, this solution will not be acceptable in some situations where a response has to be the
freshest possible or in cases where the data generated is user/request specific (i.e., personalized
data such as stock portfolios). Even in this latter case, a simple change in your page design can
result in significant performance benefits. Consider a Web page for an airline that lists the status

of all flights. Instead of designing the page so that users enter a number and get back a flight status,

it may be possible to get away with publishing a single list showing the status of all flights and
letting the user locate the one she wants.

In short, highly dynamic Web page generation can be made efficient by pregenerating a single
static page. This removes a tremendous burden on the application as the number of concurrent
users rises. If you stand back and look at the whole solution, you'll see that it's effectively
asynchronous at the application level: A message (the data results) is periodically pushed out to
the filesystem, and the client simply gets the latest copy of it.

Stream Data between Threads

As we discussed earlier, the main advantage of asynchronous request processing is that it can
make the producing application more efficient by enabling it to continue with its computation as
soon as possible. Moreover, such asynchronous paradigms aren't limited to the interaction
between two distributed components but can be relevant for applications with multiple threads.
Just as was the case with two applications, thread-based situations involve one thread producing
the data and the other thread consuming it.

When opportunities for interapplication parallelism are identified, there are a few ways to address
them. Sure, we can use JMS between threads if we want. But many people view that solution as
overkill. First, if we don't already have JMS-compliant messaging software, we have to purchase it.
Second, and of more concern: The overhead (e.g., marshalling costs) to achieve this asynchrony
alone is fairly pricey, especially when we are talking about communication within a single process.

An alternative to all this is to simply write our own Queue class, which allows one thread to
stream objects to a consumer asynchronously. This is conceptually similar to what JMS allows
(although JMS allows many more configurations and different messaging paradigms).

It turns out that implementing something like this is very simple. Listing 6-1 shows how to
develop a Queue class that allows one or more writers to insert Java objects into a common
gueue and one or more readers to consume them. The guts of the queue are a circular buffer
(where the objects are stored until retrieval by the consumer) and the proper synchronization to
make sure that writers block when the queue is full and readers block when there's nothing to read.

Listing 6-1 A Simple Queue for Communication between Threads

l /**

2 *

3 * A Queue is a data structure that allows a producer
thread to

4 * communicate with a consumer thread asynchronously. It
is

5 * also possible to have multiple producers and/or
multiple

6 * consumers write and read from this same queue.

7 *

8 */

9 public class Queue

10 {

11 protected Object[] m_buf;
12

13 protected int m_max;

14 protected int m_size;
15 protected int m_rSpot;
16 protected int m_wSpot;

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

protected int m_rBlocked;
protected int m wBlocked;

public Queue(int a_size)

{

m_buf = new Object[a_size];
m _max = a_size;

m size = 0;

m_rSpot = O;

m_wSpot = O;

m_rBlocked = 0;

m_wBlocked = O;

}

public synchronized void putObject(Object a_obj)

{
iIT (m_size >= m_max-1)

{

m_wBlocked++;

do {
try { wait(); } catch (Exception e) { }
} while (m_size >= m_max-1);

m_wBlocked--;

}

m_buf[m _wSpot] = a obj;
m_wSpot = (m_wSpot+1l) % m_max;
m _size++;

it (m_rBlocked>0)
notify();

public synchronized Object getObject()

{
iIT (m_size == 0)

{
m_rBlocked++;
do {
try { wait(); } catch (Exception e) { }
} while (m_size==0);
m_rBlocked--;
ke

while (m_buf[m_rSpot]==null)
m_rSpot = (m_rSpot+l) % m_max;

70
71
72
73
74
75
76
77
78
79
80
81 }

Object obj = m_buf[m_rSpot];
m_buf[m_rSpot]=null;

m_rSpot = (m_rSpot+1l) % m_max;
m size—;

it (n_wBlocked>0)
notify(Q);

return obj;

}

Without going into great detail, notice the following:

The code is really a data structure meant to be simultaneously accessed by two threads.
The constructor, shown in lines 20 through 31, initializes the Queue internal data
structures, including the circular buffer, which has a variable size determined by
Queue’s creator.

The putOb ject() method, shown in lines 33 through 52, allows a producer to write
objects into the buffer. As lines 50 and 51 show, the next waiting Queue reader (if any)
is awakened to consume this object.

The getObject() method, shown in lines 54 through 83, allows a consumer to fetch
objects from the buffer. As lines 78 and 79 show, the next blocked writer (blocked
because the queue buffer was exhausted) is awakened as necessary.

The data structure is thread safe; because the putObject() and getObject()
methods are synchronized, there is no chance of a reader deciding that no new objects are
available at the same time that a producer appends a new object to the buffer.

Using a Queue class similar to this one in your own multithreaded code is pretty straightforward.
For example, consider this simple program:

public class QueueMain

{
public static void main(String[] args)
{
/* Create a queue with a buffer big enough to hold 1000
objects */
Queue queue = new Queue(1000);
/* Create producer and consumer threads */
QueueProducer pro = new QueueProducer(queue);
QueueConsumer con = new QueueConsumer(queue);
/* Start them up! */
con.start();
pro.start();
by
by

This program uses a producer thread to write objects into the queue:

public class QueueProducer
extends Thread
{

protected Queue m_queue;

public QueueProducer(Queue a_queue)

{
}

public void run(Q)

m_queue = a_queue;

/* Put 100 objects */
for (int i1=0; 1<10; i1++)
m_queue.putObject(new String(''some-string-"+1));

/* Put an end-of-stream marker */
m_queue.putObject (" _DONE_");
}
s

Correpondingly, a consumer thread reads these objects:

public class QueueConsumer
extends Thread

{

protected Queue m_queue;

public QueueConsumer(Queue a_queue)

{
m_queue = a_queue;
by
public void run()
{

String cur;

/* Read objects from the queue until we get the EOS
marker */

do {
cur = (String)m_queue.getObject();
System.out.printIn(’'Read: <"+cur+">");
} while (Tcur.equals("_DONE_'"));

System.out.printIn(’'Done reading from queue.™);

}
}

The QueueMain program creates a queue and producer and consumer threads that
communicate over it. It then starts both threads. The consumer reads the data when it's available
and blocks otherwise. When the producer inserts a special token (the string **_DONE__"" in this
case) into the queue, the consumer exits.

Running QueueMain thus results in

% java QueueMain
Read: <some-string-0>
Read: <some-string-1>
Read: <some-string-2>
Read: <some-string-3>
Read: <some-string-4>
Read: <some-string-5>
Read: <some-string-6>
Read: <some-string-7>
Read: <some-string-8>
Read: <some-string-9>
Read: < DONE >

Done reading from queue.

This simple example shows that you can still achieve an asynchronous solution within a single
multithreaded component (i.e., the same address space) without the overhead of something like
JMS.

Our solution works best when the number of CPU-bound threads is roughly equal to the number
of CPUs on your system. This allows maximum parallelism. If this isn't the case, you may want to
think twice about this approach. For example, if two threads will be competing for a single CPU,
there may not be much benefit in parallelizing the overall computation.

Develop Efficient Remote Interfaces

There are many situations where improving the design of a remote interface can reduce request-
processing overhead. One example is eliminating the overhead caused by successive remote
request processing. Let's look at an example.

Suppose we're developing a two-part application to process student course registration requests.
One part is an applet that runs on the client machine and serves as the user interface. This applet
sends requests over RMI to the second part, a remote application server. A student uses the applet
to select courses and then presses a button to confirm her choices.

One way to code the remote application is to expose a method for adding a course, for example:
public void addCourse(int a_studentld, int a _courseld);

If this is the only way to add courses, the client applet needs to have code somewhere that looks
roughly like this:

public class RegistrationApplet extends Applet {
protected int m_studentld;
protected int[] m_courses;

public void processEnrollment()

{

RegistrationManager serverApp =
(RegistrationManager)Naming. lookup(

""//remotehost/RegistrationManager');

for (int 1=0; i<m_courses.length; 1++) {
serverApp.addCourse(m_studentld, m_courses[i]);
by

}

}

Notice that addCourse() is called for each course. That is, the price of the overhead of
remote communication is paid n times, where n is the number of courses that the student takes.

Although this is a simple example, it's easy to see the waste here. It would be much more efficient
if we had a different remote method available:

public void addCourses(int a_studentld, int[] a_courselds);
and had a client that looked like this:

public class RegistrationApplet extends Applet {
protected int m_studentld;
protected int[] m_courses;

public void processEnrollment()

{

serverApp.addCourses(m_studentld, m_courses);

which results in significantly less communication overhead! What we've learned here is this: It
can be more efficient to develop remote methods that permit bulk processing (that is, they take
lists of objects that need to be processed).

Here's another example in the same domain. Suppose our applet allows students to find out who is
teaching a particular class. Also suppose that the following remote methods exist:

/* Given a course name like "Art 101", returns i1ts course ID
*/
public int getCourseld(String a_courseName);

/* Gets the instructor ID for the given course ID */
public int getinstructorld(int a courseld);

/* Gets the instructor full name for the given instructor ID
*/
public String getinstructorName(int a_instructorlid);

This means that the client applet needs to contain code that "chases around” a lot of data—
something like the following.

public class RegistrationApplet extends Applet {

public String identifylnstructor(String a_courseName)

{

RegistrationManager serverApp =
(RegistrationManager)Naming. lookup(
"'//remotehost/RegistrationManager™);

/* Remote request #1 */
int courseld = serverApp.getCourseld(a_courseName);

/* Remote request #2 */
int instructorld = serverApp.getlnstructorld(courseld);

/* Remote request #3 */
String instructorName =
serverApp.getlnstructorName(instructorlid);

return instructorName;

Again, we see an efficiency problem. The client is forced to chase around the remote data. This
causes a lot of remote requests and thus an inefficient application. It would have been better to
have a remote method like

/* Given a course name like "Art 101", returns 1its
instructor */
public String getinstructorName(String a_courseName);

which would have resulted in a client like

public class RegistrationApplet extends Applet {

public String identifylnstructor(String a_courseName)

{

RegistrationManager serverApp =
(RegistrationManager)Naming. lookup(
"'//remotehost/RegistrationManager');

/* Remote request #1 */
String instructorName =
serverApp.getinstructorName(a_courseName);

return instructorName;

This requires only one remote method invocation and thus allows us to reduce our communication
costs approximately by a third. What this example teaches us is that it can be more efficient to
design methods that encapsulate a meaningful sequence of data manipulations so that the client
doesn't have to do it manually and at great expense.

Neither of the tips presented here is difficult to grasp. The basic challenge is to look at what your
clients want to do remotely and then offer them interfaces to do it.

Of course, the problem with taking this approach to an extreme is that you end up with a lot of
server-side methods that are overly specific and not reused. This isn't necessarily bad, mind you—
I'm all for reusability and interface simplicity. However, if developing a few efficiency methods
here and there significantly improves performance and scalability, it may not be a bad option.
Remember, clients don't care how much reusability you were able to achieve. They just want fast
applications.

So in short, my advice is to selectively write efficiency methods. By packaging data in bulk and
by encapsulating a series of remote operations into one, you can improve the performance of your
clients as well as the overall scalability of your system.

Summary

In this chapter, we looked at the general concept of request processing as well as some of its key
challenges and issues. We also identified some surprisingly specific solutions to the challenges.

It's fair to say that request processing is all about managing connections, efficiently associating a
connection with an existing session, and marshalling data between client and back-end application
objects. Request processors are on the front line of server-side processing. Regardless of how
efficient the application system or the database system is, request processing itself needs to be
scalable. Load balancing and multithreading can be important techniques that improve both
scalability and performance.

We also discussed the tradeoffs between synchronous ans asynchronous solutions. Although the
former are often more natural or necessary for various scenarios, the latter are often more efficient
because they increase the opportunity for parallel execution. Because of this, it is often worthwhile
to consider novel asynchronous solutions when developing Web applications. The frequent
generation of highly dynamic Web pages is one example we discussed.

Finally, we hinted a number of times about the coupling of request processing and application
logic. J2EE suggests that the two be decoupled—and this is indeed a wise choice. Partitioning the
two activities allows you to separate the problems of application availability and application
scalability. So, for example, although you may be tempted to code application logic in servlets,
there's a strong end-to-end argument for consolidating this logic in either EJBs or the database
itself.

Chapter 7. Session Management with Java Servlets

Having discussed request processing in general, it's now time to look at specifics. Our first case
will be the most popular one: handling HTTP requests for interactive sessions. As you know, what

typically happens here is that an interactive client (i.e., a user with a Web browser) communicates
with a Web server, asking it to process its HTTP request. The Web server responds as appropriate.
The communication is synchronous, and a logical "session™ often involves more than one
roundtrip, either because users have temporarily navigated somewhere else or, more likely,
because the application simply presents its logical operations over a series of Web pages (i.e., the
notion of a shopping cart).

In general, there are two ways to handle incoming HTTP requests. One is to deliver a static
response—specifically to attempt to locate and return the object identified in the request as if it
were a file located on the server side. Static objects include predefined HTML pages and JPEG or
GIF images. These requests are the kind that Web servers are designed to serve quickly and that
don't require communication with any server-side application system.

The other way to handle a request is to deliver a dynamic response. In this case, the request is
forwarded to an application system where the resulting reply is generated dynamically (i.e., data is
generated through server-side program execution). Dynamic responses are necessary when the
requested data is constantly changing and/or is a function of the request parameters.

Generating Dynamic Responses
Three Web server techniques can be used to generate dynamic responses:

e Write a CGI program.

e Extend the Web server through its API.

e Redirect Web server requests to a separate application system, usually through a prebuilt
redirection module or script.

For the last option, I use the term separate because this option usually implies that the application
system technology exists beyond the process boundary of the Web server and is treated by it as a
black box. One example is Java servlets, the main topic of this chapter. Before we explain what
servlets are, however, we need to justify their use in comparison to these other alternatives.

Common Gateway Interface

Common Gateway Interface (CGI) programs reside on the server machine and are executed when
a request for them is made. The Web server passes along the context of the request, so it's possible
to query this metadata and respond accordingly. CGI is almost always the slowest and least
scalable approach because a separate process (an instance of a program) is forked for each CGI
invocation. Not only is forking on demand inherently slow and burdensome, but highly concurrent
CGI request processing quickly exhausts server memory and CPU resources.

FastCGl is a related alternative to CGI that persists a process (instead of forking it each time).
However, its fundamental flaw is that it too associates server-side functionality with a process, not
a thread. As a result, handling concurrent requests still requires multiple processes and thus
scalability remains less than optimal.

Extending the Web Server through Its API

Another option for generating dynamic content is to write an extension for a Web server by hand,
using an API such as NSAPI (for Netscape Web servers) or ISAPI (for Microsoft Internet
Information Server). Typically this means writing the extension in the language of the Web server,
which is usually C/C++.

Web server API extensions can perform well, but they're platform and Web-server specific. Thus,
they're not portable and are painful to maintain. Plus, they require that you reinvent—by hand—a
lot of the technology for session management that already exists elsewhere.

Arguably, extending the Web server yourself may lead to better performance and scalability if you
come up with a better solution than what already exists or if your solution somehow better fits
your application needs. However, such cases are rare and require significant time and resources.
And what are you left with? Probably a solution that only marginally improves performance and
scalability. It's good to remind ourselves that successfully fighting the performance and scalability
war requires picking our battles carefully, and this isn't one | recommend picking unless testing or
deployment benchmarks strongly indicate otherwise.

Redirecting the Web Server Request

The final option for generating dynamic content involves using an alternative Web server
extension, such as a custom module or adapter. In this case, the Web server knows nothing about
how the module or adapter works—it just forwards certain requests as they arrive. Actually, CGI
is often implemented in Web servers in this very way. For example, Apache contains a mod_cgi
module that handles all CGI requests. However, since CGI tends to be packaged with the Web
server itself, its implementation as a distinct module is not so obvious.

To ensure that requests are forwarded properly, there must be some way to let the Web server
know where to reroute the incoming request, and the details of this are obviously Web-server
specific. For example, with Apache, configuration files are modified to let the Web server know
which types of request will be handled by which modules. With Microsoft Internet Information
Server (11S), there are two popular options. One requires that developers write Active Server
Pages (ASP) scripts that can reroute requests to separate application handles. The other requires
building an ISAPI extension that redirects the request. In any case, nearly all Web servers have the
ability to reroute requests—they just differ on where and how this redirection is specified.

Incidentally, keep in mind that rerouting a request means the whole request. Recall that an HTTP
request, such as

GET /portfolio/show_portfolio?userid=9302&view=full HTTP/1.1
Host: www.example.com

is simply asking for some object named /portfolio/show _portfol 1o with parameters
of 9302 and Full I. It's up to the request handler to cast these parameters appropriately, to
translate the request into the proper set of server-side function calls, and finally to coordinate a
single response.

Redirection to a Script Processor

Now that we know it is possible to reroute requests, the next question is, where should they be
rerouted? One option is do something similar to CGl—reroute the request directly to a specific
application program. This is the case with Perl and Tcl, where the corresponding interpreter is
launched to process the requested script. With Apache Web servers, for example, redirection to
Perl can be accomplished by the mod_perl module. A similar mod_tcl extension also exists.

The problem with redirecting a request to any old script-processing module is that most have no
infrastructure for scalability. That is, they're fine for executing a single request, but they tend to
get bogged down handling multiple concurrent requests. One reason for this is that the application
program runs in the same process space as the Web server. Not decoupling the Web server from
the application reduces opportunities for parallelism and can result in excessive memory demands.

Another problem is interoperability. While it may be suitable to handle a request in Perl or Tcl, it
becomes a problem when communicating with any part of your application system not written in
these languages (such as Java). Not that it can't be done: Certainly you can use sockets to
communicate between Java and another interpreted language. However, such solutions aren't
always available and you may have to develop your own protocols to integrate disparate
application systems.

Redirection to Java Servlets

An alternative option is to redirect the request to a more scalable, Java-based application request
dispatcher or handler. The role of the dispatcher is to ensure scalable, highly concurrent execution
of requests. It doesn't execute requested functions—it just schedules them, typically by assigning a
thread (usually from a thread pool) to deal with each one. As we discussed in Chapter 2 when
defining application servers, multithreaded servers are generally more scalable than their
alternatives in terms of both memory and CPU. Also, using a Java-based dispatcher makes
integration with any Java-based application system, such as that defined by J2EE, much easier.

Java servlets are the J2EE solution to the problem of implementing a scalable system for
generating dynamic HTTP responses. They're mainly attractive because of their built-in scalability
features, their tight integration with Web server request-processing, and because they enable Java-
based session management.

Using Servlets

We will review the basic steps for building a servlet and discuss various options developers have
in its design and deployment. We'll also introduce JavaServer Pages (JSP) and look at how they
aid the development and maintenance process and their general impact on performance. Later, we
describe the integration of servlets with Enterprise JavaBeans and discuss why servlets are better
for session management than for core application logic.

Servlets and Servlet Containers

Java servlets are simply Java classes that process HTTP requests programmatically for the purpose
of interacting with a back-end application system, generating dynamic content, or both. They're
seamlessly integrated into the Web server request-handling logic so that the Web server
automatically forwards servlet requests to a servlet container (i.e., servlet engine). Servlet
containers run a Java Virtual Machine (JVM) so that Java request-processing code can be
executed. Alternatively, a servlet container like Apache's Tomcat server can be communicated
with directly over HTTP. In either case, when a container receives a request it assigns a thread to
handle it (i.e., it calls the proper method on the servlet class).

Figure 7-1 illustrates the various ways in which client requests can be processed by servlets using
a servlet container. As shown, a request can be made directly to the container. When this occurs,
the container (which includes a JVM) executes the servlet request and replies to the client. A
second way, also shown, is one wherein a client request can be sent to a Web server, which
redirects it to the servlet container. Thus, the Web server acts as a broker during communication.
In the second method, there are two options: Either the servlet container can run as its own process
(the middle part of the figure) or it can run in the same address space with the Web server (the
bottom part of the figure), as is the case with the Java Web Server.

Figure 7-1. Servlet container integration options

Client . - Servlet
Container
Weh Servia
5 - £ - i
Client Server Container
Client L ! Weeh Servlel
Server Container

In this chapter, we assume the out-of-process servlet container model. There are two reasons that
this model is preferred. First, the out-of-process approach is obviously more flexible than the in-
process approach because it allows the Web server to be load-balanced independently of the
container. Thus, the container can be migrated to different hosts or the Web server can be part of a
larger farm that does more than handle servlet requests. In short, the decoupling of server and
container enables more scalability options at the expense of communication between the two
processes.

A second reason for choosing the out-of-process approach over the in-process approach, where the
client is directly connecting to the servlet container, is that the Web server is already very good at
delivering static pages and is a very robust general request handler. This is an opinion shared even
by container architects, such as those involved in the Apache Tomcat project.” In short, the cost of
an extra intermediate hop (the Web server) is not as much as the cost of losing an already highly
tuned, flexible request processor that can simply redirect the request to the servlet container when
necessary.

[l For details, see the Tomcat 3.2.1 installation note at doc/tomcat-apache-howto.html.

Interacting with a Servlet

To illustrate better the role of servlets in an application, and the way the user interacts with them,
let's consider a very simple example. Suppose that part of our application requires collecting
membership information so that user profiles can be stored and user 1Ds and passwords can be
assigned. We can use an HTML form to collect this information, as shown in Figure 7-2. When
the form is submitted, we want the information to be stored in a database and a dynamic,
personalized response to be generated, such as that shown in Figure 7-3. Suppose, for the sake of
example, that the Web page shown in Figure 7-2 is actually based on the notion of an HTML form
and communicates its input to the Web server via an HTTP POST request.

Figure 7-2. Sample membership application

Membership Application

To obtain a membership, fill out the following information and click SUBMIT.

First name: [Jane]

Last name: | Doe |

Street: [100 Main st |
City: [Anycity |
State: [ca |
Zip: [o000 |
Phone: [800-555-1212 |

Figure 7-3. Results from membership processing

Welcome!

Jane, we are pleased 10 have you as a member,

Your user [D and password information are supplied below.

Applicant: = Jane Doe
User 1D: Looi
Password: Doel23

To handle the processing in a servlet, we need to develop a Java class and implement a specific
method (doPost()) that will be automatically called by the servlet container. The code for this
method will insert the membership data into a database and compose a response to the user. The
container provides the necessary handles to request input and output, so extracting HTTP request
data and issuing an HTTP response is a simple matter of calling a few methods on objects passed
into the processing method as parameters.

Web Server and Servlet Container Integration

As we discussed previously, out-of-process servlet processing (e.g., script or CGl-based Web
request processing) is typically enabled in Web servers through a special module or adapter that
redirects specified URLs or URL ranges to the servlet container. This redirection requires that the
module contact the container using a custom protocol over TCP/IP sockets. In turn, the container
calls the proper method on the proper Java class (as identified by the HTTP request).

As an example, let's consider how to integrate the Apache Server with the Jakarta Tomcat servlet
container. Apache has a module-centric style of processing that associates certain URLs with
various modules. Correspondingly, Tomcat provides a precompiled binary module (a library) and
associated configuration files. The two are linked by a special protocol communicated between the
Web server module and the container (also called a "worker" in Tomcat-speak).

Conceptually, the integration between Apache and Tomcat resembles Figure 7-4. As shown, the
Web server uses a separate module (mod_jk in this case) to communicate with the servlet
container using the Apache JServ Protocol (ASP).™ In turn, the container assigns the request to a
thread executing the proper servlet class method (based on the HTTP request). To achieve the
integration between server and container as Figure 7-4 suggests, we minimally need to

[1t's now also possible to connect Tomcat to Apache via NI, eliminating the need for TCP/IP.
e Modify the Apache configuration files so that they're aware of the servlet container
module (and can thus route the proper URLS to it).
e Edit the Tomcat configuration files to define servlet properties (e.g., where Java is located,
where Tomcat is installed in the filesystem).

Figure 7-4. Apache/Tomcat integration

] e T, ur sy s
HTTP Request ,"'L}'_I;.Eth. Iurzu.n fI’-ILnI{.t
= Web Server Container
mod_ jk Servlet
g Module - Java class
HTTP Response AJP Provocol

Our focus here isn't on Apache and Tomcat configuration, so | don't go into details about
configuration file modifications. | refer you to the documentation. After we modify these files,
we're ready to start developing and deploying servlets.

Developing Servlets
The development process for a servlet is straightforward:

1. Design the Web interface to the servlet—usually an HTML page that invokes servlet
functionality. For example, have an HTML form request that the servlet process its
contents upon clicking the Submit button.

2. Code and compile the servlet, making sure that the servlet class is designed to handle the
HTTP requests of interest (such as POST or GET).

Let's see how this process works in terms of developing and deploying our example.

Designing the Servlet Interface

There's nothing magical or complicated about the HTML that leads to the invocation of the servlet.
If you've written Web pages that invoke CGI functionality, Web pages that invoke servlets will
look pretty much the same. Listing 7-1 shows the key parts of the required HTML code for our
membership-processing example.

Listing 7-1 HTML Code for the Web Page in Figure 7-2.
<IDOCTYPE HTML PUBLIC **-//W3C//DTD HTML 4.0
Transitional//EN">

<HTML>

<HEAD>

<TITLE>Membership Application</TITLE>
</HEAD>

<BODY>

<FORM method=POST
action=http://www.example.com/servilets/ProcessMembership>
<TR>

<TD>First name:</TD>

<TD><INPUT type=text name=Ffirst_name></INPUT></TD>

</TR>

<INPUT value=""Apply" type=submit></INPUT>
</FORM>
</BODY>
</HTML>

The only really interesting part of this code is the act i on attribute of the FORM element, which
specifies that the form be processed by the ProcessMembership servlet. What this means is
that a Java class, ProcessMembership.class, will be invoked by the servlet container.
Thus, the servlet container must be configured to identify the location of
ProcessMembership in the filesystem and the Web server must be configured so that
requests to the serv lets directory will be referred to the servlet container (e.g., Tomcat). Both
of these issues are related to configuration files, so we'll avoid them here.

Coding the Servlet

Servlets in Java are generic and not explicitly tied to HTTP processing. Instead, a superclass—the
Java abstract GenericServ et class—is extended by the abstract HttpServ et class.
GenericServlet defines the In1t() and service() methods, among others, which
are semantically necessary for any type of servlet. The HttpServ et class overrides some of
these methods and defines HTTP-specific methods, shown in Table 7-1.

Servlet programmers implement their servlet classes simply by extending the HttpServiet
class and overriding the desired methods. Listing 7-2 shows the code for our sample membership-
processing servlet. Notice that this servlet is nothing more than a regular Java class that extends
the HttpServ et class and overrides the iIni1t(),doGet(), and doPost() methods

shown in Table 7-1. The overridden init(), method is commonly the place to initialize data
structures; doGet () and doPost () override HTTP requests of the same name.

void init(Q)

void

doGet(HttpServiletRequest
a_req,

HttpServletResponse a_resp)

void

doPost(HttpServiletRequest
a_req,

HttpServletResponse a_resp)

void destroy()

Table 7-1. Commonly Overridden HttpServlet Methods

Purpose

Convenience method used during servlet
instantiation. Any session-independent data
structures (such as a cache or database
connection pool) can be initialized here.

Processes HTTP GET requests. The details
of the request are in a_req and the output
stream for formatting the response is in
a_resp.

Processes HTTP POST requests. The details
of the request are in a_req and the output
stream for formatting the response is in
a_resp.

Convenience method used during servlet
destruction. Any session-independent data
structures can be cleaned up here
(connections closed, etc.).

Listing 7-2 Sample Servlet for Membership Processing

import java.io.™;
import java.text.*;
import java.util.*;
import javax.servlet.*;

import javax.servlet_http.*;

/**
* EXAMPLE SERVLET: processing a membership application.

public class ProcessMembership extends HttpServiet

{

private class UserLogin

public void initQ) { }

public String username;
public String password;

* Initialize instance-specific data structures.

25 * Handle HTTP GET requests: these should be
disallowed.

26 */
27 public void doGet(HttpServletRequest a_request,
28 HttpServletResponse a_response)
29 throws 10Exception, ServletException
30 {
31 /* Respond with a very rudimentary error message */
32
33 a_response.setContentType(""text/html™);
34 a_response.getWriter().printIn(C'ERROR: Only POST
requests are
allowed™);
35 }
36
37
38 /**
39 * Insert new member in the database.
40 */

41 public UserLogin addMember(String a first, String
a_last, String

a_street,

42 String a_city, String a_state, String a_zip)

43 {

44 /* Generate user login information */

45 UserLogin userLogin = new UserLogin();

46

47 userLogin.username = (a_first+a last).toLowerCase();
48 userLogin.password = userLogin.username+"123";

49

50 /**

51 * Insert member into database, most likely using
JDBC.

52 * Since we have not discussed JDBC yet (and since
it"s a detail
here),

53 * no code for this is shown...

54 *

55 * ——-—- JDBC code goes here ----

56 *

57 */

58

59 return userLogin;

60 }

61

62 /**

63 * Handle HTTP POST requests

64 */

65 public void doPost(HttpServletRequest a_request,

66 HttpServletResponse a_response)

67 throws 10Exception, ServletException

68 {

69 /* Extract form parameters (membership input data)
from
request */

70 String FirstName =
a_request.getParameter (" first_name™);

71 String lastName =
a_request.getParameter('last_name');

72 String street = a_request.getParameter('street™);
73 String city = a_request.getParameter(''city');

74 String state = a_request.getParameter(‘'state™);

75 String zip = a_request.getParameter(*'zip™);

76

77 /* Store new member into database, obtain login
information */

78 UserLogin userLogin =

79 addMember(firstName, lastName, street, city, state,
zip);

80

81 /* Construct a response, include new user 1D and
password */

82 PrintWriter outWriter = a_response.getWriter();

83 a_response.setContentType("text/html'");

84

85 /* Write out the actual HTML */

86 outWriter.printIn("<HTML>");

87 outWriter.printIn('<H1>Welcomel</H1>"");

88 outWriter.printIn(firstName+", we are pleased to
have you');

89 outWriter.printIn("as a member.
 Your user ID and
password'™);

90 outWriter._printIn(are supplied below.<P>");

91 outWriter.printIn(""<TABLE>");

92 outWriter.printIn("’<TR><TD bgcolor=#CCCCFF>"");

93
outWriter._.printIn(""'APPLICANT :<TD>"+firstName+"

"+lastName);

94 outWriter.printIn("'</TR><TR><TD bgcolor=#FFCCCC>"");
95
outWriter.printIn("'USERNAME :<TD>""+userLogin.username) ;
96 outWriter.printIn("'</TR><TR><TD bgcolor=#FFCCCC>"");
97
outWriter.printIn(*"'PASSWORD:<TD>""+userLogin.password) ;
98 outWriter.printIn("</TR><TR><TD>"");

99 outWriter.printIn(C'</HTML>");

100 }

101 }

A few things are worth noting about this implementation code. First, the logic is pretty lightweight
and, as shown by line 55, no real database integration exists. The user isn't inserted into a database,
and the username and password are generated based on the input (so name clashes are possible).
Since our immediate goal is to demonstrate how to write servlets, not how to write full-blown,
airtight applications, the code is as simple as possible.

A second, more important observation is that the code is actually a combination of presentation
logic, session management, and core application logic—all in the same file. The HTML
generated by lines 86 through 99 represents the presentation logic. The extraction of request
parameters in lines 70 through 75 of the doPost () method is related to session management—
nothing about our presentation or core logic requires doPost (); rather, it's a necessary part of
coding a servlet. The core application logic is created by simply extending the servlet class. The
addMember () method, shown in lines 38 through 60, is a peer of doPost ()—even though
it has nothing to do with request processing.

This mixing of the three types of logic isn't pretty; and that is exactly the point. While the code
shows that you can get the job done by combining everything in the servlet class itself, this makes
for poor software engineering. There's no way to really reuse the application logic to add a
member, even though this seems like potentially useful code. Also, if we want another interface
for adding members, we'll likely replicate code—always a dangerous practice.

It's also a troublesome scenario when considering how multiple developers work on such
applications. For example, a user interface designer, who focuses on look and feel, may know a lot
about color combinations and usability but know nothing about servlets and their maintenance.

A member of the operations staff, responsible for scaling the application deployment, couldn't care
less about the look and feel or even what the application does. He's simply interested in making
access to servlets fast and scalable, but he's forced to reckon with presentation and application
logic when all he really wants is to insert session management code.

Finally, there's the core application logic programmer, who builds useful application code and
doesn't care how it's deployed. She just wants to make it as functional and reusable as possible.
She also wants to make sure that application logic executed via multiple interfaces is consistent,
which allows her to ensure common functionality and to consolidate performance optimizations in
a single place.

Servlets are best used as mechanisms for executing session management logic because they're
great at managing connectivity between a Web-based interactive user and the application.
However, they're not necessarily well suited to presentation and core application logic. For the
former, it's recommended that you use JavaServer Pages (JSPs). For the latter, Enterprise
JavaBeans are suggested. We'll discuss both more later on. For now, let's focus on the process of
servlet execution.

Servlet Execution

Now that we've seen how to develop a servlet, and we can imagine how it's invoked, we can
discuss some of the details of what goes on behind the scenes. For performance and scalability
reasons, it's of particular interest to know how the servlet container works.

Servlet Containers

First, let's consider the term container versus an older term used to describe this entity: engine.
When you think of a container, you think of a host—a mechanism for storing a resource such as a
servlet. In contrast, an engine connotes a mechanism for processing, which is not at all what
happens. Container is a better, more accurate term to be sure, since the real execution has to do
with the code written by the servlet programmer. Interestingly, this shift in terminology fits well
into a discussion we'll have later about the role of servlets in the overall application architecture,
but for now let's return to understanding what containers are all about.

At the minimum, a servlet container is an intermediary/facilitator between the Web server and
servlet. It's responsible for

e Creating a servlet instance

e Calling the servlet in1t() method

e Calling the servlet service () method whenever a request is made

e Calling the servlet destroy () method before the servlet is terminated
e Destroying the servlet instance

Like a Web server, a servlet container is a continually running process. It takes care of creating a
servlet instance when needed and using threads to execute the code in it. Specifically, when a
request comes in for a servlet, the container does the following:

e Maps the request to identify the servlet class being requested.

e Marshals input and output data by constructing Java objects corresponding to the request
(HttpRequest) and reply (HttpResponse) descriptors; it's through these
descriptors that servlet developers can interrogate things like request parameters and
produce dynamic output.

e Sets up the environment associated with the request; the Java classes HttpSession
and ServletContext represent request-level state, and application-level state,
respectively.

e Creates an instance of the servlet class if one doesn't already exist.

e Creates a thread and executes the corresponding servlet method(s).

If multiple requests arrive for a servlet at the same time, threads are created for each one of them;
however, the same servlet object instance is used. Using threads to execute the servlet instance
code is efficient because it eliminates the need to continually recreate and destroy the servlet
instance (which may have an expensive initialization section). The obvious minor drawback is that
it requires programmers to write thread-safe code.

When a servlet instance hasn't been requested for a while, it may be destroyed by the servlet
container. However, the lifetime of servlet instance is a servlet container configuration parameter
and can be adjusted as needed. Furthermore, the servlet container can be designated to create
instances of various servlets upon startup— before the servlets are requested by clients.

Servlets and Multithreading

By default, a servlet container can service concurrent requests by associating each one with a
thread and executing the servlet service () method for it. This is generally considered a
feature because it increases parallelism during application processing. Since Web applications are
primarily 1/0 bound (waiting for requests from the client or for output from an external resource
such as a database), this concurrency is often realized during execution, resulting in more efficient
applications. Also, using threads—as opposed to processes—for each request is generally more
scalable. As we've discussed a few times already, memory and CPU resources can be shared more
efficiently by deploying multithreaded servers instead of multiple processes.

Although parallel request processing is efficient, there are certain cases where a developer needs
to serialize request execution. The most common instances involve third-party data structures that
are not thread-safe. Incoming requests that use these data structures should do so one at a time.
For such cases, there are two options for serialization:

e Explicit synchronization of methods or use of the synchronized keyword to
designate serialized execution within an instance

e Implementation of the servlet under the SingleThreadModel to ensure that only
one thread at a time is executing the service() call (and its descendants, such as
doGet()) of a particular instance

The first option is well understood by most Java programmers. By synchronizing the doPost ()
or doGet () method, for example, you ensure that only one thread is executing these methods
for that instance at a given time.

Consider the very simple example in Listing 7-3, which echoes the ID of the user who invokes it.

Listing 7-3 Example of Unsafe Membership Processing (Requires Serialization)
/**
* Process new member - not thread safe.
* Adds new member to the system.
**/
public class ProcessMembershipUnsafe extends HttpServilet

{

private int m_nextUserld;

/**

* Initialize instance-specific data structures.
**/

public void nit()

{
m_nextUserld = 0;
b5
/**
* Insert new member in the database.
**/

public UserLogin addMember(String a first, String a last,
String a_street, String a_city, String a_state, String
a_zip)
{
m_nextUserld++;

/**
* Simulate inserting a member iInto database.
* To grossly demonstrate a synchronization issue, we
sleep
* for 5 seconds when inserting the first user.
Though contrived
* here, unpredictable orderings of request
completions are
* common, especially when reliant on external sources
(like a
* database).
**/
iT (n_nextUserld == 1) {
try {
Thread.sleep(5000);

catch (Exception e) {

}
}

/**
* At this point, all processing using m_nextUserld
when
* the first member i1s created is particularly unsafe
because
* addMember may have been called during the sleep
time above.
**/

/* Generate user login information */
UserLogin userLogin = new UserLogin();

userLogin.username = m_nextUserld;
userLogin.password = userLogin.username+"123";

return userLogin;

}

To underline the concurrency problem, the code sleeps for 5 seconds when processing the first
user ID. Thus, if the first and second users are submitted at roughly the same time, the second user
will finish before the first and—more alarmingly—any processing done on her behalf that
involves m_nextUser I d (such as creation of UserLogin) will be incorrect. The
implication is that if requests don't take a deterministic time (nearly always the case when relying
on an external resource such as a database), their order of completion won't be predictable. Thus,
state maintained in the context of a call isn't guaranteed to be consistent.

To solve this synchronization problem, you can use the Synchronized keyword on a code
block or method. For example, we can change addMember () to

public synchronized UserLogin addMember(String a_first,
String a_last,
String a _street, String a city, String a state, String a _zip)

Many developers believe that the same effect can be achieved by having the servlet implement the
SingleThreadModel class. So, instead of synchronizing the addMember () method, it
would seem that we should do the following:

public class ProcessMembershipSafe extends HttpServilet
implements SingleThreadModel

However, | emphasize "believe" because the SingleThreadMode I design has created a lot
of confusion. It sounds like one thread will be associated with an instance, but in fact the
specification notes that multiple instances can be active within a container and guarantees only
that only one thread will be allowed to execute the service method of a particular instance at a
time. The details are important here, so it's worthwhile to quote the spec directly (SRV 2.2.1 of the
Java Servlet Specification 2.3):

The use of the SingleThreadModel interface guarantees that only one thread at a time will
execute in a given servlet instance's service method. It is important to note that this guarantee only
applies to each servlet instance, since the container may choose to pool such objects. Objects that
are accessible to more than one servlet instance at a time, such as instances of HttpSession,
may be available at any particular time to multiple servlets, including those that implement
SingleThreadModel.

To confuse things further, elsewhere the spec indicates that although all non-
SingleThreadModel servlets have only one instance in a given servlet container, instances
of SingleThreadModel servlets may be pooled! Thus, the only real benefit of this model
would appear to be implicit, instance-specific isolation.

From my point of view, although SingleThreadMode I appears to make request
serialization easier, it's probably more confusing and can lead to unexpected execution results.
Also, its actual implementation depends on the container vendor. Given the specification
guarantee that there will be only one instance of non-SingleThreadModel servlets,
synchronization of methods or code blocks using the Java synchronized keyword is far
easier and more natural. There are two other very good reasons to use this method rather than
SingleThreadModel:

e Serialization is more explicit, which is better programming practice.
e Performance tends to be better because the periods of serialization will be minimal (i.e.,
only when it's needed).

Servlets and Session Management

Earlier | suggested that servlets are best used as interactive session managers. To understand this a
little better, we need to discuss session management in more detail.

Simply put, session management is the idea of associating a series of activities with a distinct end
user. For example, if we're deploying an online bookstore, a session might be composed of the
following activities:

User logs in.

User searches for mystery books.

User investigates a new book by Philip Margolin.
User purchases the book.

User searches for new Java books.

User logs out.

o~ LNE

Thus, a session is a series of activities that may contain zero or more transactions or, more to the
point, a session is the logical use of an application by a client. However, the HTTP protocol is
stateless, so it's not trivial to associate the preceding operations with the same logical session. The
client or the server needs some way to link them.

Session Identification

The most common way to identify a session—independent of servlets—is to have the client
remind the server of the session in which it's participating. Incidentally, most applications assume
that a user can participate in only one session at a time. Thus, identifying the user and identifying
the session are often viewed as equivalent. The question now is, what options exist for
"reminding" the server of the user or session? It turns out that there are a few.

HTTP User Authentication

One way to identify a session involves using the built-in user authentication features of HTTP. For
example, when a user logs in to an application, the protocol reminds the server that future actions
are being generated by a known user. Identifying a user is thus automatically enabled by the
protocol.

While it's possible to use authentication information as a means for managing sessions, this is
largely viewed as a poor choice: Authentication is meant not for session management but for
access control. Plus, there's still the problem of assigning unique session identifiers and
maintaining very long-lived sessions. Standard HT TP user authentication isn't a good solution for
either problem. However, it does have the built-in feature of security, preventing sessions from
being "spoofed” (concocted manually by a nefarious user).

Hidden Form Fields

A second method of session identification is to include hidden form fields throughout Web pages
application. Thus, user form submissions will contain an additional unseen field that identifies the
user. For example, an HTML page with a FORM element can contain the following hidden input
field:

<IDOCTYPE HTML PUBLIC ""-//W3C//DTD HTML 4.0
Transitional//EN">

<HTML>

<HEAD>

<TITLE>Membership Application</TITLE>
</HEAD>

<BODY>

<FORM method=POST
action=http://www.example.com/servilets/ProcessMembership>

<INPUT name="sessionlD" type=hidden
value=9203></INPUT>

</FORM>

</BODY>

</HTML>

While including hidden inputs is relatively easy to do, it has its disadvantages:

e It doesn't handle long-lived or interrupted sessions well.
e ltrestricts navigation: Users must click Submit for each screen.
e It's not secure: The session ID is visible and can be spoofed.

To explain better the limitation suggested by the first and second bulleted points, consider the case
where the user uses a single browser window to interact with the application. When he first logs in,
a unique session 1D is generated (such as 9203, as in the example above) and this ID is encoded
as a hidden field on every form generated. When the user clicks Submit, the ID is also sent to the
server, reminding it of the session. The server uses it to associate state (such as an in-progress
shopping cart) with the user.

However, suppose that, in the middle of a session, the user types a new URL (not related to the
application) in the browser location bar. When he returns to the application (either by bookmark or
by typing in a well-known application URL), the session ID can't be resent to the application
server because the user has contacted the server other than via a FORM (which resends the session

ID). Thus, the ID is no longer available and the session will have to be restarted. In short, session
state is fragile when usage is interrupted or navigation is nonstandard.

Rewritten URLSs

A third way to remind the server of the current session involves generating URLSs that are
rewritten to associate the request with the user. For example, once we know that Jane Doe has
logged on, all future URLSs involved in the application include Jane Doe's name or user ID on their
argument list. In this way, all processing of requests includes a parameter indicating the requestor.

For example, the HTML code for processing a membership would look something like this:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">

<HTML>

<HEAD>

<TITLE>Membership Application</TITLE>
</HEAD>

<BODY>

<FORM method=POST
action=http://www.example.com/servlets/ProcessMembership?sid
=9203>

</FORM>

</BODY>

</HTML>

Rewriting URLSs is obviously very similar to using hidden form fields. Corre-spondingly, it shares
the same advantages and disadvantages.

HTTP Persistent Cookies

The final and most popular means for session tracking is to use HTTP persistent cookies. Cookies
are simply name/value pairs that exist on the client side of the application. Each one is associated
with a particular host and essentially acts as an identifier for a user. When the user connects to a
host through his Web browser, the cookies associated with that host are sent to the site's Web
server. Thus, they tell the Web server some details about the connecting client. For example, a
cookie might indicate the user ID or the catalog ID of a product. A given Web site is allowed to
have multiple cookies associated with a client if desired.

Cookies are generally a better solution than HTTP user authentication, hidden form fields, and
rewritten URLs because they're more robust for session management. Since a cookie is stored in a
file on the client's local disk, interrupted sessions and alternative navigation don't affect the
server's ability to query it. Unless the user physically removes a cookie (or declines to receive it),
the cookie will continue to be available and thus can continue to be used for session identification.

Example: Implementing Session Management with Cookies

The Java servlet API allows you to manage cookies directly. For example, you can set a cookie
value—and thus associate a name with a value—and attempt to have it stored on the client side.
Later, when a client connects to your site, you can read the value associated with that cookie to
identify the user or to discover other session-based information.

Listing 7-4 shows a servlet that reads the session ID from an incoming request. If no session 1D
exists, one is created. It can then be used as a key for looking up other information (username,
shopping basket information, etc.) in the database or local, server-side caches.

Listing 7-4 Reading a Session ID from an Incoming Request

1 import java.io.*;

2 1mport java.text.*;

3 import java.util.*;

4 import javax.servlet.*;

5 1mport javax.servlet_http.*;

6

7 /**

8 * Session tracking with cookies

9 *

10

11 public class Sessionldentifier extends HttpServlet
12 {

13 public void doGet(HttpServletRequest a request,
14 HttpServletResponse a_response)

15 throws 10Exception, ServletException

16 {

17 /* Initialize the session ID */

18 String sid = null;

19

20 /* Check current cookies to see if session ID is set
*/

21 Cookie[] cookies = a _request.getCookies();

22 1T (cookies = null) {

23 for (int 1=0; i<cookies.length; 1++) {

24 iIT (cookies[i]-getName().equals('sid™)) {
25 sid = cookies[i1].getValue();

26 break;

27 }

28 }

29

30 /* Generate new session ID */

31 it (sid == null) {

32 sid = genNextSessionld();

33 a_response.addCookie(new Cookie(sid, sid));
34 }

35

36 /**

37 * Rest of the processing can be done based on
session ID

38 *

39 * oL

40 *

41 */

42 }

43 }

The most important parts of the listing are

e Lines 23 through 27, which check for the value of the cookie named sid
e Line 33, which sets the cookie if it was unset, using the session ID generated from line 32

Now, although it's possible to use persistent cookies very easily, as shown above, there's actually a
more general way to manage sessions: with a special servlet API for session tracking.

The Servlet Session-Tracking API

The Java servlet session-tracking API provides a transparent way for the server-side developer to
easily manage session data. It's closely related to URL rewriting and particularly to cookies.
Generally, the basic idea of this API is that it provides a layer of indirection in session
management. Instead of worrying about exactly how session data is managed (by cookies, by URL
rewriting, etc.), the server-side engineer simply uses an API that can query or store named
attributes. Like cookies, each attribute is essentially a name/value pair: The name is the name of
the attribute; the value is associated with the attribute's value.

As | mentioned earlier, the beauty is in the indirection this API provides. Using some method (for
example, URL-rewriting or cookies), it ensures that all requests from a given client session are
associated with the same unique ID. Thus, the server can easily associate incoming requests with
existing server-side state without having to worry about the details of how this association is
accomplished.

The following snippet of servlet code uses the session-tracking API to add a new attribute to the
current session:

public void doGet(HttpServletRequest a_request,
HttpServletResponse a_response)
throws 10Exception, ServletException

/* Get the session object */
HttpSession session = a_request.getSession();

/* Obtain the session ID */
String sid = session.getld();

/* Add a name/value pair to the current session state */
session.setAttribute(*'name’, "Joe Smith');

}

In summary, the main advantage of using the session-tracking API rather than something like
persistent cookies directly is that it's a logical way to manage session information. The server side
doesn't need to know how sessions are being maintained but just that they are and that attributes
can be queried and managed using the provided API. Using cookies explicitly, however, is a more
physical approach and ties the server-side engineer to a particular session management
implementation.

Deploying Servlets

Once you develop a servlet, you need to decide how to make it available. Recall that servlets
execute within a container and that each container has an associated JVM. For many deployments,
having one servlet container will be enough. However, to promote scalability, most servlet

systems give you the opportunity to distribute servlets across a set of machines for improved load
balancing and fault tolerance—Kkey attributes that encourage scalability.

Session Management with Multiple Containers

Distributing servlet containers across multiple machines is a common way to improve the
scalability of your servlet deployment. For the most part, it's an effective strategy—until you again
get to the sticky issue of session management. Although distributing containers allows you to
handle high numbers of concurrent requests, it complicates how state is maintained between those
requests.

The problem here is that, if requests are arbitrarily distributed to different machines running
different containers (and thus different JVMs), how can sessions be managed? There's no
guarantee that each request from a given client will always be routed to the same container (and
thus the same JVM, where the session information is stored).

There are two common solutions to this problem: deterministic load balancing and leveraging the
ability for servlet containers to migrate (and/or persist) state.

Deterministic Load Balancing

When you route incoming requests to multiple machines, you need some mechanism for
distributing the load. Typically, this is the job of the load balancer. There are hardware and
software load-balancing solutions, but both commonly offer features that ensure that a client will
be routed to the same physical server every time.

One hardware example is the Cisco LocalDirector, which supports a "Cookie Sticky" feature. This
feature makes sure that clients will be redirected by the LocalDirector to the same physical
machine (as long as the machine is available) and thus the same JVM. When cookies are issued to
clients, the response is snooped by the LocalDirector so that it can make a note of the cookie and
the machine with which it's associated.

Figure 7-5 shows how this works by highlighting six key links in a simple example. Consider link
1, where an incoming request is received by the load balancer. Because no cookie is currently set,
the load balancer can route the request to any of its target machines as it sees fit. Using some
algorithm (round-robin, for example), it then farms out the request, which by chance goes to
machine A, as link 2 shows. In the context of servlet execution, a session cookie is set. Next, the
client reply is communicated back to the client, passing through the load balancer, as shown by
link 3. The load balancer makes a note of the cookie and the machine that returned the response. It
then continues to return the HTTP response to the client, as shown in link 4, where the client
stores the cookie on his local machine. When the client connects to the application system again,
as shown in link 5, the cookie is automatically re-sent. However, this time the load balancer
identifies that a cookie exists and routes that request to the machine associated with that cookie, as
shown in link 6.

Figure 7-5. Maintaining session state in hardware load balancing

Machine A

Serviel
Container
P ,r"’:"‘\, Load
B ./ Balancer
Machine B
Serviet
Container

A software analog to this is the Apache Web server, which can be set up so that it intelligently
redirects clients to a secondary server, typically by altering the Web server configuration files so
that the mod_rewrite module load-balances requests to a logical host name to a set of physical
hosts. The result is similar to that achieved by the LocalDirector, although the hardware solution
tends to be more robust and scalable.

Automatic Session Migration and/or Persistence

Routing server invocations for a common client session to a fixed server may ensure that session
state can be recovered per invocation, but it does have some disadvantages. First, there's the issue
of failover—suppose the fixed server crashes (along with the state). Nearly all load-balancing
solutions have some plan for failover, but of course none of them can really ensure that all state is
restored because the load-balancers don't know anything about "servlets" or "JVMs"—they only
know about network connections.

A second disadvantage is cost and configuration. Using a load balancer potentially requires more
money and definitely more time configuring your deployment. Admittedly, this is a trivial concern
when deploying a costly Web site to begin with, but I mention it here for completeness.

An alternative approach for managing state with multiple containers is to make use of any session
migration features that your J2EE vendor provides. One example is the session persistence feature
offered by BEA's WebLogic Server (J2EE) as part of its clustering facility. With WebLogic, you
can configure your sessions to be persistent; the location of persistence can range from memory to
the filesystem to a JDBC data source.

Obviously, saving state to a filesystem or database solves the failover problem. Even if the entire
site crashes, data persisted to the database should be recoverable when the site is restored. Of
course, it's worthwhile to understand how session persistence occurs with your J2EE vendor. In
particular, is it synchronous or asynchronous with servlet execution?

WebLogic also supports a mechanism for HTTP in-memory session replication. This mechanism
isn't as robust as more persistent storage, like a filesystem or database, but its performance can be
better. Also, if complete site failures are rare and your session data is not mission critical, this
solution may be fine for your needs.

In addition to session persistence, another supported feature is automatic session migration. Using
some of the same infrastructure for replication and persistence, products like WebLogic allow
client requests to be received by any machine in a defined cluster and then have the state always
accessible, whether or not the current target machine is the same as the machine used for a
previous session invocation. Of course, it's not free—on-demand network communication of state
between cluster participants may be required —but at least it's possible.

The network communication required by automatic session migration is one disadvantage of this
cost-friendly approach to distributed servlet containers. Another is serialization. Systems like
WebLogic that allow you to persist and migrate sessions require that session objects be
serializable, and serialization can be costly at runtime and can make servlet development more
burdensome. However, if session persistence is a priority, it may be worthwhile.

Developing Servlets with JavaServer Pages

JavaServer Pages (JSP), like Microsoft Active Server Pages (ASP), are a way to combine HTML
and server-side function calls so that Web application development can more easily separate
presentation logic from core application logic. Generally speaking, JSP isn't so much a technology
to optimize servlets as it is a methodology for application development. We'll address JSP-like
technology briefly in this chapter, since so many developers use it and because its performance
impact has long been debated.

Sample JSP Page

The best way to get started with JSP is to look at example code, compare it to the Web page it's
associated with, and fill in the blanks. We need evidence of programmatic logic in our page, so
we'll use a Web page that welcomes all visitors, declaring which number visitor they are. It's
shown in Figure 7-6, welcoming the first visitor. When the tenth visitor arrives, a special response
is given, as shown in Figure 7-7. Our simple example thus involves a page that is dynamically
generated. Listing 7-5 shows the JSP, stored in a file named hits . j sp, required to pull this off.

Figure 7-6. What the first visitor sees

Welcome! You are visitor |,
To revisit the page, click RELOAD below:

RELOAD

Figure 7-7. What the tenth visitor sees

Congratulations, you are the 10th person today!
To revisit the page, click RELOAD below:

RELOAD

Listing 7-5 Sample JSP for Counting Page Hits

1 <%@ page import = "hits.HitsBean" %>

2 <Jsp:useBean i1d="hits" class="hits.HitsBean"
scope="'session'/>

3 <Jsp:setProperty name="hits" property="*"/>
4 <IDOCTYPE HTML PUBLIC "'-//W3C//DTD HTML 4.0

Transitional//EN">
5 <HTML>
6 <HEAD>
7 <TITLE>Hit Counter</TITLE>
8 </HEAD>
9 <BODY>
10 <% 1f (hits.incrHits(Q) == 10) { %>
11 Congratulations, you are the 10th
person today!
12 <% } else { %
13 Welcome! You are visitor #
14 <%= hits.getHits() %>
15 <% } %>
16
17 <P>To revisit the page, click RELOAD below:
18 <FORM method=get>
19 <INPUT type=submit value=""RELOAD">
20 </FORM>
21 </BODY>
22 </HTML>

The Structure of a JSP Page

From Listing 7-5, it's obvious that a JSP is really nothing more than a regular HTML page with
special hooks that allow you to embed server-side function calls and raw Java logic. More
generally, JSPs are text documents that consist of two types of text: static page data (or “"template
data" per the JSP spec), consisting of the native presentation language (such as HTML, XML, or
WML), and dynamic page data, consisting of different JSP scripting elements. These elements
can be directives, scriptlets, expressions, or declarations.

JSP directives (such as those shown in lines 1 through 3) are instructions for JSP processing.
They mean nothing to Java itself, just to JSP technology and integration. For example, the
directive in line 1 tells the JSP processor what Java class to load, and the JSP element in line 2
refers to which server-side bean to create and use.

JSP scriptlets, such as those shown in lines 10, 12, and 15, represent actual Java code that
typically has some bearing on which parts of the static page data are returned to the client. For
example, lines 10 through 15 show how simple conditional logic (expressed in Java) can control
which static page data is shown.

JSP expressions, such as that shown in line 14, are replaced with values resulting from Java
execution. For example, processing line 14 results in a value that is then displayed on the page
itself. Notice the difference between JSP scriptlets and expressions: The former look like

<% .. .>while the latter look like <%= .. .>.

There's one thing not shown in Listing 7-5: JSP declarations. These are simply blocks of a JSP
where objects and/or methods are declared and implemented. One example is this block:

<!
private String myString;

public iInt subtract(int a x, int a y) {
return a_x - a_y;
by

%>

The JSP parts of a document are typically associated with one or more Java objects. For example,
the JSP code for counting visitors works with this simple Java class in Listing 7-6.

Listing 7-6 Application Logic for Counting Page Hits
package hits;
import java.util._*;
public class HitsBean {

private int m_hits;

public HitsBean() {

resetHits();
+

public int incrHits(Q) {
return ++m_hits;

}

public void resetHits() {
m_hits = O;

}

public int getHits() {
return m_hits;
by

public void setCounter(String counter) {
m_hits = Integer.parselnt(counter);
by

}

Right off the bat, you should notice that the separation between presentation logic and core logic
is well defined. A JSP author only needs to know the specification of the core back-end Java class
(HitsBean in the example). Likewise, the class implementer doesn't need to worry about the
HTML associated with a particular deployment, but simply focuses on writing a functional class.
This means that the resulting Java class isn't tied to any assumed mode of presentation; thus, the
common problem of application logic intermingled with presentation logic is avoided.

How JSP Works

If a JSP page isn't just plain HTML and contains expressions that need to be compiled, how does it
work at runtime? When a user requests a JSP page, a check is first made to see whether the code
on the page needs to be compiled (i.e., was it previously compiled and is that compilation up to
date?). If compiling is required, it's done at request time along with any remaining JSP translation

(processing directives, etc.). The result of compilation is a new servlet—one that the developer
doesn't edit directly—which combines the presentation logic of the JSP file and the references to
other Java objects (such as HitsBean, shown earlier). This is the servlet that's actually executed
at runtime. The entire process is shown in Figure 7-8.

Figure 7-8. JSP life-cycle flowchart

Request for ISP Page JSP file newer Na
» than previously
compiled serviet?

o5 l

Translate and
(re-jcompile —_— Execute serviet.
ISP code.

There's good news and bad news about the execution flow shown in Figure 7-8. The good news is
that servlet compilation is automatic. If a JSP page is changed, the next request to it will trigger
recompilation. Of course, the bad news is that some errors made to the page can be identified only
at runtime! More bad news is that the first request to a JSP needing recompilation obviously will
trigger recompilation, making this request (along with ones concurrent to it) slower. However,
when you're dealing with a Web site that has thousands of clients, this may not be that big a deal.

You might wonder what this generated servlet code actually looks like. It's not pretty (in terms of
code spacing and comments); in fact, its content can be downright cryptic. However, it's useful to
look at a snippet of it here so that you can be convinced that nothing out of the ordinary is
happening. Listing 7-7 is some of the generated code for the JSP example we've been using
throughout this chapter. It was generated by Apache Jakarta/Tomcat 3.2.1.

Listing 7-7 Example of Generated Servlet Code
1 public class

_0002f)sp__ 0002fhits _0002fhits_0002ejsphits_jsp_ 3
2 extends HttpJspBase {

3
4 // begin
[file=""C:\\jsp\\hits\\hits.jsp';from=(2,0);to=(2,62)]
5 // end
6
7 static {
8 bs
9 public
_0002f)sp_0002fhits_0002fhits _0002ejsphits_jsp 3() {
10 }
11
12 private static boolean _jspx_inited = false;
13
14 public final void _jspx_init() throws JasperException
{
15 }

16

17 public void _jspService(HttpServletRequest request,

18 HttpServletResponse response)

19 throws 10Exception, ServletException {

20

21 JspFactory _jspxFactory = null;

22 PageContext pageContext = null;

23 HttpSession session = null;

24 ServiletContext application = null;

25 ServiletConfig config = null;

26 JspWriter out = null;

27 Object page = this;

28 String _value = null;

29 try {

30

31 1T (Jspx_inited == false) {

32 _Jspx_init(Q);

33 _Jspx_inited = true;

34 }

35 _JspxFactory = JspFactory.getDefaultFactory();
36
response.setContentType(""text/html ;charset=8859 1'");
37 pageContext =
__JspxFactory.getPageContext(this, request,

38 response, "', true, 8192, true);

39

40 application = pageContext.getServletContext();
41 config = pageContext.getServiletConfig();
42 session = pageContext.getSession();

43 out = pageContext.getOut();

44

45 // HTML

46 // begin

[file=""C:\\Jsp\\hits\\hits. jsp;from=(0,36);to=(2,0)]
47 out.write("'\r\n\r\n"");

48 // end

49 // begin

[file=""C:\\Jsp\\hits\\hits. jsp";from=(2,0);to=(2,62)]
50 I

51 N

52 // begin

[file=""C:\\Jsp\\hits\\hits. jsp";from=(8,2);to=(8,32)]
53 ifT (hits.incrHits() == 10) {

54 // end

55 // HTML

56 // begin

[file=""C:\\Jsp\\hits\\hits. jsp";from=(8,34);to=(12,0)]

57 out.write(""\r\n\r\nCongratulations,
you are the "'+

58 "10th person today!\r\n\r\n");

59 // end
60 // begin [Tile="C:\\jJsp\\hits\\hits. jsp"
61 // ;from=(12,2);to=(12,13)]
62 } else {
63 // end
64 // HTML
65 // begin [File="C:\\Jsp\\hits\\hits.jsp";
66 // from=(12,15);to=(16,0)]
67 out.write(""\r\n\r\nWelcome! You are
visitor
#\r\n\r\n’);
68 // end
69 // begin
[file=""C:\\Jsp\\hits\\hits. jsp";from=(16,3);to=(16,19)]
70 out.print(hits.getHits());
71 // end
72 // HTML
73 // begin
[File=""C:\\jsp\\hits\\hits.jsp";from=(16,21);to=(17,0)]
74 out.write(""\r\n");
75 // end
76 // end
77 // begin
[file=""C:\\jsp\\hits\\hits.jsp";from=(17,2);to=(17,5)]
78 }
79 // end
80 S
81 -
82 }

Here are the main things to note:

Line 1: The name of the class is dynamically generated and based (at least for Jakarta) on
the revision level of the original JSP file.

Line 2: HttpServiet isn't what's extended; HttpJspBase is.

Lines 4 and 5 (and throughout the code): At least for Jakarta, notes are made as to which
parts of the JSP file are spliced into the generated servlet Java file.

Lines 21 through 43: A number of special variables are introduced that are actually
accessible to developers writing a JSP page. For example, a JSP page can reference the
application or session objects. (How to use these variables is a fairly detailed
topic and beyond the scope of this introductory discussion.)

Lines 53 through 78: The JSP scriptlets and HTML are spliced in; the placement isn't
surprising, and we can now see how our Java code in the JSP file makes a real difference
during servlet execution.

JSP Directives

Since we already know how to code the static part of any JSP page (i.e., the HTML, XML, or
WML we want), the only thing we need to learn is the set of JSP scripting elements available and
how they work. As mentioned, these elements are directives, scriptlets, expressions, or

declarations. Assuming that we know Java already, the only real mystery is the JSP directives
themselves.

Directives are specified in a JSP page using the following syntax, where a directive type is
expressed along with its attributes:

<%@ directive attribute="value" %>

For example, line 1 of the hits. jsp file shown in Listing 7-5 uses the page directive with
one attribute named Import.

The JSP spec defines three types of directive:

e page communicates page properties to the servlet container.
o tagl1b provides a means for abstracting functionality in a JSP page.
e Include includes other files directly in the current JSP.

taglib and include aren't of interest to us—they merely make JSP development easier.
However, there are a few attributes of page that can have an effect on performance, so we'll
address them here.

As of JSP 1.2, the page directive supports 12 possible attributes, summarized in Table 7-2. Two
are of particular interest as they can have a direct impact on servlet performance:

e IsThreadSafe obviously controls concurrent access to the page (i.e., the servlet).
Although the default value is true, you should ensure that your code really is thread safe.
The value of this attribute obviously affects the degree of parallelism the resulting servlet
enjoys during execution.

e bufTfer indicates the size of the response buffer. A smaller size (or none) gets the first
part of the content to the client quicker. If the value is none, the content is sent to the
underlying Java PrintWriter object of the servlet's ServietResponse object.
buffer is related to the autoF lush attribute: if autoF lush is set to false and a
buffer overflow occurs, an exception is thrown.

Table 7-2. JSP Page Directive Attributes

Attribute Purpose

language The name of the scripting language that interprets the declarations,
expressions, and scriptlets in the JSP page. The default value is
Java.

extends The name of the superclass of the generated servlet. The default
value is Javax.servlet.http.HttpServliet.

import List of classes that the resulting servlet should import. The default
value is

java.lang.*, javax.servlet.™*,
jJavax.servlet._ jsp.*,
jJavax.servilet_http.*.

session Denotes whether the page participates in a session (true) or not
(False). If the value is true, the JSP has access to the variable
session to interrogate session data. The default value is true.

Table 7-2. JSP Page Directive Attributes

Attribute Purpose
buffer The size of the buffer, in kilobytes, or none, no buffering. The default
value is 8K.
autoFlush Whether buffer should be flushed when full (€rue) or an exception

should be thrown (False). The default value is true.

isThreadSafe Specifies whether the scripting elements in the JSP can be run by
concurrent clients. The default value is true.

info Defines an arbitrary string incorporated into the generated page.

errorPage URL of the error page to issue to the client if an error occurs during
JSP translation (i.e., any Java Throwab I e object propagates from
the code).

isErrorPage Specifies whether the current JSP page is the target URL for another
JSP errorPage value.

contentType Relates to the MIME type of the page.

pageEncoding Relates to the character-encoding properties of the page.

What Is JSP Really?

As | said before, JSP is really just a development methodology. There's nothing you can do with it
that you can't do with a servlet. The main difference is that JSP can help you separate presentation
logic from business logic so that, instead of generating HTML from a servlet, you can keep itin a
JSP file. This can make development much more efficient, especially once you embrace the
integration of JSP, HTML, and Java classes. And, as we discussed, JSP is arguably a cleaner way
to develop servlets.

It makes sense to have the presentation and pretty-print code in a static, HTML-like file while the
core functionality remains in a reusable Java class. It also helps enforce good coding style for your
Java classes: You can focus on making them func tional and minimal—two good programming
traits—without littering them with HTML generation code that's specific to a single application
need.

WScalability and Performance Hints

In this chapter, we've focused on the essentials for building and using servlets and paid some
attention to their general efficiency features. In this section, we explore some specific architectural
suggestions targeted at optimizing scalability and performance.

Use Fine-Grained Serialization

For maximum concurrency, make sure your servlet code is thread safe. However, as we discussed
earlier, sometimes this just isn't feasible. In such situations, you have three options, presented in
order of their granularity:

e Implement the SingleThreadModel interface.
e Synchronize methods as necessary.
e Synchronize code blocks as necessary.

Implementing the SingleThreadModel interface is the most coarse-grained approach of the
three, and as discussed earlier, it's confusing and ultimately never necessary. The second approach,
synchronizing methods, works fine for member methods of the servlet class, but you should be as
selective as possible. As is normal in good Java programming, extract and make methods only
those parts of the code that really require synchronization.

The final and preferred approach is to synchronize code blocks as necessary, which limits runtime
serial execution to parts of the code where it's absolutely necessary. This is the most fine-grained
approach of the three listed. Since it's recommended that the bulk of your servlet focus be on
session management—not application logic—it's unlikely that you'll need to do that much
synchronization.

Use Hardware-Based Load Balancing
You have a few options when deciding how to balance servlet load:

e Use hardware-style load balancing (with something like the Cisco LocalDirector).

e Use software-style load balancing (with something like the Apache Web server).

e Ignore load-balancing hardware/software and rely on session migration (often provided
by servlet or J2EE vendors).

The last option may be the easiest to set up because, as a servlet deployer, you don't have to worry
about integrating other hardware or software into your design. However, the serialization and
potential synchronization requirements of persistence/replication can make migration slow,
particularly if you have a large number of machines running servlet containers (i.e., a large servlet
cluster).

The second-to-last option is fine, but may be slightly slower and less robust than the first option.
Using software-style load balancing may require that you restart the software every time a new
machine is added. Worse, since the software can crash, it may be a service availability risk. From
a performance standpoint, an extra Web server represents another software hop and thus slightly
increases client/server latencies.

A hardware-based load balancer tends to be the quickest and most reliable way to distribute
servlet load. It's also often the easiest to administer—many of these devices allow you to plug in
new servers without shutting down the load balancer (and thus sacrificing its existing session state
information). Hardware load balancing is probably the most expensive choice, but it's the one |
recommend for the best scalability.

Use Servlets for Session Management, not Business Logic

It's very tempting to write all of your application code in a servlet. Since you're developing in a
server-side Java environment, it seems quite attractive to handle the request directly, interact with
the database via JDBC, and return the result to the client. However, there are at least two major
reasons why this strategy isn't recommended:

e Implementing all of your business logic in servlets limits you in terms of application
interface flexibility. There are more clients than just interactive Web heads. You might
eventually need to develop a B2B messaging-style interface to your application. Do you
really want to replicate all of your business logic? | don't think so. As we'll discuss in
later chapters, it's generally better to stick business logic either in business object

technologies, like Enterprise JavaBeans (EJBs), or in the database itself (via stored
procedures).

e Servlet scalability can't be fine-tuned. If all your application logic exists in servlets, how
will you scale its different parts? Keep in mind that some functions and objects will be
exercised more frequently than others and that the finer grained your application objects
are, the more control you have over their scalability. However, if all your business objects
are in a servlet, there's no way to scale them independently. You're forced to replicate the
entire servlet (i.e., more instances) or add another machine and servlet container. Neither
approach is a terribly efficient way to scale, especially the latter. As we'll see in Chapter 8,
EJBs address this problem by associating independent threads (from existing thread pools)
with requested business objects. Thus, they can provide "targeted scalability,” replicating
only those objects that are bottlenecks.

The recommendation here is to use servlets for session management tasks because they're very
good at serving as the application entry point and as coordinators of session state. However, once
they have a request and locate the proper state (if any) for that session, have them hand off
processing to a business object technology, like EJBs, which offers better application interface
flexibility and can scale in a more fine-grained manner.

Think Twice about JSP

I think I've made my point: JSP and similar technologies aren't necessary when developing
servlets. They're primarily a tool for development managers. JSPs have a few downsides in terms
of execution, most notably in that recompilation at runtime might be necessary because coding
errors may not be revealed until then. Furthermore, depending on your vendor the code generated
may not be performance optimal.

In general, JSPs are an indirect way to write a servlet. Although they probably won't lead to
significant performance or scalability problems, they do pose a few risks and obviously won't
improve servlet performance (unless you're a very bad servlet coder). Also, if you eventually
agree that servlets are best left for the task of session management, your servlet development will
become considerably less complex. This makes it a bit easier for you to write your own HTML
generation code (there's less chance that you'll embed application logic between HTML generation
logic), and it's not that hard to isolate it in well-named procedures or functions. It's not fun, but it
isn't rocket science, and as a general rule "direct" programming is more attractive than "indirect"
programming because it gives us more control and makes things easier.

However, if you decide to use JSP, make sure that you set the 1sThreadSafe and buffer
attributes of the JSP page directive appropriately. If possible, set the buffer value to none, as in

<%@ page buffer="none" %>

This will allow output to be streamed to the client as it's produced.

Summary

In this chapter, we surveyed the general landscape of Java servlet technology, covering the basics
related to

Understanding and using servlets

Developing servlets

Deploying servlets

Managing sessions with servlets

Using servlet-related technologies, such as JSP

We concluded that servlets provide an efficient, Java-based infrastructure for processing HTTP
requests from interactive clients, particularly users with Web browsers. They're very good at
mapping requests to session data and at forwarding requests to business object technologies like
CORBA and EJBs. Focusing on session management—and not core business logic—can help
make your application more flexible in its interfaces and more scalable in its execution. Finally,
we concluded that JSP is an attractive technology as a development tool, but it's not necessary for
servlets and may even adversely affect performance, depending on the scenario.

Now that we have the user request in our hand, let's discuss how to route it to the part of our
application that contains the actual business logic. That means looking at EJBs in some detail.

Chapter 8. Building Application Servers with
Enterprise JavaBeans

The Need for Application Servers

Enterprise JavaBeans: The J2EE Solution

How EJBs Work

Types of EJB

Sample Application

EJB Design

EJB Implementation

Client/EJB Integration

mScalability and Performance Hints

Summary

The Need for Application Servers

Gone are the days when an application was a single piece of software. Now, applications are
broken up into many pieces sprinkled throughout a collection of machines. The distributed pockets
of functionality are then combined in some way to represent a single application to each network
client, the end user. There are good design reasons for distributed, multitier applications: They
allow automatic evolution (i.e., the server side can change whenever necessary), and they
encourage modular and logical design.

There are good performance and scalability reasons for them as well. Well-focused components
can be deployed as needed, distributed and replicated strategically, so that resource use can be
optimized for the most demanding aspects of an application. When implemented correctly, such
solutions allow deployers to easily scale their applications by purchasing additional hardware as
needed. There's no need to re-engineer the application for the extra hardware, so adapting to
increased load is simple. In general, application logic deployed as distributed objects represents an

important tradeoff: better availability and scalability for the complexity of managing a distributed
system and the overhead of network communication between objects.

Application servers are perhaps the most indispensable part of this scheme, particularly for thin
client (i.e., HTML-based) deployments. Along with the databases on which they rely, application
servers represent the essential component of the server side. As described earlier, the role of an
application server is to provide interfaces for and execute code associated with core application
logic. While some of the topics we've discussed thus far (such as HTTP and servlets) are examples
of connectivity technologies, application servers are the first example we've seen of a technology
made to host the application logic itself.

Application Logic and Where to Deploy It

Application logic is often called "business logic™ because it relates to the core business goals of an
application. For example, an application server might contain logic to calculate the total value of a
user's electronic shopping cart. Or it might provide automatic membership approval for a credit
card. Other kinds of application logic are more subtle or indirectly executed. For example, an
application server may contain logic that determines a list of books or CDs that best fit a user
profile. These items might then be displayed on the side of an application screen to entice the user
during her session.

Recall that, at a bare minimum, a Web application consists of a client and a server separated by a
network. It's no surprise, then, that these are our main choices for where to deploy business logic.
So-called "fat client” solutions, such as Java applet-based applications, can package the logic
inside the client itself. This is often a good choice if your application is heavily CPU bound, works
with many local files and resources, or requires some kind of local security. Since Java applets can
be rebuilt when necessary, there's no loss of control over the application.

However, fat clients are generally unpopular because most Web applications are actually 1/0
bound, either reading and writing data to a remote database or sitting idle waiting for user requests.
Fat clients can also require long downloading times, making the application seem bulky. Also,
although Java itself is portable, not everyone has it—Ilet alone the latest version —so the
assumption that applets will run anywhere doesn't always hold up. Furthermore, packaging logic

in an applet typically means that some sort of host application (like a browser) is required to

launch Java for logic execution.

This means that such designs are less flexible and less amenable to more general application
integration needs, making the logic available only to the interactive end user. For example, B2B-
style integrated applications connected via a fat client may not be possible—the client is always
remotely accessing business logic and can't interact with an applet or anything other than a remote
resource over a network. In short, fat clients have their place in Web-based applications, but they
tend to be the exception for now.

Instead, most Web applications rely on a thin client approach. In contrast to fat clients, thin clients
position logic squarely on the server side, in either the application server or the database. Making
the logic available on the server side as a generic set of functionality accessible through multiple
interfaces makes it usable not only by interactive Web clients but also by other integrating
applications and technologies. One of the nicest things about server-side application logic is that
clients can pick and choose the functionality they want without being forced to deal with
application baggage they don't need.

There are some disadvantages to server-side application logic. The primary one is that resources
such as CPU and memory can quickly become exhausted. With server-side application logic, a
provider is effectively supplying computing power to the hundreds, thousands, and perhaps
millions of clients that use its application. Thus, it faces the very scalability and performance
challenges that are the subject of this book. To scale effectively and perform consistently, a

server-side application must be strategically partitioned into components and distributed across
multiple application or database servers.

An interesting debate involves determining where to place the application logic. In particular,
should it be encoded in an application server or directly in the database? As we'll see, modern
databases have the capability to integrate with and execute powerful procedural languages (such
as Oracle's PL/SQL or even Java), enabling execution even within the same address space of the
database server itself. The lure of encoding application logic in the database is that logic requiring
many database calls will, by and large, execute faster—no extra overhead is required to transfer
intermediate data streams back and forth between the database and application server. However,
this also means that anyone who wants access to application logic needs to contact the database to
execute it. Certainly, this makes little sense for applications that rarely or never need persistent
storage or for those that don't have the database-specific interfaces necessary for access.

Enterprise JavaBeans: The J2EE Solution

The J2EE solution for serving application logic is Enterprise JavaBeans (EJBs). As described
earlier, a J2EE Web application can comprise up to four distinct types of container: an application
client container, an applet container, a Web container, and an EJB container. EJB containers and
the objects they manage are our focus here. An EJB container consists of one or more EJBs that
contain the core business logic for an application.

Unlike Java servlets, which are fundamentally associated with J2EE Web containers, EJBs
represent a more flexible and presentation-neutral location for business logic. They can be
contacted directly by servlets, by applet containers, or by the Java Message Service (JMS). In
contrast, servlets are primarily meant for HTML-based, thin client session management and for
delivering queries and results to the application in a format tailored for an interactive user (i.e., in
HTML). By offloading the Web-based session management and presentation issues to servlets and
technologies like JSP, an EJB can focus on the scalable processing of business logic—not only for
HTML-based interactive users but also for enterprise application integration systems that request
batch processing or some other noninteractive form of application access.

EJBs contain built-in support for many lower-level technologies that enhance the scalability of a
server-side application, specifically:

e Object persistence: EJBs can be automatically integrated with persistent storage to make
applications robust and distributable. As we'll discuss later, they give developers two
choices: to assume responsibility for defining the details of object persistence, or to leave
the entire task to the container.

e Transaction management: Code written by developers for transaction management is
often inconsistent and sometimes leads to suboptimal performance. Crafting code to
coordinate transactions between distributed objects is often difficult and error-prone. One
way to avoid the pitfalls of manually specifying transaction management is to provide a
platform-level service that automates the process. The J2EE specification for EJBs
enables built-in support for distributed transaction management. Taking advantage of this
feature allows developers to write simpler, more focused, error-free EJBs without
worrying about when and how to manage transactions in a distributed environment.

e Location transparency: No matter where EJB clients are on the network, it is easy and
efficient to find an EJB and remotely execute its functions. Such easily distributed and
relocatable application functionality is instrumental in achieving good scalability.

Beyond these explicit or "obvious™ EJB features, the specification provides others that are more
implicit or "concealed"” (but just as important, if not more so). These features have important
scalability and performance implications. We'll get to those later in this chapter, but for now let's
stick with the basics and embark on a journey to understand how EJBs work and how they're
developed.

How EJBs Work

Under the J2EE model, EJBs are distributed objects managed by containers. The real work is done
by individual bean instances. The container provides surrogates (EJB objects) that interact with
these instances, on behalf of the client. It's responsible for the creation and destruction of beans as
necessary—in other words, for the lifecycle of its bean instances. The relationship between clients,
the EJB container, and bean instances is shown in Figure 8-1.

Figure 8-1. Interaction of EJB clients, containers, and bean instances

Server

EIB Container

- F I I I

Bean Instances

As the figure shows, a client communicates with an EJBOb ject, provided by the EJB
countainer. There are actually two types of EJB object interface; we will discuss these both shortly.
The EJBODb ject acts as a middleman in the communication between client and bean. Its
assignment to a bean instance is coordinated by the container.

There are actually two kinds of EJBOb ject involved in client/EJB communication. To
understand them, we need to get a little more specific about how EJBs are used. Independent of
the application, client interaction with EJBs consists of the following steps:

1. Ahandle to an EJBObject is acquired by the client.
2. Business methods of that object are called by the client as needed.
3. After use, the client relinquishes the handle to the EJBObject.

Two types of EJBOb ject interfaces are required here: a home interface for steps 1 and 3, and a
local or remote interface for step 2. The purpose of the home interface is to provide factory-like
services (i.e., creation and destruction methods) for the EJB requested. For one type of EJB, the
home interface also provides a means to "find" certain bean instances. The purpose of the local or
remote interface is to provide a clean API to the application logic (i.e., business methods)
encapsulated by the bean. The difference between the local and remote interfaces may already be
obvious: The former is meant to be accessed by clients located on the same host as the bean,
whereas the latter is meant to be accessed by clients not located on the same host.

Treating them as black boxes of functionality, containers manage beans by calling life-cycle
methods on individual bean instances. These are callback-like methods related to bean creation,
destruction, activation, and passivation. In general, when a bean is moved into a particular state by
a container, one or more of these methods are called. Let's define and discuss each method type:

e Creation: Bean instances need to be created when there is client demand but no available
instance exists. Thus, the container must instantiate a new instance.

e Destruction: Bean instances can be periodically garbage-collected or destroyed.

e Activation: Bean instances may be members of an instance pool that the container can
draw from when a new client request arrives. This has obvious performance implications,
as it's cheaper to assign a request to a member of an instance pool than to create a new
instance and assign the request to it.

e Passivation: Just as activation is a "lite" form of instance creation, passivation is a "lite"
form of instance destruction. Instead of being destroyed after use, a bean instance can be
returned to the pool of instances. This means that it can be reactivated on demand.

Now that we understand a little about what containers and EJBs do and how they work together,
let's turn our attention to the different EJB types and when each is applicable.

Types of EJB

There are three basic bean types supported by the current EJB 2.0 specification:

e Session beans are associated with a specific business action, particularly one requested
during an interactive session. For example, the logic for totaling up an order might be
encoded in a session bean. As their name implies, session beans are the primary
application interface for synchronous, interactive sessions.

e Entity beans are associated with an application object that requires persistent storage. For
example, order and customer objects themselves could each be represented using entity
beans. Session beans and message-driven beans typically interact with entity beans during
execution when persistent data needs to be managed.

e Message-driven beans are associated with a specific business action, particularly one
that's necessary for application integration or periodic batch processing. For example, all
in-store orders might be batch-processed after each business day through a message-
driven bean. Currently, message-driven beans are accessible only via the JIMS.

Figure 8-2 shows the general relationship between the different EJB types. Notice that some
clients invoke the application via session beans, some via message beans. Regardless, these
"interfacing" beans then interact with each other and possibly with a set of entity beans that
represent persistent data.

Figure 8-2. General role of EJB types and possible interbean relationships

Message-Driven Beans

Entity Beans

External " -

Application
Interactive
User Database

Session Beans

A large application implemented with EJBs usually involves several EJB types. To understand
how application data and functionality requirements map into these types, let's consider an
example.

Sample Application

Throughout this chapter, we'll discuss EJBs in the context of a simple employer benefits-
processing system. The goal is a system that allows members to iteratively choose benefits. In
addition, an alternative interface enables enrollments to be processed in batch mode. Our sample
application has the following requirements:

e Members can select and deselect benefits.
e The current benefit listing for any member can be obtained.
e Batch enrollment of member benefit elections is possible.

Notice how these features can be neatly mapped into the EJB types | introduced earlier. Iterative
member enrollment is the main business task, so it can be handled by a session bean—Ilet's call it
BenefitEnrol ler. Batch enrollment is a business task, but this kind of bulk, offline
processing is better suited for a message-driven bean—we'll call it

BatchBenefitEnrol ler. Finally, the key objects involved—members, benefits, and
member benefits—need to be persisted and are thus well suited to entity beans—so we'll call them
Member, Benefit, and MemberBenefits, accordingly.

The ease of mapping our application requirements into EJB types is no accident. The types made
available by the specification encompass the ability to execute core business logic and to manage
persistent application data, and nearly every application demand can fall into one of these two
categories. From this perspective, message-driven beans can be viewed as more of an optimization
than anything else. Certainly, we can get by with just session and entity beans, but, since cross-
company integrated and batch processing tasks are so prevalent in the business world, message-
driven beans are a natural extension that results in better integration and more efficient processing.

EJB Design

Now let's explore the details of each EJB type. We'll first look at how beans are designed and then
focus on examples of their implementation. Based on their purpose and capabilities, we'll see that
our rough mapping of requirements to beans is in fact reasonable.

Session Beans

Session beans correspond to business tasks primarily related to interactive sessions. When an end
user or client wants to execute some action, such as appending to an order, he routes his request to
a session bean. It's sometimes helpful to think of a session bean roughly as the device through
which a logical connection to an application is established between client and server.

Session EJBs come in two flavors: stateful and stateless. As the hame implies, stateful session
beans maintain state during communication with a client. More specifically, they retain the values
of their instance variables between client requests. This state disappears when the client and bean
session ends (i.e., the client terminates it). Obviously, since the bean is maintaining state between
client requests, it's important that the client continue to converse with the same bean. Theoretically,
there should be as many stateful session beans as there are concurrent sessions, since each session
will have a client that needs its own state to be managed. According to the J2EE spec, stateful
session beans may be periodically written to persistent storage.

Stateless session beans don't maintain state between requests and therefore can be used to process
requests from any client. Since they're not associated with any one client, the number of stateless
session beans does not necessarily have to equal the number of concurrent sessions. Sessions
frequently consist of inactivity, so it's possible for only a few stateless session beans to be required
to handle application requests for many clients. They're thus inherently more scalable—from the
bean perspective—than stateful session beans.

From my description, stateless session beans seem like an obvious win-win situation. Pooling
beans instead of issuing one per client interaction seems an obvious way to improve scalability
and conserve resources. However, keep in mind that sessions often require state management. For
example, online retail applications usually need virtual shopping carts. The state must be stored
somewhere: at the client (i.e., via cookies), in rewritten URLS, in server-side memory, or in the
database. There's just no getting around that. Designing an efficient solution for state management
is one of the challenges facing an application architect. We'll discuss some options at the end of
this chapter.

Entity Beans

Entity beans correspond to application objects that are meant to be persistent. By persistent, |
mean that they contain potentially valuable information across sessions. Thus, unlike stateful
session bean instance variables, which only make sense for a single session (such as a shopping
cart), entity beans are associated with state that exists across sessions and perhaps is shared
between them. For example, historical purchasing information for a particular customer is relevant
not only for one session but for every future session.

It may be more convenient to think of entity beans as similar to tables or relations in a relational
database. Like relations, they're named objects that consist of one or more attributes. Like foreign
key attributes in relations, they can contain attributes that relate them to other entity objects. As is
the case with the relational database model, they use primary keys to enforce entity™ integrity.
That is, instances of the same entity bean can be distinguished from one another, just as primary
keys enable rows to be distinguished in a relation.

[This use of the word entity is slightly different from its use in the phrase Entity bean. Entity integrity—
ensuring that each tuple is unique—is typically provided in relational database systems by primary keys.
Entity beans simply refer to object-oriented representations of data.

Client Interaction

There are a few other important properties of entity beans. One is that they differ from session
beans in how they interact with their clients. Recall that session beans may be stateful or stateless
and that this choice directly impacts whether a session bean is shared by multiple clients. With
entity beans, things are different: They can be shared by multiple clients. Think of a specific
instance of a bean as a row in a database table. Just as multiple queries might access the same row
concurrently, multiple clients may access the same entity bean concurrently.

Entity Bean Relationships

Another important entity bean property is the notion that entity beans can relate to each other.
Again, the relational data model analogy is relevant here. Just as tables in a relational data model
have relationships to other tables, so do entity beans. What's more, the relationship—that is, the
cardinality—can be just as flexible as that found in relational data models, for example, one-to-
many. Consider our benefits management example. We can develop a Member entity bean that
can be associated with one or more MemberBeneTit entity beans.

In fact, entity bean relationships can be any of the following:

e One-to-one: Each instance of bean type X is related to, at most, one instance of bean type
Y. Consider members and employees: Member records are always associated with (at
most) one employee.

e One-to-many: Each instance of bean type X may be related to one or more instances of
bean type Y. Consider the member and member benefits example described above.

e Many-to-many: Many instances of bean type X may be related to a single instance of bean
type Y, and many instances of bean type Y may be related to a single instance of bean
type X. Consider the real relationship between members and benefits: Many members can
choose the same benefit and, conversely, many benefits can be chosen by a single
member. In the data modeling world, many-to-many relationships are often normalized
using cross-reference tables. By designing a MemberBenefi t entity bean, we have
effectively achieved this.

At the database level, integrity between the entities is enforced through foreign keys. For example,
in the one-to-many relationship between members and their benefit elections, the
MEMBER_BENEFITS table may have a column for MEMBER __ I D that exists as a foreign key
to the 1D column of the MEMBER table. At the bean level, integrity enforcement depends on how
bean persistence is managed.

Methods of Bean Persistence

When you define an entity bean, you specify that its persistence will be container managed or
bean managed. Simply put, container-managed persistence (CMP) means that your J2EE
vendor figures out how to persist your entity bean whereas bean-managed persistence (BMP)
means that you must explicitly code this mapping.

The obvious reason that BMP exists is that a J2EE implementation can't know everything—it can't
know where an existing database is or what the corresponding table names might be. As it turns
out, many people use the following rule of thumb: If you already have a database with tables
representing deliberate analogues of the entity EJBs you create, use BMP for those beans. If you
just need to persist something that isn't part of a preexisting data model, use CMP. | should warn
you that this is a very simplistic way of thinking: The debate is actually more complicated for
those serious about optimizing bean persistence. Nevertheless, for light persistence needs or for
the casual application designer, it can be a reasonable approach.

Container-Managed Persistence

The main advantages to CMP are simplicity and portability. You don't have to write any SQL that
describes how your objects are mapped onto relational tables. All you have to do is provide a few

methods that meet the requirements of your bean contract and specify some key information in the
deployment descriptor. J2EE does the rest. Thus, your beans consist of much less Java code.

Since you're defaulting persistence to the container, you don't have to worry about dragging your
database around to every deployment locale. For example, if you develop a J2EE application
composed of only session beans and CMP entity beans, you don't need to buy a database wherever
you wish to deploy it. The responsibility for ensuring persistence lies with the J2EE vendor.

CMP's method and mechanism for persistence vary between vendors. The EJB spec says nothing
about how persistence should be achieved, it just conceptually recognizes the need for it. That
means that CMP could be implemented by writing serializable Java objects to the filesystem or by
tight integration with a high-performance database. If you choose CMP and you have a complex
object/data model or if you store and update a lot of data, it's well worth your while to understand
the details of your vendor's CMP implementation.

The EJB 2.0 spec has made some important changes to CMP. One has to do with the introduction
of the so-called "local model" of CMP, which allows entity beans to interact more easily and
optimally than in the model defined by EJB 1.1.

Since entity beans have relationships with other entity beans, there's a considerable likelihood that
they'll be chatting it up quite a bit. Just as navigating a relational data model can result in many
gueries to the database, navigating through entity EJB objects can result in substantial cross-object
communication. EJBs are actually distributed objects, which means that substantial marshalling
and network communication may be necessary.

EJB 2.0 addresses this by offering a local model for use by entity beans that tend to act as
stepping-stones to other data. The best way to understand this is with an example. Suppose that, in
our benefits processing system, application clients need to query member information. Part of this
information might be statistics (name of health plan, name of dental plan, etc.); another part might
be employee information (name, date hired, etc.). From the end-user point of view, however, this
information is combined into one visual record. We can imagine this relationship as that shown in

Figure 8-3.

Figure 8-3. Relationship between client data and server side entitybeans

Client-Side GUI Entity
NAME Heather lones !
TITLE Manager
DEPARTMENT Engineering _— EI‘I'II‘J!U}TC
DATE HIRED 10-04-1978
SALARY 60,000
HEALTH PLAN Ultra Medical
DENTAL PLAN Ultra Dental [=* Member

LAST BENEFIT ACTIVITY @ 11-5-2000

It might seem natural to implement such an application with at least two entity beans—one for
members and one for employees—and maintain a one-to-one relationship between the two. A
client request for an employee record contacts the Member entity bean, which contacts an
Emp loyee entity bean and returns the resulting compounded information to the client. This
relationship is shown in Figure 8-4.

Figure 8-4. Requesting member and employee information from EJBs

Client-Side GUI Server-Side EJBs
NAME Heather lones .
TITLE Manager
DEPARTMENT Engineering
B - —
=04=10 = 3

DATE HIRED 10-04-1578 -~ Member : Emplovee
SALARY &0, 000
HEALTH PLAN Ultra Medical
DENTAL PLAN Utra Dental
LAST BENEFIT ACTIVITY @ 11-5-2000

=

Remote Local

However, since application clients never directly access employee objects (they do so only
indirectly through the Member entity bean), having the Emp loyee entity bean maintain a

remote interface is a waste. In other words, we know that this bean will only be contacted by other
server-side entity beans, yet the same marshalling cost continues to be applied. The EJB 2.0
solution for this dilemma is to develop the Emp loyee bean with a local interface, making it a
local object. Incorporating local objects into your application design offers two basic advantages:

e More efficient argument marshalling: Communication with local objects enables
parameters to be passed by reference, not by value—as they would be over the network in
a normal call to an entity bean.

e More flexibility in terms of security enforcement: Under EJB 2.0, calls to local objects can
be classified as "unchecked"; thus, the deployer can avoid unnecessarily secure
communication between objects.

A second important CMP feature found in EJB 2.0 is container-managed relationships. In this
model, a developer can specify relationships between entity beans and be sure that the
relationships are enforced properly. This is a referential integrity issue.

In our member/benefits example, suppose a request is made to delete a member from the system.
The relational database answer to this request is to prevent the deletion until all child records (i.e.,
benefit elections) are deleted or to support a cascading-delete model, wherein deleting the student
record implies deleting all transcript entries as well. In the EJB 2.0 spec, CMP now supports better
enforcement of referential integrity and offers powerful automation features like cascading deletes
in entity bean relationships.

Finally, CMP includes dependent objects, which you can think of as extensions to entity beans.
Dependent objects allow complex CMP fields to be represented in a separate class. For example,
each benefit entry might include the attributes benefitlD, benefitName, and
benefitRestriction. Each benefitRestriction may actually be complex (i.e.,
composed of several subfields, such as max_age, min_age, min_seniority,etc.) and
could thus be represented as a single dependent object. The key to dependent objects is that they're
not the same as local EJB objects that expose only local interfaces. They're simply a way of
breaking up a more complex object into distinct parts. Local objects are a way of simplifying and
optimizing communication with truly distinct objects but ones that the client never interacts with
directly.

Bean-Managed Persistence

Although it's more complex to implement, BMP generally provides greater flexibility and
potentially better performance than CMP. Depending on your application architecture, it may even
be a necessity. As mentioned above, if you need to connect your entity beans to a database not
supported by your J2EE vendor's CMP implementation, or if you need to do things like persist an
application entity across multiple tables in the underlying database, you really have no choice but
to use BMP for those beans. In doing so, you code—via JDBC and SQL—ijust how the object is
mapped onto a table.

It's true, BMP does result in more time-consuming and complex development responsibilities.
Engineers must code methods that describe how bean instances are loaded, stored, and located,
which means that they must be familiar with the underlying database and how to achieve their
goals via JDBC and SQL. Not only that, but continued integration with the underlying data model
must be maintained. When the data model changes, BMP entity beans must be reevaluated to
ensure that the code they contain is consistent with the data model modifications. The code
maintenance demands I'm hinting at here can probably be most appreciated by those who have
struggled with keeping code bases in sync with continuously evolving data models.

Nevertheless, many people are quick to point out the flexibility of BMP. Complex data
relationships can be more easily resolved because the developer has explicit control. Thus, if it's
necessary to store an object across multiple tables or, conversely, to query an object by joining

multiple tables, this can easily be done with BMP. Also, consider the flexibility of the data source.
With BMP, we can use any mechanism for persistence storage, even legacy or nonstandard
storage systems. In contrast, CMP limits us to the options for persistence provided by the J2EE
vendor.

In terms of performance, BMP may be more desirable. | emphasize "may" because it really
depends on the developer and the application. Since the developer is writing the database
integration code, she is obviously in the driver's seat in terms of how it's optimized. The
effectiveness and efficiency of persistent storage thus depends on how well data source
integration—in particular, JDBC and SQL query optimization—is understood. It also depends on
whether or not performance-enhancing mechanisms like caches exist in the development
environment.

CMP already handles much of this optimization using its own buffering and caching scheme.
Theoretically, depending on the application, a developer could write a more optimal caching
mechanism and thus exceed CMP's benefits, but this may translate into a lot of extra programmer
hours that, despite its optimality, lead to just a small performance improvement.

We'll revisit this discussion at the end of the chapter. For now, however, let's get back on track
with our description of the EJB types. Our next focus is message-driven beans, a new type
provided by the EJB 2.0 specification.

Message-Driven Beans

Message-driven beans are similar to session beans in that they're associated with a business task.
However, they're not meant for interactive sessions. Thus, there's no reason to maintain state
across invocations of a session, making them sound very much like stateless session beans. In
addition, like stateless session beans, they can be used by multiple clients and thus are more
scalable than stateful session beans.

Message-driven beans are unique in at least one important way: the method of invocation. Unlike
with session and entity beans, clients don't contact message-driven beans by binding to and calling
a remote Java method. Instead, message-driven beans rely on an asynchronous listener style of
communication. Clients send messages via the JMS that are forwarded to message-driven beans,
resulting in the automatic execution of an onMessage () bean function. This asynchrony
stands in contrast to the synchronous style of communication involved in session and entity bean
communication and is generally more efficient.

EJB Implementation

When developing an EJB, part of the job involves coding the actual business logic. This is no
different than coding any regular Java class that you would use in a local application. You'll have
public and private methods that are directly related to the application purpose of your bean, but
depending on the type of bean you're developing, you may have some additional coding
responsibilities.

Session and entity beans require code that enables remote clients to access a subset of your bean
functionality. This code is known as the remote interface. They also require that you code life-
cycle methods that have to do with how the bean is managed automatically by the EJB container.
These methods are part of what is known as the home interface. For entity beans, the home
interface also provides functionality for clients to locate the instance they want. For message-
driven beans, you won't need remote interfaces but you will need home interfaces.

Let's examine the implementation of each of these beans, focusing on how the business logic (i.e.,
the actual bean code) as well as the factory and proxy objects (i.e., the home and remote interface
code) are developed. We'll do this in the context of our benefits processing system example.

Session Beans

When developing a session bean, you need to write code for each of the following
classes/interfaces:

e The remote interface: methods exposed to remote clients

e The home interface: methods related to the bean life cycle

e The bean class: methods related to the actual business logic, some public and others
private (similar to a regular Java class)

For our example, we'll examine the code for a stateful session bean. We need to maintain state so
that a member can progressively elect benefits and then confirm his complete enrollment.
Although we'll be looking specifically at developing a stateful session bean, coding a stateless
session bean is very similar. The minor differences are better illustrated in books specifically
about EJBs.

Session Bean Life Cycle

Before discussing how to code a session bean, we need to describe its life cycle and the need for
callback methods. Recall that EJB containers are responsible for bean instance management. That
is, they take care of creating, destroying, activating, and passivating bean instances as necessary;
with entity beans, they may even handle persistence. To do this properly requires some agreement
with the bean developer as containers can't always blindly manage beans. This agreement between
a bean and its container, also called a contract, can be described by a state diagram that illustrates
which methods lead to which bean states. As a developer, you need to know this because you can
initialize, alter, or destroy business logic data structures as appropriate to the state transition.

When a container wants to do some kind of bean management, it calls the proper method on the
bean class. If the developer has chosen to implement something in response to a callback, then the
code provided is executed. However, even if the developer doesn't intend for any action to occur,
he must still declare the method—it's just that the implementation can be empty. The key point
here is that for all bean types the automatic container management requires bean developers to
implement callback methods. These will be called by the container as necessary during bean state
transitions.

Consider the state diagram for a stateless session bean shown in Figure 8-5. The nodes or blocks
indicate the current state of the bean. The edges indicate the bean class implementation methods
called by the container during the transition to that state. When a container transitions a bean, part
of the process involves calling the methods on the bean implementation class in the order
specified.

Figure 8-5. Stateless session bean life cycle

Does Not Exist

1. setSessionContext ()

; ejbRemove ()
2. ejbCreate()

Ready

For example, when a stateless session bean is created (through the create () method on one of
the bean's interfaces, as we'll see shortly), the bean implementation functions
setSessionContext() and ejbCreate() are called, in that order. These methods
must be declared in the bean instance class by the developer, even if their implementation is
empty. Alternatively, depending on the method, other instance-specific resources can be initialized.
This all makes sense: When a bean is created, it moves from a state of "Does not exist" to

"Ready," and various callback methods are executed to allow the developer to respond to such
events.

Once these two methods have been called, the bean is considered in the "Ready" state and will
remain that way until it's destroyed (by the client or container). However, before the bean returns
to the "Does Not Exist" state, we're guaranteed that the € jbRemove () method will be called
by the container, allowing us to do any necessary cleanup. Still, we're talking about stateless
session beans here, so this shouldn't be an issue unless the bean maintains references to some
session-independent resource (like a database connection).

Now, let's look at the state diagram for the stateful session bean, shown in Figure 8-6. We can see
that it's similar to the stateless bean diagram, except for an additional state, "Passive," and
additional bean methods that are called upon entering that state (passivity) and upon leaving it (re-
activity).

Figure 8-6. Stateful session bean life cycle

Does Mot Exist

1. create() .
ejbRemove()
2, setSessionContext()

3. ejbCreate()

cjbPassivate()

-
-

Ready Passive

ejbActivate()

The stateful session bean state transition diagram is a good example of why callback methods can
be useful for scalability and performance. For example, when passivity is initiated by the container,

expensive resources can be unlocked or returned to a shared pool. Specifically, since the
ejbPassivate() method is called upon container-initiated passivation, a developer can do
things like release locks or connections it currently has. Then, when the bean instance is
reactivated, these resources can be regained by properly coding the e jbActivate () method.

In general, understanding the contract between container and bean through a state transition
diagram helps developers understand what their responsibilities are and gives them the
opportunity to manage or optimize an application-specific resource unknown to the container.

Now that we've seen the state transition diagram, we'll look at how to code the interfaces and
implementation classes for our EJB.

Coding the Remote Interface

We'll start with the BenefitEnrol Ier remote interface. This code contains declarations for
methods that are exposed to remote clients. One example of a remote interface for our bean is

shown in Listing 8-1.

Listing 8-1 The benefitEnrol ler Session Bean Remote Interface
1 import java.util.*;
2 import javax.ejb.EJBObject;
3 import java.rmi.RemoteException;
4
5 /**
* Interface for remote clients.
*/
public interface BenefitEnroller extends EJBObject {

/**

* Add a benefit.

*/

public void selectBenefit(String a_benefitld)
throws RemoteException;

NRPRRRPRRRRRER
QOO NOUDNWNROOONO®

/**

* Drop a benefit.

*/

public void deselectBenefit(String a_benefitld)

throws RemoteException;

21
22 /**
23 * List all benefits chosen during this session.
24 */
25 public ArrayList getBenefitList()
26 throws RemoteException;
27
28 /**
29 * Confirm current list of benefits.
30 */
31 public boolean confirmElections()
32 throws RemoteException;

33 }

Using an interface to represent available functionality in a remote object is a common technique in
distributed object technologies. For example, in CORBA appli-cations the Interface Definition
Language (IDL) describes platform-independent application objects. IDL code is then used as the
basis for generating client and server stubs in the desired language.

A remote EJB interface serves the same purpose as an IDL file for clients. It simply represents
remote functionality without forcing the client to know where that functionality might be located
and how it's accessed. Instead, it just indicates that it's available, which simplifies the job of
accessing and using it, especially from the client's point of view. Behind the scenes, J2EE services
manage the availability and scalability of an object and its methods. Conceivably, J2EE can enable
highly trafficked functionality to be scalably deployed by creating EJB instances as necessary. In
practice, the exact details vary per J2EE implementation.

Coding the Home Interface

As we discussed earlier, the home interface of an EJB provides factory-like methods for a session
bean. Thus, it merely includes create () methods that, as we will see, correspond to
eJbCreate () methods in the bean class. For the benefits enrollment home interface, we
simply need the code shown in Listing 8-2.

Listing 8-2 The BenefitEnrol ler Session Bean Home Interface

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

/**
* BenefitEnrollerHome is the home interface for our
* simple benefits processing and registration system.
*/

11 public interface BenefitEnrollerHome extends EJBHome
12 {

13 /**

14 * Creates a registration session for a student.
15 */

16 BenefitEnroller create(String a memberld)

17 throws RemoteException, CreateException;

18 }

Calling the create () method eventually results in creation of a corresponding
BenefitEnrol lerBean instance. Recall that this is a stateful session bean, so there's one
per client session. If we hadn't needed to maintain state, we could have chosen to implement
BenefitEnrol lerBean as stateless. The process of bean instantiation follows the life-
cycle contract defined earlier for stateful session beans. The create(),
setSessionContext(), and e jbCreate () methods will be called—in that order—by
the container. These methods can be implemented by the developer when she codes the bean
instance class, which is the topic of the next subsection.

Coding the Bean Class

Listing 8-3 shows one way that a stateful session bean called BenefitEnrol lerBean can
be written.

Listing 8-3 The BenefitEnrol ler Session Bean Class
import java.util_*;

import javax.ejb.*;

import javax.naming.*;

import javax.rmi.PortableRemoteObject;

/**

* The BenefitEnrollerBean includes the core business
ic and

8 * required SessionBean methods for our school
registration system.

9 */

10 public class BenefitEnrollerBean implements SessionBean
11 {

12 String m_memberld;

13 ArrayList m_elections;

14

15 public BenefitEnrollerBean() { }

16

17 /**

18 * Creates a benefits enrollment session for specified
member .

19 */

20 public void ejbCreate(String a _memberld)

21 {

22 m_memberld = a_memberld;

23 m_elections = new ArrayList();

24 }

25

26 public void ejbRemove() { }

27 public void ejbActivate() { }

28 public void ejbPassivate() { }

29

30 public void setSessionContext(SessionContext sc) { }
31

Q ~NOOUAWNE

lo

32 /**

33 * Adds a course to current class list.

34 */

35 public void selectBenefit(String a_benefitld)
36 {

37 m_elections.add(a_benefitld);

38 }

39

40 /**

41 * Removes a course from current class list.
42 */

43 public void deselectBenefit(String a_benefitld)
44 {

45 int idx = -1;

46 String cur;

47

48 for (int i1=0; i<m_elections.size(); 1++) {

49 cur = (String)m_elections.get(i);

50 iIf (cur.equals(a_benefitld)) {

51 m_elections.remove(i);

52 break;

53 }

54 }

5> }

56

57 /**

58 * Returns the list of benefit elections, in the
current order.

59 */

60 public ArrayList getBenefitList()

61 {

62 return m_elections;

63 }

64

65 /**

66 * Confirms an enrollment, returns a confirmation code.
67 */

68 public ArrayList confirmElections()

69 {

70 it (m_elections.size() == 0)

71 return null;

72

73 ArrayList bList = new ArrayList();

74

75 try

76 {

77 Context initial = new InitialContext();
78

79 Object objref = initial.lookup(

80 "Java:comp/env/ejb/MemberBenefit™);
81

82 MemberBenefitHome mbh = (MemberBenefitHome)
83 PortableRemoteObject.narrow(objref,
84 MemberBenefitHome.class);

85

86 MemberBenefit curMb;

87

88 for (int i1=0; i<m_elections.size(); i++)
89 {

90 curMb = mbh.create(

91 m_memberld,

92 m_elections.get(i).toString(),

93 Calendar.getinstance().getTime());
94

95 bList.add(curMb);

96 }

97

98 } catch (Exception ex) {

99 throw new EJBException("’'ERROR: "+ex.getMessage());
100 }

101

102 return bList;
103 }

In summarizing the organization and contents of this code, it's important to note the following:

e ejbCreate() methods are required for every manner in which we want our bean to
be instantiated. Since this is a stateful session bean, the instantiation information can be
recorded in bean instance variables. Lines 22 and 23, for example, show how the member
ID is set and how the benefit election list is initialized.

e The other EJB life-cycle methods, such as e jbRemove (), are required by the life-
cycle contract, but don't need to be implemented. For special session beans, particularly
those that also interact with the database or deal with some other external resource,
implementation of these methods might be required.

e The methods shown in lines 35 through 63 are the implementations of the business
methods exposed by the BenefitEnrol lerRemote object shown earli-er in
Listing 8-1. Notice that they simply query and manipulate instance member variables,
which are associated with a logical client session.

e The confirmEnrol Iment() method is interesting because it shows how a session
bean can communicate with another EJB, in this case an entity bean. The purpose here is
to use BenefitEnrol ler to coordinate the creation of a set of elections, just as a
shopping cart for an online store might be filled. When the member is done and has
confirmed elections, the session bean can coordinate its persistence with other application
entity beans. It achieves this persistence by repetitively using the
MemberBenefitHome object as a factory to create new MemberBenefit
instances.

Entity Beans

Recall that an entity bean corresponds to a persistent object, not a business task. In our benefits
processing example, one likely persistent object is Bene T t. A benefit in our example is
something like a medical or dental plan—any item that an employee can choose as part of his or
her benefit package.

The list of benefits, just like the list of employees and the list of benefits chosen by employees,
falls into the category of a persistent object. Conceptually, J2EE assumes that the method of
persistence is a relational database. Given that such a database is the underlying storage method,
we can imagine wanting to persist benefit data in a table consistent with the following SQL
statement:

CREATE TABLE benefit (
name CHAR (30),
type CHAR (15),
provider CHAR (40),
cur_participants NUMBER,
max_participants NUMBER

);

In working with this table, we need to be able to create, locate, and possibly delete benefit records.
Creation and deletion might happen in an administrative client, while other activities (such as
finding a particular benefit) would occur in other clients and by way of other session or message-
driven EJBs. Having a benefit record represented as an entity bean is thus reasonable.

Writing entity beans, like session beans, requires defining home and remote interfaces in addition
to the bean methods. However, when coding these beans there are some important differences in

the responsibilities (or contracts) developers have. Furthermore, there's the big decision on how to
handle persistence: specifically whether it should be container managed or bean managed. In fact,
if we decide to deploy an entity bean using container-managed persistence, the recent EJB 2.0
specification gives us even more options, making development of an entity bean very different
from that of other kinds of beans.

Let's take a more detailed look at entity bean development by first reviewing the interfaces and
classes that an entity bean designer must develop:

e The remote interface: methods exposed to remote clients, mostly accessor-like methods.
The EJB 2.0 specification allows entity beans to have local interfaces, which enables finer
granularity without compromising performance.

e The home interface: methods that allow entity beans to be created (i.e., factory-like
methods) and located. Locator methods are also known as "finder" methods. EJB 2.0 has
"select" methods as well.

e The bean class: a combination of accessor-like methods for interrogating object attributes
and methods for managing database integration and object identification. Depending on
how bean persistence is handled, there may be many private methods related to database
access.

Notice that these classes are similar to those for the session beans shown earlier. However, there
are a few minor differences, most of which relate to a single benefit record being similar to a row
in a table of benefit records. In general, the methods found in an entity bean fall into these
categories:

Attribute accessor methods

Business methods

Methods that distinguish a particular entity bean from other entity beans
Database integration methods

Entity Beans and EJB 2.0

In this section, as in others, our discussion will be framed by the new EJB 2.0 specification. EJB
2.0 presents many changes to entity beans, particularly those that employ container-managed
persistence. Rather than compare 2.0 and 1.1 specs, we're simply going to focus on what 2.0
provides. As always with J2EE, it's important to know your vendor and understand which levels of
the J2EE spec it supports.

The Entity Bean Life Cycle

The life cycle of an entity bean with respect to a container is shown in Figure 8-7. Like the session
bean, an entity bean contains a set of callback methods that enable its container to effectively
manage it. It's up to the developer to ensure that these methods are properly coded in the bean
implementation class, which generally means writing JDBC code and the actual SQL necessary to
load, store, remove, and update the underlying persistent representation of the entity as necessary.
As we'll see, this can cause the number of lines in even an average bean to explode. On the other
hand, with container-managed persistence, coding these methods becomes significantly easier.
Plus, your J2EE vendor ensures that all database integration will be automatic.

Figure 8-7. Entitybean life cycle

Does Not Exist

setEntityContext() unsetEntityContext()
Pooled
1. create()
2. gjbCreate() eibActivate() gjbPassivate() 1. remove()
3. gjbPostCreate() 2. ejbRemove()
Ready

As with session beans, the entity bean container invokes well-known bean instance methods
between activation modes, as shown in Figure 8-7. However, we see a new state value for entity
beans: "Pooled."”

Unlike stateful session beans, which correspond to sessions between a unique client and the server,
entity beans not only maintain state but are frequently shared by multiple clients. To enable
scalability and high performance when using entity beans, the EJB specification allows them to be
pooled prior to actual use. This negates the effects of runtime object instantiation penalties. Keep
in mind that there can easily be many more entity beans than session beans in a given application.
This makes sense: An application typically has more business data than it does concurrent clients.

Coding the Remote Interface

The remote interface of an entity bean typically exposes attribute accessors and potentially
"single-row" business methods. The need for the attribute accessors is obvious—we have to be
able to get and set the individual column values for a given row. Each row in the underlying
database table corresponds directly to a bean instance.

The business methods, if they exist, can be directed at computing something based on the
attributes of the bean instance. Thus, since they pertain to a per-instance computation, they're
considered single-row functions. For example, although our BENEF I T table keeps track of both
the maximum and the current number of participants in that benefit, a useful business method here
is one that returns the number of open member slots left.”!

[For the sake of simplicity in our example, we've performed a deliberate denormalization. Depending
on the size of your database and your application, the current number of members selecting that benefit
can be calculated by counting the number of records in a cross-reference table that keeps track of
benefit elections.

Listing 8-4 is an interface that supports attribute accessors and this example method.

Listing 8-4 The BenefitEntity Bean Remote Interface

1 import javax.ejb.EJBObject;
2 1mport java.rmi._RemoteException;
3 1mport java.util.*;

4
5 public interface Benefit extends EJBObject
6 {

7 /**
8 * Name of the benefit (i.e., "MetLife HMO Plan™)
9 */

10 public String getName()

11 throws RemoteException;

12

13 /**

14 * Rename the benefit.

15 */

16 public void setName(String a name)

17 throws RemoteException;

18

19 /**

20 * Type of benefit (i.e., "Medical™)

21 */

22 public String getType()

23 throws RemoteException;

24

25 /**

26 * Number of open slots for enrollment

27 */

28 public int getRemainingSlots()

29 throws RemoteException;

30 }

Does this interface code differ between container-managed and bean-managed persistence
schemes? No. As with the home interface, the code is merely an API that guarantees that
corresponding functionality exists somewhere in the bean implementation class. The real
difference in code between container-managed and bean-managed persistence will become
obvious shortly.

Note that the code in Listing 8-4 supports getting and setting attribute values. Also, there's one
business method—getRemainingSlots()—that computes the room left for a particular
benefit (employers sometimes limit a benefit to a certain fixed number of employees). No attribute
in the underlying table stores the number of remaining slots, but this is something that's easily
computed using the existing cur_participants and max_participants attributes.

Single-row business methods like getRemainingSlots() have a direct analogue in the
database world: single-row functions. In SQL, you can apply single-row functions to every row
returned by a query. For example, to return the uppercase form of names in your employee table,
you can simply write

SELECT UPPER(name) FROM employee;

UPPER(NAME)

MADELINE
ELLIS

GARY
HILDA

The uppercasing of each name is independent of the uppercasing of the others. Similarly, the
business methods of an entity bean that are coded in the remote interface are instance specific and
typically based on the values in other persistent attributes of an instance.

Keep in mind that a single-row SQL function like UPPER () differs from an aggregate function,
which returns a value based on a computation that spans multiple rows. For example, SQL allows
you to return the maximum salary in your employee table via this statement:

SELECT MAX(salary) FROM employee;

MAX(salary)

EJB entity beans also support aggregate or multirow functions. However, these are coded in the
home interface part of the bean because they apply to a set of bean instances. We'll discuss an
example of a home interface business method in the following subsection.

Coding the Home Interface

The home interface for an entity bean needs to provide factory-like instance creation methods, just
like the home interface for a session bean. However, in addition to these methods, are two others
are unique to entity beans—the so-called finder methods and the home-interface business methods.

As for creating an entity bean via the home interface create () API call, keep in mind that this
action implies something different than it does for session beans. Instead of creating a running
instance of a bean, an entity bean instantiation directly corresponds to inserting a row into a
database. This makes sense: Entity beans are persistent, so creating them should mean that they'll
persist until they're deleted.

The finder methods provided by the home interface of an entity bean distinguish asubset of
instances (or just one instance) from all the others. You can add any finder methods that you want
for your entity bean, but at least one is required, FindByPr imaryKey (), which takes the
object corresponding to the primary key as its parameter and returns a unique bean instance.
Finder methods that return more than one instance typically do so by returning a
Java.util.Collection (enumerations are also supported).

With bean-managed persistence, it's obviously up to the developer to write the JDBC and SQL to
find subsets of instances. This is coded in the bean implementation class, as we'll see shortly.

With container-managed persistence, however, the container actually does all the work. The only
requirement is that the deployment metadata include enough information on how to build the
WHERE clause of the underlying query. With EJB 2.0, it's now possible for deployers to use the
new J2EE EJB query language, EJB-QL, to accomplish this task.

The details of EJB-QL are beyond the scope of this book. Rather, our aim here is to understand
that container-managed persistence provides enough underlying support so that no database code
is required of the developer. If the method signa ture and some deployment metadata is provided,
all of the necessary database integration can be accomplished automatically by the container.

Listing 8-5 is the code for the home interface of our example Bene it bean. As with the remote
interface, this code is applicable to both bean-managed and container-managed deployment
scenarios. The distinction between the two will become clearer when we look at the code for the
bean implementation.

Listing 8-5 The BenefTitEntity Bean Home Interface
1 import java.util.*;

import java.rmi.RemoteException;

import javax.ejb.*;

public interface BenefitHome extends EJBHome

{

a_name,

2
3
4
5
6
7 public Benefit create(String a _benefitld, String
String a_type)
throws RemoteException, CreateException;

8

9

10

11 public Benefit findByPrimaryKey(String a _benefitld)
12 throws FinderException, RemoteException;

13 }

The obvious things to note are

e The factory create () method, which creates benefits and persists them (inserts rows
into the database)

e The finder FindByPrimaryKey () method, which returns a unique benefit that
corresponds to the 1D requested

Coding the Bean

Coding the entity bean class is similar to coding the session bean class, except that we need to
write the code as if we are writing code for an individual row in a table of rows. Also, there's a big
difference between container-managed and bean-managed persistence requirements in terms of
development.

Before we start, note that there are two types of methods we will see:

e EJB callback methods, like e jbLoad ()
e Attribute accessors and remote and/or home interface business methods, like
getRemainingSlots()

Now let's look at Listing 8-6, to see how BenefitBean can be coded when using container-
managed persistence.

Listing 8-6 The Benefit Enroller Entity Bean Class, using CMP
1 import javax.ejb.*;
import javax.naming.>;
import javax.rmi._PortableRemoteObject;

{
public abstract String getBenefitld();

2
3
4
5 public abstract class BenefitBean implements EntityBean
6
7
8 public abstract void setBenefitld(String a_id);

9

10 public abstract String getName();

11 public abstract void setName(String a _name);

12

13 public abstract String getType();

14 public abstract void setType(String a_type);

15

16 public abstract int getMaxParticipants();

17 public abstract void setMaxParticipants(int a_max);
18

19 public abstract int getCurParticipants();

20 public abstract void setCurParticipants(int a cur);
21

22 public int getRemainingSlots()

23 {

24 return getMaxParticipants()-getCurParticipants();
25 ¥

26

27 public String ejbCreate(String a_benefitld, String
a_name,

28 String a_type, Int a_max)

29 throws CreateException

30 {

31 setBenefitld(a _benefitld);

32 setName(a_name);

33 setType(a_type);

34 setMaxParticipants(a_max);

35 setCurParticipants(0);

36

37 return getBenefitld();

38 }

39

40 public void ejbPostCreate(String a_benefitld, String
name,

41 String a _type, int a maxParticipants) { }

42

43 public void ejbActivate() { }

44 public void ejbPassivate() { }

45 public void ejbLoad() { }

46 public void ejbStore() { }

47

48 }

Notice the following:

The class and all of the accessors are declared abstract. Internally, the EJB container
creates a class that extends this abstract class, based on the information contained in the
deployment descriptor. It also implements these abstract accessor methods so that the
database integration part is filled in. Remember, container-managed persistence isn't
magic—there still needs to be code somewhere (written by the developer or generated)
that does all of the dirty work. One of the reasons that container-managed persistence is a
part of the EJB entity bean specification is that people who developed application objects
like EJBs in the past realized how much of nearly the same code existed in their objects.

Container-managed persistence reduces the clutter, lowers the chances of developer error,
and makes database access patterns consistent and manageable.

The home interface business method getRemainingSlots() isn't abstract. Since
we don't have this attribute declared in the deployment descriptor for this bean (i.e.,
there's no column in our table for this easily computable value), we need to code it
explicitly here.

Although e jbCreate () is written, no other code is required for any of the other life-
cycle methods. This is often the case for CMP-based beans.

Listing 8-7 shows the same bean implemented with bean-managed persistence.

Listing

8-7 The BeanEnrol ler Entity Class Using BMP

1 import java.sql.™;
import javax.sgl.>;
import java.util.™;
import javax.ejb.*;

import javax.rmi.PortableRemoteObject;

2
3
4
5 1mport javax.naming.*;
6
7
8

public class BenefitBean implements EntityBean

9 {

10 private String m_benefitld;

11 private String m_name;

12 private String m_type;

13 private int m_maxParticipants;

14 private int m_curParticipants;

15

16 private Connection m_conn;

17 private EntityContext m_context;

18

19 public String getBenefitld() { return m _benefitld; }
20 public void setBenefitld(String a _benld)
{ m_benefitld = a_benld; }

21

22 public String getName() { return m_name; }

23 public void setName(String a_name) { m_name =
a_name; }

24

25 public String getType() { return m_type; }

26 public void setType(String a_type) { m_type =
a_type; }

27

28 public Int getMaxParticipants() { return
m_maxParticipants; }

29 public void setMaxParticipants(int a_max) {

m_maxParticipants =

a _max; }

30

31 public int getCurParticipants() { return
m_curParticipants; }

32 public void setCurParticipants(int a_cur) {

m_curParticipants =

a cur; }

33
34
35
36
37
38
39

a_name,

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

public int getRemainingSlots()

{
}

return m |

maxParticipants - m_curParticipants;

public String ejbCreate(String a_benefitld, String

String a_

type, Int a_maxParticipants)

throws CreateException

setBenefitld(a_benefitid);
setName(a_name);

setType(a_type);
setMaxParticipants(a_maxParticipants);
setCurParticipants(0);

try {

String insertStatement =
"INSERT INTO benefit VALUES (?, ?, ?, ?, ?2)";
PreparedStatement pStmt =
m_conn.prepareStatement(insertStatement);

pStmt.
pStmt.
pStmt.
pStmt.
pStmt.

pStmt

pStmt.

setString(1l, getBenefitld());
setString(2, getName());
setString(3, getType());
setint(4, getMaxParticipants());
setint(5, getCurParticipants());

.executeUpdate();

close();

catch (Exception ex) {

throw

ex.getMessage());

67
68
69
70
71
72

a_name,

73

CreateException { }

74
75
76
77
78
79
80
81

new EJBException(“'ejbCreate: ™ +

return a_benefitld;

}

public void

ejbPostCreate(String a_benefitld, String

String a_type, int a_maxParticipants) throws

public String ejbFindByPrimaryKey(String a_benefitld)
throws FinderException

{

boolean found;

try {
found

= selectByPrimaryKey(a benefitld);

82
83
84

by
catch (Exception ex) {

throw new EJBException(*'ERROR: ' +

ex.getMessage());

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

it (found) {
return a_benefitld;

}
else {
throw new ObjectNotFoundException
("'Row for id " + a_benefitld + " not found.');
by
ks
public void ejbRemove()
{
try {
String deleteStatement =
"DELETE FROM benefit WHERE id = ?";
PreparedStatement pStmt =
m_conn.prepareStatement(deleteStatement);
pStmt.setString(1l, getBenefitld());
pStmt.executeUpdate();
pStmt.close();
+

catch (Exception ex) {
throw new EJBException("'ERROR: " +

ex.getMessage());

111 }

112 }

113

114 public void setEntityContext(EntityContext a_context)
115 {

116 m_context = a_context;

117

118 try {

119 InitialContext ic = new InitialContext();
120 DataSource ds = (DataSource) ic.lookup(
121 ""Java:comp/env/jdbc/BenefitDB™);

122 m_conn = ds.getConnection();

123

124 catch (Exception ex) {

125 throw new EJBException(*'Unable to connect to
database. " +

126 ex.getMessage());

127 }

128 }

129

130 public void unsetEntityContext() {

131

132 try {

133 m_conn.close();

134 } catch (SQLException ex) {

135 throw new EJBException('unsetEntityContext: "'+
136 ex.getMessage());

137 }

138 }

139

140 public void ejbActivate()

141 {

142 m_benefitld = (String)m_context.getPrimaryKey();
143 }

144

145 public void ejbPassivate()

146 {

147 m_benefitld = null;

148 }

149

150 public void ejbLoad()

151 {

152 try {

153 String sqlStmt =

154 "SELECT name, type, max_participants,
cur_participants "'+

155 "FROM benefit WHERE id = ? *;

156 PreparedStatement pStmt =

157 m_conn.prepareStatement(sglStmt);
158

159 pStmt.setString(1, m_benefitld);

160

161 ResultSet rs = pStmt.executeQuery();
162

163 it (rs.next()) {

164 m_name = rs.getString(l);

165 m_type = rs.getString(2);

166 m_maxParticipants = rs.getint(3);
167 m_curParticipants = rs.getint(4);
168

169 pStmt.close();

170 }

171 else {

172 pStmt.close();

173 throw new NoSuchEntityException("*‘Row for
benefitld ™

174 + m_benefitld + " not found in
database.™);

175 }

176 }

177 catch (Exception ex) {

178 throw new EJBException(*‘ejbLoad: " +
ex.getMessage());

179 }

180 %}

181
182 public void ejbStore()

183 {
184 try {
185 String sqlStmt =
186 "UPDATE benefit SET name = ?, type = ?,
max_participants
= 7?2, "+
187 “cur_participants = ? WHERE id = ?";
188 PreparedStatement pStmt =
189 m_conn.prepareStatement(sglStmt);
190
191 pStmt.setString(l, m_name);
192 pStmt.setString(2, m_benefitld);
193 pStmt._setString(3, m_type);
194 pStmt.setint(4, m_maxParticipants);
195 pStmt.setint(5, m_curParticipants);
196
197 int rowCount = pStmt.executeUpdate();
198
199 pStmt.close();
200
201 if (rowCount == 0) {
202 throw new EJBException(*'Storing row for
benefitld " +
203 m_benefitld + " failed.™);
204 }
205 }
206 catch (Exception ex) {
207 throw new EJBException(‘‘ejbStore: " +
ex.getMessage());
208 }
209 }
210
211 private boolean selectByPrimaryKey(String a_benefitid)
212 throws SQLException
213 {
214 String sqlStmt =
215 "SELECT id FROM benefit WHERE id = ? ";
216 PreparedStatement pStmt =
217 m_conn.prepareStatement(sglStmt);
218 pStmt.setString(1l, a_benefitld);
219
220 ResultSet rs = pStmt.executeQuery();
221 boolean result = rs.next();
222 pStmt.close();
223 return result;
224 }
225 }

This listing leads to a number of observations:

e The code required is four to five times greater than that for the same bean implemented
with container-managed persistence, but of course we knew that going in. In fact, most of
it falls into two categories: that related to JDBC and that related to manipulation of
member variables suchasm_benefitld.

e Implementation of the life-cycle methods reveals tight database integration. For example,
when e jbStore() is called by the container, lines 182 through 209 show that data in
the database is indeed changed to match the values represented in the bean member
variables. Thus, just as the life-cycle methods correspond to the state of the bean, they
also directly affect the state of the underlying data.

e An explicit connection to the data source must be made, as shown in lines 114 through
128. Notice also that a connection to the database is fetched by locating it via JNDI. We
could have obtained this connection directly by declaring our driver and using the normal
JDBC calls, but that would have negated the pooling of connections that JNDI is already
providing us as well as the abstraction of locating a remote database.

Message-Driven Beans

Message-driven beans are very much like session beans in terms of their life cycle as well as their
development responsibilities. The main thing to remember about message-driven beans is that
they're asynchronous and thus don't return data to the caller. They're always invoked the same way,
via a message sent to them. Message-driven beans are stateless by nature—since one logical client
session is encapsulated per message, each message stands on its own and doesn't require the back
and forth of normal interactive sessions.

Unlike other beans, message-driven beans don't have remote or home interfaces—there's no place
for such interfaces in the asynchronous scheme of things. From the client's point of view, there's
no creation of message-bean instances or calling of bean-specific methods interactively.

The only requirement is that the bean act like a listener to a topic or queue and process messages
as they arrive. Thus, developing a message bean only requires a class that implements the standard
message-driven bean interface. However, this class must also implement a message-listening
interface (Javax . yms .MessageL1stener) so that it can listen for and respond to
messages sent to it.

In our example, we'll be exploring how to write a BatchBenefitEnrol ler bean. Its
purpose is the same as the BenefitEnrol Ier bean's—to enroll employees in benefits—but
it will perform that task in bulk.

Message-Driven Bean Life Cycle

The state diagram for a stateless session bean, is given in Figure 8-8. As shown, the creation and
destruction of a message-driven bean is identical to that of a stateless session bean. The only
difference is the addition of the IMS-style onMessage () method, which the container can
assume exists in every message bean implementation. This method corresponds directly to the
Javax. jms.MessagelListener.onMessage() method.

Figure 8-8. Message-driven bean life cycle

Does Not Exist

1. setMessageContext()

. ejbRemove ()
2. ejbCreate()

Y

Ready

onMessage ()

Coding the Bean Class

We want our message-driven bean to be capable of receiving batches of enrollment records and
then processing them one by one. To simplify things, we'll use the java.util .ArrayList
class as our vehicle for batching and the data structure shown in Listing 8-8 for an enrollment
record.

Listing 8-8 The Enrol Iment Class
1 import java.util_Date;

2

3 public class Enrollment

4 implements java.io.Serializable

5 {

6 private String m_empName;

7 private String m_benName;

8 private Date m_effDate;

9

10 public Enrollment(String a _empName, String a_benName,
Date a_effDate)

11 {

12 setEmpName (a_empName) ;

13 setBenName(a_benName) ;

14 setEffDate(a_effDate);

15 3}

16

17 public String getEmpName() { return m_empName; }

18 public void setEmpName(String a name) { m_empName
a_name; }

19

20 public String getBenName() { return m_benName; }
21 public void setBenName(String a name) { m_benName
a_name; }

22

23 public Date getEffDate() { return m_effDate; }

24 public void setEffDate(Date a date) { m effDate =
a_date; }

25 }

Notice that the enrollment record implements java.util .Serial1zable and assumes
that a client on the other end is capable of building up an array list of enrollment records and then
sending them over the wire to our message-driven bean on a periodic basis. You can imagine this
kind of bean being relevant for companies composed of multiple divisions and/or offices that
process enrollment information, but don't all have live access to the benefits system. Those that
don't must periodically report benefit enrollment data in batches.

With Listing 8-8 in mind, Listing 8-9 shows one way that a message-driven
BatchBenefitEnrol lerBean could be written.

Listing 8-9 The BatchBenefitEnrol ler Message-Driven Bean

import java.io.Serializable;

import java.rmi.RemoteException;
import javax.ejb.*;

Import javax.naming.>;

import javax.jms.*;

import java.util_ArrayList;

import java.text.SimpleDateFormat;
import javax.rmi._PortableRemoteObject;

CoO~NOUAWNE

10 public class BatchBenefitEnrollerBean

11 implements MessageDrivenBean, MessagelListener
12 {

13 private transient MessageDrivenContext m_ctx = null;
14

15 public BatchBenefitEnrollerBean() { }

16

17 public void ejbCreate() { }

18 public void ejbRemove() { }

19

20 public void
setMessageDrivenContext(MessageDrivenContext a_ctx)

21 {

22 m_ctx = a_ctx;
23 }

24

25 /**

26 * Messages should be of type MapMessage and
conceptually

27 * represent a collection of name/value pairs, for
example:

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66

type:

67
68
69
70
71
72
73

74 }

*

* employee _name = '"'Seong Rim Nam"

* pbenefit _name = "LIFO Health Plan"
* enroll _date = "09/21/1998"

*

*/

public void onMessage(Message a_msg)
{

Object[] objs = null;

try {
if (a_msg instanceof ObjectMessage) {

ObjectMessage om = (ObjectMessage)a msg;
objs = ((ArrayList)om.getObject()).toArray();

iT (objs = null) {
Context initial = new InitialContext();

Object objref = initial.lookup(
"java:comp/env/ejb/MemberBenefit™);

MemberBenefitHome mbh = (MemberBenefitHome)
PortableRemoteObject.narrow(objref,
MemberBenefitHome.class);

EnrolIment cur = null;

for (int 1=0; i1<objs.length; 1++) {
cur = (Enrollment)objs[i];
mbh.create(cur.getEmpName(),
cur .getBenName(),
cur.getEffDate());
¥
}
he

else {
System.err._printIn("'Got message of unexpected

+ a _msg.getClass() .getName());
¥

}

catch (Throwable tex) {
tex.printStackTrace();

}

}

There are three important points to make about this code:

e It's obviously less than what's required for even a stateless session bean. Clearly, for tasks
that don't require an interactive session, message-driven beans can be much faster to
develop.

e The only real implementation required involves the onMessage () method. As we can
see in lines 41 through 43 and line 58, there's a need to convert the incoming message to
types suitable for their use (in this case, communication of types to the
MemberBenefits entity bean).

e Justas in our stateless session bean example, the code shows our message-driven bean
communicating with another entity bean (lines 48 through 58). There's actually no real
reason to do this other than to make the example easier to understand and relate message-
driven beans to our earlier session bean. However, if there were other business logic in
MemberBenefit, we would need to create beans as we do in order to enforce it.
Otherwise, it would be more efficient to talk directly to the database and process the
records as a bulk insert.

Client/EJB Integration

Now that we've explained the differences between the various bean types and have seen how
they're developed, we can look at how clients actually interact with EJBs. Per the J2EE
architecture, a client can be one of the following:

An applet

A servlet

Another EJB

A Java Message Service (JMS) provider (depending on the bean)

Generally, a client uses the home interface and either the remote or the local interfaces of an EJB
in order to communicate with it. Choosing remote or local is, for the most part, only applicable if
the client resides on the same machine as its target.

We've seen how one EJB can communicate with another in our example

BenefitEnrol lerBean (Listing 8-7, lines 90 through 95). Now let's take a look at another
type of client—a simple Java application that processes benefits enroliment for a single member,
"Larry Thomas." Conceptually, to accomplish this a client locates a BenefitEnrol ler bean
and then uses the available business methods to select benefits as necessary. In particular, the
client in our example needs to

e ConnecttoaBenefitEnrol lerHome object

e Instantiate a new BenefitEnrol ler object by specifying the member ID associated
with the enrollment and calling the create () method on the object

e Using the newly instantiated manager, call se lectBenefit() and
deselectBenefit() to manipulate the benefits "shopping cart"

e Call confirmEnrol Iment() to persist the contents of the current benefits
shopping cart

One implementation that meets each of the above goals is shown in Listing 8-10.

Listing 8-10 The BenefitEnrollerClient Class

import javax.naming.Context;

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import java.util_*;

OhrhWNPE

6 import BenefitEnroller;
7 import BenefitEnrollerHome;

8

9 public class BenefitEnrollerClient

10 {

11 public static void main(String[] args)

12 {

13 try

14 {

15 /* Handle to the context */

16 Context initial = new InitialContext();

17

18 /* Locate a benefit manager factory */

19 Object objref = initial.lookup(

19 "java:comp/env/ejb/BenefitEnrollerEJB™);
20

21 BenefitEnrollerHome benMgrHome =
(BenefitEnrollerHome)

22 PortableRemoteObject.narrow(objref,

23 BenefitEnrollerHome.class);

24

25 /* Use factory to create benefit manager for
processnig */

26 BenefitEnroller benefitEnroller =

27 benMgrHome.create(*'Larry Thomas™);

28

29 /* Choose benefits we want benefit manager to
process */

30 benefitEnroller.selectBenefit("HealthPlus - HMO
Lite™);

31 benefitEnroller.selectBenefit('Gamma Dental -
Standard™);

32

33 /* Display the list of chosen benefits */

34 System.out.printIn("'Benefit list contains: ');
35 ArrayList benefits =
benefitManager.getBenefitList();

36 Iterator 1 = benefits.iterator();

37 while (i.hasNext()) {

38 String benefitName = (String)i.next();

39 System.out.printlIn(benefitName);

40 }

41 System.out.printin();

42

43 /* Confirm enrollment */

44 benefitManager.confirmElections();

45

46 }

47 catch (Exception e) {

48 System.err.printIn("'Exception during
processing."");

49 e.printStackTrace();

50 }

51 }
52 }

The following are the key points in the code, as the comments indicate:

e Inlines 22 through 27, locating the BenefTitEnrol lerHome object so that we can
create a benefits management session—thus, a BenefitsManager object

e In lines 32 through 39, creating the BenefitEnrol ler and using its methods to
assign benefits

e Inline 56, confirming our elections

Client/EJB Communication behind the Scenes

In the client communication in Listing 8-1, as well as in the interaction with the
MemberBenefi t object shown in lines 90 through 95 of the BenefitEnrol ler bean,
communication between clients and EJBs is simple and appears to be local. After we get a handle
to a remote object, all we see is a bunch of what look like regular function calls, as shown in lines
32 through 33, 38 and 39, and 56.

There's no evidence of network communication (or so it appears), something that would seem
inevitable when dealing with "distributed" objects. Instead, everything seems to occur in the same
address space. Of course, this isn't really the case: Behind the scenes, there's a lot more going on.

As with other distributed object technologies, such as CORBA, remote functionality is accessed
via stubs and skeletons. For the most part, this type of design has existed since the early days of
object-oriented RPC-based communication and has been particularly popularized by CORBA
implementations. The general idea is to use two additional proxy-like classes, a stub and a
skeleton, to hide the messy details of connectivity required by remote invocation. Obviously, we
can't just send regular Java objects down the wire—some sort of conversion to a serial bit stream
is necessary at some point in client/server communication.

Here's the process in a nutshell. The local stub object contains the same method signatures as in
the remote object. However, instead of processing the parameters given to it by the client, a stub
method

e Converts them to a type suitable for network communication (i.e., converts every object
into its Java serialized form)

e Communicates this information to a remote skeleton class on the server side

e Waits for a reply in order to send back a return value to the caller

The server-side skeleton receives the communication from the stub and does the following:

e Recasts the serialized form of the objects into real Java objects
e Invokes the destination object method with these objects
e Communicates any return values back to the stub

The complete scheme is illustrated by Figure 8-9.

Figure 8-9. Stub/skeleton-based remote invocation

Client —_— Client m‘m Server — Sérver
Object Stub Skeleton Object

- ——

Client Host Server Host

The process of converting objects to their serialized forms is known as marshalling. The reverse
process, converting serial data into objects, is known as demarshalling. To enable marshalling
and demarshalling, all objects to be communicated back and forth must implement the
jJava.i1o.Serializable class. Both processes are generally considered costly because of
the bit stream parsing and dynamic object creation per method call required of the stub.

Marshalling and the raw network latency involved are the two major aspects of remote object
communication that penalize performance. There are design strategies for reducing this penalty as
well as the potential for using "smart stubs™ that do caching and pool objects that would otherwise
need to be created. Nevertheless, it remains true: There's generally more expense involved in
remote object communication than in local communication under this model.

But what is alternative? To have all of our EJBs on one machine? Not only is this alarming from a
fault-tolerance perspective, but we know well enough by now that heavy site traffic quickly forces
us to exhaust local resources, particularly by memory and CPU. While the overhead of distributed
object solutions like EJB seems like a performance Killer from the standpoint of a small site, it's
absolutely essential for both performance and scalability for larger sites. We're better off tackling
the problem of minimizing and optimizing the calls between objects where possible.

Scalability and Performance Hints

Having completed our whirlwind tour of EJB design and development, it's time to discuss a few
scalability and performance hints. Notice that most of these have to do with EJB design, not
implementation. Thus, many aspects of efficiency with respect to EJBs can be effected at the very
early stages of product development.

Prefer Message-Driven Beans over Session Beans

Messaging is a highly underrated, yet very efficient, method of remote communication. As I'll
describe in more detail in Chapter 9, it enables a higher degree of parallelism because it prevents
the caller from stalling while the callee is busy processing a request. In turn, a higher degree of
parallelism results in a more strategic use of resources between distributed machines and thus
typically ensures a faster overall application.

Admittedly, messaging can frequently be impractical when clients have to query (i.e., read from)
the remote resource and obviously require an answer. This is perhaps most often true when
dealing with interactive clients, where visual confirmation of an application action is essential.
Nevertheless, there are many cases where not all of the work needs to be confirmed immediately
and can be processed using a messaging-based approach.

Consider an intranet application deployed by an multinational company that allows employees to
order new computer equipment or office supplies. When users request new equipment, an order is
created and routed to the internal purchasing department, but it's held up until the employee's

manager approves the order. Thus, the application action of requesting new equipment consists of
two steps:

1. Creating an internal purchasing order and setting its state as pending approval
2. Notifying the manager of the employee that the order exists, who replies with an approval
message, thus updating the status of the order to order approved

Figures 8-10 and 8-11 illustrate the type of application being suggested. Figure 8-10 shows an

HTML form that the employee fills out specifying the equipment to be ordered. Figure 8-11 shows
confirmation that the order has been placed and is pending.

Figure 8-10. Sample order form

N D
Internal Office Supply |
Ordering System
Choose what vou want; click SUBMIT.
ITEM FRICE
) 500 Paper clips £5.00
O 1000 Staples $7.00
"} Moichook computer S2500.00
) | Swivel chair S175.00
SUBMIT
L]
Figure 8-11. Sample order confirmation

Internal Office Supply
Ordering System

Order submitted; approval pending

Order #123919

Let's reconsider the second step: notifying the manager. It might turn out that this is actually a
complicated, time-consuming process—perhaps several database calls have to be made to find the
employee's ID and his corresponding department and then to find the manager of that department.
Notification is something that must be handled, but it's expensive to execute and doesn't return any
useful result to the end user.

This makes it exactly the kind of task that's perfect for messaging. The end user can be notified
much quicker if the creation of the order is synchronous but the approval handling is
asynchronous.

Many of these behind-the-scenes tasks, like workflow processing, can be efficiently executed
under a messaging scheme. In addition, many B2B-style processing tasks are perfect for
messaging, such as batch processing of data from one company to another and supply chain
management. Often, businesses establish partnerships to share information without incorporating
each other into the actual live transactions of their own services, so the need for an immediate
reply from the client is typically unnecessary.

If You Use Session Beans, Use Stateless Session Beans

Certainly, asynchronous solutions don't apply to every application scenario. In fact, unless a lot of
care is taken during the design phase, they'll likely be the exception and not the rule. It's inevitable,
then, that you'll need session beans in your EJB-based applications. When you develop a session
bean, you have two choices: stateful or stateless.

The suggestion here is that you use stateless beans where possible. Stateful session beans provide
a quick and dirty solution to the problem of maintaining state during a session, but they can
quickly cause very-large-scale applications to buckle under resource constraints. Stateless session
beans, on the other hand, can be efficiently pooled and deployed by the container so that the true
parallelism demands can be met.

Recall that stateful session beans are allocated per client. That is, once a client starts a session, its
bean exists until the session ends. Which means that, even during times of end-user inactivity, the
bean instance exists. Of course, in looking back at the state transition diagram for a stateful
session bean (Figure 8-6), we see that it can enter a passive state. Having many stateful session
beans active at once can thus be alleviated to some degree by keeping some of them passive.
However, the decision about when to do this is left up to the J2EE vendor, not the developer.
Furthermore, although it has been made passive, the bean instance still exists and consumes
memory. Even worse, it's very tempting for developers to take advantage of state management
features to such a degree that a container call to e jbPassivate () and/or
ejbActivate () becomes time-consuming in itself because of the necessary cleanup/setup
required for the increasing amount of state managed.

With stateless session beans, rather than have one bean assigned per active session, a small pool of
beans can sufficiently serve many concurrent sessions. The idea is simple: End users typically
require much more think time than request processing time. Even though there may be hundreds
of active sessions, most are in "think mode" and only a few actually require service.

So, instead of keeping state in the bean, consider one of the following alternatives:

HTTP cookies and an external state management server (like a cache)
URL rewriting

Hidden form fields

Servlet-based or HTTP session management

Suppose we use cookies and a state manager. This manager can be another small server on the
application side accessible via RMI (or 11OP) that maps cookie values to state information. If it's
designed right, it can even be an entity bean with a local interface so that there are no marshalling
costs involved and a lookup evaluates to a local function call. Then a single cookie—the session
ID—can be stored on the client-side cookie and its value can be used as the key to state
information for that client.

Although the downside of this approach is that we have to design our own state manager or code
another local entity bean, but we get back a lot more flexibility. We can potentially share state
among clients by using an external cache. If the cache isn't designed as an entity bean, we can
make it multithreaded and thus able to service many stateless session beans concurrently.

Think of the space efficiency advantages. Suppose we have 100 active sessions (100 clients) with
our deployed application but at any one time only 10 are active. Also, suppose each of these
sessions requires 1 K of pure state and that each stateful or stateless bean instance requires 1 K (in
addition to the state it stores). Using a stateful session beans approach, we need

100. (1K+1K)=100.2K
= 200 K.

Even though only 10 sessions are active at once, we have to store bean instance metadata for the
90 inactive sessions. However, with a stateless session bean approach, suppose we deploy 10
stateless session beans plus a state management server (which requires x Kb of memory). Then we
need only:

(100« 1K) + x=100K + x.

This likely will result in memory savings of around 40 to 50 percent depending on the size of the
state management server. If we use a URL rewriting approach, the gain is even more—at least 50
percent. In almost all cases, a less lazy approach to state management will improve resource
efficiency and lead to more scalable deployments.

Strive for Coarse-Grained EJB Methods

As the designer of an application, you have the ability to control which methods are exposed and
which aren't. In addition, you have the ability to choose how coarse or fine your exposed methods
are. To understand what | mean by coarse versus fine, consider the following example.

One of the features of a simple banking application is that it supports the transfer of funds between
two accounts (e.g., checking and savings) owned by the same member. There are at least two ways
to expose this functionality to clients. One way is a fine-grained approach, which requires that
the client remotely manage all of the details involved in the task. Listing 8-11 shows the methods
the remote interface of a BankSess i on session bean might include.

Listing 8-11 The BankSession Session Bean Remote Interface (Fine-Grained)
1 import java.util_*;
2 import javax.ejb.EJBObject;
3 import java.rmi.RemoteException;
4

{

26
27
28 }

/**

* Conduct simple bank transactions.

*/

public interface BankSession extends EJBObject

/**
* Withdraw money
*/
public void withdraw(String a_accountld, int a_amount)
throws RemoteException;

/**
* Deposit money
*/
public void deposit(String a_accountld, int a_amount)
throws RemoteException;

/**
* Check balances
*/
public int getBalance(String a_accountld)
throws RemoteException;

To transfer money, a client has to make at least two remote calls: one to withdraw money from the
source account and one to deposit money in the destination account. However, as many as four
method calls can be required if the client also needs to check the balances to make sure that they
don't fall below a certain level.

The second way to do this is by using a coarse-grained approach, as shown in Listing 8-12.

Listing 8-12 The BankingSession Session Bean Remote Interface (Coarse-
Grained)
1 import java.util.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

2
3
4
5 /**
6
7
8

* Conduct simple bank transactions.

*/
public interface BankSession extends EJBObject
9 {
10 /**
11 * Transfer funds
12 */
13 public void transfer(String a fromAcct, String
a_toAcct, iInt a_amount)
14 throws RemoteException;

15

16 }

Here, only one method call is required to achieve what two (or four) accomplished in the fine-
grained interface. A transfer () method allows clients to require only one network roundtrip.
It also reduces the need to marshal data—once from the client and once in reply from the server.
Finally, it eliminates the need for the client to execute any transaction management code. The
result of all this? Better execution performance.

Writing coarse-grained methods doesn't always mean collapsing several simpler calls into a single,
more complex call. It can mean designing methods that are capable of doing things in batch rather
than one at a time. For example, in our benefit enroliment example, instead of the original remote

method:

public void selectBenefit(String a benefitid)
throws RemoteException;

we could have coded a method that takes a list of benefits from the client:
public void selectMultipleBenefits(String[] a_benefitld)
throws RemoteException;

Notice that instead of calling se lectBenefit() for each benefit the employee wants (and
incurring the per-call latency and marshalling penalties | described earlier), only one call is
required. In our benefit application, this sort of method would probably make logical sense—
employees tend to select a set of benefits when they enroll.

Use BMP Well or Don't Use It at All

There has been considerable debate on whether to use CMP when designing entity beans. Some
people argue that BMP is the only way you can be sure that the most efficient thing is being done.
Others say that, depending on the J2EE vendor, BMP not only is a waste of time, but can lead to
less efficient applications because some developers just don't write JDBC or SQL as efficiently as
it can be written. This group is quick to point to the fact that features like data caching simply
don't exist by default in the BMP case.

The best approach may be to use BMP well or not at all. With the arrival of the EJB 2.0 spec and
its detailed design for CMP, it isn't unreasonable to assume that vendors will turn out fairly
efficient CMP solutions. Since CMP is such a huge development win (in terms of rapid
application development), customers will likely push vendors to deliver good implementations.
However, for complex data models, for developers who have a decent understanding of JDBC and
SQL, and for developers who have enough time, the BMP route is probably the best way to
guarantee efficiency.

First, let's agree that, theoretically, CMP can never be more efficient than souped-up BMP. Pretty
much every major performance-enhancing feature of CMP can be emulated by skilled BMP
designers. Take data caching, for example. Many pro-CMP folks point to the opportunity J2EE
vendors have to enable their containers to cache persistent data so that database calls can be
avoided where necessary. There's no reason that BMP implementations can't make use of a similar
custom caching solution.

BMP implementations can also easily incorporate basic persistence tricks, such as one that
processes a SQL update only when data has truly been changed. There may be cases where the
container can call e jbStore () and force BMP implementations to update data even though it
hasn't actually changed. Careful BMP implementation can detect true changes and process SQL
updates only when absolutely necessary.

Also, there are cases where BMP is not only just as efficient (or more so) but is necessary. If your
entity is spread across multiple tables, or if some of your entities attributes are computed—not
stored—in the underlying tables, you may be forced to use BMP. Again, CMP isn't magic—there
is only so much that the EJB specification can address.

After all this, you're probably a bit confused. Should you trust CMP or be paranoid and use BMP?
| strongly suggest putting your vendor to the test and making sure that a given CMP bean is
managed just as efficiently as a BMP bean. Set up an environment where entity bean relationships
can be stressed. The results from such a test may make the decision for you.

However, assuming that you've chosen a reasonable J2EE vendor, a good CMP versus BMP
algorithm is probably this:

e Design your application using CMP. This will allow you to deploy something quickly that
works.

e Identify bottlenecks in your application. It may be that you have much more important
things to worry about than BMP versus CMP.

e If you find that database access is truly a bottleneck, try to identify which beans seem
affected and then experiment with BMP solutions for them.

The really nice part of the CMP-BMP war is that CMP enables developers to code applications
rapidly and to choose a BMP route easily if their vendor's CMP implementation just isn't up to
snuff. The winner of the increased coverage and efficiency in the EJB 2.0 CMP spec is clearly the
developer.

Know Your Vendor

Finally, as I've hinted throughout this chapter, it really pays to understand how your J2EE vendor
implements the various value-added features, such as container-managed persistence. The profit
gained by applying any of the techniques and strategies here, such as avoiding stateful session
beans and using bean-managed persistence, is directly related to how efficient or inefficient your
vendor is in terms of EJB support. When choosing a vendor, ask these questions:

e How do they implement container-managed persistence?

e What is their algorithm for bean passivation?

e Are they fully compliant with EJB 2.0? That is, do they support message-driven beans
and EJB 2.0-style CMP?

Understanding what your vendor does well can help you prioritize which aspects of EJB
development and deployment you want to leave to your vendor and which you want to take into
your own hands.

Summary

This chapter focused on the need for application severs in any multitier Web application
architecture. Application servers contain business logic functionality that's at the heart of your
application's purpose. Engineers have found that flexibility and scalability can be gained by
building these servers as sets of distributed application objects.

The J2EE solution for this is Enterprise JavaBeans. EJBs offer designers a multitude of options to
easily model synchronous and asynchronous client sessions and provide an object-oriented "live"
representation of the underlying data persisted by the application.

In the context of application servers and EJBs, we covered

e Why serving application logic is necessary

e How EJBs provide the opportunity to implement that logic in a simple, scalable, and
object-oriented manner

e The details of client-to-EJB communication

e The types of EJBs: session, entity, and message driven and the details of each type and
which parts of an application are suited to it

e The key issues and tasks associated with EJB design and development, along with
examples of how each EJB type is developed

With this understanding of EJBs, it's now time for us to investigate an application request
processing alternative, specifically to explore the efficiency benefits that messaging can provide to
your application.

Chapter 9. Messaging for Efficient Enterprise
Application Integration

As we discussed in Chapter 8, many applications or parts of applications have the opportunity to
solve their problems asynchronously. Application integration models that are broadcast based or
where there's a natural one-way dataflow between applications are just two examples of when an
asynchronous solution can be appropriate. Although we've spent a lot of time discussing
performance and scalability for interactive Web applications, it's also important to understand how
these measures apply to asynchronous systems. In this chapter, then, we'll focus exclusively on
building solutions the J2EE way, that is, asynchronous with the Java Message Service.

A B2B-style Working Example

Our example for this chapter will focus on the simple task of building a system that communicates
product price updates to several resellers or divisional units. As our example company, we'll use
Red Planet Electronics, which produces thousands of electronic parts that are priced individually.
All products and prices are kept in a corporate database, and Red Planet needs to update the prices
to several resellers located throughout the country. These updates are done per item, whenever the
Red Planet manufacturing price changes. The flow of data between Red Planet and its resellers is
shown in Figure 9-1.

Figure 9-1. Relationships of Red planet and its resellers

Producer Consumers

3 RLJHLI]IL" I; m
Reseller C ; m

Resellers process the updates in two steps. First they use the Red Planet product ID to look up
their own internal product 1D, which may or may not be the same as the Red Planet product ID
(keep in mind that resellers often deal with many manufacturers), as well as the markup associated

Price Updates

Red Planet
Corporation

with that product. Then they update their internal price list accordingly, using their internal
product IDs. The basic flow of these processes is diagrammed in Figure 9-2.

Figure 9-2. Reseller price update flowchart

Receive product Locate internal Und due
price update from product 1D, based Pr i::t: iETucua:t
Red Planet on Red Planet P G
Corporation, product 11, PR

Red Planet is interested in designing a solution that makes this data transfer process efficient.
Notice that the nature of the problem is such that data flows in one direction, from one source to
many destinations. Also notice that there is no need for Red Planet to process any reply from the
recipients of these price updates. All the company wants is the assurance that the updates
eventually reach each reseller, so acknowledgment can happen later (if at all). Finally, there's no
live end user involved in this data transfer; unlike interactive Web applications, human beings
don't transfer these price updates between systems. Instead, the whole process is carried out by
communication between a producing application (Red Planet's price update application) and
downstream consuming applications. The solution thus involves two applications talking to each
other without any interactive users. This is exactly the kind of problem that messaging is designed
to address.

Throughout this chapter, remember that performance and scalability are only two arguments for
considering an asynchronous application solution. There are many others, one of the most
prominent being ease of enterprise application integration. An intermediate messaging service
between two applications frequently speeds up the integration process because it allows data to be
transferred easily between the two systems using a well-known API. What's more important, it
prevents integration engineers from spending countless hours arguing about application API
modifications, middleware technologies, and other such issues.

With an example problem and a general idea about what the solution looks like, we can move
forward. Still, before we get too deep into the details of a suggested implementation, we need to
introduce the basic concepts of the Java Message Service and the options it gives us.

The Java Message Service

The Java Message Service (JMS) provides a platform-independent API for building messaging
solutions. Like other parts of the J2EE standard, it doesn't represent a complete solution—it's just
a reference API that messaging software manufacturers and users can employ as a well-known
point of integration—one that ensures both flexibility and interoperability. JMS is Java based, and
J2EE 1.3+ includes a reference implementation that acts as a basic messaging provider.

For organizations that already have a messaging system, JMS represents a way to increase system
flexibility. Instead of being forced to rely on a proprietary messaging APl from a specific vendor,
they can use JMS as a wrapper to any vendor that adheres to its APIl. Many vendors are now
following this standard, so there's increased flexibility in choosing and possibly replacing your
underlying vendor while incurring the minimum overhead.

For the programmer, JMS offers a very simple, abstract, platform-independent API for messaging.
It supports asynchronous and reliable message delivery that ensures that messages are not just
received but received only once. JMS also supports two abstract messaging models: point-to-point
and publish/subscribe, and it enables messaging deployments to be configured for performance,
reliability, or aspects of both. Finally, JMS offers opportunities for integration with existing J2EE

technologies, including Enterprise JavaBeans and the Java Transaction API. For example, it's
possible to construct a distributed asynchronous transaction system using JMS technologies.

JMS Concepts

Four key abstractions are fundamental to JMS programming models:

Providers

Clients

Messages
Administered objects

Figure 9-3 shows the relationship between the first three. Because administered objects describe a
set of objects, we'll look at them in more detail separately.

Figure 9-3. General relationships of the JMS. API, providers, clients, and messages

Message 1

J
Provider M e M Client
5

Although non-JMS-proprietary client APIs don't necessarily contain these same abstractions, they
may still interact with other JMS clients that do, via messaging providers that offer IMS
compliance in addition to their own API. For JMS client programmers, this is a point that can be
largely ignored; as long as the provider supports a JMS interface, a JMS client can exchange
messages with non-JMS clients transparently.

Providers

A JMS provider is a messaging system that implements the JIMS API and enables the
administrative and control features specified by J2EE. Conceptually, the provider manages the
messaging queue and coordinates the loose coupling of clients, for example, ensuring that one
message is delivered to multiple clients (if desired). It can also guarantee that clients receive
messages, and it provides a way for clients to receive messages that were distributed before they
joined the distribution list. The provider also supports the ability to persistently store messages for
robustness during system failures and for archival purposes.

Clients

A JMS client can produce or consume messages using the JMS API. Clients obtain handles to
objects controlled by the provider, such as a message queue, and use them to distribute or gain
access to messages. Since messaging is a peer-to-peer concept, there are no real servers—just
clients. In our Red Planet example, both the system at headquarters and each of the downstream
consumers (resellers) are clients.

Messages

A JMS message is the fundamental data structure passed between producer and consumer. JMS
messages consist of a header, properties (optional), and a body (optional).

The JMS message header, like an HTTP message header, includes metadata about the message
contents. Table 9-1 describes the header fields defined by the JIMS 1.0.2 specification. It raises
two important points:

e Asshown, messages can be sent by either provider or client. Although we're primarily
considering the headquarters-to-reseller path, messaging does allow for bidirectional
communication. Be careful not to confuse bidirectional with synchronous. The former
indicates the path between entities; the latter indicates the type of handshake they use.

e Many values are actually set by the method in which the message is sent. This "send
method" refers to the exact paradigm that providers use to communicate to clients. If
necessary, administrators can override some of these values (JMSDe l 1veryMode,
JMSPriority, and IMSExpiration) if necessary.

Message properties are an optional means for extending the basic information in the header.
They're useful when you want to extend the message headers listed in Table 9-1 to include other
information (i.e., application or infrastructure specific).

Finally, the body of a message contains the actual business information of value. JMS defines five
basic types of message bodies, as shown in Table 9-2.

Table 9-1. JIMS Message Headers

Field Set By Indicates
JMSDestination Send Destination of the message
method
JMSDeliveryMode Send Persistent or nonpersistent
method
JMSExpiration Send Calculated time before the message expires
method
JMSPriority Send Urgency of message (0-9). Levels 0-4 generally
method mean normal; levels 5-9: expedite
JMSMessagelD Send Uniquely identifies each message (per provider)
method
JMSTimestamp Send Time provider was given message to be sent
method
JMSCorrelationld Client Associates one message with another; e.g., client
can indicate a response to a particular request.
JMSReplyTo Client Where provider reply should be sent
JMSType Client References a definition in a message provider's
repository (JMS doesn't provide a default
repository)

JMSRedelivered Provider Provider is resending an earlier message not
acknowledged by client

Table 9-2. JIMS Body Types and Content

Body Type Body Content

Table 9-2. IMS Body Types and Content

Body Type Body Content

StreamMessage A stream of values associated with primitive Java types
ObjectMessage Any Java object that implements java.io.Serializable
TextMessage A single Java String

MapMessage A set of name/value pairs, where names are Java String objects
and values are any primitive Java type

BytesMessage A stream of uninterpreted bytes

In our Red Planet example, the body contains a product ID and the new price. Thus, it arguably
falls into the MapMessage category (name = product ID, value = new price). However, to
simplify our example we'll use the TextMessage type. The point here is that it's up to the
provider how to package the data it sends, as long as it falls into one of the categories listed in
Table 9-2. One reason that serializable types are emphasized has to do with the notion of a
persistent delivery mode. We'll discuss that mode, in addition to the contrasting nonpersistent
delivery mode, later on.

Note that the message body is optional. For example, some messages with empty bodies are
simply sent as control messages to indicate acknowledgment.

Administrative Objects

Last but not least, IMS administrative objects are important abstractions that form the backbone
of communication between clients. They encompass two important subobjects: connection
factories and destinations. Connection factories are used as a means for JMS clients to create
connections to the provider. Destinations are the virtual targets for message producers and the
source for message consumers.

Suitable destinations can be either queues or topics, both of which we'll discuss in greater detail
later on in this chapter. Communication with these destinations is achieved through the use of
connections, which are distributed by connection factories. Once a virtual connection has been
established between JMS consumer and provider, a session can be created in which to produce or
consume messages. Specifically, a session enables a message producer and a message consumer
to be instantiated. Sessions also provide a transactional context for communication.

JMS Programming Models

To understand the applicability of queues and topics, we first need to introduce the two basic
programming models that JMS supports: point-to-point (PTP) and publish/subscribe (pub/sub).
Although we'll refer to these strictly as messaging models, they're also known as domains or
messaging styles. The JMS specification uses these terms interchangeably.

The PTP model is designed for use between a single producer and a single consumer. Messages
are added to a queue, to be retrieved by the consumer. In short, only two parties are involved in
PTP communication.

In contrast, the pub/sub model is based on the notion of a topic. Publishers create topics and send
out messages corresponding to them. Consumers are one or more subscribers to a particular topic.

Subscribers can receive messages synchronously or asynchronously, the latter via a message
listener mechanism.

Figures 9-4 and 9-5 show the conceptual distinction between PTP and pub/sub messaging models.
Figure 9-4. Point-to-point messaging model

Queue)
Receiver

acknowledges
-
sends e

l EEE—— consumes

B Ms

Figure 9-5. Publish/subscribe messaging model

Sender

Topic Subscribers

subscribes
-
e
delivers

subscribes
.

. e
Publisher

publishes delivers
l
~ IS

Model-Specific Administrative Object Interfaces

Recall that IMS—TIike the rest of J2EE—is an API, not an implementation. The set of interfaces it
defines can be divided into two subsets: those that are independent of the programming model
(PTP versus pub/sub) and those that are dependent. Generally, the latter extend the former in a
way suitable for their programming model. This mapping is shown in Table 9-3.

The Synchrony of Message Consumption

An important yet subtle feature of JMS has to do with the synchrony of the client. In particular,
the delivery of the message to the client may be synchronous or asynchronous.

Think about it this way: While the transfer of data from producer to consumer is asynchronous, it's
only necessarily asynchronous from the standpoint of the producer—that is, the producer decides
when to send data and has no dependency on the consumer. However, the consumer—although
conceptually agreeable to receiving the message from a queue—maintains a dependency on the
producer for the message to actually be produced. Specifically, it can't consume what hasn't been
produced and must decide how to discover new messages generated by the provider.

Table 9-3. Mapping JMS Concepts to Model-Specific Interfaces

Model-Independent PTP Interface Pub/Sub Interface
Interface

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber
QueueBrowser

The JMS API allows message consumers to execute in either of two modes:

e Blocking mode, its main thread waiting until a new message arrives
e Nonblocking mode, its main thread continuing with execution while the provider thread
executes a message listener method when a new object arrives

JMS Reliability versus Performance

There are several ways to configure a JIMS messaging scheme based on the level of reliability
desired. The chosen configuration directly affects system performance.

In general, trading reliability for performance is one way to improve system throughput. But make
no mistake: It's a dangerous game to play when the messages are important. If the nature of your
application is such that consumption of every message is critical, there's no avoiding the reliability
controls that JMS provides.

There are two major controls in the reliability versus performance debate: client acknowledgment
and message persistence.

Client Acknowledgment

When JMS messages are sent, they can be part of a transaction or not, that is, nontransacted.
Transactions are very important because they allow a series of messages to be treated as an atomic
unit of work: Just like database transactions, either all will succeed or none will succeed.

Depending on your application, transactions may or may not be necessary. For example, consider
a banking application that sends two messages to indicate an internal transfer of funds from one
account to another. If user Joe is transferring $100 between accounts A001 and A002, these
messages can be pseudo-coded as

Withdraw(A001, 100)
Deposit(A002, 100)

In this case, it's important that both the withdrawal and the deposit are processed or neither is.
Otherwise, if a system failure occurs after the withdrawal is processed, the bank client will
suddenly lose $100. In this scenario, transactions are necessary. In our Red Planet example,
however, price updates are atomic: They don't need to be wrapped in a parent transaction.

If transactions are required, acknowledgment in JMS is automatic. This is because a transaction
can't be committed until all actions have been verified complete. The committing of the
transaction is thus implicit acknowledgment.

However, if the message is nontransacted, there are three JIMS acknowledgment schemes to
choose from:

e AUTO_ACKNOWLEDGE: If the client receives the message synchronously, the session
automatically acknowledges receipt after the API call to receive the message returns. If
the client receives the message asynchronously, the session automatically acknowledges
receipt after the call to the message listener handler returns.

e CLIENT_ACKNOWLEDGE: The burden is on the client to explicitly acknowledge a
message by calling a function on the message object itself. The client can periodically
issue acknowledgments using this scheme. Suppose the client receives (in order)
messages A, B, and C, but acknowledges only B. The result is that the first two messages
(A and B) are considered acknowledged but C isn't.

e DUPS OK ACKNOWLEDGE: This is a lazy scheme for acknowledgment that can result
in duplicate message deliveries under certain failure scenarios.

Message Persistence

JMS offers two options related to message persistence. Persistent messages are logged (in a file
or database) when the provider receives them from the message producer. Thus, if the provider
fails at some point before the messages have been consumed, the messages won't be lost and will
become available once the provider system comes back online. Nonpersistent messages aren't
logged upon production, so those not consumed at the time of provider failure will be lost.

Persistence can also be specified per message. This gives a producer the flexibility of a
heterogeneous reliability scheme where the majority of messages are nonpersistent and periodic
summaries are persistent. For example, in the Red Planet case all individual price changes can be
communicated as nonpersistent; only a monthly or weekly update summary is persistent. This
scheme guarantees periodic consistency at the expense of a slightly more complicated producer
and consumer.

It's very important to note that, by default, all messages sent are persistent; the programmer has to
explicitly specify that a message is nonpersistent. This has important performance implications, as
the two JMS message delivery options allow the programmer to choose sides in the reliability-
performance debate. Nonpersistent message delivery results in a faster system—no doubt about it.
A provider that doesn't log data as it's sent (in particular, commit the data to a database) will have
better throughput because its availability is better.

But before you choose a nonpersistent mode of delivery, remember that this choice sacrifices
reliability for performance. And any performance gain is obviously meaningless if the messages
are important and the provider fails. Once again, this tradeoff reminds us that, though our focus is
on building fast and scalable apps, achieving this goal is unimportant if the basic application
requirements must be sacrificed.

What's more, you shouldn't be under the impression that a missed message in a nonpersistent
scheme happens once in a blue moon. In fact, it can be quite the opposite! It depends on your
publishing model (PTP or pub/sub), where your publishers and subscribers are located, and what
kind of resource contentions they face.

Timing Dependencies and JMS Publishing Models

The two JMS distribution models have different affects on the reliability of message consumption.
PTP messaging enqueues new messages as they're produced and only dequeues each message
once (no matter how many consumers there are). Thus, a producer can be assured that a consumer
has the opportunity to receive all messages. However, to ensure that multiple clients receive that
message it has to create a destination for each client.

In contrast, pub/sub messaging allows a producer to broadcast a message to multiple clients, but
normally ensures only that a client has the opportunity to receive these messages during periods
when the subscription is active. Under the default scheme, any messages sent before the
subscription is created or during client downtime aren't received. Often this makes sense when old
messages aren't useful and new messages aren't critical. For example, if you're broadcasting
noncritical stock quotes (for general use, not day-trading), a pub/sub model can be a natural fit.

However, many times it's desirable to have reliable message delivery to multiple consumers. To
achieve this, JMS offers durable subscriptions. These are subscriptions where the provider assures
the producer that a consumer will receive all of the messages for a given subscription until either
the messages expire or the subscription is unsubscribed. Each subscription is associated with a
single subscriber. To ensure that messages created before the subscription starts can be consumed,
the delivery mode should be persistent.

A Sample JMS Pub/Sub Application

In this section, we'll get a better feel for the details involved in writing a messaging application.
Instead of discussing how to do this under the different models (PTP or pub/sub) and reliability
configurations (persistent delivery, nonpersistent delivery, durable subscriptions, and nondurable
subscriptions), we will stick to our Red Planet example, which involves distributing price updates
to resellers. This means that we'll commit to specific set of IMS deployment options. Coding
under an alternative messaging model with alternative reliability configurations is very similar to
what will be presented here.

In thinking about our specific Red Planet example, a few immediate observations and
corresponding decisions can be made. Clearly, the role of message producer is played by the main
pricing application at headquarters and the consumer roles are played by the applications used by
the resellers. Since this means that price updates are being distributed in a one-to-many fashion,
the natural delivery model for Red Planet is JMS publish/subscribe.

We should note that reseller applications may crash or be unavailable for reasons that Red Planet
can't control. Price updates are not tangential to business—they are the business—so failure to
receive a message can impact a reseller (it will be charging the wrong price!). To avoid this, we'll
design our application using durable subscriptions. Also, since the host running the JMS provider
may itself occasionally crash, message persistence is necessary.

Let's examine the code required to build the publisher and reseller subscribers.

Developing the Message Publisher
To publish messages under a pub/sub model, it's necessary to do the following:

Create the topic (programmatically or with J2EE tools).
Get the initial context (JNDI lookup).

Obtain a connection factory from the messaging provider.
Obtain a connection using the factory.

Create a topic session using the connection.

Locate the topic.

Create a publisher object for the topic session.

Publish the message.

NN E

Creating the Topic

The first step is to create a topic on the provider side (the provider owns the queue in this
example). We can do this either through the JMS API or with tools that are commonly provided
by the J2EE vendor. To simplify our example, we'll choose the latter approach. Specifically, we'll
consider how a topic is created using the tools provided by Sun's J2EE reference implementation.

Sun provides a tool called j2eeadmin, which can be used to manage JMS queues and topics.
Here's an example of how we can use that tool to create a topic:

% j2eeadmin -addJdmsDestination PriceUpdatesTopic topic

Next, we can use this tool to ensure that the topic has been created by listing available topics and
queues:

% j2eeadmin -listJmsDestinations

JmsDestination

< JMS Destination : jms/Queue , javax.jms.Queue >

< JMS Destination : jms/Topic , javax.jms.Topic >

< JMS Destination : PriceUpdatesTopic , javax.jms.Topic >
With the topic created, we can code the producer so that it publishes messages for that topic.

Coding the Message Producer

In order to obtain a connection to the messaging provider, we need a connection factory. However,
before we can get this factory we need to locate provider resources (since connection factories are
administered objects). We can do this using JNDI and JMS API calls:

Context ctx = new InitialContext();
TopicConnectionFactory tConnectionFactory =
(TopicConnectionFactory)

ctx. lookup(*"TopicConnectionFactory');

TopicConnection tConnection =
ConnectionFactory.createTopicConnection();

The context created is based on the contents of a JNDI properties file. It helps the producer locate
connection factories and destinations (topics and queues).

We can also use the context to locate the particular topic that we'll publish messages about (i.e.,
the JMS destination):

Topic priceUpdatesTopic = ctx.lookup(""PriceUpdatesTopic™);

Note that, if the destination hasn't been created yet, as was done initially, we'll get an error at
runtime.

Once we have a TopicConnection, we can use it to create a session context for message
transmission:

TopicSession tSession = tConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

Thus, in this example our TopicSession indicates that acknowledgment in this nontransacted
scheme will be automatic (when the provider calls the subscriber rece i1ve method).

Finally, we can create a TopicPubl isher object:

TopicPublisher tPublisher =
tSession.createPublisher(priceUpdatesTopic);

Having connected to our newly created topic, we can start sending messages:
TextMessage mesg = tSession.createTextMessage();

/* Describe the manufacturers price of product ID CXL43550
as $10.95 */

mesg.setText("'CXL43550:10.95")
tPublisher.publishMessage(mesg);

In the subsection on JIMS messages, | mentioned that we can use a MapMessage or a
TextMessage body type. Another choice is to use the generic Ob jectMessage type and
remove the need for client parsing. However, this is a tradeoff: If we use Ob jectMessage, all
clients need the corresponding serializable Java class file in order to work with its methods and
data structures. And, as that class file evolves, a remote maintenance and support problem ensues.

Developing the Message Subscriber

Creating a subscriber is a lot like creating a publisher. Generally, we need to accomplish the
following tasks:

Get the initial context (possibly a remote JNDI lookup).
Obtain a connection factory from the messaging provider.
Obtain a connection using the factory.

Create a topic session using the connection.

Locate the topic.

Choose to be a durable subscriber or a nondurable subscriber.
Choose synchronous or asynchronous message processing.
Announce that we're ready to consume messages.

ONoobhwd PR

As with publishers, it's first necessary to bootstrap subscribers by having them locate an initial
context, obtain a connection, and create a session for message consumption. Note that getting an
initial context may involve connecting to the remote publisher's machine and name server (or else
the topic can't be located). How you do this depends on the location of the physical queue and the
underlying transport used for messaging.

For example, the initial code for a remote client may be something like Listing 9-1.

Listing 9-1 Sample Remote JMS Client

1 /* Define remote context information. */

2 Properties env = new Properties();

3 env.setProperty(Context. INITIAL_CONTEXT_FACTORY,

4

*com.sun.enterprise.naming.Serial InitContextFactory");
5 env.setProperty(Context.PROVIDER_URL,

6 “rmi ://publisher.somehost.com:1050");
b
8 /* Get the initial context */
9 try {
10 jndiContext = new InitialContext(env);
1 3}
12 catch (NamingException e) {
13 System.out.printIn(’'Could not create JNDI " +
14 "context: " + e.toString());
15 System.exit(1l);
16 }
17
18 /* Lookup a topic using a connection factory */
19 try {
20 tConnectionFactory = (TopicConnectionFactory)
21 JndiContext. lookup(*'TopicConnectionFactory');
22 topic = (Topic) jndiContext.lookup(topicName);
23}
24 catch (NamingException e) {
25 System.out.printIn("Error during context lookup: " +
e.toString());
26 System.exit(1l);
27 %}
28
29 /* Create the connection and session */
30 try {
31 tConnection =
tConnectionFactory.createTopicConnection();
32 tSession = tConnection.createTopicSession(false,
33 Session.AUTO_ACKNOWLEDGE) ;
34 }
35 catch (Exception e) {
36 System.err.printIn(Error during connection/session
creation);
37 e.printStackTrace();
38 System.exit(1l);

39 }

Once a session has been created, we can locate a topic and subscribers can subscribe to it:

TopicSubscriber tSubscriber =
tSession.createSubscriber(priceUpdatesTopic);

Creating a subscriber in this manner gets us a client with a nondurable subscription. If we want to
improve reliability (on the client side), we can create a durable subscription, which is exactly what
we want in our Red Planet example. To do that, we make a slightly different API call and specify
aclient ID:

TopicSubscriber tSubscriber =
tSession.createDurableSubscriber(priceUpdatesTopic,
"updatesSub™);

We need to specify a client 1D because durable subscriptions can only be associated with a single
subscriber. If we want multiple clients to have durable subscriptions, we need to create a topic for
each of them. When using a durable subscription, we also need to make sure that the client ID is
properly associated with Top icConnection. One way to do this is to make the relevant
TopicConnection API call:

tConnection.setClientID("'updatesSub™);

Since the subscription is durable, the subscriber application can crash all it wants and still be
assured that messages missed during the crash will be available for retrieval when the subscriber
returns to listening.

Asynchronous Message Processing

As we discussed earlier, we need to decide how messages will be delivered to the client:
synchronously or asynchronously. In our example, we choose the latter, and to accomplish this we
need to develop a JMS MessagelL i stener object and register it with the
TopicSubscriber object. This listener will be invoked as necessary when messages arrive.
The requirements for developing a listener are to have it implement the MessagelL 1stener
interface and, in particular, the onMessage () method.

For example, the listener can be defined as shown in Listing 9-2.

Listing 9-2 A Listener for Red Planet Price Updates

1 /**
2 * PriceUpdateListener can be used by a subscriber to the
PriceUpdatesTopic

* to process messages asynchronously.
*/
import javax.jms.*;

public class PriceUpdatelListener
implements MessagelListener
{

3
4
5
6
7
8
9
10 public void onMessage(Message a_mesg)
11 {

12

13

14

try {
iIT (message instanceof TextMessage) {

15 /* Process price update */
16

17 3}

18 else {

19

20 /* Report unexpected message type */
21

22 }

23 }

24 catch (JOMSException jex) {

25

26 /* Handle JMS exceptions */
27

28 }

29 catch (Throwable tex) {

30

31 /* Handle misc exceptions */
32

33 }

34 }

35 }

We can then register our handler with the TopicSubscriber object:

updListener = new PriceUpdateListener;
topicSub.setMessagelListener(updListener);

Synchronous Subscription Processing

One of the benefits of the pub/sub model is that we can use either a synchronous or an
asynchronous approach to message consumption. In the PTP model, there's no choice—queue
consumers are always synchronous with respect to the message queue. To make a subscriber in the
pub/sub model synchronous with message availability, we simply block, waiting for the next
message via the rece i1ve () method on the subscriber:

Message m = topicSub.receive();

The receive () method also accepts a parameter that allows it to time-out after a specified
number of milliseconds. With no parameters, as in the preceding example, the subscriber simply
blocks until the next message arrives.

Toward Deployment

As you might have inferred, the subscriber listener is where the real asynchronous client
postprocessing is done. For example, in the listener code we can either process the update directly
via JDBC or connect to an existing client application that performs this same update. Similarly,
for the producer we can have another application interface with the message-publishing code or
simply integrate this code into that application. Clearly, the messaging code isn't lengthy, yet it
provides a simple means for application integration.

To deploy our Red Planet pub/sub application, then, all we need to do is

e Start running all subscriber applications (or add more over time as necessary) so that they
can begin listening for new messages
e Start running our publisher application

That's it. Once it's set up, messages can be published as necessary.

Scalability and Performance Hints

As we've seen, messaging is a simple but flexible technology for achieving high-performance
asynchronous communication. In this section, we consider a few scalability and performance
suggestions related to when and how to use it in your own applications.

Use Messaging

The biggest hurdle with messaging is getting people to realize how it can help make applications
efficient. Part of the problem is that many of us are used to thinking of Web applications from the
interactive end-user perspective. We see a user action and we expect a corresponding server
reaction. By nature, we tend to think serially and synchronously for certain online tasks because
we imagine that we're interacting with a virtual person on the server side.

However, not all real-life tasks are serially executed. Consider cooking. Timing is important in
cooking, and so you plan out your meal by starting from the goal point—having all dishes ready at
the same time. This forces you to schedule certain activities in parallel. For example, since a
typical dinner involves multiple independent dishes, you frequently prepare part B of your meal
while part A is simmering. The independence of these dishes is what allows this parallelism to be
safe.

The point I'm making here is a simple one: Think carefully about your application flow in terms of
its true potential for parallelism. Does every request really require a meaningful reply? In many
B2B-style application integration scenarios, information sharing among companies often means
simply dumping data from one repository to another. Such scenarios are perfect candidates for
messaging solutions.

Explore Messaging Opportunities Within

Opportunities can also exist within the guts of an application system. Although an interactive
session may require a synchronous reply from the back-end application, some aspects of task
execution may be asynchronous.

Consider logging. Complicated application systems frequently contain logging facilities for
auditing as well as debugging. However, many logging messages are purely informational and
noncritical to execution. With careful thought, an application architect can construct asynchronous
logging by using JMS. The result: If the logger normally writes its messages to the filesystem or to
a database, the 1/0 cost involved can be saved by the application components that communicate
with the logger.

To flesh out this example a bit, consider this pseudo-code for a server-side method called
transfterFunds(). It's implemented as part of an AccountProcessing object, which
can easily be an EJB session bean.

/**

* Psuedo-code for AccountProcessing object
*/

public class AccountProcessing

{
/**
* Logs message to some well-known file.
*/
public static void log(String a mesg){
appendFile("logfile”, a mesqg);
by

/**
* Withdraws money from one account and deposits
* It Iinto destination account
*/
public static void transferFunds(int a_fromAcctNum, int
a_toAccountNum, double a_amt) {

/* Log attempted action */
log("Transferring <"+a_amt+"> from <"+a_fromAcctNum+
"> to <"+a_ toAcctNum+''>");
/* Withdraw funds from source */
double newBalance = withdrawFunds(a_fromAcctNum, a_amt);
log("'New balance in <"+a_fromAcctNum+"> is
<"+newBalance+'>"");

/* Deposit funds into destination */

newBalance = depositFunds(a_toAcctNum, a_amt);

log(""New balance i1n <"+a_toAcctNum+"> is
<"+newBalance+'>");

; ;
}

Figures 9-6 and 9-7 show the benefit of decoupling the logging process from such an application
system. Figure 9-6 shows the initial execution flow: As the server-side transferFunds()
method executes, several logging statements that involve writing messages to the filesystem are
executed. However, they don't return any immediately useful information and the application is
unfairly bogged down waiting on 1/O latencies.

Figure 9-6. Synchronous I/O-bound execution that results in poor performence

Account

Clienl ————— Processing
Oibject

legl)

Y

depositFunds()

-

logi)

|

withdrawFunds()

-

log()

o

Execution Time

Figure 9-7. Asynchronous solution that results in good performance

IS
{;}UQLIL' -
Account
Client g—m| [Frocessing Logger il
Object
legl)
—_—
depositFunds()
—_—
leg()
—
withdrawFunds()
_—
log()
—_—

-

Execution Time

In Figure 9-7, the logger has been decoupled from the AccountProcessing object and the
two communicate via JMS. In this case, the same logging calls exist; however, they're now
executed asynchronously. The result is faster execution of the transferFunds () method
call.

Granularity is important here. As you make choices about how to modularize and distribute parts
of your application, give careful consideration to the data dependencies that exist within. Lack of a
dependency, as is the case in this logging example, may indicate an opportunity to decouple and
parallelize execution.

Understand the JMS Efficiency-Reliability Tradeoff

Now that you've seen the full range of options you have when developing a producer and
consumer, it should be clear that JMS messaging affords application designers a number of
options in terms of implementing a messaging solution. To review, recall that there are two
models to choose from:

e Point-to-point: one publisher, one consumer
e Publish/subscribe: one publisher, multiple consumers

There are also two message delivery reliability options:

e Nonpersistent: Published messages are not logged in a persistent store.
e Persistent (default): Published messages are logged in a persistent store.

Although the PTP model enforces synchronous message consumption, this is optional for the
pub/sub model. Specifically, pub/sub has the following subscription options:

e Nondurable (default): Messages transmitted during client downtime are lost.
e Durable: Messages transmitted during client downtime are potentially saved.

In general, we can make the following conclusions about the performance-reliability tradeoffs
implied by these options:

e PTP and pub/sub are roughly equal in terms of scalability for a single producer and a
single consumer.

e PTPisn't as scalable as pub/sub for one producer and many consumers. If your reliability
model allows it, pub/sub offers a number of options for improving performance (e.g.,
nonpersistent delivery or nondurable subscriptions). Also, the producer doesn't need to
manage multiple queues, as is necessary in a PTP deployment for multiple consumers.

e Nonpersistent delivery leads to better producer performance because it avoids
synchronous logging of a message to a persistent store. However, it's less reliable if the
producer side of the integration encounters a problem.

e Nondurable subscriptions lead to better consumer performance because they avoid the
need for the client to acknowledge every message received. However, it too is less
reliable: Messages transmitted during client downtime can be lost.

The overall rule of thumb for both safety and performance is choose safety first. Once you've
identified the minimum reliability you need for your application, choose the best performing
producer/consumer scheme

Summary

In this chapter, we explored messaging as a strategy for asynchronous request processing. The
J2EE technology for messaging, JMS, can be an efficient solution when integrating enterprise
applications across network boundaries or within the components of an application system itself.

We saw that JMS provides two basic models of messaging that allow messages to be sent to one
or more clients simultaneously. While both enable information to be sent from producer to
consumer asynchronously, the consumer can choose to have the message delivered to it
synchronously. In addition, we identified how options for persistence and client acknowledgment
can affect both reliability and performance.

When designed and deployed correctly, JMS-based solutions enable applications to realize a
higher degree of parallelism during execution. Unless you're doing a lot of scientific processing
(i.e., long-running number-crunching routines), there's likely significant I/O during the execution
of your application because of communication with the filesystem, the database, or another
application. These 1/0-bound actions can represent opportunities for parallelism and thus for
optimal CPU usage. By decoupling appropriate parts of your application and bridging them via
JMS, you can often leverage these opportunities and find that the result leads to a highly efficient
application system.

Chapter 10. Effective Database Design

How important is the database when considering the performance and scalability of your
application? | would argue that it usually represents about one-third of the overall challenge.
Think that sounds like a lot? It's really not—in fact, for many applications this is a conservative
estimate. Remember that an application consists of three things: an interface, business logic, and
persistent data. Thus, if we don't consider database integration and the scalability and performance
issues involved, we're tackling only two-thirds of the overall problem.

Nevertheless, there are times when tuning your database system may not be critical. Realize that
modern commercial database systems are built for speed and scalability. In fact, if you buy a
database, set it up, and stick a bunch of JDBC calls in your application code to access it, you may
get decent performance. And, again, based on the nature of your application, that may be good
enough.

Still, for most large and complex applications, database design and optimization are important.
Part of the reason has to do with application-oriented demands.

For example, many large applications require the modeling of complex data relationships. If
answering database queries frequently requires navigating those relationships, overall throughput
can be dramatically affected by choices made as a result of the modeling. Complex applications
also rely on the database to enforce business processes (such as business rules). In this sense,
built-in database features such as stored procedures and triggers may be used more heavily than in
a simpler application that merely requires a few JDBC simple queries.

Another example of where database optimization makes sense involves the latency caused by 1/0
during database query execution. Outside Internet-based communication between client and server,
stalls during database 1/O are likely the most wasteful activity in application execution. This is
especially true for very large databases, where the database system cache is constantly in flux and
the cost of scanning large tables is high. A key challenge when designing your database is to
reduce this 1/O as much as possible. This can mean tuning the cache, building efficient data
structures (e.g., indexes) in the database, modeling your data more strategically, optimizing the
placement of your data, or some combination thereof.

Still another, more system-oriented reason that database design and optimization can be important
has to do with the database acting as a logical point of centralization in an otherwise distributed
system. Many large Web applications have multiple clients, internal and external, both Web based
and non-Web based. Even though highly scalable application servers, distributed over multiple
server machines, may exist to process client requests, they might all be dependent on a common
database to complete their processing. If this database is distributed replication must still
guarantee data consistency. There is no way to avoid its cost. Distributed though your application
logic might be, access to the underlying data generally must often be serialized. One trick in
optimizing application performance and scalability is to realize that not all data needs to be
centralized and that there are ways to reduce the time that access must be serialized.

One final system-oriented motivation for optimizing the database has to do with the
waste/redundancy that can be associated with servicing multiple client interfaces. In general, the
more interfaces to an application, the more likely redundant data retrievals. When different clients
use these interfaces, they force the database to do something it has done before and that could
have been reused.

Consider a site that sells products to registered users. In addition to pages that display the products
and allow the user to order when desired, the site is likely to contain a set of account management
pages that are used to make changes to user vital statistics (e.g., password, address, etc.). Even
though these are very different from interfaces that access the database, they both deal with user

information and—depending on the data model—they may need to read and update data in the
same tables. So, even if the interfaces are connected to different Java servlets running on different
machines, they're both going to direct their queries to the same logical database. This will often
result in redundant data access and application logic.

We approach this chapter with all of these examples in mind. Regardless of the complexity of
your data model or the underlying data you store, one thing is certain: If you're persisting data, it's
in your best interest to consider optimizing the process. To accomplish this it's helpful to
understand database technology as well as selective details of your particular system. Thus, we
begin our journey of optimizing database integration by first considering effective database design
and how the relational model works.

Database Technology and the Relational Model

Given that not everyone is a database engineer, it's worthwhile to review the important aspects of
database systems. Discussions later in this book assume this knowledge, so let's make sure that
we're comfortable with the concepts and terminology.

First of all, remember that database systems are commonly known as database management
systems (DBMS). This implies two things: that they do more than query data (they manage it) and
that their implementation is like that of a "system." In fact, it's more like that of a distributed
system: Most commercial databases are composed (at runtime) of a collection of processes and
threads on one or more machines that work together efficiently to deliver high performance and
scalability. For example, the Oracle 8i database architecture consists of instances that act as
proxies to the data. In this case, the instance is the part of the DBMS that users and applications
interact with—it's composed of a collection of processes (on UNIX) or threads (Windows) that
manage the underlying data on disk.

Relational Databases

Over the years, many types of database have been designed and implemented for various purposes.
The three most popular designs are the hierarchical model, the network model, and the
relational model. While all three are based on the notion of data being stored as records, they
differ in many ways, such as the redundancy of the data and how data is located during query
processing. Our focus will be on relational databases, easily the most popular model for Web-
based applications.

The relational model, first proposed by E. F. Codd in the early 1970s, has passed the test of time.
It's based on the simple notion that although data can be classified into distinct entities (such as
employees and departments), its underlying attributes are often related (employees work in a
particular department). In particular, the relational model is distinguished by the following
features:

e It's based on the creation and manipulation of relational data structures (tables), which are
defined by a list of attributes (columns) and contain zero or more items of data (tuples or
rows).

e It supports a flexible, declarative query and update language. This declarative nature
implies that although queries may be specified in a higher-level language, they can be
compiled (and potentially optimized) in a lower-level language for execution.

e It supports integrity constraints, such as those that ensure uniqueness within a relation
and those that guarantee consistency across relations.

Earlier | said that we would be concerned with object/relational as well as relational databases. At
some point, you'll have to choose whether to work with your database in terms of objects (not just
at the application level but at the database level). Truth be told, while object orientation has

become a well-publicized feature of many heretofore relational databases, not many people who
use these systems embrace a 100 percent object strategy. Instead, it's probably safe to say that

most enterprise deployments still work with the underlying relational tables of these databases
while embracing an object-oriented point of view in one tier of the application system. For
example, EJBs are object oriented, but they're most commonly integrated with relational databases.

Also, keep in mind that object/relational databases are not the same as object-oriented databases
(OODBMS). Although there are many differences between an OODBMS and a relational database
system (RBMS), most practical object/relational systems are relational at their core.

Logical Database Design

There are two phases of database design: logical and physical. Just as top-down design is
important for standard programming practice, it's also important to start with a logical database
design before moving on to the physical design. Throughout logical database design, an engineer
is concerned with how application requirements map into database requirements. For example, if a
business needs to keep track of employees and departments in its database, we need to develop a
logical design that meets that goal.

A key process during logical database design is data modeling, or deciding how your application
requirements translate into database structures, and then relating those structures. The resulting
data model represents a set of relationships among tables via attributes, thus illustrating how your
data will be logically organized. Surprisingly, even though the data model is a logical
representation, choices made during the modeling phase have an impact on database performance.
Thus, the data model for an application is not to be taken lightly.

Throughout this section and the next, we'll be demonstrating database concepts in the context of a
simple sample database that stores information about both company employees and departments.
For each employee, we want to store his or her name, date of hire, salary, and department. For
each department, we want to store its name and location on the company campus (e.g., Building 5,
Floor 6).

Let's start by attempting to translate these simple requirements into a real data model.

Entities, Attributes, and Relationships

Data modeling consists of definining entities and their attributes, and then relating those entities to
each other. An entity corresponds to a logical concept or object and contains attributes that
distinguish each instance. In the example at hand, it seems reasonable to have an EMPLOYEE
entity and a DEPARTMENT entity. The attributes for the EMPLOYEE entity are NAME,
HIRE_DATE, SALARY, and DEPT_NAME (shorthand for "department name"). The attributes
for the DEPARTMENT entity are NAME, BUILDING, and FLOOR.

These two entities and their attributes are diagrammed in Figure 10-1.

Figure 10-1. EMPLOYEE and DEPARTMENT entities

EMPLOYEE DEPARTMENT

« NAME

- HIRE_DATE + NAME

. DEPT_NAME - BUILDING
« SALARY « FLOOR

One of our example's requirements is that an employee works for a department. More specifically,
we'll suppose that every employee works in only one department and that each department has at
least one employee. The way to write this model using standard entity-relationship (E-R) notation
is shown in Figure 10-2, which we read as

e Each employee works in one department.
e Each department has one or more employees working in it.

Figure 10-2. One-to-many relationship between DEPARTMENT and EMPLOYEE

EMPLOYEE DEPARTMENT
« NAME

- HIRE_DATE - NAME

. DEPT_NAME ® - BUILDING
- SALARY - FLOOR

If our example is changed to say that a department may have zero or more employees, our E-R
modeling will contain notation to indicate this, as shown in Figure 10-3.

Figure 10-3. Zero-to-many relationship

EMPLOYEE DEPARTMENT
- NAME

- HIRE_DATE - NAME

- DEPT_NAME el L + BUILDING
. SALARY - FLOOR

So, we've shown how our simple example can be modeled. The nature of the relationship between
entities (one-to-many, zero-to-many, many-to-many) is also known as cardinality. There are
some other symbols and paradigms of E-R modeling, but Figure 10-3 captures the basic spirit of
phrasing data organization in terms of entities and relationships, the latter qualified by cardinality.

Now that we've briefly discussed how a database is logically designed, our focus shifts to how a
database is physically designed. The logical/physical approach is a recurring theme in database
systems. As it turns out, strategies at both levels can have a significant impact on database
scalability and performance.

Physical Database Design

Once a logical design for the database has been completed, physical database design can begin.
This phase is the process of turning a specification and its logical model into an implementation.
For example, once we know that we need employee and department entities in our database, we
can then choose to implement two tables physically. That sounds easy—of course entities
correspond to tables! But there are more to databases than tables. Not all of the database
requirements for an application can be captured by data modeling. For example, other types of
objects, such as views and indexes, can be instrumental in simplifying access and encouraging
efficient execution.

In this section, we'll review tables as well as several other key database objects that can help fill
out a database specification and complement a good logical data model.

Tables and Rows

As you know, the physical equivalent to an entity is a table (formally called a relation). A table
consists of a name, a list of attributes, and zero or more rows. For example, a table might be called
EMPLOYEE and consist of the attributes NAME, HIRE_DATE, DEPT_NAME, and SALARY,
and contain three rows.

Each attribute, such as NAME, corresponds to a specific datatype. Modern databases support a
number of built-in datatypes (in addition to a method for extending them)—far too many to cover
here. Generally speaking, however, these types can be categorized as character based, numeric
(both integer and floating point, with adjustable levels of precision and scale), date based, and
binary.

To make our discussion more practical, let's assume that the following two tables exist, filled with
the data shown:

EMPLOYEE:

NAME HIRE_DATE DEPT_NAME SALARY
(character) (date) (character) (number)
Hannah Smith 12-0ct-1997 Research 46,000
Dan Dessens 6-Jun-1980 Research 71,500
Ji11 Arroyo 1-Apr-1992 Development 63,200

DEPARTMENT:

Research 5 8

Sales 1 2

Notice that each table consists of an unordered set of zero or more records, or rows (formally
called tuples). Each row contains either a proper value for an attribute or NULL. The NULL
designation doesn't mean that a value is zero or empty—it simply means that it's unknown and that
no conclusions can be drawn from its existence. For example, suppose the employee table also has
this row:

Gary Jones 4-Aug-19289

The NULL value for Gary Jones's DEPT_NAME and SALARY doesn't mean that he doesn't work
in a particular department or earn a salary. It just means that this information is not known. The
fact that NULL doesn't imply anything about the data for that attribute is an important realization
and can affect the way you query and populate a database.

Constraints

Constraints are used to implement integrity in the database. They are one of the distinguishing
features of the relational model, and they also play a role in the data-modeling process. Generally
speaking, there are three types of constraints supported by relational databases:

e Entity integrity ensures that all rows in an entity (a table) are unique. Recall that tables
normally consist of an unordered set of rows. There's no guarantee that two rows won't
contain the same values for each attribute, making them identical. However, this may not
make sense semantically. Consider the EMPLOYEE table above: It's possible that two
employees named Jill Arroyo are hired on the same day and issued the same salary. From
the record-keeping point of view, it makes sense that there are two employees with

duplicate values for name, salary, and hiring date. However, in real life it makes no
sense—we know they're two distinct people. In relational databases, a primary key is the
mechanism that implements entity integrity and distinguishes rows from each other.

e Referential integrity ensures that row values that refer to values in another table are
consistent. This is necessary in order to obey real-world constraints, and it can be an
important technique for reducing data duplication throughout the database. For example,
if we have a table called EXECUTIVE, we might use the same names as in the
EMPLOYEE tables. In this sense, NAME is the attribute that underlies the relationship
between EMPLOYEE and EXECUTIVE. Rather than copy the name of each employee
who is an executive into the EXECUTIVE table, we can simply point to that entry from
the EXECUTIVE table. In addition to saving space, this has another important benefit: It
forces us to deal with the case where an employee—who is also an executive—is deleted
from the EMPLOYEE table. Either that operation should fail or the corresponding row in
the EXECUTIVE table should also be deleted. In relational databases, a foreign key is
used to implement referential integrity.

e Semantic integrity ensures that row values obey some other kind of semantic or
application-level constraint. For example, it may make sense to prevent anyone from
entering an employee salary that is below zero. This makes sense in the real world, but
the database doesn't know what a "salary" is and would normally not force all salary
entries to be zero or above. To enforce this property, we implement a semantic integrity
constraint, which is also frequently referred to as a check constraint.

Querying a Database

Let's take a quick break to discuss how a database can be queried. In this section, we'll cover basic
SQL as well as what's involved in single-table and multitable querying. This will not only make
the next section easier to understand, but it will help categorize the queries that we'll refer to later.

Querying Data

Clients interact with DBMSs by issuing queries. To query means to inquire, so, it's no surprise
that queries is the database term used to refer to the retrieval of data. However, when talking about
databases, query also applies to the inserting, updating, and deleting of data as well as to the
creation, alteration, and destruction of database objects (such as tables). To issue a query to a
database means to express it in a query language. The standard relational query language, defined
by ANSI and supported by all major database vendors, is Structured Query Language (SQL).

The SQL standard is long and complex, with recent versions specifying more advanced notions
such as stored procedures. Unless otherwise specified, we'll be concerned with the SQL-92
standard and focus mostly on two categories of SQL statement: those that manage data structures
(database definition language, or DDL) and those that manipulate data (database manipulation
language, or DML). DDL and DML statements are by far the most common type of SQL, and so
we'll focus our discussion on them.

The easiest way to distinguish DDL from DML is that the former always involves the creation,
alteration, or destruction of database objects (including tables). In contrast, DML statements
simply manipulate data in a table. Here's an example of a DDL query that creates a database table:

CREATE TABLE employee (
name VARCHAR2(50),
hire_date DATE,
dept_name VARCHAR2(20),
salary NUMBER);

DML statements insert and retrieve data. Here's an INSERT statement that inserts rows into a
table:

INSERT INTO employee VALUES ("Hannah Smith®, "12-Oct-1997°",
12, 46000);

Retrieving this data can be accomplished through the SELECT statement:
SELECT name FROM employee;

It might return

Hannah Smith
Dan Dessens
Jill Arroyo

The basic DDL and DML commands and their purposes are summarized in Tables 10-1 and 10-2.

DML statements can be conditional in the sense that they filter data or are applied to some subset
of data. Conditions are phrased using a simple Boolean logic that enables complicated conjunctive
or disjunctive expressions to be built using operators like AND, OR, and NOT. For example, if we
want to retrieve only those employees hired before January 1993, we can write

Table 10-1. DDL Commands

Command Purpose

CREATE Creates database objects such as tables, views, stored procedures,
indexes, etc.

ALTER Changes the structure or various properties of an object

DROP Removes the object from the database

Table 10-2. Basic SQL DML Commands

Command Purpose
SELECT Retrieves rows from one or more tables
INSERT Inserts rows into a table
UPDATE Changes rows in a table
DELETE Removes rows in a table

SELECT name
FROM employee
WHERE hire_date < "01-Jan-1993";

Conditional queries can also be composed of nested Boolean logic, such as

SELECT name
FROM employee

WHERE hire_date < "01-Jan-1993*
OR (salary > 50000 AND dept_name = “Research®);

As the preceding examples show, the WHERE clause in SELECT queries is used to filter data. It
can also be used in DELETE and UPDATE statements. In all cases, the WHERE clause Boolean
expression logic is built from relational operators (<, <=, >, >=, =, I=), some additional SQL-
specific operators (such as IN and BETWEEN), and the Boolean logic operators AND, OR, and
NOT.

Similar to the WHERE clause, the HAVING clause of a SQL SELECT statement can be used to
filter groups of data identified via the GROUP BY part of a SQL query. However, to keep things
simple in our discussion, we'll stick to examples that involve the WHERE clause.

Nested Queries

There are two special types of query we're interested in because of their impact on performance.
One is the nested query. The general concept here is that a query might depend on conditions that
are the result of another query. For example, if we want to find out which employees work in
Building 5. We can issue the following nested query:

SELECT name
FROM employee
WHERE dept_name IN (SELECT name
FROM department
WHERE location = "Building 5%);

As you would expect, the nested part of the query (getting NAME from DEPARTMENT) is
executed first. Then this result—in this example "Research"-is used in the parent query, which is
executed (automatically) as

SELECT name
FROM employees
WHERE dept_name IN ("Research®);

Join Queries

The other special query of interest to us is the join query. Whereas nested queries combine data in
the sense that they dynamically build parent queries from the execution results of child queries,
join queries combine related data from a series of static or dynamic tables. Combining tables is
fundamental in working with a relational database. Entities in data models rarely exist in
isolation—most of the time, they're associated with one or more other entities. For examples,
employees work in departments, departments are associated with companies, and so forth. This
linkage goes back to the nature of the relational model—the idea of normalization—and the desire
to reduce redundancy in the database.

Let's look at an example of join queries. Consider a query that allows us to view employees and
their respective department, building, and floor locations. What we want is some way to combine
the EMPLOYEE and DEPARTMENT tables. Since the EMPLOYEE table has a foreign key
called DEPT_NAME that points to the DEPARTMENT table attribute NAME, it seems possible
to combine the data in a reasonable way.

In fact, we can see that what's required is to combine rows from EMPLOYEE with rows from
DEPARTMENT where the DEPT_NAME attribute of EMPLOYEE (more succintly written as
EMPLOYEE.DEPT_NAME) is equal to the NAME attribute of DEPARTMENT (i.e.,

DEPARTMENT.NAME). This matching criterion is also known as the join condition. Generally
speaking, the join condition is the logic of relating attributes in multiple relations to each other so
that some meaningful combination of the relations can occur. In nearly all useful cases, the
attributes involved in each join condition are linked via a foreign key—otherwise, there would be
no meaningful reason to equate them.

Back to our example, we find that we can write our desired query using a join condition as follows:

SELECT employee.name, department.building, department.floor
FROM employee, department

WHERE employee.dept_name = department.name;

The result of executing this query is shown here:

Hannah Smith 5 8
Jill Arrovo 6 2

As | mentioned earlier, we can also write join queries that involve more than two tables and those
that involve dynamically created tables. The latter is typically generated from a nested query,
demonstrating that it's often useful to compose both join and nested queries.

For example, suppose another table in our schema, BUILDING, contains building numbers and
addresses:

BUILDING_INFO:

100 Main St.

We can write the following query to find employee names, building addresses, and floors:

SELECT name, street address, floor
FROM building_info, (
SELECT employee.name, department.building,
department.floor
FROM employee, department
WHERE employee.dept_name = department.name)
WHERE building_info.building_num = id;

which results in the following:

Hannah Smith 100 Main St.
Jill Arroyo 105 Main St.

Like nested queries, join queries have serious implications for performance. This makes sense—as
we've already seen, joining tables requires reading data from multiple tables (and thus possibly
very different parts of the disk) and then doing a lot of comparison and matching to determine
which rows should be joined.

Other Important Database Objects

There's actually much more to physical database design than tables, rows, and constraints.
However, it was necessary to discuss queries in some detail before we introduced other important
database objects. I call them "important” because they can play a role in tuning an application for
performance and scalability. We'll discuss the "how" part later. For now, let's review what these
objects are.

Views

A view is a "pseudo-table" derived from a legal query. For example, consider the query
SELECT emp_name FROM employee;

which returns the following data:

Hannah Smith
Dan Dessens

Jill Arroyo
We can create a view EMPLOYEE_V for this query with the following SQL.:

CREATE VIEW employee_v AS
SELECT emp_name FROM employee;

We can then query this view as we would a table:

SELECT name FROM employee_ v

Note that the following query will result in an error:

SELECT emp_name, hire_date FROM employee v;

Since views are built from queries, they can represent combinations or subsets of data in one or
more tables. More specifically, this means that they can be used in place of more complex queries
that perform selections and/or joins. For example, it's possible to construct a view that shows a
subset of data in the combination of the EMPLOYEE and DEPARTMENT tables:

CREATE VIEW research_and_dev_v AS
SELECT emp_name, hire_date
FROM employee e, department d
WHERE e.dept_name = d.name
AND d.name in ("Development®, "Research®);

Views are useful because they enable more access control options, simplify querying, and provide
greater data modeling flexibility. In terms of access control, database designers can associate
security privileges with a view instead of associating them with a table.

Suppose we want only engineers and researchers to be able to query information about other
engineers and researchers. We can grant read-only access to both groups on
RESEARCH_AND_DEV_V. This limits access to information vertically (only engineers and
researchers are visible from this view) and horizontally (salary information is not included). Thus,
views allow you to seperate data modeling from access control, resulting in table designs that are
more natural and access control that is more precise.

Views also simplify querying. If a query is complex to specify but required often by different
users, you can create a view that makes querying the resulting data easy. For example, it's much
easier to find each engineer's or researcher's name and location by issuing this:

SELECT emp_name, location
FROM research_and_dev v;

as compared to this:

SELECT e.emp_name, d.location
FROM employee e, department d
WHERE e.dept_name = d.name
AND d.name in ("Development®, "Research®);

Later, we'll discuss how query simplification encourages better performance and scalability in
your applications.

Finally, views provide greater data modeling flexibility. By using views as an interface to table
data, you can alter and reorganize your underlying data model as necessary without breaking any
code that assumes an earlier version of the model. For example, we can alter our EMPLOYEE and
DEPARTMENT tables whenever and however we want while retaining a consistent interface to
data about researchers and developers via the RESEARCH_AND_DEV_V view.

Stored Procedures

Modern RDBMSs allow you to store and execute functions and procedures in the database. Since
they often execute in the address space of the database process, they can be faster than querying
the database from an external APIl. The ANSI SQL Persistent Stored Modules (PSM), or
SQL/PSM, standard exists as a specification for stored procedure support. However, while some
databases (such as IBM DB2 version 7) follow this specification, other vendors use their own
proprietary language. For example, Oracle's Procedural Language (PL/SQL) is roughly consistent
with the PSM standard with the addition of some features. The same is true with Sybase's
Transact-SQL (T-SQL).

Confusing matters somewhat is the fact that all major database vendors support mechanisms that
allow you to call/load external procedures during query processing. Although some vendors feel
that such modules are best referred to as “external™ and not "stored,” not all agree. For example,
IBM DB2 calls these external routines "stored procedures.” In this book, we'll refer to all
SQL/PSM-like languages as stored procedures because they're actually stored in the database.
We'll refer to other functions or libraries that are loaded from the filesystem as external, mainly
because they're stored in the filesystem, not the database.

To see what a stored procedure language actually looks like, consider Oracle's PL/SQL. Suppose
that we want to use PL/SQL to write a procedure called ISSUE_BONUS that calculates the
bonuses of employees in the EMPLOYEE table based on current salary multiplied with a "bonus
percentage.” If the salary is below some amount, the procedure issues a standard fixed bonus. In
both cases, the bonus is inserted into another table (called BONUS_HIST) that keeps a record of
bonus history for all employees.

Now, as may be obvious to you, we could meet our goal by writing a query (though it would be a
bit bulky and obscure). For purposes of example, however, let's just consider what would be
involved in implementing this functionality as a stored procedure. Without understanding much
about the details of PL/SQL, we can survey some of its key features by looking at Listing 10-1.

Listing 10-1 A Stored Procedure for Calculating Employees’' Bonuses

PROCEDURE i1ssue_bonus (a_emp_id NUMBER,
a_bonus_pct NUMBER,
a_min NUMBER,
a_min_amt NUMBER)

emp_sal NUMBER;

1
2
3
4:
5: 1S
6
7 bonus NUMBER;
8
9

BEGIN
SELECT salary INTO emp_sal FROM employee
10: WHERE i1d = a_emp_id;
11: IF ((emp_sal < a _min) OR (emp_sal IS NULL)) THEN
12: bonus = a min_amt;
13: ELSE
14: bonus := emp_sal * a_bonus_pct;

15: END 1IF;
16: INSERT INTO bonus_hist (emp_id, date issued, amount)
17: VALUES (a_emp_id, SYSDATE, bonus);

18: EXCEPTION

19: WHEN NO_DATA_FOUND

20: THEN

21: DBMS_OUTPUT.put_line("Error®);
22: END issue bonus;

Here are the listing's high points:

e Line 1 shows that procedures can be named and accept input arguments (just like regular
functions in other languages).

e Lines9and 16 show that it's very simple to issue SQL statements, and integrate their
results with local variables (emp_sal, in this case).

e Lines 11 through 15 show that we can write conditional statements. In fact, languages like
PL/SQL typically support standard control flow constructs like IF. . THEN. .ELSE
and various looping constructs like FOR and WHILE.

e Lines 18 through 21 show that exception handling is supported.

The point here is not to teach you PL/SQL but to highlight a few key features of the language of
stored procedures so that you can weigh your application design options carefully. Choosing
where to write your business logic is a big decision. If you primarily write this logic in Java or C,
you might be surprised to find that languages like PL/SQL contain many of the same features.

More important, if you never knew that databases supported such languages, you might have
rushed into the decision that all business logic should be coded in EJBs. This isn't necessarily a
bad choice, but it can result in suboptimal performance for some applications. In particular,
database languages may end up suiting your performance needs better because they're tightly
integrated with the database. Later, we'll discuss more details related to performance and
productivity tradeoffs in choosing the language in which to write your business logic.

Triggers

Triggers are a way to automate tasks that are necessary whenever certain database events occur.
They're the primary mechanism for event-driven execution in the database and thus make the
database an active mechanism. When you create a trigger, you define the table and event it
corresponds to and the body of code that should be executed upon that event. For example, you
can use a trigger to specify that tables B and C will be updated whenever a row is inserted,
updated, or deleted in table A. You can also enforce constraints that logically involve two or more
attributes. Suppose we wanted to allow attribute Al to be NULL only if attribute A2 equaled some
value; a semantic constraint on either attribute wouldn't be possible. Instead, a trigger is necessary.

To see what triggers look like, let's return to our EMPLOYEE and DEPARTMENT example.
Suppose our DEPARTMENT table had an additional column called NUM_EMPLOYEES that
kept track of how many employees were in that department. Thus, our table should look like this
one.

DEPARTMENT:

NAME BUILDING
(chararcter) (number)
Research 5
Developement 6
Sales 1

FLOOR
(number)

8

NUM_EMPLOYEES
(number)

15

10

It's important to keep this new attribute consistent with changes to the EMPLOYEE table. One
way to do this is by writing a trigger. This means that we need to respond to any new or changed
data (INSERTSs or UPDATES) related to the EMPLOYEE table so that we can process the
corresponding change to the DEPARTMENT table. In Oracle PL/SQL, we define a trigger very
similarly to a stored procedure, as shown in Listing 10-2.

Listing 10-2 A Trigger That Maintains an Account of Department Employees

1: CREATE OR REPLACE TRIGGER MONITOR_NUM_EMPLOYEES
2: BEFORE DELETE OR INSERT OR UPDATE ON EMPLOYEE

3: FOR EACH ROW

4: BEGIN

5: IF (:old.dept_name !'= :new.dept_name) THEN

6: UPDATE DEPARTMENT SET NUM_EMPLOYEES=NUM_EMPLOYEES -
1

7: WHERE NAME=:old.dept_name;

8: UPDATE DEPARTMENT SET NUM_EMPLOYEES=NUM_EMPLOYEES +
1

9: WHERE NAME=:new.dept_name;

10: END IF;
11: END;

Some things about this code are relevant to triggers in general:

e Line 1 shows that, like other database objects, triggers are named.
e Line 2 shows how you specify triggers with respect to the events that can occur. As you
can see, triggers can be associated with various SQL statements that can be applied to a

table.

e Line 3 shows that the trigger can be configured to fire for each row that is inserted,
updated, or deleted. This is important in our example because each change to the
EMPLOYEE table means that we have to increment or decrement in the DEPARTMENT

table as appropriate.

e Line 5 shows that we have the ability to look at the previous (0 I d) data as well as the to-
be-committed (new) data before the commit on the EMPLOYEE table completes.

In short, triggers enable stored procedures to be executed automatically in an event-driven fashion.
This style of reactive execution is implicit and distinct from the explicit style of executing stored

procedures manually.

Indexes

Remember the way we used to find books? No, I'm not talking about earlier versions of
Amazon.com. I'm talking about going to your local library, searching for the book, and then
checking it out. To locate the book, you used a card catalog, which was convenient because it
allowed you to search quickly for what you were looking for. Once you found it, the catalog entry
pointed you to its location in the library.

In general, database indexes work just like the card catalog at the library. As data structures inside
the database, indexes simply allow information to be looked up quickly. For example, suppose
you have a table of employees that's a million rows long. If you want to search for an employee
named Wally Westman, the only real choice is to scan the entire table. Although computers are
faster than humans at doing this, the cost of such operations adds up—especially if other querying
must be done or other users are waiting. For very large tables, this type of scanning represents a
very noticeable delay.

However, if you create an index for your employee table based on the name attribute, you'll be
able to search that table very quickly. Creating an index is simple. With Oracle, for example, you
do it like this:

CREATE INDEX name_idx ON employee(name)

As the command shows, creating an index means denoting which attribute of which table you
want indexed. The database then creates a new data structure that allows that attribute to be
efficiently searched during execution. We'll see an example of how this affects query processing
later in this chapter.

Creating an index doesn't mean that access to the entire EMPLOYEE table is faster. It just means
that when employee names need to be searched, it can be done efficiently. Thus, an index doesn't
help when we're locating employees by hire date—for example, those hired on January 10, 1999.

It's important to realize that creating and using an index means that this data structure must be
stored. So, indexes do take up disk space and, in this sense, represent a space-performance
tradeoff. Still, they're a useful feature of database systems because they're so easy to create and
manage. Not only do they speed up explicit filtering operations (such as that specified by the user),
but they speed up implicit filtering that occurs during the intermediate stages of query processing.

Sequences

Some databases, such as Oracle, support objects called sequences. When these objects are queried,
they return a value based on their current value and a step value, which is defined during creation.
It's probably easiest to look at an example of creating and using a sequence in order to understand
it:

SQL> CREATE SEQUENCE order_seq START WITH 1 INCREMENT BY 1;
Sequence created.

SQL> SELECT order_seqg.nextval FROM dual;
NEXTVAL

SQL> SELECT order_seq.nextval FROM dual;

NEXTVAL

Ignore the DUAL table for now—it's a detail here. The point is that we can create a database
object that, given a start value and an increment setting, can be queried so that it produces the next
logical value. Sequences are primarily useful because of the frequent need to generate values for
columns in various tables that act as primary keys—especially when we don't care about the value
of the key but just that it's unique.

Consider the ORDERS table, created like this:

CREATE TABLE orders (order_id NUMBER PRIMARY KEY,
customer_id NUMBER,
order_date DATE);

It can be populated by the following statement:
INSERT INTO orders VALUES (order_seqg.nextval, 100, SYSDATE);

Thus, the value of sequences is that they allow application developers to obey entity integrity
easily and safely. Note that you don't have to use them. An application-level sequence generator
can return unique identifiers whenever it's queried by application-level clients. In fact, this may
even be a necessary component, especially if your key isn't something as simple as an integer.

Other Objects

Many other kinds of object are common to database systems. For example, most database systems
allow administrators to create and alter users, roles, privileges, and synonyms. However, unlike
the objects I described in detail previously, these objects are much less likely (if ever) to play a
role in improving performance or scalability. Thus, we will limit our discussion and exclude them
here.

Query Processing

Although I've reviewed the basics of SQL, | haven't yet addressed how the database interprets
SQL and how results are gathered. The overall process for resolving a SQL query is known as
query processing. It's a topic that has been and continues to be a major focus of database research
because of its impact on performance.

As | mentioned earlier, SQL is declarative. Although it provides a language for questions to be
asked, it doesn't specify how those questions should be answered. There's no standard. Instead,
each vendor has its own strategy. Understanding the details of query processing can provide you
with great leverage in tuning database performance. In this section, | provide a simple overview
along with an example to give you the basic idea. | want you to understand generally what query
processing is and that there are strategies for improving it that you, as a database administrator,
can implement.

Let's start at the beginning. When a query in the form of a SQL string is received by the database,
there are three basic phases that must be completed in order for a corresponding answer to be
generated:

e Query parsing: Syntax-checking of the string-based SQL query to ensure that it's legal
SQL.

e Query plan generation and optimization: Conversion of the SQL string into an optimized
query plan, which is represented as a "dataflow graph" of interconnected operators. This
graph represents the low-level database operations to be performed. During this phase a
query optimizer attempts to identify the most efficient plan to generate.

e Plan execution: Execution of the operators in the generated graph.

These phases are diagrammed in Figure 10-4.
Figure 10-4. Phases of query processing

Query Parsing Plan Generation Plan Execution

-
<9)

5w P

JOIN —— —

SCAN _t

SELECT name /

FROM employee; NAME | DEFT_NAME
Jack Purchasing
= 1911 Development
= Eddie Development
Mary | Sales

I introduced a few terms in the preceding list, so let us take a moment to define them more. First, a
dataflow graph is simply a graph that describes the flow of data between a set of operators. Each
operator is a state machine that corresponds to a low-level data access method. That's all pretty
abstract, so let's consider something more tangible.

Suppose we want to process a query that finds all employees hired before 1990. The SQL version
of this query commonly results in a graph consisting of two operators: SCAN and SELECT. The
SCAN operator reads data from a table. As it reads this data, it sends it downstream to the
SELECT operator. SELECT filters data based on a condition, so it filters out those tuples where
the hire_date is greater than or equal to Jan-01-1990 and outputs the resulting stream to the
user. The point of this example is simply to show how a simple SQL query maps into a graph of
lower-level operators.

Query dataflow graphs are described as partially ordered in the sense that parallel flows,
conceptually, can be executed concurrently. To understand parallel flows, let's consider a more
complex example.

Here is a relatively simple join query that combines employee and department information for
those employees not working in the Research department:

SELECT employee.name, employee.hire_date, department.name
FROM employee, department

WHERE employee.dept_name = department.name
AND department.name <> "Research”;

Because we know the basics of join queries, we know that it's necessary to read data from both
EMPLOYEE and DEPARTMENT and then combine them based on meeting two conditions: that
the department IDs are the same and that the department is not Research. One possible abstract
plan for this is shown in Figure 10-5.

Figure 10-5. Abstract query plan

GET
department data. *

JOIN employees
and departments.

GET FILTER T
—» employees not in the

employee data. research department.

As the figure shows, the flow of data drives execution. For example, when the plan starts to
execute, the only two operations that can execute are both GET operations. The other operations
(FILTER and JOIN) are waiting for input before they can execute. After the GET of employee
data finishes, the tuples containing employees working in the Research department can be filtered
out. Finally, after receiving data from its respective tables, the JOIN operation can match
employees and departments together based on the join condition. Again, the graph in Figure 10-5
is partially ordered in the sense that getting employee data and getting department data are
independent operations and, conceptually, can be executed in parallel.

To illustrate better how this abstract example relates to an actual query plan, consider the real
graph generated by the Oracle query optimizer:

Execution Plan
SELECT STATEMENT Optimizer=CHOOSE
MERGE JOIN
SORT (JOIN)
TABLE ACCESS (FULL) OF “DEPARTMENT*®
SORT (JOIN)
TABLE ACCESS (FULL) OF *"EMPLOYEE*

abhwN RO
MR NRO

This graph contains three columns:

e The first column indicates the index of the operator.
e The second column indicates which operator is the target of the current operator.
e The third column indicates the name and options of the chosen operator.

As Figure 10-6 shows, the plan results in a graph very similar to the one for our abstract plan. The
only real differences between the two are that the Oracle query plan performs a sort prior to the
JOIN, which is part of the query optimization phase, and that the additional filtering of non-
Research employees is lumped into the JOIN phase.

Figure 10-6. Oracle query plan dataflow graph

SCAN

department - T
r
JOIN —_—
3
SCAN ——— SORT
employee

The process of optimizing SQL queries involves analyzing these plans, determining where the
bottlenecks are, and implementing solutions. For example, if both of these tables are extremely
large, we can create an index on one of them to speed up the JOIN operation. In fact, this can even
change the type of join used by the optimizer. For example, in Oracle, if we create an index on the
DEPARTMENT ID column:

CREATE INDEX dep_idx ON department(id);
and then analyze the plan generated, we see that it consists of the following:
Execution Plan

SELECT STATEMENT Optimizer=CHOOSE
NESTED LOOPS
TABLE ACCESS (FULL) OF "EMPLOYEE"
TABLE ACCESS (BY INDEX ROWID) OF *DEPARTMENT"
INDEX (RANGE SCAN) OF "DEP_IDX" (NON-UNIQUE)

which corresponds to the graph in Figure 10-7.

Figure 10-7. Query plan using index

INDEX SCAN

dep 1dx department |
JOIN —
SCAN T
emplovee

Obviously, a few things have changed. Instead of performing a SORT on the full scan of both
tables, the optimizer chooses to use the index DEP_IDX and changes its join strategy to use the
nested loops algorithm. (The details of how a nested loop join differs from a hash join or a merge
join is beyond the scope of this text.)

The point here is to demonstrate that the processing of SQL queries involves an important
optimization phase that can be analyzed in detail to identify bottlenecks. Based on this analysis,
you can find out which SQL queries are the most costly and why.

Scalability and Performance Hints

We now look at various stategies for designing efficient databases. Note that none of these has to
do with JDBC or SQL—we will get to that in Chapter 11. Instead, our present focus is on higher-
level issues, such as effective data modeling and the use of stored procedures and triggers.

Understand How to Use the Database

As a software product, a database is complex. If you've ever installed something like Oracle or
DB2, you know that there are many, many related subproducts and installation options from which
to choose. Some of the subproducts are targeted at reporting or mobile data management. As for
installation, one of the choices you may be given is whether to install parallel or cluster-based
options. Understanding what these products and options do and how they can be useful can help
make your overall system more efficient. For example, depending on the type of hardware
configuration you have, installing cluster-related options may make no sense at all. In fact, you
will have made your situation more complex by installing subproducts or choosing options that
aren't relevant to your deployment. As | mentioned in earlier chapters, keeping your database
system as simple as possible will make your optimization challenge much less difficult.

Most modern databases are called database management systems (DBMSs) because they're in fact
distributed systems, consisting of a number of concurrently running processes or threads or
various machines that work together in an efficient way to deliver fast and scalable data
management. In tackling performance and scalability challenges, it's important to understand some
of the system details and thus how the various parts work and the roles they play in transaction
processing. For example, most databases have a data buffer cache to improve access times to data
and functions in the database. Sizing the buffer cache can play a significant role in improving
performance.

Finally, a database is very general. Obviously, its basic purpose is to store, manage, and enable
access to data. This means that it can be used in various scenarios, for a myriad of purposes. For
example, company A might want to store millions of images in a single database table. Company
B might not need to store a million of anything in a single table but requires data to be littered
among hundreds of related tables.

These two companies have different data models and likely very different needs in terms of query
efficiency. In what ways can the database be tuned for the needs of each? What scenario does a
particular database handle well by default? Database vendors don't know anything about your
deployment. They target their software to the most common cases. Becoming competent at tuning
the database to the needs of your application becomes increasingly important as your data
management needs increase and performance and scalability concerns become a high priority.

Understand When to Use the Database

Some people consider any kind of application data a candidate for storage in a database. While
this might seem like a reasonable default strategy, it may not turn out to be the most prudent
choice for all cases in terms of performance or scalability. There are in fact many issues to
consider when deciding which data belongs in the database. Keep in mind that, although generally
fast and scalable, the database represents a point of centralization in your system. As with any
resource in high demand, it's best to use it only when necessary. Again, you can make your
optimization problem less complex by keeping your system simple.

Consider the following example. A mythical online art company wants to develop a Web
application for selling reprints of famous paintings. It continually updates its inventories, adding
new paintings that have reprints as well as removing paintings that no longer have reprints or that
didn't sell well. At a minimum, it seems, the company needs to store customer, order, and
inventory information. It plans to keep the JPEG thumbnail and high-resolution reprint images in
the database as well. However, this last choice may turn out to be a mistake.

There's obvious benefit in storing customer, order, and inventory information in a database. Not
only is this information structured (i.e., composed of well-known attribute types), but it's highly
volatile from multiple interfaces (orders and customer data change constantly). Moreover, many
types of query can be posed that combine this information in various ways (e.g., since June of
2001, how many customers have placed orders of $100 or more?).

In contrast, there's little benefit to storing images in the database, even if the database does support
mechanisms to query or compare them. One reason—the reprints being sold change frequently, so
it's not necessary to remove the JPEG images associated with them. In fact, this might cause more
work later if the reprint is reissued and its JPEG image has to be regenerated. A better way might
be to change the database so that the online catalog doesn't permit users to see or order such
reprints. Another reason that storing the JPEG data in the database is unnecessary has to do with
JPEG itself. An image is unstructured; it's just a collection of zeroes and ones that are
meaningless without special software to decode and present it. The key information from an image
(i.e., the objects in it) isn't easily identified automatically. Also, although our database might
support operations that compare images efficiently, this is a totally useless feature for our needs.
Instead, keyword search (which would be useful) can be done by simply associating the keyword
data with the catalog information, not the JPEG data.

By now, we realize that storing images in the database for our online art company doesn't result in
many (if any) usability benefits over, say, storing them in the filesystem. We can still locate
images by storing metadata about and pointers to the JPEG files in the database. The performance
benefits (or lack of them) are even more convincing. Since we don't relate the actual image data to
anything else in the database, keeping this data there offers no theoretical performance
improvement. In fact, the opposite is more likely, since structured database information will be
competing with the image data for buffer cache and disk space.

Throughout this example, I've demonstrated that a database is appropriate for some kinds of data,
but it's not necessarily the best solution for all data management—even if the data to be managed
is dynamic. Here are some basic questions to ask when considering which data to put in the
database:

e Do | often combine this data with other data? For example, product and customer data is
typically intertwined: We often ask questions like "How many California customers
ordered my red wine?" But some data (like JPEG images) is rarely (or never) combined
with other data.

e Will this data be updated? If so, how frequently? Using what methods? If the data won't
be updated, the database is simply providing fast access and the ability to query existing
data. And if you won't be combining your data, then only fast access is being provided—
can you provide more lightweight (but just as effective) functionality to achieve this?

e What's the performance impact of turning over management of this data to the database?
Can you do a better job than the database of managing this data? Perhaps you're using the
database to store all of your information, even some static information that never changes.
Do you really require the transaction processing and other capabilities that databases
provide to manage it? Would creating, say, a hardcoded data structure in your application
logic reduce the demand your applications place on the database?

Understand How Your Data Will Be Accessed

There are many ways to access your data, but there are at least two issues related to access that we
have yet to address:

e How will you manage data?
e What type of interface will you use for access?

Let's tackle these issues one at a time.

When thinking about how you'll manage your data, the key questions have to do with the manner
and frequency of your SQL use. For example, your application may provide only read-only data
and merely need to retrieve it from various tables, perform an occasional join, or access a prebuilt
view. There may be no real business logic in such an application; for that reason, simply using
SQL might be enough. In another situation, you might be building an application that will store
credit card orders and likely involve transactions and security. Having credit card numbers or
passwords communicated in cleartext could be an issue. Also, if much of your data is dynamic,
you may be hitting the database quite a bit. As you can see, it depends on your scenario.

Some of the key things to identify when classifying how you will use your database are the
following:

e Will you be reading and writing to your database? If you'll be writing, transactions will be
necessary to guarantee serializability.

e Will most application actions involve database connectivity? Will you use the database
only when orders are processed, or is the majority of your application driven from the
database?

e Can you encode any of your business logic as a stored procedure?

In terms of interfacing to the database, you'll need to choose the API you'll use. Different APIs
have different tradeoffs associated with them, and a lot depends on how your application is
deployed. Certainly, if parts of your application are in C or C++, you'll need to choose whether
you'll use ODBC, the native API of the database, or perhaps your own homegrown API (that
wraps either ODBC or the native APIs).

We're concerned primarily with the choices you have in Java, which means using a Java Database
Connectivity (JDBC) driver. As it turns out, more than one JDBC driver can be used for a
database. In fact, different drivers are created for different purposes. For example, Oracle supports
at least four JDBC drivers: a thin driver suitable for network-level access, an OCI (Oracle Call
Interface) driver, and two types of server-side drivers (designed for integration with Enterprise
JavaBeans and CORBA). All vendors may not have multiple JDBC drivers, but it's still
worthwhile to do your research. It's likely that flexibility and/or resources will be traded for
performance when multiple drivers exist.

The message here: Once again, do your homework. Understand your application before you make
important development choices.

Normalize Your Data Model

Regardless of how we access data, it's always in our best interest to have it organized in a fashion
that enables its access to be fast and scalable. It's probably obvious to you that physical layout
matters—for example, optimizing how your disk accesses the underlying persistent bits of
information is obviously a plus. However, it may surprise you that there's plenty that can be done
at the logical level, for example, during data modeling. And that's where we'll start.

As you know (or can guess), there are many possibilities when it comes to designing the data
model. In fact, the database will pretty much let you organize your tables however you want as
long as you obey the constraints of your own design. Even so, there are rules for modeling your
data. These rules are the so-called normal forms of data modeling. In 1972, Codd introduced
three normal forms: first, second, and third (also known as the Boyce-Codd normal form). By
obeying them, you ensure correctness as well as efficiency.

First Normal Form

A table is in first normal form (LNF) if it has no multivalued columns. In other words, for each
row we want all column values to be atomic. It helps to visualize this through an example.

Suppose we extend the DEPARTMENT table to keep track of projects per department:

Research Building 5 Eraft, Citibank
Sales Building 1 Eraft, Citikank

This is a mistake. There are no rules to govern the order or format in which we list the projects,
that is, there's no structure to the data for this attribute. Thus, it's quite possible that this design
choice will lead to incorrect query results.

The way to fix this problem is to convert the table into 1NF, which means that we need to break
up multivalued attributes like PROJECTS. Specifically, we should

e Promote the multivalued attribute into its own table; assign a primary key
o Alter the primary key of the original table to be a composite key that consists of the
original key plus the attribute that corresponds to the key of the newly created table

We can accomplish the first task by creating a new table called PROJECTS that contains only the
project name:

Kraft

NY Times

Since each name is unique, we choose that as our primary key. Then we can change the
DEPARTMENT table so that it contains a composite primary key made up of the original primary
key (NAME) plus a foreign key (PROJECT), resulting in a new primary key (NAME, PROJECT):

Dﬁ'ﬂ'ﬂlﬂmmt

You may have noticed that, while this technique is necessary for normalization, it actually leads to
more data storage and so seems less efficient. This is true—for now. As we make other changes to
the data model, you'll see that the opposite is actually the case!

Second Normal Form

A table is in second normal form (2NF) if it's in 1NF and every nonkey column is functionally
dependent on the primary key. In plain terms, columns that contain values not related to primary
key values should be moved to another table. Usually, these columns will seem more independent

than other columns in a table. For example, suppose our PROJECT table is modified to contain the
priority of a project and a description of that priority:

Kraft High

NY Times 2 High

USA Today il Urgent

Notice that, although both PRIORITY and PRIORITY_DESC are included in the same table, their
dependencies are different. Priority is based on the name of the project (the primary key), whereas
priority description depends on the priority.

To solve this problem, we can change our model to obey 2NF for this table. To do that, we need to
e Remove from a table any columns not dependent on the primary key of that table
e Create new tables as necessary, with primary keys based on formerly related values that
remain in the original table

By applying 2NF to the PROJECT table, we come up with a new version:

as well as a new table called PRIORITY_LEVEL.:

In addition to simplifying our design, we've reduced our storage needs. The old PROJECT table
required

6 (rows) x 3 (columns) = 18 value cells.

The new PROJECT and PRIORITY_LEVEL tables combine for

6x2) +(2x2) =12+ 4 =16 cells.

Again, although this seems like a small reduction, these numbers add up. For example, if 1,000
projects were evenly split in terms of priority (half urgent, half high), our original scheme would
require 3,000 cells and our new scheme would require only 2,004—a savings of more than 33
percent. Converting to 2NF, then, is not only "more correct" because much of the redundancy of
independent information has been eliminated, it also yields more efficient databases.

Third Normal Form

A table is in third normal form (3NF) if it's in 2NF and all of its nonkey columns are
independent. This is a situation where a so-called transitive dependency can exist in the sense
that the column values of one table are duplicated in another table (instead of the other table
simply containing a key to the first table).

For example, suppose we have a table called LOCATION that contains a composite primary key
(BUILDING, FLOOR).

A 1
C 2

Looking back at the DEPARTMENT table, we see that this information is needlessly duplicated.
Building and floor are always mentioned together in DEPARTMENT, even though neither
FLOOR nor BUILDING is functionally dependent on the primary key of DEPARTMENT.

We can make our design more efficient by converting the DEPARTMENT table to 3NF. To do so,
we need to

e Update the "foreign key table" (LOCATION, in this case) to have a single-attribute
primary key

e Replace the composite information in the "host table” (DEPARTMENT, in this case) with
the proper foreign key values

Thus, we first change LOCATION as follows:

and DEPARTMENT then becomes

Again, the amount of data we need to store is less (this time saving three cells), and it obviously
improves as the tables get bigger. We've also made the data easier to manage. If a department
changes to a different building and floor, we need to update only one row instead of many.

As we saw in the preceding examples, data normalization not only is space efficient (leading to
better scalability of server-side resources such as disk), but it helps ensure the correctness and
consistency of our data.

Selectively Denormalize Your Model

Now I'm going to criticize my own advice: Although data normalization is important because it
ensures correctness and reduces storage demands, it turns out that it can affect performance
adversely.

For example, with our new DEPARTMENT and LOCATION tables, if we want to find out what
building and floor each department is on, we need to write a join query. Before, such a query
merely required a scan of one table. Now, it has to scan two. The more scanning (especially
dependent scanning), the worse our performance.

The general problem here is that normalization forces queries to become more complicated in the
sense that they have to navigate through more intermediate data to get at the data of real interest.
In turn, this can cause multiple queries, join queries, and/or nested queries where single-table
queries were all that was previously required. In certain cases, it can be okay to denormalize the
data model—to violate one of the forms of normalization—usually for the purpose of improving
performance.

Denormalizing a data model typically involves techniques such as

e Replicating data "as is" by maintaining two copies
e Storing a calculation of remote data in a local table

Let's consider a more detailed example of the second technique. Suppose we have three tables,
ORDERS, ORDER_ITEMS, and PRICE_HISTORY:

ORDERS

ORDER_ID ORDER_DATE

1 1-Mar-2001

2 1-Mar-2001

3 1-Mar-2001

ORDER_ITEMS

4782

PRICE_HISTO RY

1-Jan-2001 1-Jun-2001 23.50

PRICE_HISTORY is necessary because it contains information on the price of a given product at
any point in time. This type of normalization is common: To avoid replicating pricing information
everywhere, it's consolidated in one table.

To calculate the total amount of an order, the following is required:

e Identifying all line items for that order, each of which indicates the product ID and the
quantity of that product being ordered

e For each product ID ordered, using the ORDER_DATE from the ORDERS table to locate
the price for that product at the time the order was made

e Summing these calculated prices

This is a lot of work just to calculate the price of an order. Every time a customer logs on to see
information about her order, three tables have to be navigated. Thus, the data model itself has
caused a problem that will affect performance and scalability.

One solution here is to denormalize the model by storing the calculated subtotal for every order in
the ORDERS table. For example:

I=-Mar—1:999 70.50
3 2=Mar-1999 35.00

Although this is a replication of data, it's a value-added replication in the sense that it's a
calculation on data in other tables. The good news is that finding the order subtotal is much easier.
The bad news is that any changes to that order will cause the SUBTOTAL column to be updated.
However, this isn't that bad: Most orders are submitted and never changed. Only the few that are
updated require a recalculation, so the overhead is minimal.

When discussing denormalization, it's good to weigh performance against the risks of replicating
data. In terms of our priorities, there's no contest: It's obviously more important to be correct than
fast. From a performance standpoint, however, we want to reduce this effect. For efficiency, it's
generally acceptable to denormalize your model as necessary. Note the key phrase "as necessary."
I strongly advise you to first normalize and then denormalize. This ensures that your model will be
as space efficient as possible, with the exception of a few patches where you've traded space
efficiency for performance.

Performance aside, there's no reason to denormalize, so we want to limit such changes. As with
many other things we've discussed, simpler is better, so we'll denormalize only when we really
must. Many designers denormalize their models after deployment, when working on a more
optimized version of the server side of the application. It's sometimes very difficult to know what
data should be located with other data until the applications are written and an initial deployment
phase has occurred.

In summary, denormalization can be a performance-useful and even reasonable technique if it's
done correctly. Here are some specific tips about denormalization, from a purely performance
standpoint:

e Consider denormalization only if you're sure that application bottlenecks are being caused
by excessive navigation of the data model at runtime.

e Where possible, limit your denormalization to attributes that either don't change or
change rarely. Replicating frequently updated data can make maintenance a nightmare:
You may spend more time replicating data (to manually enforce consistency) than you
save by denormalizing in the first place.

e If simplicity and consistency of queries are the only concern, consider creating views or
stored procedures. A view enables you to retain your normalized model but hide the
complexity involved in locating data. A stored procedure does the same and has an added
performance benefit. The only negative is that more development is required and the
stored procedure is less portable (between databases).

o If you denormalize, identify value-added denormalizations, such as those where you can
precompute something that would normally have to be computed at runtime. This is
particularly useful when it comes to applications that mine or otherwise analyze old data.

Without denormalization, each user who wants to analyze this data will force the
computation (potentially very expensive) to be redone even though the underlying data
hasn't changed.

Use Stored Procedures

Stored procedures are one of the most underrated methods for achieving high-performance Web
applications. Used properly, they can dramatically increase performance, especially if the data
model is large and the business logic is normally distributed among objects on multiple machines.
They also make integration with the database simpler; requiring less code at the EJB or servlet
level and hiding the complexities of the data model.

In terms of raw performance, step back and consider how servlets, EJBs, or other application
objects typically use the database. For a given application action, they can execute one or more
database queries Consider the ORDERS, ORDER_ITEMS, and PRICE_HISTORY tables in the
previous section. Suppose we had denormalized our data model, as described, so that ORDERS
had a new SUBTOTAL column. Now suppose that a new order item was appended to an existing
order.

The application would have to do the following:

Submit the new line item (INSERT into the ORDER_ITEMS table).

Look up the ORDER_DATE for that order (SELECT from the ORDERS table).
Calculate the price of the new item (SELECT from the PRICE_HISTORY table).
Update the SUBTOTAL of the existing order (UPDATE the ORDERS table).

At least three queries are required. Incidentally, even if we hadn't denormalized, these same
gueries would likely be required because an end user would want to see this total calculated as

part of the application response. Notice that these three queries need to execute in the order shown,
independent of each other.

To process the queries, a servlet, EJB, or any other client would need to execute something similar
to the kind of JDBC code contained in the function shown in Listing 10-3.

Listing 10-3 Appending an Order Using JDBC (Multiple Queries)
appendOrder():

public void appendOrder() throws Exception

{

Connection conn = DriverManager.getConnection(...)

/* Manually create our order data - for the sake of
example */

int orderld = 1;
int productld = 544;
int qty = 3;

String orderDate;
double lineltemPrice;
double fetchedPrice;

Statement stmt = conn.createStatement ();
ResultSet rset;

/* QUERY 1: Append order items */

stmt.executeUpdate(""INSERT INTO order_items (order_id,

"t
"product_id, qty) VALUES ('+orderld+", "+productld+",
Aty +)™

/* QUERY 2: Fetch the order date */
rset = stmt.executeQuery(
"SELECT order_date FROM orders WHERE order_id =
"+orderld);
rset.next();
String orderDate = rset.getString(1l);
/* QUERY 3: Fetch the prices so we can calculate the

subtotal */

rset = stmt.executeQuery(

"SELECT price FROM price_history WHERE product_id = "'+

productld+" and ""+orderDate+
"* BETWEEN valid_from AND valid_to™);
rset.next();

fetchedPrice = rset.getDouble(l);
lineltemPrice = gty * fetchedPrice;

/* QUERY 4: Update the order */

stmt.executeUpdate(
"UPDATE orders SET subtotal = subtotal +
"+lineltemPrice+
" WHERE order_id = "+orderld);
s

Contrast this with appendOrderStored() of Listing 10-4, which calls a stored procedure to

do the same work.

Listing 10-4 Appending an Order Using JDBC (Stored Procedure)
public void appendOrderStored() throws Exception

{

Connection conn = DriverManager.getConnection(...);

/* Manually create our order data - for the sake of
example */

int orderld =

int productld

int qty = 3;

1;
= 544;

CallableStatement cstmt = conn.prepareCall(
"{ CALL appendOrder(*+orderld+", "+productld+",
ll+qty+ll) } Il);
cstmt.execute();

}

Here's the corresponding stored procedure, coded in Oracle PL/SQL as an example:

CREATE OR REPLACE PROCEDURE appendOrder(
a_orderld IN NUMBER,
a_itemld IN NUMBER,
a_gty IN NUMBER)
IS
item_price NUMBER;
ord _date DATE;

BEGIN

INSERT INTO order_items (order_id, product_id, qty)
VALUES (a _orderld, a _itemld, a qty);

SELECT order_date
INTO ord_date
FROM orders
WHERE order_id = a _orderld;

SELECT price
INTO i1tem_price
FROM price_history
WHERE product_id = item_id
AND ord_date BETWEEN valid_from AND valid_to;

item_price := item_price * a_qty;
UPDATE orders

SET subtotal
WHERE order_id

subtotal + item _price
a_orderld;

END;

Figure 10-8 compares these two approaches in terms of performance. To simplify things and take
network latency out of the equation, both Java functions were executed on the machine where the
database was located, and both were executed 1,000 times to demonstrate the difference clearly.
Note that performance would have been much worse if there had been network latency (i.e., client
was not on the same machine as the database).

Figure 10-8. Appending 1,000 items to an order

10 _
— R_
J
2
- 6 _
L
=
£ 4-
2 —
07

Multiple JDBC Calls Stored Procedure
Approach

As the figure shows, coding several JDBCs is predictably slower than making a single call to a
stored procedure. Specifically, the first approach averages about 10.4 seconds and the second
approach averages about 3.6 seconds on the machines tested. Thus, the speedup achieved by using
a stored procedures approach is 2.89—a significant improvement.

A few final notes about the stored procedure approach:

e No application-level transaction management is required.

e The code is smaller (even when combined with PL/SQL) and much cleaner, simplifying
development. Also, consolidating the code in the database prevents code replication at the
application level, which is very common in large projects,

Avoid Triggers and Other Implicit Execution

Triggers are an unquestionably important tool in any large database. They make complex data
validation possible and enable designers to enforce elaborate constraints. Also, they're the only
event-driven mechanism in the database, which allows designers to implement all kinds of
"active" database features (e.g., automatic report generation).

However, triggers can also be the source of many a bottleneck. Since a trigger is executed when
certain events occur, it's a reactive mechanism and implicitly executed. Generally, implicit
execution is bad: Someone who is invoking that implicit execution may not know he's invoking it.
The result: Queries start taking much longer than anticipated, for no apparent reason. The reason
should be obvious. In addition to the time required by the explicitly requested operation itself,
there's the time required for the implicit trigger execution.

Know Your Vendor

The database is the part of your server-side system that you're least likely to design or extend.
Sure, you'll write your own application logic. You may even implement your own distributed
application object system or EJB framework. And you might customize the Web server or servlet
container to meet your deployment or performance/scalability needs. But the database is very

often treated like a black box—data is shoved in and extracted—without much concern or
appreciation for how it works or how to tune it.

All too often, it's assumed that integrating a database into your application requires only buying
the product and adding JDBC calls to your code. The reality is, however, that such a simplistic
approach won't cut it for large-scale Web applications. Your knowledge of the database and
judicious use of design techniques to maximize your bang for the buck will play a significant role
in improving overall application performance.

Summary

In this chapter, we briefly visited several basic yet important database concepts. We distinguished
between logical and physical database design, keeping in mind that both influence how well the
database performs and scales. We also surveyed several database objects, not just relational tables.
Later, we'll see that understanding how to use these structures can be important during the
deployment phase. Finally, we looked at query processing and how some of the database objects
we described (such as indexes) play a role at runtime.

Although many engineers are familiar with building and querying databases, they're less familiar
with the details of how databases work. This is like driving a race car and not understanding its
engine. Instead of treating the database like a black box, it pays to understand what's going on
inside and why. Such understanding is absolutely critical when pursuing overall high performance
and scalability for your Web applications.

Chapter 11. Using JDBC and SQL to Query
Databases Efficiently

As you already know, relational databases are at the heart of any serious Web application. And, as
we saw in Chapter 10, databases are queried via SQL. The question then becomes, how can we
use Java to send SQL to the database and then use it again to parse the results (if any) returned?

The answer, of course, is through the Java Database Connectivity (JDBC) API, a key part of any
J2EE infrastructure.

How JDBC Fits In

JDBC offers two key features: simplicity and database independence. It's considered simple
because, with only a few statements, a developer can programmatically query a database. He can
easily combine his own local application data with a template for a SQL query and execute the
resulting dynamic query. In terms of database independence, JDBC allows engineers to stop
worrying about differences in vendor-specific database connection instructions. Instead, it puts the
burden on database companies to produce JDBC drivers and build their proprietary connection
management codes beneath a common Java API.

JDBC is arguably the most mature of the J2EE technologies we've discussed throughout this book.
This is for two reasons. One, even before J2EE had any legs, JDBC was in demand and was used
frequently by developers as a way for their Java applications to talk to relational databases. Two,
JDBC owes a lot to the spirit and design of ODBC, the original standard API for querying a data
source independent of vendor.

JDBC Concepts and Objects

When developers use JDBC, they construct SQL statements that can then be executed. These
statements are dynamic in the sense that a template-like query string, such as

SELECT name FROM employee WHERE i1d = ?

can be combined with local data structures so that regular Java objects can be mapped to the
bindings in the string (denoted ?). For example, a java. lang. Integer object with the
value of 3 can be combined with the template to dynamically form

SELECT name FROM employee WHERE id = 3

The results of execution, if any, are contained in a set returned to the caller. For example, the
guery may return the following results:

Angela
Andrew
Anthony

We can browse this result set as necessary. This gives us the ability to, say, extract the first 10
rows™ from a table—something that is normally nontrivial through SQL itself.

y By "first 10 rows," | just mean the first 10 rows that happen to be returned. I'm not implying that
relations have any order. In fact, just as is the case with sets, they don't unless a SQL ORDER BY
clause is used.

Relevant JDBC Objects and Their Relationships
The important JDBC objects to know include

e Connection, which represents a logical connection to a database.

e DriverManager, which handles the dirty work associated with setting up a generic
JDBC connection for a given database. Database vendors provide their own drivers, and
developers use a DriverManager to get a connection to a particular database through
an available driver.

e Statement, which contains the SQL statement and bindings to it. Although database
administrators frequently use the word query for any DDL or DML statement, JDBC and
ODBC make a distinction between queries (reading data) and updates (changing data),
and consider them both statements. PreparedStatement objects allow SQL
statements to be compiled before execution. Cal lableStatement objects are used
for accessing stored procedures.

e ResultSet, which contains the results of an executed statement, if any. A result set is
conceptually equivalent to a cursor in stored procedure languages like Oracle's PL/SQL.

The relationship between these objects is shown in Figure 11-1.

Figure 11-1. JDBC class hierarchy

ODRC I Jl..ll 1 Source

JEYHL [II}IH

Bridge

Slalerment /
ResuliSel —a—e PreparcdStatement ——s= Conneclion =s—s= Driverdanager

CallableSiatement \‘

Oracle

Diriver

.-'"
Dmr:i!-.
[Dratabase

Connecting to a Database

One of the slightly trickier parts of getting started with JDBC is making sure that you not only get
the right driver but also understand how to reference it. As mentioned, vendors are responsible for
providing the JDBC driver. Also, they typically provide a template for what's called the database
URL, which, although similar in spirit, isn't the same thing as a regular HTTP URL in practice.

A JDBC database URL looks like this:
Jjdbc:odbc:MyDb

It's composed of two parts: the Jdbc: prefix and a suffix that's dependent on the driver you're
using. If you want to use the JDBC/ODBC bridge that Sun supplies with JDBC, the first part of
this suffix is odbc = followed by the name of your ODBC data source. Thus, in the preceding
example the database URL refers to connecting to an ODBC data source called MyDb.

If you don't use the JDBC/ODBC bridge and instead use, say, the Oracle 8i “thin" JDBC driver,
your database URL might look something like

jdbc:oracle:thin:@MyOracleDb

The suffix is therefore very specific to a given database system, so you should check with your
vendor to see how to construct this part of the database URL.

You can establish a connection to the database by instantiating the driver and then using the URL
to make a connection. An example is

Class.forName("oracle.jdbc.driver.OracleDriver™);
Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@MyOracleDb™, "scott™, "tiger");

Notice that getting a connection requires that we also supply the username and password for that
database ("'scott' and *"tiger’’, respectively). Once we have a connection to a database, we
can begin executing SQL queries and processing their results.

Writing JDBC Queries

Building and executing JDBC queries is straightforward. The general process is to construct a
Java Statement object (either statically or dynamically), execute it, and then iterate through
the query results.

These are the only aspects of building queries that require a bit of thought:

e Choosing the right kind of statement to construct
e Distinguishing retrievals of data from updates to data

We'll see more detail about both of these issues shortly.

Processing a Statement

To construct a JDBC statement, we simply need to obtain a Statement object from a
Connection object and then execute that statement using a valid SQL query. Say we want to
query the first and last names of all employees in our database. For the sake of example, suppose
our table contains the following data:

‘ i |
1
L

2 Allen Fez 05-MAR-97 62000 1

4 Les Thomas 11-JUN-95 56000 2

6 Kendra Smith 11-JAN-83 53000 2

8 Elmer Bittner 04-APR-98 32500 L

10 Eddie Greenwald 03-APR-99 26000 1

The following code shows how to get the first and last names of these employees:
Class.forName('oracle.jdbc.driver.OracleDriver™);

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@MyOracleDb™, "scott™, "tiger');

Statement stmt = conn.createStatement ();

ResultSet rset = stmt.executeQuery(
"SELECT first_name, last _name FROM employee');

Incidentally, notice that Statement.executeQuery() is called—Ilater we will see that
updates require a different API call. Also notice that the SQL is specified at the same time that we
request query execution. This is different from the PreparedStatement and

Cal lableStatement approaches, where the SQL must be declared up front, when the
statement is created. Later we'll look at more examples that distinguish the two cases.

Iterating through Results

The preceding code shows that, once the query executes, results are returned. Iterating through the
results, like querying, is very straightforward:

while (rset.next())

System.out.printIn("*"NAME = "'+
rset.getString(1l)+" "+rset.getString(2));

This produces the following predictable set of results:

NAME = Jane Lippert
NAME = Allen Fez

NAME = Bill Cartwright
NAME = Les Thomas

NAME = Julia Grayson
NAME = Kendra Smith
NAME = Diane Lu

NAME = Elmer Bittner
NAME = Jason Chen

NAME = Eddie Greenwald
NAME = Cora Roberts

There are two things to note:

e Results are indexed by position (based on the SQL that generated them), and the first
position starts at 1.

e The ResultSet object allows us to force a cast on data as we see fit. This just means
that we need to be careful and cognizant of the underlying table design. If we were to call
something like ResulltSet.getInt(1) instead of
ResultSet.getString(l), we might get undesirable conversions.

So far, so good; as you can see, JDBC enables queries to be made simply and intuitively.

In addition to using the Resu I tSet object to get the individual row/column values returned, we
can use it to get the metadata associated with the results. This metadata, contained in an object
called ResultSetMetadata, consists of information such as how many columns exist and
what their types are. Examining the metadata associated with a result is very useful when the SQL
is dynamic, when we execute "star" SELECT queries, or when we simply don't know the
underlying DDL that created the table.

Suppose we want to query all columns of the EMPLOYEE table. | haven't provided information
on any of the columns besides FIRST_NAME and LAST_NAME, so it's necessary to use the

ResultSetMetadata object and find out information about the columns returned. Listing
11-1 shows one way to do this.

Listing 11-1 Browsing JDBC Queries

Statement stmt = conn.createStatement();

ResultSet rset = stmt.executeQuery(
"SELECT * FROM employee'™);

System.out.printin("Employee table fields:™);
System.out.printhn(*'——————————mmm e

ResultSetMetaData meta = rset.getMetaData();
int numCols = meta.getColumnCount();

String buf = ";
for (int i=1; i<=numCols; i++)
buf += (i1 ?2 ", " ") + meta.getColumnName(i);

System.out.printin(buf);

System.out.printIn('"\nEmployee data:");
System.out . printhn(* ———————— -

-—-");
while (rset.next()) {
buf = "]
for (int i=1; i<=numCols; i++) {
buf += i>1 2 ", " o ";

/* Handle some of the types, treat the rest as strings
*/
it (meta.getColumnType(1)==Types.NUMERIC)
buf += rset.getint(i);
else it (meta.getColumnType(i)==Types.VARCHAR)
buf += rset.getString(i);
else 1T (neta.getColumnType(i1)==Types.TIMESTAMP)
buf += rset.getDate(i);
else
buf += rset.getString(i);
+

System.out.printin(buf);
}

This code yields the following results for our sample database:

Employee table fields:

ID, FIRST_NAME, LAST_NAME, HIRE_DATE, SALARY, MGR_ID

Employee data:

Jane, Lippert, 2000-01-01, 66100, 1
Allen, Fez, 1997-03-05, 62000, 1

Bill, Cartwright, 2000-06-29, 68000, 1
Les, Thomas, 1995-06-11, 56000, 2

. Julia, Grayson, 1981-10-10, 56300, 1
Kendra, Smith, 1983-01-11, 59000, 2
Diane, Lu, 1986-10-08, 43000, 1

Elmer, Bittner, 1998-04-04, 32500, 1

. Jason, Chen, 1994-05-22, 30000, 1
Eddie, Greenwald, 1999-04-03, 26000, 1
Cora, Roberts, 1992-12-23, 19300, 5

RPOOO~NOUA~WNE

e

Executing Single Updates

Of course, you'll be doing more than simply retrieving data from the database. You'll be updating
it, inserting new rows, perhaps creating temporary tables, and the like. JDBC makes a distinction
between querying and updating, so you'll need to do the right thing or an exception will be
returned. To process updates, callers must use the executeUpdate () method on
Statement objects.

For example, suppose we want to give all of our employees a 10 percent raise. We can accomplish
this via the following code:

Statement stmt = conn.createStatement ();
stmt.executeUpdate("'UPDATE employee SET salary =
1.10*salary™);

Notice that executeUpdate () returns no results. This makes sense. Our SQL is updating the
database, not retrieving information from it.

Other Kinds of Updates: Creating Tables and Stored Procedures

Creating stored procedures or tables is also considered an update. For example, if we want to
create a stored procedure that pretty-prints the first and last names of our employee table, we can
do so via

Statement stmt = conn.createStatement ();

try {
stmt.executeUpdate("'DROP TABLE nice_names');

by
catch (SQLException sqglEx) {
/* Ignore — table might have never existed */
by
catch (Exception otherEx) {
System.err.printIn("’'ERROR: "+otherEx.getMessage());
System.exit(l);
ks

stmt.executeUpdate("'CREATE OR REPLACE FUNCTION "'+
"pretty_print_names(a_first IN VARCHAR2, a last IN
VARCHAR2) "+
"RETURN VARCHAR2 AS BEGIN RETURN a_ last || *, " || a_first;
END;™);

stmt.executeUpdate("'"CREATE TABLE nice_names AS (''+
"SELECT pretty print_names(first_name, last _name)
name FROM employee)');

ResultSet rset = stmt.executeQuery("'SELECT * FROM
nice_names');

while (rset.next())
System.out.printin(rset.getString(l));

This code does the following:

e Drops a table called NICE_NAMES (assumes it exists, recovers if not)

e Creates (or replaces) a stored procedure that pretty-prints first and last names

e Re-creates the NICE_NAMES table based on a query to the original EMPLOYEE table
that uses the new stored procedure

e Prints out all of the data in the new table

The result from running this code, in addition to the new table and the new or replaced stored
procedure, is the following output:

Lippert, Jane
Fez, Allen
Cartwright, Bill
Thomas, Les
Grayson, Julia
Smith, Kendra
Lu, Diane
Bittner, Elmer
Chen, Jason
Greenwald, Eddie
Roberts, Cora

Beyond the Basics

Thus far, we've discussed what is minimally required to query databases via JDBC. However,
there are a number of additional JDBC techniques that can have a significant impact on
performance and scalability. In this section, we'll discuss each of these advanced methods.

Prepared Statements

Recall from our discussion of database concepts that query processing generally boils down to
three phases: query parsing and syntactic checking, query plan generation, and plan execution.
The first phase can seem unnecessarily costly, especially if we repeatedly execute the same query
(or the same kind of query). We know that the SQL is correct and we hope that the database

caches previous parsed queries, but we can't be sure. Database vendors like Oracle do in fact cache
SQL statements so that reparsing a query seen earlier occurs as minimally as possible.

Still, the cache that database systems have is full of other objects, and there are competing
justifications on what to cache and what not to cache. The bottom line: As a developer, you can't
guarantee that this sort of optimization always, let alone ever, happens. Once again, the problem
centers around implicit versus explicit control. In many prior discussions, we favored an explicit
approach where possible, and this case is no different. Rather than rely on the implicit caching
done by our database system, we want to somehow cache parsed queries so that a preparsed form
can be presented to the database. Then we can be sure that SQL parsing of a repetitively issued
query is kept to a minimum.

JDBC lets us do just that with a PreparedStatement object. Unlike the regular
Statement object, a PreparedStatement is compiled ahead of time (i.e., precompiled)
and can be executed as many times as needed. Contrast that with the normal JDBC Statement
object which, as we've seen, sends a SQL string to the database each time for parsing.

To use a PreparedStatement, the code we showed needs to be modified so that the query
is specified before the call to executeQuery():

PreparedStatement prepStmt =
conn.prepareStatement("'SELECT first_name, last _name FROM
employee™);

ResultSet rset = prepStmt.executeQuery();

This might seem like a subtle change, but consider how this type of query can be executed 1,000
times:

PreparedStatement prepStmt =
conn.prepareStatement("'SELECT first_name FROM employee™);

ResultSet rset;
for (int i=0; i<1000; i++) {
rset = prepStmt.executeQuery();
/* ...Do something with results... */
by
Now compare that to the old way:
Statement stmt = conn.createStatement();
ResultSet rset;
for (int 1=0; i<1000; i++) {

rset = stmt.executeQuery(""SELECT first _name FROM
employee™);

/* ...Do something with results... */

}

Instead of parsing the SQL 1,000 times, as we do in the preceding code, the code before that
parsed it only once.

Dynamic SQL

Admittedly, the last example was unrealistic—how often is a static SQL statement repetitively
executed? A more realistic case is that the same kind of SQL statement is processed over and over
again. By "same kind," | am referring to multiple queries that have a common template. Consider
how you might execute five SELECT statements that, although distinct, look very much alike:

SELECT * FROM employee WHERE id = 3;
SELECT * FROM employee WHERE id = 7;
SELECT * FROM employee WHERE id = 11;
SELECT * FROM employee WHERE id = 15;
SELECT * FROM employee WHERE id = 21;

Repetitively executing such statements is a more realistic example, especially for Web
applications that serve hundreds of thousands of users. Imagine a Web page that allows you to see
employee information at the click of a button. When you select an employee to view and click
Submit, the browser sends a request to the server for that information. Correspondingly, a servlet
or EJB located somewhere on the server side, given an employee 1D, retrieves employee
information and returns it to the end user. During the process, it uses JBDC to execute a SQL
query that looks like

SELECT * FROM employee WHERE id = ?

Here, the ? represents a wildcard token or, more precisely, a value binding to be made later. Since
we'll always be executing the same kind of query but binding different values to the ? token, it
will be very useful if we can precompile the template and then change the bindings as requests
arrive. Per request, then, the only work that needs to be done is to bind the incoming value to the
SQL statement and execute the corresponding query. No recompilation of the query is necessary.

This is exactly what PreparedStatement objects allow us to do. The following code shows
how to iteratively query employees with 1Ds that range from 1 to 5.

PreparedStatement prepStmt =
conn.prepareStatement("'SELECT first_name, last _name FROM
employee "'+

"WHERE i1d = ?");
for (int i1=1; 1<5; 1++) {

prepStmt.setint(l, 1);
ResultSet rset = prepStmt.executeQuery();
while (rset.next ())
System.out.println (rset.getString(1)+"
"+rset.getString(2));

by

Notice that, similar to the way get Int() is used with an index when browsing a result set,
setInt() is used to identify the value for a binding at a particular index. If we use
PreparedStatement in the way just shown, the result is more efficient querying.

Of course, in the servlet/EJB example we probably want to precompile the SQL statement upon
initialization and cache the resulting PreparedStatement. Then we can reuse that object
upon request but with different request-dependent values bound to it.

Transaction Management

So far, we haven't talked about transactions at all, yet they're one of the key features of any
database system.

The basic idea of transaction processing is to allow end users to execute a series of operations as a
single logical unit. Thus, if you want ensure safety during the transfer of funds from one account
to another (e.g., at the same bank), your transaction conceptually must consist of the following
operations:

START_TRANSACTION;

withdraw(from_account, amount);
deposit(to_account, amount);

COMMIT_TRANSACTION;

Use of the word commit here indicates confirmation of the validity of the transaction. It means that
we've executed all of the individual operations that comprise the transaction and now we want to
verify that no significant error occurred in the process.

If an error occurs, we usually want to roll back the transaction as a means of canceling it. More
precisely, a rollback is a way of undoing all of the individual operations in a transaction. As an
example, to protect ourselves against an error during a money transfer (e.g., ifa to_account
doesn't exist), we can write something along the lines of

START_TRANSACTION;

TRY {
withdraw(from_account, amount);
deposit(to_account, amount);
COMMIT_TRANSACTION;

b

CATCH (EXCEPTION e) {
ROLLBACK_TRANSACTION;

be

Realize that updates to data are the only operations where a transaction rollback has an effect. It
doesn't matter if we roll back a data retrieval because no side effects occurred as a result. Also,
most databases don't allow you to roll back any DDL processing, such as when tables are created,
just DML statements.

By default, JDBC commits each update to data when you call executeUpdate(). For
example, the following code results in three transaction commits:

stmt.executeUpdate(""'UPDATE employee set salary
1.10*salary WHERE id=1");

stmt.executeUpdate(""UPDATE employee set salary
1.10*salary WHERE 1d=5");

stmt.executeUpdate(""'UPDATE employee set salary
1.10*salary WHERE 1d=6");

Committing after each executeUpdate () can be suboptimal in terms of performance. It can
also be downright dangerous if you're performing a series of operations that should logically be
bundled in a single transaction, such as the account transfer example mentioned earlier.

To change the default transaction-processing style, developers simply need to set an attribute of
the connection:

Class.forName("oracle.jdbc.driver.OracleDriver™);

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@MyOracleDb™, "scott™, "tiger');

/* Do not commit each update immediately */
conn.setAutoCommit(false);

Once we have the connection set properly, we can go about the business of creating and managing
transactions. Suppose we want to accomplish something like the balance transfer we described. To
transfer $100 from savings (account 101) to checking (account 102), the following JDBC code
will do the trick:

conn.setAutoCommit(false);

Statement stmt = conn.createStatement ();
stmt.executeUpdate(""'UPDATE ACCOUNTS SET bal=bal-100 WHERE
1d=101"");

stmt.executeUpdate(""UPDATE ACCOUNTS SET bal=bal+100 WHERE
1d=102");

conn.commit();

Notice that it's not necessary to start a transaction explicitly; we actually do that implicitly by the
call to Connection.setAutoCommit(). However, we do need to commit a transaction
with the Connection.commit() call. And, if we want to write safer code, we can include a
rollback, as shown in the following code:

conn.setAutoCommit(false);

Statement stmt = conn.createStatement ();

try {
stmt.executeUpdate(""'UPDATE ACCOUNTS SET bal=bal-100

WHERE 1d=101");
stmt.executeUpdate("'UPDATE ACCOUNTS SET bal=bal+100
WHERE 1d=102"");
conn.commit();

}

catch (Exception e) {
conn.rollback();
by

Note that nested transactions are currently unsupported by JDBC.

Bidirectional Results lteration

JDBC 2.0 has some new features related to result management. First, with the new API results can
be scrolled bidirectionally. Instead of iterating over a set of results from start to finish, it's possible
to jump around the results set, effectively navigating back and forth within the cursor.

For example, the new API allows us to retrieve a set of results, immediately go past the last result
using the ResultsSet.afterLast() method, and iterate backward using the
ResultSet.previous() method, as shown here:

Statement stmt = conn.createStatement(
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet rset = stmt.executeQuery("'SELECT first_name FROM
employee™);
rset.afterLast();

while (rset.previous())
System.out.printin(rset.getString(l));

Notice that to work with this kind of a result set—called a scrollable result set—we need to feed
some extra parameters to the Connection.createStatement() call made earlier.
With this code, we get the same results but in reverse order:

Cora
Eddie
Jason
Elmer
Diane
Kendra
Julia
Les
Bill
Allen
Jane

Updateable Results

Another new feature of the JDBC 2.0 API is the ability to update a results set. The idea is simple:
With the Resu l tsSet object that you get back from a query, you can update, delete, or insert
rows into the corresponding table.

For example, if we want to change the name of Cora Roberts to Nora Roberts, we do the following:

ResultSet rset = stmt.executeQuery("'SELECT first_name FROM
employee™);

rset.last();
rset.updateString(""FIRST_NAME"™, "Nora');
rset.updateRow();

The idea is to update the data via calls like updateString() (operations on any native type
are permitted by the Resu ltsSet API) and then call updateRow(). If we navigate through
the results set further before we call updateRow(), our change will be lost.

Executing Batch Updates

Even though JDBC transactions allow us to enforce an all-or-nothing style of execution when we
update data, each executeUpdate () can result in a call to the database. As we saw in
previous chapters, this can lead to very inefficient execution, particularly if the database is remote
and substantial network latency exists. Still, there are many times when batch updates are relevant.

Consider a B2B application that integrates two applications through a messaging-based design.
One application periodically shovels new product orders to the second application so that they can
be added to the company-wide database. If the first application sends 1,000 orders, this normally
requires 1,000 executeUpdate() calls.

In JDBC 2.0, however, there's a simple solution for this problem: the JDBC batch updates feature.
The concept is simple:

e Create a statement.
e Batch the statements as necessary.
e Perform asingle executeBatch().

Here's an example of how to process orders in batch:

/* Customer orders - local data structure */
CustOrder[] custOrder = ...

Statement stmt = conn.createStatement();
for (int 1=0; i<custOrder.length; i++)
stmt.addBatch(""INSERT INTO CUST_ORDER (id, order_date)™ +
"VALUES(*'+custOrder[i].-getld(+
", "+custOrder[1].getOrderDate());

int][] batchResults = stmt.executeBatch();

Scalability and Performance Hints

Our survey of advanced JDBC techniques has already given us an idea of some of the scalability
and performance strategies we can employ. In this section, | review the most important ones and
suggest some additional strategies for improving efficiency and throughput.

Use PreparedStatement When Possible

Not surprisingly, precompiling statements can make a big difference in performance. To quantify
this a bit, consider how it improves querying 1,000 rows as well as updating 10,000 rows. As |
described earlier, a given servlet or EJB instance on a busy site may do this tens of thousands of
times over the course of a week.

As for performance with respect to querying, try running the following code, which queries a
single employee 10,000 times using both approaches:

ResultSet rset;
/* Using a Statement */

long elapsed = System.currentTimeMillis();
Statement stmt = conn.createStatement();
for (int i=0; 1<10000; i++)
rset = stmt.executeQuery(
"SELECT first_name, last _name FROM employee WHERE i1d=1");
elapsed = System.currentTimeMillis() - elapsed;

System.out.printIn('Statement approach took "+elapsed+" ms');

/* Using a PreparedStatement */

elapsed = System.currentTimeMillis(Q);
PreparedStatement prepStmt = conn.prepareStatement(
"SELECT first_name, last_name FROM employee WHERE 1d=1");
for (int 1=0; 1<10000; i++)
rset = prepStmt.executeQuery();
elapsed = System.currentTimeMillis() - elapsed;

System.out.printIn(*"PreparedStatement approach took
"+elapsed+'" ms™);

Here are the results:

Statement approach took 17275 ms
PreparedStatement approach took 7881 ms

Thus, the overhead required for parsing a SQL statement leads to performance that is more than

twice as slow as when a PreparedStatement approach is used. Specifically, the speedup
with PreparedStatement is

17,275 /7,881 = 2.19.

Now, that was a simple query. Suppose we replace the SQL with something more complex to
parse, such as

SELECT e.first_name, e.last_name, os.num, st.name

FROM employee e, session_type st,
(SELECT employee id, count(*) num, type_ id
FROM order_session
GROUP BY employee_id, type_id) os
WHERE e.id = os.employee_id
AND os.type_i1d = st.id
AND e.id =1

The results turn out to be

Statement approach took 99954 ms
PreparedStatement approach took 87856 ms

What happened? The speedup has been whittled down to a mere 1.14. Why is
PreparedStatement not as effective here? The answer is that the bulk of the time isn't
spent in query parsing but in execution. The preceding query joins three tables and performs a
nested query in addition to a grouping. It reminds us that query parsing is indeed only one of three
phases involved in query processing.

/* Using a Statement */

long elapsed = System.currentTimeMillis();
Statement stmt = conn.createStatement();
for (int i=0; 1<10000; i++)
stmt.executeUpdate(""INSERT INTO my numbers
VALUES ("'+i+'")");
elapsed = System.currentTimeMillis() - elapsed;

System.out.printIn(*'Statement approach took
“"+elapsed+" ms'™);

/* Using a PreparedStatement */

elapsed = System.currentTimeMillis(Q);
PreparedStatement prepStmt = conn.prepareStatement(
"INSERT INTO my_numbers VALUES (?)'");
for (int i1=0; 1<10000; i1++) {
prepStmt.setint(l, 1);
prepStmt.executeUpdate();
by

elapsed = System.currentTimeMillis() - elapsed;

System.out.printIn("PreparedStatement approach took
"+elapsed+'" ms™);

The preceding code results in

Statement approach took 36263 ms
PreparedStatement approach took 27930 ms

Thus, the speedup is 1.30. We see again that the act of inserting data itself is expensive and dwarfs
the impact of using precompiled queries. We can visualize these comparisons better when all three
tests are graphed, as in Figure 11-2.

Figure 11-2. Comparison of query types and approaches

120,000 -
100,000
0000 -

G, OO0 I Statement
B PreparedStatement
40,000 -

—— -
B

Simple Complex Simple
SELECT SELECT INSERT

Execution Time (ms)

Use Batch Updates with a Remote Database

Like prepared statements, batch updates can result in more efficient SQL execution. However, the
added value of batch updates comes from the decreased network latency and fewer roundtrips
between client and server.

Hypothetically, we need to insert 10,000 rows in a remote database. As we saw from the earlier
test, the time to execute one INSERT using a PreparedStatement is

29,730 ms / 10,000 = 2.97 ms per INSERT.

Suppose, however, that our database wasn't local and instead required an average roundtrip time
of 50 ms (which is pretty quick, by the way). Then, instead of a 30-second total insert, we would
require

(2.97 + 50) - 10,000 = 529,700 ms = about 8.83 minutes!

Contrast that with a batch update approach, which would require the same database processing but
only one network roundtrip:

(2.97 - 10,000) + 50 = 29,780 ms.

Obviously this is almost indistinguishable from the performance with a local DBMS.

One caveat with batch updates is that without that network latency, they can actually be slower
than PreparedStatement calls. The reason is obvious: With a batched Statement, the

query isn't precompiled. Therefore, the resulting execution time with zero network latency is on
par with the execution time for a normal Statement.executeUpdate () call.

Don't Overcommit

Filed under the heading of "don't use it if you don't need it" is the concept of making all commits
explicit. As we discussed, the executeUpdate () call does an implicit commit for each call
unless a Connection.setAutoCommit(false) is made. Does committing every
update affect performance? You bet it does.

Consider a variation on the INSERT code we saw earlier. In this case, two types of
PreparedStatement bulk inserts are done (see Listing 11-2). The first test implicitly
commits after each executeUpdate (); the second test turns off the auto-commit feature and
commits the transaction only after the final insert.

Listing 11-2 Impact of COMMIT on Performance
long elapsed;

/* Using a PreparedStatement */

elapsed = System.currentTimeMillis();
PreparedStatement prepStmt = conn.prepareStatement(
"INSERT INTO my_numbers VALUES (?)'");
for (int i=0; 1<10000; i++) {
prepStmt.setint(l, 1);
prepStmt.executeUpdate();
bs

elapsed = System.currentTimeMillis() - elapsed;

System.out.printIn(C*Always-commit approach took *"+elapsed+"
ms™);

conn.setAutoCommit(false);

elapsed = System.currentTimeMillis();

prepStmt = conn.prepareStatement(
"INSERT INTO my_numbers VALUES (?)'");

for (int i=0; 1<10000; i++) {
prepStmt.setint(l, 1);
prepStmt.executeUpdate();

he

elapsed = System.currentTimeMillis() - elapsed;
conn.commit();

System.out.printIn(’’'Single-commit approach took "+elapsed+"
mSll) ;

Here are the results:

Always-commit approach took 28761 ms
Single-commit approach took 9905 ms

Once again, we see that explicit control is preferable. Sure, it means more code, but is the payoff
worth it? In this case, it is: a speedup of 2.9.

Not only is it more efficient to explicitly commit a transaction, but it may often be the safest thing
to do. For example, if you're inserting 1,000 rows of customer credit card activity into your
database, do you want some of the inserts to succeed if others fail? Most likely not. When you
perform a single logical task, such as "updating client account activity" or "processing all phone-
based orders for today," it's more natural to process it as a single transaction—all or nothing.
Anything in between isn't really meaningful—in fact, it's often worse that not inserting at all!

Use Multithreading to Query in Parallel

Keep in mind that querying a database is an 1/0O-bound process, especially if the database is
remote. If you have to execute several independent queries it's sometimes not very efficient to do
them one after another. Instead, it's wiser to make use of idle CPU cycles that are available and
have these queries execute in parallel. The easiest way to do this in Java is by using multiple
threads.

Let's return to our hypothetical example of a remote database with 50 ms of network roundtrip
time. Those 50 ms are lost on the client machine unless concurrent computation is going to be
performed. Similarly, the database server machine is idle from the time it replies until the time the
next query arrives. But by using multiple threads, you can request both in parallel and decrease the
overall execution time for the two statements by up to half.”

[Speedup of 2 in this case is the maximum per Amdahl's law.

Once again we're trading simplicity and flexibility for performance. There will be more code and
more time spent creating it, but as a result our throughput may be much better. Which is more
important? | can't say; it's something each application designer should to take into account when
building a Web application, or any application at all.

Summary

In this chapter, we looked at the basic and the not-so-basic strategies for querying a database using
JDBC. As described, JDBC allows you to use some simple classes and methods to perform all of
the basic types of queries you'll need to do. However, by understanding some of the more
advanced features of JDBC, such as connection pooling and the ability to precompile SQL
statements, you'll be able to write high-performance queries.

One of the challenges of JDBC, and SQL in particular, is simplicity. Complex data models can
often demand multiline, cryptic queries that are incomprehensible to all but the person who wrote
the code. Instead, try to identify those queries and make use of views and stored procedures as
necessary, so that the SQL written is minimal and optimized. On a large development project, with
many engineers trying to query a common database, there's the problem of consistency among
SQL queries that have the same purpose. Midway through the project, people realize that everyone
has his or her own way of navigating to a common piece of data. So the SQL being executed is not
only complex but inconsistent across the group. Changes to the data model, which are inevitable,
threaten to unleash chaos. The solution is to identify query needs and make it easy and intuitive
for engineers to get at the data they want.

Chapter 12. Web Services: The Future of Web
Applications

Throughout this book, our discussion has remained focused on technologies for building high-
performance, scalable Web applications. However, most of these technologies and concepts have
assumed an interactive-client/single-server model of application use. In the back of our minds,
we've been envisioning how an application at a single site can be made fast and able to
accommodate Internet-size growth in a reasonable way. Also, with the exception of messaging
technology, we've assumed that the main beneficiary of our efforts will be the human end user,
not another application.

But the Internet is changing. What started as a wonder of connectivity experienced visually is
quickly evolving into a high-speed autobahn of "service endpoints" and sensor data producers that
stream raw data instead of embedding it in visual metadata (i.e., HTML). Also, the consumers of
these information streams are no longer just people; they're now applications as well. This is the
future envisioned by true B2B processing.

Whether B2B companies will survive these rocky economic times is open for debate. In fashion or
not, one thing is for sure: The automated production and consumption of Web data via Internet
protocols such as HTTP is here to stay. Within this movement, some key trends are beginning to
emerge:

e The need for self-describing data: The Internet has been full of data for some time and it's
growing by leaps and bounds even as you read this. However, what's missing is metadata
and structure—Web data isn't typed, labeled, or related.

e The publication of remote Web functions calls for the ability to call functions in a remote
Web application, much as RMI allows you to access functions in remote Java applications.
This essentially means extending the distributed object model of system building to the
Web, but in a nonproprietary manner.

e Abstraction and integration of distributed Web functionality consists of repackaging and
reusing more fine-grained functionality, which might exist at multiple remote locations,
and collapsing it into one remote abstract function.

Web services technology has become the moniker for this movement. This term refers to the
collection of standards and technologies that enables Web applications to be stitched together in a
more flexible and powerful way than previously attempted. Specifically, the goal of Web services
technology is to allow Internet applications to be queried programmatically, thus enabling
application data access to be as easy as making a function call. From the consumer's standpoint,
Web services exist as a set of remote objects that can be located and queried in a platform-
independent manner, via HTTP. From the provider's standpoint, Web services enable the
application to be queried easily by other programs and agents. A key advantage of Web services is
the separation between interface and implementation. Providers can continue to implement and
deploy their applications however they like—they just need to follow some additional integration
steps for parts of their application that they want to make available as a Web service.

It's a lot like one big distributed object system, except that the technology used for deploying the
objects at any one site is flexible. One company can deploy its objects via CORBA,; another can
deploy its objects as EJBs—it doesn't matter. Once they publish these objects as Web services,
remote clients can access them without worrying about how they're implemented and deployed on
the server side. The end result will allow new applications to seamlessly and dynamically combine
functionality from all over the Web, turning the Web into a truly practical, service-oriented
distributed system.

Practical Use of Web Services

Thus far, I've given you a set of abstract reasons why Web services are an attractive idea. But
unless you've designed many Web applications or struggled with application integration issues,
these reasons may not strike a chord. Let me provide a more practical motivation.

At various points in the different projects, you may have found yourself wanting to incorporate
data from another Web site directly into your Web application. Assuming there are no ethical
problems (i.e., you're not stealing someone else's copyrighted content), the process is pretty simple.
It doesn't take more than a few lines of Java in your EJB or servlet to download a remote Web

page and repackage selected parts of it for distribution to your clients. This process of
downloading and data extraction is known colloquially as "screen scraping.” It allows you to use
another Web site as if it were a remote database.

The problem with screen scraping is that although it is easy programmatically to download HTML
from a remote Web site, it is not easy to pluck out the embedded nuggets of useful information.
That is, it is difficult to reliably separate substance (the data you want) from style (the rest of the
HTML). In addition, this process also suffers from the fact that the data you pluck isn't typed (i.e.,
identified as date, number, or character) or self-describing. In short, it's unstructured. You have to
classify each piece of data manually and decide how it should be extracted from the
accompanying HTML.

What most people really want is to be able to make a function call on the remote site that gives
them the data they want. Unlike the unreliable and messy process of screen scraping, calling a
remote function is simple and allows the resulting data to be returned in a structured and typed
form. Thus, for the consumer, life is good.

Such potential is also attractive to providers (i.e., owners of the Web applications being scraped).
A provider who is in partnership or has an information-sharing agreement with another
organization may have a keen interest in making sure that its Web data is programmatically
accessible. In addition, having remote clients call functions instead of screen scraping enables
providers to focus on returning only what is requested. Instead of what may be a costly process of
dynamically generating beautiful HTML (that will never be seen by the automated client), a
provider's server can focus only on what is needed—delivering the underlying data in demand.

What Exactly Is a Web Service?

The definition | provided earlier for Web services essentially describes the technology swirl that
surrounds them. However, | haven't really explained what a single Web service is or how it's
implemented.

At its core, a single Web service is a remote component containing functionality that can be
invoked using Internet protocols, most notably HTTP. The data communicated to and from it is
contained in self-describing XML documents. The functionality of a given service can be
implemented in any language (Java, C++, C+, Visual Basic) with any object deployment
technology. The only requirement is that it be accessible via Internet protocols such as HTTP. The
client doesn't have to worry about how the service is implemented.

Thus, we can think of a Web service as functionality accessible to the client that is

e Language neutral: The language used to implement the client does not have to match the
language used to implement the service.

e Platform neutral: HTTP is the great platform equalizer.

e Object-technology neutral: The client doesn't know or care how the object is deployed or
managed.

Because access to Web services is accomplished via Internet protocols such as HTTP, a Web
service automatically benefits from the following:

e Firewall and proxy compliance: One of the ongoing problems with integrating
applications over the Internet is that the network infrastructure between two or more

companies prevents the use of proprietary protocols and network ports in remote object
invocation and thus application integration. Specifically, firewalls and proxies tend to get
in the way because many are designed to ensure that only port 80 (HTTP) traffic passes
through their membranes. Having services accessible via HTTP affords these services that
same entry and doesn't require upgrading of your network hardware.

e Automatic HTTP authentication: Since this feature is part of the HTTP protocol, any
HTTP-based communication can benefit from it.

e Encrypted communication via SSL: The combination of SSL and HTTP is a proven
solution for secure transmission of data across the Internet; as deployed over Internet
protocols, Web services get this option free.

e HTTP 1.1 persistent connections: This is an automatic performance enhancement to
HTTP-based communication that is part of the protocol and requires nothing of Web
service providers or consumers.

As a component technology, Web services enjoy the benefits of

e Loose coupling: There's no need for the client to be tightly integrated with the server or its
component technology. Communication is simple, founded on XML-style messaging
over a network.

e Programmatic access: Right now, it's possible to use Web browsers to execute remote
functions, such as checking weather temperatures, stock prices, and loan rates. However,
we normally access this information visually. It's difficult, if not impossible, to write code
that programmatically accesses that functionality—in particular, the data returned (i.e., an
HTML Web page) must be reliably parsed and the embedded data manually typed.
However, intelligent agents and other computer programs want an easy way to access
remote functionality programmatically, and Web services provide that.

Nearly all the features suggested by the points just listed are summarized in Figure 12-1, which
shows how a remote function that generates price quotes can be remotely accessed. More
specifically, clients both human and automated can invoke remote object functionality via Internet
protocols such as HTTP, making requests and receiving responses. All they need to know is where
the functionality they want is located. Communication of input and output is accomplished in a
platform-independent manner (SOAP) and its content is encoded using a self-describing markup
language (XML).

Figure 12-1. Web service features

Remote Function

R':Pl:’- double CetPriceluote (string product)
S {
<pricesd50, 00</prico= double thePrice;
Request ©oe s Ly
i Ly ‘ thefrice =
athects : return thePrice;
namiz GetPricefuote</ nano > ‘.‘ I }
CPArAMETErSs ' i
sproduct=Camera</products s - o
</parameterss . o ot
< mar thiod . : -I|I
_____ % Y E “_' -
L E T —_— . ~"'._ k .".. *_1-“'
- o] Web
Cliem i | servige
[program wser)
HTTP
HTTP provides: Server

t I-'in:u;|ll-|1m.\c:. SUpport
 Authentication & encryplion (S5L)
+ Built-in performance oplimizations

Now that we have a rough idea of what a Web service is and how it's accessed, let's survey some
of the technologies that are essential to its publication and use.

Web Services Technologies

Web services technology isn't being pushed by any one company. Instead it's a common vision
communicated by participants from a number of companies—from rivals like Microsoft and Sun
to relative unknowns like UserLand and young upstarts like Ariba. This vision has been translated
into a set of continually evolving standards, much like the evolving standard of HTML.
Standardization is coordinated by the World Wide Web Consortium (W3C). However, those
actually implementing Web service technologies based on W3C standards vary from very small
open-source groups to very large corporations.

A Quick Tour

The purpose of this section is to survey the Web services landscape. Specifically, a brief definition
of the individual technologies is provided so that you can see what they're all about and how they
fit together. In the following sections, | provide more detail about each technology.

XML

The Extensible Markup Language (XML) happens to be the de facto language of Web service
technology. However, it also has the more general purpose, within the confines of Internet
technology, of simply making data portable. Like HTML, XML is a markup language that has its
roots in SGML; thus, it's a specification for "tagging" documents in a meaningful way. Unlike
HTML, which provides only a means for visualizing data, XML allows data to be self-describing
and structured and so is meant primarily for the interchange of data, not for its visualization
(although that's supported too). XML is human legible (i.e., it looks very similar to HTML and
can be read by anyone) and is the language by which Web service requests are issued and
corresponding responses are delivered.

SOAP

The Simple Object Access Protocol (SOAP) describes how to invoke a Web service and process
its response. It's thus very similar to distributed object technologies, such as CORBA and EJB, but
consists of a text-based protocol, which makes it an interoperability abstraction above them. With
SOAP, communication between caller and callee involves an exchange of SOAP envelopes, which
contain XML-based parameters of the request, how to process it, and rules for how to transform
data within the envelope. XML-based SOAP can be transported via HTTP and RPC.

WSDL

The Web Services Description Language (WSDL) describes a Web service. Thus, it functions
similarly to IDL in CORBA or an interface in Java in that it represents a declaration (or guarantee)
of functionality that is unrelated to its implementation. WSDL is generally considered a more
flexible approach to the IDL or Java style of publishing interfaces because it adds a layer of
indirection that gives designers more options when it comes to implementation.

UDDI

The Universal Description, Discovery, and Integration (UDDI) effort facilitates the registration
and lookup of Web services. More specifically, it makes it easy for providers to publish available
functionality and for consumers/users to locate remote functionality. Thus, UDDI operates
somewhat like a registry or a name server for a distributed object system—it eliminates the need
for clients to worry about where a service is and instead provides yellow-page-like lookup services.
In conjunction with other technologies, it extends the traditional notion of a name server by
including metadata about each service, thus encouraging the "discovery" of services.

Putting It All Together

The so-called Web services "technology stack™ is shown in Figure 12-2. As you can see, each part
of the stack has a different role. HTTP and other transport mechanisms allow data to be
communicated. SOAP is a platform-independent means for the invocation of a remote service.
WSDL provides for the flexible declaration of services. Finally, UDDI allows services to be
registered and looked up.

Figure 12-2. The Web services technology stack

Registration/Lookup - UDDI

B Specified
Definition - WSDL in XML

Invocation - SOAP /

Transport - HTTP, RPC, etc.

Figure 12-3 represents another way to understand the Web services, this time in terms of each
technology's purpose and the interaction of the different parts of the technology stack. As the

figure shows, providers first code their service using languages such as Java, C++, and Visual
Basic. Then they define interfaces to these services using WSDL. Once defined, the service can be
published via UDDI APIs.

Figure 12-3. Using Web services technologies

Consumers Providers

Services

-
[

LD upDl

Locate Publish

"

WSIL

Java, C++,
Visual Basic,
elc.

Define

Consumers first locate or discover a service that they want via UDDI. They can then interact with
that service directly by sending SOAP requests, which are answered by SOAP replies. Not shown
in the figure is the language in which each technology is accomplished: As we've already
discussed, that language is XML.

XML: Self-Describing Data

The Extensible Markup Language is a flexible language that allows data to be self-describing. It's
a subset of the Standard Generalized Markup Language, as is HTML. XML is distinct from
SGML in that it's a simple solution for enabling data to be typed and visually represented. SGML
is a more general (but complicated) meta-language for marking up documents in a device-
independent and system-independent way. XML is also distinct from HTML in that it's extensible
and its focus is on the structural representation of data. In contrast, HTML has a limited tag set
and focuses on the visual representation of data.

Listing 12-1 shows a sample XML document. It contains information about a set of old arcade-
style video games for sale, including data about available models and current prices.

Listing 12-1 A Sample XML Document
<?xml version="1.0"?7>
<gamelist>
<game>
<name>Gorf</name>
<mode l>stand-up</model>
<price>500.50</price>
</game>
<game>
<name>Galaga</name>

<model>cocktai l</model>
<price>1199.99</price>
</game>
</gamelist>

From this example, we notice the following:

e Structure: For example, the name, model, and price are child elements of the game
element.

e Extensibility: The tags aren't part of a standard set—they correspond to our own
application schema.

Listing 12-1 is considered well formed because it meets the formatting requirements of the XML
standard. However, it's unclear if it's valid. To ensure validity, we need to check that the tags and
their relationships are legal within the relevant schema. For that, we need another kind of
document—a DTD.

DTDs and Schema Languages

Like SGML, an XML document is typically associated with another document, called a schema
definition. The general purpose of a schema definition is to ensure validity of the documents that
reference them, in terms of allowable entities (descriptors of data) and the relationships between
them. The Document Type Description (DTD) is the most popular schema language used to
generate schema definitions.

Listing 12-2 contains an example of a DTD that describes each element in the earlier XML
document on arcade games (Listing 12-1). Specifically, this DTD introduces each element, types
each element, and relates elements to each other.

Listing 12-2 A Sample DTD

<IELEMENT gamelist (game)+>
<IELEMENT game (name, model, price)>
<IELEMENT name (#PCDATA)>

<IELEMENT model (#PCDATA)>

<IELEMENT price (#PCDATA)>

For example, Listing 12-2 communicates the following information:

e Each gamel 1st element can have one or more child game elements. The plus sign
indicates one or more.

e Each game element consists of name, model, and price child elements.

e Each name, model, and price element contains character data (i.e., characters
related not to any schema element but to application data).

A DTD can be encoded in a separate file or embedded in an XML document. In the former case,
Listing 12-1 can be augmented as shown in Listing 12-3. In the case where the DTD is embedded,
our document would simply include the entire DTD shown in Listing 12-2.

Listing 12-3 An XML Document That References a DTD
<?xml version="1.0"7?7>
<IDOCTYPE gamelist SYSTEM "gamelist.dtd>
<gamelist>

<game>

<name>Gorf</name>
<mode I>stand-up</model>
<price>500.50</price>
</game>
<game>
<name>Galaga</name>
<model> Cocktail</model>
<price>1199.99</price>
</game>
</gamelist>

Listing 12-4 An XML Document with an Embedded DTD

<?xml version="1.0"?7>

<IDOCTYPE gameListDoc [
<IELEMENT gameList (game)+>
<IELEMENT game (name, model, price)>
<IELEMENT name (#PCDATA)>
<IELEMENT model (#PCDATA)>
<IELEMENT price (#PCDATA)>

1>
<gameList>
<game>
<name>Gorf</name>
<mode l>stand-up</model>
<price>500.50</price>
</game>
<game>
<name>Galaga</name>
<model>cocktail</model>
<price>1199.99</price>
</game>
</gamelList>
Parsing XML

There already exist several specifications and Java APIs for parsing XML. Arguably, the two most
important XML parsing technologies are the Document Object Model and the Simple API for
XML Parsing (SAX). Both are programmatic ways to access XML documents—they differ
primarily in that the former is a standard pushed by the W3C and the latter has become (implicitly)
the de facto standard interface for event-driven parsing, evolving from a collective effort by
participants of the XML-DEV W3C mailing list.

DOM

The Document Object Model (DOM) is a W3C-coordinated effort to define a set of platform- and
language-neutral programmatic interfaces to document data. In W3C lingo, a "document” is a very
general concept; HTML and XML documents are considered subclasses.

The DOM Working Group of the W3C publishes DOM specifications in terms of levels. There are
currently three levels of specifications: DOM Levels 1, 2, and 3. DOM Level 2 is the current
specification, and DOM Level 3 is under development. More comprehensive information about
the status of W3C work on DOM can be found at http://www.w3.0rg/DOM/Activity.html.

The DOM represents documents as trees; a top-level node has children, each of which can have
children, and so on. For example, Figure 12-4 shows the DOM representation of the XML in
Listing 12-4. Notice that elements are represented with boxes and data values are represented with
circles.

Figure 12-4. DOM representation of an XML document

gamelist
///\
game game
//|\ //’[\
name mode1 price name model price
/ \ A R
Corf stand-up - 500.50 Galaga cocktail 1199.99

The purpose of representing a document as a tree is to enable easier programmatic access to the
document and to separate useful application-oriented data from any accompanying metadata. Once
you have parsed an XML document as a DOM tree, you can use whatever language-specific DOM
binding you choose to access and update that document. The W3C publishes abstract DOM
interfaces as well as specific bindings for Java and C++.

One key thing to remember about DOM-based XML parsing/processing, as shown by Figure 12-4,
is that a tree must be created before access to the document is possible. Thus, an XML document
can be accessed only in a nonstreaming fashion, and enough local resources (i.e., memory) must
exist in order to represent and process large documents.

SAX

The Simple API for XML Parsing is an event-driven parser interface for XML. You use the SAX
API to build a set of "callback functions" that are triggered as the document is being parsed. Thus,
in contrast to the DOM style of parsing, you don't have to wait for a tree to be built before you
access document data. Instead, you have access to document elements and their data during the
parsing process. This is an important advantage when extracting data from very large XML
documents or when you want to process XML documents in a streaming fashion (i.e., as the
document is retrieved gradually from a remote source).

A positive side effect of not having a DOM tree is that you do not have to devote memory to
storing the complete tree for documents that you will access only partially. Instead, since data
streams in and out of a SAX parser, memory demands are relatively consistent. This consistency
and resource demand can again be a major advantage when querying/parsing very large
documents that may exceed available memory.

A disadvantage to the SAX style of parsing is that you do not have access to a structure like the
DOM tree at the end of the parsing process. You see the elements once—as they are parsed—and
that's it. Unless you build the tree yourself (or reparse using DOM), you won't be able to query
one. Thus, many people believe that SAX parsing is well suited for processing one-time queries
and DOM is better suited for processing multiple queries.

Note that SAX is a public domain API. It is currently at version level 2. As of this writing, it
continues to be available at http://www.megginson.com/SAX/index.html.

XML Parsing with Apache Xerces 2.0

One example of an XML processor is Apache Xerces 2.0, which supports both DOM and SAX
APIs. Xerces 2.0 is the latest in a series of parsers supported by the Apache project. (See
http://www.apache.org/xml for more information.)

Listing 12-5 shows how we can use Xerces to parse the XML in Listing 12-4 under a DOM
parsing methodology.

Listing 12-5 Parsing Using the DOM Approach

1 import org.apache.xerces.parsers.DOMParser;
2 import org.w3c.dom.Document;

3 1mport org.w3c.dom.Node;

4 1mport org.w3c.dom.Element;

5 import org.w3c.dom.NodeList;

6 import org.xml._.sax.SAXException;

b

8 1mport java.io.lOException;

9

10 public class SimpleDom

11 {

12 private Document m_doc;

13

14 public SimpleDom (String a_fileName)
15 {

16 /* Create the parser */

17 DOMParser dparser = new DOMParser();
18

19 /* Parse the document */

20 try {

21 dparser.parse(a_fTileName);

22 m_doc = dparser.getDocument();
23 }

24 catch (SAXException e) {

25 System.err.printin(e);

26 System.exit(-1);

27 }

28 catch (10Exception e) {

29 System.err.printin(e);

30 System.exit(-1);

31 }

32 3}

33

34 private Document getDocument () { return m_doc; }
35

36 /* Recursively print out element nodes */

37 private void printNodeAndTraverse (Node node)

38 {

39 /* Print only element nodes */

40 iIT (node.getNodeType() == Node.ELEMENT_NODE)

41 System.out.printIn("’*NODE = "+node.getNodeName());
42

43 /* Call recursively for each child */

a4
45
46
a7
48
49
50
51
52
53
54
55
56

NodeList childList = node.getChildNodes();
iIT (childList = null) {
for (int 1=0; i< childList.getLength(); i1++)
printNodeAndTraverse(childList.item(i));
}

}

public static void main (String[] args)

{
/* Create the DOM */

SimpleDom d = new SimpleDom(args[0]);

/* Traverse all children and print out the names of

the nodes */

57
58
59 }

d.printNodeAndTraverse(d.getDocument());
he

The main things to notice here are

Line 17, where the parser is created

Line 21, where the entire document is first parsed into a tree data structure

Lines 37 through 49, where the document is recursively walked with the element nodes
being output in the process.

If we compile and run this code via

% java SimpleDom games.xml

its execution results in

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

gamelList
game
name
model
price
game
name
model
price

To parse the same XML document using SAX, the implementation in Listing 12-6 is required.

Listing 12-6 Parsing Using the SAX Approach

OCO~NOOUIAWNE

import org.apache.xerces.parsers.SAXParser;
import org.xml_sax.Attributes;

import org.xml_sax._helpers._DefaultHandler;
import org.xml_sax.SAXParseException;
import org.xml_sax.SAXException;

import java.io.lOException;

public class SimpleSax

extends DefaultHandler

10 {
11 public SimpleSax(String a file)

12 {

13 /* Create the parser */

14 SAXParser sparser = new SAXParser();
15

16 /* Set the content handler */
17 sparser .setContentHandler (this);
18

19 /* Parse */

20 try {

21 sparser .parse(a_file);

22 }

23 catch (SAXException e) {

24 System.err.printin(e);

25 }

26 catch (10Exception e) {

27 System.err.printin(e);

28 }

29 3}

30

31 public void startElement (String a uri, String
a_localName,

32 String a _gName, Attributes a_attributes)
33 {

34 System.out.printIn("’*"NODE = ""+a_localName);
35 }

36

37 public static void main (String[] args)

38 {

39 new SimpleSax(args[0]);

40

41 %}

The key parts of this code are

e Lines8and 9, where our SimpleSax class extends the SAX Defaul tHandler
class

Line 14, where the parser is created

Line 17, where we let the parser know what the handler (our class) will be

Line 21, where we start to parse the file (not completed immediately)

Lines 31 through 35, the callback function, which is invoked per XML document element,
here during the execution of the parse () call made in line 21

In a comparison, we notice that DOM appears very straightforward and simple, although it's a bit
longer than SAX. However, at least we can easily envision the process of execution. In contrast,
SAX forces us to extend a handler and possibly implement some of its methods (i.e.,
startElement()). Also, our processing needs are possibly complicated by SAX's event-
driven basis. In particular, SAX often requires data structures that keep state information. For
example, if the goal of our XML parsing is to count if there are at least two games in the
document, we have to keep a global counter that increments every time the SAX callback is called.
This example is admittedly simple, but it should make it clear that SAX-based processing, while
sometimes more efficient, is inherently more complex than DOM-based processing.

XML-Related Technologies

I'm only touching the tip of the iceberg of XML in the summary given here, but it's enough for the
discussion later in this chapter. What should be minimally clear is that XML

e Enables data to be portable: Using a DTD, an XML document can be interpreted by any
processor, on any platform.

e Provides structure, such as hierarchical information.

e Is"human legible": Unlike other binary-encoded documents, we can easily see and make
sense of what's contained in an XML document.

e Isextensible: You can define and use whatever schemas make sense for your needs.

e Issimply an open standard and is not owned by one company.

These five basic points make XML an exciting language for data interchange between enterprises.
XML provides the structure and extensibility that HTML lacks, and it separates data from
presentation. It's also easy to debug, unlike more cryptic data interchange technologies like
Electronic Data Interchange (EDI).

Communication to and from Web services, as well as the advertisement of those services, is
phrased in XML. Thus, it's important that we not only understand XML, but also consider issues
related to its efficiency.

Developing Web Services

There's nothing magical about developing a Web service. You code one as you would the
implementation of a distributed object, like a CORBA object or an EJB bean class. In fact,
CORBA objects and EJB components can be registered as Web services. The magic comes in
during deployment. By using other technologies in the Web services technology stack, you can
make the functionality of your service locatable and accessible in a platform-independent manner.

In this and the following sections, we'll explore a single example: Suppose we want to implement

our price-quoting function. To keep things simple, suppose that products are uniquely identified as
strings. We'll use Java as the language for implementing our service and have the core application

logic of our price quote component include code to the effect of:

public double GetPriceQuote(String a product) {
double thePrice;

i:r-léPrice = ... // lookup price

return thePrice;

by

Now that we've defined what this remote functionality does, let's examine how to describe it as a
Web service.

Describing Web Services with WSDL

We can think of WSDL as an XML-based means for expressing the interface to a given Web
service. Describing a service using WSDL boils down to abstractly defining service functionality
and then binding it to a physical protocol.

The W3C report on WSDL, online at http://www.w3c.org/TR/wsdl.html, is even more general
than this, stating that a Web service is the process of specifying a set of network endpoints

operating on messages that contain either document- or procedure-oriented information. That's a
mouthful, and before it can make any sense, we need to discuss endpoints and illuminate the
distinction between logical and physical representations of a service.

First, as the text obviously implies, we need to get used to the notion of an "endpoint.” An
endpoint, as far as the WSDL standard goes, identifies a single piece of functionality—for
example, the price-quoting mechanism we discussed earlier. The W3C report states that a service
is a collection of these endpoints, which essentially means that a single Web service can actually
be composed of more than one piece of functionality (i.e., method).

The report also makes a distinction between “concrete™ network endpoints and "abstract™
endpoints. Concrete endpoints are real (physical) pieces of service functionality; abstract
endpoints are logical descriptions of functionality. The difference between the two is similar to the
difference between tables and views, the latter (like abstract endpoints) being at higher level of
abstraction.

Now that we understand something about how WSDL views a Web service, let's consider what
kind of service information it allows us to specify. To do this, we need to think of a Web service
description as a set of definitions.

Definitions
Each definition in a WSDL document is one of the following:

e Message: the abstract definition of data being communicated to a service; each of its
embedded parts is associated with a specific WSDL type. For example, two messages
related to our price-quoting service might be ProductPriceRequest and
ProductPriceResponse.

e Type: the named data structures that are typically message specific and map to a valid
type system (such as the W3C XML schema recommendation found at
http://www.w3.0rg/TR/xmlschema-2). More simply, you can define your own types, such
as Price, that map to existing types, such as xsd: Float.

e Operation: the abstract description of the action provided by the Web service in terms of
its input and output messages. The notion of an operation is important because it
describes a specific action and allows various bindings to be mapped to it (see the
Binding item below). Two operations for our price-quoting service could be
GetPriceQuote and GetBulkDiscountPriceQuote.

e Port Type: a named set of abstract operations. The port type also indicates the nature of
the dialog between the caller and the service—for example, request-response, or one-way.

e Binding: the specification of access to operations of an existing port type using a
particular protocol. SOAP and HTTP are valid protocols. We can have a
PriceQuoteSoapBinding that supports price quotes via SOAP. Think of a
binding and its operations as an instance (implementation) of a particular port type and its
abstract operations.

e Port: a named association of a network address with a binding. A caller need know only
the port and the binding when making a request of a service.

e Service: the combination of related ports. A service comprises one or more endpoints.
Like an object that can have many methods, a service can have many ports.

Example

To get a better feel for WSDL, let's look at one sample service—the price-quoting service we
hinted at earlier. Suppose that this service consists of a single operation that computes price quotes
for a given product. Specifically, given a string that indicates the name of the product, this
operation will return a floating-point value that indicates the product's price.

Given this service specification, we'll see how to encode the corresponding service description
using WSDL.

Messages and Types

First things first. We need to think about the types and messages being communicated. In terms of
types, we know that the client/service interaction will involve the client sending a product name (a
string) and receiving a price (a floating point). Thus, we can define two logical types that map to
physical types. In particular, let's name the request message ProductPriceRequest (a
string) and the response message ProductPriceResponse (a floating point).
Correspondingly, part of our WSDL document will contain information about the types.

<types>
<schema

targetNamespace=""http://www.example.com/pricequote.xsd"

xmIns="http://www.w3.0rg/2000/10/XMLSchema’">

<element name=""ProductPriceRequest'>
<complexType>
<all>
<element name="‘productName"

type="'string'/>

</all>
</complexType>
</element>
<element name="ProductPriceResponse'>
<complexType>
<all>
<element name="price" type="float"/>
</all>
</complexType>
</element>
</schema>
<types>

Next, it's a simple matter to associate these types with the logical messages our service operation
will send and receive:

<message name="‘PriceQuotelnput'>

<part name="body""
element="xsdl:ProductPriceRequest'/>
</message>

<message name="'PriceQuoteOutput'>

<part name="‘body"
element=""xsdl1:ProductPriceResponse'/>
</message>

Port Types and Bindings
With types and messages defined, we can move on to describing the operations of our service. To

keep things simple, we'll worry about only one logical operation—the ability to get a price
quote—which we'll name GetPriceQuote.

First, we need to define a logical port—a port type—that receives one message as input and one as
output.

<portType name=""PriceQuotePortType'>
<operation name="GetPriceQuote'>
<input message=""tns:PriceQuotelnput'/>
<output message=""tns:PriceQuoteOutput”/>
</operation>
</portType>

Next, we want to define at least one physical binding to that logical port—an actual mechanism
for accomplishing the abstract operation defined by it. The following definition demonstrates how
to create a SOAP binding (more about SOAP shortly) for our service that maps to the
GetPriceQuote operation we previously defined.

<binding name="PriceQuoteSoapBinding"
type=""tns:PriceQuotePortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http'/>
<operation name="GetPriceQuote'>
<soap:operation

soapAction="http://www.example.com/GetPriceQuote"/>

<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>

</binding>
Ports and Services

Finally, it's time to define and name the service itself. As part of that definition, we want to create
a series of physical ports that correspond to service functionality. Defining each physical port
requires that we associate it with a physical binding:

<service name="PriceQuoteService'>

<documentation>The Price Quote Service</documentation>

<port name="PriceQuotePort"
binding=""tns:PriceQuoteBinding'>

<soap:address

location="http://www.example.com/pricequote' />

</port>
</service>

Invoking Web Services with SOAP

At this point, we have a rough idea of what the language for communicating with a Web service
will be like. A service is associated with a binding, and clients who use the binding communicate
with the service by sending named, text-based messages. The service parses these messages as
requests and returns replies, also in named, text-based messages. Now it's time to find out more

about one particularly important binding—SOAP—and understand some of the details involved in
using it.

You can think of SOAP simply as the distributed object communication protocol for the Internet.
The general idea is to allow programmatic access to remote, Internet-based functionality via
HTTP. Although our discussion will focus on SOAP as it's deployed over HTTP, SOAP is indeed
a higher-application-level protocol and makes sense as deployed over other communication
substrates, such as RPC.

The W3C acknowledgment of SOAP (http://www.w3.0rg/TR/soap) breaks the protocol into three
basic parts:

e The SOAP envelope, which defines an overall framework for expressing what's in a
message, who should deal with it, and whether it's optional or mandatory

e The SOAP encoding rules, which define a serialization mechanism that can be used to
exchange instances of application-defined data types

e The SOAP RPC representation, which defines a convention that can be used to represent
remote procedure calls and responses

Our focus will be exclusively on the first part—the envelope—since our goal is to understand the
general nature of the protocol. Books devoted to SOAP can provide more information (see
Suggested Reading) about SOAP rules and RPC representation.

How SOAP Works

Figure 12-5 shows how SOAP works in the context of our price-quoting example. As the figure
shows, clients post SOAP request messages to servers. These messages contain information about
the remote method being invoked and any input data to that method (in serialized format). Servers
reply with SOAP messages that contain the output values framed in a method response. In the
figure, a client is requesting prices for a camera and the corresponding server is responding.

Figure 12-5. Basic SOAP based communication

PriceQuotelnput Message

‘ Method
.‘::U.ﬁ} P Requesl ProductPriceRequest
Envelope Parameters

Product = Camera

o ™

Chient Server
Method
SOAP Reply ProductPriceResponse
Envelope) Return Values

Price = $450.00

PriceQuoteOutput Message

SOAP messages are contained in XML documents that serve as envelopes. Each envelope consists
of an optional header and a required body. A SOAP header typically contains metadata about the
exchange (e.g., a transaction identifier). It's also a means for extending the protocol, but in a
decentralized manner. The body focuses on the data itself, namely:

e The remote method name (or response name)
e The request (or reply) parameters
e The serialized data

Figure 12-6 is essentially a detailed version of Figure 12-5. Notice that the communication is
phrased in XML and that the data is self-describing and serialized. Also notice how the server side
processes the request: Using a SOAP translator to comprehend the request, it rephrases it into
server-side calls (some of which may access a database). The circles in the figure indicate
instances of objects—for example, CORBA or EJB instances—that are used during request
processing.

Figure 12-6. Details of SOAP-based communication

PriceQuotelnput Message

<S0AP-ENV: Envelope
<50AP-ENV: Body=>

SOARP =m: ProductPriceRequests
Request <product=Camera</product>
Hn\-‘glﬂpc </m: ProductPriceRequest:

</SOAP=ENV: Body=>
</SOAP=ENV: Envelopex

f

SOAP :
Translator 5

<SOAP=ENV: Envelope .
<S0AP-ENV: Body> 1

SOAP <m: ProductPriceResponses
Reply <prices-450.00</price=
Envelope </m: ProductPriceResponse:

</S0AP-ENV : Body=

</SOAP=-ENV: Envelopes>

PriceQuoteOutput Message

Although Figure 12-6 only shows the simple marshalling of strings and floating-point types
between client and server, SOAP supports more complex (compound) data types, such as arrays.

Using SOAP over HTTP

SOAP over HTTP solves a number of problems with prior attempts to unify the Internet's
collection of distributed objects:

e Nonproprietary, committee-based standard: Unlike proprietary remote communication
technologies such as RMI and DCOM, SOAP is open and managed by a number of
cooperating corporations and organizations.

e Simple and easy to debug: In contrast to binary-based protocols (e.g., IOP), SOAP
communication involves text-based messages. This makes communication errors easy to
debug on both client and server sides. In contrast, older interchange protocols such as EDI
not only are cryptic to debug, but often require special (proprietary) client software to
process. Thus, the simplicity of SOAP makes it easy to deploy and maintain.

e Deployment over HTTP leverages efficiency, security, and ease of integration: As you
already know, the most recent version of HTTP contains a number of built-in
performance optimizations (e.g., persistent connections) to make up for some of its
inefficiencies. It also contains mechanisms for authentication and encryption. By
deploying SOAP over HTTP, we can leverage all of these existing features. Furthermore,
there's an important advantage in ease of integration. One of the difficulties in connecting
applications is getting around firewalls. In particular, use of a TCP port other than 80 (the
default HTTP port) can cause integration headaches. By using SOAP over HTTP, we
avoid the problem altogether in addition to retaining the security and efficiency
challenges of the protocol.

To convince you that SOAP is very simple and straightforward to use and debug over HTTP, let's
briefly look at it in action. In particular, consider the exchange shown in Figure 12-6 between
client and server.

Using HTTP, the client simply requests a product price quote via

POST /GetPriceQuote HTTP/1.1

Host: www.example.com

Content-Type: text/xml; charset="utf-8"
SOAPAction: "http://www.example.com/GetPriceQuote"”

<SOAP-ENV:Envelope
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"
SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
">
<SOAP-ENV:Body>
<m:ProductPriceRequest
xmIns:m="http://www.example.com">
<product>Camera</product>
</m:ProductPriceRequest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The server simply replies with

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: (whatever)
<?xml version="1.0" ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"
SOAP-
ENV:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/
/s
<SOAP-ENV:Body>
<m:ProductPriceResponse
xmIns:m="http://www.example.com'>
<Price>450.00</Price>
</m:ProductPriceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

One additional note about these requests and replies. Notice that both messages contain some
metadata prior to the body of the message. The first line

xmlns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"
refers to the structure of the envelope itself (again, self-describing data). The second line

SOAP-
ENV:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/
Il/>

references the types used by the SOAP message. SOAP supports basic types (like integer and
floating point) as well as more complex objects and extensibility.

Registering Web Services with UDDI

Earlier, we saw how a Web service can be defined using WSDL. Now we need some way to
publish its existence to the rest of the world. Admittedly, this isn't necessary if the people using
your service explicitly know that it exists and how to find information about it. However, it has
been suggested that in the future such a scenario will be the exception, not the rule.

The big picture—since the early days of distributed object technologies like CORBA—is that it
will be possible for clients to discover your service automatically based on their general needs.
Imagine that some need functionality to, say, convert grams into pounds and that your service
provides that computation logic. These clients will be able to locate your functionality just as they
use a search engine to locate documents containing a set of keywords.

This is where UDDI comes in. By using UDDI technologies and protocols, you can publish the
availability of your services to the UDDI registry. This registry is widely distributed among many
peer registries. However, you need publish your service to only one registry; the replication of its
availability information is automatic. Clients can then discover that functionality by querying a
local UDDI registry.

Thus far, I've been saying that UDDI essentially provides a database of services. That makes it
easy to visualize, but let's get a little more specific. UDDI actually provides an XML schema that
supports four information types:

e Business information: metadata about the business itself (name, description, etc.)

e Service information: a list of the services provided by the business, usually consisting of
high-level descriptive information (i.e., the type of functionality being provided)

e Binding information: technical details on how to access the service using some Internet
method (e.g., SOAP)

e Specification of services information: metadata about the binding information, for
example, pointers to the specification of that method. (This type of information is also
known as the binding mechanism "fingerprint”; it allows a client to identify the origins of
the binding technology in order to discover and reason about compatibility with it.)

Figure 12-7 shows how the parts of the schema relate. Notice that business entities offer one or
more services, each service has one or more binding methods, and each binding method is
associated with a single set of binding metadata (or a template).

Figure 12-7. UDDI information types

UDDI XML

Schema Object Representation
: <businessEntity>
Business S Name, category, description,
Information contacts, ete.
_Esun'ufu: chusinqss&nrv'ict?)) .
Information Business description of service

The UDDI information types are used to provide phonebook-like capabilities to clients. More
specifically, clients can query three groups of information:

e White pages: business contact information
e Yellow pages: information related to the categorization of businesses and services
e Green pages: technical information about available services

Public UDDI registries are deployed on operator sites. Communication with these sites is
accomplished via SOAP over HTTP. The spirit of the operator site concept is that simple querying
and interaction with a hosted UDDI registry are available to anyone; that is, there should be no
charge for basic services. Multiple operator sites can be used to replicate UDDI information so
that querying and access are both scalable and reliable.

Standards

UDDI is developed and maintained by several individuals who represent a large group of
corporations, including Microsoft, Oracle, and IBM. Together, these companies publish UDDI
standards and address issues via a single Web site: www.uddi.org. This site contains a wealth of
information on UDDI and is currently the best place to get the latest news on the standard and its
associated APIs.

The UDDI APIs

As we discussed earlier, programmatically publishing to and querying from UDDI requires a
compatible API. In June 2001, the UDDI 2.0 Programmer's APl was published. It consists of two
important parts: inquiry and publishing.

Table 12-1. Summary of the UDDI 2.0 Inquiry API

Method Purpose

Table 12-1. Summary of the UDDI 2.0 Inquiry API

Method Purpose
find_binding Locates bindings for a spexcific business service
find _business Locates information about one or more businesses

find_relatedBusinesses Locates businesses related to the business entity

specified
find_service Locates specific services for a business entity
find_tModel Locates metadata about a particular binding
get _bindingDetail Gets detailed information about a binding
get_businessDetail Gets detailed information about a business

get businessDetail lExt Gets extended details about a business
get_serviceDetail Gets details about a service

get_tModelDetail Gets details about metadata for a particular binding

The Inquiry API

This API contains methods for querying the four types of information described earlier. To get a
sense for the details related to it, take a look at the methods supported by UDDI Version 2.0 in
Table 12-1.

Notice that they're broken down into two basic categories:

e Tind_xx methods locate "overviews" about each of the four types of information
shown in Figure 12-7.

e get_xx methods return full details of the overviews associated with the Find_xx
methods.

These methods were designed to target the type of querying service consumers are expected to
need and to promote efficiency. For example, a client wants to query a business entity for the
services it provides without getting back a huge amount of detail. Instead, overviews of the
services are returned and the keys associated with them can be used to locate more detail if
required. Again, think of the search engine paradigm, where the response you get from a query
simply shows the summarized (or in-context) query results. To access any of the details (i.e., the
Web page), you have to follow the given link.

The Publishing API

Just as the inquiry API enables UDDI querying, the publishing API enables UDDI updates. This
class of UDDI API functions is summarized in Table 12-2.

Table 12-2. Summary of the UDDI 2.0 Publishing API

Method Purpose

add_publisherAssertions Adds information that relates business entities to

Table 12-2. Summary of the UDDI 2.0 Publishing API

Method

delete_binding
delete_business

delete_publisherAssertions

delete_service
delete_tModel

discard_authToken

get_assertionStatusReport
get_authToken

get_publisherAssertions
get_registeredinfo

save_binding
save_business
save_service
save_tModel

set_publisherAssertions

Purpose
each other
Deletes a service binding entry
Deletes a business entry

Deletes information that relates business entities
to each other

Deletes a service entry
Deletes metadata about the binding for a service

Invalidates a previously issued authentication
token

Gets information on pending assertions
Requests an authentication token

Gets information about relationships between
entities

Gets a synopsis of all registered information
managed by a particular individual

Updates a service binding entry
Updates a business entity entry
Updates a service entry

Updates service binding metadata

Resets relationship information for a particular
publisher

Again, the meanings and purpose of these methods are obvious. In particular, we can identify the

two types of methods we expected to see:

e delete xx methods delete entities, services, bindings, and templates.
e Save_ XX methods update entities, services, bindings, and templates.

We also see the following:

e Assertion-related methods: Assertions are the UDDI mechanism for relating two or more
business entities. For example, if company A wants to indicate that it's the parent of
company B (i.e., a parent/child relationship), it can use these methods to update and query

that information.

e Authorization token methods: Since updating and deleting UDDI information for a
particular business is a constructive/destructive activity, administrative-style login
methods are supported by the UDDI publishing API. Only once an authentication token
has been issued can an administrator make use of any UDDI save_ XX and

dellete Xxx methods.

The Big Picture

By now it's obvious that we've jumped into a pretty deep "Web services" lake here, full of perhaps
more detail than you wanted to know. Now, it's time to step back and look at the practical use of
Web services from the perspectives of both consumer and provider, phrasing this use in terms of
the technologies just covered. Following that, we can focus on the efficiency challenges from both
perspectives.

The Provider's Perspective

For the provider who wants to embrace the Web service model, here is a rough list of tasks that
need to be performed:

e Identify available functionality using WSDL: The generation of WSDL definitions can be
automated—in fact, providers fully expect Web services development tools to support
automatic generation of service definitions. Providers should also consider the kinds of
controls or security they want to ensure that their functionality is accessed by a select
group of clients (not necessarily the whole world—unless that's what they actually desire).

e Publish functionality via UDDI. This means using the UDDI API to communicate with
registries deployed at operator sites.

e Ensure that Web-based request-processing technologies support SOAP requests. This
means handing off HTTP POST requests to a SOAP translator and routing the underlying
function calls to the server-side distributed object system.

e Encode data in XML. In particular, where does this translation to XML happen? Is data
communicated internally in terms of native types and then "translated"” (i.e., "stringified")
into XML on its way out? Or is it embedded in XML notation all the way down to the
database?

The Consumer's Perspective
Consumers have their own tasks to perform to support Web services:

e Locate remote functions of use. In the near term, consumers will likely know what
functions they want to access and where they are. But one important vision of UDDI is
that consumers will be able to query UDDI registries automatically and discover new
instances of functionality as they're deployed.

e Communicate with remote services via SOAP. This shouldn't be a tremendous change
from the way clients normally interact (programmatically) with remote network services.

e Encode requests in XML. This is similar to what providers will do, in terms of serializing
and "stringifying" their native types for transport.

e Parse or query XML replies. Service replies must be parsed and converted to local native
types or queried directly using XQuery-like approaches.

Now that we have a reasonable summary of what the provider and the consumer need to do, it's
time to consider some likely scalability and performance challenges these responsibilities entail.

Scalability and Performance Challenges

Unlike earlier chapters, with their sections on scalability and performance hints, this chapter
contains a section devoted to scalability and performance challenges. The reason behind this is
simple: Web services are a new aspect of Internet technology and many of their standards and
implementations are in flux. Notwithstanding, we can step back and look at the general process of
defining and using a Web service and identify parts of this process that may have scalability and
performance implications.

Replicating and Load-Balancing Remote Functions

Just as we were concerned about load-balancing Java servlets, we need to realize that Web
services require a way to replicate and load-balance remote functionality. This is definitely one
area where embracing a component infrastructure technology such as J2EE can be a tremendous
asset.

As we discussed in Chapter 3, J2EE implementations enable new instances of component
functionality to be pooled and allocated quickly, with minimal resource demands. The container
abstraction in the design of J2EE lets developers worry about function implementation, not
function distribution and scaling. Thus, replicating provider functions for J2EE-based
deployments is no longer as concern for the application architect and developer. The only real
work to be done is to load-balance Web requests across a set of machines running EJB containers
that manage the functionality in demand.

In short, the replication and load-balancing demands of Web services are no different from the
replication and load-balancing demands on servlets and EJBs. To meet those demands, J2EE is
designed from the ground up.

XML Parsing Performance

The key tradeoff with SAX versus DOM parsing is performance against ease of use. DOM is
generally considered easier to use but is slower than SAX because it forms an entire DOM tree
before enabling access to it. The problems with this approach are exacerbated when the XML
being parsed is large—say, gigabytes. In contrast, SAX is a bit harder to use and can require some
careful programming, but it's inherently more efficient than DOM.

To understand the efficiency differences, consider the performance of the SAX and DOM code
shown earlier. After taking out the System.out.printhn() statements and instead simply
counting the number of elements (and printing this total at the end), the two approaches were
compared in how they process XML documents, similar to the games . xml shown earlier, of 1
Kb, 10 Kb, 100 Kb, and 1 Mb in length. Figure 12-8 shows the results.

Figure 12-8. Counting nodes in an XML document, SAX versus DOM

2,500 —

2,000 _
1.500 _

B sAX
1,000 _ B DoM

Processing Time (ms)

B I |

Size of XML Document (Kb)

1000

To underscore the impact of building the DOM tree on the entire process (i.e., the recursive
counting of nodes isn't to blame), consider Figure 12-9. This figure shows the time required to
build the DOM tree—that is, the execution time of DOMParser . parse ()—for each trial as
opposed to "everything else” (i.e., the recursive element counting). Clearly, building the tree is
responsible for most of the execution cost.

Figure 12-9. Impact of DOM tree building versus other code in SimpleDom. java

2,000
1500
[.600

1,400
B Building RDOM tree

1.200
m Everything else

Time (ms)

1,000
200
6lU

. L
200 -
05 - | | |
I

10 100 1000

Execution

Size of XML Document (Kb)

Parsing versus Querying XML

A more vexing issue once the data is returned by the remote service is what to do with it. One
approach is to parse everything and reinstantiate local native types. For example, an XML
response containing a price would be parsed and a new local floating-point value corresponding to
the XML string-form of that price would be instantiated. An alternative is to use XQuery-like
technology to process an XML response into another XML document.

XQuery

XQuery is a proposed standard for querying XML documents directly. It is to XML documents
what SQL is to relational databases—a language for querying a specific store of data (relational in

the case of SQL, hierarchical in the case of XQuery). XQuery is actually a stew of prior
technologies such as Quilt, Xpath, and XQL. It allows you not only to query a document, but also
to simultaneously generate new XML based on the result. The W3C working draft standard of
XQuery is available at http://www.w3.org/TR/xquery/.

Although we don't want to delve into the details of XQuery here, we can give a quick example of
how it's used. Suppose we want to answer the following query about the video games document
that was shown in Listing 12-4: Display all of the names and prices of stand-up model games.
Also suppose we want the answer to this query expressed in XML, for example, given the
following XML file:

<?xml version="1.0"?>
<IDOCTYPE gameListDoc [
<IELEMENT gameList (game)+>
<IELEMENT game (name, model, price)>
<IELEMENT name (#PCDATA)>
<ITELEMENT model (#PCDATA)>
<IELEMENT price (#PCDATA)>
1>
<gameList>
<game>
<name>Gorf</name>
<mode I>stand-up</model>
<price>500.50</price>
</game>
<game>
<name>Galaga</name>
<model>cocktail</model>
<price>1199.99</price>
</game>
</gamelList>

From the proceding file, we want these results:

<myList>
<myGame>
<name>Gorf</name>
<price>500.50</price>
</myGame>
</myList>

Filtering and reformatting XML is a common task of intermediary services that process service
requests by calling other services and processing their replies.

Now, if we can somehow express this query in SQL, it will look something like this:
SELECT game.name, game.price

FROM game

WHERE game.model = "'stand-up'';

But now we have a relation to deal with and need to reformat the resulting XML. Also, Listing 12-
4 is hierarchical and the SQL query doesn't make much sense.

Instead, using XQuery and its path expressions we can write queries that navigate to and return the
exact data we want. Furthermore, we can generate results in any XML format. An example of an
XQuery that accomplishes our goal is:

<myList>
{
FOR $g IN document(*'games.xml'")/gameList/game
WHERE $g/model/text() = "'stand-up"
RETURN
<myGame>
{ $g/name }
{ $g/price }
</myGame>

b
</myList>

This code does the following:

e Locates the game element in all gameL 1 St elements.
e Returns name and price of the games where the model = **stand-up"’.

XQuery versus Parsing

The approach you take will likely depend on how you use the data. For example, if your
application acts as a middleman that processes XML requests, contacts remotes services to locate
data, and replies using XML, it is likely easier and more efficient to use XQuery. Otherwise, you'll
have to parse replies from the services your application contacts, reduce their contents to native
types, and then end up rephrasing your own application replies using XML.

XQuery is still an emerging standard and it's too early to gauge the efficiency of its
implementation. One aspect of XML query processing that seems critical is the ability to rapidly
navigate to the path expressed in a query and to return results while an XML document is being
retrieved/streamed in from a remote source. Many XML documents of the future (especially XML
forms of large relational tables) will be quite big, so the ability to process them as their bytes are
being recieved from the network is an important feature.

Summary

Since its inception, the Web has largely been a network of distributed data. With Web services,
however, a turning point has been reached. The Web of the future will be a network of distributed
functions as well as data. This isn't to say it will eventually consist only of functions, because
"functionalizing™ truly static data isn't very useful; in fact, it's inefficient. Rather, the Web is
evolving into a very large distributed object system comprised of both static data and Web
services.

In this chapter, we focused most of our discussion on understanding Web services and how they're
used. We saw that there are four important technologies to become familiar with: XML, SOAP,
WSDL, and UDDI. XML allows data to be self-describing and thus portable. SOAP is a simple
and efficient way to communicate XML-based service requests and replies. WSDL is a way to
define services, with several levels of abstraction, so that the location of a particular service and
the means to access it are flexible. Finally, UDDI represents a database of provider services
defined by WSDL.

At the end, our discussion returned to performance and scalability. The key questions to answer at
this point are:

e How do we interpret XML data? Parse it and process embedded values in their native
form or use XQuery-like technologies to query XML directly?

e How do we efficiently store hierarchical data in relational databases?

e Isit more efficient to compose an application as a collection of remote distributed
services or as as a collection of locally distributed components?

e How do we handle load balancing and scaling remote functions?

The future of application integration and truly distributed Web applications looks bright with Web
services technologies. The coming years will bring many exciting new battles to fight in the
ongoing war for scalability and performance in Web applications.

Suggested Reading

Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design
Strategies. Englewood Cliffs, N.J.: Prentice-Hall, 2001.

Birbek Mark (ed.). Professional XML (Programmer to Programmer), Second Edition. Chicago,
I1.: Wrox Press, 2001.

Bulka, Dov. Server-Side Programming Techniques: Java™ Performance and Scalability, Volume
1. Boston, Mass.: Addison-Wesley, 2000.

Cormen, Thomas H. (ed.). Introduction to Algorithms, Second Edition. Cambridge, Mass.: MIT
Press, 2001.

Coulouris, George, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts and
Design, Third Edition. United Kingdom Publisher: Addison-Wesley, 2000.

Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems, with E-book,
Third Edition. Reading, Mass.: Addison-Wesley, 1999.

Feuerstein, Steven, and Bill Pribyl. Oracle PL/SQL Programming, Second Edition. Sebastopol,
Calif.: O'Reilly & Associates, 1997.

Genender, Jeff. M. Enterprise Java™ Servlets. Boston, Mass.: Addison-Wesley, 2001.
Hunter, Jason. Java Servlets, Second Edition. Sebastopol, Calif.: O'Reilly & Associates, 2001.

Internet Engineering Task Force. HTTP 1.1 Protocol. IETF RFC 2616. [Online]:
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

Java™ API for XML Processing, version 1.1. Palo Alto, Calif.: Sun Microsystems, 2001.
Java™ Servlet Specification, version 2.3. Palo Alto, Calif.: Sun Microsystems, 2001.

Java™ 2 Platform Enterprise Edition Specification, version 1.3. Palo Alto, Calif.: Sun
Microsystems, 2001.

Keshav, Srinivsan, An Engineering Approach to Computer Networking: ATM Newtorks, the
Internet, and the Telephone Network. Reading, Mass.: Addison-Wesley, 1997.

Lea, Doug. Concurrent Programming in Java: Design Principles and Patterns, Second Edition.
Reading, Mass.: Addison-Wesley, 1999.

McLaughlin, Brett.Java and XML: Solutions to Real-World Problems, Second Edition. Sebastopol,
Calif.: O'Reilly & Associates, 2001.

Menasce, Daniel A., and Virgilio A. F. Almeida. Scaling for E-Business: Technologies, Models,
Performance, and Capacity Planning. Englewood Cliffs, N.J.: Prentice-Hall, 2000.

Nielsen, H., J. Gettys, A. Baird-Smith, E. Prud'hommeaux, H. Lie, and C. Lilley. Network
Performance Effects of HTTP/1.1, CSS1, and PNG. Proceedings of ACM SIGCOMM (pp. 155-
166), held in Cannes, France. September 1997.

Patterson, David A., John L. Hennessy, and David Goldberg. Computer Architecture: A
Quantitative Approach, Second Edition. San Francisco, Calif.: Morgan Kaufmann, 1996.

Sarang, J., et al. (eds.). Professional EJB. Chicago, Ill.: Wrox Press, 2001.
Shirazi, Jack. Java Performance Tuning. Sebastopol, Calif.: O'Reilly & Associates, 2000.

UDDI Version 2.0 API Specification. UDDI open draft specification, June 2001. [Online]:
http://www.uddi.org.

World Wide Web Consortium. Extensible Markup Language (XML) 1.0, Second Edition. W3C
recommendation, October 2000. [Online]: http://www.w3.0rg/TR/REC-xml.

World Wide Web Consortium. Simple Object Access Protocol (SOAP) 1.1. W3C note, May 2000.
[Online]: http://www.w3.0rg/TR/soap/.

World Wide Web Consortium. Web Services Description Language (WSDL) 1.1. W3C note,
March 2001. [Online]: http://www.w3.org/TR/wsdl/.

World Wide Web Consortium. XQuery 1.0: An XML Query Language. W3C working draft, June
2001. [Online]: http://www.w3.0rg/TR/xquery/.

	Preface
	Goals
	Audience
	A Note about Performance Measurements
	The CD-ROM
	Onward!
	Acknowledgments

	Chapter 1. Scalable and High-Performance Web Applications
	The Emergence of Web Applications
	Basic Definitions
	Figure 1-1. Client, network, and server

	The Nature of the Web and Its Challenges
	Performance
	Figure 1-2. Application operations associated with buying an
	Table 1-1. Application Operations

	Scalability

	The Internet Medium
	Wide Audience
	Interactive
	Dynamic
	Always On
	Integrated
	Lack of Complete Control

	Measuring Performance and Scalability
	Measuring Performance
	Table 1-2. Confirmation Process
	Beyond Benchmarking

	Measuring Scalability
	Figure 1-3. Little's law
	Table 1-3. Sample Application Response and Throughput Times
	Figure 1-4. Scalability from the client's point of view
	Figure 1-5. Scalability from the server's point of view
	Table 1-4. Linearly Scalable Application Response and Throug

	Throughput and Price/Performance

	Scalability and Performance Hints
	Think End-to-End
	Scalability Doesn't Equal Performance
	Measure Scalability by Comparison

	Summary

	Chapter 2. Web Application Architecture
	Web Application Terminology
	Application Requirements
	Business Logic
	Data Management
	Interface

	Web Requirements
	Network Connectivity

	Abstract Web Application Architecture
	From Client to Server: Thin and Fat Clients
	Figure 2-1. Abstract application architecture
	Figure 2-2. Client/server application architecture (fat clie
	Figure 2-3. Client/server architecture (thin client)
	Figure 2-4. Client/server architecture (hybrid design)

	Persistent Data Management

	N-tier Application Architecture
	The Client
	The Network
	Client-Side Network Elements
	Figure 2-5. Client-side network infrastructure
	Server-Side Network Elements
	Figure 2-6. Server-side network infrastructure
	Between Client-Side and Server-Side
	Listing 2-1 traceroute output describing the route from CMU

	The Server
	Figure 2-7. Server-side organization

	Tier-Based Designs
	Increased Modularization and Component Reusability
	Better Distributed Processing and Task Parallelism
	More Efficient Service Replication

	Multithreaded Application Servers
	Figure 2-8. A multi-threaded application server

	The Challenge of Efficient Middleware

	Scalability and Performance Hints
	Don't Always Starve Thin Clients
	Use or Build Multithreaded Application Servers
	Find the Right Granularity

	Summary

	Chapter 3. The J2EE Specification
	Overview of the Specification
	Figure 3-1. Relationships among J2EE containers
	Figure 3-2. APIs supported by J2EE containers
	Table 3-1. J2EE Services and APIs
	Table 3-2. J2EE Container Interoperability

	Deployment Issues
	Packaging
	Figure 3-3. J2EE service packaging and deployment

	Deployment Descriptor Files
	Listing 3-1 Sample deployment descriptor
	Figure 3-4. J2EE deployment descriptor XML DTD

	Platform Technologies and Services
	Component Communication via RMI-IIOP
	Figure 3-5. Integrating Java and C++ CORBA objects
	Figure 3-6. IIOP among ORBs

	Transaction Management Using the Java Transaction API
	Transactions and Web Components
	Transactions and EJBs

	JNDI for Resource Location

	J2EE and Your Architecture
	Summary

	Chapter 4. Scalability and Performance Techniques
	Caching and Replication
	Table 4-1. Sample California City/County Cache
	Table 4-2. City/County Cache with Access Counts
	Figure 4-1. Caching to reduce latencies caused by distance
	Figure 4-2. Caching to reduce access time
	Figure 4-3. Load balancing for scalability
	Figure 4-4. Cache consistency

	Parallelism
	Figure 4-5. Sequential versus concurrent counting (CPU-bound
	Figure 4-6. Sequential versus concurrent fetching (I/O-bound

	Redundancy
	Asynchrony
	Resource Pooling
	Listing 4-1 Class PoolTest.java
	Listing 4-2 Class RequestRunnable.java
	Listing 4-3 Class ConnPool.java
	Listing 4-4 Class SharedConnection.java
	Listing 4-5 Class Barrier.java
	Figure 4-7. Pooling

	Summary

	Chapter 5. HTTP Client/Server Communication
	The HTTP Protocol
	Deployment Paradigms
	Applications with Browser Clients
	Applications with Nonbrowser Clients

	HTTP Efficiency
	HTTP Details
	Semantics
	Figure 5-1. Normal communications required for Web page fetc

	HTTP Requests
	Figure 5-2. Web page listing city populations

	The GET Method
	Caching Static GET Requests
	Caching Dynamic GET Requests
	Figure 5-3. Querying a specific city

	The POST Method
	HTTP 1.1 Caching
	Date-Based Validation
	Tag-Based Validation
	Cache-Control Headers

	Connection Management
	Figure 5-4. A Web page with several embedded images

	Scalability and Performance Hints
	Use GET and POST Judiciously
	Consider HTTP for Nonbrowser Clients
	Promote HTTP Response Caching
	Support Persistent Connections

	Summary

	Chapter 6. Request Processing
	The General Problem
	Specific Challenges
	Figure 6-1. The pretty picture of request processing
	Figure 6-2. The ugly details of request processing

	Connection Management
	Data Marshalling
	Request Servicing
	CPU-Bound Servicing
	I/O-Bound Servicing

	Data Locality in Caching Environments

	Request-Processing Modes
	Synchronous Communication
	Asynchronous Communication
	Figure 6-3. Synchronous price update processing
	Figure 6-4. Asynchronous price update processing
	Messaging Systems

	Scalability and Performance Tradeoffs
	Connection Management
	Caching and Data Locality
	Data Marshalling

	Request Processing and J2EE
	Web Serving
	Synchronous Processing with Java Servlets and JavaServer Pag
	Asynchronous Processing with the Java Message Service
	Figure 6-5. JMS messaging architecture

	Scalability and Performance Hints
	Build Asynchronous Solutions
	Generating Highly Dynamic Web Pages

	Stream Data between Threads
	Listing 6-1 A Simple Queue for Communication between Threads

	Develop Efficient Remote Interfaces

	Summary

	Chapter 7. Session Management with Java Servlets
	Generating Dynamic Responses
	Common Gateway Interface
	Extending the Web Server through Its API
	Redirecting the Web Server Request
	Redirection to a Script Processor
	Redirection to Java Servlets

	Using Servlets
	Servlets and Servlet Containers
	Figure 7-1. Servlet container integration options

	Interacting with a Servlet
	Figure 7-2. Sample membership application
	Figure 7-3. Results from membership processing

	Web Server and Servlet Container Integration
	Figure 7-4. Apache/Tomcat integration

	Developing Servlets
	Designing the Servlet Interface
	Listing 7-1 HTML Code for the Web Page in Figure 7-2.

	Coding the Servlet
	Table 7-1. Commonly Overridden HttpServlet Methods
	Listing 7-2 Sample Servlet for Membership Processing

	Servlet Execution
	Servlet Containers
	Servlets and Multithreading
	Listing 7-3 Example of Unsafe Membership Processing (Require

	Servlets and Session Management
	Session Identification
	HTTP User Authentication
	Hidden Form Fields
	Rewritten URLs
	HTTP Persistent Cookies
	Example: Implementing Session Management with Cookies
	Listing 7-4 Reading a Session ID from an Incoming Request
	The Servlet Session-Tracking API

	Deploying Servlets
	Session Management with Multiple Containers
	Deterministic Load Balancing
	Figure 7-5. Maintaining session state in hardware load balan
	Automatic Session Migration and/or Persistence

	Developing Servlets with JavaServer Pages
	Sample JSP Page
	Figure 7-6. What the first visitor sees
	Figure 7-7. What the tenth visitor sees
	Listing 7-5 Sample JSP for Counting Page Hits

	The Structure of a JSP Page
	Listing 7-6 Application Logic for Counting Page Hits

	How JSP Works
	Figure 7-8. JSP life-cycle flowchart
	Listing 7-7 Example of Generated Servlet Code

	JSP Directives
	Table 7-2. JSP Page Directive Attributes

	What Is JSP Really?

	Scalability and Performance Hints
	Use Fine-Grained Serialization
	Use Hardware-Based Load Balancing
	Use Servlets for Session Management, not Business Logic
	Think Twice about JSP

	Summary

	Chapter 8. Building Application Servers with Enterprise Java
	The Need for Application Servers
	Application Logic and Where to Deploy It

	Enterprise JavaBeans: The J2EE Solution
	How EJBs Work
	Figure 8-1. Interaction of EJB clients, containers, and bean

	Types of EJB
	Figure 8-2. General role of EJB types and possible interbean

	Sample Application
	EJB Design
	Session Beans
	Entity Beans
	Client Interaction
	Entity Bean Relationships
	Methods of Bean Persistence
	Container-Managed Persistence
	Figure 8-3. Relationship between client data and server side
	Figure 8-4. Requesting member and employee information from
	Bean-Managed Persistence

	Message-Driven Beans

	EJB Implementation
	Session Beans
	Session Bean Life Cycle
	Figure 8-5. Stateless session bean life cycle
	Figure 8-6. Stateful session bean life cycle
	Coding the Remote Interface
	Listing 8-1 The benefitEnroller Session Bean Remote Interfac
	Coding the Home Interface
	Listing 8-2 The BenefitEnroller Session Bean Home Interface
	Coding the Bean Class
	Listing 8-3 The BenefitEnroller Session Bean Class

	Entity Beans
	Entity Beans and EJB 2.0
	The Entity Bean Life Cycle
	Figure 8-7. Entitybean life cycle
	Coding the Remote Interface
	Listing 8-4 The BenefitEntity Bean Remote Interface
	Coding the Home Interface
	Listing 8-5 The BenefitEntity Bean Home Interface
	Coding the Bean
	Listing 8-6 The Benefit Enroller Entity Bean Class, using CM
	Listing 8-7 The BeanEnroller Entity Class Using BMP

	Message-Driven Beans
	Message-Driven Bean Life Cycle
	Figure 8-8. Message-driven bean life cycle
	Coding the Bean Class
	Listing 8-8 The Enrollment Class
	Listing 8-9 The BatchBenefitEnroller Message-Driven Bean

	Client/EJB Integration
	Listing 8-10 The BenefitEnrollerClient Class
	Client/EJB Communication behind the Scenes
	Figure 8-9. Stub/skeleton-based remote invocation

	Scalability and Performance Hints
	Prefer Message-Driven Beans over Session Beans
	Figure 8-10. Sample order form
	Figure 8-11. Sample order confirmation

	If You Use Session Beans, Use Stateless Session Beans
	Strive for Coarse-Grained EJB Methods
	Listing 8-11 The BankSession Session Bean Remote Interface (
	Listing 8-12 The BankingSession Session Bean Remote Interfac

	Use BMP Well or Don't Use It at All
	Know Your Vendor

	Summary

	Chapter 9. Messaging for Efficient Enterprise Application In
	A B2B-style Working Example
	Figure 9-1. Relationships of Red planet and its resellers
	Figure 9-2. Reseller price update flowchart

	The Java Message Service
	JMS Concepts
	Figure 9-3. General relationships of the JMS. API, providers
	Providers
	Clients
	Messages
	Table 9-1. JMS Message Headers
	Table 9-2. JMS Body Types and Content

	Administrative Objects

	JMS Programming Models
	Figure 9-4. Point-to-point messaging model
	Figure 9-5. Publish/subscribe messaging model

	Model-Specific Administrative Object Interfaces
	The Synchrony of Message Consumption
	Table 9-3. Mapping JMS Concepts to Model-Specific Interfaces

	JMS Reliability versus Performance
	Client Acknowledgment
	Message Persistence
	Timing Dependencies and JMS Publishing Models

	A Sample JMS Pub/Sub Application
	Developing the Message Publisher
	Creating the Topic
	Coding the Message Producer

	Developing the Message Subscriber
	Listing 9-1 Sample Remote JMS Client
	Asynchronous Message Processing
	Listing 9-2 A Listener for Red Planet Price Updates
	Synchronous Subscription Processing

	Toward Deployment

	Scalability and Performance Hints
	Use Messaging
	Explore Messaging Opportunities Within
	Figure 9-6. Synchronous I/O-bound execution that results in
	Figure 9-7. Asynchronous solution that results in good perfo

	Understand the JMS Efficiency-Reliability Tradeoff

	Summary

	Chapter 10. Effective Database Design
	Database Technology and the Relational Model
	Relational Databases

	Logical Database Design
	Entities, Attributes, and Relationships
	Figure 10-1. EMPLOYEE and DEPARTMENT entities
	Figure 10-2. One-to-many relationship between DEPARTMENT and
	Figure 10-3. Zero-to-many relationship

	Physical Database Design
	Tables and Rows
	Constraints

	Querying a Database
	Querying Data
	Table 10-1. DDL Commands
	Table 10-2. Basic SQL DML Commands

	Nested Queries
	Join Queries

	Other Important Database Objects
	Views
	Stored Procedures
	Listing 10-1 A Stored Procedure for Calculating Employees' B

	Triggers
	Listing 10-2 A Trigger That Maintains an Account of Departme

	Indexes
	Sequences
	Other Objects

	Query Processing
	Figure 10-4. Phases of query processing
	Figure 10-5. Abstract query plan
	Figure 10-6. Oracle query plan dataflow graph
	Figure 10-7. Query plan using index

	Scalability and Performance Hints
	Understand How to Use the Database
	Understand When to Use the Database
	Understand How Your Data Will Be Accessed
	Normalize Your Data Model
	First Normal Form
	Second Normal Form
	Third Normal Form

	Selectively Denormalize Your Model
	Use Stored Procedures
	Listing 10-3 Appending an Order Using JDBC (Multiple Queries
	Listing 10-4 Appending an Order Using JDBC (Stored Procedure
	Figure 10-8. Appending 1,000 items to an order

	Avoid Triggers and Other Implicit Execution
	Know Your Vendor

	Summary

	Chapter 11. Using JDBC and SQL to Query Databases Efficientl
	How JDBC Fits In
	JDBC Concepts and Objects
	Relevant JDBC Objects and Their Relationships
	Figure 11-1. JDBC class hierarchy

	Connecting to a Database

	Writing JDBC Queries
	Processing a Statement
	Iterating through Results
	Listing 11-1 Browsing JDBC Queries

	Executing Single Updates
	Other Kinds of Updates: Creating Tables and Stored Procedure

	Beyond the Basics
	Prepared Statements
	Dynamic SQL
	Transaction Management
	Bidirectional Results Iteration
	Updateable Results
	Executing Batch Updates

	Scalability and Performance Hints
	Use PreparedStatement When Possible
	Figure 11-2. Comparison of query types and approaches

	Use Batch Updates with a Remote Database
	Don't Overcommit
	Listing 11-2 Impact of COMMIT on Performance

	Use Multithreading to Query in Parallel
	Summary

	Chapter 12. Web Services: The Future of Web Applications
	Practical Use of Web Services
	What Exactly Is a Web Service?
	Figure 12-1. Web service features

	Web Services Technologies
	A Quick Tour
	XML
	SOAP
	WSDL
	UDDI

	Putting It All Together
	Figure 12-2. The Web services technology stack
	Figure 12-3. Using Web services technologies

	XML: Self-Describing Data
	Listing 12-1 A Sample XML Document
	DTDs and Schema Languages
	Listing 12-2 A Sample DTD
	Listing 12-3 An XML Document That References a DTD
	Listing 12-4 An XML Document with an Embedded DTD

	Parsing XML
	DOM
	Figure 12-4. DOM representation of an XML document
	SAX
	XML Parsing with Apache Xerces 2.0
	Listing 12-5 Parsing Using the DOM Approach
	Listing 12-6 Parsing Using the SAX Approach

	XML-Related Technologies

	Developing Web Services
	Describing Web Services with WSDL
	Definitions
	Example
	Messages and Types
	Port Types and Bindings
	Ports and Services

	Invoking Web Services with SOAP
	How SOAP Works
	Figure 12-5. Basic SOAP based communication
	Figure 12-6. Details of SOAP-based communication

	Using SOAP over HTTP

	Registering Web Services with UDDI
	Figure 12-7. UDDI information types
	Standards
	The UDDI APIs
	Table 12-1. Summary of the UDDI 2.0 Inquiry API
	The Inquiry API
	The Publishing API
	Table 12-2. Summary of the UDDI 2.0 Publishing API

	The Big Picture
	The Provider's Perspective
	The Consumer's Perspective

	Scalability and Performance Challenges
	Replicating and Load-Balancing Remote Functions
	XML Parsing Performance
	Figure 12-8. Counting nodes in an XML document, SAX versus D
	Figure 12-9. Impact of DOM tree building versus other code i

	Parsing versus Querying XML
	XQuery
	XQuery versus Parsing

	Summary

	Suggested Reading

