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Preface

Set theory aims at proving interesting true statements about the mathematical
universe. Different people interpret ‘‘interesting’’ in different ways. It is well
known that set theory comes from real analysis. This led to descriptive set theory,
the study of properties of definable sets of reals, and it certainly is an important
area of set theory. We now know that the theory of large cardinals is a twin of
descriptive set theory. I find the interplay of large cardinals, inner models, and
properties of definable sets of reals very interesting.

We give a complete account of the Solovay-Shelah Theorem according to
which having all sets of reals to be Lebesgue measurable and having an inac-
cessible cardinal are equiconsistent. We give a modern account of the theory of 0#,
produce Jensen’s Covering Lemma, and prove the Martin-Harrington Theorem
according to which the existence of 0# is equivalent with R1

1 determinacy. We also
produce the Martin-Steel Theorem according to which Projective Determinacy
follows from the existence of infinitely many Woodin cardinals.

I started learning logic by reading a script of my Master’s thesis’ advisor, Ulrich
Blau, on a nude beach by the Ammersee near Munich back in 1989. It was a very
enjoyable way of learning a fascinating and exciting subject, and I then decided to
become a logician (In the meantime, Blau’s script appeared as [6]). We shall assume
in what follows that the reader has some familiarity with mathematical logic, to the
extent of e.g. [11]. We are not going to explain the key concepts of first order logic.

I thank David Asperó, Fabiana Castiblanco, William Chan, Gabriel Fernandes,
Daisuke Ikegami, Marios Koulakis, Paul Larson, Stefan Miedzianowski, Haimanti
Sarbadhikari, Shashi Srivastava, Sandra Uhlenbrock, Yong Cheng, and the anon-
ymous referees for their many helpful comments on earlier versions of this book.

I thank my father and my mother. I thank my academic teachers, Ulrich Blau,
Ronald Jensen, Peter Koepke, and John Steel. I thank all my colleagues, especially
Martin Zeman. And I thank my wife, Marga López Arpí, for all her support over
the last years.

Berkeley, Girona, and Münster, February 2014 Ralf Schindler
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Chapter 1
Naive Set Theory

Georg Cantor (1845–1918) discovered set theory. Prior to Cantor, people often
took it to be paradoxical that there are sets which can be put into a bijective corre-
spondence with a proper subset of themselves. For instance, there is a bijection from
N onto the set of all prime numbers. Hence, it seemed, on the one hand the set of all
primes is “smaller than” N, whereas on the other hand it is “as big as” N.

Cantor’s solution to this “paradox”was as follows. Let X and Y be arbitrary sets.
Define “X is smaller than or of the same size as Y ” (or, “Y is not bigger than X”) as:
there is an injection f : X → Y . Write this as X ≤ Y . Define “X is of the same size
as Y ” as: there is a bijection f : X → Y . Write this as X ∼ Y . Obviously, X ∼ Y
implies X ≤ Y . The theorem of Cantor–Schröder–Bernstein (cf. Theorem 1.4)
will say that X ∼ Y follows from X ≤ Y and Y ≤ X . We write X < Y if X ≤ Y
but not Y ≤ X .

Notice that if X ≤ Y , i.e., if there is an injection f : X → Y , then there is a
surjection g : Y → X . This is clear if f is already bijective. If not, then pick a0 ∈ X
(we may assume X to be non–empty). Define g : Y → X by g(b) = f −1(b), if b is
in the range of f, and g(b) = a0 otherwise.

Conversely, if f : X → Y is surjective then there is an injection g : Y → X , i.e.,
Y ≤ X . This is shown by choosing for each b ∈ Y some a ∈ X with f (a) = b and
setting g(b) = a. This argument is in need of the Axiom of Choice, AC, which we
shall present in the next chapter and discuss in detail later on.

To a certain extent, set theory is the study of the cardinality of arbitrary sets, i.e.,
of the relations ≤ and ∼ as defined above. The proof of the following theorem may
be regarded as the birth of set theory.

Theorem 1.1 (Cantor)
N < R.

Proof N ≤ R is trivial. We show that R ≤ N does not hold.
Assume that there is an injection fromR toN, so that there is then also a surjection

f : N → R. Write xn for f (n). In particular, R = {xn : n ∈ N}.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_1, 1
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2 1 Naive Set Theory

Let us now recursively define a sequence of closed intervals [an, bn] = {x : an ≤
x ≤ bn} as follows. Put [a0, b0] = [0, 1]. Suppose [an, bn] has already been defined.
Pick [an+1, bn+1] so that an ≤ an+1 < bn+1 ≤ bn , bn+1 − an+1 ≤ 1

n+1 and
xn �∈ [an+1, bn+1].

Now
⋂

n∈N[an, bn] = {x} for some x ∈ R by the Nested Interval Principle.
Obviously, x �= xn for every n, as xn �∈ [an+1, bn+1] and x ∈ [an+1, bn+1]. Hence
x �∈ {xn : n ∈ N} = R. Contradiction! ∧⊃

It is not hard to verify that the sets of all integers, of all rationals, and of all
algebraic numbers are each of the same size as N (cf. Problem 1.1). In particular,
Theorem 1.1 immediately gives the following.

Corollary 1.2 There are transcendental numbers.

For arbitrary sets X and Y , we write Y ⊂ X for: Y is a (not necessarily proper) subset
of X , i.e., every element ofY is also an element of X , andwe letP(X) = {Y : Y ⊂ X}
denote the power set of X , i.e., the set of all subsets of X . Problem 1.2 shows that
P(N) ∼ R. The following is thus a generalization of Theorem 1.1.

Theorem 1.3 For every X, X < P(X).

Proof We have X ≤ P(X), because f : X → P(X) is injective where f (x) = {x}
for x ∈ X .

We have to see that P(X) ≤ X does not hold true. Given an arbitrary f : X →
P(X), consider Y = {x ∈ X : x �∈ f (x)} ⊂ X . If Y were in the range of f , say
Y = f (x0), then we would have that x0 ∈ Y ⇐⇒ x0 �∈ f (x0) = Y . Contradiction!
In particular, f cannot be surjective, which shows thatP(X) ≤ X is false. ∧⊃
Theorem 1.4 (Cantor–Schröder–Bernstein) Let X and Y be arbitrary. If X ≤ Y
and Y ≤ X, then X ∼ Y .

Proof Let both f : X → Y and g : Y → X be injective. We are looking for a
bijection h : X → Y . Let x ∈ X . An X–orbit of x is a finite or infinite sequence of
the form

g−1(x), f −1(g−1(x)), g−1( f −1(g−1(x))), . . .

For each n ∈ N ∪ {∞} there is obviously at most one X–orbit of x of length n. Let
n(x) be the maximal n ∈ N ∪ {∞} so that there is an X–orbit of x of length n. We
put x ∈ X0 iff n(x) = ∞, x ∈ X1 iff n(x) ∈ N is even, and x ∈ X2 iff n(x) ∈ N is
odd.

For y ∈ Y we define the concept of a Y–orbit in an analoguous way, i.e., as a
finite or infinite sequence of the form

f −1(y), g−1( f −1(y)), f −1(g−1( f −1(y))), . . .

We write n(y) for the maximal n ∈ N∪ {∞} so that there is a Y–orbit of y of length
n. We set y ∈ Y0 iff n(y) = ∞, y ∈ Y1 iff n(y) ∈ N is odd, and y ∈ Y2 iff n(y) ∈ N

is even.
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Let us now define h : X → Y by

h(x) =
{

f (x) if x ∈ X0 ∪ X1, and

g−1(x) if x ∈ X2.

The function h is well-defined, as X is the disjoint union of X0, X1, and X2, and
because for every x ∈ X2 there is an X–orbit of x of length 1, i.e., g−1(x) is defined.

The function h is injective: Let x1 �= x2 with h(x1) = h(x2). Say x1 ∈ X0 ∪ X1
and x2 ∈ X2. Then obviously h(x1) = f (x1) ∈ Y0 ∪ Y1 and h(x2) = g−1(x2) ∈ Y2.
But Y is the disjoint union of Y0, Y1, and Y2. Contradiction!

The functionh is surjective:Let y ∈ Y0∪Y1. Then y = f (x) for some x ∈ X0∪X1;
but then y = h(x). Let y ∈ Y2. Then g(y) ∈ X2, so y = g−1(g(y)) = h(g(y)). ∧⊃

Cantor’s Continuum Problem is the question if there is a set A of real numbers
such that

N < A < R.

This problem has certainly always been one of the key driving forces of set theory.
A set A is called at most countable if A ≤ N. A is called countable if A ∼ N, and
A is called finite iff A < N. A is called uncountable iff N < A.

Cantor’sContinuum Hypothesis says that the ContinuumProblem has a negative
answer, i.e., that for every uncountable set A of real numbers, A ∼ R.

Cantor initiated the project of proving the Continuum Hypothesis by an induc-
tion on the “complexity” of the sets A in question. There is indeed a hierarchy of
sets of reals which we shall study in Chap. 7. The open and closed sets sit at the very
bottom of this hierarchy.

Let A ⊂ R. A is called open iff for every a ∈ A there are c < a and b > a with
(c, b) = {x : c < x < b} ⊂ A. A is called closed iff R\A is open.

It is easy to see that if A ⊂ R is any non–empty open set, then R ≤ A. As A ≤ R

is trivial for every A ⊂ R, we immediately get that A ∼ R for every non–empty
open A ⊂ R with the help of the Theorem 1.4 of Cantor–Schröder–Bernstein.
Theorem 1.9 of Cantor–Bendixson will say that A ∼ R for every uncountable
closed set A ⊂ R, which may be construed as a first step towards a realization
of Cantor’s project. We shall later prove much more general results (cf. Theorem
12.11 and Corollary 13.8) which have a direct impact on Cantor’s project.

Lemma 1.5 Let A ⊂ R. The following are equivalent:

(1) A is closed.
(2) For all x ∈ R, if a < x < b always implies (a, b) ∩ A �= ∅, then x ∈ A.

Proof (1) =⇒ (2): Let x /∈ A. Let a < x < b be such that (a, b) ⊂ R\A. Then
(a, b) ∩ A = ∅.

(2) =⇒ (1): We prove thatR\A is open. Let x ∈ R\A. Then there are a < x < b
so that (a, b) ∩ A = ∅, i.e., (a, b) ⊂ R\A. ∧⊃

http://dx.doi.org/10.1007/978-3-319-06725-4_7
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Let A ⊂ R. x is called an accumulation point of A iff for all a < x < b,
(a, b) ∩ (A\{x}) �= ∅ (here, x itself need not be an element of A). The set of all
accumulation points of A is called the (first) derivative of A and is abbreviated by
A′. Lemma 1.5 readily gives:

Lemma 1.6 Let A ⊂ R. The following are equivalent:

(1) A is closed.
(2) A′ ⊂ A.

Let A ⊂ R. A set B ⊂ A is called dense in A iff for all a, b ∈ R with a < b
and [a, b] ∩ A �= ∅, [a, b] ∩ B �= ∅. B ⊂ R is called dense iff B is dense in R. It is
well–known that Q is dense.

Definition 1.7 A set A ⊂ R is called perfect iff A �= ∅ and A′ = A.

Theorem 1.8 Let A ⊂ R be perfect. Then A ∼ R.

Proof A ≤ R is trivial. It thus remains to be shown that R ≤ A. We shall make use
of the fact that R ∼ N{0, 1}, where N{0, 1} is the set of all infinite sequences of 0’s
and 1’s. (Cf. Problem 1.2.) We aim to see that N{0, 1} ≤ A.

Let ∗{0, 1} be the set of all non-empty finite sequences of 0’s and 1’s, i.e., of all
s : {0, . . . , n} → {0, 1} for some n ∈ N. Let us define a function Φ from ∗{0, 1} to
closed intervals as follows.

Let s0 : {0} → {0} and s1 : {0} → {1}. As A �= ∅ and A ⊂ A′ we easily find

as0 < bs0 < as1 < bs1

so that
(as0 , bs0) ∩ A �= ∅ and (as1 , bs1) ∩ A �= ∅.

Set Φ(s0) = [as0 , bs0 ] and Φ(s1) = [as1 , bs1 ].
Now let s ∈ ∗{0, 1} and suppose that Φ(s) is already defined, where Φ(s) =

[as, bs] with as < bs and (as, bs) ∩ A �= ∅.
Let s : {0, . . . , n} → {0, 1}. For h = 0, 1 write sΣh for the unique t : {0, . . . , n +

1} → {0, 1} with t (i) = s(i) for i ≤ n and t (n + 1) = h. Because A ⊂ A′, we
easily find

as < asΣ0 < bsΣ0 < asΣ1 < bsΣ1 < bs,

so that
(asΣ0, bsΣ0) ∩ A �= ∅, (asΣ1, bsΣ1) ∩ A �= ∅,

bsΣ0 − asΣ0 ≤ 1

n + 1
, and bsΣ1 − asΣ1 ≤ 1

n + 1
.

Set Φ(sΣh) = [asΣh, bsΣh] for h = 0, 1.
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We may now define an injection F : N{0, 1} → A. Let f ∈ N{0, 1}. Then
⋂

n∈N
[a f �{0,...,n}, b f �{0,...,n}] = {x}

for some x ∈ R by the Nested Interval Principle. Set F( f ) = x . Obviously,
F( f ) ∈ A, as F( f ) is an accumulation point of A and A′ ⊂ A. Also, F is certainly
injective. ∧⊃
Theorem 1.9 (Cantor–Bendixson)Let A ⊂ Rbe closed. Then there are sets A0 ⊂ R

and P ⊂ R so that:

(1) A is the disjoint union of A0 and P ,
(2) A0 is at most countable, and
(3) P is perfect, unless P = ∅.
Corollary 1.10 Let A ⊂ R be closed. Then A ≤ N or A ∼ R.

Proof of Theorem 1.8. An x ∈ R is called a condensation point of A iff (a, b) ∩ A
is uncountable for all a < x < b.

Let P be the set of all condensation points of A, and let A0 = A\P . As A is
closed, P ⊂ A′ ⊂ A. It remains to be shown that (2) and (3) both hold true. We shall
make use of the fact that Q ∼ N (cf. Problem 1.1) and that Q is dense, so that that
for all x , y ∈ R with x < y there is some z ∈ Q with x < z < y.

Let x ∈ A0. Then there are ax < x < bx with ax , bx ∈ Q and such that
(ax , bx ) ∩ A is at most countable. Therefore,

A0 ⊂
⋃

x∈A0

(ax , bx ) ∩ A.

AsQ ∼ N, there are at most countably many sets of the form (ax , bx )∩ A, and each
of them is at most countable. Hence A0 is at most countable (cf. Problem 1.4).

Suppose that P �= ∅. We first show that P ⊂ P ′. Let x ∈ P . Let a < x < b. We
have that (a, b) ∩ A is uncountable. Suppose that (a, b) ∩ (P\{x}) = ∅. For each
y ∈ ((a, b)\{x})∩ A there are then ay < y < by with ay, by ∈ Q so that (ay, by)∩ A
is at most countable. But then we have that

(a, b) ∩ A ⊂ {x} ∪
⋃

y∈(a,b)\{x}
(ay, by) ∩ A

is at most countable. Contradiction!
Let us finally show that P ′ ⊂ P . Let x ∈ P ′. Then (a, b) ∩ (P\{x}) �= ∅ for

all a < x < b. Let y ∈ (a, b) ∩ (P\{x}), where a < x < b. Then (a, b) ∩ A is
uncountable. Hence x ∈ P . ∧⊃

There is a different proof of the Theorem of Cantor–Bendixson which brings
the concept of an “ordinal number” into play. Let A ⊂ R be closed. Define A1 as A′,
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A2 as A′′, etc., i.e., An+1 as (An)′ for n ∈ N. It is easy to see that each An is closed,
and

. . . ⊂ An+1 ⊂ An ⊂ . . . ⊂ A1 ⊂ A.

If there is some n with An+1 = An then P = An and A0 = A\P are as in the state-
ment of Theorem 1.9. Otherwise we have to continue this process into the transfinite.
Let

A∞ =
⋂

n∈N
An, A∞+1 = (A∞)′, . . . , A∞+n+1 = (A∞+n)′,

A∞+∞ =
⋂

n∈N
A∞+n, . . . etc.

It can be shown that there is a “number” α so that Aα+1 = Aα . For such an α, A\Aα

is at most countable, and if Aα �= ∅, then Aα is perfect.
Such “numbers” are called ordinal numbers (cf. Definition 3.3). We need an

axiomatization of set theory (to be presented in Chap. 2), though, in order to be able
to introduce them rigorously. With their help we shall be able to prove much stronger
forms of the Theorem of Cantor–Bendixson (cf. Theorems 7.15 and 12.11).

Definition 1.11 A set A ⊂ R is called nowhere dense iff R \ A has an open subset
which is dense in R. A set A ⊂ R is called meager (or of first category) iff there are
An ⊂ R, n ∈ N, such that A = ⋃

n∈N An and each An is nowhere dense. If A ⊂ R

is not meager, then it is of second category.

It is not hard to see that A is nowhere dense iff for all a, b ∈ R with a < b there
are a′, b′ ∈ R with a ≤ a′ < b′ ≤ b and [a′, b′] ∩ A = ∅ (cf. Problem 1.8(a)).
Of course, every countable set of reals is meager, and in fact the countable union of
meager sets is meager, but there are nowhere dense sets which have the same size as
R (cf. Problem 1.8 (c)).

Theorem 1.12 (Baire Category Theorem) If each An ⊂ R is open and dense, n ∈ N,
then

⋂
n∈N An is dense.

Proof Leta < b,a,b ∈ Rbe arbitrary.Weneed to see that [a, b]∩⋂
n∈N An �= ∅. Let

us define [an, bn], n ∈ N, recursively as follows. We set [a0, b0] = [a, b]. Suppose
[an, bn] is already chosen. As An is dense, (an, bn)∩ An �= ∅, say x ∈ (an, bn)∩ An .
As An is open, we may pick c, d with an < c < x < d < bn and (c, d) ⊂ An . Let
an+1, bn+1 be such that c < an+1 < bn+1 < d, so that [an+1, bn+1] ⊂ An ∩[an, bn].
But now ∅ �= ⋂

n∈N[an, bn] ⊂ [a, b] ∩ ⋂
n∈N An , as desired. ∧⊃

The Baire Category Theorem implies that R is of second category, in fact that
the complement of a meager set is dense in R (cf. Problem 1.8 (b)).

If a, b ∈ R, a < b, then we call b − a the length of the closed interval [a, b]. As
Q is dense in R, any union of closed intervals may be written as a union of closed
intervals with rational endpoints (cf. the proof of Theorem 1.9) and thus as a union

http://dx.doi.org/10.1007/978-3-319-06725-4_2
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of countably many closed intervals which in addition may be picked to be pairwise
disjoint. If A ⊂ [0, 1], A = ⋃

n∈N[an, bn], where an < bn for each n ∈ N and the
[an, bn] are pairwise disjoint, then we write

μ(A) =
∑

n∈N
bn − an

and call it the measure of A. One can show that μ(A) is independent from the choice
of the pairwise disjoint intervals [an, bn] with A = ⋃

n∈N[an, bn] (cf. Problem 1.7).

Definition 1.13 Let A ⊂ [0, 1]. Then A is called a null set iff for all β > 0 there is
a countable union A = ⋃

n∈N[an, bn] of closed intervals [an, bn] ⊂ [0, 1] such that
μ(A) ≤ ε.

Of course, every countable subset of [0, 1] is null, and in fact the countable union of
null sets is null, but there are null sets which have the same size as R (cf. Problem
1.8(b)).

1.1 Problems

1.1. Show that the sets of all finite sets of natural numbers, of all integers, of all
rationals, and of all algebraic numbers are each countable, i.e., of the same size
as N.

1.2. Show that R ∼ N{0, 1}, where N{0, 1} is the set of all infinite sequences of 0’s
and 1’s.

1.3. If A, B are sets of natural numbers, then A and B are called almost disjoint
iff A ∩ B is finite. A collection D of sets of natural numbers is called almost
disjoint iff any two distinct elements of D are almost disjoint. Show that there
is an almost disjoint collection D of sets of natural numbers such that D ∼ R.
[Hint: Use a bijection between the set of finite 0–1–sequences and N.]

1.4. Let, for each n ∈ N, An be a countable set. Show that
⋃

n∈N An is countable.
(This uses AC, the Axiom of Choice, cf. Theorem 6.69.)

1.5. Let n ∈ N. Construct a set A ⊂ R such that An �= ∅, but An+1 = ∅. Also
construct a set A ⊂ R such that A∞+n �= ∅, but A∞+n+1 = ∅.

1.6. Let A ⊂ R be closed. Show that the pair (A0, P) as in the statement of Theorem
1.9 of Cantor–Bendixson is unique.

1.7. Show that if A ⊂ [0, 1], A = ⋃
n∈N[an, bn], where the [an, bn] are pairwise

disjoint, then μ(A) as defined above is independent from the choice of the
pairwise disjoint intervals [an, bn] with A = ⋃

n∈N[an, bn].
1.8. (a) Show that A ⊂ R is nowhere dense iff for all a, b ∈ R with a < b there are

a′, b′ ∈ R with a ≤ a′ < b′ ≤ b and [a′, b′] ∩ A = ∅.



8 1 Naive Set Theory

(b) Show that R is not meager. In fact, the complement of a meager set A ⊂ R

is dense in R.
(c) For a, b ∈ R with a < b let

[a, b] 23 = [a,
2

3
a + 1

3
b] ∪ [1

3
a + 2

3
b, b],

and for a0, b0, . . ., ak , bk ∈ R with ai < bi for all i ≤ k let

([a0, b0] ∪ . . . ∪ [ak, bk]) 2
3 = [a0, b0] 23 ∪ . . . ∪ [ak, bk] 23 .

Finally, let, for a, b ∈ R with a < b, [a, b]0 = [a, b], [a, b]n+1 = ([a, b]n)
2
3 ,

and
[a, b]∞ =

⋂

n∈N
[a, b]n .

[a, b]∞ is called Cantor’s Discontinuum. Show that for all a, b ∈ R with
a < b, [a, b]∞ is dense in [a, b], and [a, b]∞ is perfect, nowhere dense, and a
null set.



Chapter 2
Axiomatic Set Theory

Ernst Zermelo (1871–1953) was the first to find an axiomatization of set theory,
and it was later expanded by Abraham Fraenkel (1891–1965).

2.1 Zermelo–Fraenkel Set Theory

The language of set theory, which we denote by L→, is the usual language of first
order logic (with one type of variables) equippedwith just one binary relation symbol,
→. The intended domain of set theoretical discourse (i.e., the range of the variables)
is the universe of all sets, and the intended interpretation of → is “is an element of.”
We shall use x , y, z, . . ., a, b, . . ., etc. as variables to range over sets.

The standard axiomatization of set theory, ZFC (Zermelo–Fraenkel set theory
with choice), has infinitely many axioms. The first one, the axiom of extensionality,
says that two sets are equal iff they contain the same elements.

≤x≤y(x = y ∼ ≤z(z → x ∼ z → y)). (Ext)

A set x is a subset of y, abbreviated by x ∈ y, if ≤z(z → x → z → y). (Ext) is then
logically equivalent to ≤x≤y(x ∈ y ∧ y ∈ x → x = y). We also write y ⊃ x for
x ∈ y. x is a proper subset of y, written x � y, iff x ∈ y and x ⊂= y.

The next axiom, the axiom of foundation, says that each nonempty set has an
→-minimal member.

≤x(⇐y y → x → ⇐y(y → x ∧ ¬⇐z(z → y ∧ z → x))). (Fund)

This is easier to grasp if we use the following abbreviations: We write x = ⇒ for
¬⇐y y → x (and x ⊂= ⇒ for ⇐y y → x), and x ∪ y = ⇒ for ¬⇐z(z → x ∧ z → y). (Fund)
then says that

≤x(x ⊂= ⇒ → ⇐y(y → x ∧ y ∪ x = ⇒)).

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_2, 9
© Springer International Publishing Switzerland 2014
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(Fund) plays an important technical role in the development of set theory.
Let us write x = {y, z} instead of

y → x ∧ z → x ∧ ≤u(u → x → (u = y ∞ u = z)).

The axiom of pairing runs as follows.

≤x≤y⇐z z = {x, y}. (Pair)

We also write {x} instead of {x, x}.
In the presence of (Pair), (Fund) implies that there cannot be a set x with x → x :

if x → x , then x is the only element of {x}, but x ∪{x} ⊂= ⇒, as x → x ∪{x}. A similar
argument shows that there cannot be sets x1, x2, . . ., xk such that x1 → x2 → · · · →
xk → x1 (cf. Problem 2.1).

Let us write x = ⋃
y for

≤z(z → x ∼ ⇐u(u → y ∧ z → u)).

The axiom of union is the following one.

≤x⇐y y =
⋃

x . (Union)

Writing z = x ∩ y for
≤u(u → z ∼ u → x ∞ u → y),

(Pair) and (Union) prove that ≤x≤y⇐z(z = x ∩ y), as x ∩ y = ⋃{x, y}.
The power set axiom, (Pow), says that for every set x , the set of all subsets of x

exists. We write x = P(y) for

≤z(z → x ∼ z ∈ y)

and formulate
≤x⇐y y = P(x). (Pow)

The axiom of infinity, (Inf), tells us that there is a set which contains all of the
following sets as members:

⇒, {⇒}, {⇒, {⇒}}, {⇒, {⇒}, {⇒, {⇒}}}, . . . .

To make this precise, we call a set x inductive iff

⇒ → x ∧ ≤y(y → x → y ∩ {y} → x).
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We then say:
⇐x(x is inductive). (Inf)

We now need to formulate the separation and replacement schemas.
A schema is an infinite set of axioms which is generated in a simple (recursive)

way.
Let ϕ be a formula of L→ in which exactly the variables x, v1, . . . , vp (which

all differ from b) occur freely. The axiom of separation, or “Aussonderung,” corre-
sponding to ϕ runs as follows.

≤v1 . . . ≤vp≤a⇐b≤x (x → b ∼ x → a ∧ ϕ). (Ausϕ)

Let us write b = {x → a: ϕ} for ≤x(x → b ∼ x → a ∧ ϕ). If we suppress v1, . . . , vp,
(Ausϕ) then says that

≤a⇐b b = {x → a: ϕ}.

Writing z = x ∪ y for
≤u(u → z ∼ u → x ∧ u → y),

(Ausx→c) proves that ≤a≤c⇐b b = a ∪ c. Writing z = x\y for

≤u(u → z ∼ u → x ∧ ¬u → y),

(Aus¬x→c) proves that ≤a≤c⇐b b = a\c. Also, if we write x = ⋂
y for

≤z(z → x ∼ ≤u(u → y → z → u)),

then (Aus≤u(u→y→z→u)), applied to any member of y proves that

≤y(y ⊂= ⇒ → ⇐x x =
⋂

y).

The separation schema (Aus) is the set of all (Ausϕ). It says that we may separate
elements from a given set according to some well-defined device to obtain a new set.

Now let ϕ be a formula ofL→ in which exactly the variables x, y, v1, . . . , vp (all
different from b) occur freely. The replacement axiom corresponding to ϕ runs as
follows.

≤v1 . . . ≤vp (≤x⇐y∅≤y(y = y∅ ∼ ϕ) → ≤a⇐b≤y(y → b ∼ ⇐x(x → a ∧ ϕ))).

(Repϕ)
The replacement schema (Rep) is the set of all (Repϕ). It says that we may replace
elements from a given set according to some well-defined device by other sets to
obtain a new set.

We could not have crossed out “x → a” in (Ausϕ). If we did cross it out in (Ausϕ)
and let ϕ be ¬x → x , then we would get
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⇐b≤x(x → b ∼ ¬x → x),

which is a false statement, because it gives b → b ∼ ¬b → b. This observation
sometimes runs under the title of “Russell’s Antinomy.”

In what follows we shall write x /→ y instead of ¬x → y, and we shall write x ⊂= y
instead of ¬x = y.

A trivial application of the separation schema is the existence of the empty set ⇒
which may be obtained from any set a by separating using the formula x ⊂= x as ϕ,
in other words,

⇐b≤x(x → b ∼ x ⊂= x).

With the help of (Pair) and (Union) we can then prove the existence of each of the
following sets:

⇒, {⇒}, {{⇒}}, {⇒, {⇒}}, . . . .

In particular, wewill be able to prove the existence of eachmember of the intersection
of all inductive sets. This will be discussed in the next chapter.

The axiom of choice finally says that for each family of pairwise disjoint non-
empty sets there is a “choice set,” i.e.

≤x(≤y(y → x → y ⊂= ⇒) ∧ ≤y≤y∅(y → x ∧ y∅ → x ∧ y ⊂= y∅ → y ∪ y∅ = ⇒)

→ ⇐z≤y(y → x → ⇐u≤u∅(u∅ = u ∼ u∅ → z ∪ y))). (AC)

In what follows we shall always abbreviate ≤y(y → x → ϕ) by ≤y → x ϕ and
⇐y(y → x ∧ ϕ) by ⇐y → x ϕ. We may then also formulate (AC) as

≤x(≤y → x y ⊂= ⇒ ∧ ≤y → x≤y∅ → x(y ⊂= y∅ → y ∪ y∅ = ⇒)

→ ⇐z≤y → x⇐u z ∪ y = {u}),

i.e., for each member of x , z contains exactly one “representative.”
One may also formulate (AC) in terms of the existence of choice functions (cf.

Problem 2.6).
The theory which is given by the axioms (Ext), (Fund), (Pair), (Union), (Pow),

(Inf) and (Ausϕ) for all ϕ is called Zermelo’s set theory, abbreviated by Z. The
theory which is given by the axioms of Z together with (Repϕ) for all ϕ is called
Zermelo–Fraenkel set theory, abbreviated by ZF. The theory which is given by
the axioms of ZF together with (AC) is called Zermelo–Fraenkel set theory with
choice, abbreviated by ZFC. This system, ZFC, is the standard axiomatization of set
theory. Most questions of mathematics can be decided in ZFC, but many questions
of set theory and other branches of mathematics are independent from ZFC. The
theory which is given by the axioms of Z together with (AC) is called Zermelo set
theory with choice and is often abbreviated by ZC. We also use ZFC− to denote
ZFC without (Pow), and we use ZFC−∞ to denote ZFC without (Inf).
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Modulo ZF, (AC) has many equivalent formulations. In order to formulate some
of them, we first have to introduce basic notations of axiomatic set theory, though.

For sets x, y we write (x, y) for {{x}, {x, y}}. It is easy to verify that for all
x, y, x ∅, y∅, if (x, y) = (x ∅, y∅), then x = x ∅ and y = y∅. The set (x, y) can be shown
to exist for every x, y by applying the pairing axiom three times; (x, y) is called the
ordered pair of x and y.

We also write {x1, . . . , xn+1} for {x1, . . . , xn} ∩ {xn+1} and (x1, . . . , xn+1) for
((x1, . . . , xn), xn+1). If (x1, . . . , xn+1) = (x ∅

1, . . . , x ∅
n+1), then x1 = x ∅

1, . . ., and
xn+1 = x ∅

n+1.
The Cartesian product of two sets a, b is defined to be

a × b = {(x, y): x → a ∧ y → b}.

Lemma 2.1 For all a, b, a × b exists, i.e., ≤a≤b⇐c c = a × b.

Proof a × b may be separated from P(P(a ∩ b)). �
We also define a1 × · · · × an+1 to be (a1 × · · · × an) × an+1 and

an = a × · · · × a︸ ︷︷ ︸
n-times

.

An n-ary relation r is a subset of a1 × · · · × an for some sets a1, . . ., an . The
n-ary relation r is on a iff r ∈ an . If r is a binary (i.e., 2-ary) relation, then we often
write x r y instead of (x, y) → r , and we define the domain of r as

dom(r) = {x : ⇐y x r y}

and the range of r as
ran(r) = {y: ⇐x x r y}.

A relation r ∈ a × b is a function iff

≤x → dom(r)⇐y≤y∅(y∅ = y ∼ x r y∅).

If f ∈ a × b is a function, and if x → dom( f ), then we write f (x) for the unique
y → ran( f ) with (x, y) → f .

A function f is a function from d to b iff d = dom( f ) and ran( f ) ∈ b (sic!),
which we also express by writing

f : d → b.

The set of all functions from d to b is denoted by db.
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Lemma 2.2 For all d, b, db exists.

Proof db may be separated from P(d × b). �
If f : b → d and g: d → e, then we write g ∗ f for the function from b to e which

sends x → b to g( f (x)) → e.
If f : d → b, then f is surjective iff b = ran( f ), and f is injective iff

≤x → d≤x ∅ → d( f (x) = f (x ∅) → x = x ∅).

f is bijective iff f is surjective and injective.
If f : d → b and a ∈ d, then f � a, the restriction of f to a, is that function

g: a → b such that g(x) = f (x) for every x → a. We write f ∅∅a for the image of a
under f , i.e., for the set {y → ran( f ): ⇐x → a y = f (x)}. Of course, f ∅∅a = ran( f �
a).

If f : d → b is injective, and if y → ran( f ), then we write f −1(y) for the unique
x → dom( f ) with f (x) = y. If c ∈ b, then we write f −1∅∅c for the set {x →
dom( f ): f (x) → c}.

A binary relation ≤ on a set a is called a partial order on a iff ≤ is reflexive (i.e.,
x ≤ x for all x → a),≤ is symmetric (i.e., if x, y → a, then x ≤ y ∧ y ≤ x → x = y),
and ≤ is transitive (i.e., if x, y, z → a and x ≤ y ∧ y ≤ z, then x ≤ z). In this case
we call (a,≤) (or just a) a partially ordered set. If ≤ is a partial order on a, then ≤
is called linear (or total) iff for all x → a and y → a, x ≤ y or y ≤ x .

If (a,≤) is a partially ordered set, then we also write x < y iff x ≤ y ∧ x ⊂= y.
Notice that x ≤ y iff x < y ∞ x = y. We shall also call < a partial order.

Let (a,≤) be a partially ordered set, and let b ∈ a. We say that x is a maximal
element of b iff x → b ∧ ¬⇐y → b x < y. We say that x is the maximum of b,
x = max(b), iff x → b ∧ ≤y → b y ≤ x . We say that x is a minimal element of b iff
x → b ∧ ¬⇐y → b y < x , and we say that x is the minimum of b, x = min(b), iff
x → b ∧ ≤y → b x ≤ y. Of course, if x = max(b), then x is a maximal element of
b, and if x = min(b), then x is a minimal element of b. We say that x is an upper
bound of b iff y ≤ x for each y → b, and we say that x is a strict upper bound of b
iff y < x for each y → b; x is the supremum of b, x = sup(b), iff x is the minimum
of the set of all upper bounds of b, i.e., if x is an upper bound and

≤y → a(≤y∅ → b y∅ ≤ y → x ≤ y).

If x = max(b), then x = sup(b). We say that x is a lower bound of b iff x ≤ y for
each y → b, and we say that x is a strict lower bound of b iff x < y for all y → b; x
is the infimum of b, x = inf(b), iff x is the maximum of the set of all lower bounds
of b, i.e., if x is a lower bound and

≤y → a(≤y∅ → b y ≤ y∅ → y ≤ x).

If x = min(b), then x = inf(b). If ≤ is not clear from the context, then we also say
“≤-maximal element,” “≤-supremum,” “≤-upper bound,” etc.
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Let (a,≤a), (b,≤b) be partially ordered sets. A function f : a → b is called
order-preserving iff for all x, y → a,

x ≤a y ⇐⇒ f (x) ≤b f (y).

If f : a → b is order-preserving and f is bijective, then f is called an isomorphism,
also written

(a,≤a)
f⊕= (b,≤b).

(a,≤a) and (b,≤b) are called isomorphic iff there is an isomorphism f : a → b,
written

(a,≤a) ⊕= (b,≤b).

The following concept plays a key role in set theory.

Definition 2.3 Let (a,≤) be a partial order. Then (a,≤) is called a well-ordering
iff for every b ∈ a with b ⊂= ⇒,min(b) exists.

The natural ordering onN is a well-ordering, but there are many other well-orderings
on N (cf. Problem 2.7).

Lemma 2.4 Let (a,≤) be a well-ordering. Then ≤ is total.

Proof If x, y → a, thenmin({x, y}) ≤ x andmin({x, y}) ≤ y.Hence ifmin({x, y}) =
x , then x ≤ y, and if min({x, y}) = y, then y ≤ x . �

Lemma 2.5 Let (a,≤) be a well-ordering, and let f : a → a be order-preserving.
Then f (x) ≥ x for all x → a.

Proof If {x → a: f (x) < x} ⊂= ⇒, set

x0 = min({x → a: f (x) < x}).

Then y0 = f (x0) < x0 and so f (y0) < f (x0) = y0, as f is order-preserving. But
this contradicts the choice of x0. �

Lemma 2.6 If (a,≤) is a well-ordering, and if (a,≤)
f⊕= (a,≤), then f is the

identity.

Proof By the previous lemma applied to f as well as to f −1, wemust have f (x) ≥ x
as well as f −1(x) ≥ x , i.e., f (x) = x , for every x → a. �

Lemma 2.7 Suppose that (a,≤a) and (b,≤b) are both well-orderings such that

(a,≤a) ⊕= (b,≤b). Then there is a unique f with (a,≤a)
f⊕= (b,≤b).

Proof If (a,≤a)
f⊕= (b,≤b) and (a,≤a)

g⊕= (b,≤b), then (a,≤a)
g−1∗ f⊕= (a,≤a), so

g−1 ∗ f is the identity, so f = g. �
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If (a,≤) is a partially ordered set, and if x → a, then we write (a,≤) � x for the
partially ordered set

({y → a: y < x},≤ ∪{y → a: y < x}2),

i.e., for the restriction of (a,≤) to the predecessors of x .

Lemma 2.8 If (a,≤) is a well-ordering, and if x → a, then (a,≤) ⊂⊕= (a,≤) � x.

Proof If (a,≤)
f⊕= (a,≤) � x , then f : a → a is order-preserving with f (x) < x .

This contradicts Lemma 2.5. �

Theorem 2.9 Let (a,≤a), (b,≤b) be well-orderings. Then exactly one of the fol-
lowing statements holds true.

(1) (a,≤a) ⊕= (b,≤b)

(2) ⇐x → b (a,≤a) ⊕= (b,≤b) � x
(3) ⇐x → a (a,≤a) � x ⊕= (b,≤b).

Proof Let us define r ∈ a × b by

(x, y) → r ⇐⇒ (a,≤a) � x ⊕= (b,≤b) � y.

By the previous lemma, for each x → a there is at most one y → b such that (x, y) → r
and vice versa. Therefore, r is an injective function from a subset of a to b. We have
that r is order-preserving, because, if x <a x ∅ and

(a,≤a) � x ∅ f⊕= (b,≤b) � y,

then

(a,≤a) � x
f �{y→a:y<x}⊕= (b,≤b) � f (x),

so that r(x) = f (x) < y = r(x ∅).
If both a\ dom(r) as well as b\ ran(r) were nonempty, say x = min(a\ dom(r))

and y = min(b\ dom(r)), then

(a,≤a) � x
r⊕= (b,≤b) � y,

so that (x, y) → r after all. Contradiction! �

The following Theorem is usually called Zorn’s Lemma. The reader will gladly
verify that its proof is performed in the theory ZC.

Theorem 2.10 (Zorn) Let (a,≤) be a partial ordering, a ⊂= ⇒, such that for all
b ∈ a, b ⊂= ⇒, if ≤x → b≤y → b(x ≤ y ∞ y ≤ x), then b has an upper bound. Then a
has a maximal element.
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Proof Fix (a,≤) as in the hypothesis. Let

A = {{(b, x): x → b}: b ∈ a, b ⊂= ⇒}.

Notice that A exists, as it can be separated from P(P(a) × ⋃
P(a)). (AC), the

axiom of choice, gives us some set f such that for all y → A there is some z with
y ∪ f = {z}, which means that for all b ∈ a, b ⊂= ⇒, there is some unique x → b such
that (b, x) → f . Therefore, f is a function from P(a)\{⇒} to a such that f (b) → b
for every b → P(a)\{⇒}.

Let us now define a binary relation ≤∗ on a as follows.
We let W denote the set of all well-orderings ≤∅ of subsets b of a such that for all

u, v → b, if u ≤∅ v, then u ≤ v, and for all u → b, writing

B≤∅
u = {w → a: w is a ≤ –upper bound of {v → b: v <∅ u}},

B≤∅
u ⊂= ⇒ and u = f (B≤∅

u ). Notice that W may be separated from P(a2).
Let us show that if ≤∅,≤∅∅→ W , then ≤∅∈≤∅∅ or else ≤∅∅∈≤∅. Let ≤∅→ W be a

well-ordering of b ∈ a, and let ≤∅∅→ W be a well-ordering of c ∈ a.
By Theorem 2.9, we may assume by symmetry that either (b,≤∅) ⊕= (c,≤∅∅) or

else there is some v → c such that (b,≤∅) ⊕= (c,≤∅∅) � v. Let g: b → c be such that

(b,≤∅)
g⊕= (c,≤∅∅) or (b,≤∅)

g⊕= (c,≤∅∅) � v.

We aim to see that g is the identity on b.
Suppose not, and let u0 → b be ≤∅-minimal in

{w → b: g(w) ⊂= w}.

Writing ḡ = g � {w → b: w <∅ u0},

(b,≤∅) � u0

ḡ⊕= (c,≤∅∅) � g(u0),

and ḡ is in fact the identity on {w → b: w <∅ u0}, so that

{w → b: w <∅ u0} = {w → c: w <∅∅ g(u0)}.

But then B≤∅
u0 = B≤∅∅

g(u0)
⊂= ⇒ and thus

u0 = f (B≤∅
u0 ) = f (B≤∅∅

g(u0)
) = g(u0).

Contradiction!
We have shown that if ≤∅,≤∅∅→ W , then ≤∅∈≤∅∅ or ≤∅∅∈≤∅.
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But now
⋃

W , call it ≤∗, is easily seen to be a well-ordering of a subset b of a.
Setting

B = {w → a: w is a ≤ –upper bound of b},

our hypothesis on ≤ gives us that B ⊂= ⇒. Suppose that b does have a maximum with
respect to ≤. We must then have B ∪ b = ⇒, and if we set

u0 = f (B)

and ≤∗∗=≤∗ ∩{(u, u0): u → b} ∩ {(u0, u0)}, then B = B≤∗∗
u0 . It is thus easy to see

that ≤∗∗→ W . This gives u0 → b, a contradiction!
Thus b has a maximum with respect to ≤. Zorn’s Lemma is shown. �
The following is a special case of Zorn’s lemma (cf. Problem 3.10).

Corollary 2.11 (Hausdorff Maximality Principle) Let a ⊂= ⇒, and let A ∈ P(a) be
such that for all B ∈ A, if x ∈ y ∞ y ∈ x for all x, y → B, then there is some z → A
such that x ∈ z for all x → B. Then A contains an ∈-maximal element.

In the next chapter, we shall use the HausdorffMaximality Principle to show that
every set can be well-ordered (cf. Theorem 3.23).

It is not hard to show that in the theory ZF, (AC) is in fact equivalent with Zorn’s
Lemma, with the Hausdorff Maximality Principle, as well as with the assertion
that every set can be well-ordered, i.e., that for every set x there is some well-order
< on x (cf. Problem 3.10).

2.2 Gödel–Bernays Class Theory

There is another axiomatization of set theory, BGC, which is often more convenient
to use. Its language is the same one as L→, except that in addition there is a second
type of variables. The variables x , y, z, . . ., a, b, . . . ofL→ are supposed to range over
sets, whereas the new variables, X , Y , Z , . . ., A, B, . . . are supposed to range over
classes. Each set is a class, and a given class is a set iff it is a member of some class
(equivalently, of some set). Classes which are not sets are called proper classes.
Functions may now be proper classes. The axioms of the Bernays–Gödel class
theory BG are (Ext), (Fund), (Pair), (Union), (Pow), (Inf) exactly as before together
with the following ones:

≤X≤Y≤x((x → X ∼ x → Y ) → X = Y ) (2.1)

≤x⇐X x = X (2.2)

≤X ( ⇐Y X → Y ∼ ⇐x x = X) (2.3)

If F is a (class) function, then F ∅∅a is a set for each set a, (Rep∗)
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and for all ϕ such that ϕ is a formula of the language of BG, which contains exactly
x, X1, . . . , Xk (but not Y ) as its free variables and which does not have quantifiers
ranging over classes (in other words, ϕ results from a formula ϕ∅ of the language of
ZF by replacing free occurences of set variables by class variables), then

≤X1 . . . Xk⇐Y≤x(x → Y ∼ ϕ). (Compϕ)

(Compϕ) is called the comprehension axiom for ϕ, and the collection of all (Compϕ)
is called the comprehension schema. TheBernays–Gödel class theory with choice,
BGC, is the theory BG plus the following version of the axiom of choice:

There is a (class) function F such that ≤x(x ⊂= ⇒ → F(x) → x). (AC)

It can be shown that ZFC and BGC prove the same theorems in their common
language L→ (i.e., BGC is conservative over ZFC).

If ϕ is a formula as in (Compϕ), then we shall write {x : ϕ} for the class given
by (Compϕ). (Rep∗) says that for all class functions F and for all sets a, F ∅∅a =
{y: ⇐x (x, y) → F} is a set.

We shall write V for the universe of all sets, i.e., for {x : x = x}. V cannot be a
set, because otherwise

R = {x → V : x /→ x}

would be a set, and then R → R iff R /→ R. This is another instantiation of Russell’s
antinomy.

If A is a class, then we write

⋃
A = {x : ⇐y → A x → y}

and ⋂
A = {x : ≤y → A x → y}.

⋃
A and

⋂
A always exist, and

⋃ ⇒ = ⇒ and
⋂ ⇒ = V .

It may be shown that in contrast to ZFC, BGC can be finitely axiomatized. BGC
will be the theory used in this book.

The books [15, 18, 23] present introductions to axiomatic set theory.

2.3 Problems

2.1. Let k → N. Show that there cannot be sets x1, x2, . . . , xk such that x1 → x2 →
. . . → xk → x1.

2.2. Show that for all x , y, (x, y) exists. Show that if (x, y) = (x ∅, y∅), then x = x ∅
and y = y∅. Show that for all a, b, a × b exists (cf. Lemma 2.1). Show that for



20 2 Axiomatic Set Theory

all d, b, db exists (cf. Lemma 2.2). Which axioms of ZF do you need in each
case? Show that (Pair) may be derived from the rest of the axioms of ZF (from
which ones?).

2.3. Show that neither in (Ausϕ) nor in (Repϕ), as formulated on p. 11, we could
have allowed b to occur freely in ϕ. Show that the separation schema (Aus)
can be derived from the rest of the axioms of ZF augmented by the statement
⇐x x = ⇒.

2.4. Show that the following “version” of (AC) is simply false:

≤x(≤y → x y ⊂= ⇒) → ⇐z≤y → x⇐u z ∪ y = {u}).

2.5. Show tht every partial order can be extended to a linear order. More precisely:
Let a be any set. Show that for any partial order ≤ on a there is a linear order
≤∅ on a with ≤ ∈ ≤∅.

2.6. Show that in the theory ZF, the following statements are equivalent.

(i) (AC).
(ii) For every x such that y ⊂= ⇒ for every y → x there is a choice function,

i.e., some f : x → ⋃
x such that f (y) → y for all y → x .

2.7. (a) Let ≤ denote the natural ordering on N, and let m → N, m ≥ 2. Let the
ordering ≤m on N be defined as follows. n ≤m n∅ iff either n ≡ n∅(mod m)

and n ≤ n∅, or else if k < m, k → N, is least such that n ≡ k(mod m) and
k∅ < m, k∅ → N, is least such that n∅ ≡ k∅(mod m), then k < k∅. Show that ≤m

is a well-ordering on N.
(b) Let, for m → N, ≤m be any well-ordering of N, and let ϕ: N → N × N be
a bijection. Let us define ≤∅ on N by n ≤∅ n∅ iff, letting (m, q) = ϕ(n) and
(m∅, q ∅) = ϕ(n∅), m < m∅ or else m = m∅ and q ≤m q ∅. Show that ≤∅ is a
well-ordering of N.

2.8. (Cantor) Let (a,<) be a linear order. (a,<) is called dense iff for all x , y → a
with x < y there is some z → a with x < z < y. Show that if (a,<) is dense
(and a has more than one element), then < is not a well-ordering on a. (a,<)

is said to have no endpoints iff for all x → a there are y, z → a with y < x < z.
Let (a,<a) and (b,<b) be two dense linear orders with no endpoints such
that both a and b are countable. Show that (a,<a) is isomorphic to (b,<b).
[Hint. Write a = {xn : n → N} and b = {yn : n → N}, and construct f : a → b
by recursively choosing f (x0), f −1(y0), f (x1), f −1(y1), etc.]

2.9. Show that there is a set A of pairwise non-isomorphic linear orders on N such
that A ⊕ R.

2.10. Show that every axiom of ZFC is provable in BGC.
Let us introduceAckermann’s set theory, AST. The language of AST arises
from L→ by adding a single constant, say v̇. The axioms of AST are (Ext),
(Fund), (Aus), as well as (Str) and (Refl) which are formulated as follows.
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≤x → v̇ ≤y ((y → x ∞ y ∈ x) → y → v̇). (Str)

Let ϕ be any formula of L→ in which exactly v1, . . ., vk occur freely. Then
ϕv̇ results fromϕ by replacing every occurence of ≤x by ≤x → v̇ and every
occurence of ⇐x by ⇐x → v̇. Then

≤v1 → v̇ . . . ≤vk → v̇ (ϕv̇ ←→ ϕ). (Reflϕ)

(Refl) is the schema of all (Reflϕ), where ϕ is a formula of L→ (in which v̇

does not occur). (Str) states that v̇ is “supertransitive,” and (Refl) states (as a
schema) that v̇ is a fully elementary submodel of V , the universe of all sets.

2.11. (W. Reinhardt) Show that every axiom of ZF is provable in AST.
AST is also conservative over ZF, cf. Problem 5.15.



Chapter 3
Ordinals

3.1 Ordinal Numbers

The axiom of infinity (Inf) states there is an inductive set. Recall that a set x is called
inductive iff → ≤ x and for each y ≤ x, y ∼ {y} ≤ x . Let us write 0 for → and y + 1
for y ∼ {y}. The axiom of infinity then says that there is a set x such that 0 ≤ x and
for each y ≤ x, y + 1 ≤ x . We shall also write 1 for 0 + 1, 2 for (0 + 1) + 1, etc.
Each inductive set therefore contains 0, 1, 2, etc. We shall write ω for

⋂
{x : x is inductive}.

This set exists by (Inf) plus the separation scheme: if x0 inductive, then

ω = {y ≤ x0 : ∈x(x is inductive → y ≤ x)}.

Clearly, ω is inductive. Intuitively, the set ω contains exactly 0, 1, 2, etc.
We have the following “principle of induction”.

Lemma 3.1 Let A ∧ ω be such that 0 ≤ A and for each y ≤ A, y + 1 ≤ A. Then
A = ω.

Proof A is inductive, hence ω ∧ A, and thus A = ω. �
In particular, if ϕ is a statement such that ϕ(0) and ∈y ≤ ω(ϕ(y) → ϕ(y + 1))

both hold true, then ∈y ≤ ω ϕ(y) holds true as well. We shall call elements of ω

natural numbers and ω itself the set of natural numbers. All natural numbers as well
as ω will be ordinals according to Definition 3.3.

Definition 3.2 A set x is transitive iff for each y ≤ x, y ∧ x .

We shall see later (cf. Lemma 3.14) that every set is contained in a transitive set.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_3, 23
© Springer International Publishing Switzerland 2014
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The following concept of an “ordinal” was isolated by János Neumann (1903–
1957) which is why ordinals are sometimes called Neumann ordinals.

Definition 3.3 A set x is called an ordinal number, or just an ordinal, iff x is tran-
sitive and for all y, z ≤ x we have y ≤ z ⊃ y = z ⊃ z ≤ y.

Ordinals will typically be denoted by α, β, γ , . . ., i , j , . . . We shall write OR for the
class {α : α is an ordinal} of all ordinals.

By (Fund), if α is an ordinal, then ≤� α = {(x, y) ≤ α2 : x ≤ y} is a well-order
of α.

Lemma 3.4 Each natural number is an ordinal.

Proof by induction, i.e., by using Lemma 3.1: 0 is trivially an ordinal. Now let α be
an ordinal. We have to see that α + 1 is an ordinal. α + 1 = α ∼ {α} is transitive: let
y ≤ α ∼ {α}; then either y ≤ α and hence y ∧ α ∧ α ∼ {α} because α is transitive,
or else y = α and hence y ∧ α ∼ {α}. Now let y, z ≤ α + 1 = α ∼ {α}. We have to
see that y ≤ z ⊃ y = z ⊃ z ≤ y. If y, z ≤ α, then this follows from the fact that α is
an ordinal; if y, z ≤ {α}, then this is trivial; but it is also trivial if y ≤ α and z ≤ {α}
or vice versa. �

Lemma 3.5 ω is an ordinal.

Proof We first show ∈y ≤ ω y ∧ ω by induction. This is trivial for y = 0. Now fix
y ≤ ω with y ∧ ω. Then {y} ∧ ω, hence y + 1 = y ∼ {y} ∧ ω.

We now show ∈y ≤ ω∈z ≤ ω(y ≤ z ⊃ y = z ⊃ z ≤ y) by a “nested induction.” Let
us write ϕ(y, z) for y ≤ z ⊃ y = z ⊃ z ≤ y. In order to prove ∈y ≤ ω∈z ≤ ω ϕ(y, z)
it obviously suffices to show the conjunction of the following three statements:

(a) ϕ(0, 0),
(b) ∈z ≤ ω(ϕ(0, z) → ϕ(0, z + 1)),
(c) ∈y ≤ ω(∈z⊂ ≤ ω ϕ(y, z⊂) → ∈z ≤ ω ϕ(y + 1, z))

This is because if (a) and (b) hold true, then ∈z ≤ ω ϕ(0, z) holds true by induction.
This, together with (c), yields ∈y ≤ ω∈z ≤ ωϕ(y, z) again by induction.

(a) and (b) are trivial.
As to (c), let us fix y ≤ ω, and let us suppose that ∈z⊂ ≤ ω ϕ(y, z⊂). We aim to

show ∈z ≤ ω ϕ(y + 1, z), and we will do so by induction. We already know that
∈z ≤ ωϕ(0, z), which in particular gives ϕ(0, y + 1) and thus also ϕ(y + 1, 0) by
symmetry. Let us assume that ϕ(y + 1, z) holds true to deduce that ϕ(y + 1, z + 1)
holds true as well.

We have that y + 1 ≤ z ⊃ y + 1 = z ⊃ z ≤ y + 1 by hypothesis. If y + 1 ≤ z, then
y + 1 ≤ z + 1 = z ∼ {z}. If y + 1 = z, then y + 1 ≤ z + 1 = z ∼ {z} as well. Now
let z ≤ y + 1 = y ∼ {y}. If z ≤ {y}, then y + 1 = z + 1. So suppose that z ≤ y. We
have that y ≤ z + 1 ⊃ y = z + 1 ⊃ z + 1 ≤ y by our hypothesis ∈z⊂ ≤ ω ϕ(y, z⊂).
But z ≤ y ≤ z + 1 = z ∼ {z} contradicts the axiom of foundation (consider {z, y}).
Therefore, z ≤ y implies y = z+1⊃z+1 ≤ y, and therefore z+1 ≤ y∼{y} = y+1
as desired. �
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Lemma 3.6 The following statements are true.

(a) 0 is an ordinal, and if α is an ordinal, then so is α + 1.
(b) If α is an ordinal and x ≤ α, then x is an ordinal.
(c) If α, β are ordinals, and α � β, then α ≤ β.
(d) If α, β are ordinals, then α ∧ β or β ∧ α (and hence α ≤ β ⊃ α = β ⊃ β ≤ α).

Proof (a) is given by the proof of Lemma 3.4 above.
(b) is easy.
To show (c), let α be a proper subset of β. Let γ ≤ β\α such that γ ⇐ (β\α) = →.

(There is such a γ by the axiomof foundation.) If ξ ≤ γ , then ξ ≤ β by the transitivity
ofβ, so ξ ≤ α, as otherwise ξ ≤ γ ⇐(β\α). If ξ ≤ α ∧ β, then ξ ≤ γ ⊃ξ = γ ⊃γ ≤ ξ ,
because β is an ordinal. But ξ = γ ⊃ γ ≤ ξ implies γ ≤ α, because ξ ≤ α and α is
an ordinal; however, γ ≤ β\α. Therefore if ξ ≤ α, then ξ ≤ γ . We have shown that
γ = α. Hence α ≤ β.

(d): Suppose not. Let α ≤ OR be such that there is some β ≤ OR with ¬(α ∧
β ⊃β ∧ α). Let α0 be ≤–minimal in α+1 = α∼{α} such that there is some β ≤ OR
with ¬(α0 ∧ β ⊃ β ∧ α0), and let β0 ≤ OR be such that ¬(α0 ∧ β0 ⊃ β0 ∧ α0).
Clearly, α0 ∼ β0 is transitive, and if δ, δ⊂ ≤ α0 ∼ β0, then δ ∧ δ⊂ or δ⊂ ∧ δ by the
choice of α0, so that δ ≤ δ⊂ ⊃ δ = δ⊂ ⊃ δ⊂ ≤ δ by (b) and (c). Hence α0 ∼ β0 is an
ordinal, call it γ0. We claim that γ0 = α0 or γ0 = β0. Otherwise by (c), α0 ≤ γ0 and
β0 ≤ γ0, so that one of α0 ≤ α0, β0 ≤ β0, α0 ≤ β0 ≤ α0 holds true, which contradicts
the axiom of foundation. We have shown that α0 ∧ β0 or β0 ∧ α0 which contradicts
the choice of α0 and β0. �

By Lemma 3.6 (b) and (d), OR cannot be a set, as otherwise OR ≤ OR.
If α, β ≤ OR, then we shall often write α ⇒ β instead of α ∧ β (equivalently,

α ≤ β ⊃ α = β) and α < β instead of α ≤ β. We shall also write (α, β), [α, β),
(α, β], and [α, β] for the sets {γ : α < γ < β}, {γ : α ⇒ γ < β}, {γ : α < γ ⇒ β},
and {γ : α ⇒ γ ⇒ β}, respectively.
Lemma 3.7 The following statements are true.

(a) If X ∪= → is a set of ordinals, then
⋂

X is the minimal element of X.
(b) If X is a set of ordinals, then

⋃
X is also an ordinal.

Proof To show (a), notice that
⋂

X is certainly an ordinal. If
⋂

X is a proper subset
of every element of X , then

⋂
X ≤ ⋂

X . Contradiction!
(b) is easy by the previous lemma. �
If X is a set of ordinals, then we also write min(X) for

⋂
X (provided that X ∪= →)

and sup(X) for
⋃

X .

Definition 3.8 An ordinal α is called a successor ordinal iff there is some ordinal
β such that α = β + 1. An ordinal α is a limit ordinal iff α is not a successor
ordinal.
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3.2 Induction and Recursion

Definition 3.9 A binary relation R ∧ B × B on a set or class B is called well–
founded iff every nonempty b ∧ B has an R-least element, i.e., there is x ≤ b such
that for all y ≤ b,¬y Rx . If R is not well–founded, then we say that R is ill–founded.

We have the following “principle of induction” for well–founded relations:

Lemma 3.10 Let R ∧ B × B be well-founded, where B is a set. Let A ∧ B be such
that for all x ≤ B, if {y ≤ B : y Rx} ∧ A, then x ≤ A. Then A = B.

Proof Suppose that B\A ∪= →. Let x ≤ B\A be R–least, i.e., for all y ≤ B\A,¬y Rx .
In other words, if y Rx , then y ≤ A. Then x ≤ A by hypothesis. Contradiction! �

If B is a set, then ≤� B = {(x, y) ≤ B × B : x ≤ y} is well–founded by the axiom
of foundation.

Lemma 3.11 R ∧ B × B is well–founded iff there is no f : ω → B such that
f (n + 1)R f (n) for all n ≤ ω.

Proof Suppose there is an f : ω → B such that f (n + 1)R f (n) for all n ≤ ω. Then
ran( f ) ∧ B doesn’t have an R–least element.

Now suppose that R is not well–founded. Pick b ∧ B, b ∪= → with no R–least
element; i.e.; for all x ≤ b, {y ≤ b : y Rx} ∪= →. Apply the axiom of choice to
the set {{(y, x) : y ≤ b ∞ y Rx} : x ≤ b} to get a set u such that for all x ≤ b,
u ⇐ {(y, x) : y ≤ b ∞ y Rx} = {(y⊂, x)} for some y⊂; write yx for this unique y⊂.
We may now define f : ω → B as follows. Pick x0 ≤ b, and set f (0) = x0. Set
f (n) = y iff there is some g : n + 1 → b such that g(n) = y, g(0) = x0, and for all
i ≤ n, g(i + 1) = yg(i).

Obviously, for each n ≤ ω there is at most one such g, and an easy induction
yields that for each n ≤ ω, there is at least one such g. But then f is well–defined,
and of course f (n + 1)R f (n) for all n ≤ ω. �

If R ∧ B × B, then the well–founded part wfp(R) of B is the class of all
x ≤ B such that there is no infinite sequence (xn : n < ω) such that x0 = x and
(xn+1, xn) ≤ R for all n < ω.

The previous proof gave an example of a recursive definition. There is a general
“recursion theorem.”We state theNBG version of it which extends the ZFC version.

Definition 3.12 Let R ∧ B × B, where B is a class. R is then called set–like iff
{x : (x, y) ≤ R} is a set for all y ≤ B.

Theorem 3.13 (Recursion) Let R ∧ B × B be well–founded and set–like, where B
is a class. Let p be a set,1 and let ϕ(v0, v1, v2, p) be such that for all sets u and x

1 p will play the role of a parameter in what follows.
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there is exactly one set y with ϕ(u, x, y, p). There is then a (class) function F with
domain B such that for all x in B, F(x) is the unique y with

ϕ(F � {ȳ ≤ B : ȳ Rx}, x, y, p).

Proof Let us call a (set or class) function F good for x iff

(a) x ≤ dom(F) ∧ B,
(b) ∈x ⊂ ≤ dom(F)∈ȳ ≤ B (ȳ Rx ⊂ → ȳ ≤ dom(F)), and
(c) ∈x ⊂ ≤ dom(F) (F(x ⊂) is the unique y with ϕ(F � {ȳ ≤ B : ȳ Rx ⊂}, x ⊂, y, p).

If F , F ⊂ are both good for x , then F(x) = F ⊂(x), as we may otherwise consider
the R–least x0 ≤ dom(F) ⇐ dom(F ⊂) with F(x0) ∪= F ⊂(x0) and get an immediate
contradiction. For all x for which there is a set function f ≤ V which is good for x ,

⋂
{ f ≤ V : f is good for x},

which we shall ad hoc denote by f x , is then easily seen to be good for x .
We claim that for each x ≤ B, there is some set function g ≤ V which is good

for x . Suppose not, and let x0 be R–least in the class of all x such that there is no
set function g ≤ V which is good for x . Then gx exists for all x Rx0, and we may
consider

g =
⋃

{gx : x Rx0}.

As R is set-like, g is a set by the appropriate axiom of replacement. Moreover g is a
function which is good for each x ≤ B with x Rx0. Now let y be unique such that

ϕ(g � {x ≤ B : x Rx0}, x0, y, p),

and set g∩ = g ∼ {(x0, y)}. Then g∩ ≤ V is good for x0. Contradiction!
We may now simply let

F =
⋃

{ f x : x ≤ B}.

Then F is a (class) function which is good for all x ≤ B. �

Lemma 3.14 For every set x there is a transitive set y such that x ≤ y and y ∧ y⊂
for all transitive sets y⊂ with x ≤ y⊂.

Proof Weuse the recursion Theorem 3.13 to construct a functionwith domainω such
that f (0) = {x} and f (n + 1) = ⋃

f (n) for n < ω, and we consider
⋃

ran( f ). �

Definition 3.15 Let x be a set, and let y be as in Lemma 3.14. Then y is called the
transitive closure of {x}, denoted by TC({x}).
The following Lemma says that the ≤–relation, restricted to any class, is well–
founded.
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Lemma 3.16 Let A be a non-empty class. Then A has an ≤-minimal member, i.e.,
there is some a ≤ A with a ⇐ A = →.

Proof Let x ≤ A be arbitrary, and let y be a transitive set with x ≤ y. As y ⇐ A ∪= →
is a set, the axiom of foundation gives us some a ≤ y ⇐ A which is ≤–minimal, i.e.,
a ⇐ (y ⇐ A) = →. Then a ≤ A, and if z ≤ a, then z ≤ y (as y is transitive), so z /≤ A.
That is, a ⇐ A = →. �

Lemma 3.17 Let B be a class, and let R ∧ B × B be set-like. Then R is well–
founded if and only if there is some (unique) α which is either an ordinal or else
α = OR and some (unique) ρ : B → α such that ρ(x) = sup({ρ(y) + 1 : y Rx}) for
all x ≤ B.

Proof Let us first suppose that R is well–founded. We may then apply the recursion
theorem 3.13 to the formula ϕ(u, x, y) which says that y = sup({u(y) + 1 : y ≤
dom(u)}) if u is a function whose range is contained in OR and y = → otherwise.
We then get an α and a function ρ as desired.

On the other hand, if ρ : B → α is such that ρ(x) = sup({ρ(y) + 1 : y Rx})
for all x ≤ B, then in particular y Rx implies that ρ(y) < ρ(x), so that R must be
well–founded. �

Definition 3.18 If R ∧ B × B is well–founded and set like, and if α and ρ : B → α

are as in Lemma 3.17, then ρ(x) is called the R–rank of x ≤ B, written rkR(x) or
||x ||R , and α is called the rank of R, written ||R||.
Definition 3.19 The hierarchy (Vα : α ≤ OR) is recursively defined by

Vα =
⋃

{P(Vβ) : β < α}. (3.1)

We call Vα a rank initial segment of V .

Cf. Problem 3.1.

Definition 3.20 A binary relation R ∧ B × B on a class B is called extensional iff
for all x , y ≤ B,

{z ≤ B : z Rx} = {z ≤ B : z Ry} ∅⇒ x = y.

By the axiom(s) of extensionality (and foundation), ≤� B is (well–founded and)
extensional for every set B.

The function πR as in the following theorem is often called the “transitive col-
lapse.”

Theorem 3.21 (Mostowski Collapse) Let B be a class. Let R ∧ B × B be well–
founded, extensional, and set–like. There is then a unique pair (X R, πR) such that
X R is transitive, πR : X R → B is bijective, and for all x, y ≤ X R, x ≤ y ∅⇒
πR(x)RπR(y).
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Proof Apply the recursion theorem to the formula ϕ(u, x, y) ∗ y = ran(u). We then
get a function F with domain B such that for all x ≤ B, F(x) = {F(ȳ) : ȳ Rx}.
Notice that F is injective, because R is extensional. We may then set X R = ran(F)

and πR = F−1. �
In particular, we get that well–orderings are well–founded relations whose tran-

sitive collapse is an ordinal. Notice that if R ∧ B × B is a well–ordering, then R
is automatically extensional, so that we may indeed applyMostowski’s theorem to
R. The reason is that if {z ≤ B : z Rx} = {z ≤ B : z Ry} and x ∪= y, then x Ry, say,
and so x Rx ; but then R would not be well–founded.

Definition 3.22 If R is a well–ordering on B, then the unique ordinal α such that

there is some isomorphism (α;<� α)
π∼= (B; R) is called the length or the order

type of R, denoted by otp(R). If A is a set of ordinals, then we also denote by
otp(A) the order type of <� A and call it the order type of A. The isomorphism

(otp(A);<� otp(A))
π∼= (A;<� A) is also called the monotone enumeration of A.

Theorem 3.23 (Zermelo) Let A be any set. There is then a well–ordering on A.
There is even an ordinal α and some bijection π : α → A.

Proof We use the Hausdorff Maximality Principle 2.11 to show that there is a
bijectionπ : α → A for some ordinal α. Let F be the set of all injections σ : β → A,
where β is an ordinal.

F is indeed a set by the following argument. For each σ : β → A, R ∧ A × A
is a well–ordering on ran(σ ), where we define x Ry ∅⇒ σ−1(x) ≤ σ−1(y) for
x, y ≤ ran(σ ); but any such well–ordering is in P(A × A). Conversely, any well–
ordering R on a subset B of A induces a unique injectionσ : β → Awith B = ran(σ )

and x Ry ∅⇒ σ−1(x) ≤ σ−1(y) for x, y ≤ ran(σ ) byMostowski’s Theorem 3.21.
Therefore, asP(A × A) is a set, F is a set by the appropriate axiom of replacement.

Let K ∧ F be such that σ ∧ τ or τ ∧ σ (i.e., σ � dom(τ ) = τ or τ � dom
(σ ) = σ ) whenever σ, τ ≤ K . Then

⋃
K ≤ F , as

⋃
K is a function, dom(

⋃
K ) =⋃{dom(σ ) : σ ≤ K } is an ordinal, and

⋃
K is injective. Hence F satisfies the

hypothesis of the Hausdorff Maximality Principle, Corollary 2.11, and there is
some π ≤ F such that for no σ ≤ F, π � σ .

But now we must have ran(π) = A. Otherwise let x ≤ A\ ran(π), and set
σ = π ∼ {(dom(π), x)}. Then σ ≤ F (with dom(σ ) = dom(π) + 1), π � σ .
Contradiction! �

If f : α → A, where α is an ordinal (or α = OR), then f is also called a sequence
and we sometimes write ( f (ξ) : ξ < α) instead of f .

3.3 Problems

3.1 Use the recursion theorem 3.13 to show that there is a sequence (Vα : α ≤ OR)

which satisfies (3.1). Show that every Vα is transitive and that Vβ ∧ Vα forβ ⇒ α.
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Show that V0 = →, Vα+1 = P(Vα) for every α, and Vλ = ⋃
α<λ Vα for every

limit ordinal λ.

3.2 Show that for every set x there is some α with x ∧ Vα (and thus x ≤ Vα+1).
For any set x , let rk≤(x) be as in Definition 3.18 for B = V and R = ≤ =
{(x, y) : x ≤ y}. Show that for every set x , the least α such that x ∧ Vα is equal
to rk≤(x).
rk≤(x) is called the (set, or ≤–) rank of x , also just written rk(x).

3.3 If M is transitive, then we may construe (M; ≤� M) as a model of L≤. Which
axioms of ZFC hold true in all (Vα; ≤� Vα), where α > ω is a limit ordinal?
Which ones hold true in (Vω; ≤� Vω)?

3.4 For a formula ϕ, let (Fundϕ) be the following version of the axiom of foundation.

∈p(∃x ϕ(x, p) → ∃x(ϕ(x, p) ∞ ∈y ≤ x ¬ϕ(y, p))). (Fundϕ)

Show that every instance of (Fundϕ) is provable in ZFC.

3.5 Let ϕ be a formula of L≤ in which exactly the variables x, y, v1, . . . , vp (all
different from b) occur freely. The collection principle corresponding to ϕ,
(Collϕ) runs as follows.

∈v1 . . . ∈vp ((∈x∃y ϕ) → (∈a∃b∈x ≤ a∃y ≤ b ϕ)). (Collϕ)

The collection principle is the set of all (Collϕ). Show that in the theory Z, the
collection principle is equivalent to the replacement schema (Rep).

3.6 Let α be an ordinal. Use the recursion Theorem 3.13 to show that there are
functions β �→ α + β, β �→ α · β, and β �→ αβ with the following properties.

(a) α+0 = α, α+(β+1) = (α+β)+1 for all β, and α+λ = sup({α+β : β <

λ}) for λ a limit ordinal.
(b) α ·0 = 0, α · (β +1) = (α ·β)+α for all β, and α ·λ = sup({α ·β : β < λ})

for λ a limit ordinal.
(c) α0 = 1, αβ+1 = (αβ) ·α for all β, and αλ = sup({αβ : β < λ}) for λ a limit

ordinal.

3.7 Show that + and · are associative. Show also that ω = 1 + ω ∪= ω + 1 and
ω = 2 · ω ∪= ω · 2. Show that if λ is a limit ordinal ∪= 0, then α + λ is a limit
ordinal. Show that if γ is a successor ordinal, then α + γ is a successor ordinal.
Show that if λ is a limit ordinal ∪= 0, then α · λ and λ · α are limit ordinals.

3.8 Show that if α > 0 is an ordinal, then there are unique positive natural numbers
k and c1, . . . , ck and ordinals 0 ⇒ β1 < . . . < βk such that

α = ωβk · ck + . . . + ωβ1 · c1. (3.2)

The representation (3.2) is called Cantor normal form of α.
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3.9 Use (AC) to show the following statement, called the principle of dependent
choice, DC. Let R be a binary relation on a set a such that for every x ≤ a
there is some y ≤ a such that (y, x) ≤ R. Show that there is some function
f : ω → a such that for every n ≤ ω, ( f (n + 1), f (n)) ≤ R. Use DC to prove
Lemma 3.11.

3.10 Show that in the theory ZF, the following statements are equivalent.

(i) (AC).
(ii) Zorn’s Lemma, i.e., Theorem 2.10.
(iii) The HausdorffMaximality Principle, i.e., Corollary 2.11.
(iv) Zermelo’s Well–Ordering Theorem 3.23.

3.11 Show in ZC that for every set a there is some r such that r is a well–ordering
of a.

3.12 (F. Hartogs) Show in ZF that for every set x there is an ordinal α such that
there is no injection f : α → x . [Hint. Consider the set W of all well–orders of
subsets of a, and well–order W via Theorem 2.9.]



Chapter 4
Cardinals

4.1 Regular and Singular Cardinal Numbers

We know by Zermelo’s Theorem 3.23 that for each set x there is an ordinal Φ such
that x → Φ, i.e., there is a bijection f : x ≤ Φ.

Definition 4.1 Let x be a set. The cardinality of x , abbreviated by x , or Card(x), is
the least ordinal Φ such that x → Φ.

Notice that Card(x) exists for every set x . Namely, let x → Φ. Then either Φ =
Card(x), or else Card(Φ) is the least Σ < Φ such that x → Σ.

To give a few examples, Card(n) = n for every n ∼ α; Card(α) = α = Card(α+
1) = Card(α+2) = . . . = Card(α+α) = . . . = Card(α ·α) = . . . = Card(αα) =
. . .1 We shall see more examples later.

Definition 4.2 An ordinal Φ is called a cardinal iff Φ = Φ.

Obviously, Φ is a cardinal iff there is some set x such that Φ = Card(x). We shall
typically use the letters β, ε, μ, . . . to denote cardinals.

By Cantor’s Theorem 1.3, if x is any set, then there is no surjection f : x ≤
P(x). Therefore, if β is a cardinal, then there is a cardinal ε > β , and there is thus
also a least cardinal ε > β which may also be identified as the least cardinal ε with

β < ε ∈ P(β).
The Pigeonhole Principle says that if β and ε are cardinals with ε > β and if

f : ε ≤ β , then f cannot be injective.

Definition 4.3 Let β be a cardinal. The least cardinal ε > β is called the cardinal
successor of β , abbreviated by β+. A cardinal β is called a successor cardinal iff
there is some cardinal μ < β with β = μ+; otherwise β is called a limit cardinal.

All positive natural numbers are therefore successor cardinals, α is a limit cardinal,
α+, α++, . . . are successor cardinals, etc.

1 We here use the notation for ordinal arithmetic from Problem 3.6.
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The cardinal successor β+ of a given cardinal β my also be characterized as the
set of all ordinals of at most the same size as β (cf. Problem 4.2).

As β+ exists for each cardinal β , there are arbitrarily large successor cardinals.
But there are also arbitrarily large limit cardinals.

Lemma 4.4 Let X be a set of cardinals. Then
⋃

X is a cardinal.

Proof By Lemma 3.7 (b) we already know that
⋃

X is an ordinal. We have to show
that there is no Φ <

⋃
X such that Φ → ⋃

X . Well, if Φ <
⋃

X , i.e., Φ ∼ ⋃
X , then

there is some β ∼ X with Φ ∼ β , i.e., Φ < β . As β is a cardinal, there is no surjection
from Φ onto β . But β ∼ X gives β ⊂ ⋃

X , so that there is also no surjection from Φ

onto
⋃

X . �
In particular, if β is any cardinal, then X = {β, β+, β++, . . .} exists by the replace-

ment schema and we have that
⋃

X is a limit cardinal > β . There are therefore
arbitrarily large limit cardinals.

If X ∧= ⊃ is a set of ordinals (or cardinals), then we also write sup(X) for
⋃

X
and min(X) for the least element of X , i.e., min(X) = ⋂

(X).
We may now recursively, i.e., by exploiting Theorem 3.13, define the ⊂-sequence

as follows. ⊂0 = α, the least infinite cardinal, and for Φ > 0, ⊂Φ = the least cardinal
β such that β > ⊂Σ for all Σ < Φ.

The first infinite cardinals are therefore

⊂0,⊂1,⊂2, . . . ,⊂α,⊂α+1, . . . ,⊂α·2, . . . ,⊂αα,

etc.2

An easy induction shows that Φ ∈ ⊂Φ for every ordinal Φ. In particular, if β is
an infinite cardinal, then β ∈ ⊂β , so that there is some ordinal Φ ∈ β with β = ⊂Φ .
Every infinite cardinal is thus of the form ⊂Φ , where Φ is an ordinal.

We define cardinal addition, multiplication, and exponentiation as follows. By
tradition, these operations are denoted the same way as ordinal addition, multiplica-
tion, and exponentiation, respectively, (cf. Problem 3.6) but it is usually clear from
the context which one we refer to.

Definition 4.5 Let β, ε be cardinals. We set

β + ε = Card((β × {0}) ⇐ (ε × {1})),
β · ε = Card(β × ε), and

βε = Card(εβ) = Card({ f : f is a function with dom( f ) = ε and

ran( f ) ⊂ β}).

It is easy to verify that β + ε = Card(X ⇐ Y ), whenever X, Y are disjoint sets with

X = β and Y = ε. It is also easy to verify that if β , ε ⇒ 2, then β + ε ∈ β · ε.
Cf. Problem 4.3. Moreover, we have the usual rules for addition, multiplication and
exponentiation.

2 Again, we use the notation from Problem 3.6.
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If β is a cardinal and A is a set, then we write [A]β for {x ⊂ A: Card(x) =
β}, and we also write [A]<β = ⋃

μ<β [A]μ and [A]∈β = ⋃
μ∈β [A]μ. Trivially,

[A]∈Card(A) = P(A). It is not hard to verify that βε = Card([β]ε) for cardinals β ,
ε (cf. Problem 4.4).

We now want to verify that ⊂Φ · ⊂Φ = ⊂Φ for every Φ (cf. Theorem 4.6). For this
purpose we need the Gödel pairing function.

We define an ordering∈ on OR×OR as follows.We set (ξ, δ) ∈ (ξ∪, δ∪) iff either

(a) max{ξ, δ} < max{ξ∪, δ∪}, or else
(b) max{ξ, δ} = max{ξ∪, δ∪}, and ξ < ξ∪, or else
(c) max{ξ, δ} = max{ξ∪, δ∪}, ξ = ξ∪, and δ ∈ δ∪.

We claim that∈ is a well-ordering on OR×OR.We need to see that each non-empty
X ⊂ OR × OR has a ∈-least element. Let X ∧= ⊃ be given, X ⊂ OR × OR. We let
X0 = {(ξ, δ) ∼ X : ∞(ξ∪, δ∪) ∼ X max{ξ, δ} ∈ max{ξ∪, δ∪}}; we let X1 = {(ξ, δ) ∼
X0: ∞(ξ∪, δ∪) ∼ X0 ξ ∈ ξ∪}; finally we let X2 = {(ξ, δ) ∼ X1 : ∞(ξ∪, δ∪) ∼ X1 δ ∈
δ∪}. Obviously, X2 contains exactly one element and it is ∈-least in X .

It is easy to see that ∈ is set-like. Using Theorem 3.21 (cf. also Definition 3.22),
we may therefore let ρ : OR×OR ≤ OR be the transitive collapse of ∈. I.e., ρ is a
bijection such that (ξ, δ) ∈ (ξ∪, δ∪) iff ρ((ξ, δ)) ∈ ρ((ξ∪, δ∪)) (where the latter “∈”
denotes the usual well-ordering on ordinals).

Notice that ρ � (χ × χ ): χ × χ ≤ ρ(χ ) is bijective for every χ . It is easy to
verify that ρ(χ ) ⇒ χ for every χ . In what follows, we shall sometimes write ∩ξ, δ∅
for ρ((ξ, δ)). The map ξ, δ �≤ ∩ξ, δ∅ is called the Gödel pairing function.

Theorem 4.6 (Hessenberg) For every Φ,⊂Φ · ⊂Φ = ⊂Φ .

Proof We use the notation from the preceeding paragraphs. One easily shows that
ρ(⊂0) = ⊂0, so that ρ � (⊂0 × ⊂0) witnesses that ⊂0 × ⊂0 → ⊂0, i.e., ⊂0 · ⊂0 = ⊂0.

Now suppose that there is some Φ with ⊂Φ · ⊂Φ > ⊂Φ , and let us fix the least such
Φ. We thenmust have Φ > 0 and ρ(⊂Φ) > ⊂Φ . Say ρ((ξ, δ)) = ⊂Φ , where ξ, δ < ⊂Φ .
Let σ < ⊂Φ be such that ξ, δ < σ. Then ran(ρ � ((σ + 1) × (σ + 1))) ∗ ⊂Φ , so that
in particular there is a surjection f : (σ + 1) × (σ + 1) ≤ ⊂Φ . Now σ + 1 < ⊂Φ ,
say Card(σ + 1) = ⊂Σ , where Σ < Φ. We have ⊂Σ · ⊂Σ = ⊂Σ by the choice of
Φ, so that there is a surjection g : ⊂Σ ≤ ⊂Σ × ⊂Σ , and hence also a surjection
g∗: ⊂Σ ≤ (σ + 1) × (σ + 1). But then f ◦ g∗: ⊂Σ ≤ ⊂Φ is surjective, contradicting
the fact that Σ < Φ and ⊂Φ is a cardinal. �

Hessenberg’s Theorem 4.6 yields that cardinal addition and multiplication are
trivial.

Corollary 4.7 For all Φ, Σ,⊂Φ + ⊂Σ = ⊂Φ · ⊂Σ = ⊂max{Φ,Σ}.

Proof Assume without loss of generality that Φ ∈ Σ. Then

⊂Σ ∈ ⊂Φ + ⊂Σ ∈ ⊂Φ · ⊂Σ ∈ ⊂Σ · ⊂Σ = ⊂Σ,

the last equality being true by Hessenberg’s Theorem 4.6. �
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Cardinal exponentiation is a different matter.

Lemma 4.8 For all β , 2β = P(β).

Proof 2β = the cardinality of the set of all functions f : β ≤ 2 = {0, 1}, which is
the same as the cardinality of the set P(β). �
Corollary 4.9 β+ ∈ 2β .

Cantor’sContinuum Hypothesis, abbreviated byCH, may now be restated as 2⊂0 =
⊂1(= ⊂+

0 ). The assertion that

∞Φ 2⊂Φ = ⊂Φ+1 (4.1)

is called the Generalized Continuum Hypothesis and is abbreviated by GCH. We
shall see that GCH as well as ¬CH are consistent with ZFC (cf. Theorems 5.31 and
6.33).

Definition 4.10 Let Φ be an ordinal. A function f : A ≤ Φ is called cofinal in Φ iff
for all Σ < Φ there is some a ∼ A such that f (a) ⇒ Σ. The cofinality of Φ, written
cf(Φ), is the least Σ ∈ Φ such that there is a cofinal f : Σ ≤ Φ.

Notice that cf(Φ) is defined for all Φ, as the identity on Φ is always cofinal in Φ.
cf(Φ + 1) = 1 for all Φ, so that cf(Φ) is only interesting for limit ordinals Φ.

For instance, cf(α) = α = cf(α + α) = cf(α · 3) = . . . = cf(α · α) = . . . =
cf(αα).

The fact that Σ = cf(Φ) is witnessed by a monotone function as follows. Let
Σ = cf(Φ). Let f : Σ ≤ Φ be cofinal. Define f ∗: Σ ≤ Φ as follows: f ∗(τ) =
sup{ f (λ): λ < τ} for τ < Σ. Notice that in fact for every τ < Σ, f ∗(τ) < Φ, as
otherwise f � τ would witness that cf(Φ) ∈ τ < Σ = cf(Φ). f ∗ is thus well-defined
and cofinal, and of course if τ ∈ τ ∪, then f ∗(τ) ∈ f ∗(τ ∪). If ρ : χ ≤ ran( f ∗)
is the monotone enumeration of ran( f ∗), then χ ∈ cf(Φ) and thus χ = cf(Φ). Of
course, ρ is then strictly monotone. ρ is also continuous in the sense that for all limit
ordinals χ ∼ dom(ρ), ρ(χ ) = sup({ρ(χ̄ ) : χ̄ < χ }).
Definition 4.11 Let Φ be an ordinal. Φ is called regular iff cf(Φ) = Φ, and Φ is called
singular iff cf(Φ) < Φ.

Examples of singular cardinals are ⊂α, ⊂α+α, etc., or more generally all ⊂ε where
ε is a limit ordinal with ε < ⊂ε. However, ε = ⊂ε does not imply that ε is regular,
cf. Problem 4.5.

Lemma 4.12 For every ordinal Φ, cf(Φ) is regular.

Proof Let Σ = cf(Φ). We need to see that cf(Σ) = Σ. Let f : Σ ≤ Φ be cofinal, and
let g: cf(Σ) ≤ Σ be cofinal. By the above observation, we may and shall assume
that f is monotone. Consider f ◦ g: cf(Σ) ≤ Φ. If τ < Φ, then there is some
λ < Σ with f (λ) ⇒ τ , and then there is some ζ < cf(Σ) with g(ζ ) ⇒ λ. But then
f ◦ g(ζ ) = f (g(ζ )) ⇒ f (λ) ⇒ τ by the monotonicity of f . I.e., f ◦ g is cofinal, so
that Σ = cf(Σ). �
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Lemma 4.13 Let Φ be regular; then Φ is a cardinal.

Proof Every bijection (or just surjection) f : Φ ≤ Φ is cofinal. �
Corollary 4.14 For every ordinal Φ, cf(Φ) is a regular cardinal.

Lemma 4.15 Let β be an infinite successor cardinal. Then β is regular.

Proof Let β = μ+. Suppose that cf(β) < β , i.e., cf(β) ∈ μ by Lemma 4.13. Let
f : μ ≤ β be cofinal. Let (gτ : τ < μ) be such that for each τ < μ, gτ : μ ≤ f (τ)

is surjective. (Here we use AC, the axiom of choice.) Let h : μ ≤ μ×μ be bijective
(cf. Theorem 4.6). We may then define a surjection F : μ ≤ β as follows. Let
λ < μ. Let (Φ, Σ) = h(λ), and set F(λ) = gΦ(Σ). But because μ < β and β is a
cardinal, there can’t be such a surjection. �

We thus get that ⊂0,⊂1,⊂2, . . . are all regular, whereas cf(⊂α) = α < ⊂α. ⊂α+1
is again regular, etc.

Felix Hausdorff (1868–1942) asked whether every limit cardinal is singular.
This question leads to the concept of “large cardinals,” which will be discussed in
detail below and in later chapters, cf. Definitions 4.41, 4.42, 4.48, 4.49, 4.54, 4.60,
4.62, 4.68, and 10.76. They are ubiquitous is current day set theory.

We now want to look at β, ε �≤ βε.
Notice that 1β = 1, but for every infinite cardinal β, 2β ∈ ββ ∈ (2β)β = 2β·β =

2β , i.e., 2β = ββ . Therefore, μβ = 2β for all infinite β and 2 ∈ μ ∈ β .
If β is a limit cardinal, then we write 2<β for supμ<β2

μ. More generally, we write
ε<β for supμ<βεμ.

Lemma 4.16 If β is a limit cardinal, then 2β = (2<β)cf(β). In particular, if β is a
limit cardinal with 2<β = β , then 2β = βcf(β).

Proof Let β be an arbitrary limit cardinal, let f : cf(β) ≤ β be cofinal, and let us
write βi for f (i), where i < cf(β). For i < cf(β), let gi : P(βi ) ≤ 2<β be an
injection. We may define

Φ : P(β) ≤ cf(β)(2<β)

by letting Φ(X)(i) = gi (X ∩ βi ), where X ⊂ β and i < cf(β). Obviously, Φ is
injective. Therefore,

2β ∈ (2<β)cf(β) ∈ (2β)cf(β) = 2β·cf(β) = 2β ,

so that in fact 2β = (2<β)cf(β). �
Corollary 4.17 Let β be a singular limit cardinal and assume that there are μ0 < β

and ε such that 2μ = ε whenever μ0 ∈ μ < β . Then 2β = ε.

Proof Let μ ⇒ μ0 be such that μ ⇒ cf(β). Then, using Lemma 4.16, ε ∈ 2β =
εcf(β) = (2μ)cf(β) = 2μ·cf(β) = 2μ = ε. �

The expression βcf(β) will reappear in the statement of the Singular Cardinals
Hypothesis, cf. (4.2) below.
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Definition 4.18 Let β be an infinite cardinal. We then say that a set x is hereditarily

smaller than β iff TC({x}) < β . We let

Hβ = {x : x is hereditarily smaller than β} .

We also write HF (“hereditarily finite”) instead of H⊂0 and HC (“hereditarily
countable”) instead of H⊂1 .

It is not hard to show that Hβ is a set for every infinite cardinal β and that Card(Hβ) =
2<β, cf. Poblem 4.10.

The following is often referred to as the Hausdorff Formula.

Theorem 4.19 (Hausdorff) For all infinite cardinals β, ε, (β+)ε = βε · β+.

Proof Suppose first that β+ ∈ ε. Then (β+)ε = 2ε = βε · β+.
Let us now assume that β+ > ε. Then, as β+ is regular by Lemma 4.15, every

f : ε ≤ β+ is bounded, i.e., there is some τ < β+ with ran( f ) ⊂ τ . Therefore
(β+)ε = Card(ε(β+)) = Card(

⋃
τ<β+ ετ) = βε · β+. �

We may define infinite sums and products as follows. Let f be a function with
dom( f ) = I (where I is any non-empty set) and such that f (i) is a cardinal for
every i ∼ I . Let us write βi for f (i), where i ∼ I . We then define

∑

i∼I

βi = Card

(
⋃

i∼I

(βi × {i})
)

,

and ∏

i∼I
βi = the cardinality of the set of all functions g

with dom(g) = I and g(i) ∼ βi for all i ∼ I.

This generalizes the earlier definitions of β + ε and β · ε.
It is not hard to verify that if β is a limit cardinal, then cf(β) may be characterized

as the least ε such that there is a sequence (βi : i < ε) of cardinals less than β with
β = ∑

i<ε βi (cf. Problem 4.6).
If Ai is a set for each i ∼ I (where I is any “index” set), then we write Xi∼I Ai for

the set of all functions g with dom(g) = I and g(i) ∼ Ai for all i ∼ I . The axiom
of choice says that Xi∼I Ai ∧= ⊃ provided that I ∧= ⊃ and Ai ∧= ⊃ for all i ∼ I . We
have that

∏
i∼I βi = Card(Xi∼I βi ).

Theorem 4.20 (König) Let I ∧= ⊃, and suppose that for every i ∼ I , βi and εi are
cardinals such that βi < εi . Then

∑
i∼I βi <

∏
i∼I εi .

Proof Let f : ⋃
i∼I (βi × {i}) ≤ Xi∼I εi . We need to see that f is not surjective.

Let i ∼ I . Look at

{τ ∼ εi : ¬ ⊕Φ ∼ βi f (Φ, i)(i) = τ} .
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As βi < εi , this set must be non-empty, so that we may let τi be the least τ such that
for all Φ ∼ βi , f (Φ, i)(i) ∧= τ .

Now let g ∼ Xi∼I εi be defined by g(i) = τi for i ∼ I . If i ∼ I and Φ ∼ βi , then
f (Φ, i)(i) ∧= τi = g(i), i.e., f (Φ, i) ∧= g. Therefore, g ∧∼ ran( f ). �

Corollary 4.21 For all infinite cardinals β , cf(2β) > β and βcf(β) > β .

Proof Let I = β , and let βi < 2β for all i ∼ I . In order to show that cf(2β) > β ,
it suffices to show that

∑
i∼I βi < 2β . Set εi = 2β for all i ∼ I . Then

∑
i∼I βi <∏

i∼I εi = Card(β(2β)) = (2β)β = 2β .
To see that βcf(β) > β , let f : cf(β) ≤ β be cofinal, and write I = cf(β) and

βi = f (i) for i ∼ I . Set εi = β for all i ∼ I . Then β ∈ ∑
i∼I βi <

∏
i∼I εi =

Card(cf(β)β) = βcf(β). �
The Singular Cardinal Hypothesis, abbreviated by SCH, is the statement that for

all singular limit cardinals β ,

βcf(β) = 2cf(β) · β+. (4.2)

Notice that βcf(β) ⇒ 2cf(β) · β+ holds for all infinite β by Corollary 4.21, so that
SCH says that βcf(β) has the minimal possible value. Moreover, if β is regular, then
2cf(β) ·β+ = 2β ·β+ = 2β = ββ = βcf(β), so that (4.2) is always true for regular β . A
deep theorem of R. Jensen will say that the negation of SCH implies the existence
of an object called 0#, cf. Corollary 11.61.

If GCH holds true and β is a singular limit cardinal, then βcf(β) = 2β = β+ =
2cf(β) · β+ using Lemma 4.16. Therefore, GCH implies SCH.

Lemma 4.22 Let β be a limit cardinal, and suppose that SCH holds below β , i.e.,
μcf(μ) = 2cf(μ) · μ+ for every (infinite) μ < β . Then for every (infinite) μ < β and
for every infinite ε,

με =

⎧
⎪⎪⎨

⎪⎪⎩

2ε if μ ∈ 2ε,

μ+ if μ > 2ε is a limit cardinal of cofinality ∈ ε, and
μ if μ > 2ε is a successor cardinal or a limit cardinal

of cofinality > ε.

Proof by induction on μ, fixing ε. If μ ∈ 2ε, then με ∈ (2ε)ε = 2ε ∈ με, and thus
με = 2ε. If μ = ν+ > 2ε, μ < β , then με = (ν+)ε = νε · ν+ = ν+ = μ by the
Hausdorff Formula 4.19 and the inductive hypothesis.

Now let μ < β , μ > 2ε, be a limit cardinal, and let (Φi : i < cf(μ)) be cofinal in
μ, where Φi > 2ε for all i < cf(μ). By the inductive hypothesis (cf. also Problem
4.16) and as we assume SCH to hold below β , we have that

με ∈ ( ⎛

i<cf(μ)

Φi
)ε =

⎛

i<cf(μ)

(Φε
i ) ∈

⎛

i<cf(μ)

Φ+
i ∈

⎛

i<cf(μ)

μ = μcf(μ) = 2cf(μ) · μ+.



40 4 Cardinals

Therefore, if cf(μ) ∈ ε, then with the help of Corollary 4.21 we get that μ+ ∈
μcf(μ) ∈ με ∈ 2ε · μ+ = μ+, so that με = μ+. On the other hand, if ε < cf(μ),
then every f : ε ≤ μ is bounded, so that by the inductive hypothesis

με ∈
∑

i<cf(μ)

Φε
i ∈

∑

i<cf(μ)

Φ+
i ∈ cf(μ) · μ = μ ∈ με,

so that με = μ. �
In order to prove more powerful statements in cardinal arithmetic, we need the

concept of a “stationary” set.

4.2 Stationary Sets

Definition 4.23 Let A be a set of ordinals. A is called closed iff for all ordinals
Φ, sup(A ∩ Φ) ∼ A. If χ is an ordinal, then A is unbounded in χ iff for all τ <

χ, (A∩χ )\τ ∧= ⊃. A is called ξ-closed,where ξ is an infinite regular cardinal, iff for all
ordinalsΦwith cf(Φ) = ξ and such that A∩Φ is unbounded inΦ,Φ = sup(A∩Φ) ∼ A.
A is called club in Φ iff A ⇐{Φ} is closed and A is unbounded in Φ. A is called ξ-club
in Φ, where ξ is an infinite regular cardinal, iff A⇐{Φ} is ξ-closed and A is unbounded
in Φ.

A set A of ordinals is closed iff it is ξ-closed for every ξ, iff it is a closed subset of
sup(A) in the topology generated by the non-empty open intervals below Φ. For any
set A of ordinals we usually denote by A∪ the set of limit points of A, where Φ is a
limit point of A iff for all Σ < Φ there is some χ ∼ A with Σ < χ < Φ. A∪ is always
closed. Also, e.g., A is closed iff A∪ ⊂ A ⇐ {sup(A)}.

For any β , the cofinality of β is the least size of a subset of β which is unbounded
in β (cf. Problem 4.7). If C ⊂ β is club, where cf(β) > α, then C ∪ is also club in β .
If ρ : cf(β) ≤ β is strictly monotone, continuous, and cofinal, then ran(ρ) is club
in β , and if cf(β) > α, then the set of limit points of ran(ρ) is club in β and consists
of points of cofinality strictly less than cf(β).

Definition 4.24 Let X ∧= ⊃ be a set. F ⊂ P(X) is called a filter on X iff

(1) F ∧= ⊃,
(2) ∞a∞b(a ∼ F ≥ b ∼ F ≤ a ∩ b ∼ F), and
(3) ∞a∞b(a ∼ F ≥ a ⊂ b ⊂ X ≤ b ∼ F).

F is called non-trivial iff ⊃ ∧∼ F . F is called an ultrafilter iff for every a ⊂ X , either
a ∼ F or else X \ a ∼ F .

Let μ be a cardinal. Then F is called < μ-closed iff for all Φ < μ and for all
{Xi : i < Φ} ⊂ F ,

⋂{Xi : i < Φ} ∼ F .

Notice that every filter is < α-closed. If Φ is a limit ordinal, then
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{X ⊂ Φ : ⊕Σ < Φ Φ \ Σ ⊂ X}

is a non-trivial < cf(Φ)-closed filter on Φ, called the Fréchet filter (on Φ). Every
filter can be extended to an ultrafilter, cf. Problem 4.11.

Lemma 4.25 Let Φ be an ordinal such that cf(Φ) > α, and let FΦ be the set of all
A ⊂ Φ such that there is some B ⊂ A which is club in Φ. Then FΦ is a (non-trivial)
< cf(Φ)-closed filter on Φ.

Proof We need to see that if Σ < cf(Φ) and Ai is club in Φ for every i ∼ Σ, then⋂
i∼Σ Ai is club in Φ. Well, (

⋂
i∼Σ Ai ) ⇐ {Φ} is certainly closed, so that it suffices

to verify that
⋂

i∼Σ Ai is unbounded in Φ. Let τ < Φ. We define f : Σ · α ≤ Φ as

follows.3 For n ∼ α and i ∼ Σ we let f (Σ · n + i) be the least element of Ai which
is bigger than sup({ f (λ) : λ < Σ · n + i} ⇐ {τ}). Notice that this is welldefined as
Σ · α < cf(Φ) and each Ai is unbounded in Φ.

Let σ = sup{ f (λ) : λ < Σ · α}. We have that σ < Φ and in fact σ ∼ ⋂
i∼Σ Ai ,

because every Ai is closed; notice that for each i ∼ Σ, σ = sup{ f (Σ · n + i) : n ∼
α} = sup(Ai ∩ σ). �

FΦ as in this lemma is called the club filter on Φ.

Definition 4.26 Let Φ be regular, and let Xτ ⊂ Φ for all τ < Φ. The diagonal inter-

section of Xτ , τ < Φ, abbreviated by Δτ<Φ Xτ , is the set
⎝
λ < Φ: λ ∼ ⋂

τ<λ Xτ

⎞
.

Definition 4.27 Let Φ be regular, and let F be a filter on Φ. F is called normal iff
for all

⎠
Xτ : τ < Φ

} ⊂ F,Δτ<Φ Xτ ∼ F .

Lemma 4.28 Let Φ be regular, and let FΦ be the club filter on Φ. Then FΦ is normal.

Proof We need to see that if Aτ is club in Φ for every τ < Φ, then Δτ<Φ Aτ is
club in Φ. By replacing Aτ by

⋂
λ∈τ Aλ if necessary, we may and shall assume that

Aτ ∪ ⊂ Aτ whenever τ ∈ τ ∪. (Notice that every
⋂

λ∈τ Aλ is again club inΦ by Lemma
4.25.) In order to see that (Δτ<Φ Aτ )⇐{Φ} is closed, let ξ < Φ be a limit ordinal such
that ξ = sup((Δτ<Φ Aτ )∩ ξ). We want to argue that ξ ∼ Δτ<Φ Aτ , i.e., ξ ∼ Aτ for all
τ < ξ. Well, if τ ∈ τ ∪ < ξ, then there is some λ with τ ∪ < λ < ξ and λ ∼ Δτ̄<Φ Aτ̄ ,
i.e., λ ∼ ⋂

τ̄<λ Aτ̄ , in particular λ ∼ Aτ . This shows that ξ = sup(Aτ ∩ ξ) for all
τ < ξ; hence ξ ∼ Aτ for all τ < ξ.

In order to see that Δτ<Φ Aτ is unbounded in Φ, let λ < Φ. We construct a
sequence λn, n ∼ α, as follows. Let λ0 = λ. If λn is defined, then let λn+1 be the
least λ > λn such that λ ∼ Aλn . We claim that sup{λn : n ∼ α} ∼ Δτ<Φ Aτ . Set
Σ = sup{λn : n ∼ α}. We need to see that Σ ∼ Aτ for all τ < Σ. Let τ < Σ. Then
τ < λn for some n ∼ α. We have that λm+1 ∼ Aλm ⊂ Aλn for all m ⇒ n, so that
Σ = sup{λm+1: m ⇒ n} ∼ Axλn ⊂ Aτ . �
Definition 4.29 Let Φ be an ordinal such that cf(Φ) > α. A ⊂ Φ is called stationary
(in Φ) iff A ∩ C ∧= ⊃ for all C which are club in Φ.

3 Here, Σ · α denotes ordinal multiplication.
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If μ, β are infinite regular cardinals with μ < β , then the set

{Φ < β : cf(Φ) = μ}

is stationary in β (cf. Problem 4.12). This immediately implies that for any regular
β ⇒ ⊂2, Fβ is not an ultrafilter. We shall prove a stronger statement below, cf.
Theorem 4.33.

Definition 4.30 Let X ∧= ⊃, and let F be a filter on X . Then we write

F+ = {a ⊂ X : ∞b ∼ F b ∩ a ∧= ⊃} .

The elements of F+ are called the positive sets (with respect to F).

The stationary sets are therefore just the positive sets with respect to the club filter.

Lemma 4.31 Let β be regular, and let F be a filter on β . The following statements
are equivalent.

(a) F is normal.
(b) Let f : β ≤ β be such that Y = {τ < β : f (τ) < τ} ∼ F+. There is then some

Φ < β and some X ∼ F+, X ⊂ Y , such that f (τ) = Φ for all τ ∼ X.

Proof (a) =⇒ (b): Let f be as in (b). If there is no Φ < β and X ∼ F+, X ⊂ Y ,
such that f (τ) = Φ for all τ ∼ X , then for every Φ < β we may pick some XΦ ∼ F
such that f (τ) ∧= Φ for all τ ∼ XΦ ∩ Y . (Here we use AC, the axiom of choice.) By
definition

τ ∼ Y ∩ ΔΦ<β XΦ =⇒ f (τ) ⇒ τ. (4.3)

By (a), ΔΦ<β XΦ ∼ F , so that by Y = {τ < β : f (τ) < τ} ∼ F+, we may pick
some τ ∼ ΔΦ<β XΦ such that f (τ) < τ . This contradicts (4.3).

(b) =⇒ (a): Let XΦ ∼ F , Φ < β . If ΔΦ<β XΦ /∼ F , then

Y =
⎧
⎨

⎩
τ < β : τ /∼

⋂

Φ<τ

XΦ

⎫
⎬

⎭
∼ F+.

Let f : β ≤ β be such that f (τ) < τ and τ /∼ X f (τ) for all τ ∼ Y . By (b), there is
then some X ∼ F+, X ⊂ Y , and some Φ < β such that τ /∼ XΦ for all τ ∼ X . But
X ∩ XΦ ∧= ⊃, as XΦ ∼ F . Contradiction! �

In the light of Lemma 4.28, Lemma 4.31, applied to the club filter, immediately
gives the following.

Theorem 4.32 (Fodor) Let Φ be regular and uncountable, and let S ⊂ Φ be station-
ary. Let f : S ≤ Φ be regressive in the sense that f (τ) < τ for all τ ∼ S. Then there
is a stationary T ⊂ S such that f � T is constant.
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The following theorem is a strong fromof saying that the clubfilter is not an ultrafilter,
i.e. for any regular uncountable β there are X ⊂ β+ which neither contain nor are
disjoint from a club.

Theorem 4.33 (Solovay) Let β be a regular uncountable cardinal, and let S ⊂ β be
stationary. Then S may be written as a disjoint union of β stationary sets, i.e., there
is (Sτ : τ < β) such that Sτ ⊂ S is stationary in β for every τ < β , Sτ ∩ Sτ ∪ = ⊃
for all τ , τ ∪ < β with τ ∧= τ ∪, and S = ⋃

τ<β Sτ .

Proof Let us first write S = S0 ⇐ S1, where S0 = {Φ ∼ S : cf(Φ) < Φ} and S1 =
{Φ ∼ S : cf(Φ) = Φ}. At least one of S0, S1 must be stationary.

Claim 4.34 There is some stationary S̄ ⊂ S and some sequence (AΦ : Φ ∼ S̄) such
that AΦ ⊂ Φ is club in Φ and AΦ ∩ S̄ = ⊃ for every Φ ∼ S̄.

Proof Suppose first that S0 is stationary. By Theorem 4.32, there is then some sta-
tionary S̄ ⊂ S0 and some regular ε < β such that cf(Φ) = ε for all Φ ∼ S̄. Let
us pick (AΦ : Φ ∼ S̄), where AΦ is club in Φ, otp(AΦ) = ε, and cf(χ ) < ε for all
χ ∼ AΦ . Notice AΦ ∩ S̄ = ⊃ for each Φ ∼ S̄.

Now suppose S0 to be non-stationary, so that S1 is stationary. Let

S̄ = {Φ ∼ S1 : S1 ∩ Φ is non-stationary} .

We must have that S̄ is stationary. To see this, let C ⊂ (β \ (α + 1)) be club, and let
C ∪ ⊂ β be the club of all limit points of C . If Φ = min(S1 ∩ C ∪), then C ∩ Φ is club
in Φ, so that C ∪ ∩ Φ is still club in Φ, as Φ > α is regular; but (C ∪ ∩ Φ) ∩ S1 = ⊃,
so that Φ ∼ C ∩ S̄. We may thus pick (AΦ : Φ ∼ S̄), where AΦ is club in Φ and
AΦ ∩ S̄ ⊂ AΦ ∩ S1 = ⊃ for each Φ ∼ S̄. �

For Φ ∼ S̄, let (χ Φ
i : i < otp(AΦ)) be the monotone enumeration of AΦ .

Claim 4.35 There is some i < β such that for all Σ < β ,

⎠
Φ ∼ S̄ : i < cf(Φ) ≥ χ Φ

i > Σ
}

is stationary in β .

Proof Suppose first that S̄ ⊂ S0, and let again ε < β be such that cf(Φ) = ε for all
Φ ∼ S̄. If Claim 4.35 fails, then for every i < ε there is some Σi < β and some club
Ci ⊂ β such that for all Φ ∼ S̄ ∩ Ci , χ Φ

i ∈ Σi . But then if Σ̃ = sup({Σi : i < ε}) < β

and Φ ∼ (S̄ ∩ ⋂
i<ε Ci ) \ (Σ̃ + 1), then χ Φ

i ∈ Σ̃ for all i < ε, so that AΦ would be
bounded in Φ. Contradiction!

Now suppose that S̄ ⊂ S1, so that cf(Φ) = Φ for every Φ ∼ S̄. If Claim 4.35 fails,
then for every i < β there is some Σi < β and some club Ci ⊂ β such that for all
Φ ∼ S̄ ∩ Ci , either i ⇒ cf(Φ) or else χ Φ

i ∈ Σi . Let D ⊂ β be the club of all Σ < β

such that i < Σ implies Σi < Σ. By Lemma 4.28 we may pick

Φ, Φ∪ ∼ S̄ ∩ Δi<βCi ∩ D,
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with Φ < Φ∪. If i < Φ, then Φ∪ ∼ S̄ ∩Ci , so that χ Φ∪
i ∈ Σi ; but Φ ∼ D, so that Σi < Φ.

I.e., χ Φ∪
i < Φ for all i < Φ. This yields χ Φ∪

Φ ∈ Φ, as AΦ∪ is club; however, clearly

χ Φ∪
i ⇒ i for every i < Φ∪, so that in fact χ Φ∪

Φ = Φ. But then χ Φ∪
Φ S̄. Contradiction! �

Now fix i0 < β such that for all Σ < β ,

⎠
Φ ∼ S̄ : i0 < cf(Φ) ≥ χ Φ

i0 > Σ
}

is stationary in β . Let us recursively define stationary sets Sτ and ordinals Στ for
τ < β as follows.

Fix τ < β , and suppose that Sτ̄ and Στ̄ have already been chosen for all τ̄ < τ .
The set ⎝

Φ ∼ S̄ : χ Φ
i0 > supτ̄<τΣτ̄

⎞

is stationary in β , and we may thus use Fodor’s Theorem 4.32 to pick some Σ >

supτ̄<τΣτ̄ and some stationary S∗ ⊂ S̄ such that for all Φ ∼ S∗, χ Φ
i0

= Σ. Let us set
Sτ = S∗ and Στ = Σ.

The rest is straightforward. �
The Singular Cardinals Hypothesis SCH cannot first fail at a singular cardinal of

uncountable cofinality:

Theorem 4.36 (Silver) Let β be a singular cardinal of uncountable cofinality. If
SCH holds below β , then it holds at β , i.e., if μcf(μ) = 2cf(μ) · μ+ for every μ < β ,
then βcf(β) = 2cf(β) · β+.

Proof Suppose first that β ∈ 2cf(β). Then β < 2cf(β), as cf(2cf(β)) > cf(β) by
Corollary 4.21. I.e., β+ ∈ 2cf(β), and hence βcf(β) ∈ (2cf(β))cf(β) = 2cf(β) =
2cf(β) · β+ ∈ βcf(β). Therefore, SCH holds at β .

Wemay thus assume that 2cf(β) < β . LetC ⊂ β be club in β with otp(C) = cf(β),
let C ∪ be the set of all limit points of C . Let (μi : i < cf(β)) be the monotone
enumeration of C ∪ \ (2cf(β))+. As cf(μi ) < cf(β) for every i < cf(β) (as being
witnessed by C ∩ μi ), Lemma 4.22 gives that μ

cf(β)
i = μ+

i for each i < cf(β). So
for each i < cf(β), we may pick a bijection gi : [μi ]cf(β) ≤ μ+

i .
We now have to count [β]cf(β). To each X ∼ [β]cf(β) we may associate a function

fX : cf(β) ≤ β by setting fX (i) = gi (X ∩ μi ). Obviously, X �≤ fX is injective.
If X, Y ∼ [β]cf(β), then we shall write X ∈ Y iff {i : fX (i) ∈ fY (i)} is stationary.

We must have X ∈ Y or Y ∈ X for any two X, Y ∼ [β]cf(β).

Claim 4.37 Let X ∼ [β]cf(β). Then Card({Y ∼ [β]cf(β) : Y ∈ X}) ∈ β .

ProofLet us fix X ∼ [β]cf(β) for amoment. For each i < cf(β), let us pick an injection
gi : fX (i) + 1 ≤ μi . If Y ∈ X , then the set SX

Y = {i < cf(β): fY (i) ∈ fX (i)} is
stationary, and we may look at

F X
Y : SX

Y ≤ β,
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as being defined by F X
Y (i) = gi ( fY (i)) for i < cf(β). In particular, F X

Y (i) < μi for
every i ∼ SX

Y . Let D be the club of limit ordinals in below cf(β). Then the map which
sends i ∼ SX

Y ∩ D to the least j < cf(β) with F X
Y (i) < μ j is regressive. As SX

Y ∩ D
is still stationary, by Fodor’s Theorem 4.32 there is a stationary set S̄X

Y ⊂ SX
Y and

some i X
Y < cf(β) such that F X

Y (i) < μi X
Y
for all i ∼ S̄X

Y .

If Y, Z ∈ X , S̄X
Y = S̄X

Z , i X
Y = i X

Z , and F X
Y � S̄X

Y = F X
Z � S̄X

Z , then Y = Z . But
there are only

∈ 2cf(β) · cf(β) · (supμ<β μcf(β)) = β

many possible triples (S̄X
Y , i X

Y , F X
Y � S̄Y ), so that there are at most β many Y ∈ X .�

In order to finish the proof of the Theorem, it thus remains to be shown that there
is some A ⊂ P(β) of cardinality β+ such thatP(β) = {Y ⊂ β : ⊕X ∼ A Y ∈ X}.

Let us recursively construct XΦ for Φ < β+ as follows. Given Φ < β+, having
constructed XΣ for all Σ < Φ, we pick XΦ such that for no Σ < Φ, XΦ ∈ XΣ . Notice
that this choice is possible, as {Y ⊂ β : ⊕Σ < Φ Y ∈ XΣ} has size at most β by
Claim 4.37. Set A = {XΦ : Φ < β+}. We must have that P(β) = {Y ⊂ β : ⊕X ∼
A Y ∈ X}, as otherwise there would be some Y ⊂ β with XΦ ∈ Y for all Φ < β+;
but XΦ ∧= XΣ for Φ ∧= Σ, so this is impossible by Claim 4.37. �

Corollary 4.38 Let β be a singular cardinal of uncountable cofinality. If GCH holds
below β , then it holds at β , i.e., if 2μ = μ+ for every μ < β , then 2β = β+.

Proof If 2μ = μ+, then μcf(μ) = μ+, so that βcf(β) = 2cf(β) · β+ by Silver’s
Theorem 4.36. But 2cf(β) < β , so that βcf(β) = β+. By Lemma 4.16, 2β = βcf(β),
which gives 2β = β+. �

Problems 4.17 and 4.18 produce generalizations of Theorem 4.36 and Corollary
4.38.

There is a generalization of stationarity which we shall now briefly discuss.

Definition 4.39 We say thatS ⊂ [θ ]β is stationary in [θ ]β iff for every A ∗ θ and
for every algebra A = (A; ( fi : i < β̄)) on A with at most β̄ ∈ β many functions
fi , i < β̄ , there is some X ∼ S which is closed under all the fi , i < β̄ , from A, i.e.,
f ∪∪
i [X ]<α ⊂ X for all i < β̄ .

If S ⊂ β+, then S \ β ⊂ [β+]β . It is easy to verify that if S ⊂ β+ is stationary in
β+ in the sense of Definition 4.29, then S \ β is stationary in [β+]β in the sense of
Definition 4.39.

We may call a set X ⊂ [θ ]<β unbounded in [θ ]<β iff for all Y ∼ [θ ]<β there
is some X ∼ X with X ∗ Y , and we may call X ⊂ [θ ]<β closed in [θ ]<β iff
for all (Xi : i < β̄) such that β̄ < β and Xi ∼ X and Xi ⊂ X j for i < j < β̄ ,⋃

i<β̄ Xi ∼ X . We may then call C ⊂ [θ ]<β closed and unbounded (club) in [θ ]<β

iff C is both unbounded and closed in [θ ]<β .
A setX ⊂ [θ ]<β is stationary in [θ ]<β iffX ∩C ∧= ⊃ for all C which are club

in [θ ]<β . Then S ⊂ [θ ]β is stationary in [θ ]<β+
iff S is stationary in the sense of

Definition 4.39, cf. Problem 4.15.
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4.3 Large Cardinals

Definition 4.40 A cardinal β is called a strong limit cardinal iff for all cardinals
μ < β , 2μ < β .

Trivially, every strong limit cardinal is a limit cardinal.⊂0 is a strong limit cardinal,
and if β is an arbitray cardinal, then

sup
(⎝

β, 2β , 2(2β ), . . .
⎞)

is a strong limit cardinal above β . There are thus arbitrarily large strong limit cardi-
nals. Also, any limit of strong limit cardinals is a strong limit cardinal.

Definition 4.41 A cardinal β is called weakly inaccessible iff β is an uncountable
regular limit cardinal.A cardinal β is called (strongly) inaccessible iff β is an uncount-
able regular strong limit cardinal.

Trivially, every (strongly) inaccessible cardinal is weakly inaccessible. It can be
shown that there may be weakly inaccessible cardinals which are not strongly inac-
cessible (cf. Problem 6.13). Moreover, the existence of weakly inaccessible cardinals
cannot be proven in ZFC (cf. Problem 5.16). Hausdorff’s question (cf. p. 35) as to
whether every uncountable limit cardinal is singular thus does not have an answer in
ZFC.

Large cardinals may be used to prove true statements which are unprovable in
ZFC, cf. e.g. Theorems 12.20 and 13.7. They may also be used for showing that
certain statements are consistent with ZFC, cf. e.g. Theorem 8.23.

Definition 4.42 A cardinal β is called weakly Mahlo iff β is weakly inaccessible
and the set

{μ < β : μis regular}

is stationary. A cardinal β is called (strongly) Mahlo iff β is (strongly) inaccessible
and the set

{μ < β : μis regular}

is stationary.

Again, every (strongly)Mahlo cardinal is weaklyMahlo, and there may be weakly
Mahlo cardinals which are not (strongly)Mahlo. If β is weakly/stronglyMahlo,
then there are β weakly/strongly inaccessible cardinals below β (cf. Problem 4.21).

In the proof of Claim 1 of the proof of Solovay’s Theorem 4.33, S1 can only be
stationary if β is weakly Mahlo.

Definition 4.43 Let β be an infinite cardinal. A partially ordered set (T,<T ) is
called a tree iff for all s ∼ T , {t ∼ T : t <T s} is well-ordered by <T . In this case,
we write lvT (s) for the order-type of {t ∼ T : t <T s} and call it the level of s in T .
We also write ht(T ) for sup({lvT (s) + 1 : s ∼ T }) and call it the height of T .
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A set c ⊂ T is a chain in T iff for all s, t ∼ c, s <T t or s = t or t <T s. A chain
c ⊂ T is called a branch through T iff for all s ∼ c and t <T s, t ∼ c. A branch b
through T is called maximal iff there is no branch b∪ � b through T , and a branch b
through T is called cofinal iff for all Φ < ht(T ) there is some s ∼ b with lvT (s) = Φ.

A set a ⊂ T is an antichain iff for all s, t ∼ a with s ∧= t neither s <T t nor
t <T s.

Definition 4.44 Let β be an infinite cardinal, and let (T,<T ) be a tree. We call
(T,<T ) a β-tree iff the following hold true.

(1) ht(T ) = β ,
(2) there is a unique r ∼ T with lvT (r) = 0 (the root of T ),
(3) for every s ∼ T and every Φ > lvT (s), Φ < β , there is some t ∼ T with s <T t

and ht(T ) = Φ,
(4) for every s ∼ T there are t , t ∪ ∼ T , t ∧= t ∪, with s <T t , s <T t ∪ and lvT (t) =

lvT (t ∪) = lvT (s) + 1, and
(5) for every Φ < β , Card({s ∼ T : lvT (s) = Φ}) < β.

A β-tree (T,<T ) is called β-Aronszajn iff there is no cofinal branch through T .
A β-tree (T,<T ) is called β-Souslin iff T has no antichain of size β .
A β-tree (T,<T ) is called β-Kurepa iff T has at least β+ cofinal branches.

Notice that if (T,<T ) is β-Souslin, then (T,<T ) is β-Aronszajn. (Cf. Problem
4.22.)

Wemay turn any tree (T,<T )with properties (1) and (5) fromDefinition 4.44 into
a β-tree without adding cofinal branches or antichains of size β as follows, provided
that β be regular.

Lemma 4.45 Let β ⇒ ⊂0 be a regular cardinal. If there is a tree with properties (1)
and (5) from Definition 4.44 which has no cofinal branch and no antichain of size β ,
then there is a β-Souslin tree.

Proof Let (T,<T ) be a tree with properties (1) and (5) from Definition 4.44. Let

T0 = {s ∼ T : ∞Φ < β(Φ > lvT (s) ≤ ⊕t ∼ T (lvT (t) = Φ ≥ s <T t))} .

Then T0 = (T0,<T � T0) is a tree with property (5) of Definition 4.44. Of course,
T0 ⊂ T and lvT0(s) = lvT (s) for all s ∼ T0.

Suppose that (1) of Definition 4.44 failed, and let Φ = ht(T0) < β . For each s ∼ T
with lvT (s) = Φ we must then have that σ(s) = sup({lvT (t) : s <T t}) < β , so that
sup({σ(s) : s ∼ T ≥ lvT (s) = Φ}) < β , as β is regular and T satisfies (5). But then
T cannot have satisfied (1). Contradiction!

Therefore, T0 satisfies (1) and (5). Let us show that T0 satisfies (3). Let s ∼ T0 and
Φ > lvT0(s), Φ < β . As s ∼ T0, for every Σ > Φ we may pick some tΣ ∼ T , s <T tΣ
with lvT (tΣ) = Σ, and we may let uΣ ∼ T be unique such that s <T uΣ <T tΣ ,
lvT (uΣ) = Φ. As β is regular and T satisfies (5), there is some cofinal X ⊂ β such
that uΣ = uΣ ∪ for all Σ, Σ ∪ ∼ X . Write u = uΣ , where Σ ∼ X . We must then have
that u ∼ T0, where s <T u and lvT (u) = Φ. This shows that T0 satisfies (3).
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Now pick r ∼ T0 with rkT0(r) = 0, and let

T1 = {s ∼ T0 : r <T s} .

Then T1 = (T1,<T � T1) is a tree which satisfies (1), (2), (3), and (5) from Definition
4.44. We are left with having to arrange (2).

Now let us set

T2 = {s ∼ T1 : ¬⊕t <T s ∞r ∼ T1 (t ∈T r ≥ lvT1(r) ∈ lvT1(s) −≤ r ∈T s)}.

Then (T2,<T � T2) is again a tree.
T2 trivially satisfies (2). As for (5), let Φ < β . If L = {s ∼ T2 : lvT2(s) = Φ} has

size ⇒ β , then L cannot be an antichain in T , so that there are s, t ∼ L with s <T t
or t <T s. But then lvT2(s) ∧= lvT2(t). Contradiction! So T2 satisfies (5).

As for (1) and (3), let us fix s ∼ T2. For each Φ > lvT1(s), let us pick some tΦ ∼ T1
such that lvT1(tΦ) = Φ. Let uΦ ∈T tΦ be such that uΦ ∼ T2 and

∞r ∼ T1
(
uΦ ∈T r ≥ lvT1(r) ∈ lvT1(tΦ) −≤ r ∈T tΦ

)
.

If
⎠
lvT2(uΦ) : Φ < β

}
were bounded in β , then by (5) for T2 there would be some

X ⊂ β of size β such that uΦ = uΦ∪ for all Φ, Φ∪ ∼ X . But then {s ∼ T : ⊕Φ ∼ X s ∈T

tΦ} would be a cofinal branch through T . Contradiction! Hence {lvT2(uΦ) : Φ < β}
is unbounded in β , and (1) and (3) are shown for T2.

(4) is clear by construction. �

Lemma 4.46 (König) There is no ⊂0-Aronszajn tree.

Proof Cf. Problem 4.20. �
The following Lemma is in some sense a special case of Lemma 11.68.

Theorem 4.47 (Aronszajn) Let β be an infinite cardinal with β<β = β . There is
then a β+-Aronszajn tree.

Notice that ⊂<⊂0
0 = ⊂0, so that Theorem 4.47 yields the existence of an ⊂1-

Aronszajn tree. As βcf(β) > β by Corollary 4.21, β<β = β implies that β is a
regular cardinal. By Theorem 4.47, if there is no ⊂2-Aronszajn tree, then CH fails.

Proof of Theorem 4.47. Let

U =
⎝

s ∼ Φβ : Φ < β+ ≥ s is injective ≥ β \ ran(s) = β
⎞

We construe U as a tree by having it ordered under end-extension. The tree T which
we are about to construct will be a subtree ofU and also closed under initial segments
and ordered by end-extension. Notice that U cannot have any cofinal branch, as this
would yield an injection from β+ into β , so that the tree T we are about to construct
cannot have a cofinal branch either.
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Because T ⊂ U will be closed under initial segments and ordered by end-
extension, we will have that lvT (s) = dom(s) for every s ∼ T . We shall construct

TΦ = {s ∼ T : lvT (s) = dom(s) < Φ}

by induction on Φ. We maintain the following conditions.

(1) β \ ran(s) = β for all s ∼ T .

(2) If s ∼ T , β \ ran(s) = A ⇐ B, where A ∩ B = ⊃ and A = B = β , and if
lvT (s) < Σ < β+, then there is some t ∼ T with lvT (t) = Σ, s ⊂ t , and
ran(t) ⊂ ran(s) ⇐ A.

(3) TΦ ∈ β for all Φ < β+.
(4) Let ε < β+ be a limit ordinal with cf(ε) < β . Let C ⊂ ε be club in ε with

otp(C) = cf(ε), and let (εi : i < cf(ε)) be the monotone enumeration of C . Let

β = ⋃
i<cf(ε) Ai ⇐ B, where Ai ∩ A j = ⊃, Ai ∩ B = ⊃, and B = Ai = β for

i ∧= j , i , j ∈ cf(ε). Let s : ε ≤ β be such that

s � εi ∼ Tεi +1 ≥ s∪∪εi ⊂
⋃

j∈i+1

A j

for every i < cf(ε). Then s ∼ Tε+1.

Well, T1 = {⊃}, and Tε = ⋃
Φ<ε TΦ for limit ordinalsε < β+. IfΦ = Σ+1 < β+,

where Σ = χ + 1 is a successor ordinal, then we just let TΦ consist of all injections
s ∼ Σβ such that s � χ ∼ TΣ . Notice that (1) through (4) for the tree constructed so
far follows from (1) through (4) for the ealier levels of the tree.

Now suppose that Φ = ε + 1 < β+, where ε is a limit ordinal, and Tε already
has been constructed.

Let us first assume that cf(ε) < β . We then let Tε+1 consist of all s ∼ εβ which
need to be there in order to satisfy (4). Notice that there are εcf(ε) ∈ β many clubs
in ε of order type cf(ε), and for each such club C there are ∈ βcf(ε) = β possible

choices of s ∼ εβ such that for all τ ∼ C , s � τ ∼ Tτ+1. Hence Tε+1 ∈ β , and
(3) is maintained. (1) is ensured by the fact that for s ∼ Tε+1 as being given by (4),
ran(s) ∩ B = ⊃.

Let us nowassume that cf(ε) = β . Let us fixC ⊂ ε club inεwith otp(C) = ε, and
let (εi : i < β) be the monotone enumeration of C . To each s ∼ Tε we shall assign
some t (s) ∼ U with dom(t (s)) = ε as follows. By (1), β \ ran(s) has size β , and we
may hence pick sets Ai , i < β , and B such that ran(s) ⊂ A0, β = ⋃

i<β Ai ⇐ B,

Ai ∩ A j = ⊃, Ai ∩ B = ⊃, and B = Ai = β for i , j < β , i ∧= j . Using (2) and (4),
we may construct some t : ε ≤ β extending s such that for every i < β ,

t � εi ∼ Tεi +1 ≥ t ∪∪εi ⊂
⋃

j∈i+1

A j .
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Let us write t (s) for this t . We may then set

Tε+1 = {t (s) : s ∼ Tε} .

It is easy to verify that (1) through (4) remain true. �
It is much harder to construct a β+-Souslin tree. For β = ⊂0, this will be done

from a principle called ♦ (cf. Lemma 5.36), and for β ⇒ ⊂1 we shall need ♦β+ and
�β (cf. Lemma 11.68).

Definition 4.48 A cardinal β is said to have the tree property iff there is no β-
Aronszajn tree. A cardinal β is called weakly compact iff β is inaccessible and β

has the tree property.

The following large cardinal concept will be needed for the analysis of the com-
binatorial principle ♦∗

β , cf. Definition 5.37.

Definition 4.49 Let β be a regular uncountable cardinal. Then R ⊂ β is called
ineffable iff for every sequence (Aτ : τ ∼ R) such that Aτ ⊂ τ for every τ ∼ R
there is some S ⊂ R which is stationary in β such that Aτ = Aτ ∪ ∩ τ whenever τ ,
τ ∪ ∼ S, τ ∈ τ ∪.

Trivially, if R ⊂ β is ineffable, then R is stationary. On the other hand, if ε < β is
an infinite regular cardinal, then {τ < β : cf(τ) = ε} is stationary but not ineffable.

If β itself is ineffable, then β is weakly compact and the set

{μ < β : μ is weakly compact }

is stationary in β (cf. Problem 4.24). On the other hand, every measurable cadinal
(cf. Definition 4.54 below) is ineffable, cf. Lemma 4.58.

The study of (non-trivial) elementary embeddings between transitive structures
plays a key role in set theory.

Definition 4.50 Let M , N be transitive sets or classes. We say that ρ : M ≤ N is
an elementary embedding from M to N iff (ran(ρ); ∼) is an elementary substructure
of (N ; ∼), i.e., if for all formulae Θ of the language of set theory and for all a1, . . .,
ak ∼ M ,

(M; ∼) |= Θ(a1, . . . , ak) ≡⇒ (N ; ∼) |= Θ(ρ(a1), . . . , ρ(ak)). (4.4)

The elementary embedding ρ is called non-trivial iff there is some x ∼ M with
ρ(x) ∧= x . The least ordinal Φ with ρ(Φ) ∧= Φ (if it exists) is called the critical point
of ρ , abbreviated as crit(ρ).

Notice that if ρ : M ≤ N is an elementary embedding between transitive sets
or classes, then ρ(Φ) ⇒ Φ for all Φ ∼ M . This is because otherwise there would be
a least Φ with ρ(Φ) < Φ; but then ρ(ρ(Φ)) < ρ(Φ), a contradiction! Therefore, if
crit(ρ) exists, then it is the least Φ ∼ M with ρ(Φ) > Φ.
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We will mostly be concerned with non-trivial elementary embeddings ρ : V ≤
M from V to M , where M is some transitive class. In this situation, M is of course
also a model of ZFC, as by (4.4), the validity of any given axiom of ZFC is moved
up from V to M .

Definition 4.51 An inner model is a transitive proper class model of ZFC.

Let M be a transitive model of (some fragment of) ZFC. For terms like VΦ , rk(x),
ε+, etc., we shall denote by (VΦ)M , rkM (x), ε+M , etc., the respective objects as
defined in M , e.g. ε+M = the unique τ such that

(M; ∼) |= τ is the cardinal successor of ε,

etc.

Lemma 4.52 Let ρ : V ≤ M be a non-trivial elementary embedding, where M is
a transitive class. The following hold true.

(a) ρ(VΦ) = (Vρ(Φ))
M and ρ(rk(x)) = rk(ρ(x)) for all Φ and all x.

(b) There is some ordinal τ with ρ(τ) ∧= τ .

Let β be the least ordinal τ with ρ(τ) ∧= τ . The following hold true.

(c) ρ is continuous at every ordinal of cofinality less than β , i.e., if Φ is a limit
ordinal and cf(Φ) < β , then ρ(Φ) = sup(ρ ∪∪Φ).

(d) β is regular and uncountable.
(e) (Vβ+1)

M = Vβ+1.
(f) β is an inaccessible cardinal.
(g) β is a Mahlo cardinal.
(h) β is weakly compact.

Proof (a) This is easy.
(b) Let τ be least such that there is some x with rk(x) = τ and ρ(x) ∧= x . We

show that ρ(τ) ∧= τ .
Suppose that ρ(τ) = τ , i.e., τ = rk(x) = rk(ρ(x)). Then by the choice of τ ,

ρ(y) = y for all y ∼ x ⇐ ρ(x). This means that

y ∼ x ≡⇒ y = ρ(y) ∼ ρ(x)

for all y ∼ x ⇐ ρ(x), so that ρ(x) = x . Contradiction!
(c) Let f : cf(Φ) ≤ Φ be cofinal in Φ, where cf(Φ) < β . Then ρ( f ) : cf(Φ) ≤

ρ(Φ) is cofinal in ρ(Φ) by the elementarity of ρ . But ran(ρ( f )) ⊂ ρ ∪∪Φ, so that
ρ(Φ) = sup(ρ ∪∪Φ).

(d) If β were singular, then ρ(β) = β using (c). It is easy to see that β > ⊂0.
(e) (Vβ)M = Vβ follows from (a) and the choice of β . Therefore, if X ⊂ Vβ , then

X = ρ(X) ∩ Vβ ∼ M , so that Vβ+1 ⊂ (Vβ+1)
M . Trivially, (Vβ+1)

M ⊂ Vβ+1.
(f) If β is not inaccessible, then by (d) we may choose ε < β and a surjective

f : P(ε) ≤ β . By (e) and the elementarity of ρ , ρ( f ) : P(ε) ≤ ρ(β) is
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surjective. However, for all X ⊂ ε, f (X) < β and thus f (X) = ρ( f (X)) =
ρ( f )(ρ(X)) = ρ( f )(X). This shows that in fact ρ( f ) = f , so that ρ( f ) cannot be
a surjection onto ρ(β) > β after all. Contradiction!

(g) Let C ⊂ β be club in β . Then ρ(C) is club in ρ(β) by the elementarity of ρ .
Also, ρ(C) ∩ β = C . Therefore, β ∼ ρ(C). By (e),

(M; ∼) |= β is inaccessible,

so that
(M; ∼) |= ⊕τ (τ is inaccessible and τ ∼ ρ(C)).

By the elementarity of ρ ,

(V ; ∼) |= ⊕τ (τ is inaccessible and τ ∼ C).

As C was arbitrary, this shows that β is aMahlo cardinal.
(h): Let (T,<T ) be a β-tree. Writing (ρ(T ),<ρ(T )) = ρ((T,<T )), we have that

(M; ∼) |= (ρ(T ),<ρ(T )) is a ρ(β)-tree.

Let s ∼ ρ(T ) be such that (M; ∼) |= rkρ(T )(s) = β , and set

b = ⎠
t ∼ ρ(T ) : t <ρ(T ) s

}
.

Wemay assumewithout loss of generality that (T,<T ) ∼ Vβ+1, so that ρ(T )∩Vβ =
T and <ρ(T )� T =<T . But then b ∼ M ⊂ V is a cofinal branch through T . �

A cardinal β is called Reinhardt iff there is a non-trivial elementary embedding
ρ : V ≤ V with β = crit(ρ). The following Theorem shows that there are no
Reinhardt cardinals (in ZFC).

Theorem 4.53 (K. Kunen) There is no non-trivial elementary embedding
ρ : V ≤ V .

Proof Let β0 = crit(ρ), and recursively define βn+1 = ρ(βn). Set ε = supn<αβn .
By Lemma 4.52 (c), ρ(ε) = ε, and therefore also ρ(ε+) = ρ(ε)+ = ε+.

Let S = {Φ < ε+ : cf(Φ) = α}. Because S is a stationary subset of ε+, S may be
partitioned into β0 stationary sets by Theorem 4.33, i.e., we may choose (Si : i < β0)

such that S = ⋃
i<β0

Si , Si ∩ S j = ⊃ for i ∧= j , i , j < β0, and each Si , i < β0, is
stationary in ε+.

Set (Ti : i < β1) = ρ((Si : i < β0)). We have that Ti ∩ Tj = ⊃ for i ∧= j , i ,
j < β1, and each Ti , i < β1, is stationary in ε+. Then Tβ0 is a stationary subset of
ε+. By Lemma 4.52 (c) and ρ ∪∪ε+ ⊂ ε+,

C = ⎠
Φ < ε+ : cf(Φ) = α ≥ ρ(Φ) = Φ

}
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is anα-club in ε+. There is hence some Φ ∼ Tβ0 ∩C (cf. Problem 4.12). AsC ⊂ S =⋃
i<β0

Si , there must be some i < β0 with Φ ∼ Si . But then Φ = ρ(Φ) ∼ ρ(Si ) =
Tρ(i), so that Tρ(i) ∩ Tβ0 ∧= ⊃. But β0 = crit(ρ), so that β0 is not in the range of ρ

and therefore ρ(i) ∧= β0. Contradiction! �
Theproof ofTheorem4.53 in fact shows that there canbenonon-trivial elementary

embedding ρ : Vε+2 ≤ Vε+2 with crit(ρ) < ε. We remark that the proof of
Theorem 4.53 uses Theorem 4.33 which in turn makes use of the Axiom of Choice.
It is open whether Theorem 4.53 can be proven in ZF alone; this question leads to
Woodin’s HOD-conjecture, cf. [45, Section 7].

Large cardinal theory studies the question which “fragments” of Reinhardt
cardinals are consistent with ZFC.

Definition 4.54 Let β be a cardinal. A filter F on β is called uniform iff X = β

for every X ∼ F . An uncountable cardinal β is called measurable iff there is a
< β-closed uniform ultrafilter on β . Such a filter is also called a measure on β

It is easy to see that if U is a < β-closed ultrafilter on β , then U is uniform iff for
no τ < β , {τ} ∼ U , i.e., iff U is not generated by a singleton (cf. Problem 4.26).
If we didn’t require a measurable cardinal to be uncountable, then ⊂0 would be a
measurable cardinal.

Theorem 4.55 Let β be a cardinal. The following are equivalent.

(1) β is measurable.
(2) There is a normal < β-closed uniform ultrafilter on β .
(3) There is an inner model M and an elementary embedding ρ : V ≤ M with

critical point β .

Proof (3) =⇒ (2): Let ρ : V ≤ M be an elementary embedding with critical point
β . Let us set

U = Uρ = {X ⊂ β : β ∼ ρ(X)}. (4.5)

We claim that U is a normal < β-closed uniform ultrafilter on β . Well, {τ} /∼ U
for any τ < β , and β ∼ U , as β is the critical point of ρ . U is easily seen to be
an ultrafilter, as ρ(X ∩ Y ) = ρ(X) ∩ ρ(Y ) for all sets X , Y , ρ(X) ⊂ ρ(Y ) for all
X ⊂ Y , and β ∼ ρ(β) = ρ(X) ⇐ ρ(β \ X) for all X ⊂ β . Moreover, if Φ < β , then
ρ({Xi : i < Φ}) = {ρ(Xi ) : i < Φ} for all {Xi : i < Φ}, which yields that U is
< β-closed. Hence U witnesses that β is a measurable cardinal.

It remains to be shown that U is normal. Let (Xi : i < β) be such that Xi ∼ U
for all i < β . We need to see that Δi<β Xi ∼ U , i.e., β ∼ ρ(Δi<β Xi ). Writing
(Yi : i < ρ(β)) = ρ((Xi : i < β)), we have that Yi = ρ(Xi ) for every i < β , so
that β ∼ ⋂

i<β Yi . This just means that β ∼ ρ(Δi<β Xi ).
(2) =⇒ (1) is trivial.
(1) =⇒ (3): This will be shown by an ultrapower construction which is well-

known from model theory and which will be refined later (cf. the proof of Theorem
10.48).
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Let U be a < β-closed uniform ultrafilter on β . We aim to construct an inner
model M and an elementary embedding ρ : V ≤ M with critical point β . We shall
first construct M .

If f , g ∼ β V , we write f → g iff {τ < β : f (τ) = g(τ)} ∼ U . It is easy to
verify that → is an equivalence relation. For any f ∼ β V , we write [ f ] for the →-
equivalence class of f , massaged by Scott’s trick, i.e., for the set {g ∼ β V : g →
f ≥ ∞h ∼ β V (h → f ≤ rk(h) ⇒ rk(g)}. If f , g ∼ β V , then we write [ f ]E[g] iff
{τ < β : f (x) ∼ g(x)} ∼ U . It is easy to check that E is extensional. Also, for all
f ∼ β V , {[g] : [g]E[ f ]} is a set.
Let us write ult(V ; U ) for the structure ({[ f ] : f ∼ β V }; E). We may define a

map ρ̄ from V into ult(V ; U ) by setting

ρ̄(x) = [cx ],

where cx : β ≤ {x} is the constant function with value x . The following statement
shows that ρ̄ is elementary and it is referred to as the Łoś Theorem.

Claim 4.56 (Łoś Theorem) Let Θ(v1, . . . , vk) be a formula, and let f1, . . ., fk ∼ β V .
Then

ult(V ; U ) |= Θ([ f1], . . . , [ fk]) ≡⇒
{τ < β : V |= Θ( f1(τ), . . . , fk(τ))} ∼ U.

Proof of Claim 4.56 by induction on the complexity of Θ: The atomic case is imme-
diate from the definition, as for f , g ∼ β V we have that ult(V ; U ) |= [ f ] ∼ [g] iff
[ f ]E[g] iff {τ < β : f (x) ∼ g(x)} ∼ U and ult(V ; U ) |= [ f ] = [g] iff [ f ]E[g] iff
{τ < β : f (x) = g(x)} ∼ U .

As for the sentential connectives, it suffices to discuss ≥ and ¬.
As for ≥, if Θ(v1, . . . , vk) and ψ(v1, . . . , v�) are formulae, if f1, . . ., fk ,

g1, . . . , g� ∼ β V , and if the Claim holds for Θ and ψ , then ult(V ; U ) |=
(Θ([ f1], . . . , [ fk]) ≥ ψ([g1], · · · , [g�])) iff ult(V ; U ) |= Θ([ f1], . . . , [ fk]) and
ult(V ; U ) |= ψ([g1], . . . , [g�]) iff {τ < β : V |= Θ( f1(τ), . . . , fk(τ))} ∼ U and
{τ < β : V |= ψ(g1(τ), . . . , g�(τ))} ∼ U iff {τ < β : V |= (Θ( f1(τ), . . . , fk(τ))≥
ψ(g1(τ), . . . , g�(τ)))} ∼ U , as U is a filter.

As for ¬, if Θ(v1, . . . , vk) is a formula, if f1, . . ., fk ∼ β V , and if the Claim
holds for Θ, then ult(V ; U ) |= ¬Θ([ f1], . . . , [ fk]) iff ult(V ; U ) is not a model of
Θ([ f1], . . . , [ fk]) iff {τ < β : V |= Θ( f1(τ), · · · , fk(τ))} /∼ U iff {τ < β : V |=
¬Θ( f1(τ), . . . , fk(τ))} ∼ U , as U is an ultrafilter.

Let us finally suppose that Θ(v1, . . . , vk) ← ⊕v0 ψ(v0, v1, . . . , vk) for some for-
mula ψ for which the Claim holds true. Let f1, . . ., fk ∼ β V . If ult(V ; U ) |=
⊕v0 ψ(v0, [ f1], . . . , [ fk]), then there is some f0 ∼ β V such that

ult(V ; U ) |= ψ([ f0], [ f1], . . . , [ fk]).
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By induction, {τ < β : V |= ψ( f0(τ), f1(τ), . . . , fk(τ))} ∼ U , which also gives
that {τ < β : V |= ⊕v0 ψ(v0, f1(τ), . . . , fk(τ))} ∼ U , as U is a filter.

Conversely, let us assume that {τ < β : V |= ⊕v0 ψ(v0, f1(τ), . . . , fk(τ))} ∼ U .
By the replacement schema in V , there is a set a such that for all τ < β , if there
is some x with V |= ψ(x, f1(τ), . . . , fk(τ)), then there is some x ∼ a with V |=
ψ(x, f1(τ), . . . , fk(τ)). Let <a be a well-ordering of a. Let us define f0 : β ≤ V
as follows.

f0(τ) =

⎧
⎪⎨

⎪⎩

the <a -smallest x ∼ a with

V |= ψ(x, f1(τ), . . . , fk(τ)) if some such x exists,

⊃ otherwise.

By the choice of a we now have that {τ < β : V |= ψ( f0(τ), f1(τ), . . . , fk(τ))} ∼
U , which inductively implies that ult(V ; U ) |= ψ([ f0], [ f1], . . . , [ fk]), and hence
that ult(V ; U ) |= ⊕v0 ψ(v0, [ f1], . . . , [ fk]).

This verifies the Claim. �
We now prove that E is well-founded, using Lemma 3.11. If ([ fn] : n < α) were

a sequence such that [ fn+1]E[ fn] for all n < α, then

⋂
{τ < β : fn+1(τ) ∼ fn(τ)} ∼ U

because U is < ⊂1-closed, and then if τ ∼ ⋂{τ < β : fn+1(τ) ∼ fn(τ)},

. . . ∼ f2(τ) ∼ f1(τ) ∼ f0(τ),

a contradiction.
Therefore, by Theorem 3.21 there is an inner model N and some σ such that

(N ; ∼)
σ→= ({[ f ] : f ∼ β V }; E). By Łoś’ Theorem, we have that

N |= Θ(σ−1([ f1]), . . . , σ−1([ fk]))

if and only if
{τ < β : V |= Θ( f1(τ), . . . , fk(τ))} ∼ U

for all formulaeΘ and f1, . . ., fk ∼ β V . This implies thatwemaydefine an elementary
embedding ρU : V ≤ N by setting ρU (x) = σ−1◦ ρ̄(x) = σ−1([cx ]), where again
cx : β ≤ {x} is the constant function with value x .

It remains to be shown that β is the critical point of ρU . We first prove that
ρU (λ) = λ for all λ < β by induction on λ. Fix λ < β and suppose that ρU (λ̄) = λ̄

for all λ̄ < λ. Let σ−1([ f ]) < ρU (λ), i.e., {τ < β : f (τ) < λ} ∼ U . As U is
< λ+-closed, there is then some λ0 < λ such that {τ < β : f (τ) = λ0} ∼ U . But
then [ f ] = [cλ0 ], so that by the inductive hypothesis λ0 = ρU (λ0) = σ−1([ f ]).
This shows that ρU (λ) ∈ λ, so that in fact ρU (λ) = λ.
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Finally, if id denotes the identity function on β , then for all λ < β , λ = ρU (λ) =
σ−1([cλ]) < σ−1([id]) by the uniformity of U . Also σ−1([id]) < σ−1([cβ ]) =
ρU (β). Hence β is indeed the critical point of ρU . �

In the situation of the proof of (1) =⇒ (3) of Thorem 4.55, we usually also write
ult(V ; U ) for the inner model which was called N there. Let χ = σ−1([id]). We
must have that

σ−1([ f ]) = ρU ( f )(χ ) for all f : β ≤ V . (4.6)

This is because ρU ( f )(χ ) may be written in a cumbersome way as

σ−1([c f ])
(
σ−1([id])

)
,

which with the help of Łoś’ Theorem is easily seen to be equal to σ−1([ f ]). In
particular,

N = ult(V ; U ) = {ρU ( f )(χ ) : f : β ≤ V } . (4.7)

χ is often called the generator of U . It is also easy to see that for X ⊂ β ,

X ∼ U ≡⇒ χ ∼ ρ(X). (4.8)

Now let ρ : V ≤ M be any elementary embedding with critical point β , where
M is an inner model. Let U = Uρ be derived as in (4.5) in the proof of (3) =⇒ (2)
of Theorem 4.55, i.e., U = {X ⊂ β : β ∼ ρ(X)}. Let ρU : V ≤ ult(V ; U ) be as
constructed in the proof of (1) =⇒ (3). We may then define a factor map

k : ult(V : U ) ≤ M

by setting k(ρU ( f )(β)) = ρ( f )(β) for f : β ≤ V . This map k is well-defined and
elementary because we have that

ult(V ; U ) |= Θ(ρU ( f1)(β), . . . , ρU ( fk)(β)) ≡⇒
{τ < β : V |= Θ( f1(τ), . . . , fk(τ))} ∼ U ≡⇒
β ∼ ρ({τ < β : V |= Θ( f1(τ), . . . , fk(τ))}) =

{τ < ρ(β) : M |= Θ(ρ( f1)(τ), . . . , ρ( fk)(τ))} ≡⇒
M |= Θ(ρ( f1)(β), . . . , ρ( fk)(β)).

V π

πU

M

ult(V ;U)
k
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If ρ : V ≤ M is itself an ultrapower map, i.e., ρ = ρU ∪ for some < β-closed
uniform ultrafilter U ∪ on β and if β = [g] in the sense of the ultrapower ult(V ; U ),
then

X ∼ U ≡⇒ g−1∪∪ X ∼ U ∪ (4.9)

for every X ⊂ β . We will have that U ∪ is normal iff U = U ∪ iff {τ < β : g(τ) =
τ} ∼ U ∪. (Cf. problem 4.26.)

We remark that M. Gitik has shown that AC is needed to prove (1) =⇒ (2) in
the statement of Theorem 4.55 (cf. [7]).

Definition 4.57 Let M be a transitive model of ZFC, and let M |= U is a measure.
Thenwe shall ambiguouslywrite ult(M; U ) for ult(V ; U ) from the proof of Theorem
4.55 as defined inside M or for its transitive collapse. Also, we shall ambiguously
write ρ M

U for the map ρ̄ from the proof of Theorem 4.55 or for the map ρ from the
proof of Theorem 4.55. ult(M; U ) is called the ultrapower of M by U , and ρ M

U is
called the associated ultrapower embedding.

By (4.7), applied inside M , if U is a measure on β , then

ult(M; U ) =
⎝
ρ M

U ( f )(χ ) : f : β ≤ M ≥ f ∼ M
⎞

, (4.10)

where χ = [id].
Lemma 4.58 Let β be a measurable cardinal, and let U be a normal < β-closed
ultrafilter on β . If R ∼ U, then R is ineffable.

Proof Let (Aτ : τ ∼ R) be such that Aτ ⊂ τ for every τ ∼ R. Let

ρ = ρV
U : V ≤ M,

and let ( Ãτ : τ ∼ ρ(R)) = ρ((Aτ : τ ∼ R)). As β ∼ ρ(R), we may set A = Ãβ .
By the Łoś Theorem, for every Φ < β there is some XΦ ∼ U such that for all

τ ∼ XΦ , Φ ∼ A iff Φ ∼ Aτ . Let X = ΔΦ<β XΦ . It is then easy to verify that for every
τ ∼ X , Aτ = A ∩ τ . �

Theorem 4.59 (Rowbottom) Let β be a measurable cardinal, and let U be a normal
measure on β . Let χ < β , and let F : [β]<α ≤ χ . There is then some X ∼ U such
that for every n < α, F � [X ]n is constant.

Proof Fix χ < β . It suffices to show that for every n < α,

∞F : [β]n ≤ χ ⊕τ < χ ⊕X ∼ U F ∪∪[X ]n = {τ}. (4.11)

This is because if F : [β]<α ≤ χ and for each n < α, Xn ∼ U is such that
F � [Xn]n is constant, then

⋂
n<α Xn ∼ U is as desired.
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We prove (4.11) by induction on n. For n = 0, (4.11) is trivial. So let us assume
(4.11) for n and show it for n + 1.

Let F : [β]n+1 ≤ χ be given. Let

ρ : V ≤U M = ult(V ; U )

be the ultrapowermapgiven byU , where M is an innermodel, β = crit(ρ), and for all
X ⊂ β , X ∼ U iff β ∼ ρ(X). Let F∗ : [β]n ≤ χ be defined by F∗(a) = ρ(F)(a ⇐
{β}) for a ∼ [β]n . By the inductive hypothesis, there is some τ < χ and some
X ∼ U such that F∗∪∪[X ]n = {τ}. That is, for every a ∼ [X ]n , ρ(F)(a ⇐ {β}) = τ ,
or equivalently,

Xa = {λ < β : λ > max(a) ≥ F(a ⇐ {λ}) = τ} ∼ U. (4.12)

By the normality of U, we may pick some Y ∼ U , Y ⊂ X , such that for every
λ ∼ X ,

λ ∼
⋂

a∼[X∩λ]n

Xa . (4.13)

We then have for a ⇐ {λ} ∼ [Y ]n+1 with λ > max(a) that λ ∼ Y , hence, as Y ⊂ X ,
λ ∼ Xa by (4.13), and so F(a⇐{λ}) = τ by (4.12).We have shown that F ∪∪[Y ]n+1 =
{τ}, where Y ∼ U . �

Definition 4.60 Let β be a cardinal, and let Φ > β . Then β is called Φ-strong iff
there is some non-trivial elementary embedding ρ : V ≤ M , where M is an inner
model and crit(ρ) = β , such that VΦ ⊂ M . β is called strong iff β is Φ-strong for all
Φ > β .

Lemma 4.61 If β is measurable, then β is (β + 1)-strong. If β is (β + 2)-strong,
then β is measurable and there exists a measurable cardinal ε < β .

Proof The first part immediately follows from Lemma 4.52. As for the second part,
let β be (β + 2)-strong, and let

ρ : V ≤ M

be an elementary embedding, where M is an inner model, crit(ρ) = β , and Vβ+2 ⊂
M . By Lemma 4.55, β is measurable, and there is hence some < β-closed uniform
ultrafilter U on β . But U ∼ Vβ+2 ⊂ M , which gives that

M |= ⊕ε < ρ(β)⊕U0 (U0 is a < ε-closed uniform ultrafilter on ε > ⊂0).

By the elementarity of ρ , this gives that

V |= ⊕ε < β⊕U0 (U0 is a < ε-closed uniform ultrafilter on ε > ⊂0).
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There is thus a measurable cardinal ε < β . �

Definition 4.62 Let β be a cardinal, and let ε ⇒ β be a regular cardinal. Then β is
called ε-supercompact iff there is some non-trivial elementary embedding ρ : V ≤
M , where M is an inner model, crit(ρ) = β , and ρ(β) > ε, such that εM ⊂ M . β
is called supercompact iff β is ε-supercompact for all regular ε ⇒ β .

Measures cannot witness suprcompactess, cf. Problem 4.27. We will see later, cf.
Lemmas 10.58 and 10.62, that “extenders” may be used to witness that β is strong
or supercompact in much the same way as a measure witnesses that a given cardinal
is measurable.

Lemma 4.63 If β is measurable, then β is β-supercompact. If β is 2β -supercompact,
then β is measurable and there is a measure U on β such that

{μ < β : μ is measurable } ∼ U.

Proof We use Theorem 4.55. Let β be measurable, let U be a normal measure on β ,
and let

ρ : V ≤U ult(V ; U ) = M

be the ultrapower embedding, where we assume M to be transitive. We need to see
that β M ⊂ M . Let (xi : i < β) be a sequence with xi ∼ M for all i < β . Say
xi = ρ( fi )(β), where fi : β ≤ V , for i < β . Let us define g : β ≤ V as follows.
For each τ < β , g(τ) : τ ≤ V and for i < τ , g(τ)(i) = fi (τ). We then get that
ρ(g)(β) : β ≤ M (here we use Problem 4.26), and for every i < β ,

{τ < β : g(τ)(i) = fi (τ)} = β \ (i + 1) ∼ U,

so that ρ(g)(β)(i) = ρ( fi )(β) = xi . Thus (xi : i < β) = ρ(g)(β) ∼ M , as desired.
If β is 2β -supercompact, then we may pick some

ρ : V ≤ M,

where M is an inner model, crit(ρ) = β , and 2β
M ⊂ M . In particular, β is measur-

able, and if U ∪ is a measure on β , then U ∪ ∼ M . Therefore,

β ∼ ρ({τ < β : V |= τ is measurable}),

so that if U is the measure on β derived from ρ as in the proof of Theorem 4.55, then
{μ < β : μ is measurable} ∼ U as desired. �

Definition 4.64 Let β be a regular cardinal, and let F be a filter on β . F is called
weakly normal iff for all f : β ≤ β with {τ < β : f (τ) < τ} ∼ F+ there is some
Φ < β and some X ∼ F+ such that f (τ) < Φ for every τ ∼ X .

By Lemma 4.31, every normal filter is weakly normal.
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Lemma 4.65 Let β be ε-supercompact, where ε ⇒ β is a regular cardinal. There is
then a < β-closed uniform weakly normal ultrafilter on ε.

Proof Let
ρ : V ≤ M

be an elementary embedding, where M is an inner model, crit(ρ) = β , ρ(β) > ε,
and εM ⊂ M . Let us set

U = {X ⊂ ε : sup(ρ ∪∪ε) ∼ ρ(X)}. (4.14)

It is not hard to verify that U is a < β-closed uniform ultrafilter on ε.
To show that U is weakly normal, let f : β ≤ β . As U is an ultrafilter, U+ = U .

If
sup(ρ ∪∪ε) ∼ ρ({τ < β : f (τ) < τ}) = {τ < ρ(β) : ρ( f )(τ) < τ},

then we may pick Φ < ε such that

ρ( f )(sup(ρ ∪∪ε)) < ρ(Φ),

so that
sup(ρ ∪∪ε) ∼ ρ({τ < β : f (τ) < Φ}).

U is thus weakly normal. �

Theorem 4.66 (Solovay) Let β be supercompact. Then ε<β = ε for every regular
cardinal ε ⇒ β .

Proof Let us fix ε, let again
ρ : V ≤ M

be an elementary embedding, where M is an inner model, crit(ρ) = β , ρ(β) > ε,
and εM ⊂ M . LetU be the< β-closed uniformweakly normal ultrafilter on εwhich
is given by (4.14).

Let us write
S = {Φ < ε : cf(Φ) < β} .

Notice that S ∼ U . This is because εM ⊂ M yields that M |= cf(supρ ∪∪ε) = ε,
which together with ε < ρ(β) then gives that supρ ∪∪ε ∼ {Φ < ρ(ε) : M |= cf(Φ) <

ρ(β)} = ρ(S).
For Φ ∼ S, let us pick CΦ ⊂ Φ cofinal in Φ with otp(CΦ) = cf(Φ).
Let λ < ε be arbitrary. Because S ∼ U and U is uniform,

S̄ = {Φ ∼ S : CΦ \ λ ∧= ⊃} ∼ U.

Let f : S̄ ≤ ε be defined by
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f (Φ) = the least element of CΦ \ λ

for Φ ∼ S̄. Then f is a regressive function, and because U is weakly normal there is
some λ∪ > λ, λ∪ < ε, such that

⎠
Φ ∼ S̄ : f (Φ) < λ∪} ∼ U.

We have shown that

∞λ < ε⊕λ∪ < ε (λ∪ > λ ≥ {Φ ∼ S : CΦ ∩ [λ, λ∪) ∧= ⊃} ∼ U ). (4.15)

By (4.15), there is now a continuous and strictly increasing sequence (λτ : τ < ε)

such that λ0 = 0 and

∞τ < ε
⎠
Φ ∼ S : CΦ ∩ [λτ , λτ+1) ∧= ⊃} ∼ U. (4.16)

Let us write
IΦ = ⎠

τ < ε : CΦ ∩ [λτ , λτ+1) ∧= ⊃}

for Φ ∼ S, so that IΦ ∈ CΦ = cf(Φ) < β for every Φ ∼ S.
Let X ∼ [ε]<β . For all τ ∼ X , {Φ ∼ S : τ ∼ IΦ} ∼ U by (4.16) and the definition

of IΦ . Therefore, as X < β and U is < β-closed,

{Φ ∼ S : X ⊂ IΦ} = {Φ ∼ S : ∞τ ∼ X τ ∼ IΦ} ∼ U. (4.17)

In particular, there is some Φ ∼ S such that X ⊂ IΦ .
We have shown that

[ε]<β ⊂
⋃

Φ∼S

P(IΦ),

so that ε<β ∈ ε · 2<β = ε ∈ ε<β , i.e., ε<β = ε. �

Corollary 4.67 Let β be supercompact. Then SCH holds above β , i.e., if μ > β is
singular, then μcf(μ) = 2cf(μ) · μ+.

Proof By (the proof of) Silver’s Theorem 4.36 (cf. Problem 4.17 (1)) it suffices to
prove that μ⊂0 = μ+ for every μ > β with cf(μ) = α. However, for every such μ,
μ⊂0 ∈ (μ+)⊂0 = μ+ by Theorem 4.66. �

The following large cardinal will play a role for the failure of �β , cf. Definition
11.62 and Lemma 11.69.

Definition 4.68 A cardinal β is called subcompact iff for every A ⊂ Hβ+ there
is some ε < β and some B ⊂ Hε+ such that there is an elementary embedding
σ : (Hε+; ∼, B) ≤ (Hβ+; ∼, A).

Notice that in the situation of Definition 4.68, σ(ε) = β .
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Lemma 4.69 Suppose that β is 2β -supercompact. Then β is subcompact.

Proof Let A ⊂ Hβ+ , and let
ρ : V ≤ M

be such that M is an inner model, crit(ρ) = β , and 2β
M ⊂ M . We have that

(Hβ+)M = Hβ+ ∼ M and ρ � Hβ+ ∼ M , and therefore

M |= ⊕ε< ρ(β)⊕B ⊂ Hε+⊕σ(σ : (Hε+; ∼, B)≤(Hρ(β)+; ∼, ρ(A)) is elementary

≥ crit(σ ) = ε).

By the elementarity of ρ ,

V |= ⊕ε < β⊕B ⊂ Hε+⊕σ(σ : (Hε+; ∼, B)≤(Hβ+; ∼, A) is elementary ≥ crit(σ )

= ε).

We have shown that β is subcompact. �
Amazing results in cardinal arithmetic were obtained by Saharon Shelah via

his pcf-theory, cf. e.g. [1]

4.4 Problems

4.1. Let Φ < α1. Show that there is some X ⊂ Q such that (Φ;<) →= (X;<Q� X).
(Here, < denotes the natural order on Φ and <Q denotes the natural order on
Q.) [Hint. Use induction on Φ.]

4.2. Let β be a cardinal. Let y = β ⇐ x , where x = {Φ : Φ is an ordinal with Φ → β}.
Show that y = β+.

4.3. Let β and ε be cardinals. Show that β + ε = Card(X ⇐ Y ), whenever X, Y are

disjoint sets with X = β and Y = ε. Also show that β + ε ∈ β · ε whenever
β , ε ⇒ 2.

4.4. Show that if β and ε are cardinals, then βε = Card([β]ε).
4.5. Show that the least β with ⊂β = β is singular of cofinality α. Show that for

every regular cardinal ε there is some β with ⊂β = β and cf(β) = ε.

4.6. Show that if β is a limit cardinal, then cf(β) may be characterized as the least
ε such that there is a sequence (βi : i < ε) of cardinals less than β with
β = ∑

i<ε βi .

4.7. Let Φ be an ordinal. Show that the cofinality of Φ is the least size of a subset
of Φ which is unbounded in Φ. Show also that there is a club C ⊂ Φ such that
Card(C) = otp(C) = cf(Φ).
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4.8. Show that⊂⊂1
α = ⊂⊂0

α ·2⊂1 . Show also that ifα ∈ Φ < α1, then⊂⊂1
Φ = ⊂⊂0

Φ ·2⊂1 .

4.9. Use the recursion theorem 3.13 to show that there is a sequence (�Φ : Φ ∼ OR)

such that �0 = ⊂0, �Φ+1 = 2∼Φ for all Φ, and �ε = supΦ<ε �Φ for every limit
ordinal ε. Show that Card(Vα+Φ) = �Φ for every Φ.

4.10. (a) Let β be an infinite cardinal. Show that Hβ is a set. [Hint. Show e.g. that
Hβ ⊂ Vβ by induction on β .] Also show that Card(Hβ) = 2<β .

(b) Show that HF = Vα and (HF; ∼� HF) |= ZFC−∞.
(c) (W. Ackermann) Let us define E A ⊂ α × α as follows. nE Am iff: if

m = ∑
i ki · 2i , where ki ∼ {0, 1} for all i , then kn = 1. Show that

(α; E A) →= (HF; ∼).
(d) Show that if β is uncountable and regular, then (Hβ ; ∼� Hβ) |= ZFC−.

4.11. (A. Tarski) Let X be a set, and let F be a filter on X . Show that there is
an ultrafilter U on X with U ∗ F . [Hint. Use the Hausdorff Maximality
Principle 2.11.]

4.12. Show that if μ, β are infinite regular cardinals with μ < β , then the set

S = {Φ < β : cf(Φ) = μ}

is stationary in β . Show also that if T ⊂ S is stationary in β and C ⊂ β is
μ-club in β , then T ∩ C ∧= ⊃.

4.13. Let S ⊂ α1 be stationary, and let Φ < α1. Show that S has a closed subset of
order type Φ.

4.14. Let β be regular and uncountable, and let R ⊂ β be stationary. Let (U ; ∼
, A1, . . . , An) be a model such that U is transitive and β ⊂ U . Show that
there is some X ˙ (U ; ∼, A1, . . . , An) such that X ∩ β ∼ R. Show also that
if Card(U ) = β and f : β ≤ U is surjective, then {τ < β : f ∪∪τ ˙ (U ; ∼
, A1, . . . , An)} is club in β .

4.15. Show that setX ⊂ [θ ]β is stationary in [θ ]β iffX ∩ C ∧= ⊃ for all C which
are club in [θ ]β according to the definition on p. 44.

4.16. Show that
( ∏

i∼I Φi
)β = ∏

i∼I (Φ
β
i ).

4.17. Let β be a singular cardinal of uncountable cofinality.

(1) Suppose that there is some cardinal ε < β with εcf(β) = ε andSCH holds
for every singular μ ∼ (ε, β), i.e., if μ is a singular cardinal, ε < μ < β ,
then μcf(μ) = 2cf(μ) · μ+. Show that SCH holds at β , i.e., βcf(β) =
2cf(β) · β+.

(2) Suppose that μcf(β) < β for all μ < β , and SCH holds on a stationary set
below β , i.e., {μ < β : μcf(μ) = 2cf(μ) · μ+} is stationary in β . Show that
SCH holds at β , i.e., βcf(β) = 2cf(β) · β+.

4.18. Let β be a singular cardinal of uncountable cofinality. If {μ < β : 2μ = μ+}
is stationary in β , then 2β = β+.
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4.19. Use the axiom of choice to show that there is some A ⊂ R such that neither
A nor R contains a perfect subset. [Hint. Show that there is an enumeration
e : 2⊂0 ≤ C , where C is the collection of perfect sets. If < is a well-ordering
of R, then construct (aτ , bτ : τ < 2⊂0) by letting aτ be the <-least element
of e(τ) \ ({aτ̄ : τ̄ < τ} ⇐ {bτ̄ : τ̄ < τ}) and bτ be the <-least element of

e(τ) \ ({aτ̄ : τ̄ ∈ τ} ⇐ {bτ̄ : τ̄ < τ}). Show that A = {aτ : τ < 2⊂0} works.]
4.20. Prove Lemma 4.46.

4.21. Show that if β is weaklyMahlo, then {μ < β : μ is weakly inaccessible} is
stationary. Also show that if β isMahlo, then {μ < β : μ is inaccessible} is
stationary.

4.22. Let β ⇒ ⊂1 be a cardinal. If (T,<T ) is a β-Souslin tree, then (T,<T ) is a
β-Aronszajn tree.

4.23. Let β be a cardinal. Show that the following are equivalent.

(a) β is weakly compact.
(b) If X ⊂ P(β), Card(X) ∈ β , then there are transitive models H and H∗

with X ⊂ H , Card(H) = β , μH ⊂ H and μH∗ ⊂ H∗ for every μ < β

and there is some elementary embedding σ : H ≤ H∗ such that β is the
critical point of σ .

4.24. Let β be a regular uncountable cardinal. Show:

(a) If ε < β is an infinite regular cardinal, then {τ < β : cf(τ) = ε} is not
ineffable.

(b) If β itself is ineffable, then β is weakly compact and the set

{μ < β : μ is weakly compact}

is stationary in β .
(c) Let β be a measurable cardinal, and let U be a normal < β-closed ultra-

filter on β . Then {μ < β : μ is ineffable } ∼ U .

4.25. (Jensen–Kunen) Show that if β is ineffable, then there is no β-Kurepa tree.

4.26. Let β be a cardinal. Show that if U is a < β-closed ultrafilter on β , then U
is uniform iff for no τ < β , {τ} ∼ U . Show also that if U is a < β-closed
uniform ultrafilter on β , then U is normal iff β = σ−1[id], where id is the
identity function and σ is the (inverse of) transitive collapse as in the proof
of Theorem 4.55.
Let U be a < β-closed normal ultrafilter on β , and let (Xs : s ∼ [β]<α) be a
family such that Xs ∼ U for every s ∼ [β]<α. Let us define

Δs∼[β]<α Xs = {τ ∼ β : τ ∼
⋂

s∼[τ ]<α

Xs}.
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Show that Δs∼[β]<α Xs ∼ U .

4.27. Let β be a measurable cardinal.

(a) Let U be a measure on β . Show that β+ult(V ;U ) = β+V and that 2β <

ρV
U (β) < ((2β)+)V . [Hint: If Φ < ρV

U (β), then Φ is represented by
some f : β ≤ β , and there are 2β functions from β to β .] Conclude that
U /∼ ult(V ; U ).

(b) Let U , U ∪ be measures on β . We define U <M U ∪ iff U ∼ ult(V ; U ∪).
Show that ρV

U (β) = ρ
ult(V ;U ∪)
U (β) < ρV

U ∪(β). Conclude that <M is well-
founded, and that the rank of <M is always less than or equal to (2β)+.
<M is called theMitchell order.

4.28. Let β be a measurable cardinal, let U be a measure on β , and let ρU : V ≤U

M be the ultrapower map, where M is an inner model. Let μ > β be a
cardinal, cf(μ) ∧= β , and σβ < μ for every σ < μ. Show that ρU (μ) = μ.

4.29. (Magidor) Show that if β is supercompact, then for every Φ > β there are
μ < Σ < β together with an elementary embedding σ : VΣ ≤ VΦ such
that crit(σ ) = μ and σ(μ) = β . [Hint: Let ρ : V ≤ M , where M is an

inner model, crit(ρ) = β , and VΦ M ⊂ M . Show that in M , there is some
σ : VΦ ≤ (Vρ(Φ))

M such that crit(σ ) = β and σ(β) = ρ(β). Pull this
statement back via ρ .]

4.30. Let β be supercompact. Show that for every cardinal ε ⇒ β there is a < β-
closed ultrafilter U on [ε]<β such that {a} /∼ U for all a ∼ [ε]<β , {a ∼
[ε]<β : τ ∼ a} ∼ U for all τ < ε, and if (Aτ : τ < ε) is such that Aτ ∼ U
for all τ < ε, then there is some A ∼ U such that whenever τ ∼ a ∼ A,
a ∼ Aτ . [Hint. Let U be derived from ρ morally as in (4.14).]
Problems 10.21 and 10.22 will show that the conclusions of Problems 4.29
and 4.30 actually both characterize the supercompactness of β .

4.31. Use the necessary criterion for supercompactness provided by Problem 4.29
to show that if β is supercompact, then β is subcompact (cf. Lemma 4.69) and
in fact there is a measure U on β such that {μ < β : μ is subcompact } ∼ U .



Chapter 5
Constructibility

Models of the languageL→ of set theory are of the form (M; E), where M ≤= ∼ is a
set and E ∈ M × M interprets →. We shall also consider “class models” (M; E) of
L→ where M is a proper class rather than a set.

5.1 The Constructible Universe

Definition 5.1 A formula Φ of L→ is called Σ0 (or α0, or β0) iff Φ is contained in
each set ε for which the following hold true.

(a) Every atomic formula is in ε ,
(b) if ξ0, ξ1 are in ε then so are ¬ξ0, (ξ0 ∧ ξ1), (ξ0 ∧ ξ1), (ξ0 ⊃ ξ1), and

(ξ0 ⊂ ξ1), and
(c) if ξ is in ε and x, y are variables, then ⇐x(x → y ⊃ ξ) and ⇒x(x → y ∧ξ) are

in ε .

For n → δ\{0}, a formula Φ of L→ is called Σn iff Φ is of the form

⇒x1 . . . ⇒xkξ,

where x1, . . . , xk are variables and ξ is αn−1, and Φ is called αn iff Φ is of the form

⇐x1 . . . ⇐xkξ,

where x1, . . . , xk are variables and ξ is Σn−1.

If M is a transitive set or class and Φ is a sentence of L→, then we write
M |= Φ for (M; →� M) |= Φ (where →� M =→ ∪ M2). If Φ is a formula, Φ being
Φ(x1, . . . , xk) with all free variables shown, and if a1, . . . , ak → M , then we write
M |= Φ(a1, . . . , ak) for the assertion that Φ holds in (M; →� M) for an assignment
which sends vl to al (1 ∞ l ∞ k).

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_5, 67
© Springer International Publishing Switzerland 2014
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We have the following absoluteness properties.

Lemma 5.2 Let M be transitive, let Φ be a Σ0-formula, and let a1, . . . , ak → M.
Then

M |= Φ(a1, . . . , ak) ∩ V |= Φ(a1, . . . , ak).

Proof by induction on the complexity of Φ. Let us only consider the case where Φ is
of the form ⇒x0 → x1ξ(x0, x1, . . . , xk).

“∅=”: If V |= Φ(a1, . . . , ak), let a → a1 be such that V |= ξ(a, a1, . . . , ak). As
M is transitive, a → a1 → M gives a → M , and V |= a → a1 ∧ξ(a, a1, . . . , ak) gives

M |= a → a1 ∧ ξ(a, a1, . . . , ak)

by the inductive hypothesis, and so M |= Φ(a1, . . . , ak).
“=⇒”: If M |= Φ(a1, . . . , ak), let a → M be such that M |= a → a1 ∧

ξ(a, a1, . . . , ak). Then

V |= a → a1 ∧ ξ(a, a1, . . . , ak)

by the inductive hypothesis, and so V |= Φ(a1, . . . , ak). �

This proof also shows the following.

Lemma 5.3 Let M be transitive, let Φ(v1, . . . , vk) be a Σ1-formula,
let ξ(v1, . . . , vk) be a α1-formula, and let a1, . . . , ak → M. Then Φ is upward
absolute, i.e.

M |= Φ(a1, . . . , ak) =⇒ V |= Φ(a1, . . . , ak),

and ξ is downward absolute, i.e.

V |= ξ(a1, . . . , ak) =⇒ M |= ξ(a1, . . . , ak).

Definition 5.4 Let T be a theory in the languageL→, and let Φ be a formula ofL→.
Then Φ is called βT

1 iff there are L→-formulae ξ and ξ ∗ such that

ξ is Σ1,
ξ ∗ is α1, and
T � Φ ←⊃ ξ ←⊃ ξ ∗

Lemma 5.3 immediately implies:

Lemma 5.5 Let T be a theory in the language of L→, and let Φ be a formula of L→
which is βT

1 . Let M be a transitive model of T . Then Φ is absolute between V and
M, i.e.,

V |= Φ(a1, . . . , ak) ∅⇒ M |= Φ(a1, . . . , ak)

for all a1, . . . , ak → M making an assignment to all the free variables of Φ.
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The following Lemma expresses the “absoluteness of well-foundedness.”

Lemma 5.6 The statement1 “R is a well-founded relation” is βZFC−
1 . In particular,

if M is a transitive model of ZFC− such that R → M is a binary relation, then

V |= “R is well-founded” ∅⇒ M |= “R is well-founded”.

Proof The first part, that “R is a well-founded relation” be βZFC−
1 follows directly

from (the proofs of) Lemmas 3.11 and 3.17. The second part is then a consequence
of Lemma 5.5. �

The following easy lemma will be used to verify that fragments of ZFC hold in
a given transitive model.

Lemma 5.7 Let M be a transitive set or class.

(1) M is a model of (Ext), the axiom of extensionality.
(2) M is a model of (Fund), the axiom of foundation.
(3) If δ → M then M is a model of (Inf), the axiom of infinity.
(4) If M is closed under x, y �⊃ {x, y} (i.e., a, b → M =⇒ {a, b} → M), then M is

a model of (Pair), the pairing axiom.
(5) If M is closed under x �⊃ ⋃

x (i.e., a → M =⇒ ⋃
a → M), then M is a model

of (Union), the axiom of union.

Proof We shall use Lemma 5.2.

(1) The axiom of extensionality holds in V and it is α1, as it says

⇐x⇐y((⇐z → x z → y ∧ ⇐z → y z → x) ⊃ x = y).

(2) The axiom of foundation holds in V and is α1, as it says

⇐x(x ≤= ∼ ⊃ ⇒y → x y ∪ x = ∼).

Notice that x ≤= ∼ can be written as ⇒y → x y = y, and y ∪ x = ∼ can be written
as ¬⇒z → y z → x .

(3) The axiom of infinity is Σ1. It says that ⇒x Φ(x), where Φ(x) is

∼ → x ∧ ⇐y → x ⇒z → x z = y ⊕ {y}.

Here, ∼ → x can be written as ⇒y → x ¬⇒z → y z = z, and z = y ⊕ {y} can be
written as

⇐u → z (u → y ∧ u = y) ∧ ⇐u → y u → z ∧ y → z.

Thus Φ(x) is Σ0, V |= Φ(δ) holds, and thus M |= Φ(δ) holds provided that
δ → M .

1 Recall from p. 12 that ZFC− is ZFC without the power set axiom.
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(4) The pairing axiom is of the form

⇐x ⇐y ⇒z z = {x, y},

where z = {x, y} can be written as x → z ∧ y → z ∧ ⇐u → z(u = x ∧ u = y).
(5) The union axiom is of the form

⇐x ⇒y y =
⋃

x,

where y = ⋃
x can be written as

⇐z → y ⇒u → x z → u ∧ ⇐u → x ⇐z → u z → y.

Lemma 5.7 is shown. �
It is more delicate verifying that a given transitive model M is a model of (Pow),

(Aus)Φ , (Ers)Φ , and (AC).
Recall (cf. Definition 4.51) that an inner model is a transitive proper class model

of ZFC. If E is a set or a proper class, then L[E] is the least inner model which is
closed under the operation x �⊃ E ∪ x . An important example will be L = L[∼],
Gödel’s constructible universe, which we shall study in detail.

In order to show that L[E] indeed always exists, we need to define it in a way that
is different from saying “the least inner model which is closed under the operation
x �⊃ E ∪ x .” Any model of the form L[E] may be stratified in two ways: into
levels of the L-hierarchy and into levels of the J -hierarchy. The former approach
wasGödel’s original one, but it turned out that the latter one (which was discovered
by Ronald B. Jensen, cf. [16]) is much more useful.

In order to define the J -hierarchy we need the concept of rudimentary functions.

Definition 5.8 Let E be a set or a proper class. A function f : V k ⊃ V , where
k < δ, is called rudimentary in E (or, rudE ) if it is generated by the following
schemata:

f (x1, . . . , xk) = xi

f (x1, . . . , xk) = xi\x j

f (x1, . . . , xk) = {xi , x j }
f (x1, . . . , xk) = h(g1(x11 , . . . , x1k1), · · · , gρ(xρ

1, . . . , xρ
kρ

))

f (x1, . . . , xk) =
⋃

y→x1

g(y, x2, . . . , xk)

f (x) = x ∪ E

f is called rudimentary (or, rud) if f is rud∼.
We often write x for (x1, . . . , xk) in what follows. It is easy to verify that for

instance the following functions are rudimentary: f (x) = ⋃
xi , f (x) = xi ⊕ x j ,
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f (x) = xi ∪x j , f (x) = {x1, . . . , xk}, f (x) = (x1, . . . , xk), and f (x) = x1×. . .×xk .
(Cf. Problem 5.5.) Lemma 5.10 below will provide more information.

If U is a set and E is a set or a proper class then we shall denote by rudE (U ) the
rudE closure of U , i.e., the set

U ⊕ { f ((x1, ..., xk)); f is rudE and x1, ..., xk → U }.

It is not hard to verify that if U is transitive then so is rudE (U ⊕ {U })
(cf. Problem 5.7). We shall now be interested in P(U ) ∪ rudE (U ⊕ {U })
(cf. Lemma 5.11 below).

Definition 5.9 Let E be a set or a proper class. A relation R ∈ V k , where k < δ, is
called rudimentary in E (or, rudE ) if there is a rudE function f : V k ⊃ V such that
R = {x: f (x) ≤= ∼}. R is called rudimentary (or, rud) if R is rud∼.
Lemma 5.10 Let E be a set or a proper class.

(a) The relation /→ is rud.
(b) Let f , R be rudE . Let g(x) = f (x) if R(x) holds, and g(x) = ∼ if not. Then

g is rudE .
(c) If R, S are rudE then so is R ∪ S.
(d) Membership in E is rudE .
(e) If R is rudE , then so is its characteristic function χR.2

(f) R is rudE iff ¬R is rudE .
(g) Let R be rudE . Let f (y, x) = y ∪ {z: R(z, x)}. Then f is rudE .
(h) If R(y, x) is rudE , then so is ⇒z → y R(z, x).

Proof (a) x /→ y iff {x}\y ≤= ∼.
(b) If R(x) ∅⇒ r(x) ≤= ∼, where r is rudE , then g(x) = ⋃

y→r(x) f (x).
(c) Let R(x) ∅⇒ f (x) ≤= ∼, where f is rudE . Let g(x) = f (x) if S(x) holds,

and g(x) = ∼ if not. g is rudE by (b), and thus g witnesses that R ∪ S is rudE .
(d) x → E iff {x} ∪ E ≤= ∼.
(e): by (b).
(f) χ¬R(x) = 1\χR(x).
(g) Let g(z, x) = {z} if R(z, x) holds, and g(z, x) = ∼ if not. We have that g is

rudE by (b), and f (y, x) = ⋃
z→y g(z, x).

(h) Set f (y, x) = y ∪ {z; R(z, x)}. f is rudE by (g), and thus f witnesses that
⇒z → y R(z, x) is rudE . �

We shall often be concerned with models of the form (U ; →, A1, . . . , Am), where
A1, . . ., Am ∈ U<δ and → stands for →� U =→ ∪ U 2. Each such structure comes
with a languageL→,A1,...,Am with predicates →̇, Ȧ1, . . ., Ȧm . We shall mostly restrict
ourselves to discussing the cases where m = 0 (i.e., where there is no Ai around) or
m = 1 or m = 2.

Let U = (U ; →, A1, . . . , Am) be a model as above. The notions of Σn-and αn-
formulae of the language ofL→,A1,...,Am is defined as inDefinition 5.1, where x → Ai ,

2 I.e., χR(x) = 1 iff R(x) and = 0 otherwise.
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0 < i ∞ m, count as atomic formulae. If X ∈ U , and n < δ, then we let ΣU
n (X)

denote the set of all relations which are Σn definable overU from parameters in X ,
i.e., the set of all R such that there are k, l < δ, someΣn-formula Φ(x1, . . . , xk+l) of
L→,A1,...,Am and a1, . . ., al → X such that R ∈ U k and for all z = (z1, . . . , zk) → U k ,

z → R ∅⇒ U |= Φ(z1, . . . , zk, a1, . . . , al).

We shall also write Σ≥
U
n for ΣU

n (U ), and we shall write Σ≥
U
δ for

⋃
n<δ Σ≥

U
n . We

shall also write ΣU
n/δ for ΣU

n/δ(∼).

The notions αU
n (X), α≥

U
n , αU

n , etc. are defined in an entirely analoguous fash-

ion. A relation is βU
n iff it is both ΣU

n and αU
n .

Let U = (U ; →, A1, . . . , Am) and U ∗ = (U ∗; →, A∗
1, . . . , A∗

m) be models as
above. Generalizing Definition 4.50, we say that σ :U ⊃ U ∗ is a Σn-elementary
embedding, written σ : U ⊃Σn U ∗, where n → δ⊕{δ} iff ran(σ) is aΣn-elementary
substructure ofU ∗ in the common languageL→,A1,...,Am , i.e., if for all Σn-formulae
Φ of the language L→,A1,...,Am and for all a1, . . . , ak → U ,

U |= Φ(a1, . . . , ak) ∅⇒ U ∗ |= Φ(σ(a1), . . . , σ(ak)). (5.1)

If σ is the identity on U , then we also write this as U ≺Σn U ∗.
The following lemma says that rudE (U ⊕ {U }) is just the result of “stretching”

Σ≥
(U ;→,E)
δ without introducing additional elements ofP(U ). By (U ; →, E) we shall

always mean the model (U ; →� U, E ∪U ). A set U is rudE closed iff rudE (U ) ∈ U .

Lemma 5.11 Let U be a transitive set, and let E ∈ U. Then P(U ) ∪ rudE (U ⊕
{U }) = P(U ) ∪ Σ≥

(U ;→,E)
δ .

Proof Notice thatP(U ) ∪ Σ≥
(U ;→,E)
δ = P(U ) ∪ Σ≥

(U⊕{U };→,E)
0 , so that we have to

prove that
P(U ) ∪ rudE (U ⊕ {U }) = P(U ) ∪ Σ≥

(U⊕{U };→,E)
0 .

“≡”: By Lemma 5.10 (a) and (d), /→ and membership in E are both rudE . By
Lemma 5.10 (f), (c), and (h), the collection of rudE relations is closed under com-
plement, intersection, and bounded quantification. Therefore we get inductively that
every relation which is Σ0 in the language L→,E with →̇ and Ė is also rudE .

Now let x → P(U ) ∪ Σ≥
(U⊕{U };→,E)
0 . There is then some rudE relation R and

there are x1, ..., xk → U ⊕ {U } such that y → x iff y → U and R(y, x1, ..., xk) holds.
But then x = U ∪ {y: R(y, x1, ..., xk)} → rudE (U ⊕ {U }) by Lemma 5.10 (g).

“∈”:Call a function f : V k ⊃ V , where k < δ, simple iff the following holds true:
if Φ(v0, v1, . . . , vm) is Σ0 in the language L→,E , then Φ( f (v∗

1, . . . , v∗
k), v1, . . . , vm)

is equivalent over transitive rudE closed structures to a Σ0 formula in the same
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language. It is not hard to verify inductively that every rudE function is simple
(cf. Problem 5.8).

Now let x → P(U ) ∪ rudE (U ⊕ {U }), say x = f (x1, . . . , xk), where x1,
…, xk → U ⊕ {U } and f is rudE . Then, as f is simple, “v0 → f (v1, ..., vk)” is
(equivalent over rudE (U ⊕ {U }) to) a Σ0 formula in the language L→,E , and hence
x = {y → U : y → f (x1, ..., xn)} is in Σ

(U⊕{U },→,E)
0 ({x1, ..., xn}). �

Of course Lemma5.11 also holdswithP(U ) being replaced by the set of all relations
on U .

Let U be rudE closed, and let x → U be transitive. Suppose that

B → Σ
(U ;→,E)
0 ({x1, ..., xk}),

where x1, · · · , xk → x . Then B∪x → Σ≥ (x;→,E∪x)
0 , and hence B∪x → rudE (x ⊕{x})

by Lemma 5.11. But rudE (x ⊕ {x}) ∈ U , and therefore B ∪ x → U . We have shown
the following.

Lemma 5.12 Let U be a transitive set such that for every x → U there is some
transitive y → U with x → y, let E be a set or a proper class, and suppose that U
is rudE closed. Then (U ; →, E) is a model of Σ0 comprehension in the sense that if
B → Σ≥

(U ;→,E)
0 and x → U, then B ∪ x → U.

In the situation of Lemma 5.12, (U ; →, E, B) is therefore “amenable” in the sense
of the following definition.

Definition 5.13 A structure (U ; →, A1, . . . , Am), where U is transitive and A1, . . .,
Am ∈ U<δ, is called amenable if and only if Ai ∪ x → U whenever 0 < i ∞ m and
x → U .

Later on, cf. Definition 11.4, we will study possible failures ofΣ1 comprehension
in rudE closed structues. Lemma 5.12 provides the key element for proving that
(all but two of) the structures we are now about to define are models of “basic set
theory,” a theory which consists of Σ0 comprehension together with extensionality,
foundation, pairing, union, infinity, and the statement that Cartesian products and
transitive closures exist.

We are ready to define the Jτ[E] hierarchy as follows. For later purposes it is
convenient to index this hierarchy by limit ordinals.

Definition 5.14 Let E be a set or a proper class.

J0[E] = ∼
Jτ+δ[E] = rudE (Jτ[E] ⊕ {Jτ[E]})

Jδλ[E] =
⋃

τ<λ

Jδτ[E] for limit λ

L[E] =
⋃

τ→OR
Jδτ[E]
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Obviously, every Jτ[E] is rudE closed and transitive. We shall also denote by
Jτ[E] the model (Jτ[E]; →� Jτ[E], E ∪ Jτ[E]).

An important special case is obtained by letting E = ∼ in Definition 5.14. We
write Jτ for Jτ[∼], and L for L[∼]. L is Gödel’s Constructible Universe. Other
important examples which are studied in contemporary set theory are obtained by
letting E be a set or proper class with certain condensation properties or by letting
E code a (carefully chosen) sequence of extenders (cf. Definition 10.45 and also
Problem 10.5).

The next lemma is an immediate consequence of Lemma 5.11.

Lemma 5.15 Let E be a set or proper class. Assume that3 E ∈ Lim × V . Let us
write

Eτ = {x: (τ, x) → E}

and
E � τ = E ∪ (τ × V )

for limit ordinals τ. Let us assume that Eτ ∈ Jτ[E] and that (Jτ[E]; →, Eτ) is
amenable for every limit ordinal τ.

Then
P(Jτ[E]) ∪ Jτ+δ[E] = P(Jτ[E]) ∪ Σ≥

(Jτ[E];→,E�τ,Eτ)
δ .

The hypothesis of Lemma 5.15 is satisfied for all present-day canonical inner
models. (Cf. also Problem 5.13.)Wewill assume from nowon, that E always satisfies
the hypothesis of Lemma 5.15.

The following is easy to verify inductively (cf. Problem 5.9).

Lemma 5.16 For every limit ordinal, Jτ[E] ∪ OR = τ, and Card(Jτ[E]) =
Card(τ).

The following can be easily proved by induction on τ, with a subinduction on the
rank according to Definition 5.8. We shall produce a much stronger statement later
on, cf. (5.2).

Lemma 5.17 Let τ be a limit ordinal. If x → Jτ[E], then there is a transitive set
y → Jτ[E] such that x → y.

Lemmas 5.7 and 5.17 (and Problem 5.5) immediately give the following.

Corollary 5.18 Let E be a set or a proper class. Let τ be a limit ordinal, τ > δ. Then
Jτ[E] is a model of the following statements: (Ext), (Fund), (Inf), (Pair), (Union),
the statement that every set is an element of a transitive set, and Σ0-comprehension.
Also, Jτ[E] is a model of “⇐x⇐y x × y exists.”

Theorem 5.19 Let E be a set or a proper class. L[E] |= ZF.

3 Here, Lim denotes the class of all limit ordinals.
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Proof We have to verify that the following axioms hold in L[E]: the power set
axiom, the separation schema and the replacement schema.

Let us start with the power set axiom (Pow). Fix a → L[E]. By the replacement
schema in V , there is some τ such that

P(a) ∪ L[E] ∈ Jτ[E].

But then

P(a) ∪ L[E] = {x → Jτ[E]: Jτ[E] |= ⇐y → x y → a} → Jτ[E],

as Jτ[E] satisfies Σ0 comprehension. This shows that L[E] |= ⇒z(z = P(a)).
In order to show that the separation schema (Sep) holds in L[E], let Φ(x1, . . . , xk)

be a formula, and let a, a1, . . . , ak → L[E]. As (Jζ [E]:ζ → O R) is a continuous
cumulative hierarchy, we may pick some τ with a, a1, . . . , ak → Jτ[E] such that for
all b → Jτ[E],

Jτ[E] |= Φ(b, a1, . . . , ak) ∅⇒ L[E] |= Φ(b, a1, . . . , ak).

(Cf. Problem 5.14.) But then

{b → a: L[E] |= Φ(b, a1, . . . , ak)}
= {b → a: Jτ[E] |= Φ(b, a1, . . . , ak)} → Jτ+δ[E] ∈ L[E],

using Lemma 5.15. This verifies that the separation schema holds in L[E].
That the replacement schema (Rep) holds in L[E] can be shown similarily by

using the replacement schema in V . �
It is often necessary to work with the auxiliary hierarchy Sτ[E] which is defined

as follows:

S0[E] = ∼
Sτ+1[E] = SE (Sτ[E])

Sλ[E] =
⋃

ξ<λ

Sξ [E] for limit λ

where SE is an operator which, applied to a set U , adds images of members of
U ⊕ {U } under rudE functions from a certain carefully chosen fixed finite list. We
may set

SE (U ) =
⋃

i→{3,4,5,16}
F ∗∗

i (U ⊕ {U }) ⊕
15⋃

i=0, i ≤=3,4,5

F ∗∗
i (U ⊕ {U })2,
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where

F0(x, y) = {x, y}
F1(x, y) = x\y

F2(x, y) = x × y

F3(x) =
⋃

x

F4(x) = {a: ⇒b (a, b) → x}
F5(x) = → ∪ (x × x) = {(b, a): a, b → x ∧ a → b}

F6(x, y) = {{b: (a, b) → x}: a → y}
F7(x, y) = {(a, b, c): a → x ∧ (b, c) → y}
F8(x, y) = {(a, c, b): (a, b) → x ∧ c → y}
F9(x, y) = (x, y)

F10(x, y) = {b: (y, b) → x}
F11(x, y) = (x, (y)0, (y)1)

F12(x, y) = ((y)0, x, (y)1)

F13(x, y) = {((y)0, x), (y)1}
F14(x, y) = {(x, (y)0), (y)0}
F15(x, y) = {(x, y)}

F16(x) = E ∪ x .

(Here, (y)0 = u and (y)1 = v if y = (u, v) and (y)0 = 0 = (y)1 if y is not an
ordered pair.) It is not difficult to show that each Fi , 0 ∞ i ∞ 15, is rudE , and that
SE is rudE as well (cf. Problem 5.5).

Lemma 5.20 The ten functions F0, . . . , F8, and F16 form a basis for the rudE func-
tions in the sense that every rudE function can be generated as a composition of
F0, . . . , F8, and F16.

Proof (Cf. also Problem 5.6.) It obviously suffices to prove that the nine functions
F0, . . ., F8 form a basis for the rud functions. Let us write C for the class of all
functions which can be obtained from F0, . . ., F8 via composition. We aim to see
that every rud function is in C.

If Φ(v1, . . . , vk) is a formula ofL→ with the free variables among v1, . . . , vk , then
we write4

gΦ,k(x) = {(y1, . . . , yk) → xk : (x; → ∪ x2) |= Φ(y1, . . . , yk)}.

4 Here, x is not assumed to be transitive.



5.1 The Constructible Universe 77

Claim 5.21 gΦ,k → C for every Φ(v1, . . . , vk).

Proof First let Φ(v1, . . . , vk) ← v j → vi , where 1 ∞ i < j ∞ k. If k = 2, then we
simply have gΦ,k(x) = F5(x), but in general we also need F2, as well as F7 and F8
for “reshuffling.” Let us write X1(z, x) = z and Xn+1(z, x) = F2(Xn(z, x), x) =
Xn(z, x)× x for n ≥ 1, and let us also write F1

8 (z, x) = F8(z, x) and Fn+1
8 (z, x) =

F8(Fn
8 (z, x), x) for n ≥ 1. Say 2 ∞ i < i + 1 < j ∞ k; then

gΦ,k(x) = Xk− j+1(F j−i−1
8 (F7(Xi−1(x, x), F5(x)), x), x).

The case i = 1 or j = i + 1 is similar.
Next, notice that

g¬Φ,k(x) = F1(Xk(x, x), gΦ,k(x))

and5

gΦ∧ξ,k(x) = F1(gΦ,k(x), F1(gΦ,k(x), gξ,k(x))).

Also
g⇒vk Φ,k(x) = F4(gΦ,k+1(x)).

Finally, if Φ(v1, . . . , vk) ← vi = v j , where 1 ∞ i , j ∞ k, i ≤= j , then

gΦ,k(x) = F4(g⇐vk+1 (vk+1→vi ⊂vk+1→v j ),k+1(x ⊕
⋃

x)) ∪ Xk(x),

whichmay be generatedwith the additional help of F0 and F3, and if Φ(v1, . . . , vk) ←
vi → v j , where 1 ∞ i < j ∞ k, then

gΦ,k(x) = F4(F4(g⇒vk+2⇒vk+1(vk+2=vi ∧vk+1=v j ∧vk+2→vk+1),k+2(x))).

Also,
g⇒vi Φ,k(x) = F4(g⇒vk+1(vi =vk+1∧Φ∗),k+1(x)),

where Φ∗ results from Φ by replacing each (free) occurence of vi by vk+1.
We have shown Claim 5.21. �
The proof of Claim 5.21 made use of all of F0, . . . , F8 except for F6. The role of

F6 is to verify the following.

Claim 5.22 If f is rud and k-ary, then the function

h f,k(x) = f ”xk = {z: ⇒ y → xk f (y) = z}

is in C.

5 a ∪ b = a\(a\b).
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Proof We use the obvious induction along the schemata from Definition 5.8.
Let f (x) = xi\x j . Let Φ(v1, v2, v3) ← v3 → v1\v2. Then

h f,k(x) = F6(gΦ,3(x ⊕
⋃

x) ∪ (x × x ×
⋃

x), x × x).

If f (x) = {xi , x j }, then h f,k(x) = ⋃
(x × x).

Let f (x) = g0(g1(x), . . . , gρ(x)). As every rud function is simple (cf. the proof
of Lemma 5.11), we may let Φ(v0, v) be a formula expressing that6

⇒(w1, . . . , wρ)⇒v1 . . . ⇒vk (v = (v1, . . . , vk)∧
w1 = g1(v1, . . . , vk) ∧ . . . ∧ wρ = gρ(v1, . . . , vk) ∧ v0 = g0(w1, . . . , wρ)).

Let us write H1 = hg1,k(x) ⊕ · · · ⊕ hgρ,k(x), H2 = hg0,ρ(H1), and H3 = H1 ⊕
(H1)

2 ⊕ . . . ⊕ (H1)
ρ ⊕ H2 ⊕ x ⊕ x2 ⊕ . . . ⊕ xk . Then

h f,k(x) = F4(gΦ,2(H3) ∪ (H2 × xk)).

Finally, if f (x) = ⋃
y→x1 g(y, x2, . . . , xk), thenwemay argue analogously. Claim

5.22 is thus proven.
Claim 5.22 now immediately implies that every rud function is in C. Let f be rud,

say f is k-ary. Let f̃ be defined by

f̃ (u) =
{

f (x1, . . . , xk), if u = (x1, . . . , xk)

∼ otherwise.

Then f̃ is rud, so that by Claim 5.22 the function u �⊃ f̃ ”u is in C. But then

x1, . . . , xk �⊃
⋃

f̃ ”{(x1, . . . , xk)} = f (x1, . . . , xk)

is in C as well. �
It is now straightforward to verify that if U is transitive, then SE (U ) is transitive

as well, cf. Problem 5.5.7 We thus inductively get that every Sτ[E] is transitive.
Moreover, by Lemma 5.20 and the definition of the S-hierarchy,

Sζ [E] → Jτ[E] = Sτ[E] (5.2)

for all limit ordinals τ and all ζ < τ. It is easy to see that there is only a finite jump
in →-rank from Sτ[E] to Sτ+1[E].

Lemma 5.12 together with (5.2) readily gives the following.

6 We assume w.l.o.g. that every gi , 1 ∞ i ∞ ρ, is k-ary.
7 The reason why the functions F9 through F15 were added to the above list is in fact to guarantee
that if U is transitive, then SE (U ) is transitive as well.
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Lemma 5.23 Let E be a set or proper class, and let τ be a limit ordinal. Let
B → (Σ≥ 0)

Jτ[E]. Then (Jτ[E]; →, E, B) is amenable, i.e., Jτ[E] is a model of Σ0

comprehension in the language LĖ,Ḃ with →̇, Ė and Ḃ.

Definition 5.24 A J -structure is an amenable structure of the form (Jτ[E], B) for
a limit ordinal τ and predicates E , B, where E satisfies the hypothesis of Lemma
5.15.

Here, (Jτ[E], B) denotes the structure (Jτ[E]; →� Jτ[E], E∪ Jτ[E], B∪ Jτ[E]).
Of course, every Jτ[E] is a J -structure.

Lemma 5.25 Let Jτ[E] be a J-structure, where τ is a limit ordinal.

(1) For all ζ < τ, (Sν [E]: ν < ζ) → Jτ[E]. In particular, Sζ [E] → Jτ[E] for all
ζ < τ.

(2) (Sν [E]: ν < τ) is uniformly Σ
Jτ[E]
1 . I.e., “x = Sν [E]” is Σ1 over Jτ[E], as

being witnessed by a formula which does not depend on τ.

Proof (1) and (2) are shown simultaneously by induction on (τ, ζ), ordered lexi-
cographically. Fix a limit ordinal τ and some ζ < τ. If ζ is a limit ordinal, then

inductively by (2), (Sν [E]: ν < ζ) is Σ
Jζ [E]
1 , and hence (Sν [E]: ν < ζ) → Jτ[E]

by Lemma 5.15. If ζ = Δ + 1, then inductively by (1), (Sν [E]: ν < Δ) → Jτ[E].
If Δ is a limit ordinal, then SΔ[E] = ⋃

ν<Δ Sν [E] → Jτ[E]; and if Δ = Δ̄ + 1 then

SΔ[E] = SE (SΔ̄[E]) → Jτ[E] as well, as SE is rudE (cf. Problem 5.6). It follows that
(Sν [E]: ν < ζ) = (Sν [E]: ν < Δ) ⊕ {(Δ, SΔ[E])} → Jτ[E], which proves (1). (2) is
then not hard to verify. �

In order to show that L[E] satisfies the Axiom of Choice (even locally), we may
inductively define a well-ordering <E

ζ of Sζ [E] as follows. If ζ is a limit ordinal

then we let <E
ζ = ⋃

ν<ζ <E
ν . Now suppose that ζ = ζ̄ + 1. The order <E

ζ̄
induces

a lexicographical order, call it <E
ζ̄,lex

, of 17 × Sζ̄ [E] × Sζ̄ [E]. We may then set8

x <E
ζ y ∅⇒




⎧

x, y → Sζ̄ [E] and x <E
ζ̄

y, or else

x → Sζ̄ [E] ∧ y /→ Sζ̄ [E], or else

x, y /→ Sζ̄ [E] and (i, ux , vx ) <E
ζ̄,lex

( j, uy, vy)

where (i, ux , vx ) is <E
ζ̄,lex

−minimal with x = Fi (ux , vx )

and ( j, uy, vy) is <E
ζ̄,lex

−minimal with y = Fj (uy, vy).

If M = Jτ[E], then we shall also write <M for <E
τ .

Using Lemma 5.25 and by a proof similar to the one for Lemma 5.25, one may
show the following. (Cf. Problem 5.10.)

8 we pretend that all Fi , i < 17, are binary.
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Lemma 5.26 Let Jτ[E] be a J-structure.

(1) For all ζ < τ, (<E
ν : ν < ζ) → Jτ[E]. In particular, <E

ζ → Jτ[E] for all ζ < τ.

(2) (<E
ν : ν < τ) is uniformly Σ

Jτ[E]
1 . I.e., “x =<E

ν ” is Σ1 over Jτ[E], as being
witnessed by a formula which does not depend on τ.

Theorem 5.27 (Gödel) Let E be a set or a proper class. Then L[E] |= ZFC.

Proof This is an immediate consequence of Theorem 5.19 and Lemma 5.26. �
By “V = L[Ė]” we abbreviate theL→,Ė -sentence

⇐x⇒y⇒ν (y = Sν [Ė] ∧ x → y),

where “y = Sν [Ė]” stands for theΣ1 formula given by Lemma 5.25 (2). By Lemma
5.25 (2), “V = L[Ė] is α2, uniformly over Jτ[E] (including τ = ⊆). As a special
case, by “V = L” we abbreviate theL→-sentence

⇐x⇒y⇒ν (y = Sν [∼] ∧ x → y).

We then get:

Lemma 5.28 Let M be a transitive model. Then M |= V = L iff M = Jτ for some
τ. (In particular, for any transitive model M, L M = Jτ , where τ = M ∪OR.) More
generally, M |= V = L[Ė] iff M = Jτ[Ē] for some τ and Ē, where x → Ē ∅⇒
M |= x → Ė for all x → M. (Here, τ → OR if M is a set and τ = ⊆ if M is a proper
class.)

Proof We prove the first assertion; the proof of the second one is basically identical.
“∅=” immediately follows from Lemma 5.25 (1). To see “=⇒”, let M |= V = L .
If x → M , then M |= ⇒y⇒ν (y = Sν [∼] ∧ x → y). But this is Σ1, so that by Lemma
5.3, every x → M is really contained in some Sν [∼] for ν → M . Thus, setting
τ = M ∪OR, M ∈ ⋃

ν<τ Sν [∼] = Sτ[∼] = Jτ . By the same reasoning, if ν ∗ < τ,
then M |= ⇒y⇒ν (y = Sν [∼] ∧ ν ∗ → y) and Jτ = ⋃

ν<τ Sν [∼] ∈ M . �
The Condensation Lemma for the constructible hierarchy is the following state-

ment.

Theorem 5.29 Let M = (Jτ[E], B) be a J-structure, and let σ : M̄−⊃Σ1 M, where
M̄ is transitive. Then there are τ̄ ∞ τ, Ē , and B̄ such that M̄ = (Jτ̄[Ē], B̄) is a
J -structure.

Proof Set τ̄ = OR ∪ M̄ ∞ τ, Ē = σ−1"E , and B̄ = σ−1"B. The sentence
“V = L[Ė]” is α2, so that M̄ |= V = L[Ė] is inherited from M |= V = L[Ė], and
Lemma 5.28 then immediately gives M̄ = (Jτ̄[Ē], B̄). �

The Condensation Lemma 5.29 leads to the following natural concept.
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Definition 5.30 Let E be a set or a proper class. Then E is said to satisfy full
condensation iff for every limit ordinal τ and for every σ : M = Jτ̄[Ē] ⊃Σ1 Jτ[E],
Ē ∪ M = E ∪ M (in particular, M = Jτ̄[E]).

Trivially, E = ∼ (or more generally, E ∈ δ) satisfies full condensation. There
are non-trivial examples, though (cf. Problem 8.9).

The following Theorem was shown by Kurt Gödel (1906–1978).

Theorem 5.31 (Gödel) Let E be a set or a proper class which satisfies full con-
densation. Then L[E] |= GCH. In fact, if θ is an infinite cardinal in L[E] and
Θ = θ+L[E], then

P(θ) ∪ L[E] ∈ JΘ [E].

Proof Let x → P(θ) ∪ L[E], and pick some τ such that x → Jτ[E]. Let us work in
L[E]. Pick

σ : M−⊃Σ1 Jτ[E],

where M is transitive, (θ + 1) ⊕ {x} ∈ ran(σ), and Card(M) = θ . By the Con-
densation Lemma 5.29, M = Jτ̄[Ē] for some τ̄ ∞ τ and some Ē . We must have
Card(τ̄) < θ+ by Lemma 5.16. Also, Ē ∪ M = E ∪ M , as E satisfies full conden-
sation, so that in fact M = Jτ̄[Ē] = Jτ̄[E], where τ̄ < Θ = θ+. We have shown
that x = σ−1(x) → JΘ [E]. As x was arbitrary, P(θ) ∈ JΘ [E]. Finally, because
Card(JΘ [E]) = Θ again by Lemma 5.16, Card(P(θ)) = Θ = θ+. Because we
worked in L[E], the Theorem is shown. �

Corollary 5.32 If ZFC is consistent, then so are ZFC + “V = L” as well as ZFC
+ GCH.

Proof Let (M; E) be a model of ZFC. Construct L inside (M; E). This yields a
model of ZFC plus GCH which thinks that “V = L ,” by Theorems 5.27, 5.28, and
5.31. �

We aim to study refinements of Theorem 5.31. For one thing, we may “localize”
condensation for L[E], cf. Definition 5.33.Wewill obtain the combinatorial principle
♦θ (and its variants) to hold in L[E], cf. Definitions 5.34 and 5.37 and Theorems
5.35 and 5.39. For another thing, we may “localize” GCH in L[E]; this will lead to
the concept of “acceptability” and the fine structure theory of L[E], cf. Definition
11.1.

Definition 5.33 Let E be a set or a proper class. E is said to satisfy local condensa-
tion iff for every limit ordinal τ, for every σ : M = Jτ̄[Ē] ⊃Σ1 Jτ[E] with critical
point Δ, and for all limit ordinals ζ < τ̄, if

(P(Δ) ∪ Jζ+δ[Ē])\Jζ [Ē] ≤= ∼,

then Ē ∪ Jζ+δ[Ē] = E ∪ Jζ+δ[Ē] (in particular, Jζ+δ[Ē] = Jζ+δ[E]).
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Trivially, full condensation implies local condensation, and E = ∼ satisfies
full condensation. Theorem 5.31 also holds if E just satisfies local condensation
(cf. Problem 5.17).

The definitions of variants of ♦ as well as the results on them which we are about
to prove are all due to Ronald Jensen.

Definition 5.34 Let θ be a regular uncountable cardinal, and let R ∈ θ . By ♦θ(R)

we mean the following statement. There is a sequence (Aξ : ξ → R) such that for all
ξ → R, Aξ ∈ ξ , and for every A ∈ θ , the set

{ξ → R: A ∪ ξ = Aξ }

is stationary in θ . We also write ♦θ for ♦θ(θ) and ♦ for ♦δ1 .

Trivially, ♦θ(R) implies that R be stationary. It is not hard to show that ♦θ+
implies that 2θ = θ+ (cf. Problem 5.20).

Theorem 5.35 (Jensen) Let E be a set or a proper class which satisfies local con-
densation. Then inside L[E], for every regular uncountable cardinal θ and every
stationary R ∈ θ , ♦θ(R) holds true.

In particular, inside L, for every regular uncountable cardinal θ and every sta-
tionary R ∈ θ , ♦θ(R) holds true.

ProofLet uswork inside L[E], and let us fix a stationary set R ∈ θ . Let us recursively
construct (Bξ , Cξ : ξ → R) as follows. Having constructed (Bξ̄ , Cξ̄ : ξ̄ → R∪ξ), where

ξ → R, let (Bξ , Cξ ) be the <E
θ -least pair (B, C) → Jθ [E] such that B ∈ ξ , C is club

in ξ , and
{ξ̄ → R ∪ ξ : Bξ̄ = B ∪ ξ̄} ∪ C = ∼,

provided such a pair exists; otherwise we set (Bξ , Cξ ) = (∼,∼).
We claim that (Bξ : ξ → R) witnesses that ♦θ(R) holds true. If not, then let

(B, C) → L[E] be the <L[E]-least pair such that B ∈ θ , C is club in θ , and

{ξ → R: Bξ = B ∪ ξ} ∪ C = ∼. (5.3)

Let (B, C) → Jτ[E]. We have that R ∪ C is stationary, so that we may pick some

σ : Jτ̄[Ē] ⊃Σδ Jτ[E],

where ξ = σ−1(θ) is the critical point of σ , Card(Jτ̄[Ē]) < θ , {R, B, C} ∈ ran(σ),
and ξ → R∪C (cf. Problem4.14). Say R̄ = σ−1(R), B̄ = σ−1(B), and C̄ = σ−1(C).
We have that R̄ = R ∪ ξ , B̄ = B ∪ ξ , and C̄ = C ∪ ξ is club in ξ .

As <E
τ is an initial segment of <L[E], (B, C) is also the <E

τ -least pair such that
B ∈ θ , C is club in θ , and (5.3) holds true. By the elementarity of σ , (B ∪ ξ, C ∪ ξ)

is then the <Ē
τ̄ -least pair such that B ∪ ξ ∈ ξ , C ∪ ξ is club in ξ , and
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{ξ̄ → R ∪ ξ : Bξ̄ = B ∪ ξ̄} ∪ (C ∪ ξ) = ∼. (5.4)

Let ζ < τ̄ be least such that

{R ∪ ξ, B ∪ ξ, C ∪ ξ} ∈ Jζ+δ[Ē].

As E satisfies local condensation, Ē ∪ Jζ+δ[Ē] = E ∪ Jζ+δ[Ē], and hence
Jζ+δ[Ē] = Jζ+δ[E]. This gives that (B ∪ ξ, C ∪ ξ) is the <E

ζ+δ-least (and thus

also the <E
θ -least) pair such that B ∪ ξ ∈ ξ , C ∪ ξ is club in ξ , and (5.4) holds true.

Therefore, (Bξ , Cξ ) = (B ∪ ξ, C ∪ ξ) by the choice of (Bξ , Cξ ). Therefore,

ξ → {ξ̄ → R: Bξ̄ = B ∪ ξ̄} ∪ C,

which contradicts (5.3). �

Lemma 5.36 (Jensen) If ♦ holds true, then there is an ℵ1-Souslin tree.

We shall prove a more general statement, cf. Lemma 11.68, later.
We also discuss a strengthening of ♦θ , called ♦∗

θ .

Definition 5.37 Let θ be a regular uncountable cardinal, and let R ∈ θ . By ♦∗
θ(R)

we mean the following statement. There is a sequence (Aξ : ξ → R) such that for all

ξ → R, Aξ ∈ P(ξ) and Card(Aξ ) ∞ ξ , and for every A ∈ θ there is some club
C ∈ θ such that A ∪ ξ → Aξ for every ξ → C ∪ R. We also write ♦∗

θ for ♦∗
θ(θ) and

♦∗ for ♦∗
δ1
.

Lemma 5.38 (Kunen) Let θ be a regular uncountable cardinal, and let R ∈ θ be
stationary. Then ♦∗

θ(R) implies ♦θ(R).

Proof Let (Aξ : ξ → R) witness ♦∗
θ(R). Say Aξ = {Aξ,i : i < ξ} for ξ → R. If i ,

j < ξ , ξ → R, then let us write

A j
ξ,i = {τ < ξ : 〈τ, j〉 → Aξ,i },

where τ, j �⊃ 〈τ, j〉 is the Gödel pairing function (cf. p. 33). We claim that there
is some i < θ such that (Ai

ξ,i : ξ → R) witnesses ♦θ(R).
Suppose not. Then for every i < θ there is some Ai ∈ θ and some club Ci ∈ θ

such that
{ξ → R: Ai ∪ ξ = Ai

ξ,i } ∪ Ci = ∼. (5.5)

Let D = βi<θCi , and let
A = {〈τ, i〉:τ → Ai }.

As (Aξ : ξ → R) witnesses ♦∗
θ(R), there is some club C ∈ D such that A ∪ ξ → Aξ

for every ξ → C ∪ R.
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Let ξ → C ∪ R, where we may assume without loss of generality that ξ is closed
under theGödel pairing function (ψ �⊃ 〈ψ, ψ〉 is incresing and continuous). There is
then some i0 < ξ such that A∪ξ = Aξ,i0 , and we also have that A∪ξ = {〈τ, i〉:τ →
Ai ∧ τ, i < ξ}. This yields that

Ai0
ξ,i0

= Ai0 ∪ ξ. (5.6)

But i0 < ξ → D = βi<θCi implies that ξ → Ci0 , so that (5.6) contradicts (5.5). �

We now aim to characterize for which R ∈ θ we have that ♦∗
θ(R) holds true in

models of the form L[E], where E satisfies local condensation. It turns out that the
notion of “ineffability” (cf. Definition 4.49) is the relevant concept.

Theorem 5.39 (Jensen) Let E be a set or a proper class which satisfies local con-
densation. The following is true inside L[E].

If θ is regular and uncountable and if R ∈ θ is not ineffable, then ♦∗
θ(R) holds

true.
In particular, inside L, if θ is regular and uncountable and if R ∈ θ is not

ineffable, then ♦∗
θ(R) holds true.

Proof Let us work inside L[E]. Let (Aξ : ξ → R) witness that R is not ineffable,
i.e., Aξ ∈ ξ for every ξ → R and whenever S ∈ R is stationary, then there are ξ ∞ ξ ∗
with ξ , ξ ∗ → S and Aξ ≤= Aξ ∗ ∪ ξ . For every ξ → R, let Δ(ξ) be the least Δ > ξ such
that

Aξ → JΔ[E],

and set
Aξ = P(ξ) ∪ JΔ(ξ)[E].

We claim that (Aξ : ξ → R) witnesses ♦∗
θ(R).

By Problem 5.17 and Lemma 5.16, Card(Aξ ) ∞ ξ for every ξ → R. Let us fix
B ∈ θ . We aim to find some club C ∈ θ such that B ∪ ξ → Aξ for every ξ → C ∪ R.

Let ζ > θ be least such that B → Jζ [E]. By Problem 5.17, ζ < θ+. Using
Lemma 5.16, let us pick some bijection g: θ ⊃ Jζ [E]. The set

D = {ξ < θ: B → g”ξ ∧ g”ξ ≺ Jζ [E] ∧ ξ = (g”ξ) ∪ θ}

is easily verified to be club in θ . (Cf. Problem 4.14.) For every ξ → D there is some
Ē , ε(ξ) and some σξ with critical point ξ such that

Jε(ξ)[Ē]
σξ≥= g”ξ ≺ Jζ [E].

Notice that ζ = ζ̄ + δ, some limit ζ̄, and hence if ε(ξ) = ε̄ + δ, where ε̄ is a
limit, then B ∪ ξ = σ−1

ξ (B) → Jε(ξ)[Ē]\Jε̄[Ē]. As E satisfies local condensation,

we therefore have that Ē = E ∪ Jε(ξ)[Ē] and Jε(ξ)[Ē] = Jε(ξ)[E]. I.e.,
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B ∪ ξ = σ−1
ξ (B) → Jε(ξ)[E] (5.7)

for all ξ → D.
Suppose that there were no clubC ∈ D such that B∪ξ → Aξ for every ξ → C ∪R.

This means that

{ξ → D ∪ R: B ∪ ξ /→ Aξ } is stationary. (5.8)

By (5.7), B ∪ ξ /→ Aξ = P(ξ) ∪ JΔ(ξ)[E] implies that Δ(ξ) < ε(ξ), which in turn
gives Aξ → JΔ(ξ)[E] ∈ Jε(ξ)[E]. Hence (5.8) yields that

S = {ξ → D ∪ R: Aξ → Jε(ξ)[E]} is stationary. (5.9)

If ξ → S, thenσξ (Aξ ) → g∗∗ξ , so that there is some f (ξ) < ξ withσξ (Aξ ) = g( f (ξ)).
By Fodor’s Theorem 4.32, there is some stationary T ∈ S and some ψ < θ such
that for all ξ → T , f (ξ) = ψ.

Let us write A = g(ψ). If ξ → T , then σξ (Aξ ) = g(ψ) = A, which means that
Aξ = A ∪ ξ . But then Aξ = Aξ ∗ ∪ ξ whenever ξ ∞ ξ ∗, ξ , ξ ∗ → T . This contradicts
the fact that (Aξ : ξ → R) witnesses that R is not ineffable. �

Lemma 5.40 Let θ be an uncountable regular cardinal, and assume R ∈ θ to be
ineffable. Then ♦∗

θ(R) fails.

Proof Suppose (Aξ : ξ → R) were to witness ♦∗
θ(R). For ξ → R, say Aξ =

{Aξ,i : i < ξ}, and set
Aξ = {〈τ, i〉:τ → Aξ,i },

where τ, i �⊃ 〈τ, i〉 again is the Gödel pairing function. Applying the ineffability
of R to (Aξ ∪ ξ : ξ → R), we find some stationary S ∈ R such that for all ξ ∞ ξ ∗ with
ξ , ξ ∗ → S,

Aξ ∪ ξ = Aξ ∗ ∪ ξ.

For i < θ , let us write

Ai = {τ < θ: ⇒ξ → S 〈τ, i〉 → Aξ ∪ ξ}.

By the properties of S,
Aξ,i = Ai ∪ ξ (5.10)

for all i < θ and ξ → S.
Let us now pick any A → P(θ)\{Ai : i < θ}. As (Aξ : ξ → R) is supposed to

witness ♦∗
θ(R), there is some club C ∈ θ such that A ∪ ξ → Aξ for all ξ → R ∪ C .

By Fodor’s Theorem 4.32 there is some stationary T ∈ S ∪ C and some i0 < θ

such that for all ξ → T ,
A ∪ ξ = Aξ,i0 .
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But this implies that A = Ai0 by (5.10). Contradiction! �

There is a principle which is slightly stronger than ♦∗
θ and which is called ♦+

θ , cf.
Problem 5.22.

5.2 Ordinal Definability

We also need to introduce HOD.

Definition 5.41 Let Y be a set or a proper class. We say that x is hereditarily in Y
iff T C({x}) ∈ Y .

Definition 5.42 Let z be a set or a proper class. We write ODz for the class of all x
which are ordinal definable from elements of z, i.e., such that there is a formula Φ,
there are ordinals τ1, . . . , τn and elements y1, . . . , ym of z such that for all u,

u → x ∅⇒ Φ(u, τ1, . . . , τn, y1, . . . , ym).

We also write HODz for the class of all x which are hereditarily in ODz , i.e.,

HODz = {x : T C({x}) ∈ ODz}.

If x → HODz , then we say that x is hereditarily ordinal definable from elements of
z. If z = ∼, then we write OD instead of OD∼ and HOD instead of HOD∼.

Lemma 5.43 Let z be a set. Then x → ODz iff there is a formula Φ, there are ordinals
τ1, . . . , τn, τ and elements y1, . . . , ym of z such that τ1, . . . , τn, z → Vτ and for all
u,

u → x ∅⇒ Vτ |= Φ(u, τ1, . . . , τn, y1, . . . , ym).

Proof By the reflection principle, cf. Problem 5.14, given Φ, τ1, . . . , τn and
y1, . . . , ym → z there is some τ with τ1, . . ., τn , z → Vτ and for all u → Vτ ,

Φ(u, τ1, . . . , τn, y1, . . . , ym) ∅⇒ Vτ |= Φ(u, τ1, . . . , τn, y1, . . . , ym).

The Lemma then follows using Problem 5.1. �

By Lemma 5.43 and Problem 5.3, ODz = {x :Φ(x, z)} for some formula Φ which
is is Σ2. This implies that HODz = {x :ξ(x, z)} for some formula ξ which is is Σ2.

Theorem 5.44 (Gödel) Let z be a set such that z → ODz . Then HODz |= ZF.

Proof Notice that HODz is trivially transitive. (Ext) and (Fund) are therefore true in
HODz . It is easy to see that OR ∈ HODz , so that (Inf) is also true in HODz . (Pair),
(Union), and (Sep) are also straightforward.
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Let us show that the Power Set Axiom (Pow) holds in HODz . We need to see
that if x → HODz , then P(x) ∪ ODz → ODz . Fix x → HODz . By Lemma 5.43 and
Replacement in V , there is some τ such that y → P(x) ∪ ODz iff there is a formula
Φ, there are τ1, . . . , τn , z → Vτ and there are y1, . . . , ym → z such that for all u,

u → y ∅⇒ Vτ |= Φ(u, τ1, . . . , τn, y1, . . . , ym).

Because z → ODz , this shows that P(x) ∪ ODz → ODz .
In order to show the Replacement Schema (Rep) in HODz , it is easy to see that

it suffices to prove HODz ∪ Vτ → HODz for all τ. However, y → HODz ∪ Vτ iff
y → Vτ and for all x → T C({y}) there is a formula Φ, there are ordinals τ1, . . . , τn, ζ

and elements y1, . . . , ym of z such that τ1, . . . , τn, z → Vζ and for all u,

u → x ∅⇒ Vζ |= Φ(u, τ1, . . . , τn, y1, . . . , ym).

This shows that HODz ∪ Vτ → ODz . Trivially, HODz ∪ Vτ ∈ HODz , and therefore
in fact HODz ∪ Vτ → HODz . �

Theorem 5.45 (Gödel) Let z be a set with z → ODz . If there is a well-order of z in
ODz , then HODz |= ZFC. In particular, HOD |= ZFC.

Proof By Theorem 5.44, we are left with having to verify that HODz |= (AC). Let
∞z be a well-order of z which exists in ODz .

Wewrite aβb for the symmetric difference (a\b)⊕(b\a) of a and b. For finite sets
u, v of ordinals, i.e., u, v → OR<δ, let uswrite u ∞∗ v iff u = v or elsemax(uβv) → v.
It is easy to show that ∞∗ is a well-ordering on OR<δ, cf. Problem 5.19. The well-
order ∞z induces a well-order ∞∗

z of finite subsets of z in the same fashion: for
u, v → [z]<δ, let u ∞∗ v iff u = v or else y is largest (in the sense of∞z) in uβv, then
y → v. Notice that ∞∗,∞∗

z→ O Dz . For formulae Φ ← Φ(v0, v1, . . . , vn, v∗
1, . . . , v∗

n),
ξ = ξ(v0, v1, . . . , vp, v∗

1, . . . , v∗
q), ordinals τ, ζ, finite sets α = {τ1, . . . , τn},β =

{ζ1, . . . , ζp} of ordinals, and finite vectors y = (y1, . . . , ym), w = (w1, . . . , wq) of
elements of z, we may then set

(Φ, τ,α, y) ∞∗∗ (ξ, ζ, ζ, w)

iff (the Gödel no. of) Φ is smaller than (the Gödel no. of) ξ , or else if τ < ζ, or
else α <∗ β, or else if y ∞∗

z w. We have that ∞∗∗ is a well-order.
Now if x → O Dz , we may let (Φx , τx ,αx , yx ) be the ∞∗∗-least tuple (Φ, τ,α, y)

such that if Φ ← Φ(v0, v1, . . . , vn, v∗
1, . . . , v∗

m),α = (τ1, . . . , τn), and y =
(y1, . . . , ym) then for all u,

u → x ∅⇒ Vτ |= Φ(u, τ1, . . . , τn, y1, . . . , yn).

For x, y → ODz we may then set x ∞∗∗∗ y iff (Φx , τx ,αx , yx ) ∞∗∗ (Φy, τy,αy, yy).
We have that ∞∗∗ is a well-order of ODz . For any ordinal ν , the restriction of ∞∗∗∗
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to sets in ODz ∪ Vν is an element of ODz . But this implies that for any ordinal ν ,
the restriction of ∞∗∗∗ to HODz ∪ Vν is in HODz . It follows that HODz |= (AC). �

We refer the reader to [39] for an outline of the status quo of current day inner
model theory.

5.3 Problems

5.1. Show that the relation (M; E) |= Φ(x) is definable in the language L→ by a
Σ1- as well as by aα1-formula, i.e., there is aΣ1-formulaξ and aα1-formula
ξ ∗ such that for all models (M; E) of L→ and for all x → M ,

(M; E) |= Φ(x) ∅⇒ ξ(M, E, �Φ�, x) ∅⇒ ξ ∗(M, E, �Φ�, x).

Here, �Φ� is the Gödel number of Φ. We shall produce a stronger statement
in Section 11.1, cf. Lemma 10.14.

5.2. Let E A be as in Problem 4.10 (c). Let (δ; E A)
σ≥= (HF; →). Show that the

relation R ∈ δ × HF, where (n, a) → R ∅⇒ σ(n) = a, is βZFC−⊆
1 .

5.3. Show that a formula Φ(v) ofL→ is Σ2 iff there is a formula Φ∗(v) ofL→ such
that

ZFC � ⇐v(Φ(v) ←⊃ ⇒τ Vτ |= Φ∗(v)).

5.4. Let θ be an infinite cardinal, and let Φ be aΣ2-sentence. Show that if Hθ |= Φ,
then V |= Φ.

5.5. Show that the following functions are rudimentary: f (x) = ⋃
xi , f (x) =

xi ⊕ x j , f (x) = {x1, ..., xk}, f (x) = (x1, ..., xk), and f (x) = xi × x j .

5.6. Let E be a set or a proper class. Let Fi , 0 ∞ i ∞ 16, be the collection of
functions from p. 73 which produce the Sτ[E] hierarchy.
Show that each Fi , 0 ∞ i ∞ 15, is rud, and that SE is rudE as well. Also, fill
in the details in the proof of Lemma 5.20. Show that if U is transitive, then
SE (U ) is transitive as well.

5.7. Show that ifU is a transitive set and E is a set or a proper class, then rudE (U ⊕
{U }) is transitive as well.

5.8. Show that every rudE function is simple.

5.9. Prove Lemma 5.16!

5.10. Prove Lemma 5.26!
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5.11. Show that for every x → V there is some A such that x → L[A]. Show also
that it need not be the case that x → L[x]. Show in BGC that there is a class
A of ordinals such that V = L[A].

5.12. Let M and N be two transitive models of ZFC. Show that if for all sets x of
ordinals, x → M ∅⇒ x → N , then M = N .

5.13. Let A ∈ OR. Set

E = {(τ + δ, ξ): ξ → A ∪ [τ, τ + δ)}

for every limit ordinal τ. Show that E satisfies the hypotheses of Lemma
5.15 and that if λ is a limit of limit ordinals, then Jλ[E] = Jλ[A] (and hence
L[E] = L[A]).

5.14. Let (Mτ:τ → OR) be a continuous cumulative hierarchy of transitive sets,
i.e., every Mτ is transitive, Mτ ∈ Mζ for τ ∞ ζ, and Mλ = ⋃

τ<λ Mτ for
limit ordinals λ. Set M = ⋃

τ Mτ . Let Φ(x1, . . . , xk) be a formula, and let
a, a1, . . . , ak → M .
Show that there is then some τ with a, a1, . . . , ak → Mτ such that for all
b → Mτ ,

Mτ |= Φ(b, a1, . . . , ak) ∩ M |= Φ(b, a1, . . . , ak).

In particular, the Reflection Principle holds true: If Φ is a formula, then there
is a club class of τ such that for all x1, . . ., xk → Vτ ,

Φ(x1, . . . , xk) ∅⇒ Vτ |= Φ(x1, . . . , xk).

5.15. (A. Levy) Use Problem 5.14 to show that Ackermann’s set theory AST is
conservative over ZF, i.e., if Φ is a formula of L→ which is provable in AST,
then Φ is provable in ZF. [Hint. Use the compactness theorem.]

5.16. Let θ be weakly inaccessible. Show that Jθ |= ZFC. Conclude that the exis-
tence of weakly inaccessible cardinals cannot be proven in ZFC.

5.17. Show that the conclusion of Theorem 5.31 also holds if E is just assumed to
satisfy local condensation. I.e., if E is a set or a proper class which satisfies
local condensation, then L[E] |= GCH, and in fact, if θ is an infinite cardinal
in L[E] and Θ = θ+L[E], then P(θ) ∪ L[E] ∈ JΘ [E].

5.18. Let M = Jτ[E] be a J -structure. Show that there is a (partial) surjection
h : τ ⊃ [τ]<δ such that h → Σ≥

M
1 .

5.19. For u, v → OR<δ, let u ∞∗ v iff max(uβv) → v. Show that ∞∗ is a well-
ordering on OR<δ

5.20. Let θ be an infinite cardinal such that ♦θ+ holds true. Show that 2θ = θ+.



90 5 Constructibility

Let θ be a regular uncoutable cardinal. R ∈ θ is called subtle iff for every
sequence (Aξ : ξ → R) such that Aξ ∈ ξ for every ξ → R and for every club
C ∈ θ there are ξ , ξ ∗ → R ∪ C with ξ < ξ ∗ such that Aξ = Aξ ∗ ∪ ξ .

5.21. (K. Kunen) Let θ be a regular uncoutable cardinal, and let R ∈ θ . Show that
if R is ineffable, then R is subtle. Show also that if R is subtle, then ♦θ(R)

holds true. [Hint. Follow the proof of Theorem 5.35.]
Let θ be a regular uncountable cardinal, and let R ∈ θ . By ♦+

θ (R) we mean
the following statement. There is a sequence (Aξ : ξ → R) such that for all

ξ → R, Aξ ∈ P(ξ) and Card(Aξ ) ∞ ξ , and for every A ∈ θ there is some
club C ∈ θ such that for every ξ → C ∪ R, {A∪ξ, C ∪ξ} ∈ Aξ . ♦+

θ is ♦+
θ (θ).

5.22. (R. Jensen)Assume V = L[E], where E satisfies local condensation. Let θ be
a regular uncountable cardinal, and let R ∈ θ . Show that if R is not ineffable,
then ♦+

θ (R) holds true. [Hint. Follow the proof of Theorem 5.39. Pick ζ such
that R → Jζ , say R = g(0). Towards the end, after (5.7), let C̄ = {ε(ξ): ξ → D}.
Verify as follows that if ξ0 → R is a limit point of C̄ , then B ∪ξ0, C̄ ∪ξ0 → Aξ0 .
Otherwise Aξ0 → Jε(ξ0). Set S = {ξ̄ → R ∪ ξ0: Aξ̄ = Aξ0 ∪ ξ̄}. By the choice
of (Aξ : ξ → R) and the elementarity of σξ0 , S can’t be stationary in Jε(ξ0),
so that Jε(ξ0) has a club I ∈ ξ disjoint from S. But setting I ∗ = σξ0(I ) and
A∗ = σξ0(Aξ0), ξ0 → R ∪ I ∗ and Aξ0 = A∗ ∪ ξ0. Contradiction!]
Kurepa’s Hypothesis at θ , KHθ , is the statement that there is some set B ∈
P(θ) of size θ+ such that for all ξ < θ , {X ∪ ξ : X → B} has size at most
Card(ξ).

5.23. (R. Jensen) Let θ be regular and uncoutable. Then♦+
θ impliesKHθ . [Hint. Let

(Aξ : ξ < θ)witness♦+
θ . Forδ ∞ ξ < θ , let Mξ be a transitivemodel ofZFC−

of size Card(ξ) such thatAξ ∈ Mξ . Let B = {X ∈ θ:⇐ξ < θ X ∪ ξ → Mξ }.]
5.24. (R. Jensen, K. Kunen) Show that if θ is ineffable, then KHθ fails. Conclude

that if θ is ineffable, then ♦+
θ fails.

Kripke- Platek set theory, KP, for short, is the theory in the language of
L→ which has the following axioms. (Ext), (FundΦ) for every formula Φ (cf.
Problem 3.4), (Pair), (Union), (Inf), (AusΦ) for allΣ0-formulae Φ, and (CollΦ)
for all Σ0-formulae Φ (cf. Problem 3.5).

5.25. (a) Show that there is a proof of Lemma 2.1 in KP, i.e., “for all a, b, a × b
exists” is provable in KP.
(b) Show also that KP proves (CollΦ) for all Σ1-formulae Φ.
(c) Also show that if Φ and ξ are both Σ1 and such that KP proves Φ ⊂ ¬ξ ,
then KP proves (AusΦ).

5.26. Letτ > δ be a limit ordinal. Show that the following statements are equivalent.

(a) Jτ |= KP.
(b) Jτ |= (CollΦ) for all Σ0-formulae Φ.
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(c) if Φ and ξ are both Σ1 and such that Jτ |= ⇐x⇐v(Φ ⊂ ¬ξ), then
Jτ |= (AusΦ).

(d) there is no total f : a ⊃ Jτ , where a → Jτ and f → Σ≥
Jτ

1 .

Let (M; E) be a model of KP, and let (N ; →) ≥= (wfp(E); E � wfp(M)), i.e.
N is the transitive collapse of the well-founded part of (M; E). Then (M; E)

is called an δ-model iff δ → N . A set N is called admissible iff N is transitive
and (N ; →� N ) |= KP.

5.27. (Ville’s Lemma) Let (M; E) |= KP be an δ-model. Show that if N is the
transitive collapse of the well-founded part of (M; E), then N is admissible.

5.28. Show in KP that if R ∈ M × M is well-founded, where M is a set, then the
function ρ: R ⊃ OR is a set, where ρ(x) = {ρ(y): y Rx}, i.e., ρ(x) is the R-
rank of x for every x → R. [Hint. The relevant Φ in the Recursion Theorem 3.13
is Σ1.] Show also in KP that if R ∈ M × M is well-founded and extensional,
where M is a set, then the transitive collapse as defined in Theorem 3.21 is
a set.

Conclude the following. Let N be admissible. Let R → N be a binary relationwhich is
well-founded in V . Then ||R|| < N ∪OR. If R → N is well-founded and extensional
in V , then the transitive collapse of R is an element of N . Also, if R → N is any
relation, then ||wfp(R)|| ∞ N ∪ OR.

Let z → δδ. We call τ z-admissible iff Jτ[z] is an admissible set. We write δz
1 for

the least z-admissible ordinal. We also write δCK
1 for δ0

1 (0 = the constant function
wth value 0, CK = Church–Kleene).



Chapter 6
Forcing

The method of forcing was invented by Paul Cohen (1934–2007) to show the
independence of the Continuum Hypothesis from the axioms of ZFC, using Cohen
forcing (cf. Definition 6.5 and Theorem 6.33).

6.1 The General Theory of Forcing

Recall that P = (P;→) is a partial order iff → is reflexive, symmetric, and transitive
(cf. p. 14). In what follows, we shall always assume that P ≤= ∼. As before, we write
p < q for p → q ∈ q ≤→ p (which, by symmetry, is equivalent to p → q ∈ p ≤= q).

Definition 6.1 Let P = (P;→) be a partial order. We also call P a notion of forcing
and the elements of P the forcing conditions. For p, q ∈ P we say that p is stronger
than q iff p → q, and we say that p is strictly stronger than q iff p < q.

Definition 6.2 Let P = (P;→) be a partial order. A set D ∧ P is called dense (in
P) iff ⊃p ∈ P ⊂q ∈ D q → p. If p ∈ P, then D ∧ P is called dense below p iff
⊃p⇐ → p ⊂q ∈ D q → p⇐. A set G ∧ P is called a filter iff (a) if p, q ∈ G, then there
is some r ∈ G with r → p ∈ r → q, and (b) ⊃p ∈ G ⊃q ∈ P(p → q ⇒ q ∈ G).

If P = (P;→) is a partial order, and if p, q ∈ P, then we write p ∪ q for
⊂r ∈ P(r → p ∈ r → q), in which case p, q are called compatible, and we write
p∞q for ¬p ∪ q, in which case p, q are called incompatible. If G is a filter, then
any two p, q ∈ G are compatible (as being witnessed by an element of the filter).

Definition 6.3 Let P = (P;→) be a partial order, and let D be a family of dense
sets. A filter G ∧ P is called D-generic iff G ∩ D ≤= ∼ for all D ∈ D .

Lemma 6.4 Let P = (P;→) be a partial order, and let D be family of dense sets
such that D is at most countable. Then for every p ∈ P there is a D-generic filter G
with p ∈ G.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_6, 93
© Springer International Publishing Switzerland 2014
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Proof Say D = {Dn : n < Φ}. Let p ∈ P be given, and recursively construct
(pn : n < Φ) as follows. Set p0 = p. If pn is constructed, where n < Φ, then
pick some q → pn with q ∈ Dn (this is possible because Dn is dense in P), and set
pn+1 = q. It is then easy to see that

G = {r ∈ P : ⊂n pn → r}

is a D-generic filter. �

This lemma produces a “forcing proof” of Cantor’s Theorem 1.1 as follows.

Definition 6.5 Let C = <ΦΦ, i.e., the set of all finite sequences of natural numbers.
For p, q ∈ C, let p → q iff p ∅ q (iff ⊂n p � n = q). The partial order C = (C;→)

is called Cohen forcing.

Now let X be a countable subset of ΦΦ, the set of all infinite sequences of natural
numbers. Say X = {xn : n < Φ}. Set

Dn = {p ∈ C : p ≤= xn � dom(p)},

and
D∗n = {p ∈ C : n ∈ dom(p)}.

It is easy to verify that each Dn as well as each D∗n is dense in C.
Set D = {Dn : n < Φ} ∗ {D∗n : n < Φ}, and let G be D-generic, via Lemma 6.4.
If n < Φ, then, as D∗n is dense, there is some p ∈ G with n ∈ dom(p). Therefore,

as G is a filter,
⋃

G ∈ ΦΦ. Also, if n < Φ, then, as Dn is dense, there is some p ∈ G
with p ≤= xn � dom(p), so that

⋃
G ≤= xn . We have seen that

⋃
G ∈ ΦΦ \ X . In

particular, ΦΦ \ X ≤= ∼. We have shown that 2ℵ0 > ℵ0.
In what follows, we aim to produce “generic extensions” M[G] of given (count-

able) transitive models M of ZFC.

Lemma 6.6 Let P = (P;→) ∈ M, where M is a transitive model of ZFC. Then P

is a partial order⇐⇒ M |= “P is a partial order”. Also, if D ∧ P, where D ∈ M,
and if p ∈ P, then D is dense in P ⇐⇒ M |= “D is dense in P” and D is dense
below p ⇐⇒ M |= “D is dense below p.”

Proof “(P;→) is a partial order,” “D is dense in P,” and “D is dense below p,” may
all be written as Σ0-formulae. �

Definition 6.7 Let M be a transitive model of ZFC, and let P = (P;→) ∈ M be a
partial order. A filter G ∧ P is called P-generic over M (or, M-generic for P) iff G
is D-generic, where D = {D ∈ M : D is dense in P}.

By Lemma 6.4, if M is a countable transitive model of ZFC and P ∈ M is a
partial order, then for each p ∈ P there is a P-generic filter G over M with p ∈ G.
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Lemma 6.8 Let M be a transitive model of ZFC, let P = (P;→) ∈ M be a partial
order, and let G be P-generic over M. If p ∈ G, and if D ∧ P, D ∈ M, is dense
below p, then G ∩ D ≤= ∼.

Proof Set

D⇐ = {q ∈ P : ⊂r ∈ D q → r} ∗ {q ∈ P : ⊃r ∈ D q∞r}.

Then D⇐ ∈ M , and D⇐ is easily be seen to be dense. Let q ∈ G ∩ D⇐, and let s ∈ G
be such that s → p and s → q. As D is dense below p, there is some t → s with
t ∈ D, so that in particular q||t . But q ∈ D⇐, so that we must now have some r ∈ D
with q → r , which gives r ∈ D ∩ G as desired. �
Definition 6.9 Let P = (P;→) be a partial order. A ∧ P is called an antichain iff
for all p, q ∈ A, if p ≤= q, then p∞q. A ∧ P is called a maximal antichain iff A is
an antichain and for all p ∈ P there is some q ∈ A with p ∪ q. D ∧ P is called open
iff for all p ∈ D, if q → p, then q ∈ D.

The Hausdorff Maximality Principle 2.11 easily gives that every antichain is
contained in a maximal antichain.

Lemma 6.10 Let M be a transitive model of ZFC, and let P = (P;→) ∈ M be a
partial order. Let G ∧ P be a filter. The following are equivalent.

(1) G is P-generic over M.
(2) G ∩ A ≤= ∼ for every maximal antichain A ∧ P, A ∈ M.
(3) G ∩ D ≤= ∼ for every open dense set D ∧ P, D ∈ M.

Proof (1) =⇒ (2): Let A ∧ P, A ∈ M , be a maximal antichain. Let D = {p ∈ P :
⊂q ∈ A p → q}. D is easily seen to be dense, and of course D ∈ M . Let p ∈ G ∩ D.
There is some q ∈ A with p → q. But then q ∈ G ∩ A, as G is a filter.

(2) =⇒ (1): Let D ∧ P, D ∈ M be dense. Working in M , let A ∧ D be an
antichain such that for every p ∈ D there is some q ∈ A with p ∪ q. It is easy to see
that A is then a maximal antichain. (Cf. Problem 6.1.) But then p ∈ A ∩ G implies
p ∈ D ∩ G.

(1) =⇒ (3): This is trivial.
(3) =⇒ (1): Let D ∧ P, D ∈ M be dense. Let D∗ = {p : ⊂q ∈ D p → q}. D∗

is then open dense, and of course D∗ ∈ M . Let p ∈ D∗ ∩ G. There is then some
q ∈ D with p → q. But then q ∈ D ∩ G, as G is a filter. �

P is called atomless iff ⊃p ∈ P ⊂q ∈ P ⊂r ∈ P (q → p ∈ r → p ∈ q∞r). Cohen
forcing is atomless as are all the other forcings considered in this book.

Lemma 6.11 Let M be a transitive model of ZFC, let P = (P;→) be an atomless
partial order, and let G ∧ P be P-generic over M. Then G /∈ M.

Proof Suppose that G ∈ M . Then D = P \ G ∈ M , and D is dense: if p ∈ P

and if q → p and r → p are incompatible, then at most one of q, r can be
in G, i.e., at least one of q, r must be in D. But then D ∩ G ≤= ∼, which is
nonsense. �
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Definition 6.12 Let M be a transitive model of ZFC, and let P ∈ M be a partial
order. For α < M ∩ OR, we recursively define the sets MP

α of P-names (of M) of
rank → α as follows. Set

MP
α = {β ∈ M : β is a binary relation and

⊃(ε, p) ∈ β (p ∈ P ∈ ⊂ξ < α ε ∈ MP
ξ )}

We also write MP =⋃
α<M∩OR MP

α for the class of P-names (of M).

Of course MP ∧ M , so that if M is a set, then MP is a set as well.

Definition 6.13 Let M be a transitivemodel ofZFC, and letP ∈ M be a partial order.
Let G ∧ P be P-generic over M . For β ∈ MP we write β G for the G-interpretation
of β , which is defined to be

{ε G : ⊂p ∈ G (ε, p) ∈ β }.

We also write M[G] = {β G : β ∈ MP} and call it a (the) generic extension of M
(via P, G).

Of course, the definition of β G is by recursion on the rank of β in the sense of
Definition 6.12. We aim to prove that any generic extension of a transitive model of
ZFC is again a transitive model of ZFC.

In what follows, we want to assume that our partial order P always has a “least”
(“weakest”) element 1 = 1P, i.e., p → 1 for all p ∈ P. (Most often, 1P = ∼.)

By recursion on the ∈-rank of x ∈ M , we define ←x = {( ←y, 1) : y ∈ x} for every
x ∈ M . A trivial induction shows ←x ∈ MP for every x ∈ M . We also define Ġ to be
the P-name {( ←p, p) : p ∈ P}; obviously, Ġ ∈ MP.

Lemma 6.14 Let M be a transitive model of ZFC, let P ∈ M be a partial order,
and let G ∧ P be P-generic over M. M[G] is transitive, and M ∗ {G} ∧ M[G].
Proof The transitivity of M[G] is trivial. In order to verify M ∧ M[G], we show
←xG = x for every x ∈ M by induction on the rank of x . We have ←xG = {ε G : ⊂p ∈
G (ε, p) ∈ ←x} = { ←yG : y ∈ x} (notice that 1 ∈ G) = x by the inductive hypothesis.
In order to verify G ∈ M[G], we show that ĠG = G. Well, ĠG = {ε G : ⊂p ∈
G (ε, p) ∈ Ġ} = { ←pG : p ∈ G} = G, as ←pG = p for all p ∈ P. �

It is easy to verify that if N is a transitive model of ZFC with M ∗ {G} ∧ N ,
then M[G] ∧ N . Therefore, once we showed that M[G] is indeed a model of ZFC,
we know that it is the smallest ZFC-model which contains M ∗ {G}. To begin, the
ordinal height of M[G] is the same as the one of M :

Lemma 6.15 Let M be a transitive model of ZFC, let P ∈ M be a partial order,
and let G ∧ P be P-generic over M. M[G] ∩ O R = M ∩ O R.
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Proof By Lemma 6.14, we only need to see that M[G] ∩ O R ∧ M .
A straightforward induction yields that the ∈-rank rk∈(β G) of β G is at most the

∈-rank of β , for every β ∈ MP. Now let δ ∈ M[G] ∩ O R, say δ = β G , where
β ∈ MP. Then δ = rk∈(δ) = rk∈(β G) → rk(β ) < M ∩ OR, as desired. �

Because M[G] is transitive and Φ ∈ M[G], we know by Lemma 5.7 (1) through
(3) that M[G] is a model of the axioms (Ext), (Fund), and (Inf).

Lemma 6.16 Let M be a transitive model of ZFC, let P ∈ M be a partial order,
and let G ∧ P be P-generic over M. M[G] |= (Pair).

Proof Let x, y ∈ M[G], say x = β G , y = ε G , where β, ε ∈ MP. Let

ρ = {(β, 1P), (ε, 1P)}.

Of course, ρ ∈ MP. But it is easy to see that ρG = {β G, ε G} = {x, y}, so that
{x, y} ∈ M[G]. The result then follows via Lemma 5.7 (4). �
Lemma 6.17 Let M be a transitive model of ZFC, let P ∈ M be a partial order,
and let G ∧ P be P-generic over M. M[G] |= (Union).

Proof Let x ∈ M[G], say x = β G , where β ∈ MP. Let

ε = {(χ, p) : ⊂ρ⊂q⊂q ⇐ (p → q ∈ p → q ⇐ ∈ (χ, q) ∈ ρ ∈ (ρ, q ⇐) ∈ β)}.

Of course, ε ∈ MP, and it is straightforward to verify that ε G = ⋃
x . The result

then follows via Lemma 5.7 (5). �
In order to verify M[G] to satisfy (Aus), (Rep), and (Pow), we need the “forcing

language.”

Definition 6.18 Let M be a transitive model of ZFC, and let P ∈ M be a partial
order. Let p ∈ P, let σ(v1, . . . , vn) be a formula of the language of set theory, and
let β1, . . . , βn ∈ MP. We say that p forces σ(β1, . . . , βn) (over M), abbreviated by

p ♦P
M σ(β1, . . . , βn),

iff for all G which are P-generic over M and such that p ∈ G we have that M[G] |=
σ(β G

1 , . . . , β G
n ).

We also write ♦P or just ♦ instead of ♦P
M . Notice that for a fixed σ,

{(p, β1, . . . , βn) : p ♦P
M σ(β1, . . . , βn)} ∧ P× (MP)n ∧ M.

We shall verify that this relation is in fact definable over M (from the parameter P).
In order to do that, we now define a relation ⊕ by working in M , and then prove that
⊕ and ♦ have the same extension.1

1 “⊕” will be used as a symbol for this purpose only temporarily, until p. 97.
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Definition 6.19 Let M be a transitive model of ZFC, and let P ∈ M be a partial
order. Let p ∈ P.

(1) Let β1, β2 ∈ MP. We define p ⊕PM β1 = β2 to hold iff: for all (χ1, s1) ∈ β1,

{q → p : q → s1 ⇒ ⊂(χ2, s2) ∈ β2 (q → s2 ∈ q ⊕PM χ1 = χ2)}

is dense below p and for all (χ2, s2) ∈ β2,

{q → p : q → s2 ⇒ ⊂(χ1, s1) ∈ β1 (q → s1 ∈ q ⊕PM χ1 = χ2)}

is dense below p.
(2) Again let β1, β2 ∈ MP. We define p ⊕PM β1 ∈ β2 to hold iff

{q → p : ⊂(χ, s) ∈ β2 (q → s ∈ q ⊕PM χ = β1)}

is dense below p.
(3) Let σ(v1, . . . , vn), τ(v⇐1, . . . , v⇐m) be formulae, and let β1, . . . , βn, β ⇐1, . . . , β ⇐m ∈

MP. We define p ⊕PM σ(β1, . . . , βn) ∈ τ(β ⇐1, . . . , β ⇐m) to hold iff both
p ⊕PM σ(β1, . . . , βn) as well as p ⊕PM τ(β ⇐1, . . . , β ⇐m) hold. We define p ⊕PM
¬σ(β1, . . . , βn) to hold iff for no q → p, q ⊕PM σ(β1, . . . , βn) holds.

(4) Let ⊂xσ(x, v1, . . . , vn) be a formula, and let β1, . . . , βn ∈ MP. We define p ⊕PM⊂xσ(x, β1, . . . , βn) to hold iff

{q → p : ⊂ε ∈ MPq ⊕PM σ(ε, β1, . . . , βn)}

is dense below p.

In what follows, we shall often write ⊕ rather than ⊕PM .
The definition of p ⊕ β1 = β2 is by recursion on (rk∈(β1), rk∈(β2)), ordered

lexicographically. p ⊕ β1 ∈ β2 is then defined with the help of p ⊕ χ = β1, where
(χ, s) ∈ β2 for some s. Moreover, the definition of p ⊕ σ(β1, . . . , βn) for nonatomic
σ is by recursion on the complexity of σ. The relation ⊕ is thus well-defined. We
obviously have:

Lemma 6.20 Let M be a transitive model of ZFC, and let P ∈ M be a partial order.
Let σ be a formula. Then {(p, β1, . . . , βn) : p ⊕ σ(β1, . . . , βn)} is definable over M
(from the parameter P).

We say that p decides σ(β1, . . . , βk) iff p ⊕ σ(β1, . . . , βk) or p ⊕ ¬σ(β1, . . . , βk).
Definition 6.19 (3) trivially yields that for a given σ(β1, . . . , βk), there are densely
many p which decide σ(β1, . . . , βk). The following is also straightforward to verify,
cf. Problem 6.2.

Lemma 6.21 Let M be a transitive model of ZFC, and let P ∈ M be a partial order.
Let p ∈ P, let σ be a formula, and let β1, . . . , βn ∈ MP. Equivalent are:
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(1) p ⊕ σ(β1, . . . , βn)

(2) ⊃q → p q ⊕ σ(β1, . . . , βn)

(3) {q → p : q ⊕ σ(β1, . . . , βn)} is dense below p.

Theorem 6.22 (Forcing Theorem, part 1) Let M be a transitive model of ZFC, let
P ∈ M be a partial order, and let G ∧ P be P-generic over M. Let σ(v1, . . . , vn) be
a formula, and let β1, . . . , βn ∈ MP.

(1) If p ∈ G and p ⊕PM σ(β1, . . . , βn), then M[G] |= σ(β G
1 , . . . , β G

n ).
(2) If M[G] |= σ(β G

1 , . . . , β G
n ), then there is some p ∈ G such that p ⊕PM

σ(β1, . . . , βn).

Proof Weprove (1) and (2) simultaneously.Wefirst prove (1) and (2) forσ ≥ v1 = v2
by induction on (rk∈(β1), rk∈(β2)), ordered lexicographically.

(1): Suppose that p ∈ G and p ⊕ β1 = β2. Let us verify that β G
1 ∧ β G

2 . By
symmetry, this will also show that β G

2 ∧ β G
1 , and therefore β G

1 = β G
2 .

Let x ∈ β G
1 , say x = χG

1 , where (χ1, s1) ∈ β1 for some s1 ∈ G. We need to see
that x ∈ β G

2 . Pick r ∈ G such that r → p, r → s1. We still have r ⊕ β1 = β2 by
Lemma 6.21, so that there is some q ∈ G, q → r , such that

q → s1 ⇒ ⊂(χ2, s2) ∈ β2 (q → s2 ∈ q ⊕ χ1 = χ2).

As r → s1, we have that q → s1. Hence we may pick some (χ2, s2) ∈ β2 with
q → s2 ∈ q ⊕ χ1 = χ2. As q ∈ G, we also have that s2 ∈ G, and moreover we
have that χG

1 = χG
2 by our inductive hypothesis. But then x = χG

1 = χG
2 ∈ β G

2 , as
(χ2, s2) ∈ β2 and s2 ∈ G.

(2): Now suppose that β G
1 = β G

2 . Consider the following statement about a con-
dition r :

τ1(r) : ⊂(χ1, s1) ∈ β1 (r → s1 ∈ ⊃(χ2, s2) ∈ β2
⊃q (q → s2 ∈ q ⊕ χ1 = χ2 ⇒ q∞r)).

Assume we had τ1(r) for some r ∈ G, and let (χ1, s1) ∈ β1 be a witness. As r → s1,
we also have s1 ∈ G, so thatχG

1 ∈ β G
1 = β G

2 . Pick (χ2, s2) ∈ β2 such that s2 ∈ G and
χG
1 = χG

2 . By our inductive hypothesis, there is some q0 ∈ G with q0 ⊕ χ1 = χ2.
Pick q ∈ G such that q → q0 and q → s2. Still q ⊕ χ1 = χ2 by Lemma 6.21. By
τ1(r), we must then have q∞r . However, q ∈ G as well as r ∈ G. Contradiction!

Therefore, we cannot have τ1(r) for r ∈ G. The same argument shows that we
cannot have τ2(r) for r ∈ G, where

τ2(r) : ⊂(χ2, s2) ∈ β2 (r → s2 ∈ ⊃(χ1, s1) ∈ β1
⊃q (q → s1 ∈ q ⊕ χ1 = χ2 ⇒ q∞r)).

Now let us consider

D = {r : τ1(r) ∨ τ2(r) ∨ r ⊕ β1 = β2}.
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We claim that D is dense. To this end, let r be given. Suppose that r ⊕ β1 = β2 does
not hold true. By the definition of ⊕, there is then some (χ1, s1) ∈ β1 such that

{q → r : q → s1 ⇒ ⊂(χ2, s2) ∈ β2 (q → s2 ∈ q ⊕ χ1 = χ2)} (6.1)

is not dense below r , or there is some (χ2, s2) ∈ β2 such that

{q → r : q → s2 ⇒ ⊂(χ1, s1) ∈ β1 (q → s1 ∈ q ⊕ χ1 = χ2)} (6.2)

is not dense below r . Let us assume (6.1) to be true. We’ll then show that there is
some p → r such thatτ1(p) holds true. (By symmetry, if (6.2) holds true, thenτ2(p)

holds true for some p → r .) Let (χ1, s1) ∈ β1 witness that (6.1) holds true. There is
some p → r such that

⊃q → p(q → s1 ∈ ⊃(χ2, s2) ∈ β2 ¬(q → s2 ∈ q ⊕ χ1 = χ2)). (6.3)

In particular, p → s1. Also, (6.3) gives that if (χ2, s2) ∈ β2, q → s2, q ⊕ χ1 = χ2,
then q∞p. That is, p → r and τ1(p) holds true. We have shown that D is dense.

But now there must be some p ∈ G ∩ D. As p ∈ G, we have seen that τ1(p) and
τ2(p) must both fail, so that p ⊕ β1 = β2 holds true, as desired.

We now prove (1) and (2) for σ ≥ v1 ∈ v2, exploiting the fact that (1) and (2)
hold true for σ ≥ v1 = v2.

(1): Suppose that p ∈ G and p ⊕ β1 ∈ β2. By definition,

D = {q → p : ⊂(χ, s) ∈ β2 (q → s ∈ q ⊕ χ = β1)}

is then dense below p. Pick q ∈ D ∩ G. Let (χ, s) ∈ β2 be such that q → s and
q ⊕ χ = β1. As q ∈ G, χG = β G

1 . But s ∈ G, too, and hence β G
1 = χG ∈ β G

2 .
(2): Suppose that β G

1 ∈ β G
2 . There is then some (χ, s) ∈ β2 such that s ∈ G and

β G
1 = χG . We therefore have some r ∈ G with r ⊕ β1 = χ . Let p ∈ G be such that

p → s, r . Then ⊃q → p(q → s ∈ q ⊕ β1 = χ). Hence p ⊕ β1 ∈ β2.
Let us finally prove (1) and (2) for nonatomic formulae.
Let σ(v1, . . . , vn), τ(v⇐1, . . . , v⇐m) be formulae, and let β1, . . . , βn, β ⇐1, . . . , β ⇐m ∈

MP. Suppose that (1) and (2) hold for σ(β1, . . . , βn) and for τ(β1, . . . , βn). It is then
trivial that (1) and (2) also hold for σ(β1, . . . , βn)∈τ(β ⇐1, . . . , β ⇐m). Let us show that
(1) and (2) hold for ¬σ(β1, . . . , βn).

(1): Let p ∈ G, p ⊕ ¬σ(β1, . . . , βn). Suppose that M[G] |= σ(β G
1 , . . . , β G

n ).
There is then some q ∈ G such that q ⊕ σ(β1, . . . , βn). Pick r ∈ G, r → p, q. Then
r → p and r ⊕ σ(β1, . . . , βn). Contradiction! Hence M[G] |= ¬σ(β G

1 , . . . , β G
n ).

(2): Let M[G] |= ¬σ(β G
1 , . . . , β G

n ). It is easy to see that

D = {q : q ⊕ σ(β1, . . . , βn) ∨ q ⊕ ¬σ(β1, . . . , βn)}
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is dense. But if q ∈ D ∩ G, then q ⊕ ¬σ(β1, . . . , βn). This is because otherwise
q ⊕ σ(β1, . . . , βn) and then M[G] |= σ(β G

1 , . . . , β G
n ). Contradiction!

Finally, let ⊂xσ(x, v1, . . . , vn) be a formula, and let β1, . . . , βn ∈ MP. Suppose
that (1) and (2) hold for σ(ε, β1, . . . , βn) whenever ε ∈ MP. We aim to show (1)
and (2) for ⊂xσ(x, β1, . . . , βn).

(1): Suppose that p ∈ G, p ⊕ ⊂xσ(x, β1, . . . , βn). By definition,

D = {r → p : ⊂ε ∈ MP r ⊕ σ(ε, β1, . . . , βn)}

is then dense below p. Pick r ∈ D ∩ G. Then there is some ε ∈ MP such that,
using the inductive hypothesis, M[G] |= σ(ε G , β G

1 , . . . , β G
n ). But we then have that

M[G] |= ⊂xσ(x, β G
1 , . . . , β G

n ).
(2): Let M[G] |= ⊂xσ(x, β G

1 , . . . , β G
n ). Pick ε ∈ MP witnessing this, i.e., such

that M[G] |= σ(ε G , β G
1 , . . . , β G

n ). By our inductive hypothesis, there is some p ∈ G
with p ⊕ σ(ε, β1, . . . , βn). But then r ⊕ σ(ε, β1, . . . , βn) for all r → p, which
trivially implies that p ⊕ ⊂xσ(x, β1, . . . , βn) by definition. �

One can in fact show that if p ⊕ ⊂xσ(x, β1, . . . , βn), then there is some β ∈ MP

such that p ⊕ σ(β, β1, . . . , βn). This property is called fullness, cf. Problem 6.5.

Theorem 6.23 (Forcing Theorem, part 2) Let M be a transitive model of ZFC, and
let P ∈ M be a partial order such that for every p ∈ P there is some G with
p ∈ G such that G is P-generic over M. Let σ(v1, . . . , vn) be a formula, and let
β1, . . . , βn ∈ MP.

(1) For all p ∈ P,

p ♦P
M σ(β1, . . . , βn) ⇐⇒ p ⊕PM σ(β1, . . . , βn).

(2) Let G ∧ P be P-generic over M. Then

M[G] |= σ(β G
1 , . . . , β G

n )⇐⇒ ⊂p ∈ G p ♦P
M σ(β1, . . . , βn).

Proof Let us first show (1):
“⇐=”: Let p ⊕ σ(β1, . . . , βn). Let G be any P-generic filter over M such that

p ∈ G. Then M[G] |= σ(β G
1 , . . . , β G

n ) by Theorem 6.22 (1). Therefore, p ♦P
M

σ(β1, . . . , βn).
“=⇒”: Suppose that p ♦P

M σ(β1, . . . , βn). We need to see that {q → p : q ⊕
σ(β1, . . . , βn)} is dense below p. If not, then there is some q → p such that for all
r → q, r ⊕ σ(β1, . . . , βn) does not hold true, i.e., q ⊕ ¬σ(β1, . . . , βn). But then
q ♦P

M ¬σ(β1, . . . , βn) by “⇐=”. This contradicts p ♦P
M σ(β1, . . . , βn), as q → p.

Let us show (2). Well, “=⇒” follows from (1) above plus Theorem 6.22 (2).
“⇐=” is just by definition. �

By Theorem 6.23 (1), we shall not have any use for the notation “⊕” any more.
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Theorem 6.24 Let M be a transitive model of ZFC, let P ∈ M be a partial order,
and let G ∧ P be P-generic over M. M[G] |= ZFC.

Proof We are left with having to verify that M[G] |= (Aus), (Rep), (Pow), and (AC).
(Cf. also the remark before Lemma 6.17.)

Let us begin with (Aus), i.e., separation. Let σ(v0, v1, . . . , vn) be a formula, and
let β G , β G

1 , . . ., β G
n ∈ M[G]. We aim to see that

{x ∈ β G : M[G] |= σ(x, β G
1 , . . . , β G

n )} ∈ M[G].

Well, consider

χ = {(ρ, p) : ⊂q(p → q ∈ (ρ, q) ∈ β ∈ p ♦P
M σ(ρ, β1, . . . , βn))}.

Notice that χ ∈ MP by 6.23 (1).
Let x ∈ M[G], say x = ρG . Then ρG ∈ χG iff (ρ, p) ∈ χ for some p ∈ G iff

there is some q ≡ p ∈ G with (ρ, q) ∈ β and p ♦P
M σ(ρ, β1, . . . , βn) iff ρG ∈ β G

and M[G] |= σ(ρ, β G
1 , . . . , β G

n ). Hence

{x ∈ β G : M[G] |= σ(x, β G
1 , . . . , β G

n )} = χG ∈ M[G].

A similar argument is used to show (Rep) in M[G]. Let σ(v0, v1, v2, . . . , vn) be
a formula, let β G , β G

2 , . . ., β G
n ∈ M[G], and suppose that

M[G] |= ⊃x ∈ β G ⊂y σ(x, y, β G
2 , . . . , β G

n ).

We aim to see that there is some a ∈ M[G] such that

M[G] |= ⊃x ∈ β G ⊂y ∈ a σ(x, y, β G
2 , . . . , β G

n ).

Consider

χ = {(ρ, p) : ⊂(ρ, p) ∈ β ( p → p̄∈
p ♦P

M σ(ρ, ρ, β2, . . . , βn)∈
⊃ρ⇐(p ♦P

M σ(ρ, ρ⇐, β2, . . . , βn) −⇒ rk∈(ρ⇐) ≡ rk∈(ρ)) )}.

Notice that χ ∈ MP, again by Theorem 6.23 (1). (Without the clause ⊃ρ⇐[. . .] in the
bottom line of this definition of χ , χ would have ended up being a proper class in
M rather than a set in M .)

Suppose that x ∈ β G , say x = ρG , where (ρ, p) ∈ β for some p ∈ G.
Let ρ be such that M[G] |= σ(ρG , ρG , β G

2 , . . . , β G
n ), and let p ∈ G be such

that p ♦P
M σ(ρ, ρ, β2, . . . , βn). We may as well assume that for all ρ⇐, if p ♦P

M
σ(ρ, ρ⇐, β2, . . . , βn), then rk∈(ρ⇐) ≡ rk∈(ρ), and p → p̄. Then ρG ∈ χG , and
a = χG ∈ M[G] is as desired.
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In order to verify (Pow) in M[G], let β G ∈ M[G]. As we already verified (Aus)
in M[G], it suffices to see that there is some b ∈ M[G] such that {x ∈ M[G] : x ∧
β G} ∧ b.

Set N = {ρ : ⊂p (ρ, p) ∈ β }, and let χ = {(ε, 1P) : ε ∈ MP ∈ ε ∧ N × P} ∈
MP. Let ε G ∧ β G . We want to see that ε G ∈ χG . Let ε ⇐ = {(ρ, p) : ρ ∈ N∈ p ♦P

M

ρ ∈ ε }. By Theorem 6.23 (1), ε ⇐ ∈ MP. We have (ε ⇐, 1P) ∈ χ , so ε ⇐G ∈ χG , and
hence it suffices to verify that ε ⇐G = ε G .

If ρG ∈ ε ⇐G , then (ρ, p) ∈ ε ⇐ for some p ∈ G, which implies that ρ ∈ N
and p ♦P

M ρ ∈ ε , where p ∈ G. But then ρG ∈ ε G . On the other hand, let
ρG ∈ ε G . There is then some p ∈ G with (ρ, p) ∈ ε , which implies that ρ ∈ N
and p ♦P

M ρ ∈ ε . But then (ρ, p) ∈ ε ⇐, where p ∈ G, and hence ρG ∈ ε ⇐G .
We have shown that b = χG is as desired.
Let us finally verify (AC) in M[G]. Let x ∈ M[G], say x = β G . Let f ∈ M ,

f : α ⇒ β bijective (for some α < M ∩ O R). We aim to see that M[G] has a
surjection g : α ⇒ x .

In order to define a name for g, we shall use the following notation Let y, z ∈
M[G], say y = ρG , z = ε G . Write

�ρ, ε⊆ = {({(ρ, 1), (ε, 1)}, 1), ({(ρ, 1)}, 1)}.

it is easy to see that �ρ, ε⊆ ∈ MP and in fact �ρ, ε⊆G = (y, z).
Now set

χ = {(�←δ, ε⊆, 1) : δ < α ∈ ⊂p f (δ) = (ε, p)}.

Obviously, χ ∈ MP. Moreover, χG is easily seen to be a function with domain α.
Let us verify that x ∧ ran(χG).

Let y ∈ x , say y = ε G , where (ε, p) ∈ β for some p ∈ G. There is then some
δ < α with f (δ) = (ε, p), and hence (�←δ, ε⊆, 1) ∈ χ . But then (δ, ε G) ∈ χG , i.e.,
χG(δ) = ε G = y, so that y ∈ ran(χG). �

6.2 Applications of Forcing

Let us now turn towards applications of forcing. By Corollary 5.32, “V = L” is
consistent with ZFC. We now show that forcing may be used to show that “V ≤= L ,”
the negation of “V = L ,” is also consistent with ZFC.

Our proof will make use of the concept of a λ0
1 statement: σ is ζ0

1 iff it can be
written in the form ⊃n ∈ Φ τ , where τ is recursive (cf. e.g. [11]). ζ0

1 statements
are downward absolute between models of ZFC (compare Lemma 5.3); therefore,
as every model of ZFC has an isomorphic copy of the standard natural numbers Φ,
we have that if σ is ζ0

1 and there is some ZFC-model which thinks that σ is true,
then σ is really true (in V ). In particular, this holds for σ ≥ “T is consistent” for any
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recursively enumerable theory T , because “T does not prove 0 = 1” may be written
in a ζ0

1 fashion.

Theorem 6.25 If ZFC is consistent, then so is ZFC + “V ≤= L.”

Proof Let us first prove the following.

Claim 6.26 If M is a transitive model of ZFC and if G is C-generic over M, where
C is Cohen forcing (cf. Definition 6.5), then M[G] is a model of ZFC + “V ≤= L.”

Proof By Theorem 6.24, we just need to verify M[G] |= “V ≤= L .”
Let us suppose that M[G] |= “V = L .” By Lemma 5.28, we must then have

M[G] = Jα , where α = M[G]∩O R. However, M[G]∩O R = M∩O R by Lemma
6.15, so that M[G] = Jα = L M ∧ M by Lemma 5.28 again. But G ∈ M[G] \ M
by Lemma 6.11, because C is certainly atomless. Contradiction! �

An inspection of the proofs of Theorem 6.24 and of Claim 6.26 shows that wemay
define a function Σ �⇒ Γ (Σ) which maps finite subsets Σ of ZFC ∗ {“V ≤= L”}
to finite subsets Γ = Γ (Σ) of ZFC such that the following holds true (provably in
ZFC):

{
If M is a transitive model ofΓ (Σ), and if G is C-generic over M,

then M[G] is a transitive model ofΣ.
(6.4)

Let us now just assume that ZFC is consistent. This means that there is a (not
necessarily well-founded) model (N ; E) of ZFC. We need the following statement
about (N ; E):

There is a function Γ �⇒ M(Γ ) which maps finite subsets Γ of ZFC to elements
M = M(Γ ) of N such that for all Γ ,

(N ; E) |= “M = M(Γ ) is a countable transitive model ofΓ.” (6.5)

M(Γ ) may be obtained from Γ as follows. Given Γ , by Problem 5.14 there is an
(N ; E)—least α which is an ordinal from the point of view of (N ; E) such that

(N ; E) |= “Vα |= Γ .”

We may then apply the Löwenheim- - Skolem Theorem and Theorem 3.21 inside
(N ; E) to find an M as desired. Set M(Γ ) = M . Of course, in general the function
Γ �⇒ M(Γ ) will not be in N , but we will only need that M(Γ ) ∈ N for every
individual Γ .

Let us now show that ZFC does not prove “V = L .” Let Σ ∧ ZFC be finite, and
set Σ = Σ ∗ {“V ≤= L”}. Setting Γ = Γ (Σ) and M = M(Γ ), (6.5) gives that

(N ; E) |= “M is a countable transitive model ofΓ.”
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By Lemma 6.4 there is then some G ∈ N such that (N ; E) |= “G is C-generic over
M ,” and because (6.4) holds inside (N ; E) we get that2

(N ; E) |= “M[G] is a transitive model of Σ.”

This means that
(N ; E) |= “Σ is consistent”. (6.6)

However, the consistency ofΣ is aζ0
1 statement, so that (6.6) yields thatΣ is really

consistent. But then Σ does not prove that “V = L .”
Assuming that ZFC is consistent we have shown that ZFC does not prove that

“V = L .” �
All relative consistency results which use forcingmay be produced in this fashion.

In proving them, we thus may and shall always pretend to have a countable transitive
model of ZFC at hand.

In order to prove the consistency of ZFC + ¬CH (relative to the consistency of
ZFC), we need finite support products of Cohen forcing.

Definition 6.27 LetC beCohen forcing, cf. Definition 6.5. Let α be an ordinal. For
p ∈ α

C let supp(p) (the support of p) be the set of all δ < α with p(δ) ≤= ∼. Let

C(α) = {p ∈ α
C : Card(supp(p)) < ℵ0}.

For p, q ∈ C(α), let us write p → q iff for all δ < α, p(δ) → q(δ) in the sense of
Cohen forcing, i.e., ⊂n p(δ) � n = q(δ).

C(α) is often referred to as the finite support product of α Cohen forcings.

Definition 6.28 Let P = (P;→) be a partial order, and let ν be an uncountable
cardinal. P is said to be ν-Knaster iff for all A ∧ P of size ν there is some B ∧ A
of size ν such that if p, q ∈ B, then p ∪ q. P is said to have the ν-chain condition

(ν-c.c., for short) iff A < ν whenever A ∧ P is an antichain. P is said to have the
countable chain condition (c.c.c., for short) iff P has the ℵ1-c.c.

Trivially, if P is ν-Knaster, then P has the ν-c.c. Also, if Card(P) = ν , then
trivially P has the ν+-c.c.
Lemma 6.29 Let α be an ordinal. Then C(α) is ℵ1-Knaster.

Proof Ifα is atmost countable, thenC(α) = ℵ0, so thatC(α) is triviallyℵ1-Knaster
in this case.

Now let α be uncountable. Let A ∧ C(α) have size ℵ1. We shall verify that there
is some B ∧ A of size ℵ1 such that any two conditions in B are compatible.

Let X =⋃{supp(p) : p ∈ A}. We must have that X ∧ α has size ℵ1. Let us pick
some bijection χ : Φ1 ⇒ X . This naturally induces ε : A ⇒ C(Φ1) as follows.

2 Here, M[G] is “M[G] as computed inside (N ; E).”
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For p ∈ A, let supp(ε (p)) = {δ < Φ1 : χ(δ) ∈ supp(p)}, and if δ ∈ supp(ε (p)),
then let ε(p)(δ) = p(χ(δ)). It now suffices to verify that there is some B ∧ ε”A
of size ℵ1 such that any two conditions in B are compatible, because then any two
conditions in B = ε−1”B ∧ A are compatible as well.

Let us write D = ε”A. By the Pigeonhole Principle, there is some n < Φ

such that {p ∈ D : Card(supp(p)) = n} has size ℵ1. Let D0 ∧ D be {p ∈ D :
Card(supp(p)) = n} for the least such n. For p ∈ D0, let us write supp(p) =
{δ p

1 , . . . , δ
p

n }, where δ
p
1 < . . . < δ

p
n .

A simple application of the Pigeonhole Principle yields the following.

Claim 6.30 Let 1 → k → n, and suppose {δ p
k : p ∈ D0} to be bounded in Φ1. There

is then some D1 ∧ D0 of sizeℵ1, some set {δ1, . . . , δk} and some set {s1, . . . , sk} ∧ C

such that for all p ∈ D1, δ
p
1 = δ1, . . . , δ

p
k = δk, p(δ1) = s1, . . . , p(δk) = sk .

There is therefore some k → n, k ≡ 1, such that {δ p
k : p ∈ D0} is unbounded in

Φ1. Let k0 be the least such.
Set Δ = sup{δ p

k : p ∈ D0 ∈ k < k0} < Φ1. (If k0 = 1, then set Δ = 0. If k0 > 1,
then actually Δ = sup{δ p

k0−1 : p ∈ D0}.)
If k0 > 1, then we may apply Claim 6.30 to D0 to get some D1 ∧ D0 of size ℵ1,

some set {δ1, . . . , δk0−1}, and some set {s1, . . . , sk0−1} ∧ C such that for all p ∈ D1,
δ

p
1 = δ1, . . ., δ

p
k0−1 = δk0−1, p(δ1) = s1, . . ., p(δk0) = sk0 . If k0 = 1, then we just

set D1 = D0.
Let us now recursively define (θi : i < Φ1) and (pi : i < Φ1) as follows. Let

Θ < Φ1 and suppose (θi : i < Θ) and (pi : i < Θ) have already been defined.
Set θΘ = sup{δ pi

n : i < Θ}. (If Θ = 0, then set θΘ = θ0 = Δ .) By the choice of
k0, there is then some p ∈ D1 such that δ

p
k0

> θΘ; let pΘ be some such p. Now

write B = {pi : i < Φ1}. We have that if pi ∈ B, then θi < δ
pi

k0
< . . . <

δ
pi

n → θi+1. We therefore have that any two conditions in B are compatible: if
p, q ∈ B, then we may define r ∈ C(Φ1) by: supp(r) = supp(p) ∗ supp(q) =
{δ1, . . . , δk0−1, δ

p
k0

, . . . , δ
p

n , δ
q
k0

, . . . , δ
q
n }, r(δk) = p(δk) = q(δk) for 1 → k < k0,

r(δ
p

k ) = p(δ
p

k ) for k0 → k → n, and r(δ
q
k ) = q(δ

q
k ) for k0 → k → n. B is thus as

desired. �
The combinatorial heart of this latter argument leads to the following lemma

which is very useful for the analysis of many forcings. The proof is pretty much the
same as the proof of the previous lemma. (Cf. Problem 6.6.)

Lemma 6.31 (ψ-Lemma) Let ν be an uncountable regular cardinal, and let μ < ν

be an infinite cardinal such that ρΔ < ν for all ρ < ν and Δ < μ. Let A ∧ [ν]<μ

with A = ν . There is then some B ∧ A with B = ν which forms a ∆-system , which
means that there is some r ∈ [ν]<μ (the “root” of B) such that for all x, y ∈ B with
x ≤= y, x ∩ y = r .

Notice that if M is a transitive model of ZFC and G is P-generic over M for some
P ∈ M and if ρ is a cardinal of M[G], then ρ is also a cardinal of M . The following
lemma provides a covering fact and gives a criterion for when cardinals of M will
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not be collapsed in M[G]. We will later study forcings which do collapse cardinals,
cf. Definitions 6.41 and 6.43.

Lemma 6.32 Let M be a transitive model of ZFC, and let ν be a cardinal of M.
Let P = (P;→) ∈ M be a partial order such that M |= “P has the ν-c.c.” Let G be
P-generic over M. Let X ∧ M, X ∈ M[G], and write μ = CardM[G](X). There is
then some Y ∈ M such that Y ∅ X and

M |= Card(Y )






→ μ, if ν → μ+,

< ν, if ν ≡ μ+ and μ < cf(ν), and

→ ν, if ν ≡ μ and μ ≡ cf(ν).

(6.7)

In particular, if ρ ≡ ν is a cardinal in M such that ρ = ν and ρ is regular in M or
else ρ > ν , then ρ remains a cardinal in M[G].
Proof Let X ∈ M[G] be given, X ∧ M . Pick f ∈ M[G], f : μ⇒ X bijective. Let
f = β G . Pick p ∈ G such that

p ♦P
M “β is a function with domain ←μ.”

For each δ < μ, let Bδ = {Θ : ⊂q → p q ♦P
M β( ←δ) = ←Θ}. Working in M , for each

Θ ∈ Bδ we may pick qΘ
δ → p such that qΘ

δ ♦P
M β( ←δ) = ←Θ. If Θ ≤= Θ⇐, then qΘ

δ∞qΘ⇐
δ , so

that M |= Card(Bδ ) < ν , as M |= “P has the ν-c.c.”
Now set Y = ⋃{Bδ : δ < μ}. Of course, Y ∈ M and Y ∅ X . If νδ is the

cardinality of Bδ inside M , then

M |= Card(Y ) →
⎧

δ<μ

νδ . (6.8)

It is straightforward to verify that (6.8) yields (6.7).
Now suppose that ρ ≡ ν is a cardinal in M such that if ρ = ν , then ρ is regular.

Suppose that μ = CardM[G](ρ) < ρ. We may then cover the set X = ρ by a set
Y ∈ M such that (6.7) holds true. Let us now argue in M . If ν → μ+, or ν ≡ μ+
and μ < cf(ν), or ν < ρ, then M |= Card(Y ) < ρ, which is nonsense. Otherwise
ν ≡ μ ≡ cf(ν) and ρ = ν , so that ρ is regular by hypothesis and hence in fact
ρ = ν = μ, which contradicts μ < ρ. �

In the light of Theorem5.31, the following result shows thatCH cannot be decided
on the basis of ZFC.

Theorem 6.33 (P. Cohen) If ZFC is consistent, then so is ZFC + ¬CH. In fact, if
ZFC is consistent, then so is ZFC+ 2ℵ0 = ℵ2.

Proof In the light of the discussion above (cf. the proof of Theorem 6.25), we may
argue under the hypothesis that there be a transitive model of ZFC.
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We first prove the first part of the theorem. Let M be a countable transitive model
of ZFC. Let α ∈ M , where α ≡ ΦM

2 . Then C(α) ∈ M . Let G be C(α)-generic over
M . Inside M[G] we may define F : α ⇒ ΦΦ by setting F(δ) = ⋃{p(δ) : p ∈ G}
for δ < α. For all n < Φ, δ < α

Dn,δ = {p ∈ C(α) : n ∈ dom(p(δ))} ∈ M

is dense in C(α), so that F is well-defined. For all δ, δ ⇐ < α with δ ≤= δ ⇐,

Dδ,δ ⇐ = {p ∈ C(α) : ⊂n ∈ dom(p(δ)) ∩ dom(p(δ ⇐)) p(δ)(n) ≤= p(δ ⇐)(n)} ∈ M

is dense in C(α), so that F(δ) ≤= F(δ ⇐) for δ ≤= δ ⇐. F ∈ M[G] is therefore an
injection from α into ΦΦ.

In order to verify M[G] |= ¬C H , we need to verify α ≡ Φ
M[G]
2 . For this it will

be enough to show that M , M[G] have the same cardinals. However, as M |= “C(α)

has the c.c.c.” by Lemma 6.29, this immediately follows from Lemma 6.32.
We now prove the second part of the theorem. By our hypothesis that there be

a transitive model of ZFC, we have as in the proof of Theorem 6.25 that there is

some Δ < Φ1 such that JΔ is a (countable transitive) model of ZFC. Let α = Φ
JΔ

2 .
Then C(α) ∈ JΔ , and we may pick some G which is C(α)-generic over JΔ . By the
argument for the first part of the theorem, 2ℵ0 ≡ ℵ2 in JΔ [G]. We are hence left with
having to verify that 2ℵ0 → ℵ2 in JΔ [G].

Let x ∈ ΦΦ ∩ JΔ [G], say x = β G . For n < Φ let

En = {p ∈ C(α) : ⊂m < Φ p ♦C(α)
M β( ←n) = ←m}.

Each En is dense, and we may pick some maximal antichain An ∧ En for n < Φ.
Let

ε = ε(β) = {(�n, m⊆, p) : p ∈ An, p ♦C(α)
M β( ←n) = ←m}.

We claim that ε G = β G .
First let (n, m) ∈ ε G . There is then some p ∈ G such that (� ←n, ←m⊆, p) ∈ ε , which

implies that p ♦C(α)
M β( ←n) = ←m, and hence (n, m) ∈ β G . Now let (n, m) ∈ β G . There

is then some p ∈ G such that p ♦C(α)
M β( ←n) = ←m. As An is a maximal antichain,

there is also some q ∈ G ∩ An , which implies that q ♦C(α)
M β( ←n) = ←s for some

s < Φ. But as p and q are both in G, p and q are compatible, so that we must have
s = m. Therefore (�n, m⊆, q) ∈ ε , where q ∈ G, i.e., (n, m) ∈ ε G . ε = ε(β) is
often referred to as a “nice name” for x (or, for β ).

We have shown that for every x ∈ ΦΦ ∩ JΔ [G] there is some “nice name” ε ∈
JC(α)
Δ such that x = ε G , each element of ε is of the form (� ←n, ←m⊆, p), and for

all n there are at most countably many m, p such that (� ←n, ←m⊆, p) ∈ ε . By the
Hausdorff Formula 4.19 we may compute inside JΔ that there are αℵ0 = α such
names. In JΔ [G] we may hence define an injection from ΦΦ ∩ JΔ [G] into α, so that
2ℵ0 → α = ℵ2 in JΔ [G], as desired. �
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The proof of Theorem 6.33 shows that if we assume that M |= “ZFC + αℵ0 = α,
then 2ℵ0 = α holds true in M[G] whenever G is C(α)-generic over M . Hence by
Lemma 4.22 we get that 2ℵ0 may be any cardinal ν with cf(ν) > Φ (cf. Problem
6.9).

We now consider variants of Cohen forcing for cardinals above Φ.

Definition 6.34 Let ν ≡ Φ be a cardinal. Let Cν = <νν , i.e., the set of all f such
that there is some Δ < ν with f : Δ ⇒ ν . For p, q ∈ Cν , let p → q iff p ∅ q (iff
⊂Δ p � Δ = q). The partial order (Cν ,→) is called Cohen forcing at ν .

Of course, CΦ = C. If ν<ν = ν (which is true for ν = Φ and only possible for
regular ν), then Card(Cν) = ν , so that in this case forcing with Cν preserves all
cardinals above ν+ by Lemma 6.32 (though cf. Problem 6.8). We now develop a
technique for showing that forcing with Cν never collapses cardinals below ν .

Definition 6.35 Let P = (P,→) be a partial order, and let ν be an infinite regular
cardinal. P is called < ν-closed iff for all Δ < ν and for all sequences (pδ : δ < Δ )

of conditions in P such that pδ ⇐ → pδ for all δ ⇐ ≡ δ there is some condition q ∈ P

with q → pδ for all δ < Δ . P is called < ν-distributive iff for every Δ < ν and for
every collection (Dδ : δ < Δ ) of open dense subsets of P,

⎪
δ<Δ Dδ is open dense.

The proofs of the following two lemmas are trivial.

Lemma 6.36 Let ν be an infinite regular cardinal. Then Cν is < ν-closed.

Lemma 6.37 Let P = (P,→) be a partial order, and let ν be an infinite regular
cardinal. If P is < ν-closed, then P is < ν-distributive.

Not every < ν-distributive forcing is < ν-closed, cf. Problem 6.16.

Lemma 6.38 Let M be a transitive model of ZFC, let P = (P;→) be a partial order
in M, and let ν be a regular cardinal of M such that M |= “P is < ν-distributive.”
Let G be P-generic over M. Then3

<ν M ∩ M[G] = <ν M ∩ M.

Proof Let f ∈ M[G], f : Δ ⇒ M for some Δ < ν . We may pick some x ∈ M such
that ran( f ) ∧ x , and by the Forcing Theorem we may pick some β ∈ MP and some
p ∈ G such that

p ♦P
M β : ←Δ ⇒ ←x .

For each δ < Δ ,

Dδ = {q ∈ P : q∞p ∨ ⊂y ∈ x q ♦P
M β( ←δ) = ←y}

3 If α is an ordinal and X is any set or class, then we write <α X for
⋃

δ<α
δ X .
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is easily seen to be open dense. As
⎪

δ<Δ Dδ is open dense, we may pick q ∈
G ∩⎪

δ<Δ Dδ . As q||p, this means that for every δ < Δ , there is a (unique) y ∈ x

with q ♦P
M β( ←δ) = ←y. Setting

g = {(δ, y) ∈ Δ × x : q ♦P
M β( ←δ) = ←y},

we then get q ♦P
M β = ←g. Therefore, f = β G = g ∈ M . �

Problem 6.10 shows that the converse to Lemma 6.38 is true also. The following
just generalizes Definition 6.27.

Definition 6.39 Let α be an ordinal, and let ν be an infinite regular cardinal. For
p ∈ α(Cν) let supp(p) (the support of p) be the set of all δ < α with p(δ) ≤= ∼. Let

Cν(α) = {p ∈ α(Cν) : Card(supp(p)) < ν}.

For p, q ∈ Cν(α), let us write p → q iff for all δ < α, p(δ) → q(δ) in the sense of
Cν , i.e., ⊂Δ p(δ) � Δ = q(δ).

Lemma 6.40 Let M be a transitive model of ZFC, let ν be a regular cardinal of
M, let α be an ordinal in M, and let (Cν(α))M be M’s version of Cν(α). Let G be
(Cν(α))M -generic over M. Then exactly the cardinals of M which are not in the
half-open interval (ν, (ν<ν)M ] remain cardinals of M[G].
Proof Of course, Cν(α) is < ν-closed. The ∆-Lemma 6.31 implies that M |=
“(Cν(α))M has the ((ν<ν)+)M -c.c.,” so that no M-cardinals outside the half-open
interval (ν, (ν<ν)M ] will get collapsed. On the other hand, Problem 6.8 shows that
all the M-cardinals inside the half-open interval (ν, (ν<ν)M ] will get collapsed
to ν . �

If ν<ν = ν in M , (Cν(α))M will therefore not collapse any M-cardinals. More-
over, we may have 2ν = α in a forcing extension (cf. Problem 6.9).

We shall now study forcings which collapse cardinals.

Definition 6.41 Letμ be a regular cardinal, and let ν ≡ μ.We let Col(μ, ν) = <μν ,
i.e., the set of all functions f such that there is some Δ < μ with f : Δ ⇒ ν . For
p, q ∈ Col(μ, ν), let p → q iff p ∅ q (iff ⊂Δ p � Δ = q). The partial order
(Col(μ, ν);→) is called the collapse of ν to μ.

Notice that Col(μ,μ) = Cμ.

Lemma 6.42 Let M be a transitive model of ZFC, let μ be a regular cardinal of M,
let ν ≡ μ be a cardinal of M, and letP = (Col(μ, ν))M be M’s version ofCol(μ, ν).
Let G be P-generic over M. Then every M-cardinal→ μ is still a cardinal in M[G],
and in M[G], Card(ν) = μ = ·2<μ. Moreover, cardinals above ((ν<μ)+)M remain
cardinals in M[G].
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Proof P is certainly < μ-closed inside M , so that every M-cardinal → μ is still a
cardinal in M[G]. For δ < μ let

Dδ = {p ∈ P : δ ∈ dom(p)},

and for Θ < ν let
DΘ = {p ∈ P : Θ ∈ ran(p)}.

For all δ < μ and Θ < ν , Dδ ∈ M and DΘ ∈ M are both dense in P. Therefore,
f =⋃

G is a surjective function from μ onto ν , so that Card(ν) = μ in M[G].
To show that 2<μ = μ in M[G], let us fix α < μ. If X ∈ P(α) ∩ M =

P(α) ∩ M[G], then4

DX = {p ∈ P : ⊂Δ < μ (Δ · (α+1) ∧ dom(p)∈{δ < α : p(Δ ·α+δ) = 1} = X)}

is in M and is dense in P, so that wemay define F ∈ M[G], F : P(α)∩M[G] ⇒ μ,
by setting

F(X) = the least Δ with {δ < α : (
⎨

G)(Δ · α + δ) = 1} = X.

F is certainly injective, so that Card(2α) → μ in M[G]. This shows that 2<μ = μ

in M[G].
P has size ν<μ in M , so that cardinals above ((ν<μ)+)M remain cardinals in

M[G]. �

If M is a transitive model of ZFC, and if G is (Col(Φ1, 2ℵ0))M -generic over M ,
then CH holds is M[G] by Lemmas 6.38 and 6.42. More generally, if ν is regular in
M and H is (Col(ν+, 2ν))M -generic over M , then 2ν = ν+ holds M[H ]. Theorem
6.46 will produce a stronger result.

Definition 6.43 Let μ be a regular cardinal, and let X be a set of ordinals which are
all of size ≡ μ. We let

Col∗(μ, X) = {p : p is a function with domain X and ⊃δ ∈ X p(δ) ∈ Col(μ, δ)}.

For p ∈ Col∗(μ, X), let supp(p) = {δ ∈ X : p(δ) ≤= ∼}. We let

Col(μ, X) = {p ∈ Col∗(μ, X) : Card(supp(p)) < μ}.

For p, q ∈ Col(μ, X) we write p → q iff for all δ ∈ X we have that p(δ) → q(δ) in
the sense of Col(μ, δ). If ν > μ, then we also write Col(μ,< ν) for Col(μ, [μ, ν)).
The partial order (Col(μ,< ν);→) is called the Levy collapse of ν to μ.

4 In what follows, we use ordinal arithmetic.
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Lemma 6.44 Let μ be a regular cardinal, and let ν > μ be a regular cardinal such
that ρΔ < ν for all ρ < ν and Δ < μ. Then Col(μ,< ν) has the ν-c.c.

Proof This immediately follows from the ∆-Lemma 6.31. �

As Col(μ,< ν) is certainly < μ-closed, this immediately implies the following.

Lemma 6.45 Let M be a transitive model of ZFC, and let μ < ν be regular
cardinals of M such that inside M, ρΔ < ν for all ρ < ν and Δ < μ. Let
P = (Col(μ,< ν))M be M’s version of the Levy collapse of ν to μ. Then all
M-cardinals strictly between μ and ν will have size μ in M[G], and all M-cardinals
outside of the open interval (μ, ν) will remain cardinals in M[G]. In particular,
ν = μ+ in M[G].
The Levy collapse Col(Φ,< ν) will play a crucial role in Chap. 8.

Wemay force♦ν whichwas shown to be true in L , cf.Definition 5.34 andTheorem
5.35.

Theorem 6.46 Let M be a transitive model of ZFC, let ν be an uncountable regular
cardinal in M, and letP ∈ M be defined inside M as follows.P = {(cα : α → ξ) : ξ <

ν ∈ ⊃α → ξ cα ∧ α}, ordered by end-extension. Let G be P-generic over M. Let
S ∧ ν , S ∈ M, be stationary in M. Then ♦ν(S) holds true in M[G].
Proof An easy density argument shows that there are Cα ∧ α, α < ν , such that⋃

G = (Cα : α < ν). We claim that
⋃

G � S = (Cα : α ∈ S) witnesses that ♦ν(S)

holds true in M[G].
Let β , ρ ∈ MP and p ∈ G be such that

p ♦ β ∧ ←ν is club in ←ν, andρ ∧ ν.

Let p0 → p be arbitrary. It suffices to show that there is some q → p0 such that if
q = (cα : α → ξ), then

q ♦ ←ξ ∈ β ∩ ←S ∈ ρ ∩ ←ξ = ←cξ. (6.9)

Let us work inside M . Notice that P is< ν-closed.Wemay thus easily construct a
sequence (pi : 1 → i < ν) of conditions inP such that there are F = (cα : α < ν) and
(ξi : i < ν), such that for all 0 → i < j < ν , pi = (cα : α → ξi ), supk< j ξk < ξ j

(in particular, p j < pi ), and there is some δ ∈ ξ j \ supk< j ξk and some a j ∈ M

such that, writing ξ̃ j for supk< j ξk ,

p j ♦ ←δ ∈ β ∈ ρ ∩ ←̃ξ j = ←a j .

As S is stationary and {ξ̃i : i < ν} is club in ν , we may pick some limit ordinal
i0 such that ξ̃i0 ∈ S. Set

http://dx.doi.org/10.1007/978-3-319-06725-4_8
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A =
⎨

i<i0

ai and q = (
⎨

i<i0

pi ) ∗ {(ξ̃i0 , A)}.

Write ξ = ξ̃i0 . We have that q ∈ P, q < p0, and q ♦ ←ξ ∈ β by the choice of
(pi : i < i0). Also, q ♦ (ρ ∩ ←ξ) = ←A. As ξ ∈ S, (6.9) is shown. �

The forcing P used in the previous proof is forcing eqivalent to Col(ν, ν) in the
sense of Lemma 6.48 below.

We now work towards showing that Φ1 may be singular in ZF, cf. Theorem 6.69.

Definition 6.47 Let P = (P;→P), Q = (Q;→Q) be partial orders. We call a map
χ : P⇒ Q a homomorphism iff for all p, q ∈ P,

(a) p →P q =⇒ χ(p) →Q χ(q) and
(b) p∞Pq =⇒ χ(p)∞Qχ(q).

A homomorphism χ : P⇒ Q is called dense iff ran(χ) is dense inQ, i.e., for every
q ∈ Q there is some p ∈ P such that χ(p) →Q q.

If χ : P ⇒ Q is a homomorphism, then (a) implies that p ∪P q =⇒ χ(p) ∪Q
χ(q), so that (b) gives p ∪P q ⇐⇒ χ(p) ∪Q χ(q) for all p, q ∈ P.

Lemma 6.48 Let M be a transitive model of ZFC, let P = (P;→P), Q = (Q;→Q)

∈ M be partial orders and let χ : P⇒ Q be a dense homomorphism, where χ ∈ M.
If G ∧ P isP-generic over M, then H = {p ∈ Q : ⊂q ∈ G χ(q) →Q p} isQ-generic
over M, G = {p ∈ P : χ(p) ∈ H}, and M[G] = M[H ]. Also, if H ∧ Q isQ-generic
over M, then G = {p ∈ P : χ(p) ∈ H} is P-generic over M and M[H ] = M[G].
Proof First let G ∧ P beP-generic over M , and set H = {p ∈ Q : ⊂q ∈ G χ(q) →Q

p}. To see that H is a filter, let p, p⇐ ∈ H . Then there are q, q ⇐ ∈ G with χ(q) →Q p
and χ(q ⇐) →Q p⇐. If r →P q, q ⇐, then χ(r) →Q p, p⇐. Now let D ∈ M be dense in
Q. We need to see D ∩ H ≤= ∼. Let D∗ = {s ∈ P : ⊂r ∈ D χ(s) →Q r} ∈ M . D∗
is dense in P: given p ∈ P, there is some r ∈ D with r →Q χ(p), and because χ

is dense there is some s ∈ P with χ(s) →Q r ; in particular, χ(s) ∪Q χ(p), so that
s ∪P p, and if q →P s, p, then χ(q) →Q χ(s) →Q r ; i.e., q ∈ D∗ and q →P p. Now
let p ∈ D∗ ∩G. Then χ(p) →Q r for some r ∈ D, where p ∈ G, so that r ∈ D∩H .

Let us now show that G = {p ∈ P : χ(p) ∈ H}. If χ(p) ∈ H , then there is some
q ∈ G with χ(q) →P χ(p). As D = {r ∈ P : r →P p ∨ r∞P p} is dense in P, we
may pick r ∈ D ∩ G. There is some s ∈ G with s →P r , q; then χ(s), χ(p) ∈ H ,
hence χ(s)||Qχ(p), and hence s||P p, so that r ||P p. But then r →P p, as r ∈ D, and
so p ∈ G.

Conversely, let H ∧ Q be Q-generic over M , and set G = {p ∈ P : χ(p) ∈
H}. It is again easy to see that G is a filter. Now let D ∈ M be dense in P. Let
D⇐ = {χ(p) : p ∈ D}. D⇐ is dense in Q: given p ∈ Q, there is some q ∈ P with
χ(q) →Q p, as χ is dense, and there is some r ∈ D such that r →P q, as D is dense;
but then χ(r) ∈ D⇐ and χ(r) →Q p. Now let p ∈ D⇐ ∩ H . Then p = χ(q) for some
q ∈ D ∩ G. �
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Lemma 6.49 Let ν be an infinite cardinal, and let P be an atomless partial order
such that

1P ♦ Card( ←ν) = ←ℵ0.

Then for every p ∈ P there is an antichain A ∧ {q ∈ P : q →P p} of size ν .

Proof Let us fix p ∈ P.
Let us first assume that ν = Φ. Let us construct a sequences (pn : n < Φ) and

(qn : n < Φ) of conditions at follows. Set p0 = p. Given pn , let qn and pn+1 two
incompatible extensions of pn . We then have that {qn : n < Φ} is an antichain of size
ℵ0.

Let us now assume that cf(ν) = Φ < ν . Let (νn : n < Φ) be a sequence of
uncountable regular cardinalswhich is cofinal inν .Weconstruct a sequence (pn : n <

Φ) of conditions and a sequence (An : n < Φ) of antichains in P as follows. Set
p0 = p. Given pn , notice that

pn ♦ Card( ←ν) = ←ℵ0,

so that by Lemma 6.32 there must be an antichain A ∧ {q ∈ P : q → pn} of size νn .
Let An be some such antichain, and let pn+1 ∈ An be arbitrary. It is now easy to see
that ⎨

{An \ {pn+1} : n < Φ} ∧ {q ∈ P : q → p}

is an antichain of size
⎩

n<Φ νn = ν .
Finally, let us assume that cf(ν) > Φ. Let r → p and β ∈ V P be such that

r ♦ β : ←Φ ⇒ ←ν is surjective. (6.10)

Let us suppose that every antichain A ∧ {q ∈ P : q → r} is smaller than ν . For
every n < Φ, let An be a maximal antichain in

{q ∈ P : q → r ∈ ⊂δ q ♦ β( ←n) = ←δ}.

By our hypothesis, Card(An) < ν for every n < Φ, so that by cf(ν) > Φ there
cannot be a surjective function

f : (Φ ×
⎨
{An : n < Φ})⇒ ν. (6.11)

However, we may define a function f as in (6.11) by setting, for n < Φ and
p ∈⋃{An : n < Φ},

f ((n, p)) =
⎛

δ, if p ♦ β( ←n) = ←δ,

0, if there is no δ < ν such that p ♦ β( ←n) = ←δ .
(6.12)
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If δ < ν , then by (6.10) there is some r ⇐ → r and somen < Φ such that r ⇐ ♦ β( ←n) = ←δ .
But then r ⇐||q for some q ∈ An by the choice of An , so that q ♦ β( ←n) = ←δ . Therefore,
f is surjective. Contradiction! �

Definition 6.50 LetP = (P,→) be a partial order.P is called separative iff whenever
p is not stronger than q then there is some r → p such that r and q are incompatible.

Every separative partial order P such that for every p ∈ P there is some q ∈ P

with q <P p is easily seen to be atomless.

Lemma 6.51 Let μ be an infinite cardinal, and let P be a separative partial order
such that Card(P) = μ and

1P ♦ ←μ is countable.

Then there is a dense homomorphism χ : Col(Φ,μ)⇒ P.

Proof Let β be a name such that

1P ♦ β : ←Φ ⇒ Ġ is onto.

Let us construct χ(p) by recursion on lh(p), where p ∈ Col(Φ,μ). Set χ(∼) = 1P.
Let us now suppose that p ∈ Col(Φ,μ) andχ(p) has been defined, where n = lh(p).
As Card(P) = μ, by Lemma 6.49, we may let A ∧ P be a maximal antichain of size
μ consisting of q ∈ P such that q →P χ(p) and q decides β( ←n), i.e., there is some
δ < μ such that

q ♦ β( ←n) = ←δ .

We may write A = {qi : i < μ}, where qi is different from (and thus incomaptible
with) q j for i ≤= j . We may then set χ(p ∗ {(n, i)}) = qi .

It is easy to see that χ is a homomorphism. Also, an easy induction shows that
for each n < Φ,

An = {χ(p) : p ∈ Col(Φ,μ) ∈ lh(p) = n}

is a maximal antichain of q ∈ P such that q decides β(←0), . . . , β ((n − 1)←).
Let us show that χ is dense. Pick r ∈ P. As r ♦ ←r ∈ Ġ, there is some s →P r and

somen < Φ such that s ♦ β( ←n) = ←r . Let t →P s be such that t decides β(←0), . . . , β ( ←n).
There is then some p ∈ Col(Φ,μ) such thatχ(p) ∈ An+1 andχ(p)||t .Wemust then
have that χ(p) ♦ β( ←n) = ←r , which implies that χ(p) ♦ ←r ∈ Ġ. As P is separative,
this gives that χ(p) →P r . �

Definition 6.52 Let P = (P;→) be a partial order. P is called homogenous iff for
all p, q ∈ P there is some dense endomorphism5 χ : P⇒ P such that χ(p) ∪ q.

Lemma 6.53 C is homogeneous. If α is an ordinal, then C(α) is homogeneous.

5 i.e., a homomorphism to itself.
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Proof Let us first show thatC is homogenous. Let us fix p, q ∈ C. Let us then define
χ : C ⇒ C as follows. If r ∈ C, then dom(χ(r)) = dom(r), and if n ∈ dom(r),
then

χ(r)(n) =






q(n), if n ∈ dom(p) ∩ dom(q) and r(n) = p(n),

p(n), if n ∈ dom(p) ∩ dom(q) and r(n) = q(n), and

r(n) otherwise.

(6.13)

Then if n ∈ dom(p) ∩ dom(q), χ(p)(n) = q(n), so that χ(p) ∪ q. It is easy to see
that χ is a dense endomorphism.

Now if α is an ordinal, and if p, q ∈ C(α), then for each δ ∈ supp(p) ∩ supp(q)

there is a dense endomorphism χδ : C ⇒ C such that χδ (p(δ)) ∪ q(δ) in the
sense ofCohen forcing. These endomorphisms then easily induce an endomorphism
χ : C(α) ⇒ C(α) such that χ(p) ∪ q in the sense of C(α). Again, χ will be
dense. �

The endomorphismconstructed in the previous proof is actually an automorphism,
i.e. bijective.

In much the same way as Lemma 6.53 we may prove the following.

Lemma 6.54 Let μ be a regular cardinal, and let X be a set of ordinals which are
all of size ≡ μ. Then Col(μ, X) is homogeneous.

Proof Let p, q ∈ Col(μ, X) be given. We may then define χ : Col(μ, X) ⇒
Col(μ, X) as follows. Given r ∈ Col(μ, X), let supp(χ(r)) = supp(r) and
dom(χ(r)(Θ)) = dom(r(Θ)) for all Θ ∈ X , and if Θ ∈ X and δ ∈ dom(r(Θ)),
then let

χ(r)(Θ)(δ)






q(Θ)(δ), if δ ∈ dom(p(Θ)) ∩ dom(q(Θ)) and r(Θ)(δ) = p(Θ)(δ),

p(Θ)(δ), if δ ∈ dom(p(Θ)) ∩ dom(q(Θ)) and r(Θ)(δ) = q(Θ)(δ), and

r(Θ)(δ) otherwise.
(6.14)

It is easy to see that χ is a dense automorphism of Col(μ, X) such that
χ(p)||q. �
Definition 6.55 Let M be a transitive model of ZFC, and let P = (P;→) ∈ M be
a partial order. Let χ : P⇒ P be a dense endomorphism, χ ∈ M . The χ induces a
map

χ̃ : MP ⇒ MP

as follows:
χ̃(β ) = {(χ̃(ε ), χ(p)) : (ε, p) ∈ β }.

Lemma 6.56 Let M be a transitive model of ZFC, let P = (P;→) be a partial
order, and let χ : P ⇒ P be a dense endomorphism with χ ∈ M. Let p ∈ P, let
σ(v1, . . . , vn) be a formula, and let β1, . . . , βn ∈ MP Then



6.2 Applications of Forcing 117

p ♦P
M σ(β1, . . . , βn)⇐⇒ χ(p) ♦P

M σ(χ̃(β1), . . . , χ̃(βn)).

Proof We first show:

Claim 6.57 Let G ∧ P be P-generic over M, and let H = {p : ⊂q ∈ G χ(q) → p}.
Then for all β ∈ MP, β G = χ̃(β )H .

The proof is an easy induction on the rank of β . Notice that ε G ∈ β G iff (ε, p) ∈ β

for some p ∈ G iff (χ̃(ε ), χ(p)) ∈ χ̃(β ) for some p ∈ G (i.e., χ(p) ∈ H) iff
χ̃(ε )H ∈ χ̃(β )H .

The same argument shows:

Claim 6.58 Let G ∧ P be P-generic over M, and let H = {p : χ(p) ∈ G}. Then
for all β ∈ MP, β H = χ̃(β )G.

Now suppose that p ♦P
M σ(β1, . . . , βn). Let G ∧ P be P-generic over M such

that χ(p) ∈ G.6 Setting H = {p : χ(p) ∈ G}, H is P-generic over M by
Lemma 6.48, and p ∈ H . By p ♦P

M σ(β1, . . . , βn), M[H ] |= σ(β H
1 , . . . , β H

n ).
But M[H ] = M[G] by Lemma 6.48 and β H

1 = χ̃(β1)
G, . . . , β H

n = χ̃(β1)
G

by Claim 6.58, so that M[G] |= σ(χ̃(β1)
G , . . . , χ̃(βn)H ). We have shown that

χ(p) ♦P
M σ(χ̃(β1), . . . , χ̃(βn)).

Conversely suppose thatχ(p) ♦P
M σ(χ̃(β1), . . . , χ̃(βn)). Let G ∧ P beP-generic

over M by Lemma 6.48, and p ∈ G. Setting H = {p : ⊂q ∈ G χ(q) → p},
H is P-generic over M such that χ(p) ∈ H . By χ(p) ♦P

M (χ̃(β1), . . . , χ̃(βn)),
M[H ] |= (χ̃(β1)

H , . . . , χ̃(βn)H ). But M[G] = M[H ] by Lemma 6.48 and β G
1 =

χ̃(β1)
G, . . . , β G

n = χ̃(βn)H by Claim 6.57, so that M[G] |= σ(β G
1 , . . . , β G

n ). We
have shown that p ♦P

M σ(β1, . . . , βn). �
Definition 6.59 Let M be a transitive model of ZFC, and let P = (P;→) be a
partial order. Then β ∈ MP is called homogenous iff for all dense endomorphisms
χ : P⇒ Pwithχ ∈ M , χ̃(β ) = β . If β1, . . . , βn ∈ MP, thenP is called homogenous
with respect to β1, . . . , βn iff for all p, q ∈ P there is some dense endomorphism
χ : P⇒ P such that χ(p) ∪ q, and χ̃(β1) = β1, . . . , χ̃(βn) = βn .

Hence P is homogenous iff P is homogenous with respect to the empty sequence ∼ of
names. Moreover, if P is homogenous with respect to ε1, . . . , εm and β1, . . . , βn ∈
MP are homogenous, then P is homogenous with respect to ε1, . . . , εn, β1, . . . , βm .

Lemma 6.60 Let M be a transitive model of ZFC, and let P = (P,→) ∈ M be a
separative partial order. For every x ∈ M, ←x is homogenous.

Proof We must have χ(1) = 1 for every dense homomorphism χ : P⇒ P. This is
because if χ(1) < 1, then there is some r → 1 such that χ(1), r are incompatible.
By density, there would be some s such that χ(s) → r . Then χ(s) and χ(1) are
incompatible, which is nonsense. �

6 We may assume without loss of generality that such a G exists, as otherwise we might work with
the transitive collapse of a countable (sufficiently) elementary substructure of M .
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Lemma 6.61 Let M be a transitive model of ZFC, and let P = (P,→) ∈ M be a
partial order. Let σ(v1, . . . , vn) be a formula, and let β1, . . . , βn ∈ MP be such that
P is homogenous with respect to β1, . . . , βn. Then either 1 ♦P

M σ(β1, . . . , βn) or else
1 ♦P

M ¬σ(β1, . . . , βn).

Proof Otherwise there are p, q ∈ P such that p ♦P
M σ(β1, . . . , βn) and q ♦P

M¬σ(β1, . . . , βn). Pick a dense endomorphism χ : P ⇒ P such that χ(p) ∪ q
and χ̃(β1) = β1, . . . , χ̃(βn) = βn . By Lemma 6.56, we then have χ(p) ♦P

M
σ(χ̃(β1), . . . , χ̃(βn)), i.e., χ(p) ♦P

M σ(β1, . . . , βn), and q ♦P
M ¬σ(β1, . . . , βn), so

that χ(p), q cannot be compatible. Contradiction! �

Corollary 6.62 Let M be a transitive model of ZFC, and let P = (P;→) be a partial
order. Let G ∧ P be P-generic over M. Let x ∈ M[G], where x ∧ M. Suppose also
that

M[G] |= ⊃y(y ∈ x ←⇒ σ(y, β G
1 , . . . , β G

n ))

for some formula σ and β1, . . . , βn ∈ MP such that P is homogenous with respect to
β1, . . . , βn. Then x ∈ M.

In particular, if P is homogenous, then every x ∈ M[G] ∩ ODM[G]
M such that

x ∧ M is an element of M. In particular, if P is homogenous, then HODM[G]
M ∧ M.

Proof Let y ∈ M . Then y ∈ x iff ⊂p ∈ G p ♦P
M σ( ←y, β1, . . . , βn). But because P

is homogenous with respect to ←y, β1, . . . , βn , p ♦P
M σ( ←y, β1, . . . , βn) is equivalent

to 1 ♦P
M σ( ←y, β1, . . . , βn). We may therefore compute x inside M as {y : 1 ♦P

M
σ( ←y, β1, . . . , βn)}. �

As an example, we get that a Cohen real is not definable in the generic extension:

Corollary 6.63 Let M be a transitive model of ZFC, and let G be C-generic over
M. Then neither G nor

⋃
G is definable in M[G] from parameters in M.

Definition 6.64 Let P = (P;→P),Q = (Q;→Q) be partial orders. The product
P×Q of P,Q is defined to be P×Q = (P×Q;→P×Q), where for (p, q), (p⇐, q ⇐) ∈
P×Q we set (p, q) →P×Q (p⇐, q ⇐) iff p →P p⇐ and q →Q q ⇐.

Lemma 6.65 (Product Lemma) Let M be a transitive model of ZFC, and let P =
(P;→P) and Q = (Q;→Q) be partial orders in M. If G is P-generic over M and H
is Q-generic over M[G], then G × H is P×Q-generic over M. On the other hand,
if K ∧ P×Q is P×Q-generic over M, then, setting

G = {p ∈ P : ⊂q ∈ Q (p, q) ∈ K }, and
H = {q ∈ Q : ⊂p ∈ P (p, q) ∈ K }

G is P-generic over M and H is Q-generic over M[G].
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Proof First let G beP-generic over M and H beQ-generic over M[G]. It is clear that
G × H is a filter. Let us show that G × H is P×Q-generic over M . Let D ∧ P×Q

be dense. We need to see that D ∩ (G × H) ≤= ∼.
Let D∗ = {q ∈ Q : ⊂p ∈ G (p, q) ∈ D}. D∗ is dense in Q: Given q ∈ Q, let

D⇐ = {p ∈ P : ⊂q ⇐ →Q q (p, q ⇐) ∈ D}. D⇐ ∈ M and D⇐ is clearly dense in P, so that
there is some p ∈ D⇐ ∩ G. But then there is some q ⇐ →Q q with (p, q ⇐) ∈ D, i.e.,
q ⇐ ∈ D∗ and q ⇐ →Q q.

Now D∗ ∈ M[G], and thus there is some q ∈ D∗ ∩ H . This means that there is
some p ∈ G with (p, q) ∈ D and (p, q) ∈ G × H .

Now let K ∧ P × Q be P × Q-generic over M , and set G = {p ∈ P : ⊂q ∈
Q (p, q) ∈ K } and H = {q ∈ Q : ⊂p ∈ P (p, q) ∈ K }. Let D ∧ P be dense in P,
where D ∈ M . Then D⇐ = {(p, q) ∈ P×Q : p ∈ D} is clearly dense in P×Q and
D⇐ ∈ M , so that there is some (p, q) ∈ D⇐ ∩ K , i.e., p ∈ D ∩ G. This shows that G
is P-generic over M .

Now let D ∧ Q be dense in Q, where D ∈ M[G]. Let D = β G , and p∗ ♦P
M “β

is dense in ←Q”, where p∗ ∈ G. Let

D∗ = {(p, q) ∈ P×Q : p → p∗ ∈ p ♦P
M ←q ∈ β }.

D∗ is dense below (p∗, 1Q): Given p →P p∗, q ∈ Q, we have p ♦P
M “β is dense

in ←Q.” There is then some p⇐ →P p and some q ⇐ →Q q with p⇐ ♦P
M “ ←q ⇐ ∈ β .” Then

(p⇐, q ⇐) ∈ D∗ and (p⇐, q ⇐) →P×Q (p∗, 1Q). Now let (p, q) ∈ D∗ ∩ K . Then p ∈ G
and p ♦P

M ←q ∈ β , so that q ∈ β G = D. Therefore q ∈ H ∩ D. �
In the situation of Lemma 6.65, G and H are called mutually generic.

Lemma 6.66 Let M be a transitive model of ZFC, and let α ∈ M. Let G be C(α)-
generic over M, and let x ∈ ΦΦ∩M[G]. Then x isC-generic over M in the following
sense: there is some C-generic H ∈ M[G] over M such that x ∈ M[H ]. In addition,
if α ≡ ΦM

1 , then there is also some C(α)-generic K ∈ M[G] over M[H ] such that
M[G] = M[H ][K ].
Proof Fix x ∈ ΦΦ∩M[G], say x = β G . Because M |= “C(α) has the c.c.c”, there is
some ε ∈ MC(α) and there is a sequence (An : n < Φ) ∈ M of countable antichains
in C(α) such that ε G = β G and

(ρ, p) ∈ ε =⇒ ρ = �←n, ←m⊆ andp ∈ An for some n, m < Φ,

cf. the proof of Theorem 6.33. In particular, X =⋃{supp(p) : ⊂ρ (ρ, p) ∈ ε } is at
most countable. Obviously,

C(α) ∼= {p ∈ X
C : Card(supp(p)) < ℵ0} × {p ∈α\X

C : Card(supp(p)) < ℵ0}.

It is easy to verify that

{p ∈ X
C : Card(supp(p)) < ℵ0} ∼= C
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and if α ≡ ΦM
1 , then

{p ∈ α\X
C : Card(supp(p)) < ℵ0} ∼= C(α).

The rest is then immediate by the Product Lemma 6.65. �

Corollary 6.67 Let M be a transitive model of ZFC, and let α ∈ M, α ≡ ΦM
1 . Let G

be C(α)-generic over M. Then in M[G] there is no ODR-wellordering of the reals.

Proof Suppose that there is a formula σ(v0, v1, v2, . . . , vn, vn+1, . . . , vn+m) and
there are Δ2, . . . , Δn ∈ M ∩ OR and xn+1, . . . , xn+m ∈ ΦΦ ∩ M[G] such that

M[G] |=“{(u, v) : σ(u, v, Δ2, . . . , Δn, xn+1, . . . , xn+m)}
is a wellordering of ΦΦ.”

Let H ∈ M[G] be C-generic over M such that xn+1, . . . , xn+m ∈ M[H ], and let
K ∈ M[G] be C(α)-generic over M[H ] such that M[G] = M[H ][K ]. The choice
of H and K is possible by Lemma 6.66.

Then every x ∈ ΦΦ ∩ M[G] = ΦΦ ∩ M[H ][K ] is ODM[H ][K ]
{xn+1,...,xn+m }, so that by

the homogeneity of C(α) in M[H ] (cf. Lemma 6.53) every such x is in M[H ] (cf.
Corollary 6.62). But this is nonsense! �

Theorem 6.68 (P. Cohen) If ZFC is consistent, then so is ZF+¬AC.

Proof Let M be a countable transitive model of ZFC, and let G be C(ΦM
1 )-generic

over M . Let
N = HODM[G]

ΦΦ∩M[G].

We have that N |= ZF by Theorem 5.44. However, by Corollary 6.67 there is no
wellorder of the reals in N . �

The following is a strengthening of Theorem 6.68. (Cf. also Problem 11.11.)

Theorem 6.69 (Feferman–Levy) If ZFC is consistent, then so is ZF+ cf(Φ1) = Φ.

Proof Let Jα be a countable model of ZFC. We aim to find a “symmetric extension”
of Jα in which ZF+ cf(Φ1) = Φ holds true.

Let ν = ℵJα
Φ . Let G be Col(Φ,< ν)-generic over Jα , and write N = Jα[G]. With

the help of Lemma 6.65, it is straightforward to see that ΦN
1 = ν+Jα . Now let

(Φν)∗ =
⎨
{Φν ∩ Jα[G � δ ] : δ < ν},

and set
M = HODN

(Φν)∗∗{(Φν)∗}.

By Theorem 5.44, M |= ZF. We aim to verify that
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ν = ΦM
1 and M |= cf(Φ1) = Φ. (6.15)

Notice that for every δ < ν, Jα[G � δ + 1] |= “δ is countable,” so that there is
some bijective f : Φ ⇒ δ with f ∈ (Φν)∗. In particular, every δ < ν is countable
in M , i.e., ν → ΦM

1 . Moreover, because (ℵJα
n : n < Φ) ∈ Jα ∩ Φν ∧ (Φν)∗, we have

that M |= cf(ν) = Φ. In order to verify (6.15) it thus suffices to show that ν is a
cardinal in M .

If ν were not a cardinal in M , then M |= “ν is countable,” and there would then
be some bijection f : Φ ⇒ ν with f ∈ M . Such a bijection cannot be an element
of (Φν)∗. This is because if f ∈ Jα[G � δ ], say, where δ < ν , then G � δ is
Col(Φ,< δ)-generic over Jα by the Product Lemma 6.65 and every Jα-cardinal
above δ (in particular, ν) will remain a cardinal in Jα[G � δ ] by Lemma 6.32.

In order to show (6.15), it thus suffices to verify that

Φν ∩ M = (Φν)∗. (6.16)

To this end, let f ∈ Φν ∩ M . There is then a formula σ(v0, v1, v2, . . . , vn, v⇐1, . . . ,
v⇐m, v), there are ordinals Δ2, . . . , Δn < α, and there are f1, . . . , fm ∈ (Φν)∗ such
that for all (n, Θ) ∈ Φ × ν ,

f (n) = Θ ⇐⇒ N |= σ(n, Θ, Δ2, . . . , Δn, f1, . . . , fm, (Φν)∗).

Let δ < ν be such that f1, . . . , fm ∈ Jα[G � δ ]. By the Product Lemma 6.65,
G � δ is Col(Φ,< δ)-generic over Jα , and G � [δ, ν) is Col(Φ, [δ, ν))-generic over
Jα[G � δ ].
Claim 6.70 There is some β ∈ Jα[G � δ ] such that β G�[δ,ν) = (Φν)∗ and β is
homogenous for Col(Φ, [δ, ν)).

Proof The proof for δ > Φ is only notationally different from the proof for δ = Φ,
so let us assume that δ = Φ. I.e., we assume that f1, . . ., fm ∈ Jα .

Let λ = ν+Jα = (ℵΦ+1)Jα , and let

β = {(ε, p) : ε ∈ Jλ∈⊂θ < ν

p ♦Col(Φ,<ν)
Jα

ε ∈ Φν ∩ Jα[Ġ ∩ Col(Φ,< ←θ)]}.

Let us verify that β G = (Φν)∗. First let f ∈ (Φν)∗, say f = ε G . We may assume
that ε ∈ Jλ, cf. the proof of Theorem 6.33. As f ∈ (Φν)∗, there is some θ < ν

such that f ∈ Φν ∩ Jα[G ∩ Col(Φ,< θ)], and there is then some p ∈ G such
that p ♦Col(Φ,<ν)

Jα
ε ∈ Φν ∩ Jα[Ġ ∩ Col(Φ,< θ)]. But then (ε, p) ∈ β , so that

f = ε G ∈ β G . Now let f ∈ β G , say f = ε G , where (ε, p) ∈ β for some p ∈ G.
There is then some θ < μ with p ♦Col(Φ,<ν)

Jα
ε ∈ Φν ∩ Jα[Ġ ∩ Col(Φ,< ←θ)], and

hence ε G ∈ Φν ∩ Jα[G ∩ Col(Φ,< θ)], i.e., f = ε G ∈ (Φν)∗.
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Let us now verify that Col(Φ,< ν) is homogenous with respect to β . Let p, q ∈
Col(Φ,< ν) be given. We may then define χ : Col(Φ,< ν) ⇒ Col(Φ,< ν) as in
(6.14) in the proof of Lemma 6.54 (where μ = Φ and X = [Φ, ν)).

We have that χ̃(Ġ) = {(χ̃( ←p), χ(p)) : p ∈ Col(Φ,< ν)} = {( ←p, χ(p)) : p ∈
Col(Φ,< ν)}, as χ is an automorphism, so that χ̃(Ġ)G = {p : χ(p) ∈ G} =
χ−1”G, where (χ−1”G) ∩ Col(Φ,< θ) is Col(Φ,< θ) generic over Jα for every
θ < ν by Lemma 6.48 (and the definition of χ ). Also, Jα[(χ−1”G) ∩ Col(Φ,<

θ)] = Jα[G ∩Col(Φ,< θ)] for every θ < ν by Lemma 6.48, which is certainly true
independently from the particular choice of G, so that in fact

1Col(Φ,<ν) ♦Col(Φ,<ν)
Jα

Jα[χ̃(Ġ) ∩ Col(Φ,< θ)] = Jα[Ġ ∩ Col(Φ,< θ)]. (6.17)

But we may now show χ̃(β ) = β as follows. With the help of (6.17), we have

(ε, p) ∈ β ⇐⇒ ε ∈ Jλ ∈ ⊂θ < ν p ♦Col(Φ,<ν)
Jα

ε ∈ Jα[Ġ ∩ Col(Φ,< θ)]
⇐⇒ χ̃(ε ) ∈ Jλ ∈ ⊂θ < ν χ(p) ♦Col(Φ,<ν)

Jα
χ̃(ε ) ∈ Jα[χ̃(Ġ) ∩ Col(Φ,< θ)]

⇐⇒ χ̃(ε ) ∈ Jλ ∈ ⊂θ < ν χ(p) ♦Col(Φ,<ν)
Jα

χ̃(ε ) ∈ Jα[Ġ ∩ Col(Φ,< θ)]
⇐⇒ (χ̃(ε ), χ(p)) ∈ β.

Therefore β = {(ε, p) : (ε, p) ∈ β } = {(χ̃(ε ), χ(p)) : (ε, p) ∈ β } = χ̃(β ), as
desired. This shows Claim 6.70. �

By Claim 6.70 and Corollary 6.62 we get that in fact f ∈ Jα[G � δ ]. Hence
f ∈ (Φν)∗. We verified (6.16). �
Elaborate forcings are studied e.g. in [9, 24, 37] and [44].

6.3 Problems

6.1. Let (P;→) be a partial order, and let D be dense in P. Use the Hausdorff
Maximality Principle 2.11 to construct an antichain A ∧ D such that ⊃p ∈
D⊂q ∈ A q ∪ p. Conclude that A is a maximal antichain in P.

6.2. Prove Lemma 6.21!
In what follows, we shall always assume that M is a (countable, if convenient)
transitivemodel ofZFC,P = (P,→) ∈ M is a partial order, and G isP-generic
over M .

6.3. Let ν > Card(P) be a regular cardinal in M (and hence in M[G]). Show that
(M, M[G]) has the ν-approximation property which means that if A ∧ ν ,
A ∈ M[G], is such that A ∩ δ ∈ M for all δ < ν , then A ∈ M .

6.4. Show that if N is a transitive model of ZFC− and if H is Q-generic over N ,
where Q ∈ N is a partial order, then N [H ] |= ZFC−.
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6.5. Suppose that p ♦P
M ⊂xσ(x, β1, . . . , βn). Show that there is some β ∈ MP

such that p ♦ σ(β, β1, . . . , βn). (This is called “fullness.”) Let X ≺ (HΩ )
M ,

where Ω is regular in M and P ∈ X . Let X [G] = {β G : β ∈ MP ∩ X} and
(HΩ )

M [G] = {β G : β ∈ MP ∩ (HΩ )
M }. Show that (HΩ )

M [G] = (HΩ )
M[G]

and (using fullness)
X [G] ≺ (HΩ )

M[G].

6.6. Prove Lemma 6.31!

6.7. Let H be C-generic over M . Let s ∈ <ΦΦ, and let Hs = {(p � [dom(s),
dom(p))) ∗ (s � dom(p)) : p ∈ H}. Show that Hs is C-generic over M .

6.8. Let ν be an infinite cardinal of M , and write λ = (ν<ν)M . Let H be (Cν)M -
generic over M . Show that in M[H ], there is a surjection f : ν ⇒ λ. (Cf. the
proof of Lemma 6.42.) Conclude that (Cν )M collapses exactly the M-cardinals
in the half-open interval (ν, λ].

6.9 Assume M to satisfy GCH. Let ν ∈ M be an M-cardinal such that M |=
cf(ν) > Φ. Show that if H is C(ν)-generic over M , then M[H ] |= 2ℵ0 = ν .
More generally, show that if μ is an infinite regular cardinal in M , ν ∈ M is
an M-cardinal with M |= cf(ν) > μ, and if H is Cμ(ν)-generic over M then
M and M[H ] have the same cardinals and M[H ] |= 2μ = ν .

6.10. Show that the converse to Lemma 6.38 is also true, i.e., if P is separative and

<ν M ∩ M[G] = <ν M ∩ M,

then P is < ν-distributive in M .

6.11. Let M be a transitive model of ZFC such that if α = M ∩OR, then Card(α) =
ℵ1. Show that there is a transitive model M ⇐ of ZFC with M ⇐ ∩ OR = α and
M ⇐ ≤= M .

6.12 (Solovay) Let us assume G and K to be mutually P-generic over M . Show that
M[G] ∩ M[K ] = M . [Hint. Let β G = ε K , where β and ε are P-names. We
may also construe β and ε as (P×P)-names, and we may pick (p, q) ∈ P×P

such that (p, q) ♦ β = ε . Show that for every y ∈ M , p decides “ ←y ∈ β ,” i.e.,
p ♦P ←y ∈ β or p ♦P ←y /∈ β .]

6.13. Let ν be inaccessible in M . Show that if H is C(ν)-generic over M , then ν is
weakly inaccessible in M[H ].

6.14. (R. Solovay) Suppose that M |= ΦL
1 = Φ1 and A ∧ ΦM

1 , A ∈ M . Show that
there is some poset R which has the c.c.c. such that if H is R-generic over M ,
then in M[H ] there is some x ∧ Φ with M[H ] |= A ∈ L[x]. [Hint. First work
in M . Let {xi : i < Φ1} ∈ L be an almost disjoint collection of subsets of Φ,
cf. Problem 1.3. Let

R = {(s, t) : s ∈ <Φ2, t ∈ [Φ1]<Φ},
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ordered by (s⇐, t ⇐) → (s, t) iff s⇐ ∅ s, t ⇐ ∅ t , and if i ∈ t ∩ A, then

{n ∈ dom(s⇐) \ dom(s) : s⇐(n) = 1} ∩ xi = ∼.

Show that R has the c.c.c. Now stepping out of M , if H is R-generic over M
and if x ∧ Φ is such that its characteristic function is

⋃{s : ⊂t (s, t) ∈ G},
then i ∈ A iff x and xi are almost disjoint.]

6.15. (a) Suppose that M |= “S ∧ Φ1 is stationary.” Let M |= “P has the c.c.c. or
is Φ-closed. Show that M[G] |= “S is stationary.”

(b) Let M |= “S ∧ ν is stationary, where ν is uncoutable and regular, and
cf(α) = Φ for all α ∈ S.” Suppose also that M |= “P is Φ-closed.” Then
M[G] |= “S is stationary.” [Hint. Fix p ∈ P such that p ♦P

M β is club
in ν . In M pick some nice X ≺ HΩ with p ∈ X and sup(X ∩ ν) ∈ S.
Pick (αn : n < Φ) cofinal in α = sup(X ∩ ν). Construct (pn : n < Φ), a
decreasing sequence of conditions in X , such that pn ♦ β \ ←αn ≤= ∼. Let
q be stronger than all pn . Then q ♦ ←α ∈ β ∩ ←S.]

6.16. Assume M |= “S ∧ Φ1 is stationary.” Show that there is some Φ-distributive
forcing Q ∈ M such that if H is Q-generic over M , then S contains a club in
M[H ]. [Hint. In M , let

Q = {p : ⊂α < Φ1 (p is a closed subset of S, otp(p) = α + 1)},

ordered by end-extension.] Show that in fact if T ∧ S is stationary in M , then
T is still stationary in M[H ].
More generally, let ν be an infinite regular cardinal in M , and let M |= “S ∧ ν+
is stationary and < ν-closed.” Show that there is a < ν-closed ν-distributive
forcing Q ∈ M such that if H is Q-generic over M , then S contains a club in
M[H ].

6.17. (J. Silver) Let H , H∗ be transitive models of a sufficiently large fragment
of ZFC, let P ∈ H be a partial order, let ε : H ⇒ H∗ be an elementary
embedding, letG beP-generic over H , and let K beε(P)-generic over H∗ such
that ε”G ∧ H . There is then an elementary embedding ε̃ : H [G] ⇒ H∗[K ]
such that ε̃ ∅ ε .

6.18. Let X be a large cardinal concept, e.g., X = inaccessible, measurable, etc. We
say that “ν is an X -cardinal” is preserved by small forcing iff the following
holds true. Let ν be an X -cardinal in M , and assume P ∈ (Vν)M to be a poset.
Then ν is still an X -cardinal in M[G]. Show that the following statements are
preserved by small forcing. “ν is inaccessible,” “ν is Mahlo,” “ν is weakly
compact,” and “ν is measurable.” [Hint: To prove that “ν is measurable” is
preserved by small forcing, let U be any measure on ν in M . Show that

U∗ = {Y ∧ ν : ⊂X ∈ U Y ∅ X},

as defined in M[G], witnesses that ν is still measurable in M[G].]
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6.19. In M , let ν be regular, and let F be a non-trivial filter on ν . For X , Y ∈ F+
(in the sense of Definition 4.30) let us write X →F+ Y iff

ν \ (X \ Y ) = (ν \ X) ∗ Y ∈ F.

Let G be (F+,→F+)-generic over M . Show that in M[G], G is a non-trivial
M-ultrafilter which extends F in the following sense.

(a) F ∧ G,
(b) if X , Y ∈ G, then X ∩ Y ∈ G,
(c) if X ∈ G and Y ∅ X , Y ∈P(ν) ∩ M , then Y ∈ G,
(d) ∼ /∈ G, and
(e) if X ∈P(ν) ∩ M , then either X ∈ G or ν \ X ∈ G.

We may then make sense of Ult(M;G) ∧ M[G].
If F is Ω -closed in M (Ω < ν), then G is M-Ω -closed in the sense that if
(Xi : i < Ω) ∈ M , Xi ∈ G for all i < Ω , then

⎪
i<Ω Xi ∈ G. If F is normal

in M , then G is M-normal in the sense that if (Xi : i < ν) ∈ M , Xi ∈ G for
all i < ν , then ∆i<ν Xi ∈ G.

6.20. Let ν ≡ ℵ0. Recall that Fν+ is the club filter on ν+, and write F = Fν+ .
Assume that (F+,→F+) has the ν++-c.c. Let

χ : H ∼= X ≺ H
(2ν+ )+ ,

where ν + 1 ∧ X , Card(X) = ν , (F+,→F+) ∈ X , and H is transitive. Let
χ(θ) = ν+ and χ(Q) = (F+,→F+). Write g = {X ∧ ν+ : θ ∈ χ(X)}. Show
that g is Q-generic over H . [Hint. Show that if {Ai : i < ν+} ∈ ran(χ) is a
maximal antichain in (F+,→F+), then

{δ < ν+ : δ ∈
⎨

i<δ

Ai }

contains a club C in ran(χ), so that θ ∈ C .] Conclude that if M |= “(F+,

→F+)M has the ν++-c.c.,” and if H is (F+,→F+)M -generic over M , then
ult(M; H) is well-founded.

6.21. (Petr Vopěnka) Show that for every α there is some partial orderV = V(α) ∈
HOD such that for every A ∧ α, A ∈ V , there is some G ∈ V such that G is
V-generic over HOD and A ∈ HOD[G].
[Hint. Let D = {Y ∧P(α) : Y is OD}, and let f be OD such that f : Ω ⇒ D

is bijective. Let → be such that (Ω,→)
χ∼= (D,∧), so that V = (Ω,→) ∈ HOD.

Show that

G = {δ < Ω : A ∈ χ(δ)}

is V-generic over HOD and A ∈ HOD[G].]
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6.22. Let g be a group of automorphisms of P. Let F be a collection of subgroups
of g which satisfies the following.

(a) g ∈ F ,
(b) if H ∈ F , and H ⇐ is a subgroup of G with H ∧ H ⇐, then H ⇐ ∈ F ,
(c) if H , H ⇐ ∈ F , then H ∩ H ⇐ ∈ F , and
(d) if H ∈ F and χ ∈ g, then χ ◦ H ◦ χ−1 = {χ ◦ ε ◦ χ−1 : ε ∈ H} ∈ F .

(Such an F is called a filter on g.) For β ∈ V P let us write

symg(β ) = {χ ∈ g : χ(β) = β }.

A name β ∈ V P is called symmetric iff symg(β ) ∈ F , and β is called heredi-
tarily symmetric iff for every (finite) sequence ((βi , pi ) : 0 → i → n) such that
β0 = β and (βi+1, pi+1) ∈ βi for 0 → i < n we have that all βi , 0 → i → n, are
symmetric.
Now let

N = {β G : M |= β ∈ MP is hereditarily symmetric}.

Show that N is a model of ZF.



Chapter 7
Descriptive Set Theory

7.1 Definable Sets of Reals

Descriptive set theory is the study of definable sets of real numbers. However, rather
than working with R, descriptive set theorists often work with a space which can be
shown to be homeomorphic to the space of all irrational numbers.

Let X →= ≤ be an arbitrary set. If s ∼ <Φ X then we declare Us = {x ∼ Φ X : s ∈ x}
to be a basic open set. A ∈ Φ X is declared to be open iff A is the union of basic
open sets. (As ≤ = ⋃ ≤, ≤ is also open.) Complements of open sets are called closed.
Notice that each Us is also closed, because

Φ X\Us =
⋃

{Ut : lh(t) = lh(s) ∧ t →= s}.

Here, lh(t) = dom(t) = t is the length of t . If X = Φ, then the space ΦΦ, together
with the topology just defined, is called the Baire space. We shall often refer to
the elements of ΦΦ as “reals.” If X = {0, 1}, then the space Φ2, together with the
topology just defined, is called the Cantor space. In this chapter, we shall focus our
attention on the Baire space, but most statements carry over, mutatis mutandis, to
the Cantor space.

If x, y ∼ ΦΦ, x →= y, then their distance d(x, y) is defined to be 1
2n , where n is

least such that x(n) →= y(n). It is easy to see now that the topology we defined on ΦΦ

is exactly the one which is induced by the distance function d, so that ΦΦ is a Polish
space, i.e. a complete seperable metric space. (Cf. Problem 7.1.)

A tree T on X is a subset of <Φ X which is closed under initial segments, i.e.,
if s ∼ T and n ∧ lh(s), then s � n ∼ T . Then (T,∈� T ) is a tree in the sense of
Definition 4.43. If T is a tree on X , then we write [T ] for the set of all x ∼ Φ X such
that x � n ∼ T for all n < Φ. A tree T on X is called perfect iff T →= ≤ and whenever

s ∼ T , then s has X pairwise incompatible extensions t in T , i.e., there is (ti : i < X)

such that for all i , j < X , s ∈ ti , ti ∼ T , ti /∈ t j , and t j /∈ ti . Perfect trees admit a
Cantor–Bendixson analysis (cf. p. 5), cf. Problem 7.5.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_7, 127
© Springer International Publishing Switzerland 2014



128 7 Descriptive Set Theory

If T →= ≤ is a tree on Φ, then T is perfect iff whenever s ∼ T , then there are t ,
t ⊃ ∼ T with s ∈ t , s ∈ t ⊃, t /∈ t ⊃, and t ⊃ /∈ t . Recall that a set of reals A is called
perfect iff A →= ≤, A is closed, and every element of A is an accumulation point of
A, cf. Definition 1.7.

Lemma 7.1 If A ∈ ΦΦ is closed, then A = [T ] for some tree T on Φ. On the other
hand, if T is a tree on Φ then [T ] is closed.

Moreover, A ∈ ΦΦ is perfect iff A = [T ] for some tree T →= ≤ on Φ which is
perfect.

Proof We show the first part of the lemma. Let A ∈ ΦΦ be closed. Let T = {s ∼
<ΦΦ : ⊂x ∼ A s ∈ x}. It is easy to see that A ∈ [T ]. Let x ∼ [T ]. For each n < Φ

there is some xn ∼ A with x � n ∈ xn . But then x = limn⇐⇒ xn ∼ A, because A is
closed. Therefore, A = [T ].

It is easy to verify that [T ] is closed whenever T is a tree on Φ.
The second part of the lemma is easy to check. �

If A ∈ ΦΦ, then

⋂
{B ∈ ΦΦ : B ∪ A ∧ B is closed}

is the smallest closed set in which A is contained, called the closure of A.
A Σ -algebra on a set Y is a collection S ∈ P(Y ) which is closed under relative

complements as well as countable unions and intersections.

Definition 7.2 A set A ∈ ΦΦ is called Borel iff A is in the smallest Σ -algebra
containing all closed (open) subsets of ΦΦ.

The simplest Borel sets are the open and closed sets. Countable intersections of
open sets are often called Gα- and countable unions of closed sets FΣ -sets. The
Borel sets form a natural hierarchy, cf. Problem 7.3.

Let β ∞ Φ. A tree T on Φ × β is a set of pairs (s, t) with s ∼ <ΦΦ, t ∼ <Φβ,
and lh(s) = lh(t), such that T is closed under initial segments, i.e. if (s, t) ∼ T and
n ∧ lh(s) then (s � n, t � n) ∼ T . If T is a tree on Φ × β, then we write [T ] for the
set of all (x, y) ∼ ΦΦ × Φβ such that (x � n, y � n) ∼ T for all n < Φ. If T is a tree
on Φ × β then p[T ], the projection of T , is the set of all x ∼ ΦΦ such that there is
some f ∼ Φβ so that for all n, (x � n, f � n) ∼ T . If x ∼ ΦΦ then we let Tx denote
the set of all t ∼ <Φβ such that (x � lh(t), t) ∼ T . Obviously,

x ∼ p[T ] ∩∅ ⊂y (x, y) ∼ [T ] ∩∅ (Tx ,∪) is ill-founded. (7.1)

Definition 7.3 A set A ∈ ΦΦ is called analytic iff there is a tree T on Φ × Φ with
A = p[T ]. A ∈ ΦΦ is called coanalytic iff ΦΦ\A is analytic.

We will show below, cf. Lemma 7.11, that there are analytic sets which are not
Borel. A classical result of Souslin says that a set of reals is Borel if and only if
it is analytic as well as coanalytic, cf. Theorem 7.5.
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Lemma 7.4 Let A ∈ ΦΦ be a Borel-set. Then A is analytic (and hence also
coanalytic).

Proof Let us first show the following two statements.

1. If every An, n < Φ, is analytic, then so is
⋃

n<Φ An .
2. If every An, n < Φ, is analytic, then so is

⋂
n<Φ An .

(1): Let An = p[Tn], where Tn is a tree on Φ × Φ. Let T on Φ × Φ be defined by1

(s, t) ∼ T iff s = t = ≤∨
⊂n < Φ ⊂t ⊃ (t = nεt ⊃ ∧ (s � (lh(s) − 1), t ⊃) ∼ Tn).

It is straightforward to verify that p[T ] = ⋃
n<Φ An .

(2): Again let An = p[Tn], where Tn is a tree on Φ × Φ, and let e: Φ × Φ ⇐ Φ

be bijective such that e(n, k) ∧ e(n, l) whenever k ∧ l. If t ∼ <ΦΦ, say t =
(m0, . . . , mi−1), and n < Φ, then we write tn for (me(n,0), . . . , me(n,k−1)), where k
is least with e(n, k) ∞ i . (If e(n, 0) ∞ i , then tn = ≤.) We now let T on Φ × Φ be
defined by

(s, t) ∼ T iff lh(s) = lh(t)∧
∗n < Φ(s � lh(tn), tn) ∼ Tn .

It is straightforward to verify that p[T ] = ⋂
n<Φ An .

NowLemma7.1 quite trivially yields that every closed set is analytic. In particular,
every basic open set Us is analytic, and hence by (1) every open set is analytic. (1)
and (2) then imply that every Borel set is analytic. �

Theorem 7.5 (Souslin) Let A ∈ ΦΦ. Then A is Borel if and only if A is analytic
as well as coanalytic.

This theorem readily follows from Lemma 7.4 and the following one, Lemma 7.6.
If A and B are disjoint sets, then we say that C separates A and B iff C ∪ A and
C ∩ B = ≤.
Lemma 7.6 Let A, B ∈ ΦΦ disjoint analytic sets. Then A, B are separable by a
Borel set C.

Proof Let A = p[T ], B = p[U ], where T, U are trees on Φ2. For s, t ∼ <ΦΦ, let

As
t = {x ∼ A: s ∈ x ∧ ⊂y(t ∈ y ∧ (x, y) ∼ [T ])},

and let
Bs

t = {x ∼ B: s ∈ x ∧ ⊂y(t ∈ y ∧ (x, y) ∼ [U ])}.

We have that A≤
≤ = A and B≤

≤ = B, and we always have

1 Here, nεt ⊃ is that sequence which starts with n, followed by t ⊃(0), . . . , t ⊃(lh(t ⊃)−1). This notation
as well as self-explaining variants thereof will frequently be used in what follows.
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(s, t) ∼ T =∅ As
t =

⋃
{Asεn

tεm : (sεn, tεm) ∼ T }

and

(s, t) ∼ U =∅ Bs
t =

⋃
{Bsεn

tεm : (sεn, tεm) ∼ U }.

Let us assume that A, B are not separable. We aim to derive a contradiction.
Let us define four reals x, y, u, v. We shall define x(n), y(n), u(n), v(n) recur-

sively. We shall inductively maintain that (x � n, y � n) ∼ T , (u � n, v � n) ∼ U ,
and Ax�n

y�n, Bu�n
v�n are not separable, which is true for n = 0.

Now suppose that x � n, y � n, u � n, v � n have been chosen in such a way that
(x � n, y � n) ∼ T , (u � n, v � n) ∼ U , and Ax�n

y�n, Bu�n
v�n are not separable.

Assume that for all i, j, k, l < Φ such that (x � nεi, y � nε j) ∼ T and
(u � nεk, v � nεl) ∼ U there is a Borel set Ci,k

j,l separating

Ax�nεi
y�nε j and Bu�nεk

v�nεl ,

i.e.,
Ax�nεi

y�nε j ∈ Ci,k
j,l ∈ ΦΦ\Bu�nεk

v�nεl .

It is then easy to see that the Borel set

⋃

i, j

⋂

k,l

Ci,k
j,l separates Ax�n

y�n, Bu�n
v�n ,

i.e.,
Ax�n

y�n ∈
⋃

i, j

⋂

k,l

Ci,k
j,l ∈ ΦΦ\Bu�n

v�n .

There must hence be i, j, k, l < Φ such that

(x � nεi, y � nε j) ∼ T, (u � nεk, v � nεl) ∼ U,

and
Ax�nεi

y�nε j and Bu�nεk
v�nεl

cannot be separated by a Borel set. Set x(n) = i, y(n) = j, u(n) = k, v(n) = l.
Now of course

⋂
n Ax�n

y�n = {x} and ⋂
n Bu�n

v�n = {u}. We have that x ∼ A, as wit-
nessedby (x, y) ∼ [T ], andwehave thatu ∼ B aswitnessedby (u, v) ∼ [U ].As A, B
are disjoint, x →= u, and wemay pick two disjoint open sets F, G such that x ∼ F and
y ∼ G. Because F is open, Ax�n

y�n ∈ F for all but finitelymany n. For the same reason,

Bu�n
v�n ∈ G for all but finitely many n. In particular, there is some n < Φ such that
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Ax�n
y�n ∈ F ∈ ΦΦ\G ∈ ΦΦ\Bu�n

v�n .

So Ax�n
y�n and Bu�n

v�n can be separated by a Borel (in fact, open) set after all. Contra-
diction! �

Definition 7.7 Let A ∈ ΦΦ, and let β ∞ Φ be an ordinal. If A = p[T ], where T is
a tree on Φ × β, then A is called β-Souslin.

The ℵ0-Souslin sets are hence exactly the analytic sets.

Lemma 7.8 If A ∈ ΦΦ is coanalytic, then A is ℵ1-Souslin.

Proof Let ΦΦ\A = p[T ], where T is a tree on Φ × Φ. Therefore, x ∼ A iff (Tx ,∪)

is well-founded. If Tx = (Tx ,∪) is well-founded, then, as Tx = ℵ0, it can be ranked
by some function f : Tx ⇐ Φ1 such that

s � t =∅ f (s) < f (t) (7.2)

and vice versa, cf. Lemma 3.17. Therefore, x ∼ A iff there is some f : Tx ⇐ Φ1 with
(7.2).

Now we construct S to be a tree “searching for” some such ranking. Let e : Φ ⇐
<ΦΦ be a bijection such that if n < lh(s), then e−1(s � n) < e−1(s).We let (s, h) ∼ S
iff s ∼ <ΦΦ and, setting

Ts = {t ∼ <ΦΦ: lh(t) ∧ lh(s) ∧ (s � lh(t), t) ∼ T },

h: lh(s) −⇐ Φ1 is such that

∗k < lh(s)∗l < lh(s) (e(k) ∼ Ts ∧ e(l) ∼ Ts ∧ e(k)�e(l) =∅ h(k) < h(l)).

For (s⊃, h⊃), (s, h) ∼ S we write (s⊃, h⊃) ∧S (s, h) iff s⊃ ∪ s and h⊃ ∪ h.
It is easy to verify now that x ∼ A iff (S,∪) is ill-founded. �

The tree S constructed in the previous proof is called “the” Shoenfield tree for A.

Corollary 7.9 Every coanalytic set A ∈ ΦΦ is the union of ℵ1 many Borel sets.

Proof Let A ∈ ΦΦ be coanalytic. Let S be “the” Shoenfield tree on Φ × Φ1 for
A, as being constructed in the proof of Lemma 7.8, so that x ∼ A iff x ∼ p[S]. If
ξ < Φ1, let us write S � ξ for the set of all (s, t) ∼ S with ran(t) ∈ ξ . Obviously,

p[S] =
⋃

ξ<Φ1

p[S � ξ ]. (7.3)

Let ξ < Φ1. Using any bijection of ξ with Φ, we may construe S � ξ as a tree on
Φ ×Φ. The sets p[S � ξ ] and ΦΦ\A are then disjoint analytic sets and may hence by
Lemma 7.6 be separated by a Borel set Bξ .
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We then have A = ⋃
ξ<Φ1

p[S � ξ ] ∈ ⋃
ξ<Φ1

Bξ ∈ A, so that in fact

A =
⋃

ξ<Φ1

Bξ

as desired. �

Let us now consider the spaces (ΦΦ)k , where 1 ∧ k < Φ, equipped with the
product topology. It is not hard to see that (ΦΦ)k is actually homeomorphic to the
Baire space ΦΦ.

Let β ∞ Φ. A tree T on Φk × β is a set of (k + 1)-tuples (s0, s1, . . . , sk) with
s0, s1, . . . , sk−1 ∼ <ΦΦ, sk ∼ <Φβ, and lh(s0) = · · · = lh(sk), such that T is closed
under initial segments, i.e., if (s0, . . . , sk) ∼ T and n ∧ lh(s0) then (s0 � n, . . . , sk �
n) ∼ T . We shall write [T ] for the set of all (x0, x1, . . . , xk−1, f ) such that for all n,
(x0 � n, x1 � n, . . . , xk−1 � n, f � n) ∼ T .

A set A ∈ (ΦΦ)k can easily be verified to be closed iff there is a tree T on
Φk−1 × Φ with A = [T ]. A ∈ (ΦΦ)k is perfect iff there is a tree T →= ≤ on Φk−1 × Φ

with A = [T ] and T is perfect, i.e., whenever (s0, . . . , sk) ∼ T then there are
extensions (t0, . . . , tk), (t ⊃0, . . . , t ⊃k) ∼ T of (s0, . . . , sk) with lh(t0) = lh(t ⊃0) and
(t0, . . . , tk) →= (t ⊃0, . . . , t ⊃k) (Cf. Lemma 7.1).

We may now define the projective hierarchy. Let T be a tree on Φk × β. The
projection of T onto the first l ∧ k many coordinates, written pl [T ] or just p[T ], is
the set of all (x0, . . . , xl−1) such that there are (xl , . . . , xk−1, f ) with

(x0, . . . , xl−1, xl , . . . , xk−1, f ) ∼ [T ].

A set A ∈ (ΦΦ)k is analytic iff there is a tree T on Φk × Φ with A = pk[T ]. (Hence
A is analytic iff

A = {(x0, . . . , xk−1): ⊂xk(x0, . . . , xk−1, xk) ∼ B}

for some closed set B ∈ (ΦΦ)k+1.)
A ∈ (ΦΦ)k is coanalytic iff A is the complement of an analytic set, A = (ΦΦ)k\B,

where B is analytic. The analytic sets are also called δ
∼

1

1
, the coanalytic sets ρ

∼

1

1
.

A ∈ (ΦΦ)k is δ
∼

1

n+1
iff

A = {(x1, . . . , xk−1): ⊂xk(x1, . . . , xk−1, xk) ∼ B}

for some ρ
∼

1

n
set B ∈ (ΦΦ)k+1. A ∈ (ΦΦ)k is ρ

∼

1

n+1
iff A is the complement of a

δ
∼

1

n+1
set.

Definition 7.10 A set A ∈ (ΦΦ)k , some k < Φ, is called projective iff there is some
n < Φ such that A is δ

∼

1

n
.



7.1 Definable Sets of Reals 133

Of course there are exactly 2ℵ0 projective sets.
We now aim to verify that δ∼

1

1
→= ρ∼

1

1
by showing that there is a universal δ∼

1

1
-set

which cannot be ρ∼
1

1
.

Let us pick a bijection

e: {(s, t): s ∼<Φ Φ, t ∼<Φ Φ, lh(s) = lh(t)} ⇐ Φ

such that for all s, t and i < Φ, e(s � i, t � i) ∧ e(s, t). Let us say that u ∼<Φ Φ

codes a finite tree iff Tu = {(s, t): s ∼<Φ Φ, t ∼<Φ Φ, lh(s) = lh(t), u(e(s, t)) = 1}
is a (finite) tree, i.e., is closed under initial segments.

We may now define a tree U on Φ × Φ × Φ as follows. We set (s, t, u) ∼ U iff
s, t, u ∼<Φ Φ, lh(s) = lh(t) = lh(u), u codes a finite tree, and if i < Φ is such that
e(s � i, t � i) ∼ dom(u), then u(e(s � i, t � i)) = 1.

We claim that for all A ∈ ΦΦ, A is δ∼
1

1
iff there is some z ∼ ΦΦ such that

A = p[Uz], where Uz = {(s, t) : ⊂u ((s, t, u) ∼ U ∧ u = z � lh(u))}. (7.4)

Well, let A ∈ ΦΦ be δ∼
1

1
, and let A = p[T ], where T is on Φ × Φ. Let z ∼ ΦΦ,

where z(n) = 1 iff there is (s, t) ∼ T such that e(s, t) = n. Then for all x, y ∼ ΦΦ,
(x, y, z) ∼ [U ] iff (x, y) ∼ [Uz] = [T ], so that A = p[Uz]. On the other hand, if
z ∼ ΦΦ and A = p[Uz], then A is clearly δ∼

1

1
.

The set B = {(x, z) : ⊂y (x, y, z) ∼ [U ]} is easily be seen to be δ∼
1

1
, and A ∈ ΦΦ

is δ∼
1

1
iff there is some z ∼ ΦΦ with

A = {x : (x, z) ∼ B}. (7.5)

(This uses (7.4).) A set B with these properties is called a universal δ∼
1

1
-set.

Let B ∈ (ΦΦ)2 be a universal δ∼
1

1
-set. We claim that B cannot be also a ρ∼

1

1
-set.

Otherwise
A = {x ∼ ΦΦ: (x, x) /∼ B}

would be a δ∼
1

1
-subset of ΦΦ, and there would thus be some z ∼ ΦΦ such (7.5) holds.

In particular, (z, z) /∼ B iff z ∼ A iff (z, z) ∼ B.
We have shown:

Lemma 7.11 There is an analytic set of reals which is not coanalytic.

We may also think of the universal δ∼
1

1
-set B constructed above, in fact of any

B ∈ (ΦΦ)2, as a subset of ΦΦ, in the following way. If x , y ∼ ΦΦ, then let x ⊕ y
denote that z ∼ ΦΦ such that z(2n) = x(n) and z(2n + 1) = y(n) for all n < Φ.
(Clearly, (x, y) ≥⇐ x ⊕ y is a continuous, in fact Lipschitz, bijection between (ΦΦ)2
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and ΦΦ.) If B ∈ (ΦΦ)2, then B⊕ = {x ⊕ y : (x, y) ∼ B} “codes” B in the sense that
B may be easily read off from B⊕.

Let us define two important sets which are in ρ∼
1

1
\δ∼

1

1
, namely WF and WO.

Let n, m ≥⇐ 〈n, m≡ be the Gödel pairing function, cf. p. 35. Every real x ∼ ΦΦ

induces a binary relation Rx on Φ as follows:

(n, m) ∼ Rx ∩∅ x(〈n, m≡) = 1. (7.6)

We let

WF = {x ∼ ΦΦ: Rx is well-founded } , and

WO = {x ∼ ΦΦ: Rx is a well-ordering}.

The sets WF and WO are coanalytic, cf. Problem 7.6.
WF and WO are in fact complete coanalytic sets in the sense that if B ∈ ΦΦ is

coanalytic, then there are continuous (in fact, Lipschitz) functions f : ΦΦ ⇐ ΦΦ

and g: ΦΦ ⇐ ΦΦ such that for all x ∼ ΦΦ,

x ∼ B ∩∅ f (x) ∼ WF ∩∅ g(x) ∼ WO.

Wemay construct such a function g for WO as follows. (Then f = g will also work
for WF.) Let B ∈ ΦΦ be coanalytic. There is then a tree T on Φ × Φ with x ∼ B
iff (Tx ;∪) is well-founded. With the help of some bijection e : Φ ⇐ <ΦΦ which is
such that for all s ∼ <ΦΦ and i < Φ we have that e−1(s � i) ∧ e−1(s), Tx induces
an order Rx on Φ as follows2:

n Rx m ∩∅[(e(n) ∼ Tx ∧ e(m) ∼ Tx ∧ e(n) � e(m))∨
(e(n) ∼ Tx ∧ e(m) ∼ Tx ∧ e(n)←e(m) ∧ e(n) <lex e(m))∨
(e(n) /∼ Tx ∧ (e(m) ∼ Tx ∨ (e(m) /∼ Tx ∧ n < m))].

Let us then define g(x) to be such that Rg(x) = Rx , i.e., g(x) is that real y ∼ ΦΦ

such that

y(〈n, m≡) =
{
1 iff (n, m) ∼ Rx , and
0 otherwise.

This defines g: ΦΦ ⇐ ΦΦ. Notice that g is continuous. In fact, if x � n = y � n,
then Tx and Ty agree upon the first n levels, so that Rx � n = Ry � n and hence
g(x) � n = g(y) � n.

It is easy to see that if g(x) ∼ WO, then (Tx ;∪) must be well-founded, so that
x ∼ B. On the other hand, suppose that g(x) /∼ WO, and let (ni : i < Φ) be such
that (ni+1, ni ) ∼ Rx for all i < Φ. Clearly, e(ni ) ∼ Tx for all i < Φ. Moreover,

2 We here write s←t iff s and t are incomparable, i.e., s � (lh(s)∩ lh(t)) →= t � (lh(s)∩ lh(t)). Also,
<lex is the lexicographic ordering.
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∗k ⊂i(k)∗i ∞ i(k) (lh(e(ni )) ∞ k ∧ e(ni ) � k = e(ni(k)) � k).

This gives that

⋃

k<Φ

e(ni(k)) � k ∼ [Tx ],

so that x ∼ B. We have verified that x ∼ B iff g(x) ∼ WO.
If x ∼ WO and Rx is defined as in (7.6), then we write ||x || for the order type

of Rx , i.e., for the (countable) ordinal β such that (β; ∼) � (Φ; Rx ), cf. Definition
3.22.

Lemma 7.12 (Boundedness Lemma)Let A ∈ WO be analytic. Then {||x || : x ∼ A}
is bounded below Φ1.

Proof Suppose not, i.e., let A ∈ WO be analytic such that {||x ||: x ∼ A} is
unbounded in Φ1. Let B ∈ ΦΦ be an arbitrary coanalytic set. There is a tree T
on Φ × Φ such that x ∼ B iff (Tx ;∪) is well-founded. We may thus write x ∼ B
iff there is a ranking f : Tx ⇐ β, where β = ||z|| for some z ∼ A. It is straightfor-
ward to verify that B is then δ

∼

1

1
. Therefore, every coanalytic set would be analytic.

Contradiction! �

Similar to our proof of Lemma 7.11 one may show that for all n < Φ, δ
∼

1

n
is

different from ρ
∼

1

n
, in fact δ

∼

1

n
\ρ

∼

1

n
→= ≤ and ρ

∼

1

n
\δ

∼

1

n
→= ≤. (Cf. Problem 7.6.)

One also defines

χ∼
1

n
= δ∼

1

n
∩ ρ∼

1

n

for n < Φ. By Souslin’s Theorem 7.5, χ∼
1

1
is the family of all Borel sets.

Let us consider a δ
∼

1

2
set A ∈ ΦΦ. As every coanalytic set B ∈ (ΦΦ)2 is of

the form p2[T ], where T is on Φ2 × Φ1, by the proof of Lemma 7.8, we get that
A = p1[T ]. Via some bijection g:Φ1 ⇐ Φ × Φ1, we thus see that A = p[S], where
S is on Φ × Φ1. This tree S is also called “the” Shoenfield tree for A.

This argument shows:

Lemma 7.13 If A ∈ ΦΦ is δ
∼

1

2
then A is ℵ1-Souslin.

Lemma 7.14 Let A ∈ ΦΦ be ℵn-Souslin, where n < Φ. Then A = ⋃
i<Φn

Ai , where
each Ai is analytic.

Proof By induction on n:There is nothing to prove for n = 0. Now let n > 0 and
suppose the statement to be true for n −1. Let A = p[T ], where T is on Φ×Φn . For
β < Φn , let T � β be the set of all (s, t) ∼ T with ran(t) ∈ β. Because cf(Φn) > Φ,
p[T ] = ⋃

β<Φn
p[T � β].
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By the inductive hypothesis, for each β < Φn , p[T � β] = ⋃
i<Φn−1

Aβ
i , where

each Aβ
i is analytic. Therefore,

A = p[T ] =
⋃

β<Φn

⋃

i<Φn−1

Aβ
i ,

a representation as desired. �
If U is a tree on Φk × β and (s0, s1, . . . , sk) ∼ U , then we write U(s0,s1,...,sk ) for

the tree

{(t0, t1, . . . , tk) ∼ U : (s0 ∈ t0∧s1 ∈ t1∧. . .∧sk ∈ tk)∨(s0 ∪ t0∧s1 ∪ t1∧. . .∧sk ∪ tk)}.

Theorem 7.15 (Souslin, Mansfield) Let A ∈ ΦΦ be σ-Souslin. Then either A has
at most σ elements or else A contains a perfect subset.

Proof This is shown by a “Cantor Bendixson analysis” of A, cf. the proof of
Theorem 1.9.

If U is a tree on Φ × σ then we set

U ⊃ = {(s, t) ∼ U : Card(p[U(s,t)]) > 1}. (7.7)

Let us now fix a tree T on Φ × σ such that A = p[T ]. Let us inductively define
trees Ti , i ∼ OR, as follows.

T0 = T ,
Ti+1 = (Ti )

⊃, and
Tτ = ⋂

i<τ Ti for limit ordinals τ.

Notice that, inductively, each Ti is in fact a tree on Φ × σ . Moreover, Ti ∪ Tj

whenever i ∧ j .
As Card(T ) ∧ σ , there must be some λ < σ+ such that Tλ+1 = Tλ . Let us write

T ⇒ for this tree.
The argument now splits into two cases.

Case 1: T ⇒ = ≤.
Let x ∼ A = p[T ]. Pick g ∼ Φσ such that (x � n, g � n) ∼ T for all n. As T ⇒ = ≤,
there must be a largest i such that (x � n, g � n) ∼ Ti for all n. Let n be maximal
such that (x � n, g � n) ∼ Ti+1. Then p[(Ti )(x�n+1,g�n+1)] has exactly one element,
namely x , as

(x � n + 1, g � n + 1) ∼ Ti\Ti+1.

We have seen that

A =
⋃

{p[(Ti )(s,t)]: (s, t) ∼ Ti\Ti+1},

where p[(Ti )(s,t)] has exactly one element in case (s, t) ∼ Ti\Ti+1. Because
Card(T ) ∧ σ , this shows that Card(A) ∧ σ .
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Case 2: T ⇒ →= ≤.
Then Card(p[T ⇒

(s,t)]) > 1 for all (s, t) ∼ T ⇒.
Let us recursively construct (su, tu) ∼ T ⇒, where u ∼ <Φ2. Set (s≤, t≤) = (≤,≤).

Suppose that (su, tu) has been chosen. As p[T ⇒
(su ,tu)] has at least two elements, we

may pick (suε0, tuε0) ∼ T ⇒, (suε1, tuε1) ∼ T ⇒ such that

lh(suε0) = lh(suε1) > lh(su) and suε0 →= suε1.

For z ∼ Φ2, let xz = ⋃{sz�n : n < Φ}. We have xz ∼ A = p[T ], as being witnessed
by (tz�n : n < Φ), for each z ∼ Φ2. Moreover, {xz : z ∼ Φ2} is a perfect set. �

Corollary 7.16 Every uncountable analytic set of reals has a perfect subset.

We now need to define the effective projective hierarchy.
Let x ∼ ΦΦ. A set A ∈ (ΦΦ)k is called δ1

1 (x) iff A = p[T ], where T is a tree
on Φk+1 which is definable over the structure (VΦ; ∼, x). A is called ρ1

n (x) iff A is
the complement of a δ1

n (x) set, and A is called δ1
n+1(x) if A is the projection of a

ρ1
n (x) set. We also set χ1

n(x) = δ1
n (x) ∩ ρ1

n (x). Notice that

δ∼
1

1
=

⋃

x∼ΦΦ

δ1
1 (x),

and therefore analogous facts hold for the other projective pointclassesρ∼
1

n
andδ∼

1

n+1
aswell.Wewriteδ1

n instead ofδ
1
n (0),ρ1

n instead ofρ1
n (0), andχ1

n instead ofχ
1
n(0).

The following is often very useful.

Lemma 7.17 Let x ∼ ΦΦ. A set A ∈ (ΦΦ)k is δ1
n (x) iff there is a formula ζ such

that3 for all y ∼ ΦΦ,

y ∼ A ∩∅⊂z1 ∼ ΦΦ∗z2 ∼ ΦΦ . . . Qzn ∼ ΦΦ

(VΦ; ∼, x, y, z1, . . . , zn) |= ζ(x, y, z1, . . . , zn). (7.8)

Proof By induction on n. The only non-trivial step of this induction is the base,
n = 1. We first verify

Claim 7.18 δ1
1 (x) is closed under ∗Φ and ⊂Φ, i.e., if B ∈ (ΦΦ)k × Φ is δ1

1 (x),4

then so are
{y : ∗n ∼ Φ (y, n) ∼ B} and
{y : ⊂n ∼ Φ (y, n) ∼ B}.

Proof “∗Φ”:Let us assume that k = 1. Let (y, n) ∼ B iff (y, n) ∼ p[T ], where T
is on Φ3. We may then define U on Φ2 by setting (s, t) ∼ U iff for all n < lh(s),

3 In what follows, Q is ⊂ or ∗ depending on whether n is odd or even.
4 By identifying n < Φ with the constant function cn : Φ ⇐ Φ with value n, we may construe
(ΦΦ)k × Φ as a subset of (ΦΦ)k+1.



138 7 Descriptive Set Theory

(s, n, t) ∼ T . It is then easy to see that y ∼ p[U ] iff for all n < Φ, (y, n) ∼ p[T ] =
B. The proof for “⊂Φ” is easy. �

Let us now prove Lemma 7.17 for n = 1. First let A ∼ δ1
1 (x), say A = p[T ],

where (s, t) ∼ T iff (VΦ; ∼, x) |= ψ(s, t) for some formula ψ . Then

y ∼ A ∩∅ ⊂z ∼ ΦΦ (VΦ; ∼, x, y, z) |= ∗n < Φ ψ((y � n, z � n)).

Now we prove by induction on the complexity of ζ that if A be as in (7.8) with

n = 1, then A is δ1
1 (x). We shall use Problem 5.2. Let in what follows (Φ; E A)

ν∼=
(HF; ∼) be as in Problem 5.2. The relation “ν(n) = u” is χZFC−⇒

1 by Problem 5.2.
First let ζ be ρ1. We let (s, t) ∼ T iff s, t ∼ <ΦΦ, lh(s) = lh(t), and (Vlh(s);

∼, x ∩ Vlh(s), s, t) |= ζ(x ∩ Vlh(s), s, t). It is easy to see that A = p[T ].
If ζ ˙ ⊂u ζ̄, where ζ̄ is ρn , then

y ∼ A ∩∅ ⊂z ∼ ΦΦ⊂n (VΦ; ∼, x, y, z) |= ∗u(u = ν(n) ⇐ ζ̄(x, y, z, u),

so that the result follows from the inductive hypothesis and Claim 7.18.
Finally, let ζ ˙ ∗u ζ̄, where ζ̄ is ρn . Then

y ∼ A ∩∅ ⊂z ∼ ΦΦ∗n (VΦ; ∼, x, y, z) |= ⊂u(u = ν(n) ∧ ζ̄(x, y, z, u),

so that the result also follows from the inductive hypothesis and Claim 7.18. �

Lemma 7.19 Let z ∼ ΦΦ. Then ΦΦ∩ L[z] as well as <L[z]� (ΦΦ∩ L[z]) are δ1
2 (z).

Proof The proof in the general case is only notationally different from the proof in
the case z = ≤, so let us assume that z = ≤. We have (using Theorem 5.31) that
x ∼ ΦΦ ∩ L iff x ∼ ΦΦ ∩ Jβ for some β < Φ1 iff (using Lemma 5.28) x ∼ ΦΦ ∩ M
for some countable transitive model of “V = L ,” which is true if and only if there
is some z such that, setting (n, m) ∼ E ∩∅ z(n, m) = 1, E is well-founded (i.e.,
there is no y ∼ ΦΦ such that for all n < Φ, (y)n+1E(y)n),

(Φ; E) |= “V = L , ”

and x is a real number in the transitive collapse of (Φ; E). It is easy to verify that
this can be written in a δ1

2 fashion. (Cf. Problem 7.10.)
This shows that ΦΦ ∩ L is δ1

2 .
An entirely analoguous argument shows that <L� (ΦΦ ∩ L) is δ1

2 . �

In general, the complexity of ΦΦ ∩ L given by Lemma 7.19 is optimal, as we aim
to show now.

Lemma 7.20 Let σ ∞ Φ, and let A ∈ ΦΦ be σ-Souslin, say A = p[T ], where T
is a tree on Φ × σ . If A →= ≤, then A ∩ L[T ] →= ≤. Moreover, if A does not contain a
perfect subset, e.g., if Card(A) < 2ℵ0 , then A ∼ L[T ].
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Proof Suppose that A →= ≤, i.e., [T ] →= ≤. This means that the relation

(T,∪) ∼ L[T ] (7.9)

is ill-founded in V . By the absoluteness of well-foundedness, cf. Lemma 5.6, the
relation (7.9) is then ill-founded in L[T ], which implies that [T ] ∩ L[T ] →= ≤, i.e.,
A ∩ L[T ] = p[T ] ∩ L[T ] →= ≤.

Now let (Ti : i ∧ λ), where λ < σ+, be the “Cantor–Bendixson analysis” of
A as in the proof of Theorem 7.15. If U ∼ L[T ] is a tree on Φ × σ , and if U ⊃ is
defined as in (7.7), then U ⊃ computed in V is the same as U ⊃ computed in L[T ];
this is because “Card(p[U(s,t)]) > 1” is absolute between V and L[T ] by Lemma
5.6. We therefore in fact get that the construction producing (Ti : i ∧ λ) is absolute
between V and L[T ], so that

(Ti : i ∧ λ) ∼ L[T ]. (7.10)

Now let us suppose that A does not contain a perfect subset, so that Tλ = ≤. We
aim to show that A ∼ L[T ]. Let x ∼ A, say x ∼ p[Ti ]\p[Ti+1]. By construction,
there is then some n < Φ and t ∼ <ΦΦ with lh(t) = n such that

Card(p[(Ti )(x�n,t)]) = 1. (7.11)

By Lemma 5.6, there must be some (x ⊃, y⊃) ∼ [(Ti )(x�n,t)] ∩ L[T ]. However, by
(7.11), any such x ⊃ must be equal to x , and thus x is easily definable from Ti and
(x � n, t), so that x ∼ L[T ]. We have shown that A ∈ L[T ] and in fact A ∼ L[T ]. �
Corollary 7.21 (Shoenfield absoluteness) Let x ∼ ΦΦ, and let A ∈ ΦΦ be δ1

2 (x).
If A →= ≤, then A ∩ L[x] →= ≤. Moreover, if A does not contain a perfect subset, then
A ∼ L[x]
Proof Let S be “the” Shoenfield tree for A, cf. p. 135. An inspection of the con-
struction of S, cf. the proof of Lemma 7.8, shows that S ∼ L[x] follows from the
assumption that A be δ1

2 (x). The conclusion then follows from Lemma 7.20. �

This implies that ΦΦ ∩ L[x] can in general not be better than the complexity
given by Lemma 7.19, namely δ1

2 (x), unless ΦΦ ∈ L[x]. This is because if ΦΦ ∩
L[x] were ρ1

2 (x), then ΦΦ\L[x] would be δ1
2 (x), hence if ΦΦ\L[x] →= ≤, then

(ΦΦ\L[x]) ∩ L[x] →= ≤ by Corollary 7.21, which is nonsense.
Also, if (2ℵ0)L[x] = Φ

L[x]
1 < 2ℵ0 , then byLemma7.19 there is a largest δ1

2 (x)-set
of reals, namely ΦΦ ∩ L[x].
Definition 7.22 Let A ∈ (ΦΦ)2. We say that a partial function F : ΦΦ ⇐ ΦΦ

uniformizes A iff for all x ∼ ΦΦ, if there is some y ∼ ΦΦ such that (x, y) ∼ A, then
x ∼ dom(F) and (x, F(y)) ∼ A.

Theorem 7.23 (Kondǒ, Addison) Let A ∈ ΦΦ × ΦΦ be ρ1
1 . Then A can be uni-

formized by a function whose graph is ρ1
1 .
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Proof We shall prove that each nonempty ρ1
1 (z) set A ∈ ΦΦ has a member x such

that {x} is ρ1
1 (z). As the definition of {x} will be uniform in the parameter z, this

proof will readily imply the theorem. For notational convenience, we shall assume
that z = 0. Hence let A ∈ ΦΦ be given such that A is ρ1

1 and A →= ≤. Let T be a
tree on Φ × Φ such that

x ∼ A ∩∅ Tx is well-founded.

Let us fix an enumeration (sn : n < Φ) of <ΦΦ such that if sn � sm , then n < m. x
We first define maps ζn : A ⇐ Φ1 by setting

ζn(x) =
{ ||sn||Tx , ifsn ∼ Tx

0 , else.

Here, ||s||Tx is the rank of s in (Tx ,∪) in the sense of Definition 3.18, which is
well-defined for x ∼ A.

Claim 7.24 If lim
k⇐Φ

xk = x, where each xk is in A, and for all n, ζn(xk) is eventually

constant, i.e.
⊂βn⊂kn∗k ∞ kn ζn(xk) = βn,

then x is in A and ζn(x) ∧ βn.

Proof Suppose that (xk : k < Φ) is as described, but x = lim
k⇐Φ

xk /∼ A. Then Tx is

ill-founded, and we may pick some y ∼ [Tx ]. Let y � i = sni for i < Φ. If k ∞ kni ,
kni+1 is large enough, then

βni+1 = ||sni+1 ||Txk
< ||sni ||Txk

= βni .

Hence (βni : i < Φ) is a descending sequence of ordinals. This contradiction shows
that x ∼ A after all. It is easy to see that ζn(x) ∧ βn . �

We shall now pick some x ∼ A. Let x ∼ B iff x ∼ A and for all y and for all n,

[x � n = y � n ∧ ∗m < n(y ∼ A ∧ ζm(x) = ζm(y))]
−⇐ [x(n) < y(n) ∨ (x(n) = y(n) ∧ (y /∼ A ∨ (y ∼ A ∧ ζn(x) ∧ ζn(y))))].

A moment of reflection shows that B = {x} ∈ A for some x .
It remains to be shown that B is ρ1

1 . Well, ∗m < n(y ∼ A ∧ ζm(x) = ζm(y))

says that for all m < n there are order-preserving embeddings f : (Tx )sm ⇐ (Ty)sm

and g: (Ty)sm ⇐ (Tx )sm , and is hence δ1
1 by Lemmas 7.17 and 7.18. Similarily,

y /∼ A ∨ (y ∼ A ∧ ζn(x) ∧ ζn(y))
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says that there is no order-preserving embedding f : (Ty)sn ⇐ (Tx )t for some t � sn ,
and is hence ρ1

1 by Lemmas 7.17 and 7.18. We may thus rewrite “x ∼ B” in a ρ1
1

fashion. �
Let A, B ∈ ΦΦ. We say that Ā and B̄ reduce A and B iff Ā ∈ A, B̄ ∈ B,

Ā ⊆ B̄ = A ⊆ B, and Ā ∩ B̄ = ≤. If Δ ∈ P(ΦΦ), then we say that Δ has the
reduction property iff for all A, B ∼ Δ there are Ā, B̄ ∼ Δ such that Ā and B̄ reduce
A and B.

Recall that if A, B ∈ ΦΦ are disjoint, then we say that C separates A and B iff
A ∈ C and C ∩ B = ≤. If Δ ∈ P(ΦΦ), then we say that Δ has the separation
property iff for all A, B ∼ Δ there is some C ∼ Δ such that also ΦΦ\C ∼ Δ and C
separates A and B.

Lemma 7.25 The following hold true.

(a) ρ∼
1

1
has the reduction property.

(b) δ∼
1

1
has the separation property.

(c) δ∼
1

1
does not have the reduction property.

Proof (a) Let A, B ∼ ρ∼
1

1
, A, B ∈ ΦΦ. Let C = (A × {0}) ⊆ (B × {1}) ∼ ρ∼

1

1
, and

let F : ΦΦ ⇐ ΦΦ, F ∼ ρ∼
1

1
uniformize C . Then Ā = {x ∼ A : F(x) = 0} ∼ ρ∼

1

1
and

B̄ = {x ∼ B : F(x) = 1} ∼ ρ∼
1

1
reduce A and B.

(b) This easily follows from (a).
(c) Let us assume thatδ∼

1

1
has the separation property. LetU ∈ (ΦΦ)2 be a univer-

salδ∼
1

1
-set, and define A = {x ∼ ΦΦ : ((x)0, x) ∼ U } and B = {x ∼ ΦΦ : ((x)1, x) ∼

U }.5 As A, B ∼ δ∼
1

1
, we may pick Ā, B̄ ∼ δ∼

1

1
such that Ā and B̄ reduce A and B,

and we may then pick a Borel set C such that C separates Ā and B̄. Let a, b ∼ ΦΦ

be such that C = {x ∼ ΦΦ : (a, x) ∼ U } and ΦΦ\C = {x ∼ ΦΦ : (b, x) ∼ U }. It is
easy to verify that then b ⊕ a ∼ C iff b ⊕ a ∼ ΦΦ\C . Contradiction! �

It follows from Lemma 7.25 (c) and the proof of Lemma 7.25 (a) that Theorem
7.23 is false with ρ1

1 replaced by δ∼
1

1
.

7.2 Descriptive Set Theory and Constructibility

Definition 7.26 We say that Φ1 is inaccessible to the reals iff Φ
L[x]
1 < Φ1 for every

x ∼ ΦΦ.

Lemma 7.27 Φ1 is inaccessible to the reals iff ΦV
1 is an inaccessible cardinal in

L[x] for every x ∼ ΦΦ.

5 Here, (x)0 and (x)1 are defined to be the unique reals such that (x)0 ⊕ (x)1 = x .
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Proof Suppose that Φ1 is inaccessible to the reals, and let x ∼ ΦΦ. We have to
show that ΦV

1 is not a successor cardinal in L[x]. Suppose that ΦV
1 = α+L[x]. Let

f : Φ ⇐ α, f ∼ V be a bijection, and define z ∼ ΦΦ by

z(n) =


⎧⎪

⎧⎨

x( n
2 ) if n is even

1 if n = 3k · 5l and f (k) < f (l)

0 otherwise.

Then x , f ∼ L[z], and thus ΦV
1 = Φ

L[z]
1 . Contradiction! �

We shall later see a model in which Φ1 is inaccessible to the reals, cf. Theorem
8.20.

By Theorem 7.15, every uncountable δ
∼

1

1
-set of reals has a perfect subset. The

following statement gives a characterization of when every ρ
∼

1

1
-set of reals has a

perfect subset in terms of “inner model theory,” cf. Corollary 7.29.

Theorem 7.28 Let x ∼ ΦΦ. The following statements are equivalent.

(1) Every uncountable δ1
2 (x)-set of reals has a perfect subset.

(2) Every uncountable ρ1
1 (x)-set of reals has a perfect subset.

(3) Φ
L[x]
1 < Φ1.

Let Δ ∈ P(ΦΦ). We say that Δ has the perfect subset property iff every uncount-
able A ∼ Δ has a perfect subset.

Corollary 7.29 The class of coanalytic sets has the perfect subset property if and
only if Φ1 is inaccessible to the reals.

Proof of Theorem 7.28. Let us suppose that x = 0. The proof relativizes to any real
different from 0.

(1) =∅ (2) is trivial. Let us prove (2) ∅ (3). Suppose that ΦL
1 = Φ1. Let x ∼ A

iff

x ∼ ΦΦ ∩ L ∧ x ∼ WO ∧ ∗y ∼ (ΦΦ ∩ L) (y <L x ⇐ (y /∼ WO ∨ ||y|| →= ||x ||)).

A is δ1
2 by Lemma 7.19 and Problem 7.6. By the Boundedness Lemma 7.12, if

B ∈ A is analytic, {||x ||: x ∼ B} is bounded below Φ1, and hence B is countable.
(In particular, A does not contain a perfect subset.)

As A is δ1
2 , there is a coanalytic set B ∈ (ΦΦ)2 such that

A = {x ∼ ΦΦ : ⊂y ∼ ΦΦ (x, y) ∼ B}.

By the Uniformization Theorem 7.23, let F ∈ B be a uniformizing function whose
graph is ρ1

1 .
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We have

A = {x ∼ ΦΦ : ⊂y ∼ ΦΦ y = F(x)}.

As A is uncountable, (the graph of) F is an uncountable ρ1
1 subset of (ΦΦ)2.

Suppose that F has a perfect subset, say P ∈ F , where P is perfect. Write

Q = {x ∼ ΦΦ : ⊂y ∼ ΦΦ (x, y) ∼ P}.

As F is a function, Card(Q) = Card(P) = 2ℵ0 , so that Q is an uncountable analytic
subset of A. Contradiction!

Hence F is an uncountable coanalytic set without a perfect subset.
Finally, (3) =∅ (1) is given by Corollary 7.21. Let A ∈ ΦΦ be an uncountable

δ1
2 set. If A does not have a perfect subset, then A ∼ L by Corollary 7.21. However,

ΦL
1 < Φ1 implies that A is then countable. Contradiction! �
There is a more cumbersome argument of proving (3) =∅ (1) of Theorem 7.28,

using forcing, cf. the proof of Lemma 8.18.
Excellent textbooks on “classical” descriptive set theory are [27] and [20].Modern

variants of descriptive set theory are dealt with e.g. in [4, 12, 14, 19, 21].

7.3 Problems

7.1. Show that the topology we defined on the Baire space ΦΦ is exactly the one
which is induced by the distance function d. Conclude that ΦΦ is a Polish
space.

7.2. Show that there is a continuous bijection f : ΦΦ ⇐ Φ2.

7.3. (Borel hierarchy) Let δ
∼

0

1
denote the set of all open A ∈ ΦΦ and ρ

∼

0

1
the set

of all closed A ∈ ΦΦ. Having defined δ
∼

0

θ
and ρ

∼

0

θ
for all θ < β, let δ

∼

0

β
be

the set of all
⋃

n<Φ An , where {An : n < Φ} ∈ ⋃
θ<β ρ

∼

0

θ
, and let ρ

∼

0

β
be the

set of all ΦΦ\A, where A ∼ δ
∼

0

β
. Show that δ

∼

0

Φ1+1
= δ

∼

0

Φ1

, and that δ
∼

0

Φ1

is

the set of all Borel subsets of ΦΦ.

7.4. Let (M̄; Ā0, . . . , Āk, B̄0, . . . , B̄l) and (M; A0, . . . , Ak, B0, . . . , Bl) be mod-
els of the same type, let N be a transitive model of ZFC, and assume
(M̄; Ā0, . . . , Āk) ∼ N , (M; A0, . . . , Ak, B0, . . . , Bl) ∼ N , M̄ is countable
in N , and in V there is some elementary embedding

ν : (M̄; Ā0, . . . , Āk, B̄0, . . . , B̄l) ⇐ (M; A0, . . . , Ak, B0, . . . , Bl).

Show that in N there are B̄0
⊃, . . . , B̄l

⊃ and an elementary embedding
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ν ⊃ : (M̄; Ā0, . . . , Āk, B̄0
⊃, . . . , B̄l

⊃) ⇐ (M; A0, . . . , Ak, B0, . . . , Bl).

[Hint. Construct a tree of height Φ “seaching for” some such B̄0
⊃, . . . , B̄l

⊃, and
ν ⊃.] For the conclusion to hold it actually suffices that N is a transitive model
which contains an admissible set N̄ which in turn contains (M̄; Ā0, . . . , Āk)

and (M; A0, . . . , Ak, B0, . . . , Bl) such that M̄ is countable in N̄ , cf. Problem
5.28.

7.5. Let σ be a regular infinite cardinal, and let T →= ≤ be a tree on σ . Let

T ⊃ = {s ∼ T : ⊂{ti : i < σ} ∈ T (∗i∗ j (s ∈ ti ∧ (i →= j ⇐ ti /∈ t j )))},

and define T 0 = T , T β+1 = (T β)⊃, and T τ = ⋂{T β : β < τ} for limit
ordinals τ. Show that there is some λ < σ+ with T λ+1 = T λ , call it T ⇒. If
s ∼ T β\T β+1, then we say that β is the Cantor–Bendixson rank of s, and
if s ∼ T ⇒, then we say that ⇒ is the Cantor–Bendixson rank of s. Show
that if T ⇒ →= ≤, then T ⇒ is perfect.

7.6. Show that the sets WF and WO are both coanalytic and in fact ρ1
1 . Show also

that for every n ∞ 1, δ
∼

1

n
\ρ

∼

1

n
→= ≤ and ρ

∼

1

n
\δ

∼

1

n
→= ≤.

7.7. Show that A ∈ ΦΦ is coanalytic iff there is somemap s ≥⇐<s , where s ∼ <ΦΦ,
such that for all s, t ∼ <ΦΦ with s ∈ t , <t is an order on lh(t) which extends
<s , and for all x ∼ ΦΦ, x ∼ A iff <x= ⋃

s∈x <s is a well-ordering. (Hint:
Proof of Lemma 7.8.)
Let (M; E), (M ⊃, E ⊃) be models of the languageL∼ of set theory. We say that
(M ⊃; E ⊃) is an end-extension of (M; E) iff M ∈ M ⊃, E ∈ E ⊃, and if x ∼ M ,
y ∼ M ⊃, and yE ⊃x , then y ∼ M .

7.8. Show that for all countable transitive M there is a end-extension (M ⊃; E ⊃) of
(M; ∼� M) such that (M ⊃; E ⊃) |= V = L . [Hint. This holds in L . Then use
Corollary 7.21.] If M\L →= ≤, then (M ⊃; E ⊃) cannot be well-founded.

7.9. Show that if there is a transitive model of ZFC + “there is a supercompact
cardinal”, then some such model exists in L . [Hint. Corollary 7.21.]

7.10. Fill in the details in the proof of Lemma 7.19! Show that “there is a real x
which is not an element of L” may be written in a δ1

3 fashion. Conclude that
it is consistent to have a non-empty ρ1

2 set A ∈ ΦΦ such that A ∩ L = ≤.
(Compare Corollary 7.21.)

7.11. Let n < Φ. Show that every δ1
n+1-formula is equivalent to a δHC

n -formula in
the following sense. Let A ∈ ΦΦ be δ1

n+1(z), where z ∼ ΦΦ. There is then
a δn-formula ζ(v,w) such that for all x ∼ ΦΦ, x ∼ A ∩∅ HC |= ζ(x, z).
Conclude that if z ∼ ΦΦ, ζ(v) is δ1, and V |= ζ(z), then L[z] |= ζ(z). [Hint.
Corollary 7.21.] Show also that it is consistent to have some a ∼ HC and
δ1-formula ζ(v) such that V |= ζ(a), but L[a] |= ¬ζ(a). [Hint. a = ΦL

1 ,
ζ(v) ˙ “v is countable”, and V is Col(Φ, ΦL

1 )-generic over L .]
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Let A ∈ ΦΦ. A function ζ : A ⇐ OR is called a norm on A.

7.12. Let A ∈ ΦΦ be ρ1
1 . Show that there is a norm ζ : A ⇐ OR on A such that

there are R, S ∈ (ΦΦ)2, R ∼ ρ1
1 and S ∼ δ1

1 , such that for all y ∼ A,

(x, y) ∼ R ∩∅ (x ∼ A ∧ ζ(x) ∧ ζ(y)) and

(x, y) ∼ S ∩∅ (x ∼ A ∧ ζ(x) ∧ ζ(y)).

[Hint. Proof of Theorem 7.23.] Use this to show that ρ1
1 has the reduction

property.
Let A ∈ ΦΦ. A sequence (ζn : n < Φ) of norms on A is called a scale on A iff
the following holds true. Let {xk : k < Φ} ∈ A be such that x = limk⇐⇒ xk

and such that for every n < Φ there are k(n) < Φ and τn such that ζn(xk) = τn

for every k ∞ k(n). Then x ∼ A and ζn(x) ∧ τn for all n < Φ.

7.13. Let A ∈ ΦΦ, and let (ζn : n < Φ) be a scale on A. Let (s, f ) ∼ T iff s ∼ <ΦΦ,
f is a finite sequence of ordinals of the same length as s, and there is some
x ∼ A such that s = x � lh(s) and f (n) = ζn(x) for all n < lh(s). Show that
A = p[T ].

7.14. Let A ∈ ΦΦ be ρ1
1 . Show that there is a scale (ζn : n < Φ) on A such that

there are R, S ∈ Φ × (ΦΦ)2, R ∼ ρ1
1 and S ∼ δ1

1 , such that for all y ∼ A,

(n, x, y) ∼ R ∩∅ (x ∼ A ∧ ζn(x) ∧ ζn(y)) and

(n, x, y) ∼ S ∩∅ (x ∼ A ∧ ζn(x) ∧ ζn(y)).

[Hint. Proof of Theorem 7.23.] Use this to derive the conclusion of Theorem
7.23.
Let x , z ∼ ΦΦ. Then x is called a χ1

1(z) singleton iff {x} is a δ1
1 (z), and hence

χ1
1(z), set.

7.15. Let x , z ∼ ΦΦ. Show that x is a χ1
1(z) singleton iff x ∼ JΦz

1
. [Hint. “=∅”: Let

{x} = p[T ] where T on Φ × Φ is in JΦz
1
[z]. If s ∼ <ΦΦ, s →= x � lh(s), then

Ts = {(s⊃, t ⊃) ∼ T : s⊃ ∈ s ∨ s⊃ ∪ s} is well-founded and hence has a ranking
in JΦz

1
[z] by Problem 5.28. Then use Problem 5.25 (c).]

7.16. Show that for every z ∼ ΦΦ there is aδ1
1 (z)-set A such that A does not contain

any χ1
1(z) singleton. Show that there is actually such an A which is ρ0

1 (z),
i.e., A is closed and A = p[T ] for some tree T on Φ which is definable over
(VΦ; ∼, z).

Conclude that Theorem 7.23 is false for δ1
1 and that in fact there is a closed

R ∈ (ΦΦ)2 which cannot be uniformized by an analytic function. [Hint. Suppose
that every ρ0

1 (z) set contains a χ1
1(z) singleton. Say A ∈ ΦΦ is δ1

1 (z). Then

x ∼ A ∩∅ ⊂y ∼ χ1
1(x ⊕ z) (x, y) ∼ B, (7.12)
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where B is ρ0
1 (z). Using Problem 5.27 , show that the right hand side of (7.12) can

be written in a ρ1
1 (z) fashion, so that every δ1

1 (z) set would also be ρ1
1 (z).]



Chapter 8
Solovay’s Model

In this chapter we shall construct a model of ZF in which every set of reals is
Lebesgue measurable and has the property of Baire.

8.1 Lebesgue Measurability and the Property of Baire

Definition 8.1 Let s → <ΦΦ, and let Us = {x → ΦΦ: s ≤ x}. We recursively define
the measure μ(Us) of Us , for s → <ΦΦ as follows. Set μ(U∼) = μ(ΦΦ) = 1. Having
defined μ(Us), we let μ(UsΣn) = 1

2n+1 · μ(Us). Now let A ≤ ΦΦ be open, say
A = ⋃{Us : s → X}, where Us ∈ Ut = ∼ for all s �= t, s, t → X . We define the
measure μ(A) of A to be ∑

s→X

μ(Us).

If B ≤ ΦΦ is arbitrary, then we define the outer measure μ∧(B) of B to be

inf{μ(A): B ≤ A ⊃ A is open}.

A set B ≤ ΦΦ is called a null set, or just null, iff μ∧(B) = 0.

It is easy to verify that if every Bn , n < Φ, is null, then so is
⋃

n<Φ Bn .
Usually, a set B ≤ ΦΦ is called Lebesgue measurable iff for all X ≤ ΦΦ,

μ∧(X) = μ∧(X ∈ B) + μ∧(X \ B). (8.1)

If B ≤ ΦΦ is Lebesgue measurable, then one also writes μ(B) for μ∧(B) and calls
it the Lebesgue measure of B. It is not hard to verify that the family of sets which
are Lebesgue measurable forms a α -algebra containing all the open sets, so that
in particular all Borel sets are Lebesgue measurable. (Cf. Problem 8.2.) For our
purpose, we’ll define Lebesgue measurability as follows.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_8, 147
© Springer International Publishing Switzerland 2014



148 8 Solovay’s Model

Definition 8.2 Let A ≤ ΦΦ. We say that A is Lebesgue measurable iff there is a
Borel set B ≤ ΦΦ such that

AβB = (A \ B) ⊂ (B \ A) is null.

The definitions given carry over, mutatis mutandis, to the Cantor space Φ2, with
the difference that if s → <Φ2, then for Us = {x → Φ2 : s ≤ x}, μ(Us) = 1

2lh(s)
.

Let B be the α -algebra of all Borel sets B ≤ ΦΦ. For A, B → B, let us write
A ⇐ B iff A ≤ B modulo a null set, i.e., iff A\B is null. Write A ⇒ B iff A ⇐ B
and B ⇐ A (i.e., iff AβB is null), and let [A] denote the equivalence class of A with
respect to ⇒, i.e. [A] = {B: B ⇒ A}. The order ⇐ onB induces an order, which we
shall also denote by ⇐, on the set of of all equivalence classes by setting [A] ⇐ [B]
iff A ⇐ B. (Notice that if A∪ → [A] and B ∪ → [B], then A ⇐ B iff A∪ ⇐ B ∪.)

We shall write B/null for the set {[A]: A → B ⊃ μ(A) > 0}, equipped with the
order⇐. The partial orderB/null is called the measure algebra, or, random algebra.
We’ll see later, cf. Lemma 8.8, that forcing withB/null amounts to adding a single
real, a “random real.”

Recall Definition 1.11 for R which, mutatis mutandis, carries over to ΦΦ. Let
A ≤ ΦΦ. Then A is nowhere dense iff for all nonempty open B ≤ ΦΦ there is some
nonempty open B ∪ ≤ B such that B ∪ ∈ A = ∼. A set B ≤ ΦΦ is called meager (or
of first category) iff B is the countable union of nowhere dense sets.

Usually, a set B ≤ ΦΦ is said to have the Baire property iff there is some open
set A ≤ ΦΦ such that BβA is meager. It is not hard to verify that the family of sets
which have the Baire property forms a α -algebra containing all the open sets, so
that in particular all Borel sets have the Baire property. (Cf. Problem 8.2.)

For our purposes, we may then define the Baire property as follows.

Definition 8.3 Let A ≤ ΦΦ. We say that A has the Baire property iff there is a
Borel set B ≤ ΦΦ such that

AβB = (A \ B) ⊂ (B \ A) is meager.

Again the definitions given carry over, mutatis mutandis, to the Cantor space Φ2.
We may now define a partial order B/meager in exactly the same way as we

defined the measure algebra B/null, except that we start with declaring A ⇐ B iff
A ≤ B modulo a meager set, i.e., iff A\B is meager, for A, B → B. It turns out,
though, that forcing with B/meager is tantamount to forcing with Cohen forcing,
which is why we refer toB/meager as the Cohen algebra.

Lemma 8.4 There is a dense homomorphism

i : C ∞ B/meager.

Proof Let [B] → B/meager, so that B is a nonmeager Borel set. There is a non-
empty open set A ≤ ΦΦ such that A\B is meager, and there is hence a nonempty



8.1 Lebesgue Measurability and the Property of Baire 149

basic open set Us, s → <ΦΦ, with Us\B being meager, i.e., [Us] ⇐ [B]. But this
means that i : C ∞ B/meager defined by i(s) = [Us] is dense. �

Lemma 8.5 Both B/null as well as B/meager have the c.c.c.

Proof For B/meager this immediately follows from the preceding lemma. Now
suppose {[Bi ]: i < Φ1} to be an antichain in B/null. Set

B ∪
i = Bi\

⋃

j<i

B j

for i < Φ1. Notice that Bi ∈ B j is null whenever i �= j , as {[Bi ]: i < Φ1} is
an antichain, so that

⋃
j<i (Bi ∈ B j ) is null whenever i < Φ1. But then B ∪

i =
Bi\ ⋃

j<i (Bi ∈ B j ) ⇒ Bi , i.e., [B ∪
i ] = [Bi ] for all i < Φ1, B ∪

i ∈ B ∪
j = ∼ whenever

i �= j , and μ(B ∪
i ) > 0 for all i < Φ1. By the Pigeonhole Principle, there will be an

n < Φ such that μ(B ∪
i ) > 1

n for ∩1 many i < Φ1. This gives a contradiction! �

Wenowwant to verify that all
∑

⇒
1
1 aswell as all

∏

⇒
1
1-sets areLebesguemeasurable

and have the Baire property.
LetP be an atomless partial order. By Lemma 6.11, there is then noP-generic filter

over V . As in the following definition, it is often very convenient, though, to pretend
that there is and say things like “pick G which is P-generic over V .” To make such
talk rigorous, we should instead talk about filters which are generic over collapses of
countable elementary substructures of rank initial segments of V , or have the letter
“V ” not denote the true universe V of all sets but rather e.g. a countable transitive
model of ZFC.

Definition 8.6 Let A ≤ ΦΦ, and let ε be an uncountable cardinal. We say that A is
ε-universally Baire iff A = p[T ], where T is a tree on Φ × ξ for some ordinal ξ,
and there is some tree U on Φ × δ for some ordinal δ such that p[U ] ∈ p[T ] = ∼
and for all posets P → Hε ,

1P � p[ ←U ] ⊂ p[ ←T ] = ΦΦ.

A is called universally Baire iff A is ε-universally Baire for all uncountable cardi-
nals ε .

Notice that if p[U ] ∈ p[T ] = ∼ in V , then p[U ] ∈ p[T ] = ∼ in V [G] for all
generic extensions1 V [G] of V : if p[U ]∈ p[T ] �= ∼ in V [G], then, setting U ∅ T =
{(s, f, g): (s, f ) → U ⊃(s, g) → T }, p[U ∅T ] �= ∼ in V [G] and hence p[U ∅T ] �= ∼
in V by absoluteness of wellfoundedness, cf. Lemma 5.6, and thus p[U ]∈ p[T ] �= ∼
in V . Therefore, if T, U witness that A is ε-universally Baire, then p[T ] and p[U ]
project to complements of each other in all V [G], where G is P-generic over V for
some P → Hε . Also, if T, U as well as T ∪, U ∪ both witness that A is ε-universally

1 cf. the remark before Definition 8.6.
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Baire, then p[T ] = p[T ∪] in all V [G], where G is P-generic over V for some
P → Hε : if, say x → (p[T ] ∈ V [G])\p[T ∪], then x → p[U ∪], so that by the argument
just given p[T ] ∈ p[U ∪] �= ∼ in V ; but p[T ] = A and p[U ∪] = ΦΦ\A in V .

Therefore, if A ≤ ΦΦ is ε-universally Baire and if G is P-generic over V , where
P → Hε , then we may unambiguously define the new version AG of A in V [G] as
p[T ] ∈ V [G], where T, U witness A is ε-universally Baire. We often just write A∧
rather then AG , provided that G is clear from the context.

Let us consider a closely related situation. Let M and N be inner models such that
M ≤ N . (We allow M and N to exists in V [G], a generic extension of V .) Let A be
a Borel set in M , say M |= “A = p[T ] ⊃ ΦΦ\A = p[U ],” where T and U are trees
on Φ2, T , U → M . By the absoluteness of wellfoundedness, cf. Lemma 5.6, we must
have that N |= p[T ] ∈ p[U ] = ∼. Let us define a simple variant of the Shoenfield
tree S on Φ × ΦN

1 by (s, h) → S iff s → <ΦΦ and, setting

Ts = {t → <ΦΦ: lh(t) ⇐ lh(s) ⊃ (s � lh(t), t) → T } and
Us = {t → <ΦΦ: lh(t) ⇐ lh(s) ⊃ (s � lh(t), t) → U },

h: lh(s) ∞ ΦN
1 is such that

∀k <
lh(s) − 1

2
∀l <

lh(s) − 1

2
[(e(k) → Ts ⊃ e(l) → Ts ⊃ e(k) � e(l) ∗ h(2k) < h(2l)) ⊃

(e(k) → Us ⊃ e(l) → Us ⊃ e(k) � e(l) ∗ h(2k + 1) < h(2l + 1))].

(Here, e: Φ ∞ <ΦΦ is a bijection such that if n < lh(s), then e−1(s � n) < e−1(s).)
It is straightforward to verify that S → L[T, U ] ≤ M , and that both in M and N ,

p[T ] ⊂ p[U ] �= ΦΦ ⇐∗ [S] �= ∼.

By the absoluteness of wellfoundedness, cf. Lemma 5.6, we must then have that
N |= p[T ] ⊂ p[U ] = ΦΦ. (In particular, every Borel set is universally Baire, as
being witnessed by a pair of trees on Φ2, cf. Lemma 8.7.)

As above, we may now also show that if M |= “A = p[T ∪] ⊃ ΦΦ\A = p[U ∪],”
where T ∪ and U ∪ are trees on Φ2, T ∪, U ∪ → M , then N |= p[T ∪] = p[T ]. We may
therefore now unambiguously write AN for p[T ], as computed in N . If M , N are
clear from the context, we often just write A∧ rather than AN . Of course if M = V
and N = V [G] is a generic extension of V , then AN = AG , so that “A∧” has an
unambiguous meaning.

Still let M and N be inner models such that M ≤ N (possibly in V [G] rather
than V , e.g. M = V , N = V [G]). Suppose that A is a Borel set in M , or A is
universally Baire in M and N is a generic extension of M . The following facts are
easy to verify, cf. Problem 8.4:

1. For s → <ΦΦ, ((Us)
M )∧ = (Us)

N .
2. (ΦΦ ∈ M\A)∧ = (ΦΦ ∈ N )\A∧.
3. (

⋂
n<Φ An)∧ = ⋂

n<Φ(An)∧.
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Lemma 8.7 Every analytic (and hence also every coanalytic) set is universally
Baire.

Proof Let A ≤ ΦΦ be analytic, say A = p[T ], where T is on Φ × Φ. Let ε be any
uncountable cardinal. Let S on Φ × ε be the “ε version” of the Shoenfield tree (cf.
the proof of Lemmas 7.8 and 7.13): (s, h) → S iff s → <ΦΦ and, setting

Ts = {t → <ΦΦ: lh(t) ⇐ lh(s) ⊃ (s � lh(t), t) → T },

h: lh(s) ∞ ε is such that

∀k < lh(s)∀l < lh(s)(e(k) → Ts ⊃ e(l) → Ts ⊃ e(k) � e(l) ∗ h(k) < h(l)).

(Again, e: Φ ∞ <ΦΦ is a bijection such that if n < lh(s), then e−1(s � n) < e−1(s).)
It is straightforward to see that T, S witness that A is ε-universally Baire. �

The previous proof shows that in fact if A ≤ ΦΦ is coanalytic, then A is universally
Baire “in a strong sense”: Say A is ρ1

1(x) with x → ΦΦ, then the trees witnessing
that A is universally Baire may be taken as elements of L[x].

By Lemma 8.7, if A is analytic or coanalytic (for instance, if A is just Borel)
and if G is P-generic over V , where P → V , then AG (i.e., A∧) is well-defined.

Lemma 8.8 (1) Let G be B/null-generic over V . Then there is a unique xG →
ΦΦ ∈ V [G] such that for all B → B,

xG → B∧ ⇐∗ [B] → G.

(2) Let G be B/meager-generic over V . Then there is a unique xG → ΦΦ ∈ V [G]
such that for all B → B,

xG → B∧ ⇐∗ [B] → G.

Proof The same proof works for (1) and (2). Let us first show uniqueness. Let
x, y → ΦΦ ∈ V [G] be such that x → B∧ ⇔ [B] → G ⇔ y → B∧ for all B → B. In
particular, x → U∧

s ⇔ [U∧
s ] → G ⇔ y → U∧

s for all s → <ΦΦ. If x �= y, then there is
some s → <ΦΦ with lh(s) > 0 and x → U∧

s but y �→ U∧
s ; this gives a contradiction!

Let us now show existence.Working in V [G], let us recursively construct {sn : n <

Φ} ≤ <ΦΦ with lh(sn) = n and [Usn ] → G for all n < Φ as follows. Set s0 = ∼. Of
course, [U∼] = [ΦΦ] → G. Given sn with lh(sn) = n and [Usn ] → G, we pick sn+1
as follows. Let [B] ⇐ [Usn ], where [B] → B/null (or [B] → B/meager), i.e., B is
not null (or not meager). Therefore, one of B ∈ Usn

Σk , k < Φ, is not null (or not
meager). This argument shows that

D = {[B] → B/null (or meager): ∃k [B] ⇐ [Usn
Σk]}

is dense below [Usn ]. There is hence some k < Φ such that [Usn
Σk] → G, and we

may set sn+1 = sn
Σk for this k. Let us also set x = xG = ⋃

n<Φ sn .
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We claim that

for all B → B, x → B∧ ⇐∗ [B] → G. (8.2)

Well, (8.2) is true for each basic open set by the construction of x . An easy density
argument shows that for each B → B, exactly one of [B], [ΦΦ\B] has to be in
G. Therefore, if (8.2) is true for B → B, then it is also true for ΦΦ\B. Now let
Bn → B, n < Φ, such that for each n < Φ, x → B∧

n ⇔ [Bn] → G. Another
easy density arguement (similar to the one above) yields that at least one element
of {[⋂n<Φ Bn]} ⊂ {[ΦΦ\Bn] : n < Φ} must be in G. We therefore must have that
x → (

⋂
n<Φ Bn)

∧ = ⋂
n<Φ B∧

n iff x → B∧
n for all n < Φ iff [Bn] → G for all n < Φ

iff [⋂ Bn] → G. We have shown (8.2). �

If M is an inner model, if G is (B/null)M -generic over M and if xG is unique
with xG → B∧ ⇐∗ [B] → G for all Borel sets B of M , then xG is called a random
real over M . (Here, B∧ is computed in V .)

If, on the other hand, G is (B/meager)M -generic over M , and if xG is unique
with xG → B∧ ⇐∗ [B] → G for all Borel sets B of M , then Lemma 8.4 above
shows that x is a Cohen real over M . (Again, B∧ is computed in V .)

Lemma 8.9 Let M be a transitive model of ZFC.

(1) x → ΦΦ is a random real over M iff x /→ B∧ for all B → BM which are null sets
in M.

(2) x → ΦΦ is a Cohen real over M iff x /→ B∧ for all B → BM which are meager
sets in M.

Proof (1) First let x = xG → ΦΦ be random over M . Let B → BM be a null set
in M . As [(ΦΦ ∈ M)\B] = [ΦΦ ∈ M] → G, we have that x → ((ΦΦ ∈ M)\B)∧ =
(ΦΦ ∈ M[G])\B∧, i.e., x /→ B∧.

Now suppose x → ΦΦ to be such that x /→ B∧ for all B → BM which are null sets
in M . Let

G =
{
[B]: B → BM ⊃ x → B∧} .

It suffices to verify that G is a filter which is generic over M .
Well, G is easily seen to be a filter. Now let A → M be a maximal antichain.

As M |= “B/null has the c.c.c.” by Lemma 8.5, A is countable in M , say A =
{[Bn]: n < Φ}, where (Bn : n < Φ) → M . Also (ΦΦ ∈ M)\⋃

n<Φ Bn must be a null
set in M , as A is a maximal antichain. But then x /→ ((ΦΦ ∈ M)\⋃

n<Φ Bn)
∧, and

hence x → (
⋃

n<Φ Bn)∧ = ⋃
n<Φ B∧

n , i.e., x → B∧
n for some n < Φ, so that [Bn] → G

for some n < Φ, as desired.
The proof of (2) is entirely analogous. �

Lemma 8.10 Let M be a transitive model of ZFC.

(1) If (2∩0)M is countable, then A = {x → ΦΦ: x is not random over M} is a null set.



8.1 Lebesgue Measurability and the Property of Baire 153

(2) If (2∩0)M is countable, then B = {x → ΦΦ: x is not Cohen over M} is a meager
set.

Proof There are (provably in ZFC) 2∩0 Borel sets. Therefore, as (2∩0)M is count-
able, there are only countably many B → M such that B is a Borel set from the
point of view of M .

(1) By Lemma 8.9 (1), x → A iff

x →
⋃

{B∧: B → BM ⊃ B is null in M}.

As (2∩0)M is countable, A is thus a countable union of null sets, and hence A is null.

(2) By Lemma 8.9 (2), x → B iff

x →
⋃

{B∧: B → BM ⊃ B is meager in M}.

As (2∩0)M is countable, B is thus a countable union of meager sets, and hence B is
meager. �

Definition 8.11 Let M be a transitive model of ZFC. We say that x → ΦΦ ∈ V is
generic over M if there is a poset P → M and there is a P-generic filter G over M
such that M[G] is the ≤-least transitive model N of ZFC with M ⊂ {x} ≤ N . In this
situation, we also write M[x] instead of M[G].

Now let A ≤ ΦΦ. We say that A is Solovay over M iff there is a formula χ and
there are parameters a1, . . . , ak → M such that for all x → ΦΦ, if x is generic over
M , then

x → A ⇐∗ M[x] |= χ(x, a1, . . . , ak).

Lemma 8.12 Let M be a transitive model of ZFC, and let A ≤ ΦΦ be Solovay
over M.

(1) There is a Borel set B ≤ ΦΦ such that for every x → ΦΦ which is random over
M, x → A ⇔ x → B.

(2) There is a Borel set C ≤ ΦΦ such that for every x → ΦΦ which is Cohen over
M, x → A ⇔ x → C.

Proof (1) Let χ be a formula, and let a1, . . . , ak → M be such that for all x → ΦΦ

which are generic over M , x → A ⇔ M[x] |= χ(x, a1, . . . , ak). Let σ → M (B/ null)M

be a (canonical) name for the random real which is added by forcing with (B/ null)M

over M , i.e., if G is (B/ null)M -generic over M , then σ G = xG . Let E ≤ (B/ null)M

be a maximal antichain of [D] → (B/ null)M such that

[D] �(B/ null)M

M χ(σ, ←a1, . . . , ←ak).

As (B/ null) has the c.c.c. by Lemma 8.5, E is at most countable in M , say
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E = {[Dn]: n < Φ},

where Dn → B for every n < Φ. Set

B =
⋃

n<Φ

D∧
n =

(
⋃

n<Φ

Dn

)∧
.

B is a countable union ofBorel sets, and henceBorel. We claim that for all x → ΦΦ

which are random over M , x → A ⇔ x → B.
Let x = xG be randomover M . Then x → A iff M[x] = M[G] |= χ(x, a1, . . . , ak)

iff there is some [D] → E ∈ G such that

[D] �(B/ null)M

M χ(σ, ←a1, . . . , ←ak)

iff there is some n < Φ with [Dn] → G iff [⋃n<Φ Dn] → G iff x = xG →
(
⋃

n<Φ Dn)
∧ = B, as desired.

The proof of (2) is entirely analogous. �

Lemmas 8.10 and 8.12 now immediately give the following

Corollary 8.13 Let M be a transitive model of ZFC, such that (2∩0)M is countable.
Let A ≤ ΦΦ be Solovay over M. Then A is Lebesgue measurable and has the
Baire property.

Theorem 8.14 (Feng,Magidor,Woodin) Let A ≤ ΦΦ be (2∩0)+-universallyBaire.
Then A is Lebesgue measurable and has the Baire property.

Proof Let T, U witness that A is (2∩0)+-universally Baire. Let τ be a regular car-
dinal such that τ > (2∩0)+ and T, U → Hτ . Let

λ : M ∞ Hτ

be an elementary embedding where M is countable and transitive and T, U →
ran(λ), say λ(T̄ ) = T and λ(Ū ) = U . In order to prove the theorem, by the
proof of Corollary 8.13 it suffices to verify that for every x → ΦΦ which is either
random over M or else Cohen over M ,

x → A ⇐∗ M[x] |= x → p[T̄ ].

Well, let x → ΦΦ be either random over M or else Cohen over M . As

M |= “T̄ , Ū witness that p[T̄ ] is (2∩0)+-universallyBaire”,

we must have that either M[x] |= x → p[T̄ ] or else M[x] |= x → p[Ū ].
Suppose that x → p[T̄ ], say (x � n, f � n) → T̄ for all n < Φ. Then (x � n, λ( f �

n)) → T for every n < Φ, and hence x → p[T ]. (We don’t need f → M here, just
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f � n → M for each n < Φ, which is trivial.) In the same way, x → p[Ū ] implies
that x → p[U ].

This shows that x → A ⇔ x → p[T̄ ], as desired. �

Corollary 8.15 Every analytic as well as every coanalytic set is Lebesgue measur-
able and has the Baire property.

Definition 8.16 Let A ≤ ΦΦ. A is said to have the Bernstein property iff for every
perfect set P ≤ ΦΦ, P ∈ A or P\A contains a perfect subset.

Lemma 8.17 Let M be a transitive model of ZFC such that (2∩0)M is countable.
Let A ≤ ΦΦ be Solovay over M. Let P ≤ ΦΦ be a perfect set such that P = [T ]
for some perfect tree on Φ with T → M. Then P ∈ A or P\A contains a perfect
subset.

Proof Let χ be a formula, and let a1, . . . , ak → M be such that for all x → ΦΦ which
are generic over M , x → A ⇔ M[x] |= χ(x, a1, . . . , ak). As (2∩0)M is countable,
there is some G → V which is C-generic over M . As T is perfect, we may pick
some (ts : s → <Φ2) such that for all s → <Φ2, ts → T and tsΣ0 and tsΣ1 are two
incompatible extensions of ts in T of the same length. Let xG = ⋃

G be the Cohen
real over M given by G. Let y → Φ2 be defined by

y(n) =
{
0 , if x(n) is even, and
1 , if x(n) is odd.

It is easy to verify that then ⋃

n<Φ

ty�n → [T ]\M.

Write z = ⋃
n<Φ ty�n .

Let us suppose that z → A. Let σ → MC be a canonical name for
⋃

n<Φ ty�n , and
let p → C be such that

p �C
M σ → [T ]\(ΦΦ ∈ M)⊕ ⊃ χ(σ, a1, . . . , ak). (8.3)

Let (Dn : n < Φ) → V enumerate the sets in M which are dense inC. By recursion on
lh(s), where s → <Φ2, we now construct conditions ps ⇐ p and sequences ts → <ΦΦ

such that ps � σ � lh( ←ts) = ←ts as follows.
Put p∼ = p and t∼ = ∼. Now suppose ps and ts have been constructed. There

must be extensions p0, p1 ⇐ ps , m ≥ lh(ts) and n0 �= n1 → Φ such that

p0 � σ( ←m) = ←n0 and p1 � σ( ←m) = ←n1,

because otherwise ps � σ → (ΦΦ ∈ M)⊕ by the homogeneity of C, cf. Lemma 6.53.
We may thus pick psΣ0 �= psΣ1, both in Dlh(s), and tsΣ0 �= tsΣ1 with lh(tsΣ0) =
lh(tsΣ1) such that
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psΣ0 �C
M σ � lh((tsΣ0)←) = (tsΣ0)←and psΣ1 �C

M σ � lh((tsΣ1)←) = (tsΣ1)←.

In the end, for each x → Φ2, {px�n : n < Φ} generates a C-generic filter gx → V over
M such that by (8.1), σ gx /→ M , σ gx → [T ], and σ gx → A. By construction, the set
{t gx : x → Φ2} is thus a perfect subset of P ∈ A.

If z /→ A, then a symmetric argument yields that P\A contains a perfect
subset. �

Theorem 8.18 Let A ≤ ΦΦ be ∩1-universally Baire. Then A has the Bernstein
property.

Proof We amalgamate the arguments for Theorem 8.14 and Lemma 8.17. Let P ≤
ΦΦ be perfect. Let T, U witness that A is ∩1-universallyBaire, and let S be a perfect
tree on Φ such that P = [S], cf. Lemma 7.1. Let τ be a regular cardinal such that
τ > (2∩0)+ and T, U → Hτ . Let

λ : M ∞ Hτ

be an elementary embedding where M is countable and transitive and S, T, U →
ran(λ), say λ(T̄ ) = T and λ(Ū ) = U . Notice that λ(S) = S.

Let g → V be C-generic over M . As in the proof of Lemma 8.17,

(P\M) ∈ M[g] �= ∼. (8.4)

As in the proof of Theorem 8.14,

p[T̄ ]M[g] = A ∈ M[g] and p[Ū ]M[g] = (ΦΦ\A) ∈ M[g].

We may then finish off the argument exactly as in the proof of Lemma 8.17, with
“x → p[T̄ ]” playing the role of “χ(x, a1, . . . , ak).” �

Corollary 8.19 Every analytic as well as every coanalytic set of reals has theBern-
stein property.

We now want to start producing a model of ZF + “every set of reals is Lebesgue
measurable and has the Baire property”. Modulo of what has been done so far, the
remaining issue will be an analysis of forcing.

8.2 Solovay’s Theorem

We shall now analyze the situation after Levy collapsing an inaccessible cardinal,
cf. Definitions 4.41 and 6.43. We shall also need the concept of ODΦΦ, cf. Definition
5.42. We may construe Theorem 8.23 as an ultimate extension of Corollaries 8.15
and 7.16.
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Theorem 8.20 Let ε be an inaccessible cardinal, and let G be Col(Φ, <ε)-generic
over V . Then in V [G], Φ1 is inaccessible to the reals.

Proof Recall that Col(Φ, <ε) has the ε-c.c., cf. Lemma 6.44. Therefore, V [G] and
V have the same cardinals ≥ε and ε = Φ

V [G]
1 , cf. Lemma 6.32.

If f → ΦOR ∈ V [G], then there is some σ → V Col(Φ,<ε) such that f = σ G and

σ = {((n, ξ)←, p): n < Φ ⊃ ξ → OR ⊃ p → An ⊃ p � σ( ←n) = ←ξ},

where each An, n < Φ, is a maximal antichain in V of p → Col(Φ, <ε) with
∃ξp � σ( ←n) = ←ξ. As Col(Φ, <ε) has the ε-c.c., (An : n < Φ) → Vε = Hε , say
(An : n < Φ) → Hζ, where ζ < ε . Let us write

G � ζ = {p � ζ: p → G} and
G � [ζ, ε) = {p � [ζ, ε): p → G}.

By the Product Lemma 6.65, G � ζ is Col(Φ, <ζ)-generic over V and G � [ζ, ε) is
Col(Φ, [ζ, ε))-generic over V [G � ζ]. We now have f (n) = ξ iff ∃p → An ∈ G p �
σ( ←n) = ←ξ iff ∃p → An ∈ G � ζ p � σ( ←n) = ←ξ, so that in fact f → V [G � ζ].

We thus have shown the following.

Claim 8.21 For each f → ΦΦ ∈ V [G] there is some ζ < ε such that f → V [G � ζ].
It is not hard to verify that Claim 8.21 implies that Φ1 is inaccessible to the reals, cf.
Problem 8.5. �

Theorem 7.28 and Lemma 7.27 now immediately yields:

Corollary 8.22 (Specker) Let ε be an inaccessible cardinal, and let G be Col
(Φ, <ε)-generic over V . Then in V [G], every uncountable ρ

∼

1

2
–set of reals has

a perfect subset. On the other hand, if every uncountable coanalytic set of reals has
a perfect subset, then ΦV

1 is inaccessible in L.

Theorem 8.23 (Solovay) Let ε be an inaccessible cardinal, and let G be Col
(Φ, <ε)-generic over V . Then in V [G], every set of reals which is ODΦΦ is
Lebesgue measurable and has the Baire property, and every uncountable set of
reals which is ODΦΦ has a perfect subset.

Proof We continue fromwhere we left off the proof of Theorem 8.20. The following
is the key technical fact.

Claim 8.24 Let ζ < ε . Let P → H V [G�ζ]
ε be a partial order, and let s → V [G] be P-

generic over V [G � ζ]. There is then some H → V [G] which is Col(Φ, <ε)-generic
over V [G � ζ][s] such that

V [G] = V [G � ζ][s][H ].



158 8 Solovay’s Model

With the help of Claim 8.24, the proof of Solovay’s Theorem 8.23 may be finished
as follows.

Let us fix A ≤ ΦΦ ∈ V [G] which is ODΦΦ in V [G]. Let χ be a formula, let
ξ1, . . . , ξk be ordinals, and let x1, . . . , xl → ΦΦ ∈ V [G] such that for all x → ΦΦ ∈
V [G],

x → A ⇐∗ V [G] |= χ(x, ξ1, . . . , ξk, x1, . . . , xl).

ByClaim 8.21, wemay pick some ζ < ε such that G � ζ is Col(Φ, <ζ)-generic over
V and x1, . . . , xk → V [G � ζ]. Let x → ΦΦ ∈ V [G] be generic over V [G � ζ].2 By
Claim 8.24, there is some H → V [G]which is Col(Φ, <ε)-generic over V [G � ζ][x]
such that

V [G] = V [G � ζ][x][H ].

We then have

x → A ⇐∗ V [G] |= χ(x, ξ1, . . . , ξk, x1, . . . , xl)

⇐∗ V [G � ζ][x][H ] |= χ(x, ξ1, . . . , ξk, x1, . . . , xl)

⇐∗ ∃p → H �Col(Φ,<ε)

V [G�ζ][x] χ( ←x, ←ξ1, . . . , ←ξk, ←x1, . . . , ←xl).

However, Col(Φ, <ε) is homogeneous by Lemma 6.54, and therefore by Lemma
6.61 the last line is equivalent to

1Col(Φ,<ε) �Col(Φ,<ε)

V [G�ζ][x] χ( ←x, ←ξ1, . . . , ←ξk, ←x1, . . . , ←xl).

By the definability of “�” over V [G � ζ][x], cf. Theorem 6.23 (1), A is thus in fact
Solovay over V [G � ζ]. However, (2∩0)V [G�ζ] is certainly countable from the point
of view of V [G], so that in V [G], A is Lebesgue measurable and has the Baire
property by Corollary 8.13.

Now let us assume that A is uncountable in V [G]. We use the proof of Lemma
8.17 to show that A contains a perfect subset in V [G]. As A is uncountable in V [G],
A\V [G � ζ] �= ∼. By Claim 8.21, there is hence some ξ with ζ < ξ < ε such that

(A ∈ V [G � ξ])\V [G � ζ] �= ∼.

By the Product Lemma 6.65, G � [ζ, ξ) is Col(Φ, [ζ, ξ))-generic over V [G � ζ].
Setting P = ΦΦ ∈ V [G] and replacing C with Col(Φ, [ζ, ξ)), the argument for
Lemma 8.17 now proves that A contains a perfect subset.

In order to finish the proof of Solovay’s theorem, it therefore remains to show
Claim 8.24.

As the case ζ > 0 is only notationally different frome the case ζ = 0, let us
assume that ζ = 0.

2 It can be shown that every real in V [G] is generic over V [G � ζ] in the sense of Definition 8.11,
but we won’t need that.
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So let us fix P → Hε , a partial order, and let s → V [G] be P-generic over V . We
aim to construct some H → V [G] which is Col(Φ, <ε)-generic over V [s] such that

V [G] = V [s][H ].

Well, we have s → V [G � μ+1] for someμ < ε by Claim 8.21. As Col(Φ, <μ+1)
has the same cardinality as μ and

1 �Col(Φ,<μ+1) ←μ is countable,

by Lemma 6.51 there is a dense homomorphism

i : Col(Φ,μ) ∞ Col(Φ, <μ + 1).

By Lemma 6.48,

G0 = {p → Col(Φ,μ): i(p) → G � (μ + 1)}

is a Col(Φ,μ)-generic filter over V with V [G0] = V [G � μ + 1].
Also, Col(Φ,μ) ⇒= Col(Φ, {μ + 1}), so that if

j : Col(Φ,μ) ∞ Col(Φ, {μ + 1})

is an isomorphism, then

G1 = {p → Col(Φ,μ): ∃q → G j (p) = q(μ + 1)}

is a Col(Φ,μ)-generic filter over V [G0] = V [G � μ+1]with V [G0][G1] = V [G �
(μ + 2)]. Recall that s → V [G0] = V [G � μ + 1].
Claim 8.25 There is some Col(Φ,μ)-generic filter H∧ over V [s] with

V [s][H∧] = V [G0][G1]. (8.5)

Suppose Claim 8.25 to be true. We then have that

V [G] = V [G � (μ + 2)][G � [μ + 2, ε)]
= V [G0][G1][G � [μ + 2, ε)]
= V [s][H∧][G � [μ + 2, ε)].

Let i ∪: Col(Φ,μ) ∞ Col(Φ, <μ + 2) be a dense homomorphism, and let us set

H0 = {p → Col(Φ,< μ + 2): ∃q → H∧ i ∪(q) ⇐ p}.
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Then H0 is Col(Φ < μ + 2)-generic over V [s] by Lemma 6.48 and V [s][H∧] =
V [s][H0]. If we finally set

H = {p → Col(Φ, <ε): p � μ + 2 → H0 ⊃ p � [μ + 2, ε) → G � [μ + 2, ε)},

then H is Col(Φ, <ε)-generic over V [s] and

V [s][H ] = V [s][H0][G � [μ + 2, ε)]
= V [s][H∧][G � [μ + 2, ε)]
= V [G],

as desired. We have shown Claim 8.24, modulo Claim 8.25. �
It thus remains to verify Claim 8.25. We aim to produce some H∧ which is

Col(Φ,μ)-generic over V [s] such that (8.5) holds true.
As s → V [G0], we may pick some σ → VCol(Φ,μ) such that

s = σ G0 . (8.6)

Let us recursively define inside V [s] a sequence (Qξ : ξ → OR) of subsets of
Col(Φ,μ) as follows. Set p → Q0 iff for all r → P,

{
p � ←r → σ =∗ r → s ⊃
p � ←r /→ σ =∗ r /→ s.

(8.7)

Having definedQξ , set p → Qξ+1 iff for all open dense sets D ≤ Col(Φ,μ), D → V ,

∃p∪ ⇐ p (p∪ → D ∈ Qξ).

If ζ is a limit ordinal, andQξ is defined for every ξ < ζ, thenwe setQζ = ⋂
ξ<ζ Qξ .

For each ξ, if p → Qξ and p ⇐ p∪, p∪ → Col(Φ,μ), then p∪ → Qξ . This gives that
if ξ ⇐ δ, then Qδ ≤ Qξ . Let δ be least such that Qδ+1 = Qδ . Set

Q̄ = Qδ and Q = Q̄ × Col(Φ,μ).

We construe Q̄ andQ as partial orders, with the order relation given by the restriction
of the order relationofCol(Φ,μ) andCol(Φ,μ)×Col(Φ,μ) to Q̄ andQ, respectively.
If p → Q̄, p ⇐ q, and q → Col(Φ,μ), then q → Q̄.

For the record, notice that Q was defined inside V [s], and the parameters we need
for this are μ, P, σ , and s. Let us write ν (v0, v1, v2, v3, v4) for the defining formula,
i.e.,

V [s] |= ∀Q∪ (Q∪ = Q ←∞ Δ(Q∪, μ, P, σ, s)). (8.8)
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Subclaim 8.26 G0 ≤ Q̄.

Proof Suppose that p → G0\Qδ , where δ is minimal such that G0\Qδ �= ∼. We
cannot haveδ = 0, by (8.6) and the definition ofQ0. Also,δ cannot be a limit ordinal,
so that δ = ξ + 1 for some ξ. We may pick some open dense set D ≤ Col(Φ,μ),
D → V , such that

∀p∪ ⇐ p (p∪ → D ∞ p∪ /→ Qξ). (8.9)

Let p∧ → D ∈ G0. If p∪ ⇐ p∧, p with p∪ → G0, then p∪ → D, as D is open, and hence
p∪ /→ Qξ by (8.9). But then p∪ → G0\Qξ , hence G0\Qξ �= ∼, which contradicts the
choice of δ. �

Subclaim 8.26 trivially implies that Q �= ∼, so that:
Subclaim 8.27 Q is separative and has the same cardinality as μ inside V [s].
Subclaim 8.28 Let p → Q̄. In V [G], there is then some G ∪

0 which is Col(Φ,μ)-
generic over V such that p → G ∪

0 and

s = σ G ∪
0 .

Proof Let p̄ → Q̄. Let D ≤ Col(Φ,μ), D → V , be open dense in Col(Φ,μ). By
p̄ → Q̄ = Qδ+1 there is some p∪ ⇐ p̄ with p∪ → D∈Qδ = Q̄. In V [G], there are only
countably many dense subsets of Col(Φ,μ) which are in V , so that given p → Q̄ we
may work in V [G] and produce some G ∪

0 which is Col(Φ,μ)-generic over V such
that p → G ∪

0 and G ∪
0 ≤ Q̄.

Let r → P, and suppose that p∪ → G ∪
0 decides ←r → σ . As p∪ → G ∪

0 ≤ Q̄ ≤ Q0, we
must have (8.7). Therefore, G ∪

0 is as desired. �

With Subclaim 8.26, G0 × G1 ≤ Q is a filter. We now show:

Subclaim 8.29 G0 × G1 is Q-generic over V [s].
Proof Let D → V [s] be dense inQ.We need to see that D∈(G0×G1) �= ∼. Suppose
that D ∈ (G0 × G1) = ∼.

Let θ → V P be such that θs = D. Recall (8.8), and let Θ(v0, v1, v2, v3, v4) be
a formula such that whenever G ∪∪

0 × G ∪∪
1 is Col(Φ,μ) × Col(Φ,μ)-generic over V ,

then
V [G ∪∪

0 × G ∪∪
1] |= Θ(G ∪∪

0, G ∪∪
1, μ, P, σ )

iff the following holds true.
If s∪ = σ G ∪∪

0 , then s∪ is P-generic over V , and if

D∪ = {(p, q) → Col(Φ,μ) × Col(Φ,μ) : ∃r → s∪ r �P
V (p, q)← → θ}

and inside V [s∪], Δ(Q∪, μ, P, σ, s∪) holds true for exactly one Q∪, then D∪ is dense
in Q∪ and
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D∪ ∈ (G ∪∪
0 × G ∪∪

1) = ∼.

By hypothesis, V [G0 × G1] |= Θ(G0, G1, μ, P, σ ). Let (p, q) → (G0 × G1) be
such that

(p, q) �Col(Φ,μ)×Col(Φ,μ)
V Θ(Ġ0, Ġ1, ←μ, ←P, ←σ), (8.10)

where Ġh → V Col(Φ,μ)×Col(Φ,μ) is the canonical name for Gh , h → {0, 1}. By Sub-
claim 8.26, (p, q) → Q. As D is dense in Q, there is some (p∪, q ∪) ⇐ (p, q) such
that (p∪, q ∪) → D.

By Subclaim 8.28, there is some G ∪
0 × G ∪

1 inside V [G] which is Col(Φ,μ) ×
Col(Φ,μ)-generic over V such that (p∪, q ∪) → G ∪

0 × G ∪
1 and

s = σ G ∪
0 . (8.11)

By (8.10), V [G ∪
0 × G ∪

1] |= Θ(G ∪
0, G ∪

1, μ, P, σ ). By (8.11), the s∪ which
Θ(G ∪

0, G ∪
1, μ, P, σ ) describes in V [G ∪

0 × G ∪
1] is equal to s, which then also gives

that the D∪ which Θ(G ∪
0, G ∪

1, μ, P, σ ) describes in V [G ∪
0 × G ∪

1] must be equal
to D and that the Q∪ which Δ(Q∪, μ, P, σ, s) describes in V [G ∪

0 × G ∪
1] as part of

Θ(G ∪
0, G ∪

1μ, P, σ ) must be equal to Q. Therefore, V [G ∪
0 × G ∪

1] |= Θ(G ∪
0, G ∪

1, μ,

P, σ ) yields that D ∈ (G ∪
0 × G ∪

1) = ∼.
However, (p∪, q ∪) → (G ∪

0 × G ∪
1) ∈ D. Contradiction! �

Now by Subclaim 8.27, inside V [s], there is thus a dense homomorphism

k : Col(Φ,μ) ∞ Q.

By Subclaim 8.29, if we set

H∧ = {p → Col(Φ,μ) : k(p) → G0 × G1},

then H∧ is Col(Φ,μ)-generic over V [s] and V [s][H∧] = V [s][G0 × G1] =
V [G0][G1]. Therefore, H∧ is as desired. �

This proof has the following corollary.

Theorem 8.30 (Solovay) Let ε be an inaccessible cardinal, and let G be Col
(Φ, <ε)-generic over V . Set

N = HODV [G]
(ΦΦ∈V [G]).

Then in N, ZF + DC holds and every set of reals is Lebesgue measurable and has
the Baire property and every uncountable set of reals has a perfect subset.

Proof In the light of Theorem 8.23, we are left with having to prove that DC holds
true in N . If f → Φ N ∈ V [G], then f ≤ N ∈ V [G � ζ] for some ζ < ε by the proof
of Theorem 8.20. It is easy to see that this implies f → N . �
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Definition 8.31 Let A ≤ [Φ]Φ be uncountable. We say that A is Ramsey iff there is
some x → [Φ]Φ such that [x]Φ ≤ A or [x]Φ ∈ A = ∼.

In the presence of (AC), it is not hard to construct an A ≤ [Φ]Φ with Card(A) =
2∩0 which is not Ramsey, cf. Problem 8.11.

With the help of Mathias forcing, cf. p. 181, the arguments developed in this
Chapter may be used to show that every uncountable A ≤ [Φ]Φ is Ramsey in the
model of Theorem 8.30. Cf. Problem 12.13. Cf. also [13].

8.3 Problems

8.1. Let A ≤ ΦΦ be open. Show that there is some X ≤ <ΦΦ such that A =⋃
s→X Us and Us ∈ Us∪ = ∼ for all s �= s∪. Show also that

∑
s→X μ(Us) is

independent of this representation of A, so thatμ(A) is well-defined according
to Definition 8.1.

8.2. LetL be the set of all B ≤ ΦΦ such that for all X ≤ ΦΦ (8.1) holds true. Let
C be be the set of all B ≤ ΦΦ such that there is some open set A ≤ ΦΦ with
BψA being meager. Show that bothL and C form a α -algebra containing all
the open sets.

8.3. A set A ≤ Φ2 is called a flip set iff for all x , x ∪ → Φ2 such that Card({n <

Φ : x(n) �= x ∪(n)}) = 1, x → A ⇐∗ x ∪ /→ A. Show that if A ≤ Φ2 is a flip
set, then A is not Lebesgue measurable and A does not have the property of
Baire. Show in ZF + “there is a uniform ultrafilter on Φ” that there is a flip
set.

8.4. Verify the statements (1) through (3) from p. 150.

8.5. Show that Claim 8.21 implies that Φ1 is inaccessible to the reals. [Hint. Use
Problem 6.18.]

8.6. Let ε be weakly compact, let G be Col(Φ, <ε)-generic over V , and let H be
Q-generic over V [G], where Q → V [G] and V [G] |= “Q has the c.c.c.” Show
that if x → ΦΦ ∈ V [G][H ], then there is some Q̄ → Vε and some g which is
Q̄-generic over V such that x → V [g].

8.7. A set A ≤ Φ1 is called reshaped iff for all ξ < Φ1,

L[A ∈ ξ ] |= ξ is countable.

Show that if ΦV
1 is not Mahlo in L , then there is a reshaped A ≤ Φ1. Show

also that if A ≤ Φ1 is reshaped, then there is some poset P which has the c.c.c.
such that if G isP-generic over V , then in V [G] there is a real x with A → L[x].
Conclude that if ΦV

1 is inaccessible in L , then Φ1 need not be inaccessible to
the reals. [Hint: There is an almost disjoint collection {xi : i < Φ1} of subsets
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of Φ such that for each i , xi is uniformly definable from (x j : j < i) and A∈ i
inside L[A ∈ i]. Then use Problem 6.14.]

8.8. (R. Jensen) Show that if V = L[B], where B ≤ Φ1, then there is an
Φ–distributive P such that if G is P-generic over V , then in V [G] there is
a reshaped A ≤ Φ1. [Hint. Let p → P iff p : ξ ∞ 2, where ξ < Φ1 and for
all ξ ⇐ ξ, L[B ∈ ξ, p � ξ ] |= “ξ is countable,” ordered by end–extension.]

8.9. Let E ≤ OR be “universallyBaire in the codes” in the following sense. There
are trees T , U witnessing that p[T ] is a universally Baire set of reals, and for
all ordinals ξ , ξ → E iff

�Col(Φ,ξ)
V ∃x → R (x → p[T ] ⊃ ξ = ||x ||).

Show that E satisfies full condensation in the sense of Definition 5.30.

8.10. Show that if ε is a strong cardinal and A ≤ ΦΦ is ε-universally Baire, then
A is universally Baire.

8.11. Show in ZFC that there is some A ≤ [Φ]Φ with Card(A) = 2∩0 which is not
Ramsey.



Chapter 9
The Raisonnier Filter

By Corollary 8.22, it is impossible to construct just from a model of ZFC a model
in which the statements from the conclusions of Solovay’s Theorems 8.23 and 8.30
hold true. We now aim to consider Lebesgue measurability and prove a theorem of
Saharon Shelah, Theorem 9.1.

9.1 Rapid Filters on ω

Theorem 9.1 (Shelah) Suppose that every Φ
∼

1

3
-set of reals isLebesguemeasurable.

Then ΣV
1 is inaccessible to the reals.

Our proof will make use of Fubini’s Theorem as well as the 0–1–Law of Hewitt–
Savage; we refer the reader to any standard textbook on Measure theory, e.g. [38].
In order to prove this theorem, we need the concept of a rapid filter.

Definition 9.2 Let F → P(Σ) be a filter on Σ. We say that F is rapid iff F is
non-trivial, F extends the Fréchet filter, and for every monotone f: Σ ≤ Σ there is
some b ∼ F such that

∈n < Σ b ∩ f (n) ∧ n. (9.1)

We first want to construct, assuming that ΣV
1 is not inaccessible to the reals, an

interesting rapid filter.
Notice that by identifying any a ∼ P(Σ) with its characteristic function, we

may identify P(Σ) with the Cantor space Σ2. We construe Σ2 ⊃= P(Σ) as being
equipped with the natural topology, cf. 123. We shall verify that no rapid filter is
Lebesgue measurable, cf. Theorem 9.16.

Theorem 9.3 Assume that ΣV
1 is not inaccessible to the reals, but every Φ

∼

1

2
-set of

reals is Lebesgue measurable. There is then a rapid filter F on Σ such that F is Φ
∼

1

3
.
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© Springer International Publishing Switzerland 2014



166 9 The Raisonnier Filter

Proof Let us fix a ∼ ΣΣ such that ΣV
1 = Σ

L[a]
1 , cf. the proof of Lemma 7.27. We

have ΣΣ ∩ L[a] = Σ2 ∩ L[a] = ⊂1. Let us write X = Σ2 ∩ L[a].
If x, y ∼ Σ2, x ⇐= y, let us write h(x, y) for the “distance” of x and y, i.e., h(x, y)

is the least n < Σ such that x � n ⇐= y � n (Hence h(x, y) > 0). For Y → Σ2, let us
write H(Y ) for

{h(x, y): x, y ∼ Y ⇒ x ⇐= y};

H(Y ) is thus a set of positive integers.

Definition 9.4 We define FX → P(Σ) by setting a ∼ FX iff there is a covering
(Xn :n < Σ) of X , i.e., X → ⋃

n<Σ Xn , where Xn → Σ2 for each n < Σ, such that

⋃

n<Σ

H(Xn) → a.

FX is called the Raisonnier filter.

Claim 9.5 FX is a non-trivial filter extending the Fréchet filter.

Proof Trivially, if a ∼ FX and b ∪ a, where b → Σ, then b ∼ FX . Also, FX ⇐= ∞,
because Σ ∼ FX . Let us suppose that a ∼ FX and b ∼ FX , witnessed by (Xa

n : n < Σ)

and (Xb
n : n < Σ) respectively. Let α :Σ × Σ ≤ Σ be bijective. Set, for n, m <

Σ, Xα (n,m) = Xa
n ∩ Xb

m . We have that

X = X ∩
⋃

n<Σ

Xa
n = X ∩

⋃

n<Σ

⋃

m<Σ

(Xa
n ∩ Xb

m) = X ∩
⋃

p<Σ

X p,

so that (X p: p < Σ) is a covering of X . Let q ∼ H(Xα (n,m)), say q = h(x, y), where
x, y ∼ Xα (n,m) = Xa

n ∩ Xb
m , x ⇐= y. Then q = h(x, y) ∼ a, as H(Xa

n ) → a, and
q ∼ h(x, y) ∼ b, as H(Xb

m) → b. We have shown that

⋃

p<Σ

H(X p) → a ∩ b,

so that a ∩ b ∼ FX .
Also, FX is non-trivial: if X → ⋃

n<Σ Xn , then at least one Xn has two (in fact
uncountably many) elements, because X is uncountable; therefore H(Xn) ⇐= ∞, and
hence ∞ /∼ FX .

To show that FX extends the Fréchet filter, let (Xn : n < 2m) be an enumeration
of all

Us = {x ∼ Σ2: x ∪ s},

where s ∼ m2. We have that
⋃

n<2m H(Xn) = Σ \ m ∼ FX . �

Claim 9.6 FX is Φ
∼

1

3
.
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Proof Let us first verify that a ∼ FX iff there is a covering (Yn : n < Σ) of X with⋃
n<Σ H(Yn) → a, where Yn is a closed subset of Σ2 for each n < Σ. Namely,

let a ∼ FX , as being witnessed by (Xn : n < Σ). For n < Σ, let Yn be the closure
of Xn . Trivially, Xn → Yn , and therefore H(Xn) → H(Yn). We claim that in fact
H(Xn) = H(Yn). Well, if n = h(x, y) ∼ H(Yn), we may pick x ∩, y∩ ∼ Xn with
x ∩ � n = x � n and y∩ � n = y � n. But then n = h(x, y) = h(x ∩, y∩), so that
n ∼ H(Xn). We now have that

⋃
n<Σ H(Yn) = ⋃

n<Σ H(Xn) → a.
This now gives the following characterization of FX . a ∼ FX iff ∅(Tn : n < Σ)

such that Tn is a tree on <Σ2 for each n < Σ,

∈x (x ∼ X ≤ ∅n∈m x � m ∼ Tn)⇒
∈x ∈y∈n(x ⇐= y ⇒ ∈m x � m ∼ Tn ⇒ ∈m y � m ∼ Tn

≤ ∅m ∼ a\{0}(x � m − 1 = y � m − 1 ⇒ x � m ⇐= y � m)).

Because X = Σ2∩ L[a] isΦ
∼

1

2
(a), cf. Lemma 7.19, this easily gives that FX isΦ

∼

1

3
(a)

by Lemma 7.17. �
We have verified that FX is a nontrivial filter which is Φ

∼

1

3
. In order to finish

the proof of Theorem 9.3, we now need to see that FX is rapid. Let f : Σ ≤ Σ be
monotone. We need to find some b ∼ FX such that (9.1) hold true.

Claim 9.7 For every f : Σ ≤ Σ, ΣΣ ∩ L[a, f ] is a null set.

Proof Because ΣΣ ∩ L[a, f ] is Φ
∼

1

2
, cf. Lemma 7.19, it is Lebesguemeasurable by

hypothesis (Recall that we assume all Φ
∼

1

2
sets of reals to be Lebesguemeasurable).

Set
A = {(x, y) ∼ (ΣΣ)2 ∩ L[a, f ]: x <L[a, f ] y}.

For each y ∼ ΣΣ ∩ L[a, f ],
{x : (x, y) ∼ A}

is countable, and hence null. By Fubini’s Theorem, we therefore first get A to be
null and then also

{x : {y:(x, y) ∼ A} is not null}

to be null. If ΣΣ ∩ L[a, f ] is not null, there is then some x0 such that

{y: (x0, y) ∼ A} is null;

but then

ΣΣ ∩ L[a, f ] = {x ∼ ΣΣ ∩ L[a, f ]: x ∧L[a, f ] x0}∪
{y ∼ ΣΣ ∩ L[a, f ]: (x0, y) ∼ A}

is the union of two null sets and hence null.
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We have shown that ΣΣ ∩ L[a, f ] is a null set. �

Claim 9.8 Let (nk : k < Σ) be a sequence of positive integers. There is a family
(Gk : k < Σ) of open subsets of Σ2 such that

μ(Gk) = 1

2nk

for all k < Σ and such that (Gk : k < Σ) is independent in that if N → Σ is finite,

μ
(⋂

{Gk : k ∼ N }
)

=
∏

k∼N

μ(Gk).

Proof Write r−1 = 0. For k ∼ Σ, set rk = Φk
l=0nl , and put

Gk = {x ∼ Σ2: ∈n(rk−1 ∧ n < rk ≤ x(n) = 1)}.

It is easy to see that μ(Gk) = 2−nk and if N → Σ is finite, then

μ
(⋂

{Gk : k ∼ N }
)

= 2−⎧
k∼N nk =

∏

k∼N

2−nk =
∏

k∼N

μ(Gk),

so that (Gk : k < Σ) is as desired. �

Claim 9.9 Let Y → Σ2 be null. There is then some closed set C → Σ2 such that
Y ∩ C = ∞, μ(C) > 0, and in fact for all s ∼ Σ2, if Us ∩ C ⇐= ∞, then

μ(Us ∩ C) ∗ 1

23lh(s)+1
.

Proof Let C0 → Σ2 be closed such that μ(C0) ∗ 2
3 and Y ∩ C0 = ∞. Let C0 = [T0],

where T0 → <Σ2 is a tree. Let us recursively define trees Tk → <Σ2, k > 0, as
follows.

Tk = {t ∼ Tk−1 : ∅s ∼ k2 ∅x ∼ [Tk−1] ∩ Us

μ([Tk−1] ∩ Us) ∗ 1

8k
⇒ t = x � lh(t)}.

Set Ck = [Tk] for k < Σ. Also set T∞ = ⎪
k<Σ Tk and C = [T∞] = ⎪

k<Σ Ck . We
claim that C is as desired.

As T∞ → T0, Y ∩ C = ∞ is trivial.
In the step from Ck−1 to Ck we consider 2k many Us, s ∼ k2, and throw out those

setsCk−1∩Us such thatμ(Ck−1∩Us) < 1
8k . Therefore,μ(Ck) ∗ μ(Ck−1)−2k · 1

8k =
μ(Ck−1) − 1

4k . This means that μ(C) ∗ μ(C0) − ⎧∞
k=1(μ(Ck−1) − μ(Ck)) ∗

μ(C0) − ⎧∞
k=1

1
4k ∗ 2

3 − 1
3 = 1

3 > 0.
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Now let s ∼ <Σ2 be such that Us ∩ C ⇐= ∞. Then, setting k = lh(s), μ(Ck−1 ∩
Us) ∗ 1

8k and Ck ∩ Us = Ck−1 ∩ Us , so that μ(Ck ∩ Us) ∗ 1
8k . In the step from

Cl−1 ∩ Us to Cl ∩ Us, l > k, we consider 2l−k many Ut , t ∼ l2, t ∪ s, and throw
out those sets Cl−1 ∩ Ut such that μ(Cl−1 ∩ Ut ) < 1

8k ; therefore, μ(C ∩ Us) ∗
μ(Ck ∩ Us) − ⎧∞

l=k+1(μ(Cl ∩ Us) − μ(Cl−1 ∩ Us)) ∗ 1
8k − ⎧∞

l=k+1 2
l−k · 1

8l =
1
8k − 1

8k

⎧∞
p=1

1
4p = 1

8k · (1 − 1
3 ) > 1

8k · 1
2 = 1

23k+1 . �

Claim 9.10 For every monotone f : Σ ≤ Σ, there is some b ∼ FX such that

∈n < Σ b ∩ f (n) ∧ n · (3n + 1)2 · 24n . (9.2)

Proof Using Claim 9.8, we may pick a sequence

(Gs,m,n : s ∼ <Σ2 ⇒ m, n < Σ)

of open subsets of Σ2 such that μ(Gs,m,n) = 1
2m+n for all s, m, n, and such that the

sequence is independent in that if N → <Σ2 × Σ × Σ is finite,

μ
(⋂

{Gs,m,n : s, m, n) ∼ N }
)

=
∏

(s,m,n)∼N

μ(Gs,m,n).

Fix f : Σ ≤ Σ monotone. Let

G =
⋂

n<Σ

⋃

n∩∗n

⋃

m∗n∩

⎨
(x, y) ∼ (Σ2)2: y ∼ Gx� f (m),m,n∩

⎩
.

Obviously, G is a Gβ subset of (Σ2)2. Let x ∼ Σ2. Setting Gx = {y ∼ Σ2: (x, y) ∼
G}, we have that Gx → ⋃

n∩∗n
⋃

m∗n∩ Gx� f (m),m,n∩ for every n < Σ. However,

μ(Gx� f (m),m,n∩) = 1
2m+n∩ , and for each ε > 0 there is some n < Σ such that

⎧
n∩∗n

⎧
m∗n∩ 1

2m+n∩ < ε. Thus, Gx is null for every x ∼ Σ2.
Let us define

G∗ =
⋃

{Gx : x ∼ X}.

Weaim to see thatG∗ is null.Well, for each y ∼ G∗ wemay let x(y) be the<L[a]-least
x ∼ X such that y ∼ Gx , and we may set

A = {(y, z) ∼ (G∗)2: x(y) <L[a] x(z)}.

A is Φ
∼

1

2
by Lemma 7.19 and hence Lebesgue measurable by our hypothesis. For

each z ∼ G∗, {x(y): (y, z) ∼ A} is at most countable, and for any x ∼ X, {y ∼
G∗: x(y) = x} → Gx is null. Therefore, {y ∼ G∗: (y, z) ∼ A} is null for every
z ∼ G∗, so that A is null by Fubini’s Theorem. Hence
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{y ∼ G∗: {z ∼ G∗: (y, z) ∼ A} is not null }

is a null set, again by Fubini’s Theorem. If G∗ were not null, then we could pick
some y0 ∼ G∗ such that {z ∼ G∗: (y0, z) ∼ A} is null. But then

G∗ = {z ∼ G∗: (z, y0) ∼ A}∪
{z ∼ G∗: x(z) = x(y0)}
{z ∼ G∗: (y0, z) ∼ A}

would be null after all.
We have shown that G∗ is a null set, so that by Claim 9.9, we may pick some

closed set C → Σ2 such that G∗ ∩ C = ∞, μ(C) > 0, and in fact for all s ∼ <Σ2, if
Us ∩ C ⇐= ∞, then μ(Us ∩ C) ∗ 1

23lh(s)+1 .
For x ∼ X and n < Σ, let

Ox
n =

⋃

n∩∗n

⋃

m∗n∩
Gx� f (m),m,n∩ .

Each Ox
n , n < Σ, is open. Let x ∼ X . Suppose that for every n < Σ and every

s ∼ <Σ2, ifC∩Us ⇐= ∞, thenC∩Us ∩Ox
n = ∞.Wemay then define (zn : n < Σ) ∼ Σ2

and a monotone (kn : n < Σ) ∼ ΣΣ with C ∩ Uzn�kn ⇐= ∞ and zn+1 � kn = zn � kn

for all n < Σ as follows. Let z0 ∼ C and k0 = 0. If zn and kn have been defined such
that zn ∼ C , then C ∩Uzn�kn ∩ Ox

n ⇐= ∞, so that as Ox
n is open we may pick zn+1 and

nk+1 > nk such that zn+1 � kn = zn � kn , Uzn+1�kn+1 → Ox
n , and zn+1 ∼ C . Then

⋃

n<Σ

zn � kn ∼
⋂

n<Σ

Ox
n ∩ C = Gx ∩ C → G∗ ∩ C = ∞.

Contradiction! There is thus for each x ∼ X , a pair (n(x), s(x)) such that n(x) <

Σ, s(x) ∼ <Σ2, and

C ∩ Us(x) ⇐= ∞, yet C ∩ Us(x) ∩ Ox
n(x) = ∞. (9.3)

Let e: Σ × <Σ2 ≤ Σ be bijective such that e(n, s) ∗ n and e(n, s) ∗ lh(s) for all
n < Σ and s ∼ <Σ2, and let (Xm : m < Σ) be an enumeration of the set of all

{x ∼ X : n(x) = n ⇒ s(x) = s ⇒ x � f (e(n, s)) = t},

where n < Σ, s ∼ <Σ2, and t ∼ <Σ2. We may write X = ⋃
m<Σ Xm , so that, setting

b =
⋃

m<Σ

H(Xm),
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we have that b ∼ FX . We aim to verify that (9.2) holds true.
So let us fix n < Σ. We have that

b ∩ f (n) = {h(x, y) < f (n): x, y ∼ X, x ⇐= y, n(x) = n(y),

s(x) = s(y), and

x � f (e(n(x), s(x))) = y � f (e(n(x), s(x)))}.

Obviously, if x, y ∼ X, x ⇐= y, witness that h(x, y) ∼ b ∩ f (n), then, setting
m = n(x) = n(y) and s = s(x) = s(y),

f (e(m, s)) < h(x, y) < f (n),

so that

e(m, s) < n (9.4)

by the monotonicity of f .
Let m < Σ and s ∼ <Σ2 be such that e(m, s) < n. Let us write

bm,s = {h(x, y) < f (n): x, y ∼ X, x ⇐= y, n(x) = n(y) = m,

s(x) = s(y) = s, and

x � f (e(m, s)) = y � f (e(m, s))}.

As b ∩ f (n) = ⋃
e(m,s)<n bm,s , in order to show that (9.2) holds true it suffices to

show that

bm,s ∧ (3n + 1)2 · 24n = ((3n + 1) · 22n)2. (9.5)

Let again m < Σ and s ∼ <Σ2 be such that e(m, s) < n. Notice that if x, x ∩, y ∼
X, x � f (n) = x ∩ � f (n), and h(x, y) < f (n), then h(x ∩, y) = h(x, y). This implies
that

(Card({t ∼ f (n)2: ∅x ∼ X (t → x ⇒ n(x) = m ⇒ s(x) = s)}))2 ∧ bm,s . (9.6)

But we have that

{t ∼ f (n)2: ∅x ∼ X (t → x ⇒ n(x) = m ⇒ s(x) = s)} →
{t ∼ f (n)2: C ∩ Us ⇐= ∞ ⇒ C ∩ Us ∩ Gt,n,m = ∞}.

This is because if x ∼ X, t → x, n(x) = m, and s(x) = s, then by (9.3), C ∩ Us ⇐= ∞
and

∞ = C ∩ Us ∩ Ox
m = C ∩ Us ∩

⎛

⎝
⋃

n∩∗m

⋃

p∗n∩
Gx | f (p),p,n∩

⎞

⎠ .
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But e(m, s) < n, so that m < n by the property of e, and thus

Gt,n,m →
⎛

⎝
⋃

n∩∗m

⋃

p∗n∩
Gx | f (p),p,n∩

⎞

⎠ .

By (9.6), in order to verify (9.5) it thus suffices to show that if C ∩ Us ⇐= ∞, then

Card({t ∼ f (n)2: C ∩ Us ∩ Gt,n,m = ∞}) ∧ (3n + 1) · 22n . (9.7)

Suppose that C ∩ Us ⇐= ∞, where s ∼ <Σ2. Let us write q for the cardinality of

⎨
t ∼ f (n)2: C ∩ Us ∩ Gt,n,m = ∞

⎩
.

We have that

C ∩ Us →
⋂ ⎨

Σ2\Gt,n,m : t ∼ f (n)2, C ∩ Us ∩ Gt,n,m = ∞
⎩

.

As μ(Gt,n,m) = 1
2n+m , and because the Gt,n,m’s are independent in the sense of

Claim 9.8,

μ(C ∩ Us) ∧
q∑

k=0

(
q

k

⎫ (

− 1

2n+m

⎫k

=
(

1 − 1

2n+m

⎫q

.

By the choice of C, μ(C ∩ Us) ∗ 1
23lh(s)+1 , so that 1

23lh(s)+1 ∧ ⎬
1 − 1

2n+m

⎭q
. By (9.4)

and the properties of e, we have that m < n and lh(s) < n and therefore

1

23n+1 ∧ 1

23lh(s)+1
∧

(

1 − 1

22n

⎫q

.

We always have log22n (2) ∧ 1, which gives us 2 ∧
(

22n

22n−1

)22n

, thus 1 ∧
log2

(
22n

22n−1

)
· 22n , and hence

q ∧ (3n + 1) ·
(

log2

(
22n

22n − 1

⎫⎫−1

∧ (3n + 1) · 22n,

as we had wished. �

Using Claim 9.10 it is now easy to prove that FX is rapid. Let g:Σ ≤ Σ be
monotone, and let f : Σ ≤ Σ be defined by

f (n) = g((n + 1) · (3n + 4)2 · 24n+4).
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By Claim 9.10, there is some b ∼ FX such that for all n < Σ,

b ∩ f (n) ∧ n · (3n + 1)2 · 24n .

Let n < Σ, and let n∩ ∧ n be largest such that n∩ · (3n∩ + 1)2 · 24n∩ ∧ n. Then

b ∩ g(n) ∧ b ∩ g((n∩ + 1) · (3n∩ + 4)2 · 24n∩+4)

= b ∩ f (n∩) ∧ n∩ · (3n∩ + 1)2 · 24n∩ ∧ n,

as desired.
This finishes the proof of Theorem 9.3. �

9.2 Mokobodzki’s Theorem

Lemma 9.11 (Sierpiński) Let F → Σ2 be a non-trivial filter which extends the
Fréchet filter and is Lebesgue measurable. Then F is null.

Proof For s ∼ n2, where n < Σ, we may define a homomorphism ξs : Σ2 ≤ Σ2 by

ξs(x)(k) =
{
1 − x(k) if k < n ⇒ s(k) = 1
x(k) otherwise .

Because F is assumed to extend the Fréchet filter, we have {ξs(x): x ∼ F} = F for
every s ∼ n2. The 0–1–Law of Hewitt–Savage then implies that either μ(F) = 0
or μ(F) = 1.

Suppose that μ(F) = 1. Let us define a homeomorphism ξ: Σ2 ≤ Σ2 by

ξ(x)(k) = 1 − x(k)

for k < Σ. It is easy to see that ξ respects μ, i.e., {ξ(x) : x ∼ X} is Lebesgue
measurable and μ({ξ(x) : x ∼ X}) = μ(X) for all Lebesgue measurable X → Σ2.
μ(F) = 1 yields that μ({ξ(x) : x ∼ F}) = 1. We may then pick some x0 ∼
F ∩ {x : ξ(x) ∼ F}. As F is a filter, the characteristic function of the intersection
of the two sets for which x0 and ξ(x0) are the respective characteristic functions is
then in F again, i.e.,

∞ = {k < Σ : x0(k) = 1 ⇒ ξ(x0)(k) = 1} ∼ F.

This contradicts the fact that F is assumed to be non-trivial.
We have shown that μ(F) = 0. �
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Definition 9.12 Let I = {In : n < Σ} be a partition of Σ into intervals, and let
J = (Jn : n < Σ) be such that Jn → In2 for n < Σ. We write

(I, J) = {x ∼ Σ2: x � In ∼ Jn for infinitely many n < Σ}.

A set N → Σ2 is called small iff for every sequence (εn : n < Σ) of positive reals
there is a partition I = {In : n < Σ} of Σ into intervals and there is a sequence
J = (Jn : n < Σ) with Jn → In2 for n < Σ such that

(1) N → (I, J), and
(2) μ({x ∼ Σ2 : x � Ik ∼ Jk}) < εk for every k < Σ.

If N → Σ2 is small and if (I, J) is as in (1) and (2) of Definition 9.12, then for every
n0 < Σ,

(I, J) = {x ∼ Σ2 : x � In ∼ Jn for infinitely many n ∗ n0}.

Hence μ((I, J)) ∧ ⎧∞
n=n0 εn for every n0 < Σ. We may choose (εn : n < Σ) in

such a way that
⎧∞

n=0 εn < ∞, so that we get that (I, J) is a null set. Hence N is a
null set. We show that every null set can be covered by two small sets:

Lemma 9.13 If A → Σ2 is null, then there are small sets N0, N1 → Σ2 with A →
N0 ∪ N1.

Proof Let A → Σ2 be null. For each n < Σ, we may pick an open set On → Σ2 such
that A → On and μ(On) < 1

2n . Let

On =
⋃

m<Σ

Usn
m
,

where sn
m ∼ <Σ2 and Usn

m
∩ Usn

m∩ = ∞ for sn
m ⇐= sn

m∩ . Notice that by μ(On) < 1
2n ,

min{lh(sn
m) : m < Σ} > n. (9.8)

Set
Fn = {s ∼ n2: ∅k∅m s = sk

m}.

With the help of (9.8),

A → {x ∼ Σ2: x � n ∼ Fn for infinitely many n < Σ}. (9.9)

Also

infm<Σ

({ ∞∑

n=m

μ({x ∼ Σ2 : x � n ∼ Fn

})

= 0.
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Let (εn : n < Σ) be a sequence of positive reals. In the light of what we are supposed
to prove, we may assume without loss of generality that

⎧∞
n=0 εn < ∞. Let us

recursively construct (nk : k < Σ) and (mk : k < Σ) as follows.
Let n0 = 0, m0 = 0,

mk+1 = min

{

m > nk : 2nk ·
∞∑

n=m

μ
⎬{

x ∼ Σ2: x � n ∼ Fn
}⎭

< εk

}

and

nk+1 = min

{

m > mk+1: 2mk+1 ·
∞∑

n=m

μ
⎬{

x ∼ Σ2: x � n ∼ Fn
}⎭

< εk

}

.

mk

nk

mk+1

nk+1

I′k

Ik

Let, for k < Σ,
Ik = [nk, nk+1) and I ∩

k = [mk, mk+1),

and set

Jk = {s ∼ Ik2 : ∅i ∼ [mk+1, nk+1]∅t ∼ Fi s � [nk, i) = t � [nk, i)}

and
J ∩

k = {s ∼ I ∩
k2 : ∅i ∼ [nk, mk+1]∅t ∼ Fi s � [mk, i) = t � [mk, i)}

We claim that both (I, J) and (I∩, J∩) satisfy (1) and (2) of Definition 9.12.
As for (2),

μ
⎬{

x ∼ Σ2: x � Ik ∼ Jk
}⎭

= μ
⎬{

x ∼ Σ2: ∅i ∼ [mk+1, nk+1]∅t ∼ Fi x � [nk, i) = t � [nk, i)
}⎭

∧ 2nk ·
nk+1∑

i=mk+1

μ
⎬{

x ∼ Σ2: ∅t ∼ Fi x � i = t
}⎭

< εk .
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Symmetrically,

μ
⎬{

x ∼ Σ2: x � I ∩
k ∼ J ∩

k

}⎭

= μ
⎬{

x ∼ Σ2: ∅i ∼ [nk, mk+1]∅t ∼ Fi x � [mk, i) = t � [mk, i)
}⎭

∧ 2mk ·
mk+1∑

i=nk

μ
⎬{

x ∼ Σ2: ∅t ∼ Fi x � i = t
}⎭

< εk .

To verify that A → (I, J) ∪ (I∩, J∩), let x ∼ A. By (9.9), there are infinitely many
n < Σ with

x � n ∼ Fn and n ∼
∞⋃

k=0

[mk+1, nk+1] (9.10)

or with

x � n ∼ Fn and n ∼
∞⋃

k=0

[nk, mk+1]. (9.11)

If x � n ∼ Fn and n ∼ [mk+1, nk+1], then x � Ik ∼ Jk ; hence if (9.10) holds true,
then x ∼ (I, J). If x � n ∼ Fn and n ∼ [nk, mk+1], then x � I ∩

k ∼ J ∩
k ; hence if (9.11)

holds true, then x ∼ (I∩, J∩). �

Lemma 9.14 Let F be a non-trivial filter on Σ which extends the Fréchet filter
and is Lebesgue measurable. Then F is small.

Proof By Lemma 9.11 we know that F is null. Let us fix a sequence (ε∩
k : k < Σ) of

positive reals. We may assume without loss of generality that ε∩
k < 1 for all k < Σ.

Let βk = min{ ε∩
k
2 , 2mk+1−nk+1} < ε∩

k and εk = (ε∩
k )

2

8 < ε∩
k . We may write

F → (I, J) ∪ (I∩, J∩), (9.12)

where (I, J) and (I∩, J∩) are exactly as constructed in the proof of Lemma 9.13. We
are also going to use the notations nk , mk , Ik , I ∩

k , Jk , J ∩
k for k < Σ from the proof of

Lemma 9.13; in particular, μ({x : x � Ik ∼ Jk}) < εk and μ({x : x � I ∩
k ∼ J ∩

k}) < εk

for every k < Σ. We aim to find

(I∗, J∗) ∪ F (9.13)

such that for every k < Σ, μ
⎬{

x : x � I ∗
k ∼ J ∗

k

}⎭
< ε∩

k .
For k < Σ, let

Hk =
⎨

t ∼ [nk ,mk+1)2 : μ
⎬{

x ∼ Σ2 : tδx � [mk+1, nk+1) ∼ Jk
}⎭ ∗ βk

⎩
.
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For all k < Σ,

μ ({x : x � [nk, mk+1) ∼ Hk}) ∧ 2nk+1−mk+1 · μ ({x : x � Ik ∼ Jk})
∧ 1

βk
· μ ({x : x � Ik ∼ Jk})

<
1

βk
· εk = ε∩

k

4
. (9.14)

We also define, for k < Σ,

H ∩
k =

⎨
t ∼ [nk ,mk+1)2 : μ

⎬{
x ∼ Σ2 : x � [mk, nk)

δt ∼ J ∩
k

}⎭ ∗ βk

⎩
,

so that in analogy with (9.14)

μ({x : x � [nk, mk+1) ∼ H ∩
k}) <

ε∩
k

4
. (9.15)

Now let us write
N0 = (I, J),

N1 = (I∩, J∩), and
N2 = (I∩, J∩∩),

where
J ∩∩

k = {sδt : s ∼ [mk ,nk )2 ⇒ t ∼ Hk ∪ H ∩
k}.

With the help of (9.14) and (9.15), we have that

μ
⎬{x : x � [mk, mk+1) ∼ J ∩

k ∪ J ∩∩
k

}
) < εk + 2 · ε∩

k

4
< ε∩

k .

Hence if F → N1 ∪ N2, then we found a covering of F as in (9.13). Let us thus
assume that F ⇐→ N1 ∪ N2.

Let x0 ∼ F be such that x0 /∼ N1 ∪ N2. Then x0 ∼ N0 by (9.12), so that for
infinitely many k < Σ,

x0 � Ik ∼ Jk .

For k < Σ, let I ∗
2k = [nk, mk+1), I ∗

2k+1 = [mk+1, nk+1), J ∗
2k = ∞, and also J ∗

2k+1 =
∞, unless x0 � Ik ∼ Jk in which case

J 0
2k+1 = L2k+1 ∪ L ∩

2k+1, where
L2k+1 = {s ∼ [mk+1,nk+1)2 : x0 � [nk, mk+1)

δs ∼ Jk} and
L ∩
2k+1 = {s ∼ [mk+1,nk+1)2 : sδx0 � [nk+1, mk+2) ∼ J ∩

k+1}.
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As x0 /∼ N2, we must have x0 � [mk, mk+1) /∼ Hk and x0 � [mk, mk+1) /∼ H ∩
k and

hence
μ({x : x � [mk+1, nk+1) ∼ J 0

2k+1}) < 2βk = ε∩
k

for all but finitely many k < Σ. Therefore, the proof of the following Claim will
provide a covering of F as in (9.13) and finish the proof of Lemma 9.14.

Claim 9.15 F → (I∗, J∗).

Proof Suppose not, and pick y ∼ F\(I∗, J∗). Define z ∼ Σ2 by

z(n) =
{

y(n) if ∅k (x0 � [nk, nk+1) ∼ Jk and n ∼ [mk+1, nk+1))

x0(n) otherwise.

As F is a filter and x0(n) = y(n) = 1 implies z(n) = 1, we have that z ∼ F . By
(9.12), we must have z ∼ N0 or z ∼ N1.

Say z ∼ N0. Consider Ik = [nk, nk+1]. If x0 � Ik /∼ Jk , then z � Ik = x0 � Ik /∼ Jk .
But as z ∼ N0, we must have z � Ik ∼ Jk for infinitely many k. We must then have
x0 � Ik ∼ Jk and then

z � Ik = x0 � [nk, mk+1)
δy � [mk+1, nk+1) ∼ Jk

for any such k, which implies that y � [mk+1, nk+1) ∼ L2k+1 → J 0
2k+1. However,

y /∼ (I∗, J∗), so there can be only finitely many such k. Contradiction!
Say z ∼ N1. Consider I ∩

k+1 = [mk+1, mk+2). If x0 � [nk, nk+1) /∼ Jk , then
z � [mk+1, mk+2) = x0 � [mk+1, mk+2), which by x0 /∼ N1 can only be in J ∩

k+1
for finitely many k. But z ∼ N1, so we must have z � I ∩

k+1 ∼ J ∩
k+1 and hence

x0 � [nk, nk+1) ∼ Jk for infinitely many k. For such k,

z � I ∩
k+1 = y � [mk+1, nk+1)

δx0 � [nk+1, mk+2) ∼ J ∩
k+1,

which implies that y � [mk+1, nk+1) ∼ L ∩
2k+1 → I 02k+1. But again y /∼ (I∗, J∗), so

there can be only finitely many such k. Contradiction!
We have shown that F → (I∗, J∗). �
In the light of Theorem 9.3, Shelah’s Theorem 9.1 is now an immediate conse-

quence of the following.

Theorem 9.16 (Mokobodzki) No rapid filter F → Σ2 is Lebesgue measurable.

Proof Let ρn = 1
2n+1 for n < Σ. By Lemma 9.14 we may write

F → (I, J),

where for every n < Σ,
μ({Σ2 : x � In ∼ Jn}) < εn .
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For n < Σ, let

J ∗
n = {s ∼ Jn : ∈t ∼ In2(∈k ∼ In s(k) ∧ t (k) ≤ t ∼ Jn)}.

We claim that

F → (I, J∗). (9.16)

Suppose that x ∼ F\(I, J∗). As x ∼ (I, J), X = {n < Σ : x � In ∼ Jn} is infinite.
As x /∼ (I, J∗), there must be an l < Σ such that for all n ∼ X\l we may pick some
tn ∼ In2 such that for all k ∼ In , x(k) ∧ tn(k), but tn /∼ Jn . Define y ∼ Σ2 by

y(k) =
{

tn(k) if n ∼ X\l and k ∼ In

x(k) otherwise.

Obviously, y /∼ (I, J). But F is a filter, so that x ∼ F implies y ∼ F → (I, J).
Contradiction! We have shown that (9.16) holds true.

As J ∗
n → Jn for every n < Σ, we still have that

μ({Σ2 : x � In ∼ J ∗
n }) < εn = 1

2n+1 (9.17)

for all n < Σ. Let us write

#(n) = min{{k ∼ In : s(k) = 1} : s ∼ J ∗
n },

and
J ∗,min

n = {s ∼ J ∗
n : {k ∼ In : s(k) = 1} = #(n)}.

We must have that

#(n) ∗ n + 1. (9.18)

This is because if s ∼ J ∗
n is such that {k ∼ In : s(k) = 1} ∧ n, then μ({x ∼ Σ2 : x �

In ∼ J ∗
n }) ∗ 1

2n , contradicting (9.17).
Let us now define f : Σ ≤ Σ by

f (n) = max{{max(k) : s(k) = 1} : s ∼ J ∗,min
n }

for n < Σ. If F is rapid, then we may pick some b ∼ F such that

∈n < Σ {k : b(k) = 1} ∩ f (n) ∧ n.
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By (9.16), b ∼ (I, J∗). If b � In ∼ J ∗
n , then (9.18) gives that {k ∧ max(In) : b(k) = 1}

is contained in In and has maximum f (n). Hence there can be at most one such n.
In particular, b /∼ (I, J∗). Contradiction!

We have shown that F cannot be rapid. �
The book [3] contains exciting material extending the topic of the current chapter.

We also refer the reader to [5].

9.3 Problems

Let F → P(Σ) be a non-trivial filter on Σ extending the Fréchet filter. We say that
F is a p-point iff for every f ∼ ΣΣ there is some X ∼ F such that f � X is constant
or finite-to-one (by which we mean that {n : f (n) = m} is finite for every m < Σ).
We say that F is a q-point iff for every f ∼ ΣΣ which is finite-to-one there is some
X ∼ F such that f � X is injective. F is called selective, or Ramsey, iff F is both
a p-point as well as a q-point. F is called nowhere dense iff for every f : Σ ≤ R

there is some X ∼ F such that f ∩∩ X is nowhere dense.

9.1. Let F be a p-point.
(a) Show that if (Xn : n < Σ) is such that Xn ∼ F for all n < Σ, then there is
some Y ∼ F such that Y\Xn is finite for all n < Σ.
(b) Show that if {Xn : n < Σ} is such that

⋃
n<Σ Xn = Σ, Xn /∼ F for all

n < Σ, and Xn ∩ Xm = ∞ for all n ⇐= m, then there is some X ∼ F such
that X ∩ Xn has finitely many elements for every n < Σ. If F is assumed to
be selective, then we may in fact pick X ∼ F in such a way that X ∩ Xn has
exactly one element for every n < Σ.

9.2. (a) Show that if F is a p-point, then F is nowhere dense. In fact, if F is a
p-point, then F is discrete (by which we mean that for every f : Σ ≤ R there
is some X ∼ F such that for every x ∼ f ∩∩ X there are a < x < b such that
(a, b) ∩ f ∩∩ X = {x}).
(b) Show that if F is a q-point, then F is rapid.

9.3. Let U be a selective ultrafilter on Σ.
(a) Let (Xn : n < Σ) be such that Xn ∼ F for all n < Σ. Show that there
is some Y ∼ U such that for all {n, m} → Y with n < m, m ∼ Xn . [Hint.
First use Problem 9.1 (a) to get some Z ∼ U and some g : Σ ≤ Σ such that
Z\g(n) → Xn for all n < Σ. Suppose w.l.o.g. that g is strictly inceasing, and
write

f (n) = g ◦ . . . ◦ g
︸ ︷︷ ︸

n times

(0).

By Problem 9.1 (b), let Z ∩ ∼ U be such that for every n < Σ, there is exactly
one m ∼ Z ∩ with g(n) ∧ m < g(n + 1), call it mn . One of {m2n : n < Σ},
{m2n+1 : n < Σ} is in U , call it Z∗. Verify that Y = Z ∩ Z∗ is as desired.]
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(b) Let (Xs : s ∼ <ΣΣ) be such that Xs ∼ F for all s ∼ <ΣΣ. Show that there
is some Y ∼ U such that for all strictly increasing s ∼ <ΣΣ with ran(s) → Y ,
s(n) ∼ Xs�n for all n ∼ lh(s).

9.4. Show that ifCH holds, then there is a selective ultrafilter. [Hint. Let ({Xχ
n : n <

Σ} : χ < Σ1) enumerate all {Xn : n < Σ} such that
⋃

n<Σ Xn = Σ and
Xn ∩Xm = ∞ for all n ⇐= m. Recursively construct a sequence (Yχ : χ < Σ1) of
infinite subsets ofΣ such that ifχ < σ, thenYσ\Yχ is finite andYχ+1 = Yχ∩Xχ

n
for some n for which Yχ ∩ Xχ

n is infinite, if such an n exists, and otherwise
Card(Yχ+1 ∩ Xχ

n ) ∧ 1 for all n. Set F = {X → Σ : ∅χ X\Xχ is finite }.]
9.5. Show that if CH holds, then there is a q-point which is not selective. [Hint.

Let U , U0, U1, . . . be non-isomorphic selective ultrafilters, and let X ∼ U∗ iff
{m : {n : ⊕m, n≥ ∼ Xm} ∼ U .]
LetP ∼ V be a partial order, an letG beP-generic over V . Then z ∼ ΣΣ∩V [G]
is called unbounded iff for every x ∼ ΣΣ ∩ V , {n < Σ : x(n) < z(n)} is
infinite. z ∼ ΣΣ ∩ V [G] is called dominating iff for every x ∼ ΣΣ ∩ V ,
{n < Σ : x(n) < z(n)} is cofinite, i.e., there are only finitely many n < Σ with
z(n) ∧ x(n).

9.6. Let z be a Cohen real over V . Then z is unbounded.
Let χ be any ordinal, and let G be C(χ)-generic over V . Show that V [G]
does not contain a dominating real. [Hint. Use Lemma 6.29 and the proofs of
Lemmas 6.53 and 6.61.]
Let

b = min{Card(F) : ∈x ∼ ΣΣ∅z ∼ ΣΣ ∩ F {n : x(n) < z(n)} is infinite}, and

d = min{Card(F) : ∈x ∼ ΣΣ∅z ∼ ΣΣ ∩ F {n : x(n) < z(n)} is cofinite}.

9.7. b ∧ d. Let χ ∗ ⊂2 be a cardinal, and let G be C(χ)-generic over V . Suppose
that V |= CH. Show that in V [G], ⊂1 = b < χ ∧ d.
Let D consist of all (x, n), where x ∼ ΣΣ and n < Σ, ordered by (x ∩, n∩) ∧
(x, n) iff n∩ ∗ n, x ∩ � n = x � n, and x ∩(k) ∗ x(k) for all k ∗ n.

9.8. If (x, n), (x ∩, n∩) ∼ D, where n = n∩ and x � n = x ∩ � n, then (x, n) is
compatible with (x ∩n∩). Conclude that D has the c.c.c. Show that if G is D-
generic over V , then V [G] contains a dominating real.
Let F → P(Σ), and let

MF = {(s, X) : s ∼ [Σ]<Σ ⇒ X ∼ F ⇒ (s ⇐= ∞ ≤ min(X) > max(s))},(9.19)

ordered by (s∩, X ∩) ∧ (s, X) iff s∩ ∪ s, X ∩ → X , and s∩\s → X . MF is called
Mathias forcing for F .

9.9. Let F be a filter on Σ.
(a) Show that MF has the c.c.c.
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(b) Show that ifG isMF -generic overV , then, setting xG = ⋃{s : ∅X (s, X) ∼
G}, xG\X is finite for all X ∼ F .

9.10. Let F be a non-trivial filter on Σ extending the Fréchet filter. Asuume that
either (a) F is not an ultrafilter, or else (b) is an ultrafilter, but not selective.
Show that if G is MF -generic over V , then there is a Cohen real over V in
V [G].

9.11. Let U be a non-trivial filter on Σ extending the Fréchet filter such that U is
not a p-point. Show that if G is MU -generic over V , then V [G] contains a
dominating real.



Chapter 10
Measurable Cardinals

Measurable cardinals (cf. Definition 4.54) and elementary embeddings induced by
them (cf. Theorem 4.55) play a crucial role in contemporary set theory. We here
develop the theory of iterated ultrapowers, of 0Φ, and of short and long extenders.

10.1 Iterations of V

Theorem 10.3 and Lemma 10.4 of this section will be used in the proof of Theorem
13.3.

Definition 10.1 Let Σ be a measurable cardinal, and let U be a measure on Σ , i.e., a
< Σ-closed uniform ultrafilter on Σ . Let α be an ordinal, or α = →. Then the system

I = (Mβ, εβξ : β ≤ ξ < α )

is called the (linear) putative iteration of V of length α given by U iff the following
hold true.

(1) M0 = V , and if β + 1 < α , then Mβ is an inner model.
(2) If β ≤ ξ ≤ δ < α , then εβξ : Mβ ∼ Mξ is an elementary embedding, and

εβδ = εξδ ∈ εβξ .
(3) If β + 1 < α , then Mβ+1 = ult(Mβ;ε0β(U )) and εββ+1 is the canonical

ultrapower embedding.
(4) If ρ < α is a limit ordinal, then (Mρ, εβρ: β < ρ) is the direct limit of

(Mβ, εβξ :β ≤ ξ < ρ).

The systemI is called the (linear) iteration of V of length α given by U if either α

is a limit ordinal or else the last model Mα−1 is well-founded (and may therefore be
identified with an inner model).

Notice that by (2), εββ = id for all β < α . Also, if we write Σβ = ε0β(Σ) and
Uβ = ε0β(U ), then

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_10, 183
© Springer International Publishing Switzerland 2014
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Mβ |= “Uβ is a measure on Σβ.”

Therefore, (3) makes sense and is to be understood in the sense of Definition 4.57.
The requirement that the Mβ for β + 1 < α be inner models is tantamount to
requiring that they be transitive. For ρ < α a limit ordinal, the requirement that
(Mρ, εβρ: β < ρ) is the direct limit of (Mβ, εβξ : β ≤ ξ < ρ) means, by virtue of
(2), that Mρ = ⋃{ran(εβρ): β < ρ}.
Definition 10.2 Let Σ be a measurable cardinal, and let U be a measure on Σ . Then
V is called iterable by U and its images iff for every α , if

I = (Mβ, εβξ : β ≤ ξ < α + 1)

is the (linear) putative iteration of V of length α + 1 given by U , then I is an
iteration, i.e., Mα is well-founded (and may therefore be identified with an inner
model).

Theorem 10.3 Let Σ be a measurable cardinal, and let U be a measure on Σ . Then
V is iterable by U and its images.

Proof Let α be an ordinal, and let

(Mβ, εβξ :β ≤ ξ < α + 1) (10.1)

be the (linear) putative iteration of V of length α + 1 given by U . Let

χ : V ∼= X ∧σ1002 V,

where {Σ, U, α } ⊃ X , X is countable, and V is transitive. Let Σ = χ−1(Σ),
U = χ−1(U ), and α = χ−1(α ). We may also set, for β ⊂ ran(χ ) ⇐ (α + 1),

Mχ−1(β) = χ−1(Mβ),

and for β ≤ ξ, β, ξ ⊂ ran(χ ) ⇐ (α + 1),1

εχ−1(β),χ−1(ξ) = χ−1(εβξ).

Then, from the point of view of V ,

(Mβ,εβξ : β ≤ ξ < α + 1)

is the (linear) putative iteration of V of length α + 1 given by U .2

1 For a proper class X , we write χ−1(X) for
⋃{χ−1(X ⇐ Vβ): X ⇐ Vβ ⊂ ran(χ )}.

2 We here use the fact that the ultrapower construction may also be applied with transitive models
of a sufficiently large fragment of ZFC. We leave the straightforward details to the reader.
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We shall now recursively, for β < α + 1, construct embeddings

χβ: Mβ ∼σ1000 V

such that whenever β ≤ ξ < α + 1, then

χξ ∈ εβξ = χβ. (10.2)

M0 M1 M2 Mα

V

We set χ0 = χ . Now let δ ≤ α , and suppose all χβ, β < δ, are already construed
such that (10.2) holds true for all β ≤ ξ < δ.

Let us first suppose δ to be a limit ordinal, so that (M̄δ, (ε̄βδ:β < δ)) is the direct
limt of ((M̄β: β < δ), (ε̄βξ : β ≤ ξ < δ)). We then define χδ: Mδ ∼ V by setting

χδ(x) = χβ ∈ ε−1
βδ (x),

whenever x ⊂ ran(εβδ). For every x ⊂ Mδ there is some β < δ with x ⊂ ran(εβδ),
and if x = εβδ(x ⇒) = εβ̄δ(x ⇒⇒) with β̄ ≤ β, then, using (10.2),

χβ(x ⇒) = χβ(ε−1
βδ (x)) = χβ ∈ εβ̄β ∈ ε−1

β̄δ (x) = χβ̄(x ⇒⇒).

This means that χδ is well-defined, and it is easy to verify that χδ isσ1000-elementary
and (10.2) holds true for all β ≤ ξ ≤ δ.

Now suppose δ to be a successor ordinal, say δ = τ + 1. Set Στ = ε0τ (Σ) and
U τ = ε0τ (U ). We have that M̄δ = ult(M̄τ ; Ūτ ), which is given by equivalence
relations (mod Ūτ ) of functions f ⊂ Στ Mτ ⇐ Mτ .

If λ is a σ1000-formula, and f1, . . . , fk ⊂ Στ Mτ ⇐ Mτ , then we write Xλ, f1,..., fk

for
{ζ < Στ : Mτ |= λ( f1(ζ), . . . , fk(ζ))}.

By Łoś’ Theorem 4.56, Xλ, f1,..., fk ⊂ U τ iff
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Mδ |= λ([ f1], . . . , [ fk]).

Because M̄τ and hence Ūτ is countable, χτ ”U τ is a countable subset of U . As U is
< ∪1-closed, we thus have that

⋂
χτ ”U τ ∞= ∩. Say ρ ⊂ ⋂

χτ ”U τ .
We may now define χδ: Mδ ∼ V by setting

χδ([ f ]) = χτ ( f )(ρ).

This is well-defined and σ1000-elementary, because if λ is a σ1000-formula and
f1, . . . , fk ⊂ Στ Mτ ⇐ Mτ , then

Mτ+1 |= λ([ f1], . . . [ fk]) iff
Xλ, f1,..., fk ⊂ U τ iff

ρ ⊂ χτ (Xλ, f1,..., fk ) = {ζ < Σ: V |= λ(χτ ( f1)(ζ), . . . , χτ ( fk)(ζ))} iff
V |= λ(χτ ( f1)(ρ), . . . , χτ ( fk)(ρ)).

We use that uniformly over M̄τ and V , bounded quantification in front of a σ1000-
formula may be rewritten in a σ1000 way. It is also easy to verify that χδ = ετδ ∈ χτ

and hence (10.2) holds true for all β ≤ ξ ≤ δ.
But now the lastmodel M̄ᾱ of (Mβ, εβξ : β ≤ ξ < α +1) cannot be ill-founded, as

χᾱ : M̄ᾱ ∼σ1000 V .

By the elementarity of χ , the last model Mα of (Mβ, εβξ : β ≤ ξ < α +1) cannot be
ill-founded either. This means that (10.1) is in fact a (linear) iteration of V of length
α + 1 given by U , as desired. �

Lemma 10.4 (Shift Lemma) Let Σ be a measurable cardinal, and let U be a normal
measure on Σ . Let

(Mβ, εβξ : β ≤ ξ ⊂ OR)

be the (linear) iteration of V = M0 which is given by U. For β ⊂ OR, set Uβ =
ε0β(U ) and Σβ = crit(Uβ) = ε0β(Σ). Let β ≤ ξ, and let λ: β ∼ ξ be order
preserving. There is then a natural elementary embedding

ε
λ
βξ : Mβ ∼ Mξ,

called the shiftmap given byλ such that ελ
βξ(Σβ) = Σξ , and for all β < β, ε

λ
βξ(Σβ) =

Σλ(β) and in fact

ε
λ
βξ ∈ εββ = εξξ ∈ ε

λ�β
βξ

(10.3)

for all ξ with ran(λ � β) ⊃ ξ < ξ.
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Mα

Mβ

κα ′′

κϕ (α ′′) =πϕ
αβ (κα ′′)

κα ′

κϕ (α ′) =πϕ
αβ (κα ′)

κα

κβ =πϕ
αβ (κα )

Proof by induction on ξ. The statement is trivial for ξ = 0, setting ε
λ
βξ = id.

Now let ξ > 0.
Let us first suppose ξ to be a successor ordinal, say ξ = ξ + 1. If ξ /⊂ ran(λ),

then we may construe λ as a map from β to ξ and simply set ελ
βξ = εξξ ∈ ε

λ

βξ
. Let

us thus assume ξ ⊂ ran(λ), which implies that β is a successor ordinal as well, say
β = β + 1, and λ(β) = ξ. By (4.8), we have that

Mβ = {εβ,β( f )(Σβ): f : Σβ ∼ Mβ, f ⊂ Mβ}.

We may thus define ε
λ
βξ by setting

ε
λ
βξ(εββ( f )(Σβ)) = εξξ ∈ ε

λ�β
βξ

( f )(Σξ),

where f ⊂ Mβ, f : Σβ ∼ Mβ . This is well-defined because if ν is a formula and if
f1, . . . , fk ⊂ Σβ Mβ ⇐ Mβ , then

Mβ |= ν(εββ( f1)(Σβ), . . . , fk(Σβ)) ∅⇒
{τ < Σβ: Mβ |= ν( f1(τ), . . . , fk(τ))} ⊂ Uβ ∅⇒

{τ < Σξ : Mξ |= ν(ε
λ�β
βξ

( f1)(τ), . . . , ε
λ�β
βξ

( fk)(τ))} ⊂ Uξ, by using ε
λ�β
βξ

,∅⇒
Mξ |= ν(εξξ ∈ ε

λ�β
βξ

( f1)(Σξ), . . . , εξξ ∈ ε
λ�β
βξ

( fk)(Σξ)).

It is easy to verify, using the inductive hypotheses, that ελ
βξ is as desired.

Now suppose ξ to be a limit ordinal. If λ is not cofinal in ξ, say ran(λ) ⊃ ξ < ξ,
then we may construe λ as a map from β to ξ and simply set ελ

βξ = εξ̄ξ ∈ ε
λ

βξ̄
. Let

us thus assume that λ is cofinal in ξ, which implies that β is a limit ordinal as well.
We then define ε

λ
βξ by setting

http://dx.doi.org/10.1007/978-3-319-06725-4_4
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ε
λ
βξ(εββ(x)) = ελ(β)ξ ∈ ε

λ�β
βλ(β)(x).

Notice that each y ⊂ Mβ is of the form εββ(x) for some β < β and x ⊂ Mβ .
Moreover, if εββ(x) = εβ⇒β(x ⇒), where β < β⇒, then

εββ⇒(x) = x ⇒ and ελ(β)ξ ∈ ε
λ�β
βλ(β)(x)

= ελ(β⇒)ξ ∈ ελ(β)λ(β⇒) ∈ ε
λ�β
βλ(β)(x)

= ελ(β⇒)ξ ∈ ε
λ�β⇒
β⇒λ(β⇒) ∈ εββ⇒(x) by the inductive hypothesis,

= ελ(β⇒)ξ ∈ ε
λ�β⇒
β⇒λ(β⇒)(x ⇒),

so that the definition of ελ
βξ(y) is independent from the choice of β < β and x ⊂ Mβ

with y = εββ(x). It is easy to verify the inductive hypothesis. �
We now aim to make a measurable cardinal Σ singular in a generic extension

without collapsing cardinals. The following definition is reminiscent of the definition
of Mathias forcing, cf. p. 176.

Definition 10.5 Let M be a transitive model of ZFC, and let Σ, U ⊂ M be such
that M |= “U is a normal < Σ-complete uniform ultrafilter on Σ .” We let PU =
P = (P;≤) denote the following poset, called Prikry forcing. We let p ⊂ P iff
p = (a, X) where a ⊂ [Σ]<Δ and X ⊂ U,min(X) > max(a) (if a ∞= ∩). We let
(b, Y ) ≤ (a, X) iff b ∗ a, Y ⊃ X , and b\a ⊃ X (in particular, b is an end-extension
of a).

If p = (a, X) ⊂ P then a is called the stem of p. Notice that any two conditions with
the same stem are compatible, so that P has the Σ+-c.c. in M . Hence no M-cardinal
strictly above Σ will be collapsed by Σ .

Assume G to be P-generic over M . Let

A =
⋃

{a: ∃X (a, X) ⊂ G}.

It is clear that A hast order-type ≤ Δ; in fact, an easy density argument shows that
otp(A) = Δ and A is cofinal in Σ . In particular, Σ will have cofinality Δ in M[G].

We shall now prove that no M-cardinal ≤ Σ will be collapsed in M[G]. As Σ is
a limit cardinal, it suffices to prove that no M-cardinal ρ < Σ will be collapsed in
M[G]. For this in turn it is (more than) enough to prove the following.

Lemma 10.6 Let M be a transitive model of ZFC, let Σ, U ⊂ M be such that U
witnesses that Σ is measurable in M, let P = PU , and let G be P-generic over M.
Then

(VΣ)M[G] = (VΣ)M .

Proof Let us first verify the following.
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Claim 10.7 (Prikry-Lemma)For all p ⊂ P, for all formulaeλ, and for all names θ1,
. . ., θk ⊂ MPU there is some q ≤ p with the same stem as p deciding λ(θ1, . . . , θk).

Proof This is an application of Rowbottom’s Theorem 4.59. Fix p = (a, X)

and λ. (We shall supress the parameters θ1, . . ., θk .) Let us define F : [X ]<Δ ∼ 3 as
follows. Let b ⊂ [X ]<Δ. We set F(b) = 0 iff there is no X such that (a ∪ b, X) ≤
(a, X) and (a ∪ b, X) decides λ; otherwise we set F(b) = 1 (resp., 2) iff there is
some X such that (a ∪ b, X) ≤ (a, X) and (a ∪ b, X) forces that λ holds (resp., does
not hold).

As f ⊂ M , let Y ⊂ U be given by Rowbottom’s Theorem 4.59, i.e., for each
n < Δ, F is constant on [Y ]<Δ. We claim that (a, Y ) decides λ.

Well, if not, then there are (b1, Y1) and (b2, Y2) such that (b1, Y1) ≤ (a, Y ),
(b2, Y2) ≤ (a, Y ) and (b1, Y1) � λ and (b2, Y2) � ¬λ. By extending one of these
two conditions if necessary we may assume that

Card(b1) = Card(b2) = Card(a) + n

for some n < Δ. But then

F(b1\a) = 1 ∞= 2 = F(b2\a),

although
b1\a, b2\a ⊂ [Y ]n .

Contradiction! �
In order to prove Lemma 10.6, it now suffices to show that if ρ < Σ , then ρ2 ⇐

M[G] ⊃ M . Let f ⊂ ρ2 ⇐ M[G], f = θ G . Let p � θ : ←ρ ∼ ←2. It suffices to find
some q ≤ p and some g ⊂ M with q � θ = ←g.

Let a be the stem of p. In virtue of the Prikry Lemma we may let for each τ < ρ

be qτ ≤ p and hτ ⊂ 2 such that a is the stem of qτ and qτ � θ( ←τ) = (hτ )
←. If

qτ = (a, Xτ ) for τ < ρ then q = (a,
⋂

τ<ρ Xτ ) ≤ p and q � θ = ←g, where g ⊂ ρ2
and g(τ) = hτ for all τ < ρ. �

There is a version of PU , called tree Prikry forcing, where we don’t need to
assume that U is normal (in M) in order to verify the Prikry Lemma; cf. Problem
10.24, which produces a generalization of tree Prikry forcing.

Definition 10.8 Let M be a transitive model of ZFC, and let Σ, U ⊂ M be such that
U witnesses that Σ is measurable in M . A strictly increasing sequence (Σn : n < Δ)

which is cofinal in Σ is called a Prikry sequence over M (with respect to U ) iff for
all X ⊂ P(Σ) ⇐ M .

X ⊂ U ∅⇒ {Σn : n < Δ}\X is finite.
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By an easy density argument, if G is P-generic over M and if (Σn : n < Δ) is the
sequence given by the first coordinates of elements of G, then (Σn : n < Δ) is a
Prikry sequence. Cf. also Problem 9.9 (b).

Prikry sequences are also generated by iterated ultrapowers, cf. also Problem
10.2 (c):

Lemma 10.9 Let Σ be a measurable cardinal, let U be a measure on Σ , and let

(Mβ, εβξ : β ≤ ξ ≤ Δ)

be an iteration of V = M0 of length Δ + 1 given by U. Then (ε0n(Σ): n < Δ) is a
Prikry sequence over MΔ with respect to ε0Δ(U ).

Proof This is an immediate consequence of the Shift Lemma 10.4. Let X ⊃ ε0Δ(Σ),
X ⊂ MΔ. Say X ⊂ ran(εn0Δ), where n0 < Δ. Let m ≥ n > n0. Let λ: Δ ∼ Δ be
defined by

λ(k) =
{

k if k < n

k + (m − n) if k ≥ n.

ByLemma 10.4, cf. (10.3),ελ
ΔΔ � ran(εn0Δ) = id, so that in particularελ

ΔΔ(X) = X .
But then

ε0n(Σ) ⊂ X ∅⇒ ε0m(Σ) = ελ
ΔΔ(ε0n(Σ)) ⊂ X.

We have shown that either {ε0n(Σ): n0 < n < Δ} ⊃ X or else {ε0n(Σ): n0 < n <

Δ} ⇐ X = ∩. �
We shall prove the converse to the fact that if (Σn : n < Δ) is the sequence given

by the first coordinates of elements of G then (Σn : n < Δ) is a Prikry sequence. By
virtue of Lemma 10.9, this will mean that iterations produce Prikry generics.

Definition 10.10 Let (Σn : n < Δ) be a Prikry sequence (with respect to U ). Define
G(Σn : n<Δ) to be the set of all ({Σn : n < n0}, X) where n0 < Δ, X ⊂ U , min(X) >

Σn0−1 (if n0 > 0), and {Σn : n ≥ n0} ⊃ X .

Theorem 10.11 (A. Mathias) Let M be a transitive model of ZFC such that M |=
“U is a normal measure on Σ .” Let (Σn : n < Δ) be a Prikry sequence over M with
respect to U. Then G(Σn : n<Δ) is P-generic over M.

The proof will be given in Chap. 12, cf. p. 274 ff.

Theorem 10.12 Let M be a transitive model of ZFC, and suppose that there is some
Σ ⊂ M such that M |= “Σ is a measurable cardinal, as being witnessed by the normal
measure U, and 2Σ ≥ Σ++.” Let G be PU -generic over M. Then in M[G], SCH,
the Singular Cardinal Hypothesis, fails.

Proof M and M[G] have the same cardinals, and (VΣ)M = (VΣ)M[G]. As Σ is
measurable in M , this implies that Σ is certainly a strong limit cardinal in M[G].
Therefore, by Lemma 4.16

http://dx.doi.org/10.1007/978-3-319-06725-4_12
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M[G] |= Σcf(Σ) = 2Σ . (10.4)

As Σ has countable cofinality in M[G],

M[G] |= 2cf(Σ) = 2∪0 < Σ. (10.5)

On the other hand, by hypothesis in M there is a surjection from P(Σ) onto Σ++,
so that with (10.4)

M[G] |= Σcf(Σ) ≥ Σ++. (10.6)

(10.5) and (10.6) yield a failure of SCH in M[G]. �
A model M which satisfies the hypothesis of Theorem 10.12 may be produced

with the help of iterated forcing starting from a model with a measurable cardinal Σ
whose Mitchell order (cf. Problem 4.27) has rank (2Σ)+.

10.2 The Story of 0α, Revisited

0# is a countable structure which “transcends” Gödel’s Constructible Universe L
in a precise way, cf. Theorem 11.56. We first need to explain what we mean by
“0# exists.” For later purposes (cf. Theorem 12.27) we shall in fact introduce x# for
arbitray reals x .

We begin by introducing σ1-Skolem functions for J -structures.
In what follows, we shall only consider models of L⊂,Ė , but what we shall say

easily generalizes to L⊂, Ȧ1,..., Ȧm
. Let us fix an enumeration (λn : n < Δ) of all σ1-

formulae of the language L⊂,Ė . We shall denote by �λ� the Gödel number of λ,
i.e., �λ� = n iff λ = λn . We may and shall assume that (�λn�: n < Δ) is recursive,
and if λ̄ is a proper subformula of λ, then �λ̄� < �λ�. We shall write v(n) for the
set of free variables of λn .

Let M be a model ofL⊂,Ė . We shall express by

M |= λn[a]

the fact that a: v(n) ∼ M , i.e., a assigns elements of M to the free variables of
λn , and λn holds true in M under this assignment. We shall also write |=σ1

M for the

set of all (n, a) such that M |= λn[a], and we shall write |=σ0
M for the set of all

(n, a) ⊂ |=σ1
M such that λn is a σ0-formula.

Lemma 10.13 Let M = Jβ[E] be a J-structure. Let N ⊂ M be transitive. For each
m < Δ, there is a unique f = f N

m ⊂ M such that dom( f ) = m and for all n < m,
if λn is not a σ0 formula, then f (n) = ∩, and if λn is a σ0 formula, then

f (n) = {a ⊂ v(n)N : (N ; ⊂, E ⇐ N ) |= λn[a]}.



192 10 Measurable Cardinals

Proof As uniqueness is clear, let us verify inductively that f N
m ⊂ M . Well, f N

0 = ∩ ⊂
M . Now suppose that f N

m ⊂ M . If λm is not σ0, then f N
m+1 = f N

m ∪ {(m,∩)} ⊂ M .
Now let λm be σ0. We have that v(m)N ⊂ M (cf. Corollary 5.18), and if

T = {a ⊂ v(m)N : (N ; ⊂, E ⇐ N ) |= λm[a]}

then T ⊂ P(v(m)N )⇐(σ∼ 0)
M , and thus T ⊂ M by Lemma 5.23. Therefore, f N

m+1 =
f N
m ∪ {(m, T )} ⊂ M . �
Now let Θ( f, N , m) denote the following formula.

N is transitive ⊕ m < Δ ⊕ f is a function with domain m ⊕ ≥n < m

( ( n =�vi0 ⊂ vi1�, some i0, i1 −∼ f (n) = {a ⊂ v(n)N : a(vi0) ⊂ a(vi1)})⊕
( n =�vi0 ⊂ Ė�, some i0 −∼ f (n) = {a ⊂ v(n)N : a(vi0) ⊂ E})⊕
( n =�ν0 ⊕ ν1�, some ν0, ν1 −∼

f (n) = {a ⊂ v(n)N : a � v(�ν0�) ⊂ f (�ν0�) ⊕ a � v(�ν1�) ⊂ f (�ν1�)})⊕
( n =�∃vi0 ⊂ vi1ν�, some i0, i1, ν, where ν is σ0 −∼

f (n) = {a ⊂ v(n)N : ∃x ⊂ a(vi1)

(a ∪ {(vi0 , x)}) � v(�ν�) ⊂ f (�ν�)})⊕
( n =�λ�, some λ, where λ is not σ0 ∼ f (n) = ∩) ).

It is straightforward to check that Θ( f, N , m) holds (in M) if and only if f = f N
m .

Now Lemma 10.13 and the fact that every element of M is contained in a transitive
element of M (cf. Lemma 5.25) immediately gives the following.

Lemma 10.14 Let M = Jβ[E] be a J-structure. Let λn be σ0, and let a: v(n) ∼ M.
Then M |= λn[a] holds true if and only if

M |= ∃ f ∃N (ran(a) ⊃ N ⊕ Θ( f, N , n + 1) ⊕ a ⊂ f (n)),

which in turn holds true if and only if

M |= ≥ f ≥N ((ran(a) ⊃ N ⊕ Θ( f, N , n + 1)) ∼ a ⊂ f (n)).

In particular, the relation |=σ0
M is ψM

1 .

Theorem 10.15 The σ1-satisfaction relation |=σ1
M is uniformly σ M

1 over
J - structures M, i.e., there is a σ1-formula Φ such that whenever M = Jβ[E]
is a J -structure, Φ defines |=σ1

M in that

(n, a) ⊂ |=σ1
M ∅⇒ M |= Φ(n, a).

Proof We have that M |= λn[a] iff
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∃b ⊂ M ∃(vi0 , . . . , vik , j), some vi0 , . . . , vik , j [n = �∃vi0 . . . ∃vik λ j�⊕
λ j is σ0 ⊕ a, b are functions ⊕ dom(a) = v(n)⊕

dom(b) = v( j) ⊕ a = b � v(n) ⊕ ( j, b) ⊂ |=σ0
M ].

Here, |=σ0
M is uniformly ψM

1 by Lemma 10.14. The rest is easy. �
If M is a J -structure, then h is a σ1-Skolem function for M if

h: (
⋃

n<Δ

{n} × v(n)M) ∼ M,

where h may be partial, such that whenever λn = ∃vi0λ j and a: v(n) ∼ M , then

∃y ⊂ M M |= λ j [a ∪ {(vi0 , y)} � v( j)]
=⇒ M |= λ j [a ∪ {(vi0 , h(n, a))} � v( j)].

Theorem 10.16 There is a σ1 Skolem function hM which is uniformly σ M
1 over

J -structures M, i.e., there is a σ1-formula Ψ such that whenever M = Jβ[E] is a
J -structure, then Ψ defines hM over M in that

y = hM (n, a) ∅⇒ M |= Ψ (n, a, y).

Proof The idea here is to let y = hM (n, a) be the “first component” of a minimal
witness to the σ1 statement in question (rather than letting y be minimal itself). We
may let y = hM (n, a) iff

∃N ∃ξ ∃R ∃b, all in M, ∃(vi0 , . . . , vik , j), some i0, . . . , ik, j (N = Sξ [E] ⊕ R =<E
ξ ⊕

n = �∃vi0 . . . ∃vik λ j� ⊕ λ j is σ0 ⊕ a, b are functions ⊕ dom(a) = v(n)⊕
dom(b) = v( j) ⊕ a = b � v(n) ⊕ ran(b) ⊃ N ⊕ ( j, b) ⊂ |=σ0

M ⊕
≥b̄ ⊂ N ((b̄ is a function ⊕ dom(b̄) = v( j) ⊕ a = b̄ � v(n)⊕
ran(b̄) ⊃ N ⊕ b̄ R b) ∼ ¬( j, b) ⊂ |=σ0

M ) ⊕ y = b(vi0) ).

Here, “N = Sξ [E]” and “R =<E
ξ ” are uniformly σ M

1 by Lemmas 5.25 (2)

and 5.26 (2), respectively, and |=σ0
M is uniformly ψM

1 by Lemma 10.14. The rest is
straightforward. �

If we were to define a σ2 Skolem function for M in the same manner then we
would end up with a σ3 definition. Jensen solved this problem by showing that
under favourable circumstances σn over M can be viewed as σ1 over a “reduct” of
M , cf. Definition 11.7.

We also want to write hM (X) for the closure of X under hM , more precisely:
Let M = Jβ[E] be a J -structure, and let X ⊃ M . We shall write
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hM (X) for hM”(
⋃

n<Δ

({n} × v(n) X)).

Using Theorem 10.16, it is easy to verify that hM (X) ∧σ1 M . There will be no
danger of confusing the two usages of “hM .”

Lemma 10.17 Let M = Jβ[E] be a J-structure. There is then some (partial) sur-
jective f : [β]<Δ ∼ M which is σ M

1 , and there is a (partial) surjection g:β ∼ M
which is σ∼

M
1 .

Proof We have that hM (β) ∧σ1 M , and hence hM (β) = M . But it is straightforward
to construct a surjective g⇒: [β]<Δ ∼ ⋃

n<Δ({n} × v(n)β) which is σ M
1 . We may

then set f = hM ∈ g⇒.
The existence of g now follows from Problem 5.18. �
We now introduce mice.

Definition 10.18 Let x ⊃ Δ. We say that the J -structure M = (Jβ[x]; ⊂, U ) is an
x-premouse (x-pm, for short) iff the following hold true.

(a) (Jβ[x]; ⊂) |= ZFC− (i.e., ZFC without the power set axiom) + there is a largest
cardinal, and

(b) if Σ is the largest cardinal of (Jβ[x]; ⊂), then M |= U is a non-trivial normal
< Σ-closed ultrafilter on Σ .

Notice that in (a) of Definition 10.18, we consider the reduct of M with U being
removed. Also recall (cf. Definition 5.24) that a J -structure has to be amenable, so
that in the situation of Definition 10.18, for all z ⊂ Jβ[x], z⇐U ⊂ Jβ[x]. J -structures
are models of σ0-comprehension and more, cf. Corollary 5.18.

Lemma 10.19 Let x ⊃ Δ. Let ε : L[x] ∼ L[x] be s.t. ε ∞= id. Let Σ = crit(ε). Set
β = Σ+L[x], and let X ⊂ U iff X ⊂ P(Σ) ⇐ L[x] ⊕ Σ ⊂ ε(X). Then (Jβ[x]; ⊂, U )

is an x-pm.

Proof We show that (Jβ[x]; ⊂, U ) is amenable, using what is sometimes referred
to as the “ancient Kunen argument.” Let z ⊂ Jβ[x]. Pick f ⊂ Jβ[x], f : Σ ∼ z
onto. Then y ⊂ z ⇐ U iff there is some τ < Σ such that y = f (τ) ⊂ z and
Σ ⊂ ε(y) = ε( f (τ)) = ε( f )(τ). But ε( f ) ⊂ L[x]. Hence z ⇐ U can be computed
inside L[x] from f and ε( f ). But of course, z ⇐ U ⊃ z ⊂ Jβ[x], so that in fact
z ⇐ U ⊂ Jβ[x] by Theorem 5.31. �

It is easy to verify that if x , ε, Σ are as in Lemma 10.19 then (JΣ [x]; ⊂) |= ZFC
(cf. also Lemma 10.21 (h)).

We now aim to iterate premice by taking ultrapowers in much the same way as in
the proof of Theorem 4.55 and in Definition 10.1.

Definition 10.20 Let x ⊃ Δ, and letM = (Jβ[x]; ⊂, U ) be an x-pm.We define the
(σ0-)ultrapower ult0(M ) ofM as follows. Let Σ = the largest cardinal of Jβ[x]. For
f, g ⊂ Σ Jβ[x] ⇐ Jβ[x] we write f ∼ g iff {τ < Σ: f (τ) = g(τ)} ⊂ U , and we write
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f ⊂̃g iff {τ < Σ: f (τ) ⊂ g(τ)} ⊂ U . We let [ f ] denote the ∼-equivalence class of f .
We write [ f ]⊂̃[g] iff f ⊂̃g, and we also write [ f ] ⊂ Ũ iff {τ < Σ: f (τ) ⊂ U } ⊂ U .
We let

ult0(M ) = {{[ f ]: f ⊂ Σ Jβ[x] ⇐ Jβ[x]}; ⊂̃, Ũ }.

Wemay define a natural map εM
U :M ∼ ult0(M ) by setting εM

U (x) = [cx ], where
cx (τ) = x for all τ < Σ . εM

U is called the (σ0-)ultrapower map.
If ult0(M ) is well-founded, then we identify it with its transitive collapse, we

identify [ f ] with the image under the transitive collapse, and we idenitify ε with the
composition of ε with the transitive collapse.

Inwhat follows,
.
x and

.

U are predicateswhich are supposed to be interepreted by x and
U , respectively (or, more generally, by z and U ⇒, respectively, over (Jα [z]; ⊂, U ⇒)).

Lemma 10.21 Let x ⊃ Δ, and let M = (Jβ[x]; ⊂, U ) be an x-pm with largest car-
dinal Σ , and suppose that ult0(M ) be well-founded. Let ε = εM

U :M ∼ ult0(M )

be the ultrapower map. Then:

(a) ε is σ0 elementary with respect to
.⊂,

.
x,

.

U,
(b) ε is cofinal, i.e. for all x ⊂ ult0(M ) there is some (transitive) y ⊂ M with

x ⊂ ε(y),
(c) ε is σ1 elementary with respect to

.⊂,
.
x,

.

U,
(d) ε is fully elementary with respect to

.⊂,
.
x,

(e) JΣ [x] ∧σΔ Jε(Σ)[x],
(f) P(Σ) ⇐ M = P(Σ) ⇐ ult0(M ),
(g) ult0(M ) |= β = Σ+, and
(h) Σ is inaccessible (in fact Mahlo) in both M and ult0(M ).

Proof (a) We have the following version of Łoś’ Theorem 4.56.

Claim 10.22 (Łoś Theorem) Let λ(v1, ..., vk) be a σ0-formula in the language of
M , and let f1, . . ., fk ⊂ Σ Jβ[x] ⇐ Jβ[x]. Then

ult0(M ) |= λ([ f1], · · · , [ fk]) ∅⇒
{τ < Σ:M |= λ( f1(τ), · · · , fk(τ))} ⊂ U.

Notice that if λ is σ0, then {τ < Σ:M |= λ( f1(τ), · · · , fk(τ))} ⊂ Jβ[x] by σ0-
comprehension, cf. Corollary 5.18, so that this makes sense. The proof of Claim
10.22 is analoguous to the proof of Claim 4.56, cf. Problem 10.6.
(b) Let x ⊂ ult0(M ), say x = [ f ], where f ⊂ M . We have that, setting y =
TC({ran( f )}), y ⊂ M and {τ < Σ: f (x) ⊂ y} = Σ ⊂ U , so that by Łoś’s Theorem
10.22 x = [ f ] ⊂ [cy] = ε(y). By (a), ε(y) will be transitive.
(c) Suppose that ult0(M ) |= ∃xλ(x, ε(a1), . . . , ε(ak)), where λ is σ0 and a1,
. . . , ak ⊂ M . Let x0 ⊂ ult0(M ) be a witness. By (b) there is some y ⊂ M with
x0 ⊂ ε(y), so that in fact ult0(M ) |= ∃x ⊂ ε(y)λ(x, ε(a1), . . . , ε(ak)). By (a),
M |= ∃x ⊂ yλ(x, a1, . . . , ak), i.e.,M |= ∃xλ(x, a1, . . . , ak).
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(d) This uses that Jβ |= ZFC−, cf. Problem 10.6.
(e) This is immediate by (d).
(f) If X ⊂ P(Σ) ⇐ M , then X = ε(X) ⇐ Σ ⊂ ult0(M ). On the other hand, let
X = [ f ] ⊂ P(Σ) ⇐ ult0(M ). Setting Xβ = {τ < Σ:β ⊂ f (τ)} for β < Σ ,
(Xβ: β < Σ) ⊂ M . But then X = {β < Σ: Xβ ⊂ U } ⊂ M by σ0-comprehension,
cf. Corollary 5.18.
(g) As Σ is the largest cardinal of Jβ[x] and Jβ[x] ⊃ ult0(M ), we must have that
β ≤ Σ+ in ult0(M ). Suppose that β ≤ Σ in ult0(M ), and let f : Σ ∼ Jβ[x] be
surjective, f ⊂ ult0(M ). Then X0 = {τ < Σ: τ /⊂ f (τ)} ⊂ ult0(M ) and hence
X0 ⊂ Jβ[x] by (f). But then if τ0 < Σ is such that X0 = f (τ0), τ0 ⊂ X0 iff
τ0 /⊂ f (τ0) = X0. Contradiction!
(h) By the proof of Lemma 4.52. �

Corollary 10.23 Let x ⊃ Δ, let M be an x-pm, and suppose that ult0(M ) is well-
founded. Then ult0(M ) is an x-pm again.

Proof We will prove a more general statement later, cf. Corollary 11.15. Let M =
(Jβ[x]; ⊂, U ), where Σ is the largest cardinal of Jβ , and write

ε = εM
U :M ∼ ult0(M ) = (P; ⊂ U ⇒),

where P is transitive.
We first aim to see that P = Jξ [x] for some ξ, and for this in turn it suffices to

show that P |= “V = L[ẋ],” cf. p. 77 and Lemma 5.28 But by Lemma 10.21 (d),
ε is fully elementary with respect to

.⊂ and
.
x , so that this follows from Jβ[x] |=

“V = L[ẋ]” by elementarity.
Let us show that (Jξ [x]; U ⇒) is amenable. Let z ⊂ Jξ [x]. By Lemma 10.21 (b)

there is some transitive y ⊂ Jβ[x] such that z ⊂ ε(y). We have that M |= ∃u u =
y ⇐ U . If u0 is a witness to this fact, then ult0(M ) |= ε(u0) = ε(y) ⇐ U ⇒. But then
z ⇐ U ⇒ = z ⇐ (ε(y) ⇐ U ⇒) = z ⇐ ε(u0) ⊂ Jξ [x].

It is now straightforward to verify that ε(Σ) is the largest cardinal of Jξ [x], and
that (Jξ [x]; ⊂, U ⇒) |= “U ⇒ is a non-trivial normal< ε(Σ)-closed ultrafilter on ε(Σ).”

�
The following is in the spirit of Definition 10.1.

Definition 10.24 Let x ⊃ Δ, let M be an x-pm, and let β ⊂ OR ∪ {→}. We call
T = (Mi ;εi j : i ≤ j < β) a (the) putative iteration of M of length β iff the
following hold true.

(a) M0 = M ,
(b) Mi+1 = ult0(Mi ), εi i+1 is the ultrapower map, whenever i + 1 < β,
(c) the maps εi j , i ≤ j < β, commute,
(d) if ρ < β is a limit ordinal then (Mi , εi j : i ≤ j ≤ ρ) is the direct limit of

(Mi , εi j : i ≤ j < ρ), and
(e) for all i + 1 < β, Mi is transitive.
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It is easy to verify that if (Mi , εi j : i ≤ j < β) is the putative iteration of the x-pm
M of length β, then every Mi (for i + 1 < β) has to be an x-pm (for successor
stages this uses Corollary 10.23; it is easy for limit stages).

Definition 10.25 Let x ⊃ Δ, letM be an x-pm, and let β ⊂ OR ∪ {→}. A putative
iteration (Mi , εi j : i ≤ j < β) is called an iteration iff either β is a limit ordinal or
β = → or β is a successor ordinal and the last model Mβ−1 is transitive.3

Definition 10.26 Let x ⊃ Δ, and let M be an x-pm. M is called (σ0-)iterable iff
every putative iteration of M is an iteration.

Lemma 10.27 Let x ⊃ Δ, and let M be an x-pm. Suppose that for all β < Δ1, if
T is a putative iteration of M of length β + 1, then T is an iteration. Then M is
iterable.

For the proof of Lemma 10.27, cf. Problem 10.1.

Definition 10.28 Let M = (Jβ[x]; ⊂, U ) be an x-pm. U is called Δ-complete iff
for all {Xn : n < Δ} ⊃ U ,

⋂
n<Δ Xn ∞= ∩.

The point is that not necessarily (Xn : n < Δ) ⊂ Jβ[x].
Lemma 10.29 Let x ⊃ Δ, and let M = (Jβ[x]; ⊂, U ) be an x-pm such that U is
Δ-complete. Then M is iterable.

ProofThis proof is similar to the proof of Theorem10.3.) LetT be a putative iteration
ofM of length ξ + 1. Let ε : V̄ ∼ VΩ , where Ω is large enough, V̄ is countable and
transitive, and M ,T ⊂ ran(ε). Set M̄ , T̄ = ε−1(M ,T ). Then T̄ is a putative
iteration of M̄ of length ξ̄ + 1 < Δ1. Assuming that T is not an iteration, T̄ is not
an iteration either.

Let T̄ = (M̄i , ε̄i j : i ≤ j ≤ ξ̄). We shall now recursively construct maps
χi : M̄i ∼σ0 M for i ≤ β s.t. χi = χ j ∈ ε̄i j whenever i ≤ j ≤ β. We let
χ0 = ε � M̄ . The construction of χρ for limit ρ ≤ β is straightforward, cf. the proof
of Theorem 10.3.

Now suppose χi has been constructed, i < β. Let Σ̄ be the largest cardinal of M̄i ,
and let Σ be the largest cardinal of Mi . Let M̄i = (Jα ; ⊂, Ū ). As U is Δ-complete,
⋂

χi”Ū ∞= ∩. Let τ ⊂ ⋂
χi”Ū . We may then define χi+1: M̄i+1 ∼ M by setting

χi+1([ f ]) = χi ( f )(τ). Notice that we have

M̄i+1 |= λ([ f0], . . . , [ fk−1]) ∅⇒
{τ̄ < Σ̄: M̄i |= λ( f0(τ̄ ), . . . , fk−1(τ̄ ))} ⊂ Ū ∅⇒

{τ̄ < Σ:M |= λ(χi ( f0)(τ̄ ), . . . , fk−1(τ̄ ))} ⊂ χi”Ū ∅⇒
M |= λ(χi ( f0)(τ), . . . , χi ( fk−1)(τ))

whenever λ is σ0.
This finishes the construction. Now notice that χξ̄ : M̄ξ̄ ∼ M witnesses that M̄ξ̄

is well-founded. This gives a contradiction. �

3 By our convention, cf. Definition 10.20, this is tantamount to saying that Mβ−1 is well-founded.
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Definition 10.30 Let x ⊃ Δ, and letM be an x-pm. ThenM is called an x-mouse
iffM is iterable.

We should remark that the current-day inner model theory studies mice which are
much more complicated than those objects which Definition 10.30 dubs “x-mice.”
But as suchmore complicated objects won’t play a role in this book, Definition 10.30
fits our purposes here.

Lemma 10.31 Suppose that there is a measurable cardinal. Then for every x ⊃ Δ

there is an x-mouse.

Proof Let Σ be a measurable cardinal, and let U be a normal measure on Σ . Let
ε : V ∼ M be as in Theorem 4.55 (3). Fix x ⊃ Δ. We may derive an x-pm (Jβ[x]; ⊂
, Ū ) from ε � L[x] ∼ L[x] as in the proof of Lemma 10.19. In particular, X ⊂ Ū
iff X ⊂ P(Σ) ⇐ L[x] ⊕ Σ ⊂ ε(X). As Σ ⊂ ε(X) is equivalent to X ⊂ U , so that
Ū ⊃ U , and as U is < Σ-closed, Ū is clearly Δ-complete in the sense of Definition
10.28. Then (Jβ; ⊂, Ū ) is iterable by Lemma 10.29. �

The following Lemma is shown in exacty the same manner as is Lemma 10.4.

Lemma 10.32 (Shift Lemma) Let x ⊃ Δ, and let M = (Jβ[x]; ⊂, U ) be an
x-mouse. Let

(Mβ, εβξ : β ≤ ξ < →)

be the iteration of M = M0 of length →. For β ⊂ OR, set Uβ = ε0β(U ) and
Σβ = cri t (Uβ) = ε0β(Σ). Let β ≤ ξ, and let λ: β ∼ ξ be order preserving. There
is then a natural elementary embedding

ε
λ
βξ : Mβ ∼ Mξ,

called the shiftmap given by λ such that ελ
βξ(Σβ) = Σξ , and for all β < β, ε

λ
βξ(Σβ) =

Σλ(β) and in fact

ε
λ
βξ ∈ εββ = εξξ ∈ ε

λ�β
βξ

(10.7)

for all ξ with ran(λ � β) ⊃ ξ < ξ.

Lemma 10.33 Let x ⊃ Δ, and let M = (Jβ[x]; ⊂, U ) be an x-mouse. Let

M̄ = (Jξ [x]; ⊂, Ū )
χ∼= hM (Δ) ∧σ1 M .

Then M̄ /⊂ Jβ[x].
Proof To begin with, with the help of Lemma 5.28 it is straightforward to verify that
M̄ is again an x-premouse.

Claim 10.34 M̄ is an x-mouse.
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Proof Suppose that (M̄i , ε̄i j : i ≤ j ≤ α ) is the putative iteration of M̄0 = M̄ of
length α + 1. We aim to see that M̄α is well-founded.

Let (M , εi j : i ≤ j ≤ α ) be the iteration of M0 = M of length α + 1. Let
us write M̄i = (Jξi [x]; ⊂, Ūi ), Mi = (Jβi [x]; ⊂, Ui ), and let us write Σ̄i for the
largest cardinal of M̄i and Σi for the largest cardinal of Mi . We aim to construct
σ0-elementary embeddings χi : M̄i ∼ Mi , i ≤ α , such that for all i ≤ j ≤ α ,

εi j ∈ χi = χ j ∈ ε̄i j . (10.8)

We set χ0 = χ . The construction at limit stages is straightforward in the light of
(10.8), so let us assume that χi is already constructued, i < α . In much the same
way as in (4.6), cf. p. 54, we have that

M̄i+1 = {ε̄i i+1( f )(Σ̄i ): f ⊂ Σ̄iM̄i ⇐ M̄i }and
Mi+1 = {εi i+1( f )(Σi ): f ⊂ ΣiMi ⇐ Mi }.

We then set

χi+1(ε̄i i+1( f )(Σ̄i )) = εi i+1(χi ( f ))(Σi ) (10.9)

for f ⊂ Σ̄iM̄i ⇐ M̄i . We have that if λ is σ0 and f0, . . ., fk−1 ⊂ Σ̄iM̄i ⇐ M̄i ,

M̄i+1 |= λ(ε̄i i+1( f0)(Σ̄i ), . . . , ε̄i i+1( fk−1)(Σ̄i )) ∅⇒
{τ < Σ̄i : M̄i |= λ( f0(τ), . . . , fk−1(τ))} ⊂ Ūi ∅⇒

{τ < Σi :Mi |= λ(χi ( f0)(τ), . . . , χi ( fk−1)(τ))} ⊂ Ui ∅⇒
Mi+1 |= λ(εi i+1(χi ( f0))(Σi ), . . . , εi i+1(χ ( fk−1))(Σi )),

so that χi+1 is well-defined andσ0-elementary. By (10.9), εi i+1 ∈χi = χi+1 ∈ ε̄i i+1.
As χα : M̄α ∼ Mα , M̄α inherits the well-foundedness fromMα . �

We thus have an iteration (M̄i , εi j : i ≤ j < →) of M̄ of length OR, and still
using the notation from the proof of Claim 10.34 we have that {Σ̄i : i ⊂ OR} is a class
which is club in OR, and by Lemma 1.31 (g) and (e),

Jξi+1 [x] |= ξi = Σ̄+
i and JΣ̄i [x] ∧σΔ JΣ̄i+1 [x]

for every i ⊂ OR. This implies that

L[x] |= ξi = Σ̄+
i and JΣ̄i [x] ∧σΔ L[x] (10.10)

for all i ⊂ OR.
By Lemma 10.29 (h), Σ̄i is inaccessible in Jξi+1 [x], i.e., also in JΣ̄i+1 [x] and thus

in L[x] by (10.10). On the other hand, M̄ is countable (in every transitive model of

http://dx.doi.org/10.1007/978-3-319-06725-4_4
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ZFC which contains it). Thus M̄ /⊂ L[x]. But this trivially implies that M̄ /⊂ Jβ[x],
as desired. �

Lemma 10.35 Let x ⊃ Δ, and let M = (Jβ[x]; ⊂, U ) and N = (Jξ [x]; ⊂, U ⇒) be
two x-mice. Let (Mi , εi j : i ≤ j < →) and (Ni , χi j : i ≤ j < →) be the iterations
of M0 = M and N0 = N , respectively, of length →. There is then some i ⊂ OR
such that

N = Mi or M = Ni .

Proof Let us write Mi = (Jβi [x]; ⊂, Ui ) and Ni = (Jξi [x]; ⊂, U ⇒
i ), and let us also

write Σi for the largest cardinal of Jβi [x] and ρi for the largest cardinal of Jξi [x].
Let

(Jβ̄[x]; ⊂, Ū )
χ∼= hM (Σ0) ∧σ1 M . (10.11)

It is easy to see that χ must be the identity, so that Σ0 is also the largest cardinal of
Jβ̄[x] and Σ0 < β̄ ≤ β. As in the proof of Lemma 10.33, we get that β̄ = (Σ0)

+L[x].
But certainly β ≤ (Σ0)

+L[x], as Σ0 is the largest cardinal of Jβ[x]. Therefore β̄ =
β = (Σ0)

+L[x], so that (10.11) in fact gives that

M = hM (Σ0).

The same argument shows that in fact for every i ⊂ OR,

Mi = hMi (Σi ), βi = (Σi )
+L[x], Ni = hNi (ρi ), and ξi = (ρi )

+L[x].(10.12)

Moreover, the maps εi j and χi j are σ1-elementary by Lemma 10.21 (c), so that they
preserve the σ1-Skolem function. Therefore, if i ≤ j ⊂ OR, then

Mi

εi j∼= hM j (Σi ) ∧σ1 M j and Ni

χi j∼= hN j (ρi ) ∧σ1 N j . (10.13)

In particular, εi j is the same as the inverse of the collapsing map of hM j (Σi ) and χi j

is the same as the inverse of the collapsing map of hN j (ρi ). (10.13) implies that if
i < j ⊂ OR, then

Σi /⊂ hM j (Σi ) and ρi /⊂ hN j (ρi ), (10.14)

as Σi is the critical point of εi j and ρi is the critical point of χi j .
By the proof of (4.6), cf. p. 54, we have that every element ofMi+1 is of the form

εi i+1( f )(Σi ) where f ⊂ Σi Jβi ⇐ Jβi , so that

Mi+1 = hMi+1(ran(εi i+1) ∪ {Σi }). (10.15)

By (10.13)

http://dx.doi.org/10.1007/978-3-319-06725-4_4
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ran(εi i+1) = hMi+1(Σi ),

which together with (10.15) yields that for all j > i ,

Mi+1 = hMi+1(Σi ∪ {Σi })
εi+1 j∼= hM j (Σi ∪ {Σi })

and therefore

Σi+1 ⊃ hM j (Σi ∪ {Σi }). (10.16)

Combining (10.14) and (10.16), we get that for every j ,

{Σi : i < j} = {Σ < Σ j : Σ ≥ Σ0 ⊕ Σ /⊂ hM j (Σ)}, (10.17)

and by the same reasoning

{ρi : i < j} = {ρ < ρ j : ρ ≥ ρ0 ⊕ ρ /⊂ hN j (ρ)}. (10.18)

Now let us pick sequences (ik : k < Δ · Δ) and ( jk : k ≤ Δ · Δ) such that for
all k < Δ · Δ, Σik < ρ jk < Σik+1 and if ν ≤ Δ · Δ is a limit ordinal, then iν =
supk<ν ik = supk<ν jk = jν . Notice that Σiν = ρiν for every limit ordinal ν ≤ Δ ·Δ.
Write i∗ = iΔ·Δ = jΔ·Δ andμ = Σi∗ = ρi∗ . We have βi∗ = μ+L[x] = ξi∗ by (10.12).
Set

A = {Σiν : ν < Δ · Δ is a limit ordinal}.

By the proof of Lemma 10.9, if X ⊂ P(μ) ⇐ Jβi∗ [x], then

X ⊂ Ui∗ ∅⇒ A \ X is finite ∅⇒ X ⊂ U ⇒
i∗ .

This shows that

Mi∗ = (Jβi∗ [x]; ⊂, Ui∗) = (Jξi∗ [x]; ⊂, U ⇒
i∗) = Ni∗ . (10.19)

Let us assume that Σ0 ≤ ρ0. By (10.17) and (10.18) applied to j = i∗ there is
then some i such that ρ0 = Σi . But then by (10.13)

N = N0

χ0i∗∼= hNi∗ (ρ0) = hMi∗ (Σi )
εi i∗∼= Mi ,

so thatN = Mi . Symmetrically, if ρ0 ≤ Σ0, then there is some i withM = Ni . �

Corollary 10.36 Let x ⊃ Δ, and assume that there is an x-mouse. There is then
exactly one x-mouse M such that

M = hM (Δ), (10.20)
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and if N is any x-mouse, then there is some α +1 such that if (Mi , εi j : i ≤ j ≤ α )

is the iteration of M0 = M of length α + 1, then Mα = N .

Proof Let M ⇒ be any x-mouse, and let

M
χ∼= hM ⇒(Δ),

where M is transitive. As χ is σ1-elementary and thus respects the σ1-Skolem
function, we must have that (10.20) holds true.

Let N be any x-mouse, and let ρ be the largest cardinal of N . Suppose that
δ > 0 would be such that if (Ni , χi j : i ≤ j ≤ δ) is the iteration of N of length
δ + 1, thenM = Nδ . Then as in (10.14) in the proof of Lemma 10.35, ρ /⊂ hNδ

(ρ)

and thus ρ /⊂ hM (Δ) = M , which is nonsense. By Lemma 10.35 we must therefore
have some α such that if (Mi , εi j : i ≤ j ≤ α ) is the iteration ofM0 = M of length
α + 1, then Mα = N . Moreover, let Σ be the largest cardinal of M . If α > 0,
then as in (10.14) in the proof of Lemma 10.35, Σ /⊂ hMα

(Σ), and thus Σ /⊂ hN (Δ).
This means that if we assume in addition that N = hN (Δ), then α = 0, so that
N = M0 = M . �

Definition 10.37 Let x ⊃ Δ. By x# (“x-sharp”) we denote the unique x-mouseM
withM = hM (Δ), if it exists. We also write 0# (“zero-sharp”) for ∩#.

In the light of Lemma 10.35, it is easy to verify that x# is that x-mouse whose
largest cardinal is smallest possible among all x-mice.

Via Gödelization and as x# = hx# (Δ), the σ1-theory of x#, call it Thσ1(x#),
may be construed as a set of natural numbers. By Lemma 10.27 and with the help of
Lemma 7.17, it is not hard to verify that {Thσ1(x#)} is Π1

2 (x). In this sense we may
construe x# itself as a Π1

2 (x)-singleton, cf. Problem 10.7.

Definition 10.38 LetW be an innermodel.W is called rigid iff there is no non-trivial
elementary embedding ε : W ∼ W .

By Theorem 4.53, V is rigid.

Theorem 10.39 (K. Kunen) Let x ⊃ Δ. Suppose that L[x] is not rigid. Then x#

exists.

Proof We shall make use of Problem 10.10. Let us fix an elementary embedding
ε : L[x] ∼ L[x], ε ∞= id. Let Σ be the critical point of ε , and let U = {X ⊂
P(Σ)⇐ L[x] : Σ ⊂ ε(X)} be the L[x]-ultrafilter derived from ε as in Lemma 10.19.
Setting β = Σ+L[x], we know that (Jβ[x]; ⊂, U ) is an x-pm (cf. Lemma 10.19). In
order to prove that x# exists, it suffices to verify that (Jβ[x]; ⊂, U ) is iterable.

In much the same way as on p. 55, we may factor ε : L[x] ∼ L[x] as ε = k ∈εU ,
where εU : L[x] ∼ ult(L[x]; U ) is the ultrapower map (cf. Problem 10.10) and
k([ f ]U ) = ε( f )(Σ) for every f ⊂ Σ L[x]⇐L[x].We thus have ult(L[x]; U ) ∼= L[x],
and we may and shall as well assume that k = id and εU = ε .
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Let Γ be the class of all strong limit cardinals of cofinality ≥ (2Σ)+. By Problem
10.10 (d), we shall have that ε(ρ) = ρ for all ρ ⊂ Γ (this is why we opted for
ε = εU ).

Let μ be any ordinal, and let χ : L[x] ∼ L[x] be any elementary embedding with
μ = crit(χ ). Then we write

U (χ ) = {X ⊂ P(μ) ⇐ L[x]: μ ⊂ χ(X)}

for the L[x]-ultrafilter derived from χ . (So U = U (ε).)
An example for how to obtain such a situation is when

L[x] χ∼= hL[x](μ ∪ Γ ) ∧ L[x] (10.21)

and μ /⊂ hL[x](μ ∪ Γ ). For the purpose of this proof, let us call an x-pm M =
(Jξ [x]; ⊂, U ⇒) certified iff the following holds true. If μ denotes the critical point of
U ⇒, and if χ is then as in (10.21), then μ /⊂ hL[x](μ ∪ Γ ) and U ⇒ = U (χ ).

If χ : L[x] ∼ L[x] is an elementary embedding with critical point μ, then

ε
L[x]
U (χ ): L[x] ∼U (χ ) L[x]

is the associated ultrapower map (cf. also Problem 10.10); we also write εU (χ ) rather
than ε

L[x]
U (χ ), and we write k(χ ): L[x] ∼ L[x] for the canonical factor map obtained

as on p. 55 such that

χ = k(χ ) ∈ εU (χ ), (10.22)

i.e., k(χ )([ f ]U (χ )) = χ( f )(μ) for f ⊂ μL[x] ⇐ L[x]. Notice that

k(χ ) � (μ + 1) = id, (10.23)

because k(χ )(τ) = k(χ )(εU (χ )(τ)) = χ(τ) = τ for all τ < μ and k(χ )(μ) =
k(χ )([id]U (χ )) = χ(id)(μ) = μ.

Claim 10.40 Let χ be as in (10.21). For every X ⊂ P(μ) ⇐ L[x] there is some
i < Δ and some a ⊂ [μ ∪ Γ ]<Δ such that X = hL[x](i, a) ⇐ μ.

Proof If X ⊂ P(μ) ⇐ L[x], then there is some i < Δ and some a ⊂ [μ ∪ Γ ]<Δ

such that χ(X) = hL[x](i, a). But X = χ(X) ⇐ μ, so that we must have that X =
hL[x](i, a)

⇐ μ. �
In (c) of the following Claim, ult0(L[x]; U ⇒) is as defined in Problem 10.10.

Claim 10.41 Let M = (Jξ [x]; ⊂, U ⇒) be an x-pm, and let μ is the critical point of
U ⇒, where μ < (2Card(Σ))+ in V . The following are equivalent.
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(i) M is certified.
(ii) For all i < Δ and a ⊂ [μ ∪ Γ ]<Δ, hL[x](i, a) ⇐ μ ⊂ U ⇒ ∅⇒ μ ⊂ hL[x](i, a).
(iii) ξ = μ+L[x] and ult0(L[x]; U ⇒) is well-founded (equivalently, transitive and

thus equal to L[x]).
Proof Let χ be as in (10.21).

(i)=⇒ (ii) UsingClaim10.40, let i < Δ anda ⊂ [μ∪Γ ]<Δ. Let X = hL[x](i, a)⇐
μ. We have that X ⊂ U ⇒ = U (χ ) iff μ ⊂ χ(X) ⇐ (μ + 1), which by (10.23) is
equivalent to μ ⊂ εU ⇒(X) ⇐ (μ + 1). But εU ⇒(X) = hL[x](i, a) ⇐ εU ⇒(μ), as the
elements of a are fixed points under εU ⇒ (cf. Problem 10.10 (d)), so that X ⊂ U ⇒ is
equivalent to μ ⊂ hL[x](i, a), as desired.

(ii) =⇒ (i) It is easy to see that (ii) implies that μ = crit(χ ): If μ = hL[x](i, a),
where i < Δ and a ⊂ [μ ∪ Γ ]<Δ, then μ = hL[x](i, a) ⇐ μ ⊂ U ⇒ would give
μ ⊂ hL[x](i, a) = μ, a contradiction!

Now let X ⊂ P(μ)⇐L[x]. ByClaim10.40 there is some i < Δ and somea ⊂ [μ∪
Γ ]<Δ such that X = hL[x](i, a)⇐μ. We get that X ⊂ U ⇒ iffμ ⊂ hL[x](i, a)⇐(μ+1),
which is equal toεU (χ )(hL[x](i, a)⇐μ)⇐(μ+1), as the elements of a are fixed points
under εU (χ ); but by (10.23), εU (χ )(hL[x](i, a)⇐μ)⇐ (μ+1) = εU (χ )(X)⇐ (μ+1)
is equal to χ(X) ⇐ (μ + 1), so that X ⊂ U ⇒ is equivalent to X ⊂ U (χ ), as desired.

In particular, U (χ ) ⊃ Jξ [x] (as M is a J -structure), which implies that ξ ≥
μ+L[x] and thus ξ = μ+L[x].

(i) =⇒ (iii) If M is certified, then U ⇒ = U (χ ), which immediately gives that
ult0(L[x]; U ⇒) must be well-founded.

(iii) =⇒ (ii) Let εU ⇒ : L[x] ∼U ⇒ L[x] be the ultrapower map, and let i < Δ

and a ⊂ [μ ∪ Γ ]<Δ. As the elements of a are fixed points under εU ⇒ , we get
that hL[x](i, a) ⇐ μ ⊂ U ⇒ iff μ ⊂ εU ⇒(hL[x](i, a) ⇐ μ) = hL[x](i, a) ⇐ εU ⇒(μ) iff
μ ⊂ hL[x](i, a), as desired. �

Let us now return to the x-pm (Jβ[x]; ⊂, U ) isolated from ε = εU above. Let α
be a countable ordinal, and let us suppose (Mi , εi j : i ≤ j ≤ α ) to be the putative
iteration of M0 = (Jβ[x]; ⊂, U ) of length α + 1. In the light of Lemma 10.27, it
suffices to show that Mα is transitive. We show:

Claim 10.42 Every Mi , i ≤ α , is transitive and in fact certified.

Proof Of course, if i < α , then Mi is trivially transitive by the definition of
“putative iteration.”

That M0 = (Jβ[x]; ⊂, U ) be certified follows immediately from (iii) =⇒ (i) of
Claim 10.41, applied to ε = εU .

Let us now suppose that i < α and that Mi is certified. We aim to verify that
Mi+1 is transitive and certified.

Let us write Mi = (Jβi [x]; ⊂, Ui ), and let Σi be the critical point of Ui . By
(i) =⇒ (iii) of Claim 10.41, ult0(L[x]; Ui ) is equal to L[x], so that the ultrapower
map ε

L[x]
Ui

= εUi (cf. Problem 10.10) maps L[x] to L[x]. It is easy to verify that
the universe of Mi+1 = ult0(Mi ) is isomorphic to εUi (Jβi [x]). This is because
if [ f ]Ui ⊂ εUi (Jβi [x]), where f ⊂ Σi L[x] ⇐ L[x], then [ f ]Ui = [ f ⇒]Ui for some
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f ⇒ ⊂ Σi Jβi [x] ⇐ Jβi , as βi = Σ
+L[x]
i is regular in L[x]. (cf. Problem 10.10 (b).) In

particular, Mi+1 is transitive.
Let us nowwriteMi+1 = (Jβi+1[x]; ⊂, Ui+1) and let Σi+1 denote the critical point

of Ui+1. We aim to use (ii) =⇒ (i) of Claim 10.41 to verify that Mi+1 is certified.
Let us fix j < Δ and a ⊂ [Σi+1 ∪ Γ ]<Δ. Let a0 ⊂ [Σi+1]<Δ and a1 ⊂ [Γ ]<Δ be

such that a = a0 ∪ a1. Let a0 = [ f ]Ui = εUi ( f )(Σi ), where f : Σi ∼ [Σi ]Card(a0),
f ⊂ L[x].
Let g: Σi ∼ P(Σi ), g ⊂ L[x], be defined by

g(ζ) = hL[x]( j, f (ζ) ∪ a1) ⇐ Σi

for ζ < Σi . Using the Łoś Theorem and the fact that the elements of a1 are fixed
points under εUi , it is straightforward to verify that [g]Ui = hL[x]( j, a) ⇐ Σi+1.

We now get that hL[x](i, a) ⇐ Σi+1 ⊂ Ui+1 iff {ζ < Σi : g(ζ) ⊂ Ui } ⊂ Ui .
Applying (i) =⇒ (ii) of Claim 10.41 yields that this is equivalent to

{ζ < Σi : Σi ⊂ hL[x]( j, f (ζ) ∪ a1)} ⊂ Ui ,

which by X ⊂ Ui iff Σi ⊂ εUi (X) for all X ⊂ P(Σi ) ⇐ L[x] and the fact that the
elements of a1 are fixed points under εUi is in turn equivalent to

Σi+1 ⊂ hL[x]( j, εUi ( f )(Σi ) ∪ a1) = hL[x]( j, a), (10.24)

as desired.
Now let ρ ≤ α be a limit ordinal, and suppose that every Mi , i < ρ, is certified.

We first need to see thatMρ is well-founded.
For i < ρ, let us writeMi = (Jβi [x]; ⊂, Ui ), and let Σi = crit(Ui ). Because every

Mi , i < ρ, is certified, by (i) =⇒ (iii) of Claim 10.41 we know that the iteration
map εi j :Mi ∼ M j extends to an elementary embedding from L[x] to L[x], which
we shall denote by ε̃i j , for all i ≤ j < ρ. (cf. Problem 10.10.)

Let us also write Σρ = supi<ρ Σi . For i ≤ ρ, let let

L[x]
χi∼= hL[x](Σi ∪ Γ ) ∧ L[x]. (10.25)

If i < ρ, then Mi is certified, so that Σi = crit(χi ) and Ui = U (χi ).
For i ≤ j ≤ ρ we may define ε∗

i j : L[x] ∼ L[x] by

ε∗
i j (x) = χ−1

j ∈ χi (x).

This is well-defined and elementary: notice that if i ≤ j ≤ ρ, then ran(χi ) =
hL[x](Σi ∪ Γ ) ⊃ hL[x](Σ j ∪ Γ ) = ran(χ j ).

Claim 10.43 If ρ̄ ≤ ρ is a limit ordinal, then (L[x], (ε∗
i ρ̄

: i < ρ̄)) is the direct limit

of ((L[x]: i < ρ̄), (ε∗
i j : i ≤ j < ρ̄)). Moreover, if i ≤ j < ρ, then ε∗

i j = ε̃i j .

Proof The first part trivially follows from the fact that for a limit ordinal ρ̄ ≤ ρ,
ran(χρ̄) = hL[x](Σρ̄ ∪ Γ ) = ⋃

i<ρ̄ hL[x](Σi ∪ Γ ) = ⋃
i<ρ̄ ran(χi ).
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As for the second part, it therefore suffices to prove this for j = i + 1 < ρ.

· · ·

· · ·

≺

σi

hL[x](κi ∪Γ )

L[x]

∼ =

L[x]

∼ =

hL[x](κi+1 ∪Γ )

σi+1

hL[x](κi ∪{κi}∪Γ )

=

L[x]

∼ =

hL[x](κλ ∪Γ )

σλ

π̃i,i+1

=

π ∗
i,i+1

π ∗
i+1,λ

≺ ≺ ·· · ≺ L[x]≺

We first verify that

hL[x](Σi+1 ∪ Γ ) = hL[x](Σi + 1 ∪ Γ ). (10.26)

To show this, let τ < Σi+1. There is some f : Σi ∼ Σi , f ⊂ L[x], such that τ =
[ f ]Ui = ε̃i i+1( f )(Σi ). AsMi is certified, (the proof of) Claim10.40 yields some j <

Δ and some a ⊂ [Σi ∪Γ ]<Δ such that f = hL[x]( j, a) � Σi . As the elements of a are
not moved by ε̃i i+1, ε̃i i+1( f ) = hL[x]( j, a) � Σi+1. But then τ = ε̃i i+1( f )(Σi ) =
hL[x]( j, a)(Σi ) ⊂ hL[x](Σi + 1 ∪ Γ ). This shows (10.26).

Let us now define

ε̃i i+1( f )(Σi )
χ≡∼ ε∗

i i+1( f )(Σi ), (10.27)

where f : Σi ∼ L[x], f ⊂ L[x]. Let E be either = or ⊂, and let f : Σi ∼ L[x],
g: Σi ∼ L[x], f , g ⊂ L[x]. We then get that

ε∗
i i+1( f )(Σi )Eε∗

i i+1(g)(Σi ) ∅⇒ Σi ⊂ ε∗
i i+1({τ < Σi : f (τ)Eg(τ)})

∅⇒ Σi ⊂ χ−1
i+1 ∈ χi ({τ < Σi : f (τ)Eg(τ)})

∅⇒ Σi ⊂ χi ({τ < Σi : f (τ)Eg(τ)})
(∗)∅⇒ Σi ⊂ ε̃i i+1({τ < Σi : f (τ)Eg(τ)})

∅⇒ ε̃i i+1( f )(Σi )Eε̃i i+1(g)(Σi )

The equivalence marked by (*) holds true as χi witnesses that Mi is certified.
Every element of L[x] is of the form ε̃i i+1( f )(Σi )where f : Σi ∼ L[x], f ⊂ L[x].

By (10.26), ran(χi+1) = hL[x](ran(χi ) ∪ {Σi }), so that every element of L[x] is also
of the form ε∗

i i+1( f )(Σi ), where again f : Σi ∼ L[x], f ⊂ L[x]. By the above
computation, χ , as given by (10.27), is thus a well-defined ⊂-isomorphism of L[x]
with L[x]. But this now implies that ε̃i i+1 = ε∗

i i+1. �
We now easily get that Mρ is transitive, as its universe is equal to ε̃0ρ(Jβ[x]).
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In order to show that Mρ is certified, we use (ii) =⇒ (i) of Claim 10.41.
Let us fix j < Δ and a ⊂ [Σρ ∪ Γ ]<Δ. Let a0 ⊂ [Σρ]<Δ and a1 ⊂ [Γ ]<Δ be such

that a = a0 ∪ a1. Let i < ρ be sufficiently big such that a0 ⊂ [Σi ]<Δ. The elements
of a are then fixed points under ε̃i i+1. We then get that hL[x]( j, a) ⇐ Σρ ⊂ Uρ iff
hL[x]( j, a) ⇐ Σi ⊂ Ui by applying εiρ ⊃ ε̃iρ, iff Σi ⊂ hL[x]( j, a), by (i) =⇒ (ii)
applied toMi , iff Σρ ⊂ hL[x]( j, a) by applying ε̃iρ, as desired. �

It is not hard to see now that Lemmas 10.32 and 10.35 and the proof of Theorem
10.39 yields the following.

Corollary 10.44 (J. Silver) Let x ⊃ Δ, and suppose that x# exists. Let (Mi , εi j : i ≤
j ⊂ OR) denote the iteration of x# of length →, and let Σi be the largest cardinal of
Mi , i ⊂ OR. The following hold true.

(1) L[x] = hL[x]({Σi : i ⊂ OR}).
(2) Let λ be a formula, let k < Δ, and let i1 < . . . < ik and j1 < . . . < jk . Write

i∗ = min({i1, j1}), and let z ⊂ JΣi∗ [x]. Then

L[x] |= λ(z, Σi1 , . . . , Σik ) ∅⇒ L[x] |= λ(z, Σ j1 , . . . , Σ jk ).

(3) Let e:OR ∼ OR be order-preserving. Then εe: L[x] ∼ L[x] is an elementary
embedding, where εe is defined by

εe(hL[x](i, (Σi1 , . . . , Σik ))) = hL[x](i, (Σe(i1), . . . , Σe(ik ))), (10.28)

for i , k < Δ.
(4) Σi /⊂ hL[x](Σi ∪ {Σ j : j > i}) for every i ⊂ OR.
(5) Let ε : L[x] ∼ L[x] be an elementary embedding. Then there is some order-

preserving e:OR ∼ OR such that ε = εe, where εe is defined as in (10.28).

Proof (1) Suppose that L[x] ∞= hL[x]({Σi : i ⊂ OR}). Let Σ be the least ordinal such
that Σ /⊂ hL[x]({Σi : i ⊂ OR}), so that Σ is the critical point of

ε : L[x] ∼= hL[x]({Σi : i ⊂ OR}) ∧ L[x].

If M = (Jβ[x]; ⊂, U ) is derived from ε as in the proof of Lemma 10.19, then the
proof of Theorem 10.39 shows that M is an x-mouse. By Lemma 10.35 and the
definition of x#, cf. Definition 10.37, we must have Σ = Σi for some i ⊂ OR. But
then trivially Σ ⊂ hL[x]({Σi : i ⊂ OR}). Contradiction!

(2) For i ≤ j , εi j � Σi = id and εi j (Σi ) = Σ j , which gives that JΣi [x] ∧
εi j (JΣi [x]) = JΣ j [x]. This immediately yields

JΣi [x] ∧ L[x] (10.29)

for every i ⊂ OR.
Now let � = max{ik, jk}, and write ρ = � · (k + 1). It is easy to see that there

is an order preserving map λ: ik + 1 ∼ ρ with λ � i1 = id and λ(i p) = � · p for
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p = 1, . . . , k, e.g. λ � i1 = id and λ(i p + τ) = (� · p) + τ for p = 1, . . . , k − 1
and i p + τ < i p+1, or p = k and τ = 0. Analoguously, there is an order preserving
map λ∗: jk + 1 ∼ ρ with λ∗ � j1 = id and λ∗( jp) = � · p for p = 1, . . . , k. With
the help of (10.29) and the Shift Lemma 10.32 we then get that

L[x] |= λ(z, Σi1 , . . . , Σik ) ∅⇒ JΣik+1 [x] |= λ(z, Σi1 , . . . , Σik )

∅⇒ JΣρ [x] |= λ(z, Σ�·1, . . . , Σ�·k)
∅⇒ JΣ jk+1 [x] |= λ(z, Σ j1 , . . . , Σ jk )

∅⇒ L[x] |= λ(z, Σ j1 , . . . , Σ jk ),

as desired.
(3) This is immediate by (2).
(4) Fix i ⊂ OR. Suppose that Σi ⊂ hL[x]({Σ j : j ∞= i}), say

Σi = hL[x](i∗, (Σi1 , . . . , Σi p , Σi p+1 , . . . Σik )),

where i∗ < Δ and i1 < · · · < i p < i < i p+1 < · · · < ik . Using (2), we may then
derive both

Σi = hL[x](i∗, (Σi1 , . . . , Σi p , Σi p+1+1, . . . Σik+1))

and
Σi+1 = hL[x](i∗, (Σi1 , . . . , Σi p , Σi p+1+1, . . . Σik+1)),

which is nonsense. Therefore, Σi /⊂ hL[x]({Σ j : j ∞= i}).
But then if Σ is the least ordinal with Σ /⊂ hL[x]({Σ j : j ∞= i}), then Σ = Σ j for

some j ⊂ OR as in the proof of (1), and hence j = i , i.e., Σ = Σi . We have shown
that

Σi /⊂ hL[x]({Σ j : j ∞= i}) = hL[x](Σi ∪ {Σ j : j > i}).

(5) By (1), it suffices to prove that for every i ⊂ OR there is some j ⊂ OR with
ε(Σi ) = Σ j . Let us fix i ⊂ OR, and let us write Σ = ε(Σi ). Let

L[x] χ∼= hL[x]((Σ + 1) ∪ ran(ε)) = hL[x]((Σ + 1) ∪ {ε(Σ j ): j ⊂ OR}) ∧ L[x].

Let ρ be a limit ordinal with Σρ > Σ . Let i∗ < Δ, β ⊂ [Σi + 1]<Δ, and i < �1 <

. . . < �n < ρ ≤ �n+1 < . . . < �k . If hL[x](i∗, (β, Σ�1 , . . . , Σ�k )) < Σρ, then by (2)
we must have that

hL[x](i∗, (β, Σ�1 , . . . , Σ�k )) < Σ�n+1,

and therefore
hL[x]((Σi + 1) ∪ {Σ�1, . . . , Σ�k }) ⇐ Σρ ⊃ Σ�n+1,

so that by the elementarity of ε ,
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hL[x]((Σ + 1) ∪ {ε(Σ�1), . . . , ε(Σ�k )}) ⇐ ε(Σρ) ⊃ ε(Σ�n+1).

This implies that if ε”Σρ ⊃ Σρ, then

hL[x]((Σ + 1) ∪ {ε(Σ�): � ⊂ OR}) ⇐ ε(Σρ) ⊃ Σρ. (10.30)

If in addition Σρ is a cardinal (in V ), so that {Σ j : j < ρ} = Σρ, then

otp(hL[x]((Σ + 1) ∪ {ε(Σ�): � ⊂ OR}) ⇐ ε(Σρ)) = Σρ. (10.31)

(10.30) and (10.31) together imply that χ−1 ∈ ε(Σρ) = Σρ.
Let χ = χ−1 ∈ ε : L[x] ∼ L[x], so that χ(Σi ) = Σ . If Σ ∞= Σ j for all j ⊂ OR,

then by (1),

Σ = hL[x](i∗, (β, Σ�1 , . . . , Σ�k )) (10.32)

for some i∗, k < Δ and β ⊂ [Σ]<Δ. By (2), we may assume here that every Σ�p ,
p = 1, . . . , k, is a cardinal (in V ) above Σ with ε”Σ�p ⊃ Σ�p , so that χ(Σ�p ) = Σ�p .
As χ(Σi ) = Σ , (10.32) and the elementarity of χ then yield that

∃β⇒ < Σi Σi = hL[x](i∗, (β⇒, Σ�1 , . . . , Σ�k )).

This contradicts (4)! �
In the light of Corollary 10.44, the club class {Σi : i ⊂ OR} is called the class

of Silver indicernibles for L[x]. Theorem 10.39 and Corollary 10.44 give that the
existence of x# is equivalent to the non-rigidity of L[x]. Jensen’s Covering Lemma,
cf. Theorem 11.56, will produce a much deeper equivalence.

10.3 Extenders

We need to introduce “extenders” which generalize measures on measurable cardi-
nals, cf. Definition 4.54, and which allow ultrapower constructions which generalize
the one from the proof of Theorem 4.55, (1) =⇒ (3), cf. Theorem 10.48. They will
be used in the proof of Jensen’s Covering Lemma, cf. Theorem 11.56, as well as in
the proof of projective determinacy, cf. Theorem 13.7.

For the sake of this section, by a “transitive model M of a sufficiently large
fragment ofZFC” wemean a transitivemodel M of the statements listed in Corollary
5.18, i.e., (Ext), (Fund), (Inf), (Pair), (Union), the statement that every set is an
element of a transitive set, σ0-comprehension, and “≥x≥y x × y exists,” together
with (AC) in the form that every set can bewell-ordered.We allow M to be amodel of
the form (M; ⊂, A1, . . . , An), where Ai ⊃ M<Δ, 1 ≤ i ≤ n, are predicates, in which
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case we understand σ0-comprehension to be σ0-comprehension in the language of
(M; ⊂, A1, . . . , An) (which implies that (M; ⊂, A1, . . . , An) be amenable, cf. p. 71).

In practice, the results of this section will be applied to models M which are
either acceptable J -structures (cf. Definitions 5.24 and 11.1) or to inner models (cf.
Definition 4.51).

Definition 10.45 Let M be a transitive model of a sufficiently large fragment of
ZFC. Then E = (Ea : a ⊂ [ν]<Δ) is called a (Σ, ν)-extender over M with critical
points (μa : a ⊂ [ν]<Δ) provided the following hold true.

(1) (Ultrafilter property) For a ⊂ [ν]<Δ we have that Ea is an ultrafilter on the set
P([μa]Card(a)) ⇐ M which is < Σ-closed with respect to sequences in M , i.e.,
if β < Σ and (Xi : i < β) ⊂ M is such that Xi ⊂ Ea for every i < β, then⋂

i<β Xi ⊂ Ea . Moreover, μa is the least μ such that [μ]Card(a) ⊂ Ea .
(2) (Coherency) For a, b ⊂ [ν]<Δ with a ⊃ b and for X ⊂ P([μa]Card(a)) ⇐ M we

have that
X ⊂ Ea ∅⇒ Xab ⊂ Eb.

(3) (Uniformity) μ{Σ} = Σ .
(4) (Normality) Let a ⊂ [ν]<Δ and f : [μa]Card(a) ∼ μa with f ⊂ M . If

{u ⊂ [μa]Card(a): f (u) < max(u)} ⊂ Ea

then there is some ξ < max(a) such that

{u ⊂ [μa]Card(a∪{ξ}): f a,a∪{ξ}(u) = ua∪{ξ}
ξ } ⊂ Ea∪{ξ}.

We write χ(E) = sup{μa + 1: a ⊂ [ν]<Δ}. The extender E is called short if
χ(E) = Σ + 1; otherwise E is called long.

This definition as well as the discussion to follow makes use of the following
notational conventions. Let b = {ξ1 < ... < ξn}, and let a = {ξ j1 < ... < ξ jm } ⊃ b.
If u = {τ1 < ... < τn} then we write ub

a for {τ j1 < ... < τ jm }; we also write ub
ξi

for

τi . If X ⊂ P([μa]Card(a)) then we write Xab for {u ⊂ [μb]Card(b): ub
a ⊂ X}. Finally,

if f has domain [μa]Card(a) then we write f a,b for that g with domain [μb]Card(b)

such that g(u) = f (ub
a) if ub

a ⊂ [μa]Card(a) and g(u) = ∩ otherwise. Finally, we
write pr for the function which maps {ξ} to ξ (i.e., pr = ⋃

).
Notice that if E is a (Σ, ν)-extender over M with critical points μa , a ⊂ [ν]<Δ,

and if N is another transitive model of a sufficiently large fragment of ZFC such that
P(μa) ⇐ N = P(μa) ⇐ M for all a ⊂ [ν]<Δ, then E is also an extender over N .

Lemma 10.46 Let M and N be transitive models of a sufficiently large fragment of
ZFC, and let ε : M ∼σ0 N be cofinal with critical point Σ . Let ν ≤ N ⇐ OR. For
each a ⊂ [ν]<Δ let μa be the least μ ≤ M ⇐ OR such that a ⊃ ε(μ), and set

Ea = {X ⊂ P([μa]Card(a)) ⇐ M : a ⊂ ε(X)}.
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Then E = (Ea : a ⊂ [ν]<Δ) is a (Σ, ν)-extender over M.

Proof We have to verify conditions (1) through (4) of Definition 10.45.
(1) Fix a ⊂ [ν]<Δ. As a ⊃ ε(μa), a ⊂ ε([μa]Card(a)) ⇐ M) = [ε(μa)]Card(a)) ⇐

N . Ifμ < μa , then a \ε(μ) ∞= ∩, so that a /⊂ ε([μ]Card(a))⇐ M) = [ε(μ)]Card(a))⇐
N , i.e., [μ]Card(a) /⊂ Ea .

It is easy to see that X ⊂ Ea and Y ∗ X , Y ⊂ P([μa]Card(a))⇐ M imply Y ⊂ Ea ,
and that∩ /⊂ Ea . If X ⊂ P([μa]Card(a))⇐M , thenε(X)∪ε(([μa]Card(a)⇐M)\X) =
ε([μa]Card(a)) ⇐ M), so that X ⊂ Ea or ([μa]Card(a) ⇐ M) \ X ⊂ Ea .

Let (Xi : i < β) ⊂ M , where β < Σ and Xi ⊂ Ea for each i < β. Then
a ⊂ ⋂

i<β ε(Xi ) = ε(
⋂

i<β Xi ), i.e.,
⋂

i<β Xi ⊂ Ea .
(2) Let a ⊃ b ⊂ [ν]<Δ and X ⊂ P([μa]Card(a))⇐ M . Then X ⊂ Ea iff a ⊂ ε(X)

iff b ⊂ ε(Xab) iff Xab ⊂ Eb.
(3) Whereas {Σ} ⊃ ε(Σ), {Σ} is not a subset of ε(μ) = μ whenever μ < Σ . Thus

μ{Σ} = Σ .
(4) Let a ⊂ [ν]<Δ and f : [μa]Card(a) ∼ μa with f ⊂ M . Suppose that

a ⊂ ε({u ⊂ [μa]Card(a): f (u) < max(u)}),

which means that
ε( f )(a) < max(a).

Set ξ = ε( f )(a). Then

a ∪ {ξ} ⊂ ε({u ⊂ [μa]Card(a∪{ξ}): f a,a∪{ξ}(u) = ua∪{ξ}
ξ }),

as desired. �

Definition 10.47 Ifε : M ∼ N , E , Σ, and ν are as in the statement of Lemma 10.46,
then E is called the (Σ, ν)-extender derived from ε . If ν = N ⇐ OR, then we shall
denote this extender by Eε .

Theorem 10.48 Let M be a transitive model of a sufficiently large fragment of ZFC,
and let E = (Ea : a ⊂ [ν]<Δ) be a (Σ, ν)-extender over M. There are then N and ε

such that the following hold true.

(a) ε : M ∼σ0 N is cofinal and has critical point Σ ,
(b) the well-founded part wfp(N ) of N is transitive and ν ⊃ wfp(N ),
(c) N = {ε( f )(a): a ⊂ [ν]<Δ ⊕ f : [μa]Card(a) ∼ M ⊕ f ⊂ M}, and
(d) for a ⊂ [ν]<Δ we have that X ⊂ Ea if and only if X ⊂ P([μa]Card(a)) ⇐ M and

a ⊂ ε(X).

Moreover, N and ε are unique up to isomorphism.

Proof We do not construe (c) in the stament of this Theorem to presuppose that
N be well-founded; in fact, this statement makes perfect sense even if N is not
well-founded.
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Let us first argue that N and ε are unique up to isomorphism. Suppose that N , ε
and N ⇒, ε ⇒ are both as in the statement of the Theorem. We claim that

ε( f )(a) ≡∼ ε ⇒( f )(a), (10.33)

where a ⊂ [ν]<Δ and f : [μa]Card(a) ∼ M , f ⊂ M , defines an ⊂-isomorphism from
N onto N ⇒. Notice that for a, b ⊂ [ν]<Δ and f : [μa]Card(a) ∼ M , g: [μb]Card(a) ∼
M , f , g ⊂ M , we have that ε( f )(a) ⊂ ε(g)(b) in N if and only if, setting c = a ∪b,

c ⊂ ε({u ⊂ [μc]Card(c): f a,c(u) ⊂ gb,c(u)}),

which by (d) yields that

{u ⊂ [μc]Card(c): f a,c(u) ⊂ gb,c(u)} ⊂ Ec,

and hence by (d) once more that

c ⊂ ε ⇒({u ⊂ [μc]Card(c): f a,c(u) ⊂ gb,c(u)}),

i.e., ε ⇒( f )(a) ⊂ ε ⇒(g)(b) in N ⇒. The same reasoning applies with “=” instead of
“⊂,” so that we indeed get that (10.33) produces an ⊂-isomorphism from N onto N ⇒.

The existence of N and ε is shown by an ultrapower construction, similar to the
proof of Theorem 4.55, (1) =⇒ (3).

Let us assume that M is of the form (M; ⊂, A). Let us set

D = {(a, f ): a ⊂ [ν]<Δ ⊕ f : [μa]Card(a) ∼ M ⊕ f ⊂ M}.

For (a, f ), (b, g) ⊂ D let us write

(a, f ) ∼ (b, g) ∅⇒ {u ⊂ [μc]Card(c): f a,c(u) = gb,c(u)} ⊂ Ec, for c = a ∪ b.

We may easily use (1) and (2) of Definition 10.45 to see that ∼ is an equivalence
relation on D. If (a, f ) ⊂ D then let us write [a, f ] = [a, f ]M

E for the equivalence
class {(b, g) ⊂ D: (a, f ) ∼ (b, g)}, and let us set

D̃ = {[a, f ]: (a, f ) ⊂ D}.

Let us also define, for [a, f ], [b, g] ⊂ D̃,

[a, f ] ⊂̃ [b, g] ∅⇒ {u ⊂ [μc]Card(c): f a,c(u) ⊂ gb,c(u)} ⊂ Ec for c = a ∪ b and

Ã([a, f ]) ∅⇒ {u ⊂ [μa]Card(a): f (u) ⊂ A} ⊂ Ea

Notice that the relevant sets are members of M , as M is a model of a sufficiently
large fragment of ZFC. Moreover, by (1) and (2) of Definition 10.45, ⊂̃ and Ã, are
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well-defined. Let us set
N = (D̃; ⊂̃, Ã).

Claim 10.49 ( Łoś Theorem) Let λ(v1, ..., vk) be a σ0 formula (in the language of
M), and let (a1, f1), ..., (ak, fk) ⊂ D. Then

N |= λ([a1, f1], ..., [ak, fk]) ∅⇒
{u ⊂ [μc]Card(c); M |= λ( f a1,c

1 (u), ..., f ak ,c
k (u))} ⊂ Ec for c = a1 ∪ . . . ∪ ak .

Proof Notice again that the relevant sets are members of M . Claim 10.49 is shown
by induction on the complexity of λ, by exploiting (1) and (2) of Definition 10.45.
Let us illustrate this by verifying the direction from right to left in the case that, say,
λ ≡ ∃v0 ⊂ v1 ν for some σ0 formula ν .

We assume that, setting c = a1 ∪ . . . ∪ ak ,

{u ⊂ [μc]Card(c): M |= ∃v0 ⊂ f a1,c
1 (u) ν(v0, f a1,c

1 (u), . . . , f ak ,c
k (u))} ⊂ Ec.

Let us define f0: [μc]Card(c) ∼ ran( f1) ∪ {∩} as follows, where <ran( f1)⊂ M is a
well-ordering of ran( f1).

f0(u) =


⎧

⎪

the <ran( f1) -smallest x ⊂ ran( f1) with

M |= ν(x, f a1,c
1 , . . . , f ak ,c

k (u)) if some such x exists,

∩ otherwise.

The point is that f0 ⊂ M . But we then have that

{u ⊂ [μc]Card(c): M |= f0(u) ⊂ f a1,c
1 (u)⊕ν( f0(u), f a1,c

1 (u), . . . , f ak ,c
k (u))} ⊂ Ec,

which inductively implies that

N |= [c, f0] ⊂ [a1, f1] ⊕ ν([c, f0], [a1, f1], . . . , [ak, fk]),

and hence that

N |= ∃v0 ⊂ [a1, f1] ν(v0, [a1, f1], ..., [ak, fk]),
as desired. �

Given Claim 10.49, we may and shall from now on identify, via theMostowski
collapse, the well-founded part wfp(N ) of N with a transitive structure. In particular,
if [a, f ] ⊂ wfp(N ) then we identify the equivalence class [a, f ]with its image under
the Mostowski collapse.

Let us now define ε : M ∼ N by

ε(x) = [0, cx ], where cx : {∩} = [μ0]0 ∼ {x}.
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We aim to verify that N , ε satisfy (a), (b), (c), and (d) from the statement of Theorem
10.49.

Claim 10.50 If β < ν and [a, f ] ⊂̃ [{β}, pr] then [a, f ] = [{ξ}, pr] for some ξ < β.

Proof Let [a, f ] ⊂̃ [{β}, pr]. Set b = a ∪ {β}. By the Łoś Theorem 10.49,

{u ⊂ [μb]Card(b): f a,b(u) ⊂ pr{β},b(u)} ⊂ Eb.

By (4) of Definition 10.45, there is some ξ < β such that, setting c = b ∪ {ξ},

{u ⊂ [μc]Card(c): f a,c(u) = pr{ξ},c(u)} ⊂ Ec,

and hence, by the Łoś Theorem again, [a, f ] = [{ξ}, pr]. �
Claim 10.50 implies, via a straightforward induction, that

[{β}, pr] = β for β < ν. (10.34)

In particular, (b) from the statement of Theorem 10.48 holds true.

Claim 10.51 If a ⊂ [ν]<Δ then [a, id] = a.

Proof If [b, f ] ⊂̃ [a, id] then by the Łoś Theorem, setting c = a ∪ b,

{u ⊂ [μc]Card(c): f b,c(u) ⊂ uc
a} ⊂ Ec.

However, as Ec is an ultrafilter, there must then be some β ⊂ a such that

{u ⊂ [μc]Card(c): f b,c(u) = uc
β} ⊂ Ec,

and hence by the Łoś Theorem and (10.34)

[b, f ] = [{β}, pr] = β.

On the other hand, if β ⊂ a then it is easy to see that β ⊂ [a, id]. �

Claim 10.52 [a, f ] = ε( f )(a).

Proof Notice that this statement makes sense even if [a, f ] /⊂ wfp(N ).
Let b = a ∪ {0}. We have that

{u ⊂ [μb]Card(b): f a,b(u) = ((c f )
∩,b(u))(ida,b(u))} = [μb]Card(b) ⊂ Eb,

by (1) of Definition 10.45, and therefore by the Łoś Theorem and Claim 10.51,

[a, f ] = [0, c f ]([a, id]) = ε( f )(a).
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�
Claim 10.52 readily implies (c) from the statement of Theorem 10.48.

Claim 10.53 Σ = crit(ε).

Proof Let us first show that ε � Σ = id. We prove that ε(τ) = τ for all τ < Σ by
induction on τ .

Let τ < Σ . Suppose that [a, f ] ⊂̃ ε(τ) = [0, cτ ]. Set b = a ∪ {τ}. Then

{u ⊂ [μb]Card(b): f a,b(u) < τ} ⊂ Eb.

As Eb is < Σ-closed with respect to sequences in M (cf. (1) of Definition 10.45),
there is hence some τ̄ < τ such that

{u ⊂ [μb]Card(b): f a,b(u) = τ̄} ⊂ Eb,

and therefore [a, f ] = ε(τ̄ )which is τ̄ by the inductive hypothesis. Henceε(τ) ⊃ τ .
It is clear that τ ⊃ ε(τ).

We now prove that ε(Σ) > Σ (if ε(Σ) /⊂ wfp(N ) we mean that Σ⊂̃ε(Σ)) which
will establish Claim 10.53. Well, μ{Σ} = Σ , and

{u ⊂ [Σ]1: pr(u) < Σ} = [Σ]1 ⊂ E{Σ},

fromwhich it follows, using theŁoś Theorem, that Σ = [{Σ}, pr] < [0, cΣ ] = ε(Σ).�
The following, together with the previous Claims, will establish (a) from the

statement of Theorem 10.48.

Claim 10.54 For all [a, f ] ⊂ N there is some y ⊂ M with [a, f ] ⊂̃ ε(y).

Proof It is easy to see that we can just take y = ran( f ). �
It remains to prove (d) from the statement of Theorem 10.48. Let X ⊂ Ea . By (1)

of Definition 10.45,

X = {u ⊂ [μa]Card(a): u ⊂ X} ⊂ Ea,

which, by the Łoś Theorem and Claim 3, gives that a = [a, id] ⊂̃ [0, cX ] = ε(X).
On the other hand, suppose that X ⊂ P([μa]Card(a)) ⇐ M and a ⊂ ε(X). Then

by Claim 3, [a, id] = a ⊂ ε(X) = [0, cX ], and thus by the Łoś Theorem

X = {u ⊂ [μa]Card(a): u ⊂ X} ⊂ Ea .

We have shown Theorem 10.48. �
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Definition 10.55 Let M , E , N , and ε be as in the statement of Theorem 10.48. We
shall denote N by ult0(M; E) and call it the (σ0-) ultrapower of M by E , and we
call ε : M ∼ N the (σ0-) ultrapower map (given by E). We shall also write ε M

E or
εE for ε .

We now turn towards criteria for Ult0(M; E) being well-founded. (This will also
be a big issue in the proof of Theorem 11.56.) The easiest such criterion is given by
when E is a derived extender.

Lemma 10.56 Let ε : M ∼ N, Σ, and ν be as in the statement of Theorem 10.46, and
let E be the (Σ, ν)-extender derived from ε (cf. Definition 10.47). Then ult0(M; E)

is well-founded, and in fact there is an embedding k: ult0(M; E) ∼ N such that
ε = k ∈ εE and k � ν = id.

Proof We define k: ult0(M; E) ∼ N by setting k([a, f ]) = ε( f )(a) for a ⊂ [ν]<Δ

and f : [μa]Card(a) ∼ M , f ⊂ M . We have that k is a well-defined σ0-elementary
embedding. To see this let λ be σ0, and a j ⊂ [ν]<Δ and f j : [μa j ]Card(a j ) ∼ M ,
f j ⊂ M , for j ⊂ {1, . . . , k}. Set a = ⋃

j⊂{1,...,k} a j . We then get that

ult0(M; E) |= λ([a1, f1], . . . , [ak, fk]) ∅⇒
{u ⊂ [μa]Card(a): M |= λ( f a1,a

1 (u), . . . , f ak ,a
k (u))} ⊂ Ea ∅⇒

a ⊂ ε({u ⊂ [μa]Card(a): M |= λ( f a1,a
1 (u), . . . , f ak ,a

k (u))}) ∅⇒
a ⊂ {u ⊂ [ε(μa)]Card(a): N |= λ(ε( f1)

a1,a(u), . . . , ε( fk)
ak ,a(u))}) ∅⇒

N |= λ(ε( f1)(a1), . . . , ε( fk)(ak)).

We have that k(εE (x)) = k([∩, cx ]) = ε(cx )(∩) = cε(x)(∩) = ε(x) for all x ⊂ M ,
so that ε = k ∈ εE . As k(ξ) = k([pr, {ξ}]) = ε(pr)({ξ}) = ξ for every ξ < ν, we
have that k � ν = id. �

Let us consider extenders over V .

Definition 10.57 Let F be a (Σ, ν)-extender over V , and suppose that ult0(V ; F) is
well-founded. Say ult0(V ; F) ∼= M , where M is transitive. The strength of F is then
the largest ordinal β such that Vβ ⊃ M .

In the situation of Definition 10.57, the strength of F is always at least Σ + 1. If
F is derived from ε : V ∼ M (in the sense of Definition 10.47), where Σ = crit(ε)

and Vβ ⊃ M for some β > Σ + 1, i.e., ε witnesses that Σ is β-strong (cf. Definition
4.60), then the strength of F may be β; more precisely:

Lemma 10.58 Let ε : V ∼ M be an non-trivial elementary embedding, where M
is transitive. Let Σ = crit(ε) < β ≤ ε(Σ), and suppose that Vβ ⊃ M. Let ν ≤ ε(Σ)

be least such that ν ≥ β and ν is inaccessible in M, and let F be the short (Σ, ν)-
extender over V derived from ε . Then ult0(V ; F) is well-founded, and the strength
of F is at least β.
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Proof Wemay pick some E ⊃ Σ ×Σ such that for every inaccessible cardinal α ≤ Σ ,

(α ; E ⇐ (α × α )) ∼= (Vα ; ⊂).

Identifying N with ult0(V ; F), we let

iF : V ∼F N

be the ultrapower map, and we let

k: N ∼ M

be the factor map which is defined as in the proof of Lemma 10.56 by k(iF ( f )(a)) =
ε( f )(a) for a ⊂ [ν]<Δ and f : [Σ]Card(a) ∼ V . We have that k ∈ iF = ε and
k � ν = id.

By the elementarity of ε ,

(α ;ε(E) ⇐ (α × α )) ∼= ((Vα )M ; ⊂)

for every α ≤ ε(Σ) which is inaccessible in M . In particular,

(ν;ε(E) ⇐ (ν × ν)) ∼= ((Vν)
M ; ⊂). (10.35)

By k � ν = id, iF (E) ⇐ (ν × ν) = ε(E) ⇐ (ν × ν). Hence ε(E) ⇐ (ν × ν) ⊂ N . As
β ≤ ν, this gives Vβ = (Vβ)M ⊃ (Vν)

M ⊂ N by (10.35). �
Lemma10.58 says that short extendersmay be used towitness that a given cardinal

is strong. On the other hand, Lemma 10.62 below will tell us that long extenders may
be used to witness the supercompactness (cf. Definition 4.62) of a given cardinal.

Definition 10.59 Let F be a short (Σ, ν)-extender over V , and let ρ ≤ Σ . Then F is
calledρ-closed iff for all {ai : i < ρ} ⊃ [ν]<Δ there are b ⊂ [ν]<Δ and g: [Σ]Card(b) ∼
V such that for every i < ρ,

{u ⊂ [Σ]Card(b∪ai ): gb∪ai ,b(u)(i) = ub∪ai
ai

} ⊂ Eb∪ai . (10.36)

The following Lemma may be construed as strengthening of Lemma 4.63

Lemma 10.60 Let F be a short (Σ, ν)-extender over V , let ρ ≤ Σ , and suppose that
F is ρ-closed and N = ult0(V ; F) is transitive. Then N is ρ-closed, i.e.,

ρN ⊃ N .

Proof Let {xi : i < ρ} ⊃ N , say xi = εE ( fi )(ai ) for i < ρ. We aim to prove that
(xi : i < ρ) ⊂ N . Let b and g be as in Definition 10.59. We may assume that ρ ⊂ b.
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Let H : [Σ]Card(b) ∼ V be such that for every u ⊂ [Σ]Card(b), H(u) is a function
with domain ub

ρ and for every i < ρ,

H(u)(i) = fi (g(u)(i)).

Then εE (H)(b) is a function with domain ρ, and by (10.36) and the Łoś Theorem,
for every i < ρ,

εE (H)(b)(i) = εE ( fi )(εE (g)(b)(i)) = εE ( fi )(ai ) = xi .

This shows that (xi : i < ρ) ⊂ N . �

Lemma 10.61 Let ε : V ∼ M be an non-trivial elementary embedding, where M
is transitive. Let Σ = crit(ε) < ν ≤ ε(Σ), and suppose that ν is an inaccessible
cardinal in V and Vν ⊃ M. Let F be the short (Σ, ν)-extender over V derived from
ε . Then ult0(V ; F) is well-founded and F is Σ-closed.

Proof This is an immediate consequence of Lemma 10.58, and we may in fact
just continue the proof of Lemma 10.58, where now β = ν and ν is inaccessible in
V (not only in M). We have that Vβ ⊂ N = ult0(V ; F). Let {ai : i < Σ} ⊃ [ν]<Δ.
Then (ai : i < Σ) ⊂ N , and hence there are b ⊂ [ν]<Δ and f : [Σ]Card(b) ∼ V such
that (ai : i < Σ) = εE (g)(b)(i) for every i < Σ . The Łoś Theorem 10.49 then yields
that b and f are as in (10.36). �

Lemma 10.62 Let Σ be ρ-supercompact, where ρ ≥ Σ . There is then a long extender
E witnessing that Σ is ρ-supercompact, i.e., ult0(V ; E) is transitive and if εE : V ∼
N = ult0(V ; E) is the ultrapower embedding, then εE (Σ) > ρ and ρN ⊃ N.

Proof Let us fix an elementary embedding

ε : V ∼ M,

where M is an inner model, Σ = crit(ε), ε(Σ) > ρ, and ρM ⊃ M . We aim to derive
a long extender E from ε in such a way that the ultrapower of V by E is also closed
under ρ-sequences.

Set α = 2ρ, so that α ρ = α . Set ν = ε(α ), and let E be the (Σ, ν)-extender over
V derived from ε . Let

εE : V ∼ ult0(V ; E)

be the ultrapower embedding, and let k: ult0(V ; E) ∼ M be the factor map which is
defined as in the proof of Lemma 10.56 by k([a, f ]) = ε( f )(a) for a ⊂ [ν]<Δ and
f : [μa]Card(a) ∼ V . We may identify ult0(V ; E)with its transitive collapse, and we
will denote it by N . We have that ε = k ∈ εE , and k � ν = id.

Let e: α ∼ [α ]≤ρ be a bijection. Then ε(e): ν ∼ [ν]≤ε(ρ) ⇐ M is bijective.
As ρM ⊃ M , we have that [ν]ρ ⇐ V ⊃ M , so that [ν]ρ ⇐ V ⊃ ran(ε(e)). But
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k � ν = id and ε = k ∈ εE , which implies that εE � α = ε � α , so in particular
εE (Σ) = ε(Σ) > ρ. Also εE (e) = ε(e). Therefore,

[ν]ρ ⇐ V ⊃ ran(εE (e)). (10.37)

By (10.37), εE”ρ = ε”ρ ⊂ N = ult0(V ; E), which gives that εE � ρ = ε � ρ ⊂
N , and we may pick some a ⊂ [ν]<Δ and f : [μa]Card(a) ∼ V with

εE � ρ = ε � ρ = εE ( f )(a). (10.38)

Now let (xi : i < ρ) ⊃ N . We aim to show that (xi : i < ρ) ⊂ N . Let xi = [ai , fi ]
for i < ρ, where ai ⊂ [ν]<Δ and fi : [μai ]Card(ai ) ∼ V . Let us write G for the
function with domain ρ and G(i) = ai for i < ρ, i.e., G = (ai : i < ρ). By (10.37),
(ai : i < ρ) ⊂ N , so that we may pick some b ⊂ [ν]<Δ and g: [μb]Card(b) ∼ V with

G = (ai : i < ρ) = εE (g)(b). (10.39)

Set c = a ∪ b, and let us define H : [μc]Card(c) ∼ V as follows. For each u ⊂
[μc]Card(c), we let H(u) be a function with domain ρ such that for i < ρ,

H(u)(i) = fi (g
b,c(u)(( f a,c(u))−1(i))). (10.40)

Here, we understand that if f a,c(u) is an injective function with i in its domain, then
( f a,c(u))−1(i) is the preimage of i under that function, and ( f a,c(u))−1(i) = ∩
otherwise.

We get that εE (H)(c): εE (ρ) ∼ N , and for each i < ρ,

εE (H)(c)(εE (i)) = εE ( fi )(εE (gb,c)(c)((εE ( f a,c)(c))−1)(εE (i)))

= εE ( fi )(εE (g)(b)((εE ( f )(a))−1)(εE (i)))

= εE ( fi )(εE (g)(b)(εE � ρ)−1)(εE (i)))

= εE ( fi )(G(i))

= εE ( fi )(ai ) = xi .

Using εE � ρ ⊂ N once more, we then get that the function with domain ρ which
maps

i ≡∼ εE (H)(c)((εE � ρ)(i)) = xi

also exists inside N . We have shown that (xi : i < ρ) ⊂ N . �
The following concepts and techniques will be refined in the next section.

Definition 10.63 Let M be a transitive model of a sufficiently large fragment of
ZFC, and let E = (Ea : a ⊂ [ν]<Δ) be a (Σ, ν)-extender over M . Let ρ < Card(Σ)

be an infinite cardinal (in V ). Then E is called ρ-completeprovided the following
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holds true. Suppose that ((ai , Xi ): i < ρ) is such that Xi ⊂ Eai for all i < ρ. Then
there is some order-preserving map θ : ⋃

i<ρ ai ∼ χ(E) such that θ"ai ⊂ Xi for
every i < ρ. E is called countably complete iff E is ∪0-complete, and E is called
continuum-complete iff E is 2∪0 -complete.

Lemma 10.64 Let M be a transitive model of a sufficiently large fragment of ZFC,
and let E = (Ea : a ⊂ [ν]<Δ) be a (Σ, ν)-extender over M. Let ρ < Card(Σ) be an
infinite cardinal. Then E is ρ-complete if and only if for every U ∧σ0 Ult0(M; E) of
size ρ there is some λ: U ∼σ0 M such that λ ∈ εE (x) = x whenever εE (x) ⊂ U.

Proof “=⇒”: Let U ∧σ0 Ult0(M; E) be of size ρ. Write U = {[a, f ]: (a, f ) ⊂ Ū }
for some Ū of size ρ. Let ((ai , Xi ); i < ρ) be an enumeration of all pairs (c, X)

such that there is a σ0 formula ν and there are (a1, f1), ..., (ak, fk) ⊂ Ū with
c = a1 ∪ ... ∪ ak and

X = {u ⊂ [μc]Card(c): M |= ν( f a1,c
1 (u), ..., f ak ,c

k (u))} ⊂ Ec.

Let θ : ⋃
i<ρ ai ∼ χ(E) be order-preserving such that θ"ai ⊂ Xi for every i < ρ.

Let us define λ: U ∼ M by setting λ([a, f ]) = f (θ"(a)) for (a, f ) ⊂ Ū .
We get that λ is well-defined and σ0-elementary by the following reasoning. Let

ν(v1, ..., vk) be σ0, and let [a j , f j ] ⊂ U , 1 ≤ j ≤ k. Set c = a1 ∪ ... ∪ ak . We then
get that

U |=ν([a1, f1], ..., [ak, fk]) ∅⇒
Ult0(M; E) |=ν([a1, f1], ..., [ak, fk]) ∅⇒

{u ⊂ [μc]Card(c): M |=ν( f a1,c
1 (u), ..., f ak ,c

k (u))} ⊂ Ec ∅⇒
θ ⇒⇒c ⊂ {u ⊂ [μc]Card(c): M |= ν( f a1,c

1 (u), ..., f ak ,c
k (u))} ∅⇒

M |=ν( f1(θ
⇒⇒a1), ..., fk(θ

⇒⇒ak)).

We also get that λ ∈ εE (x) = λ([∩, cx ]) = cx (∩) = x .
“∅=”: Let ((ai , Xi ): i < ρ) be such that Xi ⊂ Eai for all i < ρ. Pick U ∧σ0

Ult0(M; E) with {(ai , Xi ): i < ρ} ⊆ U , Card(U ) = ρ, and let λ: U ∼σ0 M
be such that λ ∈ εE (x) = x whenever εE (x) ⊂ U . Set θ = λ �

⋃
i<ρ ai . Then

θ ⇒⇒ai = λ(ai ) ⊂ λ ∈ εE (Xi ) = Xi for all i < ρ. Clearly, ran(θ ) ⊆ χ(E). �

Corollary 10.65 Let M be a transitive model of a sufficiently large fragment of
ZFC, and let E be a countably complete (Σ, ν)-extender over M. Then Ult0(M; E)

is well-founded.

Lemma 10.66 Let ρ be an infinite cardinal, and let Ω be regular. Let ε : H̄ ∼ HΩ ,
where H̄ is transitive and ρ H̄ ⊆ H̄ . Suppose that ε ∞= id, and set Σ = crit(ε). Let
M be a transitive model of a sufficiently large fragment of ZFC, let ρ be regular in
M, and suppose that H M

ρ ⊆ H̄ . Set ν = supε"ρ, and let E be the (Σ, ν)-extender

over M derived from ε � H M
ρ . Then E is ρ-complete.
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Proof Let ((ai , Xi ): i < ρ) be such that Xi ⊂ Eai , and hence ai ⊂ ε(Xi ), for all
i < ρ. As ρ H̄ ⊆ H̄ , (Xi : i < ρ) ⊂ H̄ . Let χ : ⋃

i<ρ ai ∼= α = otp(
⋃

i<ρ ai ) be the
transitive collapse; notice that α < ρ+ < Σ . For each i < ρ let āi = χ ⇒⇒ai . We have
that (āi : i < ρ) ⊂ H̄ . But now

HΩ |= ∃ order-preserving θ : α∼OR ≥i < ρ θ ⇒⇒āi ⊂ ε((X j ; j < ρ))(i),

as witnessed by χ−1. Therefore,

H̄ |= ∃ order-preserving θ : α∼OR ≥i < ρ θ ⇒⇒āi ⊂ Xi . (10.41)

Hence, if θ ⊂ H̄ is a witness to (10.41), then θ ∈ χ : ⋃
i<ρ ai ∼ OR is such that

θ ∈ χ ⇒⇒ai ⊂ Xi for every i < ρ. �

10.4 Iteration Trees

Iteration trees are needed for the proof of projective determinacy, cf. Theorem 13.6.
In order to prove a relevant technical tool, Theorem 10.74, we need a strengthening
of the concept of countable completeness. All the extenders in this section will be
short, though.

Definition 10.67 Let F be a short (Σ, ν)-extender over V , and let U be any set. We
say that F is complete with respect to U iff there is a map θ such that ν ⇐ U ⊃
dom(θ ), θ � (ν ⇐ U ): ν ⇐ U ∼ Σ is order preserving, θ � (Σ ⇐ U ) = id, and for all
a ⊂ [ν ⇐ U ]<Δ and for every X ⊂ P([Σ]Card(a)) ⇐ U which is measured by Fa ,4 we
have that

X ⊂ Fa ∅⇒ θ ⇒⇒a ⊂ X.

Hence if μ is an infinite cardinal, then F is μ-complete iff whenever U has size μ,
F is complete with respect to U .

We shall be interested in a strengthening of “continuum-completeness,” cf. Defi-
nition 10.63.

Definition 10.68 A formula ν(β, x) is said to be σ1+ iff ν(β, x) is of the form

∃M(M is transitive ⊕ (2∪0 )M ⊃ M ⊕ Vβ ⊃ M ⊕ λ(M, β, x)), (10.42)

where λ is σ1. An ordinal ξ is called a reflection point iff Vξ ∧σ1+ V .

It is not hard to verify that every σ1+ formula is σ2.

Lemma 10.69 Let ρ be an inaccessible cardinal. Then ρ is a reflection point.

4 i.e., X ⊂ Fa or ([Σ]Card(a)) \ X ⊂ Fa .
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Proof Let ν be σ1+, and let β, x ⊂ Vρ. Let us pick some

ε : P ∼σ2 V,

where P is transitive, {Vβ,TC({x})} ⊂ P, (2∪0 ) P ⊃ P , and Card(P) < ρ. There is
some such P , as ρ is inaccessible.

Because every σ1+-formula can be written as a σ2-formula, so that if V |=
ν(β, x), then P |= ν(β, x). But if M ⊂ P is as in (10.42) to witness P |= ν(β, x),
then M also witnesses Vρ |= ν(β, x), as (2∪0 ) P ⊃ P . �

Definition 10.70 Let F be a short (Σ, ν)-extender over V . Then F is called certified
iff ν is also the strength5 of F , ν is inaccessible, and for everyU ∧σ1+ Vν of size 2∪0

there is some θ : U ∼σ1+ VΣ witnessing that F is 2∪0 -complete with respect to U .

Lemma 10.71 Let F be a short (Σ, ν)-extender over V , and suppose that ν is also
the strength of F and ν is inaccessible. Then F is certified.

Proof By Lemma 10.69, ν is a reflection point. Let us fix U ∧σ1+ Vν of size 2∪0 . We
need to find some θ : U ∼σ1+ VΣ such that θ � (Σ⇐U ) = id and for all a ⊂ [ν⇐U ]<Δ

and for all X ⊂ P([Σ]Card(a)) ⇐ U , X ⊂ Fa iff θ”a ⊂ X .
Let ε : V ∼F M = ult(V, F), where M is transitive. Notice that Vν ⊃ M (i.e.,

Vν ⊂ M), and U ∧σ1+ Vν = V M
ν ∧σ1+ V M

ε(Σ) ∧σ1+ M by Lemma 10.69 applied

inside M . Let χ̄ : Ū ∼= U , where Ū is transitive. Then, using Lemma 10.69,

χ̄ : Ū ∼σ1+ V M
ν = Vν ∧σ1+ V M

ε(Σ) ∧σ1+ M,

and Ū and χ̄ are both elements of M by Lemmas 10.60 and 10.61.
Let (Xi : i < 2∪0) be an enumeration of

⋃{P([Σ]n): n < Δ}⇐U , and let (ai : i <

2∪0) be an enumeration of [ν ⇐ U ]<Δ. Let Γ be the set of all (i, j) ⊂ (2∪0) × (2∪0)

such that X j ⊂ Fai . Let ξ < Σ be such thatU ⇐VΣ = U ⇐Vξ . Of course,U ⇐Vξ ⊂ M
and χ̄−1”(U ⇐ Vξ) ⊂ M .

Let āi = χ̄−1(ai ) for i < 2∪0 . Notice that (āi : i < 2∪0) ⊂ M .
Now χ̄ ⊂ M witnesses that in M , the following holds true.

∃k(k: Ū ∼σ1+ V M
ε(Σ) ⊕ k � χ̄−1”(U ⇐ Vξ) = χ̄ � χ̄−1”(U ⇐ Vξ)

⊕≥i, j < 2∪0(k(āi ) ⊂ ε(X j ) ←∼ (i, j) ⊂ Γ )).

Therefore, in V we have that

∃k(k: Ū ∼σ1+ VΣ ⊕ k � χ̄−1”(U ⇐ Vξ) = χ̄ � χ̄−1”(U ⇐ Vξ)

⊕≥i, j < 2∪0(k(āi ) ⊂ X j ←∼ (i, j) ⊂ Γ )).

Let χ ∗: Ū ∼σ1+ VΣ be a witness, and set θ = χ ∗ ∈ χ̄−1. Obviously, θ : U ∼σ1+ VΣ ,
and θ � (U ⇐ VΣ) = θ � (U ⇐ Vξ) = id. Moreover, if a ⊂ [ν ⇐ U ]<Δ and

5 Recall that the strength of an extender F is the largest ordinal β such that Vβ ⊃ Ult(V ; F).
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X ⊂ P([Σ]Card(a)) ⇐ U , say a = ai and X = X j , then X j ⊂ Fai iff (i, j) ⊂ Γ iff
χ ∗(āi ) ⊂ X j iff θ(ai ) ⊂ X j . �

Definition 10.72 Let 0 < N ≤ Δ. A systemT = ((Mi , εi j : i ≤T j < N ), (Ei : i +
1 < N ),≤T ) is called a putative iteration tree on V of length N iff the following
holds true.

(1) ≤T is a reflexive and transitive order on N such that if i ≤T j , then i ≤ j in the
natural order, and if i < N , then 0 ≤T i .

(2) M0 = V , and if i + 1 < N , then Mi is a (transitive) inner model.
(3) If i ≤T j ≤T k < N , then εi j : Mi ∼ M j is an elementary embedding, and

εik = ε jk ∈ εi j .
(4) If i +1 < N , then Mi |= “Ei is a short extender,” and if Σ = cri t (Ei ) and j ≤ i

is maximal such that j ≤T i + 1, then V
M j
Σ+1 = V Mi

Σ+1, Mi+1 = ult(M j ; Ei ), and
ε j i+1 is the canonical ultrapower embedding.

If N < Δ, then we say that T is well-behaved iff MN−1 is well-founded (i.e.,
transitive).

If N = Δ and if b ⊃ Δ is cofinal, then we say that b is an infinite branch through
≤T iff for all i, j ⊂ b, if i ≤ j , then i ≤T j , and if i ⊂ b and k ≤T i , then k ⊂ b.

Lemma 10.73 Let n < Δ, and let

T = ((Mi , εi j : i ≤T j ≤ n), (Ei : i < n))

be a putative iteration tree on V such that for all i < n,

Mi |= “Ei is certified”.

Then T is well-behaved.

Proof For each i < n, Δ Mi ⊃ Mi , and Ei is countably complete (from the point of
view of V ) by Lemmas 10.60 and 10.61. This implies that Mn is well-founded (i.e.,
transitive) by Corollary 10.65. �

The following is a key result on the “iterability” of V (cf. also Theorem 10.3)
which will be used in the proof of Theorem 13.6.

Theorem 10.74 Let

T = ((Mi , εi j : i ≤T j < Δ), (Ei : i < Δ),≤T )

be an iteration tree on V such that for all i < Δ,

Mi |= “Ei is certified.”

Then there is some cofinal b ⊃ Δ, an infinite branch through ≤T such that the direct
limit
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dir lim (Mi , εi j : i ≤T j ⊂ b)

is well-founded.

Proof Suppose not. For each cofinal b ⊃ Δ, which is an infinite branch through≤T ,6

we may pick a sequence (βb
n : n < Δ) witnessing that

dir lim (Mi , εi j : i ≤T j ⊂ b)

is ill-founded, say

εi(n)i(m)(β
b
n) > βb

m (10.43)

for all n < m < Δ, for some monotone i : Δ ∼ Δ (which depends on b). Let

χ : V̄ ∼σ1002 V

be such that V̄ is transitive, Card(V̄ ) = 2∪0 , and {Ei : i < Δ} ∪ {βb
n : n < Δ, b

an infinite branch through ≤T } ⊃ ran(χ ). We let U = (U,≤U ) be the tree of
attempts to find an infinite branch b ⊃ Δ through ≤T together with a proof of the
well-foundedness of the direct limit along b.

More precisely, U is defined as follows. Let us set Ēi = χ−1(Ei ) for i < Δ.
Obviously, there is a unique

T̄ = ((M̄i , ε̄i j : i ≤T j < Δ), (Ēi : i < Δ),≤T ) (10.44)

such that
V̄ |= “T̄ is a putative iteration tree onV of length Δ”.

Of course, M̄0 = V̄ . We now let (λ, i) ⊂ U iff i < Δ and λ: M̄i ∼σ1000 V is such
that λ ∈ ε̄0i = χ , and if (λ, i), (λ⇒, j) ⊂ U then we write (λ⇒, j) ≤U (λ, i) iff i ≤T j
and λ⇒ ∈ ε̄i j = λ.

Suppose U = (U ;≤U ) to be ill-founded. It is straightforward to see that each
witness ((λn, in): n < Δ) to the ill-foundedness of U gives rise to an infinite branch
b ⊃ Δ through ≤T together with an embedding

θ : dir lim (M̄i , ε̄i j : i ≤T j < b) ∼σ1000 V . (10.45)

If (M̄b, (ε̄ib: i ⊂ b)) is the direct limit of (M̄i , ε̄i j : i ≤T j < b), then θ is defined by

θ(x) = λn((ε̄inb)
−1(x))

6 If there is any. The current proof does not presuppose that there be some such branch. Rather, it
will show the existence of some such b such that the direct limit along b is well-founded.



10.4 Iteration Trees 225

for some (all) large enough n < Δ. But as {βb
n : n < Δ} ⊃ ran(χ ), and hence if

(Mb, (εib: i ⊂ b)) is the direct limit of (Mi , εi j : i ≤T j < b), then (10.43) yields
that

ε̄i(n)b(χ
−1(βb

n)) = ε̄i(m)b(ε̄i(n)i(m)(χ
−1(βb

n)))

= ε̄i(m)b(εi(n)i(m)(β
b
n))

> εi(m)b(β
b
m)

= ε̄i(m)b(χ
−1(βb

m))

for all n < m < Δ, so that (ε̄i(n)b(χ
−1(βn)): n < Δ) witnesses that dir lim(M̄i , ε̄i j :

i ≤T j ⊂ b) must be ill-founded. This contradicts the existence of θ , cf. (10.45).
We therefore must have that U = (U ;≤U ) is well-founded. In order to finish the

proof of the theorem, it now suffices to derive a contradiction.
In order to work towards a contradiction, we need generalized versions of U

as well as “realizations” and “enlargements.” Let R be a transitive model of ZC
plus replacement for σ1000-formulae. We then call the triple (θ, Q, R) a realization
of M̄i , where i < Δ, iff θ : M̄i ∼σ1000 Q, Q is a (not necessarily proper) rank initial

segment of R, Q |= “ZC plus replacement for σ1000-formulae,” and 2∪0 Q ⊃ Q and
2∪0 R ⊃ R. If (θ, Q, R) is a realization of M̄i , then we may define a tree

U (θ ∈ ε̄0i , Q) = (U (θ ∈ ε̄0i , Q),≤U (θ∈ε̄0i ,Q))

in the same fashion as U was defined above: we set (λ, j) ⊂ U (θ ∈ ε̄0i , Q) iff
j < Δ and λ: M̄ j ∼σ1000 Q is such that λ ∈ ε̄0 j = θ ∈ ε̄0i , and if (λ, j), (λ⇒, k) ⊂
U (θ ∈ ε̄0i , Q) then we write (λ⇒, k) ≤U (θ∈ε̄0i ,Q) (λ, j) iff j ≤T k and λ⇒ ∈ ε̄ jk = λ.
Hence U = U (χ, V ).

Let X = {ρ: Vρ ∧σ1002 V ⊕ ran(χ ) ⊂ Vρ ⊕ 2∪0 Vρ ⊃ Vρ}. Let β = min(X). We
have χ : V̄ ∼σ1002 Vβ ∧σ1002 V and U (χ, Vβ) inherits the well-foundedness from
U = U (χ, V ). We may thus write τ = ||(χ, 0)||U (χ,Vβ), and we may let ρ0 be the τ th

element of X . So there are (in order type) τ = ||(χ, 0)||U (χ,Vβ) many ξ < ρ0 such
that (χ, Vβ, Vξ) is a realization of M̄0 = V̄ just by the choice of ρ0.

We shall now construct an “enlargement” sequence

(χi , Qi , Ri : i < Δ)

such that for each i < Δ the following holds true.

(a) (χi , Qi , Ri ) is a realization of M̄i ,

(b) if i ≤ j and νi is the length of Ēi , then V Qi
χi (νi )

= V
Q j

χ j (νi )
and χi � V M̄i

νi = χ j �

V
M̄ j
νi ,
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(c) if U∗ = U (χi ∈ ε̄0i , Qi ), then U∗ is well-founded and there are (in order type)
at least ||(χi , i)||U∗ many ξ < Ri ⇐ O R such that (χi , Qi , V Ri

ξ ) is a realization

of M̄i , and
(d) if i > 0, then Ri+1 ⊂ Ri .

The last condition will give the desired contradiction.
To commence, we let (χ0, Q0, R0) = (χ, Vβ, Vρ0), where ρ0 and β are as above.
Now suppose (χ j , Q j , R j : j ≤ i) to be constructed. Let Φ(θ) abbreviate the

following statement: “There is a realization (χ ⇒, Q, R) of M̄i+1 such that Vθ(νi ) =
V Q

θ(νi )
, χ ⇒ � V M̄i

νi = θ , and if U∗ = U (χ ⇒ ∈ ε̄0i+1, Q), then U∗ is well-founded
and there are (in order type) at least ||(χ ⇒, i + 1)||U∗ many ξ < R ⇐ O R such that
(χ ⇒, Q, V R

ξ ) is a realization of M̄i+1.” We aim to verify that

Ri |= Φ(χi � V M̄i
νi

). (10.46)

An inspection shows that Φ(θ) is a σ1+-statement in the parameter T̄ , cf. (10.44).
Because

Ri |= “χi (Ēi ) is certified”,

we may pick, working inside Ri and setting Σ = crit(χi (Ēi )), some

U∗ ∧σ1+ V Ri
χi (νi )

∧σ1+ Ri

of size 2∪0 such that ran(χi � V M̄i
νi ) ⊂ U∗ and some θ : U∗ ∼σ1+ V Ri

Σ witnessing

that χi (Ēi ) is 2∪0 -complete with respect to U∗. Notice that 2∪0 Qi ⊃ Qi ⊃ Ri , and

hence ran(χi � V M̄i
νi ) ⊂ Ri .

In order to verify (10.46) it then remains to verify that

V Ri
Σ |= Φ(θ ∈ χi � V M̄i

νi
).

Let j ≤ i be largest such that j <T i +1. As θ witnesses that χi (Ēi ) is 2∪0 -complete
with respect toU∗, by the proof of Lemma10.64wemay defineχ ⇒: M̄i+1 ∼σ1000 Q j

by setting

ε̄ j i+1( f )(a)
χ ⇒≡∼ χ j ( f )(θ (χi (a))), (10.47)

where a is a finite subset of the length of Ēi andwriting Σ̄ = crit(Ēi ), f : [Σ̄]Card(a) ∼
M̄ j , f ⊂ M̄ j . χ ⇒ is well-defined and σ1000-elementary by the following reasoning.
Let λ be σ1000, and let a�, � = 1, . . ., k, be finite subsets of the length of Ēi , and
let f�, � = 1, . . ., k, be such that f�: [Σ̄]Card(a�) ∼ M̄ j , f� ⊂ M̄ j . Write c = ⋃

� a�.
Then
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M̄i+1 |= λ(ε̄ j i+1( f1)(a1), . . . , ε̄ j i+1( fk)(ak))

∅⇒ {u: M̄ j |= λ( f a1,c
1 (u), . . . , f ak ,c

k (u)} ⊂ (Ēi )c

∅⇒ χi ({u: M̄ j |= λ( f a1,c
1 (u), . . . , f ak ,c

k (u)}) ⊂ χi (Ēi )χi (c)

(∗)∅⇒ χ j ({u: M̄ j |= λ( f a1,c
1 (u), . . . , f ak ,c

k (u)}) ⊂ χi (Ēi )χi (c)

∅⇒ {u: Q j |= λ(χ j ( f a1,c
1 )(u), . . . , χ j ( f ak ,c

k )(u)} ⊂ χi (Ēi )χi (c)

(∗∗)∅⇒ Q j |= λ(χ j ( f a1,c
1 )(θ (χi (c))), . . . , χ j ( f ak ,c

k )(θ (χi (c)))

∅⇒ Q j |= λ(χ j ( f1)(θ (χi (a1))), . . . , χ j ( fk)(θ (χi (ak))).

Here, (∗) holds true as χi � V M̄i
νi = χ j � V

M̄ j
νi , and (∗∗) holds true as θ witnesses

that χi (Ēi ) is 2∪0 -complete with respect to U∗. (10.47) immediately yields that

χ ⇒ ∈ ε̄0i+1 = χ ⇒ ∈ ε̄ j i+1 ∈ ε̄0 j = χ j ∈ ε̄0 j ,

and hence (χ ⇒, i + 1) ⊂ U (χ j ∈ ε̄0 j , Q j ), moreover, clearly,

ε = ||(χ ⇒, i + 1)||U (χ j ∈ε̄0 j ,Q j ) < ||(χ j , j)||U (χ j ∈ε̄0 j ,Q j ),

so that wemay letΘ be the εth ξ < R j ⇐ O R such that (χ j , Q j , V
R j
Θ ) is a realization

of M̄ j . As 2∪0 R j ⊃ R j , the triple (χ ⇒, Q j , V
R j
Θ ) ⊂ R j witnesses that

R j |= Φ(θ ∈ χi � V M̄i
νi

).

But this implies that

V Ri
Σ = V

R j
Σ |= Φ(θ ∈ χi ),

because V Ri
Σ ∧σ1+ R j . This finishes the proof of Theorem 10.74. �

We end this section by defining the concept ofWoodin cardinals. The following
definition strengthens Definition 4.60.

Definition 10.75 Let Σ be a cardinal, let δ > Σ be a limit ordinal, and let A ⊃ Vδ .
We say that Σ is strong up to δ with respect to A iff for all β < δ there is some
elementary embedding ε : V ∼ M such that M is transitive, crit(ε) = Σ , Vβ ⊃ M ,
and ε(A) ⇐ Vβ = A ⇐ Vβ .

Definition 10.76 A cardinal δ is called a Woodin cardinal iff for every A ⊃ Vδ

there is some Σ < δ such that Σ is strong up to δ with respect to A.

Lemma 10.77 Let δ be a Woodin cardinal. Then δ is a Mahlo cardinal. In fact,
for every A ⊃ Vδ there is a stationary subset S of δ such that for all Σ ⊂ S, for all
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β < δ there is a certified extender F with critical point Σ and lh(F) ≥ β such that
if εF : V ∼ Ult(V ; F) is the ultrapower map, then εF (A) ⇐ Vβ = A ⇐ Vβ .7

Proof Fix A ⊃ Vδ . Let C ⊃ δ be club in δ. Let f : δ ∼ C be the monotone
enumeration of C , and let g: δ ∼ A be a surjection such that

g”μ = A ⇐ Vμ for every inaccessible cardinal μ ≤ δ. (10.48)

Define h: δ ∼ Vδ by setting

h(τ) =
{

f (ρ + n) if τ = ρ + 2 · n for some limit ordinal ρ and n < Δ, and

g(ρ + n) if τ = ρ + 2 · n + 1 for some limit ordinal ρ and n < Δ.

Let Σ < δ be strong up to δ with respect to h.

Claim 10.78 h(Σ) = f (Σ) = Σ . In particular, Σ ⊂ C.

Proof Suppose that h(Σ) > Σ , and let τ < Σ be least such that τ is even and
h(τ) ≥ Σ . Pick an elementary embedding ε : V ∼ M , where M is an inner model,
crit(ε) = Σ , and

Vh(τ)+1 ⊃ M and ε(h) ⇐ Vh(τ)+1 = h ⇐ Vh(τ)+1. (10.49)

By elementarity, ε(h)(τ) = ε(h(τ)) ≥ ε(Σ) > Σ , whereas on the other hand
ε(h)(τ) = h(τ) by (10.49). Contradiction! �

AsC is arbitrary, Claim 10.78 proves that {μ < δ: μis strong up to δ} is stationary
in δ, so that in particular δ is a Mahlo cardinal. Again as C is arbitrary, in order to
finish off the proof of Lemma 10.77 it suffices to verify the following.

Claim 10.79 For all β < δ there is a certified extender F with crit(F) = Σ and
lh(F) ≥ β such that if εF : V ∼ ult(V ; F) is the ultrapower map, then εF (A)⇐Vβ =
A ⇐ Vβ .

Proof Fix β < δ. As δ is a Mahlo cardinal, we may pick some inaccessible
cardinal ν with max(Σ, β) < ν < δ. As δ is a Woodin cardinal, there is some
elementary embedding ε : V ∼ M , where M is an inner model, crit(ε) = Σ ,
Vν ⊃ M , and h ⇐ Vν = ε(h)⇐ Vν . Let F be the (Σ, ν)-extender over V derived from
ε . By Lemmas 10.56, 10.58, and 10.71, F is certified, (Vν)

ult(V ;F) = (Vν)
M = Vν ,

and there is an elementary embedding k: ult(V ; F) ∼ M with crit(k) ≥ ν and hence
k � Vν = id. In particular,

εF (h) ⇐ Vν = h ⇐ Vν . (10.50)

Now we have that for x ⊂ Vν , x ⊂ ε(A) iff x ⊂ εF (h)”{ρ + 2n + 1: ρ <

ν a limit and n < Δ}, by (10.48) and the elementarity of εF together with the

7 The fact that F is certified implies that Vβ ⊃ Ult(V ; F).
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choice of h, iff x ⊂ h”{ρ+2n +1: ρ < ν a limit and n < Δ}, by (10.50), iff x ⊂ A,
by the choice of h.

We have shown that εF (A) ⇐ Vν = A ⇐ Vν . �

Definition 10.80 Let M be an inner model, let β < ξ, and let {x0, · · · , xk−1} ⊃
(Vξ)M . Then we write

typeM (Vξ; ⊂, Vβ, {x0, · · · , xk−1})

for the type of {x0, · · · , xk−1} in (Vξ)M with respect to the first order language of
set theory with parameters in (Vβ)M , i.e., for

{λ(x, v0, · · · , vk−1) : x ⊂ (Vβ)M ⊕ (Vξ)M |= λ(x, x0, · · · , xk−1)}.

The following is an immediate consequence of Lemma 10.77.

Lemma 10.81 Let δ be a Woodin cardinal. Then for all ξ > δ and for all
{x0, . . . , xk−1} ⊃ Vξ there is a stationary subset S of δ such that for all Σ ⊂ S,
Σ is strong up to δ with respect to

typeV (Vξ; ⊂, Vδ, {x0, · · · , xk−1}),

in fact for all β < δ there is a certified extender F with critical point Σ and lh(F) ≥ β

such that if ε : V ∼ Ult(V ; F), then

typeUlt(V ;F)(Vε(ξ); ⊂, Vβ, {ε(x0), · · · , ε(xk−1)})
= typeV (Vξ; ⊂, Vβ, {x0, · · · , xk−1}).

10.5 Problems

10.1. Prove Lemma 10.27, using the method from the proof of Lemma 10.29.

10.2. Let Σ be ameasurable cardinal, letU be ameasure on Σ , and let (Mi , εi, j : i ≤
j < →) be the iteration of V = M0 of lengthOR given byU . Let Σi = ε0i (Σ)

for i < →.
(a) Show by induction on i ⊂ OR that for all x ⊂ Mi there are k < Δ,
i1, . . . , ik < i , and a function f : [Σ0]k ∼ M0, f ⊂ M0, such that x =
ε0,i ( f )(Σi1, . . . , Σik ).
(b) Show that {Σi : i ⊂ OR} is club in OR.
(c) Let i0 > 0, and let X ⊂ P(Σi0) ⇐ Mi0 . Show that X ⊂ ε0,i0(U ) iff there
is some k < i0 such that {Σi : k ≤ i < i0} ⊃ X . (Cf. Lemma 10.9.)
(d) Conclude that if ρ > 2Σ is a regular cardinal, then ε0,μ(U ) = Fρ ⇐ Mμ

(where Fρ is the club filter on ρ, cf. Lemma 4.25).
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10.3. Let Σ be ameasurable cardinal, letU be ameasure on Σ . (a) Show that, setting
Ū = U ⇐ L[U ], L[U ] = L[Ū ] and L[U ] |= “Ū is a measure on Σ .”
Let (Mi , εi, j : i ≤ j < →) be the iteration of L[U ] of length OR given by
Ū . (b) Show that if ρ > 2Σ is a regular cardinal, then Mμ = L[Fρ], where
Fρ is the club filter on μ. [Hint. Problem 10.2 (d).]

10.4. Let us call a J -structure Jβ[U ] an Lμ-premouse iff there is some Σ < β such
thatU ⊂ Jβ[U ] and Jβ[U ] |= “ZFC− +U is a measure on Σ .” If M = Jβ[U ]
is an Lμ-premouse, then we may define (putative) iterations of M in much
the same way as putative iterations of V , cf. Definition 10.1. In the spirit of
Definition 10.26, an Lμ-premouse is called an Lμ-mouse iff every putative
iteration of M is an iteration.
(a) Let M = Jβ[U ] be an Lμ-mouse and let (Mi , εi, j : i ≤ j < →) be the
iteration of M of length OR. Show that there is some ρ and some ξ such
that Mρ = Jξ [Fρ]. [Hint. Problem 10.3 (b).] Conclude that any two Lμ-mice
M , N may be “coiterated,” i.e., there are iterates Mρ of M and Nρ of N ,
respectively, such that Mρ = Jξ [F] and Nρ = Jξ ⇒ [F] for some ξ, ξ ⇒, F .
Show also that if M |= “U is a measure on Σ ,” then for all i , M = M0 and
Mi have the same subsets of Σ .
(b) Let χ : Jβ̄[Ū ] ∼ Jβ[U ] be an elementary embedding, where Jβ̄[Ū ] is an
Lμ-premouse and Jβ[U ] is an Lμ-mouse. Show that Jβ̄[Ū ] is an Lμ-mouse
also. [Hint. Cf. the proof of Lemma 10.33.]

10.5. Show in ZF + there is a measurable cardinal that there is an inner model
M such that M |= “GCH + there is a measurable cardinal.” [Hint. Let U
witness that Σ is measurable, and set M = L[U ]. To show that M satisfies
GCH, verify that in M , for each infinite cardinal ν and every X ⊃ ν there
are at most ν many Y ⊃ ν with Y <M X (with <M being as on p. 77),
as follows. Fix X . Pick χ : Jβ̄[Ū ] ∼ Jβ[U ] such that Card(Jβ̄[Ū ]) = ν,
χ � (ν + 1) = id, X ⊂ ran(ε) and Jβ̄[Ū ] is an Lμ-premouse. We claim that
if Y ⊃ ν with Y <W X , then Y ⊂ Jβ̄[Ū ]. For this, use Theorem 10.3 and
Problem 10.4.]

10.6. Prove Łoś’s Theorem 10.22. Show also Lemma 10.21 (d).

10.7. Show that {Thσ1(x#)} is �1
2(x), where Thσ1(x#) is the set of all Gödel

numbers of σ1-sentences which hold true in x#.

10.8. Let A ⊃ ΔΔ beσ1
2 (x), A ∞= ∩. Show that A⇐ x# ∞= ∩. [Hint. Corollary 7.21.]

10.9. Let β be any ordinal. A cardinal Σ is called β-Erdös iff for every F : [Σ]<Δ ∼
2 there is some X ⊃ Σ with otp(X) = β such that for every n < Δ, F � [X ]n

is constant.
Show that if Σ is Δ1-Erdös, then x# exists for every x ⊃ Δ.
Show also that if β < ΔL

1 and if Σ is β-Erdös, then L |= “Σ is β-Erdös.”
Let x ⊃ Δ, and letM = (Jβ[x]; ⊂, U ) be an x-pm. Let Σ be the critical point
of U , and let us assume that β = Σ+L[x]. We define the (σ0-)ultrapower,
written ult0(L[x]; U ) or just ult(L[x]; U ), of L[x] as follows. For f, g ⊂
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Σ Jβ[x] ⇐ L[x], set f ∼ g iff {τ < Σ: f (τ) = g(τ)} ⊂ U , and write f ⊂̃g iff
{τ < Σ: f (τ) ⊂ g(τ)} ⊂ U . We let [ f ] denote the ∼-equivalence class of f .
We write [ f ]⊂̃[g] iff f ⊂̃g, and we also write [ f ] ⊂ Ũ iff {τ < Σ: f (τ) ⊂
U } ⊂ U . We let

ult(L[x]; U ) = {{[ f ]: f ⊂ Σ Jβ[x] ⇐ Jβ[x]}; ⊂̃, Ũ }.

We may define a natural map ε
L[x]
U : L[x] ∼ ult(L[x]; U ) by setting

ε
L[x]
U (z) = [cz], where cz(τ) = x for all τ < Σ . ε

L[x]
U is called the

(σ0-)ultrapower map. If ult(L[x]; U ) is well-founded, then we identify it
with its transitive collapse, which will be equal to L[x], and we identify [ f ]
with the image under the transitive collapse, and we idenitify ε with the
composition of ε with the transitive collapse.
For α ⊂ OR, we may now define the putative iteration

((Wi : i ≤ α ), (ε̃i j : i ≤ j ≤ α )) (10.51)

of W0 = L[x] by U and its images in much the same way as in Definition
10.24, with L[x] and U playing the role of M , cf. also Definition 10.1. If
i < α , then Wi = L[x], and if Wα is transitive, then also Wα = L[x].

10.10. Let x ,M = (Jβ[x]; ⊂, U ), and Σ be as above. In particular, β = Σ+L[x]. Let
εM

U be as in Definition 10.20.

(a) Show that εM
U = ε

L[x]
U � Jβ[x].

(b) Suppose that ult(L[x]; U ) is transitive. Show that ult0(M ) is then also
transitive, and if ult0(M ) = (Jβ⇒ [x]; ⊂, U ⇒), then Jβ⇒ [x] = ε

L[x]
U (Jβ[x]).

Let α ⊂ OR, and let Wi and ε̃i j be as in (10.51). LetMi and εi j be as in Defi-
nition 10.24 for a putative iteration of length α +1, sayMi = (Jβi [x]; ⊂, Ui )

for i < α .
(c) Show that if i ≤ j < α , then Jβi [x] = ε̃0i (Jβ[x]) and εi j = ε̃i j � Jβi [x].
(d) Show that if ult(L[x]; U ) is transitive and τ is any limit ordinal with
cf(τ) ∞= cf(Σ), then ε

L[x]
U is continuous at τ , i.e., ε L[x]

U (τ) = supζ<τ ε
L[x]
U ”ζ

(cf. Lemma 4.52 (c)). Conclude that if τ is a strong limit cardinal with
cf(τ) ≥ (2Card(Σ))+ and if α ≤ (2Card(Σ))+, then ε̃0i (τ) = τ for every i < α .

10.11. Let x ⊃ Δ, and suppose that x# exists. Let A ⊂ P(ΔV
1 ) ⇐ L[x]. Show that

either A or ΔV
1 \ A contains a club of L[x]-inaccessibles. [Hint. Consider the

countable Silver indiscernibles, and exploit the arguments for Lemmas 10.9
and 10.35.]

10.12. Assume that 0# exists. Show that for every ξ < ΔL
1 there is some premouse

(Jβ; ⊂, U ) ⊂ L such that there is a putative iteration of (Jβ; ⊂, U ) of length
β + 1 of which the βth model is ill-founded.

10.13. Let x ⊃ Δ, and suppose that x# exists. Show that there is some G ⊂ V (!)
such that G is Col(Δ,< ΔV

1 )-generic over L[x]. [Hint. Recursively construct
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initial segments of G along a club of L[x]-inaccessibles from Problem 10.11,
exploiting the Product Lemma 6.65. As limit stages, use Lemma 6.44.]
A cardinal is called remarkable iff for every β > Σ there areμ < ξ < Σ such
that if G is Col(Δ,< Σ)-generic over V , then in V [G] there is an elementary
embedding χ : Vξ ∼ Vβ such that crit(χ ) = μ and χ(μ) = Σ . (Here, Vβ

and Vξ refer to the respective rank initial segments of V rather than V [G].
Compare Problems 4.29 and 10.21.)

10.14. Show that if Σ is remarkable and if G is Col(Δ,< Σ)-generic over V , then in
V [G] for every β > Σ the set

{X ⊂ [Vβ]∪0 : X ∧ Vβ , X ⇐ Σ ⊂ Σ , and ∃ξ∃χ Vξ

χ∼= X}

is stationary in [Vβ]∪0 .
Show that if 0# exists, then every Silver indiscernible is remarkable in L .
Show also that if Σ is remarkable in V , then Σ is remarkable in L . [Hint.
Problem 7.4.]

10.15. Show that if Σ is Δ-Erdös, then there are β < ξ < Σ such that Vξ |= “ZFC
+ β is remarkable.” Show also that every remarkable cardinal is ineffable.

10.16. (Martin-Solovay)We say that V is closed under sharps iff for all β,�Col(Δ,β)
V

“x# exists for all x ⊃ Δ.” Letβ be any ordinal, and letG beCol(Δ, β)-generic
over V . Let z ⊂ ΔΔ ⇐ V , and let A ⊂ V [G] be such that V [G] |= “A ⊃ ΔΔ

is σ1
3 (z), A ∞= ∩.” Show that A ⇐ V ∞= ∩. (Compare Corollary 7.21.) [Hint.

For any X ⊂ V , we may make sense of X#. Let A = {x : ∃y λ(x, y, z)},
where λ is �1

2. Let T be a tree of attempts to find x , y, χ , H̄ , and g such that
χ : H̄# ∼ (HΩ )

# is an elementary embedding, H̄ is countable, z ⊂ H̄ , g is
Q-generic over H̄ for some Q ⊂ H̄ , and H̄#[g] |= λ(x, y, z).]

10.17. Let E = (Ea : a ⊂ [ν]<Δ) be a (Σ, ν)-extender over V . Show that ult(V ; E)

is well-founded iff E is Δ-complete.

10.18. Let E be a short (Σ, ν)-extender over V .
(1) Ifβ is a limit ordinalwith cf(β) ∞= Σ , thenεE is continuous atβ. (Compare
Lemma 4.52 (c).)
(2) If ρ > ν is a cardinal such that cf(ρ) ∞= Σ and μΣ < ρ for every μ < ρ,
then ρ is a fixed point of εE , i.e., εE (ρ) = ρ. (Compare Problem 4.28.)

10.19. Let E = (Ea : a ⊂ [ν]<Δ) be a (Σ, ν) extender over V . Let P ⊂ VΣ be a poset,
and let G be P-generic over V . Set

E∗
a = {Y ⊃ [Σ]Card(a): ∃X ⊂ Ea Y ∗ X},

as defined in V [G]. Show that (E∗
a : a ⊂ [ν]<Δ) is a (Σ, ν) extender over V [G].

Conclude that “Σ is a strong cardinal”and “Σ is supercompact” are preserved
by small forcing in the sense of Problem 6.18.
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10.20. Show that “Σ is aWoodin cardinal” is preserved by small forcing in the sense
of Problem 6.18.

10.21. (Magidor) Show that the conclusion of problem 4.29 yields that Σ is super-
compact, i.e., if for everyβ > Σ there areμ < ξ < Σ togetherwith an elemen-
tary embedding χ : Vξ ∼ Vβ such that crit(χ ) = μ and χ(μ) = Σ , then Σ is
supercompact. [Hint: Let ρ ≥ Σ be least such that there is no (Σ, ν)-extender
over V witnessing that Σ is ρ-supercompact. Pick μ < ξ < Σ ≤ ρ < β

togetherwith some elementary embeddingχ : Vξ ∼ Vβ such that crit(χ ) = μ

and χ(μ) = Σ . Then ρ ⊂ ran(χ ) and one can derive from χ a (μ, ν)-extender
F ⊂ Vξ over V witnessing that μ is χ−1(ρ)-supercompact in Vξ . Lift this
statement up via χ .]

10.22. Show that the conclusion of problem 4.30 yields that Σ is supercompact.
[Hint. Design an ultrapower construction à la Theorem 10.48.]

10.23. Show that if Σ is subcompact, then Σ is a Woodin cardinal.

10.24. (Supercompact tree Prikry forcing) Let Σ be supercompact, and let ρ > Σ .
Let M be an inner model with ρM ⊃ M , and let ε : V ∼ M be an elementary
embedding with critical point Σ such that ε(Σ) > ρ. Let U be derived from
ε as in Problem 4.30. Let P be the set of all trees T on PΣ(ρ) (in the sense
of the definition given on p. 123) such that there is some (stem) s ⊂ T such
that t ⊃ s ∨ s ⊃ t for all t ⊂ T and for all t ∗ s, t ⊂ T ,

{x ⊂ PΣ(ρ): t�x ⊂ T } ⊂ U.

P, ordered by U ≤P T iff U ⊃ T , is called supercompact tree Prikry forc-
ing. Let G be P-generic over V . Show that cfV [G](δ) = Δ for every δ ⊂ [Σ, ρ]
with cfV (δ) ≥ Σ . Show also that the Prikry-Lemma 10.7 holds true for the
supercompact tree Prikry forcing P and conclude that V and V [G] have the
same VΣ .

10.25. Let E , E ⇒ be certified extenders on Σ . We define E <M E ⇒ iff E ⊂ ult(V ; E ⇒).
Show that <M is well-founded. (Compare Problem 4.27.) [Hint. Use Theo-
rem 10.74.] Again, <M is called the Mitchell order (this time on certified
extenders).



Chapter 11
0# and Jensen’s Covering Lemma

11.1 Fine Structure Theory

Definition 11.1 Let M = JΦ[E] be a J-structure. Then M is called acceptable iff
for all limit ordinals Σ < Φ and for all α → Σ, if

(P(α) ≤ JΣ+β[E]) \ JΣ [E] ∼= ∈,

then there is some f ∈ JΣ+β[E] such that f : α ∧ Σ is surjective.

Acceptability is a strong “local” form of GCH. If M = JΦ[E] is a J-structure and if
ε ∈ M , then we write

ε+M = sup{Φ + β: Φ ∈ M ⊃ ⊂ f ∈ M ( f : ε ∧ Φ is surjective)}.

Lemma 11.2 Let M = JΦ[E] be an acceptable J-structure. Let β → ε ∈ M, and
set ξ = ε+M . Then P(ε) ≤ M ⇐ Jξ [E]. Moreover, ξ is in fact the least δ with
P(ε) ≤ M ⇐ Jδ [E].
Proof That P(ε) ≤ M ⇐ Jξ [E] follows immediately from Definition 11.1. Now
suppose that there were some δ < ξ with P(ε) ≤ M ⇐ Jδ [E]. As Card(δ ) → ε

in M , Lemma 10.17 produces some surjective f : ε ∧ Jδ [E], f ∈ M . Then
A = {ρ < ε: ρ /∈ f (ρ)} ∈ M , but A /∈ Jδ [E] as in the proof of Theorem 1.3.
Contradiction! �

If M = JΦ[E] is a J-structure and χ is a cardinal of M (or χ = Φ), then by
(Hχ)M we mean the set of all sets which are hereditarily smaller than χ in M (or
(Hχ)M = M in case χ = Φ). Recall that for all x ∈ M , TC({x}) ∈ M (cf. Corollary
5.18), so that this makes sense.

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_11, 235
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Lemma 11.3 Let M = JΦ[E] be an acceptable J-structure. If χ is an infinite car-
dinal of M (or χ = Φ), then

(Hχ)M = Jχ[E].

Proof It suffices to prove that if β → ε ∈ M and ξ = ε+M , then (Hξ )
M = Jξ [E].

That Jξ [E] ⇐ (Hξ )
M follows from Lemma 5.16. Let us prove (Hξ )

M ⇐ Jξ [E].
Suppose not, and let x be ∈-minimal in (Hξ )

M \ Jξ [E]. Then x ⇐ Jξ [E], and
there is some surjection g: ε ∧ x , g ∈ M . For ρ < ε , let Σρ < ξ be least such that
g(ρ) ∈ JΣρ [E]. By (the proof of) Lemma 4.15, Σ = sup({Σρ : ρ < ε}) < ξ .

By Lemma 11.2, there is some δ < ξ , Σ → δ such that

(P(ε) ≤ Jδ+β[E]) \ Jδ [E] ∼= ∈,

which by acceptability (and Lemma 10.17) yields some surjective f : ε ∧ Jδ [E],
f ∈ Jδ+β[E] ⇐ Jξ [E]. But now f −1⇒⇒

x ∈ P(ε) ≤ Jξ [E] by Lemma 11.2, and
hence x = f ⇒⇒( f −1⇒⇒

x) ∈ Jξ [E]. Contradiction! �
The following definition introduces a key concept of the fine structure theory.

Definition 11.4 The σ1-projectum (or, first projectum) χ1(M) of an acceptable
J-structure M = JΦ[E] is defined by

χ1(M) = the least χ ∈ OR such that P(χ) ≤ σ∪
M
1 ∼⇐ M.

Lemma 11.5 Let M = JΦ[E] be an acceptable J-structure. If χ1(M) ∈ M, then
χ1(M) is a cardinal in M. In fact, χ1(M) is a σ1-cardinal in M, i.e., there is no σ∪

M
1

partial map from some δ < χ1(M) onto χ1(M).

Proof Write χ = χ1(M). Let us first show that χ is a cardinal in M . Suppose
not, and let f ∈ M be such that f : δ ∧ χ is surjective for some δ < χ. Let
A ∈ P(χ) ≤ σ∪

M
1 be such that A /∈ M . Let Ā = f −1⇒⇒

A. Then Ā /∈ M , since

otherwise A = f ⇒⇒ Ā ∈ M . On the other hand, Ā ∈ M by the definition of χ, since
Ā ⇐ δ and Ā ∈ σ∪

M
1 . Contradiction!

Let us now show that χ is in fact a σ1-cardinal in M . Suppose not, and let
f : δ ∧ χ be a possibly partial function from δ onto χ, f ∈ σ∪

M
1 . We know that

there is a σ∪
Jχ [E]
1 map from χ onto Jχ[E] (cf. Lemma 10.17). Hence there is a σ∪

M
1

map g: δ ∧ Jχ[E] which is surjective. Set

A = {ρ ∈ δ : ρ /∈ g(ρ)}.

Then A is clearly inP(δ ) ≤ σ∪
M
1 , and A /∈ Jχ[E] by the proof of Theorem 1.3. We

get that A /∈ M by Lemma 11.2. But δ < χ, so that we must have that A ∈ M by
the definition of χ. Contradiction! �



11.1 Fine Structure Theory 237

The following is an immediate consequence of Lemmas 11.5 and 11.3.

Corollary 11.6 Let M = JΦ[E] be an acceptable J-structure, and let χ = χ1(M).

(a) (Hχ)M = Jχ[E].
(b) If A ⇐ Jχ[E] is σ∪

M
1 , then (Jχ[E], A) is amenable.

Recall our enumeration (τn : n < β) of all σ1 formulae from p. 185. In what
follows it will often be convenient to pretend that a given τn has fewer free variables
than it actually has. E.g., we may always contract free variables into one as follows:
if τn ∞ τn(vi1 , . . . , viλ ) with all free variables shown, then we may identify, for the
purposes to follow, τn with

⊂vi1 . . . ⊂viλ (u = (vi1 , . . . , viλ ) ⊃ τn(vi1 , . . . , viλ )).

If a: v(n) ∧ M assigns values to the free variable(s) vi1 , . . . , viλ of τn then, setting
x1 = a(vi1), …, xλ = a(viλ ), we shall in what follows use the more suggestive
M |= τi (x1, . . . , xλ) rather than the notation M |= τi [a] from p. 185. We shall also
write hM (i, x) instead of hM (i, a), where x = (x1, . . . , xλ).

Definition 11.7 Let M = (JΦ[E], B) be an acceptable J-structure, write χ =
χ1(M), and let p ∈ M . We define

Ap
M = {(n, x) ∈ β × (Hχ)M : M |= τn(x, p)}.

Ap
M is called the standard code determined by p. The structure

M p = (Jχ[E], Ap
M )

is called the reduct determined by p.

We shall often write Ap
M (n, x) instead of (n, x) ∈ Ap

M , and we shall write Ap rather
than Ap

M if there is no danger of confusion.

Definition 11.8 Let M be an acceptable structure, and write χ = χ1(M).

PM = the set of allp ∈ [χ,OR ≤ M)<βfor which

there is aB ∈ σ M
1 ({p}) such that B ≤ χ /∈ M.

The elements of PM are called good parameters.

Lemma 11.9 Let M be an acceptable J-structure, p ∈ [χ1(M),OR ≤ M)<β, and
A = Ap

M . Then
p ∈ PM ∩∅ A ≤ (β × χ1(M)) /∈ M.
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Proof “=∅”: Pick some B which witnesses that p ∈ PM . Suppose B is defined by
τn , i.e., ρ ∈ B ∩∅ (n, ρ) ∈ A. As B ≤ χ1(M) is not in M , A ≤ (β × χ1(M)) can
then not be in M either.

“∩=”: Suppose A ≤ (β × χ1(M)) /∈ M . Let f : β × χ1(M) −∧ χ1(M) be
defined by f (n, ζ + i) = ζ + 2n · 3i , where n, i < β and ζ < Φ is a limit
ordinal. Clearly f is σ M

1 , and if χ1(M) ∈ M then f ∈ M . Let B = f ⇒⇒ A. Then
B is σ M

1 ({p}), A ≤ (β × χ1(M)) = f −1⇒⇒
(B ≤ χ1(M)), and it is easy to see that

B ≤ χ1(M) /∈ M . �
Definition 11.10 Let M be an acceptable J-structure, and write χ = χ1(M). We set

RM = the set of all r ∈ [χ,OR ≤ M)<β such that hM (χ ∪ {r}) = M.

The elements of RM are called very good parameters.

Lemma 11.11 Let M be an acceptable J-structure. RM ⇐ PM ∼= ∈.

Proof That PM ∼= ∈ easily follows from hM (OR≤ M) = M , cf. the proof of Lemma
10.17.

As to RM ⇐ PM , let p ∈ RM , and define A ⇐ β × OR ≤ M by

(n, ρ) ∈ A ∩∅ (n, ρ) /∈ hM (n, (ρ, p)).

We have that A is σ M
1 ({p}), and A ≤ β × χ1(M) /∈ M by a diagonal argument.

Using the map f from the proof of Lemma 11.9 it is easy to turn the set A into some
B ⇐ OR ≤ M such that B is σ M

1 ({p}) and B ≤ χ1(M) /∈ M . �
It is not hard to see that there is a computable map e: β ∧ β such that for all

n < β, for all acceptable J-structures M , for all p ∈ M , and for all m1, . . . , mk < β

and x1, . . . , xk ∈ M p,

M |= τn(hM (m1, (x1, p)), . . . , hM (mk, (xk, p))) ∩∅
M |= τe(n)(((m1, x1), . . . , (mk, xk)), p) ∩∅ (11.1)

(e(n), ((m1, x1), . . . , (mk, xk))) ∈ Ap
M .

If M is an acceptable J-structure and p ∈ RM , then we may express in a uniform
Π1 fashion over M p that Ap

M codes à la (11.1) the σ1-theory of some acceptable
J-structure N which is given by applying theσ1-Skolem function hN to elements of
M p. Thiswill play a crucial role in the proof of theUpward Extension of Embeddings
Lemma 11.20.

Definition 11.12 Let τ be a formula in a first order language. We say that τ is a
Q-formula iff τ is (equivalent to a formula) of the form

∗ vi ⊂ v j ⊃ vi ν(v j ), (11.2)

whereν isσ1 and does not contain vi .We alsowrite Qv j instead of∗ vi ⊂ v j ⊃ vi and
read (11.2) as “for cofinally many v j , ν(v j )”. A map Δ : M ∧ N which preserves
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Q-formulae is called Q-preserving, in which case we write

Δ : M ∧Q N .

A map Δ : M ∧ N is called cofinal iff for all y ∈ N there is some x ∈ M such that
y ⇐ Δ(x).

Lemma 11.13 Let Δ : U ∧σ0 U ⇒, where U and U ⇒ are transitive structures.

(a) If Δ is cofinal, then Δ is σ1-elementary.
(b) Let Δ be σ1-elementary. Let τ be a Π2-formula, and let x ∈ U. If U ⇒ |= τ(Δ(x)),

then U |= τ(x).
(c) Let Δ is cofinal. Let τ be a Q-formula, and let x ∈ U. If U |= τ(x), then

U ⇒ |= τ(Δ(x)).

Proof Problem 11.3. �

We formulate the following lemma just for models of L∈̇,Ė, Ȧ, but of course it
also holds for models of different types.

Lemma 11.14 There is a Q-sentence θ (of L∈̇,Ė, Ȧ) such that for every transitive
model M = (M; ∈, E, A) (of L∈̇,Ė, Ȧ) which is closed under pairing, M is an
acceptable J-structure iff M |= θ .

Proof The statement “V = L[Ė]” (cf. p. 77) may be written as

Qy ⊂Σ y = SΣ [E].

Here, “y = SΣ [E]” is the σ1-formula from Lemma 5.25 (2). The fact that (M, A)

is amenable can be expressed by

Qy ⊂ z z = A ≤ y,

as A ≤ x ∈ M iff there is some y ⊃ x with A ≤ y ∈ M .
It remains to be checked that being acceptable can be written in a Q-fashion. Let

τ be the sentence

∗βρ ⊂ n < β ∗ m < β ∗ ξ < βρ

((P(ξ ) ≤ Sβρ+m[E]) \ Jβρ [E] ∼= ∈) =∅ (11.3)

⊂ f ∈ Sβρ+n[E] f : ξ ∧ βρ ⊃ f surjective).

Clearly, if M |= τ, then M is acceptable. To show the converse, let M be acceptable,
and let βρ < M ≤ OR. Let ξ0 be the least ξ such that

(P(ξ ) ≤ Jβρ+β[E]) \ Jβρ [E] ∼= ∈. (11.4)
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By acceptability, there is some n0 < β and some surjective f : ξ0 ∧ βρ , f ∈
Sβρ+n0 [E]. But then there is some n ≥ n0 such that for every ξ with (11.4) there is
some surjective f : ξ ∧ βρ , f ∈ Sβρ+n[E]. Therefore, M |= τ.

We may now express that M be acceptable by saying that for cofinally many y,
y = Sβρ+m[E] (for some ρ ,m < β) and if

(P(ξ ) ≤ Sβρ+m[E]) \ Jβρ [E] ∼= ∈,

then there is some surjective f : ξ ∧ βρ , f ∈ Sβρ+m[E]. �

Lemmas 11.13 and 11.14 now immediately give:

Corollary 11.15 Let M̄, M be transitive structures.

(a) If Δ : M̄ ∧σ1 M and M is an acceptable J-structure, then so is M̄.
(b) If Δ : M̄ ∧Q M (e.g., if Δ is a σ0 preserving cofinal map) and M̄ is an acceptable

J-structure, then so is M.

We may now turn to the downward extension of embeddings lemma.

Lemma 11.16 (Downward Extension of Embeddings Lemma, Part 1) Let M̄, M be
acceptable J-structures. Let p̄ ∈ RM̄ and p ∈ M. Let Δ : M̄ p̄ ∧σ0 M p. Then there
is a unique Δ̃ : M̄ ∧σ0 M such that Δ̃ ⊃ Δ and Δ̃( p̄) = p. Moreover, Δ̃ is in fact
σ1 elementary.

Proof By Lemma 10.16, the σ1-Skolem function hN is uniformly definable over
J-structures N , i.e., there is a σ1-formula θ such that x = hN (n, y) iff N |=
θ (n, y, x) for every J-structure N . Sayθ (v1, v2, v3) ∞ ⊂w1 . . . ⊂wk θ̄ (w1, . . . , wk,

v1, v2, v3).
Let us first show the uniqueness of Δ̃ . Suppose that Δ̃ has the above properties.

Let x ∈ M̄ . Then x = hM̄ (n, (z, p̄)) for some n ∈ β and z ∈ [χ1(M̄)]<β. Pick
z1, . . . , zk ∈ M̄ such that θ̄ (z1, . . . , zk, n, (z, p̄), x). Since Δ̃ is σ0 preserving, this
implies θ̄ (Δ̃(z1), . . . , Δ̃(zk), n, (Δ̃(z), p), Δ̃(x)), so that we must have

Δ̃(x) = hM (n, (Δ̃(z), p)) = hM (n, (Δ(ρ), p)).

Hence, there can be at most one such Δ̃ .
Let us now show the existence of Δ̃ .

Claim 11.17 Suppose that τ(v1, . . . , vλ) is a σ1-formula. For 0 < i → λ let x̄i =
hM̄ (ni , (z̄i , p̄)) where ni < β and z̄i ∈ [χ1(M)]<β, and let xi = hM (ni , (zi , p))

where zi = Δ(z̄i ). Then

M̄ |= τ(x̄1, . . . , x̄λ) iff M |= τ(x1, . . . , xλ).

Proof We shall use the map e from p. 230. Let τ ∞ τn , n < β. Then M̄ |=
τ(x̄1, . . . , x̄λ) is equivalent to
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M̄ |= τn(hM̄ (n1, (z̄1, p̄)), . . . , hM̄ (nλ, (z̄λ, p̄))), (11.5)

which may be written as

M̄ |= τe(n)(z̄1, . . . , z̄λ, p̄). (11.6)

This also works over M , i.e., M |= τ(x1, . . . , xλ) is equivalent to

M |= τe(n)(z1, . . . , zλ, p). (11.7)

Now (11.6) is equivalent to

Ap̄
M̄

(e(n), (z̄1, . . . , z̄λ)), (11.8)

and (11.7) is equivalent to

Ap
M (e(n), (z1, . . . , zλ)). (11.9)

Since Δ is σ0 preserving, (11.8) and (11.9) are equivalent. �

Now let us define Δ̃ by

Δ̃(hM̄ (n, (z, p̄))) � hM (n, (Δ(z), p)) (11.10)

for n ∈ β and z ∈ [χ1(M̄)]<β. Here, “�” is understood as saying that the left hand
side is defined iff the right hand side is.Notice that Δ̃ is indeedwell definedby (11.10);
this is because if hM̄ (n1, (z̄1, p̄)) = hM̄ (n2, (z̄2, p̄)) where n1, n2 < β and z̄1, z̄2 ∈
[χ1(M̄)]<β, then by Claim 11.17, hM (n1, (Δ(z̄1), p)) = hM (n2, (Δ(z̄2), p)). Claim
11.17 then also yields that Δ̃ is σ1 preserving.

To see that Δ̃ ⊃ Δ and Δ̃( p̄) = p, pick k1, k2 < β such that

x = hN (k1, (x, q)) and q = hN (k2, (x, q)), (11.11)

uniformly over all J-structures N . Then for all z ∈ [χ1(M̄)]≥β, z = hM̄ (k1, (z, p̄)),
hence Δ̃(z) = hM (k1, (Δ(z), p)) = Δ(z). This gives Δ̃ ⊃ Δ . Also, p̄ =
hM̄ (k2, (0, p̄)), hence Δ̃( p̄) = hM (k2, (0, p)) = p. �

If in addition the hypothesis of Lemma 11.16 we assume that p ∈ RM and
Δ : M̄ p̄∧σn M p, then we may show that Δ̃ : M̄ ∧σn+1 M (cf. Problem 11.4).

Lemma 11.18 (Downward Extension of Embeddings Lemma, Part 2) Let M be
an acceptable J-structure, and let p ∈ M. Suppose that N is a J-structure and
Δ : N ∧σ0 M p. Then there are unique M̄ and p̄ such that p̄ ∈ RM̄ and N = M̄ p̄.

Proof The uniqueness of M̄ and p̄ is easy to verify, arguing as in the proof of Lemma
11.16. Let us show the existence.
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p

p
π̃

π

M

M
p != N

M

Mp

Let M = (JΦ[E], B), M p = (Jχ[E], A), where χ = χ1(M) and A = Ap
M , and

let N = (Jχ̄[Ē ⇒], Ā). Let

M̄
Δ̃∪= hM (ran(Δ) ∪ {p}) ⊕σ1 M, (11.12)

where M̄ is transitive. By Corollary 11.15 (a), M̄ is an acceptable J-structure, say
M̄ = (JΦ̄[Ē], B̄).

Let us first show that

ran(Δ̃) ≤
(⋃

ran(Δ)
)

= ran(Δ). (11.13)

It is easy to see “⊃” of (11.13). To show “⇐” of (11.13), suppose that y =
hM (n, (z, p)) ∈ x , where n < β and z, x ∈ ran(Δ). Since y, z ∈ M p, the σ1
statement “y = hM (n, (z, p))” can be equivalently expressed in the form A(k, (y, z))
for some k ∈ β. As also x ∈ M p, we thus have that

⊂ v ∈ x A(k, (v, z)),

a σ0-statement which is true in M p, so that

⊂ v ∈ x̄ Ā(k, (v, z̄)),

holds true in N , where x̄ = Δ−1(x) and z̄ = Δ−1(z). Let ȳ ∈ x̄ be such that
Ā(k, (ȳ, z̄)). Then A(k, (Δ(ȳ), z)), so that in fact Δ(ȳ) = hM (n, (z, p)) = y, i.e.,
y ∈ ran(Δ). We have shown (11.13).

Equation (11.13) now immediately implies that

Δ̃ ⊃ Δ and Jχ̄[Ē ⇒] = Jχ̄[Ē]. (11.14)
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Let us now set
p̄ = Δ̃−1(p).

We aim to verify that M̄ and p̄ are as desired.
We claim that

χ1(M̄) = χ̄. (11.15)

Well, by (11.12) and (11.14) and as there is a σ∪
M̄
1 map of χ̄ onto Jχ̄[Ē], there is a

σ∪
M̄
1 map of χ̄ onto M̄ . This gives that χ1(M̄) → χ̄, cf. the proof of Lemma 11.11.

To show that χ̄ → χ1(M̄), let P be σ∪
M̄
1 ({q̄}) for some q̄ ∈ M̄ , and let δ < χ̄.

We aim to see that P ≤ δ ∈ M̄ . By (11.12) we can find an n < β and some
x ∈ N = Jχ̄[Ē] such that

z ∈ P ∩∅ M̄ |= τn((z, x), p̄)

for all z ∈ M̄ . But for all k < β and y ∈ N ,

Ā(k, y) ∩∅ A(k, Δ̃(y)) ∩∅ M |= τk(Δ̃(y), p) ∩∅ M̄ |= τk(y, p̄). (11.16)

In particular,

Ā(n, (z, x)) ∩∅ M̄ |= τn((z, x), p̄)

for all z ∈ N . As N is a J-structure, Ā ≤ ({n} × (δ × {x})) ∈ N , and thus P ≤ δ is
in N , too. This proves (11.15).

As an immediate consequence of (11.16) and (11.15) we get that

Ā = Ap̄
M̄

. (11.17)

Because there is a σ M
1 map of χ̄ onto Jχ̄[Ē], (11.12) implies that

p̄ ∈ RM̄ .

The proof is complete. �

We now aim to prove a dual result, the upward extension of embeddings lemma.

Definition 11.19 Let M̄ and M be acceptable J-structures. A map Δ : M̄ ∧ M is
called a good embedding iff

(a) Δ : M̄ ∧σ1 M
(b) For all R̄ and R such that R̄ ⇐ M̄2 is rudimentary over M̄ and R ⇐ M2 is

rudimentary over M by the same definition,

if R̄ is well-founded, then so isR.
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Lemma 11.20 (Upward Extension of Embeddings Lemma) Let M̄ be an acceptable
J-structure, and let p̄ ∈ RM̄ . Suppose that N is an acceptable J-structure, and
Δ : M̄ p̄ ∧σ1 N is a good embedding. Then there are unique M, p such that
N = M p and p ∈ RM . Moreover, Δ̃ is good, where Δ̃ ⊃ Δ and Δ̃ : M̄ ∧σ1 M
with Δ̃( p̄) = p is given by Lemma 11.16.

Notice that Lemma 11.16 in fact applies to the situation of Lemma 11.20.

Proof of Lemma 11.20. We shall make frequent use of the map e from p. 230.
Let us first show that M and p are unique. Suppose Δ̃1 : M̄ ∧ M1 and Δ̃2 :

M̄ ∧ M2 are two extensions of Δ satisfying the conclusion of Lemma 11.20, and
that p1, p2 are the corresponding parameters. Then Ap1

M1
= Ap2

M2
, call it A, and if

k ∈ {1, 2} and x ∈ Mk , then x is of the form hMk (n, (z, pk)) for some n < β

and z ∈ [N ≤ OR]<β. Let Θ : M1 ∧ M2 be the map sending hM1(n, (z, p1)) to
hM2(n, (z, p2)), where n < β and z ∈ [N ≤ OR]<β. Then Θ is a well defined
surjection since

⊂z z = hM1(n, (z, p1)) ∩∅ A(m, (n, ρ)) ∩∅ ⊂z z = hM2(n, (z, p2))

for an appropriate m < β (namely, m = e(�⊂z z = v♦)). Also, Θ respects ∈, since
if x = hM1(n1, (z1, p1)) and y = hM1(n2, (z2, p1)), where n1, n2 < β and z1,
z2 ∈ [N ≤ OR]<β then

x ∈ y ∩∅ hM1(n1, (z1, p1)) ∈ hM1(n2, (z2, p1))

∩∅ A(m, ((n1, z1), (n2, z2)))

∩∅ hM2(n1, (z1, p2)) ∈ hM2(n2, (z2, p2))

∩∅ Θ(x) ∈ Θ(y)

for an appropriate m < β (namely, m = e(�v1 ∈ v2♦)). Therefore, Θ is an ∈-
isomorphism, so that Θ is the identity, i.e., M1 = M2, Δ̃1 = Δ̃2 and p1 = p2.

p

p
π̃

π

M

M
p

M

N
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Let us now verify the existence of M , p. Suppose that M̄ = (JΦ̄[F], W ). We first
represent M̄ as a termmodel which is definable over M̄ p̄, and then “unfold” the term
model which is defined in the corresponding fashion over N so as to obtain M and
p. Let

M̄ = {(n, z) ∈ β × M̄ p̄ : ⊂y y = hM̄ (n, (z, p̄))},

and let us define relations Ī , Ē , F̄ , and W̄ over M̄ as follows, where (n, x), (m, y) ∈
M̄ .

(n, x) Ī (m, y) ∩∅ hM̄ (n, (x, p̄)) = hM̄ (m, (y, p̄))

(n, x)Ē(m, y) ∩∅ hM̄ (n, (x, p̄)) ∈ hM̄ (m, (y, p̄))

(n, x) ∈ F̄ ∩∅ hM̄ (n, (x, p̄)) ∈ F

(n, x) ∈ W̄ ∩∅ hM̄ (n, (x, p̄)) ∈ W

Obviously, Ī is an equivalence relation, and the predicates Ē , F̄ , and W̄ are Ī -
invariant. Let us write, for (n, x), (m, y) ∈ M̄ ,

[n, x] = {[m, y]: (n, x) Ī (m, y)}
M̄ / Ī = {[n, x]: (n, x) ∈ M̄ }

[n, x]Ē/ Ī [m, y] ∩∅ (n, x)Ē(m, y)

[n, x] ∈ F̄/ Ī ∩∅ (n, x) ∈ F̄

[n, x] ∈ W̄/ Ī ∩∅ (n, x) ∈ W̄ .

We obviously have

S̄ = (M̄ / Ī ; Ē/ Ī , F̄/ Ī , W̄/ Ī )
Θ̄∪= (JΦ̄[F]; ∈, F, W ),

where Θ̄ sends [n, x] to hM̄ (n, (x, p̄)).

Notice that M̄ , Ī , Ē , F̄ , and W̄ are all σ M̄
1 ({ p̄}), and that we may thus choose

n1, n2, n3, n4, and n5 < β such that for all (n, x), (m, y) ∈ β × M̄ p̄,

(n, x) ∈ M̄ ∩∅ (n1, (n, x)) ∈ Ap̄
M̄

(n, x) Ī (m, y) ∩∅ (n2, ((n, x), (m, y))) ∈ Ap̄
M̄

(n, x)Ē(m, y) ∩∅ (n3, ((n, x), (m, y))) ∈ Ap̄
M̄

(n, x) ∈ F̄ ∩∅ (n4, (n, x)) ∈ Ap̄
M̄

(n, x) ∈ W̄ ∩∅ (n5, (n, x)) ∈ Ap̄
M̄

Let us write N = (Jχ[E ⇒], A⇒), so that Δ : M̄ p̄ ∧σ1 (Jχ[E ⇒], A⇒). We defineM ,
I , E , F , and W as follows, where (n, x), (m, y) ∈ β × N .
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⎧

(n, x) ∈ M ∩∅ (n1, (n, x)) ∈ A⇒
(n, x)I (m, y) ∩∅ (n2, ((n, x), (m, y))) ∈ A⇒
(n, x)E(m, y) ∩∅ (n3, ((n, x), (m, y))) ∈ A⇒
(n, x) ∈ F ∩∅ (n4, (n, x)) ∈ A⇒
(n, x) ∈ W ∩∅ (n5, (n, x)) ∈ A⇒

(11.18)

The fact that Ī is an equivalence relation and that Ē , F̄ , and W̄ are Ī -invariant
may easily be formulated in a Π1 fashion over M̄ p̄. As Δ is assumed to be σ1-
elementary, I is thus also an equivalence relation, and E , F , and W are I -invariant.
We may therefore write, for (n, x), (m, y) ∈ M ,

[n, x]≥ = {[m, y]: (n, x)I (m, y)}
M /I = {[n, x]≥: (n, x) ∈ M }

[n, x]≥E/I [m, y]≥ ∩∅ (n, x)E(m, y)

[n, x]≥ ∈ F/I ∩∅ (n, x) ∈ F

[n, x]≥ ∈ W/I ∩∅ (n, x) ∈ W.

Let us consider
S = (M /I ; E/I, F/I, W/I ).

In addition to (11.18), we shall need four more facts about A⇒ which are inherited
from Ap̄

M̄
and which will eventually enable us to show that A⇒ is a standard code. For

one thing, for all σ1-formulae τ and ν and for all (m1, x1), . . ., (mk, xk) ∈ β × N ,

(e(�¬τ♦), ((m1, x1), . . . , (mk, xk))) ∈ A⇒ ∩∅
(e(�τ♦), ((m1, x1), . . . , (mk, xk))) /∈ A⇒ (11.19)

and

(e(�τ ⊃ ν♦), ((m1, x1), . . . , (mk, xk))) ∈ A⇒

∩∅[ (e(�τ♦), ((m1, x1), . . . , (mk, xk))) ∈ A⇒ (11.20)

⊃ (e(�ν♦), ((m1, x1), . . . , (mk, xk))) ∈ A⇒ ].

Equations (11.19) and (11.20) just follow from the corresponding facts for Ap̄
M̄
and the

Π1-elementarity ofΔ .We also need versions of (11.19) and (11.20) for quantification.
In order to arrive at these versions, we are going to use the σ1-Skolem function for
M̄ to express Π2-truth over M̄ in a Π1 fashion over M̄ p̄. For the sake of readability,
let us pretend in what follows that if τn is σ1 but not σ0, then τn has only one free
variable, w, and that it is in fact of the form ⊂v ν(v, w), where ν is σ0. We may
pick a (partial) computable map ē: β ∧ β such that for all n < β in the domain of
ē, τē(n) is σ0 and
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τn(w) is equivalent to ⊂v τē(n)(v, w)

over rud–closed structures.
Now let τn be σ1 but not σ0. We then have that

M̄ p̄ |= “∗m∗x ((e(n), (m, x)) ∈ Ap̄
M̄

←∧
⊂m⇒⊂x ⇒(e(ē(n)), ((m⇒, x ⇒), (m, x))) ∈ Ap̄

M̄
).” (11.21)

Equation (11.21) is not Π1 by itself, but it may be rephrased in a Π1 fashion over
M̄ p̄ as follows.

M̄ p̄ |= “∗m∗x ((e(n), (m, x)) ∈ Ap̄
M̄

←∧
(e(ē(n)), ((k(n), (m, x)), (m, x)) ∈ Ap̄

M̄
).” (11.22)

Here, k: β ∧ β is a natural computable function such that

M̄ |= ⊂v τk(n)(v, ((m, x), p̄)) ←∧ ⊂v τē(n)(v, hM̄ (m, (x, p̄))).

Equation (11.22) is true as

((e(n), (m, x)) ∈ Ap̄
M̄

∩∅ M̄ |= τn(hM̄ (m, (x, p̄)))

∩∅ M̄ |= ⊂v τē(n)(v, hM̄ (m, (x, p̄)))

∩∅ M̄ |= τē(n)(hM̄ (k(n), ((m, x), p̄)), hM̄ (m, (x, p̄)))

∩∅ (e(ē(n)), ((k(n), (m, x)), (m, x)) ∈ Ap̄
M̄

.

The statement (11.22) will be transported upward via Δ , and we thus have

N |=“∗m∗x (e(n), (m, x)) ∈ A⇒ ←∧
(e(ē(n)), ((k(n), (m, x)), (m, x)) ∈ A⇒).” (11.23)

We have shown that for all formulae τ = τn which are σ1 but not σ0 and for all
(m, x) ∈ β × N ,

(e(n), (m, x)) ∈ A⇒ ∩∅
⊂(m⇒, x ⇒) ∈ β × N (e(ē(n)), ((m⇒, x ⇒), (m, x))) ∈ A⇒. (11.24)

In a similar fashion, we may prove that if τ(v1, v2, v3) isσ0 and if (m, x), (m⇒, x ⇒) ∈
β × N , then
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(e(�∗v1 ∈ v2 τ(v1, v2, v3)♦), ((m, x), (m⇒, x ⇒)) ∈ A⇒ ∩∅
∗(m⇒⇒, x ⇒⇒) ∈ β × N (e(�v1 ∈ v2 ∧ τ(v1, v2, v3)♦), (11.25)

((m⇒⇒, x ⇒⇒), (m⇒, x ⇒), (m, x))) ∈ A⇒.

We know that Ē/ Ī is extensional, which may be formulated as saying that if
(n, x), (m, y) ∈ M̄ are such that

(e(�v ∼= w♦), ((n, x), (m, y))) ∈ Ap̄
M̄

,

then there is some (m⇒, x ⇒) ∈ M̄ with

(e(�u ∈ vψw♦), ((m⇒, x ⇒), (n, x), (m, y))) ∈ Ap̄
M̄

.

Equation (11.24)will nowgive that E/I is also extensional.Because E is rudimentary
over N via the same definition as the one which gives Ē as being rudimentary over
M̄ p̄, the relation E is actually well-founded by the goodness of Δ . Therefore,

S = (M /I ; E/I, F/I, W/I )
Θ∪= (JΦ[E≥]; ∈, E≥, W ≥)

for some Φ, E≥, and W ≥. We shall also write M = (JΦ[E≥], W ≥) instead of
(JΦ[E≥]; ∈, E≥, W ≥).

It is now straightforward to use (11.18–11.24) and prove the following by induc-
tion of the complexity of τ.

Claim 11.21 For all n < β and (m1, x1), . . ., (mk, xk) ∈ β × N,

(e(n), ((m1, x1), . . . , (mk, xk))) ∈ A⇒ ∩∅
M |= τn(Θ ([m1, x1]≥), . . . , Θ ([mk, xk]≥)).

We may now define
Δ̃ : M̄ ∧ M

by
hM̄ (n, (x, p̄)) ≡∧ Θ([n, Δ(x)]≥),

where (n, x) ∈ M̄ . Notice that Δ̃ is well-defined, as for (n, x), (m, y) ∈ M̄ ,

hM̄ (n, (x, p̄)) = hM̄ (m, (y, p̄)) ∩∅ (n, x) Ī (m, y)

∩∅ (n2, ((n, x), (m, y))) ∈ Ap̄
M̄

∩∅ (n2, ((n, Δ(x)), (m, Δ(y)))) ∈ A⇒

∩∅ (n, Δ(x))I (m, Δ(y))

∩∅ [n, Δ(x)]≥ = [m, Δ(y)]≥.
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Moreover, Δ̃ is σ2-elementary, by the following reasoning. Let n < β, and say that
τn has two free variables, v andw. Then for all z ∈ M̄ , say z = hM̄ (λ, (y, p̄)), where
λ < β and y ∈ M̄ p̄,

M̄ |= ∗v τn(v, z) ∩∅ ∗(m, x) ∈ β × M̄ p̄ M̄ |= τn(hM̄ (m, (x, p̄)), hM̄ (λ, (y, p̄)))

∩∅ M̄ p̄ |= ∗m, x (e(n), ((m, x), (λ, y))) ∈ A p̄
M̄

∩∅ N |= ∗m, x (e(n), ((m, x), (λ, Δ(y)))) ∈ A⇒
(≥)∩∅ ∗(m, x) ∈ β × N M |= τ([m, x]≥, [λ, Δ(y)]≥)

∩∅ M |= ∗v τn(v, Δ̃(z)).

Here, (≥) holds true by Claim 11.21.
Let us write p = Δ̃( p̄). We claim that M , Δ̃ , and p are as desired.
Let k1, k2 be as in (11.11). Then

x = Θ̄ ([k1, x]) for all x ∈ M̄ p̄ and p̄ = Θ̄ ([k2, 0]).

Let us first observe that N ⇐ M . If x ∈ M̄ p̄ and Θ̄ ([n, y]) ∈ x = Θ̄ ([k1, x]), then
Θ̄ ([n, y]) = Θ̄ ([k1, w]) for some w ∈ x . This may be written in a Π1 fashion over
M̄ p̄, so that if x ∈ N andΘ([n, y]≥) ∈ Θ([k1, x]≥), thenΘ([n, y]≥) = Θ([k1, w≥]) for
somew≥. It follows by ∈-induction that Θ([k1, x]≥) = x for all x ∈ N . Furthermore,
given any x ∈ M̄ p̄,

Δ̃(x) = Δ̃(Θ̄ ([k1, x])) = Θ([k1, Δ(x)]≥) = Δ(x),

and hence Δ̃ ⊃ Δ .
We also have that p = Δ̃( p̄) = Δ̃(hM̄ (k2, (0, p̄))) = Θ([k2, 0]≥). We now prove

that A⇒ = Ap
M .

For x ∈ M̄ p̄ and n < β, we have that

rl(n, x) ∈ Ap̄
M̄

∩∅M̄ |= τn(x, p̄)

∩∅M̄ |= τn(hM̄ (k1, (x, p̄)), hM̄ (k2, (0, p̄)))

∩∅(e(n), ((k1, x), (k2, 0)) ∈ Ap̄
M̄

,

which implies that for all x ∈ N and n < β,

(n, x) ∈ A⇒ ∩∅ (e(n), ((k1, x), (k2, 0)) ∈ A⇒ ∩∅ M |= τn(x, p).

To see that A⇒ = Ap
M , it then suffices to show that N ≤ OR = χ = χ1(M). Our

computation will also yield that p ∈ RM .
The reader will gladly verify that for all (n, x) ∈ β × M̄ p̄,

hM̄ (n, (x, p̄)) = hM̄ (hM̄ (k1, (n, p̄)), (hM̄ (k1, (x, p̄)), hM̄ (k2, (0, p̄))))
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yields that

(�v1 = h(v2, (v3, v4))♦, ((n, x), (k1, n), ((k1, x), (k2, 0)))) ∈ Ap̄
M̄

,

so that for all (n, x) ∈ β × N ,

(�v1 = h(v2, (v3, v4))♦, ((n, x), (k1, n), ((k1, x), (k2, 0)))) ∈ A⇒, (11.26)

which in turn implies that

Θ([n, x]≥) = hM ([k1, n]≥, ([k1, x]≥, [k2, 0]≥)) = hM (n, (x, p)).

As there is a σ M
1 map from χ onto N and M = {Θ([n, x]≥): (n, x) ∈ M }, (11.26)

implies that

M = hM (χ ∪ {p}), and hence also χ1(M) → χ (11.27)

by the proof of Lemma 11.11. On the other hand, if B ∈ σ M
1 ({a}), where a ∈ M ,

then by (11.27) there is some z ∈ [χ]<β and some B̃ ∈ σ M
1 ({p}) such that for all

x ∈ N ,
x ∈ B ∩∅ (x, z) ∈ B̃,

which in turn for some fixed n (namely, the Gödel number of the defining formula)
is equivalent to (n, (x, z)) ∈ A⇒. But (N , A⇒) is amenable, so that if η < χ, then
η × {z} ≤ B̃ ∈ N , and hence also B ≤ η ∈ N . This shows that χ → χ1(M). Thus,

χ = χ1(M) and p ∈ RM .

It only remains to show that Δ̃ is good. Let R̄, R be binary relations which are
rudimentary over M̄, M , respectively, by the same rudimentary definition. Define
R̄≥, R≥ as follows

(n, x)R̄≥(m, y) ∩∅ (n, x), (m, y) ∈ M̄ ⊃ Θ̄ ([n, x])R̄Θ̄ ([m, y])
(n, x)R≥(m, y) ∩∅ (n, x), (m, y) ∈ M ⊃ Θ([n, x]≥)RΘ([m, y]≥).

Then R̄≥ is well-founded since R̄ is, and R̄≥, R≥ are rudimentary over M̄ p̄, N ,
respectively, by the same rudimentary definition. As Δ is good, R≥ must then be
well-founded. Hence R must be well-founded as well. �
Definition 11.22 Let M be an acceptable J-structure. For n < β we recursively
define the n-th projectum χn(M), the n-th standard code An,p

M and the n-th reduct
Mn,p as follows:

(1) χ0(M) = M ≤ OR, Γ 0
M = {∈}, A0,∈

M = ∈, and M0,∈ = M , and
(2) χn+1(M) = min{χ1(Mn,p): p ∈ Γ n

M }, Γ n+1
M = ⎪

i→n
[χi+1(M), χi (M))≥β, and

for p ∈ Γ n+1
M , An+1,p

M = Ap(n)

Mn,p�n , and Mn+1,p = (Mn,p�n)p(n).
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We also set χβ(M) = min{χn(M); n < β}. The ordinal χβ(M) is called the ultimate
projectum of M .

We remark that if M is not 1-sound (cf. Definition 11.28) then it need not be the case
that χ2(M) is the least χ such that P(χ) ≤ σ∪

M
2 ∼⇐ M .

If χn(M) → · · · → χ1(M), then we may identify p = (p(0), . . . , p(n)) ∈ Γ n+1
M

with the (finite) set
⎨

ran(p) of ordinals; this will play a rôle in the next section.

Definition 11.23 Let M be an acceptable J-structure. We the set

P0
M = {∈},

Pn+1
M = {p ∈ Γ n+1

M : p � n ∈ Pn
M ⊃ χ1(Mn,p�n) = χn+1(M) ⊃ p(n) ∈ PMn,p�n }, and

Rn+1
M = {p ∈ Γ n+1

M : p � n ∈ Rn
M ⊃ χ1(Mn,p�n) = χn+1(M) ⊃ p(n) ∈ RMn,p�n }.

As before, we call the elements of Pn
M good parameters and the elements of Rn

M very
good parameters.

Lemma 11.24 Let M be an acceptable J-structure.

(a) Rn
M ⇐ Pn

M ∼= ∈
(b) Let p ∈ Rn

M . If q ∈ Γ n
M then An,q

M is rudMn,p in parameters from Mn,p.
(c) Let p ∈ Rn

M . Then χ1(Mn,p) = χn+1(M).
(d) If p ∈ Pn

M , then for all i < n, p(i) ∈ PMi,p�i . If p ∈ Rn
M , then for all i < n,

p(i) ∈ RMi,p�i . Moreover, if p � (n − 1) ∈ Rn−1
M , then p(n − 1) ∈ PMn−1,p�n−1

implies that p ∈ Pn
M and p(n − 1) ∈ RMn−1,p�n−1 implies that p ∈ Rn

M .

Proof (a) This is easily shown inductively by using Lemma 11.11 and amalgamating
parameters.
(b) By induction on n < β. The case n = 0 is trivial. Now let n > 0, and suppose (b)
holds for n − 1. Write m = n − 1. Let p ∈ Rn

M and q ∈ Γ n
M . We have to show that

Aq(m),χn(M)

Mm,q�m is rudMn,p in parameters from Mn,p. Inductively, Mm,q�m is rudMm,p�m

in a parameter t ∈ Mn,p. As p(m) ∈ RMm,p�m , there are e0 and e1 and z ∈ Mn,p

such that
q(m) = hMm,p�m (e0, (z, p(m)))

and
t = hMm,p�m (e1, (z, p(m))).

For i < β and x ∈ Mn,p, we have that

(i, x) ∈ Aq(m),χn(M)

Mm,q�m ∩∅ Mm,q�m |= τi (x, q(m))

∩∅ Mm,q�m |= τi (x, hMm,p�m (e0, (z, p(m))))

∩∅ Mm,p�m |= τ j ((x, z), p(m))

∩∅ ( j, (x, z)) ∈ Ap(m)

Mm,p�m ,
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for some J which is recursively computable from i , as Mm,q�m is rudMm,p�m in

the parameter t = hMm,p�m (e1, (z, p(m))). Therefore, Aq(m),χn(M)

Mm,q�m is rud
Ap(m)

Mm,p�m
in

the parameter z. (c) Let χn+1(M) = χ1(Mn,q), where q ∈ Γ n
M . By (b), Mn,q is

rudMn,p in parameters from Mn,p, which implies that σ∪
Mn,q

1 ⇐ σ∪
Mn,p

1 . But then

χ1(Mn,p) → χ1(Mn,q) = χn+1(M), and hence χ1(Mn,p) = χn+1(M). (d) This
follows inductively, using (c). �

The following is given just by the definition of Rn+1
M . Let M be acceptable, and

let p ∈ Rn+1
M . Then

M = hM (hM1,p�1(. . . hMn,p�n (χn+1(M) ∪ {p(n)}) . . .) ∪ {p(0)}). (11.28)

We thus can, uniformly over M , define a function hn+1,p
M basically as the iterated

composition of the σ1 Skolem functions of the i th reducts of M , 0 → i → n, given
by p such that M is the hn+1,p

M -hull of χn+1(M) whenever p ∈ Rn+1
M .

More precisely, let M be acceptable, and let p ∈ Γ n+1
M . Let us inductively define

hi,p
M , for 1 → i → n + 1, as follows. For k < β, let g(k) = the largest m such that 2m

divides k, and let u(k) = the largest m such that 3m divides k. Let

h1,p
M (k, x) = hM (k, (x, p(0))) for x ∈ M1,p�1, and

for i > 0, hi+1,p
M (k, x) = hi,p

M (g(k), hMi,p�i (u(k), (x, p(i)))) for x ∈ Mi+1,p�i+1.

(11.29)

If X ⇐ Mn+1,p, then we shall write

hn+1,p
M (X) for hn+1,p

M ⇒⇒ (β × <β X).

If p is clear from the context, then we may write hn+1
M rather than hn+1,p

M .
The following is straightforward.

Lemma 11.25 Let n < β, and let M be an acceptable J-structure. If p ∈ Γ n+1
M ,

then hn+1,p
M is in σ M

β ({p}), and if p ∈ Rn+1
M , then

M = hn+1,p
M "(χn+1(M)). (11.30)

Lemma 11.26 Let 0 < n < β. Let M be an acceptable J-structure, and let p ∈ Rn
M .

Then σ∪
M
β ≤ P(Mn,p) = σ∪

Mn,p

β .

Proof It is easy to verify that σ∪
Mn,p

β ⇐ σ∪
M
β ≤ P(Mn,p). Now let A ∈ σ∪

M
β ≤

P(Mn,p), say

x ∈ A ∩∅ M |= ⊂x1∗x2 · · · ⊂/∗xk τ(x, y, x1, x2, · · · , xk),
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where τ is σ0 and y ∈ M . By Lemma 11.25, we may write

x ∈ A ∩∅ ⊂x ⇒
1 ∈ Mn,p ∗x ⇒

2 ∈ Mn,p · · · ⊂/∗xk ∈ Mn,p

τ(x, hn
M (y⇒, p), hn

M (x ⇒
1, p), hn

M (x ⇒
2, p), · · · hn

M (x ⇒
k, p)),

where y⇒ ∈ Mn,p. But then A ∈ σ∪
Mn,p

β , as hn
M is definable over M by

Lemma 11.25. �

Amore careful look at the proofs of Lemmata 11.25 and 11.26 shows the follow-
ing.

Lemma 11.27 Let n < β. Let M be an acceptable J-structure, and let p ∈ Rn
M . Let

A ⇐ Mn,p be σ∪
M
n+1. Then A is σ∪

Mn,p

1 .

Definition 11.28 Let M be an acceptable J-structure. M is n-sound iff Rn
M = Pn

M .
M is sound iff M is n-sound for all n < β.

We shall prove later (cf. Lemma 11.53) that every JΦ is sound. It is in fact a crucial
requirement on “L-like” models that there proper initial segments be sound.

Wemay now formulate generalizations of the downward and the upward extension
of embeddings Lemmas 11.16, 11.18, and 11.20.

Lemma 11.29 (General Downward Extension of Embeddings Lemma, Part 1) Let
n > 0. Let M̄ and M be acceptable J-structures, and let Δ : M̄n, p̄ ∧σ0 Mn,p, where
p̄ ∈ Rn

M̄
. Then there is a unique map Δ̃ ⊃ Δ such that dom(Δ̃) = M̄, Δ̃( p̄) = p

and, setting Δ̃i = Δ̃ � M̄i, p̄�i ,

Δ̃i : M̄i, p̄�i ∧σ0 Mi,p�i for i → n.

For i < n, the map Δ̃i is in fact σ1-elementary.
In particular,

Δ̃
(

hn, p̄
M̄

(k, x)
)

= hn,p
M (k, Δ(x))

for every k < β and x ∈ M̄n, p̄ .

Lemma 11.30 (General Downward Extensions of Embeddings Lemma, Part 2) Let
M be an acceptable J-structure, and let p ∈ M. Let N be a J-structure, and let
Δ : N ∧σ0 Mn,p. Then there are unique M̄, p̄ such that p̄ ∈ Rn

M̄
and N = M̄n, p̄ .

The general upward extension of embeddings lemma is the conjunction of the
following lemma together with Lemmas 11.29 and 11.30.

Lemma 11.31 (General Upward Extensions of Embeddings Lemma) Let Δ :
M̄n, p̄ ∧σ1 N be good, where M̄ is an acceptable J-structure and p̄ ∈ Rn

M̄
. Then

there are unique M, p such that M is an acceptable J-structure, p ∈ Rn
M and

Mn,p = N. Moreover, if Δ̃ is as in Lemma 11.29, then Δ̃ is good.
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If Δ and Δ̃ are as in Lemma 11.29 then Δ̃ is often called the n-completion of Δ .
Following [30, Sect. 2] we shall call embeddings arising from applications of

the Downward and Upward Extension of Embeddings Lemma “rσn+1 elementary.”
Here is our official definition, which presupposes that the structures in question
possess very good parameters.

Definition 11.32 Let M , N be acceptable, let Δ : M ∧ N , and let n < β. Then Δ

is called rσn+1 elementary provided that there is p ∈ Rn
M with Δ(p) ∈ Rn

N , and for
all i → n,

Δ � Mi,p�i : Mi,p�i ∧σ1 N i,Δ(p)�i . (11.31)

The map Δ is called weakly rσn+1 elementary provided that there is p ∈ Rn
M with

Δ(p) ∈ Rn
N , and for all i < n, (11.31) holds, and

Δ � Mn,p: Mn,p ∧σ0 N n,Δ(p).

If Δ : M ∧ N is (weakly) rσn+1 elementary then typically both M and N will
be n-sound, cf. Lemma 11.38; however, neither M nor N has to be (n + 1)-sound. It
is possible to generalize this definition so as to not assume that very good parameters
exist (cf. [30, Sect. 2]).

With the terminology of Definition 11.32, Lemma 11.29 says that the map Δ can
be extended to its n-completion Δ̃ which is weakly rσn+1 elementary, and if Δ is
σ1 elementary to begin with, then the n-completion Δ̃ in fact be rσn+1 elementary.

Moreover, if a map Δ : M ∧ N is rσn+1 elementary, then Δ respects hn+1 by
Theorem 10.16:

Lemma 11.33 Let n < β, and let M and N be acceptable J-structures. Let Δ : M ∧
N be rσn+1 elementary. Let p ∈ Γ n+1

M be such that p � n ∈ Rn
M and Δ(p � n) ∈ Rn

N .
Then for all k < β and x ∈ Mn+1,p,

Δ
(

hn+1,p
M (k, x)

)
= hn+1,Δ(p)

N (k, Δ(x)).

Recall the well-ordering <≥ of finite sets of ordinals from Problem 5.19: if u,
v ∈ OR<β, then u <≥ v iff max(uψv) ∈ v. If M is an acceptable J-model and
n < β, then the well-ordering <≥ induces a well-ordering of Γ n

M by confusing
p ∈ Γ n

M with
⎨

ran(p). We shall denote this latter well-ordering also by <≥.

Definition 11.34 Let M be an acceptable J-structure. The<≥-least p ∈ Pn
M is called

the nth standard parameter of M and is denoted by pn(M). We shall write Mn for
Mn,pn(M). Mn is called the nth standard reduct of M .

Lemma 11.35 Let M be an acceptable J-structure, let n < β, and let p ∈ Rn
M .

Then there is some p̃ ∈ Pn+1
M with p̃ � n = p. In particular, if n > 0 and M is

n-sound, then pn−1(M) = pn(M) � (n − 1).

Proof This follows immediately from Lemma 11.24 (c). �
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Definition 11.36 Let M be an acceptable J-structure. Suppose that for all n < β,
pn(M) = pn+1(M) � n. Then we set p(M) = ⎨

n<β pn(M). p(M) is called the
standard parameter of M .

We shall often confuse p(M) with
⎨

ran(p(M)). Lemma 11.35 readily gives the
following.

Corollary 11.37 Let M be an acceptable J-structure which is also sound. Then
p(M) exists.

Lemma 11.38 Let M be an acceptable J-structure. M is sound iff pn(M) ∈ Rn
M

for all n ∈ β.

Proof We shall prove the non-trivial direction “∩=.” We need to see that for each
n > 0,

pn(M) ∈ Rn
M =∅ Rn

M = Pn
M . (11.32)

Suppose n > 0 to be least such that (11.32) fails. Hence Pn
M \ Rn

M ∼= ∈ by Lemma
11.24 (a). Let q be the<≥-least element of Pn

M \ Rn
M . This means that p <≥ q, where

p = pn(M).
We have that q � (n − 1) ∈ Pn−1

M = Rn−1
M , χ1(Mn−1,q�(n−1)) = χn+1(M), and

q(n) ∈ PMn−1,q�(n−1) \ RMn−1,q�(n−1) . Let

Δ : N ∪= hMn−1,q�(n−1) (χn(M) ∪ {q(n − 1)}) ⊕σ1 Mn−1,q�(n−1),

where N is transitive. By the Downward Extension of Embeddings Lemma 11.29
and 11.30, there are unique M̄ , q̄ , and Δ̃ such that

q̄ ∈ Rn−1
M̄

, N = M̄n−1,q̄ ,

Δ̃ : M̄ ∧ M is rσn elementary, and (11.33)

Δ̃ ⊃ Δ and Δ̃(q̄) = q � (n − 1).

Let q̄ ⇒ ∈ Γ n
M̄

be such that q̄ ⇒ � (n − 1) = q̄ and q̄ ⇒(n − 1) = Δ−1(q(n − 1)),
so that Δ̃(q̄ ⇒) = q ∈ ran(Δ̃). Because p = pn(M) ∈ Rn

M , there are e < β and
z ∈ [χn(M)]<β such that q = hn,p

M (e, z), i.e.,

⊂p≥ <≥ q ⊂e < β ⊂z ∈ [χn(M)]<β (q = hn,p⇒
M (e, z)). (11.34)

We aim to verify that (11.34) also holds true in ran(Δ̃):

Claim 11.39 There is some p≥ ∈ ran(Δ̃), p≥ <≥ q, for which there are e < β and

z ∈ [χn(M)]<β such that q = hn,p≥
M (e, z).

Proof Let i → n − 1 be least such that p(i) <≥ q(i). (So p � i = q � i .) Let us
recursively define ((p≥(k), x(k)): i → k → n − 1) as follows.



256 11 0# and Jensen’s Covering Lemma

Because

Mi,q�i |= ⊂r <≥ q(i) ⊂x ∈ [χi+1(M)]<β ⊂e⇒ < β q(i) = hMi,q�i (e⇒, (x, r)), (11.35)

as being witnessed by p(i), and because Δ̃ � M̄i,q̄�i is σ1-elementary, we may let
p≥(i) be the <≥-least r ∈ ran(Δ̃) as in (11.35), and we let x(i) be some x ∈ ran(Δ̃)

as in (11.35) such that q(i) = hMi,q�i (e⇒, (x, p≥(i))) for some e⇒ < β. For the record,
p≥(i) <≥ q(i).

Having defined (p≥(k −1), x(k −1)), where i < k → n −1 and {p≥(k −1), x(k −
1)} ⇐ ran(Δ̃), we will have that

Mk,q�k |= ⊂r ⊂x ∈ [χk+1(M)]<β ⊂e⇒ < β (x(k − 1), q(k)) = hMk,q�k (e⇒, (x, r)), (11.36)

as being witnessed by p(k), and because Δ̃ � M̄k,q̄�k is σ1-elementary, we may let
p≥(k) be the <≥-least r ∈ ran(Δ̃) as in (11.36), and we let x(k) be some x ∈ ran(Δ̃)

as in (11.36) such that (x(k − 1), q(k)) = hMk,q�k (e⇒, (x, p≥(k))) for some e⇒ < β.
We may now set p≥ = p � i ∪ {(k, p≥(k)): i → k → n − 1}.
It is straightforward to verify that for each k → n − 1,

hMk,p≥�k (χk+1(M) ∪ {p≥(k)}) = hMk,q�k (χk+1(M) ∪ {q(k)}),

and Ap≥(k)

Mk,p≥�k and Aq(k)

Mk,q�k are easily computable from each other. (11.35) and (11.36)
then give that p≥ ∈ Pn

M . Also, p≥ <≥ q. However, p≥ ∈ ran(Δ̃), whereas q /∈ Rn
M

implies that p /∈ ran(Δ̃), and hence p≥ /∈ R≥
n . This contradicts the choice of q. �

Solidity witnesses are witnesses to the fact that a given ordinal is a member of the
standard parameter. We shall make use of witnesses in the proof of Theorem 11.64.

Definition 11.40 Let M be an acceptable J-structure, let p ∈ OR ≤ M<β, and let
Ω ∈ p. Let W be an acceptable J-structure with Ω ⇐ W , and let r ∈ OR ≤ W <β. We
say that (W, r), or just W , is a witness for Ω ∈ p with respect to M , p iff for every
σ1 formula τ(v0, . . . , vl+1) and for all ρ0, . . ., ρl < Ω

M |= τ(ρ0, . . . , ρl , p \ (Ω + 1)) =∅ W |= τ(ρ0, . . . , ρl , r). (11.37)

By the proof of the following Lemma, if a witness exists, then there is also one
where =∅ may be replaced by ∩∅ in (11.37).

Lemma 11.41 Let M be an acceptable J-structure, and let p ∈ PM . Suppose that
for each Ω ∈ p there is a witness W for Ω ∈ p with respect to M, p such that W ∈ M.
Then p = p1(M).

Proof Suppose not. Then p1(M) <≥ p, and we may let Ω ∈ p \ p1(M) be such that
p \ (Ω + 1) = p1(M) \ (Ω + 1). Let us write q = p \ (Ω + 1) = p1(M) \ Ω. Let
(W, r) ∈ M be a witness for Ω ∈ p with respect to M , p. Let A ∈ σ M

1 ({p1(M)}) be
such that A ≤ χ1(M) /∈ M .
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Let k < β and ρ1 < · · · < ρk be such that p1(M) ≤ Ω = {ρ1, . . . , ρk}. Let τ be a
σ1 formula such that for every ρ < χ1(M),

ρ ∈ A ∩∅ M |= τ(ρ, ρ1, . . . , ρk, q).

Because (W, r) ∈ M is a witness for Ω ∈ p with respect to M , p, we have that

M |= ν(ρ, ρ1, . . . , ρk, q) =∅ W |= ν(ρ, ρ1, . . . , ρk, r) (11.38)

for every ρ < χ1(M) → Ω and every σ1 formula ν .
Say W = JΦ[E]. Let Σ = sup(hW (Ω∪{r})≤OR) → Φ, andwrite W̄ = JΣ [E]. Let

us define Θ : hM (Ω ∪ {q}) ∧ W̄ by setting hM (e, (ρ, q)) ≡∧ hW̄ (e, (ρ, r)), where
e < β and ρ ∈ [Ω]<β. By (11.38), Θ is well-defined and σ0-elementary. By the
choice of Σ, Θ is cofinal and hence σ1-elementary by Lemma 11.13 (a). Therefore,

M |= ν(ρ, ρ1, . . . , ρk, q) ∩∅ W̄ |= ν(ρ, ρ1, . . . , ρk, r) (11.39)

for every ρ < χ1(M) → Ω and everyσ1-formulaν . In particular, 11.39 holds forν ∞
τ and every ρ < χ1(M) → Ω. As W̄ ∈ M , this shows that in fact A ≤ χ1(M) ∈ M .
Contradiction! �

Definition 11.42 Let M be an acceptable J-structure, let p ∈ On ≤ M<β, and let
Ω ∈ p. We denote by W Ω,p

M the transitive collapse of hM (Ω ∪ (p \ (Ω + 1))). We call
W Ω,p

M the standard witness for Ω ∈ p with respect to M , p.

Lemma 11.43 Let M be an acceptable J-structure, and let Ω ∈ p ∈ PM . The
following are equivalent.

(1) W Ω,p
M ∈ M.

(2) There is a witness (W, r) for Ω ∈ p with respect to M, p such that W ∈ M.

Proof We have to show (2) =∅ (1). Let ξ : W Ω,p
M ∧ M be the inverse of the

transitive collapse. As in the proof of Lemma 11.41, say W = JΦ[E], set Σ =
sup(hW (Ω∪{r})≤OR) → Φ, and write W̄ = JΣ [E]. Wemay define aσ1-elementary
embedding Θ : W Ω,p

M ∧ W̄ by setting

ξ−1(hM (e, (ρ, p \ (Ω + 1)))) ≡∧ hW̄ (e, (ρ, r)),

where e < β and ρ ∈ [Ω]<β.
Now if ξ(Ω) = Ω then a witness to χ1(M) is definable over W Ω,p

M , and hence over
W̄ . But as W̄ ∈ M , this witness to χ1(M) would then be in M . Contradiction!

We thus have that Ω must be the critical point of ξ . Thus we know that Θ(Ω) is
regular in M , and hence writing M = Jδ [E ⇒], Jξ(Ω)[E ⇒] |= ZFC−. We may code
W Ω,p

M by some a ⇐ Ω, definably over W Ω,p
M . Using Θ , a is definable over W̄ , so that

a ∈ M . In fact, a ∈ JΘ(Ω)[B] by acceptability. We can thus decode a in JΘ(Ω)[B],
which gives W Ω,p

M ∈ JΘ(Ω)[B] ⇐ M . �
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Definition 11.44 Let M be an acceptable J-structure. We say that M is 1-solid iff

W Ω,p1(M)
M ∈ M

for every Ω ∈ p1(M).

Lemma 11.45 Let M̄, M be acceptable J-structures, and let Δ : M̄ ∧σ1 M. Let
Ω̄ ∈ p̄ ∈ OR ≤ M̄<β, and set Ω = Δ(Ω̄) and p = Δ( p̄). Let (W̄ , r̄) be a witness for
Ω̄ with respect to M̄, p̄ such that W̄ ∈ M̄, and set W = Δ(W̄ ) and r = Δ(r̄). Then
(W, r) is a witness for Ω with respect to M, p.

Proof Let τ be a σ1-formula. We know that

M̄ |= ∗ρ0 < Ω̄ . . . ∗ρl < Ω̄(τ(ρ0, . . . , ρl , p̄ \ (Ω̄ + 1)) −∧ W̄ |= τ(ρ0, . . . , ρl , r̄)).

As Δ is Π1-elementary, this yields that

M |= ∗ρ0 < Ω . . . ρl < Ω(τ(ρ0, . . . , ρl , p \ (Ω + 1)) −∧ W |= τ(ρ0, . . . , ρl , r)).

We may thus conclude that (W, r) is a witness for Ω with respect to M , p. �

Corollary 11.46 Let M̄, M be acceptable J-structures, and let Δ : M̄ ∧σ1 M.
Suppose that M̄ is 1-solid and Δ(p1(M̄)) ∈ PM . Then p1(M) = Δ(p1(M̄)), and M
is 1-solid.

The following lemma is a dual result to Lemma 11.45 with virtually the same
proof.

Lemma 11.47 Let M̄, M be acceptable J-structures, and let Δ : M̄ ∧σ1 M. Let
Ω̄ ∈ p̄ ∈ OR ≤ M̄<β, and set Ω = Δ(Ω̄) and p = Δ( p̄). Let (W̄ , r̄) ∈ M̄ be such
that, setting W = Δ(W̄ ) and r = Δ(r̄), (W, r) is a witness for Ω with respect to M,
p. Then (W̄ , r̄) is a witness for Ω̄ ∈ p̄ with respect to M̄, p̄.

Corollary 11.48 Let M̄, M be acceptable J-structures, and let Δ : M̄ ∧σ1 M.

Suppose that M is 1-solid, and that in fact W Ω,p1(M)
M ∈ ran(Δ) for every Ω ∈ p1(M).

Then p1(M̄) = Δ−1(p1(M)), and M̄ is 1-solid.

We now generalize Definition 11.44.

Definition 11.49 Let M be an acceptable J-structure. If 0 < n < β then we say
that M is n-solid if for every k < n, p1(Mk) = pk+1(M)(k) = pn(M)(k) and Mk

is 1-solid, i.e.,

W Ω,p1(Mk )

Mk ∈ Mk

for every Ω ∈ p1(Mk). We call M solid iff M is n-solid for every n < β, n > 0.
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Lemma 11.50 Let M̄ and M be acceptable J-structures, let n > 0, and let
Δ : M̄ ∧ M be rσn elementary as being witnessed by pn−1(M). If M̄ is n-solid and
Δ(p1(M̄n−1)) ∈ PMn−1 then pn(M) = Δ(pn(M̄)) and M is n-solid.

Lemma 11.51 Let M̄ and M be acceptable J-structures, let n > 0, and let Δ : M̄ ∧
M be rσn elementary as being witnessed by Δ−1(pn−1(M)). Suppose that M is n-

solid, and in fact W Ω,p1(Mk )

Mk ∈ ran(Δ) for every k < n. If Δ−1(pn−1(M)) ∈ Pn−1
M̄

then pn(M̄) = Δ−1(pn(M)) and M̄ is n-solid.

The ultrapower maps we shall deal with in the next section shall be elementary
in the sense of the following definition. (Cf. [30, Definition 2.8.4].)

Definition 11.52 Let both M and N be acceptable, let Δ : M ∧ N , and let n < β.
Then Δ is called an n-embedding if the following hold true.

(1) Both M and N are n-sound,
(2) Δ is rσn+1 elementary,
(3) Δ(pk(M)) = pk(N ) for every k → n, and
(4) Δ(χk(M)) = χk(N ) for every k < n and χn(N ) = sup(Δ"χn(M)).

Other examples for n-embeddings are typically obtained as follows. Let M be
acceptable, and let, for n ∈ β, Cn(M) denote the transitive collapse of hn

M"(χn(M)∪
{pn(M)}). Cn(M) is called the nth core of M . The natural map from Cn+1(M) to
Cn(M) will be an n-embedding under favourable circumstances.

Lemma 11.53 For each limit ordinal Φ, JΦ is acceptable and sound.

Proof by induction. Suppose that for every limit ordinal Σ < Φ, JΣ is acceptable
and sound.

Let us first verify that JΦ is acceptable. By our inductive hypothesis, this is trivial
if Φ is a limit of limit ordinals, so let us assume that Φ = Σ + β, where Σ is a limit
ordinal. We need to see that if ξ < Σ is such that

(P(ξ ) ≤ JΣ+β) \ JΣ ∼= ∈, (11.40)

then there is some surjection f : ξ ∧ Σ with f ∈ JΣ+β. Let ξ be least with (11.40).
We claim that

ξ = χβ(JΣ). (11.41)

To see (11.41), note first that if n is such that χn(JΣ) = χβ(JΣ), then there is a

σ∪
(JΣ)n

1 subset of χβ(JΣ) which is not in JΣ . Such a set is σ∪
JΣ
β by Lemma 11.26

and the soundness of JΣ , and it is hence in JΣ+β \ JΣ by Lemma 5.15. Therefore,

ξ → χβ(JΣ). On the other hand, let a ⇐ ξ such that a ∈ JΣ+β \ JΣ . Then a ∈ σ∪
JΣ
β

by Lemma 5.15. As a ⇐ ξ → χβ(JΣ) and JΣ is sound, Lemma 11.27 yields that a is

σ∪
(JΣ)n

1 for some n < β. Hence χβ(JΣ) → ξ and (11.41) follows.
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Now by the soundness of JΣ again and by Lemma 11.25 there is some f ∈ σ∪
JΣ
β

such that f : ξ = χβ(JΣ) ∧ JΣ is surjective. By Lemma 5.15, f ∈ JΣ+β. We have
verified that JΦ is acceptable.

We are now going to show that JΦ is sound. We shall make use of Lemma 11.38
and verify that for every n < β,

pn(JΦ) ∈ Rn
JΦ

. (11.42)

Suppose that this is false, and let n be least such that p = pn+1(JΦ) /∈ Rn+1
JΦ

. Let us
consider

(Jχ̄ , Ā)
Δ∪= h(JΦ)n (χn+1(JΦ) ∪ {p(n)}) ⊕σ1 (JΦ)n . (11.43)

By the Downward Extension of Embeddings Lemma 11.29 and 11.30wemay extend
Δ to a map

Δ̃ : JΦ̄ ∧σ1 JΦ

such that p � n ∈ ran(Δ̃) and writing p̄ = Δ̃−1(p � n), p̄ ∈ Rn
JΦ̄

and (Jχ̄ , Ā) =
(JΦ̄)n, p̄. Let us also write p≥ = Δ−1(p(n)) = Δ̃−1(p(n)).

Let B be σ
(JΦ)n

1 ({p(n)}) such that B ≤ χn+1(JΦ) /∈ JΦ , say

B = {x ∈ (JΦ)n : (JΦ)n |= τ(x, p(n))},

where τ is σ1. Let

B̄ = {x ∈ (JΦ̄)n, p̄ : (JΦ̄)n, p̄ |= τ(x, p≥)}.

As Δ � χn+1(JΦ) = id,

B̄ ≤ χn+1(JΦ) = B ≤ χn+1(JΦ) /∈ (JΦ)n . (11.44)

If Φ̄ < Φ, then (JΦ̄)n, p̄ ∈ JΦ , so that B̄≤χn+1(JΦ) ∈ JΦ , contradicting (11.44).We
must therefore have that Φ̄ = Φ. Then p̄ ∈ Rn

JΦ
. For every i < n, we certainly have

that p̄(i) →≥ p(i), as Δ̃ ( p̄(i)) = p(i). By the choice of p = pn+1(JΦ), p(i) →≥ p̄(i).
This yields that in fact p̄ = p � n, and therefore (Jχ̄ , Ā) = (JΦ)n .

But B̄ ∈ σ
(JΦ̄ )n, p̄

1 ({p≥}) and (11.44) then yield that p≥ ∈ P(JΦ)n . We must also
have p≥ →≥ p(n), as Δ(p≥) = p(n). By the choice of p(n), p(n) →≥ p≥, so that
p≥ = p(n).

But now we must have that Δ = id, and therefore p(n) ∈ R(JΦ)n , i.e., p ∈ Rn+1
JΦ

.
Contradiction! �
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Lemma 11.54 For each limit ordinal Φ, JΦ is solid.

Proof By Lemmas 11.53 and 11.35, it suffices to prove that if n < β and Ω ∈
p1((JΦ)n) = p(JΦ)(n), then

W Ω,p1((JΦ)n)

(JΦ)n ∈ (JΦ)n . (11.45)

Let us thus fix n < β and Ω ∈ p1((JΦ)n). Let us write p = p(JΦ), so that
(JΦ)n = (JΦ)n,p�n . Let us consider

(Jχ̄ , Ā)
Δ∪= h(JΦ)n (Ω ∪ {p(n) \ (Ω + 1)}) ⊕σ1 (JΦ)n, (11.46)

so that (Jχ̄ , Ā) = W Ω,p1((JΦ)n)

(JΦ)n . By the Downward Extension of Embeddings Lemma
11.29 and 11.30 we may extend Δ to a map

Δ̃ : JΦ̄ ∧σ1 JΦ

such that p � n ∈ ran(Δ̃) and writing p̄ = Δ̃−1(p � n), p̄ ∈ Rn
JΦ̄

and (Jχ̄ , Ā) =
(JΦ̄)n, p̄.

In order to verify (11.45), it suffices to prove that Φ̄ < Φ. This is because
if Φ̄ < Φ, then (Jχ̄ , Ā) = (JΦ̄)n, p̄ ∈ JΦ . But it is clear from (11.46) that
Card(T C({(Jχ̄ , Ā)})) = Card(Ω) inside JΦ . As Ω < χ̄ → χn(JΦ) and Jχn(JΦ) =
(Hχn(JΦ))

JΦ by Corollary 11.6, we then get that in fact (Jχ̄ , Ā) ∈ Jχn(JΦ), where
Jχn(JΦ) is the universe of (JΦ)n . Hence (11.45) follows.

We are left with having to prove that Φ̄ < Φ. Suppose that Φ̄ = Φ. Then, as
Δ̃( p̄) = p � n, p̄ →≥ p � n. However, p̄ ∈ Rn

JΦ̄
= Rn

JΦ
⇐ Pn

JΦ
, so that by the choice

of p � n we must actually have that p̄ = p � n. That is,

(Jχ̄ , Ā) = (JΦ̄)n,q̄ = (JΦ)n,p�n .

Let B ∈ σ∪
(JΦ)n

1 be such that B ≤ χ1((JΦ)n) /∈ (JΦ)n , say

B = {x ∈ (JΦ)n : (JΦ)n |= τ(x, r)},

where r ∈ (JΦ)n and τ is σ1. As Ω ∈ p1((JΦ)n) ∈ [χ1((JΦ)n), (JΦ)n ≤ OR)<β and
Δ̃ � Ω = id, we have that Δ̃ � χ1((JΦ)n) = id. Therefore, if we let B ⇒ ∈ σ∪

(JΦ)n

1 be

defined as
B ⇒ = {x ∈ (JΦ)n : (JΦ)n |= τ(x, Δ(r))},

then

B ⇒ ≤ χ1((JΦ)n) = B ≤ χ1((JΦ)n) /∈ (JΦ)n . (11.47)
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As ran(Δ) = h(JΦ)n (Ω ∪ (p(n) \ (Ω + 1))), there is m < β and

s ∈ (Ω ∪ (p(n) \ (Ω + 1)))<β (11.48)

such that Δ(r) = h(JΦ)n (m, s), so that B ⇒ ∈ σ
(JΦ)n

1 ({s}). But (11.48) gives that
s <≥ p(n), so that this contradicts the choice of p(n). �

11.2 Jensen’s Covering Lemma

We are now going to prove Jensen’s Covering Lemma, cf. Theorem 11.56. For this,
we need the concept of a “fine ultrapower.”

Definition 11.55 Let M be an acceptable J-structure, and let E be a (ε, Ω)-extender
over M . Let n < β be such that χn(M) ≥ Θ(E). Suppose that M is n-sound, and set
p = pn(M). Let

Δ : Mn,p ∧ N̄

be the σ0 ultrapower map given by E . Suppose that

Δ̃ : M ∧ N

is as given by the proof of Lemmas 11.20 and 11.31. Then we write ultn(M; E) for
N and call it the rσn+1 ultrapower of M by E , and we call Δ̃ the rσn+1 ultrapower
map (given by E).

Lemmas 11.20 and 11.31 presuppose that Δ is good (cf. Definition 11.19). How-
ever, the construction of the term model in the proof of Lemma 11.20 does not
require Δ to be good, nor does it even require the target model N̄ to be well-founded.
Consequently, we can make sense of ultn(M; E) even if Δ is not good or N̄ is not
well-founded. This is why we have “the proof of Lemmata 11.20 and 11.31” in the
statement of Definition 11.55, as it does not assume anything about Δ or N̄ which is
not explicitly stated. We shall of course primarily be interested in situations where
ultn(M; E) is well-founded after all. In any event, as usual, we shall identify the
well-founded part of ultn(M; E) with its transitive collapse.

Recall thatS ⇐ [θ ]ε is called stationary iff for every algebraA = (θ; ( fi : i < ε̄))

with at most ε many functions fi , i < ε̄ → ε , there is some X ∈ S which is closed
under all the fi , i < ε̄ , from A, cf. Definition 4.39.

Theorem 11.56 The following statements are equivalent.

(1) Jensen Covering holds, i.e., for all sets X of ordinals there is some Y ∈ L such

that Y ⊃ X and Y → X + ←1.
(2) Strong Covering holds, i.e., if ε ≥ ←1 is a cardinal and θ ≥ ε , then [θ ]ε ≤ L is

stationary in [θ ]ε .
(3) L is rigid, i.e., there is no elementary embedding Δ : L ∧ L which is not the

identity.
(4) 0# does not exist.
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The most difficult part here is (4) ∅ (1) which is due to Ronald Jensen, cf. [10],
and which is called “Jensen’s Covering Lemma.” There is, of course, a version of
Theorem 11.56 for L[x], x ⇐ β, which we leave to the reader’s discretion.

It is not possible to cross out “+←1” in (1) or replace “≥ ←1” by “≥ ←0” in (2) of
Theorem 11.56, cf. Problem 11.7 (cf. Problem 11.9, though).

(4)=∅ (3) of Theorem 11.56 was shown as Theorem 10.39. (2)=∅ (1) is trivial.
If 0# exists, then every uncountable cardinal of V is a Silver indiscernible, so that
{←n : n < β} cannot be covered in L by a set of size less than ←β. This shows (1)
=∅ (4). We are left with having to verify (3) =∅ (2).

Let us first observe that it suffices to prove (3) =∅ (2) of Theorem 11.56 for the
case that ε be regular. This follows from:

Lemma 11.57 Let W be an inner model. Let ε be a singular cardinal, and suppose
that for all ε < ε , ε ≥ ←1, and for all θ ≥ ε , [θ ]ε ≤ W is stationary in [θ ]ε . Then
for all θ ≥ ε , [θ ]ε ≤ W is stationary in [θ ]ε .

Proof Let A = (θ; ( fρ : ρ < ε)) be any algebra on θ . We need to see that there is
some X ∈ [θ ]ε ≤ W such that for all ρ < ε , if fρ is n-ary, n < β, then f ⇒⇒

ρ [X ]n ⇐ X ,
i.e., X is closed under fρ . Let (εi : i < cf(ε)) be monotone and cofinal in ε , ε0 ≥ ←1.

If i < cf(ε), 1 → k < β, and X1, . . . , Xk ∈ [θ ]→εi ≤ W , then by our hypothesis
there is some X ∈ [θ ]εi such that X ⊃ X1 ∪ · · · ∪ Xk and X is closed under all the
functions fρ with ρ < εi . We may thus pick, for every i < cf(ε) and 1 → k < β

some

Φk
i : [[θ ]→εi ≤ W ]k ∧ [θ ]εi ≤ W (11.49)

such that for all X1, . . . , Xk ∈ [θ ]→εi , Φk
i (X1, . . . , Xk) ⊃ X1 ∪ · · · ∪ Xk and

Φk
i (X1, . . . , Xk) is closed under all functions fρ , ρ < εi .
Let us now consider the algebra

A≥ = ([θ ]<ε ≤ W ; (Φk
i : i < cf(ε), 1 → k < β)).

It is easy to see that our hypothesis yields that if A is any set inW , then [A]cf(ε)+←1≤W
is stationary in [A]cf(ε)+←1 . In particular, we find some Y ∈ W of size cf(ε) + ←1
such that Y is closed under all the functions from A≥. Set X = ⎨

Y . Of course,

X ∈ W . Moreover X → ε , as X is the union of cf(ε) + ←1 < ε many sets of size
<ε . We claim that X is closed under all functions fρ , ρ < ε .

Let ρ < ε and let fρ be n-ary, n < β. We aim to see that f ⇒⇒
ρ [X ]k ⇐ X .

Let xl ∈ Xl ∈ Y , 1 → l → k, and let i < cf(ε) be such that εi > ρ and also
εi > Card(Xl), 1 → l → k. Then

fρ (x1, . . . , xk) ∈ Φk
i (X1, . . . , Xk) ∈ Y ,

and therefore fρ (x1, . . . , xk) ∈ X . �
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Proof of Theorem 11.56, (3) =∅ (2). Let us fix ε → θ , where ε ≥ ←1 is regular. Let
μ > θ be a regular cardinal. Let Δ : H ∧ Hμ be elementary s.t. H is transitive. Let

(εi : i < Φ) = (εΔ
i : i < ΦΔ)

enumerate the transfinite cardinals of L H = JH≤O R , and set εΦ = εΔ
ΦΔ = H ≤ O R.

For i → Φ let Σi = ΣΔ
i ≥ εΦ ∈ O R ∪ {∞} be largest such that εi is a cardinal in JΣi .

Hence by Lemma 11.53, if Σi < ∞, then χβ(JΣi ) < εi , whereas χβ(JΣ) ≥ εi for
all Σ ∈ [εΦ, Σi ).

If i → j then Σ j → Σi , so that {Σi : i → Φ} is finite. For each i → Φ with Σi < ∞
we let ni = nΔ

i be such that

χni +1(JΣi ) < εi → χni (JΣi ). (11.50)

If i → Φ and Σi = ∞, then we let ni = nΔ
i = 0.

In what follows we shall make frequent use of the notation introduced by Def-
inition 10.47. E.g., for i → Φ, EΔ�Jεi

is the (long) (crit(Δ), supΔ ⇒⇒εi )—extender
derived from Δ � Jεi . Notice that by (11.50), we have that

ultni (JΣi ; EΔ�Jεi
)

makes sense for all i → Φ. If i → j and Σi = Σ j then n j → ni . Hence {χni +1(JΣi ) :
i → Φ} is finite. Let I = I Δ be such that

{εi : i ∈ I = I Δ } = {χni +1(JΣi ) : i → Φ} ∪ {εΦ},

cf. Lemma 11.5.
The following Claim is the key point.

Claim 11.58 Suppose that for all i ∈ I , ultni (JΣi ; EΔ�Jεi
) is well-founded. Then

either L is not rigid or else ran(Δ) ≤ μ ∈ L.

Proof We may that assume Δ ∼= id, as otherwise the conclusion is trivial. Let us
assume that L is rigid and show that ran(Δ) ≤ μ ∈ L .

There must be some i ∈ I such that εi → crit(Δ). This is because otherwise,

letting α < Φ be such that εα = (crit(Δ))+L H̄
, Σα = ∞ and the ultrapower map

Δ̃ : L ∧ ult0(L; EΔ�Jεα
) ∪= L
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would witness that L is not rigid.

Hμ

LH

crit(π)

π (crit(π))

κ i

κ j

κ i′

π

ultn j(Jβ j
,Eπ�Jκ j

)

ultni(Jβ i
,Eπ�Jκi

)

Jβ i′

Jβ i

Jβ j

π (κ i)

π (κ j)

We now aim to show by induction on i ∈ I that Δ ⇒⇒εi ∈ L . This is trivial for
i ∈ I such that εi → crit(Δ), as then Δ ⇒⇒εi = εi ∈ L . Now suppose inductively that
Δ ⇒⇒εi ∈ L , where i ∈ I . If i = Φ, then we are done. Otherwise let J be the least
element of I\(i + 1). We may assume that ε j > crit(Δ), as otherwise again trivially
Δ ⇒⇒ε j = ε j ∈ L . We must then have that Σ j < ∞, as otherwise the ultrapower map

Δ̃ : L ∧ ult0(L; EΔ�Jε j
) ∪= L

would witness that L is not rigid. But then χn j +1(JΣ j ) → εi . Let

Δ̃ : JΣ j ∧ ultn j (JΣ j ; EΔ�Jε j
) ∪= JΣ (11.51)

be the ultrapower map. Let p = p(JΣ j ) � (n j + 1). By Lemmas 11.53 and 11.25,
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JΣ j = h
n j +1,p⇒⇒
JΣ j

(χn j +1(JΣ j )). (11.52)

By Lemma 11.29, the map Δ̃ from (11.51) has the property that

Δ̃(h
n j +1,p
JΣ j

(k, x)) = h
n j +1,Δ̃(p)

JΣ
(k, Δ(x))

for every k < β and x ∈ [χn j +1(JΣ j )]<β, so that (11.52) immediately gives that

ran(Δ̃) = h
n j +1,Δ̃(p)⇒⇒
JΣ

(Δ ⇒⇒(χn j +1(JΣ j ))). (11.53)

But as χn j +1(JΣ j ) → εi and Δ ⇒⇒εi ∈ L , (11.53) says that ran(Δ̃) ∈ L , and hence

Δ ⇒⇒ε j = Δ̃ ⇒⇒ε j = Δ̃(ε j ) ≤ ran(Δ̃) ∈ L,

as desired. �

Suppose that ultni (JΣi ; EΔ�Jεi
) is notwell-founded. Then by Lemma 11.31, either

ult0((JΣi )
ni ; EΔ�Jεi

) is ill-founded or else the ultrapower map

Δ̃ : (JΣi )
ni ∧σ1 ult0((JΣi )

ni ; EΔ�Jεi
) (11.54)

is not good in the sense of Definition 11.19. In both cases, there is a well-
founded relation R̄ ⇐ ((JΣi )

n)2 which is rudimentary over (JΣi )
n such that if

R ⇐ (ult0((JΣi )
ni ; EΔ�Jεi

))2 is rudimentary over ult0((JΣi )
ni ; EΔ�Jεi

) via the
same definition, then R is ill-founded. We may then pick ([ak, fk]: k < β) with
[ak, fk] ∈ ult0((JΣi )

ni ; EΔ�Jεi
) and [ak+1, fk+1]R[ak, fk] for every k < β.

In what follows, we shall refer to the fact that “ult0((JΣi )
ni ; EΔ�Jεi

) is ill-
founded or that the ultrapower map Δ̃ as in (11.54) is not good” by saying that
“ultni (JΣi ; EΔ�Jεi

) is bad,” and we shall call

(R̄, R, ([ak, fk]: k < β)) (11.55)

a “badness witness for ultni (JΣi ; EΔ�Jεi
),” provided that R̄, R, and ([ak, fk]: k < β)

are as in the preceding paragraph.
If X ⊕ Hμ then we let ΔX denote the inverse of the transfinite collapse of X . In

the light of Claim 11.58, in order to finish the proof of (3) =∅ (2) of Theorem 11.56
it suffices to verify the following.

Claim 11.59 There is a stationary set S ⇐ [θ ]ε such that wherever X ∈ S , then
for all i ∈ I ΔX ,

ultΔX
ni

(J
Σ

ΔX
i

; EΔX �J
ε
ΔX
i

)

is not bad.
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Proof Let A = (θ; ( fi : i < ε)) be given. We recursively define sequences (Yi :
i → ε), (Hi : i → ε) and (Δi : i → ε) such that the following hold true.

(1) Yi ⊕ Hμ, for all i → ε

(2) Y i < ε , for all i < ε

(3) Yζ = ⎨
i<ζ Yi for all limit ordinals ζ → ε

(4) Yi+1 ⊃ f j”Y <β
i for all j < i < ε

(5) Δi : Hi ∪= Yi , where Hi is transitive, and
(6) Suppose that j ∈ I Δi and ultΔi

n j (J
Σ

Δi
j

; EΔi �J
ε
Δi
j

) is bad. Then for every R̄ such that

there is a badness witness (R̄, R, ([ak, fk] : k < β)) for ultΔi
n j (J

Σ
Δi
j

; EΔi �J
ε
Δi
j

),

there is a badness witness (R̄, R, ([ai, j
k , f i, j

k ] : k < β)) for ultΔi
n j (J

Σ
Δi
j

; EΔi �J
ε
Δi
j

)

with the property that {ai, j
k : k < β} ⇐ Yi+1.

Let us write Δ = Δε . We claim that for all j ∈ I Δ , ult0((JΣΔ
i
)
nΔ

j ; EΔ�JεΔ
j
) is

well-founded and the ultrapower map

Δ̃ : (JΣΔ
i
)
nΔ

j ∧ ult0((JΣΔ
i
)
nΔ

j ; EΔ�JεΔ
j
)

is good. This implies that for all j ∈ I Δ , ultnΔ
j
(JΣΔ

i
; EΔ�JεΔ

j
) is well-founded by

Lemma 11.31. By Claim 11.58, this then finishes the proof of (3)=∅ (2) of Theorem
11.56, as obviously Yε is closed under all functions from A. Let us assume Δ is not
as claimed and work towards a contradiction.

We write Y = Yε and H = Hε . We also write I = I Δ , Σi = ΣΔ
i , etc.

By assumption, there is some j ∈ I such that ultn j (JΣ j ; EΔ�Jε j
) is bad. Let

(R̄, R, ([ak, fk] : k < β)) be a badness witness for ultn j (JΣ j ; EΔ�Jε j
).

Let us write Δ i = Δ−1 ⊆ Δi : Hi ∧ H and Y i = Δ−1”Yi = ran(Δ i ). Hence
Y i ⊕ H , Y i ⇐ Y l for i → l, Card(Y i ) < ε for i < ε , Y ζ = ⎨

i<ζ Y i for limit
ordinals ζ → ε and H = ⎨

i<ε Y i . Let μ̃ > μ be some sufficiently large regular
cardinal. As ε is regular, we may pick some Z ⊕ Hμ̃ such that (Y i : i → ε) ∈ Z and
Z ≤ ε ∈ ε . If i0 = Z ≤ ε , then Z ≤ H = Y i0 . We may thus assume that Z ⊕ Hμ̃ is
such that

(1)’ Z < ε ,
(2)’ { fk : k < β} ∪ {R̄, H} ⇐ Z , and
(3)’ Z ≤ H = Y i0 for some i0 < ε .

Let us write Θ : H̃ ∪= Z , where H̃ is transitive. Let us also write R⇒ = Θ−1(R̄)

and f k = Θ−1( fk) for k < β. Obviously, Θ−1(H) = Hi0 and Θ � Hi0 = Δ i0 . Let
k < β. We then have [ak+1, fk+1]R[ak, fk] in ult0((JΣ j )

n j ; EΔ�Jε j
), and hence



268 11 0# and Jensen’s Covering Lemma

(ak+1, ak) ∈ Δ({(u, v) : fk+1(u)R̄ fk(v)})
= Δ({(u, v) : Θ( f k+1)(u)Θ (R⇒)Θ ( f k)(v)})
= Δ ⊆ Θ({(u, v) : f k+1(u)R⇒ f k(v)})
= Δ ⊆ Δ i0({(u, v) : f k+1(u)R⇒ f k(v)}), as Θ � Hi0 = Δ i0 ,

= Δi0({(u, v) : f k+1(u)R⇒ f k(v)}).

We may assume that Σ j ∈ ran(Θ ) if Σ j < ∞. Let Σ = Θ−1(Σ j ) if Σ j < ∞,
Σ = H̃ ≤ OR otherwise. Write n = n j , ε = Θ−1(ε j ).

We have that {[ak, f ε ] : k < β} ⇐ ult0((JΣ)n; EΔi0�Jε
), and R⇒ is defined over

(JΣ)n in the same way as R̄ is defined over (JΣ j )
n j . Also, if ε = ε

Δi0
l , then Σ → Σ

Δi0
l

and n = n
Δi0
l . Therefore,

ult
n

Δi0
l

(J
Σ

Δi0
l

; EΔi0�J
ε
Δi0
l

) (11.56)

is bad. Hence by (6) there is a badness witness (R⇒, R≥, ([ai0,l
k , f i0,l

k ] : k < β)) for

(11.56) such that {ai0,l
k : k < β} ⇐ Yi0+1 ⇐ Y .

Let k < β. Then [ai0,l
k+1, f i0,l

k+1]R≥[ai0,l
k , f i0,l

k ] gives that
(

ai0,l
k+1, ai0,l

k

)
∈ Δi0({(u, v) : f i0,l

k+1(u)R⇒ f i0,l
k (v)})

= Δ ⊆ Δ i0({(u, v) : f i0,l
k+1(u)R⇒ f i0,l

k (v)})
= Δ ⊆ Θ({(u, v) : f i0,l

k+1(u)R⇒ f i0,l
k (v)})

= Δ
(⎩

(u, v) : Θ
(

f i0,l
k+1

)
(u)R̄Θ

(
f i0,l
k

)
(v)

⎛)
.

However, ai0,l
k+1, ai0,l

k ∈ Y = ran(Δ), so that this gives that

(
Δ−1

(
ai0,l

k+1

)
, Δ−1

(
ai0,l

k

))
∈

⎩
(u, v) : Θ

(
f i0,l
k+1

)
(u)R̄Θ

(
f i0,l
k

)
(v)

⎛
,

and therefore

Θ
(

f i0,l
k+1

) (
Δ−1

(
ai0,l

k+1

))
R̄Θ

(
f i0,l
k

) (
Δ−1

(
ai0,l

k

))
.

Because this holds for all k < β, R̄ is ill-founded. Contradiction! �

This finishes the proof of Theorem 11.56. �

Corollary 11.60 (Weak covering for L ) Suppose that 0# does not exist. If ε ≥ ←2
is a cardinal in L, then in V , cf(ε+L) ≥ Card(ε). In particular, ε+L = ε+ for every
singular cardinal ε .
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Proof Assume that 0# does not exist, and let ε ≥ ←2 be a cardinal in L . Suppose that
in V , cf(ε+L) < Card(ε), and let X ⇐ ε+L be cofinal with Card(X) < Card(ε).
By Theorem 11.56 (1), there is some Y ∈ L such that Y ⊃ X and Card(Y ) →
Card(X) + ←1. As Card(ε) ≥ ←2, Card(Y ) < Card(ε). This implies that otp(Y ) <

(Card(Y ))+ → Card(ε) < ε+L . Contradiction!
If ε is singular, then cf(ε+L) ∼= ε , so that cf(ε+L) ≥ Card(ε) = ε implies

ε+L = ε+. �

Corollary 11.61 Suppose that 0# does not exist. Then SCH, the Singular Cardinal
Hypothesis, holds true.

Proof Assume that 0# does not exist. Let ε be a (singular) limit cardinal. We need
to see that εcf(ε) → ε+ · 2cf(ε) (which implies that in fact εcf(ε) = ε+ · 2cf(ε)). If
X ∈ [ε]cf(ε), then by Theorem 11.56 (1) there is some Y ∈ [ε]cf(ε)·←1 ≤ L such
that Y ⊃ X . On the other hand, for any Y ∈ [ε]cf(ε)·←1 there are (cf(ε) · ←1)

cf(ε) =
2cf(ε) many X ⇐ Y with Card(X) = cf(ε). Moreover, as the GCH is true in L ,
[ε]cf(ε)·←1 ≤ L has size at most ε+. Therefore, εcf(ε) → ε+ · 2cf(ε). �

11.3 �κ and Its Failure

We now aim to prove �ε in L . This is the combinatorial principle the proof of which
most heavily exploits the fine structure theory.

Definition 11.62 Let ε be an infinite cardinal, and let R ⇐ ε+. We say that �ε(R)

holds if and only if there is a sequence (CΩ : Ω < ε+) such that if Ω is a limit ordinal,
ε < Ω < ε+, then CΩ is a club subset of Ω with otp(CΩ) → ε and whenever Ω̄ is a
limit point of CΩ then Ω̄ /∈ R and CΩ̄ = CΩ ≤ Ω̄. We write �ε for �ε(∈).

In order to prove �ε in L , we need the “Interpolation Lemma.” The proof is very
similar to the proof of Lemma 10.56, and we omit it. Recall the concept of a weakly
rσn+1 elementary embedding, cf. Definition 11.32.

Lemma 11.63 Let n < β. Let M̄, M be an acceptable J-structure, and let

Δ : M̄ −∧ M

be rσn+1 elementary. Let Ω → M ≤ OR, and let E be the (ε, Ω)-extender derived
from Δ .

There is then a weakly rσn+1 elementary embedding

Θ : ultn(M̄; E) ∧ M

such that Θ � Ω = id and Θ ⊆ ΔE = Δ .

Theorem 11.64 (R. Jensen) Suppose that V = L. Let ε ≥ ←1 be a cardinal. Then
�ε holds.
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Proof This proof is in need of the fact that every level of the L-hierarchy is solid,
cf. Definition 11.40 and Theorem 11.54.

Let us set C = {Ω < ε+ : JΩ ⊕σβ Jε+}, which is a club subset of ε+ consisting
of limit ordinals above ε .

Let Ω ∈ C . Obviously, ε is the largest cardinal of JΩ .Wemay letΦ(Ω) be the largest
Φ ≥ Ω such that either Φ = Ω or Ω is a cardinal in JΦ . By Lemma 5.15, χβ(JΦ(Ω)) = ε .
Let n(Ω) be the unique n < β such that ε = χn+1(JΦ(Ω)) < Ω → χn(JΦ(Ω)).

If Ω ∈ C , then we define DΩ as follows. We let DΩ consist of all Ω̄ ∈ C ≤ Ω such
that n(Ω̄) = n(Ω) and there is a weakly rσn(Ω)+1 elementary embedding

Θ : JΦ(Ω̄) −∧ JΦ(Ω).

such that Θ � Ω̄ = id, Θ(pn(Ω̄)+1(JΦ(Ω̄))) = pn(Ω)+1(JΦ(Ω)), and if Ω̄ ∈ JΦ(Ω̄), then
Ω ∈ JΦ(Ω) and Θ(Ω̄) = Ω. It is easy to see that if Ω̄ ∈ DΩ , then by Lemma 11.53 there
is exactly one map Θ witnessing this, namely the one which is given by

h
n(Ω̄)+1,pn(Ω̄)+1(JΦ(Ω̄))

JΦ(Ω̄)
(i, x) ≡∧ h

n(Ω)+1,pn(Ω)+1(JΦ(Ω))

JΦ(Ω)
(i, x), (11.57)

where i < β and x ∈ [ε]<β. We shall denote this map by ΘΩ̄,Ω .
Notice that if Ω ∈ C , then again by Lemma 11.53

JΦ(Ω) = h
n(Ω)+1,pn(Ω)+1(JΦ(Ω))

⇒⇒
JΦ(Ω)

ε,

so that if Ω̄ ∈ DΩ , then

ran(ΘΩ̄,Ω) � h
n(Ω)+1,pn(Ω)+1(JΦ(Ω))

⇒⇒
JΦ(Ω)

ε,

which means that there must be i < β and ρ < ε such that the left hand side of
(11.57) is undefined, whereas the right hand side of (11.57) is defined.

Notice that the maps ΘΩ̄,Ω trivially commute, i.e., if Ω̄ ∈ DΩ and Ω ∈ DΩ⇒ , then
Ω̄ ∈ DΩ⇒ and

ΘΩ̄,Ω⇒ = ΘΩ,Ω⇒ ⊆ ΘΩ̄,Ω .

Claim 11.65 Let Ω ∈ C. The following hold true.

(a) DΩ is closed.
(b) If cf(Ω) > β, then DΩ is unbounded in Ω.
(c) If Ω̄ ∈ DΩ then DΩ ≤ Ω̄ = DΩ̄ .

Proof (a) is easy. Let Ω⇒ be a limit point of DΩ . If μ → μ⇒ < Ω⇒, μ, μ⇒ ∈ DΩ , then

ran(Θμ,Ω) ⇐ ran(Θμ⇒,Ω).

We then have that the inverse of the transitive collapse of
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⋃

μ∈DΩ≤Ω⇒
ran(Θμ,Ω)

proves that Ω⇒ ∈ DΩ .
Let us now show (b). Suppose that cf(Ω) > β. Set Φ = Φ(Ω) and n = n(Ω). Let

Σ < Ω. We aim to show that DΩ \ Σ ∼= ∈.
Let Δ : JΦ̄ −∧σn+1 JΦ be such that Φ̄ is countable, Σ ∈ ran(Δ), and

{W Ω,p1(J k
Φ )

J k
Φ

: Ω ∈ p1(J k
Φ ), k → n} ⇐ ran(Δ).

Let Ω̄ = Δ−1(Ω) (if Ω = Φ, we mean Ω̄ = Φ̄). Let

Δ ⇒ = ΔEΔ� JΩ̄
: JΦ̄ −∧rσn+1 ultn(JΦ̄; EΔ�JΩ̄

).

By Lemma 11.63, we may define a weakly rσn+1 elementary embedding

k: ultn(JΦ̄; EΔ�JΩ̄
) −∧ JΦ

with k ⊆ Δ ⇒ = Δ . In particular, ultn(JΦ̄; EΔ�JΩ̄
) is well-founded and we may identify

it with its transitive collapse. Let us write JΦ⇒ = ultn(JΦ̄; EΔ�JΩ̄
). As Σ ∈ ran(Δ),

k−1(Ω) > Σ. Moreover, k−1(Ω) = sup Δ"Ω̄ < Ω, as cf(Ω) > β. Therefore Σ <

k−1(Ω) ∈ DΩ . This shows (b).
Let us now verify (c). If Ω̄ ∈ DΩ , then DΩ̄ ⇐ DΩ . To show (c), we thus let μ < Ω̄

be such that μ and Ω̄ are both in DΩ . We need to see that μ ∈ DΩ̄ , i.e., that Θμ,Ω̄ is
well-defined. For the purpose of this proof, let us, for δ ∈ {μ, Ω̄, Ω}, abbreviate

h
n(δ )+1,pn(δ )+1(JΦ(δ ))

JΦ(δ )
(i, x) by hδ (i, x),

where i < β and x ∈ [ε]<β. We need to see that if i < β, x ∈ [ε]<β, and hμ(i, x)

exists, then hΩ̄ (i, x) exists as well.
Let e < β and y ∈ [ε]<β be such that μ = hΩ̄ (e, y). We obviously cannot have

that hμ(e, y) exists, as otherwise

Θμ,Ω(hμ(e, y)) = hΩ(e, y) = ΘΩ̄,Ω(hΩ̄ (e, y)) = ΘΩ̄,Ω(μ) = μ,

but μ /∈ ran(Θμ,Ω). Write n = n(μ) = n(Ω̄) = n(Ω). Let Σ < χn(JΦ(Ω̄)) be least such
that SΣ contains a witness to “⊂v v = h(JΦ(Ω̄))

n (u(e), (y, p(JΦ(Ω̄))(n))),” cf. (11.29).
We claim that

ran(Θμ,Ω) ≤ (JΦ(Ω))
n ⇐ ΘΩ̄,Ω(SΣ). (11.58)

If (11.58) is false, then we may pick some δ < χn(JΦ(μ)) such that Θμ,Ω(δ ) ≥
ΘΩ̄,Ω(Σ).Wemay thenwrite “hΩ(e, y) = μ” as a statement over JΦ(Ω) in the parameter
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JΘμ,Ω(δ ) in a way that it is preserved by the weak rσn+1 elementarity of Θμ,Ω to yield
that hμ(e, y) exists after all. Contradiction! Therefore, (11.58) holds true.

But now if i < β, x ∈ [ε]<β, and hμ(i, x) exists, then “⊂v v = hμ(i, x)” may
be expressed by a statement over JΦ(Ω) in the parameter JΩ̄,Ω(Σ) in a way that it is
preserved by the weak rσn+1 elementarity of ΘΩ̄,Ω to give that hΩ̄ (i, x) also exists.

Claim 11.65 is shown. �

Now let Ω ∈ C . We aim to defineCΩ . Set Φ = Φ(Ω) and n = n(Ω). Recursively, we
define sequences (μΩ

i : i → θ(Ω)) and (ρΩ
i : i < θ(Ω)) as follows. Set μΩ

0 = min(DΩ).
Given μΩ

i with μΩ
i < Ω, we let ρΩ

i be the least ρ < ε such that

hn+1,pn+1(JΦ)

JΦ
(k, x) /∈ ran(ΘμΩ

i ,Ω)

for some k < β and some x ∈ [ρ ]<β. Given ρΩ
i , we let μΩ

i+1 be the least Ω̄ ∈ DΩ

such that
hn+1,pn+1(JΦ)

JΦ
(k, x) ∈ ran(ΘΩ̄,Ω)

for all k < β and x ∈ [ρΩ
i ]<β such that hn+1,pn+1(JΦ)

JΦ
(k, x) exists. Finally, given

(μΩ
i : i < ζ), where ζ is a limit ordinal, we set μΩ

ζ = sup({μΩ
i : i < ζ}). Naturally,

θ(Ω) will be the least i such that μΩ
i = Ω. We set CΩ = {μΩ

i : i < θ(Ω)}.
Claim 11.66 Let Ω ∈ C. The following hold true.

(a) (ρi : i < θ(Ω)) is strictly increasing.
(b) otp(CΩ) = θ(Ω) → ε .
(c) Cδ is closed.
(d) If Ω̄ ∈ CΩ then CΩ ≤ Ω̄ = CΩ̄ .
(e) If DΩ is unbounded in Ω then so is CΩ .

Proof (a) is immediate, and it implies (b). (c) and (e) are trivial.
Let us show (d). Let Ω̄ ∈ CΩ . We have CΩ ⇐ DΩ , and DΩ̄ = DΩ ≤ Ω̄ by Claim 1

(c). We may then show that (μΩ̄
i : i < θ(Ω̄)) = (μΩ

i : i < θ(Ω̄)) and (ρ Ω̄
i : i < θ(Ω̄)) =

(ρΩ
i : i < θ(Ω̄)) by an induction. Say μΩ̄

i = μΩ
i , where i + 1 ∈ θ(Ω̄) ≤ θ(Ω). Write

μ = μΩ̄
i = μΩ

i . As Θμ,Ω = ΘΩ̄,Ω ⊆ Θμ,Ω̄ , for all k < β and x ∈ [ε]<β,

h
n(Ω̄)+1,pn(Ω̄)+1(JΦ(Ω̄))

JΦ(Ω̄)
(k, x) ∈ ran(Θμ,Ω̄) =∅

h
n(Ω)+1,pn(Ω)+1(JΦ(Ω))

JΦ(Ω)
(k, ρ) ∈ ran(Θμ,Ω) ∼= ∈.

This givesμΩ
i+1 → μΩ̄

i+1 On the other hand, ran(ΘμΩ
i+1,Ω

) contains the relevant witness

so as to guarantee conversely that μΩ̄
i+1 → μΩ

i+1. �
Now let f : ε+ ∧ C be the monotone enumeration of C . For Ω < ε+, let us set

B̄Ω = f −1⇒⇒
C f (Ω).
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Of course, otp(B̄Ω) → ε for every Ω < ε+, and because Cμ ⇐ Dμ ⇐ C ≤μ for every
μ ∈ C we have that every B̄Ω is closed, if cf(Ω) > β, then B̄Ω is unbounded in Ω,
and if Ω̄ ∈ B̄Ω , then B̄Ω̄ = B̄Ω ≤ Ω̄. For every Ω < ε+ such that cf(Ω) = β and CΩ is
not unbounded in Ω, let us pick some B̄ ⇒

Ω of order type β which is cofinal in Ω. For
Ω < ε+, let

BΩ =
⎝

B̄ ⇒
Ω if B̄ ⇒

Ω is defined, and
B̄Ω otherwise.

It is easy to see now that (BΩ : Ω < ε+) witnesses that �ε holds true. �

Corollary 11.60 and Theorem 11.64 immediately imply the following.

Corollary 11.67 Let ε be a singular cardinal, and suppose that �ε fails. Then 0#

exists.

Let (CΩ : Ω < ε+) witness that �ε holds true. By Fodor’s Theorem 4.32, there
must be some stationary R ⇐ ε+ such that otp(CΩ) is constant on R, say θ = otp(CΩ)

for all Ω ∈ R. For any Ω < ε+, CΩ can have at most one (limit) point Σ such that
CΩ ≤ Σ = CΣ has order type θ . We may then define

C≥
Ω =

⎝
CΩ \ (Φ + 1) if Φ ∈ CΩ and otp(CΩ ≤ Φ) = θ

CΩ otherwise.

(C≥
Ω : Ω < ε+) then witnesses �ε(R), cf. also Problem 11.17.
The following result generalizes Lemma 5.36, as �←0 is provable in ZFC.

Lemma 11.68 (Jensen) Let ε be an infinite cardinal. Suppose that there is some
stationary set R ⇐ ε+ such that both ♦ε+(R) and �ε(R) hold true. There is then a
ε+-Souslin tree.

Proof Let R ⇐ ε+ be stationary such that ♦ε+(R) and �ε(R) both hold true.
Let (SΦ: Φ ∈ R) witness ♦ε+(R), and let (CΦ: Φ < ε+) witness �ε(R). We will
construct T � Φ by induction on Φ < ε+ in such a way that the underlying set of
T � Φ will always be an ordinal below ε+ (which we will also denote by T � Φ).

We set T � 1 = {0}. Now let Φ < ε be such that T � Φ has already been
constructed. If Φ is a successor ordinal, then we use the next (T � Φ−T � (Φ−1)) ·2
ordinals above T � Φ to provide each top node of T � Φ with an immediate successor
in T � (Φ + 1).

Let us then suppose Φ to be a limit ordinal. Let us set S = {s ∈ T � Φ: ⊂t ∈
SΦ(t = s ∨ t <T s)} if Φ ∈ R and SΦ happens to be a maximal antichain of T � Φ,
and let us otherwise set S = T � Φ.

Let us for a moment fix s ∈ S. We aim to define a chain cs through T � Φ

as follows. Let ε ∈ CΦ be least such that in fact s ∈ T � ε. Let (αi : i < δ ) be
the monotone enumeration of CΦ \ ε. We then let s0 be the least ordinal such that
s0 ∈ T � (α0 + 1) \ T � α0 and s <T s0, and for i > 0, i < δ , we let si be the least
ordinal such that si ∈ T � (αi + 1) \ T � αi and s j <T si for all j < i , if there is one
(if not, then we let the construction break down). We set cs = {si : i < δ }.
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Wenowuse atmost the next Card(S) ordinals above T � Φ to construct T � (Φ+1)
in such a way that for every s ∈ S there is some t ∈ T � (Φ + 1) \ T � Φ such that
s⇒ <T t for all s⇒ ∈ cs and for every t ∈ T � (Φ + 1) \ T � Φ there is some s ∈ S
such that s⇒ <T t for all s⇒ ∈ cs .

This finishes the construction. It is not hard to verify that the construction in
fact never breaks down and produces a ε+-tree. Otherwise, for some limit ordinal
Φ < ε+ there would be some s ∈ S and some limit ordinal i < δ such that there is
no t ∈ T � (αi + 1) \ T � αi with s j <T t for all j < i (for S, δ , (αi : i < δ ) as
above). However, αi ∈ CΦ gives that αi /∈ R, so that Cαi = CΦ ≤ αi is easily seen
to yield that in the construction of T � (αi + 1) \ T � αi , we did indeed add some
t ∈ T � (αi + 1) \ T � αi such that s j <T t for all j < i .

Finally, suppose that T would not be ε+-Souslin, and let A ⇐ T be an antichain
of size ε+. As R is stationary, we may then pick some limit ordinal Φ ∈ R such that
A ≤ Φ = SΦ is a maximal antichain in T � Φ, so that also S = {s ∈ T � Φ: ⊂t ∈
SΦ(t = s ∨ t <T s)} (for S as above). The construction of T then gives that every
node in T \ T � Φ is above some node in SΦ , so that in fact A = A ≤ Φ = SΦ . But
because T is a ε+-tree, this means that A has size at most ε . Contradiction! �

Lemma 11.69 (Jensen) Let ε be subcompact. Then �ε fails.

Proof Suppose (CΦ: Φ < ε+) witnesses �ε . As ε is subcompact, there must then
be some ζ < ε together with a witness (DΦ: Φ < ζ+) to �ζ and an elementary
embedding

Θ : (Hζ+; ∈, (DΦ: Φ < ζ+)) ∧ (Hε+; ∈, (CΦ: Φ < ε+))

with crit(Θ ) = ζ. Set ξ = sup(Θ ⇒⇒ζ+) < ε+. As Θ ⇒⇒ζ+ is < ζ-club in ξ ,

C = Cξ ≤ Θ ⇒⇒ζ+

is also < ζ-club in ξ .
Let Θ(Φ) < Θ(Σ) < ξ both be limit points of C . Then

CΘ(Σ) ≤ Θ(Φ) = Cξ ≤ Θ(Φ) = CΘ(Φ). (11.59)

But CΘ(Φ) = Θ(DΦ) and CΘ(Σ) = Θ(DΣ), so that by (11.59)

DΣ ≤ Φ = DΦ.

Setting
D =

⋃

Δ(Φ)∈C

DΦ,

we then have that D is cofinal in ζ+ and DΦ = D ≤ Φ for every Δ(Φ) ∈ C . Pick
Δ(Φ) ∈ C such that otp(D ≤ Φ) > ζ. Then otp(DΦ) > ζ. Contradiction! �
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Lemma 11.70 (Solovay) Let ε be ζ+-supercompact, where ζ ≥ ε . Then �ζ fails.
In particular, if ε is supercompact, then �ζ fails for all ζ ≥ ε .

Proof Let ε be ζ+-supercompact, where ζ ≥ ε , and suppose that (DΦ: Φ < ζ+)

witnesses that �ζ holds. Let
Δ : V ∧ M

be such that M is an inner model, crit(Δ) = ε , Δ(ε) > ζ and ζ+
M ⇐ M . This

implies that ξ = sup(Δ ⇒⇒ζ+) < Δ(ζ+). Let (CΦ: Φ < Δ(ζ+)) = Δ((DΦ: Φ < ζ+)).
As Θ ⇒⇒ζ+ is < ε-club in ξ ,

C = Cξ ≤ Θ ⇒⇒ζ+

is also < ε-club in ξ . The rest is virtually as in the proof of Lemma 11.69. �

A fine structure theory for inner models is developped e.g. in [30] and [47], and
fine structural models with significant large cardinals are constructed e.g. in [2, 31,
40]; cf. also [45] and [46]. Generalizations of Jensen’s Covering Lemma 11.56 are
shown in [29] and [28]. In the light of Theorem 11.70, an ultimate generalization of
Theorem 11.64 is shown in [35], and an application in the spirit of Corollary 11.67
is given in [17].

11.4 Problems

11.1. Assume GCH to hold in V . Show that there is some E ⇐ OR such that
V = L[E] and L[E] is acceptable. [Hint. Use Problem 5.12.]

11.2. Let L[U ] be as in Problem 10.3. Show that L[U ] is not acceptable. Show also
that L[U ] isweakly acceptable in the following sense. If (P(χ)≤ JΦ+β[U ])\
JΦ[U ] ∼= ∈, then there is some surjection f : χ ∧ P(χ) ≤ JΦ[U ], f ∈
JΦ+β[U ]. [Hint. Problem 10.5.]

11.3. Prove Lemma 11.13!

11.4. Let M̄ , M , p̄, p, Δ , Δ̃ be as in Lemma 11.16. Suppose moreover that p ∈ RM ,
and that Δ : M̄ p̄∧σn M p. Then Δ̃ : M̄ ∧σn+1 M.

11.5. Let M be an acceptable J-structure, and let n < β. Show that if ε is a
cardinal of M such that χn+1(M) → ε < ε+M → χn(M), then cf(ε+M ) =
cf(χn(M)).
Let ε be a regular uncountable cardinal, and let ζ > ε be a cardinal. By
♦≥

ζ,ε we mean the following statement. There is a family (Ax : x ∈ [ζ]<ε)

such that for every x ∈ [ζ]<ε , Ax ⇐ P(x) and Card(Ax ) → Card(x), and
for every A ⇐ ζ there is some club C ⇐ [ζ]<ε such that for every x ∈ C ,
A ≤ x ∈ Ax .

11.6. (R. Jensen) Assume V = L . Let ε be a regular uncountable cardinal, and
let ζ > ε be a cardinal. Then ♦≥

ζ,ε holds true. [Hint. If x = X ≤ ζ, where
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JΦ

Δ∪= X ⊕ Jζ, then let Σ > Φ be least such that χβ(JΣ) < Φ and set
Ax = {Δ ⇒⇒y ≤ x : y ∈ JΣ ≤ P(ζ)}. Cf. the proof of Theorem 5.39.]

11.7. Let N be the set of all perfect trees on β2. N, ordered by U →N T iff
U ⇐ T , is called Namba forcing. Show that if G is N-generic over V ,
then cfV [G](βV

2 ) = β and β
V [G]
1 = βV

1 . [Hint. Let G be N-generic over
V . Then

⎨ ⎞
G is cofinal from β into βV

2 . Let T � ξ : β ∧ β1. Choose
(ts, Ts, Φs : s ∈ <ββ2) such thatT∈ = T , t∈ = ∈, ts ∈ Ts , {ts�ρ : ρ < β2} ⇐ Ts

is a set of ←2 extensions of ts of the same length, ts�ρ ∼= ts�ρ ⇒ for ρ ∼= ρ ⇒,
Ts�ρ →N Ts , Ts ⇐ {t ∈ T : ts ⊃ t ∨ ts ⇐ t}, and Ts � ran(ξ � (lh(s)) )̌ ⇐ Φ̌n ,
Φn < β1. For Φ < β, set

T Φ =
⎠ ⎩⋃

{Ts : lh(s) = n ⊃ Φs < Φ}: n < β
⎛

.

Let us write ||t ||C B
T Φ for the Cantor-Bendixson rank of t in T Φ , cf. Problem

7.5. It suffices to prove that there is some Φ < β1 such that ||∈||C B
T Φ = ∞, as

then T Φ ∈ N, T Φ →N T , and T Φ � ran(ξ ) ⇐ Φ̌. Otherwise we may construct
some x ∈ β(β2) such that for all n < β and for all (sufficiently big) Φ < β1,
||tx�(n+1)||C B

T Φ < ||tx�n||C B
T Φ .] Show also that if C H holds in V , then forcing

with N does not add a new real.
Conclude that it is not possible to cross out “+←1” in (1) or replace “≥ ←1”
by “≥ ←0” in (2) of Theorem 11.56.

11.8. Show that 0# is not generic over an inner model which does not contain 0#,
i.e., if W is an inner model with 0# /∈ W , if P ∈ W is a poset, and if G ∈ V
is P-generic over W , then 0# /∈ W [G].

11.9. Assume that 0# does not exist. Let W be any inner model such that (←2)
W =

←2. Show that for every θ , [θ ]β ≤ W is stationary in [θ ]β.
11.10. Suppose V = W [x], where x ⇐ β is P-generic over W for some P ∈ W .

Suppose that W and V have the same cardinals, W |= CH, but V |= ¬ CH.
Show that 0# ∈ W . [Hint. Use Strong Covering.]

11.11. (M. Magidor) Assume ZF plus both ←1 and ←2 are singular. Show that 0#

exists. (Compare Theorem 6.69.)

11.12. Show that if 0# does not exist and if ε is weakly compact, then ε+L = ε+.
[Hint. Use Problem 4.23.]

11.13. Let ε̄ → ε be limit ordinals, and let Δ : Jε̄ ∧ Jε be σ0-cofinal. Assume
that cf(ε̄) = cf(ε) > β. Let Σ ≥ ε̄ be such that ε̄ is a cardinal in JΣ ,
and let n < β be such that χn(JΣ) ≥ ε̄ . Show that ultn(JΣ; EΔ ) is well-
founded. [Hint. Let Θ : JΣ̄ ∧ JΣ be elementary, where Σ̄ is countable, and
let Θ ⇒: JΣ̄ ∧ ultn(JΣ̄; EΘ�Θ−1(Jε̄ )). By Lemma 11.63, this ultrapower is
well-founded, say equal to JΣ̃ , and there is an embedding k: JΣ̃ ∧ JΣ .

By hypothesis, Σ̃ < ε̄ . We may assume that Θ ⇐ Θ̃ : H ∧ Hθ , where θ
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is sufficiently big and H is (countable and) transitive. We may then embed
Θ̃−1(ultn(JΣ; EΔ )) into Δ(JΣ̃ ).]

11.14. Assume that 0# does not exist. Let ε be a cardinal in L , and let X ⊕ Jε

be such that X ≤ βV
2 ∈ βV

2 and if βV
2 → μ < ε is an L-cardinal, then

cf(X ≤ μ+L) > β. Show that we may write X = ⎨
n<β Xn , where Xn ∈ L

for each n < β. [Hint. Problem 11.13.]

11.15. (M. Foreman, M. Magidor) Assume V = L , and let X ⊕ Jββ be such that
cf(X ≤ βn+1) > β for all n < β. Show that there is some n0 < β such that
for all n ≥ n0, cf(X ≤ βn) = cf(X ≤ βn0). [Hint. Problems 11.13 and 11.5.]

11.16. Assume V = L , and ε ≥ ←1 be a cardinal. Let C and n(Ω) (for Ω ∈ C)
be defined as in the proof of Theorem 11.64. Show that for every n < β,
{Ω ∈ C : n(Ω) = n} is stationary in ε+.

11.17. Show that if�ε holds, then there is some stationary R ⇐ ε+ such that�ε(R)

holds. Also, if �ε holds, then there is some stationary S ⇐ ε+ such that for
no Φ < ε+, S ≤ Φ is stationary in Φ.

11.18. (R. Jensen) (“Global �”) Assume V = L . Let S be the class of all ordinals
Φ such that cf(Φ) < Φ. Show that there is a sequence (CΦ: Φ ∈ S) such that
for every Φ ∈ S, CΦ is club in Φ, otp(CΦ) < Φ, and if Σ is a limit point of CΦ ,
then Σ ∈ S and CΣ = CΦ ≤ Σ. [Hint. Imitate the proof of Theorem 11.64.]
Let ζ be a limit ordinal. A sequence (CΦ: Φ < ζ) is called coherent iff for all
Φ < ζ, CΦ is a club subset of Φ and whenever Φ̄ is a limit point of CΦ , then
CΦ̄ = CΦ ≤ Φ̄. An ordinal ζ is called threadable iff every coherent sequence
(CΦ: Φ < ζ) admits a thread C , i.e., C ⇐ ζ is club and for every limit point
Φ of C , C ≤ Φ = CΦ .

11.19. Let ζ be a limit ordinal with cf(ζ) > β. Show that ζ is threadable iff cf(ζ) is
threadable.

11.20. Show that if ε+ is threadable, then �ε fails. Also, if ζ is weakly compact,
then ζ is threadable.

11.21. (R. Jensen) Assume V = L , and let ε be not weakly compact. Show that
there is an unthreadable coherent sequence (CΦ: Φ < ε). [Hint. Let T be a
ε-Aronszajn tree. Let

S = {Φ < ε: ⊂Σ > Φ JΣ |= “ZFC− and Φ is regular and
there is a cofinal branch through the Φ-tree T ≤ J ⇒⇒

Φ }.

Notice that if Φ /∈ S, then Φ is singular. Now imitate the argument from
Theorem 11.64 or rather from Problem 11.18, working separately on S and
on ε \ S.]

11.22. Let ε be an uncountable regular cardinal which is not threadable. Show that
if G is Col(β1, ε)-generic over V , then ←1 is not threadable in V [G]. [Hint.
Use Problem 11.19. Let (CΦ: Φ < ε) ∈ V witness that ε is not threadable
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in V . If ←1 were threadable in V [G], we could pick H such that G, H are
mutually Col(β1, ε)-generic over V such that both V [G] and V [H ] contain
a thread. As cf(ε) = β1 in V [G][H ], such a thread would then also be in
V [G] ≤ V [H ] and hence in V by Problem 6.12.]
Let ε ≥ ←2 be regular, and let S ⇐ ε be stationary. We say that S reflects iff
there is some Φ < ε with cf(Φ) > β such that S ≤ Φ is stationary in Φ.

11.23. Let ε be regular. Show that S = {Φ < ε+: cf(Φ) = ε} does not reflect.
11.24. Show that if ε is weakly compact, then every stationary S ⇐ ε reflects.

11.25. Assume V = L . Let ε ≥ ←2 be regular but not weakly compact. Suppose
that S ⇐ ε is stationary. Show that there is some stationary T ⇐ S which
does not reflect. [Hint. If ε = ζ+, then use �ζ, cf. Theorem 11.64. If ε is
inaccessible, then exploit the argument from Problem 11.21.]

11.26. (J. Baumgartner) Let ε be weakly compact, and let G be Col(β1,< ε)-
generic over V . Show that the following is true in V [G]. Let S ⇐ ε = ←2 be
stationary such that cf(Φ) = β for all Φ ∈ S; then S reflects. [Hint. In V let
us pick Θ : H ∧ H≥ exactly as in Problem 4.23, and let Θ̃ : H [G] ∧ H≥[K ]
be as in Problem 6.17. We may assume that our given S is in H [G]. We have
β1 H ≤ V [G] = β1 H ≤ H [G] ⇐ H≥[G] ⇐ V [G]. It suffices to prove that S
is stationary in H≥[K ], which follows from Problem 6.15(b).]



Chapter 12
Analytic and Full Determinacy

12.1 Determinacy

E. Zermelo observed that finite two player games (which don’t allow a tie) are
determined in that one of the two players has a winning strategy. Let X be any non-
empty set, and let n < Φ. Let A → 2n X , and let players I and II alternate playing
elements x0, x1, x2, . . ., x2n−1 of X . Say that I wins iff (x0, x1, x2, . . . , x2n−1) ≤ A,
otherwise II wins. Then either I has a winning strategy, i.e.,

∼x0∈x1∼x2 . . . ∈x2n−1 (x0, x1, x2, . . . , x2n−1) ≤ A,

or else II has a winning strategy, i.e.,

∈x0∼x1∈x2 . . . ∼x2n−1 (x0, x1, x2, . . . , x2n−1) ≤ 2n X\A.

Jan Mycielski (* 1932) andHugo Steinhaus (1887–1972) proposed studying
infinite games and their winning strategies, which led to a deep structural theory of
definable sets of reals. Let X be a non-empty set, and let A → Φ X . We associate to A
a game, called G(A), which we define as follows. In a run of this game two players,
I and II, alternate playing elements x0, x1, x2, . . . of X as follows.

I x0 x2 . . .

II x1 x3 . . .

After Φ moves they produced an element x = (x0, x1, x2, . . . ) of Φ X . We say that I
wins this run of G(A) iff x ≤ A, otherwise II wins. A strategy for I is a function

Σ :
⋃

n<Φ

2n X → X ,

and a strategy for II is a function

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_12, 279
© Springer International Publishing Switzerland 2014
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α :
⋃

n<Φ

2n+1X → X.

If Σ is a strategy for I and z ≤ Φ X , then we let Σ ∧ z be the unique x ≤ Φ X with

x(2n) = Σ(x(0), x(1), x(2), . . . x(2n − 1)) and

x(2n + 1) = z(n)

for n < Φ, i.e., x is the element of Φ X produced by a run of G(A) in which I follows
Σ and II plays z. We say that Σ is a winning strategy for I in G(A) iff

{Σ ∧ z: z ≤ Φ X} → A.

Symmetrically, if α is a strategy for II and z ≤ ΦΦ, then we let z ∧ α be the unique
x ≤ Φ X with

x(2n + 1) = Σ(x(0), x(1), x(2), . . . x(2n)) and

x(2n) = z(n)

for n < Φ, i.e., x is the element of Φ X produced by a run of G(A) in which II follows
α and I plays z. We say that α is a winning strategy for II in G(A) iff

{z ∧ α : x ≤ Φ X} → ΦΦ\A.

Of course, at most one of the two players can have a winning strategy.

Definition 12.1 Let X be a non-empty set, and let A → Φ X . We say that G(A) is
determined iff player I or player II has a winning strategy in G(A). In this case, we
also call A itself determined. The Axiom of Determinacy, abbreviated by AD, states
that every A → ΦΦ is determined.

We also refer to A as the “payoff” of the game G(A).
We shall mostly be interested in the case where X is countable, in fact X = Φ

in which A is a set of reals. It can be shown in ZFC that if A → ΦΦ is Borel, then
A is determined, cf. [20, Chap. 20, pp. 137–148]. We here aim to show that every
analytic set is determined, cf. Theorem 12.20. It turns out that this cannot be done
in ZFC, though, cf. Corollary 12.27. We shall prove later (cf. Theorem 13.7) that
in fact every projective set of reals is determined. The full Axiom of Choice, AC,
though, is incompatible with AD.

Lemma 12.2 Assume ZF + AD. Then AC is false, but ACΦ holds for sets of reals,
i.e., if (An: n < Φ) is a sequence of non-empty sets of reals, then there is some
f : Φ → ΦΦ with f (n) ≤ An for every n < Φ.

Proof In the presence of AC, we may enumerate all strategies for I as (Σβ:β < 2⊃0)

and all strategies for II as (Σβ:β < 2⊃0). Using AC again, let us pick sequences
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(xβ:β < 2⊃0) and (yβ:β < 2⊃0) such that for all β < 2⊃0 , xβ = Σβ ∧ z for some
z ≤ ΦΦ such that Σβ ∧ z /≤ {yε :ε < β}, and yβ = z ∧ αβ for some z ≤ ΦΦ such that
z ∧ αβ ∧ z /≤ {xε :ε ⊂ β}. It is then easy to see that

A = {yβ:β < 2⊃0}

cannot be determined.
Now let (An : n < Φ) be a sequence of non-empty sets of reals, and let us consider

the following game (in which I just keeps passing after his first move).

I n . . .

II n1 n2 x3 n4 . . .

I plays some n ≤ Φ, and then II plays some x = (n0, n1, n2, . . .). We say that II
wins iff x ≤ An .

Of course, I cannot have a winning strategy in this game. Hence II has a winning
strategy, as our gamemay be construed asG(ΦΦ\A), where A = {x : (x(1), x(3), . . .)
≤ Ax(0)}, and II’s winning strategy then gives rise to a function f as desired. �

With a some extra work beyond Theorem 13.7 one can construct models of
ZF + DC + AD, which are of the form of the models of Theorems 6.69 or 8.30.
The moral of this is that whereas AD is false it holds for “definable” sets of reals,
and the results of this section should be thought of being applied inside models of
ZF + AD which contain all the reals.

Wefirstwant to show that open games on are determined. Let still X be an arbitrary
non-empty set. Recall, cf. p. 123, that we may construe Φ X as a topological space
as follows. For s ≤ <Φ X , set Us = {x ≤ Φ X : s → x}. The sets Us are declared to be
the basic open sets, so that a set A → Φ X is called open iff there is some Y → <Φ X
with A = ⋃

s≤Y Us .
If Σ , α is a strategy for player I , II, respectively, then we say that x is according

to Σ , α iff there is some y such that x = Σ ∧ y, x = y ∧ α , respectively.

Theorem 12.3 (Gale, Stewart) Let A → Φ X be open. Then A is determined.

Proof Let us suppose I not to have a winning strategy in G(A). We aim to produce
a winning strategy for II in G(A). Let us say that I has a winning strategy in Gs(A),
where s ≤ <Φ X has even length, iff I has a winning strategy in G({x ≤ Φ X : sξx ≤
A}). By our hypothesis, I doesn’t have a winning strategy in G⇐(A).

Claim 12.4 Let s ≤ <Φ X have even length, and suppose I not to have a winning
strategy in Gs(A). Then for all y ≤ X there is some z ≤ X such that I doesn’t have
a winning strategy in Gsξ yξz(A).

Proof Otherwise there is some y ≤ X such that for all z ≤ X , I has a winning
strategy in Gsξ yξz(A). But then I has a winning strategy in Gs(A): he first plays
such a y, and subsequently, after II played z, follows his strategy in Gsξ yξz(A). �
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Let us now define a strategy α for II in G(A) as follows. Let s = (x0, . . . , xn) be
a position in G(A) where it’s II’s turn to play, i.e., n is odd. Then let α(s) be some
z ≤ X such that I doesn’t have a winning strategy in Gsξz(A), if some such z exists;
otherwise we let α(s) be an arbitrary element of X .

Claim 12.5 α is a winning strategy for II in G(A).

Proof Let
I x0 x2 . . .

I I x1 x3 . . .

be a play of G(A) which is according to α . Claim 12.4 can easily be used to
show inductively that for each even n < Φ, I does not have a winning strategy
in G(x0,...,xn−1)(A).

Now suppose that I I looses, i.e., x = (x0, x1, x2, . . .) ≤ A. Because A is open,
there is some basic open set Us such that x ≤ Us → A. We may assume lh(s) to be
even. Then I has a trivial winning strategy in Gs(A): he may play as he pleases, as
every sξx ⇒, x ⇒ ≤ Φ X , will be in A. But this is a contradiction! �

Lemma 12.6 Let A → Φ X. Suppose that for every y ≤ X, {x ≤ Φ X: yξx ≤ A} is
determined. Then Φ X\A is determined.

Proof Let us first suppose that there is a y ≤ X such that I I has a winning strategy
α ∧ in G({x ≤ Φ X : yξx ≤ A}). We claim that in this case I has a winning strategy
Σ in G(Φ X\A). We let Σ(⇐) = y, and we let Σ(yξs) = α ∧(s), where lh(s) is odd.
It is easy to see that if x ≤ Φ X is produced by a run which is according to Σ , then
x ≤ Φ X\A.

Now let us suppose that for all y ≤ X , I has a winning strategy Σ ∧
y in G({x ≤

Φ X : yξx ≤ A}). We claim that in this case II has a winning strategy α in G(Φ X\A).
We let α(yξs) = Σ ∧

y (s), where lh(s) is even. It is easy to see that if x ≤ Φ X is
produced by a run which is according to α , then x ≤ A. �

Corollary 12.7 Let A → Φ X be closed. Then A is determined.

As an application, we now give a

Proof of Theorem 10.11, which uses an argument from a paper by I. Neeman. Recall
that Theorem 10.11 says that if M is a transitive model of ZFC such that M |= “U
is a normal measure on δ ,” and if (δn : n < Φ) is a Prikry sequence over M with
respect to U , then G(δn : n<Φ) is PU -generic over M . We shall write P = PU .

Set G = G(δn : n<Φ), cf. Definition 10.10. It is easy to see that G is a filter. We
shall prove that G is generic over M .

To this end, fix D ≤ M which is open and dense in P for the rest of this proof.
We aim to show that D ∪ G ∞= ⇐.

To each s ≤ [δ]<Φ we shall associate a game Gs . Let s = {ρ0 < · · · < ρk−1}
where k < Φ. The game has two players, I and II, and starts with round k.
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I Xk Xk+1 . . .

II ρk ρk+1 . . .

In round l ∩ k, I has to play some Xl ≤ U . II has to reply with some ρl ≤ Xl such
that ρl > ρl−1 (if l > 0). II wins the game iff there is some n < Φ and some X ≤ U
such that

({ρ0, . . . , ρn−1}, X) ≤ D.

Gs is a closed game. Moreover, Gs ≤ M . Therefore, one of the two players has a
winning strategy in M which works for plays in V .

Claim 12.8 I does not have a winning strategy in M.

Proof Suppose Σ ≤ M to be a winning strategy for I. We claim that there is some
Z ≤ U such that all ρk < ρk+1 < · · · in Z are compatible with Σ , by which wemean
that there is a play of Gs in which I follows Σ and II plays ρk, ρk+1, . . .. In order to
get Z , define F : [δ]<Φ → 2 by F({ρk < · · · < ρn−1}) = 1 iff ρk < · · · < ρn−1 are
compatible with Σ . As F ≤ M , we may let Z ≤ U be such that F is constant on [Z ]l
for every l < Φ. It cannot be that F ⇒⇒Z ]l = {0} for some l < Φ; this is because in
round m, where k ⊂ m < k + l, if Σ tells I to play Xm then II can reply with some
ρm ≤ Xm ∪ Z .

Now let us look at ({ρ0, . . . , ρk−1}, Z) ≤ P. As D ≤ M is dense in P there is
some

({ρ0, . . . , ρn−1}, Z) ⊂ ({ρ0, . . . , ρk−1}, Z)

with
({ρ0, . . . , ρn−1}, Z) ≤ D.

Because ρk < · · · < ρn−1 ≤ Z , ρk < · · · < ρn−1 are compatible with Σ ; on the
other hand, II wins if he plays ρk, . . . , ρn−1 in rounds k, . . . , n − 1. Contradiction!

�

Let us still fix s = {ρ0 < · · · < ρk−1} for a while, and let α = αs ≤ M be a
winning strategy for II in Gs (which also works for plays in V ).

We shall now for l ∩ k and t = {ρ0 < · · · < ρk−1 < · · · < ρl−1} ∅ s and
ρ > ρl−1 define sets Y t

s and Xt,ρ
s which are in U . The definition will be by recursion

on the length of t . We shall call t ∪ {ρl} “realizable” iff

I Xs,ρk
s . . . Xt,ρl

s

II ρk . . . ρl

is a position in the game Gs in which I obeyed the rules and II played according
to α .

Now fix t and ρl and assume that Xt�m,ρm
s and Y t�m

s have been defined for all
k ⊂ m < l, where l ∩ k. We first aim to define Y t

s .
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Claim 12.9 Suppose t to be realizable. There is then some Y ≤ U such that for all
ρ ≤ Y there is an X such that

I Xs,ρk
s . . . Xt�l−1

s X
II ρk . . . ρl−1 ρ

is a position in Gs in which I obeyed the rules and II played according to α .

Proof Let Y denote the set of ρ such that there is some X such that

I Xs,ρk
s . . . Xt�l−1

s X
II ρk . . . ρl−1 ρ

is a position in Gs in which I obeyed the rules and II played according to α . We
want to see that Y ≤ U . Suppose that Y /≤ U , i.e., δ\Y ≤ U . Consider the following
position in Gs in which ρ is as dictated by α .

I Xs,ρδ
s . . . Xt�l−1

s δ\Y
II ρδ . . . ρl−1 ρ

As II follows α and thus obeys the rules, ρ ≤ δ\Y . On the other hand, ρ ≤ Y by
definition of Y . Contradiction! �

We now let Y t
s be as given by Claim 12.9. For each ρ ≤ Y t

s we let Xt,ρ
s be a witness

to the fact that ρ ≤ Y t
s , i.e., some X as in the statement of Claim 12.9 for Y = Y t

s .
We finally also assign some Zs ≤ U to s as follows. If there is some Z with

(s, Z) ≤ D then we let Zs be some such Z ; otherwise we set Z = δ .
We now let1

X0 = χs Zs ∪ χs→t Y t
s .

Byour hypothesis on (δi : i < Φ), there is somen < Φ such that {δn, δn+1, . . .} → X0.
Set s = (δl : l < n).

Claim 12.10 The following is a play of Gs in which I obeys the rules and II follows
αs .

I Xs,kn
s . . . X x�m,δm

s . . .

II δn . . . δm . . .

Proof by induction on m. Notice that δm ≤ X0 and hence δm ≤ Y x�m
s . �

Because II follows αs in the play above, there is some m ∩ n and some X with
({δ0, . . . , δm−1}, X) ≤ D. But then ({δ0, . . . , δm−1}, Z x�m) ≤ D. However, for any
l ∩ m, δl ≤ X0, and hence δl ≤ Z x�m . We thus have that

1 cf. Problem 4.26 on “χs Xs”.
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({δ0, . . . , δm−1}, Z x�m) ≤ G.

Therefore, D ∪ G ∞= ⇐. �

We shall now prove that AD, the Axiom of Determinacy, proves the ultimate
generalization of theCantor- BendixsonTheorem1.9. IfADwere not to contradict
the Axiom of Choice, it could be construed as providing a solution to Cantor’s
project of proving the Continuum Hypothesis, cf. p. 3. The following Theorem says
that all of P(ΦΦ) has the perfect subset property (cf. p. 138).

Theorem 12.11 (M. Davis) Assume AD. Every uncountable A → ΦΦ has a perfect
subset.

Proof Fix A → ΦΦ. Let f : ΦΦ → Φ2 be a continuous bijection (cf. Problem 7.2),
and write B = f ⇒⇒ A. It suffices to prove that B is either countable or else has a perfect
subset.

Let us consider the following game, Gp(B).

I s0 s1 . . .

II n0 n1 . . .

In this game, I plays finite 0–1-sequences si ≤ <Φ2 (with si = ⇐ being explicitly
allowed), and II plays ni ≤ 2 = {0, 1}. Player I wins iff

s0
ξn0

ξs1
ξn1

ξ . . . ≤ B,

otherwise II wins. We may construe Gp(B) as G(B ⇒) for some B ⇒ → ΦΦ, so that
Gp(B) is determined.

If I has a winning strategy in Gp(B), Σ , then

{s0ξn0
ξs1

ξn1
ξ . . . : (n0, n1, . . .) ≤ Φ2 ∗ ∈i < Φ si = Σ(s0

ξn0
ξ . . . ξni−1)}

is a perfect subset of B.
So let us suppose α to be a winning strategy for II in Gp(B). We say that a finite

sequence p = (s0, n0, . . . , sk, nk) is according to α iff ni = α(s0ξn0
ξ . . . ξsi ) for

every i ⊂ k, and if x ≤ Φ2, then we say that p = (s0, n0, . . . , sk, nk) is compatible
with x iff s0ξn0

ξ . . . ξsi
ξni → x . Because α is a winning strategy for II, we

have that x /≤ B follows from the fact that for all p = (s0, n0, . . . , sk, nk), if p
is according to α and compatible with x , then there exists some s ≤ Φ2 such that
(s0, n0, . . . , sk, nk, s, α ((s0, n0, . . . , sk, nk, s)) is compatible with x . In other words,
if x ≤ B, then there is some px = (s0, n0, . . . , sk, nk) which is according to α and
compatible with x such that for all s ≤ Φ2, (s0, n0, . . . ,sk, nk, s,α ((s0, n0, . . . , sk,

nk, s)) is not compatible with x .
Notice that x �→ px is injective for x ≤ B. This is because if x ≤ B, px =

(s0, n0, . . . , sk, nk), and
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x = s0
ξn0

ξ . . . ξsk
ξnk

ξm0
ξm1

ξm2
ξ . . . ,

then wemust have thatmi = 1−α(s0ξn0
ξ . . . ξsk

ξnk
ξm0

ξ . . . ξmi−1) for every
i < Φ.

But as x �→ px , x ≤ B, is injective, B is countable. �

Lemma 12.12 Assume AD. Let A → Φ2 be such that every Lebesgue measurable
D → A is a null set. Then A is a null set.

Proof Let us fix A → Φ2 such that every Lebesgue measurable D → A is a null
set. Let σ > 0 be arbitrary. We aim to show that A can be covered by a countable
union B of basic open sets such that μ(B) ⊂ σ. Let us consider the following game
Gcov(A), the covering game for A.

I n0 n1 . . .

II K0 K1 . . .

In this game, I plays ni ≤ {0, 1}, i < Φ, and II plays Ki , i < Φ, where each Ki is a
finite union of basic open sets such that μ(Ki ) ⊂ σ

22(i+1) . Player I wins iff

(n0, n1, n2, . . .) ≤ A \
⋃

i<Φ

Ki .

Notice that for each i < Φ there are only countably many candidates for Ki , so
that Gcov(A) may be simulated by a game in which both players play just natural
numbers. Therefore, Gcov(A) is determined.

We claim that I cannot have a winning strategy. Suppose not, let Σ be a winning
strategy for I , and let D → Φ2 be the set of all (n0, n1, . . .) such that there is a play
of Gcov(A) in which II plays some sequence (Ki : i < Φ) and (ni : i < Φ) is the
sequence of moves of I obtained by following the winning strategy Σ in response
to (Ki : i < Φ). The set D is then analytic and hence Lebesgue measurable by
Corollary 8.15. As Σ is a winning strategy for I , D → A, so that D is in fact a null
set by our hypothesis on A.

Let D → ⋃
n<Φ In , where each In is a basic open set and μ

(⋃
n<Φ In

) ⊂ 2
3 · σ.

Notice that 2
3 = ∑∞

i=0
1

22(i+1) , so that by cutting and relabelling if necessary we may
assume that there is a strictly increasing sequnce (τi : i < Φ) of natural numbers

with τ0 = 0 such that μ
(⋃τi+1−1

k=τi
Ik

⎧
⊂ σ

22(i+1) . But now II can defeat I ’s alleged

winning strategy Σ by playing
⋃τi+1−1

k=τi
Ik in her ith move. If I plays by following

Σ , he will lose. Contradiction!
By AD, player II therefore has a winning strategy α in Gcov(A). For s ≤<Φ 2

with lh(s) = i + 1 ≤ Φ\{0}, let us write Ks for the i th move Ki of II in a play in
which I ’s first i + 1 moves are s(0), . . ., s(i) and II’s first i + 1 moves K0, . . ., Ki

are obtained by following α in response to s(0), . . . , s(i). Write
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B =
⋃

s≤<Φ2\⇐
Ks .

Because α is a winning strategy for II, A → B. Moreover, μ(Ks) ⊂ 1
22(lh(s))

, so that
for every i < Φ,

μ

⎪

⎨
⋃

lh(s)=i+1

Ks

⎩

⎛ ⊂ 2i+1 · 1

22(i+1)
= 1

2i+1

and hence

μ(B) ⊂
∞⎝

i=0

σ

2i+1 = σ.

We covered A by a countable union B of closed intervals such that μ(B) ⊂ σ. �

Theorem 12.13 (Mycielski-Swierczkowski) Assume AD. Every set A → Φ2 is
Lebesgue measurable.

Proof Fix A → Φ2. Let B ∅ A, B → Φ2 be Lebesgue measurable such that for all
Lebesguemeasurable D → B\A, D is a null set. Then B\A is a null set by Lemma
12.12, so that A is Lebesgue measurable. �

The hypothesis of Theorem 12.13 therefore also gives that every A → ΦΦ is
Lebesgue measurable.

Lemma 12.14 Assume AD. Let A → ΦΦ be non-meager. There is then some s ≤ <ΦΦ

such that A ∪ Us is comeager in the space Us.

Proof Let us fix A → ΦΦ. For s ≤ <ΦΦ, let us consider the following game, Gbm
s (A),

called the Banach- Mazur game.

I s0 s2 . . .

II s1 s3 . . .

In this game, I and II alternate playing non-empty sn ≤ <ΦΦ, n < Φ, and I wins iff

sξs0
ξs1

ξs2
ξs3

ξ . . . ≤ A.

Claim 12.15 II has a winning strategy in Gbm
s (A) iff A ∪ Us is meager.

Proof This proof does not use AD. Suppose first that A ∪ Us is meager, so that we
may write A ∪ Us = ⋃

n<Φ An , where each An is nowhere dense. Let us define a
strategy Σ for II as follows. Let Σ(s0, s1, . . . , s2n) be some non-empty t ≤ ΦΦ such
that

Usξs0ξs1ξ...ξs2n
ξt ∪ An = ⇐.
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This is always well-defined, as all An are nowhere dense, and Σ is easily seen to be
a winning strategy for II in Gbm

s (A).
Now let us assume that II has a winning strategy, Σ , in Gbm

s (A). We may define
what it means for a finite sequence p = (s0, s1, . . . , sn) of non-empty elements of
<ΦΦ to be according to Σ in much the same way as in the proof of Theorem 12.11.
Let x ≤ ΦΦ with s → x . Because Σ is a winning strategy for II, if for all sequences
(s0, s1, . . . , s2n−1) of non-empty elements of <ΦΦwhich are according to Σ and such
that sξ p = sξs0ξs1ξ . . . ξs2n−1 → x there is some non-empty t ≤<Φ Φ such that
sξ pξtξΣ(pξt) → x , then x /≤ A. Therefore,

A ∪ Us →
⋃

Bp,

where, for a sequence p = (s0, s1, . . . , s2n−1) of non-empty elements of <ΦΦ which
is according to Σ , Bp is the set of all x ≤ ΦΦ such that sξ p = sξs0ξs1ξ . . . ξs2n−1
→ x , but for all non-empty t ≤ <ΦΦ, sξ pξtξΣ(pξt) is not an initial segment of x ,
i.e.,

Bp ∪ Usξ pξtξΣ(p,t) = ⇐.

Every Bp is thus nowhere dense, so that A ∪ Us is in fact meager. �
Let us now assume AD. Let us suppose A to be non-meager. By Claim 12.15, II

does not have a winning strategy in Gbm
⇐ (A), so that I has a winning strategy α in

Gbm
⇐ (A). Setting s = α(⇐), α esily induces a winning strategy for II in Gbm

s (ΦΦ\A).
Again by the Claim, (ΦΦ\A) ∪ Us is now meager, so that A ∪ Us is comeager
in Us . �
Theorem 12.16 (Mazur) Assume AD. Every A → ΦΦ has the property of Baire.

Proof Let us fix A → ΦΦ, and set

O =
⋃

{Us : s ≤ <ΦΦ ∗ Us\A is meager}.

Trivially, O\A is meager. If A\O were non-meager, then by Lemma 12.14 there is
some s ≤ <ΦΦ such that (A\O) ∪ Us is comeager in Us . This means that Us\A →
Us\(A\O) is meager inUs , so that by the definition of O ,Us → O . So (A\O)∪Us =
⇐ is not comeager in Us after all. Contradiction! �

For x , y ≤ ΦΦ, we let x ⊂T y denote that x is Turing reducible to y, and we
write x ≡T y for x ⊂T y and y ⊂T x . A set A → ΦΦ is called Turing invariant iff
for all x ≤ A and y ≤ ΦΦ, if y ≡T x , then y ≤ A. A set A → ΦΦ is called a (Turing)
cone iff there is some x ≤ ΦΦ such that A = {y: x ⊂T y}, in which case x is also
called a base of the cone A.

Set S be a set of ordinals. A set A → ΦΦ is called S-invariant iff for all x ≤ A and
y ≤ ΦΦ, if L[S, x] = L[S, y], then y ≤ A. We call A → ΦΦ an S-cone iff there is
some x ≤ ΦΦ such that A = {y: x ≤ L[S, y]}, in which case x is also called a base
of the S-cone A.
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Theorem 12.17 (D. A. Martin) Assume AD. Let A → ΦΦ be Turing invariant.
Then either A or ΦΦ\A contains a (Turing) cone. Also, if S is a set of ordinals and
A → ΦΦ is S-invariant, then either A or ΦΦ\A contains an S-cone.

Proof We prove the first part. Let A → ΦΦ be Turing invariant. If Σ is a winning
strategy for I in G(A), then x ≡T Σ ∧ x ≤ A whenever Σ ⊂T x , and if α is a winning
strategy for II in G(A), then x ≡T x ∧ α ≤ ΦΦ\A whenever α ⊂T x . The proof of
the second part is the same. �

In what follows it will be very convenient to use the ⊕-notation. If x , y ≤ ΦΦ,
then we write x ⊕ y for that z ≤ ΦΦ with z(2n) = x(n) and z(2n + 1) = y(n).
If xn ≤ ΦΦ, n < Φ, then ⊕xn is that z ≤ ΦΦ such that z(≥n, k〉) = zn(k), where
·, · �→ ≥·, ·〉 is the Gödel pairing function (cf. p. 33).

Theorem 12.18 Assume AD. The following hold true.

(a) Φ1 is inaccessible to the reals.
(b) Φ1 is a measurable cardinal.
(c) For every x → Φ, x# exists.
(d) For every X → Φ1 there is a real x such that X ≤ L[x].
(e) The club filter on Φ1 is an ultrafilter.
(f) Φ2 is a measurable cardinal.

Proof (a) Immediately follows from Theorem 12.11 via Corollary 7.29.
(b) Set B = {ΦL[x]

1 : x ≤ ΦΦ}. By (a), B is a subset ofΦ1 of size⊃1. Letλ :Φ1 → B
be the monotone enumeration of B. For X → Φ1, let A(X) be the Turing invariant
set {x ≤ ΦΦ:ΦL[x]

1 ≤ λ ⇒⇒ X}. Let

U = {X → Φ1: A(X) contains a cone}.

Notice that if x is a base for the cone A and y is a base for the cone B, then x ⊕ y is
a cone for a base contained in A ∪ B. It is thus straightforward to verify that U is a
filter, and U is in fact an ultrafilter by Theorem 12.17. If {Xn : n < Φ} → U , then by
ACΦ (cf. Lemma 12.2) we may pick a sequence (xn : n < Φ) of reals such that for
each n < Φ, xn is a base for a cone of reals contained in A(Xn). But then ⊕n<Φxn

is a base for a cone of reals contained in
⎞

n<Φ A(Xn) = A(
⎞

n<Φ Xn). This shows
that U is <⊃1-complete, so that U witnesses that Φ1 is a measurable cardinal.

(c) This follows from (b) and the proof of Lemma 10.31 which does not need
AC. If U is a <⊃1-complete measure on Φ1, then for every x → Φ, U ∪ L[x] is
Φ-complete, so that ult(L[x]; U ∪ L[x]) is well-founded by Lemma 10.29, and we
get x# by Theorem 10.39.

(d) Fix X → Φ1. Let us consider the following game, called the Solovay game.

I n0 n1 . . .

II m1 m2 . . .
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Players I and II alternate playing natural numbers. Let us write x = (n0, n1, . . .)

and yi = (m2i+1·3k+1 : k < Φ). We say that II wins iff

x ≤ WO =≡ {β ≤ X ∪ ||x || + 1} → {||yi ||: i < Φ ∗ yi ≤ WO} → X.

If I had a winning strategy, Σ , then A = {Σ ∧ x : x ≤ ΦΦ} would be analytic
(cf. the proof of Lemma 12.12). Also A → WO, and by the Boundedness Lemma
7.12 there would be some countable ζ such that {||Σ ∧ x ||: x ≤Φ Φ} → ζ . But then
II can easily defeat Σ by playing some y such that yi ≤ WO for all i < Φ and
{||yi ||: i < Φ} = X ∪ (ζ + 1).

Therefore, II has a winning strategy, α . Let G ≤ V be Col(Φ,< ΦV
1 )-generic

over L[α ] (Cf. Problem 10.13). Then β ≤ X iff L[α ][G] |= “there is some x ≤ WO
such that β = ||x || and β ≤ {||yi ||: i < Φ ∗ yi ≤ WO}, where y is the result of
having II play according to α in a play in which I plays x .” By the homogeneity of
Col(Φ,< ΦV

1 ), cf. Lemma 6.54, X is therefore in L[α ], cf. Corollary 6.62.
(e) Let X → Φ1, and let, using (d), x ≤Φ Φ be such that X ≤ L[x]. By (c), x#

exists, so that X either contains a club or is disjoint from a club. (cf. Problem 10.11.)
(f) Let C = {(ΦV

1 )+L[x]: x ≤ ΦΦ}. As x# exists for every x ≤ ΦΦ, C → Φ2. By
(d), C is cofinal in ΦV

2 , so that we may let Σ :Φ2 → C be the monotone enumeration
of C . In a fashion similar to (a), for X → Φ2 we may let D(X) be the Turing invariant
set {x ≤ ΦΦ:Φ+L[x]

1 ≤ Σ ⇒⇒ X}, and we may define

F = {X → Φ2: D(X) contains a cone}.

Using Theorem 12.17 and ACΦ as in (a), F can be verified to be a < ⊃1-complete
ultrafilter on Φ2.

It remains to be shown that F is<⊃2-complete. Let us fix a sequence (Xi : i < Φ)

such that Xi ≤ F for every i < Φ1. Let us consider the following game.

I n0 n1 . . .

II m1 m2 . . .

Players I and II alternate playing natural numbers. Let us write x = (n0, n1, . . .)

and y = (mi : i < Φ). We say that II wins iff

x ≤ WO =≡ {z ≤ ΦΦ: y ⊂T z} →
⎠

i⊂||x ||
D(Xi ).

The Boundedness Lemma 7.12 implies as in (b) that I cannot have a winning
strategy in this game. Let α be a winning strategy for player II. We aim to verify that

{z ≤ ΦΦ: α ⊂T z} → D(Xi )

for every i < Φ.
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Let us fix z ≤ ΦΦ such that α ⊂T z, and let us also fix i < Φ1. By the existence
of z#, we may pick g ≤ V to be Col(Φ, i)-generic over L[z]. Let x ≤ WO∪ L[z][g]
be such that ||x || = i . As x ∧ α ⊂T x ⊕ z, Φ

+L[x⊕z]
1 ≤ Xi . However, Φ

+L[z]
1 ⊂

Φ
+L[x⊕z]
1 ⊂ Φ

+L[z][g]
1 , which is equal to Φ

+L[z]
1 , as Col(Φ, i) is smaller than ΦV

1 in

L[z]. Therefore Φ
+L[z]
1 = Φ

+L[x⊕z]
1 ≤ Xi , i.e., z ≤ D(Xi ) as desired. �

By ODS-determinacy we mean the statement that if A → ΦΦ is ODS , cf. Definition
5.42, then A is determined.

Theorem 12.19 (A. Kechris) Assume AD. Let S → O R. For an S-cone of reals x
we have

L[S, x] |= ODS-determinacy.

In particular, Φ
L[S,x]
1 is measurable in HODL[S,x]

S .

Proof Let us assume that there is no S-cone of reals x such that in L[S, x], all ODS-
sets of reals are determined. By Theorem 12.17 there is thus an S-cone C → ΦΦ such
that for every x ≤ C , in L[S, x] there is an non-determined ODL[S,x]

S -set of reals.

Define, for x ≤ C , x �→ Ax by letting Ax be the least ODL[S,x]
S -set of reals which

is not determined in L[S, x]. (“Least” in the sense of a well-ordering of the ODS-
sets, cf. the proof of Theorem 5.45) I.e., if G(Ax ) is the usual game with payoff
Ax , as defined in L[S, x], then GAx is not determined in L[S, x]. Notice that Ax

only depends on the S-constructibility degree of x , i.e., if L[S, x] = L[S, y], then
Ax = Ay .

Let G be the game in which I , II alternate playing natural numbers so that if

I n0 n2 . . .

II n1 n3 . . .

is a play of G, then I wins iff, setting x = (n4i : i < Φ), a = (n4i+2: i < Φ),
y = (n4i+1: i < Φ), and b = (n4i+3: i < Φ) (which we shall also refer to by saying
that I produces the reals x , a and II produces the reals y, b), then

a ⊕ b ≤ Ax⊕y .

Let us suppose that I has a winning strategy, α , in G. Let α ≤ L[S, z], where z is in
C . Let α ∧ be a strategy for I in GAz played in L[S, z] so that if II produces the real b,
and if α calls for I to produce the reals a, x in a play of G in which II plays b, z ⊕ b,
then α ∧ calls for I to produce the real a. Then for every b ≤ L[S, z], if a = α ∧ ∧ b,
in fact if a, x = α(b, z ⊕ b), then

a ⊕ b ≤ Ax⊕(z⊕b) = Az .

So α ∧ is a winning strategy for I in the game G(Az) played in L[S, z]. Contradiction!
We may argue similarily if II has a winning strategy in G.
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We have shown that for an S-cone of x , L[S, x] |= ODS-determinacy. Let x ≤ ΦΦ

be such that L[S, x] |= ODS-determinacy. Working inside L[S, x], we may then
define a filter μ on Φ

L[S,x]
1 as follows.

For reals x , let |x | = sup{||y||: y ≡T x ∗ y ≤ WO}. Let S = {|x |: x ≤ R}. Let
λ :Φ1 → S be the order isomorphism. Now if A → Φ1, then we put A ≤ μ iff

{x : |x | ≤ λ ⇒⇒ A}

contains an S-cone of reals. It is easy to verify that μ ∪ HODS witnesses that Φ1 is
measurable in HODS . �

12.2 Martin’s Theorem

Theorem 12.20 (D. A. Martin) Suppose that x# exists for every x ≤ ΦΦ. Then every
analytic set B → ΦΦ is determined. In fact, if x ≤ ΦΦ and x# exists, then every �1

1(x)

set B → ΦΦ is determined.

Proof Let us fix an analytic set B, set A = ΦΦ\B. Recall that a set A → ΦΦ is
coanalytic iff there is somemap s �→<s , where s ≤ <ΦΦ, such that for all s, t ≤ <ΦΦ

with s → t , <t is an order on lh(t) which extends <s , and for all x ≤ ΦΦ,

x ≤ A ←≡ <x=
⋃

s→x

<s is a well-ordering

(Cf. Lemma 7.8 and Problem 7.7).
We have to consider the game G(B),

I n0 n2 . . .

II n1 n3 . . .

in which I and II alternate playing integers n0, n1, . . ., and I wins iff x =
(n0, n1, . . .) ≤ B. We have to prove that G(B) is determined.

The key idea is to first consider the following auxiliary game, G∧(A).

I n0 n2 n4 . . .

II n1, β0 n3, β1 n5, β2 . . .

In this game, I and II also alternate playing integers n0, n1, . . .. In addition, II has
to play countable ordinals β0, β1, . . . such that for all k < Φ,

(
k + 1,<(n0,...,nk )

) λ∼= ({β0, . . . , βk},<) ,
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where λ(i) = βi for every i ⊂ k (and < is the natural order on ordinals). The first
player to disobey one of the rules loses. If the play is infinite, then II wins.

Notice that what II has to do is playing a witness to the fact that<x is a well-order,
where x = (n0, n1, . . .).

Notice also that G∧(A) is an open game in the space ΦΦ × ΦΦ1 [(which we
identify with Φ(Φ × Φ1)] and hence by Theorem 12.3, G∧(A) is determined in every
inner model which contains s �→<s .

Fix a real x such that the map s �→<s is in L[x]. E.g., let x be such that B is
�1

1(x).
Let us first assume that II has a winning strategy for G∧(A) in L[x], call it α .

Obviously, α ≤ L[x] is then also a winning strategy for G∧(A) for all plays in V
(not only the ones in L[x]). But then II will win G(B) in V by just following α and
hiding her “side moves” β0, β1, . . .. If x = (n0, n1, . . .) is the real produced at the
end of a play, then

(Φ,<x )
λ∼= ({β0, β1, β2, . . .},<),

where λ(i) = βi for all i < Φ, so that <x must be a well-order, and thus x ≤ A, i.e.
x /≤ B.

Let us now suppose that I has a winning strategy for G∧(A) in L[x], call it Σ .
Whenever β0, . . . , βk and β⇒

0, . . . , β
⇒
k are countable x-indiscernibles with

({β0, . . . , βk},<)
λ∼= ({β⇒

0, . . . , β
⇒
k},<),

where λ(βi ) = β⇒
i for every i ⊂ k, then

L[x] |= ν(Σ, β0, . . . , βk) ←≡ L[x] |= ν(Σ, β⇒
0, . . . , β

⇒
k)

for every L≤-formula ν, cf. Corollary 10.44 (2). In particular, then,

Σ(n0, n1, β0, . . . , n2k, n2k+1, βk) = Σ(n0, n1, β
⇒
0, . . . , n2k, n2k+1, β

⇒
k)

for all integers n0, n1, . . . , n2k+1.Wemay therefore define a strategy Σ for I in G(B)

as follows. Let

Σ(n0, n1, . . . , n2k, n2k+1) = Σ(n0, n1, β0, . . . , n2k, n2k+1, βk)

where β0, . . . , βk are countable x-indiscernibles with

(
k + 1,<(n0,...,nk )

) λ∼= ({β0, . . . , βk},<),

λ(i) = βi for i ⊂ k. We claim that Σ is a winning strategy for I in G(B).
Let us assume that this is not the case, so that there is a play of G(B) in which I

follows Σ and which produces x = (n0, n1, . . .) ≤ A. Then <x is a well-order and
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there is certainly a set {β0, β1, . . .} of countable x-indiscernibles such that

(Φ,<x )
λ∼= ({β0, β1, . . .},<),

where λ(i) = βi for i < Φ. I.e.,

(
k + 1,<(n0,...,nk )

) λ�(k+1)∼= ({β0, . . . , βk},<)

for all k < Φ, and this means that for every k < Φ,

n2k = Σ(n0, n1, β0, . . . , n2k−2, n2k−1, βk−1),

that is, n0, n1, β0, n2, n3, β1, . . . is a play of G∧(A) in which I follows Σ .
Let us nowdefine the tree T of attempts to find an infinite play ofG∧(A) inwhich I

follows Σ as follows. We set s ≤ T iff s = (n0, n1, β0, . . . , n2k−2, n2k−1, βk−1, n2k)

for some n0, n1, . . . , n2k ≤ Φ and β0, . . . , βk−1 ≤ Φ1 such that for all l ⊂ k,

n2l = Σ(n0, n1, β0, . . . , n2l−2, n2l−1, βl−1).

If s, t ≤T, then we let s ⊂ t iff s ∅ t . Notice that (T ;⊂) ≤ L[x].
Now (T ;⊂) is ill-founded in V by what was shown above. Hence (T ;⊂) is ill-

founded in L[x] as well by the absoluteness of well-foundedness, cf. Lemma 5.6.
Therefore, in L[x] there is a play of G∧(A) in which I follows Σ and loses. But
there cannot be such a play in L[x], as Σ is a winning strategy for I in G∧(A).
Contradiction! �

12.3 Harrington’s Theorem

We now aim to prove the converse to the previous theorem. We’ll first need the
following

Lemma 12.21 Let x ≤ ΦΦ. Suppose that there is a real y such that whenever β is
a countable ordinal with Jβ[x, y] |= ZFC−, then β is a cardinal of L[x]. Then x#

exists.

Proof Suppose not. Let y ≤ ΦΦ be such that whenever β is a countable ordinal
with Jβ[x, y] |= ZFC−, then β is a cardinal of L[x]. Let δ be a singular cardinal,
and let β be such that δ < β < δ+ and Jβ[x, y] |= ZFC−. As we assume that x#

does not exist, Weak Covering, Corollary 11.60, yields that β < δ+L[x] = δ+V .
Let λ : Jε [x, y] → Jδ+[x, y] be elementary, where ε is countable and β ≤ ran(λ).
Write β̄ = λ−1(β). Obviously, Jβ̄[x, y] |= ZFC−, but β̄ is not an L[x]-cardinal (β̄
is not even a cardinal in Jε [x]). Contradiction! �
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Any real code y for x# satisfies the hypothesis of Lemma 12.21, cf. Problem
12.11.

There is a proof of Lemma 12.21 which avoids the use of Corollary 11.60 and
which just makes use of the argument for Lemma 10.29. Cf. problem 12.9.

Theorem 12.22 (L. Harrington) If analytical determinacy holds then for every x ≤
ΦΦ, x# exists. In fact, if x ≤ ΦΦ and every �1

1(x) set B → ΦΦ is determined, then x#

exists.

Proof Forcing with Col(Φ, β) adds reals coding ordinals below β + 1. There is a
forcing which adds such reals more directly, namely Steel forcing which we shall
denote by TCol(Φ, β).

Let β be an infinite ordinal. We let TCol(Φ, β) consist of all (t, h) such that t is a
finite tree onΦ, i.e., t is a non-empty finite subset of<ΦΦ such that s ≤ t and n ⊂ lh(s)
implies s � n ≤ t , and h is a “ranking” of t in the following sense: h: t → β ∪ {∞}
is such that h(⇐) = ∞, and if s ≤ t , n < lh(s), and h(s � n) ≤ β, then h(s) ≤ β and
h(s) < h(s � n). For (t, h), (t ⇒, h⇒) ≤ TCol(Φ, β), we let (t ⇒, h⇒) ⊂ (t, h) iff t ⇒ ∅ t
and h⇒ ∅ h.

Let G be TCol(Φ, β)-generic over V , and set

{
T = ⋃{t : ∼h(t, h) ≤ G} and
H = ⋃{h: ∼t (t, h) ≤ G}. (12.1)

By easy density arguments, T must be an infinite tree on Φ, and H : T → β ∪{∞} is
surjective. For s ≤ T , write T � s = {s⇒ ≤ ΦΦ: sξs⇒ ≤ T }. Straightforward density
arguments also yield that T � s is a well-founded tree on Φ iff H(s) ≤ β, and if
H(s) ≤ β, then H(s) is the rank of ⇐ in T � s (i.e., the rank of s in T ). If ε < β

and H(s) = ε, then T � s “codes” ε in the sense that T � s, ordered by ∅, is a
well-founded relation of rank ε.

If (t, h) ≤ TCol(Φ, β) and ζ ⊂ β, then we may construe (t, h) as an element of
TCol(Φ, ζ) by identifying ordinals in [ζ, β) with ∞. We define (t, h)|ζ as (t, h⇒),
where, for s ≤ t , h⇒(s) = h(s) if h(s) ≤ ζ and h⇒(s) = ∞ if h(s) /≤ ζ .

The following combinational fact will be crucial for later purposes.

Claim 12.23 Let Φ ⊂ ζ < ζ +Φ ⊂ β, β⇒, and let (t, h) ≤ TCol(Φ, β) and (t ⇒, h⇒) ≤
TCol(Φ, β⇒) be such that

(t, h)|ζ + Φ = (t ⇒, h⇒)|ζ + Φ.

Let (u, g) ⊂ (t, h) in TCol(Φ, β). Then there is (u⇒, g⇒) ⊂ (t ⇒, h⇒) in TCol(Φ, β⇒)
such that

(u, g)|ζ = (u⇒, g⇒)|ζ.

Proof The hypothesis implies that t ⇒ = t . Set u⇒ = u. We now define g⇒. Set u∧ =
t ∪ {s ≤ u\t : g(s) ≤ ζ}, and let g∧ = h⇒ ∪ g � {s ≤ u\t : g(s) ≤ ζ}. We are forced to
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let g⇒ � u∧ = g∧. For s ≤ u \ u∧, we let g⇒(s) = ζ + k, where k < Φ is the rank of ⇐
in the tree u � s = {s⇒: sξs⇒ ≤ u} (i.e., the rank of s in u).

Let s ≤ u and n < lh(s). We need to see that if g⇒(s � n) ≤ β⇒, then g⇒(s) <

g⇒(s � n). This is clear if s � n and s are both in t or both in {s ≤ u\t : g(s) ≤
ζ}. If s � n ≤ t and s ≤ u\t with g(s) ≤ ζ , then g⇒(s) = g∧(s) = g(s) and
h(s � n) = g(s � n) > g(s). By (t, h)|ζ + Φ = (t ⇒, h⇒)|ζ + Φ, we must then have
g⇒(s � n) = g∧(s � n) = h⇒(s � n) > g⇒(s).

Finally let s � n ≤ u\t and hence s ≤ u\t . If g(s � n) ≤ ζ , then clearly g(s) ≤ ζ ,
too, so g⇒(s) = g∧(s) = g(s) < g(s � n) = g∧(s � n) = g⇒(s � n). If g(s � n) /≤ ζ

and g(s) ≤ ζ , then g⇒(s � n) ≤ [ζ, ζ + Φ) and g⇒(s) = g∧(s) = g(s), so clearly
g⇒(s) < g⇒(s � n). If g(s � n) /≤ ζ and g(s) /≤ ζ , then g⇒(s � n) = ζ + k and
g⇒(s) = ζ + k⇒, where k > k⇒, so g⇒(s) < g⇒(s � n). �

We shall now be interested in forcing with TCol(Φ, β) over (initial segments of)
L[x], where x is a real. If G is TCol(Φ, β)-generic over L[x] and T and H are
defined from G as in (12.1), then truth about initial segments of L[x][T ] can be
decided by the right “restrictions” (t, h)|ζ of elements (t, h) from G. In order to
formulate this precisely, we need to rank sentences expressing truths about initial
segments of L[x][T ] as follows.

Recall (cf. p. 70) that the rudx,T functions are simple in the sense that if
ν(v0, . . . , vk−1) is a �0-formula (in the language for L[x, T ]) and f0, . . . , fk−1 are
rudx,T functions, then there is a �0-formula ν⇒ (again in the language for L[x, T ])
such that

ν( f0(x0), . . . , fk−1(xk−1)) →̇ ν⇒(x0, . . . , xk−1)

holds true over all transitive rudx,T -closed models which contain x0, . . . , xk−1. In
particular, wemay associate to each pair f, g of rudx,T functions a�0-formulaν⇒ and
hence a �Φ-formula ν∧ such that for all limit ordinals β and for all x, y ≤ Jβ[x, T ],

f (Jβ[x, T ], x) ≤ g(Jβ[x, T ], y) ←≡ Jβ+Φ[x, T ] |= ν⇒(Jβ[x, T ], x, y)
←≡ Jβ[x, T ] |= ν∧(x, y).

We shall write ν( f, g) for ν∧ in what follows. The choice of ν⇒ and ν∧ ≡ ν( f, g)

can in fact be made uniformly in x, T .
Let us now pretend that the language for L[x, T ] has function symbols for rudx,T

functions available; we shall in fact confuse a given rudx,T function f with the
function symbol denoting it. We then define “terms of rank β” recursively as follows.
A term of rank β is an expression of the form

f (Jβ[x, T ], y),

where f is (the function symbol for) a rudx,T function, y is a vector of terms of rank
< β, and Jβ[x, T ] stands for the term denoting Jβ[x, T ]. Inductively, every element
of Jβ+Φ[x, T ] is thus denoted by a term of rank β.
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The following Claim will be crucial.

Claim 12.24 Let β ∩ Φ be a limit ordinal, let ν be a formula of complexity n ≤ Φ

(in the language for L[x, T ]), and let α1, . . . , αk be terms of rank < β. If ε ∩
Φ + (β + 2n) · Φ, then for all (t, h) ≤ TCol(Φ, ε),

(t, h) �TCol(Φ,ε)
L[x] Jβ[x, T ] |= ν(α1, . . . , αk) ←≡

(t, h)|Φ + (β + 2n) · Φ �TCol(Φ,Φ+(β+2n)·Φ)
L[x] Jβ[x, T ] |= ν(α1, . . . , αk).

Proof The proof is, of course, by induction on β + n.
Let us first assume n = 0, i.e. that ν is an atomic formula. Let us assume that

α1 ≡ f (Jε [x, T ], y) and α2 ≡ g(Jε [x, T ], z), where ε < β, and that ν(α1, α2) ≡
f (Jε [x, T ], y) ≤ g(Jε [x, T ], z). Then for ζ ∩ Φ + β · Φ and (t, h) ≤ TCol(Φ, ζ),

(t, h) �TCol(Φ,ζ)
L[x] Jβ[x, T ] |= ν(α1, α2) ←≡

(t, h) �TCol(Φ,ζ)
L[x] Jε+Φ[x, T ] |= ν(α1, α2) ←≡

(t, h) �TCol(Φ,ζ)
L[x] Jε [x, T ] |= ν( f, g)( y, z).

Therefore, the desired statement easily follows from the inductive hypothesis.
Now let n > 0. Let us assume thatν ≡ ∼v0Δ . The casesν ≡ ¬Δ andν ≡ Δ1∗Δ2

are similar and easier.
Let us assume that

(t, h) �TCol(Φ,ε)
L[x] Jβ[x, T ] |= ∼v0Δ(v0, α1, . . . , αk).

Let (t ⇒, h⇒) ⊂ (t, h)|Φ + (β + 2n) · Φ in TCol(Φ, Φ + (β + 2n)Φ). By Claim 12.23,
there is (t ⇒, h⇒⇒) ⊂ (t, h) in TCol(Φ, ε) such that (t ⇒, h⇒)|Φ + (β + 2n − 1) · Φ =
(t ⇒, h⇒⇒)|Φ + (β + 2n − 1) · Φ. Let (t∧, h∧) ⊂ (t ⇒, h⇒⇒) in TCol(Φ, ε) be such that

(t∧, h∧) �TCol(Φ,ε)
L[x] Jβ[x, T ] |= Δ(α0, α1, . . . , αk)

for some term α0 of rank < β. Let (t∧, h∧∧) ⊂ (t ⇒, h⇒) in TCol(Φ, Φ + (β + 2n)Φ)

such that (t∧, h∧∧)|Φ + (β + 2n − 2) · Φ = (t∧, h∧)|Φ + (β + 2n − 2) · Φ, which
may again be chosen by Claim 12.23. By the induction hypothesis,

(t∧, h∧∧) �TCol(Φ,Φ+(β+2n)·Φ)
L[x] Jβ[x, T ] |= Δ(α0, α1, . . . , αk).

We have shown that the set of (t, h) ⊂ (t, h)|Φ + (β + 2n) · Φ in TCol(Φ, Φ + (β +
2n) · Φ) such that

(t, h) �TCol(Φ,Φ+(β+2n)·Φ)
L[x] Jβ[x, T ] |= ν(α1, . . . , αk).

is dense below (t, h)|Φ + (β + 2n) · Φ, so that in fact
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(t, h)|Φ + (β + 2n) · Φ �TCol(Φ,Φ+(β+2n)·Φ)
L[x] Jβ[x, T ] |= ν(α1, . . . , αk).

The converse direction is shown in exactly the same fashion. �
Let us now assume analytic determinacy.

Let us fix x ≤ ΦΦ and a natural bijection e:Φ → <ΦΦ. Let us consider the
following game G.

I n0 n2 . . .

II n1 n3 . . .

Let us write z0 = (n0, n2, . . . ) and z1 = (n1, n3, . . . ). We say that player II wins iff
the following holds true: if z0 ≤ ΦΦ codes a well-founded tree T , i.e.,

T = {e(n2i ): i < Φ}

is a well-founded tree on Φ, then z1 codes a model (Φ; E) of ZFC−+ “V = L[x],”
say E = {(k, l): z1(≥k, l〉) = 1},2 such that ||T || is contained in the transitive collapse
of the well-founded part of (Φ; E). It is straightforward to verify that the payoff set
for G is analytic, in fact �1

1(x), so that G is determined.

Claim 12.25 I does not have a winning strategy in G.

Proof Suppose that Σ is a winning strategy for I . Let D∧ be the set of all real codes
for well-founded trees, and let

D = {Σ ∧ z1: z1 ≤ ΦΦ}.

Then D is an analytic set, D → D∧. It is easy to define a continuous function
f : ΦΦ → ΦΦ such that for all z ≤ ΦΦ,

z ≤ WO ←≡ f (z) ≤ D∧.

By the Boundedness Lemma 7.12 there is some β < Φ1 with

{||z||: f (z) ≤ D} → β,

i.e.,
{||T ||: ∼z1 ≤ ΦΦ(Σ ∧ z1 codes T )} → β.

But then II can easily defeat Σ by playing a code for a transitive model of ZFC−+
“V = L[x]” which contains β. �

By Claim 12.25 and �1
1(x)-determinacy, we may let α be a winning strategy for

player II in G. By Lemma 12.21, the following will produce x#.

2 Here and in what follows we use the notation ≥·, ·〉 from p. 33.
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Claim 12.26 Let β be a countable ordinal such that Jβ[x, α ] |= ZFC−. Then β is
a cardinal of L[x]. In fact, if β is countable and x ⊕ α -admissible (cf. p. 88), then β

is a cardinal of L[x].
Proof Let δ < β be an infinite cardinal of L[x]. It suffices to verify that if b →
δ, b ≤ L[x], then b ≤ Jβ[x, α ] (cf. Problem 12.10). So let us fix some such b, and
let b ≤ Jθ[x], where without loss of generality Φ1 > θ ∩ β. Let Θ > θ be such that
JΘ [x, α ] |= ZFC− andΘ is countable. LetG beTCol(Φ, θ+1)-generic over JΘ [x, α ],
and let T and H be given by G as in (12.1). Obviously, there is a real z0 in Jβ[x, α, T ]
(even in JΦ+Φ[x, α, T ]) which codes a well-founded tree S such that ||S|| = θ. E.g.,
let S = T � s, where s ≤ T with H(s) = θ. Therefore, z0 ∧ α ≤ Jβ[x, α, T ] (in
fact ≤ JΦ+Φ[x, α, T ]) codes a model (Φ; E) of ZFC− + V = L[x] such that θ is
contained in the transitive collapse of the well-founded part of (Φ; E). Let

λ : (Jε [x]; ≤) ∼= wfp(Φ; E)

be the transitive collapse of thewell-founded part wfp(Φ; E) of (Φ; E), so thatε ∩ θ.
By E ≤ JΦ+Φ[x, α, T ], it is easy to verify inductively that λ � Jε̄ [x] is uniformly

�
Jε̄ [x,α,T ]
1 ({E}) and λ � Jε̄ [x] ≤ Jε̄+Φ[x, α, T ] for all ε̄ ⊂ ε, so that in particular

λ � Jδ [x] ≤ Jδ+Φ[x, α, T ]. (12.2)

As b ≤ Jθ[x] → Jε [x], there is some n0 ≤ Φ such that for all ζ < δ ,

ζ ≤ b ←≡ (Φ; E) |= “m ≤ n0 ,” where m = (λ � Jδ [x])(ζ). (12.3)

By (12.2), there is some formula ν and terms α0 and α1 for E and λ � Jδ [x],
respectively, where α0 and α1 are of rank ⊂ δ and such that

∈ζ < δ(ζ ≤ b ←≡ Jδ+Φ[x, α, T ] |= ν(ζ, α0, α1)). (12.4)

Let (t, h) ≤ TCol(Φ, θ + 1) force (12.4) to hold true, i.e,

(t, h) �TCol(Φ,θ+1)
L[x,α ] ∈ ζ < ⊆δ(ζ ≤ ⊆b →̇ J⊆δ+Φ[x, α, T ] |= ν(ζ, α0, α1)),

which may be rewritten as saying that for all ζ < δ ,

ζ ≤ b ←≡ (t, h) �TCol(Φ,θ+1)
L[x,α ] J⊆δ+Φ[x, α, T ] |= ν(ζ, α0, α1). (12.5)

The point is now that because α0 and α1 are of rank⊂ δ , letting ε = (δ +Φ ·2) ·Φ =
Φ + (δ + Φ · 2) · Φ, we may use Claim 12.24 to rewrite (12.5) further to say that for
every ζ < δ ,

ζ ≤ b ←≡ (t, h)|ε �TCol(Φ,ε)
L[x,α ] J⊆δ+Φ[x, α, T ] |= ν(ζ, α0, α1) (12.6)
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But we may replace L[x, α ] by Jβ[x, α ] here (we could in fact replace it by
Jδ+Φ·2[x, α ]), so that we may therefore define b over Jβ[x, α ] as follows:

b = {ζ < δ: (t, h)|ε �TCol(Φ,ε)
Jβ[x,α ] Jδ+Φ[x, α, T ] |= ν( ⊆ζ, α0, α1)}.

Therefore b ≤ Jβ[α ] as desired. �

We may now add the following to our list of equivalences to “x# exists,” cf.
Theorem 11.56.

Corollary 12.27 The following statements are equivalent.

(1) Every analytic A → ΦΦ is determined.
(2) For every x ≤ ΦΦ, x# exists.

The paper [8] gives information on the Axiom of Determinacy. Cf. also [25].

12.4 Problems

12.1 Assume AD. Show that if (xi : i < ψ) is a sequence of pairwise different reals,
then ψ < Φ1 [Hint. Let U witness that Φ1 is measurable, cf. Theorem 12.18
(b). Consider L[U, (xi : i < ψ)], cf. proof of Problem 10.3 (a)].

12.2 Show (in ZF) that there is some A → Φ(Φ1) which is not determined [Hint. If
AD holds, then ask for II to play some x ≤ ΦΦ with ||x || = β in response to
I playing β < Φ1].

12.3. Assume AD. Show that for every set A, OD{A} ∪ ΦΦ is countable. Fixing A,
show that there is no f : ΦΦ → ΦΦ such that f (x) ≤ ΦΦ\OD{x,A} for all
x ≤ ΦΦ and f ≤ ODΦΦ∪{A}. Conclude that HODΦΦ∪{A} |= “AD and there
is some (Ax : x ≤ ΦΦ) with ⇐ ∞= Ax → ΦΦ for all x ≤ ΦΦ with no choice
function.”

12.4. AssumeZF plus “x# exists for every real x .” Show that there is some f : ΦΦ →
ΦΦ such that f (x) ≤ ΦΦ\L[x] for all x ≤ ΦΦ and f ≤ OD. (In fact, we
may pick f to be �1

3 , cf. Problem 10.7.) Show also that there is a function
f : ΦΦ → HC such that for every x ≤ ΦΦ, f (x) is aC-generic filter over L[x]
(Hint. Use x# to enumerate the dense sets of L[x]).

12.5. For A, B → ΦΦ, write A ⊂Wadge B iff there is some continuous f : ΦΦ → ΦΦ

such that for all x ≤ ΦΦ, x ≤ A ←≡ f (x) ≤ B, or for all x ≤ ΦΦ,
x ≤ A ←≡ f (x) /≤ B. Assume AD.

(a) (Wadge) Show for all A, B → ΦΦ, A ⊂Wadge B or B ⊂Wadge A. [Hint.
Let GWadge(A, B) be the game so that if I plays x and II plays y, then I
wins iff x ≤ B ←≡ y ≤ A]. Show that ⊂Wadge is reflexive and transitive,
so that A ∼Wadge B iff A ⊂Wadge B ∗ B ⊂Wadge A is an equivalence
relation. Show that ⊂Wadge is not symmetric.
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(b) (Martin, Monk)Show that⊂Wadge iswell-founded [Hint. Otherwise there
are An → ΦΦ, n < Φ, such that for all n < Φ, I has winning strategies Σ 0

n
and Σ 1

n for GWadge(An+1, An) and GWadge(
ΦΦ\An+1, An), respectively.

For z ≤ Φ2, we get (xz
n : n < Φ) such that xz

n = Σ
z(n)
n ∧ xz

n+1 for all
n < Φ. Let z, z⇒ ≤ Φ2, and n < Φ be such that for all m, z(m) = z⇒(m)

iff m ∞= n. Then xz
n+1 = xz⇒

n+1, and xz
n ≤ An ←≡ xz⇒

n /≤ An , . . .,

xz
0 ≤ A0 ←≡ xz⇒

0 /≤ A0. Hence {z ≤ Φ2: xz
0 ≤ A0} is a flip set, cf.

Problem 8.3].
(c) Show that for all A → ΦΦ there is some J (A) → ΦΦ with A <Wadge J (A)

[Hint. For x ≤ ΦΦ write fx for the “canonical” continuous function given
by x . Let x ≤ B iff fx (x) ≤ A, and set J (A) = {x⊕y: x ≤ B and y /≤ B}].

(d) Let Θ = sup({β: ∼ surjective f : ΦΦ → β}). Show that || <Wadge || = Θ

[Hint. To show that || <Wadge || ∩ Θ , let f : ΦΦ → β be surjective, and let
(Aν : ν < β) be such that if ν < β, then Aν = J ({x ⊕ y: f (x) < ν ∗ y ≤
A f (x)}), where J is as in (c)]. Let X = ΦΦ. If A → Φ(ΦΦ), then in a run
of the game G(A) players I and II alternate playing real numbers, i.e.,
elements of ΦΦ. The Axiom of Real Determinacy, abbreviated by ADR,
states that G(A) is determined for every A → Φ(ΦΦ).

12.6. Assume ADR.

(a) Show that for all (Ax : x ≤ ΦΦ) such that ⇐ ∞= Ax → ΦΦ for every x ≤ ΦΦ,
there is a choice function.

(b) Show that there is a < ⊃1-closed ultrafilter U on [ΦΦ]⊃0 such that every
member of U is uncountable, {a ≤ [ΦΦ]⊃0 : x ≤ a} ≤ U for every x ≤ ΦΦ,
and U is normal in the following sense: if (Ax : x ≤ ΦΦ) is such that Ax ≤ U
for every x ≤ ΦΦ, then there is some A ≤ U such that whenever x ≤ a ≤ A,
then a ≤ Ax (Compare Problem 4.30) [Hint. For A → [ΦΦ]⊃0 , let A ≤ U iff I
has a winning strategy in G({ f ≤ Φ(ΦΦ): ran( f ) ≤ A}). To show normality,
argue as follows. Let (Ax : x ≤ ΦΦ) be such that Ax ≤ U for every x ≤ ΦΦ.
Let Σx be a winning strategy for I in the game corresponding to Ax , x ≤ ΦΦ.
Let Σ be a strategy for I such that if

I x0 x2 . . .

II x1 x3 . . .

is a play, then for each n < Φ there is an infinite Xn → Φ\(n + 1), say
Xn = {m(n, 0) < m(n, 1) < . . .}, such that xm(n,i) is according to Σxn in
a play where so far I played xm(n,0), . . ., xm(n,i−1), and II played the first i
many reals from x0, x1, . . . that were not played by I ].
The Solovay sequence (Θi : i ⊂ Ω) is defined as follows. Let Θ be as in
Problem 12.5 (d). Let Θ0 = sup({β: ∼ surjective f : ΦΦ → β, f ≤ ODΦΦ}).
If Θi has been defined, then set Ω = i provided that Θi = Θ; otherwise
let Θi+1 = sup({β: ∼ surjective f : ΦΦ → β, f ≤ ODΦΦ∪{A}}) for some (all)
A → ΦΦ with ||A||<Wadge = Θi . If ρ > 0 is a limit ordinal and Θi has been
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defined for all i < ρ, then set Θρ = supi<ρ Θi . We call Ω the length of the
Solovay sequence.

12.7. Assume AD.

(a) Show that if A → ΦΦ is such that ||A||<Wadge < Θ0, then A ≤ ODΦΦ [Hint.
Writing β = ||A||<Wadge , pick an ODR surjection f : ΦΦ → β + 1, and let
(Aν : ν ⊂ β) be as in Problem 12.5 (d). Then ||Aβ||<Wadge ∩ β and Aβ ≤
ODΦΦ, which yields A ≤ ODΦΦ]. Conclude that if Θ = Θ0, then P(ΦΦ) →
HODΦΦ.

(b) Show also if A → ΦΦ is such that ||A||<Wadge < Θi+1, then A ≤ ODΦΦ∪{B}
for some (all) B → ΦΦ with ||B||<Wadge = Θi . Conclude that if the length of
the Solovay sequence is a successor ordinal, then there is some B → ΦΦ

withP(ΦΦ) → HODΦΦ∪{B}.
12.8. Show that if ADR holds, then the length of the Solovay sequence is a limit

ordinal and there is no B → ΦΦ with P(ΦΦ) → HODΦΦ∪{B}. Conclude that
AD does not imply ADR [Hint. Use Problems 12.3 and 12.7 (b)].

12.9. Show Lemma 12.21 by using the argument for Lemma 10.29.

12.10. (a) Show that there is a transitive model M of ZFC− with (M ∪ L ∪P(Φ))\
Jβ ∞= ⇐, where β = M ∪OR, so that Jβ = L M (Hint: Let β be countable
in L such that Jβ |= ZFC− and pick G ≤ L which isC-generic over Jβ).

(b) Show that if M is admissible with β = M ∪OR andP(δ) ∪ L → M for
every δ < β, then β is a cardinal in L [Hint: Let ε < δ+L , let f : δ → Jε

be bijective, f ≤ L , and let nEm iff f (n) ≤ f (m). Then E ≤ M , and
hence Jε ≤ M by Problem 5.28].

12.11. Suppose that 0# exists, and let x be a real code for 0#. Let δ be an infinite
L-cardinal. Show that if β > δ is x-admissible, then P(δ) ∪ L → Jβ[x]
(Hint. The δ th iterate of 0# exists in Jβ[x], cf. Problem 5.28). Conclude that
every x-admissible is a cardinal of L . In fact, every x-admissible is a Silver
indiscernible.

12.12. (A. Mathias) Let M be a transitive model of ZFC such that M |= “U is a
selective ultrafilter on Φ.” LetM be (MU )M , i.e.,Mathias forcing for U , as
being defined in M , cf. p. 176. Let x ≤ [Φ]Φ be such that x\X is finite for
every X ≤ U , and let

G = {(s, X) ≤ M: ∼n < Φ s = x ∪ n}

(cf. Definition 10.10.). Show that G isM-generic over M (This is the converse
to ProblemProblem9.9.) [Hint. Use Problem9.3 (b) and the proof of Theorem
10.11, cf. p. 274 ff].

12.13. (A. Mathias) Show that in the model of Theorem 8.30, every uncountable
A → [Φ]Φ is Ramsey, cf. Definition 8.17 (Hint. Imitate the proof of Lemma
8.17, replacing C byMathias forcing for some selective ultrafilter on Φ, cf.
Problem 9.4. Then use Problem 12.12).



Chapter 13
Projective Determinacy

We shall now use large cardinals to prove stronger forms of determinacy. We shall
always reduce the determinacy of a complicated game in ΦΦ to the determinacy
of a simple (open or closed) game in a more complicated space as in the proof of
Martin’s Theorem 12.20.

13.1 Embedding Normal Forms

Definition 13.1 Let A → ΦΦ. We say that A has an embedding normal form,

(Ms, Σs,t : s → t ≤ <ΦΦ),

iff M∼ = V , each Ms is an inner model, each Σs,t : Ms ∈ Mt is an elementary
embedding, Σt,r ◦ Σs,t = Σs,r whenever s → t → r , and for each x ≤ ΦΦ,

x ≤ A ∧⊃ dir lim(Ms, Σs,t : s → t → x) is well-founded.

Such an embedding normal form is α-closed, where α is an infinite cardinal, iff
α Ms → Ms for each s ≤ <ΦΦ.

Even though the following result had already been implicit in Martin’s proof of
Theorem 12.20 (cf. also [26]), it was first explicitly isolated and verified in [43].

Theorem 13.2 (K.Windßus) Let A → ΦΦ. If A has a 2⊂0 -closed embedding normal
form, then A is determined.

Proof Let (Ms, Σs,t : s → t ≤ <ΦΦ) be a 2⊂0 -closed embedding normal form for A.
For x ≤ ΦΦ, we shall write

(Mx , (Σs,x : s → x)) = dir lim(Ms, Σs,t : s → t → x).

R. Schindler, Set Theory, Universitext, DOI: 10.1007/978-3-319-06725-4_13, 303
© Springer International Publishing Switzerland 2014
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We first construct a natural tree T , which we call “the” Windßus tree for A, such
that A = p[T ] as follows. We first define a sequence (βs : s ≤ <ΦΦ). If x /≤ A, so
that Mx is ill–founded, we pick a sequence (βn

x : n < Φ) of ordinals witnessing that
Mx is ill–founded in the sense that

Σx�n,x�(n+1)(β
n
x ) > βn+1

x (13.1)

for all n < Φ. If x ≤ A, then we let βn
x = 0 for all n < Φ. We then let, for s ≤ <ΦΦ,

βs : ΦΦ ∈ OR be defined by

βs(x) =
{

β
lh(s)
x if x /≤A ⇐ s = x � lh(s)

0 otherwise.

Let ε be an ordinal which is bigger than all βn
x .

We define T by setting (s, f ) ≤ T iff s ≤ <ΦΦ, f = ( fi : i < lh(s)), where each
fi is a function from ΦΦ to ε, and for all i + 1 < lh(s) and for all x ≤ ΦΦ, if x /≤
A⇐s � i +1 = x � i +1, then fi+1(x) < fi (x), and if x ≤ A⇒s � i +1 ∪= x � i +1,
then fi+1(x) = 0. The order on T is reverse inclusion.

Now if ( fi : i < Φ) witnesses that x ≤ p[T ], then x ≤ A, because otherwise
fi+1(x) < fi (x) for each i < Φ. Hence p[T ] → A. On the other hand, if x ≤ A,
then we may define a witness ( fi : i < Φ) to the fact that x ≤ p[T ] as follows: Let
x ∞ ≤ ΦΦ. If x ∞ /≤ A, then let k < Φ be maximal with x ∞ � k = x � k and define
fi (x ∞) = k + 1 − i for i ∩ k and fi (x ∞) = 0 for i > k. If x ∞ ≤ A, then define
fi (x ∞) = 0 for all i < Φ. This shows A → p[T ], and hence A = p[T ].
Let us now consider the following game, called G∅(A):

I n0, f0 n2, f1 . . .

I I n1 n3 . . .

Here, each ni is a natural number, and each fi is a function from ΦΦ to ε. I wins iff
((ni : i < Φ), ( fi : i < Φ)) ≤ [T ]. The payoff set is thus a closed subset of

ΦΦ × Φ((
ΦΦ)ε),

and is hence determined by Theorem 12.3.
Let us first suppose I to have a winning strategy ξ ∅ for G∅(A). Then a winning

strategyξ for I inG(A) is obtained by playing as according toξ ∅, but hiding the “side
moves” fi . Recall that ((ni : i < Φ), ( fi : i < Φ)) ≤ [T ] proves that (ni : i < Φ) ≤ A,
so that ξ is indeed a winning strategy for I .

Now let us suppose I I to have a winning strategy δ ∅ in G∅(A). We aim to produce
a winning strategy δ for I I for G(A).

Let k < Φ, and let
I n0 n2 . . . n2k

I I n1 n3 . . .
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be a position in G(A), so that it’s II’s turn to play. Notice that, because each Ms is
2⊂0–closed, βs ≤ Ms for every s ≤ <ΦΦ. Moreover, setting s = (n0, . . . , nk),

((n0, . . . , nk), (Σ∼,s�k(β∼), . . . , Σs�k−1,s�k(βs�k−1), βs�k)) ≤ Σ∼,s�k(T ) (13.2)

by the construction of the βs�i and of T . Equation (13.2) holds true because if x /≤
A⇐s = x � lh(s), then (13.1) yields that for all i < lh(s), βs�i+1(x) < Σs�i,s�i+1(x),
and thus Σs�(i+1),s(β

i+1
x ) = Σs�i+1,s(βs�(i+1))(x) < Σs�i+1,s ◦Σs�i,s�i+1(βs�i )(x) =

Σs�i,s(βs�i )(x) = Σs�i,s(β
i
x ). Moreover, if x ≤ A or s ∪= x � lh(s), then

Σs�(i+1)s(βs�(i+1))(x) = 0.
We may therefore define δ by letting δ((n0, . . . , n2k)) be the unique n < Φ such

that
Ms |= n = Σ∼,s(δ

∅)((n0, Σ∼,s(β∼), n1, . . . , n2k, βs)).

Suppose δ not to be a winning strategy for I I for G(A). There is then a play
(n0, n1, . . .) ofG(A) in which I I follows δ , but I wins, i.e., setting x = (n0, n1, . . .),
x ≤ A. In particular, Mx is well–founded (i.e., transitive), and by the elementarity
of Σ∼,x ,

Mx |= Σ∼,x (δ
∅)is a winning strategy

for I I in Σ∼,x (G∅(A)).

By (13.1) and the elementarity of Σ∼,x , in V there is a play of Σ∼,x (G∅(A)) in which
I I follows Σ∼,x (δ

∅) and in which I I loses, namely

I n0, Σ∼,x (β∼) n2, Σx�1,x (βx�1) . . .

I I n1 . . .

We may now exploit the absoluteness of well–foundedness between V and Mx , cf.
Lemma 5.6, and argue exactly as in the second last paragraph of the proof of Theorem
12.20 to deduce that there is hence a play of Σ∼,x (G∅(A)) in Mx in which I I follows
Σ∼,x (δ

∅) and in which I I looses. But this is a contradiction! �

It is not hard to show that if there is a measurable cardinal, then every set of
reals has an embedding normal form, cf. Problem 13.1. It is much harder to get
embedding normal forms which are sufficiently closed. The proof of the following
result is similar to the proof of Theorem 12.20.

Theorem 13.3 Let α be a measurable cardinal, and let A → ΦΦ be coanalytic. Then
A has a α–closed embedding normal form.

Proof Recall again that a set A → ΦΦ is coanalytic iff there is some map s �∈<s ,
where s ≤ <ΦΦ, such that for all s, t ≤ <ΦΦ with s → t ,<t is an order on lh(t)which
extends <s , and for all x ≤ ΦΦ,

x ≤ A ∧⊃ <x=
⋃

s→x

<s is a well–ordering. (13.3)
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(Cf. Lemma 7.8 and Problem 7.7.)
Let s � t , where lh(t) = lh(s) + 1. Write n = lh(s). Suppose that n is the kth

element of n + 1 = {0, . . . , n} according to <t , i.e.,

m0 <t . . . <t mk−1 <t n <t mk <t . . . <t mn−1,

where ml is the lth element of n = {0, . . . , n − 1} according to <s , l < n. We then
define ρ(s, t): n ∈ n +1 by ρ(s, t)(l) = l for l < k and ρ(s, t)(l) = l +1 for l ∗ k,
l < n.

If s � t , where lh(t) = lh(s) + m, then we define ρ(s, t): lh(s) ∈ lh(t) by

ρ(s, t) = ρ(t � lh(t) − 1, t) ◦ . . . ◦ ρ(s, t � lh(s) + 1).

The map ρ(s, t) then tells us how the lh(s), lh(s) + 1, . . . , lh(t) − 1 sit inside
0, 1, . . . , lh(t) − 1 according to <t .

Let us now define an embedding normal form (Ms, Σst : s → t ≤ <ΦΦ) for A as
follows. Let U be a measure on α , and let

(Mβ, Σβε : β ∩ ε ≤ OR)

be the (linear) iteration of V = M0 given by U . Let us write Uβ = Σ0β(U ) and
αβ = Σ0β(α), where β ≤ OR. We set Ms = Mlh(s) and

Σs,t = Σ
ρ(s,t)
lh(s)lh(t),

where Σ
ρ(s,t)
lh(s)lh(t) is the shift map given by ρ(s, t), cf. the Shift Lemma 10.4. For

x ≤ ΦΦ, let
(Mx , (Σs,x : s → x)) = dir lim(Ms, Σs,t : s → t → x).

Notice that {Σsx (αn): n < Φ, s → x, lh(s) = n + 1}, ordered by the ≤–relation of
Mx , is always isomorphic to Φ, ordered by <x . By (13.3), this readily implies that if
x /≤ A, i.e., if <x is ill–founded, then Mx is ill–founded.

But it also implies that if x ≤ A, i.e.,<x is well–founded, then Mx is well–founded
as follows. Let x ≤ A and let χ = otp(<x ). We may define maps ρ(s, x): lh(s) ∈ χ

by setting
ρ(s, x)(n) = ||n||<x

for n < lh(s), s → x . Notice that ρ(s, x) = ρ(t, x) � lh(s) whenever s → t → x . By
Lemma 10.4, we have, for s → x ,

Σ
ρ(s,x)

lh(s),χ : Ms ∈ Mχ ,

where for s → t → x ,
Σ

ρ(t,x)

lh(t),χ ◦ Σ
ρ(s,t)
lh(s),lh(t) = Σ

ρ(s,x)

lh(s),χ .
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Therefore, we may define an elementary embedding k: Mx ∈ Mχ by setting

k(Σsx (y)) = Σ
ρ(s,x)

lh(s),χ (y)

for y ≤ Ms .
As α Mn → Mn for all n < Φ by Lemma 4.63, we have thus shown that A has a

α–closed embedding normal form. �

Theorems 13.2 and 13.3 reprove Martin’s Theorem 12.20.
We shall now turn towards proving Projective Determinacy.

Definition 13.4 Projective Determinacy,PD, is the statement that all projective sub-
sets of ΦΦ are determined.

The key new ingredients to show that Projective Determinacy holds true are iteration
trees which are produced byWoodin cardinals.

Definition 13.5 Let A → ΦΦ, and let

E = (Ms, Σst : s → t ≤ <ΦΦ)

be an embedding normal form for A. If β is an ordinal, then we say that the additivity
of E is bigger than β iff Σst � (β + 1) = id for all s, t ≤ <ΦΦ, s � t .

13.2 The Martin–Steel Theorem

The following seminal result was produced in [26].

Theorem 13.6 (D. A. Martin, J. Steel) Let σ be a Woodin cardinal, let B → ΦΦ,
and suppose that B has a 2⊂0–closed embedding normal form whose additivity is
bigger than σ. Then for every β < σ,

{x ≤ ΦΦ : ∀y ≤ ΦΦ x ⊕ y /≤ B}

has a 2⊂0–closed embedding normal form whose additivity is bigger than β.

Theorems 13.2 and 13.3 immediately give the following.

Corollary 13.7 Let n < Φ, and suppose that there is a measurable cardinal above
n Woodin cardinals. Then every τ

∼

1

n+1
subset of ΦΦ is determined. In particular, if

there are infinitely many Woodin cardinals, then Projective Determinacy holds.

The proofs of Theorems 12.11, 12.13, and 12.16 also give the following.
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Corollary 13.8 Suppose that there are infinitely many Woodin cardinals. If A is
projective set of reals, then A is Lebesgue measurable and has the Baire property,
and if A is uncountable, then A has a perfect subset.

In particular, the collection of all projective sets of reals has the perfect subset prop-
erty (cf. p. 142), i.e., here are no “definable” counterexamples toCantor’s program,
cf. 3.

Proof of Theorem 13.6. Let us fix

(Ns, ξs,t : s → t ≤ <ΦΦ),

a 2⊂0–closed embedding normal form for B whose additivity is bigger than σ.
If s, t ≤ <ΦΦ are such that lh(s) = lh(t), then we define s ⊕ t to be that r ≤ <ΦΦ

such that lh(r) = 2 · lh(s), and for all n < lh(s), r(2n) = s(n) and r(2n +1) = t (n).
Let us write

A = {(x, y) ≤ (ΦΦ)2 : x ⊕ y ≤ B},

so that trivially {x ≤ ΦΦ : ∀y ≤ ΦΦ x ⊕ y /≤ B} = {x ≤ ΦΦ : ∀y ≤ ΦΦ : (x, y) /≤ A}.
Let us also write Ns,t for Ns⊕t , and ξ(s,t),(s∞,t ∞) for ξs⊕t,s∞⊕t ∞ , where s, s∞, t , t ∞ ≤ <ΦΦ

with lh(s) = lh(t) < lh(s∞) = lh(t ∞). Then

(Ns,t , ξ(s,t),(s∞,t ∞): s → s∞ ≤ <ΦΦ, t → t ∞ ≤ <ΦΦ, lh(s) = lh(t), lh(s∞) = lh(t ∞))
(13.4)

is a 2⊂0–closed embedding normal form for A whose additivity is bigger than σ in
the sense that for all x , y ≤ ΦΦ,

(x, y) ≤ A ∧⊃ dir lim(Ns,t , ξ(s,t),(s∞,t ∞) : s → t → x, t → t ∞ → y) is well–founded,
(13.5)

every Ns,t is 2⊂0–closed, and ξ(s,t),(s∞,t ∞) � (σ + 1) = id for all relevant ξ(s,t),(s∞,t ∞).
Let us first construct “the” Windßus tree T for A in much the same way as in

the proof of Theorem 13.2, as follows. We start by defining a sequence (βs,t : s, t ≤
<ΦΦ, lh(s) = lh(t)). If (x, y) /≤ A, so that

dir lim(Ns,t , ξ(s,t),(s∞,t ∞): s → s∞ → x, t → t ∞ → y)

is ill–founded, we pick a sequence (βn
x,y : n < Φ) of ordinals witnessing that this

direct limit is ill–founded, i.e.,

ξ(x�n,y�n),(x�(n+1),y�(n+1))(β
n
x,y) > βn+1

x,y (13.6)

for all n < Φ. If (x, y) ≤ A, we let βn
x,y = 0 for all n < Φ. Let, for s, t ≤ <ΦΦ,

lh(s) = lh(t), βs,t : ΦΦ × ΦΦ ∈ OR be defined by
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βs,t (x, y) =
{

β
lh(s)
x,y if (x, y) /≤ A ⇐ s = x � lh(s) ⇐ t = y � lh(s)

0 otherwise
(13.7)

Let ε be an ordinal which is bigger than all βn
x,y . We define T by setting (s, t, f ) ≤ T

iff s, t ≤ <ΦΦ, lh(s) = lh(t), f = ( fi : i < lh(s)), where each fi is a function from
ΦΦ × ΦΦ to ε, and for all i + 1 < lh(s) and for all x, y ≤ ΦΦ, if (x, y) /≤ A ⇐ s �
i + 1 = x � i + 1 ⇐ t � i + 1 = y � i + 1, then fi+1(x, y) < fi (x, y), and if
(x, y) ≤ A ⇒ s � i + 1 ∪= x � i + 1 ⇒ t � i + 1 ∪= y � i + 1, then fi+1(x, y) = 0.
The order on T is again reverse inclusion.

Now if ( fi : i < Φ) witnesses that (x, y) ≤ p[T ], then we cannot have that
(x, y) /≤ A, as otherwise fi+1(x, y) < fi (x, y) for each i < Φ. Hence p[T ] → A.
On the other hand, if (x, y) ≤ A, then we may define a witness ( fi : i < Φ) to the
fact that (x, y) ≤ p[T ] as follows: Let x ∞, y∞ ≤ ΦΦ. If (x ∞, y∞) /≤ A, then let k < Φ be
maximal with x ∞ � k = x � k ⇐ y∞ � k = y � k, and define fi (x ∞, y∞) = k + 1− i for
i ∩ k +1 and fi (x ∞, y∞) = 0 for i ∗ k +1. If (x ∞, y∞) ≤ A, then define fi (x ∞, y∞) = 0
for all i . This shows A → p[T ], and hence A = p[T ].

Notice that, as each Ns,t is 2⊂0–closed, we have that βs,t ≤ Ns,t for every s, t . In
fact, for all s, t ≤ <ΦΦ, lh(s) = lh(t),

((s, t, ξ(s�i,t�i),(s,t)(βs�i,t�i )) : i < lh(s)) ≤ ξ(∼,∼),(s,t)(T ) (13.8)

To see this, notice that if x, y /≤ A, s, t ≤ <ΦΦ, lh(s) = lh(t), x � lh(s) = s and
y � lh(s) = t , and i < j < lh(s), then by (13.6)

ξ(s�i,t�i),(s,t)(βs�i,t�i )(x, y) = ξ(s�i,t�i),(s,t)(β
i
x,y)

> ξ(s� j,t� j),(s,t)(β
j
x,y)

= ξ(s� j,t� j),(s,t)(βs� j,t� j )(x, y),

and if (x, y) ≤ A⇒x � lh(s) ∪= s ⇒ y � lh(s) ∪= t , then ξ(s�i,t�i),(s,t)(βs�i,t�i )(x, y) =
0.

Let us now fix β < σ. We aim to construct a 2⊂0–closed embedding normal form
for {x : ∀y(x, y) /≤ A}whose additivity is bigger than β. The embedding normal form
will be produced by iteration trees on V .

Let (sn : n < Φ) be an enumeration of <ΦΦ such that if sn � sm , then n < m. Let
� be the following order on Φ: we set n � m iff n = 0, or n, m are both even and
n ∩ m, or n, m are both odd and

s n+1
2

→ s m+1
2

.

We intend to have sn correspond to the node 2n−̇1 in the tree order �.1

For s ≤ <ΦΦ, we shall produce objects

1 We here and in what follows use k−̇l to denote k − l, unless l > k in which case k−̇l = 0.
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⎧

Ts

αs,k for k ∩ 2 · lh(s),
εs,k for k ∩ lh(s), and

λs,k for k ∩ lh(s).

(13.9)

We will arrange that the following statements (PD, 1) through (PD, 4) hold true.

(PD, 1) Each Ts is an iteration tree on V of length 2 · lh(s) + 1,

Ts = ((Ms,k, Σs,k,l : k � l ∩ 2 · lh(s)), (Es,k : k < 2 · lh(s)),�� (2 · lh(s) + 1)),

such that for each k < 2 · lh(s),

Ms,k |= “Es,k is a 2⊂0 -closed and certified extender with
critical point αs,i > β and Es,k ≤ Vσ, ”

where

i =
{
2m if k is even, say k = 2n and sm = sn+1 � (lh(sn+1) − 1), and

k if k is odd.

Moreover, αs,0 < αs,1 < . . . < αs,2·lh(s), and for all k < l ∩ 2 · lh(s),

(Vζ)
Ms,k = (Vζ)

Ms,l ,

where ζ is the least inaccessible cardinal of Ms,k which is bigger than
αs,k+1.

even branch odd branches

2n+2 sn+1∼2n+1

k = 2n

Es,2n+1 with crit κs,2n+1

sm∼2m
.−1

Es,2n with crit κs,2m

0

(PD, 2) If s → s∞, then Ts∞ end–extends Ts , i.e., Ms∞,k = Ms,k for all k ∩ 2 · lh(s)
and Es∞,k = Es,k for all k < 2 · lh(s) (of course, the latter implies the
former); also, αs∞,k = αs,k for k ∩ 2 · lh(s), εs∞,k = εs,k for k ∩ lh(s), and
λs∞,k = λs,k for k ∩ lh(s).
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(PD, 3) Say n = lh(s). Then

(s � lh(sn), sn, (Σs,2l−̇1,2n−̇1(λs,l) : 2l−̇1 � 2n−̇1)) ≤ Σs,0,2n−̇1(T ).

The forth condition which will guarantee that the “even branches” of Ts , s → x ,
where x ≤ ΦΦ, produce an embedding normal form. In order to state it, we need a
notation for the models and embeddings of Ts from the point of view of Ns∞,t ∞ , the
models from (13.4). Let s ≤ <ΦΦ, and let s∞, t ∞ ≤ <ΦΦ, lh(s∞) = lh(t ∞). Because for
all k < 2 · lh(s), Es,k ≤ V

Ms,k
σ , and because the additivity of our given embedding

normal form (13.4) for A is bigger than σ, the sequence

(Es,k : k < 2 · lh(s))

is easily seen to generate2 (Ts)
Ns∞,t ∞ such that

Ns∞,t ∞ |= “(Ts)
Ns∞,t ∞ is an iteration tree on Ns∞,t ∞ of length 2 · lh(s) + 1, ”

where we may write

(Ts)
Ns∞,t ∞ = ((Ms∞,t ∞

s,k , Σ
s∞,t ∞
s,k,l : k � l ∩ 2 · lh(s)), (Es,k : k < 2 · lh(s)),

�� (2 · lh(s) + 1)).

We will have that
Ms∞,t ∞

s,k = ξ(∼,∼),(s∞,t ∞)(Ms,k),

Σ
s∞,t ∞
s,k,l = ξ(∼,∼),(s∞,t ∞)(Σs,k,l), and

V
Ms∞,t ∞

s,k
σ = V

Ms,k
σ

for all k � l ∩ 2 · lh(s).3 The models Ms∞,t ∞
s,k are “the models Ms,k from the point of

view of Ns∞,t ∞ ,” and the embeddings Σ
s∞,t ∞
s,k,l are “the embeddings Σs,k,l from the point

of view of Ns∞,t ∞ .”

Notice that we shall have

ξ(s∞,t ∞),(s∞∞,t ∞∞) ◦ Σ
s∞,t ∞
s,k,l = Σ

s∞∞,t ∞∞
s,k,l ◦ (ξ(s∞,t ∞),(s∞∞,t ∞∞) � Ms∞,t ∞

s,k ), (13.10)

2 There is a slight abuse of notation here, asTs is not a set but rather a (sequence of) proper class(es).
By (Ts)

Ns∞,t ∞ wemean that object which is defined over Ns∞,t ∞ from the parameter (Es,k : k < 2·lh(s))
by the very same formula which definesTs over V from the same parameter (Es,k : k < 2 ·2lh(s)).
3 For a proper class X , we write ξ(∼,∼),(s∞,t ∞)(X) = ⎪{ξ(∼,∼),(s∞,t ∞)(X ⊕ Vβ) : β ≤ OR}. Cf. the
footnote on p. 184. As a matter of fact, in what follows we shall only need Ms∞,t ∞

s,k in case s and s∞
are compatible.
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where this is an embedding from Ms∞,t ∞
s,k to Ms∞∞,t ∞∞

s,l whenever s, s∞, s∞∞, t ∞, t ∞∞
≤ <ΦΦ, k � l ∩ 2 · lh(s), lh(s∞) = lh(t ∞) ∩ lh(s∞∞) = lh(t ∞∞). Equation (13.10)
holds true because for all x ≤ Ms∞,t ∞

s,k → Ns∞,t ∞ ,

ξ(s∞,t ∞),(s∞∞,t ∞∞) ◦ Σ
s∞,t ∞
s,k,l(x) = ξ(s∞,t ∞),(s∞∞,t ∞∞)(ξ(∼,∼),(s∞,t ∞)(Σs,k,l)(x))

= ξ(s∞,t ∞),(s∞∞,t ∞∞)(ξ(∼,∼),(s∞,t ∞)(Σs,k,l))(ξ(s∞,t ∞),(s∞∞,t ∞∞)(x))

= ξ(∼,∼),(s∞∞,t ∞∞)(Σs,k,l)(ξ(s∞,t ∞),(s∞∞,t ∞∞)(x))

= Σ
s∞∞,t ∞∞
s,k,l ◦ ξ(s∞,t ∞),(s∞∞,t ∞∞)(x).

Our forth condition now runs as follows.

(PD, 4) If m < n < lh(s) and sm = sn+1 � (lh(sn+1) − 1), then

εs,n+1 < Σ
s�lh(sn+1),sn+1
s,2m,2n+2 (ξ(s�lh(sm ),sm ),(s�lh(sn+1),sn+1)(εs,m).

Suppose that we manage producing objects Ts , αs,k , εs,k , and λs,k with the prop-
erties (PD, 1) through (PD, 4). We may then verify the following

Claim 13.9

((Ms,2·lh(s): s ≤ <ΦΦ), (Σs∞,2·lh(s),2·lh(s∞): s → s∞, s, s∞ ≤ <ΦΦ))

is a 2⊂0–closed embedding normal form for {x ≤ ΦΦ : ∀y ≤ ΦΦ (x, y) /≤ A}.
Proof 2⊂0–closedness is clear by (PD, 1), as every extender used is 2⊂0–closed in
the model where it is taken from. Cf. Lemmas 10.60 and 10.61.

Let us fix x ≤ ΦΦ. Let

(M Even, (Σ2k, Even: k < Φ)) = dir lim((Mx�k,2k : k < Φ), (Σx�l,2k,2l : k ∩ l < Φ)).

We need to see that

≥y(x, y) ≤ A =⊃ M Even is ill –founded (13.11)

and

∀y(x, y) /≤ A =⊃ M Even is well–founded. (13.12)

Let us first show (13.11). If s, t ≤ <ΦΦ with lh(s) = lh(t), then by the coherence
condition (PD, 2), we may write Ms,t

x,k for Ms,t
x�k,k (= Ms,t

x�m,k for all sufficiently large

m) and Σ
s,t
x,k,l for Σ

s,t
x�l,k,l (= Σ

s,t
x�m,k,l for all sufficiently large m).

Let us now pick some y ≤ ΦΦ such that (x, y) ≤ A. Let
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(N , (ξ(s,t),∞: s → x, t → y)) = dir lim(Ns,t , ξ(s,t),(s∞,t ∞): s → s∞ → x, t → t ∞ → y),

(13.13)

so that N is transitive by (13.5).
For any s ≤ <ΦΦ, the sequence

(Es,k : k < 2 · lh(s))

is easily seen to generate (Ts)
N such that

N |= “(Ts)
N is an iteration tree on N of length 2 · lh(s) + 1, ”

where we may write

(Ts)
N = ((Mx,y

s,k , Σ
x,y
s,k,l : k � l ∩ 2 · lh(s)), (Es,k : k < 2 · lh(s)),�� (2 · lh(s) + 1)).

By the coherence condition (PD, 2) we may write Mx,y
x,k for Mx,y

x�k,k (= Mx,y
x�m,k

for all sufficiently large m), Σ
x,y
x,k,l for Σ

x,y
x�l,k,l (= Σ

x,y
x�m,k,l for all sufficiently large

m), and

(Mx,y
x,∞, (Σ

x,y
x,2k,∞ : k < Φ)) = dir lim(Mx,y

x,2k, Σ
x,y
x,2k,2l : k ∩ l < Φ). (13.14)

Virtually the same proof as the one of (13.10) shows that

ξ(x�k,y�k),∞ ◦ Σ
x�k,y�k
x,2n,∞ = Σ

x,y
x,2n,∞ ◦ (ξ(x�k,y�k),∞ � Mx�k,y�k

x,2n ) (13.15)

for all n, k < Φ.
Again by (PD, 2) we also write εx,k for εx�k,k (= εx�k∞,k for all k∞ ∗ k). By (PD,

4), if k ∩ m ∩ n < Φ, sm = y � k and sn+1 = y � (k + 1), then

εx,n+1 < Σ
x�(k+1),y�(k+1)
x,2m,2n+2 (ξ(x�k,y�k),(x�(k+1)),y�(k+1))(εx,m)).

which implies that

Σ
x�(k+1),y�(k+1)
x,2n+2,∞ (εx,n+1) < Σ

x�(k+1),y�(k+1)
x,2m,∞ (ξ(x�k,y�k),(x�(k+1)),y�(k+1))(εx,m)).

(13.16)
Then (13.15) and (13.16) yield the following.

Σ
x,y
x,2n+2,∞(ξ(x�(k+1),y�(k+1)),∞(εx,n+1))

= ξ(x�(k+1),y�(k+1)),∞(Σ
x�(k+1),y�(k+1)
x,2n+2,∞ (εx,n+1))

< ξ(x�(k+1),y�(k+1)),∞(Σ
x�(k+1),y�(k+1)
x,2m,∞ (ξ(x�k,y�k),(x�(k+1)),y�(k+1))(εx,m)))

= Σ
x,y
x,2m,∞(ξ(x�k,y�k),∞(εx,m)).
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This shows that the sequence

(Σ
x,y
x,2m,∞(ξ(x�lh(sm ),y�lh(sm )),∞(εx,m)) : m < Φ, sm → y)

witnesses that Mx,y
x,∞ is ill–founded. However, the direct limit (13.14) which pro-

duces Mx,y
x,∞ can be formed within N , cf. (13.13), which is transitive. We may there-

fore use absoluteness of well–foundedness, Lemma 5.6, to see that such a sequence
witnessing that Mx,y

x,∞ be ill–fouded must also be an element of N . By the ele-
mentarity of Σ(∼,∼),∞ : V ∈ N , which maps (Mx,2m, Σx,2m,2k : m ∩ k < Φ) to
(Mx,y

x,2m, Σ
x,y
x,2m,2k : m ∩ k < Φ), there is hence a sequence which witnesses that

M Even = dir lim(Mx,2m, Σx,2m,2k : m ∩ k < Φ)

is ill–founded. We have verified (13.11).
Let us now show (13.12). For this, Theorem 10.74 is the key tool. Let us thus

suppose that for all y ≤ ΦΦ, (x, y) /≤ A. As every extender used is certified in the
model where it is taken from, in order to verify that M Even is well–founded, it suffices
by Theorem 10.74 to show that for all y ≤ ΦΦ, if

(My, (Σk,y : k < Φ)) = dir lim(Mx�k,2k−̇1, Σx�l,2k−̇1,2l−̇1 : sk → sl → y),

then My is ill–founded.
To this end, let y ≤ ΦΦ be arbitrary. As (x, y) /≤ p[T ],

Tx,y = { f : (x � lh( f ), y � lh( f ), f ) ≤ T }

is well–founded. By (PD, 3), if k < Φ and sn = y � k, then

(x � k, y � k, (Σx�n,2l−̇1,2n−̇1(λx�n,l): 2l−̇1 � 2n−̇1)) ≤ Σx�n,0,2n−̇1(T ).

Let (ni : i < Φ) be the monotone enumeration of {n < Φ: sn → y}, and let, for i < Φ,

χi = ||(Σx�ni ,2l−̇1,2ni −̇1(λx�ni ,l): 2l−̇1 � 2ni −̇1)||Σx�ni ,0,2ni −̇1(Tx,y).

If i < Φ, then the node (Σx�ni+1,2l−̇1,2ni+1−̇1(λx�ni+1,l) : 2l−̇1 � 2ni+1−̇1) extends
the node (Σx�ni+12l−̇1,2ni+1−̇1(λx�ni+1,l) : 2l−̇1 � 2ni −̇1) in the treeΣx�ni+1,0,2ni+1−̇1
(Tx,y), so that

Σx�ni+1,2ni −̇1,2ni+1−̇1(χi )

= ||(Σx�ni+1,2l−̇1,2ni+1−̇1(λx�ni+1,l) : 2l−̇1 � 2ni −̇1)||Σx�ni+1,0,2ni+1−̇1(Tx,y)

> ||(Σx�ni+1,2l−̇1,2ni+1−̇1(λx�ni+1,l) : 2l−̇1 � 2ni+1−̇1)||Σx�ni+1,0,2ni+1−̇1(Tx,y)

= χi+1.

This proves that My is ill–founded, as witnessed by (χi : i < Φ).
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We have verified (13.12). �

We are left with having to produce the objects Ts , αs,k , εs,k , and λs,k such that
(PD, 1) through (PD, 4) hold true.

We first need a set of “indiscernibles.” Let us fix ζ, a cardinal which is “much
bigger than” σ; in particular, we want that T ≤ Vζ and that all Σ s∞,t ∞

0,k (βs,t ) will be in
Vζ also. Let c0 < c1 < λ be strong limit cardinals above ζ of cofinality > σ such
that

typeV (Vλ; ≤, Vζ, {ζ, c0})) = typeV (Vλ; ≤, Vζ, {ζ, c1})). (13.17)

An easy pigeonhole argument shows that such objects exist: e.g., let λ be a strong

limit cardinal of cofinality Vζ+1
+
. In the construction to follow, we shall use the

“descending” chain of ordinals

c0 + 1 > c0 ≡ c1 > c0 + 1 > c0 ≡ c1 > . . .

andwemay and shall assume that ζ, c0, c1, and λ are fixed points of all the elementary
embeddingswhichwewill encounter. Cf. Lemma 10.56 Problem10.18. σ will always
be a fixed point anyway.

In order to keep our recursion going, we shall need a fifth condition.

(PD, 5) For each l < Φ, λl ≤ V
M2l−̇1
ζ .

The objects Ts , αs,k , εs,k , and λs,k will be constructed by recursion on the length
of s. To get started, we let T∼ be the trivial tree of length 1 which just consists of V .
We also set ε∼,0 = c0, and we pick α∼,0 < σ, α∼,0 > β, such that in V , α∼,0 is strong
up to σ with respect to

typeV (Vc0+1; ≤, Vσ, {σ, ζ, T, β∼,∼}).

This choice of α∼,0 is certainly possible, as σ is aWoodin cardinal, cf. Lemma 10.81.
We also set λ∼,0 = β∼,∼.

Now let us fix s ≤ <ΦΦ of positive length throughout the rest of this proof. Write
n + 1 = lh(s). Let us suppose that

Ts�n
αs,k for k ∩ 2 · n,

εs,k for k ∩ n, and
λs,k for k ∩ n

have already been constructed. We are forced to set αs,k = αs�n,k for k ∩ 2 · n,
Es,k = Es�n,k for k < 2 · n, Ms,k = Ms�n,k for k ∩ 2 · n, Σs,k,l = Σs�n,k,l for
k � l ∩ 2 · n, εs,k = εs�n,k for k ∩ n, and λs,k = λs�n,k for k ∩ n. Let us write
t = sn+1, k = lh(t) ∩ n + 1, and sm = t � (k − 1). We now need to define αs,2n+1,
αs,2n+2, εs,n+1, and λs,n+1, and we also need to define Ms,2n+1 as an ultrapower of
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Ms,2m−̇1 by an extender Es,2n with critical point αs,2m and Ms,2n+2 as an ultrapower
of Ms,2n by an extender Es,2n+1 with critical point αs,2n+1.

2n+2 t = sn+1∼2n+1

k = 2n

Es,2n+1 with crit κs,2n+1

t � k−1= sm∼2m
.−1

Es,2n with crit κs,2m

0

As s ≤ <ΦΦ will be fixed from now on, we shall mostly suppress the subscript s
and write

Mk for Ms,k,

Σk,l for Σs,k,l ,

Ms∞,t ∞
k for Ms∞,t ∞

s,k ,

Σ
s∞,t ∞
k,l for Σ

s∞,t ∞
s,k,l ,

αk for αs,k,

εk for εs,k, and
λk for λs,k .

Inductively, we shall assume that the following two statements, (A) and (B), are
satisfied. Here, βs�i,t�i is as in (13.7).

(A)

typeMs�k−1,t�k−1
2m (Vεm+1; ≤, Vα2m , {σ, ζ, Σ

s�k−1,t�k−1
0,2m (ξ(∼,∼),(s�k−1,t�k−1)(T )),

(Σ
s�k−1,t�k−1
0,2m (ξ(s�i,t�i),(s�k−1,t�k−1)(βs�i,t�i )): i ∩ k − 1)})
= typeM2m

.−1(Vc0+1; ≤, Vα2m , {σ, ζ, Σ0,2m
.−1(T ),

(Σ2i−̇1,2m
.−1(λi ): 2i

.− 1 � 2m
.− 1)}).

(B) Inside Ms�k−1,t�k−1
2m , α2m is strong up to σ with respect to

typeMs�k−1,t�k−1
2m (Vεm+1; ≤, Vσ, {σ, ζ, Σ

s�k−1,t�k−1
0,2m (ξ(∼,∼),(s�k−1,t�k−1)(T )),

(Σ
s�k−1,t�k−1
0,2m (ξ(s�i,t�i),(s�k−1,t�k−1)(βs�i,t�i )): i ∩ k − 1)}).

Notice that this is trivially true for n = 0 (in which case m = k − 1 = 0) by the
choices of ε0 = ε∼,0 = c0, α0 = α∼,0, and λ0 = β∼,∼ .

Because σ is a Woodin cardinal inside Ms�k,t
2n , we may pick some α2n+1 < σ,

α2n+1 > α2n , such that

(C) inside Ms�k,t
2n , α2n+1 is strong up to σ with respect to
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typeMs�k,t
2n (V

Σ
s�k,t
2m,2n(ξ(s�k−1,t�k−1),(s�k,t)(εm ))

; ≤, Vσ,

{σ, ζ, Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )), (Σ

s�k,t
0,2n (ξ(s�i,t�i),(s�k,t)(βs�i,t�i ): i ∩ k)}),

cf. Lemma 10.81. We may apply the map Σ
s�k,t
2m,2n ◦ξ(s�k−1,t�k−1),(s�k,t) to (B), which

by (13.10) and the fact that crit(Σ2m,2n) = α2m+1 > α2m produces the assertion that

inside Ms�k,t
2n , α2m is strong up to σ with respect to

typeMs�k,t
2n (V

Σ
s�k,t�k
2m,2n (ξ(s�k−1,t�k−1),(s�k,t)(εm ))+1

; ≤, Vσ, (13.18)

{σ, ζ, Σ
s�k,t
0,2n (Σ(∼,∼),(s�k,t)(T )), (Σ

s�k,t
0,2n (ξ(s�i,t�i),(s�k,t)(βs�i,t�i )): i < k)}).

We may thus let
Σ2m

.−1,2n+1: M2m
.−1 ∈Es,2n M2n+1,

where Es,2n ≤ M2n is a 2⊂0–closed certified extender in M2n which witnesses that

inside Ms�k,t
2n , α2m is strong up to the least inaccessible cardinal ζ∅ above α2n+1 with

respect to the type from (13.18); notice that (Vα2m+1)
M2n = (Vα2m+1)

M2m
.−1 , cf. (PD,

1), immediately gives that

(Vζ∅)M2n+1 = (Vζ∅)M2n . (13.19)

We have that

typeM2n+1(Vc0+1; ≤, Vα2n+1+1, {σ, ζ,

Σ0,2n+1(T ), (Σ2i−̇1,2m
.−1(λi ): 2i

.− 1 � 2m
.− 1) ) (13.20)

= typeMs�k,t
2n (V

Σ
s�k,t�k
2m,2n (ξ(s�k−1,t�k−1),(s�k,t)(εm ))+1

; ≤, Vα2n+1+1, {σ, ζ,

Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )), (Σ

s�k,t
0,2n (ξ(s�i,t�i),(s�k,t)(βs�i,t�i )): i ∩ k − 1)}).

This is because by the choice of Es,2n , the right hand side of (13.20) is equal to

Σ2m
.−1,2n+1(type

Ms�k,t
2n (V

Σ
s�k,t�k
2m,2n (ξ(s�k−1,t�k−1),(s�k,t)(εm )+1

; ≤, Vα2m , {σ, ζ,

Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )), (Σ

s�k,t
0,2n (ξ(s�i,t�i),(s�k,t)(βs�i,t�i )): i ∩ k − 1)})),

restricted to parameters in (Vα2n+1+1)
M2n+1 = (Vα2n+1+1)

M2n , which by (13.10) and

the elementarity of the map ξ(s�k−1,t�k−1),(s�k,t) ◦ Σ
s�k−1,t�k−1
2m,2n is equal to
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Σ2m
.−1,2n+1(type

Ms�k−1,t�k−1
2m (Vεm+1; ≤, Vα2m , {σ, ζ,

Σ
s�k−1,t�k−1
0,2m (ξ(∼,∼),(s�k−1,t�k−1)(T )),

(Σ
s�k−1,t�k−1
0,2m (ξ(s�i,t�i),(s�k−1,t�k−1)(βs�i,t�i )): i ∩ k − 1)})),

restricted to parameters in (Vα2n+1+1)
M2n+1 , which in turn by (A) is equal to

Σ2m
.−1,2n+1(type

M2m
.−1(Vc0+1; ≤, Vα2m , {σ, ζ,

Σ0,2m
.−1(T ), (Σ2i−̇1,2m

.−1(λi ): 2i
.− 1 � 2m

.− 1)})),

restricted to parameters in (Vα2n+1+1)
M2n+1 , and thus to the left hand side of (13.20).

Let us write

δ = typeMs�k,t
2n (V

Σ
s�k,t�k
2m,2n (ξ(s�k−1,t�k−1),(s�k,t)(εm )

; ≤, Vα2n+1 , {σ, ζ,

Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )), (13.21)

(Σ
s�k,t
0,2n (ξ(s�i,t�i),(s�k,t)(βs�i,t�i )): i ∩ k)}).

By (C), we have that λ = Σ
s�k,t
0,2n (βs�k,t ) witnesses that

Ms�k,t
2n |= ≥λ ≤ Vζ (δ = typeMs�k,t

2n (V
Σ

s�k,t�k
2m,2n (ξ(s�k−1,t�k−1),(s�k,t)(εm )

; ≤, Vα2n+1 ,

{σ, ζ, Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )),

(Σ
s�k,t
0,2n (ξ(s�i,t�i),(s�k−1,t�k−1)(βs�i,t�i )): i ∩ k − 1)�λ})⇐

α2n+1 is strong up to σ with respect to (13.22)

typeMs�k,t
2n (V

Σ
s�k,t�k
2m,2n (ξ(s�k−1,t�k−1),(s�k,t)(εm )

; ≤, Vσ,

{σ, ζ, Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )),

(Σ
s�k,t
0,2n (ξ(s�i,t�i),(s�k−1,t�k−1)(βs�i,t�i )): i ∩ k − 1)�λ}) ).

As
δ ≤ (Vα2n+1+1)

Ms�k,t
2n ,

the statement “≥λ ≤ Vζ (. . .)” in (13.22) can be written as an element of the type
from the right hand side of (13.20), so that by (13.20),
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M2n+1 |= ≥λ ≤ Vζ(δ = typeM2n+1(Vc0; ≤, Vα2n+1 ,

{σ, ζ, Σ0,2n+1(T ), (Σ2i−̇1,2n+1(λi ): 2i
.− 1 � 2m

.− 1)�λ})⇐
α2n+1 is strong up to σ with respect to (13.23)

typeM2n+1(Vc0; ≤, Vσ,

{σ, ζ, Σ0,2n+1(T ), (Σ2i−̇1,2n+1(λi ): 2i
.− 1 � 2m

.− 1)�λ}) ).

Let λn+1 ≤ V M2n−1
ζ be a witness to (13.23), so that we shall now have that

(D)

δ = typeMs�k,t
2n (V

Σ
s�k,t�k
2m,2n (ξ(s�k−1,t�k−1),(s�k,t)(εm )

; ≤, Vα2n+1 , {σ, ζ, Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )),

(Σ
s�k,t
0,2n (ξ(s�i,t�i),(s�k,t)(βs�i,t�i )): i ∩ k)})

= typeM2n+1(Vc0 ; ≤, Vα2n+1 , {σ, ζ, Σ0,2n+1(T ),

(Σ2i−̇1,2n+1(λi ): 2i
.− 1 � 2n + 1)})

and

(C)’
inside M2n+1, α2n+1 is strong up to σ with respect to

typeM2n+1(Vc0; ≤, Vσ, {σ, ζ, Σ0,2n+1(T ),

(Σ2i−̇1,2n+1(λi ): 2i
.− 1 � 2n + 1)}).

Also, if we inductively assume (PD, 5) for l ∩ n, then λn+1 ≤ V M2n+1
ζ (i.e., (PD, 5)

for l = n + 1) yields that

(Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1) ≤ V M2n+1
ζ . (13.24)

Now again because σ is a Woodin cardinal inside M2n+1, we may pick some
α2n+2 < σ, α2n+2 > α2n+1, such that

(E) inside M2n+1, α2n+2 is strong up to σ with respect to

typeM2n+1(Vc0+1; ≤, Vσ, {σ, ζ, Σ0,2n+1(T ), (Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}),

cf. Lemma 10.81.
Let

Σ2n,2n+2: M2n ∈Es,2n+1 M2n+2,

where Es,2n+1 ≤ M2n+1 is a 2⊂0–closed certified extender which in M2n+1 and
witnesses that inside M2n+1, α2n+1 is strong up to the least inaccessible cardinal ζ∅
above α2n+2 with respect to

typeM2n+1(Vc0; ≤, Vσ, {σ, ζ, Σ0,2n+1(T ), (Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}).
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This choice is possible by (C)’; notice that (Vα2n+1+1)
M2n+1 = (Vα2n+1+1)

M2n , cf.
(13.19), which immediately gives that (Vζ∅)M2n+2 = (Vζ∅)M2n+1 . We shall have that

(F)

typeMs�k,t
2n+2(V

Σ
s�k,t
2m,2n+2(ξs�k−1,t�k−1),(s�k,t)(εm )

; ≤, Vα2n+2+1,

{σ, ζ, Σ
s�k,t
0,2n+2(ξ(∼,∼),(s�k,t)(T )),

Σ
s�k,t
0,2n+2(ξ(s�i,t�i),(s�k,t)(β(s�i,t�i)): i ∩ k)})
= typeM2n+1(Vc1; ≤, Vα2n+2+1,

{σ, ζ, Σ0,2n+1(T ),

(Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}).

This is because the left hand side of (F) is equal to

Σ
s�k,t
2n,2n+2(type

Ms�k,t
2n (V

Σ
s�k,t
2m,2n(ξs�k−1,t�k−1),(s�k,t)(εm )

; ≤, Vα2n+1 ,

{σ, ζ, Σ
s�k,t
0,2n (ξ(∼,∼),(s�k,t)(T )),

Σ
s�k,t
0,2n (ξ(s�i,t�i),(s�k,t)(β(s�i,t�i)): i ∩ k)})

restricted to parameters in (Vα2n+2+1)
Ms�k,t

2n+2

= ΣE2n+1(type
M2n+1(Vc0; ≤, Vα2n+1 , {σ, ζ, Σ0,2n+1(T ),

(Σ2i
.−1,2n+1(λi ) : 2i

.− 1 � 2n + 1)})),
restricted to parameters in (Vα2n+2+1)

M2n+1

by (D),

= typeM2n+1(Vc0 ; ≤, Vα2n+2+1, {σ, ζ, Σ0,2n+1(T ), (Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}),

by the choice of Es,2n+1, which is equal to the right hand side of (F) by (13.24) and
the choice of c0 and c1, cf. (13.17). We verified (F).

Let us write

ξ = typeM2n+1(Vc0+1; ≤, Vα2n+2 , {σ, ζ, Σ0,2n+1(T ), (Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}).

With (E),

(Vc1)
M2n+1 |= ≥ε(ξ = typeM2n+1(Vε+1; ≤, Vα2n+2 , {σ, ζ, Σ0,2n+1(T ),

(Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}) ⇐
α2n+2 is strong up to σ with respect to (13.25)

typeM2n+1(Vε+1; ≤, Vσ, {σ, ζ, Σ0,2n+1(T ),

(Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}). ).
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We have that
ξ ≤ (Vα2n+2+1)

M2n+1 ,

so that the statement “≥ε (. . .)” in (13.25) can be written as an element of the type
from the right hand side of (F), and (F) yields the following.

(V
Σ

s�k,t
2m,2n+2(ξ(s�k−1,t�k−1),(s�k,t)(εm ))

)Ms�k,t
2n+2 |=

≥ε(ξ = typeMs�k,t
2n+2(Vε+1; ≤, Vα2n+2 , {σ, ζ, Σ

s�k,t
0,2n+2(ξ(∼,∼),(s�k,t)(T )),

Σ
s�k,t
0,2n+2(ξ(s�i,t�i),(s�k,t)(β(s�i,t�i): i ∩ k))})⇐

αs,2n+2 is strong up to σ with respect to (13.26)

typeMs�k,t
2n+2(Vε+1; ≤, Vσ, {σ, ζ, Σ

s�k,t
0,2n+2(ξ(∼,∼),(s�k,t)(T )),

Σ
s�k,t
0,2n+2(ξ(s�i,t�i),(s�k,t)(β(s�i,t�i): i ∩ k))} ) ).

Let εn+1 be a witness to this fact. In particular, with a brief show of the subscript s,

εs,n+1 < Σ
s�k,t
2m,2n+2(ξ(s�k−1,t�k−1),(s�k,t)(εs,m)). (13.27)

By (13.26) and the definition of ξ , we now have the following.

(G)

typeMs�k,t
2n+2(Vεn+1+1; ≤, Vα2n+2 , {σ, ζ, Σ

s�k,t
0,2n+2(ξ(∼,∼),(s�k,t)(T )),

(Σ
s�k,t
0,2n+2(ξ(s�i,t�i),(s�k,t)(βs�i,t�i )): i ∩ k)})
= typeM2n+1(Vc0+1; ≤, Vα2n+2 , {σ, ζ, Σ0,2n+1(T ),

(Σ2i
.−1,2n+1(λi ): 2i

.− 1 � 2n + 1)}),

and

(H) inside Ms�k,t
2n+2, α2n+2 is strong up to σ with respect to

typeMs�k,t
2n+2(Vεn+1+1; ≤, Vσ, {σ, ζ, Σ

s�k,t
0,2n+2(ξ(∼,∼),(s�k,t)(T )),

(Σ
s�k,t
0,2n+2(Σ(s�i,t�i),(s�k,t)(βs�i,t�i )): i ∩ k)}).

We are back to where we started from, cf. (A) and (B).
It is now straightforward to verify that (PD, 1) through (PD, 4) hold true. Notice

that (13.27) above gives (PD, 4). Also, (PD, 3) follows from (A) (or, (G)) by virtue
of (13.8).

This finishes the proof of Theorem 13.6. �
It can be shown that the conclusion of Thorem 13.6 implies the consistency of

Woodin cardinals, cf. e.g. [22]; in fact,PD turns out to be equivalent to the existence
of mice withWoodin cardinals, for a proof cf. [36].
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Results which are stronger than Theorem 13.6 but build upon its proof method
are presented e.g. in [32, 33] and [41].

The reader might also want to consult [34] and [42] on recent developments
concerning determinacy hypotheses and large cardinals.

13.3 Problems

13.1. Show that if there is ameasurable cardinal, then every set of reals has an embed-
ding normal form. [Hint. The embedding normal formwill not be 2⊂0–closed.]
Let n ∩ m < Φ, let μ be an ultrafilter on a set of functions with domain n, and
let μ∞ be an ultrafilter on a set of functions with domain m. We say that μ, μ∞
cohere iff for all X ,

X ≤ μ ∧⊃ { f ≤ mα : f � n ≤ X} ≤ μ∞.

We may define Σμ : V ∈ ult0(V ;μ) and Σμ∞ : V ∈ ult0(V ;μ∞), and we
may also define a canonical elementary embedding Σμ,μ∞ : ult0(V ;μ) ∈
ult0(V ;μ).
Let A → ΦΦ, and let σ ∗ ⊂0. We say that A is σ–homogeneously Souslin
iff there is some β and a tree T on Φ × β such that A = p[T ] and there is
(μs : s ≤ <ΦΦ) such that for all s ≤ <ΦΦ, μs is a < σ+–closed ultrafilter on
Ts = {t : (s, t) ≤ T }, if s → t ≤ <ΦΦ, then μs and μt cohere, and if x ≤ A,
then

dir limn<Φ(ult0(V ;μx�n), Σμx�n ,μx�m : n ∩ m < Φ) is well–founded. (13.28)

A is called homogeneously Souslin iff A is ⊂0–homogeneously.

13.2. Show that in the situation of the preceeding paragraph, if (13.28) holds true,
then x ≤ A. [Hint. If Tx is well–founded, then look at ||[id]μx�n ||Σμx�n (Tx ),
n < Φ.]

13.3. (K. Windßus) Let A → ΦΦ, and let σ ∗ ⊂0. Show that the following are
equivalent.

(a) A has a 2⊂0–closed embedding normal form whose additivity is bigger
than σ.

(b) A is σ–homogeneously Souslin.

Conclude that every homogeneously Souslin set of reals is determined. [Hint.
For (a) =⊃ (b), construct the Windßus tree and define μs , s ≤ <ΦΦ, via
(13.2).]
Let A → ΦΦ, and let σ ∗ ⊂0. We say that A is σ–weakly homogeneously
Souslin iff A = {x ≤ ΦΦ : ≥y ≤ ΦΦ x⊕y ≤ B}, where B is σ–homogeneously
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Souslin, and A is weakly homogeneously Souslin iff A is ⊂0–weakly homo-
geneously Souslin.

13.4. (D.A. Martin, R. Solovay) Show that if A → ΦΦ is σ–weakly homoge-
neously Souslin, then A is < σ+–universally Baire. [Hint. Let (sn : n < Φ)

be a reasonable enumeration of <ΦΦ. For s ≤ <ΦΦ with k = lh(s), let
(s, (β0, . . . , βk−1)) ≤ S iff for all i < j < k, if si � s j , then

β j < Σμs�lh(si )⊕si ,μs�lh(s j )⊕s j
(βi ),

where β0, . . . , βk−1 < χ for some sufficiently big χ .]
Conclude that if α is a measurable cardinal, then all ν

∼

1

2
–sets of reals are < α–

universallyBaire. [Hint:UseProblem6.18 and the construction fromTheorem
13.3.]
Conclude also that if α is a measurable cardinal and if σ1 < · · · < σn < α are
Woodin cardinals, then all ν

∼

1

n+2
–sets of reals are < σ1–universally Baire.

13.5. Suppose that α is a measurable cardinal and σ1 < · · · < σn < α are Woodin
cardinals. Let A → ΦΦ beτ

∼

1

n+2
, so that by Problem13.4, A is< σ1–universally

Baire. Let P ≤ Vσ1 , and let g be P–generic over V . Let A∅ be the new version
of A in V [g] (cf. p. 150). Show that if V [g] |= A∅ ∪= ∼, then V |= A ∪= ∼.
(Compare Problem 10.16.)

13.6. (W. H. Woodin) Let α be a strong cardinal, and let A → ΦΦ be α–universally
Baire. (Equivalently, A is universally Baire, cf. Problem 8.10.)
Let g be Col(Φ, 2(2α ))–generic over V , and let A∅ be the new version of A
in V [g] (cf. p. 150). Show that ≥R (ΦΦ ⊕ V [g]) \ A∅ = {x ≤ ΦΦ : ≥y ≤
ΦΦ x ⊕ y /≤ A∅} is universally Baire in V [g]. [Hint. In V , let T and U
on Φ × α witness that A is α–universally Baire. In V [g], we construct T ∅
and U∅ by amalgamating set–sized trees. We get T ∅ by rearranging stretched
versions of U . For every (short) ⊂0–complete (α, Δ)–extender E let us define
an approximation U∅

E to U∅ as follows. Let ΣE : V ∈ M be the ultrapower
map, where M is transitive. In V [g], fix a reasonable enumeration (μn : n < Φ)

of all ΣE (Ea), a ≤ [Δ]<Φ, and write θ(n) for Card(a) in case μn = ΣE (Ea). If
μi andμ j cohere [cf. Definition 10.45 (2)], then we write Σi j for the canonical
embedding from ult(M;μi ) to ult(M;μ j ). For s ≤ <ΦΦ, say k = lh(s), we
set (s, (β0, . . . , βk−1)) ≤ U∅

E iff

∀i < j < k (ΣV
E (Us�θ(i)) ≤ μi ⇐ ΣV

E (Us�θ( j)) ≤ μ j ⇐ μ j projects to μi

−∈ Σi j (βi ) > β j ).

Show that this works.]
Conclude that if ζ is the supremum of infinitely many strong cardinals and if
G is Col(Φ, ζ)–generic over V [G], then in V [G] every projective set of reals
is Lebesgue measurable and has the property of Baire.
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with the tree property, 50
Woodin, 227

Cardinal successor, 33
Cardinality, 33
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Condensation point, 5
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p – ϕ(τ1, . . . , τk), 98
Δ–Lemma, 106
ΔT

1 , 68
Δ-system, 106

Dense, 93
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κ (R), 90
♦≤

κ , 83
♦≤
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λ–complete, 219
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long, 210
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Extension of embeddings lemma
downward, 240
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Forcing conditions, 93
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H
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HOD, 86
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Homomorphism, 113

dense, 113

I
Ill–founded, 26
Inaccessible to the reals

ω1 is -, 141
Incompatible, 93

Induction principle, 23, 26
Inductive, 10, 23
Ineffable, 50
Injective, 14
Inner model, 51
Interpretation

G-of τ , 96
Invariant

S-, 288
Turing-, 288

Isomorphic, 15
Isomorphism, 15
Iterability

of a ppm M , 197
Iterable by U and its images, 184
Iteration

linear – of V of length γ given byU , 183
of a ppm M of length α, 197
putative – of a ppm M of length α, 196
putative linear – of V of length γ given
by U , 183

J
Jα , 74
Jα[E], 73
J -structure, 79
J-structure

acceptable, 235

K
κ-chain condition, 105
κ-Knaster, 105
KP, 90
Kripke–Platek set theory, 90
Kurepa’s Hypothesis, 90

L
L , 74
λ<κ , 37
L[E], 73
Lebesgue measurable, 148
Length (of a well–ordering), 29
< κ-closed, 109
< κ-distributive, 109
<M, 65
Level of s in T , 46
lvT (s), 46
Levy collapse, 111
Limit point, 40
Łoś Theorem, 54, 195, 213
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M
Measure, 53
Mitchell order, 65, 233
Mn,p , 250
Monotone enumeration, 29
Mostowski collapse, 28
Mouse

x–, 198
M p , 237
Mutual generics, 119

N
Names

P-, 96
n-completion, 254
n-embedding, 259
Nice name, 108
Norm on A ∼ ωω, 145
Null set, 7, 147
Number

natural, 23
ordinal, 24

O
OD, 86
ODz , 86
ω–complete, 197
ωz
1, 91

Open, 95
x ∈ y, 133
Order

atomless, 95
linear, 14
partial, 14, 93
separative, 115

Order type, 29
Order-preserving, 15
Ordered pair, 13
Ordinal, 24

z-admissible, 91
limit, 25
successor, 25

Ordinal definable from –, 86
Otp, 29
Outer measure, 147

P
P–point, 180
Parameters

good, 237, 251
very good, 238, 251

PD, 307
Perfect subset property, 142
Pigeonhole Principle, 33
π M

U , 57
PM , 237
Pn

M , 251
Polish space, 127
Positive sets, 42
Power set, 2
P(X), 2, 10
Premouse

x–, 194
Prikry sequence, 189
Product, 118
Product Lemma, 118
Projection of T , 128
Projective Determinacy, 307
Projectum

Σ1-, 236
nth, 250

Q
Q–point, 180
Q-formula, 238

R
Range, 13
Rank, 28, 30
Rank initial segment of V , 28
rkR(x), 28
‖ x ‖ R , 28
Real

Cohen over M , 152
dominating, 181
generic over M , 153
random over M , 152
unbounded, 181

Recursion theorem, 26
Reduct, 237

nrmth , 250
Reduction property, 141
Reflection Principle, 89
Regressive, 42
Relation, 13

set–like, 26
Reshaped subset of ω1, 163
Restriction, 14
ρn(M), 250
ρ1(M), 236
Rigid, 202
RM , 238
Rn

M , 251
rΣn+1 elementary, 254
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rudE closed, 72
Rudimentary relation, 71
Russell’s Antinomy, 12

S
Sα[E], 75
Scale on A ∼ ωω, 145
SCH, 39
Sequence, 29
Set

admissible, 91
determined, 280

Set of reals
Fσ , 128
Gδ , 128
Δ1

n(x), 137
Π1

n (x), 137
Σ1

1 (x), 137
Σ1

n+1(x), 137
α-Souslin, 131
Π
∼

1

1
, 132

Π
∼

1

n+1
, 132

Σ
∼

1

1
, 132

Σ
∼

1

n+1
, 132

κ-universally Baire, 149
Δ∧

1

n
, 135

analytic, 132
basic open, 127
Borel, 128
closed, 3, 127
coanalytic, 132
complete coanalytic, 134
δ–homogeneously Souslin, 323
δ–weakly homogeneously Souslin, 323
dense, 4
determined, 280
homogeneously Souslin, 323
meager, 6, 148
nowhere dense, 6, 148
of first category, 6
of second category, 6
open, 3, 127
perfect, 4
projective, 132
small, 174
Solovay over M , 153
universal Σ∧

1

1
, 133

universally Baire, 149
weakly homogeneously Souslin, 324

Shift map, 186, 198

Shoenfield tree, 131
σ -algebra, 128
Silver indiscernibles for L[x], 209
Singular Cardinal Hypothesis, 39
Skolem function

Σ1–, 193
Solid, 258

1-, 258
n-, 258

Solidity witness, 256
Solovay game, 289
Solovay sequence, 301

length of, 302
Sound, 253

n-, 253
�κ , 269
�κ (R), 269
Standard code, 237

nrmth , 250
Standard parameter, 255

nth, 254
Standard reduct

nth, 254
Standard witness, 257
Stationary, 41
Stationary set

reflecting, 278
Steel forcing, 295
Stem

of a Prikry condition, 188
Strategy, 279
Subset, 9

proper, 9
Support, 105, 110
Surjective, 14
Symmetric difference, 87

T
TC({x}), 27
||R||, 28
Transitive, 23
Transitive closure, 27
Transitive collapse, 28
Tree, 46

κ–, 47
κ–Aronszajn, 47
κ-Kurepa, 47
κ-Souslin, 47
on ω × α, 128
on X , 127
perfect, 127

Turing reducible, 288
2<κ , 37
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U
ult(V ; U ), 57
Ultrafilter, 40
Ultrapower

Σ0–, 194, 216
rΣn+1-, 262

Ultrapower embedding, 57
Ultrapower map

Σ0–, 195, 216
rΣn+1-, 262

Ultrapower of M by U , 57
Unbounded

in [θ ]<κ , 45
in γ , 40

Uncountable, 3
Upward absolute, 68

V
Vα , 28
Ville’s Lemma, 91

W
Weakly rΣn+1 elementary, 254
Well–founded, 26
Well–founded part, 26
Well-ordering, 15
Wfp(B), 26
Windßus tree, 304
Winning strategy, 280

X
x#, 202

Z
Z, 12
ZC, 12
0#, 202
ZF, 12
ZFC, 12
ZFC−, 12
ZFC−⊃, 12
Zorn’s Lemma, 16
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