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Preface

Set theory aims at proving interesting true statements about the mathematical
universe. Different people interpret “interesting” in different ways. It is well
known that set theory comes from real analysis. This led to descriptive set theory,
the study of properties of definable sets of reals, and it certainly is an important
area of set theory. We now know that the theory of large cardinals is a twin of
descriptive set theory. I find the interplay of large cardinals, inner models, and
properties of definable sets of reals very interesting.

We give a complete account of the Solovay-Shelah Theorem according to
which having all sets of reals to be Lebesgue measurable and having an inac-
cessible cardinal are equiconsistent. We give a modern account of the theory of 0%,
produce Jensen’s Covering Lemma, and prove the Martin-Harrington Theorem
according to which the existence of 0% is equivalent with % } determinacy. We also
produce the Martin-Steel Theorem according to which Projective Determinacy
follows from the existence of infinitely many Woodin cardinals.

I started learning logic by reading a script of my Master’s thesis’ advisor, Ulrich
Blau, on a nude beach by the Ammersee near Munich back in 1989. It was a very
enjoyable way of learning a fascinating and exciting subject, and I then decided to
become a logician (In the meantime, Blau’s script appeared as [6]). We shall assume
in what follows that the reader has some familiarity with mathematical logic, to the
extent of e.g. [11]. We are not going to explain the key concepts of first order logic.

I thank David Aspero, Fabiana Castiblanco, William Chan, Gabriel Fernandes,
Daisuke Tkegami, Marios Koulakis, Paul Larson, Stefan Miedzianowski, Haimanti
Sarbadhikari, Shashi Srivastava, Sandra Uhlenbrock, Yong Cheng, and the anon-
ymous referees for their many helpful comments on earlier versions of this book.

I thank my father and my mother. I thank my academic teachers, Ulrich Blau,
Ronald Jensen, Peter Koepke, and John Steel. I thank all my colleagues, especially
Martin Zeman. And I thank my wife, Marga Lopez Arpi, for all her support over
the last years.

Berkeley, Girona, and Miinster, February 2014 Ralf Schindler
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Chapter 1
Naive Set Theory

GEORG CANTOR (1845-1918) discovered set theory. Prior to CANTOR, people often
took it to be paradoxical that there are sets which can be put into a bijective corre-
spondence with a proper subset of themselves. For instance, there is a bijection from
N onto the set of all prime numbers. Hence, it seemed, on the one hand the set of all
primes is “smaller than” N, whereas on the other hand it is “as big as” N.

CANTOR’s solution to this “paradox” was as follows. Let X and Y be arbitrary sets.
Define “X is smaller than or of the same size as Y (or, “Y is not bigger than X’) as:
there is an injection f : X — Y. Write this as X < Y. Define “X is of the same size
as Y as: there is a bijection f : X — Y. Write this as X ~ Y. Obviously, X ~ Y
implies X < Y. The theorem of CANTOR—SCHRODER-BERNSTEIN (cf. Theorem 1.4)
will say that X ~ Y follows from X < YandY < X. Wewrite X < Yif X <Y
butnot Y < X.

Notice that if X < Y, i.e., if there is an injection f : X — Y, then there is a
surjection g : ¥ — X. Thisis clear if f is already bijective. If not, then pick ap € X
(we may assume X to be non—empty). Define g : ¥ — X by g(b) = f “L),ifbis
in the range of f, and g(b) = ag otherwise.

Conversely, if f : X — Y is surjective then there is an injection g : ¥ — X, i.e.,
Y < X. This is shown by choosing for each b € Y some a € X with f(a) = b and
setting g(b) = a. This argument is in need of the Axiom of Choice, AC, which we
shall present in the next chapter and discuss in detail later on.

To a certain extent, set theory is the study of the cardinality of arbitrary sets, i.e.,
of the relations < and ~ as defined above. The proof of the following theorem may
be regarded as the birth of set theory.

Theorem 1.1 (Cantor)
N < R.

Proof N < R is trivial. We show that R < N does not hold.
Assume that there is an injection from R to N, so that there is then also a surjection
f : N — R. Write x,, for f(n). In particular, R = {x,, : n € N}

R. Schindler, Set Theory, Universitext, DOIL: 10.1007/978-3-319-06725-4_1, 1
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2 1 Naive Set Theory

Let us now recursively define a sequence of closed intervals [a,, b,] = {x: a, <
x < by} as follows. Put [ag, bg] = [0, 1]. Suppose [a,, b,] has already been defined.
Pick [an+1,by41] so that a, < ap+1 < bps1 < by, bpy1 — apy1 < ﬁ and
Xp & lans1, bpsal.

Now ﬂneN[an, b,] = {x} for some x € R by the Nested Interval Principle.
Obviously, x # x, for every n, as x, & [an+1, bn+1] and x € [a,+41, byy1]. Hence
x & {x, : n € N} = R. Contradiction! O

It is not hard to verify that the sets of all integers, of all rationals, and of all
algebraic numbers are each of the same size as N (cf. Problem 1.1). In particular,
Theorem 1.1 immediately gives the following.

Corollary 1.2 There are transcendental numbers.

For arbitrary sets X and Y, we write Y C X for: Y is a (not necessarily proper) subset
of X,i.e.,every elementof Y isalso anelementof X,and welet Z(X) = {Y: Y C X}
denote the power set of X, i.e., the set of all subsets of X. Problem 1.2 shows that
Z(N) ~ R. The following is thus a generalization of Theorem 1.1.

Theorem 1.3 For every X, X < P (X).

Proof Wehave X < Z(X),because f : X — Z(X) isinjective where f(x) = {x}
for x € X.

We have to see that &(X) < X does not hold true. Given an arbitrary f : X —
P(X),consider Y = {x € X : x € f(x)} C X.If Y were in the range of f, say
Y = f(xo0), then we would have that xo € ¥ <= x¢o € f(x9) = Y. Contradiction!
In particular, f cannot be surjective, which shows that Z(X) < X is false. O

Theorem 1.4 (Cantor—Schroder—Bernstein) Let X and Y be arbitrary. If X < Y
andY < X, then X ~ Y.

Proof Letboth f : X — Y and g : ¥ — X be injective. We are looking for a
bijection 4 : X — Y. Let x € X. An X—orbit of x is a finite or infinite sequence of
the form

¢, e e g e o),

For each n € N U {oo} there is obviously at most one X—orbit of x of length n. Let
n(x) be the maximal n € N U {00} so that there is an X—orbit of x of length n. We
putx € Xgiff n(x) = 0o, x € Xy iff n(x) € Niseven, and x € X, iff n(x) € Nis
odd.

For y € Y we define the concept of a Y—orbit in an analoguous way, i.e., as a
finite or infinite sequence of the form

o e ' Gt on, e T o), -

We write n(y) for the maximal n € NU {oc} so that there is a Y—orbit of y of length
n.Wesety € Ypiff n(y) =00,y € Yy iff n(y) e Nisodd,and y € Y iff n(y) € N
is even.



1 Naive Set Theory 3

Let us now define 2 : X — Y by

fx) if x € XoU X1, and
hoy =177
g '(x) if x € X».

The function /4 is well-defined, as X is the disjoint union of X, X1, and X5, and
because for every x € X» there is an X—orbit of x of length 1, 1i.e., g~ (x) is defined.

The function 4 is injective: Let x1 # x» with h(x1) = h(x2). Say x1 € Xo U X
and xp € X». Then obviously h(x1) = f(x1) € Yo U Y] and h(x2) = g‘l(xz) e Y.
But Y is the disjoint union of Yy, Y1, and Y>. Contradiction!

The function / is surjective: Let y € YoUY|.Theny = f(x)forsomex € XoUX1;
but then y = h(x). Let y € Y. Then g(y) € X3,50y = g’l(g(y)) =h(g(y)). O

CANTOR’s Continuum Problem is the question if there is a set A of real numbers
such that
N<A<R.

This problem has certainly always been one of the key driving forces of set theory.
A set A is called at most countable if A < N. A is called countable if A ~ N, and
A is called finite iff A < N. A is called uncountable ifft N < A.

CANTOR’s Continuum Hypothesis says that the Continuum Problem has a negative
answer, i.e., that for every uncountable set A of real numbers, A ~ R.

CANTOR initiated the project of proving the Continuum Hypothesis by an induc-
tion on the “complexity” of the sets A in question. There is indeed a hierarchy of
sets of reals which we shall study in Chap.7. The open and closed sets sit at the very
bottom of this hierarchy.

Let A C R. A is called open iff for every a € A there are ¢ < a and b > a with
(c,b) ={x:c<x <b} C A. Aiscalled closed iff R\ A is open.

Itis easy to see thatif A C R is any non—empty open set, then R < A. As A <R
is trivial for every A C R, we immediately get that A ~ R for every non-empty
open A C R with the help of the Theorem 1.4 of CANTOR—SCHRODER—BERNSTEIN.
Theorem 1.9 of CANTOR-BENDIXSON will say that A ~ R for every uncountable
closed set A C R, which may be construed as a first step towards a realization
of CANTOR’s project. We shall later prove much more general results (cf. Theorem
12.11 and Corollary 13.8) which have a direct impact on CANTOR’s project.

Lemma 1.5 Let A C R. The following are equivalent:

(1) Ais closed.
(2) Forall x € R, ifa < x < b always implies (a,b) N A # 0, then x € A.

Proof (1) = (2): Letx ¢ A.Leta < x < b be such that (a, b) C R\ A. Then
(a,b)NA=40.

(2) = (1): We prove that R\ A is open. Let x € R\ A. Then therearea < x < b
so that (a, b)) N A =0, i.e., (a,b) C R\A. O
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Let A C R. x is called an accumulation point of A iff for alla < x < b,
(a,b) N (A\{x}) # @ (here, x itself need not be an element of A). The set of all
accumulation points of A is called the (first) derivative of A and is abbreviated by
A’. Lemma 1.5 readily gives:

Lemma 1.6 Let A C R. The following are equivalent:

(1) A is closed.
2) A’ C A.

Let A C R. A set B C A is called dense in A iff foralla, b € R witha < b
and [a,b]N A # @, [a,b] N B # . B C Ris called dense iff B is dense in R. It is
well-known that QQ is dense.

Definition 1.7 A set A C R is called perfect iff A # #and A’ = A.
Theorem 1.8 Let A C R be perfect. Then A ~ R.

Proof A < R is trivial. It thus remains to be shown that R < A. We shall make use
of the fact that R ~ N{0, 1}, where N{0, 1} is the set of all infinite sequences of 0’s
and 1’s. (Cf. Problem 1.2.) We aim to see that N{0, 1} < A.

Let *{0, 1} be the set of all non-empty finite sequences of 0’s and 1’s, i.e., of all
s :{0,...,n} — {0, 1} for some n € N. Let us define a function @ from *{0, 1} to
closed intervals as follows.

Letso: {0} — {0} and s : {0} — {1}. As A # Jand A C A" we easily find

agy < by, < ag, < by,

so that
(asy, bsy) N A # @ and (ay,, b)) N A # @,

Set @ (s9) = [as,, bsy] and P (s1) = [ay,, b, .
Now let s € *{0, 1} and suppose that @ (s) is already defined, where @ (s) =
[as, bs] with ag < b and (as, bg) N A # 0.
Lets : {0,...,n} = {0, 1}. Forh = 0, 1 write s~ & for the unique ¢ : {0, ..., n+
1} — {0,1} with#(i) = s(i) fori < nand t(n + 1) = h. Because A C A, we
easily find
ag < ag~g < by~ < ag~1 < by~1 < by,

so that
(as~0, bs~0) N A # @, (as~1,bs~1) N A # 0,

1
, and by~ — ag~1 < .
1 51 asl_n+1

bs~0 — as~0 <

Set ®(s™h) = [ag~p, bg~p] for h =0, 1.
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We may now define an injection F : N{0, 1} - A. Let fe N{0, 1}. Then

ﬂ[af n}vbf ..... n}]:{x}

neN

for some x € R by the Nested Interval Principle. Set F(f) = x. Obviously,
F(f) € A, as F(f) is an accumulation point of A and A’ C A. Also, F is certainly
injective. O

Theorem 1.9 (Cantor—Bendixson) Let A C R be closed. Then there are sets Ag C R
and P C R so that:

(1) A is the disjoint union of Ag and P,
(2) Ag is at most countable, and
(3) P is perfect, unless P = (.

Corollary 1.10 Let A C R be closed. Then A < Nor A ~ R.

Proof of Theorem 1.8. An x € R is called a condensation point of A iff (a,b) N A
is uncountable for alla < x < b.

Let P be the set of all condensation points of A, and let Ag = A\P. As A is
closed, P C A’ C A.Itremains to be shown that (2) and (3) both hold true. We shall
make use of the fact that Q ~ N (cf. Problem 1.1) and that QQ is dense, so that that
forall x, y € R with x < y there is some z € Q withx < z < y.

Let x € Ag. Then there are a, < x < b, with a,, b, € Q and such that
(ay, by) N A is at most countable. Therefore,

Ao C | (. by NA.

X€AQ

As Q ~ N, there are at most countably many sets of the form (ay, b,) N A, and each
of them is at most countable. Hence A is at most countable (cf. Problem 1.4).

Suppose that P # (). We first show that P C P’.Letx € P.Leta <x < b. We
have that (a, b) N A is uncountable. Suppose that (a, b) N (P\{x}) = @. For each
y € ((a, b)\{x})NA therearethena, < y < b, witha,, b, € Qsothat (a,, b,)NA
is at most countable. But then we have that

(a,b)N A C {x}U U (ay,by) N A
ye(a,b)\{x)

is at most countable. Contradiction!

Let us finally show that P’ C P.Let x € P’. Then (a, b) N (P\{x}) # @ for
alla < x < b.Lety € (a,b) N (P\{x}), where a < x < b. Then (a,b) N A is
uncountable. Hence x € P. O

There is a different proof of the Theorem of CANTOR—BENDIXSON which brings
the concept of an “ordinal number” into play. Let A C R be closed. Define A' as A’,
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A% as A etc., i.e., A" as (A") forn € N. It is easy to see that each A" is closed,
and
n+1 n 1
...CA CA"C...CA CA.

If there is some n with A"+ = A” then P = A" and A9 = A\ P are as in the state-
ment of Theorem 1.9. Otherwise we have to continue this process into the transfinite.
Let
AOO — n An AOO+1 — (AOO)/ . Aoo+n+l — (AOO-‘rn)/
neN

AXT® — ﬂ A®T et
neN

It can be shown that there is a “number” « so that A%*! = A% For such an «r, A\ A%
is at most countable, and if A* # (J, then A* is perfect.

Such “numbers” are called ordinal numbers (cf. Definition 3.3). We need an
axiomatization of set theory (to be presented in Chap. 2), though, in order to be able
to introduce them rigorously. With their help we shall be able to prove much stronger
forms of the Theorem of CANTOR-BENDIXSON (cf. Theorems 7.15 and 12.11).

Definition 1.11 A set A C R is called nowhere dense iff R \ A has an open subset
which is dense in R. A set A C R is called meager (or of first category) iff there are
A, C R, n € N, such that A = UneN A, and each A, is nowhere dense. If A C R
is not meager, then it is of second category.

It is not hard to see that A is nowhere dense iff for all a, b € R with a < b there
area’, b’ € Rwitha <a’ < b <band[a,b']NA = @ (cf. Problem 1.8(a)).
Of course, every countable set of reals is meager, and in fact the countable union of
meager sets is meager, but there are nowhere dense sets which have the same size as
R (cf. Problem 1.8 (¢)).

Theorem 1.12 (Baire Category Theorem) If each A,, C R is open and dense,n € N,
then (e An is dense.

Proof Leta < b,a,b € Rbearbitrary. We need to see that [a, b]ﬁﬂneN A, # 0. Let
us define [a,, b,], n € N, recursively as follows. We set [ag, bo] = [a, b]. Suppose
[an, b, ] is already chosen. As A, is dense, (a,, b,) N A, # @,say x € (a,, by,) NA,.
As A, is open, we may pick ¢, d witha, < c < x <d < b, and (c,d) C A,. Let
ap+1,bpt1 besuchthatc < ap41 < byt < d,sothat[a,11, by+1] C Ay Nlay, byl.
But now @ # (), cnlan, bul C [a, b1 N (),cn Ans as desired. O

The BAIRE Category Theorem implies that R is of second category, in fact that
the complement of a meager set is dense in R (cf. Problem 1.8 (b)).

Ifa,b e R, a < b, then we call b — a the length of the closed interval [a, b]. As
Q is dense in R, any union of closed intervals may be written as a union of closed
intervals with rational endpoints (cf. the proof of Theorem 1.9) and thus as a union
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of countably many closed intervals which in addition may be picked to be pairwise
disjoint. If A C [0, 1], A = UneN[an’ b,], where a,, < b, for each n € N and the
[an, b,] are pairwise disjoint, then we write

u(A) = an — dan

neN

and call it the measure of A. One can show that u(A) is independent from the choice
of the pairwise disjoint intervals [a,, b,] with A = |, enlan, by] (cf. Problem 1.7).

Definition 1.13 Let A C [0, 1]. Then A is called a null set iff for all € > 0 there is
a countable union A = UneN[an, b, ] of closed intervals [a,, b,] C [0, 1] such that
n(A) <e.

Of course, every countable subset of [0, 1] is null, and in fact the countable union of
null sets is null, but there are null sets which have the same size as R (cf. Problem
1.8(b)).

1.1 Problems

1.1. Show that the sets of all finite sets of natural numbers, of all integers, of all
rationals, and of all algebraic numbers are each countable, i.e., of the same size
as N.

1.2. Show that R ~ N{0, 1}, where N{0, 1} is the set of all infinite sequences of 0’s
and 1’s.

1.3. If A, B are sets of natural numbers, then A and B are called almost disjoint
iff A N B is finite. A collection D of sets of natural numbers is called almost
disjoint iff any two distinct elements of D are almost disjoint. Show that there
is an almost disjoint collection D of sets of natural numbers such that D ~ R.
[Hint: Use a bijection between the set of finite 0—1—-sequences and N.]

1.4. Let, for each n € N, A,, be a countable set. Show that UneN A, is countable.
(This uses AC, the Axiom of Choice, cf. Theorem 6.69.)

1.5. Let n € N. Construct a set A C R such that A" # @, but A"t = @. Also
construct a set A C R such that A+ = @, but A+ +1 = ¢,

1.6. Let A C R be closed. Show that the pair (A, P) as in the statement of Theorem
1.9 of CANTOR—BENDIXSON is unique.

1.7. Show thatif A C [0,1], A = UneN[a"’ b,], where the [a,, b,] are pairwise
disjoint, then u(A) as defined above is independent from the choice of the
pairwise disjoint intervals [a,, b,] with A = UneN[“m b,].

1.8. (a) Show that A C R is nowhere dense iff for all a, b € R with a < b there are
a,b e Rwitha <a' <b <band[ad/,b']NA=0.
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(b) Show that R is not meager. In fact, the complement of a meager set A C R
is dense in R.
(¢c)Fora,b € Rwitha < b let

2 2 1 1 2
b5 = - —blU[= -b,b
[a, D] [a,3a+3 ] [3a+3 , bl,

and for ag, by, ..., ar, by € R witha; < b; foralli < k let
2 2 2
([ag, bol U ... Ulak, br])3 = [ag, bol3 U ... Ulax, bi]3.

Finally, let, for a, b € R with a < b, [a, b]y = [a, b], [a, bln+1 = ([a, b]n)%,
and
[a.bleo = [ )la. bla.
neN

[a, bleo is called CANTOR’s Discontinuum. Show that for all a, b € R with
a < b, la, bl is dense in [a, b], and [a, b]« is perfect, nowhere dense, and a
null set.



Chapter 2
Axiomatic Set Theory

ERNST ZERMELO (1871-1953) was the first to find an axiomatization of set theory,
and it was later expanded by ABRAHAM FRAENKEL (1891-1965).

2.1 Zermelo-Fraenkel Set Theory

The language of set theory, which we denote by %, is the usual language of first
order logic (with one type of variables) equipped with just one binary relation symbol,
€. The intended domain of set theoretical discourse (i.e., the range of the variables)
is the universe of all sets, and the intended interpretation of € is “is an element of.”
We shall use x, y, z, ..., a, b, ..., etc. as variables to range over sets.

The standard axiomatization of set theory, ZFC (ZERMELO-FRAENKEL set theory
with choice), has infinitely many axioms. The first one, the axiom of extensionality,
says that two sets are equal iff they contain the same elements.

VxVy(x =y <> Vz(z € x < z € y)). (Ext)

A set x is a subset of y, abbreviated by x C y, if Vz(z € x — z € y). (Ext) is then
logically equivalent to VxVy(x C y Ay C x — x = y). We also write y D x for
x C y. x is a proper subset of y, written x C y, iff x C y and x # y.

The next axiom, the axiom of foundation, says that each nonempty set has an
€-minimal member.

Vx(@yyex - Ay(y ex A—Jz(z € y Az € X))). (Fund)

This is easier to grasp if we use the following abbreviations: We write x = ¢} for
—Jdyyex(andx # Pfordyy € x),andx Ny = P for =3z(z € x Az € y). (Fund)
then says that

Vx(x Z#0 — dy(y € x Ay Nx =0)).

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_2, 9
© Springer International Publishing Switzerland 2014
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(Fund) plays an important technical role in the development of set theory.
Let us write x = {y, z} instead of

yEXANZEXANYuu ex > u=yVu=7).
The axiom of pairing runs as follows.
VxVy3az z = {x, y}. (Pair)
‘We also write {x} instead of {x, x}.

In the presence of (Pair), (Fund) implies that there cannot be a set x with x € x:
if x € x, then x is the only element of {x}, but x N {x} # @, as x € x N {x}. A similar
argument shows that there cannot be sets xq, x2, ..., Xy such that x; € xp € --- €
Xxi € x1 (cf. Problem 2.1).

Let us write x = |J y for

Vz(zex < u(u € yAzeu)).

The axiom of union is the following one.

Vxdy y = U X. (Union)

Writing z = x U y for
Yulu ez<>ue€xVvVuey),

(Pair) and (Union) prove that VxVy3z(z = x Uy),asx Uy = U{x, y}.
The power set axiom, (Pow), says that for every set x, the set of all subsets of x
exists. We write x = £ (y) for

Vi(z€x <z Cy)

and formulate
Vxdyy = Z(x). (Pow)

The axiom of infinity, (Inf), tells us that there is a set which contains all of the
following sets as members:

9, {0}, (0, (4}}, (0, (4}, {9, {9}}), . ...
To make this precise, we call a set x inductive iff

BexAVy(yex— yU{y}ex).
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We then say:
dx (x is inductive). (Inf)

We now need to formulate the separation and replacement schemas.

A schema is an infinite set of axioms which is generated in a simple (recursive)
way.

Let ¢ be a formula of Z¢ in which exactly the variables x, vy, ..., v p (which
all differ from b) occur freely. The axiom of separation, or “Aussonderung,” corre-
sponding to ¢ runs as follows.

Yur...Vu,VadbVx (x € b < x €a A ). (Ausy)

Letus write b = {x € a: ¢} forVx(x € b <> x € a A ¢). If we suppress vy, ..., vp,
(Aus,) then says that
Yadbb = {x € a: ¢}.

Writing z = x N y for
Yulu ez<>u€xAucy),

(Ausy¢.) proves that VaVcadb b = a N c. Writing z = x\y for
Yu(uez<uexA-uecy),
(Aus—yec) proves that VaVe3db b = a\c. Also, if we write x = () y for
Vz(zex < Vu(u € y - z € u)),

then (Ausyy(uey—zeu)), applied to any member of y proves that

Vy(y #0 — Jxx = ﬂy).

The separation schema (Aus) is the set of all (Aus,). It says that we may separate
elements from a given set according to some well-defined device to obtain a new set.

Now let ¢ be a formula of .Z¢ in which exactly the variables x, y, vi, ..., v, (all
different from b) occur freely. The replacement axiom corresponding to ¢ runs as
follows.

Yui ... Vv, (Vx3y'Vy(y =y < @) = YadbVy(y € b <> Ix(x € a A p))).
(Repy)
The replacement schema (Rep) is the set of all (Repy). It says that we may replace
elements from a given set according to some well-defined device by other sets to
obtain a new set.
We could not have crossed out “x € a” in (Aus,). If we did cross it out in (Aus,)
and let ¢ be —x € x, then we would get



12 2 Axiomatic Set Theory
IbVx(x € b < —x € x),

which is a false statement, because it gives b € b <> —b € b. This observation
sometimes runs under the title of “RUSSELL’s Antinomy.”

In what follows we shall write x ¢ y instead of —x € y, and we shall write x # y
instead of —x = y.

A trivial application of the separation schema is the existence of the empty set ¥J
which may be obtained from any set a by separating using the formula x # x as ¢,
in other words,

AbVx(x € b < x # x).

With the help of (Pair) and (Union) we can then prove the existence of each of the
following sets:

b, {9}, {04, (0. {9}, ...

In particular, we will be able to prove the existence of each member of the intersection
of all inductive sets. This will be discussed in the next chapter.

The axiom of choice finally says that for each family of pairwise disjoint non-
empty sets there is a “choice set,” i.e.

Vx(Vy(yex = y #DAVYWVY (Y ex Ay exAy#£Y — yny =0)
— IVy(y € x — IuvVu' (U =u < u' € zNy))). (AC)

In what follows we shall always abbreviate Vy(y € x — ¢) by Vy € x ¢ and
Jy(y € x A @) by Iy € x 9. We may then also formulate (AC) as

Vx(Vyexy#WBAVyexVy ex(y £y — yny =0)
— AzVy e xFuz Ny = {u}),

i.e., for each member of x, z contains exactly one “representative.”

One may also formulate (AC) in terms of the existence of choice functions (cf.
Problem 2.6).

The theory which is given by the axioms (Ext), (Fund), (Pair), (Union), (Pow),
(Inf) and (Aus,,) for all ¢ is called ZERMELO’s set theory, abbreviated by Z. The
theory which is given by the axioms of Z together with (Rep,,) for all ¢ is called
ZERMELO-FRAENKEL set theory, abbreviated by ZF. The theory which is given by
the axioms of ZF together with (AC) is called ZERMELO-FRAENKEL set theory with
choice, abbreviated by ZFC. This system, ZFC, is the standard axiomatization of set
theory. Most questions of mathematics can be decided in ZFC, but many questions
of set theory and other branches of mathematics are independent from ZFC. The
theory which is given by the axioms of Z together with (AC) is called ZERMELO set
theory with choice and is often abbreviated by ZC. We also use ZFC™ to denote
ZFC without (Pow), and we use ZFC~°° to denote ZFC without (Inf).
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Modulo ZF, (AC) has many equivalent formulations. In order to formulate some
of them, we first have to introduce basic notations of axiomatic set theory, though.

For sets x, y we write (x, y) for {{x}, {x, y}}. It is easy to verify that for all
x,y,x',y,if (x,y) = (x’, y'), thenx = x" and y = y’. The set (x, y) can be shown
to exist for every x, y by applying the pairing axiom three times; (x, y) is called the

ordered pair of x and y.

We also write {x1,...,x,41} for {x1,...,x,} U {x,41} and (x1, ..., x41) for
(1, ooy x0)s X)) I (1, oo 1) = (], ,x’;_H), then x; = x{, ..., and
Xntl = xr/H_l.

The Cartesian product of two sets a, b is defined to be

axb={(x,y):xeanyeb}
Lemma 2.1 Foralla, b, a x b exists, i.e., YaVb3c ¢ = a x b.
Proof a x b may be separated from & (Z(a U b)). (I

We also define a; X - -+ X ay41 tobe (a; X -+ X ap) X ap+1 and

adt=ax---xa.
—
n-times
An n-ary relation r is a subset of a; x --- x a, for some sets ay, ..., a,. The

n-ary relation r is on a iff r C a”. If r is a binary (i.e., 2-ary) relation,

write x r y instead of (x, y) € r, and we define the domain of r as
dom(r) = {x:3Jy x r y}

and the range of r as
ran(r) = {y:3Ix x r y}.

A relation r C a X b is a function iff

Vx e dom(r)Vy' (Y =y < xry).

then we often

If f C a x b is a function, and if x € dom(f), then we write f(x) for the unique

y € ran(f) with (x, y) € f.

A function f is a function from d to b iff d = dom(f) and ran(f) C b (sic!),

which we also express by writing
fid —b.

The set of all functions from d to b is denoted by b.
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Lemma 2.2 Foralld, b, b exists.

Proof ¥b may be separated from Z(d x b). (I
If f:b — dand g:d — e, then we write g o f for the function from b to e which
sends x € bto g(f(x)) €e.
If f:d — b, then f is surjective iff b = ran(f), and f is injective iff

Vx edV¥x ed(f(x) = f(x) = x =x).

f is bijective iff f is surjective and injective.

If f:d - banda C d, then f | a, the restriction of f to a, is that function
g:a — b such that g(x) = f(x) for every x € a. We write f”a for the image of a
under f,i.e., forthe set {y € ran(f):3x € a y = f(x)}. Of course, f"a = ran(f |
a).

If f:d — bis injective, and if y € ran(f), then we write f~!(y) for the unique
x € dom(f) with f(x) = y. If ¢ C b, then we write f~c for the set {x €
dom(f): f(x) € c}.

A binary relation < on a set a is called a partial order on a iff < is reflexive (i.e.,
x < xforallx € a), <issymmetric (i.e.,ifx,y € a,thenx < yAy <x — x =y),
and < is transitive (i.e.,if x,y,z € aand x < y Ay < z,then x < 7). In this case
we call (a, <) (or just a) a partially ordered set. If < is a partial order on a, then <
is called linear (or total) iff forallx eaandy € a,x < yory < x.

If (a, <) is a partially ordered set, then we also write x < y iff x < y A x # y.
Notice that x < y iff x < y vV x = y. We shall also call < a partial order.

Let (a, <) be a partially ordered set, and let b C a. We say that x is a maximal
element of b iff x € b A =3y € b x < y. We say that x is the maximum of b,
x = max(b), iff x € b AVy € by < x. We say that x is a minimal element of b iff
x € bA—3y € by < x, and we say that x is the minimum of b, x = min(b), iff
x € bAVy € bx <y.Of course, if x = max(b), then x is a maximal element of
b, and if x = min(b), then x is a minimal element of . We say that x is an upper
bound of b iff y < x for each y € b, and we say that x is a strict upper bound of b
iff y < x for each y € b; x is the supremum of b, x = sup(b), iff x is the minimum
of the set of all upper bounds of b, i.e., if x is an upper bound and

Vyea(Vy eby <y —x<y).

If x = max(b), then x = sup(b). We say that x is a lower bound of b iff x <y for
each y € b, and we say that x is a strict lower bound of b iff x < y forall y € b; x
is the infimum of b, x = inf (), iff x is the maximum of the set of all lower bounds
of b, i.e., if x is a lower bound and

Vyea(Wy'eby <y —y<ux).

If x = min(b), then x = inf(). If < is not clear from the context, then we also say
“<-maximal element,” “<-supremum,” “<-upper bound,” etc.

99 ¢
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Let (a, <,), (b, <p) be partially ordered sets. A function f:a — b is called
order-preserving iff for all x, y € a,

X Zqy = fx)<p fO)).

If f:a — b is order-preserving and f is bijective, then f is called an isomorphism,
also written
f

(a1 Sa) ; (b3 Sb)‘
(a, <4) and (b, <p) are called isomorphic iff there is an isomorphism f:a — b,
written

(a, <q) = (b, <p).
The following concept plays a key role in set theory.

Definition 2.3 Let (a, <) be a partial order. Then (a, <) is called a well-ordering
iff for every b C a with b # (, min(b) exists.

The natural ordering on N is a well-ordering, but there are many other well-orderings
on N (cf. Problem 2.7).

Lemma 2.4 Let (a, <) be a well-ordering. Then < is total.

ProofIfx, y € a,thenmin({x, y}) < xandmin({x, y}) < y.Henceifmin({x, y}) =
x, then x <y, and if min({x, y}) = y, then y < x. O

Lemma 2.5 Let (a, <) be a well-ordering, and let f:a — a be order-preserving.
Then f(x) > x forall x € a.

Proof If {x € a: f(x) < x} # 0, set
xo = min({x € a: f(x) < x}).

Then yo = f(xg) < x¢ and so f(yo) < f(x0) = Yo, as f is order-preserving. But
this contradicts the choice of xg. U

f
Lemma 2.6 If (a, <) is a well-ordering, and if (a, <) =
identity.

(a, <), then f is the

Proof By the previous lemma applied to f as wellasto f~!, we must have f(x) > x
as well as f‘l(x) > x,ie., f(x) = x, forevery x € a. O

Lemma 2.7 Suppose that (a, <,) and (b, <p) are both well-orderings such that
f
(a, <q) = (b, <p). Then there is a unique f with (a, <,) = (b, <p).
g lof

f g
Pr()Of If (a7 fa) ; (b’ Sb) and (a’ fa) ; (ba Sb)’ then (aa S(l) g (a7 Sa), SO
g_l o f is the identity, so f = g. 0
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If (a, <) is a partially ordered set, and if x € a, then we write (a, <) [ x for the
partially ordered set

{yeary <x}, <Nlyeay <x}?,
i.e., for the restriction of (a, <) to the predecessors of x.
Lemma 2.8 If (a, <) is a well-ordering, and if x € a, then (a, <) # (a, <) | x.

f
Proof 1f (a, <) = (a, <) | x, then f:a — a is order-preserving with f(x) < x.
This contradicts Lemma 2.5. O

Theorem 2.9 Let (a, <,), (b, <p) be well-orderings. Then exactly one of the fol-
lowing statements holds true.

1) (a, =a) = (b, <p)
(2) Ixeb(a,<a) =, <p) [ x
(3) Ixea(a, =) [ x = (b, =p).

Proof Letus define r C a x b by
(x,y) er < (a,<q) [ x = (b, <p) | y.

By the previous lemma, for each x € a there is at mostone y € b such that (x, y) € r
and vice versa. Therefore, r is an injective function from a subset of a to b. We have
that r is order-preserving, because, if x <, x’ and

f
(@, <a) [ X" = (b, <p) Iy,

then
fMyeazy<x)
(@, <o) I x = b, <p) I f(0),

sothatr(x) = f(x) <y =r(x').
If both a\ dom(r) as well as b\ ran(r) were nonempty, say x = min(a\ dom(r))
and y = min(b\ dom(r)), then

-
(a3 fa) rx ; (ba Sb) ryv

so that (x, y) € r after all. Contradiction! O

The following Theorem is usually called ZORN'’s Lemma. The reader will gladly

verify that its proof is performed in the theory ZC.

Theorem 2.10 (Zorn) Let (a, <) be a partial ordering, a # @, such that for all
bCa,b#®,ifVx € bVy € b(x <y V y < x), then b has an upper bound. Then a
has a maximal element.
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Proof Fix (a, <) as in the hypothesis. Let
A={b,x):x €eb}:bCa,b#0}.

Notice that A exists, as it can be separated from Z(Z(a) x |J Z(a)). (AC), the
axiom of choice, gives us some set f such that for all y € A there is some z with
yN f = {z}, which means that forall b C a, b # ¢, there is some unique x € b such
that (b, x) € f. Therefore, f is a function from £ (a)\{#} to a such that f(b) € b
for every b € Z(a)\{¥}.

Let us now define a binary relation <* on a as follows.

We let W denote the set of all well-orderings <’ of subsets b of a such that for all
u,v €b,ifu <' v, then u < v, and for all u € b, writing

BMS/ ={w € a:wisa < -upper bound of {v € b:v <’ u}},

Buf/ #@Pandu = f(Buf/). Notice that W may be separated from 2 (a?).

Let us show that if <’, <”e W, then <'C<” orelse <"C<’. Let <'¢ W be a
well-ordering of b C a, and let <€ W be a well-ordering of ¢ C a.

By Theorem 2.9, we may assume by symmetry that either (b, <) = (¢, <”) or
else there is some v € ¢ such that (b, <') = (¢, <) | v. Let g: b — ¢ be such that

b < E e, <yor (b, <) = (e, <) T v.

We aim to see that g is the identity on b.
Suppose not, and let ug € b be <’-minimal in

{w e b: g(w) #w}.

Writing g = g | {w € b:w <" ug},

[12os

(b, < Tuo = (e, <) | g(uo),

and g is in fact the identity on {w € b: w <’ ug}, so that

(web:w < up)={wecw <" glup)}.

S//

But then Bu—<0, = Bg(u0

) # () and thus

uo = f(B) = f(B,,) = g(uo).

Contradiction!
We have shown that if </, <”€ W, then <'Cc<” or <"C<’.
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But now |J W, call it <*, is easily seen to be a well-ordering of a subset b of a.
Setting
B ={w € a:wisa < -upper bound of b},

our hypothesis on < gives us that B # . Suppose that b does have a maximum with
respect to <. We must then have B N b = J, and if we set

uo = f(B)

and <™*=<* U{(u, ug):u € b} U {(ug, up)}, then B = Bufo**. It is thus easy to see
that <**e W. This gives uq € b, a contradiction!
Thus b has a maximum with respect to <. ZORN’s Lemma is shown. |
The following is a special case of ZORN’s lemma (cf. Problem 3.10).

Corollary 2.11 (Hausdorff Maximality Principle) Let a # (0, and let A C & (a) be
such thatforall B C A, ifx CyVvy Cx forall x,y € B, then there is some 7 € A
such that x C z for all x € B. Then A contains an C-maximal element.

In the next chapter, we shall use the HAUSDORFF Maximality Principle to show that
every set can be well-ordered (cf. Theorem 3.23).

It is not hard to show that in the theory ZF, (AC) is in fact equivalent with ZORN’s
Lemma, with the HAUSDORFF Maximality Principle, as well as with the assertion
that every set can be well-ordered, i.e., that for every set x there is some well-order
< on x (cf. Problem 3.10).

2.2 Godel-Bernays Class Theory

There is another axiomatization of set theory, BGC, which is often more convenient
to use. Its language is the same one as .Zc, except that in addition there is a second
type of variables. The variables x, y, z, . . ., a, b, . . . of £ are supposed to range over
sets, whereas the new variables, X, Y, Z, ..., A, B, ... are supposed to range over
classes. Each set is a class, and a given class is a set iff it is a member of some class
(equivalently, of some set). Classes which are not sets are called proper classes.
Functions may now be proper classes. The axioms of the BERNAYS—GODEL class
theory BG are (Ext), (Fund), (Pair), (Union), (Pow), (Inf) exactly as before together
with the following ones:

VXVYVx(x e X < xe€eY)—> X=Y) (2.1)
VxIXx =X 2.2)
VX(I¥Y X €Y < Axx =X) (2.3)

If F is a (class) function, then F”a is a set for each set a, (Rep™)
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and for all ¢ such that ¢ is a formula of the language of BG, which contains exactly
x, X1, ..., Xk (but not Y) as its free variables and which does not have quantifiers
ranging over classes (in other words, ¢ results from a formula ¢’ of the language of
ZF by replacing free occurences of set variables by class variables), then

VX1...Xp AYVx(x € Y < ). (Compy)

(Comp,,) is called the comprehension axiom for ¢, and the collection of all (Comp,,)
is called the comprehension schema. The BERNAYS—GODEL class theory with choice,
BGC, is the theory BG plus the following version of the axiom of choice:

There is a (class) function F such that Vx(x # # — F(x) € x). (AC)

It can be shown that ZFC and BGC prove the same theorems in their common
language % (i.e., BGC is conservative over ZFC).

If ¢ is a formula as in (Comp,,), then we shall write {x: ¢} for the class given
by (Comp,). (Rep*) says that for all class functions F' and for all sets a, F"a =
{y:3x (x,y) € F}isaset.

We shall write V for the universe of all sets, i.e., for {x:x = x}. V cannot be a
set, because otherwise

R={xeV:ix ¢ux}

would be a set, and then R € R iff R ¢ R. This is another instantiation of RUSSELL’s
antinomy.
If A is a class, then we write

UA:{x:EIyeAxey}

and
ﬂA:{x:VyeAx € y}.

J A and [ A always exist, and | J# =@ and NG = V.

It may be shown that in contrast to ZFC, BGC can be finitely axiomatized. BGC
will be the theory used in this book.

The books [15, 18, 23] present introductions to axiomatic set theory.

2.3 Problems

2.1. Let k € N. Show that there cannot be sets x;, xp, ..., X such that x; € xp €
... €E Xk € X1,

2.2. Show that for all x, y, (x, y) exists. Show that if (x, y) = (x’, y'), then x = x’
and y = y’. Show that for all a, b, a x b exists (cf. Lemma 2.1). Show that for
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2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.
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all d, b, b exists (cf. Lemma 2.2). Which axioms of ZF do you need in each
case? Show that (Pair) may be derived from the rest of the axioms of ZF (from
which ones?).

Show that neither in (Aus,) nor in (Repy), as formulated on p. 11, we could
have allowed b to occur freely in ¢. Show that the separation schema (Aus)
can be derived from the rest of the axioms of ZF augmented by the statement
dx x = 0.

Show that the following “version” of (AC) is simply false:
Vx(Vy ex y #0) — 3zVy € xJu z Ny = {u}).

Show tht every partial order can be extended to a linear order. More precisely:
Let a be any set. Show that for any partial order < on a there is a linear order
<'ona with < C <.

Show that in the theory ZF, the following statements are equivalent.

(i) (AC).
(i) For every x such that y # ¢ for every y € x there is a choice function,
i.e., some f:x — [Jx such that f(y) € y forall y € x.

(a) Let < denote the natural ordering on N, and let m € N, m > 2. Let the
ordering <™ on N be defined as follows. n <™ n’ iff either n = n’(mod m)
andn < n/,orelse if k < m, k € N, is least such that n = k(mod m) and
k' <m, k' € N, is least such that n’ = k’(mod m), then k < k’. Show that <™
is a well-ordering on N.

(b) Let, for m € N, <™ be any well-ordering of N, and let 9: N — N x N be
a bijection. Let us define < on N by n <’ n’ iff, letting (m, g) = ¢(n) and
m',q") = "), m < m' orelse m = m’ and ¢ <™ ¢’. Show that <" is a
well-ordering of N.

(Cantor) Let (a, <) be a linear order. (a, <) is called dense iff forall x, y € a
with x < y there is some z € a with x < z < y. Show that if (a, <) is dense
(and a has more than one element), then < is not a well-ordering on a. (a, <)
is said to have no endpoints iff for all x € a thereare y,z € awithy < x < z.
Let (a, <4) and (b, <p) be two dense linear orders with no endpoints such
that both a and b are countable. Show that (a, <) is isomorphic to (b, <p).
[Hint. Write a = {x,:n € N} and b = {y,:n € N}, and construct f:a — b
by recursively choosing f(xo), f~'(y0), f(x1), £~ ), ete.]

Show that there is a set A of pairwise non-isomorphic linear orders on N such
that A ~ R.

Show that every axiom of ZFC is provable in BGC.

Let us introduce ACKERMANN’s set theory, AST. The language of AST arises
from .Z¢ by adding a single constant, say v. The axioms of AST are (Ext),
(Fund), (Aus), as well as (Str) and (Refl) which are formulated as follows.
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2.11.

Vx evVy(yexVyCx)—y€D). (Str)

Let ¢ be any formula of Z¢ in which exactly vy, ..., vk occur freely. Then
@V results fromg by replacing every occurence of Vx by Vx € v and every
occurence of Ix by Ix € v. Then

Yo € 0... Vo € 0 (¢7 <> o). (Refl,)

(Refl) is the schema of all (Refly,), where ¢ is a formula of .Z¢ (in which ¥
does not occur). (Str) states that v is “supertransitive,” and (Refl) states (as a
schema) that v is a fully elementary submodel of V, the universe of all sets.

(W. Reinhardt) Show that every axiom of ZF is provable in AST.
AST is also conservative over ZF, cf. Problem 5.15.



Chapter 3
Ordinals

3.1 Ordinal Numbers

The axiom of infinity (Inf) states there is an inductive set. Recall that a set x is called
inductive iff ) € x and for each y € x, y U {y} € x. Let us write O for ¥ and y + 1
for y U {y}. The axiom of infinity then says that there is a set x such that 0 € x and
foreach y € x, y + 1 € x. We shall also write 1 for 0 + 1, 2 for (0 + 1) + 1, etc.
Each inductive set therefore contains 0, 1, 2, etc. We shall write w for

ﬂ{x : x is inductive}.
This set exists by (Inf) plus the separation scheme: if x( inductive, then
w = {y € xo : Yx(x is inductive — y € x)}.

Clearly, w is inductive. Intuitively, the set @ contains exactly 0, 1, 2, etc.
We have the following “principle of induction”.

Lemma 3.1 Let A C w be such that 0 € A and for each’y € A,y + 1 € A. Then
A= o.

Proof A is inductive, hence w C A, and thus A = w. O

In particular, if ¢ is a statement such that ¢(0) and Vy € w(¢(y) — ¢(y + 1))
both hold true, then Vy € w ¢(y) holds true as well. We shall call elements of w
natural numbers and w itself the set of natural numbers. All natural numbers as well
as o will be ordinals according to Definition 3.3.

Definition 3.2 A set x is transitive iff for each y € x, y C x.

We shall see later (cf. Lemma 3.14) that every set is contained in a transitive set.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_3, 23
© Springer International Publishing Switzerland 2014
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The following concept of an “ordinal” was isolated by JANOS NEUMANN (1903—
1957) which is why ordinals are sometimes called NEUMANN ordinals.

Definition 3.3 A set x is called an ordinal number, or just an ordinal, iff x is tran-
sitive and for all y,z e x wehave y e zVy=zVz € y.

Ordinals will typically be denoted by «, B, v, ..., 1, j, ... We shall write OR for the
class {o: « is an ordinal} of all ordinals.

By (Fund), if « is an ordinal, then €] o = {(x, y) € = v} is a well-order
of a.

Lemma 3.4 Each natural number is an ordinal.

Proof by induction, i.e., by using Lemma 3.1: 0 is trivially an ordinal. Now let o be
an ordinal. We have to see that o + 1 is an ordinal. @ + 1 = o U {«} is transitive: let
y € a U {a}; then either y € o and hence y C o C @ U {«} because « is transitive,
orelse y =«o andhence y C o U {a}. Now let y,z € « + 1 = o U {«}. We have to
seethaty e zvVy =zVz ey Ify, z €a,then this follows from the fact that « is
an ordinal; if y, z € {«}, then this is trivial; but it is also trivial if y € & and z € {«}
or vice versa. O

Lemma 3.5 w is an ordinal.

Proof We first show Yy € @ y C w by induction. This is trivial for y = 0. Now fix
y € wwithy C w. Then {y} Cw,hence y+1=yU{y} C w.

We now show Vy € wVz € w(y € zVy = zVz € y) by a “nested induction.” Let
us write p(y, z) fory € zvy =z Vvz € y.Inorder to prove Vy € wVz € w ¢(y, z)
it obviously suffices to show the conjunction of the following three statements:

(a) ¢(0,0),
(b) Vz € w(9(0,2) = ¢(0,z+ 1)),
©) Vyew(MVz ewp(y,7) > Vzewp(y +1,2))

This is because if (a) and (b) hold true, then Vz € w ¢(0, z) holds true by induction.
This, together with (c), yields Yy € wVz € wg(y, z) again by induction.

(a) and (b) are trivial.

As to (¢), let us fix y € w, and let us suppose that Vz' € w¢(y, z’). We aim to
show Vz € we(y + 1, z), and we will do so by induction. We already know that
Vz € wp(0, z), which in particular gives ¢(0, y + 1) and thus also ¢(y + 1, 0) by
symmetry. Let us assume that ¢(y + 1, z) holds true to deduce that p(y + 1,z + 1)
holds true as well.

Wehavethaty+1 € zVvy+1=zVvze y+1byhypothesis. If y+ 1 € z, then
y+lez+1=zU{z}.Ilfy+ 1=z theny+1e€z+1=zU/{z}as well. Now
letzey+1=yU{y}.Ifze{y},theny+ 1 =z+ 1. So suppose that z € y. We
havethaty € z+ 1V y =z+4+ 1V z+ 1 € yby our hypothesis Vz' € w¢(y, 7).
Butz € y € z+ 1 = z U {z} contradicts the axiom of foundation (consider {z, y}).
Therefore, z € yimpliesy = z+1Vvz+1 € y,and thereforez+1 € yU{y} = y+1
as desired. ([
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Lemma 3.6 The following statements are true.

(a) Oisan ordinal, and if a is an ordinal, then so is o + 1.

(b) Ifais an ordinal and x € «, then x is an ordinal.

(¢) If«, B are ordinals, and o C B, then o € B.

(d) Ifa, B are ordinals, then o C B or f C o (and hencea € fVa =BV P € a).

Proof (a) is given by the proof of Lemma 3.4 above.

(b) is easy.

To show (c), let & be a proper subset of 8. Let y € B\« such that y N (B\«) = 0.
(There is such a y by the axiom of foundation.) If§ € y,then& € B by the transitivity
of B,s0& € a,asotherwiseé € yN(B\x).If§ € @ C B,thené € yVE =yVvy €&,
because S is an ordinal. But £ = y v y € £ implies y € «, because £ € o and « is
an ordinal; however, y € B\«. Therefore if £ € «, then £ € . We have shown that
y = «. Hence a € B.

(d): Suppose not. Let « € OR be such that there is some f € OR with —=(« C
BV B C a).Letag be e-minimal in ¢ + 1 = o U {«} such that there is some § € OR
with =(g C BV B C «gp), and let By € OR be such that =(ag C Bo V Bo C o).
Clearly, ag U By is transitive, and if 8, 8’ € ap U By, then § C 8" or 8’ C & by the
choice of ag, so that § € §' v § = § v §' € § by (b) and (c). Hence ag U By is an
ordinal, call it 9. We claim that yp = «g or Y9 = Bo. Otherwise by (c), «g € yo and
Bo € Yo, so that one of ag € ap, Bo € Po, ®o € Po € agp holds true, which contradicts
the axiom of foundation. We have shown that «g C B or o C g which contradicts
the choice of «g and By. U

By Lemma 3.6 (b) and (d), OR cannot be a set, as otherwise OR € OR.
If o, B € OR, then we shall often write « < B instead of « C B (equivalently,
a € fVa=p)and o < B instead of « € B. We shall also write («, 8), [«, B),

(a, Bl and [a, Bl forthe sets {y: @ <y < B} {y:a <y < B} {y:a <y < B,
and {y: o <y < B}, respectively.

Lemma 3.7 The following statements are true.

(@) If X # @ is a set of ordinals, then (| X is the minimal element of X.
(b) If X is a set of ordinals, then | J X is also an ordinal.

Proof To show (a), notice that (] X is certainly an ordinal. If ("] X is a proper subset
of every element of X, then (| X € (] X. Contradiction!
(b) is easy by the previous lemma. O

If X is a set of ordinals, then we also write min(X) for (] X (provided that X # @)
and sup(X) for | X.

Definition 3.8 An ordinal « is called a successor ordinal iff there is some ordinal
B such that « = B + 1. An ordinal « is a limit ordinal iff « is not a successor
ordinal.
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3.2 Induction and Recursion

Definition 3.9 A binary relation R C B x B on a set or class B is called well-
founded iff every nonempty b C B has an R-least element, i.e., there is x € b such
that forall y € b, —~yRx.If R is not well-founded, then we say that R is ill-founded.

We have the following “principle of induction” for well-founded relations:

Lemma 3.10 Let R C B X B be well-founded, where B is a set. Let A C B be such
that forall x € B, if{y € B: yRx} C A, thenx € A. Then A = B.

Proof Suppose that B\A # (J. Letx € B\ A be R-least,i.e.,forally € B\A, —yRx.
In other words, if yRx, then y € A. Then x € A by hypothesis. Contradiction! [J

If Bisaset,thene| B = {(x,y) € Bx B : x € y}is well-founded by the axiom
of foundation.

Lemma 3.11 R C B x B is well-founded iff there is no f : w — B such that
f(m+ 1)Rf(n) foralln € w.

Proof Suppose there is an f : @ — B such that f(n + 1)Rf (n) for all n € w. Then
ran(f) C B doesn’t have an R-least element.

Now suppose that R is not well-founded. Pick b C B, b # ¥ with no R-least
element; i.e.; for all x € b,{y € b : yRx} # (. Apply the axiom of choice to
the set {{(y,x) : y € b A yRx} : x € b} to get a set u such that for all x € b,
un{(y,x) :y € b AyRx} = {(y,x)} for some y’; write y, for this unique y’.
We may now define f : @ — B as follows. Pick xo € b, and set f(0) = xp. Set
f(n) = yiff there is some g : n + 1 — b such that g(n) = y, g(0) = xo, and for all
iengi+1)= Ve(i)-

Obviously, for each n € w there is at most one such g, and an easy induction
yields that for each n € w, there is at least one such g. But then f is well-defined,
and of course f(n + 1)Rf(n) foralln € w. (I

If R C B x B, then the well-founded part wfp(R) of B is the class of all
Xx € B such that there is no infinite sequence (x,: n < ®) such that xop = x and
(Xn+1,x) € Rforalln < w.

The previous proof gave an example of a recursive definition. There is a general
“recursion theorem.” We state the NBG version of it which extends the ZFC version.

Definition 3.12 Let R C B x B, where B is a class. R is then called set-like iff
{x: (x,y) e R}isasetforall y € B.

Theorem 3.13 (Recursion) Let R C B x B be well-founded and setlike, where B
is a class. Let p be a set,! and let ¢ (vo, v1, V2, p) be such that for all sets u and x

!'p will play the role of a parameter in what follows.
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there is exactly one set y with ¢(u, x, y, p). There is then a (class) function F with
domain B such that for all x in B, F(x) is the unique y with

¢(F [{y € B:JRx}, x.y,p).

Proof Let us call a (set or class) function F good for x iff

(a) x e dom(F) C B,
(b) Vx’' € dom(F)Vy € B (yRx' — y € dom(F)), and
(¢) Vx’ € dom(F) (F(x’) is the unique y with o(F [ {y € B : yRx'}, X', y, p).

If F, F’ are both good for x, then F(x) = F’(x), as we may otherwise consider

the R-least xo € dom(F) N dom(F’) with F(xg) # F’(xo) and get an immediate
contradiction. For all x for which there is a set function f € V which is good for x,

ﬂ{f e V: fis good for x},

which we shall ad hoc denote by f~, is then easily seen to be good for x.

We claim that for each x € B, there is some set function g € V which is good
for x. Suppose not, and let xo be R—least in the class of all x such that there is no
set function g € V which is good for x. Then g* exists for all x Rxg, and we may
consider

g = Jig": xRxo).

As R is set-like, g is a set by the appropriate axiom of replacement. Moreover g is a
function which is good for each x € B with x Rxg. Now let y be unique such that

¢(g | {x € B: xRxo}, x0, y, P)>

and set g* = g U {(xg, y)}. Then g* € V is good for x¢. Contradiction!
We may now simply let

F=|Jif:xeB).
Then F is a (class) function which is good for all x € B. O

Lemma 3.14 For every set x there is a transitive set y such that x € y and y C y'
Sor all transitive sets y' withx € y'.

Proof We use the recursion Theorem 3.13 to construct a function with domain w such
that £(0) = {x} and f(n + 1) = |J f(n) forn < w, and we consider | ran(f). O

Definition 3.15 Let x be a set, and let y be as in Lemma 3.14. Then y is called the
transitive closure of {x}, denoted by TC({x}).

The following Lemma says that the e-relation, restricted to any class, is well-
founded.
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Lemma 3.16 Let A be a non-empty class. Then A has an €-minimal member, i.e.,
there is some a € A witha N A = ().

ProofLet x € A be arbitrary, and let y be a transitive set withx € y. AsyNA # ¢
is a set, the axiom of foundation gives us some a € y N A which is e-minimal, i.e.,
aN(yNA)=@.Thena € A,andif z € a, then z € y (as y is transitive), so z ¢ A.
Thatis,a N A = 0. O

Lemma 3.17 Let B be a class, and let R C B X B be set-like. Then R is well—
Sfounded if and only if there is some (unique) o which is either an ordinal or else
a = OR and some (unique) p: B — o such that p(x) = sup({p(y) + 1: yRx}) for
all x € B.

Proof Let us first suppose that R is well-founded. We may then apply the recursion
theorem 3.13 to the formula ¢(u, x, y) which says that y = sup({fu(y) +1: y €
dom(u)}) if u is a function whose range is contained in OR and y = { otherwise.
We then get an « and a function p as desired.

On the other hand, if p: B — « is such that p(x) = sup({p(y) + 1: yRx})
for all x € B, then in particular y Rx implies that p(y) < p(x), so that R must be
well-founded. [

Definition 3.18 If R C B x B is well-founded and set like, andif ¢ and p: B — «
are as in Lemma 3.17, then p(x) is called the R—rank of x € B, written rkg(x) or
||x||r, and « is called the rank of R, written ||R]]|.

Definition 3.19 The hierarchy (V,: « € OR) is recursively defined by

Vo = {12 (Vp): B < ). (3.1)
We call V,, a rank initial segment of V.

Cf. Problem 3.1.

Definition 3.20 A binary relation R C B x B on aclass B is called extensional iff
forallx,y € B,

{ze B:zRx} ={z € B: ZzZRy} <= x = y.

By the axiom(s) of extensionality (and foundation), €[ B is (well-founded and)
extensional for every set B.

The function g as in the following theorem is often called the “transitive col-
lapse.”

Theorem 3.21 (Mostowski Collapse) Let B be a class. Let R C B x B be well—
founded, extensional, and set-like. There is then a unique pair (Xg, wg) such that
X is transitive, tg : Xg — B is bijective, and for all x,y € Xg,x € y <—
TR(X)RTR(Y).
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Proof Apply the recursion theorem to the formula ¢ (u, x, y) = y = ran(u). We then
get a function F with domain B such that for all x € B, F(x) = {F(y) : yRx}.
Notice that F' is injective, because R is extensional. We may then set X g = ran(F)
and g = F~ L. O

In particular, we get that well-orderings are well-founded relations whose tran-
sitive collapse is an ordinal. Notice that if R C B x B is a well-ordering, then R
is automatically extensional, so that we may indeed apply MOSTOWSKI’s theorem to
R. The reason is that if {z € B: zRx} = {z € B: zRy} and x # y, then xRy, say,
and so x Rx; but then R would not be well-founded.

Definition 3.22 If R is a well-ordering on B, then the unique ordinal « such that
T

there is some isomorphism («; <[ «) = (B; R) is called the length or the order

type of R, denoted by otp(R). If A is a set of ordinals, then we also denote by

otp(A) the order type of <| A and call it the order type of A. The isomorphism
T

(otp(A); <[ otp(A)) = (A; <[ A) is also called the monotone enumeration of A.

Theorem 3.23 (Zermelo) Let A be any set. There is then a well-ordering on A.
There is even an ordinal a and some bijection w : @ — A.

Proof We use the HAUSDORFF Maximality Principle 2.11 to show that there is a
bijection : « — A for some ordinal «v. Let F be the set of all injectionso : § — A,
where $ is an ordinal.

F is indeed a set by the following argument. Foreacho : § — A, R C A x A
is a well-ordering on ran(o), where we define xRy <— o l(x) e o’l(y) for
x,y € ran(o); but any such well-ordering is in (A x A). Conversely, any well—
ordering R on a subset B of A induces aunique injectiono : § — A with B = ran(o)
and xRy <= o~ !(x) € 07 !(y) forx, y € ran(o) by MOSTOWSKI’s Theorem 3.21.
Therefore, as (A x A) is aset, F is a set by the appropriate axiom of replacement.

Let K C Fbesuchthato C Tort C o (i.e.,,0 | dom(r) = 7 or t | dom
(0) = o) whenevero, T € K. Then |J K € F,as |J K is a function, dom(|J K) =
U{dom(o) : 0 € K} is an ordinal, and |J K is injective. Hence F satisfies the
hypothesis of the HAUSDORFF Maximality Principle, Corollary 2.11, and there is
some 7w € F suchthatfornoo € F,m C o.

But now we must have ran(r) = A. Otherwise let x € A\ran(mw), and set
o = w U {(dom(w), x)}. Then 0 € F (with dom(o) = dom(xw) + 1), w C o.
Contradiction! O

If f: « — A, where « is an ordinal (or « = OR), then f is also called a sequence
and we sometimes write (f(§): & < «) instead of f.

3.3 Problems

3.1 Use the recursion theorem 3.13 to show that there is a sequence (V,: o € OR)
which satisfies (3.1). Show that every V,, is transitive and that Vg C V,, for 8 < a.
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3.6

3.7

3.8

3 Ordinals

Show that Vg = @, Vyi1 = P(V,,) for every «, and V; = Ua<k Vy for every
limit ordinal X.

Show that for every set x there is some o with x C V,, (and thus x € V,41).
For any set x, let rke(x) be as in Definition 3.18 for B = V and R = € =
{(x,y): x € y}. Show that for every set x, the least « such that x C V, is equal
to rke(x).

rke (x) is called the (set, or €—) rank of x, also just written rk(x).

If M is transitive, then we may construe (M; €[ M) as a model of .Z-. Which

axioms of ZFC hold true in all (Vy; €| V), where « > w is a limit ordinal?
Which ones hold true in (V,,; €[ V,,)?

For a formula ¢, let (Fund,,) be the following version of the axiom of foundation.

Vp@Ex ¢(x, p) = Ix(p(x, p) AVy € x =p(y, P))). (Fundy)

Show that every instance of (Fund,,) is provable in ZFC.

Let ¢ be a formula of .Z¢ in which exactly the variables x, y, vy, ..., v, (all
different from b) occur freely. The collection principle corresponding to ¢,
(Colly) runs as follows.

Yy ... Vv, (Vx3Ay @) — (Va3bVx € ady € by)). (Colly)

The collection principle is the set of all (Coll,). Show that in the theory Z, the
collection principle is equivalent to the replacement schema (Rep).

Let « be an ordinal. Use the recursion Theorem 3.13 to show that there are
functions B — o + B, B — « - B, and B > of with the following properties.

@) a+0=a,a+(B+1) = (¢+p)+1forall B,andae+r = sup({a+8: B <
A}) for A a limit ordinal.

®) - 0=0,0-(B+1)=(a-B)+aforall B,and - A =sup({e-B: B < A})
for A a limit ordinal.

) «® =1, = (&P) -« forall B, and o* = sup({aﬂ: B < A}) for A alimit
ordinal.

Show that + and - are associative. Show also that w = 1 + ® # w + 1 and
w =72 -w # w-2. Show that if A is a limit ordinal # 0, then o 4+ A is a limit
ordinal. Show that if y is a successor ordinal, then « + y is a successor ordinal.
Show that if A is a limit ordinal # 0, then « - A and X - « are limit ordinals.

Show that if « > 0 is an ordinal, then there are unique positive natural numbers
kandcy,...,c, and ordinals 0 < 81 < ... < B such that

o= cp+...+P ¢ (3.2)

The representation (3.2) is called CANTOR normal form of «.
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3.10

3.11

3.12

Use (AC) to show the following statement, called the principle of dependent
choice, DC. Let R be a binary relation on a set a such that for every x € a
there is some y € a such that (y, x) € R. Show that there is some function
[ @ — a such that for every n € w, (f(n + 1), f(n)) € R. Use DC to prove
Lemma 3.11.

Show that in the theory ZF, the following statements are equivalent.

(i) (AC).

(il) ZORN’s Lemma, i.e., Theorem 2.10.
(iii) The HAUSDORFF Maximality Principle, i.e., Corollary 2.11.
(iv) ZERMELO’s Well-Ordering Theorem 3.23.

Show in ZC that for every set a there is some r such that r is a well-ordering
of a.

(F. Hartogs) Show in ZF that for every set x there is an ordinal « such that
there is no injection f: « — x. [Hint. Consider the set W of all well-orders of
subsets of a, and well-order W via Theorem 2.9.]



Chapter 4
Cardinals

4.1 Regular and Singular Cardinal Numbers

We know by ZERMELO’s Theorem 3.23 that for each set x there is an ordinal o such
that x ~ «, i.e., there is a bijection f : x — «.

Definition 4.1 Let x be a set. The cardinality of x, abbreviated by x, or Card(x), is
the least ordinal « such that x ~ «.

Notice that Card(x) exists for every set x. Namely, let x ~ «. Then either ¢ =
Card(x), or else Card(w) is the least 8 < « such that x ~ 8.

To give a few examples, Card(n) = n forevery n € w; Card(w) = w = Card(w+
1) =Card(w+2) =...=Card(w+w) =... =Card(w-w) = ... = Card(w?) =
... We shall see more examples later.

Definition 4.2 An ordinal « is called a cardinal iff ¢ = @.

Obviously, « is a cardinal iff there is some set x such that « = Card(x). We shall
typically use the letters «, A, , ... to denote cardinals.

By CANTOR’s Theorem 1.3, if x is any set, then there is no surjection f : x —
P (x). Therefore, if k is a cardinal, then there is a cardinal A > «, and there is thus
also a least cardinal A > k which may also be identified as the least cardinal A with
K <A< Pk).

The Pigeonhole Principle says that if x and A are cardinals with A > « and if
f: A — k,then f cannot be injective.

Definition 4.3 Let « be a cardinal. The least cardinal A > « is called the cardinal
successor of «, abbreviated by k1. A cardinal « is called a successor cardinal iff
there is some cardinal u < « with k = u; otherwise « is called a limit cardinal.

All positive natural numbers are therefore successor cardinals, w is a limit cardinal,
wt, o™, ... are successor cardinals, etc.

! We here use the notation for ordinal arithmetic from Problem 3.6.
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© Springer International Publishing Switzerland 2014
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The cardinal successor «* of a given cardinal ¥ my also be characterized as the
set of all ordinals of at most the same size as « (cf. Problem 4.2).

As kT exists for each cardinal «, there are arbitrarily large successor cardinals.
But there are also arbitrarily large limit cardinals.

Lemma 4.4 Let X be a set of cardinals. Then | J X is a cardinal.

Proof By Lemma 3.7 (b) we already know that | J X is an ordinal. We have to show
that thereisno o < |J X such thata ~ |J X. Well,ife < |J X, i.e.,« € |J X, then
there is some k € X with € «,i.e., ¢ < k. As k is a cardinal, there is no surjection
from « onto k. But k € X gives k C |J X, so that there is also no surjection from «
onto | J X. O

In particular, if « is any cardinal, then X = {«, « ™, k™", ...} exists by the replace-
ment schema and we have that | J X is a limit cardinal > «. There are therefore
arbitrarily large limit cardinals.

If X # @ is a set of ordinals (or cardinals), then we also write sup(X) for | X
and min(X) for the least element of X, i.e., min(X) = ((X).

We may now recursively, i.e., by exploiting Theorem 3.13, define the 8-sequence
as follows. 8¢ = w, the least infinite cardinal, and for « > 0, 8, = the least cardinal
k such that k > Rg forall 8 < a.

The first infinite cardinals are therefore

R0, R, N, o0, Ry, Rpg, o, Ry, o, Npo,
etc.?

An easy induction shows that « < R, for every ordinal «. In particular, if « is
an infinite cardinal, then ¥ < 8, so that there is some ordinal & < x with k = R,,.
Every infinite cardinal is thus of the form R,, where « is an ordinal.

We define cardinal addition, multiplication, and exponentiation as follows. By
tradition, these operations are denoted the same way as ordinal addition, multiplica-
tion, and exponentiation, respectively, (cf. Problem 3.6) but it is usually clear from
the context which one we refer to.

Definition 4.5 Let «, A be cardinals. We set
Kk + A = Card((x x {0h) U (A x {1})),
k- A = Card(k x A), and
k* = Card(*«) = Card({f : f is a function with dom(f) = A and
ran(f) C «}).

It is easy to verify that k + A = Card(X U Y), whenever X, Y are disjoint sets with
X =kand Y = A Itis also easy to verify that if k, A > 2, then kx + A < « - A.
Cf. Problem 4.3. Moreover, we have the usual rules for addition, multiplication and
exponentiation.

2 Again, we use the notation from Problem 3.6.
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If « is a cardinal and A is a set, then we write [A]“ for {x C A: Card(x) =
k}, and we also write [A]<¢ = UlKK[A]" and [A]=K = Uusx[A]M' Trivially,
[A]=Card(A) — 2 (A). It is not hard to verify that k* = Card([«]*) for cardinals «,
A (cf. Problem 4.4).

We now want to verify that 8, - 8, = R, for every « (cf. Theorem 4.6). For this
purpose we need the GODEL pairing function.

We define an ordering < on OR x OR as follows. We set (8, ¢) < (&', &’) iff either

(a) max{§, ¢} < max{d’, &'}, or else
(b) max{8, ¢} = max{§’, &'}, and § < &', or else
(c) max{$, &} = max{d8’, &'}, =48',and ¢ < ¢'.

We claim that < is a well-ordering on OR x OR. We need to see that each non-empty
X C OR x OR has a <-least element. Let X 7# @ be given, X C OR x OR. We let
X0 ={S,e) € X:V(&,¢) € X max{s, ¢} < max{s', ¢'}}; welet X! = {(8,¢) €
X0 v, &) € X085 < §'); finally we let X2 = {(8,¢) € X! : V(8,¢') € X! ¢ <
¢’}. Obviously, X2 contains exactly one element and it is <-least in X.

It is easy to see that < is set-like. Using Theorem 3.21 (cf. also Definition 3.22),
we may therefore let 7: OR x OR — OR be the transitive collapse of <.l.e.,r isa
bijection such that (8, &) < (§', &) iff 7((8, ¢)) < m((§', ¢')) (where the latter “<”
denotes the usual well-ordering on ordinals).

Notice that 7 | (y X ¥): ¥ X y — m(y) is bijective for every y. It is easy to
verify that 7 (y) > y for every y. In what follows, we shall sometimes write (8, €)
for w((8, €)). The map 6, ¢ — (8, ¢) is called the GODEL pairing function.

Theorem 4.6 (Hessenberg) For every a, Ry - Rg = Ry

Proof We use the notation from the preceeding paragraphs. One easily shows that
T (Rg) = N, sothat 7 [ (R x Rg) witnesses that Ry x Rg ~ R, i.e., Rg - N = Np.

Now suppose that there is some o with Ry, - 8, > Ry, and let us fix the least such
o. We then musthave o > Oand w(Ry) > Ry. Say 7 ((8, €)) = Ry, where §, & < R,.
Let p < Ry besuchthat§, e < p. Thenran(r [ ((p+ 1) X (p + 1))) D Ry, so that
in particular there is a surjection f: (o + 1) x (p + 1) = Ry. Now p + 1 < Ry,
say Card(p + 1) = Ng, where B < a. We have Rg - Rg = Rg by the choice of
a, so that there is a surjection g : 83 — Rg X Rg, and hence also a surjection
g¥:Ng = (p+1) x (p+1). Butthen fog*: Rg — R, is surjective, contradicting
the fact that 8 < « and R, is a cardinal. ]

HESSENBERG’s Theorem 4.6 yields that cardinal addition and multiplication are
trivial.

Corollary 4.7 Forall a, B, Ry + Rg = Ry - Rg = Npaxfa, g)-

Proof Assume without loss of generality that « < 8. Then
Ng <Ry +Rg <R - Vg < Vg - Rg =Rg,

the last equality being true by HESSENBERG’s Theorem 4.6. ]
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Cardinal exponentiation is a different matter.

Lemma 4.8 For all k, 2 = P (k).

Proof 2 = the cardinality of the set of all functions f : k — 2 = {0, 1}, which is
the same as the cardinality of the set & (k). (]

Corollary 4.9 «* < 2¢,

CANTOR’s Continuum Hypothesis, abbreviated by CH, may now be restated as N0 —
N1 (= R}). The assertion that

Vo 280 = Ry 4.1

is called the Generalized Continuum Hypothesis and is abbreviated by GCH. We
shall see that GCH as well as =CH are consistent with ZFC (cf. Theorems 5.31 and
6.33).

Definition 4.10 Let « be an ordinal. A function f: A — « is called cofinal in « iff
for all B < « there is some a € A such that f(a) > B. The cofinality of «, written
cf (@), is the least 8 < « such that there is a cofinal f:  — «.

Notice that cf(«) is defined for all «, as the identity on « is always cofinal in «.
cf (o + 1) = 1 for all «, so that cf(«) is only interesting for limit ordinals «.

For instance, cf(w) = w =cf(w+w) =cf(w-3) =...=cf(w-w) =... =
cf (w®).

The fact that 8 = cf(«) is witnessed by a monotone function as follows. Let
B = cf(x). Let f: B — « be cofinal. Define f*: § — « as follows: f*(&) =
sup{f(n): n < &} for & < B. Notice that in fact for every &€ < B, f*() < «, as
otherwise f | & would witness that cf (@) < & < B8 = cf(«). f* is thus well-defined
and cofinal, and of course if & < &', then f*(&§) < f*(&'). If x: y — ran(f*)
is the monotone enumeration of ran( f*), then y < cf(«) and thus y = cf(a). Of
course, 7 is then strictly monotone. 7 is also continuous in the sense that for all limit
ordinals y € dom(x), w(y) = sup({w(y): y < y}).

Definition 4.11 Let o be an ordinal. « is called regular iff cf () = o, and « is called
singular iff cf (@) < .

Examples of singular cardinals are R, R, etc., or more generally all 8, where
A is a limit ordinal with A < R,. However, A = R, does not imply that A is regular,
cf. Problem 4.5.

Lemma 4.12 For every ordinal «, cf(«) is regular.

Proof Let § = cf (). We need to see that cf(8) = B. Let f: B — « be cofinal, and
let g: cf(B) — B be cofinal. By the above observation, we may and shall assume
that f is monotone. Consider f o g: cf(8) — «. If £ < «, then there is some
n < B with f(n) > &, and then there is some { < cf(f) with g(¢) > 7. But then

fog(®)= f(g(¢)) > f(n) > & by the monotonicity of f.Ie., f o g is cofinal, so
that 8 = cf(B). 0
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Lemma 4.13 Let o be regular; then « is a cardinal.
Proof Every bijection (or just surjection) f: @ — « is cofinal. O

Corollary 4.14 For every ordinal «, cf(a) is a regular cardinal.
Lemma 4.15 Let k be an infinite successor cardinal. Then k is regular.

Proof Let k = ut. Suppose that cf (k) < «, i.e., cf(k) < pu by Lemma 4.13. Let
f 11— Kk becofinal. Let (ge: £ < p) be such that foreach & < u, ge : p — f(§)
is surjective. (Here we use AC, the axiom of choice.) Let i : ;© — p x p be bijective
(cf. Theorem 4.6). We may then define a surjection F' : u© — k as follows. Let
n < w. Let (o, B) = h(n), and set F(n) = go(B). But because u < k and « is a
cardinal, there can’t be such a surjection. (I

We thus get that Rg, Ry, Ry, ... are all regular, whereas cf(R,) = o < N,,. N4
is again regular, etc.

FELIX HAUSDORFF (1868-1942) asked whether every limit cardinal is singular.
This question leads to the concept of “large cardinals,” which will be discussed in
detail below and in later chapters, cf. Definitions 4.41, 4.42, 4.48, 4.49, 4.54, 4.60,
4.62, 4.68, and 10.76. They are ubiquitous is current day set theory.

We now want to look at k-, A —> k.

Notice that 1“ = 1, but for every infinite cardinal «, 2¢ < k¥ < (2)" = 2% =
2€ i.e., 2 = k*. Therefore, u* = 2 for all infinite x and 2 < u < k.

If «c is a limit cardinal, then we write 2= for sup,, _, 2". More generally, we write
A= for sup, _ AH.

Lemma 4.16 If « is a limit cardinal, then 2¢ = (2<)'%)_ In particular, if k is a
limit cardinal with 2<% = k, then 2¢ = 1),

Proof Let « be an arbitrary limit cardinal, let f: cf(k) — « be cofinal, and let us
write k; for f(i), where i < cf(x). Fori < cf(k), let g;: P (k;) — 2= be an
injection. We may define

D: P(k) > W21

by letting @ (X)(i) = gi(X N«;), where X C « and i < cf(k). Obviously, @ is
injective. Therefore,

oK < (2<K)Cf(K) < (2K)Cf(K) — 2K~Cf(l<) — 2/(,

so that in fact 2¥ = (2<K)Cf('(). 0

Corollary 4.17 Let k be a singular limit cardinal and assume that there are (Lo < «
and A such that 2" = A whenever uy < u < k. Then 2 = X.

Proof Let © > o be such that 4 > cf(x). Then, using Lemma 4.16, 1 < 2 =
Acft) — (zu)cf(K) — pucfle) — o — 0

The expression «f®) will reappear in the statement of the Singular Cardinals
Hypothesis, cf. (4.2) below.
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Definition 4.18 Let « be an infinite cardinal. We then say that a set x is hereditarily
smaller than « iff TC({x}) < k. We let

H, = {x: x is hereditarily smaller than «} .

We also write HF (“hereditarily finite”) instead of Hy, and HC (“hereditarily
countable”) instead of Hy,.

Itis not hard to show that H, is a set for every infinite cardinal « and that Card(H,.) =
2=k cf. Poblem 4.10.
The following is often referred to as the HAUSDORFF Formula.

Theorem 4.19 (Hausdorff) For all infinite cardinals «, A, (kT)* = k* - T

Proof Suppose first that k7 < A. Then (k T)* = 2* = k* . k.

Let us now assume that k™ > A. Then, as ™ is regular by Lemma 4.15, every
f: A = k7T is bounded, i.e., there is some £ < x+ with ran(f) C &. Therefore
«H* = Card(* (k1)) = Card(Ug _ .+ rey =kt k. O

We may define infinite sums and products as follows. Let f be a function with
dom(f) = I (where I is any non-empty set) and such that f (i) is a cardinal for
every i € I. Letus write «; for f(i), wherei € 1. We then define

Z/q = Card (U(/q X {i})) ,

iel iel

and
[ ki = the cardinality of the set of all functions g
iel

with dom(g) = I and g(i) € «; foralli € I.

This generalizes the earlier definitions of k + A and « - A.

It is not hard to verify that if « is a limit cardinal, then cf («) may be characterized
as the least A such that there is a sequence (k;: i < ) of cardinals less than x with
k =2, ki (cf. Problem 4.6).

If A;isasetforeachi € I (where [ is any “index” set), then we write X,y A; for
the set of all functions g with dom(g) = I and g(i) € A; for alli € I. The axiom
of choice says that X;c;A; # ¥ provided that I # Jand A; # @ foralli € 1. We
have that [ [;.; ki = Card(X;erk;).

Theorem 4.20 (Konig) Let I # (J, and suppose that for every i € I, kj and X; are
cardinals such that k; < A;. Then 3 ;_; ki < [l;c; Ai-

Proof Let f: UieI(Ki x {i}) = Xjer)i. We need to see that f is not surjective.
Leti € I. Look at

{Eeri:—Taeck fla,i)(i)=E&}.
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As k; < Aj, this set must be non-empty, so that we may let &; be the least & such that
foralla € «;, f(o,i)(i) #&.

Now let g € X;crA; be defined by g(i) = &; fori € I.Ifi € I and o € «;, then
fla,i)(@) #& = g(i),i.e., f(o,i) # g. Therefore, g & ran(f). O

Corollary 4.21 For all infinite cardinals «, cf(2¥) > « and k' > k.

Proof Let I = «, and let x; < 2 for all i € I. In order to show that cf(2“) > «,

it suffices to show that > ; _; ki < 2. Set A; = 2“ foralli € I. Then > ;_; ki <
[lic; 2 = Card(*(2¥)) = (2)© =2~.

To see that kT®) > k. let f: cf(k) — & be cofinal, and write I = cf(x) and

ki = f(@i)fori € I.SetA; =« foralli € I.Thenk < > ;& < [lic/hi =

O

iel
Card(f®) ) = of ), '

The Singular Cardinal Hypothesis, abbreviated by SCH, is the statement that for
all singular limit cardinals «,

)f) — pef () | o+ 4.2)

Notice that «f®) > 2¢f®) . -+ holds for all infinite « by Corollary 4.21, so that
SCH says that «°T®) has the minimal possible value. Moreover, if « is regular, then
M0 et = 2K et = 26 = k¥ = k() 50 that (4.2) is always true for regular k. A
deep theorem of R. JENSEN will say that the negation of SCH implies the existence
of an object called 0%, cf. Corollary 11.61.

If GCH holds true and « is a singular limit cardinal, then (CE0) — ok — et —
2¢t) . e+ using Lemma 4.16. Therefore, GCH implies SCH.

Lemma 4.22 Let « be a limit cardinal, and suppose that SCH holds below «, i.e.,
St = o<t .+ for every (infinite) u < k. Then for every (infinite) ;1 < k and
for every infinite A,

24 ifp < 2%,
A wt if u > 2* is a limit cardinal of cofinality < A, and
w if u > 2* is a successor cardinal or a limit cardinal
of cofinality > \.

Proof by induction on u, fixing A. If u < 2* then /ﬂ < (ZA)A =2 < ;ﬂ, and thus
w =2 Tfu=vt > 2" <k, then u* = WH* = v . vF = vt = 4 by the
HAUSDORFF Formula 4.19 and the inductive hypothesis.

Now let 4 < &, > 2*, be a limit cardinal, and let (¢; : i < cf(p)) be cofinal in
w, where o; > 2* forall i < cf(w). By the inductive hypothesis (cf. also Problem
4.16) and as we assume SCH to hold below «, we have that

M)‘f( H Oli))‘: H ((X,?L)f H O{i+§ H MZMCf(M)=2Cf(M)'M+.

i<cf(u) i<cf(p) i<cf(u) i<cf(p)
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Therefore, if cf(1) < A, then with the help of Corollary 4.21 we get that u+ <
puet) < p* < 24 ut = pt so that u* = . On the other hand, if A < cf(u),
then every f: A — p is bounded, so that by the inductive hypothesis

W D el D et <cf(u)p=p <t
i<cf(u) i<cf(u)

so that u* = L. O

In order to prove more powerful statements in cardinal arithmetic, we need the
concept of a “stationary” set.

4.2 Stationary Sets

Definition 4.23 Let A be a set of ordinals. A is called closed iff for all ordinals
o, sup(A No) € A. If y is an ordinal, then A is unbounded in y iff for all § <
y, (ANY)\& # @. Aiscalled §-closed, where § is an infinite regular cardinal, iff for all
ordinals @ with cf (o) = & and such that AN« isunboundedin o, @ = sup(ANw) € A.
A is called club in « iff AU {a} is closed and A is unbounded in «. A is called §-club
in o, where § is an infinite regular cardinal, iff AU{«} is §-closed and A is unbounded
ino.

A set A of ordinals is closed iff it is §-closed for every 4, iff it is a closed subset of
sup(A) in the topology generated by the non-empty open intervals below «. For any
set A of ordinals we usually denote by A’ the set of limit points of A, where « is a
limit point of A iff for all B < « there is some y € A with B < y < a. A’ is always
closed. Also, e.g., A is closed iff A" C A U {sup(A)}.

For any «, the cofinality of « is the least size of a subset of ¥ which is unbounded
in k (cf. Problem 4.7). If C C « is club, where cf (k) > w, then C’ is also club in «.
If w: cf(k) — « is strictly monotone, continuous, and cofinal, then ran(sr) is club
in k, and if cf (k) > w, then the set of limit points of ran(rr) is club in « and consists
of points of cofinality strictly less than cf («).

Definition 4.24 Let X # @ be aset. F C Z(X) is called a filter on X iff

(1) F#9,
(2) YaV¥b(a e FAbe F — anb e F), and
(3) Ya¥b(a€ FAa CbC X — b € F).

F is called non-trivial iff @ ¢ F. F is called an ultrafilter iff for every a C X, either
aec Forelse X\aeF.

Let u be a cardinal. Then F is called < u-closed iff for all « < u and for all
(Xi:i<a}CF,({Xi:i<a}eF.

Notice that every filter is < w-closed. If « is a limit ordinal, then
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{(XCoa: b <aa\B C X}

is a non-trivial < cf(«)-closed filter on «, called the FRECHET filter (on «). Every
filter can be extended to an ultrafilter, cf. Problem 4.11.

Lemma 4.25 Let o be an ordinal such that cf(a) > w, and let F, be the set of all
A C « such that there is some B C A which is club in «. Then Fy is a (non-trivial)
< cf(a)-closed filter on a.

Proof We need to see that if 8 < cf(«) and A; is club in « for every i € B, then
ﬂieﬂ A; is club in «. Well, (ﬂieﬁ A;) U {a} is certainly closed, so that it suffices
to verify that ();c4 A; is unbounded in . Let § < o. We define f : - — « as
follows.? Forn € wand i € B we let f(B - n + i) be the least element of A; which
is bigger than sup({f () : n < B-n + i} U {£}). Notice that this is welldefined as
B - w < cf(«) and each A; is unbounded in «.

Let p = sup{f(n) : n < B - w}. We have that p < o and in fact p € ﬂieﬁ Aj,
because every A; is closed; notice that foreachi € 8, p = sup{f(B-n+1i) :n €
w} = sup(A; N p). [l

Fy as in this lemma is called the club filter on «.
Definition 4.26 Let « be regular, and let X; C « for all £ < «. The diagonal inter-
section of X¢, & < «, abbreviated by Ag .o X¢, is the set [n <an€ ey Xg}.

Definition 4.27 Let o be regular, and let F be a filter on «. F' is called normal iff
forall {Xz: & <o} C F, Ag<o Xz € F.

Lemma 4.28 Let o be regular, and let Fy, be the club filter on . Then Fy, is normal.

Proof We need to see that if Ag is club in o for every & < a, then Ag_yAg is
club in «. By replacing A¢ by ﬂn <¢ Ay if necessary, we may and shall assume that
Ag C Ag whenever £ < &', (Notice that every ﬂ ¢ Apisagainclubina by Lemma
4.25.) In order to see that (Ag . Ag) U{a} is closed let 8 < « be a limit ordinal such
that § = sup((Ag <o Ag) NS). We want to argue that § € Ag o Ag,i.e.,d € Ag forall
& < 8. Well, 1f§ < &’ < §, then there is some n with&§’ <n < Sandn € Ag o AE
ie.,n € ﬂ§< g, in particular n € Ag. This shows that § = sup(Ag N d) for all
& < d;hence § € Ag forall § < 6.

In order to see that Ag .y Ag is unbounded in o, let n < «. We construct a
sequence 1,,n € w, as follows. Let ng = 7. If n, is defined, then let 1,4+ be the
least n > n, such that n € A,,. We claim that sup{n,: n € w} € Ag.qAs. Set
B = sup{n,: n € w}. We need to see that B € Ag forall§ < B.Let§ < B. Then
& < n, for some n € w. We have that ,,41 € Ay, C Ay, forall m > n, so that
B = sup{nm+1:m > n} € Ayy, C Ag. O

Definition 4.29 Let « be an ordinal such that cf(«) > w. A C « is called stationary
(ina) iff AN C # @ for all C which are club in «.

3 Here, 8 - @ denotes ordinal multiplication.
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If u, « are infinite regular cardinals with © < «, then the set
{a < k:cf(a) = u}

is stationary in « (cf. Problem 4.12). This immediately implies that for any regular
Kk > Ny, F, is not an ultrafilter. We shall prove a stronger statement below, cf.
Theorem 4.33.

Definition 4.30 Let X # (J, and let F be a filter on X. Then we write
Ft={acX: VbeFbNa#®)}.

The elements of F are called the positive sets (with respect to F).

The stationary sets are therefore just the positive sets with respect to the club filter.

Lemma 4.31 Let « be regular, and let F be a filter on k. The following statements
are equivalent.

(a) F is normal.
(b) Let f: kK — kbesuchthatY ={& <«: f(§) <&} € FT. There is then some
a <k and some X € F*, X C Y, such that f(§) = a forall £ € X.

Proof (a) = (b): Let f be asin (b). If thereisnoa < xand X € FF, X C Y,
such that () = o for all £ € X, then for every « < x we may pick some X, € F
such that f(§) # « forall £ € X, NY. (Here we use AC, the axiom of choice.) By
definition

§eYNAgak Xog = f(§) 2§ (4.3)

By (a), Agex Xo € F,sothatby ¥ = {§ < «k: f(£§) < £} € FT', we may pick
some & € Ay~ Xy such that £ (&) < &. This contradicts (4.3).
b)= @:LetXy € F,a <k.lf Ay Xy ¢ F, then

Y={&<k:&¢ () XageF™

a<€

Let f: « — « besuchthat f(§) <& and & ¢ X ) forall§ € Y. By (b), there is
then some X € F™, X C Y, and some o < « such that £ ¢ X, forall £ € X. But
XNXy, #0,as X, € F. Contradiction! ([l

In the light of Lemma 4.28, Lemma 4.31, applied to the club filter, immediately
gives the following.

Theorem 4.32 (Fodor) Let o be regular and uncountable, and let S C o be station-
ary. Let f: S — « be regressive in the sense that f(§) < & forall§ € S. Then there
is a stationary T C S such that f | T is constant.
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The following theorem is a strong from of saying that the club filter is not an ultrafilter,
i.e. for any regular uncountable « there are X C ™ which neither contain nor are
disjoint from a club.

Theorem 4.33 (Solovay) Let k be a regular uncountable cardinal, and let S C k be
stationary. Then S may be written as a disjoint union of «k stationary sets, i.e., there
is (S¢: & < k) such that S¢ C S is stationary in k for every & <k, Se N Sgr =00
forall&, & <k withé #&',and S = Us<:< Se.

Proof Let us first write S = Sy U Sy, where Sy = {@ € S: cf(¢) < @} and S| =
{o € §: cf(o) = ). At least one of Sp, S| must be stationary.

Claim 4.34 There is some stationary S C S and some sequence (Aq: a € S) such
that Ay, C ais clubina and Ay NS = @ for every a € S.

Proof Suppose first that So is stationary. By Theorem 4.32, there is then some sta-
tionary S C Sy and some regular A < « such that cf (@) = A for all @ € §. Let
us pick (Aq: a € S), where A, is club in «, otp(Ay) = A, and cf(y) < A for all
y € Aq. Notice Ay NS = ¢ for each o € S.

Now suppose Sy to be non-stationary, so that Sy is stationary. Let

S={xeS:SiNnais non-stationary} .

We must have that S is stationary. To see this, let C C (k \ (w + 1)) be club, and let
C’ C « be the club of all limit points of C. If « = min(S; N C’), then C N« is club
in «, so that C' N« is still club in &, as o > w is regular; but C'"Na)yNS; =0,
so that « € C N §. We may thus pick (Aq: a € S), where Ag is club in o and
Ay NS C AyNS; =¢Wforeacha € S. ([l

Fora € §, let (yf: i < otp(Ay)) be the monotone enumeration of A .

Claim 4.35 There is some i < k such that for all 8 < «,
{aeS: i <cf@)ny® > B}

is Stationary in k.

Proof Suppose first that § C S, and let again A < « be such that cf(«) = A for all
a € S.If Claim 4.35 fails, then for every i < A there is some f8; < k and some club
C; C « suchthat foralla € SNC;, v < Bi. Butthen if B =sup({Bi:i <A} <«
anda € (SN (;_; C) \ (B+ 1), then y* < B forall i < A, so that A, would be
bounded in «. Contradiction!

Now suppose that § C Sy, so that cf (o) = « for every a € . If Claim 4.35 fails,
then for every i < « there is some f; < « and some club C; C « such that for all
aesSn C;, either i > cf(a) or else yl.“ < Bi.Let D C k betheclubofall 8 < «
such thati < B implies §; < 8. By Lemma 4.28 we may pick

o, o e S NA;«Ci ND,



44 4 Cardinals

witha < o’ . Ifi < «, thena’ € SNC;, so that yl.“/ < Bi;buta € D,sothat B; < a.
Le., yl.“, < « for all i < «. This yields y‘;"/ < «a, as Ay is club; however, clearly
v > iforevery i < o, so that in fact yo‘j" = «. But then yg/S . Contradiction! [

Now fix ig < « such that for all 8 < «,
{a €8: g < cf(@) Ayl > B}

is stationary in «. Let us recursively define stationary sets Sg and ordinals B¢ for
& < k as follows. B

Fix § < «, and suppose that Sz and Bz have already been chosen for all £ < &.
The set

{a es: Vie > sup§<§,{3§}

is stationary in «, and we may thus use FODOR’s Theorem 4.32 to pick some >
supz _¢ B¢ and some stationary §* c § such that for all @ € §*, yl.‘; = . Let us set
Sg = §* and B¢ = B.

The rest is straightforward. (]

The Singular Cardinals Hypothesis SCH cannot first fail at a singular cardinal of
uncountable cofinality:

Theorem 4.36 (Silver) Let k be a singular cardinal of uncountable cofinality. If
SCH holds below , then it holds at k, i.e., if u*® = 2T .+ for every u < «,
then k€70 = 26100 . e+,

Proof Suppose first that k < 2¢7®) Then x < 2¢1®) as cf (2F®)) > cf(x) by
Corollary 4.21. Le., k7 < 27®)_and hence kI < (2cft)yetl) — pefte) —
2¢f() et < &) Therefore, SCH holds at «.

We may thus assume that 2°1®) < k. Let C C « be clubin k¢ withotp(C) = cf (k),
let C’ be the set of all limit points of C. Let (u;: i < cf(x)) be the monotone
enumeration of C’ \ (2°fWy+ As cf(ui) < cf(k) for every i < cf(x) (as being

witnessed by C N u;), Lemma 4.22 gives that ,u?f('{)

; = /Li+ for eachi < cf(x). So
for each i < cf(x), we may pick a bijection g; : (i) — Mf.
We now have to count [« ]<'®). To each X € [«]T®) we may associate a function
fx :cf(k) = k by setting fx (i) = gi (X N u;). Obviously, X + fx is injective.
If X, Y € [k]€%), then we shall write X < Y iff {i: fx(i) < fy (i)} is stationary.
We musthave X <Y orY < X forany two X, Y € [/{]Cf(").

Claim 4.37 Let X € [x]%). Then Card({Y € [«]T®): ¥ < X}) < «.

ProofLetus fix X € [«]"*) foramoment. Foreachi < cf(«), letus pick an injection
g fx@)+1— u;. Y < X, then the set S{f ={i <cf(): fy(@) < fx@)}is
stationary, and we may look at

X. X
Fy: Sy —«,
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as being defined by Ff (i) = gi(fy(@@)) fori < cf(x). In particular, F;( (i) < pu; for
everyi € Sf/( . Let D be the club of limit ordinals in below cf (k). Then the map which
sendsi € Sff N D to the least j < cf(x) with F}( (i) < uj isregressive. As S;,( NnD
is still stationary, by FODOR’s Theorem 4.32 there is a stationary set S’))f C Sff and
some i < cf () such that F¥ (i) < px foralli € SX.

IfY,Z <X, 58 =58%,if =if,and Ff | §§ = Ff | §%,thenY = Z. But
there are only

S 2Cf(’<) . Cf(K) . (supM<K MCI(K)) =K

many possible triples (S’;‘, if,(, F;( I Sy), so that there are at most ¥ many ¥ < X.[]

In order to finish the proof of the Theorem, it thus remains to be shown that there
is some A C P (k) of cardinality x* such that (k) ={Y C«x: IX € AY < X}.

Let us recursively construct X, for o < «T as follows. Given @ < « T, having
constructed X g forall 8 < «, we pick X, such that forno 8 < a, Xy < Xg. Notice
that this choice is possible, as {Y C «: 38 < o ¥ < Xg} has size at most « by
Claim 4.37. Set A = {X,: o < kT}. We must have that Z(k) = {Y C k:3X €
AY < X}, as otherwise there would be some ¥ C « with X, < Y forall o < «;
but X, # Xg for o # B, so this is impossible by Claim 4.37. O

Corollary 4.38 Let k be a singular cardinal of uncountable cofinality. If GCH holds

below k, then it holds at k, i.e., if 2" = w™ for every u < «, then 2 = k™.

Proof If 2* = put, then pu'™ = pt so that xT®) = 2¢1) .+ by SILVER’s
Theorem 4.36. But 2¢1%) < k. so that kT®) = T By Lemma 4.16, 2¢ = I,
which gives 2¢ = k. O

Problems 4.17 and 4.18 produce generalizations of Theorem 4.36 and Corollary
4.38.
There is a generalization of stationarity which we shall now briefly discuss.

Definition 4.39 We say that . C [0]" is stationary in [6]¢ iff for every A D 6 and
for every algebra 2 = (A; (fi: i < k)) on A with at most ¥ < k many functions
fi,i < k, there is some X € .% which is closed under all the f;, i < &, from 2, i.e.,
fI'IX]1=® C X foralli < i.

If S C k™, then S\ k C [kT]*. Itis easy to verify thatif § C « is stationary in
« T in the sense of Definition 4.29, then S \ « is stationary in [« *]* in the sense of
Definition 4.39.

We may call a set 2~ C [0]°% unbounded in [0]=* iff for all Y € [6]<" there
is some X € 2 with X D Y, and we may call 2~ C [0]" closed in [0]<* iff
forall (X;:i < k) suchthatk < x and X; € 2 and X; C Xjfori < j <k,
Ui~ Xi € Z. Wemay then call ¢ C [0]1< closed and unbounded (club) in [0]=*
iff € is both unbounded and closed in [0]=¥.

Aset Z C [0]7X is stationary in [0]~" ifft Z"NE # O for all € which are club
in [0]=%. Then . C [0]" is stationary in [6?]<"+ iff . is stationary in the sense of
Definition 4.39, cf. Problem 4.15.
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4.3 Large Cardinals

Definition 4.40 A cardinal « is called a strong limit cardinal iff for all cardinals
nw<k,2M <k,

Trivially, every strong limit cardinal is a limit cardinal. R is a strong limit cardinal,
and if « is an arbitray cardinal, then

sup ({K 2k 2@ })

is a strong limit cardinal above k. There are thus arbitrarily large strong limit cardi-
nals. Also, any limit of strong limit cardinals is a strong limit cardinal.

Definition 4.41 A cardinal « is called weakly inaccessible iff « is an uncountable
regular limit cardinal. A cardinal « is called (strongly) inaccessible iff k is an uncount-
able regular strong limit cardinal.

Trivially, every (strongly) inaccessible cardinal is weakly inaccessible. It can be
shown that there may be weakly inaccessible cardinals which are not strongly inac-
cessible (cf. Problem 6.13). Moreover, the existence of weakly inaccessible cardinals
cannot be proven in ZFC (cf. Problem 5.16). HAUSDORFF’s question (cf. p. 35) as to
whether every uncountable limit cardinal is singular thus does not have an answer in
ZFC.

Large cardinals may be used to prove true statements which are unprovable in
ZFC, cf. e.g. Theorems 12.20 and 13.7. They may also be used for showing that
certain statements are consistent with ZFC, cf. e.g. Theorem 8.23.

Definition 4.42 A cardinal « is called weakly MAHLO iff k is weakly inaccessible
and the set
{n < k: pis regular}

is stationary. A cardinal « is called (strongly) MAHLO iff « is (strongly) inaccessible
and the set
{n < k: pis regular}

is stationary.

Again, every (strongly) MAHLO cardinal is weakly MAHLO, and there may be weakly
MAHLO cardinals which are not (strongly) MAHLO. If « is weakly/strongly MAHLO,
then there are k¥ weakly/strongly inaccessible cardinals below « (cf. Problem 4.21).

In the proof of Claim 1 of the proof of SOLOVAY’s Theorem 4.33, S7 can only be
stationary if « is weakly MAHLO.

Definition 4.43 Let « be an infinite cardinal. A partially ordered set (T, <7) is
called atreeiffforalls € T,{t € T: t <7 s} is well-ordered by <. In this case,
we write lvry (s) for the order-type of {t € T: t <7 s} and call it the level of s in T .
We also write ht(T) for sup({lvr(s) + 1: s € T}) and call it the height of T .
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Asetc C TisachaininT iffforalls,t €ec,s <y tors =tort <7 5. A chain
¢ C T is called a branch through T iff forall s € cand ¢t <7 s,t € ¢. A branch b
through 7 is called maximal iff there is no branch b’ 2 b through T, and a branch b
through T is called cofinal iff for all « < ht(T') there is some s € b withlvy(s) = «.

A seta C T is an antichain iff for all s, ¢ € a with s # ¢ neither s <7 ¢ nor
t<rSs.

Definition 4.44 Let « be an infinite cardinal, and let (T, <7) be a tree. We call
(T, <7) a k-tree iff the following hold true.

(1) ht(T) =«,

(2) thereis aunique r € T with lvy(r) = O (the root of T'),

(3) forevery s € T and every @ > lvy(s), @ < «, there is some ¢t € T with s <7 ¢
and ht(7T) = «,

(4) foreverys € T therearer,t’ € T,t #1t',withs <y t,s <7 t' and vy (¢) =
vz (t") =1vr(s) + 1, and

(5) foreverya < «,Card({s € T: lvr(s) = a}) < k.

A k-tree (T, <7) is called k-ARONSZAIN iff there is no cofinal branch through T'.
A k-tree (T, <) is called x-SOUSLIN iff T has no antichain of size «.
A k-tree (T, <7) is called k-KUREPA iff T has at least k™ cofinal branches.

Notice that if (T, <7) is k-SOUSLIN, then (T, <7) is x-ARONSZAIN. (Cf. Problem
4.22.)

We may turn any tree (7, <7) with properties (1) and (5) from Definition 4.44 into
a k-tree without adding cofinal branches or antichains of size « as follows, provided
that k be regular.

Lemma 4.45 Let k > R be a regular cardinal. If there is a tree with properties (1)
and (5) from Definition 4.44 which has no cofinal branch and no antichain of size k,
then there is a k-SOUSLIN tree.

Proof Let (T, <r) be a tree with properties (1) and (5) from Definition 4.44. Let
To={seT: Va<k(a>1lvr(s) > It eTAvr@t) =a As <7 1))}.

Then Ty = (To, <7 | Tp) is a tree with property (5) of Definition 4.44. Of course,
To C T and Ivy,(s) = lvr(s) forall s € Tp.

Suppose that (1) of Definition 4.44 failed, and let « = ht(7p) < k.Foreachs € T
with vy (s) = o we must then have that p(s) = sup({lvr(t): s <7 t}) < «, so that
sup({p(s): s € T Alvy(s) = a}) < k, as k is regular and 7 satisfies (5). But then
T cannot have satisfied (1). Contradiction!

Therefore, Tp satisfies (1) and (5). Let us show that 7y satisfies (3). Let s € Tp and
a > lvp(s),a < k. Ass € Ty, forevery B > o we may pick sometg € T, s <7 tg
with lvr(tg) = B, and we may let ug € T be unique such that s <7 ug <r tg,
Ivr(ug) = a. As « is regular and T satisfies (5), there is some cofinal X C « such
that ug = ug for all B, B’ € X. Write u = ug, where g € X. We must then have
that u € Ty, where s <7 u and vy (1) = «. This shows that Ty satisfies (3).
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Now pick r € Ty with tkg, (r) = 0, and let
Ti={seTy: r <rs}.

Then T = (T, <7 | Ty) is a tree which satisfies (1), (2), (3), and (5) from Definition
4.44. We are left with having to arrange (2).
Now let us set

L={sel: =3t <y sVreTi(t <rr Alvp(r) <lvp,(s) — r <7 5)}.

Then (T2, <7 | T) is again a tree.

T trivially satisfies (2). As for (5),leta < k. If L = {s € T>: 1lvr,(s) = a} has
size > k, then L cannot be an antichain in 7', so that there are s, t € L withs <7 ¢
ort <7 s. Butthen Ivy, (s) # lvy, (¢). Contradiction! So 75 satisfies (5).

Asfor (1) and (3), letus fix s € T». Foreach«a > lvz, (s), let us pick some t, € Tj
such that vy, (f¢) = «. Let uy <r 1 be such that u, € T, and

Vr e Ty (ua <rrAlvy(r) <lvp(ty) — r <1 ta) .

If {lvT2 (ug): a < /c} were bounded in «, then by (5) for 7, there would be some
X C k of size k suchthatuy, = u, forallo, o’ € X.Butthen{s € T: o € X s <7
to} would be a cofinal branch through T'. Contradiction! Hence {Ivz, (uy): o < «}
is unbounded in «, and (1) and (3) are shown for 75.

(4) is clear by construction. [l

Lemma 4.46 (Konig) There is no Ro-ARONSZAJN tree.
Proof Cf. Problem 4.20. (I
The following Lemma is in some sense a special case of Lemma 11.68.

Theorem 4.47 (Aronszajn) Let k be an infinite cardinal with k<% = k. There is
then a k™ -ARONSZAJN tree.

Notice that Ng Ro _ Rp, so that Theorem 4.47 yields the existence of an Vi-

ARONSZAIN tree. As k1) > k by Corollary 4.21, k=¥ = « implies that « is a
regular cardinal. By Theorem 4.47, if there is no N>-ARONSZAJN tree, then CH fails.
Proof of Theorem 4.47. Let

U:{se”‘x:cx<fc+

A s is injective A k \ ran(s) = K}

We construe U as a tree by having it ordered under end-extension. The tree 7" which
we are about to construct will be a subtree of U and also closed under initial segments
and ordered by end-extension. Notice that U cannot have any cofinal branch, as this
would yield an injection from « ™ into «, so that the tree T we are about to construct
cannot have a cofinal branch either.
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Because T C U will be closed under initial segments and ordered by end-
extension, we will have that lvy (s) = dom(s) for every s € T. We shall construct

Ty ={s € T:1lvr(s) = dom(s) < «}

by induction on . We maintain the following conditions.

(1) k \ran(s) =« foralls € T.

(2)IfseTK\ran(s)—AUB where ANB = #and A = B = «, and if
lvr(s) < B < «™, then there is some t € T with Ilvy(t) = B, s C t, and
ran(7) C ran(s) U A.

(3) Ty <k foralla < k™.

(4) Let A < kT be a limit ordinal with cf(1) < k. Let C C A be club in A with
otp(C) = cf(r),and let (1;: i < cf(X)) be the monotone enumeratlon of C. Let
K:UKC“M A;UB,where A;NA; =0,A;NB =9, and B = A = « for
i #j,i,j <cf(}).Lets: A — « be such that

s A el As"A C U Aj
j<i+l

forevery i < cf(X). Thens € T)41.

Well, T} = {#},and T, = |J,,_; Ty forlimitordinals < «k*.Ifa = B+1 <« ™,
where 8 = y + 1 is a successor ordinal, then we just let T, consist of all injections
s € Pk such that s I v € Tg. Notice that (1) through (4) for the tree constructed so
far follows from (1) through (4) for the ealier levels of the tree.

Now suppose that @ = A + 1 < k™, where A is a limit ordinal, and T}, already
has been constructed.

Let us first assume that cf(X) < k. We then let 7, 41 consist of all s € * i which
need to be there in order to satisfy (4). Notice that there are A" < x many clubs
in A of order type cf(1), and for each such club C there are < ¥*'») = k possible

choices of s € *k such that for all§ € C,s | £ € Teq1. Hence T—H < k, and
(3) is maintained. (1) is ensured by the fact that for s € 7)1 as being given by (4),
ran(s) N B = @.

Letus now assume thatcf (A) = «.Letusfix C C Aclubin A withotp(C) = A, and
let (A;: i < k) be the monotone enumeration of C. To each s € T, we shall assign
some 7 (s) € U with dom(z(s)) = A as follows. By (1), k \ ran(s) has size «, and we
may hence pick sets A;, i < «, and B such that ran(s) C Ag, x = |J;_, Ai U B,

i<k

AiNA;=0,A;NB =10, and B = A =k fori, j < k,i # j.Using (2) and (4),
we may construct some ¢: A — k extending s such that for every i < «,

t A €Ty N U Aj.
j<i+l
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Let us write 7 (s) for this . We may then set
Tit1={t(s): s eTy}.

It is easy to verify that (1) through (4) remain true. (]

It is much harder to construct a « *-Souslin tree. For k = Ry, this will be done
from a principle called ¢ (cf. Lemma 5.36), and for « > 8| we shall need ¢, + and
(e (cf. Lemma 11.68).

Definition 4.48 A cardinal « is said to have the tree property iff there is no «-
ARONSZAIN tree. A cardinal « is called weakly compact iff « is inaccessible and «
has the tree property.

The following large cardinal concept will be needed for the analysis of the com-
binatorial principle ¢}, cf. Definition 5.37.

Definition 4.49 Let « be a regular uncountable cardinal. Then R C « is called
ineffable iff for every sequence (Ag: & € R) such that Az C & forevery § € R
there is some § C R which is stationary in « such that Ag = Ag N & whenever &,

geS E<t.

Trivially, if R C « is ineffable, then R is stationary. On the other hand, if A < « is
an infinite regular cardinal, then {§ < «: cf(§) = A} is stationary but not ineffable.
If « itself is ineffable, then « is weakly compact and the set

{u < k: pis weakly compact }

is stationary in « (cf. Problem 4.24). On the other hand, every measurable cadinal
(cf. Definition 4.54 below) is ineffable, cf. Lemma 4.58.

The study of (non-trivial) elementary embeddings between transitive structures
plays a key role in set theory.

Definition 4.50 Let M, N be transitive sets or classes. We say that m: M — N is
an elementary embedding from M to N iff (ran(sr); €) is an elementary substructure
of (N; €), i.e., if for all formulae ¢ of the language of set theory and for all a1, .. .,
ar € M,

M;e)=oplar,...,aq) & (N;€) Eo((al),...,m(a)). 4.4

The elementary embedding m is called non-trivial iff there is some x € M with
7 (x) # x. The least ordinal o with 7 () # « (if it exists) is called the critical point
of m, abbreviated as crit(r).

Notice thatif 7: M — N is an elementary embedding between transitive sets
or classes, then w(«) > « for all @ € M. This is because otherwise there would be
a least o with w(a) < «; but then 7w (7 («)) < 7w (), a contradiction! Therefore, if
crit(7r) exists, then it is the least « € M with 7 (x) > «.
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We will mostly be concerned with non-trivial elementary embeddings 7: V —
M from V to M, where M is some transitive class. In this situation, M is of course
also a model of ZFC, as by (4.4), the validity of any given axiom of ZFC is moved
up from V to M.

Definition 4.51 An inner model is a transitive proper class model of ZFC.

Let M be a transitive model of (some fragment of) ZFC. For terms like V,,, rk(x),
AT, etc., we shall denote by (Va)M , tkM (x), AM ete., the respective objects as
defined in M, e.g. AT™ = the unique £ such that

(M; €) = & is the cardinal successor of X,

etc.

Lemma 4.52 Letw: V — M be a non-trivial elementary embedding, where M is
a transitive class. The following hold true.

(a) m1(Vy) = (Vﬂ(a))M and 7w (rk(x)) = rk(mw (x)) for all @ and all x.
(b) There is some ordinal &€ with w(§) # &.

Let k be the least ordinal & with w(§) # &. The following hold true.

(c) m is continuous at every ordinal of cofinality less than k, i.e., if o is a limit
ordinal and cf (a) < «k, then (o) = sup(w” ).

(d) « is regular and uncountable.

(e) (VK+1)M = Vi+1-

(f) « is an inaccessible cardinal.

(g) « is a MAHLO cardinal.

(h) « is weakly compact.

Proof (a) This is easy.

(b) Let & be least such that there is some x with rk(x) = & and w(x) # x. We
show that w(§) # &.

Suppose that w(§) = &, i.e.,, & = rk(x) = rk(mw(x)). Then by the choice of &,
w(y) = yforall y € x Um(x). This means that

yeEx < y=mn(y) € m(x)

for all y € x Um(x), so that w(x) = x. Contradiction!

(c)Let f: cf(e) — o be cofinal in o, where cf (o) < k. Then w(f): cf(w) —
() is cofinal in 7 () by the elementarity of . But ran(w(f)) C n”«a, so that
(o) = sup(w” ).

(d) If k were singular, then 7 (k) = « using (c). It is easy to see that k > R.

(e) (Vo)™ = V, follows from (a) and the choice of «. Therefore, if X C V,, then
X =a(X)NV, e M,sothat Vi C (Vey)M. Trivially, (Ver )M C Viey1.

(f) If « is not inaccessible, then by (d) we may choose A < « and a surjective
f: Z() — k. By (e) and the elementarity of 7, 7(f): 2(\) — n(k) is
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surjective. However, for all X C A, f(X) < « and thus f(X) = #(f(X)) =
w(f)(w(X)) = (f)(X). This shows thatin fact 7 () = f, so that 7 (f) cannot be
a surjection onto 7 (k) > « after all. Contradiction!

(g) Let C C « be club in k. Then 7 (C) is club in 7 (k) by the elementarity of 7.
Also, m(C) Nk = C. Therefore, x € 7(C). By (e),

(M; €) = « is inaccessible,

so that
(M; €) =3¢ (& is inaccessible and & € 7 (C)).

By the elementarity of 7,
(V; €) = 3& (& is inaccessible and &€ € C).

As C was arbitrary, this shows that « is a MAHLO cardinal.
(h): Let (T, <7) be a k-tree. Writing (7(T), <z (1)) = w((T, <r)), we have that

(M; €) = ((T), <x(T)) is a w(k)-tree.
Lets € w(T) be such that (M; €) = rky(1)(s) = «, and set
b= {t en(T): t <7(T) S}.

We may assume without loss of generality that (7', <7) € Vi41,sothatz(T)NV, =
T and <z (7y[ T =<7.Butthen b € M C V is a cofinal branch through T'. O

A cardinal « is called REINHARDT iff there is a non-trivial elementary embedding
mw:V — V with k = crit(sr). The following Theorem shows that there are no
REINHARDT cardinals (in ZFC).

Theorem 4.53 (K. Kunen) There is no non-trivial elementary embedding
m: V> V.

Proof Let ko = crit(;r), and recursively define k,4+1 = w(k,). Set A = sup,, _, kn.
By Lemma 4.52 (c), 7 (1) = A, and therefore also 7 (A") = 7w (M) = AT,

Let S = {a < AT: cf(a) = w). Because S is a stationary subset of A, S may be
partitioned into «g stationary sets by Theorem 4.33, i.e., we may choose (S; : i < ko)
such that S = | Si, $iNS; =Wfori #j,i,j < ko, and each S;, 7 < o, is
stationary in A ™.

Set (T;: i < k1) =n((S;i: i < ko). Wehavethat T; N T; = @ fori # j, 1,
j < k1, and each T}, i < k1, is stationary in A*. Then Ty, is a stationary subset of
AT. By Lemma 4.52 (¢) and 7”1 C AT,

i<kKQ

C={a<r": cf(@) =0 An(a)=a}
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is an w-clubin AT. There is hence some « € Ty, NC (cf. Problem4.12). AsC C § =
Ui<K0 S;, there must be some i < kg with @ € §;. But then o = 7 (@) € 7 (S;) =
Tx (i), so that Ty ;) N Ty, # V. But ko = crit(sr), so that k¢ is not in the range of 7
and therefore 7 (i) # ko. Contradiction! O

The proof of Theorem 4.53 in fact shows that there can be no non-trivial elementary
embedding w: Vyjo — Vi with crit(w) < A. We remark that the proof of
Theorem 4.53 uses Theorem 4.33 which in turn makes use of the Axiom of Choice.
It is open whether Theorem 4.53 can be proven in ZF alone; this question leads to
WooDIN’s HOD-conjecture, cf. [45, Section 7].

Large cardinal theory studies the question which “fragments” of REINHARDT
cardinals are consistent with ZFC.

Definition 4.54 Let « be a cardinal. A filter F on « is called uniform iff X =«
for every X € F. An uncountable cardinal « is called measurable iff there is a
< k-closed uniform ultrafilter on «. Such a filter is also called a measure on «

It is easy to see that if U is a < k-closed ultrafilter on «, then U is uniform iff for
no & < k, {§} € U, i.e., iff U is not generated by a singleton (cf. Problem 4.26).
If we didn’t require a measurable cardinal to be uncountable, then 8¢ would be a
measurable cardinal.

Theorem 4.55 Let k be a cardinal. The following are equivalent.

(1) « is measurable.

(2) There is a normal < k-closed uniform ultrafilter on .

(3) There is an inner model M and an elementary embedding w: V — M with
critical point k.

Proof 3) = (2): Let w: V — M be an elementary embedding with critical point
k. Let us set

U=U;,={XCk:k en(X)}. 4.5)

We claim that U is a normal < k-closed uniform ultrafilter on «. Well, {§} ¢ U
for any & < k, and k € U, as « is the critical point of 7. U is easily seen to be
an ultrafilter, as 7 (X NY) = n(X) Nz (Y) for all sets X, Y, 7 (X) C 7 (Y) for all
XCcY,andk e m(k) = n(X)Um(x \ X) forall X C k. Moreover, if @ < «, then
7({Xi: i <o) ={n(X;): i <ea}forall {X;: i < «}, which yields that U is
< k-closed. Hence U witnesses that k is a measurable cardinal.

It remains to be shown that U is normal. Let (X;: i < «) be such that X; € U
for all i < k. We need to see that A; ., X; € U, ie., k € m(A; X;). Writing
Yi: i <) =n(X;: i <k)),we have that ¥; = n(X;) forevery i < k, so
that k € (;_, Yi. This just means that k € (A, X;).

(2) = (1) is trivial.

(1) = (3): This will be shown by an ultrapower construction which is well-
known from model theory and which will be refined later (cf. the proof of Theorem
10.48).
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Let U be a < k-closed uniform ultrafilter on x. We aim to construct an inner
model M and an elementary embedding 7 : V — M with critical point . We shall
first construct M.

If f,g € “V,wewrite f ~ giff {£ < «: f(§) = g(§)} € U. Itis easy to
verify that ~ is an equivalence relation. For any f € “V, we write [ f] for the ~-
equivalence class of f, massaged by SCOTT’s trick, i.e., for the set {g € “V: g ~
fAYh € “V(h ~ f — tk(h) > rk(g)}. If f, g € “V, then we write [ f]E[g] iff
{§ <k: f(x) € g(x)} € U.ltis easy to check that E is extensional. Also, for all
f e V. {lgl: [QIE[f1}is aset.

Let us write ult(V; U) for the structure ({[f]: f € “V}; E). We may define a
map 7 from V into ult(V; U) by setting

7 (x) = [ex],

where ¢ : k — {x} is the constant function with value x. The following statement
shows that 7 is elementary and it is referred to as the L.o$ Theorem.

Claim 4.56 (Lo$Theorem) Let¢(vy, ..., vk) beaformula, andlet fi, ..., fx € “V.
Then

ult(V; U) = o(Lf1l. ... [fid) <=
{E<u: VEO(fi®)..... i)} el.

Proof of Claim 4.56 by induction on the complexity of ¢: The atomic case is imme-
diate from the definition, as for f, g € “V we have that ult(V; U) &= [ f] € [g] iff
[1E[g]iff (5 < k: f(x) € g()} € U and ult(V; U) k= [ 1 = [g] iff [ f1E[g] iff
{§ <k fx)=gM)}eU.

As for the sentential connectives, it suffices to discuss A and —.

As for A, if ¢(vy,...,v) and ¥ (vy,...,ve) are formulae, if fi, ..., fi,
g1, ..., g € “V, and if the Claim holds for ¢ and ¥, then ult(V;U) [
(AL LD A gl -5 [geD) iff ult(V; U) = o f1l, ..., [fi]) and
ult(V; U) E ¢dgl ... [geD) i {§ < k2 V = o(f1(8), ..., fi(§))} € U and
<k VEYEE.....qE)) €U {E <i: VIE @1 .... i) A
Y(g1(),...,ge&)))} e U,as U is afilter.

As for —, if p(vy, ..., vx) is a formula, if f1, ..., fr € “V, and if the Claim
holds for ¢, then ult(V; U) &= —o([ fil, ..., [fx]) iff ult(V; U) is not a model of
GUf1L - LD E(E <k V= @(fi), -, i@} ¢ Uff (& <z V =
—@(f1(),..., fr(€))} € U, as U is an ultrafilter.

Let us finally suppose that ¢(vy, ..., vx) = Jvg ¥ (vg, V1, ..., V) for some for-
mula ¢ for which the Claim holds true. Let f1, ..., fiy € “V. If ult(V;U) E
vy ¥ (vo, [ f1], ..., [fx]), then there is some fy € “V such that

ult(V: U) = (L fol. LA -0 LD
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By induction, {§ < «: V = ¥ (fo(&), fi(€), ..., fr(§))} € U, which also gives
that {§ <«: V = 3Jvg ¥ (vo, f1(§), ..., fr(§))} € U, as U is afilter.

Conversely, let us assume that {§ < «: V = Jvg ¥ (vo, f1(§), ..., fk(€))} e U.
By the replacement schema in V, there is a set a such that for all £ < «, if there
is some x with V = ¥ (x, f1(&),..., fr(§)), then there is some x € a with V =
vx, f1(6),..., fr(§)). Let <, be a well-ordering of a. Let us define fo: « — V
as follows.

the <, -smallest x € a with

Jo&) =1V =y, fi),..., fr(§)) if some such x exists,

[ otherwise.

By the choice of @ we now have that {§ < «: V &= ¥ (fo(§), f1(€), ..., fx(&))} €
U, which inductively implies that ult(V; U) = ¥ ([fol, [f1]. - .-, [fx]), and hence

that ult(V; U) = Jvo ¥ (vo, [f1], - -, [fiD-
This verifies the Claim. (]

We now prove that E is well-founded, using Lemma 3.11. If ([ f,,]: n < w) were
a sequence such that [ f,+(]E[ f,] for all n < w, then

(1 <k far1®) € fu®} e U
because U is < Rj-closed, and thenif § € ({& < x: futr1(€) € fu(E)},

... € fa(&) € f1(§) € fo(),

a contradiction.
Therefore, by Theorem 3.21 there is an inner model N and some o such that

o
(N; €)= ({[f]: f €“V}; E). By Lo§” Theorem, we have that

NEe@ ' (AD, ... o T AD)

if and only if
{§ <k: VE(i(6), ..., i)} eU

forall formulae g and fi, . . ., fx € V. Thisimplies that we may define an elementary
embedding 7ty : V — N by setting ry (x) = o~! om(x) = o~! ([ex]), where again
cy: k — {x} is the constant function with value x.

It remains to be shown that « is the critical point of ;. We first prove that
my (n) = n for all n < « by induction on 7. Fix n < k and suppose that 7y () = 1
forall < n. Let o' ([f]) < ny(n), ie, {§ < k: f(&) <n} e U.AsU is
< nt-closed, there is then some 1y < n such that {§ < «k: f(&) = o} € U. But
then [f] = [cy,], so that by the inductive hypothesis no = my(no) = U’l([f]).
This shows that 7y () < n, so that in fact 7wy (n) = 7.
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Finally, if id denotes the identity function on «, then for all n < k, n = 7y (n) =
o1 ([cy]) < o~!([id]) by the uniformity of U. Also o~!([id]) < o~ '([e,]) =
7y (k). Hence « is indeed the critical point of 7ry;. O

In the situation of the proof of (1) = (3) of Thorem 4.55, we usually also write
ult(V; U) for the inner model which was called N there. Let y = o~ 1([id]). We
must have that

0_1([f]) =ny(f)(y)forall f: kK —> V. (4.6)

This is because 7y (f)(y) may be written in a cumbersome way as
o esD (07" (lidD)

which with the help of Lo§” Theorem is easily seen to be equal to o ~!([f]). In
particular,

N =ult(V; U) ={my(f)(y) : f: « > V}. 4.7)
y is often called the generator of U. It is also easy to see that for X C «,
XelU<+=yecnlX). (4.8)

Now let m: V — M be any elementary embedding with critical point x, where
M is an inner model. Let U = U, be derived as in (4.5) in the proof of (3) = (2)
of Theorem 4.55,1.e., U = {X C k: k € n(X)}. Letry: V — ult(V; U) be as
constructed in the proof of (1) = (3). We may then define a factor map

k:ult(V:U)—> M

by setting k(wy (f)(k)) = w(f)(x) for f: k — V. This map k is well-defined and
elementary because we have that

ult(V: U) = ety (fD) ), - ... o (fi) (k) <=
{E<k: VEo(i)..... i)} elU =
ken({§ <k: VE(fi) ... iE)) =
{§<mt): MEe@(f)E),....n(fi)E)} =
M = o@(fO), ..., t(fi) ().

Vv z M
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If 7: V — M is itself an ultrapower map, i.e., 1 = my for some < k-closed
uniform ultrafilter U’ on « and if k = [g] in the sense of the ultrapower ult(V; U),
then

XeUg"xel (4.9)

for every X C «. We will have that U’ is normal iff U = U’ iff {§ < «: g(&) =
&} € U'. (Cf. problem 4.26.)

We remark that M. GITIK has shown that AC is needed to prove (1) = (2) in
the statement of Theorem 4.55 (cf. [7]).

Definition 4.57 Let M be a transitive model of ZFC, and let M = U is a measure.
Then we shall ambiguously write ult(M; U) for ult(V; U) from the proof of Theorem
4.55 as defined inside M or for its transitive collapse. Also, we shall ambiguously
write ngl for the map 7 from the proof of Theorem 4.55 or for the map  from the
proof of Theorem 4.55. ult(M; U) is called the ultrapower of M by U, and n{y is
called the associated ultrapower embedding.

By (4.7), applied inside M, if U is a measure on «, then
ult(M; U) = {ngl(f)(y) Cfik—>MAfe M}, (4.10)

where y = [id].

Lemma 4.58 Let k be a measurable cardinal, and let U be a normal < k-closed
ultrafilter on k. If R € U, then R is ineffable.

ProofLet (Ag: & € R) be such that Ag C & forevery & € R. Let
T = n(‘]/: V> M,

and let (Ag: §en(R)) =n((A¢: § € R)). Ask € m(R), we may set A = Ag.
By the Lo$ Theorem, for every o < « there is some X, € U such that for all

e Xy, e Aiffa € Ag. Let X = Ay X Itis then easy to verify that for every

Ee X, Ae =ANE. O

Theorem 4.59 (Rowbottom) Let k be a measurable cardinal, and let U be a normal
measure on k. Let y < «k, and let F: [k]=% — y. There is then some X € U such
that for everyn < w, F | [X]" is constant.

Proof Fix y < k. It suffices to show that for every n < w,
VF: [k]" — y 3 <y 3AX e U F"[X]" = {£}. 4.11)

This is because if F: [«k]“ — y and for each n < w, X, € U is such that
F | [X,]" is constant, then [ X, € U is as desired.

n<w



58 4 Cardinals

We prove (4.11) by induction on n. For n = 0, (4.11) is trivial. So let us assume
(4.11) for n and show it forn + 1.
Let F: [k]"T! — y be given. Let

m: V—oy M=nult(V;U)

be the ultrapower map given by U, where M is an inner model, x = crit(sr), and for all
X Ck,X eUiffk € m(X). Let F*: [k]" — y be defined by F*(a) = n(F)(a U
{«}) for a € [«]". By the inductive hypothesis, there is some £ < y and some
X € U such that F*'[X]" = {&}. That is, for every a € [X]", n(F)(a U {k}) = &,
or equivalently,

Xe={n<k:n>max(a) A FlaU{n}) =&} eU. 4.12)

By the normality of U, we may pick some ¥ € U, Y C X, such that for every
neX,

ne () Xa (4.13)
ag[XNn]"

We then have for a U {5} € [Y]"*! with n > max(a) that n € ¥, hence, as ¥ C X,
n € X, by (4.13),and so F(aU{n}) = & by (4.12). We have shown that F'iyptt =
{€}, where Y € U. O

Definition 4.60 Let « be a cardinal, and let @« > k. Then « is called a-strong iff
there is some non-trivial elementary embedding 7: V — M, where M is an inner
model and crit(;r) = &, such that V,, C M. k is called strong iff « is «-strong for all
o> K.

Lemma 4.61 If « is measurable, then k is (k + 1)-strong. If k is (k + 2)-strong,
then k is measurable and there exists a measurable cardinal A < k.

Proof The first part immediately follows from Lemma 4.52. As for the second part,
let k be (k + 2)-strong, and let
n: V> M

be an elementary embedding, where M is an inner model, crit(7) = «, and V42 C
M. By Lemma 4.55, k is measurable, and there is hence some < «-closed uniform
ultrafilter U on . But U € V> C M, which gives that

M =3I < 7(k)AUy (Up is a < A-closed uniform ultrafilter on A > Rg).
By the elementarity of m, this gives that

V = 3x < «k3Up (Up is a < A-closed uniform ultrafilter on A > Rg).
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There is thus a measurable cardinal A < k. |

Definition 4.62 Let « be a cardinal, and let A > « be a regular cardinal. Then « is
called A-supercompact iff there is some non-trivial elementary embedding 7: V —
M, where M is an inner model, crit(r) = «, and 7w (k) > A, such that *MC M.k
is called supercompact iff k is A-supercompact for all regular A > «.

Measures cannot witness suprcompactess, cf. Problem 4.27. We will see later, cf.
Lemmas 10.58 and 10.62, that “extenders” may be used to witness that « is strong
or supercompact in much the same way as a measure witnesses that a given cardinal
is measurable.

Lemma 4.63 [f« is measurable, then k is k -supercompact. If k is 2 -supercompact,
then k is measurable and there is a measure U on k such that

{n < k: wis measurable } € U.

Proof We use Theorem 4.55. Let « be measurable, let U be a normal measure on «,
and let
m: Voput(V;U)=M

be the ultrapower embedding, where we assume M to be transitive. We need to see
that “M C M. Let (x;: i < k) be a sequence with x; € M for alli < «. Say
xi = 7w (fi)(k), where f;: k — V, fori < k. Letus define g: x — V as follows.
Foreach & <k, g(§): &€ - Vandfori < &, g(§)(i) = fi(§). We then get that
m(g)(k): k — M (here we use Problem 4.26), and for every i < «,

{§ <k: g®W) = fi®)}=c\@+1)eU,

so that w(g)(k)(i) = w(fi)(k) = x;. Thus (x;: i < k) =7w(g)(k) € M, as desired.
If k is 2¥-supercompact, then we may pick some

n: V> M,

where M is an inner model, crit(r) = «, and M cM.In particular, « is measur-
able, and if U’ is a measure on k, then U’ € M. Therefore,

k € t({& <«k: V [= £ is measurable}),

so that if U is the measure on « derived from 7 as in the proof of Theorem 4.55, then
{m < k: pis measurable} € U as desired. ([l

Definition 4.64 Let « be a regular cardinal, and let F be a filter on k. F is called
weakly normal iff for all f: « — k with {§ < k: f(§) < &€} € F™ there is some
a < k and some X € F* such that f(§) < « for every £ € X.

By Lemma 4.31, every normal filter is weakly normal.
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Lemma 4.65 Let k be A-supercompact, where A > « is a regular cardinal. There is
then a < k-closed uniform weakly normal ultrafilter on \.

Proof Let
n: V> M

be an elementary embedding, where M is an inner model, crit(7) = «, w(k) > A,
and*M C M. Let us set

U={XcCx: sup(x"}) € 7(X)}. (4.14)

It is not hard to verify that U is a < k-closed uniform ultrafilter on A.
To show that U is weakly normal, let f: x — k. As U is an ultrafilter, Ut = U.
If

sup(m’2) e m({E <k f(§) <& ={§ <m@): A (f)E) <&},

then we may pick o < A such that

7(f)(sup(r"L) < 7 (a),

so that
sup(m”2) e m({§ < k: f(§) < a}).

U is thus weakly normal. ([

Theorem 4.66 (Solovay) Let k be supercompact. Then A= = X for every regular
cardinal A > k.

Proof Let us fix A, let again
n: V> M

be an elementary embedding, where M is an inner model, crit(7) = «, w(k) > A,
and*M C M.Let U be the < k-closed uniform weakly normal ultrafilter on A which
is given by (4.14).
Let us write
S={a <i: cf(a) <k}.

Notice that S € U. This is because *M C M yields that M = cf(supm”A) = A,
which together with A < 7 () then gives thatsup /A € {o < 7(L): M = cf(a) <
w(k)} = m(S).

For @ € §, let us pick C,, C « cofinal in o with otp(Cy) = cf(«).

Let n < X be arbitrary. Because S € U and U is uniform,

S={aeS:Cy\n#0}eU.

Let f: S — A be defined by
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f(a) = the least element of Cy \ 1

for @ € §. Then f is a regressive function, and because U is weakly normal there is
some 1’ > 1, n’ < A, such that

{aeS‘: fl@)<n'}eU.
We have shown that
V< A3 <A () >nAafaeS: Conin,n) #0}el). (4.15)

By (4.15), there is now a continuous and strictly increasing sequence (ns: & < A)
such that np = 0 and

VE <A {a€S: CoNneg nes1) #9} € U. (4.16)

Let us write
I, = {E <i: CoNng, nes1) # @}

fora € S, so thati < C=a = cf(x) < k forevery o € S.
Let X € [A]TF. Fgallé € X,{a €S§: & € I} € U by (4.16) and the definition

of I,. Therefore, as X < k and U is < «-closed,
faeS: XCly={aeS: VéEeXEel,}el. 4.17)

In particular, there is some « € S such that X C I,.
‘We have shown that

= c | 23,

aes
sothat A=K < A.2<K =1 < A=F ie,A"" = A. 0

Corollary 4.67 Let k be supercompact. Then SCH holds above «, i.e., if L > K is
singular, then "W = 26100 .+

Proof By (the proof of) SILVER’s Theorem 4.36 (cf. Problem 4.17 (1)) it suffices to
prove that ™ = p™ for every u > « with cf (1) = w. However, for every such s,
w0 < ()R = 1+ by Theorem 4.66. O

The following large cardinal will play a role for the failure of [J,, cf. Definition
11.62 and Lemma 11.69.

Definition 4.68 A cardinal « is called subcompact iff for every A C H,+ there
is some A < « and some B C H,+ such that there is an elementary embedding
o: (Hy+;€,B) > (He+; €, A).

Notice that in the situation of Definition 4.68, o (1) = «.
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Lemma 4.69 Suppose that k is 2“-supercompact. Then k is subcompact.

ProofLet A C H,+, and let
m: V—->M

be such that M is an inner model, crit(r) = «, and M C M. We have that
(H+ M =H, e Mand 7 | He.+ € M, and therefore

M E3Ir<m(k)IAB C Hy+3o(0: (Hy+; €, B) = (Hyo)+; €, m(A)) is elementary
Acrit(o) = A).

By the elementarity of 7,

VE3IL<kIB C Hy+3o(o: (Hy+; €, B)—> (H+; €, A) is elementary A crit(o)
=A).

We have shown that « is subcompact. (]

Amazing results in cardinal arithmetic were obtained by SAHARON SHELAH via
his pcf-theory, cf. e.g. [1]

4.4 Problems

4.1. Leta < ;. Show that there is some X C Q such that (a; <) = (X; <g X).
(Here, < denotes the natural order on o and <g denotes the natural order on
@Q.) [Hint. Use induction on «.]

4.2. Letk be acardinal. Let y = ¥ Ux, where x = {«: « is an ordinal with @ ~ «}.
Show that y = « ™.

4.3. Letk and A be cardinals. Show that k¥ + A = Card(X UY), whenever X, Y are
disjoint sets with X = «x and Y = A. Also show that k + A < « - A whenever
K, > 2.

4.4. Show that if x and A are cardinals, then x* = Card([x]*).

4.5. Show that the least ¥ with 8, = « is singular of cofinality . Show that for
every regular cardinal A there is some « with X, = k and cf(x) = A.

4.6. Show that if « is a limit cardinal, then cf (k) may be characterized as the least
A such that there is a sequence (x;: i < X) of cardinals less than « with

K= Zi<)» Ki.
4.7. Let o be an ordinal. Show that the cofinality of « is the least size of a subset

of o which is unbounded in «. Show also that there is a club C C « such that
Card(C) = otp(C) = cf().
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4.8.
4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.
4.17.

4.18.

Show that 8! = K028 Show also thatif w < & < @y, then Ry = RA0 281,

Use the recursion theorem 3.13 to show that there is a sequence (Jy : @ € OR)
such that Jy = Vg, g1 = 27 for all a, and J; = sup, -; Jq for every limit
ordinal A. Show that Card(V,,. ) = 3, for every a.

(a) Let k be an infinite cardinal. Show that H, is a set. [Hint. Show e.g. that
H, C V, by induction on «.] Also show that Card(H, ) = 2=*.

(b) Show that HF = V,, and (HF; €| HF) = ZFC~"°.

(¢) (W. Ackermann) Let us define E4 C w X w as follows. nE gm iff: if
m = Zi ki - 2!, where k; € {0, 1} for all i, then k, = 1. Show that
(w; Ex) = (HF; €).

(d) Show that if « is uncountable and regular, then (H,; €] H,) = ZFC™.

(A. Tarski) Let X be a set, and let F be a filter on X. Show that there is

an ultrafilter U on X with U D F. [Hint. Use the HAUSDORFF Maximality
Principle 2.11.]

Show that if p, k are infinite regular cardinals with ;& < «, then the set
S ={a <«:cf(ax) = u}

is stationary in «. Show also that if 7 C S is stationary in « and C C « is
u-clubink,then T N C # @.

Let S C w; be stationary, and let @ < wj. Show that S has a closed subset of
order type .

Let « be regular and uncountable, and let R C « be stationary. Let (U; €
,A1, ..., A;) be a model such that U is transitive and x C U. Show that
there is some X < (U; €, Ay, ..., A,) such that X N« € R. Show also that
if Card(U) = « and f: k — U is surjective, then {§ < «: & < (U; €
LA, ..., Ay} isclubink.

Show that set 2~ C [6]* is stationary in [0]€ iff 2" NE # @ for all € which
are club in [0]¢ according to the definition on p. 44.

Show that ([];c; o) = [Tic; ().
Let k be a singular cardinal of uncountable cofinality.

(1) Suppose that there is some cardinal A < « with ") = A and SCH holds
for every singular . € (A, ), i.e., if v is a singular cardinal, A < ¢ < «,
then puf = 2¢fW) .+ Show that SCH holds at «, i.e., kT®) =
2cf(l() s

(2) Suppose that 1°"®) < « for all & < «, and SCH holds on a stationary set
below «, i.e., {u < k: MCf(“) = 2°f(“) - 1T} is stationary in «. Show that
SCH holds at k, i.e., k1) = 210 .yt

Let « be a singular cardinal of uncountable cofinality. If {u < «: 2* = ™}
is stationary in «, then 2¢ = k™.
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4.19.

4.20.
4.21.

4.22.

4.23.

4.24.

4.25.
4.26.

4 Cardinals

Use the axiom of choice to show that there is some A C R such that neither
A nor R contains a perfect subset. [Hint. Show that there is an enumeration
e: 2% — C, where C is the collection of perfect sets. If < is a well-ordering
of R, then construct (ag, bs: § < 2N0) by letting ag be the <-least element
of e(§) \ ({ag: & < £} U {bz: § < &)) and bg be the <-least element of

e(€)\ ({agz E<E}U {bé: & < £}). Show that A = fas: & < 2%} works.]
Prove Lemma 4.46.

Show that if « is weakly MAHLO, then {4 < «x: u is weakly inaccessible} is
stationary. Also show that if ¥ is MAHLO, then {it < «: u is inaccessible} is
stationary.

Let k > Ry be a cardinal. If (T, <7) is a k-SOUSLIN tree, then (7, <7) is a
k-ARONSZAIJN tree.

Let « be a cardinal. Show that the following are equivalent.

(a) x is weakly compact.

(b) If X C #(k), Card(X) < k, then there are transitive models H and H*
with X ¢ H, Card(H) = k,*H C H and "H* C H* for every u < k
and there is some elementary embedding o : H — H* such that « is the
critical point of o.

Let x be a regular uncountable cardinal. Show:

(a) If 2 < « is an infinite regular cardinal, then {§ < «: cf(§) = A} is not
ineffable.
(b) If « itself is ineffable, then « is weakly compact and the set

{u < k: pis weakly compact}

is stationary in «.
(c) Let k be a measurable cardinal, and let U be a normal < «-closed ultra-
filter on x. Then { < «: w isineffable } € U.

(Jensen—Kunen) Show that if « is ineffable, then there is no x-KUREPA tree.

Let « be a cardinal. Show that if U is a < «-closed ultrafilter on «, then U
is uniform iff for no & < «, {§} € U. Show also that if U is a < k-closed
uniform ultrafilter on «, then U is normal iff « = o ~![id], where id is the
identity function and o is the (inverse of) transitive collapse as in the proof
of Theorem 4.55.

Let U be a < «-closed normal ultrafilter on «, and let (X;: s € [«]~?) be a
family such that X € U for every s € [x]=®. Let us define

Aseier<e Xs ={§ ex: £ € ﬂ X}

se[&]=®
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4.27.

4.28.

4.20.

4.30.

4.31.

Show that Ag¢e)<e X € U.
Let « be a measurable cardinal.
(a) Let U be a measure on k. Show that ¢ TWt(V:U) — +V and that 2 <

k) < (29T)Y. [Hint: If @ < 7} (k), then « is represented by
some f: k — k, and there are 2“ functions from « to «.] Conclude that

U ¢ ult(V; U).
(b) Let U, U’ be measures on k. We define U < U’ iff U € ult(V; U’).
Show that JT[‘]/ (k) = n;]t(v;u )(K) < nl‘]/, (k). Conclude that <z is well-

founded, and that the rank of <y is always less than or equal to (2€)7.
<M 18 called the MITCHELL order.

Let x be a measurable cardinal, let U be ameasure onk, andletmy: V —py
M be the ultrapower map, where M is an inner model. Let © > « be a
cardinal, cf (1) # «, and p* < u for every p < . Show that 7y (1) = u.

(Magidor) Show that if « is supercompact, then for every o > « there are
u < B < k together with an elementary embedding o: Vg — V, such
that crit(o) = w and o () = k. [Hint: Let 7: V. — M, where M is an

inner model, crit(w) = «, and Ve M < M. Show that in M , there is some
o:Vy, — (Vn(a))M such that crit(c) = « and o (k) = m(k). Pull this
statement back via 7.]

Let x be supercompact. Show that for every cardinal A > « there is a < «-
closed ultrafilter U on [A]=* such that {a} ¢ U for all a € [A]7%, {a €
[A]=F: & ea}l eUforall§ < A, andif (Ag: & < 1) issuchthat As € U
for all & < A, then there is some A € U such that whenever § € a € A,
a € Ag. [Hint. Let U be derived from 7 morally as in (4.14).]

Problems 10.21 and 10.22 will show that the conclusions of Problems 4.29
and 4.30 actually both characterize the supercompactness of k.

Use the necessary criterion for supercompactness provided by Problem 4.29
to show that if x is supercompact, then « is subcompact (cf. Lemma 4.69) and
in fact there is a measure U on « such that { < k: @ is subcompact } € U.



Chapter 5
Constructibility

Models of the language .Z¢ of set theory are of the form (M; E), where M # (is a
setand E C M x M interprets €. We shall also consider “class models” (M; E) of
% where M is a proper class rather than a set.

5.1 The Constructible Universe

Definition 5.1 A formula ¢ of %% is called X (or Iy, or Ap) iff ¢ is contained in
each set I" for which the following hold true.

(a) Every atomic formula is in I,

(b) if Yo, Yy are in I then so are =y, (Yo A Y1), (o V Y1), (Yo — Y1), and
(Yo < Y1), and

(c) ifyisin I" and x, y are variables, then Vx(x € y — 1) and Ix(x € y A {) are
in .

For n € w\{0}, a formula ¢ of %% is called X, iff ¢ is of the form

dxgp ... 3,

where x1, ..., x; are variables and v is IT,_1, and ¢ is called IT,, iff ¢ is of the form
Vxi...Vxey,

where x1, ..., xg are variables and i is X, 1.

If M is a transitive set or class and ¢ is a sentence of .Zc, then we write
M = ¢ for (M; €] M) = ¢ (where €] M = NM?). If ¢ is a formula, ¢ being
@(x1, ..., xx) with all free variables shown, and if ay, ..., ar € M, then we write
M E ¢(ay, ..., ax) for the assertion that ¢ holds in (M; €[ M) for an assignment
which sends v; toa; (1 <1 <k).

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_5, 67
© Springer International Publishing Switzerland 2014
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We have the following absoluteness properties.

Lemma 5.2 Let M be transitive, let ¢ be a Xo-formula, and let ay, ...,ar € M.
Then

M E=gpar,...,ar) &V =elal,...,a).

Proof by induction on the complexity of ¢. Let us only consider the case where ¢ is
of the form Ixg € x1¢¥ (xo, X1, ..., Xk)-

“—="fV =v¢plal,...,ar),leta € a; besuchthat V =¥ (a,ay, ..., ar). As
M is transitive,a € a; € M givesa € M,andV |=a € aj AY¥(a,ay, ..., a) gives

MEaeca ANY(a,ay,...,ar)

by the inductive hypothesis, and so M = ¢(ay, ..., ak).
“="" I M = ¢ay,...,ar), leta € M be such that M = a € a; A
Y(a,ai,...,ar). Then

VEaca AY(a,ay,...,ar)

by the inductive hypothesis, and so V = ¢(ay, ..., ak). (]

This proof also shows the following.

Lemma 5.3 Let M be transitive, let ¢(vi,...,vk) be a Xi-formula,
let Y(vi,...,vr) be a IIi-formula, and let ay,...,ar € M. Then ¢ is upward
absolute, i.e.

MEgi,....,a) =V Eglai, ..., a),

and  is downward absolute, i.e.

ViEvYva,.. . a)=— M E=y(ai,...,a).

Definition 5.4 Let T be a theory in the language %%, and let ¢ be a formula of .Z¢.
Then ¢ is called AIT iff there are .%-formulae v and v such that

Y is X,
Y’ is ITy, and
T <«— Yy «<— Y

Lemma 5.3 immediately implies:

Lemma 5.5 Let T be a theory in the language of £, and let ¢ be a formula of £
which is AIT. Let M be a transitive model of T. Then ¢ is absolute between V and
M, ie.,

ViEwa,... a) < M E=vyp(a,...,ar)

forallay,...,ax € M making an assignment to all the free variables of ¢.
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The following Lemma expresses the “absoluteness of well-foundedness.”

Lemma 5.6 The statement' “R is a well-founded relation” is A%Fcf. In particular,
if M is a transitive model of ZFC™ such that R € M is a binary relation, then

V & “Ris well-founded” <= M = “R is well-founded”.

Proof The first part, that “R is a well-founded relation” be A%FC_ follows directly
from (the proofs of) Lemmas 3.11 and 3.17. The second part is then a consequence
of Lemma 5.5. U

The following easy lemma will be used to verify that fragments of ZFC hold in
a given transitive model.

Lemma 5.7 Let M be a transitive set or class.

(1) M is a model of (Ext), the axiom of extensionality.

(2) M is a model of (Fund), the axiom of foundation.

3) If o € M then M is a model of (Inf), the axiom of infinity.

4) If M is closed under x, y — {x, y} (i.e., a,b € M —> {a, b} € M), then M is
a model of (Pair), the pairing axiom.

(5) If M is closed under x — |Jx (i.e., a € M => |Ja € M), then M is a model
of (Union), the axiom of union.

Proof We shall use Lemma 5.2.

(1) The axiom of extensionality holds in V and it is ITj, as it says
VxVy(VzexzeyAVzeyzex) = x =y).
(2) The axiom of foundation holds in V and is ITj, as it says
Vx(x #0 — dy e x yNx =0).
Notice that x # () can be written as 3y € x y = y, and y Nx = ) can be written
as—dzeyzex.
(3) The axiom of infinity is X';. It says that 3x ¢(x), where ¢(x) is
BexAVyexIzexz=yU{y}
Here, ) € x can be writtenas 3y € x =3z € y z = z, and z = y U {y} can be
written as

VuezueyvVvu=y)AVueyueznyez.

Thus ¢(x) is Xy, V E ¢(w) holds, and thus M = ¢(w) holds provided that
weM.

! Recall from p. 12 that ZFC™ is ZFC without the power set axiom.
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(4) The pairing axiom is of the form
Vx Vy3dzz={x,y},

where z = {x, y} canbe writtenasx e zAy € zAVu e z(u=xVu=y).
(5) The union axiom is of the form

Vx EIyy:Ux,
where y = |J x can be written as
VieyduexzeuAVuexVzeuzey.

Lemma 5.7 is shown. (]

It is more delicate verifying that a given transitive model M is a model of (Pow),
(Aus), (Ers)y, and (AC).

Recall (cf. Definition 4.51) that an inner model is a transitive proper class model
of ZFC. If E is a set or a proper class, then L[E] is the least inner model which is
closed under the operation x — E N x. An important example will be L = L[{],
GODEL’s constructible universe, which we shall study in detail.

In order to show that L[ E] indeed always exists, we need to define it in a way that
is different from saying “the least inner model which is closed under the operation
x — E N x.” Any model of the form L[E] may be stratified in two ways: into
levels of the L-hierarchy and into levels of the J-hierarchy. The former approach
was GODEL’s original one, but it turned out that the latter one (which was discovered
by RONALD B. JENSEN, cf. [16]) is much more useful.

In order to define the J-hierarchy we need the concept of rudimentary functions.

Definition 5.8 Let E be a set or a proper class. A function f:V* — V, where
k < w, is called rudimentary in E (or, rudg) if it is generated by the following
schemata:

fxy, oo, xk) = x;
SO, xk) = x\x;
SO, xk) = {xi, xj}

S x) =h@i, L xg) e 8o X))
fon )= g0, )
yexy
fx)=xNE

f is called rudimentary (or, rud) if f is rudy.

We often write x for (xy, ..., xx) in what follows. It is easy to verify that for
instance the following functions are rudimentary: f(x) = (Jx;, f(x) = x; Ux s
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fX) =xNxj, f(X) ={x1,..., %}, f(X) = (x1,...,x),and f(X) = x1 X...XX.
(Cf. Problem 5.5.) Lemma 5.10 below will provide more information.

If U isaset and E is a set or a proper class then we shall denote by rudg (U) the
rudg closure of U, i.e., the set

UU{f((x1,....,x¢)); fisrudg and xq, ..., x; € U}.

It is not hard to verify that if U is transitive then so is rudg(U U {U})
(cf. Problem 5.7). We shall now be interested in Z(U) N rudg(U U {U})
(cf. Lemma 5.11 below).

Definition 5.9 Let E be a set or a proper class. A relation R C VK where k < w, is
called rudimentary in E (or, rudg) if there is a rud function f: V¥ — V such that
R = {x: f(x) # 0}. R is called rudimentary (or, rud) if R is rudg.

Lemma 5.10 Let E be a set or a proper class.

(a) The relation ¢ is rud.

(b) Let f, R berudg. Let g(x) = f(x) if R(X) holds, and g(x) = @ if not. Then
gisrudg.

(©) If R, S are rudg then sois RN S.

(d) Membership in E is rudg.

(e) If R is rudg, then so is its characteristic function xg.>

(f) R istudg iff =R isrudg.

(g) Let R be rudg. Let f(y,x) =y N{z: R(z,x)}. Then f isrudg.

(h) If R(y, x) is rudg, then so is 3z € yR(z, X).

Proof (a) x ¢ y iff {x}\y # 0.

(b) If R(x) <= r(x) # @, where r is rudg, then g(x) = Uyer(x) f(x).

(c) Let R(x) <= f(x) # @, where f isrudg. Let g(x) = f(x) if S(x) holds,
and g(x) = @ if not. g is rudg by (b), and thus g witnesses that R N S is rudg.

(d)x e Eiff {x}NE #0@.

(e): by (b).

() x-r(x) = I\xr(X).

(g) Let g(z,x) = {z} if R(z, x) holds, and g(z, x) = @ if not. We have that g is
rudg by (b), and f(y,x) = Uzey g(z,x).

(h) Set f(y,x) = yN{z; R(z,x)}. f is rudg by (g), and thus f witnesses that
Jdz € yR(z,x) is rudg. O

‘We shall often be concerned with models of the form (U; €, Ay, ..., A,,), where
A1, ..., Ay C U<® and € stands for €] U = e N UZ2. Each such structure comes
with a language Z¢ 4,.....a,, With predicates €, A Ly enos Am. We shall mostly restrict
ourselves to discussing the cases where m = 0 (i.e., where there is no A; around) or
m=1orm=2.

LetZ = (U; €, Ay, ..., A,) be amodel as above. The notions of X,-and IT,,-

formulae of the language of Z¢ 4, ... a,, is defined as in Definition 5.1, where x € A;,

21e., xr(x) = 1iff R(x) and = 0 otherwise.
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0 < i < m, count as atomic formulae. If X C U, and n < w, then we let E,:// (X)
denote the set of all relations which are X, definable over %/ from parameters in X,
i.e., the set of all R such that there are k, [ < w, some X,-formula ¢(xy, ..., xg47) of
4 anday,...,a; € X suchthat R C U* and forallz = (z1,...,21) € U*,

----- m

LeER= UkEex,....2% a1, ...,4q).

We shall also write Do 7 for Z‘% (U), and we shall write ¥ % for U, = ,0,2/. We
shall also write X% for Z’nzjw(@)

nj/w

The notions I7,, 7 (X), m, 4 1, % | etc. are defined in an entirely analoguous fash-

ion. A relation is A iff it is both X% and IT%

Let % = (U;e, Ay, ..., Ap) and 7' = (U';€, A}, ..., A),) be models as
above. Generalizing Definition 4.50, we say that 7: U — U’ is a X,-elementary
embedding, writtenw: U — 5, U’, where n € wU{w} iffran(r) is a ¥, -elementary
substructure of %/’ in the common language .Z¢ 4,.... A, i.€., if for all X,,-formulae
@ of the language Z¢ 4,...4, andforallay,...,ax € U,

.....

U=, ...,a) < U =o@@@),..., ). (5.1

If 7r is the identity on U, then we also write this as % <x, %'.

The following lemma says that rudg (U U {U}) is just the result of “stretching”
b {U:-E) without introducing additional elements of 2(U). By (U; €, E) we shall

always mean the model (U; €] U, ENU). AsetU isrudg closediff rudg(U) C U.

Lemma 5.11 Ler U be a transitive set, and let E C U. Then Z(U) Nrudg(U U
Uh=2wW)nzy<r.

Proof Notice that Z(U) N Z‘ (U:e.Ey =2U)N Z‘ (UUU)e.E) , so that we have to

prove that

ZU) Nrudg(U U{U}) = 2U)N E(UU{U} €.E).

“D>”: By Lemma 5.10 (a) and (d), ¢ and membership in E are both rudg. By
Lemma 5.10 (f), (¢), and (h), the collection of rudg relations is closed under com-
plement, intersection, and bounded quantification. Therefore we get inductively that
every relation which is X in the language .Z¢ g with € and E is also rudg.

Now let x € Z(U) N 2 (UUUREE) There is then some rudg relation R and

there are xq, ..., xy € U U {U} such that y € x iff y € U and R(y, x1, ..., x¢) holds.
Butthenx = U N {y: R(y, x1, ..., xx)} € rudg(U U {U}) by Lemma 5.10 (g).

“C”: Call afunction f: vk > vV, wherek < w, simple iff the following holds true:
if (vo, V1, ..., V) is X in the language Z¢ g, then o (f(V], ..., V), Vi, ..., Vi)
is equivalent over transitive rudg closed structures to a X formula in the same
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language. It is not hard to verify inductively that every rudg function is simple
(cf. Problem 5.8).

Now let x € ZU) Nrudg(U U {U}), say x = f(x1,...,xx), where xi,
..oy Xt € UU{U} and f is rudg. Then, as f is simple, “vo € f(vi,...,vx)” is
(equivalent over rudg (U U {U}) to) a ¥ formula in the language .2 g, and hence
x={yeU:ye fxi,..,xn}isin SN EE (). 0

Of course Lemma 5.11 also holds with &2 (U ) being replaced by the set of all relations
onU.
Let U be rudg closed, and let x € U be transitive. Suppose that

B e 23" (x1, ),
where x1, -+ ,x¢ € x.Then BNx € I~ (()x;e’me), and hence BNx € rudg (x U{x})
by Lemma 5.11. Butrudg (x U {x}) C U, and therefore BN x € U. We have shown
the following.

Lemma 5.12 Ler U be a transitive set such that for every x € U there is some
transitive y € U with x € y, let E be a set or a proper class, and suppose that U
is rudg closed. Then (U; €, E) is a model of Xy comprehension in the sense that if
B e EBU;E’E) andx € U, then BNx € U.

In the situation of Lemma 5.12, (U; €, E, B) is therefore “amenable” in the sense
of the following definition.

Definition 5.13 A structure (U; €, Ay, ..., Ay), where U is transitive and Ay, .. .,
A, C U=%,is called amenable if and only if A; Nx € U whenever 0 < i < m and
xeU.

Later on, cf. Definition 11.4, we will study possible failures of X~'j comprehension
in rudg closed structues. Lemma 5.12 provides the key element for proving that
(all but two of) the structures we are now about to define are models of “basic set
theory,” a theory which consists of Xy comprehension together with extensionality,
foundation, pairing, union, infinity, and the statement that Cartesian products and
transitive closures exist.

We are ready to define the J,[E] hierarchy as follows. For later purposes it is
convenient to index this hierarchy by limit ordinals.

Definition 5.14 Let E be a set or a proper class.

JlE] =0
JotolEl =r1udp (Jo[ETU {J4[E1})
JuilE]l = U Joww [ E] for limit A
a<i

LIEl= |} JulE]

a€OR
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Obviously, every J,[E] is rudg closed and transitive. We shall also denote by
Jo[E] the model (J4[ET; €] Jo[E], E N J,[E]).

An important special case is obtained by letting £ = @ in Definition 5.14. We
write J, for J,[¥], and L for L[#]. L is GODEL’s Constructible Universe. Other
important examples which are studied in contemporary set theory are obtained by
letting E be a set or proper class with certain condensation properties or by letting
E code a (carefully chosen) sequence of extenders (cf. Definition 10.45 and also
Problem 10.5).

The next lemma is an immediate consequence of Lemma 5.11.

Lemma 5.15 Let E be a set or proper class. Assume thar® E C Lim x V. Let us
write
Ey = {x:(a,x) € E}

and
Ela=EN(axxV)

for limit ordinals «. Let us assume that E, C Ju[E] and that (J4[E]; €, Ey) is
amenable for every limit ordinal .
Then
P E) N JorolE] = P(I[E]) N 5 Jel RS EloEe)

The hypothesis of Lemma 5.15 is satisfied for all present-day canonical inner
models. (Cf. also Problem 5.13.) We will assume from now on, that E always satisfies
the hypothesis of Lemma 5.15.

The following is easy to verify inductively (cf. Problem 5.9).

Lemma 5.16 For every limit ordinal, J,[E] N OR = «, and Card(J4[E]) =
Card(x).

The following can be easily proved by induction on ¢, with a subinduction on the
rank according to Definition 5.8. We shall produce a much stronger statement later
on, cf. (5.2).

Lemma 5.17 Let « be a limit ordinal. If x € Jy[E], then there is a transitive set
v € Jy[E] such that x € y.

Lemmas 5.7 and 5.17 (and Problem 5.5) immediately give the following.

Corollary 5.18 Let E be a set or a proper class. Let « be a limit ordinal, « > w. Then
Jo[E] is a model of the following statements: (Ext), (Fund), (Inf), (Pair), (Union),
the statement that every set is an element of a transitive set, and Xo-comprehension.
Also, J4[E] is a model of “YxVy x X y exists.”

Theorem 5.19 Let E be a set or a proper class. L[E] = ZF.

3 Here, Lim denotes the class of all limit ordinals.
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Proof We have to verify that the following axioms hold in L[E]: the power set
axiom, the separation schema and the replacement schema.

Let us start with the power set axiom (Pow). Fix a € L[E]. By the replacement
schema in V, there is some « such that

P(a) NLIE] C Jy[E].
But then
P@)NLIE]={x € JW/[E]: J4[E]lEVy e x y €a} € Ju[E],

as Jy[E] satisfies Xy comprehension. This shows that L[E] = Jz(z = L (a)).

In order to show that the separation schema (Sep) holds in L[ E], let ¢(x1, ..., xk)
be a formula, and let a, ay, ..., ar € L[E]. As (Jg[E]: B € OR) is a continuous
cumulative hierarchy, we may pick some o with a, ay, ..., ax € Jy[E] such that for
all b € J,[E],

JolEl = @b, ai, ...,ar) <= LIE] E ¢, a1, ..., a).
(Cf. Problem 5.14.) But then

(bea:LE] = o, ai,... a))
={bea J4lEl=ob, ai,...,a)} € JurwlE] C LIE],

using Lemma 5.15. This verifies that the separation schema holds in L[E].
That the replacement schema (Rep) holds in L[E] can be shown similarily by
using the replacement schema in V. ]

It is often necessary to work with the auxiliary hierarchy S, [E£] which is defined
as follows:

SolE] =0
Se+1LE] = SE(SLIE])

SyE] = (] Se[E]  for limit &
E<h

where S” is an operator which, applied to a set U, adds images of members of
U U {U} under rudg functions from a certain carefully chosen fixed finite list. We
may set

15
sfan= |J Fwuwpu J Fwuwp
i€{3,4,5,16} i=0,i#3,4,5
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where

Fo(x,y) = {x, y}

F]()C, )’) :x\y
F(x,y)=x Xy
Fx) = Jx

Fy(x) ={a:3b(a, b) € x}
Fs(x)=enN(x xx)={(b,a):a,bex Nnaecb}
Fe(x,y) ={{b:(a,b) € x}:a €y}
Fr(x,y)={(@a,b,c):aex A (b,c) ey}
F3(x,y) ={(a,c,b):(a,b) € x Ac € y}
Fo(x,y) = (x,y)
Fio(x, y) = {b:(y, b) € x}
Fri(x, y) = (x, (»)o, (1)
Fia(x, y) = ((»)o, x, (M1)
Fiz(x, y) = {((»)o, x), ("1}
Fra(x, y) = {(x, o). ("o}
Fis(x,y) = {(x, y)}
Fig(x) = ENx.

(Here, (y)o = u and (y); = vify = (u,v) and (y)9o = 0 = (y); if y is not an
ordered pair.) It is not difficult to show that each F;, 0 < i < 15, is rudg, and that
SE is rudg as well (cf. Problem 5.5).

Lemma 5.20 The ten functions Fy, . .., Fg, and Fi¢ form a basis for the rudg func-
tions in the sense that every rudg function can be generated as a composition of
Fo, ..., Fg, and Fie.

Proof (Cf. also Problem 5.6.) It obviously suffices to prove that the nine functions
Fy, ..., Fg form a basis for the rud functions. Let us write € for the class of all
functions which can be obtained from Fp, ..., Fg via composition. We aim to see
that every rud function is in €.

Ifp(vy, ..., v)is aformula of £ with the free variables among vy, . .., vk, then
we write*

2ok () = {01, ..,y €xXi ;e N = oG, . 0}

4 Here, x is not assumed to be transitive.
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Claim 5.21 g, « € € for every ¢(vi, ..., ).

Proof First let o(vy, ..., v) =v; € vj,where 1 <i < j < k.If k = 2, then we
simply have g, x(x) = F5(x), but in general we also need F,, as well as F7 and Fg
for “reshuffling.” Let us write X!(z, x) = z and X"*1(z, x) = F>(X"(z, x),x) =
X"(z,x) x x forn > 1, and let us also write F81 (z,x) = Fg(z, x) and FB"H(z, x) =
Fg(Fé’(z,x),x) forn>1.Say2 <i <i+ 1 < j <k;then

g (x) = XK ETTN R (X (x, x), F5(x)), %), X).

Thecasei = 1or j =i+ 1 is similar.
Next, notice that
gk (¥) = F1(X*(x, x), gk (x))

and’
8ony k(X)) = F1(gp.k (X), F1(8yp,k(X), gy.k(x))).

Also
8 ok (X) = Fa(8gp k+1(X)).

Finally, if o(v1, ..., ) =v; =vj, where 1 <1i, j <k,i # j, then

g(p,k(x) = F4(g\7’vk+1 (vk+1€vi<—>vk+1€vj-),k+l(x U U x)nN Xk(x)v

which may be generated with the additional help of Fj and F3,andif (v, ..., ) =
vi €vj,where 1 <i < j <k, then

g(p,k(-x) = F4(F4(gf|vk+zf|vk+1(vk+2:1/i/\vk+1ZVjAVk+QEVk+1),k+2(x)))~

Also,
gElv,-go,k(x) = F4(gEIvk+1(v,-:vk+1/\(p’),k+l (X)),

where ¢’ results from ¢ by replacing each (free) occurence of v; by vy .
We have shown Claim 5.21. O

The proof of Claim 5.21 made use of all of Fy, ..., Fg except for Fg. The role of
Fg is to verify the following.

Claim 5.22 If f is rud and k-ary, then the function
hpe@) = 2" = {z:3y ex" f(y) = 2)

isin €.

Sanb =a\(a\b).
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Proof We use the obvious induction along the schemata from Definition 5.8.
Let f(x) = x;\x;. Let ¢(v1, v2, v3) = v3 € vi\v2. Then

hpk(x) = Fo(gy,3(x U Ux) N(x xx x Ux),x X X).

If f(x) = {x;,x;},then hpr(x) = J@&x x x).
Let f(x) = go(g1(X), ..., ge(x)). As every rud function is simple (cf. the proof
of Lemma 5.11), we may let ¢(vo, v) be a formula expressing that®

Awy, ..., we)Avi . IV V= (v, o, VA

W =gV, VDA AW =gV, .., Vi) Avg = go(Wr, ..., We)).

Let us write Hy = hg, x(x) U --- U hg, 1 (x), Hy = hg, ¢(H1), and H3 = Hy U
(HD?*U...UHD'UH, UxUx2U...Uxk Then

hrr(x) = Fa(gy2(Hz) N (Hy x x5)).

Finally,if f(x) = yex g(y, x2, ..., xr), then we may argue analogously. Claim
5.22 is thus proven.

Claim 5.22 now immediately implies that every rud functionisin €. Let f be rud,
say f is k-ary. Let f be defined by

r f(x]a"'axk)a ifu:('x17"'5'xk)
fw) = .
¢ otherwise.

Then f is rud, so that by Claim 5.22 the function u — f”u is in €. But then

Xlyoun, X > Uf”{(xl,...,xk)}zf(xl,...,xk)

is in € as well. O

It is now straightforward to verify that if U is transitive, then S£ (U) is transitive
as well, cf. Problem 5.5.7 We thus inductively get that every Sy[E] is transitive.
Moreover, by Lemma 5.20 and the definition of the S-hierarchy,

SplE] € Jo[E] = SolE] (5.2)
for all limit ordinals « and all 8 < «. It is easy to see that there is only a finite jump

in e-rank from Sy[E] to Se+1[E].
Lemma 5.12 together with (5.2) readily gives the following.

6 We assume w.l.o.g. thatevery g;, | <i < ¢, is k-ary.

7 The reason why the functions Fo through Fy5 were added to the above list is in fact to guarantee
that if U is transitive, then SZ (U) is transitive as well.
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Lemma 5.23 Let E be a set or proper class, and let o be a limit ordinal. Let
B € (X 0)E]. Then (J,[E); €, E, B) is amenable, i.e., J4[E] is a model of Xy

comprehension in the language £ p with &, E and B.

Definition 5.24 A J-structure is an amenable structure of the form (J,[E], B) for
a limit ordinal o and predicates E, B, where E satisfies the hypothesis of Lemma
5.15.

Here, (J4[E], B) denotes the structure (Jy[E]; €] J4[E], ENJ,[E], BNJ,[E]).
Of course, every J,[E] is a J-structure.

Lemma 5.25 Let J,[E] be a J-structure, where o is a limit ordinal.

(1) Forall B < a, (Sy[E]:y < B) € JolE] In particular, Sg[E] € Ju[E] for all
B < .

(2) (Sy[E]:y < @) is uniformly Elj"[El. Le., “x = §,[E]” is X over J4[E], as
being witnessed by a formula which does not depend on «.

Proof (1) and (2) are shown simultaneously by induction on («, ), ordered lexi-
cographically. Fix a limit ordinal & and some 8 < «. If B is a limit ordinal, then
inductively by (2), (S,[E]:y < B) is "', and hence (S, [E]:y < B) € JuIE]
by Lemma 5.15. If B = 6 + 1, then inductively by (1), (Sy[El:y < §) € Ju[E].
If § is a limit ordinal, then S5[E] = Uy<8 Sy[E] € JylE]; and if § = 5 + 1 then
Ss[E] = SE(S3[E]) € Ju[E]as well, as SE is rudg (cf. Problem 5.6). It follows that
SylELy < B) = (SylEL:y <8 U{(S, Ss[E]} € Jy[E], which proves (1). (2) is
then not hard to verify. O

In order to show that L[ E] satisfies the Axiom of Choice (even locally), we may
inductively define a well-ordering <g of Sg[E] as follows. If B is a limit ordinal

then we let <f=J, .5 < . Now suppose that § = f + 1. The order < g induces
a lexicographical order, call it <§ lex’ of 17 x S E[E 1xS E[E ]. We may then set®
E

B
X € S/g[E] ANy ¢ Sﬁ;[E], or else

x <y = 1%y ¢ SglEland (e, ve) <f\ (otty.vy)

X,y € SB[E] and x <Z y, orelse

where (i, uy, vy) is <glex —minimal with x = F; (uy, vy)
. . E ’ . . . _ .
and (j, uy, vy) is <5 lex —minimal with y = Fj(uy, vy).

If M = J,[E], then we shall also write <, for <£.
Using Lemma 5.25 and by a proof similar to the one for Lemma 5.25, one may
show the following. (Cf. Problem 5.10.)

8 we pretend that all F;, i < 17, are binary.
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Lemma 5.26 Let J,[E] be a J-structure.

(1) Forall B < a, (<E cy < B) € JLIE] Inparticular, <§e Jy[Elforall B < a.
2) (< ;Y < ) is uniformly Z‘]"‘[E] Le., “x =<E” is 2| over J,[E), as being

witnessed by a formula which does not depend on .
Theorem 5.27 (Godel) Let E be a set or a proper class. Then L[E] = ZFC.

Proof This is an immediate consequence of Theorem 5.19 and Lemma 5.26. O

By “V = L[E]” we abbreviate the iﬂe’E-sentence
VxdyIy(y = S,[E1Ax € ),

where “y = S, (E I stands for the X'y formula given by Lemma 5.25 (2). By Lemma
5.25(2), “V = L[E] is ITp, uniformly over J,[E] (including o = o0). As a special
case, by “V = L” we abbreviate the .Z-sentence

Vx3ydy(y = Syl0l A x € y).

We then get:

Lemma 5.28 Ler M be a transitive model. Then M =V = L iff M = Jy for some
a. (In particular, for any transitive model M, LM = J,,, where « = M NOR. ) More
generally, M =V = LIE]iff M = J,[E] for some a and E, where x € E <
MEXxe Eforallx € M. (Here, « € OR if M is a set and o = oo if M is a proper
class.)

Proof We prove the first assertion; the proof of the second one is basically identical.
“«<=" immediately follows from Lemma 5.25 (1). To see “=",let M =V = L.
If x € M, then M |=3y3y(y = S, [¥] A x € y). But this is X'y, so that by Lemma
5.3, every x € M is really contained in some S, [J] for y € M. Thus, setting
a=MNOR, M C Uy<a Sy 4] = S4[9] = Jo. By the same reasoning, if y’ < «,
then M |=3y3y(y =S, [M1Ay" € y)and J, = | Sy01c M. O

y<a

The Condensation Lemma for the constructible hierarchy is the following state-
ment.

Theorem 5.29 Let M = (J,[E], B) bea J-structure, and let 7 : M—>le where
M is transitive. Then there are & < «, E, and B such that M = (J3[E], B) is a
J-structure.

Proof Set @ = ORNM < «, E = n~'"E, and B = 7~!"B. The sentence
“V = L[E]” is IT», so that M =V = L[E] is 1nher1ted fromM E=V = L[E] and
Lemma 5.28 then immediately gives M = (J;[E], B). (I

The Condensation Lemma 5.29 leads to the following natural concept.
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Definition 5.30 Let E be a set or a proper class. Then E is said to satisfy full
c_ondensation iff for every limit ordinal « and for every m: M = Jg[E] — 5, Jo[E],
ENM=ENM (in particular, M = J3[E]).

Trivially, E = ¥ (or more generally, E C w) satisfies full condensation. There
are non-trivial examples, though (cf. Problem 8.9).
The following Theorem was shown by KURT GODEL (1906-1978).

Theorem 5.31 (Godel) Let E be a set or a proper class which satisfies full con-
densation. Then L[E] = GCH. In fact, if « is an infinite cardinal in L[E] and
7 = ik TLLE] then

P(k)NLIE] C J[E]

Proof Let x € & (k) N L[E], and pick some « such that x € Jy[E]. Let us work in
L[E]. Pick
T M— 5, JolE],

where M is transitive, (¢ + 1) U {x} C ran(sr), and Card(M) = k. By the Con-
densation Lemma 5.29, M = J;[E] for some & < « and some E. We must have
Card(&) < k™t by Lemma 5.16. Also, ENM = EN M, as E satisfies full conden-
sation, so that in fact M = J3[E] = J3[E], where & < 7 = x+. We have shown
that x = n’l(x) € J[E]. As x was arbitrary, # (k) C J;[E]. Finally, because
Card(J;[E]) = 1 again by Lemma 5.16, Card(Z(x)) = © = . Because we
worked in L[ E], the Theorem is shown. [l

Corollary 5.32 [If ZFC is consistent, then so are ZFC + “V = L” as well as ZFC
+ GCH.

Proof Let (M; E) be a model of ZFC. Construct L inside (M; E). This yields a
model of ZFC plus GCH which thinks that “V = L,” by Theorems 5.27, 5.28, and
5.31. O

We aim to study refinements of Theorem 5.31. For one thing, we may “localize”
condensation for L[ E], cf. Definition 5.33. We will obtain the combinatorial principle
QO (and its variants) to hold in L[E], cf. Definitions 5.34 and 5.37 and Theorems
5.35 and 5.39. For another thing, we may “localize” GCH in L[E]; this will lead to
the concept of “acceptability” and the fine structure theory of L[E], cf. Definition
11.1.

Definition 5.33 Let E be a set or a proper class. E is said to satisfy local condensa-

tion iff for every limit ordinal «, for every m: M = J;[E] — 5, Jo[E] with critical
point §, and for all limit ordinals 8 < &, if

(2 N Jprwl ED\JBLE] # 0,

then E N Jg1wlE] = E N Jp44,[E] (in particular, Jg4,[E] = Jg4o[ED).
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Trivially, full condensation implies local condensation, and E = {J satisfies
full condensation. Theorem 5.31 also holds if E just satisfies local condensation
(cf. Problem 5.17).

The definitions of variants of ¢ as well as the results on them which we are about
to prove are all due to RONALD JENSEN.

Definition 5.34 Let « be a regular uncountable cardinal, and let R C «. By Oy (R)
we mean the following statement. There is a sequence (Ag: & € R) such that for all
& € R, As C &, and forevery A C «, the set

(e RIANE = Ag)
is stationary in x. We also write ¢, for O, (x) and ¢ for Oy, .

Trivially, O, (R) implies that R be stationary. It is not hard to show that {,+
implies that 2 = k™ (cf. Problem 5.20).

Theorem 5.35 (Jensen) Let E be a set or a proper class which satisfies local con-
densation. Then inside L[E], for every regular uncountable cardinal x and every
stationary R C «k, Qi (R) holds true.

In particular, inside L, for every regular uncountable cardinal k and every sta-
tionary R C «k, O« (R) holds true.

ProofLetus work inside L[ E], and let us fix a stationary set R C k. Letus recursively
construct (Bg, Cs: & € R) as follows. Having constructed (Bé, Cg:é € RNE), where
& € R, let (B, C¢) be the <f—least pair (B, C) € Ji[E]suchthat B C &, C is club
in &, and

{E€eRN&EB; =BNEINC =1,

provided such a pair exists; otherwise we set (Bg, C¢) = (4, 0).
We claim that (Bg:£€ € R) witnesses that O, (R) holds true. If not, then let
(B, C) € L[E] be the <[ g]-least pair such that B C «, C is club in «, and

{feR:B:=BN&INC =40. (5.3)
Let (B, C) € Jy[E]. We have that R N C is stationary, so that we may pick some
w: JalE]l = 5, JolEL,

where £ = ! («) is the critical point of 7, Card(J5[E]) < k, {R, B, C} C ran(n),
and& € RNC (cf. Problem4.14).Say R = 7' (R), B = 7~ (B),and C = =~ 1(C).
We have that R= RNE, B=BNE andC =CNéEisclubin&.

As <f is an initial segment of < (g}, (B, C) is also the <5 -least pair such that
B C k, Cisclubink, and (5.3) holds true. By the elementarity of 7, (BN§&, CNE)
is then the <g -least pair such that BN§ Cc &, CN&isclubin &, and
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{E€e RNEB: =BNEIN(CNE) =0 (5.4)
Let B < « be least such that
[RNE,BNE CNEYC JpiulEl

As E §atisﬁes local condensation, E N J5+w[E_] = EN J5+w[E_] and hence
Jg1wlE]l = JpywlE]. This gives that (B N &, C NE&) is the <ﬁ+w -least (and thus

also the <f-least) pair suchthat BN& C &, C N& isclubin &, and (5.4) holds true.
Therefore, (Bg, C¢) = (BN &, C NE) by the choice of (Bg, C¢). Therefore,

te{feRB;=BNENC,
which contradicts (5.3). O

Lemma 5.36 (Jensen) If O holds true, then there is an X1-Souslin tree.

We shall prove a more general statement, cf. Lemma 11.68, later.
We also discuss a strengthening of {,, called {7.

Definition 5.37 Let « be a regular uncountable cardinal, and let R C k. By 0} (R)
we mean the following statement. There is a sequence (27 : £ € R) such that for all
& € R, o C (&) and Card(#) < &, and for every A C « there is some club
C C «k suchthat AN§& € o forevery & € C N R. We also write {7 for ¢} (k) and
O* for <>Z>1-

Lemma 5.38 (Kunen) Let « be a regular uncountable cardinal, and let R C « be
stationary. Then {7 (R) implies O, (R).

Proof Let (#%:& € R) witness O (R). Say o = {Ag;:i < &} for& € R.If 4,
Jj < §&,& € R, then let us write

={o <&:(a, j) € Az},

where o, j — (o, j) is the GODEL pairing function (cf. p. 33). We claim that there
is some i < k such that (A’ :& € R) witnesses Oy (R).
Suppose not. Then for every i < k there is some A; C « and some club C; C «
such that .
{EeR:ANE= Al&,i} NnC; =9. (5.5)

Let D = A; . Cj, and let
A={{a,i):a € A;}.

As (@£ € R) witnesses Or (R), there is some club C C D such that ANE e o7
forevery £ e CNR.
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Let £ € C N R, where we may assume without loss of generality that & is closed
under the GODEL pairing function (n + (1, 1) is incresing and continuous). There is
then some ip < & suchthat AN = Ag ), and we also have that ANE = {{o, i):x €
A; Aa,i < &}. This yields that

AL, = AjNE. (5.6)

Butip <& € D = A;C; implies that § € C;, so that (5.6) contradicts (5.5). [

We now aim to characterize for which R C « we have that {}(R) holds true in
models of the form L[E], where E satisfies local condensation. It turns out that the
notion of “ineffability” (cf. Definition 4.49) is the relevant concept.

Theorem 5.39 (Jensen) Let E be a set or a proper class which satisfies local con-
densation. The following is true inside L[ E].

If k is regular and uncountable and if R C « is not ineffable, then {7 (R) holds
true.

In particular, inside L, if « is regular and uncountable and if R C k is not
ineffable, then Q7 (R) holds true.

Proof Let us work inside L[E]. Let (Ag: & € R) witness that R is not ineffable,
i.e., Ag C & forevery & € R and whenever S C R is stationary, then there are § < &’
with &, & € Sand Ag # Ag NE. Forevery € € R, let §(£) be the least § > £ such
that

Ag € J5[E],

and set
Ay = P (&) N Jse)E]

We claim that (@%: & € R) witnesses O (R).

By Problem 5.17 and Lemma 5.16, Card (%) < & for every £ € R. Let us fix
B C k. We aim to find some club C C « such that BN& € o7 forevery £ € CNR.

Let B > k be least such that B € Jg[E]. By Problem 5.17, 8 < «™. Using
Lemma 5.16, let us pick some bijection g: k — Jg[E]. The set

D={§ <k:Beg'§ Ng"§ < Jg[EINE = (g76) Nk}

is easily verified to be club in «. (Cf. Problem 4.14.) For every § € D there is some
E, £(§) and some ¢ with critical point & such that

T,

Je)lE]l = g7€ < JBlE].

o

Notice that = B + w, some limit ,3_, and llence if e(§) = € + w, where ¢ is a
limit, then BN & = ngl (B) € Jee)lEN\JE[E]. As E satisfies local condensation,

we therefore have that E = E N Je(g)[E_] and Jg@)[E] = JeolE] Le,
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BN&=m;"(B) € JupE] (5.7)

forall ¢ € D.
Suppose that there were no club C C D suchthat BN& € 7 forevery & € CNR.
This means that

{¢ e DNR:BNE& ¢ o} is stationary. (5.8)

By (5.7), BNE ¢ oy = Z(§) N Jsi) [ E] implies that §(§) < e(£), which in turn
gives Ag € Js)[E] C Jee)[E]. Hence (5.8) yields that

S=1{& € DNR: A¢ € Je)[E]} is stationary. (5.9)

If§ € S,thenme (Ag) € g"&,sothatthereis some f(£) < & withmme (Ag) = g(f(§)).
By FODOR’s Theorem 4.32, there is some stationary 7 C S and some 1 < k such
thatforallé e T, f(§) = n.

Let us write A = g(n). If & € T, then 7z (As) = g(n) = A, which means that
As = ANE. Butthen Ay = Ag N & whenever £ < &', £, & € T. This contradicts
the fact that (Ag: & € R) witnesses that R is not ineffable. O

Lemma 5.40 Let k be an uncountable regular cardinal, and assume R C « to be
ineffable. Then O (R) fails.

Proof Suppose (%:& € R) were to witness O} (R). For £ € R, say @ =
{Ag,i:i <&}, and set
Ag = {{a, i) € Ag i},

where o, i — (w, i) again is the GODEL pairing function. Applying the ineffability
of Rto (Ag N&: & € R), we find some stationary S C R such that for all § < &’ with

£, €S8,
Ag NE = Ag NE.

Fori < «, let us write
Al ={a <k:3E €S (ai)e As NE).

By the properties of S, _
Agi=A'NE (5.10)

foralli < x and & € S.

Let us now pick any A € Z)\{A":i < «k}. As (& € R) is supposed to
witness % (R), there is some club C C « such that AN & € @ forallé e RN C.
By FODOR’s Theorem 4.32 there is some stationary 7 C S N C and some iy < «
such that forall § € T,

ANE = Ag .



86 5 Constructibility

But this implies that A = A% by (5.10). Contradiction! (]

There is a principle which is slightly stronger than { and which is called O}, cf.
Problem 5.22.

5.2 Ordinal Definability

We also need to introduce HOD.

Definition 5.41 Let Y be a set or a proper class. We say that x is hereditarily in Y
iff TC({x}) C Y.

Definition 5.42 Let z be a set or a proper class. We write OD,, for the class of all x
which are ordinal definable from elements of z, i.e., such that there is a formula g,
there are ordinals «q, ..., «, and elements yq, ..., y, of z such that for all u,

UEX <= U, AL, ..., 0y V]yeees Ym)-
We also write HOD,, for the class of all x which are hereditarily in OD,, i.e.,
HOD, = {x : TC({x}) c OD,}.

If x € HOD,, then we say that x is hereditarily ordinal definable from elements of
z.If z = @, then we write OD instead of ODy and HOD instead of HODy;.

Lemma 5.43 Let z be aset. Then x € OD, iff there is a formula ¢, there are ordinals
A, ..., 0y, a and elements y1, ..., ym of z such that a1, . .., oy, z € Vy and for all
u,

uex<= Voo, ar,....0, Y1, --r Ym)-

Proof By the reflection principle, cf. Problem 5.14, given ¢, «y,...,®, and
Y1, ..., Ym € z there is some « with «1, ..., «,, z € V, and forall u € V,,

(p(uvals"'7an1y17"'1yl’n)<:> VCY Izgo(u?alv"'sansyls""ym)'
The Lemma then follows using Problem 5.1. ]

By Lemma 5.43 and Problem 5.3, OD, = {x: ¢(x, z)} for some formula ¢ which
isis X;. This implies that HOD, = {x: ¥ (x, z)} for some formula v which is is 3.

Theorem 5.44 (Godel) Let z be a set such that z € OD,. Then HOD, = ZF.

Proof Notice that HOD, is trivially transitive. (Ext) and (Fund) are therefore true in
HOD,. It is easy to see that OR C HOD_, so that (Inf) is also true in HOD,. (Pair),
(Union), and (Sep) are also straightforward.
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Let us show that the Power Set Axiom (Pow) holds in HOD,. We need to see
that if x € HOD,, then £ (x) N OD, € OD,. Fix x € HOD,. By Lemma 5.43 and
Replacement in V/, there is some « such that y € &2 (x) N OD; iff there is a formula
@, there are oy, ..., oy, 7 € Vy and there are yy, ..., y;; € z such that for all u,

u€y<:>V0t'zw(l't’al)""an?yl’"'7ym)'

Because z € OD_, this shows that #(x) N OD, € OD;.

In order to show the Replacement Schema (Rep) in HOD,, it is easy to see that
it suffices to prove HOD, NV, € HOD, for all «. However, y € HOD, NV, iff
y € Vyandforall x € TC({y}) thereis a formula ¢, there are ordinals o1, . .., oy,
and elements y1, ..., yy, of z such that ay, ..., ay, z € Vg and for all u,

uex = Vg o, ar, ..., Y1, Ym)-

This shows that HOD, N V,, € OD,. Trivially, HOD, N V,, ¢ HOD,, and therefore
in fact HOD, N V,, € HOD;. O

Theorem 5.45 (Godel) Let z be a set with z € OD,. If there is a well-order of 7 in
OD,, then HOD, &= ZFC. In particular, HOD = ZFC.

Proof By Theorem 5.44, we are left with having to verify that HOD, &= (AC). Let
<. be a well-order of z which exists in OD,.

We write a Ab for the symmetric difference (a\b)U (b\a) of a and b. For finite sets
u,vofordinals,i.e.,u,v € OR<?, letuswriteu <* viffu = vorelse max(uAv) € v.
It is easy to show that <* is a well-ordering on OR <?, cf. Problem 5.19. The well-
order <. induces a well-order <* of finite subsets of z in the same fashion: for

V4
u,v € [z]?,letu <* viffu = vorelse y is largest (in the sense of <.) in u Av, then

y € v. Notice that <*, 5;‘6 O D,. For formulae ¢ = ¢(vo, V1, ..., Vn, v/l, ce V),
V=900,V Vp Vs, v;), ordinals «, B, finite sets & = {1, ..., a,}, B =
{B1, ..., Bp} of ordinals, and finite vectors y = (y1,..., ym), W = (W, ..., wy) of

elements of z, we may then set

(p,a,0,y) <™ (¥, B, B, W)

iff (the GODEL no. of) ¢ is smaller than (the GODEL no. of) v, or else if « < S8, or
elsea <* B, orelseif y <! w. We have that <** is a well-order.

Now if x € O D, we may let (¢, oy, ay, ¥x) be the <**-least tuple (¢, o, &, y)
such that if ¢ = @o,vi,...,ve,V|,...,v), @ = (a1,...,,), and y =
(1, -+, ym) then for all u,

uex<—= Vo Eou,ar, ..., y1,---, Yn)-

For x, y € OD; we may then set x <™ yiff (¢, oy, &y, yx) <™ (@y, oy, 0y, yy).

We have that <** is a well-order of OD,. For any ordinal y, the restriction of <***
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to sets in OD; N V,, is an element of OD,. But this implies that for any ordinal y,
the restriction of <*** to HOD_ NV, is in HOD,. It follows that HOD, = (AC).

We refer the reader to [39] for an outline of the status quo of current day inner
model theory.

5.3 Problems

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.
5.9.
5.10.

Show that the relation (M; E) = ¢(x) is definable in the language %, by a
X'1-as well as by a I[T;-formula, i.e., there is a X'1-formula ¥ and a I1{-formula
¥’ such that for all models (M; E) of Z¢ and for all x € M,

(M:E) E o) <= ¥ (M,E,"¢ ", x) <= ¥/'(M,E, 9", x).

Here, "¢ is the GODEL number of ¢. We shall produce a stronger statement
in Section 11.1, cf. Lemma 10.14.

T
Let E4 be as in Problem 4.10 (c). Let (w; E4) = (HF; €). Show that the
relation R C w x HF, where (1, a) € R <= n(n) = a, is A%FC*N.
Show that a formula ¢ (v) of % is X iff there is a formula ¢’ (v) of Z¢ such

that
ZFC FYv(p(v) <— Ja V, = ¢’ (v)).

Let k be an infinite cardinal, and let ¢ be a X»-sentence. Show that if H, = ¢,
then V = ¢.

Show that the following functions are rudimentary: f(x) = |Jx;, f(x) =
X Uxj, f(X) = {x1, ..., X}, f(X) = (X1, .., Xp), and f(X) = x; X x;.

Let E be a set or a proper class. Let F;, 0 < i < 16, be the collection of
functions from p. 73 which produce the S [E] hierarchy.

Show that each F;, 0 < i < 15, is rud, and that S is rudg as well. Also, fill
in the details in the proof of Lemma 5.20. Show that if U is transitive, then
SE(U) is transitive as well.

Show that if U is a transitive set and E is a set or a proper class, then rud g (U U
{U}) is transitive as well.

Show that every rudg function is simple.
Prove Lemma 5.16!

Prove Lemma 5.26!
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5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

Show that for every x € V there is some A such that x € L[A]. Show also
that it need not be the case that x € L[x]. Show in BGC that there is a class
A of ordinals such that V = L[A].

Let M and N be two transitive models of ZFC. Show that if for all sets x of
ordinals, x € M <= x € N,then M = N.

Let A C OR. Set
E={(a+w,&):écAN]a,a+ w)}

for every limit ordinal «. Show that E satisfies the hypotheses of Lemma
5.15 and that if X is a limit of limit ordinals, then J,[E] = J)[A] (and hence
L[E] = L[AD.

Let (My:a € OR) be a continuous cumulative hierarchy of transitive sets,
i.e., every M, is transitive, My, C Mg fora < B, and M, = Ua<k M, for
limit ordinals A. Set M = Ua M. Let ¢(x1, ..., x;) be a formula, and let
a,ap,...,ar € M.

Show that there is then some « with a,ay,...,ar € M, such that for all
be M,,

My E @b, ar,....a) & ME=@b,al, ... a).

In particular, the Reflection Principle holds true: If ¢ is a formula, then there
is a club class of « such that for all x1, ..., xp € V,,

px1, . xk) = Vo E @, ..o, xk).

(A. Levy) Use Problem 5.14 to show that ACKERMANN’s set theory AST is
conservative over ZF, i.e., if ¢ is a formula of £ which is provable in AST,
then ¢ is provable in ZF. [Hint. Use the compactness theorem.]

Let « be weakly inaccessible. Show that J, = ZFC. Conclude that the exis-
tence of weakly inaccessible cardinals cannot be proven in ZFC.

Show that the conclusion of Theorem 5.31 also holds if E is just assumed to
satisfy local condensation. L.e., if E is a set or a proper class which satisfies
local condensation, then L[E] = GCH, and in fact, if « is an infinite cardinal
in L[E] and 7 = «LIE] then 2 (k) N LIE] C J.[E].

Let M = Ju[E] be a J-structure. Show that there is a (partial) surjection
h:a — [a]=? suchthath € Z‘{VI.

For u,v € OR~%, let u <* v iff max(uAv) € v. Show that <* is a well-
ordering on OR <%

Let « be an infinite cardinal such that ¢+ holds true. Show that 2 = kt.
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5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5 Constructibility

Let « be a regular uncoutable cardinal. R C « is called subtle iff for every
sequence (Ag:& € R) such that Az C & for every £ € R and for every club
C Ckthereare £, € RN C with & < &' such that As = Az NE.

(K. Kunen) Let « be a regular uncoutable cardinal, and let R C «. Show that
if R is ineffable, then R is subtle. Show also that if R is subtle, then O, (R)
holds true. [Hint. Follow the proof of Theorem 5.35.]

Let « be a regular uncountable cardinal, and let R C k. By O,j‘(R) we mean
the following statement. There is a sequence (2%:£ € R) such that for all

£ e R, o C Z(§) and Card(#) < &, and for every A C « there is some
club C C « such thatforevery § € CNR,{ANE, CNEY C . OF is O ().

(R. Jensen) Assume V = L[E], where E satisfies local condensation. Let « be
a regular uncountable cardinal, and let R C «. Show that if R is not ineffable,
then O} (R) holds true. [Hint. Follow the proof of Theorem 5.39. Pick 8 such
that R € Jg,say R = g(0). Towards the end, after (5.7),1let C = {e(&): & € D}.
Verify as follows that if £ € R is a limit point of C, then BN&y, CN&y € o, .
Otherwise Ag, € Je(g,)- Set S = {§ € RN &: A = Ag N £}. By the choice
of (Ag:& € R) and the elementarity of 7g,, S can’t be stationary in Jg(gy),
so that J,(g) has a club / C & disjoint from S. But setting /* = mg, (/) and
A" =75 (Ag,), &0 € RN I and Ag, = A* N &. Contradiction!]

KUREPA’s Hypothesis at k, KHy, is the statement that there is some set B C
P (k) of size kT such that for all &€ < k, {X N&: X € B} has size at most
Card(§).

(R. Jensen) Let « be regular and uncoutable. Then ¢ implies KH, . [Hint. Let
(o: & < k) witness O .Forw < & < k,let Mg be atransitive model of ZFC™~
of size Card(£) such that o7 C Mg.Let B ={X C k:VE <k XNE&E € Me}.]

(R. Jensen, K. Kunen) Show that if « is ineffable, then KH, fails. Conclude
that if « is ineffable, then O} fails.

KRIPKE- PLATEK set theory, KP, for short, is the theory in the language of
Zc which has the following axioms. (Ext), (Fund,,) for every formula ¢ (cf.
Problem 3.4), (Pair), (Union), (Inf), (Aus, ) for all X-formulae ¢, and (Colly)
for all Xy-formulae ¢ (cf. Problem 3.5).

(a) Show that there is a proof of Lemma 2.1 in KP, i.e., “for all a, b, a x b
exists” is provable in KP.

(b) Show also that KP proves (Colly,) for all X'j-formulae ¢.

(c) Also show that if ¢ and v are both X'| and such that KP proves ¢ <> —,
then KP proves (Aus,).

Leta > wbealimit ordinal. Show that the following statements are equivalent.

(a) Jo = KP.
®d) Jy E (Coll(p) for all Xy-formulae ¢.
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5.27.

5.28.

(c) if ¢ and ¥ are both X and such that J, = VxVv(ep < —), then
Jo = (Ausy).
(d) thereis no total f:a — Jy, wherea € J, and f € ¥ *.

Let (M; E) be a model of KP, and let (N; €) = (wWfp(E); E | wip(M)), i.e.
N is the transitive collapse of the well-founded part of (M; E). Then (M; E)
is called an w-model iff € N. A set N is called admissible iff N is transitive
and (N; €] N) &= KP.

(Ville’s Lemma) Let (M; E) = KP be an w-model. Show that if N is the
transitive collapse of the well-founded part of (M; E), then N is admissible.

Show in KP that if R € M x M is well-founded, where M is a set, then the
function p: R — OR is a set, where p(x) = {p(y): yRx}, i.e., p(x) is the R-
rank of x forevery x € R.[Hint. The relevant ¢ in the Recursion Theorem 3.13
is X'1.] Show also in KP that if R C M x M is well-founded and extensional,
where M is a set, then the transitive collapse as defined in Theorem 3.21 is
a set.

Conclude the following. Let N be admissible. Let R € N be a binary relation which is
well-founded in V. Then ||R|| < NNOR.If R € N is well-founded and extensional
in V, then the transitive collapse of R is an element of N. Also, if R € N is any
relation, then ||wfp(R)|| < N N OR.

Let z € “w. We call « z-admissible iff J,[z] is an admissible set. We write a)i for
the least z-admissible ordinal. We also write a)ICK for a)(l) (0 = the constant function
wth value 0, CK = CHURCH-KLEENE).



Chapter 6
Forcing

The method of forcing was invented by PAUL COHEN (1934-2007) to show the
independence of the Continuum Hypothesis from the axioms of ZFC, using COHEN
forcing (cf. Definition 6.5 and Theorem 6.33).

6.1 The General Theory of Forcing

Recall that P = (P; <) is a partial order iff < is reflexive, symmetric, and transitive
(cf. p. 14). In what follows, we shall always assume that P # (J. As before, we write
p < g for p < g Aq % p (which, by symmetry, is equivalent to p < g A p # q).

Definition 6.1 Let P = (IP; <) be a partial order. We also call P a notion of forcing
and the elements of IP the forcing conditions. For p, g € P we say that p is stronger
than q iff p < q, and we say that p is strictly stronger than q iff p < q.

Definition 6.2 Let P = (IP; <) be a partial order. A set D C P is called dense (in
P)iff Vp e P3g € Dg < p.If p € P, then D C P is called dense below p iff
Vp' < p3qg e Dq < p'.AsetG C Pis called a filter iff (a) if p, ¢ € G, then there
issomer € Gwithr < pAr <g,and(b)Vpe GVgeP(p<qg—>qciG).

If P = (P; <) is a partial order, and if p,q € P, then we write p | g for
dr e P(r < p Ar < gq), in which case p, g are called compatible, and we write
pLq for —p || g, in which case p, g are called incompatible. If G is a filter, then
any two p, g € G are compatible (as being witnessed by an element of the filter).

Definition 6.3 Let P = (IP; <) be a partial order, and let Z be a family of dense
sets. A filter G C P is called -generic iff G N D # P forall D € 2.

Lemma 6.4 Let P = (IP; <) be a partial order, and let 9 be family of dense sets
such that 9 is at most countable. Then for every p € P there is a D-generic filter G
with p € G.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_6, 93
© Springer International Publishing Switzerland 2014



94 6 Forcing

Proof Say 92 = {D, : n < w}. Let p € P be given, and recursively construct
(pn : n < w) as follows. Set po = p. If p, is constructed, where n < w, then
pick some ¢ < p, with g € D, (this is possible because D, is dense in IP), and set
Pn+1 = q. Itis then easy to see that

G={relP:3np, <r}
is a Z-generic filter. O

This lemma produces a “forcing proof” of CANTOR’s Theorem 1.1 as follows.

Definition 6.5 Let C = ~“w, i.e., the set of all finite sequences of natural numbers.
For p,q € C,let p < q iff p D ¢q (iff In p | n = q). The partial order C = (C; <)
is called COHEN forcing.

Now let X be a countable subset of “w, the set of all infinite sequences of natural
numbers. Say X = {x, : n < w}. Set

Dy, ={p eC:p#x, | dom(p)},

and
D} ={peC:nedom(p)}.

It is easy to verify that each D,, as well as each D} is dense in C.

Set 7 ={D, :n < w}U{D} : n < w}, and let G be Z-generic, via Lemma 6.4.

If n < w, then, as D;! is dense, there is some p € G with n € dom(p). Therefore,
as G isafilter, | J G € “w. Also, if n < w, then, as D, is dense, there is some p € G
with p # x, | dom(p), so that | J G # x,. We have seen that | JG € “w \ X. In
particular, “w \ X # . We have shown that 280 > Ry.

In what follows, we aim to produce “generic extensions” M[G] of given (count-
able) transitive models M of ZFC.

Lemma 6.6 Let P = (P; <) € M, where M is a transitive model of ZFC. Then P
is a partial order <= M = “P is a partial order”. Also, if D C P, where D € M,
and if p € P, then D is dense in P <= M |= “D is dense in P” and D is dense
below p <= M = “D is dense below p.”

Proof “(P; <) is a partial order,” “D is dense in P,” and “D is dense below p,” may
all be written as Xy-formulae. O

Definition 6.7 Let M be a transitive model of ZFC, and let P = (P; <) € M be a
partial order. A filter G C P is called P-generic over M (or, M-generic for P) iff G
is Z-generic, where 2 = {D € M : D is dense in P}.

By Lemma 6.4, if M is a countable transitive model of ZFC and P € M is a
partial order, then for each p € PP there is a P-generic filter G over M with p € G.
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Lemma 6.8 Let M be a transitive model of ZFC, let P = (P; <) € M be a partial
order, and let G be P-generic over M. If p € G, andif D C P, D € M, is dense
below p, then G N D # (.

Proof Set
D ={geP:IreDg=<riU{geP:VreDgqglr}.

Then D’ € M, and D’ is easily be seen to be dense. Let g € GN D, and lets € G
be such that s < p and s < ¢. As D is dense below p, there is some t < s with
t € D, so that in particular ¢g||z. But ¢ € D’, so that we must now have some r € D
with ¢ < r, which gives r € D N G as desired. (I

Definition 6.9 Let P = (IP; <) be a partial order. A C P is called an antichain iff
forall p,q € A,if p # g, then pLg. A C P is called a maximal antichain iff A is
an antichain and for all p € PP there is some g € A with p || g. D C Pis called open
iffforall p € D,if g < p,thenqg € D.

The HAUSDORFF Maximality Principle 2.11 easily gives that every antichain is
contained in a maximal antichain.

Lemma 6.10 Let M be a transitive model of ZFC, and let P = (P; <) € M be a
partial order. Let G C P be a filter. The following are equivalent.

(1) G is P-generic over M.
(2) G N A # @ for every maximal antichain A C P, A € M.
(3) G N D # @ for every open dense set D C P, D € M.

Proof (1) = (2): Let A C P, A € M, be a maximal antichain. Let D = {p € P :
dg € A p < g}. D is easily seen to be dense, and of course D € M.Let p € GN D.
There is some g € A with p < g.Buttheng € GN A, as G is a filter.

2) = (1): Let D C P, D € M be dense. Working in M, let A C D be an
antichain such that for every p € D there is some g € A with p | g. Itis easy to see
that A is then a maximal antichain. (Cf. Problem 6.1.) But then p € A N G implies
peDNG.

(1) = (3): This is trivial.

B)=(1):Let D C P,D € M bedense. Let D* = {p : 3g € D p < ¢q}. D*
is then open dense, and of course D* € M. Let p € D* N G. There is then some
q € D with p < q.Buttheng € D N G, as G is a filter. [

P is called atomless iff Vp e P3g e PIdr e P (g < p Ar < p A qLlr). COHEN
forcing is atomless as are all the other forcings considered in this book.

Lemma 6.11 Let M be a transitive model of ZFC, let P = (IP; <) be an atomless
partial order, and let G C P be P-generic over M. Then G ¢ M.

Proof Suppose that G € M. Then D = P\ G € M, and D is dense: if p € P
and if ¢ < p and r < p are incompatible, then at most one of ¢, r can be
in G, i.e., at least one of g,r must be in D. But then D N G # {J, which is
nonsense. ([
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Definition 6.12 Let M be a transitive model of ZFC, and let P € M be a partial
order. For « < M N OR, we recursively define the sets ME of P-names (of M) of
rank < « as follows. Set

ME = {r € M : T is a binary relation and
V(G,p)er(peIP’/\El,B<aaeMg))}

We also write M* = (J,,_1;nor ML for the class of P-names (of M).

Of course MF ¢ M, so that if M is a set, then MF is a set as well.

Definition 6.13 Let M be a transitive model of ZFC, and let P € M be a partial order.
Let G C PP be P-generic over M. For T € M we write € for the G-interpretation
of T, which is defined to be

{UG:EIpeG(o,p) et}

We also write M[G] = {TG 1T € MP} and call it a (the) generic extension of M
(via P, G).

Of course, the definition of 79 is by recursion on the rank of 7 in the sense of
Definition 6.12. We aim to prove that any generic extension of a transitive model of
ZFC is again a transitive model of ZFC.

In what follows, we want to assume that our partial order IP always has a “least”
(“weakest”) element 1 = 1p,i.e., p < 1forall p € P. (Most often, 1p = .)

By recursion on the €-rank of x € M, we define x = {(y, 1) : y € x} for every
x € M. A trivial induction shows X € MP for every x € M. We also define G tobe
the P-name {(p, p) : p € P}; obviously, G e MP.

Lemma 6.14 Let M be a transitive model of ZFC, let P € M be a partial order,
and let G C P be P-generic over M. M[G] is transitive, and M U {G} C M[G].

Proof The transitivity of M[G] is trivial. In order to verify M C M [G], we show
¢ = x for every x € M by induction on the rank of x. We have x¢ = {¢¥ : 3p €
G (o, p) € X} = {9 : y € x} (notice that | € G) = x by the inductive hypothesis.
In order to verify G € M[G], we show that GY = G. Well, GO = {UG :dp €

G(o,p)eCGy={pS:peGy=G,as p° = pforall p e P. O

It is easy to verify that if N is a transitive model of ZFC with M U {G} C N,
then M[G] C N. Therefore, once we showed that M[G] is indeed a model of ZFC,
we know that it is the smallest ZFC-model which contains M U {G}. To begin, the
ordinal height of M[G] is the same as the one of M:

Lemma 6.15 Let M be a transitive model of ZFC, let P € M be a partial order,
and let G C P be P-generic over M. M[G]N OR = M N OR.
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Proof By Lemma 6.14, we only need to see that M[G]N OR C M.

A straightforward induction yields that the e-rank rk¢ (r9) of 70 is at most the
e-rank of 7, for every 7 € MP. Now let & € M[G] N OR, say § = 79, where
T e MP. Then & = rke () = rke(t9) < rk(r) < M N OR, as desired. O

Because M[G] is transitive and w € M[G], we know by Lemma 5.7 (1) through
(3) that M[G] is a model of the axioms (Ext), (Fund), and (Inf).

Lemma 6.16 Let M be a transitive model of ZFC, let P € M be a partial order,
and let G C P be P-generic over M. M[G] = (Pair).

Proof Letx,y € M[G],say x = 79, y = 0%, wheret,0 € MP. Let

p ={(t, 1p), (o, Ip)}.
Of course, p € MP. But it is easy to see that p¢ = {t9, 6%} = {(x, y}, so that
{x, y} € M[G]. The result then follows via Lemma 5.7 (4). [l

Lemma 6.17 Let M be a transitive model of ZFC, let P € M be a partial order,
and let G C P be P-generic over M. M[G] = (Union).

Proof Letx € M[G], say x = 76, where 7 € MPE. Let
o={(m,p):3p3q3q (p<qrp=<qg A q)€pn(p.q)en)
Of course, 0 € M P, and it is straightforward to verify that o0 = (J x. The result

then follows via Lemma 5.7 (5). U

In order to verify M[G] to satisfy (Aus), (Rep), and (Pow), we need the “forcing
language.”

Definition 6.18 Let M be a transitive model of ZFC, and let P € M be a partial
order. Let p € P, let ¢(vq, ..., v,) be a formula of the language of set theory, and
letty,..., 1, € MP. We say that p forces ¢(ty, ..., t,) (over M), abbreviated by

p H_PA} @(Tl, ) Tﬂ)’

iff for all G which are P-generic over M and such that p € G we have that M[G] =
G G
oy, .... 5,)0).

We also write IFF or just I instead of H—]i[. Notice that for a fixed ¢,

{(p,rl,...,rn):pll—l}\);l o), ..., CPx M® ¢ M.

We shall verify that this relation is in fact definable over M (from the parameter [P).
In order to do that, we now define a relation - by working in M, and then prove that
I and I have the same extension. !

I “— will be used as a symbol for this purpose only temporarily, until p. 97.



98 6 Forcing

Definition 6.19 Let M be a transitive model of ZFC, and let P € M be a partial
order. Let p € P.

(1) Letty,1p € MP. We define p I—]/I; 71 = 17 to hold iff: for all (7, 51) € 11,
{g<p:q<s1—3m,n) en(g<ssAqtym =m))
is dense below p and for all (3, 52) € 12,
lg<p:q<sn—3m,s)en(qg<siAghby m=m)

is dense below p.
(2) Againlet 71, 7o € M”. We define p %, 7/ € 1 to hold iff

[g<p:3ms)en(g<snqgtym=m1))

is dense below p.

(3) Leto(vi,...,vp), ¥(V,...,v,,) be formulae, and let 7y, ..., 7,, 7{,..., T,, €
MP. We define p I—]II;I (T, ..., ) A Y(t{,...,1,) to hold iff both
p I—I}i[ o(t1,...,1y) as well as p I—I};I ¥ (t{,...,1,,) hold. We define p l—[g[
—¢(t1,...,Ty) tohold iff fornog < p, g I—[X;I o(t1, ..., 7,) holds.

(4) Let3xe(x,vy,...,v,) beaformula,andletty,..., 7, € MP. We define p I—H;[
Ixe(x, 11, ..., Ty) to hold iff

g <p:3oeMby Fﬁ’}w(o,n,...,rn)}

is dense below p.

In what follows, we shall often write I rather than I—],I";I.

The definition of p = 71 = 715 is by recursion on (rke(71), rke(72)), ordered
lexicographically. p - 11 € 17 is then defined with the help of p - 7 = 71, where
(1, s) € 1y for some s. Moreover, the definition of p - (71, ..., 7,) for nonatomic
@ is by recursion on the complexity of ¢. The relation I is thus well-defined. We
obviously have:

Lemma 6.20 Let M be a transitive model of ZFC, and let P € M be a partial order.
Let ¢ be a formula. Then {(p, t1,...,Ty) : pF (1, ..., )} is definable over M
(from the parameter IP).

We say that p decides ¢(t1,..., ) iff pF @(t1,..., ) or p = —p(ty, ..., 7).
Definition 6.19 (3) trivially yields that for a given ¢(ty, ..., T¢), there are densely
many p which decide ¢(t1, ..., ). The following is also straightforward to verify,

cf. Problem 6.2.

Lemma 6.21 Let M be a transitive model of ZFC, and let P € M be a partial order.
Let p € P, let ¢ be a formula, and let T, ..., T, € MF. Equivalent are:
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M prEo(t,....,wm)
2 Vg =<pgtoe@,...,m)
B) {g<p:qFe(t1,..., 1)} is dense below p.

Theorem 6.22 (Forcing Theorem, part 1) Let M be a transitive model of ZFC, let
P € M be a partial order, and let G C P be P-generic over M. Let ¢ (v1, ..., v,) be
a formula, and let 1y, ..., 7, € MPF.

() IfpeGand pth o, ..., 1), then M[G] = (<0, ..., 0).
2) If M[G] E= <p(T1G, ...,rnG), then there is some p € G such that p I—IPA;I
(p(r17 MR fn)'

Proof Weprove (1) and (2) simultaneously. We first prove (1) and (2) forg = vi = v»
by induction on (rke(71), rke(72)), ordered lexicographically.

(1): Suppose that p € G and p - 71 = 12. Let us verify that th C 1:20. By
symmetry, this will also show that ‘L'ZG C rlG , and therefore rlG = 'L’2G .

Letx € tIG, say x = 7TIG, where (71, s1) € 11 for some s;1 € G. We need to see
that x € rZG. Pick r € G such thatr < p,r < s1. We still have r - 71 = 72 by
Lemma 6.21, so that there is some g € G, g < r, such that

g <s1—> 3, ) en(qg < gk m=m).

As r < s1, we have that ¢ < s1. Hence we may pick some (72, s3) € 12 with
q <syANglt m =m. As g € G, we also have that s € G, and moreover we
have that JTlG = 7126 by our inductive hypothesis. But then x = JTIG = nZG € ‘L'ZG ,as
(7‘[2, S2) S %) and NS G.

(2): Now suppose that rlG = rzG . Consider the following statement about a con-
dition r:

Yi(r) 0 Ay, s1) €11 (r <s1AV(m2,52) €T
Vg(q <s2 AgFm =m0 — gqlr)).

Assume we had ¥| () for some r € G, and let (711, s1) € 71 be a witness. Asr < s7,
we also have s| € G, so thatnlc € rlc = ‘L'ZG. Pick (72, 52) € 1 suchthats; € G and
an = nZG . By our inductive hypothesis, there is some g9 € G with go - 71 = m2.
Pick ¢ € G such that g < gp and ¢ < 5. Still ¢ - 71 = 7, by Lemma 6.21. By
Y1 (r), we must then have g Lr. However, g € G as well as r € G. Contradiction!
Therefore, we cannot have 1 (r) for r € G. The same argument shows that we

cannot have Y (r) for r € G, where

Yo(r) : A(mo, $2) € 1o (r < 52 AV (7, 81) € T
Vg(g <siAnqgbFm =m — qlr)).

Now let us consider

D={r:yn(r)Vinr)Vvrk1 =1}
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We claim that D is dense. To this end, let r be given. Suppose that r - 71 = 1 does
not hold true. By the definition of I, there is then some (71, s1) € 71 such that

{g<r:q=<s1—>3@m,n)en(g<s2rqgrmr =m)} (6.1
is not dense below r, or there is some (773, s2) € 1> such that
{g<r:q=<s—3m,s1) et (g =<s1AqFm=m)} (6.2)

is not dense below r. Let us assume (6.1) to be true. We’ll then show that there is
some p < r such that ¥ (p) holds true. (By symmetry, if (6.2) holds true, then ¥ (p)
holds true for some p < r.) Let (;r1, 1) € t1 witness that (6.1) holds true. There is
some p < r such that

Vg < p(q <51 AV (2, 5) € 2 ~(q < s2 A g =m2)). (6.3)

In particular, p < s1. Also, (6.3) gives that if (72, $2) € T2, ¢ < $2,q9 F 71 = 72,
then gL p. Thatis, p < r and 11 (p) holds true. We have shown that D is dense.

But now there must be some p € GN D. As p € G, we have seen that 1 (p) and
Yo (p) must both fail, so that p - t; = 15 holds true, as desired.

We now prove (1) and (2) for ¢ = v; € vy, exploiting the fact that (1) and (2)
hold true for ¢ = v| = v;.

(1): Suppose that p € G and p - 11 € 15. By definition,

D={q<p:3m,s)en(@q<srqgbrm=r1)}

is then dense below p. Pick ¢ € D N G. Let (7, s) € 72 be such that g < s and
gkFm=1.Asq € G, 7% = rlc.Buts € G, too, and hence rlc =7C¢ 126.

(2): Suppose that ‘L’IG € ‘L'ZG . There is then some (7, s) € 17 such that s € G and
rlG = 9. We therefore have some r € G with r - 7 = 7. Let p € G be such that
p<s,r. ThenVg < p(g <sAqgkrt =m).Hence ptk 11 € 15.

Let us finally prove (1) and (2) for nonatomic formulae.

Let o(vi,...,va), ¥ (V},...,v,,) be formulae, and let 71, ..., 7y, 7y,..., T, €
ME. Suppose that (1) and (2) hold for ¢(zy, ..., t,) and for ¥ (71, ..., T,). Itis then
trivial that (1) and (2) also hold for ¢(z1, ..., 7,) A¥(7{, ..., T,,). Let us show that

(1) and (2) hold for —¢(z1, ..., ;).

(1): Let p € G, p F —¢(t1, ..., Ty). Suppose that M[G] = go(rlG, . rnG).
There is then some ¢ € G such that g - ¢(t1, ..., ;). Pickr € G,r < p, q. Then
r<pandrt ¢(t,...,1,). Contradiction! Hence M[G] = —-go(th, el ‘L’,f;).

2):Let M[G] &= —wp(rlG, e, tnG). It is easy to see that

D={q:qFoe(,...,Tn) Vgt —¢(t1,..., )}
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is dense. Butif ¢ € D N G, then g - —¢(ty, ..., 1,). This is because otherwise
q Fo(t1,..., 1) and then M[G] = q)(th, cey rnG). Contradiction!

Finally, let Ix¢(x, vy, ..., v,) be a formula, and let 7y, ..., 7, € MP. Suppose
that (1) and (2) hold for ¢(o, 11, ..., T,) Whenever o € MP. We aim to show (1)
and (2) for Ixe(x, 71, ..., Ty).

(1): Suppose that p € G, p - 3xp(x, 11, ..., T,). By definition,

D={r<p:doeMlrior,..., 0)

is then dense below p. Pick r € D N G. Then there is some 0 € M P such that,
using the inductive hypothesis, M[G] = (p(UG, rlG, e, rnG). But we then have that
M[G] = Ixp(x, ‘L']G, e tnG).

(2): Let M[G] E Txp(x, ‘L'IG, e, tnG). Pick o0 € M¥ witnessing this, i.e., such
that M[G] = go(aG, rlG, A rnG). By our inductive hypothesis, there is some p € G
with p F ¢(o, 11,..., 7). But then » - ¢(o, 11,...,7,) for all r < p, which
trivially implies that p - Jx¢(x, 71, ..., T,) by definition. (I

One can in fact show that if p = 3Ixp(x, 71, ..., Ty), then there is some T € MmP
such that p - ¢(z, 71, ..., 7,). This property is called fullness, cf. Problem 6.5.

Theorem 6.23 (Forcing Theorem, part 2) Let M be a transitive model of ZFC, and
let P € M be a partial order such that for every p € P there is some G with
p € G such that G is P-generic over M. Let ¢(v1, ..., vy) be a formula, and let
Tl ..oy Tp e MP.

(1) Forall p € P,
P P
p H_M 90(‘[17 ceey tn) — p l_M 90(le ceey tn)'
(2) Let G C P be P-generic over M. Then
MGl = ol, ..., 10) < 3peGpt o, ..., ).

Proof Let us first show (1):

“<=":Let p - ¢(t1,...,1,). Let G be any P-generic filter over M such that
p € G. Then M[G] E (p(th, cee, rnG) by Theorem 6.22 (1). Therefore, p IFH;[
o(T1y -y Tn)-

“=—"": Suppose that p H—]]ICI o(t1,...,Ty). Weneed tosee that {g < p : g
¢(t1, ..., Ty)} is dense below p. If not, then there is some ¢ < p such that for all
r <gq,r - ¢(t1,..., 1) does not hold true, i.e., ¢ - —¢(7y,..., ;). But then
q HFC, —¢(t1, ..., Ty) by “<=". This contradicts p IF]/I;, o(T1,...,Ty),as ¢ < p.

Let us show (2). Well, “==" follows from (1) above plus Theorem 6.22 (2).
“4=" is just by definition. O

By Theorem 6.23 (1), we shall not have any use for the notation “I"" any more.
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Theorem 6.24 Let M be a transitive model of ZFC, let P € M be a partial order,
and let G C P be P-generic over M. M[G] = ZFC.

Proof We are left with having to verify that M[G] = (Aus), (Rep), (Pow), and (AC).
(Cf. also the remark before Lemma 6.17.)

Let us begin with (Aus), i.e., separation. Let ¢ (vg, vi, .. ., v,) be a formula, and
let 7C, rIG, A r,f; € M[G]. We aim to see that

(x et9: M[G] = o(x, 10, ..., 1)} € M[G].
Well, consider
7={(p.p):3(p<qrp.@ eTAplhy e . . .. )
Notice that 7 € MF by 6.23 (1).
Let x € M[G], say x = p©. Then p¢ e 79 iff (p, p) € x for some p € G iff
there is some ¢ > p € G with (p,g) € T and p H—]};, o(p, 11, ..., 1) iff pY € 79

and M[G] E ¢(p, rlG, o, rnG). Hence

(x et MGl =g, 7, ..., 19)) =7 € M[G].

A similar argument is used to show (Rep) in M[G]. Let ¢ (vo, vi, v2, ..., v,) be
a formula, let 7, ‘L'26, . rnG € M[G], and suppose that

M[G]l E=Vx e ¢ dy p(x, y, 126, ...,tnG).
We aim to see that there is some a € M[G] such that

M[GlEVYx ety caplx,y, tf,....t0).

> 'n
Consider

7 ={(p,p): 3. p) et (p=<pA
pIFE 0@, 0,1, T)A
Vo' (p s, 0B, 0/, 12, - .. 1) —> The(p') = tke(p)))).

Notice that 7 € MT, again by Theorem 6.23 (1). (Without the clause Vp'[...] in the
bottom line of this definition of 7, w would have ended up being a proper class in
M rather than a setin M.)

Suppose that x € 7Y, say x = 7Y, where (p,p) € t for some p € G.
Let p be such that M[G] & @Y, p°, rZG, ...,‘L',?), and let p € G be such
that p H—H;I 0P, p, T2, ..., Ty). We may as well assume that for all o/, if p H—H;I
0P, p', 2, ..., Tn), then tke(p’) > tke(p), and p < p. Then p©® € 79, and
a =7% e M[G] is as desired.
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In order to verify (Pow) in M[G], let ¢ € M[G]. As we already verified (Aus)
in M[G], it suffices to see that there is some b € M[G] such that {x € M[G]: x C
%) C b.

Set N = {p:3p(p,p) € t},andlet 7 = {(o, lp) : 0 € MP Ao c NxP}e
MP LetoC c 19 We wanttosee thatoC € 79 . Leto’ = {(p, p) : p € NAp H—Ig]
p € o}. By Theorem 6.23 (1), 0’ € MT. We have (¢, 1p) € 7, so o'% € 70, and
hence it suffices to verify that o’ G =00,

If p¢ € ¢'%, then (p, p) € o’ for some p € G, which implies that p € N
and p IFY p € o, where p € G. But then p¢ € oC. On the other hand, let
ol e UC’/‘./IThere is then some p € G with (p, p) € o, which implies that p € N
and p II—[,[CI p € 0. But then (p, p) € o/, where p € G, and hence pC € /.

We have shown that b = 7€ is as desired.

Let us finally verify (AC) in M[G]. Let x € M[G], say x = 79, Let feM,
f : a — 7t bijective (for some ¢ < M N OR). We aim to see that M[G] has a
surjection g : @ — x.

In order to define a name for g, we shall use the following notation Let y, z €
M[G],say y = pG, z =09, Write

[P0l ={({(p, D), (e, D}, D, {(p, D}, D}.

it is easy to see that [p, 0] € MP and in fact 0,019 = (v, 2).

Now set 5

7 ={(§ 01, 1):&§ <andp f(§) = (0, p)}

Obviously, 1 € M P Moreover, 7¢
Let us verify that x C ran( 9).

Let y € x,say y = 0¥, where (0, p) € 7 for some p € G. There is then some
£ < a with f(€) = (o, p), and hence ([€,07,1) € 7. But then (§,06°) € 70, i.e.,
nG(S) =00 = y,sothaty € ran( ). U

is easily seen to be a function with domain «.

6.2 Applications of Forcing

Let us now turn towards applications of forcing. By Corollary 5.32, “V = L” is
consistent with ZFC. We now show that forcing may be used to show that “V # L.”
the negation of “V = L.’ is also consistent with ZFC.

Our proof will make use of the concept of a I'I(l) statement: ¢ is I1 ? iff it can be
written in the form Vn € w ¥, where  is recursive (cf. e.g. [11]). IT ? statements
are downward absolute between models of ZFC (compare Lemma 5.3); therefore,
as every model of ZFC has an isomorphic copy of the standard natural numbers w,
we have that if ¢ is IT ? and there is some ZFC-model which thinks that ¢ is true,
then ¢ is really true (in V). In particular, this holds for ¢ = “T is consistent” for any
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recursively enumerable theory 7', because “7T does not prove 0 = 1” may be written
inall 10 fashion.

Theorem 6.25 [f ZFC is consistent, then so is ZFC + “V # L.”
Proof Let us first prove the following.

Claim 6.26 If M is a transitive model of ZFC and if G is C-generic over M, where
C is COHEN forcing (cf. Definition 6.5), then M[G] is a model of ZFC + “V # L.”

Proof By Theorem 6.24, we just need to verify M[G] = “V # L.”

Let us suppose that M[G] = “V = L.” By Lemma 5.28, we must then have
M[G] = Jy, wherea = M[G]NOR.However, M[G]INOR = M N OR by Lemma
6.15, so that M[G] = J, = LM cMm by Lemma 5.28 again. But G € M[G]\ M
by Lemma 6.11, because C is certainly atomless. Contradiction! (]

An inspection of the proofs of Theorem 6.24 and of Claim 6.26 shows that we may
define a function X + I"'(X) which maps finite subsets X of ZFC U {*V # L”}
to finite subsets I" = I'(X) of ZFC such that the following holds true (provably in
ZFC):

[ If M is a transitive model of I' (X), and if G is C-generic over M, (6.4)
then M[G]is a transitive model of X. '

Let us now just assume that ZFC is consistent. This means that there is a (not
necessarily well-founded) model (N; E) of ZFC. We need the following statement
about (N; E):

There is a function I — M (I") which maps finite subsets I" of ZFC to elements
M = M(I") of N such that for all I,

(N; E) = “M = M(I')is a countable transitive model of I".” (6.5)

M (I") may be obtained from I" as follows. Given I", by Problem 5.14 there is an
(N; E)—least « which is an ordinal from the point of view of (N; E) such that

(NE)YE"Vo =T

We may then apply the LOWENHEIM- - SKOLEM Theorem and Theorem 3.21 inside
(N; E) to find an M as desired. Set M (I") = M. Of course, in general the function
I' — M(I") will not be in N, but we will only need that M(I") € N for every
individual I".

Let us now show that ZFC does not prove “V = L.” Let ¥ C ZFC be finite, and
set ¥ = X U{“V # L”}. Setting I' = I'(X) and M = M(I"), (6.5) gives that

(N; E) &= “M is a countable transitive model of I".”
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By Lemma 6.4 there is then some G € N such that (N; E) = “G is C-generic over
M’ and because (6.4) holds inside (N; E) we get that?

(N; E) = “M[G] is a transitive model of X.”

This means that
(N; E) = “X is consistent”. (6.6)

However, the consistency of X' is a IT ? statement, so that (6.6) yields that X is really
consistent. But then ¥ does not prove that “V = L.”

Assuming that ZFC is consistent we have shown that ZFC does not prove that
6‘V — L"? D

All relative consistency results which use forcing may be produced in this fashion.
In proving them, we thus may and shall always pretend to have a countable transitive
model of ZFC at hand.

In order to prove the consistency of ZFC 4+ —CH (relative to the consistency of
ZFC), we need finite support products of COHEN forcing.

Definition 6.27 Let C be COHEN forcing, cf. Definition 6.5. Let « be an ordinal. For
p € “C let supp(p) (the support of p) be the set of all § < o with p(§) # 0. Let

C(a) = {p € “C : Card(supp(p)) < Ro}.

For p,q € C(a), let us write p < ¢ iff for all £ < «, p(§) < ¢(&) in the sense of
COHEN forcing, i.e., In p(§) [ n = q(§).

C(w) is often referred to as the finite support product of @« COHEN forcings.

Definition 6.28 Let P = (P; <) be a partial order, and let ¥ be an uncountable
cardinal. P is said to be k-KNASTER iff for all A C IP of size « there is some B C A
of size k such that if p, g € B, then p || g. P is said to have the k-chain condition
(k-c.c., for short) iff A < x whenever A C P is an antichain. P is said to have the
countable chain condition (c.c.c., for short) iff P has the ¥{-c.c.

Trivially, if P is x-KNASTER, then P has the «-c.c. Also, if Card(P) = «, then
trivially P has the « T-c.c.

Lemma 6.29 Let o be an ordinal. Then C(a) is 81-KNASTER.

Proof If aisatmost countable, then C(ar) = Ry, so that C(«) is trivially 8 1-KNASTER
in this case.

Now let @ be uncountable. Let A C C() have size X|. We shall verify that there
is some B C A of size 81 such that any two conditions in B are compatible.

Let X = [J{supp(p) : p € A}. We must have that X C « has size 8;. Let us pick
some bijection 7 : w; — X. This naturally induces o : A — C(w;) as follows.

2 Here, M[G] is “M|[G] as computed inside (N; E).”
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For p € A, letsupp(o(p)) = {§ < wi : w(§) € supp(p)}, and if & € supp(o (p)),
then let o (p)(§) = p(w(§)). It now suffices to verify that there is some B C ¢”A
of size X1 such that any two conditions in B are compatible, because then any two
conditions in B = o ~!”"B C A are compatible as well.

Let us write D = o”A. By the Pigeonhole Principle, there is some n <
such that {p € D : Card(supp(p)) = n} has size R;. Let Dg C Dbe {p € D :
Card(supp(p)) = n} for the least such n. For p € Dy, let us write supp(p) =
(g7, ... &7}, where & < ... <&}

A simple application of the Pigeonhole Principle yields the following.

Claim 6.30 Let 1 < k < n, and suppose {Ekp 1 p € Do} to be bounded in wy. There
is then some D| C Dq of size X1, some set{&y, ..., &} andsomeset{sy, ..., s} C C
such that for all p € Dy, élp =£&,..., ékp =&, p&) =s1,..., p&) = si.

There is therefore some k < n, k > 1, such that {Ekp : p € Do} is unbounded in
wi. Let kg be the least such.

Sety =sup{& : p € Do Ak < ko} < wi. (Ifkg = 1, thenset y = 0. If kg > 1,
then actually y = sup{&; | : p € Do}.)

If kg > 1, then we may apply Claim 6.30 to Dy to get some D1 C Dy of size R,
some set {&1, ..., &,—1}, and some set {s1, ..., sk,—1} C Csuch thatforall p € Dy,
e =&,..., g,g)fl = &o—1, P(E1) = 51, ..., p(Exy) = Sky- If ko = 1, then we just
set D1 = Dy.

Let us now recursively define (§; : i < w;) and (p; : i < wp) as follows. Let
n < wp and suppose (8; : i < n) and (p; : i < n) have already been defined.
Set 8, = sup{&;' :i < n}. (If n = 0, then set §, = Jp = y.) By the choice of
ko, there is then some p € D such that Elg) > 8y; let p, be some such p. Now
write B = {pi : i < wi}. We have that if p; € B, then §; < Skoi < ... <
£P" < 8;,.1. We therefore have that any two conditions in B are compatible: if
p.q € B, then we may define r € C(w;) by: supp(r) = supp(p) U supp(q) =
{61, ko1, s o & o Bl ) () = p&) = q (&) for | < k < ko,
rEP) = pEl) for kg < k < n, and r(§]) = q(&]) for kg < k < n. B is thus as
desired. O

The combinatorial heart of this latter argument leads to the following lemma
which is very useful for the analysis of many forcings. The proof is pretty much the
same as the proof of the previous lemma. (Cf. Problem 6.6.)

Lemma 6.31 (A-Lemma) Let k be an uncountable regular cardinal, and let u < k
be an infinite cardinal such that pY < K forallp <k andy < p. Let A C [k]=H
with A = k. There is then some B C A with B = k which forms a A-system , which
means that there is some r € [k~ (the “root” of B) such that for all x, y € B with
X#y,xNy=r.

Notice that if M is a transitive model of ZFC and G is P-generic over M for some

P € M and if p is a cardinal of M[G], then p is also a cardinal of M. The following
lemma provides a covering fact and gives a criterion for when cardinals of M will
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not be collapsed in M[G]. We will later study forcings which do collapse cardinals,
cf. Definitions 6.41 and 6.43.

Lemma 6.32 Let M be a transitive model of ZFC, and let k be a cardinal of M.
Let P = (P; <) € M be a partial order such that M |= “IP has the k-c.c.” Let G be
P-generic over M. Let X C M, X € M[G], and write © = CardM[G](X). There is
then some Y € M such that Y O X and

<, if € <p',
M = Card(Y) { < «,if «k > ut and u < cf(x), and (6.7)
<k,if k > pand u > cf(x).

In particular, if p > k is a cardinal in M such that p = k and p is regular in M or
else p > k, then p remains a cardinal in M[G].

Proof Let X € M[G] be given, X C M.Pick f € M[G], f: u — X bijective. Let
f= 0. Pick p € G such that

p IFIXLI “r is a function with domain ft.”

Foreach& < u,let Be ={n:3g < pgq IF],I;[ r(é) = 17}. Working in M, for each
n € B: we may pick qg < p such that qg H—]};j t(é) =n.1fn # 1/, then qg'J_qg/, SO
that M = Card(Bg) < «, as M |= “P has the k-c.c.”

Now set Y = |J{B: : & < u}. Of course, Y € M and ¥ D X. If k¢ is the
cardinality of B inside M, then

M = Card(Y) < Z Ke. (6.8)

§<p

It is straightforward to verify that (6.8) yields (6.7).

Now suppose that p > « is a cardinal in M such that if p = «, then p is regular.
Suppose that i = Card” [Gl(p) < p. We may then cover the set X = p by a set
Y € M such that (6.7) holds true. Let us now argue in M. If k < u*,orx > ™
and u < cf(k), ork < p,then M = Card(Y) < p, which is nonsense. Otherwise
k > u > cf(k) and p = «, so that p is regular by hypothesis and hence in fact
p = k = u, which contradicts u < p. O

In the light of Theorem 5.3 1, the following result shows that CH cannot be decided
on the basis of ZFC.

Theorem 6.33 (P. Cohen) If ZFC is consistent, then so is ZFC + —CH. In fact, if
ZFC is consistent, then so is ZFC + 280 = R,

Proof In the light of the discussion above (cf. the proof of Theorem 6.25), we may
argue under the hypothesis that there be a transitive model of ZFC.
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We first prove the first part of the theorem. Let M be a countable transitive model
of ZFC. Let o € M, where a > a)g’l. Then C(x) € M. Let G be C(«)-generic over
M. Inside M[G] we may define F : « — “w by setting F (&) = J{p&) : p € G}
for§ <w.Foralln <w,& <«

Dy ={peC(a):nedom(pé)}eM

is dense in C(w), so that F is well-defined. For all &, &' < « with & # &/,

D5 = {p € C(a) : In € dom(p(€)) Ndom(p(€)) p(§)(n) # pEN(n)} € M

is dense in C(a), so that F(§) # F(§') for § # &'. F € M[G] is therefore an
injection from « into “w.

In order to verify M[G] = —C H, we need to verify o« > a)g[ (G1 For this it will
be enough to show that M, M[G] have the same cardinals. However, as M = “C(«)
has the c.c.c.” by Lemma 6.29, this immediately follows from Lemma 6.32.

We now prove the second part of the theorem. By our hypothesis that there be
a transitive model of ZFC, we have as in the proof of Theorem 6.25 that there is

some y < wi such that J, is a (countable transitive) model of ZFC. Let o = wzjy.
Then C(«) € J,,, and we may pick some G which is C(«)-generic over J,,. By the
argument for the first part of the theorem, 280 > &, in J,[G]. We are hence left with
having to verify that 2% < 8, in J, [G].

Letx € “oN J,[G], say x = 79 Forn < w let

E,={peC(@):Im<wp ”_ﬁ(a) T(n) = m}.

Each E,, is dense, and we may pick some maximal antichain A, C E, forn < w.
Let
_ _ . Cl@) _ vy _
o=o0()={([n,m],p):peA,plty " t(n)=m}

We claim that 66 = 7.
Firstlet (n, m) € . There is then some p € G such that ([72, m], p) € o, which
implies that p II—%O‘) (1) = m, and hence (n, m) € T%. Now let (n, m) € tC. There

is then some p € G such that p H—%a) t(n) = m. As A, is a maximal antichain,

there is also some ¢ € G N A,, which implies that g IF%‘X) 7(n) = § for some
s < w.Butas p and ¢g are both in G, p and ¢g are compatible, so that we must have
s = m. Therefore ([n,m], q) € o, where g € G, i.e., (n,m) € 60 .0 = o(t)is
often referred to as a “nice name” for x (or, for 7).

We have shown that for every x € “w N J,,[G] there is some “nice name” o €

J)(/C(“) such that x = 09, each element of o is of the form ([77, ], p), and for

all n there are at most countably many m, p such that ([, m], p) € o. By the
HAUSDORFF Formula 4.19 we may compute inside J, that there are o™ = o such
names. In J,,[G] we may hence define an injection from “w N J, [G] into «, so that
280 < o =Ry in Jy[G], as desired. O
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The proof of Theorem 6.33 shows that if we assume that M = “ZFC + o™ = «,
then 280 =  holds true in M[G] whenever G is C(a)-generic over M. Hence by
Lemma 4.22 we get that 280 may be any cardinal « with cf (k) > @ (cf. Problem
6.9).

We now consider variants of COHEN forcing for cardinals above w.

Definition 6.34 Let k > w be a cardinal. Let C, = ~“k, i.e., the set of all f such
that there is some y < « with f: y — k. For p,q € C,let p < q iff p D ¢ (ff
Ay p | y = q). The partial order (C,, <) is called COHEN forcing at k.

Of course, C,, = C. If k= = k (which is true for k = w and only possible for
regular «), then Card(C,) = «, so that in this case forcing with C, preserves all
cardinals above k* by Lemma 6.32 (though cf. Problem 6.8). We now develop a
technique for showing that forcing with C, never collapses cardinals below «.

Definition 6.35 Let P = (IP, <) be a partial order, and let ¥ be an infinite regular
cardinal. IP is called < «-closed iff for all y < « and for all sequences (pg: § < y)
of conditions in IP such that pgr < pg for all & > & there is some condition ¢ € P
with ¢ < pg forall § < y. Pis called < «-distributive iff for every y < « and for
every collection (D¢ : § < y) of open dense subsets of P, [ g<y D is open dense.

The proofs of the following two lemmas are trivial.

Lemma 6.36 Let « be an infinite regular cardinal. Then Cy is < k-closed.

Lemma 6.37 Let P = (P, <) be a partial order, and let k be an infinite regular
cardinal. If P is < k-closed, then P is < k-distributive.

Not every < k-distributive forcing is < «-closed, cf. Problem 6.16.

Lemma 6.38 Let M be a transitive model of ZFC, let P = (P; <) be a partial order
in M, and let k be a regular cardinal of M such that M |= “P is < «-distributive.”
Let G be P-generic over M. Then®

“MNM[G]l=""MNM.
Proof Let f € M[G], f: y — M for some y < x. We may pick some x € M such
that ran(f) C x, and by the Forcing Theorem we may pick some t € M P and some
p € G such that
P .y M
plEy iy = X.

Foreach & < y,

Dg={qeP:qJ.pVEyequ—%r(é):jz}

3 If a is an ordinal and X is any set or class, then we write <*X for Ut <a £X.
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is easily seen to be open dense. As ﬂgq Dg is open dense, we may pick g €
GnN nS<y Deg. As ql|p, this means that for every § < y, there is a (unique) y € x

with ¢ IF]};{ 7(€) = y. Setting

g=1{E. ey xxiqly t@ =7},
we then get ¢ Il—l}‘);[ T = g. Therefore, f = 1% =g € M. O

Problem 6.10 shows that the converse to Lemma 6.38 is true also. The following
just generalizes Definition 6.27.

Definition 6.39 Let  be an ordinal, and let « be an infinite regular cardinal. For
p € “(Cy) let supp(p) (the support of p) be the set of all § < « with p(§) # @. Let

Ci (o) = {p € *(Cy): Card(supp(p)) < «}.

For p, g € Ci (@), letus write p < g iff forall £ < «, p(§) < ¢g(&) in the sense of
Ce,ie, Iy p) [y =q©).

Lemma 6.40 Let M be a transitive model of ZFC, let k be a regular cardinal of
M, let a be an ordinal in M, and let (C, (o)) be M’s version of C, (). Let G be
(Cy ()M -generic over M. Then exactly the cardinals of M which are not in the
half-open interval (k, (k <YM remain cardinals of M[G].

Proof Of course, C,(«) is < k-closed. The A-Lemma 6.31 implies that M =
“(Ce (@)™ has the ((k<¥)T)M-c.c.)” so that no M-cardinals outside the half-open
interval (k, (k <) will get collapsed. On the other hand, Problem 6.8 shows that
all the M-cardinals inside the half-open interval (k, (k=¥ MY will get collapsed
to k. O

If k<% =k in M, (C,(x))™ will therefore not collapse any M -cardinals. More-
over, we may have 2“ = « in a forcing extension (cf. Problem 6.9).
We shall now study forcings which collapse cardinals.

Definition 6.41 Let u be aregular cardinal, and letx > . We let Col(u, k) = <k,
i.e., the set of all functions f such that there is some y < u with f: y — «. For
p,q € Col(u,k),let p < qiff p D g (iff 3y p | y = g). The partial order
(Col(u, k); <) is called the collapse of k to .

Notice that Col(u, u) = C,,.

Lemma 6.42 Let M be a transitive model of ZFC, let u be a regular cardinal of M,
letk > pbe acardinal of M, and let P = (Col(u, k)™ be M ’s version of Col (i, k).
Let G be P-generic over M. Then every M -cardinal < u is still a cardinal in M[G],
and in M[G], Card(x) = u = -2<*. Moreover, cardinals above ((k <")Y)M remain
cardinals in M[G].
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Proof P is certainly < p-closed inside M, so that every M-cardinal < p is still a
cardinal in M[G]. For & < u let

Dg ={p € P: & € dom(p)},

and for n < k let
D" ={p € P:n eran(p)}.

Forall§ < wandn < «, D¢ € M and D" € M are both dense in IP. Therefore,
f = U G is a surjective function from u onto «, so that Card(x) = u in M[G].

To show that 2<# = p in M[G], letus fix @ < pu. If X € (@) N M =
2 (a) N M[G], then*

Dy ={peP:3y <p(y-(@+1) Cdom(p)A{§ <a:p(y-a+f) =1} =X)}

isin M and is dense in I, so that we may define F € M[G], F: Z(@)NM[G] — pu,
by setting

F(X) = theleasty with (§ <o : (| JO)(y e +£&) =1} =X.

F is certainly injective, so that Card(2*) < w in M[G]. This shows that 2<~* = u
in M[G].

PP has size k<* in M, so that cardinals above ((k<*)*)™ remain cardinals in
M[G]. O

If M is a transitive model of ZFC, and if G is (Col(w;, 2%0))™ -generic over M,
then CH holds is M[G] by Lemmas 6.38 and 6.42. More generally, if k is regular in
M and H is (Col(kt, 2))M-generic over M, then 2 = «+ holds M[H]. Theorem
6.46 will produce a stronger result.

Definition 6.43 Let u be a regular cardinal, and let X be a set of ordinals which are
all of size > . We let

Col* (i, X) = {p : p is a function with domain X and V£ € X p(&) € Col(u, £)}.
For p € Col*(u, X), let supp(p) = {&§ € X: p(§) # 0}. We let
Col(u, X) = {p € Col* (1, X) : Card(supp(p)) < u}.
For p, g € Col(u, X) we write p < ¢ iff for all £ € X we have that p(§) < ¢(§) in

the sense of Col(u, &). If ¥ > u, then we also write Col(u, < «) for Col(u, [i, k)).
The partial order (Col(u, < k); <) is called the LEVY collapse of k to .

4 In what follows, we use ordinal arithmetic.
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Lemma 6.44 Let i be a regular cardinal, and let k > | be a regular cardinal such
that p¥ < k forall p < k and y < . Then Col(u, < k) has the k-c.c.

Proof This immediately follows from the A-Lemma 6.31. ]

As Col(u, < k) is certainly < p-closed, this immediately implies the following.

Lemma 6.45 Let M be a transitive model of ZFC, and let © < « be regular
cardinals of M such that inside M, p¥ < « forall p < « and y < p. Let
P = (Col(u, < k)M be M’s version of the LEVY collapse of k to . Then all
M -cardinals strictly between w and k will have size (v in M[G, and all M -cardinals
outside of the open interval (i, k) will remain cardinals in M[G]. In particular,
k =utin M[G].

The LEVY collapse Col(w, < k) will play a crucial role in Chap. 8.
We may force ¢, which was shown to be true in L, cf. Definition 5.34 and Theorem
5.35.

Theorem 6.46 Let M be a transitive model of ZFC, let k be an uncountable regular
cardinalin M, andletP € M be defined inside M as follows. P = {(cy: @ < B): B <
Kk AVa < B ¢y C a}, ordered by end-extension. Let G be P-generic over M. Let
S C «k, S € M, be stationary in M. Then . (S) holds true in M[G].

Proof An easy density argument shows that there are C, C @, @ < «, such that
UG =(Cy:a <k).Weclaimthat | JG [ S = (Cy: a € S) witnesses that O (S)
holds true in M[G].

Let 7, p € M" and p € G be such that

plkt CKisclubink,andp C k.

Let po < p be arbitrary. It suffices to show that there is some g < pg such that if
q = (cy: @ < B), then

qll—,éerﬂg/\pﬂﬁ:cvﬁ. (6.9)

Let us work inside M. Notice that Pis < «-closed. We may thus easily construct a
sequence (p;: 1 <i < «)ofconditionsinPsuch thatthereare F = (¢4 : @ < k) and
(Bi:i <k),suchthatforall0 <i < j <«, p; = (cq: ¢ < Bi), supk<j,3k < B
(in particular, p; < p;), and there is some § € f; \ sup;_; B and some a; € M
such that, writing B j for sup; _ j Br,

pj\}—éer/\,oﬂﬁj:avj.

As § is stationary and {Bi:i < «}is club in k, we may pick some limit ordinal
ip such that B;, € S. Set
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A= U a; and g = (U pi) U{(Biy. A}

i<ig i<ig

Write g = ,5,-0. We have that g € P, g < po, and g - ,3 € 1 by the choice of
(piii <ip). Also,q IF (pNB) = A.As B €S, (6.9) is shown. O

The forcing P used in the previous proof is forcing eqivalent to Col(k, «) in the
sense of Lemma 6.48 below.
We now work towards showing that w; may be singular in ZF, cf. Theorem 6.69.

Definition 6.47 Let P = (IP; <p), Q = (Q; <) be partial orders. We call a map
7w : P — Q a homomorphism iff for all p, g € P,

(@ p<pq = 7n(p) <@ 7(g) and
(b) plpg = 7w (p)Lon(q).

A homomorphism 77 : P — Q is called dense iff ran(sr) is dense in Q, i.e., for every
g € Q there is some p € [P such that 7 (p) <q ¢.

If 7: P — Q is a homomorphism, then (a) implies that p ||p ¢ = 7(p) g
7(q), so that (b) gives p |lp g <= 7 (p) |lg 7(g) forall p,q € P.

Lemma 6.48 Let M be a transitive model of ZFC, let P = (P; <p), Q = (Q; <q)
€ M be partial orders and let t : P — Q be a dense homomorphism, where m € M.
IfG C PisP-genericover M, then H = {p € Q : 3g € G n(q) < p}is Q-generic
overM,G ={p eP: n(p) € H},and M[G] = M[H]. Also, if H C QisQ-generic
over M, then G = {p € P : n(p) € H} is P-generic over M and M[H] = M[G].

Proof Firstlet G C Pbe IP-genericover M,andset H = {p € Q: 3g € Gn(q) <g
p}. To see that H is afilter, let p, p’ € H. Then there are ¢, ¢’ € G with w(g) <g p
and w(q") <@ p’.Ifr <p q,q’,then w(r) <p p, p’. Now let D € M be dense in
Q.Weneedtosee DNH # . Let D* ={s e P:3r € Dn(s) <gr} € M. D*
is dense in IP: given p € P, there is some r € D with r <g 7 (p), and because 7
is dense there is some s € P with 7(s) < r; in particular, 77 (s) [[g 7(p), so that
s|lp p,andifg <p s, p,thenw(q) <@ 7(s) <g r;ie..q € D* and g <p p. Now
let p € D*NG. Then (p) <@ rforsomer € D, where p € G,sothatr € DN H.

Let us now show that G = {p € P: 7w (p) € H}. If m(p) € H, then there is some
q € Gwithn(q) <pn(p).As D ={r e P:r <p pVrlpp}isdenseinP, we
may pick » € D N G. There is some s € G with s <p r, g; then 7 (s), m(p) € H,
hence 7 (s)||gm (p), and hence s||pp, so that r||pp. But then r <p p,asr € D, and
sopeG.

Conversely, let H C Q be Q-generic over M, and set G = {p € P : w(p) €
H}. It is again easy to see that G is a filter. Now let D € M be dense in P. Let
D' = {n(p) : p € D}. D' is dense in Q: given p € Q, there is some ¢ € P with
w(q) <@ p,as 7w is dense, and there is some r € D such that r <p ¢, as D is dense;
but then 7(r) € D" and 7 (r) <g p.Now let p € D' N H. Then p = 7(g) for some
qeDNG. [



114 6 Forcing

Lemma 6.49 Let « be an infinite cardinal, and let P be an atomless partial order
such that
1p IF Card(¥) = 8.

Then for every p € P there is an antichain A C {q € P: g <p p} of size k.

Proof Letus fix p € P.

Let us first assume that x = w. Let us construct a sequences (p,: n < ) and
(gn: n < w) of conditions at follows. Set po = p. Given p,, let g, and p, 4+ two
incompatible extensions of p,. We then have that {g,, : n < w} is an antichain of size
Ro.

Let us now assume that cf(k) = w < k. Let (k,: n < w) be a sequence of
uncountable regular cardinals which is cofinal in k. We construct asequence (p, : n <
w) of conditions and a sequence (A,: n < w) of antichains in IP as follows. Set
po = p. Given p,, notice that

pu IF Card(%) = Ry,

so that by Lemma 6.32 there must be an antichain A C {g € P: ¢ < p,} of size k.
Let A, be some such antichain, and let p, 11 € A, be arbitrary. It is now easy to see
that

JtAn \{pnr1}: n <@} Clg € Pig < p)

is an antichain of size >, _ kn = k.
Finally, let us assume that cf(k) > w.Letr < pandt € VP be such that

r Ik t: @ — K is surjective. (6.10)

Let us suppose that every antichain A C {g € P: ¢ < r} is smaller than «. For
every n < w, let A, be a maximal antichain in

{geP:g<rAdtql-t() =E).

By our hypothesis, Card(A,) < « for every n < w, so that by cf(k) > w there
cannot be a surjective function

f: (a)XU{An:n<w})—>K. (6.11)

However, we may define a function f as in (6.11) by setting, for n < ® and
pelUlA,:n <w},

_)EifplET() = g,
. p)) = [0, if there isno & < « such that p I 7(n) = § ©.12)
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If¢ < k,thenby (6.10) thereis somer’ < r andsomen < w such thatr’ I+ T(i) = £.
But then r’||q for some g € A, by the choice of A,, so thatq I+ 7(72) = &. Therefore,
f is surjective. Contradiction! (]

Definition 6.50 LetP = (IP, <) be a partial order. P is called separative iftf whenever
p is not stronger than ¢ then there is some r < p such that r and ¢ are incompatible.

Every separative partial order [P such that for every p € IP there is some g € P
with g <p p is easily seen to be atomless.

Lemma 6.51 Let i be an infinite cardinal, and let P be a separative partial order
such that Card(P) = u and
1p Ik L is countable.

Then there is a dense homomorphism w : Col(w, u) — P.

Proof Let t be a name such that
Ip Ik 7: ® — G is onto.

Let us construct 77 (p) by recursion on lh(p), where p € Col(w, ). Set 7 (9) = lp.
Let us now suppose that p € Col(w, ) and 7 (p) has been defined, where n = lh(p).
As Card(IP) = u, by Lemma 6.49, we may let A C P be a maximal antichain of size
u consisting of ¢ € P such that g <p 7 (p) and ¢ decides 7 (%), i.e., there is some
& <  such that

v

gl-t(n) =¢.

We may write A = {g;: i < u}, where ¢; is different from (and thus incomaptible
with) g; for i # j. We may then set w(p U {(n,1)}) = gq;.

It is easy to see that v is a homomorphism. Also, an easy induction shows that
foreachn < w,

Ap ={m(p): p € Col(w, u) Alh(p) = n}

is a maximal antichain of ¢ € P such that ¢ decides 1:((3), o T((m—=1)).
Let us show that 7 is dense. Pick r € P. As r I ¥ € G, there is some s <p r and
somen < wsuchthats I 7(n) = F.Lett <p sbesuchthatt decides t(0), ..., (7).

There is then some p € Col(w, w) suchthat(p) € A,41 andq(p)| |t. We must then
have that 7w (p) IF t(11) = F, which implies that 7w (p) IF 7 € G. As P is separative,
this gives that w(p) <p r. (I

Definition 6.52 Let P = (IP; <) be a partial order. IP is called homogenous iff for
all p, g € P there is some dense endomorphism® 77 : P — P such that 7 (p) || g.

Lemma 6.53 C is homogeneous. If o is an ordinal, then C(«) is homogeneous.

3 i.e., a homomorphism to itself.
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Proof Let us first show that C is homogenous. Let us fix p, g € C. Let us then define
7w : C — C as follows. If r € C, then dom(;r(r)) = dom(r), and if n € dom(r),
then

q(n), if n € dom(p) Ndom(g) and r(n) = p(n),
n(r)(n) = § p(n),if n € dom(p) Ndom(q) and r(n) = g(n), and (6.13)
r(n) otherwise.

Then if n € dom(p) N dom(q), = (p)(n) = q(n), so that w(p) || g. It is easy to see
that 7 is a dense endomorphism.

Now if « is an ordinal, and if p, ¢ € C(), then for each & € supp(p) N supp(q)
there is a dense endomorphism m¢ : C — C such that 7¢(p(§)) || g(§) in the
sense of COHEN forcing. These endomorphisms then easily induce an endomorphism
7w : C(a) - C(a) such that 7(p) || ¢ in the sense of C(w). Again, = will be
dense. (]

The endomorphism constructed in the previous proof is actually an automorphism,
i.e. bijective.
In much the same way as Lemma 6.53 we may prove the following.

Lemma 6.54 Let i be a regular cardinal, and let X be a set of ordinals which are
all of size > . Then Col(u, X) is homogeneous.

Proof Let p,q € Col(u, X) be given. We may then define 7 : Col(u, X) —
Col(u, X) as follows. Given r € Col(u, X), let supp(w(r)) = supp(r) and
dom(m(r)(n)) = dom(r(n)) forall n € X, and if n € X and & € dom(r(n)),
then let

g(m)(§),if § € dom(p(n)) Ndom(g(n)) and r()(§) = p(M)(&),
7 (r)(m)(&) y p()(&), if & € dom(p(n)) Ndom(q(n)) and r(n)(§) = q(n)(§), and

r(n)(&€) otherwise.
(6.14)

It is easy to see that m is a dense automorphism of Col(u, X) such that
T (p)llg. U

Definition 6.55 Let M be a transitive model of ZFC, and let P = (P; <) € M be
a partial order. Let 7 : P — P be a dense endomorphism, 7w € M. The & induces a
map

7 M > MF

as follows:
7(t) = {(7(0), w(p)) : (o, p) € T}.

Lemma 6.56 Let M be a transitive model of ZFC, let P = (P; <) be a partial
order, and let m : P — P be a dense endomorphism with m € M. Let p € P, let
oW1, ..., V) be aformula, and let 11, ..., 1, € MP Then
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pIFY (i, ... 1) = n(p) IFY, oG (1)), ..., 7 ().

Proof We first show:

Claim 6.57 Let G C P be P-generic over M, andlet H = {p : 3g € G n(q) < p}.
Then for all T € M, 1% =7 ().

The proof is an easy induction on the rank of 7. Notice that ¢ € 7 iff (0, p) € ©
for some p € G iff (m(0), w(p)) € 7(r) for some p € G (ie., w(p) € H) iff
) e ().

The same argument shows:

Claim 6.58 Let G C P be P-generic over M, and let H = {p : w(p) € G}. Then
forallt € M®, v = 7 (1)%.

Now suppose that p H—EI ¢(t1,...,70). Let G C P be P-generic over M such
that 7(p) € G.% Setting H = {p : n(p) € G}, H is P-generic over M by
Lemma 6.48, and p € H.By p IV}, o(t1,..., %), MIH] = o, ..., tH).
But M[H] = M[G] by Lemma 6.48 and /! = #(t)%, ..., = 7(1))°
by Claim 6.58, so that M[G] = @ (1), ..., 7(t,)). We have shown that
() IFyy 9 (x1), -, 7 ().

Conversely suppose that 7 (p) II—],I; o (t1),...,7(1,)). Let G C Pbe P-generic
over M by Lemma 6.48, and p € G. Setting H = {p : 3¢ € G n(q) < p},
H is P-generic over M such that 7(p) € H. By n(p) H—]}i[ 7 (t1), ..., (1)),
M[H] = (7@, ..., 7 (@)"). But M[G] = M[H] by Lemma 6.48 and 70 =
7)Y, ..., 18 = 7(z)" by Claim 6.57, so that M[G] k= o(z7, ..., 7). We

have shown that p H—E;, o(T1, ..., Ty). O

Definition 6.59 Let M be a transitive model of ZFC, and let P = (P; <) be a
partial order. Then r € MY is called homogenous iff for all dense endomorphisms
7 :P— Pwithr e M,7(7) =t.1f11,..., 7, € MP,thenIP’iscalledhomogenous
with respect to 1, ..., 7, iff for all p,q € P there is some dense endomorphism
7w :P— Psuchthat 7 (p) || ¢, and 7 (1) = 71, ..., 7T (Ty) = Ty

Hence PP is homogenous iff P is homogenous with respect to the empty sequence ¢ of
names. Moreover, if [P is homogenous with respect to o1, ...,0;, and 71, ..., 7, €
MP are homogenous, then P is homogenous with respect to o1, ..., 0y, T1, .- ., Ty

Lemma 6.60 Let M be a transitive model of ZFC, and let P = (P, <) € M be a
separative partial order. For every x € M, X is homogenous.

Proof We must have (1) = 1 for every dense homomorphism 7 : P — . This is
because if w(1) < 1, then there is some r < 1 such that 7 (1), r are incompatible.
By density, there would be some s such that 7 (s) < r. Then 7 (s) and (1) are
incompatible, which is nonsense. O

6 We may assume without loss of generality that such a G exists, as otherwise we might work with
the transitive collapse of a countable (sufficiently) elementary substructure of M.
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Lemma 6.61 Let M be a transitive model of ZFC, and let P = (P, <) € M be a
partial order. Let ¢(v1, ..., v,) be a formula, and let t1, ..., T, € MP be such that
P is homogenous with respect to T, . . ., Ty. Then either 1 HEC, o(t1,...,Ty) orelse

1 II-]};, =(T1, ..., Tn)-

Proof Otherwise there are p,q € P such that p II—],I;I o(t1,...,7y) and g II-%
—¢(t1,...,7,). Pick a dense endomorphism 7 : P — P such that 7(p) | ¢
and 7 (t;) = 711,...,7(7y) = 7,. By Lemma 6.56, we then have 7 (p) H—Ij[i[
PF(T), ..., T (1)), ie, (p) 5, o(T1,..., 7). and ¢ IF5, =g (71, ..., T,), 50
that 7 (p), g cannot be compatible. Contradiction! ]

Corollary 6.62 Let M be a transitive model of ZFC, and let P = (IP; <) be a partial
order. Let G C P be P-generic over M. Let x € M[G], where x C M. Suppose also
that

M[G] =Vy(y € x < o(y, 77, ..., 19))

for some formula ¢ and ty, ..., 1, € M P such that P is homogenous with respect to
T, ..., Ty. Thenx € M.
In particular, if P is homogenous, then every x € M[G] N OD%[G] such that

x C M is an element of M. In particular, if P is homogenous, then HOD%[G] Cc M.

Proof Lety e M. Theny e xiffdp e G p H—H;I o, t1,...,T,). But because P

is homogenous with respect to y, 7y, ..., Ty, p IF]/I;, oy, T1, ..., Ty) is equivalent
to Vl II—% (¥, t1, ..., Ty). We may therefore compute x inside M as {y : 1 II—%
(p(yvtlv'-~v7:n)}' D

As an example, we get that a COHEN real is not definable in the generic extension:

Corollary 6.63 Let M be a transitive model of ZFC, and let G be C-generic over
M. Then neither G nor \J G is definable in M[G] from parameters in M.

Definition 6.64 Let P = (P; <p), Q = (Q; <@) be partial orders. The product
P x Q of P, Qis defined tobe P x Q = (P x Q; <pyq), where for (p, q), (p’, ¢') €
P x Q we set (p, q) <pxq (', ¢q") iff p <p p"and g <q ¢".

Lemma 6.65 (Product Lemma) Let M be a transitive model of ZFC, and let P =
(P; <p) and Q = (Q; <q) be partial orders in M. If G is P-generic over M and H
is Q-generic over M[G], then G x H is P x Q-generic over M. On the other hand,
if K CPx QisP x Q-generic over M, then, setting

G={peP:3geQ(p,g) € K},and
H={q€Q:3peP(p q) €K}

G is P-generic over M and H is Q-generic over M[G].
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Proof Firstlet G be P-generic over M and H be Q-generic over M[G]. Itis clear that
G x H is afilter. Let us show that G x H is P x Q-generic over M. Let D C P x Q
be dense. We need to see that D N (G x H) # @.

Let D* ={q € Q:3p € G (p,q) € D}. D* is dense in Q: Given g € Q, let
D'={pelP:3q¢ <gq(p.q") € D}. D' € M and D' is clearly dense in P, so that
there is some p € D’ N G. But then there is some ¢’ <g ¢ with (p,¢’) € D, ie.,
g€ D*andq’ <q ¢.

Now D* € M[G], and thus there is some ¢ € D* N H. This means that there is
some p € G with (p,q) € D and (p,q) € G x H.

Now let K € P x Q be P x QQ-generic over M, andset G = {p € P : g €
Q(p,9q)eK}andH ={q € Q:3p € P(p,q) € K}. Let D C P be dense in P,
where D € M. Then D' = {(p,q) € P x Q: p € D} is clearly dense in P x Q and
D’ € M, so that there is some (p,q) € D' N K,i.e., p € DN G. This shows that G
is P-generic over M.

Now let D C Q be dense in Q, where D € M[G]. Let D = 79, and p* H—]}; “T

is dense in Q”, where p* € G. Let

D ={(p.q) ePxQ:p<p*Aplh §er)

D*vis dense below (p*, 1g): Given p <p p*,q € Q, we have p H—l}g “z is dense
in Q.” There is then some p’ <p p and some ¢" <g ¢ with p’ H—]]I; “q’ € t.” Then
(p'.q") € D* and (p', q") <pxq (p*, lg). Now let (p,q) € D* N K. Then p € G
and p IFI}?,, G € t,sothatg € ¢ = D. Therefore ¢ € H N D. ]

In the situation of Lemma 6.65, G and H are called mutually generic.

Lemma 6.66 Let M be a transitive model of ZFC, and let a € M. Let G be C(a)-
generic over M, and let x € “wNM|[G]. Then x is C-generic over M in the following
sense: there is some C-generic H € M[G] over M such that x € M[H]. In addition,
ifa > w{”, then there is also some C(w)-generic K € M[G] over M[H] such that
M[G] = M[H][K].

Proof Fixx € “oNM[G],say x = 79. Because M = “C(x) has the c.c.c”, there is
some o € MC@ and there is a sequence (A, : n < w) € M of countable antichains
in C(«) such that 0% = 7% and

(p,p) €0 = p=[n,m] andp € A, for some n,m < w,

cf. the proof of Theorem 6.33. In particular, X = |J{supp(p) : Ip (p, p) € o}isat
most countable. Obviously,

C(a) = {p € XC : Card(supp(p)) < Ro} x {p e\ X C . Card(supp(p)) < Ro}.
It is easy to verify that

{pe XC: Card(supp(p)) < Ro} =C
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and if @ > w{” , then
{p € “\XC : Card(supp(p)) < Ro} = C().

The rest is then immediate by the Product Lemma 6.65. (I

Corollary 6.67 Let M be a transitive model of ZFC, and leta € M, a > a){” LetG
be C(a)-generic over M. Then in M[G) there is no ODg-wellordering of the reals.

Proof Suppose that there is a formula ¢(vo, vi, v2, ..., Vi, Vitrls - - - Votm) and
there are y», ..., v, € MNOR and x;,41, ..., Xntm € Y@ N M[G] such that
M[G] ':“{(I,{’ V) : (p(u5 v, VZa ceey )/n, xn-‘,—l [ECICIIE) xn—l—m)}

is a wellordering of “w.”

Let H € M[G] be C-generic over M such that x,1, ..., xX,4m € M[H], and let
K € M[G] be C(a)-generic over M[H] such that M[G] = M[H][K]. The choice
of H and K is possible by Lemma 6.66.

Then every x € “ N M[G] = “w N M[H[K] is OD 71 |\ so that by
the homogeneity of C(«) in M[H] (cf. Lemma 6.53) every such x is in M[H] (cf.
Corollary 6.62). But this is nonsense! O

Theorem 6.68 (P. Cohen) If ZFC is consistent, then so is ZF + —AC.

Proof Let M be a countable transitive model of ZFC, and let G be (C(w{” )-generic
over M. Let

M[G]
N = HOD‘“wﬂM[Gl

We have that N = ZF by Theorem 5.44. However, by Corollary 6.67 there is no
wellorder of the reals in N. (]

The following is a strengthening of Theorem 6.68. (Cf. also Problem 11.11.)
Theorem 6.69 (Feferman-Levy) If ZFC is consistent, then so is ZF + cf (w]) = w.

Proof Let J, be a countable model of ZFC. We aim to find a “symmetric extension”
of J,, in which ZF + cf(w|) = w holds true.

Letk = Nc{f'. Let G be Col(w, < k)-generic over Jy, and write N = J,[G]. With
the help of Lemma 6.65, it is straightforward to see that w{v = ke Now let

) =k N JoIG [ §]: € < «},

and set
_ N
M = HOD(wK)*u{(wK)*}-

By Theorem 5.44, M = ZF. We aim to verify that
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K=o} and M = cf(w)) = w. (6.15)

Notice that for every £ < «, J4[G | & + 1] = “¢ is countable,” so that there is
some bijective f: v — & with f € (“k)*. In particular, every & < « is countable
inM,ie., k < w{” Moreover, because (R,{” ‘n < w) € Jy,N® C (“k)*, we have
that M = cf(k) = w. In order to verify (6.15) it thus suffices to show that k is a
cardinal in M.

If « were not a cardinal in M, then M = “k is countable,” and there would then
be some bijection f: w — k with f € M. Such a bijection cannot be an element
of (®k)*. This is because if f € Ju[G | &], say, where § < «, then G | & is
Col(w, < &)-generic over J, by the Product Lemma 6.65 and every J,-cardinal
above & (in particular, «) will remain a cardinal in J,[G | £] by Lemma 6.32.

In order to show (6.15), it thus suffices to verify that

“kNM = (“k)*. (6.16)

To this end, let f € “x N M. There is then a formula ¢(vg, vi, v2, ..., vy, v/l, e,
v;n, v), there are ordinals 3, ..., ¥, < «, and there are fi,..., fi, € (“«x)* such
that for all (n, n) € w X «k,

fm)y=n<= NEom 0 v ...V f1,- o fns (6.

Let £ < « be such that fi,..., f,, € Ju[G | &]. By the Product Lemma 6.65,
G | £ is Col(w, < &)-generic over Jy, and G | [§, k) is Col(w, [&, k))-generic over
JolG | €]

Claim 6.70 There is some © € J,[G | &] such that 7GlER) = (®k)* and T is
homogenous for Col(w, [€, k)).

Proof The proof for & > w is only notationally different from the proof for £ = w,
so let us assume that £ = w. L.e., we assume that f1, ..., fi, € Jq.
Let & = k T/ = (R,41)7, and let

t={(0,p):o e indd <k
PRSI0 3 <0 11160 Colln < B

Let us verify that ¢ = (“x)*. First let f € (“k)*, say f = o¢. We may assume
that o € J,, cf. the proof of Theorem 6.33. As f € (“k)*, there is some § < «
such that f € “x N J,[G N Col(w, < §)], and there is then some p € G such

Col(w,<k)

that p I} o € “k N Jy[G N Col(w, < 8)]. But then (o, p) € t, so that
f=0%¢ct% Nowlet f € 79, say f = 0¥, where (o, p) € 7 for some p € G.
There is then some § < u with p IFSSI(“”<K) o € Yk N Ju[G N Col(w, < 5)], and
hence 6% € “k N J,[G N Col(w, < 8)],ie., f=0% € (“k)*.
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Let us now verify that Col(w, < k) is homogenous with respect to t. Let p, g €
Col(w, < k) be given. We may then define 7 : Col(w, < ) — Col(w, < k) as in
(6.14) in the proof of Lemma 6.54 (where 4 = w and X = [w, «)).

We have that #(G) = {(F(p), 7 (p)) : p € Col(w, < )} = {(p,7(p)) : p €
Col(w, < «)}, as m is an automorphism, so that 7F(G)° = {p:n(p) € G} =
7~ 1”G, where (7 ~17G) N Col(w, < 8) is Col(w, < 8) generic over J, for every
8 < k by Lemma 6.48 (and the definition of ). Also, J[(x~1"G) N Col(w, <
8)] = Jo[G NCol(w, < §)] for every § < k by Lemma 6.48, which is certainly true
independently from the particular choice of G, so that in fact

Leol@,<c) F5 ™) Ju[#(G) N Col(w, < §)] = Ja[G N Col(w, < §)]. (6.17)
But we may now show 7 (t) = t as follows. With the help of (6.17), we have

@ pete=oelnd<kpi? @™o eyl N Col, < )]

= 7(0) € Jy A3S <k 1(p) w(}:’“‘”‘“ #(0) € Ju[#(G) N Col(w, < 8)]
Col(w,<k)

i #(0) € Ju[G N Col(w, < 8)]

< (o) e L, A <k mw(p) -

< (7(0), n(p)) € 7.

Therefore T = {(o, p) : (0, p) € T} = {(7 (o), w(p)) : (0, p) € T} = 7 (1), as
desired. This shows Claim 6.70. U

By Claim 6.70 and Corollary 6.62 we get that in fact f € J,[G | &]. Hence
f € (“Pk)*. We verified (6.16). O

Elaborate forcings are studied e.g. in [9, 24, 37] and [44].

6.3 Problems

6.1. Let (IP; <) be a partial order, and let D be dense in P. Use the HAUSDORFF
Maximality Principle 2.11 to construct an antichain A C D such that Vp €
D3q € Aq || p- Conclude that A is a maximal antichain in P.

6.2. Prove Lemma 6.21!
In what follows, we shall always assume that M is a (countable, if convenient)
transitive model of ZFC, P = (IP, <) € M is apartial order, and G is IP-generic
over M.

6.3. Let k > Card(P) be a regular cardinal in M (and hence in M[G]). Show that
(M, M[G)) has the k-approximation property which means that if A C «,
A € M[G],issuchthat AN& € M forall £ < «,then A € M.

6.4. Show that if N is a transitive model of ZFC™ and if H is Q-generic over N,
where Q € N is a partial order, then N[H] &= ZFC™.
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6.5.

6.6.
6.7.

6.8.

6.9

6.10.

6.11.

6.12

6.13.

6.14.

Suppose that p H—[IECI Axe(x, 71, ..., Ty). Show that there is some t € MmP
such that p IF ¢(t, 1, ..., 7). (This is called “fullness.”) Let X < (Hp)M,
where 6 is regularin M and P € X. Let X[G] = {t¥: 1 € MP N X} and
(H)M[G] = {t9: 1 € MF N (Hyp)M)}. Show that (Hy)M[G] = (Hy)MIC]
and (using fullness)

X[G] < (Hg)MICl,

Prove Lemma 6.31!

Let H be C-generic over M. Let s € ~“w, and let H; = {(p [ [dom(s),
dom(p))) U (s [ dom(p)): p € H}. Show that Hy is C-generic over M.

Let « be an infinite cardinal of M, and write A = (k <)™. Let H be (C,)M-
generic over M. Show that in M[H], there is a surjection f: k — A. (Cf. the
proof of Lemma 6.42.) Conclude that (C, )™ collapses exactly the M-cardinals
in the half-open interval (k, A].

Assume M to satisfy GCH. Let k € M be an M-cardinal such that M =
cf (k) > w. Show that if H is C(k)-generic over M, then M[H] = 280 = k.
More generally, show that if & is an infinite regular cardinal in M, k € M is
an M-cardinal with M |= cf(k) > pu, and if H is C,, (k)-generic over M then
M and M| H] have the same cardinals and M[H] = 2" = k.

Show that the converse to Lemma 6.38 is also true, i.e., if P is separative and
“MNM[G]l=""MnNM,

then P is < «-distributive in M.

Let M be a transitive model of ZFC such that if « = M NOR, then Card(«) =
R1. Show that there is a transitive model M’ of ZFC with M’ N OR = « and
M # M.

(Solovay) Let us assume G and K to be mutually P-generic over M. Show that
M[G] N M[K] = M. [Hint. Let ¢ = 6%, where t and ¢ are P-names. We
may also construe 7 and o as (P x P)-names, and we may pick (p,q) e Px P
such that (p, ¢) IF T = o. Show that for every y € M, p decides “y € t,”i.e.,
plrpyetorpltpy ¢ t.]

Let « be inaccessible in M. Show that if H is C(x)-generic over M, then « is
weakly inaccessible in M[H].

(R. Solovay) Suppose that M = a)lL =wi;and A C w{”, A € M. Show that
there is some poset R which has the c.c.c. such that if H is R-generic over M,
then in M[H] there is some x C w with M[H] = A € L[x]. [Hint. First work
in M. Let {x;: i < w1} € L be an almost disjoint collection of subsets of w,
cf. Problem 1.3. Let

R={(s,1):s5 €21t €[]},
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6.15.

6.16.

6.17.

6.18.

6 Forcing
ordered by (s/, 1) < (s, 1) iff s" D s,¢’ Dt,andifi € r N A, then
{n € dom(s) \ dom(s): s'(n) =1} Nx; = 0.

Show that R has the c.c.c. Now stepping out of M, if H is R-generic over M
and if x C w is such that its characteristic function is J{s: 3¢ (s, 7) € G},
then i € A iff x and x; are almost disjoint.]

(a) Suppose that M = “S C w; is stationary.” Let M = “PP has the c.c.c. or
is w-closed. Show that M[G] = “S is stationary.”

(b) Let M = “S C « is stationary, where « is uncoutable and regular, and
cf(e) = w for all @ € S.” Suppose also that M = “P is w-closed.” Then
M[G] = “S is stationary.” [Hint. Fix p € P such that p HFC, 7 is club
in k. In M pick some nice X < Hp with p € X and sup(X N«k) € S.
Pick (o1 n < w) cofinal in ¢ = sup(X N k). Construct (p,: n < w), a
decreasing sequence of conditions in X, such that p, IF 7 \ o), # @. Let
q be stronger than all p,. Theng IF@ € T N S.]

Assume M = “S C wy is stationary.” Show that there is some w-distributive
forcing Q € M such that if H is Q-generic over M, then S contains a club in
M[H]. [Hint. In M, let

Q= {p: Ja < w1 (pisaclosed subset of S, otp(p) =« + 1)},

ordered by end-extension.] Show that in fact if 7 C S is stationary in M, then
T is still stationary in M[H].

More generally, let « be an infinite regular cardinal in M, andlet M =S C «*
is stationary and < k-closed.” Show that there is a < «x-closed k-distributive
forcing Q € M such that if H is Q-generic over M, then S contains a club in
MI[H].

(J. Silver) Let H, H* be transitive models of a sufficiently large fragment
of ZFC, let P € H be a partial order, let c: H — H* be an elementary
embedding, let G be P-generic over H, and let K be o (P)-generic over H* such
that 0”G C H. There is then an elementary embedding 6 : H[G] — H*[K]
suchthate D o.

Let X be a large cardinal concept, e.g., X = inaccessible, measurable, etc. We
say that “x is an X-cardinal” is preserved by small forcing iff the following
holds true. Let k be an X-cardinal in M, and assume P € (V,.)™ to be a poset.
Then « is still an X-cardinal in M[G]. Show that the following statements are
preserved by small forcing. “x is inaccessible,” “x is Mahlo,” “k is weakly
compact,” and “x is measurable.” [Hint: To prove that “x is measurable” is
preserved by small forcing, let U be any measure on « in M. Show that

U={YCk:3XeUY > X},

as defined in M[G], witnesses that « is still measurable in M[G].]
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6.19.

6.20.

6.21.

In M, let k be regular, and let F be a non-trivial filter on . For X, Y € F*
(in the sense of Definition 4.30) let us write X <p+ Y iff

K\ (X\Y)=@k\X)UY € F.

Let G be (F*, <p+)-generic over M. Show that in M[G], G is a non-trivial
M -ultrafilter which extends F in the following sense.

(a) F CQG,

b) ifX,Y €eG,thenXNY €G,
o)ifXeGandY D X,Y € Z(k)NM,thenY € G,
(d) ¥ ¢ G,and

(e) if X € (k)N M, theneither X € Gork \ X € G.

We may then make sense of Ult(M; G) C M[G].

If Fis 6-closed in M (f < k), then G is M-6-closed in the sense that if
(Xij:i<0)eM,X; eGforalli <6,then (), X; € G.If F is normal
in M, then G is M-normal in the sense that if (X;:i < k) € M, X; € G for
alli < «,then A; . X; € G.

Let « > 8. Recall that F,+ is the club filter on kT, and write F = F+.
Assume that (F', <p+) has the k TT-c.c. Let

T: H=X< H(2K+)+,

where k + 1 C X, Card(X) = «, (F', <p+) € X, and H is transitive. Let
7)) =kT and 7(Q) = (FT, <p+). Write g = {X C k7 : § € w(X)}. Show
that g is Q-generic over H. [Hint. Show that if {A;: i < «T} € ran() is a
maximal antichain in (FT, < F+), then

E<ct:eel A

i<€

contains a club C in ran(rr), so that § € C.] Conclude that if M = “(F™T,
<p+)M has the kT t-c.c.” and if H is (FT, <p+)M-generic over M, then
ult(M; H) is well-founded.

(Petr Vopénka) Show that for every « there is some partial order V = V(«) €
HOD such that for every A C a, A € V, there is some G € V such that G is
V-generic over HOD and A € HOD[G].

[Hint. Let D = {Y C &(a): Y is OD}, and let f be OD suchthat f: 6 — D

s
is bijective. Let < be such that (9, <) = (D, C), so that V = (¢, <) € HOD.
Show that

G=1{t<0:Acn®)

is V-generic over HOD and A € HOD[G].]
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6.22. Let g be a group of automorphisms of IP. Let F be a collection of subgroups
of g which satisfies the following.

(a) g €F,

(b) if H € F, and H' is a subgroup of G with H C H’, then H' € F,
(c)if H,H € F,then HN H' € F, and

(d) if He Fandw e g,thent o Hon ' ={mooon~':0 € H} € F.

(Such an F is called a filter on g.) For t € VF let us write

sym,(t) = {w € g: 7(v) = t}.
Aname 7 € VF is called symmetric iff sym,(7) € F, and 7 is called heredi-
tarily symmetric iff for every (finite) sequence ((7;, p;): 0 <i < n) such that
790 = t and (Tj+1, pi+1) € T; for0 <i < n wehave thatall 7;,0 <i < n, are
symmetric.
Now let

N = {TGI METeE€ M¥ is hereditarily symmetric}.

Show that N is a model of ZF.



Chapter 7
Descriptive Set Theory

7.1 Definable Sets of Reals

Descriptive set theory is the study of definable sets of real numbers. However, rather
than working with R, descriptive set theorists often work with a space which can be
shown to be homeomorphic to the space of all irrational numbers.

Let X # ¥ be an arbitrary set. If s € =X then we declare Us; = {x € “X:s C x}
to be a basic open set. A C “X is declared to be open iff A is the union of basic
open sets. (As ¥ = | @, @ is also open.) Complements of open sets are called closed.
Notice that each Uy is also closed, because

OX\Us = | JIU:1h(t) = Ih(s) At # 5).

Here, [h(t) = dom(t) =1 is the length of t. If X = w, then the space “w, together
with the topology just defined, is called the BAIRE space. We shall often refer to
the elements of “w as “reals.” If X = {0, 1}, then the space “2, together with the
topology just defined, is called the CANTOR space. In this chapter, we shall focus our
attention on the BAIRE space, but most statements carry over, mutatis mutandis, to
the CANTOR space.

If x,y € “w, x # y, then their distance d(x, y) is defined to be %, where n is
least such that x (n) # y(n). Itis easy to see now that the topology we defined on “w
is exactly the one which is induced by the distance function d, so that “w is a Polish
space, i.e. a complete seperable metric space. (Cf. Problem 7.1.)

A tree T on X is a subset of <“X which is closed under initial segments, i.e.,
ifs € Tandn < lh(s),thens [ n € T. Then (T, C[ T) is a tree in the sense of
Definition 4.43. If T is a tree on X, then we write [T'] for the set of all x € ®X such
thatx [ n € T foralln < w. Atree T on X is called perfect iff T # () and whenever

s € T, then s has X pairwise incompatible extensions 7 in T, i.e., thereis (; : i < X)
such that for all i, j < X, sCt,t; €T, t ¢ tj,and t; ¢ t;. Perfect trees admit a
CANTOR-BENDIXSON analysis (cf. p. 5), cf. Problem 7.5.
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If T # () is atree on w, then T is perfect iff whenever s € T, then there are ¢,
t' e Twiths Ct,s Ct,t ¢ t',andt ¢ t.Recall that a set of reals A is called
perfect iff A # (J, A is closed, and every element of A is an accumulation point of
A, cf. Definition 1.7.

Lemma 7.1 If A C “w is closed, then A = [T] for some tree T on w. On the other
hand, if T is a tree on w then [T] is closed.
Moreover, A C “w is perfect iff A = [T] for some tree T # ) on w which is

perfect.

Proof We show the first part of the lemma. Let A C “w be closed. Let T = {s €
“®w:3dx € As C x}. Itis easy to see that A C [T]. Let x € [T]. Foreachn < w
there is some x,, € A with x [ n C x,,. But then x = lim,,_, » X, € A, because A is
closed. Therefore, A = [T].

It is easy to verify that [T'] is closed whenever T is a tree on w.

The second part of the lemma is easy to check. (]

If A C “w, then
ﬂ{B C “w: B D A A Bis closed}

is the smallest closed set in which A is contained, called the closure of A.
A o-algebra on aset Y is a collection S C &(Y) which is closed under relative
complements as well as countable unions and intersections.

Definition 7.2 A set A C “w is called BOREL iff A is in the smallest o-algebra
containing all closed (open) subsets of “w.

The simplest BOREL sets are the open and closed sets. Countable intersections of
open sets are often called Gs- and countable unions of closed sets F,-sets. The
BOREL sets form a natural hierarchy, cf. Problem 7.3.

Leta > w. Atree T on w X « is a set of pairs (s, ) with s € ““w, t € ~“a,
and [h(s) = [h(t), such that T is closed under initial segments, i.e. if (s, #) € T and
n <Ilh(s)then (s [ n,t [n) € T.If T is atree on w X «, then we write [T'] for the
setof all (x,y) € Yo x “a suchthat (x [n,y [n) € T foralln < w. If T is a tree
on w x « then p[T], the projection of T, is the set of all x € “w such that there is
some f € “a sothatforalln, (x [ n, f [ n) € T.If x € “w then we let T, denote
the set of all € <“« such that (x [ [h(t), t) € T. Obviously,

x € p[T] <= 3Ty (x,y) € [T] <= (I, D) is ill-founded. (7.1)

Definition 7.3 A set A C “w is called analytic iff there is a tree T on w X @ with
A = p[T]. A C “wis called coanalytic iff “w\ A is analytic.

We will show below, cf. Lemma 7.11, that there are analytic sets which are not
BOREL. A classical result of SOUSLIN says that a set of reals is BOREL if and only if
it is analytic as well as coanalytic, cf. Theorem 7.5.
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Lemma 7.4 Let A C “w be a BOREL-set. Then A is analytic (and hence also
coanalytic).

Proof Let us first show the following two statements.

1. Ifevery A,, n < w, is analytic, then so is |J,,_,, Ax.

2. Ifevery A,, n < w, is analytic, then so is (), _,, Ax.

(1): Let A, = p[T,], where T}, is a tree on w x w. Let T on w X  be defined by'

(s,1) e Tiff s =t = v
M <wI t=n"t'A(s | (h(s) — 1), 1) €Tp).

It is straightforward to verify that p[T] = ,,_,, An-

(2): Again let A, = p[T,], where T, isatreeon w X w, and lete:w X v — w
be bijective such that e(n, k) < e(n,l) whenever k < [. If t € ~“w, say t =
(mo, ..., m;_1), and n < w, then we write t" for (Me(,0), - . ., Memn,k—1)), Where k
is least with e(n, k) > i. (If e(n,0) > i, then t" = (J.) We now let T on w X w be
defined by

(s,t) € T iff Th(s) =1h(H)A
Vn < w(s [ Ih(t"), t") € T,.

It is straightforward to verify that p[T] = (),,_,, An-
Now Lemma 7.1 quite trivially yields that every closed set is analytic. In particular,
every basic open set U; is analytic, and hence by (1) every open set is analytic. (1)

and (2) then imply that every BOREL set is analytic. (I

Theorem 7.5 (Souslin) Let A C “w. Then A is BOREL if and only if A is analytic
as well as coanalytic.

This theorem readily follows from Lemma 7.4 and the following one, Lemma 7.6.
If A and B are disjoint sets, then we say that C separates A and B iff C D A and
CNB=4.

Lemma 7.6 Let A, B C “w disjoint analytic sets. Then A, B are separable by a
BOREL set C.

Proof Let A = p[T], B = p[U], where T, U are trees on w*. Fors,t € <®w, let
Al ={xeAisCx ATyt CyA(x,y) elTD},

and let
Bl ={xeB:sCxAIy Cyn(x,y) €lUD})

We have that Ag = A and Bg = B, and we always have

! Here, n™t’ is that sequence which starts with 1, followed by ¢/(0), . . . , t'(1h(¢") —1). This notation
as well as self-explaining variants thereof will frequently be used in what follows.
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(.00 eT = Ay = J{AI-, : (s"n.t"m) eT)

and
(s.0) €U =B} = J{Bp: (s"n,t"m)eU}

Let us assume that A, B are not separable. We aim to derive a contradiction.

Let us define four reals x, y, u, v. We shall define x(n), y(n), u(n), v(n) recur-
sively. We shall inductively maintain that (x [ n,y [n) € T, (u [ n,v [ n) € U,
and A; {Z, BZ r[: are not separable, which is true for n = 0.

Now suppose that x [ n,y [ n,u | n,v | n have been chosen in such a way that

(x|n,yln)eT,(ulnv|n)eU,and A P ern are not separable.
Assume that for all i, ],k I < w such that (xTIn"i,y[n"j) € T and

(u [ n"k,v [ n"I) € U there is a BOREL set le separating

andB uln™

xfn”
A ey

yln™
i.e.,
A { cciic a)\B

It is then easy to see that the BOREL set

xn puln
U ﬂ le separates Ayrn, BU b
i,j k1

i.e.,

CUﬂC C a)\B

i,j k1
There must hence be i, j, k, [ < w such that
xIni,yln j)eT,muln k,v|nl)eU,

and i -
xXin 1 uln
Ay I and B, i

cannot be separated by a BOREL set. Set x(n) =i, y(n) = j,u(n) =k, v(n) = L.

Now of course [, A); m = {x}and N, BZ{: = {u}. We have that x € A, as wit-
nessedby (x, y) € [T],andwehavethatu € B aswitnessedby (4, v) € [U].AsA, B
are disjoint, x # u, and we may pick two disjoint open sets F, G such that x € F and
y € G.Because F isopen, A { C F for all but finitely many n. For the same reason,

B, Fr ,, C G for all but finitely many . In particular, there is some n < w such that
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x[n w 13 uln
Ay[n CFC®»\G C“w\B, I

So A); {Z and Bgrr: can be separated by a BOREL (in fact, open) set after all. Contra-

diction! O

Definition 7.7 Let A C “w, and let « > w be an ordinal. If A = p[T], where T is
atree on w X «, then A is called a-Souslin.

The Rp-Souslin sets are hence exactly the analytic sets.
Lemma 7.8 If A C “w is coanalytic, then A is X-Souslin.

Proof Let “w\A = p[T], where T is a tree on w X w. The_refore, x € Aiff (Ty, D)

is well-founded. If T, = (T}, D) is well-founded, then, as T, = R, it can be ranked
by some function f: T, — w; such that

s2t=> f(s) < f(1) (7.2)

and vice versa, cf. Lemma 3.17. Therefore, x € A iff there is some f: Ty — w; with
(7.2).

Now we construct S to be a tree “searching for” some such ranking. Lete: o —
<®wbe abijection such thatifn < [h(s), then e (s n)<el(s). Welet(s,h) € S
iff s € =“w and, setting

Ty = {t € ~“w:1h(t) <1h(s) A (s | [h(t), 1) € T},
h:lh(s) — wq is such that
Vk < lh(s)VI < lh(s) (e(k) € Ty Ae(l) € Ty Ae(k)De(l) = h(k) < h(l)).

For (s’, h'), (s, h) € S we write (s', i) <gs (s, h) iff s’ D s and b’ D h.
It is easy to verify now that x € A iff (§, D) is ill-founded. (]

The tree S constructed in the previous proof is called “the” SHOENFIELD tree for A.

Corollary 7.9 Every coanalytic set A C “w is the union of 81 many BOREL sets.

Proof Let A C “w be coanalytic. Let S be “the” SHOENFIELD tree on w X w; for
A, as being constructed in the proof of Lemma 7.8, so that x € A iff x € p[S]. If
& < wy, letus write S | £ for the set of all (s, #) € S with ran(¢) C &. Obviously,

pIs1= | pIS T8 (7.3)

§<wy

Let £ < w;. Using any bijection of & with w, we may construe S [ £ as a tree on
w X w. The sets p[S | £] and “w\ A are then disjoint analytic sets and may hence by
Lemma 7.6 be separated by a BOREL set Bt.
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We then have A = {J;_,, PIS | §]1 C Ug_,, Be C A, so thatin fact

A=) B

§<w)
as desired. O

Let us now consider the spaces (“w)¥, where 1 < k < w, equipped with the
product topology. It is not hard to see that (“w)* is actually homeomorphic to the
Baire space “w.

Leto > w. Atree T on " X « is a set of (k + 1)-tuples (so, 51, - .., sx) With
805 STy o vy Sk—1 € ~“w, s € ~“a, and lh(sg) = - - - = [h(sy), such that T is closed
under initial segments, i.e., if (sg, ..., sx) € T andn < lh(so) then (so [ n, ..., sk |
n) € T. We shall write [T] for the set of all (xo, x1, ..., xx—1, f) such that for all n,
(xo [m,x1[n,...,xk—1 [n, f[n)eT.

Aset A C (“’a))k can easily be verified to be closed iff there is a tree T on
o x wwith A = [T]. A C (Cw)¥is perfect iff there is a tree 7 % (J on o Txw
with A = [T] and T is perfect, i.e., whenever (sg,...,Sx) € T then there are
extensions (fg, ..., 1), o, ..., t'x) € T of (so, ..., sx) with [h(ty) = Lh(t'¢) and
(to, ..., tx) # (t'o, ..., t";) (Cf. Lemma 7.1).

We may now define the projective hierarchy. Let T be a tree on o* x «. The
projection of T onto the first / < k many coordinates, written p;[7] or just p[T], is
the set of all (xq, ..., x;—1) such that there are (x;, ..., xx—1, f) with

k

(X0, ..oy X[—1, X1, - o, Xk—1, ) € [T].

Aset A C (“w)¥ is analytic iff there is a tree T on o x o with A = pi[T]. (Hence
A is analytic iff

A = {(x0, ..., xk—1):Ixx(x0, ..., Xk—1, Xk) € B}

for some closed set B C (Yw)kt1)
A C (“w)¥ is coanalytic iff A is the complement of an analytic set, A = (“w)*\B,
where B is analytic. The analytic sets are also called X!, the coanalytic sets /7.
~1 ~1

AC (Pw)kis X! iff

~n+1
A={(x1,..., Xk—1): Ixg (X1, ..., Xk—1, Xk) € B}
for some IT' set B C (Pw)**t!. A ¢ (Pw)f is IT' iff A is the complement of a
~n ~n+1
b set.
~n+1

Definition 7.10 A set A C (“w)*, some k < w, is called projective iff there is some
n < wsuch that A is 2.

~n
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Of course there are exactly 28 projective sets.
We now aim to verify that X! % IT' by showing that there is a universal X!-set
~10o~d ~1

which cannot be I7!.

1
Let us pick a bijection
e {(s,1):s € w,t € w,lh(s) =1lh(t)} - o

such that for all s,f andi < w, e(s [ i,t [ i) < e(s,t). Let us say that u €~® w
codes a finite tree iff T, = {(s,1):5s €~ w,t €~“ w, lh(s) = lh(t), u(e(s, t)) = 1}
is a (finite) tree, i.e., is closed under initial segments.

We may now define a tree U on w X w X w as follows. We set (s, t, u) € U iff
s,t,u €<? w,lh(s) =1h(t) = lh(u), u codes a finite tree, and if i < w is such that
e(s [i,t i) €edom(u),thenu(e(s [i,t [i)) =1.

We claim that for all A C “w, A is {Ji iff there is some z € “w such that

A = plU,], where U, = {(s,t): Ju ((s,t,u) € U Anu =z [ lh(u))}. (7.4)

Well, let A C “wbe X', and let A = plT], where T is on w X w. Let z € “w,
~1

where z(n) = 1 iff there is (s, ) € T such that e(s, r) = n. Then for all x, y € “w,
(x,y,2) € [U]iff (x,y) € [U;] = [T], so that A = p[U,]. On the other hand, if
7z €®wand A = p[U,], then A is clearly X!

~1

The set B = {(x,z): 3y (x, y, z) € [U]} is easily be seen to be !, and A C “w
~1

is X1 iff there is some z € ®w with
~1

A={x:(x,2) € B (7.5)

(This uses (7.4).) A set B with these properties is called a universal X !-set.
~1

Let B C (“w)? be a universal X'-set. We claim that B cannot be also a IT!-set.
~1 ~1

Otherwise
A={x€®w:(x,x) ¢ B}

would be a X'!-subset of “w, and there would thus be some z € “®w such (7.5) holds.

~1
In particular, (z,z) ¢ Biff z € Aiff (z,z) € B.
‘We have shown:

Lemma 7.11 There is an analytic set of reals which is not coanalytic.

We may also think of the universal > 1_set B constructed above, in fact of any
~1

B C (“w)?, as a subset of “w, in the following way. If x, y € “w, then let x @ y
denote that z € “w such that z(2n) = x(n) and z2n + 1) = y(n) forall n < w.
(Clearly, (x, y) +— x @y is a continuous, in fact LIPSCHITZ, bijection between (Pw)?
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and “w.) If B C (“w)?, then B® = {x ® y: (x, y) € B} “codes” B in the sense that
B may be easily read off from B®.
Let us define two important sets which are in I7'\ X', namely WF and WO.
~1

Let n, m +— (n, m) be the GODEL pairing function, cf. p. 35. Every real x € “w
induces a binary relation R, on w as follows:

(n,m) € Ry <= x({n,m)) = 1. (7.6)
We let

WF = {x € “w: R, is well-founded } , and
WO = {x € “w: R, is a well-ordering}.

The sets WF and WO are coanalytic, cf. Problem 7.6.

WF and WO are in fact complete coanalytic sets in the sense that if B C “w is
coanalytic, then there are continuous (in fact, LIPSCHITZ) functions f:“w — “w
and g: “w — “w such that for all x € “w,

x € B<= f(x) e WF < g(x) e WO.

We may construct such a function g for WO as follows. (Then f = g will also work
for WF.) Let B C “w be coanalytic. There is then a tree 7 on w X @ with x € B
iff (Ty; D) is well-founded. With the help of some bijection ¢: v — <~“w which is
such that for all s € <®w and i < @ we have that e~ (s | i) < e~ !(s), Ty induces
an order R* on w as follows?:

nR'm <[(e(n) € Ty Ae(m) € Ty Ae(n) 2 e(m))V
(e(n) € Ty Ne(m) € Ty ANe(n)Le(m) A e(n) <iex e(m))V
(e(n) ¢ Txy N (e(m) € Ty V (e(m) ¢ Ty An < m))].

Let us then define g(x) to be such that R,y = R*,i.e., g(x) is thatreal y € “w

such that
| 1iff (n,m) € R, and
y({n, m)) = [0 otherwise.

This defines g: “w — “w. Notice that g is continuous. In fact, if x [ n = y [ n,
then T, and T, agree upon the first n levels, so that R* [ n = RY [ n and hence
gx) [n=2g®) [n.

It is easy to see that if g(x) € WO, then (T; D) must be well-founded, so that
x € B. On the other hand, suppose that g(x) ¢ WO, and let (n;: i < w) be such
that (n;4+1, n;) € R forall i < w. Clearly, e(n;) € T, for all i < w. Moreover,

2 We here write s_L¢ iff s and ¢ are incomparable, i.e., s | (lh(s) N1h(z)) # ¢ | (Ih(s) N1h(z)). Also,
<Jex 18 the lexicographic ordering.
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Vk i(k)Vi > i(k) (Ih(e(n;)) > k ne(n;) [ k = e(niw)) [ k).
This gives that

U emiw) [k elT,

k<w

so that x € B. We have verified that x € B iff g(x) € WO.

If x € WO and R, is defined as in (7.6), then we write ||x|| for the order type
of R,, i.e., for the (countable) ordinal « such that («; €) >~ (w; Ry), cf. Definition
3.22.

Lemma 7.12 (Boundedness Lemma) Let A C WO be analytic. Then {||x||: x € A}
is bounded below w;.

Proof Suppose not, i.e., let A C WO be analytic such that {||x||:x € A} is
unbounded in w;. Let B C “w be an arbitrary coanalytic set. There is a tree T
on w X o such that x € B iff (Ty; D) is well-founded. We may thus write x € B
iff there is a ranking f: Ty — «, where o = ||z|| for some z € A. It is straightfor-
ward to verify that B is then ‘E i Therefore, every coanalytic set would be analytic.

Contradiction! O

Similar to our proof of Lemma 7.11 one may show that for all n < w, X' is

~n

different from 17 ! in fact Z'\IT' # ¢ and 17 ! \Z‘ 1 = (4. (Cf. Problem 7.6.)

~n ~n

One also deﬁnes

Al =x'n!
~ ~n ~n

n

for n < w. By SOUSLIN’s Theorem 7.5, Alis the family of all BOREL sets.
~1

Let us consider a X! set A C “w. As every coanalytic set B C (“w)? is of

the form p,[T], where T is on o* X wy, by the proof of Lemma 7.8, we get that

A = p1[T]. Via some bijection g: w; — ® X wi, we thus see that A = p[S], where
Sison w x wi. This tree S is also called “the”” SHOENFIELD tree for A.
This argument shows:

Lemma 7.13 If A C “wis X! then A is ¥1-Souslin.
~2

Lemma 7.14 Let A C “w be R,,-Souslin, wheren < w.Then A = | A;, where

each A; is analytic.

i<wy

Proof By induction on n: There is nothing to prove for n = 0. Now let n > 0 and
suppose the statement to be true forn — 1. Let A = p[T'], where T is on w X w,. For
o < wy,let T | a be the setof all (s,7) € T withran(t) C «. Because cf(w,) > o,

PIT] = Ugew, PIT | .
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By the inductive hypothesis, for each « < w,, p[T | ] = Ui<wn71 A?, where
each AY is analytic. Therefore,
j— — o
A=piTi= ) U av
A<Wp [ <wy_|
a representation as desired. (I
If U is a tree on ¥ x « and (50, 81, ..., Sk) € U, then we write Uy s, ,....5,) for
the tree
{(t0, 11, ..., tx) € U: (59 CtogAS] CHA...ASE Cltp)V(sg DtgAS] DHA...ASk D 1)}

Theorem 7.15 (Souslin, Mansfield) Let A C “w be «k-Souslin. Then either A has
at most k elements or else A contains a perfect subset.

Proof This is shown by a “CANTOR BENDIXSON analysis” of A, cf. the proof of
Theorem 1.9.
If U is a tree on w x k then we set

U'={(s,1) € U: Card(p[Ug.n]) > 1}. (7.7)

Let us now fix a tree 7 on w X k such that A = p[T]. Let us inductively define
trees T;, i € OR, as follows.

To=T,
Tiv1 = (1), and
T, = (; -, T for limit ordinals A.

Notice that, inductively, each T; is in fact a tree on @ x k. Moreover, T; D T;
wheneveri < j.

As Card(T) < k, there must be some 6 < « such that Ty | = Ty. Let us write
T ° for this tree.

The argument now splits into two cases.
Case 1: T = ¢.
Letx € A = p[T].Pick g € ®k suchthat (x [ n,g [ n) € T foralln. As T* = (¢,
there must be a largest i such that (x [ n, g [ n) € T; for all n. Let n be maximal
such that (x [ n, g [ n) € Ti41. Then p[(T;)(x jn+1,¢1n+1)] has exactly one element,
namely x, as

(xln+1gln+1)eT\T.

We have seen that
A = JpI(T)sn): 5. 1) € TATi 1),

where p[(T;),n] has exactly one element in case (s,f) € T;\T;;1. Because
Card(T) < «, this shows that Card(A) < k.
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Case 2: T # @.
Then Card(p|[T, . t)]) > 1 forall (s, t) € T*.

Let us recursively construct (s, t,) € T°°, where u € <®2. Set (sy, ty) = (¥, ).
Suppose that (s, #,,) has been chosen. As p[TOo ] has at least two elements, we
may pick (s,~0, t,~0) € T, (sy~1,ty,~1) € TOQ such that

Ih(s,~0) = lh(s,~1) > lh(s,) and s,~0 % S,~1.

For z € “2, let x; = (J{s;ja:n < w}. We have x, € A = p[T], as being witnessed
by (#;1,:n < w), for each z € ®2. Moreover, {x;: z € “2} is a perfect set. (I

Corollary 7.16 Every uncountable analytic set of reals has a perfect subset.

We now need to define the effective projective hierarchy.

Let x € “w. Aset A C (Pw)* is called 211 (x) iff A = p[T], where T is a tree
on w**t! which is definable over the structure (V,,; €, x). A is called I, l(x) iff A is
the complement of a Z’ (x) set, and A is called Z’ 1()c) if A is the projection of a
Hn (x) set. We also set An (x) = Z‘n (x)NII, L (x). Notice that

= =i,

xe®w

and therefore analogous facts hold for the other projective pointclasses H Uand »!
~n+1
as well. We write Z‘,% instead of Z‘J 0,11 1nstead of 17 (0),and Al 1nstead of Al 2 (0).

The following is often very useful.

Lemma 7.17 Let x € ®w. A set A C (Yw)F is Z‘,% (x) iff there is a formula ¢ such
that’ forall y € “w,

ye A=z €YoV €“w... 0z, € Yo
(va ea-xv yvzlv"'9zn) 'z(p(x’ y7Z1a~--,Zn)~ (78)

Proof By induction on n. The only non-trivial step of this induction is the base,
n = 1. We first verify

Claim 7.18 Ell (x) is closed under ¥° and 3°, i.e., if B C (w)f x w is Ell (x),*
then so are
{y: Vn € w(y,n) € B}and

{y: 3n € w (y, n) € B}.

Proof “V®”:Let us assume that k = 1. Let (y,n) € B iff (y,n) € p[T], where T
is on w>. We may then define U on w? by setting (s, ) € U iff for all n < lh(s),

3 In what follows, Q is 3 or V depending on whether 7 is odd or even.

4 By identifying n < w with the constant function ¢,: @ —  with value n, we may construe
(Pw)¥ x w as a subset of (Pw)kT1.



138 7 Descriptive Set Theory

(s,n,t) € T.Itis then easy to see that y € p[U]iff foralln < w, (y,n) € p[T] =
B. The proof for “3” is easy. O

Let us now prove Lemma 7.17 for n = 1. First let A € Ell (x), say A = p[T],
where (s, 1) € T iff (V,,; €, x) = ¥ (s, t) for some formula 1. Then

yeEA— 2w (Vy; €,x,y,2) EVrn <oy ((y [ n,z [ n)).

Now we prove by induction on the complexity of ¢ that if A be as in (7.8) with

T
n =1, then A is le(x). We shall use Problem 5.2. Let in what follows (w; E4) =
(HF; €) be as in Problem 5.2. The relation “m(n) = u” is A%FC_O@ by Problem 5.2.
First let ¢ be IT;. We let (s, t) € T iff s, t € ~“w, Ih(s) = 1h(¢), and (Vins);
€, x N Vin), 5, 1) = @ N Vingy, s, ). Itis easy to see that A = p[T1].
If ¢ = 3u ¢, where ¢ is I, then

yeEA<= Iz €%wan (Vy; €,x,y,2) EVu(u=n(n) — ¢, y,z,u),

so that the result follows from the inductive hypothesis and Claim 7.18.
Finally, let ¢ = Vu ¢, where ¢ is IT,. Then

yEA<= Tz €%Vn (Vy; €,x,y,2) EJuu=a0n) A@(x,y,z,u),

so that the result also follows from the inductive hypothesis and Claim 7.18. (]
Lemma 7.19 Letz € “w. Then “@N L[z] as well as <y ;1] (PwNL[z]) are 221 (2).

Proof The proof in the general case is only notationally different from the proof in
the case z = #, so let us assume that z = (). We have (using Theorem 5.31) that
x €?oNLiffx € ?wN J, for some o < wq iff (using Lemma 5.28) x € Yo N M
for some countable transitive model of “V = L,” which is true if and only if there
is some z such that, setting (n, m) € E <= z(n,m) = 1, E is well-founded (i.e.,
there is no y € “w such that for all n < w, (¥)y+1E()n),

(w; E) E*V =1L,”

and x is a real number in the transitive collapse of (w; E). It is easy to verify that
this can be written in a 221 fashion. (Cf. Problem 7.10.)

This shows that “w N L is 221.

An entirely analoguous argument shows that <7 [ (Yw N L) is 221. O

In general, the complexity of “w N L given by Lemma 7.19 is optimal, as we aim
to show now.

Lemma 7.20 Let k > w, and let A C “w be k-SOUSLIN, say A = p[T], where T
isatreeon w X k. If A # 0, then AN L[T] # @. Moreover, if A does not contain a
perfect subset, e.g., if Card(A) < 20, then A € L[T].
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Proof Suppose that A # @, i.e., [T] # (. This means that the relation
(T,D) € L[T] (7.9)

is ill-founded in V. By the absoluteness of well-foundedness, cf. Lemma 5.6, the
relation (7.9) is then ill-founded in L[T], which implies that [T] N L[T] # @, i.e.,
ANL[T]= p[TINL[T] #@.

Now let (T;: i < 0), where < «t, be the “CANTOR—BENDIXSON analysis” of
A as in the proof of Theorem 7.15. If U € L[T]is a tree on w X k, and if U’ is
defined as in (7.7), then U’ computed in V is the same as U’ computed in L[T];
this is because “Card(p[U,]) > 17 is absolute between V and L[T] by Lemma
5.6. We therefore in fact get that the construction producing (7;: i < ) is absolute
between V and L[T], so that

(T;:i <6) e L[T]. (7.10)

Now let us suppose that A does not contain a perfect subset, so that Ty = (. We
aim to show that A € L[T]. Let x € A, say x € p[T;]\pl[Ti+1]. By construction,
there is then some n < w and t € =®w with 1h(¢) = n such that

Card(p[(Ti)(x [n,t)]) =1 (7.11)

By Lemma 5.6, there must be some (x", y) € [(T;)(xa,n] N L[T]. However, by
(7.11), any such x” must be equal to x, and thus x is easily definable from 7; and
(x [ n,t),sothatx € L[T]. We have shownthat A C L[T]andinfact A € L[T].J

Corollary 7.21 (Shoenfield absoluteness) Let x € “w, and let A C “w be 221 (x).
If A # (), then AN L[x] # (. Moreover, if A does not contain a perfect subset, then
A € L[x]

Proof Let S be “the” SHOENFIELD tree for A, cf. p. 135. An inspection of the con-
struction of S, cf. the proof of Lemma 7.8, shows that S € L[x] follows from the
assumption that A be 221 (x). The conclusion then follows from Lemma 7.20. [

This implies that “w N L[x] can in general not be better than the complexity
given by Lemma 7.19, namely 221 (x), unless ®w C L[x]. This is because if “o N
L[x] were IT}(x), then “w\L[x] would be X} (x), hence if “@\L[x] # @, then
(“w\L[x]) N L[x] # @ by Corollary 7.21, which is nonsense.

Also, if (280)LIx] = a)le < 2%, thenby Lemma 7.19 there is a largest X} (x)-set
of reals, namely “w N L[x].

Definition 7.22 Let A C (“w)’>. We say that a partial function F: “w — “w
uniformizes A iff for all x € “w, if there is some y € “w such that (x, y) € A, then
x € dom(F) and (x, F(y)) € A.

Theorem 7.23 (Kondd, Addison) Let A C “w x “w be Hll. Then A can be uni-
formized by a function whose graph is IT 11.
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Proof We shall prove that each nonempty I7 ]1 (z) set A C “w has a member x such
that {x} is IT 11 (z). As the definition of {x} will be uniform in the parameter z, this
proof will readily imply the theorem. For notational convenience, we shall assume
that z = 0. Hence let A C “w be given such that A is 171] and A # ). Let T be a
tree on @ X o such that

x € A <= T, is well-founded.

Let us fix an enumeration (s,:n < ) of ~“w such thatif s, C s,,, thenn < m. x
We first define maps ¢,: A — w; by setting

| Usullz, »ifs, € Ty
on(x) = [O , else.

Here, ||s||7, is the rank of s in (T, D) in the sense of Definition 3.18, which is

well-defined for x € A.

Claim 7.24 [f klim X = x, where each xi is in A, and for all n, ¢, (xi) is eventually
—w

constant, i.e.
o, Ik, VE > K, ©n (xk) = oy,

then x is in A and ¢, (x) < «y.

Proof Suppose that (xx:k < w) is as described, but x = klim xr ¢ A. Then Ty is
—>w
ill-founded, and we may pick some y € [T ]. Lety [ i =s,, fori < w.If k > k;,,

kn;,, is large enough, then

sy = snig Iy, < llsu Il = o,

Hence (o, :i < w) is a descending sequence of ordinals. This contradiction shows
that x € A after all. It is easy to see that ¢, (x) < «y,. (I

We shall now pick some x € A. Letx € B iff x € A and for all y and for all n,

[x [n=y[nAVm <n(y € AN @u(x) = @n(y))]
— x(m) <ymVam =ymAQYEAV Y EANP(X) <@, (Y))))].

A moment of reflection shows that B = {x} C A for some x.

It remains to be shown that B is 1711. Well, Vin < n(y € A A o (x) = o (y))
says that for all m < n there are order-preserving embeddings f: (1), — (Ty)s,
and g: (Ty);,, — (Tx)s,,, and is hence 211 by Lemmas 7.17 and 7.18. Similarily,

YEAV(YyEAANP(x) < 0n(y)
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says that there is no order-preserving embedding f: (Ty)y, — (Ty), forsomert 2 s,
and is hence 1'[]1 by Lemmas 7.17 and 7.18. We may thus rewrite “x € B” in a 17]1
fashion. O

Let A, B C “w. WesaythatAandBreduceAandBlffA Cc A, B C B,
AUB=AUB,and ANB=0.1fT C 2 (“w), then we say that I" has the
reduction property iff forall A, B € I' there are A, B € I" such that A and B reduce
A and B.

Recall that if A, B C “w are disjoint, then we say that C separates A and B iff
ACcCandCNB=0.ITI C Z(“w), then we say that I" has the separation
property iff for all A, B € I there is some C € I" such that also “w\C € I" and C
separates A and B.

Lemma 7.25 The following hold true.
(a) IT' has the reduction property.
~1
(b) X! has the separation property.
~1

(c) X' does not have the reduction property.
~1

Proof (a)Let A, B € IT', A, B C “w.Let C = (A x {0}) U (B x {1}) € IT}, and
~1 _ ~1
let F: ®w — “w, F € IT" uniformize C. Then A = {x € A: F(x) =0} € IT' and
~1 ~1
={x € B: F(x) =1} € IT" reduce A and B.
~1

(b) This easily follows from (a).
(c) Let us assume that 21 has the separation property. Let U C (“w)? be a univer-
~1

salZ‘1 set,and define A = {x € “w: ((x)g,x) € U}and B = {x € “w: ((x)1,x) €

Uj> AsA B € Z‘l we may pick A, B € Z‘lsuchthatAandBreduceAandB
~1

and we may then ple a BOREL set C such that C separates A and B. Leta, b € “»
be such that C = {x € “w: (a,x) € U} and “w\C = {x € Yw: (b,x) € U}. Itis
easy to verify that then b @ a € C iff b @ a € “w\C. Contradiction! ]

It follows from Lemma 7.25 (c) and the proof of Lemma 7.25 (a) that Theorem
7.23 is false with I7 11 replaced by 2.
~1

7.2 Descriptive Set Theory and Constructibility

Definition 7.26 We say that w is inaccessible to the reals iff wlL[x] < w for every
x € “w.

Lemma 7.27 w; is inaccessible to the reals iff a)lv is an inaccessible cardinal in
L[x] for every x € “w.

5 Here, (x)o and (x); are defined to be the unique reals such that (x)o @ (x); = x.
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Proof Suppose that w; is inaccessible to the reals, and let x € “w. We have to
show that a)}/ is not a successor cardinal in L[x]. Suppose that wlv = §HLI Let
f:w— &, f € V be abijection, and define z € “w by

x(3) ifniseven
z(n) = {1 ifn = 3.5 and f(k) < f(1)
0 otherwise.

Then x, f € L[z], and thus ‘01 = a)l I Contradiction! (I

‘We shall later see a model in which w; is inaccessible to the reals, cf. Theorem
8.20.
By Theorem 7.15, every uncountable El-set of reals has a perfect subset. The

following statement gives a charactenzatlon of when every 17 I_set of reals has a

perfect subset in terms of “inner model theory,” cf. Corollary 7. 29

Theorem 7.28 Let x € “w. The following statements are equivalent.

(1) Every uncountable 22; (x)-set of reals has a perfect subset.
(2) Every uncountable I1; (x)-set of reals has a perfect subset.

3) o™ < o

Let I' C Z(“w). We say that I" has the perfect subset property iff every uncount-
able A € I" has a perfect subset.

Corollary 7.29 The class of coanalytic sets has the perfect subset property if and
only if w1 is inaccessible to the reals.

Proof of Theorem 7.28. Let us suppose that x = 0. The proof relativizes to any real
different from 0.

(1) = (2) is trivial. Let us prove (2) = (3). Suppose that a)lL =w;.Letx € A
iff
x€’oNLAx e WOAVYy e @onL)(y<px— (yg WOV Iyl #llxI)).
A is 221 by Lemma 7.19 and Problem 7.6. By the Boundedness Lemma 7.12, if
B C A is analytic, {||x||: x € B} is bounded below w1, and hence B is countable.
(In particular, A does not contain a perfect subset.)

As Ais 221, there is a coanalytic set B C (“w)? such that

={x €®w: 3y € “w(x,y) € B}.

By the Uniformization Theorem 7.23, let F' C B be a uniformizing function whose
graph is I1 11
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We have
A={x €®w:y e ?w0y = F(x)}.

As A is uncountable, (the graph of) F is an uncountable I7 11 subset of (“w)2.
Suppose that F has a perfect subset, say P C F, where P is perfect. Write

O={xe®w:3y €“w(x,y) € P}

As F is afunction, Card(Q) = Card(P) = 280, so that Q is an uncountable analytic
subset of A. Contradiction!

Hence F is an uncountable coanalytic set without a perfect subset.

Finally, (3) = (1) is given by Corollary 7.21. Let A C “w be an uncountable

221 set. If A does not have a perfect subset, then A € L by Corollary 7.21. However,

a)lL < w1 implies that A is then countable. Contradiction! O

There is a more cumbersome argument of proving (3) = (1) of Theorem 7.28,
using forcing, cf. the proof of Lemma 8.18.

Excellent textbooks on “classical” descriptive set theory are [27] and [20]. Modern
variants of descriptive set theory are dealt with e.g. in [4, 12, 14, 19, 21].

7.3 Problems

7.1. Show that the topology we defined on the Baire space “w is exactly the one
which is induced by the distance function d. Conclude that “w is a Polish
space.

7.2. Show that there is a continuous bijection f: “w — “2.

7.3. (BOREL hierarchy) Let X denote the set of all open A C “w and I 0 the set
~1 ~1

of all closed A C “w. Having defined X and I7° for all 8 < «, let £ be

o
the set of all | Ay, where {A,,: n < w} C Uﬁ<a 119, and let I7° be the
Nﬁ Na
set of all “w\ A, where A € 30, Show that X° = 9 and that X0 is
~a ~w1+1 ~ w1 ~wi
the set of all BOREL subsets of “w.

7.4. Let (M; Ao, ..., A, Bo, ..., B)) and (M; Ao, ..., Ay, Bo, ..., B;) be mod-
els of the same type, let N be a transitive model of ZFC, and assume
(M; Ay, ..., Ay) € N, (M; Ag, ..., A, By, ..., B;) € N, M is countable
in N, and in V there is some elementary embedding

n<w

7w (M; Ao, ..., Ax, Bo, ..., B)) = (M; Ao, ..., Ax, Bo, ..., B)).

Show that in N there are By, ..., B;’ and an elementary embedding
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7.5.

7.6.

1.7.

7.8.

7.9.

7.10.

7.11.

7 Descriptive Set Theory
n'i (M; Ao, ..., Ak, By, ..., B) — (M; Ao, ..., A, B, ..., B)).

[Hint Construct a tree of height w “seaching for” some such Bo ,..., B/, and
nr’.] For the conclusion to hold it actually suffices that N is a transitive model
which contains an admissible set N which in turn contains (M Ao, ..., Ap)
and (M; Ao, ..., Ak, Bo, . .., B;) such that M is countable in N, cf. Problem
5.28.

Let « be a regular infinite cardinal, and let T 7 (J be a tree on . Let
={seT: i<k} CTNVIVjsCtLANT#]—> 1 )}

and define 70 = T, 7%t = (T%), and T* = N{T*: « < A} for limit
ordinals A. Show that there is some § < «+ with 70+ = 79 call it T°°. If
s € TY\T*"! then we say that « is the CANTOR—BENDIXSON rank of s, and
if s € T, then we say that co is the CANTOR-BENDIXSON rank of s. Show
that if 7°° # @, then T°° is perfect.

Show that the sets WF and WO are both coanalytic and in fact [T 1] . Show also
that for every n > 1, I\ IT' # ¢ andH \):‘ £ 0.

~n ~n
Show that A C “w is coanalytic iff there is some map s > <, where s € ~“w,
such that for all s, t € <®w with s C ¢, <; is an order on lh(z) which extends
<s,and for all x € “w, x € Aiff <,= | <y is a well-ordering. (Hint:
Proof of Lemma 7.8.)
Let (M; E), (M’', E’) be models of the language .Z¢ of set theory. We say that
(M'; E") is an end-extension of (M; E)iff M C M', E C E’,andif x € M,
y € M’,and yE'x, theny € M.

sCx

Show that for all countable transitive M there is a end-extension (M'; E’) of
(M; €] M) such that (M’; E’) = V = L. [Hint. This holds in L. Then use
Corollary 7.21.] If M\L # @, then (M’; E’) cannot be well-founded.

Show that if there is a transitive model of ZFC + “there is a supercompact
cardinal”, then some such model exists in L. [Hint. Corollary 7.21.]

Fill in the details in the proof of Lemma 7.19! Show that “there is a real x
which is not an element of L” may be written in a 231 fashion. Conclude that
it is consistent to have a non-empty 1721 set A C “wsuchthat ANL = 0.
(Compare Corollary 7.21.)

Let n < w. Show that every X!,  -formula is equivalent to a X, HC_formula in

n+1
the following sense. Let A C “w be X! Jrl(z) where z € “w. There is then
a X,-formula ¢(v, w) such that for all x € “w, x € A <= HC = ¢(x, 2).
Conclude that if 7 € Yw, p(v) is X(, and V = ¢(z), then L[z] = ¢(z). [Hint.
Corollary 7.21.] Show also that it is consistent to have some a € HC and
XY -formula ¢(v) such that V = ¢(a), but Lla] = —¢(a). [Hint. a = a)lL,
@(v) = “v is countable”, and V is Col(w, a)lL)-generiC over L.]
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Let A C “w. A function ¢ : A — OR is called a norm on A.

7.12. Let A C “w be 1711. Show that there is a norm ¢: A — OR on A such that
there are R, S C (wa))2, R e 1711 and S € 21], such that for all y € A,

(x,y) ER << (x € AN ¢p(x) < ¢(y))and
(x,y) € S (x € AN p(x) < 0(¥).

[Hint. Proof of Theorem 7.23.] Use this to show that IT 11 has the reduction
property.

Let A C “w. A sequence (¢, : n < w) of norms on A is called a scale on A iff
the following holds true. Let {x;: k < w} C A be such that x = limy_ o Xxi
and such that for every n < w there are k(n) < w and A, such that ¢, (xx) = A,
for every k > k(n). Then x € A and ¢, (x) < A, foralln < w.

7.13. Let A C “w, and let (¢, : n < w)beascaleon A. Let (s, f) € T iff s € ~“w,
f is a finite sequence of ordinals of the same length as s, and there is some
x € Asuchthats = x [ lh(s) and f(n) = ¢,(x) for all n < lh(s). Show that
A = p[T].

7.14. Let A C “w be 1711. Show that there is a scale (¢, : n < w) on A such that
there are R, S C w x (‘”a))z, R e 1711 and S € 211, such that forall y € A,

(n,x,y) € R&= (x € AN @ (x) < ¢u(y)) and
(n,x,y) €S &= (x € AN @u(x) < n(y)).

[Hint. Proof of Theorem 7.23.] Use this to derive the conclusion of Theorem

7.23.
Let x, z € ®w. Then x is called a A%(z) singleton iff {x}is a 211 (), and hence
Al(2), set.

7.15. Letx, z € ®w. Show that x is a A{(z) singleton iff x € J,:. [Hint. “=="": Let
{x} = p[T] where T on w X w is in Jw? [z]. If s € =?w, s # x | lh(s), then
Ty ={(s',t)y e T: s’ CsVvs' D s}is well-founded and hence has a ranking
in wa [z] by Problem 5.28. Then use Problem 5.25 (c).]

7.16. Show that for every z € “wthereisa ¥ 1] (z)-set A such that A does not contain
any A}(z) singleton. Show that there is actually such an A which is IT ?(z),
i.e., Ais closed and A = p[T] for some tree T on w which is definable over
(Vs €, 2).

Conclude that Theorem 7.23 is false for 211 and that in fact there is a closed
R C (“w)? which cannot be uniformized by an analytic function. [Hint. Suppose
that every 17? (z) set contains a A} (z) singleton. Say A C “w is 211 (2). Then

xeA=3Iye Alx®2) (x,y) € B, (7.12)
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where B is IT ?(z). Using Problem 5.27 , show that the right hand side of (7.12) can
be written in a I7 11 (z) fashion, so that every 211 (z) set would also be I7 11 (2).]



Chapter 8
Solovay’s Model

In this chapter we shall construct a model of ZF in which every set of reals is
LEBESGUE measurable and has the property of BAIRE.

8.1 Lebesgue Measurability and the Property of Baire

Definition 8.1 Lets € ~“w, and let Uy = {x € “w: s C x}. We recursively define
the measure u(Uy) of Uy, for s € ~“w as follows. Set u(Uy) = u(“w) = 1. Having
defined w(Uy), we let w(Us~,) = # - w(Us). Now let A C “w be open, say
A = J{Us: s € X}, where U; N U, = @ forall s # t,s,t € X. We define the

measure |L(A) of A to be
> wUy).

seX

If B C “w is arbitrary, then we define the outer measure *(B) of B to be
inf{u(A): B C A A Ais open}.

Aset B C “w is called a null set, or just null, iff u*(B) = 0.

It is easy to verify that if every B, n < w, is null, then sois | J,,_,, Bn.
Usually, a set B C “w is called LEBESGUE measurable iff for all X C “w,

w(X) = pn*(X N B) + p*(X \ B). (8.1)

If B C “w is LEBESGUE measurable, then one also writes u(B) for u*(B) and calls
it the LEBESGUE measure of B. It is not hard to verify that the family of sets which
are LEBESGUE measurable forms a o-algebra containing all the open sets, so that
in particular all BOREL sets are LEBESGUE measurable. (Cf. Problem 8.2.) For our
purpose, we’ll define LEBESGUE measurability as follows.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_8, 147
© Springer International Publishing Switzerland 2014
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Definition 8.2 Let A C “w. We say that A is LEBESGUE measurable iff there is a
BOREL set B C “w such that

AAB = (A\ B)U (B\ A) is null.

The definitions given carry over, mutatis mutandis, to the CANTOR space “2, with
the difference that if s € =2, then for Uy = {x € ®2: s C x}, u(U;) = ﬁ

Let A be the o-algebra of all BOREL sets B C “w. For A, B € 4, let us write
A < B iff A C B modulo a null set, i.e., iff A\B is null. Write A ~ Biff A < B
and B < A (i.e., iff AAB is null), and let [A] denote the equivalence class of A with
respect to ~, i.e. [A] = {B: B ~ A}. The order < on % induces an order, which we
shall also denote by <, on the set of of all equivalence classes by setting [A] < [B]
iff A < B. (Notice thatif A’ € [A]and B’ € [B],then A < Biff A’ < B’))

We shall write % /null for the set {[A]: A € Z A u(A) > 0}, equipped with the
order <. The partial order % /null is called the measure algebra, or, random algebra.
We’ll see later, cf. Lemma 8.8, that forcing with % /null amounts to adding a single
real, a “random real.”

Recall Definition 1.11 for R which, mutatis mutandis, carries over to “w. Let
A C “w. Then A is nowhere dense iff for all nonempty open B C “w there is some
nonempty open B’ C B such that BN A = J. A set B C “w is called meager (or
of first category) iff B is the countable union of nowhere dense sets.

Usually, a set B C “w is said to have the BAIRE property iff there is some open
set A C “w such that BAA is meager. It is not hard to verify that the family of sets
which have the BAIRE property forms a o -algebra containing all the open sets, so
that in particular all BOREL sets have the BAIRE property. (Cf. Problem 8.2.)

For our purposes, we may then define the BAIRE property as follows.

Definition 8.3 Let A C “w. We say that A has the BAIRE property iff there is a
BOREL set B C “w such that

AAB = (A\ B)U (B \ A) is meager.

Again the definitions given carry over, mutatis mutandis, to the CANTOR space “2.

We may now define a partial order Z/meager in exactly the same way as we
defined the measure algebra % /null, except that we start with declaring A < B iff
A C B modulo a meager set, i.e., iff A\B is meager, for A, B € Z. It turns out,
though, that forcing with % /meager is tantamount to forcing with COHEN forcing,
which is why we refer to 28 /meager as the COHEN algebra.

Lemma 8.4 There is a dense homomorphism
i: C - AB/meager.

Proof Let [B] € % /meager, so that B is a nonmeager BOREL set. There is a non-
empty open set A C “w such that A\ B is meager, and there is hence a nonempty
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basic open set Ug, s € ~“w, with U\ B being meager, i.e., [U;] < [B]. But this
means that i: C — % /meager defined by i(s) = [Us] is dense. [l

Lemma 8.5 Both % /null as well as 8 /meager have the c.c.c.

Proof For 2 /meager this immediately follows from the preceding lemma. Now
suppose {[B;]: i < w1} to be an antichain in % /null. Set

B/ =B\ | B;

j<i

for i < wi. Notice that B; N B; is null whenever i # j, as {[B;]: i < w1} is
an antichain, so that Uj<i(B,~ N Bj) is null whenever i < ;. But then B{ =
B;\ Uj<i(Bi N B;j) ~ Bj,ie., [B]] =[B;]foralli < wi, B/ N B} = (J whenever
i # j,and u(B)) > 0foralli < w. By the Pigeonhole Principle, there will be an

n < w such that ,u(Bl.’ ) > % for X1 many i < wi. This gives a contradiction! U

We now want to verify thatall > % aswellasall ]| }—sets are LEBESGUE measurable

and have the BAIRE property.

Let Pbe an atomless partial order. By Lemma 6.11, there is then no P-generic filter
over V. As in the following definition, it is often very convenient, though, to pretend
that there is and say things like “pick G which is P-generic over V.” To make such
talk rigorous, we should instead talk about filters which are generic over collapses of
countable elementary substructures of rank initial segments of V, or have the letter
“V” not denote the true universe V of all sets but rather e.g. a countable transitive
model of ZFC.

Definition 8.6 Let A C “w, and let k be an uncountable cardinal. We say that A is
k-universally BAIRE iff A = p[T], where T is a tree on w X « for some ordinal «,
and there is some tree U on @ x B for some ordinal 8 such that p[U] N p[T] = 0
and for all posets P € H,,

Ip I p[UIU p[T] = “w.

A is called universally BAIRE iff A is x-universally BAIRE for all uncountable cardi-
nals x.

Notice that if p[U] N p[T] = @ in V, then p[U] N p[T] = @ in V[G] for all
generic extensions! V[G]of V: if plUINp[T] # @in V[G], then, settingU & T =
{(s, f,8): (s, f) e UN(s,g) € T}, plUST] # Pin V[G]and hence p[UDT] # ¥
in V by absoluteness of wellfoundedness, cf. Lemma 5.6, and thus p[U]N p[T] # ¢
in V. Therefore, if T, U witness that A is «-universally BAIRE, then p[T] and p[U]
project to complements of each other in all V[G], where G is P-generic over V for
some P € H,. Also, if T, U as well as T’, U’ both witness that A is «-universally

I ¢f. the remark before Definition 8.6.
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BAIRE, then p[T] = p[T’] in all V[G], where G is P-generic over V for some
P e H,:if,say x € (p[T]1N V[GD\p[T'], then x € p[U’], so that by the argument
just given p[T]1N p[U’] # @ in V;but p[T] = A and p[U'] = ®w\Ain V.

Therefore, if A C “w is k-universally BAIRE and if G is [P-generic over V, where
P € H,, then we may unambiguously define the new version A of A in V[G] as
plT1N V]G], where T, U witness A is k-universally BAIRE. We often just write A*
rather then AC, provided that G is clear from the context.

Let us consider a closely related situation. Let M and N be inner models such that
M C N.(Weallow M and N to exists in V[G], a generic extension of V.) Let A be
aBOREL setin M,say M |=“A = p[T]A“w\A = p[U],” where T and U are trees
onw?, T,U € M. By the absoluteness of wellfoundedness, cf. Lemma 5.6, we must
have that N = p[T]1N p[U] = @. Let us define a simple variant of the SHOENFIELD
tree S on @ x a){v by (s, h) € Siff s € ~“w and, setting

Ty, = {t € ~“w: Th(t) <[h(s) A (s [ Lh(t),1) € T} and

Us = {r € =®w: Ih(t) <lh(s) A (s [ Lh(t), 1) € U},
h:lh(s) — a){v is such that
lh(s) — 1 lh(s) — 1
<5Vl < ———lk) €Ty nel) € Ty Ae(k) 2 e(l) = h(2k) < h@D) A
(e(k) e Ug ne(l) e Us Ne(k) D el) = h(Qk+1) < h(2L + 1))].

Vk

(Here, e: w — <“w is a bijection such that if n < Ih(s), then e~ (s [ n) < e~ !(s).)
It is straightforward to verify that S € L[T, U] C M, and that both in M and N,

pIT1U plU] # “w < [S] # 0.

By the absoluteness of wellfoundedness, cf. Lemma 5.6, we must then have that
N E= plT]U plU] = “w. (In particular, every BOREL set is universally Baire, as
being witnessed by a pair of trees on w?, cf. Lemma 8.7.)

As above, we may now also show that if M = “A = p[T'] A “w\A = p[U'],
where T’ and U’ are trees on w?, T', U’ € M, then N = p[T’] = p[T]. We may
therefore now unambiguously write AN for plT], as computed in N. If M, N are
clear from the context, we often just write A* rather than AN Of course if M = V
and N = V[G] is a generic extension of V, then AN = AG, so that “A*” has an
unambiguous meaning.

Still let M and N be inner models such that M C N (possibly in V[G] rather
than V,e.g. M = V, N = V[G]). Suppose that A is a BOREL set in M, or A is
universally BAIRE in M and N is a generic extension of M. The following facts are
easy to verify, cf. Problem 8.4:

1. Fors € <?w, (U;)M)* = (U,)N.
2. “onN M\A)* = (Yo N N)\A*.
3. (ﬂn<w An)* = nn<w(An)*-
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Lemma 8.7 Every analytic (and hence also every coanalytic) set is universally
BAIRE.

Proof Let A C “w be analytic, say A = p[T], where T is on w X w. Let k be any
uncountable cardinal. Let S on @ X k be the “x version” of the SHOENFIELD tree (cf.
the proof of Lemmas 7.8 and 7.13): (s, h) € S iff s € ~“w and, setting

Ty = {t € ~“w: 1h(t) < 1h(s) A (s | Lh(t), 1) € T},
h:lh(s) — « is such that
Vk < lh(s)Vl < lh(s)(e(k) € Ts Ne(l) € Ty Ne(k) 2 e(l) = h(k) < h(])).

(Again, e: w — <“wis abijection such thatifn < [h(s),thene™!(s [ n) < e~ !(s).)
It is straightforward to see that 7', S witness that A is k-universally BAIRE. (]

The previous proof shows thatin factif A C “w is coanalytic, then A is universally
BAIRE “in a strong sense”: Say A is 211 (x) with x € “w, then the trees witnessing
that A is universally BAIRE may be taken as elements of L[x].

By Lemma 8.7, if A is analytic or coanalytic (for instance, if A is just BOREL)
and if G is P-generic over V, where P € V, then AC¢ (i.e., A™) is well-defined.

Lemma 8.8 (1) Let G be AB/null-generic over V. Then there is a unique xg €
“w N V[G] such that for all B € %,

xg € B* < [B] € G.

(2) Let G be $B/meager-generic over V. Then there is a unique xg € “w N V[G]
such that for all B € B,
xc € B* < [B] € G.

Proof The same proof works for (1) and (2). Let us first show uniqueness. Let
x,y € ?“oNV[G]besuchthatx € B* & [B]€ G < y € B*forall B € %.1In
particular, x € U & [Uf1€ G & y € U forall s € =“w. If x # y, then there is
some s € ~“o with lh(s) > O and x € U; but y ¢ U; this gives a contradiction!

Let us now show existence. Working in V[G], let us recursively construct {s,,: n <
w} C =~?ow with [h(s,) = n and [Uy,] € G for all n < w as follows. Set so = . Of
course, [Uy] = [“w] € G. Given s, with Ih(s,) = n and [Uy,] € G, we pick 5,41
as follows. Let [B] < [Us, 1, where [B] € % /null (or [B] € #/meager), i.e., B is
not null (or not meager). Therefore, one of B N Uy, ~, k < w, is not null (or not
meager). This argument shows that

D = {[B] € #/null (or meager): 3k [B] < [Us,~«1}

is dense below [Us, ]. There is hence some k < w such that [Us,~x] € G, and we

may set s,+1 = S,k for this k. Let us also set x = xg = Un<w Sp-



152 8 Solovay’s Model
We claim that
forall B € 4,x € B* < [B] € G. (8.2)

Well, (8.2) is true for each basic open set by the construction of x. An easy density
argument shows that for each B € 4, exactly one of [B], [“w\B] has to be in
G. Therefore, if (8.2) is true for B € 4, then it is also true for “w\B. Now let
B, € #,n < w, such that for each n < w, x € B < [B,] € G. Another
easy density arguement (similar to the one above) yields that at least one element
of {[ﬂn<w B, 1} U{[®w\B,]: n < w} must be in G. We therefore must have that
X € (Nyew B)* = Npew By iff x € By foralln < wiff [B,] € G foralln < w
iff [ Bn] € G. We have shown (8.2). a

If M is an inner model, if G is (% /null)™ -generic over M and if x¢ is unique
with xg € B* <= [B] € G for all BOREL sets B of M, then x¢ is called a random
real over M. (Here, B* is computed in V.)

If, on the other hand, G is (%£/ meager)M -generic over M, and if xg is unique
with xg € B* <= [B] € G for all BOREL sets B of M, then Lemma 8.4 above
shows that x is a COHEN real over M. (Again, B* is computed in V.)

Lemma 8.9 Let M be a transitive model of ZFC.

(1) x € ®w is a random real over M iff x ¢ B* for all B € ™ which are null sets
inM.

(2) x € “w is a COHEN real over M iff x ¢ B* for all B € ™ which are meager
sets in M.

Proof (1) First let x = xg € “w be random over M. Let B € %M be a null set
in M. As [(“woN M)\B] = [Yw0 N M] € G, we have that x € ((“w N M)\B)* =
(“w N M[G])\B*,i.e., x ¢ B*.
Now suppose x € “w to be such that x ¢ B* for all B € %M which are null sets
in M. Let
G:{[B]:BG%M/\XGB*}.

It suffices to verify that G is a filter which is generic over M.

Well, G is easily seen to be a filter. Now let A € M be a maximal antichain.
As M = “%/null has the c.c.c.” by Lemma 8.5, A is countable in M, say A =
{[Bu]: n < w}, where (B,: n < w) € M. Also (0 N M)\ U, —,, B» must be a null
setin M, as A is a maximal antichain. But then x ¢ ((“w N M)\ J,,_,, Bx)™, and
hence x € (U,,-, B1)* = U, <, By-ie.,x € B) forsomen < w,sothat[B,] € G
for some n < w, as desired.

The proof of (2) is entirely analogous. O

Lemma 8.10 Let M be a transitive model of ZFC.

@)) If(ZNO)M is countable, then A = {x € “w: x is not random over M} is a null set.
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() If Q%)M s countable, then B = {x € “w: x is not COHEN over M} is a meager
set.

Proof There are (provably in ZFC) 280 BOREL sets. Therefore, as (2%0)M is count-
able, there are only countably many B € M such that B is a BOREL set from the
point of view of M.

(1) By Lemma 8.9 (1), x € A iff
X € U{B*: B € M A Bisnull in M}.

As (ZNO)M is countable, A is thus a countable union of null sets, and hence A is null.

(2) By Lemma 8.9 (2), x € B iff
X € U{B*: B € M A B is meager in M}.

As (2R°)M is countable, B is thus a countable union of meager sets, and hence B is
meager. (]

Definition 8.11 Let M be a transitive model of ZFC. We say that x € “wo NV is
generic over M if there is a poset P € M and there is a [P-generic filter G over M
such that M[G] is the C-least transitive model N of ZFC with M U {x} C N. In this
situation, we also write M[x] instead of M[G].

Now let A C “w. We say that A is SOLOVAY over M ift there is a formula ¢ and
there are parameters ay, ..., ary € M such that for all x € “w, if x is generic over
M, then

x €A M[x]E ek, ai,...,a).

Lemma 8.12 Let M be a transitive model of ZFC, and let A C “w be SOLOVAY
over M.

(1) There is a BOREL set B C “w such that for every x € “w which is random over
M,x € A& x eB.

(2) There is a BOREL set C C “w such that for every x € “ which is COHEN over
M, xeA&xel.

Proof (1) Let ¢ be a formula, and let ay, ..., ax € M be such that for all x € “w
which are genericover M, x € A & M[x] E ¢(x,ay, ..., ax).Lett € M&/ nulh M
be a (canonical) name for the random real which is added by forcing with (%/ null)
over M, i.e.,if G is (%/ null)M -generic over M, then t¢ = xg.Let E C (£/ nul)M
be a maximal antichain of [D] € (#/ nul)™ such that

(#/ nulhM
Fum

(D] p(t,an, ..., a).

As (Z/ null) has the c.c.c. by Lemma 8.5, E is at most countable in M, say
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E ={[Dy]: n < w},

where D, € % for every n < w. Set

B= UDj;:(U Dn)*.

n<w n<w

B is a countable union of BOREL sets, and hence BOREL. We claim that forall x € “w
which are random over M, x € A & x € B.

Letx = xg berandomover M. Thenx € Aiff M[x] = M[G] E ¢(x,ay, ..., ax)
iff there is some [D] € E N G such that

9 M
(DI ™0 o(r an. ... )
iff there is some n <  with [D,] € G iff [|J
(U, <o Dn)* = B, as desired.

The proof of (2) is entirely analogous. ([

D, € Giff x = xg €

n<w

Lemmas 8.10 and 8.12 now immediately give the following

Corollary 8.13 Let M be a transitive model of ZFC, such that (2*)M is countable.
Let A C “w be SOLOVAY over M. Then A is LEBESGUE measurable and has the
BAIRE property.

Theorem 8.14 (Feng, Magidor, Woodin) Let A C “w be (28)F -universally BAIRE.
Then A is LEBESGUE measurable and has the BAIRE property.

Proof Let T, U witness that A is (2%0) T -universally BAIRE. Let 6 be a regular car-
dinal such that & > (2%)* and T, U € Hp. Let

n: M — Hy

be an elementary embedding where M is countable and transitive and 7,U €
ran(m), say 7(T) = T and 7(U) = U. In order to prove the theorem, by the
proof of Corollary 8.13 it suffices to verify that for every x € “w which is either
random over M or else COHEN over M,

x €A M[x]Exe p[T].
Well, let x € “w be either random over M or else COHEN over M. As
M = “T, U witness that p[T']is (2N0)+-universally BAIRE”,
we must have that either M[x] = x € p[7_"] orelse M{x] =x € p[U].

Suppose that x € p[T],say (x [ n, f [ n) € T foralln < w. Then (x [ n, 7(f |
n)) € T for every n < w, and hence x € p[T]. (We don’t need f € M here, just
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f | n € M for each n < w, which is trivial.) In the same way, x € p[U] implies
that x € p[U]. B
This shows that x € A < x € p[T1], as desired. O

Corollary 8.15 Every analytic as well as every coanalytic set is LEBESGUE measur-
able and has the BAIRE property.

Definition 8.16 Let A C “w. A is said to have the BERNSTEIN property iff for every
perfect set P C “w, P N A or P\ A contains a perfect subset.

Lemma 8.17 Let M be a transitive model of ZFC such that 28)M is countable.
Let A C “w be SOLOVAY over M. Let P C “w be a perfect set such that P = [T]
for some perfect tree on w with T € M. Then P N A or P\ A contains a perfect
subset.

Proof Let ¢ be a formula, and letay, ..., ax € M be such that for all x € “w which
are generic over M, x € A & M[x] = ¢(x,aq,...,ar). As (28%0)M i countable,
there is some G € V which is C-generic over M. As T is perfect, we may pick
some (f;: s € <®2) such that for all s € <“2,#, € T and f,~¢ and t;~1 are two
incompatible extensions of #; in T of the same length. Let xg¢ = |J G be the COHEN
real over M given by G. Let y € “2 be defined by

(n) = 0, if x(n) is even, and
YU =011 if x(n) is odd.

It is easy to verify that then
U oy elrim.

n<w

Write z = | tyln-

n<w

Let us suppose that z € A. Let T € M be a canonical name for |J, _, tym»and
let p € C be such that
pIFS T e [TNConN M) Aot ai, ... a). (8.3)

Let (D,: n < w) € V enumerate the sets in M which are dense in C. By recursion on
Ih(s), where s € =“2, we now construct conditions p; < p and sequences t;, € ~“w
such that py IF 7 | 1h(f;) = #; as follows.

Put py = p and 1y = @. Now suppose p;s and 7; have been constructed. There
must be extensions po, p] < ps,m > lh(ty) and n? #* n! €  such that

PP IF t(m) = n0 and pl Ik t(m) = nl,
because otherwise p; I T € (Yw N M) by the homogeneity of C, cf. Lemma 6.53.

We may thus pick ps~9 # ps~1, both in Dy ), and t,~0 # t;~1 with lh(t;~0) =
Lh(ts~1) such that
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Ps~0 IFS T [ 1h((15-0)") = (ty~0)"and py~1 IFS; T [ 1h((t~1)") = (15-1)"

In the end, for each x € 2, {py},: n < w} generates a C-generic filter g, € V over
M such that by (8.1), 8 ¢ M, 18 € [T], and t8* € A. By construction, the set
{t8x: x € “2} is thus a perfect subset of P N A.

If z ¢ A, then a symmetric argument yields that P\A contains a perfect
subset. O

Theorem 8.18 Let A C “w be Ni-universally BAIRE. Then A has the BERNSTEIN
property.

Proof We amalgamate the arguments for Theorem 8.14 and Lemma 8.17. Let P C
“w be perfect. Let T, U witness that A is 81-universally BAIRE, and let S be a perfect
tree on w such that P = [S], cf. Lemma 7.1. Let 8 be a regular cardinal such that
0> @2%)tand T, U € Hp. Let

w: M — Hy

be an elementar_y embedding V!here M 1is countable and transitive and S, T, U €
ran(mw),say n(T) = T and 7(U) = U. Notice that 7(S) = S.
Let g € V be C-generic over M. As in the proof of Lemma 8.17,

(P\M) N M(g] # 0. (8.4)
As in the proof of Theorem 8.14,
pITIME = AN Mgl and p[UIE) = (“w)\A) N M]g].

We may then finish off the argument exactly as in the proof of Lemma 8.17, with
“x € p[T]” playing the role of “p(x, ay, ..., ax).” O

Corollary 8.19 Every analytic as well as every coanalytic set of reals has the BERN-
STEIN property.

We now want to start producing a model of ZF + “every set of reals is LEBESGUE
measurable and has the BAIRE property”. Modulo of what has been done so far, the
remaining issue will be an analysis of forcing.

8.2 Solovay’s Theorem

We shall now analyze the situation after LEVY collapsing an inaccessible cardinal,
cf. Definitions 4.41 and 6.43. We shall also need the concept of ODw,,, cf. Definition
5.42. We may construe Theorem 8.23 as an ultimate extension of Corollaries 8.15
and 7.16.
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Theorem 8.20 Let k be an inaccessible cardinal, and let G be Col(w, <k)-generic
over V. Then in V|G, w is inaccessible to the reals.

Proof Recall that Col(w, <k) has the x-c.c., cf. Lemma 6.44. Therefore, V[G] and

V have the same cardinals >« and k = wY[G], cf. Lemma 6.32.

If f € “OR N V[G], then there is some 7 € V@ <) gych that f = 79 and
T={((n,0),p:n<wAa€ORApeA, AplkT() =a},

where each A,,n < w, is a maximal antichain in V of p € Col(w, <k) with
Jap IF 7(n) = a. As Col(w, <k) has the k-c.c., (A,: n < w) € Vi, = H, say
(Ap: n < w) € Hy, where A < k. Let us write

GlrA={plArapeG} and
Gl[rw)={pl[r«):peGCG}

By the Product Lemma 6.65, G | A is Col(w, <X)-generic over V and G | [A, k) is
Col(w, [A, k))-generic over V[G | A]. Wenow have f(n) = «iffdp € A, NG p IF
tm)=aiffdp e A,NG [ Lplk @) = a,sothatin fact f € V[G | Al

We thus have shown the following.

Claim 8.21 Foreach f € Yo N V[G] there is some A < k suchthat f € V[G | A].

It is not hard to verify that Claim 8.21 implies that w; is inaccessible to the reals, cf.
Problem 8.5. U
Theorem 7.28 and Lemma 7.27 now immediately yields:

Corollary 8.22 (Specker) Let k be an inaccessible cardinal, and let G be Col
(w, <k)-generic over V. Then in V[G], every uncountable ¥'-set of reals has

a perfect subset. On the other hand, if every uncountable coanalytic set of reals has
14

a perfect subset, then w| is inaccessible in L.

Theorem 8.23 (Solovay) Let k be an inaccessible cardinal, and let G be Col
(w, <k)-generic over V. Then in V[G], every set of reals which is ODo,, is
LEBESGUE measurable and has the BAIRE property, and every uncountable set of
reals which is ODo,, has a perfect subset.

Proof We continue from where we left off the proof of Theorem 8.20. The following
is the key technical fact.

Claim 8.24 Let A < k. LetP € HKV[GM] be a partial order;, and let s € V[G] be IP-

generic over V[G | A]. There is then some H € V[G] which is Col(w, <k)-generic
over V]G | Alls] such that

VIG] = VI[G | AllsI[H].
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With the help of Claim 8.24, the proof of SOLOVAY’s Theorem 8.23 may be finished
as follows.

Let us fix A C “w N V[G] which is OD,,, in V[G]. Let ¢ be a formula, let
a1, ...,a be ordinals, and let x1, ..., x; € “@ N V[G] such that for all x € “w N
VIG],

x € A= VI[G] E o, a1, ..., 0, X1, ..., X]).

By Claim 8.21, we may pick some A < « suchthat G [ X is Col(w, <A)-generic over
Vand xq,...,x; € V[G | A]. Let x € “w N V[G] be generic over V[G | 1).2 By
Claim 8.24, there is some H € V[G] whichis Col(w, <k)-genericover V[G | A][x]
such that

VIG] = VIG | AMlIx][H].

We then have

x €A VI[G]Epx,a1,..., 0, X1,...,X])
< VIG [ M[x][H] E o(x, 01, ..., 0y X1y ..oy X])

Col(w, <k)

< 3dpeH H_V[GM][x] OX, 01, ooy Afy X1y e v vy X1).

However, Col(w, <k) is homogeneous by Lemma 6.54, and therefore by Lemma
6.61 the last line is equivalent to

Col(w, . U .
Lcol(w, <i) IFV([)G(“FA]EI:]) o, ar, ..., 0, X1, ..., X]).

By the definability of “I” over V[G | A][x], cf. Theorem 6.23 (1), A is thus in fact
SOLOVAY over V[G | A]. However, (280 VIG 1] i certainly countable from the point
of view of V[G], so that in V[G], A is LEBESGUE measurable and has the BAIRE
property by Corollary 8.13.

Now let us assume that A is uncountable in V[G]. We use the proof of Lemma
8.17 to show that A contains a perfect subset in V[G]. As A is uncountable in V[G],
A\V[G | A] # @. By Claim 8.21, there is hence some o with A < o < « such that

(ANVIG [aD\VIG [ 1] # 8.

By the Product Lemma 6.65, G | [X, ) is Col(w, [A, «))-generic over V[G [ A].
Setting P = “w N V[G] and replacing C with Col(w, [A, «)), the argument for
Lemma 8.17 now proves that A contains a perfect subset.

In order to finish the proof of SOLOVAY’s theorem, it therefore remains to show
Claim 8.24.

As the case A > 0 is only notationally different frome the case . = 0, let us
assume that A = 0.

2 1t can be shown that every real in V[G] is generic over V[G [ 1] in the sense of Definition 8.11,
but we won’t need that.
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So let us fix P € H,, a partial order, and let s € V[G] be P-generic over V. We
aim to construct some H € V[G] which is Col(w, <k)-generic over V[s] such that

VIG] = VI[sl[H].

Well, wehaves € V[G | u—+ 1] forsome u < « by Claim 8.21. As Col(w, <u+1)
has the same cardinality as u and

1 [FCol@. <nH+D) 7 is countable,
by Lemma 6.51 there is a dense homomorphism

i: Col(w, u) — Col(w, <u + 1).
By Lemma 6.48,

Go={p e Col(w, w):i(p) € G | (n+ D}

is a Col(w, u)-generic filter over V with V[Go] = V[G | 1 + 1].
Also, Col(w, u) = Col(w, { + 1}), so that if

j: Col(w, u) — Col(w, { + 1})
is an isomorphism, then
G1={p e Col(w,n):3q € G j(p) =q(pn+1)}

is a Col(w, p)-generic filter over V[Go]l = V[G | w4+ 1] with V[Gol[G1] = V[G |
(u + 2)]. Recall that s € V[Go] = VI[G | u+ 1].

Claim 8.25 There is some Col(w, u)-generic filter H* over V[s] with
VIsIIH*] = VI[Goll[G1]. 8.5)
Suppose Claim 8.25 to be true. We then have that
VIGI=VIG [ (n + DG [ [1+2,6)]
= VIGollG11IG | [n+2,x)]
= VISIIH*IIG | [ +2,1)].

Leti’: Col(w, u) — Col(w, <u + 2) be a dense homomorphism, and let us set

Hy = {p € Col(w, < u+2):3g € H" i'(q) < p}.



160 8 Solovay’s Model

Then Hy is Col(w < u + 2)-generic over V[s] by Lemma 6.48 and V[s][H*] =
VIs1[Hol. If we finally set

H={peCollw, <k):plu+2ecHyAp|[[n+2,k) e€G]|lu+2x)l,
then H is Col(w, <k)-generic over V[s] and

VIsIIH] = VIsI[Hol[G [ [+ 2, k)]
= VISIIH*IG [ [+ 2, 1)]
= VI[G],

as desired. We have shown Claim 8.24, modulo Claim 8.25. [l

It thus remains to verify Claim 8.25. We aim to produce some H™* which is
Col(w, p)-generic over V[s] such that (8.5) holds true.
As s € V[Gol, we may pick some 7 € V(@) gych that

s =700, (8.6)

Let us recursively define inside V[s] a sequence (Qy: « € OR) of subsets of

Col(w, ) as follows. Set p € Qo iff for all r € P,
pll—;:er=>resA 8.7)
plFr¢Tr=r¢s.

Having defined Qy, set p € Qg iff for all open dense sets D C Col(w, u), D € V,

' <p(P e DNQY).

If A is a limit ordinal, and Q is defined forevery o < A, then we set Q) = (-, Qq.
Foreacha,if p € Qy and p < p/, p’ € Col(w, ), then p’ € Q. This gives that
ifa < B, then Qg C Q. Let § be least such that Q541 = Qs. Set

Q= Qs and Q = Q x Col(w, p).

We construe Q and Q as partial orders, with the order relation given by the restriction
of the order relation of Col(w, 1) and Col(w, ) x Col(w, 1) to Q and Q, respectively.
Ifpe @, p <q,and g € Col(w, ), then g € @

For the record, notice that (Q was defined inside V' [s], and the parameters we need
for this are u, P, 7, and 5. Let us write ¥ (vg, v, v2, v3, v4) for the defining formula,
ie.,

Vs EVYQ (Q' =Q «— ¥(@Q, i, P 7,9). (8.8)
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Subclaim 8.26 G, C Q.

Proof Suppose that p € Go\Qp, where 8 is minimal such that Go\Qg # 0. We
cannot have 8 = 0, by (8.6) and the definition of Q. Also, B cannot be a limit ordinal,
so that B = « + 1 for some «. We may pick some open dense set D C Col(w, i),
D € V, such that

Vp'<p(p'eD— p' ¢ Q). (8.9)

Let p* € DNGy. If p’ < p*, p with p’ € G, then p’ € D, as D is open, and hence
P’ ¢ Qq by (8.9). But then p’ € Go\Qy, hence Go\Q, # ¥, which contradicts the
choice of 8. O

Subclaim 8.26 trivially implies that Q # ¢, so that:

Subclaim 8.27 Q is separative and has the same cardinality as w inside V [s].

Subclaim 8.28 Let p € Q. In V[G), there is then some G, which is Col(w, u)-
generic over V such that p € G, and
s =1%.

Proo]f Let p € Q Let D C Col(w, u), D € V, be open dense in Col(w, u). By
p € Q = Qs41 thereis some p" < p with p" € DNQs = Q. In V[G], there are only
countably many dense subsets of Col(w, () which are in V, so that given p € Q we
may work in V[G] and produce some G, which is Col(w, 11)-generic over V such
that p € G and G, C Q. .

Let r € I, and suppose that p’ € G, decides 7 € 7. As p’ € G, C Q C Qo, we
must have (8.7). Therefore, G, is as desired. O

With Subclaim 8.26, Gog x G1 C Q is a filter. We now show:
Subclaim 8.29 Gg x G is Q-generic over V|[s].

Proof Let D € V[s]bedensein Q. We need to see that DN (G x G1) # @. Suppose
that D N (Gg x G1) = 0.
Let p € VP be such that p* = D. Recall (8.8), and let @ (vg, vy, v2, V3, v4) be
a formula such that whenever G(’)/ X G’l/ is Col(w, u) x Col(w, p)-generic over V,
then
VIGy x G{1 = ®(Gg, G, 1, P, 1)

iff the following holds true.
Ifs' = rGO, then s’ is P-generic over V, and if

D' = {(p.q) € Col(w, n) x Col(w, w): Ir es'r Iy (p.q)" € p}

and inside V[s'], ¥(Q', i, P, 7, s”) holds true for exactly one @, then D’ is dense
in Q" and
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D' N (G x GY) =0.

By hypothesis, V[Gg x G1] = @(Go, G1, 1, P, 7). Let (p, g) € (Go x G1) be
such that

(p.q) Iy IO @ (Go, Gy 1, B ), (8.10)

where Gh g yCol,uw)xCol(.11) ig the canonical name for Gy, h € {0, 1}. By Sub-
claim 8.26, (p,q) € Q. As D is dense in Q, there is some (p’, ¢') < (p, g) such
that (p’, ¢) € D.

By Subclaim 8.28, there is some G, x G inside V[G] which is Col(w, u) x
Col(w, p)-generic over V such that (p’, ¢') € G, x G/ and

s = 9. (8.11)

By (8.10), V[G6 X G/]] E @(G), G/l’ w, P, 7). By (8.11), the s’ which
@ (G, G, ., P, 7) describes in V[G(, x G'] is equal to s, which then also gives
that the D" which @ (G, G|, u, P, ) describes in V[G{, x G|] must be equal
to D and that the Q" which W(Q', i, P, 7, 5) describes in V[G(, x G/] as part of
@ (G, G|, P, ) must be equal to Q. Therefore, V[G|, x G'|] = ®(Gy,, G|, u,
IP, ) yields that D N (G, x G}) = 0.

However, (p’, ¢") € (G|, x G}) N D. Contradiction! O

Now by Subclaim 8.27, inside V [s], there is thus a dense homomorphism
k: Col(w, u) — Q.
By Subclaim 8.29, if we set
H* = {p € Col(w, u): k(p) € Go x G},

then H* is Col(w, u)-generic over V[s] and V[s][H*] = V[s][Go x Gi] =
VI[Gol[G1]. Therefore, H* is as desired. [l
This proof has the following corollary.

Theorem 8.30 (Solovay) Let k be an inaccessible cardinal, and let G be Col
(w, <k)-generic over V. Set
_ VIG]
N = HOD(wme[G]).

Then in N, ZF + DC holds and every set of reals is LEBESGUE measurable and has
the BAIRE property and every uncountable set of reals has a perfect subset.

Proof In the light of Theorem 8.23, we are left with having to prove that DC holds
truein N.If f € “NNV[G],then f C NNV[G [ A] for some A < k by the proof
of Theorem 8.20. It is easy to see that this implies f € N. ]
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Definition 8.31 Let A C [w]® be uncountable. We say that A is Ramsey iff there is
some x € [w]® such that [x]” C Aor [x]NA =40.

In the presence of (AC), it is not hard to construct an A C [w]® with Card(A) =
280 which is not RAMSEY, cf. Problem 8.11.

With the help of MATHIAS forcing, cf. p. 181, the arguments developed in this
Chapter may be used to show that every uncountable A C [w]® is RAMSEY in the
model of Theorem 8.30. Cf. Problem 12.13. Cf. also [13].

8.3 Problems

8.1.

8.2.

8.3.

8.4.
8.5.

8.6.

8.7.

Let A C “w be open. Show that there is some X C ~“w such that A =
Usex Us and Us N Uy = @ for all s # s". Show also that >" v u(Uy) is
independent of this representation of A, so that i (A) is well-defined according
to Definition 8.1.

Let . be the set of all B C “w such that for all X C “w (8.1) holds true. Let
% be be the set of all B C “w such that there is some open set A C “w with
B A A being meager. Show that both . and ¥ form a o -algebra containing all
the open sets.

A set A C 2 is called a flip set iff for all x, x’ € “2 such that Card({n <
w: x(n) #x'(n)}) =1, x € A & x' ¢ A. Show thatif A C “2 is a flip
set, then A is not LEBESGUE measurable and A does not have the property of
BAIRE. Show in ZF + “there is a uniform ultrafilter on »” that there is a flip
set.

Verify the statements (1) through (3) from p. 150.

Show that Claim 8.21 implies that w; is inaccessible to the reals. [Hint. Use
Problem 6.18.]

Let « be weakly compact, let G be Col(w, <« )-generic over V, and let H be
@Q-generic over V[G], where Q € V[G] and VIG] E “Q has the c.c.c.” Show
that if x € “w N V[G][H], then there is some Q € V. and some g which is

Q-generic over V such that x € V[g].
A set A C w is called reshaped iff for all £ < wq,

L[A N E&] = € is countable.

Show that if a)}/ is not MAHLO in L, then there is a reshaped A C w;. Show
also thatif A C w is reshaped, then there is some poset IP which has the c.c.c.
such that if G is P-generic over V, thenin V[G] there is areal x with A € L[x].
Conclude that if a){/ is inaccessible in L, then w; need not be inaccessible to
the reals. [Hint: There is an almost disjoint collection {x; : i < w1} of subsets
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8.8.

8.9.

8.10.

8.11.
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of w such that for each i, x; is uniformly definable from (x;: j <i)and ANi
inside L[A N i]. Then use Problem 6.14.]

(R. Jensen) Show that if V = L[B], where B C wj, then there is an
w—distributive P such that if G is P-generic over V, then in V[G] there is
areshaped A C w;. [Hint. Let p € Piff p: o — 2, where @ < w; and for
allé <o, L[IBNE, p | £] = “¢ is countable,” ordered by end—extension.]

Let E C OR be “universally BAIRE in the codes” in the following sense. There
are trees T, U witnessing that p[T] is a universally BAIRE set of reals, and for
all ordinals &, & € E iff

lhc/ol(w,é) dx e R (x € p[T1 A& = ||x]]).

Show that E satisfies full condensation in the sense of Definition 5.30.

Show that if « is a strong cardinal and A C “w is k-universally BAIRE, then
A is universally BAIRE.

Show in ZFC that there is some A C [w]® with Card(A) = 280 which is not
RAMSEY.



Chapter 9
The Raisonnier Filter

By Corollary 8.22, it is impossible to construct just from a model of ZFC a model
in which the statements from the conclusions of Solovay’s Theorems 8.23 and 8.30
hold true. We now aim to consider LEBESGUE measurability and prove a theorem of
SAHARON SHELAH, Theorem 9.1.

9.1 Rapid Filters on

Theorem 9.1 (Shelah) Suppose that every X' -set of reals is LEBESGUE measurable.
~3

Then w}/ is inaccessible to the reals.

Our proof will make use of FUBINI’s Theorem as well as the O—1-Law of HEWITT—
SAVAGE; we refer the reader to any standard textbook on Measure theory, e.g. [38].
In order to prove this theorem, we need the concept of a rapid filter.

Definition 9.2 Let F C Z(w) be a filter on w. We say that F is rapid iff F is
non-trivial, F extends the FRECHET filter, and for every monotone f: w — o there is
some b € F such that

Vn<wbn f(n) <n. .1

We first want to construct, assuming that a)}/ is not inaccessible to the reals, an
interesting rapid filter.

Notice that by identifying any a € Z(w) with its characteristic function, we
may identify & (w) with the CANTOR space “2. We construe “2 = Z(w) as being
equipped with the natural topology, cf. 123. We shall verify that no rapid filter is
LEBESGUE measurable, cf. Theorem 9.16.

Theorem 9.3 Assume that a)}/ is not inaccessible to the reals, but every X -set of
~2
reals is LEBESGUE measurable. There is then a rapid filter F on w such that F is X'
~3
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Proof Let us fix a € “w such that w]‘/ = wll‘[“], cf. the proof of Lemma 7.27. We

have o N L[a] = ®2N L[a] = N;. Let us write X = “2 N L[a].

Ifx,y € ®2,x # y,letus write h(x, y) for the “distance” of x and y, i.e., h(x, y)
is the least n < w such that x [ n # y [ n (Hence h(x, y) > 0). For Y C “2, let us
write H (Y) for

{h(x,y):x,y €Y Ax 3y}
H (Y) is thus a set of positive integers.

Definition 9.4 We define Fy C &?(w) by setting a € Fy iff there is a covering
(Xpn <w)of X,ie, X C X, where X, C “2 for each n < w, such that

n<w

U H(X,) C a.

n<w
F is called the RAISONNIER filter.
Claim 9.5 Fx is a non-trivial filter extending the FRECHET filter.

Proof Trivially, if a € Fx and b D a, where b C w, then b € Fx. Also, Fx # ¢,
because w € Fy.Letussupposethata € Fy andb € Fy, witnessed by (Xii:n < w)
and (Xﬁ:n < w) respectively. Let y:w X w — o be bijective. Set, for n,m <
@, Xymm = X4 N XL We have that

x=xnJxi=xnlJ J&inxp)=xnJ x,.

n<w n<wm<w p<w

sothat (X ,: p < w)isacoveringof X.Letq € H(Xy (n,m)),say g = h(x,y), where
X,y € Xyom = XN X5, x #y.Thenq = h(x,y) € a,as H(X?) C a, and

q € h(x,y) €b,as H(Xf’n) C b. We have shown that

U H&Xp) canb,

p<w

sothata Nb € Fy.

Also, Fx is non-trivial: if X C Un<w X, then at least one X, has two (in fact
uncountably many) elements, because X is uncountable; therefore H (X,) # ¢, and
hence ¥ ¢ Fyx.

To show that Fy extends the FRECHET filter, let (X,,: n < 2™) be an enumeration
of all

Us ={x €“2:x Ds},

where s € 2. We have that | J H(X,)=w\m € Fx. O

n<2m

Claim 9.6 Fy is 1.
~3
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Proof Let us first verify that a € Fy iff there is a covering (¥,:n < w) of X with
Uypew H(Xy) C a, where Y, is a closed subset of “2 for each n < w. Namely,
let a € Fy, as being witnessed by (X,:n < w). Forn < w, let Y,, be the closure
of X,,. Trivially, X,, C Y,, and therefore H(X,) C H(Y,). We claim that in fact
H(X,) = H(Y,). Well, if n = h(x,y) € H(Y,), we may pick x’, y' € X, with
xXIn=x]nandy [ n =y | n Butthenn = h(x,y) = h(x’,y’), so that
n € H(X,). We now have that |,,_, H(Y,) = U, ., H(X,) C a.

This now gives the following characterization of Fx.a € Fx iff 3(T,:n < w)
such that 7,, is a tree on <“2 for each n < w,

Vx (x € X > InVmx [m e T))A
Vx VyVn(x ZyAVmx [meT, ANmy [meT,
—dAmea\{f0}x [m—1=y[m—1Ax[m#y]|m)).

Because X = “2N L[a]is Z‘ (a) cf. Lemma 7.19, this easily gives that F is Z‘ (a)
by Lemma 7.17. ([

We have verified that Fx is a nontrivial filter which is Z‘l In order to finish

the proof of Theorem 9.3, we now need to see that Fy is rapld Let f:w — w be
monotone. We need to find some b € Fy such that (9.1) hold true.

Claim 9.7 Forevery f:w — w,“w N Lla, f]is a null set.
Proof Because “w N L[a, f]is X!, cf. Lemma 7.19, it is LEBESGUE measurable by
~2

hypothesis (Recall that we assume all X! sets of reals to be LEBESGUE measurable).
~2

Set
={(x,y) € “w)?NLla, fl:x <r[a 1] Y}

For each y € “w N Lla, f],
{x:(x,y) € A}

is countable, and hence null. By FUBINT’s Theorem, we therefore first get A to be
null and then also
{x:{y:(x,y) € A} is not null}
to be null. If “w N L[a, f] is not null, there is then some xq such that
{y: (x0,y) € A} is null;

but then

“oNLla, fl={x €e“wNLla, fl:x <pja,r] Xo}U
{y e “oNLla, fI: (xo, y) € A}

is the union of two null sets and hence null.
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We have shown that “w N L[a, f] is a null set. U

Claim 9.8 Let (nx:k < w) be a sequence of positive integers. There is a family
(Gk:k < w) of open subsets of ®2 such that

1
n(Gg) = o

forall k < w and such that (Gy: k < w) is independent in that if N C w is finite,

i (N1(Gi:k e M) = [ wiGo.

keN
Proof Writer_1 = 0.Fork € w, setry = Elkzonl, and put
Gr=1{xe€e®2:Va(rg_1 <n <ry - x(n) = H}.

It is easy to see that £(Gy) = 27" and if N C w is finite, then

(N 1Guik e NY) =27 2kewm = TT 27 = T (G,

keN keN
so that (Gg: k < w) is as desired. (Il

Claim 9.9 Let Y C “2 be null. There is then some closed set C C “2 such that
YNC =0, u(C)>0,andin fact for all s € “2, if Uy N C # @, then

1
wUs N0 = S

Proof Let Cy C “2 be closed such that ;1 (Co) > % and Y NCo = 0. Let Co = [Tp],
where Ty C =“2 is a tree. Let us recursively define trees 7y C ~“2,k > 0, as
follows.

Ty ={t € Ty_y:3s €X23x € [Tr_11N U,

W Tt 1N U) = Sl—k At =x [I(D)).

Set Cx = [Tx] for k < w. Also set Too = (4o, Tk and C = [Too] = (=, Ck- We
claim that C is as desired.

As Too C Ty, Y NC = @ is trivial.

In the step from Cy_ to Cx we consider 2k many Us, s € k2 and throw out those

sets Cr_1NU;, suchthat u(Cr_1NUy) < %.Therefore,pd(ck) > M(Ck_l)—2k-8ik =
(Ci—1) = ¢ This means that 1(C) = pu(Co) = 332 (u(Ch-1) — u(C) =

WC) -2 w=3-3=4%>0
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Now let s € =?2 be such that Uy N C # (. Then, setting k = lh(s), u(Cr—1 N
Us) > o and Cy N Uy = Cir—1 N Us, so that u(Cr N U;) > lk In the step from

Ci_1 N U to C; N Uy, 1 > k, we consider 2/—F many U,,t € 12 t D s, and throw
out those sets C;_; N U; such that u(C;—; N U;) < sk’ therefore, u(C N Uy) >

WCNUg) = 2 (€N U) = (€ NU)) = g = 2%, 270 =
8k_8k2p14P:Lk'(1__)>8_k'%:2313+1' O

Claim 9.10 For every monotone f:w — w, there is some b € Fx such that

Vn<wbn f(n) <n-QGn+1)>-2%. 9.2)
Proof Using Claim 9.8, we may pick a sequence
(Gs.mn:s € 2 Am,n < )

of open subsets of “2 such that u(Gg u.n) = 2,,,% for all s, m, n, and such that the
sequence is independent in that if N C =“2 x o x w is finite,

1 (m {Gs,m,n: s,m,n) € N}) = H M(Gs,m,n)-
(s,m,n)eN
Fix f:® — o monotone. Let

6= U U {&neeyetmmmn}:

n<wn'>nm>n’

Obviously, G is a Gs subset of (®2)2. Let x € 2. Setting G* = {y € “2: (x,y) €
G}, we have that G* C Unsn Umsn Gt fmymn for every n < . However,
w(Gx) fmymn) = 2m+n, , and for each ¢ > 0 there is some n < w such that

m>n

Do Dmsn 2m+n, < ¢&. Thus, G* is null for every x € “2.
Let us define
G* = Ji6%:x e x).

We aim to see that G* is null. Well, foreach y € G* we may let x () be the < [,1-least
x € X such that y € G*, and we may set

A={(,2) € (GH:x(Y) <Lla) X))

A is X! by Lemma 7.19 and hence LEBESGUE measurable by our hypothesis. For

2
each z € G*, {x(¥): (y,z) € A} is at most countable, and for any x € X,{y €
G*:x(y) = x} C G* is null. Therefore, {y € G*:(y,z) € A} is null for every
z € G*, so that A is null by FUBINI’s Theorem. Hence
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{y € G*:{z € G*:(y,z) € A}isnotnull }

is a null set, again by FUBINI'S Theorem. If G* were not null, then we could pick
some yg € G* such that {z € G*: (yg, z) € A} is null. But then

G* ={z€ G* (z,y)) € AJU
{z € G":1x(2) = x()0)}
{z € G*: (yo,2) € A}

would be null after all.

We have shown that G* is a null set, so that by Claim 9.9, we may pick some
closed set C C “2 such that G* N C = @, u(C) > 0, and in fact for all s € <“2, if
Us N C # @, then ju(Us N C) > sy -

Forx € X andn < w, let

O;CL = U U fof(m),m,n’-

n’'>nm>n'

Each O;,n < w, is open. Let x € X. Suppose that for every n < w and every
s € =92,if CNU; # @,then CNU;NO;; = . Wemay thendefine (z,: n < w) € “2
and a monotone (k;: n < w) € Yo with CN U, 1, # ¥V and zy41 [ ky = zn | kn
for all n < w as follows. Let zg € C and ky = 0. If z,, and k,, have been defined such
that z, € C,then CN U, 1, N O; # ¥, so thatas O;, is open we may pick z,1 and

ng41 > ng such that z,41 [ kn = 20 [ kn, Uy, 1hpy C Oy and 241 € C. Then

Uwlke()Ojnc=6"nCccG nc=y.

n<w n<w

Contradiction! There is thus for each x € X, a pair (n(x), s(x)) such that n(x) <
w, s(x) € =®2, and

C N Uy # B, yet C N Ugqy N Oy = 0. 9.3)

n(x

Let e:w x =®2 — o be bijective such that e(n, s) > n and e(n, s) > lh(s) for all
n<wands € =?2,and let (X,,: m < w) be an enumeration of the set of all

{xeXinx)=nAs(x)=sAx | f(eln,s)) =t},

where n < w, s € <“2,and r € <®2. We may write X = |J Xm, so that, setting

m<w

b= J HXw),

m<w
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we have that b € Fyx. We aim to verify that (9.2) holds true.
So let us fix n < w. We have that

bn f(n) ={h(x,y) < f(n):x,y € X, x # y,n(x) =n(y),
s(x) = s(y), and

x | fle(n(x),s(x))) =y I fle(n(x),sx)))}.

Obviously, if x,y € X, x # y, witness that 2(x, y) € b N f(n), then, setting
m =n(x) =n(y) and s = s(x) = s(y),

fle(m,s)) < h(x,y) < f(n),
so that
e(m,s) <n 9.4

by the monotonicity of f.
Letm < wand s € =“2 be such that e(m, s) < n. Let us write

bps ={h(x,y) < f(n):x,y € X, x #y,n(x) =n(y) =m,
s(x) =s(y) = s, and

x [ fle(m,s)) =y | f(e(m,s))}.

AsbN f(n) = Ue(m,s)<n by s, in order to show that (9.2) holds true it suffices to
show that

bms < (@Bn4+ 122" = (Bn+1)-22")2 (9.5)

Let again m < w and s € <“2 be such that e(m, s) < n. Notice that if x, x', y €
X, x| f(n)=x"| f(n),and h(x,y) < f(n),thenh(x’, y) = h(x, y). This implies
that

(Card({r € T™2:3x e X(t Cx An(x) =m A s(x) =$)D)? < bpms. (9.6)
But we have that

{tef(")Z:Hx eXtCxnArnkx)y=mAsx)=s)}C
{tel/™M2CcNU; #0ACNUNGyym =D}

This is because if x € X, C x,n(x) = m,and s(x) = s, thenby (9.3), CNU; #
and

p=CnNU;NO;,,=CNUgN U U Gylrp).p

n'>m p>n’
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But e(m, s) < n, so that m < n by the property of e, and thus

Gram [ U U Gurimpw

n'>m p>n’
By (9.6), in order to verify (9.5) it thus suffices to show that if C N U # @, then
Card({t € T™2:CNUNGrym =9} < Bn+ 1) - 22", 9.7)
Suppose that C N U # @, where s € =“2. Let us write g for the cardinality of
{t e/MuCcnUsNGpm= @} )
We have that

cnusc {wz\G,,n,m:t e /™2 CAUNGyrpm = Q)} .

As u(Grum) = ﬁ and because the G, , ,’s are independent in the sense of

Claim 9.8,
q k q
q 1 1
M(CQUS)EZ(]C) (_2n+m) z(l_2n+m) !
k=0

By the choice of C, 1t(C N Uy) > symirer 0 that sl < (1 — 54) . By (94)
and the properties of e, we have that m < n and lh(s) < n and therefore

1 1 1\
23n+1 = 93Ih(s)+1 =\1- o) -

22n

22n
We always have log,2(2) < 1, which gives us 2 < (W) ,thus 1 <
log, (222,1—211) -2%", and hence

2211 -1 )
n
‘15(3n+1)'(10g2(w)) = Gn+ 127,

as we had wished. O

Using Claim 9.10 it is now easy to prove that Fy is rapid. Let g:w — w be
monotone, and let f: w —  be defined by

Fn) = g((n+ 1) - B+ 4)2 - 2414
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By Claim 9.10, there is some b € Fx such that for all n < o,
bN f(n) <n-@n+1)>2-2%,

Letn < w, and let n’ < n be largest such that n’ - (3n’ + 1)2 - 2*"" < n. Then

bgmn) <bng((n + 1) -G’ +4)2 - 20+4)
—bNf@) <n -G+ 1) 2" <,

as desired.
This finishes the proof of Theorem 9.3. ]

9.2 Mokobodzki’s Theorem

Lemma 9.11 (Sierpinski) Let F C “2 be a non-trivial filter which extends the
FRECHET filter and is LEBESGUE measurable. Then F is null.

Proof For s € "2, where n < w, we may define a homomorphism ¢;: “2 — “2 by

| 1=x(k) ifk<nAsk)=1
¢s () (k) = [x(k) otherwise .

Because F' is assumed to extend the FRECHET filter, we have {¢;(x): x € F'} = F for
every s € "2. The 0—1-Law of HEWITT-SAVAGE then implies that either w(F) = 0
or u(F)=1.

Suppose that £ (F) = 1. Let us define a homeomorphism ¢: “2 — “2 by

p(x) (k) =1 —x(k)

for k < w. It is easy to see that ¢ respects u, i.e., {¢(x): x € X} is LEBESGUE
measurable and u({¢(x): x € X}) = u(X) for all LEBESGUE measurable X C “2.
w(F) = 1 yields that u({¢(x): x € F}) = 1. We may then pick some xo €
FN{x: @) e F}. As F is a filter, the characteristic function of the intersection
of the two sets for which xo and ¢ (xg) are the respective characteristic functions is
then in F again, i.e.,

D=1k <w:xotk) =1A¢@x)(k)=1} € F.

This contradicts the fact that F' is assumed to be non-trivial.
We have shown that y(F) = 0. ([l
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Definition 9.12 Let I = {I,:n < w} be a partition of w into intervals, and let
J = (Jy:n < w) be such that J,, C In2 for n < w. We write

@L)) ={x €“2:x | I, € Jy, for infinitely many n < w}.

A set N C “2 is called small iff for every sequence (e,: n < w) of positive reals
there is a partition I = {I,,:n < o} of w into intervals and there is a sequence
J = (Ju:n < w) with J,, C 12 for n < w such that

(1) Ncd,J),and
2) p(fx € ®2: x | Iy € Ji}) < g forevery k < w.

If N C “2is small and if (I, J) is as in (1) and (2) of Definition 9.12, then for every
ny < w,

L)) ={x € “2: x | I, € J, for infinitely many n > no}.

Hence u((L, J)) < Z;’o:no &, for every ngp < w. We may choose (¢,: n < o) in
such a way that Zzio &n < 00, so that we get that (I, J) is a null set. Hence N is a

null set. We show that every null set can be covered by two small sets:

Lemma 9.13 If A C “2 is null, then there are small sets Ny, N7 C “2 with A C
No U Nj.

Proof Let A C “2 be null. For each n < w, we may pick an open set O,, C “2 such
that A C O, and pu(0,) < 5. Let

Op = U Us,"n»
m<w

where s, € =“2 and Ugn N Usn = @ for s, # s, . Notice that by (0y) < ZL"

min{lh(s)): m < w} > n. (9.8)
Set
Fp={s €"2:3%3ms = sk}.
With the help of (9.8),
A C{x € “2:x | n € F, for infinitely many n < w}. (9.9)
Also

infm<w([z,u({x €“2:x|ne F}) =0.

n=m
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Let (¢,:n < w) be a sequence of positive reals. In the light of what we are supposed
to prove, we may assume without loss of generality that > oo j&, < oco. Let us
recursively construct (n;: k < w) and (my: k < w) as follows.

Letng =0,mg =0,

o0

Mi41 = min [m > ng: 2 . Z,u({x €“2x|neF,}) < ek]
n=m

and

o
Ng+1] = Min Im > Mgy 2T ZM({X €e®2:x|ne Fn}) < Sk] .

n=m

!
I
A
- ~
ny Ngt1
| | | |
[ [ [ [
my Myt 1
- 2
~
I

Let, fork < w,
I = [ng, nk41) and I; = [myg, mj41),

and set
Je={s € %2 3i € [mgp1, mg113t € Fy s [ [k, i) =1 | [ng, i)}

and
Ji={sel2: i € pmpy1 13 € Fy s | Imy,i) =1 [ [mg. i)}

We claim that both (I, J) and (I, J') satisfy (1) and (2) of Definition 9.12.
As for (2),

m ({x e®2x | I € Jk})
=1 ({x € “2:3i € [mpsr, mp 13t € Fyx [ ng, i) =1 [ [ng, )})

N+l
<2%. > p(fxe 2F;eFxli=t}) <e.

i=mjy
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Symmetrically,

m ({x €e“2x I € J,é})
= ({x € “2:3i € [ng, mgy113t € F; x | [my, i) =1 | [my, i)})
M1
§2mk~z,u({xe‘”2:3teF,~x [i:t}) < &.

i=ny

To verify that A ¢ (I, J) U (I', J'), let x € A. By (9.9), there are infinitely many
n < w with

o0
x[neF,andne | Jimp, nigi] (9.10)
k=0
or with
o0
x[neFandne | . mel. 9.11)
k=0

Ifx [ n e F,andn € [mgy1, ng+1], then x | Iy € Ji; hence if (9.10) holds true,
thenx € (ILY).Ifx [ n € F, and n € [ng, mgy1], then x [ I € J; hence if (9.11)
holds true, then x € (I', J'). O

Lemma 9.14 Let F be a non-trivial filter on w which extends the FRECHET filter
and is LEBESGUE measurable. Then F is small.

Proof By Lemma 9.11 we know that F is null. Let us fix a sequence (¢, : k < ) of
positive reals. We may assume without loss of generality that & < 1 forall k < .

/ N\2
Let §; = min{%, MY < g and g = % < &;.. We may write
Fc@hud,lJ), 9.12)

where (I, J) and (I, J') are exactly as constructed in the proof of Lemma 9.13. We
are also going to use the notations ng, mg, I, I,é, Ji, J,; for k < w from the proof of
Lemma 9.13; in particular, u({x: x [ Iy € Jt}) < exand u({x: x [ I} € J[}) < &
for every k < w. We aim to find

T JH>F (9.13)

such that for every k < w, ({x: x [ I} e Jk*}) < &.
For k < w, let

H, = {t € meme)y . " ({x €Y2:t7x | [mgy1, ngs1) € Jk}) > 5k} .
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For all k < w,

w{xs x| g, mggr) € Hd) < 29770 g ({xex [ I € Ji})
1

< —-u(x:x | Ir € ik}
Sk
1 /

< — g =k (9.14)
Sk 4

We also define, for k < w,
H| = [t e lmominy .y ({xe“2:x | [, )"t e Ji}) = «Sk} ,

so that in analogy with (9.14)

8/
pllxs x [l mn) € HYD) < (9.15)
Now let us write
No= L),
Ny =T,J), and
N, =(T,J"),

where
J ={s"t:s M2 At e Hy U H]).

With the help of (9.14) and (9.15), we have that

!

€
w({x:x | [mg, meg) € LU D <8k+2~zk < &

Hence if F C N U N3, then we found a covering of F as in (9.13). Let us thus
assume that F ¢ Nj U N».
Let xo € F be such that xo ¢ N; U N». Then xg € Ny by (9.12), so that for
infinitely many k£ < o,
xo [ Ix € Jg.

Fork < w,let I}, = [z?k, mk.+1), 12*k+1 = [miq1, ngy1), J3, = ¥, and also Spp1 =
@, unless xg | Iy € Jy in which case

0 _ /
JZkJrl = Log4+1 U L2k+1, where
Loyt = {s € mst:m02: 5o | [ng, my41) s € Ji} and
L/2k+1 ={se i1 me1)2 g7 [ [nk+1, mr42) € Jlg+1}'
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As xg ¢ Np, we must have xo [ [my, mgy1) € Hy and xo | [my, mgy1) € H,é and
hence

s x | Imeen, mign) € Jyep ) < 28 = &)

for all but finitely many k < w. Therefore, the proof of the following Claim will
provide a covering of F as in (9.13) and finish the proof of Lemma 9.14.

Claim 9.15 F C (I*, J*).

Proof Suppose not, and pick y € F\(I*, J*). Define z € 2 by

o0 = [y(n) if 3k (xo | (5, mice1) € Jg and n € [mir, nie1))
xo(n) otherwise.
As F is a filter and xo(n) = y(n) = 1 implies z(n) = 1, we have that z € F. By
(9.12), we must have z € Ng or z € Nj.
Say z € Ny.Consider Iy = [ng, ng+1].Ifxo [ Iy ¢ Jx,thenz | Iy = xo [ I ¢ Ji.
But as z € Ny, we must have z | I € Ji for infinitely many k. We must then have
xo | Ix € Jr and then

2 [ Ik =x0 | [nk, mep 1)y | [mgsr, neyr) € Ji

for any such k, which implies that y [ [mgy1, ng+1) € Log4+1 C Jzok 1 However,
y ¢ (I*, J*), so there can be only finitely many such k. Contradiction!

Say z € Nj. Consider IIQ-H = [mr41, mps2). If xo | [0k, nk+1) € Ji, then
z | [mgs1, mis2) = xo | [Mpg41, mei2), which by xo ¢ Ny can only be in J;
for finitely many k. But z € Ny, so we must have z [ I; ; € J/, and hence
xo [ [1k, nk4+1) € Ji for infinitely many k. For such &,

2 gy =y | Imgsr, nige) " x0 | [nkg1, mes2) € Ty,

which implies that y | [miq1,nk41) € Ly C IS, . Butagain y ¢ (I*, J*), so
there can be only finitely many such k. Contradiction!
We have shown that F C (I*, J*). O
In the light of Theorem 9.3, Shelah’s Theorem 9.1 is now an immediate conse-
quence of the following.

Theorem 9.16 (Mokobodzki) No rapid filter F C “2 is LEBESGUE measurable.

1

Proof Lete€, = 57 forn < w. By Lemma 9.14 we may write

Fc @),

where for every n < w,
w({@2: x [ Iy € Jn}) < én.
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Forn < w, let
Jr={seJ:Vte Ik e I, s(k) < t(k) — 1 € J,)}.
We claim that
Fc@I. (9.16)
Suppose that x € F\(I, J*). Asx € (L)), X = {n < w: x [ I, € J,} is infinite.

As x ¢ (I, J*), there must be an / < w such that for all n € X\/ we may pick some
t, € 2 such that for all k € I,,, x(k) < t,(k), but t, ¢ J,. Define y € ®2 by

k) = thw(k)ifn e X\l andk € I,
N x (k) otherwise.
Obviously, y ¢ (I,J). But F is a filter, so that x € F implies y € F C (I, J).
Contradiction! We have shown that (9.16) holds true.
As J¥ C J, for every n < w, we still have that

nw({©2:x 1 I, € J}) < en = T (9.17)
for all n < w. Let us write
#(n) =min{{k € I,,: stk) = 1}: 5 € J7},
and ‘
Jrmt =As e Jr:{k € I,: s(k) = 1} = #(n)}.
We must have that
#n) >n—+1. (9.18)

This is because if s € J;" is such that {k € I,,: s(k) = 1} < n, then u({x € “2: x |
I, € J}}) = 5, contradicting (9.17).
Let us now define f:w — w by

f(n) = max{{max(k): s(k) =1}: s € J:,min}

for n < w. If F is rapid, then we may pick some b € F such that

Vn<wik:btk)y=1}N f(n) <n.
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By (9.16),b € (I J*).Ifb [ I, € J¥,then (9.18) gives that {k < max([,): b(k) = 1}
is contained in 7,, and has maximum f (n). Hence there can be at most one such 7.
In particular, b ¢ (I, J*). Contradiction!

We have shown that F' cannot be rapid. (]

The book [3] contains exciting material extending the topic of the current chapter.
We also refer the reader to [5].

9.3 Problems

Let F C & (w) be a non-trivial filter on w extending the FRECHET filter. We say that
F is a p-point iff for every f € “w there is some X € F such that f | X is constant
or finite-to-one (by which we mean that {n: f(n) = m} is finite for every m < w).
We say that F is a g-point iff for every f € “w which is finite-to-one there is some
X € F such that f [ X is injective. F is called selective, or Ramsey, iff F is both
a p-point as well as a g-point. F' is called nowhere dense iff for every f: w — R
there is some X € F such that f”X is nowhere dense.

9.1. Let F be a p-point.

(a) Show that if (X,,: n < w) is such that X,, € F for all n < w, then there is
some Y € F such that Y\ X, is finite for all n < w.

(b) Show that if {X,: n < w} is such that |J,,_, X, = w, X, ¢ F for all
n < w,and X, N X,, = ¥ for all n # m, then there is some X € F such
that X N X,, has finitely many elements for every n < w. If F is assumed to
be selective, then we may in fact pick X € F in such a way that X N X, has
exactly one element for every n < w.

9.2. (a) Show that if F is a p-point, then F is nowhere dense. In fact, if F is a
p-point, then F is discrete (by which we mean that for every f: w — R there
is some X € F such that for every x € f”X there are @ < x < b such that
(a,b)N "X = {x}).

(b) Show that if F is a g-point, then F is rapid.

9.3. Let U be a selective ultrafilter on w.
(a) Let (X,: n < w) be such that X,, € F for all n < w. Show that there
is some Y € U such that for all {n,m} C Y withn < m, m € X,. [Hint.
First use Problem 9.1 (a) to get some Z € U and some g: w — w such that
Z\g(n) C X, for all n < w. Suppose w.l.o.g. that g is strictly inceasing, and
write
f(n)=go...o0g(0).
~———

n times
By Problem 9.1 (b), let Z' € U be such that for every n < w, there is exactly

onem € Z' with g(n) < m < g(n + 1), call it m,.. One of {my,: n < w},
{mopy1:n < w}isin U, call it Z*. Verify that Y = Z N Z* is as desired.]
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(b) Let (X5: s € =“w) be such that Xy € F for all s € <®w. Show that there
is some Y € U such that for all strictly increasing s € ~“w with ran(s) C Y,
s(n) € Xy, forall n € lh(s).

9.4. Show that if CH holds, then there is a selective ultrafilter. [Hint. Let ({ X2 : n <
w}: @ < wp) enumerate all {X,: n < w} such that | J,_, X, = o and
X,NX,, = Wforalln # m.Recursively construct asequence (Y, : & < wy) of
infinite subsets of w such thatifo < B,then Yg\Y, isfiniteand Yo 41 = YN X}
for some n for which Y, N X is infinite, if such an n exists, and otherwise
Card(Yy41 N X5) < 1foralln. Set F = {X C w: Jo X\ X, is finite }.]

9.5. Show that if CH holds, then there is a g-point which is not selective. [Hint.

Let U, Uy, Uy, . . . be non-isomorphic selective ultrafilters, and let X € U™ iff
{m:{n: (m,n) e X,,} e U.]
LetP € V be a partial order, an let G be P-generic over V. Thenz € “woNV[G]
is called unbounded iff for every x € “wo NV, {n < w: x(n) < z(n)} is
infinite. z € “w N V[G] is called dominating iff for every x € Yo NV,
{n < w: x(n) < z(n)} is cofinite, i.e., there are only finitely many n < w with
z(n) < x(n).

9.6. Let z be a COHEN real over V. Then z is unbounded.

Let o be any ordinal, and let G be C(«)-generic over V. Show that V[G]
does not contain a dominating real. [Hint. Use Lemma 6.29 and the proofs of

Lemmas 6.53 and 6.61.]
Let

b = min{Card(F): Vx € “w3z € “wN F {n: x(n) < z(n)} is infinite}, and
d = min{Card(F): Vx € “w3z € “woN F {n: x(n) < z(n)} is cofinite}.

9.7. b <d.Let o > R¥; be a cardinal, and let G be C(«)-generic over V. Suppose
that V = CH. Show thatin V[G], 8| =b < a < d.
Let D consist of all (x, n), where x € “w and n < w, ordered by (x’, n’) <
(x,n)iff n’ > n,x’ | n=x | n,and x"(k) > x(k) for all k > n.

9.8. If (x,n), (x',n') € D, where n = n’ and x | n = x’ | n, then (x,n) is
compatible with (x'n). Conclude that D has the c.c.c. Show that if G is D-

generic over V, then V[G] contains a dominating real.
Let F C & (w), and let

Mp = {(s, X): s € [0]* A X € F A (s # % — min(X) > max(s))}, (9.19)

ordered by (s, X') < (s, X) iff s’ D 5, X’ C X, and s'\s C X. M is called
MATHIAS forcing for F.

9.9. Let F be a filter on w.
(a) Show that Mz has the c.c.c.
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(b) Show thatif G is M p-generic over V, then, setting xg = (J{s: 3X (s, X) €
G}, xg\X is finite for all X € F.

Let F be a non-trivial filter on w extending the FRECHET filter. Asuume that
either (a) F' is not an ultrafilter, or else (b) is an ultrafilter, but not selective.
Show that if G is M p-generic over V, then there is a COHEN real over V in
VIG].

Let U be a non-trivial filter on w extending the FRECHET filter such that U is
not a p-point. Show that if G is My -generic over V, then V[G] contains a
dominating real.



Chapter 10
Measurable Cardinals

Measurable cardinals (cf. Definition 4.54) and elementary embeddings induced by
them (cf. Theorem 4.55) play a crucial role in contemporary set theory. We here
develop the theory of iterated ultrapowers, of 0%, and of short and long extenders.

10.1 Iterations of V

Theorem 10.3 and Lemma 10.4 of this section will be used in the proof of Theorem
13.3.

Definition 10.1 Let « be a measurable cardinal, and let U be a measure on «, i.e., a
< k-closed uniform ultrafilter on x. Let y be an ordinal, or y = co. Then the system

j:(Ma’naﬂ:a <B<vy)

is called the (linear) putative iteration of V of length y given by U iff the following
hold true.

(1) My=V,andif @ + 1 < y, then M, is an inner model.

2) fe < B <6 < y, then meg: My — Mg is an elementary embedding, and
Tlas = TTBs © Taf-

3) fa +1 < y, then Myy1 = ult(My; oo (U)) and mee41 is the canonical
ultrapower embedding.

4) If A < y is a limit ordinal, then (M, my):a < X) is the direct limit of
(Mg, mop:a < B < A).

The system .# is called the (linear) iteration of V of length y given by U if either y
is a limit ordinal or else the last model M, _ is well-founded (and may therefore be
identified with an inner model).

Notice that by (2), myq = id for all @ < y. Also, if we write Kk, = 7y (k) and
Uy = 1o (U), then
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184 10 Measurable Cardinals
M, &= “U, is a measure on ky.”

Therefore, (3) makes sense and is to be understood in the sense of Definition 4.57.
The requirement that the M, for « + 1 < y be inner models is tantamount to
requiring that they be transitive. For A < y a limit ordinal, the requirement that
(My,, map:a < A) is the direct limit of (M, mgg: a0 < B < A) means, by virtue of
(2), that M, = |J{ran(myp): @ < A}.

Definition 10.2 Let « be a measurable cardinal, and let U be a measure on «. Then
V is called iterable by U and its images iff for every y, if

I =My, oo < B <y+1)
is the (linear) putative iteration of V of length y 4+ 1 given by U, then .# is an

iteration, i.e., M, is well-founded (and may therefore be identified with an inner
model).

Theorem 10.3 Let k be a measurable cardinal, and let U be a measure on k. Then
V is iterable by U and its images.

Proof Let y be an ordinal, and let
My, mop:a < B <y+1) (10.1)
be the (linear) putative iteration of V of length y 4 1 given by U. Let
o V=X <1000 Vs

ﬁhere {k,U,y} C X, X is countable, and V is transitive. Let © = o’l(/c),
U =0 1U), andy = o_l(y). We may also set, for o € ran(o) N (y + 1),

Mo’*l(c{) = U_I(Ma),
and fora < B, a, B eran(o) N (y + 1),1
To-1@.o-1p) =0 (Tup)-
Then, from the point of view of V,

Moz <p<y+1)

is the (linear) putative iteration of V of length 7 + 1 given by U.?

I For a proper class X, we write o~ 1(X) for U{U_I(X NVy): XNV, eran(o)}.

2 We here use the fact that the ultrapower construction may also be applied with transitive models
of a sufficiently large fragment of ZFC. We leave the straightforward details to the reader.
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We shall now recursively, for « < ¥ + 1, construct embeddings
oa:ﬁa = Z1000 V
such that whenever @ < 8 <y + 1, then

OB OTMgp = Og. (10.2)

My M, M> Mg

1%

We set op = 0. Now let § < ¥, and suppose all o, @ < §, are already construed
such that (10.2) holds true forall < 8 < 6.

Let us first suppose § to be a limit ordinal, so that (M5 (nmg o < §)) is the direct
limt of (My: o < 8), (Tap:a < B < §)). We then define o5: Ms—>V by setting

—1
05(X) = 0g 0 T o5 (X)),

whenever x € ran(7ys). For every x € ‘M there is some « < & with x € ran(Tys),
and if x = Tys(x") = Tas(x”) with @ < «, then, using (10.2),

0a(x) = 0 (7,5 (X)) = 0y © Taa 0 Ty (x) = 05 (x").

This means that o is well-defined, and it is easy to verify that o5 is X'jgoo-elementary
and (10.2) holds true for alla < 8 < 6.

Now suppose § to be a successor ordinal, say § = § + 1. Set k¢ = 7oz (k) and
U, £ = nog(U ). We have that Ms = ult(Mg, Ug) which is given by equivalence
relations (mod Ug) of functions f € *¢ Mg M.

If ¢ is a Xjgpo-formula, and fi, ..., fr € “*Me N Mg, then we write Xy 7, . 5
for

(n<ke: Mgz = (1), ..., frm)}.

By Lo$’ Theorem 4.56, X, 1, € Ug iff
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Ms = fil, .- LfeD)-

Because 1\_45 and hence 05 is countabl& ag”Ug is a countable ﬂlbset of U. As U is
< Rj-closed, we thus have that () oz "Us # 0. Say p € ()0 Us.
We may now define o5: M5 — V by setting

os(LfD =o:(f)(p).

This is well-@efﬁed an_d X1000-elementary, because if ¢ is a Xgpo-formula and
f1,..., fk €§Mg N Mg, then

Mgy b= oAl [fiD) iff
Xo fiofi € Ug iff
peoeXy i) =1 <KV E 0 (fOM). ... 05 (fO@)} iff
VE @(o: (S0P, -, 0t (fi)(p)).

We use that uniformly over Mg and V, bounded quantification in front of a Xggo-
formula may be rewritten in a Xggp way. It is also easy to verify that o5 = 7gs 0 0%
and hence (10.2) holds true for allae < 8 < §.

But now the last model M 7 of (Ma, Tap:0 < B < yY+1)cannotbeill-founded, as

G;;Z M]; —))_7]000 V.

By the elementarity of o, the last model M,, of (M, mop: @ < B < y +1) cannot be
ill-founded either. This means that (10.1) is in fact a (linear) iteration of V of length
y + 1 given by U, as desired. g

Lemma 10.4 (Shift Lemma) Let k be a measurable cardinal, and let U be a normal
measure on k. Let
(Mg, Tapi < B € OR)

be the (linear) iteration of V.= My which is given by U. For a € OR, set U, =
oo (U) and ko = crit(Uy) = moq (k). Let « < B, and let o:oc — B be order
preserving. There is then a natural elementary embedding

n(fﬂ:Ma — Mg,

called the shift map given by g such that w3 (ko) = kg, andforall@ < &, 7y, (kg) =
Ky and in fact

784 0 Maa = 155 0 AT (10.3)

ap

for all B withran(p | @) C B < B.
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Proof by induction on f. The statement is trivial for 8 = 0, setting n‘fﬁ = id.
Now let 8 > 0.

Let us first suppose S to be a successor ordinal, say 8 = ,8 + 1. If B ¢ ran(gp),
then we may construe ¢ as a map from « to 8 and simply set n wp = TBp © n‘pf Let

us thus assume ,8 € ran(g), which implies that « is a successor ordinal as well, say
o =ao + 1, and ¢(@) = B. By (4.8), we have that

My = {mq,a (/) (kz): f: ka = Mg, [ € Mg}.

We may thus define 7774 by setting

7 (Taa () k@) = 755 0 T4 () 0cp),

where f € Mg, f:kg — Mg. This is well-defined because if i is a formula and if
f], ey fk € K&M&m Mg, then

My = ¥ (g (f1)(Kg), - . ., fi(kg)) <=
& < Ka Mg = w(fl(é),;--, Ji@)} € Ug <=

{6 < kg: Mg = 1//(71 (fl)(é) wfa(fk)(é))} i UF’ by using nwgra’ —
Mp = w(nm9 oty (fl)(/cﬁ) N FPCE Al (fk)(,(ﬁ))

It is easy to verify, using the inductive hypotheses, that 715/3 is as desired.

Now suppose S to be a limit ordinal. If ¢ is not cofinal in S, say ran(p) C E < B,

then we may construe ¢ as a map from « to B and simply set n wp =T jp © ¥ L Let

us thus assume that ¢ is cofinal in 8, which implies that « is a limit ordinal as well.
We then define 7, by setting


http://dx.doi.org/10.1007/978-3-319-06725-4_4

188 10 Measurable Cardinals

7 (T (X)) = Ty(@)p © 77(%[?@ (x).

Notice that each y € M, is of the form 7z, (x) for some @ < « and x € Mg.
Moreover, if gy (x) = 75, (x"), Where @ < @, then

Mg () = x" and Ty@p 0 TENT ()
_ pla
= Tp@)p © Tp@e@) © Tap@) X)

= Tp@)p © Ty [p (a ) © Taa' (x) by the inductive hypothesis,
= 7T<p(oz VB o ﬂa (p(a )(.x )

so that the definition of ngfﬁ (y) is independent from the choice of @ < o and x € My,
with y = mgq (x). It is easy to verify the inductive hypothesis. (I

We now aim to make a measurable cardinal « singular in a generic extension
without collapsing cardinals. The following definition is reminiscent of the definition
of MATHIAS forcing, cf. p. 176.

Definition 10.5 Let M be a transitive model of ZFC, and let x, U € M be such
that M = “U is a normal < k-complete uniform ultrafilter on «.” We let Py =
P = (P; <) denote the following poset, called PRIKRY forcing. We let p € P iff
p = (a,X) where a € [k]=“ and X € U, min(X) > max(a) (if a # @). We let
b,Y) <(a,X)iffb Da,Y C X,and b\a C X (in particular, b is an end-extension
of a).

If p = (a, X) € Pthena is called the stem of p. Notice that any two conditions with
the same stem are compatible, so that P has the x T-c.c. in M. Hence no M-cardinal
strictly above « will be collapsed by «.

Assume G to be P-generic over M. Let

A=|Jla:3X(a. X) € G}.

It is clear that A hast order-type < w; in fact, an easy density argument shows that
otp(A) = w and A is cofinal in «. In particular, ¥ will have cofinality w in M[G].

We shall now prove that no M-cardinal < « will be collapsed in M[G]. As « is
a limit cardinal, it suffices to prove that no M-cardinal A < x will be collapsed in
M|[G]. For this in turn it is (more than) enough to prove the following.

Lemma 10.6 Let M be a transitive model of ZFC, let k, U € M be such that U
witnesses that k is measurable in M, let P = Py, and let G be P-generic over M.
Then

(VoMo = (VoM.

Proof Let us first verify the following.
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Claim 10.7 (PRIKRY-Lemma) Forall p € P, forall formulae ¢, and for allnames t,
. T € MPU there is some q < p with the same stem as p deciding ¢(t1, ..., Tg).

Proof This is an application of ROWBOTTOM’s Theorem 4.59. Fix p = (a, X)
and ¢. (We shall supress the parameters 11, .. ., 7¢.) Let us define F: [X]~“ — 3 as
follows. Let b € [X]<“. We set F(b) = 0 iff there is no X such that (a U b, X) <
(a, X) and (a U b, X) decides @; otherwise we set F'(b) = 1 (resp., 2) iff there is
some X such that (¢ Ub, X) < (a, X) and (a Ub, X) forces that ¢ holds (resp., does
not hold).

As f € M,letY € U be given by ROWBOTTOM’s Theorem 4.59, i.e., for each
n < w, F is constant on [Y]<®. We claim that (a, Y) decides ¢.

Well, if not, then there are (b1, Y1) and (b3, Y3) such that (b1, Y)) < (a,Y),
(by,Y2) < (a,Y) and (b1, Y1) IF ¢ and (b2, Y2) IF —¢. By extending one of these
two conditions if necessary we may assume that

Card(b;) = Card(by) = Card(a) +n
for some n < w. But then
F(bi\a) =1#2=F(b\a),

although
bi\a, by\a € [Y]".

Contradiction! O

In order to prove Lemma 10.6, it now suffices to show that if A < «, then N
M[G] C M.Let f € 22N M[G], f = 7€. Let p IF 7: & — 2. It suffices to find
some g < p and some g € M withg It = g.

Let a be the stem of p. In virtue of the PRIKRY Lemma we may let for each & < A
be g¢ < p and hg € 2 such that a is the stem of g¢ and g¢ |- r(é) = (hg)v. If
qe = (a, Xg) for§ < Atheng = (a, ey Xe) < pandg I- T = g, where g € 2
and g(§) = hg forall § < . O

There is a version of Py, called tree PRIKRY forcing, where we don’t need to
assume that U is normal (in M) in order to verify the PRIKRY Lemma; cf. Problem
10.24, which produces a generalization of tree PRIKRY forcing.

Definition 10.8 Let M be a transitive model of ZFC, and let x, U € M be such that
U witnesses that « is measurable in M. A strictly increasing sequence (k,:n < o)
which is cofinal in « is called a PRIKRY sequence over M (with respect to U) iff for
all X € Z(k) N M.

X € U < {ky:n < w}\X is finite.
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By an easy density argument, if G is [P-generic over M and if (k,:n < o) is the
sequence given by the first coordinates of elements of G, then (k,:n < w) is a
PRIKRY sequence. Cf. also Problem 9.9 (b).

PRIKRY sequences are also generated by iterated ultrapowers, cf. also Problem
10.2 (¢):

Lemma 10.9 Let k€ be a measurable cardinal, let U be a measure on k, and let
(Mg, Tap:Q = B <w)

be an iteration of V.= My of length @ + 1 given by U. Then (1o, (k):n < w) is a
PRIKRY sequence over M, with respect to mwy,(U).

Proof This is an immediate consequence of the Shift Lemma 10.4. Let X C o (k),
X € M,,. Say X € ran(my,,,), where nop < . Letm > n > ng. Let p: 0 — w be
defined by

ifk <n

ok = [k+(m—n) itk > n.

By Lemma 10.4, cf. (10.3), 75, | ran(m,,) = id, so thatin particular 75, (X) = X.
But then
7on (k) € X = mom (k) = 70}, (w0 (k) € X.

‘We have shown that either {m, (k):ng < n < w} C X orelse {mo,(k):ng < n <
wlNX =0@. O

We shall prove the converse to the fact that if (x,:n < w) is the sequence given
by the first coordinates of elements of G then (k,:n < w) is a PRIKRY sequence. By
virtue of Lemma 10.9, this will mean that iterations produce PRIKRY generics.

Definition 10.10 Let (k,: n < w) be a PRIKRY sequence (with respect to U ). Define
G («,:n<w) to be the set of all ({x,:n < ng}, X) where ngp < w, X € U, min(X) >
Kng—1 (if ng > 0), and {k,:n > no} C X.

Theorem 10.11 (A. Mathias) Let M be a transitive model of ZFC such that M =
“U is a normal measure on k.” Let (kn:n < w) be a PRIKRY sequence over M with
respect to U. Then G (. n<w) 15 P-generic over M.

The proof will be given in Chap. 12, cf. p. 274 {f.

Theorem 10.12 Ler M be a transitive model of ZFC, and suppose that there is some
k € M suchthat M = “x is ameasurable cardinal, as being witnessed by the normal
measure U, and 2 > k™ T.” Let G be Py-generic over M. Then in M[G], SCH,
the Singular Cardinal Hypothesis, fails.

Proof M and M[G] have the same cardinals, and (Vo)™ = (V)M As « is
measurable in M, this implies that « is certainly a strong limit cardinal in M[G].
Therefore, by Lemma 4.16
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M[G] | k1) =2~ (10.4)

As k has countable cofinality in M[G],
M[G] | 2610 = 2% — . (10.5)

On the other hand, by hypothesis in M there is a surjection from £ (x) onto x+7,
so that with (10.4)

M[G] | k10 > o+, (10.6)

(10.5) and (10.6) yield a failure of SCH in M[G]. O

A model M which satisfies the hypothesis of Theorem 10.12 may be produced
with the help of iterated forcing starting from a model with a measurable cardinal
whose MITCHELL order (cf. Problem 4.27) has rank (2¢)T.

10.2 The Story of 0%, Revisited

0* is a countable structure which “transcends” GODEL’s Constructible Universe L
in a precise way, cf. Theorem 11.56. We first need to explain what we mean by
“0* exists.” For later purposes (cf. Theorem 12.27) we shall in fact introduce x* for
arbitray reals x.

We begin by introducing ¥'j-Skolem functions for J-structures.

In what follows, we shall only consider models of fe’ £ but what we shall say
casily generalizes to £ 4, 4 . Letus fix an enumeration (¢,:n < ) of all X;-
formulae of the language £ ;. We shall denote by "¢ ' the GODEL number of ¢,
ie., "' =niff ¢ = ¢,. We may and shall assume that ("¢, :n < w) is recursive,
and if ¢ is a proper subformula of ¢, then "¢ < "¢". We shall write v(n) for the
set of free variables of ¢;,.

Let M be a model of £ ;. We shall express by

M = pnla]

the fact that a: v(n) — M, i.e., a assigns elements of M to the free variables of
¢n, and @, holds true in M under this assignment. We shall also write |=1‘2,[1 for the
set of all (n, @) such that M = ¢,[a], and we shall write szlo for the set of all
(n,a) lzf,ll such that ¢, is a Xp-formula.

Lemma 10.13 Let M = J,[E] be a J-structure. Let N € M be transitive. For each

m < w, there is a unique f = me € M such that dom(f) = m and for alln < m,
if on is not a Xy formula, then f(n) =9, and if ¢, is a Xy formula, then

f(n)={ae"™N:(N; e, ENN) k= g,al}.
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Proof As uniqueness is clear, let us verify inductively that fn];’ € M. Well, fON =0e

M. Now suppose that £ € M.If g, is not Zo, then £, = fN U {(m, )} € M.

Now let ¢,, be Xo. We have that "™ N e M (cf. Corollary 5.18), and if
T={ae""N:(N:e, ENN) = gnlal}

thenT € Z(""N)N (X o)™, and thus T € M by Lemma 5.23. Therefore, f,flVH =
N U{(m, T)} e M. O
Now let @ (f, N, m) denote the following formula.

N is transitive Am < o A fis a function with domain m A Vn < m
((n="v, € v, someig, iy —> f(n)={ae " ™N:a,) € a;)HA

(n="v, € E7, someip — f(n) ={ae " ™N:a(v;,) € E})A
(n ="y A7, some Yo, Y —>

fmy={ae ™N:alo(yo) e f(Po) Aalo(yi) e FCYINHA
(n =", € v, ¥, some ig, i1, ¥, where ¢ is ¥y —>

f(n)={ae™N:3x € a(v;,)

@U{ig, )P Tv( e fOYHHA

(n="¢", some ¢, where ¢ isnot Xy — f(n) =0)).

It is straightforward to check that ® (f, N, m) holds (in M) if and only if f = fnllv .

Now Lemma 10.13 and the fact that every element of M is contained in a transitive
element of M (cf. Lemma 5.25) immediately gives the following.

Lemma 10.14 Let M = Jy[E]bea J-structure. Let ¢, be Xy, andleta: v(n) — M.
Then M = @yla] holds true if and only if

M E=3f 3N (ran(@) C N AO(f,N,n+ 1) Aa e f(n)),
which in turn holds true if and only if
M EVYfVN ((ran(a) C NAO(f,N,n+ 1)) > a e f(n)).

In particular, the relation |=AE,,O is AZIVI.

Theorem 10.15 The X-satisfaction relation |=f,1' is uniformly X f” over
J- structures M, i.e., there is a X1-formula @ such that whenever M = Jy[E]
is a J-structure, @ defines |=AE/,1 in that

(n,8) €=yl e= M = @(n, ).

Proof We have that M = ¢, [a] iff
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db e M 3(vjy, ..., vy, j), some vy, ..., v, j[n="T ... Ju, @ A
@;jis Xo A a, b are functions A dom(a) = v(n)A

dom(b) =v(j)ra=DbJv@m) A(j,b) e 'ZAE/IO]'

Here, l:f,,o is uniformly AII"I by Lemma 10.14. The rest is easy. O

If M is a J-structure, then & is a X'|-SKOLEM function for M if

h:(U (n} x "My > M,

n<w

where & may be partial, such that whenever ¢, = Jv;,¢; and a: v(n) — M, then

dyeM MEgpjlau{i )} vl
= M E gjlaU{(viy, h(n,a)} [ v(j)].

Theorem 10.16 There is a X1 SKOLEM function hyy which is uniformly X {v] over
J-structures M, i.e., there is a X1-formula ¥ such that whenever M = Jy[E] is a
J-structure, then ¥ defines hyy over M in that

y=hyn,a) < M =¥ (n,a,y).

Proof The idea here is to let y = hjs(n, @) be the “first component” of a minimal
witness to the X; statement in question (rather than letting y be minimal itself). We
may let y = hys(n, a) iff

3N 38 3R 3b, allin M, vy, ... vy, j). some o, ..., ik, j (N = Sg[E] A R =<k A
n="3v, ..., e; " Ap;is g Aa,b are functions A dom(a) = v(m)A
dom(b) = v(j) Aa=b | v(n) Aran(b) C N A (j,b) € =20 A
Vb € N((bis a function A dom(b) = v(j)Aa= b [ v(n)A
ran() C N Ab Rb) — =(j,b) € =20) Ay = b(u;) ).

Here, “N = Sg[E]” and “R :<g” are uniformly Z‘lM by Lemmas 5.25 (2)

and 5.26 (2), respectively, and |=1)f,10 is uniformly A{” by Lemma 10.14. The rest is
straightforward. O

If we were to define a X', Skolem function for M in the same manner then we
would end up with a X3 definition. JENSEN solved this problem by showing that
under favourable circumstances X, over M can be viewed as X'| over a “reduct” of
M, cf. Definition 11.7.

We also want to write /7 (X) for the closure of X under /4,7, more precisely:

Let M = J,[E] be a J-structure, and let X C M. We shall write
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har (X) for g™ ([ (i} x "™ X)).

n<w

Using Theorem 10.16, it is easy to verify that sy (X) <x, M. There will be no
danger of confusing the two usages of “hy;.”

Lemma 10.17 Let M = J,[E] be a J-structure. There is then some (partial) sur-
jective f:[a]~® — M which is Z’f"’, and there is a (partial) surjection g:a¢ — M
which is ¥ 11” .

Proof We have that s (o) <5, M, and hence hy (o) = M. Butitis straightforward
to construct a surjective g’: [a]<* — J,_,{n} x v(M ) which is Ef”. We may
thenset f =hy og'.

The existence of g now follows from Problem 5.18. (Il

‘We now introduce mice.

Definition 10.18 Let x C w. We say that the J-structure .#Z = (Ju[x]; €, U) is an
x-premouse (x-pm, for short) iff the following hold true.

(a) (Julx]; €) = ZFC™ (i.e., ZFC without the power set axiom) + there is a largest
cardinal, and

(b) if « is the largest cardinal of (Jy[x]; €), then .#Z = U is a non-trivial normal
< k-closed ultrafilter on k.

Notice that in (a) of Definition 10.18, we consider the reduct of .# with U being
removed. Also recall (cf. Definition 5.24) that a J-structure has to be amenable, so
that in the situation of Definition 10.18, forall z € Jy[x],zNU € J,[x]. J-structures
are models of Xy-comprehension and more, cf. Corollary 5.18.

Lemma 10.19 Letx C w. Let w: L[x] — L[x] be s.t. m # id. Let k = crit(r). Set
o =« andlet X e U iff X € P(k) N LIx] Ak € w(X). Then (Jo[x]; €, U)
is an x-pm.

Proof We show that (Jy[x]; €, U) is amenable, using what is sometimes referred
to as the “ancient KUNEN argument.” Let z € J,[x]. Pick f € Jy[x], fik — z
onto. Then y € z N U iff there is some § < «k such that y = f(§) € z and
ken(y)=n(f(&)) =n(f)&).Butmz(f) € L[x]. Hence z N U can be computed
inside L[x] from f and 7w (f). But of course, z N U C z € Jy[x], so that in fact
zNU € Jy[x] by Theorem 5.31. O

It is easy to verify that if x, 7, x are as in Lemma 10.19 then (J,[x]; €) &= ZFC
(cf. also Lemma 10.21 (h)).

We now aim to iterate premice by taking ultrapowers in much the same way as in
the proof of Theorem 4.55 and in Definition 10.1.

Definition 10.20 Letx C w, andlet . #Z = (Jy[x]; €, U) be an x-pm. We define the
(Xo-)ultrapower ulto (') of A as follows. Let k = the largest cardinal of J, [x]. For
f,g € “Julx]INJy[x] we write f ~ giff {& < «: f(§) = g(&)} € U, and we write
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fEgiff{§ <k:f(§) e g(€&)) e U. Welet[f] denote the ~-equivalence class of f.
We write [ f1€[g] iff f€g, and we also write [ f] € U iff {§ < «: f(§) e U} € U.
We let

ulto(2) = ({Lf1: f € “Julx] N Julx]}; € U).

We may define a natural map nij// 2 M — ulty(A) by setting nij// (x) = [cy], where
cx(&) =xforall & < k. ”U/// is called the (Xg-)ultrapower map.

If ulty(.#) is well-founded, then we identify it with its transitive collapse, we
identify [ f] with the image under the transitive collapse, and we idenitify 7= with the

composition of 7 with the transitive collapse.

In what follows, x and U are predicates which are supposed to be interepreted by x and
U, respectively (or, more generally, by z and U’, respectively, over Jylzl; €, U )}

Lemma 10.21 Let x C w, and let # = (Jy[x]; €, U) be an x-pm with largest car-
dinal «, and suppose that ultg(.#') be well-founded. Let 1 = 7 — ultg(A)
be the ultrapower map. Then:

(a) 7 is X elementary with respect to €, x, U ,

(b) 7 is cofinal, i.e. for all x € ultg(.#) there is some (transitive) y € .# with
x € m(y),

(c) mis X elementary with respect to €, x, U,

(d) m is fully elementary with respect to €, x,

) Jelx] <z, Jraolx],

) Pk)NH = P (k) Nulty(A),

() ultg(A) =a =«T, and

(h) « is inaccessible (in fact Mahlo) in both A and ulto(A).

Proof (a) We have the following version of Lo§” Theorem 4.56.

Claim 10.22 (Lo$ Theorem) Let ¢ (v1, ..., vk) be a Xo-formula in the language of
M, and let f1, ..., fx € “Jo[x] N Jy[x]. Then

ulto(A2) = o(Lfil, - kD) <
<kl Eo(fi€), -, fi6)} e U.

Notice that if ¢ is Xy, then {& < «:.# = o(f1(§), -, fr(§))} € Julx] by Xo-
comprehension, cf. Corollary 5.18, so that this makes sense. The proof of Claim
10.22 is analoguous to the proof of Claim 4.56, cf. Problem 10.6.

(b) Let x € ultg(#), say x = [f], where f € .#. We have that, setting y =
TC({ran(f)}), y € A and {&§ < k: f(x) € y} = k € U, so that by £.0§’s Theorem
1022 x = [f] € [¢y] = 7(y). By (a), 7w (y) will be transitive.

(c) Suppose that ulty(.#) = Ixe(x,w(ay), ..., w(ar)), where ¢ is Xy and ay,
...,ar € M. Let xg € ultg(#) be a witness. By (b) there is some y € .# with
xo € 7(y), so that in fact ulty(.Z) = Ix € 7 (y)p(x, w(ay), ..., n(a;)). By (a),
M= 3TAx € yo(x,ay,...,a),ie., A = 3Ixp(x,al,...,a).
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(d) This uses that J, = ZFC™, cf. Problem 10.6.

(e) This is immediate by (d).

OIEX € Pk)NA, then X = 7(X) Nk € ultg(.#). On the other hand, let
X = [f] € () Nultg(A). Setting Xo = {§ < ki € f(&)} fora < «,
(Xq:a < k) € #.Butthen X = {o < k: Xy € U} € 4 by Xy-comprehension,
cf. Corollary 5.18.

(g) As « is the largest cardinal of Jy[x] and J,[x] C ulty(.#), we must have that
o < kT in ulty(.#). Suppose that &@ < « in ultg(.#), and let f:x — J,[x] be
surjective, f € ultg(.#). Then Xg = {§ < «k:& ¢ f(§)} € ultg(#') and hence
Xo € Jylx] by (f). But then if &y < « is such that Xog = f (&), & € Xo iff
& ¢ f(&) = Xo. Contradiction!

(h) By the proof of Lemma 4.52. |

Corollary 10.23 Let x C w, let .# be an x-pm, and suppose that ulty(A) is well-
founded. Then ulty(#) is an x-pm again.

Proof We will prove a more general statement later, cf. Corollary 11.15. Let .#Z =
(Ju[x]; €, U), where « is the largest cardinal of J,, and write

T :n%:///—) ultg(A#) = (P; e U'),

where P is transitive.

We first aim to see that P = Jg[x] for some B, and for this in turn it suffices to
show that P = “V = L[x],” cf. p. 77 and Lemma 5.28 But by Lemma 10.21 (d),
7 is fully elementary with respect to € and x, so that this follows from J,[x] &=
“V = L[x]” by elementarity.

Let us show that (Jg[x]; U’) is amenable. Let 7 € Jglx]. By Lemma 10.21 (b)
there is some transitive y € Jy[x] such that z € 7w (y). We have that # = Ju u =
yNU. If ug is a witness to this fact, then ultg(.#) = 7 (o) = w(y) N U’. But then
zNU =zN @ (y)NU") =zNm(ug) € Jplx].

It is now straightforward to verify that 7 («) is the largest cardinal of Jg[x], and
that (Jg[x]; €, U’) = “U"is anon-trivial normal < 7 («)-closed ultrafilter on 77 (k).”

O

The following is in the spirit of Definition 10.1.

Definition 10.24 Let x C w, let .Z be an x-pm, and let « € OR U {oco}. We call
T = (M mijii < j < a) a (the) putative iteration of M of length a iff the
following hold true.

(@) Mo = M,

(b) ;1 = ultg(A;), mii41 is the ultrapower map, whenever i + 1 < «,

(c) the maps 7;;,i < j < a, commute,

(d) if A < « is a limit ordinal then (%, m;;:i < j < A) is the direct limit of
(M, miji < j <)), and

(e) foralli + 1 < «, .#; is transitive.
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It is easy to verify that if (.#;, m;;:i < j < «) is the putative iteration of the x-pm
A of length «, then every .#; (fori + 1 < «) has to be an x-pm (for successor
stages this uses Corollary 10.23; it is easy for limit stages).

Definition 10.25 Let x C w, let .# be an x-pm, and let « € OR U {c0}. A putative
iteration (.#;, m;j:i < j < a) is called an iteration iff either « is a limit ordinal or
o = 00 or « is a successor ordinal and the last model ., is transitive.?

Definition 10.26 Let x C w, and let .# be an x-pm. .# is called (Xy-)iterable iff
every putative iteration of .# is an iteration.

Lemma 10.27 Let x C w, and let .# be an x-pm. Suppose that for all o < wy, if
T is a putative iteration of M of length a + 1, then 7 is an iteration. Then M is
iterable.

For the proof of Lemma 10.27, cf. Problem 10.1.

Definition 10.28 Let .#Z = (Jy[x]; €, U) be an x-pm. U is called w-complete iff
forall {X,:n <w} C U,(), -, Xn # 9.

The point is that not necessarily (X,:n < w) € Jy[x].

Lemma 10.29 Let x C w, and let # = (Jy[x]; €, U) be an x-pm such that U is
w-complete. Then M is iterable.

n<w

Proof This proof is similar to the proof of Theorem 10.3.) Let .7 be a putative iteration
of .4 of length B + 1. Let w: V — Vp, where @ is large enough, V is countable and
transitive, and 4, 7 € ran(7). Set 4,7 =n (M, T). Then T is a putative
iteration of ./ of length 8 + 1 < w;. Assuming that .7 is not an iteration, .7 is not
an iteration either.

Let 7 = (M, 7 i< =< B). We shall now recursively construct maps
oi://l_i —5, A fori < ast o = = o0j omj wheneveri < j < a. We let
op=m | # . The construction of o, for limit A < « is straightforward, cf. the proof
of Theorem 10.3.

Now suppose o; has been constructed, i < «. Let i be the largest cardinal of ./,
and let « be the largest cardinal of .#;. Let M; = (Jy; €, U). As U is w-complete,
Noi”U # @. Let & € () o;”U. We may then define o; 1 Miy1 — M by setting
oi+1([f]D = oi (f)(&). Notice that we have

z+l Eolfol,....[fi-1]) =
. (& <i: l=¢(f0(€)  fic1©)} e U =
& <kl = 9oi(fp)E),. -~»fk—1(§))} €0l
M= 90i(f0)E), ..., 0i(fr-1)(§))

whenever ¢ is Xy. B _
This finishes the construction. Now notice that og: M 5= M witnesses that ./ f;
is well-founded. This gives a contradiction. O

3 By our convention, cf. Definition 10.20, this is tantamount to saying that .#,_1 is well-founded.
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Definition 10.30 Let x C w, and let .# be an x-pm. Then ./ is called an x-mouse
iff A is iterable.

We should remark that the current-day inner model theory studies mice which are
much more complicated than those objects which Definition 10.30 dubs “x-mice.”
But as such more complicated objects won’t play a role in this book, Definition 10.30
fits our purposes here.

Lemma 10.31 Suppose that there is a measurable cardinal. Then for every x C w
there is an x-mouse.

Proof Let k be a measurable cardinal, and let U be a normal measure on «. Let
m:V — M be as in Theorem 4.55 (3). Fix x C w. We may derive an x-pm (Jy[x]; €
,U) from 7 [ L[x] — L[x] as in the proof of Lemma 10.19. In particular, X € U
iff X € (k)N Lx] Ak € w(X). As k € w(X) is equivalent to X € U, so that
U C U,and as U is < k-closed, U is clearly w-complete in the sense of Definition
10.28. Then (Jy; €, U) is iterable by Lemma 10.29. O

The following Lemma is shown in exacty the same manner as is Lemma 10.4.

Lemma 10.32 (Shift Lemma) Let x C w, and let # = (Jy[x];€,U) be an
x-mouse. Let
(M, Tap:t < B < o0)

be the iteration of M = My of length oo. For a € OR, set Uy, = moq(U) and
ko = crit(Uy) = moq (k). Let @ < B, and let ¢: o0 — B be order preserving. There
is then a natural elementary embedding

n(fﬂ:Ma — Mg,

called the shift map given by ¢ such that ntfﬂ (ko) = kg, andforalla < c, ntfﬂ (kg) =
Ky and in fact

nfﬁ 0 gy = TG 0 1@ (10.7)

o

for all B withran(p | @) C B < B.

Lemma 10.33 Let x C w, and let # = (Jy[x]; €, U) be an x-mouse. Let

M = (Tl €. 0) = by (@) <3, M.

Then A ¢ Jylx].

Proof To begin with, with the help of Lemma 5.28 it is straightforward to verify that
M is again an x-premouse.

Claim 10.34 ./ is an x-mouse.
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Proof Suppose that (,//Zi, wij:i < j < y) is the putative iteration of //Zo = M of
length y + 1. We aim to see that ./, is well-founded.

Let (A, mij:i < j < y) be the iteration of .#y = .# of length y + 1. Let
us write ///_, = (Jglxl; €, Ui), M; = (Jy;1x]; €, U;), and let us write k; for the
largest cardinal of AM; and «; for the largest cardinal of .#;. We aim to construct
Xo-elementary embeddings o;: .#; — .#;,i < y,suchthatforalli < j <y,

Tjjo0; =0j 07'_[,‘j. (10.8)

We set 09 = o. The construction at limit stages is straightforward in the light of
(10.8), so let us assume that o; is already constructued, i < y. In much the same
way as in (4.6), cf. p. 54, we have that

My = Fii1 () &): f €51l O M and
M1 = A1 () f €ty 0 M)
We then set
Oi1 (i1 () (i) = miir1(0; () (ki) (10.9)

for f ekf///_i ﬂ///_i.Wehavethatifwis Yo and fo, ..., fk—1 € ’?i///_,- ﬁ//zi,

Miv1 E oTiiv1 (f0)(Ki), - .., Tiip1 (fimD (k7))
& <kirdli = o(fo), ..., fic1E)} e Ui
(& <kirdli Ee0i(f0)E),....0i(fi—1)(E)} € Ui
Miv1 B @@it1(0i(f0) (i), - - oy Tii1 (0 (fr—1)) (i),

sothat ;4 is Well-deﬁyed and Xy-elementary. By (10.9), mjj 11 00; = 0j41 07ji+1.
Aso,: M, — M, #, inherits the well-foundedness from .#,, . O

We thus have an iteration (//l_,-, mijii < j < 00)of M of length OR, and still
using the notation from the proof of Claim 10.34 we have that {k;:i € OR} is a class
which is club in OR, and by Lemma 1.31 (g) and (e),

Jpin[x] E Bi = &7 and Jg, [x] <z, Jiy, [X]
for every i € OR. This implies that
Lix] B =& and Jg [x] <x, Llx] (10.10)
forall i € OR.

By Lemma 10.29 (h), &; is inaccessible in Jg,, [x], i.e., also in J¢,_, [x] and thus
in L[x] by (10.10). On the other hand, .# is countable (in every transitive model of


http://dx.doi.org/10.1007/978-3-319-06725-4_4

200 10 Measurable Cardinals

ZFC which contains it). Thus .# ¢ L[x]. But this trivially implies that .# ¢ Jo[x],
as desired. O

Lemma 10.35 Letx C w, andlet # = (Jy[x); €, U) and N = (Jg[x]; €, U’) be
two x-mice. Let (M;, mij:i < j < 00) and (N;, 05511 < j < 00) be the iterations
of My = M and Ny = N, respectively, of length co. There is then some i € OR
such that

N = M or M = N.

Proof Let us write .#; = (Jy,[x]; €, U;) and A} = (Jg[x]; €, Ul.’), and let us also

write «; for the largest cardinal of J,, [x] and A; for the largest cardinal of Jg, [x].
Let

_ X

(Jalx]; €, U) = h 4 (ko) <z, A . (10.11)
It is easy to see that y must be the identity, so that «q is also the largest cardinal of
Jz[x]and kg < @ < «. As in the proof of Lemma 10.33, we get that ¢ = (o) TE],
But certainly o < (K0)+L[x], as ko is the largest cardinal of Jy[x]. Therefore @ =
o = (k0) 7L so that (10.11) in fact gives that

M = h_y (ko).

The same argument shows that in fact for every i € OR,

M = h_g (k) o = ()T A= h (), and B = () TEPL(10.12)

Moreover, the maps 7;; and o;; are X'-elementary by Lemma 10.21 (c), so that they
preserve the X'1-SKOLEM function. Therefore, if i < j € OR, then

S

i

s
RS

,///i h,//[j(lci) < %j and% hb/i_/,‘()hi) < </V] (10.13)

In particular, 7;; is the same as the inverse of the collapsing map of / (ki) and o
is the same as the inverse of the collapsing map of h_y: (4;). (10.13) implies that if
i < j € OR, then

i & h g (ki) and A; & h_y: (Ai), (10.14)
as «; is the critical point of 7r;; and A; is the critical point of o;;.
By the proof of (4.6), cf. p. 54, we have that every element of .#; is of the form
wii+1(f)(k;) where f € Jy, N Jy,, so that
Mty = h g, (tan(ii1) U (ki) (10.15)

By (10.13)
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ran(wii+1) = h g, (ki),
which together with (10.15) yields that for all j > i,

Ti+1j

AMivi =hg,, (6 UlGY = hog, (6 UG}
and therefore
Kit1 C hg, (ki Ufki}). (10.16)
Combining (10.14) and (10.16), we get that for every j,
{ki:i <j}={lc<Kj:KZK0/\K¢hj/j(K)}, (10.17)
and by the same reasoning
hiti < jl={A <Ajih =20 AL & h (M} (10.18)
Now let us pick sequences (ix:k < - w) and (jx:k < w - w) such that for
all k < w- o,k < Aj, < ki, and if v < @ - o is a limit ordinal, then i, =
supy ., ik = supy., jk = jv. Notice thatx; = A; forevery limitordinal v < w- w.
Write i* = i = jowand i = kjx = Aj+. We have aj+ = u ¥ = B by (10.12).
Set
A ={k;,1v < - wis a limit ordinal}.
By the proof of Lemma 10.9, if X € £(u) N Jy,. [x], then
X € U < A\ X is finite <= X € Ul..
This shows that

M = oy [x]; €, Up) = (g [x): €, Ul) = . (10.19)

Let us assume that k9 < A¢. By (10.17) and (10.18) applied to j = i* there is
then some i such that Ay = k;. But then by (10.13)

TTi%

dOi*
N =M = hy(ho) =h g, (k) = M,
so that A" = ;. Symmetrically, if 1o < o, then there is some i with .Z = 4;.

Corollary 10.36 Let x C w, and assume that there is an x-mouse. There is then
exactly one x-mouse # such that

M =h g (), (10.20)
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and if A is any x-mouse, then there is some y + 1 such that if (#;, Tl < j<y)
is the iteration of My = M of length y + 1, then M, = N .

Proof Let .4’ be any x-mouse, and let

= h.g (),

where .# is transitive. As o is Xj-elementary and thus respects the X'|-SKOLEM
function, we must have that (10.20) holds true.

Let .4 be any x-mouse, and let A be the largest cardinal of .#". Suppose that
8 > 0 would be such that if (47, 0;;:i < j < §) is the iteration of .4 of length
8 + 1, then .# = #5. Then as in (10.14) in the proof of Lemma 10.35, X ¢ h_4; (A)
and thus A ¢ h_j (w) = .4, which is nonsense. By Lemma 10.35 we must therefore
have some y such that if (./#;, m;;:i < j < y) is the iteration of .#y = .# of length
y + 1, then M,, = _#". Moreover, let k be the largest cardinal of .Z. If y > 0,
then as in (10.14) in the proof of Lemma 10.35, « ¢ h///y (k),and thus k ¢ h_y (w).
This means that if we assume in addition that .4~ = h_y (w), then y = 0, so that
N =y = M. O

Definition 10.37 Letx C . By x¥ (“x-sharp”) we denote the unique x-mouse .#
with .# = h_y(w), if it exists. We also write 0% (“zero-sharp™) for ¢*.

In the light of Lemma 10.35, it is easy to verify that x* is that x-mouse whose
largest cardinal is smallest possible among all x-mice.

Via GODELization and as x* = h # (), the ¥-theory of x*, call it Th = x*),
may be construed as a set of natural numbers. By Lemma 10.27 and with the help of
Lemma 7.17, it is not hard to verify that {Thy, (x#)} is 1'[2l (x). In this sense we may
construe x* itself as a 1721 (x)-singleton, cf. Problem 10.7.

Definition 10.38 Let W be an inner model. W is called rigid iff there is no non-trivial
elementary embedding w: W — W.

By Theorem 4.53, V is rigid.

Theorem 10.39 (K. Kunen) Let x C w. Suppose that L[x] is not rigid. Then x*
exists.

Proof We shall make use of Problem 10.10. Let us fix an elementary embedding
m:L[x] — L[x], m # id. Let « be the critical point of 7, and let U = {X €
P(k)NL[x]:x € m(X)} be the L[x]-ultrafilter derived from 7 as in Lemma 10.19.
Setting o = k TLIX] we know that (Julx]; €, U) is an x-pm (cf. Lemma 10.19). In
order to prove that x* exists, it suffices to verify that (Jy[x]; €, U) is iterable.

In much the same way as on p. 55, we may factor w: L[x] — L[x]asw = komy,
where my: L[x] — ult(L[x]; U) is the ultrapower map (cf. Problem 10.10) and
k([ flu) = n(f) (k) forevery f € “L[x]NL[x]. We thus have ult(L[x]; U) = L[x],
and we may and shall as well assume that k = id and 7y = 7.
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Let I' be the class of all strong limit cardinals of cofinality > (2¢)*. By Problem
10.10 (d), we shall have that (1) = A for all A € I" (this is why we opted for
T =my).

Let u be any ordinal, and let o: L[x] — L[x] be any elementary embedding with
u = crit(o). Then we write

U(o) ={X € Z(w) NLIx]:n € 0 (X)}

for the L[x]-ultrafilter derived from o. (So U = U(r).)
An example for how to obtain such a situation is when

Lix] = hrp(uUT) < Lix] (10.21)

and i ¢ hrp(n U I'). For the purpose of this proof, let us call an x-pm .# =
(Jplxl; €, U "y certified iff the following holds true. If & denotes the critical point of
U’, and if o is then as in (10.21), then ¢ hpp (U ') and U’ = U (o).

If o: L[x] — L[x]is an elementary embedding with critical point u, then

L
Aod: LIx] > uo) Llx]

is the associated ultrapower map (cf. also Problem 10.10); we also write 7t/ (o) rather

than nlL/Ef,]), and we write k(o): L[x] — L[x] for the canonical factor map obtained

as on p. 55 such that
o =k(0) 0 Tu(e), (10.22)
ie. k(@) flue)) = o (f)(w) for f € “L[x] N L[x]. Notice that
k(o) | (u+1) =id, (10.23)

because k(0)(§) = k(0)(my) (&) = 0(§) = & forall § < w and k(o)(n) =
k(o) ([idly ) = o @(d)(un) = p.

Claim 10.40 Let o be as in (10.21). For every X € Z2(u) N L[x] there is some
i <wandsomea e [pwU I~ suchthat X = hrpy(i,a) N Q.

Proof If X € & (u) N L[x], then there is some i < w and some a € [u U I']<?

such that o (X) = hp[x)(i, ). But X = o(X) N u, so that we must have that X =

hL[X] (17 a)

N . (I
In (¢) of the following Claim, ulto(L[x]; U’) is as defined in Problem 10.10.

Claim 10.41 Let .# = (Jglx]; €, U’) be an x-pm, and let v is the critical point of
U’, where . < (2C4N+ iy V. The following are equivalent.
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(1) A is certified.
(i) Foralli <wanda e [pU T hy@,a)Np e U < u € hrix(, a).
(i) B = T and ultg(L[x]; U') is well-founded (equivalently, transitive and
thus equal to L[x]).

ProofLet o be as in (10.21).

(i) = (ii) Using Claim 10.40,leti < wanda € [uUI']=“.Let X = hrq(@i, a)N
. We have that X € U’ = U(o) iff u € o(X) N (u + 1), which by (10.23) is
equivalent to € my/(X) N (u + 1). But wy/ (X) = hrpy(i, @) Ny (), as the
elements of a are fixed points under 7rys (cf. Problem 10.10 (d)), so that X € U’ is
equivalent to p € hp (i, @), as desired.

(i) = (i) It is easy to see that (ii) implies that . = crit(o): If u = hp[x(, @),
where i < wanda € [p U I'?, then u = hppy@i,a) Nu € U’ would give
W € hpx(i, @) = u, a contradiction!

Nowlet X € Z(u)NL[x].ByClaim 10.40 thereis somei < wandsomea € [uU
I'T<®suchthat X = hppy(i,@a)Np. We getthat X € U’ iff u € hpp (i, @)N(r+1),
whichis equal to 7wy (o) (hr(x] (i, @) M) N (e +1), as the elements of a are fixed points
under 77y (5); but by (10.23), 7y (o) (A @, @) M) N(n+1) = mye)(X)N(nw+1)
is equal to o (X) N (u + 1), so that X € U’ is equivalent to X € U (o), as desired.

In particular, U(o) C Jg[x] (as .# is a J-structure), which implies that g >
wtt and thus g = p il

(i) = (iii) If .# 1is certified, then U’ = U (o), which immediately gives that
ultg(L[x]; U") must be well-founded.

(iii)) = (ii) Let mys: L[x] — ¢y L[x] be the ultrapower map, and let i < w
and a € [u U I'1"“. As the elements of a are fixed points under 7/, we get
that hppy(i, @) Np € U iff p € myr(hppg(, @) N p) = hppg@, @) Nry (p) iff
W € hr(i, @), as desired. O

Let us now return to the x-pm (Jy[x]; €, U) isolated from & = 7y above. Let y
be a countable ordinal, and let us suppose (.#;, 7;j:i < j < y) to be the putative
iteration of .Zy = (Ju[x]; €, U) of length y + 1. In the light of Lemma 10.27, it
suffices to show that ///V is transitive. We show:

Claim 10.42 Every #;, i < vy, is transitive and in fact certified.

Proof Of course, if i < y, then .#; is trivially transitive by the definition of
“putative iteration.”

That .#y = (Ju[x]; €, U) be certified follows immediately from (iii) = (i) of
Claim 10.41, applied to 7 = my.

Let us now suppose that i < y and that .#; is certified. We aim to verify that
M 41 18 transitive and certified.

Let us write .#; = (Jy[x]; €, U;), and let «; be the critical point of U;. By
(1) = (iii) of Claim 10.41, ultg(L[x]; U;) is equal to L[x], so that the ultrapower
map nll}i[x] = my; (cf. Problem 10.10) maps L[x] to L[x]. It is easy to verify that
the universe of .#;11 = ultg(.#;) is isomorphic to my; (Jy, [x]). This is because
if [f1lu, € 7y, (Jo;[x]), where f € i L[x] N L[x], then [f]y, = [f']y, for some
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[ € X Jo, X1 0 Joy, as & = &;7" is regular in L[x]. (cf. Problem 10.10 (b).) In
particular, .#; 1 is transitive.
Letusnow write .#; 11 = (Jy,,,[x]; €, Uiy1) and letk; | denote the critical point
of Uj4+1. We aim to use (ii) = (i) of Claim 10.41 to verify that .#; 1 is certified.
Letusfix j <wanda € [kj41 UT']"®. Letag € [xj+1]°“ and a; € [I']~“ be
such thata = ap U ay. Let a9 = [ 1y, = 7y, (f)(k;), where f:x; — [i;]¢3d(@0),
f € L[x].
Let g:x; —> P(k;), g € L[x], be defined by

gm) =hr(j, fmUar) Nk;
for n < k;. Using the L.o§ Theorem and the fact that the elements of a; are fixed
points under 7y, it is straightforward to verify that [g]y, = hr[x(j, @) Nkjy1.
We now get that (i, Nkit1 € Ui iff {n < ki 1 g(n) € Ui} € U;.
Applying (i) = (ii) of Claim 10.41 yields that this is equivalent to

{n<ki:ki€hpp(j, f(mUap}el;,

which by X € U; iff k; € ny,(X) for all X € Z(«;) N L[x] and the fact that the
elements of a; are fixed points under 7y, is in turn equivalent to

Kit1 € hp(J, Ty, () ki) Vay) = hrx(j, @), (10.24)

as desired.

Now let A < y be a limit ordinal, and suppose that every .#;, i < A, is certified.
We first need to see that ., is well-founded.

Fori < X, letus write #; = (Jy, [x]; €, U;), and letk; = crit(U;). Because every
M, i < A, is certified, by (i) = (iii) of Claim 10.41 we know that the iteration
map 7;;: H; — #; extends to an elementary embedding from L[x] to L[x], which
we shall denote by 77;;, foralli < j < A. (cf. Problem 10.10.)

Let us also write k, = sup, _, k;. Fori < A, let let

Lix] = hrpg(ki UT) < Lx]. (10.25)

If i < A, then .#; is certified, so that k; = crit(o;) and U; = U (o;).
Fori < j < A we may define n;;: L[x] — L[x] by
T (x) = aj_l 0 0y (x).

This is well-defined and elementary: notice that if i < j < A, then ran(o;) =
hii U C /’lL[x](Kj ur)= ran(o;).

Claim 10.43 Ifi < A is a limit ordinal, then (L[x], (nl,*x:i < )_»)) is the direct limit
of (L[x1:i < A), (ni’;.:i < j < X)). Moreover, ifi < j < A, then n;} = TTjj.

Proof The first part trivially follows from the fact that for a limit ordinal A < A,
ran(o3) = hpp ;s UTN) = Ui<X hppgk UM = Ui<X ran(o;).
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As for the second part, it therefore suffices to prove this for j =i + 1 < A.
hyp (i U {mi} UT)

< Ihy(Ur) < h(aUr) < < k(g Ul) < L
o; Al Oit1 ey
— L] —— L[{ " Llx
T i+1 1A
Il
it
We first verify that
hipp (ki1 UT) = hrpe(kp +1010). (10.26)

To show this, let £ < «;4+1. There is some f:x; — k;, f € L[x], such that § =
[flu, = Tiiv1(f) (ki). As A is certified, (the proof of) Claim 10.40 yields some j <
wand some a € [k; U I']=“ such that f = hpx(j, @) | ;. As the elements of a are
not moved by i 41, Tii+1(f) = hrx(j, @) | ki+1. Butthen & = ;41 (f) (ki) =
hpx(Jj, @) (ki) € hypx)(k; +1U I"). This shows (10.26).

Let us now define

Fii1 () ) B 7 (), (10.27)

where f:x; — L[x], f € L[x]. Let E be either = or €, and let f:x; — L[x],
g:ki — L[x], f, g € L[x]. We then get that

T (KD ET] () () <= ki € )i (1 < ki f(E)Eg(E)))
ki €0, 0oi({E < kit fE)EE)})
= ki €oi({E < kit fE)EZE)))

&k e T (& < kit FEEE))

= Tii1 (KD Emii+1(8) (k)

The equivalence marked by (*) holds true as o; witnesses that .#; is certified.
Every element of L[x]is of the form 77;; 41 (f) (x;) where f:x; — L[x], f € L[x].
By (10.26), ran(o;+1) = hp[x)(ran(o;) U {k;}), so that every element of L[x] is also
of the form nf;H(f)(/c,-), where again f:k; — L[x], f € L[x]. By the above
computation, y, as given by (10.27), is thus a well-defined e-isomorphism of L[x]

with L[x]. But this now implies that 77;; 4| = rr;:.H. O

We now easily get that ., is transitive, as its universe is equal to 7oy (Jy [x]).
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In order to show that ./ is certified, we use (ii) = (i) of Claim 10.41.

Letusfix j <wanda € [k, UT']~?.Letag € [«,]~” and a1 € [I"]=* be such
thata = ag U aj. Leti < A be sufficiently big such that a9 € [«;]=“. The elements
of a are then fixed points under 7;; 1. We then get that iz (j, &) Nk, € U, iff
hrx(j,a) Nk; € U; by applying m;; C iy, iff k; € hix(j,a), by (i) = (ii)
applied to ./, iff ;. € hp[x(j, @) by applying 7;,, as desired. O

It is not hard to see now that Lemmas 10.32 and 10.35 and the proof of Theorem
10.39 yields the following.

Corollary 10.44 (J. Silver) Let x C w, and suppose that x* exists. Let (A, miji <
j € OR) denote the iteration of x* of length 0o, and let k; be the largest cardinal of
M;, i € OR. The following hold true.

() Lx] = hrp({xi:i € OR}).
(2) Let ¢ be a formula, letk < w, and leti; < ... <ipand j1 < ... < ji. Write
i* = min({iy, j1}), and let z € Jy,[x]. Then

Lix] E oz, ki, ..., ki) <= LIx]1 = oz, k..., K.

(3) Let e:OR — OR be order-preserving. Then m,: L[x] — L[x] is an elementary
embedding, where 1, is defined by

(M, (Kiyy oo ki) = b, (Key)s - - -5 KeGy))),  (10.28)

fori, k < w.

) ki & hppo(ki Ulkj:j > 1i}) foreveryi € OR.

(5) Let w: L[x] — L[x] be an elementary embedding. Then there is some order-
preserving e: OR — OR such that 1 = m,, where 1, is defined as in (10.28).

Proof (1) Suppose that L[x] # hpx({k;:i € OR}). Let « be the least ordinal such
that k & hpx({«;i:i € OR}), so that « is the critical point of

m: LIx] = hppg({kizi € OR}) < Lix].

If # = (Jylx]; €, U) is derived from 7 as in the proof of Lemma 10.19, then the
proof of Theorem 10.39 shows that .# is an x-mouse. By Lemma 10.35 and the
definition of x*, cf. Definition 10.37, we must have x = k; for some i € OR. But
then trivially ¥ € hp[y)({k;:i € OR}). Contradiction!

(2) Fori < j, mj | x; = id and m;;(k;) = kj, which gives that J,,[x] <
7ij (J [x]) = JKj [x]. This immediately yields

Ji; [x] < L[x] (10.29)
for every i € OR.

Now let £ = max{iy, ji}, and write A = £ - (k 4 1). It is easy to see that there
is an order preserving map ¢:ix +1 — A with ¢ [ iy = id and ¢(i,) = £ - p for
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p=1...kegolip=idand i, +&) =U-p)+&forp=1,...,k—1
andip +& < ipy1,0r p=kand& = 0. Analoguously, there is an order preserving
map ¢*: jix +1 — A with ¢* [ jj =id and ¢*(j,) =€ - pforp =1, ...,k With
the help of (10.29) and the Shift Lemma 10.32 we then get that

L[X] '= (P(Z: Kipsovns Kik) — JK,'kJr] [-x] |= ‘P(Z, Kipyoons Kik)
— JKA[X] '= @(Z, LA IR Ké-k)
<= JKjk+1[x] E o, K, kG
<=> L[x] '= (/)(27 KJ[’ AR Kjk)’
as desired.

(3) This is immediate by (2).
(4) Fix i € OR. Suppose that k; € hyjx({kj: j #i}), say

« 3k
ki = hpp G Kiys oo Kips Kipyys - - Ki)),

where i* < wandiy < -+ <ip, <i <ipp1 < -+ < i;. Using (2), we may then
derive both

-k

ki =hpp ™, (Kiys oo Kipy Kipy 415 - - - Kig41))

and

« %k

Kit1 = hpp) @, (Kipy ooy Kiys Kipy 10 -+ Kig1))s

which is nonsense. Therefore, «; ¢ hpp({cj: j # i}).

But then if « is the least ordinal with « ¢ hp(y({k;: j # i}), then k = «; for
some j € OR as in the proof of (1), and hence j = i, i.e., k = «;. We have shown
that

ki € hppUej:j #1}) = hppgle Ul j > i)).

(5) By (1), it suffices to prove that for every i € OR there is some j € OR with
(ki) = k;. Letus fix i € OR, and let us write k = 7 (x;). Let

L[x] é hrp((c + 1) Uran(r)) = hrpg((c + 1) U {m(k;): j € OR}) < L[x].

Let A be a limit ordinal with k, > «. Leti* < w, g € [x; + 1]°%,and i < €| <
<y < A=< dlpp1 < ... <L M hppgGF, ke, ..., ke )) < K, then by (2)
we must have that
hopa (™, keys o Kg)) < Key+1s

and therefore
hpp (ki + D) Ukey, .o ke D) N C ket

so that by the elementarity of 7,
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hpp (e + 1D Ul (key), ... wkg)D) N o) C ke, +1).
This implies that if 77, C «;, then
hpp((e +1) U{m(ke): € € OR}) N (k;) C k. (10.30)
If in addition «;, is a cardinal (in V'), so that {K]j=<)»} = k;, then
otp(hrx)((k + 1) U {m(ke): £ € OR}) Nmw(ky)) = k.. (10.31)

(10.30) and (10.31) together imply that o~ ! o 77 (k3) = K.
Let x = o' om: L[x] — L[x], so that x (k;) = k. If k # kj forall j € OR,
then by (1),

K =hpG* ke, Kkg)) (10.32)

for some i*, k < w and n € [«]=“. By (2), we may assume here that every Ke,s
p=1,...,k,is acardinal (in V) above x with n”lcgp C k¢, SO that X(K(p) = K¢,
As x (ki) = Kk, (10.32) and the elementarity of x then yield that

I < ki ki =hopg O ke, k)

This contradicts (4)! ([l

In the light of Corollary 10.44, the club class {k;:i € OR} is called the class
of SILVER indicernibles for L[x]. Theorem 10.39 and Corollary 10.44 give that the
existence of x* is equivalent to the non-rigidity of L[x]. JENSEN’s Covering Lemma,
cf. Theorem 11.56, will produce a much deeper equivalence.

10.3 Extenders

We need to introduce “extenders” which generalize measures on measurable cardi-
nals, cf. Definition 4.54, and which allow ultrapower constructions which generalize
the one from the proof of Theorem 4.55, (1) = (3), cf. Theorem 10.48. They will
be used in the proof of JENSEN’s Covering Lemma, cf. Theorem 11.56, as well as in
the proof of projective determinacy, cf. Theorem 13.7.

For the sake of this section, by a “transitive model M of a sufficiently large
fragment of ZFC” we mean a transitive model M of the statements listed in Corollary
5.18, i.e., (Ext), (Fund), (Inf), (Pair), (Union), the statement that every set is an
element of a transitive set, Xy-comprehension, and “VxVy x x y exists,” together
with (AC) in the form that every set can be well-ordered. We allow M to be a model of
the form (M; €, Ay, ..., Ay),where A; C M=%, 1 <i < n, are predicates, in which
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case we understand Xy-comprehension to be Xy-comprehension in the language of
(M; e, Ay, ..., Ay) (whichimplies that (M; €, Ay, ..., A,) be amenable, cf. p. 71).

In practice, the results of this section will be applied to models M which are
either acceptable J-structures (cf. Definitions 5.24 and 11.1) or to inner models (cf.
Definition 4.51).

Definition 10.45 Let M be a transitive model of a sufficiently large fragment of
ZFC. Then E = (E :a € [v]=%) is called a («, v)-extender over M with critical
points (g a € [v]=?®) provided the following hold true.

(1) (Ultrafilter property) For a € [v]=“ we have that E, is an ultrafilter on the set
P ([11a]1°%4@) N M which is < k-closed with respect to sequences in M, i.e.,
if o < kand (X;:i < o) € M is such that X; € E, for every i < «, then
N;<s Xi € E4. Moreover, u, is the least u such that [n]C¥d@ ¢ E,.

(2) (Coherency) For a, b € [v]<® witha C b and for X € 2 ([11,]°*4@) N M we
have that

X € E, <= X ¢ E,.

(3) (Uniformity) pic) = k.
(4) (Normality) Leta € [v]<? and f: [j1q]¥4@ — pu, with f € M. If

{u € [a] @ f () < max(u)} € Eq
then there is some S < max(a) such that
{u e [Ma]Card(au{ﬁ}): fa,au{ﬁ}(u) = uc/;U{ﬁ}} S Eau{f}}-

We write o (E) = sup{u, + l:a € [v]=®}. The extender E is called short if
o (E) = k + 1; otherwise E is called long.

This definition as well as the discussion to follow makes use of the following
notational conventions. Letb = {1 < ... < B,},andleta = {B;, < ... < Bj,} Cb.
Ifu={& < .. <§&,}then we write uZ for (§;, < ... < §&j,}; we also write ”/bﬁi for

&.If X € P([1ua]®4@) then we write X? for {u € [up]™®:ub € X}. Finally,
if £ has domain [ ]%4@ then we write f? for that g with domain [p;]C2d®)
such that g(u) = f(b) if u? € [1,1°*@ and g(u) = ¥ otherwise. Finally, we
write pr for the function which maps {8} to g8 (i.e., pr = |J).

Notice that if E is a (k, v)-extender over M with critical points w,, a € [v]=?,
and if N is another transitive model of a sufficiently large fragment of ZFC such that
P(ug) NN = P(uy) N M forall a € [v]=%, then E is also an extender over N.

Lemma 10.46 Let M and N be transitive models of a sufficiently large fragment of
ZFC, and let m: M — 5, N be cofinal with critical point k. Let v < N N OR. For
each a € [v]=? let u, be the least @ < M N OR such that a C 7w (i), and set

E, ={X € 2(ual™YN M:a € 7(X)}.
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Then E = (E,:a € [v]=?) is a (k, v)-extender over M.

Proof We have to verify conditions (1) through (4) of Definition 10.45.

() Fixa € [v]=*. Asa C 7 (1q), a € 7 ([11]%" ) N M) = [7 ()15 @) N
N.If it < pg, thena\m(p) # 9, sothata ¢ 7 ([n]“9@yNM) = [ (n)]c@d@)n
N,ie., [u]C¥d@ ¢ E, .

Itiseasytoseethat X € E;andY D X,Y € P ([a]C¥d@yn M imply Y € E,,
andthat¥ ¢ E,. If X € P (a4 @YnM, then 7 (X)Ur (([pa 1@ NM)\ X) =
7 ([1a]°44@Y N M), so that X € E, or ([11q ]S4 N M)\ X € E,,.

Let (X;:i < @) € M, where « < k and X; € E, for each i < «. Then
a€(Nizg X)) =Ny Xi)sie, (Nj—y Xi € Eq.

Q) Leta cbev]*®and X € Z([na)“®@)yN\ M. Then X € E, iffa € n(X)
iff b € w(X) iff X € Ey.

(3) Whereas {k} C 7 («), {k} is not a subset of 7 (1) = u whenever u < «. Thus
Hik) =K.

(4)Leta € [v]=® and f:[a]*4@ — u, with f € M. Suppose that

a € n({u € [k @: f(u) < max(u)}),

which means that

7 (f)(a) < max(a).
Set B = 7(f)(a). Then
a U (B) € m({u € [1]CaBD; peatl) () = 3 1F)))
as desired. .

Definition 10.47 If7: M — N, E, k, and v are as in the statement of Lemma 10.46,
then E is called the («, v)-extender derived from . If v = N N OR, then we shall
denote this extender by E;.

Theorem 10.48 Let M be a transitive model of a sufficiently large fragment of ZFC,
and let E = (E,:a € [v]=%) be a (k, v)-extender over M. There are then N and 7
such that the following hold true.

(a) m: M — 5, N is cofinal and has critical point k,

(b) the well-founded part wip(N) of N is transitive and v C wip(N),

() N={mx(f)a):aec]I<®A f:[na]®@D M A f e M)}, and

(d) fora € [vV]=® we have that X € E, if and only if X € 2 ([ua1°*@) N M and
a € n(X).

Moreover, N and m are unique up to isomorphism.

Proof We do not construe (c) in the stament of this Theorem to presuppose that
N be well-founded; in fact, this statement makes perfect sense even if N is not
well-founded.



212 10 Measurable Cardinals

Let us first argue that N and & are unique up to isomorphism. Suppose that N, =
and N’, " are both as in the statement of the Theorem. We claim that

n(f)@) — 7' (f)(a), (10.33)
where a € [V]<? and f:[114]°*4@ — M, f € M, defines an e-isomorphism from
N onto N’. Notice that for a, b € [v]<¢ and f: [11q]%¥@ — M, g:[up]Cd@ —
M, f,g € M,wehavethatm(f)(a) € m(g)(b)in N if and only if, setting c = a Ub,

cem({u e [p O fCw) € g ),
which by (d) yields that
fu € [r]“4@: f4w) € g W)} € Ee,
and hence by (d) once more that
cen'(u e lud ™ fCw) e g @),
ie., 7'(f)(a) € ©'(g)(b) in N’'. The same reasoning applies with “=" instead of
“e,” so that we indeed get that (10.33) produces an €-isomorphism from N onto N'.
The existence of N and 7 is shown by an ultrapower construction, similar to the
proof of Theorem 4.55, (1) = (3).
Let us assume that M is of the form (M; €, A). Let us set
D ={(a, f):a € WI"* A f:[1ta] W — M A f € M}.
For (a, f), (b, g) € D let us write
(@, f)~ (b, g) &= {u € [ f4C(u) = g"“(w)} € E, forc =aUb.
We may easily use (1) and (2) of Definition 10.45 to see that ~ is an equivalence
relation on D. If (a, f) € D then let us write [a, f] = [a, f ]%’ for the equivalence
class {(b, g) € D:(a, f) ~ (b, g)}, and let us set
D = {[a, f]: (a, f) € D}.
Let us also define, for [a, f], [b, g] € D,

la, f1E [b, g] = {u € [uc]4: f9¢(u) € g"“(u)} € E. forc = a Ub and
A(la, 1) <= {u € (1] : fu) € A} € E,

Notice that the relevant sets are members of M, as M is a model of a sufficiently
large fragment of ZFC. Moreover, by (1) and (2) of Definition 10.45, € and A, are
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well-defined. Let us set _ ~

N = (D; &, A).
Claim 10.49 ( LoS Theorem) Let ¢ (vy, ..., vx) be a Xo formula (in the language of
M), and let (ay, f1), ..., (ak, fx) € D. Then

N E (a1, fil, .. lak, fx]) =
{u € (] M = e(f{ W), ooy [E(u))} € Ee forc=ajU...Ua.

Proof Notice again that the relevant sets are members of M. Claim 10.49 is shown
by induction on the complexity of ¢, by exploiting (1) and (2) of Definition 10.45.
Let us illustrate this by verifying the direction from right to left in the case that, say,
¢ = Jvg € v1 ¥ for some Xy formula .

We assume that, settingc =a; U...Uay,

{u € ] M =g € f1w) Yo, [ W), ..., fEEC))} € E.

Let us define fo: [11c19€) — ran(f)) U {#} as follows, where <ran(f)€ M is a
well-ordering of ran( f1).

the <pan(f) -smallest x € ran( f1) with
fo(w) = MEy, . kak’c(u)) if some such x exists,
] otherwise.

The point is that fy € M. But we then have that

{u € [l M = fow) € [ @AY (fow), f W), ..., (W)} € Ee,

which inductively implies that

N E[c, fol € la1, il A¥ (e, fol, [ar, f1l, ..., lak, fiD),
and hence that

N = vy € a1, fil ¥ (vo, [ar, f1l, ..., Lak, fi]),

as desired. O

Given Claim 10.49, we may and shall from now on identify, via the MOSTOWSKI
collapse, the well-founded part wfp(V) of N with a transitive structure. In particular,
if [a, f] € wip(N) then we identify the equivalence class [a, f] with its image under
the Mostowski collapse.

Let us now define 7: M — N by

7 (x) = [0, cx], where ¢y: {4} = [wo]® — {x}.
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We aim to verify that N, & satisfy (a), (b), (c), and (d) from the statement of Theorem
10.49.

Claim 10.50 Ifa < vandla, f]€ [{a}, prlthen[a, f]1 = [{B}, prlforsome B < «.
Proof Let [a, f] € [{a}, pr]. Set b = a U {«}. By the 0§ Theorem 10.49,

u € [up] O f0 @) € pri*P ) € Ep.
By (4) of Definition 10.45, there is some 8 < « such that, setting ¢ = b U {8},
(u € [ 2wy = prlfh ) e Ee,

and hence, by the Lo§ Theorem again, [a, f] = [{B}, pr]. O

Claim 10.50 implies, via a straightforward induction, that
[{a}, pr] = « for o < v. (10.34)

In particular, (b) from the statement of Theorem 10.48 holds true.
Claim 10.51 Ifa € [v]=% then [a, id] = a.

Proof If [b, f] € [a, id] then by the Los Theorem, setting ¢ = a U b,
{u € [e] O £ (u) € ul) € Ee.
However, as E. is an ultrafilter, there must then be some « € a such that
{u € [ O f2C ) = ug) € Ee,
and hence by the L.o§ Theorem and (10.34)
[b, f1=[Ha}, pr] = a.

On the other hand, if « € a then it is easy to see that « € [a, id]. O

Claim 10.52 [a, f] =7 (f)(a).

Proof Notice that this statement makes sense even if [a, f] ¢ wip(N).
Let b = a U {0}. We have that

€ [up) O f2 @) = ()™ @) (d™? )} = [up) O € Ey,
by (1) of Definition 10.45, and therefore by the L.o§ Theorem and Claim 10.51,

la, f1=10,crl(a,id]) = m(f)(a).
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Claim 10.52 readily implies (c) from the statement of Theorem 10.48.
Claim 10.53 « = crit(m).

Proof Let us first show that # [ « = id. We prove that 7(§) = £ for all £ < « by
induction on &.
Let & < k. Suppose that [a, f] € 7(£) = [0, cg]. Setb = a U {§}. Then

{u € [p] D f20w) < £} € Ey.

As Ejp is < K-closeq with respect to sequences in M (cf. (1) of Definition 10.45),
there is hence some & < & such that

{u € [up1®™®: (20 w) = £} € Ey,

and therefore [a, f] = (&) which is £ by the inductive hypothesis. Hence 77 (§) C &.
Itis clear that &€ C 7 (&).

We now prove that (k) > « (if 7 (k) ¢ wip(N) we mean that « € (x)) which
will establish Claim 10.53. Well, p} = «, and

{u ekl pru) <} =[kl' € Eg,

from which it follows, using the L.o§ Theorem, thatk = [{«}, pr] < [0, ¢, ] = 7 (k).OI

The following, together with the previous Claims, will establish (a) from the
statement of Theorem 10.48.

Claim 10.54 For all [a, f] € N there is some y € M with [a, f] € m(y).

Proof Tt is easy to see that we can just take y = ran(f). O

It remains to prove (d) from the statement of Theorem 10.48. Let X € E,. By (1)
of Definition 10.45,

X = {u € [14a]¥@: y € X} € E,,
which, by the £.0§ Theorem and Claim 3, gives that a = [a, id] € [0, cx] = 7 (X).
On the other hand, suppose that X € 22 ([114]°*4@) N M and a € 7(X). Then
by Claim 3, [a, id] = a € 7(X) = [0, cx], and thus by the L.o§ Theorem
X = {u € [ua1™@: 4 € X} € E,.

We have shown Theorem 10.48. O
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Definition 10.55 Let M, E, N, and 7 be as in the statement of Theorem 10.48. We
shall denote N by ultg(M; E) and call it the (Xy-) ultrapower of M by E, and we
call m: M — N the (Xy-) ultrapower map (given by E). We shall also write 7 g’ or
g for .

We now turn towards criteria for Ultg(M; E) being well-founded. (This will also
be a big issue in the proof of Theorem 11.56.) The easiest such criterion is given by
when E is a derived extender.

Lemma 10.56 Letw: M — N, k, andv be as in the statement of Theorem 10.46, and
let E be the (k, v)-extender derived from m (cf. Definition 10.47). Then ulty(M; E)
is well-founded, and in fact there is an embedding k:ulto(M; E) — N such that
m=komgandk [ v =id

Proof We define k:ultg(M; E) — N by setting k([a, f]) = n(f)(a) fora € [v]=?
and f: [Ma]Card(“) — M, f € M. We have that k is a well-defined X-elementary
embedding. To see this let ¢ be X, and a; € [v]™* and f;: [ua‘j]card(“/) - M,
fieM,forje(l,... ,k}.Seta = Uje{l ’’’’’ k) @;- We then get that

ulto(M; E) = (a1, fil, ..., [ak, fi]) <=
{u € [1a]® M = o(f ), ..., FE W)} € Eq &=

a€n({ue M = o(f @), ..., f5w)) =
a€fue )N = o ()W), ..., 7(fu™ W)}
N E o@(fi)(ar), ..., w(fi)(a))-

We have that k(g (x)) = k([4, cx]) = w(cx) ) = cry(W) = m(x) forall x € M,
sothat m = komg. As k(B) = k([pr, {B}]) = m(pr)({B}) = B forevery B < v, we
have that k [ v = id. O

Let us consider extenders over V.

Definition 10.57 Let F be a (k, v)-extender over V, and suppose that ulty(V; F) is
well-founded. Say ultg(V; F) = M, where M is transitive. The strength of F is then
the largest ordinal « such that V,, C M.

In the situation of Definition 10.57, the strength of F is always at least x + 1. If
F is derived from w: V — M (in the sense of Definition 10.47), where k = crit(sr)
and V, C M for some o > « + 1, i.e., w witnesses that k is «-strong (cf. Definition
4.60), then the strength of F' may be «; more precisely:

Lemma 10.58 Let m:V — M be an non-trivial elementary embedding, where M
is transitive. Let k = crit(w) < o < 7 (k), and suppose that Vo, C M. Let v < 1 (k)
be least such that v > o and v is inaccessible in M, and let F be the short (k, v)-
extender over V derived from . Then ulty(V; F) is well-founded, and the strength
of F is at least a.
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Proof We may pick some E C « x k such that for every inaccessible cardinal y < «,
(s EN(y xy) = Vyi6).

Identifying N with ulto(V; F), we let
irtV—>pgN
be the ultrapower map, and we let
kkN—> M

be the factor map which is defined as in the proof of Lemma 10.56 by k(i (f)(a)) =
7(f)(a) for a € [v]<® and f:[x]°®4@ _ V. We have that k o ir = 7 and
klv=id.

By the elementarity of 7,

(y:m(E)N(y x y) = (V)Y €)
for every y < m(x) which is inaccessible in M. In particular,
(v T(E) N (v x 1) = (V)M €). (10.35)

Byk[v=id,ir(E)N (v xv) =7w(E)N (v xv). Hence 7 (E) N (v X v) € N. As
o < v, this gives V, = (Vo)™ c (V,)M e N by (10.35). O

Lemma 10.58 says that short extenders may be used to witness that a given cardinal
is strong. On the other hand, Lemma 10.62 below will tell us that long extenders may
be used to witness the supercompactness (cf. Definition 4.62) of a given cardinal.

Definition 10.59 Let F be a short («, v)-extender over V, and let A < «. Then F is
called A-closediff forall {a;:i < A} C [vV]<“ thereareb € [v]<?and g: [x]C*d®) —
V such that for every i < A,

{u € [ raCDa); ghaib () (i) = u) ™) € Epyg;. (10.36)

The following Lemma may be construed as strengthening of Lemma 4.63

Lemma 10.60 Let F be a short (k, v)-extender over V, let A < k, and suppose that
F is A-closed and N = ultg(V; F) is transitive. Then N is A-closed, i.e.,

*N C N.

Proof Let {x;:i < A} C N, say x; = wg(fi)(a;) fori < A. We aim to prove that
(xjzi < X) € N.Letb and g be as in Definition 10.59. We may assume that A € b.
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Let H: [k]°%4®) _ v be such that for every u € [k]““4?) H(u) is a function
with domain ul)i and forevery i < A,

H(u)(@@) = fi(gw)(@)).

Then g (H)(b) is a function with domain X, and by (10.36) and the £.o§ Theorem,
foreveryi < A,

e (H) (b)) = e (fi)(me(8) (D)D) = me(fi)(ai) = xi.

This shows that (x;:i < A) € N. U

Lemma 10.61 Let w:V — M be an non-trivial elementary embedding, where M
is transitive. Let k = crit(w) < v < mw(k), and suppose that v is an inaccessible
cardinal in V and V,, C M. Let F be the short (k, v)-extender over V derived from
7. Then ultg(V; F) is well-founded and F is k-closed.

Proof This is an immediate consequence of Lemma 10.58, and we may in fact
just continue the proof of Lemma 10.58, where now o = v and v is inaccessible in
V (not only in M). We have that V, € N = ultg(V; F). Let {a;:i < k} C [v]=%.
Then (a;:i < k) € N, and hence there are b € [v]<® and f: [x]¥4®) — V such
that (a;:i < ) = g (g)(b)(i) forevery i < k. The L.o§ Theorem 10.49 then yields
that b and f are as in (10.36). O

Lemma 10.62 Let k be A-supercompact, where ). > k. There is then a long extender
E witnessing that k is A-supercompact, i.e., ultg(V; E) is transitive and if rg: V —
N =ultg(V; E) is the ultrapower embedding, then g (k) > A and*N C N.

Proof Let us fix an elementary embedding
a:V—-> M,

where M is an inner model, k¥ = crit(s), 7 (k) > A, and *M C M. We aim to derive
along extender E from m in such a way that the ultrapower of V by E is also closed
under A-sequences.
Set y = 2%, so that y* = y. Set v = 7(y), and let E be the (k, v)-extender over
V derived from . Let
wE:V — ultg(V; E)

be the ultrapower embedding, and let k: ultg(V; E) — M be the factor map which is
defined as in the proof of Lemma 10.56 by k([a, f]) = w(f)(a) for a € [v]=® and
f1[1a 1@ — v We may identify ulty(V; E) with its transitive collapse, and we
will denote it by N. We have thatm = komg,and k [ v = id.

Let e:y — [y]=* be a bijection. Then m(e):v — [V]="™ N M is bijective.
As*M C M, we have that [v]* NV C M, so that [v]* NV C ran(z(e)). But
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k | v=1id and m = k o g, which implies that 7g [ y = 7 | y, so in particular
wr (k) = mw(k) > A. Also mg(e) = m(e). Therefore,

W' NV C ran(rg(e)). (10.37)

By (10.37),mg”* = n”A € N = ultg(V; E), which givesthatrg [A =7 [ X €
N, and we may pick some a € [v]<® and f: [y ]4@ — V with

e [A=nr=ne(f)a). (10.38)

Now let (x;:i < A) C N. We aim to show that (x;:7 < A) € N. Letx; = [a;, f;]
fori < A, where @; € [vV]=? and f;:[1g,1*9@) — V. Let us write G for the
function with domain A and G(i) = g; fori < A, i.e., G = (g;:i < A). By (10.37),
(aj:i < A) € N, so that we may pick some b € [v]=” and g: [y €2 5 v with

G =(a;:i <)) =mg(g)D). (10.39)

Set ¢ = a U b, and let us define H: [,uc]cald(c) — V as follows. For each u €
[1c]€4d©) we let H () be a function with domain A such that for i < A,

Hu)(@) = fi(g” @)/ @)~ @))). (10.40)

Here, we understand that if f“(u) is an injective function with i in its domain, then
(f°(u))~ (i) is the preimage of i under that function, and (f%<(u))~'(i) = @
otherwise.

We get that mg (H)(c): mg(A) — N, and for eachi < A,

me(H)(©) () = 7e(fi) (e (@) (Ge(f) (@) )(Te i)
= e (fi)rE(@) B ((Te(f)(@) (e )
= (/) E@)®) (e | )7 (ED)
= e (f)(G@))
=np(fi)(a;) = x;.
Using mg [ A € N once more, we then get that the function with domain A which
maps
i 7p(H) () (e [ M) = x;
also exists inside V. We have shown that (x;:i < A) € N. O
The following concepts and techniques will be refined in the next section.
Definition 10.63 Let M be a transitive model of a sufficiently large fragment of

ZFC,and let E = (E4:a € [v]=®) be a (k, v)-extender over M. Let . < Card(k)
be an infinite cardinal (in V). Then E is called A-complete provided the following
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holds true. Suppose that ((a;, X;):i < A) is such that X; € E,, forall i < A. Then
there is some order-preserving map t: | J;_, i — o (E) such that t"a; € X; for
every i < A. E is called countably complete iff E is 8g-complete, and E is called
continuum-complete iff E is 280-complete.

Lemma 10.64 Let M be a transitive model of a sufficiently large fragment of ZFC,
and let E = (E,:a € [v]=?) be a (k, v)-extender over M. Let ). < Card(k) be an
infinite cardinal. Then E is A-complete if and only if for every U < 5, Ultg(M; E) of
size A there is some ¢: U — 5, M such that ¢ o wg(x) = x whenever mg(x) € U.

Proof “=": Let U <5, Ultg(M; E) be of size A. Write U = {[a, f]:(a, f) € U}
for some U of size . Let ((a;, X;);i < A) be an enumeration of all pairs (c, X)
such that there is a Xy formula ¥ and there are (a!, f1)s s (a, fr) € U with
c=a'U..Udrand

_ Card(c). al,c k¢
X ={u € [nl M EY( @), .. fy W)} € E..

Let t: |J;_, ai — o(E) be order-preserving such that t"a; € X; for every i < A.
Let us define ¢: U — M by setting ¢([a, f]) = f(r"(a)) for (a, f) € U.

We get that ¢ is well-defined and X-elementary by the following reasoning. Let
Y (v1, ..., ) be Zo,and let [a/, fj] € U, 1 < j <k.Setc =a'U...Uak. We then
get that

U =y (a', fil, ..., [, fil)
Ulto(M; E) =y (a', fil, ..., [d*, fi])

U € [l M =y (£ W), s [ W)} € Ee
¢ € {u € [l O M = g (£ W), o £ )
M Ey(fit"ab), ..., fi(r"d%).

I

We also get that ¢ o g (x) = ¢([0, cx]) = cx (V) = x.

“=": Let ((a;, X;):i < A) be such that X; € E,, foralli < A. Pick U <gx,
Ultg(M; E) with {(a;, X;):i < A} € U, Card(U) = A, and let 9:U — 5, M
be such that ¢ o mg(x) = x whenever ng(x) € U. Sett = ¢ [ |J;_; ai. Then
t"a; = ¢(a;) € p owp(X;) = X; forall i < A. Clearly, ran(z) C o (E). a

Corollary 10.65 Let M be a transitive model of a sufficiently large fragment of
ZFC, and let E be a countably complete (k, v)-extender over M. Then Ulty(M; E)
is well-founded.

Lemma 10.66 Let A be an infinite cardinal, and let 0 be regular. Let w: H — Hp,
where H is transitive and * H C H. Suppose that w # id, and set k = crit(r). Let
M be a transitive model of a sufficiently large fragment of ZFC, let p be regular in
M, and suppose that Hé” C H. Setv = suprm "p, and let E be the (k, v)-extender

over M derived from 1 | HZ)W. Then E is A-complete.
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Proof Let ((a;, X;):i < A) be such that X; € E,;, and hence a; € 7(X;), for all
i <A As*H C H,(X;:i <)) € H.Leto: U ai =y =otp(lJ,_, a;) be the
transitive collapse; notice that y < AT < k. Foreachi < A let @; = 0”a;. We have
that (G;:i < 1) € H. But now

Hp = 3 order-preserving 7: y—>OR Vi < A t"a; € n((Xj; j < 1) (i),
as witnessed by o~ 1. Therefore,
H = 3 order-preserving 7: y—>OR Vi < A 1"a; € X;. (10.41)

Hence, if T € H is a witness to (10.41), then 7 o o U;-; @i — ORis such that
to0"a; € X; foreveryi < A. O

10.4 Iteration Trees

Iteration trees are needed for the proof of projective determinacy, cf. Theorem 13.6.
In order to prove a relevant technical tool, Theorem 10.74, we need a strengthening
of the concept of countable completeness. All the extenders in this section will be
short, though.

Definition 10.67 Let F be a short («, v)-extender over V, and let U be any set. We
say that F is complete with respect to U iff there is a map 7 such that v N U C
dom(t),r [ (wNU):vNU — « is order preserving, T [ («k N U) = id, and for all
a € [vNU]=* and for every X € P ([k]€¥d@) N U which is measured by F,.* we
have that

XeF, < taecX.

Hence if p is an infinite cardinal, then F is pu-complete iff whenever U has size u,
F is complete with respect to U.

We shall be interested in a strengthening of “continuum-completeness,” cf. Defi-
nition 10.63.

Definition 10.68 A formula v («, X) is said to be X' iff ¥ («, X) is of the form

IAM (M is transitive A COM C M AV, C M Ao(M, a,x), (10.42)

where ¢ is X1. An ordinal 8 is called a reflection point iff Vg <5, V.
It is not hard to verify that every X4 formula is X».

Lemma 10.69 Let A be an inaccessible cardinal. Then A is a reflection point.

Yie., X € F,or ([k]Cd@y\ X € F,.
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Proof Let ¢ be X1, and let «, x € V. Let us pick some
TP -5V,

where P is transitive, {Vy, TC({x})} € P, P ¢ P, and Card(P) < A. There is
some such P, as A is inaccessible.

Because every X'j4-formula can be written as a X»-formula, so that if V |=
¥ (a, X), then P = ¥ (o, X). Butif M € P is as in (10.42) to witness P = ¥ («, X),
then M also witnesses V,, = ¥ («, X), as @) p C P. O

Definition 10.70 Let F be a short («, v)-extender over V. Then F is called certified
iff v is also the strength5 of F', v isinaccessible, and for every U <x,, V) of size 280
there is some 7: U — x,, V, witnessing that F' is 2%0_complete with respect to U.

Lemma 10.71 Let F be a short (k, v)-extender over V, and suppose that v is also
the strength of F and v is inaccessible. Then F is certified.

Proof By Lemma 10.69, v is a reflection point. Letus fix U <z, V) of size 280 We
needtofindsomet: U — 5, V,suchthatz [ («NU) =idandforalla € [vNU]=*
and forall X € Z([k]“™@)NU, X € F,iff t”a € X.

Let7:V —Fp M =ult(V, F), where M is transitive. Notice that V,, C M (i.e.,
Vv € M),and U <5, V), = VUM <>, Vr%x) <z, M by Lemma 10.69 applied
inside M. Let5:U = U , where U is transitive. Then, using Lemma 10.69,

6:0 -5, VM

v =V <z, VA/([K) <z M,

T
and U and & are both elements of M by Lemmas 10.60 and 10.61.

Let (X;:i < 2%0) be an enumeration of U{Z(k]"):n < o}NU, and let (a;:1 <
2%0) be an enumeration of [v N U]=. Let I be the set of all (i, j) € (2%0) x (2%0)
suchthat X; € F,,.Let B < k besuchthat UNV, = UNVg.Of course, UNVg € M
and 6~ 1"(U N Vp) € M.

Leta; = & '(a;) fori < 2%, Notice that (g;:i < 280) € M.

Now o € M witnesses that in M, the following holds true.

kk:U -5, VM AkT67(UNVE) =6 [671(UNVp)

(k)

AVi, j <280 (k(@;) € m(X ;) <— (i, j) € ).
Therefore, in V we have that

I(k:U -5, Ve Ak [a7UNVp) =6 [ 671U N Vp)
AVi, j < 2% (k@) € Xj < (i, j) € I)).

Leto*: U — 5, Vi beawitness,and set 7 = o'* o5 L Obviously, : U — 5, Vi,
andt [ (UNVe) =1 [ (UNVg) = id. Moreover, if a € [v N U]=* and

5 Recall that the strength of an extender F is the largest ordinal & such that V,, C Ult(V; F).
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X € Z2([k]“™@)NU, say a = a; and X = X, then X; € F,, iff (i, j) € " iff
O’*(él’)EXj iff‘[(ai)EXj. O

Definition 10.72 Let0 < N < w. Asystem .7 = (M;, m;j:i <7 j < N), (E;:i+
1 < N), <r) is called a putative iteration tree on V of length N iff the following
holds true.

(1) <r isareflexive and transitive order on N such thatif i <7 j,theni < j inthe
natural order, and if i < N, then 0 <7 i.

(2) My =V,andifi + 1 < N, then M; is a (transitive) inner model.

(3) Ifi <7 j <7 k < N, then 7;;: M; — M is an elementary embedding, and
Tik = Tjk © TTjj.

4) Ifi+1 < N, then M; |=“E; is a short extender,” and if « = crit(E;)and j <i
is maximal such that j <7 i + 1, then VKAfl = VKAjIF"l, M; 1 = ult(M;; E;), and

7 ji+1 is the canonical ultrapower embedding.

If N < o, then we say that .7 is well-behaved iff My_; is well-founded (i.e.,
transitive).

If N =wandif b C w is cofinal, then we say that b is an infinite branch through
<riffforalli, j € b,ifi < j,theni <7 j,andifi € band k <7 i, thenk € b.

Lemma 10.73 Letn < w, and let
T =((M;, mij:i <7 j <n),(Ej:i <n))
be a putative iteration tree on 'V such that for all i < n,
M; = “Ejis certified”.

Then .7 is well-behaved.

Proof For eachi < n,“M; C M;, and E; is countably complete (from the point of
view of V) by Lemmas 10.60 and 10.61. This implies that M,, is well-founded (i.e.,
transitive) by Corollary 10.65. ]

The following is a key result on the “iterability” of V (cf. also Theorem 10.3)
which will be used in the proof of Theorem 13.6.

Theorem 10.74 Let
T =((M;, mjj:i <1 j <o), (Ei:i <o), <1)
be an iteration tree on V such that for all i < w,
M; = “E; is certified.”

Then there is some cofinal b C w, an infinite branch through <t such that the direct
limit
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dir lim (M;, wijil <1 ] € b)

is well-founded.

Proof Suppose not. For each cofinal b C w, which is an infinite branch through <7 0

we may pick a sequence (a,lj :n < w) witnessing that
dir lim (M;, m;j:i <7 j € b)
is ill-founded, say

”i(n)i(m)(ag) >ab (10.43)

m

for all n < m < w, for some monotone i: @ — w (which depends on b). Let
o:V — 002 V

be such that V is transitive, Card(V) = 280, and {E;:i < w} U {af’l:n < w,b
an infinite branch through <7} C ran(c). We let U = (U, <p) be the tree of
attempts to find an infinite branch b C o through <7 together with a proof of the
well-foundedness of the direct limit along b.

More precisely, U is defined as follows. Let us set E; = o~ !(E;) fori < o.
Obviously, there is a unique

T = ((M;, 7wijii <7 j <), (E;1i <), <7) (10.44)

such that B B
V = “ is a putative iteration tree onV of length w”.

Of course, My = V. We now let (¢, i) € U iff i < wand ¢: M; — 5,4, V is such
that p og; = o, andif (¢, i), (¢’, j) € U then we write (¢/, j) <y (¢, i)iffi <7 j
and ¢’ o 7T;; = ¢.

Suppose U = (U; <p) to be ill-founded. It is straightforward to see that each
witness ((¢,, ip):n < w) to the ill-foundedness of U gives rise to an infinite branch
b C w through <7 together with an embedding

todir lim (M;, 7000 <7 j < b) = 51000 V- (10.45)
If (Mp, (7jp:i € b)) is the direct limit of (M;, 7;;:i <7 j < b), then 7 is defined by

T(x) = @u (7)) "' (1))

6 If there is any. The current proof does not presuppose that there be some such branch. Rather, it
will show the existence of some such b such that the direct limit along b is well-founded.
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for some (all) large enough n < w. But as {aZ:n < w} C ran(o), and hence if
(Mp, (mip:i € b)) is the direct limit of (M;, 7r;;:i <7 j < b), then (10.43) yields
that

Tiyp (0 H@D)) = 7imyp Figyicmy (0~ (@2)))
= 71 (myp (T myi () (@2))
> ﬂi(m)b(“rbn)

= Fimp (o @h))

foralln < m < w, so that (ﬁ,-(n)b(a_l (an)): n < w) witnesses that dir lim(M;, i
i <r j € b) must be ill-founded. This contradicts the existence of 7, cf. (10.45).

We therefore must have that U = (U; <y ) is well-founded. In order to finish the
proof of the theorem, it now suffices to derive a contradiction.

In order to work towards a contradiction, we need generalized versions of U
as well as “realizations” and “enlargements.” Let R be a transitive model of ZC
plus replacement for X'jggo-formulae. We then call the triple (7, Q, R) a realization
of M;,wherei < w,iff T: M; — 5,,, Q, Q is a (not necessarily proper) rank initial
segment of R, Q = “ZC plus replacement for X'jogo-formulae,” and 2% Q0 C Qand
2% R C R.If (z, Q, R) is arealization of Mi, then we may define a tree

U(z omoi, Q) = (U(r o7oi, Q), <U(rore;,0))

in the same fashion as U was defined above: we set (¢, j) € U(t o mg;, Q) iff
Jj < wand ¢: A;Ij — 5000 @ 18 such that ¢ o mp; = T o mg;, and if (@, j), (¢, k) €
U(t omg;, Q) then we write ((p/, k) =U(romp;, Q) ((p, ]) iffj <7 kand go/ Oﬁ'jk = @.
Hence U = U(o, V).

Let X = {A: V) <5100 V Atan(o) € Vi A 2% Vi, € V,}. Let @ = min(X). We
have 0:V — 5,0, Vo <510, V and U (o, V,) inherits the well-foundedness from
U = U(o, V). We may thus write £ = ||(o, 0)||y(0,v,), and we may let Ao be the gth
element of X. So there are (in order type) & = ||(0, 0)||y(s,v,) many B < Ao such
that (o, Vy, Vp) is a realization of My=1V just by the choice of Ag.

We shall now construct an “enlargement” sequence

(0i, Qi, Riti < w)

such that for each i < w the following holds true.

(@) (oi, Qi, R;) is a realization of M;, )
(b) if i_ < j and v; is the length of E;, then Va,Q(iv,-) = Vo?év,—) and o; | V,)]:/I" =o0j |
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(¢) if U* = U(o; o mp;, Q;), then U* is well-founded and there are (in order type)
at least ||(oj, i)||y* many B < R; N OR such that (o7, Q;, V[f") is a realization
of M;, and

(d) ifi > 0, then R;11 € R;.

The last condition will give the desired contradiction.
To commence, we let (oo, Qo, Ro) = (0, Vi, Vi), where Ag and « are as above.
Now suppose (0, Qj, Rj:j < i) to be constructed. Let @(7) abbreviate the

following statement: “There is a realization (¢/, Q, R) of M, such that Ve =

Ve o' 1 Vit =1, and if U* = U(0' o tpi11. Q). then U* is well-founded

and there are (in order type) at l_east [|(6’,i + 1)||y* many B8 < R N OR such that
(o/, 0, VﬂR ) is a realization of M;1.” We aim to verify that

Ri = ®(o; | VM), (10.46)

An inspection shows that @(7) is a X4 -statement in the parameter T, cf. (10.44).
Because B
R; = “oi (E;) is certified”,

we may pick, working inside R; and setting k = crit(o; (E;)), some

* R;

U <Xy VUi(Vi) <Xy R;

of size 2% such that ran(o; | V,f:/[") € U* and some t: U* — 5, VKRi witnessing
= . . . Ry

that 0; (E;) is 2*0-_complete with respect to U*. Notice that 270 Qi C Qi C R;,and

hence ran(o; | V,f:/l ) € R;.
In order to verify (10.46) it then remains to verify that

Vi Eo@oo [ V)1

Let j <ibelargestsuchthat j <7 i+ 1. As 7 witnesses that o; (Ei)_is 2%0_complete
with respect to U™, by the proof of Lemma 10.64 we may define o': M1 — 5,09y Q;
by setting

Tjit1(f)(a) % oj(N)(z(oi(a))), (10.47)

where a is a finite subset of the length of E; and writing & = crit(E;), f: [c]“4@ —
Mj, f € M;. o’ is well-defined and Xgg0-elementary by the following reasoning.
Let ¢ be X000, and let ag, £ = 1, ..., k, be finite sybsets of Ehe length of E;, and
let fo, £ =1, ..., k, be such that fy: [k]C¥d@) — M;, fe € M;. Write ¢ = |J, ar.
Then
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M1 = @@ jiv1(f1)(@), ..., Tjis1 (fi)(ar))

= {wM; Ee(f" W), ..., [ W) e (E)e

= o(w:Mj = o(f{" W), ..., WY € 0i(E)g o
& o (Qu: My = o(F ), .y fEC D) € 01 (B o)
= {u:Q;j = oo (f{")Vw), ..., 0;(fF)Vw)} € 0i(Ei)g, (o)
() ai,c

= 0j E o (f{" )@ (@i (), ..., 0 () (T(0i(c))
— Q) Eooj(f(t(0i(a)), ....0;(fi)(t(0i(ar))).

Here, (%) holds true as o; | VUI?" =oj | V,,/:/l'/ , and (*x) holds true as T witnesses
that o; (E;) is 280-complete with respect to U*. (10.47) immediately yields that

o' ompir1 =0’ O Tji+1 © TY; = O 0 Ty,
and hence (¢/,i +1) € U(oj omoj, Q;), moreover, clearly,
/. .
e =o', i+ Dllu;oro;.0p) < @), Dlu(ojore;.0))

so that we may let © be the e < R;NOR Zuch that (o}, Q;, ng) is arealization
of M;. As 2" R; C R;, the triple (o/, 0}, Vyy') € R; witnesses that

RiE®(too; | V).

But this implies that
VR = Vo e d(rooy),

because VKRi <z, R;.This finishes the proof of Theorem 10.74. O

We end this section by defining the concept of WOODIN cardinals. The following
definition strengthens Definition 4.60.

Definition 10.75 Let « be a cardinal, let § > « be a limit ordinal, and let A C V.
We say that « is strong up to § with respect to A iff for all « < § there is some
elementary embedding 7w: V — M such that M is transitive, crit(7) = «, Vo, C M,
andt(A)NVy,=ANYV,.

Definition 10.76 A cardinal § is called a WOODIN cardinal iff for every A C V;s
there is some k < § such that « is strong up to § with respect to A.

Lemma 10.77 Let § be a WOODIN cardinal. Then § is a Mahlo cardinal. In fact,
for every A C Vj there is a stationary subset S of § such that for all k € S, for all
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o < § there is a certified extender F with critical point k and lh(F) > « such that
ifnp:V — Ul(V; F) is the ultrapower map, then tp(A) NV = AN V!

Proof Fix A C V5. Let C C 4 be club in §. Let f:6 — C be the monotone
enumeration of C, and let g: § — A be a surjection such that

g’n = ANV, for every inaccessible cardinal p < 8. (10.48)

Define h:§ — Vjs by setting

hE) = fA+n) if& =A+2-nfor some limit ordinal A and n < @, and
B g +n) ifé =X+4+2-n+ 1forsome limit ordinal A and n < w.

Let k¥ < § be strong up to § with respect to .
Claim 10.78 h(x) = f(k) = k. In particular, k € C.

Proof Suppose that h(k) > «, and let & < « be least such that & is even and
h(§) > k. Pick an elementary embedding 7: V — M, where M is an inner model,
crit(m) = «, and

Vie)+1 C M and w(h) N Vie)rr =h 0 Vg4, (10.49)

By elementarity, 7w (h)(§) = w(h(§)) > m(x) > k, whereas on the other hand
w(h)(&) = h(£) by (10.49). Contradiction! O

As C is arbitrary, Claim 10.78 proves that {;t < §: pis strong up to 8} is stationary
in §, so that in particular § is a MAHLO cardinal. Again as C is arbitrary, in order to
finish off the proof of Lemma 10.77 it suffices to verify the following.

Claim 10.79 For all o < § there is a certified extender F with crit(F) = k and
Ih(F) > asuchthatifp: V — ult(V; F) is the ultrapower map, thenwp (A)NV, =
ANV,

Proof Fix < §. As § is a MAHLO cardinal, we may pick some inaccessible
cardinal v with max(k,®) < v < §. As § is a WOODIN cardinal, there is some
elementary embedding 7:V — M, where M is an inner model, crit(w) = «,
Vo C M,and hNV, = w(h)NV,.Let F be the (k, v)-extender over V derived from
7. By Lemmas 10.56, 10.58, and 10.71, F is certified, (V,)"(V:F) = (v )M = v,
and there is an elementary embedding k: ult(V; F) — M with crit(k) > v and hence
k | 'V, = id. In particular,

np(h)NV, =hNV,. (10.50)

Now we have that for x € V,, x € w(A) iff x € 7p(W)’{A +2n+ 111 <
v alimitand n < w}, by (10.48) and the elementarity of 7y together with the

7 The fact that F is certified implies that V,, C Ult(V; F).
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choice of h,iff x € h”’{A+2n+1: 1 < v alimitand n < w}, by (10.50), iff x € A,
by the choice of A.
We have shown that 7 (A) NV, = ANYV,. O

Definition 10.80 Let M be an inner model, let « < B, and let {xg, - - - , xxk—1} C
(Vg)M. Then we write

typeM(Vﬂ; €, V()ta {x07 Y xk*]})

for the type of {xp,--- , xx—1} in (Vﬂ)M with respect to the first order language of
set theory with parameters in (Va)M , 1.e., for

{p(x,vo, -+, ve—1) : X € (V) A (Vo) = (x, X0, - -+, i 1))

The following is an immediate consequence of Lemma 10.77.

Lemma 10.81 Let § be a WOODIN cardinal. Then for all B > & and for all
{x0, ..., xk—1} C Vg there is a stationary subset S of 8 such that for all k € S,
K is strong up to & with respect to

type” (Vg; €, Vs, {x0, -+, Xk—1}),

infactforalla < § there is a certified extender F with critical point k andlh(F) > o
such that if m: V — Ult(V; F), then

type "V (Vo gy €, Vo {mr(x0), -+, (k1))
= type" (Vg; €, Vi, {x0, -+, Xk—1}).

10.5 Problems

10.1. Prove Lemma 10.27, using the method from the proof of Lemma 10.29.

10.2. Letx be ameasurable cardinal, let U be a measure on k, and let (%, m; j:i <
Jj < o0) be theiteration of V = .#( of length OR givenby U . Let k; = 7¢; (k)
fori < oo.

(a) Show by induction on i € OR that for all x € .#; there are k < o,
il, ..., ik < i, and a function f:[kol¥ — 4y, f € Mo, such that x =
0,i () (Kiys ooy Ki)-

(b) Show that {k;:i € OR} is club in OR.

(c) Letip > 0, and let X € P (kj,) N #;,. Show that X € mg ;,(U) iff there
is some k < ig such that {k;: k <i < ip} C X. (Cf. Lemma 10.9.)

(d) Conclude that if A > 2 is a regular cardinal, then g ,,(U) = Fy N .4,
(where F_ is the club filter on A, cf. Lemma 4.25).
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10.3.

10.4.

10.5.

10.6.
10.7.

10.8.
10.9.
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Let k be a measurable cardinal, let U be a measure on . (a) Show that, setting
U=UNL[U],L[U]=L[U]and L[U] = “U is a measure on k.”

I:et (A, 7; j1i < j < 00) be the iteration of L[U] of length OR given by
U. (b) Show that if A > 2¥ is a regular cardinal, then .#}, = L[F;], where
F;, is the club filter on w. [Hint. Problem 10.2 (d).]

Let us call a J-structure J,[U] an L*-premouse iff there is some x < « such
that U € Jo[U]and J4[U] |=“ZFC™ + U isameasureonk.” If M = J,[U]
is an L*-premouse, then we may define (putative) iterations of M in much
the same way as putative iterations of V, cf. Definition 10.1. In the spirit of
Definition 10.26, an L*-premouse is called an L*-mouse iff every putative
iteration of M is an iteration.

(a) Let M = J,[U] be an L*-mouse and let (.#;, i, jii < j < 00) be the
iteration of M of length OR. Show that there is some A and some S such
that M = Jg[F}]. [Hint. Problem 10.3 (b).] Conclude that any two L*-mice
M, N may be “coiterated,” i.e., there are iterates M, of M and N, of N,
respectively, such that M, = Jg[F] and N, = Jg[F] for some B, B, F.
Show also that if M | “U is a measure on «,” then for all i, M = .# and
#; have the same subsets of k.

(b) Leto: J3[U] = Ju[U] be an elementary embedding, where J5[U]is an
L*-premouse and J,[U] is an L*-mouse. Show that J;[U]is an L*-mouse
also. [Hint. Cf. the proof of Lemma 10.33.]

Show in ZF + there is a measurable cardinal that there is an inner model
M such that M = “GCH + there is a measurable cardinal.” [Hint. Let U
witness that « is measurable, and set M = L[U]. To show that M satisfies
GCH, verify that in M, for each infinite cardinal v and every X C v there
are at most v many ¥ C v with ¥ <y X (with <y being as on p. 77),
as follows. Fix X. Pick o: J5[U] — J4[U] such that Card(Jz[U]) = v,
o | (v+1)=1id, X €ran(n) and J3[U] is an L*-premouse. We claim that
if Y c vwithY <w X, then Y € J5[U]. For this, use Theorem 10.3 and
Problem 10.4.]

Prove Los$’s Theorem 10.22. Show also Lemma 10.21 (d).

Show that {Thy, (x*)} is T1}(x), where Thy, (x*) is the set of all GODEL

numbers of X|-sentences which hold true in x¥.

Let A C “wbe 221 (x), A # @. Show that ANx* % ¢. [Hint. Corollary 7.21.]

Let « be any ordinal. A cardinal « is called «-ERDOS iff for every F: [k]<% —
2 there is some X C « with otp(X) = « such that foreveryn < w, F | [X]"
is constant.

Show that if « is w;-Erdds, then x* exists for every x C w.

Show also that if « < a)lL and if « is @-Erdos, then L = “k is «-Erdos.”
Letx C w,andlet .#Z = (Jy[x]; €, U) be an x-pm. Let « be the critical point
of U, and let us assume that @ = « L] We define the (Xo-)ultrapower,
written ultg(L[x]; U) or just ult(L[x]; U), of L[x] as follows. For f, g €
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10.10.

10.11.

10.12.

10.13.

Klulx] N Lx], set f ~ giff {£ < k: f(§) = g(&)} € U, and write f€Eg iff
{§ <k:f(§) e g§)} € U.Welet [ f] denote the ~-equivalence class of f.
We write [ f1€[g] iff f&g, and we also write [ f] € U iff {§ < «: f(£) €
U} e U. Welet

ult(LIx]; U) = {({[f]: f € “Julx]1 N Julx]); &, U}

We may define a natural map nb[x]:L[x] — ult(L[x]; U) by setting
né[x](z) = [c.], where c,(§) = x for all £ < «. n[L][X] is called the
(Xo-)ultrapower map. If ult(L[x]; U) is well-founded, then we identify it
with its transitive collapse, which will be equal to L[x], and we identify [ f]
with the image under the transitive collapse, and we idenitify 7 with the
composition of = with the transitive collapse.

For y € OR, we may now define the putative iteration
((Witi <y), (iji < j <)) (10.51)

of Wy = L[x] by U and its images in much the same way as in Definition
10.24, with L[x] and U playing the role of .#, cf. also Definition 10.1. If
i <y,then W; = L[x], and if W, is transitive, then also W,, = L[x].

Letx, # = (Jylx]; €, U), and « be as above. In particular, « = kLI Let
”U% be as in Definition 10.20.

(a) Show that nij// = ném [ Jo[x].

(b) Suppose that ult(L[x]; U) is transitive. Show that ultg(.#) is then also
transitive, and if ulto(.#) = (Jy/[x]; €, U"), then Jo[x] = 7" (Jux]).
Lety € OR, and let W; and 77;; be as in (10.51). Let .#; and 7;; be as in Defi-
nition 10.24 for a putative iteration of length y + 1, say .#; = (Jy;[x]; €, U;)
fori < y.

(c) Show thatifi < j < y,then Jy,[x] = 7o; (Jo[x]) and 7;; = 7 | Jo [x].
(d) Show that if ult(L[x]; U) is transitive and & is any limit ordinal with
cf (&) # cf(k), then né[x] is continuous at €, i.e., JTIIJ[X](E) = sup, _¢ nll}[x]”n
(cf. Lemma 4.52 (c)). Conclude that if £ is a strong limit cardinal with
cf (&) > Q€N+ andif y < (€Y F then 77, (€) = & forevery i < y.

Let x C w, and suppose that x* exists. Let A € ﬁ(a)}/) N L[x]. Show that
either A or a)Y \ A contains a club of L[x]-inaccessibles. [Hint. Consider the

countable SILVER indiscernibles, and exploit the arguments for Lemmas 10.9
and 10.35.]

Assume that 0 exists. Show that for every g < a)lL there is some premouse
(Jo; €, U) € L such that there is a putative iteration of (J,; €, U) of length
o + 1 of which the o™ model is ill-founded.

Let x C w, and suppose that x* exists. Show that there is some G € V (!)
such that G is Col(w, < a)Y )-generic over L[x]. [Hint. Recursively construct
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10.14.

10.15.

10.16.

10.17.

10.18.

10.19.
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initial segments of G along a club of L[x]-inaccessibles from Problem 10.11,
exploiting the Product Lemma 6.65. As limit stages, use Lemma 6.44.]

A cardinal is called remarkable iff for every o > k there are © < 8 < k such
that if G is Col(w, < k)-generic over V, then in V[G] there is an elementary
embedding o: Vg — V, such that crit(c) = u and o(u) = «. (Here, V,
and Vp refer to the respective rank initial segments of V rather than V[G].
Compare Problems 4.29 and 10.21.)

Show that if « is remarkable and if G is Col(w, < k)-generic over V, then in
V[G] for every a > k the set

[
{X € [Val™: X < Vo, XNk €k ,and B30 Vg = X}

is stationary in [V, ]™0.

Show that if 0% exists, then every SILVER indiscernible is remarkable in L.
Show also that if x is remarkable in V, then « is remarkable in L. [Hint.
Problem 7.4.]

Show that if k is w-ERDOS, then there are & < B < « such that Vg |= “ZFC
+ « is remarkable.” Show also that every remarkable cardinal is ineffable.

(Martin-Solovay) We say that V is closed under sharps iff for all o, H—COl(w )

“x™ exists forall x C w.” Letw be any ordinal, and let G be Col(w, o)- generic
over V.Letz € “oNV,andlet A € V[G] be such that V[G] &= “A C “w
is ¥1(z), A # 0.” Show that ANV # §. (Compare Corollary 7.21.) [Hint.
For any X € V, we may make sense of X*. Let A = {x:3yelx, y, D}
where ¢ is l'[1 Let T be a tree of attempts to find x, y, o, H, and g such that
o:H" — (H@)# is an elementary embedding, H is countable, z € H, g is
Q-generic over H for some Q € H, and H*[g] = ¢(x, v, 2).]

Let E = (E,:a € [v]=?) be a (k, v)-extender over V. Show that ult(V; E)
is well-founded iff E is w-complete.

Let E be a short (k, v)-extender over V.

(1) If e is alimit ordinal with cf (o) # «, then g is continuous at . (Compare
Lemma 4.52 (c).)

(2) If & > v is a cardinal such that cf (LX) # « and u* < A for every u < A,
then X is a fixed point of 7, i.e., 7g (1) = A. (Compare Problem 4.28.)

Let E = (E,:a € [v]=®) be a (k, v) extender over V. Let P € V. be a poset,
and let G be P-generic over V. Set

Ef ={Y C [«]*™@:3X e E, ¥ D X},

asdefinedin V[G]. Show that (E}:a € [v]=*)isa (k, v) extender over V[G].
Conclude that “k is a strong cardinal”’and “x is supercompact” are preserved
by small forcing in the sense of Problem 6.18.
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10.20.

10.21.

10.22.

10.23.
10.24.

10.25.

Show that “k is a WOODIN cardinal” is preserved by small forcing in the sense
of Problem 6.18.

(Magidor) Show that the conclusion of problem 4.29 yields that « is super-
compact,i.e.,ifforevery o > «k thereare u < 8 < « together with an elemen-
tary embedding o: Vg — V, such that crit(o) = @ and o (n) = «, then « is
supercompact. [Hint: Let A > « be least such that there is no («, v)-extender
over V witnessing that x is A-supercompact. Pick u < 8 < ¥ < A < «
together with some elementary embedding o: Vg — V,, suchthatcrit(o) =
and o () = x. Then A € ran(o) and one can derive from o a (u, v)-extender
F € Vg over V witnessing that u is o ~!(1)-supercompact in Vp. Lift this
statement up via o.]

Show that the conclusion of problem 4.30 yields that « is supercompact.
[Hint. Design an ultrapower construction a la Theorem 10.48.]

Show that if « is subcompact, then « is a WOODIN cardinal.

(Supercompact tree PRIKRY forcing) Let ¥ be supercompact, and let A > «.
Let M be an inner model with* M c M,andlet7:V — M be an elementary
embedding with critical point « such that (k) > A. Let U be derived from
7t as in Problem 4.30. Let IP be the set of all trees T on 2, (A) (in the sense
of the definition given on p. 123) such that there is some (stem) s € T such
thatr Csvs Ctforallt € T andforallt Ds,t €T,

xe ZA):t"xeT}el.

P, ordered by U <p T iff U C T, is called supercompact tree PRIKRY forc-
ing. Let G be P-generic over V. Show that cfV¢1(8) = w forevery § € [k, A]
with cfV (8) > k. Show also that the PRIKRY-Lemma 10.7 holds true for the
supercompact tree PRIKRY forcing IP and conclude that V and V[G] have the
same V.

Let E, E' be certified extenders on k. We define E <y E'iff E € ult(V; E').
Show that <y is well-founded. (Compare Problem 4.27.) [Hint. Use Theo-
rem 10.74.] Again, <y is called the MITCHELL order (this time on certified
extenders).



Chapter 11
0* and Jensen’s Covering Lemma

11.1 Fine Structure Theory

Definition 11.1 Let M = J,[E] be a J-structure. Then M is called acceptable iff
for all limit ordinals 8 < « and for all § < 8, if

(Z(8) N Jp+wlED \ JBLE] # 0,

then there is some f € Jg1,[E] such that f: § — B is surjective.

Acceptability is a strong “local” form of GCH. If M = J,[E] is a J-structure and if
Kk € M, then we write

M = supfe +w:ax € M AIf € M (f: k — « is surjective)}.

Lemma 11.2 Let M = J,[E] be an acceptable J-structure. Let v < k € M, and
set T = k™ Then P(k) N M C J.[E]. Moreover, T is in fact the least y with
Pk)yNM C J,[E]

Proof That Z(x) N M C J;[E] follows immediately from Definition 11.1. Now
suppose that there were some y < 1 with Z() "M C J,[E]. As Card(y) < «
in M, Lemma 10.17 produces some surjective f: k — J,[E], f € M. Then
A=1{ <xk:&¢ f(6)) € M,but A ¢ J,[E] as in the proof of Theorem 1.3.
Contradiction! [l

If M = Jyu[E] is a J-structure and p is a cardinal of M (or p = «), then by
(Hp)M we mean the set of all sets which are hereditarily smaller than p in M (or
(Hp)M = M in case p = «). Recall that for all x € M, TC({x}) € M (cf. Corollary
5.18), so that this makes sense.

R. Schindler, Set Theory, Universitext, DOIL: 10.1007/978-3-319-06725-4_11, 235
© Springer International Publishing Switzerland 2014
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Lemma 11.3 Let M = Jy[E] be an acceptable J-structure. If p is an infinite car-
dinal of M (or p = «), then
(H)Y = J,[E].

Proof Tt suffices to prove that if o < x € M and t = kM, then (H)Y = J,[E].
That J.[E] C (H;)M follows from Lemma 5.16. Let us prove (H.)™ c J,[E].
Suppose not, and let x be e-minimal in (H;)™ \ J;[E]. Then x C J;[E], and
there is some surjection g: k — x, g € M. For & < «k, let B¢ < 7 be least such that
g(§) € Jg.[E]. By (the proof of) Lemma 4.15, B = sup({Bs: § < «}) < 7.
By Lemma 11.2, there is some y < t, § < y such that

(Z@) N Tyl ED\ Jy[E] # 9,

which by acceptability (and Lemma 10.17) yields some surjective f: « — J,[E],
f € Jy1olEl C J[E] Butnow f~"x € 2(x) N J;[E] by Lemma 11.2, and
hence x = f”(f_l/,x) € J;[E]. Contradiction! |

The following definition introduces a key concept of the fine structure theory.

Definition 11.4 The X'|-projectum (or, first projectum) p;(M) of an acceptable
J-structure M = Jy[E] is defined by

p1(M) = the least p € OR such that #(p) N & MaMm.

Lemma 11.5 Let M = Jy[E] be an acceptable J-structure. If p1(M) € M, then
p1(M) is a cardinal in M. In fact, p1 (M) is a X -cardinal in M, i.e., there is no ¥ ’1”

partial map from some y < p1(M) onto p1(M).
Proof Write p = p1(M). Let us first show that p is a cardinal in M. Suppose

not, and let f € M be such that f: y — p is surjective for some y < p. Let
A e Pp)N 2{” be such that A ¢ M.Let A = f~ A Then A ¢ M, since

otherwise A = f "A € M. On the other hand, A € M by the definition of p, since
ACyandA ey {” . Contradiction!

Let us now show that p is in fact a X'j-cardinal in M. Suppose not, and let
f:y — p be a possibly partial function from y onto p, f € ¥ 11” . We know that
thereisa ¥ ljp[E] map from p onto J,[E] (cf. Lemma 10.17). Hence there is a ¥ ’1”

map g: Yy — J,[E] which is surjective. Set

A={fey:§£8®)

Then A is clearly in Z(y) N X /1”, and A ¢ J,[E] by the proof of Theorem 1.3. We

get that A ¢ M by Lemma 11.2. But y < p, so that we must have that A € M by
the definition of p. Contradiction! (Il
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The following is an immediate consequence of Lemmas 11.5 and 11.3.
Corollary 11.6 Let M = J,[E] be an acceptable J-structure, and let p = p1(M).

(@ (H)M = J,[EL
(b) If A C JylE]is § 11”, then (J,E], A) is amenable.

Recall our enumeration (¢,: n < w) of all X; formulae from p. 185. In what
follows it will often be convenient to pretend that a given ¢, has fewer free variables
than it actually has. E.g., we may always contract free variables into one as follows:
if o, = @, (viy, ..., vi,) with all free variables shown, then we may identify, for the
purposes to follow, ¢,, with

vy v, = iy Vi) A Vigs e, Vi)

If a: v(n) — M assigns values to the free variable(s) v;,, ..., v;, of ¢, then, setting
x1 = a(;,), ..., x¢ = a(v;,), we shall in what follows use the more suggestive
M = ¢i(x1, ..., x¢) rather than the notation M = ¢;[a] from p. 185. We shall also
write h s (i, X) instead of &7 (i, @), where X = (xq, ..., X¢).

Definition 11.7 Let M = (J4[E], B) be an acceptable J-structure, write p =
p1(M), and let p € M. We define

Afy =1, x) € 0 x (H)M: M |= 9u(x, p)).
Af,l is called the standard code determined by p. The structure
M? = (J,[E], A}y

is called the reduct determined by p.

We shall often write AIA’/I (n, x) instead of (n, x) € A, and we shall write A? rather
than Ag,, if there is no danger of confusion.

Definition 11.8 Let M be an acceptable structure, and write p = p1(M).
Py = the set of allp € [p, OR N M) =“for which
there is aB € 2{”({1)}) suchthat BN p ¢ M.
The elements of Py, are called good parameters.

Lemma 11.9 Let M be an acceptable J-structure, p € [p1 (M), OR N M)=?, and
A = AV, Then
pEPy < AN(wx p1(M)) ¢ M.
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Proof “="": Pick some B which witnesses that p € Pj;. Suppose B is defined by
On 1., € B<—= n, &) e AL AsBNpi(M)isnotin M, AN (w x p;(M)) can
then not be in M either.

“«=": Suppose A N (w x p1(M)) ¢ M. Let f: @ x pj(M) — p1(M) be
defined by f(n,A +i) = » +2" - 3, where n,i < wand A < « is a limit
ordinal. Clearly f is M, and if p;(M) € M then f € M. Let B = f”A. Then
Bis TV ({ph), AN (0 x p1(M)) = £~ (BN pi(M)), and it is easy to see that
BNp (M) ¢ M. O

Definition 11.10 Let M be an acceptable J-structure, and write p = p;(M). We set
Ry = thesetofall ¥ € [p, OR N M)=? such that hy (o U {r}) = M.

The elements of Ry, are called very good parameters.

Lemma 11.11 Let M be an acceptable J-structure. Ry C Py # 0.

Proof That Py # ¥ easily follows from i3 (ORN M) = M, cf. the proof of Lemma
10.17.
Asto Ry C Py, let p € Ry, and define A C w x OR N M by

(n,§) € A<= (n,8) ¢ hy(n, (§, p)).

We have that A is Z‘IM({p}), and ANw x p1(M) ¢ M by a diagonal argument.
Using the map f from the proof of Lemma 11.9 it is easy to turn the set A into some

B C OR N M such that B is ZM({p}) and B N py (M) ¢ M. O

It is not hard to see that there is a computable map e: w —  such that for all
n < o, for all acceptable J-structures M, forall p € M, and forallmy, ..., my <
and x,...,x;y € MP,

M '= §0n(hM(ml, (X], p))v ceey hM(mk’ (.xk, p))) <:>
M = @eny(((my, x1), ..., (Mg, X)), p) (11.1)
(e(n), (my,x1), ..., (my, xp))) € Ab.

If M is an acceptable J-structure and p € Ry, then we may express in a uniform
IT, fashion over M? that Aff,l codes a la (11.1) the X'-theory of some acceptable
J-structure N which is given by applying the ¥'{-SKOLEM function 4 y to elements of
MP . This will play a crucial role in the proof of the Upward Extension of Embeddings
Lemma 11.20.

Definition 11.12 Let ¢ be a formula in a first order language. We say that ¢ is a
Q-formula iff ¢ is (equivalent to a formula) of the form

Vv 3v; Dvi ¥(v)), (11.2)

where v is X1 and does not contain v;. We also write Qv instead of Vv; 3v; D v; and
read (11.2) as “for cofinally many v;, ¥ (v;)”. Amap w: M — N which preserves
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Q-formulae is called Q-preserving, in which case we write

7. M —¢o N.
Amapm: M — N is called cofinal iff for all y € N there is some x € M such that
y C m(x).

Lemma 11.13 Let w: U — 5, U’, where U and U’ are transitive structures.

(a) If  is cofinal, then w is X'1-elementary.

(b) Letm be X\-elementary. Let ¢ be a ITy-formula, and letx € U. IfU’ = ¢(7 (X)),
then U = ¢(X).

(¢c) Let m is cofinal. Let ¢ be a Q-formula, and let x € U. If U = ¢(Xx), then

U'E e (x).
Proof Problem 11.3. (I

We formulate the following lemma just for models of fé’ EA> but of course it
also holds for models of different types.

Lemma 11.14 There is a Q-sentence ¥ (of .i”é’ £.4) such that for every transitive
model M = (M; €, E, A) (of fé’éy/&) which is closed under pairing, M is an
acceptable J-structure iff M = W.

Proof The statement “V = L[E ]” (cf. p. 77) may be written as
Qy 3By = SplE].

Here, “y = Sg[E]” is the ¥-formula from Lemma 5.25 (2). The fact that (M, A)
is amenable can be expressed by

QOydzz=ANy,
as ANx € M iff thereissome y DxwithANy e M.
It remains to be checked that being acceptable can be written in a Q-fashion. Let

¢ be the sentence

Vot dn <oVm <oVt < wé
((Z(1) N Swe+m ED \ Jot[E] # V) = (11.3)
Af € SpeqnlE]l f: T — wé A f surjective).

Clearly, if M = ¢, then M is acceptable. To show the converse, let M be acceptable,
and let o€ < M N OR. Let 1( be the least t such that

(Z(@) N Jog+ol ED\ Jug[E] # 0. (11.4)
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By acceptability, there is some ngp < ® and some surjective f: 19 — wé&, f €
Swée+no E]. But then there is some n > n such that for every T with (11.4) there is
some surjective f: T — wé, f € Spe4n[E]. Therefore, M |= ¢.

We may now express that M be acceptable by saying that for cofinally many y,
v = Swe+m[E] (for some &,m < w) and if

(Z(()nN SwEer[E]) \ JwS[E] # 0,
then there is some surjective f: 7 — &, f € Speqm[E] O

Lemmas 11.13 and 11.14 now immediately give:

Corollary 11.15 Let M, M be transitive structures.

(@ Ifm: 1\_71 —x, M and M is an acceptable J-structure, then so is M.
(b) Ifm: M — o M (e.g., ifwisa X preserving cofinal map) and M is an acceptable
J-structure, then so is M.

We may now turn to the downward extension of embeddings lemma.

Lemma 11.16 (Downward Extension of Embeddings Lemma, Part 1) Let M, M be
acceptable J-structures. Let p € Ry and p € M. Let m: MP — 5o MP. Then there
is a unique 7: M — 5, M such that 1 O w and w(p) = p. Moreover, 7 is in fact
Y| elementary.

Proof By Lemma 10.16, the X';-Skolem function Ay is uniformly definable over
J-structures N, i.e., there is a X-formula ¥ such that x = hy(n,y) iff N
¥ (n,y, x) forevery J-structure N.Say ¥ (vi, vz, v3) = Jw; ... Jwy ¥(wy, ..., wk,
Vi, V2, V3).

Let us first show the uniqueness of 7. Suppose that 7 has the above properties.
Let x € M. Then x = hy;(n, (z, p)) for some n € w and z € [p1(M)]=. Pick
21, ..., 2k € M such that U(z1, ..., 2.1, (2, p), x). Since 7 is X preserving, this
implies ¥ (7 (z1), ..., 7 (zk), n, (7 (2), p), 7 (x)), so that we must have

m(x) =hp(n, (7 (2), p)) = hun, (&), p)).

Hence, there can be at most one such 7.
Let us now show the existence of 7.

Claim 11.17 Suppose that (v1, ..., ve) is a Xi-formula. For 0 < i < £ let x; =
hy(ni, (i, p)) where n; < w and z; € [p1(M)]~, and let x; = hy(n;, (z;, p))
where z; = 7w (Z;). Then

MEoE,....%) iff MEei,..., xp).

Proof We shall use the map e from p. 230. Let ¢ = ¢,, n < w. Then M |=
¢(x1, ..., Xp) is equivalent to
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M = @u(hjz(n1, @1, P)), - . hyg(ne, @, P))), (1L.5)

which may be written as

M ':¢€(n)(ils'-'sils p_) (116)
This also works over M, i.e., M = ¢(x1, ..., x¢) is equivalent to
M = @en)(Z1, ..., 2Z¢, P). (11.7)

Now (11.6) is equivalent to

Af;l(e(n),(il,...,ig)), (11.8)
and (11.7) is equivalent to
Al (e(n), (z1, ..., 20)). (11.9)
Since 7 is X preserving, (11.8) and (11.9) are equivalent. O
Now let us define 77 by
7t (hy;(n, (z, p))) = hy(n, (7(2), p)) (11.10)

forn e wand z € [,01(1\_4)]<“’. Here, “~~” is understood as saying that the left hand
side is defined iff the right hand side is. Notice that 77 is indeed well defined by (11.10);
this is because if h y; (n1, (21, p)) = hy(n2, (22, p)) whereny,ny < wandzy,z; €
[p1(M)]=®, then by Claim 11.17, hp; (n1, ((Z1), p)) = hy(n2, (w(Z2), p)). Claim
11.17 then also yields that 77 is X' preserving.

To see that w D 7 and 7 (p) = p, pick k1, ko < w such that

x = hy(ki, (x,q)) and g = hy(k2, (x. q)), (1L.11)

uniformly over all J-structures N. Then for all z € [p; (M)]Z®,z = hy; k1, (z, p)),
hence 7(z) = hy(ky, (7(z), p)) = m(z). This gives 7 D mw. Also, p =
hj;(k2, (0, p)), hence 7 (p) = hum(ka, (0, p)) = p. U

If in addition the hypothesis of Lemma 11.16 we assume that p € Ry and
7 MP— 5, MP, then we may show that 7 : M — 5, ., M (cf. Problem 11.4).

Lemma 11.18 (Downward Extension of Embeddings Lemma, Part 2) Let M be
an acceptable J-structure, and let p € M. Suppose that N is a J-structure and
w: N — x5, MP. Then there are unique M and p such that p € Ry and N = M?.

Proof The uniqueness of M and p is easy to verify, arguing as in the proof of Lemma
11.16. Let us show the existence.
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- M

MP

Let M = (JulE], B), M? = (J,[E], A), where p = pi(M) and A = A? . and
let N = (J5[E'], A). Let
_ T
M = hy(ran(r) U {p}) <5, M, (11.12)
where M is transitive. By Corollary 11.15 (a), M is an acceptable J-structure, say

M = (Jz|E]. B).
Let us first show that

ran(77) N (U ran(n)) =ran(m). (11.13)

It is easy to see “D” of (11.13). To show “C” of (11.13), suppose that y =
hy(n, (z, p)) € x, where n < w and z, x € ran(x). Since y,z € MP, the X
statement “y = hys(n, (z, p))” canbe equivalently expressed in the form A (k, (y, 2))
for some k € w. As also x € MP, we thus have that

dvex Ak, (v, 2)),
a X-statement which is true in M7, so that

Ivex Ak, (v, 2),
holds true in N, where x = 7 '(x) and 7 = 7~ !(2). Let § € X be such that
Ak, (¥,2)). Then A(k, (m(y), 2)), so that in fact 7 (y) = hy(n, (z, p)) = y, i.e.,
y € ran(w). We have shown (11.13).

Equation (11.13) now immediately implies that

7 D mand J5[E'] = J;(E]. (11.14)



11.1 Fine Structure Theory 243

Let us now set
p=7"(p).

We aim to verify that M and p are as desired.
We claim that

p1(M) = f. (11.15)

Well, by (11.12) and (11.14) and as there is a ¥ ?;1 map of p onto J[;[E], there is a
z {‘;1 map of p onto M. This gives that p; (M) < p, cf. the proof of Lemma 11.11.
To show that p < p; (M), let P be ¥ {‘;1({@}) for some g € M, and let y < p.

We aim to see that P Ny € M. By (11.12) we can find an n < o and some
x € N = J;[E] such that

€ P &= M ¢u((z,%), P)
forall z € M. But for all k < wandy € N,
Ak, y) &= Ak, T(y) = M = (@), p) <= M = gi(y, p). (11.16)
In particular,
An, (z,%)) €= M k= ¢a((z, %), P)
forall z € N. As N is a J-structure, A N ({n} x (y x{x})) € N,and thus P Ny is

in N, too. This proves (11.15).
As an immediate consequence of (11.16) and (11.15) we get that

A=Al (11.17)
Because there is a M map of 5 onto J;[E], (11.12) implies that

D € Ry;.

The proof is complete. O

We now aim to prove a dual result, the upward extension of embeddings lemma.
Definition 11.19 Let M and M be acceptable J-structures. A map 7: M — M is
called a good embedding iff
(a) m: M - M B B B
(b) For all R and R such that R C M? is rudimentary over M and R C M? is

rudimentary over M by the same definition,

if R is well-founded, then so isR.
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Lemma 11.20 (Upward Extension of Embeddings Lemma) Let M be an acceptable
J-structure, and let p € Ry;. Suppose that N is an acceptable J-structure, and
T MP — x, N is a good embedding. Then there are unique M, p such that
N = MP and p € Ry;. Moreover, T is good, where 71 D w and 7 : M - M
with 7T (p) = p is given by Lemma 11.16.

Notice that Lemma 11.16 in fact applies to the situation of Lemma 11.20.

Proof of Lemma 11.20. We shall make frequent use of the map e from p. 230.

Let us first show that M and p are unique. Suppose 71 : M — Mj and 7> :
M — M, are two extensions of 7 satisfying the conclusion of Lemma 11.20, and
that py, p» are the corresponding parameters. Then Aﬁl = ApMzz, call it A, and if
k € {1,2} and x € M, then x is of the form Ay, (n, (z, pi)) for some n < w
and z € [N NOR]=”. Let o: M1 — M, be the map sending hyy, (n, (z, p1)) to
hy,(n, (z, p2)), where n < @ and z € [N N OR]=“. Then o is a well defined
surjection since

zz=huy, (n, (z, p1)) < A(m, (n,§)) < Iz z = hpy, (n, (z, p2))
for an appropriate m < w (namely, m = e("3zz = v")). Also, o respects €, since

if x = hy (ny, (21, p1)) and y = hy, (n2, (22, p1)), where ny,ny < o and z;,
7z, € [N N OR]=% then

X €y < hum, (n1, (21, p1)) € hy, (n2, (22, p1))
< A(m, ((n1, 21), (n2, 22)))
& hy, (n1, (21, p2)) € hy, (n2, (22, p2))
< ox)eao(y)

for an appropriate m < o (namely, m = e("v; € v2")). Therefore, o is an e-
isomorphism, so that o is the identity, i.e., M| = M»>, 71 = 712 and p| = p».

- M
_4p
|
|

|
t
\

N
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Let us now verify the existence of M, p. Suppose t}le}t M = (J5[F], W). We first
represent M as a term model which is definable over M?, and then “unfold” the term
model which is defined in the corresponding fashion over N so as to obtain M and

M ={(n,2) €ewx MP: Iy y =hyn,(z, p))}

p. Let B
and let us define relations I,E, F,and W over . as follows, where (n,x),(m,y) €

M.
(n, x)I(m, y) <= hy(n, (x, p)) = hy(m, (v, p))
(n,x)E(m, y) <= hy(n, (x, p)) € hy(m, (y, p))
(n,x) € F <= hj;(n, (x,p)) € F
(n,x) € W <= hy(n, (x,p)) e W
Obviously, / is an equivalence relation, and the predicates E, F, and W are I-

invariant. Let us write, for (n, x), (m, y) € .#,
{lm. y]: (., x)1(m, y)}
{[n, x]: (n,x) € ///_}

[n, x]

M =

[n, x]1E/I[m, y] <= (n, x)E(m, y)
[n,x]€ F/I < (n,x) € F

[n,x] e W/I_ < (n,x) € w.
We obviously have

where o sends [n, x] to hy; (n, (x, p)).

Notice that .7, I ,E, F,and W are all ¥ f‘;l ({p}), and that we may thus choose
ni, na, n3, n4, and ns < w such that for all (n, x), (m, y) € o x M?,

(n.x) € M <= (n1. (n, %)) € A7,
(n, )1 (m, y) &= (n2, ((n, x), (m, y))) € A7,
(n, )E(m, y) <= (13, ((n, %), (m, y))) € A?,
(n.x) € F <= (n4, (n,x)) € A7,

(n,x) € W = (ns, (n,)) € AL,
Let us write N = (J,[E'], A"), so that w: M? — 5, (J,[E'], A"). We define .#,

I, E, F,and W as follows, where (1, x), (m,y) € w X N.
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(n,x) € M > (ny, (n,x)) € A’

(n,x)I(m,y) &= (n2, ((n, x), (m, y))) € A’

(n,x)E(m, y) <= (n3, ((n, x), (m, y))) € A’ (11.18)
(n,x) € F & (n4, (n,x)) € A’

(n,x) € W < (ns, (n,x)) € A/

The fact that I is an equivalence relation and that E, F, and W are [-invariant
may easily be formulated in a IT; fashion over M”. As 7 is assumed to be X-
elementary, / is thus also an equivalence relation, and E, F', and W are /-invariant.
We may therefore write, for (n, x), (m, y) € 4,

[n,x1* = {[m,y]: (n, x)I(m, y)}
MT = {[n,x]": (n,x) € .4}
[n, x]"E/I[m, y]* <= (n, x)E(m, y)
[n,x]1* € F/I & (n,x) € F
[n,x]* € W/I & (n,x) € W.

Let us consider

= (M]I;E/I,F/1,W/I).

In addition to (11.18), we shall need four more facts about A" which are inherited

from A”. and which will eventually enable us to show that A’ is a standard code. For
one thing, for all X'-formulae ¢ and ¢ and for all (m1, x1), ..., (Mg, xx) € ® X N,

(e("=eM, ((m1, x1), ..., (Mg, xp))) € A' =
(e, ((my, x1), ..., (mg, xp))) ¢ A (11.19)

and

(o Ay, ((m1, x1), ..., (mg, X)) € A
(e, (m1, x1), ..., (mg, xx))) € A’ (11.20)
A (Y, ((my, x1), ..., (mg, xx))) € A].

Equations (11.19) and (11.20) justfollow from the corresponding facts for APM and the
IT,-elementarity of 7. We also need versions of (11.19) and (11.20) for quantification.
In order to arrive at these versions, we are going to use the X'j-SKOLEM function for
M to express I1p-truth over M in a IT, fashion over M?. For the sake of readability,
let us pretend in what follows that if ¢, is X'| but not X, then ¢, has only one free
variable, w, and that it is in fact of the form Jv (v, w), where i is Xy. We may
pick a (partial) computable map e: w — o such that for all n <  in the domain of
E, Pe(n) is 2() and
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@n (W) is equivalent to Iv @z, (v, W)

over rud—closed structures.
Now let ¢, be X1 but not Y. We then have that

MP = “Ym¥x ((e(n), (m, x)) € AﬁM PN
In'3x (e(&(n)), (m', x'), (m, x))) € AI{’Z).” (11.21)

B ]Squation (11.21) is not I1; by itself, but it may be rephrased in a I} fashion over
MP as follows.

M? = “YmVx ((e(n), (m, x)) € Af;l <~
(e(e(n)), ((k(n), (m, x)), (m, x)) € AﬁM)-” (11.22)
Here, k: @ — w is a natural computable function such that
M & v gy (v, ((m, x), p)) <— v @a(n) (v, by (m, (x, p))).
Equation (11.22) is true as
((e(m), (m, x)) € AL = M 1= g (hy (m, (x, p))
= M I @an (v, by (m, (x, p)))

= M = ey (hj (k(n), ((m, x), p)), hj(m, (x, p)))
> (e@(n)), ((k(n), (m, x)), (m, x)) € AlL.

The statement (11.22) will be transported upward via r, and we thus have

N E=“YmVx (e(n), (m,x)) € A «—
(e(e(n)), ((k(n), (m, x)), (m,x)) € A").” (11.23)

We have shown that for all formulae ¢ = ¢, which are X'| but not X and for all
(m,x) ewx N,

(e(n), (m,x)) € A' =
Am’, x") € w x N (e(e(n)), ((m’, x), (m, x))) € A'. (11.24)

In a similar fashion, we may prove that if ¢ (v{, v2, v3) is X and if (m, x), (m’, x’) €
w X N, then
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(e("Vvi € vap(vi,v2,v3) ), ((m, x), (m',x")) € A" <=
V(m”", x") € 0 x N(e("vi € v2 = @(v1,v2,v3)7), (11.25)
(m”,x"y, m’', x"), (m,x))) € A'.

We know that E_ /I is extensional, which may be formulated as saying that if
(n, x), (m, y) € . are such that

(e("v # w), (1, %), (m, y))) € AT,
then there is some (m’, x') € .4 with
(e("u e vAw™), ((m', x), (n, x), (m, y))) € AﬁM‘
Equation (11.24) will now give that E'/I is also extensional. Because E is rudimentary

over N via the same definition as the one which gives E as being rudimentary over
MP | the relation E is actually well-founded by the goodness of 7. Therefore,

S =(H]I;E/I,F/I, W/I) é (JulE*]; €, E*, W)

for some «, E*, and W*. We shall also write M = (J,[E*], W¥*) instead of
(JolE*]; €, E*, W™).

It is now straightforward to use (11.18—11.24) and prove the following by induc-
tion of the complexity of ¢.

Claim 11.21 Foralln < w and (my, x1), ..., (mg, xx) € w x N,

(e(), ((m1,x1), ..., (my, xp))) € A" =
M '= @n(a([mla xl]*)9 MR 0([mk’ xk]*))

We may now define
M- M

=H

by
hy(n, (x, ) = o ([n, w(0)]"),

where (n, x) € # . Notice that 7 is well-defined, as for (n, x), (m, y) € ///_,

hig (1, (x, ) = hjz(m, (3, p)) <= (n,)[(m, y)
& (n2, (1, x), (m, y))) € AP,
= (m2, ((n, 7(x)), (m, T ()))) € A’
= (n, T (m, 7(3))
= [n, 71" = [m, 7",
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Moreover, 7 is X»-elementary, by the following rea_soning. Letn < w, and say that
©n has two free v_ar_iables, vand w. Thenforall z € M,say z = h; (¢, (y, p)), where
{<wandye MP,
M =Yy gn(v,2) <= Y(m,x) € 0 x MP M = @u(h i (m, (x, p)), h (2, (v, p))

= M7 |=Ym, x (e(n), ((m, %), (£, ) € AT,

& N = Vm, x (e(n), ((m, x), (£, () € A’

& vim, x) € x N M = o(m, x1, [6, 7 ()]F)

=S MEYWe (v, 7(2)).

Here, (x) holds true by Claim 11.21.
Let us write p = 7 (p). We claim that M, 77, and p are as desired.
Let ki, ko be asin (11.11). Then

x =6 ([ky, x]) forall x € M? and p = 6 ([k2, 0]).

Let us first observe that N € M.If x € M? and 6 ([n, y]) € x = & ([k1, x]), then
o ([n, y]) = o ([k1, w]) for some w € x. This may be written in a I1; fashion over
MP? sothatifx € N ando ([n, y1*) € o ([k1, x]*),theno ([n, y]*) = o ([k1, w*]) for
some w*. It follows by €-induction that o ([k, x]*) = x for all x € N. Furthermore,
given any x € M?,

7 (x) = 70 ([k1, x]) = o ([kr, (x)]") = 7 (x),
and hence 7 D 7.
We also have that p = 7 (p) = 7 (hy;(ka, (0, p))) = o ([k2, 0]*). We now prove

that A’ = Af),.
For x € MP? and n < w, we have that

rl(n, x) € AﬁM =M E gu(x, p)
=M k= g (hy ki, (x, p)), hjg(ka, (0, p)))
&= (e(n), ((k1,x), (ka, 0)) € AL,

which implies that for allx € N and n < o,
(ns x) € A/ <:> (e(n)v ((klyx)v (k21 0)) € A/ <:> M '= (pl’l(xs p)
To see that A’ = A’,:,,, it then suffices to show that N N OR = p = p;(M). Our

computation will also yield that p € Ry. o
The reader will gladly verify that for all (n, x) € ® x MP,

hyp(n, (x, p)) = hy(hyg(ki, (n, p)), (g ki, (x, p)), hyz(k2, (0, p))))
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yields that
("vi = h(v2, (v3,v4)) 7, ((n, x), (ky, n), ((k1, x), (k2,0)))) € AﬁM,
so that for all (n,x) € w x N,
("vi = h(v2, (v3,v4) 7, ((n, x), (k1. n), ((k1, %), (k2, 0)))) € A, (11.26)
which in turn implies that
o ([n, xI*) = hy(Tkr, n]*, ([ky, x1%, [k2, 01%)) = hum(n, (x, p)).

As there is a Z‘lM map from p onto N and M = {o ([n, x]*): (n,x) € 4}, (11.26)
implies that

M =hpy(pU{p}), andhencealso pi(M) <p (11.27)

by the proof of Lemma 11.11. On the other hand, if B € Z‘IM({a}), where a € M,

then by (11.27) there is some z € [p]=* and some B e EIM({p}) such that for all

X €N, -
x € B<= (x,z) € B,

which in turn for some fixed n (namely, the GODEL number of the defining formula)
is equivalent to (n, (x,2)) € A’. But (N, A’) is amenable, so that if n < p, then
n x {z} N B € N, and hence also B N n € N. This shows that p < p1(M). Thus,

p=p1(M) and p e Ry.

It only remains to show that 7 is good. Let R, R be binary relations which are
rudimentary over M, M, respectively, by the same rudimentary definition. Define
R*, R* as follows

(n, x)R*(m, y) < (n,x), (m,y) € # AN &(n,x])RG([m, y])
(n,x)R*(m, y) & (n,x),(m,y) € # AN o([n,x]*)Ro([m, yI*).

Then R* is well-founded since R is, and R*, R* are rudimentary over M”, N,
respectively, by the same rudimentary definition. As 7 is good, R* must then be
well-founded. Hence R must be well-founded as well. O

Definition 11.22 Let M be an acceptable J-structure. For n < w we recursively
define the n-th projectum p, (M), the n-th standard code A';,’Ip and the n-th reduct
M™P as follows:

(1) po(M) =M NOR, I'Y = (@}, A} =3, and M>? = M, and
) pus1 (M) = min{py (M™P): p e I}, Tyt = [ pi1 (M), pi(M))=*, and

i<n

for p € Iyt A7 = AL and MPELP = (M7P iy,
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We also set p, (M) = min{p,(M); n < w}. The ordinal p,, (M) is called the ultimate
projectum of M.

We remark that if M is not 1-sound (cf. Definition 11.28) then it need not be the case
that po (M) is the least p such that Z(p) N ¥ g” M.

If p,(M) < --- < p1 (M), then we may identify p = (p(0), ..., p(n)) € FI{}H
with the (finite) set | ran(p) of ordinals; this will play a role in the next section.

Definition 11.23 Let M be an acceptable J-structure. We the set

Py = {9},
Pyt ={peyt: plnePynp(M™P") = p, 1 (M) A p(n) € Pyupin}, and
Ry =(pery™ pineRy A pr(M"™PI") = p, 1 (M) A p(n) € Rypmpin).

As before, we call the elements of Py, good parameters and the elements of R}, very
good parameters.

Lemma 11.24 Let M be an acceptable J-structure.

(@ Ry CPy#0

(b) Let p € R,. If g € I'y; then Aﬁ,’lq is rudpgn.p in parameters from M™P.

(c) Let p € Ry Then pi(M™P) = pp41(M).

d Ifpe P", then for all i < n, p(i) € Pyipti. If p € RY,, then for all i < n,
p(i) € Ryipri. Moreover, if p | (n — 1) € RX,I 1, then p(n — 1) € Pyn—1,pin—1
implies that p € Py, and p(n — 1) € Rypm—1.p1n—1 implies that p € R},

Proof (a) This is easily shown inductively by using Lemma 11.11 and amalgamating
parameters.
(b) By induction on n < w. The case n = 0 is trivial. Now let n > 0, and suppose (b)

holds forn — 1. Write m = n — 1. Let p € R}, and g € I'y;. We have to show that

AZ,;Z!),; LM 56 rud ynp in parameters from M”P_ Inductively, M4 is rud Mmpim

in a parameter t € M™?. As p(m) € Rym pim, there are ey and e and z € M™?
such that

q(m) = hMm,p[m (e(), (Z, p(m)))

and
= hMm,p[m (81, (Z, p(m))).
Fori < wand x € M™P, we have that

(i.x) € AT ey pmalm = gy (x, g (m))

— M™M= g (x, R ygm.pim (€0, (2, p(m))))
= Mmrim = @j((x,2), p(m))

= (. (x,2)eAll
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for some J which is recursively computable from i, as M™4!™ g rud ygm pim 0

A20m)-pn(M)

the parameter t = A yym,pim (€1, (z, p(m))). Therefore, ymagtm

is rud AP0 in
mm.plm

the parameter z. (c) Let p,4.1(M) = p1(M™?), where g € I'y;. By (b), M"9 is
rudym.p in parameters from M™P, which implies that ¥ {”n’q cx {”n'p. But then
p1(M™P) < pi(M"™9) = ppy1(M), and hence p1(M™P) = py1(M). (d) This
follows inductively, using (c). (I

The following is given just by the definition of R"MH. Let M be acceptable, and
let p € RX,;’I. Then

M = hy(hpprpii (o hpgnpin (Par1 (M) U {p(m)}) ...) U {p(0)}). (11.28)

We thus can, uniformly over M, define a function h';v;rl’p basically as the iterated
composition of the X'y SKOLEM functions of the ith reducts of M, 0 <i < n, given

by p such that M is the h';‘;l’p-hull of pp+1(M) whenever p € R”M+1.
More precisely, let M be acceptable, and let p € I A’f,“. Let us inductively define

thp for 1 <i <n+1,as follows. For k < w, let g(k) = the largest m such that 2"
divides k, and let u (k) = the largest m such that 3" divides k. Let

Ry (e, %) = hy (k, (x, p(0))) forx € M"P1! | and

fori > 0, Ay (k. X) = h57 (@(k). hygipii (u(k), (%, p(i)))) for x € ML,
(11.29)

If X ¢ M"t1-P then we shall write

WP (X) for WP (@ x < X).

If p is clear from the context, then we may write h'jj ! rather than h;{,;rl’p .
The following is straightforward.

Lemma 11.25 Let n < w, and let M be an acceptable J-structure. If p € T A'f,“,
then hﬁ]’p isin TM({p)), and if p € R"I", then

M = 1P (g (M)). (11.30)

Lemma 11.26 LetO < n < w. Let M be an acceptable J-structure, and let p € RY,.
Then £ M n2M"P) = x M

Proof 1t is easy to verify that Eaﬂfn'p czxMn2mmr).Nowlet A e xMn
P (M™P), say

xGAﬁM 'ZHXIVXQ"H/V.X]( w(x»anDXZa"‘ 5-xk)7
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where ¢ is Xy and y € M. By Lemma 11.25, we may write

x €A 3Ix; e M"PVx, e M"P .3/ Vxp € M

@(xa hr/i/[(y/r p)» h;lw(xi, p)9 h;’w(-xév p)r o hl[’{/[(x]/(’ p))y

where y/ € M"™P. But then A € Zi‘)”"'p, as h'y, is definable over M by
Lemma 11.25. (]

A more careful look at the proofs of Lemmata 11.25 and 11.26 shows the follow-
ing.
Lemma 11.27 Letn < w. Let M be an acceptable J-structure, and let p € R},. Let
A C M™P be E%—l' Then A is lew’p.

Definition 11.28 Let M be an acceptable J-structure. M is n-sound iff R, = Py,.
M is sound iff M is n-sound for all n < w.

We shall prove later (cf. Lemma 11.53) that every J, is sound. Itis in fact a crucial
requirement on “L-like” models that there proper initial segments be sound.

‘We may now formulate generalizations of the downward and the upward extension
of embeddings Lemmas 11.16, 11.18, and 11.20.

Lemma 11.29 (General Downward Extension of Embeddings Lemma, Part 1) Let
n > 0. Let M and M be acceptable J-structures, and letw : M™"P — ;O_M P where
p € R’](;[. Then there is a unique map ©7 O 1 such that dom(zx) = M, 7(p) = p

and, setting T; = 7 [Mi,ﬂi’
i :Mi,ﬁfi -5, Mi-pli for i <n.

Fori < n, the map 7; is in fact X-elementary.
In particular,

7 (h’;.f(k, x)) = 1k, 7 (x))

for every k < w and x € M™P.

Lemma 11.30 (General Downward Extensions of Embeddings Lemma, Part 2) Let
M be an acceptable J-structure, and let P € M. Let N be a J-structure, afzd l_et
7w : N — x5, M"™P. Then there are unique M, p such that p € R;’;[ and N = M"™P.

The general upward extension of embeddings lemma is the conjunction of the
following lemma together with Lemmas 11.29 and 11.30.

Lemma 11.31 (General Upward Extensions of Embeddings Lemma) Let m :
M"P =, N be good, where M is an acceptable J-structure and p € R”M. Then
there are unique M, p such that M is an acceptable J-structure, p € R}, and
M"™P = N. Moreover, if T is as in Lemma 11.29, then 7 is good.



254 11 0" and Jensen’s Covering Lemma

If 7 and 77 are as in Lemma 11.29 then 7 is often called the n-completion of 7.

Following [30, Sect. 2] we shall call embeddings arising from applications of
the Downward and Upward Extension of Embeddings Lemma “r X,y | elementary.”
Here is our official definition, which presupposes that the structures in question
possess very good parameters.

Definition 11.32 Let M, N be acceptable, let m: M — N, and let n < w. Then
is called r X, | elementary provided that there is p € R}, with =(p) € R}, and for
alli <n,

m | MUPT MR g NETDTE (11.31)

The map 7 is called weakly r Xy, 1| elementary provided that there is p € R}, with
w(p) € RY,, and for all i < n, (11.31) holds, and

) ML MM g NP,

If r: M — N is (weakly) r X,,+| elementary then typically both M and N will
be n-sound, cf. Lemma 11.38; however, neither M nor N has to be (n + 1)-sound. It
is possible to generalize this definition so as to not assume that very good parameters
exist (cf. [30, Sect. 2]).

With the terminology of Definition 11.32, Lemma 11.29 says that the map 7 can
be extended to its n-completion 7 which is weakly r X, | elementary, and if 7 is
X' elementary to begin with, then the n-completion 7 in fact be r X, | elementary.

Moreover, if a map 7: M — N is r X, 4| elementary, then 7 respects A"+! by
Theorem 10.16:

Lemma 11.33 Letn < w, andlet M and N be acceptable J-structures. Letw: M —
N ber X, 11 elementary. Let p € F;IH besuchthatp [ n € Ry andn(p | n) € RY,.
Then for all k < w and x € M"t1:P,

T (]/lll’i;‘l,[’(k7 X)) — h']lv-f‘l,f[([’)(k’ N(X))

Recall the well-ordering <* of finite sets of ordinals from Problem 5.19: if u,
v € OR<?, then u <* v iff max(uAv) € v. If M is an acceptable J-model and
n < o, then the well-ordering <* induces a well-ordering of I'j; by confusing
p € I'y; with (J ran(p). We shall denote this latter well-ordering also by <*.

Definition 11.34 Let M be an acceptable /-structure. The <*-least p € Py is called
the nth standard parameter of M and is denoted by p,,(M). We shall write M" for
MMyt is called the nth standard reduct of M.

Lemma 11.35 Let M be an acceptable J-structure, let n < w, and let p € R;},,.

Then there is some p € PI'C,IH with p [ n = p. In particular, if n > 0 and M is
n-sound, then p,_1(M) = p,(M) | (n — 1).

Proof This follows immediately from Lemma 11.24 (c). (]
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Definition 11.36 Let M be an acceptable J-structure. Suppose that for all n < w,
pn(M) = ppy1(M) | n. Then we set p(M) = ,,_,, Pn(M). p(M) is called the
standard parameter of M.

We shall often confuse p(M) with | ran(p(M)). Lemma 11.35 readily gives the
following.

Corollary 11.37 Let M be an acceptable J-structure which is also sound. Then
p(M) exists.

Lemma 11.38 Let M be an acceptable J-structure. M is sound iff p,(M) € R,
foralln € w.

Proof We shall prove the non-trivial direction “<=.” We need to see that for each
n>0,
pn(M) € Ry, = R} = Py. (11.32)

Suppose n > 0 to be least such that (11.32) fails. Hence Py, \ R}, # by Lemma
11.24 (a). Let g be the <*-least element of Py, \ R)),. This means that p <* ¢, where

p = pn(M).
We have that g | (n — 1) € Pyt = Ri; Y, py(M"=ha10=Dy = p, (M), and
q(n) (S PMn—l,q[(n—l) \ RMn—I,q[(n—l). Let

i N = hpyp-r.g10-10 (0 (M) U {g(n — D}) <5, M”_l’qr("—l),

where N is transitive. By the Downward Extension of Embeddings Lemma 11.29
and 11.30, there are unique M, ¢, and 7 such that

- n—1 _ agn—1,q

q € RM L IN=M ,

7: M — M is r X, elementary, and (11.33)
aDOrmanda(g)=q [ (n—1).

Let ¢ € FA@I besuchthat § | (n —1) = gand ¢’(n — 1) = 7~ (g — 1)),
so that 7(¢") = g € ran(z). Because p = p,(M) € R, there are ¢ < w and
z € [pa(M)]=® such that g = h'}” (e, 2), i.e.,

Ap* <* gIe < wIz € [P (M)]™® (g = h';,’lp/(e, 2)). (11.34)

We aim to verify that (11.34) also holds true in ran(7):

Claim 11.39 There is some p* € ran(7), p* <* q, for which there are e < w and
Z € [pn(M)]=% such that g = h';,’lp (e, 2).

Proof Leti < n — 1 be least such that p(i) <* q(i). (Sop [ i = ¢q | i.) Letus
recursively define ((p*(k), x(k)): i <k <n — 1) as follows.
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Because
MM = 3r <* q(i) 3x € [pip 1 (M)]™ 3" < 0 q(i) = hygiari (€, (x, 7)), (11.35)

as being witnessed by p(i), and because 7 | M4 is ¥|-elementary, we may let
p*(i) be the <*-least r € ran(7) as in (11.35), and we let x(i) be some x € ran(7T)
asin (11.35) suchthat g(i) = hyiqii (€', (x, p*(i))) for some ¢’ < w. For the record,
p*@) <* q@).

Having defined (p*(k—1), x(k—1)),wherei <k <n—1and{p*(k—1), x(k—
1)} C ran(m), we will have that

MbITk = 30 3¢ € [y (M)]59 3¢ < @ (x(k — 1), g(k) = hppeqre (e, (x, 7)), (11.36)

as being witnessed by p(k), and because 7 | M*91¥ is X|-elementary, we may let
p*(k) be the <*-least r € ran(7) as in (11.36), and we let x (k) be some x € ran(7)
as in (11.36) such that (x(k — 1), g(k)) = hpuqic(€’, (x, p*(k))) for some ¢’ < w.
We may now set p* = p [ i U{(k, p*(k)):i <k <n—1}.
It is straightforward to verify that foreachk <n — 1,

gk (e 1 (M) U {p*(K)}) = R ppeqre (i1 (M) U {q (K)}),

and AIA’; ,512)*  and AZ;]ZL i« are easily computable from each other. (11.35) and (11.36)
then give that p* € Py,. Also, p* <* q. However, p* € ran(7), whereas ¢ ¢ R},

implies that p ¢ ran(s7), and hence p* ¢ R;:. This contradicts the choice of g. [

Solidity witnesses are witnesses to the fact that a given ordinal is a member of the
standard parameter. We shall make use of witnesses in the proof of Theorem 11.64.

Definition 11.40 Let M be an acceptable J-structure, let p € OR N M=%, and let
v € p.Let W be an acceptable J-structure with v C W, and letr € ORN W=“. We
say that (W, r), or just W, is a witness for v € p with respect to M, p iff for every
X1 formula ¢ (vg, ..., vi4+1) and for all &y, ..., & < v

ME=o¢@o.....8. P\ +1D) =W Eel.....&. ). (11.37)

By the proof of the following Lemma, if a witness exists, then there is also one
where = may be replaced by <= in (11.37).

Lemma 11.41 Let M be an acceptable J-structure, and let p € Py;. Suppose that
foreachv € p there is awitness W forv € p withrespectto M, p suchthat W € M.
Then p = p1(M).

Proof Suppose not. Then p; (M) <* p, and we may let v € p \ p;(M) be such that
p\v+1)=p M\ w+1).Letuswriteq = p\ (v+1) = pr(M) \ v. Let
(W, r) € M be a witness for v € p with respectto M, p.Let A € ZJIM({pl(M)}) be
such that A N p1 (M) ¢ M.
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Letk <wand &) < --- < & besuchthat py(M)Nv ={&,...,&}. Letgpbea
X1 formula such that for every & < p1 (M),

§€A — MEpESL.... & q).

Because (W, r) € M is a witness for v € p with respect to M, p, we have that

MEYE.S,....6nqg) = WEVES,.... & 1) (11.38)

for every & < p1(M) < v and every X formula .

Say W = Jy[E].Let B = sup(hw (vU{r})NOR) < «, and write W = JglE]. Let
us define o: hy (v U {g}) — W by setting hy(e, (£, q)) — hy (e, (§,1)), where
e < wand & € [v]=®. By (11.38), o is well-defined and Xy-elementary. By the
choice of B, o is cofinal and hence X'|-elementary by Lemma 11.13 (a). Therefore,

MEVEE, ... &q) < WEVEE, ... &) (11.39)

forevery§ < p1(M) < vandevery X'j-formula . In particular, 11.39 holds for yy =
@ and every £ < pi(M) < v.As W € M, this shows that in fact A N p; (M) € M.
Contradiction! g

Definition 11.42 Let M be an acceptable J-structure, let p € On N M=, and let
v € p. We denote by WX,I”’ the transitive collapse of 2y (VU (p \ (v + 1))). We call
WX,I’p the standard witness for v € p with respect to M, p.

Lemma 11.43 Let M be an acceptable J-structure, and let v € p € Py. The
following are equivalent.

) w7 e M.
(2) There is a witness (W, r) for v € p with respect to M, p such that W € M.

Proof We have to show (2) = (1). Let t: W;,,’p — M be the inverse of the
transitive collapse. As in the proof of Lemma 11.41, say W = J,[E], set B =
sup(hw (vU{r}) NOR) < «, and write W= Jg[ E]. We may define a X'y -elementary
embedding o: W,;” — W by setting

T (hple, (€, p\ (v + 1) > hye, (1)),

where e < w and & € [v]=%.

Now if 7(v) = v then a witness to p; (M) is definable over W):”, and hence over
W.Butas W € M, this witness to p1(M) would then be in M. Contradiction!

We thus have that v must be the critical point of 7. Thus we know that o (v) is
regular in M, and hence writing M = J,[E'], J;y[E'] = ZFC™. We may code
W,‘:,I’p by some a C v, definably over WX,,"" . Using o, a is definable over W, so that
a € M. Infact, a € J,()[B] by acceptability. We can thus decode a in J,)[B],
which gives W),” € Jy)[B] C M. O
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Definition 11.44 Let M be an acceptable J-structure. We say that M is 1-solid iff
Wl‘t)/i p1(M) eM

for every v € p1(M).

Lemma 11.45 Let M, M be acceptable J-structures, and let m: M —x, M. Let
vepeORNM=S? andsetv = 7 (v) and p = 7w(p). Let (W r) be a witness for
v with respect to M, p such that W e M, and set W = 7(W) and r = 7 (¥). Then
(W, r) is a witness for v with respect to M, p.

Proof Let ¢ be a Xj-formula. We know that

M =VE) < b...Y& < b(pEo, ... &, p\ @+ 1) — W&o, ..., &, 7).

As 1 is I1;-elementary, this yields that

MEV§S <v...§ <vo, ..., &, p\OV+ 1)) — WEkol,....&, 7).
We may thus conclude that (W, r) is a witness for v with respect to M, p. U

Corollary 11.4!6 Let M, M be acce;_)table J-structures, and let m: 1\_4_ -5 M.
Suppose that M is 1-solid and w(p1(M)) € Py. Then py(M) = n(p1(M)), and M
is 1-solid.

The following lemma is a dual result to Lemma 11.45 with virtually the same
proof.

Lemma 11.47 Let M, M be acceptable J-structures, and let w: M — », M. Let
pepeORNM=S? andsetv = (V) and p = n(p). Let (W,7) € M be such
that, setting W = a(W)andr = (), (W,r)isa wzmessfor v with respect to M,
p. Then (W, F) is a witness for v € p with respect to M, p.

Corollary 11.48 Let M, M be acceptable J-structures, and let 1: M -5 M.
Suppose that M is 1-solid, and that in fact W}(,I’pl (#0)
Then py(M) = 7w~ (p1(M)), and M is 1-solid.

€ ran(m) for everyv € p1(M).

We now generalize Definition 11.44.

Definition 11.49 Let M be an acceptable J-structure. If 0 < n < o then we say
that M is n-solid if for every k < n, p1(MF) = Pk+1(M) (k) = p,(M)(k) and Mk
is 1-solid, i.e.,

Wv,m(Mh

Mk e M*

for every v € p1(M*). We call M solid iff M is n-solid for every n < w, n > 0.
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Lemma 11.50 Ler M and M be acceptable J-structures, let n > 0, and let
w2 M — M ber X, elementary as being witnessed by py—1(M). If M is n-solid and
n(pl(M"_l)) € Pyn-1 then p,(M) = w(p,(M)) and M is n-solid.

Lemma 11.51 Let M and M be acceptable J-structures, letn > 0, and let 7 : M —

M be r Xy, elementary as being witnessed by i (pn—1(M)). Suppose that M is n-
k

solid, and in fact W;I’f‘(M ) ¢ ran(r) for every k < n. If 1~ (p,_1(M)) € PI’&I_I

then py(M) = 7~ (p,(M)) and M is n-solid.

The ultrapower maps we shall deal with in the next section shall be elementary
in the sense of the following definition. (Cf. [30, Definition 2.8.4].)

Definition 11.52 Let both M and N be acceptable, let 7: M — N, and letn < w.
Then 7 is called an n-embedding if the following hold true.

(1) Both M and N are n-sound,

(2) misrX,4+ elementary,

) n#(pr(M)) = pr(N) for every k < n, and

(4) 7w(pk(M)) = pr(N) for every k < n and p, (N) = sup(r" p,(M)).

Other examples for n-embeddings are typically obtained as follows. Let M be
acceptable, and let, forn € w, €, (M) denote the transitive collapse of 4'}," (0, (M) U
{pn(M)}). €, (M) is called the nth core of M. The natural map from €, (M) to
¢, (M) will be an n-embedding under favourable circumstances.

Lemma 11.53 For each limit ordinal «, Jy, is acceptable and sound.

Proof by induction. Suppose that for every limit ordinal 8 < «, Jg is acceptable
and sound.

Let us first verify that J, is acceptable. By our inductive hypothesis, this is trivial
if & is a limit of limit ordinals, so let us assume that « = 8 + w, where g is a limit
ordinal. We need to see that if T < § is such that

(P(0) N Jgra) \ Jp # 0, (11.40)

then there is some surjection f: v — B with f € Jg1. Let 7 be least with (11.40).
We claim that
T = pu(Jp). (11.41)

To see (11.41), note first that if n is such that p,(Jg) = p»(Jg), then there is a
(]ﬂ)n
2
and the soundness of Jg, and it is hence in Jgy,, \ Jg by Lemma 5.15. Therefore,

T < pw(Jg). On the other hand, let @ C 7 such thata € Jgi4 \ Jg. Thena € ¥ aj)ﬂ

subset of p,(Jg) which is not in Jg. Such a set is X ({)’S by Lemma 11.26

by Lemma 5.15. Asa C 1 < p,(Jg) and Jg is sound, Lemma 11.27 yields that a is
p) (ljﬂ) for some n < w. Hence p,,(Jg) < 7 and (11.41) follows.
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Now by the soundness of Jg again and by Lemma 11.25 there is some f € ¥ ({)’3

such that f: 7 = p,,(Jg) — Jg is surjective. By Lemma 5.15, f € Jg . We have
verified that J,, is acceptable.

We are now going to show that J,, is sound. We shall make use of Lemma 11.38
and verify that for every n < w,

pn(Jo) € R],. (11.42)

Suppose that this is false, and let n be least such that p = p,41(Jy) ¢ R’J':rl. Let us
consider

(T5e &) 2 hgyyr (a1 (Ja) U {p(m)}) <3, (Jo)" (11.43)

By the Downward Extension of Embeddings Lemma 11.29 and 11.30 we may extend
7T to a map

7 g =5 Jo

such that p | n € ran(7) and writing p = 7~ '(p [ n), p € R’}& and (J3, A) =
(Jz)™P. Let us also write p* = 7w~ (p(n)) = 7~ (p(n)).
Let B be " ({p(n)}) such that B N p,11(Ja) ¢ Jo, say

B={xe ()" (J)" [ plx. pm)}.
where ¢ is ;. Let
B={xe(Ua)"": (Jo)"" E ox, p*).
As T | pati(Je) =id,
BN put1(Je) = BN pu1 (o) & (Ja)". (11.44)

If& < a,then (J3)"? € Jy,sothat BN p,41(Jy) € Jo,contradicting (11.44). We
must therefore have that « = «. Then p € R’Jla' For every i < n, we certainly have
that p(i) <* p(i),as 7 (p(i)) = p(i). By thechoiceof p = pp11(Ja), p(i) =* p(i).
This yields that in fact p = p [ n, and therefore (J5, A) = (J)".

But B € Z‘l(]&)n'p ({p*}) and (11.44) then yield that p* € P, ). We must also
have p* <* p(n), as m(p*) = p(n). By the choice of p(n), p(n) <* p*, so that
p*=pn).

But now we must have that 7 = id, and therefore p(n) € R, 1.e., p € RZH.
Contradiction!
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Lemma 11.54 For each limit ordinal o, J,, is solid.

Proof By Lemmas 11.53 and 11.35, it suffices to prove that if n < w and v €
P1((J)™) = p(Jy)(n), then

W(vjf)l"((la)") € (J)". (11.45)

Let us thus fix n < w and v € p;((Jy)"). Let us write p = p(Jy), so that
(Jo)" = (Ju)™PI" Let us consider

(5, A) = higpn(U{pm)\ (v + D} <z, (Ja)", (11.46)

so that (J;, A) = W(vjf)ln(u“)n). By the Downward Extension of Embeddings Lemma

11.29 and 11.30 we may extend 7 to a map
7:Ja =5 Ja

such that p [ n € ran(7) and writing p = ﬁ_l(p [ n), p € R’}& and (Jp, A) =
(Ja)"P.

In order to verify (11.45), it suffices to prove that @ < «. This is because
if @ < a, then (J5,A) = (Jz)»? € J,. But it is clear from (11.46) that
Card(T C({(J;, A)})) = Card(v) inside Jy. Asv < p < p,(Jy) and Jj,(y,) =
(H,, (J,))" by Corollary 11.6, we then get that in fact (J5, A) € J,,(s,)> Where
Jon(Jy) 18 the universe of (J,)". Hence (11.45) follows.

We are left with having to prove that « < «. Suppose that @ = «. Then, as
a(p) =p | n, p<*p]|n However p € Rﬁ& = RZ C P"a, so that by the choice
of p | n we must actually have that p = p | n. That is,

(‘],5’ A_) = (J&)n,é — (Ja)n,p[n.

Let B € x " be such that B N p1 ((Ja)") ¢ (J)", say

B={xe ()" (J)" E @x,r)}

where r € (Jy)" and ¢ is X1. As v € p1((Jo)") € [p1((J)™), (Jo)" N OR)=® and
7 v = id, we have that @ | p1((Jy)") = id. Therefore, if we let B’ € ¥ ™" be

defined as
B = {x € (J)": (Jo)" = @(x, m(r)},

then

B N p1((J)") = BN p1((Ja)") & (Ja)". (11.47)
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Asran(m) = hyn(vU (p(n) \ (v + 1))), there is m < w and
sewU(pm)\ (v+1))=* (11.48)

such that w(r) = hy,y(m,s), so that B’ € ZI(J“)n ({s}). But (11.48) gives that
s <* p(n), so that this contradicts the choice of p(n). (I

11.2 Jensen’s Covering Lemma

We are now going to prove JENSEN’s Covering Lemma, cf. Theorem 11.56. For this,
we need the concept of a “fine ultrapower.”

Definition 11.55 Let M be an acceptable J-structure, and let E be a («, v)-extender
over M. Letn < w be such that p,(M) > o (E). Suppose that M is n-sound, and set
p = pa(M). Let )

T M"P - N

be the X ultrapower map given by E. Suppose that
M — N

is as given by the proof of Lemmas 11.20 and 11.31. Then we write ult, (M; E) for
N and call it the r X, 1 ultrapower of M by E, and we call & the r X, 1 ultrapower
map (given by E).

Lemmas 11.20 and 11.31 presuppose that 7 is good (cf. Definition 11.19). How-
ever, the construction of the term model in the proof of Lemma 11.20 does not
require 7 to be good, nor does it even require the target model N to be well-founded.
Consequently, we can make sense of ult, (M; E) even if 7 is not good or N is not
well-founded. This is why we have “the proof of Lemmata 11.20 and 11.31” in the
statement of Definition 11.55, as it does not assume anything about 7z or N' which is
not explicitly stated. We shall of course primarily be interested in situations where
ult,, (M; E) is well-founded after all. In any event, as usual, we shall identify the
well-founded part of ult, (M; E) with its transitive collapse.

Recallthat . C [0]“ is called stationary iff forevery algebra®l = (0; (fi: i < k))
with at most x many functions f;, i < k < k, there is some X € .% which is closed
under all the f;, i < i, from 2, cf. Definition 4.39.

Theorem 11.56 The following statements are equivalent.

(1) JENSEN Covering holds, i.e., for all sets X of ordinals there is some Y € L such
that Y D X andY < X + R.

(2) Strong Covering holds, i.e., if k > Ry is a cardinal and 6 > «, then [0]“ N L is
stationary in [0]°.

(3) L is rigid, i.e., there is no elementary embedding w : L — L which is not the
identity.

4) 0% does not exist.
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The most difficult part here is (4) = (1) which is due to RONALD JENSEN, cf. [10],
and which is called “JENSEN’s Covering Lemma.” There is, of course, a version of
Theorem 11.56 for L[x], x C w, which we leave to the reader’s discretion.

It is not possible to cross out “+®;” in (1) or replace “> R{” by “> K¢ in (2) of
Theorem 11.56, cf. Problem 11.7 (cf. Problem 11.9, though).

(4) = (3) of Theorem 11.56 was shown as Theorem 10.39. (2) = (1) is trivial.
If 0* exists, then every uncountable cardinal of V is a SILVER indiscernible, so that
{R®,: n < w} cannot be covered in L by a set of size less than ¥X,,. This shows (1)
= (4). We are left with having to verify (3) = (2).

Let us first observe that it suffices to prove (3) = (2) of Theorem 11.56 for the
case that « be regular. This follows from:

Lemma 11.57 Let W be an inner model. Let k be a singular cardinal, and suppose
that for all k < k, kK > Ny, and for all 0 > k, [0]° N W is stationary in [0]°. Then
forall 0 >k, [0]° N W is stationary in [0]°.

Proof Let 2 = (0; (fe: § < «)) be any algebra on 6. We need to see that there is
some X € [0]° N W such that forall § < «, if f; is n-ary, n < w, then fg”[X]" C X,
i.e., X is closed under f¢.Let (k;: i < cf(x)) be monotone and cofinal in«, ko > V.

Ifi <cf(k),1 <k <w, and Xy, ..., Xy € [0]=F N W, then by our hypothesis
there is some X € [0]“ such that X D X U---U X and X is closed under all the
functions fz with § < «;. We may thus pick, forevery i < cf(k) and1 <k < w
some

ok 1 nwit = [0l nw (11.49)

such that for all Xq,..., X; € [0]54, dbl.k(Xl,...,Xk) O Xy U---U Xy and
(Dl.k(Xl, ..., X) is closed under all functions fg, & < ;.
Let us now consider the algebra

A = ([0 NW; (Df:i < cfk), 1 <k < w)).

Itis easy to see that our hypothesis yields thatif A is any setin W, then [A] (O™ AW
is stationary in [A]T®) ™1 In particular, we find some ¥ € W of size cf (k) + 8|
such that Y is closed under all the functions from 2*. Set X = J Y. Of course,
X € W. Moreover X < «, as X is the union of cf(k) + N1 < x many sets of size
<k . We claim that X is closed under all functions fz, § < k.

Let £ < « and let fz be n-ary, n < . We aim to see that fé”[X]k c X.
Letx; € X; € Y,1 <1 < k,and leti < cf(kx) be such that x; > & and also
k; > Card(X;), 1 <1 < k. Then

feGris o x) € BF (X0, ..., Xp) €7,

and therefore fg(xy,...,x;) € X. O
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Proof of Theorem 11.56, (3) = (2)._Let us fix ¥ < 0, where « z_Nl is regular. Let
w1 > 0 be aregular cardinal. Let w : H — H,, be elementary s.t. H is transitive. Let

e

(kiti<a)=(]:i<a")

enumerate the transfinite cardinals of L = JHFnor> and set kg = Ko = HNOR.
Fori <aletf; = /3[77 > kg € ORU {oo} be largest such that «; is a cardinal in Jg, .
Hence by Lemma 11.53, if 8; < oo, then p,(Jg;) < k;, whereas p,,(Jg) > k; for
all B € [ka, Bi)-

Ifi < jthen B; < B;,sothat {8; : i < «}is finite. For eachi < o with 8; < 00
we let n; = n be such that

pn;+1(-’ﬂi) <K = Pn,(Jﬂ,) (1150)

If i <o and B; = oo, then we let n; =n? = 0.

In what follows we shall make frequent use of the notation introduced by Def-
inition 10.47. E.g., for i < a, Er; J is the (long) (crit(;), sup " k;)—extender
derived from 7 | Ji;. Notice that by (11.50), we have that

unn,' (Jﬂ,' s Ex [i; )

makes sense forall i < «.If i < jand B; = B; thenn; < n;. Hence {p,,+1(Jg;) :
i < «}is finite. Let I = I be such that

kitiel=1"} ={pn+1(Jg) 1i < a}U{kq},

cf. Lemma 11.5.
The following Claim is the key point.

Claim 11.58 Suppose that for all i € I, ulty,(Jg;; Exyy,.) is well-founded. Then
either L is not rigid or elseran(w) N € L.

Proof We may that assume 7 # id, as otherwise the conclusion is trivial. Let us
assume that L is rigid and show that ran(;r) N € L.
There must be some i € [ such that k; < crit(r). This is because otherwise,

letting § < « be such that ks = (crit(rr))‘”‘H , Bs = oo and the ultrapower map

m: L — ultg(L; E, flk5) =L
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would witness that L is not rigid.
Hy

—J B,

ulty, (‘Iﬁi’ E”[J:«- )
—J/p; ‘ l

| J B;

We now aim to show by induction on i € I that 7”«; € L. This is trivial for
i € I such that k; < crit(r), as then 7”k; = «; € L. Now suppose inductively that
n”k; € L, wherei € I.If i = «, then we are done. Otherwise let J be the least
element of 7\ (i + 1). We may assume that «; > crit(sr), as otherwise again trivially
n"kj = k; € L. We must then have that 8; < oo, as otherwise the ultrapower map

7L —ulto(L; Ezpy, ) =L
J

would witness that L is not rigid. But then P+l (Jg i) < k;. Let

7 Jp; — ulty; (Jp;5 Ex M(j) =Jg (11.51)

be the ultrapower map. Let p = p(Jg;) [ (n; + 1). By Lemmas 11.53 and 11.25,
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n+p

=1 (o1 Up) (1152)

By Lemma 11.29, the map 7 from (11.51) has the property that

nj+1 T(p)

(h"’“ Pk, x) = I} (k. 7(x))

forevery k < w and x € [,0nj+1 (J,gj)]<“’, so that (11.52) immediately gives that

n,+1 a(p)’

ran(%) = (P +1(Jp)). (1153)

But as py;+1(Jp;) < ki and 7"k; € L, (11.53) says that ran(77) € L, and hence

n"kj =7"kj =7 (kj) Nran(7) € L,

as desired. O

Suppose that ulty, (Jg;; Ex| Ji; ) is not well-founded. Then by Lemma 11.31, either
ulto((Jg;)"'; Ex1y,.) is ill-founded or else the ultrapower map

7 (Jg)" =z ulto((Jp)™s Expy,) (11.54)

is not good in the sense of Definition 11.19. In both cases, there is a well-
founded relation R C ((Jﬁ,.)")2 which is rudimentary over (Jg,)" such that if
R C (ulto((Jg)"; Ex Ml_))2 is rudimentary over ulto((Jg,)"; E Nk,-) via the
same definition, then R is ill-founded. We may then pick ([ax, fi]: k < ) with
lak. fid € ulto((Jp)"s Expy, ) and [axy 1. fir1]Rak. fi for every k < w.

In what follows, we shall refer to the fact that “ulto((Jg;)"; Ex ]Ki) is ill-
founded or that the ultrapower map 7 as in (11.54) is not good” by saying that
“ulty; (Jg;; Ex Mi) is bad,” and we shall call

(R, R, ([ax, fr]: k < w)) (11.55)

a “badness witness for ult,; (Jg;; Ex i ),” provided that R, R,and (lak, fr]: k < w)
are as in the preceding paragraph.

If X < H), then we let mx denote the inverse of the transfinite collapse of X. In
the light of Claim 11.58, in order to finish the proof of (3) = (2) of Theorem 11.56
it suffices to verify the following.

Claim 11.59 There is a stationary set . C [0]1¢ such that wherever X € .7, then
foralli € I'™X,
MZIIZX(]ﬁiﬂx ; E;TX rJK?TX )

is not bad.
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Proof Let A = (0; (fi 1 i < «)) be given. We recursively define sequences (¥; :
i <k),(H;j:i <k)and (m; : i < «) such that the following hold true.

(1) Y, < Hy,foralli <«

(2) Y; <k, foralli <«

(3) Y, =, ., ¥ for all limit ordinals 2 < «

4) Yis1 D fj”wa forall j <i <«

(5) 7; : H; = Y;, where H; is transitive, and )

(6) Supposethat j € I™ and ulth, J ﬁ;’i; Eqzp I x; ) is bad. Then for every R such that
J

there is a badness witness (R, R, ([ax, fi] : k < w)) for ultﬁ",.(Jﬁz_ri; Exig )
PR PR . / Kj
there is a badness witness (R, R, ([a,’(’/, sz,/] k< w)) forultﬁj. (Jﬂ{r,-; Eqitg =)
PR ] Kj
with the property that {a,i’f k< w} CYiqr.

Let us write 7 = m,. We claim that for all j € I7, ulto((Jﬂ,_n)"?; E; FJK”) is
j

well-founded and the ultrapower map
T (Jﬂ”) f lllto((fﬂ”) i Jn)

is good. This implies that for all j € I7, ult n(Jﬁvr 71, 7,) is well-founded by

Lemma 11.31. By Claim 11.58, this then finishes the proof of (3) = (2) of Theorem
11.56, as obviously Y, is closed under all functions from 2. Let us assume 7 is not
as claimed and work towards a contradiction.

We write Y = Y, and H = H,. We also write I = 7, i = , etc.
By assumption, there is some j € [ such that ult,;(Jg;; E JK]_) is bad Let

(R, R, ([ak, f¢]: k < w)) be a badness witness for ult,, iU Exyy, o ).

Let us write W =7 “lom; :H; > Hand Y; = n_l”YZ = ran(rr ). Hence
Yi <H Y, CcY fori <I, Card(Y) <kfori <k,Y, = Ui AY for limit
ordinals A < «x and H = U< Yi. Let i > u be some sufficiently large regular
cardinal. As « is regular, we may pick some Z < Hj; such that (Y;:i <«)e Zand
ZNkek.Ifip=ZNk,then ZNH = 7,-0. We may thus assume that Z < H; is

such that

ay Z <«, o
2y {firk <w}U{R,H} C Z, and
(3 ZNH =Y,, for some ip < «.

Lgt us write o: H = Z, where H is transiti\f. Letis also write_R/ = G’I(R)
and f; = o~ (f) for k < w. Obviously, 0 "' (H) = H;, and o | H;, = 7;,. Let
k < w. We then have [ai+1, frr1]1R[ak, fi]in ulto((J,gj)"-/; E, 1 ), and hence



268 11 0" and Jensen’s Covering Lemma

(a1, ar) € T({(,v) : fer1 @R fi(0)})
=7({(u,v) : 0 (frr) @ (RNo (fr) (M)
=m0 (. v): frp@R Fr()
=7 0 Tig({(u, ) : [t @R [, aso | Hiy =i,
= 7y ({@,v) : Frp R FrW)).
We may assume that 8; € ran(o) if 8; < o0o. Let B = a‘l(ﬁj) if B; < oo,
B = H N OR otherwise. Write n = n;, & = o~ (k).
We have that {[ax, f,.]: k < v} C ulto((JE)"' e 12), and R/ is defined over
(Jﬁ)" in the same way as R is defined over (Jp; ). Also, if K = Kl 0 then B < B, o

andn =n, o, Therefore,

ultn;Ti() (Jﬂlﬂfo s Exy, {JKIH,-O ) (11.56)

is bad. Hence by (6) there is a badness witness (R’, R*, ( “’ ! fl0 Nk < w)) for
(11.56) such that {a[*' : k < } C Yjy11 C Y.
Let k < w. Then [a,l{ojrll f,ﬁill]R*[ io.l flol ] gives that
(2 a2} € mo v £5 @R £ 0
=7 o Ty ({(u, )+ {51 OR ' 1)
=roo({(u,v): L @R F W)

([ o () e () 0]

However, a,’(‘l;ll, 0l ¢ y = ran(r), so that this gives that

(0 o) (@) [ (8) o (1) ]

and therefore

7 () (" () Ro (20) (" ()

Because this holds for all k < w, R is ill-founded. Contradiction! O

This finishes the proof of Theorem 11.56. O

Corollary 11.60 (Weak covering for L ) Suppose that 0* does not exist. If k > R,
is a cardinal in L, then in V, cf (kt1) > Card (k). In particular, kLl = kY for every
singular cardinal k.
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Proof Assume that 0% does not exist, and let ¥ > R, be a cardinal in L. Suppose that
in V, cf (kL) < Card(x), and let X C «tL be cofinal with Card(X) < Card(k).
By Theorem 11.56 (1), there is some Y € L such that Y D X and Card(Y) <
Card(X) + N1. As Card(x) > Ry, Card(Y) < Card(x). This implies that otp(Y) <
(Card(Y))™ < Card(x) < kL. Contradiction!

If « is singular, then cf (k1) # «, so that cf (k1) > Card(x) = « implies
ktl =k O
Corollary 11.61 Suppose that 0% does not exist. Then SCH, the Singular Cardinal
Hypothesis, holds true.

Proof Assume that 0" does not exist. Let « be a (singular) limit cardinal. We need
to see that kT®) < xF . 2¢f() (which implies that in fact xf®) = xF . 2¢f()) Tf
X € [«]9®), then by Theorem 11.56 (1) there is some Y € [« 1@ ®1 N [ such
that ¥ D X. On the other hand, for any ¥ € [«]T®)™1 there are (cf(x) - 81)*T) =
2cf(x) many X C Y with Card(X) = cf(«x). Moreover, as the GCH is true in L,
[k]F®)®1 N I has size at most k7. Therefore, kf®) <+ . 2¢f() O

11.3 [, and Its Failure
We now aim to prove L], in L. This is the combinatorial principle the proof of which
most heavily exploits the fine structure theory.

Definition 11.62 Let « be an infinite cardinal, and let R C « . We say that [J, (R)
holds if and only if there is a sequence (C,: v < k) such that if v is a limit ordinal,
k < v < kT, then C, is a club subset of v with otp(C,) < k and whenever v is a
limit point of C,, then v ¢ R and C; = C,, N v. We write [, for [, (¥).

In order to prove [, in L, we need the “Interpolation Lemma.” The proof is very
similar to the proof of Lemma 10.56, and we omit it. Recall the concept of a weakly
r X, 41 elementary embedding, cf. Definition 11.32.

Lemma 11.63 Letn < w. Let M, M be an acceptable J-structure, and let
T M— M

be r X, 41 elementary. Let v < M N OR, and let E be the (k, v)-extender derived
from 1.
There is then a weakly r Xy, 11 elementary embedding

o:ulty(M; E) > M

suchthato [ v=idand o omg = m.

Theorem 11.64 (R. Jensen) Suppose that V = L. Let k > R be a cardinal. Then
Ule holds.
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Proof This proof is in need of the fact that every level of the L-hierarchy is solid,
cf. Definition 11.40 and Theorem 11.54.

Letusset C = {v < «™ : J, <5, Je+}, which is a club subset of k™ consisting
of limit ordinals above k.

Letv € C.Obviously, « is the largest cardinal of J,,. We may let o (v) be the largest
a > vsuch thateither o = v orvisacardinalin J,. By Lemma 5.15, py, (Jo (1)) = k.
Let n(v) be the unique n < w such that k = 0,11 (Jo)) <V < Pu(Jow))-

If v € C, then we define D, as follows. We let D,, consist of all v € C N v such
that n(v) = n(v) and there is a weakly r X, (,)4+1 elementary embedding

o. Ja(f)) —_—> Ja(u)~

such that o [ v =1id, O’(pn(g)_H (Ja(,j))) = pn(v)+l(]a(v))» and if v € Ja(f)), then
V € Jyu) and o (V) = v. Itis easy to see thatif v € D,, then by Lemma 11.53 there
is exactly one map o witnessing this, namely the one which is given by

n(W)+1, puy+1Jam))

nW)+1, ppy+1Ja)) /.
Jut) (i,x), (11.57)

(i,X) — h-]oz(v)

where i < w and x € [«]=“. We shall denote this map by o3 ,,.
Notice that if v € C, then again by Lemma 11.53

n(w)+1, (J, "
T, (v) = hj( Prn)+1 ) c
a(v)

)

so that if v € D,,, then

n(v)+1 sPn(v)+1 (Jm(u))//K

ran(oy,y) C hla(v) ,

which means that there must be i < w and £ < « such that the left hand side of
(11.57) is undefined, whereas the right hand side of (11.57) is defined.

Notice that the maps o5, trivially commute, i.e., if v € D, and v € D,/, then
v e D, and

Opy = 0y, OO0y, y.

Claim 11.65 Letr v € C. The following hold true.

(a) D, is closed.

(b) Ifcf(v) > w, then D, is unbounded in v.

(¢) Ifv € Dy then D, N v = Dj;.

Proof (a) is easy. Let v/ be a limit point of D,,. If u < u’ < v/, u, u’ € Dy, then

ran(oy,,) C ran(oy ).

We then have that the inverse of the transitive collapse of
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U ran(oy,,)

neD,MY’

proves that v/ € D,,.

Let us now show (b). Suppose that cf(v) > w. Set « = «(v) and n = n(v). Let
B < v. We aim to show that D, \ B # .
Letw: Js —> 5,,, Jo be such that & is countable, 8 € ran(r), and

{Wv,mu(’;),

o v e p1(JN, k < n) Cran().

Let b = 7~ (v) (if v = a, we mean b = &). Let

/

o =nE . Ja s,y Wt (Uas Ex ).

Fie

By Lemma 11.63, we may define a weakly r X, | elementary embedding
krulty(Jas Expg) — Jo

with k o 7" = 7. In particular, ult, (Jz; E; ;) is well-founded and we may identify
it with its transitive collapse. Let us write J» = ult,(Jg; Ex}y;). As B € ran(rr),
k) > B. Moreover, k) = sup "y < v, as cf(v) > w. Therefore § <
k~Y(v) € D,. This shows (b).

Let us now verify (c). If v € D,, then D; C D,. To show (c), we thus let © < v
be such that x and v are both in D,,. We need to see that i € Dy, i.e., that oy 7 is
well-defined. For the purpose of this proof, let us, for y € {u, v, v}, abbreviate

n(y)+1,pn Jan)) /. .
gy 7L X) by By (%),
where i < w and x € [«k]=“. We need to see that if i < w, X € [«]~“, and h, (i, X)
exists, then A3 (i, x) exists as well.

Lete < wandy € [k]=? be such that u = h;(e,y). We obviously cannot have
that /1, (e, y) exists, as otherwise

ouv(hy(e,y)) = hy(e,y) = opv(hi(e,y) = opn(p) = W,
but o ¢ ran(oy,,,). Write n = n() = n(v) = n(v). Let B < p,(Ju(s)) be least such

that Sg contains a witness to “Ivv = hy,q ) (u(e), (¥, p(Ju)) (n))),” cf. (11.29).
We claim that

ran(o,, ) N (Juy)" C 05.0(Sp). (11.58)

If (11.58) is false, then we may pick some y < 0, (Jy(y)) such that o, (y) >
07,1 (B). We may then write “h, (e, y) = p” as a statement over Jy(,) in the parameter
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Jo, ,(y) ina way that it is preserved by the weak r X, 1| elementarity of o, , to yield
that /1, (e, y) exists after all. Contradiction! Therefore, (11.58) holds true.

But now if i < w, x € [«]=?, and h, (i, X) exists, then “Fvv = h, (i, X)” may
be expressed by a statement over Jy () in the parameter J; ,(f) in a way that it is
preserved by the weak r X, | elementarity of o5, to give that 4 (i, X) also exists.

Claim 11.65 is shown. |

Now letv € C. We aim to define C,,. Seto = «(v) and n = n(v). Recursively, we
define sequences (u;: i < 6(v)) and (§: i < 6(v)) as follows. Set pg = min(D,).
Given u; with 1} < v, we let & be the least £ < « such that

hz:—],pn%»l(«la)(k, X) ¢ ran(o,u;)’v)

for some k < w and some x € [£]=“. Given &/, we let ;L;’H be the least v € D,
such that

' Lot (%) € ran(op,,)

forall k < wand x € [S 1=% such that h"+l Prt1 Uar) (k, x) exists. Finally, given
(uj: i < A), where A is a limit ordinal, we set wy = sup({u: i < A}). Naturally,
0 (v) will be the least i such that u; = v. Weset C, = {u): i < 6(v)}.

Claim 11.66 Let v € C. The following hold true.

(@) (&:1 < 0(v)) is strictly increasing.
(b) otp(Cy) =0(v) < k.

(c) Cy isclosed.

(d) IfveC,thenCyNv=Cj.

(e) If D, is unbounded in v then so is C,,.

Proof (a) is immediate, and it implies (b). (c) and (e) are trivial.

Let us show (d). Let v € C,,. We have C,, C D,, and Dy = D, N v by Claim 1
(c). We may then show that (u: i < 6(9)) = (u:i < 0(V)) and (£/: i < (D)) =
(§/: i < 6(v)) by an induction. Say u;’ = ], where i + 1 € 6(v) N H(v). Write
w= /,L? =uj. As oy, =05,y 00y 5, forallk < wand x € [k]=¢

n(M)+1, pu@)+1Jamy)

Juti) (k,x) € ran(oy,5) =

(V)+15 n(v (Ja v )
h';w) Prerette®’ £y € ran(oy,.,) # 0.

This gives j1; = ul‘._’ +1 On the other hand, ran(oﬂ;;+l _v) contains the relevant witness

so as to guarantee conversely that ;Lf 1 = i O
Now let f: k* — C be the monotone enumeration of C. For v < « T, let us set

B, = f_l//wa)-
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Of course, otp(l_iu) < k forevery v < ™, and because C w C Dy C CNpforevery
w € C we have that every B, is closed, if cf (v) > w, then B, is unbounded in v,
and if b € B,, then B; = B, N v. For every v < kT such that cf (v) = w and C,, is
not unbounded in v, let us pick some B() of order type w which is cofinal in v. For
v <kt let
B, — [ B if B is. defined, and
B, otherwise.

It is easy to see now that (B,: v < k™) witnesses that (], holds true. O

Corollary 11.60 and Theorem 11.64 immediately imply the following.

Corollary 11.67 Let k be a singular cardinal, and suppose that O, fails. Then 0%
exists.

Let (Cy: v < ™) witness that [J, holds true. By FODOR’s Theorem 4.32, there
must be some stationary R C « such that otp(C,) is constant on R, say & = otp(C,)
forall v € R. For any v < ™, C, can have at most one (limit) point 8 such that
C, N B = Cg has order type ¢. We may then define

Ch =

v

Cy\(e+1) ifee € C,and otp(C, Nex) =6
C, otherwise.

(C¥: v < k™) then witnesses O (R), cf. also Problem 11.17.
The following result generalizes Lemma 5.36, as Oy, is provable in ZFC.

Lemma 11.68 (Jensen) Let k be an infinite cardinal. Suppose that there is some
stationary set R C k™ such that both {,.+(R) and O (R) hold true. There is then a
kT -Souslin tree.

Proof Let R C k™ be stationary such that {,+(R) and [, (R) both hold true.
Let (Sy: @ € R) witness Q,+ (R), and let (Cy: o < k™) witness [, (R). We will
construct 7 | « by induction on o < «™ in such a way that the underlying set of
T | a will always be an ordinal below «* (which we will also denote by T | o).

Weset T [ 1 = {0}. Now let « < « be such that T | « has already been
constructed. If « is a successor ordinal, then we use thenext (7 [ —T [ (@ —1))-2
ordinals above 7' | « to provide each top node of 7' | « with an immediate successor
inT [ (a¢+1).

Let us then suppose « to be a limit ordinal. Letus set S = {s € T [ a: 3t €
St =sVit<rs)ifa e Rand S, happens to be a maximal antichain of T | «,
and let us otherwise set S =T | «.

Let us for a moment fix s € S. We aim to define a chain ¢, through 7 | «
as follows. Let ¢ € C, be least such that in fact s € T [ ¢. Let (§;: i < y) be
the monotone enumeration of C, \ €. We then let 5o be the least ordinal such that
so€T [ Bo+1)\T | §oands <7 so, and fori > 0,i < y, we let s; be the least
ordinal such thats; € T [ (8; + 1)\ T [ §; and s; <7 s; forall j < i, if there is one
(if not, then we let the construction break down). We set ¢y = {s;: i < y}.
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We now use at most the next Card(S) ordinals above T | atoconstruct 7 | («+1)
in such a way that for every s € S thereissome? € T | (o« + 1) \ T | « such that
s <y tforalls’ € ¢y and foreveryt € T | (« + 1)\ T | « there is some s € S
such that s’ <7 ¢ for all s’ € c;.

This finishes the construction. It is not hard to verify that the construction in
fact never breaks down and produces a «*-tree. Otherwise, for some limit ordinal
a < kT there would be some s € S and some limit ordinal i < y such that there is
noteT [ (& +D\T |6 withs; <y tforall j <i(forS,y, (§:i < y)as
above). However, 6; € C, gives that ; ¢ R, so that Cs, = C, N §; is easily seen
to yield that in the construction of 7 [ (§; + 1) \ T | §;, we did indeed add some
teT [ (6 +1D\T |6 suchthats; <7 ¢ forall j <.

Finally, suppose that 7 would not be k *-Souslin, and let A C T be an antichain
of size k*. As R is stationary, we may then pick some limit ordinal @ € R such that
ANa = S, is a maximal antichainin 7 | o, sothatalso S = {s € T | a: 3 €
Sy(t =s Vit <r s)} (for S as above). The construction of 7' then gives that every
node in T \ T | « is above some node in Sy, so thatin fact A = ANa = §,. But
because 7 is a xk T-tree, this means that A has size at most «. Contradiction! |

Lemma 11.69 (Jensen) Let k be subcompact. Then U fails.

Proof Suppose (Cy: o < k1) witnesses [J,.. As « is subcompact, there must then
be some A < « together with a witness (Dy: o < AT) to [, and an elementary
embedding

o: (Hy+; €, (Dy: oo < A1) = (Hets €, (Coia < k1))
with crit(o) = A. Set T = sup(6”AT) < k. Aso”A" is < A-clubin T,

C=C.no’"r1*t

is also < A-clubin t.
Let o (o) < o(B) < t both be limit points of C. Then

CopyNo(a) =C:No(a) =Coa)- (11.59)
But Cy (o) = 0(Dy) and Cy gy = 0 (Dg), so that by (11.59)
DgNa = Dy.
Setting
D= |J D..

m(x)eC

we then have that D is cofinal in A" and D, = D N « for every w(a) € C. Pick
(o) € C such that otp(D N«a) > A. Then otp(Dy) > A. Contradiction! [l
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Lemma 11.70 (Solovay) Let « be A" -supercompact, where ) > k. Then ;. fails.
In particular, if « is supercompact, then [, fails for all » > «.

Proof Let k be AT-supercompact, where A > «, and suppose that (Dy: a < A1)
witnesses that [J, holds. Let
. V->M

be such that M is an inner model, crit(w) = «, w(k) > X and **M c M. This
implies that T = sup(r”AT) < 7 (A1). Let (Cy: 0 < 7 (A1) = m((Dy: o < AT)).
Aso”A"is < k-clubin T,

C=C;no’"rt

is also < «-club in t. The rest is virtually as in the proof of Lemma 11.69. ]

A fine structure theory for inner models is developped e.g. in [30] and [47], and
fine structural models with significant large cardinals are constructed e.g. in [2, 31,
40]; cf. also [45] and [46]. Generalizations of JENSEN’s Covering Lemma 11.56 are
shown in [29] and [28]. In the light of Theorem 11.70, an ultimate generalization of
Theorem 11.64 is shown in [35], and an application in the spirit of Corollary 11.67
is given in [17].

11.4 Problems

11.1. Assume GCH to hold in V. Show that there is some £ C OR such that
V = L[E] and L[E] is acceptable. [Hint. Use Problem 5.12.]

11.2. Let L[U]be as in Problem 10.3. Show that L[U] is not acceptable. Show also
that L[U]is weakly acceptable in the following sense. If (Z(p) N Jy+0[UD\
JylU] # @, then there is some surjection f: p — P(p) N J4[U], f €
Jo+o[U]. [Hint. Problem 10.5.]

11.3. Prove Lemma 11.13!

11.4. Let M, M,ﬁ,_p,_n,ﬁ be asin Lemma]1.16. Suppose moreover that p € Ryy,
and thatw : MP— 5 MP.Thenwm : M —5,, , M.

n+l1

11.5. Let M be an acceptable J-structure, and let » < w. Show that if « is a

cardinal of M such that p,1 (M) < k < k™ < p,(M), then cf (k™) =
cf(on(M)).
Let k be a regular uncountable cardinal, and let A > « be a cardinal. By
Qi . we mean the following statement. There is a family (7,: x € [A]™)
such that for every x € [A]F, & C £ (x) and Card(«#) < Card(x), and
for every A C A there is some club 6" C [A]=* such that for every x € ¥,
ANx € .o,.

11.6. (R. Jensen) Assume V = L. Let k be a regular uncountable cardinal, and
let A > «k be a cardinal. Then O;K holds true. [Hint. If x = X N A, where
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11.8.

11.9.

11.10.

11.11.

11.12.

11.13.
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T
Jo = X < Jy, then let B > « be least such that p,(Jg) < « and set
o, ={x"yNx:y e Jg N P (A)}. Cf. the proof of Theorem 5.39.]

. Let N be the set of all perfect trees on w;. N, ordered by U <y T iff

U C T, is called NAMBA forcing. Show that if G is N-generic over V,
then ch[G](a);/) = w and wY[G] = a)Y [Hint. Let G be N-generic over
V. Then |J () G is cofinal from w into ). Let T IF 7: @ — w;. Choose
(ts, Ty, 050 s € ~Pawp)suchthatTy = T,ty = 0,15 € Ty, {ty~: & < wp} C T
is a set of ®; extensions of 7y of the same length, f;~¢ # t,~¢ for & # &,
To~e <N T, Ty C{t €Tty Dt Vi, Ct},and Ty IF ran(z | (Ih(s))) C &y,
o, < w;. Fora < w, set

TY = n{U{Ts:lh(s):nAas <alkn <a)}.

Let us write ||7| |gf for the CANTOR-BENDIXSON rank of ¢ in 7%, cf. Problem
7.5. It suffices to prove that there is some @ < wj such that ||| Igf = 00, as
thenT* € N, T% <y T,and T* It ran(t) C «. Otherwise we may construct
some x € “(w,) such that for all n < w and for all (sufficiently big) ¢ < wy,
|7, r(n+1)||gf < ||ty T,,||%lf.] Show also that if C H holds in V, then forcing
with N does not add a new real.

Conclude that it is not possible to cross out “+R1” in (1) or replace “> R1”
by “> R¢” in (2) of Theorem 11.56.

Show that 0% is not generic over an inner model which does not contain 0*,
i.e., if W is an inner model with 0% ¢ W,if P e Wisaposet,andif G € V
is P-generic over W, then 0% ¢ W[G].

Assume that 0* does not exist. Let W be any inner model such that (R;)V =
Ry. Show that for every 6, []” N W is stationary in [6]®.

Suppose V = W][x], where x C w is P-generic over W for some P € W.
Suppose that W and V have the same cardinals, W = CH, but V &= — CH.
Show that 0¥ € W. [Hint. Use Strong Covering.]

(M. Magidor) Assume ZF plus both 8| and R, are singular. Show that 0%
exists. (Compare Theorem 6.69.)

Show that if 0* does not exist and if « is weakly compact, then k- = « .

[Hint. Use Problem 4.23.]

Let ¥k < « be limit ordinals, and let w: J; — J, be Xy-cofinal. Assume
that cf(k) = cf(k) > w. Let B > i be such that k is a cardinal in Jg,
and let n < o be such that p,(Jg) > k. Show that ult,(Jg; E;) is well-
founded. [Hint. Let o: J 5~ Jg be elementary, where ,3 is countable, and
let o’ Jg — ulty(Jg; Eg 5-1(5;))- By Lemma 11.63, this ultrapower is
well-founded, say equal to S5 and there is an embedding k: J 5 = Jp

By hypothesis, 8 < k. We may assume that o C 6: H — Hy, where 6
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11.14.

11.15.

11.16.

11.17.

11.18.

11.19.

11.20.

11.21.

11.22.

is sufficiently big and H is (countable and) transitive. We may then embed
&~ 1(ult, (Jg; Ex)) into 7(Jp).]

Assume that 07 does not exist. Let ¥ be a cardinal in L, and let X < J,
be such that X N a)g € a)g and if a)g < m < k is an L-cardinal, then
cf (X N utt) > w. Show that we may write X = | J,_, X,,, where X,, € L
for each n < w. [Hint. Problem 11.13.]

(M. Foreman, M. Magidor) Assume V = L, and let X < J,,, be such that
cf (X Nw,41) > w for all n < w. Show that there is some ny < w such that
forall n > ng, cf(X Nw,) = cf(X Nw,,). [Hint. Problems 11.13 and 11.5.]

Assume V = L, and ¥k > Ry be a cardinal. Let C and n(v) (for v € C)

be defined as in the proof of Theorem 11.64. Show that for every n < o,

{v € C:n(v) = n} is stationary in k.

n<w

Show that if [J, holds, then there is some stationary R C « T such that (], (R)
holds. Also, if (I, holds, then there is some stationary S C « ™ such that for
noa < kt, S Na is stationary in .

(R. Jensen) (“Global [1”) Assume V = L. Let S be the class of all ordinals
o such that cf () < a. Show that there is a sequence (Cy: o € S) such that
forevery o € S, Cy is clubin «, otp(Cy) < «, and if g is a limit point of Cy,
then B € S and Cg = C, N B. [Hint. Imitate the proof of Theorem 11.64.]
Let A be a limit ordinal. A sequence (Cy: o < A) is called coherent iff for all
o < A, Cy is a club subset of « and whenever « is a limit point of C,, then
Csz = Cy Na. An ordinal A is called threadable iff every coherent sequence
(Cy: o < X) admits a thread C,i.e., C C A is club and for every limit point
aof C,CNa = C,.

Let A be a limit ordinal with cf(1) > w. Show that A is threadable iff cf (1) is
threadable.

Show that if «* is threadable, then [J, fails. Also, if A is weakly compact,
then A is threadable.

(R. Jensen) Assume V = L, and let ¥ be not weakly compact. Show that
there is an unthreadable coherent sequence (Cy: @ < k). [Hint. Let T be a
k-ARONSZAJN tree. Let

S={a <k:3B>aJg=“ZFC™ and « is regular and
there is a cofinal branch through the a-tree 7 N J7}.

Notice that if « ¢ S, then « is singular. Now imitate the argument from
Theorem 11.64 or rather from Problem 11.18, working separately on S and
onk \S.]

Let k be an uncountable regular cardinal which is not threadable. Show that
if G is Col(wy, «)-generic over V, then R is not threadable in V[G]. [Hint.
Use Problem 11.19. Let (Cy: o < k) € V witness that « is not threadable
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11.23.
11.24.
11.25.

11.26.

11 0% and Jensen’s Covering Lemma

in V. If Ry were threadable in V[G], we could pick H such that G, H are
mutually Col(w1, k)-generic over V such that both V[G] and V[H] contain
a thread. As cf(k) = w; in V[G][H], such a thread would then also be in
VIG] N V[H] and hence in V by Problem 6.12.]

Let k > R; be regular, and let S C « be stationary. We say that S reflects iff
there is some o < k with cf(«) > w such that S N « is stationary in «.

Let « be regular. Show that S = {a < «k™: cf(a) = '} does not reflect.
Show that if « is weakly compact, then every stationary S C « reflects.

Assume V = L. Let « > 8 be regular but not weakly compact. Suppose
that S C « is stationary. Show that there is some stationary 7 C S which
does not reflect. [Hint. If « = AT, then use O;, cf. Theorem 11.64. If « is
inaccessible, then exploit the argument from Problem 11.21.]

(J. Baumgartner) Let « be weakly compact, and let G be Col(w;, < «)-
generic over V. Show that the following is true in V[G]. Let S C k = R; be
stationary such that cf (o) = w for all @ € §; then S reflects. [Hint. In V let
us pick 0: H — H™ exactly as in Problem 4.23, and let6: H[G] — H*[K]
be as in Problem 6.17. We may assume that our given S is in H[G]. We have
“THNV[G] =“HNH[G] C H*[G] C V[G]. It suffices to prove that S
is stationary in H*[K], which follows from Problem 6.15(b).]



Chapter 12
Analytic and Full Determinacy

12.1 Determinacy

E. ZERMELO observed that finite two player games (which don’t allow a tie) are
determined in that one of the two players has a winning strategy. Let X be any non-
empty set, and let n < . Let A C 2" X, and let players I and II alternate playing
elements xg, X1, X2, . . ., X2,—1 of X. Say that [ wins iff (xg, x1, x2, ..., xX2,-1) € A,
otherwise /I wins. Then either / has a winning strategy, i.e.,

AxoVx13xy ... Vxpu—1 (X0, X1, X2, ..., X20—1) € A,
or else /I has a winning strategy, i.e.,
VxodxVxy ... 3x2,-1 (x0, X1, X2, ..., X00—1) € an\A.

JAN MYCIELSKI (¥ 1932) and HUGO STEINHAUS (1887-1972) proposed studying
infinite games and their winning strategies, which led to a deep structural theory of
definable sets of reals. Let X be a non-empty set, and let A C “X. We associate to A
a game, called G(A), which we define as follows. In a run of this game two players,

I and 11, alternate playing elements xg, x1, x2, ... of X as follows.

I|x0 X2
H| X1 X3

After w moves they produced an element x = (xg, x, x2, ...) of “X. We say that /
wins this run of G(A) iff x € A, otherwise I wins. A strategy for I is a function

o: U ny X,

n<w

and a strategy for Il is a function

R. Schindler, Set Theory, Universitext, DOIL: 10.1007/978-3-319-06725-4_12, 279
© Springer International Publishing Switzerland 2014
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T U ntly 5 x,

n<w

If o is a strategy for I and z € “ X, then we let o * z be the unique x € “X with

x(2n) = o (x(0),x(1),x(2),...x(2n — 1)) and
x2n+1) =z(n)

forn < w,i.e., x is the element of “ X produced by a run of G(A) in which 7 follows
o and II plays z. We say that o is a winning strategy for I in G(A) iff

{oxz:2€ X} CA.

Symmetrically, if 7 is a strategy for /I and z € “w, then we let z * T be the unique
x € “X with

x2n+1) =0((x(0),x(1),x(2),...x(2n)) and
x(2n) = z(n)

forn < w,i.e., x is the element of “ X produced by a run of G (A) in which /I follows
T and [ plays z. We say that t is a winning strategy for Il in G (A) iff

{zxT:x € “X} C “w\A.

Of course, at most one of the two players can have a winning strategy.

Definition 12.1 Let X be a non-empty set, and let A C “X. We say that G(A) is
determined iff player I or player /I has a winning strategy in G (A). In this case, we
also call A itself determined. The Axiom of Determinacy, abbreviated by AD, states
that every A C “w is determined.

We also refer to A as the “payoff” of the game G(A).

We shall mostly be interested in the case where X is countable, in fact X = w
in which A is a set of reals. It can be shown in ZFC that if A C “w is Borel, then
A is determined, cf. [20, Chap. 20, pp. 137-148]. We here aim to show that every
analytic set is determined, cf. Theorem 12.20. It turns out that this cannot be done
in ZFC, though, cf. Corollary 12.27. We shall prove later (cf. Theorem 13.7) that
in fact every projective set of reals is determined. The full Axiom of Choice, AC,
though, is incompatible with AD.

Lemma 12.2 Assume ZF + AD. Then AC is false, but AC,, holds for sets of reals,
e, if (Ap:n < w) is a sequence of non-empty sets of reals, then there is some
fro— “wwith f(n) € A, foreveryn < w.

Proof In the presence of AC, we may enumerate all strategies for I as (oq: o < 2%0)
and all strategies for IT as (o,:a < 2™0). Using AC again, let us pick sequences
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(xg:0o < 2%0) and (yg:a < 2%0) such that for all @ < 280, x,, = 0y * z for some
z € “wsuch that oy * z ¢ {yg: B < o}, and y, = z * 74 for some z € “w such that
Z# Ty k2 ¢ {xg: B < ). Itis then easy to see that

A= {yg:a <280}
cannot be determined.
Now let (A,: n < w) be a sequence of non-empty sets of reals, and let us consider

the following game (in which / just keeps passing after his first move).

I|n
H| nynyx3ng ...

I plays some n € w, and then II plays some x = (ng, n1, n2, ...). We say that 11
wins iff x € A,,.

Of course, / cannot have a winning strategy in this game. Hence /I has a winning
strategy, as our game may be construed as G (“w\ A), where A = {x: (x(1), x(3),...)
€ A0}, and II’s winning strategy then gives rise to a function f as desired. ([

With a some extra work beyond Theorem 13.7 one can construct models of
ZF + DC + AD, which are of the form of the models of Theorems 6.69 or 8.30.
The moral of this is that whereas AD is false it holds for “definable” sets of reals,
and the results of this section should be thought of being applied inside models of
ZF + AD which contain all the reals.

We first want to show that open games on are determined. Let still X be an arbitrary
non-empty set. Recall, cf. p. 123, that we may construe X as a topological space
as follows. For s € <“X, set Uy = {x € ®X:s C x}. The sets U; are declared to be
the basic open sets, so that a set A C “X is called open iff there is some ¥ C =X
with A = (J,cy Us.

If o, 7 is a strategy for player I, II, respectively, then we say that x is according
to o, T iff there is some y such that x = o * y, x = y * T, respectively.

Theorem 12.3 (Gale, Stewart) Let A C “X be open. Then A is determined.

Proof Let us suppose I not to have a winning strategy in G(A). We aim to produce
a winning strategy for I7 in G(A). Let us say that I has a winning strategy in G4 (A),
where s € =“X has even length, iff / has a winning strategy in G({x € “X:s " x €
A}). By our hypothesis, I doesn’t have a winning strategy in Gy (A).

Claim 12.4 Let s € <“X have even length, and suppose I not to have a winning
strategy in G4(A). Then for all y € X there is some z € X such that I doesn’t have
a winning strategy in Gs—~y~;(A).

Proof Otherwise there is some y € X such that for all z € X, I has a winning
strategy in Gy~y~,(A). But then I has a winning strategy in G4(A): he first plays
such a y, and subsequently, after /I played z, follows his strategy in G~,~,(A). [
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Let us now define a strategy t for Il in G(A) as follows. Let s = (xg, ..., x,) be
a position in G(A) where it’s II’s turn to play, i.e., n is odd. Then let 7 (s) be some
z € X such that / doesn’t have a winning strategy in G;~;(A), if some such z exists;
otherwise we let T(s) be an arbitrary element of X.

Claim 12.5 t is a winning strategy for Il in G(A).

Proof Let
1 |x0 X2
II| X1 X3

be a play of G(A) which is according to t. Claim 12.4 can easily be used to
show inductively that for each even n < w, I does not have a winning strategy
in G(xo,‘..,xn,])(A)-

Now suppose that 1 looses, i.e., x = (xg, X1, X2, ...) € A. Because A is open,
there is some basic open set U such that x € U; C A. We may assume lh(s) to be
even. Then [ has a trivial winning strategy in G5(A): he may play as he pleases, as
every s x’, x’ € “X, will be in A. But this is a contradiction! O

Lemma 12.6 Let A C “X. Suppose that for everyy € X, {x € ®X:y"x € A}is
determined. Then ©® X\ A is determined.

Proof Let us first suppose that there is a y € X such that /7 has a winning strategy
™in G({x € ®X:y"x € A}). We claim that in this case / has a winning strategy
o in G(?X\A). We let 0 (§) = y, and we let o (y"s) = t*(s), where lh(s) is odd.
It is easy to see that if x € “X is produced by a run which is according to o, then
x € “X\A.

Now let us suppose that for all y € X, I has a winning strategy o in G({x €
“X:y~x € A}). We claim that in this case /I has a winning strategy 7 in G(“X\A).
We let T(y~s) = o;(s), where lh(s) is even. It is easy to see that if x € “X is
produced by a run which is according to 7, then x € A. ]

Corollary 12.7 Let A C “X be closed. Then A is determined.

As an application, we now give a

Proof of Theorem 10.11, which uses an argument from a paper by I. NEEMAN. Recall
that Theorem 10.11 says that if M is a transitive model of ZFC such that M = “U
is a normal measure on «,” and if (k,:n < w) is a PRIKRY sequence over M with
respect to U, then G (,: n<w) 1S Py-generic over M. We shall write P = Py.

Set G = G (x,: n<w)> cf. Definition 10.10. It is easy to see that G is a filter. We
shall prove that G is generic over M.

To this end, fix D € M which is open and dense in [P for the rest of this proof.
We aim to show that D N G # (.

To each s € [x]=® we shall associate a game G;. Let s = {Ag < -+ < Ag_1}
where k < w. The game has two players, I and II, and starts with round &.
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X Xeo
H| M Met1

In round / > k, I has to play some X; € U. II has to reply with some A; € X; such
that &; > A;—1 (if [ > 0). II wins the game iff there is some n < w and some X € U
such that

(ro, ..., A1}, X) € D.

G, is a closed game. Moreover, Gy € M. Therefore, one of the two players has a
winning strategy in M which works for plays in V.

Claim 12.8 [ does not have a winning strategy in M.

Proof Suppose o € M to be a winning strategy for I. We claim that there is some
Z € U suchthatall Ay < Ag41 < --- in Z are compatible with o, by which we mean
that there is a play of G in which I follows o and II plays Ag, Ak+1, . ... In order to
get Z, define F:[k]=” — 2by F({Adp < --- < Ap—1}) = 1iff A < -+ < A are
compatible with . As F € M, we may let Z € U be such that F is constant on [Z]’
for every I < w. It cannot be that F”Z]! = {0} for some [ < w; this is because in
round m, where k < m < k + [, if o tells I to play X, then II can reply with some
Am € XmNZ.

Now let us look at ({Ag, ..., Ak—1}, Z) € P. As D € M is dense in [P there is
some

{ro, - 1), Z2) < ({hos - o M1 ), 2)

with .

({ro, ..., A1}, Z2) € D.
Because Ay < --- < Ap—1 € Z, A < -+ < Ay—1 are compatible with o; on the
other hand, II wins if he plays A, ..., Ay—1 inrounds k, ..., n — 1. Contradiction!

O

Letus still fix s = {Ag < --+ < Ag—1} for a while, and let T = 7, € M be a
winning strategy for Il in G (which also works for plays in V).

We shall now for/ > kand7 = {Ag < -+ < A1 < --- < M1} D s and
A > A define sets Y/ and X §’A which are in U. The definition will be by recursion
on the length of r. We shall call t U {;} “realizable” iff

x;™ xoM
H| M Wy,

is a position in the game G, in which I obeyed the rules and II played according
tor.

Now fix ¢ and XA; and assume that Xé .o and YSZ [ have been defined for all
k <m < [, wherel > k. We first aim to define Yf
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Claim 12.9 Suppose t to be realizable. There is then some Y € U such that for all
A €Y there is an X such that

ixs* . xi
11| e ... Al—1 A

is a position in G in which 1 obeyed the rules and 11 played according to t.

Proof Let Y denote the set of A such that there is some X such that

ixsre o xi! X

1] e ... Al-1 A

is a position in G, in which I obeyed the rules and II played according to t. We
want to see that Y € U. Suppose that Y ¢ U, i.e., x\Y € U. Consider the following
position in G in which A is as dictated by 7.

ixi* 0 xiI! K\Y

10| Ae ... A1 A

As II follows t and thus obeys the rules, . € «\Y. On the other hand, > € Y by
definition of Y. Contradiction! O

We now let Y} be as given by Claim 12.9. Foreach A € Y/ we let X" be a witness
to the fact that A € Y/, i.e., some X as in the statement of Claim 12.9 for ¥ = Y!.
We finally also assign some Z; € U to s as follows. If there is some Z with
(s, Z) € D then we let Z* be some such Z; otherwise we set Z = «.
We now let!
Xo=AsZ; N Asey Yg[

By our hypothesison (k;:i < w),thereissomen < w suchthat{«k,, k,+1, ...} C Xo.
Sets = (k;:1 < n).

Claim 12.10 The following is a play of G in which I obeys the rules and II follows

Ts.
xske o xyme
II| Kn S Km
Proof by induction on m. Notice that k,,, € X¢ and hence «,, € Yy rm. ([

Because 1II follows 7, in the play above, there is some m > n and some X with
({kos - - - km—1}, X) € D.But then ({ko, ..., km—1}, Z*™) € D. However, for any
| >m,k; € Xo, and hence k; € Z* I We thus have that

U ¢f. Problem 4.26 on “A, X7
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ko, km—1}, Z*I™) € G.
Therefore, D N G # (. O

We shall now prove that AD, the Axiom of Determinacy, proves the ultimate
generalization of the CANTOR- BENDIXSON Theorem 1.9. If AD were not to contradict
the Axiom of Choice, it could be construed as providing a solution to CANTOR’s
project of proving the Continuum Hypothesis, cf. p. 3. The following Theorem says
that all of &(“w) has the perfect subset property (cf. p. 138).

Theorem 12.11 (M. Davis) Assume AD. Every uncountable A C “w has a perfect
subset.

Proof Fix A C “w. Let f:“w — “2 be a continuous bijection (cf. Problem 7.2),
and write B = f” A. It suffices to prove that B is either countable or else has a perfect
subset.

Let us consider the following game, GP(B).

I|S() S1
II| ng ni

In this game, I plays finite O—1-sequences s; € ~“2 (with s; = @ being explicitly
allowed), and II plays n; € 2 = {0, 1}. Player I wins iff

so  nog s1 mnp” ...€B,

otherwise I wins. We may construe GP(B) as G(B’) for some B’ C “w, so that
GP(B) is determined.
If I has a winning strategy in GP(B), o, then

{s0"no " s1 " nm1 " ...i(nog,ny, . ) E2AYI <ws; =o0(so ng ... ni_1)}

is a perfect subset of B.

So let us suppose T to be a winning strategy for /7 in GP(B). We say that a finite
sequence p = (8o, 1o, - - -, Sk, nk) 1S according to t iff n; = t(so"np™ ... s;) for
every i <k, and if x € “2, then we say that p = (so, no, - . - , Sk, Bx) is compatible
with x iff so”"no™ ... s; " n; C x. Because 7 is a winning strategy for /I, we
have that x ¢ B follows from the fact that for all p = (s, no, ..., Sk, ng), if p
is according to t and compatible with x, then there exists some s € “2 such that
(s0, 1o, - - - Sk, 1k, 8, T((So, 1O, - - -, Sk, Nk, S)) 1S compatible with x. In other words,
if x € B, then there is some p, = (so, ng, - - -, Sk, nx) which is according to t and
compatible with x such that for all s € “2, (s, no, . . .,Sk, "k, s, T((S0, Qs - - . , Sk,
ng, s)) is not compatible with x.

Notice that x +— p, is injective for x € B. This is because if x € B, p, =
(so, no, - .., Sk, ng), and
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x =50 no ... s n mog m my ...,

then we must have thatm; = 1 —t(so"no™ ... " sx nr mo~ ... m;_y) forevery
I < w.
But as x — py, x € B, is injective, B is countable. O

Lemma 12.12 Assume AD. Let A C “2 be such that every LEBESGUE measurable
D C Aisanull set. Then A is a null set.

Proof Let us fix A C “2 such that every LEBESGUE measurable D C A is a null
set. Let ¢ > 0 be arbitrary. We aim to show that A can be covered by a countable
union B of basic open sets such that (B) < ¢. Let us consider the following game
G Y (A), the covering game for A.

I|n0 ni
o Ko K

In this game, I plays n; € {0, 1},i < w, and II plays K;, i < w, where each K; is a

&

finite union of basic open sets such that ©(K;) < yaim - Player [ wins iff

(n05n15n27‘-')€A\ UKl-

i<w

Notice that for each i < w there are only countably many candidates for K;, so
that G°°V(A) may be simulated by a game in which both players play just natural
numbers. Therefore, G°Y(A) is determined.

We claim that / cannot have a winning strategy. Suppose not, let o be a winning
strategy for 7, and let D C “2 be the set of all (ng, n1, ...) such that there is a play
of G°Y(A) in which II plays some sequence (K;:i < w) and (n;:i < w) is the
sequence of moves of I obtained by following the winning strategy o in response
to (K;:i < w). The set D is then analytic and hence LEBESGUE measurable by
Corollary 8.15. As o is a winning strategy for I, D C A, so that D is in fact a null
set by our hypothesis on A.

Let D C
Notice that % =>% ﬁ, so that by cutting and relabelling if necessary we may
assume that there is a strictly increasing sequnce (¢;:i < ) of natural numbers

with £o = 0 such that u ( i’:é;l Ik) < - But now /1 can defeat I’s alleged

2

I,,, where each I, is a basic open set and © (U 1, ) <3-e

n<w n<w'n

winning strategy o by playing Ui’:l}i_l I in her ith move. If I plays by following
o, he will lose. Contradiction!

By AD, player II therefore has a winning strategy 7 in G°V(A). For s €< 2
with Ih(s) = i + 1 € w\{0}, let us write K, for the i move K; of I/ in a play in
which I°’s first i + 1 moves are s(0), ..., s(i) and II’s first i + 1 moves Ky, ..., K;

are obtained by following t in response to s(0), ..., s(i). Write
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B = U K.

sE<@2\@

Because 7 is a winning strategy for 71, A C B. Moreover, u(Ks) < m, so that
forevery i < w,

; 1 1
i+1 _
s » p'HKS =27 S5 i
S)=1

and hence

oo
&
wB) <Y ooy =e
i=0

We covered A by a countable union B of closed intervals such that u(B) <e. U

Theorem 12.13 (Mycielski-Swierczkowski) Assume AD. Every set A C “2 is
LEBESGUE measurable.

Proof Fix A C 2. Let B D A, B C “2 be LEBESGUE measurable such that for all
LEBESGUE measurable D C B\ A, D is anull set. Then B\ A is a null set by Lemma
12.12, so that A is LEBESGUE measurable. U

The hypothesis of Theorem 12.13 therefore also gives that every A C “w is
LEBESGUE measurable.

Lemma 12.14 Assume AD. Let A C ®w be non-meager. There is then some s € ~“w
such that A N Uy is comeager in the space Uy.

Proof Letusfix A C “w.Fors € ~“w, let us consider the following game, G?m (A),
called the BANACH- MAZUR game.

I|S0 52
H| S1 $3

In this game, I and /I alternate playing non-empty s, € ~“w, n < w, and I wins iff
sTsoT s s sy L € Al
Claim 12.15 I has a winning strategy in G?m(A) iff AN Us is meager.

Proof This proof does not use AD. Suppose first that A N Uy is meager, so that we
may write A N Us = |J,,_, An, where each A, is nowhere dense. Let us define a
strategy o for /I as follows. Let o (so, 51, - . . , $2,) be some non-empty ¢ € “w such
that

Ux”s()“n“...”sz,,”t NA, = @.
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This is always well-defined, as all A,, are nowhere dense, and o is easily seen to be
a winning strategy for I in GEm(A).

Now let us assume that // has a winning strategy, o, in GEm(A). We may define
what it means for a finite sequence p = (s, 51, . .., S,) of non-empty elements of
<®w to be according to o in much the same way as in the proof of Theorem 12.11.
Let x € “w with s C x. Because o is a winning strategy for /1, if for all sequences
(50, 51, - - - » S2n—1) of non-empty elements of <~“w which are according to o and such
that s ™ p =550 51 ... s2,—1 C x there is some non-empty t €~ w such that

A~~~

sTpTtTo(pTt) C x,then x ¢ A. Therefore,
ANnUs c B,

where, for a sequence p = (s, S1, - . ., S2,—1) of non-empty elements of ~“w which
isaccordingto o, By, isthe setof all x € “w suchthats ™ p = 575078517 ... 8$2,1—1
C x, but for all non-empty t € ~“w, s~ p "t "o (p~t) is not an initial segment of x,
ie.,

B, NUs~p~t~c(p,n) = 9.

Every B, is thus nowhere dense, so that A N Uy is in fact meager. ]

Let us now assume AD. Let us suppose A to be non-meager. By Claim 12.15, 11
does not have a winning strategy in Ggm (A), so that I has a winning strategy t in
Ggm (A). Setting s = t(@),  esily induces a winning strategy for // in GEm (Pw\A).
Again by the Claim, (“w\A) N U is now meager, so that A N U, is comeager
in Us. (Il

Theorem 12.16 (Mazur) Assume AD. Every A C ®w has the property of BAIRE.
Proof Letus fix A C “w, and set

O =| {{Us:s € =“o A U\ A is meager}.
g

Trivially, O\ A is meager. If A\ O were non-meager, then by Lemma 12.14 there is
some s € ~“w such that (A\ O) N Uy is comeager in U. This means that Ug\A C
U\ (A\O) is meager in Uy, so that by the definition of O, U; C O.So (A\O)NU; =
¢ is not comeager in U; after all. Contradiction! (]

For x, y € Yw, we let x <7 y denote that x is TURING reducible to y, and we
write x =7 y forx <r yand y <7 x. Aset A C “w is called TURING invariant iff
forallx €e Aandy € “w,if y =7 x,theny € A. Aset A C “w is called a (TURING)
cone iff there is some x € “w such that A = {y:x <7 y}, in which case x is also
called a base of the cone A.

Set S be a set of ordinals. A set A C “w is called S-invariant iff for all x € A and
y € “w,if L[S, x] = L[S, y],then y € A. We call A C “w an S-cone iff there is
some x € “w such that A = {y:x € L[S, y]}, in which case x is also called a base
of the S-cone A.
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Theorem 12.17 (D. A. Martin) Assume AD. Let A C “w be TURING invariant.
Then either A or “w\ A contains a (TURING) cone. Also, if S is a set of ordinals and
A C ®w is S-invariant, then either A or “w\ A contains an S-cone.

Proof We prove the first part. Let A C “w be TURING invariant. If o is a winning
strategy for / in G(A), then x =7 o *xx € A whenever o <7 x, and if 7 is a winning
strategy for /I in G(A), then x =7 x * T € “w\ A whenever t <7 x. The proof of
the second part is the same. (]

In what follows it will be very convenient to use the @-notation. If x, y € “w,
then we write x @ y for that z € “w with z(2n) = x(n) and z(2n + 1) = y(n).
If x, € “w, n < w, then @x, is that z € “w such that z({(n, k)) = z,(k), where
-, + > (-, -) is the GODEL pairing function (cf. p. 33).

Theorem 12.18 Assume AD. The following hold true.

(a) wi is inaccessible to the reals.

(b) w is a measurable cardinal.

(c) Foreveryx C w, x* exists.

(d) Forevery X C wg there is a real x such that X € L[x].
(e) The club filter on w1 is an ultrafilter.

() wy is a measurable cardinal.

Proof (a) Immediately follows from Theorem 12.11 via Corollary 7.29.

(b)Set B = {a)lLM: X € “w}. By (a), Bisasubsetof w of sizeNj.Letm:w; — B
be the monotone enumeration of B. For X C w, let A(X) be the Turing invariant
set {x € “w: a)lL[X] e n”X}. Let

U = {X C w;: A(X) contains a cone}.

Notice that if x is a base for the cone A and y is a base for the cone B, then x @ y is
a cone for a base contained in A N B. It is thus straightforward to verify that U is a
filter, and U is in fact an ultrafilter by Theorem 12.17. If {X,,;: n < w} C U, then by
AC,, (cf. Lemma 12.2) we may pick a sequence (x,:n < w) of reals such that for
each n < w, x, is a base for a cone of reals contained in A(X,,). But then &, _,x,
is a base for a cone of reals contained in (), _, A(X,) = A(),~,, X»). This shows
that U is <Rj-complete, so that U witnesses that w; is a measurable cardinal.

(c) This follows from (b) and the proof of Lemma 10.31 which does not need
AC. If U is a <®|-complete measure on wi, then for every x C w, U N L[x] is
w-complete, so that ult(L[x]; U N L[x]) is well-founded by Lemma 10.29, and we
get x* by Theorem 10.39.

(d) Fix X C w;. Let us consider the following game, called the SOLOVAY game.

I|no ni
H| my my
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Players I and II alternate playing natural numbers. Let us write x = (ng, ny, ...)
and y; = (myi+150+1: k < w). We say that I wins iff

x e WO = {x e XN|x||+ 1} CA{llyill:i <o Ay € WO} C X.

If 7 had a winning strategy, o, then A = {0 % x:x € “w} would be analytic
(cf. the proof of Lemma 12.12). Also A C WO, and by the Boundedness Lemma
7.12 there would be some countable & such that {||o * x||: x €” w} C &. But then
Il can easily defeat o by playing some y such that y; € WO for all i < » and
{Iyill:i <0l =XNE+1).

Therefore, Il has a winning strategy, . Let G € V be Col(w, < a)Y)—generic
over L[t] (Cf. Problem 10.13). Then @ € X iff L[t][G] = “there is some x € WO
such that ¢ = ||x]| and @ € {||yil]:i < o A y; € WO}, where y is the result of
having II play according to t in a play in which [ plays x.” By the homogeneity of
Col(w, < a)}/), cf. Lemma 6.54, X is therefore in L[], cf. Corollary 6.62.

(e) Let X C w1, and let, using (d), x €“ w be such that X € L[x]. By (¢), x*
exists, so that X either contains a club or is disjoint from a club. (cf. Problem 10.11.)

) Let C = {(a)l‘/)+L[X]:x € “w). As x* exists for every x € “w, C C w). By
(d), C is cofinal in a)g , so that we may let o: w» — C be the monotone enumeration
of C. In a fashion similar to (a), for X C w; we may let D(X) be the Turing invariant

set {x € ®w: a)fLL[x] € 0" X}, and we may define

F = {X C wy: D(X) contains a cone}.

Using Theorem 12.17 and AC,, as in (a), F can be verified to be a < R;-complete
ultrafilter on w>.

It remains to be shown that F' is <®R;-complete. Let us fix a sequence (X;:i < w)
such that X; € F for every i < w;. Let us consider the following game.

I|n() ni
II| m my

Players I and II alternate playing natural numbers. Let us write x = (ng, ny, ...)
and y = (m;:i < w). We say that Il wins iff

xeWO= {ze®w:y<rz}C (| DXp.

i<||x[|

The Boundedness Lemma 7.12 implies as in (b) that / cannot have a winning
strategy in this game. Let T be a winning strategy for player /1. We aim to verify that

{z€e®w:t <7z} C D(X))

forevery i < w.
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Let us fix z € “w such that T <7 z, and let us also fix i < w;. By the existence

of z*#, we may pick g € V to be Col(w, i)-generic over L[z]. Let x € WO N L[z][g]
+L[x®z +L[z]

be such that [|x|| = i. Asx %7 <7 x @ 2, ®| I € X;. However, w, <
a)TLIX@Z] < a)TL[Z][g], which is equal to a)TL[Z], as Col(w, i) is smaller than a)}/ in
L[z]. Therefore a)f’L[Z] = waL[XEBZ] € X;,ie., z € D(X;) as desired. O

By ODg-determinacy we mean the statement that if A C “w is ODy, cf. Definition
5.42, then A is determined.

Theorem 12.19 (A. Kechris) Assume AD. Let S C OR. For an S-cone of reals x
we have
L[S, x] = ODg-determinacy.

In particular, a){‘[s’x] is measurable in HODg[s’x].

Proof Let us assume that there is no S-cone of reals x such that in L[S, x], all ODg-
sets of reals are determined. By Theorem 12.17 there is thus an S-cone C C “w such
that for every x € C, in L[S, x] there is an non-determined ODé[S’x]—set of reals.
Define, for x € C, x — Ay by letting A, be the least ODé[S’x]-set of reals which
is not determined in L[S, x]. (“Least” in the sense of a well-ordering of the ODg-
sets, cf. the proof of Theorem 5.45) Le., if G(A,) is the usual game with payoff
Ay, as defined in L[S, x], then ¢4 _ is not determined in L[S, x]. Notice that A,
only depends on the S-constructibility degree of x, i.e., if L[S, x] = L[S, y], then
Ay =A,.
Let G be the game in which 7, II alternate playing natural numbers so that if

I|n() ny
H| ni nj3

is a play of G, then I wins iff, setting x = (n4;:i < w), a = (n1j42:i < w),
y = (n4i4+1:1 < w), and b = (n4;43:1 < w) (which we shall also refer to by saying
that I produces the reals x, a and II produces the reals y, b), then

a®be Axe;y.

Let us suppose that / has a winning strategy, t,in G. Let t € L[S, z], where z is in
C.Let t* be a strategy for / in G4, played in L[S, z] so that if /I produces the real b,
and if 7 calls for I to produce the reals a, x in a play of G in which II plays b, z & b,
then t* calls for I to produce the real a. Then for every b € L[S, z],ifa = t* % b,
in factifa, x = ©(b, z ® b), then

a® be Ax®(2®b) = AZ'

So t* is a winning strategy for / in the game G (A;) playedin L[S, z]. Contradiction!
We may argue similarily if /I has a winning strategy in G.
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We have shown that for an S-cone of x, L[S, x] = ODg-determinacy. Let x € “w
be such that L[S, x] = ODg-determinacy. Working inside L[S, x], we may then
define a filter ; on wlL[S’x] as follows.

For reals x, let |x| = sup{||y|l:y =7 x Ay € WO}. Let § = {|x]:x € R}. Let
m:w; — S be the order isomorphism. Now if A C wq, then we put A € p iff

(x:|x] e 7" A}

contains an S-cone of reals. It is easy to verify that u N HODg witnesses that w; is
measurable in HODy. |

12.2 Martin’s Theorem

Theorem 12.20 (D. A. Martin) Suppose that x* exists for every x € ®w. Then every
analytic set B C ®w is determined. In fact, ifx € “w and x* exists, then every Ell (x)
set B C “w is determined.

Proof Let us fix an analytic set B, set A = “w\B. Recall that a set A C “w is
coanalytic iff there is some map s — <;, where s € ~“w, such that forall s, t € ~“w
with s C t, <, is an order on /A (¢) which extends <, and for all x € “w,

X €A = <= U < is a well-ordering
sCx

(Cf. Lemma 7.8 and Problem 7.7).
We have to consider the game G(B),

I|n() ny
II| ny n3

in which I and II alternate playing integers ng, ny, ..., and I wins iff x =
(ng, n1, ...) € B. We have to prove that G(B) is determined.
The key idea is to first consider the following auxiliary game, G*(A).

I|n0 np n4
Ul ni,a0 n3o1 ns,a

In this game, I and II also alternate playing integers ng, ny, .. .. In addition, /I has
to play countable ordinals «, o1, . .. such that for all k < w,

—
=~
+
[a—
A

s

b

5

~

Nl
=

({a07 R ak}1 <) ’
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where 7 (i) = «; for every i < k (and < is the natural order on ordinals). The first
player to disobey one of the rules loses. If the play is infinite, then II wins.

Notice that what /I has to do is playing a witness to the fact that < is a well-order,
where x = (ng, ny,...).

Notice also that G*(A) is an open game in the space “w x “w; [(which we
identify with “(w X w;)] and hence by Theorem 12.3, G*(A) is determined in every
inner model which contains s +— <j.

Fix a real x such that the map s +— <; is in L[x]. E.g., let x be such that B is
().

Let us first assume that /7 has a winning strategy for G*(A) in L[x], call it 7.
Obviously, T € L[x] is then also a winning strategy for G*(A) for all plays in V
(not only the ones in L[x]). But then /I will win G(B) in V by just following t and
hiding her “side moves” «g, a1, .... If x = (ng, n1, ...) is the real produced at the
end of a play, then

T
(a)s <x) g ({a()? al? 052, .. '}1 <)7
where 7 (i) = «; for all i < w, so that <, must be a well-order, and thus x € A, i.e.

x ¢ B.
Let us now suppose that / has a winning strategy for G*(A) in L[x], call it 0.

Whenever aq, . .., a; and «), . .., oy are countable x-indiscernibles with
T / /
({a07 LI ) ak}a <) == ({C((), ) ak}s <)7

where 7 («;) = ] for every i < k, then
Lix] E ¢(o,q, ..., ar) <= Llx] = ¢(o, o, ..., o)
for every Zc-formula ¢, cf. Corollary 10.44 (2). In particular, then,
o (g, n1, &, ..., N2k, Nok41, Q) = 0 (N, NL, O, - - -, M2k, N5 )

for all integers ng, ni, . .., nox+1. We may therefore define a strategy o for I in G(B)
as follows. Let

o (no, ni, ..., N2k, Nogr1) = 0 (Mo, N1, QQ, .. ., N2k, N2Ut 1, Ok)

where «y, ..., oy are countable x-indiscernibles with

e
(k + 15 <(n0,‘..,nk)) = ({Ol(), cee ak}v <)a

(i) = «; fori < k. We claim that ¢ is a winning strategy for / in G(B).
Let us assume that this is not the case, so that there is a play of G(B) in which /
follows o and which produces x = (ng, n1, ...) € A. Then < is a well-order and
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there is certainly a set {«g, 1, . ..} of countable x-indiscernibles such that

T
(0, <x) = ({eo, @1, .. .}, <),
where 7 (i) = «; fori < w. Le.,

7 [(k+1)
(k + 1’ <(ng,..., nk)) = ({aOa D) ak}v <)

for all £ < w, and this means that for every k < w,

ok = 0 (nQ, N1, 00, . .., N2k—2, N2k—1, A1),
that is, ng, n1, ag, na, 13, o1, ... is a play of G*(A) in which I follows o.

Let us now define the tree T’ of attempts to find an infinite play of G*(A) in which /
follows o as follows. We sets € T iff s = (ng, ny, g, ..., nox—2, Nok—1, Cg—1, N2k)
for some ng, ny, ...,no € wand «y, ..., or_1 € w; such that foralll < k,

ny; = o (ng, Ny, ®Q, « .., N21—2, N2—1, Of—1).

If s, €T, then we let s <t iff s D ¢. Notice that (T; <) € L[x].

Now (T'; <) is ill-founded in V by what was shown above. Hence (T'; <) is ill-
founded in L[x] as well by the absoluteness of well-foundedness, cf. Lemma 5.6.
Therefore, in L[x] there is a play of G*(A) in which I follows o and loses. But
there cannot be such a play in L[x], as o is a winning strategy for I in G*(A).
Contradiction! [l

12.3 Harrington’s Theorem

We now aim to prove the converse to the previous theorem. We’ll first need the
following

Lemma 12.21 Let x € “w. Suppose that there is a real y such that whenever « is
a countable ordinal with J[x, y] = ZFC™, then o is a cardinal of L[x]. Then x*
exists.

Proof Suppose not. Let y € “w be such that whenever « is a countable ordinal
with Jy[x, y] E ZFC™, then « is a cardinal of L[x]. Let x be a singular cardinal,
and let o be such that k < o < «T and J,[x, y] | ZFC™. As we assume that x*
does not exist, Weak Covering, Corollary 11.60, yields that ¢ < TLX] — etV
Let m: Jglx, y] — Ji+[x, y] be elementary, where 8 is countable and & € ran(r).
Write &@ = 7~ ! (). Obviously, Jz[x, y] = ZFC™, but & is not an L[x]-cardinal (&
is not even a cardinal in Jg[x]). Contradiction! U
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Any real code y for x* satisfies the hypothesis of Lemma 12.21, cf. Problem
12.11.

There is a proof of Lemma 12.21 which avoids the use of Corollary 11.60 and
which just makes use of the argument for Lemma 10.29. Cf. problem 12.9.

Theorem 12.22 (L. Harrington) If analytical determinacy holds then for every x €
@, x* exists. In fact, if x € “w and every E} (x) set B C “w is determined, then x*
exists.

Proof Forcing with Col(w, ) adds reals coding ordinals below « + 1. There is a
forcing which adds such reals more directly, namely STEEL forcing which we shall
denote by TCol(w, «).

Let @ be an infinite ordinal. We let TCol(w, o) consist of all (¢, 4) such that ¢ is a
finite tree on w, i.e., f is a non-empty finite subset of ~“w such thats € randn < lh(s)
implies s | n € t, and & is a “ranking” of ¢ in the following sense: h:t — o U {00}
is such that 2 () = oo, and if s € £, n < lh(s), and (s | n) € «, then h(s) € a and
h(s) < h(s | n). For (¢, h), (t',h") € TCol(w, @), we let (', h') < (¢, h) iff ' D ¢
and i’ D h.

Let G be TCol(w, «)-generic over V, and set
T = J{¢:3n(t, h) € G} and (12.1)
H = {h:3t(t, h) € G}. ’

By easy density arguments, 7 must be an infinite tree on w, and H: T — o U {oo} is
surjective. For s € T, write T | s = {s’ € ®w:s7s" € T}. Straightforward density
arguments also yield that 7 [ s is a well-founded tree on w iff H(s) € «, and if
H(s) € a,then H(s) istherank of #in T [ s (i.e.,,therankof s in 7). If 8 < «
and H(s) = B,then T | s “codes” B in the sense that T [ s, ordered by D, is a
well-founded relation of rank 8.

If (¢, h) € TCol(w, o) and & < «, then we may construe (¢, #) as an element of
TCol(w, &) by identifying ordinals in [, «) with co. We define (¢, h)|& as (¢, h'),
where, for s € 1, h'(s) = h(s) if h(s) € £ and h/(s) = oo if h(s) ¢ &.

The following combinational fact will be crucial for later purposes.
Claim 12.23 Letw <& <&+w < a,a’, andlet (t,h) € TCol(w, o) and (t', h') €
TCol(w, o) be such that
t, Mg +ow=(1"h)E+o.

Let (u, g) < (t,h) in TCol(w, ). Then there is (u', g’) < (t', 1) in TCol(w, a’)
such that

(u,9)E = ', g)lé.

Proof The hypothesis implies that t' = ¢. Set u’ = u. We now define g’. Set u* =
tU{s eu\t:g(s) € E},andlet g* = h' U g [ {s € u\t: g(s) € &}. We are forced to
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letg’ | u* = g* Fors € u\ u*, welet g’(s) = & + k, where k < w is the rank of ¢
inthe tree u [ s = {s": 575’ € u} (i.e., the rank of s in u).

Lets € u and n < [h(s). We need to see that if g’(s | n) € o, then g'(s) <
g'(s | n). This is clear if s | n and s are both in 7 or both in {s € u\r: g(s) €
E}).Ifs | n € tand s € u\tr with g(s) € &, then g'(s) = g*(s) = g(s) and
h(s [ n) = g(s [ n) > g(s). By (¢, h)|§ + w = (', ')|§ + w, we must then have
(s 1 m)=g"(s [ m)=h(s | n) > g'(s).

Finally lets [ n € u\r and hence s € u\r. If g(s | n) € &, then clearly g(s) € &,
t00, 50 g'(s) = g¥(s) = g(s) < g(s [n) =g"(s [n) =g'(s [n). I g(s [ n) ¢ &
and g(s) € &, then g'(s | n) € [£,& + w) and g'(s) = g*(s) = g(s), so clearly
g'(s) < g'(s [ n).Ifg(s [ n) ¢ &andg(s) ¢ &, theng'(s [ n) =& +k and
g'(s) =&+ k', where k > k', s0 g'(s) < g'(s | n). |

We shall now be interested in forcing with TCol(w, o) over (initial segments of)
L[x], where x is a real. If G is TCol(w, «)-generic over L[x] and T and H are
defined from G as in (12.1), then truth about initial segments of L[x][7] can be
decided by the right “restrictions” (¢, h)|£ of elements (¢, h) from G. In order to
formulate this precisely, we need to rank sentences expressing truths about initial
segments of L[x][T] as follows.

Recall (cf. p. 70) that the rud, 7 functions are simple in the sense that if
©(vo, . .., vg—1) is a Xo-formula (in the language for L[x, T']) and fy, ..., fx—1 are
rud, 7 functions, then there is a ¥o-formula ¢’ (again in the language for L[x, T])
such that

o(fo(x0), ..., fim1(Xk=1)) <—> ¢ (x0, ..., Xk—1)

holds true over all transitive rud, r-closed models which contain xy, ..., xx—1. In
particular, we may associate to each pair f, g of rud, r functions a ¥o-formula ¢’ and
hence a ¥,,-formula ¢* such that for all limit ordinals « and for all x, y € J,[x, T],

SUalx, Tl x) € g(Julx, T], y) &= Jatolx, T1 = ¢’ (Jalx, T1, x,y)
= Jolx, T] = ¢*(x, y).

We shall write ¢(f, g) for ¢* in what follows. The choice of ¢" and ¢* = ¢(f, g)
can in fact be made uniformly in x, 7.

Let us now pretend that the language for L[x, T'] has function symbols for rud, 7
functions available; we shall in fact confuse a given rud, 7 function f with the
function symbol denoting it. We then define “terms of rank «” recursively as follows.
A term of rank « is an expression of the form

fUalx, T1, y),

where f is (the function symbol for) a rud, r function, y is a vector of terms of rank
< o, and Jy[x, T] stands for the term denoting J, [x, T]. Inductively, every element
of Jy+olx, T11is thus denoted by a term of rank «.
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The following Claim will be crucial.

Claim 12.24 Let o > w be a limit ordinal, let ¢ be a formula of complexity n € w
(in the language for L|x,T]), and let Ty, ..., T be terms of rank < «. If f >
w ~+ (o + 2n) - w, then for all (t, h) € TCol(w, B),

@m0 P T T E g, ... 1) &=

(t, D)o + (& +2n) - o -] ot 20) Jolx, T1 = o(t1, ..., ).

Proof The proof is, of course, by induction on « + n.

Let us first assume n = 0, i.e. that ¢ is an atomic formula. Let us assume that
71 = f(Jglx,T1, y) and 1o = g(Jglx, T], z), where B < o, and that ¢(71, 12) =
fUglx, Tl y) € g(Jglx, T],z). Thenforé > w + a - w and (¢, h) € TCol(w, &),

(t,h) wTC"“‘” D LT E ot ) <=
(t, h) lFTE"“‘“*E) Jptolx, T1 = ¢(t1, 1) <=
(t. 1) I 3@ Jplx, T1 EE o(f. 9)(3. 2).

Therefore, the desired statement easily follows from the inductive hypothesis.

Now letn > 0.Letus assume that ¢ = Jvgir. Thecasesp = = and ¢ = Y1 AY»
are similar and easier.

Let us assume that

Col
(. 1) I 0P Jolx, TY I Buoy (vo. 71 ... T0).

Let (¢, h") < (t, h)|w + (@ +2n) - w in TCol(w, w + (@ + 2n)w). By Claim 12.23,

there is (t/, h”) < (¢, h) in TCol(w, B) such that (¢, h)|w + (@ +2n — 1) - 0 =
@', h")|w+ (@ +2n — 1) - w. Let (¢*, h*) < (¢/, h”) in TCol(w, B) be such that

TCol(w,
@m0 P Tl TTE ¥ (0,71, )
for some term 7y of rank < «. Let (+*, h**) < (¢/, h’) in TCol(w, w + (& + 2n)w)
such that (£*, h*)|w + (« 4+ 21 — 2) - @ = (t*, h*)|w + (« + 21 — 2) - @, which
may again be chosen by Claim 12.23. By the induction hypothesis,
(R I @Y e T Y ).

We have shown that the set of (7, &) < (¢, h)|w + (¢ + 2n) - @ in TCol(w, @ + (& +
2n) - ) such that

(l‘ h) ”_TCOI(w w+(a+2n)-w) Jolx, T1 = (P(TI’ ).

is dense below (7, h)|w + (o + 2n) - w, so that in fact
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(t. Mo+ (@ +2n) - o O g T g w).

The converse direction is shown in exactly the same fashion. (]

Let us now assume analytic determinacy.
Let us fix x € “w and a natural bijection e:w — ~“w. Let us consider the
following game G.
I|n() np
H| ni n3

Let us write zo = (ng, n2, ...) and z; = (n1, n3, ...). We say that player /I wins iff
the following holds true: if zg € “w codes a well-founded tree 7, i.e.,

T ={e(ny):i < w}
is a well-founded tree on w, then z; codes a model (w; E) of ZFC™+ “V = L[x],”
say E = {(k,D):z1((k, 1)) = 1},2 such that ||7'|| is contained in the transitive collapse

of the well-founded part of (w; E). It is straightforward to verify that the payoff set
for G 1is analytic, in fact Ell (x), so that G is determined.

Claim 12.25 [ does not have a winning strategy in G.

Proof Suppose that o is a winning strategy for 7. Let D* be the set of all real codes
for well-founded trees, and let

D ={o%xz1:21 € “w}.

Then D is an analytic set, D C D™*. It is easy to define a continuous function
f:“w — “w such that for all z € “w,

7 € WO < f(z) € D*.
By the Boundedness Lemma 7.12 there is some o < w; with
{lIlzll: f(z) € D} C a,

ie.,
{IT]:3z1 € “w(o * z1 codes T)} C a.

But then II can easily defeat o by playing a code for a transitive model of ZFC™+
“V = L[x]” which contains «. O

By Claim 12.25 and & 11 (x)-determinacy, we may let T be a winning strategy for
player II in G. By Lemma 12.21, the following will produce x*.

2 Here and in what follows we use the notation (-, -) from p. 33.
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Claim 12.26 Let o be a countable ordinal such that Jy|x, t] = ZFC™. Then o is
a cardinal of L[x]. In fact, if « is countable and x @ t-admissible (cf. p. 88), then o
is a cardinal of L[x].

Proof Let k < « be an infinite cardinal of L[x]. It suffices to verify that if b C
k,b € L[x], then b € J,[x, t] (cf. Problem 12.10). So let us fix some such b, and
let b € Js[x], where without loss of generality w; > § > «. Let y > § be such that
Jy[x, 7] = ZFC™ and y is countable. Let G be TCol(w, §+1)-generic over J, [x, 7],
andlet 7 and H be given by G asin (12.1). Obviously, there is areal zg in Ju[x, T, T]
(even in Jy,4e[x, 7, T]) which codes a well-founded tree S such that ||S|| = §. E.g.,
let S =T [ s, where s € T with H(s) = §. Therefore, zo x 7 € Jy[x, 7, T] (in
fact € Jytwlx, 7, T]) codes a model (w; E) of ZFC™ + V = L[x] such that § is
contained in the transitive collapse of the well-founded part of (w; E). Let

w: (Jglx]; €) = wip(w; E)
be the transitive collapse of the well-founded part wfp(w; E) of (w; E),sothat 8 > 4.

By E € Jotolx, T, T], itis easy to verify inductively that v [ Jg[x] is uniformly

Jslx,T,T ~ . .
Elﬂ[x i ]({E}) and w | JE[x] € ]ﬁ-+w[x, 7, T] for all B < B, so that in particular

7 [ Jelx] € Jetolx, T, T]. (12.2)
As b € Js[x] C Jg[x], there is some ng € w such that for all § < «,
Eeb<= (w;E) =“mengy,” where m = (| J [x])(&). (12.3)

By (12.2), there is some formula ¢ and terms tp and 7y for E and 7@ | J[x],
respectively, where tg and 7| are of rank < « and such that

Vs <K($ €b<:> JK+a)[x’T3 T] |:§0($7T01 Tl)) (124)
Let (z, h) € TCol(w, § + 1) force (12.4) to hold true, i.e,

(6, ) IFf o) Ve < k(E € b« Tepolr, T T E 9, 10, 71)),

which may be rewritten as saying that for all £ < «,

Eebe= (1. I WY Sl T T EeE 0.11).  (125)

The point is now that because 7y and 71 are of rank < k, letting 8 = (k +®-2)-® =
0+ (k +w-2) - w, we may use Claim 12.24 to rewrite (12.5) further to say that for
every & <k,

gebe t.hIB I Tyolr. T.TIE9E 0.71)  (126)
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But we may replace L[x, t] by Jy[x, ] here (we could in fact replace it by
Je+w2[x, T]), so that we may therefore define b over Jy[x, ] as follows:

b={& <k:(t. MBI pa? Jepolx. . TTE 0. 0. ).

Therefore b € J,[7] as desired. O

#

We may now add the following to our list of equivalences to “x™ exists,” cf.

Theorem 11.56.
Corollary 12.27 The following statements are equivalent.

(1) Every analytic A C “w is determined.
(2) Foreveryx € “w, x* exists.

The paper [8] gives information on the Axiom of Determinacy. Cf. also [25].

12.4 Problems

12.1 Assume AD. Show that if (x;:i < 0) is a sequence of pairwise different reals,
then 6 < w; [Hint. Let U witness that w; is measurable, cf. Theorem 12.18
(b). Consider L[U, (x;:i < 0)], cf. proof of Problem 10.3 (a)].

12.2 Show (in ZF) that there is some A C ®(w;) which is not determined [Hint. If
AD holds, then ask for IT to play some x € “w with ||x|| = « in response to
I playing o < wq].

12.3. Assume AD. Show that for every set A, OD(4) N “w is countable. Fixing A,
show that there is no f:“w — “w such that f(x) € “w\ODyy, 4y for all
x € “wand f € ODogyupa;. Conclude that HODwy,ugay = “AD and there
is some (Ay:x € “w) with @ # A, C “w for all x € “o with no choice
function.”

12.4. Assume ZF plus “x* exists for every real x.” Show that there is some f: “w —
“w such that f(x) € “w\L[x] for all x € “w and f € OD. (In fact, we
may pick f to be X1, cf. Problem 10.7.) Show also that there is a function
f:“w — HC such that for every x € “w, f(x) is a C-generic filter over L[x]
(Hint. Use x* to enumerate the dense sets of L[x]).

12.5. For A, B C “o, write A <wadge B iff there is some continuous f:“w — “o
such that for all x € Yw, x € A < f(x) € B, or for all x € “w,
x € A<= f(x) ¢ B. Assume AD.

(a) (Wadge) Show for all A, B C “@, A <wadge B or B <wadge A. [Hint.
Let Gwadge (A, B) be the game so that if / plays x and /I plays y, then /
wins iff x € B <= y € A]. Show that <wggge is reflexive and transitive,
so that A ~wadge B iff A <wagge B A B <wadge A is an equivalence
relation. Show that <wadge is not symmetric.
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(b) (Martin, Monk) Show that <wadg. is well-founded [Hint. Otherwise there
are A, C “w,n < w, such that for all n < w, I has winning strategies or?
and O’nl for Gwadge (An+1, An) and Gwadge (“@\ A, 1, Ap), respectively.

For z € “2, we get (x3:n < ) such that x3 = o™ x x7

a1 for all
n<wletz, 7 €2 andn < w be such that for all m, z(m) = 7'(m)
iff m # n. Then xZ,, = x,, and xi € A, <= x5 ¢ Ay, ...,
x5 € Ay xé/ ¢ Ao. Hence {z € “2:x§ € Ao} is a flip set, cf.
Problem 8.3].

(c) Show that forall A C “w there is some J(A) C Y@ with A <wadge J(A)
[Hint. For x € “w write f, for the “canonical” continuous function given
by x.Letx € Biff fy(x) € A,andset J(A) = {x®Dy:x € Band y ¢ B}].

(d) Let ® = sup({a: 3 surjective f:“w — a}). Show that || <wadee || = @
[Hint. To show that || <wadge || > @, let f:“w — a be surjective, and let
(Ay:v <o) besuchthatifv < a,then A, = J({x D y: f(x) <vAyE
Af0}), where J is as in (¢)]. Let X = “w. If A C ®(“w), then in a run
of the game G(A) players I and II alternate playing real numbers, i.e.,
elements of “w. The Axiom of Real Determinacy, abbreviated by ADp,

states that G(A) is determined for every A C *(“w).
12.6. Assume ADg.

(a) Show that for all (Ay:x € “w) such that § # A, C “w for every x € “w,
there is a choice function.

(b) Show that there is a < R;-closed ultrafilter U on [“w]™ such that every
member of U is uncountable, {a € [“w]™:x € a} € U for every x € “w,
and U is normal in the following sense: if (Ay:x € “w) is such that A, € U
for every x € “w, then there is some A € U such that whenever x € a € A,
thena € A, (Compare Problem 4.30) [Hint. For A C [“w]™,let A € Uiff I
has a winning strategy in G({ f € ®(“w):ran(f) € A}). To show normality,
argue as follows. Let (A,: x € “w) be such that A, € U for every x € “w.
Let o, be a winning strategy for / in the game corresponding to Ay, x € “w.
Let o be a strategy for / such that if

I|xo X2
II| X1 X3

is a play, then for each n < w there is an infinite X, C w\(n + 1), say
X, = {m®n,0) < m(n, 1) < ...}, such that x,,, ;) is according to oy, in
a play where so far I played X, 4,0y, - - -» Xm(n,i—1)» and II played the first i
many reals from xg, x1, . .. that were not played by 7.

The SOLOVAY sequence (®;:i < §2) is defined as follows. Let ® be as in
Problem 12.5 (d). Let ®¢ = sup({a: 3 surjective f:“w — o, f € ODo,}).
If ®; has been defined, then set £2 = i provided that ®; = @; otherwise
let ®;11 = sup({er: 3 surjective f:“w — o, f € ODwyyuiay}) for some (all)
A C “o with [|A]| <y, = @i If & > 0 is a limit ordinal and @; has been
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defined for all i < A, then set @, = sup,_; @;. We call §2 the length of the
SOLOVAY sequence.

Assume AD.
Show that if A C “w is such that [|A[| <y, < ©o, then A € ODw,, [Hint.
Writing & = [[A[] <y,ge- Pick an ODg surjection f:“w — a + 1, and let

(Ay:v < «) be as in Problem 12.5 (d). Then [|Aqll <y, > @ and Ay €
ODuw,,, which yields A € ODw,,]. Conclude that if ® = @, then & (“w) C
HODuw,,.

Show also if A C “w is such that ||A||<Wadge < ®i41,then A € Owau{B}
for some (all) B C “o with || B]|<y,4,. = @i. Conclude that if the length of
the SOLOVAY sequence is a successor ordinal, then there is some B C “w
with Z(“w) C HOwau{B}.

Show that if ADg holds, then the length of the SOLOVAY sequence is a limit
ordinal and there is no B C “w with #(“®) C HODw(p). Conclude that
AD does not imply ADg [Hint. Use Problems 12.3 and 12.7 (b)].

Show Lemma 12.21 by using the argument for Lemma 10.29.

(a) Show that there is a transitive model M of ZFC™ with (M N LN Z(w)) \
Jo # 0, where « = M NOR, so that J, = M (Hint: Let @ be countable
in L such that J, = ZFC™ and pick G € L which is C-generic over J,).

(b) Show that if M is admissible witha = M NOR and Z (k) N L C M for
every K < «a, then « is a cardinal in L [Hint: Let 8 < «+£, let 1k — Jg
be bijective, f € L, and let nEm iff f(n) € f(m). Then E € M, and
hence Jg € M by Problem 5.28].

Suppose that 0* exists, and let x be a real code for 0%. Let « be an infinite
L-cardinal. Show that if « > « is x-admissible, then (k) N L C Jy[x]
(Hint. The M iterate of 0% exists in Jy[x], cf. Problem 5.28). Conclude that
every x-admissible is a cardinal of L. In fact, every x-admissible is a SILVER
indiscernible.

(A. Mathias) Let M be a transitive model of ZFC such that M = “U is a
selective ultrafilter on w.” Let M be (MU)M , 1.e., MATHIAS forcing for U, as
being defined in M, cf. p. 176. Let x € [w]® be such that x\ X is finite for
every X € U, and let

G={s,X)eM:3In <ws =xNn}

(cf. Definition 10.10.). Show that G is Ml-generic over M (This is the converse
to Problem Problem 9.9.) [Hint. Use Problem 9.3 (b) and the proof of Theorem
10.11, cf. p. 274 ff].

(A. Mathias) Show that in the model of Theorem 8.30, every uncountable
A C [w]® is RAMSEY, cf. Definition 8.17 (Hint. Imitate the proof of Lemma
8.17, replacing C by MATHIAS forcing for some selective ultrafilter on w, cf.
Problem 9.4. Then use Problem 12.12).



Chapter 13
Projective Determinacy

We shall now use large cardinals to prove stronger forms of determinacy. We shall
always reduce the determinacy of a complicated game in “w to the determinacy
of a simple (open or closed) game in a more complicated space as in the proof of
MARTIN’s Theorem 12.20.

13.1 Embedding Normal Forms

Definition 13.1 Let A C “w. We say that A has an embedding normal form,
(M, 75125 Ct € ~“w),

iff My = V, each M is an inner model, each my;: My — M, is an elementary
embedding, m; , o 5, = 7, whenever s C ¢ C r, and for each x € “w,

x € A<= dirlim(My, s ;:s Ct C x) is well-founded.

Such an embedding normal form is k-closed, where « is an infinite cardinal, iff
KM; C M foreachs € ~“w.

Even though the following result had already been implicit in MARTIN’s proof of
Theorem 12.20 (cf. also [26]), it was first explicitly isolated and verified in [43].

Theorem 13.2 (K. WindBus) Let A C “w. If A has a 280-closed embedding normal
form, then A is determined.

Proof Let (My, ws,:s C t € <“w) be a 2™0-closed embedding normal form for A.
For x € “w, we shall write

(My, (5 x: s Cx)) =dir im(M, g ;08 Ct Cx).

R. Schindler, Set Theory, Universitext, DOIL: 10.1007/978-3-319-06725-4_13, 303
© Springer International Publishing Switzerland 2014
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We first construct a natural tree 7', which we call “the” WINDBUS tree for A, such
that A = p[T] as follows. We first define a sequence (os:s € ~“w). If x ¢ A, so
that M, is ill-founded, we pick a sequence («?:n < w) of ordinals witnessing that
M, is ill-founded in the sense that

Tetnx s (@) > o1 (13.1)

foralln < w.If x € A, then we let &} = 0 for all n < w. We then let, for s € ~“w,
oy “w — OR be defined by

as(x) = [ajfh(S) if x¢ Ans =x[1lh(s)

0 otherwise.

Let B be an ordinal which is bigger than all .

We define T by setting (s, f) € T iff s € ~“w, f = (f;:i < lh(s)), where each
fi is a function from “w to B, and for all i + 1 < lh(s) and for all x € “w, if x ¢
AAns Ji+1=x[i+1,then fi11(x) < fi(x),andifx €e Avs [i+1#x [i+]1,
then f;+1(x) = 0. The order on T is reverse inclusion.

Now if (fi:i < w) witnesses that x € p[T], then x € A, because otherwise
fi+1(x) < fi(x) for eachi < w. Hence p[T] C A. On the other hand, if x € A,
then we may define a witness (f;:i < w) to the fact that x € p[T] as follows: Let
x' € ®w. If x’ ¢ A, then let k < » be maximal with x’ | k = x | k and define
fix) =k+1—ifori < kand f;(x) = 0fori > k. If x’ € A, then define
fi(x") =0foralli < w. This shows A C p[T], and hence A = p[T].

Let us now consider the following game, called G*(A):

I |no. fo  m fi
I]| ni n3

Here, each n; is a natural number, and each f; is a function from “w to 8. I wins iff
((nj:i < w), (fi:i < w)) € [T]. The payoff set is thus a closed subset of

o x (")),

and is hence determined by Theorem 12.3.

Let us first suppose I to have a winning strategy o * for G*(A). Then a winning
strategy o for I in G(A) is obtained by playing as according to ¢ *, but hiding the “side
moves” f;. Recall that ((n;:i < w), (fij:i < w)) € [T] proves that (n;:i < w) € A,
so that o is indeed a winning strategy for I.

Now let us suppose 7/ to have a winning strategy t* in G*(A). We aim to produce
a winning strategy t for // for G(A).

Let k < w, and let

1 |n0 ny, ... nok
11 | ny n3
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be a position in G(A), so that it’s II’s turn to play. Notice that, because each M is
2%_closed, oy € M, for every s € <“w. Moreover, setting s = (no, . .., nx),

((mo, -, ne), Ty s (ap)s - oy Topk—1,5 1k (@ pk—1), s i) € T s (7)) (13.2)

by the construction of the o ; and of T. Equation (13.2) holds true because if x ¢
ANAs = x [ lh(s), then (13.1) yields that forall i < Th(s), ot piq1(X) < 7} s i1 (X),

and thus 77 ;41,5 (@) = 70014015 (@ 41) () < Ty i 1.5 05 fis i1 (s 1) (X) =

Tstiys (@) (X) = T [i’s(ai). Moreover, if x € A ors # x [ lh(s), then
Ts 1+ 1s (@s pi+1) (X) = 0.
We may therefore define t by letting 7 ((no, .. ., n2x)) be the unique n < w such
that
M |=n =1y o (t*)((no, g s (), N1, - .., N2k, ).

Suppose t not to be a winning strategy for I/ for G(A). There is then a play
(ng, n1, ...)of G(A) in which I [ follows t, but I wins, i.e., setting x = (ng, n1, ...),
x € A. In particular, M, is well-founded (i.e., transitive), and by the elementarity
of TP,x»
M, = my x(t¥)is a winning strategy
for I1 in 7y (G*(A)).

By (13.1) and the elementarity of 7y ,, in V there is a play of 7y , (G*(A)) in which
11 follows my (t*) and in which /] loses, namely

I |n0: 7y, (o) na, ”x[l,x(ax[l)
11| n

We may now exploit the absoluteness of well-foundedness between V and M, cf.
Lemma 5.6, and argue exactly as in the second last paragraph of the proof of Theorem
12.20 to deduce that there is hence a play of 7y (G*(A)) in M, in which /1 follows
7y« (t*) and in which /1 looses. But this is a contradiction! (Il

It is not hard to show that if there is a measurable cardinal, then every set of
reals has an embedding normal form, cf. Problem 13.1. It is much harder to get
embedding normal forms which are sufficiently closed. The proof of the following
result is similar to the proof of Theorem 12.20.

Theorem 13.3 Let k be a measurable cardinal, and let A C “w be coanalytic. Then
A has a k—closed embedding normal form.

Proof Recall again that a set A C “w is coanalytic iff there is some map s +— <j,
where s € ~“w, such thatforall s, t € ~“w withs C t, <; is an order on lh(¢) which
extends <, and for all x € “w,

X EA & <= U <y 1s a well-ordering. (13.3)

sCx
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(Cf. Lemma 7.8 and Problem 7.7.)
Let s C ¢, where lh(¢) = lh(s) + 1. Write n = lh(s). Suppose that n is the kth

elementof n + 1 = {0, ..., n} according to <, i.e.,
moy <;g ... <M1 <l < MmMp <¢...<gMy_1,
where m; is the /th element of n = {0, ..., n — 1} according to <s, [ < n. We then

define ¢(s,t):n — n+1bye(s,t)(l) =1lforl < kand ¢(s,t)(l) =1+ 1forl > k,
[ < n.

If s C t, where lh(7) = lh(s) + m, then we define ¢(s, t): lh(s) — 1h(¢) by

0@, ) =@ [Th(t) = 1,0 0...00(s, t | Th(s) + 1).

The map (s, t) then tells us how the lh(s), lh(s) 4+ 1,...,1h(t) — 1 sit inside
0,1,...,1h(r) — 1 according to <;.

Let us now define an embedding normal form (M, my:s C t € ~“w) for A as
follows. Let U be a measure on «, and let

(M, Tap:0 = B € OR)

be the (linear) iteration of V. = My given by U. Let us write U, = moy(U) and
ko = Toq(k), where @ € OR. We set My = Mjp(,) and

_ _p(s.0)
Ts,t = Th(s)lh(r)*

where nlﬁii}tlﬁ(z) is the shift map given by ¢(s, t), cf. the Shift Lemma 10.4. For
x € “w, let
(M, (75 x:s C x)) = dir lim(My, ms ;25 Ct C x).

Notice that {7y (k,):n < w,s C x,lh(s) = n + 1}, ordered by the e-relation of
M, is always isomorphic to w, ordered by <,. By (13.3), this readily implies that if
x ¢ A, i.e., if <, is ill-founded, then M, is ill-founded.
Butitalsoimplies thatif x € A,i.e., <, is well-founded, then M is well-founded
as follows. Let x € A and let y = otp(<,). We may define maps ¢(s, x):lh(s) — y
by setting
@(s, x)(n) = lIn]|<,

for n < lh(s), s C x. Notice that (s, x) = ¢(¢, x) | Ih(s) whenever s C t C x. By
Lemma 10.4, we have, for s C x,

@(s,x)
Th(s),y My — M,

where fors C 1 C x, . o) o)
@(t,x @(s,t _ @(s,x
Th(r),y © Tih(s),Ih@) = Tlhis),y
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Therefore, we may define an elementary embedding k: M, — M,, by setting

k(mex (y)) = ”1(}’;8’)),67)/ (8

for y € M;.
As“M, C M, for all n < w by Lemma 4.63, we have thus shown that A has a
k—closed embedding normal form. O

Theorems 13.2 and 13.3 reprove MARTIN’s Theorem 12.20.
We shall now turn towards proving Projective Determinacy.

Definition 13.4 Projective Determinacy, PD, is the statement that all projective sub-
sets of “w are determined.

The key new ingredients to show that Projective Determinacy holds true are iteration
trees which are produced by WOODIN cardinals.

Definition 13.5 Let A C “w, and let
&= (M, g5 Ct € ~w)

be an embedding normal form for A. If « is an ordinal, then we say that the additivity
of & is bigger than « iff 75 | (@ + 1) =id forall s, t € ~“w, s C t.

13.2 The Martin—Steel Theorem

The following seminal result was produced in [26].

Theorem 13.6 (D. A. Martin, J. Steel) Let § be a WOODIN cardinal, let B C “w,
and suppose that B has a 2X°—closed embedding normal form whose additivity is
bigger than 8. Then for every a < 6,

{xe®w:Vye®wx®y ¢ B}
has a 280—closed embedding normal form whose additivity is bigger than .

Theorems 13.2 and 13.3 immediately give the following.

Corollary 13.7 Let n < w, and suppose that there is a measurable cardinal above
n WOODIN cardinals. Then every TI'  subset of ®w is determined. In particular, if
~n+1

there are infinitely many WOODIN cardinals, then Projective Determinacy holds.

The proofs of Theorems 12.11, 12.13, and 12.16 also give the following.
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Corollary 13.8 Suppose that there are infinitely many WOODIN cardinals. If A is
projective set of reals, then A is LEBESGUE measurable and has the BAIRE property,
and if A is uncountable, then A has a perfect subset.

In particular, the collection of all projective sets of reals has the perfect subset prop-
erty (cf. p. 142), i.e., here are no “definable” counterexamples to CANTOR’S program,
cf. 3.

Proof of Theorem 13.6. Let us fix
(N, 05128 Ct e ““w),

a 2% _closed embedding normal form for B whose additivity is bigger than §.

If s, t € =“w are such that lh(s) = lh(z), then we define s @ ¢ to be that r € ~“w
such thatlh(r) = 2-1h(s), and foralln < lh(s),r(2n) = s(n) andr(2n+1) = t(n).
Let us write

A={(x,y) € (“w)’: x@ye B),

so that trivially {x € “w: Vy e “ox®y ¢ B} = {x € “w: Vy € Yw: (x,y) ¢ A}.
Let us also write N ; for Nygy, and o(s 1) (s ) for o5 '@, Where s, s, 1,1 € ~“w
with h(s) = Ih(z) < Ih(s") = Ih(z'). Then

(Ns.t,0(s.0).s.0): 5 €8 € “Pw,t Ct' € ““w,1h(s) = 1h(), Ih(s") = 1h("))
(13.4)
is a 2%—closed embedding normal form for A whose additivity is bigger than § in
the sense that for all x, y € “w,

(x,y) € A = dirlim(Ny;, 0(s.0),(s.7): 8 Ct Cx,t C t' C y) is well-founded,
(13.5)

every N is 2%0_closed, and 0s.0), (s, 1) | (8 +1) =id for all relevant o ;) (s 1)-

Let us first construct “the” WINDBUS ftree T for A in much the same way as in
the proof of Theorem 13.2, as follows. We start by defining a sequence (o ;:5,t €
<®w, lh(s) = 1h()). If (x, y) ¢ A, so that

dir lim(Ns,,, O(s,0),(s',1): S C s’ C x,t C t'C y)

is ill-founded, we pick a sequence (ozj})y: n < ) of ordinals witnessing that this
direct limit is ill-founded, i.e.,

O fm.ymy.(x Mt oy fn 1) (@) > it (13.6)

foralln < w. If (x,y) € A, we let a;”y = 0forall n < w. Let, for s,t € =

Ih(s) = 1h(?), a5+ “@w x Y@ — OR be defined by

w,
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ar if (x,y) ¢ AAs=x [lh(s) At =y [ Ih(s)

. (13.7)
0 otherwise

aS,t(-xv Y) = [

Let B be an ordinal which is bigger than all oy . We define T" by setting (s, ¢, f) € T
iff 5,t € ~?w, Ih(s) = 1h(t), f = (fi:i < lh(s)), where each f; is a function from
“w X “wto B, and for all i + 1 < lh(s) and for all x, y € Yw,if (x,y) ¢ AAs |
i+l=x]i4+1At]i4+1=y][i+]1,then fiti1(x,y) < fi(x,y), and if
(x,y)eAvs|i+1l#x]i+1lve]i+1#y/[i+1,then fi1(x,y) =0.
The order on T is again reverse inclusion.

Now if (fi:i < w) witnesses that (x,y) € p[T], then we cannot have that
(x,y) ¢ A, as otherwise fi11(x,y) < fi(x,y) foreachi < w. Hence p[T] C A.
On the other hand, if (x, y) € A, then we may define a witness (f;:i < w) to the
fact that (x, y) € p[T] as follows: Let x’, y' € “w.If (x, ') ¢ A, thenletk < w be
maximal withx’ [k =x [kAY [k =1y | k,and define f;(x',y) =k +1—i for
i <k+1land f;(x’,y) =0fori > k+1.If (x’, y) € A, then define f;(x’,y') =0
for all i. This shows A C p[T], and hence A = p[T].

Notice that, as each N;; is 2%0_closed, we have that ag; € Ny forevery s, t. In
fact, for all s, t € ~®w, Ih(s) = 1h(z),

((s, 1, 05 pie 1), (s.0) @spie i) 1 < 1h(s)) € o.0),(5.0)(T) (13.8)

To see this, notice that if x,y ¢ A, s, t € ~“w, lh(s) = lh(¢), x [ Ih(s) = s and
y [ lh(s) =¢,andi < j < lh(s), then by (13.6)

O (s it 1), (s,0) s i, 1) (65 ¥) = O (s 1it 1), (s,1) (ajc,.y)
> O(s e 1) (.0 (@)
= 0yt (s.0) @spje 1) (X5 ¥),s

andif (x, y) € Avx [Th(s) #sVy [1h(s) # t,then oy 1), 5.0 @spiei) (X, ¥) =
0.

Let us now fix @ < 8. We aim to construct a 2*0—closed embedding normal form
for {x:Vy(x, y) ¢ A} whose additivity is bigger than «. The embedding normal form
will be produced by iteration trees on V.

Let (s,:n < w) be an enumeration of ~“w such that if s, C s;,,, thenn < m. Let

=< be the following order on w: we set n < m iff n = 0, or n, m are both even and
n < m, or n, m are both odd and

Sntl C Smtl .

2 2

We intend to have s, correspond to the node 2n—1 in the tree order <.!
For s € ~“w, we shall produce objects

! We here and in what follows use k—I to denote k — [, unless / > k in which case k—I = 0.
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Ts

ksx fork <2-1h(s),
Bs.k  for k <1h(s), and
ns.x fork <Ih(s).

(13.9)

We will arrange that the following statements (PD, 1) through (PD, 4) hold true.
(PD, 1) Each 7 is an iteration tree on V of length 2 - Th(s) + 1,

Ty = (Mg, 500k <1 <2-1h(s)), (Esk:k <2-1h(s)), <[ (2-1h(s) + 1)),
such that for each k < 2 - 1h(s),

Mgy = “Esrisa 2% _closed and certified extender with
critical point 5 ; > o and Es j € Vs,”

where

. 2m if k is even, say k = 2n and s, = s;,41 [ (Ih(s,+1) — 1), and
I =
k if k is odd.
Moreover, k5,0 < ks,1 < ... < Kgs2.In(s), and forall k <1 <2 -1h(s),

(Vi)Msk = (V3 )Msa,

where A is the least inaccessible cardinal of M, ; which is bigger than

Ksk+1-
even branch < odd branches -
2n+2 Spr1~2n+1
E; 2,1 With crit KLZ"HT TES‘ZH with crit «; 5,
k=2n Sm~2m — 1
~.. 7

(PD, 2) If s C s’, then Jy end—extends 7, i.e., My, = M forall k <2 -1h(s)
and Ey ; = Egy for all k < 2 - 1h(s) (of course, the latter implies the
former); also, kg = kg x for k <2 -1h(s), By x = Bs.k for k < 1h(s), and
Ns' .k = Ns,k for k < 1h(s).
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(PD, 3) Say n = lh(s). Then
(S [ 1h(Sn), Sn, (ns,2141,2n¥l (7’]&]) : 21—1 =< 271—1)) € T[S,O,Zn;1 (T)

The forth condition which will guarantee that the “even branches” of .7, s C x,
where x € “w, produce an embedding normal form. In order to state it, we need a
notation for the models and embeddings of .7; from the point of view of Ny ., the
models from (13.4). Let s € <“w, and let s', t’ € ~®w, Ih(s") = 1h(¢'). Because for

allk < 2-1h(s), Esx € VSM"k, and because the additivity of our given embedding
normal form (13.4) for A is bigger than §, the sequence

(Esx:k < 2-1h(s))
is easily seen to generate? (.7;)+'" such that
Ny y E “(Z,)Ns'.#" is an iteration tree on Ny o oflength 2 - 1h(s) + 1,7
where we may write

(TN = (M5 7Sk <1 <24 Th(s), (Eg gk < 2-Th(s)),
<[ @2 -1lh(s) + 1)).

We will have that
M = 0w (M),

s/t
T = 0@.0)."1") (s k), and
Ms’,z’ M
sk s,k
v,k =V,

forallk <1 <2- lh(s).3 The models M;j,’f/ are “the models M,  from the point of

/as
view of Ny . and the embeddings n; ,’Ct ; are “the embeddings 7 x; from the point
of view of Ny ,.”

Notice that we shall have

i i
t

s’ s”, s’
O’(S’,t’),(s”,t”) (e} ﬂs,k,l = T[S,k,l (e} (U(S/,t’),(s”,t”) rMS,k ), (1310)

2 Thereisa slight abuse of notation here, as .7; is not a set but rather a (sequence of) proper class(es).
By (F)N'" we mean that object which is defined over Ny, from the parameter (E; x: k < 2-1h(s))
by the very same formula which defines .7; over V from the same parameter (E x: k < 2-2lh(s)).

3 For a proper class X, we write oy.g).(s./)(X) = U{ow.g..0)(X N Vo) @ € OR}. Cf. the
footnote on p. 184. As a matter of fact, in what follows we shall only need MSS:;([ in case s and s’
are compatible.
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Y Zaa
where this is an embedding from MSS,’: to M; l’t whenever s, s/, s”, t/, t"

€ Y,k <1 < 2-1h(s), In(s’) = lh(") < lh(s”) = Ih(s”). Equation (13.10)
holds true because for all x € M;J’(t C Ny,

T(s' 11,570 © Ty oy (X) = 0(sr.10).57.0m) (0.0 517y (s 1) (X))
= 05", ),s" 1" (O0.0), 5" ,1") Tk, (O (57 1), (57,17 (X))
= ow.n),s" 1" Ts k1) (O (s 17, (57 1) (X))

i

J— N
=T OO0 1), (s ") (X).

Our forth condition now runs as follows.

(PD,4) If m < n < lh(s) and sy = sp+1 | (h(sns1) — 1), then

s [Th(sp+1),8n+1
Bsnt1 < T omonys (OCsMhCsm).sm). (s hsns1)snsr) Bs,m)-

Suppose that we manage producing objects ., ks k, Bs.k» and 1, x with the prop-
erties (PD, 1) through (PD, 4). We may then verify the following

Claim 13.9
(M 21n(5): S € ~“), (T 21n(s).21h(s"): S C 8, 8,8" € “w))
is a 2%0—closed embedding normal form for {x € “w: Vy € “w (x,y) ¢ A}.
Proof 2%0—closedness is clear by (PD, 1), as every extender used is 28 —closed in
the model where it is taken from. Cf. Lemmas 10.60 and 10.61.
Letus fix x € “w. Let
(M Even, (T2k, Even: k < w)) = dir im((My g ok k < @), (7T pok,200k <1 < o).

We need to see that

dy(x,y) € A => M gye 18 ill —founded (13.11)
and

Vy(x,y) ¢ A = M gyen is well-founded. (13.12)

Let us first show (13.11). If 5, t € ~“w with lh(s) = lh(z), then by the coherence
condition (PD, 2), we may write Mij{ for M;’r’k’ , (= Mfc’rtm’ , for all sufficiently large
m) and n;f{ , for T[;[tl v (= ”;’[tm 1, for all sufficiently large m).

Let us now pick some y € “w such that (x, y) € A. Let
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(N, (0(s,1),00:8 Cx, 1 Cy)) =dir im(Ny s, 050,578 Cs' Cx,t Ct' Cy),
(13.13)

so that N is transitive by (13.5).
For any s € ~“w, the sequence

(Esx:k <2-1h(s))
is easily seen to generate (Z:)N such that
N E “(Z)N is an iteration tree on N of length 2 - lTh(s) + 1,”
where we may write

(TN = (M w5k <1 <2-1h()), (Eg ik < 2-1h(s)), <[ 2-1h(s) + 1)).

By the coherence condition (PD 2) we may write M % for M k (= M; F');l '
for all sufficiently large m), nx k ; for rr l i (=7 bkl for all sufﬁcwntly large
m), and

(M3 30, (T3 oot k < @) = dir lim(M 5 ok xzk sk <l <w). (13.14)

x 2k,00 "
Virtually the same proof as the one of (13.10) shows that

x[k,y Tk s k,y Tk
O(x [k,ylk),00 o nx ;)1yoL - T[;C,Zyn,oo ° (O(X [k,y k), 00 r M;:,TZn)r ) (1315)

foralln, k < w.
Again by (PD, 2) we also write 8 x for By x x (= By« forall k” > k). By (PD,
YHhifk<m<n<w,sp=y|kands,; 1 =y [ (k+ 1), then

x[(k+1),y [(k+1)
Bxn+1 <7 [2m 23 D @ty 10, 1.y Tk 1) B )

which implies that

(1), y [(k+1) M k+1).y [k+1)
jT))cC,an+2,o<}> (Bxnt1) < 70 Bm T Gty . e 1), e 1) Bren)).-

(13.16)
Then (13.15) and (13.16) yield the following.

févn+2 00 (T k1), y [k 1)),00 (B ,n+1))
k+1),y [(k+1
= O(x [(k+-1),y [(k+1)), oo(ﬂx zir;c—tzl)oz;k+lj(ﬁx’n+l))
< Ol ).y 1), 0o (T moe (Ox e,y 1), (e Pk+1)), 3 TkeA1) (Br,m)))

- T[x 2ym oo(a(x k,ylk), oo(,Bx m))
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This shows that the sequence
X,
(nx’%m’oo(g(x [lh(sm),y[lh(s,,,)),oo(ﬂx,m)) im <, 5, CY)

witnesses that My %, is ill-founded. However, the direct limit (13.14) which pro-
duces Mfgo can be formed within N, cf. (13.13), which is transitive. We may there-
fore use absoluteness of well-foundedness, Lemma 5.6, to see that such a sequence
witnessing that Mff;o be ill-fouded must also be an element of N. By the ele-
mentarity of mg g) 00: V — N, which maps (My 2, Tx2mok: m < k < o) to
(M;’zym, ”j,’zym,zk : m < k < w), there is hence a sequence which witnesses that

M gy, = dir lim(Mx,Zm, Ty 2m2k: M = k < w)

is ill-founded. We have verified (13.11).

Let us now show (13.12). For this, Theorem 10.74 is the key tool. Let us thus
suppose that for all y € “w, (x,y) ¢ A. As every extender used is certified in the
model where it is taken from, in order to verify that M gy, is well-founded, it suffices
by Theorem 10.74 to show that for all y € “w, if

(My, (mk,y k< w)) = dir im(My g ox 215 T or1,0021° Sk C 81 C )y

then M, is ill-founded.
To this end, let y € “w be arbitrary. As (x, y) ¢ p[T],

Tey ={f:(x [Ih(f), y [Th(f), f) €T}
is well-founded. By (PD, 3),if k < w and s, = y | k, then
(x Tk y Tk, (a1 2021 () 20=1 2 2n=1)) € 7y 100,201 (T).
Let (n;:i < w) be the monotone enumeration of {n < w:s, C y}, andlet, fori < w,
Vi = Uty 20212021 () 20=1 < 2ni;1)||nxrn[,0’2ni;1(rx,)')’
If i < o, then the node (7, ;.| 211,20, 21 (x fniyy.0) * 20=1 < 2011 —1) extends

thenode (T, . 201,204 -1 M gy p.0) : 20—1 < 2n;=1) inthetree 7, 1, , | 0.2
(Tx,y), so that

i+1—1

Ty [n,-+1,2n,-;l,2n,-+l;l(yi) . )
= T gy 201,201 21 M Py, ) ¢ 2171 = 2”i_1?||7rxm,-ﬂ.o.zn,-ﬂ;l(Tx,,v)
> N g 20120000 21 O g, 1) 2021 220001 = Dl o000 20T
= Yi+l1-

This proves that My is ill-founded, as witnessed by (y;:i < w).
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We have verified (13.12). O

We are left with having to produce the objects ., ks, Bs.k», and 7 x such that
(PD, 1) through (PD, 4) hold true.

We first need a set of “indiscernibles.” Let us fix A, a cardinal which is “much
bigger than” §; in particular, we want that 7 € V, and that all 7’8,/1}/ (as,r) will be in
V, also. Let ¢y < ¢ < n be strong limit cardinals above X of cofinality > § such
that

type” (Vi €, Vi, (&, co)) = type” (Vs €, Vi, {%, c1}). (13.17)

An easy pigeonhole argument shows that such objects exist: e.g., let n be a strong

—
limit cardinal of cofinality V,| . In the construction to follow, we shall use the
“descending” chain of ordinals

cot+1l>co ~cr>co+1>co ~c1>...

and we may and shall assume that X, cg, ¢1, and ) are fixed points of all the elementary
embeddings which we will encounter. Cf. Lemma 10.56 Problem 10.18. § will always
be a fixed point anyway.

In order to keep our recursion going, we shall need a fifth condition.

(PD, 5) For eaChl < w, n c V)LMZILI.

The objects 75, ks .k, Bs.k» and 15 x will be constructed by recursion on the length
of 5. To get started, we let .Fj be the trivial tree of length 1 which just consists of V.
We also set By.0 = co, and we pick kg0 < 8, kg0 > o, such thatin V, kg o is strong
up to § with respect to

type” (Vegr15 €, Vs, {8, 1, T, ag g)).

This choice of kg g is certainly possible, as § is a WOODIN cardinal, cf. Lemma 10.81.
We also set ng.o = ag.g.

Now let us fix s € =“w of positive length throughout the rest of this proof. Write
n + 1 = lh(s). Let us suppose that

z[n

ks fork <2-n,
Bs.k fork <n,and
nsk fork <n

have already been constructed. We are forced to set kg = gk for k < 2-n,
Esx = Egppp fork < 2-n, My = Mg, fork < 2-n, ws1 = gy, for
k<1 =<2-n,Bsix = Bsni for k < n, and n;x = 0, for k < n. Let us write
t =Spt1,k=1h(t) <n+1,and s, =1t [ (k — 1). We now need to define ks 2,41,
Ks.2n4+2> Bs.n+1, and 1,11, and we also need to define My 2,41 as an ultrapower of
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M 5,,-1 by an extender E; », with critical point ks 2, and M 2,42 as an ultrapower
of M >, by an extender E; ,41 with critical point kg 2,+1.

2n+2 t=Spt1~2n+ 1
Ex,2n+l with crit Ks,2n+1 TES,zll with crit Ks,2m
k=2n t1k—1=s,~2m—1
—

As s € =?w will be fixed from now on, we shall mostly suppress the subscript s

and write
M;, for M i,

k1 formkl,

s/t s’
M, for Msk’

[

st
T for yrs k I
Kk for kg k,
Bk for Bk, and
Nk for 1y k.

Inductively, we shall assume that the following two statements, (A) and (B), are
satisfied. Here, ot 41; 18 as in (13.7).

(A)
st—1.t1k—1 sTk—1,z -1
(VB,415 €, Vig» {8, A, JTO m w0, sk=1,i k=1 (T)),
(770,2,; (0(9 i), (s k=10 k=1 (s i 1)1 <k —1)})
= type Moy 1 (Veg+15 €5 Viey,,» 16, A, ”O,Zm—l(T)’
(g 2y oy )20 = 1 < 2m = 1)).

B) Ins1deM sTk=Lrlk-1 , K2, 18 strong up to § with respect to
e bk= k—1,11k—1
type™an (Vﬁm-‘rls €, Vs, {8, A, néEm ‘l (0@.9), s k=11 k=1 (1)),
sMk—1,
(02,,, ‘I (U(Uzz)(wklzkl)(as”))l<k—1)})

Notice that this is trivially true for n = 0 (in which case m = k — 1 = 0) by the
choices of By = Bp.0 = co, ko = kp,0, and o = g g .
Because § is a WOODIN cardinal inside M; [kt

. » we may pick some k2,11 < &,
K2n+1 > K2, such that

(C) inside M;,[k’t, K2n+1 1S strong up to § with respect to
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sk,
typeMn t (V_sr

’ e’ V 9
frz,,, 2,1(% k lr[k 1. .0) (Bm)) 8

1k, .
{6, A, ﬂayrznl(a(w,w),(s e, (T)), (770,2,1 O s tir iy, (s te,ry s e 1) 0 < k)Y,

cf. Lemma 10.81. We may apply the map ngnrfztn O O (s 1k—1.1 [k—1).(s Jk.r) 0 (B), which
by (13.10) and the fact that crit(;w2,,,2,) = K2m+1 > k2, produces the assertion that

skt

inside M,,"", k2, is strong up to § with respect to

r[kr

typeMan (V_stkrik

Tom.om (% k=1Lt Tk—1),(s [k, r)(ﬁm))+1’ €. Vs, (13.18)

, , .
{6, %, 775,[2,11 (7w, (T)), (770,2,1 Ot 1), (s the,n) @s i)l < kD).

We may thus let

Tom=1,on41" Mom2y = Eson Mont1,

where E; 2, € My, is a 2%0_closed certified extender in My, which witnesses that

inside M;[k’t, Ko 18 strong up to the least inaccessible cardinal A* above k2,41 with

respect to the type from (13.18); notice that (V,QmH)M?" = (V,QWH)A/IZWF1 ,cf. (PD,
1), immediately gives that
(VA*)Mznﬂ — (V)\*)MZH' (13.19)
We have that

M>y, .
type 20+l (VC()—‘,-ls €, VK2,,+1+1’ {37 )M

70.2041(T), (5, -y 5,1 (0i): 21 —1=<2m—1)) (13.20)
s[kt
= typeMan (Vs €, Viopii+1, {8, A,

,,,2,, (U(v k=L 1k—1),(s| kt)(ﬂm))Jrl’

k, , .
”(s),rznt(‘f(m,@),(s e, (1)), (ﬂo,zn (O(sti,e i), (s Ty (@s i i)l < k= 1D}).
This is because by the choice of Ej 2,, the right hand side of (13.20) is equal to

T

Tyt 2041 (tyPEM (V st Tk

€, Vi, » {6, A
Toman (O(stk—1e1k=1),(s] kt)(ﬂm)-i-l’ + Vi - 18, 4,

k. , .
ﬂé,rz,l[(ﬁ(@,@),(s 0 (1)), (7T0,2,Z O tit) s ten @spie i) i <k —1D}),

restricted to parameters in (Vi,,, ,+1)M2+1 = (Viy,,,+1)M?, which by (13.10) and
kLT

the elementarity of the map o j—1,/1k—1), (s [k,1) © 772m o

is equal to



318 13 Projective Determinacy

stk—1,1Tk—1

Tom-1 2n+1(typeM2m (Vﬁm 15 €, Vszs {5, A,
k=1, k=1
”ogm 'l ©w.m,6k—1.k—1)(T)),
s tk—1,¢ k=1
(02m fr (O s i,t 1), 6 k=1, =1y @s i) 1 < k = 1)})),

restricted to parameters in (Vi,,,,+1)™2+!, which in turn by (A) is equal to

M. -
7T2m;1,2n+1(type 2Zm—1 (Vc0+1; SH V/(zm s {8’ )"7
7T0,2m$1(T)’ (7721';1’2,”;](771'): 2i—1 <2m - D),
restricted to parameters in (Vi,,,  +1 YMan+1and thus to the left hand side of (13.20).
Let us write

Mk

T = typeMn (V €, Viyy1: 10, A,

2,1 (G(s k—1,01k— 1)(vrk1)(ﬁm)’
o |k,
ng,g;(m,m,@ e (T)), (13.21)

(ﬂé,fzk,;l(a(s Mot 1), (s kot @s i i D21 < k).

By (C), we have that n = né rzk,;l (@ ,¢) Witnesses that

s k.t _ [
n FaneVy= type (V Srkzt,l (O (s th=1,1k=1), (s 1k, 1) (Bm)’

S VK2n+1 ’
k,
(8. 2 1y 0 005 1) ()

1k, . —~
(nS,Bn’(% Vot 1), (s k=1, fk—1) (@i i) 8 S k= 1) nhA
Kon+1 18 strong up to & with respect to (13.22)

M3
type™ 2 (V _sikirk i€, Vs,
M ( ﬂé,g,,'zt,[ (O(stk—1,1 1k—1).(s [k,t) (Bm) 8

k,
(8. 2o 7 5 00,5 1) ()
‘1K, . _
(nS,Bn’(% Vot 1), (s k=L fk—1) (@i i) 8 <k —1)7n})).

[kt
T e (VK2)1+1+1) 2"

the statement “In € V) (...)” in (13.22) can be written as an element of the type
from the right hand side of (13.20), so that by (13.20),



13.2 The Martin—Steel Theorem 319

Mo = 31 € Vit = type™ 1 (Ve €, Vi
{8, A, 710, 0n41(T), (T 1 2p1 ()12 — 1 < 2m — D" nhHA
Kon+1 18 strong up to § with respect to (13.23)
type2 1 (V5 €, Vs,
{8, 7, 0.2n4+1(T), (a1 2y 1 ()220 — 1 2 2m — 1) 7"n})).

Let 7,41 € V)fvh"’1 be a witness to (13.23), so that we shall now have that

D)

_ Msnrk.t . skt
T =typer (Vngljll,(élnrk(a(xfk—lj tk=1),(s oty (Bm)’ € V- 8. 2, To,2n ©@wm.s1k0 (1)),
(ﬂ(;,rznt(a(s[i.t[i),(s ety (@ piei))ii < k)Y
= type™ 1 (Ve €, Vg, (8, A 70,2041 (T),

(i1 2041 (Mi): 20 — 1 2 2n+ D}

and

©y
inside M»y,+1, k2,41 18 strong up to § with respect to
typert1 (Vg €, Vs, {8, &, 10,2011 (T),

(i 12ne1 ()i 20 — 1 < 20+ D).

Also, if we inductively assume (PD, 5) for/ < n, then 5,41 € VAMZ”“ (i.e., (PD, 5)
for/ = n 4 1) yields that

(Tys g a1 (00120 =1 2 20+ 1) € V2t (13.24)

Now again because § is a WOODIN cardinal inside M>,1, we may pick some
Kon42 < 8, Kan+2 > Kop+1, such that

(E) inside Mo, 11, k25,42 1S strong up to § with respect to
typeMan+1 (Veo+15 € Vs, {8, A, 10,20 41(T), (”21';1,2n+1('7i): 2i — 1 <2n+ 1)),
cf. Lemma 10.81.
Let
Tonom+2: Mon —>E; 501 Mon+2,
where Egop+1 € Moptg is a 2%0_closed certified extender which in M7, 41 and

witnesses that inside M, 41, k2,41 1S strong up to the least inaccessible cardinal A*
above k2,42 with respect to

typeMt (Vs €, Vi, (8, 4o 02041 (T (T 5 (10020 = 1 %20+ D)),



320 13 Projective Determinacy

This choice is possible by (C)’; notice that (VK2"+1+])M2"+1 = (sz,,+1+l)M2”, cf.
(13.19), which immediately gives that (V;+)M2n+2 = (V,+)M2n+1 We shall have that

)
v[k t

type 2n+2 V )€, €,V ’
yP ( 2m 2,,+2(O'y k—1,t1k—1),(s [k, l)(ﬁm) K2”+2+1

{6, %, 770’2,1+2(O'((/),V)),(s .0 (1)),

s [k, '
ﬂ(;,r2n:-2(0(s li,t1i),(s Ng,;)(()[(‘Y Ny i)) < k)})
= typeM2n+1 (Vey: € Ve a1
(8, 2y w0, 2041(T),
(n2i¥l,2n+1(77i):2l' —1=<2n+ D).

This is because the left hand side of (F) is equal to

skt

sTk,
nzn on +2(type 2n (V Mt

V,
mzn(Urk Letk—1), (rkr)(,Bm)’ € Viansr»

{8, A, 7T0,2,, "ow.9). (),

k.t .
ﬂérzn O st tiy, (s thn) @iy < k)Y
[k1
restricted to parameters in (Vi,, +2+1) 2

= TEn (tyPe™ 1 (Vayt €, Vi, (8. A 70,2041 (T),
(Tyy 1 gyt (001 20 = 1 < 2n + D),
restricted to parameters in (Vi,, 1)1

by (D),
= typeM2+1 (V1 €, Vieonia+1: 18, &, 70, 2n+1(T), (7T2i;1’2n+1(77i)1 2i — 1 <2n+ 1)),
by the choice of Ej 5,1, which is equal to the right hand side of (F) by (13.24) and

the choice of ¢g and ¢y, cf. (13.17). We verified (F).
Let us write

o = typeM2 1 (Vo 415 €, Vieswias 485 2 700 2041 (1), (70, -y 5 (0i): 20 —1=<2n+ D).
With (E),
(Ve)Mrtt = 3B(0 = type™ 1 (Vpi1; €, Vi, 1o 8, &, 70,2041 (T),
Ty 21 oy (1) 21 ~1=<2n+DYA
Kon+2 18 strong up to § with respect to (13.25)
type+1 (V115 €, Vs, {8, &, 0,201 (T),
Ty 2 1o (10320 =1 <204+ D).
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We have that
M,
o € (VK2n+2+1) 2 +1,

so that the statement “38 (...)” in (13.25) can be written as an element of the type
from the right hand side of (F), and (F) yields the following.

skt
(V_sth YMonta =

Tom an42(O(s 1 k=1,11k=1), (s Tk,1) (Bm))
Msrk.t . s [k,t
3B (o = type " 242(Vpr15 €, Viey, 2. {8, A, 710 510 (01,0, (s 1) (1)),

sk, .
778,;,112(0(‘; it 1), (s o) @s i iy E < K)DA

Ks 2n+2 18 strong up to § with respect to (13.26)
skt k,
typeMa2 (Vg 1; €, Vs, {8, 2, 715’[2";2(0(@,@),0 (1)),

K, .
né,Bn’H(o(s Vo 1), (s k0 @ity < k)Y)).

Let B,,+1 be a witness to this fact. In particular, with a brief show of the subscript s,

k,
Bsn+1 < ﬂ;,,rhztﬁz(o‘(s =1, k—1), (s M) (Bs.m)) - (13.27)

By (13.26) and the definition of o, we now have the following.

G)
Mk s k.t
type"22(Vg, 1 4+15 €, Viey, a5 {8, 4, 700 50 10 (00.0). (s 1.y (T)),
sk, .
T e 2 O 1t 1, o) @s i 1)) E < D)
= type™ ! (Vg 13 €, Vigias {8, 2 70,2041 (T,
(7721';1’2"_,_1(771'):21' —1 =< 2n + ])}),
and

(H) inside MZY,[':_;, Kan+2 18 strong up to § with respect to

Mk ) skt
type™ 22 (Vg, 15 €, Vs, {8, A, 70 5,12 (00,0 (s Ty (T))

s [k, .
(g 2 GUs it i, oy @s e 1): 6 < RO

We are back to where we started from, cf. (A) and (B).

It is now straightforward to verify that (PD, 1) through (PD, 4) hold true. Notice
that (13.27) above gives (PD, 4). Also, (PD, 3) follows from (A) (or, (G)) by virtue
of (13.8).

This finishes the proof of Theorem 13.6. (]

It can be shown that the conclusion of Thorem 13.6 implies the consistency of
WOODIN cardinals, cf. e.g. [22]; in fact, PD turns out to be equivalent to the existence
of mice with WOODIN cardinals, for a proof cf. [36].
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Results which are stronger than Theorem 13.6 but build upon its proof method
are presented e.g. in [32, 33] and [41].

The reader might also want to consult [34] and [42] on recent developments
concerning determinacy hypotheses and large cardinals.

13.3 Problems

13.1.

13.2.

13.3.

Show that if there is a measurable cardinal, then every set of reals has an embed-
ding normal form. [Hint. The embedding normal form will not be 280—closed. ]
Letn < m < w, let u be an ultrafilter on a set of functions with domain », and
let 1’ be an ultrafilter on a set of functions with domain m. We say that ., u’
cohere iff for all X,

Xepe={fe™: fInecX}eu.

We may define 7, : V. — ultg(V; ) and 0 V- — ulto(V; u'), and we
may also define a canonical elementary embedding 7, ,: ulto(V; ) —
ulto(V; ).

Let A C “w, and let § > Rg. We say that A is —homogeneously SOUSLIN
iff there is some « and a tree 7 on w X « such that A = p[T] and there is
(st 8 € =®w) such that for all s € <“w, g is a < §T—closed ultrafilter on
Ty = {t: (s,t) € T},if s Ct € ““w, then u; and wu; cohere, and if x € A,
then

dir limy, <, (ulto (V5 pxn), p, TSR Ry IS w) is well-founded. (13.28)

A is called homogeneously SOUSLIN iff A is Rp—homogeneously.

Show that in the situation of the preceeding paragraph, if (13.28) holds true,
then x € A. [Hint. If 7y is well-founded, then look at ||[id]/‘«x[n||7[/t¥[n (Ty)»
n<w.

(K. WindBus) Let A C “w, and let § > 8. Show that the following are
equivalent.

(a) A has a 2% —losed embedding normal form whose additivity is bigger
than 8.
(b) A is —homogeneously SOUSLIN.

Conclude that every homogeneously SOUSLIN set of reals is determined. [Hint.
For (@) = (b), construct the WINDBUS tree and define ug, s € ~“w, via
(13.2).]

Let A C “w, and let § > No. We say that A is —weakly homogeneously
SOUSLINiff A = {x € “w: dy € “wx®y € B}, where B is 6—homogeneously
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13.4.

13.5.

13.6.

SOUSLIN, and A is weakly homogeneously SOUSLIN iff A is 8p—weakly homo-
geneously SOUSLIN.

(D.A. Martin, R. Solovay) Show that if A C “w is é—weakly homoge-
neously SOUSLIN, then A is < §—universally BAIRE. [Hint. Let (s, : n < )
be a reasonable enumeration of ~“w. For s € ~“w with k = 1Ih(s), let
(s, (a0, ..., ax—1)) € Siffforalli < j <k, if s; C s, then

=
a./ < T[Ufs[]h(sl-)@si v/‘fsﬂh(sj-)@sj- (ai)’

where «q, ..., ax—1 < y for some sufficiently big y.]
Conclude that if  is a measurable cardinal, then all ¥ !—sets of reals are < x—

2
universally BAIRE. [Hint: Use Problem 6.18 and the construction from Theorem
13.3.]
Conclude also that if « is a measurable cardinal and if §; < --- < §,, < Kk are

WOODIN cardinals, then all £  —sets of reals are < 8 1—universally BAIRE.
~n+2

Suppose that « is a measurable cardinal and §; < - -+ < §, < k are WOODIN

cardinals. Let A C “wbe 1! ,sothat by Problem 13.4, A is < §;—universally
~n+2
BAIRE. Let P € Vj,, and let g be P—generic over V. Let A* be the new version

of A in V[g] (cf. p. 150). Show that if V[g] = A* # @, then V = A # (.
(Compare Problem 10.16.)

(W. H. Woodin) Let « be a strong cardinal, and let A C “w be k—universally
BAIRE. (Equivalently, A is universally BAIRE, cf. Problem 8.10.)

Let g be Col(w, Z(ZK))—generic over V, and let A* be the new version of A
in V[g] (cf. p. 150). Show that IR (@u N Vigh \ A* = {x € “w: 3y €
“w x @&y ¢ A*}is universally BAIRE in V[g]. [Hint. In V, let T and U
on w X k witness that A is k—universally BAIRE. In V[g], we construct T*
and U* by amalgamating set-sized trees. We get T* by rearranging stretched
versions of U. For every (short) Rg—complete («, v)—extender E let us define
an approximation Uy to U* as follows. Let mg: V — M be the ultrapower
map, where M is transitive. In V[g], fix areasonable enumeration (i, : n < )
ofall mg(E,),a € [v]=?, and write £(n) for Card(a) in case u, = wg(Eg). If
w; and  ; cohere [cf. Definition 10.45 (2)], then we write 7;; for the canonical
embedding from ult(M; p;) to ult(M; i ;). For s € =“w, say k = lh(s), we
set (s, (ap, ..., 0x—1)) € Up iff

Vi<j<k (T[g(Usr[(l‘)) € Ui A ﬁg(Usrg(j)) € [j A ) projects to u;

—> 7'[,']‘(05,') > Olj).

Show that this works.]

Conclude that if A is the supremum of infinitely many strong cardinals and if
G is Col(w, A)—generic over V[G], then in V[G] every projective set of reals
is LEBESGUE measurable and has the property of BAIRE.
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J
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JolE], 73
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K

k-chain condition, 105
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Kurepa’s Hypothesis, 90

L

L,74

AT 37
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Order
atomless, 95
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Order-preserving, 15

Ordered pair, 13
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Projective Determinacy, 307
Projectum

X1-,236

nth, 250
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R
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Rank initial segment of V, 28
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Recursion theorem, 26
Reduct, 237
nrmth’ 250
Reduction property, 141
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Relation, 13
set—like, 26
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F;, 128
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2l (), 137
(), 137
a-Souslin, 131
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m 132
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Al 135

analytic, 132

basic open, 127
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determined, 280
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universally Baire, 149
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Silver indiscernibles for L[x], 209
Singular Cardinal Hypothesis, 39
Skolem function
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Solid, 258
1-, 258
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Solovay game, 289
Solovay sequence, 301
length of, 302
Sound, 253
n-, 253
Oy, 269
O (R), 269
Standard code, 237
nrmth’ 250
Standard parameter, 255
nth, 254
Standard reduct
nth, 254
Standard witness, 257
Stationary, 41
Stationary set
reflecting, 278
Steel forcing, 295
Stem
of a Prikry condition, 188
Strategy, 279
Subset, 9
proper, 9
Support, 105, 110
Surjective, 14
Symmetric difference, 87

T
TC({x}), 27
[IR]], 28
Transitive, 23
Transitive closure, 27
Transitive collapse, 28
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K—, 47
k—Aronszajn, 47
k-Kurepa, 47
«k-Souslin, 47
onw X o, 128
on X, 127
perfect, 127
Turing reducible, 288
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ult(V; U), 57
Ultrafilter, 40
Ultrapower
Xo—, 194,216
rXuy1-, 262
Ultrapower embedding, 57
Ultrapower map
Yo, 195, 216
rXny1-, 262
Ultrapower of M by U, 57
Unbounded
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Uncountable, 3
Upward absolute, 68
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Vy, 28
Ville’s Lemma, 91
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Weakly r ), 1 elementary, 254
Well-founded, 26
Well-founded part, 26
Well-ordering, 15

Wip(B), 26

WindBus tree, 304

Winning strategy, 280

X
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Z

Z, 12

ZC, 12
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ZF, 12

ZFC, 12

ZFC™, 12
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Zorn’s Lemma, 16
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